forked from m-thu/sandbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsignals-systems.tex
480 lines (396 loc) · 16.5 KB
/
signals-systems.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
\documentclass[fontsize=9pt,a4paper,twocolumn]{scrartcl}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{graphicx}
\usepackage{amsmath, amssymb, amsopn}
\usepackage{xcolor} % include before tikz!
\usepackage{tikz}
\usepackage[european]{circuitikz}
\usepackage{nicefrac}
\usepackage{trfsigns} % for \laplace,\Laplace
\usepackage{framed}
\usepackage{geometry}
\geometry{left=0.5cm,right=0.5cm,top=0.5cm,bottom=0.5cm}
\setlength{\parskip}{5pt}
\setlength{\parindent}{0em}
%
%
%
%
\DeclareMathOperator{\grad}{grad}
\renewcommand\div{}
\DeclareMathOperator{\Div}{div}
\DeclareMathOperator{\rot}{rot}
\DeclareMathOperator{\sinc}{sinc}
%
%
%
\begin{document}
\clearpage
\pagestyle{empty}
\huge{Signals \& Systems Cheat Sheet}\footnote{\small{\texttt{https://github.com/m-thu/sandbox/blob/master/signals-systems.tex}}}\\
\large{Matthias Thumann}
\vspace*{0.5cm}
\large{\textbf{Introduction}}
\textit{C-T/D-T Signal Models, System Properties}
Unit step function:
\begin{quote}
$\boxed{u(t)=\begin{cases}1,& t\geq 0\\ 0,& t<0\end{cases}}$
\end{quote}
Unit ramp function:
\begin{quote}
$\boxed{r(t)=\begin{cases}t,& t\geq 0\\ 0,& t<0\end{cases}}$
\end{quote}
Relationship between $u(t)$ and $r(t)$:
\begin{quote}
$r(t) = \int_{-\infty}^t u(\lambda)\,\mathrm{d}\lambda$\\
$u(t) = \frac{\mathrm{d}}{\mathrm{d}t}r(t)$
\end{quote}
Dirac Delta function:
\begin{quote}
$\int_{-\varepsilon}^\varepsilon \delta(t)\,\mathrm{d}t = 1\quad\forall\varepsilon>0$
\end{quote}
Sifting property of the delta function:
\begin{quote}
$\boxed{\int_{t_0-\varepsilon}^{t_0+\varepsilon} f(t)\cdot\delta(t-t_0)\,\mathrm{d}t = f(t_0)\quad\forall\varepsilon>0}$
\end{quote}
Relationship between $\delta(t)$ and $u(t)$:
\begin{quote}
$\int_{-\infty}^t \delta(\lambda)\,\mathrm{d}\lambda = u(t),\quad t\neq 0$\\
$\delta(t) = \frac{\mathrm{d}}{\mathrm{d}t} u(t)$
\end{quote}
Rectangular pulse function (width $\tau$):
\begin{quote}
$\boxed{p_\tau(t) = \begin{cases}1,& -\nicefrac{\tau}{2}\leq t\leq\nicefrac{\tau}{2}\\ 0,& \text{otherwise}\end{cases}}$\\
$p_\tau(t) = u(t+\nicefrac{\tau}{2}) - u(t-\nicefrac{\tau}{2})$
\end{quote}
Discrete-time (D-T) signal:
\begin{quote}
Sequence of numbers indexed by integers\\
$x[n]\quad n=\dots,-3,-2,-1,0,1,2,3,\dots$
\end{quote}
Sampling a continuous-time signal:
\begin{quote}
$y[n] = \left. y(t)\right|_{t=n\cdot T} = y(n\cdot T)$\\
$T$: sampling interval\\
$F_\mathrm{s}\equiv\nicefrac{1}{T}$: sampling rate
\end{quote}
Discrete-time sinusoid:
\begin{quote}
$x(t)=A\cdot\cos(2\pi f_0\cdot t)$\\
$\Rightarrow x[n]=x(t=n\cdot T) = A\cdot\cos(2\pi f_0\cdot nT)$\\
$\boxed{x[n]=A\cdot\cos(\Omega_0\cdot n),\,\Omega_0=2\pi\cdot\frac{f_0}{F_\mathrm{s}},\,[\Omega_0]=\nicefrac{\mathrm{rad}}{\mathrm{sample}}}$
\end{quote}
General D-T sinusoid:
\begin{quote}
$x[n]=A\cdot\cos(\Omega_0\cdot n+\theta),\,\Omega_0\equiv\Omega_0\pm 2\pi,\pm 4\pi,\dots$
\end{quote}
Discrete-time impulse or D-T delta:
\begin{quote}
$\boxed{\delta[n]=\begin{cases}1,& n=0\\0,& n\neq 0\end{cases}}$
\end{quote}
Sifting property of the D-T delta function:
\begin{quote}
$\boxed{\sum_{n=-\infty}^\infty \delta[n] = 1,\,\sum_{n=-\infty}^\infty x[n]\cdot\delta[n-n_0]=x[n_0]}$
\end{quote}
\newpage
D-T rectangular pulse ($2q+1$ samples):
\begin{quote}
$\boxed{p_q[n]=\begin{cases}1,& n=-q,\dots,-1,0,1,\dots,q\\ 0,& \text{otherwise}\end{cases}}$
\end{quote}
Causality:
\begin{quote}
A causal system's output at a time $t_1$ does not depend on values of the input $x(t)$ for $t>t_1$.
