forked from kavyasuresh/ra_hw4
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhw4_navplan.py
451 lines (351 loc) · 15.2 KB
/
hw4_navplan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
#!/usr/bin/env python
PACKAGE_NAME = 'hw4'
# Standard Python Imports
import os
import copy
import time
import math
import numpy as np
np.random.seed(0)
import scipy
import collections
import Queue
import signal
# OpenRAVE
import openravepy
#openravepy.RaveInitialize(True, openravepy.DebugLevel.Debug)
curr_path = os.getcwd()
relative_ordata = '/models'
ordata_path_thispack = curr_path + relative_ordata
#this sets up the OPENRAVE_DATA environment variable to include the files we're using
openrave_data_path = os.getenv('OPENRAVE_DATA', '')
openrave_data_paths = openrave_data_path.split(':')
if ordata_path_thispack not in openrave_data_paths:
if openrave_data_path == '':
os.environ['OPENRAVE_DATA'] = ordata_path_thispack
else:
datastr = str('%s:%s'%(ordata_path_thispack, openrave_data_path))
os.environ['OPENRAVE_DATA'] = datastr
#set database file to be in this folder only
relative_ordatabase = '/database'
ordatabase_path_thispack = curr_path + relative_ordatabase
os.environ['OPENRAVE_DATABASE'] = ordatabase_path_thispack
#get rid of warnings
openravepy.RaveInitialize(True, openravepy.DebugLevel.Fatal)
openravepy.misc.InitOpenRAVELogging()
#constant for max distance to move any joint in a discrete step
#this constant is for arm movement!
MAX_MOVE_AMOUNT = 0.1
WHEEL_RADIUS = 0.20
ROBOT_LENGTH = 0.25
TIMESTEP_AMOUNT = 0.02
class RoboHandler:
def __init__(self):
self.openrave_init()
self.problem_init()
#self.run_problem_navsearch()
#self.run_problem_nav_and_grasp()
#######################################################
# the usual initialization for openrave
#######################################################
def openrave_init(self):
self.env = openravepy.Environment()
self.env.SetViewer('qtcoin')
self.env.GetViewer().SetName('HW4 Viewer')
self.env.Load('models/%s_navplan.env.xml' %PACKAGE_NAME)
# time.sleep(3) # wait for viewer to initialize. May be helpful to uncomment
self.robot = self.env.GetRobots()[0]
#set right wam as active manipulator
with self.env:
self.robot.SetActiveManipulator('right_wam');
self.manip = self.robot.GetActiveManipulator()
#set active indices to be right arm only
self.robot.SetActiveDOFs(self.manip.GetArmIndices() )
self.end_effector = self.manip.GetEndEffector()
#######################################################
# problem specific initialization
#######################################################
def problem_init(self):
self.target_kinbody = self.env.GetKinBody("target")
# create a grasping module
self.gmodel = openravepy.databases.grasping.GraspingModel(self.robot, self.target_kinbody)
# load grasps
if not self.gmodel.load():
self.gmodel.autogenerate()
self.grasps = self.gmodel.grasps
self.graspindices = self.gmodel.graspindices
# load ikmodel
self.ikmodel = openravepy.databases.inversekinematics.InverseKinematicsModel(self.robot,iktype=openravepy.IkParameterization.Type.Transform6D)
if not self.ikmodel.load():
self.ikmodel.autogenerate()
# create taskmanip
self.taskmanip = openravepy.interfaces.TaskManipulation(self.robot)
# move arms out of way
self.robot.SetDOFValues(np.array([4,2,0,-1,0,0,0]),self.robot.GetManipulator('left_wam').GetArmIndices() )
self.robot.SetDOFValues(np.array([4.0,-1.5,0,1.5,0,0,0]),self.robot.GetManipulator('right_wam').GetArmIndices() )
#save the current robot transform
self.start_trans = self.robot.GetTransform()
self.start_DOFS = self.robot.GetActiveDOFValues()
#initialize the transition transformations for base movmement
self.init_transition_transforms()
#######################################################
# navsearch to transform
#######################################################
def run_problem_navsearch(self):
th = -np.pi/2
x_trans = -0.5
y_trans = 0.5
goal_trans = [np.copy(self.start_trans)]
rot_to_goal = np.array([[np.cos(th), -np.sin(th), 0],
[np.sin(th), np.cos(th), 0],
[0, 0, 1]])
goal_trans[0][0:3,0:3] = np.dot(rot_to_goal, self.start_trans[0:3,0:3])
goal_trans[0][0,3] += x_trans
goal_trans[0][1,3] += y_trans
th = -np.pi/2
x_trans = 0.5
y_trans = 3.0
goal_trans.append(np.copy(self.start_trans))
rot_to_goal = np.array([[np.cos(th), -np.sin(th), 0],
[np.sin(th), np.cos(th), 0],
[0, 0, 1]])
goal_trans[1][0:3,0:3] = np.dot(rot_to_goal, self.start_trans[0:3,0:3])
goal_trans[1][0,3] += x_trans
goal_trans[1][1,3] += y_trans
with self.env:
self.robot.SetTransform(self.start_trans)
