diff --git a/.ipynb_checkpoints/ch6-checkpoint.ipynb b/.ipynb_checkpoints/ch6-checkpoint.ipynb new file mode 100644 index 0000000..363fcab --- /dev/null +++ b/.ipynb_checkpoints/ch6-checkpoint.ipynb @@ -0,0 +1,6 @@ +{ + "cells": [], + "metadata": {}, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/ch2/.ipynb_checkpoints/ch2-checkpoint.ipynb b/ch2/.ipynb_checkpoints/ch2-checkpoint.ipynb index 8822a2c..e45b7a7 100644 --- a/ch2/.ipynb_checkpoints/ch2-checkpoint.ipynb +++ b/ch2/.ipynb_checkpoints/ch2-checkpoint.ipynb @@ -32,7 +32,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 1, "id": "f4328fee", "metadata": {}, "outputs": [ @@ -296,7 +296,7 @@ "[303 rows x 14 columns]" ] }, - "execution_count": 6, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } @@ -309,7 +309,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 2, "id": "887ecd7a", "metadata": {}, "outputs": [ @@ -523,7 +523,7 @@ "max 3.000000 1.000000 " ] }, - "execution_count": 7, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -536,7 +536,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 3, "id": "09e28402", "metadata": {}, "outputs": [ @@ -559,7 +559,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 4, "id": "e4810f7a", "metadata": {}, "outputs": [ @@ -579,7 +579,7 @@ "dtype: float64" ] }, - "execution_count": 9, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -594,7 +594,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 5, "id": "41ff84ad", "metadata": {}, "outputs": [ @@ -614,7 +614,7 @@ "dtype: float64" ] }, - "execution_count": 10, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -625,7 +625,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 6, "id": "f8117a56", "metadata": {}, "outputs": [ @@ -645,7 +645,7 @@ "dtype: float64" ] }, - "execution_count": 11, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -658,7 +658,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 7, "id": "33366cc6", "metadata": {}, "outputs": [ @@ -856,7 +856,7 @@ "target 0.147678 0.352609 -0.430124 1.000000 " ] }, - "execution_count": 12, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -867,7 +867,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 8, "id": "982ae37a", "metadata": {}, "outputs": [ @@ -897,7 +897,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 9, "id": "4b3f2ceb", "metadata": {}, "outputs": [ @@ -1065,7 +1065,7 @@ "max 2.394438e+00 2.803756e+00 2.289429e+00 3.203615e+00 1.000000 " ] }, - "execution_count": 16, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -1076,7 +1076,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 10, "id": "5b6643df", "metadata": {}, "outputs": [ @@ -1274,7 +1274,7 @@ "target 0.137230 0.421741 -0.391724 1.000000 " ] }, - "execution_count": 17, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -1285,7 +1285,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 11, "id": "2d587b61", "metadata": {}, "outputs": [ @@ -1295,7 +1295,7 @@ "" ] }, - "execution_count": 18, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, @@ -1326,7 +1326,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 12, "id": "f6371c2f", "metadata": {}, "outputs": [ @@ -1344,7 +1344,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 13, "id": "201ef5a7", "metadata": {}, "outputs": [], @@ -1355,7 +1355,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 14, "id": "8945007e", "metadata": {}, "outputs": [], @@ -1367,7 +1367,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 15, "id": "2b7ff6dd", "metadata": {}, "outputs": [], @@ -1377,13 +1377,13 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 16, "id": "c63c8ae3", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA6kElEQVR4nO3de1zO9/8/8MfVmUjpnJROIklOK+dyShEqp23GB5vNYY7bjH6bzw62fTaz2T5mDsN82pBSCSFUjiFEkZROSkdJkg5X1/X7w2d95sssVK/r6nrcb7fdbnMdXu/H9flYj57v632QyOVyOYiIiFSEmugAREREzYnFR0REKoXFR0REKoXFR0REKoXFR0REKoXFR0REKoXFR0REKoXFR0REKoXFR0REKoXFR0REKoXFR0REKoXFR0REKoXFR0REKoXFR0REKoXFR0REKoXFR0REKoXFR0REKoXFR0rpl19+weeff4779++LjkJESobFR0pp3759+OSTT2BhYcECJKLnIpHL5XLRIYiel5eXFw4fPgwAUFNTg0QiwZIlS5CUlITWrVvDwcEB3bt3R8+ePdG1a1dIJBLBiYlIUbD4SGnIZDLs2bMH69evx8mTJ1FTUwN1dXWoq6tj7Nix+Oqrr5CamooHDx4gNTUVSUlJiI+Ph76+PmbMmIEZM2agXbt2oj8GEQnG4iOlkJ2djZkzZ+LevXt47733EBISgsjISCxcuBDLli2DoaHhU98nk8kQFxeHjRs34vjx4/jhhx/g7+/PCZBIhbH4SOElJCTAx8cHixcvxvvvvw8NDQ3k5+dDW1sb7du3b/A6J0+exFtvvQUPDw+sW7cOamr8iptIFbH4SKFdu3YNQ4cOxYYNGzBu3LiXXu/+/fvw8fGBg4MDfvnlF05+RCqIv/KSwpJKpXj99dfx+eefN0rpAUDbtm1x8OBBXLlyBRs2bGiUNYlIuXDiI4X1448/Ijw8HEeOHGn0yezatWsYMmQILly4ACsrq0Zdm4gUG4uPFJJcLoednR127dqFvn37Nsk23n//fcjlcqxevbpJ1icixcRdnaSQTp06hVatWqFPnz5Nto133nkHv/76K6qrq5tsG0SkeFh8pJBOnTqFUaNGNenBJ3Z2drCyskJiYmKTbYOIFA+LjxTStWvX0K1btybfTs+ePXHhwoUm3w4RKQ4WHymkO3fuwNjYuMm3Y2Vlhfz8/CbfDhEpDhYfKSQtLS3U1NQ0+XZ4Hh+R6mHxkUIyMjJqlknszp070NPTa/LtEJHi0BAdgOhpXnnlFcTFxWH+/Pl/+9qSimqEXMjF9YJylFdJoaejgS5mepjY2xKGbbSf+d5Lly7B19e3sWITkRLgeXykkNLS0jBo0CDk5ORAS0vrqa+5fKsM62LTEXejGABQLZXVP6ejoQY5AA9HY8wdYo8eHfWfeP/du3dhY2ODrKws6Os/+TwRtUzc1UkKycHBAd26dUNISMhTnw+Kz8KUTfGITilEtVT2WOkBQNV/Hzt8rRBTNsUjKD7riTW2bduG0aNHs/SIVAwnPlJYUVFRWLBgARITE6Grq1v/eFB8FlYdSMHDWtkz3v24VppqCPTpiqnunQAApaWl6N69O8LCwvDKK680dnQiUmAsPlJob7zxBtq2bYuffvoJwKPdm1M2xeNhbd1jr6vKvYbyM7tRnXcdstoqaLQ1RCvbPjAYNgsSdU0AQCtNdeya7Y7uHdrh9ddfh7GxMdauXdvsn4mIxGLxkUK7e/cuBg4cCH9/f3z66ad4O+gColMK8ee/tQ+uxaEk8ltALoOmiQ20zR0gvVeEqpwkdFzwG9R02gAAJBJgpJMpdM7/BydPnsTx48cfmySJSDWw+EjhFRcXY8SIEXDu3Q/nzH1RU/e/v7Ky2irkrZsBWdV96HbzhOGYxZBIHn11XXs3Hxp6RvUTHwBIZHUwOvUdoveF8bs9IhXFg1tI4RkbGyMuLg7Fbe2euKB0dW4KZFX3AQDt+k+uLz0A0DQwf6z0gEdT3xsrf2LpEakwFh8phXbt2qFrv2GQaDx+akNdZVn9v2u0M/nbdWQSdWSW8m4MRKqMxUdKo7xK+sRj6q316/9deq+ogevUNlYkIlJCLD5SGno6T15oSLtD1/qDV+6d3gW5/H+nOEjvFUFe92RZ6uloPvEYEakOXrKMlEYXMz1oaxQ8drK6mpYODEa8jTv7vsODqzGoKc6Ctnln1FWU4mHWJXR8NwgS9Tb1r9fRUEMX87Yi4hORguDER0pjQm/Lpz7eppsnTF/9Aq3s+qCuvBgVyUdRe+cW2vbwgkTz8Wt1ygFM6PX0dYhINXDiI6Vh1EYbQzobP3EeHwDoWDlDx8r5me+XSABPR+O/vXA1EbVsnPhIqczzsIeOhvoLvVdWW417Z3YjPj4epaWljZyMiJQFi4+USo+O+gj06YJWms/3V7eVphrs7l3Gzp++xsCBA2FmZoY2bdpgwoQJTZSUiBQVi4+UzlT3Tlju3QUakOHvbqAukTy6RmegT1cc+XklOnXqhLq6OtTW1qKmpgZOTk7NE5qIFAaLj5ROXV0dtq6YCfnR7+DlZAptDTXoaDz+V1lHQw3aGmrwcjLFrtnumOreCWpqatiyZQtatWoFAKitrcXNmzchkzX8Lg9EpPx4rU5SKsnJyfD390daWhqmTZuGX3/9FXcqqhFyMRfX8++jvKoWejqa6GLeFhN6Pf0O7IMHD8bZs2fxww8/YPHixdDT08ORI0fg7Pzsg2OIqGVg8ZFSqK2txUcffYQffvgBDx8+hJqaGrZv347XX3/9udfKzs5GZmYmPDw8UFFRgZEjR+Ls2bNYsWIFPvvssyZIT0SKhMVHSiEjIwPOzs6oqalBXV0d2rZti+DgYIwaNapR1l+3bh0WLVoEe3t7xMTEwMzMrFHWJSLFw+/4SCnY2toiLS0NEokE6urqqKmpgaGhYaOtP2/ePGRmZqK2thZWVlbYvHlzo61NRIqFxUdKY+XKldDW1saxY8cwePBg2NraNur6lpaWSE9Px8KFCzF79mwMGTIElZWVjboNIhKPuzpJKWRnZ8PW1hZbtmzB9OnTm3x7Fy9exMiRI1FVVYXQ0FB4eXk1+TaJqHmw+EgpuLq6orq6GikpKc22TZlMhsmTJyM0NBRTpkxBUFAQ1NS4k4RI2fG/YlJ4ISEhuHLlCsLDw5t1u2pqati9ezciIyMREREBc3NzJCUlNWsGImp8LD5SaDKZDLNmzcKUKVPg6OgoJMPo0aNRWFgIe3t7uLq6YsWKFUJyEFHj4K5OUmhz587Ftm3bUFZWBi0tLdFxsH79eixYsAC2traIiYmBhYWF6EhE9Jw48ZHCys3NxYYNG/D9998rROkBwJw5c5CVlQW5XA5ra2ts3LhRdCQiek6c+Ehh9enTB+Xl5bhx44boKE+1bNkyrF69Gv3798ehQ4fQunVr0ZGIqAE48ZFC2rt3Ly5evIiwsDDRUf7Sv/71L1y4cAGpqakwNjZGVFSU6EhE1ACc+EjhyGQyGBoaYtiwYQgJCREd52/JZDK89tprCA4OxqRJk/D777/ztAciBcbiI4WzePFi/Pzzz7h79y50dHREx2mwqKgoTJgwAbq6uoiOjkaPHj1ERyKip+CvpaRQCgoK8OOPP+Kbb75RqtIDAG9vbxQXF8PR0RG9evXCsmXLREcioqfgxEcKxd3dHUVFRcjIyBAd5aVs3LgR8+bNg42NDWJjY3naA5EC4cRHCiMqKgrnzp3Dnj17REd5abNnz0ZOTg4kEgmsra2xfv160ZGI6L848ZFCkMlkMDExwYABAxARESE6TqNavnw5vv76a7i7u+PQoUNo06aN6EhEKo0THymEDz/8EBUVFdixY4foKI3uyy+/RGJiItLT02FiYoJ9+/aJjkSk0lh8JFxJSQnWrFmDL774osWeBN69e3fk5+fDz88PY8eOxcSJEyGTyUTHIlJJ3NVJwg0aNAjZ2dnIyckRHaVZHDp0CAEBAdDR0cHhw4fRq1cv0ZGIVAonPhLq6NGjOHXqFEJDQ0VHaTZeXl4oKipCt27d0LdvX7z//vuiIxGpFE58JJSpqSl69+6NAwcOiI4ixC+//II5c+bAysoKsbGxsLS0FB2JqMXjxEfCfPTRRygrK0NwcLDoKMLMmjULOTk50NTUhI2NDf7973+LjkTU4rH4SIi7d+/iq6++wj//+U+VP7zfzMwMKSkpWLZsGRYuXIh+/fqhoqJCdCyiFou7OkmIoUOHIjU1FXl5eaKjKJTk5GQMHz4c5eXl2LlzJ8aOHSs6ElGLw4mPmt3x48cRGxurFHdeaG7Ozs64ffs2JkyYgPHjxyMgIABSqVR0LKIWhRMfNTsLCwt069YN0dHRoqMotOjoaPj5+UFbWxuHDh1Cnz59REciahE48VGz+vzzz1FcXIzdu3eLjqLwRowYgZKSEri4uOCVV17BkiVLREciahE48VGzKS8vh5GREQIDA7Fy5UrRcZTKli1b8M4776Bjx46IiYmBlZWV6EhESovFR83Gy8sLly9fRkFBgegoSqmoqAienp5ITU3Fd999h3fffVd0JCKlxF2d1CzOnDmD6Oho7Ny5U3QUpWViYoKrV68iMDAQixYtgpubG8rLy0XHIlI6nPioWVhaWsLe3h6xsbGio7QI165dw7Bhw1BWVoadO3di3LhxoiMRKQ1OfNTkvv76axQWFraIG8wqCicnJ+Tl5WHSpEnw8/ODn58fT3sgaiBOfNSkKioqYGhoiKVLl+KLL74QHadFOnbsGMaNGwdNTU0cOnQIffv2FR2JSKGx+KhJjRkzBufOnUNBQQHU1LiDoalUVVVhzJgxOHbsGN59912sXbtWdCQihcWfRNRkLly4gAMHDuC3335j6TUxHR0dHDlyBFu3bsX69ethY2OD7Oxs0bGIFBInPmoynTp1QocOHXDq1CnRUVRKcXExPD09cf36daxevRqLFi0SHYlIofDXcGoS33//PXJzcxEWFiY6isoxNjZGcnIyPv74YyxduhR9+/blaQ9Ef8KJjxpdZWUl2rdvj/nz52P16tWi46i069evY+jQobh79y6CgoIQEBAgOhKRcCw+anR+fn44fvw4iouL+d2eApDJZHjzzTexbds2+Pr6IjQ0FBoaGqJjEQnD4qNGdeXKFbi6umLfvn3w8fERHYf+JDY2FmPHjoWGhgaioqLg5uYmOhKRECw+alR2dnYwMjLC2bNnRUehp6ipqcGYMWNw5MgRzJs3Dz/++KPoSETNjvuhqNGsX78eWVlZPKBFgWlpaeHw4cPYvn07Nm7ciE6dOiEzM1N0LKJmxeKjRlFTU4MlS5Zg7ty5sLCwEB2H/sbUqVORl5cHPT09ODg44NtvvxUdiajZcFcnNYpJkybh8OHDKC0t5QEtSmbVqlX4+OOP0bNnTxw5cgT6+vqiIxE1Kf6EopeWkpKCkJAQbN26laWnhAIDA5GSkoL8/HyYmZkhJCREdCSiJsWJj16ao6MjdHV1cfHiRdFR6CXIZDLMnj0bW7ZsgY+PD8LDw3naA7VI/PWcXsovv/yC9PR0hIeHi45CL0lNTQ2bN29GbGwsTpw4AWNjY5w5c0Z0LKJGx+KjF1ZTU4MFCxbgrbfegpWVleg41EgGDx6M4uJiuLm5YcCAAZg7dy5kMpnoWESNhrs66YVNnToVkZGRuHv3Lr/ba6F27NiBf/zjHzA1NUVcXBxsbGxERyJ6afxpRS8kLS0Nv//+OzZt2sTSa8FeffVV5Ofno3379nBwcMA333wjOhLRS+PERy+kW7duUFdXx5UrV0RHoWby5Zdf4v/9v/+HHj164NixYzztgZQWf1Wn5xYUFITr169j7969oqNQM1q+fDlSU1NRXFwMMzMz7Nq1S3QkohfC4qPnIpVK8c4772DatGno1KmT6DjUzOzt7ZGdnY3p06fj1VdfhY+PD2pqakTHInou3NVJz2XmzJkIDg5GWVkZz/FScSdPnsTo0aMhkUiwf/9+DBgwQHQkogbhxEcNlpmZiV9//RXr169n6REGDhyI4uJi9O/fH4MGDcI777zD0x5IKXDiowZzcXGBVCrFtWvXREchBbNr1y5Mnz4dxsbGiI2NhZ2dnehIRH+JEx81SHBwMJKTkxERESE6CimgyZMno6CgAMbGxnB0dMRXX30lOhLRX+LER39LJpPBwMAAvr6+CAoKEh2HFNzXX3+NFStWwNnZGceOHUP79u1FRyJ6DCc++ltz586FVCrFli1bREchJfDBBx8gNTUVpaWlsLCwwI4dO0RHInoMi4+eKTc3F5s2bcIPP/wALS0t0XFISdjZ2SErKwszZszA66+/jlGjRvG0B1IY3NVJz9S7d2/cv38fN27cEB2FlNTp06fh4+MDuVyOffv2YdCgQaIjkYrjxEd/KTw8HJcuXeIBLfRS+vfvj+LiYgwaNAhDhgzBW2+9xdMeSChOfPRUMpkMhoaGGDFiBIKDg0XHoRYiJCQEU6dOhZGREWJiYuDg4CA6EqkgTnz0VIsWLUJVVRW2b98uOgq1IBMmTEBBQQHMzMzQpUsXrFq1SnQkUkGc+OgJ+fn5sLS0xL///W/MmTNHdBxqob799lssW7YMTk5OOHbsGIyMjERHIhXB4qMnuLm5oaSkBDdv3hQdhVq4zMxMeHp6Ij8/H7/88gumTp0qOhKpAO7qpMccOHAA58+fR1hYmOgopAJsbGyQlZWF2bNnY9q0aRg5ciRPe6Amx4mP6slkMhgbG2PQoEEIDw8XHYdUTHx8PLy9vVFXV4fIyEgMGTJEdCRqoTjxUb1ly5bhwYMHvNIGCeHu7o7i4mJ4enrC09MTM2fO5GkP1CQ48REAoLi4GObm5li9ejUWLVokOg6puNDQUEydOhUGBgaIiYmBo6Oj6EjUgrD4CMCje6vdunUL2dnZoqMQAQDKy8sxbNgwXLx4EStXrsTHH38sOhK1ENzVSYiOjsbp06exZ88e0VGI6unp6eH8+fP49ttv8emnn6J79+4oKSkRHYtaAE58Kk4mk8HMzAx9+/bF/v37Rccheqrs7Gx4eHjg9u3b2LRpE6ZNmyY6EikxTnwq7qOPPsK9e/ewa9cu0VGI/pK1tTUyMzPxzjvv4B//+AeGDx+Oqqoq0bFISXHiU2GlpaUwNTXFqlWr8MEHH4iOQ9Qg58+fh5eXF2praxEREYGhQ4eKjkRKhsWnwjw8PJCeno7c3FzRUYiei1QqxcSJExEREYE33ngDW7duhZoad2BRw/BvioqKi4vD8ePHsXv3btFRiJ6bhoYGwsLCEBoaiuDgYHTo0AEpKSmiY5GSYPGpqClTpmD48OHo16+f6ChEL8zPzw+FhYWwsrKCs7Mz/vnPf4qOREqAxaeCPvnkE9y5cwchISGioxC9ND09PZw9exZr1qzB559/jm7duqGoqEh0LFJgLD4Vc+/ePaxatQofffQR9PT0RMchajQLFy5ERkYGqqqqYGlpia1bt4qORAqKB7eomBEjRiA5ORn5+fmioxA1mSVLluD777+Hh4cHDhw4AB0dHdGRSIFw4lMhZ86cwdGjRxEcHCw6ClGTWrNmDc6dO4fLly/D2NgYR48eFR2JFAgnPhViaWkJBwcHxMTEiI5C1CykUikmT56MsLAwTJ06Fdu2beNpD8SJT1V89dVXKCwsRGhoqOgoRM1GQ0MDoaGhCA8PR0hICCwsLHD16lXRsUgwFp8KqKiowMqVK7Fs2TK0b99edByiZjd27FgUFRXBxsYGLi4u+Oijj0RHIoG4q1MF+Pj4ICEhAYWFhZBIJKLjEAn173//G4sXL4a9vT1iYmJgZmYmOhI1M058Ldz58+dx8OBB7Nixg6VHBGD+/PnIzMxEbW0trKys8Msvv4iORM2ME18LZ21tjY4dO+LkyZOioxApnPfffx/ffvstBg8ejAMHDqB169aiI1Ez4MTXgq1ZswZ5eXkIDw8XHYVIIX3zzTdISEhAcnIyTExMEB0dLToSNQMWXwtVWVmJFStWYMmSJTAyMhIdh0hh9erVC0VFRfD29oaXlxdef/11yGQy0bGoCXFXZws1fvx4nDx5EkVFRTxviaiB9u3bh0mTJqFt27Y4evQonJ2dRUeiJsCfiC1QYmIi9u7di//85z8sPaLnMGbMGBQVFcHe3h49evRAYGCg6EjUBDjxtUC2trYwMTFBfHy86ChESmv9+vVYsGABbG1tERcXx9MeWhCOAy3MunXrkJOTwwNaiF7SnDlzkJmZCblcjo4dO2Ljxo2iI1EjYfG1IFVVVXjvvfcwb948/nZK1AgsLS1x48YNLFmyBHPmzMHgwYNRWVkpOha9JO7qbEEmTpyII0eO4M6dO/xuj6iRJSYmYuTIkaisrMTu3bvh7e0tOhK9IP50bCGuXr2K0NBQ/Prrryw9oibg6uqKgoICjBkzBqNHj8arr77K0x6UFCe+FqJz587Q09NDQkKC6ChELV5UVBQmTJgAXV1dHDlyBC4uLqIj0XPgaNACbN68GTdv3uQBLUTNxNvbG8XFxXB0dETPnj2xfPly0ZHoOXDiU3I1NTXQ19fH9OnTsX79etFxiFTOhg0bMH/+fNjY2CA2NhYWFhaiI9Hf4MSn5GbMmAFNTU2sW7dOdBQilfT2228jOzsbEokE1tbW/AVUCbD4lFhaWhp27NiBzZs384AWIoEsLCyQmpqK9957D/Pnz8fAgQN52oMC465OJda1a1doa2sjMTFRdBQi+q/k5GQMGzYMFRUV2L17N3x8fERHov+DY4KS2r59O27cuIGIiAjRUYjoT5ydnZGfn4/x48djzJgxmDRpEk97UDCc+JSQVCqFvr4+Jk+ezLtHEymwQ4cOISAgAK1atUJ0dDRcXV1FRyJw4lNKb775JiQSCTZs2CA6ChE9g5eXF4qKiuDk5ITevXvjgw8+EB2JwIlP6WRkZMDBwQHbt2/H66+/LjoOETXQ5s2bMXfuXFhbWyMmJgaWlpaiI6ksFp+ScXFxQV1dHa5evSo6ChE9p4KCAnh6eiI9PR3ff/895s2bJzqSSuKuTiWya9cuJCcnY+/evaKjENELMDMzQ0pKCpYtW4YFCxagX79+qKioEB1L5XDiUxJ1dXUwMDDAuHHj8J///Ed0HCJ6SVevXsWwYcNQXl6OnTt3YuzYsaIjqQxOfEpizpw5qKurw5YtW0RHIaJG0K1bN9y+fRsTJkzA+PHjMWHCBEilUtGxVAInPiWQk5MDGxsbbN68GTNmzBAdh4gaWXR0NPz8/KCjo4PDhw+jV69eoiO1aCw+JdCzZ09UVlYiNTVVdBQiaiJVVVXw9vZGXFwcFi9ejG+//VZ0pBaLuzoVXGhoKC5fvswrtBC1cDo6OoiJicHmzZvx448/ws7ODjk5OaJjtUgsPgUmk8kwa9YsTJo0CV26dBEdh4iawcyZM5GbmwsdHR3Y2trixx9/FB2pxWHxKbCFCxeipqYG27dvFx2FiJqRiYkJrl69isDAQCxatAju7u4oLy8XHavFYPEpqNu3b+Onn37Cd999By0tLdFxiEiATz75BElJScjOzoapqSm/8mgkPLhFQb3yyisoLS1Fenq66ChEJJhMJsPMmTOxfft2jB8/HsHBwdDQ0BAdS2lx4lNA+/btQ0JCAsLDw0VHISIFoKamhm3btuHIkSOIjo6GqakpEhISmj3HsmXLEBkZCWWflzjxKRiZTAYjIyN4eHhgz549ouMQkYKpqqrCmDFjcOzYMSxcuBDfffdds227Xbt2qK2tRceOHbF69WqMGTMGEomk2bbfWFh8Cmbp0qVYt24dysrKoKOjIzoOESmoX3/9FW+99RYsLS0RGxsLKyurJt2eXC5H27Zt8eDBAwCPplA9PT188MEHSEhIgJ6eHpycnNC9e3f07dsXhoaGTZrnZXBXpwIpKirC2rVr8c0337D0iOiZpk+fjry8PLRu3Rq2trZYu3Ztk2ynsrIS69evh6urKyorKwEAWlpaaN26NaZPnw5fX1+8+uqr6N+/P/Ly8vDNN9/Azs4Ofn5+iIyMVMi7z3PiUyD9+/dHfn4+MjMzRUchIiXy6aef4pNPPkHv3r1x5MgR6OnpNcq6p0+fxj/+8Q907doVCxYswKRJk+q39+abb0JbW/up7ysvL8fu3buxbt06tG3bFhs3boSjo2OjZGoUclIIBw8elEskEvmFCxdERyEiJZSSkiI3NzeX6+joyENDQ196vU2bNsnNzMweWyspKUleVVXV4DWkUql87dq1ckNDw0bJ1Fg48SkAmUwGU1NTuLu7IzIyUnQcIlJSMpkMb775JrZt2wZfX1+Ehoa+0GkPO3fuxNKlSxEXFwd7e/uXznXp0iX4+Phg7dq19VOjSCw+BbB8+XKsWbMGd+/eRevWrUXHISIlFxsbi7Fjx0JDQwNRUVFwc3Nr8Huzs7PRu3dvxMTEoHv37o2W6cqVKxg2bBhOnjwpfLcnD24R7M6dO1i9ejVWrVrF0iOiRuHh4YGSkhL06dMH/fr1w4IFCxr83kWLFmHhwoWNWnoA4OLigpUrV2LGjBnCD3jhxCfYkCFDkJGRgVu3bomOQkQtUFBQEGbNmgVzc3PExcXB2tr6L1+bkZEBNzc33Lp1q0mOLJfJZHB1dcV3332HYcOGNfr6DcWJT6Bjx47hxIkTCAkJER2FiFqoqVOnIi8vD3p6erCzs3vmff6CgoIwZcqUJjudSk1NDXPmzMH69eubZP2G4sQnkJmZGVxdXXHw4EHRUYhIBaxatQoff/wxevbsiaNHj6Jdu3aPPT9ixAgsWbIE3t7eTZahuLgYDg4OuHv3rrCrvnDiE2TlypUoLS1FcHCw6ChEpCICAwORkpKC/Px8mJmZITQ09LHnr127BicnpybNYGxsDD09PWRkZDTpdp6FxSdAWVkZvvjiC6xcubLRTjQlImqIzp0749atW5g6dSomTpwIX19fSKVSAI+mMVNT0ybPYG1tjby8vCbfzl9h8QkQEBAAY2NjBAYGio5CRCpITU0NmzZtQmxsLI4fPw5jY2OcOXMGWlpaqK2tbfLti76wNYuvmZ08eRIxMTHcxUlEwg0ePBjFxcVwc3PDgAEDIJFIUFBQAJlMhk2bNqGmpqZJtltaWip0bxcPbmlmFhYW6Nq1K44ePSo6ChFRvR07dmDq1KkwMDDAnDlz8Pnnn2PNmjVYvHjxU19fUlGNkAu5uF5QjvIqKfR0NNDFTA8Te1vCsM3Tr+EJPLrotZGREcrKyqClpdVUH+eZWHzNaNWqVfjnP/+J4uJi6Ovri45DRPSYr776Cl988QXu378PAGjbti1yc3Mfm84u3yrDuth0xN0oBgBUS/93MrqOhhrkADwcjTF3iD16dNR/Yhv79+/HqlWrcPr06Sb9LM/C4msm5eXlMDIywvLly/HJJ5+IjkNE9ITCwkJYWFjUX1lFIpFgwYIF+P777wEAQfFZWHXgOqqkdXhWc0gkgI6GOgJ9umCqe6fHnvP19cX48eMxa9asJvoUf4/F10y8vb1x8eJFFBYWio5CRPRURUVF6NatG8rKyiCRSOoPdImKikKJfhesOpCCh7UNv9xYK001BPp0rS+/U6dOYeLEiUhLS4Ourm5TfIQGYfE1g/Pnz8PNzQ1Hjx6Fp6en6DhERH+pvLwcLi4u+PLLL2FtbY3Vq1fjQmYJWvkuR9WfSk8ulyNv/SzUlRcBACzeXA9No45PrNdKUx27ZrvDVl8DvXr1wr/+9S/4+fk12+d5Gh7V2QwCAgIwcOBAlh4RKTw9PT0EBQVh4cKFqK6uxp49e+C1ZM1j3+UBQPWt5PrSA4CKq8eeul6VtA5rj1yHj48Phg4dKrz0ABZfk1u9ejVu376NPXv2iI5CRNQgAwcORHBwMCZNmoTv1m9G3I3iJ77Te3A1BgCgZWr33z/H4Wk7EOVy4Oi1Atg59cBPP/3U5NkbgsXXhCorKxEYGIj33nsPRkZGouMQETWYh4cHjh07hl+OXUV1dfVjz8mltai8fgoAYDB0FtR02qCuvAjVt5KfupaGujrcXl0INTXFqBzFSNFCTZ48GW3btsUXX3whOgoR0XPr3r07hgW8AahrPvZ4Zfo5yKofQK21PrStnNHKri+A/02B/5cUakgtqGjyvA3F4msily5dwv79+/Hbb78pzG85RER/JT8/H0VFRU88fr+67onH/ii41vavQCJRQ+vO/R49fv0U5NKnX/KsvKrpL4XWUBqiA7RU/v7+cHd3h5eXl+goRER/a8mSJdi5cydsbW0xduxYjBw5EiYmJlCTVj32urqqCjzMSAAAVFw5jIorh+ufk1c/QGX6Weh2GfjE+no6mk88JgpHkSbw448/4tatWwgPDxcdhYjob9XW1qJVq1ZQU1NDRkYGvv/+e/j4+GDQoEGoKcqCtsb/qqIy5QRQJ4VEuzVaObjX/6NhYAEAeJD85O5OHQ01dDFv22yf5+9w4mtkVVVV+OCDD7BgwQKYmJiIjkNE9BipVIojR44gMjIS8fHxuHnzJu7duwc1NbX6ozI1NTXx2muvYfPmzSirqsOAf/3vVIUHV2MBAG1dR8HAc2b941U5SSj8fTkeZlxA3cNyqLf632XO5AAm9LJsls/XEDyBvZEFBAQgJiYGJSUl/G6PiISSSqWIiYnB3r17cebMGaSnp+PevXvQ0NCAqakpnJ2d4enpiQkTJsDIyAiGhobQ1tbG1q1bMWnSpPp1Zv8nAdEphc+8TNlfkUgALydT/Dy1TyN+spfDia8RJScnIywsDHv37mXpEVGzkslkiI2NRUREBM6cOYO0tDSUlZVBXV29vuQCAgIQEBCAzp07P3WNFStW4NVXX0XXrl0fe3yehz1OpJXgYe2TB7r8HR0Ndcz1sH+hz9RUOPE1Int7exgYGOD8+fOioxBRCyaTyXDixAlERETg9OnTuHHjBsrKyqCmpgYTExM4OTnB09MT/v7+T5TYi3p0geqXu1anouDE10g2btyIzMxMHD9+XHQUImpBZDIZTp8+jfDwcJw6dQo3btzA3bt3IZFI6ktu0aJF8Pf3h7Ozc5Pl+KO8XvbuDIqAE18jqKmpgb6+PmbMmIF169aJjkNESkomk+Hs2bMICwvDqVOnkJqaitLSUkgkEhgbG6Nr164YMmQI/P394eLiIiTjldwy/BSbjpjUYkgAVD3lfnyejsaY62EPF0t9IRn/DouvEUyZMgUHDx5EaWkpv9sjogaRyWQ4f/48wsPDceLECaSmpuLOnTuQSCQwMjJC165dMXjwYPj5+aFnz56i4z7hTkU1Qi7m4nr+fZRX1UJPRxNdzNtiQq9n34FdEbD4XtL169fh5OSE3bt3IyAgQHQcIlJAMpkMFy9eRFhYGE6cOIHr16+jpKQEAGBkZIQuXbpg0KBB8PPzQ69evfgLdBNj8b2kLl26oFWrVrh06ZLoKESkIBITExEaGooTJ04gJSUFJSUlkMvlMDQ0hKOjY33J9enThyUnAA9ueQlbt25FWloaMjIyREchIkGuXLmCPXv2IC4uDikpKSguLoZcLkf79u3h6OiI6dOnw8/PD25ubiw5BcGJ7wVJpVLo6+vjtddew8aNG0XHIaJmcPXqVYSGhiIuLg7Xrl1DUVER5HI5DAwM0LlzZwwcOBDjxo1D//79WXIKjMX3gqZNm4bw8HCUlpZCQ4ODM1FLk5KSUl9yV69eRVFREWQyGfT19dG5c2f0798f48aNw6BBg1hySoY/sV/AzZs3ERQUhN9//52lR9QCpKWlISQkBDExMbh69SoKCwtRV1cHfX19ODg4YOLEiRg3bhw8PDxYci0AJ74X4OzsDIlEgqSkJNFRiOg53bx5s77kkpOTUVhYCKlUinbt2sHe3h79+/eHr68vPD09+YttC8X/V5/Tb7/9hpSUFKSlpYmOQkR/IzMzs77kkpKSUFBQUF9ydnZ2GDduHHx9fTF8+HCWnArhxPccpFIpDAwM4O/vj19//VV0HCL6k5ycHISEhODo0aNISkpCfn4+pFIp9PT0YGdnBzc3N/j6+mLkyJEsORXH4nsOb775Jnbu3ImysjL+h0MkUG5ubn3JXblyBfn5+aitrUXbtm1ha2sLd3d3+Pj4YNSoUdDS0hIdlxQMf3o3UHZ2NrZu3YotW7aw9Iia0e3btxEaGoqjR48iMTER+fn5qKmpQZs2bWBjY4ORI0dizJgx8Pb2ZslRg3DiayBXV1dUV1cjJSVFdBSiFqugoAB79uxBdHQ0Ll++jLy8PNTU1EBXVxe2trbo06cPRo8ejdGjR0NHR0d0XFJSHF0aICQkBFeuXGHpETWi4uJihIaGIjo6GomJicjLy0N1dTV0dXXRqVMnDBkyBN7e3hgzZgxat24tOi61IJz4/oZMJoOBgQFGjx6N33//XXQcIqVUUlJSP8ldunQJubm5qK6uRuvWrdGpUyf06dMH3t7e8PX1ha6urui41MJx4vsb8+fPR21tLbZt2yY6CpFSKC0tRVhYGA4dOoTExETcunULVVVVaNWqFaytreHu7g5vb2+MGzcObdq0ER2XVBAnvmfIzc2FtbU11q9fj9mzZ4uOQ6RwysrKEB4ejkOHDuHixYvIycmpLzkrKyv07t0bXl5eGD9+PPT09ETHJQLA4numPn36oLy8HDdu3BAdhUi48vLy+pK7cOECcnJy8PDhQ+jo6MDKygq9evWqLzl9fX3RcYn+End1/oW9e/fi4sWLvCwZqaSKigpERETg4MGDSEhIQHZ2dn3JdezYEa6urnj//ffh5+eH9u3bi45L9Fw48T2FTCaDoaEhhg0bhpCQENFxiJpUZWUl9u7di6ioKCQkJCArKwuVlZXQ1taGpaUlevbsiREjRsDf3x9GRkai4xK9NBbfUyxatAgbNmzA3bt3ea4QtSiVlZXYt28foqKicP78eWRlZeHBgwfQ1tZGhw4d4OrqWl9yJiYmouMSNQkW3/9RUFAAS0tLrF27FvPmzRMdh+iFVVVVYf/+/Thw4ADOnTuHzMxMPHjwAFpaWujQoQN69OhRX3JmZmai4xI1Gxbf/+Hu7o6ioiJkZGSIjkLUYNXV1YiKisL+/ftx7tw5ZGRkoKKiApqamrCwsECPHj0wfPhwBAQEwMLCQnRcIqF4cMufREVF4dy5c7h48aLoKER/qaamBgcPHsT+/ftx9uxZZGRk4P79+9DU1IS5uTlcXFwwY8YMBAQEoGPHjqLjEikcTnz/JZPJYGJiggEDBiAiIkJ0HCIAQG1tLQ4fPox9+/YhPj4eGRkZKC8vh4aGRn3JDR06FAEBAbC2thYdl0gpcOL7rw8//BAVFRXYsWOH6CikoqRSKY4cOYLIyEjEx8cjPT29vuTMzMzQvXt3vPbaa5gwYQJsbGxExyVSWpz48Og6gmZmZvj666+xZMkS0XFIBdTV1SEmJgYRERGIj49HWloa7t27Bw0NDZiamsLZ2Rmenp4ICAiAvb296LhELQqLD8CgQYOQnZ2NnJwc0VGoBZLJZIiJiUFkZCROnz6NtLQ0lJWVQV1dvb7kPDw8EBAQgM6dO4uOS9TiqfyuzqNHj+LUqVM4e/as6CjUAshkMpw4cQIRERE4ffo0bty4gbKyMqipqcHExAROTk5YunQpAgIC0LVrV9FxiVSSyk98pqam6N27Nw4cOCA6CikZmUyG06dPIzw8HKdOncKNGzdw9+5dSCSS+pIbMmQI/P394ezsLDouEf2XSk98H330EcrKyhAcHCw6Cik4mUyG+Ph4RERE4OTJk0hNTUVpaSkkEgmMjY3RtWtXvPvuu/D394eLi4vouET0DCo78ZWWlsLU1BSffvopli9fLjoOKRCZTIaEhASEhYXhxIkTSE1NxZ07dyCRSGBkZIQuXbpg8ODB8PPzQ69evUTHJaLnpLLFN3ToUKSmpiIvL090FBJILpfj4sWL2LNnD06cOIHr16+jpKQEAOpLbtCgQfUlp6amJjgxEb0sldzVefz4ccTGxuLUqVOio1Azu3TpEsLCwhAXF1dfcnK5HIaGhnB0dMSsWbPg5+eHPn36sOSIWiiVnPjMzc3h7OyM6Oho0VGoCSUlJSE0NBRxcXFISUlBcXEx5HI52rdvD0dHRwwYMADjx4+Hu7s7S45IhajcxPfZZ5/hzp07vM9eC3P16tX6krt27RqKioogl8thYGCAzp07Y+rUqRg/fjz69+/PkiNScSo18ZWXl8PIyAiBgYFYuXKl6Dj0glJSUhAaGorY2Nj6kpPJZNDX10fnzp3Rv39/jBs3DoMGDWLJEdETVKr4vLy8cOXKFeTn54uOQg2UlpaGkJAQxMbGIjk5GYWFhairq4O+vj4cHBzQr18/jBs3Dh4eHiw5ImoQhd7V6e/vjyFDhuDtt99+6TuhnzlzBtHR0YiJiWmkdNTYMjIysHv3bsTExNSXnFQqRbt27WBvbw9/f3+MHTsWnp6e0NBQ6L+6RKTAFHri09XVhVwuh46ODlauXPlSBWhpaQl7e3vExsY2bkh6IVlZWfUll5SUhIKCgvqSs7Ozg7u7O3x9fTF8+HCWHBE1KoUtvocPH8LAwADV1dX1j2lra+Ptt9/GiRMn0K5dOzg5OaF79+4YMGAAunfv/pdrff311wgMDERhYSHat2/fHPHpT3JychASEoJjx47V72qWSqXQ09ODnZ0d3Nzc4OvrixEjRkBTU1N0XCJq4RSu+PLy8vDtt99i+/btuHv3LmQyGbS1tdGxY0esXLkSI0eOxK1bt1BaWoqrV68iKSkJ0dHRMDIywsyZM/HWW29BW1u7fr2KigoYGhpi6dKl+OKLLwR+MtWQm5uLkJAQHD16tL7kamtr0bZtW9ja2sLNzQ2jR4/GqFGjoKWlJTouEakghSk+uVyOoKAgLF26FNOmTcPcuXPRt29fdOjQAWvWrMGwYcMgkUie+t66ujocO3YMa9euRXp6OjZt2oRBgwYBAEaPHo3z58+joKCABz80stu3byM0NBRHjx5FYmIi8vPzUVNTgzZt2sDGxqa+5Ly9vR/7ZYSISCSFKD65XI4PP/wQ+/btQ1BQEHr27Ang0fU0DQwM/rLwniYsLAzz5s1DYGAg3Nzc8Morr+DQoUMYMWJEU8VXCQUFBdizZw+io6Nx+fJl5OXloaamBrq6urC1tUWfPn0wevRojB49+qUPRCIiakoKUXxffvklfv/9d8TGxsLQ0PCl18vMzMTQoUNx7949dO3alZcme04lJSUIDQ3F4cOHkZiYiLy8PFRXV0NXVxedOnVC37594e3tjTFjxqB169ai4xIRPRfhxXfx4kV4e3sjMTER5ubmjbbuxx9/jM8++wzR0dEYPnx4o63b0pSUlNRPcpcuXUJubi6qq6vRunVrWFtb15ecr68vdHV1RcclInppQotPLpejf//+mD17NmbMmNFo61ZWVqJ9+/YYOnQocnNzcenSJairqzfa+sqqtLQUYWFhOHToEBITE3Hr1i1UVVWhVatWsLa2Ru/eveHt7Y1x48ahTZs2ouMSETUJocWXkJCAyZMnIy0trVEPPPHz88Px48dRVFQEd3d3fPLJJ/Dx8Wm09ZVBWVkZIiIicPDgQVy4cOGxkrOyskLv3r3h5eWF8ePHQ09PT3RcIqJmI/TM4KCgILzxxhuNWnpXrlxBREQE9u3bB3V1dcyZMwcbNmxo0cVXXl6O8PBwHDp0CBcuXEBOTg4ePnwIHR0ddOzYEb1798aKFSswfvx46Ovri45LRCSU0InP3d0dq1evxsCBAxttTTs7OxgZGeHs2bMAHn2H5eDggNLS0uc6OlRRVVRUICIiAlFRUbhw4QKys7MfKzlXV1d4eXnBz8+PJ+sTET2FsIlPLpcjJSUFXbt2fem1fv75Z/z000/w9vZGVlYWTpw4Uf+ckZER2rRpg4yMDNjZ2b30tppTZWUlIiMjceDAASQkJCArKwuVlZXQ1taGpaUlevbsicWLF8Pf3x9GRkai4xIRKQWhuzrLy8thYGDw0uskJycjKSkJSUlJcHR0fOKKIObm5igpKVHo4qusrMS+ffsQFRWF8+fPIysrCw8ePIC2tjY6dOgAV1dXzJ8/HwEBATAxMREdl4hIaQkrPolEAi0tLdTW1r70VT3+fJuh9PR0DB48GNeuXXtsW4qkqqoK+/fvx/79+5GQkICMjAw8ePAAWlpa6NChA3r06IG5c+fC398fZmZmouMSEbUoQic+MzMz5OTkwMHB4aXWycrKAvDoItZOTk74/fffH3u+oKBA2PddNTU1OHDgAPbv349z584hIyMDFRUV0NLSgrm5OVxdXfHWW28hICAAFhYWQjISEakSocX3yiuv4OzZsw0qvpKKaoRcyMX1gnKUV0mhp6OBLmZ6mNjbEsnJyZBIJFizZg3eeeedx44SvXPnDsrKypplN2dNTQ0OHjyI/fv34+zZs8jIyMD9+/ehqakJc3NzuLi4YMaMGfD394eVlVWT5yEioicJParz559/RnR0NEJDQ//yNZdvlWFdbDribhQDAKqlsvrndDTUUCeToSLtHL57cxSmjOz3xPu3b9+O4OBg7Nu3r1GzS6VSHD58GJGRkTh79ixu3ryJ8vJyaGhowNzcHN27d8ewYcMQEBAAa2vrRt02ERG9OKHFd//+fVhbWyMxMfGpE1BQfBZWHbiOKmkdnpVSAkBHUx2BPl0w1b3TY8/169cPy5cvx9ixY184p1QqxZEjRxAZGYn4+HjcvHkT9+7dg4aGBszMzNC9e3d4enpiwoQJsLGxeeHtEBFR0xN+rc4VK1bgxo0b2L1792MHoTwqvRQ8rJU9492Pa6WphkCfrvXlFxwcjJUrVyIpKanBd/GWSqWIiYnB3r17cebMGaSnp9eXnKmpKZydnetLTpGPEiUioqcTXnxVVVXo1asXPvzwQ0ybNg3Ao92bUzbF42FtHQAg96eZqCsvevQGiRrUWutB26ILDIa9CU39x496bKWpjl2z3WEoeYDevXtj+/bt2Lx5M1asWAFXV9fHXiuTyRAbG4u9e/fi9OnTSEtLQ1lZGdTV1WFqaopu3brB09MT/v7+cHR0bPL/LYiIqOkJPbgFAHR0dLBz506MHDkS2tramDx5MtbFpqNKWvfEa1vZ9YWGvhkeZl7Ew7R4yKorYfba43dVr5LWYXVUEs58PRNTpkzBG2+8gTt37sDFxQX37t1DREQETp8+jRs3bqCsrAxqamowMTGBk5MTli5dioCAgEY5qZ6IiBST8InvD1euXMGoUaPw2sy3sVfyCmr+dBDLHxOfsX8gWnfuh8q0sygO/QzqbdrDcv72J9aS19XC+tJGnImNhlQqrX/8zyU3ZMgQ+Pv7w9nZuVk+HxERKQbhE98fXFxckJCQgIkfb0SNQRWgofXEayouH0ZV9hU8zLoEAGjduf/TF5PJkFje6rHS09fXx927d5skOxERKQ+FKT4AsLCwQN8R45CXePupzz+8ef5/f1DXhJaZ/VNfJ9HUxvQFy+HT/k1ERkZi//799TdYfdmrxBARkXJTqOIDgPIq6V8+Z+wfiFYO7qjJv4GCoGW4E/UDtK2cnzjABQAqpXJ4e3vD29sbwKODaFh6RETUeDfCayR6Os/uYolEAi0ze6hpagNyGaRlBX+xjuZjf9bR0Wm0jEREpLwUbuLrYqYHbY2Cx67Q8oc/vuOrKbwJWfUDSDS1oWXc6YnX6WiooYt522ZIS0REykbhim9Cb0t8d+TGU5/74zs+NW1daFs6od3A16Guq//E6+QAJvSybMKURESkrBSu+IzaaGNIZ2NEpxTWX6bMcu6WBr9fIgE8HY1h2Ibf5xER0ZMU7js+AJjnYQ8dDfUXeq+Ohjrmejz9aE8iIiKFLL4eHfUR6NMFrTSfL96ja3V2gYulftMEIyIipadwuzr/8MeFpht0dwbJo0nvaXdnICIi+jOFuWTZX7mSW4afYtMRk1oMCYCq/3M/Pjkefac318Oekx4REf0thS++P9ypqEbIxVxcz7+P8qpa6Olooot5W0zoZckDWYiIqMGUpviIiIgag0Ie3EJERNRUWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRS/j8DrmcfiWTcywAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA6P0lEQVR4nO3dd0BT5+I+8CcLkhCmiIigKCAORMRdF4qj7lr3LgjWqr29tl7rqNZWrbWtWm1tK7j3wL1qXbiqKCpOUEFBERERWSFBQvL7w2+515/WOgInJM/nr5LknPMcW3n6npzzviKDwWAAERGRhRALHYCIiKgssfiIiMiisPiIiMiisPiIiMiisPiIiMiisPiIiMiisPiIiMiisPiIiMiisPiIiMiisPiIiMiisPiIiMiisPiIiMiisPiIiMiisPiIiMiisPiIiMiisPiIiMiisPiIiMiisPiIiCzcypUr8emnn+Lhw4dCRykTLD4iIgt39OhRLFy4ENWqVcO4cePMvgBFBoPBIHQIIiIqe3q9HhcuXMC4ceNw/PhxAIBIJAIAjBo1CleuXIGVlRWcnJzg5eUFb29veHt7o0mTJlAoFEJGfyssPiIiC2IwGHDs2DFs3LgR27dvh729PQoLC3H79m3IZDJIJBL07t0bs2fPxq1bt1BUVISHDx8iKSkJiYmJSEhIwLVr19C2bVt0794d/fr1g52dndCn9VpYfEREFuL06dOYNGkS0tLSEBoail69eqFmzZr46KOPsGLFCowbNw7/+c9/4Ojo+NL9ZGVlYd++fdi6dSuOHz+OcePGYezYsbC1tS2jM3k7LD4iIjOn0+kwYcIEbNq0CdOnT8cHH3wAqVRa8v7jx48hEong4ODw2vuOj4/HjBkzcOzYMaxfvx6tWrUyYvLSweIjIjJjeXl56NOnDwwGAzZu3PiPo7k39fvvv2P48OGYMmUK/vWvf5XKMYyFxUdEZKYMBgN69+4NOzs7LFmy5JlRXmlITk5G+/btMXnyZISGhpbqsd5G6f4pEBGRYObOnYv79+9j/fr1pV56AODp6Yndu3ejdevWqFWrFt55551SP+ab4IiPiMgMZWdnw8vLC2fPnkWNGjXK9Njr16/H/PnzERMTU/J4hCnhA+xERGbot99+Q9euXcu89ACgf//+KCwsxJ49e8r82K+CxUdEZIb27t2LoUOHCnJssViMDz/8EFu3bhXk+P+ElzqJiMyMTqeDo6MjUlNTYW9vL0iGq1evokePHkhKShLk+C/D4iMiMjPZ2dmoVq0acnJyBMtQWFgIW1tbPHnyRLAMf4eXOomIzIyVlZXghWOKN7X8hcVHRGRm5HI5FAoF7t+/L1iGe/fuwdnZWbDjvwyf4yMiMjNisRht27bFoUOHMGTIkNfaNjO/EFHnUpGQnotcrQ52cilqudqhb0N3VFBZv/J+jh49arLTl/E7PiIiM7Rq1SqsWLEChw4deqXLjhfvZmNRdCKO3ni6Fl+hTl/ynlwqhgFAkG9FjG7jjfoeDv+4v+DgYAwfPhzDhg1701MoNSw+IiIzpNPpULduXfz000/o2LHjSz+75nQyZu1NgFZXjJc1gkgEyKUSTOlSC0Oaef7t5w4fPowPP/wQ165dg0wme8MzKD38jo+IyAxJpVLMnTsX4eHhL/2u72npxUNT9PLSAwCDAdAUFWPW3nisOZ38ws88fPgQYWFhmDNnjkmWHsARHxGRWZs1axa2bduGgwcPPrfs0MW72RgQeRqaouKS1wwGA+79OgLFuRkAALewXyFz9nhuvwqZBBtHNoO/+3/3mZeXh3fffRdt27bFzJkzS+V8jIEjPiIiMzZ58mS0adMGDRs2RFxc3DPvLYpOhFZX/MxrhXevlJQeAORfPfzC/Wp1xfglOrHk5/j4eDRp0gT+/v74+uuvjXcCpYDFR0RkxkQiEebOnYtZs2ahQ4cOmDJlCrKyspCZX4ijNx4+d3lTffUIAMCqktf//XwUL7owaDAAR64/RHJ6JmbMmIHWrVtjwoQJ+PXXXyEWm3a1mHY6IiIyigEDBiA2NhYPHz6Ej48PQmYshl6vf+YzBl0RChJOAgAc242AWK5CcW4GCu9eeeE+dboiNB80Djdv3sSff/6JkJCQUj8PY2DxERFZiGrVqiEiIgKxsbHIFalQ9GzvoSDxDPSFaoiVDrCu6geFV2MA/x0F/v+KIUGXgWFYtWoVfHx8Sju+0bD4iIgsTPXq1eFVu95zr/9VcErvJhCJxFDWbP709YSTMOiKXrwzK2Wp5SwtnLmFiMiMpaenIzIyEoGBgWjSpAkqVqwIALCTP/vrv1ibD82tWABA/qU/kH/pj5L3DIVqFCTGwKZWy+f2byc3zUcWXobFR0Rkxh4+fIjp06dDpVJBo9FAIpHA2toalYIGw7peVxTqnt64UhB/HCjWQWSthLyqf8n2RZl3oHucBvWVI88Vn1wqRq3KtmV6PsbA4iMiMlPXr1/H8uXLAQC5ubkAgKKiIri5uWHV9NEYtuUOgKfFp74aDQCwDXgXjm1DS/ahvXMZD9ZNgubWORRrciFR2JW8ZwDQJ9C9TM7FmPgAOxGRmUhNTcWSJUuwa9cuXLt2DVqtFhUrVoRIJEJGRgYUCgUmTpyIqVOnQiQSYeTqWByIf/CPM7a8iEgEdKpTCb8NaWT8EyllvLmFiKicysrKwty5c9GiRQvY2trCw8MDCxYsgJOTExYsWAC1Wo2MjAx8/fXXkEgkiIiIwLRp00omrR4T5A25VPJGx5ZLJRgd5G3M0ykzHPEREZUTBQUFWLNmDTZt2oRz584hOzsbKpUK9evXR69evRASEgInJ6fntissLERycjJ8fX2fe++/c3Xqn3vv7yhkYkzpUvulE1WbMhYfEZGJ0ul0iIqKwtq1axETE4OHDx9CLpejbt266NatG8LCwuDu/vbfsRl7dQZTx+IjIjIRer0e+/fvx8qVK3HixAmkpaVBJpPBx8cHnTp1wsiRI184ajOGS6nZ+CU6EUeuP4QIgPYF6/G19a2I0UHez0xMXR6x+IiIBPTnn39iyZIliI6ORkpKCkQiEapXr47g4GCMGDECjRs3LtM8j/ILEXU+FUcu3EDsxavo3qk9alW2RZ/A11uB3ZSx+IiIytCVK1cQERGBAwcOIDExEcXFxXB3d0fr1q0REhKCtm3bmsQkz4MHD8a6deuQlZUFR0dHoeMYFYuPiKgUpaSkYPHixdi7dy8SEhJQWFgIV1dXNG/eHEOHDkXPnj1Nouj+V1FRESpUqIC8vDyMGzcO8+bNEzqSUbH4iIiMKCMjA0uXLsWOHTtw+fJlFBQUwMnJCU2aNMGAAQPQv39/yOVyoWO+1Jo1axAeHg6tVgu5XI7ExERUqVJF6FhGw+IjInoL+fn5WLFiBaKionDhwgXk5ubCzs4ODRo0QO/evTF8+HDY2dn9845MhF6vh5eXF5KTkwEAYrEYQ4YMwcqVK4UNZkScsoyI6DU8efIEGzZswIYNG3DmzBk8evQISqUSfn5+mDBhAsLDw+Hi4iJ0zDdWWFgIT09PKJVKXLt2DcHBwahatarQsYyKIz4iopfQ6/XYuXMn1qxZg5MnT+LBgwewsrKCr68vunTpgpEjR6J69epCxzS6uLg4NGzYEMXFxUJHMTqO+IiI/oder8fRo0exfPlyHD16FKmpqRCLxfDy8kKfPn0QHh4Of3//f95ROWdrawtzHRex+IjI4p0/fx6RkZE4dOgQbt26BYPBgKpVq6Jdu3YYMWIEWrZ8fh06c2djY2O2xcdLnURkcW7evImIiAj8/vvvuHHjBoqKilC5cmW0aNECH3zwAd59912Te8SgrOXn55vtqI/FR0RmLy0tDZGRkSXL9Wg0GlSsWBFNmjTB4MGD0bdvX0ilvAD2v/R6PSQSCYqKiszuz4bFR0RmJzs7G8uWLcO2bdtw8eJF5OXlwcHBAQ0bNkTfvn0xdOhQKJVKoWOaPJFIhJycnHL1OMarYPERUbmn1WpLluuJjY3F48ePoVKp4O/vj/feew8jRox44XI99HIikQj37t2Dm5ub0FGMyrzGr0RkEXQ6HbZu3Yp169bh1KlTyMjIgFwuR506dTB27FiEhYWZ3bNnQhCJRMjLyxM6htGx+IjI5On1ehw4cAArVqzAiRMncO/ePUilUvj4+GDw4MEIDw9H7dq1hY5pdkQiEdRqtdAxjI7FR0QmKSYmBpGRkThy5AhSUlIAAJ6enujcuTNGjBiBpk2bCpzQ/IlEIhQUFAgdw+hYfERkEq5evYrIyEjs378fSUlJ0Ol0cHd3R6tWrfDbb78hODjY4h8xKGtisZgjPiIiY7lz5w4iIiKwZ88eJCQkQKvVolKlSmjevDlmzpyJnj17mt1t9OWNWCxGfn6+0DGMjv9VEVGZyMzMxJIlS0qW61Gr1XByckKjRo3w8ccfY9CgQSa/XI+lEYvF0Gg0QscwOhYfEZWK/Px8rFq1ClFRUTh//jxycnJga2uLgIAAzJo1CyEhIWb3fJi5kUgk/I6PiOjvPHnyBJs2bcL69etx5swZZGZmQqFQwM/PD+PHj0dYWBhcXV2FjkmvQSKRcMRHRPQXvV6P3bt3Y/Xq1Th58iTS09Mhk8ng6+uL0NBQjBw5El5eXkLHpLfAER8RWbxjx45h2bJliI6Oxt27dyEWi1GjRg306tUL4eHhCAgIEDoiGZFUKuWIj4gsS1xcHCIjI3Hw4EHcunULer0eHh4eCAoKQmhoKFq3bi10RCpFEokEWq1W6BhGx+IjohJJSUmIiIjAvn37cP36dRQVFcHV1RUtWrTADz/8gK5du/JZOgsilUpZfERkXtLT0xEZGYmdO3fi6tWr0Gg0cHZ2RpMmTfD555+jb9++sLKyEjomCUQmk/FSJxGVb7m5uVi2bBm2bt2KuLg45OXlwd7eHoGBgfjhhx8wbNgwqFQqoWOSiZDJZCgsLBQ6htGx+IjMmFarxbp167Bx40bExsYiKysLNjY28Pf3x5QpUzBixAg4OzsLHZNMlEwm46VOIjJtOp0O27dvx9q1a3Hq1Ck8ePAAcrkctWrVwkcffYSRI0dyuR56ZTKZDE+ePBE6htGx+IjKMb1ej0OHDmHFihU4fvw4UlNTIZVK4e3tjYEDByIsLAx169YVOiaVUxzxEZFJOHv2LCIjI3H48GEkJyfDYDDA09MTnTp1QmhoKJo3by50RDIT1tbWHPERUdmLj48vWa7n5s2b0Ol0qFKlClq1aoVFixahQ4cOfMSASoWVlRVHfERU+lJTUxEREYHdu3cjPj4eWq0WLi4uaN68OaZPn45evXpxuR4qE1ZWVsjNzRU6htHxbw+RwLKysrB06VJs374dFy9ehFqthqOjIxo1aoSff/4ZgwYNgkKhEDomWSBe6iQioygoKMCqVauwefNmnD9/HtnZ2bC1tUX9+vUxY8YMhISEwMHBQeiYRJDL5SgqKhI6htGx+IhKWVFRETZv3oz169cjJiYGDx8+hEKhQN26dTFu3DiEhYXBzc1N6JhEz7G2tmbxEdE/0+v12LdvH1auXImTJ0/i/v37kMlkqFmzJoYNG4YPP/wQPj4+Qsck+kcc8RHR3zpx4gSWLl2K6Oho3LlzByKRCDVq1ECPHj0QHh6OwMBAoSMSvTa5XA6dTid0DKNj8RG9gUuXLiEyMhIHDhxAUlIS9Ho93N3dERQUhJCQELRp0wYikUjomERvRaFQsPiILNXt27cRERGBvXv34vr163jy5AkqVaqEFi1aYM6cOejevTufpSOzI5fLUVxcLHQMo2PxEb1ARkZGyXI9V65cQUFBASpUqIAmTZpg/Pjx6N+/P5frIbPHER+RGcvNzcXKlSsRFRWFuLg45Obmws7ODoGBgfjuu+8wfPhwLtdDFkehUHDER2QuCgsLsX79emzYsAFnz54tWa7Hz88PEydORFhYGCpWrCh0TCJBKZVKFh9ReaXX67F9+3asWbOmZLkeKysr1K5dG6NGjcLIkSNRrVo1oWMSmRSlUgm9Xi90DKNj8ZFZ0uv1OHLkCJYvX45jx44hNTUVEokE3t7e6NevH8LDw+Hn5yd0TCKTxhEfkYmLjY3FkiVLcOjQIdy+fRsGgwHVqlVDhw4dEBoaihYtWggdkahcsbGx4YiPyJRcv34dERER+P3330uW63Fzc0OrVq2wcOFCdOrUiY8YEL0FGxsbGAwGoWMYHYuPyo3U1FQsWbIEu3btwrVr16DValGxYkU0b94c06ZNQ+/evblcD5ERsfiIylhWVhaWL1+OrVu34tKlS8jPz4ejoyMaNmyIBQsWYMiQIVAqlULHJDJb5lp8IoM5nhWVSwUFBVizZg02bdqEc+fOITs7GyqVCvXr10evXr0QGhoKR0dHoWMSWYwHDx7A1dXV7MqPxUeC0el0iIqKwtq1a59ZrqdOnTro1q0bwsPDUaVKFaFjElmsgoICsxz1sfiozOj1euzfvx8rV67EiRMnkJaWBplMBh8fH7z77rsIDw+Hr6+v0DGJ6P/o9XpIJBIUFRWZ1ffnLD4qVSdPnixZriclJQUikQjVq1dHcHAwwsLC0KhRI6EjEtFLiEQiZGdnw97eXugoRmM+FU4m4cqVK4iIiMCBAweQmJiI4uJieHh4oE2bNliyZAmCgoL4iAFROZOXl8fiI/pLSkoKFi9ejL179yIhIQGFhYVwdXXFO++8g2+++QY9e/Zk0RGVYyKRCGq1WugYRlWuiq9z585QqVT45ptv4OPjI3Qci5SRkYGlS5dix44duHz5cslyPY0bN8a4cePQv39/yOVyoWMSkZGw+AR248YNJCcnY/fu3ejWrRsLsAzk5+djxYoViIqKwoULF0qW62nQoAG+/fZbDB8+HHZ2dkLHJKJSwuITgMFgwKVLl3Dw4EE8fPgQer0eWq0WUVFRiIqKQlhYGNatWwcrKyu4urrCy8sL3t7e8PX1RadOnVCjRg2hT6FcefLkyTPL9Tx69AhKpRJ+fn6YMGECwsPD4eLiInRMIiojYrEY+fn5QscwKpMtvtTUVCxcuBBbtmyBXq9H165dYW1tjby8PMjlcjRr1gyzZ89GkyZNMH/+fDx58gRpaWlISkpCYmIiYmJi8NVXX6FChQro2bMnxo4dCzc3N6FPy+To9Xrs3LkTq1evxp9//lmyXI+vry/Cw8MxcuRIVK9eXeiYRCQQsViMgoICoWMYlckV3+PHjzF79mwsXboUISEh2LJlC+rXrw+RSIS4uDgEBATgu+++Q4MGDUq2+WtlbCcnp2eWmtHr9Th79izWr18PPz8/DB06FJMmTYKrq2uZn5ep0Ov1OHr0KJYvX46jR4/i7t27kEgk8PLyQp8+fRAeHg5/f3+hYxKRiRCLxdBoNELHMCqTKr7Lly+jZ8+eaNeuHS5fvvzcCO3EiROvtT+xWIymTZuiadOmmDhxIr799ls0aNAAa9asQXBwsDGjm7Rz586VLNdz69YtGAwGVK1aFcHBwQgNDUXLli2FjkhEJkoikXDEV1oOHjyIQYMG4ccff8SgQYOMvn9XV1f8+OOP6NmzJwYPHozPP/8cn3zyidGPYwpu3rxZslzPjRs3UFRUhMqVK6NVq1b48ccf8e677/IRAyJ6JSy+UpKYmIhBgwZh8+bNaNOmTakeq23btoiJiUHLli1RuXJl9OvXr1SPVxbS0tIQGRlZslyPRqNBxYoV0bRpU0yePBl9+/Y1q+mGiKjsSCQSXuo0Nr1ej379+uHLL78s9dL7i4eHB3bs2IEOHTqgXr16qF27dpkc11iys7OxdOlSbNu2DRcvXkR+fj4cHBzQsGFDzJ8/H0OHDuVyPURkFFKplMVnbNu3b4dMJsPo0aPL9LgBAQGYMGECpk6diqioqDI99uvSarVYvXp1yXI9jx8/hkqlgr+/P6ZNm4YRI0bAyclJ6JhEZIZYfKVg7ty5mDhxIkQiUZkfe8yYMZg/fz6uXr2KunXrlvnx/45Op8OWLVuwbt06nD59GhkZGZDL5ahTpw7Gjh2LsLAwVK1aVeiYRGQBpFIptFqt0DGMStDiU6vViIuLQ5cuXQQ5vlKpRM+ePbF//35Bi0+v1+OPP/7AypUrcfz4caSlpUEqlcLHxweDBw9GeHh4ubscS0TmgcVnZBcuXEDdunVhbW0tWIY2bdpg48aN+PTTT8v0uKdOncLSpUtx5MgRJCcnQyQSwdPTE126dEFYWBiaNGlSpnmIiF5EJpOhsLBQ6BhGJfiIz9HRUcgIqFy5MrKyskr9OFevXkVERAT++OMPJCUlQafTwd3dHa1atUJERATatm3LRwyIyOTIZDKO+IzJyspK8P+TKK11eFNSUhAREYG9e/ciPj4ehYWFqFSpEpo3b46ZM2eiZ8+efMSAiEyeKfyeNjZBf/N6e3vj6tWr0Ov1go12rl+/Dk9Pz7feT2ZmJpYsWVKyXI9arYaTkxMaN26Mf/3rXxg4cCCX6yGicoeXOo3Mw8MDTk5OuHjx4jNzb76KzPxCRJ1LRUJ6LnK1OtjJpajlaoe+Dd1RQfXq3xlGR0ejQ4cOrxsd+fn5WLVqFTZv3owLFy4gJycHdnZ2CAgIwKxZsxASEsLleoio3LOyssKTJ0+EjmFUIkNpXet7RdOnT0dycjJWrFjxSp+/eDcbi6ITcfTGQwBAoU5f8p5cKoYBQJBvRYxu4436Hg4v3de9e/dQr149XLt27R8nrn7y5Ak2btyIDRs2ICYmpmS5nrp166JHjx4ICwuz6Mmvicg8tW/fHhqNBidPnhQ6itEIXnw5OTmoWbMmDhw48I+rAqw5nYxZexOg1RXjZalFIkAulWBKl1oY0szzbz83atQo2Nra4vvvv3/uPb1ej927d2PVqlX4888/kZ6eDisrK9SsWROdO3fGyJEj4eXl9aqnSURULnXt2hUZGRk4e/as0FGMRvC7K+zt7fHdd9/h/fffx+nTp+Hs7PzCzz0tvXhoivQvfP9/GQyApqgYs/bGA8Az5adWqzFjxgx4e3vj999/x7lz50reO3r0KJYtW1ayXI9YLEaNGjXQq1cvhIeHIyAg4K3OlYiovLG2tkZRUZHQMYxK8OIDgOHDhyM+Ph49evTAzp07nyu/i3ezMWtvwnOlp029htxTm1F4LwH6Ii2kthWgqNEIjsEjIJLIoCnSY9beBPi7O8Df3QEPHjxAu3btEB8fD1tbW0RGRmLq1Kk4ePAgbt++Db1eDw8PDwQFBSE0NBStW7cuyz8GIiKTY47FZzIPjn3zzTdo1aoVGjZsiJiYmGfeWxSdCK2u+JnX1NeO4sHaidAknYXEzhkqv7aQOrgiL24fDEX/vQNJqyvGL9GJSEhIQJ06dXDt2jUYDAbk5eVhwIAB2L59OwICArBt2zYUFRWVfN/I0iMiAuRyudkVn0mM+ICni8bOmTMHzZs3R/fu3dG9e3d88cUXsK3ohqM3Hj7znZ6+SIusP34DDHrY1G2LCt3GQSR62uFFj+9DJPvvXZ0GA/DHlTREjhwKvSa35HU7OztkZGTAysqqzM6RiKi8McfiM5kR31/ee+89XL9+HVWqVEHjxo3R69M5KC5+drRXmBoPvTYPAGD/Tv+S0gMAmWNliCSyZz5fXKyDS7Me6NixI/z8/CCTyZCTk4P8/PzSPyEionJMLpdDp9MJHcOoTK74AMDR0RFff/01bt68CftqtaEzPLtyQ3FBdsk/S+1d/nF/Iqk1+n/4Kfbv31/ycHliYqLg06UREZk6Fl8Zc3R0hIu753OvS5QOJf+sy8l4pX3laf/7L04mk8HLy0uQpZCIiMoThULB4itrdvLnv4a0rlIbYrkKAJDz50YYDP+921OXkwFD8fP/kuzksudeIyKil1MoFM993VTemczNLX+nlqsdrKXpz8zQIraSw7HDh3i0ez7UV4/gycNkWFeuieL8LGiSL8Dj4zUQSVQln5dLxahV2bbkZ71eD51OxxtbiIj+gTkWn8mP+Po0dH/h66q6bVFp4DdQeDVCce5D5F85hKJHd2Fbv9Mzd3UCgEarxed926By5cqwt7eHVCpFy5YtyyI+EVG5plQqza74TH7E56yyRpuaFXEg/sFz05TJq/pBXtXvpduLRICXUovDGfeQ83+vSSQSdO7cuXQCExGZEXMsPpMf8QHAmCBvyKWSN9pWLpVgfnhn7Nmzp2Sl9+LiYsycORNBQUE4deqUMaMSEZkVpVIJvf6fp4osT8pF8dX3cMCULrWgkL1eXIVMjCldasHf3QFdunTBokWLIBaL0b59e6xfvx5ZWVlo0aIFXFxcMGnSJBQUFJTSGRARlU82NjZmV3yCr87wOoyxOkNERAQaNWqEwMBAAE8XkJ08eTI2bNgAtVqNZs2aYfbs2ZyyjIgIwOnTp9GyZUuzeqShXBUfAFxKzcYv0Yk4cv0hRAC0L1iPr61vRYwO8oa/u8Nr7Xvnzp2YPn064uLi4OjoiOHDh+Prr7+GSqX6542JiMzQ5cuXERAQYFbf85W74vvLo/xCRJ1PRcL9PORqi2Anl6FWZVv0CXy9FdhfJDs7G1988QXWrl2LnJwcNGrUCDNmzECnTp2MlJ6IqHy4ffs2vLy8zOpyZ7ktvrKyf/9+TJ06FbGxsbC3t8egQYMwa9YsODg4CB2NiKjUZWRkoFKlSjCnqigXN7cIqVOnTjhz5gxyc3MREhKCDRs2wMnJCYGBgdi5c6fQ8YiISpWtre0/f6icYfG9IpVKhXnz5uHRo0c4fPgwFAoFevXqBTs7O4SHhyMzM1PoiERERvfXY2DmtDQRi+8NBAUF4eTJk8jPz8eYMWOwY8cOuLi4wN/fH5s2bRI6HhGR0YjFT2tCrVYLnMR4WHxvQaFQYPbs2cjIyMDJkyfh5OSEQYMGQaVSYfjw4UhPTxc6IhGRUZjT+qUsPiNp3rw5oqOjUVBQgPHjx+OPP/6Am5sbateujVWrVpnVHVFEZFlEIhGLj/6elZUVpk+fjvv37yM2Nhbu7u4YMWIEVCoVBg4ciDt37ggdkYjotYhEIl7qpFcTGBiIAwcOQKPRYOrUqTh+/DiqVauGmjVrIiIigqNAIioXxGIxi49ej1QqxaRJk5CamorLly/Dx8cHY8eOhVKpRO/evZGUlCR0RCKiv8URH70VPz8/7NmzB1qtFrNnz8a5c+fg7e2NGjVq4KeffuIokIhMjlgsNqtJ/Fl8AhGLxRg3bhySk5ORkJAAf39/jB8/HgqFAt27d0dCQoLQEYmIADxdw5TFR0bl6+uL7du3Q6PRYP78+bh27Rpq166NqlWr4vvvvzerWdGJqPzhiI9KjVgsxujRo5GUlIRbt26hadOmmDZtGhQKBd59911cunRJ6IhEZIEkEgk0Go3QMYyGxWeiqlevjs2bN0OtVmPx4sW4ffs2AgICUKVKFcycORNPnjwROiIRWQipVMoRH5UdsViM0NBQXL9+HXfu3EFQUBBmz54NpVKJ4OBgxMbGCh2RiMwcR3wkGHd3d6xduxZqtRorV65Eeno6mjRpAldXV0ydOhVarVboiERkhqRSqVn9fmHxlVODBw/G1atXcf/+fXTu3Bk//vgjbGxs0Lp1a5w8eVLoeERkRlh8ZFIqVaqE5cuXIy8vD5s2bUJOTg5atWqFihUrYsKECWZ1XZ6IhCGTyXipk0xT7969cfHiRWRmZqJ3795YvHgxbG1t0bx5cxw+fFjoeERUTslkMo74yLQ5OTnht99+Q05ODnbs2IGioiK0b98eTk5O+OSTT5Cbmyt0RCIqR2QyGQoLC4WOYTQsPjPXrVs3xMbGIjs7G0OGDMHq1avh4OCARo0aYd++fULHI6JygMVH5ZKdnR0WLlyIrKwsHDhwAFKpFN26dYODgwM++ugjZGVlCR2RiEyUlZWVWT07zOKzQMHBwTh9+jRycnIQHh6OzZs3w9nZGQEBAdi2bZvQ8YjIxFhZWXHER+ZBpVLh+++/R2ZmJo4dOwZbW1v06dMHtra2CA0NRUZGhtARicgEcMRHZqlly5Y4fvw41Go1PvnkE+zZsweurq7w8/PD+vXrhY5HRAKytrZm8ZH5ksvlmDlzJh48eICYmBi4uLhg6NChsLGxwZAhQ5CWliZ0RCIqY1ZWVigqKhI6htGw+OhvNW7cGIcPH0ZBQQE+//xzHD58GO7u7qhVqxaWL1/ORXOJLIRcLueIjyyLlZUVpk2bhrS0NJw/fx7VqlXDyJEjYWNjg379+iElJUXoiERUiqytrc1qXVAWH72WgIAA7N+/HxqNBl999RVOnz4NT09PeHt749dff+UokMgMyeVyXuokkkqlmDBhAu7cuYNr166hVq1a+OSTT6BUKtGrVy/cvHlT6IhEZCRyuZwjPqL/Vbt2bezevRtarRZz5sxBXFwcatasCU9PT/z4448cBRKVcwqFgsVH9CJisRiffPIJbt++jcTERAQGBmLixImQy+Xo2rUrrl69KnREInoDHPERvQIvLy9s3boVBQUF+Omnn3Djxg34+fnBw8MD3377rVn9JSIyd0ql0qz+zrL4qFSJxWJ8+OGHuHnzJpKTk9GiRQt89dVXUCgU6NixI+Li4oSOSET/QKlUori4WOgYRsPiozJTrVo1bNiwAWq1GkuWLMHdu3cRGBgINzc3fPXVV2b1nBCROVEoFGb1XT2Lj8qcWCzG8OHDER8fj9TUVLRv3x7ff/89lEol2rZti5iYGKEjEtH/4IiPyIjc3NywatUq5OfnY+3atcjMzETz5s1RqVIlTJ482axWfSYqr5RKJUd8RKWhf//+uHz5MtLT09G9e3f8/PPPsLGxQcuWLXHs2DGh4xFZLBsbGxYfUWlycXHBkiVLkJubi61bt0KtViMoKAjOzs747LPPkJ+fL3REIotiY2MDg8EgdAyjYfGRSevZsycuXLiArKws9OvXD0uXLoWdnR2aNm2KAwcOCB2PyCJwxEckAAcHB/zyyy/Izs7Gnj17oNfr0alTJzg6OuLjjz9GTk6O0BGJzJZKpeKIj0hInTt3xtmzZ5GdnY0PPvgA69atg6OjIxo2bIjdu3cLHY/I7KhUKqEjGBWLj8otOzs7zJ8/H48ePcLBgwdhbW2Nnj17wt7eHiNHjkRWVpbQEYnMAouPyAS1a9cOf/75J/Ly8jBq1Chs374dzs7O8Pf3R1RUlNDxiMo1a2trADCbSSZYfGRWlEol5syZg4yMDBw/fhyOjo4YMGAAVCoVPvjgA6SnpwsdkajcEYlEAAC1Wi1wEuNg8ZHZatGiBY4ePYr8/Hx8+umn2L9/P9zc3FCnTh2sWbNG6HhE5U5eXp7QEYyCxUdmTy6X4+uvv8b9+/dx5swZuLm54YMPPoBSqcSgQYOQmpoqdEQikycSiTjiIyqPGjVqhIMHD0Kr1WLKlCk4duwYPDw8ULNmTSxZssSsnlUiMiaRSGQ2k0ew+MgiSaVSTJkyBampqbh8+TK8vLzw0UcfwcbGBn369MHt27eFjkhkUsRiMUd8RObCz88P+/btg0ajwcyZM3H27FnUqFEDXl5e+PnnnzkKJMLT4isoKBA6hlGw+Ij+j1QqxWeffYaUlBQkJCTAz88Pn332GRQKBXr27Inr168LHZFIMCw+IjPn6+uLHTt2QKPRYO7cubhy5Qpq1aqFatWqYe7cudDpdEJHJCpTvNRJZCHEYjHGjh2LpKQk3Lp1C40bN8YXX3wBpVKJzp0748qVK0JHJCoTEomEIz4iS1O9enVERUVBrVbjl19+QVJSEurVqwd3d3fMmjWLo0AyaxKJBBqNRugYRsHiI3pNYrEYYWFhuHHjBu7evYvWrVtj1qxZUCgUaN++PWJjY4WOSGR0LD4iAgC4u7tj3bp1KCgowPLly5GWloYmTZqgcuXKmDZtGgoLC4WOSGQUUqmUxUdEzxoyZAiuXbuGtLQ0dOrUCfPmzYONjQ3atGmDU6dOCR2P6K2w+Ijob7m6umLFihXIz8/Hhg0b8PjxY7Ro0QIuLi74/PPPzeYGAbIsUqkUWq1W6BhGweIjKkV9+vTBpUuXkJGRgffeew+//fYbbG1t8c477yA6OlroeESvTCqVms2lexYfURlwdnZGREQEcnJysG3bNhQWFqJdu3aoUKECxo0bZzZzIJL5kslkHPER0Zvp0aMHzp07h6ysLAwaNAgrVqyAnZ0dGjdujP379wsdj+iFWHxE9NYcHBzw008/4fHjx9i/fz/EYjG6dOkCBwcHjB49GtnZ2UJHJCphZWXFS51EZDwdOnRATEwMcnJyMGLECGzatAlOTk5o0KABduzYIXQ8IshkMjx58kToGEbB4iMyISqVCnPnzkVmZiaio6NhY2OD999/H3Z2dggLC0NmZqbQEclCccRHRKWudevWOHHiBNRqNcaOHYtdu3bBxcUF9erVw8aNG4WORxbG2tqaIz4iKhtyuRzffPMNHjx4gFOnTsHZ2RmDBw+GSqXCsGHDkJaWJnREsgBWVlYsPiIqe02bNsWRI0dQUFCA//znPzh48CDc3d1Ru3ZtrFy5kovmUqmxtrZGUVGR0DGMgsVHVA5ZWVnhyy+/RFpaGs6dOwcPDw+EhYXBxsYGAwYMwJ07d4SOSGZGLpdzxEdEpqFBgwb4448/oNFo8OWXX+LkyZOoVq0afHx8sHjxYo4CySisra3NZuktFh+RmZBKpZg4cSLu3r2LK1euoGbNmvj444+hVCrx/vvvIykpSeiIVI7J5XJe6iQi01W3bl3s2bMHWq0W3377Lc6fPw9vb29Ur14dCxYs4CiQXptcLueIj4hMn1gsxr///W8kJyfjxo0bCAgIwOeffw65XI5u3bohPj5e6IhUTigUChYfEZUvPj4+2LZtGwoKCrBgwQIkJCSgTp06qFq1Kr777juz+aVGpYPFR0TlllgsxkcffYTExEQkJyejWbNm+PLLL6FQKNCpUyfExcUJHZFMkEKhQHFxsdAxjILFR2TBqlWrhk2bNkGtViMiIgIpKSkIDAyEm5sbvv76a7O5fZ3eHouPiMyKWCxGSEgIEhISkJqainbt2mHOnDlQKpVo164dzp49K3REEphSqWTxEZF5cnNzw5o1a6BWq7F69WpkZGSgadOmqFSpEqZMmWI2a7LR61EqlWZzNzCLj4j+1sCBA3HlyhWkp6eja9euWLhwIWxsbNCqVSucOHFC6HhUhlh8RGRRXFxcsGzZMuTl5SEqKgp5eXlo3bo1nJ2d8Z///AcFBQVCR6RSZmNjw+IjIsvUq1cvxMXFITMzE3379kVkZCRsbW3RrFkzHDp0SOh4VEpUKhWLj4gsm5OTE3799VdkZ2dj165d0Ol06NChA5ycnPCvf/0Lubm5QkckI1IqlTAYDELHMAoWHxG9tS5duiA2NhbZ2dkYOnQo1qxZAwcHBzRq1Ah79+4VOh4ZgUqlYvEREf3/7OzssGDBAmRlZeHgwYOQyWTo3r077O3tMWrUKGRlZQkdkd6QSqUSOoLRsPiIqFS0a9cOp06dQl5eHj788ENs2bIFzs7OqF+/PrZs2SJ0PHpNtra2QkcwGhYfEZUqpVKJ7777Dg8fPsSxY8dgb2+Pfv36wdbWFiEhIcjIyBA6Ir0CKysrADCL2XxYfERUZlq2bIljx45BrVbj3//+N/bt2wdXV1fUrVsXa9euFToevYK8vDyhI7w1Fh8RlTm5XI4ZM2YgPT0dMTExcHV1xfDhw2FjY4PBgwcjNTVV6Ij0N/Lz84WO8NZYfEQkqMaNG+PQoUMoKCjApEmTEB0djapVq8LX1xdLly41m2fHzIFIJGLxEREZi5WVFb744gvcu3cPcXFxqF69OkaNGgUbGxv07dsXKSkpQke0eCKRyCxm6WHxEZHJ8ff3x++//w6NRoMZM2YgJiYGnp6e8PLywi+//MJRoEDEYjFHfEREpUkqlWL8+PG4c+cOrl27hjp16mDcuHFQKBR47733cPPmTaEjWhSxWAy1Wi10jLfG4iOicqF27drYtWsXNBoNfvjhB1y6dAk1a9aEp6cn5s2bx1FgGRCLxbzUSURU1sRiMT7++GPcunULiYmJaNiwISZPngy5XI4uXbrg6tWrQkc0W2KxGBqNRugYb43FR0TllpeXF7Zs2YKCggL88ssvSExMRL169eDu7o7Zs2dDp9MJHdGsSCQSXuokIjIFYrEYYWFhuHHjBpKTk9GqVSvMmDEDCoUCHTp0wPnz54WOaBYkEglHfEREpqZq1apYv3491Go1li1bhtTUVDRq1AiVK1fG9OnTzWLKLaGw+IiITJhIJMLQoUMRHx+PtLQ0dOzYET/88AOUSiWCgoJw6tQpoSOWO1KplMVHRFQeuLq6YuXKlcjPz8e6deuQlZWFFi1awMXFBZMmTTKLOxXLAouPiKgc6tevHy5duoSMjAy89957WLRoEWxtbdGiRQscPXpU6HgmTSqVQqvVCh3jrbH4iMgiOTs7IyIiArm5udi2bRs0Gg3atm2LChUq4NNPPzWLGUqMTSaTsfiIiMxBjx49cP78eWRlZWHgwIFYvnw57Ozs0KRJE+zfv1/oeCZDKpWisLBQ6BhvjcVHRPR/HBwc8PPPP+Px48fYt28fAKBz585wcHDAmDFjkJ2dLWxAgXHER0Rkxjp16oQzZ84gNzcXoaGh2LBhA5ycnBAYGIidO3cKHU8QVlZWHPEREZk7lUqFefPm4dGjRzh8+DAUCgV69eoFOzs7hIeHIzMzU+iIpaK4uBjt2rXDsmXLSmbAsbKyMovnIFl8RESvKCgoCCdPnkR+fj7GjBmDHTt2wMXFBf7+/ti0aZPQ8YyqqKgI0dHR+OSTT+Dh4YFly5ZBJpOZRfGJDAaDQegQRETl1enTpzFx4kScOHECcrkcvXv3xpw5c+Dq6ip0tDd2584dHDlyBCEhIfjfipBKpbC3t4e7uzusra3h4eEBb29veHl5oV69emjcuDEkEomAyV8Ni4+IyAiePHmCb775BosXL8aDBw/g6+uLSZMmYciQIRCLTf/iWnp6OpYtW4atW7ciOTkZrVu3xvbt22EwGGBtbY06deqUPMe3atUqaDQa3LlzB4mJiUhKSsLZs2fx4MEDdOnSBX369EGXLl1M97wNRERkVOfOnTO0b9/eIJVKDQqFwjBgwABDSkqK0LFe6PHjx4bJkycbnJycDKNGjTIcPnzYUFRUZCgsLDRIJBJDq1atDKdPnzYYDAZD7969DfXq1fvbfd2+fduwcOFCQ4MGDQz169c3bNu2zaDX68vqVF4ZR3xERKVEp9Ph+++/x6JFi3Dv3j34+Phg/PjxCAsLM4nR0NmzZ/H++++jY8eOmD59Ojw8PJ55PysrC05OTiU/Dx48GOfPn0d8fPxL92swGLBr1y5MmzYNVapUwerVq5/Zj9CE/5MnIjJTUqkUkyZNQmpqKi5fvgwfHx+MHTsWSqUSvXv3RlJSkmDZNm/ejK5du+Lnn3/G0qVLnys9AM+VlbW1NYqKiv5x3yKRCD169MDZs2fh6+uLRo0a4cqVK0bL/rZYfEREZcDPzw979uyBVqvF7Nmzce7cOXh7e6N69er46aefoNfryyxLTEwMxowZgwMHDqBnz56vvJ1CoXitxX1lMhnmzZuH6dOno0uXLrh///6bxDU6Fh8RURkSi8UYN24ckpOTcf36ddSvXx/jx4+HQqFA9+7d//Ey4tvKzs5G3759ERkZifr167/WtnK5/I1WtR82bBhGjhyJnj17vtH2xsbiIyISSM2aNbF9+3ZoNBrMnz8f8fHxqFOnDqpWrYrvv/++VEpi0aJFCAoKeq2R3l/kcvkrXep8kSlTpkAul2Pt2rVvtL0xsfiIiAQmFosxevRoJCYm4vbt22jWrBmmTZsGhUKBd999F5cuXTLKcbRaLRYuXIhJkya90fYKhQLFxcVvtK1IJMLMmTPx1Vdflell3Rdh8RERmRBPT09s2rQJarUaERERuH37NgICAuDm5oaZM2e+1cwpFy5cQJUqVVC7du3X2i4lJQUeHh6YNWsWHj16BLlcjg8++OC1j9+6dWvIZDJcvnz5tbc1JhYfEZEJEovFCAkJwfXr13Hnzh20a9cOs2fPhlKpRHBwMM6ePfva+zxz5gyaNm362ttVqVIFBoOhZGUGiUSCDh06vPZ+AKBNmzaCL/jL4iMiMnHu7u5Ys2YN1Go1Vq1ahfT0dDRt2hSVKlXC1KlTX3mpoEePHqFy5cqvfXypVIp58+bB2toawNOJu/v37//a+wGejmiFvruTxUdEVI4MGjQIV69eRXp6Orp27Yoff/wRNjY2aN26NU6ePPnSbd9mdYU+ffqgQoUKAIBp06ZBKpW+0X5EItEbbWdMLD4ionLIxcUFy5YtQ15eHjZt2oTc3Fy0atUKFStWxIQJE1BQUPDcNu7u7rhx48YbHe+vxzAAIDQ09I1zp6SkoFKlSm+8vTGw+IiIyrnevXsjLi4OmZmZ6N27NxYvXgxbW1s0b94chw4dKvlccHAwDh8+/EZ3VWbmF6K4ZjtUHzQdYzZdwb83XsBvR5PwKP/1FqaNjo5GmzZtXvv4xsS5OomIzNCePXvw5Zdf4vz583BwcMDQoUMxY8YMBAcHY+LEiejduzeApwvOvmwpoYt3s7EoOhFHbzwEABTq/luacqkYBgBBvhUxuo036ns4vDTTn3/+iYEDB+LWrVuCLl/E4iMiMmO5ubmYOnUqVq9ejezsbHh7e6OgoAC3b99GdnY2atasiY0bN6Jjx47PbbvmdDJm7U2AVleMlzWFSATIpRJM6VILQ5p5vvAzBoMBwcHBGDx4MEaMGGGks3szvNRJRGTG7OzssGDBAmRlZeHAgQNwcnLCvXv3oFKp0L17d6jVarz//vs4f/78M9s9Lb14aIpeXnoAYDAAmqJizNobjzWnk1/4mR9++AGPHz/GsGHDjHRmb44jPiIiC3P//n3Uq1cPjx49KnnNxsYGly5dQo0aNXDxbjYGRJ6GpujpLC2pv4SiODfj6QdFYoiVdrB2qwXH4DDIHJ5daV4hk2DjyGbwd3coeW3jxo347LPPcOrUqReuAlHWOOIjIrIwlStXxm+//Vbys0gkglqtho+PD9avX49F0YnQ6p6fmkzh1Ri2gV0htraB5uZpPNq78LnPaHXF+CU6EcDT9QgnTZqECRMmYPfu3SZRegDwZg9iEBFRuebp6Ym+ffsiPj4e9+/fx/vvvw9HR0ccP3MBR1UOL7y8qarfEcqazVFwMwYPt8yALiv1uc8YDMCR6w8Rtet3fDdjGuzt7REbG4uKFSuWwVm9Gl7qJCKycIcPH8aXX36JjIwMNBwyEbGFlfCk+L/V8NelToVXY0gdXKFJvgDdo1TYBnaDU8dRz++wuAjS+P2YNSQIffv2NYnV5v8Xi4+IiGAwGBAdHY3JO6/jvvzZS5LPfMf3F4kMFTqNgcq//Qv3916AG37s36C04r4V06phIiIShEgkQtu2bVE7oOHffqbi+1NQ9fNdcB02FzAY8GjfQhRlp7/ws3la4Rec/TssPiIiKmEnf/mtHyKRCFau3hDLrAGDHrq/KT47uaw04hkFb24hIqIStVztYC1Nf2aGlr/kX/wD2pRLePIgCfpCNUQya1hV9Hzuc3KpGLUq25ZB2jfD4iMiohJ9Grpj/sEXT2StSXq6BqDY2gbW7nVg33IwJDYOz33OAKBPoHsppnw7LD4iIirhrLJGm5oVcSD+QckjDe6jl73y9iIR0Na3IiqorEsp4dvjd3xERPSMMUHekEvfbBJpuVSC0UHeRk5kXCw+IiJ6Rn0PB0zpUgsK2etVhEImxpQutZ6ZrswU8VInERE9569VFoy1OoMp4QPsRET0ty6lZuOX6EQcuf4QIgDaF6zH19a3IkYHeZv8SO8vLD4iIvpHj/ILEXU+FQn385CrLYKdXIZalW3RJ9DdpG9keREWHxERWRTe3EJERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBbl/wGKBAYPmKMzfQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1399,7 +1399,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 17, "id": "76ccf38b", "metadata": {}, "outputs": [ @@ -1452,7 +1452,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 18, "id": "20368e16", "metadata": {}, "outputs": [ @@ -1627,7 +1627,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 19, "id": "6240631b", "metadata": {}, "outputs": [], @@ -1641,7 +1641,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 20, "id": "2cf98dc9", "metadata": {}, "outputs": [ @@ -1660,7 +1660,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 21, "id": "00d4a6e9", "metadata": {}, "outputs": [ @@ -1678,7 +1678,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 22, "id": "8850cd07", "metadata": {}, "outputs": [ @@ -1696,7 +1696,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 23, "id": "e4edd39f", "metadata": {}, "outputs": [ @@ -1714,7 +1714,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 24, "id": "f84705d9", "metadata": { "scrolled": true @@ -1780,7 +1780,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 25, "id": "fd0adcf7", "metadata": {}, "outputs": [ @@ -1794,11 +1794,11 @@ " [ 0.68523414+0.j -0.7098715 +0.j -0.7098715 -0.j ]\n", " [ 0.39090768+0.j 0.05884929-0.61099907j 0.05884929+0.61099907j]]\n", "\n", - "First Eigen Value (1.5628531146037397+0j) and corresponding Eigen vector = [0.61452857+0.j 0.68523414+0.j 0.39090768+0.j]\n", + "First Eigen Value (1.5628531146037385+0j) and corresponding Eigen vector = [0.61452857+0.j 0.68523414+0.j 0.39090768+0.j]\n", "\n", - "Second Eigen Value (-0.08361059829690798+0.3407471625105171j) and corresponding Eigen vector = [ 0.31057068+0.1511463j -0.7098715 +0.j 0.05884929-0.61099907j]\n", + "Second Eigen Value (-0.08361059829690796+0.340747162510517j) and corresponding Eigen vector = [ 0.31057068+0.1511463j -0.7098715 +0.j 0.05884929-0.61099907j]\n", "\n", - "Third Eigen Value (-0.08361059829690798-0.3407471625105171j) and corresponding Eigen vector = [ 0.31057068-0.1511463j -0.7098715 -0.j 0.05884929+0.61099907j]\n" + "Third Eigen Value (-0.08361059829690796-0.340747162510517j) and corresponding Eigen vector = [ 0.31057068-0.1511463j -0.7098715 -0.j 0.05884929+0.61099907j]\n" ] } ], @@ -1826,7 +1826,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 26, "id": "ffa734a8", "metadata": {}, "outputs": [ @@ -1866,7 +1866,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 27, "id": "85d9c76b", "metadata": {}, "outputs": [ @@ -1876,7 +1876,7 @@ "0.0843572577054717" ] }, - "execution_count": 34, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -1888,7 +1888,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 28, "id": "b671a297", "metadata": {}, "outputs": [ @@ -1898,7 +1898,7 @@ "array([0.07987194, 0.00448532])" ] }, - "execution_count": 35, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -1909,17 +1909,17 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 29, "id": "b514dea0", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.08435725770547171" + "0.0843572577054717" ] }, - "execution_count": 36, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -1930,17 +1930,17 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 30, "id": "a9384fad", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 37, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" }, @@ -1973,7 +1973,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 31, "id": "76a0d37a", "metadata": {}, "outputs": [ @@ -1983,7 +1983,7 @@ "array([0.07987194, 0.00448532])" ] }, - "execution_count": 38, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } @@ -1994,7 +1994,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 32, "id": "e869810e", "metadata": {}, "outputs": [ @@ -2004,7 +2004,7 @@ "array([0.94682951, 0.05317049])" ] }, - "execution_count": 39, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -2015,7 +2015,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 33, "id": "36601f82", "metadata": {}, "outputs": [ @@ -2025,7 +2025,7 @@ "1.0" ] }, - "execution_count": 40, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } @@ -2036,7 +2036,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 34, "id": "c16143d4", "metadata": {}, "outputs": [ @@ -2046,7 +2046,7 @@ "Text(0, 0.5, 'The explained variance ratio')" ] }, - "execution_count": 41, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" }, @@ -2079,7 +2079,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 35, "id": "c252d00c", "metadata": {}, "outputs": [ @@ -2092,7 +2092,7 @@ " [5, 0, 2]])" ] }, - "execution_count": 42, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } @@ -2106,7 +2106,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 36, "id": "4c3e4b09", "metadata": {}, "outputs": [ @@ -2116,7 +2116,7 @@ "array([3., 1., 1.])" ] }, - "execution_count": 43, + "execution_count": 36, "metadata": {}, "output_type": "execute_result" } @@ -2129,7 +2129,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 37, "id": "3d7ab4b7", "metadata": {}, "outputs": [ @@ -2142,7 +2142,7 @@ " [ 2., -1., 1.]])" ] }, - "execution_count": 44, + "execution_count": 37, "metadata": {}, "output_type": "execute_result" } @@ -2155,7 +2155,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 38, "id": "d9304f35", "metadata": {}, "outputs": [ @@ -2167,7 +2167,7 @@ " [ 0.66666667, -0.33333333, 0.66666667]])" ] }, - "execution_count": 45, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" } @@ -2180,7 +2180,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 39, "id": "6f12a269", "metadata": {}, "outputs": [ @@ -2193,7 +2193,7 @@ " [-0.27129904, 0.32674839, 0.90533548]]))" ] }, - "execution_count": 46, + "execution_count": 39, "metadata": {}, "output_type": "execute_result" } @@ -2207,7 +2207,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 40, "id": "93c206f7", "metadata": {}, "outputs": [ @@ -2233,7 +2233,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 41, "id": "362d886b", "metadata": {}, "outputs": [ @@ -2246,7 +2246,7 @@ " [-2.33268629, 0.73403206, 0.1406116 ]])" ] }, - "execution_count": 48, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } @@ -2259,7 +2259,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 42, "id": "3d67ec23", "metadata": {}, "outputs": [ @@ -2292,7 +2292,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 43, "id": "d6c046c6", "metadata": {}, "outputs": [ @@ -2331,7 +2331,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 44, "id": "01b99a1f", "metadata": {}, "outputs": [ @@ -2372,7 +2372,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 45, "id": "ee695ec4", "metadata": {}, "outputs": [ @@ -2404,7 +2404,7 @@ "True" ] }, - "execution_count": 52, + "execution_count": 45, "metadata": {}, "output_type": "execute_result" } @@ -2432,7 +2432,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 46, "id": "c7b862c2", "metadata": {}, "outputs": [ @@ -2443,7 +2443,7 @@ " [4., 4.]])" ] }, - "execution_count": 53, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" } @@ -2455,7 +2455,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 47, "id": "5e9c5101", "metadata": {}, "outputs": [ @@ -2467,7 +2467,7 @@ " [0. , 0. ]])" ] }, - "execution_count": 54, + "execution_count": 47, "metadata": {}, "output_type": "execute_result" } @@ -2486,7 +2486,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 48, "id": "6f21c93d", "metadata": {}, "outputs": [ @@ -2502,7 +2502,7 @@ " [0, 0, 0, 2, 2]])" ] }, - "execution_count": 55, + "execution_count": 48, "metadata": {}, "output_type": "execute_result" } @@ -2522,7 +2522,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 49, "id": "c3cd0ee2", "metadata": { "scrolled": true @@ -2538,20 +2538,20 @@ { "data": { "text/latex": [ - "$\\displaystyle \\left[\\begin{matrix}-0.140028008402801 & -2.92308089116858 \\cdot 10^{-18} & -0.985879877768348 & 0.0876610048582825 & -0.010376381187788 & -0.0250838740134759 & 0.00342077175081001\\\\-0.420084025208403 & -1.74749159500132 \\cdot 10^{-18} & 0.0551981213330852 & 0.0524059630583736 & 0.904161013789269 & -0.0149957735145323 & 0.00204502376277677\\\\-0.560112033611204 & 2.56509288200266 \\cdot 10^{-17} & 0.00768630622718297 & -0.769252128021981 & -0.212398840405494 & 0.220118666162865 & -0.0300183183279977\\\\-0.700140042014005 & -1.88876319207868 \\cdot 10^{-17} & 0.157908057772072 & 0.566425923610904 & -0.370502259711609 & -0.162080694018878 & 0.0221034860545701\\\\0 & -0.596284793999944 & 0 & -0.184970868407073 & 0 & -0.695046826276504 & -0.356567148750607\\\\0 & -0.74535599249993 & 0 & 0.184970868407073 & 0 & 0.634618141647933 & -0.0865449974088738\\\\0 & -0.298142396999972 & 0 & -0.0924854342035365 & 0 & -0.196451701566824 & 0.929496791023398\\end{matrix}\\right]$" + "$\\displaystyle \\left[\\begin{matrix}-0.140028008402801 & 0 & 9.49264007734763 \\cdot 10^{-17} & 0.990147542976675 & 0 & -3.95526669889485 \\cdot 10^{-17} & 2.96645002417114 \\cdot 10^{-18}\\\\-0.420084025208403 & 0 & -0.869020451756137 & -0.0594088525786004 & -0.0426401432711219 & 0.248667004926824 & -0.033911550718012\\\\-0.560112033611204 & 0 & 0.289673483918712 & -0.0792118034381341 & -0.767522578880197 & -0.0828890016422745 & 0.0113038502393373\\\\-0.700140042014005 & 0 & 0.289673483918713 & -0.0990147542976675 & 0.639602149066831 & -0.0828890016422746 & 0.0113038502393374\\\\0 & -0.596284793999944 & -0.184970868407073 & 0 & 0 & -0.695046826276504 & -0.356567148750607\\\\0 & -0.74535599249993 & 0.184970868407073 & 0 & 0 & 0.634618141647933 & -0.0865449974088738\\\\0 & -0.298142396999972 & -0.0924854342035365 & 0 & 0 & -0.196451701566824 & 0.929496791023398\\end{matrix}\\right]$" ], "text/plain": [ "Matrix([\n", - "[-0.140028008402801, -2.92308089116858e-18, -0.985879877768348, 0.0876610048582825, -0.010376381187788, -0.0250838740134759, 0.00342077175081001],\n", - "[-0.420084025208403, -1.74749159500132e-18, 0.0551981213330852, 0.0524059630583736, 0.904161013789269, -0.0149957735145323, 0.00204502376277677],\n", - "[-0.560112033611204, 2.56509288200266e-17, 0.00768630622718297, -0.769252128021981, -0.212398840405494, 0.220118666162865, -0.0300183183279977],\n", - "[-0.700140042014005, -1.88876319207868e-17, 0.157908057772072, 0.566425923610904, -0.370502259711609, -0.162080694018878, 0.0221034860545701],\n", - "[ 0, -0.596284793999944, 0, -0.184970868407073, 0, -0.695046826276504, -0.356567148750607],\n", - "[ 0, -0.74535599249993, 0, 0.184970868407073, 0, 0.634618141647933, -0.0865449974088738],\n", - "[ 0, -0.298142396999972, 0, -0.0924854342035365, 0, -0.196451701566824, 0.929496791023398]])" + "[-0.140028008402801, 0, 9.49264007734763e-17, 0.990147542976675, 0, -3.95526669889485e-17, 2.96645002417114e-18],\n", + "[-0.420084025208403, 0, -0.869020451756137, -0.0594088525786004, -0.0426401432711219, 0.248667004926824, -0.033911550718012],\n", + "[-0.560112033611204, 0, 0.289673483918712, -0.0792118034381341, -0.767522578880197, -0.0828890016422745, 0.0113038502393373],\n", + "[-0.700140042014005, 0, 0.289673483918713, -0.0990147542976675, 0.639602149066831, -0.0828890016422746, 0.0113038502393374],\n", + "[ 0, -0.596284793999944, -0.184970868407073, 0, 0, -0.695046826276504, -0.356567148750607],\n", + "[ 0, -0.74535599249993, 0.184970868407073, 0, 0, 0.634618141647933, -0.0865449974088738],\n", + "[ 0, -0.298142396999972, -0.0924854342035365, 0, 0, -0.196451701566824, 0.929496791023398]])" ] }, - "execution_count": 56, + "execution_count": 49, "metadata": {}, "output_type": "execute_result" } @@ -2567,7 +2567,7 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 50, "id": "fda788bb", "metadata": {}, "outputs": [ @@ -2581,18 +2581,18 @@ { "data": { "text/latex": [ - "$\\displaystyle \\left[\\begin{matrix}12.369316876853\\\\9.48683298050514\\\\1.86618551362258 \\cdot 10^{-15}\\\\3.16341117100511 \\cdot 10^{-16}\\\\6.89651511036463 \\cdot 10^{-31}\\end{matrix}\\right]$" + "$\\displaystyle \\left[\\begin{matrix}12.369316876853\\\\9.48683298050514\\\\3.16341117100511 \\cdot 10^{-16}\\\\2.88717586593088 \\cdot 10^{-16}\\\\1.63522227149888 \\cdot 10^{-32}\\end{matrix}\\right]$" ], "text/plain": [ "Matrix([\n", "[ 12.369316876853],\n", "[ 9.48683298050514],\n", - "[1.86618551362258e-15],\n", "[3.16341117100511e-16],\n", - "[6.89651511036463e-31]])" + "[2.88717586593088e-16],\n", + "[1.63522227149888e-32]])" ] }, - "execution_count": 57, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } @@ -2605,7 +2605,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 51, "id": "f859a480", "metadata": {}, "outputs": [ @@ -2618,7 +2618,7 @@ "12.3693168768530" ] }, - "execution_count": 58, + "execution_count": 51, "metadata": {}, "output_type": "execute_result" } @@ -2629,7 +2629,7 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 52, "id": "f1f4572d", "metadata": {}, "outputs": [ @@ -2642,7 +2642,7 @@ "9.48683298050514" ] }, - "execution_count": 59, + "execution_count": 52, "metadata": {}, "output_type": "execute_result" } @@ -2653,7 +2653,7 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 53, "id": "fdf34d98", "metadata": {}, "outputs": [ @@ -2667,18 +2667,18 @@ { "data": { "text/latex": [ - "$\\displaystyle \\left[\\begin{matrix}-0.577350269189626 & -0.577350269189626 & -0.577350269189626 & 0 & 0\\\\0 & 0 & 0 & -0.707106781186547 & -0.707106781186547\\\\-0.816496580927726 & 0.408248290463863 & 0.408248290463863 & 0 & 0\\\\0 & 0 & 0 & -0.707106781186547 & 0.707106781186547\\\\0 & -0.707106781186547 & 0.707106781186548 & 0 & 0\\end{matrix}\\right]$" + "$\\displaystyle \\left[\\begin{matrix}-0.577350269189626 & -0.577350269189626 & -0.577350269189626 & 0 & 0\\\\0 & 0 & 0 & -0.707106781186547 & -0.707106781186547\\\\0 & 0 & 0 & -0.707106781186547 & 0.707106781186547\\\\-0.816496580927726 & 0.408248290463863 & 0.408248290463863 & 0 & 0\\\\0 & 0.707106781186547 & -0.707106781186548 & 0 & 0\\end{matrix}\\right]$" ], "text/plain": [ "Matrix([\n", "[-0.577350269189626, -0.577350269189626, -0.577350269189626, 0, 0],\n", "[ 0, 0, 0, -0.707106781186547, -0.707106781186547],\n", - "[-0.816496580927726, 0.408248290463863, 0.408248290463863, 0, 0],\n", "[ 0, 0, 0, -0.707106781186547, 0.707106781186547],\n", - "[ 0, -0.707106781186547, 0.707106781186548, 0, 0]])" + "[-0.816496580927726, 0.408248290463863, 0.408248290463863, 0, 0],\n", + "[ 0, 0.707106781186547, -0.707106781186548, 0, 0]])" ] }, - "execution_count": 60, + "execution_count": 53, "metadata": {}, "output_type": "execute_result" } @@ -2691,27 +2691,27 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 54, "id": "54824557", "metadata": {}, "outputs": [ { "data": { "text/latex": [ - "$\\displaystyle \\left[\\begin{matrix}-1.73205080756888 & 0 & 0 & 0 & 1.11022302462516 \\cdot 10^{-16}\\\\-5.19615242270663 & 0 & 0 & 0 & 4.44089209850063 \\cdot 10^{-16}\\\\-6.92820323027551 & 0 & 0 & 0 & 4.44089209850063 \\cdot 10^{-16}\\\\-8.66025403784439 & 0 & 0 & 0 & 4.44089209850063 \\cdot 10^{-16}\\\\0 & -5.65685424949238 & 0 & 0 & 0\\\\0 & -7.07106781186547 & 0 & 0 & 0\\\\0 & -2.82842712474619 & 0 & 0 & 0\\end{matrix}\\right]$" + "$\\displaystyle \\left[\\begin{matrix}-1.73205080756888 & 0 & 0 & 0 & -1.11022302462516 \\cdot 10^{-16}\\\\-5.19615242270663 & 0 & 0 & 0 & -4.44089209850063 \\cdot 10^{-16}\\\\-6.92820323027551 & 0 & 0 & 0 & -4.44089209850063 \\cdot 10^{-16}\\\\-8.66025403784439 & 0 & 0 & 0 & -4.44089209850063 \\cdot 10^{-16}\\\\0 & -5.65685424949238 & 0 & 0 & 0\\\\0 & -7.07106781186547 & 0 & 0 & 0\\\\0 & -2.82842712474619 & 0 & 0 & 0\\end{matrix}\\right]$" ], "text/plain": [ "Matrix([\n", - "[-1.73205080756888, 0, 0, 0, 1.11022302462516e-16],\n", - "[-5.19615242270663, 0, 0, 0, 4.44089209850063e-16],\n", - "[-6.92820323027551, 0, 0, 0, 4.44089209850063e-16],\n", - "[-8.66025403784439, 0, 0, 0, 4.44089209850063e-16],\n", - "[ 0, -5.65685424949238, 0, 0, 0],\n", - "[ 0, -7.07106781186547, 0, 0, 0],\n", - "[ 0, -2.82842712474619, 0, 0, 0]])" + "[-1.73205080756888, 0, 0, 0, -1.11022302462516e-16],\n", + "[-5.19615242270663, 0, 0, 0, -4.44089209850063e-16],\n", + "[-6.92820323027551, 0, 0, 0, -4.44089209850063e-16],\n", + "[-8.66025403784439, 0, 0, 0, -4.44089209850063e-16],\n", + "[ 0, -5.65685424949238, 0, 0, 0],\n", + "[ 0, -7.07106781186547, 0, 0, 0],\n", + "[ 0, -2.82842712474619, 0, 0, 0]])" ] }, - "execution_count": 61, + "execution_count": 54, "metadata": {}, "output_type": "execute_result" } @@ -2722,7 +2722,7 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 55, "id": "916dd41f", "metadata": {}, "outputs": [ @@ -2742,7 +2742,7 @@ "[ 0]])" ] }, - "execution_count": 62, + "execution_count": 55, "metadata": {}, "output_type": "execute_result" } @@ -2753,7 +2753,7 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 56, "id": "ed3184c6", "metadata": {}, "outputs": [ @@ -2773,7 +2773,7 @@ "[-2.82842712474619]])" ] }, - "execution_count": 63, + "execution_count": 56, "metadata": {}, "output_type": "execute_result" } @@ -2784,17 +2784,17 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 57, "id": "397d7833", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "12.369316876852981" + "12.369316876852983" ] }, - "execution_count": 64, + "execution_count": 57, "metadata": {}, "output_type": "execute_result" } @@ -2808,7 +2808,7 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 58, "id": "3633f850", "metadata": {}, "outputs": [ @@ -2818,7 +2818,7 @@ "9.4868329805051381" ] }, - "execution_count": 65, + "execution_count": 58, "metadata": {}, "output_type": "execute_result" } @@ -2838,7 +2838,7 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 59, "id": "5719f198", "metadata": {}, "outputs": [ @@ -2862,23 +2862,23 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 60, "id": "86826aeb", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[ 1.73, -0. ],\n", - " [ 5.2 , -0. ],\n", - " [ 6.93, -0. ],\n", - " [ 8.66, -0. ],\n", - " [ 0. , 5.66],\n", - " [ 0. , 7.07],\n", - " [ 0. , 2.83]])" + "array([[ 1.73, 0. ],\n", + " [ 5.2 , 0. ],\n", + " [ 6.93, 0. ],\n", + " [ 8.66, 0. ],\n", + " [-0. , 5.66],\n", + " [-0. , 7.07],\n", + " [-0. , 2.83]])" ] }, - "execution_count": 67, + "execution_count": 60, "metadata": {}, "output_type": "execute_result" } @@ -2889,7 +2889,7 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 61, "id": "13dde383", "metadata": {}, "outputs": [ @@ -2909,21 +2909,21 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 62, "id": "6e87c2f8", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[ 7.14, -0. ],\n", - " [ 7.14, -0. ],\n", - " [ 7.14, -0. ],\n", + "array([[ 7.14, 0. ],\n", + " [ 7.14, 0. ],\n", + " [ 7.14, 0. ],\n", " [ 0. , 6.71],\n", " [ 0. , 6.71]])" ] }, - "execution_count": 69, + "execution_count": 62, "metadata": {}, "output_type": "execute_result" } @@ -2942,7 +2942,7 @@ }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 63, "id": "69e5295b", "metadata": {}, "outputs": [ @@ -2951,24 +2951,24 @@ "output_type": "stream", "text": [ "Requirement already satisfied: scikit-image in c:\\programdata\\anaconda3\\lib\\site-packages (0.19.3)\n", - "Requirement already satisfied: scipy>=1.4.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-image) (1.7.1)\n", - "Requirement already satisfied: imageio>=2.4.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-image) (2.9.0)\n", - "Requirement already satisfied: packaging>=20.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-image) (21.0)\n", + "Requirement already satisfied: networkx>=2.2 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-image) (2.6.3)\n", + "Requirement already satisfied: scipy>=1.4.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-image) (1.7.3)\n", + "Requirement already satisfied: numpy>=1.17.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-image) (1.22.4)\n", "Requirement already satisfied: PyWavelets>=1.1.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-image) (1.1.1)\n", "Requirement already satisfied: pillow!=7.1.0,!=7.1.1,!=8.3.0,>=6.1.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-image) (8.4.0)\n", - "Requirement already satisfied: networkx>=2.2 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-image) (2.6.3)\n", - "Requirement already satisfied: numpy>=1.17.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-image) (1.20.3)\n", "Requirement already satisfied: tifffile>=2019.7.26 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-image) (2021.7.2)\n", + "Requirement already satisfied: packaging>=20.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-image) (21.0)\n", + "Requirement already satisfied: imageio>=2.4.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-image) (2.9.0)\n", "Requirement already satisfied: pyparsing>=2.0.2 in c:\\programdata\\anaconda3\\lib\\site-packages (from packaging>=20.0->scikit-image) (3.0.4)\n", "Requirement already satisfied: pooch in c:\\programdata\\anaconda3\\lib\\site-packages (1.6.0)\n", + "Requirement already satisfied: requests>=2.19.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from pooch) (2.26.0)\n", "Requirement already satisfied: packaging>=20.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from pooch) (21.0)\n", "Requirement already satisfied: appdirs>=1.3.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from pooch) (1.4.4)\n", - "Requirement already satisfied: requests>=2.19.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from pooch) (2.26.0)\n", "Requirement already satisfied: pyparsing>=2.0.2 in c:\\programdata\\anaconda3\\lib\\site-packages (from packaging>=20.0->pooch) (3.0.4)\n", "Requirement already satisfied: certifi>=2017.4.17 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests>=2.19.0->pooch) (2021.10.8)\n", - "Requirement already satisfied: charset-normalizer~=2.0.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests>=2.19.0->pooch) (2.0.4)\n", + "Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests>=2.19.0->pooch) (1.25.4)\n", "Requirement already satisfied: idna<4,>=2.5 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests>=2.19.0->pooch) (3.2)\n", - "Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests>=2.19.0->pooch) (1.25.4)\n" + "Requirement already satisfied: charset-normalizer~=2.0.