\end{quote}
Linearity ($\to$ Superposition):
\begin{quote}
$x_1(t)\to y_1(t)\qquad x_2(t)\to y_2(t)$\\
$\Rightarrow x(t)=a_1\cdot x_1(t)+a_2\cdot x_2(t)\to y(t)=a_1\cdot y_1(t)+a_2\cdot y_2(t)$
\end{quote}
Time invariance:
\begin{quote}
$x(t)\to y(t)\Rightarrow x(t-t_0)\to y(t-t_0)$
\end{quote}
LTI: Linear Time-Invariant systems
\large{\textbf{Diff. Equations}}
\textit{C-T System Model: Differential Equations,\\ D-T Signal Model: Difference Equations}
Linear constant-coefficient differential equations of order $N$:
\begin{quote}
$y^{(N)}(t)+\sum_{i=0}^{N-1} a_i\cdot y^{(i)}(t) = \sum_{i=0}^M b_i\cdot x^{(i)}(t)$\\
Solution: ``zero-input response'' (due to I.C.s) + ``zero-state response'' (due to input): $y(t) = y_\mathrm{ZI}(t)+y_\mathrm{ZS}(t)$
\end{quote}
%$y_\mathrm{ZI}(t)$:
%\begin{quote}
% Char. polynomial: $\lambda^N+a_{N-1}\cdot\lambda^{N-1}+\dots+a_1\cdot\lambda+a_0$\\
% $N$ roots: $\lambda_1,\lambda_2,\lambda_3,\dots,\lambda_N$\\
% $N$ ``modes'' (assuming distinct roots): $y_\mathrm{ZI}=C_1\cdot\mathrm{e}^{\lambda_1 t}+C_2\cdot\mathrm{e}^{\lambda_2 t}+\dots+C_N\cdot\mathrm{e}^{\lambda_N t}$
%\end{quote}
Linear constant coefficient difference equation of order $N$:
\begin{quote}
$y[n]+a_1\cdot y[n-1]+\dots+a_N\cdot y[n-N] =$\\ $b_0\cdot x[n]+b_1\cdot x[n-1]+\dots+b_M\cdot x[n-M]$
\end{quote}
Solution of a difference equation by recursion:
\begin{quote}
$y[n]=-a_1\cdot y[n-1]-\dots-a_N\cdot y[n-N]+b_0\cdot x[n]+b_1\cdot x[n-1]+\dots+b_M\cdot x[n-M]$
\end{quote}
\large{\textbf{Convolution}}
\textit{C-T System Model: Convolution Integral,\\D-T System Model: Convolution Sum}
D-T convolution:
\begin{quote}
$\boxed{y[n]=x[n]*h[n]=\sum_{i=-\infty}^\infty x[i]\cdot h[n-i]}$
\vspace*{0.25cm}\\
$h[n]$: impulse response of an LTI D-T system\\
$y[n]$: zero state solution\\
$x[n]$: input
\end{quote}
Properties of convolution (both D-T and C-T):
\begin{quote}
Commutativity:\\\hspace*{0.5cm} $x[n]*h[n]=h[n]*x[n]$\\
Associativity:\\\hspace*{0.5cm} $x[n]*\left(v[n]*w[n]\right)=\left(x[n]*v[n]\right)*w[n]$\\
Distributivity:\\\hspace*{0.5cm} $x[n]*\left(h_1[n]+h_2[n]\right)=x[n]*h_1[n]+x[n]*h_2[n]$
\end{quote}
C-T convolution:
\begin{quote}
$\boxed{y(t)=x(t)*h(t)=h(t)*x(t)=\int_{-\infty}^\infty x(\tau)\cdot h(t-\tau)\,\mathrm{d}\tau}$
\end{quote}
C-T conv. derivative property: $y(t)=x(t)*h(t)$
\begin{quote}
$\frac{\mathrm{d}}{\mathrm{d}t}\,y(t)=\left(\frac{\mathrm{d}}{\mathrm{d}t}\,x(t)\right)*h(t)=x(t)*\left(\frac{\mathrm{d}}{\mathrm{d}t}\,h(t)\right)$