# get the trajectory!
base_transforms = self.astar_to_transform(goal_trans)
with self.env:
self.robot.SetTransform(self.start_trans)
self.run_basetranforms(base_transforms)
#######################################################
# grasp an object by first driving to a location
# then performing grasp
#######################################################
def run_problem_nav_and_grasp(self):
self.robot.GetController().Reset()
# move hand to preshape of grasp
# --- important --
# I noted they were all the same, otherwise you would need to do this separately for each grasp!
with self.env:
self.robot.SetDOFValues(self.grasps[0][self.graspindices['igrasppreshape']], self.manip.GetGripperIndices()) # move to preshape
with self.env:
self.robot.SetTransform(self.start_trans)
self.robot.SetActiveDOFValues(self.start_DOFS)
base_transforms,arm_traj = self.nav_and_grasp()
with self.env:
self.robot.SetTransform(self.start_trans)
self.robot.SetActiveDOFValues(self.start_DOFS)
self.run_basetranforms(base_transforms)
self.robot.GetController().SetPath(arm_traj)
self.robot.WaitForController(0)
self.taskmanip.CloseFingers()
#######################################################
# finds the arm configurations (in cspace) that correspond
# to valid grasps
# num_goal: number of grasps to consider
# num_dofs_per_goal: number of IK solutions per grasp
#######################################################
def get_goal_dofs(self, num_goals=1, num_dofs_per_goal=1):
validgrasps,validindices = self.gmodel.computeValidGrasps(returnnum=num_goals)
curr_IK = self.robot.GetActiveDOFValues()
goal_dofs = np.array([])
for grasp, graspindices in zip(validgrasps, validindices):
Tgoal = self.gmodel.getGlobalGraspTransform(grasp, collisionfree=True)
sols = self.manip.FindIKSolutions(Tgoal, openravepy.IkFilterOptions.CheckEnvCollisions)
# magic that makes sols only the unique elements - sometimes there are multiple IKs
sols = np.unique(sols.view([('',sols.dtype)]*sols.shape[1])).view(sols.dtype).reshape(-1,sols.shape[1])
sols_scores = []
for sol in sols:
sols_scores.append( (sol, np.linalg.norm(sol-curr_IK)) )
# sort by closest to current IK
sols_scores.sort(key=lambda tup:tup[1])
sols = np.array([x[0] for x in sols_scores])
# sort randomly
#sols = np.random.permutation(sols)
#take up to num_dofs_per_goal
last_ind = min(num_dofs_per_goal, sols.shape[0])
goal_dofs = np.append(goal_dofs,sols[0:last_ind])
goal_dofs = goal_dofs.reshape(goal_dofs.size/7, 7)
return goal_dofs
#TODO
#######################################################
# Returns a base trajectory and subsequent arm trajectory
# which will grasp the target object from the current configuration
#######################################################
def nav_and_grasp(self):
#example of calling a function with timeout:
#base_transforms = run_func_with_timeout(self.astar_to_transform, args=[base_transform_goals], timeout=40)
return None
#TODO
#######################################################
# Samples a configuration suitable for grasp
#######################################################
def sample_for_grasp(self):
return None
#TODO
#Or just copy your old one here
#######################################################
# Bi-Directional RRT
# find a path from the current configuration to ANY goal in goals
# goals: list of possible goal configurations
# RETURN: a trajectory to the goal
#######################################################
def birrt_to_goal(self, goals):