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests>=2.19.0->pooch) (2.0.4)\n" ] } ], @@ -2979,17 +2979,17 @@ }, { "cell_type": "code", - "execution_count": 135, + "execution_count": 64, "id": "d47342bb", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 135, + "execution_count": 64, "metadata": {}, "output_type": "execute_result" }, @@ -3017,7 +3017,7 @@ }, { "cell_type": "code", - "execution_count": 136, + "execution_count": 65, "id": "e8f8f775", "metadata": {}, "outputs": [ @@ -3036,7 +3036,7 @@ }, { "cell_type": "code", - "execution_count": 133, + "execution_count": 66, "id": "dc8ac145", "metadata": {}, "outputs": [], @@ -3062,7 +3062,7 @@ }, { "cell_type": "code", - "execution_count": 134, + "execution_count": 67, "id": "48cda02c", "metadata": {}, "outputs": [ @@ -3152,7 +3152,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAGoCAYAAAAHGAe8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebxt2V0Vio+5+7453b333KZu3WpuKlWVVJFKTCp9SAIKBFEegj4BUXk2iCKgoKj4BH+ior+HgoofEHi0PhoFQ6NiBPLSkEpiEqpSlVRftzn3tLtvztl7z/fH2mOesedd+5xzq7upwxyfz/ncc/Zea6655pxr3e+Y49sYay0CAgICAgICAgICAgICvvCRuNkdCAgICAgICAgICAgICDgaAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIUje7AwCwtLRkz58/f7O7ERAQEBDwCsbHP/7xTWvt8s3uR0BAQEBAwEuJLwgCd/78eTz00EM3uxsBAQEBAa9gGGOeudl9CAgICAgIeKkRXCgDAgICAgICAgICAgJeIQgELiAgICAgICAgICAg4BWCQOACAgICAgICAgICAgJeIQgELiAgICAgICAgICAg4BWCQOACAgICAgICAgICAgJeIQgELiAgICAgICAgICAg4BWCQOACAgICAgICAgICAgJeIQgELiAgICAgICAgICAg4BWCQOACAgICAgICAgICAgJeIQgELiAgICAgICAgICAg4BWCQOACAgICAgICAgICAgJeITiUwBljzhpjPmCM+awx5mFjzF+ffr5gjPlvxpjPT/+tyznfbYx53BjzmDHmS17KGwgICAgICAgICAgICPjDgqMocCMA326tvQvAGwH8VWPMqwF8F4DfttbeAeC3p39j+t3XArgbwJcC+BFjTPKl6HxAQEBAQEBAQEBAQMAfJhxK4Ky1V621n5j+3gbwWQCnAXwlgJ+cHvaTAP749PevBPDz1tqhtfYpAI8DeMOL3O+AgICAgICAgICAgIA/dLihGDhjzHkA9wP4KIAT1tqrQETyAKxMDzsN4Dk57dL0M7+tbzbGPGSMeWhjY+N5dD0gICAgICAgICAgIOAPF45M4IwxJQC/BOBvWGtbBx0a85m97gNrf9Ra+4C19oHl5eWjdmMuWoM9/PAHHsdnrx7UtYCAgICAgICAgICAgFcujkTgjDFpROTtZ6y1vzz9+Jox5tT0+1MA1qefXwJwVk4/A+DKi9Pd+Wj19/DPfusxfOZS86W+VEBAQEBAQEBAQEBAwE3BUbJQGgA/BuCz1tp/IV/9KoBvmP7+DQD+s3z+tcaYrDHmVgB3APj9F6/Lc/sJALDXi30BAQEBAQEBAQEBAQHHAqkjHPNmAH8WwGeMMf9r+tnfAfBPAPxHY8yfB/AsgP8NAKy1Dxtj/iOARxBlsPyr1trxi91xH/TbtIG/BQQEBAQEBAQEBAQcUxxK4Ky1H0R8XBsAfPGcc74fwPe/gH7dMKYCXNDfAgICAgICAgICAgKOLW4oC+UXMsyUYwYFLiAgICAgICAgICDguOL4EDinwAUGFxAQEBAQEBAQEBBwPHF8CNz036DABQQEBAQEBAQEBAQcVxwbAocQAxcQEBAQEBAQEBAQcMxxbAiccQwuULiAgICAgICAgICAgOOJ40PgggIXEBAQEBAQEBAQEHDMcXwI3PTfIMAFBAQEBAQEBAQEBBxXHB8CZ1hGIDC4gICAgICAgICAgIDjieND4Kb/BvoWEBAQEBAQEBAQEHBccXwIXMhhEhAQEBAQEBAQEBBwzHF8CNxUgwv8LSAgICAgICAgICDguOLYELj9KgKBwgUEBAQEBAQEBAQEHE8cGwJHF8qAgICAgICAgICAgIDjiuND4Kb/BgEuICAgICAgICAgIOC44vgQOJYRCFFwAQEBAQEBAQEBAQHHFMeHwE3/DQpcQEBAQEBAQEBAQMBxxfEhcExicnO7ERAQEBAQEBAQEBAQ8JLh+BA4lhEIDC4gICAgICAgICAg4Jji+BA4p8AFBhcQEBAQEBAQEBAQcDxxbAgcERS4gICAgICAgICAgIDjimND4EIduICAgICAgICAgICA447jQ+BcDFyQ4AICAgICAgICAgICjieOD4FjDFzgbwEBAQEBAQEBAQEBxxTHh8BN/w38LSAgICAgICAgICDguOL4EDgTyggEBAQEBAQEBAQEBBxvHB8CN/03lBEICAgICAgICAgICDiuOD4ELmShDAgICAgI+IKBMebfGmP+3s3uRxyMMW81xjx2s/sREBAQ8HxwbAgcEVwoAwICAgJuBMaYbzDGWGPMX/A+/zZjzJoxpmmM+XFjTFa+WzDG/IoxpmuMecYY86df/p5/YcNa+5estf/oZvcDAKbzezv/ttb+nrX24ot8jXcaYz4wXS9Pzznmrxtjnpqum88aY+6U75aNMT9rjGkYY3aMMT9zwLXuM8b83vRal4wxf9/rx2em7WxN1+lp+f47jTGbxpg/MMbcI5+/2Rjzn27wnv+nMWZgjOlM2/xlY8ypG2njpYQx5huNMeNp//Rn9Wb3LQ7GmL9gjHl82sffPKifxpi7jDH/Y7oGHjfGfJV892e8++1Nn4HXTb//zun8t6fr8Tu9ts9P13LPGPOoMebd8t2XGWM+OF1fa8aYf2+MKcv3C8aYX5iuh01jzM8YYyrT794aMxfWGPMnp9/fY4z5rel511n0B713D7vn6TFfZIz53en314wxf/1G52jazquNMQ9Nn9MdY8x/N8a8Wr43xpgfmD5/W8aYf2pMJDUZY1LGmJ+fjt9veGP3d40x33aUPhwbAmcYA3eT+xEQEBAQ8NJgNBq96G0aY+oAvhvAw97nXwLguwB8MYDzAC4A+IdyyA8D2AVwAsCfAfBvjDF3v+gdfJlgjEnd7D48X3wB9b0L4McBfGfclybaIPjzAL4MQAnAlwPYlEN+GcAagFsArAD45wdc62cB/C6ABQBvB/CXjTHvm373CIAvsdbWAKwC+DyAfzPtw6lpHy4A+LcA/sn08xSAHwTwN45+uw7fYq0tAbh9el8H9ftm4MPW2pL3c8U/KG4d3ejaeiFr0RjzdgD/GMBXIprXpwD83AHX+c8A/sv02G8G8NNmuiFgrf0ZvV8AfwXAkwA+wSYAfD2AOoAvBfAtxpivlUv8HIBPAlgE8HcB/KIxZnn6XRXA9yFaW3cBOAPgn8m53zdt9wKA2xC9I7932q/f8/r15QA6AH5zeu4egP+IaI3GYe5797B7NsYsTa/z76b3dTuA/zrnOofhCoCvRjT2SwB+FcDPy/ffDOCPA3gtgNdM7/P/mH73JxDRlSUALX5ujLkVwFcA+FdH6cCxIXAOQYILCAgIODY4f/48fuAHfgCvec1rUCwWXwoS9/8D8EOYNaQB4BsA/Ji19mFr7Q6AfwTgGwHAGFME8CcB/D1rbcda+0FE/4H/2aNc0BiTN8b84HQHuTndzc5Pv3ufMebh6e7s/zTG3CXnPT3dOf/0dAf6x4wxJ6a7uO3pLnB9euz56e7zNxtjrhhjrhpjvl3a+l5jzC8aY37aGNMC8I3GmOq0zavGmMvGmO8zxiSnx99ujPmdaX83jTG/MP3cGGP+pTFmffrdp81U1THG/IQx5vvkmn/RRErBtjHmV42oC9O+/iVjzOenO9o/zB3rmPGL6/sbjDEfno7bVWPMvzbGZKbH/+701E+ZaOf9Txlj3mGMuSRt3jUd78Z0/N8Xd+2DYK39fWvt/43IaPT7nADwDwB8m7X2ERvhCWvt9vT79wI4C+A7rbVNa+2etfaTB1zuPICfsdaOrbVPAPggABqy1zyCMkZkrALAOQCftNa2APx3REY2EBG3X7XWPn2j901YaxsA/hOA++S+X2WM+W/TOX/MGPM18t0LeQ6+Y7rWmiZSe3LPp8/Ttv62MebTALrTdW6NMX/eGPMsgP9hjEkYY75n2s91Y8xPGWOq0/PP+8c/n35M8RUA/p/pO2cX0TvnbcaY22KOfRUiAvUvp2vgfwD4fzH/HfQNAH7KToslW2v/qbX2E9bakbX2MURk8M3Te7oTwBcB+AfW2r619pcAfAbROw/W2p+11v6mtbY3fTf+e547xa0A/pO1tmWtbQL4FUzX5px+/aK1tjtt+zFr7Y/B21Cb9utG37sz9wzgbwL4rSnRG1pr29baz0r7c9eqD2ttw1r79LRtg9lnjNf+QWvtJWvtZUSbI98o4/M/rbUjAB/A/jP4QwC+Y/r5oThWBM6YoMAFBAQEHDf83M/9HN7//vej0Wgglbp+g/s1r3kNarUaANw3Nfj050fmtWuMeQOABxApET7uBvAp+ftTAE4YYxYB3AlgbK39nPf9URW4fw7gdQAeRLSD+7cATKaG088hMqaXAfw6gF8jEZniTwJ4z7QPXwHgNwD8HUS7uQkA3+pd650A7gDwXgDfZcQVCtFO/y8CqAH4GQA/CWCEyBC5f3oO3Ur/EaLd6jqiHXfuEr8XwNum/akB+FMAtvwbNsa8CxFZ/hoApwA8g9kdayDapX49ol3rrwHwJX47B/R9DODbpuPwJkTK6V8BAGvt26bnvHa6O/8LXt/SAH5ten8rAP4agJ8xxlycfv9dMevK/RzQR8WZ6c89xpjnTOS29g+nxA4A3gjgMQA/aSKXq4+ZSJGZh/8/gK83xqSn/XwTIkLGezo37VsfwHcA+KfTrx4HcK8xpgbg3QAeNsacBfC1eIHK2fTZ+BPTa9Dg/m+I1MIVAF8H4EfMvlL9Qp6Dr0GkHN2KSOH4xhfQ9a9DpIrWEK1/IFI170K0Br9x+vNORMZ2CcC/9trQ42fAuTjgh26ABvs5+SC/34PrEbe5YeKONcbcgugZ/amYczDdKHkr9knT3QCetNa25bCD3m9vwyzh+mEAX26MqZtoQ+lPInpP+dctIFKxfnJOuz6O/N6dc89vBLBtjPnQlIj/mjHm3PT4w9ZqLKbP2ADR+/Afy1dx/3+wrT8A8K7pen4nomfwqwBsTknpkXC8CByCABcQEBBw3PCt3/qtOHv2LPL5fOz3n/70p9FoNADgf1lra97PX4k7x0TK0o8A+GvW2knMISUATfmbv5djvuP3ZRyCqcH+TQD+urX28nT3/EPW2iEi8vN+a+1/s9buITJw84gMXOJfTRWWywB+D8BHrbWfnJ7/K4iIl+IfWmu71trPAPgPiAwT4sPW2v80vf8KgD8K4G9Mj18H8C8RGfZA5Np0C4BVa+1ADI296X2/CoCx1n7WWns15tb/DIAfn+76DxG5rb7JGHNejvkn053tZxHtTN93wFC6vk9Vgo9baz8yVRSeRuQmdRABUrwR0Zz+E2vt7lTN+C+YjpW19p/ErCv3c8RrnJn++14A9yIy3L4O+65iZ6bffQDASUQ79v/ZRG5fcfgviIzfPoBHEanFH+OX1tpnp31bAvA902Ngrd0C8P2IlKIvQ0Tu/i8AfxvAV5lIZf3PxpgzODp+yBjTRKRiLyEiwEBEyJ+21v6H6bx8AsAvAfjqF+E5+CFr7ZWpgvlrOHitvNEjTE/4/bfWPmet7ctn3zt9DvqI1u6/sNY+aa3tIFq7X2tm3SX1+BlwLg74+dnpob8O4GuMMa+ZKpF/H5EuUYi5p0cBrAP4zimJfy+i9R537NcD+D1r7VNzxud7EfGB/zD9+8jvN2PMexCpTX9fPv4EgAyijZwtRJsrcRtpfxLRmvmdOf3ycSPv3bh7PjPt619HpESri+rctXpQh6bPWBXAtyByOZ3X1yaA0pQs//r02g9NP/95ROr83zbGfL+JYvR+xNuwuA7Hi8AZE8oIBAQEBBwznD179qVo9q8A+LS19sNzvu8gIjUEf2/HfMfv2zgcSwByAHwjEohcop7hH1Ni9RyA03LMNfm9H/N3yWvzOfn9mek14r67BUAawFVRlv4dot1oIFJHDIDfN5Fr2zdN+/g/EKkRPwzgmjHmR800YcEh99ZBZNzpva3J772Ye5l3XzDG3GmM+S8mSqrQQrQbPo/8xPXtOY/IP+P17YWChv0/pfsVovH9Y/L909baH7OR++TPI7rHN/sNGWMWEMXy/J+I1tJZAF9ijLlus2JKcH4SERlMTT/7OWvtF1lr/ygixWaIyPj855i68eHG1LhvtdZWESlhVGiBaE39EU+t/DOICOoLfQ5uZK18xCNMvkviczHn6Gcz/Zn+nkIUh3VQGzcEa+1vIzLkf2l6jacRvVMuxRy7hyjG6ssQjcW3I4odu+5YRGQmVuUyxnzL9Psvm5Jn4IjvN2PMGxEpVl/tqWL/D4DPISJWFURz/NMxl/ddHA/Djbx34+65D+BXrLUfs9YOEMU0P2gid9i5a3WqoLrkKP6FbOT++W8B/JQxhu/LuP8/OnYf32WtfY219psRxVr/W0TeIA8gIuIZRBscc3G8CByCAhcQEBBw3GAOqRNz9913o1QqAcD95voMZ3HukUDkYvdVU4N/DdHu/g8aY+ga9TAiVz7itQCuTRWMzwFIGWPu8L6/Lm4jBpuIXG7i4lquIDIkADjXprMALh+h3XlQ9ntueg1C/8d8DpEhvySGbsVay7iqNWvtX7TWriIKuv8RM83qaK39IWvt6xC5CN2J+CQe/r0VESUSeL735v9v/28QqRJ3WGsriNxKj1pg6AqAs+LOCERjdXna178Ts67mGnRz8Bii5AvzrJRPH/CdjwuIXMl+aqoWXEK0i//H5hyfQkTEZ4zfqcrzjxEZ/3cgIrEtAB9DRMZuCFOV9/sAMH7xOQC/45GnkrX2L+Plfw4O7Pohn830B9HaGGF282Tu3PkEIObnz7hGrP1ha+0d1toVREQuhcjl7voOWvtpa+3brbWL1tovQbQuft+79psREdBfjOnXN2GaqGm6hoiHAVwwkh0R3vvNGHM/ovizb5oST3jH/rupItlBRE5m1qaJ3HbfgTlunXNwpPfuAffsP2P8/cC1OlVQNTlKHBKI1E9uMsT9/xEX13cPov97fhSRMv/xKaE99Bk8XgQuxMAFBAQE/KHDww8/jE6nA0TJGfxsc39pzmnfiChm5b7pz0OIdmT/7vT7nwLw502ULrqOyA3tJwC34/rLAP5PY0xxajB8JYD/m42bKLHBO/yLTtWEHwfwL4wxq8aYpDHmTSYqUfAfAXyZMeaLTRSX9e2ISNWHnt/IAAD+njGmMI3l+HMAfiHuIBu5Pf5XRCS2YqLEDbeZaRyWMeZ/E7e6HUT/3Y6NMa83xvyRaX+7iIzyccwlfhbAnzNR+vssIuLwUfsCkmZ4KCPK6NYxxrwKwF/2vr+G/WQBPj6KqO9/a+qO9g5EStTPA4C19h/HrKvrDLrpmOUQKZnGGJOjG5S1todo7P+WMaY8Hcu/iMgVEojcX+smKmmRNMZ8NSJj8P+N6e/npu3/6ek1TyJyO/zUtB9/whhzcfrdMoB/gejZ2Pba+R4AP2GjhCfPArhojDmByL3zyWlbTNJxfs7Y+fhJRGTxfdN7u9MY82en45qerpe7bsJz8ELwcwC+zRhzqzGmhGjt/oI9YrIJnwDE/PwMAEzXyz0mwjlERv3/ZaNEIdfBRK6Wuenz/R2IYkt/wjvsGwD8kp2NZ8OUNP5jAO+x1s4k3Zmqaf8LwD+Ytv9ViMjEL03PvQeRAvzXrLW/FtO1jwH4CyZKUpNHlJHxU94xfxbAh2yUgEf7ZabPEBMQ5aZr4kjv3YPuGZGL6FdN30FpAH8PwAdtlHxn7lqNuT8YY95jjLl/um4riJ6xHQBMivJTAP6mMea0iZI1fTu8uZluTPwwIjfiCSK3yrdM3xlvR0wyJMXxInAwQYELCAgICDgUUze2Nf4gUkeYNQ3W2t9ElPjhA4jcmZ5B5N5E/BVEcTnriAy8v2ytfRgApsZ5B1Hmtjh8x/S7jwHYBvADABI2ygb3vyMKiN9ERCK+wkYZ6Z4vfgdRUonfBvDPrbUHpc3+ekSG0yOIjJFfRGQUAlFykY+aSHH6VURGx1OIVJ1/Pz3+GURukde530136f8eIiPwKiLl5Wv9414AvgPAn0bkTvXvcT1R/V5ECUIaxssuNx3f9yGKAdxEFK/z9dbaR2+wD29D5Kb164hUmj5m05R/C6J1cQXAhxGR2h+f9mF72ofvQBQX810AvtJauwkAJiqK/m+nx7YQJQv5NkTj/r8QqTTfP73OaUQGdhvROpsAcDXCpu1dRBRz96+mbV5FVFLgYUSJcL57euhZRPN6JPVrOpY/hChTYHt6ja+d3vMaorXOeoov13PwJnO96vX6Gzj/xxGRhN9FZGQPsB/n92Iih2hNdBApaR9G9MwAcEqwJgP5s4iepXVEHgXvsftukJgSoa9BvPvk9yFSwD9m4r0VvhaRO98OonXx1dbajel3344oucyPybmqLn0ToiyplxCtmwu4PsnMPLfOWxA9N2yvj0i9Jua+dw+7Zxu5e/8dAO+fnn87oncGjrBWfdSm128ichG9HcCX2sg1E4jco38N0fr+g+k1/53Xxp8D8AfW2oemf//y9NobiObGP34Gxh7CeIwxP44ouG/dWsvUwL8AgAUwawAa1tr7pjs0n8X+YH/kgN1PhwceeMA+9NBDhx12KO78nt/An3vzeXz3H40lzAEBAQEBxxjGmI9bax/4AujH/w7gbmvtdx968EvXh/OIjM30UZWCgAAfxpjvAbBhrT3QmAwICHh5cZSCgz+BKEDZ+alaa/8UfzfG/CBmM608Ya2970Xq3w3BAMGHMiAgICDgpsJaGxewHxDwioO19vsOPyogIODlxqEEzlr7u/N8n6f+m18D4F0vcr+eF0IMXEBAQEBAQEBAQEDAccYLjYF7K6KsXJ+Xz241xnzSRLVE3jrvRGPMNxtjHjLGPLSxsTHvsBtCFAMXKFxAQEBAwB9uWGufttaa4D4ZEBAQcPzwQgnc12G/CB4QBVOes9beD+BvAvhZE18PBtbaH7XWPmCtfWB5efkFdiOCMaGMQEBAQEBAQEBAQEDA8cVRYuBiYaKCkH8CwOv42TT7zXD6+8dNVO3+TkTpmV9yGAQXyoCAgICAw1GtVt1/F8YYV2vO9+Lgd/xJJBJHOp5IJBKxniHWWiQSieuuod/zXxNTB0/P5zH+sdbamc/mtcU+6HXZXtz3/rX8vvvXiGvH72OhUEClUkEmk0EymUQikUAikUAul0M6nYYxBoPBAIPBAOl0GslkEul0GsViEZlMBtlslCyO85PJZFy/xuOx+3w0GmEwGGA4HCKXy6FcLrvPh8MhBoMBkskkjDGYTCaYTCYYj8cwxiCfzyObzbr7n0wmMMYgl8shl8thOByi1WphMBhgMplgd3cXk8kEqVQKiUTCXdta6+6T9wTA3ed4PHbHAkAqlUI6ncbCwgKWl5dde4VCAePx2F2Hc5LL5dx4DYdD195oNMLu7i6MMUin00in00gkEkin07DWotfrYTQaubHiOI/H+1UhEokEUqmUuz/2m+Oxt7eHvb29meM5V3FIp9NuLMbjMfb29ty1ORZsL5PJIJFIoNfrYTgcwlqLdDrtxj+TySCTyQAAxuOx69Pu7q7rB8eJx+n4s31rrVsLAFAoFFAoFJBIJDAejzEejzGZTNzzxz4mk0lks1mkUimMRiN3DI+bTCZuDqy1bl55r9Za7O3tuTlh23zvKDhHukY5T6lUauaZ5HHj8XhmLrguuG70+GQyiVQq5X74fTKZnDmX/eO98Fna3d113/nPfjKZdM+4Putc16lUCtlsFul0GpPJBIPBwI2ZtXbmmolEwo2rtpdMJpHJZNya9J9ljjGvzT7pD9ePvqs4BhyfRCKBd7zjHUetN/mi4nkTOADvBvColeJ/Jqo3sm2tHRtjLiAqDHlgHYMXE9ED8HJdLSAgICDgOMAnI/xMcRjB8o9Xg4sGlH+cT2zmfcdz9Vi/3/NIUlyf9dy4vs/DPPIWdy1FHLlke8lkEpVKBfV63RljwP74jUYjZ8iRtJKgFQoFlEollEolZ8AWCgVks1lngNO4o7G/t7eH4XDojLfBYODOTSQSyGazzujnuCSTyRkimUwmHdGgQdtut11bNBaBfXIzGo3Q7/cxGo2wt7fn7ksJEa9Pw5hIJpM4efIkFhcXXZu8x729PWdo0vDlNXhfOvZKjAC4djjmnAOSGR0bErq9vT1HBEm8SCTZDseFZBiIiAWwv57VcFYSQrLLvnDOSXBIjkjaeNxkMnFjwmvz/tk2+zIYDFw7HBdel59ns1nkcjlHyJSUZLNZJBIJ7O7uOoKohIL3RaLDv0lOuU4U2m+OE4/hs6JkkN8poVRSyXHjXPMeSYQ45kr+ec8kMHx+eZ6u8VQq5foat6Gj5IzETtcZ2+S96Ockxfye19Fng+8D9p9ge2yTBFQ/UwJOcG4ymQxSqZRb0/pM8zq6+XazcCiBM8b8HKJq6UvGmEsA/oG19scQ1Ur4Oe/wtyEqsDdCVMjzL9nrC0e+ZIgUuMDgAgICAgIORpxaNY+M+P9Jx6lR/vdxpMgnYnr+PBI1j/jo7wedq/31yV6cyucrhnHnzBuPeZjXv2w2i4WFBeRyOWfk+W1yB55/5/N5lMvlGUOTRjeVkt3d3Rnjj8RCCSCJXafTgbUWxWLRkZl+v+/uM5PJIJ/PzxijalBOJhM0m80Zg5AkMJVKOXWMBqmqcjwfgCMxnAMSv2KxiHw+j2KxiPF47IhDp9Nx9021IZVKOQObBI79nkwmjjjs7e0hlUo5hcJfxyR5NNxJWowxGA6HzhDXOVLljGvIJxMcN5IuXlPVFV+t4jiNx+MZ0qVqG/tC417nQglnJpNBLpfDeDx2c0z1jwSNak0ul0M+n3ekn8SRihRVOhJxqlq8RxInjh3HlkqxbhAoSZn3DPBe+LduCOn3PjlRtcp/L5GkUc2kqsTzgH01j+uGii7Hgf3nJgWfLVXVtB9KBkmutS/abyW5JFS6VpVQsT0Fx4trjf9ynFSB1E2FTCaDdDqN3d3dmTWlbSoJvlk4ShbKr5vz+TfGfPZLmFZqvykIMXABAQEBATeAw1wGDzrHV7H83/XYw64xjwwepe/+73Ft+n2LI3EHXSeOBLLNo4yVHpNIJFAul7G0tIRcLoder+eMJ9/453VSqRQKhQJqtRqstcjlcs6AGo1GTinp9Xozrnw0PtPpNM6fP49ms4nxeOyIWjqdRq1Wc2oK1Sh1zQNmDUz2rd/vo9vtAsCMapFMJtHr9WbIFH9SqZTrKwBHhthHdQdbWlpCqVRy95/L5TAajdDr9RzZoApCF1BVVowxM0qh9oGuoOqCRsLKe+CcZbNZp75Yax2B4fxYa53rIA1pX4FWkqLqlBr2qhbpmCtBIOkieSNhBOAMet3UIOFTN1b2j/3QsUsmk85VVpU3rjn/MxIcziP/5rWVwOn96UYJ5wGA23jQzzl/JEc8n+PPa3JN8XMSeJ6rzzjPp+qrhIxrgWSFKhTHX5U3nV+OAcdBNyl088onX6oK6jzrOtbveA7b89VV7ZuuJXV/p6pOUsq50rWjZJQuonxeSPR9Fe/lxAtxofyCw80TMgMCAgICXmmIU6iOosTNO84nNXHqmE8Y48henMLlk8Y4Jcw/Vo+PO06vGUcg4/rhE7nD4B+XSqVQrVaxsrKCTCaD3d1dp4pQhVIyR1WnVquhUCi4dqiMpNNp5PN5APtGXbvdxt7eHvL5PPr9Pvb29nD69GmnLAGRkZrP51GtVmHMfrwYXec03o3HA/ukot/vo9VqOcNZXfH6/b67LsnBeDxGPp9HvV53qhNVMmutc0+kolMul50hms1mkclk3PE0OmmY93q9mbGmUUnlMZVKuT6oG56SKHX/U1czjrO65PFaNLLVTY3rx1ebSZh4jBrd6h6n5NFvg2Sa7anypS63fK52d3eduyljCkmUOWecI5JXqi90x6RiqvGA6jJp7X7cmsbYsW3eD8dQSTPnQO9f74X3z+v4z7VPNvg3SaJP3HyyQSVT3Ud5v6rm6TolefNJOedLY8PUvVGVNz92Tudinpso29cNAlUkuYZ9ksyx0pg332VUx9RX5XgNXaccT431vBk4XgTuBncvAwICAgICCJ/MANerZDRCDlOd5hE3tukbYwfFVMSRNr9f2q7u1B9GBuOu4yNOKZzX13mga1K1WkW5XHZJRmgsA/uGGMc4nU6jVCphaWnJuULSqCMZo1FPQ5CucUzwkUwmce7cOaTTaezs7KDVasFai1qt5twSqWgBUcKKfD4/EwPG3fZUKoW9vT2X7IPH0EUvmUyi1Wo5NQfYT/ZAZYd/q0FPQpFIRIlJyuWyIzhU9kjS2JdyuQxrLTqdzoxKQQOaRijHVQkU540ksFgsuvWnboHajpJff32pMc61TPdOGr4cK4LfcYw0tjHObU5d8aiecMw0toxKIV0mNTmKkg11s6W6mc1mZ9wpqcaq26OSOd6Hxpr5GyPstyq3fD+oGymfKyUlhB/PdpDbnrqQqiKpc88xJWFVoqZ99WO/VGlTdZDta3skQD6BY5saF8h55nPBeWVfOB5KWv2x1nEkeed96HrmfPD5oysx55f95jWZ9CWdTrtNHqq6+ozdDBwzAheyUAYEBAQE3Bj8/4TjyJIavvxMf1ejKk7N8tv225h3rH5/mOrmX/eoxCuu3aOQs4PUOkUqlXLJRlQ1oaHFvqt6USgUUK/Xsby8DGstGo2GUyTUSB2NRs7Fr9frIZFIoFgsotVquSQn6XQarVbLuU+WSiVHTmjsp1Ip5PN5R5iA/eyCAFz8WLfbdUqBKmkkmL1eb0bVIHEjUWUiE03EQFJAcqvEjoaixnEVCgWn/PAYVXZoHA8GA0ecafTSWO33+854VcOeahJVSd1Y0EyS6jpI5UjJuKpaNNLVtY19Vbc1VXFUpWKfh8OhIwlKdHgdEgcSsb29PfT7fUdUNTsniX4+n3eJb6y1TnXjPZFQDodDt2GgShuJkbo+cnxIKHmcrwhp/1W153jzGqpcafyhugSqSyLb8ZUzJSequGryFB6j5MRXT/VZ5bxzLflqYdy7k9fXeVbVUl1etU8cC3VdJOnVzQDNIsnv2Tavq0RUn3deQ10uSdgTiYSLx+Xav5FNrBcbx4vAIcTABQQEBAQcHfOIS5zREXeO76LkkyifHPmGzbzd9MPIVpzq5h+jiQ70fg46Zx58A/Og/hBUlBYXF53xrKoZd7LV0CLhWFlZQaFQcK6IjNtiBsm9vT1XAoAZEUlUer0ebrnlFiQSCXd+p9Nx7pEkYpp5Usmbxq1xF393dxfdbtepb+yvuiCmUimUy2UAcHFFhULB7dqzTbrxcYw0CyeVPRIwTaBRLpedEalZGtV9UZU0YN9NkoSCRioTx5BIqtFO45Yk18/6RxKuySqotpBkcB5JpnivXO8k4WpgA/up/NXNjnF8JAjsC8de70sNbs1IScWO7q1MekOCT1dXVd00EyGwT1rVXZZrWOO8VKFT9VNdVzkGPrHjWCiZ4Lj6roHsh6p9XAc6FxwrEllfXdXkJXo/Sm70uvrccv41cYu+CziG/JybFareqdJHJVtVV44Vn1eNe+R86PrlmmDf2D9u2Gj8JOfKGONIOseSz46uV7bvj8nNwPEicMaELJQBAQEBAUfCUVWnuOOOcq6vUM1Tz/xj/fPiSJP/u+6OA/suR/53PjH0yZ0SssOUOr8fasykUinUajVXt4zKAYmDpoNXNaFcLjvCR5K1sLDgjmfb2WzWqV80ztvtNlKpFJaXl52x2m63HYkD9tPHaybGQqEwY8AyXoxug51Oxyk2qjaRXOVyORefx+vQDVPdrkj86K4HAKVSCfV63Y2FEjC6lbEvmimRc5HJZGYMVnXxohrCdPtUOxlTx/vVOmk0oHO5nDOMSaA4T8C+uxkNW1U0SWJ4XVWsOPda243rleSNChjvlW0p0VOCw1T+JHylUsm5q5KgK2FmNkrWdiPR88kbiZRuhJB0KZEkSI7UhVDB8VPCpaRWyRqPVxLmv0Pi4stUrVJ3QarGqpxaa2fq0PnPmMInhzoOnBdupJC4+RtU7JOSN7al7wJ9BylZ0nFiG+rKS8LF71RF45iTkHPDRV17ueZ9Aspx4fOrRNofp5cTx4vAIShwAQEBAQGHQ3e9FQe5GupnvvI0rw291jyC6B8/jyT5/VCjTsnbYcfH3U/c8f73cSpc3HHZbBYnTpzAwsICALjkIPl8fkb1AeCMwFQqhUql4uLdut0uut2uiz0B4GLCMpmMc41Lp9MuPqxYLDrip5kaaegxiyKN+nK57JRBEgZVj0ajkavvVi6Xce7cOTSbTWxvb6PZbGJvbw/FYtHVoSN5oeE4HA7R6XRmSgfQvTKXy6FYLM6QWxrhPJ6EgklI2D6VQaobNFLV0KehrO6E/FwLf3MOeD77x/HW2CO9Dr+nUU4CpHFDJG+q6qlbKgmLqm5shzX8NMkF/+Y9K3ljP3VjIJFIOLWXhD6bzbpSDHRpVTLJe1cSpURKXSNpzJNA+26dOka+257//tF517HRJCtKFtSFUzNfKqHRvzkfSpyoxLFfukZ0PalLIseK65zt6Xj5ca2+Uqf98l0oOTYkdfo88Tw+o5x/rjkl1v4Yx8UnahkKegvwez5/6tqpzx3PCQTuRYIJMXABAQEBATeAeeqaEpN5hO4g0qTkap76poRqnkvkQS6T8871++V/z89UMYu7D38M9Nx548HyANVq1alkzMCoRiFJXDqdRrFYxPLy8owrG2PNaHSSVI3HUQ0vAM7Qq1QqzpDqdrsuro2GnZIOqktUyGiEU4Wh8coSAcYY1Go1lEolALN16UgEBoMBer3eTGpx1oJTckBiUyqVUCwWXb/YdxJMGsQ0MElkAbjMijxOMyNqUhUayyQu+XzekRDeL++BRE0JF5URNYgJdVfkPdAgJ0nSFPI0/EnwOHckESSlJHf9fh/GGEf4Sd54bzTWaeTzuqqesgSEKnoAZhKV9Pt99Ho9F//IODglCL4CROXRV4hUmdH70XtVxBE7jX2Me8Z4TY3LjFOZ+Czy+iSm+l7geeoyqeTUT4LDtQ3sK+Dsk96buhXrmvALyKtC6ZNBtqlqoMbO6lzoNbQdvjM4Nhxzzgf/psKrrpmq/mpiE92wuJmuk8SxInCACQpcQEBAQMANwydJR1GqlNDMI2BxbfiuP9qetukTNP+a+r0alf7xccbdQf30x8Anb3Fjk0qlsLCwgHq9PkM2rLUuzT8JkpKFcrmMhYUFNx7D4RDtdhuTycTFwdFlsNfrOfLV6/VQq9UcMbTWYnNzE91u1xEDujDSUC4UCq4wN++PWSi52z8ajVwtORI0Fge/evWqU9RocPf7fWdMam0wEg4a5WyP7p5KwFSZYbtKpEqlkiMc7Hcul0O5XHYkdWlpCQsLC6jVaqhUKq7YOQ1fTXih60jjh3Z3d9Hv99HpdNBoNNBqtbCzs4NutzvTPyY3USOWhMB3SyPhZRyZxsPRqNfYu/F47Fw82TeCJIOEiOOgqhvnnffE65EEcB2SdGumT1VflcRQqeL8qqro1zrj77xfqlHqHqvHAfulD0hANG5O14pPWNiGqlgab0YFknPPtchzSaj9uDKuQe0vibOuX94X15Jeh9dS5U1j9vRc9knj/0gA2Q43M1Qx1GyaGlfoq5Uap0nCRqhbM1V3jTtVF1qOFfvCzYabhWNF4KL3UmBwAQEBAQGHYx6J8Q0SPR7Yd5HyFSn+fpiq57c3r2+8jipgBxFDnwDOu8c4dW9en+Pa8dW6TCaD1dVV1Gq1maQYuotOQ4vGFV0mNdaKqdszmQzK5bLLtkjlqFarAYiMroWFBZTLZQyHQzQaDadMUG2ydr/wNA3wYrF4XVY7JQ+MH0skEsjn81hdXXXEicSOMW1anNsna8B+0gUqbIy5IlGg0cnzef+aPEEN/EKhgFOnTmF5eRnLy8s4ceKEI2pa9sCfWyLu74PWoM4/k8A0Gg3nQrq+vo719XV0Op2ZhCmcWyYW0TFSMqUkQBNdaJZANfjVUOc4U6EjwWTNN46lkkG2SWWXKiUJCceeBeKp5HEc2E9g/72gpQ0IPyunklxVKnnP7Ic+M77LNedASZHOoZJHkg4mkCGhUuWIREYzNsbF3/l90jZ98hb3GefSV+mUwLFtVcvilE19tnj/fqwbz+NnqrjpOVxnvicD3SYZJ6t9VjdnqrpUcG8WjheBQ4iBCwgICAg4HKouxX0W96PH+QZJnLFMY0vb0F1nXy3zyZSvlvjfq/Kmxx1GKBUHkbuDxocolUpYXl52apAaoHSbY6IQVV9Yg42xTtzJzmazLqkI1bFMJuPIYT6fR6VSQafTwfr6OnZ3d7Gzs+N26bVoM8mbponX3X2qKcB+0hAancVi0RHKTqeDwWDglCRVfAC4/pLY0eDmzn6xWESlUnEkgq5v7AMVPRrTyWQS9Xod9Xodt956K2677TZUKhWnqJEg+Vk84+Yq7u+DSJuSAv7LhDQsQk5lhOPQbDZx6dIlPPPMM+h2u9jd3XVEV+PVlLywHa4VqjskTyQ23MTQhBw02KlycZz1XK4Hrom9vT10u12n7rIWIeeKcYm8hk/GqSKp66O+BzgmAK5zgeT9qvsgP+f6I/FTdY/qJAmnEjB9/5Cw+LXNeD7HnPeiSrEWKJ+3JqjiasyYfq/kSeeb46cKoxI3rl3dqPI3z/g3iamWH+C/StDi3qv8W4k3f1T15u9UOqko60YCAPdO6Ha7Lm7uZuB4ETgTCFxAQEBAwI3DN4J9Mucfy3/jCJRP+uIMCh80guapXtpH/3z/bzUs41SXefflK30HET8gIm+Li4suNokGkWazKxQKjrypOxRdl0jyxuOxyz5JQ3w4HDrVbHd3F8ViEZPJxLn10Z0RgIsp4+45jWyWB1C3K83Ix5pg6XQa5XIZnU4H1WoVuVzOXWcwGMy4QmpcmN4bXbPoGkoyStVCk6MwY99wOES/30etVsOtt96KkydP4ty5czhz5oxTmHwVlqTjsHlUxUKVoIPWkK/qcF3qd2yPBKhSqeDs2bN44xvfiL29PVy7dg1XrlzB+vo6rly5grW1tZkx1z5qjCDXEb8nieO40vWW40Z1k+OrxFrru41GI3Q6HXQ6Hadm+rXx6FZL413Jho6lJgwh1NWPhIzPkLrrUZX0SZUqv0qk1G1SyxrwO1XvOGZ0meRaB/YzonJ8qGZS/SYp5drlZ8lk0sXPqYsir0kXWHWxVJdPjh3HiM8g+8rP/XHjGtNxUCVf1w/Xp7qdsp9aAkE3D6jUatwkST/v1c+cyrmbTCbu3cNESDcLx4vAIZQRCAgICAg4HL4RG6e2xRnOAGaMkzjyprvP8whUXD+UPPmkz2/jIOXNJ4vzAu7nqX3ziJsqB7VazSkWVE8AuOyPNKw1rTqNO+5aD4dDlEqlGbUknU47l8VkMunivnK5HNrttnNpVLWhWq26eDT2PZ1OzyQ3oVsdDTUAzvWOysJgMECtVkMymcT29vZMchK2Q8OOxipjvEgYqVRxh5/jRuXNT7xx11134a677sK5c+cc6eMamjfP/lrVRBZxa1fnd978++tG/2b/fdc3XaM0oLPZLM6ePYszZ864Md/e3sYzzzyDxx57DDs7O84gJ2khUfGvrQqVusn1+32XzIWJbUj4J5OJc1elKkrlLZlMolqtOsMdiFLHq5pJcqr94/35cVV0OfSzgnL9ca1wHkgAuDb4N/uimxq8pjHmuuytvlsmn0kSKqqfPJdkhaRG1UZ1Ida/SVpIrEmAOAe+u66qYRwTfU/67sYktqpy8nffzZljodfgePprVRU5dUnWZ0FJHmstamIeJmjhOtW1xw2dXC6HWq0WCNyLhaDABQQEBAQ8H8wjb3FG7Twipv/y97hjDzrXd12cR+Lmkbe4PsRd6yD4benfhUIBKysrzlgE9g0iGpPlctntYtO4pMFYqVSQSCRczTYm9qCBpDvhTJZB9YDxKWpokfRpnBUzEGpKeCpzVPOYwILGfDabRalUgrUWW1tbjigy4ySNWCo2er8cs0KhgIWFBfcZ1ROqRu12G+l0GufPn8ftt9+O22+/HSsrK9cR/rg1pi5jStp0znxCpW52/rzGKc7z/o5T+ZTQKSlV5ZeuqNVqFbfddhve+ta34sqVK3jqqafw+c9/HpcvX3ZqJNcRSY0WYiYRYlZAzkEul3NGOJWhQqHg1lqn03Fxi8w0SZUtlUqhVCo5kqcEQWvpkZzMSxfvu8PyWFWnVP0l0QP2M1Hye44z09dzU0PbV2KrKindK0meqEJq9kkthM7rK5lh/3hPWqPPX4M6//rO0nWn60Pr9BljXMwi1zOJrL43+BmPJfnUBC5+XCDfNzyXLtp8V/D50tqBSig5FsB+3BvXt7qylstllEqluZtjLweOF4FDSGESEBAQEHA0+EQnzlg9CuGZ16biKG6PSsZ8dyollP6xcfcRp6T5JHOeghh3fCKRQL1ex+Li4oy7mxo5k8kE1Wp1RrVgDBJT59MIYj0uGrE0/DTVPRW0wWDgYquoYLAIMw0xAE5Z0PTzNPpJDKmqsa18Po9qtQpjjHOxs9a6eDcqZ5p2n+0C+wk5stmsq+sG7Bt/NKwzmQzuv/9+3H///VhcXHT99+ffVxJUQdC1Q+NVY/p8VcwndXGYt9ZpWGvckBrX/I59ZIwh3RI1g99wOHTtnDp1Cqurq7jvvvuwvb2NRx55BA8//LBLCMH22L6WUuh2u0gkEm5+NRsox58EjAXcgciFkMR9NBo590rW4NM4NhJ9fbbUvZkkieuQsWckVuw7/yV5UWVHn18/UQZdfOn+CWBGkWO7ShY5JxzvuE0RdXlVwq3vAMa66eaMuibqpoFPnpRw8XNdn7qm4t6RGvOmY8vf2X9VtdX9U90leW4ul3MbBDxGs86yhES5XHbXUGWV5I6bOST52WzWZdadFzv4cuB4ETgTyggEBAQEBByOgxQu/Z6IU7h8ohSnvh2lHX6u7cSpJ/Nc3ua51h2EoxzD62UyGZeinoY6d6/VzaxSqaBYLM4kENH7ZLZCIDKqqQBQEUmn0+h2u05VI+Fi5kD2haoCd9cTiYRLFqLZD5UMApEixraste6exuMxut3ujEsVjXBgloypCkKjnEqH1jSjEXny5Em86lWvwj333OPcM+PWCUk7CYwa6j6x9cman2QhjhzcCHxF0P9dSwbMI3aaPp+KkLrn5XI5rK6u4tSpU3jTm96EJ554Ag8//DCeffZZ9Ho9p7QomWYyHGstOp2OWz8sqUAS3mg00Ov1kM1mUalUAMAVfmdMJtcj1V4SfYUqPbx/3gsNfhIDdRVWZUqfA010ooSHpIqbCkxpr9/7STdImn13TyVuXCtcV0ro+cwqUVGVSjdnlDhplk1N8uFvHqhrJtcPyRH7FJeIhefybyZk4XiTEKoqqkSe1ysUCk5xJZnnWh2NRmi32249cK1qoha+QzQOjmOrY6HE8eXGsSJwAEIMXEBAQEDAC8I8YjXvmDgc5NoYRx590haniM3rT5z72zwcpBD6Cl8ikUCpVMLCwgJyuZxzOWPafu7MM+0/Xdc0OYMaQJo+Xq9LA7rX67kdbqauV0KlySpIsEgW8vm8a5tZEDVzIbNI0uCn66ISRKovJApU6wgaybwOSSMVSRrMbP/+++/HbbfdhnK5PBO7428a+EoKVRMapZo1cx5xi/vx15i/tvw14RO1eRsCqs6pS6dm99NYJHXTIwHQ+ygUCrj33ntx8eJFbG1t4aGHHsIzzzyDVqs1U2Cd60tdHukyaa1Fs9nE1tYWBoMB8vm8I3VUXBkPRkUwl8vNFDJXlU3Jm7r0GRPFY6oKpvOqJIPkkMqPJiBR1U9T/3Ps9Dttl0oUXSvp2sd+kYwoyeFx8xJ7cONBXTV104Jqmpa8UELFPupzovevajHXEcdCXTr97zQOT2MGVRHkdyToSjq5sVIsFt1aoxt2r9dz92zMfvIaHsfkRlTp+e7zn5vD/h94KXGsCJwJPpQBAQEBATcATRYxD3HkRj/X42hsHaa+xV3joGOU0PnkjtfTz5Qk+oQxznWPxogqTEtLS1hZWXEGpzHGGc8ah1QoFFAqlVzJgEwmg3a77dL+A3DuSjS42F4ikUCn05nZUaeLk8a1MdEESRiNcWbnA/Z3zYfDoTOcSeYGgwGy2SwuXrzo1LZer4dWq4V+v+8SorCoMwmdZtejOkG1ggYiVZHRaIQLFy7gvvvuw8WLF1EoFK4jQDpPGrvkq5o+UTvsX/93XY/z1uE8BVmJGT9XhU3JG8HveR7LHWg8GP/WuDmqtRzT1dVVvO9970O73cZHP/pRfPrTn0aj0ZhJNALAuRimUlENt3a7jUaj4RJMMGMpSXmpVEImk0G32wUA1Go150LJH3VL1PsG9hOKkKzrBgbvW136dMx4Lok/FWBgX9EimYxTVPnckXSSVJGwcLyBfXdLADMxoLw33ouSIa5r3SwA9l0RAbi1yXZJSpW8kfjxfnVsNMZO703fUfyXx6kqzfHVtcW26Q5LFZXvC84jXa75TFO9pWLPcaJqyWL2nU7HvRNUfda4whAD9yLBmMDfAgICAgKeH/wd1aOqbP7xPtGLu47fhn98XNvzPlNDQomYfy2/f/PUvXw+jzNnzrgMkXt7e0792N3ddUaTMcZlo+x2u7DWOsWK8WjqYkWXo/F47OJTNDMeXeB0l79QKLh4leFw6IgU68HRhYxxbmx7Mpmg3W479yogqjHHrJLGGJf8olKpOGPWGOOyHAJwLpt0a+PvOn6M/XvLW96CO+64w/UrThFVhYfEz49jm0fQlCD457Af8+Lg4taR36+4HzWg4354HI1rnkO1kvdKlz8a3jSwmUVSFRCuqy/+4i/GF33RF+FTn/oUPv7xj6PZbLo1wXXV7/fRbDbR6XRgrXVuvsxMqfFKvV7PKaRUY5QwqfKmY0UST8NdXS3VXVSLY6uSxnlguQwSH03IwnHhWKoKxfXLMdO4Lo43SSE3BbQOnD7vfE64SUOSxmPU5VLjSH1S5m8c6HrUe+d3us55X/596prUZ4vKnd83Xbe5XM7Vh1QVnq6RXKtK8vSHY8OyHu1229UHZD+SySQWFhaQTqfRarXcZtLNwvEicDhaxq+AgICAgD/c8MmLb2zN21lVg9hXMOLULt94nkfE/GvEkcc4Zc8nYvOUPDWM5v0/mUgkUKvVcO7cOWSzWZeqXRN30HhOpVKusDONJmaLY1wJr8eMj9xdz+VyM0oajW1gVpGguqKp/MvlMiqVikvfzX5RoSgUCtjd3UWz2XSkcnl5GYlElPmy0+kgl8vNEDQaYRo/R6OdsTSa+IJj2O/3kcvl8EVf9EW4//77sbCwMDdRg6pTqrbFqWeqkKiLnX5OY1iJHscjbv79vviGsqpvuk58ouYTuLgYOD0WgFM0ScCpeui5dKMlCeJ6WVhYwNvf/nbce++9+OhHP4rHH3/c9bPT6bhafVwbdL8lMedao8scyTfddePKFKhqRKLEMaGKRkID7BeBp8GvyhWJCuMvOXdcr6og+7XOSJy4aaAuixxHYD+DpJ/Kn4SHfdYsrtww8d8H7AvnXBO26L3zmEQi4drl86QEi+tX1XSSMSXsJMf8XuPhOCa6DnV9cY4ymQxKpZI7h/dKcDPH7yMxHA5d/ORgMHD1Anm9SqXiNmf4zruZOF4ELihwAQEBAQFHwDySBFxPcuaRHt/18DDFTs/xyV5c+3qc9iFOQdHP513noPvh7vLq6irS6bQzinRnf2VlBUBklJHg0aWSxigNQyYDaDQaTl2hQaQxTXRzY6Y8a63LvsfkFUzzX6lUXJFtGsV0f+QuO5NY0JXu9OnTqFarWF9fd0Yh68lpEhYlkTSamdSBMXE0zkmc7rjjDjz44INuzObFuPEzn3SpegFgpk+q1Ojn7B/b8dfOYZsDPrlUVzVgtlAzr8Xj4gxoJqChEkX1ica/r5yQ6KhSRIOaCqeqU7z20tIS3vve9+L+++/H7//+7+Pzn/88Wq0W9vb2UCwWnVpMV1jGRGpKfY0Z88mp3iPnhCRNSQvHkGSJ90Ny6BM4zg/JH9eYxmzGxeBxfrn2ONZ89viMqHtkXFwciZGSKC1NoGqcxqvppgLnBYiSwfB43jtVeVXeVE3UhChKBHVs/PXF70gAgdnNFl2/PEZJNc/V9xMVVyqt7Cv712q10Gq1nKcA4yt5XX1H7O3tuXV7s3C8CBxCHbiAgICAgMNxENnyyc9B7mj6exzR8kma324ceTsKEfT7O+/fOLXF/z6fz2NhYQHlcnmGKDCeJpvNuoQQNESpbnE3nxnxAMwoZ61WC6lUVPgbiGpz0TCigUWDnXFALA1Aw4v11ZgMhGm9ddffWotGo4F2u43BYIDFxUWsrq6i2+3i6aefvk7ZyefzjhixHZIGqiI0nnlvxkRxR5VKBa973evw2te+1iVWiVsLHOe4JCSqtJGk0cAmaaVROi+JyTwiP09tpUGt/eUa0AQTeg7vW2Oj9HPOB8eGc10oFNBqtWauqwY6DWKqvFxDGr9ERY7tp1IpnDp1Cn/sj/0xPPLII/id3/kdrK2toVgsunmkqybXWiKRQLFYhDFmpgC8Jh+JI2uqXHGN0WBXxYybB6rOKgn0Y+JIBjhuWuCa40oSyjbH47FT77je1B1R1TiOF6+p6q26aqpqS/JtzPUullz7PtFkn9VtUjOsxo0lAKd6av/0cyVkJFscG9+9laSPJItJR0hY2W+Ftk+VnQmUms0mrLUoFovO9Tafz7t5Hw6HaLVaM/0JBO5FgjEmKHABAQEBAc8b89xi4pQOnxzNI2/83m8rjqgpETxKn+a1qb/7O9NEMplErVZzrmaaQZC70FQ3rLUuEQjJFY0+GnmMk2NikMFggGKxiKWlJXS7XTQajZn6WyRqyWQSlUrF7XDTYCeBqlQqzr2Rqh9ra7HgN7NJGmPwqle9CsYYbG5uotVqzRAdxkOpQaq1vFhDK5/PY3Fx0R1Ho/nChQt4y1vegrNnzzq1I45I+Sqb7xqpCpvWqlPFLS7GLQ5qROoajFOH/U2Jw6BrR//VMVFiNhqNsLGxge3t7Zn4N1XmtE9qULNUAIkcCcdoNJopQZFOp3Hvvffi7Nmz+MQnPoGPfexjbm0ytpIbDKVSyc0v+6yJVUiwAMysKXWB5PGa5EaVXypU6jaoyUQ4hySTANx64+fAvvswkwPxWev3++5zEny9Dybr0cyP/nWpjlN584kX+8SkL3wPKMHlnPmxlqpkkYipSsz3CjBbmoHPODdLSF5V1WS/ed9sh3Om2U95XY2tVaLH85iohEl0+E7g5gE3bXTjhqRQnwON4bsZOF4EDgf7fQcEBAQEBPiIU8eAwxOL8Jg4+CQMmK0npQpcXBvzlD5+F0fI5t2Xv0tMw2lpaQnVatUZa5omO5PJoFgsolgsurpJbJOqCbCfWp9xZZqW/9SpU6jX6+j1euh0OjMqAQ3yQqHgDGK6O2nxbxrMmk0SgIvL63Q6aLVaGI/HTkkEgCtXrmAwGDj3u16v5wpt04WS80FDkwRgYWHBZd/s9Xruuz/yR/4I7r33XlQqFacgKZHnXMyLaaMRyB8SWJLWuLIBukZ8cuavq7gYSf/vecki4lQ8vZ84Ykhy4BNLGtFqPNPQptqm6oomtCBZI4nRzKUkuUBkbC8uLuK9730vzp07hw9/+MPY3t5Gr9dzmSb9gt9Ui+neq+SbRJTk0Z9H9tcY41QzPkc8X0mZElpN1MN2eR7Hjvem8W78jMRRNx1UHdNSG1Sj+cOyHFoOgOtASSc3RbjW1cVS1Uh1AVYC7r+T9NnQ8zmGSkI5z3p/nA9uJClxNCZKQMT4NI5tLpe7TmHVa/IzxiM2m03nWlur1dz4UH3z4/BIMPnsxz03LyeOFYFDiIELCAgICDgClEAB8XFlvqtjHHzjep7qBiCWSOm/81zi9DqEGtW+Ghh3n/ydKsDCwoJLra4JKNTIpXFIY4vkjddndkoW4NYYmzNnzqBcLqPRaKDRaCCTyTjlbjKZOIUBiLIDMtEJs0vSXZLXpKJHI3U4HKLb7aLdbrv4vGQyiWaz6ZIqlMtlFItF106323WqGYkEk0kAkbKzsrKCSqXiiOJ4PMbKygre9KY34dZbb3UGsp/dT4kADVx1oeM5JGz88RN3qPE9b/7nkS7Oi8Z1+W0oodd1EUf89F9/Pakao32hkcvf4wja7u4u6vU6arWayxSqcXJ6rBIaEhFmF2Tf7rzzTpw8eRIf+tCH8OEPf9iRG+0f+6PxX1TmSFJUlVN1jgSBbnRq0KvLHmPBqELxM26QKOlhu4yLY5weyQyJC++dbQFwzxz7z7XLeec9c7xU5WS/tXyFkk8t9UAlju8HnVdfvSRB4vV13ajyqq6rXIu6qaAbSfq+VHWTfebnStCYGIlQl3C2rTGlSqCBfVdZjWEkmdRnnPMTXChfJBggMLiAgICAgBvGPOI1z6CO+49bSVScm1pcTMZRdnDjjOnDiKWey2uk02nUajWXap0FsOmeZG1UVBmAIxjqykajiddkRj+Spt3dXZw6dQqrq6uw1mJjY8NlayuXy2g2mwDgDNXhcIhOp+MM+Fwu5/pGRQGAUxioOPT7fezs7LiSBUtLS0gmk2g0Guh0Oshmsy7d997eHlqtljt2Mpm4e1TykclkcPbsWeTzeedeZYzBbbfdhre97W2o1WozKdR17uJcJWn4MQGLtVGhaWa40/guNYTnrY84FdY/Zh55m6fyxrUb13acMu23q8at/70qNlQwNjY2XCZSkimuZyV9dDHVmn+s6cWkFMZEGQLf/e5348yZM/jwhz+Mra2t68ZPiasm+wBms0Xyb2C/ILQxxmWb1Ptj/9kXzdjK85U0kODRHZgui4zj4rlUgaj4cYw03o19VWVPCSc3G7SUBl1BSbSVxGjyGY2vs9a6jI4kSuqiqONLMss5VJKjJE7Vfj4r/E7XH+8ln8+7jQ59zjg2mgGUyhyvybHmcSTsdB2fTKJEStwsIJFX5VX/H9DNm1BG4EWCMQY2MLiAgICAgOeBg8hUHMGLUyzmKWF6jLYTZ4jPM7j1+IOuF3e+Jiqh+sWdau6+002LaoTG+NDY4w49s0l2u10MBgOUSiWcPn0aS0tLGAwG2NzcnNn97vV67pqJRMLVUaIxVSqVZuKVgH2Vbzweo1arYWFhAdvb29ja2nIumLlcztVtoutdtVpFMpnEYDBAq9VyySxoUKraQCP+9OnTSCaTM0b6Aw88gPvuuw/VajXW9VAJh+8uSfLBGna9Xs+5idKgVmPUn7O4DQIlRAcdp8f7x/jnx62Vg8hiHJGLO4fHqlrHvvDvRqMxE8Ok5ELHhb8zDkwTiuh8pVIpvPrVr8bCwgJ+7/d+D88999xMnBfXlZIikhxVVYB9ok+yz5g3fsd2NGsoSSHvk22pux2vRfJmjHEqsabDZ6wcY9u05AHXr2bC9OP7tDYd2yA5YZ/0HN6XxnmRqKk6yuurmqZrQIuU8zOOBX/Xf5UQqZrGdvWa6irMa3EOmMCmVCrNJFQiAZxMJq4cyXg8dpk9SRipzmqMHfvGNkjqVP0LMXAvEkIWyoCAgICA54ODiJdvJB+FYPnH83s9Vs/xXdP8dvXfw47R75LJpCNH/GH8jRqT6hJFdY471KPRCJ1OB6lUytU6297edkZtrVZzqfQ3NjacoaQGMtOmDwYDR2KYCCWXy6FYLM7ElvR6vRnjqVAouOQDVMjK5TL29vYcEaBbaCKRcBkwO50O+v0+stmsy35J1ZFZ60hkaegWCgW86U1vwj333ONURn/ulWBoshFVjahikrjRZXJejJvO3zwXSv7rK1uHqXD++ov7zr+Gfh6Hg5Q9H+ynkh8lvCS7cUSO90lXPypWdCPkegKiZ/XUqVP4si/7MnzkIx/BZz/7WbeuuRY1oQkVNCWNTJ6Tz+edgsUxUPWFBImEg/fhJ+RgP1Xlo7pNgtjtdp3LKOOv+Hypa6kSRKpl7JMSNK41Ej0mWqGaRmKrcakalwbsJ3XRJC1xyUv8FP5aakPHyE9AouuXZIr9UgWM7wpVvDSuVBVN342VJEzjZ1krjuPN9eiXftB7ilPfOBc3C8eLwJlA4AICAgICDkccATrMzWwecfJ3nPU/fp6n5yshjHOdm2cYxxFBNej1Pmh4lctllwxEXbJorPhGbDqdRrFYRKVScancWVONZQbUJevEiRMolUpOdWPiEJIvayP3yVQq5cgUyV2hUJghlABmDDEqCaPRCNeuXcN4HKVTZ+bKwWCAfr+PZDKJlZUVR+g6nY5TZmh4stAzM0u2221nKBcKBZTLZefu+K53vQu33367i6OKWweqvNGQJMFg/0ncaDzS0OW589aeznOcahu3JnTNqFLhr7WD7sdXGf1z4s73Nx7i1qh/Lb13rhEdSypOqoj4bpZMNqExclrnq1gs4i1veQtKpRIeeugh14Yqn9ws4PoHMOOqCeyXgNAYRW2Lf/M4dW/UDQzOB8mjxuL5qfS5kaDkLY6s8zlSkmWtncnkqtkUuT4Zc6cuiVS0+bxxfKg86XixLXVjpKKt601j4Xgs3w28N31f+etF15MfP6gKpGa91LHkhlGj0XA1A1k+hGSO6m/cs83xIHElEdXn62aSuONF4BBcKAMCAgICjg6f/AA3prD5SRziCJm2SQPB/07biPvM75t+7/8wkH9xcXFm95yGFhUGukFS5WLZABIXqkc0iJWMMHFIsVhEp9NxcXCasCCfz7saXSRvw+EQ6XQapVIJ5XJ5RgGgcmeMQaFQgDEG7XbbqSWaqa/b7WI8HqNer2N1dRWTyQTdbtfVHqPbJ7PwMbskd94Z00YCt7e3h2q1ine+85249dZbZwxXf1585U0VJCqMvFcSVpI3n9wfRcGKI3j+ulBoDJm6vx2mwCn8jQH9fN65vhEc9zz57Wm2QlUxqapw/ZK8KeHj91pseTAYuPWSy+XwwAMPoFqt4nd+53ewtbXlDG4l3iRaVP5UaRmPxzNumqq08VnjOuCmCJUrjY8iIZtM9mu5kciQaPHZorujklcAM4oS54HrW1UoPudaLJzuysC+GyuvxzbpNs3nRmvDKYHy3TZ1/nzCpa6TSgI5JnwG4xLr8EfdLfUe9N3GJEm6zvje2dnZccqctda9O3xyrQlffOU07p0d9y5/OXG8CFxQ4AICAgICjoA45eyo7mCEr5odppzpdecZ8QcZvXHqh/93JpNBpVLB8vKyqyNFw5ZGWalUcgaXlgoAMOPGSGiNsm63i3Q6jcXFRQDA5uYmer2ecw1jHzQZyWAwcElEWNeNqgl3tlm3i2oBC4GrQkClr9frIZfLoVqtYnFx0ZG3ra0tJBIJ5PN5F1+USqVQqVRQLBadelcqlQAA5XIZ+XzeqXHvfve7ce7cuUPJmx/vxsQIJLhMVBLnMnnQWvKvOY9E+WvKX1f++brJoD9x9zevD3r+Udf5vOfJ35xQgqLKjpIBGutK8PjdeDx2ZMVPQpNMJnHHHXcAAH7rt34LOzs7AGZjqzTmjMoM1SyNQVPlCdgv5M0YO30HkAxo9kSSShIm9sMY45RbACgWiy6hCcmaZj+luq2FuTUhixZEB+A2RhKJxEx2TiUgJKX8m2RWs19SoVfS46ticcoyFTJeVz/XsfHfZ/7Gg7ZNwqVta5Ihuiw3Gg1XX1Cfa3Wd5HzxM6q4nMs4ZZrnaZ9ebhwrAgeEJJQBAQEBAYdD/5Pm33FKwkHn+38rKYxT0OapKPPa9vt0mPJSKBRQr9extLTkSAqAGfeoWq3mYo1KpRKq1aqrvUW1huj3+7DWolgsOtVtYWEByWQSnU7HJeaggpDL5VAoFFCr1ZBIJNDpdJyiQGJVq9WccQrAtaEp03keVUMAOHnypCNF2WwWS0tLLsskXSlZM47uitls1tW5I5GlwshYuU6ng0qlgre//e245ZZbZtypDlPetJ6bFhPv9Xoztcd8I8+fOxqgXJPz1oOPuE2IeWtG51bd8fxMgnHwCV1cH3zjVte/fq9k0m9L3epICKj0jEYjnD59GqlUCo1GYyb+ifdDJa5QKDgSB0TE8M4770Q+n8ev/MqvYGdn57p4TyptqkRx/lQh4nhxjVJRY+ZDHW8lF3TL5EYHCQhJvyYIUuLEc0luuUGiaiH7QYLGuE2uSz+brBatV5dGdRHc29tz6jsJLOusqVsy75nPhpI5P5GLzj2JoK9Ic42p+sh1qooZ71c3mzhHLDHC0iP0BOAzy7ZU3VNXVc6hupZrHCKvdaMbfi82jhWBixbSze5FQEBAQMArAUdxZYz7/jBFLc7gPoiwHXTeUfqWSEQpsRcXF52ilslknGFIozSVSqHf78+kyybZ2N3ddQlLstks+v0+ADjVi4bxYDBwxiuLeNNwrFarLtkIVSi6IjEWD9hXLobDIdrttusPADQaDdcuXTIXFxddUpJarebUEqoOdDmj0UvjtFarAYgMOpJDdaVstVqo1+t4+9vfjrNnz86QN51bX3mjOySVSRK3fr/vxlOVJJ2nODJ30LrwXcr0vKOAx/nE0CdUGo8UpzjEnXsQ8Tvs3HnQ/gCzMUlXr15FpVJxRIbgGDHpRz6fRz6fdyoMFZazZ8/ife97H37jN34D165dcxlRx+Mx2u32jDKjiTf0GacqR8PeGDPjQkmVjGSNsVgkSn5RaE28QRWIxzGmTgm4ZlikKk6yRAJL8kbXT588MlEI2+EzqhkqdVPBV8t0M0BdLv3EIfq3uspyzjSmTokg1wnHliSaa5PX07nne4jvFt4DawLyfH9OCL6P2CaPYR94DU3QcpT1/FLieBE4AEGDCwgICAg4CuYRpsP+cz6MtMWRNd3ZPcgFzf9clYo4I5wuk8ziCOy7gdEA1NTizEpJggRgpoYSd+jpZtlsNt3ONNUCGotMz88kIJlMxhEZurAxUUk2m70uVoyGayaTQa/XQ7fbdcW9R6MRFhYWsLe3h83NTUwmE5w4cQLZbNYphowzU8MOiJTIbDaLbreLVCrlCF+tVptxwyyXy3j7298+4zYZN2dK4GhYk7ixLd63ukz6a4mfqctgHI7iosg2+XMjBmXcMb4b2zzCd9R++jFNB50bp8Yp0dV5IDmiGqNuinocaw0aY9w6T6VSOH/+PP74H//j+PVf/3Vsb287wq/zT4VI3R9puHNTgmqWFoLXmmo+4WDCET6DqnozC6oSNap+JBAkQ0oitewAlcTJZDJT8oDkTfumhImEUguG+5kvdY3xPaIxlv49qzupusPGXZdjpDGJqnzpPQP7rp6q7nHuOc4smUJ1n3Pgb8BpchgSdlWl2S/2VxVfTZB0s3C8CFyIgQsICAgIOAJoYACHu0z6Bmacu6T/mbbrX+Ow68UdE0fsWBaAroMawzEej10iEBI9ZoMkeWLyDsasUTni771ezxXQ7Xa7KJVKzr1sd3fXxRwxsyNjvmh8UQ1UdykSLxqz1lo0Gg1XSJeGVL1edzEsLBHA2Db2rdvtunYAOPUll8uh1Wq5MSDJzeVyzqhLpVJ48MEHce7cueuUNx13X32jikG3zW63O6NI0tCLU2nj1oK/DuYpdEqu1NCMW0NHVfTiQINVFaY4IzXung5TouOOOUjt1ng3JWf8jiSKBEWTiFhrHZHn2qTRf+rUKbznPe/Bb/7mb2JjY8MRPfZNyQkwG5vHcSdZ4D3486OJg4DIfZl9Ybwb3T5VndN5ZdyaklR19aRCSJLGdUlSp8+FHk/CwrlW9UuVWP/9Rui6U8Kjyqif6ZOkUNuz1jo3UI3J812KdWz1+dBz+O5S0qeqGz/3N014vo4zCXNcyQgtb8HNhJuF40fgbnYnAgICAgK+4BEXfK6GC38/LPmEwj8uzmg/TFnxlYm4/pGQlEolF8jPXXyqE1SqmM2uUqk41QgAqtUqhsOhi0nb2dlBJpNBvV53xMQYg16v51QsqhkcEypaVBOY0CGfzztXL+6sA5iJmWN2yo2NDQwGA1ejLZlMolwuo9vtotFoIJfLoVarIZVKod1uu/NJ0KjYUckolUquz+VyGbVazSU6YSa+bDaL17/+9bh48aJzo4ubDxqTGvOmMXfdbhftdtu1q8qb354/r+qa5c+9P+/aP/2eSgQ/06QPvpqm6sth61INaZ7rJ5SYR9biSKnf7jyled7favyzncPUTF6H68oY4xRfYwzOnTuHL/3SL8X73/9+dDqd69wCVaXRzIfcBCCxJElQJUtjMVWtM8bMuD0q+eTfnFe2p8k1uL7oSplOp10JDrrxAnDPHzcbuE7Yvt4Px0pr8LEP6s5IUD1XNU3JEvupSp7OBwkkSZqqfUqS2We6hXLd6jyTqNNdlCVQOB78nm0mEgmnIJLw8f44pslk0iVUUhWdBI4qJMfiKIr3S4XjReAwv+BkQEBAQEDAQfDViYMyjMUZ5XGKQxzmGb7axrxzS6USVlZWnAsZ0+XTGOHOP2u3MVkJ0/QnEgmUSiUMh0OXkGRrawtA5G7FAtoka/l83sW+Mf12KpVCvV5HMpl0af5pXLEAcjKZdCUKdnd30e12nZGVyWQwHA7RbDadyxOvk0gkXM2mxcXFmULidNmkuxuNsfF4jHK5jFwu55SNfD6PEydOoF6vu5g8JjK57bbb8OpXv/q6It3+nKjqRsVFM01SeSOpPWi96NzHKXDziBH7Acwa3IQfDxZH6A5SveKU47hrx7n2xfVV2z9sM+JG4LukKhkE4GK/FKPRyKnIfE6o1KVSKZw5cwZvfvOb8du//dszxr4+gyRSNO6Z0VAJJQkR40SpcqubHTM5qkuhEkV9bpnUR2PXgP04Lz4DJIVc2+wn1TitRUfVjMeR+JGYELr2gf16alQEqTT7SVs4XiRlGmunx/mbIxw/EjhVIZWs6Rjw3ULFkePJe/ezvvrKLdvXwuXaT42Z4zxNJpOZenr+ON0MHErgjDE/DuDLAaxba++Zfva9AP4igI3pYX/HWvvr0+++G8CfBzAG8K3W2t96Cfo9p69BgQsICAgIOBxxaodvWOtx/t/zDN+DlDb/88NUC+1jPp/H8vIy6vU60um0y64G7O82Ly8vOyPQWutcGKkWkegMh0OUy2WXGITGOd0iqdIVi0VXgLvdbmMymbhkJNbu15bi7n6xWEShUHDGI7NVat0lEjSqHisrK6jVai45SqfTQSaTwYkTJ5BMJl1iEJInYL+oM1WDcrns/t7d3UW5XMaJEydcNkKqg4lEAtVqFa9//etRqVQOJBF+fA/VjH6/j3a77WLe6M4Wp1bonPoKkj+/cetDEReTFrf21KD0VThVjA5S0+Kg5IYGcJxy6SvY2lefvMaN1WFzwuN891H2j+oIPwOi5CbcJGB8GEnQ3XffjeFwiA9+8IPo9XozihrHiARGa4NxrEn8crmcixvVWm5+WQ6OBYlKOp12KrAm4CHpIlmg0s55ZCbXXq/nNkbK5bKL0yPxVFdOLUmgbXM+SfB0A8BPFsL7B/ZVOs00qao171VdcTUhCEkV3ULZF7opUrnkMb6izM0TrWvJa2t2Up9kkcRyHjmXXBfqJsl7T6VSqNVqSKfTWF9fd0mfbqZodBQF7icA/GsAP+V9/i+ttf9cPzDGvBrA1wK4G8AqgP9ujLnTWjvGywCDEAMXEBAQEHA4fLc0/nuYCxj/PUh5OEhtiCOEcaqbHlcul2fIG12laJDRbYu74iRq4/EYW1tbbgc5nU6jUqkAAFqtllMj6BLF36mEMfaNxmC9XkelUnHZ/QC4QspqhLIGG+PDgCixyGQyQavVckRRs/Px81Kp5DINMiU/DWUanZ1OB+l0GktLSzPqIBC5hp48eRLWWrTbbefaSAL5ute9DouLizPGmz8XavjRANV6dt1u1xmPutuvRMVP3OBfY55KNY/AxCWg4Dl+e/q59oduoEriaLAeRQFme5wzjTfS/ut15yl1Bz0/h0HHwidHfhv8vt/vu5g4qjaMG73nnntw7do1PProowDg5lVd5Khkabt0qeOzx9T7QLTeeZzGsHHcqERT7eE1mZGVCjiJC+eLRE4TAaVSKRQKBSSTSVc7keSQhJLPpMYE8t40dpD3zNi8uPT/SqpIRrXwOaGxg/q+9dcNiaCSNo4PyTSfX6pvWg+PLqM6V3wPso98pnl/qvJpshYSN44hP89ms8jn8yiXy+j3++599AWdxMRa+7vGmPNHbO8rAfy8tXYI4CljzOMA3gDgw8+/izcAY4ICFxAQEBBwZMSRpjgVY95Oq2+I63FxhG4eedM2+Dt31U+cOOEUo/F4jGKx6M5lBkgWk6ZxRNWLiRIWFxdRq9Wwt7eHjY0Nd/5gMHBuWr1eb6aIMI2UXC6HSqXiyCMTjaTTaRQKBRd3QlfCVCrlimazXEG323XEJ5lMOiLZbrfRaDSQSESlEKjgtVotl9WRWTKLxSJ6vR6MMVhcXEShUHBtGmNw5swZrKysoN1uuxg5lk6w1uL+++/HhQsXYrPH6Vyo2yTVARI3uk0yhkbdqdgOP1Py5m8OxG0GxCnAPjny3SnjlKh55IvQ2B8ayGrMxq1F7Q//VgVmHrF8KeArK/79z7sulTiWyeAzViwW8eY3vxntdhtPPPEEgMgVcTgczhjqTIRC0kJlRuu2cc0D+0k26IbINcXnliSP6hMTj1BFpxrGPmvsFZVE1n1jO+reSPdIts+kQSSROmZ0e+Ra4L3qu5Cki+2QBGnMHu9bXRD5o2VHfAWY5C2XyzlXRSqCcXFyhUIBlUoFzWZzxn2WRFDdyvV5IKnUvvkZR3XeeD7HnOSbY34z8UJi4L7FGPP1AB4C8O3W2h0ApwF8RI65NP3sOhhjvhnANwPAuXPnXkA3pE3Mz+oVEBAQEBDg4zB14CCDMK6tuHbiXMX0J87gLhaLqFarLhEHjSUajKwXxVTmTNyhSSdIxpaWlmCtxfb2tjOUOp0OcrkclpaW0Gq10Gq13M4/26KhksvlnMsSlTzG1jFLJd2/qM4AcIkUmGWSKgbLA/R6PQBwCgITRLTbbXQ6HaeCsB9UA0n+Njc33fenT5/G8vKycymj8cXd8rNnz+Lee+91SuE8gqEGnBrAdOWkYa3Kns6xuo/pmqBaE3fNeSpa3Hf6uSpOahDz3kk84lRf/sv2ea9K5HwjP65/qjSqi6aOyYsNbZcEg2tOlT+f/HLjgTFxdKVLp9Oo1+t48MEHsb6+7jYEmETDT+xh7X6cFLAfh0iSpXNCqEqlpIv9VndBEjFmmCwUCjPZX7WAON342D4VOk1YRNdlXUtUlRn/xvln37leOaeaYITtKnTNx8XP6Q/vW8dPiR37qJk+Wd6EY8jyJCR4Gjvnb3LwmfbnQ5U3xhT7mytcP4zDVddXPjc3C8+XwP0bAP8IUcjZPwLwgwC+CSzFNovY//mstT8K4EcB4IEHHnhRWNdL9K4ICAgICDimOEgd87+bR9AU/jE+WVADIe7azARZLBZnDDS6V9FoGA6HzqCggabGIA2carWKZrPpYuZoHC4sLKBSqcykHqdLmTFmJpskyYoatYwH6XQ6TvmjIUmjZjAYOCWMbS8uLiKdTqPZbGI8HqNer7tyBq1Wy5Gk0WjksmwyrieRSGB5eRmpVAo7Ozuw1mJhYQEnT55EOp1Go9Fwhube3t6MC+VrX/taLC4uzi0ZwHHlvzQe6TbJDJocPyVvBNU6AM7g9pMpcK7j1hqv7RMljcdR+MajtuknM1GVTL/z+0Y3MwDOeFdSFrd2eR77zzF+sYlc3LVpnHOd+N+zNhpBQpDP590cMqbs7NmzeOtb34oPfvCDrqyFbrJwXaTTaSwvL7t7zuVyOH36NPb29nDp0qWZOojcACC5yufzrlwGjyF5owJG1ZxJiPhsU3WjKs57Znp7unFyzTOzIskQx4bqurpMcr55jwBmSDzXDPtN5ZffM8OlKrIcV467n7yF86blT+gRQFXMj7fjtUmodL3qmlbyqG6c/FuzfLI9jo3vVkxiaO1saQdt52bgeRE4a+01/m6M+fcA/sv0z0sAzsqhZwBced69u0GEGLiAgICAgKPgINUtjrgdpML5rkD+zv8849d3n6vX6y6bosaA0HBYXFwEAJcpkmnRuZPMGJFisYiTJ08CADY2olxj5XLZZYxcWVlBoVDA5uamU+Vo6NJ4YbFv7srToFGXyWaz6frAGnDc/ScZo8HLvjF+jSQQgMu8R0M3m826EgWtVgvdbtcliWBSFSZAOXHihGsDiEgU3TJpSL/hDW/A7bff7oxhf27VFU/dJ2nk9vt91z8asL7rJEkjjV9Vv9TQjZt7/q1ETo3RG1WA1dXSX6NcL1ory1fbNHGLxrodVLhY1Qsa8X4GwucLHQ/921dI/DHwnz89luUkVFVOp9N41atehWvXruGxxx5z5TFSqRSq1SoGgwEajYZL5FEul92zwVjNSqWCEydOoNfr4erVq84Nk2oayQrJk2Y2ZMybxpVOJhO39thPbthoiQCSTU0sxGeOc8m58VPoq4Kq6hnHRM/nutf4tziXSD5rHH96DFDZ03VIhY9um+r6TfdUXo9rkDUgfdXZf6cq2eJ7lP0nseXv/kYFf3Qjw4+X+4KOgYuDMeaUtfbq9M+vAvAH099/FcDPGmP+BaIkJncA+P0X3Muj9ws2RMEFBAQEBBwB8wxLNQLnGc/zVDT/R9WTeapLKpVyKe8J7sADcCnFfcN8eXkZAFxc3Hg8RqVSwcrKCnq9nostG41GaLfbSKVSyOVyGA6H2NraQrfbRTqdxnA4dASJhbDVFZPXZLwQVSm6oNGQY6xbp9NxyhuJIeNqeE/lchnWWhcrR6LEgsej0ci5s9EYpTskAKysrGBlZWVmF7zb7Tp3UBqL1WoVb3vb21Aul2fcs3zlSckHVQ0WDKcBra6TPvGj0akKlL+OlJT5a8H/Pe54v98HkaJ5a5gGK4m5KnJ+HJwSUFU/qFrEGc28FsfITwd/I/CJ27z7Izgf6nrnb6jQ+GYSj0wm4xRfuvy+4Q1vwJUrV7C5uYlEIuHWGTMRkkBxrfLaxhhXRuCuu+7C3Xffjd/93d/F5uamc93lOqE6RfWH64rPejabxXg8W/4in8+7+VTylslkXBucV86drlFN/sEEKuPxeOa5InEj2bTWzrgkU0nziY6OM7DvGqrqr74L+d6jsqUkUtV8HS8tms3MtBpfqBlIOSfqtaDJWHw1Tt/Z6nLpJzvi+zCZTKJUKt3Icn7RcZQyAj8H4B0AlowxlwD8AwDvMMbch8g98mkA/wcAWGsfNsb8RwCPABgB+Kv2ZcpACQQFLiAgICDgaIgjXkC86yQ/j/tev4sjcD5h8NtNJBJYWFhAtVoFAGc4LSwsOPesZDKJVqvldqPVtYqJEID9WJf19XVnZDA2jVkgqU4xQcpwOESpVJpJVMJdahozJG6TyQSdTscRLhIaJl+g8kZSBsAZriRTjJljUhMaSqxRZ4xxGSl5D6PRCDs7O0gkEqjVas5lkkY6v9/Z2XGGML97wxvegNXV1VjXSX8OVX2j+ySzTdJgVrdIXx2jQhBH0uZdWw1sJRr+2jqIsMUpu2xbjVIe4x/vZ3JUxUFVSx0fEhhfZdN1rxkADxv/OMwjuXHPk5IVHkNDXf/WMWadQ64xuiEuLy/jda97Hd7//ve7hDpUp0iwSGwYC1coFJyKtLe3h2aziVe/+tX4mq/5GvzGb/wGrl275takqmjcKKAbJEsIcP2ROObz+euIG2NW6abJ9lVJm/f+UeWOaj4JN1PyA3AKJdcBFXZV2XTMNeaNa0ZVQB6nBJM/6npJNZGfU/XnWlXFmqqiKmO6JjTJCte1JiHixgTXNfuuMcVsjwSWBJylXG4GjpKF8utiPv6xA47/fgDf/0I69XxhTCBwAQEBAQFHQ5wi5u8s83f9V8+JUwlU1fCNfDUkc7kcFhYWXAwMQbfARCKqW7a5uQlgP1FAtVrF7u6uI2/9fn9GVVClie0ye2Sv10M2m0WlUpmpo6aZJFV90xIBVKIAONWCpQd2dnYwHA4dKWN2TCYV4fiQnDEZCGNbarUaksmoMDgz+THLJJW8er2O1dVVd81+v49Go+GMVxq8iURUrPzixYt48MEHXYr1OOLtK2+qvvX7fUfgqF74SU4IdT/115h/XV0XcesuDnFrKU5NjFPDFNpnvy01qjXWh/flkzmfyKkip+2SVGsNsRvBUdVGnRONi+K/aozzX9ZQo7skY04vXryIxx9/HI888ghqtRoqlYorVcF7yOfzjrAwKQo3PPr9Ph577DG87nWvw1d8xVfgp3/6p10GVroBckMA2FfcjTFO9eXzx7qLdAnmfJC8MTMq+0bCxfeKkh4AM9cnGaO7NjcguNa5UWPMfpIWEk6SGI17VUVM54fXZv84V1TaeE+qjPFdA8CNLUkmVULGA9OVW69J4sZNFz6b3GjRGEheX12G/bIFit3dXVeD7mbhhWSh/IKDQXChDAgICAg4HL7iFqdixO1cE3HucXq+fx39O5FIYHFxEaVSySUqSaVSWFhYcMkMGFfW7XaRyWRc6YDRaIRut+u+pwFF5WQymbgEDMYYZwjRKGLMDV0Ti8WiKy9Ao53GDjNDkixpSn0aOL1eD9vb267Pe3t7OHHiBBYWFpyBSALFLJJ0awLgSgoUi0UXU6eKHtWH06dPo1QqOXWj1Wq57Hx0p2L80Llz5/C6170OFy5ccPF+VCc4dzqvqqixzxqXx7HR42igKtn1CYxvUCrikpX43ym580mRrlF/XfprM0799WPk/D7xb36mhq26UKrKweQTcYo2SaG6mPpQguX317/HuM0X9pnwa6hpTJYSPW500FBnEqAHH3wQ7XYbxWLRJeDhBgdVNN4vXRxTqZTbnGi1Wnjqqafwxje+Ea9//evxsY99zI2hkjeqbsbs107U50/Xn9Z6JJGiIqTKEWvT8R6V/JCYcFNH+67KKeeVx5D4sV2uAxJJzSbJZ0ndETm/7KfG0dEVVWPzmP1W3RpJpIrFIgqFAjqdjiPhPI/3ocezDSWzOi6+6qakju3os8jYxOfrHvxi4FgROAQFLiAgICDgiIhTxvRz303uMDe2gwxNGjBM3U/1jHFnTOjRarWcQdbtdh3BSyaT2NnZwWg0colOSqWS26lnljomHmBRYRI8YN/FkkZcuVyeyUxJFSadTrskJq1WyyVQYDwOY2eazaaLpWP2zDvuuAPAfuHjc+fOodfrodlswlqLpaUlDIdDd5/Mhrm9ve2IJxDFuPAel5aWUCwW0e12nSvlvffei263i8985jOuBMKrXvUqvOENb0ClUnGFm8vlsttZj3PD8wkOlRjGBamRrOqNP7c+yToouYG6lynmuQYepqT5UFJ51HMINUiVCNIAVoNelTlV7jSLoK8QqivbYf07iND5c+l/p8RTFXE/Vovkgxsb3GDIZDJYWVnBvffei0uXLs24T5K48b57vZ4rWM8YT252XLlyBb1eD/fffz8ef/xxVx5DCUMmk3Hxbt1u1yURyuVyTgkej8cu5kpVMWP2U+BzPjKZjCN63LzheGiMGRU3nqNETDcoqOJRcc9mszNJStRlU5VYrUvH9nWjg2uCJJDkkWofVU3dECH5140purQqWdd7YPt8bnX8+Z2qjFx36lLJDQr2WdXPm4XjReACAgICAgKOCN+Q89U0IN5NLa4NP8bGPyabzaJer2NpackZGVTWmBiE6fxpROmOPotZVyoVlMtlAHCxL5rtkbv4qsKRAKpxSVWB5IwGfz6fd8W0qYgBcFn2GOuzs7PjlDCSp4WFBfT7fbTbbZTLZWSzWezs7GB7e9u1v76+DiAiSlQqtre3sb297Qgnd/tLpRLq9Tr29vbwzDPPIJPJ4NZbb8VoNMLHPvYxp1TcdddduPPOO3HmzBk0Gg184hOfwOrqqosjZCyNzpfvPkn1kMTXr/c2j7zNW0cKXz2LU2+V1GkcDj87DHEqVNx589YvQaNVjV9fnVb1ShOb0Hin8Uty4CuRHM+DsloeFXHqpJIB3hMVRE2br0laND094zpHoxHOnz/v6hICcHFqHCO6NfI5oUtft9t1fVhfX3fJT/xkIbr5QiWJpQaYLIhjxftgohKOr9Ym81UxrefG8dAslUqgSNBJmjinOtcaU8jNHo4hySSfJY6xnsM2+c7x3Sa5AaXvJH3mtM4dN4mYIMlXV1Xt080EfxOB96guw3Q316LoJMncAKM76c3CsSJwBggOlAEBAQEBh2KeyyMQH+sWd46SNjVufaO0WCxiaWnJufNlMhm0221nLLAmmsarWWtdTAxj3Or1ussiaW0UE0MlK5fLuWyTmUwGlUplph4Xr6UFg7VgsbpssWg1jTaqbjSUtra2sLa2BgA4c+YM7rrrLhe/1mq13LU3NzfRbDYdcaRCyAQC+XzekVYd10KhgEqlgmq1ikajgV6vhwsXLiCdTuPRRx9Fs9lENpvFbbfdhte85jWo1+vY2NjARz7yEVy5cgWZTAYPPvigi2eaR2Q0gQINYz9Bi7pYqZIBzGY41PUQt9Z8VTcOvjJ3GLmJc6ucRx7jrhm3YeFfP45s8hhf1WC2RCpwWv9PFRuOgRYO1zGdR0D1+tpO3P2rmx4/10QVvA7nTI/TLI3cdFlbW3OqmKpOdMMjuSCo5E0mEzz77LMueZCOCYCZum3FYtGpcVrzTUsP6DPsK5y8F65lvicYe0i3TfZfx5DqqSaeUdVZVVVCFTh9z6h6pcXNlcwxvo1/c/xJjNS1VVU4XQuJxH4SJxJG9l+JnK53kmAlqCRpVAZJ0hgjx+uR+AJwRHueR8bLgeNF4Axgb15R9ICAgICAVwh8wweIT4eu8A1INVrmHVssFnHmzBmUy2UsLi5iYWEBOzs7M4ofi1dzR7xUKqFWq7nEIeVyeSaRAROINJtNZ2iyrWKxiFOnTiGfz6PT6aDdbrsYE9ZwY9A/DRy6aQJw8WzcWU8kEqhUKphMJmg0GlhfX3e13G6//Xasrq46tQ4AFhYWsLu7i6tXo0pDjGOhutdoNDCZTLC4uIjRaOQUBgCoVqtOkRyPxy5zXzabxbPPPoutrS0YY3DixAncd999uHDhAra2tvDxj38cly9fdkrk3XffjZMnT16XAjzOJZa/q9Gr6psmaJhHvAA4YzvOte8w8jaPZB6kvCmB8u/R76t+5huc2ob22e9D3DPijyvbIpmjcawxclrbUMkxNxsOuue4vsfdq99XkglNse9nHVQl1lrrEulwo+DJJ5+cGS8qdsB+jBnVOW50UP1qNpvY2dlxmzRKWkgmWPvRWuvOpeshj9X4Q//9pfc6HA6vI2+aRIaqG9vlj8aqaWZSVal8ssjrajkAkih1sfXXKImeFtT2E+FozKXGsOo7l8lbtD9aE1BVOZJU/zmgksj+8B6pBvrjyrhExiHfLBwvAgcDi8DgAgICAgIOhm9Q+O43elycAucrb3ouDZpqtepivE6fPo1yuYzNzU1Xk61Sqcyky7c2SvfPzJSdTgf1eh3ZbBadTmemH1S2WKB7NBqhWq2iUqmgVqu5Ytc0TiqVCvL5vIvt4k58sVh0qbCZAZIKHRMhdLtdrK2tuWyYy8vLuOWWW5DNZtFsNjEajVCpVDAej7G1tYWtrS2USiUkk0k0Gg1Ya52yQHdOVbnYBxr4zFRpjMFgMECn03EK5J133omLFy9iOBziU5/6FJ599llHCieTCbLZLF796le7GD6dX0KJnBqwTF6i6puCY0bovKmqw2voGlI14yDEERAlWNp3fuffpx6jfYoz+vW6/vW1vzTodbNiHrnjOCnRobLCRDNKdkmASO6OCn+M55FXJZbqTumrcBxLqljsU7lcxvnz53HlyhUYs+8mmM1m0e/33fjQtZLZZVutFkqlEgqFAq5duzbjPqhF37Uwt7oGaiFuql/qFkhViPdIxZx9UpWPBFProrEPWvzbV9nUxZEkSonWZDJxyqvv+su59ctR+H1n4XI/0YyucyXequaxfcb9arZItkW3VhJ2f2y5fki8NWEPx4NklDGePFaJ7suN40XgQhKTgICAgIAjIG43eJ7xeBCJU6OELj+lUsmRqcXFRZw5cwbpdBpra2tuxziXy6HX6zlXxXw+j3K5PGM8Li4uYnd31xW05i747u4uSqWSI3IkgydPnoQxBu12G+122xmC9XodyWRyhrzR/YipuNvtNobDoTMyWWh7Z2cHly9fxsbGBpLJJO666y7U63U0Gg20Wi2nKjKhydraGowx7jpU80gGx+OxS3tOQscyBt1uF+vr644AcKwSiQRuu+02XLx4EcViEY888gguX77sDE/dNS+VSrjtttvczjnhuyeqoUmi4RfrJunirn7czr2/llSV0PYPgk+8FOpOqERQVSPfONZ7VAMzToE7Cvx78de8tu/fF/ugWSrpoqhkgUTgRuLiDiNtbFefWe2Ln6VS1TqqcCSVq6urM+7KJGLlctklHFIXSrrX1Wo1F+OqWR45j1qXjGoOlR91LfXPVRc/VYgIVdHiyjsomVUFjm0raQH2y4aQ6KhapbFjvtuhJpEhkePY+uSN90riqeq3blL4mWz53iWZ811/qZwZM5u0RZOv6BiTWCrZ45pRxdA//+XG8SNwN7sTAQEBAQFf8JinPvjfEaq2+e3QQMnn867IdKFQQKlUcn/TxY91zSqVinNbrFarM+6NiURUsJrqFo1KzVDHPlKxq1arLgaOyT2YxRGA2y3e29tDPp93sTzdbtd9xx1npt1fW1vDxsYGRqMRFhYWcPHiRaTTaVy9ehX9fh8nTpxAoVDAxsaGI6fMCEdiynEjWWUcDw3XWq2GcrmMjY0N505JxYBxJnfffTeq1SqeffZZrK+vuxhB34i01uLChQuoVquxdd84j/48c1zoPqm1o9TVL46cxf3tr4+jKm/z+sfffeUkLq4sbl2zXb/PcRsT/F6NYD0e2CeI6jY379lg29pvugdqRkdgP37pqPXi9P7UFdJXF3ks1ws3SbgOqc5pOzyGfWQtOCropVIJqVQKxWLREShuSHAs6BbZ6XSc0q7qNxXJfr8/c9/+mlH3RSWanAMqx3t7e66eHMdZ3Re1PABrMKpSS/JCMkYypPGBPknTbKL6POrzR4VRVTON51P1U5Vq9ovzQoWR0OeTY8Q+8m91R+W7kERYSaXeixJ5vqe4sTAYDNzm2IuRhOeF4HgROMyv2RMQEBAQEODjKMbnQa5nQLRjvLKygqWlJbezz/pm4/EYV65cwdramjMUWduMxgqzznHHv1QqzahuJBfFYhGlUmkmNffCwgISiQS2tracwsYMjsVi0dVIo2HCuB4gKlnQ7/dd3A4Al1iEromJRAJLS0s4d+4c+v0+Ll26hEKhgGq1in6/j2az6QhVoVBwKfiZwY33RcWAhcGz2Syq1So6nQ4uX748k8zBGOMIbT6fx87ODp588kmXgt2fIwDOiLvzzjtdTOBBc67zTqWQ7lN+fSj+7htrvhoVt0bUGI0jZ6rexbWhn2vSDFVJtK/al3lqID9XsqLX8cmQDx23ODdVX6X254n3wfXODQXeC131bqTGlk8W/c95bfaZag3Hw59bJZ0sGn3y5Ek0m00Xmzoej7GwsABjjFPESfqSyaSLyeTmBVVnJQ3qMkkiSyWNxEc3EPz70/Ei2fSTi+g65tizL+wDSY8mneEcA4hda3EukaqsU0nkfbE9TSTDz3QjQvujhEpLWCiJpOt0uVxGp9NBv9935Jr1Lv2aevpscKxInrPZrCP6HFvWnOR8cf75Lr0ZOF4ELihwAQEBAQFHQJwKQfhGq0/m1ACmysZ6bgDcrvfOzo77j56KFN0q8/k8ut2ui3cjyRkOh9je3kahUMDy8rJL5U+lqtVqOeOqXq9jNBphc3PTFZUtFouuzEC73XaZFUnqeA2qYXRrBKJsmTs7O7h27Rq63S52d3exurqK1dVVrK+vo9frOUN1Z2fHqYUE73E8HmN5eRnWRpkuacwxoUm5XEa9XsfVq1edwkdiQoJJI7fT6WBzc3OGSNEI9uNPlpaWcOLEiZndf19Z0h8a9Br75qtvPgE4aMfdJ2GHKW9xJM1X0/x+AvuGPa/hj4MSTo3x0nXsKyuHrXk12OPIRFz8k9+OP0Z0f+UapZGs7pRxSuq8ZzdOdfP/5frRHyWsOh8kZCRX9XrdbYqUy2UMh0M0m023GcONh93dXZddNZFIOAIH7Ks8mr2S613VJLoWAnCuvewvx4SkBoBrg3OuLom6Rnj/BNeUKlckzlQNNRGKQpU6Y4yLayV4H2yL98+NJI3PZD859kre2C9VvHT904WS8Yq6rrQdqpR+ciNVs3ks32VMBsN3Ou/XV6VvBo4VgQNCDFxAQEBAwOFQAzBOYfPdxXzDPZPJYHFxEZVKBcAsOeB//nt7e66Y9GAwQKFQwOrqKqrVKnZ3d1Gv15FOp7G9vY1Wq+UKCKfTaSwuLqLf76PRaGBhYQHLy8tYX193NaWAKGPkxsaG220uFouoVqsuBo73lMlknHFMF0u6fFLxSiaTWFtbQ7fbdUre0tISKpWKI3SpVMq5D9FYYyyQJgbgTne32wUApxymUinU63WMx2M8+uijzqilkUiix8yFNITp+sX7mecud+rUKdRqtblGv2/sU43QHz/2zb+mQo1kXTu+AjRPZVM1jNCYN/6rdavUzYuGuRI9hf7tG8v8TI/V+CE1Tv1nxf/dJ3I6HvwuTg3kWIxGI7dhUCgUkM/nkUgkXCySKjhx4+o/x/NcKDlGSn5IWPQ7X81jBsdsNouFhQVsbW05xTmfz8/EsFG1YVbZQqGAZrPpXCZJoDT7JM/X+Col2BwjJVtxGwwAZtaDKov++uA8a4p/ANfFeOm5GmuqKp/WqAPg3GPpjUASxHu11s5klyThjNso02ed70bOiWbOpCoGwClo3NTSunP+M60uoSTPnNetrS1HYjkGqlDOc9N+uXCsCJwxJihwAQEBAQE3hIOMyzhjMJfLYWVlxWWdSyQSLjkDVSnGsZG85fN5l9Cg0+m42BkWumb8ymg0wuLiIvb29rC+vu5cdNbW1lzRbABuV58JFYrFoiukTVdDa61T5IwxaLVa6PV6SCaTyGazrr6btRZra2szBYUXFhZQLBadK6cm9igUCjM74JVKxdWm2tzcdHEnjPWr1+uo1Wqo1Wq4cuUKLl++PGOw5nI5l/RF49FodNGwpgGaSqVm1D/ukK+urrrkEXHKmw8aZXSrOkh94zpR0KDzFTdfxYkjj3H98lU3jQfyyZL/o+tVCaOqDP61NEaRpEbdImlAq4Gvx8f9+PFxB6nc/IybCCQ3TNLD5BGcc5+wxSls+q9/nBIYzrMSdp+kq0sfyUetVnMEU2PKisXiTKIRxndRHafipJkLqShpPBn7qwl8fBde9lddCBnT568R302W/dX1QCIWp7Dxe3Xf5VyQ4PFZTyQSzo2T7XEDplaruRqTJM5UzjQeURVS3hv7zfesnqMbbSTV1kalGEiwOBYkXbwW31lUB5WEsp2NjQ33ThyPx87dnc/+zcTxInBAkOACAgICAo6MOFc7IN64TiQSrrAvjYB0Oo3BYOCKVDORCRApZKz5xnTiVLJoZDQaDRc3w533TqeDTCaDkydPotPpYHt727kWckfYGONS79Oo3NzcdKpFMplEqVRCqVTCZDJx9d1Y+BaIjJTRaIRWq+XqyvHcyWSCnZ0dV+ybsUCMc+OOOAP7aQS1Wi23286SBrfddhuSySQee+wxV9ttNBq5DJTcqW+32y5uiOOtpIAg8VBjOZ1OY3V19dDEAkqSVA3RH3Xl0vP8NULjWNUrNerjdufnkTb9XRUBYJ+8kHTpd3HtzXPt8lWOuHsC4ssHqPKn6gjbVWOf98Dv+K9Pqnks+8Wx40aIJvrhOPAaarj7JCWONMeNNUkJM6/qutC+8RrJZBKFQsE9A+yLxpBSBWKSDj5Te3t7zp3ady1kDFcmk3GbF6q+sW2fCGt9N44zn12tm8Zx1Ta1LV1z+sxpBkmdcy1HoHF9VMiMMe5z1k2jqzazT/pKL9Vln0TqPPNc9k+TlfiulKq6qesx+8f5nkwmjpBzHOj+yvHgXHIdk4wHAvciwoQYuICAgICAG4Rv1Opn/DyVSjlXRhp8rONGQ2U8Hjvy1mg0MBwOkc1mZ+JTWOiaxIzxYnQzbDQaLoMls1AyAJ+KWy6XcwSKmdU2NjZQq9WwsrKCa9euORJFksjdabossVYcDZlOp4N8Pj9DEGiwdjodVCoVlEol5x5ar9fR6/VcwoDTp0+732n4rays4MKFCxgMBnj44YfRaDSc8sbadIuLi2g0Gi4bH40nANcZc76BzbkBIuOexFrn7aC5VfLmlyPgcaqAzYMSOb12XN9VkfJJmLqGkRSRQMQRNu2rn1ACmE3aoWNH9YJj4Ltmsj0lSr6BrwY4r+mrcf79x4H3rWoqEKk6zWYTw+HQbUIA+6nedZwP+juOxNGoV9KgSo+/xngO3Xvr9TquXLkCINqwoFFPssn7GY+jkhm9Xg/tdtvFg9LNl5sebFddIzWpB9VRfs7vVLnidTWOU+9N709Jr9a7473yuWP/uLHENUI1UjNCcjOLG1q9Xs+5nTLGl+8efQbUDZPX1/WqyhyJMM/jOZzHyWSCTqfjEtQwQyeP0bHjffL6fjZUupHrswLAKf/s00GbRS81jheBQxDgAgICAgKODjXw4wx+Y4xzTyyXyy5Oq1qtAoCrnTaZTFz8WSaTcRnQqJKdPn3akbDJZOJUr6WlJdRqNVSrVaytrbmyAEzukcvlsLu7i0aj4WJqaHDkcjl0u10kElGmSBbqbjabWFlZcQYkXYdo2LEweCqVcklLaASqIpFOp9FsNt19NxoNAHCuUHSHqlQqaDabLh16LpfDyZMnsbS0hOeeew5Xr151Wfi4412v1105BJIouo35ZEiN6ThCZYxBtVpFuVy+zqCap8bQoFUSFxcnE7defPLI/vrkah6Z0M94Ho1b/zuNhfP7RCOeBr6qLkx3PhgMZhQcHhsXW6SZ96j4Uj1RVVHjo2goa2IIVa9oJPNYNeD9MfTnlYb03t6eS8wDzKbV9wlk3LzNU+LmuVH6x3GcqTjXajU888wzzg2a98bxZ13HbreLnZ0dtxFDhZ7xfQDcOHP9U3FTRdevh8Y+qlup3ou6wRLcCNDvfCXXX2OqivquwiRCVOW5RpiQht+RmHKDSxVFkkxey++zulFqrJuqwuyzxqZZu+9CyTqX/J2klvORSCRmahSm02lXToTXIIHVOpxBgXuRYYyBDRpcQEBAQMAR4Bsr/k5+MplEvV53haYTiYSLzWHcFFWxU6dOodlsAohcdbrdrtu1v+2225DP5x3ZazQaLmarUqmgXC47Q+/ixYsuQcje3p4zQAaDwUwR5GQyiWaziWq1inw+7/rOZCBUygqFAsbjsbsmsB/kv7a2hs3NTZeARLPO0Uip1WoYDoeO5CWTSac60LDqdDpuDMvlMk6fPg0AePLJJ9Fqtdyu+WQSZZlcXl4GAGec835VIVCyM48M6ecakxg3t3HzrGqMXzpgHoHz3QCBWZfDOPXG76uvkLH2nO8Sxn8nk4kr1UClhEliSOBJzBifQxc4YN/lVOHHGDHdOvtJdZVrTe+XGwjZbHam6LQSD3U9VBWJ58eR0TgljfPTbDYxHo+dGq1Fs+Pmed5c6ZzQkOfmhhJDH0rgSqWSi1elGkVXOz53fE56vZ4rG0LCwIyzSo7VPVDLDGjdOI19I2lRdU4JNueYn/nzopsDdGHmWlCCpq6GHBdV5vjuGI/H6Ha7jvyTuPkE03el5X3RRdtXQfWZ5PjpJoDWnSPRymaz7l2ryiJJHvvAtU2XcJ6r46Luszp2XDsHKfMvNY4XgUNQ4AICAgICbgy+e50xUXzZysoKyuWyM4bz+bwjI9yhZZIQkrfd3V2sr68jkUjg3LlzuHjxIqy1ePbZZ51iZa3FyZMnsby87LJQjsdjPPDAAzDG4LnnnnNK39bWFprNpjP0WD+LbQFRuQAW855MJhgOh7h8+TKKxaKLqSFpq1QqGAwGuHLliitJwKyPNLCbzSZOnDiBXC6HTqfjarvR6OG/k0mUwITuaMzMaa3FlStXXMyPJgaoVCpIpVIuMQAJnBp4nBMab/OMJN2xX1xcnEkZ7huJPjkA9l0oNeZMlSB14fQVIk0owe/j1Fxf0VWjVIkriw0r6aGCStdTNYCZOIJ94Xdcn7w/n1DqPfA7NURprGp7mpCE12cpikQi4dTgOEKn19NxV7c4XxWMI+uTycSVxSCRm0fifOLmK59KoFV19Qm8riN+zzVWKBTQaDTcc+qreYPBANeuXQMANy5UetPpNIrFotsoUTLF8VHFWRU3XaMa06burVRjdX34qiN/SHx4vqp9THDk//AcVdg6nY7LtEuXV1376tapdea0BMG8+WAbPNbf5OC6pKpJssd6kLqhQRdQfsaNK8b6UrnjuPFa6uKp7cWtwZcLx4vAmUDgAgICAgKODt9YZPKPpaUlp7pZa11hbMav0fhJJBK4evWqq//U6/WQzWZx/vx53Hfffdjd3cUTTzyBJ598EsYY1Go1LC4u4uTJk7DWYn19HalUChcvXkSn08GVK1dcen7Gc9BVi4Y6d5fr9TqazaYzuLkD3u/3US6XZ3bKh8OhUxDoCsnSAlSAxuMxMpkMVldXkclkXOwbr9ntdl2sD5UeumJyfLrdLjY2NlySBxpNTCxANZCGorouAtenvudnnCM1RonJJKotl81mXWkE7tLHqSlKpJTE+YZq3FrRa/ptKvR7NSKtjdy7WDQcgDM2d3d3sba25jYQ+v2+S6/vu/iy/wCcgqg1/fjvPPKq46uEAdg3qnk8v+fY012QBjmTjtCw53qgOqXqj15T1dI48qZuzDyn3++7cSQJ8jdfDppzHQM1xue5z2rfSOAY/8pSAfwe2CdZjUbDJSMiuSBJ51rlBobOF5/lXq83o5zpnPnkhuuApJjrWdeiqpnsp44/Sajeh/888Dmmay3vlXXqcrncjFupqn9aPkCVNF6fNdv0XI13I7nUDQaNFSV4X3yv8D1F8spjUqmUK5nCPvC9SuLH9wgLf3NM9Hr+e+DlxLEicEAoIxAQEBAQcDh8gxiAq/O0sLDgXGkymQwqlQpOnz6NtbU1p4ZxZ3w4HCKfz7ui2wBw8eJFvOY1r0G328XnP/95PPLII1hcXEQmk3GJUHq9HhqNBsrlMk6cOIHt7W1cvnzZKR6bm5sYjUao1WpOfWNmN8bV0RgbDAZoNpvodrvOoNUaSN1uF+PxGK1Wy6mDLETMsgZbW1suwQIAdDodLC0tIZVKYWNjw5UcoIGWyWTcjjvHgkW3Nesd3ZR0BxvYT31OEuPHt/hJHHiOzp+qN77RpddSNcVXzDRpixqwSpj59zzodeIIgCpuOzs72N3ddeqoJp1ot9uOFDF7oY4J/2ZsFA1iTcSiY8N4Hxqdei7XBj+jsQ3AqcQa56PKpqoSbIuGLslfr9dDsVh0yhzjj5SQqLrkky6fLKuCyVhKKsC+6noQCdR5UsKmJE5dKfkdVaREIsp4ury8jJ2dHbfuuF7ohnf16lVHILi+mHQokYiKe2tpDk06QuKirnu6/kmKdGx4n9pHggozMKviUWHSeDu2zecT2I9z1ALj6trNDLyMzyV50ueJqqw/V5o1V++L/dNMmLwP9k/vj+7mLOegmVs5L6pCMusvy6qo4s9xYVkVjR1WJVA3D24GjhWBixS4QOECAgICAg6G71JWKBRcQhH9T9pai2w2i62tLVdsO5fLOaWHBkO320W1WsVtt92G8+fPo9ls4tKlS2i1WgCASqWCpaUllEolbGxsYHNzE+fPn8fCwgKuXbuGjY0NGBOVG1hbW0O73XbuhkxwMJlE6caZeZKGKZU6JjzhjjGD8VkomZnhzp49i1wu52q/dbtdnDhxAgCws7ODarWKkydPYjKJyg8wOYmv+BQKBWfI9Ho9V0KA/w+zrpuqlcC+QekrCGqozyNONLRoiAL7sTg0YONcKFV1IdSg810ofYUori/ahq/waNzS3t4eWq2W2+0fj8d49tlnnfGoyoOqC6pOqkII7BNeqqzsi8bpaJZAdc3k+PJ7NYa5ppTYqXHPNlSF0GQUPD6RSMxsKpTLZRQKBUfkfIKs7fH6nDefmPG+2+22e2b0edU5m6fGsf24uecY+fOtRI4xX5VKxa07FvVuNBpotVoziV1IKqiUsy0tZK1kTgvaj8fjmcQxHCs+5/yb86njpgSG/eYcajFqVfGoDqu7I58xTQSi5UBYr5IbCbpBwnaUKGv8ob9Bw/HgddgvrjXdKNBxo3Kpaq+qdLp2+FwqodTvuTa4OaIEnmNMj4KbheNF4G52BwICAgICXjGg6xCzTHLXulwuo91uo91uA4hShZ85c8YVia5Wqy6d+Gg0wuXLl1Gr1XDfffchk8lgfX3dGZf9fh/Ly8uoVqsoFArY3t7G008/jXPnziGZTOLq1avY2tpyZOfatWvY3d3F0tISALgi2kAUb0f3RhKm0WiElZUVGGNccpFMJoOtrS3nfrm3t4dOp4Pd3V2cPXsWpVLJGXM7OzsuTm4wGGBlZQV33323U9OoEuXzeWekUVXTnep2u+2MRABYWFiYUYXoJqUGM4DrjLe4z5QA0rCmMaU75nos21HC40NVwDhXqDg3SV/JiVP7aKBOJhOXqKXf7yORSGBnZwedTscle6BRT4LmK4L6uR8fqITXdzedN56+suWPi09eNFmDJrtQ1zhVrmgUK6mg0d3tdpHP511WU/ZNiaKPgwjYcDh0qjc3UvR+/XP9e5unwCnZ1bHiOPPeNYEGAOemPJlMcOnSJSQSCVSrVZdch6RBiTXHimtR59InOaqEsU+qzvI4bV8JkLavz65mL6U7LEkb1yhjGxOJxEy2TNZE47X8zQ5VJ7lZwlT8SqDjlFKOz0FzCGAm7lIJKmNrSQbVlZPnkQTrHOtzqxsafA50rQYXyhcJJsTABQQEBAQcAcZEcUZ08+J/6sPhEO122xkn/X7fpevPZDKuHEChUHCp8c+fP4877rjDGehMy37lyhUXT1coFLCxsYFms+l27a9evQoArp7cxsaGU8nUJYqEqV6vO6OD8W6lUsklu6ABt7OzA2starUa2u02Njc3YYzBPffc4+q6sc4RDZZGo+EUwaefftrFOfV6PVgbxRtRcaOhxPgSdfcDIoKnqiENRc30yL5q0g1gX1kC9tUoJS6+axzP0Z18wm93HgFTN0Pf5XAefOVN1cTd3V1sb2+j2+1iMBigVquh1Wqh1Wq5tUHVjYYhCYm6n6rxqAoEx0ZVA44rDX51sdSxInxSrC5nNLjVCNfxZNvsO132eK6vRrJ9khduLDARCY18JU4+qYtTQWmkt1otp6L7GTPj5s3/W4mc9p3fq4Gv5JXrulQqufuz1jr3Ubrg0fWO65DrnvNIYqdkkH3iWO/u7rp1o2tZ6y6y30rkeJySK4LkjRsrHAtVy0ejkUvCAmBGteJ9UdFi+7q2+WxyXHksj2FSJk2Y4sdM6ppXssjPOIacF24k8bkiAeXY0ouCLqAkkKrEca36mxE6zuqaejNwvAgcQhmBgICAgIDDUSqVXPyMpvNmTSMaFdx1BqKkH9Vq1dVESyaTOHfuHJaWlrC7u4tut+tixtbW1rCwsIBarQZrLS5fvuxcMEejEdbX15HJZFCr1VwB7Fwu59yDmCBheXkZi4uLaLfbzkikgpNOp91OMesX9Xo91Go15PN5bG5uotfrYXFxEa9+9avRbDbx3HPPOaLAUgEsIm6tnVEdW62Wi9di/E4ymXSkdnd3F5ubm87tajKZuDTvJJ5Mq07jMJFI4OTJkxgMBtjZ2QFwfV00fua7QupxSir8pBt6DM9h6Qe/PTValYDEKWtxLnVxbT3++OPY2Nhw87W5uYlCoeDUUD1XSxjoLr9/Xb9fdL2jAe8rcLoBoNdTtzTtPxPn6HU0yyBJADCbkU/7xD4oofbd/ZiZdDAYoNvtuiyuvLa6nvoqmD/37AOVOJIK3QDR4/w1oUqmkmB/nnmsT5IymQza7TaKxSKA/Y2Yy5cvY2trC2fOnMFwOMTW1hZqtdqM6yAJE1PYG2NcynsSOiW3et9alkPdP3XNkKwoedJ71s0PAI74M/EM29ByBlxnVFC5BhWcNyb80KQ6eqxuVJBwcRPAXz88V+dVVT1VQjmm/n1yXJSo6Vr2nw8l9txM4DVIDpmJ+GbheBG4oMAFBAQEBBwBCwsLzjgtlUpOkUulUmg2mzMxH3SBWllZwe7uLprNJur1OlZXV93xNEAY21Sr1bCwsIC9vT1cuXLFZa7sdDrIZrNOhdve3nYp8LkTTqOKu+3dbtclDaCbJAAXZ8MYvNFohAsXLmAymeDq1atOHSQBXFtbQ6fTcbXhVEmgi+RoNEKz2XS13ahqJBIJpwIsLS2h1Wphc3PT7Vazv1o4VzPs0XhikpRWqxWbcEQRZ4ADs+5ZvmoSdw4NwjiDzidhh0FJi6pu/HwwGKDRaDjDkOtIx4Njou6FCr0/Gqe8FgkZ14mvAMSRECVYfkIU/V7XBOeV19HEJb4qyjZ8xUwJmE8keP9UgEgK9N59YqhzwGO4BobDITqdjlOHSCDi5k/vX2MGD5p/f62RcA0GA6fUU3nu9XpYXV3F9vY26vU6EomEWxOqOmmmRKpr6hbJazBWTbOMKoHT2DeNB1MCpRsePrk3xrjr0xvBGOOyzTKulv3kOdls1mUFpTJH10smb9HNCa4tqtSqxMXNsyrP/Fs3ZLgWNdNtJpNx3gXsJzdFNGMoxyWbzc6QYK4dHUOf3PN+D1szLzWOH4G72Z0ICAgICPiCBxOEAJHhUCqVnIpFo4Ep81nbqNFoYDKZ4Pbbb8fq6io6nY5T3dLpNB599FEAwIkTJ5z7IuPhut0uSqUSVlZWkE6nXYHrpaUlJBIJbG9vO4OFhlM+n3dJAowxLuaNah93y+k+eebMGVc3LJlM4u677wYAXL161SUmoLFJYzeTyeDUqVMoFovY3t52ZJSxPDSumKhieXkZ29vbuHLliiMfNHpYkgDYz3YHzLrR9fv9mbpmNPQJTbShBrrvxqe78PxbCUIcNGEBoQTSV5T0evq3b9zxGCqSVMUAXKcGqcuausdpRkg1ev3rsy1NPkEj1R9HvVce57uA8ViFxhHxPtj+aDSayfJHxYKbDUrW1VBWMkbSpCrM3t4e6vX6TEyV9t3vp09IADglW9fbvDWhc+3PpU/y/fXH7/kskajUajVsb28DAN73vvfhk5/8JP7gD/4A9XrdvT8YR9jpdDAej90zTGKkJQBUFfLng2TbP05dbZU8c8w4JiTP3NygFwIJFjdjGL+ZzWZdTUyWCEkmk66GmrV2xj2Y60LjOTWZCq/Nd55mw9T3gp9MimSdz4qvyNGTgsdwznQNcQy1SL0Sed2w0PeNbrRwHjkWNwPHi8Ahvv5HQEBAQECAgrvnTCZBlxjGbVGhO3nyJABga2vL1XdbXFzEtWvX0O12AURGOknSrbfeinq9jna7jcuXL6PT6aDX6yGfz+PUqVPo9/vY2tpCKpXCyZMnUavVsLOz4wxs7rgvLy+7HWOWCSDxGo/HzjWz3W4jn88jkUjgqaeeQrfbxfnz53Hx4kU0m01cvXoV29vbjjTw/tLpNBYWFlwilqeffnrGGKFyREOGsXyNRsPVqqPbFYmmxsXRMFcDmAkS1FCmEarJBeapaWqo6Y443RB95cmHxuP4x8URQP1bFRg1+PkdjTm68qnRDGAmJkfJm5I2JW802DXuR5UyQu9DSTPHVI+h+xfHQtsj+fJdDDUtvCbiUHdKbcufV/1OlR8SBXUnBKIEQqy/yD75cW1xc8f74GYGk6SoguMfr/2NU4J9dzvfvszlcq5/1WoV6XQaTz31FJ588knkcjm87W1vw2QywR/8wR9gYWEBi4uLrsyGH1ulxEqJiSpqXHdc6wTVLs1WqWPOvnN98HwtuK4ESpOy0JW7Wq060sJnaDAYuEQhGrcG7G9U6IYMszvqsXptrhe/v3wOWH+OCZOUAPLZGQ6HLsaN7qm6GcTP/OyUVCE1qYpuUnA81T3zoHfNy4FjReAQFLiAgICAgCOA5CuXy6HX67n4k2Kx6BKbrKysoNlsYjKZ4MKFCzhx4gT6/T6effZZGGMwGAzQarXQbrdRr9dx//33w9qoOPfTTz+Nra0tdz1jDNbW1tDv91GpVFCv15HJZHDlyhU0m00X/5HL5Zyxt7u768oXaA24XC7nXBCLxSJ2dnYwGAyQz+dx4sQJZDIZPPXUU9ja2nLZMBn3RvJ2/vx5VKtVNJtNl1yFNd1SqZQrkjwej1GpVFAul7GxseHqW9Ho1l177r772SfjiIca474CNC/Dm7pB8kddsnwS5hveaqT5hrlPyvQ8/VtdGpWYDgYDVy9P2/VjgHzVh9fwFQAtAB2XuZPGpT9WXMccFyWs4/HYKRR+Uhca4Txe++IrX1TMUqmUu1+qcgBm1Au2w89paKtKp31Ql0qfjCixUeh4j0YjV1zejx1T0AD31xP7rOoi2/avTdfI0WjkEgd97GMfQ6/Xw8bGBs6ePYt3vvOdKBaL+P3f/33U63WcPHkSa2trLokGib3GtXHMNbOizrGuIyU/AGbUWz8BjM6HkhNVPEnSqKSTUJOwMWZW+0MFUdeGviN4j/7YqkqsyVmUIKoiRqWTz0cqlcJgMHDPAftNl3AS7MFg4Eg91TkgUsw1w6efOIWbHSSO3DxTJVTr7b3cOFYEzgCBwQUEBAQEHIqzZ89ia2sLGxsbbnd4dXXVKUqpVApra2soFAq4/fbbUa1Wsb29je3tbRcXwtT8t9xyC86ePYvhcIhnnnnGETXuMJfLZVe4t16vo1qtYjgcYnt72ykQ3OUuFotO9WMcG43rcrns3C2567+9vY12u42VlRXceuutyOfzWFtbw8bGhnO39FWFarUKIFIVG42GS39OEnnixIkZN1LWwWPdOJIKzebGtjUNvioFumPtEyoak5oUwFfJlAwp+DmNPb1P/zgaiGqwKjmJc5fTtmiUKvGgi9nm5ia2tracAqnqoyopPtgWyVa5XHaEe29vzxmf6mbHfis549wxjonGcS6XczGepVLJ9YHF3Ul+mc2RxrafjdMnO/xbSYIqh3oe++yTY/Y/zg12MplcV27AX0fars4js6eSeKgLoj/u2nefGGpf/bUIRARuZ2cHGxsbbh08/vjjAIAPfOAD+OIv/mKcOXMGb3zjGwEAH/nIR7C0tITTp0/PFPrWTJRUpDTjpI6Nkn8l3DoWSprjCC/Vda5lXSsAnJJHt0kmLuK6Zm0/zofOq/++4dpSAjwe7xfF9gmdP78kb3zWCK5RP+kP3yPsv24akKwxpk/XBjeiOP6qJPLZKZVK7t3Hdx3H7GbgeBE4YwJ/CwgICAg4FE899RSazaarAbe0tOQyLQ6HQ3S7XZw5cwanTp2CtRbPPPMM+v0+8vm8q502Ho9x9913I5/Po9FoYHNz0yUTSSaTWFlZQSqVQqfTcTXcxuMx1tfX0el0nBFUqVRQqVSwsLDgFLVnn33W7Xhz15v9ojqxtbWF8XiMixcvol6vw1qLtbU1XL58eSaBCBMQqNva5cuX3a4yAFSrVaysrCCZTLrSAZVKxWVRXF9fdzvPJJR03eSOvgb2qxGviRTU+FUiwnggGqm+IegTKz++q9frzbjiKdTdUuNx9HzfSNfr+u3wXiaTyQx5oxucukWqekQSkUqlHEHj3DB7ImOKiEKh4DKXsm0WU06n06hUKsjlcqjValhcXHQF2Wl4W2vR7/dnCJ66m7GddruNbDaLRqOBXq+Ha9euYTAYOBWXrnSqPqi6SINWx9jPDsofdcfU+eTYUi2mq7DWUdO1wzlRQs0xYjkO9lljEVVpVfKmazNunRH8jONIVejSpUu4du0aVlZW8KlPfQoA8M53vtORuEQigQ996ENYXFzEmTNnsL6+PhMLqi6MJHC6/ki4NWGIulVStSM50XpwnAsqpdygUXUUgFNWucnD8aFyTRdETcDDceV1tUSAPvvq+swNC5JV3o+6GSuh0nkimdP51vb5jiMxZLIqtsksw1y3XGu+WyvnhLUwjYkSXanbpu898HLieBE4HC2LVEBAQEDAH26Mx2MUCgUsLi5icXHR1aWiK9Ttt9+OkydPotVqOcWrXq/j2rVrmEwmqNVqWFlZwXg8dvFv3W4XnU4Hw+EQJ0+edEoAd2nb7TY6nY6L09nd3cXi4iKWl5dRLpeRTqexvr6Oy5cvA9ivp1QoFNDtdjGZRLF5vV4PjUYDhUIB5XIZ1lo0Gg1sbW25uBQaXTTIGEMCRMkeaODwGpVKBdls1iVlIWG01jqiqISDafnVgFZDmKTOV+F8VUuJE/tL+JkL40gcEBnczWbzunpUCsYZKVFQZcZX33gN/qv94DGdTgfr6+vY2tpyrot+EgolDYlEAhcuXMC1a9ccSVYCS9cuGp7qZqZZLev1Oi5cuIByuexqAw6HQ/T7fVy7ds0Z7ozxJJmh4cm+cUyKxSKSySQKhYLbLHjggQdQKpXQbDbRaDTQarVw9epVPPPMMxgMBo4QalFmvVcqLUpKaPjrvHJTgccqKdQkFly7/vz4aqC6Y/Z6vZmkHnHGdpzrrH4WR+r12ix6nUgk8LnPfW7GzfGRRx4BALzrXe/CmTNn8MADD2Bvbw8f+tCHcMstt+DMmTN45plnrovH8smQv66UPPibJRwPvW+FEiKSHpJbxpZVKpXrSJC6FOpYaWZHVVPH4/HMJgzXsyqx/rrhBgzfK+yXEn/2SedBlUeSNWC2NAZJH9cZFcB8Po/hcOhic3mMjiVVx0Qi4Qqb0wU/Lsby5cLxInAhBi4gICAg4AjIZrMu3o3K18bGBlZWVnD69GmMx2M8++yzSKfTWFxcdGnzJ5MJbrnlFhSLRTz++ONoNBo4ffo0AGBtbQ27u7tYWlpyhmqlUpmJlaMRwOtSYel0Omi1Ws4gpDE0Go0cgaxUKuj3++h2u6jVahiNRrh27drMjrgabFQylCCwflsmk3ElAtQo4c57r9dDKpXCpUuXZuJ0eJ66SapBpjFDVJLiCBiw73JJY1RjZ+IMZ91l913g1tbWZjLP+eexn6qeKEki1BD2+64qD+OeNjY2XCZBvyiyGuZUVK5cuYJWqwUAjgQx5bnG4JC0UY1hBtPTp0/DmCjZTafTwec//3l0Oh1XTF37yja5lnwCyvtm5sxsNovFxUWXhZRushcuXMB4PMY999zjYkCfffZZbG5uurIWmq2SxjSNX1WyfLI073MALrvhaDRCvV6/TolTwhjnKkgXVG6g+HXudAx0ffoKnH7v/+zt7aFUKgEAnnvuOUe0x+Mx+v0+PvWpT6Hf7+O9730vbrnlFrzxjW/EeDzGQw89hLNnz+LMmTN49tlnZ9Yen7fRaOSeNT5LmsqfY6Dn6D1xfcetX5JnJdP5fH7GnZPPCF0OueHDOdXx5PFcZ6oYx22AqLLJc/U+NUOwKotKrn0iyHN4DX0fKQHmvXMjimNarVZd7Uq+S/g+5juE5zEOUK/5cuN4ETiEOnABAQEBAYeDitstt9yCdDqNZrOJW265BbVaDYPBwMW6lUoltNttXLt2Dfl8Hvfccw/29vbw+OOPo9lsYmlpydVYY4wRiVAikZjJbAlEMWXLy8suy2Wv13OZKnkMY2EYN0d1hN+RZNGw0npOwL5Lm/7NWCgSs3q9jsXFReTzeUcsqcAMBgMUi0UXywfA1bkrFAozhvI8Y113xoH9GDRV0GiMcaec48Pdcl+xUyNQ3fCMMbhy5YqL02H7anyzn+rWpwoPr6Gxawr921qLVquFjY0NZ/xxHtS90E+MwHggNdQ5LhwbVaySySTOnz/vlLbRaITnnnsO7XZ7JsOe3ouOMe/JV558pYoYj8fOHXR7exuVSgWlUgmFQgF33nmni/N67Wtfi7vuugvb29t45pln8Oijj7qx573xPtkH/Y5zQxdANei1PyT1g8HArVE/6yWP89cd70cLYlNx1Hn0Y7i4Vg6CrkEgeg6ffvppPP300zNxZCT1n/vc55DNZvGud70LZ8+exZve9CZH7i5evIgzZ864jRLeA10K6b7HzRN9rv1+aEykEjeSLu0/22EiD76vqM7T1ZBkjIo629ZrMyOtxo5x3lXFokJGZY1rQkkj+8tr+Kojx5btce71OaZ6x1Ioeizvn/fV6XTchkg+n0e5XEatVkOn08He3h62trZm5mQ0GqHf78NaO6P23QwcLwJnDGzQ4AICAgICDsHq6ipWVlZcCv9z584hm83i2rVr2N3dRaFQcMbsaDTCiRMnsLi4iOeeew47OzuOCF2+fBm9Xs8pI9euXXMxalRG2u02KpUKTp48iaWlJdTrdRhj3HckMcwYCcCl/s/n81hZWQEQuexZG5UOYGIBYD/jIAAXH9Xtdp074qlTp1AoFJySVywWUavVkM/nXbIV7ijv7u4il8tha2sLm5ubrg0aeSQOwGyBbsKPbwLis0EqcQH2C1TT4FaXKsJvVxWnnZ0dbG5uYnV1dYYU6LHsG3+0npnfXhxJpTFJV1kSIY3Z4q4/jVneK90jSeTYpt8PurgVi0UsLy+7mMwnnnjCjT0NTkIzQJKkck3oGPtxZ/NAEt/v97G+vo5UKoUnn3wSiUQCtVoN99xzD3Z3d1Gv13H69GncdtttLn0+E6Go4qfjSUObfeHfqhARanjT0Ga6/oPWlRr26kJM0jBPVWMbSjx96HEk7t1uFx/72MfQaDRw5syZmT4YEyXV+PSnP412u433vOc9uP322/GOd7wD/X4fTzzxBO666y6cO3fOKXFKYtSd0FfTVHHjumKmWip3XLNanJptkXTRnZBETF0hSY74TDJu0u8LiRyPo1LFMeB7hNcjYSNJJHljdkkSbrrBksBpkh0llUpimYGSY5PL5ZxruW7e8Fllm1tbW5hMJq4Op7XWuZLTbTiZTGI4HLqadO12e+5z9FLjeBE4BAUuICAgIOBwrKys4OrVq0gmkzh16hRarRZarRaWlpaQy+Vc0e5MJoNbb70V4/EYn//852dKDuzs7MAYg7Nnz6LRaMBai2q1CmOM28ne29tDpVJxhJGZJFutlisC3G63MRqNUC6XMRgMcPnyZWcEAXBtsxg3MFvTLJvNOlexdDqNra0t7O7uIp1Oo16vu+vRQGbxcCZxAeCIHMsqbGxsANgnVrVaDUtLS7h8+fKMwcTflRD4xEsNc1XiVI2h4cx75P35beqPulKORiNcuXIFd91118y1lRzQ4KNLaSKRmDEY/ftQVzv2c29vDzs7OzMp3ukCyeuowsXzVaXjMTRMaSAbY1xCkmq1ip2dHTQajRliB2DGoOXfGk+kxMMnIxwPVTbYd4LESsky3dy2t7fx0EMPoV6vo1wu48SJEzh//jxOnTqFO+64A0888QQee+wxt4GgxFfXAa+hYxbnGkmiAcDF8pVKpRnFRdU3f81RhfOVViWMPnnzFUxtU8eo0Wi4e3v66adn4tXUrY+xoE888YQb+4sXL+Jtb3sbOp0OPve5z+G1r30tTp8+jeeee27GLdFXoPRzJXrD4dARFJIbdedUBZqfcf0D+3GxGiuoRJvETNeOkjw9XuPq6Ho5z81RlWh93kkIuRmiRIv3ouo/r5vL5dx7kISSngX+ulMXUr53JpMJSqXSTM07VTDpVsxERHxP3gwcKwIHEwhcQEBAQMDhuHz5MorFIur1ujM2WWi72Wy6mLNz586h2WxifX0d4/EYpVIJ29vbGI/HOHv2LJLJJHZ2dhxh4rndbhfWRin5a7UalpeXHTli+YFut4tWq+WM9k6ng42NDZfxj/EXhULBGTOq3hSLRZdMpFgsYm9vD81m06VQZwbJcrkMIMpoeOrUKWcAMnaHKkUiEdW1unTpkov/AKIi3idPnkSj0QCA64xy33BW9yolS4T+TaNUVRO6gHI3XYvvqsGtKtNkMsGTTz6JN73pTS4ph5JDns/7pPLF7I+qFvlQ1abZbOLatWuOkMW5erLvGke0t7c3o8LReFYSVyqVXOwZs1rm83nXHvvg1/7yjWIlNnFuinTVU4VQXRh9Q1oVU2ujrJaDwQBra2u4dOkSbr/9diwuLuKWW27BqVOncOedd+KRRx7B448/7jYpSCJ8Vz7+y2uoex7XBY38vb09lwCoUCi4Pqt7nLpTsg0SON5XnJufEm9/DOPI4WQycRlcW60WPve5z7lYSN4jiz7rBsFTTz2FD37wgyiVSrhw4QLe97734Rd/8Rfxmc98Bvfffz96vR42Nzdd+Qi66HKt8z2g9RepLpE40tWVLn6+C2S324Ux+2UlNM0/x5/JikjGtN4fXTq5tjiOLGHBz9lXtqHQNe0nrCHpHo/HLu6RY8mx13dMJpNBNptFoVBwip6+Q/S5YZv6TOu65DuW48l2qbQz+dBoNEKr1XKbNzcDx4rAGdzcqugBAQEBAa8M0M3x6tWrWFhYwNmzZ9Fut9FsNmGMmSm03Wq1nMHUbDaRyWRw6tQpdLtdbG5uOuOUBYTpZrS8vIzFxUVnhNAwY+xFv9/H4uIiEokE2u02rl696gxokj+6WtIAJCmiEZrL5bC3t4dGo+HKHCwvL7sSBKwBtrCwgJMnT864olkbJRoplUqw1qLX62F9fd0pHjSoqbz0ej0As66TcW5yqtzQOIs7lgRD03n7LnR0vWLqb+7qxxGuS5cuubhEnxywX77il8lkYmNZfJUPgCMtbIvERN2yNHZHky+w7xwLZu9jrap8Pg9rrTOaaXjyb44V+6bZ9fR+fGVNXQIJZqRUBcU3cnku15yfyp0/rVYLn/70p1EoFHDPPffg/PnzOHfuHCqVCpaXl/Hoo49iY2PDGfScV81K6F9PlTmSN8aDGWOcCq7jqefpulCVhwRHSamuh3k/cesCgHN5fvzxx9HtdrG4uDhDKo0xjhypi+vly5fxgQ98ANlsFmfOnMG73/1u/PIv/zI++9nP4tWvfrXbiFGFFYDbvCGUfPGZ5bFUlHQ98RzdONAsseqmqKSdIBHkGKh7J9djNpud2axQl1l9BrUdxqtls1mMRiOXvIb91OyR/nOcyWRQLBZd7U6OE58dYL+WG9e9tdaVLFElk2uT61QTt+TzeZftlZ4Xu7u7yOfzuFk4lMAZY34cwJcDWLfW3jP97J8B+AoAuwCeAPDnrLUNY8x5AJ8F8Nj09I9Ya//SS9Hx+L6GMgIBAQEBAYdjMBjAmMj9kcWvr169ilKphHPnzqHT6TilbWlpCWtra9je3saJEydw4sQJPP300+4/+k6n44wNlg2o1Wo4f/488vk8Op0Otra2nCHCulqrq6vodrvodrvo9Xou3olulzRWaeDS+GAWNGMMGo0G2u02xuMxTpw4gZMnT7qsgpVKBclkEqurqy4GDoiUOBpYmnWy3W67+DoSQN4X4+/UPVKNWf9fNfxUJVMXNRrvei6/Z6bMySQq2UCDmElhqMioAnP58mWsr6/j3Llz18UMsR9KgJPJpNthV+Nf703J3/r6uisS7LuR8X70PE1Cwb6ookKjlSRSjVJNoa5xenrNOKLhZ8VTBULvTcmgb6wrydHYsTiSRHI5HA7x8Y9/HJ///Odx9uxZXLhwAffccw/Onj2LD3/4w7hy5YqrZ6exfGyLxrXOl94rE2swm2q/35/ZyPDXns4dMOtGqITXJ8BxpM0Hycv6+jqMMfjMZz4z4+KqIHnUvrZaLVdi4Mu//Mtx66234t3vfjfe//7348knn8Ttt9+Oz372s+4Z5UYB78mPBfOTl6jqreSNqlqxWJzJdKnjrGtI14QqZbqu9VzGnllr0e123drW1P8kjbyuZoHke4fqHoCZBFD6HJNUsQ6i3rcSf107Suq5IQTAXduYyPWd70muTz6bvDY38QqFwhd8FsqfAPCvAfyUfPbfAHy3tXZkjPkBAN8N4G9Pv3vCWnvfi9nJo8IglBEICAgICDgc2WwWS0tLACKDqtlsuqyMLAfA+ChmiLtw4QJGoxGeeuopp7y02+0Zt8Z0Oo2FhQXccsstLhFKq9VCt9udMT4zmQw2NzedGxYAl0KbSQXoSkmDiZn4MpkM+v0++v2+M0LOnDmDarXqsqaVSiWk02ncdtttmEwmWFtbc/EhVOrotklSsrm5iVwuN3Mduk/x/uJUNEJ/993afPIG7BuFer66PzFmrNfrYWlpCYVCwalgeh4NtU6ng2vXrjmFTtUVgm6UNHbposrd+nnktN1uY2tra4Zo0BAlyeV9895ofFKZoOFI4kb3TVXL1ND349d0/Pyx9MkM+63GvX6uShEJj+/KyHOUqGkbXBOqsg4GAzzxxBMYDAa4/fbbsbKygre85S0uW2Wr1ZpRxZTc8z58xUYTTpDcM4kQ45tUhVOFjZ9zvuIScPB+/SyK/ljqmqB78ng8xpUrV2ZiKf1xopLMuSYBfOSRR5DP5/GlX/qluPvuu7G1tYWPfvSjWFhYwMWLF/HII4+4Y3nvem8kK3GZGlXhZH9JvjhnmrKfJDGbzSKXy7mYM1Wgddy4saAbKePx2G04UVlm9lxuTHEuNSaOY8L3jO9KyTWg7sDMIsznVhU9rhWq91S6eRzdTvmeoALI55Iupv1+371HWd+T9eDY7hc0gbPW/u5UWdPP/qv8+REAX/0i9+t5wYQYuICAgICAIyCfz2NrawulUgmJRJRdj0SO/3EzfXm9XsfKygrW1tbQ6XRchrN+v++MgMlkgkKhgDNnzqBSqWBvbw9PP/00er2eM/RJ9rjTTKOh2Ww6w6VYLDqDSnfa+/2+c2PrdrvOQKOr2u7urktKQsNiYWEBjUbDuUlOJlGJg+XlZVSrVayvryOTyWBxcRGf/OQn3Y4+Y1lKpZIz0OaRNxrHviGuvxP6N400NUaV6Gk7iUQCq6urjiyNRiNcunTJ9YWuYpPJBJ/73Ofwlre8xY2j7rrzOjR0mZCgXC6jWCzOuKoqoRkOh664OvvGe6crpE+o2CeSEaoMJMU0cNUIVMNY3Rt1rPy4Nd5bnHqmipKvKCrp0XtWpYVt0OjltdRdj/euhH0ymeC5555Dt9vFuXPncPLkSRQKBZRKJXz2s5/Fzs6OI+Y6lhqL5Lu18h5IwpgVUNVKHUNfEfZdXn3lVBPDHKTCsa+7u7vY3NyEMcaVk1ACpWudJIzX4vd7e3v4xCc+gUwmg/e85z145zvf6ZTMBx98EHfeeScuXbrkUtrrfGnCFCAiYbreSLiVNDHWk+8trgOSVyqz6pKpLsK6BqiO67qkEsu1wfnhxsvOzo4jWBoXyE0oVX31ncAxJdlLp9PI5/Mu3o/3oXPONcB3Kd3aOe68N56r7sxUDrkBw5hCvsuZ+IUuuTcLLwZ1/CYAvyB/32qM+SSAFoDvsdb+XtxJxphvBvDNAHDu3LkXoRtRDFwoIxAQEBAQcBg2NzddmvZLly45F8disYhsNotGo4HRaITl5WUkEgk8/fTTzuDnTjELYycSUQ21s2fPYmFhAe1225Ua6PV6SCSiLJBajJexaVTMaDSoksPrMPaMig0D7DOZjFPMmKBkOByiWq1iPB67hCoLCwuuMO3Zs2ext7eHp556CqVSCfV63cX5JRJRHah0Oo1z5865hApEnHHsx+QA15M3351S71EJlR6jysl4PMb6+jrK5fKMq6AaxTRCH3/8cezs7KBer8+4IWrbNEr5k8/nXeY5tqn3zFTmWkwYwEyqchIRTW/O+2RSFRJ2JR1xqqQSNiVc/J5/+y6AcW3wbxrOSvD4HY9nv0kOfDWJ52oskbrZ+TGGzWYTTzzxBMrlMvL5PE6fPo1cLoeHH34YGxsbMyoLjWmdU3UZVCJKw3l3d9e5UuoYKFFl/zjvanTrGGgclxIgfy3wX272pNNpdLtd1Gq16+aGbZM4ajIV3stgMMBDDz2EpaUlPPjgg3jrW9+Kq1ev4lOf+hTe8pa3YDKZ4MqVKzMZGHW98XpKPlXl03vTRDKazIfkTgmVv6HC/vNdx2chnU5fR7R0nIbDoSO3+Xx+hjyxj1x3un55fyR7JGPqtsj1p6VH2LauZT6HnAcALrFTr9dzit7S0hKazaYrDdHr9ZDP52cURSWeJIY3Cy+IwBlj/i6AEYCfmX50FcA5a+2WMeZ1AP6TMeZua23LP9da+6MAfhT/H3t/EmRnml0Hgue952+eB59H+IAZgZgHJhmRTKbEVIqDTMaSKVe1kKlMZm3qjRZVvSqZzMpUq171qsy62S2TqVrFUpIU05hkhpgRmRkZEQgggMAMuMMdPg9vnuehFx7n4r4PvyNCVDJAov9rBnP39/7hm/4f93zn3HsBvP76678S1GUzcLbZZptttn0dC4fDcLlcWF9fx/b2tjgHBCXRaBQ+nw97e3sSkzYyMiJ12xg/5fP5kEqlMDExAZ/Ph3K5jHw+LzWF2u22/Cfv9XoRDAbh8/lQrVZRq9UknotSHcp7eC6lnDo5AEFPvV6H1+vF8vKyxJakUinU63U0m01Eo1F4vV4BZeFwGOl0WpKytNtt3L17F3t7e4jFYsjn8+LcM2mJlk5y55+JE4CnwRqdR80UAcNySb3zbcaeacednzNdu66fpxOZkKmkLPXhw4eYnJyUeBzz2lrOyZ131hfT8kvgWPpFEGsCVJMl0w4znVbKVrle6JAyXof9twJteiw1INDAQ19Hf67HnOBWyxTpeLP9JounxwzAUBp5AMLm6LgyLcXkdev1Oj7//HOMjY1heXkZ4+Pj4vhT7qqBsc7iyLaYDCGddjJx3EThcVZSUpNZ5ed6PMzEMZxPfSyvlcvlRBZNcGGOmR5LLePU40RG/Re/+AUikQguX76M3/7t38Z/+k//Cffv38cbb7yBSqUicmk95tzwYRt0khb+TsDD7/XaJyDR463BPMeLcYscG44Ta6HpNWoyXsCTeGOCICalYaIVHmcy2Vy/fF7YXnMDRdevY7vNdWMy0Bw/vmddLhfC4TBarZZs1hHksvSL2+0WZQLrJJoqg2/S/toAzuFw/Pc4Tm7yW4MvV/ZgMGgBaH35++cOh2MdwGkA134Fbf0abbJj4GyzzTbbbPtqY5IS1lhjOn6n04mxsTH0+31hCRKJhMR2sFwAAUUqlcLo6KgcT8eO/7nrmJCpqSmpHcQYDOA4TX8sFgMAKRze7/clFsXv9wtAIMvj9/uRSCSkBlwikUA4HEapVEK1WkUsFoPH40E+n5ffc7kcms2mSJry+TwymQxmZmYkUUsgEIDP5xsqBK6Bi5Y7mUbH9FkySn6uzcrpNr8n2KUDRokXnTSC4GKxiJs3b+LVV18Vx0s7bgCGGAM6pZFIROrwaXaDsS8aUGoGj20AnrA9Pp9PmDadYIHOr67nptke3U4ta+PfVqzUs+JwtEPNe3GsCRq1xFAzUBpsc72zH6Y8UANB3Q860/3+cc20nZ0djI2NYXR0VGICWUdL18kzk/ZooG/GPrbbbZFTmuvIZOK0XJNjoaV+2unX86rXGdfawcEB2u02MpnM0LhZrQvOn2aMNDvc6/VQKBTw0UcfIR6PY3FxEe+++y7+4i/+Aqurq1hZWZHyIASuXFvcINLSUL4fKKd2OBwyrpox1WyrlbyW80EwRlkyr0VmT8+RjunULJ9e08ATplVnYNXJWkZGRmSTye12IxqNyvuH4Ir3HQwGAuI4Nlw/7XZ7aE3wd2a7LBQK0pdQKISNjQ2Ew2GJ56PUnc+xfm71psfzsL8WgHM4HN/DcdKS9waDQV19PgogPxgMeg6HYxHACoCNX0lLv17LbAbONttss822r7RSqQTguEC11+sV5yKRSKBUKkmmMafTKTEodM6ZqGRsbExi2FwuFzKZjDj8rVZLwEAikYDf70c6nZYEDDSPx4NwOCxZ3eiw0IFhzBdlQpQ3jo6OCtjzer3o9Xo4PDzEYDBAMBiUrJHJZFIkiCMjI4hGo0NMW6vVwksvvYQf/ehHElOn40S0U65ZkJN2nrVzrH/XYE6fa4IPgisNLAAMJUsw4130cU6nE48fP8b+/j5GR0fFibRy5ulAj4yMIBQKScwg+97tdpHP58Xp5n20zI7GRDDM8sc4N81Y0MnVwEnL2ICnM0uScTAlaiaQ0oBE99EEghwPzqUJykxmVTvfJrPK63M98HOztEKv10Oj0UA2m0WlUsG5c+cQj8exvLyMfr8vWVO5SaHlqPypQa9uKwGGmdDClKbq9WkCeEpa9Tl6fZjPAItvE5iaiWjMDQPOO6V9uo0c1263i83NTbz//vv43d/9XVy8eBH7+/u4efMmRkdHcfr0aXzxxRdDrDElmGSfCIBCoZAkd+