\end{quote}
C-T conv. integration property: $y(t)=x(t)*h(t)$
\begin{quote}
$\int_{-\infty}^t y(\lambda)\,\mathrm{d}\lambda=\left[\int_{-\infty}^t x(\lambda)\,\mathrm{d}\lambda\right]*h(t)=$\\$=x(t)*\left[\int_{-\infty}^t h(\lambda)\,\mathrm{d}\lambda\right]$
\end{quote}
\newpage
\large{\textbf{CT Fourier Signal Models}}
\textit{Fourier Series, Fourier-Transform (CTFT)}
Fourier series (Complex exp. form):
\begin{quote}
$\boxed{x(t)=\sum_{k=-\infty}^\infty c_k\cdot\mathrm{e}^{\mathrm{j}\,k\omega_0\cdot t}}$
\end{quote}
Fourier series (Trig. form):
\begin{quote}
$\boxed{x(t)=A_0+\sum_{k=1}^\infty A_k\cdot\cos(k\omega_0\cdot t+\theta_k)}$
\end{quote}
Complex Fourier series coefficients:
\begin{quote}
$\boxed{c_k=\frac{1}{T}\cdot\int_{t_0}^{t_0+T} x(t)\cdot\mathrm{e}^{-\mathrm{j}\,k\omega_0\cdot t}\,\mathrm{d}t}$
\end{quote}
Trigonometric FS with complex coefficients:
\begin{quote}
$x(t)=c_0+\sum_{k=1}^\infty 2\cdot|c_k|\cdot\cos(k\omega_0\cdot t+\angle c_k)$
\end{quote}
Fourier transform:
\begin{quote}
$\boxed{X(\omega)=\int_{-\infty}^\infty x(t)\cdot\mathrm{e}^{-\mathrm{j}\,\omega t}\,\mathrm{d}t}$
\end{quote}
Inverse Fourier transform:
\begin{quote}
$\boxed{x(t)=\frac{1}{2\pi}\int_{-\infty}^\infty X(\omega)\cdot\mathrm{e}^{\mathrm{j}\,\omega t}\,\mathrm{d}\omega}$
\end{quote}
Definition of the $\sinc$-function:
\begin{quote}
$\boxed{\sinc(x)=\frac{\sin(\pi\cdot x)}{\pi\cdot x}}$
\end{quote}
\textit{Timelimited} signal:
\begin{quote}
$x(t)= 0\quad\forall t\not\in[T_1,T_2]$
\end{quote}
\textit{Bandlimited} signal:
\begin{quote}
$|X(\omega)|=0\quad\forall|\omega|>2\pi\cdot B$
\end{quote}
Linearity of the FT:
\begin{quote}
$a\cdot x(t)+b\cdot y(t)\,\laplace\,a\cdot X(\omega)+b\cdot Y(\omega)$
\end{quote}
Time shift:
\begin{quote}
$x(t-c)\,\laplace\,X(\omega)\cdot\mathrm{e}^{-\mathrm{j}\omega c}$
\end{quote}
Complex exponential modulation property:
\begin{quote}
$x(t)\cdot\mathrm{e}^{\mathrm{j}\omega_0\cdot t}\,\laplace\,X(\omega-\omega_0)$
\end{quote}
Real sinusoid modulation:
\begin{quote}
$x(t)\cdot\cos(\omega_0\cdot t)\,\laplace\,\frac{1}{2}\cdot\left[X(\omega+\omega_0)+X(\omega-\omega_0)\right]$\\
$x(t)\cdot\sin(\omega_0\cdot t)\,\laplace\,\frac{\mathrm{j}}{2}\cdot\left[X(\omega+\omega_0)-X(\omega-\omega_0)\right]$
\end{quote}
Convolution property:
\begin{quote}
$\boxed{x(t)*h(t)\,\laplace\,X(\omega)\cdot H(\omega)}$
\end{quote}
Differentiation property:
\begin{quote}
$\boxed{\frac{\mathrm{d}^n}{\mathrm{d}t^n}\cdot x(t)\,\laplace\,(\mathrm{j}\omega)^n\cdot X(\omega)}$
