-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpeople_detector.py
235 lines (180 loc) · 7.42 KB
/
people_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import argparse
import os
import numpy as np
import cv2
from yolov4.tf import YOLOv4
from tracking.sort import *
import math
class PeopleTracker:
def __init__(self, coco="coco.names",
config="config/yolov4-tiny.cfg",
weights="weights/yolov4-tiny.weights",
prob_thresh=0.3,
color=(224, 143, 83)): # BGR
self.yolo = YOLOv4()
self.yolo.config.parse_names(coco)
self.yolo.config.parse_cfg(config)
self.yolo.make_model()
self.yolo.load_weights(weights, weights_type="yolo")
self.yolo.summary(summary_type="yolo")
self.yolo.summary()
self.tracker = Sort()
self.color = color
self.prob_thresh = prob_thresh
self.PERSON_ID = 0
def relative_to_absolute_bbox(self, bbox, X, Y):
'''
yolov4 bounding boxes are scaled, in other words they are in the range
[0, 1] for both width and height, this method converts the bounding boxes
to absolute pixel coordinates based on the image width, height (X, Y)
'''
res = np.array((X, Y))
topl = (res * (np.array(bbox[:2]) - np.array(bbox[2:4]) * 0.5))
botr = (res * (np.array(bbox[:2]) + np.array(bbox[2:4]) * 0.5))
return list(topl) + list(botr)
def predict(self, image):
'''
Detects people from a image, returns a list of bounding boxes along
with the prediction probability
'''
# resize to yolo detection format
img = self.yolo.resize_image(image)
# indices for the detections
idx = {name: i for i, name in enumerate(('x', 'y', 'w', 'h', 't', 'p'))}
detections = self.yolo.predict(img, prob_thresh=self.prob_thresh)
# filter people relative bbox coordinates ([0, 1] based on image width, height)
people_rel = [person for person in detections
if person[idx['t']] == self.PERSON_ID and person[idx['h']] and person[idx['w']]]
# convert to absolute pixel values - top left, bottom right bbox coordinates
X, Y, _ = np.shape(img)
people_abs = [self.relative_to_absolute_bbox(person[:4], X, Y)+[person[-1]]
for person in people_rel]
return people_abs
def draw_text(self, image, text, topl, scale=0.4):
font = cv2.FONT_HERSHEY_SIMPLEX
(text_width, text_height) = cv2.getTextSize(text, font, fontScale=scale, thickness=1)[0]
# offsets based on person bouding box thickness and position
off = (2, 4)
box_coords = (
(topl[0]-1, topl[1]+1),
(topl[0] + text_width + off[0], topl[1] - text_height - off[1])
)
cv2.rectangle(image,
box_coords[0],
box_coords[1],
self.color,
cv2.FILLED)
cv2.putText(image,
text,
(topl[0], topl[1]-off[1]//2), #
font,
fontScale=scale,
color=(255, 255, 255),
thickness=1,
lineType=cv2.LINE_AA)
def draw(self, image, people, thickness=2, font_scale=0.5):
'''
Draws bounding boxes and text based on the people list, returns a copy of the image with
the drawn bounding boxes
'''
img = self.yolo.resize_image(np.array(image))
npeople = 0
for person in people:
topl = tuple(map(int, person[:2]))
botr = tuple(map(int, person[2:4]))
img = cv2.rectangle(img,
topl,
botr,
self.color,
thickness)
self.draw_text(img, f"Osoba {int(person[-1])}", topl)
npeople += 1
self.draw_text(img, f"Broj osoba: {npeople}", (0, np.shape(img)[1]), scale=0.8)
return img
def update(self, image):
# predict people bounding boxes with YOLOv4
people = self.predict(image)
# update the new bounding boxes with SORT
#print(people)
if len(people):
# update the new bounding boxes with SORT
tracked = self.tracker.update(np.array(people))
#print(tracked)
# draw the text + bounding boxes
drawn = self.draw(image, tracked)
return drawn, people
else:
return self.yolo.resize_image(image), None
def area_calculation(present):
x1, y1, x3, y3 = present
x2, y2, x4, y4 = x1, y3, x3, y1
a = x1 * y2 - y1 * x2
b = x2 * y3 - y2 * x3
c = x3 * y4 - y3 * x4
d = x4 * y1 - y4 * x1
return math.sqrt(abs((a + b + c + d) / 2))
def dist_calculation(present, past):
return math.sqrt((present[0] - past[0]) ** 2 + (present[1] - past[1]) ** 2)
def paint(img, topl, botr, color, thickness):
return cv2.rectangle(img,
topl,
botr,
color,
thickness)
def classification(current, previous, tracked, walking=0.06, running=0.07):
count = 0
if previous is not None and current is not None:
for present in current:
for past in previous:
if present[4] == past[4]:
count += 1
dist = (dist_calculation(present[:2], past[:2]) + dist_calculation(present[2:4], past[2:4])) / 2
area = (area_calculation(present[:4]) + area_calculation(past[:4])) / 2
print(dist, area)
speed = dist / area
topl = tuple(map(int, present[:2]))
botr = tuple(map(int, present[2:4]))
if speed < walking:
tracked = paint(tracked, topl, botr, (255, 0, 0), 2)
elif speed < running:
tracked = paint(tracked, topl, botr, (0, 255, 0), 2)
else:
tracked = paint(tracked, topl, botr, (0, 0, 255), 2)
#print(dist / area)
break
#print(len(previous), len(current), count)
else:
print("One of two most recent frames is None")
return tracked
if __name__ == "__main__":
pplt = PeopleTracker()
# get raw images
imgs = [cv2.imread(img)
for img in sorted(glob.glob("frames/*.jpg"))]
LEN_TOTAL_FRAMES = len(str(len(imgs)))
for nframe, img in enumerate(imgs):
print("Frame: ", nframe)
tracked, people = pplt.update(img)
if nframe > 0:
tracked = classification(people, previous, tracked)
previous = people
#cv2.imshow("Tracked", tracked)
#cv2.waitKey(0)
#cv2.destroyAllWindows()
cv2.imwrite(os.path.join("out", f"frame{nframe:0{LEN_TOTAL_FRAMES}}.jpg"), tracked)
'''
# SINGLE IMAGE EXAMPLE
# read the image based on the image name positional argument
parser = argparse.ArgumentParser()
parser.add_argument("imgname")
args = parser.parse_args()
img = cv2.imread(args.imgname)
# initialize the people tracker
pplt = PeopleTracker()
# update the people tracker and grab the new image and people info (x, y, w, h, ID)
tracked_img, people_info = pplt.update(img)
cv2.imshow("Tracked", tracked_img)
# wait, as in not to exit immediately, cleanup
cv2.waitKey(0)
cv2.destroyAllWindows()
'''