G1tbSSbJKWluo1w3HkM+fz+eR6Wn7LDQLKs3UyFWZu1JsIWlqsy4PwWErMuX5cLpf0hWBUx59RIcCELGTVWOeNGy8ElmTq9cYC49sODw/l+u+99x7y+TzW1tbkfcxjKfcl6NMM/zdtX6eMwP8O4NsAUg6HYxfA/4zjrJNeAO9/OZEsF/AugH/jcDi6AHoA/sVgMMj/DbXdoq2AzcHZZpttttn2VUZ2ixnH6CDk83lxCPv9PiqVijgwfr8fHo8HiUQCsVgMrVYL+XxepI2VSkV2dukkMqauXC4LcNPONBOFtFot2UUmSGR6+0qlIu1OJpPw+XzY3d1FOBzG2NgYWq0WisWiANHBYIBQKCSgst1uIxKJADhm+Px+P9rtNjY2NjA7O4srV66g0+lIMg8WIdfOvGbWyH6ZZsWk6c80iDNBHo2Ag06nPp5jpxkSU+7n8/mwv78vzAVlZqajpUERGdJUKoVMJiPzRCZVAxSdxZLOqc6I6Pf7JcECwRL7pNtrxkuZrBqPoQPKYzVA0IyA6aATnOl76T6b0taTGEVek4yMZvJMySeNgJFtJXjhWKbTaYyNjUm9PibVMBNmkHHV7KO5Fhmb1W63nyq3YJoGYvzHhD0awJnyWL1Z0O/3US6XsbOzIwW0+ayZc2v+rmWuWs6q1+Hq6io+/PBDfP/738c777yDra0tfPbZZ/jt3/5tTE9PY2dnR9YmgRMZMb5vWGKEoEn3U/fLzABLdn0wGEipB7KTPJ4Aj+NEKaFe6/yeYJygCYCoCDivBJM6lozHss1URwwGx/XbgsGgtIXt1M8L26pLT/DdABxvtjD7L9dxrVbD0dER5ufnkUgk0Ov1MDs7K8W69ftKM41/qyWUg8HgBxYf/z9POPY/AfhP/62N+uuaA3YMnG222WabbV9tjUYD1WoVwWAQk5OTqNfryGQy6PV64tDl83lhU5j5bGxsTOq11et1NBoNicnibi6TobDuFWVW3Bm2qsdEpyAajUr8isfjEcdsYmICoVAIuVwO5XIZ0WgUkUhEasARoHW7XcTjcXS7XUnMEo/Hh75jKv7BYIC9vT1xfilVpHRKAyXt9Goz2QYrh+akz0zwpdkBLaPT8jMtMdROKMfV7/ejVCrh2rVrePvtt2UeNNgwGTiCpmg0itHRUWSzWdnh13IzzWjxOqyXx9gYsjk8hwyXvgZ/533ZFivJ5ElyPO2IP0u+p6WfBD8myNZMjL6uZhjMe7J9XKt6jWg2jv8IUur1Og4PDzEyMoJYLIZoNIqpqSkcHh6i1WoNgUs+L6bpBBvAEyklAYrJRupxMtcr41i1LM4cO80+d7td7O/vS6kRPZf6PJ3JUz83+hg9D2QbAeD27duYnZ3F22+/jW9/+9v44Q9/iOvXr+ONN95AsVhEuVzGYDCQ9wMBVDweF5DCNmv2TW8qUIrIa1hlm9USSc2KcV3w3UWAo4Ed15VO58/4WbJXHAPem+8cj8cjNeW0ZJPrkLFzwWAQkUgE1WoVDodDkj7xp8nO68yvmUwGg8FAmMx2u41KpYK9vT1pBzfYeD/OJcfFlGd+0/b8Chj8DZjDjoGzzTbbbLPta1i320UymUQsFkM6nZb/pPkfdavVEvYmHA5jZGQEY2NjSCaTEj/WbDYl5kzvLFOGqHfB9e5tLBaD0+lEpVKR+JVoNCoxH81mE16vF9VqFS6XC+fOnYPH48Hu7i4Gg4FkbqZ0MxwOo9/vo9FoSLr9fD4Pn8+Hubm5oYxq7XYbhUJBShHQaU4kEsIeUsqkTYMN7TxrgGA6pc/andZOtslymElSzHtoWZg5p0w+s7GxgYcPHyKZTEryEBN86uQfTqcTfr8fqVQKkUhE5LB6510DEafTOSSrJfummRz+rseN4JSATTNppnzSCmhpsEaQoIGhZs/oTGu5oxkrZqbW1+ywnnNeU487QYT5GeeeGxg6ZsnhOK4Vl81mxUkfHR2VZ4rtoWTSqsA3gYFeZyyVYWV6TLVjz7gurg9zPek1SRDTbDZx//59kewRpJv95/jqjQLdHj3+pnSzXq/j6tWrmJqawtLSEl577TXcuHED8/PzuHz5Mj766CN4vV7ZRKL0OxAIyHrSoIeAS48Z1z7Hm/G9ZFk1K6klqTrBiSlF5RwT2GrAzOO1ZJTXIqhjW30+H/x+v4AtSkQBDNWkZC1FvWlSr9fRbreH5pvvYG6EBYNB3Lt3D7u7u9IngthKpQKHwyHyeQJK/Yx4vV7EYjEcHR2h0WhYrrlvwl4sAAfHUy9o22yzzTbbbDNtbGwM9XodOzs74oDqHWrGoPl8PoTDYSQSCck+lsvlUCwWUSgURL7V6XQkPqPVamFychL9fh+lUkkcf70TTekPsxR2u11Uq1WMjIwgEomgXq8jEongzJkzKBaLODo6QiAQQDweF2kfZZ+M9fD7/QLOYrEYwuEwstksms0mBoMn6fAJ/AAMOcvAE9ClHRZmjdOgFBguCG2eT9MOoHmMGTekv6PzZcWG8LraEQeOnTuWccjlcrh27RrOnTsnGUdNyZ9m9eiAxuNxjI+PS7yidk4JgjQzqmWTWkam43/YXu3sammgZh81w6jnRo+xeQ1+T4fY7KcV2Gb/NQPI803QpudDy1s5p+Z5+qeWcgIQZ7xSqWB/fx8TExMIh8OIRCIiC+S9mCWQMVQmG6idezLgrB9HkGcla+SYMCssgQrNHDsC4H6/L1lOR0ZGkM/nJREIz9frUo+1vqYGd+a88OfOzg5+/vOf4x/8g3+AN954A7u7u7h69Sq+//3vY2VlBQ8fPpS6hfF4XJLCeL1ekThrYEqJKvujmWgyTtw4oQRYPx+UDOpU/JwjnaiHTDjnTY8HQT2LajPRk96YYEycBsV6Pen6dHpu9BjqJC8EZWT5gsEgpqam0Ov1hhQX+h3A/hL8EZByTRG0acnv87AXC8DZDJxtttlmm21fwxjrRkeBO7iMI2m32wiHw5iYmMDk5CScTicODw+RTqclyQmTlVC6x3N9Ph+KxSKKxSICgYDEy/E+dExTqRSA4zT5jUZDwGK9Xkc8HsepU6eEHRwbG4PL5ZIiyMFgUM6NxWLyndN5XPTa4TjO8McU5ABEDsSsfY1GQxy0crk85LRr5svMeEeAYsazWcnUTECn/zYdSZNt0+CRf2tH15Sj0dEKBoPI5XK4e/cuVldXMTo6alkTju3RQMrn82FychLr6+tDCUQ4DrwOM/2xvIRm29hWnYXPCqBpEMR7aaaKa1L33QSIWqJosmha8kWJmWb3NCusx9KKBdQgnNJGLS/U/dZrgmCMbaaTT/lpo9FAOBxGMplEvV4XOTLvWa/Xh+IYNdjlOiCgaLVa8hxqcGuOh37OmVnRBL16jbKPrJ+4ubkJAJLgQ69B/fzoe5vr1ZSr6rEjIL1//z5SqRR+8zd/E2+88Qb+9E//FDdu3MCv//qvI5vNSuymBjNk9AmGuHHE+ddrj6CYzyTLbug1S7mjljpyHk1Zrc5UyjmgxFYDL83u6TVNhtrlcg1tnuh3hJ5/DdoBSOwxnyf9PLJmYDqdxmAwQKlUknIuutg51x37Q2aOfeE7v1AoCKP9vOzFAnCwY+Bss80222z7ams2m0gmk+h0Ok9lhXS5XJicnMTk5KQkCdna2kI6nUYmk0Gn05FAeMrAut2uFNKmFIy7+7VabagmWalUwsjICGq1msSfMZV2u93GxMQE/H6/ZEAcHx9Hv9+X2BcCQgAYHR1FpVJBp9NBLBaTv1kygE5tNBpFo9HA7u4ugCeOqc/nQyQSkd1wOi+azXnppZfg9XqxtbUlJRA000KnSTuo2jSjQ9POtHZ+NTvGc/S52qGzsnw+j0QigYODA+TzeVy5cgVnzpwZYiNMuZxm4Vyu48Lny8vL2N3dRTabFaaBTibBHGv3acCg48ZM1sVMxqH7ZNUWPS48TktONYNmspkaOGg2lfOmWRItN9OsGq+n08+bbI7f75fjdCyf3gww51ozpky+EwwGMTY2JhI5gjg+F7yOBoDmGtDp7a3GU4Ner9eLSCQijJ2eA5Oh5Rqv1Wq4desWyuWyyBV1BkpTmsp5N9lTU/7Jz82xarVauHr1Kqanp7G0tITz589jdXUVZ86cwblz5wSsUfZojpu+r2ZZOVYcL65bSri5Njwej8wlZY4EZIwF5Vhr4KizWOp1RLaPmTM5XszWynXHdugYM65ZvYa5BjudjiR8oiKCYLbRaIgknQmONjc3hxh1rSzg+DOplNWGFWWeGpQ/D3uxANwzXuq22WabbbbZRmOmMe1I+Hw+xGIxjI2NYXZ2Fk7ncVbKo6Mj7O7uolgsStB+o9GQ7HMARL7IXW7ufnPHmSCRDh93cxOJhEiLFhcXEQgEUK1W0e12EYvF4PP5RKrJWkhHR0cCvMrlMpxOJ8bHx+HxeHBwcCBOy2AwQDgcRjgcFmeZMspWqyXxI8CTukza0QKAqakpzMzMiNNeLBYFPJpxV6bx/2PNovE8vVuvHTUCDg0kTGbP/H9eg5xcLodkMgmPx4Nms4nr16/jzTfflELdVkyLlh1yHSwsLGBlZQX1el3iBDUTQaCimTcN1qyYLL3Lr00nPTHZKg1cTMCr/9Zzx3HUgIUOKo/TTqk5xjouy7wX20WgymuZoIegj2vdKtax1+vJ+GoJnVmygTJJk7XUgJjsEBMEmayaBoFOpxORSETYUytAb/al0WhgdXUV165dExmpboM5Dvo62vRmhGatTRDO+SqVSvjFL36BeDyOt99+G7u7u7h27Rp+53d+B9vb28hms8LCcX4JvDQLyjHRtfZ0EhaOKYEJmS0m66jVak+VxGC7KQknqNNMmo6BJAjU602zbwCeapdeV/ye64ljxNIspnKASaUYz8x+6Dp8mqVlezTI5DPLNfgsMP5N2/NLn/I3ZDZ8s80222yz7ausWCwim81Kogqfz4fx8XHMzMxgenpaslJubm7i4cOHODw8RL1eR61WQ7/fRyQSQTwelxgoLRfi7jxw7ODpYtC9Xk9kl9xVDoVCOHPmDDwejzgirDHXarWk7txgMEChUBBgVyqVEIlEMDExgX6/L21kEhI6U2QKy+WyxLGQ6dBxW8BwzA+dF2azJGN3UuFo7fgCw6nyye7xb4ICXZDblJY9ixnRpo9j9kgC01qthp///OfY399/Kjuddtw1U+N0HmekPHPmDGZnZ0U6qceKCRSYoZRgjqBU/9MgQQM5EwhpOZmZNVCzdnpu2A9tOkZNO77sqwZXJjtqsnzmvHGsdBwUP9OyOQ1m2B/df96H2VKZ8VOPKc8n+2muH3NsyWCb61GvHYfjWCbL2oxa7qfXke67BnBkDAnqNYDT82Ayqbrv5tql6dhS3rfX62Fraws//elPEYlE8Prrr2N3dxd37tzBhQsXhsaGAJgbMxwTjhGfe53Rkf/IZgFAIBBAKBQSwEd2jSCTGw1aWsq1QLmmlhvr6+tnjvfmmtWxePxeA0W9doHjTTOy4FQQMFsw701mkaCb7GKj0ZCEJ1pK2ul0UK1WRR3RarUkCZSuQ8l3wPMkjV4wBg42grPNNttss+0rjcDB7XYjmUzKv5GRERwdHSGfzyOdTiOfzw/9J0/5DGuuMW09ZXV0TpjxkVni+J99t9sVp8Lr9WJ2dhaRSATFYhHtdhvxeFzObbfbiEaj8Pv94uTOzMwgl8uhUqkIuKhWq+K8kOkj69fr9bCysiLxIQSQBGNOpxONRuOp3WQ6YZ1OB4VCQVhAK6ODpp3kk0zLzHislbRQx54B1mngtZOs59XtdiMUCklR7tu3b+Pzzz8fKuytd995LQ08R0ZGMDMzg0uXLglwpyNJwK+BhmYlrFg2fS8CZ5pmGqyYR1P+Z46DlZkgjk6nZlp5P5NJNe/Hz0wgp5lLq/nkPy235VhrQMaxjUajkoSDYIHMhy4tYTKdmiljbTQrY9tisZiwb7r9eqzZTjr1u7u7uH79urDJfGY0qDWlsyZbY9Uuc71rkKOTaOzt7eHw8BDnz5/HgwcPcO3aNZw/fx5zc3N49OiRxCUSOJFF53hqhtLhcMj7S7OH+v1EVo8MqQZTXF80blzoOdAqA4I+DfKBJ3JJAmS+T/m9BomcVy0Z5ngzEyjZuUajIRtBBHPAkwyW3GSgqoBjx5IgvJ4Z16vXC6970jvxm7AXC8DBYeM322yzzTbbvtL4H/Xs7CxGR0clDqzZbEqh3nK5LE4PMxm63W7JakZHgKnUufMdCASQyWTQarUQDoeHCsqOjo5KUpK5uTlUq1UUCgU4HA4kk0m43W6USiUAx/Ft0WgUjx8/hs/nw/T0NPL5PABgYWEB/X5/CFiw4HcymUSlUkEgEMDc3BwymQwePXokAI7OfK/XE/CnnU86Le12G+VyGcCTzJnAk51x7ZDTNLA4yWkF8JSjqudFf6clV6bptmrHslgsIhwOy7xUq1X87Gc/w5kzZyRbpL622Qe2IxAI4NSpUygUCnj06JEwpy7XkzTrOkukyeCYdd14XTqUBFjaUeQxeuw0g8mxN1P/cxy1M27GvmlZJvBEjqazPGrQZQVuOMaaSeTxOskE28q/tSyTsjoNFMk2a4eZ3/G6XDeaIdSMJT/jM6nnkvcLhUIYHR0V9u0kEMz+dLtd1Go13L17FxsbGwgEAsIm6XvoNW2uUX6n15n5ufm7Xv9kwf/qr/4Kv/d7v4e3334bf/Znf4arV6/izTfflKQqVhtFZAv1/HLudXIgDbwZV0cgzQyXeu1oAK7XLVk7vpcYjxYMBuH3+4XJ1yCZTBeBoC4fwMQ7mnXVmzt8JkdGRlCv14Up47PJZ1yvAb7H2Ue+C2u1msRQMjkNj9UyU743dXmD52EvFoBzWGuObbPNNttss01bJBJBKpXC/Pw8RkZGJH4tn88jl8tJdjKPx4NYLCbOr87oNj09DZfrOPtjvV5HKBTCYDCQGLWRkRGRXPX7fYyPjyMSiSAWiyEYDOLo6AjlclkkXf3+cdY9t9uNSCSCUqmEdDqNyclJhMNhpNNpSbnOAt7hcBgOhwPVahVTU1ND0juyT4VCQZxjHYjv8XiESdAxHhqENJtN2WUmC6LjBk3TDvGzwJuZGID3M8GgGZ9kdS8NJnq9Hg4ODvDWW2+hXC5ja2sLTqcT29vb+OCDD5BIJIbShmvWzGyv0+lELBbD2bNn0el0sLGxgX6/P5RFT4+X+bfJ8mmpqu6veZ4GPDp2SwNWfme2md9pB51jatbOI9PItc25Ifhkm3V7KUvTYMnM+KfBAp8X3WauUd13/fwAEOChwajZRxNw8l+73RYZs2bU3G43xsbGEIvFhlhPXlODT7JfnU4H2WwW165dQ61WQyqVElDCOFc9vxqgWT0fet2eZBoI8+92u41Hjx7h2rVr+K3f+i0sLy/jzp07OH/+PM6fP49bt24hHA4DOE7Pz5gv3Q5uHpjyWfNZJmPH4wlgTIDJ9aRjWtleZrrVffJ4PLJmeD4ljUwypNegfteQFSOwMqXQPp8P5XJZ3p9c15pVI1tO0MfrcL2Gw2E0m00BgSxpQMWF3rAg+Hue9mIBONgKSttss802277alpaWMDU1BafzuDzAYDBAJpNBOp0eSi09MjKCZrMpDF29Xke320UgEMDBwYE4tCy83Ww2hXVrt9vi5HH3f2ZmBul0WmKyQqEQQqGQOIssYpvL5dBut7GwsIBOp4PNzU0kEgm43W4Ui8UhB7lUKsHpdIrMKBaLod/vI5fLwefziROtnaFAIIBAIIBarTYEErSjrJ0cOlwmY6CdQysAdJJsTAM1ncCBptkZM0ZLM068HtvhcDjECZudnZWC3N1uF59//jmWl5cRj8eHYrK0NMqMm3K5XBgdHcXp06dRrVaRyWSGkmSYAJPnaAbKZLHYdoITDeBMVgN4Og2+viaBmhWDqEGgPpdjrudby9qsQOFJTJFm60wJoWb9rPrDduo2acZNs6N6jLheeV2eZzJx5tgnk0mMjY0NZSQ1gTMBHJ/HSqWCO3fu4OHDhwIemAjoWcDdBG8m82bOk/5cy2j1uLZaLdy4cQOnTp3Cyy+/jNXVVXz88cf4/ve/j8ePHwugGgwGQ8lKAoHAkIRR30PHtWnmjeOpJccauPMaXAscd10MnACSssjB4LjGHJlNHS/H2nCUrLItbHO73Ybb7ZasvcATGSc3yHw+H5rNptxbSyfZbr0ZoBlFsn9er1fev1QskIUj0ON9rZ67b9JeLADnsMsI2GabbbbZ9tW2sLCAUqmEbDaLVquFTCYj9d24o6uzAtZqNVSrVQSDQcTjcdml9vl8EhQ/MjKCYDCIRqOBQCAwtFs8OTmJ6elp7O/vI5vNAoBIJpvNJkZGRqQMQTabRSgUQiqVkpTXExMTIhGik1MoFEQ2RaZveXkZuVxOiiQXi8WnWC466ZRjmlI100mjQ2iazppnyv00O2TKAWl0vDX4Yns0a6QdLe2EngQSnE4nVldX8e6772J8fBy1Wg1OpxPZbBZ/+Zd/ibm5OXg8HkQiEXG2dTIH3of38Pl8mJmZQbPZxIMHD8SB1/3RTrtOzmDFrumdfD3G+nr6bw342F/NZpmmnVJ9Tz2G5hxoWaQp79Mgjf+sxknP3UnxhTxWt4lgq16vw+/3D2Wi1GuP64COPa+lk75oRkWPeygUwvT09IlF3U32jRsw29vb+NnPfoZGoyHPPSV6Oi5MM4pWrKUeI21WGxwmiNeSwXw+jxs3buD73/8+Ll26hOvXr6NYLOL8+fP49NNPhV1mX5hsheyXlqO63W4Eg0EZ32azKQmQdNyaBj1644Dt1GtTJwoiYAsGgzIObIcGZ/p54fxxHviZ3oDiNXq9HkKhkGxejYyMSFFxDURZd5ObVbr8AfvqdDplA41ycc0UEgRyw0fXh3te9oIBOAcGNgdnm2222WbbV9je3p4U4y6VSshkMqjVaggEAvB6vQgEApKCmk5QOByWGBPKeZg9j04Bi2yz8HUsFhPnf2NjA41GQ65PYOj3+zE2NibtYQzbrVu3EIvFEI1GJf6MCRS63S7i8TgcDgeKxSImJibgdruxvr6OZrOJCxcuoFKpIJvNyg42HSMySGYMh96l1iBMy6c0GDMlbMCzHVL+bjJBVnFodEIJqqyAnwacJgtWrVZRr9exsLCAnZ0dYVQfP36MDz/8UGqAsU90JHXf9bW9Xi/m5ubQ7/exsbEhjq4VAwcMg1t9D912UwbIsTdZEj3uGhhp0KidSZPp43G6OLIeR830aIBoBSz1HDJeiM42gR3Xlu4HmSYaHX49zwQA2rEnO8U+mHPPaxOEcBy0hNTtdmNqagqJRMKyaLcJ3si8VCoVfP7553jw4IFke2Q8mc6SaY67lT3L0bf6Tssb9Vz1+32sr69jbW0N586dw8OHD3Hv3j387u/+Lm7evDlUToDn8f3lcDhkTMxYWAIWmjlOGqSZmzF6E0CzpdoYj8p4NbJ1Wu6owRLHhfPJjTLWeeN6IsvHxCU6JpXPk04YZK5zh8MxVMaEwIwbR2wTz9WZJzUb9zzshSojYBfyts0222yz7etYpVJBq9VCsVjE4eEhms2mZBZjNkcW+eZ/3JTmuFwuiZcYGRkR54SOAGNAJiYmsLy8jHK5LPXZfD4fAoGAOCKJRALJZBJ7e3soFouIRCI4OjpCtVrFmTNnMDo6Ktkk9c51OBzGYDBAo9HAzMwMQqEQ9vf34XA4cPbsWWQyGWxvb6NUKsnONRMbhMNhiYnTwfl02E0GgE4KnXZTKkfHSTv5z3JY6Rjpe+pzNHCik25eTztRVscMBgOsr69LnKNmDn7+85/jF7/4BTKZjEi+OK6azTHbFA6HcerUKSwtLQ1lMeT3msHSzJBmajTAowOtzzdll6ZpiR+dTcYRafbIdFL7/T6KxSLS6bT00+kcTqii5XoalJlSPvZTO7P8TDvCGjBoh1j32WSx+Jmus6aTxQDH4IIxUXodkTXSMlCy19PT00+VDdBrTYM3ZjJcX1/Hz372M9TrdQQCgaEU/GaNMj1O2kxmUq/bZ8nv2B49pvysXC7j008/hdPpxOnTp7G3twcAePvtt0W+yHuTLWo0GvI3553PrgZNXq9XSgjwOLJSui26zhwAGRu+D3mulhkyoZCWJTKWlLJJHfemWTtel5tJBHd8j+s2NRoNVKtVtNttuZbb7RZVBMskBINBkYWy1IvOYspC4AS3fP+yyHej0RgqW/FN2wvFwMFhx8DZZpttttn21VapVJDJZCSejIkNGo2GODdaCsmSAPF4XHZ7o9Go7AozDoOO7enTpxEMBrG1tYVcLge/3494PC5yS5frOJ15u93GwcEBEokEXC4X1tbWMDY2hpWVlSFQR0ciHA5jbGwMR0dHcLvdWFlZwfb2Nvb39zE6OopQKIR0Oi2SIi0pc7lcQ9ngWKxWgzZgWPal/9ZOPPBkF99qVx7AkNROO3tWjqkpPdP3NpkqOne8h5V0zeFwIJ1Ow+/3i5NbrVYBHKet/6u/+ispw5BKpeR8Oonsn9n3YDCImZkZOBwObG9vo9FoSP8IDPQ5un3A07JTDWBp2nm3mgc9phqgaekav9dZPIPBoDi7ely1PFKzrZpp0/cx2T0yEXoM6Bizr1ouaa4xKxmoZmV1dkQzDlPf0ywL4HK5kEgkMDMzg2AwaBmTaI45AXE6ncYvf/lLbG9vSwwZHXdeW9+bY2w1X1omys9PMvMa+tnQ/U6n07hz5w6Wl5dx48YNXL16FW+99RZu3bqFcrk89EyaTBSBLoGbBuqawSJQ9vl8Q6UdNNsGYGg98jxdG5HvPIIeDcgAyAYE55oZIjnneo3q55TsWb/fl7qMBGHAEzbW7/cPxdg5nccZZgnM+L5n+0zmjeexzXzn+3y+pzKRfpP2gjFwNoKzzTbbbLPtqy2bzSKXyyEYDCKVSsnOttPpRK1WQ6PRQDAYRCAQEAeCDkI0GsX4+Lg4Lh6PB36/H36/H6Ojo7h8+TJ6vR42NjZERhmNRtFsNtFqtZBKpTA2NoZsNot+v4+lpSW0Wi0cHR3h4sWLOH/+PB49eoRyuYxIJCJgy+/3o9Vq4dGjR3C73ZicnMSDBw/QaDTw8ssvw+12y9/BYBDpdHpox9rn84kzxp1m7fSbTJhpmpnTTI12SLXzbzpAwLDsSv8ErGu96baYUjXTOSZ45nHtdht3797FmTNnkEqlhoDC0dERfvjDH+L+/fsol8vinOuMm1aMisvlQjQaxdzcHBYWFhCJRIbYJ+0I83wzho+mwS8ZCFPCepKkVWeYNIERx4jXIxPh8XgkHonAjMwjgT6vTefbrBvHn4wxMllSExTqNUbn3pSJ6oQyJpOmr6sBhslW0vHXcxyPx3Hq1CnEYrGn5lKDKc2+AccA/8aNG/joo4/gcDgQiURkLfd6PQEPer6tAKpe07ynCe5NMzdJgCfgkt/zfXDnzh0UCgXMzc3h5z//OXw+H5aXl4eeTWYJ1YlbNKvJazMRkwkUdfZHsl7mmuBzwXXDsSDQ4phSyqmzV1KJwARRvKdej06nE/V6XYAp58Hn8yEYDMr9yR5yk4pzRFDHcQAwFBvY7/elKLgeEzKDLC1TLBZRq9XQbDaHnqHnZS8WgHPAjoGzzTbbbLPtK61UKmF8fByxWGwo2UOj0RAnmVIuLUWanp6W2DOCKzoe8/PzmJycxP7+PnZ3d9Hv96UeWa1WQ6fTkfvt7+8jGo0iGAzi4cOH6PV6eOuttxAMBvHFF1+IM8Wsh1NTUyKDm5+fh9PpxPXr1wEAY2NjWFtbw/7+voDRnZ0dYQop/aFTXSqVhqSQ2qHWzpt2vIFhp5dmMgY8T7NHVmybZjD4nRVToT87CVjSUTOzwg0GA2xtbaHZbGJycnLonMFggI2NDfzkJz/Bzs6OzA+BHFkkUyZJBzgcDmN6ehqzs7MIhUJPOefmuOq2armj2WedIc8EqCZrpudPH6+BoW67Wdxbs2n8nE4zmZNmsymMiZbRaRDJczm/GhCZzClZHBP46fHhmuHfGnxpJknPCdvMdRWLxTA/Py/Pmymb5LVM6SQzvv7VX/0V0um0OPVk3vQYmrJYjr8pQdbf6TnVa5y/mwk8+DnHhDLDdruNTCaDzc1NvPTSS+j3+7h69SreeecdaR/ljyx7oTc6BoOBfE9ACjxhwwjymMnS6/UOxTvyc0pl3W63JCwhCGq327JpxfuxvAHjeLVUFjgugaDlzKzvRgkur6cBXigUkne43oTQEs5KpSJlBvRmSSgUkvc51wDH2+PxSJIUtpV94fw/TwD3Qkko7Rg422yzzTbbvo5NTk4KW1OtVkViRpaNIM7v96NarcLj8WBpaQn1el3i4IrFItrtNuLxOM6cOYNOp4ODgwPJTslYs3q9Do/Hg2g0inq9jmKxiFAohEqlgsPDQ5w5cwYTExNYW1tDrVbDmTNnUCgUsLe3h/HxcUSjUeTzeTSbTcTjcTx8+BCDwQAzMzOo1+t48OCBFCgulUqShc10KNlfLY2j6eO0WTnXPN4Eb+buPT+zcsrpJJnJLNgODeoYR8Y+8XPz3jpLI78vFovY3NzE6dOncf/+fRSLRWlDt9vFZ599hkgkgu9///tYXFxEMBgUp1w7t1bSPcbBjYyM4ODgAKVS6SmQa6aI12CHzqs5LqYs0pQ1sj3sr2YNeL4eV5rJYLEtZFR6vR6azabEPJFtdDgcCAaD4twSxNDZ57V5LzNRhhXrRGkn/z4p06hebzoxinlfruVer4d4PI6zZ89algzQ1zPBW6vVws7ODn7yk5/g1q1b8Pl8SKVSwsyz/zq1vraTng8rZlkfdxIzZ86f+Wz1ej08evQIr7zyCubm5vDxxx/j0qVLOHv2LK5duybrk0wqx5wxnyxZwnsQpPIcDfR15kUNsPQmDJ9Tzl+r1UK1WoXL5YLf75fNEMabcY1qAMl1rUsA6CQsvBc/41omm8frMUkUr1OpVEQyzuOZRGVmZgadTgc7OztyjJaPNptNianT4NWcn2/aXiwAZysobbPNNtts+xrG/6SLxSIqlQoCgQCi0ShqtRoAIJVKSXa2cDiMiYkJceJYBsDlcmFpaQkzMzOSybLfP67DxsQmAJBIJOB0OpHP5xEIBDA7O4vNzU14PB68+uqrKBaLuH79OgKBAObn5/H48WNks1lMT0/D4/Egm82KA7W3t4dIJIKpqSk8fvwYxWIRk5OTGBkZQTabxWAwEMZPyxiZwIFOmnaSydDRzJ164Gn2zcpxsQJvWjpJ51Q7rbyvBjH6d6t7mqBEx8+Y5w0GAzx8+BD/5J/8E5w7dw6fffbZEPvY6/Xw0UcfiexKM3WUWOlYHd0Wl8sltf08Ho9kNmV72H8NpK3YOf2ZmZFTO6kEKi6XS1KpazZOO7gmU8X76Fphegz1WgCGs1p2u11Jwa77TiNINRk99pEZQE3ZJK9Fx5gp4AkUTGMtLt5Tt5fAIR6P4/Tp05icnJQ1b44Bz9Pgrd1uo1Ao4MqVK/j0008xGAwwOTkpbJfuB/tvMmpsu2n8nuvBnHs9HybgNQGeuUlSqVTw4MEDTE9PY2NjAxsbG3j55ZfxxRdfyEYT2S8A8hnfbTpWUbeBgI+xvZTM6oyMZD75fGhwT4CvM8jqtcpYY64vLQnmetQlDVqtlrCJfEeb0lIeSzkox4zydibw0bG7LL8yNjaGiYkJtNttVCoVGXP9HOhnhgDQfMa+SXuxABye1g7bZpttttlmm2k+nw/5fF5i1AKBAOr1OrxeL5LJJLrdrhR1BYBMJiOpxbnDu7i4iJGRERwdHaFUKsHtdksyEjIZyWQShUIBzWYT58+fh9vtxv3790V+VygUUCwWcenSJfh8Pty8eRP7+/s4deoUKpUK+v0+kskkDg8P0ev1cOrUKTidTmxtbQEApqenpTacLthLqY+OmeLfOsubNu1gmmyBPtZ01q2O1cyTZlO0ZExLLbWjpxk43k/Hh53ULgID0/nf2dnBvXv3cP78eaytrSGTych1geP4nP/yX/4LvF4vfuM3fgOzs7NDTq3P5xMmh06pvmcgEMDU1BQ8Hg8ODg5kXVkxLrrNlGCZzBTbZn6uZVvaYTXHS4+zBuJawsj5M5NE+P3+oXWiwYXVeiGY0fOngQwZlZPWAgABABoUEaxpsMK+6BT4+trxeByLi4sYHx8X8Kbbr4G0Cd5KpRKuXr2KP/mTP8H+/j5mZ2cxMTGB9fV1AHhKTsrr6cQppqzVilnV6+4kf9WKZTZT+Ov5e/z4MWZmZhCNRvH+++/jX/2rf4WFhQU8evQI4XBYnms+F5rF1awmJYdkt3w+3xAryw0sMr6afeM1tGRbx5zxncBx18lHzGRIGpSR7fR4PJK10uv1PlWbTbPLbBuZx3a7jUAggEgkIomMeK1isYhHjx4hnU4PgVVej88E4wTJvnFj53kmMXmxAJzNwNlmm2222fY17PDwEP1+H1NTU+h0OpJ9jIlCyHAUi0XZCfZ6vfD5fIhGo5iensZgMEA6nZaMlF6vV5yKeDyOwWCAvb09OBwOzMzM4PDwEMViUYDfxsYGQqGQFJu+fv06KpUKwuEwjo6O5F7r6+vw+Xw4e/YsqtUqtra2EAqF0O12kcvlEIvFxBn1+XzY398XR0kzNl6vF41GQ5wezeAAw6njrZx2DSjM302wYkq/dGIDDSx4D+3Ym5I3t9s9VBvKZJD0Pa0yGvb7fVy7dg2/+7u/i/HxcWEqdZur1Sr+8i//Ev1+H7/1W7+FycnJof4xjojyLc0AORwOyWZJBzOdTks8Jdug26mZSV7HZBO002+Oq56fZ4FrXlMDI1Oiyu+4ZrQTredLX4f9123WYFHH0ZHBelamRg3wdOycluTpel36fox5m5ubw+jo6JBcz4wlM5m3TqeDarWKe/fu4c///M+xs7MDv9+P8+fPo1KpDIEeboaY8XSaqdb30X21WrP6GTSBpmnmetGfHx0d4e7du4jH49ja2sLjx4/x8ssv4969ewLQdCIb/YxoAMSNHxOQkX3z+XwAIJkbzRpuBJkEefq6lDfynaRjKAnyOO+6xIm+F5lgXeuOa52Zgjl2WgLJMgpk5/QmBjd8isWiJKzSzDP7HQwGRVXRbDafAq7Pw14sAAc7Bs4222yzzbavtkgkgkAgICyXy+WSOm2U6VAiMz4+DuD4P3QmHikWi+IQpVIpAMeJUaLRKJLJJEqlEo6OjhAIBODxeLC5uQmfz4dz584hn89jfX0dvV5PmIZGoyE14QqFgqS239vbw+zsLBYXF3H37l3U63WEw2GRSCaTSXE6WBdpf38fwJNYJDqKTBygHUarXX0ATwEAXTeK32s7CbyRjeFnvB933E3gZgUc6dCZ99BMFueQjqMJMNLpNB4+fIhXXnkFR0dHwsLp++Tzefz4xz8GALz77ruYm5uT78jEERjo2nGaSUomk/B6vQgGgzg4OBAQoFkpLaczx0sDJi2906DBBG/mfGr2zgo4sP3akScIpQNP51nHHZoMqWbvCG71nJIBCwQCQ+OozWw7+2mCGjIfWkbY6/Xg9/uRTCYluRAZMqtNCA3eOH+lUgn379/HH/3RH+HWrVtwuVy4ePEiUqkUNjc3h9YgAYkGjuZGBcfypOdBr2MtfdWm59AcKwACQtifdruNjY0NLC0twel04urVq/jH//gfIxQKDc2fTo+v2UuCrMFgIEyzjnWr1+uyCcQSJExqwjnR9dDM0gM8hmA4EAjIRoEp4x4MnsRv8hiqIQKBgMQq8t3JMa/X60PJS/QzScZuMBgM9YtrnjLuSqUibB/wBFA2m025TyAQGFp/z7OQ9wsF4GCxa2GbbbbZZpttpnk8HpG6eTweYdEASHxGMpmEz+dDtVoVsORwOCTrZCAQEOe0Wq0iGAxidnYW2WwWmUwGY2NjKBaLKJVKWFlZQSKRwObmJvL5PMLhMPb29iTOZGVlBeVyGYVCAclkErVaDd1uF8vLywgEArh9+7YU/s5ms+LUdLtdJBIJVCoVqXv18OFDccLYVw1qNFAy49aswIUp2zNNO8gaAAJ4CrRoFsSKTeBPMxbMZIBMpoafaUmbljr2ej3cv38fp0+fxuXLl/HLX/5SarhR3uVwOFCr1fD+++8DAH7zN38Tk5OTCAaD4jCT3aEDbyWpZOZCj8eDTCYjCWhMZtEEX+bYaefaZJKsZHYatNE0iNMZ9kyGiI4tGQeydcAxeOH46uP1PdhGE6xqMKXbqUG8nmN9DGO0aHTMebzP58PExASmpqYQiUSGEm+Y4I0bB5xrbnY8ePAAf/qnf4obN26g2+3i1KlTeOmll5DNZlGpVARQMA29zqDJPut4Pj1PJrtqzr0J7Mzf9QaFOb/6eQaO31mNRgNerxfb29soFou4fPkyHj58KGBNSxW53nWSHp3Mhuta94lSRI4Fx4b1M82Mpfr5BCCySo4h32FerxflcnlIbsvNJ11gnOtOj4vehNKASr+/+DmZukAgIMBXbwiYxeM5Fjquz3wPmu/Pb9JeKADHIbXa0bDNNttss802WjabhcPhkFgZ/qcOHCcwCQaDKJfLUisukUhI/ITf7xeJJeWV8XgcoVAI9+/fR7/fRzAYxOHhIcLhMC5duoR6vY6PP/5Y6s4dHBxgZGQEExMTiEajODg4QL/fRyQSQblcRjAYFEfy0aNH8Pv9CAQCyOfzEpfHNODMkplKpXD//n0Ax45zs9mUeknciScg0MH5wNMAy4q5MeWVOnaGjvGz/v+lnItOk3ltzeDQOWTbTCCnj9MgzspZZVuz2SyuXLmC3/iN38DBwQHu3bs3JDEEjh22YrGIH/3oR6jX6/j2t7+NhYUFhMNhcRb9fr9IJZkYxnQsybyGQiGEw2Fks1lJcGKyZVaMmx5v9tvKyTdBAftjliFguzQA4fnNZlMcczIwOoOkTtRgpo7X7I2eH824kKHTCUo4t3ozgWDBTATCYzUIisVimJ6extjYmBTptoqv0ywl45vIvN25cwd/9Ed/hBs3bqDT6SASieCdd95BJBLBjRs3RLLZbrflOdJxiLrvemPBnCdzg0PPJftsAnk99zT2T681jkuv10OhUMDk5CR2d3fx/vvv47XXXpOMtVbxhAQknBOr2FjGwulnnTFsAGTzS4M9/q03ZHhOpVJBqVRCPB6XeQ2FQhgMBiiXy0MMPzdBdFwvS31Q+sj7UqJpMoyUvQLHYJDMIcuF8FjG9fEePJ/H6GQt3ChinN3zshcKwNlmm2222Wbb1zFmNWu32wgGg/JzdnYWvV4PR0dH6Ha7EtdULBbR7/clmN7pdIrkcm5uDgcHB1hbW8Pc3Bza7TYeP36M+fl5LC4uYnV1VVLZM/NlOBzGqVOnUCgUkMvlEA6HUalUUCwWMT09jfHxcWxtbUkWTDJywWBQZJTdbhf5fF6KST9+/Bh7e3viiND51jve2okke2DGc1mxciZg4Gd+vx8rKysYHR3FlStXJEOcNjp/+qcGbDT9mU4UYQJHk9HRbaSEykz7z76ur6/jzJkzuHDhAra3t4eKA2vgVKvV8MEHH6Ber+N73/se5ubmEIvFZLff7/eLM0jgyMQMNLfbjXg8Dp/Ph1AoJGwcmS46sBx/M35PgwGddp9Otga5NH2MKdHUc67nkLGbOtaIpsdYMxU6IySBIe+vJWxOp1OS7NDp1Y697jfnjEBfZzdku51OJxKJBMbHx5FIJARwauklz9HnaoamUqlgdXUVP/rRj3Dt2jWRQp85cwYzMzPY29uTjLI69s5Mm6/XHvtjsqscQz3epmRZf28yqLwnwZaOJdUsNAB59hwOB+7du4dXX30VwLG0OxwOD7GoGtBybXEOzA0Bygb5PROI6LknmKKske8aJhHhNXVpgXA4jH6/j93dXZE1avDO+efzxTFjmylt1PNBiSWZNr0BwfHlOmNJhcHgSU08gk8qMzSAJGAjq8y197zshQJwXPODga2mtM0222yz7WQbDI6LuyYSCQwGA4yNjSGRSEg5gEAggJmZGbTbbdTrdfR6x/WlvF4v6vU66vU6ksmkZKpzuVx45513sL+/j+3tbVy4cAETExO4efMmarUalpeXZfc5EokgHA7j0aNHGBkZQSwWQz6fBwAsLi7C5/NhdXUVwWAQPp9PyhyQJWSZAL/fj1gshnK5jGq1Ko6G3++X2D6dPVE7wtrp4njQyTIlkwR5WmpIR5KJBcbHx4fit6wcG9NhN4GilXOvZWiaZTMZCg1ouMOuARmPaTabuHbtGn7t134NS0tLuHv3rrCoplWrVXz00UeoVqv4e3/v7+HcuXOIxWIAnoANr9c7lLBBs3FsM+sLBoNBqelXKpUEZHNM6FgzyQPT1munX4+9ZiP1uAAYig/i+VrOqNtHkGCyqHRatUzQ5XIhGAwOsVB6vjUAYfsZh8TYKS2d1ACELAsBpQb6zPw6OjqKZDKJcDg8FONJ0yBOx4kRSBSLRayuruKHP/whPv30U2FXEokElpaW0Ol0sL29jUajIWPSbDZlI8S8F+9jrncNgvT6NUGe+bueF463vo6+lx73wWCAdruNWq2GyclJ7O/v4+HDh1heXsbVq1clCQ/70el0BFhzHjlO+j3Af8zQWK1WhdnXMkkCv0ajMQSSer2eSC6pBGi1WpLZkvJuneGx1WqJyoD91s+Yw3FcS67T6aDZbErmVJ0chSCSx3BcGdfs8/nks2aziUajIQCZElJubuhMp3ozTAPf52EvFoD7UkRp5zGxzTbbbLPtWebxeJBIJBAIBDA2NoZIJIJ8Po9Go4HR0VFEIhEBbiMjI0gmk3C5XFLQdX5+HiMjI3j06BFSqRQCgQCuXbuGXq+H119/HdVqFR9++KHIL/f29uByuRCLxVCpVLC3t4dgMIhQKIRSqYRQKIRUKoVSqYRsNouZmRlh5FiTjsBSZ5M7PDwUVoIZM3/nd34Hf/InfwKfzyfFfM2kAXS4zHg3kznQkjbt1PPvbreLR48eYWNj4ylWzGTNaBoYmCBLX5ufExTonXZ9be1IUdr3LAC5t7eHO3fuYHZ2FkdHR5KRlG3Tfex2u7h58yaq1Sq63S4uXbqEWCwmTE6325W4ODqZlOmR+WHbw+GwZLQLhULI5XKo1WoyFqbTbsZ80czYH5N9sppHPd7mfOr+mmwn22MyRCZTpGWAuo3NZlOkhgQOWt6q2UEAkiSDEmU67clkEmNjY5Lt1ZSCcu7404x3I3hjtslPP/1UQL7H48H4+Dji8ThyuZyw2Gwv4wL1mtJMpl43bLM5hlZtPYmtM6WWppRSX8NkHGu1GuLxOBwOBzY3N/Gd73wHH3/8sbBS3LjRSXj0GtXPuBkHRnBVr9dFOlmpVIbGg8+iZnHJVPO9NTExIaCLgCocDiMYDCKXy8mGCo9nrC9ZL4L3fr8v0nMCUzLw7IdOxGNuGFEKX6/X0Wg0hjZUOKbcSOCzGA6H5V3baDSG6md+0/ZiAThh4AZ4EhFnm2222WabbcPGWLTJyUm0221sb29jZGREJG/lchkApMB3s9lErVZDNBqVQtyVSgVzc3Mol8vY2trC+Pg4kskkdnd3BYQ1m01sbGwgFoshkUjg8PAQALC0tIRms4lKpYLJyUm43W6sra3B7XYjGAwK4AuHwyiVSgIM+v0+EokEGo0GyuWyJG9oNpuSlOXBgwfCfuj04SwhQGfGKhHFSWCBx2gWQTvr/F7/rZkjAEMgS99bMzw8jz/N1PP8fWRkZKgOFL/jrjm/N0EqcBwLs7a2Br/fj6WlJdTrdUmiwPazjwQ76+vr+OM//mPEYjFEIhG5jy7fQAeZjiSdRy019Hg8iMfjCAQCiMViKJVKyOfzwpiaTibHS7NrHBNd2w94kjVPs6w6pomARgMROrd67nl9PafmHJhzR+ffrDXm9/vlc6fTiVwuB7/fL3FEet50GwFI5kGCK9Y51GvRas1wDCj3a7VayOVyuH37Nv7zf/7PuHnz5pBjHgqFsLy8DK/Xiy+++EKeN4fjScIibh48i3F5FiAzx9DqeePvpszRlB5b9Z1gpVAoyDrY3t7GYDDA7OysJGRhJlqubTKQZjkAzfjxvdNutyURic/nQ7PZRKfTEbaXmz1cc5QhBoNBSXRCuXe/35ex9Xq9cDgcspnGjRGTleScOhwOJBIJkTwSjLrd7qEMkmy/LjugGeB+vy+1O1utFiqVirCtvJ/b7UY0GoXT6UQ6nRb2kTGurVbrxPXwN20vFoD78qfNwNlmm2222fYsW1xcRDweRzqdRrFYRCwWQzQaRafTEWcnFoshFAqhWCyi3W5jbm4OgUAAN2/ehNfrxcTEBA4ODgAAly9fRjAYxI0bNzAyMoLLly9jdXUVpVJJEpVks1lEIhG4XC5xZM+dO4dms4lHjx6JtDKTySASiYjzwTgMp9Mp8qhWq4XR0VEAQC6XQzQaRaPRgMfjwd7eHrrd7lBdI0ofNRAwpZLA08kyTIdTf2bFDmjnj/fSO/naETYTK2igQ8mdboeW+2kAOBgMxHmjk8cdeTqzWrbncBxnONzZ2cHp06cxOzuLx48fS40pOs2mg10qlfDhhx9id3cXCwsLmJqaQjQalXsy0QUdYoIosjhaHkf5WDAYRCQSkWylZHg10NbJGDRbqgGzFYuqmRyOLedCg1U6qxocmQCETLR5fc3scbwZH9VqtRAKhQBAyl74/X5JmsL1p2WbvE48HkcqlZJnkKyKCV44/xpwaMao0WggnU7jxo0b+PM//3Pcvn1bwCQLTU9NTWFxcRH7+/vY29uT6/b7x8W7uSFgxYTpDQ32x4pNNp8VK3aOGxb6c7ZDz7F+Znl/ziFrWvL5WV1dxfT0tNSj1GOjx4xxjXy2dPu4fsmWMeENgZP5rOiMlmbSJM2IAscsGBMHtdttmWsNxDimetOmVquhWCwOFfrWMktunHA9EhQTcGnQyXHXtd6q1arI0rmpVi6XUa/Xsbu7KyD2JHb0m7AXC8CpGDjbbLPNNttsO8lCoRDS6TS63S4mJiYQCARQr9clNiMejwOAFM0+f/48stksNjY2MDk5KUAvFothZWUFh4eHuHPnDqanpxGNRnHv3j2USiWMj4+j3W7j6OgIsVhMCgdPTEwgEokgm80im80imUyi0WigWq2KRE+DEr/fj1Qqhb29PXQ6HUxMTIjT4/P5kE6ncXR0BLfbjXK5PFRwmI4dTYMmK0ZNm3by9DkngTctj+M5dPJ4HX0tzQbp1OT9fl+Sy5AlYls10DCNxzFWUbdXnzMYDJDL5bC7u4uZmRn0ej08evRIvjPlnYPBAJlMBuvr67Imfu3Xfg1nz56VTIh0TCnNovNHCSuzGfJ6TqdTgFw4HEYymUS5XEa5XJYYObaZTrKOVzOBONtrxbyZEkmuDQ0S9ZzqjKEAJIskrdfriZRRO+6DwUAYlFAoJIDA7/dLm1gjTDNLdLzD4bAAt0AgIKDiWeuTY8F/BBAsev/JJ5/g/fffx+7urowTswrGYjGcOnUKzWYTa2trQ4xbtVp9CliaMlfN8JrrWrf5WeDNXJdfFxSYa5ptINByOBy4evUq3nvvPaTTaZFT81yv1yuJQPSmB9cd54cMHO/Dc/i3BoNsh5YxMuYNeLKB0O/3BQBxc6Fer0syKcZZMq6U7wGulXq9LmPMhELdblfmj1JcxsrpEhN8x7vdbnm39Ho9yfRLSWculxP2mOoGLa1mMpbnZS8YgGMMnI3gbLPNNttsO9n29vYQCAQwPz+PVquFUqmETqeDUCiE6elplEolbG5uYmFhAZOTk0in0yiVSrh06RIKhQKq1SpOnTqFaDSK+/fvo1gs4uWXX0alUsEnn3wCv9+P0dFRcSji8TjK5TJqtRqmpqZQq9VwcHAAp9OJVCqFbreLcDiMXq+HarWKQCAgEq7R0VG4XC7k83mpVVcsFpFIJFCr1ZBOp8VBptNDJ4TOrHa0tdMLPGFhtPNofmYl2SIw4HW1bImmmQMTFGn2RsfeEFQwfor9AZ7EuOnCwdoBJTsRDAYFSFgZz8nn84jFYpicnESxWEQ2m5Vrm+PT6/WwtraGYDAIh8OBdDqNV155BW+//TZmZ2clSyXrW7HcAAGDTpBgAjnGCQWDQcTjcVQqFUl602g0BIRrYGAlyTOdf82E6J8a4NHZp1Pe7/cl8QS/Z9utwK2OqyMII3NMdkSPJyW9PNfn8yEcDiMejyMSiQhw00CTZkoSNYtCoNFqtVAsFrGxsYGf/vSn+PnPf45cLje0fih3nZmZQTwex87ODrLZrNyn2+1KIhO9GaJZNb35oJ8bK7Bp9bc5X/p3DQo10NVzp9ugWTktSeba8fl8qNVqknmXfeT1NcPG2nCUQRKYE/AAT+IzKe3ms8e1T5aObdWAnXNAhoybElzflL5SWsl/nF9dvoLZNfW7imwf+2SOFddIs9mUzR4+j6FQCKFQaCjpSz6fHwLx3Kg6KfnRN2UvFICj2QycbbbZZpttzzLWeqtUKiiXy3C73Zifn0cymcTOzg4KhQLOnDkDh8OBmzdvYmFhQeoquVwuvPbaa6hWq/j444/h8/lw+fJlrK+v4/HjxxgbGwNwXGtubm4OPp8P29vbcLlcWFpaErmcdvgp0Wm325iYmMDW1hZ6vR5GR0eRzWYxGAyGEqnMzs5if38fvV4Pk5OTQxIp7iaPjIxIYL4GUWbMkQZi+nPTtIOk2YivYxrUabmfVZY9zQjpxARk6Cjp0k4VnU0tnWTWO9O51dZqtZDNZrGysoIzZ86g3+8jl8uJs8hzNNis1WqSQOb999/H+vo63nnnHVy8eFES4tB59Pl8As40uLZi5OgcejweRCIRtFot1Go1idGjvFJnD9WMkB5DzqceDxMgaABhsnRkQHgvHUfE+2nWT7MxAKTcBq9L555xZwS4lA3TadaF2E8CPSbrxrYxs+LBwQFu3ryJn/70p7h9+/YQo8Q143Q6MTExgTfffBP1eh37+/sCbMhCaRac42iaCR5Mds18nnTfNBjQx+h1yraanxH4mNfl+4THOxwOlMtlRKNRbG1tDa1/LXVmW03Qo+eWmVH188d78LnkmqjX60PZbvkMBwIBuFwuUTtwHZrSao4/8ARo6vcY4+s4dgR/ZOy4JhjTpp8/rkVek+9Ih8OBdrs9tHGk3yuRSAQ+nw/1el0AoNV78puyFwrAPUcpqm222WabbX+HjOn5G42G1DLz+Xy4ffs22u02FhYWkE6nUS6X8corr2AwGODTTz/F7OwsJiYm8MUXX2B3dxevvPIKYrEYfvnLX6JSqWBpaQm9Xg/5AcIZzQABAABJREFUfB7z8/MYDI6TCSQSCXg8Huzu7koClXq9LkxbOp0WB+L27dsIBoOYmJgQsDA7OytZ41KpFAqFwhCropkr9k+zLToznJWESwM5munE6TgdK1niSdcGhqWSVsfSuaKzpxk5xl8BEFDKeLDBYCBJZnhPOrehUAj1el2cTQInDUSAY0nYwcEBpqenMTU1JQWHTRCn+6XLKty/fx8HBwd49OgR3nzzTSwvLyORSAzJKr1e71DdOA2sWD9OxwASyIVCIbTbbaRSKVSrVdRqNflHaRn71Gg0AEBSsGvWQbOcej61fNaMLSR7psdUM2ImO8v54rrjeuU1WJsrFAohEolImQxdy81cN9r05oMGbk6nE81mE8ViEVtbW/joo4/ws5/9DAcHBwJcNWgCjgHm4uIi6vU6dnZ2pM4i71+r1YYkq/xcM8YmeDPX9knMocmcaTuJSTXj4PTGB8dOyxobjYY8p2tra1hcXJQSDWQ/uXnAZD+aCWNiHj1mbB/ZM70pQjDGNcTfyWC6XC4BwwTK4XBYQCOllVxrmh1ku7gpw7810NbSaoJYSj057gSLOgaQbdfvSEolOVa6T7VaTWSZlAI/L3uxABzLCNgMnG222Wabbc8wshlTU1OYnZ1FNpvF2toafD4fJiYmsLOzg1gshsuXL+Px48eoVCo4e/YsarUaPvzwQwQCAbz33nvIZDL48Y9/jEAggLm5ORQKBUQiESwuLuLw8BCdTgfLy8vI5XLY3NzEzMwMAIjssVarSd2jUqmEZrOJyclJdLtd7OzsYGZmBrOzs5IQolqtYmdnR6RQ4XAY7XZbJGI63k0773S6TEeQpp1w/m3FLpjMyEnONp1Uq/voz/X5plzM4/FIjBiLTLtcLmSzWQEU/f5xNjuyc7weQZt2GDWIMZmIarWKTCaDWCyG8fFxcfLM9uu/eX+n04lCoYBf/vKXePjwId544w1cvnwZCwsLiMViEsvHhBgsEKydWzrUmvGiA0zwx+tw95+ZUZvNpoxBsVgcYnTIlgLDMjv+bQWsCVQ0WNHFuU2AYTXHdHjJJpJl8/v9Ik/TLK7VT73+tFRSM4JcB3t7e7h27Rp+9rOf4fbt20Pxj/qabNPZs2cxMTEhpRzK5bJci8BAyyc1e2e21WpM+Jn+nYCQY6b7Z17X3FDR3+t50XJU3ocS42AwiH6/j0qlIixiu92WBEm6PhrBCwGU3qTQbTClv5Roc11TbqlB5WDwJDNss9mU55FjxmfAfM9oRpkAUANKAi22y2QO9caAuTGlk6PwHzeFdKwb78WkJ0ze4nQ6EQgEhqTc37S9WACOSUzsGDjbbLPNNtueYf1+H2fPnkU0GsXGxgYqlQoWFxeRz+exubmJl19+GR6PB59//jkmJydx9uxZrK6u4vHjxzh//jyWlpbw8OFD3LhxAxMTE1Jce2ZmBm63GxsbG4hGo1haWsLjx4+RzWZx6tQptFot7O/vS3xcIBBAMpnE3t4efD4fFhcXJdvZxYsXEYlEcHR0hMnJSdRqNezt7cHpPC4P4HK5UKlUsLCwgN3dXeRyuSEmR2dBJDujnUPg6yVNMKVgJrNmOvsmk6dNy7Z4LZ7LXfVAICAOH6V13D1noWAtvaKjSuDK/o2MjMDv90uRXn5GB063h7GHHo8Hc3Nz4mjqY08y7fAeHBzgL/7iL/DgwQO8/vrreOmllzA5OYlYLCaSTjIRBDIayOkixHQyNYNER5zZ+yipJBtHNpKOZqvVOjHbJ+dWG8sf6LHRskU9j3SsOdd04jlflJwx5bp2qDVAMEGb3kzQDjbHhXPdaDRQLBaxv7+PX/ziF/jFL34hdcFM4Kalk7Ozs5idnRVGU9ce83g8KBaLsrbZP6v1rDciTAbcipnTa95qQ8QELuz/Sc8o51GvEa4J1l1zOBzCqHm9XhSLRUSjUTnH4/EI00ywrxl23Q8CWwIYbjhwbrl+dFvJqAOQxCO6BIEp39RJkDhnTArkcrmGQCf7S2ClJbos1K3lp5q9pNqB8kr2SzORfJe6XC7ZSPJ4PFIaA3iSlOV52IsF4L78aTNwttlmm222PcvOnz+PRqOBGzduIBaL4cyZMzg4OECr1cI777yDzc1NkU8CwMcffwyXy4U33ngDzWYT77//PprNJs6fP4/9/X0MBsf1ljKZjNR2C4fDuH37tqT1vn37NkKhEKLRKEqlEpaXl+FyubCzs4PR0VGkUikUi0WEQiGcO3cO29vbyOVyUqeOTlMymUSn00EikcD09DQ2NjaQz+cBPClqTQeJjAMAiVPRUivTedQOqJbZ8Vir3XFgWCKpQZlp2nml00uWA4DEybBgbywWg9vtRq1Wg8fjQTqdHgKMBByaJdBOJOuzsUQAkzTo+mw8r9froVwuw+l0YnR0FI1GQzLRWUkpTUDD79vtNh49eoTd3V3cvHkTb731Fs6dO4fx8XFEo1EEAgH0+31ZFwQ+GizQ2SeII3DR7WVfTVkhWRECu06nIz91anUmi7CSb9J0fTB+R7BJMElpKPvBeEWd4l2vNT2OmtXSDBMdei2V1HFulEvevHkTn376Kba3t4dktKYRmKysrODixYsAjmWGZN94TDgcRrFYFEeeANtkcjQjxvk3+6RBr8kw8RyOrdVa+iqGT4MMrnl+RhBHBnpjY0PeL7VabSjjK0Ee3x1ut1syQhK0sCwBARKZNspjKZc1N2/4/HH9EVhxXHXcIeXAOk4tHA4PxfMCEHkr70OgyjHheHEzRIMz9ptjwzZ3u13UajVps8n8NptNxONxhEIh2RR7nhkogRcNwAkDZ5ttttlmm20nG4uyLiwsAIDEiQQCAVy7dg3hcBgXL17E7u4u1tbWMDs7i/HxcTx48AD7+/sYGxvD+Pg4NjY2MDc3h6mpKWxvb6PT6eDcuXPI5XJ4+PChZBasVquIx+Po948zwl24cAF7e3vIZDKYnJyEw+HAo0ePMDk5idHRUezv7yMcDgubwoxs09PTwvSNj4/j/v37Q5kTgScOYLVaFfkb8CTQ3wRp+hyadqb5vcnCmefQdHIFGtka81oEIQCktpLf7xfHjWxOIpEA8CS9vXbgdFwbmQZKnpgYY2dnRxIwMEZMgx0yCAQInBMmEjEBFM1M5GE6fffv38f+/j7u3LmDV199FefPn8fly5cxGAxQr9eFJaNDqRNmaCBnJuzQjALvzeO9Xu8Qe6KPN1ktAnqyYebc6r7pOltWPzXA0WyavqYGJ2YiHKs+auBWq9VQKBSwu7uLe/fu4erVq3j06JEUVzbXrl6PDocDc3Nz+N73vodsNitZZ7PZrGQjJBjlc0OwqrNQ6utbMZP8XIM4q3aZgM2UT1qZ/tx8hs1NGYIqtr9UKskzxPeJlkOyv3wmdKp94Jg96/f7kl1SM9i6/ZRiUmIYDAaHYti4HrlOKEPk86rXLNdxvV4XCbhOcsL3Bq9FZlpv4Oh3hB47Ajwygl6vV2TOOj6OBcj5borFYvD7/ZLoiJsTz8O+EsA5HI7/F4DfAZAeDAYXv/wsAeA/AlgAsAngnwwGg8KX3/3fAPwzAD0A/9fBYPCXfyMtt2orrP8jss0222yzzTZtfr8f4+PjyGazaDQauHTpEtLpNO7cuYPl5WX4fD588cUXqNfrWFpaQqfTwb179+DxePD6669jf38f2WwWL730EkKhEO7du4doNIqzZ89ia2sLpVIJyWQS6XRakljUajWMjY3B6/Xi5s2bIs3JZrPweDx4+eWX0W63sbW1hdnZWezu7qJSqcgutt/vR7Vaxblz59Dv93H16lWEQiHMzc3h4cOHAJ4kNdBOmdvtlkB97ahrMx0eXst0LDWzYMV00FEz49/MRAja8Qee7NRHIhEBvfyejloikXjKCaazp5kcOn1MDuLz+ZBMJnF0dCTOH+/X6XTQbDYFOFGmmc/nEYlEMD09Ldn72H/NxpnjpY27/qVSCV988QU2NzeRTqcxOTmJ3d1deDwexONxBINBAZ2UdJHR0qCJc6lBmf5pAiS2iQDGlOuxD8DTtbys1ob50/zd6hw9NlZSRA0uNdNGVqTdbqNarYq0+c6dO7h58ya2traG5HTmvWhcE9FoFBcuXJDyDL1eD0dHR5Lh1eFw4MyZM8hkMiIL1KwW+6SlmBqwm+sdeCInNDdK9Ln6fN7jJOBntXHyrDnhGPIzJgvhRg5ZM7a13+8PMdV8lgl+CLKs7ktwZZb7AI7Bn94Q0vG4umQHj+l0OggEAsKc53I5SfbE+/M54XU0+8t2sn9+v18yX+pacsDxe8nv90sB8VKpJEzcYDCQzRXOiY67pAT3ednXYeD+3wD+HwD+nfrsfwLwV4PB4H91OBz/05d//48Oh+M8gH8K4AKAKQD/xeFwnB4MBs8WkP+KzGbgbLPNNtts+zoWDAbFmW61Wrh69So8Hg8uX76McrmMq1evYnZ2FsvLyzg4OEA6nUY0GsWpU6ewt7cHt9uNN998E5lMBvfv38eFCxeQSCRw5coVAJCkJLFYTOpJzc7OolarYX19HRMTE/D7/bh37x46nQ5OnTqFzz77DLFYDIlEAjdv3sRgMEAgEEAkEpF4jcuXL2N3dxfr6+tYWFhAJBIR5k+b3umm3MncwTedPs2w8TN9nBW402nQaXRmrZx1giTuaNM5YlZCnWJ+8KXkczAYIBgMwu/3i0yO4Es7zdwxp6Oqgdbk5CQqlYqwaZSHAU9YN95bSymnp6dRqVSQyWQEEPKaun9aSmomB9EFrq9evSq7/E6nE2fOnMHs7CySyaQk+WCCD7JyGsxxXvg758IEQVrSZ8X2mHP6LObnq77Tv5v/tDxSAxbNrJnMIJmQcrmMbDaLzc1N3Lt3D3fu3MH29rZI6fT9rdpI8B+Px/HGG28gFouJ1LhSqQwlwxkdHcX58+fx7//9vxfAS/aK19Jsl479NOff3EzQbLH+WwMSvTmgGTzK9QjEdZ/1tfTvun181trtNkqlksiRuZbJWBPQOZ1OYfs5R0zXT6aMEkqOjS6GzTXLMgE6cZKWa5KhJgOm1wgBF98XlCvqeE5KoQnM9Nwz0Y/ewNElSDhfBK36mY1GoxgZGUGtVpN3HzNfOhwOAYFUFFix8t+UfSWAGwwGP3c4HAvGx78P4Ntf/v7/AfAhgP/xy8//v4PBoAXgscPheATgTQCf/Ira+7XMJuBss80222x7ltVqNZw5cwbb29vY29vDysoKUqkU1tbWkE6ncenSJbjdbqTTaeTzeYyNjSEYDOLRo0cYHx+Hx+PBjRs3EA6H8fbbbyOdTuPTTz9FMpmEw+HAwcEBwuEwWq0WIpEIIpEIDg8P0e128d5776HZbOLWrVtYWFjA2NgYNjc3MTo6in6/j83NTQQCAfj9foyNjWFvbw+zs7OYnJzE2toacrkcFhcX0e12sbm5KTF4dOy4Ow0c75oTQJKpOknyRdPAzYph0Z/rHX7giVRSAwi9261/8tixsTEEAgGRXTEeRhfuTaVSQ9ItnbCEfaZ0i2wDd9eLxSIikQhmZ2extraGbreLVqslTjr/Zv0nlhsoFovw+XwyL0x2oZ1z9oNmAjwts+NufaFQQDqdRi6Xw+eff47Z2VmcPXsW8/PzmJiYQDweFwZCZ6vUgE7HDRJIE/RpKZr5z0ze8iw2VR9nxjiaDIwGalYsn5k5Usfr8fd2u416vY5sNoujoyOsrq7i7t27ePToEUqlktTr0vc9qf0ck9HRUXzrW99CJBIRR5+14pht0O1247333kMwGEQulxuqO2jGBJqsNMeF822yZ+bYmevEXEdWY6ifLauxN69nAma2n+ub488YMOCJxJDriHPCzI8AJNsl12Wr1UKj0ZA5JPBrNBoytrpYNu/DeR8MBgLCuLZDoRAASHZe3peZVgHIBgfj9gjE9LriWDDZj4731JsYDodD3jWULjMGzkxixNhASkm9Xu9zjYP768bAjQ8GgwMAGAwGBw6HY+zLz6cBfKqO2/3ys6fM4XD8DwD+BwCYm5v7azbjqWse/2IDONtss802255hyWQSt27dQr/fxxtvvAGn04lr167B4XDg8uXLODo6QjqdRjKZxMWLF5HP55FOp7G4uIhGo4GdnR289NJL8Hg8uH37NorFIsLhMA4PD1GpVOByudBoNHD27FmMjIzg8PAQExMTmJyclDg6FgovlUpS58vpdCKVSiEajWJ0dBRbW1u4fPkyvF4vPv/8czidTsTjcezt7aHRaAztXtPoHPV6PVQqlSEHUrNl2pGxAnHaWbZylHV8iZZ3kdUwY7Q0M0Enie2n8zYYHKf05w56p9ORxB+5XE4cUs3maTaDsTOadej3+8hkMrhw4QJyuRwODw8BQOJ8yLppuRQZiW63i0gkIqUFKKsi+PN6vVJrzjRzd97pdKJareKXv/wlfD4fAEhCjocPHyKVSmFxcRHLy8uYm5vD6OgoFhcX0ev1hsCljs0i2KDjbY43f+d8m2yc1e9Wf1sBJNM0u2b+ND8j+9Nut9FoNITl3NnZwZ07d7C+vo69vT2R9Jn9Oqkveo3Nzs7ie9/7HkZGRpDNZuX+h4eHKBaLAvgXFhbwT//pP8W//bf/VpgWjqcJTDVo0/fXwEePjQZIZswfvzfBGq/DfxokazBuPruaHTTBnWbQ+Df7Ua/XJRkJ79FqtWQ98bngnMViMUSjUWxvbwtbGovFEAqFUKlU0Gq1RI5JuTIBI58zAuNwODy0EcF2kY0nqGcxe653JjXSGV05hlyHeg51cieTHSVQZF03xpGyv9xEsWJLX6Q6cFZbOJZwajAY/G8A/jcAeP31138lkEuyUNoIzjbbbLPNtmfYjRs3MD09LclE7t27h3g8jqmpKezt7Ql4SyaT2N7eRiqVwoULF7C2tgaXy4VXX30V+Xwea2trsgN8dHQksqJQKISFhQVks1kUi0VcuHABDocDH3/8Mfx+P1599VXs7++jWq0iHA6jXq8jGo3KrvHIyAh2d3cxOzuL/f19HBwcSFHnw8ND9Ho9JBIJtFotyaIHDMee8G8t1QKeAAsyTbSTYmy0PEtLs8x4GJMt0CnCKZUiC+jxeJBIJBCNRuH3++F0HmekOzo6kmQjvB4z0OXz+aE6U2TaBoMBwuGwMJ6UUBHgMR6mWCzilVdewQcffCDyrmazKffv9XqSoY8JFACIvDIej2MwGEgCjHA4jJWVlaG6Y19HUtXv96XQMlmefr+PdDqNdDqNW7duYWZmBufPn8fi4iIODg5QrVbh8/meipfTcYJapqaTiuiYLfOfnmfTrGST2kHmP/5N8K5BmintZEbMZrOJUqmEXC6Hg4MDbG9vY3V1Fdvb2zK+Jqt0UrtMVo6g7Pd///fhcDiwu7sr12DdPAKdYDCIf/kv/yXa7TYePnwox1klwrCSMbKNZuIe/RyZEkpt5kaJflZNJvOkTRYN1HWbdcFtAhIy16aEkrFxfKb4U8tVAUhZDv1sBwIBjIyMoFqtijSRsW1+vx9+v19i2Pg5QVy73ZZERZxzxqfqkgZc23y2B4OBsIM6EYqO7XM4HGg2m0NSSTLunBOWLuC7STP73GjS8k1m5OQaP4m5/ibsrwvgjhwOx+SX7NskgPSXn+8CmFXHzQDY/29p4H+NCQFn4zfbbLPNNtueYZcvX8bY2Bi++OILNBoNLC0todls4sqVK3C5XJKRcn9/H2fPnkWr1cLt27exsLCAs2fP4pe//KWk8n/06BFGRkYQjUbRaDQwMTGBZDKJra0teL1eXLhwAYeHh0in01hYWEAqlcLq6qpIlAaDAaLRqEiTisUivF4vEokE7t+/j5GREcRiMVSrVVQqFZFW1ut1kduZZsoXAci9+B0dNQ3ctINpJekynUtt2nnUMkl+1u/34ff7EY/HZeeckkntLBaLRZFH0ems1+s4OjqS2BsdW+N2u1Eul4UZIxAmeKBzvb+/j+XlZVy8eBE3btwQWRWZTLaZ8YZkQtgWSjnJpFWrVVy/fl2cZN1PK9OxSfozxgPyPuxrMBjEZ599hps3bwrDOzU1hbGxMcRisSGZpZm9koDtJBZJM1Unzacps2R7TdBm/q6BHFk2Fh0naDs8PMTGxgb29/ext7cnc66vYbaP69GKedP9ffXVV/Hmm2+iUqmgUCjI5+12G5VKReoCut1ufPe738Vrr72Gn/70p8hmswLezHE0GS7gCZvNv825tWKsrWS3uk9WfTTBoFXcqR4LtlODL65RgqJyuSzgSjOHg8FAngsdAwhAmKhWqyVJgvjcVKtVuTZBUCAQEJDVbrdlzVF6yPcE2TH93tAlUAKBgGy2aNZLZ9Uls8cabZRE85o6tpTxd4yt6/f7Amg5vnojjEy8jtsl8Pu7WAfuPwP47wH8r1/+/FP1+X9wOBz/dxwnMVkB8Nl/ayO/rj1h4GyzzTbbbLPt2fbTn/4UyWQSi4uLePToEY6OjjA+Po7FxUUcHR2h3+/j1VdfxdbWFrLZLN577z34/X588sknaDabCAQC2Nragt/vlzpJs7Oz6HQ6ODw8xOTkJCKRCO7fv4/BYIBXXnkFnU4HN2/eFOASj8fF6XC5XMjlckgkEqjX69jc3BSJEYt7x+NxxGIxFItFzM3NDUnMtCyKjicdMMan6GQnz9o9Nh184GmHlH9bxfjQmaRjRkeHkkldJoBFs5vNJiqVisim6NiRTcvn89IH7dTSCSSLVigUJJ7O7/dL7Fmz2cTdu3fx1ltvIZPJSHZJgjgCITps7KtODOJyuWTuyDpwvPR4PAvE0XQ8WrVaFeBC2RYAfPjhh9jc3EQmkxF5aDwelzIWqVRKEt8EAgGJzWGyCVMK+FVMnJVp8MA+mIBOxxmRJanVaqhUKsjn88jn89jb28Pu7i6Ojo5QqVRQrVYFtGrAQqCj48s4xlbtItDyer145ZVX8Nprr4l8lt+RXc1kMqhWqxgZGcHY2Bj+2T/7Z/D5fLh169ZQkXhdOkC3xWqu+RnXoMkI8lirDRHzejpGy2oeeB+r73l/Mk68j84KyzXX7/cRDAaFheJPghSOGUGSro3GMQ+FQgLotFRUp/wHICw328TfeR2OAd8RjKsLBAJPjb1eD3qtMLkRaytyU0FndOUYmNJUns82sHC4fh4J9Ngebjo1Go2n5uGbsq9TRuB/x3HCkpTD4dgF8D/jGLj9Hw6H458B2Abw3wHAYDC463A4/g8A9wB0AfxfBt9QBsov24ov2/FN3dI222yzzba/g3b9+nXMzc0hHo/j9u3bqNVqEtO2traGlZUVhMNhXL9+HeFwGG+88Qay2Szu3Lkjkp1yuSxxW/1+HzMzM2g0Gmg2mzhz5gzcbjfu3buHQCCA5eVl7O7uolgsikMyPj4uTiN3tePxOA4PD9FsNhEKhdBoNASwnD9/XurCsR5cOBweAmVOpxOxWEwACBmocDgMr9eLUqn0lCTLCnRYOZEn/a1ZCZpOxc4dcL/fj2AwiEgkIrXYarWaZHYrFAoinzNjfXK5HIrFojj7mhlgcgqTlWDcGNsIADs7Ozhz5gx+/dd/HZlMRooCc4efiQ40EKbppCr8zuVyiSyPY2KylV9lOlU7cAxI8/k8PvnkkyEJF4sNZ7NZrK2tiTMcCoWQSqWQTCYF0IVCIUQiEWHpKLlk3JBZw+1ZQM6UTWo5pE4AU61WUS6Xkc/nUSwWkU6nkc1mkc/nUSqVhmIFNQjU42ayTxznkxgpAjSfz4d33nkHCwsLKJVKUmKAYKLZbOLo6Aj5fF76/c//+T/H/Pw8KpUK1tbWJK6S4M0sI2CucStfUwOnk9rMa+lNAg3w+P2zJMr62dWmWUINCvkMataKkux6vT7ENnLMCOgoG+T8dzodBINBWQscMyYCYbwdmW+OoVmsXqfk5zmDwUAY90ajgXA4jGq1+pTslTJIAMKoOhwOBINBDAbHyVEikYi0Uc8J6z5Smk3Wm2CPY0eAxmdHAzb2w8z++03a18lC+YMTvvqtE47/XwD8L/8tjfrrmkgon8fNbbPNNtts+ztjFy9eRKFQwJ07d+B0OvHGG29I2vLXXnsNBwcH+OKLL/DKK6/A4/Hg888/R6lUwuLiIvb29tDtdpFKpdBut5FMJtHv93FwcACv14ulpSVsbm7i8PAQ8XgcoVAIDx48EAmSx+NBKpVCrVZDMBhEPp8XR3t/fx9erxdjY2PI5XJotVoYGxvDuXPnkE6nJS6DkqXNzU0BhTr2iDvEdJD8fj+i0Sg8Ho/EoWjnT8fy6B1+DaJMZ5EOlXZseW+yWZr1YbIByqoYl9ZoNNBqtQSgEUTxfkwqoJkEOmYagHB3fDAYSBY8vdPPz69cuYLf+73fw2uvvYZPPvlkCDASlDBWSxcT533ZJs0eMEGCzoB3kpmOvWmaJaGjqh17fjcYDKSu2eHhoWTz0wXRg8EgQqEQQqGQFCJmzSvOEdclr28yX3Ta2+22sGvNZlOSjxC4FQoFYYrJxJng1IzZOimejb+bsWOaoSK7GIlEcPnyZUxMTEg79diyYPfR0ZF89uabb+Lb3/42HA4H0um01FHUQIN/m2wZf3Kt637pNaj7oDcFdOypZsjM87SZBIUpe9bPJ9lhcyw5XnxuBoOBKAf0poOWUAYCAdk04hon88xSHM1mE81mUzYGAEjCEradQJDvFm4AUObo9XoFIHEzJBAIoF6vo1arCVDiphDl4LpUgV7/AASkMbEK54KAk21l3clgMCjsJdc52Umd9ZXxe2Trnpf9qpOYPFcTCaWN4GyzzTbbbHuGra2toVAo4NSpU5iamsLDhw8xNTWFt956C/fv30en08Hbb7+NbDaL3d1duN1u+Hw+3Lx5E4lEQuqSjY+Po1aroVwuY3FxEU6nEx9//DHcbjcWFhawv78vTk8+nxepG5NgFAoFpFIpNBoNlEolxONxeDweFAoFtFotiad7+PChAIpYLCa7xolEAsATR9DhOE7jTZkfd9RDoZA4NJpVMFkinVESwJB0SJsZwK+BDa/f6XTgdrsRi8UEJDAWhWCA7BKLK3NHX8ekVKtVrK+vDyVA0ckGGEfGMdB94dgATxI3ZLNZfP7553jnnXeQyWTw4MGDp9g7ghadWIFONoEcmR/tFLLOnJUE0MpOksvxvJPO1eBRM2R0LiuVypDkjqazV7pcLiQSCcm+R9Brto3XZdwQZY/spxkTZ9VHqz5bfa4BCQGN/se+E9RPTEzg5ZdfRjKZHGL4uI5arRYKhQIODg5k/fh8Pnzve99DMpkEcPwu2N/ff0pmqhN1mJJTq37q76zAGJ+ZZ4Fy3ttkjcwxMkGwOWaMOTNlgmTT6vU6SqWSJBchg8ZnkolEQqGQJA+KRCLy7DLTrr435ZPsD5+dQCAgmzK8D58jbjJxnfM9EIlEZJOESYbIvDN2DYA8f+12WzZe+v2+AEs+o9Vqdei9yDFim7hRQ7aWkmoCRc4pC4ZzDv8uxsD97TQuVJuDs80222yz7RnW7XYlJu3hw4dYWVmB0+nE559/jpGREczPz+Pw8BB7e3vwer3isFy4cAG9Xg/xeBydTgePHz8GAJw9exbNZhP3799HKBTC9PQ0stksgsGgOL1LS0toNBqIx+PodruoVCqYmJhAuVxGv99HLBaTOJ1+v4/Tp08DOK4bxkQlkUgE+Xxegvv7/b7sXtPMnXayFJo1AqyBhSml1DIuOpg6XT0dd56r5VLcLXc4jmPeyMgBEOkWE7MwTo1ObiAQQKvVEoeMY6QdQLZ1MBjIDrtmOrRkygReN2/exPLyMl577TVks1mJMaOzTIeTTibZLM3OaBBHczgcEtvFa+mkEyaDoj8z7aQ4qJPmzpwzq/MIxOjcM807Cy9roHTSNfi7+ffXMRPUPOs8nViDDBI3JOLxON555x1Eo1EBJ/o8ShSZyEQXs79w4QJeffVVYXEfPHgA4Enhb/7TgA14Agr1s8DzTCbMamzM+dbHmWDLBIP6c1PKaYJF83zKfrm+Oa4EOLw/sywysQllg7FYTNpWrVbh9XqFedIbOWybTgqi4+BcLpeULNDyQ7LxmlFnTCzHm5LGer0ubdNjwhg9XauN70Qyc6xdx/tR8sl4UyoBdL089lW/B/l+4zWel71QAE5edTZ+s80222yz7Rn25ptv4saNG4hEInjppZdwcHCAcrmM2dlZJJNJ3L59WzLY5fN5xONxiamYm5vD48ePcffuXczNzeHcuXO4f/8+SqUSTp06hcFggHK5LDLIwWCAiYkJKRVA2Vs8HkcmkxFnqNFoSJbGcDiMSqWCbreLUCgkAI/XqNVqSCQSmJqawk9/+tOnmAoNxCgPAiAgygpIAMMSNdO0I6mllvycDjYlfF6vVxwg7mYz1q1WqwmIo8NE0MP6b7xuu91GoVCAz+eTOBlKvGjaYWYfdD9MaWar1cKPfvQj/MN/+A/xzjvv4IMPPkCxWBwaE+0E0lkLhUKyi6/HJRAIDIE7DeLM+TCd+5NYnZNAnu7bswCQnkMrqd1gcFxcnOCZY/dV9l8L1sw2PKu9+hjOgQYuoVAIU1NTOHfunMSc1mo1WStastloNETSyVinWCyGd955R+anXC5jdXVVNia4pjQrZm5Y6HHXsWZ6XDXIMufBBGonXds8VwMyfT/zOP6t2UN+xufA4XAIow88Yaf53LLuG9PzUz5JRp7AR8stNRNLUEUgFggEROatgSPXmy5NwKRFfCfo5DCavTRLPXDu9MYL2fxOpyPtzefzaDQaGAwGSCQSstnU7XZRLpeHQC0zThJwkpln+/5WJzH5u2RcvzZ+s80222yz7Vl2/fp1pFIphEIh3LlzB36/H2fPnkWxWMQnn3wiu7E+nw+nTp2S5B+BQAA3btzA4eEh5ufnsbCwgOvXr6Pf72NiYgIHBwdSXiCXyyGZTKJUKqHRaEi8WzgcRigUkkQldDo9Hg9isRicTidyuRzC4bDEZ5RKJbTbbYTDYbTbbSwuLsLhcODatWvijGiZEZ0Op9OJcDiMeDyOer0ukik6Tl6vV2KGTKbANDMOTDthlE5xB51OGONVKGkql8toNBoSQ8O6bTxPy/AolaJjpmuM0Rk0WQbTiSQg0E4Yr390dIQrV67g7//9v49qtYqf//znwk5ppouOIOWRBNXsM8GFTtAwGAwEgGvgZgW+ngVqTgJB5vlWoJBmJbN71n2t7snr6L+tWCYTOPM8q+QepjxRA29tjKlMJBKYnZ3F9PQ0QqEQstksgOGNBZ7bbDYlfqpSqYiclzGt6XQao6OjODw8xM2bN6U9unyEFQgyAabVWFgBtJM2RczjNdNzEmAzwaK+jp5jDTzNcQKeSIwZA0c5Igt3E8A4nU7JdsvMkEz4w+dJP//MeMuYNqfTiWazKbJMJr4hE6afD1MOrVlQzg+fZbJufE/wWWNJDj0u3W5X3uFk8ggw+Q5knxg/qN9vuo2M7SRz97zsxQJw4IJ+zg2xzTbbbLPtb7VNTk6iUCjg6OgIc3NziEQiePjwIYrFojgWrLm1s7OD8fFxDAYD3Lp1Cx6PB7/+67+Oer2OmzdvYnR0FKFQCOl0Wopwe71eJJNJpNNpjI+Po9/vo1AoIJlMolgswu12C6PHrGjRaBTVahUejwfhcBgOx3GWwZ2dHUmNHQwG8corr2B7exu7u7uYmpoSMEPHrNvtSpa4YDCIubk5yUwZDAafkjoBJ7MBwBNppE4iAjxxPOlw0fnVyVqYtKRcLkviAmaco4Om69NZ1bdiPI8Gb2Zb9XGadeP3PFcneul0Orhz5w5WVlbw1ltvodFo4OrVqyLH00k8AEi8XqfTQavVQjQaHWLjHI7j+DymZ3c4HLIRwFifZznypmmH/CRQZfX9Sb+zL3r+rEDcScDyqxg0/f1JIEcDk5MAKI8hIIhEIlhYWMD8/DxisZiAfj3XnE8yPCxjUCwW0Wq14PV6JXZ0dXVVNmMeP348VC9Mx4jy2mSG2DbdRrZfszZWbJiW77K9JggzQZpm+fS1zGubc8BnlM8r421TqRRyuZwwcKydxueU51EeyH6zrdFoVDJEApDNDp4PQJ4vbsowYyTLOOi4wk6nI1l4mXyE8kn+TiDG2LNqtSr17TguLEMCQNrO9xG/ZzZfMqrRaFRYRMZ26hIK3Azis80+c104HA7JjPm87MUCcMLA2QjONttss822k213dxetVguvvPIKAODevXviBFSrVZw7dw4jIyPY3NzE0tISMpkM9vf3MTc3h/HxcTx48ECKdrfbbaTTaQmCn5qaAgAcHBxgfHwclUoFTudxev9Go4FoNIpQKDTE6kWjUezv72NyclKOqdfrAvpKpZIAyg8//BCdTgejo6O4c+eOZIij6YxpDocD5XJZfjcdcDJGOoaOx2rTmRHNzyinJMDkTjuTpnDHXNdT078DJ7NI/Jw7/Zo9JNNlxunx+tx55667/kfrdrv46KOPMDc3h7fffhutVgtXr159apz0OU6nUxjEUCiEcDgsjh8AKXBM+VahUECxWBzaxbdiyKzGnWOu46x4DT1W+udJANE87qTxtgJdVmDOBNEm+2Zew2yH1bU0o8li9ufOncPY2Bh6vZ5I3HQ8J4FIt9sVZ7zZbCKTyaDRaGBkZATJZBLtdhsbGxsoFotIpVK4cuUK9vf3ZX0SRJCB0zFueuOA4IhMjRUQ43k6kY4J/qzYPfO4k0y3yYxBpWlw22w2cXh4OCR7JlhjbUZKCXU/CJbY15GREUQikSHZLeeCzx2TpWiJIxPkUNXAd45+XkdGRqQMADd79Frhu4rtr1arQ5srZlFwgkkN0Lxer8jJOe9M7NJoNBCJRDAyMoJGoyHvMZY64fom0KMs83nZiwXgvvxpM3C22WabbbY9yyg7fPTokeykUhJEKWWlUsHi4iIePnwIv9+Pl19+Ge12Gzdu3MDY2BguXbqEu3fvCrMFAEtLS5INjzverBtHdg2AJM1YWFiQuLDx8XGUy2WMj49L/N3ExAR2dnZw/vx51Ot1fPbZZ5LI4+rVq5ienobX6xVHC4A4sHRumDUzn88PAQ0AQ86f/lub/syU4dEJZaIAmgaGBJdsF3fCtVxSAzFel/fmP/2Z6azqtmlwqDPTafCmr7uxsYG//Mu/xB/8wR/g3XffRaVSwerqqgB6Gs/VfavX6yiXywgGg4hGo+IMU5Lm9XolAQvbqPtAoAJgiB00WRkNkKzkenou9H1OsmeBSKufJmtmdQ3dXg20n8Ukcjw1cKFseHp6GouLi/D7/TJ3JovX7/fRaDQklpJsTD6fF5nb+Pg4ut0uDg8PpWbe3bt3kUgkpIYfHXldPsCq7ZqVM/uiC2ibc2TKF3mM1edWf3NczKQZz0pYo59N9kk/j8xoyzYz3ovMFNlm3leX82A2WTJYjKHrdDrw+XySYIlyTMoUuaFEFp5jb4ImXf+S2UTJzLGeHdnDQCAg2TFZPoNyZ44XgbTb7RaAycyrBJvhcBiRSESeXQ2SKdeklJQZN20G7ldkTxg422yzzTbbbDvZzpw5g+3tbXEQarUaAoEAEokEdnZ2xEG5c+cOTp8+jfn5eaytrSGbzeLChQtIJpO4e/cugONU1nQ4j46OEI/HJdYrGo1KHIjf70cul0OlUoHP58O5c+ekRlEoFILD4cDY2Bg2NjYwOjoKh8OBw8NDnDlzBkdHR9ja2sLy8jL29vZQq9Xw6quvIp/PD4E3Oot0DrljTGkjTTsephNCYEEwoWtdmTIwXTaAu/l09Fj3iYlHtJNtAkeCI5NlM0sGaGeYEjH+zjZpsERnS0sYeZz+/erVq1hcXMSrr76Kd999F51OB2traycCWt13Jkmo1WoIhUJD2SqZZMNkG2nczSf4bbfbQ3WvTMBi2rMYOfM4KybsWSyP1T2tgJzV9U/6ndcwf3c4HLJu4vE45ubmMDU1NcSq8jh+RgBNhpM1wSjtC4VCiMVi8Pv9+Oyzz+ByuVAqlbC2toaFhQUpwt5qteR51+wZgCFZrxULarWRoI3fm+NjBfJOGiOaBm/m86OZPv2c6LhSHW8GABMTE8Ka8xoEptVqVZLz8P3lcrlkrfM6BGU8j9ly+a4gUKI8nGubLCfl1mT4qtUqBoOBJE5hAXFd05IbWHxnBAIBYfpZooXsnn4HMqESk5UQhKXTaSl6TxBJuTTvyzZyLP1+/1M1Dr9pe7EAHIZ3LmyzzTbbbLPNylgwm/XUJicn4XA4hAmrVqvo9Xr41re+hW63i88++wyBQABvvPEGms0mrl+/LsWxx8fH4XQ6kclkEIlEsLOzI2n7i8UiwuEwOp0OHjx4gMFggLGxMSwuLmJ3dxfRaFTAz8jICHZ3d7G0tITDw0MEAgG8/PLLePjwIXZ3dxEOh3H37l2Ew2EsLS1hfX19SMp0kvN8/vx5RKNRZLNZcfh0anuaBm10kukAAU/XqTLjfrSjxBgRSqNKpRIqlYp8pttoptjXDrtZN4rHabaNv5OhIRugHT8eR8dS95PZ7v74j/8YkUgEy8vL+O53v4tGo4Hd3d2nGEj2mQ4lAJHfMcMoyw6Q4THPZz+ZHZFsBjMA0kk25ZUmoDuJRdP3spL5PcueBRStPreS/Z10P83Q0eioRyIRRCIRTE1NCRPC9cP1xnmu1+tIp9PI5XIol8vCLJF1i8fjiMfjWFxcxJ/+6Z8iFovh9OnTSKfTqFQqyGaz8Hg8yOfzwj5pVsx8BjSLpWWIXFMEMM+SRVrNjfmMmazcVwFuzXLqjRayz2TTNHvH9nY6HYnhpMRQSxfJkOnaZ9y4oOSwWq3KJoQur8EkJV6vV8BPsViUbJPst5av8t5kxqLRqABo/VwTbPN+TJbS7/dRqVRkrLlxw80rjglVAJxzJkChKoNjyvOZbAk4fs6ZyIXXel72QgE4aiht/GabbbbZZtuzLBAICBs0Pz+PYrEoBWSZ3e7NN9/E7u4uHj16hJWVFSwuLmJjYwOlUgmRSATdbhdLS0vI5XLweDwYGxvD/v4+ksmk1DwaHx9Hs9nE3t4e+v0+ZmZm4PP5sLW1hXg8LsXEKfmanZ3FvXv3cPbsWXg8Hly/fl1iPY6OjrC8vAyXy4UHDx6g3+9jfHwcGxsbQzFizPxI54KyTH6uzWTU9C6zlloCT0CfKbekA0pnSAO7fr8v8WIEeFbJReh0alBEJ1k7ZKbxc30tAjlTkqidMzrMHLder4dSqYT/8//8P/Ev/sW/wOjoKL797W/jJz/5CdLp9ImJP9gmj8eD0dFRDAbHJSSazSYKhYIkP9AJITSLw4QPLKmg617pdpq/WwEkKwmq1blf9bkVSLCS9lkxUezbs4Abr0VwQbAbCoUwNjYmxel10hwCpEajgUwmg8PDQ+TzeZHZARDA4nAcJ/9ZWFjAz372M3lei8WiSO7IFmcyGQEQZtZGE4zyHmy77qseI3NMzDWnny0rRk5vUHwVS6pNP4N8jvSa8Pv9qFar8o7IZrOYn58fyljLRCM6mQhZZrfbLXJIAivODZOYaFDDcXU6nSiXy0PsGe9BYMn7chwpt6a8mIlXCOAZX0sJpgZiHHPWcWO2SUpCyaBp5QLry7VaLWEkWdicwBKAvNcJDEOh0Neam78Je6EA3Ndb4rbZZptttv3/u7FAdzwex97eHkZHR4WNm56extTUFB48eIBcLofTp08jEongypUrUg8OAE6fPo2NjQ1MTEyg0Whgb29PCnP3ej2srKxgb28Pjx8/hsvlwunTp8VRmZ6ehtPpxMzMDO7evYuJiQkAwI0bN3Dx4kXs7+8LMGQWveXlZeTzeWSzWdk9LhQKQ/0aDAaSsptgLRgMyi66Tq4BDMslgWEJIgBxajXTZcoKtVNOySQd3UajIeCEjq5OemIl39SOLPvPHW+rc3SRZh37RgdTg0bdF15LA8rd3V384R/+IX7wgx9gYWEBv/3bv42/+Iu/wNHR0VB/tTHDXjKZlOQzdGQ1o0OWol6vPyWppLOuixvzO84DGSn9uZ73k8CVvoc+3uyPbof+22yLFTgzv7MCPzQyOLFYTJjLYDAoZT04Z5rhInBLp9PIZrNDIIFjzLUyOzuLc+fO4Wc/+xkymQwAIJvN4ujoCH6/X+KkwuEwyuXyUJkK3le3WzPPJvNLM1kzDaT0OGmQaDLRJptqNRe8l5W0V6fA5zmDwXGRex1rSQBFue709LQAlVAohEKhgEKhgFgsJsCM4I3PFBm2SCQi7xwWvNZglgwz2WU+E3w36Q0cDfAZT8e/tbyVfTXvRQDKa3m9XgQCAYm/I3hjnGq/35frEqSR7WdsH4Ed28ANon6/L0qD52UvFoCTl8xzbohtttlmm21/q+38+fOo1Wo4PDxEIpGQLIFMmnDnzh1Uq1VcvHgRnU4Hh4eHePPNN5HJZMRJ5A52oVBANpvF9PQ0isUinE4nxsbGsLq6ioODA7jdbqRSKYmRYra3arWKBw8e4MyZM9ja2kKj0cDc3ByuXbuG0dFRTE5OYmtrC9FoFBMTEzg8PEShUEA8Hke1WpW6buFwGKVSSfqmnUYG+/t8vqF04aaDav5uOprAE0bMBHgEQmSSCAqZHZDp3YEnsTF0LnmcZqT0dbVk06qtJrumWRHNljDuTp+jpZra1tfX8R//43/ED37wA8zNzeE73/kOPvjgAxwcHMg4aCPwOjo6EslVpVKRBAkulwvhcBjJZBKHh4dPsZQEqPp6+ifHw+12o16vDzmtJqtlBa6+yp7F8pkAQ/9tgkJTGmm2gQDG5/MhFApJUfRQKIRoNPpUHT1K2JgBNpvNioyOY6KBUyQSQSqVQjwex8cff4xCoTBU+J3rqNvtolKpAIDEv7FmoW6vHmduPJixZ3T2yVLxM70RokEJ5Zfm3Fgxblbs20mbHmwjWW4yRObc8pnSmx6M0WQyJAIsghpd6JpxrAAkoUitVpNnn8CL5xMAlctlaQtliBwTXpdzz3cI3xuaqSWY57Uog9flIzqdjqwpMnx8F5DBIxtIwMtNg3q9LhswJktKRphtYRmE52UvFoD78qddRsA222yzzbZnWalUQiaTQTgcxv7+PuLxOJaWltBut3H//n1Eo1GcPn0a2WwWoVAI7777Lo6OjjA7OyvszuTkJDY3N6U4987ODpLJJHw+H1ZXV4XNY9yHz+dDs9nEyMgIVldXMT4+jpWVFTx8+BCTk5MYDAZ48OABFhYW0O/3sba2hsuXL8PpdOLBgwcSp3J0dIR6vY5gMIhYLIZQKCSxPJqJYmrtYrGIQCAg/3w+nzhWJpAhSAOGnfmTslRqYKUTluj4Mw1I9L000DSdVTrcGhCyX9o0INPt09ciC6CBG481gR/bcv/+ffy7f/fv8Pu///tYXFyE2+3GT37yExwcHDwFoHgtZr4DntSmIlMRi8VQr9eHMlumUim43W5J765ZSS2jA/BU8gjTrBx/E1xZgVWrsTfn3QrE8Tt9vAk2+DdZNrI4lEsmk0mMjo4OMTAEW61WC0dHR8jlckin08Ke6L6R+eG4tVotVKtVrK2tDdUK0yCXMVndbhfb29sAIIk0vF7v0GaDPteUExPQsZ9aymnFhhKI6LhG/VOzSFZmBepMoGjGp/Jeuv1kk3hv/bxQqs1NJvaJEshqtSrghywWJZkARALM5DAcg0qlIrG6HGv2ZWRkRLJINhoNdLtdhEIh2QTx+/0C6rSEkmCbc1CtVoXdI4tKINbtdiXGlM8o54Pt0u8pbjxp9hyAZMMMBoMir3ye9mIBODsGzjbbbLPNtq9htVoNTqcTxWIR58+fx8LCAtbX15FOp7G8vIzZ2Vlsbm7i1KlTSCaTyGazmJ2dRb/fR7lcRqvVwu7uLprNJkKhEGq1GhYWFuDxeHD//n20Wi0sLS1hf38foVBI5D2s93bq1Cn0+8cp7MnmPX78GLFYTJiG1157DdVqVeLlAGBzcxMulwvxeBzBYBD7+/tST47GnW06aHt7e5LaOxgMinzJdOBoGiQQPOm/ddwcGQU6qdy114kKTGaM9+a9NDjQjicAKfTLRAum6bZqAKTj3zTbQAdYs3G6PbTBYIC1tTX8h//wH/Dee+/h/PnzeO+99/Dpp59ic3NT+qavScfPzLTJeWMiBcZbvfTSS9jZ2RGgTfDCcdTn67EzTYMBcy6t/jbN6nh9LSvAYXUcf+r4Jmb+4+/cQOA/FnwGjtnicrmMTCaDfD6PUqn01CYA51yDdjradPwJmsk+a6kbayaOjY2JXM7lcklWQZPhNYGOaQQXJ42VBlE8nm02x96KcbO6H1lrs00cF64nSqV1plhu7HS7XVmPTqdzCPwwxiwcDsPlcomUkGOu54QbNm63Gz6fbyjpB1k7JhjRyUqazSYCgYBseLCuGp9dt9uNcDg8VH+O59F0Yhae5/f7BSQy4yWz4QIYSojDdxavQbko5aVkCbUsMxgMygYA2/C87MUEcM+3GbbZZptttv0dMK/Xi7fffhtOpxN37txBIBDAd77zHdRqNaTTaZw5c0bSUp86dUp2kvP5PFwuFxKJBAKBADKZDGKx2FCJgImJCWxtbQm4o9OUTqexuLiIYrEoUp8vvvgCnU4HiUQC9XodU1NTmJiYwIMHD9But7G4uIhSqYTt7W14vV4pary3t4dgMIiJiQnk83kAw4wQnb1cLge32y3JIuh0aGdRAzMTFJnH8vra6HRxp9zr9T5VNFsDJhPc6e+1JLJer0vGO83UaNNOJQCJ5zGZNs1umeBIt1EDg4ODA/zZn/0Z7t69i29961v4zne+g2vXrglIN8eb4I1jxvZqYEGAU6lUcHBwgF6vh1QqBZ/Ph4ODAwEVmpXT7eQ16aifBAo0uNbgwvyn26rNXB+maWaHDJvX65V4S2YnZDymjsvUdQNrtRqKxaLEt2mJnBU7ao6Dw+GQtUfWiA69WduN67LdbiOXy0nWTzIyViyvudbYb72mdOwm223F3mnArzcTTmLerMyM+9IxevyM4Ip/awkz701JImWR/X5f2DCHwyEATzNxjBsj285r8R3HfwRvg8FA5kCPj86I2Wg0UKlU0Ov1BETx3UUg2mw2h2qwaXk0+0k5OcE73wO8HhUQXH/mT96n1+shHA4PyTnJPHIsmZzov2beftX2YgE4u4yAbbbZZpttX8NSqRSWlpZwcHCAarWKU6dO4fz588hkMvD7/Th16pTUDOr1eshkMvB4PCiVSohGo2g2m8hms1hbW8PY2BgKhQKazSZcLhcCgQCuXLmCRCIhtahyuRyczuO6Squrq0ilUuh2u7hx44Y4s4eHh3jppZcEULpcLqn7trm5iXA4jMXFRfT7fWxubiIej+P8+fO4ffv2ECNmxnYx3oeFpVlzzgq4mCCOO/RWppOR0GlyOp0ybvp6AGR3XxfT5j10QgKdVZKyM30e5VM0DUasQI++jxVwsTLNcrCwd7FYxKVLl3Dx4kUEg0Fcv35dwAbHjP3WTKIJOtnGH//4x5Li3efzIZVKYWtrS+6vJa4njX84HB5iAUwZqgYM+nMyD1aOvXkdKymh0+mU2CTGEhGgERQR1NHx5U+Cz3a7jWw2i93dXRSLxaH4Ns6lbr8GoKY0kiCZDBRBPTNO6rWgWU7Gd1H6pzcczDWmx0OPkcm68RiTrTTn0YrJtLqfKZ80kw6Z4EgDPDMTpZ4/MsZM7KJjw/r9PorFotzT7/cPtY8SYQK9Xq8nJQVisRhKpRJarRYCgcBT8k2uCf7Odcjx1zJPSispddSxuaVSSe6fTCalHRwLMnG63MBgcFyrjmBQ163jJksymQQAkTwTTBL8MZOpyQh+0/ZiATibgbPNNttss+1r2Pz8PO7fv494PI4333wTTqcTa2trOH36NFKplDgHpVIJzWYT09PTyOfzmJqawu7uLjKZDD7//HO43W7kcjnMzc1hdnYWtVoN6+vrGBsbw9TUFILBIA4ODsTxbDabiMfjksxiYmIC2WwWgUAAr7zyCo6OjqSO3MTEBK5fv45cLofZ2VksLi6i0+mgUCggkUggGAzi5s2buH37tqTnBp4E22v2p1AoSCIT7Yzp2DZTLmbKC00wYmam5OfM5sbjdXyQdkA1aNR/a1Chd+o1SKKTqdtpxbqZrB+vZconrdgnLQ2t1+vIZDL46KOPsL29jVdffRXf+ta3cP36dYk/BDBUBkCDWA08mI2PTFC73catW7fEedYMmxl7qMdbZw4ka6JTwmtjP8x5JjA22VITqPGfZkYYV8TfmTJexyyyH3osWV9sb28PmUxGnGArdtBKYsj7MRsg+603APg7GRnddmZxJXPEcTwJzHMjwVx3/E73z1xD+vnRAEyPsxVAt+q3Znt5LvvL8dbSZXNda1kxY8QCgQDq9TrcbrfU3iPjxA0pZl9kPBqTglDerKWVrVZLEoFwrXOsmSiFa48ySoJH9kkzepp15/zxncax5xh6vV4Ui0UAQCgUEkat2WwOAUXGtxHgsd29Xg/JZFJYPX42OjqKTqcjccPcQGIc8vOyFwrA0WwCzjbbbLPNtmfZ3bt3MT4+jpdffhm1Wk0SmQwGA6yuruLBgweYmJiA3+8XZ6TVamF7exv5fF7kjM1mE0tLS2g2m7h//z68Xi9GR0cxNTUlxYZjsRiazabElOTzeYyOjsLj8SCbzWJpaQljY2NYW1tDqVTC6OgoisUiPvjgA6k1FwgE8Pnnn8PhcGBlZQV+vx/Xrl2THXTKOrWjo0FVrVZDPB5/KjubBj3aIeTf2rRDrc/R3xNY0GEGnjBvWhZHiZv+GxhO8U8jY3ISE2gF0nR7+Lv5mf7c/NtkQHTGua2tLeRyOZw5cwYrKyu4f/++AE06uxxHnXzE4ThOZkIgr0EOGQCCXbKbBIR0ZDX7Mxgc15xjnA+dYzJjXA86nb2eFw0O6YBr4KDP1wya+TvZK82GcQ45Lu12G9VqFY1GA+VyeQg4aVBpMl0avOi26PWtQYleYy6XC7FYTFgaMnFsgwanBD86db25Lvh88Fh9jH7W9Dl648IEdCYr93XAnL6uGa9HVo3feTyep+SZ5gYKr8GxIdPEhCS8JpkoSlV1Gn/dT51sZjA4lmcy8y3XMiWQBN4EUwBkI4FzwXVLlrRcLg8lD6E0vNfriYycsZUEieyDGfvGsh7sA9vAeD9K3MkWc97Y92Qy+Uy57d+0vVAA7skitxGcbbbZZpttJ9vc3BzC4TB+/OMfo9/v46WXXoLX68Xdu3dRr9exvr6O8fFx7O/vY2dnB06nE9VqVXaVa7UaCoUCPB4PvvjiCywsLODdd9/F7u4uAODo6AhOpxPRaBS1Wg0zMzPodDrI5/OIx+NwOI7Tx6+srMDtdmNzcxMAcPbsWYmPW1xcRCQSQT6fx+7uLsbGxjAxMYGDgwMcHBwgEomgUqlICQE6J4z3CIVCcq1isYjR0VEEAgHE4/GhuBjt0D0rpsOU1VkxV/xOF+Wlg2dmetOgwZTMWTmy2uHUab5NJk0zgxqQmWwYP2ffzGPNvmvHsVwu48aNG4hEIpLsQJ/r8/nQ7/clc1+r1cIf/MEfIBAI4Ec/+tEQGGC8kM4yqRkhsj6acdBjoosc65geDXw4L+ZPzhWZBbIldLb5k2POeWVtMQIFfs81Va/XJeNfq9UShoWMD51zE+SYAFWvKUrvGMvEtuh1w3XpdrsxMzODaDSKaDQKv98vjv5gMMDOzo4Uc240GpLcguNHkKbXLtul/+lYN71WTmLzTvqO69YK5LH/JljSc8lng3NJ+aGZTEcnN+F4E+wz6ctgMJBC2XxPORwO1Ot1AcOs3ce55X20RFZv8pC10vJpDTgJEHm8BkZMQkPWmowts5kOBsdxdExiQikn1wwBI+/F2D6CNIfDgUAggEajIdJQp9OJRCIBn88nY+73+4dkniMjI0PlW75pe7EA3Jc/bQbONttss822Z1m73cbq6qr8p33jxg2Ew2E0m010Oh3UajU8fvxY5IdHR0eSyTGfz6NcLsPhcKDRaODixYs4e/Ystra2UK/X0Wg0MD4+Lru+ly5dwvr6utRwo6Tn1KlTqNVqePjwISKRCDweD7a3t9HpdCSmI5vNolqtYn5+HisrK7h79y6y2SxSqRTS6TQajQb8fj8KhcKQo10oFMTZKBaL2NnZwZkzZyS7nM/nQ6vVGoqXM2PftBNtSro0yNFgBHiSNr7dbkuiBO5ga2fbymGlY6XZQLaRDinbY8a6WQHAk77/rzHdd13ol2NNpkzfj04gHeGRkRGsra1JIXYdx8cdfs2OABCgpLNrchxOmiOOnZWzb3WOBv36Hx1gfT0NFgig9fdWsliew1qI0WgUa2tr0l5zw0ADHA0odYKUfv84Eyz7w388z+fzYXJyEolEQmq8UTrn8/nkuXM6nSIDtGJ4TwJlev0SbFjJKHld/Z2VNNKKeTNB90lmMuEawDLxD5kmtpdrkywUGWFKnwOBwFCBbq5vZqok48t2k3HnmACQ1P0sHm6ydQSavJ8+hxsHuqg915TL5UIkEhl6JnQMXbvdHgJtZF41wOQ/gslgMCjncUMiEAjIO4zPuM/nk5+VSgWVSsVyo+mbshcLwNkxcLbZZptttn0N63Q6Im1kYd+DgwMkk0k4HMdZFPf391GpVFAoFCReaW9vTxyLWCyG8+fPI5FIYHt7G7OzsyiVSuLcDAbHAfNXr16F1+tFNBpFuVzG1NQUQqEQjo6OUCwWEY/HUalUxLEfGxtDs9mUQsSnT59GJBLBlStX0Gg0EA6Hsb29jVAohMnJSYn7ICCi48t2djodbGxsoNvtwufzIRaLIRqNPlV+wO/3i8OmHU6TSdPsA/B0+nM6Vz6fD36/f4ixodNFJ47skekImQAMAMLhMABIG+kYWwEH87NngbZnMW/AcDwcwSjbw5pZZvvp0GqZ3u7uLrrdLsLh8FAiDc0+mFJA3k9LVzl2Gqia8kVgWIJ4kmxPM34my2QFOPT4WI2VPobZCAk4i8WiJMYw4/T4N4s8z8zM4Ny5c2g2m8IyM5EQyzjouWV7WRsRgDBGdORZu8ztduPcuXMYGRnBZ599JrXHtMxXs28mENNjaI6lCZh1Ag3N7umx1QyqyQzrcX3Whoopg9axowTjjF3Tmw0ulwuNRkPq5jELJDen+D4hiKvVagIOdSZdAiICPZ3MhnFoBFNcv3w22HaCNoI+MvRMFNRut4e+Y2wqWWS2m8lreH8ywVrSTSDLtvN92e/3EYlEEIlERErJcwjyNHtslxH4FdmTLJTPuSG22Wabbbb9rTb+5//222/j6OgIW1tbQw4Bf2azWZTLZfmPms701NQUzpw5Iyn6JyYmsLGxgUQigZWVFTx+/BiZTAa3bt3C6OgowuEwGo0GTp06BafTKewZcCy3HAwGCIfDSCaTKBaLEjA/MzODbreLTz75RADD+vo6otEo4vE4/H4/isXiEEhxOI5rFxFcAMd1yFgTi9kxTXkdM73RTBZAO41mHJm+lmZCGOTPNpH1YxyJGUOnTUsmAYhklcfppAymNJLX0yDUyinW7X0WyDMBKyVkjO+xGhMrgKETlVA2SYebjIB2yHlv3VYNsK3mgO3hcSfJ+cwxMsflWeeY9zf7T8kZ+8o+sY868yOT60SjUYRCIYRCIYyOjqLX6+E73/kOotEo/vAP/xDBYBD3798/kfUIBoNwuVyoVCpyfYJtfQ7BWKVSkfqPOpugTgTCfpoA25QxmoCXYE6DcT12+m8rls08z+pz81oaYGp2lOCR64/giXJJh+O4vlm9Xker1UI4HJYNl1qtBr/fL/chW0UwRuDPe+q1R4ZTyybNtg8Gx/JHPgd6vWjpIzOGAk8SBTHRCcEd1xMT6jBL5GAwkFIkevwoiWTbdLIebYFAQNYu/1/ge4hteh72YgE4YeBsBGebbbbZZtvJ5vF4MDExgXv37mFiYgJvvfUWHj9+jFu3bqFarUocRavVQq1WQyKRkAyO8/PzmJqawt7entQe2tnZwcWLF+H3+/HZZ58NSe3o3KysrKBQKODg4EB2qBnk7/V6EQwGkcvlUK1WkUqlEAgEcHR0hGq1inPnzmF7extbW1sIh8Pw+/1ot9tYW1vDwcGBACItPWq1WgI8t7e30Wg0RAaaTCaHAvpNcKbZG5p2ukypmMnwjI6Ool6vS4wIWU4ds6Tvr518KyYDgOzAa+ka72vFwrHNur1WDMdJfdF/a4aEqdKZ4EADXXNszP7QidbxSjrrHXf3rVhJOqIEfqZsT88PHWndFu28Wo3v1wFu5hhZgeaRkRGEw2EEg0FEIhGRpcXjcUkYBACJRAKJRAJut1syF+ZyORSLRWxubmJychK3b9/G7du38YMf/AArKyv41//6X0uBb841yymQVaEEut1uY2ZmRtZLv9+XGCeCD81G0/nXa9GUo5I90uMNYAgkaRBtAjn9/UlsG+3rzJG+nmaizLkJh8MoFosyFtw0IDDqdDqSZKlSqSAYDAojWy6X4fV6BdCxALfL5ZIYNP3ceb1eVKtV2RDie0mXAaEMU9c7ZDkNyjIZP0n5NZ95PhcalAJPmH+PxyPsocPhkAQ/7XZbMm7qEjFkDBnzxiQuVCzo5Ca8LwDJyvm87MUCcF/+tBk422yzzTbbnmWtVgvNZhOXL19GMBhENpsV8MTd1kKhIIW53W43gsEglpeXpQYcs1Du7+/j/PnzODw8RDqdxiuvvIJms4n19XW0220Eg0EsLS3h3r17KJVKSCaT4rB7vV5EIhGJVXO5XJifnxfZo9frRTweF0YvlUrB6/Uin89jf38f/X4fsVgM2WwWnU5nSB5Vq9Uk0UCr1cLt27fx9ttvw+fzIZFISAyKaWaKfiu2RYMvHcNDJ4q749wBpzPIXXXT6aOZoJGfAccOrU6eYXUNk70yzYxj4mdfBV40uxgOhxGLxYbigKyO5zU1Y2MCAy19pAOuyzBo1kJnzLMCTnr8NIg7qc8n9fOrjrECw3p8IpGIMMSzs7Not9v4tV/7NSwvL6PRaGBzcxP5fF6c8Uqlgr29PfT7fdmcYBKUzz77DNVqFclkEsvLy/hH/+gfYWtrayhJEGV/lMDpn51OB2NjYxgdHRU2TmdFLZfLSCQSAm6sJHEahJHl0ZseBJHmGGlwwc+spLImwDeBtjnXJ5m5CaOvy+eQ7U+lUlL+gpkauf48Ho/EGI6MjKDRaKDRaMgGSr/flxISfIdVq1W0222pj6afSf4kOObmVq/XQ6VSgdN5XB/T7/fD4/FImQngSSwp42qZpdLn86HT6QjbBjyp88Z7UkoOQN4bTIjSarWG5J6UZxM4kokzN5M4fty8MevjfZP2YgE4MnA2gLPNNttss+0ZFo1G0W63kc/ncfv2bVy7dg2VSkXqSzFJyeTkpPxHvbCwIDFr5XJZYiVKpRIePXqESCSC119/Haurq9je3kav18PU1BRmZ2dx584d9Pt9TE5ODsWWEGDRwYpGoygWi2i1WhgdHUWz2cTa2hp6vR6Wl5fh8Xhw+/ZtqeHkcrmwu7uLbDYrsT8EB2Rp6Ph8/PHHePPNN+H3+zExMTGUFESfZ8ox9U+ajrkxAUy325WyBkxQoHfg9fl0/gnwrAAYgQv7xOO0LE+fZwKfk8COtq8CcXTgWXA7GAyKQ6r7YwIgvUNPR98EreY9ONZMyc7yAHQu9T11EeeTQJwJ4J7V15MYHg3STmLigGO5WTQaldilQqGAWCyGCxcu4OLFi5KxU88fs77ev38fh4eHWF1dRTabRTablfMZW/rKK6/g0qVL8Pl8mJiYQKlUws7ODprNJhwOB0KhEPx+P2q1Gvr942QnzWYTxWJRMlISVPHz6elpee6bzaZsguiafHpO2Hdz7vT4sI8aAGhArRlWKwmmOe5WMl9zk0ADey1jZhIP4ImslkxuLpcTtpTgqtlswu/3o9PpSDr+er0+lBBmZGQEoVBoKGU/N2rM1PpsG2MRHY4nBbz5TBHAVatVYd0oV+T3ZO8JrHT5Cj4jWjLJ55NSdQI43tfpdEpCFDJzvDbbbJZmIbvMMT6p8Ps3YS8UgCMHZ0sobbPNNttse5Z1Oh3s7u7i3r17yGQycLlcmJqaQiaTQa1Ww9zcnCQTIUPmdDqxsLCAo6MjkVK1Wi1Eo1EcHBygXC7jo48+QrFYRCqVwoULF+D3+3Hr1i1x/LPZLAaDAfx+/1OJE1hAnKxcLpfD7u4uRkZGcPr0aeTzeTx48ADdbhezs7Po9XrY2dmRtlFGqeOs9K75/v4+qtWqxOz5fD7UajVxruikaKABWDvs2kGlaWeewIqZ5biTrlPN62OtmDfgCVPB34EnjrApoTSZqZOYC/OYrwNoBoPjhAXxeFwyhpJF4FrQDrtVX3Rik5PaxGPorCYSCbzxxhu4f/8+NjY2nor1e1ZfTWf/JAD2dZk200wQTtYiEolI5tZisYixsTHcvn0bsVgM4+Pj4vhz/A4PD/H48WPcuXMH6+vr2N/fR7lcluQ8/X4fV69exblz5/CLX/wCrVYL8/PzmJychMPhkFp4TG4TCAQQi8UExHW7XZRKJbkm45coWa1Wqzh9+jQODw+FITazKuq4KDJQHMOTxsgKgJnPlr6G+flXmQn49HwRFDJBCmWEBDjr6+vodruSFKRYLAqbRRaO2W2dTidCoZDU8vP7/fKeisfj2N/fH2I1+T7R7wfKInu9J8W8CejI5vV6PZkPsmxk51jigIxgLBYTiTvfL3yvssQEAIl9Y7bNVquFUCgkde70ODabTYnZZVKXfr+PaDQqcXfRaFQYXoLX52UvFICzGTjbbLPNNtu+jl27dg2FQgGRSASTk5MolUrY3d1FIpHAyy+/LNLAVCqFer2O2dlZNBoN7O7uot1uw+fzIRKJIJ1OY3t7G6dPn0a5XMbBwQFmZmbwzjvv4NGjR7hy5QqmpqYkAYPb7cb4+DhisRgymYzsHnu9XhQKBQEshUIBpVIJ0WgUY2Nj2N/fx97enmSp7Ha7SKfTsiMdi8XEQWKWNYIOAJKNbXV1FefOnUMsFkMymUQul3sqYYPOYAlYM1pmHIoJwjTDQmfIzDppAkRTSsbzTSdJx9FZxb2Z9iyQY8UwWh1D5y0ejyMWi2F6elriEzWjYjJuHBOdLAF4Oj28Bs88PhaL4bvf/S78fj+uX7/+1G6/yfBYtZ1t4PxaHWuCWfbZZC1PAiv8jmnWHz9+LDI6xln98Ic/xMbGBpaXlzE3Nyds8erqKq5evYr19XWJl+QmCnCc6TWRSGB3dxf/5t/8GzQaDZGZZjIZLC8v491338XVq1exsbExJIEjCCFDxOREZHY4Lkyicf78eXzxxRfi2JtzqqWv5jNjjpGeU657XlPXXzxp3kzppP5brxVuigAYKi9hMn+9Xk82b8i0MQ6M/eGcBYNBkfCy7Em5XJa1zjal02l4PB7Mzs4in88jk8kIkNLt5k/9XtIAigyfBrDMYKs3aYLBoPQBwJDkle89vis47ul0Gk6nU8oIsA6hlolz3fZ6PSkvwbpwPK5Wq0msIEEu32vPy14sAPe8G2CbbbbZZtvfCavX61hZWZFd5lAohFdffVV2mlOplMh0yLBxZzcUCmFubg5ra2uoVCqYn5/H7u4ums0mLl68iLm5OXz88cfI5XK4fPkyarUatra24PF4cPnyZRQKBWxubsLlcmF0dBSVSgXlchljY2NwuVwiv5yZmUEoFMLa2hoKhQLm5uYQjUaRTqeRTqfFgQiFQlLziYwXaxpVq1WJEapWq3j8+DHOnDkjtbLW1taGJELcGTfNKisek7RwZ58OIAv/mlIq/v2smDF9D+0wazPbp4HgSeBCO5QaWJ3ELpnm9/sleycdYDPWTLdVjyf7bsak6b9NkBkOh3Hq1CkcHBzgwYMH2N7eHjrXNHOMTDbmJJCmj7UaL7NdVt8Bx05wNBqV2DUNMtrtNvb395HL5XD16lV5tiiT8/l8KJVKcDgc2N3dFVljIpHA9PQ0ms0mSqWSgBUyy+l0Gv1+H/Pz83j99deRSCRw9+5dYXC4TpgsRgMbnSjG6XTi5s2b+I3f+A288cYbuHHjBoDh1P96vk4aF/M4Uw5J4/3ZFn5vMtNa/qo3P8gM6nXEe1rVnDPnjCyj3+8XkEJ54GAwGEpawp+UMRIIORzHZQYymQyq1SoAyLz3+30prcHEMNVqVZg3snAsoQE8KWNB5o0yxUqlAgCS6IYxZwRoZOHYP7Y5HA6jXC4L89/v96VsDEE+M2nyPc854HrhvThGzWZTkqzUajUZt+dlLxaAk4flOTfENttss822v9V29uxZdDodpNNpiach6zQ/P49isSjxaZlMBtFoFACkntu9e/dETlcqlRAMBnHp0iU0m01cu3YNqVRKnMG9vT3EYjFcvHgR9+7dk2D/eDyOo6MjAMDU1BRKpRKOjo5EalatVnH79m10Oh2cOnUKDocDe3t7ODw8hN/vl7gQOilM0884D6/XK5Ih4Bi0bmxsoNlsIhAIYGVlBR9//PGJ6eZN1sUqNs3v9yMYDEqMjdvtllIBpmlWDRgGPOZPzcqZ5+v20LG1Yir03+bvtJNAnP6c0sloNCqxUnt7e0MON51f3Xama6cjroGtBn8m80iWNZ/PY21tTRzkk9r7LBCqpa6ms3kSc/Ss61sxK2QnR0dHUSgUUK1WpR/Ak8LflDsy1rRarcLj8WBqago+nw+3b9+G2+3G22+/jVgshmq1KrGUXq8XyWQSbrcbjx8/xsjIiCTzqVQq8iykUilJnkNGWtfR02OiwbfL5cLHH3+M7373u7h06RLu3bsH4EnJAc04s09kSk3ApOMhrRg6slFWpo8x4xtPAu/AcBwd26nnjf1gu3SWRp6nM9nyXGbnBCAxYrVaTc7jfDudTknuo5UBbHcoFBqKqfP5fDIGzBza7/cRj8dlblmnkgyZLritWXeOC8/TSViYTTMYDA7JOsnGARgCcfqdxIyckUgEwJMaeZlMRsbcLiPwKzLJQmnHwNlmm2222fYMGxkZQalUwtjYmMgZ4/E4HA4HMpkMfD4fcrkcBoPjtNSUOzabTRweHuLtt98GANy9exczMzPweDzY2tpCq9XChQsX0Ol08MEHH6Ber2N0dBSBQABXrlyBy+USCWUul0MgEMD4+DjK5TKOjo4wOjqKRCKBw8ND5PN5jI6OIhqNot/v49GjR0in05JAw+/3w+v1IpfLYW9vD7lcTmRROi6EDo/b7cbGxoaA0/n5eXGK6IzQoaVDRQdJO6UApOAyQQzrLtE5fVZsiBnTdpI0j84xHS/NOPAz3lfvwpvgz/zcZEZOAi/8LhKJIBaLyTjqhCsOx3FWytHRUXE0W62WMAqMDaI8i+BGs5GaQXE6nQgGg8hkMjg8PHxKomnVB91esx/mTysm1Wrszevpz/5/7P1ZkB1nmh6MPXn2fT91aq9CFVBYSZBgo5tLc8hmszntjpnpUGjGsiZkj2SFZSlCoRtf+LcvHCH/uvjDIYcvdKGwHFp809Y/0mh6lp4ZNqfZzaVJgiAJECD2Qu1VZ9/3NX1R/bz4TiJPAT29YMQ/3whEVZ2TJ/PLL/Mk3ud7nvd5jUwn99ntdoW14lgpZXS5XPD5fKjX63C73cJknzp1Cpubm7hx4waOHz+O1dVVAXkqe9nv9xGLxXDhwgVxrOS8NZtNFAoFYX/5Oo06WPelMohGcMX5ffPNN/Haa6/h+eefx/vvvz8GFnie3FbTtLG2A0ZwrR7LeN3UIPgysmq8R9RWFUYgrspz1WvNhQ0afajjJoPJPpEEUGSh+Bwol8vw+/1wOBxoNBoIBoNjIIxjUxdm+v0+ZmZmUCwWxxYq1BYNdAclqCdb6vP5pO6N35NAICCLVPy+q/c+54Z9/9hk3G63SyNuGrLwueFyuTAYDNDr9eTZSuav3W5LPR6BKXD4fKtUKigWi6I6UPvjPYn4cgE4qwbOCiussMKKx4her4e1tTW0223U63WpYVOL3FWTkVQqhXQ6jVgshqmpKWxtbaFQKGB5eRmDwQCFQgGapuGZZ57B3bt3pdfb9PQ0ZmZmsLu7i2QyiWQyCZfLhWKxiHg8DuBBk+1UKgWn04lsNovBYIDZ2VlEIhGUy2VpND41NYVer4dgMIhoNIrRaIStrS1kMhmReBIwUArUaDQE9DUaDezs7CCVSiEUCmFpaUlqj+iKSQkU2w+owSQxFAqJ1JSMG2tZ1Ma+RtMNwFxCaWT4JjFGRhkmZU1m9ShmCbX6WTPG0bg9ax2XlpbQ7XbRbrfHjjUzM4OvfvWrWF5eFnkl597pdMJms6Fer2NnZweff/65SF1V4OhwOJBKpaQ/WqPRQDabFabDOH7jtZgk1TOGGRN3FEM5idkzO0a/30cymcTS0hI+/PBDScpVmSLBlKZpwl5/9NFHyGazIoHsdDryOd5D3MfNmzeRyWSkLkmtswuFQrDb7SiXywLi1No3MzmuEfDy/N966y28+OKLWF5ext7e3kPzp4I/Or2SbeX9qV5fI4hWQ5VJqn8bGU6VWeN2RnDI8XFcNCjhPBmZRH5vODftdhterxe6rqNcLsti0GAwQDAYFDljJBJBvV7HcDhEu92W4/DahUKhMYMPukrSwp/3S7vdxnA4RDAYRCAQEAas1Wqh0+mIe6bar45yzlqtJmY0fMYRtIVCIVFT0PzE6/ViNHrQ/oBmN1z48fv9aDabY2YnNOVhTfBwOEQ0GoXb7Raw+yTjywngnuwwrLDCCius+FseTz31FILBIG7fvo3V1VXs7u4iFothMBhIvcZgMEA0GoWu69ja2sLKygqcTid2dnbgdDrx0ksviSxxenoa4XBY6mdCoZCsJN+6dQvT09NYXFxEOp1GuVzG9PQ0RqNDZ0iXy4VkMolqtSryyFgsJnKknZ0duFwuRCIReDweSdoajQYuX76MQqEAm80mBf0qQCEbFg6HoWkaer0ebt68ibNnz8LlcmFxcRG3bt2SBIkubKo7JaVVZDa8Xq+sxnc6HZFjscH0JDORSXJFhgr4GMa6IONPrp4bHfwmJc0qW2J837gtzWGCwaDMO3tmadqh+czp06fx1FNPSX8+1hJRykWzA9ZyZbNZYQM4Bkr+2FS4VCqJicfjyhzN5trsvNV9HcUMTbpWZiCR16DVamF5eRlLS0vI5/MilfP7/XC5XGg2m1hZWUEsFkOxWMTOzg4KhQJOnDiBZDI5JiflIoDKuLDJsgrseH+wRQDlw6zVUlnho+ZOlVSORiN8/PHHOHbsGJLJpHy/eO6qrFJlwNT5UfdnvMdUlg0Yv8dVgM3PqlJPbmNs5K7uUwWq6j2mft7hcEi9IlsIEPQSPKn1rLquS00YARtZOVXGOBqNpIYuEAiMtRWo1+ty7Qis6LhLk6WDg4MxkMdaXlWOW6vVBDADEKnscDiEx+NBqVQSZp4AkeCaNXMEajwGmW5+Dyn/pOslAKmPJhtfLpctBu6XFRoefiBbYYUVVlhhhTGi0Sg2NjbQarVw48YNnD9/Hrdu3RJjETXpaDabOHXqFNrtNnZ3dzE7Owu3240rV65gOBxibW0Ng8EAn332mdSmqS6Jy8vLcDgc+OKLLxAIBLC8vIxWq4VyuSyMXKfTQavVQjAYHDMzqVQqAiCmp6cBHCZp29vbWF9fl0TJZjvsaVQqlYSVYrLCZIxs4sbGBsrlMmZmZrC6ugq32416vS49sFjvR5c3JqyU97HHEpkOMh9qjzYj28X9MVQgZQbSjnLoU1kOShMnyQeNTIUxqTayV+rYKZ10u904ODgQFongQWXZVIaE8io2B6ZpA+VhatBRsdlsolarjdWQ/SJhPBf1b7IxRx3jUZJKIwhutVrY3t7G/Pw8zpw5g729PdTrdTkXu92OeDwu7EkwGMTe3h7m5+cRDoeF3SFr5nA4kEgksLy8jNu3b8sCA2uwCAL6/T5arRZ2d3fRaDRQq9Vk8YFzTckm8MDBlAYnZEx5b+i6LgzN5uYmjh07NjY+9frxutOghsCcc2OsbzTegxyPkRnka+r8qnWqvP9Vh0ajXJOARZVPcmxkyvk62TZ+151Op7QeYdNyfs7j8aBSqaDT6SAcDkPXD41G1DHT2r/b7cLv90PTDmvuWq2WvE+pIoFUq9VCvV4f613JBSkyhVwQ8/l8IiGnFHI0Gkn/QfUacQGOc0QHYT4PKevlNeBzczQaPWS6Qpkp+4T2+31Z8HoS8aUCcLAYOCussMIKKx4j3n77bXGG/PrXv46trS1EIhFZyY/FYigUCiiVSlhdXcX169cxGAwEfK2vryMYDGJhYQF7e3vY3t7G9PQ0VlZWJDnJ5XKIxWKo1Wqo1Wo4duwYhsMh9vf30el0EIvFxA693+8jHo/D7/ej1Wrh4OAAo9GhpbfdbkcwGBQZUi6XE8mmzXbYoykSiWB9fV2K9wOBwFjCR3ml3W5HpVLB5uYm4vE4ZmZmEIlExLGNBiu0EmevKCYxg8FApEaj0UjYIiaDTIyNq/JmobIGKmNglFOqiaxRisnX1LordX9cSVeNTrgvNaE2Jtk0maFxgSrf5Mp8v9/HnTt3EIlEsLS0JPWUbGDOmrh+v49SqYSDgwNJYtXj93o9uUdYt2M8d7N5M46br00K3g+PwxpMAsRGyR63o4z41q1bmJqawvHjx3H+/Hn8yZ/8Cba3t9HpdBAMBjEcDpFMJnHv3j0AD6S4rB0kAKYUOJfLyWtk5Nh8uVqtiiyTjpas5yIwdjqdWF1dxWuvvYb9/X18+OGHsh1rFY3zx/6IBHHz8/NIJBKoVCpjAIEgnvJhdb7U62AE04C5gQ8w3paD26nvqcBOvRZqvSelguq15neDLFOv15N+b5Qiqs6crDnjtaAhEg08aIzE+aLEkAwgWXHW11K62Ov1BIB7PB4BimTnyPIRrHOBhhJIvs+54LiDweCYK2Sj0ZD6Nt4PAKSnHP9m+wKV0eMCAq81QRq/y7VaTeTmrVbL/Av0a4gvFYATExMLwVlhhRVWWHFEpNNp6LqO8+fPw263Y21tDdVqFalUCnNzc9jb28Pdu3cxHA5x7949BINBrK2tYWNjA6VSCSsrK3C73djY2EAmk8GJEydw9uxZ7OzswOv1IpPJYG5uDvl8XoxNyK4Mh0MsLi4KQ2G328VApVAooFarQdM0+Hw+kRdxhXtvbw/FYlHMBcrlMorFIg4ODlCpVAQQMJHlSny9XkcikUAwGEQ+n8etW7dw+vRp+P1+LC4uYmdnZyyJpQxQNSPhyjiNBeh6yWOozIAZE8Hg9kdJKo2fYajgQf2nthaw2+2yGs9krFKpCKicJKFjsBk163KYyKlmEjy3dDqNt99+G3Nzczh//jxOnjyJVColY280Gjg4OMCNGzdw7949uSaUWgKQJtMEDZPCTO5oxhwaP2MmjzT7Xf3bDNRO2h9BQ7/fx/Xr12Gz2XDp0iX84Ac/QLlcRrvdxvT0tDhEXrlyBb1eD/F4XO4DnjcdONvtNtrtthhxsGaJjoC0gifDDEBkrnyfLE6tVsN7772HcrmMWq0mLJzZ+eq6LosdBAcHBwcikVUdLVX2jbI7Y32jOq+qdBV4+B5X699o+MHjqLWAAMaYNTMgr7qfqiCOIIoOu5T9ElCR1eS5ERSp9WrD4VDqg43mQcYFHG5TrVbHGnk7HA74fD5RCajfLTKgBEoEcQSBBJi8tnzm8TnJe6VarcpzjPeHruvSx40Lbbzv+LxQ2Uev1yvzY7fbpfaOjKvlQvlLigdfGAvBWWGFFVZYMTko6friiy+kdmJubg7AYZPve/fuodPpoFKp4Omnn0YoFMLVq1fhdrtx5swZ1Go17O7uIh6P4/z58xiNRrh27RpqtZok/zdv3kQsFsPa2pqwZn6/H7Ozs9jf30c+n0ckEpHG3PV6HfV6HR6PR+rRKBXqdrtYX18XJsPlciEWi8HtduP+/fsYDoeIxWJotVrodrtotVqSIHEFfHp6Gm63G+12G3fu3EGhUIDH48HKygo+/PBDSdJUAwrWcVGmxJXxRqMhrQOMjJFR/qjKxNSVfvV9s1ATXDNWzggEmcg6nU4Eg0F4vV7k83lUq9WHauvU/RhZODKaahLNhNRM2lmpVFAul7G7u4vt7W187WtfQyKRwPb2NprNpjR0LxaLADAGdOl212q1HupvdxS7ZgbazBhG4+/GfR3Fxhn3r/6usp/qHAKHtUuVSkUs6DVNQ7/fl15wg8EAq6urwlyR5QQOa9lee+01/OhHP5LFAwJdgo1wOCyGQ6y9o7EMDScIkJn8V6tVYZQBiNGP2RwQ9PN8BoMB7ty5gxMnTggzBTyw5jc2aTcCOJUlVsMMyKm1dZwf43eIzpIM9iTk72x1oYIijok1XQRQXCiieYjf70e9Xhcmnt9xXotIJCIsHsF0qVQSFo/fEafTKfWi6r1AZprsNA2ZaIpCYMQxsf8ag8ehAQmPxYbjg8FAnHUpZefxOAayiXy2cW76/b7UWZKdpAKBoNHj8cjzUH2OPYn4GwM4TdNOAviflZdWAPzfAEQA/B8A5H/2+v9V1/W/+Jse5+ca089+WgycFVZYYYUVR8Xdu3dRr9fHGrrev39f/gOv1+vwer1YWlpCrVbD9vY2FhYWEIlERAKZTCYRjUaRTqdRq9WQy+Vw4cIFAMD6+joikQiWl5exsbGBRqOB5eVljEYjYWISiQSOHz+OUqmEbDYr9Wxc+dU0TRIPyhT5vtvtRiaTwZUrV9BoNBAKhVCr1dDpdMSEoN/vi+QIOGSDKK8ajUbY29tDPB7H/Pw8IpEIstksKpWK1AAS/FFyxISn0Wg81CxZZY7MAIeZwYhZqMCCSewk1oevq+CMTBCBKBkXs3EYj8f6p0gkIsYO6nkR1JJpMUo/a7UaLl26JLVTdBvd3t4WdlQ99263K5b5rB80ju0otsxs/JMAHbcxspBkdyZJSc2uIYHFUckrWQvg8N7IZrPIZDIAgIsXLwqgIfBivWCn08G7774rQETTNGF8fT4fkskkOp2O1BRWKhUBagQyTP5VF0ReS9Z0qeesni/PT50PgpudnR3Mz8+j3W6PsWlkf8wYSxWkqfOvzj3ZHu6PIIXbqG0CWBemHlsFeAyXyyXH4+s08+A+ySAFg0GUy2X57nCRhtebhjA222FrgUgkIjJWGtSwpx/rOWnCw+cRry+lilQI+P1+kW8TfLGnH8E5ZeJsRQE8AJQej0cWuPg3WVJeE5fLJUYkuq4L8FOBIXAITin5ZP84Snv5/wQXBHif/HcJ4HRdvwPgGQDQNM0OYB/AHwP4RwD+X7qu/+tfxgB/nuA8WvjNCiussMKKo4JOZWS6YrEY7HY78vm8mIvMzMwIWDp37hzsdju2trYwGAyQSCQwGo2wsbEhiccrr7yCTCaDjY0NpFIpdDod3Lt3T1i3fr+PdDqNwWCAZDKJxcVFlEolbGxsIBwOSxNb1cihVCohn88jl8shHA5jamoK8Xgc169fx/Xr1+H3+5FKpbC7uyssA1eI1Rqf0WiESqUiZifVahV3797F6uoqHA4Hkskkstks6vW6gESCICbGNtuhJT6t9M1qeI6qfTNjhcyAHaVXRsMP1SyECbYxIQYOk7v9/X1h6NT3GEyA1USdyX84HJYaN1USx+3JbqjtEhiDwQAHBwfY399/aB44Fibt3W5X5vOourdJckZjTAJxZmDMGOq8qvOrvm/8/FHyV/V9Hn84HGJ+fl6SaM6Nz+fDN77xDVSrVXz22WdS88SFBjaLZ99DsjqUEdpstrFmzATZqgU9cMjgraysIJ1Oy3el1+tJYs7En/eVyvpqmoZqtYpEIvGQs6R6fqpxySQwrTpiEnzys9yWCyNmTpSUALJeUp1nAje+RjDImrdGoyGLOh6PR9g6tQckATCPQaMezmWlUkGj0RBmi/M+Go0ecqRlbRuNfYDDujOqDLjAwuOrMkk+Ayjv5DxQycD2AGpzcJqL8LscCATkXmN7GJ/PJxJbzitZYNX8iX+zZx7vEV5fr9c7sSH7ryN+WUf+JoD7uq5vP0k0+sCF8okNwQorrLDCiv8Ogv/5Mhmn+Ue73cbMzAympqbgcrmQSqXEFr1er8Pn82FhYQHNZlOYrtnZWTidTly/fh3dbhcnTpxAp9MRBzav14tWq4VSqYThcIjZ2VkkEgncv38fjUYDkUgEkUhE+ohpmibs4P7+PlqtFubm5jAzM4NoNIqf/OQn2N3dxbFjxxCNRrG+vo5KpQLggdU1ey+xqfdgMJDkikleJpPB/v4+pqenMTs7i5s3b8qKuTEBJphjkqeyT8ZaHiMwM4aazBpZLIbqfqcGX+d+1GMZwYcK8owJNzBu7MB9BwIBAQ4cnxEoAg87alJKp7J2KugxWsUzwaVs9Shgpp6r8RyMwMq4n0cBPpVNMzJS6rGNxzRuM+lYnA8m2LFYTCzbWau4urqK9fV1lEolAQ5M5gmoE4kEYrGYsCo7Ozvo9XoIhUIiGaYrIQABC2oNHRs1q30LmYDzmJwL1fVRBXX1eh2pVEoYHSOjqRqcqOCZP43glvczz4uyXSNbSoaO88LfOS5uq56P+pOs08HBgfSA47HVXmesc7Xb7fIMIiNG4EigRvCmuk9Go1FxlKS0lc9Z1TjFZrMJk6Xun+ZLrE9j/R2bc9PhkoZOwAMpMts98BzYy5LjU+Waah2q1+uV7yc/S7DW7XYFtNdqNblHuMhlxpz/uuKXBeD+NwD+f8rf/1zTtP8dgE8A/J90XS8bP6Bp2j8B8E8AYHFx8ZcyCGHgLARnhRVWWGHFEcEE+uzZsyJRJEPgdDrhdDqxtraGYDCIzc1NYal8Ph/K5TIqlYrUoY1GI2QyGYTDYdhsNuzs7GAwGGBmZgY2m03YGI/Hg9OnT0PTNNy/fx+apkn9GxmGVquFXC4nBidOpxNPPfUUPB4Pdnd38d5776HVauH06dPw+Xy4evUqtra24HA4EI/HRY6k67oAzlAoJMX9tVoNsVhMVquvXbuGeDyOU6dO4dNPP0Umk0G1WhXXS7VuiAwc6z+Ah/uLGU0ZVKmhGYt0lFGJui33wbGYMRxmjJF6TOMxjLmCx+MRiZZxX8ZxMgFUnev4ulH6yQRcnTP2GySYeByGbdIcqWCVYzKCB7PPGhky4z5/3jBeN9XYBji0dFcTebfbjYWFBZw+fRoffvihyNfo/un1ehGNRhEMBpFKpZBKpeB2u1EqleD3++H3+6X9BsECZXaqO6B6D21vbwuoUxuHAxgzKCHAJDji+aXTaUxNTck1NbLE6vXg72b3KvetAgwAY4CACwIEb1xYoEW/aq6j7kMFkVwEsdlsmJqawrVr10SeTfDWbDYRCATg8/lkW2PNG/vBcRyspR2NRtILjvLObrcrzw3e61yosNvt8Pv9IudWDUMIGtvttoArdXGEQI91xnwecP+cU6/XK2wbHXR1XUcwGJRFLC4oRKNRmXMVPPP7ynrmQqEgx/L5fOJ+aqxr/HXGLwzgNE1zAfgdAP+Xn730bwH8jzhUMv6PAP6fAP73xs/puv7vAPw7APjKV77yS0FcloWJFVZYYYUVjxPLy8t47bXXMBgM8M4772A4HGJqakpWbp966il0u13cv38fsVgMsVgMmqbJ6jKNLoDDRGtpaQnpdBrNZhMulwsrKysAgK2tLXi9Xng8HiQSCWQyGRQKBanhcTgc8rNQKCCfz4uz2uzsLFKpFPr9Pu7fv4+dnR0EAgE89dRT0HUdV65cGZN1HRwcYDAYSN+kZrOJdrsNv98vAIgSIL/fL+0Ezp07h8XFRayuriKXy0kfOVWOyQJ/SoqAcRkj8LCBCcPIdKnJrJG9UxNftYbKaBhgZNnM1D/GJNpsWxXEUFKmmkio5zWplo4JtpGFVNk4laFjs2S6LKrjMM7PUWEGwIyS0scBhI8D1szYv6P2R9ZNZZrOnz+PTCYjyXMgEJBWDKrZhMfjQSqVwvLyMgKBgCTaMzMz0gOs3W4jl8sBOJRGRiIRjEYjRKNRubd3dnYAPOj9Rgkxv3Ner1dYIJVxUxcdVPMdzm+tVhtzvCR44vvG74DK5HF+KFvkNVI/owJGIyhnqC6TRgZb/akyjTdv3pTng67rwj6pUmi2HHG73SKlJHgj0OFxOQaqDchYkcEPBoNiJKKysGTPKIfVdV0AqWoeogYlnGzCzWbtNtthbzjKHmlexHNwOp1j5iycF4/Hg0gk8pAskr3fCGrVvnetVksk7jxH4zh/nfHLYOD+VwA+03U9CwD8CQCapv1/APz5L+EYjxfCwP3ajmiFFVZYYcV/h/Hd734Xe3t7uHTpEjRNwzPPPCPA7OTJk9jZ2UG73caxY8cwNTWFUqkkq9azs7Pw+/0oFAoiP7p9+zba7Tbi8Tji8Tiq1epY/RsAbG5uiosepYqj0QiRSASFQgH379+X+o9wOIyFhQXYbDZsbm4il8vh7NmzWFhYwL1793Dz5k30+32cPHkS9Xodd+/eFfaiUqkIC9dqtWSlmBbh1WoVMzMzKJVKqNVquHz5svQy+/TTT8eSFbr10S2RyacK3NQkdxK7ZgRNR9nlM4ysl9EoxYwxMjJJavJtZJ7U/dhstrHGvQ6HQ+p61Jom9byPkokaWRd1PP1+H41GY6z2bRJLZtynmXxRBQhG1m0SE3cUaDPb7nEBphl4s9lsiMfjmJ6exsLCAnZ2dqTWqVgsSi0XwUQikcCrr76K1dVVBINBAb6UDhaLRVSrVQHcPp8PsVgMi4uLeOmll5DJZPD5559L/VWj0RB2z+Vywe12o9FoIJ/Pi7kGTXnUa6wCYhVoZbNZPP3006jVamOyTWOo7CyZJDXI+PFe43fNCCRVgGiz2YQJYo2nutgBPACj6vHZ/xGA9HFUx8n2AgS5AGQxg7WCDB6bjB178rFdCWWOXAwDIItS6jnRrKnX64n7LhezGo2GyCc9Ho88c8h+saF3rVZDOByWY/L5SZMVAmUyb2o7ikKhIJ9Rr3W73UYwGITH4xljNtVnKKWW/7038v77UOSTmqbN6Lqe/tmffwfAF7+EYzxWSA2cxcFZYYUVVlhxRHz22WfodDp49tlnRco2MzODubk53Lt3D5FIBLOzs/B4PDg4OBBpFp3c0um0MFt0cJuamoLT6UQ+n4fNZkMikcDa2hoajQZu3ryJZDIJj8eDUqkkRhkzMzNYX19HJpNBKpXCcDhEKpVCLBZDpVLB9evXUa/XcerUKZw4cUIkk4lEAtPT09L/jfUohUJBnNu4ksx+TwCkj1E0GkU4HEaz2cT9+/dx6tQpqTXa29tDr9cTdzcmlpROqpJGhgqQ1CSNf3MbAA8ll8YwkywCD7cVUEGK+lljTGKh1H2w7of7pxMfV/q5HyN4MUpGjWNQmRwCh06ng2azKYyGkZ3ha8ZzmiSHVBmaSWykUaJpZHR+njADcypDZXx/NBrhK1/5CnZ2dvDP/tk/w8HBAb73ve8JS0MHSTJtkUgEa2trSCQSpucSi8UQj8dRKBREvjc3N4fXXnsN58+fR71eRzQaFYkwgQtNaVgDBUCuLb8/qjOhkVHjeZGBYw2s0XBHHbMK9lVTDr5GmSAXXIwgnb9T9glA+jyq15v/CCyM13s4HKJYLMrxe72esJbcR6vVEiaUskTWz/LYvGcp/ySrVi6XUS6XBbjZ7XapTyTjpQJWGo2Q4Xe5XAiHwwKmAoGAqAeAB8YnVAMAECMb1hByboLBoFxH3ltk5diWpdPpoNFoCAvMno+8tmz4rRq78BpyfgOBwENOlr/O+IUAnKZpPgDfAvB/VF7+f2ia9gwOlYxbhvd+pSHfGQu/WWGFFVZYcUQEg0E8/fTT2Nvbg8fjwdraGux2O65du4ZkMimyxGq1Kv/p0ya73+8jGo2i3W6jXq9D13XMzc1JIT3lO4uLi9jd3cXu7i4AYHt7Gz6fD0tLS5ibm0O9XsfVq1dRr9elpmNubg6rq6u4desWLl++DLvdjldeeQU+nw+XLl1Cq9XCmTNn4PF4sLGxMTa+dDotdUCs8et0OpLwMXlrNpvIZDKYmprCaDRCo9HAjRs3cPHiRSSTSaTTaZErkU0BxhkwlXVQGSo14Z3EUBlX4tXt6MZnNDcxgjoVME5Kevn3pHGo4EN14WMSS1YCwJiboTFZPwpw8udoNEIymRRpK63tjfI64zypx1C3NzKORtmeyjwa58RotHEUcDCep/o7x6yyVWaMHY/H2qsXXngBb7