\end{quote}
Fourier transform of the delta function:
\begin{quote}
$\delta(t)\,\laplace\,1$\\
$1\,\laplace\,2\pi\cdot\delta(\omega)$
\end{quote}
Fourier transform of sine and cosine:
\begin{quote}
$\cos(\omega_0\cdot t)\,\laplace\,\pi\cdot\left[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)\right]$\\
$\sin(\omega_0\cdot t)\,\laplace\,\mathrm{j}\pi\cdot\left[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)\right]$
\end{quote}
\newpage
FT of a periodic signal ($c_k$: Fourier series coefficients):
\begin{quote}
$\boxed{X(\omega)=\sum_{k=-\infty}^\infty 2\pi\cdot c_k\cdot\delta(\omega-k\cdot\omega_0)}$
\end{quote}
\large{\textbf{CT Fourier System models}}
\textit{Frequency response}
Response of an LTI system to a sinusoid:
\begin{quote}
$\boxed{x(t)=A\cdot\cos(\omega_0\cdot t+\theta)}$\\\\
$\boxed{\to\,y(t)=|H(\omega_0)|\cdot A\cdot\cos\left(\omega_0\cdot t+\theta+\angle H(\omega_0)\right)}$
\end{quote}
Response to periodic inputs:
\begin{quote}
$\boxed{x(t)=\sum_{k=-\infty}^\infty c_k^{(x)}\cdot\mathrm{e}^{\mathrm{j}\,k\cdot\omega_0 t}}$\\\\
$\boxed{\to\,y(t)=\sum_{k=-\infty}^\infty H(k\cdot\omega_0)\cdot c_k^{(x)}\cdot\mathrm{e}^{\mathrm{j}\,k\cdot\omega_0 t}}$
\end{quote}
Output Fourier series coefficients:
\begin{quote}
$c_k^{(y)}=H(k\cdot\omega_0)\cdot c_k^{(x)}$
\end{quote}
Response to aperiodic signals:
\begin{quote}
$\boxed{x(t)=\frac{1}{2\pi}\cdot\int_{-\infty}^\infty X(\omega)\cdot\mathrm{e}^{\mathrm{j}\,\omega t}\,\mathrm{d}\omega}$\\\\
$\boxed{\to\,y(t)=\frac{1}{2\pi}\cdot\int_{-\infty}^\infty H(\omega)\cdot X(\omega)\cdot\mathrm{e}^{\mathrm{j}\,\omega t}\,\mathrm{d}\omega}$
\end{quote}
Ideal low-pass filter ($t_\mathrm{d}$: filter delay in time domain):
\begin{quote}
$H(\omega)=\begin{cases}1\cdot\mathrm{e}^{-\mathrm{j}\omega t_\mathrm{d}},&-\Omega<\omega<\Omega \quad\text{(Passband)}\\0,&\text{otherwise} \quad\text{(Stopband)}\end{cases}$
\end{quote}
Ideal high-pass filter:
\begin{quote}
$H(\omega)=\begin{cases}0, &-\Omega<\omega<\Omega \quad\text{(Stopband)}\\1\cdot\mathrm{e}^{-\mathrm{j}\omega t_\mathrm{d}}, &\text{otherwise}\quad\text{(Passband)}\end{cases}$
\end{quote}
Summary of \textit{ideal} filters:
\begin{quote}
\begin{enumerate}
\item Magnitude response:
\begin{enumerate}
\item Constant in passband.
\item Zero in stopband.
\end{enumerate}
\item Phase response:
\begin{enumerate}
\item Linear in passband (neg. slope = delay).
\item Undefined in stopband.
