diff --git a/.gitignore b/.gitignore index 2465d2d4e2..d0a5f00563 100644 --- a/.gitignore +++ b/.gitignore @@ -13,3 +13,4 @@ xcuserdata/ Package.resolved *.pte *.ipynb_checkpoints* +.idea diff --git a/llama_stack/distribution/templates/local-vllm-build.yaml b/llama_stack/distribution/templates/local-vllm-build.yaml new file mode 100644 index 0000000000..eebd90cd7c --- /dev/null +++ b/llama_stack/distribution/templates/local-vllm-build.yaml @@ -0,0 +1,10 @@ +name: local-vllm +distribution_spec: + description: Use vLLM for running LLM inference + providers: + inference: remote::vllm + memory: meta-reference + safety: meta-reference + agents: meta-reference + telemetry: meta-reference +image_type: conda \ No newline at end of file diff --git a/llama_stack/providers/adapters/inference/vllm/__init__.py b/llama_stack/providers/adapters/inference/vllm/__init__.py new file mode 100644 index 0000000000..146020d97c --- /dev/null +++ b/llama_stack/providers/adapters/inference/vllm/__init__.py @@ -0,0 +1,24 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. + +from .config import DatabricksImplConfig +from .vllm import InferenceEndpointAdapter, VLLMAdapter + + +async def get_adapter_impl(config: DatabricksImplConfig, _deps): + assert isinstance(config, DatabricksImplConfig), f"Unexpected config type: {type(config)}" + + if config.url is not None: + impl = VLLMAdapter(config) + elif config.is_inference_endpoint(): + impl = InferenceEndpointAdapter(config) + else: + raise ValueError( + "Invalid configuration. Specify either an URL or HF Inference Endpoint details (namespace and endpoint name)." + ) + + await impl.initialize() + return impl \ No newline at end of file diff --git a/llama_stack/providers/adapters/inference/vllm/config.py b/llama_stack/providers/adapters/inference/vllm/config.py new file mode 100644 index 0000000000..cec57c814f --- /dev/null +++ b/llama_stack/providers/adapters/inference/vllm/config.py @@ -0,0 +1,23 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. + +from typing import Optional + +from llama_models.schema_utils import json_schema_type +from pydantic import BaseModel, Field + + +# TODO: Any other engine configs +@json_schema_type +class VLLMImplConfig(BaseModel): + url: Optional[str] = Field( + default=None, + description="The URL for the vLLM model serving endpoint", + ) + api_token: Optional[str] = Field( + default=None, + description="The API token", + ) \ No newline at end of file diff --git a/llama_stack/providers/adapters/inference/vllm/vllm.py b/llama_stack/providers/adapters/inference/vllm/vllm.py new file mode 100644 index 0000000000..ce8ba223d0 --- /dev/null +++ b/llama_stack/providers/adapters/inference/vllm/vllm.py @@ -0,0 +1,262 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. + +from typing import AsyncGenerator + +from llama_models.llama3.api.chat_format import ChatFormat + +from llama_models.llama3.api.datatypes import Message, StopReason +from llama_models.llama3.api.tokenizer import Tokenizer +from llama_models.sku_list import resolve_model + +from openai import OpenAI + +from llama_stack.apis.inference import * # noqa: F403 +from llama_stack.providers.utils.inference.prepare_messages import prepare_messages + +from .config import VLLMImplConfig + +# TODO +VLLM_SUPPORTED_MODELS = {} + + +class VLLMInferenceAdapter(Inference): + def __init__(self, config: VLLMImplConfig) -> None: + self.config = config + tokenizer = Tokenizer.get_instance() + self.formatter = ChatFormat(tokenizer) + + @property + def client(self) -> OpenAI: + return OpenAI( + api_key=self.config.api_token, + base_url=self.config.url + ) + + async def initialize(self) -> None: + return + + async def shutdown(self) -> None: + pass + + async def completion(self, request: CompletionRequest) -> AsyncGenerator: + raise NotImplementedError() + + def _messages_to_vllm_messages(self, messages: list[Message]) -> list: + vllm_messages = [] + for message in messages: + if message.role == "ipython": + role = "tool" + else: + role = message.role + vllm_messages.append({"role": role, "content": message.content}) + + return vllm_messages + + def resolve_vllm_model(self, model_name: str) -> str: + model = resolve_model(model_name) + assert ( + model is not None + and model.descriptor(shorten_default_variant=True) + in VLLM_SUPPORTED_MODELS + ), f"Unsupported model: {model_name}, use one of the supported models: {','.join(VLLM_SUPPORTED_MODELS.keys())}" + + return VLLM_SUPPORTED_MODELS.get( + model.descriptor(shorten_default_variant=True) + ) + + def get_vllm_chat_options(self, request: ChatCompletionRequest) -> dict: + options = {} + # TODO + return options + + async def chat_completion( + self, + model: str, + messages: List[Message], + sampling_params: Optional[SamplingParams] = SamplingParams(), + tools: Optional[List[ToolDefinition]] = None, + tool_choice: Optional[ToolChoice] = ToolChoice.auto, + tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json, + stream: Optional[bool] = False, + logprobs: Optional[LogProbConfig] = None, + ) -> AsyncGenerator: + # wrapper request to make it easier to pass around (internal only, not exposed to