/9Nvb29mRxgbVWbBTPHmVm4ff7EQwGhWGmhHV3dxehUAjJZBKrq6v41re+hVqthkKhIIBc0w7dJDVNw/z8PBqNBiqVClqt1lj/ODI+ZP+M15UsFtkz7r/T6TzEfpLJ4r54r6g1dkYWVQXYrBVT55hMOPdjXMRgXZzdbh+rt6RsdHp6WsCTx+MRtpL1aZqmjUkZ1dpTHovnyrYBrB0OBAIIBAICkIbDoTBg6v1JySbZPOBBewC1vowtV2jh73K55LqzlpKglI6inCsybp1OR76/2WwWPp9P5oa1y+l0Wsyt6FbJa0XpKXDIYNpsNhQKhSNZ+F91/EIATtf1FoC44bX/7S80IiussMIKK6z4FcfMzAyuXLmCcDiM+fl5sfc/ceIEQqEQ6vU6ms2mJJdMdujgVqvVMBwOkUwmRRLHpCQQCMDtduP27dtSh0YHvnA4jKeeegqNRgPFYhGadmh37fP5cOLECfh8Prz77rvY2trC4uIinnrqKWxtbeHKlSvQNA3Hjx+H0+lELpeDw+FANBqFpmlIp9OS5LFPFRM7sm5MyDqdjtThEUhtbW3h1KlTOH78ONbX19Futx9q1G3GDgEPO0kexQIxWTUms9y/CkQoEXucMI5N/dsI4ozjUw1JRqMRpqen8ff//t9HLpfDO++8AwBjzXuN0lAVyDBRV2vfmJBnMhmUy2UxzDF+nmNRE3WjVFI9NwaBiZHhNGMmzRg8I1tjlF2aMXvq6yqoUI/FOfX5fIhEInC73dJCY21tDZubm3LvB4NBMSWh1G1SeDwenDhxArdu3UKr1RJL+F6vh/X1dZw+fRrJZFJqqvx+v/SPy+fz4jY6NTU1xtTYbDZhb8gQmbGNbEJNIxWeq9PplPoyMkW8X4z3tXpMyiLVWkoelyCGCzDAw4Y56vXj+wQzZIzK5bL0deSYuVCh9rBjfSGvAW34OU8EqjQN6XQ6YsTi9/sF/BKYq20EaE7CcyNYCwaD4vxI1QDPm21euE9N06SGjufIPnwcG19rtVriOtnr9RCLxVCtVgXwEbAS1IfDYbmfuVjH+4Fzz+tE9jUcDk+8T3/V8eQaGPwKwiLgrLDCCiuseJz44osvsLi4iHg8jp2dHaltczqd0hA7EAggmUxK3Q0Tj/39fWk4q7YHGAwGiMfjGI1GyOVy0HVdQFuj0cDs7CxOnz6NdDqNjY0NkShFIhEsLi6iVqvhr/7qr6BpGr72ta/B5XLho48+Qq/XE1OHWq2G9fV1SYzZd4zGJASZTDJ6vR5qtZoU5NMAoNFoYGtrS5In7vf8+fNIJpPY2NiQ/k9qsb4Zm0MAwWRVTTCBcRnZJFZlUqhAQd3XpOC26vZGQGIMJt9csff7/YjH48Kc+nw+sSRnewZ1Dpigcw7UeVCTd7JBrH3k+ZF5YuLocrlQrVYfmkcmuOo1YNI/iR1T51ENlfXhvBnn/KhQWTd17vl5tXZrdXUVc3NziEQieOqpp5BIJJBKpeS8Lly4gMXFRZTLZZHybW9v4+zZs6amOJTkAZBmz6PRCNvb2+j1erhx4waWlpawtbWFL774QiR5XOCw2+1wOp3Y29uDz+eD1+uVsasmPerx1Puw2+0KY04wR/DPeiyPx4NWqyVMOKWBnDMCASMbrd63ao8xta2GOu9GAMe552fJFnY6HZEOcvyUR7JHG2sy2QpArWEjSwdAesCpCxpkwjiXuq6jWCzKNXI6nTI3bBHAVgZ0f+SYKbFkjRkloKqUlUZLnC+CNn5P2+22yDBtNpsYlqitELgw1263EQqF5JhcDPD5fFL3y+copaOsvcxmxfbj1x5fLgAnD6InPBArrLDCCiv+VsepU6dgsx02BA4Gg5ibm5P/oHu9Hvx+P2ZmZlCtVsVCmglSIpGA1+tFrVaT3lVkELrdrtj6s2dcu93G2toa4vE4Pv/8c2xubgqjMzU1hePHj6NUKuHWrVuYmprCmTNn0O12cf36dTgcDiwuLmJmZgbpdBqlUgnRaFRq72i8QsaQBfYEGlzRZ9LldrvHGKlwOCznfPv2bSwuLmJubg5bW1sPMQeTkn2jXbxxe7MknCBDZatUkPEoAGHGTE16X92fGVAxGkDcunUL//bf/lvUajXY7XYEg0G4XK6xHlmsCzSycWRTVNDKf41GQ5J6dTyqlCwWi4m8kqGaLKjnQImcel3U/Rola+o4jYm/2nPPTD6pzqMZ68ZQHQr5OQInOhuS3QoGg3C73Xj++eextraGbDaLbDaLUqmEXC6HlZUVU5MIHrfVagkjMxqNsLe3BwDI5XK4d+8eSqWSMFccM/+mi6AKAmw2m+xTPXfjPcp7hkZEdFTk9437JGBIJBKw2+0olUoCAHmvAQ9YNqM0VgXwRskyQZN6HQkCeS9xnsrlw05eBEZs5k0TEd6PrCfs9/uIxWICBGu1mkgWyUaxXo7ybU3TxFwlEAigUqmMGZTwOvE+ILNHyWMwGESlUpHFDJvNJotnvNdarZZIM1Xw5/V65Z6q1WoYDAaIxWJoNpvy3eI15NzRoZKgTe1RNxwO4Xa70Wq15HvE+4IyWzLqj3pO/SrjSwbgDn9aJiZWWGGFFVYcFXa7HcViUdzrNjc3sb+/j1AohGg0Kg2yS6WSSG5isRiAw0Qpn89L4sRi/Ww2K7JI2pR3u12srq6i1WrhBz/4ATKZDLrdLux2O5599lksLCxgY2MDW1tbmJubw8mTJ1EsFrG+vo54PI6lpSV0Oh3cv38fnU5HxtBqtaR2g8BTrXFjcsVaGQI9snDD4RDdbheVSgWJREJW6W/evIm1tTWkUinkcrkxcGPG7BwldTNK84zNuY0MDl9jqO+Z1cwZa42MLJTxdeNxjNIzVdp1//59YTLJylEiR3kV62pYK2gGsnh8Gpeo4EwdGxkZOptyX3Q5pd09P8exGeds0lyqLJJxjszeN37eyGiq/1TmxwjeNO2wkX0kEhHw9vnnn6NWq+H8+fPodrvw+XyIRqOYnZ1FLpfDu+++i729PaTTaaRSqbEG9+xlePXqVRwcHIjcjqAEAEqlkixmqE2ZOceUQT/77LPixNput8VIxQh2jbV9ZEubzSbi8ThCoZCwaWS0+J2MRCJwOp3odDpiqa+2jlCvAU1OVEZXZXHV+55jIFhTZbNkmehGSQBXr9fFSbFUKqHf74thEmvmVNZtNHrQXJvOtE6nU0yTWDfKvnTsW1ksFjEajQSUka3TdR3RaFSAZCgUgs1mkz5r/X5fzEgCgcAY2GatMeeCrD/3Rbv/Wq0Gn88ndY8cOxddVJBWLpeFmeX81ut1xOOHlWEE6Hx26bounyXY5HifRHy5ANzPfloMnBVWWGGFFUdFvV7H4uIiXC4Xbt68iXw+L82CC4UCtra2hOEAHriQBQIBbG9vy8pvOBxGrVYTuSHNTljbwz5ut2/fRiaTQafTQTQaxcsvvwxN0/DFF1+IvPLEiRPY399HNpvF1NQUFhcXUSqVkE6nYbfbMT09LbKg0Wgkq+CaduiIVi6XxaGNCRyBBQ0AfD6fMCL9fh/lchler1dWsff29jA/P49EIoFcLieAg/v4ecIIAJhkAniIvWIYTU34WZUFYUySCZoBGuN7KlhRnQFVSSLnj83R2c/P4/HA7/fD7XYLGCeYM1roM6mndE09vvEcyUTYbIcN05lM0+2PnzPK7cz2pUopjcya+p5Rcmlk8MzAtgo6JoE2FSDquo79/X2MRiNcv34dm5ubmJqawvLyMm7fvi1gx+12IxaLYW5uDtvb29jc3EQmk0EikRBTk8FggN3dXVy7dg3FYhHtdlvaBKjXTT1Pm80mSTpwyEStra3h2Wefxf7+Pmw2Gz799FMAECDHczNjJWl8kcvlZLGEzb3JcJGJInPUbrcfAvqTGG7+VGWuqkxTlVfy+US5IQEi56Ber6Ner8u1o0SQbJKqIKAMUl08IFiiaQyl5ARYAKQeOB6Po16viyycwIpGIjabTdhJn88nLpOj0UjqdrnoRLBIVo0sJM1ECBr7/b4Yr9BYhnMfCoXgcrng9XqFQVOffby+BHbtdltaGKj3PFlNLgbQBIdg8EnFlwvACQNnhRVWWGGFFZMjlUqhWCyKqcHS0hIikQgqlYokApqmySozE8MbN26ILCqRSODOnTsADp3SWNPGxt+UaF6/fh3dbhdTU1OIxWL46le/ilwuhy+++AJ+vx+rq6twOp24efMm7HY7VlZWEAqFUCwW0e12MT8/L6xMq9WCy+VCJBKRZtBMgmir7Xa70el0RMrHZK9er8Pv90svLDJDbIlAF71bt27h+PHjIs1kEmms2XlUPZoRJBm3nwTWgHHjlEdJJM2YJeM2ZnI/4750XUckEkGv15PaF75HE4VAIIBoNIqXXnoJ2WwWW1tbaLfb4sSnMiw8B9bk9Pv9hwCSes66rktySIMaGjBwfyo7owJPY/JvnAuzUOfE7Cf/8bjqvtUxmB1LvQazs7PQtEOXyGq1ilAohMXFRSwtLSGdTgv7wtrAWCyG+/fv4+7du5ienpY2HWSBisUi0um0MJoEN2Rs1B5+bFbN5vYAkEgk8Pu///u4ePEi3nzzTdy8eRM+nw/VanUMZBnnST3/+fl53Lx5UwyKCOa4HeWhKlNmdm8YQZw6d2qYXVfVICcQCMDlcqFWqwlzB0BqLqkKoMQaeFBTmc/ncXBwgFgshkQiIbVsfH6Qga7VamLqBEDMnMjk0cwEgFj2A4cKBd4znU4HoVAIg8EAXq9X5JiURDocjjHjJ9aF8jtBCTNBbSwWQ6lUQrValffD4bAcm6yc3++XPoMEgaxn4zUIhUJiYMP5I9vOthGVSkXqVDVNQ6FQMPtq/VriSwXgyME9SU2qFVZYYYUVf/uj1WqhUqlgMBiIS16xWJS/mbSymWun00GpVILH48HKygo0TRP2IBwOy+puJBLB1NQUWq0WdnZ2pCfbzMwMFhcXEQgEcOnSJWxsbCCRSODcuXPY39+Xerfl5WWkUincuXNHkt94PC6ysFQqhXa7jb29PdjtdiwvL+OLL76AzXbYxHswGIiEibIoNQFnnyN15ZiNegnSisUiFhcXkUgkZDWaq9CPA97MZHlm8jCVaVA/p8ZRIJDJK/dpTLSNEkEzBop/M+LxuDTZZsKvjq3dbmNpaQmvv/461tfXsbm5iXA4PGaDzt5TnFuanxiBgVkQjEQiEanN4Rypyb/KoKlzqdZTcc4mSUiNc2S8DmbMnRlonMQEcjyUpNlsh205Tp8+DafTiampKczMzCCTySCTycj5k+Gp1WrI5/MADpmjbreLUqmEer2OcrmMUqkk7oqq8QSZcyblMzMzYqjh8/nw6quvIhQK4fr169jZ2RGwzkUas0UF9V4mEOJ2ZKDU+5SMj3o9yJbzcyrby2Or4IrzrLLWZILMxsZjknWs1WoinyQQ41go9eS9yh6FrVYLoVAIkUhEmmLzGLxe5XIZlUpFZNqzs7NjElH1/AjyyMTxOtGEhu6WTqdTahk5t+zfxvNRXTQbjQb8fj8qlYrULDscDiQSCQAQ6TvdInl8stzNZhN+v1+YOAJ81jpznnhN2XSeQFh123xS8aUCcBYDZ4UVVlhhxeNEJpPBaDSSOozd3V1JHKvVKrxe7xizBRwafkxNTSGdTqNarYq7GpPreDwOj8eDu3fvol6vS0K2vLyM+fl5VKtVfPTRRwCAc+fO4eTJk7hy5Qpu3LiBZDKJ48ePw+Px4MMPP4TL5cLS0hLq9bqwhMlkEsViEdvb2wgEAlheXsbOzo446almA8CDhE9N0Nmbye12i9yIyROZuU6ng42NDSwsLCCbzYoEywi41OD7akLJYAIGPABhlESa1bQZX1eDAEI1lTHK9YzAzThmIxvHbWg93m63x+qUVAfO4XCIS5cuwev14tatW8hkMvgX/+Jf4JNPPkEulxOZFxNjyrxU4xLuyyh15O9erxexWAw7Oztj50EW1owlY5gZwhwVj8P2GM0y1G0mMaQqmFEXSmieYbPZ0O/3kUwm8fHHH+P999/H2toaAoEAWq2W3Hf8HAAxnSgUCiKfpHU8reQHgwF6vd5YYh2LxWSBYn5+HgDwZ3/2ZwLeKEU2zqdxbjgXFy5cwObmpiTwqtSRQIMyZ4JJ43acA+DhexN4AMRV6SrwoOG8GqwDoxEHz6FYLAoTxmvk9Xqlzx73Y7PZ0O12pV5vMBigUCiIUyVBCxeyaEBSqVTELKTdbotMlXJyFcgSjFFeShDaaDTkuHx+ESST9eL+3G63OO3yOa1pGpLJJOLxuJgODYdDqT8moG82m9A0TeoRbTabjDkcDgubOxqNxN2XNX1erxf5fB6DwUDaYVSrVVQqFaRSqYfu/V9XfLkAHH+xEJwVVlhhhRVHhNPpxOLiIvL5PHK5HKampoR9olkF60eCwaC0B7h9+7YkgzQvYXJSqVSwvb0tNVJkAKLRKPL5PO7duwe/349oNIrRaIS33noLmUwGyWQSJ0+eRLvdxr1795BMJhEKhdButwEAU1NT8Pl8uHfvHtrtNp599lkBEFzd5mq6y+WC0+kUt0MGE0MmJtyOpgZMeujsVi6XEY1GEYlE5By5Wg08DOKYlKr1X2ahshKTJJRmTJsxJo3DGI+ryGGyzZooI+sEQCRlxWIR3/ve9wA8YA7K5bLUOBLE0UKezILxXMyYQJ/Ph2QyiWw2K+yb8TP8HAGBWW2aCg7VY6lhBsqM/yYBNLNzMIK60ejQVp+StU6ng2AwiGAwiGq1ilu3bkl/sDt37qBer2NpaQnZbFYSf7o8srk0G25Xq1V0Oh34/X5cvHgRV69eBXDIkNIww+/346mnnkIkEkGtVoPD4UAsFkOhUJAm4u12e4zVUsfOv3mdea0DgYAY/Kg2+sA440lJJ4G/+r4ZI8f70DgWvm5kWymjpBSaAIp927jwxO80F0ZofkQwqNbJsi9at9tFsVhEIBAA8IABpdSV++G8coGCJh/8vgwGAzETKZfL0guwWq2KsYha00vZKZ9nAGSxye/3izkJ5ao8dqVSEYmyyo5ysUe9Rpw79rljGxgycZRxut1uuFwukVVOT09LjVyr1UIsFhMm8UnElwvA8aa2EJwVVlhhhRVHxNNPP42PP/4YpVIJJ06cQK/XQzqdhsfjkX5Fo9EIs7Oz4qJ29+5dSUhCoRCGw6EAtO3tbVmhtdvtCIfDUo+2vb2NWq2GWCyGeDyObreLnZ0d9Pt9XLx4EcvLyzg4OEC5XMb09DSAB72TWKvGZPfcuXPI5XK4desWwuEwUqmU1GUQbFEKyuTQmMyzloVJEaPRaCAajcLtdqPf72N7exvLy8tSo8SECzCXM5odi++p1uYMVWqlMg2TAAPBn9q2gPt8FHDk580AjfpTbZhMaR6lW71eT+q01PP8V//qX4nLIeWqrHdiQ2d1fEagQ3bN7/eLiQ4dA71eL+r1uozJKE+dNF+TgJdR9jgJfJnVs03al/E4vBc0TUO9Xhc2MRKJYG5uDrquI5vN4tNPP0UkEkEmkxFDmP39fQSDQTGe4HfP4/GIDJKugh6PBxcuXMDTTz+Nq1evSuNqTTt0vjx9+jT+6T/9p9ja2kKxWBTwwWuo3kdcoCCoUu8Roztjv98XafRRtZrGJt4EZuprRtaZQQkhAYLqSmm89upnCUrZMJ5Mn3oe9XodXq8XiURi7L4FIMCKYBWAMNJk0ADIwg+/H2ToeN/SUIX1aAR9BGwEkcPhUJweKYHk9q1WS+TtmqaJCRMddXkd6Tqp9qcjy0hQR6DHuju73S7PSwa/54VCAXa7XfrANZtNRCIROb9msykGKY9aQPpVxpcLwP3sp1UCZ4UVVlhhxVHx1ltvod/vY2VlBZVKReRakUhEEkfaazebTaTTabHUZrJHp7OdnR3kcjnMzMwAAPx+v5igbGxswOVy4cyZM7Db7ahWq9jZ2UEoFMLa2hpcLhc+//xzNJtNrK2tiZxLZdKy2Szi8Tii0Siy2SwODg6QSCQQi8WQyWRQKpVEBlSv16X+apLTI6WUbFDNRIRuiT6fT2RppVJpzPnycRMWNZk1M2pgGOuv1KRZBRJGRoRsH4PJtLEGTh3PpLEbGRAmyEyeo9EofD6fMG2NRmMsaaYsjMc0MhCPAm9Op1N6EebzeZGCcSGADpePquEzk4VOCuNnjYDW7HX1s0dJKAnIgcPrMj8/j9u3byMej+PChQsol8vY3t7GnTt3JOGmzE6V3M3MzEg/Q37f2DuM4OHixYsiO/X7/Wi1WohEIlhcXMQ//If/EM899xy2trYQDodF0kqJJX9WKpUxB1eVdVXniIZC09PTuH37trBTavD+Ues8VfbbCMSNxzNeF+Nigbqt2pNQBZO8T1WpJp0ZKXEcDAao1WoIBoPCRNENlO/T+ZOfIaNHUOTz+UStwPHZ7XbpZcgFomq1KsCYP9k77uDgAMChsQylxzye2+1GMpkUt0yfz4dKpSIKBjYkJzjk95VAjM84zjdZYNbE8Tw4bqfTKaoHumQSDPK8ySIStFptBH5JYbf9bCVjZCE4K6ywwgorJkc4HIbH45FmrJFIRGQ84XAYwWAQAFAsFoUBCQaDaLVa8Pv9siJLVo6NX48fPy4M1ubmpiSTuq4jl8shn89jbW0Nbrcbm5ub0uvqG9/4BtLpNGq1GqLRqDTDtdlsOHbsGIDDur1er4elpSXE43Hcu3cPtVoNqVQK5XIZe3t7UitCW+5JQbDndDrFVpyvU5LJOppYLCb1V0a2TA0jeDICDSP7ZpSrMfi5ScdRjwc8MFiZdOyjZITqWIzj4oq+1+vFsWPHsLCwgK2tLXz44YdoNBoyNgI1NcjuGOsQjedJk4/z589jc3MThUJhDLzmcrmHzscIDFQDF+PcmM0rfzfbbtLr6ntmr6njU+shuVjw4osvIhwOIx6Py3a8B9XPBwIBsa1X5aeUppIFo3HM6dOn8YMf/ABOpxMLCwvQdR2ZTAanTp3Cc889JzWjvV5Pmkp3Oh2pdywUCqhWqwAeLAqQqSKbR5ACHIKDra0tcU00hpmhjnHxQtM0af5NcK5+nqE2yFb3pd4Huq6PgYher4dKpSL1W7weap2b1+uVekJa6PO7zX1QytlutwXcqdJOLjqwBpguq3SYZBsVOmD2ej2RT7rdboxGhz3XXC6XmImQKWPtHI1JaEjSbrcRi8Wg64fNydn7jSCt3+/LcavVqshGNU2TBuAEuq1WS8ArF2u4QMUWCXQV5v5p3MKaPR7zScWXEsCNLArOCiussMKKI2I0GqFarUr/IyZDwWBQ/jOvVquoVqvw+/0ih4tEIggGgyiVSlIHEw6HpXUA3crIOLBJ9s7ODrrdLlZWVhCJRHD16lX0ej1MTU1hdnYWn376KbrdLubm5uByuaQG6sSJE9LgmUBT13VcuXIFTqcTqVRKEkSPx4PZ2VnY7XbcuHED5XL5IXmhmqCr9XO02AYOJVPRaFQkZVzJVvtJGZtIqzUnRlnZ40jwzOrhjIDBTH7J7YxAwghojhqH0eiF50FG8uDgAH6/H88///yYXTl7WlFqpo6TyeAkaSdlXNFoFGtra9jf38f29vbYuahjNzKSjwJYRzFwxrkxi6Pmi/tQjzFprgeDAQ4ODvAHf/AH6PV6yOVy4npIF0Nuz95fdFJl3SmdCllTSGC1srKCeDyOZrOJxcVFnDx5EsCDdgvNZhPr6+vY3d2VujDWM5FdpoMknWcpXaa0jkwQ2aannnoKly9flkUP43VRw2huwnucFvRkyFXTHlVSCTyQThqZOdUESK0H7Xa70naBbDDvU56P3++XBSrKAlnfxmtCUObz+USKSWBHRkoFfJST83h8XvC6sZ6s1+vB4XCgWq0Ka2a320X1oOu6AOpWq4VarSbtEWhMwl6afC45HA6Uy2U5NiXlHLPX6xVVA5/14XAY9XpdTE7IPqptH0KhkCxc0Uk2Go1KPSSfBU8qvlQAzvEzADewGDgrrLDCCiuOiEajgWQyiUgkIivBrKdg/RdrOOjuNjMzA4/Hg4ODA9RqNXFyCwQCCIfDGI1G2NnZQaVSwZkzZxAMBpHP57G9vY1YLIalpSX0ej188sknCAaDmJ+fR6lUwuXLl7G4uIhUKoVWq4WNjQ2kUim88MILGAwGuH37NoBDM5PBYIB8Po9AIIBUKiUr7FzJLxaLUldiZGqA8US71+uhWq2K+yTBiyohrVaraLfbkoTS8U4NVf44yXzkKDCnMklMPNX2AEZ5pbqtKus0sm5GNkn9WwVCo9FIEkvjfgl0r1+/jkKhIGxCJBLByy+/jPX1dVy/fn1MQskEkD+NYIfzGI/HEQqF8Pnnnws7YDZnaqgMzCT2zOxaT5oH4+fV11RQMem68VpNml9NO2y34XK5MD8/j08++UQWSphQB4NBkZoy2SYY4L7pMtlsNuH1euF2u3H+/HkUi0V4vV6cOnUKL7/8MhKJhPQaY51drVZDs9kUAMdectVqVSSDHo9HGBcyXnzd6XTC5XJhYWEBlUpFariMZiNm185Y10ZAoDqT8nujXm/1+8ggU6a6Sqr7Hw6H0jeQCxCsZWMNH5k5MlUAEAwGRULK/m9kmljrpzJVlJpz7sjGjUYjMQHJ5/PibMtna7fbRSKRkJYR/I4RLNOxlOdeLBYxPT0tTe0pXSdjRzdLSjQ9Hg+q1arIJflsV81kAEjLgFAoJPVzmqbJ9aSpDaW8rBNkfR5ZZc7nk4ovFYCzJJRWWGGFFVY8Tpw9exYulwuVSkWSKsps0um0sGmNRgMOhwNLS0sYjUZIp9NiohAIBMZqObgiu7q6Ku0E+v0+Tpw4AZ/Ph3K5jGq1OiaRtNvteO6559Dv95FOp9Fut3HhwgUsLCzg4OAA9+7dk5YCBIQulwuJREKkQHa7Hdvb28jlcshmswIeCCaMki41uW61WmIWwISOttupVGpMHkUnNyaeRzE0k5J5hgrM1N8pXVP3ozr5GRNXM5BzFPtktg1X2Jl8qokzAdhoNML+/r44dzKZJivBJPdR7Bs/e/z4cczPz+Pq1atjrR8mgTDjeT4K6KnbGOffaIQxidUzk24ax2N2XHWb4XCIQqGAXC6H5eVlLC8vi3EJZWi6rovZhcPhQCQSkcSYjBGt5OkKaLPZcOrUKdTrdYTDYXz1q1/F9PQ0fvCDH2A4HKLVauH999/HnTt30Gg00Ol0pL9fpVIRW3g6JKpsEuWEKmMTCATwzDPP4O23336oBYAKongvEwAYZb2qhb5aL8d728jAqftVWTh+F3lsMuXs+8bPENio7KXK+NHhk33VPB6P1Hl1u1243W40m02MRiOpbaMiwOFwIBAIIBKJyHe22WyK6QzZxlarJb3aKAvnIhPNlAjyVFdJ4IGpCt9zuVzCFgKHagHeH8b2H2R11esYDAZRr9eF+Ws2m7JwU6/XRf5OyelwOESv1xPJvaZpwhDyM08qvlQAzkGr36EF4KywwgorrJgcsVgM6XQa+XxepI77+/tIp9PCCLDwn86QpVIJ3W4XmqYhEokgHA4DgKw2T01NYXl5GZ1OB7dv30az2cSpU6cQjUaRy+Wk6TeTo1AoBLfbLZ/3er3SKPf999/HaDTCwsIC5ufnRTZpt9uxsrIiK9KpVAp//ud/ju3tbSn+Z48jMj2qRNDIxg2HQ2HhmCAR0Ozs7ODUqVMiZeL2RpBlJn9kqIm/CiQmsT8q66buV+1vRvmYKjnjezwvMxbuqONTLsm6G/X8jGPgvfHDH/5QAJwqG+Xfxto3ukqura3hpZdewrVr11Aul0UGp4Js4/k8SrKohspkGvfD980kj2bzx/eNzN8kAGl8j+zwtWvXEAgEMDU1JW0xwuGwmG3YbDZ5H4CwQVwgYQ2q2+3GxsYGzp07h/n5efzoRz+Cx+PB8vIyarWaJP61Wg37+/toNpuoVqtoNBqo1Wqo1+totVoCLiiZ5jUlo0jJH6/byZMnsbu7i52dHWlMbpxznq9q4qIylNwXARjZHPaLVK+ZcYFDvT8IMFUA53K5sLW1JQY7an0eQSMXKIAH/dcODg6keTft/WmOQsbT4XBIk26aznD/ZK/ZsJuyS03T4Pf7hQEj8OY+uWDi8/lEOsn2JfV6XfpzOhwOMVYic0YQqX7/eRweu9vtjoF0Mmy1Wk0AO1tTcD74TOW5sZdnLBaTBaRmsylupq1Wy+oD98sKu91i4KywwgorrHh0fPjhh+h0Onjuuefgdrtx7949lEolaSDLlVifz4dsNgtN01AulxGJRER602w2sbu7CwA4duwYEomE9JUjsxaPx3H16lXs7u7i/PnzYjJAh8tCoQC32y1JbbPZxOeff45QKIRz587B4XBgf38fjUYDs7OzmJubg9frFcbsww8/hKZp4sZG6ZHa9Jmr+5NkcGQn2B4BgJgbdDodnDhxAjdu3JBaJFWyyH0cBeLUUIHaUdswjDV1aoLLc2TSbHTdNGNA+LtxG67WE0iwnxVBG+ujzJgRle00sm+qlC4UCmFlZQUXL17EpUuXcP36dVNwpY5XldeZjd3smhrnwAzsTZoPdRsj4zaJoTPuw7hdu93Gxx9/jFAohOeee06s5GOxmBhuuFwukS8zeY9GowgGg9jZ2UEgEMDJkycFnPzGb/yGOCPOzc3J72zwTUfLWq2GRqOBXC6HdruNbrcrYIGMEwAxSSHLR3aQiyKtVgs7OztjoIlhNDMxgjb1b94nBG/qNsY5NLKcBCG8LrznI5EIyuUyarWaLDyQXTOCR0odh8MhKpUKarUaQqGQyARVoEiQxe8C5aW8BgR9dHyk9JosNRutsxk23TFHo5HMPfuq+f1+1Go1ZLNZhMNhMVrRdV2eS2RlCQY5LjKEw+FQWi/QSIX1qmx7QFDearXEcRKAnBsX6HgtCNYJ/lqtlpi7TE1NjbVh+XXHlwrAWTVwVlhhhRVWPE50Oh08/fTT0HUdn3zyiaw0s9F2MBhEOBxGsVgUlmB6elrq3jY3N1GtVhEOh7G6ugq73Y779+9jNBohHo9jenoag8EAf/EXf4F2u435+XlsbGxA0zSkUinY7faxfky0uKZL5eLiIsrlMrLZrDQ4Pn36NIbDoThYvvnmm1L3AgDJZBKNRgNut1sSf1X2aBZMVmq1mtT60G5c13Wk02m88cYbCAQCuHLlCmq1GoAHUkc1iZ8E4szkf5NMS46SZpoxUGqSq+7XjCGaBIq4b9a2ABCHPbXvHMc26Rz5U2XkmPAzkSyVSvhv/+2/CVNkrB8z/q7O16PAmxl7p26rglXj/szOx8ieHsUIGo+vXsdms4lyuYzPPvsMg8EAy8vLaDab0DQNc3NzwmyXy2XE43FheU+dOiXA4vz581hcXMSlS5fwrW99S+rR8vk8pqamcOfOHXz/+99HpVLBYDCQdgSFQgGlUkkMeDiXZJgINMjGuN1uYbF5fTweD4bDIba3t8eYIXXRQDUTUdkhdXGDP/k59Rqa3bMcJxdh7Ha7SHzVxuGxWAxXrlxBp9MRgMfx8Tz5Ol1m6aw7MzMjzz6Gx+NBq9USiTgll3TypFNos9kUEE4gR4dPni/ZObYtIHgFIPW8BE/9fh+zs7Pwer0iZ6cLLM1m+LyjwQgbbtvtdnS7XZljumzye91utxEKhWTuOXeUYLZaLQFvDodDACQXsniP9vt9tNttzMzMyKLZk4ovFYB7UAP35BrrWWGFFVZY8bc/vvKVr2B9fR3pdFr+015cXBRZTzAYFNt/yqncbjfK5TJyuRycTidWVlYwNTWFVquF27dvIxgMitHJ/v4+PvvsMwQCASwsLGAwGCAYDCISiYgsKBQKSa1drVbD3t4eotEoXC4XSqUSDg4OoGkazp49i1QqJfKfTCaDjz76SOo5pqenkUwmcffuXUku6ejHhtJHyQeBBwYINB0goKxWq7hz5w5eeOEFZDIZaU+g1qsAD5s2qCBH7dlmlvg/Ksy2N2PajGwFt1MBjJHVmATihsOhSPbIwpi1CzDuw8iUqbLWVqs15uRpHJfZOZqBOfX3SbLGSQynCqyMIO2o8zI7N+M4Jr2m67qYlHz++efCUGuaJrJhh8OBbrcrUrann34aTz/9tLTWmJ6eFuOe9fV1TE9P4/PPPxeDknfffRf37t0TAF4oFKS/I3sYqvJFfp9Z/6XruoA3ziPB93PPPYef/vSnY06GgHnzbXUBgd8HTdPGWhSocmB18UM1COJn1OtEkEVgxm0//fRTlEqlsToxhlojB0As8m02GxKJhEit2+22mDaREeW9zn3QqdblcolUslqtigur2+0WYOjxeNBoNGTxKJPJCHgiuByNRmMSSrYUoLEI+61VKhUxO2HPOsoYVUMTXlPeb2zczTo4fgfV9gLxeFxAJ88/Ho8L2xYIBKSukIsJi4uLCAQCKBaLFgP3ywqLgbPCCiussOJx4vLly8KAOZ1OzMzMwOv1IhQKCWgBgPn5eUk49vb2xMJ6dnZW2gncunULCwsLWFpaQq1Ww61bt5DJZHDmzBn4fD7s7e0hkUgIQ0ZzgEQiAV3XsbW1Jf3cOp2O1HlMT0/j2LFjImdiD62rV6+iWCyiUqng1KlTCAaDODg4QCgUwtzcnEiHKpWKrOQTgExyFdR1He12WxzfuGrf7/dx584dJBIJPP3002i1WuIix9VplU1QE1LAHEiYsXYq8DIDe5McEdXPqf8IVIwulo8TBHHdbhder1cMDFgnp0okVSCoyifVc1VlbRyTyqo9igl7VJgxc48jbfx5jmHGxJm9P+m1TCaDs2fPQtM07O3tIRQKCUMSjUbRbreRTCYxGh06UU5PTyMcDkvyTtv/zc1NJJNJ3Lt3D5999hm63S7W19dxcHCAQqGAWq0m/5rNpkgiPR6PgCe2MWg2myiVSmOySd63NLa4cOECKpUK0uk04vG41FNNYrV5/5E54/mrBjwEhrzXNU0TNpBzoi5AcDx2u13qZwkmS6USdnd3xaWTbCEAAaRcwKFckRJx9oEkMOHzyev1ClAli8bjRyIRYb1arRbcbrewcnRSpTkUGUSCI11/4D5qlGRqmiY1iQcHB9IOoFqtQtM0+Hy+sTYTVBrw8zxX1lxq2qHxDOvuCFL53mAwELa32+0iEAgI4CMgdTqdKBaL4ug5HA6xvLwsIJgGLk8qvlQAznKhtMIKK6yw4nGi2+3C7/dD13UkEgkEg0HMzs4il8uJTbbD4YDb7QYApNNpDAYDLC0tYWZmBsPhEHt7eygWi5iZmcHi4iI2Nzexvb2NwWCAubk5AMDGxgbm5uYQDAaRTqcBHLYDoNX2wcEBotGogDMmRJFIBNPT0+KKt7KyglKphEuXLmF9fR39fh8XLlxAuVxGpVLB7OwsKpWKFOEzYWWzYPbOmsTgAA8kRUx42Suq3W7jk08+wRtvvCEgjhJASqeMTJcaZm6TxjohxiQZoBEIqsCR25oZbRjZLnW/k2q/+Dr7YjFZY+JLtkg1MFFNS9R/mqaNmZnYbDZ4vV7Y7XYkk0lsbW09dN5q4qvOi9k1M8YkgK6e46NYUOM8Per4RlbT7Hh0YPV4PCgUCmKiEYlEpO5U13WpO+33+6hWq0in02L7v7u7K2zI559/LvWn9Xod1WoVlUoFlUoFnU4HzWYTuv6gybXa7Jouh7TZJ2vF+5GvhUIhpFIp/NEf/ZHU6JEJU0G4CsyM95BxnozMtPqPcjy1rpLnwHowyvyAQ1BXLBZRq9VEKslzossiwYrqpkm3WYLZwWAgfdXi8Tg0TROjkuFwCK/XK/NCJpNsfavVQjKZlL6ViURCWpn4fD7pn0mAykUhzqfaf83v9yObzYojJa9Jv99Ho9FAKBTCaDSSJt3A4XOcLVy4P9Y30tSEoK7T6YiygCxbu92W8yPQpTNvrVaTe0KtU2btHFm4JxVfKgAnLpQWgLPCCiussOKI4GpvIBBAPB5Ho9HA+++/D10/bCfAZrfdbhfFYhG6rmN1dRXz8/NoNBrSImBxcRGhUAjXr1/H/v4+5ufnxbHNZrPh9OnTKJVK2NjYgNfrxezsLDRNQyaTQafTQSKRgN/vH6uVImhkfcjZs2dRKpXw7rvvYnd3F16vF8ePH8fe3h6mpqawurqKYrEIj8eDkydP4ubNmw9JHJloGlkU9ScTRDbPpemBzXbYVuD999/H66+/jgsXLuDTTz+Vnku6rgvjYGS71IbDKnhjqDVB/JzRgZKMxiQDEeN5Ghm9SVLASTJK4/gosaIZA40NVGMTzoPKzqnjVyV1TqcTX//613H//v2HQCh7nL3yyiv46U9/inw+bzp2M2bNKIc0Ai0zOeZRDKDxPjEyi2YgblL0+33s7OzgueeeQ6vVQjgcxnA4RDKZxLFjx5DP56UXWalUwv7+PrxeL27evIlarYbLly8LeDs4OMDGxgZyuRymp6eRyWSwubmJYrEodVCU8fG+IThUrebn5+cBQJpKkwXStMNauOeffx5vvfUWms0m4vG4gCBK8FSWmUCd2xwFeMkE8n7wer0CCri9sUax3+9LHRv/zufzyOfzUvPF9iY8b7V2jgstdrtdZIe08k8mk1LPRiZeZSwJHrk/zpWmHZonFYtFMQ3hNdQ0Tdo9qAsfHA8bo/M4BKM0lWk0GggEAvJM4nUhcOT+aGRE5sztdosygmCLwDiZTKJarcLtdqNYLKLT6SAYDMpcUNreaDSkRlPXD3vKJZNJqQekjFOVjz6J+HIBuJ+5UA6GVg2cFVZYYYUVk4PNbJ1OJ27evIlGo4FEIiHukJFIRHor+Xw+LC4uYnp6Gvv7+7h586Y0Dx4Oh7h79y5qtRrOnj0rvY6i0ShCoRAKhYLIH2OxGBwOB+7evYtwOIxEIiGrzGTfRqORJEALCwuIx+O4c+cObt68ia2tLUlwtra2cPz4cYRCIeknF4lEUKvVEIvFhIVg8mPmsKYCHbVup9vtigTKZrPJXGQyGVy+fBnf+ta3MBgM8Omnn4pMjfU4KtBSWSdVcmhMZtVt1DCCuKPkkGrCa0ysJ4E4FcAZk24jYKFZRa/Xkzoto108QZsRQKnnvbS0JAC9WCw+JLUbDAZYWFjAwsKCqbHF44R6TIJrI3g2glYj2Dxq20kA8SgQp+uHhjh0l6zX6wJ6Ll68iEqlgg8++ACVSgXb29uo1+vSBoAGGDSy2N/fF7BWr9fFel51SWU91Wg0QrPZRKPREJaUCxMLCwvY39+XWjMCjF6vh9dffx337t3D3t4efD4fAoGASPH6/b6cq8oiq2wcMG5mQnaM4+OCDfepOkCqBjj8m6wfo9lsIp1OQ9d1RKNRdDodASFk1djLjuy7WsPJa+7xeMbcGblQwR5tqqyUn+12uxiNRgiHw9ITjQY9KigjYOT42YZABWl+vx/D4RD5fF6eMwThVA6wOTsbrXOuvV6vtBTo9XrCMNJZs9PpCMPH171er+yL7BwlomRm2+22yDPtdjvi8Ti8Xq8APa/XKz0FVfOXX3d8qQCcXbNq4KywwgorrHh0EEytr6+j1WohFoshGAyOtQio1WoiZXQ4HLh+/Try+Tyi0Sjm5ubQ6XRQKBSg6zqOHTsmVtqpVAq6riObzaLb7SIYDEqdz+7urthPu1wuNJtN2O12AV2tVgvT09NYXFzEwcEB3nrrLdy6dQvtdhvLy8vCTFy4cEES6eXlZbTb7bFkqlqtYjAYSCJiNFBQa7FUZotggkYG7A/HBPL+/ftIJpN4/vnn0W63cePGDTSbTXF9O6oeyyiJVA0W1OTUjBmbtB9VSqmyfkexampMkv6ZfU4FaUyKjS6SqvRNHbeu65ifn8frr7+OtbU1/OVf/qU4eqqSSzYRzufz6Ha7D83DzxtHySDNANcktlLd1+OCOON2lUoFn332GV588UWkUin5DhSLRaytrYkcmKCM8jSyLcAhcMnn86hUKvB4PMKwUGpIMEbWqdfriXsgAY3b7Ybf78fOzo7Uw5ExGg6HeOWVV3D//n1cunQJdrtdXBcBjMmSgfEaNeN5qwBcrZfjd4lSv1qtNnbPc874vWOdGgABONlsVnq2sR6MY6Shh+pYabPZ4PP5MDc3J0CEzxyauRDIcGwejwd+v3/sXueCzezsLDKZDHT90Hyk3+8LyCXjyXq4ZrOJZrMpknUen+/V63Xpvak6RNpsNmG6OCYasESj0bHvGq9TuVyW2jeaqHBRLZlMSpN3yphZ68rnCGvkdF0X0ymCNwDS247zyWfuk4gvFYCz2TTYNKsGzgorrLDCiqPD7XZjb28PDocD0WgUS0tLCIVC0HUd6+vrcLvdmJ2dxcrKCtLpNG7fvo12u41z587B5XIhl8uh3+/D6XQiEAhgd3dX+huxmJ+1bP1+H1tbW+j1elhcXJSalnw+D4/Hg2PHjiGbzSKbzeL48eOYmppCs9nE5cuXcevWLcRiMaRSKezu7mJxcREnT57EnTt3EAgEsLq6KsDJ7XbD6/Uim82Ky1y5XIau6yI1UlfggfEG2cCDhH00GomU0mazIRwOS1L8ySefIJFI4Gtf+xqazSbu3bs3toqt9sUyNrNmGJkLI0OkJv/q+0dJKVW5nAquJoFKs2MZt+HnzVgpMjpHSQfVz7BHYDgcRjQaFUCtzrndbsfMzMyYG6IKtiYxcsbX1XN8FFM2CcQar9ujpIHGcRhfHwwGWF9fx9mzZ/H666/j7Nmz2NnZwebmJoLBIBKJBE6fPo1oNIqNjQ2sr68LOGAD6VKpJIBFBSa8Pwiu2UqA14f9zAhshsMhQqGQjOH+/ftotVr47d/+bYxGI1y+fBn9fh/hcFhqxoBDJ0YCGuM5U26ognmVReP3gnVqfr/fVDrJf3RUVOvRRqPDPo+UdfM9GiPxmqjMF4EdDUiGwyGmpqaEuScAYi0ZpaR0mwQOJecEwvF4HJVKRaSV9XodHo8HqVQK9XpdFh7o4KoCynA4jHQ6LdLsUqmEZDIJj8cjgJ1zRUkjx8c6PxrQUFapaYdukuVyGR6PB9VqVdg6n8+HUqkkNXGsfaZRkaZpAgoJXm02G/x+PyKRCPx+v7zGRQg6ZabTaWHTn0R8qQAccFgHZzFwVlhhhRVWHBVffPEFhsMhlpaWEIlEYLPZsLu7K022T5w4genpady6dQu7u7uw2Wx44YUX0O12kU6n0e12MTs7i3a7jUKhgHg8Dp/Ph1wuh1u3biEQCOD48eMol8tSj3H8+HFhvOr1OhKJBEKhEHZ3d1Gr1fD888/DZrOhXq/j5s2bODg4wNzcnJhdnD9/Hi6XCx988AEWFxexuroqTW09Hg+azSZ2dnYQj8cxNTWF9fV1jEYjhEIhafJLBzjVkdIoFwQeJNyqmxznqd1u4+2338Ybb7yBl19+Gb1eD9vb2w/1RFKBlplEEhgHCWZAzvg5VUppZOSMckujhFHdx1FMk7odf5qNXQVIZp8z7r/RaOCP//iPx+qTjDEcDvHee++JqYXRkXOSFNQI2o46V+O8TWLTzBhI4zmbgcNJx2Cy/8knn+Dv/t2/i5WVFTidTvz4xz/GnTt3cOrUKSwuLqJeryMcDuPpp59Gr9fDzs6ONJ1mDZtq0MF7mfJj9VpxsYQOjgQVp0+fxu///u+j2WziX//rfw23241XX30VDocDf/InfyLmFuwHyO+Az+eT7wQwLtdVXUWNiwdq424yUyrjajTA4ZjZeJzsVLlcRiaTEXMj7lvXdQFOjGQyKZLDWCwmCz3BYFDOgXNI98rBYAC/3y+Ns8mC5XI5jEYjRKPRMVv+TCYjwIxgj+wd2VGCZ7o6apqGVquFfr+PWCwmzbj5veWYKIsMh8NjrB1lsJx3u92O7e1tuba093e5XCLTtNkOWwhEo1H5PJu/83h0oqS7JAEkcNgXkkoB1kWTdXxS8aUDcHabZjFwVlhhhRVWHBl0wEulUohGo9jZ2UGtVsPs7KywANeuXcP29jaWl5extLSEcrmMfD6Per2OhYUFNBoNlEolxONxhEIhYeWWlpbQ6/Vw584duFwuhEIhLC8vo9vtolqtIhgMYnV1FcPhEPfu3YPH48E3vvENVCoV3L9/H+VyGYVCAYlEAtFoFL1eD88++6yYMLz++usiAeOKMgCUy2UcP34cw+EQOzs7Y20RmMCyCB94IFMyNhVWE3LWkXBFnAlQrVbDD3/4Q/zu7/4uXnnlFbz55pvSXoDHUCWaai2ammAz6SVDqIIzFQSoYEcFccDDPed4bCOomSTNVMdhBnaMDptm8shHBbc1SizNjtNut8eAtRl7ZsbKGU1GjNtPArPq75PmybjfSeDObFvjdnfu3MG/+Tf/BktLS1hZWUEqlcK1a9fQ6XRw8uRJnDt3TvqIUVZMYxO1PQD3S3khgZHaroH3LZmb5eVl2Gw2fPvb3wYA/Pt//+9RKpXwB3/wB8hkMvijP/oj1Go1McOg8yTvZYIa4wKCCuQILtRrYzQtCYfDKJVKAB64H3JbngflfGTzG42GuHKqCxTcPxkkdQzAIRNGxoytAvr9Pvx+vzhukl3zeDyIRqNSOzY1NYVSqYR+vy8LQWQHK5WK9Mhst9tot9tioqK2Q2GTbsoQed3C4bB8t3kNeb6cE6fTKe0OAIjkVQW+9XpdZKDsDUejEspmNU2TJuw0O6nX68LicnEhGAwiHo/L8drttgA7LhBQ4eB0OsUJ9UnElw7AOWwaBkMLwFlhhRVWWDE5jh07hmg0imAwiM3NTQyHQzzzzDOYnZ1Ft9vFBx98gJ2dHTzzzDNYXl7GvXv3xOJ6YWEBun5ojU6r/b29PTidTkxPT0sDbMpzZmdn4ff7US6XpedcqVTCtWvXcPz4cbz44ou4cuUK3nrrLbhcLiwvL2N1dRWdTgeRSAS6rmNnZweBQAArKyuw2+24du0a7HY7ZmdnAUBYC7UZcigUkuSGySdrgbjqbARGZgxOq9USgMV6PR7nzTffxHe+8x288cYbePvtt7G3tzdWU6LWuqnAzHhcFWBMYuvUUJ0qmYCpNX6UkamMyKSWAn8TxsoMhKnbmB3H+NMMSKpAzwikVCCpAjijaYw6RrN9T2LqzGISmJt0XsYwm6fhcIh33nkH//Jf/kv8g3/wD/Dcc8+J2cju7i6cTqc0uL93757cq0ygVZlgt9uVZNtut2N6elqMKDgmgrhwOIxQKIS9vT1873vfw+7uLqLRKP75P//n+Pjjj/GTn/xEknq/349AICCAQrXpVwEbgLGFCt5zxvlQx0K7e3UxQ5UJUqZJN1syWdlsVph0bstWAGaGJ4PBQECox+NBrVaT3pcEugRYAKTWj8eIRCLIZDKo1+sYDofIZrMAIDJtHqff74uUk7WwnB+altBAhMYobrdbzqvZbKLT6SAUCokhCVsQUHqp67owbKqpSrPZRCAQEMMmytr5k/POWkFKZ+v1uhiYcO7ZOoX37Gg0EolkuVyWuaYSgef9pOJLB+Dsdg3DRzz4rbDCCius+F92TE9Po1QqYW9vD4PBAIuLi4jFYmg0GlJf8vLLLyOVSuH+/fvY29uT1eler4d6vY5oNIp+v4+DgwP4/X6pael2u2KSwsSB4O/s2bPSfPjMmTM4d+4cPvzwQ3z66aew2+04e/YspqamMBqNEI/H0el0sL6+jmQyiYWFBfT7fakhmZqaEit/yu16vZ60APD7/YhGo9A0TVz/1ETvKIYFGJcmsnC/VCpJC4ZOp4P9/X386Ec/wne/+1288cYb+PM//3NhIlXJGJMklYkwSiM5LjVJI2gxsnlqAq0Gz5HbkYkwkyuaMVvq72aMpNn8TJIQPmp+zY5t9rf6uvHz6nUk8FPle5POaRJIVYHhpPeN52wWKsg0O+dut4sf/vCHGI1G+M53voMLFy5gZ2cHU1NT6HQ6uHz5Mmq1GkqlEnK5HA4ODoQJJivGOi+1/5oKcLgNAV6pVMLW1pbY7b/66qu4ePEi3nzzTXz88cdie+/z+RCJRKTOTl10IEBSmV4G71Gj+6kKIiKRCFqtliT+6rZkdTqdjrQTqVar6HQ6KBaLwtipckz1e6Prupi0kCUrlUqoVqsIh8MyRsoKWYun6zrC4TD8fr9IHEOhEO7evSvjZn81jpdOkgTVfr8fmqaJ063aeNzhcGBlZQXdblfYuWw2K3VqkUgE5XJZQDpNSMhWUk5s7ItImWutVpMm3x6PB61Wa4w5pVtmo9FAOBxGPp+XxTU2AefCFGsuKf202+1jLRfcbre4qL766qtYWlo68nvwq4wvHYBz2DSrBs4KK6ywwooj486dO6hUKlhYWMDi4iKAw/5SlC0tLy8DAK5evYpcLof5+XkMBgPU63Vxqszn83A4HJibm0MkEpEEy+fzIRQKSSLg9XqRTCYRDodRLpexv7+Pc+fOYXFxEe+99x7eeecdOJ1OvPbaa2M94UqlEvL5PE6cOIFIJIK9vT00m01Eo1HY7Xbk83n0+30kEgkpqp+dnUWhUJAkg+wbEzqVpTrKHERlegBISwW73Y5CoQAAUjezt7eHt956C2+88QZ+67d+C++++y42NzclmWN9kuqEqYI4VZLG1XaOATBvTq2ybipbZTQ0UZNj7oufMwMrR7FU6vvq3+prRwGbSUBw0n6Nn3vUayo4mwQCjWHG0pn9NBvzJJCp/n7U5xuNBt555x04HA6Uy2Wsrq4inU4jkUjg61//Ot555x3cvn0buVwO1Wr1oXpAygYpkSOAoZEJFwK63a6AJrvdjoWFBfy9v/f3cOvWLfyH//AfsL29LfcKFycIHFQZpnp8yvtoZKPayavyTt5/dElst9vSAF6VWKp1cTxmsVhEr9dDtVpFoVAQpo0ME787/I6pclGXy4VKpQJd1xEKhcR5sdPpCLhhY2y2EGAjdI/Hg52dHWm2TXDFcQIPGPBOpwOXywWPxyPsJfDA0IWsKJ+N/X4fzWYT7XZb+ql1Oh1pnQIArVYLAASM8blVKpXg8XhE8hkMBpHP51EqlRAMBsXlkm6YBPsApFl5tVpFtVodM6ahXJYMG68tG5XX63WpjSPbR5n61NTUQ9+BX1d86QCcVQNnhRVWWGHFoyKXy2FtbQ1nz57FcDjExx9/jFarhYWFBTEWqVQqCAaDUjfSarXELKRcLsPtduP48ePw+Xw4ODgQt7NIJCJAIRaLYW5uDs1mE4VCAYPBABcvXkQwGMQf//Ef49KlSzhz5gxefPFF2O12tFot1Go1HBwcwOVyYW1tDYPBAFevXhVDk16vh3a7Ldbb1WoVKysriMVi2N7ehs/nk/5vfr9fkly32y1GByrgYAJIlgwwl8j1+32pgaHLpdvtRq/Xw927d2Gz2fDd734X3/zmN/HDH/4Qe3t7YjphrCNTj21kxzge9fj83cjMAeYGKdxWba7MIJicxJKp7Ik6FzyWGbNlFpNkkpPiKObtqNeOkmOq2zzOa5O2MW6vztEk8Pmoc9d1HaVSCT/84Q9F/uZyuXD37l243W7Mzc0hHo/jpz/96RjDrN6bDocDS0tLcLlciMViiMVi+Oijj5DNZoWxCYfDImX+7ne/i3g8jv/yX/6LNAlX98X+jbx/VICkssMqS2y8r9X7kWCM4Im1XaoMlMCRTJrf7xeQU6/XcXBwMFb3pkokVUkn9zkajVCtVqW+jcCPi1MENwQ4ZJfsdjva7TZyuRyAQxBWqVQQCAREWuj1esXcg2wlG2YPBgN4vV54vV6RGEYiEVQqFTE+YduV4XAofd/y+bzsB3jQP6/RaCAUCsHpdEpvNrYBCIVCKJVKcl1pbsIgs0c5O2sq6dbJ54LH40E4HJY54QIAFxUIJm22Q5fKdDqNQCCAubk5ZLNZfP/735d6yl93fOkAnOVCaYUVVlhhxaPi3LlzOH36NLLZLHK5HHRdx7lz58aa+S4uLsLlcuHg4AA2m02A3HA4xPz8PKLRqFijdzodzMzMiMW1zWaDx+NBPB5HLpdDPp9HOBzGqVOnMBqN8F//63/FjRs38Bu/8Rs4e/YsNE1DPp+XFeJkMolUKiXyy2g0KoX6wGGCQknSysoKarUa7ty5AwCYm5sTsHfz5k1hH7i6zKQSgKzkG5knhhFQ0IiFCTyb3A4GA9y9exdvvvkmXn/9dbzxxhv48Y9/jPv37wOAJG1qssmE1Qgazeq/jmKvjGDPKK80OgQaE95J567GJMA0CQSajZOvHSW5nLSvRwGwR4HDo4496f1JYXZc4+8/zz6r1Sreeust6LqOb37zm9A0DTdv3kS5XIbX60UsFsNzzz2H+/fvI5PJoNVqCXDx+/0Ih8NwuVyycOJ0OpFKpSSh/9rXvgaPx4NAIICbN2/iypUr2N/ff6heMhQKIRQKjTXNNjJOqjnIJNbV7H5kvakRCAIP+r1R0sjva7PZRDabRbPZHAN8rBGjtI/3MkEgTYs4VrVGkG6Q/A40m00BxmTH5ubmMBwOUa1WxSmXjCY/2+l0RCbebDYBQJQJBIzAIavX6/UQCARQr9fRbDbhdruljowAmvsGMMZUAofSVz4r2LaF6ge246DZCOedDcop/abBiXrN2KTb4/GIpJKmUGwmzjo4r9eLSqUCh8OBQCAgi3GUkj6J+NIBOIuBs8IKK6yw4lFx7Ngx3L9/H+12G7qu4/Tp01JL0e12RRpTLBZFnpPL5eBwOBCLxeD3+1EqldBqtdDpdBAIBNDr9VAul+Hz+eD3+5FMJpHNZjEajbCwsIDZ2VncvXsXf/EXfwGHw4G/83f+jlhcb2xsyMr3hQsXEAqFkM/nUSwWMTs7i1arhVwuJwkMrb6np6ext7eHDz74AGtra3juuefQbDYxGAxQLBaxuLiISqUiCS9Xt3VdFzYAwJgtN0NtiK3WWtGZkvtj8tXr9XD16lX0ej18+9vfxssvv4zRaISdnR20220Biyo7oR6TSRrjKIZsknRSBRcqkFNBnPGYR0kmJ4WaCBpbHxwF8Izv/TzHfBxAeNRYzfYzib07igk86j0zMKm+N2ms7XYbf/Znf4b9/X38o3/0j/DCCy/gxo0buHXrFm7cuCGA55lnnsHm5qbUgf7Gb/wGXnzxRWxtbeH+/fsoFAoiZ5ybm5Nar52dHXz66acoFApiDa+CeTZt5v3Mf9wXFxpUlkuV6BprSsncscaMlvh8nb+T+SE4oZW/2rBc/e7yGM1mU/ZN90gy7GTJ2MuN58GaLgACqDqdDpLJJPb391EsFhGJRDA1NSXjZfuBwWCAWq0mskuPxyMSUl3X4fP5MDMzg3q9LiZKpVJJGmHX63W0220ByJRNjkYjhMPhMbkkDUbImgEQJ0vVmCkYDIpDJK9nr9cTxpVsbbFYlPngXLpcLiQSCZFK8vlEVQPbN/D60LDK5/MJOxoMBmV8TyK+dADOqoGzwgorrLDiUfHFF19gMBjA4XBgZmYGmUxGmiwnk0mp2WBCtLe3h1AohFQqhf39fdTrdbH1X1hYQC6Xk21DoRD8fj/W19eh6zpWV1exsLCAv/7rv8alS5cwPT2NM2fOyAoxC/qj0SjOnDkDn8+Hra0t1Go1rK6uotvtotfrIZlMClChtGhvbw/1eh2vvfYa5ufncfPmTQAQ+SZrTbxer7hJ0o2SiR2TeEoOjSYMRkZB13WRUDF5TSaTcDgc6PV6uH37NhwOB1599VV85zvfwXvvvYcbN24AgCRQRtkkE1MzcxMjEGOoDAbHb9aCwPiTxzaCOrPxHMVYTWLtJgGio6SJjyOvnLTtUcCK70+SQh71OWOo8zqJ9XucMRx1vleuXMG9e/ewtLSE7373u/jH//gf4yc/+QnS6TR0XcfFixfhcDgEiLH9wPPPP4/r168LY0fJ8sHBAfb29lCtViUpV8dos9nE7If1ogyyTfyuqGNWazZVcKXef8Z7jWBQvadpmsH9sycaTUtUUxDun6DJaBLUarWkQbZat0fmTW3eTbBWLBaFQYvH4wgGg8JW0qCk2+0KwOH3PpFICFPI50ilUhHwVavVxMWzXq8DgNTeUdYZDAalBk/TDg1Q8vk8ZmZmRL5JEOx2u6W3XDgcFnMRmpcAEFaQIBiAqAVYF8nxT09PCzhrNpvCwNpsh20GCDK9Xq84XbL+jXXQrBd8UvGlA3CHDJzlQmmFFVZYYcXkGAwGWF1dhd1ux+7uLgqFAmKxGHw+HzY2NhAIBKQ4v9VqYWpqCvPz8wL0fD4fUqkUIpEItra20O/3cfLkSeltdPv2bQSDQZw+fRo2mw1/+Id/iK2tLTz33HMCdvr9PiqVCobDIeLxOJaWltBsNvHTn/4UTqcTa2trUssTDoeFMQuHw6jX6ygWi4jFYjh58iQ0TcOPfvQj9Ho9rK2tifRT0zQ5T4fDIQ6bauJJ0MakXGWpVMMTYDwRb7VaY+AvFotJj6abN29iMBjgt3/7t/HGG2/AZrONyTnN2DYAIglTQaOZvJCvM1EzS5qNoJAAVU3GyaKoYQZsVNBhBLTqe0fJKR8HFD4qjtreyCJOArHqOf28cRSbqI7B+LsxjpKENhoN3LhxAzdv3kQqlcJTTz2F5eVltNttfP7553A4HHj++edRLBbh8Xhgs9nw6aefotlsYn9/H5lMRhY9WDtnvFYEEoFAQBggAiuVeVPlgPy8ulCgynJ1XR9j6dT7T2XeKNGkbI+1X6PRCMViEfl8HrlcTqSTbrdbAKAKEvlZSiAJgmjdz/Ha7XZx94xEIgAOGbxcLid1twCk3pdAh46YmnYoVfV6vVIzRwDNekHa+JPxIyDKZDIyH6zJY3sAl8sl4JG1tOzhRnkiv7f8LPAA9NJBst1ui9SRhisul0sYRl4D3gOzs7NibtPr9aTReK1WQyQSETUBx+d0OhGNRqVOkxJPGtM8qfhSAjirD5wVVlhhhRVHxalTp9But7GxsYFer4eZmRmpyfB6vZidnUWtVhPJZDgcxu7uLprNJmKxmBTgs3n1zMyM9HfKZrOYnZ3FmTNnsL+/j7/+679Gu93Gyy+/LLIjJjY+n09aBHzxxRdoNpsIhUKSSKmr9pVKBbFYTBiwxcVFcb/MZDKIx+NYWFjAaDQS9o/n0uv1kE6nxayA4Ec1NWECShCkyhDNGAVN00SCyvdTqZQkQJSLvv766/jGN74Bn8+Hzz//XBIrY3Kv1sOZhQo41ZogI0to1jpA3a8RgKl/G+sBjcdX33sUA/U4tWBm4NEIjI4ChUftS93mKLB21H4eB4QddRzjnB21H95v6s9sNotMJjMmbaTFPp0OeS3UnmaqrE49D/W+8fv9iMViY/3CVPmk2oxePU914UEF9WoDb35OlWmq75Gt5me63S4qlQoKhYKAN9VNVZVyqj0ZCTAJJHw+n9TxUubo9/vRarUQCATE7bLZbIoFPwFaMBiEw+GQvm+s+aLdPxt/czw0SBoMBtIvTT0/AlCCL4ImTdPE4ZHXlQZR8Xhc2FIuOrEmWdd1YQY17bDOjdsRVPGZSbk7rwFB3+LiohhRqeCNNXR8zefzIZvNYjgcyoIZWxzUajXE4/Gx+r8nEV86AOe026waOCussMIKK46MbreLQqEgtRCVSgW5XE7kVDs7O3A6nQgGg2i327h9+7b0i1tbW0OtVkOhUEAgEMDS0pK4puXzeaysrGBubg6XL1/G+vo6wuEwnn/+eQFP7PPE5M/v9+PevXsolUqIRqOyCk05FZOyWCwmiQolPeyV5XQ6MTs7i1KphHv37iESiUjSFIvFUCwWpbUAazi4ag+YJ/hqEmpMXBlsNKwm6HSF6/V6uHHjBprNJn7zN38TX//61xEKhXD58mXkcjlZHTcDLGbATA0jO2bmRKm2EuA+mZib7VOtaTIm/EdJIY0gx2zbnwdAPQ54M86FGVBRjztpzGbgyux8zObfyLQRAKvbmB1PDaPlPsNY30h5Ia3eze4dY5jNKxmwYDCIaDQ6xhipDNwkYK0Gx6gydtxWdT8lYOT9p2maMFwEYXx25HI5NBoNkRobv3u6ro81uCYgAjD2TGBNHJ8BdJgkkKnVauh2uwJMZmdnMT09jU6ng3a7jUajIe0FCKS8Xi/a7baAN0oVWVvGel6On8CYbo+UJxIwkfUEIOzdzs4OHA4Hpqenoeu61JjZbIdtUAj6KKcEgGg0ik6nI4CbPdxUcxi6VbIPHXD43FVlmXS4pElJtVrF9PS0LHSxzyevA+v4nlT8QgBO07QtAHUAQwADXde/omlaDMD/DGAZwBaA/7Wu6+VfbJiPH3arBs4KK6ywwopHxP379xGPxxGPx3H79m30+33EYjGEQiEcHBzA5/MhGo2i2WyKpf+pU6cwPT2NO3fuIJ1OY2ZmBouLixiNRtje3sZgMMDTTz8Nt9uNH//4xxgMBjh+/LisqLPHG5OQ6elpZDIZ7O3tQdM0nDp1CpVKRRrSMiEbjUZSXN9qteD3++Hz+VCtVtHr9TA1NSXjzmazCAaDsuodiUSQzWZFPsX+RQSRDIIaWv4z2QTGDUyAcWkiE8xWqzVWF5RMJsWE4N69e+j3+/jmN7+JixcvIhwO45133sH+/r5YqwN4CLTxGGaMB4NJrhlwIJNjbBmgAj6jy6DZMYxgR93/JBZu0nvG8zDuz2ybnyeOAuRG0Gu2nREMTtqGiTmvHWDer8/s76PG9bjxKFbPTMpJ5icUCgnbpM6DkX0zO2djqG6SDJqSqIwh3R8JwNjoGjhsPp7P55HP58fcEgn2VPZN13UBQ+zBxtYDrEMjuPP7/eh0OlL3FYvF5HODwQClUgmxWAwLCwsIBoMol8vo9/vo9Xrwer1jrpBk7ShtJIjWNG2MgSNgZJNsj8cjtW6dTkccHsPhsNTY0QFzc3NTnm0LCwuo1+sol8twOByYnZ1FuVyWGsB+v4+FhQXUajU0Gg2Uy2WZX1WeChw+25LJpLRXYa88vkdmMpvNwuv1IpfLodVqIZFIiHkKWztomgafz4dKpTLmnPkk4pfBwH1D1/WC8vf/AOBHuq7/T5qm/Q8/+/v//Es4zmOFw3KhtMIKK6yw4hFB8PajH/0IhUIBL774IlKpFO7duydSmXq9jlKpBJ/Ph1OnTmE4HOKDDz5AoVDAqVOnsLCwgHw+j4ODA8zMzODkyZPI5/O4fPkylpeXMTs7i1wuh0AggGq1imAwiEwmg36/j/n5eZTLZWQyGSwtLcHv96Pf74uRgKZp0jvJ6XRKrRyZNdacJBIJAEA6nRbwx8+4XC5sbm5C13VMT08LeFQlaEwUmZCp7Jcq3TICErItKlhhLQ0TrFQqJYzhzs4O/vRP/xTf/va3cebMGYRCIfzkJz/B/fv3pTWDasqgMjDGMJqaqEmuyliozJvKuqlyNvWnuj/1vIwsmxFwPS5TpsajQMujgJBZqO+rYFQFMGb7OAqoHXWcR21vxk4+al9m82y2z8cJdd90YWSTbjJvZuNX70MuUqgAj5b6ZvcD70MaopD94t9qQ2xd16XvWjqdRqPRkHoufpbjJNNDI5Beryegyefzwel0yrjIPFWrVWGuWE+WyWTEfVHXdczOzmJxcRGbm5soFArQNA2BQEC+/263G7FYDN1uV5pnAxBnSuCQyeJCE01N7HY7wuGw9GLL5XLSboQSRRqj9Ho9FItFAIetCKampuB2u+H3+7G3t4doNIpy+ZAHYl+5SCSCdruNTqcj8ku2lxgMBohEIvB4PKjVajLmSqUCr9cr15g1hLquy/gIPNn3jmqHRqMBm80mEk9d12VenlT8KiSU3wXw6s9+//8C+Al+jQDukIGzTEyssMIKK6yYHF6vFz/84Q/RarXw0ksvIRKJ4ObNm3C73YjH40in0/B4PJidncXMzAxKpRKKxSJGoxEuXLiAYDCIbDaLVquF48ePIxQKYWtrCzs7Ozhz5owkD4FAQJK37e1tuFwuJJNJ5PN5ZLNZrK6uihFBPB4XKabdbsfs7Cx0XcfGxgbsdjtSqZSsftP6nDKeUqmEWq0mjcTr9Tr+8i//Ena7HefPn0e73YbP5xtLqmgWQBkWWTcCILrYmQEJo2SPQSaOkUql4Pf7JUn7y7/8SzSbTXzlK1/Bb/7mb+Kdd97BnTt3xBlTTXABjI3DCOomsV/AeAsEMxCnaZoA1MFg8FDtnSrdfBRQ+0WYM+P8PQ57N2kf6meMxh1GOaPKohrHPAlwGcdpZKmM52C2r0cxcj8PG3cUOFTvA8r/fD6fSOtUeSYBh8qcTRqTyvAYG8QTdNGun5JpsmRGJrnT6SCTySCdTous2XiP8/6nyQellWrtGZ8JaqsAui5OT08LI1er1ZDL5VCr1VAsFjE3N4dgMIhcLicybIfDAZ/Ph06nI7JBsvI+n2+sbo8GJqxTUx0h/X4/gENDGvZiY70en41sFTAcDuXZFAgEMBwOsb6+junpaczMzCCfz8PpdCIcDos8VNM0FItFaaFQKBTETTKZTCIYDKJUKsHlcokDr9frha7rcn68NplMBi6XS56laiNygllN02SsVESQ4XtS8YsCOB3ADzVN0wH8v3Vd/3cAUrqupwFA1/W0pmlTZh/UNO2fAPgnALC4uPgLDuNBOOwaun0LwFlhhRVWWDE5/vN//s/QNA3nzp1DrVbD3t4eEokEhsMhtra2EI1GcezYMfh8PpTLZSmKf+aZZ9BqtVAul2Gz2XD8+HGxNR8MBjh9+vRYLYXP50OxWES5XMbq6ip6vR52dnYwGAxw/vx5VKtVFItFpFIp2Gw2lMtlBAIB6cV07do1uFwuLC4uykqwCkj6/T6y2Syq1SpCoZCsUJfLZZw7d072VS6X0ev1MBqNxKSgVquJnMput8sqPvCABaPzpcpcAeZW+Qwam5DhS6VSCIfD6HQ6KBaL+Ku/+itUKhW8+OKL+M53voPZ2Vl8/PHHKBQK6Ha7Y66YRqZDrWlTk3Cz/nGqVFKVU3IbtQ2ByrrwGCrgMwJZ9TjGeVCP/yggZgQgjyM/nAQizd6fJP80O57Zvo4Crcaaw0eB3aOYtUljMW4/CbQZ54nyNibwNKtQ69UIRFSHSAL/SSDOyMap4XK5RL5MoEFgyHuK9Vhsc5BOp9FqtYS9Vs+FxzH2gSNIolyRDowEYAQaiUQC0WgUAODxeIQ5qlQqSCQSYgKSz+elNQlbMPT7fSQSCbhcLlEhcGwEMOzjFgwGUalUxthwSkX7/f7YvULzEj5bCA6DweCYxLPdbqPVaiGbzQprt7u7i3A4PCb3JDiz2Q7bQcTjcTidTqTTaaknbjabYlBFWSkZSLr8EvDRvZO95vhZGp+0221EIhGRk05PT5ves7+O+EUB3Eu6rh/8DKS9pWna7cf94M/A3r8DgK985Su/NM2j3WbDYGS+KmSFFVZYYYUVwGEjb7vdjkajgWazKU6Ng8EAJ0+eRCwWA3DYW6hQKGBhYQFzc3PIZDLY2trC/Pw8FhYWoOu6WPNHIhG0Wi3pu9btdvHFF1/A7/djcXERe3t7+PTTT7GysiLtBVwuF1KplEgYp6am4PV6USgUsLm5KSvomqZJfQubyQKHjcbb7TZisZj0eBuNRohGo9Ik1+VyIRAISFNgsnR2u10aH6t26YPBQAwjgAeJpJqITQIpTHTZcws4rDOJxWI4fvw4isUiMpkMPvjgAxSLRbz++uu4ePEifD4fPvnkE+zt7UmtCY9vxvTwuGotm+og+ajtja8BD1g3zgPPV92nypCY1Vnx90mvMR4lLTSO+3EYuaMYyUnvG8diPB+jjPQXOf7jhhnINAN/xtdVyaLT6ZRaUjJQKugyukKqrpOPM371dR7P7/dD1w+NN0KhEJ566in0+31cvXpVxtvtduWZwlorGmMY98/7TzXfYd0h67jUNho8Bhn/0Wg0VqNFSaXaEqDdbqPb7cLn84nEkaAlFAoBAGKxmEgIw+GwgEr2SwMgNX1cDOl2u3C73QI6Keumy6Ou6yiVSsIkhkKhMeAaj8cFUNlsNmQyGTFmKZVKsuhEkxOn0yktAPb39xEKhRAKhdBsNgWoOp1OAYiUkw+HQ/j9flkACwaDSKfTsNvt6Ha70qeOLQQoRaec9Odhyn/Z8QsBOF3XD372M6dp2h8D+CqArKZpMz9j32YA5H4J43zssGrgrLDCCiuseFQwuQiFQgiHw1Krtrq6KoX2/Le6uopEIoGbN29ib28Pp06dwsrKCobDIfL5PHRdFzljp9NBo9FAoVDA/v4+5ufn4fF48N5776FYLOJrX/saUqmUODdOTU2h1WqJFKrVaqFQKKDVamFtbQ33799Hr9fDM888I6vHm5ubiEQisrodDodFzkOXOQCyon3//n3U63Vp4ktWcWtrC81mc6wvFS36zfqwmckKzcAb3+92u9KX6e7du1hdXcVLL72EN998E9vb27h27RqKxSJeeeUVnD9/HnNzc3j//fdx584dsRJXrdRVFkKtVeMxjeCMYQR56v5UEMfkU+0Vp86Jul+z858Uf1Ng87gg7+cJM9BpBvKM0sBH7dO47SRwe9R7k4DbpOOrIIxMlwreCOBUwxCVdSPgIDOmnsNRwI2Aj/JG/l6r1WCzHTa5/v3f/33E43H86Z/+qYCvbrcr/dfy+bwwOpPmQXXoJPPGMRM4hcNh+Z0Oj/V6HfF4XNinXq8nrrPhcFikpK1WS2rPKC+s1+tYXFxEp9PBwcHBmHuk2+2W50u/3xfpd6VSEYMSNsAOBoOiBmDrAT7zBoOB1PRy4YsSRl0/rCPM5/PQtAeGIbxu+XxeQFepVJLneCAQgN1uRz6fh8/nkxpmtVE6j+Hz+XBwcIBwOIyFhQVkMhkBf9VqdUxiS5A8GAwwNTUFl8sl9XLsIfqk4m8M4DRN8wOw6bpe/9nvbwD4vwP4UwB/AOB/+tnPP/llDPRxw3KhtMIKK6yw4lFhs9kwMzMDu92OSqWCYDAoPYJor93v97G8vAyHw4HLly+jWq3iueeew9TUFAqFgrBdNptNeiVpmiZW2ydOnAAA3L59GzabDd/61regaRqq1SoikQhCoZDYdWuahnQ6jUAgAI/Hg1AoBI/Hg/n5ebhcLsRiMWSzWXzxxRdYWFgQBo5AjnImJlrBYFAAEHAIWOfn50VCyVVmus1xJd7oAAmY974yAplJyfdgMECtVoOu61KT5/F4JLk8ODjAD37wAzQaDTz//PP41re+hWg0isuXL6NYLErypBqrqPJHY62XMdRkmGF0n2TCrr7O15hkqon0o2SNZr+rYMSMjZsUZpLEo9gwdTyPIzecdMyjQJvxfeO2Zn+bsWWTfn9cVoOLDmodG2WTZN3UxQmjVFJlnNX9qWNgnZt6/VQWj6CK3w/KGev1Oq5du4aNjQ3YbIf9zxqNBtLpNEqlkjBvRpDK39V/ar87gjVKJHn/Umbo9XoRi8WwuLgodbZk7lmP6nQ6kclkpJ8Z2SlN00Q2XqvVxr67bEnAxSGyaWQFaa5CO3+2QOG2NBzxer1oNBrC/tGwiZ+hSQivD1k4smCcp1arJbVsrLfLZrNwOp0IBALivMk+ccAhSxgOh1Eul4UFrNVqIq1ttVoyx3zmsM0Dz49SepfLJYtMTyp+EQYuBeCPfzaZDgDf03X9rzRNuwzgDzVN+8cAdgD83i8+zMePQwbOqoGzwgorrLBicszNzcHtdqNQKCAWi2F+fh6DwUCK9z0eD1ZXV9Fut3Hr1i14vV6cPXsWDocDu7u7Y1JG2kzX63XUajVEo1EkEgkUi0Xk83mkUimRaOq6jlAoBJvNhkKhgFAoJCCFcsl8Po9erycmAoFAAJcuXcLe3h5mZ2claYjH4yIJUuvugMMER9M0OJ1OYeLYp2lrawszMzMIhULCkjE54qq/y+WSOhYzkGYEE2SxzCR3rLfb3NzEH/7hH4rTJkFmuVzGm2++if39fbz66qt45ZVXkEql8MEHH2BnZ0ekTmqSzDGo5iTAw60IzMauMhsqa6cyc/yMCvxUlsY4D8a/ja+bAb2j3psEih4lp3zUe0eBXbNjmTFnRkBm3J9at2gEv8bjmLFdxtfNjqWCKYI3gja11k01p+F1JxtDtlUFRirzqoZqisNwu90CFtxut7ivHhwc4Hvf+x7cbrc0F6/Vajg4OECxWESr1RqTGE86HsfDfZPxYv8y1o/ZbDb4fD6ROCYSCZRKJekpR0Mk7pPGIlxMosx6ZWUF8XgcOzs7qNfr4mpJkEV2j8+vUqmEZDKJdrstjpjtdlsWZ9g3jm1TOFcEgpQg6rqOfr8vbpM0Jtnd3ZU64nK5DE3T4Ha7pc+baoLSaDSkbQrNo1TZd7fbldYENpsNqVQKxWIRNpsNU1NTwoiy+Xmv14PT6Rx7LlarVXQ6HQQCgbFWM08q/sYATtf1DQDnTV4vAvjmLzKoXyQsBs4KK6ywwopHxWg0QrVaRTKZRCKRQKFQkMRBbe5dKBQwOzsrzo3NZhPBYBChUAj1el3kj4VCATabDZFIBG63G9VqFc1mE8vLy+JI53K5xNWNVtfdbldq2OiyVigUEI/HRR518+ZNtFotLC0twe12C/gkg8Vi/pmZGaTTaUxNTUmiorJyTOiWlpbEuS2dTmN/f19W0tleQHWEBCbXwanvT2KhON80JWi1WohEIohGo4jFYtA0Dd1uF1euXEGpVMJrr72GM2fOYHp6Gj/96U/xxRdfSP0ek1YViHDF3GwcxlCdA80AmVFuqSb0k+SG/P0ocPUomaHx9UlhxnQ+Ksy2edQ4JwE8M1mjcW5U0GusJ1TbO6jbGRlGI4g2gk+CRLJsBG4EbXyPoRrWqGzupPMxG5t6njQsoTzP6XSOLTBQQjwcDlGv17G7u4tKpSKSRuP9oJ6bOmeUXwYCgbHaNwLAfr8v7BnbA2xubkLTNLHNj8Vi0HVdjDcGgwF8Ph+CwaA8z44dOwav1wuv14vz58/j5s2b2NnZGastdTqdUtubSCSkJQkBHiWQg8EAwWAQbrdb1AFk8bgQo2maqBbYL46Mnd1uF3YwHA6jVCrB7/dLLzq2LLDb7SJD9Xg8iEQiqFar8jzp9XqIRqPo9/tIJpNjzprValV6bXJBjGPRNE1YPY673+9LL0/W0NlsNmlL8CTiV9FG4ImGVQNnhRVWWGHFo2IwGGB+fl6YMJvNhkAgIJKiQuGwvWk0GoXX65WVYSYhdI9jcsfG3FxtdzqdOHbsGIbDofSAo902cFir1mg0BMj5fD5kMhnk83nMzMwgGo2i1WqhWq2iVquJS+X09DQCgQD29/dlNX96ehqRSATpdBobGxsYDAaSuLEOiDUwdIyjTDOdTiMWi8mKOwElw4xNUVk34GHrfmNirCbfZNNo2tLpdETa1W63sbGxgXw+jxdeeAFf/epX8Tu/8zs4ceIE3nvvPWxubsq4CAbUujaV0TAak6ifU8/tqDYFlHYZz1edC25n/N0IJNW/zUCScR/GeJRk8m8S6jgnAd+jmDYjaFP3ocoR1e8IwYCZayg/px7HeH5k29RaN9WgRGXS1M9wGybpZJcmSYOPAo6UAHc6HQCQOrvBYACXyyVyQDbL3t/fR7lclj5l6nmpc85xsr0F7z+ybZqmScsA43yxf1qlUkGj0RDWjmYe1WoVwGHTcLfbDa/XK8yUy+XCzMwMfvKTn+DZZ5/Fs88+KzW+HDOfdQRLrVYL0WhUwBLnggxht9tFLndogcFnUKvVEpBGYEQzFTpEOp1O5PN5OBwOTE9Po9FoIBwOo9/vo16vw+PxiCSUjCPvn2q1CpfLJUoKgrCpqSnUajXU63WEw2GRrZOpZIsB1svxWlLqGY1GhZ3jtWWd7H+vEsq/lWG32TAYWgDOCiussMKKybG4uAiHw4FcLifM2fz8PLa2tqDruiQG3W53zGaeiT4ZreFwiGg0itXVVQFvdHns9Xqo1WrCMjUaDXF6o4sbEwdKjiiRJMgiA8jV9eFwiPv37yObzaLT6WBubk6agGezWczMzCAWi8Hn88Hn8wlTGI/HEQgEUKvVsLS0hEgkgo8++kiSKACygq4mJUwQyXwBkyVfTMzNGA01WDtDCRtX9NlbqdVq4d1338Xm5ia+853v4JlnnkEymcT777+P69eviwGCau2vHkMFCsYkXU2cjTLLScF9GUGcCuzU34+SSTIedcxHATrjfo7av5kM0niMSWMw/q1+1vg3fxJMqTJHHscI4tT5m7Q/fo4Ah3VnNPTg8cxcJsnG0YGQNVwMFfgbGUTjgoCmaQiHw3C73WJYQrZMtcsfjUZot9sC3hqNhgCho64l2TaVRaSBCIEqMO7KSmfGcDiMe/fuyXja7TaOHTuGwWCAdruNarUqjorxeBy9Xg/5fB6zs7NoNBp49913sbGxgd3dXdRqNbzyyisAgI2NDXHnZVNrShYTiYRcE4Iw/r29vS0uuP1+H+VyWaSmwWBQ7PodDof0oKOk0263y0JTMBhErVYT5oyLXh6PR2SUvI+pnqCEkpLKdruNfD6PqakpAXcLCwvSBDwcDgubSZBGgMnaO953bC9AtYIF4H6JYTFwVlhhhRVWPCqq1SparRaCwSB8Ph+mpqZw9+5d+Hw+MQlhvQMZHlpdDwYDbG5uolQqYXFxETMzM6hUKshkMkgkEkgkEuj3+6jVapiamkKn00GtVsPs7KxIiqrV6kPGAAAkCfJ4PLh3757UfdRqNQBAs9kUO/C1tTVJNtvtNhKJhLjJ0T681WrJSvRwOEQqlUKlUsGbb74Jh8MhNRyFQkGcLGmYwISUCaNaQ2QEKkx6jMnvpCAzyfno9XqIxWLCGna7Xdy/fx//6T/9J7zwwgt4+eWX8Xu/93s4efIkPvzwQ2xubookTJV5AeMsm8rSAQ+zPca6OuMY+c8I9iYxco8joZz0vpHp5HiPip/nfSPjZnzfjBUy297sd3V79Z+RiQMm1ymaHYcgSa11IztFsKBuqwI4vudyuUTGzFCNTdTjGhu6c58ulwsnTpyA3W7H+vq61EvS5ILMM807stksSqUSGo2G1KiazS1/quCNYJPvEfTU63UBDDRqYXPtra0tcaMdDoeYn5+Hw+FAu91GpVIRqWU8HhdzEDJr/X4fhUJB+qNtb28jm80ik8mg3W7LYhOBnK7rskgEAIFAAIVCQXrRZTIZeZ1MezabRSQSwcLCgiwk6fphM3N+90ulEux2uzhM8pwbjYZI2FkL6HK5AECecwRzBI1spUJX4Lm5Oem3t7y8LA7CTqcTbrdb2iRQFUBZLs85FAohk8kIUGR93y/CgP+i8aUDcHa7VQNnhRVWWGHF0cFkYGpqCg6HAzs7OxiNRlhcXBSpFRvxMqEulUrY2dlBuVzGaDTCsWPHEI1Gkc1mxX6bsh+Px4MzZ84AOLS+jsfj4jrX6/UQiUQk6ev3+8JEsYh+e3sb9Xod8/Pz8Pl8AtoAYHV1FalUCnt7e2IRrus64vG4NMoFIHUo7O1E2RQb7DqdTpw6dQrlchnr6+sis2JyRImVCsyY0BubXPN3dRv+brYN98kEcTgcotfrodPpjDUZrlQqeOutt7C/v49vf/vbOHv2LJaXl/HJJ5/g448/xsHBwVjPOjUIvIGHm30bwwjmCAhV5pFhBGMq4DJKR83YSnUe1L+NYMlsLtX9q2MxbqcyE2b7NRuLcd/G9yexZPycCtY4p8ZaMjZ5JrA2Gt8Yt1dZLgI5AA+xVOqYVbkkbeBV8AaMO5EawZvxfD0eDxYWFtBut7G/vy/b8lzoAKvrOsrlMvL5PKrVqoC3SddIPY7xetnt9jGGnmYa/OnxeDA1NQUAYpzERZRUKgWPx4NisYhSqSS91+gAaXRlrFarqFQqspgzNTWF3d1dYcNUBooNytkKYGZmBoVCQVQJNGDy+/0YDodS9zc9PY2pqSlRFTgcDmnATeMR1hXm83lx8my1WgiFQuL+SCMXswUTmppUq1XMzs5iOByiUChgZmZGFBCzs7Pw+XzY3d2F1+sVCb3P50Oj0Ri7p1ljl0wmpb2ACpr5fHhS8aUDcE7LhdIKK6ywwopHxGg0wvLyMjqdDkqlEjRNw+zsLHZ2dkSyBBxaU/f7fbTbbdTrddTrdcRiMbHbJhi7cOECXC4XstmsuK1Vq1UUCgXcunVLEsrjx4+PJVu9Xg92u11AocvlwqVLl+ByuXD8+HEEAgE0Gg34/f4xt8QbN24AOFzldrlc0g4AOGyi7fV60el0UK/XEQwGEYvFxNmyXq/j+PHjsNvtiMfjSCaTACB9oehS1+12xxz7gAdSSiMweBRoUaVzwHiNkq7r4uZJViAajSIajcLv96PX6+HGjRvY3d3FhQsX8PLLL+M73/kOnnrqKbz77rv4/PPPhWUgMDTWGvGYxrYBR90fav83M8bNTIJoZCdV+SDjKEBlnBcjoFL3ZwRyqhxQZaKMx5p0jczAm3G8RpbQjGUz/s3Pq2MyO0/1eABEMqg2pjaTShoZOPYVq9frDwE3I0gzO1duR9bd7/djf39f2F7jdfL5fOj3+9ja2hLWimYlRrCrHpf3IhcaOH4y4G63W2Sf/BxBKc1TGo2GSI8HgwFisRg8Hg9yuZzsc2ZmRvoxUg6+sLCAUCiEQqGAzc1NkWiePn0awWAQuVwOg8EAbrcb8Xgc+/v70HVdJJSVSgXxeFwaaUciEezu7srCEJk3uuvS6bJcLo/VkLndbrl3I5GIMG8OhwOVSgWhUEjAksfjEYUC26yQwQcO6wDb7Tbi8Ti8Xi/29vbkGZJOpxGJRGCz2bC9vQ3g8NlZqVTETZjNuT0ejyzwTU9PywJZIBCA2+0WNtJo9PTrji8dgLPbbBYDZ4UVVlhhxZGxuLiIYrGI7e1t+U++XC4LkLDb7dja2kK73UY0GoXL5UIgEEAqlUIymRQWyufzYXV1Fb1eD5988gkCgQCy2Sw07dCV7fPPP4fT6UQkEsHJkycRDoeRzWbh8/nE+lyVON24cQOBQACLi4tSL8c+cWTO6KbG/lA0E6B5ic/nG2uoS1c3XT/sexQOh2V1mU14aZDCGjQmn2TjyJCRHTBrbs3f1YRclckZZYwq48KEiEkRWUPW7nHF/+2338atW7fw7W9/G1/96lfxe7/3ezh9+jTee+893L9/X2qNVFMN9bjGtgMMdZxkBNU6O7MVfzNwZ8bOqXOj/n4U22X8e5KMcZLU0gwQqX8bJZtmn1FBqgpYjONXx6VKE48CdupxjftWmTWb7dDpz+FwCHtkxvCxJmlpaQk2m03Y6UnzrhrWGI/PcVJCx+8HFzJUtvbChQsoFAr46U9/Ki6vqlmJ2XwfNYc8Bu9VfpZya5fLJbVehUIB0WgUNpsN9Xod0WhUatX4M5VKAThs+E1pdjgcRjAYRKPRQLFYFEbv/PnzeO2119DtdnH58mVh1ZrNpjCh7XYb5XIZPp8P3W5X6my3t7cFkLXbbVk4SKVS4vTI1gVsxK0yi6FQSMxEdF0XgEi3YJ6b0+kU6aYKoILBoDB6bEFAs5l0Og2bzSZqieFwKJJN4FCN0e/3BfyyxjYSiQA4fDbZbDaRhHa7XVE5PEoa/auMLx2Ac9itGjgrrLDCCiuOjuvXr6PRaODcuXOIRqOSpIbDYRSLRWl0vby8LE2u2eib7m6UVm1ubuKjjz4StiyVSmF+fh4/+clP4Ha7pV5kbm4Od+/ehaZpYknNlV8aHxw7dgzJZHKsqSzrY1ivMhwOJQnjinq325X+TDQIiMfjqNVqqFQq0rKApgesy6OVt9vtFmvwcrksq/pkoprNpiSVZm0EVEZGZV24vfoZ7odMmQqo6Jap/gsGg0gkEsLGHRwc4D/+x/+ITz75BK+//jqeeeYZHD9+HNevX8elS5fGgJwKJCcZmhAsELQRnJuZnDABVdnGSeDNeBzj32bsmDqfRubtqGM86vhGGZ9RqvioMDJwRvCpAi4jK2b8jMqEMsh4qdvwM0zUVYdJ9Z/D4ZCebNlsFs1mc2y8KphXx6seTx2HpmliqsH7hostlBRHIhGcO3cOH374Ia5du4ZGoyGSSTPJrfG7YjYmNoumdJLb8NisGaNDLaWM9XodyWQSsVhM2hbQLZJqgmAwKOCHNXZbW1tSB/b000+LiVO5XEa73RbWjKxlvV5Hv98Xt8ZyuYx4PI4TJ06IdJLb9Pt9RCIRUQJQRsl+bZS1ut1uRCIR5PN5AevpdBp+vx+VSgU2m016aHa7XTEQoRKg0WhgampKDKIcDodINCk9dzgcIsMcDAbyfOVC3Wg0QiKRgNvtRrFYFAfL4XAoz0c+a+nSy9enp6cf+d35VcWXDsBZfeCssMIKK6x4VLTbbVy8eBHRaBSVSkVWm1nIT1fERqOBcrmMEydOiB03V7EDgQA2Njawvr6O2dlZVCoVnDt3DseOHcOVK1dQLBZFvvjcc89JqwE6qbE2pdvtotvt4syZMwgGg8hkMrIqriZuBGtky7xer2zLRr5MPiijYk1ZPp+Hz+dDOByWlWo2u+31ejh+/DgajcZYLQxllKyBsdlsYzVxTHBVSSXwIGFloqa+R+BGIGSsHQMgBjCUhTF5i0ajiEQicDqdaLfbuHLlCjY3N/HVr34Vr7562AD89OnTuHr1Kj766CPcv3//SCklz4MJN63fjeMy/pwE3szYMuOxjYm8mbRODeP2k96bdNyjWEPjeCftXwU5RraK75vVv5kxdAyjFNHIuqnghUBkbm4OxWIRXq8XzWZT2Kh2u43RaIR8Pm8KFiexher4+Y/mFQAEfHCO2u02hsOh1JL+6Z/+KXZ3d9FqtVCv1037ux0F0BkEoPxOkO0GIJJFsu9k1qLRKPL5vBh0xGIx9Pt9VCoVVCoVOUYoFJJWGXSxBYC9vT1RAiSTSRw7dgzNZhOtVgv5fF6A4czMDFKpFDY2NgQstVotkTJms1nE43Fphs1nUDweRyQSkR6VkUhEWiKwvs9mswlzRlC2t7cHp9OJarWKwWCA2dlZ+b6rSgQ+d5LJpCgPqG7gc5PglKwa+8LRGIVsPOsp0+m09MhjM28amMTjcWn2zWcajWSeVHzpAJzlQmmFFVZYYcWj4plnnoHT6cQHH3wAAFhbW0O5XIamaZIQ0lhkbW1NWg54PB4kEgnU63Vcv35dGLGNjQ08++yz8Pv9+MEPfoCNjQ0cP34ca2trmJ2dhaZpUkeiaRq8Xi+Gw6EkQufOnYOmachkMqjVakgmk1LjQSMGJi4+nw/D4RDXrl2Tfm/sr8Q6j3K5LInMtWvXcOrUKWm4OxqNpPYuFApJzV4+n0c0GsX09LSYnVC+1Ww20Wg0hBWkNNFYj6UmyEYDEDIJo9FI6tWMCa9qJMJVcp/PJyv2ZBtUWd3bb7+NK1eu4KWXXsLzzz+PN954AxcvXsTly5fx0UcfiRSWxzKrfTNKPdVzU3+qzNFR8kizn2a/m9XVqfE4oMq4LyNwMBuvWR2dGVNoti8zoGiUTqoMmrqt2lzbCNqM2xglkkyeKV8j08N6KiOjyp9mbKYK8AhsCBbZQ421VbyXCexzuRz29/elr1mr1XqoLtR4XczuATLUdMvke8aWB2otoN/vx/T0tDCTVAIUCgVhhihRjMViaLVaCAQCMl+dTgf37t0bqxVbWVmBy+USy/1isSg910ajEba2tkRencvlZD/BYBA2mw0HBwdwu93iKjs3NyeSSLZZqdfrMg/8LBfMKM1uNpvC9gcCAcRiMVlA4lypKgKfzye2/uxpSal7sVgEcFgXl81m0ev1kEwmUavVpF1AoVBAIBCA3W5HNpuFw+EQ05h6vS6LTYlEQphdOoq6XC7EYjFx3HwS8aUDcPafAbhJqx5WWGGFFVZY0e12cefOHYTDYczNzYksrl6vA3iQHE5PT6Pb7UojV4/Hg2w2i1arJf/h7+/v46mnnoLf78ePf/xjeL1e/NZv/ZasftfrdRQKBWF8WEvC1ekTJ06g2+1Kg1k2GKfEiHbVTOACgQBarRZSqZQ0uA0EAgiHw6jVatC0w5qSS5cuodVq4cKFC9KLjq54nU5H+i3dvn0bt2/fRjKZhM/nQyKRwO7u7lgtHZk/GiwYa3zUf3zfmDSrjBzwsIOiGbDi+dHZjkAuFAqJ7KnVaqFQKODP/uzP8Nlnn+Gll17Ciy++iO985zt47rnn8O677+Ly5cs4ODgQG3az9gMcC8PIsD1OzZs6H8b9GWMS4FL3YRybGcgyk1fys5PeM+7jKNBhPK5RfmlkzYyATAVMKoBTX1fNRVQwBjzoe0bDDP5NAGjcp9kYzYILCgRRXLThAofqREpWLJ/Po1QqSQ8xlXWbxLgZmU6VpeTiDBt4U0aovsZFFBqqtFotNBoNeb6QOSI7SDae7JHL5ZLvfTqdFmMjl8uF6elp2O12NBoNaW/i9XrhdrulbxqfXbT4LxQK4sYIHLJ5drsdXq9XQKHqAEt5o67rAox4HmycTUl5rVaD3W4XYNVoNOB0OkVuTmlpMBiUxZ1AIID9/X25d4rFosjc2+22qBK4CJVKpVAul8W4hWYt/X4fgUAA7XZb7o94PC6tBVgLSAltqVSyauB+meGwHX4xhiMdDrsF4KywwgorrHg4CoUCFhcXMT8/L3ViwWBQasO4Gl2v1xEOhxGJRMZW5WdmZmQl+uLFi/B6vVhfX8fTTz+Nubk5caIDDqWI3B8AkU0mk0lxoMzlcnC5XAiHw+h2u8JeEWR4vV7pPaSyYuyhlEwmUSqVxJL7+9//PlZWVvDMM89A13Vcv34dg8EA8XgcPp8P8Xgcg8EA+XweoVAIp0+fFklRtVrFwsICAGBzcxP1eh0ul2usBkRNvFXJIUGYKpNkQm/WDFxl3dQE2MjGqbVxXq8XvV4PzWYTwWAQ4XBYEuHd3V18//vfx09+8hN861vfwoULF/C7v/u7eOWVV/DRRx/h0qVL2NnZETaR4yawZCKvaZok55PAmpGNMwKPx11E5jkbP2+23aT9GoGDscbMCCofxfypDJrx+OrrapsGLk7wb5Xl4r0yyTBEBXAqwDELbqtKddXzPQo8cwxkuch4kQXi4gbwoLfhYDBAqVRCoVBAq9WS74BROqzOjdkihZF5I2jgd9xut8Pn80HXdQFjg8EAiUQCPp9PGCc2subzxdi4PhgMisGSz+dDp9OBx+PBnTt3xPjE5XJhdXUViUQCwKGRRyaTwXA4xMzMDE6dOoVut4utrS1hPHu9nkg9aWIyGo0EWJ04cULqhVl7x8Uf2vuzOTYljaFQCKVSCS6XS2SxPG9+17ngBRwu6ASDQfk7mUxiY2MDHo8H8XhcDKESiQTK5TIajQai0ShGoxFqtRpSqRRqtZoYJJVKJTGIYQ0wAGl47nQ6pUec2+3GcDiUfptkD59UfOkAnP1nX/jBSIfD/oiNrbDCCius+F9kLCwswOfzYXNzE5VKBQsLCygUCqhWq1hbW0Oj0UC1WkUsFhMDgHq9DofDIdKeRqOBWCwGh8OBYrEojonNZhP5fB6dTkckPWSJWBC/tLSEcrkszWtpdkLZJJMzurSpjYCZqIVCIUxPTyMYDGI0GqFcLuPDDz+EzWbD888/L7InGnTQ5nxubg6JREIYPiZ9o9EI2WwWMzMz8Pl8yGazY8kPG+ECD5gSNYE9qhaOyTCTW2MzZwK2o6SBNGhg4sSmxQS4gUBA6qUKhQK+973v4b333sPXv/51vPDCC/id3/kdXLx4EZcuXcLly5exsbEhwI3MnmqowvObVEdmJsszvm4WZkBDBS3GZF8Ns79Vtk5l3szYRCN4Mx7f+NokqaUKzgjcjGyY6hjJGkqzYxmdJSeBYCOrpt6DZnOifkZlAGmYou6P31tVQss6sHK5jGq1KsCN8l/juajza/a+eh4ul0sWNLg48v9v791jHEvT877nI4tk8X4vsljVdenu6ZnpmR3taAdjSYPVrgRZ2shSNgoSYwVYkZGLrMQCLCeAEwkBoiQIIDi2YxswnKxtASvvxooAaWFJFiztzdKuLruzOz07PZft7uqp6q57scji/U6e/MF63vnqDFk996queX9Ao3g5PPx4Dnn6e773fZ83HA5LSqjf7xcnxGg0ikQigddffx3GGDFTsaFxUTAYhDEGly9fRrValYhXsVjE5uamGDY98sgjyGQyIlAajYZEwR599FEUCgXcvHkTxhiple12uyLCgPHCFIVNPB7HcDhENBqVSBUXoig2KUrp9BsIBGThajAYwOv1IpPJyPUvFAphdnZWsh1GoxHC4bCcz3w+j729PYk68vylUin5PLwetFotzM/Py2dIJpPyPK9/dr/ASCQiJih2CqfjjPttNptNMbo5Ky6cgGMETo1MFEVRlGnMzs5id3dX/jNfX19HKpXCM888g1qthsPDQyQSCSSTSamXYOSLkZmrV69KHQzTKzmBpU22z+fDaDRCpVJBMBjE7OwsVldX0ev1UCqVZKK3uLgoNV21Wg0AJEWJIoeTMYpCOktubGyI++InP/lJPPHEEyciXr1eD7lcDpcuXUKj0cALL7yAGzdu4BOf+IRE9gaDgUxUY7EYstmsTC6ZpshJlh1R4+TbNgtxT/rd6ZR2vzJ3BGuaWLLvs+UAV/vb7TaCwaBENWOxmEy6tra28PnPfx5f/vKX8SM/8iN4+umn8dM//dP4xCc+gRs3buBb3/oWbt++LW6gHK/dB86dIsdxTBJs0yZ0bgHkftwWQ7xtn3u3+DotgjYprYvRXLewcJ+HSefPLZbsNEWOlwLNfs7ep13XZr/PNFOUSSKMt217ffs1drooo3pukcleiRQ8ttspzzkdX2kI0u12T7TucI/VPo6npcLax4pRNqZwMu2Q2zESlU6nkclksL6+LvVZjNrzmDJyzGtDJpOR73K1WkWv15OUaGMMfvAHf1CEYKlUkh53ly5dwvz8PIrFoghVXusoaHmd42IU359RslgshmQyKS0VgsEgSqUSQqGQ9L9st9simIHxIhXHztYNbAHQbDblGpbNZiUDIpfLYW9vD51OB4lEAqVSSYyZmHLNdG86ana7XWxvbyOdTksGg+M4MhY2ZOdxZ5SQ58nj8ch1vVKpwO/3i6A8Cy6cgPMyhXKoAk5RFEWZzP3792U1dX9/H0tLS7h8+TLu3buHW7duib31k08+iRdffBHD4VAc2GKxGILBIMrlsqRYJpNJaWDbbrel4L7X66FSqcBxHLHrr9VqWF9fFxtrTqyYEsn6EtbhsYcTG/qybq/b7eKLX/wivva1r2F1dRU/+7M/i0wmIylV7XZbHN5SqZQ097127Zrsi+lb3W4XPp8Pjz/+OJrNpqSActXbbtprtwbgZyS2QJgkKtwRikm1ZZMm5/Z2FBKMxLXbbYleDAYDrK6u4qmnnsJP/MRP4Ktf/Sq+/vWvY3t7G5/73Ofwla98Bc8++yx+6Id+CD/6oz+KZ599Fi+//DL+7M/+DH/xF3+B/f39ieOwI3GTIljuSJj7eXf0yj4edg2ZLYr4Wd3H9rSo3CTB+SChNEmMTooOcjz2Y7YJB1Mb7Yga9zGpgbYtutzjsz8/0wttIegW/u5jZIs13mbUmf/cxjU0SKlUKuKCykWCaQ2bJ6WVup+nwLEXNIA3opKMutsmP8DYgCMWi2Fra0sMRXhdiUQiYoDEBZ1gMGHftysAAEg0SURBVIhcLodqtYpQKIR2u43t7W1pCxKNRvHYY4/hqaeewt27d1EqlVCtVrG/v49CoYBsNot2uy2LVUxN5rGh6KtUKifqxmZmZnB0dIRgMIhLly5hcXERu7u7mJ2dlfRDuv0yolepVGTf9vniMeC+mWaZSCRkEalQKODo6AgejwehUAiHh4dynWI9nf3dicfjCIfD0vMzHo/j4OAAMzMzYohSrVbR6XQwNzcnUUCasHAswWAQsVgMR0dH8p1xR0I/SC6cgGPd22BCMbSiKIqiAOMImeOMG1tfuXIFi4uLuHnzJm7fvo1gMIgf+IEfwPLyMtbW1jAcDpHP5zEYDDA/P49er4cXXngB2WwW+XwesVgMwLg1QbFYlAktxRpXlhnlOTw8lIkwDQnYpJfuipzwRiIRSVlijVwymcRLL72EP/uzP0O1WsWnP/1pPPbYYxKxYx2bXQfDqJXX68Xc3ByA8QSSNXWhUEhEGdOwFhcXsb+/j8FggGQyiU6ng1KpJGle9XpdatwIP5edDsnbnFC5o0vkQQLFHe3gPmhUQBc+9sh6+eWXcfXqVaytrUk62fb2Nr74xS/iS1/6Er7v+74Pzz33HJ544gk89dRTyOVy+MIXviBGCqcJo0njc9+eZKThFkZ2dMiuIZv0ed2RqWljcD826blp2NGiSWmAkwxJ7OjapCijO0Vy2jGxt+e4aX7Dyb4tuibVDNJYiOfP5/NJRIWGHPZnGQwG0piZbTS63a7Ut9puqe6FCbf4dR9HbmOnj3L8vCawrsrn84mpBjBuvJ1KpeR6AgA+n0+MP2yTkmAwiMPDQ3zf930fHn/8cbz88stYW1tDvV6XOlFGxgqFAi5duoRKpYLNzU3s7+8jk8kgnU5jY2NDDEZsi3ymFfr9fkkppKjhohWzEO7du4eVlRVcvnwZ9+/fRygUQjQaRbVaRbVaRTqdllo6x3EkEspUxpmZGTEw4eIV2xEMh0MsLCyIkPP5fJKCHo/HJeLIcfE6wHTw2dlZqRV2HAfhcBjJZBKNRgPxeBzxeBy5XA5erxeHh4diJMPfKd1+GdVMpVI4Ojqa9DP6QLhwAs5rmZgoiqIoyiTK5TIGgwGWl5eRzWbxne98B6+++ipWVlawsrIiqUW08x8Oh1hdXcW9e/dw8+ZNFAoFsd9ut9vY3NwEAFmlrVarqFQqyGazaDabKJfLYv7B2gkW6XPVf2lpScwVuBINQLZnLcq3vvUtbGxsSG+6XC4nYgyATEKZ/lmr1aRmr9ls4tFHH5UaFb4XU8MYAeT46HQJQPrBFYtFmbgw5YmTL8dxJLVyZmZGIn3GvNEA267ns3ELlGnCY1LKIN0+6Q5YqVTwne98B8lkUnp7RaNRhEIhmah/5Stfwde//nVcuXIFzzzzDJaXl8XspFQqyXjt9EF7XJME1Wkia1Ikzi3g3GIJwAnR694fx0Nx7D52k5w93wqTxNik6Judqmi/lmN2p1ROOi7clzsSaO/b7Rbq/m6wjpTCku0xPB4PGo0GNjY2ZDsA0iKkVqtJXzAKNru+8jSx7DaK4XNu8Wob+vD3TyMVRnjYoJo927LZLOr1uhis8LdUqVREUM3Pz4uhD1O75+bm0O/3cXBwgHq9Lu/X6XSkD+TOzg52d3dx+/ZtSSfc3t4W0cj+egBEKA0GA1SrVUkjpCssf99zc3MYjUa4f/8+jDG4evXqCXHT7/exvLyMdrstjpndbhepVOpEFNXv90v/NZ/Ph0gkgn6/L9u2Wi1JmWYvNx47plHaojgUCqFcLsPjGTcE53WZ4o0LWIPBAPl8HolEAq+88orU9/H7Eo/H4TgOdnZ2pM0BP8NZceEEnNbAKYqiKA+CK7PGGHzjG99AsVjE5cuXMTs7i/X1dRQKBWQyGemplEgk8M1vfhPr6+tYXl7GlStXMDMzg3q9LilOoVAI4XAYxWIRa2trYhTABraO40jBfrvdFjc1NrpNJBIAIPUWdmoaU6j29vbg8/nwkY98RNJ/PB6PGAeQVCollt/cZywWQ6FQgN/vR6PRkH3TJY4pk0zTzOfzuHXrFhYWFlAsFuH3+1Eul1GtViXliXVyNANhlI+TIgoa7vedCLRJz02KgvA96/W61CYytSsYDMqEjo3OGbX77ne/i5deegnhcBhPPfUUnn32Wezt7eH+/fs4PDyUCTOANwkJG7f4mBZhsoXJJEMNd1qh2yxm0vvaYsmOYr4bAWenLtqP2+LTLej4vtPaBXC/7scJ34992Wxhyn92ZI7RuVgsJhN+tr4oFosnIl7cb6PRQL1el6gsa9vsWrhJab2TIqLuhQT7O26nw3LMXIwxxkg7DP6WGIWPxWLikgqMF074nWaUntGiWq0m9zudDhqNBm7evCl9IEOhEPx+Px577DH4/X7cvXsXMzMzeO2115BMJmUhJ5fLIZFIyHeS9vqsX6vValIfCLxhlgJABB2vZc1mE/v7+1hdXcXa2ho6nQ5SqRT29/dP9Knj9c6uBbSj3zRGMcYgk8lIH0AuerE9AEW6MW+4Y/KYctzz8/PS7D0cDmNxcfGEyy2bkd+5c0fSO2dnZ6XuLxaL4fbt2yLsYrEYDg4OJE33LLhwAo4ulBqBUxRFUabBwvXXX38do9EITz/9NCqVCur1OpaXl8XprVAooN1u44UXXoDjOHj22Wdx6dIljEYjdDod3L9/X8xK+v0+dnZ28NJLL+Hxxx+XNKLRaIRIJCJF+d1uF3NzcxLtojlBPB6X9B9O3rjCTLvuwWCASCSCSCQCv98vE0PahTuOIymSAKRfkjFG+jvt7e1J8T4behtjRCSWy2Ukk0ncvXsX+XwemUwGs7OzKBaL6Ha70kKhWq3K5JQTzkAggMFgIO8JvDliMSkK5xY77igXsY1OpokkW8jRQp0GMq1WC9VqVaJxND2gecxXv/pVGGOwsrKC+fl5XL58WZxKaY5gm2U8qAbKHZ2zTUomNbI+La3QPja2UDjtfW3Rc1pkcFJ66KTUWDsaZ0dvJ4nOaWOzo23TolVM0bOFFLdlmuTMzAzm5uaQSqWQSCTEdOTg4ACdTkcEnjFGvg88j7Tjp109U/QmifNJiwX2cbWZFEV0i0j+Y7+2aDQqx5ERKL7OmHHdWbFYlAUTut0aM27m7ff7cXh4iFgshs9//vNym/u/evUqisWiRM+KxaKItUajgeXlZWQyGTkWHo9H0hQpzphiTZHGqBwXQmzhdXR0hHA4fGLxand3V3qvUQA5jiMRLGMMjo6O5PqRTCblnGQyGam/TafTEvlKJpMAICI8HA7LdSUUCp1oVTAYDLC/vy9mKoVCAWtra2J2VCgUsLGxgVKpJItajFpms1ns7OygUqlIJI/HJ51Ov+n78kFx4QScRuAURVGUB3FwcCDW/yyK9/l80tSbdW+Hh4fY3NxEoVDAwsLCCZv/g4MDqX+jVf7e3h6uX7+OhYUFrK+vS41JLBZDsViUSWKz2ZToS7/fl5VkplUxFYgTul6vJ7b/XDmnNbedPslm19wvJ1PhcBiNRgNHR0diosDG4VxFHo1G8Pl8uHTpEtrttrRaGI1GmJubEwe5wWCAWq0mdSbValVEJ9OfgJOTWXuiazv5TYqm2c+dZtgx6TVuaGzSarUQCARExHY6HRF1wWBQnPuazSZarRY2NjakRiedTmNxcREHBwciANgDa5LwcX9udwoihY8dhbP3YYu5SfuZJvImpVmSSel+9uvsSJ27z5r9XvZY3cYidtRt0nu4hY1btNrv6bbqt2vbuBhC+/pWq4Xvfe97qNVqkoLI7zTNeBhtYw0ZFxmYKjkN99gmPe8W1Py89uexU3BpXEL3SYogpiB7PB60221xpXUcR9L9WAMbCoXEnKTT6Ugkrd1uI5fLiRFIoVDAa6+9hqtXr+LSpUtYW1sTk45Op4PnnntOFjyYoshIFReO+FuheySFGh0mW60WwuGwRL5CoRAGgwFu3bqFj370o7hx44aYhvR6PcTjcfm+sRk3xRGAE6mZbMZNMxK2PWDErlwui9sl0yGZwk6jFRqdeL1eRKNRLC0tYXNzU9x+r127hv39fWxtbcFxHBGdACTyVyqV0Ov1sLi4KH0B2VLmrLh4As7LGjg1MVEURVEmU6/Xsbq6KiKEaXacHCwsLEjUK5PJ4NKlS9LI+ujoCN1uF7FYTHoU0R3uqaeegtfrRaVSQaPRwNzcHJLJJOr1OsLhsGxHcwNaV8fjcUmtpNBgXRdTE0OhkFj+25NOuwEuo3CcZHCiu7u7K65qwWBQUtB4LLxeLzqdDowxMhaPx4NEInGiBoepS4VCAQcHB2IIwM9ljJFIASejTKWc1LCb2EJsmtBw81a3Zwonxx4IBGTSTJFsp8ByIlur1dBut3Hv3j0AQCKRQCgUQiKRkJogCoLTBBLHYEet7HYMwJudG8lp7pGTzGBskWSniJ0m7tzvY4sOG9usxB73g/Y3KUWS3xmeG27HiBk/H1PhcrkccrkcZmdnkUqlsLW1he3tbdy7d0+25bi5yMD+Zo1GQx6jcOM5c49v2oLBpDRK9wKDOzppHwv7vNBtkZH0fr8v9Xpsh8FFnnq9LmIikUhgcXERHo8H5XJZ6sd4vRkOh4jFYvIbZ7RteXkZ+XxeRKHjjB1cP/7xj+OJJ57AvXv3pEk53TmDweCJHos09GBUiq6SwDjKz+OQSqXg8XhwdHSETCYjNWNsR0BhyX3xd8kFAZpLDQYDqVelKGMPNwCScQCMBR+j+rlcTtwuuajENPJAIID5+XmUSiX53ly7dg2dTkdaKXARzev1Ip1OIxQK4e7duzg6OkIymUQwGMTm5iY8Hs+JTIez4OIJOI3AKYqiKA9geXlZVoSBNxwZWYMCQGo3IpGIpA+xID4SiUi6DVO1FhYW0Ol0ZDLESAGb1jKVa25u7oQDXi6Xk0aykUgE0WhUariYmhkOh6X2gy503F8gEJBG45zI9no9zM/Po1arYXt7G71eD+VyWVIpWWfHaFosFoPf78fe3h5yuRwKhYJMuhgpYN0NRSYb3x4dHYmzJie2nJzz9XZUzsY9AbbT/d4pk1IF7TRO9vRiVI61hKwxogvf/Py8uFr6fD5x4OS+ea7sfnuclLrrqPgd4+TebfBh/7WPh/3X/Zy7B9+kbWwhdlodnRu3ALPTP+20T9uwZFK00D1+dyTPTiOlgGPUJJvNolAoyHd/d3cXd+/exauvviqRXoo3/j57vZ6INrt32zThNu37Nylt0n6N+/6ktFr7eHHBhr89XlcojNhHrdFonIhi8/gEAgEsLi6iVquh3+/j0qVL8Pv96Pf72N/fRyAQEGONXC6HcrmMg4MDrK6uYmFhAZVKRaL0o9EI165dQyQSwe7u7omxsq7XNoWpVquSfsxzfnBwgG63C7/fj06ng+FwKCngtPSvVqsolUqyIMQFLDry9vt9RKNROT+hUEiud2w4zvYmFJ08vrVa7cTviQ7BbPlA8d9oNKTtwvz8POr1OtbX19FqtXD58mUMh0NJo6dwY3Qxk8ng8PAQtVoNkUgEyWQSxWIR/X4f6XQa0WgUd+7ceUu/p/eDCyfgWAM30D5wiqIoyhQ4oQsEAmJDz0bc/X4fjUZD+p/R8ID22ZwYso4lGo0iEAigVCpJH6VCoYBUKiVpOnw/1q7QijqRSCCXy8n7RaNR7O7uyiSI9SKMGNmGI91uV+y3O52OpF8CkD5Rm5ubiMfjCAQC2Nrakn51/LydTgfZbFYikUzPpDDw+XzodrsolUqyGs8JYj6fh+M4YsjCtFB+Xk6GmBJKUeMWaXZ0yp2W+E6EnHty7Ybv3e12RcgxCkchNzs7C7/fj2g0ikcffRSf+cxn8Pzzz+PGjRu4e/cu+v2+REcp+nme6Hxn1xTlcjmJCjWbTXQ6nRPRqGkpmGRaBI0CmbcJDUjs+3aEyI7a2UYbbkFib2ObctjH2J0COi0V1P5Mdj0Ye5glk0mk02nMz89jdnZWatpu3ryJcrks6cKMSAMQwcDfE1NgaUbCc+BeQHAfX/vz2ymPk8SaG1uk2ffttEm2M/D7/UgkElL3RqdJ9kxjbRXHGw6HEYlEpA1Cs9nE9evX4fV60ev1UK/X5RrECNbe3h76/T4eeeQRJJNJaVjNf7lcDuFwGPF4HH6/H/v7+zBmbKrCaDnTJ1nzBox/09FoFPV6HcA4olWpVOD1eiUqTWMRZirQCGR5eRmj0Qi1Wk3Gw++Az+eTWl1eS3d2diQrwu/3S2+3QCAghiX87tfrdWlzwmszI5E0p+G1lHW86XQaPp8P9+7dQ7PZFPMTpt/m83mUSiVsbGyg1+thZWUFo9EIjUYDiUQC8Xgc9+7d0zYC7yUagVMURVEeRKPRQDKZlPoye8WdNV+BQAD7+/symeCEhSKMfdYcx8HGxgZmZmZweHiIdDotE4BqtSrRLYpDRtqCwSAikYg40IVCISmWt1OhuMrNaBubC8diMRhjJAXJdu7javvS0pJE8rLZLIA3+klxAsQ+TeFwGHNzc7Kyz3Qupl4xbbDdbiORSGBrawsej0cc3mhswIkQTQhsoWJPjN1paZNqyh4k4k6bVE97zL09J8wUwbR1t6MOv/mbv4lMJoNoNIpLly5JawZGdZhOxvqmZDKJJ598En6/H6urq3juueckDWxjYwMbGxvY3NzE2tqapORy0j4povZWRJ79+WzxNun+JJORSQJsWornpHq3Sdu4o3X8ntN8JBKJYGFhQWzwj46OcPfuXUm947HgeeYEncYjFOCM6FC0sb6Nv+dpEVn3d8J9HZj0mkmijt9zd/sEClymDdI8x+fzYWdnR75jjBqGQqET9V9Mmy6VSggGg7h27ZoswGxtbUkmAX9z3W4XwWAQS0tLGAwG2NnZkbGwhi6RSCASiSCbzYrAoUCi4RIj1cwuoHhjFD8Wi0kGwuzsrAjmSCQi16q5uTkZTyqVwvb2thw/22CGC0nNZhP5fF6yBDqdjqSYcttKpSLXGsdx0Gq1sLCwIK0TbDHJBZqFhQWk02mUSiVJAaUQZbaC/R6FQgHdblcWapaWlhAKhfDqq69KK4Z+vy81c2fFhRNwQf/4ItXqTk4pUBRFURSagDDqwv+ImboVDoextbWF3d1dqRnjBMhxHFQqFWlKe3h4KOk8165dQywWw/7+Pg4PD0/0pqIFNhtuM50oHA4DgBTjM5XHdopjXzj2bqPDW7vdPiGUmDbE/lKO44hAZCsDGj00m03p35RIJKSWhBNQ2pfTMOG1116TKBNTour1Ovr9Ph5//HG0Wi1sbm5KZIAtBQDIe9rNmN2RmknRkQdNkNzPu6N7tsBzp8u5XzsajUQctFotmXjXajXcvXsX4XBYjiUt3+3z1+l0JI1yZ2cH9+7dg8fjQT6fx40bN/CRj3wEi4uLuHLlCj7+8Y/D5/Ph9ddfx9HRETY3N7G7uyvmOnRKpFi3o2Pu42M3t7bFMP/a54Cf3RYYkyJuwJv7vNmRNnsMdj0f348RTE54E4kEksmk9Bpjqt7BwQHu3LkjfReZ0mxH2UajEYbDoRhv2P/43WddqO0mOem8n/YdmvRdcUfW7Ne4I4z2AgrHzai+3+9HJBKRyP3W1pb8XhmtZRQOgETdhsMhisUi4vE4lpaWRNiUSiWpN3McB+l0Gtvb2xgOh0ilUnKuqtWqHD9uTxfFL33pS9Ir0nbg5PeN7UEYTa/X6yJy6AJJocSm4jSF4QIO908XSva2tCN9/X5f2gvs7e0hFovJsbPPHTMgKLg6nQ7i8ThmZmZwdHSE4XCIubk57O/vi9BbWlpCLpfD/v6+ZFxwwYqRcF5z+/0+8vk8YrEYXnnlFRhjkM1mEY1Gsb29LQsPPp8P29vb6Ha7iMfjp3633k8unIBLhMbOQ9V2/4xHoiiKopxX7Akn68EikQgKhQICgQA2NjZweHiIbDaLcrksvaaAsYtioVCQiQlTCLPZLLxeL7a3t2VCwqgDJ2ucDBtjxHjEGINyuYxAIAAA0si31+thf39fHOvYmDccDmM0Gp2o6aGo4ISHUTS7p1wwGJTXcIK8t7eH1dVVBAIB1Ot1mcxQxDCl6dKlSyccM4PBIK5fv47nn39ejBYqlQpCoRDu3LmDTqcjE0BO/jm5dosGY8ybRN2D0iinTazd+5g2eT9tUu84zglBQKMaplryWPO88lzyfFJQsDauVqvhhRdewEsvvSTRuVQqhUwmg9XVVayuriKfz2NpaQmRSETSUplCWKvVUC6XUavVpCaHKbR2hIkCghEhu+7P/usWYMBJd0n+PihG7Do1TuD5Grt3GWs+E4kEUqmURJ0oMhqNBvb29nDz5k00m000m01ZgGDkjL8vW5Txu8jIji3aWHvIerhJ53ZSNNf+jpwWrZ123/6u8PPx+PB7x3Q8j8cjKXwUG9x+d3dXbrP59OzsrESIer0eCoUC0um0ON2yXow2+vF4XKJD2WwWHo9Hvrc0RmFULZFIyCKBnfrMaCW/5wAkdZILRQCkSTYAacHB6xq/k/F4XBx+B4MB1tbWpK6RrRJ4vtjeYTgcIpFIwO/3y+IJzz+vVTwHoVAIrVYLsVgMgUAAh4eHkhVQLBZlQW1+fh6RSAT7+/toNBqYmZlBOp1Gs9mUfVFgc8Esl8vh7t270qMvnU6L+2w2mxXjKqavT/tefBBcOAEXD44FXEUFnKIoijIFpiWyYD0ejyOTycBxHNy/fx/37t3D8vIyisWiWGwzTYsGHwcHB1hfX8fCwgKuXLmCer2OW7duSfoWJ3OxWEwmQ5zchcNhSeEsl8snIlOpVArtdlvMCVikT/EAQOo5vF4vYrGYjA2AWKizJo6r6clkEq1WC+12W0wTut0ulpaW0Ov1RCh2Oh2pA2Pj4VAohNXVVWxsbAAA5ufnxQjgtddeQzQalRX4lZUVseHnJJv9njgJteuD3KmUdorlNKaJt7eDu+7LHWGx/7H3FCfhdK+kkGOtG//xuUnukkdHRyiXy7hz5w7+8i//EoFAQGqScrmc1IJFo1HE43EUCgVEIhGJqDJtsFqtSt2UHTlstVpimc+IFgUenQVtF1MKMYo01iX5fD5xDaQ4pVMn7e9ZO8jP2Ww2pafevXv3UKlUJHWNhiJMM+Q47AgbfztMj7Rr2NzCznZjnXQOJ53jadG2Sd8j9/fS3iexo45uEx8+xig/IzmsyWLbA1ss8xxwAejq1avyu+JvPBgMIp1Ow+/3o91u45VXXpEIGBdsGIFiXe1wOEQ2m5V0X2MMcrmcRAV5bCmSmY7JSDy/54yu+f1+ie4xu4CmJoeHh9JuZX9/X2rMAEijdb/fL+/XarWQTqcxOzsrWQ6saWSdHF0nOR7WsJVKJRF/XOAYDAZYXFxELpdDqVSS38jS0pL8Nnit5LGNRqNIp9OSwh4IBOSaT0fNTCYDn8+Hw8NDSbmkE+ZZcGEFnEbgFEVRlGlwgsRUJdZNFItF1Go1sZtm37V79+4hFAphcXFRJqiHh4dYXl7G9evXxR0vEAggnU6LHTatzznZ9Hg8UmPFug+6OrLxLifirMMCIH/t9KFWq4V8Pi+r2WwCzonWcDhEvV4XEchoiDEGmUwGxhhsbm6K1TjbKLD2yHGcEzU5fr8f169fR6vVkj5I0WgUKysrGA6HODg4QD6fh9/vl7RPigzWYTFaZNe7EU6qp1nyuyfhNg8SdO6Ii3s/09I23RFBCmK2mGCUxU6pZATEjlrxcfsccCzD4RDVahVHR0e4f/8+PJ5xY3aKAJ7/bDaLubk5RKNRJJNJRCIRxGIxpFIpEVsU7xwrzyNFKCNafI7jttP+7NdT3HFyTlHO2khGc46OjlCv1yUiRgHG/XERwk5v5DhYS2gLNgo7ijsKPC4ITBNsboE2KSXSfX+SuJv2XbLf04682RFMW+SzDcdoNML+/r60rmAUnAsybJdgj+3KlSuSssxFEDqf2hG8mZkZLC0tIRaLSY/KRCKBRqMhPd3m5uZkEYjCO5FISJQOgNSA8hxzXIlEQkycGMFiH0jW8PF4HB0dIRQKYXZ2FkdHR1hYWMDe3p6YIeVyOVlsYD1aPB6XOrhwOCztTJgumUgkRAjzO0kXYL/fj2w2i62tLXQ6Hbmusacje8PNzc2h1+vJdZ/HkiZRbARfLBYlUhcKhXD79m1pXZFIJLC9vY1arQbHcSTCfFZcOAEX9Hnh93pQaamAUxRFUSbDVXGaAuzu7kqUyO/3o1wuSw3Kd7/7XSQSCWn4zZXny5cv4/Lly3j++edx584dzM3NIZfLSQoiIzFMG6LzIwv9WYMRi8UkGkcbcU5YGNmgsGJKFuvtarWamCA0m03EYjGZWHKixYgeXezK5bKkabFGj/VsnDDRfY0T/Hg8Lr3pOImqVqtSN8IUJdbrPPnkk2i32/jmN78p7RmYJsfJ+7Q0SX4+u76Los+dDvdWI3H2/k97zYPq5PgYV/DdkTlOxFnHSAFkp87yMQo/YrtJ2pNiRmlKpRK+973vTezrRrHP3mJMm+N3yBYYjFrZFu0UVnaky46YVSqVE5Evvj+ft4+NHSnjNhSOtkCjYKOY4fnm9nbEEHjD5GaSaDstjXbauZx0zqftz40debPPG2tVmVbK48HatnA4LMfGjnjaUXqm2QYCAcRiMVkAicfj8v3qdDpYW1uTvoSxWAydTkcib3Nzc3AcB8ViEalUStKcr169itXVVZTLZezt7Ul6JBdk+LujoOK1zJhxf0gKLzbSpiMlALRaLRnj5uYm/H6/GIW0Wi0RQYeHhxiNRkin0yLSaNLCKFsoFBLxxffj8aPLKxeYDg4OJFrH+lvHcbC6ugoAkhbKWkM2HO/1evB6vVhYWJD609nZWSQSCSQSCbz66qtSR0dTqv39fbkOnWX6JHABBZwxBrGgTyNwiqIoylSi0Sjy+TxmZmbw2muv4fDwUCIZdHGrVqu4ceMG8vk8FhcXsbe3J+lH+Xwe+XweL7/8Mr773e9iZWVFmuweHh6KAUa1WkUqlUIoFDphZMDoHyduTNXhyrNtDMHaErrXcYzb29toNpuIRqNSQ8N9MlLByY/bXZE1cY899hhmZ2fFXY4mKHbtRz6fl8llrVZDKBSSCVg6ncaLL74okylOPGdnZ7G2tiYul5yoM22TE1cKhwfVurlt7+0UPHf07O3UzdmT9WnibZK5hXu/AE4IHC4GeDyeN4k5u67M/ZfbU6gTRqPc0TseBzrucUJtzBtNsYGTDbc5+bSjoXZKpf05bdfQSa0FKLL4+SkCGVGj2GVNoC3K3P/4OPcx6XzY53rSeZ90Xjj+0+omTxNx0ybq9vHleeFvjb9pnrNEIiHpiWwHwnOSTCZx6dIlEbe8DsXjcYkizc7OSvsQRujppujxeKQfI2tUd3d30el0kE6nAbwh8KPRKCKRiIijbrcraYCMyAaDQakj47Fjew3bmIVijtDg4+DgQBYQ+H1mKuft27eRz+fFPIltE1gLzM/NBQzWBfN6trCwICmM8Xgc5XIZOzs7CIfDIjqBNxYNwuEw1tfX32SewrTMQqGASqUiNciMCG5tbaHVamFxcVHcNDc3NyWF1OPxSJbEWXHhBBwAxIMzqKmAUxRFUaZQKBTQ6XRw48YNFItFXL58WaJRXq8Xf/7nf47hcIjHH39c0nW4OkyziZdffhm7u7vI5/NiYOL1eiVNiHUdoVBIIi20m2cE0Ov14uDgQFKrOMnkhJAT8mg0KqlUxhgcHByIyQod1Nj6gK5xNA2ggQJTGJlqScMNmmKw9oYRI04MOQFnBJCCpNFo4ODgALFYDFtbW+h2u0gkEtLHyev14pFHHkG32xVzAUZ92HLAjggRe7JuR13sfwDeJGjck+5Jk/XTaqQmCbXTVtknTfApNu2IElPCWM9jR+vsujn3P/uzcnu+H+9TRNiCjq9hGqf9+dw1eW6DE/fnsD8jJ9HclkKNYovfLVug2ceB9+0om52u5z6H7nTXSaJ6WiqlnWY57VzZn3XSuZ0U5XXXvNnRUPZkZC0XX8O0QDtNlOIoGAxK43heh4Dx9Ynpj1zEYcsTunwyUlcqlSRaTgdc9nS0BVepVML6+rq43bJ1AVO8bbdJplnW63WJGvJ3yqwCRr2Y7huNRnH37l0AkL6HAJBIJCSl0jZguXPnDjwej1j82y0MaGzCFO5er4d8Po/9/X0A49o1n8+HYrEo0UdgHFWORqMAcMIRlzW+TMXNZrNYXV1Fu93G3t6eCNdUKoXd3V2USiUsLS0hm82i2Wxie3tb0k15jbV/k2fBhRRwiZAflXbvrIehKIqinFP29vZkdfvatWtSiO84jjS/Zk+0YrEok6BMJoNAIIDd3V14vV6srKyIyUkkEhEXQEa7bIc21oXRbKDVamFvbw8AxKKeaUsAxCGT++AEjs59bLrd6/VQrVYRj8dl4mnXFdHmnhERflbbbIXumXShZINhUq1WEQqFpE6vVCqh2+1iZWVFIgqj0QjlchnNZhOZTOaEi106ncadO3ckAsG0OeDNYgF4I2XSdqq0jU+Yxuf1ek84LnLbaWJu0n2OYZq4czNN1Lnfw/7LujhiR7MowmzjC1vE2aLMLezs5yjsyCQDFT7OiactomxzEffnss1GbBHmTp90CzX3a21Rx4WKSWJ5kjhzp8Han3uaMHtQlG5aWqV7e3uMdqsAPs/fO48/zxuj4YPBAD6fD+12+8T5ZX1ho9HAysoKjBn3QKMJDc07jDHo9XqYm5sTYc60a45hdnYW9XodnU4HiURCTGGuX78uZjKbm5s4OjrClStXRMTR/dLj8Uh/w0gkgmKxeMLxFnjDhIgtQviZHceR1giJREJaDvD1NCXJ5/PiMskaWpq5hEIhNBoNuT5EIhG5TiUSCXGPpOnU7du3JQWYLrg02jHGyGKZ/Z1nS5iVlRV4vV4xWzJmnMZaLBaxtbWF+fl5pFKpE0ZBXAyjeHW3OfiguZACLh704aB+ds4wiqIoyvnm6OgI7XZbbLfZW6nX60kaYrvdRrVaBTBedc5kMuh0Otjb2zuRUsjG3UyvpAiiJXyxWDwRtXAcR/oQsQ6N0TGanwyH4z5unBDTNbLRaCAQCEjKUb/fP2FywEkFWwYwdarX652YZDJywjo9AFheXka73ZaULaZn3b59G9evX5fWBHTNjEaj6HQ6aLfbWFlZEbMCTnrsuqdgMIj5+XnMzMxgc3MTtVrthAjh57ejcXYUxBY8NINh9M4dnZkkzux98q9bNJ4WsZskGGwhwsftyKE7YugWrPZr+Lm5AEABYAs5W+Bxv7aRxmlRKTsl0o09Lvu2HenkX/szuyNsPDe2UYn7+Lj37U7VnHSe3OdmWjqk+3F+1rcSTbU57b0niWLbGIS/V5/Ph3Q6jVarJdFLmt7YIp0GN7xm8DrS7/dPuFOy+Xaz2ZRFoOFwKC0ugPEiSzAYRDKZRKfTkUWXeDwuv0djxk6hN2/eRCKRgOM4JxxEaf7BRRg6WtKYhDW6PC68BjAVMpfLoVwuA4DUzzHin8lkxBk1HA7j+vXr0lKCPerK5TI8Hg9SqZRc33gdYvR+fn4er7/+OqrVqmQasJ6PzrmMlvEayOMLAIuLi/B6vXjxxRclQlkoFLC3t4fNzU2srKwgnU6j0Whgc3MTwWAQjuOI2Q8XrGyX17Pgwgq42/v1B2+oKIqifCjxeDziWNbr9fD666+Lm9vs7KykTNLePZlMSr0FazsCgQDm5+eRy+WkHoIT2GQyKVEt1tcZY06kBIXDYYmOUZQAb0wYOTmgiQRXgJmKxxQlY4zUmYRCoRM9nZLJpDzPlel2uy2TTE446TIYCATg8/mkbi0ajWJ5eVlWnkulEmq1mtiih0IhBINBdLtdLC4uol6vix233+9HrVbD/v6+uMV1u11kMhmJJHJSzMnltGicLRhsx0RbJJwWGbNFl3u/015jb3Pa5H9aVMcWAJyw27b3fM5tSmILOvdxsIXbpCicO0Jn72NSpMoWWJMes6NpdlqinUr5oGPoPlaTHp8U9bPH6o7UTYug2ttMSqM87ZxzG74fxzXp2PL9KL5oxsHfXT6fF7OfSYsF/X5fLOzpLMk+kzTjcJxxP0Aa0xwdHQGACJpSqSTpj0zBzmazWFtbw8HBgfST3NjYQKVSkcUBwpTwwWAgPQfpDMl07FKphEgk8iZRxOgZG6ozO4EGSYwc2rVsNGOhEOLvP5VKwe/3Y29vD4PBQK4PzWYT2WxW7Po9Hg/m5+dxcHAgNWt+v19MTCiiuXDEVFA2BufxCYfDePHFF8VUan5+HrVaDcViEfl8HqlUCrFYDDs7O7KI1u/3xViFopSC8ay4sAJOTUwURVGUaVCgUMxkMhksLCzAGCO9hDip4ko6nSlp2R4KhZDJZNBut8Umu9vtSoH+zZs3xdo6GAzK6nu320UwGBS7fTuixCgLU4go3jweD5LJ5AkxwvTKQCCAZrN5YsLIXm+MhjBixzoXALI6zfQlCrxsNiuTeAo/OsVtbW3JY6w7oUEKx9JoNPDSSy/JsXOcsVnCzs7OCdFcr9fl89spdfax4GspJGzHv0nRHd62J6qTxNNpURn3c24h4d7GnuzbQoOT9mliwC1W7ajeNMFoR7rcESL3Z5gUbbOPh70/21XSftx+X/uzv53UxEnC2f47iUkCdNK+7fv2sXtQJHLSGN1RXH7/7WNkRzy52MEIOMnn82JX3+l0JHWUtbDNZhPxeFwyAFZXV5HNZhGNRlGtVsXl1nEcSdmmcyOdYFnHNjMzg3q9jmaziZ/8yZ/E/v4+KpUKZmZmsLq6Cq/Xi729PYnUD4dD2QcwTonc2tpCqVRCv9/H4uIiMpkMZmdnsbe3JwKPrRD4G2R9HU09CoWCmDfxfarVqlwnq9UqEokERqMRYrEYyuUyjo6O8OSTT2J9fV1q3hj1owELjx2FXqPREMOlYDCIg4MDtFotcY70+/3i7svP12g0xEk3FArh1VdfRb1el56L/X4f9+/fRzweRzabRTabxebmJgaDgVxbmXbO48YG64lEYup3+P1m8q/7ISce9KHeGWA4OrvcVEVRFOX8wrox1n+kUikA49RKpgyxYXGj0cDOzo4YB8RiMUlNbLVacJyxZf/W1hbS6TR6vR7+5E/+BOvr6zLBYfoOWwRwNReARMA4eXYcR+rZKpWKNOG2nQy5Kj8YDFCv15FIJJBMJsWExHag5CSDtSu2iLBd8uhyaRtjBINBDAYD7O/vo1aroVqtyuO26LJrYzweD77/+78fCwsL2NjYkL5yHHM4HEY+n0c8Hkc0Gj1R58cUTzq9cXzuZtOcaLtTCt2mAnx+knhzC8BJkapp4sEtBNz74bj5Gez3dwshbm/XlE3atz0eO73RFnLuNEj3Y+7j5U6TtN/HHW2yUyXd2z3ouLnHPyny597G3uek4/6g19r3J0Uf3c/Z54PRNfc29nMzMzPSoJrR8mw2Kws6bLzNRthsKzA3N4dOp4NIJILFxUUsLCxIDSzFgh2Za7VaEi2Kx+NSG8uxbWxsIJFIoNvtSnozI4A0/aDIDIfD6Pf7ch4PDw/RarXEECWRSMAYcyI9kb9vfvZMJiNiLhgMYmVlBbVaTTIE6vU6jo6OUKvVJNIWDocRCAQkksj+dWwpAQDpdFqMW5gCzjo21s7RoIWmKBTDmUwGoVAIrVZLFuD4mWdnZ3Hp0iVkMhncvXsXxWJRein2+33cvXsXs7OzmJubw9LSkohg9uo0xsi1n2KWi2m8hp8FFzYCBwC1dh/JsP+MR6MoiqKcN7a2tk7Y8nNVu1gsysosJ5lMVfR4PMjn81KPwUgSayKuXr2K2dlZbG9vS21bLpeTehWKOb6OsEEy3yMWi6HZbKJSqSCVSkl6Futd6MBWqVSk9xIAcZSzxYPtLNnpdKROLhaLyWSeaV/AeIJP04VIJILhcCgOlZwUNZtNcX+jKYAd/TDG4OrVq9jY2MDKyopMZJnqxVX6XC53IhIFQFLHKHzsSJwtIialONopYrxvm4dMq7Nyizzub5Lws8+TLWbc0UE7dc4+LgBOjJ/37f1MiljZ7zctUjdNNNmfx95uUjSRtYh8jVsgTrptv8+DRJn7vNm1gvbz9mu4jbtlhHu/0yKr7uNpYx8D98IA39steBltprsrUwrn5uZQqVQQj8el0TkAiVi3Wi1xtE0kElhZWUE+n5cFm729PYnY0cHWNlBiXW4kEpGU7RdffFFMR/b393Hr1i1xsCyXy0gkEgiHw2i1WiIgPZ6xtX+pVJIUx36/j3Q6DY/Hg3q9Lses0WjI2I0x4t7LxSHWvHE7tiWgAQvFn8/ngzEGrVYL7XYbhUIBxhhsb2/LtYbXh/n5eYn4+Xw+idiVy2W5hjabTektx0bgNIOx01sDgQDS6TTC4TDu37+Pvb09xONxzM/Pw+fz4e7du0gkEojH47h8+TJ2dnawu7srzr4ATtQ7O44jaewApF3IWfCOBZwx5hKA3wSQBzAC8FnHcf6JMebXAPw3AIrHm/6q4zh/+G4H+nZIhscC7qjVUwGnKIqivAmfzyeW96RUKiGXy2FhYUFSEjudjtR80YSDfY64Mp5KpZDP59Hr9XBwcCBpQvzHVXi/3y8Tu2g0Ko9zgsZI1OHhoRT2cxJBMxVOstrtNu7fv49CoSDOj1evXoUx48J/v9+PSqWCvb09qb/j5wBwQuRxssbJO8fPCS0nUZzYcyLKqB33x3SmS5cuwev1YnFxEZFIBOvr6xJZmJubk/YGwBv1PD6fT5ods50ChWSj0ZhYi8XJt7vuy7bbp2mMLTIJ92ELGzuN065LBN5sBGK/1hZYFG8UHLYompT26Y4uTUrhtNP43J/jtLRAd5SPY+H3DcCJRtr2ftyixy2W3MLILfD4Grf4nfQZJ43dHsdpz522T3s79/j5vXFHFe0orm2ww0gMo8Wzs7PioJjJZOT31Wg0JHJkpyCnUimUy2VEIhE8/fTTiMfjJyJVbDBNcViv1xGLxUSg1et1BINBqYddW1vD+vo6CoUC1tfX8bGPfQz5fB79fl8WcygCo9Go/Mb9fj+Ojo5O9OkLh8Nix886uHq9jkgkIv3r6IBJ0ZdOp3H//n1JNx8Oh6hUKtJOhFE0j8cjPdoajQbm5uYwMzMjZicLCwuo1Wqo1WrIZrMAINffXC6HarUqkUSKyWaziUgkIgtc9XpdaviAsasvawDj8Thef/11HB0dIRwOY35+HqFQCLdu3QIAxONx5PN5lMtlbG9vSyYBADFuorkLAEQiEan75eLeWfBuInADAP+D4zgvGGOiAL5jjPnS8XP/l+M4/+DdD++dkQ6P/4M6bPRwOXtWo1AURVHOK9lsVgreufKbSqUwNzeHcrn8JhMBTkgajQaMMdjf3xeREovFUKlUpLidUTTWcjD6Rmt/pg65LcC9Xi+q1SoqlQoymQwajYbYjBtjsLy8DGMM1tfXsbOzI66Rg8EAy8vL6Ha74ja5s7ODra0tFAoFzMzMYH9/H7Ozs0ilUiKehsOh1ALaNU6sl2PUjZGtbDYrq/ZMiRoOh1LLR3tvx3GkHxPTjTiJj8fj2NnZEfHM17OBr8fjkVRNpoFSBLnTEG2BQuzaLrt+ZlK0xxZatjizI4KT9s/3dgs/3uZ7246FFHh2pGia8OJ+7H3bETH7eXv7SSKH783nWctDwZBMJiVC6hbA3N8kMxD7cfd7uo+Z/VmnjXGaqLU/27Qo3qTjMC0aaR+TSeeEkWje5jmemZkRw4pAIIBwOCw1UsFgEOVyGfF4XBZ8uB2Fnd/vx+HhIRKJBB5//HFks1k89thjePHFF+E4Y6dax3Gk9uvg4EDahDA6x9q1wWCA9fV1fO9730Mmk0E4HEaj0cCNGzeQSqVwdHSEbDYrAooLQfz97O/vi0AZDAZIJpMIh8M4OjoSg5FisSgReLYvGI1GEp1bXFyUtGoag6ytrcHjGfd183q90muSgnE4HKJQKEj2AE1Aut0uAoEAYrEYWq2WjI31xTSU4vWiXC4jGo0inU4jFouhVqvJ5+N1gmmkoVAId+7ckYUyplreunUL7XYbS0tLsgi2t7f3pug+r+msP6TBisfjkVYwZ8U7FnCO4+wC2D2+XTfGvAZg4b0a2LshE6GAO7vQpqIoinJ+oYhi+lwul5MVcaZF2qlMtN7v9XrY2NhAKpXC/Py89CdiDVswGJSJHoUQJ8g0POh0OhKRMsZIPVm5XEa9XpcIFY0S/H6/TBh3d3fF8ZGpR9FoVFbvo9EoDg8P0el0JNpFRzqmQhpjxLDEXkHmfU4U7927Jw23Kb74vltbW7hy5Yp8Hk54uaIfCoVk0pNOp2WMjO6x3QFXvO30qmKxCGPGZjL2JJvRMQAnJt5uKMA4Jk5c7WiaHT2zBcY0N0Q7jdEWb8BJQxG+xm1sYqfg2fudJFzsbSd9Treom5RO6f6c3Be/84zS8nvNz+WewDIVzXGmN9x2M+kzuo/PpPuT9vtWxJg7IjcpAsdFAIpX1olO2hcjlfb5DofDkp7MHmus+bIjaFzgoWkGa9fokvjEE09IinalUhGzIY6d6dJczACAg4MDuabUajWUy2VsbGwgn89LfStTH21RQsHl8Yxt+ev1OkqlEoDx9a9Wq4l4Y1sPCpZgMCjRLGYkMI2Si1xsG+D3+8Wdlw69ACTaz1TSpaUl+QyNRgORSATdbhd7e3v42Mc+hjt37qBSqWA0GuHKlSvo9/uoVqtiNMVsBtsBl5E7tlfg8wsLC/D5fNIsnG0dQqEQ7t+/Lz3pcrkcms0mdnd35XfL3pjMZuDiRjweF9HO6NtD30bAGLMC4GkA3wTwHIBfMsb8FwC+jXGU7mjCa34BwC8Ab5zU94psVAWcoiiKMp1f/MVffGtNoc4Z165d+8De6/LlyxMf/9jHPvaBjUFRFEV5M+/ahdIYEwHwOwB+2XGcGoB/DuAKgI9iHKH7h5Ne5zjOZx3HecZxnGeY8/pekQr74TFAsa4CTlEURVEURVGUi8O7EnDGGB/G4u0LjuP8LgA4jrPvOM7QcZwRgH8B4Nl3P8y3h9djkAr7NQKnKIqiKIqiKMqF4h0LODNOMv5XAF5zHOcfWY/PW5v9DICX3/nw3jmZSADF+tnlpiqKoiiKoiiKorzXvJsauOcA/ByAm8aYF48f+1UAP2uM+SgAB8AGgL/1Lt7jHZONBlDUCJyiKIqiKIqiKBeId+NC+Q0Ak4rAP9Ceb9PIRAJ4vdg862EoiqIoiqIoiqK8Z7xrE5PzSiYyroFz9whRFEVRFEVRFEV5WLmwAi4Xm0V3MEKl1T/roSiKoiiKoiiKorwnXFgB92g+CgB4bbd2xiNRFEVRFEVRFEV5b7iwAu76fAwA8KoKOEVRFEVRFEVRLggXVsClIwHkY7N4ZUcFnKIoiqIoiqIoF4MLK+AA4HohhldVwCmKoiiKoiiKckG40ALuiUIMa8UGOv3hWQ9FURRFURRFURTlXXOhBdz1+RiGIwe39+tnPRRFURRFURRFUZR3zYUWcE8U4gCgdXCKoiiKoiiKolwILrSAW0wGEQ3MaB2coiiKoiiKoigXggst4Dweg8cLMbyyUz3roSiKoiiKoiiKorxrLrSAA4CnlxK4uV1FrdM/66EoiqIoiqIoiqK8Ky68gPvx63n0hw6+9r2Dsx6KoiiKoiiKoijKu+LCC7inLyUwFw3g37+8d9ZDURRFURRFURRFeVdceAHn8Rj8+BM5/IdbRbR72g9OURRFURRFUZSHlwsv4ADgU0/Mo90f4k/vFM96KIqiKIqiKIqiKO+YD4WA+yuXU4gHffjXf3EP3YFG4RRFURRFURRFeTj5UAg4n9eDv/tjj+Aba4f43//g1bMejqIoiqIoiqIoyjviQyHgAOBvPreKn3l6Ab//3V30h6OzHo6iKIqiKIqiKMrb5kMj4ADgJz8yj2q7j7+4WzrroSiKoiiKoiiKorxtPlQC7uOPZBCdncH/8e9eQ7HePevhKIqiKIqiKIqivC0+VAJu1ufF//03PoZ75SZ+5XdvnvVwFEVRFEVRFEVR3hYfKgEHAM9dzeCXf+wavvzaPr786v5ZD0dRFEVRFEVRFOUt86ETcADwXz63ikfmIvi1339Fm3sriqIoiqIoivLQ8KEUcP4ZD/63Tz+JraM2/tnX1s56OIqiKIqiKIqiKG+JD6WAA4AfvJLGzzy9gP/nT+/iD2/uwnGcsx6SoiiKoiiKoijKqXxoBRwA/M9/7XE8lo/hv/vCC/jUP/46/vJ1bS+gKIqiKIqiKMr55UMt4NKRAH7nv/0h/P3/7Ck0ewN85rN/if/6c8+j0R2c9dAURVEURVEURVHexIdawAHjeri//swl/PHf/WH8vU89iq/dKuKn/unX8f89fx+jkaZVKoqiKIqiKIpyfjDnofbrmWeecb797W+f9TAAAH9yu4h/+Me38NJWFbM+Dz6yEMcnH53DYjKITz46h3jQd9ZDVBRFUSZgjPmO4zjPnPU4FEVRFOX9ZOasB3De+MS1LH74kQz+3c1dfOfeEb75ehn/5x/dAgAEZjxYSYfxI4/N4YlCDD/+RA6BGe8Zj1hRFEVRFEVRlA8LKuAmYIzBTz1VwE89VQAAHDV72Cg18fvf3cVruzV89k/vYuQAIb8Xl7NhXMlG5F8uFsCVbASJkA/GmDP+JIqiKIqiKIqiXCRUwL0FkmE/kmE/nl5KAgD6wxH+/G4JX/veAe4WG/j2xhH+7Ys7J17j93oQD/mQDPmQCPqRjvixkAhiMRlEKhJA0OdF0OdFdHYG8aAP0dkZRGd98M986MsSFUVRFEVRFEWZggq4d4DP68EnrmXxiWtZeazVG2DjsIX9egdr+w2Umj1U2z0cNfuotHu4vV/H124doNMfnbpv/4wHsWMxFwnMHAu7GUQCPkQCXkSs2+HAzPiffwahgHf81+9FyD9+LjDj0SigoiiKoiiKolwgVMC9R4T8M7heiOE6YviRR+cmbuM4DkrNHiqtPjr9IVq9IWrtPqrtPhrdAeqdPuqdAerdwfjv8f3Dwyaa3SHqnT6avSGGb9Ed02NwUtwFvAj5ZxD2exEKHP/1zyDsejzk9yIw48Wsz4NZnxez1u2AzyPP+b0qEBVFURRFURTlg0QF3AeIMQaZSACZSOAd78NxHHQHI9Q7AzS7AzR7A7R6YzHY6g7Q7A3R6g3Q7Lr+yvMDlJo93C+30OoN0eyOXz94By0TjAFmZ7wI+sfpoLM+D4J+Cr7x/YAlAP0z43+BGS8CMx4Eju/7vR74vB7MeM34r8fAN+OBz8PHDGaOb/u9HsxwG77G44FvZryNz2tUVCqKoiiKoigXlvdNwBljPgXgnwDwAviXjuP8+vv1Xh8mjDHH4siLbPSdC0E3vcHohNDr9EfoDIbo9kfo9IfoDIbjx/pDdPpDdAfj2+3e+Ll2b3QcVRyge7yvcnOE7vHruoPxa7qDEXqD09NI3y1ejxGB5/MazHg98HnGfyn4Zo4fnznedsZr4PWMt/Me35/xeE48NyOPH2/rNfJe3JfX/mdc948f8xy/hn/dj9mvm/SYe1+8bQzgMQYeMz4GKmQVRVEURVEuHu+LgDPGeAH8MwB/FcAWgOeNMb/nOM6r78f7Ke+ecXTMj0To/X8vx3HQG46FHAVdfzhCf+hgMBphMBw/Pxg6GAxH6I+O/w4d9IcjDEbH2x5vL4+79vHm7U/uazh6Y9tOf4TBaIjh8f3BaPx8fzg63m78Oj7O9z7vvd5tMecxGIu+Y7Hn9fD2G6Lvzc+dfI3nWEh6zHgx4cRtY+DxQPbpNdZtD8XlWHR6jHXfQPZtjvdlgBPviRP3j7cxgIHr9cDx53nwtnC9x+T3Hr+Oz50c65u3Bd44Htx20ufhOO33nvT6aeOc+F4yzge8F/fnwQOOM18LXQxQFEVRlHPE+xWBexbAmuM4rwOAMea3AHwagAo4BcaY4zRKL6JnPZh3yWhkib3RCMOhg6Ezvn/in+Oc2Nb92Oj4Pm/bj03al31/5DgYORj/HVm3HRzfn/a8M3k76/bQceA4DkYjnNz+eAyOdXsseI8/lzMW6uPn7NvWa6z9Og7ggK8bb+/gjedG4w3G963HT77OOfeC+mHmVLGIYwHoEo/2a7xcLLDEPLf7uR9Yxs//0MpZf0RFURRFeSh4vwTcAoBN6/4WgL9ib2CM+QUAvwAAS0tL79MwFOX9xeMx8I/DIQhCm7qfBxxL9D1Q7E3c7s3icdrr3862sATqqe91/BlGIzxwXDhx/43P7rjfy31cnMnCWfY5etAxGb/OcexjcXJM9rb2ogDF/MgaQyrs/wC/IYqiKIrycPN+CbhJ+TYn1sYdx/ksgM8CwDPPPKPr5oqivCdIuuDEy5CiKIqiKMrDzfvVNXoLwCXr/iKAnSnbKoqiKIqiKIqiKG+B90vAPQ/gEWPMqjHGD+AzAH7vfXovRVEURVEURVGUDwXvSwql4zgDY8wvAfgjjNsI/IbjOK+8H++lKIqiKIqiKIryYeF96wPnOM4fAvjD92v/iqIoiqIoiqIoHzberxRKRVEURVEURVEU5T1GBZyiKIqiKIqiKMpDggo4RVEURVEURVGUhwQVcIqiKIqiKIqiKA8JKuAURVEURVEURVEeElTAKYqiKIqiKIqiPCSogFMURVEURVEURXlIUAGnKIqiKIqiKIrykKACTlEURVEURVEU5SFBBZyiKIqiKIqiKMpDggo4RVEURVEURVGUhwQVcIqiKIqiKIqiKA8JxnGcsx4DjDFFAPfeo91lABy+R/v6IHkYx/0wjhnQcX/Q6Lg/WD7M4152HCf7XgxGURRFUc4r50LAvZcYY77tOM4zZz2Ot8vDOO6HccyAjvuDRsf9waLjVhRFUZSLjaZQKoqiKIqiKIqiPCSogFMURVEURVEURXlIuIgC7rNnPYB3yMM47odxzICO+4NGx/3BouNWFEVRlAvMhauBUxRFURRFURRFuahcxAicoiiKoiiKoijKhUQFnKIoiqIoiqIoykPChRFwxphPGWNuGWPWjDH/01mP5zSMMRvGmJvGmBeNMd8+fixljPmSMebO8d/kORjnbxhjDowxL1uPTR2nMeZXjo//LWPMT5zNqKeO+9eMMdvHx/xFY8xPWs+d+biNMZeMMV8zxrxmjHnFGPN3jh8/18f7lHGf9+M9a4z5ljHmu8fj/l+PHz/vx3vauM/18bbG4jXG3DDG/MHx/XN9vBVFURTlPHIhauCMMV4AtwH8VQBbAJ4H8LOO47x6pgObgjFmA8AzjuMcWo/9fQBlx3F+/ViAJh3H+R/PaozHY/phAA0Av+k4zpOnjdMYcx3AvwHwLIACgC8DuOY4zvCcjPvXADQcx/kHrm3PxbiNMfMA5h3HecEYEwXwHQD/CYC/iXN8vE8Z91/H+T7eBkDYcZyGMcYH4BsA/g6A/xTn+3hPG/encI6PtzWe/x7AMwBijuP81MNwPVEURVGU88ZFicA9C2DNcZzXHcfpAfgtAJ8+4zG9XT4N4HPHtz+H8ST4THEc508BlF0PTxvnpwH8luM4Xcdx1gGsYXxePnCmjHsa52LcjuPsOo7zwvHtOoDXACzgnB/vU8Y9jfMybsdxnMbxXd/xPwfn/3hPG/c0zsW4AcAYswjgrwH4l67xndvjrSiKoijnkYsi4BYAbFr3t3D6JPKscQD8sTHmO8aYXzh+LOc4zi4wnhQDmDuz0Z3OtHE+DOfgl4wxLx2nWDJV69yN2xizAuBpAN/EQ3S8XeMGzvnxPk7nexHAAYAvOY7zUBzvKeMGzvnxBvCPAfw9ACPrsXN/vBVFURTlvHFRBJyZ8Nh5zg19znGc7wfwHwH428cpfw875/0c/HMAVwB8FMAugH94/Pi5GrcxJgLgdwD8suM4tdM2nfDYeRr3uT/ejuMMHcf5KIBFAM8aY548ZfPzPu5zfbyNMT8F4MBxnO+81ZdMeOw8XU8URVEU5cy4KAJuC8Al6/4igJ0zGssDcRxn5/jvAYAvYpwatH9cT8S6ooOzG+GpTBvnuT4HjuPsH098RwD+Bd5Ixzo34z6uafodAF9wHOd3jx8+98d70rgfhuNNHMepAPgPGNeRnfvjTexxPwTH+zkA//Fx/e9vAfhRY8zn8RAdb0VRFEU5L1wUAfc8gEeMMavGGD+AzwD4vTMe00SMMeFjswcYY8IAfhzAyxiP9+ePN/t5AP/2bEb4QKaN8/cAfMYYEzDGrAJ4BMC3zmB8E+Ek8ZifwfiYA+dk3MfmFP8KwGuO4/wj66lzfbynjfshON5ZY0zi+HYQwI8B+B7O//GeOO7zfrwdx/kVx3EWHcdZwfj6/FXHcf4GzvnxVhRFUZTzyMxZD+C9wHGcgTHmlwD8EQAvgN9wHOeVMx7WNHIAvjie92IGwP/rOM6/N8Y8D+C3jTH/FYD7AP7zMxwjAMAY828AfBJAxhizBeB/AfDrmDBOx3FeMcb8NoBXAQwA/O0zdLqbNO5PGmM+inEa1gaAvwWcq3E/B+DnANw8rm8CgF/F+T/e08b9s+f8eM8D+Nyxg60HwG87jvMHxpi/wPk+3tPG/a/P+fGexnn/fiuKoijKueNCtBFQFEVRFEVRFEX5MHBRUigVRVEURVEURVEuPCrgFEVRFEVRFEVRHhJUwCmKoiiKoiiKojwkqIBTFEVRFEVRFEV5SFABpyiKoiiKoiiK8pCgAk5RFEVRFEVRFOUhQQWcoiiKoiiKoijKQ8L/DwuvMXjveUntAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAGoCAYAAAAHGAe8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eZhlyX0WCL9x933Jraqylq6uXkqt7pa6rZaQWrssCYMtGTxgbDx4gcFjNoM/zGCDAYMxn81g4DNgwPPZY3vwijFgkGUDRmNZo7UlIcndUqv36lqycr37knnvjfnj3DfyvVHnZmavpU7H+zz5VOY958SJExHn1u+N97cYay0CAgICAgICAgICAgICvvKRuNkdCAgICAgICAgICAgICDgaAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIUje7AwCwtLRkz58/f7O7ERAQEBDwCsanP/3pTWvt8s3uR0BAQEBAwEuJrwgCd/78eTz00EM3uxsBAQEBAa9gGGOeudl9CAgICAgIeKkRXCgDAgICAgICAgICAgJeIQgELiAgICAgICAgICAg4BWCQOACAgICAgICAgICAgJeIQgELiAgICAgICAgICAg4BWCQOACAgICAgICAgICAgJeIQgELiAgICAgICAgICAg4BWCQOACAgICAgICAgICAgJeIQgELiAgICAgICAgICAg4BWCQOACAgICAgICAgICAgJeIQgELiAgICAgICAgICAg4BWCQOACAgICAgICAgICAgJeITiUwBljzhpjPmSM+aIx5mFjzF+efr5gjPmvxpjHpv/W5ZrvN8Y8box51BjzB1/KBwgICAgICAgICAgICPj9gqMocCMAf9VaexeANwL4C8aYVwP4PgC/ba29A8BvT//G9Ng3AbgbwNcA+AljTPKl6HxAQEBAQEBAQEBAQMDvJxxK4Ky116y1n5n+3gbwRQCnAXw9gJ+dnvazAP7I9PevB/BL1tqhtfYpAI8DeMOL3O+AgICAgICAgICAgIDfd3hOMXDGmPMA7gfwCQAnrLXXgIjkAViZnnYawLNy2eXpZ35b32mMecgY89DGxsbz6HpAQEBAQEBAQEBAQMDvLxyZwBljSgD+HYC/Yq1tHXRqzGf2hg+s/Ulr7QPW2geWl5eP2o25aA328C8+9Di+eO2grgUEBAQEBAQEBAQEBLxycSQCZ4xJIyJvP2+t/bXpx9eNMaemx08BWJ9+fhnAWbn8DICrL05356PV38P//luP4guXmy/1rQICAgICAgICAgICAm4KjpKF0gD4KQBftNb+Yzn06wC+bfr7twH4j/L5NxljssaYWwHcAeCTL16X5/YTAGBvFPsCAgICAgICAgICAgKOBVJHOOfNAP4UgC8YY/7H9LO/AeBHAPyKMebPALgE4I8DgLX2YWPMrwB4BFEGy79grR2/2B33Qb9NG/hbQEBAQEBAQEBAQMAxxaEEzlr7EcTHtQHAV8+55ocB/PAL6NdzxlSAC/pbQEBAQEBAQEBAQMCxxXPKQvmVDDPlmEGBCwgICAgICAgICAg4rjg+BM4pcIHBBQQEBAQEBAQEBAQcTxwfAjf9NyhwAQEBAQEBAQEBAQHHFceGwCHEwAUEBAQEBAQEBAQEHHMcGwJnHIMLFC4gICAgICAgICAg4Hji+BC4oMAFBAQEBAQEBAQEBBxzHB8CN/03CHABAQEBAQEBAQEBAccVx4fAGZYRCAwuICAgICAgICAgIOB44vgQuOm/gb4FBAQEBAQEBAQEBBxXHB8CF3KYBAQEBAQEBAQEBAQccxwfAjfV4AJ/CwgICAgICAgICAg4rjg2BG6/ikCgcAEBAQEBAQEBAQEBxxPHhsDRhTIgICAgICAgICAgIOC44vgQuOm/QYALCAgICAgICAgICDiuOD4EjmUEQhRcQEBAQEBAQEBAQMAxxfEhcNN/gwIXEBAQEBAQEBAQEHBccXwIHJOY3NxuBAQEBAQEBAQEBAQEvGQ4PgSOZQQCgwsICAgICAgICAgIOKY4PgTOKXCBwQUEBAQEBAQEBAQEHE8cGwJHBAUuICAgICAgICAgIOC44tgQuFAHLiAgICAgICAgICDguOP4EDgXAxckuICAgICAgICAgICA44njQ+AYAxf4W0BAQEBAQEBAQEDAMcXxIXDTfwN/CwgICAgICAgICAg4rjg+BM6EMgIBAQEBAQEBAQEBAccbx4fATf8NZQQCAgICAgICAgICAo4rjg+BC1koAwICAgICvmJgjPlXxpi/dbP7EQdjzFuNMY/e7H4EBAQEPB8cGwJHBBfKgICAgIDnAmPMtxljrDHmf/E+/x5jzJoxpmmM+WljTFaOLRhj/r0xpmuMecYY8ydf/p5/ZcNa+13W2h+62f0AgOn83s6/rbW/a629+CLf453GmA9N18vTc875y8aYp6br5ovGmDvl2LIx5heMMQ1jzI4x5ucPuNd9xpjfnd7rsjHmb3v9+MK0na3pOj0tx/+aMWbTGPN7xph75PM3G2P+w3N85v/bGDMwxnSmbf6aMebUc2njpYQx5tuNMeNp//Rn9Wb3zYcxJmOM+VVjzNPT9fqOQ86f+x10WFvGmA9647FrjPmCHJ+7vqbH/+T0nl1jzH8wxizIsYe9tkfGmP80PbZkjPl/puuyYYz5mDHmzXLtPcaY35qupViL3hjzTdN3p2uMecIY89YjPvMPGmP2vL5dOGiM58EY80ZjzH81xmwbYzaMMf9W170xpmaM+VljzPr05wflWMoY80vT5/+gMaYsx/6mMeZ7jtKHY0PgDGPgbnI/AgICAgJeGoxGoxe9TWNMHcD3A3jY+/wPAvg+AF8N4DyACwD+rpzyLwDsAjgB4FsA/EtjzN0vegdfJhhjUje7D88XX0F97wL4aQB/Le6giTYI/gyArwVQAvB1ADbllF8DsAbgFgArAP7RAff6BQAfBrAA4O0A/pwx5v3TY48A+IPW2hqAVQCPAfiX0z6cmvbhAoB/BeBHpp+nAPwYgL9y9Md1+IvW2hKA26fPdVC/bwY+Zq0teT9X/ZPi1tFzXVsvwlr8CID/GdE6OAyHfQfNbcta+4d0PAB8FMC/lVPmrq/pPf41gD81vXcPwE9I23dLu2UAl6TtDoA/DWAZQB3AjwL4TzJuewB+BdEavQHGmPdMr/mOadtvA/DkUZ55il/21sGTc847DHUAP4no/4ZbALQB/J9y/J8AKEyPvwHAnzLGfMf02DcgoitLAFoA/tfps90K4H0A/tlROnBsCJxDkOACAgICjg3Onz+PH/3RH8VrXvMaFIvFl4LE/X8B/DhmDWkA+DYAP2WtfdhauwPghwB8OwAYY4oA/icAf8ta27HWfgTAryMyaA6FMSZvjPmx6Q520xjzEWNMfnrs/dMd7IaJ1I275LqnTaSefH66+/xTxpgT013ctjHmv00JKYwx56e70N9pjLlqjLlmjPmr0tYPTner/40xpgXg240x1Wmb14wxV4wxf98Yk5yef7sx5nem/d00xvzy9HNjjPkn013m5rRv90yP/Ywx5u/LPf+sMebx6a71rxtRQaZ9/S5jzGMmUp/+hTHxwRFz+v4GE+3mN6b9/+fGmMz0/A9PL/3cdNf9Txhj3mGMuSxt3jUd78Z0/N8fd++DYK39pLX2/8KsQcn2EwD+DoDvsdY+YiM8Ya3dnh5/L4CzAP6atbZprd2z1n72gNudB/Dz1tqxtfYJRIbr3dN+XPcIyhgRuQKAcwA+a61tAfhviIgcEBG3X7fWPv1cn5uw1jYA/AcA98lzv8rsKxWPGmO+UY69kPfge6drrWmM+WVjTO759Hna1l83xnweQHe6zq0x5s8YYy4B+O/GmIQx5gem/Vw3xvycMaY6vf68f/7z6QcAWGt3rbX/dPp9Mj6k3wd+Bz3Hts4DeCuA/0s+Po856wsRWfxP1toPW2s7AP4WgG8woiQJ3oZoM+LfTfs1sNY+aq2dIEpfMUZEhhamxx+11v4UvA01wd8F8PestR+31k6stVestVee6zPPGYe5a9WHtfaD1tp/a61tWWt7AP45gDfLKe8D8A+ttb3pO/VTiIgrANwK4P+21o4AfAj77+CPA/je6eeH4lgROGOCAhcQEBBw3PCLv/iL+MAHPoBGo4FU6sYN7te85jWo1WoAcN/U4NOfn7jhgimMMW8A8AAiJcLH3QA+J39/DsAJY8wigDsBjK21X/aOH1WB+0cAXgfgQUSGy/8GYGIid7pfRGRMLwP4DUS70xm59n8C8J5pH94H4IMA/gai3dwEgO/27vVOAHcAeC+A7zPGvFuOfT2AXwVQA/DzAH4WwAiRsX//9Bq6lf4QgP+CyNg6g/1d4vciMtLunLbzJwBs+Q9sjHkXIrL8jQBOAXgGwC95p30dgNcDeO30vD/ot3NA38cAvmc6Dm9CpJz+eQCw1r5tes1rp7vuv+z1LQ3gP02fbwXAXwLw88aYi9Pj3xezrtzPAX1UnJn+3GOMedZEbpR/d0rsAOCNAB4F8LMmci/7lDHm7Qe0908BfKsxJj3t55sQETI+07lp3/oAvhfAP5weehzAvcaYGoB3A3jYGHMWwDfhBSpn03fjG6b3IMn4r4jUnBUA3wzgJ8y+SvRC3oNvBPA1iIzh12C6ufI88c2IVNEaovUPRKrTXYjW4LdPf96JyNguITLYFXr+DDgXB/w8H/frF/odpPhWAL9rrX1KPvunmL++Zr4bpwRvd9onH98G4FettV39cEqYB4hI5//fWrt+WCdNtJn0AIBlE20EXZ5u1OSP+JwA8L4pQXvYGPPnpO3D1upheBtuJJ3G+53uyr8H4F3T9fxORO/gHwWwOSWfR8LxInAIAlxAQEDAccN3f/d34+zZs8jn4/+f/vznP49GowEA/8NaW/N+/nzcNVNj4CcA/KXpbrCPEoCm/M3fyzHHeDxuB9q/bwLRTuxfnu4ej621H7XWDhGRnw9Ya/+rtXYPkYGbR2TgEv9sqrBcAfC7AD5hrf3s9Pp/j4h4Kf6utbZrrf0CIhefb5ZjH7PW/ofp81cA/CEAf2V6/joiN6Bvmp67h8hVaHW6i/4R+bwM4FUAjLX2i9baazGP/i0Aftpa+5lpX78fwJumu//Ej1hrG9baS4h2pu87YChd3621fWvtp6e78qPpjve/RmRUHwVvRDSnPzLdxf/vAP4zpmNlrf2RmHXlfo54jzPTf98L4F5Ehts3Y99V7Mz02IcAnETkzvgfjTFLc9r7zwD+GCKC9iVEavGneNBae2natyUAPzA9B9baLQA/jEgp+lpE5O7/B+CvA/ijJlJZ/6Mx5gyOjh83xjQRqdhLiAgwEBHyp621/+d0Xj6DSIn5Yy/Ce/Dj1tqrUwXzP+HgtfJGjzA94fffWvustbYvn/3g9D3oI1q7/9ha++RUcfp+AN9kZt0l9fwZcC4O+PmFA/o+D8/7OygG3wrgZ7zPDlpfR7q3MaYwbcNvG9ba1yD6zvmTiNS9o+AEgPS0zbcimvP7Ea3vo+BXEJHsZQB/FsDfNsbw+3DuWj2sUWPMawD8bcy6Tv8mog2zsolib/80IpdKINqQeArAQ4jG7ZcQqfN/3Rjzw8aYDxtjfsLbsLgBx4vAGRPKCAQEBAQcM5w9e/alaPbPA/i8tfZjc453EBkYBH9vxxzj8fYR7rsEIAfANyKBKF7pGf4xJVbPAjgt51yX3/sxf5e8Np+V35+Z3iPu2C2IjKNroiz9a0S70UCkjhgAn5zuXv/paR//OyI14l8AuG6M+UljjD82cc/WQaTU6bNp3Eov5lnmPReMMXcaY/6ziZLOtAD8A0RjfRSsAnjWI/LPeH17oaBh/w+nJPVpROP7h+X409ban7KR++QvIXrGN/sNmShhxG8C+HuI1tJZAH/QGHPDZsWU4PwsIjKYmn72i9bar7LW/iFEqsAQwGcREaX3IYpXei5q3Hdba6uIlDAqtEC0pv6Ap1Z+CyKC+kLfg+eyVj7uEabbvOPPxlyjn830Z/p7ChGhOKiNlxIv5DvIwRjzFkTz8avy2WHr66j3/gYA2wB+J+7e042gX0REdF57hO7yHfpn1tpr1tpNAP8Y++/QgbCR6/JVbhYg2rggQZu7VqcKqkt8om1OydkHEW1E/K4c+u5pfx8D8B8RKcqXp/2w1trvs9a+xlr7nYhirf8VInXxAUQbTxnsu1zG4ngROAQFLiAgIOC4wRxSJ+buu+9GqVQCgPvNjdnm4twjgcjF7o9ODf41RLv7P2aMoWvUw4hc+YjXArg+VTC+DCBljLnDOz4vbkOxich1yDciAeAqIkMCQBRfhsh4unKEdudB2e+56T0I/R/zWUSG/JIYuhVrLeOq1qy1f9Zau4oo6P4npsYLrLU/bq19HSLXqjsRn8TDf7YigMUX8Gz+//b/EpFScIe1toLIrfSoBYauAjgr7oxANFZXpn39GzHrKtagOwCPInIzm2elfP6AYz4uIHKf+7mpWnAZ0S7+PEM2hYiIzxjdU9ezfwDgryJys33WRrFxn0JExp4Tpirv3wfA+MVnAfyOR55K1to/h5f/PTiw64d8NtMfRGtjhNnNk7lz5xOAmJ9veR59fiHfQYpvA/Br0w0V4rD1NfPdaKJMjtlpn/y2f87aQy3zNPbjwObCRrHIl/HiRUtZ7H9HzF2rUwVVE74AAIwxtyByK/0hG8W+al+3rbXfYq09Of0OTQD4pN8BE8ULP4goIcq9AD49Ha9D38HjReBCDFxAQEDA7zs8/PDD6HQ6QJScwc82911zLvt2RO40901/HkIUIP83p8d/DsCfMca82kSJQX4AU1cgG8Vz/BqAv2eMKZooDfbXQ5IAmDlpwKdqwk8D+MfGmFVjTNIY8yYTlSj4FQBfa4z5ahPFZf1VRKTqo89vZAAAf8sYU5jGcnwHgF+OO8lGbo//BRGJrZgoccNtZhqHZYz54+JWt4Pov9uxMeb1xpg/MO1vF5FRHpdA4BcAfIeJ0pNnERGHT9gXkDTDQxlRRreOMeZVAP6cd/w65huJn0DU9//NRDE/70CkRP0SAFhr/0HMuooz6BImSqaRjv40ObpB2SjRwS9P71GejuWfReSqBkTur3UTlbRIGmP+GCLF6f+J6e+Xp+3/yek9TyJyO/zctB/fYIy5OD22jEil+OxUjVP8AICfsVHCk0sALhpjTiBy73xy2haTdJyfM3Y+fhYRWXz/9NnuNMb8qem4pqfr5a6b8B68EPwigO8xxtxqjCkhWru/bI+YbMInADE/rlyEMSZr9hOyZKZr6IaNiCN+Bx3Y1pTA/3Hc6OJ44PpCFHP6PhPVUiwiUup+zVrrFLjp+n4novUA+fyNxpi3mCjlf94Y89cRKZmfmB430z4zAVHOSPkWRG7gf8kYszL9Xv4r2H+HDnxmY8zXG2Pq03u8AZFK9h+n585dq/7YT9s6jcgN+V9Ya2/YJJx+dy5O1/UfAvCdiDY39ByDyHPhL0/fh6cAvGX6nfF2xCRDUhwvAgcTFLiAgICAgEMxdWNb4w8idaRlrW1Oj/8mosQPH0LkMvUMojgF4s8jistZR2Tg/Tlr7cOAM146AL6AeHzv9NinELkY/SiAhLX2UUQpsP8ZIoXifQDeZ63dfQGP+juIkkr8NoB/ZK39Lwec+62IDKdHEJG0X0WUcASIkot8wkSK068jMjqeQqTq/B/T859B5BZ5g/udtfa3EWWr+3cAriFSXr7JP+8F4HsRxdO0p/3xieoPIkoQ0jBedrnp+L4fUQzgJqLYyG+11n7pOfbhbYjcpn4DkUrTR0SKib+IaF1cBfAxRKT2p6d92J724XsRxcV8H4Cvn7qJwURF0f/V9NwWIve070E07v8DUWKEH57e5zQiF7g2onU2AfBHtaMmSkzxXkyT0UwJ/I8gUle+G1GcFxApX8/giOrXdCx/HFF2xPb0Ht80feY1RGudBvnL9R68ydyoer3+OVz/04iI0YcRGdkD7Mf5vdh4FNG6OQ3gt6a/3wI4JfiDcu7c76DD2prijyBaax/SDhy2vqb3+C5ERG4d0eaJ7777pxDFqfousllEpGUL0Zr6wwC+1u5nTb1l2k8+R3/6HMQPIVovXwbwRUSuvz8sxw965m9C9F3YRrRB96PW2p+dPtNha9XH/4JoQ+jvmHg1/nWI1nYbUfKmb/HmBog21H7PWvvQ9O9fm957A5F3wr+ec28AUcDxQcdhjPlpRMF969Zapgb+ZQAsgFkD0LDW3jfdofki9gf74wfsfjo88MAD9qGHHjrstENx5w98EN/x5vP4/j8US5gDAgICAo4xjDGfttY+8BXQj/8ZwN3W2u8/9OSXrg/nERmb6aMqBQEBPowxPwBgw1p7oDEZEBDw8uIoBQd/BlGA8s/xA2vtn+Dvxpgfw2w2miestfe9SP17TjBA8KEMCAgICLipsNb+m5vdh4CAFwPW2r9/+FkBAQEvNw4lcNbaD8/zfZ76b34jgHe9yP16XggxcAEBAQEBAQEBAQEBxxkvNAburYiycj0mn91qjPmsiWqJvHXehcaY7zTGPGSMeWhjY+MFdmPaJgwOT3YTEBAQEBBwvGGtfdpaa4L7ZEBAQMDxwwslcN+MKHCSuAbgnLX2fgD/HwC/YOLrwcBa+5PW2gestQ8sLy+/wG5EMCaUEQgICAgICAgICAgIOL44SgxcLExUEPIbEGVaAQBYa4eIUr3CWvtpE1W7vxNReuaXHAbBhTIgICAg4HBUq1X334UxxtWa8704eIw/iUTiSOcTiUQi1jPEWotEInHDPfQ4/43JIj5zPc/xz7XWznw2ry32Qe/L9uKO+/fy++7fI64dv4+FQgGVSgWZTAbJZBKJRAKJRAK5XA7pdBrGGAwGAwwGA6TTaSSTSaTTaRSLRWQyGWSzUbI4zk8mk3H9Go/H7vPRaITBYIDhcIhcLodyuew+Hw6HGAwGSCaTMMZgMplgMplgPB7DGIN8Po9sNuuefzKZwBiDXC6HXC6H4XCIVquFwWCAyWSC3d1dTCYTpFIpJBIJd29rrXtOPhMA95zj8didCwCpVArpdBoLCwtYXl527RUKBYzHY3cfzkkul3PjNRwOXXuj0Qi7u7swxiCdTiOdTiORSCCdTsNai16vh9Fo5MaK4zwe71eFSCQSSKVS7vnYb47H3t4e9vb2Zs7nXMUhnU67sRiPx9jb23P35liwvUwmg0QigV6vh+FwCGst0um0G/9MJoNMJgMAGI/Hrk+7u7uuHxwnnqfjz/attW4tAEChUEChUEAikcB4PMZ4PMZkMnHvH/uYTCaRzWaRSqUwGo3cOTxvMpm4ObDWunnls1prsbe35+aEbfN7R8E50jXKeUqlUjPvJM8bj8czc8F1wXWj5yeTSaRSKffD48lkcuZa9o/Pwndpd3fXHfPf/WQy6d5xfde5rlOpFLLZLNLpNCaTCQaDgRsza+3MPROJhBtXbS+ZTCKTybg16b/LHGPem33SH64f/a7iGHB8EokE3vGOdxy13uSLiudN4AC8G8CXbFTgDwBgonoj29basYkK+92BQ+oYvJiIXoCX624BAQEBAccBPhnhZ4rDCJZ/vhpcNKD883xiM+8Yr9Vz/X7PI0lxfdZr4/o+D/PIW9y9FHHkku0lk0lUKhXU63VnjAH74zcajZwhR9JKglYoFFAqlVAqlZwBWygUkM1mnQFO447G/t7eHobDoTPeBoOBuzaRSCCbzTqjn+OSTCZniGQymXREgwZtu912bdFYBPbJzWg0Qr/fx2g0wt7ennsuJUS8Pw1jIplM4uTJk1hcXHRt8hn39vacoUnDl/fgc+nYKzEC4NrhmHMOSGZ0bEjo9vb2HBEk8SKRZDscF5JhICIWwP56VsNZSQjJLvvCOSfBITkiaeN5k8nEjQnvzedn2+zLYDBw7XBceF9+ns1mkcvlHCFTUpLNZpFIJLC7u+sIohIKPheJDv8mOeU6UWi/OU48h++KkkEeU0KppJLjxrnmM5IIccyV/POZSWD4/vI6XeOpVMr1NW5DR8kZiZ2uM7bJZ9HPSYp5nPfRd4PfB+w/wfbYJgmofqYEnODcZDIZpFIpt6b1neZ9dPPtZuFQAmeM+UUA7wCwZIy5DODvWGt/ClGthF/0Tn8boqKCI0SFPL/L3lg48iVDpMAFBhcQEBAQcDDi1Kp5ZMT/TzpOjfKPx5Ein4jp9fNI1Dzio78fdK321yd7cSqfrxjGXTNvPOZhXv+y2SwWFhaQy+Wckee3yR14/p3P51Eul2cMTRrdVEp2d3dnjD8SCyWAJHadTgfWWhSLRUdm+v2+e85MJoN8Pj9jjKpBOZlM0Gw2ZwxCksBUKuXUMRqkqsrxegCOxHAOSPyKxSLy+TyKxSLG47EjDp1Oxz031YZUKuUMbBI49nsymTjisLe3h1Qq5RQKfx2T5NFwJ2kxxmA4HDpDXOdIlTOuIZ9McNxIunhPVVd8tYrjNB6PZ0iXqm3sC417nQslnJlMBrlcDuPx2M0x1T8SNKo1uVwO+XzekX4SRypSVOlIxKlq8RlJnDh2HFsqxbpBoCRl3jvAZ+HfuiGkx31yomqV/71EkkY1k6oSrwP21TyuGyq6HAf2n5sUfLdUVdN+KBkkuda+aL+V5JJQ6VpVQsX2FBwvrjX+y3FSBVI3FTKZDNLpNHZ3d2fWlLapJPhm4ShZKL95zuffHvPZv0NUpPPmIMTABQQEBAQ8BxzmMnjQNb6K5f+u5x52j3lk8Ch993+Pa9PvWxyJO+g+cSSQbR5lrPScRCKBcrmMpaUl5HI59Ho9Zzz5xj/vk0qlUCgUUKvVYK1FLpdzBtRoNHJKSa/Xm3Hlo/GZTqdx/vx5NJtNjMdjR9TS6TRqtZpTU6hGqWseMGtgsm/9fh/dbhcAZlSLZDKJXq83Q6b4k0qlXF8BODLEPqo72NLSEkqlknv+XC6H0WiEXq/nyAZVELqAqrJijJlRCrUPdAVVFzQSVj4D5yybzTr1xVrrCAznx1rrXAdpSPsKtJIUVafUsFe1SMdcCQJJF8kbCSMAZ9DrpgYJn7qxsn/sh45dMpl0rrKqvHHN+Z+R4HAe+TfvrQROn083SjgPANzGg37O+SM54vUcf96Ta4qfk8DzWn3HeT1VXyVkXAskK1ShOP6qvOn8cgw4DrpJoZtXPvlSVVDnWdexHuM1bM9XV7VvupbU/Z2qOkkp50rXjpJRuojyfSHR91W8lxMvxIXyKw43T8gMCAgICHilIU6hOooSN+88n9TEqWM+YYwje3EKl08a45Qw/1w9P+48vWccgYzrh0/kDoN/XiqVQrVaxcrKCjKZDHZ3d50qQhVKyRxVnVqthkKh4NqhMpJOp5HP5wHsG3Xtdht7e3vI5/Po9/vY29vD6dOnnbIEREZqPp9HtVqFMfvxYnSd03g3ng/sk4p+v49Wq+UMZ3XF6/f77r4kB+PxGPl8HvV63alOVMmstc49kYpOuVx2hmg2m0Umk3Hn0+ikYd7r9WbGmkYllcdUKuX6oG54SqLU/U9dzTjO6pLHe9HIVjc1rh9fbSZh4jlqdKt7nJJHvw2Sabanype63PK92t3dde6mjCkkUeaccY5IXqm+0B2TiqnGA6rLpLX7cWsaY8e2+TwcQyXNnAN9fn0WPj/v47/XPtng3ySJPnHzyQaVTHUf5fOqmqfrlOTNJ+WcL40NU/dGVd782Dmdi3luomxfNwhUkeQa9kkyx0pj3nyXUR1TX5XjPXSdcjw11vNm4HgRuOe4exkQEBAQEED4ZAa4USWjEXKY6jSPuLFN3xg7KKYijrT5/dJ2daf+MDIYdx8fcUrhvL7OA12TqtUqyuWySzJCYxnYN8Q4xul0GqVSCUtLS84VkkYdyRiNehqCdI1jgo9kMolz584hnU5jZ2cHrVYL1lrUajXnlkhFC4gSVuTz+ZkYMO62p1Ip7O3tuWQfPIcueslkEq1Wy6k5wH6yByo7/FsNehKKRCJKTFIulx3BobJHksa+lMtlWGvR6XRmVAoa0DRCOa5KoDhvJIHFYtGtP3UL1HaU/PrrS41xrmW6d9Lw5VgRPMYx0tjGOLc5dcWjesIx09gyKoV0mdTkKEo21M2W6mY2m51xp6Qaq26PSub4HBpr5m+MsN+q3PL7Qd1I+V4pKSH8eLaD3PbUhVQVSZ17jikJqxI17asf+6VKm6qDbF/bIwHyCRzb1LhAzjPfC84r+8LxUNLqj7WOI8k7n0PXM+eD7x9diTm/7DfvyaQv6XTabfJQ1dV37GbgmBG4kIUyICAgIOC5wf9POI4sqeHLz/R3Nari1Cy/bb+Neefq8cNUN/++RyVece0ehZwdpNYpUqmUSzaiqgkNLfZd1YtCoYB6vY7l5WVYa9FoNJwioUbqaDRyLn69Xg+JRALFYhGtVsslOUmn02i1Ws59slQqOXJCYz+VSiGfzzvCBOxnFwTg4se63a5TClRJI8Hs9XozqgaJG4kqE5loIgaSApJbJXY0FDWOq1AoOOWH56iyQ+N4MBg44kyjl8Zqv993xqsa9lSTqErqxoJmklTXQSpHSsZV1aKRrq5t7Ku6ramKoyoV+zwcDh1JUKLD+5A4kIjt7e2h3+87oqrZOUn08/m8S3xjrXWqG5+JhHI4HLoNA1XaSIzU9ZHjQ0LJ83xFSPuvqj3Hm/dQ5UrjD9UlUF0S2Y6vnCk5UcVVk6fwHCUnvnqq7yrnnWvJVwvjvjt5f51nVS3V5VX7xLFQ10WSXt0M0CySPM62eV8lovq+8x7qcknCnkgkXDwu1/5z2cR6sXG8CBxCDFxAQEBAwNExj7jEGR1x1/guSj6J8smRb9jM200/jGzFqW7+OZroQJ/noGvmwTcwD+oPQUVpcXHRGc+qmnEnWw0tEo6VlRUUCgXnisi4LWaQ3NvbcyUAmBGRRKXX6+GWW25BIpFw13c6HeceSSKmmSeVvGncGnfxd3d30e12nfrG/qoLYiqVQrlcBgAXV1QoFNyuPdukGx/HSLNwUtkjAdMEGuVy2RmRmqVR3RdVSQP23SRJKGikMnEMiaQa7TRuSXL9rH8k4ZqsgmoLSQbnkWSKz8r1ThKuBjawn8pf3ewYx0eCwL5w7PW51ODWjJRU7OjeyqQ3JPh0dVXVTTMRAvukVd1luYY1zksVOlU/1XWVY+ATO46FkgmOq+8ayH6o2sd1oHPBsSKR9dVVTV6iz6PkRu+r7y3nXxO36HcBx5Cfc7NC1TtV+qhkq+rKseL7qnGPnA9dv1wT7Bv7xw0bjZ/kXBljHEnnWPLd0fXK9v0xuRk4XgTOmJCFMiAgICDgSDiq6hR33lGu9RWqeeqZf65/XRxp8n/X3XFg3+XIP+YTQ5/cKSE7TKnz+6HGTCqVQq1Wc3XLqByQOGg6eFUTyuWyI3wkWQsLC+58tp3NZp36ReO83W4jlUpheXnZGavtdtuROGA/fbxmYiwUCjMGLOPF6DbY6XScYqNqE8lVLpdz8Xm8D90w1e2KxI/uegBQKpVQr9fdWCgBo1sZ+6KZEjkXmUxmxmBVFy+qIUy3T7WTMXV8Xq2TRgM6l8s5w5gEivME7Lub0bBVRZMkhvdVxYpzr7XduF5J3qiA8VnZlhI9JThM5U/CVyqVnLsqCboSZmajZG03Ej2fvJFI6UYISZcSSYLkSF0IFRw/JVxKapWs8XwlYf53SFx8mapV6i5I1ViVU2vtTB06/x1T+ORQx4Hzwo0UEjd/g4p9UvLGtvS7QL+DlCzpOLENdeUl4eIxVdE45iTk3HBR116ueZ+Aclz4/iqR9sfp5cTxInAIClxAQEBAwOHQXW/FQa6G+pmvPM1rQ+81jyD6588jSX4/1KhT8nbY+XHPE3e+fzxOhYs7L5vN4sSJE1hYWAAAlxwkn8/PqD4AnBGYSqVQqVRcvFu320W323WxJwBcTFgmk3Gucel02sWHFYtFR/w0UyMNPWZRpFFfLpedMkjCoOrRaDRy9d3K5TLOnTuHZrOJ7e1tNJtN7O3toVgsujp0JC80HIfDITqdzkzpALpX5nI5FIvFGXJLI5znk1AwCQnbpzJIdYNGqhr6NJTVnZCfa+FvzgGvZ/843hp7pPfhcRrlJEAaN0TypqqeuqWSsKjqxnZYw0+TXPBvPrOSN/ZTNwYSiYRTe0nos9msK8VAl1Ylk3x2JVFKpNQ1ksY8CbTv1qlj5Lvt+d8/Ou86NppkRcmCunBq5kslNPo350OJE5U49kvXiK4ndUnkWHGdsz0dLz+u1VfqtF++CyXHhqRO3ydex3eU8881p8TaH+O4+EQtQ0FvAR7n+6eunfre8ZpA4F4kmBADFxAQEBDwHDBPXVNiMo/QHUSalFzNU9+UUM1ziTzIZXLetX6//OP8TBWzuOfwx0CvnTceLA9QrVadSsYMjGoUksSl02kUi0UsLy/PuLIx1oxGJ0nVeBzV8ALgDL1KpeIMqW636+LaaNgp6aC6RIWMRjhVGBqvLBFgjEGtVkOpVAIwW5eORGAwGKDX682kFmctOCUHJDalUgnFYtH1i30nwaRBTAOTRBaAy6zI8zQzoiZVobFM4pLP5x0J4fPyGUjUlHBRGVGDmFB3RT4DDXKSJE0hT8OfBI9zRxJBUkpy1+/3YYxxhJ/kjc9GY51GPu+r6ilLQKiiB2AmUUm/30ev13Pxj4yDU4LgK0BUHn2FSJUZfR59VkUcsdPYx7h3jPfUuMw4lYnvIu9PYqrfC7xOXSaVnPpJcLi2gX0FnH3SZ1O3Yl0TfgF5VSh9Msg2VQ3U2FmdC72HtsPvDI4Nx5zzwb+p8Kprpqq/mthENyxupuskcawIHGCCAhcQEBAQ8Jzhk6SjKFVKaOYRsLg2fNcfbU/b9Amaf089rkalf36ccXdQP/0x8Mlb3NikUiksLCygXq/PkA1rrUvzT4KkZKFcLmNhYcGNx3A4RLvdxmQycXFwdBns9XqOfPV6PdRqNUcMrbXY3NxEt9t1xIAujDSUC4WCK8zN52MWSu72j0YjV0uOBI3Fwa9du+YUNRrc/X7fGZNaG4yEg0Y526O7pxIwVWbYrhKpUqnkCAf7ncvlUC6XHUldWlrCwsICarUaKpWKK3ZOw1cTXug60vih3d1d9Pt9dDodNBoNtFot7OzsoNvtzvSPyU3UiCUh8N3SSHgZR6bxcDTqNfZuPB47F0/2jSDJICHiOKjqxnnnM/F+JAFchyTdmulT1VclMVSqOL+qKvq1zvg7n5dqlLrH6nnAfukDEhCNm9O14hMWtqEqlsabUYHk3HMt8loSaj+ujGtQ+0virOuXz8W1pPfhvVR505g9vZZ90vg/EkC2w80MVQw1m6bGFfpqpcZpkrAR6tZM1V3jTtWFlmPFvnCz4WbhWBG46HspMLiAgICAgMMxj8T4BomeD+y7SPmKFH8/TNXz25vXN95HFbCDiKFPAOc9Y5y6N6/Pce34al0mk8Hq6ipqtdpMUgzdRaehReOKLpMaa8XU7ZlMBuVy2WVbpHJUq9UAREbXwsICyuUyhsMhGo2GUyaoNlm7X3iaBnixWLwhq52SB8aPJRIJ5PN5rK6uOuJEYseYNi3O7ZM1YD/pAhU2xlyRKNDo5PV8fk2eoAZ+oVDAqVOnsLy8jOXlZZw4ccIRNS174M8tEff3QWtQ559JYBqNhnMhXV9fx/r6OjqdzkzCFM4tE4voGCmZUhKgiS40S6Aa/Gqoc5yp0JFgsuYbx1LJINukskuVkoSEY88C8VTyOA7sJ7D/vaClDQg/K6eSXFUq+czsh74zvss150BJkc6hkkeSDiaQIaFS5YhERjM2xsXf+X3SNn3yFvcZ59JX6ZTAsW1Vy+KUTX23+Px+rBuv42equOk1XGe+JwPdJhknq31WN2equlRwbxaOF4FDiIELCAgICDgcqi7FfRb3o+f5BkmcsUxjS9vQXWdfLfPJlK+W+MdVedPzDiOUioPI3UHjQ5RKJSwvLzs1SA1Qus0xUYiqL6zBxlgn7mRns1mXVITqWCaTceQwn8+jUqmg0+lgfX0du7u72NnZcbv0WrSZ5E3TxOvuPtUUYD9pCI3OYrHoCGWn08FgMHBKkio+AFx/SexocHNnv1gsolKpOBJB1zf2gYoejelkMol6vY56vY5bb70Vt912GyqVilPUSJD8LJ5xcxX390GkTUkB/2VCGhYhpzLCcWg2m7h8+TKeeeYZdLtd7O7uOqKr8WpKXtgO1wrVHZInEhtuYmhCDhrsVLk4znot1wPXxN7eHrrdrlN3WYuQc8W4RN7DJ+NUkdT1Ub8HOCYAbnCB5POq+yA/5/oj8VN1j+okCacSMP3+IWHxa5vxeo45n0WVYi1QPm9NUMXVmDE9ruRJ55vjpwqjEjeuXd2o8jfP+DeJqZYf4L9K0OK+V/m3Em/+qOrN36l0UlHWjQQA7juh2+26uLmbgeNF4EwgcAEBAQEBzx2+EeyTOf9c/htHoHzSF2dQ+KARNE/10j761/t/q2EZp7rMey5f6TuI+AEReVtcXHSxSTSINJtdoVBw5E3doei6RJI3Ho9d9kka4sPh0Klmu7u7KBaLmEwmzq2P7owAXEwZd89pZLM8gLpdaUY+1gRLp9Mol8vodDqoVqvI5XLuPoPBYMYVUuPC9NnomkXXUJJRqhaaHIUZ+4bDIfr9Pmq1Gm699VacPHkS586dw5kzZ5zC5KuwJB2HzaMqFqoEHbSGfFWH61KPsT0SoEqlgrNnz+KNb3wj9vb2cP36dVy9ehXr6+u4evUq1tbWZsZc+6gxglxHPE4Sx3Gl6y3Hjeomx1eJtdZ3G41G6HQ66HQ6Ts30a+PRrZbGu5INHUtNGEKoqx8JGd8hddejKumTKlV+lUip26SWNeAxVe84ZnSZ5FoH9jOicnyoZlL9Jinl2uVnyWTSxc+piyLvSRdYdbFUl0+OHceI7yD7ys/9ceMa03FQJV/XD9enup2yn1oCQTcPqNRq3CRJP5/Vz5zKuZtMJu67h4mQbhaOF4FDKCMQEBAQEHA4fCM2Tm2LM5wBzBgnceRNd5/nEai4fih58kmf38ZByptPFucF3M9T++YRN1UOarWaUyyongBw2R9pWGtadRp33LUeDocolUozakk6nXYui8lk0sV95XI5tNtt59KoakO1WnXxaOx7Op2eSW5CtzoaagCc6x2VhcFggFqthmQyie3t7ZnkJGyHhh2NVcZ4kTBSqeIOP8eNypufeOOuu+7CXXfdhXPnzjnSxzU0b579taqJLOLWrs7vvPn3143+zf77rm+6RmlAZ7NZnD17FmfOnHFjvr29jWeeeQaPPvoodnZ2nEFO0kKi4t9bFSp1k+v3+y6ZCxPbkPBPJhPnrkpVlMpbMplEtVp1hjsQpY5XNZPkVPvH5/Pjquhy6GcF5frjWuE8kABwbfBv9kU3NXhPY8wN2Vt9t0y+kyRUVD95LckKSY2qjepCrH+TtJBYkwBxDnx3XVXDOCb6Pem7G5PYqsrJ3303Z46F3oPj6a9VVeTUJVnfBSV5rLWoiXmYoIXrVNceN3RyuRxqtVogcC8WggIXEBAQEPB8MI+8xRm184iY/svf48496FrfdXEeiZtH3uL6EHevg+C3pX8XCgWsrKw4YxHYN4hoTJbLZbeLTeOSBmOlUkEikXA125jYgwaS7oQzWQbVA8anqKFF0qdxVsxAqCnhqcxRzWMCCxrz2WwWpVIJ1lpsbW05osiMkzRiqdjo83LMCoUCFhYW3GdUT6gatdttpNNpnD9/Hrfffjtuv/12rKys3ED449aYuowpadM58wmVutn58xqnOM/7O07lU0KnpFSVX7qiVqtV3HbbbXjrW9+Kq1ev4qmnnsJjjz2GK1euODWS64ikRgsxkwgxKyDnIJfLOSOcylChUHBrrdPpuLhFZpqkypZKpVAqlRzJU4KgtfRITuali/fdYXmuqlOq/pLoAfuZKHmc48z09dzU0PaV2KpKSvdKkieqkJp9Uguh8/5KZtg/PpPW6PPXoM6/fmfputP1oXX6jDEuZpHrmURWvzf4Gc8l+dQELn5cIL9veC1dtPldwfdLawcqoeRYAPtxb1zf6spaLpdRKpXmbo69HDheBA4hhUlAQEBAwNHgE504Y/UohGdem4qjuD0qGfPdqZRQ+ufGPUeckuaTzHkKYtz5iUQC9Xodi4uLM+5uauRMJhNUq9UZ1YIxSEydTyOI9bhoxNLw01T3VNAGg4GLraKCwSLMNMQAOGVB08/T6CcxpKrGtvL5PKrVKowxzsXOWuvi3aicadp9tgvsJ+TIZrOurhuwb/zRsM5kMrj//vtx//33Y3Fx0fXfn39fSVAFQdcOjVeN6fNVMZ/UxWHeWqdhrXFDalzzGPvIGEO6JWoGv+Fw6No5deoUVldXcd9992F7exuPPPIIHn74YZcQgu2xfS2l0O12kUgk3PxqNlCOPwkYC7gDkQshiftoNHLulazBp3FsJPr6bql7M0kS1yFjz0is2Hf+S/Kiyo6+v36iDLr40v0TwIwix3aVLHJOON5xmyLq8qqEW78DGOummzPqmqibBj55UsLFz3V96pqK+47UmDcdW/7O/quqre6f6i7Ja3O5nNsg4DmadZYlJMrlsruHKqskd9zMIcnPZrMus+682MGXA8eLwJlQRiAgICAg4HAcpHDpcSJO4fKJUpz6dpR2+Lm2E6eezHN5m+dadxCOcg7vl8lkXIp6GurcvVY3s0qlgmKxOJNARJ+T2QqByKimAkBFJJ1Oo9vtOlWNhIuZA9kXqgrcXU8kEi5ZiGY/VDIIRIoY27LWumcaj8fodrszLlU0woFZMqYqCI1yKh1a04xG5MmTJ/GqV70K99xzj3PPjFsnJO0kMGqo+8TWJ2t+koU4cvBc4CuC/u9aMmAesdP0+VSE1D0vl8thdXUVp06dwpve9CY88cQTePjhh3Hp0iX0ej2ntCiZZjIcay06nY5bPyypQBLeaDTQ6/WQzWZRqVQAwBV+Z0wm1yPVXhJ9hSo9fH4+Cw1+EgN1FVZlSt8DTXSihIekipsKTGmvx/2kGyTNvrunEjeuFa4rJfR8Z5WoqEqlmzNKnDTLpib58DcP1DWT64fkiH2KS8TCa/k3E7JwvEkIVRVVIs/7FQoFp7iSzHOtjkYjtNtttx64VjVRC79DNA6OY6tjocTx5caxInAAQgxcQEBAQMALwjxiNe+cOBzk2hhHHn3SFqeIzetPnPvbPBykEPoKXyKRQKlUwsLCAnK5nHM5Y9p+7swz7T9d1zQ5gxpAmj5e70sDutfruR1upq5XQqXJKkiwSBby+bxrm1kQNXMhs0jS4KfrohJEqi8kClTrCBrJvA9JIxVJGsxs//7778dtt92Gcrk8E7vjbxr4SgpVExqlmjVzHnGL+/HXmL+2/DXhE7V5GwKqzqlLp2b301gkddMjAdDnKBQKuPfee3Hx4kVsbW3hoYcewjPPPINWqzVTYJ3rS10e6TJprUWz2cTW1hYGgwHy+bwjdVRcGQ9GRTCXy80UMleVTcmbuvQZE8Vjqgqm86okg+SQyo8mIFHVT1P/c+z0mLZLJYqulXTtY79IRpTk8Lx5iT248aCumrppQTVNS14ooWIf9T3R51e1mOuIY6Eunf4xjcPTmEFVBHmMBF1JJzdWisWiW2t0w+71eu6ZjdlPXsPzmNyIKj2/+/z35rD/B15KHCsCZ4IPZUBAQEDAc4Ami5iHOHKjn+t5NLYOU9/i7nHQOUrofHLH++lnShJ9whjnukdjRBWmpaUlrKysOIPTGOOMZ41DKhQKKJVKrmRAJpNBu912af8BOHclGlxsL5FIoNPpzOyo08VJ49qYaIIkjMY4s/MB+7vmw+HQGc4kc4PBANlsFhcvXnRqW6/XQ6vVQr/fdwlRWNSZhE6z61GdoFpBA5GqyGg0woULF3Dffffh4sWLKBQKNxAgnSeNXfJVTZ+oHfav/7uux3nrcJ6CrMSMn6vCpuSN4HFex3IHGg/GvzVujmotx3R1dRXvf//70W638YlPfAKf//zn0Wg0ZhKNAHAuhqlUVMOt3W6j0Wi4BBPMWEpSXiqVkMlk0O12AQC1Ws25UPJH3RL1uYH9hCIk67qBwedWlz4dM15L4k8FGNhXtEgm4xRVvncknSRVJCwcb2Df3RLATAwon43PomSI61o3C4B9V0QAbm2yXZJSJW8kfnxeHRuNsdNn0+8o/svzVJXm+OraYtt0h6WKyu8LziNdrvlOU72lYs9xomrJYvadTsd9J6j6rHGFIQbuRYIxgb8FBAQEBDw/+DuqR1XZ/PN9ohd3H78N//y4tud9poaEEjH/Xn7/5ql7+XweZ86ccRki9/b2nPqxu7vrjCZjjMtG2e12Ya11ihXj0dTFii5H4/HYxadoZjy6wOkuf6FQcPEqw+HQESnWg6MLGePc2PZkMkG73XbuVUBUY45ZJY0xLvlFpVJxxqwxxmU5BOBcNunWxt91/Bj795a3vAV33HGH61ecIqoKD4mfH8c2j6ApQfCvYT/mxcHFrSO/X3E/akDH/fA8Gte8hmoln5UufzS8aWAzi6QqIFxXX/3VX42v+qqvwuc+9zl8+tOfRrPZdGuC66rf76PZbKLT6cBa69x8mZlS45V6vZ5TSKnGKGFS5U3HiiSehru6Wqq7qBbHViWN88ByGSQ+mpCF48KxVBWK65djpnFdHG+SQm4KaB04fd/5nnCThiSN56jLpcaR+qTM3zjQ9ajPzmO6zvlc/nPqmtR3i8qd3zddt7lcztWHVBWerpFcq0ry9Idjw7Ie7Xbb1QdkP5LJJBYWFpBOp9Fqtdxm0s3C8SJwOFrGr4CAgICA39/wyYtvbM3bWVWD2Fcw4tQu33ieR8T8e8SRxzhlzydi85Q8NYzm/T+ZSCRQq9Vw7tw5ZLNZl6pdE3fQeE6lUq6wM40mZotjXAnvx4yP3F3P5XIzShqNbWBWkaC6oqn8y+UyKpWKS9/NflGhKBQK2N3dRbPZdKRyeXkZiUSU+bLT6SCXy80QNBphGj9Ho52xNJr4gmPY7/eRy+XwVV/1Vbj//vuxsLAwN1GDqlOqtsWpZ6qQqIudfk5jWIkexyNu/v2++Iayqm+6Tnyi5hO4uBg4PReAUzRJwKl66LV0oyUJ4npZWFjA29/+dtx77734xCc+gccff9z1s9PpuFp9XBt0vyUx51qjyxzJN91148oUqGpEosQxoYpGQgPsF4Gnwa/KFYkK4y85d1yvqiD7tc5InLhpoC6LHEdgP4Okn8qfhId91iyu3DDxvw/YF865JmzRZ+c5iUTCtcv3SQkW16+q6SRjSthJjnlc4+E4JroOdX1xjjKZDEqlkruGz0pwM8fvIzEcDl385GAwcPUCeb9KpeI2Z/iddzNxvAhcUOACAgICAo6AeSQJuJHkzCM9vuvhYYqdXuOTvbj29TztQ5yCop/Pu89Bz8Pd5dXVVaTTaWcU6c7+ysoKgMgoI8GjSyWNURqGTAbQaDScukKDSGOa6ObGTHnWWpd9j8krmOa/Uqm4Its0iun+yF12JrGgK93p06dRrVaxvr7ujELWk9MkLEoiaTQzqQNj4mickzjdcccdePDBB92YzYtx42c+6VL1AsBMn1Sp0c/ZP7bjr53DNgd8cqmuasBsoWbei+fFGdBMQEMliuoTjX9fOSHRUaWIBjUVTlWneO+lpSW8973vxf33349PfvKTeOyxx9BqtbC3t4disejUYrrCMiZSU+przJhPTvUZOSckaUpaOIYkS3wekkOfwHF+SP64xjRmMy4Gj/PLtcex5rvHd0TdI+Pi4kiMlERpaQJV4zReTTcVOC9AlAyG5/PZqcqr8qZqoiZEUSKoY+OvLx4jAQRmN1t0/fIcJdW8Vr+fqLhSaWVf2b9Wq4VWq+U8BRhfyfvqd8Te3p5btzcLx4vAIdSBCwgICAg4HAeRLZ/8HOSOpr/HES2fpPntxpG3oxBBv7/z/o1TW/zj+XweCwsLKJfLM0SB8TTZbNYlhKAhSnWLu/nMiAdgRjlrtVpIpaLC30BUm4uGEQ0sGuyMA2JpABperK/GZCBM6627/tZaNBoNtNttDAYDLC4uYnV1Fd1uF08//fQNyk4+n3fEiO2QNFAVofHMZzMmijuqVCp43eteh9e+9rUusUrcWuA4xyUhUaWNJI0GNkkrjdJ5SUzmEfl5aisNau0v14AmmNBr+NwaG6Wfcz44NpzrQqGAVqs1c1810GkQU+XlGtL4JSpybD+VSuHUqVP4w3/4D+ORRx7B7/zO72BtbQ3FYtHNI101udYSiQSKxSKMMTMF4DX5SBxZU+WKa4wGuypm3DxQdVZJoB8TRzLAcdMC1xxXklC2OR6PnXrH9abuiKrGcbx4T1Vv1VVTVVuSb2NudLHk2veJJvusbpOaYTVuLAE41VP7p58rISPZ4tj47q0kfSRZTDpCwsp+K7R9quxMoNRsNmGtRbFYdK63+XzezftwOESr1ZrpTyBwLxKMMUGBCwgICAh43pjnFhOndPjkaB5543G/rTiipkTwKH2a16b+7u9ME8lkErVazbmaaQZB7kJT3bDWukQgJFc0+mjkMU6OiUEGgwGKxSKWlpbQ7XbRaDRm6m+RqCWTSVQqFbfDTYOdBKpSqTj3Rqp+rK3Fgt/MJmmMwate9SoYY7C5uYlWqzVDdBgPpQap1vJiDa18Po/FxUV3Ho3mCxcu4C1veQvOnj3r1I44IuWrbL5rpCpsWqtOFbe4GLc4qBGpazBOHfY3JQ6Drh39V8dEidloNMLGxga2t7dn4t9UmdM+qUHNUgEkciQco9FopgRFOp3Gvffei7Nnz+Izn/kMPvWpT7m1ydhKbjCUSiU3v+yzJlYhwQIws6bUBZLna5IbVX6pUKnboCYT4RySTAJw642fA/vuw0wOxHet3++7z0nw9TmYrEczP/r3pTpO5c0nXuwTk77we0AJLufMj7VUJYtETFVifq8As6UZ+I5zs4TkVVVN9pvPzXY4Z5r9lPfV2FoleryOiUqYRIffCdw84KaNbtyQFOp7oDF8NwPHi8DhYL/vgICAgIAAH3HqGHB4YhGeEwefhAGz9aRUgYtrY57Sx2NxhGzec/m7xDSclpaWUK1WnbGmabIzmQyKxSKKxaKrm8Q2qZoA+6n1GVemaflPnTqFer2OXq+HTqczoxLQIC8UCs4gpruTFv+mwazZJAG4uLxOp4NWq4XxeOyURAC4evUqBoOBc7/r9Xqu0DZdKDkfNDRJABYWFlz2zV6v5479gT/wB3DvvfeiUqk4BUmJPOdiXkwbjUD+kMCStMaVDdA14pMzf13FxUj6f89LFhGn4unzxBFDkgOfWNKIVuOZhjbVNlVXNKEFyRpJjGYuJckFImN7cXER733ve3Hu3Dl87GMfw/b2Nnq9nss06Rf8plpM914l3ySiJI/+PLK/xhinmvE94vVKypTQaqIetsvrOHZ8No1342ckjrrpoOqYltqgGs0fluXQcgBcB0o6uSnCta4ulqpGqguwEnD/O0nfDb2eY6gklPOsz8f54EaSEkdjogREjE/j2OZyuRsUVr0nP2M8YrPZdK61tVrNjQ/VNz8OjwST737ce/Ny4lgROIQYuICAgICAI0AJFBAfV+a7OsbBN67nqW4AYomU/jvPJU7vQ6hR7auBcc/J36kCLCwsuNTqmoBCjVwahzS2SN54f2anZAFujbE5c+YMyuUyGo0GGo0GMpmMU+4mk4lTGIAoOyATnTC7JN0leU8qejRSh8Mhut0u2u22i89LJpNoNpsuqUK5XEaxWHTtdLtdp5qRSDCZBBApOysrK6hUKo4ojsdjrKys4E1vehNuvfVWZyD72f2UCNDAVRc6XkPCxh8/cYca3/Pmfx7p4rxoXJffhhJ6XRdxxE//9deTqjHaFxq5/D2OoO3u7qJer6NWq7lMoRonp+cqoSERYXZB9u3OO+/EyZMn8dGPfhQf+9jHHLnR/rE/Gv9FZY4kRVU5VedIEOhGpwa9uuwxFowqFD/jBomSHrbLuDjG6ZHMkLjw2dkWAPfOsf9cu5x3PjPHS1VO9lvLVyj51FIPVOL4/aDz6quXJEi8v64bVV7VdZVrUTcVdCNJvy9V3WSf+bkSNCZGItQlnG1rTKkSaGDfVVZjGEkm9R3n/AQXyhcJBggMLiAgICDgOWMe8ZpnUMf9x60kKs5NLS4m4yg7uHHG9GHEUq/lPdLpNGq1mku1zgLYdE+yNiqqDMARDHVlo9HEezKjH0nT7u4uTp06hdXVVVhrsbGx4bK1lctlNJtNAHCG6nA4RKfTcQZ8LpdzfaOiAMApDFQc+v0+dnZ2XMmCpaUlJJNJNBoNdDodZLNZl+57b28PrVbLnTuZTNwzKvnIZDI4e/Ys8vm8c68yxuC2227D2972NtRqtZkU6jp3ca6SNPyYgMXaqNA0M9xpfJcawvPWR5wK658zj7zNU3nj2o1rO06Z9ttV49Y/rooNFYyNjQ2XiZRkiutZSR9dTLXmH2t6MSmFMVGGwHe/+904c+YMPvaxj2Fra+uG8VPiqsk+gNlskfwb2C8IbYxx2Sb1+dh/9kUztvJ6JQ0keHQHpssi47h4LVUgKn4cI413Y19V2VPCyc0GLaVBV1ASbSUxmnxG4+ustS6jI4mSuijq+JLMcg6V5CiJU7Wf7wqP6frjs+TzebfRoe8Zx0YzgFKZ4z051jyPhJ2u45NJlEiJmwUk8qq86v8DunkTygi8SDDGwAYGFxAQEBDwPHAQmYojeHGKxTwlTM/RduIM8XkGt55/0P3irtdEJVS/uFPN3Xe6aVGN0BgfGnvcoWc2yW63i8FggFKphNOnT2NpaQmDwQCbm5szu9+9Xs/dM5FIuDpKNKZKpdJMvBKwr/KNx2PUajUsLCxge3sbW1tbzgUzl8u5uk10vatWq0gmkxgMBmi1Wi6ZBQ1KVRtoxJ8+fRrJZHLGSH/ggQdw3333oVqtxroeKuHw3SVJPljDrtfrOTdRGtRqjPpzFrdBoITooPP0fP8c//q4tXIQWYwjcnHX8FxV69gX/t1oNGZimJRc6Ljwd8aBaUIRna9UKoVXv/rVWFhYwO/+7u/i2WefnYnz4rpSUkSSo6oKsE/0SfYZ88ZjbEezhpIU8jnZlrrb8V4kb8YYpxJrOnzGyjG2TUsecP1qJkw/vk9r07ENkhP2Sa/hc2mcF4maqqO8v6ppuga0SDk/41jwd/1XCZGqaWxX76muwrwX54AJbEql0kxCJRLAyWTiypGMx2OX2ZOEkeqsxtixb2yDpE7VvxAD9yIhZKEMCAgICHg+OIh4+UbyUQiWfz6P67l6je+a5rer/x52jh5LJpOOHPGH8TdqTKpLFNU57lCPRiN0Oh2kUilX62x7e9sZtbVazaXS39jYcIaSGshMmz4YDByJYSKUXC6HYrE4E1vS6/VmjKdCoeCSD1AhK5fL2Nvbc0SAbqGJRMJlwOx0Ouj3+8hmsy77JVVHZq0jkaWhWygU8KY3vQn33HOPUxn9uVeCoclGVDWiikniRpfJeTFuOn/zXCj5r69sHabC+esv7ph/D/08Dgcpez7YTyU/SnhJduOIHJ+Trn5UrOhGyPUERO/qqVOn8LVf+7X4+Mc/ji9+8YtuXXMtakITKmhKGpk8J5/POwWLY6DqCwkSCQefw0/IwX6qykd1mwSx2+06l1HGX/H9UtdSJYhUy9gnJWhcayR6TLRCNY3EVuNSNS4N2E/qokla4pKX+Cn8tdSGjpGfgETXL8kU+6UKGL8rVPHSuFJVNH03VpIwjZ9lrTiON9ejX/pBnylOfeNc3CwcLwJnAoELCAgICDgccQToMDezecTJ33HW//h5nV6vhDDOdW6eYRxHBNWg1+eg4VUul10yEHXJorHiG7HpdBrFYhGVSsWlcmdNNZYZUJesEydOoFQqOdWNiUNIvqyN3CdTqZQjUyR3hUJhhlACmDHEqCSMRiNcv34d43GUTp2ZKweDAfr9PpLJJFZWVhyh63Q6Tpmh4clCz8ws2W63naFcKBRQLpedu+O73vUu3H777S6OKm4dqPJGQ5IEg/0ncaPxSEOX185bezrPcapt3JrQNaNKhb/WDnoeX2X0r4m73t94iFuj/r302blGdCypOKki4rtZMtmExshpna9isYi3vOUtKJVKeOihh1wbqnxys4DrH8CMqyawXwJCYxS1Lf7N89S9UTcwOB8kjxqL56fS50aCkrc4ss73SEmWtXYmk6tmU+T6ZMyduiRS0eb7xvGh8qTjxbbUjZGKtq43jYXjufxu4LPp95W/XnQ9+fGDqkBq1ksdS24YNRoNVzOQ5UNI5qj+xr3bHA8SVxJRfb9uJok7XgQOwYUyICAgIODo8MkP8NwUNj+JQxwh0zZpIPjHtI24z/y+6XH/h4H8i4uLM7vnNLSoMNANkioXywaQuFA9okGsZISJQ4rFIjqdjouD04QF+Xze1egieRsOh0in0yiVSiiXyzMKAJU7YwwKhQKMMWi3204t0Ux93W4X4/EY9Xodq6urmEwm6Ha7rvYY3T6ZhY/ZJbnzzpg2Eri9vT1Uq1W8853vxK233jpjuPrz4itvqiBRYeSzkrCSvPnk/igKVhzB89eFQmPI1P3tMAVO4W8M6OfzrvWN4Lj3yW9PsxWqiklVheuX5E0JH49rseXBYODWSy6XwwMPPIBqtYrf+Z3fwdbWljO4lXiTaFH5U6VlPB7PuGmq0sZ3jeuAmyJUrjQ+ioRsMtmv5UYiQ6LFd4vujkpeAcwoSpwHrm9Vofiea7FwuisD+26svB/bpNs03xutDacEynfb1PnzCZe6TioJ5JjwHYxLrMMfdbfUZ9DvNiZJ0nXG752dnR2nzFlr3XeHT6414YuvnMZ9Z8d9l7+cOF4ELihwAQEBAQFHQJxydlR3MMJXzQ5TzvS+84z4g4zeOPXD/zuTyaBSqWB5ednVkaJhS6OsVCo5g0tLBQCYcWMktEZZt9tFOp3G4uIiAGBzcxO9Xs+5hrEPmoxkMBi4JCKs60bVhDvbrNtFtYCFwFUhoNLX6/WQy+VQrVaxuLjoyNvW1hYSiQTy+byLL0qlUqhUKigWi069K5VKAIByuYx8Pu/UuHe/+904d+7coeTNj3djYgQSXCYqiXOZPGgt+fecR6L8NeWvK/963WTQn7jnm9cHvf6o63ze++RvTihBUWVHyQCNdSV4PDYejx1Z8ZPQJJNJ3HHHHQCA3/qt38LOzg6A2dgqjTmjMkM1S2PQVHkC9gt5M8ZOvwNIBjR7IkklCRP7YYxxyi0AFItFl9CEZE2zn1Ld1sLcmpBFC6IDcBsjiURiJjunEhCSUv5NMqvZL6nQK+nxVbE4ZZkKGe+rn+vY+N9n/saDtk3CpW1rkiG6LDcaDVdfUN9rdZ3kfPEzqricyzhlmtdpn15uHCsCB4QklAEBAQEBh0P/k+bfcUrCQdf7fyspjFPQ5qko89r2+3SY8lIoFFCv17G0tORICoAZ96hareZijUqlEqrVqqu9RbWG6Pf7sNaiWCw61W1hYQHJZBKdTscl5qCCkMvlUCgUUKvVkEgk0Ol0nKJAYlWr1ZxxCsC1oSnTeR1VQwA4efKkI0XZbBZLS0suyyRdKVkzju6K2WzW1bkjkaXCyFi5TqeDSqWCt7/97bjllltm3KkOU960npsWE+/1ejO1x3wjz587GqBck/PWg4+4TYh5a0bnVt3x/EyCcfAJXVwffONW178eVzLpt6VudSQEVHpGoxFOnz6NVCqFRqMxE//E56ESVygUHIkDImJ45513Ip/P49//+3+PnZ2dG+I9qbSpEsX5U4WI48U1SkWNmQ91vJVc0C2TGx0kICT9miBIiROvJbnlBomqhewHCRrjNrku/WyyWrReXRrVRXBvb8+p7ySwrLOmbsl8Zr4bSub8RC469ySCviLNNabqI9epKmZ8Xt1s4hyxxAhLj9ATgO8s21J1T11VOYfqWq5xiLzXc93we7FxrAhctJBudi8CAgICAl4JOIorY9zxwxS1OIP7IMJ20HVH6VsiEaXEXlxcdIpaJpNxhiGN0lQqhX6/P5Mum2Rjd3fXJSzJZrPo9/sA4FQvGsaDwcAZryziTcOxWq26ZCNUoeiKxFg8YF+5GA6HaLfbrj8A0Gg0XLt0yVxcXHRJSWq1mlNLqDrQ5YxGL43TWq0GIDLoSA7VlbLVaqFer+Ptb387zp49O0PedG595Y3ukFQmSdz6/b4bT1WSdJ7iyNxB68J3KdPrjgKe5xNDn1BpPFKc4hB37UHE77Br50H7A8zGJF27dg2VSsURGYJjxKQf+Xwe+XzeqTBUWM6ePYv3v//9+OAHP4jr16+7jKjj8RjtdntGmdHEG/qOU5WjYW+MmXGhpEpGssZYLBIlvyi0Jt6gCsTzGFOnBFwzLFIVJ1kigSV5o+unTx6ZKITt8B3VDJW6qeCrZboZoC6XfuIQ/VtdZTlnGlOnRJDrhGNLEs21yfvp3PN7iN8tfAbWBOT1/pwQ/D5imzyHfeA9NEHLUdbzS4njReAABA0uICAgIOAomEeYDvvP+TDSFkfWdGf3IBc0/3NVKuKMcLpMMosjsO8GRgNQU4szKyUJEoCZGkrcoaebZbPZdDvTVAtoLDI9P5OAZDIZR2TowsZEJdls9oZYMRqumUwGvV4P3W7XFfcejUZYWFjA3t4eNjc3MZlMcOLECWSzWacYMs5MDTsgUiKz2Sy63S5SqZQjfLVabcYNs1wu4+1vf/uM22TcnCmBo2FN4sa2+NzqMumvJX6mLoNxOIqLItvkz3MxKOPO8d3Y5hG+o/bTj2k66No4NU6Jrs4DyRHVGHVT1PNYa9AY49Z5KpXC+fPn8Uf+yB/Bb/zGb2B7e9sRfp1/KkTq/kjDnZsSVLO0ELzWVPMJBxOO8B1U1ZtZUJWoUfUjgSAZUhKpZQeoJE4mk5mSByRv2jclTCSUWjDcz3ypa4zfIxpj6T+zupOqO2zcfTlGGpOoypc+M7Dv6qnqHuee48ySKVT3OQf+BpwmhyFhV1Wa/WJ/VfHVBEk3C8eLwIUYuICAgICAI4AGBnC4y6RvYMa5S/qfabv+PQ67X9w5ccSOZQHoOqgxHOPx2CUCIdFjNkiSJybvYMwalSP+3uv1XAHdbreLUqnk3Mt2d3ddzBEzOzLmi8YX1UB1lyLxojFrrUWj0XCFdGlI1et1F8PCEgGMbWPfut2uaweAU19yuRxarZYbA5LcXC7njLpUKoUHH3wQ586du0F503H31TeqGHTb7Ha7M4okDb04lTZuLfjrYJ5Cp+RKDc24NXRURS8ONFhVYYozUuOe6TAlOu6cg9RujXdTcsZjJFEkKJpExFrriDzXJo3+U6dO4T3veQ9+8zd/ExsbG47osW9KToDZ2DyOO8kCn8GfH00cBETuy+wL493o9qnqnM4r49aUpKqrJxVCkjSuS5I6fS/0fBIWzrWqX6rE+t9vhK47JTyqjPqZPkkKtT1rrXMD1Zg836VYx1bfD72G311K+lR14+f+pgmv13EmYY4rGaHlLbiZcLNw/Ajcze5EQEBAQMBXPOKCz9Vw4e+HJZ9Q+OfFGe2HKSu+MhHXPxKSUqnkAvm5i091gkoVs9lVKhWnGgFAtVrFcDh0MWk7OzvIZDKo1+uOmBhj0Ov1nIpFNYNjQkWLagITOuTzeefqxZ11ADMxc8xOubGxgcFg4Gq0JZNJlMtldLtdNBoN5HI51Go1pFIptNttdz0JGhU7KhmlUsn1uVwuo1aruUQnzMSXzWbx+te/HhcvXnRudHHzQWNSY9405q7b7aLdbrt2VXnz2/PnVV2z/Ln35137p8epRPAzTfrgq2mqvhy2LtWQ5rV+Qol5ZC2OlPrtzlOa5/2txj/bOUzN5H24rowxTvE1xuDcuXP4mq/5GnzgAx9Ap9O5wS1QVRrNfMhNABJLkgRVsjQWU9U6Y8yM26OST/7NeWV7mlyD64uulOl02pXgoBsvAPf+cbOB64Tt6/NwrLQGH/ug7owE1XNV05QssZ+q5Ol8kECSpKnapySZfaZbKNetzjOJOt1FWQKF48HjbDORSDgFkYSPz8cxTSaTLqGSqugkcFQhORZHUbxfKhwvAof5BScDAgICAgIOgq9OHJRhLM4oj1Mc4jDP8NU25l1bKpWwsrLiXMiYLp/GCHf+WbuNyUqYpj+RSKBUKmE4HLqEJFtbWwAidysW0CZZy+fzLvaN6bdTqRTq9TqSyaRL80/jigWQk8mkK1Gwu7uLbrfrjKxMJoPhcIhms+lcnnifRCLhajYtLi7OFBKnyybd3WiMjcdjlMtl5HI5p2zk83mcOHEC9XrdxeQxkcltt92GV7/61TcU6fbnRFU3Ki6aaZLKG0ntQetF5z5OgZtHjNgPYNbgJvx4sDhCd5DqFaccx907zrUvrq/a/mGbEc8FvkuqkkEALvZLMRqNnIrM94RKXSqVwpkzZ/DmN78Zv/3bvz1j7Os7SCJF454ZDZVQkhAxTpQqt7rZMZOjuhQqUdT3lkl9NHYN2I/z4jtAUsi1zX5SjdNadFTNeB6JH4kJoWsf2K+nRkWQSrOftIXjRVKmsXZ6nr85wvEjgVMVUsmajgG/W6g4cjz57H7WV1+5ZftauFz7qTFznKfJZDJTT88fp5uBQwmcMeanAXwdgHVr7T3Tz34QwJ8FsDE97W9Ya39jeuz7AfwZAGMA322t/a2XoN9z+hoUuICAgICAwxGndviGtZ7n/z3P8D1IafM/P0y10D7m83ksLy+jXq8jnU677GrA/m7z8vKyMwKttc6FkWoRic5wOES5XHaJQWic0y2SKl2xWHQFuNvtNiaTiUtGYu1+bSnu7heLRRQKBWc8Mlul1l0iQaPqsbKyglqt5pKjdDodZDIZnDhxAslk0iUGIXkC9os6UzUol8vu793dXZTLZZw4ccJlI6Q6mEgkUK1W8frXvx6VSuVAEuHH91DN6Pf7aLfbLuaN7mxxaoXOqa8g+fMbtz4UcTFpcWtPDUpfhVPF6CA1LQ5KbmgAxymXvoKtffXJa9xYHTYnPM93H2X/qI7wMyBKbsJNAsaHkQTdfffdGA6H+MhHPoJerzejqHGMSGC0NhjHmsQvl8u5uFGt5eaX5eBYkKik02mnAmsCHpIukgUq7ZxHZnLt9XpuY6RcLrs4PRJPdeXUkgTaNueTBE83APxkIXx+YF+l00yTqlrzWdUVVxOCkFTRLZR9oZsilUue4yvK3DzRupa8t2Yn9UkWSSznkXPJdaFuknz2VCqFWq2GdDqN9fV1l/TpZopGR1HgfgbAPwfwc97n/8Ra+4/0A2PMqwF8E4C7AawC+G/GmDuttWO8DDAIMXABAQEBAYfDd0vjv4e5gPHfg5SHg9SGOEIYp7rpeeVyeYa80VWKBhndtrgrTqI2Ho+xtbXldpDT6TQqlQoAoNVqOTWCLlH8nUoYY99oDNbrdVQqFZfdD4ArpKxGKGuwMT4MiBKLTCYTtFotRxQ1Ox8/L5VKLtMgU/LTUKbR2el0kE6nsbS0NKMOApFr6MmTJ2GtRbvddq6NJJCve93rsLi4OGO8+XOhhh8NUK1n1+12nfGou/1KVPzEDf495qlU8whMXAIKXuO3p59rf+gGqiSOButRFGC2xznTeCPtv953nlJ30PtzGHQsfHLkt8Hj/X7fxcRRtWHc6D333IPr16/jS1/6EgC4eVUXOSpZ2i5d6vjuMfU+EK13nqcxbBw3KtFUe3hPZmSlAk7iwvkikdNEQKlUCoVCAclk0tVOJDkkoeQ7qTGBfDaNHeQzMzYvLv2/kiqSUS18TmjsoH7f+uuGRFBJG8eHZJrvL9U3rYdHl1GdK34Pso98p/l8qvJpshYSN44hP89ms8jn8yiXy+j3++776Cs6iYm19sPGmPNHbO/rAfyStXYI4CljzOMA3gDgY8+/i88BxgQFLiAgICDgyIgjTXEqxrydVt8Q1/PiCN088qZt8Hfuqp84ccIpRuPxGMVi0V3LDJAsJk3jiKoXEyUsLi6iVqthb28PGxsb7vrBYODctHq93kwRYRopuVwOlUrFkUcmGkmn0ygUCi7uhK6EqVTKFc1muYJut+uITzKZdESy3W6j0WggkYhKIVDBa7VaLqsjs2QWi0X0ej0YY7C4uIhCoeDaNMbgzJkzWFlZQbvddjFyLJ1grcX999+PCxcuxGaP07lQt0mqAyRudJtkDI26U7Edfqbkzd8ciNsMiFOAfXLku1PGKVHzyBehsT80kNWYjVuL2h/+rQrMPGL5UsBXVvznn3dfKnEsk8F3rFgs4s1vfjPa7TaeeOIJAJEr4nA4nDHUmQiFpIXKjNZt45oH9pNs0A2Ra4rvLUke1ScmHqGKTjWMfdbYKyqJrPvGdtS9ke6RbJ9Jg0gidczo9si1wGfV70KSLrZDEqQxe3xudUHkj5Yd8RVgkrdcLudcFakIxsXJFQoFVCoVNJvNGfdZEkF1K9f3gaRS++ZnHNV54/Ucc5JvjvnNxAuJgfuLxphvBfAQgL9qrd0BcBrAx+Wcy9PPboAx5jsBfCcAnDt37gV0Q9rE/KxeAQEBAQEBPg5TBw4yCOPaimsnzlVMf+IM7mKxiGq16hJx0Fiiwch6UUxlzsQdmnSCZGxpaQnWWmxvbztDqdPpIJfLYWlpCa1WC61Wy+38sy0aKrlczrksUcljbB2zVNL9i+oMAJdIgVkmqWKwPECv1wMApyAwQUS73Uan03EqCPtBNZDkb3Nz0x0/ffo0lpeXnUsZjS/ulp89exb33nuvUwrnEQw14NQApisnDWtV9nSO1X1M1wTVmrh7zlPR4o7p56o4qUHMZyfxiFN9+S/b57MqkfON/Lj+qdKoLpo6Ji82tF0SDK45Vf588suNB8bE0ZUunU6jXq/jwQcfxPr6utsQYBINP7GHtftxUsB+HCJJls4JoSqVki72W90FScSYYbJQKMxkf9UC4nTjY/tU6DRhEV2XdS1RVWb8G+effed65ZxqghG2q9A1Hxc/pz98bh0/JXbso2b6ZHkTjiHLk5Dgaeycv8nBd9qfD1XeGFPsb65w/TAOV11f+d7cLDxfAvcvAfwQopCzHwLwYwD+NFiKbRax//NZa38SwE8CwAMPPPCisK6X6LsiICAgIOCY4iB1zD82j6Ap/HN8sqAGQty9mQmyWCzOGGh0r6LRMBwOnUFBA02NQRo41WoVzWbTxczROFxYWEClUplJPU6XMmPMTDZJkhU1ahkP0ul0nPJHQ5JGzWAwcEoY215cXEQ6nUaz2cR4PEa9XnflDFqtliNJo9HIZdlkXE8ikcDy8jJSqRR2dnZgrcXCwgJOnjyJdDqNRqPhDM29vb0ZF8rXvva1WFxcnFsygOPKf2k80m2SGTQ5fkreCKp1AJzB7SdT4FzHrTXe2ydKGo+j8I1HbdNPZqIqmR7z+0Y3MwDOeFdSFrd2eR37zzF+sYlc3L1pnHOd+MdZG40gIcjn824OGVN29uxZvPWtb8VHPvIRV9ZCN1m4LtLpNJaXl90z53I5nD59Gnt7e7h8+fJMHURuAJBc5fN5Vy6D55C8UQGjas4kRHy3qbpRFeczM7093Ti55plZkWSIY0N1XV0mOd98RgAzJJ5rhv2m8svjzHCpiizHlePuJ2/hvGn5E3oEUBXz4+14bxIqXa+6ppU8qhsn/9Ysn2yPY+O7FZMYWjtb2kHbuRl4XgTOWnudvxtj/g8A/3n652UAZ+XUMwCuPu/ePUeEGLiAgICAgKPgINUtjrgdpML5rkD+zv8849d3n6vX6y6bosaA0HBYXFwEAJcpkmnRuZPMGJFisYiTJ08CADY2olxj5XLZZYxcWVlBoVDA5uamU+Vo6NJ4YbFv7srToFGXyWaz6frAGnDc/ScZo8HLvjF+jSQQgMu8R0M3m826EgWtVgvdbtcliWBSFSZAOXHihGsDiEgU3TJpSL/hDW/A7bff7oxhf27VFU/dJ2nk9vt91z8asL7rJEkjjV9Vv9TQjZt7/q1ETo3R56oAq6ulv0a5XrRWlq+2aeIWjXU7qHCxqhc04v0MhM8XOh76t6+Q+GPgv396LstJqKqcTqfxqle9CtevX8ejjz7qymOkUilUq1UMBgM0Gg2XyKNcLrt3g7GalUoFJ06cQK/Xw7Vr15wbJtU0khWSJ81syJg3jSudTCZu7bGf3LDREgEkm5pYiO8c55Jz46fQVwVV1TOOiV7Pda/xb3EukXzXOP70GKCyp+uQCh/dNtX1m+6pvB/XIGtA+qqz/52qZIvfo+w/iS1/9zcq+KMbGX683Fd0DFwcjDGnrLXXpn/+UQC/N/391wH8gjHmHyNKYnIHgE++4F4evV+wIQouICAgIOAImGdYqhE4z3iep6L5P6qezFNdUqmUS3lPcAcegEsp7hvmy8vLAODi4sbjMSqVClZWVtDr9Vxs2Wg0QrvdRiqVQi6Xw3A4xNbWFrrdLtLpNIbDoSNILIStrpi8J+OFqErRBY2GHGPdOp2OU95IDBlXw2cql8uw1rpYORIlFjwejUbOnY3GKN0hAWBlZQUrKyszu+Ddbte5g9JYrFareNvb3oZyuTzjnuUrT0o+qGqwYDgNaHWd9IkfjU5VoPx1pKTMXwv+73Hn+/0+iBTNW8M0WEnMVZHz4+CUgKr6QdUizmjmvThGfjr45wKfuM17PoLzoa53/oYKjW8m8chkMk7xpcvvG97wBly9ehWbm5tIJBJunTETIQkU1yrvbYxxZQTuuusu3H333fjwhz+Mzc1N57rLdUJ1iuoP1xXf9Ww2i/F4tvxFPp9386nkLZPJuDY4r5w7XaOa/IMJVMbj8cx7ReJGsmmtnXFJppLmEx0dZ2DfNVTVX/0u5PcelS0lkarm63hp0WxmptX4Qs1AyjlRrwVNxuKrcfqdrS6XfrIjfh8mk0mUSqXnspxfdByljMAvAngHgCVjzGUAfwfAO4wx9yFyj3wawP8KANbah40xvwLgEQAjAH/BvkwZKIGgwAUEBAQEHA1xxAuId53k53HH9VgcgfMJg99uIpHAwsICqtUqADjDaWFhwblnJZNJtFottxutrlVMhADsx7qsr687I4OxacwCSXWKCVKGwyFKpdJMohLuUtOYIXGbTCbodDqOcJHQMPkClTeSMgDOcCWZYswck5rQUGKNOmOMy0jJZxiNRtjZ2UEikUCtVnMukzTSeXxnZ8cZwjz2hje8Aaurq7Guk/4cqvpG90lmm6TBrG6RvjpGhSCOpM27txrYSjT8tXUQYYtTdtm2GqU8xz/fz+SoioOqljo+JDC+yqbrXjMAHjb+cZhHcuPeJyUrPIeGuv6tY8w6h1xjdENcXl7G6173OnzgAx9wCXWoTpFgkdgwFq5QKDgVaW9vD81mE69+9avxjd/4jfjgBz+I69evuzWpKho3CugGyRICXH8kjvl8/gbixphVummyfVXS5n3/qHJHNZ+Emyn5ATiFkuuACruqbDrmGvPGNaMqIM9Tgskfdb2kmsjPqfpzrapiTVVRlTFdE5pkhetakxBxY4Lrmn3XmGK2RwJLAs5SLjcDR8lC+c0xH//UAef/MIAffiGder4wJhC4gICAgICjIU4R83eW+bv+q9fEqQSqavhGvhqSuVwOCwsLLgaGoFtgIhHVLdvc3ASwnyigWq1id3fXkbd+vz+jKqjSxHaZPbLX6yGbzaJSqczUUdNMkqq+aYkAKlEAnGrB0gM7OzsYDoeOlDE7JpOKcHxIzpgMhLEttVoNyWRUGJyZ/JhlkkpevV7H6uqqu2e/30ej0XDGKw3eRCIqVn7x4kU8+OCDLsV6HPH2lTdV3/r9viNwVC/8JCeEup/6a8y/r66LuHUXh7i1FKcmxqlhCu2z35Ya1Rrrw+fyyZxP5FSR03ZJqrWG2HPBUdVGnRONi+K/aozzX9ZQo7skY04vXryIxx9/HI888ghqtRoqlYorVcFnyOfzjrAwKQo3PPr9Ph599FG87nWvw/ve9z78m3/zb1wGVroBckMA2FfcjTFO9eX7x7qLdAnmfJC8MTMq+0bCxe8VJT0AZu5PMkZ3bW5AcK1zo8aY/SQtJJwkMRr3qoqYzg/vzf5xrqi08ZlUGeN3DQA3tiSZVAkZD0xXbr0niRs3XfhucqNFYyB5f3UZ9ssWKHZ3d10NupuFF5KF8isOBsGFMiAgICDgcPiKW5yKEbdzTcS5x+n1/n3070QigcXFRZRKJZeoJJVKYWFhwSUzYFxZt9tFJpNxpQNGoxG63a47TgOKyslkMnEJGIwxzhCiUcSYG7omFotFV16ARjuNHWaGJFnSlPo0cHq9Hra3t12f9/b2cOLECSwsLDgDkQSKWSTp1gTAlRQoFosupk4VPaoPp0+fRqlUcupGq9Vy2fnoTsX4oXPnzuF1r3sdLly44OL9qE5w7nReVVFjnzUuj2Oj59FAVbLrExjfoFTEJSvxjym580mRrlF/XfprM0799WPk/D7xb36mhq26UKrKweQTcYo2SaG6mPpQguX313/GuM0X9pnwa6hpTJYSPW500FBnEqAHH3wQ7XYbxWLRJeDhBgdVND4vXRxTqZTbnGi1Wnjqqafwxje+Ea9//evxqU99yo2hkjeqbsbs107U90/Xn9Z6JJGiIqTKEWvT8RmV/JCYcFNH+67KKeeV55D4sV2uAxJJzSbJd0ndETm/7KfG0dEVVWPzmP1W3RpJpIrFIgqFAjqdjiPhvI7PoeezDSWzOi6+6qakju3ou8jYxOfrHvxi4FgROAQFLiAgICDgiIhTxvRz303uMDe2gwxNGjBM3U/1jHFnTOjRarWcQdbtdh3BSyaT2NnZwWg0colOSqWS26lnljomHmBRYRI8YN/FkkZcuVyeyUxJFSadTrskJq1WyyVQYDwOY2eazaaLpWP2zDvuuAPAfuHjc+fOodfrodlswlqLpaUlDIdD95zMhrm9ve2IJxDFuPAZl5aWUCwW0e12nSvlvffei263iy984QuuBMKrXvUqvOENb0ClUnGFm8vlsttZj3PD8wkOlRjGBamRrOqNP7c+yToouYG6lynmuQYepqT5UFJ51GsINUiVCNIAVoNelTlV7jSLoK8QqivbYf07iND5c+kfU+Kpirgfq0XywY0NbjBkMhmsrKzg3nvvxeXLl2fcJ0nc+Ny9Xs8VrGeMJzc7rl69il6vh/vvvx+PP/64K4+hhCGTybh4t26365II5XI5pwSPx2MXc6WqmDH7KfA5H5lMxhE9bt5wPDTGjIobr1EiphsUVPGouGez2ZkkJeqyqUqs1qVj+7rRwTVBEkjySLWPqqZuiJD868YUXVqVrOszsH2+tzr+PKYqI9edulRyg4J9VvXzZuF4EbiAgICAgIAjwjfkfDUNiHdTi2vDj7Hxz8lms6jX61haWnJGBpU1JgZhOn8aUbqjz2LWlUoF5XIZAFzsi2Z75C6+qnAkgGpcUlUgOaPBn8/nXTFtKmIAXJY9xvrs7Ow4JYzkaWFhAf1+H+12G+VyGdlsFjs7O9je3nbtr6+vA4iIEpWK7e1tbG9vO8LJ3f5SqYR6vY69vT0888wzyGQyuPXWWzEajfCpT33KKRV33XUX7rzzTpw5cwaNRgOf+cxnsLq66uIIGUuj8+W7T1I9JPH1673NI2/z1pHCV8/i1FsldRqHw88OQ5wKFXfdvPVL0GhV49dXp1W90sQmNN5p/JIc+Eokx/OgrJZHRZw6qWSAz0QFUdPma5IWTU/PuM7RaITz58+7uoQAXJwax4hujXxP6NLX7XZdH9bX113yEz9ZiG6+UEliqQEmC+JY8TmYqITjq7XJfFVM67lxPDRLpRIoEnSSJs6pzrXGFHKzh2NIMsl3iWOs17BNfuf4bpPcgNLvJH3ntM4dN4mYIMlXV1Xt080EfxOBz6guw3Q316LoJMncAKM76c3CsSJwBggOlAEBAQEBh2KeyyMQH+sWd42SNjVufaO0WCxiaWnJufNlMhm0221nLLAmmsarWWtdTAxj3Or1ussiaW0UE0MlK5fLuWyTmUwGlUplph4X76UFg7VgsbpssWg1jTaqbjSUtra2sLa2BgA4c+YM7rrrLhe/1mq13L03NzfRbDYdcaRCyAQC+XzekVYd10KhgEqlgmq1ikajgV6vhwsXLiCdTuNLX/oSms0mstksbrvtNrzmNa9BvV7HxsYGPv7xj+Pq1avIZDJ48MEHXTzTPCKjCRRoGPsJWtTFSpUMYDbDoa6HuLXmq7px8JW5w8hNnFvlPPIYd8+4DQv//nFkk+f4qgazJVKB0/p/qthwDLRwuI7pPAKq99d24p5f3fT4uSaq4H04Z3qeZmnkpsva2ppTxVR1ohseyQVBJW8ymeDSpUsueZCOCYCZum3FYtGpcVrzTUsP6DvsK5x8Fq5lfk8w9pBum+y/jiHVU008o6qzqqqEKnD6PaPqlRY3VzLH+Db+zfEnMVLXVlXhdC0kEvtJnEgY2X8lcrreSYKVoJKkURkkSWOMHO9H4gvAEe15HhkvB44XgTOAvXlF0QMCAgICXiHwDR8gPh26wjcg1WiZd26xWMSZM2dQLpexuLiIhYUF7OzszCh+LF7NHfFSqYRareYSh5TL5ZlEBkwg0mw2naHJtorFIk6dOoV8Po9Op4N2u+1iTFjDjUH/NHDopgnAxbNxZz2RSKBSqWAymaDRaGB9fd3Vcrv99tuxurrq1DoAWFhYwO7uLq5diyoNMY6F6l6j0cBkMsHi4iJGo5FTGACgWq06RXI8HrvMfdlsFpcuXcLW1haMMThx4gTuu+8+XLhwAVtbW/j0pz+NK1euOCXy7rvvxsmTJ29IAR7nEsvf1ehV9U0TNMwjXgCcsR3n2ncYeZtHMg9S3pRA+c/o91U/8w1ObUP77Pch7h3xx5VtkczRONYYOa1tqOSYmw0HPXNc3+Oe1e8ryYSm2PezDqoSa611iXS4UfDkk0/OjBcVO2A/xozqHDc6qH41m03s7Oy4TRolLSQTrP1orXXX0vWQ52r8of/9pc86HA5vIG+aRIaqG9vlj8aqaWZSVal8ssj7ajkAkih1sfXXKImeFtT2E+FozKXGsOp3LpO3aH+0JqCqciSp/ntAJZH94TNSDfTHlXGJjEO+WTheBA4GFoHBBQQEBAQcDN+g8N1v9Lw4Bc5X3vRaGjTVatXFeJ0+fRrlchmbm5uuJlulUplJl29tlO6fmSk7nQ7q9Tqy2Sw6nc5MP6hssUD3aDRCtVpFpVJBrVZzxa5pnFQqFeTzeRfbxZ34YrHoUmEzAyQVOiZC6Ha7WFtbc9kwl5eXccsttyCbzaLZbGI0GqFSqWA8HmNrawtbW1solUpIJpNoNBqw1jplge6cqnKxDzTwmanSGIPBYIBOp+MUyDvvvBMXL17EcDjE5z73OVy6dMmRwslkgmw2i1e/+tUuhk/nl1AipwYsk5eo+qbgmBE6b6rq8B66hlTNOAhxBEQJlvadx/zn1HO0T3FGv97Xv7/2lwa9blbMI3ccJyU6VFaYaEbJLgkQyd1R4Y/xPPKqxFLdKX0VjmNJFYt9KpfLOH/+PK5evQpj9t0Es9ks+v2+Gx+6VjK7bKvVQqlUQqFQwPXr12fcB7XouxbmVtdALcRN9UvdAqkK8RmpmLNPqvKRYGpdNPZBi3/7Kpu6OJJEKdGaTCZOefVdfzm3fjkKv+8sXO4nmtF1rsRb1Ty2z7hfzRbJtujWSsLujy3XD4m3JuzheJCMMsaT5yrRfblxvAhcSGISEBAQEHAExO0GzzMeDyJxapTQ5adUKjkytbi4iDNnziCdTmNtbc3tGOdyOfR6PeeqmM/nUS6XZ4zHxcVF7O7uuoLW3AXf3d1FqVRyRI5k8OTJkzDGoN1uo91uO0OwXq8jmUzOkDe6HzEVd7vdxnA4dEYmC23v7OzgypUr2NjYQDKZxF133YV6vY5Go4FWq+VURSY0WVtbgzHG3YdqHsngeDx2ac9J6FjGoNvtYn193REAjlUikcBtt92Gixcvolgs4pFHHsGVK1ec4am75qVSCbfddpvbOSd890Q1NEk0/GLdJF3c1Y/buffXkqoS2v5B8ImXQt0JlQiqauQbx/qMamDGKXBHgf8s/prX9v3nYh80SyVdFJUskAg8l7i4w0gb29V3VvviZ6lUtY4qHEnl6urqjLsyiVi5XHYJh9SFku51tVrNxbhqlkfOo9Ylo5pD5UddS/1r1cVPFSJCVbS48g5KZlWBY9tKWoD9siEkOqpWaeyY73aoSWRI5Di2Pnnjs5J4qvqtmxR+Jlt+75LM+a6/VM6MmU3aoslXdIxJLJXscc2oYuhf/3Lj+BG4m92JgICAgICveMxTH/xjhKptfjs0UPL5vCsyXSgUUCqV3N908WNds0ql4twWq9XqjHtjIhEVrKa6RaNSM9Sxj1TsqtWqi4Fjcg9mcQTgdov39vaQz+ddLE+323XHuOPMtPtra2vY2NjAaDTCwsICLl68iHQ6jWvXrqHf7+PEiRMoFArY2Nhw5JQZ4UhMOW4kq4zjoeFaq9VQLpexsbHh3CmpGDDO5O6770a1WsWlS5ewvr7uYgR9I9JaiwsXLqBarcbWfeM8+vPMcaH7pNaOUle/OHIW97e/Po6qvM3rH3/3lZO4uLK4dc12/T7HbUzwuBrBej6wTxDVbW7eu8G2td90D9SMjsB+/NJR68Xp86krpK8u8lyuF26ScB1SndN2eA77yFpwVNBLpRJSqRSKxaIjUNyQ4FjQLbLT6TilXdVvKpL9fn/muf01o+6LSjQ5B1SO9/b2XD05jrO6L2p5ANZgVKWW5IVkjGRI4wN9kqbZRPV91PePCqOqZhrPp+qnKtXsF+eFCiOh7yfHiH3k3+qOyu9CEmEllfosSuT5PcWNhcFg4DbHXowkPC8Ex4vAYX7NnoCAgICAAB9HMT4Pcj0Doh3jlZUVLC0tuZ191jcbj8e4evUq1tbWnKHI2mY0Vph1jjv+pVJpRnUjuSgWiyiVSjOpuRcWFpBIJLC1teUUNmZwLBaLrkYaDRPG9QBRyYJ+v+/idgC4xCJ0TUwkElhaWsK5c+fQ7/dx+fJlFAoFVKtV9Pt9NJtNR6gKhYJLwc8MbnwuKgYsDJ7NZlGtVtHpdHDlypWZZA7GGEdo8/k8dnZ28OSTT7oU7P4cAXBG3J133uliAg+ac513KoV0n/LrQ/F331jz1ai4NaLGaBw5U/Uurg39XJNmqEqifdW+zFMD+bmSFb2PT4Z86LjFuan6KrU/T3wOrnduKPBZ6Kr3XGps+WTR/5z3Zp+p1nA8/LlV0smi0SdPnkSz2XSxqePxGAsLCzDGOEWcpC+ZTLqYTG5eUHVW0qAukySyVNJIfHQDwX8+HS+STT+5iK5jjj37wj6Q9GjSGc4xgNi1FucSqco6lUQ+F9vTRDL8TDcitD9KqLSEhZJIuk6Xy2V0Oh30+31Hrlnv0q+pp+8Gx4rkOZvNOqLPsWXNSc4X55/fpTcDx4vABQUuICAgIOAIiFMhCN9o9cmcGsBU2VjPDYDb9d7Z2XH/0VORoltlPp9Ht9t18W4kOcPhENvb2ygUClheXnap/KlUtVotZ1zV63WMRiNsbm66orLFYtGVGWi32y6zIkkd70E1jG6NQJQtc2dnB9evX0e328Xu7i5WV1exurqK9fV19Ho9Z6ju7Ow4tZDgM47HYywvL8PaKNMljTkmNCmXy6jX67h27ZpT+EhMSDBp5HY6HWxubs4QKRrBfvzJ0tISTpw4MbP77ytL+kODXmPffPXNJwAH7bj7JOww5S2OpPlqmt9PYN+w5z38cVDCqTFeuo59ZeWwNa8GexyZiIt/8tvxx4jur1yjNJLVnTJOSZ337sapbv6/XD/6o4RV54OEjOSqXq+7TZFyuYzhcIhms+k2Y7jxsLu767KrJhIJR+CAfZVHs1dyvauaRNdCAM61l/3lmJDUAHBtcM7VJVHXCJ+f4JpS5YrEmaqhJkJRqFJnjHFxrQSfg23x+bmRpPGZ7CfHXskb+6WKl65/ulAyXlHXlbZDldJPbqRqNs/ldxmTwfA7nc/rq9I3A8eKwAEhBi4gICAg4HCoARinsPnuYr7hnslksLi4iEqlAmCWHPA//729PVdMejAYoFAoYHV1FdVqFbu7u6jX60in09je3kar1XIFhNPpNBYXF9Hv99FoNLCwsIDl5WWsr6+7mlJAlDFyY2PD7TYXi0VUq1UXA8dnymQyzjimiyVdPql4JZNJrK2todvtOiVvaWkJlUrFEbpUKuXch2isMRZIEwNwp7vb7QKAUw5TqRTq9TrG4zG+9KUvOaOWRiKJHjMX0hCm6xefZ5673KlTp1Cr1eYa/b6xTzVCf/zYN/+eCjWSde34CtA8lU3VMEJj3viv1q1SNy8a5kr0FPq3byzzMz1X44fUOPXfFf93n8jpePBYnBrIsRiNRm7DoFAoIJ/PI5FIuFgkVXDixtV/j+e5UHKMlPyQsOgxX81jBsdsNouFhQVsbW05xTmfz8/EsFG1YVbZQqGAZrPpXCZJoDT7JK/X+Col2BwjJVtxGwwAZtaDKov++uA8a4p/ADfEeOm1GmuqKp/WqAPg3GPpjUASxGe11s5klyThjNso03ed342cE82cSVUMgFPQuKmldef8d1pdQkmeOa9bW1uOxHIMVKGc56b9cuFYEThjTFDgAgICAgKeEw4yLuOMwVwuh5WVFZd1LpFIuOQMVKUYx0byls/nXUKDTqfjYmdY6JrxK6PRCIuLi9jb28P6+rpz0VlbW3NFswG4XX0mVCgWi66QNl0NrbVOkTPGoNVqodfrIZlMIpvNuvpu1lqsra3NFBReWFhAsVh0rpya2KNQKMzsgFcqFVebanNz08WdMNavXq+jVquhVqvh6tWruHLlyozBmsvlXNIXjUej0UXDmgZoKpWaUf+4Q766uuqSR8Qpbz5olNGt6iD1jetEQYPOV9x8FSeOPMb1y1fdNB7IJ0v+j65XJYyqMvj30hhFkhp1i6QBrQa+nh/348fHHaRy8zNuIpDcMEkPk0dwzn3CFqew6b/+eUpgOM9K2H2Sri59JB+1Ws0RTI0pKxaLM4lGGN9FdZyKk2YupKKk8WTsrybw8V142V91IWRMn79GfDdZ9lfXA4lYnMLG4+q+y7kgweO7nkgknBsn2+MGTK1WczUmSZypnGk8oiqkfDb2m9+zeo1utJFUWxuVYiDB4liQdPFe/M6iOqgklO1sbGy478TxeOzc3fnu30wcLwIHBAkuICAgIODIiHO1A+KN60Qi4Qr70ghIp9MYDAauSDUTmQCRQsaab0wnTiWLRkaj0XBxM9x573Q6yGQyOHnyJDqdDra3t51rIXeEjTEu9T6Nys3NTadaJJNJlEollEolTCYTV9+NhW+ByEgZjUZotVqurhyvnUwm2NnZccW+GQvEODfuiDOwn0ZQq9Vyu+0saXDbbbchmUzi0UcfdbXdRqORy0DJnfp2u+3ihjjeSgoIEg81ltPpNFZXVw9NLKAkSdUQ/VFXLr3OXyM0jlW9UqM+bnd+HmnT31URAPbJC0mXHotrb55rl69yxD0TEF8+QJU/VUfYrhr7fAYe478+qea57BfHjhshmuiH48B7qOHuk5Q40hw31iQlzLyq60L7xnskk0kUCgX3DrAvGkNKFYhJOvhO7e3tOXdq37WQMVyZTMZtXqj6xrZ9Iqz13TjOfHe1bhrHVdvUtnTN6TunGSR1zrUcgcb1USEzxrjPWTeNrtrMPukrvVSXfRKp88xr2T9NVuK7Uqrqpq7H7B/nezKZOELOcaD7K8eDc8l1TDIeCNyLCBNi4AICAgICniN8o1Y/4+epVMq5MtLgYx03Girj8diRt0ajgeFwiGw2OxOfwkLXJGaMF6ObYaPRcBksmYWSAfhU3HK5nCNQzKy2sbGBWq2GlZUVXL9+3ZEokkTuTtNlibXiaMh0Oh3k8/kZgkCDtdPpoFKpoFQqOffQer2OXq/nEgacPn3a/U7Db2VlBRcuXMBgMMDDDz+MRqPhlDfWpltcXESj0XDZ+Gg8AbjBmPMNbM4NEBn3JNY6bwfNrZI3vxwBz1MFbB6UyOm94/quipRPwtQ1jKSIBCKOsGlf/YQSwGzSDh07qhccA981k+0pUfINfDXAeU9fjfOfPw58blVTgUjVaTabGA6HbhMC2E/1ruN80N9xJI5GvZIGVXr8NcZr6N5br9dx9epVANGGBY16kk0+z3gclczo9Xpot9suHpRuvtz0YLvqGqlJPaiO8nMeU+WK99U4Tn02fT4lvVrvjs/K947948YS1wjVSM0Iyc0sbmj1ej3ndsoYX3736Dugbpi8v65XVeZIhHkdr+E8TiYTdDodl6CGGTp5jo4dn5P397Oh0o1c3xUATvlnnw7aLHqpcbwIHIIAFxAQEBBwdKiBH2fwG2Oce2K5XHZxWtVqFQBc7bTJZOLizzKZjMuARpXs9OnTjoRNJhOnei0tLaFWq6FarWJtbc2VBWByj1wuh93dXTQaDRdTQ4Mjl8uh2+0ikYgyRbJQd7PZxMrKijMg6TpEw46FwVOplEtaQiNQFYl0Oo1ms+meu9FoAIBzhaI7VKVSQbPZdOnQc7kcTp48iaWlJTz77LO4du2ay8LHHe96ve7KIZBE0W3MJ0NqTMcRKmMMqtUqyuXyDQbVPDWGBq2SuLg4mbj14pNH9tcnV/PIhH7G62jc+sc0Fs7vE414GviqujDd+WAwmFFweG5cbJFm3qPiS/VEVUWNj6KhrIkhVL2ikcxz1YD3x9CfVxrSe3t7LjEPMJtW3yeQcfM2T4mb50bpn8dxpuJcq9XwzDPPODdoPhvHn3Udu90udnZ23EYMFXrG9wFw48z1T8VNFV2/Hhr7qG6l+izqBktwI0CP+Uquv8ZUFfVdhUmEqMpzjTAhDY+RmHKDSxVFkkzey++zulFqrJuqwuyzxqZZu+9CyTqX/J2klvORSCRmahSm02lXToT3IIHVOpxBgXuRYYyBDRpcQEBAQMAR4Bsr/k5+MplEvV53haYTiYSLzWHcFFWxU6dOodlsAohcdbrdrtu1v+2225DP5x3ZazQaLmarUqmgXC47Q+/ixYsuQcje3p4zQAaDwUwR5GQyiWaziWq1inw+7/rOZCBUygqFAsbjsbsnsB/kv7a2hs3NTZeARLPO0Uip1WoYDoeO5CWTSac60LDqdDpuDMvlMk6fPg0AePLJJ9Fqtdyu+WQSZZlcXl4GAGec83lVIVCyM48M6ecakxg3t3HzrGqMXzpgHoHz3QCBWZfDOPXG76uvkLH2nO8Sxn8nk4kr1UClhEliSOBJzBifQxc4YN/lVOHHGDHdOvtJdZVrTZ+XGwjZbHam6LQSD3U9VBWJ18eR0TgljfPTbDYxHo+dGq1Fs+Pmed5c6ZzQkOfmhhJDH0rgSqWSi1elGkVXO753fE96vZ4rG0LCwIyzSo7VPVDLDGjdOI19I2lRdU4JNueYn/nzopsDdGHmWlCCpq6GHBdV5vjdMR6P0e12HfkncfMJpu9Ky+eii7avguo7yfHTTQCtO0eilc1m3XetKoskeewD1zZdwnmtjou6z+rYce0cpMy/1DheBA5BgQsICAgIeG7w3euMieLLVlZWUC6XnTGcz+cdGeEOLZOEkLzt7u5ifX0diUQC586dw8WLF2GtxaVLl5xiZa3FyZMnsby87LJQjsdjPPDAAzDG4Nlnn3VK39bWFprNpjP0WD+LbQFRuQAW855MJhgOh7hy5QqKxaKLqSFpq1QqGAwGuHr1qitJwKyPNLCbzSZOnDiBXC6HTqfjarvR6OG/k0mUwITuaMzMaa3F1atXXcyPJgaoVCpIpVIuMQAJnBp4nBMab/OMJN2xX1xcnEkZ7huJPjkA9l0oNeZMlSB14fQVIk0oweNxaq6v6KpRqsSVxYaV9FBBpeupGsBMHMG+8BjXJ5/PJ5T6DDymhiiNVW1PE5Lw/ixFkUgknBocR+j0fjru6hbnq4JxZH0ymbiyGCRy80icT9x85VMJtKquPoHXdcTjXGOFQgGNRsO9p76aNxgMcP36dQBw40KlN51Oo1gsuo0SJVMcH1WcVXHTNaoxbereSjVW14evOvKHxIfXq9rHBEf+D69Rha3T6bhMu3R51bWvbp1aZ05LEMybD7bBc/1NDq5Lqpoke6wHqRsadAHlZ9y4YqwvlTuOG++lLp7aXtwafLlwvAicCQQuICAgIODo8I1FJv9YWlpyqpu11hXGZvwajZ9EIoFr1665+k+9Xg/ZbBbnz5/Hfffdh93dXTzxxBN48sknYYxBrVbD4uIiTp48CWst1tfXkUqlcPHiRXQ6HVy9etWl52c8B121aKhzd7ler6PZbDqDmzvg/X4f5XJ5Zqd8OBw6BYGukCwtQAVoPB4jk8lgdXUVmUzGxb7xnt1u18X6UOmhKybHp9vtYmNjwyV5oNHExAJUA2koqusicGPqe37GOVJjlJhMotpy2WzWlUbgLn2cmqJESkmcb6jGrRW9p9+mQo+rEWlt5N7FouEAnLG5u7uLtbU1t4HQ7/dden3fxZf9B+AURK3px3/nkVcdXyUMwL5RzfN5nGNPd0Ea5Ew6QsOe64HqlKo/ek9VS+PIm7ox85p+v+/GkSTI33w5aM51DNQYn+c+q30jgWP8K0sF8DiwT7IajYZLRkRyQZLOtcoNDJ0vvsu9Xm9GOdM588kN1wFJMdezrkVVM9lPHX+SUH0O/33ge0zXWj4r69TlcrkZt1JV/7R8gCppvD9rtum1Gu9GcqkbDBorSvC5+L3C7ymSV56TSqVcyRT2gd+rJH78HmHhb46J3s//Hng5cawIHBDKCAQEBAQEHA7fIAbg6jwtLCw4V5pMJoNKpYLTp09jbW3NqWHcGR8Oh8jn867oNgBcvHgRr3nNa9DtdvHYY4/hkUceweLiIjKZjEuE0uv10Gg0UC6XceLECWxvb+PKlStO8djc3MRoNEKtVnPqGzO7Ma6OxthgMECz2US323UGrdZA6na7GI/HaLVaTh1kIWKWNdja2nIJFgCg0+lgaWkJqVQKGxsbruQADbRMJuN23DkWLLqtWe/opqQ72MB+6nOSGD++xU/iwGt0/lS98Y0uvZeqKb5ipklb1IBVwsy/50HvE0cAVHHb2dnB7u6uU0c16US73XakiNkLdUz4N2OjaBBrIhYdG8b70OjUa7k2+BmNbQBOJdY4H1U2VZVgWzR0Sf56vR6KxaJT5hh/pIRE1SWfdPlkWRVMxlJSAfZV14NIoM6TEjYlcepKyWNUkRKJKOPp8vIydnZ23LrjeqEb3rVr1xyB4Ppi0qFEIiruraU5NOkIiYu67un6JynSseFzah8JKszArIpHhUnj7dg2309gP85RC4yrazcz8DI+l+RJ3yeqsv5cadZcfS72TzNh8jnYP30+upuznINmbuW8qArJrL8sq6KKP8eFZVU0dliVQN08uBk4VgQuUuAChQsICAgIOBi+S1mhUHAJRfQ/aWststkstra2XLHtXC7nlB4aDN1uF9VqFbfddhvOnz+PZrOJy5cvo9VqAQAqlQqWlpZQKpWwsbGBzc1NnD9/HgsLC7h+/To2NjZgTFRuYG1tDe1227kbMsHBZBKlG2fmSRqmVOqY8IQ7xgzGZ6FkZoY7e/Yscrmcq/3W7XZx4sQJAMDOzg6q1SpOnjyJySQqP8DkJL7iUygUnCHT6/VcCQH+P8y6bqpWAvsGpa8gqKE+jzjR0KIhCuzH4tCAjXOhVNWFUIPOd6H0FaK4vmgbvsKjcUt7e3totVput388HuPSpUvOeFTlQdUFVSdVIQT2CS9VVvZF43Q0S6C6ZnJ8eVyNYa4pJXZq3LMNVSE0GQXPTyQSM5sK5XIZhULBETmfIGt7vD/nzSdmfO52u+3eGX1fdc7mqXFsP27uOUb+fCuRY8xXpVJx645FvRuNBlqt1kxiF5IKKuVsSwtZK5nTgvbj8XgmcQzHiu85/+Z86rgpgWG/OYdajFpVPKrD6u7Id0wTgWg5ENar5EaCbpCwHSXKGn/ob9BwPHgf9otrTTcKdNyoXKraqyqdrh2+l0oo9TjXBjdHlMBzjOlRcLNwvAjcze5AQEBAQMArBnQdYpZJ7lqXy2W02220220AUarwM2fOuCLR1WrVpRMfjUa4cuUKarUa7rvvPmQyGayvrzvjst/vY3l5GdVqFYVCAdvb23j66adx7tw5JJNJXLt2DVtbW47sXL9+Hbu7u1haWgIAV0QbiOLt6N5IwjQajbCysgJjjEsukslksLW15dwv9/b20Ol0sLu7i7Nnz6JUKjljbmdnx8XJDQYDrKys4O6773ZqGlWifD7vjDSqarpT3W63nZEIAAsLCzOqEN2k1GAGcIPxFveZEkAa1jSmdMdcz2U7Snh8qAoY5woV5ybpKzlxah8N1Mlk4hK19Pt9JBIJ7OzsoNPpuGQPNOpJ0HxFUD/34wOV8PrupvPG01e2/HHxyYsma9BkF+oap8oVjWIlFTS6u90u8vm8y2rKvilR9HEQARsOh0715kaKPq9/rf9s8xQ4Jbs6VhxnPrsm0ADg3JQnkwkuX76MRCKBarXqkuuQNCix5lhxLepc+iRHlTD2SdVZnqftKwHS9vXd1eyldIclaeMaZWxjIpGYyZbJmmi8l7/ZoeokN0uYil8JdJxSyvE5aA4BzMRdKkFlbC3JoLpy8jqSYJ1jfW91Q4Pvga7V4EL5IsGEGLiAgICAgCPAmCjOiG5e/E99OByi3W4746Tf77t0/ZlMxpUDKBQKLjX++fPncccddzgDnWnZr1696uLpCoUCNjY20Gw23a79tWvXAMDVk9vY2HAqmbpEkTDV63VndDDerVQquWQXNOB2dnZgrUWtVkO73cbm5iaMMbjnnntcXTfWOaLB0mg0nCL49NNPuzinXq8Ha6N4IypuNJQYX6LufkBE8FQ1pKGomR7ZV026AewrS8C+GqXExXeN4zW6k0/47c4jYOpm6LsczoOvvKmauLu7i+3tbXS7XQwGA9RqNbRaLbRaLbc2qLrRMCQhUfdTNR5VgeDYqGrAcaXBry6WOlaET4rV5YwGtxrhOp5sm32nyx6v9dVItk/ywo0FJiKhka/EySd1cSoojfRWq+VUdD9jZty8+X8rkdO+87ga+Epeua5LpZJ7Pmutcx+lCx5d77gOue45jyR2SgbZJ4717u6uWze6lrXuIvutRI7nKbkiSN64scKxULV8NBq5JCwAZlQrPhcVLbava5vvJseV5/IcJmXShCl+zKSueSWL/IxjyHnhRhLfKxJQji29KOgCSgKpShzXqr8ZoeOsrqk3A8eLwCGUEQgICAgIOBylUsnFz2g6b9Y0olHBXWcgSvpRrVZdTbRkMolz585haWkJu7u76Ha7LmZsbW0NCwsLqNVqsNbiypUrzgVzNBphfX0dmUwGtVrNFcDO5XLOPYgJEpaXl7G4uIh2u+2MRCo46XTa7RSzflGv10OtVkM+n8fm5iZ6vR4WFxfx6le/Gs1mE88++6wjCiwVwCLi1toZ1bHVarl4LcbvJJNJR2p3d3exubnp3K4mk4lL807iybTqNA4TiQROnjyJwWCAnZ0dADfWReNnviuknqekwk+6oefwGpZ+8NtTo1UJSJyyFudSF9fW448/jo2NDTdfm5ubKBQKTg3Va7WEge7y+/f1+0XXOxrwvgKnGwB6P3VL0/4zcY7eR7MMkgQAsxn5tE/sgxJq392PmUkHgwG63a7L4sp7q+upr4L5c88+UIkjqdANED3PXxOqZCoJ9ueZ5/okKZPJoN1uo1gsAtjfiLly5Qq2trZw5swZDIdDbG1toVarzbgOkjAxhb0xxqW8J6FTcqvPrWU51P1T1wzJipInfWbd/ADgiD8Tz7ANLWfAdUYFlWtQwXljwg9NqqPn6kYFCRc3Afz1w2t1XlXVUyWUY+o/J8dFiZquZf/9UGLPzQTeg+SQmYhvFo4XgQsKXEBAQEDAEbCwsOCM01Kp5BS5VCqFZrM5E/NBF6iVlRXs7u6i2WyiXq9jdXXVnU8DhLFNtVoNCwsL2Nvbw9WrV13myk6ng2w261S47e1tlwKfO+E0qrjb3u12XdIAukkCcHE2jMEbjUa4cOECJpMJrl275tRBEsC1tTV0Oh1XG06VBLpIjkYjNJtNV9uNqkYikXAqwNLSElqtFjY3N91uNfurhXM1wx6NJyZJabVasQlHFHEGODDrnuWrJnHX0CCMM+h8EnYYlLSo6sbPB4MBGo2GMwy5jnQ8OCbqXqjQ56NxynuRkHGd+ApAHAlRguUnRNHjuiY4r7yPJi7xVVG24StmSsB8IsHnpwJEUqDP7hNDnQOewzUwHA7R6XScOkQCETd/+vwaM3jQ/PtrjYRrMBg4pZ7Kc6/Xw+rqKra3t1Gv15FIJNyaUNVJMyVSXVO3SN6DsWqaZVQJnMa+aTyYEijd8PDJvTHG3Z/eCMYYl22WcbXsJ6/JZrMuKyiVObpeMnmLbk5wbVGlViUubp5VeebfuiHDtaiZbjOZjPMuYD+5KaIZQzku2Wx2hgRz7egY+uSez3vYmnmpcfwI3M3uREBAQEDAVzyYIASIDIdSqeRULBoNTJnP2kaNRgOTyQS33347VldX0el0nOqWTqfxpS99CQBw4sQJ577IeLhut4tSqYSVlRWk02lX4HppaQmJRALb29vOYKHhlM/nXZIAY4yLeaPax91yuk+eOXPG1Q1LJpO4++67AQDXrl1ziQlobNLYzWQyOHXqFIrFIra3tx0ZZSwPjSsmqlheXsb29jauXr3qyAeNHpYkAPaz3QGzbnT9fn+mrhkNfUITbaiB7rvx6S48/1aCEAdNWEAogfQVJb2f/u0bdzyHiiRVMQA3qEHqsqbucZoRUo1e//5sS5NP0Ej1x1Gflef5LmA8V6FxRHwOtj8ajWay/FGx4GaDknU1lJWMkTSpCrO3t4d6vT4TU6V99/vpExIATsnW9TZvTehc+3Ppk3x//fE43yUSlVqthu3tbQDA+9//fnz2s5/F7/3e76Fer7vvD8YRdjodjMdj9w6TGGkJAFWF/Pkg2fbPU1dbJc8cM44JyTM3N+iFQILFzRjGb2azWVcTkyVCksmkq6FmrZ1xD+a60HhOTabCe/M7T7Nh6veCn0yKZJ3viq/I0ZOC53DOdA1xDLVIvRJ53bDQ7xvdaOE8cixuBo4XgUN8/Y+AgICAgAAFd8+ZTIIuMYzbokJ38uRJAMDW1par77a4uIjr16+j2+0CiIx0kqRbb70V9Xod7XYbV65cQafTQa/XQz6fx6lTp9Dv97G1tYVUKoWTJ0+iVqthZ2fHGdjccV9eXnY7xiwTQOI1Ho+da2a73UY+n0cikcBTTz2FbreL8+fP4+LFi2g2m7h27Rq2t7cdaeDzpdNpLCwsuEQsTz/99IwxQuWIhgxj+RqNhqtVR7crEk2Ni6NhrgYwEySooUwjVJMLzFPT1FDTHXG6IfrKkw+Nx/HPiyOA+rcqMGrw8xiNObryqdEMYCYmR8mbkjYlbzTYNe5HlTJCn0NJM8dUz6H7F8dC2yP58l0MNS28JuJQd0pty59XPabKD4mCuhMCUQIh1l9kn/y4tri543NwM4NJUlTB8c/X/sYpwb67nW9f5nI5179qtYp0Oo2nnnoKTz75JHK5HN72trdhMpng937v97CwsIDFxUVXZsOPrVJipcREFTWuO651gmqXZqvUMWffuT54vRZcVwKlSVnoyl2tVh1p4Ts0GAxcohCNWwP2Nyp0Q4bZHfVcvTfXi99fvgesP8eESUoA+e4Mh0MX40b3VN0M4md+dkqqkJpURTcpOJ7qnnnQd83LgWNF4BAUuICAgICAI4DkK5fLodfrufiTYrHoEpusrKyg2WxiMpngwoULOHHiBPr9Pi5dugRjDAaDAVqtFtrtNur1Ou6//35YGxXnfvrpp7G1teXuZ4zB2toa+v0+KpUK6vU6MpkMrl69imaz6eI/crmcM/Z2d3dd+QKtAZfL5ZwLYrFYxM7ODgaDAfL5PE6cOIFMJoOnnnoKW1tbLhsm495I3s6fP49qtYpms+mSq7CmWyqVckWSx+MxKpUKyuUyNjY2XH0rGt26a8/ddz/7ZBzxUGPcV4DmZXhTN0j+qEuWT8J8w1uNNN8w90mZXqd/q0ujEtPBYODq5Wm7fgyQr/rwHr4CoAWg4zJ30rj0x4rrmOOihHU8HjuFwk/qQiOc52tffOWLilkqlXLPS1UOwIx6wXb4OQ1tVem0D+pS6ZMRJTYKHe/RaOSKy/uxYwoa4P56Yp9VXWTb/r3pGjkajVzioE996lPo9XrY2NjA2bNn8c53vhPFYhGf/OQnUa/XcfLkSaytrbkkGiT2GtfGMdfMijrHuo6U/ACYUW/9BDA6H0pOVPEkSaOSTkJNwsaYWe0PFURdG/odwWf0x1ZVYk3OogRRFTEqnXw/UqkUBoOBew/Yb7qEk2APBgNH6qnOAZFirhk+/cQp3OwgceTmmSqhWm/v5caxInAGCAwuICAgIOBQnD17FltbW9jY2HC7w6urq05RSqVSWFtbQ6FQwO23345qtYrt7W1sb2+7uBCm5r/llltw9uxZDIdDPPPMM46ocYe5XC67wr31eh3VahXD4RDb29tOgeAud7FYdKof49hoXJfLZeduyV3/7e1ttNttrKys4NZbb0U+n8fa2ho2Njacu6WvKlSrVQCRqthoNFz6c5LIEydOzLiRsg4e68aRVGg2N7atafBVKdAda59Q0ZjUpAC+SqZkSMHPaezpc/rn0UBUg1XJSZy7nLZFo1SJB13MNjc3sbW15RRIVR9VSfHBtki2yuWyI9x7e3vO+FQ3O/ZbyRnnjnFMNI5zuZyL8SyVSq4PLO5O8stsjjS2/WycPtnh30oSVDnU69hnnxyz/3FusJPJ5IZyA/460nZ1Hpk9lcRDXRD9cde++8RQ++qvRSAicDs7O9jY2HDr4PHHHwcAfOhDH8JXf/VX48yZM3jjG98IAPj4xz+OpaUlnD59eqbQt2aipCKlGSd1bJT8K+HWsVDSHEd4qa5zLetaAeCUPLpNMnER1zVr+3E+dF797xuuLSXA4/F+UWyf0PnzS/LGd43gGvWT/vB7hP3XTQOSNcb06drgRhTHX5VEvjulUsl99/G7jmN2M3C8CJwxgb8FBAQEBByKp556Cs1m09WAW1pacpkWh8Mhut0uzpw5g1OnTsFai2eeeQb9fh/5fN7VThuPx7j77ruRz+fRaDSwubnpkokkk0msrKwglUqh0+m4Gm7j8Rjr6+vodDrOCKpUKqhUKlhYWHCK2qVLl9yON3e92S+qE1tbWxiPx7h48SLq9TqstVhbW8OVK1dmEogwAYG6rV25csXtKgNAtVrFysoKksmkKx1QqVRcFsX19XW380xCSddN7uhrYL8a8ZpIQY1fJSKMB6KR6huCPrHy47t6vd6MK55C3S01Hkev9410va/fDp9lMpnMkDe6walbpKpHJBGpVMoRNM4NsycypogoFAoucynbZjHldDqNSqWCXC6HWq2GxcVFV5Cdhre1Fv1+f4bgqbsZ22m328hms2g0Guj1erh+/ToGg4FTcelKp+qDqos0aHWM/eyg/FF3TJ1Pji3VYroKax01XTucEyXUHCOW42CfNRZRlVYlb7o249YZwc84jlSFLl++jOvXr2NlZQWf+9znAADvfOc7HYlLJBL46Ec/isXFRZw5cwbr6+szsaDqwkgCp+uPhFsThqhbJVU7khOtB8e5oFLKDRpVRwE4ZZWbPBwfKtd0QdQEPBxX3ldLBOi7r67P3LAgWeXzqJuxEiqdJ5I5nW9tn99xJIZMVsU2mWWY65ZrzXdr5ZywFqYxUaIrddv0vQdeThwvAoejZZEKCAgICPj9jfF4jEKhgMXFRSwuLrq6VHSFuv3223Hy5Em0Wi2neNXrdVy/fh2TyQS1Wg0rKysYj8cu/q3b7aLT6WA4HOLkyZNOCeAubbvdRqfTcXE6u7u7WFxcxPLyMsrlMtLpNNbX13HlyhUA+/WUCoUCut0uJpMoNq/X66HRaKBQKKBcLsNai0ajga2tLReXQqOLBhljSIAo2QMNHN6jUqkgm826pCwkjNZaRxSVcDAtvxrQagiT1PkqnK9qKXFifwk/c2EciQMig7vZbN5Qj0rBOCMlCqrM+Oob78F/tR88p9PpYH19HVtbW8510U9CoaQhkUjgwoULuH79uiPJSmDp2kXDU93MNKtlvV7HhQsXUC6XXW3A4XCIfr+P69evO8OdMZ4kMzQ82TeOSbFYRDKZRKFQcJsFDzzwAEqlEprNJhqNBlqtFq5du4ZnnnkGg8HAEUItyqzPSqVFSQkNf51XbirwXCWFmsSCa9efH18NVHfMXq83k9QjztiOc53Vz+JIvd6bRa8TiQS+/OUvz7g5PvLIIwCAd73rXThz5gweeOAB7O3t4aMf/ShuueUWnDlzBs8888wN8Vg+GfLXlZIHf7OE46HPrVBCRNJDcsvYskqlcgMJUpdCHSvN7Khq6ng8ntmE4XpWJdZfN9yA4fcK+6XEn33SeVDlkWQNmC2NQdLHdUYFMJ/PYzgcuthcnqNjSdUxkUi4wuZ0wY+LsXy5cLwIXIiBCwgICAg4ArLZrIt3o/K1sbGBlZUVnD59GuPxGJcuXUI6ncbi4qJLmz+ZTHDLLbegWCzi8ccfR6PRwOnTpwEAa2tr2N3dxdLSkjNUK5XKTKwcjQDelwpLp9NBq9VyBiGNodFo5AhkpVJBv99Ht9tFrVbDaDTC9evXZ3bE1WCjkqEEgfXbMpmMKxGgRgl33nu9HlKpFC5fvjwTp8Pr1E1SDTKNGaKSFEfAgH2XSxqjGjsTZzjrLrvvAre2tjaTec6/jv1U9URJEqGGsN93VXkY97SxseEyCfpFkdUwp6Jy9epVtFotAHAkiCnPNQaHpI1qDDOYnj59GsZEyW46nQ4ee+wxdDodV0xd+8o2uZZ8AsrnZubMbDaLxcVFl4WUbrIXLlzAeDzGPffc42JAL126hM3NTVfWQrNV0pim8atKlk+W5n0OwGU3HI1GqNfrNyhxShjjXAXpgsoNFL/OnY6Brk9fgdPj/s/e3h5KpRIA4Nlnn3VEezweo9/v43Of+xz6/T7e+9734pZbbsEb3/hGjMdjPPTQQzh79izOnDmDS5cuzaw9vm+j0ci9a3yXNJU/x0Cv0Wfi+o5bvyTPSqbz+fyMOyffEboccsOHc6rjyfO5zlQxjtsAUWWT1+pzaoZgVRaVXPtEkNfwHvp9pASYz86NKI5ptVp1tSv5XcLvY36H8DrGAeo9X24cLwKHUAcuICAgIOBwUHG75ZZbkE6n0Ww2ccstt6BWq2EwGLhYt1KphHa7jevXryOfz+Oee+7B3t4eHn/8cTSbTSwtLbkaa4wxIhFKJBIzmS2BKKZseXnZZbns9XouUyXPYSwM4+aojvAYSRYNK63nBOy7tOnfjIUiMavX61hcXEQ+n3fEkgrMYDBAsVh0sXwAXJ27QqEwYyjPM9Z1ZxzYj0FTBY3GGHfKOT7cLfcVOzUC1Q3PGIOrV6+6OB22r8Y3+6lufarw8B4au6bQv621aLVa2NjYcMYf50HdC/3ECIwHUkOd48KxUcUqmUzi/PnzTmkbjUZ49tln0W63ZzLs6bPoGPOZfOXJV6qI8Xjs3EG3t7dRqVRQKpVQKBRw5513ujiv1772tbjrrruwvb2NZ555Bl/60pfc2PPZ+Jzsgx7j3NAFUA167Q9J/WAwcGvUz3rJ8/x1x+fRgthUHHUe/RgurpWDoGsQiN7Dp59+Gk8//fRMHBlJ/Ze//GVks1m8613vwtmzZ/GmN73JkbuLFy/izJkzbqOEz0CXQrrvcfNE32u/HxoTqcSNpEv7z3aYyIPfV1Tn6WpIMkZFnW3rvZmRVmPHOO+qYlEho7LGNaGkkf3lPXzVkWPL9jj3+h5TvWMpFD2Xz8/n6nQ6bkMkn8+jXC6jVquh0+lgb28PW1tbM3MyGo3Q7/dhrZ1R+24GjheBMwY2aHABAQEBAYdgdXUVKysrLoX/uXPnkM1mcf36dezu7qJQKDhjdjQa4cSJE1hcXMSzzz6LnZ0dR4SuXLmCXq/nlJHr16+7GDUqI+12G5VKBSdPnsTS0hLq9TqMMe4YSQwzRgJwqf/z+TxWVlYARC571kalA5hYANjPOAjAxUd1u13njnjq1CkUCgWn5BWLRdRqNeTzeZdshTvKu7u7yOVy2NrawubmpmuDRh6JAzBboJvw45uA+GyQSlyA/QLVNLjVpYrw21XFaWdnB5ubm1hdXZ0hBXou+8YfrWfmtxdHUmlM0lWWREhjtrjrT2OWz0r3SBI5tun3gy5uxWIRy8vLLibziSeecGNPg5PQDJAkqVwTOsZ+3Nk8kMT3+32sr68jlUrhySefRCKRQK1Wwz333IPd3V3U63WcPn0at912m0ufz0QoqvjpeNLQZl/4typEhBreNLSZrv+gdaWGvboQkzTMU9XYhhJPH3oeiXu328WnPvUpNBoNnDlzZqYPxkRJNT7/+c+j3W7jPe95D26//Xa84x3vQL/fxxNPPIG77roL586dc0qckhh1J/TVNFXcuK6YqZbKHdesFqdmWyRddCckEVNXSJIjvpOMm/T7QiLH86hUcQz4PcL7kbCRJJK8MbskCTfdYEngNMmOkkolscxAybHJ5XLOtVw3b/iuss2trS1MJhNXh9Na61zJ6TacTCYxHA5dTbp2uz33PXqpcbwIHIICFxAQEBBwOFZWVnDt2jUkk0mcOnUKrVYLrVYLS0tLyOVyrmh3JpPBrbfeivF4jMcee2ym5MDOzg6MMTh79iwajQastahWqzDGuJ3svb09VCoVRxiZSbLVarkiwO12G6PRCOVyGYPBAFeuXHFGEADXNotxA7M1zbLZrHMVS6fT2Nrawu7uLtLpNOr1ursfDWQWD2cSFwCOyLGswsbGBoB9YlWr1bC0tIQrV67MGEz8XQmBT7zUMFclTtUYGs58Rj6f36b+qCvlaDTC1atXcdddd83cW8kBDT66lCYSiRmD0X8OdbVjP/f29rCzszOT4p0ukLyPKly8XlU6nkPDlAayMcYlJKlWq9jZ2UGj0ZghdgBmDFr+rfFESjx8MsLxUGWDfSdIrJQs081te3sbDz30EOr1OsrlMk6cOIHz58/j1KlTuOOOO/DEE0/g0UcfdRsISnx1HfAeOmZxrpEkGgBcLF+pVJpRXFR989ccVThfaVXC6JM3X8HUNnWMGo2Ge7ann356Jl5N3foYC/rEE0+4sb948SLe9ra3odPp4Mtf/jJe+9rX4vTp03j22Wdn3BJ9BUo/V6I3HA4dQSG5UXdOVaD5Gdc/sB8Xq7GCSrRJzHTtKMnT8zWujq6X89wcVYnW952EkJshSrT4LKr+8765XM59D5JQ0rPAX3fqQsrvnclkglKpNFPzThVMuhUzERG/J28GjhWBgwkELiAgICDgcFy5cgXFYhH1et0Zmyy03Ww2XczZuXPn0Gw2sb6+jvF4jFKphO3tbYzHY5w9exbJZBI7OzuOMPHabrcLa6OU/LVaDcvLy44csfxAt9tFq9VyRnun08HGxobL+Mf4i0Kh4IwZVW+KxaJLJlIsFrG3t4dms+lSqDODZLlcBhBlNDx16pQzABm7Q5UikYjqWl2+fNnFfwBREe+TJ0+i0WgAwA1GuW84q3uVkiVC/6ZRqqoJXUC5m67Fd9XgVpVpMpngySefxJve9CaXlEPJIa/nc1L5YvZHVYt8qGrTbDZx/fp1R8jiXD3Zd40j2tvbm1HhaDwriSuVSi72jFkt8/m8a4998Gt/+UaxEps4N0W66qlCqC6MviGtiqm1UVbLwWCAtbU1XL58GbfffjsWFxdxyy234NSpU7jzzjvxyCOP4PHHH3ebFCQRvisf/+U91D2P64JG/t7enksAVCgUXJ/VPU7dKdkGCRyfK87NT4m3P4Zx5HAymbgMrq1WC1/+8pddLCSfkUWfdYPgqaeewkc+8hGUSiVcuHAB73//+/Grv/qr+MIXvoD7778fvV4Pm5ubrnwEXXS51vk9oPUXqS6RONLVlS5+vgtkt9uFMftlJTTNP8efyYpIxrTeH106ubY4jixhwc/ZV7ah0DXtJ6wh6R6Pxy7ukWPJsdfvmEwmg2w2i0Kh4BQ9/Q7R94Zt6jut65LfsRxPtkulncmHRqMRWq2W27y5GThWBM7g5lZFDwgICAh4ZYBujteuXcPCwgLOnj2LdruNZrMJY8xMoe1Wq+UMpmaziUwmg1OnTqHb7WJzc9MZpywgTDej5eVlLC4uOiOEhhljL/r9PhYXF5FIJNBut3Ht2jVnQJP80dWSBiBJEY3QXC6Hvb09NBoNV+ZgeXnZlSBgDbCFhQWcPHlyxhXN2ijRSKlUgrUWvV4P6+vrTvGgQU3lpdfrAZh1nYxzk1PlhsZZ3LkkGJrO23eho+sVU39zVz+OcF2+fNnFJfrkgP3yFb9MJhMby+KrfAAcaWFbJCbqlqWxO5p8gX3nWDB7H2tV5fN5WGud0UzDk39zrNg3za6nz+Mra+oSSDAjpSoovpHLa7nm/FTu/Gm1Wvj85z+PQqGAe+65B+fPn8e5c+dQqVSwvLyML33pS9jY2HAGPedVsxL691NljuSN8WDGGKeC63jqdbouVOUhwVFSquth3k/cugDgXJ4ff/xxdLtdLC4uzpBKY4wjR+rieuXKFXzoQx9CNpvFmTNn8O53vxu/9mu/hi9+8Yt49atf7TZiVGEF4DZvCCVffGd5LhUlXU+8RjcONEusuikqaSdIBDkG6t7J9ZjNZmc2K9RlVt9BbYfxatlsFqPRyCWvYT81e6T/HmcyGRSLRVe7k+PEdwfYr+XGdW+tdSVLVMnk2uQ61cQt+XzeZXul58Xu7i7y+TxuFg4lcMaYnwbwdQDWrbX3TD/73wG8D8AugCcAfIe1tmGMOQ/giwAenV7+cWvtd70UHY/vaygjEBAQEBBwOAaDAYyJ3B9Z/PratWsolUo4d+4cOp2OU9qWlpawtraG7e1tnDhxAidOnMDTTz/t/qPvdDrO2GDZgFqthvPnzyOfz6PT6WBra8sZIqyrtbq6im63i263i16v5+Kd6HZJY5UGLo0PZkEzxqDRaKDdbmM8HuPEiRM4efKkyypYqVSQTCaxurrqYuCASImjgaVZJ9vttouvIwHkczH+Tt0j1Zj1/1XDT1UydVGj8a7X8jgzZU4mUckGGsRMCkNFRhWYK1euYH19HefOnbshZoj9UAKcTCbdDrsa//psSv7W19ddkWDfjYzPo9dpEgr2RRUVGq0kkWqUagp1jdPTe8YRDT8rnioQ+mxKBn1jXUmOxo7FkSSSy+FwiE9/+tN47LHHcPbsWVy4cAH33HMPzp49i4997GO4evWqq2ensXxsi8a1zpc+KxNrMJtqv9+f2cjw157OHTDrRqiE1yfAcaTNB8nL+vo6jDH4whe+MOPiqiB51L62Wi1XYuDrvu7rcOutt+Ld7343PvCBD+DJJ5/E7bffji9+8YvuHeVGAZ/JjwXzk5eo6q3kjapasVicyXSp46xrSNeEKmW6rvVaxp5Za9Htdt3a1tT/JI28r2aB5PcO1T0AMwmg9D0mqWIdRH1uJf66dpTUc0MIgLu3MZHrO78nuT75bvLe3MQrFApf8VkofwbAPwfwc/LZfwXw/dbakTHmRwF8P4C/Pj32hLX2vhezk0eFQSgjEBAQEBBwOLLZLJaWlgBEBlWz2XRZGVkOgPFRzBB34cIFjEYjPPXUU055abfbM26N6XQaCwsLuOWWW1wilFarhW63O2N8ZjIZbG5uOjcsAC6FNpMK0JWSBhMz8WUyGfT7ffT7fWeEnDlzBtVq1WVNK5VKSKfTuO222zCZTLC2tubiQ6jU0W2TpGRzcxO5XG7mPnSf4vPFqWiE/u67tfnkDdg3CvV6dX9izFiv18PS0hIKhYJTwfQ6GmqdTgfXr193Cp2qKwTdKGns0kWVu/XzyGm73cbW1tYM0aAhSpLL5+az0fikMkHDkcSN7puqlqmh78ev6fj5Y+mTGfZbjXv9XJUiEh7flZHXKFHTNrgmVGUdDAZ44oknMBgMcPvtt2NlZQVvectbXLbKVqs1o4opuedz+IqNJpwguWcSIcY3qQqnChs/53zFJeDg8/pZFP2x1DVB9+TxeIyrV6/OxFL640QlmXNNAvjII48gn8/ja77ma3D33Xdja2sLn/jEJ7CwsICLFy/ikUcecefy2fXZSFbiMjWqwsn+knxxzjRlP0liNptFLpdzMWeqQOu4cWNBN1LG47HbcKKyzOy53JjiXGpMHMeE3zO+KyXXgLoDM4sw31tV9LhWqN5T6eZ5dDvl9wQVQL6XdDHt9/vue5T1PVkPju1+RRM4a+2Hp8qafvZf5M+PA/hjL3K/nhdMiIELCAgICDgC8vk8tra2UCqVkEhE2fVI5PgfN9OX1+t1rKysYG1tDZ1Ox2U46/f7zgiYTCYoFAo4c+YMKpUK9vb28PTTT6PX6zlDn2SPO800GprNpjNcisWiM6h0p73f7zs3tm636ww0uqrt7u66pCQ0LBYWFtBoNJyb5GQSlThYXl5GtVrF+vo6MpkMFhcX8dnPftbt