\end{enumerate}
\end{enumerate}
\end{quote}
\large{\textbf{Laplace Models for CT Signals \& Systems}}
\textit{Transfer Function}
One-sided Laplace Transform:
\begin{quote}
$\boxed{X(s)=\int_{0^-}^\infty x(t)\cdot\mathrm{e}^{-st}\,\mathrm{d}t,\quad s=\sigma+\mathrm{j}\omega}$
\end{quote}
Inverse Laplace Transform:
\begin{quote}
$x(t)=\frac{1}{2\pi\mathrm{j}}\cdot\int_{c-\mathrm{j}\infty}^{c+\mathrm{j}\infty} X(s)\cdot\mathrm{e}^{st}\,\mathrm{d}s,\quad s=c+\mathrm{j}\omega\text{ is in ROC}$
\end{quote}
Linearity of the LT:
\begin{quote}
$a\cdot x(t)+b\cdot y(t)\,\laplace\,a\cdot X(s)+b\cdot Y(s)$
\end{quote}
Time shift ($c>0$, $x(t)$ causal):
\begin{quote}
$x(t-c)\,\laplace\,\mathrm{e}^{-cs}\cdot X(s)$
\end{quote}
Time differentiation:
\begin{quote}
$\boxed{\dot x(t)\,\laplace\,s\cdot X(s)-x(t=0^-)}$
\end{quote}
Integration:
\begin{quote}
$\boxed{\int_{0^-}^t x(\lambda)\,\mathrm{d}\lambda\,\laplace\,\frac{1}{s}\cdot X(s)}$
\end{quote}
Convolution:
\begin{quote}
$\boxed{x(t)*h(t)\,\laplace\,X(s)\cdot H(s)}$
\end{quote}
First-order linear ODE ($s+a$: characteristic polynomial):
\begin{quote}
$\dot y(t)+a\cdot y(t)=b\cdot x(t)$\\
$\to Y(s)=\underbrace{\frac{y(0^-)}{s+a}}_{\text{zero input sol.}}+\underbrace{\frac{b}{s+a}\cdot X(s)}_{\text{zero state sol.}}$
\end{quote}
Second-order linear ODE ($s^2+a_1\cdot s+a_0$: char. pol.):
\begin{quote}
$\ddot y(t)+a_1\cdot\dot y(t)+a_0\cdot y(t)=b_1\cdot\dot x(t)+b_0\cdot x(t)$\vspace*{0.25cm}\\
\vspace*{0.25cm}Causal input: $x(t)=0, t<0\to x(0^-)=0$\\
$\to Y(s)=\underbrace{\frac{y(0^-)\cdot s+\dot y(0^-)+a_1\cdot y(0^-)}{s^2+a_1\cdot s+a_0}}_{\text{zero-input sol.}}$\\\hspace*{1.5cm}$\underbrace{+\frac{b_1\cdot s+b_0}{s^2+a_1\cdot s+a_0}\cdot X(s)}_{\text{zero-state sol.}}$
\end{quote}
Zero-input solution (2nd-order system): $|\zeta|<1, \omega_\mathrm{n}>0$
\begin{quote}
$Y(s)=\frac{\alpha}{s^2+2\zeta\omega_\mathrm{n}\cdot s+\omega_\mathrm{n}^2}$\\
$\to y(t)=A\cdot\mathrm{e}^{-\zeta\omega_\mathrm{n}\cdot t}\cdot\sin\left(\left(\omega_\mathrm{n}\cdot\sqrt{1-\zeta^2}\right)\cdot t\right)\cdot u(t),$\\
\hspace*{1.5cm}$A=\frac{\alpha}{\omega_\mathrm{n}\cdot\sqrt{1-\zeta^2}}$\\
$Y(s)=\beta\cdot\frac{s+\alpha}{s^2+2\zeta\omega_\mathrm{n}\cdot s+\omega_\mathrm{n}^2}$\\
$\to y(t)=A\cdot\mathrm{e}^{-\zeta\omega_\mathrm{n}\cdot t}\cdot\sin\left(\left(\omega_\mathrm{n}\cdot\sqrt{1-\zeta^2}\right)\cdot t+\phi\right)\cdot u(t),$\\
\hspace*{1.5cm}$A=\beta\cdot\sqrt{\frac{(\alpha-\zeta\omega_\mathrm{n})^2}{\omega_\mathrm{n}^2\cdot(1-\zeta^2)}+1},$\\\hspace*{1.5cm}$\phi=\arctan\left(\frac{\omega_\mathrm{n}\cdot\sqrt{1-\zeta^2}}{\alpha-\zeta\omega_\mathrm{n}}\right)$
\end{quote}
$N^\mathrm{th}$-order linear ODE ($M\leq N$):
\begin{quote}
$y^{(N)}(t)+a_{N-1}\cdot y^{(N-1)}(t)+\dots+a_1\cdot\dot y(t)+a_0\cdot y(t)$\vspace*{0.2cm}\\
\hspace*{0.5cm}$=b_M\cdot x^{(M)}+\dots+b_1\cdot\dot x(t)+b_0\cdot x(t)$\vspace*{0.25cm}\\