return None
#TODO
#######################################################
# BASE MOVEMENT with A* SEARCH
# find a path from the current configuration to transform
# RETURN: an array of ALL intermediate transforms.
# Thus, you should use self.full_transforms when returning!
#######################################################
def astar_to_transform(self, goal_transforms):
return None
#######################################################
# Check if the config is close enough to goal
# Returns true if any goal in goals is within
# BOTH distance_thresh and theta_thresh
#######################################################
def is_at_goal_basesearch(self, config, goals, dist_thresh = 0.02, theta_thresh = np.pi/12):
for goal in goals:
if (np.linalg.norm(config[0:2]-goal[0:2]) <= dist_thresh and np.abs(config[2] - goal[2]) <= theta_thresh):
return True
return False
#TODO
#######################################################
# Initialize the movement transforms
# These are equivalent to applying a fixed control for some
# amount of time
#######################################################
def init_transition_transforms(self):
self.transition_transforms = []
self.full_transforms = []
#TODO
#######################################################
# Applies the specified controls to the initial transform
# returns a list of all intermediate transforms
#######################################################
def controls_to_transforms(self,trans,controls,timestep_amount):
return None
#TODO
#######################################################
# Take the current configuration and apply each of your
# transition arrays to it
#######################################################
def transition_config(self, config):
return None
#TODO
#######################################################
# Implement a heuristic for base navigation
#######################################################
def config_to_priorityqueue_tuple(self, dist, config, goals):
# make sure to replace the 0 with your priority queue value!
return (0.0, config.tolist())
#######################################################
# ASSUMES TRANSFORM ONLY ROTATED ABOUT Z
# Takes rotation or transform, and returns the angle of rotation
#######################################################
def rot_matrix_to_angle(self,transform):
return np.arctan2(transform[1,0], transform[0,0])
#######################################################
# ASSUMES TRANSFORM ONLY ROTATED ABOUT Z
# Takes in an x,y,theta, and returns a transform
#######################################################
def xyt_to_transform(self,x,y,theta):
t = np.array([[np.cos(theta), -np.sin(theta), 0, x],
[np.sin(theta), np.cos(theta), 0, y],
[0, 0, 1, 0],
[0, 0, 0, 1]] )
return t
#######################################################
# Convert between our params (array with x,y,theta) and 4x4 transform
#######################################################
def params_to_transform(self,params):
return self.xyt_to_transform(params[0], params[1], params[2])
def transform_to_params(self,transform):
return np.array([transform[0,3], transform[1,3], self.rot_matrix_to_angle(transform)])
#######################################################
# minimum distance from config to any goal in goals
# distance metric: euclidean
# returns the distance AND closest goal
#######################################################
def min_euclid_dist_to_goals(self, config, goals):
dists = np.sum((config-goals)**2,axis=1)**(1./2)
min_ind = np.argmin(dists)
return dists[min_ind], goals[min_ind]
#######################################################
# Convert to and from numpy array to a hashable function
#######################################################
def convert_for_dict(self, item):
return tuple(item)
def convert_from_dictkey(self, item):
return np.array(item)
#######################################################
# Convert to and from numpy array to a hashable function
# includes rounding
#######################################################
def convert_for_dict_withround(self, item):
return tuple(np.int_(item*100))
def convert_from_dictkey_withround(self, item):
return np.array(item)/100.
def points_to_traj(self, points):
traj = openravepy.RaveCreateTrajectory(self.env,'')
traj.Init(self.robot.GetActiveConfigurationSpecification())
for idx,point in enumerate(points):
traj.Insert(idx,point)
openravepy.planningutils.RetimeActiveDOFTrajectory(traj,self.robot,hastimestamps=False,maxvelmult=1,maxaccelmult=1,plannername='ParabolicTrajectoryRetimer')
return traj
def run_basetranforms(self, transforms):
for trans in transforms:
with self.env:
self.robot.SetTransform(trans)
time.sleep(0.01)
#######################################################
# minimum distance from config (singular) to any other config in o_configs
# distance metric: euclidean
# returns the distance AND index
#######################################################
def min_euclid_dist_one_to_many(self, config, o_configs):
dists = np.sum((config-o_configs)**2,axis=1)**(1./2)
min_ind = np.argmin(dists)
return dists[min_ind], min_ind
#######################################################
# minimum distance from configs (plural) to any other config in o_configs
# distance metric: euclidean
# returns the distance AND indices into config and o_configs
#######################################################
def min_euclid_dist_many_to_many(self, configs, o_configs):
dists = []
inds = []
for o_config in o_configs:
[dist, ind] = self.min_euclid_dist_one_to_many(o_config, configs)
dists.append(dist)
inds.append(ind)
min_ind_in_inds = np.argmin(dists)
return dists[min_ind_in_inds], inds[min_ind_in_inds], min_ind_in_inds
#######################################################
# close the fingers when you get to the grasp position
#######################################################
def close_fingers(self):
self.taskmanip.CloseFingers()
self.robot.WaitForController(0) #ensures the robot isn't moving anymore
#self.robot.Grab(target) #attaches object to robot, so moving the robot will move the object now
def handler(signum, frame):
raise Exception("end of time")
def run_func_with_timeout(func, args = (), timeout=1000000000):
signal.signal(signal.SIGALRM, handler)
signal.alarm(timeout)
result = None
try:
result = func(args)
except Exception, exc:
print exc
pass
finally:
signal.alarm(0)
return result
if __name__ == '__main__':
robo = RoboHandler()
#time.sleep(10000) #to keep the openrave window open