API) + request = ChatCompletionRequest( + model=model, + messages=messages, + sampling_params=sampling_params, + tools=tools or [], + tool_choice=tool_choice, + tool_prompt_format=tool_prompt_format, + stream=stream, + logprobs=logprobs, + ) + + # accumulate sampling params and other options to pass to vLLM + options = self.get_vllm_chat_options(request) + vllm_model = self.resolve_vllm_model(request.model) + messages = prepare_messages(request) + model_input = self.formatter.encode_dialog_prompt(messages) + + input_tokens = len(model_input.tokens) + max_new_tokens = min( + request.sampling_params.max_tokens or (self.max_tokens - input_tokens), + self.max_tokens - input_tokens - 1, + ) + + print(f"Calculated max_new_tokens: {max_new_tokens}") + + assert ( + request.model == self.model_name + ), f"Model mismatch, expected {self.model_name}, got {request.model}" + + if not request.stream: + r = self.client.chat.completions.create( + model=vllm_model, + messages=self._messages_to_vllm_messages(messages), + max_tokens=max_new_tokens, + stream=False, + **options, + ) + stop_reason = None + if r.choices[0].finish_reason: + if ( + r.choices[0].finish_reason == "stop" + or r.choices[0].finish_reason == "eos" + ): + stop_reason = StopReason.end_of_turn + elif r.choices[0].finish_reason == "length": + stop_reason = StopReason.out_of_tokens + + completion_message = self.formatter.decode_assistant_message_from_content( + r.choices[0].message.content, stop_reason + ) + yield ChatCompletionResponse( + completion_message=completion_message, + logprobs=None, + ) + else: + yield ChatCompletionResponseStreamChunk( + event=ChatCompletionResponseEvent( + event_type=ChatCompletionResponseEventType.start, + delta="", + ) + ) + + buffer = "" + ipython = False + stop_reason = None + + for chunk in self.client.chat.completions.create( + model=vllm_model, + messages=self._messages_to_vllm_messages(messages), + max_tokens=max_new_tokens, + stream=True, + **options, + ): + if chunk.choices[0].finish_reason: + if ( + stop_reason is None and chunk.choices[0].finish_reason == "stop" + ) or ( + stop_reason is None and chunk.choices[0].finish_reason == "eos" + ): + stop_reason = StopReason.end_of_turn + elif ( + stop_reason is None + and chunk.choices[0].finish_reason == "length" + ): + stop_reason = StopReason.out_of_tokens + break + + text = chunk.choices[0].message.content + if text is None: + continue + + # check if it's a tool call ( aka starts with <|python_tag|> ) + if not ipython and text.startswith("<|python_tag|>"): + ipython = True + yield ChatCompletionResponseStreamChunk( + event=ChatCompletionResponseEvent( + event_type=ChatCompletionResponseEventType.progress, + delta=ToolCallDelta( + content="", + parse_status=ToolCallParseStatus.started, + ), + ) + ) + buffer += text + continue + + if ipython: + if text == "<|eot_id|>": + stop_reason = StopReason.end_of_turn + text = "" + continue + elif text == "<|eom_id|>": + stop_reason = StopReason.end_of_message + text = "" + continue + + buffer += text + delta = ToolCallDelta( + content=text, + parse_status=ToolCallParseStatus.in_progress, + ) + + yield ChatCompletionResponseStreamChunk( + event=ChatCompletionResponseEvent( + event_type=ChatCompletionResponseEventType.progress, + delta=delta, + stop_reason=stop_reason, + ) + ) + else: + buffer += text + yield ChatCompletionResponseStreamChunk( + event=ChatCompletionResponseEvent( + event_type=ChatCompletionResponseEventType.progress, + delta=text, + stop_reason=stop_reason, + ) + ) + + # parse tool calls and report errors + message = self.formatter.decode_assistant_message_from_content( + buffer, stop_reason + ) + parsed_tool_calls = len(message.tool_calls) > 0 + if ipython and not parsed_tool_calls: + yield ChatCompletionResponseStreamChunk( + event=ChatCompletionResponseEvent( + event_type=ChatCompletionResponseEventType.progress, + delta=ToolCallDelta( + content="", + parse_status=ToolCallParseStatus.failure, + ), + stop_reason=stop_reason, + ) + ) + + for tool_call in message.tool_calls: + yield ChatCompletionResponseStreamChunk( + event=ChatCompletionResponseEvent( + event_type=ChatCompletionResponseEventType.progress, + delta=ToolCallDelta( + content=tool_call, + parse_status=ToolCallParseStatus.success, + ), + stop_reason=stop_reason, + ) + ) + + yield ChatCompletionResponseStreamChunk( + event=ChatCompletionResponseEvent( + event_type=ChatCompletionResponseEventType.complete, + delta="", + stop_reason=stop_reason, + ) + ) \ No newline at end of file diff --git a/llama_stack/providers/registry/inference.py b/llama_stack/providers/registry/inference.py index 47e1422018..e921922ac9 100644 --- a/llama_stack/providers/registry/inference.py +++ b/llama_stack/providers/registry/inference.py @@ -44,6 +44,14 @@ def available_providers() -> List[ProviderSpec]: module="llama_stack.providers.adapters.inference.ollama", ), ), + remote_provider_spec( + api=Api.inference, + adapter=AdapterSpec( + adapter_type="vllm", + pip_packages=["openai"], + module="llama_stack.providers.adapters.inference.vllm", + ), + ), remote_provider_spec( api=Api.inference, adapter=AdapterSpec(