$\boxed{\to Y(s)=\frac{\mathrm{IC}(s)}{A(s)}+\underbrace{\frac{B(s)}{A(s)}}_{H(s)}\cdot \underbrace{X(s)}_{\frac{N_X(s)}{D_X(s)}}}$\vspace*{0.2cm}\\
\hspace*{0.5cm}$A(s)=s^N+a_{N-1}\cdot s^{N-1}+\dots+a_1\cdot s+a_0,$\\
\hspace*{0.5cm}$B(s)=b_M\cdot s^M+\dots+b_1\cdot s+b_0,$\\
\hspace*{0.5cm}$\mathrm{IC}(s)=\text{polynomial in s dependent of ICs}$
\end{quote}
Solution for general system with ICs (no common roots between denominator of $X(s)$ and $H(s)$):
\begin{quote}
$\boxed{Y(s)=\overbrace{\frac{\mathrm{IC}(s)}{A(s)}}^\text{zero-input response}+\overbrace{\underbrace{\frac{E(s)}{A(s)}}_\text{transient response}+\underbrace{\frac{F(s)}{D_X(s)}}_\text{steady-state response}}^\text{zero-state response}}$
\end{quote}
Transfer function (system in zero-state):
\begin{quote}
$\boxed{Y(s)=\frac{B(s)}{A(s)}\cdot X(s)=H(s)\cdot X(s)}$
\end{quote}
Connection between frequency response and transfer function\\(if $H(\mathrm{j}\omega)$ exists):
\begin{quote}
$\boxed{H(\mathrm{j}\omega)=\left.H(s)\right|_{s=\mathrm{j}\omega}}$\vspace*{0.25cm}\\
$H(\mathrm{j}\omega)$ always exists for $R$, $L$, $C$ circuits.
\end{quote}
\newpage
S-domain impedances:
\begin{quote}
$Z_R(s)=R\quad\quad Z_C(s)=\frac{1}{sC}\quad\quad Z_L(s)=sL$
\end{quote}
Bounded-input, bounded-output (BIBO) stability:
\begin{framed}
For any bounded input $|x(t)|\leq C_1\,\forall t\geq 0$ the output remains bounded: $|y(t)|\leq C_2$.
\end{framed}
Checks for BIBO stability:
\begin{framed}
\begin{itemize}
\item $\int_0^\infty |h(t)|\,\mathrm{d}t<\infty$
\item All poles of $H(s)$ ($N^\mathrm{th}$-order system with $N$ poles\\ $p_i=1,2,\dots,N$) are in the open left-half of the $s$-plane:\\ $\Re\{p_i\}<0 \text{ for all } i=1,2,\dots,N$.
\end{itemize}
\end{framed}
Marginally stable systems:
\begin{quote}
Systems that have at least one \textit{distinct} pole on the $\mathrm{j}\omega$ axis, but no repeated poles.
\end{quote}
Real poles $p_i$:
\begin{quote}
$h_i(t)=c_i\cdot\mathrm{e}^{p_i\cdot t}\cdot u(t)\qquad\text{(distinct pole)}$\\
$h_i(t)=c_i\cdot t^{k-1}\cdot\mathrm{e}^{p_i\cdot t}\cdot u(t)\qquad (k\text{-repeated poles})$
\end{quote}
Complex pole pairs $p_i=\sigma_i\pm\mathrm{j}\omega_i, \,\,\omega_i>0$:
\begin{quote}
$h_i(t)=c_i\cdot\mathrm{e}^{\sigma_i\cdot t}\cdot\cos(\omega_i\cdot t+\theta_i)\cdot u(t)\qquad\text{(distinct pole)}$\\
$h_i(t)=c_i\cdot t^{k-1}\cdot\mathrm{e}^{\sigma_i\cdot t}\cdot\cos(\omega_i\cdot t+\theta_i)\cdot u(t)$\\
\hspace*{1cm}($k$-repeated poles)
\end{quote}
Response of an (unstable) system with transfer function $H(s)$ to a sinusoid, no I.C.s:
\begin{quote}
$x(t)=A\cdot\cos(\omega_0\cdot t)\cdot u(t)$\\
$\to y(t)=y_t(t)+\underbrace{A\cdot\left|H(\mathrm{j}\omega_0)\right|\cdot\cos\left(\omega_0\cdot t+\angle H(\mathrm{j}\omega_0)\right), t\geq 0}_\text{steady-state response}$\\
$y_t(t)$: transient response
\end{quote}
\end{document}