6DOWpVQqOQNtHnmjcewb4vo7oX/TSFNjVImetpNIJLC6uurI0mg0wuXLl11f6Co2mUzw5S9/GW95y1vcOOquO+9DQ5cJCcrlMorF4oyrqhKa4XDoiquzb3x2ukL6hIp9IhmhykBSTANXjUA1jNW9UcfKj1vjs8WpZ6oo+Yqikh59ZlVa2AaNXt5L3fX47ErYJ5MJnn32WXS7XZw7dw4nT55EoVBAqVTCF7/4Rezs7DhirmOpsUi+WyufgSSMWQFVrdQx9BVh3+XVV041McxBKhz7uru7i83NTRhjXDkJJVC61knCeC8e39vbw2c+8xlkMhm85z3vwTvf+U6nZD744IO48847cfnyZZfSXudLE6YAEQnT9UbCraSJsZ783uI6IHmlMqsumeoirGuA6riuSyqxXBucH2687OzsOIKlcYHchFLVV78TOKYke+l0Gvl83sX78Tl0zrkG+F1Kt3aOO5+N16o7M5VDbsAwppDf5Uz8Qpfcm4UXgzr+aQC/LH/faoz5LIAWgB+w1v5u3EXGmO8E8J0AcO7cuRehG1EMXCgjEBAQEBBwGDY3N12a9suXLzsXx2KxiGw2i0ajgdFohOXlZSQSCTz99NPO4OdOMQtjJxJRDbWzZ89iYWEB7XbblRro9XpIJKIskFqMl7FpVMxoNKiSw/sw9oyKDQPsM5mMU8yYoGQ4HKJarWI8HruEKgsLC64w7dmzZ7G3t4ennnoKpVIJ9XrdxfklElEdqHQ6jXPnzrmECkSccezH5AA3kjffnVKfUQmVnqPKyXg8xvr6Osrl8oyroBrFNEIff/xx7OzsoF6vz7ghats0SvmTz+dd5jm2qc/MVOZaTBjATKpyEhFNb87nZFIVEnYlHXGqpBI2JVw8zr99F8C4Nvg3DWcleDzG89lvkgNfTeK1GkukbnZ+jGGz2cQTTzyBcrmMfD6P06dPI5fL4eGHH8bGxsaMykJjWudUXQaViNJw3t3dda6UOgZKVNk/zrsa3ToGGselBMhfC/yXmz3pdBrdbhe1Wu2GuWHbJI6aTIXPMhgM8NBDD2FpaQkPPvgg3vrWt+LatWv43Oc+h7e85S2YTCa4evXqTAZGXW+8n5JPVfn02TSRjCbzIblTQuVvqLD//K7ju5BOp28gWjpOw+HQkdt8Pj9DnthHrjtdv3w+kj2SMXVb5PrT0iNsW9cy30POAwCX2KnX6zlFb2lpCc1m05WG6PV6yOfzM4qiEk8Sw5uFF0TgjDF/E8AIwM9PP7oG4Jy1dssY8zoA/8EYc7e1tuVfa639SQA/CQAPPPDAi8K6ggIXEBAQEHAUlMtlJJNJPPHEE7h06ZIzDkhKqtUqcrkcrly54mLSUqmUq9vG+KlcLoelpSWcPHkSuVwOrVYL29vbrqbQ7u6u+08+m82iWCwil8uh0+mg2+26eC666tC9h9fSlVOTA5D09Ho9ZLNZ3H777S62ZGlpCb1eD4PBANVqFdls1pGycrmM9fV1l5Rld3cXDz/8MK5cuYJarYbt7W1n3DNpibpOcuefiROAG8kajUdVioBZd0nd+fZjz9Rw5+dM16718zSRCZVKuqU++uijOHXq/2Xvz4LkTLPrQPC4e/i+u8e+IxYE1kQulZlIFplZLJbEUomLTMaWqZ76QaY2mY1pXvTQPU8tk1mb+mme5qnNZjgjk6lHzVaRFMtYrEqxKqsqKzORQAKJNYCIQCD2xfd9X+Yh8lxc//AHMkWRCRLzXzNYRLj/y7f9P+75zrn3Tkg8jnltLefkzjvri2n5JXAi/SKINQGqyZJph5lOK2WrXC90SBmvw/5bgTY9lhoQaOChr6M/12NOcKtlinS82X6TxdNjBmAgjTwAYXN0XJmWYvK6tVoNn332GUZHR7G0tISxsTFx/Cl31cBYZ3FkW0yGkE47mThuovA4Kympyazycz0eZuIYzqc+ltfKZrMiiya4MMdMj6WWcepxIqP+y1/+EpFIBFeuXMFv//Zv4z/9p/+E1dVVvPnmmyiXyyKX1mPODR+2QSdp4e8EPPxer30CEj3eGsxzvBi3yLHhOLEWml6jJuMFPI03JghiUhomWuFxJpPN9cvnhe01N1B0/Tq221w3JgPN8eN71uVyIRwOo9lsymYdQS5Lv7jdblEmsE6iqTL4Ou2vDOAcDsd/j5PkJr/V/2Jl9/v9JoDmF79/5nA4HgM4C+DGX0Nbv0Kb7Bg422yzzTbbvtyYpIQ11piO3+l0YnR0FL1eT1iCRCIhsR0sF0BAMTw8jJGRETmejh3/c9cxIZOTk1I7iDEYwEma/lgsBgBSOLzX60ksit/vF4BAlsfv9yORSEgNuEQigXA4jGKxiEqlglgsBo/Hg1wuJ79ns1k0Gg2RNOVyOaTTaUxPT0uilkAgAJ/PN1AIXAMXLXcyjY7p82SU/FybldNtfk+wSweMEi86aQTBhUIBt2/fxuuvvy6Ol3bcAAwwBnRKI5GI1OHT7AZjXzSg1Awe2wA8ZXt8Pp8wbTrBAp1fXc9Nsz26nVrWxr+tWKnnxeFoh5r34lgTNGqJoWagNNjmemc/THmgBoK6H3Sme72Tmmm7u7sYHR3FyMiIxASyjpauk2cm7dFA34x9bLVaIqc015HJxGm5JsdCS/2006/nVa8zrrXDw0O0Wi2k0+mBcbNaF5w/zRhpdrjb7SKfz+PDDz9EPB7HwsIC3n33XfzFX/wF1tbWsLy8LOVBCFy5trhBpKWhfD9QTu1wOGRcNWOq2VYreS3ng2CMsmRei8yeniMd06lZPr2mgadMq87AqpO1DA0NySaT2+1GNBqV9w/BFe/b7/cFxHFsuH5ardbAmuDvzHaZz+elL6FQCJubmwiHwxLPR6k7n2P93OpNjxdhfyUA53A4vouTpCXv9fv9mvp8BECu3+93HQ7HAoBlAJt/LS39ai2zGTjbbLPNNtu+1IrFIoCTAtVer1eci0QigWKxKJnGnE6nxKDQOWeiktHRUYlhc7lcSKfT4vA3m00BA4lEAn6/H6lUShIw0DweD8LhsGR1o8NCB4YxX5QJUd44MjIiYM/r9aLb7eLo6Aj9fh/BYFCyRiaTSZEgDg0NIRqNDjBtzWYTr7zyCn74wx9KTJ2OE9FOuWZBTtt51s6x/l2DOX2uCT4IrjSwADCQLMGMd9HHOZ1OPHnyBAcHBxgZGREn0sqZpwM9NDSEUCgkMYPse6fTQS6XE6eb99EyOxoTwTDLH+PcNGNBJ1cDJy1jA57NLEnGwZSomUBKAxLdRxMIcjw4lyYoM5lV7XybzCqvz/XAz83SCt1uF/V6HZlMBuVyGefPn0c8HsfS0hJ6vZ5kTeUmhZaj8qcGvbqtBBhmQgtTmqrXpwngKWnV5+j1YT4DLL5NYGomojE3DDjvlPbpNnJcO50Otra28P777+N3f/d3cenSJRwcHOD27dsYGRnB2bNn8fnnnw+wxpRgkn0iAAqFQpLchdfW0kqySVpaqtcMx5HPnM/nk+tp+S03CCjP1slUmLlRbyJoabEuD8JjKTHn+nG5XNIXglEdf0aFABOykFVjnTduvBBYkqnXGwuMbzs6OpLrv/fee8jlclhfX5f3MY+l3JegTzP8X7d9lTIC/zuAbwEYdjgcewD+Z5xknfQCeP+LiWS5gHcB/BuHw9EB0AXwL/r9fu5vqO0WbQVsDs4222yzzbYvM7JbzDhGByGXy4lD2Ov1UC6XxYHx+/3weDxIJBKIxWJoNpvI5XIibSyXy7KzSyeRMXWlUkmAm3ammSik2WzKLjJBItPbl8tlaXcymYTP58Pe3h7C4TBGR0fRbDZRKBQEiPb7fYRCIQGVrVYLkUgEwAnD5/f70Wq1sLm5iZmZGVy7dg3tdluSebAIuXbmNbNG9ss0KyZNf6ZBnAnyaAQcdDr18Rw7zZCYcj+fz4eDgwNhLigzMx0tDYrIkA4PDyOdTss8kUnVAEVnsaRzqjMi+v1+SbBAsMQ+6faa8VImq8Zj6IDyWA0QNCNgOugEZ/peus+mtPU0RpHXJCOjmTxT8kkjYGRbCV44lqlUCqOjo1Kvj0k1zIQZZFw1+2iuRcZmtVqtZ8otmKaBGP8xYY8GcKY8Vm8W9Ho9lEol7O7uSgFtPmvm3Jq/a5mrlrPqdbi2toYPPvgA3/ve9/DOO+9ge3sbn376KX77t38bU1NT2N3dlbVJ4ERGjO8blhghaNL91P0yM8CSXe/3+1LqgewkjyfA4zhRSqjXOr8nGCdoAiAqAs4rwaSOJeOxbDPVEf3+Sf22YDAobWE79fPCturSE3w3ACebLcz+y3VcrVZxfHyMubk5JBIJdLtdzMzMSLFu/b7STOPfagllv9//vsXH/89Tjv1PAP7Tf2uj/qrmgB0DZ5ttttlm25dbvV5HpVJBMBjExMQEarUa0uk0ut2uOHS5XE7YFGY+Gx0dlXpttVoN9XpdYrK4m8tkKKx7RZkVd4at6jHRKYhGoxK/4vF4xDEbHx9HKBRCNptFqVRCNBpFJBKRGnAEaJ1OB/F4HJ1ORxKzxOPxge+Yir/f72N/f1+cX0oVKZ3SQEk7vdpMtsHKoTntMxN8aXZAy+i0/ExLDLUTynH1+/0oFou4ceMGrl69KvOgwYbJwBE0RaNRjIyMIJPJyA6/lptpRovXYb08xsaQzeE5ZLj0Nfg778u2WEkmT5PjaUf8efI9Lf0k+DFBtmZi9HU1w2Dek+3jWtVrRLNx/EeQUqvVcHR0hKGhIcRiMUSjUUxOTuLo6AjNZnMAXPJ5MU0n2ACeSikJUEw2Uo+TuV4Zx6plcebYafa50+ng4OBASo3oudTn6Uye+rnRx+h5INsIAHfv3sXMzAyuXr2Kb33rW/jBD36Amzdv4s0330ShUECpVEK/35f3AwFUPB4XkMI2a/ZNbypQishrWGWb1RJJzYpxXfDdRYCjgR3XlU7nz/hZslccA96b7xyPxyM15bRkk+uQsXPBYBCRSASVSgUOh0OSPvGnyc7rzK/pdBr9fl+YzFarhXK5jP39fWkHN9h4P84lx8WUZ37d9uIKGPwNmMOOgbPNNttss+0rWKfTQTKZRCwWQyqVkv+k+R91s9kU9iYcDmNoaAijo6NIJpMSP9ZoNCTmTO8sU4aod8H17m0sFoPT6US5XJb4lWg0KjEfjUYDXq8XlUoFLpcL58+fh8fjwd7eHvr9vmRupnQzHA6j1+uhXq9Luv1cLgefz4fZ2dmBjGqtVgv5fF5KEdBpTiQSwh5SyqRNgw3tPGuAYDqlz9ud1k62yXKYSVLMe2hZmDmnTD6zubmJR48eIZlMSvIQE3zq5B9OpxN+vx/Dw8OIRCIih9U77xqIOJ3OAVkt2TfN5PB3PW4EpwRsmkkz5ZNWQEuDNYIEDQw1e0ZnWssdzVgxM7W+Zof1nPOaetwJIszPOPfcwNAxSw7HSa24TCYjTvrIyIg8U2wPJZNWBb4JDPQ6Y6kMK9Njqh17xnVxfZjrSa9JgphGo4HV1VWR7BGkm/3n+OqNAt0ePf6mdLNWq+H69euYnJzE4uIi3njjDdy6dQtzc3O4cuUKPvzwQ3i9XtlEovQ7EAjIetKgh4BLjxnXPseb8b1kWTUrqSWpOsGJKUXlHBPYasDM47VklNciqGNbfT4f/H6/gC1KRAEM1KRkLUW9aVKr1dBqtQbmm+9gboQFg0E8ePAAe3t70ieC2HK5DIfDIfJ5Akr9jHi9XsRiMRwfH6Ner1uuua/DXi4AB8czL2jbbLPNNttsM210dBS1Wg27u7vigOodasag+Xw+hMNhJBIJyT6WzWZRKBSQz+dFvtVutyU+o9lsYmJiAr1eD8ViURx/vRNN6Q+zFHY6HVQqFQwNDSESiaBWqyESiWBlZQWFQgHHx8cIBAKIx+Mi7aPsk7Eefr9fwFksFkM4HEYmk0Gj0UC//zQdPoEfgAFnGXgKurTDwqxxGpQCgwWhzfNp2gE0jzHjhvR3dL6s2BBeVzviwIlzxzIO2WwWN27cwPnz5yXjqCn506weHdB4PI6xsTGJV9TOKUGQZka1bFLLyHT8D9urnV0tDdTso2YY9dzoMTavwe/pEJv9tALb7L9mAHm+Cdr0fGh5K+fUPE//1FJOAOKMl8tlHBwcYHx8HOFwGJFIRGSBvBezBDKGymQDtXNPBpz14wjyrGSNHBNmhSVQoZljRwDc6/Uky+nQ0BByuZwkAuH5el3qsdbX1ODOnBf+3N3dxS9+8Qv8g3/wD/Dmm29ib28P169fx/e+9z0sLy/j0aNHUrcwHo9LUhiv1ysSZw1MKVFlfzQTTcaJGyeUAOvng5JBnYqfc6QT9ZAJ57zp8SCoZ1FtJnrSGxOMidOgWK8nXZ9Oz40eQ53khaCMLF8wGMTk5CS63e6A4kK/A9hfgj8CUq4pgjYt+X0R9nIBOJuBs80222yz7SsYY93oKHAHl3EkrVYL4XAY4+PjmJiYgNPpxNHREVKplCQ5YbISSvd4rs/nQ6FQQKFQQCAQkHg53oeO6fDwMICTNPn1el3AYq1WQzwex5kzZ4QdHB0dhcvlkiLIwWBQzo3FYvKd03lS9NrhOMnwxxTkAEQOxKx99XpdHLRSqTTgtGvmy8x4R4BixrNZydRMQKf/Nh1Jk23T4JF/a0fXlKPR0QoGg8hms7h//z7W1tYwMjJiWROO7dFAyufzYWJiAo8fPx5IIMJx4HWY6Y/lJTTbxrbqLHxWAE2DIN5LM1Vck7rvJkDUEkWTRdOSL0rMNLunWWE9llYsoAbhlDZqeaHut14TBGNsM518yk/r9TrC4TCSySRqtZrIkXnPWq02EMeowS7XAQFFs9mU51CDW3M89HPOzIom6NVrlH1k/cStrS0AkAQfeg3q50ff21yvplxVjx0B6erqKoaHh/Gbv/mbePPNN/Gnf/qnuHXrFn79138dmUxGYjc1mCGjTzDEjSPOv157BMV8Jll2Q69Zyh211JHzaMpqdaZSzgElthp4aXZPr2ky1C6Xa2DzRL8j9Pxr0A5AYo/5POnnkTUDU6kU+v0+isWilHPRxc657tgfMnPsC9/5+XxeGO0XZS8XgIMdA2ebbbbZZtuXW6PRQDKZRLvdfiYrpMvlwsTEBCYmJiRJyPb2NlKpFNLpNNrttgTCUwbW6XSkkDalYNzdr1arAzXJisUihoaGUK1WJf6MqbRbrRbGx8fh9/slA+LY2Bh6vZ7EvhAQAsDIyAjK5TLa7TZisZj8zZIBdGqj0Sjq9Tr29vYAPHVMfT4fIpGI7IbTedFsziuvvAKv14vt7W0pgaCZFjpN2kHVphkdmnamtfOr2TGeo8/VDp2V5XI5JBIJHB4eIpfL4dq1a1hZWRlgI0y5nGbhXK6TwudLS0vY29tDJpMRpoFOJsEca/dpwKDjxkzWxUzGoftk1RY9LjxOS041g2aymRo4aDaV86ZZEi0306war6fTz5tsjt/vl+N0LJ/eDDDnWjOmTL4TDAYxOjoqEjmCOD4XvI4GgOYa0OntrcZTg16v14tIJCKMnZ4Dk6HlGq9Wq7hz5w5KpZLIFXUGSlOaynk32VNT/snPzbFqNpu4fv06pqamsLi4iAsXLmBtbQ0rKys4f/68gDXKHs1x0/fVLCvHiuPFdUsJN9eGx+ORuaTMkYCMsaAcaw0cdRZLvY7I9jFzJseL2Vq57tgOHWPGNavXMNdgu92WhE9URBDM1ut1kaQzwdHW1tYAo66VBRx/JpWy2rCizFOD8hdhLxeAe85L3TbbbLPNNttozDSmHQmfz4dYLIbR0VHMzMzA6TzJSnl8fIy9vT0UCgUJ2q/X65J9DoDIF7nLzd1v7jgTJNLh425uIpEQadHCwgICgQAqlQo6nQ5isRh8Pp9INVkL6fj4WIBXqVSC0+nE2NgYPB4PDg8PxWnp9/sIh8MIh8PiLFNG2Ww2JX4EeFqXSTtaADA5OYnp6Wlx2guFgoBHM+7KNP5/rFk0nqd367WjRsChgYTJ7Jn/z2uQk81mkUwm4fF40Gg0cPPmTbz11ltSqNuKadGyQ66D+fl5LC8vo1arSZygZiIIVDTzpsGaFZOld/m16aQnJlulgYsJePXfeu44jhqw0EHlcdopNcdYx2WZ92K7CFR5LRP0EPRxrVvFOna7XRlfLaEzSzZQJmmylhoQkx1igiCTVdMg0Ol0IhKJCHtqBejNvtTrdaytreHGjRsiI9VtMMdBX0eb3ozQrLUJwjlfxWIRv/zlLxGPx3H16lXs7e3hxo0b+J3f+R3s7Owgk8kIC8f5JfDSLCjHRNfa00lYOKYEJmS2mKyjWq0+UxKD7aYknKBOM2k6BpIgUK83zb4BeKZdel3xe64njhFLs5jKASaVYjwz+6Hr8GmWlu3RIJPPLNfg88D4120vLn3K35DZ8M0222yzzbYvs0KhgEwmI4kqfD4fxsbGMD09jampKclKubW1hUePHuHo6Ai1Wg3VahW9Xg+RSATxeFxioLRciLvzwImDp4tBd7tdkV1yVzkUCmFlZQUej0ccEdaYazabUneu3+8jn88LsCsWi4hEIhgfH0ev15M2MgkJnSkyhaVSSeJYyHTouC1gMOaHzguzWZKxO61wtHZ8gcFU+WT3+DdBgS7IbUrLnseMaNPHMXskgWm1WsUvfvELHBwcPJOdTjvumqlxOk8yUq6srGBmZkakk3qsmECBGUoJ5ghK9T8NEjSQM4GQlpOZWQM1a6fnhv3QpmPUtOPLvmpwZbKjJstnzhvHSsdB8TMtm9Nghv3R/ed9mC2VGT/1mPJ8sp/m+jHHlgy2uR712nE4TmSyrM2o5X56Hem+awBHxpCgXgM4PQ8mk6r7bq5dmo4t5X273S62t7fx05/+FJFIBN/4xjewt7eHe/fu4eLFiwNjQwDMjRmOCceIz73O6Mh/ZLMAIBAIIBQKCeAju0aQyY0GLS3lWqBcU8uN9fX1M8d7c83qWDx+r4GiXrvAyaYZWXAqCJgtmPcms0jQTXaxXq9LwhMtJW2326hUKqKOaDabkgRK16HkO+BFkkYvGQMHG8HZZpttttn2pUbg4Ha7kUwm5d/Q0BCOj4+Ry+WQSqWQy+UG/pOnfIY115i2nrI6OifM+MgscfzPvtPpiFPh9XoxMzODSCSCQqGAVquFeDwu57ZaLUSjUfj9fnFyp6enkc1mUS6XBVxUKhVxXsj0kfXrdrtYXl6W+BACSIIxp9OJer3+zG4ynbB2u418Pi8soJXRQdNO8mmmZWY81kpaqGPPAOs08NpJ1vPqdrsRCoWkKPfdu3fx2WefDRT21rvvvJYGnkNDQ5iensbly5cFuNORJODXQEOzElYsm74XgTNNMw1WzKMp/zPHwcpMEEenUzOtvJ/JpJr342cmkNPMpdV88p+W23KsNSDj2EajUUnCQbBA5kOXljCZTs2UsTaalbFtsVhM2Dfdfj3WbCed+r29Pdy8eVPYZD4zGtSa0lmTrbFql7neNcjRSTT29/dxdHSECxcu4OHDh7hx4wYuXLiA2dlZbGxsSFwigRNZdI6nZigdDoe8vzR7qN9PZPXIkGowxfVF48aFngOtMiDo0yAfeCqXJEDm+5Tfa5DIedWSYY43M4GSnavX67IRRDAHPM1gyU0Gqgo4diwJwuuZcb16vfC6p70Tvw57uQAcHDZ+s80222yz7UuN/1HPzMxgZGRE4sAajYYU6i2VSuL0MJOh2+2WrGZ0BJhKnTvfgUAA6XQazWYT4XB4oKDsyMiIJCWZnZ1FpVJBPp+Hw+FAMpmE2+1GsVgEcBLfFo1G8eTJE/h8PkxNTSGXywEA5ufn0ev1BoAFC34nk0mUy2UEAgHMzs4inU5jY2NDAByd+W63K+BPO590WlqtFkqlEoCnmTOBpzvj2iGnaWBxmtMK4BlHVc+L/k5LrkzTbdWOZaFQQDgclnmpVCr4+c9/jpWVFckWqa9t9oHtCAQCOHPmDPL5PDY2NoQ5dbmeplnXWSJNBses68br0qEkwNKOIo/RY6cZTI69mfqf46idcTP2TcsygadyNJ3lUYMuK3DDMdZMIo/XSSbYVv6tZZmU1WmgSLZZO8z8jtflutEMoWYs+RmfST2XvF8oFMLIyIiwb6eBYPan0+mgWq3i/v372NzcRCAQEDZJ30OvaXON8ju9zszPzd/1+icL/pd/+Zf4vd/7PVy9ehV/9md/huvXr+Ott96SpCpWG0VkC/X8cu51ciANvBlXRyDNDJd67WgArtctWTu+lxiPFgwG4ff7hcnXIJlMF4GgLh/AxDuaddWbO3wmh4aGUKvVhCnjs8lnXK8BvsfZR74Lq9WqxFAyOQ2P1TJTvjd1eYMXYS8XgHNYa45ts80222yzTVskEsHw8DDm5uYwNDQk8Wu5XA7ZbFayk3k8HsRiMXF+dUa3qakpuFwn2R9rtRpCoRD6/b7EqA0NDYnkqtfrYWxsDJFIBLFYDMFgEMfHxyiVSiLp6vVOsu653W5EIhEUi0WkUilMTEwgHA4jlUpJynUW8A6Hw3A4HKhUKpicnByQ3pF9yufz4hzrQHyPxyNMgo7x0CCk0WjILjNZEB03aJp2iJ8H3szEALyfCQbN+CSre2kw0e12cXh4iLfffhulUgnb29twOp3Y2dnBz372MyQSiYG04Zo1M9vrdDoRi8Vw7tw5tNttbG5uotfrDWTR0+Nl/m2yfFqqqvtrnqcBj47d0oCV35lt5nfaQeeYmrXzyDRybXNuCD7ZZt1eytI0WDIz/mmwwOdFt5lrVPddPz8ABHhoMGr20QSc/NdqtUTGrBk1t9uN0dFRxGKxAdaT19Tgk+xXu91GJpPBjRs3UK1WMTw8LKCEca56fjVAs3o+9Lo9zTQQ5t+tVgsbGxu4ceMGfuu3fgtLS0u4d+8eLly4gAsXLuDOnTsIh8MATtLzM+ZLt4ObB6Z81nyWydjxeAIYE2ByPemYVraXmW51nzwej6wZnk9JI5MM6TWo3zVkxQisTCm0z+dDqVSS9yfXtWbVyJYT9PE6XK/hcBiNRkNAIEsaUHGhNywI/l6kvVwADraC0jbbbLPNti+3xcVFTE5Owuk8KQ/Q7/eRTqeRSqUGUksPDQ2h0WgIQ1er1dDpdBAIBHB4eCgOLQtvNxoNYd1arZY4edz9n56eRiqVkpisUCiEUCgkziKL2GazWbRaLczPz6PdbmNrawuJRAJutxuFQmHAQS4Wi3A6nSIzisVi6PV6yGaz8Pl84kRrZygQCCAQCKBarQ6ABO0oayeHDpfJGGjn0AoAnSYb00BNJ3CgaXbGjNHSjBOvx3Y4HA5xwmZmZqQgd6fTwWeffYalpSXE4/GBmCwtjTLjplwuF0ZGRnD27FlUKhWk0+mBJBkmwOQ5moEyWSy2neBEAziT1QCeTYOvr0mgZsUgahCoz+WY6/nWsjYrUHgaU6TZOlNCqFk/q/6wnbpNmnHT7KgeI65XXpfnmUycOfbJZBKjo6MDGUlN4EwAx+exXC7j3r17ePTokYAHJgJ6HnA3wZvJvJnzpD/XMlo9rs1mE7du3cKZM2fw6quvYm1tDR999BG+973v4cmTJwKo+v3+QLKSQCAwIGHU99BxbZp543hqybEG7rwG1wLHXRcDJ4CkLLLfP6kxR2ZTx8uxNhwlq2wL29xqteB2uyVrL/BUxskNMp/Ph0ajIffW0km2W28GaEaR7J/X65X3LxULZOEI9Hhfq+fu67SXC8A57DICttlmm222fbnNz8+jWCwik8mg2WwinU5LfTfu6OqsgNVqFZVKBcFgEPF4XHapfT6fBMUPDQ0hGAyiXq8jEAgM7BZPTExgamoKBwcHyGQyACCSyUajgaGhISlDkMlkEAqFMDw8LCmvx8fHRSJEJyefz4tsikzf0tISstmsFEkuFArPsFx00inHNKVqppNGh9A0nTXPlPtpdsiUA9LoeGvwxfZo1kg7WtoJPQ0kOJ1OrK2t4d1338XY2Biq1SqcTicymQx+/OMfY3Z2Fh6PB5FIRJxtncyB9+E9fD4fpqen0Wg08PDhQ3HgdX+0066TM1ixa3onX4+xvp7+WwM+9lezWaZpp1TfU4+hOQdaFmnK+zRI4z+rcdJzd1p8IY/VbSLYqtVq8Pv9A5ko9drjOqBjz2vppC+aUdHjHgqFMDU1dWpRd5N94wbMzs4Ofv7zn6Ner8tzT4mejgvTjKIVa6nHSJvVBocJ4rVkMJfL4datW/je976Hy5cv4+bNmygUCrhw4QI++eQTYZfZFyZbIful5ahutxvBYFDGt9FoSAIkHbemQY/eOGA79drUiYII2ILBoIwD26HBmX5eOH+cB36mN6B4jW63i1AoJJtXQ0NDUlRcA1HW3eRmlS5/wL46nU7ZQKNcXDOFBIHc8NH14V6UvWQAzoG+zcHZZpttttn2Jba/vy/FuIvFItLpNKrVKgKBALxeLwKBgKSgphMUDoclxoRyHmbPo1PAItssfB2LxcT539zcRL1el+sTGPr9foyOjkp7GMN2584dxGIxRKNRiT9jAoVOp4N4PA6Hw4FCoYDx8XG43W48fvwYjUYDFy9eRLlcRiaTkR1sOkZkkMwYDr1LrUGYlk9pMGZK2IDnO6T83WSCrOLQ6IQSVFkBPw04TRasUqmgVqthfn4eu7u7wqg+efIEH3zwgdQAY5/oSOq+62t7vV7Mzs6i1+thc3NTHF0rBg4YBLf6HrrtpgyQY2+yJHrcNTDSoFE7kybTx+N0cWQ9jprp0QDRCljqOWS8EJ1tAjuuLd0PMk00Ovx6ngkAtGNPdop9MOee1yYI4ThoCanb7cbk5CQSiYRl0W4TvJF5KZfL+Oyzz/Dw4UPJ9sh4Mp0l0xx3K3ueo2/1nZY36rnq9Xp4/Pgx1tfXcf78eTx69AgPHjzA7/7u7+L27dsD5QR4Ht9fDodDxsSMhSVgoZnjpEGauRmjNwE0W6qN8aiMVyNbp+WOGixxXDif3ChjnTeuJ7J8TFyiY1L5POmEQeY6dzgcA2VMCMy4ccQ28VydeVKzcS/CXqoyAnYhb9tss802276KlctlNJtNFAoFHB0dodFoSGYxZnNkkW/+x01pjsvlkniJoaEhcU7oCDAGZHx8HEtLSyiVSlKfzefzIRAIiCOSSCSQTCaxv7+PQqGASCSC4+NjVCoVrKysYGRkRLJJ6p3rcDiMfr+Per2O6elphEIhHBwcwOFw4Ny5c0in09jZ2UGxWJSdayY2CIfDEhOng/PpsJsMAJ0UOu2mVI6Ok3byn+ew0jHS99TnaOBEJ928nnairI7p9/t4/PixxDlq5uAXv/gFfvnLXyKdTovki+Oq2RyzTeFwGGfOnMHi4uJAFkN+rxkszQxppkYDPDrQ+nxTdmmalvjR2WQckWaPTCe11+uhUCgglUpJP53OwYQqWq6nQZkp5WM/tTPLz7QjrAGDdoh1n00Wi5/pOms6WQxwAi4YE6XXEVkjLQMlez01NfVM2QC91jR4YybDx48f4+c//zlqtRoCgcBACn6zRpkeJ20mM6nX7fPkd2yPHlN+ViqV8Mknn8DpdOLs2bPY398HAFy9elXki7w32aJ6vS5/c9757GrQ5PV6pYQAjyMrpdui68wBkLHh+5DnapkhEwppWSJjSSmb1HFvmrXjdbmZRHDH97huU71eR6VSQavVkmu53W5RRbBMQjAYFFkoS73oLKYsBE5wy/cvi3zX6/WBshVft71UDBwcdgycbbbZZpttX27lchnpdFriyZjYoF6vi3OjpZAsCRCPx2W3NxqNyq4w4zDo2J49exbBYBDb29vIZrPw+/2Ix+Mit3S5TtKZt1otHB4eIpFIwOVyYX19HaOjo1heXh4AdXQkwuEwRkdHcXx8DLfbjeXlZezs7ODg4AAjIyMIhUJIpVIiKdKSMpfLNZANjsVqNWgDBmVf+m/txANPd/GtduUBDEjttLNn5Zia0jN9b5OponPHe1hJ1xwOB1KpFPx+vzi5lUoFwEna+r/8y7+UMgzDw8NyPp1E9s/sezAYxPT0NBwOB3Z2dlCv16V/BAb6HN0+4FnZqQawNO28W82DHlMN0LR0jd/rLJ7BYFCcXT2uWh6p2VbNtOn7mOwemQg9BnSM2VctlzTXmJUMVLOyOjuiGYep72mWBXC5XEgkEpienkYwGLSMSTTHnIA4lUrhV7/6FXZ2diSGjI47r63vzTG2mi8tE+Xnp5l5Df1s6H6nUincu3cPS0tLuHXrFq5fv463334bd+7cQalUGngmTSaKQJfATQN1zWARKPt8voHSDpptAzCwHnmero3Idx5BjwZkAGQDgnPNDJGcc71G9XNK9qzX60ldRoIw4Ckb6/f7B2LsnM6TDLMEZnzfs30m88bz2Ga+830+3zOZSL9Oe8kYOBvB2WabbbbZ9uWWyWSQzWYRDAYxPDwsO9tOpxPVahX1eh3BYBCBQEAcCDoI0WgUY2Nj4rh4PB74/X74/X6MjIzgypUr6Ha72NzcFBllNBpFo9FAs9nE8PAwRkdHkclk0Ov1sLi4iGaziePjY1y6dAkXLlzAxsYGSqUSIpGIgC2/349ms4mNjQ243W5MTEzg4cOHqNfrePXVV+F2u+XvYDCIVCo1sGPt8/nEGeNOs3b6TSbMNM3MaaZGO6Ta+TcdIGBQdqV/Ata13nRbTKma6RwTPPO4VquF+/fvY2VlBcPDwwNA4fj4GD/4wQ+wurqKUqkkzrnOuGnFqLhcLkSjUczOzmJ+fh6RSGSAfdKOMM83Y/hoGvySgTAlrKdJWnWGSRMYcYx4PTIRHo9H4pEIzMg8Eujz2nS+zbpx/MkYI5MlNUGhXmN07k2ZqE4oYzJp+roaYJhsJR1/PcfxeBxnzpxBLBZ7Zi41mNLsG3AC8G/duoUPP/wQDocDkUhE1nK32xXwoOfbCqDqNc17muDeNHOTBHgKLvk93wf37t1DPp/H7OwsfvGLX8Dn82FpaWng2WSWUJ24RbOavDYTMZlAUWd/JOtlrgk+F1w3HAsCLY4ppZw6eyWVCEwQxXvq9eh0OlGr1QSYch58Ph+CwaDcn+whN6k4RwR1HAcAA7GBvV5PioLrMSEzyNIyhUIB1WoVjUZj4Bl6UfZyATgH7Bg422yzzTbbvtSKxSLGxsYQi8UGkj3U63Vxkinl0lKkqakpiT0juKLjMTc3h4mJCRwcHGBvbw+9Xk/qkVWrVbTbbbnfwcEBotEogsEgHj16hG63i7fffhvBYBCff/65OFPMejg5OSkyuLm5OTidTty8eRMAMDo6ivX1dRwcHAgY3d3dFaaQ0h861cVicUAKqR1q7bxpxxsYdHppJmPA8zR7ZMW2aQaD31kxFfqz04AlHTUzK1y/38f29jYajQYmJiYGzun3+9jc3MRPfvIT7O7uyvwQyJFFMmWSdIDD4TCmpqYwMzODUCj0jHNujqtuq5Y7mn3WGfJMgGqyZnr+9PEaGOq2m8W9NZvGz+k0kzlpNBrCmGgZnQaRPJfzqwGRyZySxTGBnx4frhn+rcGXZpL0nLDNXFexWAxzc3PyvJmySV7LlE4y4+tf/uVfIpVKiVNP5k2PoSmL5fibEmT9nZ5Tvcb5u5nAg59zTCgzbLVaSKfT2NrawiuvvIJer4fr16/jnXfekfZR/siyF3qjo9/vy/cEpMBTNowgj5ksvV7vQLwjP6dU1u12S8ISgqBWqyWbVrwfyxswjldLZYGTEghazsz6bpTg8noa4IVCIXmH600ILeEsl8tSZkBvloRCIXmfcw1wvD0ejyRJYVvZF87/iwRwL5WE0o6Bs80222yz7avYxMSEsDWVSkUkZmTZCOL8fj8qlQo8Hg8WFxdRq9UkDq5QKKDVaiEej2NlZQXtdhuHh4eSnZKxZrVaDR6PB9FoFLVaDYVCAaFQCOVyGUdHR1hZWcH4+DjW19dRrVaxsrKCfD6P/f19jI2NIRqNIpfLodFoIB6P49GjR+j3+5ienkatVsPDhw+lQHGxWJQsbKZDyf5qaRxNH6fNyrnm8SZ4M3fv+ZmVU04nyUxmwXZoUMc4MvaJn5v31lka+X2hUMDW1hbOnj2L1dVVFAoFaUOn08Gnn36KSCSC733ve1hYWEAwGBSnXDu3VtI9xsENDQ3h8PAQxWLxGZBrpojXYIfOqzkupizSlDWyPeyvZg14vh5XmslgsS1kVLrdLhqNhsQ8kW10OBwIBoPi3BLE0NnntXkvM1GGFetEaSf/Pi3TqF5vOjGKeV+u5W63i3g8jnPnzlmWDNDXM8Fbs9nE7u4ufvKTn+DOnTvw+XwYHh4WZp7916n1tZ32fFgxy/q405g5c/7MZ6vb7WJjYwOvvfYaZmdn8dFHH+Hy5cs4d+4cbty4IeuTTCrHnDGfLFnCexCk8hwN9HXmRQ2w9CYMn1POX7PZRKVSgcvlgt/vl80QxptxjWoAyXWtSwDoJCy8Fz/jWiabx+sxSRSvUy6XRTLO45lEZXp6Gu12G7u7u3KMlo82Gg2JqdPg1Zyfr9teLgBnKyhts80222z7Csb/pAuFAsrlMgKBAKLRKKrVKgBgeHhYsrOFw2GMj4+LE8cyAC6XC4uLi5ienpZMlr3eSR02JjYBgEQiAafTiVwuh0AggJmZGWxtbcHj8eD1119HoVDAzZs3EQgEMDc3hydPniCTyWBqagoejweZTEYcqP39fUQiEUxOTuLJkycoFAqYmJjA0NAQMpkM+v2+MH5axsgEDnTStJNMho5m7tQDz7JvVo6LFXjT0kk6p9pp5X01iNG/W93TBCU6fsY8r9/v49GjR/gn/+Sf4Pz58/j0008H2Mdut4sPP/xQZFeaqaPESsfq6La4XC6p7efxeCSzKdvD/msgbcXO6c/MjJzaSSVQcblckkpds3HawTWZKt5H1wrTY6jXAjCY1bLT6UgKdt13GkGqyeixj8wAasomeS06xkwBT6BgGmtx8Z66vQQO8XgcZ8+excTEhKx5cwx4ngZvrVYL+Xwe165dwyeffIJ+v4+JiQlhu3Q/2H+TUWPbTeP3XA/m3Ov5MAGvCfDMTZJyuYyHDx9iamoKm5ub2NzcxKuvvorPP/9cNprIfgGQz/hu07GKug0EfIztpWRWZ2Qk88nnQ4N7AnydQVavVcYac31pSTDXoy5p0Gw2hU3kO9qUlvJYykE5ZpS3M4GPjt1l+ZXR0VGMj4+j1WqhXC7LmOvnQD8zBIDmM/Z12ssF4PCsdtg222yzzTbbTPP5fMjlchKjFggEUKvV4PV6kUwm0el0pKgrAKTTaUktzh3ehYUFDA0N4fj4GMViEW63W5KRkMlIJpPI5/NoNBq4cOEC3G43VldXRX6Xz+dRKBRw+fJl+Hw+3L59GwcHBzhz5gzK5TJ6vR6SySSOjo7Q7XZx5swZOJ1ObG9vAwCmpqakNpwu2Eupj46Z4t86y5s27WCabIE+1nTWrY7VzJNmU7RkTEsttaOnGTjeT8eHndYuAgPT+d/d3cWDBw9w4cIFrK+vI51Oy3WBk/ic//Jf/gu8Xi9+4zd+AzMzMwNOrc/nEyaHTqm+ZyAQwOTkJDweDw4PD2VdWTEuus2UYJnMFNtmfq5lW9phNcdLj7MG4lrCyPkzk0T4/f6BdaLBhdV6IZjR86eBDBmV09YCAAEAGhQRrGmwwr7oFPj62vF4HAsLCxgbGxPwptuvgbQJ3orFIq5fv44/+ZM/wcHBAWZmZjA+Po7Hjx8DwDNyUl5PJ04xZa1WzKped6f5q1Yss5nCX8/fkydPMD09jWg0ivfffx//6l/9K8zPz2NjYwPhcFieaz4XmsXVrCYlh2S3fD7fACvLDSwyvpp94zW0ZFvHnPGdwHHXyUfMZEgalJHt9Hg8krXS6/U+U5tNs8tsG5nHVquFQCCASCQiiYx4rUKhgI2NDaRSqQGwyuvxmWCcINk3buy8yCQmLxeAsxk422yzzTbbvoIdHR2h1+thcnIS7XZbso8xUQgZjkKhIDvBXq8XPp8P0WgUU1NT6Pf7SKVSkpHS6/WKUxGPx9Hv97G/vw+Hw4Hp6WkcHR2hUCgI8Nvc3EQoFJJi0zdv3kS5XEY4HMbx8bHc6/Hjx/D5fDh37hwqlQq2t7cRCoXQ6XSQzWYRi8XEGfX5fDg4OBBHSTM2Xq8X9XpdnB7N4ACDqeOtnHYNKMzfTbBiSr90YgMNLHgP7dibkje32z1QG8pkkPQ9rTIa9no93LhxA7/7u7+LsbExYSp1myuVCn784x+j1+vht37rtzAxMTHQP8YRUb6lGSCHwyHZLOlgplIpiadkG3Q7NTPJ65hsgnb6zXHV8/M8cM1ramBkSlT5HdeMdqL1fOnrsP+6zRos6jg6MljPy9SoAZ6OndOSPF2vS9+PMW+zs7MYGRkZkOuZsWQm89Zut1GpVPDgwQP8+Z//OXZ3d+H3+3HhwgWUy+UB0MPNEDOeTjPV+j66r1ZrVj+DJtA0zVwv+vPj42Pcv38f8Xgc29vbePLkCV599VU8ePBAAJpOZKOfEQ2AuPFjAjKybz6fDwAkc6NZw40gkyBPX5fyRr6TdAwlQR7nXZc40fciE6xr3XGtM1Mwx05LIFlGgeyc3sTghk+hUJCEVZp5Zr+DwaCoKhqNxjPA9UXYywXgYMfA2WabbbbZ9uUWiUQQCASE5XK5XFKnjTIdSmTGxsYAnPyHzsQjhUJBHKLh4WEAJ4lRotEokskkisUijo+PEQgE4PF4sLW1BZ/Ph/PnzyOXy+Hx48fodrvCNNTrdakJl8/nJbX9/v4+ZmZmsLCwgPv376NWqyEcDotEMplMitPBukgHBwcAnsYi0VFk4gDtMFrt6gN4BgDoulH8Xttp4I1sDD/j/bjjbgI3K+BIh868h2ayOId0HE2AkUql8OjRI7z22ms4Pj4WFk7fJ5fL4Uc/+hEA4N1338Xs7Kx8RyaOwEDXjtNMUjKZhNfrRTAYxOHhoYAAzUppOZ05XhowaemdBg0meDPnU7N3VsCB7deOPEEoHXg6zzru0GRINXtHcKvnlAxYIBAYGEdtZtvZTxPUkPnQMsJutwu/349kMinJhciQWW1CaPDG+SsWi1hdXcUf/dEf4c6dO3C5XLh06RKGh4extbU1sAYJSDRwNDcqOJanPQ96HWvpqzY9h+ZYARAQwv60Wi1sbm5icXERTqcT169fxz/+x/8YoVBoYP50enzNXhJk9ft9YZp1rFutVpNNIJYgYVITzomuh2aWHuAxBMOBQEA2CkwZd7//NH6Tx1ANEQgEJFaR706Oea1WG0heop9JMnb9fn+gX1zzlHGXy2Vh+4CngLLRaMh9AoHAwPp7kYW8XyoAB4tdC9tss80222wzzePxiNTN4/EIiwZA4jOSySR8Ph8qlYqAJYfDIVknA4GAOKeVSgXBYBAzMzPIZDJIp9MYHR1FoVBAsVjE8vIyEokEtra2kMvlEA6Hsb+/L3Emy8vLKJVKyOfzSCaTqFar6HQ6WFpaQiAQwN27d6XwdyaTEaem0+kgkUigXC5L3atHjx6JE8a+alCjgZIZt2YFLkzZnmnaQdYAEMAzoEWzIFZsAn+asWAmA2QyNfxMS9q01LHb7WJ1dRVnz57FlStX8Ktf/UpquFHe5XA4UK1W8f777wMAfvM3fxMTExMIBoPiMJPdoQNvJalk5kKPx4N0Oi0JaExm0QRf5thp59pkkqxkdhq00TSI0xn2TIaIji0ZB7J1wAl44fjq4/U92EYTrGowpdupQbyeY30MY7RodMx5vM/nw/j4OCYnJxGJRAYSb5jgjRsHnGtudjx8+BB/+qd/ilu3bqHT6eDMmTN45ZVXkMlkUC6XBVAwDb3OoMk+63g+PU8mu2rOvQnszN/1BoU5v/p5Bk7eWfV6HV6vFzs7OygUCrhy5QoePXokYE1LFbnedZIencyG61r3iVJEjgXHhvUzzYyl+vkEILJKjiHfYV6vF6VSaUBuy80nXWCc606Pi96E0oBKv7/4OZm6QCAgwFdvCJjF4zkWOq7PfA+a78+v014qAMchtdrRsM0222yzzTZaJpOBw+GQWBn+pw6cJDAJBoMolUpSKy6RSEj8hN/vF4kl5ZXxeByhUAirq6vo9XoIBoM4OjpCOBzG5cuXUavV8NFHH0nducPDQwwNDWF8fBzRaBSHh4fo9XqIRCIolUoIBoPiSG5sbMDv9yMQCCCXy0lcHtOAM0vm8PAwVldXAZw4zo1GQ+olcSeegEAH5wPPAiwr5saUV+rYGTrGz/v/l3IuOk3mtTWDQ+eQbTOBnD5OgzgrZ5VtzWQyuHbtGn7jN34Dh4eHePDgwYDEEDhx2AqFAn74wx+iVqvhW9/6Fubn5xEOh8VZ9Pv9IpVkYhjTsSTzGgqFEA6HkclkJMGJyZZZMW56vNlvKyffBAXsj1mGgO3SAITnNxoNcczJwOgMkjpRg5k6XrM3en4040KGTico4dzqzQSCBTMRCI/VICgWi2Fqagqjo6NSpNsqvk6zlIxvIvN27949/NEf/RFu3bqFdruNSCSCd955B5FIBLdu3RLJZqvVkudIxyHqvuuNBXOezA0OPZfsswnk9dzT2D+91jgu3W4X+XweExMT2Nvbw/vvv4833nhDMtZaxRMSkHBOrGJjGQunn3XGsAGQzS8N9vi33pDhOeVyGcViEfF4XOY1FAqh3++jVCoNMPzcBNFxvSz1Qekj70uJpskwUvYKnIBBMocsF8JjGdfHe/B8HqOTtXCjiHF2L8peKgBnm2222WabbV/FmNWs1WohGAzKz5mZGXS7XRwfH6PT6UhcU6FQQK/Xk2B6p9MpksvZ2VkcHh5ifX0ds7OzaLVaePLkCebm5rCwsIC1tTVJZc/Ml+FwGGfOnEE+n0c2m0U4HEa5XEahUMDU1BTGxsawvb0tWTDJyAWDQZFRdjod5HI5KSb95MkT7O/viyNC51vveGsnkuyBGc9lxcqZgIGf+f1+LC8vY2RkBNeuXZMMcdro/OmfGrDR9Gc6UYQJHE1GR7eREioz7T/7+vjxY6ysrODixYvY2dkZKA6sgVO1WsXPfvYz1Go1fPe738Xs7CxisZjs9vv9fnEGCRyZmIHmdrsRj8fh8/kQCoWEjSPTRQeW42/G72kwoNPu08nWIJemjzElmnrO9RwydlPHGtH0GGumQmeEJDDk/bWEzel0SpIdOr3asdf95pwR6Ovshmy30+lEIpHA2NgYEomEAE4tveQ5+lzN0JTLZaytreGHP/whbty4IVLolZUVTE9PY39/XzLK6tg7M22+Xnvsj8mucgz1eJuSZf29yaDyngRbOpZUs9AA5NlzOBx48OABXn/9dQAn0u5wODzAompAy7XFOTA3BCgb5PdMIKLnnmCKska+a5hEhNfUpQXC4TB6vR729vZE1qjBO+efzxfHjG2mtFHPByWWZNr0BgTHl+uMJRX6/ac18Qg+qczQAJKAjawy196LspcKwHHN9/u2mtI222yzzbbTrd8/Ke6aSCTQ7/cxOjqKRCIh5QACgQCmp6fRarVQq9XQ7Z7Ul/J6vajVaqjVakgmk5KpzuVy4Z133sHBwQF2dnZw8eJFjI+P4/bt26hWq1haWpLd50gkgnA4jI2NDQwNDSEWiyGXywEAFhYW4PP5sLa2hmAwCJ/PJ2UOyBKyTIDf70csFkOpVEKlUhFHw+/3S2yfzp6oHWHtdHE86GSZkkmCPC01pCPJxAJjY2MD8VtWjo3psJtA0cq51zI0zbKZDIUGNNxh14CMxzQaDdy4cQO/9mu/hsXFRdy/f19YVNMqlQo+/PBDVCoV/L2/9/dw/vx5xGIxAE/BhtfrHUjYoNk4tpn1BYPBoNT0KxaLArI5JnSsmeSBaeu106/HXrORelwADMQH8XwtZ9TtI0gwWVQ6rVom6HK5EAwGB1goPd8agLD9jENi7JSWTmoAQpaFgFIDfWZ+HRkZQTKZRDgcHojxpGkQp+PECCQKhQLW1tbwgx/8AJ988omwK4lEAouLi2i329jZ2UG9XpcxaTQashFi3ov3Mde7BkF6/Zogz/xdzwvHW19H30uPe7/fR6vVQrVaxcTEBA4ODvDo0SMsLS3h+vXrkoSH/Wi32wKsOY8cJ/0e4D9maKxUKsLsa5kkgV+9Xh8ASd1uVySXVAI0m03JbEl5t87w2Gw2RWXAfutnzOE4qSXXbrfRaDQkc6pOjkIQyWM4roxr9vl88lmj0UC9XheATAkpNzd0plO9GaaB74uwlwvAfSGitPOY2GabbbbZ9jzzeDxIJBIIBAIYHR1FJBJBLpdDvV7HyMgIIpGIALehoSEkk0m4XC4p6Do3N4ehoSFsbGxgeHgYgUAAN27cQLfbxTe+8Q1UKhV88MEHIr/c39+Hy+VCLBZDuVzG/v4+gsEgQqEQisUiQqEQhoeHUSwWkclkMD09LYwca9IRWOpsckdHR8JKMGPm7/zO7+BP/uRP4PP5pJivmTSADpcZ72YyB1rSpp16/t3pdLCxsYHNzc1nWDGTNaNpYGCCLH1tfk5QoHfa9bW1I0Vp3/MA5P7+Pu7du4eZmRkcHx9LRlK2Tfex0+ng9u3bqFQq6HQ6uHz5MmKxmDA5nU5H4uLoZFKmR+aHbQ+Hw5LRLhQKIZvNolqtyliYTrsZ80UzY39M9slqHvV4m/Op+2uynWyPyRCZTJGWAeo2NhoNkRoSOGh5q2YHAUiSDEqU6bQnk0mMjo5KtldTCsq5408z3o3gjdkmP/nkEwH5Ho8HY2NjiMfjyGazwmKzvYwL1GtKM5l63bDN5hhatfU0ts6UWppSSn0Nk3GsVquIx+NwOBzY2trCt7/9bXz00UfCSnHjRifh0WtUP+NmHBjBVa1WE+lkuVweGA8+i5rFJVPN99b4+LiALgKqcDiMYDCIbDYrGyo8nrG+ZL0I3nu9nkjPCUzJwLMfOhGPuWFEKXytVkO9Xh/YUOGYciOBz2I4HJZ3bb1eH6if+XXbywXghIHr42lEnG222WabbbYNGmPRJiYm0Gq1sLOzg6GhIZG8lUolAJAC341GA9VqFdFoVApxl8tlzM7OolQqYXt7G2NjY0gmk9jb2xMQ1mg0sLm5iVgshkQigaOjIwDA4uIiGo0GyuUyJiYm4Ha7sb6+DrfbjWAwKIAvHA6jWCwKMOj1ekgkEqjX6yiVSpK8odFoSFKWhw8fCvuh04ezhACdGatEFKeBBR6jWQTtrPN7/bdmjgAMgCx9b83w8Dz+NFPP8/ehoaGBOlD8jrvm/N4EqcBJLMz6+jr8fj8WFxdRq9UkiQLbzz4S7Dx+/Bh//Md/jFgshkgkIvfR5RvoINORpPOopYYejwfxeByBQACxWAzFYhG5XE4YU9PJ5Hhpdo1jomv7AU+z5mmWVcc0EdBoIELnVs89r6/n1JwDc+7o/Ju1xvx+v3zudDqRzWbh9/sljkjPm24jAMk8SHDFOod6LVqtGY4B5X7NZhPZbBZ3797Ff/7P/xm3b98ecMxDoRCWlpbg9Xrx+eefy/PmcDxNWMTNg+cxLs8DZOYYWj1v/N2UOZrSY6u+E6zk83lZBzs7O+j3+5iZmZGELMxEy7VNBtIsB6AZP753Wq2WJCLx+XxoNBpot9vC9nKzh2uOMsRgMCiJTij37vV6MrZerxcOh0M207gxYrKSnFOHw4FEIiGSR4JRt9s9kEGS7ddlBzQD3Ov1pHZns9lEuVwWtpX3c7vdiEajcDqdSKVSwj4yxrXZbJ66Hv6m7eUCcF/8tBk422yzzTbbnmcLCwuIx+NIpVIoFAqIxWKIRqNot9vi7MRiMYRCIRQKBbRaLczOziIQCOD27dvwer0YHx/H4eEhAODKlSsIBoO4desWhoaGcOXKFaytraFYLEqikkwmg0gkApfLJY7s+fPn0Wg0sLGxIdLKdDqNSCQizgfjMJxOp8ijms0mRkZGAADZbBbRaBT1eh0ejwf7+/vodDoDdY0ofdRAwJRKAs8myzAdTv2ZFTugnT/eS+/ka0fYTKyggQ4ld7odWu6nAWC/3xfnjU4ed+TpzGrZnsNxkuFwd3cXZ8+exczMDJ48eSI1pug0mw52sVjEBx98gL29PczPz2NychLRaFTuyUQXdIgJosjiaHkc5WPBYBCRSESylZLh1UBbJ2PQbKkGzFYsqmZyOLacCw1W6axqcGQCEDLR5vU1s8fxZnxUs9lEKBQCACl74ff7JWkK15+WbfI68Xgcw8PD8gySVTHBC+dfAw7NGNXrdaRSKdy6dQt//ud/jrt37wqYZKHpyclJLCws4ODgAPv7+3LdXu+keDc3BKyYML2hwf5Yscnms2LFznHDQn/Odug51s8s7885ZE1LPj9ra2uYmpqSepR6bPSYMa6Rz5ZuH9cv2TImvCFwMp8VndHSTJqkGVHghAVj4qBWqyVzrYEYx1Rv2lSrVRQKhYFC31pmyY0TrkeCYgIuDTo57rrWW6VSEVk6N9VKpRJqtRr29vYExJ7Gjn4d9nIBOBUDZ5ttttlmm22nWSgUQiqVQqfTwfj4OAKBAGq1msRmxONxAJCi2RcuXEAmk8Hm5iYmJiYE6MViMSwvL+Po6Aj37t3D1NQUotEoHjx4gGKxiLGxMbRaLRwfHyMWi0nh4PHxcUQiEWQyGWQyGSSTSdTrdVQqFZHoaVDi9/sxPDyM/f19tNttjI+Pi9Pj8/mQSqVwfHwMt9uNUqk0UHCYjh1NgyYrRk2bdvL0OaeBNy2P4zl08ngdfS3NBunU5L1eT5LLkCViWzXQMI3HMVZRt1ef0+/3kc1msbe3h+npaXS7XWxsbMh3pryz3+8jnU7j8ePHsiZ+7dd+DefOnZNMiHRMKc2i80cJK7MZ8npOp1OAXDgcRjKZRKlUQqlUkhg5tplOso5XM4E422vFvJkSSa4NDRL1nOqMoQAkiySt2+2KlFE77v1+XxiUUCgkgMDv90ubWCNMM0t0vMPhsAC3QCAgoOJ565NjwX8EECx6//HHH+P999/H3t6ejBOzCsZiMZw5cwaNRgPr6+sDjFulUnkGWJoyV83wmutat/l54M1cl18VFJhrmm0g0HI4HLh+/Tree+89pFIpkVPzXK/XK4lA9KYH1x3nhwwc78Nz+LcGg2yHljEy5g14uoHQ6/UEAHFzoVarSTIpxlkyrpTvAa6VWq0mY8yEQp1OR+aPUlzGyukSE3zHu91uebd0u13J9EtJZzabFfaY6gYtrWYylhdlLxmAYwycjeBss80222w73fb39xEIBDA3N4dms4lisYh2u41QKISpqSkUi0VsbW1hfn4eExMTSKVSKBaLuHz5MvL5PCqVCs6cOYNoNIrV1VUUCgW8+uqrKJfL+Pjjj+H3+zEyMiIORTweR6lUQrVaxeTkJKrVKg4PD+F0OjE8PIxOp4NwOIxut4tKpYJAICASrpGREbhcLuRyOalVVygUkEgkUK1WkUqlxEGm00MnhM6sdrS10ws8ZWG082h+ZiXZIjDgdbVsiaaZAxMUafZGx94QVDB+iv0Bnsa46cLB2gElOxEMBgVIWBnPyeVyiMVimJiYQKFQQCaTkWub49PtdrG+vo5gMAiHw4FUKoXXXnsNV69exczMjGSpZH0rlhsgYNAJEkwgxzihYDCIeDyOcrksSW/q9bqAcA0MrCR5pvOvmRD9UwM8Ovt0ynu9niSe4PdsuxW41XF1BGFkjsmO6PGkpJfn+nw+hMNhxONxRCIRAW4aaNJMSaJmUQg0ms0mCoUCNjc38dOf/hS/+MUvkM1mB9YP5a7T09OIx+PY3d1FJpOR+3Q6HUlkojdDNKumNx/0c2MFNq3+NudL/65BoQa6eu50GzQrpyXJXDs+nw/ValUy77KPvL5m2FgbjjJIAnMCHuBpfCal3Xz2uPbJ0rGtGrBzDsiQcVOC65vSV0or+Y/zq8tXMLumfleR7WOfzLHiGmk0GrLZw+cxFAohFAoNJH3J5XIDIJ4bVaclP/q67KUCcDSbgbPNNttss+15xlpv5XIZpVIJbrcbc3NzSCaT2N3dRT6fx8rKChwOB27fvo35+Xmpq+RyufDGG2+gUqngo48+gs/nw5UrV/D48WM8efIEo6OjAE5qzc3OzsLn82FnZwculwuLi4sil9MOPyU6rVYL4+Pj2N7eRrfbxcjICDKZDPr9/kAilZmZGRwcHKDb7WJiYmJAIsXd5KGhIQnM1yDKjDnSQEx/bpp2kDQb8VVMgzot97PKsqcZIZ2YgAwdJV3aqaKzqaWTzHpnOrfams0mMpkMlpeXsbKygl6vh2w2K84iz9Fgs1qtSgKZ999/H48fP8Y777yDS5cuSUIcOo8+n0/AmQbXVowcnUOPx4NIJIJms4lqtSoxepRX6uyhmhHSY8j51ONhAgQNIEyWjgwI76XjiHg/zfppNgaAlNvgdencM+6MAJeyYTrNuhD7aaDHZN3YNmZWPDw8xO3bt/HTn/4Ud+/eHWCUuGacTifGx8fx1ltvoVar4eDgQIANWSjNgnMcTTPBg8mumc+T7psGA/oYvU7ZVvMzAh/zunyf8HiHw4FSqYRoNIrt7e2B9a+lzmyrCXr03DIzqn7+eA8+l1wTtVptINstn+FAIACXyyVqB65DU1rN8QeeAk39HmN8HceO4I+MHdcEY9r088e1yGvyHelwONBqtQY2jvR7JRKJwOfzoVarCQC0ek9+XfZSAbgXKEW1zTbbbLPt75AxPX+9XpdaZj6fD3fv3kWr1cL8/DxSqRRKpRJee+019Pt9fPLJJ5iZmcH4+Dg+//xz7O3t4bXXXkMsFsOvfvUrlMtlLC4uotvtIpfLYW5uDv3+STKBRCIBj8eDvb09SaBSq9WEaUulUuJA3L17F8FgEOPj4wIWZmZmJGvc8PAw8vn8AKuimSv2T7MtOjOclYRLAzma6cTpOB0rWeJp1wYGpZJWx9K5orOnGTnGXwEQUMp4sH6/L0lmeE86t6FQCLVaTZxNAicNRIATSdjh4SGmpqYwOTkpBYdNEKf7pcsqrK6u4vDwEBsbG3jrrbewtLSERCIxIKv0er0DdeM0sGL9OB0DSCAXCoXQarUwPDyMSqWCarUq/ygtY5/q9ToASAp2zTpollPPp5bPmrGFZM/0mGpGzGRnOV9cd1yvVOEiPQABAABJREFUvAZrc4VCIUQiESmToWu5metGm9580MDN6XSi0WigUChge3sbH374IX7+85/j8PBQgKsGTcAJwFxYWECtVsPu7q7UWeT9q9XqgGSVn2vG2ARv5to+jTk0mTNtpzGpZhyc3vjg2GlZY71el+d0fX0dCwsLUqKB7Cc3D5jsRzNhTMyjx4ztI3umN0UIxriG+DsZTJfLJWCYQDkcDgtopLSSa02zg2wXN2X4twbaWlpNEEupJ8edYFHHALLt+h1JqSTHSvepWq2KLJNS4BdlLxeAYxkBm4GzzTbbbLPtOUY2Y3JyEjMzM8hkMlhfX4fP58P4+Dh2d3cRi8Vw5coVPHnyBOVyGefOnUO1WsUHH3yAQCCA9957D+l0Gj/60Y8QCAQwOzuLfD6PSCSChYUFHB0dod1uY2lpCdlsFltbW5iengYAkT1Wq1Wpe1QsFtFoNDAxMYFOp4Pd3V1MT09jZmZGEkJUKhXs7u6KFCocDqPVaolETMe7aeedTpfpCNK0E86/rdgFkxk5zdmmk2p1H/25Pt+Ui3k8HokRY5Fpl8uFTCYjgKLXO8lmR3aO1yNo0w6jBjEmE1GpVJBOpxGLxTA2NiZOntl+/Tfv73Q6kc/n8atf/QqPHj3Cm2++iStXrmB+fh6xWExi+ZgQgwWCtXNLh1ozXnSACf54He7+MzNqo9GQMSgUCgOMDtlSYFBmx7+tgDWBigYruji3CTCs5pgOL9lEsmx+v1/kaZrFtfqp15+WSmpGkOtgf38fN27cwM9//nPcvXt3IP5RX5NtOnfuHMbHx6WUQ6lUkmsRGGj5pGbvzLZajQk/078TEHLMdP/M65obKvp7PS9ajsr7UGIcDAbR6/VQLpeFRWy1WpIgSddHI3ghgNKbFLoNpvSXEm2ua8otNajs959mhm00GvI8csz4DJjvGc0oEwBqQEmgxXaZzKHeGDA3pnRyFP7jppCOdeO9mPSEyVucTicCgcCAlPvrtpcLwDGJiR0DZ5ttttlm23Os1+vh3LlziEaj2NzcRLlcxsLCAnK5HLa2tvDqq6/C4/Hgs88+w8TEBM6dO4e1tTU8efIEFy5cwOLiIh49eoRbt25hfHxcimtPT0/D7XZjc3MT0WgUi4uLePLkCTKZDM6cOYNms4mDgwOJjwsEAkgmk9jf34fP58PCwoJkO7t06RIikQiOj48xMTGBarWK/f19OJ0n5QFcLhfK5TLm5+ext7eHbDY7wOToLIhkZ7RzCHy1pAmmFMxk1kxn32TytGnZFq/Fc7mrHggExOGjtI675ywUrKVXdFQJXNm/oaEh+P1+KdLLz+jA6fYw9tDj8WB2dlYcTX3saaYd3sPDQ/zFX/wFHj58iG984xt45ZVXMDExgVgsJpJOMhEEMhrI6SLEdDI1g0RHnNn7KKkkG0c2ko5ms9k8Ndsn51Ybyx/osdGyRT2PdKw513TiOV+UnDHlunaoNUAwQZveTNAONseFc12v11EoFHBwcIBf/vKX+OUvfyl1wUzgpqWTMzMzmJmZEUZT1x7zeDwoFAqyttk/q/WsNyJMBtyKmdNr3mpDxAQu7P9pzyjnUa8RrgnWXXM4HMKoeb1eFAoFRKNROcfj8QjTTLCvGXbdDwJbAhhuOHBuuX50W8moA5DEI7oEgSnf1EmQOGdMCuRyuQZAJ/tLYKUluizUreWnmr2k2oHySvZLM5F8l7pcLtlI8ng8UhoDeJqU5UXYywXgvvhpM3C22WabbbY9zy5cuIB6vY5bt24hFothZWUFh4eHaDabeOedd7C1tSXySQD46KOP4HK58Oabb6LRaOD9999Ho9HAhQsXcHBwgH7/pN5SOp2W2m7hcBh3796VtN53795FKBRCNBpFsVjE0tISXC4Xdnd3MTIyguHhYRQKBYRCIZw/fx47OzvIZrNSp45OUzKZRLvdRiKRwNTUFDY3N5HL5QA8LWpNB4mMAwCJU9FSK9N51A6oltnxWKvdcWBQIqlBmWnaeaXTS5YDgMTJsGBvLBaD2+1GtVqFx+NBKpUaAIwEHJol0E4k67OxRACTNOj6bDyv2+2iVCrB6XRiZGQE9XpdMtFZSSlNQMPvW60WNjY2sLe3h9u3b+Ptt9/G+fPnMTY2hmg0ikAggF6vJ+uCwEeDBTr7BHEELrq97KspKyQrQmDXbrflp06tzmQRVvJNmq4Pxu8INgkmKQ1lPxivqFO867Wmx1GzWpphokOvpZI6zo1yydu3b+OTTz7Bzs7OgIzWNAKT5eVlXLp0CcCJzJDsG48Jh8MoFAriyBNgm0yOZsQ4/2afNOg1GSaew7G1WktfxvBpkME1z88I4shAb25uyvulWq0OZHwlyOO7w+12S0ZIghaWJSBAItNGeSzlsubmDZ8/rj8CK46rjjukHFjHqYXD4YF4XgAib+V9CFQ5JhwvboZocMZ+c2zY5k6ng2q1Km02md9Go4F4PI5QKCSbYi8yAyXwsgE4YeBss80222yz7XRjUdb5+XkAkDiRQCCAGzduIBwO49KlS9jb28P6+jpmZmYwNjaGhw8f4uDgAKOjoxgbG8Pm5iZmZ2cxOTmJnZ0dtNttnD9/HtlsFo8ePZLMgpVKBfF4HL3eSUa4ixcvYn9/H+l0GhMTE3A4HNjY2MDExARGRkZwcHCAcDgsbAozsk1NTQnTNzY2htXV1YHMicBTB7BSqYj8DXga6G+CNH0OTTvT/N5k4cxzaDq5Ao1sjXktghAAUlvJ7/eL40Y2J5FIAHia3l47cDqujUwDJU9MjLG7uysJGBgjpsEOGQQCBM4JE4mYAIpmJvIwnb7V1VUcHBzg3r17eP3113HhwgVcuXIF/X4ftVpNWDI6lDphhgZyZsIOzSjw3jze6/UOsCf6eJPVIqAnG2bOre6brrNl9VMDHM2m6WtqcGImwrHqowZu1WoV+Xwee3t7ePDgAa5fv46NjQ0prmyuXb0eHQ4HZmdn8d3vfheZTEayzmYyGclGSDDK54ZgVWeh1Ne3Yib5uQZxVu0yAZspn7Qy/bn5DJubMgRVbH+xWJRniO8TLYdkf/lM6FT7wAl71uv1JLukZrB1+ynFpMQwGAwOxLBxPXKdUIbI51WvWa7jWq0mEnCd5ITvDV6LzLTewNHvCD12BHhkBL1er8icdXwcC5Dz3RSLxeD3+yXRETcnXoR9KYBzOBz/LwC/AyDV7/cvffFZAsB/BDAPYAvAP+n3+/kvvvu/AfhnALoA/q/9fv/HfyMtt2orrP8jss0222yzzTZtfr8fY2NjyGQyqNfruHz5MlKpFO7du4elpSX4fD58/vnnqNVqWFxcRLvdxoMHD+DxePCNb3wDBwcHyGQyeOWVVxAKhfDgwQNEo1GcO3cO29vbKBaLSCaTSKVSksSiWq1idHQUXq8Xt2/fFmlOJpOBx+PBq6++ilarhe3tbczMzGBvbw/lcll2sf1+PyqVCs6fP49er4fr168jFAphdnYWjx49AvA0qYF2ytxutwTqa0ddm+nw8FqmY6mZBSumg46aGf9mJkLQjj/wdKc+EokI6OX3dNQSicQzTjCdPc3k0OljchCfz4dkMonj42Nx/ni/druNRqMhwIkyzVwuh0gkgqmpKcnex/5rNs4cL23c9S8Wi/j888+xtbWFVCqFiYkJ7O3twePxIB6PIxgMCuikpIuMlgZNnEsNyvRPEyCxTQQwplyPfQCereVltTbMn+bvVufosbGSImpwqZk2siKtVguVSkWkzffu3cPt27exvb09IKcz70XjmohGo7h48aKUZ+h2uzg+PpYMrw6HAysrK0in0yIL1KwW+6SlmBqwm+sdeConNDdK9Ln6fN7jNOBntXHyvDnhGPIzJgvhRg5ZM7a11+sNMNV8lgl+CLKs7ktwZZb7AE7An94Q0vG4umQHj2m32wgEAsKcZ7NZSfbE+/M54XU0+8t2sn9+v18yX+pacsDJe8nv90sB8WKxKExcv9+XzRXOiY67pAT3RdlXYeD+3wD+HwD+nfrsfwLwl/1+/391OBz/0xd//48Oh+MCgH8K4CKASQD/xeFwnO33+88XkP81mc3A2WabbbbZ9lUsGAyKM91sNnH9+nV4PB5cuXIFpVIJ169fx8zMDJaWlnB4eIhUKoVoNIozZ85gf38fbrcbb731FtLpNFZXV3Hx4kUkEglcu3YNACQpSSwWk3pSMzMzqFarePz4McbHx+H3+/HgwQO0222cOXMGn376KWKxGBKJBG7fvo1+v49AIIBIJCLxGleuXMHe3h4eP36M+fl5RCIRYf606Z1uyp3MHXzT6dMMGz/Tx1mBO50GnUZn1spZJ0jijjadI2Yl1Cnm+19IPvv9PoLBIPx+v8jkCL6008wdczqqGmhNTEygXC4Lm0Z5GPCUdeO9tZRyamoK5XIZ6XRaACGvqfunpaRmchBd4Pr69euyy+90OrGysoKZmRkkk0lJ8sEEH2TlNJjjvPB3zoUJgrSkz4rtMef0eczPl32nfzf/aXmkBiyaWTOZQTIhpVIJmUwGW1tbePDgAe7du4ednR2R0un7W7WR4D8ej+PNN99ELBYTqXG5XB5IhjMyMoILFy7g3//7fy+Al+wVr6XZLh37ac6/uZmg2WL9twYkenNAM3iU6xGI6z7ra+nfdfv4rLVaLRSLRZEjcy2TsSagczqdwvZzjpiun0wZJZQcG10Mm2uWZQJ04iQt1yRDTQZMrxECLr4vKFfU8ZyUQhOY6blnoh+9gaNLkHC+CFr1MxuNRjE0NIRqtSrvPma+dDgcAgKpKLBi5b8u+1IA1+/3f+FwOOaNj38fwLe++P3/A+ADAP/jF5//f/v9fhPAE4fDsQHgLQAf/zW19yuZTcDZZpttttn2PKtWq1hZWcHOzg729/exvLyM4eFhrK+vI5VK4fLly3C73UilUsjlchgdHUUwGMTGxgbGxsbg8Xhw69YthMNhXL16FalUCp988gmSySQcDgcODw8RDofRbDYRiUQQiURwdHSETqeD9957D41GA3fu3MH8/DxGR0extbWFkZER9Ho9bG1tIRAIwO/3Y3R0FPv7+5iZmcHExATW19eRzWaxsLCATqeDra0ticGjY8fdaeBk15wAkkzVaZIvmgZuVgyL/lzv8ANPpZIaQOjdbv2Tx46OjiIQCIjsivEwunDv8PDwgHRLJyxhnyndItvA3fVCoYBIJIKZmRmsr6+j0+mg2WyKk86/Wf+J5QYKhQJ8Pp/MC5NdaOec/aCZAE/L7Lhbn8/nkUqlkM1m8dlnn2FmZgbnzp3D3NwcxsfHEY/HhYHQ2So1oNNxgwTSBH1aimb+M5O3PI9N1ceZMY4mA6OBmhXLZ2aO1PF6/L3VaqFWqyGTyeD4+Bhra2u4f/8+NjY2UCwWpV6Xvu9p7eeYjIyM4Jvf/CYikYg4+qwVx2yDbrcb7733HoLBILLZ7EDdQTMm0GSlOS6cb5M9M8fOXCfmOrIaQ/1sWY29eT0TMLP9XN8cf8aAAU8lhlxHnBNmfgQg2S65LpvNJur1uswhgV+9Xpex1cWyeR/Oe7/fFxDGtR0KhQBAsvPyvsy0CkA2OBi3RyCm1xXHgsl+dLyn3sRwOBzyrqF0mTFwZhIjxgZSSur1el9oHNxfNQZurN/vHwJAv98/dDgco198PgXgE3Xc3hefPWMOh+N/APA/AMDs7OxfsRnPXPPkFxvA2WabbbbZ9hxLJpO4c+cOer0e3nzzTTidTty4cQMOhwNXrlzB8fExUqkUkskkLl26hFwuh1QqhYWFBdTrdezu7uKVV16Bx+PB3bt3USgUEA6HcXR0hHK5DJfLhXq9jnPnzmFoaAhHR0cYHx/HxMSExNGxUHixWJQ6X06nE8PDw4hGoxgZGcH29jauXLkCr9eLzz77DE6nE/F4HPv7+6jX6wO71zQ6R91uF+VyecCB1GyZdmSsQJx2lq0cZR1fouVdZDXMGC3NTNBJYvvpvPX7Jyn9uYPebrcl8Uc2mxWHVLN5ms1g7IxmHXq9HtLpNC5evIhsNoujoyMAkDgfsm5aLkVGotPpIBKJSGkByqoI/rxer9SaM83cnXc6nahUKvjVr34Fn88HAJKQ49GjRxgeHsbCwgKWlpYwOzuLkZERLCwsoNvtDoBLHZtFsEHH2xxv/s75Ntk4q9+t/rYCSKZpds38aX5G9qfVaqFerwvLubu7i3v37uHx48fY398XSZ/Zr9P6otfYzMwMvvvd72JoaAiZTEbuf3R0hEKhIIB/fn4e//Sf/lP823/7b4Vp4XiawFSDNn1/DXz02GiAZMb88XsTrPE6/KdBsgbj5rOr2UET3GkGjX+zH7VaTZKR8B7NZlPWE58LzlksFkM0GsXOzo6wpbFYDKFQCOVyGc1mU+SYlCsTMPI5IzAOh8MDGxFsF9l4gnoWs+d6Z1IjndGVY8h1qOdQJ3cy2VECRdZ1Yxwp+8tNFCu29GWqA2e1hWMJp/r9/v8G4H8DgG984xt/LZBLslDaCM4222yzzbbn2K1btzA1NSXJRB48eIB4PI7JyUns7+8LeEsmk9jZ2cHw8DAuXryI9fV1uFwuvP7668jlclhfX5cd4OPjY5EVhUIhzM/PI5PJoFAo4OLFi3A4HPjoo4/g9/vx+uuv4+DgAJVKBeFwGLVaDdFoVHaNh4aGsLe3h5mZGRwcHODw8FCKOh8dHaHb7SKRSKDZbEoWPWAw9oR/a6kW8BRYkGminRZjo+VZWpplxsOYbIFOEU6pFFlAj8eDRCKBaDQKv98Pp/MkI93x8bEkG+H1mIEul8sN1Jki09bv9xEOh4XxpISKAI/xMIVCAa+99hp+9rOfibyr0WjI/bvdrmToYwIFACKvjMfj6Pf7kgAjHA5jeXl5oO7YV5FU9Xo9KbRMlqfX6yGVSiGVSuHOnTuYnp7GhQsXsLCwgMPDQ1QqFfh8vmfi5XScoJap6aQiOmbL/Kfn2TQr2aR2kPmPfxO8a5BmSjuZEbPRaKBYLCKbzeLw8BA7OztYW1vDzs6OjK/JKp3WLpOVIyj7/d//fTgcDuzt7ck1WDePQCcYDOJf/st/iVarhUePHslxVokwrGSMbKOZuEc/R6aEUpu5UaKfVZPJPG2TRQN13WZdcJuAhMy1KaFkbByfKf7UclUAUpZDP9uBQABDQ0OoVCoiTWRsm9/vh9/vlxg2fk4Q12q1JFER55zxqbqkAdc2n+1+vy/soE6EomP7HA4HGo3GgFSSjDvnhKUL+G7SzD43mrR8kxk5ucZPY66/DvurArhjh8Mx8QX7NgEg9cXnewBm1HHTAA7+Wxr4X2NCwNn4zTbbbLPNtufYlStXMDo6is8//xz1eh2Li4toNBq4du0aXC6XZKQ8ODjAuXPn0Gw2cffuXczPz+PcuXP41a9+Jan8NzY2MDQ0hGg0inq9jvHxcSSTSWxvb8Pr9eLixYs4OjpCKpXC/Pw8hoeHsba2JhKlfr+PaDQq0qRCoQCv14tEIoHV1VUMDQ0hFouhUqmgXC6LtLJWq4nczjRTvghA7sXv6Khp4KYdTCtJl+lcatPOo5ZJ8rNerwe/3494PC4755RMamexUCiIPIpOZ61Ww/HxscTe6Ngat9uNUqkkzBiBMMEDneuDgwMsLS3h0qVLuHXrlsiqyGSyzYw3JBPCtlDKSSatUqng5s2b4iTrflqZjk3SnzEekPdhX4PBID799FPcvn1bGN7JyUmMjo4iFosNyCzN7JUEbKexSJqpOm0+TZkl22uCNvN3DeTIsrHoOEHb0dERNjc3cXBwgP39fZlzfQ2zfVyPVsyb7u/rr7+Ot956C+VyGfl8Xj5vtVool8tSF9DtduM73/kO3njjDfz0pz9FJpMR8GaOo8lwAU/ZbP5tzq0VY20lu9V9suqjCQat4k71WLCdGnxxjRIUlUolAVeaOez3+/Jc6BhAAMJENZtNSRLE56ZSqci1CYICgYCArFarJWuO0kO+J8iO6feGLoESCARks0WzXjqrLpk91mijJJrX1LGljL9jbF2v1xNAy/HVG2Fk4nXcLoHf38U6cP8ZwH8P4H/94uefqs//g8Ph+L/jJInJMoBP/1sb+VXtKQNnm2222Wabbc+3n/70p0gmk1hYWMDGxgaOj48xNjaGhYUFHB8fo9fr4fXXX8f29jYymQzee+89+P1+fPzxx2g0GggEAtje3obf75c6STMzM2i32zg6OsLExAQikQhWV1fR7/fx2muvod1u4/bt2wJc4vG4OB0ulwvZbBaJRAK1Wg1bW1siMWJx73g8jlgshkKhgNnZ2QGJmZZF0fGkA8b4FJ3s5Hm7x6aDDzzrkPJvqxgfOpN0zOjoUDKpywSwaHaj0UC5XBbZFB07smm5XE76oJ1aOoFk0fL5vMTT+f1+iT1rNBq4f/8+3n77baTTackuSRBHIESHjX3ViUFcLpfMHVkHjpcej+eBOJqOR6tUKgJcKNsCgA8++ABbW1tIp9MiD43H41LGYnh4WBLfBAIBic1hsglTCvhlTJyVafDAPpiATscZkSWpVqsol8vI5XLI5XLY39/H3t4ejo+PUS6XUalUBLRqwEKgo+PLOMZW7SLQ8nq9eO211/DGG2+IfJbfkV1Np9OoVCoYGhrC6Ogo/tk/+2fw+Xy4c+fOQJF4XTpAt8VqrvkZ16DJCPJYqw0R83o6RstqHngfq+95fzJOvI/OCss11+v1EAwGhYXiT4IUjhlBkq6NxjEPhUIC6LRUVKf8ByAsN9vE33kdjgHfEYyrCwQCz4y9Xg96rTC5EWsrclNBZ3TlGJjSVJ7PNrBwuH4eCfTYHm461ev1Z+bh67KvUkbgf8dJwpJhh8OxB+B/xglw+z8cDsc/A7AD4L8DgH6/f9/hcPwfAB4A6AD4v/S/pgyUX7QVX7Tj67qlbbbZZpttfwft5s2bmJ2dRTwex927d1GtViWmbX19HcvLywiHw7h58ybC4TDefPNNZDIZ3Lt3TyQ7pVJJ4rZ6vR6mp6dRr9fRaDSwsrICt9uNBw8eIBAIYGlpCXt7eygUCuKQjI2NidPIXe14PI6joyM0Gg2EQiHU63UBLBcuXJC6cKwHFw6HB0CZ0+lELBYTAEIGKhwOw+v1olgsPiPJsgIdVk7kaX9rVoKmU7FzB9zv9yMYDCISiUgttmq1Kpnd8vm8yOfMWJ9sNotCoSDOvmYGmJzCZCUYN8Y2AsDu7i5WVlbw67/+60in01IUmDv8THSggTBNJ1Xhdy6XS2R5HBOTrfwy06nagRNAmsvl8PHHHw9IuFhsOJPJYH19XZzhUCiE4eFhJJNJAXShUAiRSERYOkouGTdk1nB7HpAzZZNaDqkTwFQqFZRKJeRyORQKBaRSKWQyGeRyORSLxYFYQQ0C9biZ7BPH+TRGigDN5/PhnXfewfz8PIrFopQYIJhoNBo4Pj5GLpeTfv/zf/7PMTc3h3K5jPX1dYmrJHgzywiYa9zK19TA6bQ281p6k0ADPH7/PImyfna1aZZQg0I+g5q1oiS7VqsNsI0cMwI6ygY5/+12G8FgUNYCx4yJQBhvR+abY2gWq9cp+XlOv98Xxr1eryMcDqNSqTwje6UMEoAwqg6HA8FgEP3+SXKUSCQibdRzwrqPlGaT9SbY49gRoPHZ0YCN/TCz/36d9lWyUH7/lK9+65Tj/xcA/8t/S6P+qiYSyhdxc9tss8022/7O2KVLl5DP53Hv3j04nU68+eabkrb8jTfewOHhIT7//HO89tpr8Hg8+Oyzz1AsFrGwsID9/X10Oh0MDw+j1WohmUyi1+vh8PAQXq8Xi4uL2NrawtHREeLxOEKhEB4+fCgSJI/Hg+HhYVSrVQSDQeRyOXG0Dw4O4PV6MTo6imw2i2azidHRUZw/fx6pVEriMihZ2traElCoY4+4Q0wHye/3IxqNwuPxSByKdv50LI/e4dcgynQW6VBpx5b3JpulWR8mG6CsinFp9XodzWZTABpBFO/HpAKaSaBjpgEId8f7/b5kwdM7/fz82rVr+L3f+z288cYb+PjjjwcAI0EJY7V0MXHel23S7AETJOgMeKeZ6dibplkSOqrased3/X5f6podHR1JNj9dED0YDCIUCiEUCkkhYta84hxxXfL6JvNFp73Vagm71mg0JPkIgVs+nxemmEycCU7NmK3T4tn4uxk7phkqsouRSARXrlzB+Pi4tFOPLQt2Hx8fy2dvvfUWvvWtb8HhcCCVSkkdRQ00+LfJlvEn17rul16Dug96U0DHnmqGzDxPm0lQmLJn/XySHTbHkuPF56bf74tyQG86aAllIBCQTSOucTLPLMXRaDTQaDRkYwCAJCxh2wkE+W7hBgBljl6vVwASN0MCgQBqtRqq1aoAJW4KUQ6uSxXo9Q9AQBoTq3AuCDjZVtadDAaDwl5ynZOd1FlfGb9Htu5F2V93EpMXaiKhtBGcbbbZZpttz7H19XXk83mcOXMGk5OTePToESYnJ/H2229jdXUV7XYbV69eRSaTwd7eHtxuN3w+H27fvo1EIiF1ycbGxlCtVlEqlbCwsACn04mPPvoIbrcb8/PzODg4EKcnl8uJ1I1JMPL5PIaHh1Gv11EsFhGPx+HxeJDP59FsNiWe7tGjRwIoYrGY7BonEgkATx1Bh+MkjTdlftxRD4VC4tBoVsFkiXRGSQAD0iFtZgC/Bja8frvdhtvtRiwWE5DAWBSCAbJLLK7MHX0dk1KpVPD48eOBBCg62QDjyDgGui8cG+Bp4oZMJoPPPvsM77zzDtLpNB4+fPgMe0fQohMr0MkmkCPzo51C1pmzkgBa2WlyOZ532rkaPGqGjM5luVwekNzRdPZKl8uFRCIh2fcIes228bqMG6Lskf00Y+Ks+mjVZ6vPNSAhoNH/2HeC+vHxcbz66qtIJpMDDB/XUbPZRD6fx+Hhoawfn8+H7373u0gmkwBO3gUHBwfPyEx1og5TcmrVT/2dFRjjM/M8UM57m6yROUYmCDbHjDFnpkyQbFqtVkOxWJTkImTQ+EwykUgoFJLkQZFIRJ5dZtrV96Z8kv3hsxMIBGRThvfhc8RNJq5zvgcikYhskjDJEJl3xq4BkOev1WrJxkuv1xNgyWe0UqkMvBc5RmwTN2rI1lJSTaDIOWXBcM7h38UYuL+dxoVqc3C22WabbbY9xzqdjsSkPXr0CMvLy3A6nfjss88wNDSEubk5HB0dYX9/H16vVxyWixcvotvtIh6Po91u48mTJwCAc+fOodFoYHV1FaFQCFNTU8hkMggGg+L0Li4uol6vIx6Po9PpoFwuY3x8HKVSCb1eD7FYTOJ0er0ezp49C+CkbhgTlUQiEeRyOQnu7/V6sntNM3fayVJo1giwBhamlFLLuOhg6nT1dNx5rpZLcbfc4TiJeSMjB0CkW0zMwjg1OrmBQADNZlMcMo6RdgDZ1n6/LzvsmunQkikTeN2+fRtLS0t44403kMlkJMaMzjIdTjqZZLM0O6NBHM3hcEhsF6+lk06YDIr+zLTT4qBOmztzzqzOIxCjc8807yy8rIHSadfg7+bfX8VMUPO883RiDTJI3JCIx+N45513EI1GBZzo8yhRZCITXcz+4sWLeP3114XFffjwIYCnhb/5TwM24Cko1M8CzzOZMKuxMedbH2eCLRMM6s9NKacJFs3zKfvl+ua4EuDw/syyyMQmlA3GYjFpW6VSgdfrFeZJb+SwbTopiI6Dc7lcUrJAyw/JxmtGnTGxHG9KGmu1mrRNjwlj9HStNr4Tycyxdh3vR8kn402pBND18thX/R7k+43XeFH2UgE4edXZ+M0222yzzbbn2FtvvYVbt24hEonglVdeweHhIUqlEmZmZpBMJnH37l3JYJfL5RCPxyWmYnZ2Fk+ePMH9+/cxOzuL8+fPY3V1FcViEWfOnEG/30epVBIZZL/fx/j4uJQKoOwtHo8jnU6LM1Sv1yVLYzgcRrlcRqfTQSgUEoDHa1SrVSQSCUxOTuKnP/3pM0yFBmKUBwEQEGUFJIBBiZpp2pHUUkt+TgebEj6v1ysOEHezGetWrVYFxNFhIuhh/Tdet9VqIZ/Pw+fzSZwMJV407TCzD7ofpjSz2Wzihz/8If7hP/yHeOedd/Czn/0MhUJhYEy0E0hnLRQKyS6+HpdAIDAA7jSIM+fDdO5PY3VOA3m6b88DQHoOraR2/f5JcXGCZ47dl9l/LVgz2/C89upjOAcauIRCIUxOTuL8+fMSc1qtVmWtaMlmvV4XSSdjnWKxGN555x2Zn1KphLW1NdmY4JrSrJi5YaHHXcea6XHVIMucBxOonXZt81wNyPT9zOP4t2YP+RmfA4fDIYw+8JSd5nPLum9Mz0/5JBl5Ah8tt9RMLEEVgVggEBCZtwaOXG+6NAGTFvGdoJPDaPbSLPXAudMbL2Tz2+22tDeXy6Fer6Pf7yORSMhmU6fTQalUGgC1zDhJwElmnu37W53E5O+Scf3a+M0222yzzbbn2c2bNzE8PIxQKIR79+7B7/fj3LlzKBQK+Pjjj2U31ufz4cyZM5L8IxAI4NatWzg6OsLc3Bzm5+dx8+ZN9Ho9jI+P4/DwUMoLZLNZJJNJFItF1Ot1iXcLh8MIhUKSqIROp8fjQSwWg9PpRDabRTgclviMYrGIVquFcDiMVquFhYUFOBwO3LhxQ5wRLTOi0+F0OhEOhxGPx1Gr1UQyRcfJ6/VKzJDJFJhmxoFpJ4zSKe6g0wljvAolTaVSCfV6XWJoWLeN52kZHqVSdMx0jTE6gybLYDqRBATaCeP1j4+Pce3aNfz9v//3UalU8Itf/ELYKc100RGkPJKgmn0muNAJGvr9vgBwDdyswNfzQM1pIMg83woU0qxkds+7r9U9eR39txXLZAJnnmeV3MOUJ2rgrY0xlYlEAjMzM5iamkIoFEImkwEwuLHAcxuNhsRPlctlkfMypjWVSmFkZARHR0e4ffu2tEeXj7ACQSbAtBoLK4B22qaIebxmek4DbCZY1NfRc6yBpzlOwFOJMWPgKEdk4W4CGKfTKdlumRmSCX/4POnnnxlvGdPmdDrRaDRElsnEN2TC9PNhyqE1C8r54bNM1o3vCT5rLMmhx6XT6cg7nEweASbfgewT4wf1+023kbGdZO5elL1cAA5c0C+4IbbZZptttv2ttomJCeTzeRwfH2N2dhaRSASPHj1CoVAQx4I1t3Z3dzE2NoZ+v487d+7A4/Hg13/911Gr1XD79m2MjIwgFAohlUpJEW6v14tkMolUKoWxsTH0ej3k83kkk0kUCgW43W5h9JgVLRqNolKpwOPxIBwOw+E4yTK4u7srqbGDwSBee+017OzsYG9vD5OTkwJm6Jh1Oh3JEhcMBjE7OyuZKYPB4DNSJ+B0NgB4Ko3USUSAp44nHS46vzpZC5OWlEolSVzAjHN00HR9Oqv6Vozn0eDNbKs+TrNu/J7n6kQv7XYb9+7dw/LyMt5++23U63Vcv35d5Hg6iQcAiddrt9toNpuIRqMDbJzDcRKfx/TsDodDNgIY6/M8R9407ZCfBqqsvj/td/ZFz58ViDsNWH4Zg6a/Pw3kaGByGgDlMQQEkUgE8/PzmJubQywWE9Cv55rzSYaHZQwKhQKazSa8Xq/Ejq6trclmzJMnTwbqhekYUV6bzBDbptvI9mvWxooN0/JdttcEYSZI0yyfvpZ5bXMO+IzyeWW87fDwMLLZrDBwrJ3G55TnUR7IfrOt0WhUMkQCkM0Ong9Ani9uyjBjJMs46LjCdrstWXiZfITySf5OIMbYs0qlIvXtOC4sQwJA2s73Eb9nNl8yqtFoVFhExnbqEgrcDOKzzT5zXTgcDsmM+aLs5QJwwsDZCM4222yzzbbTbW9vD81mE6+99hoA4MGDB+IEVCoVnD9/HkNDQ9ja2sLi4iLS6TQODg4wOzuLsbExPHz4UIp2t1otpFIpCYKfnJwEABweHmJsbAzlchlO50l6/3q9jmg0ilAoNMDqRaNRHBwcYGJiQo6p1WoC+orFogDKDz74AO12GyMjI7h3755kiKPpjGkOhwOlUkl+Nx1wMkY6ho7HatOZEc3PKKckwOROO5OmcMdc11PTvwOns0j8nDv9mj0k02XG6fH63Hnnrrv+R+t0Ovjwww8xOzuLq1evotls4vr168+Mkz7H6XQKgxgKhRAOh8XxAyAFjinfyufzKBQKA7v4VgyZ1bhzzHWcFa+hx0r/PA0gmsedNt5WoMsKzJkg2mTfzGuY7bC6lmY0Wcz+/PnzGB0dRbfbFYmbjuckEOl0OuKMNxoNpNNp1Ot1DA0NIZlMotVqYXNzE4VCAcPDw7h27RoODg5kfRJEkIHTMW5644DgiEyNFRDjeTqRjgn+rNg987jTTLfJjEGlaXDbaDRwdHQ0IHsmWGNtRkoJdT8IltjXoaEhRCKRAdkt54LPHZOlaIkjE+RQ1cB3jn5eh4aGpAwAN3v0WuG7iu2vVCoDmytmUXCCSQ3QvF6vyMk570zsUq/XEYlEMDQ0hHq9Lu8xljrh+ibQoyzzRdnLBeC++GkzcLbZZptttj3PKDvc2NiQnVRKgiilLJfLWFhYwKNHj+D3+/Hqq6+i1Wrh1q1bGB0dxeXLl3H//n1htgBgcXFRsuFxx5t148iuAZCkGfPz8xIXNjY2hlKphLGxMYm/Gx8fx+7uLi5cuIBarYZPP/1UEnlcv34dU1NT8Hq94mgBEAeWzg2zZuZyuQGgAWDA+dN/a9OfmTI8OqFMFEDTwJDgku3iTriWS2ogxuvy3vynPzOdVd02DQ51ZjoN3vR1Nzc38eMf/xh/8Ad/gHfffRflchlra2sC6Gk8V/etVquhVCohGAwiGo2KM0xJmtfrlQQsbKPuA4EKgAF20GRlNECykuvpudD3Oc2eByKtfpqsmdU1dHs10H4ek8jx1MCFsuGpqSksLCzA7/fL3JksXq/XQ71el1hKsjG5XE5kbmNjY+h0Ojg6OpKaeffv30cikZAafnTkdfkAq7ZrVs7siy6gbc6RKV/kMVafW/3NcTGTZjwvYY1+Ntkn/Twyoy3bzHgvMlNkm3lfXc6D2WTJYDGGrt1uw+fzSYIlyjEpU+SGEll4jr0JmnT9S2YTJTPHenZkDwOBgGTHZPkMyp05XgTSbrdbACYzrxJshsNhRCIReXY1SKZck1JSZty0Gbi/JnvKwNlmm2222Wbb6baysoKdnR1xEKrVKgKBABKJBHZ3d8VBuXfvHs6ePYu5uTmsr68jk8ng4sWLSCaTuH//PoCTVNZ0OI+PjxGPxyXWKxqNShyI3+9HNptFuVyGz+fD+fPnpUZRKBSCw+HA6OgoNjc3MTIyAofDgaOjI6ysrOD4+Bjb29tYWlrC/v4+qtUqXn/9deRyuQHwRmeRziF3jCltpGnHw3RCCCwIJnStK1MGpssGcDefjh7rPjHxiHayTeBIcGSybGbJAO0MUyLG39kmDZbobGkJI4/Tv1+/fh0LCwt4/fXX8e6776LdbmN9ff1UQKv7ziQJ1WoVoVBoIFslk2yYbCONu/kEv61Wa6DulQlYTHseI2ceZ8WEPY/lsbqnFZCzuv5pv/Ma5u8Oh0PWTTwex+zsLCYnJwdYVR7HzwigyXCyJhilfaFQCLFYDH6/H59++ilcLheKxSLW19cxPz8vRdibzaY875o9AzAg67ViQa02ErTxe3N8rEDeaWNE0+DNfH4006efEx1XquPNAGB8fFxYc16DwLRSqUhyHr6/XC6XrHVeh6CM5zFbLt8VBEqUh3Ntk+Wk3JoMX6VSQb/fl8QpLCCua1pyA4vvjEAgIEw/S7SQ3dPvQCZUYrISgrBUKiVF7wkiKZfmfdlGjqXf73+mxuHXbS8XgMPgzoVtttlmm222WRkLZrOe2sTEBBwOhzBhlUoF3W4X3/zmN9HpdPDpp58iEAjgzTffRKPRwM2bN6U49tjYGJxOJ9LpNCKRCHZ3dyVtf6FQQDgcRrvdxsOHD9Hv9zE6OoqFhQXs7e0hGo0K+BkaGsLe3h4WFxdxdHSEQCCAV199FY8ePcLe3h7C4TDu37+PcDiMxcVFPH78eEDKdJrzfOHCBUSjUWQyGXH4dGp7mgZtdJLpAAHP1qky4360o8QYEUqjisUiyuWyfKbbaKbY1w67WTeKx2m2jb+ToSEboB0/HkfHUveT2e7++I//GJFIBEtLS/jOd76Der2Ovb29ZxhI9pkOJQCR3zHDKMsOkOExz2c/mR2RbAYzANJJNuWVJqA7jUXT97KS+T3PngcUrT63kv2ddj/N0NHoqEciEUQiEUxOTgoTwvXD9cZ5rtVqSKVSyGazKJVKwiyRdYvH44jH41hYWMCf/umfIhaL4ezZs0ilUiiXy8hkMvB4PMjlcsI+aVbMfAY0i6VliFxTBDDPk0VazY35jJms3JcBbs1y6o0Wss9k0zR7x/a2222J4aTEUEsXyZDp2mfcuKDksFKpyCaELq/BJCVer1fAT6FQkGyT7LeWr/LeZMai0agAaP1cE2zzfkyW0uv1UC6XZay5ccPNK44JVQCccyZAoSqDY8rzmWwJOHnOmciF13pR9lIBOGoobfxmm2222Wbb8ywQCAgbNDc3h0KhIAVkmd3urbfewt7eHjY2NrC8vIyFhQVsbm6iWCwiEomg0+lgcXER2WwWHo8Ho6OjODg4QDKZlJpHY2NjaDQa2N/fR6/Xw/T0NHw+H7a3txGPx6WYOCVfMzMzePDgAc6dOwePx4ObN29KrMfx8TGWlpbgcrnw8OFD9Ho9jI2NYXNzcyBGjJkf6VxQlsnPtZmMmt5l1lJL4CnoM+WWdEDpDGlg1+v1JF6MAM8quQidTg2K6CRrh8w0fq6vRSBnShK1c0aHmePW7XZRLBbxf/6f/yf+xb/4FxgZGcG3vvUt/OQnP0EqlTo18Qfb5PF4MDIygn7/pIREo9FAPp+X5Ac6IYRmcZjwgSUVdN0r3U7zdyuAZCVBtTr3yz63AglW0j4rJop9ex5w47UILgh2Q6EQRkdHpTi9TppDgFSv15FOp3F0dIRcLicyOwACWByOk+Q/8/Pz+PnPfy7Pa6FQEMkd2eJ0Oi0AwszaaIJR3oNt133VY2SOibnm9LNlxcjpDYovY0m16WeQz5FeE36/H5VKRd4RmUwGc3NzAxlrmWhEJxMhy+x2u0UOSWDFuWESEw1qOK5OpxOlUmmAPeM9CCx5X44j5daUFzPxCgE842spwdRAjGPOOm7MNklJKBk0rVxgfblmsymMJAubE1gCkPc6gWEoFPpKc/M3YS8VgPtqS9w222yzzbb/fzcW6I7H49jf38fIyIiwcVNTU5icnMTDhw+RzWZx9uxZRCIRXLt2TerBAcDZs2exubmJ8fFx1Ot17O/vS2HubreL5eVl7O/v48mTJ3C5XDh79qw4KlNTU3A6nZiensb9+/cxPj4OALh16xYuXbqEg4MDAYbMore0tIRcLodMJiO7x/l8fqBf/X5fUnYTrAWDQdlF18k1gEG5JDAoQQQgTq1mukxZoXbKKZmko1uv1wWc0NHVSU+s5JvakWX/ueNtdY4u0qxj3+hgatCo+8JraUC5t7eHP/zDP8T3v/99zM/P47d/+7fxF3/xFzg+Ph7orzZm2Esmk5J8ho6sZnTIUtRqtWcklXTWdXFjfsd5ICOlP9fzfhq40vfQx5v90e3Qf5ttsQJn5ndW4IdGBicWiwlzGQwGpawH50wzXARuqVQKmUxmACRwjLlWZmZmcP78efz85z9HOp0GAGQyGRwfH8Pv90ucVDgcRqlUGihTwfvqdmvm2WR+aSZrpoGUHicNEk0m2mRTreaC97KS9uoU+Dyn3z8pcq9jLQmgKNedmpoSoBIKhZDP55HP5xGLxQSYEbzxmSLDFolE5J3DgtcazJJhJrvMZ4LvJr2BowE+4+n4t5a3sq/mvQhAeS2v14tAICDxdwRvjFPt9XpyXYI0sv2M7SOwYxu4QdTr9URp8KLs5QJw8pJ5wQ2xzTbbbLPtb7VduHAB1WoVR0dHSCQSkiWQSRPu3buHSqWCS5cuod1u4+joCG+99RbS6bQ4idzBzufzyGQymJqaQqFQgNPpxOjoKNbW1nB4eAi3243h4WGJkWK2t0qlgocPH2JlZQXb29uo1+uYnZ3FjRs3MDIygomJCWxvbyMajWJ8fBxHR0fI5/OIx+OoVCpS1y0cDqNYLErftNPIYH+fzzeQLtx0UM3fTUcTeMqImQCPQIhMEkEhswMyvTvwNDaGziWP04yUvq6WbFq11WTXNCui2RLG3elztFRT2+PHj/Ef/+N/xPe//33Mzs7i29/+Nn72s5/h8PBQxkEbgdfx8bFIrsrlsiRIcLlcCIfDSCaTODo6eoalJEDV19M/OR5utxu1Wm3AaTVZLStw9WX2PJbPBBj6bxMUmtJIsw0EMD6fD6FQSIqih0IhRKPRZ+roUcLGDLCZTEZkdBwTDZwikQiGh4cRj8fx0UcfIZ/PDxR+5zrqdDool8sAIPFvrFmo26vHmRsPZuwZnX2yVPxMb4RoUEL5pTk3VoybFft22qYH20iWmwyRObd8pvSmB2M0mQyJAIugRhe6ZhwrAEkoUq1W5dkn8OL5BEClUknaQhkix4TX5dzzHcL3hmZqCeZ5LcrgdfmIdrsta4oMH98FZPDIBhLwctOgVqvJBozJkpIRZltYBuFF2csF4L74aZcRsM0222yz7XlWLBaRTqcRDodxcHCAeDyOxcVFtFotrK6uIhqN4uzZs8hkMgiFQnj33XdxfHyMmZkZYXcmJiawtbUlxbl3d3eRTCbh8/mwtrYmbB7jPnw+HxqNBoaGhrC2toaxsTEsLy/j0aNHmJiYQL/fx8OHDzE/P49er4f19XVcuXIFTqcTDx8+lDiV4+Nj1Go1BINBxGIxhEIhieXRTBRTaxcKBQQCAfnn8/nEsTKBDEEaMOjMn5alUgMrnbBEx59pQKLvpYGm6azS4daAkP3SpgGZbp++FlkADdx4rAn82JbV1VX8u3/37/D7v//7WFhYgNvtxk9+8hMcHh4+A6B4LWa+A57WpiJTEYvFUKvVBjJbDg8Pw+12S3p3zUpqGR2AZ5JHmGbl+JvgygqsWo29Oe9WII7f6eNNsMG/ybKRxaFcMplMYmRkZICBIdhqNps4Pj5GNptFKpUS9kT3jcwPx63ZbKJSqWB9fX2gVpgGuYzJ6nQ62NnZAQBJpOH1egc2G/S5ppyYgI791FJOKzaUQETHNeqfmkWyMitQZwJFMz6V99LtJ5vEe+vnhVJtbjKxT5RAVioVAT9ksSjJBCASYCaH4RiUy2WJ1eVYsy9DQ0OSRbJer6PT6SAUCskmiN/vF1CnJZQE25yDSqUi7B5ZVAKxTqcjMaZ8RjkfbJd+T3HjSbPnACQbZjAYFHnli7SXC8DZMXC22WabbbZ9BatWq3A6nSgUCrhw4QLm5+fx+PFjpFIpLC0tYWZmBltbWzhz5gySySQymQxmZmbQ6/VQKpXQbDaxt7eHRqOBUCiEarWK+fl5eDwerK6uotlsYnFxEQcHBwiFQiLvYb23M2fOoNc7SWFPNu/JkyeIxWLCNLzxxhuoVCoSLwcAW1tbcLlciMfjCAaDODg4kHpyNO5s00Hb39+X1N7BYFDkS6YDR9MggeBJ/63j5sgo0Enlrr1OVGAyY7w376XBgXY8AUihXyZaME23VQMgHf+m2QY6wJqN0+2h9ft9rK+v4z/8h/+A9957DxcuXMB7772HTz75BFtbW9I3fU06fmamTc4bEykw3uqVV17B7u6uAG2CF46jPl+PnWkaDJhzafW3aVbH62tZAQ6r4/hTxzcx8x9/5wYC/7HgM3DCFpdKJaTTaeRyORSLxWc2ATjnGrTT0abjT9BM9llL3VgzcXR0VORyLpdLsgqaDK8JdEwjuDhtrDSI4vFsszn2Voyb1f3IWptt4rhwPVEqrTPFcmOn0+nIenQ6nQPghzFm4XAYLpdLpIQccz0n3LBxu93w+XwDST/I2jHBiE5W0mg0EAgEZMODddX47LrdboTD4YH6czyPphOz8Dy/3y8gkRkvmQ0XwEBCHL6zeA3KRSkvJUuoZZnBYFA2ANiGF2UvJ4B7sc2wzTbbbLPt74B5vV5cvXoVTqcT9+7dQyAQwLe//W1Uq1WkUimsrKxIWuozZ87ITnIul4PL5UIikUAgEEA6nUYsFhsoETA+Po7t7W0Bd3SaUqkUFhYWUCgUROrz+eefo91uI5FIoFarYXJyEuPj43j48CFarRYWFhZQLBaxs7MDr9crRY339/cRDAYxPj6OXC4HYJARorOXzWbhdrslWQSdDu0samBmgiLzWF5fG50u7pR7vd5nimZrwGSCO/29lkTWajXJeKeZGm3aqQQg8Twm06bZLRMc6TZqYHB4eIg/+7M/w/379/HNb34T3/72t3Hjxg0B6eZ4E7xxzNheDSwIcMrlMg4PD9HtdjE8PAyfz4fDw0MBFZqV0+3kNemonwYKNLjW4ML8p9uqzVwfpmlmhwyb1+uVeEtmJ2Q8po7L1HUDq9UqCoWCxLdpiZwVO2qOg8PhkLVH1ogOvVnbjeuy1Wohm81K1k8yMlYsr7nW2G+9pnTsJtttxd5pwK83E05j3qzMjPvSMXr8jOCKf2sJM+9NSSJlkb1eT9gwh8MhAE8zcYwbI9vOa/Edx38Eb/1+X+ZAj4/OiFmv11Eul9HtdgVE8d1FINpoNAZqsGl5NPtJOTnBO98DvB4VEFx/5k/ep9vtIhwOD8g5yTxyLJmc6L9m3v667eUCcHYZAdtss802276CDQ8PY3FxEYeHh6hUKjhz5gwuXLiAdDoNv9+PM2fOSM2gbreLdDoNj8eDYrGIaDSKRqOBTCaD9fV1jI6OIp/Po9FowOVyIRAI4Nq1a0gkElKLKpvNwuk8qau0traG4eFhdDod3Lp1S5zZo6MjvPLKKwIoXS6X1H3b2tpCOBzGwsICer0etra2EI/HceHCBdy9e3eAETNjuxjvw8LSrDlnBVxMEMcdeivTyUjoNDmdThk3fT0Asruvi2nzHjohgc4qSdmZPo/yKZoGI1agR9/HCrhYmWY5WNi7UCjg8uXLuHTpEoLBIG7evClgg2PGfmsm0QSdbOOPfvQjSfHu8/kwPDyM7e1tub+WuJ42/uFweIAFMGWoGjDoz8k8WDn25nWspIROp1NikxhLRIBGUERQR8eXPwk+W60WMpkM9vb2UCgUBuLbOJe6/RqAmtJIgmQyUAT1zDip14JmORnfRemf3nAw15geDz1GJuvGY0y20pxHKybT6n6mfNJMOmSCIw3wzEyUev7IGDOxi44N6/V6KBQKck+/3z/QPkqECfS63a6UFIjFYigWi2g2mwgEAs/IN7km+DvXIcdfyzwpraTUUcfmFotFuX8ymZR2cCzIxOlyA/3+Sa06gkFdt46bLMlkEgBE8kwwSfDHTKYmI/h128sF4GwGzjbbbLPNtq9gc3NzWF1dRTwex1tvvQWn04n19XWcPXsWw8PD4hwUi0U0Gg1MTU0hl8thcnISe3t7SKfT+Oyzz+B2u5HNZjE7O4uZmRlUq1U8fvwYo6OjmJycRDAYxOHhoTiejUYD8XhcklmMj48jk8kgEAjgtddew/HxsdSRGx8fx82bN5HNZjEzM4OFhQW0223k83kkEgkEg0Hcvn0bd+/elfTcwNNge83+5PN5SWSinTEd22bKxUx5oQlGzMyU/JzZ3Hi8jg/SDqgGjfpvDSr0Tr0GSXQydTutWDeT9eO1TPmkFfukpaG1Wg3pdBoffvghdnZ28Prrr+Ob3/wmbt68KfGHAAbKAGgQq4EHs/GRCWq1Wrhz5444z5phM2MP9XjrzIFkTXRKeG3shznPBMYmW2oCNf7TzAjjivg7U8brmEX2Q48l64vt7+8jnU6LE2zFDlpJDHk/ZgNkv/UGAH8nI6PbziyuZI44jqeBeW4kmOuO3+n+mWtIPz8agOlxtgLoVv3WbC/PZX853lq6bK5rLStmjFggEECtVoPb7Zbae2ScuCHF7IuMR2NSEMqbtbSy2WxKIhCudY41E6Vw7VFGSfDIPmlGT7PunD++0zj2HEOv14tCoQAACIVCwqg1Go0BoMj4NgI8trvb7SKZTAqrx89GRkbQbrclbpgbSIxDflH2UgE4mk3A2WabbbbZ9jy7f/8+xsbG8Oqrr6JarUoik36/j7W1NTx8+BDj4+Pw+/3ijDSbTezs7CCXy4mcsdFoYHFxEY1GA6urq/B6vRgZGcHk5KQUG47FYmg0GhJTksvlMDIyAo/Hg0wmg8XFRYyOjmJ9fR3FYhEjIyMoFAr42c9+JrXmAoEAPvvsMzgcDiwvL8Pv9+PGjRuyg05Zp3Z0NKiqVquIx+PPZGfToEc7hPxbm3ao9Tn6ewILOszAU+ZNy+IocdN/A4Mp/mlkTE5jAq1Amm4Pfzc/05+bf5sMiM44t729jWw2i5WVFSwvL2N1dVWAJp1djqNOPuJwnCQzIZDXIIcMAMEu2U0CQjqymv3p909qzjHOh84xmTGuB53OXs+LBod0wDVw0OdrBs38neyVZsM4hxyXVquFSqWCer2OUqk0AJw0qDSZLg1edFv0+tagRK8xl8uFWCwmLA2ZOLZBg1OCH5263lwXfD54rD5GP2v6HL1xYQI6k5X7KmBOX9eM1yOrxu88Hs8z8kxzA4XX4NiQaWJCEl6TTBSlqjqNv+6nTjbT75/IM5n5lmuZEkgCb4IpALKRwLnguiVLWiqVBpKHUBre7XZFRs7YSoJE9sGMfWNZD/aBbWC8HyXuZIs5b+x7Mpl8rtz2b9peKgD3dJHbCM4222yzzbbTbXZ2FuFwGD/60Y/Q6/XwyiuvwOv14v79+6jVanj8+DHGxsZwcHCA3d1dOJ1OVCoV2VWuVqvI5/PweDz4/PPPMT8/j3fffRd7e3sAgOPjYzidTkSjUVSrVUxPT6PdbiOXyyEej8PhOEkfv7y8DLfbja2tLQDAuXPnJD5uYWEBkUgEuVwOe3t7GB0dxfj4OA4PD3F4eIhIJIJyuSwlBOicMN4jFArJtQqFAkZGRhAIBBCPxwfiYrRD97yYDlNWZ8Vc8TtdlJcOnpnpTYMGUzJn5chqh1On+TaZNM0MakBmsmH8nH0zjzX7rh3HUqmEW7duIRKJSLIDfa7P50Ov15PMfc1mE3/wB3+AQCCAH/7whwNggPFCOsukZoTI+mjGQY+JLnKsY3o08OG8mD85V2QWyJbQ2eZPjjnnlbXFCBT4PddUrVaTjH/NZlMYFjI+dM5NkGMCVL2mKL1jLBPbotcN16Xb7cb09DSi0Sii0Sj8fr84+v1+H7u7u1LMuV6vS3ILjh9Bml67bJf+p2Pd9Fo5jc077TuuWyuQx/6bYEnPJZ8NziXlh2YyHZ3chONNsM+kL/1+Xwpl8z3lcDhQq9UEDLN2H+eW99ESWb3JQ9ZKy6c14CRA5PEaGDEJDVlrMrbMZtrvn8TRMYkJpZxcMwSMvBdj+wjSHA4HAoEA6vW6SEOdTicSiQR8Pp+Mud/vH5B5Dg0NDZRv+brt5QJwX/y0GTjbbLPNNtueZ61WC2tra/Kf9q1btxAOh9FoNNBut1GtVvHkyRORHx4fH0smx1wuh1KpBIfDgXq9jkuXLuHcuXPY3t5GrVZDvV7H2NiY7PpevnwZjx8/lhpulPScOXMG1WoVjx49QiQSgcfjwc7ODtrttsR0ZDIZVCoVzM3NYXl5Gffv30cmk8Hw8DBSqRTq9Tr8fj/y+fyAo53P58XZKBQK2N3dxcrKimSX8/l8aDabA/FyZuybdqJNSZcGORqMAE/TxrdaLUmUwB1s7WxbOax0rDQbyDbSIWV7zFg3KwB42vf/Nab7rgv9cqzJlOn70QmkIzw0NIT19XUpxK7j+LjDr9kRAAKUdHZNjsNpc8Sxs3L2rc7RoF//owOsr6fBAgG0/t5KFstzWAsxGo1ifX1d2mtuGGiAowGlTpDS651kgmV/+I/n+Xw+TExMIJFISI03Sud8Pp88d06nU2SAVgzvaaBMr1+CDSsZJa+rv7OSRloxbyboPs1MJlwDWCb+IdPE9nJtkoUiI0zpcyAQGCjQzfXNTJVkfNluMu4cEwCSup/Fw022jkCT99PncONAF7XnmnK5XIhEIgPPhI6ha7VaA6CNzKsGmPxHMBkMBuU8bkgEAgF5h/EZ9/l88rNcLqNcLltuNH1d9nIBODsGzjbbbLPNtq9g7XZbpI0s7Ht4eIhkMgmH4ySL4sHBAcrlMvL5vMQr7e/vi2MRi8Vw4cIFJBIJ7OzsYGZmBsViUZybfv8kYP769evwer2IRqMolUqYnJxEKBTC8fExCoUC4vE4yuWyOPajo6NoNBpSiPjs2bOIRCK4du0a6vU6wuEwdnZ2EAqFMDExIXEfBER0fNnOdruNzc1NdDod+Hw+xGIxRKPRZ8oP+P1+cdi0w2kyaZp9AJ5Nf07nyufzwe/3DzA2dLroxJE9Mh0hE4ABQDgcBgBpIx1jK+BgfvY80PY85g0YjIcjGGV7WDPLbD8dWi3T29vbQ6fTQTgcHkikodkHUwrI+2npKsdOA1VTvggMShBPk+1pxs9kmawAhx4fq7HSxzAbIQFnoVCQxBhmnB7/ZpHn6elpnD9/Ho1GQ1hmJhJiGQc9t2wvayMCEMaIjjxrl7ndbpw/fx5DQ0P49NNPpfaYlvlq9s0EYnoMzbE0AbNOoKHZPT22mkE1mWE9rs/bUDFl0Dp2lGCcsWt6s8HlcqFer0vdPGaB5OYU3ycEcdVqVcChzqRLQESgp5PZMA6NYIrrl88G207QRtBHhp6Jglqt1sB3jE0li8x2M3kN708mWEu6CWTZdr4ve70eIpEIIpGISCl5DkGeZo/tMgJ/TfY0C+ULbohtttlmm21/q43/+V+9ehXHx8fY3t4ecAj4M5PJoFQqyX/UdKYnJyexsrIiKfrHx8exubmJRCKB5eVlPHnyBOl0Gnfu3MHIyAjC4TDq9TrOnDkDp9Mp7BlwIrfs9/sIh8NIJpMoFAoSMD89PY1Op4OPP/5YAMPjx48RjUYRj8fh9/tRKBQGQIrDcVK7iOACOKlDxppYzI5pyuuY6Y1msgDaaTTjyPS1NBPCIH+2iawf40jMGDptWjIJQCSrPE4nZTClkbyeBqFWTrFu7/NAnglYKSFjfI/VmFgBDJ2ohLJJOtxkBLRDznvrtmqAbTUHbA+PO03OZ46ROS7PO8e8v9l/Ss7YV/aJfdSZH5lcJxqNIhQKIRQKYWRkBN1uF9/+9rcRjUbxh3/4hwgGg1hdXT2V9QgGg3C5XCiXy3J9gm19DsFYuVyW+o86m6BOBMJ+mgDblDGagJdgToNxPXb6byuWzTzP6nPzWhpganaU4JHrj+CJckmH46S+Wa1WQ7PZRDgclg2XarUKv98v9yFbRTBG4M976rVHhlPLJs229/sn8kc+B3q9aOkjM4YCTxMFMdEJwR3XExPqMEtkv9+XUiR6/CiJZNt0sh5tgUBA1i7/X+B7iG16EfZyAThh4GwEZ5ttttlm2+nm8XgwPj6OBw8eYHx8HG+//TaePHmCO3fuoFKpSBxFs9lEtVpFIpGQDI5zc3OYnJzE/v6+1B7a3d3FpUuX4Pf78emnnw5I7ejcLC8vI5/P4/DwUHaoGeTv9XoRDAaRzWZRqVQwPDyMQCCA4+NjVCoVnD9/Hjs7O9je3kY4HIbf70er1cL6+joODw8FEGnpUbPZFOC5s7ODer0uMtBkMjkQ0G+CM83e0LTTZUrFTIZnZGQEtVpNYkTIcuqYJX1/7eRbMRkAZAdeS9d4XysWjm3W7bViOE7ri/5bMyRMlc4EBxrommNj9odOtI5X0lnvuLtvxUrSESXwM2V7en7oSOu2aOfVany/CnAzx8gKNA8NDSEcDiMYDCISiYgsLR6PS8IgAEgkEkgkEnC73ZK5MJvNolAoYGtrCxMTE7h79y7u3r2L73//+1heXsa//tf/Wgp8c65ZToGsCiXQrVYL09PTsl56vZ7EOBF8aDaazr9ei6YcleyRHm8AAyBJg2gTyOnvT2PbaF9ljvT1NBNlzk04HEahUJCx4KYBgVG73ZYkS+VyGcFgUBjZUqkEr9crgI4FuF0ul8Sg6efO6/WiUqnIhhDfS7oMCGWYut4hy2lQlsn4Scqv+czzudCgFHjK/Hs8HmEPHQ6HJPhptVqScVOXiCFjyJg3JnGhYkEnN+F9AUhWzhdlLxeA++KnzcDZZpttttn2PGs2m2g0Grhy5QqCwSAymYyAJ+625vN5KcztdrsRDAaxtLQkNeCYhfLg4AAXLlzA0dERUqkUXnvtNTQaDTx+/BitVgvBYBCLi4t48OABisUiksmkOOxerxeRSERi1VwuF+bm5kT26PV6EY/HhdEbHh6G1+tFLpfDwcEBer0eYrEYMpkM2u32gDyqWq1KooFms4m7d+/i6tWr8Pl8SCQSEoNimpmi34pt0eBLx/DQieLuOHfA6QxyV910+mgmaORnwIlDq5NnWF3DZK9MM+OY+NmXgRfNLobDYcRisYE4IKvjeU3N2JjAQEsf6YDrMgyatdAZ86yAkx4/DeJO6/Np/fyyY6zAsB6fSCQiDPHMzAxarRZ+7dd+DUtLS6jX69ja2kIulxNnvFwuY39/H71eTzYnmATl008/RaVSQTKZxNLSEv7RP/pH2N7eHkgSRNkfJXD6Z7vdxujoKEZGRoSN01lRS6USEomEgBsrSZwGYWR59KYHQaQ5Rhpc8DMrqawJ8E2gbc71aWZuwujr8jlk+4eHh6X8BTM1cv15PB6JMRwaGkK9Xke9XpcNlF6vJyUk+A6rVCpotVpSH00/k/xJcMzNrW63i3K5DKfzpD6m3++Hx+ORMhPA01hSxtUyS6XP50O73Ra2DXha5433pJQcgLw3mBCl2WwOyD0pzyZwJBNnbiZx/Lh5Y9bH+zrt5QJwZOBsAGebbbbZZttzLBqNotVqIZfL4e7du7hx4wbK5bLUl2KSkomJCfmPen5+XmLWSqWSxEoUi0VsbGwgEongG9/4BtbW1rCzs4Nut4vJyUnMzMzg3r176PV6mJiYGIgtIcCigxWNRlEoFNBsNjEyMoJGo4H19XV0u10sLS3B4/Hg7t27UsPJ5XJhb28PmUxGYn8IDsjS0PH56KOP8NZbb8Hv92N8fHwgKYg+z5Rj6p80HXNjAphOpyNlDZigQO/A6/Pp/BPgWQEwAhf2icdpWZ4+zwQ+p4EdbV8G4ujAs+B2MBgUh1T3xwRAeoeejr4JWs17cKyZkp3lAehc6nvqIs6ngTgTwD2vr6cxPBqkncbEASdys2g0KrFL+XwesVgMFy9exKVLlyRjp54/Zn1dXV3F0dER1tbWkMlkkMlk5HzGlr722mu4fPkyfD4fxsfHUSwWsbu7i0ajAYfDgVAoBL/fj2q1il7vJNlJo9FAoVCQjJQEVfx8ampKnvtGoyGbILomn54T9t2cOz0+7KMGABpQa4bVSoJpjruVzNfcJNDAXsuYmcQDeCqrJZObzWaFLSW4ajQa8Pv9aLfbko6/VqsNJIQZGhpCKBQaSNnPjRoztT7bxlhEh+NpAW8+UwRwlUpFWDfKFfk92XsCK12+gs+Ilkzy+aRUnQCO93U6nZIQhcwcr802m6VZyC5zjE8r/P512EsF4MjB2RJK22yzzTbbnmftdht7e3t48OAB0uk0XC4XJicnkU6nUa1WMTs7K8lEyJA5nU7Mz8/j+PhYpFTNZhPRaBSHh4colUr48MMPUSgUMDw8jIsXL8Lv9+POnTvi+GcyGfT7ffj9/mcSJ7CAOFm5bDaLvb09DA0N4ezZs8jlcnj48CE6nQ5mZmbQ7Xaxu7srbaOMUsdZ6V3zg4MDVCoVidnz+XyoVqviXNFJ0UADsHbYtYNK0848gRUzy3EnXaea18daMW/AU6aCvwNPHWFTQmkyU6cxF+YxXwXQ9PsnCQvi8bhkDCWLwLWgHXarvujEJqe1icfQWU0kEnjzzTexurqKzc3NZ2L9ntdX09k/DYB9VabNNBOEk7WIRCKSubVQKGB0dBR3795FLBbD2NiYOP4cv6OjIzx58gT37t3D48ePcXBwgFKpJMl5er0erl+/jvPnz+OXv/wlms0m5ubmMDExAYfDIbXwmNwmEAggFosJiOt0OigWi3JNxi9RslqpVHD27FkcHR0JQ2xmVdRxUWSgOIanjZEVADOfLX0N8/MvMxPw6fkiKGSCFMoICXAeP36MTqcjSUEKhYKwWWThmN3W6XQiFApJLT+/3y/vqXg8joODgwFWk+8T/X6gLLLbfVrMm4CObF6325X5IMtGdo4lDsgIxmIxkbjz/cL3KktMAJDYN2bbbDabCIVCUudOj2Oj0ZCYXSZ16fV6iEajEncXjUaF4SV4fVH2UgE4m4GzzTbbbLPtq9iNGzeQz+cRiUQwMTGBYrGIvb09JBIJvPrqqyINHB4eRq1Ww8zMDOr1Ovb29tBqteDz+RCJRJBKpbCzs4OzZ8+iVCrh8PAQ09PTeOedd7CxsYFr165hcnJSEjC43W6MjY0hFoshnU7L7rHX60U+nxfAks/nUSwWEY1GMTo6ioODA+zv70uWyk6ng1QqJTvSsVhMHCRmWSPoACDZ2NbW1nD+/HnEYjEkk0lks9lnEjboDJaANaNlxqGYIEwzLHSGzKyTJkA0pWQ833SSdBydVdybac8DOVYMo9UxdN7i8ThisRimpqYkPlEzKibjxjHRyRKAZ9PDa/DM42OxGL7zne/A7/fj5s2bz+z2mwyPVdvZBs6v1bEmmGWfTdbyNLDC75hm/cmTJyKjY5zVD37wA2xubmJpaQmzs7PCFq+treH69et4/PixxEtyEwU4yfSaSCSwt7eHf/Nv/g3q9brITNPpNJaWlvDuu+/i+vXr2NzcHJDAEYSQIWJyIjI7HBcm0bhw4QI+//xzcezNOdXSV/OZMcdIzynXPa+p6y+eNm+mdFL/rdcKN0UADJSXMJm/brcrmzdk2hgHxv5wzoLBoEh4WfakVCrJWmebUqkUPB4PZmZmkMvlkE6nBUjpdvOnfi9pAEWGTwNYZrDVmzTBYFD6AGBA8sr3Ht8VHPdUKgWn0yllBFiHUMvEuW673a6Ul2BdOB5XrVYlVpAgl++1F2UvF4B70Q2wzTbbbLPt74TVajUsLy/LLnMoFMLrr78uO83Dw8Mi0yHDxp3dUCiE2dlZrK+vo1wuY25uDnt7e2g0Grh06RJmZ2fx0UcfIZvN4sqVK6hWq9je3obH48GVK1eQz+extbUFl8uFkZERlMtllEoljI6OwuVyifxyenoaoVAI6+vryOfzmJ2dRTQaRSqVQiqVEgciFApJzScyXqxpVKlUJEaoUqngyZMnWFlZkVpZ6+vrAxIh7oybZpUVj0lauLNPB5CFf00pFf9+XsyYvod2mLWZ7dNA8DRwoR1KDaxOY5dM8/v9kr2TDrAZa6bbqseTfTdj0vTfJsgMh8M4c+YMDg8P8fDhQ+zs7Ayca5o5RiYbcxpI08dajZfZLqvvgBMnOBqNSuyaBhmtVgsHBwfIZrO4fv26PFuUyfl8PhSLRTgcDuzt7YmsMZFIYGpqCo1GA8ViUcAKmeVUKoVer4e5uTl84xvfQCKRwP3794XB4TphshgNbHSiGKfTidu3b+M3fuM38Oabb+LWrVsABlP/6/k6bVzM40w5JI33Z1v4vclMa/mr3vwgM6jXEe9pVXPOnDOyjH6/X0AK5YH9fn8gaQl/UsZIIORwnJQZSKfTqFQqACDz3uv1pLQGE8NUKhVh3sjCsYQG8LSMBZk3yhTL5TIASKIbxpwRoJGFY//Y5nA4jFKpJMx/r9eTsjEE+cykyfc854DrhffiGDUaDUmyUq1WZdxelL1cAE4elhfcENtss8022/5W27lz59But5FKpSSehqzT3NwcCoWCxKel02lEo1EAkHpuDx48EDldsVhEMBjE5cuX0Wg0cOPGDQwPD4szuL+/j1gshkuXLuHBgwcS7B+Px3F8fAwAmJycRLFYxPHxsUjNKpUK7t69i3a7jTNnzsDhcGB/fx9HR0fw+/0SF0InhWn6Gefh9XpFMgScgNbNzU00Gg0EAgEsLy/jo48+OjXdvMm6WMWm+f1+BINBibFxu91SKsA0zaoBg4DH/KlZOfN83R46tlZMhf7b/J12GojTn1M6GY1GJVZqf39/wOGm86vbznTtdMQ1sNXgz2QeybLmcjmsr6+Lg3xae58HQrXU1XQ2T2OOnnd9K2aF7OTIyAjy+TwqlYr0A3ha+JtyR8aaVioVeDweTE5Owufz4e7du3C73bh69SpisRgqlYrEUnq9XiSTSbjdbjx58gRDQ0OSzKdcLsuzMDw8LMlzyEjrOnp6TDT4drlc+Oijj/Cd73wHly9fxoMHDwA8LTmgGWf2iUypCZh0PKQVQ0c2ysr0MWZ842ngHRiMo2M79byxH2yXztLI83QmW57L7JwAJEasWq3KeZxvp9MpyX20MoDtDoVCAzF1Pp9PxoCZQ3u9HuLxuMwt61SSIdMFtzXrznHheToJC7NpBoPBAVkn2TgAAyBOv5OYkTMSiQB4WiMvnU7LmNtlBP6aTLJQ2jFwttlmm222PceGhoZQLBYxOjoqcsZ4PA6Hw4F0Og2fz4dsNot+/yQtNeWOjUYDR0dHuHr1KgDg/v37mJ6ehsfjwfb2NprNJi5evIh2u42f/exnqNVqGBkZQSAQwLVr1+ByuURCmc1mEQgEMDY2hlKphOPjY4yMjCCRSODo6Ai5XA4jIyOIRqPo9XrY2NhAKpWSBBp+vx9erxfZbBb7+/vIZrMii9JxIXR43G43Njc3BZzOzc2JU0RnhA4tHSo6SNopBSAFlwliWHeJzunzYkPMmLbTpHl0jul4acaBn/G+ehfeBH/m5yYzchp44XeRSASxWEzGUSdccThOslKOjIyIo9lsNoVRYGwQ5VkEN5qN1AyK0+lEMBhEOp3G0dHRMxJNqz7o9pr9MH9aMalWY29eT39mMp28ZrPZFNaKbaWU0ePxIBAIoFwuw+v1CpN97tw5PHnyBPfv38fS0hIWFxcF5Gn2st1uI5FI4PXXX5eMlRy3arWKTCYj7C8/Z6IOxn1pBtEEVxzfH//4x/j2t7+Nq1ev4sMPPxwAC+wnj3U4HANlB0xwre9lzps2gi+TVeMa0aUqTCCu5bl6rrmxwUQfut1kMFknkgCKLBTfA/l8HsFgEENDQ6hUKgiHwwMgjG3TGzPtdhsTExPIZrMDGxW6RAOzgxLUky0NBAIS98bnJBQKySYVn3e99jk2rPvHIuMul0sKcTMhC98bHo8HnU4HrVZL3q1k/ur1usTjEZj+/9j7syBJzjQ7FDse+75HRu6ZlVmVtQIFFLq6sTQGaAwa02qbmTYaOaI4RmlI0USRZjS+6EFXepAZdflwTUaZHvhAE2Vc9NLiHXI4PUvPDBrT6AbQDaBQAAqoQu25b7Hv++p6yD5f/eHlkVU9vRSJ659ZWWZGeLj//ruH13f+c77zAUfPt0qlgmKxKKoDtT/ek4gvF4CzauCssMIKK6x4jOj1elhbW0O73Ua9XpcaNrXIXTUZSaVSSKfTiMVimJqawvb2NgqFApaXlzEYDFAoFKBpGp555hncu3dPer1NT09jZmYGe3t7SCaTSCaTcLlcKBaLiMfjAB402U6lUnA6nchmsxgMBpidnUUkEkG5XJZG41NTU+j1eggGg4hGoxiNRtje3kYmkxGJJwEDpUCNRkNAX6PRwO7uLlKpFEKhEJaWlqT2iK6YlECx/YAaTBJDoZBITcm4sZZFbexrNN0AzCWURoZvEmNklGFS1mRWj2KWUKufNWMcjduz1nFpaQndbhftdnvsWDMzM/jqV7+K5eVlkVdy7p1OJ2w2G+r1OnZ3d/H555+L1FUFjg6HA6lUSvqjNRoNZLNZYTqM4zdei0lSPWOYMXHHMZSTmD2zY/T7fSSTSSwtLeGDDz6QpFyVKRJMaZom7PWHH36IbDYrEshOpyOf4z3Efdy6dQuZTEbqktQ6u1AoBLvdjnK5LCBOrX0zk+MaAS/P/6233sKLL76I5eVl7O/vPzR/Kvij0yvZVt6f6vU1gmg1VJmk+reR4VSZNW5nBIccH8dFgxLOk5FJ5PeGc9Nut+H1eqHrOsrlsiwGDQYDBINBkTNGIhHU63UMh0O02205Dq9dKBQaM/igqyQt/Hm/tNttDIdDBINBBAIBYcBarRY6nY64Z6r96ijnrNVqYkbDZxxBWygUEjUFzU+8Xi9GowftD2h2w4Ufv9+PZrM5ZnZCUx7WBA+HQ0SjUbjdbgG7TzK+nADuyQ7DCiussMKK/8bjqaeeQjAYxJ07d7C6uoq9vT3EYjEMBgOp1xgMBohGo9B1Hdvb21hZWYHT6cTu7i6cTideeuklkSVOT08jHA5L/UwoFJKV5Nu3b2N6ehqLi4tIp9Mol8uYnp7GaHTkDOlyuZBMJlGtVkUeGYvFRI60u7sLl8uFSCQCj8cjSVuj0cDVq1dRKBRgs9mkoF8FKGTDwuEwNE1Dr9fDrVu3cP78ebhcLiwuLuL27duSINGFTXWnpLSKzIbX65XV+E6nI3IsNpieZCYySa7IUAEfw1gXZPzJ1XOjg9+kpFllS4zvG7elOUwwGJR5Z88sTTsynzl79iyeeuop6c/HWiJKuWh2wFqubDYrbADHQMkfmwqXSiUx8XhcmaPZXJudt7qv45ihSdfKDCTyGrRaLSwvL2NpaQn5fF6kcn6/Hy6XC81mEysrK4jFYigWi9jd3UWhUMCpU6eQTCbH5KRcBFAZFzZZVoEd7w+2CKB8mLVaKit83NypksrRaISPPvoIJ06cQDKZlO8Xz12VVaoMmDo/6v6M95jKsgHj97gKsPlZVerJbYyN3NV9qkBVvcfUzzscDqlXZAsBgl6CJ7WeVdd1qQkjYCMrp8oYR6OR1NAFAoGxtgL1el2uHYEVHXdpsnR4eDgG8ljLq8pxa7WaAGYAIpUdDofweDwolUrCzBMgElyzZo5Ajccg083vIeWfdL0EIPXRZOPL5bLFwP2yQsPDD2QrrLDCCiusMEY0GsXm5iZarRZu3ryJixcv4vbt22IsoiYdzWYTZ86cQbvdxt7eHmZnZ+F2u3Ht2jUMh0Osra1hMBjg008/ldo01SVxeXkZDocDX3zxBQKBAJaXl9FqtVAul4WR63Q6aLVaCAaDY2YmlUpFAMT09DSAoyRtZ2cH6+vrkijZbEc9jUqlkrBSTFaYjJFN3NzcRLlcxszMDFZXV+F2u1Gv16UHFuv96PLGhJXyPvZYItNB5kPt0WZku7g/hgqkzEDacQ59KstBaeIk+aCRqTAm1Ub2Sh07pZNutxuHh4fCIhE8qCybypBQXsXmwDRtoDxMDToqNptN1Gq1sRqyXySM56L+TTbmuGM8SlJpBMGtVgs7OzuYn5/HuXPnsL+/j3q9Ludit9sRj8eFPQkGg9jf38f8/DzC4bCwO2TNHA4HEokElpeXcefOHVlgYA0WQUC/30er1cLe3h4ajQZqtZosPnCuKdkEHjiY0uCEjCnvDV3XhaHZ2trCiRMnxsanXj9edxrUEJhzboz1jcZ7kOMxMoN8TZ1ftU6V97/q0GiUaxKwqPJJjo1MOV8n28bvutPplNYjbFrOz3k8HlQqFXQ6HYTDYej6kdGIOmZa+3e7Xfj9fmjaUc1dq9WS9ylVJJBqtVqo1+tjvSu5IEWmkAtiPp9PJOSUQo5GI+k/qF4jLsBxjuggzOchZb28Bnxujkajh0xXKDNln9B+vy8LXk8ivlQADhYDZ4UVVlhhxWPE22+/Lc6QX//617G9vY1IJCIr+bFYDIVCAaVSCaurq7hx4wYGg4GAr/X1dQSDQSwsLGB/fx87OzuYnp7GysqKJCe5XA6xWAy1Wg21Wg0nTpzAcDjEwcEBOp0OYrGY2KH3+33E43H4/X60Wi0cHh5iNDqy9Lbb7QgGgyJDyuVyItm02Y56NEUiEayvr0vxfiAQGEv4KK+02+2oVCrY2tpCPB7HzMwMIpGIOLbRYIVW4uwVxSRmMBiI1Gg0GglbxGSQibFxVd4sVNZAZQyMcko1kTVKMfmaWnel7o8r6arRCfelJtTGJJsmMzQuUOWbXJnv9/u4e/cuIpEIlpaWpJ6SDcxZE9fv91EqlXB4eChJrHr8Xq8n9wjrdoznbjZvxnHztUnB++FxWINJgNgo2eN2lBHfvn0bU1NTOHnyJC5evIg/+ZM/wc7ODjqdDoLBIIbDIZLJJO7fvw/ggRSXtYMEwJQC53I5eY2MHJsvV6tVkWXS0ZL1XATGTqcTq6ureO2113BwcIAPPvhAtmOtonH+2B+RIG5+fh6JRAKVSmUMIBDEUz6szpd6HYxgGjA38AHG23JwO/U9Fdip10Kt96RUUL3W/G6QZer1etLvjVJE1ZmTNWe8FjREooEHjZE4X5QYkgEkK876WkoXe72eAHCPxyNAkewcWT6CdS7QUALJ9zkXHHcwGBxzhWw0GlLfxvsBgPSU499sX6AyelxA4LUmSON3uVaridy81WqZf4F+DfGlAnBiYmIhOCussMIKK46JdDoNXddx8eJF2O12rK2toVqtIpVKYW5uDvv7+7h37x6GwyHu37+PYDCItbU1bG5uolQqYWVlBW63G5ubm8hkMjh16hTOnz+P3d1deL1eZDIZzM3NIZ/Pi7EJ2ZXhcIjFxUVhKOx2uxioFAoF1Go1aJoGn88n8iKucO/v76NYLIq5QLlcRrFYxOHhISqVigACJrJcia/X60gkEggGg8jn87h9+zbOnj0Lv9+PxcVF7O7ujiWxlAGqZiRcGaexAF0veQyVGTBjIhjc/jhJpfEzDBU8qP/U1gJ2u11W45mMVSoVAZWTJHQMNqNmXQ4TOdVMgueWTqfx9ttvY25uDhcvXsTp06eRSqVk7I1GA4eHh7h58ybu378v14RSSwDSZJqgYVKYyR3NmEPjZ8zkkWa/q3+bgdpJ+yNo6Pf7uHHjBmw2G65cuYLvf//7KJfLaLfbmJ6eFofIa9euodfrIR6Py33A86YDZ7vdRrvdFiMO1izREZBW8GSYAYjMle+TxanVanjvvfdQLpdRq9WEhTM7X13XZbGD4ODw8FAksqqjpcq+UXZnrG9U51WVrgIP3+Nq/RsNP3gctRYQwBizZgbkVfdTFcQRRNFhl7JfAiqymjw3giK1Xm04HEp9sNE8yLiAw22q1epYI2+HwwGfzycqAfW7RQaUQIkgjiCQAJPXls88Pid5r1SrVXmO8f7QdV36uHGhjfcdnxcq++j1emV+7Ha71N6RcbVcKH9J8eALYyE4K6ywwgorJgclXV988YXUTszNzQE4avJ9//59dDodVCoVPP300wiFQvjss8/gdrtx7tw51Go17O3tIR6P4+LFixiNRrh+/TpqtZok/7du3UIsFsPa2pqwZn6/H7Ozszg4OEA+n0ckEpHG3PV6HfV6HR6PR+rRKBXqdrtYX18XJsPlciEWi8HtdmNjYwPD4RCxWAytVgvdbhetVksSJK6AT09Pw+12o91u4+7duygUCvB4PFhZWcEHH3wgSZpqQME6LsqUuDLeaDSkdYCRMTLKH1WZmLrSr75vFmqCa8bKGYEgE1mn04lgMAiv14t8Po9qtfpQbZ26HyMLR0ZTTaKZkJpJOyuVCsrlMvb29rCzs4Ovfe1rSCQS2NnZQbPZlIbuxWIRAMaALt3uWq3WQ/3tjmPXzECbGcNo/N24r+PYOOP+1d9V9lOdQ+CodqlSqYgFvaZp6Pf70gtuMBhgdXVVmCuynMBRLdtrr72GH/7wh7J4QKBLsBEOh8VwiLV3NJah4QQBMpP/arUqjDIAMfoxmwOCfp7PYDDA3bt3cerUKWGmgAfW/MYm7UYAp7LEapgBObW2jvNj/A7RWZLBnoT8na0uVFDEMbGmiwCKC0U0D/H7/ajX68LE8zvOaxGJRITFI5gulUrC4vE74nQ6pV5UvRfITJOdpiETTVEIjDgm9l9j8Dg0IOGx2HB8MBiIsy6l7Dwex0A2kc82zk2/35c6S7KTVCAQNHo8Hnkeqs+xJxF/YwCnadppAP+z8tIKgP8bgAiA/wOA/M9e/7/quv4Xf9Pj/Fxj+tlPi4GzwgorrLDiuLh37x7q9fpYQ9eNjQ35D7xer8Pr9WJpaQm1Wg07OztYWFhAJBIRCWQymUQ0GkU6nUatVkMul8OlS5cAAOvr64hEIlheXsbm5iYajQaWl5cxGo2EiUkkEjh58iRKpRKy2azUs3HlV9M0STwoU+T7brcbmUwG165dQ6PRQCgUQq1WQ6fTEROCfr8vkiPgiA2ivGo0GmF/fx/xeBzz8/OIRCLIZrOoVCpSA0jwR8kRE55Go/FQs2SVOTIDHGYGI2ahAgsmsZNYH76ugjMyQQSiZFzMxmE8HuufIpGIGDuo50VQS6bFKP2s1Wq4cuWK1E7RbXRnZ0fYUfXcu92uWOazftA4tuPYMrPxTwJ03MbIQpLdmSQlNbuGBBbHJa9kLYCjeyObzSKTyQAALl++LICGwIv1gp1OB++++64AEU3ThPH1+XxIJpPodDpSU1ipVASoEcgw+VddEHktWdOlnrN6vjw/dT4IbnZ3dzE/P492uz3GppH9MWMsVZCmzr8692R7uD+CFG6jtglgXZh6bBXgMVwulxyPr9PMg/skgxQMBlEul+W7w0UaXm8awthsR60FIpGIyFhpUMOefqznpAkPn0e8vpQqUiHg9/tFvk3wxZ5+BOeUibMVBfAAUHo8Hlng4t9kSXlNXC6XGJHoui7ATwWGwBE4peST/eMo7eX/E1wQ4H3y3yWA03X9LoBnAEDTNDuAAwB/DOAfAvh/6br+r34ZA/x5gvNo4TcrrLDCCiuOCzqVkemKxWKw2+3I5/NiLjIzMyNg6cKFC7Db7dje3sZgMEAikcBoNMLm5qYkHq+88goymQw2NzeRSqXQ6XRw//59Yd36/T7S6TQGgwGSySQWFxdRKpWwubmJcDgsTWxVI4dSqYR8Po9cLodwOIypqSnE43HcuHEDN27cgN/vRyqVwt7enrAMXCFWa3xGoxEqlYqYnVSrVdy7dw+rq6twOBxIJpPIZrOo1+sCEgmCmBjbbEeW+LTSN6vhOa72zYwVMgN2lF4ZDT9UsxAm2MaEGDhK7g4ODoShU99jMAFWE3Um/+FwWGrcVEkctye7obZLYAwGAxweHuLg4OCheeBYmLR3u12Zz+Pq3ibJGY0xCcSZgTFjqPOqzq/6vvHzx8lf1fd5/OFwiPn5eUmiOTc+nw/f+MY3UK1W8emnn0rNExca2CyefQ/J6lBGaLPZxpoxE2SrFvTAEYO3srKCdDot35VeryeJORN/3lcq66tpGqrVKhKJxEPOkur5qcYlk8C06ohJ8MnPclsujJg5UVICyHpJdZ4J3PgawSBr3hqNhizqeDweYevUHpAEwDwGjXo4l5VKBY1GQ5gtzvtoNHrIkZa1bTT2AY7qzqgy4AILj6/KJPkMoLyT80AlA9sDqM3BaS7C73IgEJB7je1hfD6fSGw5r2SBVfMn/s2eebxHeH29Xu/Ehuy/jvhlHfk3AWzour7zJNHoAxfKJzYEK6ywwgor/jsI/ufLZJzmH+12GzMzM5iamoLL5UIqlRJb9Hq9Dp/Ph4WFBTSbTWG6Zmdn4XQ6cePGDXS7XZw6dQqdTkcc2LxeL1qtFkqlEobDIWZnZ5FIJLCxsYFGo4FIJIJIJCJ9xDRNE3bw4OAArVYLc3NzmJmZQTQaxY9//GPs7e3hxIkTiEajWF9fR6VSAfDA6pq9l9jUezAYSHLFJC+TyeDg4ADT09OYnZ3FrVu3ZMXcmAATzDHJU9knYy2PEZgZQ01mjSwWQ3W/U4Ovcz/qsYzgQwV5xoQbGDd24L4DgYAAB47PCBSBhx01KaVTWTsV9Bit4pngUrZ6HDBTz9V4DkZgZdzPowCfyqYZGSn12MZjGreZdCzOBxPsWCwmlu2sVVxdXcX6+jpKpZIABybzBNSJRAKxWExYld3dXfR6PYRCIZEM05UQgIAFtYaOjZrVvoVMwHlMzoXq+qiCunq9jlQqJYyOkdFUDU5U8MyfRnDL+5nnRdmukS0lQ8d54e8cF7dVz0f9Sdbp8PBQesDx2GqvM9a52u12eQaRESNwJFAjeFPdJ6PRqDhKUtrK56xqnGKz2YTJUvdP8yXWp7H+js256XBJQyfggRSZ7R54DuxlyfGpck21DtXr9cr3k58lWOt2uwLaa7Wa3CNc5DJjzn9d8csCcP8bAP8/5e9/pmna/w7AxwD+T7qul40f0DTtHwP4xwCwuLj4SxmEMHAWgrPCCiussOKYYAJ9/vx5kSiSIXA6nXA6nVhbW0MwGMTW1pawVD6fD+VyGZVKRerQRqMRMpkMwuEwbDYbdnd3MRgMMDMzA5vNJmyMx+PB2bNnoWkaNjY2oGma1L+RYWi1WsjlcmJw4nQ68dRTT8Hj8WBvbw/vvfceWq0Wzp49C5/Ph88++wzb29twOByIx+MiR9J1XQBnKBSS4v5arYZYLCar1devX0c8HseZM2fwySefIJPJoFqtiuulWjdEBo71H8DD/cWMpgyq1NCMRTrOqETdlvvgWMwYDjPGSD2m8RjGXMHj8YhEy7gv4ziZAKrOdXzdKP1kAq7OGfsNEkw8DsM2aY5UsMoxGcGD2WeNDJlxnz9vGK+bamwDHFm6q4m82+3GwsICzp49iw8++EDka3T/9Hq9iEajCAaDSKVSSKVScLvdKJVK8Pv98Pv90n6DYIEyO9UdUL2HdnZ2BNSpjcMBjBmUEGASHPH80uk0pqam5JoaWWL1evB3s3uV+1YBBoAxQMAFAYI3LizQol8111H3oYJILoLYbDZMTU3h+vXrIs8meGs2mwgEAvD5fLKtseaN/eA4DtbSjkYj6QVHeWe325XnBu91LlTY7Xb4/X6Rc6uGIQSN7XZbwJW6OEKgxzpjPg+4f86p1+sVto0OurquIxgMyiIWFxSi0ajMuQqe+X1lPXOhUJBj+Xw+cT811jX+OuMXBnCaprkA/C6A/8vPXvo3AP5HHCkZ/0cA/08A/3vj53Rd/7cA/i0AfOUrX/mlIC7LwsQKK6ywworHieXlZbz22msYDAZ45513MBwOMTU1JSu3Tz31FLrdLjY2NhCLxRCLxaBpmqwu0+gCOEq0lpaWkE6n0Ww24XK5sLKyAgDY3t6G1+uFx+NBIpFAJpNBoVCQGh6HwyE/C4UC8vm8OKvNzs4ilUqh3+9jY2MDu7u7CAQCeOqpp6DrOq5duzYm6zo8PMRgMJC+Sc1mE+12G36/XwAQJUB+v1/aCVy4cAGLi4tYXV1FLpeTPnKqHJMF/pQUAeMyRuBhAxOGkelSk1kje6cmvmoNldEwwMiymal/jEm02bYqiKGkTDWRUM9rUi0dE2wjC6mycSpDx2bJdFlUx2Gcn+PCDIAZJaWPAwgfB6yZsX/H7Y+sm8o0Xbx4EZlMRpLnQCAgrRhUswmPx4NUKoXl5WUEAgFJtGdmZqQHWLvdRi6XA3AkjYxEIhiNRohGo3Jv7+7uAnjQ+40SYn7nvF6vsEAq46YuOqjmO5zfWq025nhJ8MT3jd8Blcnj/FC2yGukfkYFjEZQzlBdJo0MtvpTZRpv3bolzwdd14V9UqXQbDnidrtFSknwRqDD43IMVBuQsSKDHwwGxUhEZWHJnlEOq+u6AFLVPEQNSjjZhJvN2m22o95wlD3SvIjn4HQ6x8xZOC8ejweRSOQhWSR7vxHUqn3vWq2WSNx5jsZx/jrjl8HA/a8AfKrrehYA+BMANE37/wD481/CMR4vhIH7tR3RCiussMKK/w7jO9/5Dvb393HlyhVomoZnnnlGgNnp06exu7uLdruNEydOYGpqCqVSSVatZ2dn4ff7USgURH50584dtNttxONxxONxVKvVsfo3ANja2hIXPUoVR6MRIpEICoUCNjY2pP4jHA5jYWEBNpsNW1tbyOVyOH/+PBYWFnD//n3cunUL/X4fp0+fRr1ex71794S9qFQqwsK1Wi1ZKaZFeLVaxczMDEqlEmq1Gq5evSq9zD755JOxZIVufXRLZPKpAjc1yZ3ErhlB03F2+Qwj62U0SjFjjIxMkpp8G5kndT82m22sca/D4ZC6HrWmST3v42SiRtZFHU+/30ej0RirfZvEkhn3aSZfVAGCkXWbxMQdB9rMtntcgGkG3mw2G+LxOKanp7GwsIDd3V2pdSoWi1LLRTCRSCTw6quvYnV1FcFgUIAvpYPFYhHValUAt8/nQywWw+LiIl566SVkMhl8/vnnUn/VaDSE3XO5XHC73Wg0Gsjn82KuQVMe9RqrgFgFWtlsFk8//TRqtdqYbNMYKjtLJkkNMn681/hdMwJJFSDabDZhgljjqS52AA/AqHp89n8EIH0c1XGyvQBBLgBZzGCtIIPHJmPHnnxsV0KZIxfDAMiilHpONGvq9XrivsvFrEajIfJJj8cjzxyyX2zoXavVEA6H5Zh8ftJkhUCZzJvajqJQKMhn1GvdbrcRDAbh8XjGmE31GUqp5X/vjbz/HhT5pKZpM7qup3/2598C8MUv4RiPFVIDZ3FwVlhhhRVWHBOffvopOp0Onn32WZGyzczMYG5uDvfv30ckEsHs7Cw8Hg8ODw9FmkUnt3Q6LcwWHdympqbgdDqRz+dhs9mQSCSwtraGRqOBW7duIZlMwuPxoFQqiVHGzMwM1tfXkclkkEqlMBwOkUqlEIvFUKlUcOPGDdTrdZw5cwanTp0SyWQikcD09LT0f2M9SqFQEOc2riSz3xMA6WMUjUYRDofRbDaxsbGBM2fOSK3R/v4+er2euLsxsaR0UpU0MlSApCZp/JvbAHgouTSGmWQReLitgApS1M8aYxILpe6DdT/cP534uNLP/RjBi1EyahyDyuQQOHQ6HTSbTWE0jOwMXzOe0yQ5pMrQTGIjjRJNI6Pz84QZmFMZKuP7o9EIX/nKV7C7u4t/+k//KQ4PD/Hd735XWBo6SJJpi0QiWFtbQyKRMD2XWCyGeDyOQqEg8r25uTm89tpruHjxIur1OqLRqEiECVxoSsMaKABybfn9UZ0JjYwaz4sMHGtgjYY76phVsK+acvA1ygS54GIE6fydsk8A0udRvd78R2BhvN7D4RDFYlGO3+v1hLXkPlqtljChlCWyfpbH5j1L+SdZtXK5jHK5LMDNbrdLfSIZLxWw0miEDL/L5UI4HBYwFQgERD0APDA+oRoAgBjZsIaQcxMMBuU68t4iK8e2LJ1OB41GQ1hg9nzktWXDb9XYhdeQ8xsIBB5ysvx1xi8E4DRN8wH4JoD/o/Ly/0PTtGdwpGTcNrz3Kw35zlj4zQorrLDCimMiGAzi6aefxv7+PjweD9bW1mC323H9+nUkk0mRJVarVflPnzbZ/X4f0WgU7XYb9Xoduq5jbm5OCukp31lcXMTe3h729vYAADs7O/D5fFhaWsLc3Bzq9To+++wz1Ot1qemYm5vD6uoqbt++jatXr8Jut+OVV16Bz+fDlStX0Gq1cO7cOXg8Hmxubo6NL51OSx0Qa/w6nY4kfEzems0mMpkMpqamMBqN0Gg0cPPmTVy+fBnJZBLpdFrkSmRTgHEGTGUdVIZKTXgnMVTGlXh1O7rxGc1NjKBOBYyTkl7+PWkcKvhQXfiYxJKVADDmZmhM1o8DnPw5Go2QTCZF2kpre6O8zjhP6jHU7Y2Mo1G2pzKPxjkxGm0cBxyM56n+zjGrbJUZY8fjsfbqhRdewNtvv439/X1ZXGCtFRvFs0eZWfj9fgSDQWGYKWHd29tDKBRCMpnE6uoqvvnNb6JWq6FQKAgg17QjN0lN0zA/P49Go4FKpYJWqzXWP46MD9k/43Uli0X2jPvvdDoPsZ9ksrgv3itqjZ2RRVUBNmvF1DkmE879GBcxWBdnt9vH6i0pG52enhbw5PF4hK1kfZqmaWNSRrX2lMfiubJtAGuHA4EAAoGAAKThcCgMmHp/UrJJNg940B5ArS9jyxVa+LtcLrnurKUkKKWjKOeKjFun05Hvbzabhc/nk7lh7XI6nRZzK7pV8lpRegocMZg2mw2FQuFYFv5XHb8QgNN1vQUgbnjtf/sLjcgKK6ywwgorfsUxMzODa9euIRwOY35+Xuz9T506hVAohHq9jmazKcklkx06uNVqNQyHQySTSZHEMSkJBAJwu924c+eO1KHRgS8cDuOpp55Co9FAsViEph3ZXft8Ppw6dQo+nw/vvvsutre3sbi4iKeeegrb29u4du0aNE3DyZMn4XQ6kcvl4HA4EI1GoWka0um0JHnsU8XEjqwbE7JOpyN1eARS29vbOHPmDE6ePIn19XW02+2HGnWbsUPAw06Sx7FATFaNySz3rwIRSsQeJ4xjU/82gjjj+FRDktFohOnpafy9v/f3kMvl8M477wDAWPNeozRUBTJM1NXaNybkmUwG5XJZDHOMn+dY1ETdKJVUz41BYGJkOM2YSTMGz8jWGGWXZsye+roKKtRjcU59Ph8ikQjcbre00FhbW8PW1pbc+8FgUExJKHWbFB6PB6dOncLt27fRarXEEr7X62F9fR1nz55FMpmUmiq/3y/94/L5vLiNTk1NjTE1NptN2BsyRGZsI5tQ00iF5+p0OqW+jEwR7xfjfa0ek7JItZaSxyWI4QIM8LBhjnr9+D7BDBmjcrksfR05Zi5UqD3sWF/Ia0Abfs4TgSpNQzqdjhix+P1+Ab8E5mobAZqT8NwI1oLBoDg/UjXA82abF+5T0zSpoeM5sg8fx8bXWq2WuE72ej3EYjFUq1UBfASsBPXhcFjuZy7W8X7g3PM6kX0Nh8MT79NfdTy5Bga/grAIOCussMIKKx4nvvjiCywuLiIej2N3d1dq25xOpzTEDgQCSCaTUnfDxOPg4EAazqrtAQaDAeLxOEajEXK5HHRdF9DWaDQwOzuLs2fPIp1OY3NzUyRKkUgEi4uLqNVq+Ku/+itomoavfe1rcLlc+PDDD9Hr9cTUoVarYX19XRJj9h2jMQlBJpOMXq+HWq0mBfk0AGg0Gtje3pbkifu9ePEikskkNjc3pf+TWqxvxuYQQDBZVRNMYFxGNolVmRQqUFD3NSm4rbq9EZAYg8k3V+z9fj/i8bgwpz6fTyzJ2Z5BnQMm6JwDdR7U5J1sEGsfeX5knpg4ulwuVKvVh+aRCa56DZj0T2LH1HlUQ2V9OG/GOT8uVNZNnXt+Xq3dWl1dxdzcHCKRCJ566ikkEgmkUik5r0uXLmFxcRHlclmkfDs7Ozh//rypKQ4leQCk2fNoNMLOzg56vR5u3ryJpaUlbG9v44svvhBJHhc47HY7nE4n9vf34fP54PV6ZeyqSY96PPU+7Ha7wpgTzBH8sx7L4/Gg1WoJE05pIOeMQMDIRqv3rdpjTG2roc67EcBx7vlZsoWdTkekgxw/5ZHs0caaTLYCUGvYyNIBkB5w6oIGmTDOpa7rKBaLco2cTqfMDVsEsJUB3R85ZkosWWNGCagqZaXREueLoI3f03a7LTJMm80mhiVqKwQuzLXbbYRCITkmFwN8Pp/U/fI5Sukoay+zWbH9+LXHlwvAyYPoCQ/ECiussMKK/6bjzJkzsNmOGgIHg0HMzc3Jf9C9Xg9+vx8zMzOoVqtiIc0EKZFIwOv1olarSe8qMgjdblds/dkzrt1uY21tDfF4HJ9//jm2traE0ZmamsLJkydRKpVw+/ZtTE1N4dy5c+h2u7hx4wYcDgcWFxcxMzODdDqNUqmEaDQqtXc0XiFjyAJ7Ag2u6DPpcrvdY4xUOByWc75z5w4WFxcxNzeH7e3th5iDScm+0S7euL1ZEk6QobJVKsh4FIAwY6Ymva/uzwyoGA0gbt++jX/zb/4NarUa7HY7gsEgXC7XWI8s1gUa2TiyKSpo5b9GoyFJvToeVUoWi8VEXslQTRbUc6BETr0u6n6NkjV1nMbEX+25ZyafVOfRjHVjqA6F/ByBE50NyW4Fg0G43W48//zzWFtbQzabRTabRalUQi6Xw8rKiqlJBI/barWEkRmNRtjf3wcA5HI53L9/H6VSSZgrjpl/00VQBQE2m032qZ678R7lPUMjIjoq8vvGfRIwJBIJ2O12lEolAYC814AHLJtRGqsCeKNkmaBJvY4EgbyXOE/l8lEnLwIjNvOmiQjvR9YT9vt9xGIxAYK1Wk0ki2SjWC9H+bamaWKuEggEUKlUxgxKeJ14H5DZo+QxGAyiUqnIYobNZpPFM95rrVZLpJkq+PN6vXJP1Wo1DAYDxGIxNJtN+W7xGnLu6FBJ0Kb2qBsOh3C73Wi1WvI94n1BmS0Z9Uc9p36V8SUDcEc/LRMTK6ywwgorjgu73Y5isSjudVtbWzg4OEAoFEI0GpUG2aVSSSQ3sVgMwFGilM/nJXFisX42mxVZJG3Ku90uVldX0Wq18P3vfx+ZTAbdbhd2ux3PPvssFhYWsLm5ie3tbczNzeH06dMoFotYX19HPB7H0tISOp0ONjY20Ol0ZAytVktqNwg81Ro3JleslSHQIws3HA7R7XZRqVSQSCRklf7WrVtYW1tDKpVCLpcbAzdmzM5xUjejNM/YnNvI4PA1hvqeWc2csdbIyEIZXzcexyg9U6VdGxsbwmSSlaNEjvIq1tWwVtAMZPH4NC5RwZk6NjIydDblvuhySrt7fo5jM87ZpLlUWSTjHJm9b/y8kdFU/6nMjxG8adpRI/tIJCLg7fPPP0etVsPFixfR7Xbh8/kQjUYxOzuLXC6Hd999F/v7+0in00ilUmMN7tnL8LPPPsPh4aHI7QhKAKBUKslihtqUmXNMGfSzzz4rTqztdluMVIxg11jbR7a02WwiHo8jFAoJm0ZGi9/JSCQCp9OJTqcjlvpq6wj1GtDkRGV0VRZXve85BoI1VTZLlolulARw9XpdnBRLpRL6/b4YJrFmTmXdRqMHzbXpTOt0OsU0iXWj7EvHvpXFYhGj0UhAGdk6XdcRjUYFSIZCIdhsNumz1u/3xYwkEAiMgW3WGnMuyPpzX7T7r9Vq8Pl8UvfIsXPRRQVp5XJZmFnOb71eRzx+VBlGgM5nl67r8lmCTY73ScSXC8D97KfFwFlhhRVWWHFc1Ot1LC4uwuVy4datW8jn89IsuFAoYHt7WxgO4IELWSAQwM7Ojqz8hsNh1Go1kRvS7IS1PezjdufOHWQyGXQ6HUSjUbz88svQNA1ffPGFyCtPnTqFg4MDZLNZTE1NYXFxEaVSCel0Gna7HdPT0yILGo1GsgquaUeOaOVyWRzamMARWNAAwOfzCSPS7/dRLpfh9XplFXt/fx/z8/NIJBLI5XICOLiPnyeMAIBJJoCH2CuG0dSEn1VZEMYkmaAZoDG+p4IV1RlQlSRy/tgcnf38PB4P/H4/3G63gHGCOaOFPpN6StfU4xvPkUyEzXbUMJ3JNN3++Dmj3M5sX6qU0sisqe8ZJZdGBs8MbKugYxJoUwGirus4ODjAaDTCjRs3sLW1hampKSwvL+POnTsCdtxuN2KxGObm5rCzs4OtrS1kMhkkEgkxNRkMBtjb28P169dRLBbRbrelTYB63dTztNlskqQDR0zU2toann32WRwcHMBms+GTTz4BAAFyPDczVpLGF7lcThZL2NybDBeZKDJH7Xb7IaA/ieHmT1Xmqso0VXkln0+UGxIgcg7q9Trq9bpcO0oEySapCgLKINXFA4IlmsZQSk6ABUDqgePxOOr1usjCCaxoJGKz2YSd9Pl84jI5Go2kbpeLTgSLZNXIQtJMhKCx3++L8QqNZTj3oVAILpcLXq9XGDT12cfrS2DXbrelhYF6z5PV5GIATXAIBp9UfLkAnDBwVlhhhRVWWDE5UqkUisWimBosLS0hEomgUqlIIqBpmqwyMzG8efOmyKISiQTu3r0L4MgpjTVtbPxNieaNGzfQ7XYxNTWFWCyGr371q8jlcvjiiy/g9/uxuroKp9OJW7duwW63Y2VlBaFQCMViEd1uF/Pz88LKtFotuFwuRCIRaQbNJIi22m63G51OR6R8TPbq9Tr8fr/0wiIzxJYIdNG7ffs2Tp48KdJMJpHGmp1H1aMZQZJx+0lgDRg3TnmURNKMWTJuYyb3M+5L13VEIhH0ej2pfeF7NFEIBAKIRqN46aWXkM1msb29jXa7LU58KsPCc2BNTr/ffwggqees67okhzSooQED96eyMyrwNCb/xrkwC3VOzH7yH4+r7lsdg9mx1GswOzsLTTtyiaxWqwiFQlhcXMTS0hLS6bSwL6wNjMVi2NjYwL179zA9PS1tOsgCFYtFpNNpYTQJbsjYqD382Kyaze0BIJFI4Pd///dx+fJlvPnmm7h16xZ8Ph+q1eoYyDLOk3r+8/PzuHXrlhgUEcxxO8pDVabM7N4wgjh17tQwu66qQU4gEIDL5UKtVhPmDoDUXFIVQIk18KCmMp/P4/DwELFYDIlEQmrZ+PwgA12r1cTUCYCYOZHJo5kJALHsB44UCrxnOp0OQqEQBoMBvF6vyDEpiXQ4HGPGT6wL5XeCEmaC2lgshlKphGq1Ku+Hw2E5Nlk5v98vfQYJAlnPxmsQCoXEwIbzR7adbSMqlYrUqWqahkKhYPbV+rXElwrAkYN7kppUK6ywwgor/tuPVquFSqWCwWAgLnnFYlH+ZtLKZq6dTgelUgkejwcrKyvQNE3Yg3A4LKu7kUgEU1NTaLVa2N3dlZ5sMzMzWFxcRCAQwJUrV7C5uYlEIoELFy7g4OBA6t2Wl5eRSqVw9+5dSX7j8bjIwlKpFNrtNvb392G327G8vIwvvvgCNttRE+/BYCASJsqi1AScfY7UlWM26iVIKxaLWFxcRCKRkNVorkI/Dngzk+WZycNUpkH9nBrHgUAmr9ynMdE2SgTNGCj+zYjH49Jkmwm/OrZ2u42lpSW8/vrrWF9fx9bWFsLh8JgNOntPcW5pfmIEBmZBMBKJRKQ2h3OkJv8qg6bOpVpPxTmbJCE1zpHxOpgxd2agcRITyPFQkmazHbXlOHv2LJxOJ6ampjAzM4NMJoNMJiPnT4anVqshn88DOGKOut0uSqUS6vU6yuUySqWSuCuqxhNkzpmUz8zMiKGGz+fDq6++ilAohBs3bmB3d1fAOhdpzBYV1HuZQIjbkYFS71MyPur1IFvOz6lsL4+tgivOs8pakwkyGxuPSdaxVquJfJJAjGOh1JP3KnsUtlothEIhRCIRaYrNY/B6lctlVCoVkWnPzs6OSUTV8yPIIxPH60QTGrpbOp1OqWXk3LJ/G89HddFsNBrw+/2oVCpSs+xwOJBIJABApO90i+TxyXI3m034/X5h4gjwWevMeeI1ZdN5AmHVbfNJxZcKwFkMnBVWWGGFFY8TmUwGo9FI6jD29vYkcaxWq/B6vWPMFnBk+DE1NYV0Oo1qtSruakyu4/E4PB4P7t27h3q9LgnZ8vIy5ufnUa1W8eGHHwIALly4gNOnT+PatWu4efMmkskkTp48CY/Hgw8++AAulwtLS0uo1+vCEiaTSRSLRezs7CAQCGB5eRm7u7vipKeaDQAPEj41QWdvJrfbLXIjJk9k5jqdDjY3N7GwsIBsNisSLCPgUoPvqwklgwkY8ACEURJpVtNmfF0NAgjVVMYo1zMCN+OYjWwct6H1eLvdHqtTUh04h8Mhrly5Aq/Xi9u3byOTyeCf//N/jo8//hi5XE5kXkyMKfNSjUu4L6PUkb97vV7EYjHs7u6OnQdZWDOWjGFmCHNcPA7bYzTLULeZxJCqYEZdKKF5hs1mQ7/fRzKZxEcffYSf/OQnWFtbQyAQQKvVkvuOnwMgphOFQkHkk7SOp5X8YDBAr9cbS6xjsZgsUMzPzwMA/uzP/kzAG6XIxvk0zg3n4tKlS9ja2pIEXpU6EmhQ5kwwadyOcwA8fG8CD4C4Kl0FHjScV4N1YDTi4DkUi0VhwniNvF6v9Nnjfmw2G7rdrtTrDQYDFAoFcaokaOFCFg1IKpWKmIW0222RqVJOrgJZgjHKSwlCG42GHJfPL4Jksl7cn9vtFqddPqc1TUMymUQ8HhfToeFwKPXHBPTNZhOapkk9os1mkzGHw2Fhc0ejkbj7sqbP6/Uin89jMBhIO4xqtYpKpYJUKvXQvf/rii8XgOMvFoKzwgorrLDimHA6nVhcXEQ+n0cul8PU1JSwTzSrYP1IMBiU9gB37tyRZJDmJUxOKpUKdnZ2pEaKDEA0GkU+n8f9+/fh9/sRjUYxGo3w1ltvIZPJIJlM4vTp02i327h//z6SySRCoRDa7TYAYGpqCj6fD/fv30e73cazzz4rAIKr21xNd7lccDqd4nbIYGLIxITb0dSASQ+d3crlMqLRKCKRiJwjV6uBh0Eck1K1/sssVFZikoTSjGkzxqRxGONxFTlMtlkTZWSdAIikrFgs4rvf/S6AB8xBuVyWGkeCOFrIk1kwnosZE+jz+ZBMJpHNZoV9M36GnyMgMKtNU8Gheiw1zECZ8d8kgGZ2DkZQNxod2epTstbpdBAMBhEMBlGtVnH79m3pD3b37l3U63UsLS0hm81K4k+XRzaXZsPtarWKTqcDv9+Py5cv47PPPgNwxJDSMMPv9+Opp55CJBJBrVaDw+FALBZDoVCQJuLtdnuM1VLHzr95nXmtA4GAGPyoNvrAOONJSSeBv/q+GSPH+9A4Fr5uZFspo6QUmgCKfdu48MTvNBdGaH5EMKjWybIvWrfbRbFYRCAQAPCAAaXUlfvhvHKBgiYf/L4MBgMxEymXy9ILsFqtirGIWtNL2SmfZwBkscnv94s5CeWqPHalUhGJssqOcrFHvUacO/a5YxsYMnGUcbrdbrhcLpFVTk9PS41cq9VCLBYTJvFJxJcLwPGmthCcFVZYYYUVx8TTTz+Njz76CKVSCadOnUKv10M6nYbH45F+RaPRCLOzs+Kidu/ePUlIQqEQhsOhALSdnR1ZobXb7QiHw1KPtrOzg1qthlgshng8jm63i93dXfT7fVy+fBnLy8s4PDxEuVzG9PQ0gAe9k1irxmT3woULyOVyuH37NsLhMFKplNRlEGxRCsrk0JjMs5aFSRGj0WggGo3C7Xaj3+9jZ2cHy8vLUqPEhAswlzOaHYvvqdbmDFVqpTINkwADwZ/atoD7fBRw5OfNAI36U22YTGkepVu9Xk/qtNTz/Jf/8l+KyyHlqqx3YkNndXxGoEN2ze/3i4kOHQO9Xi/q9bqMyShPnTRfk4CXUfY4CXyZ1bNN2pfxOLwXNE1DvV4XNjESiWBubg66riObzeKTTz5BJBJBJpMRQ5iDgwMEg0ExnuB3z+PxiAySroIejweXLl3C008/jc8++0waV2vakfPl2bNn8U/+yT/B9vY2isWigA9eQ/U+4gIFQZV6jxjdGfv9vkijj6vVNDbxJjBTXzOyzgxKCAkQVFdK47VXP0tQyobxZPrU86jX6/B6vUgkEmP3LQABVgSrAISRJoMGQBZ++P0gQ8f7loYqrEcj6CNgI4gcDofi9EgJJLdvtVoib9c0TUyY6KjL60jXSbU/HVlGgjoCPdbd2e12eV4y+D0vFAqw2+3SB67ZbCISicj5NZtNMUh51ALSrzK+XADuZz+tEjgrrLDCCiuOi7feegv9fh8rKyuoVCoi14pEIpI40l672WwinU6LpTaTPTqd7e7uIpfLYWZmBgDg9/vFBGVzcxMulwvnzp2D3W5HtVrF7u4uQqEQ1tbW4HK58Pnnn6PZbGJtbU3kXCqTls1mEY/HEY1Gkc1mcXh4iEQigVgshkwmg1KpJDKger0u9VeTnB4ppWSDaiYidEv0+XwiSyuVSmPOl4+bsKjJrJlRA8NYf6UmzSqQMDIiZPsYTKaNNXDqeCaN3ciAMEFm8hyNRuHz+YRpazQaY0kzZWE8ppGBeBR4czqd0oswn8+LFIwLAXS4fFQNn5ksdFIYP2sEtGavq589TkJJQA4cXZf5+XncuXMH8Xgcly5dQrlcxs7ODu7evSsJN2V2quRuZmZG+hny+8beYQQPly9fFtmp3+9Hq9VCJBLB4uIi/sE/+Ad47rnnsL29jXA4LJJWSiz5s1KpjDm4qqyrOkc0FJqensadO3eEnVKD949a56my30Ygbjye8boYFwvUbdWehCqY5H2qSjXpzEiJ42AwQK1WQzAYFCaKbqB8n86f/AwZPYIin88nagWOz263Sy9DLhBVq1UBxvzJ3nGHh4cAjoxlKD3m8dxuN5LJpLhl+nw+VCoVUTCwITnBIb+vBGJ8xnG+yQKzJo7nwXE7nU5RPdAlk2CQ500WkaDVaiPwSwq77WcrGSMLwVlhhRVWWDE5wuEwPB6PNGONRCIi4wmHwwgGgwCAYrEoDEgwGESr1YLf75cVWbJybPx68uRJYbC2trYkmdR1HblcDvl8Hmtra3C73dja2pJeV9/4xjeQTqdRq9UQjUalGa7NZsOJEycAHNXt9Xo9LC0tIR6P4/79+6jVakilUiiXy9jf35daEdpyTwqCPafTKbbifJ2STNbRxGIxqb8ysmVqGMGTEWgY2TejXI3Bz006jno84IHByqRjHycjVMdiHBdX9L1eL06cOIGFhQVsb2/jgw8+QKPRkLERqKlBdsdYh2g8T5p8XLx4EVtbWygUCmPgNZfLPXQ+RmCgGrgY58ZsXvm72XaTXlffM3tNHZ9aD8nFghdffBHhcBjxeFy24z2ofj4QCIhtvSo/pTSVLBiNY86ePYvvf//7cDqdWFhYgK7ryGQyOHPmDJ577jmpGe31etJUutPpSL1joVBAtVoF8GBRgEwV2TyCFOAIHGxvb4trojHMDHWMixeapknzb4Jz9fMMtUG2ui/1PtB1fQxE9Ho9VCoVqd/i9VDr3Lxer9QT0kKf323ug1LOdrst4E6VdnLRgTXAdFmlwyTbqNABs9friXzS7XZjNDrqueZyucRMhEwZa+doTEJDkna7jVgsBl0/ak7O3m8Eaf1+X45brVZFNqppmjQAJ9BttVoCXrlYwwUqtkigqzD3T+MW1uzxmE8qvpQAbmRRcFZYYYUVVhwTo9EI1WpV+h8xGQoGg/KfebVaRbVahd/vFzlcJBJBMBhEqVSSOphwOCytA+hWRsaBTbJ3d3fR7XaxsrKCSCSCzz77DL1eD1NTU5idncUnn3yCbreLubk5uFwuqYE6deqUNHgm0NR1HdeuXYPT6UQqlZIE0ePxYHZ2Fna7HTdv3kS5XH5IXqgm6Gr9HC22gSPJVDQaFUkZV7LVflLGJtJqzYlRVvY4EjyzejgjYDCTX3I7I5AwAprjxmE0euF5kJE8PDyE3+/H888/P2ZXzp5WlJqp42QyOEnaSRlXNBrF2toaDg4OsLOzM3Yu6tiNjOSjANZxDJxxbsziuPniPtRjTJrrwWCAw8ND/MEf/AF6vR5yuZy4HtLFkNuz9xedVFl3SqdC1hQSWK2srCAej6PZbGJxcRGnT58G8KDdQrPZxPr6Ovb29qQujPVMZJfpIEnnWUqXKa0jE0S26amnnsLVq1dl0cN4XdQwmpvwHqcFPRly1bRHlVQCD6STRmZONQFS60G73a60XSAbzPuU5+P3+2WBirJA1rfxmhCU+Xw+kWIS2JGRUgEf5eQ8Hp8XvG6sJ+v1enA4HKhWq8Ka2e12UT3oui6AutVqoVarSXsEGpOwlyafSw6HA+VyWY5NSTnH7PV6RdXAZ304HEa9XheTE7KPatuHUCgkC1d0ko1Go1IPyWfBk4ovFYBz/AzADSwGzgorrLDCimOi0WggmUwiEonISjDrKVj/xRoOurvNzMzA4/Hg8PAQtVpNnNwCgQDC4TBGoxF2d3dRqVRw7tw5BINB5PN57OzsIBaLYWlpCb1eDx9//DGCwSDm5+dRKpVw9epVLC4uIpVKodVqYXNzE6lUCi+88AIGgwHu3LkD4MjMZDAYIJ/PIxAIIJVKyQo7V/KLxaLUlRiZGmA80e71eqhWq+I+SfCiSkir1Sra7bYkoXS8U0OVP04yHzkOzKlMEhNPtT2AUV6pbqvKOo2sm5FNUv9WgdBoNJLE0rhfAt0bN26gUCgImxCJRPDyyy9jfX0dN27cGJNQMgHkTyPY4TzG43GEQiF8/vnnwg6YzZkaKgMziT0zu9aT5sH4efU1FVRMum68VpPmV9OO2m24XC7Mz8/j448/loUSJtTBYFCkpky2CQa4b7pMNptNeL1euN1uXLx4EcViEV6vF2fOnMHLL7+MRCIhvcZYZ1er1dBsNgXAsZdctVoVyaDH4xHGhYwXX3c6nXC5XFhYWEClUpEaLqPZiNm1M9a1ERCozqT83qjXW/0+MsiUqa6S6v6Hw6H0DeQCBGvZWMNHZo5MFQAEg0GRkLL/G5km1vqpTBWl5pw7snGj0UhMQPL5vDjb8tna7XaRSCSkZQS/YwTLdCzluReLRUxPT0tTe0rXydjRzZISTY/Hg2q1KnJJPttVMxkA0jIgFApJ/ZymaXI9aWpDKS/rBFmfR1aZ8/mk4ksF4CwJpRVWWGGFFY8T58+fh8vlQqVSkaSKMpt0Oi1sWqPRgMPhwNLSEkajEdLptJgoBAKBsVoOrsiurq5KO4F+v49Tp07B5/OhXC6jWq2OSSTtdjuee+459Pt9pNNptNttXLp0CQsLCzg8PMT9+/elpQABocvlQiKRECmQ3W7Hzs4OcrkcstmsgAeCCaOkS02uW62WmAUwoaPtdiqVGpNH0cmNiedxDM2kZJ6hAjP1d0rX1P2oTn7GxNUM5BzHPpltwxV2Jp9q4kwANhqNcHBwIM6dTKbJSjDJfRT7xs+ePHkS8/Pz+Oyzz8ZaP0wCYcbzfBTQU7cxzr/RCGMSq2cm3TSOx+y46jbD4RCFQgG5XA7Ly8tYXl4W4xLK0HRdF7MLh8OBSCQiiTEZI1rJ0xXQZrPhzJkzqNfrCIfD+OpXv4rp6Wl8//vfx3A4RKvVwk9+8hPcvXsXjUYDnU5H+vtVKhWxhadDosomUU6oMjaBQADPPPMM3n777YdaAKggivcyAYBR1qta6Kv1cry3jQycul+VheN3kccmU86+b/wMgY3KXqqMHx0+2VfN4/FInVe324Xb7Uaz2cRoNJLaNioCHA4HAoEAIpGIfGebzaaYzpBtbLVa0quNsnAuMtFMiSBPdZUEHpiq8D2XyyVsIXCkFuD9YWz/QVZXvY7BYBD1el2Yv2azKQs39Xpd5O+UnA6HQ/R6PZHca5omDCE/86TiSwXgHLT6HVoAzgorrLDCiskRi8WQTqeRz+dF6nhwcIB0Oi2MAAv/6QxZKpXQ7XahaRoikQjC4TAAyGrz1NQUlpeX0el0cOfOHTSbTZw5cwbRaBS5XE6afjM5CoVCcLvd8nmv1yuNcn/yk59gNBphYWEB8/PzIpu02+1YWVmRFelUKoU///M/x87OjhT/s8cRmR5VImhk44bDobBwTJAIaHZ3d3HmzBmRMnF7I8gykz8y1MRfBRKT2B+VdVP3q/Y3o3xMlZzxPZ6XGQt33PEpl2TdjXp+xjHw3vjBD34gAE6VjfJvY+0bXSXX1tbw0ksv4fr16yiXyyKDU0G28XweJVlUQ2Uyjfvh+2aSR7P54/tG5m8SgDS+R3b4+vXrCAQCmJqakrYY4XBYzDZsNpu8D0DYIC6QsAbV7XZjc3MTFy5cwPz8PH74wx/C4/FgeXkZtVpNEv9arYaDgwM0m01Uq1U0Gg3UajXU63W0Wi0BF5RM85qSUaTkj9ft9OnT2Nvbw+7urjQmN845z1c1cVEZSu6LAIxsDvtFqtfMuMCh3h8EmCqAc7lc2N7eFoMdtT6PoJELFMCD/muHh4fSvJv2/jRHIePpcDikSTdNZ7h/stds2E3ZpaZp8Pv9woAReHOfXDDx+XwinWT7knq9Lv05HQ6HGCuROSOIVL//PA6P3e12x0A6GbZarSaAna0pOB98pvLc2MszFovJAlKz2RQ301arZfWB+2WF3W4xcFZYYYUVVjw6PvjgA3Q6HTz33HNwu924f/8+SqWSNJDlSqzP50M2m4WmaSiXy4hEIiK9aTab2NvbAwCcOHECiURC+sqRWYvH4/jss8+wt7eHixcviskAHS4LhQLcbrcktc1mE59//jlCoRAuXLgAh8OBg4MDNBoNzM7OYm5uDl6vVxizDz74AJqmiRsbpUdq02eu7k+SwZGdYHsEAGJu0Ol0cOrUKdy8eVNqkVTJIvdxHIhTQwVqx23DMNbUqQkuz5FJs9F104wB4e/GbbhaTyDBflYEbayPMmNGVLbTyL6pUrpQKISVlRVcvnwZV65cwY0bN0zBlTpeVV5nNnaza2qcAzOwN2k+1G2MjNskhs64D+N27XYbH330EUKhEJ577jmxko/FYmK44XK5RL7M5D0ajSIYDGJ3dxeBQACnT58WcPIbv/Eb4ow4Nzcnv7PBNx0ta7UaGo0Gcrkc2u02ut2ugAUyTgDEJIUsH9lBLoq0Wi3s7u6OgSaG0czECNrUv3mfELyp2xjn0MhyEoTwuvCej0QiKJfLqNVqsvBAds0IHil1HA6HqFQqqNVqCIVCIhNUgSJBFr8LlJfyGhD00fGR0muy1Gy0zmbYdMccjUYy9+yr5vf7UavVkM1mEQ6HxWhF13V5LpGVJRjkuMgQDodDab1AIxXWq7LtAUF5q9USx0kAcm5coOO1IFgn+Gu1WmLuMjU1NdaG5dcdXyoAZ9XAWWGFFVZY8TjR6XTw9NNPQ9d1fPzxx7LSzEbbwWAQ4XAYxWJRWILp6Wmpe9va2kK1WkU4HMbq6irsdjs2NjYwGo0Qj8cxPT2NwWCAv/iLv0C73cb8/Dw2NzehaRpSqRTsdvtYPyZaXNOlcnFxEeVyGdlsVhocnz17FsPhUBws33zzTal7AYBkMolGowG32y2Jvyp7NAsmK7VaTWp9aDeu6zrS6TTeeOMNBAIBXLt2DbVaDcADqaOaxE8CcWbyv0mmJcdJM80YKDXJVfdrxhBNAkXcN2tbAIjDntp3jmObdI78qTJyTPiZSJZKJfzX//pfhSky1o8Zf1fn61HgzYy9U7dVwapxf2bnY2RPj2MEjcdXr2Oz2US5XMann36KwWCA5eVlNJtNaJqGubk5YbbL5TLi8biwvGfOnBFgcfHiRSwuLuLKlSv45je/KfVo+XweU1NTuHv3Lr73ve+hUqlgMBhIO4JCoYBSqSQGPJxLMkwEGmRj3G63sNi8Ph6PB8PhEDs7O2PMkLpooJqJqOyQurjBn/yceg3N7lmOk4swdrtdJL5q4/BYLIZr166h0+kIwOP4eJ58nS6zdNadmZmRZx/D4/Gg1WqJRJySSzp50im02WwKCCeQo8Mnz5fsHNsWELwCkHpegqd+v4/Z2Vl4vV6Rs9MFlmYzfN7RYIQNt+12O7rdrswxXTb5vW632wiFQjL3nDtKMFutloA3h8MhAJILWbxH+/0+2u02ZmZmZNHsScWXCsA9qIF7co31rLDCCius+G8/vvKVr2B9fR3pdFr+015cXBRZTzAYFNt/yqncbjfK5TJyuRycTidWVlYwNTWFVquFO3fuIBgMitHJwcEBPv30UwQCASwsLGAwGCAYDCISiYgsKBQKSa1drVbD/v4+otEoXC4XSqUSDg8PoWkazp8/j1QqJfKfTCaDDz/8UOo5pqenkUwmce/ePUku6ejHhtLHyQeBBwYINB0goKxWq7h79y5eeOEFZDIZaU+g1qsAD5s2qCBH7dlmlvg/Ksy2N2PajGwFt1MBjJHVmATihsOhSPbIwpi1CzDuw8iUqbLWVqs15uRpHJfZOZqBOfX3SbLGSQynCqyMIO248zI7N+M4Jr2m67qYlHz++efCUGuaJrJhh8OBbrcrUrann34aTz/9tLTWmJ6eFuOe9fV1TE9P4/PPPxeDknfffRf3798XAF4oFKS/I3sYqvJFfp9Z/6XruoA3ziPB93PPPYef/vSnY06GgHnzbXUBgd8HTdPGWhSocmB18UM1COJn1OtEkEVgxm0/+eQTlEqlsToxhlojB0As8m02GxKJhEit2+22mDaREeW9zn3QqdblcolUslqtigur2+0WYOjxeNBoNGTxKJPJCHgiuByNRmMSSrYUoLEI+61VKhUxO2HPOsoYVUMTXlPeb2zczTo4fgfV9gLxeFxAJ88/Ho8L2xYIBKSukIsJi4uLCAQCKBaLFgP3ywqLgbPCCiussOJx4urVq8KAOZ1OzMzMwOv1IhQKCWgBgPn5eUk49vf3xcJ6dnZW2gncvn0bCwsLWFpaQq1Ww+3bt5HJZHDu3Dn4fD7s7+8jkUgIQ0ZzgEQiAV3Xsb29Lf3cOp2O1HlMT0/jxIkTImdiD63PPvsMxWIRlUoFZ86cQTAYxOHhIUKhEObm5kQ6VKlUZCWfAGSSq6Cu62i32+L4xlX7fr+Pu3fvIpFI4Omnn0ar1RIXOa5Oq2yCmpAC5kDCjLVTgZcZ2JvkiKh+Tv1HoGJ0sXycIIjrdrvwer1iYMA6OVUiqQJBVT6pnqsqa+OYVFbtUUzYo8KMmXscaePPcwwzJs7s/UmvZTIZnD9/HpqmYX9/H6FQSBiSaDSKdruNZDKJ0ejIiXJ6ehrhcFiSd9r+b21tIZlM4v79+/j000/R7Xaxvr6Ow8NDFAoF1Go1+ddsNkUS6fF4BDyxjUGz2USpVBqTTfK+pbHFpUuXUKlUkE6nEY/HpZ5qEqvN+4/MGc9fNeAhMOS9rmmasIGcE3UBguOx2+1SP0swWSqVsLe3Jy6dZAsBCCDlAg7lipSIsw8kgQmfT16vV4AqWTQePxKJCOvVarXgdruFlaOTKs2hyCASHOn6A/dRoyRT0zSpSTw8PJR2ANVqFZqmwefzjbWZoNKAn+e5suZS046MZ1h3R5DK9waDgbC93W4XgUBAAB8BqdPpRLFYFEfP4XCI5eVlAcE0cHlS8aUCcJYLpRVWWGGFFY8T3W4Xfr8fuq4jkUggGAxidnYWuVxObLIdDgfcbjcAIJ1OYzAYYGlpCTMzMxgOh9jf30exWMTMzAwWFxextbWFnZ0dDAYDzM3NAQA2NzcxNzeHYDCIdDoN4KgdAK22Dw8PEY1GBZwxIYpEIpienhZXvJWVFZRKJVy5cgXr6+vo9/u4dOkSyuUyKpUKZmdnUalUpAifCSubBbN31iQGB3ggKWLCy15R7XYbH3/8Md544w0BcZQAUjplZLrUMHObNNYJMSbJAI1AUAWO3NbMaMPIdqn7nVT7xdfZF4vJGhNfskWqgYlqWqL+0zRtzMzEZrPB6/XCbrcjmUxie3v7ofNWE191XsyumTEmAXT1HB/Fghrn6VHHN7KaZsejA6vH40GhUBATjUgkInWnuq5L3Wm/30e1WkU6nRbb/729PWFDPv/8c6k/rdfrqFarqFQqqFQq6HQ6aDab0PUHTa7VZtd0OaTNPlkr3o98LRQKIZVK4Y/+6I+kRo9MmArCVWBmvIeM82RkptV/lOOpdZU8B9aDUeYHHIG6YrGIWq0mUkmeE10WCVZUN026zRLMDgYD6asWj8ehaZoYlQyHQ3i9XpkXMplk61utFpLJpPStTCQS0srE5/NJ/0wCVC4KcT7V/mt+vx/ZbFYcKXlN+v0+Go0GQqEQRqORNOkGjp7jbOHC/bG+kaYmBHWdTkeUBWTZ2u22nB+BLp15a7Wa3BNqnTJr58jCPan4UgE4caG0AJwVVlhhhRXHBFd7A4EA4vE4Go0GfvKTn0DXj9oJsNltt9tFsViErutYXV3F/Pw8Go2GtAhYXFxEKBTCjRs3cHBwgPn5eXFss9lsOHv2LEqlEjY3N+H1ejE7OwtN05DJZNDpdJBIJOD3+8dqpQgaWR9y/vx5lEolvPvuu9jb24PX68XJkyexv7+PqakprK6uolgswuPx4PTp07h169ZDEkcmmkYWRf3JBJHNc2l6YLMdtRX4yU9+gtdffx2XLl3CJ598Ij2XdF0XxsHIdqkNh1XwxlBrgvg5owMlGY1JBiLG8zQyepOkgJNklMbxUWJFMwYaG6jGJpwHlZ1Tx69K6pxOJ77+9a9jY2PjIRDKHmevvPIKfvrTnyKfz5uO3YxZM8ohjUDLTI55HANovE+MzKIZiJsU/X4fu7u7eO6559BqtRAOhzEcDpFMJnHixAnk83npRVYqlXBwcACv14tbt26hVqvh6tWrAt4ODw+xubmJXC6H6elpZDIZbG1toVgsSh0UZXy8bwgOVav5+fl5AJCm0mSBNO2oFu7555/HW2+9hWaziXg8LiCIEjyVZSZQ5zbHAV4ygbwfvF6vgAJub6xR7Pf7UsfGv/P5PPL5vNR8sb0Jz1utneNCi91uF9khrfyTyaTUs5GJVxlLgkfuj3OlaUfmScViUUxDeA01TZN2D+rCB8fDxug8DsEoTWUajQYCgYA8k3hdCBy5PxoZkTlzu92ijCDYIjBOJpOoVqtwu90oFovodDoIBoMyF5S2NxoNqdHU9aOecslkUuoBKeNU5aNPIr5cAO5nLpSDoVUDZ4UVVlhhxeRgM1un04lbt26h0WggkUiIO2QkEpHeSj6fD4uLi5iensbBwQFu3bolzYOHwyHu3buHWq2G8+fPS6+jaDSKUCiEQqEg8sdYLAaHw4F79+4hHA4jkUjIKjPZt9FoJAnQwsIC4vE47t69i1u3bmF7e1sSnO3tbZw8eRKhUEj6yUUiEdRqNcRiMWEhmPyYOaypQEet2+l2uyKBstlsMheZTAZXr17FN7/5TQwGA3zyySciU2M9jgq0VNZJlRwak1l1GzWMIO44OaSa8BoT60kgTgVwxqTbCFhoVtHr9aROy2gXT9BmBFDqeS8tLQlALxaLD0ntBoMBFhYWsLCwYGps8TihHpPg2giejaDVCDaP23YSQDwOxOn6kSEO3SXr9bqAnsuXL6NSqeD9999HpVLBzs4O6vW6tAGgAQaNLA4ODgSs1et1sZ5XXVJZTzUajdBsNtFoNIQl5cLEwsICDg4OpNaMAKPX6+H111/H/fv3sb+/D5/Ph0AgIFK8fr8v56qyyCobB4ybmZAd4/i4YMN9qg6QqgEO/ybrx2g2m0in09B1HdFoFJ1OR0AIWTX2siP7rtZw8pp7PJ4xd0YuVLBHmyor5We73S5GoxHC4bD0RKNBjwrKCBg5frYhUEGa3+/HcDhEPp+X5wxBOJUDbM7ORuuca6/XKy0Fer2eMIx01ux0OsLw8XWv1yv7IjtHiSiZ2Xa7LfJMu92OeDwOr9crQM/r9UpPQdX85dcdXyoAZ9esGjgrrLDCCiseHQRT6+vraLVaiMViCAaDYy0CarWaSBkdDgdu3LiBfD6PaDSKubk5dDodFAoF6LqOEydOiJV2KpWCruvIZrPodrsIBoNS57O3tyf20y6XC81mE3a7XUBXq9XC9PQ0FhcXcXh4iLfeegu3b99Gu93G8vKyMBOXLl2SRHp5eRntdnssmapWqxgMBpKIGA0U1FosldkimKCRAfvDMYHc2NhAMpnE888/j3a7jZs3b6LZbIrr23H1WEZJpGqwoCanZszYpP2oUkqV9TuOVVNjkvTP7HMqSGNSbHSRVKVv6rh1Xcf8/Dxef/11rK2t4S//8i/F0VOVXLKJcD6fR7fbfWgeft44TgZpBrgmsZXqvh4XxBm3q1Qq+PTTT/Hiiy8ilUrJd6BYLGJtbU3kwARllKeRbQGOgEs+n0elUoHH4xGGhVJDgjGyTr1eT9wDCWjcbjf8fj92d3elHo6M0XA4xCuvvIKNjQ1cuXIFdrtdXBcBjMmSgfEaNeN5qwBcrZfjd4lSv1qtNnbPc874vWOdGgABONlsVnq2sR6MY6Shh+pYabPZ4PP5MDc3J0CEzxyauRDIcGwejwd+v3/sXueCzezsLDKZDHT9yHyk3+8LyCXjyXq4ZrOJZrMpknUen+/V63Xpvak6RNpsNmG6OCYasESj0bHvGq9TuVyW2jeaqHBRLZlMSpN3yphZ68rnCGvkdF0X0ymCNwDS247zyWfuk4gvFYCz2TTYNKsGzgorrLDCiuPD7XZjf38fDocD0WgUS0tLCIVC0HUd6+vrcLvdmJ2dxcrKCtLpNO7cuYN2u40LFy7A5XIhl8uh3+/D6XQiEAhgb29P+huxmJ+1bP1+H9vb2+j1elhcXJSalnw+D4/HgxMnTiCbzSKbzeLkyZOYmppCs9nE1atXcfv2bcRiMaRSKezt7WFxcRGnT5/G3bt3EQgEsLq6KsDJ7XbD6/Uim82Ky1y5XIau6yI1UlfggfEG2cCDhH00GomU0mazIRwOS1L88ccfI5FI4Gtf+xqazSbu378/toqt9sUyNrNmGJkLI0OkJv/q+8dJKVW5nAquJoFKs2MZt+HnzVgpMjrHSQfVz7BHYDgcRjQaFUCtzrndbsfMzMyYG6IKtiYxcsbX1XN8FFM2CcQar9ujpIHGcRhfHwwGWF9fx/nz5/H666/j/Pnz2N3dxdbWFoLBIBKJBM6ePYtoNIrNzU2sr68LOGAD6VKpJIBFBSa8Pwiu2UqA14f9zAhshsMhQqGQjGFjYwOtVgu/8zu/g9FohKtXr6Lf7yMcDkvNGHDkxEhAYzxnyg1VMK+yaPxesE7N7/ebSif5j46Kaj3aaHTU55Gybr5HYyReE5X5IrCjAclwOMTU1JQw9wRArCWjlJRuk8CR5JxAOB6Po1KpiLSyXq/D4/EglUqhXq/LwgMdXFVAGQ6HkU6nRZpdKpWQTCbh8XgEsHOuKGnk+FjnRwMayio17chNslwuw+PxoFqtClvn8/lQKpWkJo61zzQq0jRNQCHBq81mg9/vRyQSgd/vl9e4CEGnzHQ6LWz6k4gvFYADjurgLAbOCiussMKK4+KLL77AcDjE0tISIpEIbDYb9vb2pMn2qVOnMD09jdu3b2Nvbw82mw0vvPACut0u0uk0ut0uZmdn0W63USgUEI/H4fP5kMvlcPv2bQQCAZw8eRLlclnqMU6ePCmMV71eRyKRQCgUwt7eHmq1Gp5//nnYbDbU63XcunULh4eHmJubE7OLixcvwuVy4f3338fi4iJWV1elqa3H40Gz2cTu7i7i8Timpqawvr6O0WiEUCgkTX7pAKc6UhrlgsCDhFt1k+M8tdttvP3223jjjTfw8ssvo9frYWdn56GeSCrQMpNIAuMgwQzIGT+nSimNjJxRbmmUMKr7OI5pUrfjT7OxqwDJ7HPG/TcaDfzxH//xWH2SMYbDId577z0xtTA6ck6SghpB23Hnapy3SWyaGQNpPGczcDjpGEz2P/74Y/ztv/23sbKyAqfTiR/96Ee4e/cuzpw5g8XFRdTrdYTDYTz99NPo9XrY3d2VptOsYVMNOngvU36sXisultDBkaDi7Nmz+P3f/300m038q3/1r+B2u/Hqq6/C4XDgT/7kT8Tcgv0A+R3w+XzynQDG5bqqq6hx8UBt3E1mSmVcjQY4HDMbj5OdKpfLyGQyYm7Efeu6LsCJkUwmRXIYi8VkoScYDMo5cA7pXjkYDOD3+6VxNlmwXC6H0WiEaDQ6ZsufyWQEmBHskb0jO0rwTFdHTdPQarXQ7/cRi8WkGTe/txwTZZHhcHiMtaMMlvNut9uxs7Mj15b2/i6XS2SaNttRC4FoNCqfZ/N3Ho9OlHSXJIAEjvpCUinAumiyjk8qvnQAzm7TLAbOCiussMKKY4MOeKlUCtFoFLu7u6jVapidnRUW4Pr169jZ2cHy8jKWlpZQLpeRz+dRr9exsLCARqOBUqmEeDyOUCgkrNzS0hJ6vR7u3r0Ll8uFUCiE5eVldLtdVKtVBINBrK6uYjgc4v79+/B4PPjGN76BSqWCjY0NlMtlFAoFJBIJRKNR9Ho9PPvss2LC8Prrr4sEjCvKAFAul3Hy5EkMh0Ps7u6OtUVgAssifOCBTMnYVFhNyFlHwhVxJkC1Wg0/+MEP8Hf+zt/BK6+8gjfffFPaC/AYqkRTrUVTE2wmvWQIVXCmggAV7KggDni45xyPbQQ1k6SZ6jjMwI7RYdNMHvmo4LZGiaXZcdrt9hiwNmPPzFg5o8mIcftJYFb9fdI8Gfc7CdyZbWvc7u7du/jX//pfY2lpCSsrK0ilUrh+/To6nQ5Onz6NCxcuSB8xyoppbKK2B+B+KS8kMFLbNfC+JXOzvLwMm82Gb33rWwCAf/fv/h1KpRL+4A/+AJlMBn/0R3+EWq0mZhh0nuS9TFBjXEBQgRzBhXptjKYl4XAYpVIJwAP3Q27L86Ccj2x+o9EQV051gYL7J4OkjgE4YsLImLFVQL/fh9/vF8dNsmsejwfRaFRqx6amplAqldDv92UhiOxgpVKRHpntdhvtdltMVNR2KGzSTRkir1s4HJbvNq8hz5dz4nQ6pd0BAJG8qsC3Xq+LDJS94WhUQtmspmnShJ1mJ/V6XVhcLi4Eg0HE43E5XrvdFmDHBQIqHJxOpzihPon40gE4h03DYGgBOCussMIKKybHiRMnEI1GEQwGsbW1heFwiGeeeQazs7Podrt4//33sbu7i2eeeQbLy8u4f/++WFwvLCxA14+s0Wm1v7+/D6fTienpaWmATXnO7Ows/H4/yuWy9JwrlUq4fv06Tp48iRdffBHXrl3DW2+9BZfLheXlZayurqLT6SASiUDXdezu7iIQCGBlZQV2ux3Xr1+H3W7H7OwsAAhroTZDDoVCktww+WQtEFedjcDIjMFptVoCsFivx+O8+eab+Pa3v4033ngDb7/9Nvb398dqStRaNxWYGY+rAoxJbJ0aqlMlEzC1xo8yMpURmdRS4G/CWJmBMHUbs+MYf5oBSRXoGYGUCiRVAGc0jVHHaLbvSUydWUwCc5POyxhm8zQcDvHOO+/gX/yLf4G///f/Pp577jkxG9nb24PT6ZQG9/fv35d7lQm0KhPsdruSbNvtdkxPT4sRBcdEEBcOhxEKhbC/v4/vfve72NvbQzQaxT/7Z/8MH330EX784x9LUu/3+xEIBARQqDb9KmADMLZQwXvOOB/qWGh3ry5mqDJByjTpZksmK5vNCpPObdkKwMzwZDAYCAj1eDyo1WrS+5JAlwALgNT68RiRSASZTAb1eh3D4RDZbBYARKbN4/T7fZFyshaW80PTEhqI0BjF7XbLeTWbTXQ6HYRCITEkYQsCSi91XReGTTVVaTabCAQCYthEWTt/ct5ZK0jpbL1eFwMTzj1bp/CeHY1GIpEsl8sy11Qi8LyfVHzpAJzdrmH4iAe/FVZYYYUV/8uO6elplEol7O/vYzAYYHFxEbFYDI1GQ+pLXn75ZaRSKWxsbGB/f19Wp3u9Hur1OqLRKPr9Pg4PD+H3+6WmpdvtikkKEweCv/Pnz0vz4XPnzuHChQv44IMP8Mknn8But+P8+fOYmprCaDRCPB5Hp9PB+vo6kskkFhYW0O/3pYZkampKrPwpt+v1etICwO/3IxqNQtM0cf1TE73jGBZgXJrIwv1SqSQtGDqdDg4ODvDDH/4Q3/nOd/DGG2/gz//8z4WJVCVjTJJUJsIojeS41CSNoMXI5qkJtBo8R25HJsJMrmjGbKm/mzGSZvMzSUL4qPk1O7bZ3+rrxs+r15HAT5XvTTqnSSBVBYaT3jees1moINPsnLvdLn7wgx9gNBrh29/+Ni5duoTd3V1MTU2h0+ng6tWrqNVqKJVKyOVyODw8FCaYrBjrvNT+ayrA4TYEeKVSCdvb22K3/+qrr+Ly5ct488038dFHH4ntvc/nQyQSkTo7ddGBAEllehm8R43upyqIiEQiaLVakvir25LV6XQ60k6kWq2i0+mgWCwKY6fKMdXvja7rYtJClqxUKqFarSIcDssYKStkLZ6u6wiHw/D7/SJxDIVCuHfvnoyb/dU4XjpJElT7/X5omiZOt2rjcYfDgZWVFXS7XWHnstms1KlFIhGUy2UB6TQhIVtJObGxLyJlrrVaTZp8ezwetFqtMeaUbpmNRgPhcBj5fF4W19gEnAtTrLmk9NNut4+1XHC73eKi+uqrr2JpaenY78GvMr50AM5h06waOCussMIKK46Nu3fvolKpYGFhAYuLiwCO+ktRtrS8vAwA+Oyzz5DL5TA/P4/BYIB6vS5Olfl8Hg6HA3Nzc4hEIpJg+Xw+hEIhSQS8Xi+SySTC4TDK5TIODg5w4cIFLC4u4r333sM777wDp9OJ1157bawnXKlUQj6fx6lTpxCJRLC/v49ms4loNAq73Y58Po9+v49EIiFF9bOzsygUCpJkkH1jQqeyVMeZg6hMDwBpqWC321EoFABA6mb29/fx1ltv4Y033sBv//Zv491338XW1pYkc6xPUp0wVRCnStK42s4xAObNqVXWTWWrjIYmanLMffFzZmDlOJZKfV/9W33tOGAzCQhO2q/xc496TQVnk0CgMcxYOrOfZmOeBDLV34/7fKPRwDvvvAOHw4FyuYzV1VWk02kkEgl8/etfxzvvvIM7d+4gl8uhWq0+VA9I2SAlcgQwNDLhQkC32xXQZLfbsbCwgL/7d/8ubt++jX//7/89dnZ25F7h4gSBgyrDVI9PeR+NbFQ7eVXeyfuPLontdlsawKsSS7UujscsFovo9XqoVqsoFArCtJFh4neH3zFVLupyuVCpVKDrOkKhkDgvdjodATdsjM0WAmyE7vF4sLu7K822Ca44TuABA97pdOByueDxeIS9BB4YupAV5bOx3++j2Wyi3W5LP7VOpyOtUwCg1WoBgIAxPrdKpRI8Ho9IPoPBIPL5PEqlEoLBoLhc0g2TYB+ANCuvVquoVqtjxjSUy5Jh47Vlo/J6vS61cWT7KFOfmpp66Dvw64ovHYCzauCssMIKK6x4VORyOaytreH8+fMYDof46KOP0Gq1sLCwIMYilUoFwWBQ6kZarZaYhZTLZbjdbpw8eRI+nw+Hh4fidhaJRAQoxGIxzM3NodlsolAoYDAY4PLlywgGg/jjP/5jXLlyBefOncOLL74Iu92OVquFWq2Gw8NDuFwurK2tYTAY4LPPPhNDk16vh3a7Ldbb1WoVKysriMVi2NnZgc/nk/5vfr9fkly32y1GByrgYAJIlgwwl8j1+32pgaHLpdvtRq/Xw71792Cz2fCd73wHv/mbv4kf/OAH2N/fF9MJYx2ZemwjO8bxqMfn70ZmDjA3SOG2anNlBsHkJJZMZU/UueCxzJgts5gkk5wUxzFvx712nBxT3eZxXpu0jXF7dY4mgc9Hnbuu6yiVSvjBD34g8jeXy4V79+7B7XZjbm4O8XgcP/3pT8cYZvXedDgcWFpagsvlQiwWQywWw4cffohsNiuMTTgcFinzd77zHcTjcfzn//yfpUm4ui/2b+T9owIklR1WWWLjfa3ejwRjBE+s7VJloASOZNL8fr+AnHq9jsPDw7G6N1UiqUo6uc/RaIRqtSr1bQR+XJwiuCHAIbtkt9vRbreRy+UAHIGwSqWCQCAg0kKv1yvmHmQr2TB7MBjA6/XC6/WKxDASiaBSqYjxCduuDIdD6fuWz+dlP8CD/nmNRgOhUAhOp1N6s7ENQCgUQqlUkutKcxMGmT3K2VlTSbdOPhc8Hg/C4bDMCRcAuKhAMGmzHblUptNpBAIBzM3NIZvN4nvf+57UU/6640sH4CwXSiussMIKKx4VFy5cwNmzZ5HNZpHL5aDrOi5cuDDWzHdxcREulwuHh4ew2WwC5IbDIebn5xGNRsUavdPpYGZmRiyubTYbPB4P4vE4crkc8vk8wuEwzpw5g9FohP/yX/4Lbt68id/4jd/A+fPnoWka8vm8rBAnk0mkUimRX0ajUSnUB44SFEqSVlZWUKvVcPfuXQDA3NycgL1bt24J+8DVZSaVAGQl38g8MYyAgkYsTODZ5HYwGODevXt488038frrr+ONN97Aj370I2xsbACAJG1qssmE1Qgazeq/jmOvjGDPKK80OgQaE95J567GJMA0CQSajZOvHSe5nLSvRwGwR4HD44496f1JYXZc4+8/zz6r1Sreeust6LqO3/zN34Smabh16xbK5TK8Xi9isRiee+45bGxsIJPJoNVqCXDx+/0Ih8NwuVyycOJ0OpFKpSSh/9rXvgaPx4NAIIBbt27h2rVrODg4eKheMhQKIRQKjTXNNjJOqjnIJNbV7H5kvakRCAIP+r1R0sjva7PZRDabRbPZHAN8rBGjtI/3MkEgTYs4VrVGkG6Q/A40m00BxmTH5ubmMBwOUa1WxSmXjCY/2+l0RCbebDYBQJQJBIzAEavX6/UQCARQr9fRbDbhdruljowAmvsGMMZUAkfSVz4r2LaF6ge246DZCOedDcop/abBiXrN2KTb4/GIpJKmUGwmzjo4r9eLSqUCh8OBQCAgi3GUkj6J+NIBOIuBs8IKK6yw4lFx4sQJbGxsoN1uQ9d1nD17Vmoput2uSGOKxaLIc3K5HBwOB2KxGPx+P0qlElqtFjqdDgKBAHq9HsrlMnw+H/x+P5LJJLLZLEajERYWFjA7O4t79+7hL/7iL+BwOPC3/tbfEovrzc1NWfm+dOkSQqEQ8vk8isUiZmdn0Wq1kMvlJIGh1ff09DT29/fx/vvvY21tDc899xyazSYGgwGKxSIWFxdRqVQk4eXqtq7rwgYAGLPlZqgNsdVaKzpTcn9Mvnq9Hj777DP0ej1861vfwssvv4zRaITd3V20220Biyo7oR6TSRrjOIZsknRSBRcqkFNBnPGYx0kmJ4WaCBpbHxwH8Izv/TzHfBxAeNxYzfYzib07jgk87j0zMKm+N2ms7XYbf/Znf4aDgwP8w3/4D/HCCy/g5s2buH37Nm7evCmA55lnnsHW1pbUgf7Gb/wGXnzxRWxvb2NjYwOFQkHkjHNzc1Lrtbu7i08++QSFQkGs4VUwz6bNvJ/5j/viQoPKcqkSXWNNKZk71pjREp+v83cyPwQntPJXG5ar310eo9lsyr7pHkmGnSwZe7nxPFjTBUAAVafTQTKZxMHBAYrFIiKRCKampmS8bD8wGAxQq9VEdunxeERCqus6fD4fZmZmUK/XxUSpVCpJI+x6vY52uy0AmbLJ0WiEcDg8JpekwQhZMwDiZKkaMwWDQXGI5PXs9XrCuJKtLRaLMh+cS5fLhUQiIVJJPp+oamD7Bl4fGlb5fD5hR4PBoIzvScSXDsBZNXBWWGGFFVY8Kr744gsMBgM4HA7MzMwgk8lIk+VkMik1G0yI9vf3EQqFkEqlcHBwgHq9Lrb+CwsLyOVysm0oFILf78f6+jp0Xcfq6ioWFhbw13/917hy5Qqmp6dx7tw5WSFmQX80GsW5c+fg8/mwvb2NWq2G1dVVdLtd9Ho9JJNJASqUFu3v76Ner+O1117D/Pw8bt26BQAi32StidfrFTdJulEysWMST8mh0YTByCjoui4SKiavyWQSDocDvV4Pd+7cgcPhwKuvvopvf/vbeO+993Dz5k0AkATKKJtkYmpmbmIEYgyVweD4zVoQGH/y2EZQZzae4xirSazdJEB0nDTxceSVk7Y9Dljx/UlSyOM+Zwx1Xiexfo8zhuPO99q1a7h//z6Wlpbwne98B//oH/0j/PjHP0Y6nYau67h8+TIcDocAMbYfeP7553Hjxg1h7ChZPjw8xP7+PqrVqiTl6hhtNpuY/bBelEG2id8VdcxqzaYKrtT7z3ivEQyq9zRNM7h/9kSjaYlqCsL9EzQZTYJarZY0yFbr9si8qc27CdaKxaIwaPF4HMFgUNhKGpR0u10BOPzeJxIJYQr5HKlUKgK+arWauHjW63UAkNo7yjqDwaDU4GnakQFKPp/HzMyMyDcJgt1ut/SWC4fDYi5C8xIAwgoSBAMQtQDrIjn+6elpAWfNZlMYWJvtqM0AQabX6xWnS9a/sQ6a9YJPKr50AO6IgbNcKK2wwgorrJgcg8EAq6ursNvt2NvbQ6FQQCwWg8/nw+bmJgKBgBTnt1otTE1NYX5+XoCez+dDKpVCJBLB9vY2+v0+Tp8+Lb2N7ty5g2AwiLNnz8Jms+EP//APsb29jeeee07ATr/fR6VSwXA4RDwex9LSEprNJn7605/C6XRibW1NannC4bAwZuFwGPV6HcViEbFYDKdPn4amafjhD3+IXq+HtbU1kX5qmibn6XA4xGFTTTwJ2piUqyyVangCjCfirVZrDPzFYjHp0XTr1i0MBgP8zu/8Dt544w3YbLYxOacZ2wZAJGEqaDSTF/J1JmpmSbMRFBKgqsk4WRQ1zICNCjqMgFZ97zg55eOAwkfFcdsbWcRJIFY9p583jmMT1TEYfzfGcZLQRqOBmzdv4tatW0ilUnjqqaewvLyMdruNzz//HA6HA88//zyKxSI8Hg9sNhs++eQTNJtNHBwcIJPJyKIHa+eM14pAIhAICANEYKUyb6ockJ9XFwpUWa6u62MsnXr/qcwbJZqU7bH2azQaoVgsIp/PI5fLiXTS7XYLAFRBIj9LCSRBEK37OV673S7unpFIBMARg5fL5aTuFoDU+xLo0BFT046kql6vV2rmCKBZL0gbfzJ+BESZTEbmgzV5bA/gcrkEPLKWlj3cKE/k95afBR6AXjpIttttkTrScMXlcgnDyGvAe2B2dlbMbXq9njQar9VqiEQioibg+JxOJ6LRqNRpUuJJY5onFV9KAGf1gbPCCiussOK4OHPmDNrtNjY3N9Hr9TAzMyM1GV6vF7Ozs6jVaiKZDIfD2NvbQ7PZRCwWkwJ8Nq+emZmR/k7ZbBazs7M4d+4cDg4O8Nd//ddot9t4+eWXRXbExMbn80mLgC+++ALNZhOhUEgSKXXVvlKpIBaLCQO2uLgo7peZTAbxeBwLCwsYjUbC/vFcer0e0um0mBUQ/KimJkxACYJUGaIZo6BpmkhQ+X4qlZIEiHLR119/Hd/4xjfg8/nw+eefS2JlTO7VejizUAGnWhNkZAnNWgeo+zUCMPVvYz2g8fjqe49ioB6nFswMPBqB0XGg8Lh9qdscB9aO28/jgLDjjmOcs+P2w/tN/ZnNZpHJZMakjbTYp9Mhr4Xa00yV1annod43fr8fsVhsrF+YKp9Um9Gr56kuPKigXm3gzc+pMk31PbLV/Ey320WlUkGhUBDwprqpqlJOtScjASaBhM/nkzpeyhz9fj9arRYCgYC4XTabTbHgJ0ALBoNwOBzS9401X7T7Z+NvjocGSYPBQPqlqedHAErwRdCkaZo4PPK60iAqHo8LW8pFJ9Yk67ouzKCmHdW5cTuCKj4zKXfnNSDoW1xcFCMqFbyxho6v+Xw+ZLNZDIdDWTBji4NarYZ4PD5W//ck4ksH4Jx2m1UDZ4UVVlhhxbHR7XZRKBSkFqJSqSCXy4mcand3F06nE8FgEO12G3fu3JF+cWtra6jVaigUCggEAlhaWhLXtHw+j5WVFczNzeHq1atYX19HOBzG888/L+CJfZ6Y/Pn9fty/fx+lUgnRaFRWoSmnYlIWi8UkUaGkh72ynE4nZmdnUSqVcP/+fUQiEUmaYrEYisWitBZgDQdX7QHzBF9NQo2JK4ONhtUEna5wvV4PN2/eRLPZxG/91m/h61//OkKhEK5evYpcLier42aAxQyYqWFkx8ycKNVWAtwnE3Ozfao1TcaE/zgppBHkmG378wCoxwFvxrkwAyrqcSeN2QxcmZ2P2fwbmTYCYHUbs+OpYbTcZxjrGykvpNW72b1jDLN5JQMWDAYRjUbHGCOVgZsErNXgGFXGjtuq7qcEjLz/NE0ThosgjM+OXC6HRqMhUmPjd0/X9bEG1wREAMaeCayJ4zOADpMEMrVaDd1uV4DJ7Owspqen0el00G630Wg0pL0AgZTX60W73RbwRqkia8tYz8vxExjT7ZHyRAImsp4AhL3b3d2Fw+HA9PQ0dF2XGjOb7agNCkEf5ZQAEI1G0el0BHCzh5tqDkO3SvahA46eu6oskw6XNCmpVquYnp6WhS72+eR1YB3fk4pfCMBpmrYNoA5gCGCg6/pXNE2LAfifASwD2Abwv9Z1vfyLDfPxw27VwFlhhRVWWPGI2NjYQDweRzwex507d9Dv9xGLxRAKhXB4eAifz4doNIpmsymW/mfOnMH09DTu3r2LdDqNmZkZLC4uYjQaYWdnB4PBAE8//TTcbjd+9KMfYTAY4OTJk7Kizh5vTEKmp6eRyWSwv78PTdNw5swZVCoVaUjLhGw0GklxfavVgt/vh8/nQ7VaRa/Xw9TUlIw7m80iGAzKqnckEkE2mxX5FPsXEUQyCGpo+c9kExg3MAHGpYlMMFut1lhdUDKZFBOC+/fvo9/v4zd/8zdx+fJlhMNhvPPOOzg4OBBrdQAPgTYew4zxYDDJNQMOZHKMLQNUwGd0GTQ7hhHsqPufxMJNes94Hsb9mW3z88RxgNwIes22M4LBSdswMee1A8z79Zn9fdy4HjcexeqZSTnJ/IRCIWGb1Hkwsm9m52wM1U2SQVMSlTGk+yMBGBtdA0fNx/P5PPL5/JhbIsGeyr7pui5giD3Y2HqAdWgEd36/H51OR+q+YrGYfG4wGKBUKiEWi2FhYQHBYBDlchn9fh+9Xg9er3fMFZKsHaWNBNGapo0xcASMbJLt8Xik1q3T6YjDYzgclho7OmBubW3Js21hYQH1eh3lchkOhwOzs7Mol8tSA9jv97GwsIBarYZGo4FyuSzzq8pTgaNnWzKZlPYq7JXH98hMZrNZeL1e5HI5tFotJBIJMU9hawdN0+Dz+VCpVMacM59E/DIYuG/oul5Q/v4fAPxQ1/X/SdO0/+Fnf/+ffwnHeaxwWC6UVlhhhRVWPCII3n74wx+iUCjgxRdfRCqVwv3790UqU6/XUSqV4PP5cObMGQyHQ7z//vsoFAo4c+YMFhYWkM/ncXh4iJmZGZw+fRr5fB5Xr17F8vIyZmdnkcvlEAgEUK1WEQwGkclk0O/3MT8/j3K5jEwmg6WlJfj9fvT7fTES0DRNeic5nU6plSOzxpqTRCIBAEin0wL++BmXy4WtrS3ouo7p6WkBj6oEjYkiEzKV/VKlW0ZAQrZFBSuspWGClUqlhDHc3d3Fn/7pn+Jb3/oWzp07h1AohB//+MfY2NiQ1gyqKYPKwBjDaGqiJrkqY6EybyrrpsrZ1J/q/tTzMrJsRsD1uEyZGo8CLY8CQmahvq+CURXAmO3jOKB23HEetb0ZO/mofZnNs9k+HyfUfdOFkU26ybyZjV+9D7lIoQI8Wuqb3Q+8D2mIQvaLf6sNsXVdl75r6XQajUZD6rn4WY6TTA+NQHq9noAmn88Hp9Mp4yLzVK1WhbliPVkmkxH3RV3XMTs7i8XFRWxtbaFQKEDTNAQCAfn+u91uxGIxdLtdaZ4NQJwpgSMmiwtNNDWx2+0Ih8PSiy2Xy0m7EUoUaYzS6/VQLBYBHLUimJqagtvtht/vx/7+PqLRKMrlIx6IfeUikQja7TY6nY7IL9leYjAYIBKJwOPxoFaryZgrlQq8Xq9cY9YQ6rou4yPwZN87qh0ajQZsNptIPHVdl3l5UvGrkFB+B8CrP/v9/wvgx/g1ArgjBs4yMbHCCiussGJyeL1e/OAHP0Cr1cJLL72ESCSCW7duwe12Ix6PI51Ow+PxYHZ2FjMzMyiVSigWixiNRrh06RKCwSCy2SxarRZOnjyJUCiE7e1t7O7u4ty5c5I8BAIBSd52dnbgcrmQTCaRz+eRzWaxuroqRgTxeFykmHa7HbOzs9B1HZubm7Db7UilUrL6TetzynhKpRJqtZo0Eq/X6/jLv/xL2O12XLx4Ee12Gz6fbyypolkAZVhk3QiA6GJnBiSMkj0GmThGKpWC3++XJO0v//Iv0Ww28ZWvfAW/9Vu/hXfeeQd3794VZ0w1wQUwNg4jqJvEfgHjLRDMQJymaQJQB4PBQ7V3qnTzUUDtF2HOjPP3OOzdpH2onzEadxjljCqLahzzJMBlHKeRpTKeg9m+HsXI/Txs3HHgUL0PKP/z+XwirVPlmQQcKnM2aUwqw2NsEE/QRbt+SqbJkhmZ5E6ng0wmg3Q6LbJm4z3O+58mH5RWqrVnfCaorQLoujg9PS2MXK1WQy6XQ61WQ7FYxNzcHILBIHK5nMiwHQ4HfD4fOp2OyAbJyvt8vrG6PRqYsE5NdYT0+/0Ajgxp2IuN9Xp8NrJVwHA4lGdTIBDAcDjE+vo6pqenMTMzg3w+D6fTiXA4LPJQTdNQLBalhUKhUBA3yWQyiWAwiFKpBJfLJQ68Xq8Xuq7L+fHaZDIZuFwueZaqjcgJZjVNk7FSEUGG70nFLwrgdAA/0DRNB/D/1nX93wJI6bqeBgBd19Oapk2ZfVDTtH8M4B8DwOLi4i84jAfhsGvo9i0AZ4UVVlhhxeT4T//pP0HTNFy4cAG1Wg37+/tIJBIYDofY3t5GNBrFiRMn4PP5UC6XpSj+mWeeQavVQrlchs1mw8mTJ8XWfDAY4OzZs2O1FD6fD8ViEeVyGaurq+j1etjd3cVgMMDFixdRrVZRLBaRSqVgs9lQLpcRCASkF9P169fhcrmwuLgoK8EqIOn3+8hms6hWqwiFQrJCXS6XceHCBdlXuVxGr9fDaDQSk4JarSZyKrvdLqv4wAMWjM6XKnMFmFvlM2hsQoYvlUohHA6j0+mgWCzir/7qr1CpVPDiiy/i29/+NmZnZ/HRRx+hUCig2+2OuWIamQ61pk1Nws36x6lSSVVOyW3UNgQq68JjqIDPCGTV4xjnQT3+o4CYEYA8jvxwEog0e3+S/NPseGb7Og60GmsOHwV2j2PWJo3FuP0k0GacJ8rbmMDTrEKtVyMQUR0iCfwngTgjG6eGy+US+TKBBoEh7ynWY7HNQTqdRqvVEvZaPRcex9gHjiCJckU6MBKAEWgkEglEo1EAgMfjEeaoUqkgkUiICUg+n5fWJGzB0O/3kUgk4HK5RIXAsRHAsI9bMBhEpVIZY8MpFe33+2P3Cs1L+GwhOAwGg2MSz3a7jVarhWw2K6zd3t4ewuHwmNyT4MxmO2oHEY/H4XQ6kU6npZ642WyKQRVlpWQg6fJLwEf3Tvaa42dpfNJutxGJREROOj09bXrP/jriFwVwL+m6fvgzkPaWpml3HveDPwN7/xYAvvKVr/zSNI92mw2DkfmqkBVWWGGFFVYAR4287XY7Go0Gms2mODUOBgOcPn0asVgMwFFvoUKhgIWFBczNzSGTyWB7exvz8/NYWFiArutizR+JRNBqtaTvWrfbxRdffAG/34/FxUXs7+/jk08+wcrKirQXcLlcSKVSImGcmpqC1+tFoVDA1taWrKBrmib1LWwmCxw1Gm+324jFYtLjbTQaIRqNSpNcl8uFQCAgTYHJ0tntdml8rNqlDwYDMYwAHiSSaiI2CaQw0WXPLeCoziQWi+HkyZMoFovIZDJ4//33USwW8frrr+Py5cvw+Xz4+OOPsb+/L7UmPL4Z08PjqrVsqoPko7Y3vgY8YN04DzxfdZ8qQ2JWZ8XfJ73GeJS00Djux2HkjmMkJ71vHIvxfIwy0l/k+I8bZiDTDPwZX1cli06nU2pJyUCpoMvoCqm6Tj7O+NXXeTy/3w9dPzLeCIVCeOqpp9Dv9/HZZ5/JeLvdrjxTWGtFYwzj/nn/qeY7rDtkHZfaRoPHIOM/Go3GarQoqVRbArTbbXS7Xfh8PpE4ErSEQiEAQCwWEwlhOBwWUMl+aQCkpo+LId1uF263W0AnZd10edR1HaVSSZjEUCg0Blzj8bgAKpvNhkwmI8YspVJJFp1ocuJ0OqUFwMHBAUKhEEKhEJrNpgBVp9MpAJFy8uFwCL/fLwtgwWAQ6XQadrsd3W5X+tSxhQCl6JST/jxM+S87fiEAp+v64c9+5jRN+2MAXwWQ1TRt5mfs2wyA3C9hnI8dVg2cFVZYYYUVjwomF6FQCOFwWGrVVldXpdCe/1ZXV5FIJHDr1i3s7+/jzJkzWFlZwXA4RD6fh67rImfsdDpoNBooFAo4ODjA/Pw8PB4P3nvvPRSLRXzta19DKpUS58apqSm0Wi2RQrVaLRQKBbRaLaytrWFjYwO9Xg/PPPOMrB5vbW0hEonI6nY4HBY5D13mAMiK9sbGBur1ujTxJau4vb2NZrM51peKFv1mfdjMZIVm4I3vd7td6ct07949rK6u4qWXXsKbb76JnZ0dXL9+HcViEa+88gouXryIubk5/OQnP8Hdu3fFSly1UldZCLVWjcc0gjOGEeSp+1NBHJNPtVecOifqfs3Of1L8TYHN44K8nyfMQKcZyDNKAx+1T+O2k8Dtce9NAm6Tjq+CMDJdKngjgFMNQ1TWjYCDzJh6DscBNwI+yhv5e61Wg8121OT693//9xGPx/Gnf/qnAr663a70X8vn88LoTJoH1aGTzBvHTOAUDofldzo81ut1xONxYZ96vZ64zobDYZGStlotqT2jvLBer2NxcRGdTgeHh4dj7pFut1ueL/1+X6TflUpFDErYADsYDIoagK0H+MwbDAZS08uFL0oYdf2ojjCfz0PTHhiG8Lrl83kBXaVSSZ7jgUAAdrsd+XwePp9PapjVRuk8hs/nw+HhIcLhMBYWFpDJZAT8VavVMYktQfJgMMDU1BRcLpfUy7GH6JOKvzGA0zTND8Cm63r9Z7+/AeD/DuBPAfwBgP/pZz//5Jcx0McNy4XSCiussMKKR4XNZsPMzAzsdjsqlQqCwaD0CKK9dr/fx/LyMhwOB65evYpqtYrnnnsOU1NTKBQKwnbZbDbplaRpmlhtnzp1CgBw584d2Gw2fPOb34SmaahWq4hEIgiFQmLXrWka0uk0AoEAPB4PQqEQPB4P5ufn4XK5EIvFkM1m8cUXX2BhYUEYOAI5ypmYaAWDQQFAwBFgnZ+fFwklV5npNseVeKMDJGDe+8oIZCYl34PBALVaDbquS02ex+OR5PLw8BDf//730Wg08Pzzz+Ob3/wmotEorl69imKxKMmTaqyiyh+NtV7GUJNhhtF9kgm7+jpfY5KpJtKPkjWa/a6CETM2blKYSRKPY8PU8TyO3HDSMY8Dbcb3jdua/W3Glk36/XFZDS46qHVslE2SdVMXJ4xSSZVxVvenjoF1bur1U1k8gip+PyhnrNfruH79OjY3N2GzHfU/azQaSKfTKJVKwrwZQSp/V/+p/e4I1iiR5P1LmaHX60UsFsPi4qLU2ZK5Zz2q0+lEJpORfmZkpzRNE9l4rVYb++6yJQEXh8imkRWkuQrt/NkChdvScMTr9aLRaAj7R8MmfoYmIbw+ZOHIgnGeWq2W1LKx3i6bzcLpdCIQCIjzJvvEAUcsYTgcRrlcFhawVquJtLbVaskc85nDNg88P0rpXS6XLDI9qfhFGLgUgD/+2WQ6AHxX1/W/0jTtKoA/1DTtHwHYBfB7v/gwHz+OGDirBs4KK6ywworJMTc3B7fbjUKhgFgshvn5eQwGAyne93g8WF1dRbvdxu3bt+H1enH+/Hk4HA7s7e2NSRlpM12v11Gr1RCNRpFIJFAsFpHP55FKpUSiqes6QqEQbDYbCoUCQqGQgBTKJfP5PHq9npgIBAIBXLlyBfv7+5idnZWkIR6PiyRIrbsDjhIcTdPgdDqFiWOfpu3tbczMzCAUCglLxuSIq/4ul0vqWMxAmhFMkMUyk9yx3m5rawt/+Id/KE6bBJnlchlvvvkmDg4O8Oqrr+KVV15BKpXC+++/j93dXZE6qUkyx6CakwAPtyIwG7vKbKisncrM8TMq8FNZGuM8GP82vm4G9I57bxIoepSc8lHvHQd2zY5lxpwZAZlxf2rdohH8Go9jxnYZXzc7lgqmCN4I2tRaN9WchtedbAzZVhUYqcyrGqopDsPtdgtYcLvd4r56eHiI7373u3C73dJcvFar4fDwEMViEa1Wa0xiPOl4HA/3TcaL/ctYP2az2eDz+UTimEgkUCqVpKccDZG4TxqLcDGJMuuVlRXE43Hs7u6iXq+LqyVBFtk9Pr9KpRKSySTa7bY4YrbbbVmcYd84tk3hXBEIUoKo6zr6/b64TdKYZG9vT+qIy+UyNE2D2+2WPm+qCUqj0ZC2KTSPUmXf3W5XWhPYbDakUikUi0XYbDZMTU0JI8rm571eD06nc+y5WK1W0el0EAgExlrNPKn4GwM4Xdc3AVw0eb0I4Dd/kUH9ImExcFZYYYUVVjwqRqMRqtUqkskkEokECoWCJA5qc+9CoYDZ2Vlxbmw2mwgGgwiFQqjX6yJ/LBQKsNlsiEQicLvdqFaraDabWF5eFkc6l8slrm60uu52u1LDRpe1QqGAeDwu8qhbt26h1WphaWkJbrdbwCcZLBbzz8zMIJ1OY2pqShIVlZVjQre0tCTObel0GgcHB7KSzvYCqiMkMLkOTn1/EgvF+aYpQavVQiQSQTQaRSwWg6Zp6Ha7uHbtGkqlEl577TWcO3cO09PT+OlPf4ovvvhC6veYtKpAhCvmZuMwhuocaAbIjHJLNaGfJDfk78eBq0fJDI2vTwozpvNRYbbNo8Y5CeCZyRqNc6OCXmM9odreQd3OyDAaQbQRfBIkkmUjcCNo43sM1bBGZXMnnY/Z2NTzpGEJ5XlOp3NsgYES4uFwiHq9jr29PVQqFZE0Gu8H9dzUOaP8MhAIjNW+EQD2+31hz9geYGtrC5qmiW1+LBaDrutivDEYDODz+RAMBuV5duLECXi9Xni9Xly8eBG3bt3C7u7uWG2p0+mU2t5EIiEtSQjwKIEcDAYIBoNwu92iDiCLx4UYTdNEtcB+cWTs7Ha7sIPhcBilUgl+v1960bFlgd1uFxmqx+NBJBJBtVqV50mv10M0GkW/30cymRxz1qxWq9JrkwtiHIumacLqcdz9fl96ebKGzmazSVuCJxG/ijYCTzSsGjgrrLDCCiseFYPBAPPz88KE2Ww2BAIBkRQVCkftTaPRKLxer6wMMwmhexyTOzbm5mq70+nEiRMnMBwOpQcc7baBo1q1RqMhQM7n8yGTySCfz2NmZgbRaBStVgvVahW1Wk1cKqenpxEIBHBwcCCr+dPT04hEIkin09jc3MRgMJDEjXVArIGhYxxlmul0GrFYTFbcCSgZZmyKyroBD1v3GxNjNfkmm0bTlk6nI9KudruNzc1N5PN5vPDCC/jqV7+K3/3d38WpU6fw3nvvYWtrS8ZFMKDWtamMhtGYRP2cem7HtSmgtMt4vupccDvj70Ygqf5tBpKM+zDGoySTf5NQxzkJ+B7HtBlBm7oPVY6ofkcIBsxcQ/k59TjG8yPbpta6qQYlKpOmfobbMEknuzRJGnwccKQEuNPpAIDU2Q0GA7hcLpEDsln2wcEByuWy9ClTz0udc46T7S14/5Ft0zRNWgYY54v90yqVChqNhrB2NPOoVqsAjpqGu91ueL1eYaZcLhdmZmbw4x//GM8++yyeffZZqfHlmPmsI1hqtVqIRqMCljgXZAi73S5yuSMLDD6DWq2WgDQCI5qp0CHS6XQin8/D4XBgenoajUYD4XAY/X4f9XodHo9HJKFkHHn/VKtVuFwuUVIQhE1NTaFWq6FeryMcDotsnUwlWwywXo7XklLPaDQq7ByvLetk/3uVUP43GXabDYOhBeCssMIKK6yYHIuLi3A4HMjlcsKczc/PY3t7G7quS2LQ7XbHbOaZ6JPRGg6HiEajWF1dFfBGl8der4darSYsU6PREKc3urgxcaDkiBJJgiwygFxdHw6H2NjYQDabRafTwdzcnDQBz2azmJmZQSwWg8/ng8/nE6YwHo8jEAigVqthaWkJkUgEH374oSRRAGQFXU1KmCCS+QImS76YmJsxGmqwdoYSNq7os7dSq9XCu+++i62tLXz729/GM888g2QyiZ/85Ce4ceOGGCCo1v7qMVSgYEzS1cTZKLOcFNyXEcSpwE79/TiZJONRx3wUoDPu57j9m8kgjceYNAbj3+pnjX/zJ8GUKnPkcYwgTp2/Sfvj5whwWHdGQw8ez8xlkmwcHQhZw8VQgb+RQTQuCGiahnA4DLfbLYYlZMtUu/zRaIR2uy3grdFoCBA67lqSbVNZRBqIEKgC466sdGYMh8O4f/++jKfdbuPEiRMYDAZot9uoVqviqBiPx9Hr9ZDP5zE7O4tGo4F3330Xm5ub2NvbQ61WwyuvvAIA2NzcFHdeNrWmZDGRSMg1IQjj3zs7O+KC2+/3US6XRWoaDAbFrt/hcEgPOko67Xa7LDQFg0HUajVhzrjo5fF4REbJ+5jqCUooKalst9vI5/OYmpoScLewsCBNwMPhsLCZBGkEmKy9433H9gJUK1gA7pcYFgNnhRVWWGHFo6JaraLVaiEYDMLn82Fqagr37t2Dz+cTkxDWO5DhodX1YDDA1tYWSqUSFhcXMTMzg0qlgkwmg0QigUQigX6/j1qthqmpKXQ6HdRqNczOzoqkqFqtPmQMAECSII/Hg/v370vdR61WAwA0m02xA19bW5Nks91uI5FIiJsc7cNbrZasRA+HQ6RSKVQqFbz55ptwOBxSw1EoFMTJkoYJTEiZMKo1REagwqTHmPxOCjKTnI9er4dYLCasYbfbxcbGBv7jf/yPeOGFF/Dyyy/j937v93D69Gl88MEH2NraEkmYKvMCxlk2laUDHmZ7jHV1xjHynxHsTWLkHkdCOel9I9PJ8R4XP8/7RsbN+L4ZK2S2vdnv6vbqPyMTB0yuUzQ7DkGSWutGdopgQd1WBXB8z+VyiYyZoRqbqMc1NnTnPl0uF06dOgW73Y719XWpl6TJBZlnmndks1mUSiU0Gg2pUTWbW/5UwRvBJt8j6KnX6wIYaNTC5trb29viRjscDjE/Pw+Hw4F2u41KpSJSy3g8LuYgZNb6/T4KhYL0R9vZ2UE2m0Umk0G73ZbFJgI5XddlkQgAAoEACoWC9KLLZDLyOpn2bDaLSCSChYUFWUjS9aNm5vzul0ol2O12cZjkOTcaDZGwsxbQ5XIBgDznCOYIGtlKha7Ac3Nz0m9veXlZHISdTifcbre0SaAqgLJcnnMoFEImkxGgyPq+X4QB/0XjSwfg7HarBs4KK6ywworjg8nA1NQUHA4Hdnd3MRqNsLi4KFIrNuJlQl0qlbC7u4tyuYzRaIQTJ04gGo0im82K/TZlPx6PB+fOnQNwZH0dj8fFda7X6yESiUjS1+/3hYliEf3Ozg7q9Trm5+fh8/kEtAHA6uoqUqkU9vf3xSJc13XE43FplAtA6lDY24myKTbYdTqdOHPmDMrlMtbX10VmxeSIEisVmDGhNza55u/qNvzdbBvukwnicDhEr9dDp9MZazJcqVTw1ltv4eDgAN/61rdw/vx5LC8v4+OPP8ZHH32Ew8PDsZ51ahB4Aw83+zaGEcwREKrMI8MIxlTAZZSOmrGV6jyofxvBktlcqvtXx2LcTmUmzPZrNhbjvo3vT2LJ+DkVrHFOjbVkbPJMYG00vjFur7JcBHIAHmKp1DGrcknawKvgDRh3IjWCN+P5ejweLCwsoN1u4+DgQLbludABVtd1lMtl5PN5VKtVAW+TrpF6HOP1stvtYww9zTT40+PxYGpqCgDEOImLKKlUCh6PB8ViEaVSSXqv0QHS6MpYrVZRqVRkMWdqagp7e3vChqkMFBuUsxXAzMwMCoWCqBJowOT3+zEcDqXub3p6GlNTU6IqcDgc0oCbxiOsK8zn8+Lk2Wq1EAqFxP2RRi5mCyY0NalWq5idncVwOEShUMDMzIwoIGZnZ+Hz+bC3twev1ysSep/Ph0ajMXZPs8YumUxKewEVNPP58KTiSwfgnJYLpRVWWGGFFY+I0WiE5eVldDodlEolaJqG2dlZ7O7uimQJOLKm7vf7aLfbqNfrqNfriMViYrdNMHbp0iW4XC5ks1lxW6tWqygUCrh9+7YklCdPnhxLtnq9Hux2u4BCl8uFK1euwOVy4eTJkwgEAmg0GvD7/WNuiTdv3gRwtMrtcrmkHQBw1ETb6/Wi0+mgXq8jGAwiFouJs2W9XsfJkydht9sRj8eRTCYBQPpC0aWu2+2OOfYBD6SURmDwKNCiSueA8RolXdfFzZOsQDQaRTQahd/vR6/Xw82bN7G3t4dLly7h5Zdfxre//W089dRTePfdd/H5558Ly0BgaKw14jGNbQOOuz/U/m9mjJuZBNHITqryQcZxgMo4L0ZApe7PCORUOaDKRBmPNekamYE343iNLKEZy2b8m59Xx2R2nurxAIhkUG1MbSaVNDJw7CtWr9cfAm5GkGZ2rtyOrLvf78fBwYGwvcbr5PP50O/3sb29LawVzUqMYFc9Lu9FLjRw/GTA3W63yD75OYJSmqc0Gg2RHg8GA8RiMXg8HuRyOdnnzMyM9GOkHHxhYQGhUAiFQgFbW1si0Tx79iyCwSByuRwGgwHcbjfi8TgODg6g67pIKCuVCuLxuDTSjkQi2Nvbk4UhMm9016XTZblcHqshc7vdcu9GIhFh3hwOByqVCkKhkIAlj8cjCgW2WSGDDxzVAbbbbcTjcXi9Xuzv78szJJ1OIxKJwGazYWdnB8DRs7NSqYibMJtzezweWeCbnp6WBbJAIAC32y1spNHo6dcdXzoAZ7fZLAbOCiussMKKY2NxcRHFYhE7Ozvyn3y5XBYgYbfbsb29jXa7jWg0CpfLhUAggFQqhWQyKSyUz+fD6uoqer0ePv74YwQCAWSzWWjakSvb559/DqfTiUgkgtOnTyMcDiObzcLn84n1uSpxunnzJgKBABYXF6Vejn3iyJzRTY39oWgmQPMSn8831lCXrm66ftT3KBwOy+oym/DSIIU1aEw+ycaRISM7YNbcmr+rCbkqkzPKGFXGhQkRkyKyhqzd44r/22+/jdu3b+Nb3/oWvvrVr+L3fu/3cPbsWbz33nvY2NiQWiPVVEM9rrHtAEMdJxlBtc7ObMXfDNyZsXPq3Ki/H8d2Gf+eJGOcJLU0A0Tq30bJptlnVJCqAhbj+NVxqdLE44CdelzjvlVmzWY7cvpzOBzCHpkxfKxJWlpags1mE3Z60ryrhjXG43OclNDx+8GFDJWtvXTpEgqFAn7605+Ky6tqVmI238fNIY/Be5Wfpdza5XJJrVehUEA0GoXNZkO9Xkc0GpVaNf5MpVIAjhp+U5odDocRDAbRaDRQLBaF0bt48SJee+01dLtdXL16VVi1ZrMpTGi73Ua5XIbP50O325U6252dHQFk7XZbFg5SqZQ4PbJ1ARtxq8xiKBQSMxFd1wUg0i2Y5+Z0OkW6qQKoYDAojB5bENBsJp1Ow2aziVpiOByKZBM4UmP0+30Bv6yxjUQiAI6eTTabTSSh3W5XVA6Pkkb/KuNLB+AcdqsGzgorrLDCiuPjxo0baDQauHDhAqLRqCSp4XAYxWJRGl0vLy9Lk2s2+qa7G6VVW1tb+PDDD4UtS6VSmJ+fx49//GO43W6pF5mbm8O9e/egaZpYUnPll8YHJ06cQDKZHGsqy/oY1qsMh0NJwrii3u12pT8TDQLi8ThqtRoqlYq0LKDpAevyaOXtdrvFGrxcLsuqPpmoZrMpSaVZGwGVkVFZF26vfob7IVOmAiq6Zar/gsEgEomEsHGHh4f4D//hP+Djjz/G66+/jmeeeQYnT57EjRs3cOXKlTEgpwLJSYYmBAsEbQTnZiYnTEBVtnESeDMex/i3GTumzqeReTvuGI86vlHGZ5QqPiqMDJwRfKqAy8iKGT+jMqEMMl7qNvwME3XVYVL953A4pCdbNptFs9kcG68K5tXxqsdTx6Fpmphq8L7hYgslxZFIBBcuXMAHH3yA69evo9FoiGTSTHJr/K6YjYnNoimd5DY8NmvG6FBLKWO9XkcymUQsFpO2BXSLpJogGAwK+GGN3fb2ttSBPf3002LiVC6X0W63hTUja1mv19Hv98WtsVwuIx6P49SpUyKd5Db9fh+RSESUAJRRsl8bZa1utxuRSAT5fF7Aejqdht/vR6VSgc1mkx6a3W5XDESoBGg0GpiamhKDKIfDIRJNSs8dDofIMAeDgTxfuVA3Go2QSCTgdrtRLBbFwXI4HMrzkc9auvTy9enp6Ud+d35V8aUDcFYfOCussMIKKx4V7XYbly9fRjQaRaVSkdVmFvLTFbHRaKBcLuPUqVNix81V7EAggM3NTayvr2N2dhaVSgUXLlzAiRMncO3aNRSLRZEvPvfcc9JqgE5qrE3pdrvodrs4d+4cgsEgMpmMrIqriRvBGtkyr9cr27KRL5MPyqhYU5bP5+Hz+RAOh2Wlms1ue70eTp48iUajMVYLQxkla2BsNttYTRwTXFVSCTxIWJmoqe8RuBEIGWvHAIgBDGVhTN6i0SgikQicTifa7TauXbuGra0tfPWrX8Wrrx41AD979iw+++wzfPjhh9jY2DhWSsnzYMJN63fjuIw/J4E3M7bMeGxjIm8mrVPDuP2k9yYd9zjW0DjeSftXQY6RreL7ZvVvZgwdwyhFNLJuKnghEJmbm0OxWITX60Wz2RQ2qt1uYzQaIZ/Pm4LFSWyhOn7+o3kFAAEfnKN2u43hcCi1pH/6p3+Kvb09tFot1Ot10/5uxwF0BgEovxNkuwGIZJHsO5m1aDSKfD4vBh2xWAz9fh+VSgWVSkWOEQqFpFUGXWwBYH9/X5QAyWQSJ06cQLPZRKvVQj6fF2A4MzODVCqFzc1NAUutVkukjNlsFvF4XJph8xkUj8cRiUSkR2UkEpGWCKzvs9lswpwRlO3v78PpdKJarWIwGGB2dla+76oSgc+dZDIpygOqG/jcJDglq8a+cDRGIRvPesp0Oi098tjMmwYm8Xhcmn3zmUYjmScVXzoAZ7lQWmGFFVZY8ah45pln4HQ68f777wMA1tbWUC6XoWmaJIQ0FllbW5OWAx6PB4lEAvV6HTdu3BBGbHNzE88++yz8fj++//3vY3NzEydPnsTa2hpmZ2ehaZrUkWiaBq/Xi+FwKInQhQsXoGkaMpkMarUaksmk1HjQiIGJi8/nw3A4xPXr16XfG/srsc6jXC5LInP9+nWcOXNGGu6ORiOpvQuFQlKzl8/nEY1GMT09LWYnlG81m000Gg1hBSlNNNZjqQmy0QCETMJoNJJ6NWPCqxqJcJXc5/PJij3ZBlVW9/bbb+PatWt46aWX8Pzzz+ONN97A5cuXcfXqVXz44YciheWxzGrfjFJP9dzUnypzdJw80uyn2e9mdXVqPA6oMu7LCBzMxmtWR2fGFJrtywwoGqWTKoOmbqs21zaCNuM2Rokkk2fK18j0sJ7KyKjypxmbqQI8AhuCRfZQY20V72UC+1wuh4ODA+lr1mq1HqoLNV4Xs3uADDXdMvmeseWBWgvo9/sxPT0tzCSVAIVCQZghShRjsRharRYCgYDMV6fTwf3798dqxVZWVuByucRyv1gsSs+10WiE7e1tkVfncjnZTzAYhM1mw+HhIdxut7jKzs3NiSSSbVbq9brMAz/LBTNKs5vNprD9gUAAsVhMFpA4V6qKwOfzia0/e1pS6l4sFgEc1cVls1n0ej0kk0nUajVpF1AoFBAIBGC325HNZuFwOMQ0pl6vy2JTIpEQZpeOoi6XC7FYTBw3n0R86QCc/WcAbtKqhxVWWGGFFVZ0u13cvXsX4XAYc3NzIour1+sAHiSH09PT6Ha70sjV4/Egm82i1WrJf/gHBwd46qmn4Pf78aMf/Qherxe//du/Lavf9XodhUJBGB/WknB1+tSpU+h2u9Jglg3GKTGiXTUTuEAggFarhVQqJQ1uA4EAwuEwarUaNO2opuTKlStotVq4dOmS9KKjK16n05F+S3fu3MGdO3eQTCbh8/mQSCSwt7c3VktH5o8GC8YaH/Uf3zcmzSojBzzsoGgGrHh+dLYjkAuFQiJ7arVaKBQK+LM/+zN8+umneOmll/Diiy/i29/+Np577jm8++67uHr1Kg4PD8WG3az9AMfCMDJsj1Pzps6HcX/GmAS41H0Yx2YGsszklfzspPeM+zgOdBiPa5RfGlkzIyBTAZMK4NTXVXMRFYwBD/qe0TCDfxMAGvdpNkaz4IICQRQXbbjAoTqRkhXL5/MolUrSQ0xl3SYxbkamU2UpuTjDBt6UEaqvcRGFhiqtVguNRkOeL2SOyA6SjSd75HK55HufTqfF2MjlcmF6ehp2ux2NRkPam3i9XrjdbumbxmcXLf4LhYK4MQJHbJ7dbofX6xVQqDrAUt6o67oAI54HG2dTUl6r1WC32wVYNRoNOJ1OkZtTWhoMBmVxJxAI4ODgQO6dYrEoMvd2uy2qBC5CpVIplMtlMW6hWUu/30cgEEC73Zb7Ix6PS2sB1gJSQlsqlawauF9mOGxHX4zhSIfDbgE4K6ywwgorHo5CoYDFxUXMz89LnVgwGJTaMK5G1+t1hMNhRCKRsVX5mZkZWYm+fPkyvF4v1tfX8fTTT2Nubk6c6IAjKSL3B0Bkk8lkUhwoc7kcXC4XwuEwut2usFcEGV6vV3oPqawYeyglk0mUSiWx5P7e976HlZUVPPPMM9B1HTdu3MBgMEA8HofP50M8HsdgMEA+n0coFMLZs2dFUlStVrGwsAAA2NraQr1eh8vlGqsBURNvVXJIEKbKJJnQmzUDV1k3NQE2snFqbZzX60Wv10Oz2UQwGEQ4HJZEeG9vD9/73vfw4x//GN/85jdx6dIl/J2/83fwyiuv4MMPP8SVK1ewu7srbCLHTWDJRF7TNEnOJ4E1IxtnBB6Pu4jMczZ+3my7Sfs1AgdjjZkRVD6K+VMZNOPx1dfVNg1cnODfKsvFe2WSYYgK4FSAYxbcVpXqqud7HHjmGMhykfEiC8TFDeBBb8PBYIBSqYRCoYBWqyXfAaN0WJ0bs0UKI/NG0MDvuN1uh8/ng67rAsYGgwESiQR8Pp8wTmxkzeeLsXF9MBgUgyWfz4dOpwOPx4O7d++K8YnL5cLq6ioSiQSAIyOPTCaD4XCImZkZnDlzBt1uF9vb28J49no9kXrSxGQ0GgmwOnXqlNQLs/aOiz+092dzbEoaQ6EQSqUSXC6XyGJ53vyuc8ELOFrQCQaD8ncymcTm5iY8Hg/i8bgYQiUSCZTLZTQaDUSjUYxGI9RqNaRSKdRqNTFIKpVKYhDDGmAA0vDc6XRKjzi3243hcCj9NskePqn40gE4+8++8IORDof9ERtbYYUVVljxv8hYWFiAz+fD1tYWKpUKFhYWUCgUUK1Wsba2hkajgWq1ilgsJgYA9XodDodDpD2NRgOxWAwOhwPFYlEcE5vNJvL5PDqdjkh6yBKxIH5paQnlclma19LshLJJJmd0aVMbATNRC4VCmJ6eRjAYxGg0QrlcxgcffACbzYbnn39eZE806KDN+dzcHBKJhDB8TPpGoxGy2SxmZmbg8/mQzWbHkh82wgUeMCVqAntcLRyTYSa3xmbOBGzHSQNp0MDEiU2LCXADgYDUSxUKBXz3u9/Fe++9h69//et44YUX8Lu/+7u4fPkyrly5gqtXr2Jzc1OAG5k91VCF5zepjsxMlmd83SzMgIYKWozJvhpmf6tsncq8mbGJRvBmPL7xtUlSSxWcEbgZ2TDVMZI1lGbHMjpLTgLBRlZNvQfN5kT9jMoA0jBF3R+/t6qElnVg5XIZ1WpVgBvlv8ZzUefX7H31PFwulyxocHHE7/eLJNTlcokTYjAYRCQSwebmJjRNEzMVNWhc5PV6oWkaVlZWUK1WhfHK5/PY29sTw6ZTp04hkUgIQGk0GsKCnT59GrOzs7hx4wY0TZNa2W63KyAMOFqYIrAJh8MYDocIBoPCVHEhimCToJROv263WxauBoMB7HY7EomEPP98Ph88Ho+oHUajEfx+v1zP6elpZDIZYR15/WKxmJwPnwetVgszMzNyDtFoVN7n80/tFxgIBMQERZVw6vpRv81msylGN08qvnQAjgycZWRihRVWWGHFpPB4PEj//9t79xjJ0vO87/mquqq67veu6nv3zOxwd3a55IqLtaQFRUqQJUaWwihIDBKwIiMXWYkFWE4AJxICREkQQHBsxzZgOKFtAZTJWBEgEZZkwRJvlkiKIpe7s7uzt5np2e6Zvnd1Vdf9XnXyR/Xz7tdnq3r23j297w8YdF1OnfrqnKoz3/O97/u8u7vyn/n6+jpSqRSefPJJVKtVHB4eIpFIIJlMSr0EI1+MzFy5ckXqYJheyQksbbJ9Ph+GwyHK5TKCwSCmp6exurqKbreLYrEoE72FhQWp6apWqwAgKUoUOZyMURTSWXJjY0PcFz/96U/j0UcfPRHx6na7yOVyWFxcRL1ex3PPPYfr16/jU5/6lET2+v2+TFRjsRiy2axMLpmmyEmWHVHj5Ns2C3FP+t3plHa/MncEa5JYsu+z5QBX+1utFoLBoEQ1Y7GYTLq2trbwpS99CV/72tfw4z/+43jiiSfwcz/3c/jUpz6F69ev4/vf/z5u3bolbqAcr90Hzp0ix3GME2yTJnRuAeR+3BZDvG2fe7f4Oi2CNi6ti9Fct7Bwn4dx588tluw0RY6XAs1+zt6nXddmv88kU5RxIoy3bXt9+zV2uiijem6RyV6JFDy22ynPOR1faQjS6XROtO5wj9U+jqelwtrHilE2pnAy7ZDbMRKVTqeRyWSwvr4u9VmM2vOYMnLMa0Mmk5HvcqVSQbfblZRoYwx+5Ed+RIRgsViUHneLi4uYnZ1FoVAQocprHQUtr3NcjOL7M0oWi8WQTCalpUIwGESxWEQoFJL+l61WSwQzMFqk4tjZuoEtABqNhlzDstmsZEDkcjns7e2h3W4jkUigWCyKMRNTrpnuTUfNTqeD7e1tpNNpyWBwHEfGwobsPO6MEvI8eTweua6Xy2X4/X4RlGfBhRNwXqZQDlTAKYqiKOO5d++erKbu7+9jaWkJly5dwt27d3Hz5k2xt37sscfw/PPPYzAYiANbLBZDMBhEqVSSFMtkMikNbFutlhTcd7tdlMtlOI4jdv3VahXr6+tiY82JFVMiWV/COjz2cGJDX9btdTodfOUrX8E3v/lNrK6u4vOf/zwymYykVLVaLXF4S6VS0tz36tWrsi+mb3U6Hfh8PjzyyCNoNBqSAspVb7tpr90agJ+R2AJhnKhwRyjG1ZaNm5zb21FIMBLXarUketHv97G6uorHH38cP/3TP41vfOMb+Na3voXt7W188YtfxNe//nU89dRT+NEf/VH8xE/8BJ566im89NJL+M53voPvfve72N/fHzsOOxI3LoLljoS5n3dHr+zjYdeQ2aKIn9V9bE+Lyo0TnPcTSuPE6LjoIMdjP2abcDC10Y6ocR/jGmjboss9PvvzM73QFoJu4e8+RrZY421GnfnPbVxDg5RyuSwuqFwkmNSweVxaqft5Chx7QQN4IyrJqLtt8gOMDDhisRi2trbEUITXlUgkIgZIXNAJBoPI5XKoVCoIhUJotVrY3t6WtiDRaBQPP/wwHn/8cdy5cwfFYhGVSgX7+/uYm5tDNptFq9WSxSqmJvPYUPSVy+UTdWNTU1M4OjpCMBjE4uIiFhYWsLu7i+npaUk/pNsvI3rlcln2bZ8vHgPum2mWiURCFpHm5uZwdHQEj8eDUCiEw8NDuU6xns7+7sTjcYTDYen5GY/HcXBwgKmpKTFEqVQqaLfbmJmZkSggTVg4lmAwiFgshqOjI/nOuCOhHyQXTsCx7q0/phhaURRFUYBRhMxxRo2tL1++jIWFBdy4cQO3bt1CMBjED//wD2N5eRlra2sYDDvrVC4AAEdDSURBVAbI5/Po9/uYnZ1Ft9vFc889h2w2i3w+j1gsBmDUmqBQKMiElmKNK8uM8hweHspEmIYEbNJLd0VOeCORiKQssUYumUzixRdfxHe+8x1UKhV89rOfxcMPPywRO9ax2XUwjFp5vV7MzMwAGE0gWVMXCoVElDENa2FhAfv7++j3+0gmk2i32ygWi5LmVavVpMaN8HPZ6ZC8zQmVO7pE7idQ3NEO7oNGBXThY4+sl156CVeuXMHa2pqkk21vb+MrX/kKvvrVr+JjH/sYnn76aTz66KN4/PHHkcvl8OUvf1mMFE4TRuPG5749zkjDLYzs6JBdQzbu87ojU5PG4H5s3HOTsKNF49IAxxmS2NG1cVFGd4rkpGNib89x0/yGk31bdI2rGaSxEM+fz+eTiAoNOezP0u/3pTEz22h0Oh2pb7XdUt0LE27x6z6O3MZOH+X4eU1gXZXP5xNTDWDUeDuVSsn1BAB8Pp8Yf9gmJcFgEIeHh/jYxz6GRx55BC+99BLW1tZQq9WkTpSRsbm5OSwuLqJcLmNzcxP7+/vIZDJIp9PY2NgQgxHbIp9phX6/X1IKKWq4aMUshLt372JlZQWXLl3CvXv3EAqFEI1GUalUUKlUkE6npZbOcRyJhDKVcWpqSgxMuHjFdgSDwQDz8/Mi5Hw+n6Sgx+NxiThyXLwOMB18enpaaoUdx0E4HEYymUS9Xkc8Hkc8Hkcul4PX68Xh4aEYyfB3SrdfRjVTqRSOjo7G/Yw+EC6cgPNaJiaKoiiKMo5SqYR+v4/l5WVks1k8++yzeOWVV7CysoKVlRVJLaKd/2AwwOrqKu7evYsbN25gbm5O7LdbrRY2NzcBQFZpK5UKyuUystksGo0GSqWSmH+wdoJF+lz1X1paEnMFrkQDkO1Zi/L9738fGxsb0psul8uJGAMgk1Cmf1arVanZazQa+MhHPiI1KnwvpoYxAsjx0ekSgPSDKxQKMnFhyhMnX47jSGrl1NSURPqMeaMBtl3PZ+MWKJOEx7iUQbp90h2wXC7j2WefRTKZlN5e0WgUoVBIJupf//rX8a1vfQuXL1/Gk08+ieXlZTE7KRaLMl47fdAe1zhBdZrIGheJcws4t1gCcEL0uvfH8VAcu4/dOGfPt8I4MTYu+manKtqv5ZjdKZXjjgv35Y4E2vt2u4W6vxusI6WwZHsMj8eDer2OjY0N2Q6AtAipVqvSF4yCza6vPE0su41i+JxbvNqGPvz900iFER42qGbPtmw2i1qtJgYr/C2Vy2URVLOzs2Low9TumZkZ9Ho9HBwcoFaryfu1223pA7mzs4Pd3V3cunVL0gm3t7dFNLK/HgARSv1+H5VKRdII6QrL3/fMzAyGwyHu3bsHYwyuXLlyQtz0ej0sLy+j1WqJY2an00EqlToRRfX7/dJ/zefzIRKJoNfrybbNZlNSptnLjceOaZS2KA6FQiiVSvB4Rg3BeV2meOMCVr/fRz6fRyKRwMsvvyz1ffy+xONxOI6DnZ0daXPAz3BWXDgBpzVwiqIoyv3gyqwxBt/+9rdRKBRw6dIlTE9PY319HXNzc8hkMtJTKZFI4Hvf+x7W19exvLyMy5cvY2pqCrVaTVKcQqEQwuEwCoUC1tbWxCiADWwdx5GC/VarJW5qbHSbSCQAQOot7NQ0plDt7e3B5/Phox/9qKT/eDweMQ4gqVRKLL+5z1gshrm5Ofj9ftTrddk3XeKYMsk0zXw+j5s3b2J+fh6FQgF+vx+lUgmVSkVSnlgnRzMQRvk4KaKg4X7fiUAb99y4KAjfs1arSW0iU7uCwaBM6NjonFG7F154AS+++CLC4TAef/xxPPXUU9jb28O9e/dweHgoE2YAbxISNm7xMSnCZAuTcYYa7rRCt1nMuPe1xZIdxXw3As5OXbQft8WnW9DxfSe1C+B+3Y8Tvh/7stnClP/syByjc7FYTCb8bH1RKBRORLy433q9jlqtJlFZ1rbZtXDj0nrHRUTdCwn2d9xOh+WYuRhjjJF2GPwtMQofi8XEJRUYLZzwO80oPaNF1WpV7rfbbdTrddy4cUP6QIZCIfj9fjz88MPw+/24c+cOpqam8OqrryKZTMpCTi6XQyKRkO8k7fVZv1atVqU+EHjDLAWACDpeyxqNBvb397G6uoq1tTW0222kUins7++f6FPH651dC2hHv2mMYoxBJpORPoBc9GJ7AIp0Y95wx+Qx5bhnZ2el2Xs4HMbCwsIJl1s2I799+7akd05PT0vdXywWw61bt0TYxWIxHBwcSJruWXDhBBxdKDUCpyiKokyCheuvv/46hsMhnnjiCZTLZdRqNSwvL4vT29zcHFqtFp577jk4joOnnnoKi4uLGA6HaLfbuHfvnpiV9Ho97Ozs4MUXX8QjjzwiaUTD4RCRSESK8judDmZmZiTaRXOCeDwu6T+cvHGFmXbd/X4fkUgEkUgEfr9fJoa0C3ccR1IkAUi/JGOM9Hfa29uT4n029DbGiEgslUpIJpO4c+cO8vk8MpkMpqenUSgU0Ol0pIVCpVKRySknnIFAAP1+X94TeHPEYlwUzi123FEuYhudTBJJtpCjhToNZJrNJiqVikTjaHpA85hvfOMbMMZgZWUFs7OzuHTpkjiV0hzBNsu4Xw2UOzpnm5SMa2R9WlqhfWxsoXDa+9qi57TI4Lj00HGpsXY0zo7ejhOdk8ZmR9smRauYomcLKW7LNMmpqSnMzMwglUohkUiI6cjBwQHa7bYIPGOMfB94HmnHT7t6puiNE+fjFgvs42ozLoroFpH8x35t0WhUjiMjUHydMaO6s0KhIAsmdLs1ZtTM2+/34/DwELFYDF/60pfkNvd/5coVFAoFiZ4VCgURa/V6HcvLy8hkMnIsPB6PpClSnDHFmiKNUTkuhNjC6+joCOFw+MTi1e7urvReowByHEciWMYYHB0dyfUjmUzKOclkMlJ/m06nJfKVTCYBQER4OByW60ooFDrRqqDf72N/f1/MVObm5rC2tiZmR3Nzc9jY2ECxWJRFLUYts9ksdnZ2UC6XJZLH45NOp9/0ffmguHACTiNwiqIoyv04ODgQ638Wxft8Pmnqzbq3w8NDbG5uYm5uDvPz8yds/g8ODqT+jVb5e3t7uHbtGubn57G+vi41JrFYDIVCQSaJjUZDoi+9Xk9WkplWxVQgTui63a7Y/nPlnNbcdvokm11zv5xMhcNh1Ot1HB0diYkCG4dzFXk4HMLn82FxcRGtVktaLQyHQ8zMzIiDXL/fR7ValTqTSqUiopPpT8DJyaw90bWd/MZF0+znTjPsGPcaNzQ2aTabCAQCImLb7baIumAwKM59jUYDzWYTGxsbUqOTTqexsLCAg4MDEQDsgTVO+Lg/tzsFkcLHjsLZ+7DF3Lj9TBJ549Isybh0P/t1dqTO3WfNfi97rG5jETvqNu493MLGLVrt93Rb9du1bVwMoX19s9nEa6+9hmq1KimI/E7TjIfRNtaQcZGBqZKTcI9t3PNuQc3Pa38eOwWXxiV0n6QIYgqyx+NBq9USV1rHcSTdjzWwoVBIzEna7bZE0lqtFnK5nBiBzM3N4dVXX8WVK1ewuLiItbU1Melot9t4+umnZcGDKYqMVHHhiL8VukdSqNFhstlsIhwOS+QrFAqh3+/j5s2b+PjHP47r16+LaUi320U8HpfvG5txUxwBOJGayWbcNCNh2wNG7EqlkrhdMh2SKew0WqHRidfrRTQaxdLSEjY3N8Xt9+rVq9jf38fW1hYcxxHRCUAif8ViEd1uFwsLC9IXkC1lzoqLJ+C8rIFTExNFURRlPLVaDaurqyJCmGbHycH8/LxEvTKZDBYXF6WR9dHRETqdDmKxmPQoojvc448/Dq/Xi3K5jHq9jpmZGSSTSdRqNYTDYdmO5ga0ro7H45JaSaHBui6mJoZCIbH8tyeddgNcRuE4yeBEd3d3V1zVgsGgpKDxWHi9XrTbbRhjZCwejweJROJEDQ5Tl+bm5nBwcCCGAPxcxhiJFHAyylTKcQ27iS3EJgkNN291e6ZwcuyBQEAmzRTJdgosJ7LVahWtVgt3794FACQSCYRCISQSCakJoiA4TSBxDHbUym7HALzZuZGc5h45zgzGFkl2ithp4s79PrbosLHNSuxx329/41Ik+Z3hueF2jJjx8zEVLpfLIZfLYXp6GqlUCltbW9je3sbdu3dlW46biwzsb1av1+UxCjeeM/f4Ji0YjEujdC8wuKOT9rGwzwvdFhlJ7/V6Uq/Hdhhc5KnVaiImEokEFhYW4PF4UCqVpH6M15vBYIBYLCa/cUbblpeXkc/nRRQ6zsjB9ZOf/CQeffRR3L17V5qU050zGAye6LFIQw9GpegqCYyi/DwOqVQKHo8HR0dHyGQyUjPGdgQUltwXf5dcEKC5VL/fl3pVijL2cAMgGQfASPAxqp/L5cTtkotKTCMPBAKYnZ1FsViU783Vq1fRbrellQIX0bxeL9LpNEKhEO7cuYOjoyMkk0kEg0Fsbm7C4/GcyHQ4Cy6egNMInKIoinIflpeXZUUYeMORkTUoAKR2IxKJSPoQC+IjkYik2zBVa35+Hu12WyZDjBSwaS1TuWZmZk444OVyOWkkG4lEEI1GpYaLqZnhcFhqP+hCx/0FAgFpNM6JbLfbxezsLKrVKra3t9HtdlEqlSSVknV2jKbFYjH4/X7s7e0hl8thbm5OJl2MFLDuhiKTjW+Pjo7EWZMTW07O+Xo7KmfjngDb6X7vlHGpgnYaJ3t6MSrHWkLWGNGFb3Z2VlwtfT6fOHBy3zxXdr89TkrddVT8jnFy7zb4sP/ax8P+637O3YNv3Da2EDutjs6NW4DZ6Z922qdtWDIuWugevzuSZ6eRUsAxapLNZjE3Nyff/d3dXdy5cwevvPKKRHop3vj77Ha7Itrs3m2ThNuk79+4tEn7Ne7749Jq7ePFBRv+9nhdoTBiH7V6vX4iis3jEwgEsLCwgGq1il6vh8XFRfj9fvR6Pezv7yMQCIixRi6XQ6lUwsHBAVZXVzE/P49yuSxR+uFwiKtXryISiWB3d/fEWFnXa5vCVCoVST/mOT84OECn04Hf70e73cZgMJAUcFr6VyoVFItFWRDiAhYdeXu9HqLRqJyfUCgk1zs2HGd7E4pOHt9qtXri90SHYLZ8oPiv1+vSdmF2dha1Wg3r6+toNpu4dOkSBoOBpNFTuDG6mMlkcHh4iGq1ikgkgmQyiUKhgF6vh3Q6jWg0itu3b7+l39P7wYUTcKyB62sfOEVRFGUCnNAFAgGxoWcj7l6vh3q9Lv3PaHhA+2xODFnHEo1GEQgEUCwWpY/S3NwcUqmUpOnw/Vi7QivqRCKBXC4n7xeNRrG7uyuTINaLMGJkG450Oh2x326325J+CUD6RG1ubiIejyMQCGBra0v61fHzttttZLNZiUQyPZPCwOfzodPpoFgsymo8J4j5fB6O44ghC9NC+Xk5GWJKKEWNW6TZ0Sl3WuI7EXLuybUbvnen0xEhxygchdz09DT8fj+i0Sg+8pGP4HOf+xyeeeYZXL9+HXfu3EGv15PoKEU/zxOd7+yaolwuJ1GhRqOBdrt9Iho1KQWTTIqgUSDzNqEBiX3fjhDZUTvbaMMtSOxtbFMO+xi7U0AnpYLan8muB2MPs2QyiXQ6jdnZWUxPT0tN240bN1AqlSRdmBFpACIY+HtiCizNSHgO3AsI7uNrf3475XGcWHNjizT7vp02yXYGfr8fiURC6t7oNMmeaayt4njD4TAikYi0QWg0Grh27Rq8Xi+63S5qtZpcgxjB2tvbQ6/Xw0MPPYRkMikNq/kvl8shHA4jHo/D7/djf38fxoxMVRgtZ/oka96A0W86Go2iVqsBGEW0yuUyvF6vRKVpLMJMBRqBLC8vYzgcolqtynj4HfD5fFKry2vpzs6OZEX4/X7p7RYIBMSwhN/9Wq0mbU54bWYkkuY0vJayjjedTsPn8+Hu3btoNBpifsL023w+j2KxiI2NDXS7XaysrGA4HKJeryORSCAej+Pu3bvaRuC9RCNwiqIoyv2o1+tIJpNSX2avuLPmKxAIYH9/XyYTnLBQhLHPmuM42NjYwNTUFA4PD5FOp2UCUKlUJLpFcchIWzAYRCQSEQe6UCgkxfJ2KhRXuRltY3PhWCwGY4ykINnOfVxtX1pakkheNpsF8EY/KU6A2KcpHA5jZmZGVvaZzsXUK6YNtlotJBIJbG1twePxiMMbjQ04EaIJgS1U7ImxOy1tXE3Z/UTcaZPqSY+5t+eEmSKYtu521OG3f/u3kclkEI1Gsbi4KK0ZGNVhOhnrm5LJJB577DH4/X6srq7i6aefljSwjY0NbGxsYHNzE2tra5KSy0n7uIjaWxF59uezxdu4++NMRsYJsEkpnuPq3cZt447W8XtO85FIJIL5+XmxwT86OsKdO3ck9Y7HgueZE3Qaj1CAM6JD0cb6Nv6eJ0Vk3d8J93Vg3GvGiTp+z93tEyhwmTZI8xyfz4ednR35jjFqGAqFTtR/MW26WCwiGAzi6tWrsgCztbUlmQT8zXU6HQSDQSwtLaHf72NnZ0fGwhq6RCKBSCSCbDYrAocCiYZLjFQzu4DijVH8WCwmGQjT09MimCORiFyrZmZmZDypVArb29ty/GyDGS4kNRoN5PN5yRJot9uSYspty+WyXGscx0Gz2cT8/Ly0TrDFJBdo5ufnkU6nUSwWJQWUQpTZCvZ7zM3NodPpyELN0tISQqEQXnnlFWnF0Ov1pGburLhwAi7oH12kmp3xKQWKoiiKQhMQRl34HzFTt8LhMLa2trC7uys1Y5wAOY6DcrksTWkPDw8lnefq1auIxWLY39/H4eHhid5UtMBmw22mE4XDYQCQYnym8thOcewLx95tdHhrtVonhBLThthfynEcEYhsZUCjh0ajIf2bEomE1JJwAkr7chomvPrqqxJlYkpUrVZDr9fDI488gmazic3NTYkMsKUAAHlPuxmzO1IzLjpyvwmS+3l3dM8WeO50Ofdrh8OhiINmsykT72q1ijt37iAcDsuxpOW7ff7a7bakUe7s7ODu3bvweDzI5/O4fv06PvrRj2JhYQGXL1/GJz/5Sfh8Prz++us4OjrC5uYmdnd3xVyHTokU63Z0zH187ObWthjmX/sc8LPbAmNcxA14c583O9Jmj8Gu5+P7MYLJCW8ikUAymZReY0zVOzg4wO3bt6XvIlOa7SjbcDjEYDAQ4w37H7/7rAu13STHnffTvkPjvivuyJr9GneE0V5A4bgZ1ff7/YhEIhK539rakt8ro7WMwgGQqNtgMEChUEA8HsfS0pIIm2KxKPVmjuMgnU5je3sbg8EAqVRKzlWlUpHjx+3povjVr35VekXaDpz8vrE9CKPptVpNRA5dICmU2FScpjBcwOH+6ULJ3pZ2pK/X60l7gb29PcRiMTl29rljBgQFV7vdRjwex9TUFI6OjjAYDDAzM4P9/X0RektLS8jlctjf35eMCy5YMRLOa26v10M+n0csFsPLL78MYwyy2Syi0Si2t7dl4cHn82F7exudTgfxePzU79b7yYUTcInQyHmo0uqd8UgURVGU84o94WQ9WCQSwdzcHAKBADY2NnB4eIhsNotSqSS9poCRi+Lc3JxMTJhCmM1m4fV6sb29LRMSRh04WeNk2BgjxiPGGJRKJQQCAQCQRr7dbhf7+/viWMfGvOFwGMPh8ERND0UFJzyMotk95YLBoLyGE+S9vT2srq4iEAigVqvJZIYihilNi4uLJxwzg8Egrl27hmeeeUaMFsrlMkKhEG7fvo12uy0TQE7+Obl2iwZjzJtE3f3SKCdNrN37mDR5P21S7zjOCUFAoxqmWvJY87zyXPJ8UlCwNq5areK5557Diy++KNG5VCqFTCaD1dVVrK6uIp/PY2lpCZFIRNJSmUJYrVZRKpVQrValJocptHaEiQKCESG77s/+6xZgwEl3Sf4+KEbsOjVO4Pkau3cZaz4TiQRSqZREnSgy6vU69vb2cOPGDTQaDTQaDVmAYOSMvy9blPG7yMiOLdpYe8h6uHHndlw01/6OnBatnXTf/q7w8/H48HvHdDyPxyMpfBQb3H53d1dus/n09PS0RIi63S7m5uaQTqfF6Zb1YrTRj8fjEh3KZrPweDzyvaUxCqNqiURCFgns1GdGK/k9ByCpk1woAiBNsgFICw5e1/idjMfj4vDb7/extrYmdY1slcDzxfYOg8EAiUQCfr9fFk94/nmt4jkIhUJoNpuIxWIIBAI4PDyUrIBCoSALarOzs4hEItjf30e9XsfU1BTS6TQajYbsiwKbC2a5XA537tyRHn3pdFrcZ7PZrBhXMX190vfig+DCCbh4cCTgyirgFEVRlAkwLZEF6/F4HJlMBo7j4N69e7h79y6Wl5dRKBTEYptpWjT4ODg4wPr6Oubn53H58mXUajXcvHlT0rc4mYvFYjIZ4uQuHA5LCmepVDoRmUqlUmi1WmJOwCJ9igcAUs/h9XoRi8VkbADEQp01cVxNTyaTaDabaLVaYprQ6XSwtLSEbrcrQrHdbksdGBsPh0IhrK6uYmNjAwAwOzsrRgCvvvoqotGorMCvrKyIDT8n2ez3xEmoXR/kTqW0UywnMUm8vR3cdV/uCIv9j72nOAmneyWFHGvd+I/PjXOXPDo6QqlUwu3bt/GXf/mXCAQCUpOUy+WkFiwajSIej2Nubg6RSEQiqkwbrFQqUjdlRw6bzaZY5jOiRYFHZ0HbxZRCjCKNdUk+n09cAylO6dRJ+3vWDvJzNhoN6al39+5dlMtlSV2joQjTDDkOO8LG3w7TI+0aNrews91Yx53Dced4UrRt3PfI/b2090nsqKPbxIePMcrPSA5rstj2wBbLPAdcALpy5Yr8rvgbDwaDSKfT8Pv9aLVaePnllyUCxgUbRqBYVzsYDJDNZiXd1xiDXC4nUUEeW4pkpmMyEs/vOaNrfr9fonvMLqCpyeHhobRb2d/flxozANJo3e/3y/s1m02k02lMT09LlgNrGlknR9dJjoc1bMViUcQfFzj6/T4WFhaQy+VQLBblN7K0tCS/DV4reWyj0SjS6bSksAcCAbnm01Ezk8nA5/Ph8PBQUi7phHkWXFgBpxE4RVEUZRKcIDFViXUThUIB1WpV7KbZd+3u3bsIhUJYWFiQCerh4SGWl5dx7do1cccLBAJIp9Nih03rc042PR6P1Fix7oOujmy8y4k467AAyF87fajZbCKfz8tqNpuAc6I1GAxQq9VEBDIaYoxBJpOBMQabm5tiNc42Cqw9chznRE2O3+/HtWvX0Gw2pQ9SNBrFysoKBoMBDg4OkM/n4ff7Je2TIoN1WIwW2fVuhJPqSZb87km4zf0EnTvi4t7PpLRNd0SQgpgtJhhlsVMqGQGxo1Z83D4HHMtgMEClUsHR0RHu3bsHj2fUmJ0igOc/m81iZmYG0WgUyWQSkUgEsVgMqVRKxBbFO8fK80gRyogWn+O47bQ/+/UUd5ycU5SzNpLRnKOjI9RqNYmIUYBxf1yEsNMbOQ7WEtqCjcKO4o4CjwsCkwSbW6CNS4l03x8n7iZ9l+z3tCNvdgTTFvlswzEcDrG/vy+tKxgF54IM2yXYY7t8+bKkLHMRhM6ndgRvamoKS0tLiMVi0qMykUigXq9LT7eZmRlZBKLwTiQSEqUDIDWgPMccVyKREBMnRrDYB5I1fDweR0dHCIVCmJ6extHREebn57G3tydmSLlcThYbWI8Wj8elDi4cDks7E6ZLJhIJEcL8TtIF2O/3I5vNYmtrC+12W65r7OnI3nAzMzPodrty3eexpEkUG8EXCgWJ1IVCIdy6dUtaVyQSCWxvb6NarcJxHIkwnxUXTsAFfV74vR6UmyrgFEVRlPFwVZymALu7uxIl8vv9KJVKUoPywgsvIJFISMNvrjxfunQJly5dwjPPPIPbt29jZmYGuVxOUhAZiWHaEJ0fWejPGoxYLCbRONqIc8LCyAaFFVOyWG9XrVbFBKHRaCAWi8nEkhMtRvToYlcqlSRNizV6rGfjhInua5zgx+Nx6U3HSVSlUpG6EaYosV7nscceQ6vVwve+9z1pz8A0OU7eJ6VJ8vPZ9V0Ufe50uLcaibP3f9pr7lcnx8e4gu+OzHEizjpGCiA7dZaPUfgR203SnhQzSlMsFvHaa6+N7etGsc/eYkyb43fIFhiMWtkW7RRWdqTLjpiVy+UTkS++P5+3j40dKeM2FI62QKNgo5jh+eb2dsQQeMPkZpxoOy2NdtK5HHfOJ+3PjR15s88ba1WZVsrjwdq2cDgsx8aOeNpReqbZBgIBxGIxWQCJx+Py/Wq321hbW5O+hLFYDO12WyJvMzMzcBwHhUIBqVRK0pyvXLmC1dVVlEol7O3tSXokF2T4u6Og4rXMmFF/SAovNtKmIyUANJtNGePm5ib8fr8YhTSbTRFBh4eHGA6HSKfTItJo0sIoWygUEvHF9+Pxo8srF5gODg4kWsf6W8dxsLq6CgCSFspaQzYc73a78Hq9mJ+fl/rT6elpJBIJJBIJvPLKK1JHR1Oq/f19uQ6dZfokcAEFnDEGsaBPI3CKoijKRKLRKPL5PKampvDqq6/i8PBQIhl0catUKrh+/Try+TwWFhawt7cn6Uf5fB75fB4vvfQSXnjhBaysrEiT3cPDQzHAqFQqSKVSCIVCJ4wMGP3jxI2pOlx5to0hWFtC9zqOcXt7G41GA9FoVGpouE9GKjj5cbsrsibu4YcfxvT0tLjL0QTFrv3I5/MyuaxWqwiFQjIBS6fTeP7552UyxYnn9PQ01tbWxOWSE3WmbXLiSuFwv1o3t+29nYLnjp69nbo5e7I+SbyNM7dw7xfACYHDxQCPx/MmMWfXlbn/cnsKdcJolDt6x+NAxz1OqI15oyk2cLLhNiefdjTUTqm0P6ftGjqutQBFFj8/RSAjahS7rAm0RZn7Hx/nPsadD/tcjzvv484Lx39a3eRpIm7SRN0+vjwv/K3xN81zlkgkJD2R7UB4TpLJJBYXF0Xc8joUj8clijQ9PS3tQxihp5uix+ORfoysUd3d3UW73UY6nQbwhsCPRqOIRCIijjqdjqQBMiIbDAaljozHju01bGMWijlCg4+DgwNZQOD3mamct27dQj6fF/Mktk1gLTA/NxcwWBfM69n8/LykMMbjcZRKJezs7CAcDovoBN5YNAiHw1hfX3+TeQrTMufm5lAul6UGmRHBra0tNJtNLCwsiJvm5uampJB6PB7JkjgrLpyAA4B4cApVFXCKoijKBObm5tBut3H9+nUUCgVcunRJolFerxd/8Rd/gcFggEceeUTSdbg6TLOJl156Cbu7u8jn82Jg4vV6JU2IdR2hUEgiLbSbZwTQ6/Xi4OBAUqs4yeSEkBPyaDQqqVTGGBwcHIjJCh3U2PqArnE0DaCBAlMYmWpJww2aYrD2hhEjTgw5AWcEkIKkXq/j4OAAsVgMW1tb6HQ6SCQS0sfJ6/XioYceQqfTEXMBRn3YcsCOCBF7sm5HXex/AN4kaNyT7nGT9dNqpMYJtdNW2cdN8Ck27YgSU8JYz2NH6+y6Ofc/+7Nye74f71NE2IKOr2Eap/353DV5boMT9+ewPyMn0dyWQo1ii98tW6DZx4H37Sibna7nPofudNdxonpSKqWdZjnpXNmfddy5HRfldde82dFQ9mRkLRdfw7RAO02U4igYDErjeF6HgNH1iemPXMRhyxO6fDJSVywWJVpOB1z2dLQFV7FYxPr6urjdsnUBU7xtt0mmWdZqNYka8nfKrAJGvZjuG41GcefOHQCQvocAkEgkJKXSNmC5ffs2PB6PWPzbLQxobMIU7m63i3w+j/39fQCj2jWfz4dCoSDRR2AUVY5GowBwwhGXNb5Mxc1ms1hdXUWr1cLe3p4I11Qqhd3dXRSLRSwtLSGbzaLRaGB7e1vSTXmNtX+TZ8GFFHCJkB/lVvesh6EoiqKcU/b29mR1++rVq1KI7ziONL9mT7RCoSCToEwmg0AggN3dXXi9XqysrIjJSSQSERdARrtshzbWhdFsoNlsYm9vDwDEop5pSwDEIZP74ASOzn1sut3tdlGpVBCPx2XiadcV0eaeERF+Vttshe6ZdKFkg2FSqVQQCoWkTq9YLKLT6WBlZUUiCsPhEKVSCY1GA5lM5oSLXTqdxu3btyUCwbQ54M1iAXgjZdJ2qrSNT5jG5/V6TzgucttJYm7cfY5hkrhzM0nUud/D/su6OGJHsyjCbOMLW8TZoswt7OznKOzIOAMVPs6Jpy2ibHMR9+eyzUZsEeZOn3QLNfdrbVHHhYpxYnmcOHOnwdqfe5Iwu1+UblJapXt7e4x2qwA+z987jz/PG6Ph/X4fPp8PrVbrxPllfWG9XsfKygqMGfVAowkNzTuMMeh2u5iZmRFhzrRrjmF6ehq1Wg3tdhuJREJMYa5duyZmMpubmzg6OsLly5dFxNH90uPxSH/DSCSCQqFwwvEWeMOEiC1C+Jkdx5HWCIlEQloO8PU0Jcnn8+IyyRpamrmEQiHU63W5PkQiEblOJRIJcY+k6dStW7ckBZguuDTaMcbIYpn9nWdLmJWVFXi9XjFbMmaUxlooFLC1tYXZ2VmkUqkTRkFcDKN4dbc5+KC5kAIuHvThoHZ2zjCKoijK+ebo6AitVktst9lbqdvtShpiq9VCpVIBMFp1zmQyaLfb2NvbO5FSyMbdTK+kCKIlfKFQOBG1cBxH+hCxDo3RMZqfDAajPm6cENM1sl6vIxAISMpRr9c7YXLASQVbBjB1qtvtnphkMnLCOj0AWF5eRqvVkpQtpmfdunUL165dk9YEdM2MRqNot9totVpYWVkRswJOeuy6p2AwiNnZWUxNTWFzcxPVavWECOHnt6NxdhTEFjw0g2H0zh2dGSfO7H3yr1s0nhaxGycYbCHCx+3IoTti6Bas9mv4ubkAQAFgCzlb4HG/tpHGaVEpOyXSjT0u+7Yd6eRf+zO7I2w8N7ZRifv4uPftTtUcd57c52ZSOqT7cX7WtxJNtTntvceJYtsYhL9Xn8+HdDqNZrMp0Uua3tginQY3vGbwOtLr9U64U7L5dqPRkEWgwWAgLS6A0SJLMBhEMplEu92WRZd4PC6/R2NGTqE3btxAIpGA4zgnHERp/sFFGDpa0piENbo8LrwGMBUyl8uhVCoBgNTPMeKfyWTEGTUcDuPatWvSUoI96kqlEjweD1KplFzfeB1i9H52dhavv/46KpWKZBqwno/OuYyW8RrI4wsACwsL8Hq9eP755yVCOTc3h729PWxubmJlZQXpdBr1eh2bm5sIBoNwHEfMfrhgZbu8ngUXVsDd2q/df0NFURTlQ4nH4xHHsm63i9dff13c3KanpyVlkvbuyWRS6i1Y2xEIBDA7O4tcLif1EJzAJpNJiWqxvs4YcyIlKBwOS3SMogR4Y8LIyQFNJLgCzFQ8pigZY6TOJBQKnejplEwm5XmuTLdaLZlkcsJJl8FAIACfzyd1a9FoFMvLy7LyXCwWUa1WxRY9FAohGAyi0+lgYWEBtVpN7Lj9fj+q1Sr29/fFLa7T6SCTyUgkkZNiTi4nReNswWA7Jtoi4bTImC263Pud9Bp7m9Mm/5OiOrYA4ITdtr3nc25TElvQuY+DLdzGReHcETp7H+MiVbbAGveYHU2z0xLtVMr7HUP3sRr3+Lionz1Wd6RuUgTV3mZcGuVp55zb8P04rnHHlu9H8UUzDv7u8vm8mP2MWyzo9XpiYU9nSfaZpBmH44z6AdKY5ujoCABE0BSLRUl/ZAp2NpvF2toaDg4OpJ/kxsYGyuWyLA4QpoT3+33pOUhnSKZjF4tFRCKRN4kiRs/YUJ3ZCTRIYuTQrmWjGQuFEH//qVQKfr8fe3t76Pf7cn1oNBrIZrNi1+/xeDA7O4uDgwOpWfP7/WJiQhHNhSOmgrIxOI9POBzG888/L6ZSs7OzqFarKBQKyOfzSKVSiMVi2NnZkUW0Xq8nxioUpRSMZ8WFFXBqYqIoiqJMggKFYiaTyWB+fh7GGOklxEkVV9LpTEnL9lAohEwmg1arJTbZnU5HCvRv3Lgh1tbBYFBW3zudDoLBoNjt2xElRlmYQkTx5vF4kEwmT4gRplcGAgE0Go0TE0b2emM0hBE71rkAkNVppi9R4GWzWZnEU/jRKW5ra0seY90JDVI4lnq9jhdffFGOneOMzBJ2dnZOiOZarSaf306ps48FX0shYTv+jYvu8LY9UR0nnk6LyrifcwsJ9zb2ZN8WGpy0TxIDbrFqR/UmCUY70uWOELk/w7hom3087P3ZrpL24/b72p/97aQmjhPO9t9xjBOg4/Zt37eP3f0ikePG6I7i8vtvHyM74snFDkbAST6fF7v6drstqaOshW00GojH45IBsLq6imw2i2g0ikqlIi63juNIyjadG+kEyzq2qakp1Go1NBoN/MzP/Az29/dRLpcxNTWF1dVVeL1e7O3tSaR+MBjIPoBRSuTW1haKxSJ6vR4WFhaQyWQwPT2Nvb09EXhshcDfIOvraOoxNzcn5k18n0qlItfJSqWCRCKB4XCIWCyGUqmEo6MjPPbYY1hfX5eaN0b9aMDCY0ehV6/XxXApGAzi4OAAzWZTnCP9fr+4+/Lz1et1cdINhUJ45ZVXUKvVpOdir9fDvXv3EI/Hkc1mkc1msbm5iX6/L9dWpp3zuLHBeiKRmPgdfr8Z/+t+wIkHfai1+xgMzy43VVEURTm/sG6M9R+pVArAKLWSKUNsWFyv17GzsyPGAbFYTFITm80mHGdk2b+1tYV0Oo1ut4s/+7M/w/r6ukxwmL7DFgFczQUgETBOnh3HkXq2crksTbhtJ0Ouyvf7fdRqNSQSCSSTSTEhsR0oOclg7YotImyXPLpc2sYYwWAQ/X4f+/v7qFarqFQq8rgtuuzaGI/Hgx/6oR/C/Pw8NjY2pK8cxxwOh5HP5xGPxxGNRk/U+THFk05vHJ+72TQn2u6UQrepAJ8fJ97cAnBcpGqSeHALAfd+OG5+Bvv93UKI29s1ZeP2bY/HTm+0hZw7DdL9mPt4udMk7fdxR5vsVEn3dvc7bu7xj4v8ubex9znuuN/vtfb9cdFH93P2+WB0zb2N/dzU1JQ0qGa0PJvNyoIOG2+zETbbCszMzKDdbiMSiWBhYQHz8/NSA0uxYEfmms2mRIvi8bjUxnJsGxsbSCQS6HQ6kt7MCCBNPygyw+Ewer2enMfDw0M0m00xREkkEjDGnEhP5O+bnz2TyYiYCwaDWFlZQbValQyBWq2Go6MjVKtVibSFw2EEAgGJJLJ/HVtKAEA6nRbjFqaAs46NtXM0aKEpCsVwJpNBKBRCs9mUBTh+5unpaSwuLiKTyeDOnTsoFArSS7HX6+HOnTuYnp7GzMwMlpaWRASzV6cxRq79FLNcTOM1/Cy4sBE4AKi2ekiG/Wc8GkVRFOW8sbW1dcKWn6vahUJBVmY5yWSqosfjQT6fl3oMRpJYE3HlyhVMT09je3tbattyuZzUq1DM8XWEDZL5HrFYDI1GA+VyGalUStKzWO9CB7ZyuSy9lwCIo5wtHmxnyXa7LXVysVhMJvNM+wJGE3yaLkQiEQwGA3Go5KSo0WiI+xtNAezohzEGV65cwcbGBlZWVmQiy1QvrtLncrkTkSgAkjpG4WNH4mwRMS7F0U4R433bPGRSnZVb5HF/44SffZ5sMeOODtqpc/ZxAXBi/Lxv72dcxMp+v0mRukmiyf489nbjoomsReRr3AJx3G37fe4nytznza4VtJ+3X8Nt3C0j3PudFFl1H08b+xi4Fwb43m7By2gz3V2ZUjgzM4NyuYx4PC6NzgFIxLrZbIqjbSKRwMrKCvL5vCzY7O3tScSODra2gRLrciORiKRsP//882I6sr+/j5s3b4qDZalUQiKRQDgcRrPZFAHp8Yys/YvFoqQ49no9pNNpeDwe1Go1OWb1el3GbowR914uDrHmjduxLQENWCj+fD4fjDFoNptotVqYm5uDMQbb29tyreH1YXZ2ViJ+Pp9PInalUkmuoY1GQ3rLsRE4zWDs9NZAIIB0Oo1wOIx79+5hb28P8Xgcs7Oz8Pl8uHPnDhKJBOLxOC5duoSdnR3s7u6Ksy+AE/XOjuNIGjsAaRdyFrxjAWeMWQTw2wDyAIYAvuA4zj8xxvwGgP8GQOF40193HOeP3+1A3w7J8EjAHTW7KuAURVGUN+Hz+cTynhSLReRyOczPz0tKYrvdlpovmnCwzxFXxlOpFPL5PLrdLg4ODiRNiP+4Cu/3+2ViF41G5XFO0BiJOjw8lMJ+TiJopsJJVqvVwr179zA3NyfOj1euXIExo8J/v9+PcrmMvb09qb/j5wBwQuRxssbJO8fPCS0nUZzYcyLKqB33x3SmxcVFeL1eLCwsIBKJYH19XSILMzMz0t4AeKOex+fzSbNjtlOgkKzX62NrsTj5dtd92Xb7NI2xRSbhPmxhY6dx2nWJwJuNQOzX2gKL4o2CwxZF49I+3dGlcSmcdhqf+3OclhbojvJxLPy+ATjRSNvej1v0uMWSWxi5BR5f4xa/4z7juLHb4zjtudP2aW/nHj+/N+6ooh3FtQ12GIlhtHh6elocFDOZjPy+6vW6RI7sFORUKoVSqYRIJIInnngC8Xj8RKSKDaYpDmu1GmKxmAi0Wq2GYDAo9bBra2tYX1/H3Nwc1tfX8YlPfAL5fB69Xk8WcygCo9Go/Mb9fj+Ojo5O9OkLh8Nix886uFqthkgkIv3r6IBJ0ZdOp3Hv3j1JNx8MBiiXy9JOhFE0j8cjPdrq9TpmZmYwNTUlZifz8/OoVquoVqvIZrMAINffXC6HSqUikUSKyUajgUgkIgtctVpNaviAkasvawDj8Thef/11HB0dIRwOY3Z2FqFQCDdv3gQAxONx5PN5lEolbG9vSyYBADFuorkLAEQiEan75eLeWfBuInB9AP+D4zjPGWOiAJ41xnz1+Ln/y3Gcf/Duh/fOSIdH/0Ed1ru4lD2rUSiKoijnlWw2KwXvXPlNpVKYmZlBqVR6k4kAJyT1eh3GGOzv74tIicViKJfLUtzOKBprORh9o7U/U4fcFuBerxeVSgXlchmZTAb1el1sxo0xWF5ehjEG6+vr2NnZEdfIfr+P5eVldDodcZvc2dnB1tYW5ubmMDU1hf39fUxPTyOVSol4GgwGUgto1zixXo5RN0a2stmsrNozJWowGEgtH+29HceRfkxMN+IkPh6PY2dnR8QzX88Gvh6PR1I1mQZKEeROQ7QFCrFru+z6mXHRHlto2eLMjgiO2z/f2y38eJvvbTsWUuDZkaJJwov7sfdtR8Ts5+3tx4kcvjefZy0PBUMymZQIqVsAc3/jzEDsx93v6T5m9medNMZJotb+bJOieOOOw6RopH1Mxp0TRqJ5m+d4ampKDCsCgQDC4bDUSAWDQZRKJcTjcVnw4XYUdn6/H4eHh0gkEnjkkUeQzWbx8MMP4/nnn4fjjJxqHceR2q+DgwNpE8LoHGvX+v0+1tfX8dprryGTySAcDqNer+P69etIpVI4OjpCNpsVAcWFIP5+9vf3RaD0+30kk0mEw2EcHR2JwUihUJAIPNsXDIdDic4tLCxIWjWNQdbW1uDxjPq6eb1e6TVJwTgYDDA3NyfZAzQB6XQ6CAQCiMViaDabMjbWF9NQiteLUqmEaDSKdDqNWCyGarUqn4/XCaaRhkIh3L59WxbKmGp58+ZNtFotLC0tySLY3t7em6L7vKaz/pAGKx6PR1rBnBXvWMA5jrMLYPf4ds0Y8yqA+fdqYO+GTIQC7uxCm4qiKMr5hSKK6XO5XE5WxJkWaacy0Xq/2+1iY2MDqVQKs7Oz0p+INWzBYFAmehRCnCDT8KDdbktEyhgj9WSlUgm1Wk0iVDRK8Pv9MmHc3d0Vx0emHkWjUVm9j0ajODw8RLvdlmgXHemYCmmMEcMSewWZ9zlRvHv3rjTcpvji+25tbeHy5cvyeTjh5Yp+KBSSSU86nZYxMrrHdgdc8bbTqwqFAowZmcnYk2xGxwCcmHi7oQDjmDhxtaNpdvTMFhiT3BDtNEZbvAEnDUX4GrexiZ2CZ+93nHCxtx33Od2iblw6pftzcl/8zjNKy+81P5d7AstUNMeZ3HDbzbjP6D4+4+6P2+9bEWPuiNy4CBwXASheWSc6bl+MVNrnOxwOS3oye6yx5suOoHGBh6YZrF2jS+Kjjz4qKdrlclnMhjh2pktzMQMADg4O5JpSrVZRKpWwsbGBfD4v9a1MfbRFCQWXxzOy5a/VaigWiwBG179qtSrijW09KFiCwaBEs5iRwDRKLnKxbYDf7xd3Xjr0ApBoP1NJl5aW5DPU63VEIhF0Oh3s7e3hE5/4BG7fvo1yuYzhcIjLly+j1+uhUqmI0RSzGWwHXEbu2F6Bz8/Pz8Pn80mzcLZ1CIVCuHfvnvSky+VyaDQa2N3dld8te2Mym4GLG/F4XEQ7o28PfBsBY8wKgCcAfA/A0wB+xRjzXwD4AUZRuqMxr/klAL8EvHFS3yuyURVwiqIoymR++Zd/+a01hTpnXL169QN7r0uXLo19/BOf+MQHNgZFURTlzbxrF0pjTATA7wH4VcdxqgD+OYDLAD6OUYTuH457neM4X3Ac50nHcZ5kzut7RSrsh8cAhZoKOEVRFEVRFEVRLg7vSsAZY3wYibcvO47z+wDgOM6+4zgDx3GGAP4FgKfe/TDfHl6PQSrs1wicoiiKoiiKoigXincs4MwoyfhfAXjVcZx/ZD0+a2328wBeeufDe+dkIgEUameXm6ooiqIoiqIoivJe825q4J4G8AsAbhhjnj9+7NcBfN4Y83EADoANAH/rXbzHOyYbDaCgEThFURRFURRFUS4Q78aF8tsAxhWBf6A93yaRiQTweqFx1sNQFEVRFEVRFEV5z3jXJibnlUxkVAPn7hGiKIqiKIqiKIryoHJhBVwuNo1Of4hys3fWQ1EURVEURVEURXlPuLAC7iP5KADg1d3qGY9EURRFURRFURTlveHCCrhrszEAwCsq4BRFURRFURRFuSBcWAGXjgSQj03j5R0VcIqiKIqiKIqiXAwurIADgGtzMbyiAk5RFEVRFEVRlAvChRZwj87FsFaoo90bnPVQFEVRFEVRFEVR3jUXWsBdm41hMHRwa7921kNRFEVRFEVRFEV511xoAffoXBwAtA5OURRFURRFUZQLwYUWcAvJIKKBKa2DUxRFURRFURTlQnChBZzHY/DIXAwv71TOeiiKoiiKoiiKoijvmgst4ADgiaUEbmxXUG33znooiqIoiqIoiqIo74oLL+B+6loevYGDb752cNZDURRFURRFURRFeVdceAH3xGICM9EA/v1Le2c9FEVRFEVRFEVRlHfFhRdwHo/BTz2aw3+4WUCrq/3gFEVRFEVRFEV5cLnwAg4APvPoLFq9Af78duGsh6IoiqIoiqIoivKO+VAIuL9yKYV40Id//d276PQ1CqcoiqIoiqIoyoPJh0LA+bwe/N2ffAjfXjvE//5Hr5z1cBRFURRFURRFUd4RHwoBBwB/8+lV/PwT8/jDF3bRGwzPejiKoiiKoiiKoihvmw+NgAOAn/noLCqtHr57p3jWQ1EURVEURVEURXnbfKgE3CcfyiA6PYX/49+9ikKtc9bDURRFURRFURRFeVt8qATctM+L//tvfAJ3Sw382u/fOOvhKIqiKIqiKIqivC0+VAIOAJ6+ksGv/uRVfO3VfXztlf2zHo6iKIqiKIqiKMpb5kMn4ADgv3x6FQ/NRPAbf/iyNvdWFEVRFEVRFOWB4UMp4PxTHvxvn30MW0ct/LNvrp31cBRFURRFURRFUd4SH0oBBwA/cjmNn39iHv/Pn9/BH9/YheM4Zz0kRVEURVEURVGUU/nQCjgA+J//2iN4OB/Df/fl5/CZf/wt/OXr2l5AURRFURRFUZTzy4dawKUjAfzef/uj+Pv/2eNodPv43Bf+Ev/1F59BvdM/66EpiqIoiqIoiqK8iQ+1gANG9XB//clF/Onf/TH8vc98BN+8WcDP/tNv4f975h6GQ02rVBRFURRFURTl/GDOQ+3Xk08+6fzgBz8462EAAP7sVgH/8E9v4sWtCqZ9Hnx0Po5Pf2QGC8kgPv2RGcSDvrMeoqIoijIGY8yzjuM8edbjUBRFUZT3k6mzHsB541NXs/ixhzL4dzd28ezdI3zv9RL+zz+5CQAITHmwkg7jxx+ewaNzMfzUozkEprxnPGJFURRFURRFUT4sqIAbgzEGP/v4HH728TkAwFGji41iA3/4wi5e3a3iC39+B0MHCPm9uJQN43I2Iv9ysQAuZyNIhHwwxpzxJ1EURVEURVEU5SKhAu4tkAz7kQz78cRSEgDQGwzxF3eK+OZrB7hTqOMHG0f4t8/vnHiN3+tBPORDMuRDIuhHOuLHfCKIhWQQqUgAQZ8XQZ8X0ekpxIM+RKenEJ32wT/1oS9LVBRFURRFURRlAirg3gE+rwefuprFp65m5bFmt4+Nwyb2a22s7ddRbHRRaXVx1Oih3Ori1n4N37x5gHZveOq+/VMexI7FXCQwdSzsphAJ+BAJeBGxbocDU6N//imEAt7RX78XIf/oucCUR6OAiqIoiqIoinKBUAH3HhHyT+HaXAzXEMOPf2Rm7DaO46DY6KLc7KHdG6DZHaDa6qHS6qHe6aPW7qHW7qPW6Y/+Ht8/PGyg0Rmg1u6h0R1g8BbdMT0GJ8VdwIuQfwphvxehwPFf/xTCrsdDfi8CU15M+zyY9nkxbd0O+DzynN+rAlFRFEVRFEVRPkhUwH2AGGOQiQSQiQTe8T4cx0GnP0St3Uej00ej20ezOxKDzU4fje4AzW4fjY7rrzzfR7HRxb1SE83uAI3O6PX9d9AywRhgesqLoH+UDjrt8yDop+Ab3Q9YAtA/NfoXmPIiMOVB4Pi+3+uBz+vBlNeM/noMfFMe+Dx8zGDq+Lbf68EUt+FrPB74pkbb+LxGRaWiKIqiKIpyYXnfBJwx5jMA/gkAL4B/6TjOb75f7/VhwhhzLI68yEbfuRB00+0PTwi9dm+Idn+ATm+Idm+Adn8weqw3QLs3QKc/ut3qjp5rdYfHUcU+Osf7KjWG6By/rtMfvabTH6LbPz2N9N3i9RgReD6vwZTXA59n9JeCb+r48anjbae8Bl7PaDvv8f0pj+fEc1Py+PG2XiPvxX157X/Gdf/4Mc/xa/jX/Zj9unGPuffF28YAHmPgMaNjoEJWURRFURTl4vG+CDhjjBfAPwPwVwFsAXjGGPMHjuO88n68n/LuGUXH/EiE3v/3chwH3cFIyFHQ9QZD9AYO+sMh+oPR8/2Bg/5giN7w+O/AQW8wRH94vO3x9vK4ax9v3v7kvgbDN7Zt94boDwcYHN/vD0fP9wbD4+1Gr+PjfO/z3uvdFnMeg5HoOxZ7Xg9vvyH63vzcydd4joWkx4wWE07cNgYeD2SfXmPd9lBcjkSnx1j3DWTf5nhfBjjxnjhx/3gbAxi4Xg8cf577bwvXe4x/79Hr+NzJsb55W+CN48Ftx30ejtN+73GvnzTOse8l47zPe3F/HtznOPO10MUARVEURTlHvF8RuKcArDmO8zoAGGN+B8BnAaiAU2CMOU6j9CJ61oN5lwyHltgbDjEYOBg4o/sn/jnOiW3djw2P7/O2/di4fdn3h46DoYPR36F128Hx/UnPO+O3s24PHAeO42A4xMntj8fgWLdHgvf4czkjoT56zr5tvcbar+MADvi60fYO3nhuONpgdN96/OTrnHMvqB9kThWLOBaALvFov8bLxQJLzHO7X/jhZfzij66c9UdUFEVRlAeC90vAzQPYtO5vAfgr9gbGmF8C8EsAsLS09D4NQ1HeXzweA/8oHIIgtKn7ecCxRN99xd7Y7d4sHie9/u1sC0ugnvpex59hOMR9x4UT99/47I77vdzHxRkvnGWfw/sdk9HrHMc+FifHZG9rLwpQzA+tMaTC/g/wG6IoiqIoDzbvl4Abl29zYm3ccZwvAPgCADz55JO6bq4oynuCpAuOvQwpiqIoiqI82LxfXaO3ACxa9xcA7EzYVlEURVEURVEURXkLvF8C7hkADxljVo0xfgCfA/AH79N7KYqiKIqiKIqifCh4X1IoHcfpG2N+BcCfYNRG4Lccx3n5/XgvRVEURVEURVGUDwvvWx84x3H+GMAfv1/7VxRFURRFURRF+bDxfqVQKoqiKIqiKIqiKO8xKuAURVEURVEURVEeEFTAKYqiKIqiKIqiPCCogFMURVEURVEURXlAUAGnKIqiKIqiKIrygKACTlEURVEURVEU5QFBBZyiKIqiKIqiKMoDggo4RVEURVEURVGUBwQVcIqiKIqiKIqiKA8IKuAURVEURVEURVEeEFTAKYqiKIqiKIqiPCCogFMURVEURVEURXlAMI7jnPUYYIwpALj7Hu0uA+DwPdrXB8mDOO4HccyAjvuDRsf9wfJhHvey4zjZ92IwiqIoinJeORcC7r3EGPMDx3GePOtxvF0exHE/iGMGdNwfNDruDxYdt6IoiqJcbDSFUlEURVEURVEU5QFBBZyiKIqiKIqiKMoDwkUUcF846wG8Qx7EcT+IYwZ03B80Ou4PFh23oiiKolxgLlwNnKIoiqIoiqIoykXlIkbgFEVRFEVRFEVRLiQq4BRFURRFURRFUR4QLoyAM8Z8xhhz0xizZoz5n856PKdhjNkwxtwwxjxvjPnB8WMpY8xXjTG3j/8mz8E4f8sYc2CMecl6bOI4jTG/dnz8bxpjfvpsRj1x3L9hjNk+PubPG2N+xnruzMdtjFk0xnzTGPOqMeZlY8zfOX78XB/vU8Z93o/3tDHm+8aYF47H/b8eP37ej/ekcZ/r422NxWuMuW6M+aPj++f6eCuKoijKeeRC1MAZY7wAbgH4qwC2ADwD4POO47xypgObgDFmA8CTjuMcWo/9fQAlx3F+81iAJh3H+R/PaozHY/oxAHUAv+04zmOnjdMYcw3AvwHwFIA5AF8DcNVxnME5GfdvAKg7jvMPXNuei3EbY2YBzDqO85wxJgrgWQD/CYC/iXN8vE8Z91/H+T7eBkDYcZy6McYH4NsA/g6A/xTn+3hPGvdncI6PtzWe/x7AkwBijuP87INwPVEURVGU88ZFicA9BWDNcZzXHcfpAvgdAJ894zG9XT4L4IvHt7+I0ST4THEc588BlFwPTxrnZwH8juM4Hcdx1gGsYXRePnAmjHsS52LcjuPsOo7z3PHtGoBXAczjnB/vU8Y9ifMybsdxnPrxXd/xPwfn/3hPGvckzsW4AcAYswDgrwH4l67xndvjrSiKoijnkYsi4OYBbFr3t3D6JPKscQD8qTHmWWPMLx0/lnMcZxcYTYoBzJzZ6E5n0jgfhHPwK8aYF49TLJmqde7GbYxZAfAEgO/hATrernED5/x4H6fzPQ/gAMBXHcd5II73hHED5/x4A/jHAP4egKH12Lk/3oqiKIpy3rgoAs6Meew854Y+7TjODwH4jwD87eOUvwed834O/jmAywA+DmAXwD88fvxcjdsYEwHwewB+1XGc6mmbjnnsPI373B9vx3EGjuN8HMACgKeMMY+dsvl5H/e5Pt7GmJ8FcOA4zrNv9SVjHjtP1xNFURRFOTMuioDbArBo3V8AsHNGY7kvjuPsHP89APAVjFKD9o/riVhXdHB2IzyVSeM81+fAcZz944nvEMC/wBvpWOdm3Mc1Tb8H4MuO4/z+8cPn/niPG/eDcLyJ4zhlAP8Bozqyc3+8iT3uB+B4Pw3gPz6u//0dAD9hjPkSHqDjrSiKoijnhYsi4J4B8JAxZtUY4wfwOQB/cMZjGosxJnxs9gBjTBjATwF4CaPx/uLxZr8I4N+ezQjvy6Rx/gGAzxljAsaYVQAPAfj+GYxvLJwkHvPzGB1z4JyM+9ic4l8BeNVxnH9kPXWuj/ekcT8AxztrjEkc3w4C+EkAr+H8H++x4z7vx9txnF9zHGfBcZwVjK7P33Ac52/gnB9vRVEURTmPTJ31AN4LHMfpG2N+BcCfAPAC+C3HcV4+42FNIgfgK6N5L6YA/L+O4/x7Y8wzAH7XGPNfAbgH4D8/wzECAIwx/wbApwFkjDFbAP4XAL+JMeN0HOdlY8zvAngFQB/A3z5Dp7tx4/60MebjGKVhbQD4W8C5GvfTAH4BwI3j+iYA+HWc/+M9adyfP+fHexbAF48dbD0AftdxnD8yxnwX5/t4Txr3vz7nx3sS5/37rSiKoijnjgvRRkBRFEVRFEVRFOXDwEVJoVQURVEURVEURbnwqIBTFEVRFEVRFEV5QFABpyiKoiiKoiiK8oCgAk5RFEVRFEVRFOUBQQWcoiiKoiiKoijKA4IKOEVRFEVRFEVRlAcEFXCKoiiKoiiKoigPCP8/nzkAfysiuOoAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -3164,7 +3164,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAGoCAYAAAAHGAe8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d5hl2X0VDK99cw6Vurs6TE9PaE2SZqyRkMbKloTBtsBgjA2vjTHgl2BMsAkG/NqAzYcBw/cabMA8NsavI68D2MgBMLJlfQrWSEZhRjPS5OlQXfHmUHXv3d8f565d6+4+t6p6UmvKez1PPV117zn77LP3Pqd/a69fMNZaBAQEBAQEBAQEBAQEBHzxI3GzOxAQEBAQEBAQEBAQEBBwNAQCFxAQEBAQEBAQEBAQ8CpBIHABAQEBAQEBAQEBAQGvEgQCFxAQEBAQEBAQEBAQ8CpBIHABAQEBAQEBAQEBAQGvEqRudgcAYGlpyZ4/f/5mdyMgICAg4FWMT3ziE5vW2uWb3Y+AgICAgICXE18UBO78+fN4+OGHb3Y3AgICAgJexTDGPHuz+xAQEBAQEPByI7hQBgQEBAQEBAQEBAQEvEoQCFxAQEBAQEBAQEBAQMCrBIHABQQEBAQEBAQEBAQEvEoQCFxAQEBAQEBAQEBAQMCrBIHABQQEBAQEBAQEBAQEvEoQCFxAQEBAQEBAQEBAQMCrBIHABQQEBAQEBAQEBAQEvEoQCFxAQEBAQEBAQEBAQMCrBIHABQQEBAQEBAQEBAQEvEoQCFxAQEBAQEBAQEBAQMCrBIHABQQEBAQEBAQEBAQEvEpwKIEzxpw1xnzAGPM5Y8wjxpi/Nv18wRjzP4wxX5j+W5dzvtMY84Qx5nFjzB98OW8gICAgICAgICAgICDg9wuOosCNAHy7tfYuAG8C8FeMMXcD+LsAftNaeweA35z+jel3XwfgHgBfDuCHjTHJl6PzAQEBAQEBAQEBAQEBv59wKIGz1l611n5y+nsbwOcAnAbwRwD8p+lh/wnAH53+/kcA/Ky1dmitfRrAEwDe+BL3OyAgICAgICAgICAg4PcdbigGzhhzHsADAD4G4IS19ioQkTwAK9PDTgN4Xk67NP3Mb+tbjDEPG2Me3tjYeAFdDwgICAgICAgICAgI+P2FIxM4Y0wJwC8A+OvW2tZBh8Z8Zq/7wNofsdY+aK19cHl5+ajdmIvWYA8/9IEn8LmrB3UtICAgICAgICAgICDg1YsjEThjTBoRefspa+0vTj++Zow5Nf3+FID16eeXAJyV088AuPLSdHc+Wv09/PPfeByfudR8uS8VEBAQEBAQEBAQEBBwU3CULJQGwI8C+Jy19l/KV78M4M9Mf/8zAP6rfP51xpisMeZWAHcA+N2Xrstz+wkAsNeLfQEBAQEBAQEBAQEBAccCqSMc86UAvgHAZ4wx/3v62d8D8E8B/GdjzJ8D8ByAPwEA1tpHjDH/GcCjiDJY/hVr7fil7rgP+m3awN8CAgICAgICAgICAo4pDiVw1toPIT6uDQC+bM453wfg+15Ev24YUwEu6G8BAQEBAQEBAQEBAccWN5SF8osZZsoxgwIXEBAQEBAQEBAQEHBccXwInFPgAoMLCAgICAgICAgICDieOD4EbvpvUOACAgICAgICAgICAo4rjg2BQ4iBCwgICAgICAgICAg45jg2BM44BhcoXEBAQEBAQEBAQEDA8cTxIXBBgQsICAgICAgICAgIOOY4PgRu+m8Q4AICAgICAgICAgICjiuOD4EzLCMQGFxAQEBAQEBAQEBAwPHE8SFw038DfQsICAgICAgICAgIOK44PgQu5DAJCAgICAgICAgICDjmOD4EbqrBBf4WEBAQEBAQEBAQEHBccWwI3H4VgUDhAgICAgICAgICAgKOJ44NgaMLZUBAQEBAQEBAQEBAwHHF8SFw03+DABcQEBAQEBAQEBAQcFxxfAgcywiEKLiAgICAgICAgICAgGOK40Pgpv8GBS4gICAgICAgICAg4Lji+BA4JjG5ud0ICAgICAgICAgICAh42XB8CBzLCAQGFxAQEBAQEBAQEBBwTHF8CJxT4AKDCwgICAgICAgICAg4njg2BI4IClxAQEBAQEBAQEBAwHHFsSFwoQ5cQEBAQEBAQEBAQMBxx/EhcC4GLkhwAQEBAQEBAQEBAQHHE8eHwDEGLvC3gICAgICAgICAgIBjiuND4Kb/Bv4WEBAQEBAQEBAQEHBccXwInAllBAICAgICAgICAgICjjeOD4Gb/hvKCAQEBAQEBAQEBAQEHFccHwIXslAGBAQEBAR80cAY8++MMd91s/sRB2PMW40xj9/sfgQEBAS8EBwbAkcEF8qAgICAgBuBMebPGGOsMebPy2ffZIwZG2M68vMO+X7BGPNLxpiuMeZZY8yfuhl9/2KGtfYvWmv/8c3uBwBM5/d2/m2t/R1r7cWX+BrvNMZ8wBjTNMY8E/P9/caY35l+f8kY83/Jd3/PW2t9Y8zEGLN0wPX+mjHm6eka/Jwx5s7p58YY8/eNMc8ZY1rGmJ81xlTkvL9ljNk0xnzWGHOvfP6lxpj/coP3/FvGmMG0z5vGmF80xpy6kTZeTsx5jjvGmNWb3bc4GGP+vDHmiWkff/2gfhpj7jLG/K/penrCGPPV8t2f9u63N30GXj/9/m9N5789XUN/y2v7/HQt94wxjxlj3i3ffYUx5kPGmIYxZs0Y8x+MMWX5fsEY83PT9bBpjPkprr/pxok/F9YY88en399rjPmN6XnXWfQHvXcPu+fpMV9ijPng9Ptrxpi/dqNzNG3nbmPMw8aYnenP/zTG3C3fG2PM9xtjtqY//8yYSGoyxqSmz2TDGPNr3tj9fWPM3zhKH44NgTOMgbvJ/QgICAgIeHkwGo1e8jaNMXUA3wngkZivP2KtLcnPb8l3PwRgF8AJAH8awL81xtzzknfwFYIxJnWz+/BC8UXU9y6AHwPwt+Z8/9MAPghgAcDbAfwlY8z7AMBa+090rQH4fgC/Za3djGvIRJsNfw7AVwAoAfhKADz2GwF8A4AvBbAKIA/gX0/POzU97wKAfwfgn04/TwH4AQB//QXc97dO+3z7tC//4gW08XLCf45L1tor/kFx6+hG19aLWYvGmLcD+CcA/giiNfI0gJ854Dr/FcB/mx77LQB+0kxJvLX2p7z19JcBPAXgk2wC0TqpA/hyAN9qjPk6ucTPAPg9AIsA/j6AnzfGLE+/qwL4XkRr6y4AZwD8czn3e6ftXgBwG6J35PdM+/U7Xr++EkAHwK9Pz90D8J8RrdE4zH3vHnbPJtoM+XUA/356X7cD+O9zrnMYrgD4GkRjvwTglwH8rHz/LQD+KIDXAXjt9D7/z+l3fwwRXVkC0OLnxphbAXwVps/qYTg2BM4hSHABAQEBxwbnz5/H93//9+O1r30tisXiy0Hi/j8AfhD7xu+hMMYUAfxxAN9lre1Yaz+E6D/wbzji+XljzA9Md5Cb093s/PS79xljHpnuzv6WMeYuOe+Z6c75p6c70D9qjDkx3cVtT3eB69Njz093n7/FGHPFGHPVGPPt0tb3GGN+3hjzk8aYFoBvMsZUp21eNcZcNsZ8rzEmOT3+dmPMb0/7u2mM+bnp58YY86+MMevT7z5tpqqOMebHjTHfK9f8CyZSCraNMb9sRF2Y9vUvGmO+MN3R/iHuWMeMX1zf32iM+ch03K4aY/6NMSYzPf6D01M/ZaKd9z9pjHmHMeaStHnXdLwb0/F/31HmUmGt/V1r7f+DyGiMw3kAP2WtHVtrnwTwIQDXkf7pfX8DgP805/4TAL4bwN+w1j5qIzxprd2eHvJVAH7UWvu8tbaDiAz+SWNMAcA5AL9nrW0B+J+IjGwgIm6/bK195kbvm7DWNgD8FwD3S19fY4z5H9M5f9wY87Xy3Yt5Dr5jutaaJlJ7ci+kz9O2/o4x5tMAutN1bo0xf84Y8xyA/2WMSRhj/sG0n+vGmJ8wxlSn55/3j38h/ZjiqwD8v9baR6y1uwD+MYC3GWNuizn2NYgI1L+arqf/BeD/h/nvoD8D4CfstFiytfafWWs/aa0dWWsfR0QGv3R6T3cC+BIA322t7VtrfwHAZxC982Ct/Wlr7a9ba3vW2h0A/4HnTnErgP9irW1Za5sAfgkx61z69fPW2u607cettT+KmA01c+Pv3Zl7BvA3AfzGlOgNrbVta+3npP25a9WHtbZhrX1m2rYBMEZECPXaP2CtvWStvYxoc+SbZHx+y1o7AvAB7D+DPwjgO6afH4pjReCMCQpcQEBAwHHDz/zMz+D9738/Go0GUqnrN7hf+9rXolarAcD9U4NPf354XrvGmDcCeBCREhGHB6Zk5fPGmO8y+7vrdwIYW2s/L8d+CvONFB//AsDrATyEaAf3bwOYTA2nn0FkTC8D+FUAv0IiMsUfB/CeaR++CsCvAfh7iHZzEwC+zbvWOwHcAeC9AP6uEVcoRDv9Pw+gBuCnEBGGESJD5IHpOXQr/ceIdqvriHbcuUv8XgBvm/anBuBPAtjyb9gY8y5EZPlrAZwC8Cxmd6yBaJf6DYh2rb8WwB/02zmg72MAf2M6Dm8G8GWIduBhrX3b9JzXTXfnf87rWxrAr0zvbwXAXwXwU8aYi9Pv/27MunI/B/TRx/8XwDcaY9LTtt+MiET5eCsiheEX5rRzZvpzrzHmeRO5wP3DKbEDIoNSya8BkEW0Dp4AcJ8xpgbg3QAeMcacBfB1eJHKmTFmEZG68MT07yKA/4FIeVwB8PUAftjsK9Uv5jn4WkTK0a2IFI5vehFd/3pESmYN0foHIoX0LkRr8JumP+9EZGyXAPwbrw09fgbGmHMHrR+z7wYYN28AcC+uR9zmhok71hhzC6Jn9CdizuGGwVuxT5ruAfCUtbYthx30fnsbZgnXDwH4SmNM3UQbSn8c0XvKv24BkYoVu1ERgyO/d+fc85sAbBtjPjwl4r9ijDk3Pf6wtRqL6fM/QPQ+/Cfy1T3TvsX187MA3jVdz+9E9Ax+NYDNKSk9Eo4XgUMQ4AICAgKOG77t274NZ8+eRT6fj/3+05/+NBqNBgD8b2ttzfv5y3HnmEhZ+mEAf9VaO4k55IOIjKEVRAbI12PfNa4EoOkd3wRQxiGYGtnfDOCvWWsvT3fPP2ytHSIiP++31v4Pa+0eIgM3j8jAJf61tfbadFf3dwB8zFr7e9PzfwkR8VL8Q2tt11r7GQD/cXofxEestf9lev8VAH8IwF+fHr8O4F8hMuyByLXpFgCr1tqBGBp70/t+DQBjrf2ctfZqzK3/aQA/Nt31HyJyW32zMea8HPNPpzvbzyHamb7/gKF0fZ+qBJ+w1n50qig8g8hN6u0HnK94E6I5/afW2t2pmvHfMB0ra+0/jVlX7ueI18C0za8B0AfwGCKV7OMxx1GV6Mxp58z03/cCuA+REfj12Hc7+zUAf36qDlUB/J3p5wVr7RaA70OkFH0FgO8A8H9Pj/lqE6ms/9UYw2scBT9ojGkiUrGXEBFgICLkz1hr/+N0Xj6JiJR+zUvwHPygtfbKVHX8FRy8Vt7kEaYn/f5P1cq+fPY90+egj2jt/ktr7VPTOflOAF9nZt0l9fgZWGufO2j9WGt/enrorwL4WmPMa6dK5P+FSJcoxNzTYwDWAfyt6YbAexGt97hjvxHA71hrn54zPt+DiA/8x+nfR36/GWPeg2i9/l/y8ScBZBBt5Gwh2lyJ20j744jWzG/P6ZePG3nvxt3zmWlf/xoiJVpdVOeu1YM6NH3+qwC+FZHL6by+NgGUpmT5V6fXfnj6+c8iUtT/jjHm+0wUo/fD3obFdTheBM6YUEYgICAg4Jjh7NmzL0ezfxnAp621H4n7cmqsPT0lCJ8B8I+w/595BxHhUVQAtHE4lgDkAPhGJBC5RD0rfZgAeB7AaTnmmvzej/m75LX5vPz+7PQacd/dAiAN4KooS/8eEYEFInXEAPhdE7m2ffO0j/8LkRrxQwCuGWN+xEjCjAPurYPIuNN7W5PfezH3Mu++YIy50xjz30yUVKGFaDd8bgKQmL497xH5Z72+vSgYYxYQxd/8I0TzfxbAHzTG/GXvuDyAP4GDVQmShH9GVy5Ec/WHp5//GCLD9LcQKSMfmH5+CQCstT9jrf0Sa+0fQrRJMURkfP4LTN34cGNq3LdZa6uIlDAqtEC0pv6Ap1b+aQAn8eKfgxtZKx/1CJPvkvh8zDn62Ux/pr+nEKmkB7VxQ7DW/iYiQ/4Xptd4BtE75VLMsXuIYqy+AtFYfDui2LHrjkVEZua5437r9PuvmJJn4IjvN2PMmxApVl/jqWL/L4DPIyJWFURz/JMxl/ddHA/Djbx34+65D+CXrLUft9YOAPxDAA9NNznmrtWpguqSo/gXspH7578D8BPGGL4v/b5WAHTsPv6utfa11tpvAfB3p+c/OP15OyIC/M0HDcbxInAIClxAQEDAcYM5pE7MPffcg1KpBEQuj36Gs3nukV+GSHFYM8asIdrd/wFjjO8aRTDWAYiMk5Qx5g75/nWIT4TiYxORy01cXMsVRIYEAOfadBbA5SO0Ow/Kfs9Nr0Ho/5jPIzLkl8TQrVhrmSBgzVr7F6y1q4iC7n/YTLM6Wmt/0Fr7ekQuQnciPomHf29FRIkEXui9+f/b/1tEqsQd1toKIrfSoxYYugLgrLggAtFYXZ721c8Q2TnIoJuDC4jcv35iusN/CdHO+x/2jvtjALYRka95eBxRIodYi2e66fDd1trz1toziNblZXhjPSWL/wSR8X8HIhLbAvBxRGTshjDd6PheAIxffB7Ab3vkqWSt/Ut45Z+DA7t+yGcz/UG0NkaY3TyZa336BCDm50+7Rqz9IWvtHdbaFURELoXI5e76Dlr7aWvt2621i9baP4hojf2ud20msvn5mH59MyLy8GXT9Ug8AuCCkeyI8N5vxpgHEMWfffOUeMI79t9PFckOInIys85N5Lb7Dsxx65yDI713D7jnT2N2nvj7gWt1qqBqcpQ4JBCpn9xkeGTat7n9nPb1XkT/9/wIIjX9E1NCe+gzeLwIXIiBCwgICPh9h0ceeQSdTgeIkjP42eb+4pzTvglRzMr905+HEe3I/n0AMMb8IWPMienvrwHwXYgC/bnj+osA/pExpjg1GP4IgP+HjZsoscE7/ItO1YQfA/AvjTGrxpikMebNxpgsoh30rzDGfJmJ4rK+HRGp+vALHhzgu4wxhWksx58F8HNxB9nI7fG/IyKxFRMlbrjNRJnxYIz5E+JWt4Pov9uxMeYNxpg/MO1vF5FRPo65xE8D+LMmSqWfRUQcPmZfRNIMD2VEGd060/n6S97317CfLMDHxxD1/W9P3dHegUiJ+lng+gyR/g8bmY5ZDpGSaYwxOXGD+vz0sz81Pe4kIldBjZMBjqBKWGt7iObxbxtjytN5+QuIXDRholTrt5kIdwP4lwD+kb3eVfgfAPhxG2VkfA7AxemafyemiVjMfpKO8/P64+E/IVJt3zftz53GmG+Yjmt6ul7uugnPwYvBzwD4G8aYW40xJURr9+fsEZNN+AQg5uenAGC6Xu6dzts5REb9/22jRCHXwUSulrnp8/0diGJLf9w77M8A+AU7G8+GKWn8JwDeY62dSbozVdP+N4Dvnrb/1YjIxC9Mz70XkZr8V621vxLTtY8jcuHNTzcJvgXXr/NvAPBhGyXz0X6Z6TPEBES56Zo40nv3oHtG5CL61dN3UBrRO/1DNkq+M3etxtwfjDHvMcY8MF23FUTP2A4AJkX5CQB/0xhz2kTJmr4d3txMNyZ+CJEb8QSRW+Vbpu+Mt2N+MiQAx43AwQQFLiAgICDgUExdz9b4g0jRYNY0IFLoPm2M6SKKWfhFzAap/2VEcTnriAy8v2StfQQApgZ1B1Hmtjh8x/S7jyNSW74fQMJG2eD+D0QB8ZuISMRX2Sgj3QvFbyNKKvGbAP6FtfagtNnfiMhwehSRMfLziIxCIEou8jETKU6/jMjoeBqRa9B/mB7/LCK3yOvc76a79N+FyAi8ikh5+Tr/uBeB7wDwpxC5U/0HXE9UvwfAfzKRe9RMdrnp+L4PUQzgJqJ4nW+01j52g314GyI3rV9FpNL0MU1TPlW2/hiiRCs7iAzkzyKKRwMAGGNOA3gXYlQJExVFVzX5WxGtsSsAPoKIIP/Y9LulaR+6iOLhfsxa+yNeexcRxdD962n/riIqKfAIokQ43zk99CyieT2S+jUdyx9ElCmwPb3G1037uYZorWenh79Sz8GbzfWq1xtu4PwfQ0QSPojIyB5gP87vpUQO0Tx2EClpH0H0zABwSrAmA/kGRM/SOqL31XvsvhskpkToaxHvPvm9iBTwj5t4b4WvQ+TOt4NoXXyNtXZj+t23I0ou86NyrqpL34wo4+olROvmAq5PMjPPrfMWRM8N2+sjUpyJue/dw+7ZRu7efw/A+6fn347onYEjrFUften1m4hcRG8H8OU2cs0EIpfmX0G0vj87vea/99r4swA+a619ePr3L06vvYFobvzjZ2AO2OSJDjDmxxAF961ba5ka+OcAsABmDUDDWnv/dIfmc9gf7I8esPvp8OCDD9qHH374sMMOxZ3/4NfwZ7/0PL7zD8US5oCAgICAYwxjzCestQ9+EfTj/wBwj7X2Ow89+OXrw3lExmb6qEpBQIAPY8w/ALBhrT3QmAwICHhlcZSCgz+OKEDZ7QhZa/8kfzfG/ABmM608aa29/yXq3w3BAMGHMiAgICDgpsJaGxewHxDwqoO19nsPPyogIOCVxqEEzlr7wXm+z1P/za9FJPnfdIQYuICAgICAgICAgICA44wXGwP3VgDXrLVfkM9uNcb8nolqibx13onGmG8xxjxsjHl4Y2Nj3mE3hCgGLlC4gICAgIDf37DWPmOtNcF9MiAgIOD44cUSuK/HfhE8IAqmPGetfQDA3wTw0ya+HgystT9irX3QWvvg8vLyi+xGBGNCGYGAgICAgICAgICAgOOLo8TAxcJEFej/GIDX87Np9pvh9PdPmKja/Z2I0jO/7DAILpQBAQEBAYejWq26/y6MMa7WnO/Fwe/4k0gkjnQ8kUgkYj1DrLVIJBLXXUO/578mpg6ens9j/GOttTOfzWuLfdDrsr247/1r+X33rxHXjt/HQqGASqWCTCaDZDKJRCKBRCKBXC6HdDoNYwwGgwEGgwHS6TSSySTS6TSKxSIymQyy2ShZHOcnk8m4fo3HY/f5aDTCYDDAcDhELpdDuVx2nw+HQwwGAySTSRhjMJlMMJlMMB6PYYxBPp9HNpt19z+ZTGCMQS6XQy6Xw3A4RKvVwmAwwGQywe7uLiaTCVKpFBKJhLu2tdbdJ+8JgLvP8XjsjgWAVCqFdDqNhYUFLC8vu/YKhQLG47G7Duckl8u58RoOh6690WiE3d1dGGOQTqeRTqeRSCSQTqdhrUWv18NoNHJjxXEej/erQiQSCaRSKXd/7DfHY29vD3t7ezPHc67ikE6n3ViMx2Ps7e25a3Ms2F4mk0EikUCv18NwOIS1Ful02o1/JpNBJhNVbRiPx65Pu7u7rh8cJx6n48/2rbVuLQBAoVBAoVBAIpHAeDzGeDzGZDJxzx/7mEwmkc1mkUqlMBqN3DE8bjKZuDmw1rp55b1aa7G3t+fmhG3zvaPgHOka5TylUqmZZ5LHjcfjmbnguuC60eOTySRSqZT74ffJZHLmXPaP98JnaXd3133nP/vJZNI94/qsc12nUilks1mk02lMJhMMBgM3ZtbamWsmEgk3rtpeMplEJpNxa9J/ljnGvDb7pD9cP/qu4hhwfBKJBN7xjncctd7kS4oXTOAAvBvAY1aK/xljlgFsW2vHxpgLiApDHljH4KVE9AC8UlcLCAgICDgO8MkIP1McRrD849XgogHlH+cTm3nf8Vw91u/3PJIU12c9N67v8zCPvMVdSxFHLtleMplEpVJBvV53xhiwP36j0cgZciStJGiFQgGlUgmlUskZsIVCAdls1hngNO5o7O/t7WE4HDrjbTAYuHMTiQSy2awz+jkuyWRyhkgmk0lHNGjQtttt1xaNRWCf3IxGI/T7fYxGI+zt7bn7UkLE69MwJpLJJE6ePInFxUXXJu9xb2/PGZo0fHkN3peOvRIjAK4djjnngGRGx4aEbm9vzxFBEi8SSbbDcSEZBiJiAeyvZzWclYSQ7LIvnHMSHJIjkjYeN5lM3Jjw2rx/ts2+DAYD1w7Hhdfl59lsFrlczhEyJSXZbBaJRAK7u7uOICqh4H2R6PBvklOuE4X2m+PEY/isKBnkd0oolVRy3DjXvEcSIY65kn/eMwkMn1+ep2s8lUq5vsZt6Cg5I7HTdcY2eS/6OUkxv+d19Nng+4D9J9ge2yQB1c+UgBOcm0wmg1Qq5da0PtO8jm6+3SwcSuCMMT+DqFr6kjHmEoDvttb+KKJaCT/jHf42RAX2RogKef5Fa+32S9vlA/oKwAYNLiAgICDgEMSpVfPIiP+fdJwa5X8fR4p8IqbnzyNR84iP/n7Qudpfn+zFqXy+Yhh3zrzxmId5/ctms1hYWEAul3NGnt8md+D5dz6fR7lcnjE0aXRTKdnd3Z0x/kgslACS2HU6HVhrUSwWHZnp9/vuPjOZDPL5/IwxqgblZDJBs9mcMQhJAlOplFPHaJCqKsfzATgSwzkg8SsWi8jn8ygWixiPx444dDodd99UG1KplDOwSeDY78lk4ojD3t4eUqmUUyj8dUySR8OdpMUYg+Fw6AxxnSNVzriGfDLBcSPp4jVVXfHVKo7TeDyeIV2qtrEvNO51LpRwZjIZ5HI5jMdjN8dU/0jQqNbkcjnk83lH+kkcqUhRpSMRp6rFeyRx4thxbKkU6waBkpR5zwDvhX/rhpB+75MTVav89xJJGtVMqko8D9hX87huqOhyHNh/blLw2VJVTfuhZJDkWvui/VaSS0Kla1UJFdtTcLy41vgvx0kVSN1UyGQySKfT2N3dnVlT2qaS4JuFo2Sh/Po5n39TzGe/gGml9puCEAMXEBAQEHADOMxl8KBzfBXL/12PPewa88jgUfru/x7Xpt+3OBJ30HXiSCDbPMpY6TGJRALlchlLS0vI5XLo9XrOePKNf14nlUqhUCigVqvBWotcLucMqNFo5JSSXq8348pH4zOdTuP8+fNoNpsYj8eOqKXTadRqNaemUI1S1zxg1sBk3/r9PrrdLgDMqBbJZBK9Xm+GTPEnlUq5vgJwZIh9VHewpaUllEold/+5XA6j0Qi9Xs+RDaogdAFVZcUYM6MUah/oCqouaCSsvAfOWTabdeqLtdYRGM6Ptda5DtKQ9hVoJSmqTqlhr2qRjrkSBJIukjcSRgDOoNdNDRI+dWNl/9gPHbtkMulcZVV545rzPyPB4Tzyb15bCZzen26UcB4AuI0H/ZzzR3LE8zn+vCbXFD8ngee5+ozzfKq+Ssi4FkhWqEJx/FV50/nlGHAcdJNCN6988qWqoM6zrmP9juewPV9d1b7pWlL3d6rqJKWcK107SkbpIsrnhUTfV/FeSbwYF8ovOtw8ITMgICAg4NWGOIXqKErcvON8UhOnjvmEMY7sxSlcPmmMU8L8Y/X4uOP0mnEEMq4fPpE7DP5xqVQK1WoVKysryGQy2N3ddaoIVSglc1R1arUaCoWCa4fKSDqdRj6fB7Bv1LXbbezt7SGfz6Pf72Nvbw+nT592yhIQGan5fB7VahXG7MeL0XVO4914PLBPKvr9PlqtljOc1RWv3++765IcjMdj5PN51Ot1pzpRJbPWOvdEKjrlctkZotlsFplMxh1Po5OGea/XmxlrGpVUHlOplOuDuuEpiVL3P3U14zirSx6vRSNb3dS4fny1mYSJx6jRre5xSh79Nkim2Z4qX+pyy+dqd3fXuZsyppBEmXPGOSJ5pfpCd0wqphoPqC6T1u7HrWmMHdvm/XAMlTRzDvT+9V54/7yO/1z7ZIN/kyT6xM0nG1Qy1X2U96tqnq5TkjeflHO+NDZM3RtVefNj53Qu5rmJsn3dIFBFkmvYJ8kcK415811GdUx9VY7X0HXK8dRYz5uB40XgbnD3MiAgICAggPDJDHC9SkYj5DDVaR5xY5u+MXZQTEUcafP7pe3qTv1hZDDuOj7ilMJ5fZ0HuiZVq1WUy2WXZITGMrBviHGM0+k0SqUSlpaWnCskjTqSMRr1NATpGscEH8lkEufOnUM6ncbOzg5arRastajVas4tkYoWECWsyOfzMzFg3G1PpVLY29tzyT54DF30kskkWq2WU3OA/WQPVHb4txr0JBSJRJSYpFwuO4JDZY8kjX0pl8uw1qLT6cyoFDSgaYRyXJVAcd5IAovFolt/6hao7Sj59deXGuNcy3TvpOHLsSL4HcdIYxvj3ObUFY/qCcdMY8uoFNJlUpOjKNlQN1uqm9lsdsadkmqsuj0qmeN9aKyZvzHCfqtyy/eDupHyuVJSQvjxbAe57akLqSqSOvccUxJWJWraVz/2S5U2VQfZvrZHAuQTOLapcYGcZz4XnFf2heOhpNUfax1Hknfeh65nzgefP7oSc37Zb16TSV/S6bTb5KGqq8/YzcAxI3AhC2VAQEBAwI3B/084jiyp4cvP9Hc1quLULL9tv415x+r3h6lu/nWPSrzi2j0KOTtIrVOkUimXbERVExpa7LuqF4VCAfV6HcvLy7DWotFoOEVCjdTRaORc/Hq9HhKJBIrFIlqtlktykk6n0Wq1nPtkqVRy5ITGfiqVQj6fd4QJ2M8uCMDFj3W7XacUqJJGgtnr9WZUDRI3ElUmMtFEDCQFJLdK7GgoahxXoVBwyg+PUWWHxvFgMHDEmUYvjdV+v++MVzXsqSZRldSNBc0kqa6DVI6UjKuqRSNdXdvYV3VbUxVHVSr2eTgcOpKgRIfXIXEgEdvb20O/33dEVbNzkujn83mX+MZa61Q33hMJ5XA4dBsGqrSRGKnrI8eHhJLH+YqQ9l9Ve443r6HKlcYfqkuguiSyHV85U3KiiqsmT+ExSk589VSfVc4715KvFsa9O3l9nWdVLdXlVfvEsVDXRZJe3QzQLJL8nm3zukpE9XnnNdTlkoQ9kUi4eFyu/RvZxHqpcbwIHEIMXEBAQEDA0TGPuMQZHXHn+C5KPonyyZFv2MzbTT+MbMWpbv4xmuhA7+egc+bBNzAP6g9BRWlxcdEZz6qacSdbDS0SjpWVFRQKBeeKyLgtZpDc29tzJQCYEZFEpdfr4ZZbbkEikXDndzod5x5JIqaZJ5W8adwad/F3d3fR7Xad+sb+qgtiKpVCuVwGABdXVCgU3K4926QbH8dIs3BS2SMB0wQa5XLZGZGapVHdF1VJA/bdJEkoaKQycQyJpBrtNG5Jcv2sfyThmqyCagtJBueRZIr3yvVOEq4GNrCfyl/d7BjHR4LAvnDs9b7U4NaMlFTs6N7KpDck+HR1VdVNMxEC+6RV3WW5hjXOSxU6VT/VdZVj4BM7joWSCY6r7xrIfqjax3Wgc8GxIpH11VVNXqL3o+RGr6vPLedfE7fou4BjyM+5WaHqnSp9VLJVdeVY8XnVuEfOh65frgn2jf3jho3GT3KujDGOpHMs+ezoemX7/pjcDBwvAmdMyEIZEBAQEHAkHFV1ijvuKOf6CtU89cw/1j8vjjT5v+vuOLDvcuR/5xNDn9wpITtMqfP7ocZMKpVCrVZzdcuoHJA4aDp4VRPK5bIjfCRZCwsL7ni2nc1mnfpF47zdbiOVSmF5edkZq+1225E4YD99vGZiLBQKMwYs48XoNtjpdJxio2oTyVUul3PxebwO3TDV7YrEj+56AFAqlVCv191YKAGjWxn7opkSOReZTGbGYFUXL6ohTLdPtZMxdbxfrZNGAzqXyznDmASK8wTsu5vRsFVFkySG11XFinOvtd24XkneqIDxXtmWEj0lOEzlT8JXKpWcuyoJuhJmZqNkbTcSPZ+8kUjpRghJlxJJguRIXQgVHD8lXEpqlazxeCVh/jskLr5M1Sp1F6RqrMqptXamDp3/jCl8cqjjwHnhRgqJm79BxT4peWNb+i7Qd5CSJR0ntqGuvCRc/E5VNI45CTk3XNS1l2veJ6AcFz6/SqT9cXolcbwIHIICFxAQEBBwOHTXW3GQq6F+5itP89rQa80jiP7x80iS3w816pS8HXZ83P3EHe9/H6fCxR2XzWZx4sQJLCwsAIBLDpLP52dUHwDOCEylUqhUKi7erdvtotvtutgTAC4mLJPJONe4dDrt4sOKxaIjfpqpkYYesyjSqC+Xy04ZJGFQ9Wg0Grn6buVyGefOnUOz2cT29jaazSb29vZQLBZdHTqSFxqOw+EQnU5npnQA3StzuRyKxeIMuaURzuNJKJiEhO1TGaS6QSNVDX0ayupOyM+18DfngOezfxxvjT3S6/B7GuUkQBo3RPKmqp66pZKwqOrGdljDT5Nc8G/es5I39lM3BhKJhFN7Seiz2awrxUCXViWTvHclUUqk1DWSxjwJtO/WqWPku+357x+ddx0bTbKiZEFdODXzpRIa/ZvzocSJShz7pWtE15O6JHKsuM7Zno6XH9fqK3XaL9+FkmNDUqfPE8/jM8r555pTYu2PcVx8opahoLcAv+fzp66d+tzxnEDgXiKYEAMXEBAQEHADmKeuKTGZR+gOIk1Kruapb0qo5rlEHuQyOe9cv1/+9/xMFbO4+/DHQM+dNx4sD1CtVp1KxgyMahSSxKXTaRSLRSwvL8+4sjHWjEYnSdV4HNXwAuAMvUql4gypbrfr4tpo2CnpoLpEhYxGOFUYGq8sEWCMQa1WQ6lUAjBbl45EYDAYoNfrzaQWZy04JQckNqVSCcVi0fWLfSfBpEFMA5NEFoDLrMjjNDOiJlWhsUziks/nHQnh/fIeSNSUcFEZUYOYUHdF3gMNcpIkTSFPw58Ej3NHEkFSSnLX7/dhjHGEn+SN90ZjnUY+r6vqKUtAqKIHYCZRSb/fR6/Xc/GPjINTguArQFQefYVIlRm9H71XRRyx09jHuGeM19S4zDiVic8ir09iqu8Fnqcuk0pO/SQ4XNvAvgLOPum9qVuxrgm/gLwqlD4ZZJuqBmrsrM6FXkPb4TuDY8Mx53zwbyq86pqp6q8mNtENi5vpOkkcKwIHmKDABQQEBATcMHySdBSlSgnNPAIW14bv+qPtaZs+QfOvqd+rUekfH2fcHdRPfwx88hY3NqlUCgsLC6jX6zNkw1rr0vyTIClZKJfLWFhYcOMxHA7RbrcxmUxcHBxdBnu9niNfvV4PtVrNEUNrLTY3N9Htdh0xoAsjDeVCoeAKc/P+mIWSu/2j0cjVkiNBY3Hwq1evOkWNBne/33fGpNYGI+GgUc726O6pBEyVGbarRKpUKjnCwX7ncjmUy2VHUpeWlrCwsIBarYZKpeKKndPw1YQXuo40fmh3dxf9fh+dTgeNRgOtVgs7Ozvodrsz/WNyEzViSQh8tzQSXsaRaTwcjXqNvRuPx87Fk30jSDJIiDgOqrpx3nlPvB5JANchSbdm+lT1VUkMlSrOr6qKfq0z/s77pRql7rF6HLBf+oAEROPmdK34hIVtqIql8WZUIDn3XIs8l4TajyvjGtT+kjjr+uV9cS3pdXgtVd40Zk/PZZ80/o8EkO1wM0MVQ82mqXGFvlqpcZokbIS6NVN117hTdaHlWLEv3Gy4WThWBC56LwUGFxAQEBBwOOaRGN8g0eOBfRcpX5Hi74epen578/rG66gCdhAx9AngvHuMU/fm9TmuHV+ty2QyWF1dRa1Wm0mKobvoNLRoXNFlUmOtmLo9k8mgXC67bItUjmq1GoDI6FpYWEC5XMZwOESj0XDKBNUma/cLT9MALxaL12W1U/LA+LFEIoF8Po/V1VVHnEjsGNOmxbl9sgbsJ12gwsaYKxIFGp08n/evyRPUwC8UCjh16hSWl5exvLyMEydOOKKmZQ/8uSXi/j5oDer8MwlMo9FwLqTr6+tYX19Hp9OZSZjCuWViER0jJVNKAjTRhWYJVINfDXWOMxU6EkzWfONYKhlkm1R2qVKSkHDsWSCeSh7Hgf0E9t8LWtqA8LNyKslVpZL3zH7oM+O7XHMOlBTpHCp5JOlgAhkSKlWOSGQ0Y2Nc/J3fJ23TJ29xn3EufZVOCRzbVrUsTtnUZ4v378e68Tx+poqbnsN15nsy0G2ScbLaZ3VzpqpLBfdm4XgROIQYuICAgICAw6HqUtxncT96nG+QxBnLNLa0Dd119tUyn0z5aon/vSpvetxhhFJxELk7aHyIUqmE5eVlpwapAUq3OSYKUfWFNdgY68Sd7Gw265KKUB3LZDKOHObzeVQqFXQ6Hayvr2N3dxc7Oztul16LNpO8aZp43d2nmgLsJw2h0VksFh2h7HQ6GAwGTklSxQeA6y+JHQ1u7uwXi0VUKhVHIuj6xj5Q0aMxnUwmUa/XUa/Xceutt+K2225DpVJxihoJkp/FM26u4v4+iLQpKeC/TEjDIuRURjgOzWYTly5dwrPPPotut4vd3V1HdDVeTckL2+FaobpD8kRiw00MTchBg50qF8dZz+V64JrY29tDt9t16i5rEXKuGJfIa/hknCqSuj7qe4BjAuA6F0jer7oP8nOuPxI/VfeoTpJwKgHT9w8Ji1/bjOdzzHkvqhRrgfJ5a4IqrsaM6fdKnnS+OX6qMCpx49rVjSp/84x/k5hq+QH+qwQt7r3Kv5V480dVb/5OpZOKsm4kAHDvhG636+LmbgaOF4EzgcAFBAQEBNw4fCPYJ3P+sfw3jkD5pC/OoPBBI2ie6qV99M/3/1bDMk51mXdfvtJ3EPEDIvK2uLjoYpNoEGk2u0Kh4MibukPRdYkkbzweu+yTNMSHw6FTzXZ3d1EsFjGZTJxbH90ZAbiYMu6e08hmeQB1u9KMfKwJlk6nUS6X0el0UK1Wkcvl3HUGg8GMK6TGhem90TWLrqEko1QtNDkKM/YNh0P0+33UajXceuutOHnyJM6dO4czZ844hclXYUk6DptHVSxUCTpoDfmqDtelfsf2SIAqlQrOnj2LN73pTdjb28O1a9dw5coVrK+v48qVK1hbW5sZc+2jxghyHfF7kjiOK11vOW5UNzm+Sqy1vttoNEKn00Gn03Fqpl8bj261NN6VbOhYasIQQl39SMj4DKm7HlVJn1Sp8qtESt0mtawBv1P1jmNGl0mudWA/IyrHh2om1W+SUq5dfpZMJl38nLoo8pp0gVUXS3X55NhxjPgMsq/83B83rjEdB1Xydf1wfarbKfupJRB084BKrcZNkvTzXv3MqZy7yWTi3j1MhHSzcLwIHEIZgYCAgICAw+EbsXFqW5zhDGDGOIkjb7r7PI9AxfVDyZNP+vw2DlLefLI4L+B+nto3j7ipclCr1ZxiQfUEgMv+SMNa06rTuOOu9XA4RKlUmlFL0um0c1lMJpMu7iuXy6HdbjuXRlUbqtWqi0dj39Pp9ExyE7rV0VAD4FzvqCwMBgPUajUkk0lsb2/PJCdhOzTsaKwyxouEkUoVd/g5blTe/MQbd911F+666y6cO3fOkT6uoXnz7K9VTWQRt3Z1fufNv79u9G/233d90zVKAzqbzeLs2bM4c+aMG/Pt7W08++yzePzxx7Gzs+MMcpIWEhX/2qpQqZtcv993yVyY2IaEfzKZOHdVqqJU3pLJJKrVqjPcgSh1vKqZJKfaP96fH1dFl0M/KyjXH9cK54EEgGuDf7MvuqnBaxpjrsve6rtl8pkkoaL6yXNJVkhqVG1UF2L9m6SFxJoEiHPgu+uqGsYx0fek725MYqsqJ3/33Zw5FnoNjqe/VlWRU5dkfRaU5LHWoibmYYIWrlNde9zQyeVyqNVqgcC9VAgKXEBAQEDAC8E88hZn1M4jYvovf4879qBzfdfFeSRuHnmL60PctQ6C35b+XSgUsLKy4oxFYN8gojFZLpfdLjaNSxqMlUoFiUTC1WxjYg8aSLoTzmQZVA8Yn6KGFkmfxlkxA6GmhKcyRzWPCSxozGezWZRKJVhrsbW15YgiM07SiKVio/fLMSsUClhYWHCfUT2hatRut5FOp3H+/HncfvvtuP3227GysnId4Y9bY+oypqRN58wnVOpm589rnOI87+84lU8JnZJSVX7pilqtVnHbbbfhrW99K65cuYKnn34aX/jCF3D58mWnRnIdkdRoIWYSIWYF5BzkcjlnhFMZKhQKbq11Oh0Xt8hMk1TZUqkUSqWSI3lKELSWHsnJvHTxvjssj1V1StVfEj1gPxMlv+c4M309NzW0fSW2qpLSvZLkiSqkZp/UQui8vpIZ9o/3pDX6/DWo86/vLF13uj60Tp8xxsUscj2TyOp7g5/xWJJPTeDixwXyfcNz6aLNdwWfL60dqISSYwHsx71xfasra7lcRqlUmrs59krgeBE4hBQmAQEBAQFHg0904ozVoxCeeW0qjuL2qGTMd6dSQukfG3cfcUqaTzLnKYhxxycSCdTrdSwuLs64u6mRM5lMUK1WZ1QLxiAxdT6NINbjohFLw09T3VNBGwwGLraKCgaLMNMQA+CUBU0/T6OfxJCqGtvK5/OoVqswxjgXO2uti3ejcqZp99kusJ+QI5vNurpuwL7xR8M6k8nggQcewAMPPIDFxUXXf3/+fSVBFQRdOzReNabPV8V8UheHeWudhrXGDalxze/YR8YY0i1RM/gNh0PXzqlTp7C6uor7778f29vbePTRR/HII4+4hBBsj+1rKYVut4tEIuHmV7OBcvxJwFjAHYhcCEncR6ORc69kDT6NYyPR12dL3ZtJkrgOGXtGYsW+81+SF1V29Pn1E2XQxZfunwBmFDm2q2SRc8LxjtsUUZdXJdz6DmCsm27OqGuibhr45EkJFz/X9alrKu4dqTFvOrb8nf1XVVvdP9Vdkufmcjm3QcBjNOssS0iUy2V3DVVWSe64mUOSn81mXWbdebGDrwSOF4EzoYxAQEBAQMDhOEjh0u+JOIXLJ0px6ttR2uHn2k6cejLP5W2ea91BOMoxvF4mk3Ep6mmoc/da3cwqlQqKxeJMAhG9T2YrBCKjmgoAFZF0Oo1ut+tUNRIuZg5kX6gqcHc9kUi4ZCGa/VDJIBApYmzLWuvuaTweo9vtzrhU0QgHZsmYqiA0yql0aE0zGpEnT57Ea17zGtx7773OPTNunZC0k8Cooe4TW5+s+UkW4sjBjcBXBP3ftWTAPGKn6fOpCKl7Xi6Xw+rqKk6dOoU3v/nNePLJJ/HII4/gueeeQ6/Xc0qLkmkmw7HWotPpuPXDkgok4Y1GA71eD9lsFpVKBQBc4XfGZHI9Uu0l0Veo0sP7573Q4CcxUFdhVab0OdBEJ0p4SKq4qcCU9vq9n3SDpNl391TixrXCdaWEns+sEhVVqXRzRomTZtnUJB/+5oG6ZnL9kByxT3GJWHgu/2ZCFo43CaGqokrkeb1CoeAUV5J5rtXRaIR2u+3WA9eqJmrhO0Tj4Di2OhZKHF9pHCsCByDEwAUEBAQEvCjMI1bzjonDQa6NceTRJ21xiti8/sS5v83DQQqhr/AlEgmUSiUsLCwgl8s5lzOm7efOPNP+03VNkzOoAaTp4/W6NKB7vZ7b4WbqeiVUmqyCBItkIZ/Pu7aZBVEzFzKLJA1+ui4qQaT6QqJAtY6gkczrkDRSkaTBzPYfeOAB3HbbbSiXyzOxO/6mga+kUDWhUapZM+cRt7gff435a8tfEz5Rm7choOqcunRqdj+NRVI3PRIAvY9CoYD77rsPFy9exNbWFh5++GE8++yzaLVaMwXWub7U5ZEuk9ZaNJtNbG1tYTAYIJ/PO1JHxZXxYFQEc7ncTCFzVdmUvKlLnzFRPKaqYDqvSjJIDqn8aAISVf009T/HTr/TdqlE0bWSrn3sF8mIkhweNy+xBzce1FVTNy2opmnJCyVU7KM+J3r/qhZzHXEs1KXT/07j8DRmUBVBfkeCrqSTGyvFYtGtNbph93o9d8/G7Cev4XFMbkSVnu8+/7k57P+BlxPHisCZ4EMZEBAQEHAD0GQR8xBHbvRzPY7G1mHqW9w1DjpGCZ1P7ng9/UxJok8Y41z3aIyowrS0tISVlRVncBpjnPGscUiFQgGlUsmVDMhkMmi32y7tPwDnrkSDi+0lEgl0Op2ZHXW6OGlcGxNNkITRGGd2PmB/13w4HDrDmWRuMBggm83i4sWLTm3r9XpotVro9/suIQqLOpPQaXY9qhNUK2ggUhUZjUa4cOEC7r//fly8eBGFQuE6AqTzpLFLvqrpE7XD/vV/1/U4bx3OU5CVmPFzVdiUvBH8nuex3IHGg/FvjZujWssxXV1dxfve9z6022187GMfw6c//Wk0Go2ZRCMAnIthKhXVcGu322g0Gi7BBDOWkpSXSiVkMhl0u10AQK1Wcy6U/FG3RL1vYD+hCMm6bmDwvtWlT8eM55L4UwEG9hUtksk4RZXPHUknSRUJC8cb2He3BDATA8p7470oGeK61s0CYN8VEYBbm2yXpFTJG4kf71fHRmPs9N70HcV/eZyq0hxfXVtsm+6wVFH5vuA80uWazzTVWyr2HCeqlixm3+l03DtB1WeNKwwxcC8RjAn8LSAgICDghcHfUT2qyuYf7xO9uOv4bfjHx7U97zM1JJSI+dfy+zdP3cvn8zhz5ozLELm3t+fUj93dXWc0GWNcNsputwtrrVOsGI+mLlZ0ORqPxy4+RTPj0QVOd/kLhYKLVxkOh45IsR4cXcgY58a2J5MJ2u22c68CohpzzCppjHHJLyqVijNmjTEuyyEA57JJtzb+ruPH2L+3vOUtuOOOO1y/4hRRVXhI/Pw4tnkETQmCfw77MS8OLm4d+f2K+1EDOu6Hx9G45jlUK3mvdPmj4U0Dm1kkVQHhuvqyL/syfMmXfAk+9alP4ROf+ASazaZbE1xX/X4fzWYTnU4H1lrn5svMlBqv1Ov1nEJKNUYJkypvOlYk8TTc1dVS3UW1OLYqaZwHlssg8dGELBwXjqWqUFy/HDON6+J4kxRyU0DrwOnzzueEmzQkaTxGXS41jtQnZf7Gga5HvXd+p+uc9+Xfp65Jfbao3Pl903Wby+VcfUhV4ekaybWqJE9/ODYs69Fut119QPYjmUxiYWEB6XQarVbLbSbdLBwvAoejZfwKCAgICPj9DZ+8+MbWvJ1VNYh9BSNO7fKN53lEzL9GHHmMU/Z8IjZPyVPDaN7/k4lEArVaDefOnUM2m3Wp2jVxB43nVCrlCjvTaGK2OMaV8HrM+Mjd9VwuN6Ok0dgGZhUJqiuayr9cLqNSqbj03ewXFYpCoYDd3V00m01HKpeXl5FIRJkvO50OcrncDEGjEabxczTaGUujiS84hv1+H7lcDl/yJV+CBx54AAsLC3MTNag6pWpbnHqmCom62OnnNIaV6HE84ubf74tvKKv6puvEJ2o+gYuLgdNjAThFkwScqoeeSzdakiCul4WFBbz97W/Hfffdh4997GN44oknXD87nY6r1ce1QfdbEnOuNbrMkXzTXTeuTIGqRiRKHBOqaCQ0wH4ReBr8qlyRqDD+knPH9aoKsl/rjMSJmwbqsshxBPYzSPqp/El42GfN4soNE/99wL5wzjVhi947j0kkEq5dPk9KsLh+VU0nGVPCTnLM7zUejmOi61DXF+cok8mgVCq5c3ivBDdz/D4Sw+HQxU8OBgNXL5DXq1QqbnOG77ybieNF4IICFxAQEBBwBMwjScD1JGce6fFdDw9T7PQcn+zFta/HaR/iFBT9fN51Drof7i6vrq4inU47o0h39ldWVgBERhkJHl0qaYzSMGQygEaj4dQVGkQa00Q3N2bKs9a67HtMXsE0/5VKxRXZplFM90fusjOJBV3pTp8+jWq1ivX1dWcUsp6cJmFREkmjmUkdGBNH45zE6Y477sBDDz3kxmxejBs/80mXqhcAZvqkSo1+zv6xHX/tHLY54JNLdVUDZgs181o8Ls6AZgIaKlFUn2j8+8oJiY4qRTSoqXCqOsVrLy0t4b3vfS8eeOAB/O7v/i6+8IUvoNVqYW9vD8Vi0anFdIVlTKSm1NeYMZ+c6j1yTkjSlLRwDEmWeD8khz6B4/yQ/HGNacxmXAwe55drj2PNZ4/PiLpHxsXFkRgpidLSBKrGabyabipwXoAoGQyP571TlVflTdVETYiiRFDHxl9f/I4EEJjdbNH1y2OUVPNcfT9RcaXSyr6yf61WC61Wy3kKML6S19V3xN7enlu3NwvHi8Ah1IELCAgICDgcB5Etn/wc5I6mv8cRLZ+k+e3GkbejEEG/v/P+jVNb/O/z+TwWFhZQLpdniALjabLZrEsIQUOU6hZ385kRD8CMctZqtZBKRYW/gag2Fw0jGlg02BkHxNIANLxYX43JQJjWW3f9rbVoNBpot9sYDAZYXFzE6uoqut0unnnmmeuUnXw+74gR2yFpoCpC45n3ZkwUd1SpVPD6178er3vd61xilbi1wHGOS0KiShtJGg1sklYapfOSmMwj8vPUVhrU2l+uAU0woefwvjU2Sj/nfHBsONeFQgGtVmvmumqg0yCmyss1pPFLVOTYfiqVwqlTp/CH//AfxqOPPorf/u3fxtraGorFoptHumpyrSUSCRSLRRhjZgrAa/KROLKmyhXXGA12Vcy4eaDqrJJAPyaOZIDjpgWuOa4koWxzPB479Y7rTd0RVY3jePGaqt6qq6aqtiTfxlzvYsm17xNN9lndJjXDatxYAnCqp/ZPP1dCRrLFsfHdW0n6SLKYdISElf1WaPtU2ZlAqdlswlqLYrHoXG/z+byb9+FwiFarNdOfQOBeIhhjggIXEBAQEPCCMc8tJk7p8MnRPPLG7/224oiaEsGj9Glem/q7vzNNJJNJ1Go152qmGQS5C011w1rrEoGQXNHoo5HHODkmBhkMBigWi1haWkK320Wj0Zipv0WilkwmUalU3A43DXYSqEql4twbqfqxthYLfjObpDEGr3nNa2CMwebmJlqt1gzRYTyUGqRay4s1tPL5PBYXF91xNJovXLiAt7zlLTh79qxTO+KIlK+y+a6RqrBprTpV3OJi3OKgRqSuwTh12N+UOAy6dvRfHRMlZqPRCBsbG9je3p6Jf1NlTvukBjVLBZDIkXCMRqOZEhTpdBr33Xcfzp49i09+8pP4+Mc/7tYmYyu5wVAqldz8ss+aWIUEC8DMmlIXSB6vSW5U+aVCpW6DmkyEc0gyCcCtN34O7LsPMzkQn7V+v+8+J8HX+2CyHs386F+X6jiVN594sU9M+sL3gBJczpkfa6lKFomYqsR8rwCzpRn4jHOzhORVVU32m/fNdjhnmv2U19XYWiV6PI+JSphEh+8Ebh5w00Y3bkgK9TnQGL6bgeNF4HCw33dAQEBAQICPOHUMODyxCI+Jg0/CgNl6UqrAxbUxT+njd3GEbN59+bvENJyWlpZQrVadsaZpsjOZDIrFIorFoqubxDapmgD7qfUZV6Zp+U+dOoV6vY5er4dOpzOjEtAgLxQKziCmu5MW/6bBrNkkAbi4vE6ng1arhfF47JREALhy5QoGg4Fzv+v1eq7QNl0oOR80NEkAFhYWXPbNXq/nvvsDf+AP4L777kOlUnEKkhJ5zsW8mDYagfwhgSVpjSsboGvEJ2f+uoqLkfT/npcsIk7F0/uJI4YkBz6xpBGtxjMNbaptqq5oQguSNZIYzVxKkgtExvbi4iLe+9734ty5c/jIRz6C7e1t9Ho9l2nSL/hNtZjuvUq+SURJHv15ZH+NMU4143PE85WUKaHVRD1sl+dx7HhvGu/Gz0gcddNB1TEttUE1mj8sy6HlALgOlHRyU4RrXV0sVY1UF2Al4P47SZ8NPZ9jqCSU86z3x/ngRpISR2OiBESMT+PY5nK56xRWvSY/Yzxis9l0rrW1Ws2ND9U3Pw6PBJPPftxz80riWBE4hBi4gICAgIAjQAkUEB9X5rs6xsE3ruepbgBiiZT+O88lTq9DqFHtq4Fx98nfqQIsLCy41OqagEKNXBqHNLZI3nh9ZqdkAW6NsTlz5gzK5TIajQYajQYymYxT7iaTiVMYgCg7IBOdMLsk3SV5TSp6NFKHwyG63S7a7baLz0smk2g2my6pQrlcRrFYdO10u12nmpFIMJkEECk7KysrqFQqjiiOx2OsrKzgzW9+M2699VZnIPvZ/ZQI0MBVFzqeQ8LGHz9xhxrf8+Z/HunivGhcl9+GEnpdF3HET//115OqMdoXGrn8PY6g7e7uol6vo1aruUyhGienxyqhIRFhdkH27c4778TJkyfx4Q9/GB/5yEccudH+sT8a/0VljiRFVTlV50gQ6EanBr267DEWjCoUP+MGiZIetsu4OMbpkcyQuPDe2RYA98yx/1y7nHfeM8dLVU72W8tXKPnUUg9U4vh+0Hn11UsSJF5f140qr+q6yrWomwq6kaTvS1U32Wd+rgSNiZEIdQln2xpTqgQa2HeV1RhGkkl9xjk/wYXyJYIBAoMLCAgICLhhzCNe8wzquP+4lUTFuanFxWQcZQc3zpg+jFjqubxGOp1GrVZzqdZZAJvuSdZGRZUBOIKhrmw0mnhNZvQjadrd3cWpU6ewuroKay02NjZctrZyuYxmswkAzlAdDofodDrOgM/lcq5vVBQAOIWBikO/38fOzo4rWbC0tIRkMolGo4FOp4NsNuvSfe/t7aHVarljJ5OJu0clH5lMBmfPnkU+n3fuVcYY3HbbbXjb296GWq02k0Jd5y7OVZKGHxOwWBsVmmaGO43vUkN43vqIU2H9Y+aRt3kqb1y7cW3HKdN+u2rc+t+rYkMFY2Njw2UiJZnielbSRxdTrfnHml5MSmFMlCHw3e9+N86cOYOPfOQj2Nraum78lLhqsg9gNlsk/wb2C0IbY1y2Sb0/9p990YytPF9JAwke3YHpssg4Lp5LFYiKH8dI493YV1X2lHBys0FLadAVlERbSYwmn9H4Omuty+hIoqQuijq+JLOcQyU5SuJU7eezwu90/fFe8vm82+jQ54xjoxlAqczxmhxrHkfCTtfxySRKpMTNAhJ5VV71/wHdvAllBF4iGGNgA4MLCAgICHgBOIhMxRG8OMVinhKmx2g7cYb4PINbjz/oenHna6ISql/cqebuO920qEZojA+NPe7QM5tkt9vFYDBAqVTC6dOnsbS0hMFggM3NzZnd716v566ZSCRcHSUaU6VSaSZeCdhX+cbjMWq1GhYWFrC9vY2trS3ngpnL5VzdJrreVatVJJNJDAYDtFotl8yCBqWqDTTiT58+jWQyOWOkP/jgg7j//vtRrVZjXQ+VcPjukiQfrGHX6/WcmygNajVG/TmL2yBQQnTQcXq8f4x/ftxaOYgsxhG5uHN4rKp17Av/bjQaMzFMSi50XPg748A0oYjOVyqVwt13342FhQX8zu/8Dp5//vmZOC+uKyVFJDmqqgD7RJ9knzFv/I7taNZQkkLeJ9tSdztei+TNGONUYk2Hz1g5xrZpyQOuX82E6cf3aW06tkFywj7pObwvjfMiUVN1lNdXNU3XgBYp52ccC/6u/yohUjWN7eo11VWY1+IcMIFNqVSaSahEAjiZTFw5kvF47DJ7kjBSndUYO/aNbZDUqfoXYuBeIoQslAEBAQEBLwQHES/fSD4KwfKP5/d6rJ7ju6b57eq/hx2j3yWTSUeO+MP4GzUm1SWK6hx3qEejETqdDlKplKt1tr297YzaWq3mUulvbGw4Q0kNZKZNHwwGjsQwEUoul0OxWJyJLen1ejPGU6FQcMkHqJCVy2Xs7e05IkC30EQi4TJgdjod9Pt9ZLNZl/2SqiOz1pHI0tAtFAp485vfjHvvvdepjP7cK8HQZCOqGlHFJHGjy+S8GDedv3kulPzXV7YOU+H89Rf3nX8N/TwOByl7PthPJT9KeEl244gc75OuflSs6EbI9QREz+qpU6fwFV/xFfjoRz+Kz33uc25dcy1qQhMqaEoamTwnn887BYtjoOoLCRIJB+/DT8jBfqrKR3WbBLHb7TqXUcZf8flS11IliFTL2CclaFxrJHpMtEI1jcRW41I1Lg3YT+qiSVrikpf4Kfy11IaOkZ+ARNcvyRT7pQoY3xWqeGlcqSqavhsrSZjGz7JWHMeb69Ev/aD3FKe+cS5uFo4XgTOBwAUEBAQEHI44AnSYm9k84uTvOOt//DxPz1dCGOc6N88wjiOCatDrfdDwKpfLLhmIumTRWPGN2HQ6jWKxiEql4lK5s6YaywyoS9aJEydQKpWc6sbEISRf1kbuk6lUypEpkrtCoTBDKAHMGGJUEkajEa5du4bxOEqnzsyVg8EA/X4fyWQSKysrjtB1Oh2nzNDwZKFnZpZst9vOUC4UCiiXy87d8V3vehduv/12F0cVtw5UeaMhSYLB/pO40Xikoctz5609nec41TZuTeiaUaXCX2sH3Y+vMvrnxJ3vbzzErVH/WnrvXCM6llScVBHx3SyZbEJj5LTOV7FYxFve8haUSiU8/PDDrg1VPrlZwPUPYMZVE9gvAaExitoW/+Zx6t6oGxicD5JHjcXzU+lzI0HJWxxZ53OkJMtaO5PJVbMpcn0y5k5dEqlo83nj+FB50vFiW+rGSEVb15vGwvFYvht4b/q+8teLric/flAVSM16qWPJDaNGo+FqBrJ8CMkc1d+4Z5vjQeJKIqrP180kcceLwCG4UAYEBAQEHB0++QFuTGHzkzjEETJtkwaC/522EfeZ3zf93v9hIP/i4uLM7jkNLSoMdIOkysWyASQuVI9oECsZYeKQYrGITqfj4uA0YUE+n3c1ukjehsMh0uk0SqUSyuXyjAJA5c4Yg0KhAGMM2u22U0s0U1+328V4PEa9Xsfq6iomkwm63a6rPUa3T2bhY3ZJ7rwzpo0Ebm9vD9VqFe985ztx6623zhiu/rz4ypsqSFQYea8krCRvPrk/ioIVR/D8daHQGDJ1fztMgVP4GwP6+bxzfSM47nny29NshapiUlXh+iV5U8LH77XY8mAwcOsll8vhwQcfRLVaxW//9m9ja2vLGdxKvEm0qPyp0jIej2fcNFVp47PGdcBNESpXGh9FQjaZ7NdyI5Eh0eKzRXdHJa8AZhQlzgPXt6pQfM61WDjdlYF9N1Zej23SbZrPjdaGUwLlu23q/PmES10nlQRyTPgMxiXW4Y+6W+o96LuNSZJ0nfG9s7Oz45Q5a617d/jkWhO++Mpp3Ds77l3+SuJ4EbigwAUEBAQEHAFxytlR3cEIXzU7TDnT684z4g8yeuPUD//vTCaDSqWC5eVlV0eKhi2NslKp5AwuLRUAYMaNkdAaZd1uF+l0GouLiwCAzc1N9Ho95xrGPmgyksFg4JKIsK4bVRPubLNuF9UCFgJXhYBKX6/XQy6XQ7VaxeLioiNvW1tbSCQSyOfzLr4olUqhUqmgWCw69a5UKgEAyuUy8vm8U+Pe/e5349y5c4eSNz/ejYkRSHCZqCTOZfKgteRfcx6J8teUv67883WTQX/i7m9eH/T8o67zec+TvzmhBEWVHSUDNNaV4PG78XjsyIqfhCaZTOKOO+4AAPzGb/wGdnZ2AMzGVmnMGZUZqlkag6bKE7BfyJsxdvoOIBnQ7IkklSRM7Icxxim3AFAsFl1CE5I1zX5KdVsLc2tCFi2IDsBtjCQSiZnsnEpASEr5N8msZr+kQq+kx1fF4pRlKmS8rn6uY+O/z/yNB22bhEvb1iRDdFluNBquvqA+1+o6yfniZ1RxOZdxyjTP0z690jhWBA4ISSgDAgICAg6H/ifNv+OUhIPO9/9WUhinoM1TUea17ffpMOWlUCigXq9jaWnJkRQAM+5RtVrNxRqVSiVUq1VXe4tqDdHv92GtRbFYdKrbwsICkskkOp2OS8xBBSGXy6FQKKBWqyGRSKDT6ThFgcSqVqs54xSAa0NTpvM8qoYAcPLkSUeKstkslpaWXJZJulKyZhzdFbPZrKtzRyJLhZGxcp1OB5VKBW9/+9txyy23zLhTHaa8aT03LSbe6/Vmao/5Rp4/dzRAuSbnrQcfcZsQ89aMzq264/mZBOPgE7q4PvjGra5//V7JpN+WutWREFDpGY1GOH36NFKpFBqNxkz8E++HSlyhUHAkDoiI4Z133ol8Po9f+qVfws7OznXxnlTaVIni/KlCxPHiGqWixsyHOt5KLuiWyY0OEhCSfk0QpMSJ55LccoNE1UL2gwSNcZtcl342WS1ary6N6iK4t7fn1HcSWNZZU7dk3jOfDSVzfiIXnXsSQV+R5hpT9ZHrVBUz3q9uNnGOWGKEpUfoCcBnlm2puqeuqpxDdS3XOERe60Y3/F5qHCsCFy2km92LgICAgIBXA47iyhj3/WGKWpzBfRBhO+i8o/QtkYhSYi8uLjpFLZPJOMOQRmkqlUK/359Jl02ysbu76xKWZLNZ9Pt9AHCqFw3jwWDgjFcW8abhWK1WXbIRqlB0RWIsHrCvXAyHQ7TbbdcfAGg0Gq5dumQuLi66pCS1Ws2pJVQd6HJGo5fGaa1WAxAZdCSH6krZarVQr9fx9re/HWfPnp0hbzq3vvJGd0gqkyRu/X7fjacqSTpPcWTuoHXhu5TpeUcBj/OJoU+oNB4pTnGIO/cg4nfYufOg/QFmY5KuXr2KSqXiiAzBMWLSj3w+j3w+71QYKixnz57F+973Pvzar/0arl275jKijsdjtNvtGWVGE2/oM05Vjoa9MWbGhZIqGckaY7FIlPyi0Jp4gyoQj2NMnRJwzbBIVZxkiQSW5I2unz55ZKIQtsNnVDNU6qaCr5bpZoC6XPqJQ/RvdZXlnGlMnRJBrhOOLUk01yavp3PP9xDfLbwH1gTk+f6cEHwfsU0ewz7wGpqg5Sjr+eXE8SJwAIIGFxAQEBBwFMwjTIf953wYaYsja7qze5ALmv+5KhVxRjhdJpnFEdh3A6MBqKnFmZWSBAnATA0l7tDTzbLZbLqdaaoFNBaZnp9JQDKZjCMydGFjopJsNntdrBgN10wmg16vh26364p7j0YjLCwsYG9vD5ubm5hMJjhx4gSy2axTDBlnpoYdECmR2WwW3W4XqVTKEb5arTbjhlkul/H2t799xm0ybs6UwNGwJnFjW7xvdZn01xI/U5fBOBzFRZFt8udGDMq4Y3w3tnmE76j99GOaDjo3To1ToqvzQHJENUbdFPU41ho0xrh1nkqlcP78efzRP/pH8au/+qvY3t52hF/nnwqRuj/ScOemBNUsLQSvNdV8wsGEI3wGVfVmFlQlalT9SCBIhpREatkBKomTyWSm5AHJm/ZNCRMJpRYM9zNf6hrje0RjLP17VndSdYeNuy7HSGMSVfnSewb2XT1V3ePcc5xZMoXqPufA34DT5DAk7KpKs1/sryq+miDpZuF4EbgQAxcQEBAQcATQwAAOd5n0Dcw4d0n/M23Xv8Zh14s7Jo7YsSwAXQc1hmM8HrtEICR6zAZJ8sTkHYxZo3LE33u9niug2+12USqVnHvZ7u6uizliZkfGfNH4ohqo7lIkXjRmrbVoNBqukC4NqXq97mJYWCKAsW3sW7fbde0AcOpLLpdDq9VyY0CSm8vlnFGXSqXw0EMP4dy5c9cpbzruvvpGFYNum91ud0aRpKEXp9LGrQV/HcxT6JRcqaEZt4aOqujFgQarKkxxRmrcPR2mRMcdc5DarfFuSs74HUkUCYomEbHWOiLPtUmj/9SpU3jPe96DX//1X8fGxoYjeuybkhNgNjaP406ywHvw50cTBwGR+zL7wng3un2qOqfzyrg1Janq6kmFkCSN65KkTp8LPZ6EhXOt6pcqsf77jdB1p4RHlVE/0ydJobZnrXVuoBqT57sU69jq86Hn8N2lpE9VN37ub5rwfB1nEua4khFa3oKbCTcLx4/A3exOBAQEBAR80SMu+FwNF/5+WPIJhX9cnNF+mLLiKxNx/SMhKZVKLpCfu/hUJ6hUMZtdpVJxqhEAVKtVDIdDF5O2s7ODTCaDer3uiIkxBr1ez6lYVDM4JlS0qCYwoUM+n3euXtxZBzATM8fslBsbGxgMBq5GWzKZRLlcRrfbRaPRQC6XQ61WQyqVQrvddueToFGxo5JRKpVcn8vlMmq1mkt0wkx82WwWb3jDG3Dx4kXnRhc3HzQmNeZNY+663S7a7bZrV5U3vz1/XtU1y597f961f/o9lQh+pkkffDVN1ZfD1qUa0jzXTygxj6zFkVK/3XlK87y/1fhnO4epmbwO15Uxxim+xhicO3cOX/7lX473v//96HQ617kFqkqjmQ+5CUBiSZKgSpbGYqpaZ4yZcXtU8sm/Oa9sT5NrcH3RlTKdTrsSHHTjBeCeP242cJ2wfb0fjpXW4GMf1J2RoHquapqSJfZTlTydDxJIkjRV+5Qks890C+W61XkmUae7KEugcDz4PdtMJBJOQSTh4/1xTJPJpEuopCo6CRxVSI7FURTvlwvHi8BhfsHJgICAgICAg+CrEwdlGIszyuMUhzjMM3y1jXnnlkolrKysOBcypsunMcKdf9ZuY7ISpulPJBIolUoYDocuIcnW1haAyN2KBbRJ1vL5vIt9Y/rtVCqFer2OZDLp0vzTuGIB5GQy6UoU7O7uotvtOiMrk8lgOByi2Ww6lydeJ5FIuJpNi4uLM4XE6bJJdzcaY+PxGOVyGblczikb+XweJ06cQL1edzF5TGRy22234e67776uSLc/J6q6UXHRTJNU3khqD1ovOvdxCtw8YsR+ALMGN+HHg8URuoNUrzjlOO7aca59cX3V9g/bjLgR+C6pSgYBuNgvxWg0cioynxMqdalUCmfOnMGXfumX4jd/8zdnjH19BkmkaNwzo6ESShIixolS5VY3O2ZyVJdCJYr63DKpj8auAftxXnwGSAq5ttlPqnFai46qGY8j8SMxIXTtA/v11KgIUmn2k7ZwvEjKNNZOj/M3Rzh+JHCqQipZ0zHgu4WKI8eT9+5nffWVW7avhcu1nxozx3maTCYz9fT8cboZOJTAGWN+DMBXAli31t47/ex7APwFABvTw/6etfZXp999J4A/B2AM4Nustb/xMvR7Tl+DAhcQEBAQcDji1A7fsNbj/L/nGb4HKW3+54epFtrHfD6P5eVl1Ot1pNNpl10N2N9tXl5edkagtda5MFItItEZDocol8suMQiNc7pFUqUrFouuAHe73cZkMnHJSKzdry3F3f1isYhCoeCMR2ar1LpLJGhUPVZWVlCr1VxylE6ng0wmgxMnTiCZTLrEICRPwH5RZ6oG5XLZ/b27u4tyuYwTJ064bIRUBxOJBKrVKt7whjegUqkcSCL8+B6qGf1+H+1228W80Z0tTq3QOfUVJH9+49aHIi4mLW7tqUHpq3CqGB2kpsVByQ0N4Djl0lewta8+eY0bq8PmhMf57qPsH9URfgZEyU24ScD4MJKge+65B8PhEB/60IfQ6/VmFDWOEQmM1gbjWJP45XI5Fzeqtdz8shwcCxKVdDrtVGBNwEPSRbJApZ3zyEyuvV7PbYyUy2UXp0fiqa6cWpJA2+Z8kuDpBoCfLIT3D+yrdJppUlVr3qu64mpCEJIquoWyL3RTpHLJY3xFmZsnWteS19bspD7JIonlPHIuuS7UTZL3nkqlUKvVkE6nsb6+7pI+3UzR6CgK3I8D+DcAfsL7/F9Za/+FfmCMuRvA1wG4B8AqgP9pjLnTWjvGKwCDEAMXEBAQEHA4fLc0/nuYCxj/PUh5OEhtiCOEcaqbHlcul2fIG12laJDRbYu74iRq4/EYW1tbbgc5nU6jUqkAAFqtllMj6BLF36mEMfaNxmC9XkelUnHZ/QC4QspqhLIGG+PDgCixyGQyQavVckRRs/Px81Kp5DINMiU/DWUanZ1OB+l0GktLSzPqIBC5hp48eRLWWrTbbefaSAL5+te/HouLizPGmz8XavjRANV6dt1u1xmPutuvRMVP3OBfY55KNY/AxCWg4Dl+e/q59oduoEriaLAeRQFme5wzjTfS/ut15yl1Bz0/h0HHwidHfhv8vt/vu5g4qjaMG7333ntx7do1PPbYYwDg5lVd5Khkabt0qeOzx9T7QLTeeZzGsHHcqERT7eE1mZGVCjiJC+eLRE4TAaVSKRQKBSSTSVc7keSQhJLPpMYE8t40dpD3zNi8uPT/SqpIRrXwOaGxg/q+9dcNiaCSNo4PyTSfX6pvWg+PLqM6V3wPso98pnl/qvJpshYSN44hP89ms8jn8yiXy+j3++599EWdxMRa+0FjzPkjtvdHAPystXYI4GljzBMA3gjgIy+8izcAY4ICFxAQEBBwZMSRpjgVY95Oq2+I63FxhG4eedM2+Dt31U+cOOEUo/F4jGKx6M5lBkgWk6ZxRNWLiRIWFxdRq9Wwt7eHjY0Nd/5gMHBuWr1eb6aIMI2UXC6HSqXiyCMTjaTTaRQKBRd3QlfCVCrlimazXEG323XEJ5lMOiLZbrfRaDSQSESlEKjgtVotl9WRWTKLxSJ6vR6MMVhcXEShUHBtGmNw5swZrKysoN1uuxg5lk6w1uKBBx7AhQsXYrPH6Vyo2yTVARI3uk0yhkbdqdgOP1Py5m8OxG0GxCnAPjny3SnjlKh55IvQ2B8ayGrMxq1F7Q//VgVmHrF8OeArK/79z7sulTiWyeAzViwW8aVf+qVot9t48sknAUSuiMPhcMZQZyIUkhYqM1q3jWse2E+yQTdErik+tyR5VJ+YeIQqOtUw9lljr6gksu4b21H3RrpHsn0mDSKJ1DGj2yPXAu9V34UkXWyHJEhj9njf6oLIHy074ivAJG+5XM65KlIRjIuTKxQKqFQqaDabM+6zJILqVq7PA0ml9s3POKrzxvM55iTfHPObiRcTA/etxphvBPAwgG+31u4AOA3go3LMpeln18EY8y0AvgUAzp079yK6IW1iflavgICAgIAAH4epAwcZhHFtxbUT5yqmP3EGd7FYRLVadYk4aCzRYGS9KKYyZ+IOTTpBMra0tARrLba3t52h1Ol0kMvlsLS0hFarhVar5Xb+2RYNlVwu51yWqOQxto5ZKun+RXUGgEukwCyTVDFYHqDX6wGAUxCYIKLdbqPT6TgVhP2gGkjyt7m56b4/ffo0lpeXnUsZjS/ulp89exb33XefUwrnEQw14NQApisnDWtV9nSO1X1M1wTVmrhrzlPR4r7Tz1VxUoOY907iEaf68l+2z3tVIucb+XH9U6VRXTR1TF5qaLskGFxzqvz55JcbD4yJoytdOp1GvV7HQw89hPX1dbchwCQafmIPa/fjpID9OESSLJ0TQlUqJV3st7oLkogxw2ShUJjJ/qoFxOnGx/ap0GnCIrou61qiqsz4N84/+871yjnVBCNsV6FrPi5+Tn943zp+SuzYR830yfImHEOWJyHB09g5f5ODz7Q/H6q8MabY31zh+mEcrrq+8rm5WXihBO7fAvjHiELO/jGAHwDwzWAptlnE/s9nrf0RAD8CAA8++OBLwrpepndFQEBAQMAxxUHqmP/dPIKm8I/xyYIaCHHXZibIYrE4Y6DRvYpGw3A4dAYFDTQ1BmngVKtVNJtNFzNH43BhYQGVSmUm9ThdyowxM9kkSVbUqGU8SKfTccofDUkaNYPBwClhbHtxcRHpdBrNZhPj8Rj1et2VM2i1Wo4kjUYjl2WTcT2JRALLy8tIpVLY2dmBtRYLCws4efIk0uk0Go2GMzT39vZmXChf97rXYXFxcW7JAI4r/6XxSLdJZtDk+Cl5I6jWAXAGt59MgXMdt9Z4bZ8oaTyOwjcetU0/mYmqZPqd3ze6mQFwxruSsri1y/PYf47xS03k4q5N45zrxP+etdEIEoJ8Pu/mkDFlZ8+exVvf+lZ86EMfcmUtdJOF6yKdTmN5edndcy6Xw+nTp7G3t4dLly7N1EHkBgDJVT6fd+UyeAzJGxUwquZMQsRnm6obVXHeM9Pb042Ta56ZFUmGODZU19VlkvPNewQwQ+K5ZthvKr/8nhkuVZHluHLc/eQtnDctf0KPAKpifrwdr01CpetV17SSR3Xj5N+a5ZPtcWx8t2ISQ2tnSztoOzcDL4jAWWuv8XdjzH8A8N+mf14CcFYOPQPgygvu3Q0ixMAFBAQEBBwFB6luccTtIBXOdwXyd/7nGb+++1y9XnfZFDUGhIbD4uIiALhMkUyLzp1kxogUi0WcPHkSALCxEeUaK5fLLmPkysoKCoUCNjc3nSpHQ5fGC4t9c1eeBo26TDabTdcH1oDj7j/JGA1e9o3xaySBAFzmPRq62WzWlShotVrodrsuSQSTqjAByokTJ1wbQESi6JZJQ/qNb3wjbr/9dmcM+3OrrnjqPkkjt9/vu/7RgPVdJ0kaafyq+qWGbtzc828lcmqM3qgCrK6W/hrletFaWb7apolbNNbtoMLFql7QiPczEL5Q6Hjo375C4o+B//zpsSwnoapyOp3Ga17zGly7dg2PP/64K4+RSqVQrVYxGAzQaDRcIo9yueyeDcZqVioVnDhxAr1eD1evXnVumFTTSFZInjSzIWPeNK50Mpm4tcd+csNGSwSQbGpiIT5znEvOjZ9CXxVUVc84Jno+173Gv8W5RPJZ4/jTY4DKnq5DKnx021TXb7qn8npcg6wB6avO/jtVyRbfo+w/iS1/9zcq+KMbGX683Bd1DFwcjDGnrLVXp39+NYDPTn//ZQA/bYz5l4iSmNwB4HdfdC+P3i/YEAUXEBAQEHAEzDMs1QicZzzPU9H8H1VP5qkuqVTKpbwnuAMPwKUU9w3z5eVlAHBxcePxGJVKBSsrK+j1ei62bDQaod1uI5VKIZfLYTgcYmtrC91uF+l0GsPh0BEkFsJWV0xek/FCVKXogkZDjrFunU7HKW8khoyr4T2Vy2VYa12sHIkSCx6PRiPnzkZjlO6QALCysoKVlZWZXfBut+vcQWksVqtVvO1tb0O5XJ5xz/KVJyUfVDVYMJwGtLpO+sSPRqcqUP46UlLmrwX/97jj/X4fRIrmrWEarCTmqsj5cXBKQFX9oGoRZzTzWhwjPx38jcAnbvPuj+B8qOudv6FC45tJPDKZjFN86fL7xje+EVeuXMHm5iYSiYRbZ8xESALFtcprG2NcGYG77roL99xzDz74wQ9ic3PTue5ynVCdovrDdcVnPZvNYjyeLX+Rz+fdfCp5y2Qyrg3OK+dO16gm/2AClfF4PPNckbiRbFprZ1ySqaT5REfHGdh3DVX1V9+FfO9R2VISqWq+jpcWzWZmWo0v1AyknBP1WtBkLL4ap+9sdbn0kx3xfZhMJlEqlW5kOb/kOEoZgZ8B8A4AS8aYSwC+G8A7jDH3I3KPfAbA/wkA1tpHjDH/GcCjAEYA/op9hTJQAkGBCwgICAg4GuKIFxDvOsnP477X7+IInE8Y/HYTiQQWFhZQrVYBwBlOCwsLzj0rmUyi1Wq53Wh1rWIiBGA/1mV9fd0ZGYxNYxZIqlNMkDIcDlEqlWYSlXCXmsYMidtkMkGn03GEi4SGyReovJGUAXCGK8kUY+aY1ISGEmvUGWNcRkrew2g0ws7ODhKJBGq1mnOZpJHO73d2dpwhzO/e+MY3YnV1NdZ10p9DVd/oPslskzSY1S3SV8eoEMSRtHnXVgNbiYa/tg4ibHHKLttWo5TH+Mf7mRxVcVDVUseHBMZX2XTdawbAw8Y/DvNIbtzzpGSFx9BQ1791jFnnkGuMbojLy8t4/etfj/e///0uoQ7VKRIsEhvGwhUKBaci7e3todls4u6778bXfu3X4td+7ddw7do1tyZVReNGAd0gWUKA64/EMZ/PX0fcGLNKN022r0ravPePKndU80m4mZIfgFMouQ6osKvKpmOuMW9cM6oC8jglmPxR10uqifycqj/XqirWVBVVGdM1oUlWuK41CRE3Jriu2XeNKWZ7JLAk4CzlcjNwlCyUXx/z8Y8ecPz3Afi+F9OpFwpjAoELCAgICDga4hQxf2eZv+u/ek6cSqCqhm/kqyGZy+WwsLDgYmAIugUmElHdss3NTQD7iQKq1Sp2d3cdeev3+zOqgipNbJfZI3u9HrLZLCqVykwdNc0kqeqblgigEgXAqRYsPbCzs4PhcOhIGbNjMqkIx4fkjMlAGNtSq9WQTEaFwZnJj1kmqeTV63Wsrq66a/b7fTQaDWe80uBNJKJi5RcvXsRDDz3kUqzHEW9feVP1rd/vOwJH9cJPckKo+6m/xvzr6rqIW3dxiFtLcWpinBqm0D77balRrbE+vC+fzPlEThU5bZekWmuI3QiOqjbqnGhcFP9VY5z/soYa3SUZc3rx4kU88cQTePTRR1Gr1VCpVFypCt5DPp93hIVJUbjh0e/38fjjj+P1r389vuqrvgo/+ZM/6TKw0g2QGwLAvuJujHGqL58/1l2kSzDng+SNmVHZNxIuvleU9ACYuT7JGN21uQHBtc6NGmP2k7SQcJLEaNyrKmI6P7w2+8e5otLGe1JljO8aAG5sSTKpEjIemK7cek0SN2668NnkRovGQPL66jLsly1Q7O7uuhp0NwsvJgvlFx0MggtlQEBAQMDh8BW3OBUjbueaiHOP0/P96+jfiUQCi4uLKJVKLlFJKpXCwsKCS2bAuLJut4tMJuNKB4xGI3S7Xfc9DSgqJ5PJxCVgMMY4Q4hGEWNu6JpYLBZdeQEa7TR2mBmSZElT6tPA6fV62N7edn3e29vDiRMnsLCw4AxEEihmkaRbEwBXUqBYLLqYOlX0qD6cPn0apVLJqRutVstl56M7FeOHzp07h9e//vW4cOGCi/ejOsG503lVRY191rg8jo0eRwNVya5PYHyDUhGXrMT/TsmdT4p0jfrr0l+bceqvHyPn94l/8zM1bNWFUlUOJp+IU7RJCtXF1IcSLL+//j3Gbb6wz4RfQ01jspTocaODhjqTAD300ENot9soFosuAQ83OKii8X7p4phKpdzmRKvVwtNPP403velNeMMb3oCPf/zjbgyVvFF1M2a/dqI+f7r+tNYjiRQVIVWOWJuO96jkh8SEmzrad1VOOa88hsSP7XIdkEhqNkk+S+qOyPllPzWOjq6oGpvH7Lfq1kgiVSwWUSgU0Ol0HAnnebwPPZ5tKJnVcfFVNyV1bEefRcYmvlD34JcCx4rAIShwAQEBAQFHRJwypp/7bnKHubEdZGjSgGHqfqpnjDtjQo9Wq+UMsm636wheMpnEzs4ORqORS3RSKpXcTj2z1DHxAIsKk+AB+y6WNOLK5fJMZkqqMOl02iUxabVaLoEC43EYO9NsNl0sHbNn3nHHHQD2Cx+fO3cOvV4PzWYT1losLS1hOBy6+2Q2zO3tbUc8gSjGhfe4tLSEYrGIbrfrXCnvu+8+dLtdfOYzn3ElEF7zmtfgjW98IyqViivcXC6X3c56nBueT3CoxDAuSI1kVW/8ufVJ1kHJDdS9TDHPNfAwJc2HksqjnkOoQapEkAawGvSqzKlyp1kEfYVQXdkO699BhM6fS/87JZ6qiPuxWiQf3NjgBkMmk8HKygruu+8+XLp0acZ9ksSN993r9VzBesZ4crPjypUr6PV6eOCBB/DEE0+48hhKGDKZjIt363a7LolQLpdzSvB4PHYxV6qKGbOfAp/zkclkHNHj5g3HQ2PMqLjxHCViukFBFY+KezabnUlSoi6bqsRqXTq2rxsdXBMkgSSPVPuoauqGCMm/bkzRpVXJut4D2+dzq+PP71Rl5LpTl0puULDPqn7eLBwvAhcQEBAQEHBE+Iacr6YB8W5qcW34MTb+MdlsFvV6HUtLS87IoLLGxCBM508jSnf0Wcy6UqmgXC4DgIt90WyP3MVXFY4EUI1LqgokZzT48/m8K6ZNRQyAy7LHWJ+dnR2nhJE8LSwsoN/vo91uo1wuI5vNYmdnB9vb26799fV1ABFRolKxvb2N7e1tRzi5218qlVCv17G3t4dnn30WmUwGt956K0ajET7+8Y87peKuu+7CnXfeiTNnzqDRaOCTn/wkVldXXRwhY2l0vnz3SaqHJL5+vbd55G3eOlL46lmcequkTuNw+NlhiFOh4s6bt34JGq1q/PrqtKpXmtiExjuNX5IDX4nkeB6U1fKoiFMnlQzwnqggatp8TdKi6ekZ1zkajXD+/HlXlxCAi1PjGNGtkc8JXfq63a7rw/r6ukt+4icL0c0XKkksNcBkQRwr3gcTlXB8tTaZr4ppPTeOh2apVAJFgk7SxDnVudaYQm72cAxJJvkscYz1HLbJd47vNskNKH0n6TOnde64ScQESb66qmqfbib4mwi8R3UZpru5FkUnSeYGGN1JbxaOFYEzQHCgDAgICAg4FPNcHoH4WLe4c5S0qXHrG6XFYhFLS0vOnS+TyaDdbjtjgTXRNF7NWutiYhjjVq/XXRZJa6OYGCpZuVzOZZvMZDKoVCoz9bh4LS0YrAWL1WWLRatptFF1o6G0tbWFtbU1AMCZM2dw1113ufi1Vqvlrr25uYlms+mIIxVCJhDI5/OOtOq4FgoFVCoVVKtVNBoN9Ho9XLhwAel0Go899hiazSay2Sxuu+02vPa1r0W9XsfGxgY++tGP4sqVK8hkMnjooYdcPNM8IqMJFGgY+wla1MVKlQxgNsOhroe4tearunHwlbnDyE2cW+U88hh3zbgNC//6cWSTx/iqBrMlUoHT+n+q2HAMtHC4juk8AqrX13bi7l/d9Pi5JqrgdThnepxmaeSmy9ramlPFVHWiGx7JBUElbzKZ4LnnnnPJg3RMAMzUbSsWi06N05pvWnpAn2Ff4eS9cC3zPcHYQ7ptsv86hlRPNfGMqs6qqhKqwOl7RtUrLW6uZI7xbfyb409ipK6tqsLpWkgk9pM4kTCy/0rkdL2TBCtBJUmjMkiSxhg5Xo/EF4Aj2vM8Ml4JHC8CZwB784qiBwQEBAS8SuAbPkB8OnSFb0Cq0TLv2GKxiDNnzqBcLmNxcRELCwvY2dmZUfxYvJo74qVSCbVazSUOKZfLM4kMmECk2Ww6Q5NtFYtFnDp1Cvl8Hp1OB+1228WYsIYbg/5p4NBNE4CLZ+POeiKRQKVSwWQyQaPRwPr6uqvldvvtt2N1ddWpdQCwsLCA3d1dXL0aVRpiHAvVvUajgclkgsXFRYxGI6cwAEC1WnWK5Hg8dpn7stksnnvuOWxtbcEYgxMnTuD+++/HhQsXsLW1hU984hO4fPmyUyLvuecenDx58roU4HEusfxdjV5V3zRBwzziBcAZ23GufYeRt3kk8yDlTQmUf49+X/Uz3+DUNrTPfh/inhF/XNkWyRyNY42R09qGSo652XDQPcf1Pe5e/b6STGiKfT/roCqx1lqXSIcbBU899dTMeFGxA/ZjzKjOcaOD6lez2cTOzo7bpFHSQjLB2o/WWncuXQ95rMYf+u8vvdfhcHgdedMkMlTd2C5/NFZNM5OqSuWTRV5XywGQRKmLrb9GSfS0oLafCEdjLjWGVd+5TN6i/dGagKrKkaT6zwGVRPaH90g10B9XxiUyDvlm4XgROBhYBAYXEBAQEHAwfIPCd7/R4+IUOF9503Np0FSrVRfjdfr0aZTLZWxubrqabJVKZSZdvrVRun9mpux0OqjX68hms+h0OjP9oLLFAt2j0QjVahWVSgW1Ws0Vu6ZxUqlUkM/nXWwXd+KLxaJLhc0MkFTomAih2+1ibW3NZcNcXl7GLbfcgmw2i2azidFohEqlgvF4jK2tLWxtbaFUKiGZTKLRaMBa65QFunOqysU+0MBnpkpjDAaDATqdjlMg77zzTly8eBHD4RCf+tSn8NxzzzlSOJlMkM1mcffdd7sYPp1fQomcGrBMXqLqm4JjRui8qarDa+gaUjXjIMQRECVY2nd+59+nHqN9ijP69br+9bW/NOh1s2IeueM4KdGhssJEM0p2SYBI7o4Kf4znkVcllupO6atwHEuqWOxTuVzG+fPnceXKFRiz7yaYzWbR7/fd+NC1ktllW60WSqUSCoUCrl27NuM+qEXftTC3ugZqIW6qX+oWSFWI90jFnH1SlY8EU+uisQ9a/NtX2dTFkSRKidZkMnHKq+/6y7n1y1H4fWfhcj/RjK5zJd6q5rF9xv1qtki2RbdWEnZ/bLl+SLw1YQ/Hg2SUMZ48VonuK43jReBCEpOAgICAgCMgbjd4nvF4EIlTo4QuP6VSyZGpxcVFnDlzBul0Gmtra27HOJfLodfrOVfFfD6Pcrk8YzwuLi5id3fXFbTmLvju7i5KpZIjciSDJ0+ehDEG7XYb7XbbGYL1eh3JZHKGvNH9iKm42+02hsOhMzJZaHtnZweXL1/GxsYGkskk7rrrLtTrdTQaDbRaLacqMqHJ2toajDHuOlTzSAbH47FLe05CxzIG3W4X6+vrjgBwrBKJBG677TZcvHgRxWIRjz76KC5fvuwMT901L5VKuO2229zOOeG7J6qhSaLhF+sm6eKuftzOvb+WVJXQ9g+CT7wU6k6oRFBVI9841ntUAzNOgTsK/Hvx17y2798X+6BZKumiqGSBROBG4uIOI21sV59Z7YufpVLVOqpwJJWrq6sz7sokYuVy2SUcUhdKutfVajUX46pZHjmPWpeMag6VH3Ut9c9VFz9ViAhV0eLKOyiZVQWObStpAfbLhpDoqFqlsWO+26EmkSGR49j65I33SuKp6rduUviZbPneJZnzXX+pnBkzm7RFk6/oGJNYKtnjmlHF0D//lcbxI3A3uxMBAQEBAV/0mKc++N8Rqrb57dBAyefzrsh0oVBAqVRyf9PFj3XNKpWKc1usVqsz7o2JRFSwmuoWjUrNUMc+UrGrVqsuBo7JPZjFEYDbLd7b20M+n3exPN1u133HHWem3V9bW8PGxgZGoxEWFhZw8eJFpNNpXL16Ff1+HydOnEChUMDGxoYjp8wIR2LKcSNZZRwPDddarYZyuYyNjQ3nTknFgHEm99xzD6rVKp577jmsr6+7GEHfiLTW4sKFC6hWq7F13ziP/jxzXOg+qbWj1NUvjpzF/e2vj6Mqb/P6x9995SQurixuXbNdv89xGxP8Xo1gPR7YJ4jqNjfv2WDb2m+6B2pGR2A/fumo9eL0/tQV0lcXeSzXCzdJuA6pzmk7PIZ9ZC04KuilUgmpVArFYtERKG5IcCzoFtnpdJzSruo3Fcl+vz9z3/6aUfdFJZqcAyrHe3t7rp4cx1ndF7U8AGswqlJL8kIyRjKk8YE+SdNsovo86vNHhVFVM43nU/VTlWr2i/NChZHQ55NjxD7yb3VH5buQRFhJpd6LEnm+p7ixMBgM3ObYS5GE58XgeBE4zK/ZExAQEBAQ4OMoxudBrmdAtGO8srKCpaUlt7PP+mbj8RhXrlzB2tqaMxRZ24zGCrPOcce/VCrNqG4kF8ViEaVSaSY198LCAhKJBLa2tpzCxgyOxWLR1UijYcK4HiAqWdDv913cDgCXWISuiYlEAktLSzh37hz6/T4uXbqEQqGAarWKfr+PZrPpCFWhUHAp+JnBjfdFxYCFwbPZLKrVKjqdDi5fvjyTzMEY4whtPp/Hzs4OnnrqKZeC3Z8jAM6Iu/POO11M4EFzrvNOpZDuU359KP7uG2u+GhW3RtQYjSNnqt7FtaGfa9IMVUm0r9qXeWogP1eyotfxyZAPHbc4N1VfpfbniffB9c4NBd4LXfVupMaWTxb9z3lt9plqDcfDn1slnSwaffLkSTSbTRebOh6PsbCwAGOMU8RJ+pLJpIvJ5OYFVWclDeoySSJLJY3ERzcQ/PvT8SLZ9JOL6Drm2LMv7ANJjyad4RwDiF1rcS6RqqxTSeR9sT1NJMPPdCNC+6OESktYKImk63S5XEan00G/33fkmvUu/Zp6+mxwrEies9msI/ocW9ac5Hxx/vkuvRk4XgQuKHABAQEBAUdAnApB+EarT+bUAKbKxnpuANyu987OjvuPnooU3Srz+Ty63a6LdyPJGQ6H2N7eRqFQwPLyskvlT6Wq1Wo546per2M0GmFzc9MVlS0Wi67MQLvddpkVSep4DaphdGsEomyZOzs7uHbtGrrdLnZ3d7G6uorV1VWsr6+j1+s5Q3VnZ8ephQTvcTweY3l5GdZGmS5pzDGhSblcRr1ex9WrV53CR2JCgkkjt9PpYHNzc4ZI0Qj240+WlpZw4sSJmd1/X1nSHxr0Gvvmq28+AThox90nYYcpb3EkzVfT/H4C+4Y9r+GPgxJOjfHSdewrK4eteTXY48hEXPyT344/RnR/5RqlkazulHFK6rxnN0518//l+tEfJaw6HyRkJFf1et1tipTLZQyHQzSbTbcZw42H3d1dl101kUg4AgfsqzyavZLrXdUkuhYCcK697C/HhKQGgGuDc64uibpGeP8E15QqVyTOVA01EYpClTpjjItrJXgfbIv3z40kjc9kPzn2St7YL1W8dP3ThZLxirqutB2qlH5yI1WzeSzfZUwGw3c679dXpW8GjhWBA0IMXEBAQEDA4VADME5h893FfMM9k8lgcXERlUoFwCw54H/+e3t7rpj0YDBAoVDA6uoqqtUqdnd3Ua/XkU6nsb29jVar5QoIp9NpLC4uot/vo9FoYGFhAcvLy1hfX3c1pYAoY+TGxobbbS4Wi6hWqy4GjveUyWSccUwXS7p8UvFKJpNYW1tDt9t1St7S0hIqlYojdKlUyrkP0VhjLJAmBuBOd7fbBQCnHKZSKdTrdYzHYzz22GPOqKWRSKLHzIU0hOn6xfuZ5y536tQp1Gq1uUa/b+xTjdAfP/bNv6ZCjWRdO74CNE9lUzWM0Jg3/qt1q9TNi4a5Ej2F/u0by/xMj9X4ITVO/WfF/90ncjoe/C5ODeRYjEYjt2FQKBSQz+eRSCRcLJIqOHHj6j/H81woOUZKfkhY9DtfzWMGx2w2i4WFBWxtbTnFOZ/Pz8SwUbVhVtlCoYBms+lcJkmgNPskz9f4KiXYHCMlW3EbDABm1oMqi/764Dxrin8A18V46bkaa6oqn9aoA+DcY+mNQBLEe7XWzmSXJOGM2yjTZ53vRs6JZs6kKgbAKWjc1NK6c/4zrS6hJM+c162tLUdiOQaqUM5z036lcKwInDEmKHABAQEBATeEg4zLOGMwl8thZWXFZZ1LJBIuOQNVKcaxkbzl83mX0KDT6bjYGRa6ZvzKaDTC4uIi9vb2sL6+7lx01tbWXNFsAG5XnwkVisWiK6RNV0NrrVPkjDFotVro9XpIJpPIZrOuvpu1FmtrazMFhRcWFlAsFp0rpyb2KBQKMzvglUrF1aba3Nx0cSeM9avX66jVaqjVarhy5QouX748Y7DmcjmX9EXj0Wh00bCmAZpKpWbUP+6Qr66uuuQRccqbDxpldKs6SH3jOlHQoPMVN1/FiSOPcf3yVTeNB/LJkv+j61UJo6oM/rU0RpGkRt0iaUCrga/Hx/348XEHqdz8jJsIJDdM0sPkEZxzn7DFKWz6r3+cEhjOsxJ2n6SrSx/JR61WcwRTY8qKxeJMohHGd1Edp+KkmQupKGk8GfurCXx8F172V10IGdPnrxHfTZb91fVAIhansPF7dd/lXJDg8VlPJBLOjZPtcQOmVqu5GpMkzlTONB5RFVLeG/vN96yeoxttJNXWRqUYSLA4FiRdvBbfWVQHlYSynY2NDfdOHI/Hzt2dz/7NxPEicECQ4AICAgICjow4Vzsg3rhOJBKusC+NgHQ6jcFg4IpUM5EJEClkrPnGdOJUsmhkNBoNFzfDnfdOp4NMJoOTJ0+i0+lge3vbuRZyR9gY41Lv06jc3Nx0qkUymUSpVEKpVMJkMnH13Vj4FoiMlNFohFar5erK8dzJZIKdnR1X7JuxQIxz4444A/tpBLVaLbfbzpIGt912G5LJJB5//HFX2200GrkMlNypb7fbLm6I462kgCDxUGM5nU5jdXX10MQCSpJUDdEfdeXS8/w1QuNY1Ss16uN25+eRNv1dFQFgn7yQdOl3ce3Nc+3yVY64ewLiyweo8qfqCNtVY5/3wO/4r0+qeSz7xbHjRogm+uE48BpquPskJY40x401SQkzr+q60L7xGslkEoVCwT0D7IvGkFIFYpIOPlN7e3vOndp3LWQMVyaTcZsXqr6xbZ8Ia303jjOfXa2bxnHVNrUtXXP6zGkGSZ1zLUegcX1UyIwx7nPWTaOrNrNP+kov1WWfROo881z2T5OV+K6Uqrqp6zH7x/meTCaOkHMc6P7K8eBcch2TjAcC9xLChBi4gICAgIAbhG/U6mf8PJVKOVdGGnys40ZDZTweO/LWaDQwHA6RzWZn4lNY6JrEjPFidDNsNBougyWzUDIAn4pbLpdzBIqZ1TY2NlCr1bCysoJr1645EkWSyN1puiyxVhwNmU6ng3w+P0MQaLB2Oh1UKhWUSiXnHlqv19Hr9VzCgNOnT7vfafitrKzgwoULGAwGeOSRR9BoNJzyxtp0i4uLaDQaLhsfjScA1xlzvoHNuQEi457EWuftoLlV8uaXI+BxqoDNgxI5vXZc31WR8kmYuoaRFJFAxBE27aufUAKYTdqhY0f1gmPgu2ayPSVKvoGvBjiv6atx/v3HgfetaioQqTrNZhPD4dBtQgD7qd51nA/6O47E0ahX0qBKj7/GeA7de+v1Oq5cuQIg2rCgUU+yyfsZj6OSGb1eD+1228WD0s2Xmx5sV10jNakH1VF+zu9UueJ1NY5T703vT0mv1rvjvfK5Y/+4scQ1QjVSM0JyM4sbWr1ez7mdMsaX7x59BtQNk9fX9arKHIkwz+M5nMfJZIJOp+MS1DBDJ4/RseN98vp+NlS6keuzAsAp/+zTQZtFLzeOF4FDEOACAgICAo4ONfDjDH5jjHNPLJfLLk6rWq0CgKudNplMXPxZJpNxGdCokp0+fdqRsMlk4lSvpaUl1Go1VKtVrK2tubIATO6Ry+Wwu7uLRqPhYmpocORyOXS7XSQSUaZIFupuNptYWVlxBiRdh2jYsTB4KpVySUtoBKoikU6n0Ww23X03Gg0AcK5QdIeqVCpoNpsuHXoul8PJkyextLSE559/HlevXnVZ+LjjXa/XXTkEkii6jflkSI3pOEJljEG1WkW5XL7OoJqnxtCgVRIXFycTt1588sj++uRqHpnQz3gejVv/O42F8/tEI54GvqouTHc+GAxmFBweGxdbpJn3qPhSPVFVUeOjaChrYghVr2gk81g14P0x9OeVhvTe3p5LzAPMptX3CWTcvM1T4ua5UfrHcZypONdqNTz77LPODZr3xvFnXcdut4udnR23EUOFnvF9ANw4c/1TcVNF16+Hxj6qW6nei7rBEtwI0O98JddfY6qK+q7CJEJU5blGmJCG35GYcoNLFUWSTF7L77O6UWqsm6rC7LPGplm770LJOpf8naSW85FIJGZqFKbTaVdOhNcggdU6nEGBe4lhjIENGlxAQEBAwBHgGyv+Tn4ymUS9XneFphOJhIvNYdwUVbFTp06h2WwCiFx1ut2u27W/7bbbkM/nHdlrNBouZqtSqaBcLjtD7+LFiy5ByN7enjNABoPBTBHkZDKJZrOJarWKfD7v+s5kIFTKCoUCxuOxuyawH+S/traGzc1Nl4BEs87RSKnVahgOh47kJZNJpzrQsOp0Om4My+UyTp8+DQB46qmn0Gq13K75ZBJlmVxeXgYAZ5zzflUhULIzjwzp5xqTGDe3cfOsaoxfOmAegfPdAIFZl8M49cbvq6+Qsfac7xLGfyeTiSvVQKWESWJI4EnMGJ9DFzhg3+VU4ccYMd06+0l1lWtN75cbCNlsdqbotBIPdT1UFYnnx5HROCWN89NsNjEej50arUWz4+Z53lzpnNCQ5+aGEkMfSuBKpZKLV6UaRVc7Pnd8Tnq9nisbQsLAjLNKjtU9UMsMaN04jX0jaVF1Tgk255if+fOimwN0YeZaUIKmroYcF1Xm+O4Yj8fodruO/JO4+QTTd6XlfdFF21dB9Znk+OkmgNadI9HKZrPuXavKIkke+8C1TZdwnqvjou6zOnZcOwcp8y83jheBQ1DgAgICAgJuDL57nTFRfNnKygrK5bIzhvP5vCMj3KFlkhCSt93dXayvryORSODcuXO4ePEirLV47rnnnGJlrcXJkyexvLzsslCOx2M8+OCDMMbg+eefd0rf1tYWms2mM/RYP4ttAVG5ABbznkwmGA6HuHz5MorFooupIWmrVCoYDAa4cuWKK0nArI80sJvNJk6cOIFcLodOp+Nqu9Ho4b+TSZTAhO5ozMxprcWVK1dczI8mBqhUKkilUi4xAAmcGnicExpv84wk3bFfXFycSRnuG4k+OQD2XSg15kyVIHXh9BUiTSjB7+PUXF/RVaNUiSuLDSvpoYJK11M1gJk4gn3hd1yfvD+fUOo98Ds1RGmsanuakITXZymKRCLh1OA4QqfX03FXtzhfFYwj65PJxJXFIJGbR+J84uYrn0qgVXX1CbyuI37PNVYoFNBoNNxz6qt5g8EA165dAwA3LlR60+k0isWi2yhRMsXxUcVZFTddoxrTpu6tVGN1ffiqI39IfHi+qn1McOT/8BxV2Dqdjsu0S5dXXfvq1ql15rQEwbz5YBs81t/k4Lqkqkmyx3qQuqFBF1B+xo0rxvpSueO48Vrq4qntxa3BVwrHi8CZQOACAgICAo4O31hk8o+lpSWnullrXWFsxq/R+EkkErh69aqr/9Tr9ZDNZnH+/Hncf//92N3dxZNPPomnnnoKxhjUajUsLi7i5MmTsNZifX0dqVQKFy9eRKfTwZUrV1x6fsZz0FWLhjp3l+v1OprNpjO4uQPe7/dRLpdndsqHw6FTEOgKydICVIDG4zEymQxWV1eRyWRc7Buv2e12XawPlR66YnJ8ut0uNjY2XJIHGk1MLEA1kIaiui4C16e+52ecIzVGickkqi2XzWZdaQTu0sepKUqklMT5hmrcWtFr+m0q9Hs1Iq2N3LtYNByAMzZ3d3extrbmNhD6/b5Lr++7+LL/AJyCqDX9+O888qrjq4QB2DeqeTy/59jTXZAGOZOO0LDneqA6peqPXlPV0jjypm7MPKff77txJAnyN18OmnMdAzXG57nPat9I4Bj/ylIB/B7YJ1mNRsMlIyK5IEnnWuUGhs4Xn+VerzejnOmc+eSG64CkmOtZ16Kqmeynjj9JqN6H/zzwOaZrLe+VdepyudyMW6mqf1o+QJU0Xp812/RcjXcjudQNBo0VJXhffK/wPUXyymNSqZQrmcI+8L1K4sf3CAt/c0z0ev574JXEsSJwQCgjEBAQEBBwOHyDGICr87SwsOBcaTKZDCqVCk6fPo21tTWnhnFnfDgcIp/Pu6LbAHDx4kW89rWvRbfbxRe+8AU8+uijWFxcRCaTcYlQer0eGo0GyuUyTpw4ge3tbVy+fNkpHpubmxiNRqjVak59Y2Y3xtXRGBsMBmg2m+h2u86g1RpI3W4X4/EYrVbLqYMsRMyyBltbWy7BAgB0Oh0sLS0hlUphY2PDlRyggZbJZNyOO8eCRbc16x3dlHQHG9hPfU4S48e3+EkceI7On6o3vtGl11I1xVfMNGmLGrBKmPn3POh14giAKm47OzvY3d116qgmnWi3244UMXuhjgn/ZmwUDWJNxKJjw3gfGp16LtcGP6OxDcCpxBrno8qmqhJsi4YuyV+v10OxWHTKHOOPlJCouuSTLp8sq4LJWEoqwL7qehAJ1HlSwqYkTl0p+R1VpEQiyni6vLyMnZ0dt+64XuiGd/XqVUcguL6YdCiRiIp7a2kOTTpC4qKue7r+SYp0bHif2keCCjMwq+JRYdJ4O7bN5xPYj3PUAuPq2s0MvIzPJXnS54mqrD9XmjVX74v900yYvA/2T++P7uYs56CZWzkvqkIy6y/Lqqjiz3FhWRWNHVYlUDcPbgaOFYGLFLhA4QICAgICDobvUlYoFFxCEf1P2lqLbDaLra0tV2w7l8s5pYcGQ7fbRbVaxW233Ybz58+j2Wzi0qVLaLVaAIBKpYKlpSWUSiVsbGxgc3MT58+fx8LCAq5du4aNjQ0YE5UbWFtbQ7vddu6GTHAwmUTpxpl5koYplTomPOGOMYPxWSiZmeHOnj2LXC7nar91u12cOHECALCzs4NqtYqTJ09iMonKDzA5ia/4FAoFZ8j0ej1XQoD/D7Oum6qVwL5B6SsIaqjPI040tGiIAvuxODRg41woVXUh1KDzXSh9hSiuL9qGr/Bo3NLe3h5arZbb7R+Px3juueec8ajKg6oLqk6qQgjsE16qrOyLxulolkB1zeT48ns1hrmmlNipcc82VIXQZBQ8PpFIzGwqlMtlFAoFR+R8gqzt8fqcN5+Y8b7b7bZ7ZvR51Tmbp8ax/bi55xj5861EjjFflUrFrTsW9W40Gmi1WjOJXUgqqJSzLS1krWROC9qPx+OZxDEcKz7n/JvzqeOmBIb95hxqMWpV8agOq7sjnzFNBKLlQFivkhsJukHCdpQoa/yhv0HD8eB12C+uNd0o0HGjcqlqr6p0unb4XCqh1O+5Nrg5ogSeY0yPgpuF40XgbnYHAgICAgJeNaDrELNMcte6XC6j3W6j3W4DiFKFnzlzxhWJrlarLp34aDTC5cuXUavVcP/99yOTyWB9fd0Zl/1+H8vLy6hWqygUCtje3sYzzzyDc+fOIZlM4urVq9ja2nJk59q1a9jd3cXS0hIAuCLaQBRvR/dGEqbRaISVlRUYY1xykUwmg62tLed+ube3h06ng93dXZw9exalUskZczs7Oy5ObjAYYGVlBffcc49T06gS5fN5Z6RRVdOd6na77YxEAFhYWJhRhegmpQYzgOuMt7jPlADSsKYxpTvmeizbUcLjQ1XAOFeoODdJX8mJU/tooE4mE5eopd/vI5FIYGdnB51OxyV7oFFPguYrgvq5Hx+ohNd3N503nr6y5Y+LT140WYMmu1DXOFWuaBQrqaDR3e12kc/nXVZT9k2Joo+DCNhwOHSqNzdS9H79c/17m6fAKdnVseI48941gQYA56Y8mUxw6dIlJBIJVKtVl1yHpEGJNceKa1Hn0ic5qoSxT6rO8jhtXwmQtq/PrmYvpTssSRvXKGMbE4nETLZM1kTjtfzNDlUnuVnCVPxKoOOUUo7PQXMIYCbuUgkqY2tJBtWVk+eRBOsc63OrGxp8DnStBhfKlwgmxMAFBAQEBBwBxkRxRnTz4n/qw+EQ7XbbGSf9ft+l689kMq4cQKFQcKnxz58/jzvuuMMZ6EzLfuXKFRdPVygUsLGxgWaz6Xbtr169CgCuntzGxoZTydQlioSpXq87o4PxbqVSySW7oAG3s7MDay1qtRra7TY2NzdhjMG9997r6rqxzhENlkaj4RTBZ555xsU59Xo9WBvFG1Fxo6HE+BJ19wMigqeqIQ1FzfTIvmrSDWBfWQL21SglLr5rHM/RnXzCb3ceAVM3Q9/lcB585U3VxN3dXWxvb6Pb7WIwGKBWq6HVaqHVarm1QdWNhiEJibqfqvGoCgTHRlUDjisNfnWx1LEifFKsLmc0uNUI1/Fk2+w7XfZ4rq9Gsn2SF24sMBEJjXwlTj6pi1NBaaS3Wi2novsZM+Pmzf9biZz2nd+rga/kleu6VCq5+7PWOvdRuuDR9Y7rkOue80hip2SQfeJY7+7uunWja1nrLrLfSuR4nJIrguSNGyscC1XLR6ORS8ICYEa14n1R0WL7urb5bHJceSyPYVImTZjix0zqmleyyM84hpwXbiTxuSIB5djSi4IuoCSQqsRxrfqbETrO6pp6M3C8CBxCGYGAgICAgMNRKpVc/Iym82ZNIxoV3HUGoqQf1WrV1URLJpM4d+4clpaWsLu7i26362LG1tbWsLCwgFqtBmstLl++7FwwR6MR1tfXkclkUKvVXAHsXC7n3IOYIGF5eRmLi4tot9vOSKSCk06n3U4x6xf1ej3UajXk83lsbm6i1+thcXERd999N5rNJp5//nlHFFgqgEXErbUzqmOr1XLxWozfSSaTjtTu7u5ic3PTuV1NJhOX5p3Ek2nVaRwmEgmcPHkSg8EAOzs7AK6vi8bPfFdIPU5JhZ90Q4/hOSz94LenRqsSkDhlLc6lLq6tJ554AhsbG26+Njc3USgUnBqq52oJA93l96/r94uudzTgfQVONwD0euqWpv1n4hy9jmYZJAkAZjPyaZ/YByXUvrsfM5MOBgN0u12XxZXXVtdTXwXz5559oBJHUqEbIHqcvyZUyVQS7M8zj/VJUiaTQbvdRrFYBLC/EXP58mVsbW3hzJkzGA6H2NraQq1Wm3EdJGFiCntjjEt5T0Kn5FbvW8tyqPunrhmSFSVPes+6+QHAEX8mnmEbWs6A64wKKteggvPGhB+aVEeP1Y0KEi5uAvjrh+fqvKqqp0oox9S/T46LEjVdy/7zocSemwm8BskhMxHfLBwvAhcUuICAgICAI2BhYcEZp6VSySlyqVQKzWZzJuaDLlArKyvY3d1Fs9lEvV7H6uqqO54GCGObarUaFhYWsLe3hytXrrjMlZ1OB9ls1qlw29vbLgU+d8JpVHG3vdvtuqQBdJME4OJsGIM3Go1w4cIFTCYTXL161amDJIBra2vodDquNpwqCXSRHI1GaDabrrYbVY1EIuFUgKWlJbRaLWxubrrdavZXC+dqhj0aT0yS0mq1YhOOKOIMcGDWPctXTeLOoUEYZ9D5JOwwKGlR1Y2fDwYDNBoNZxhyHel4cEzUvVCh90fjlNciIeM68RWAOBKiBMtPiKLf65rgvPI6mrjEV0XZhq+YKQHziQTvnwoQSYHeu08MdQ54DNfAcDhEp9Nx6hAJRNz86f1rzOBB8++vNRKuwWDglHoqz71eD6urq9je3ka9XkcikXBrQlUnzZRIdU3dInkNxqppllElcBr7pvFgSqB0w8Mn98YYd316IxhjXLZZxtWynzwnm826rKBU5uh6yeQtujnBtUWVWpW4uHlW5Zl/64YM16Jmus1kMs67gP3kpohmDOW4ZLPZGRLMtaNj6JN73u9ha+blxvEjcDe7EwEBAQEBX/RgghAgMhxKpZJTsWg0MGU+axs1Gg1MJhPcfvvtWF1dRafTcapbOp3GY489BgA4ceKEc19kPFy320WpVMLKygrS6bQrcL20tIREIoHt7W1nsNBwyufzLkmAMcbFvFHt42453SfPnDnj6oYlk0ncc889AICrV6+6xAQ0NmnsZjIZnDp1CsViEdvb246MMpaHxhUTVSwvL2N7extXrlxx5INGD0sSAPvZ7oBZN7p+vz9T14yGPqGJNtRA9934dBeefytBiIMmLCCUQPqKkl5P//aNOx5DRZKqGIDr1CB1WVP3OM0IqUavf322pcknaKT646j3yuN8FzAeq9A4It4H2x+NRjNZ/qhYcLNByboaykrGSJpUhdnb20O9Xp+JqdK++/30CQkAp2Trepu3JnSu/bn0Sb6//vg9nyUSlVqthu3tbQDA+973Pvze7/0ePvvZz6Jer7v3B+MIO50OxuOxe4ZJjLQEgKpC/nyQbPvHqautkmeOGceE5JmbG/RCIMHiZgzjN7PZrKuJyRIhyWTS1VCz1s64B3NdaDynJlPhtfnO02yY+l7wk0mRrPNZ8RU5elLwGM6ZriGOoRapVyKvGxb6vtGNFs4jx+Jm4HgROMTX/wgICAgICFBw95zJJOgSw7gtKnQnT54EAGxtbbn6bouLi7h27Rq63S6AyEgnSbr11ltRr9fRbrdx+fJldDod9Ho95PN5nDp1Cv1+H1tbW0ilUjh58iRqtRp2dnacgc0d9+XlZbdjzDIBJF7j8di5ZrbbbeTzeSQSCTz99NPodrs4f/48Ll68iGaziatXr2J7e9uRBt5fOp3GwsKCS8TyzDPPzBgjVI5oyDCWr9FouFp1dLsi0dS4OBrmagAzQYIayjRCNbnAPDVNDTXdEacboq88+dB4HP+4OAKof6sCowY/v6MxR1c+NZoBzMTkKHlT0qbkjQa7xv2oUkbofShp5pjqMXT/4lhoeyRfvouhpoXXRBzqTqlt+fOq36nyQ6Kg7oRAlECI9RfZJz+uLW7ueB/czGCSFFVw/OO1v3FKsO9u59uXuVzO9a9arSKdTuPpp5/GU089hVwuh7e97W2YTCb47Gc/i4WFBSwuLroyG35slRIrJSaqqHHdca0TVLs0W6WOOfvO9cHzteC6EihNykJX7mq16kgLn6HBYOAShWjcGrC/UaEbMszuqMfqtble/P7yOWD9OSZMUgLIZ2c4HLoYN7qn6mYQP/OzU1KF1KQquknB8VT3zIPeNa8EjhWBQ1DgAgICAgKOAJKvXC6HXq/n4k+KxaJLbLKysoJms4nJZIILFy7gxIkT6Pf7eO6552CMwWAwQKvVQrvdRr1exwMPPABro+LczzzzDLa2ttz1jDFYW1tDv99HpVJBvV5HJpPBlStX0Gw2XfxHLpdzxt7u7q4rX6A14HK5nHNBLBaL2NnZwWAwQD6fx4kTJ5DJZPD0009ja2vLZcNk3BvJ2/nz51GtVtFsNl1yFdZ0S6VSrkjyeDxGpVJBuVzGxsaGq29Fo1t37bn77mefjCMeaoz7CtC8DG/qBskfdcnySZhveKuR5hvmPinT8/RvdWlUYjoYDFy9PG3XjwHyVR9ew1cAtAB0XOZOGpf+WHEdc1yUsI7HY6dQ+EldaITzeO2Lr3xRMUulUu5+qcoBmFEv2A4/p6GtKp32QV0qfTKixEah4z0ajVxxeT92TEED3F9P7LOqi2zbvzZdI0ejkUsc9PGPfxy9Xg8bGxs4e/Ys3vnOd6JYLOJ3f/d3Ua/XcfLkSaytrbkkGiT2GtfGMdfMijrHuo6U/ACYUW/9BDA6H0pOVPEkSaOSTkJNwsaYWe0PFURdG/qO4D36Y6sqsSZnUYKoihiVTj4fqVQKg8HAPQfsN13CSbAHg4Ej9VTngEgx1wyffuIUbnaQOHLzTJVQrbf3SuNYETgDBAYXEBAQEHAozp49i62tLWxsbLjd4dXVVacopVIprK2toVAo4Pbbb0e1WsX29ja2t7ddXAhT899yyy04e/YshsMhnn32WUfUuMNcLpdd4d56vY5qtYrhcIjt7W2nQHCXu1gsOtWPcWw0rsvlsnO35K7/9vY22u02VlZWcOuttyKfz2NtbQ0bGxvO3dJXFarVKoBIVWw0Gi79OUnkiRMnZtxIWQePdeNIKjSbG9vWNPiqFOiOtU+oaExqUgBfJVMypODnNPb0Pv3jaCCqwarkJM5dTtuiUarEgy5mm5ub2Nracgqkqo+qpPhgWyRb5XLZEe69vT1nfKqbHfut5IxzxzgmGse5XM7FeJZKJdcHFncn+WU2RxrbfjZOn+zwbyUJqhzqeeyzT47Z/zg32Mlkcl25AX8dabs6j8yeSuKhLoj+uGvffWKoffXXIhARuJ2dHWxsbLh18MQTTwAAPvCBD+DLvuzLcObMGbzpTW8CAHz0ox/F0tISTp8+PVPoWzNRUpHSjJM6Nkr+lXDrWChpjiO8VNe5lnWtAHBKHt0mmbiI65q1/TgfOq/++4ZrSwnweLxfFNsndP78krzxWSO4Rv2kP3yPsP+6aUCyxpg+XRvciOL4q5LIZ6dUKrl3H991HLObgeNF4IwJ/C0gICAg4FA8/fTTaDabrgbc0tKSy7Q4HA7R7XZx5swZnDp1CtZaPPvss+j3+8jn86522ng8xj333IN8Po9Go4HNzU2XTCSZTGJlZQWpVAqdTsfVcBuPx1hfX0en03FGUKVSQaVSwcLCglPUnnvuObfjzV1v9ovqxNbWFsbjMS5evIh6vQ5rLdbW1nD58uWZBCJMQKBua5cvX3a7ygBQrVaxsrKCZDLpSgdUKhWXRXF9fd3tPJNQ0nWTO/oa2K9GvCZSUONXiQjjgWik+oagT6z8+K5erzfjiqdQd0uNx9HzfSNdr+u3w3uZTCYz5I1ucOoWqeoRSUQqlXIEjXPD7ImMKSIKhYLLXMq2WUw5nU6jUqkgl8uhVqthcXHRFWSn4W2tRb/fnyF46m7GdtrtNrLZLBqNBnq9Hq5du4bBYOBUXLrSqfqg6iINWh1jPzsof9QdU+eTY0u1mK7CWkdN1w7nRAk1x4jlONhnjUVUpVXJm67NuHVG8DOOI1WhS5cu4dq1a1hZWcGnPvUpAMA73/lOR+ISiQQ+/OEPY3FxEWfOnMH6+vpMLKi6MJLA6foj4daEIepWSdWO5ETrwXEuqJRyg0bVUQBOWeUmD8eHyjVdEDUBD8eV19USAfrsq+szNyxIVnk/6mashErniWRO51vb5zuOxJDJqtgmswxz3XKt+W6tnBPWwjQmSnSlbpu+98ArieNF4HC0LFIBAQEBAb+/MR6PUSgUsLi4iMXFRVeXiq5Qt99+O06ePIlWq+UUr3q9jmvXrmEymaBWq2FlZQXj8djFv3W7XXQ6HQyHQ5w8edIpAdylbbfb6HQ6Lk5nd3cXi4uLWF5eRrlcRjqdxvr6Oi5fvgxgv55SoVBAt9vFZBLF5vV6PTQaDRQKBZTLZVhr0Wg0sLW15eJSaHTRIGMMCRAle6CBw2tUKhVks1mXlIWE0VrriKISDqblVwNaDWGSOl+F81UtJU7sL+FnLowjcUBkcDebzevqUSkYZ6REQZUZX33jNfiv9oPHdDodrK+vY2try7ku+kkolDQkEglcuHAB165dcyRZCSxdu2h4qpuZZrWs1+u4cOECyuWyqw04HA7R7/dx7do1Z7gzxpNkhoYn+8YxKRaLSCaTKBQKbrPgwQcfRKlUQrPZRKPRQKvVwtWrV/Hss89iMBg4QqhFmfVeqbQoKaHhr/PKTQUeq6RQk1hw7frz46uB6o7Z6/VmknrEGdtxrrP6WRyp12uz6HUikcDnP//5GTfHRx99FADwrne9C2fOnMGDDz6Ivb09fPjDH8Ytt9yCM2fO4Nlnn70uHssnQ/66UvLgb5ZwPPS+FUqISHpIbhlbVqlUriNB6lKoY6WZHVVNHY/HM5swXM+qxPrrhhswfK+wX0r82SedB1UeSdaA2dIYJH1cZ1QA8/k8hsOhi83lMTqWVB0TiYQrbE4X/LgYy1cKx4vAhRi4gICAgIAjIJvNung3Kl8bGxtYWVnB6dOnMR6P8dxzzyGdTmNxcdGlzZ9MJrjllltQLBbxxBNPoNFo4PTp0wCAtbU17O7uYmlpyRmqlUplJlaORgCvS4Wl0+mg1Wo5g5DG0Gg0cgSyUqmg3++j2+2iVqthNBrh2rVrMzviarBRyVCCwPptmUzGlQhQo4Q7771eD6lUCpcuXZqJ0+F56iapBpnGDFFJiiNgwL7LJY1RjZ2JM5x1l913gVtbW5vJPOefx36qeqIkiVBD2O+7qjyMe9rY2HCZBP2iyGqYU1G5cuUKWq0WADgSxJTnGoND0kY1hhlMT58+DWOiZDedTgdf+MIX0Ol0XDF17Svb5FryCSjvm5kzs9ksFhcXXRZSusleuHAB4/EY9957r4sBfe6557C5uenKWmi2ShrTNH5VyfLJ0rzPAbjshqPRCPV6/TolTgljnKsgXVC5geLXudMx0PXpK3D6vf+zt7eHUqkEAHj++ecd0R6Px+j3+/jUpz6Ffr+P9773vbjlllvwpje9CePxGA8//DDOnj2LM2fO4LnnnptZe3zeRqORe9b4LGkqf46BnqP3xPUdt35JnpVM5/P5GXdOPiN0OeSGD+dUx5PHc52pYhy3AaLKJs/V+9QMwaosKrn2iSDP4TX0faQEmPfOjSiOabVadbUr+S7h+5jvEJ7HOEC95iuN40XgEOrABQQEBAQcDiput9xyC9LpNJrNJm655RbUajUMBgMX61YqldBut3Ht2jXk83nce++92NvbwxNPPIFms4mlpSVXY40xRiRCiURiJrMlEMWULS8vuyyXvV7PZarkMYyFYdwc1RF+R5JFw0rrOQH7Lm36N2OhSMzq9ToWFxeRz+cdsaQCMxgMUCwWXSwfAFfnrlAozBjK84x13RkH9mPQVEGjMcadco4Pd8t9xU6NQHXDM8bgypUrLk6H7avxzX6qW58qPLyGxq4p9G9rLVqtFjY2Npzxx3lQ90I/MQLjgdRQ57hwbFSxSiaTOH/+vFPaRqMRnn/+ebTb7ZkMe3ovOsa8J1958pUqYjweO3fQ7e1tVCoVlEolFAoF3HnnnS7O63Wvex3uuusubG9v49lnn8Vjjz3mxp73xvtkH/Q7zg1dANWg1/6Q1A8GA7dG/ayXPM5fd7wfLYhNxVHn0Y/h4lo5CLoGgeg5fOaZZ/DMM8/MxJGR1H/+859HNpvFu971Lpw9exZvfvObHbm7ePEizpw54zZKeA90KaT7HjdP9Ln2+6ExkUrcSLq0/2yHiTz4vqI6T1dDkjEq6mxbr82MtBo7xnlXFYsKGZU1rgkljewvr+Grjhxbtse51+eY6h1LoeixvH/eV6fTcRsi+Xwe5XIZtVoNnU4He3t72NrampmT0WiEfr8Pa+2M2nczcLwInDGwQYMLCAgICDgEq6urWFlZcSn8z507h2w2i2vXrmF3dxeFQsEZs6PRCCdOnMDi4iKef/557OzsOCJ0+fJl9Ho9p4xcu3bNxahRGWm326hUKjh58iSWlpZQr9dhjHHfkcQwYyQAl/o/n89jZWUFQOSyZ21UOoCJBYD9jIMAXHxUt9t17oinTp1CoVBwSl6xWEStVkM+n3fJVrijvLu7i1wuh62tLWxubro2aOSROACzBboJP74JiM8GqcQF2C9QTYNbXaoIv11VnHZ2drC5uYnV1dUZUqDHsm/80XpmfntxJJXGJF1lSYQ0Zou7/jRmea90jySRY5t+P+jiViwWsby87GIyn3zySTf2NDgJzQBJkso1oWPsx53NA0l8v9/H+vo6UqkUnnrqKSQSCdRqNdx7773Y3d1FvV7H6dOncdttt7n0+UyEooqfjicNbfaFf6tCRKjhTUOb6foPWldq2KsLMUnDPFWNbSjx9KHHkbh3u118/OMfR6PRwJkzZ2b6YEyUVOPTn/402u023vOe9+D222/HO97xDvT7fTz55JO46667cO7cOafEKYlRd0JfTVPFjeuKmWqp3HHNanFqtkXSRXdCEjF1hSQ54jPJuEm/LyRyPI5KFceA7xFej4SNJJHkjdklSbjpBksCp0l2lFQqiWUGSo5NLpdzruW6ecNnlW1ubW1hMpm4OpzWWudKTrfhZDKJ4XDoatK12+25z9HLjeNF4BAUuICAgICAw7GysoKrV68imUzi1KlTaLVaaLVaWFpaQi6Xc0W7M5kMbr31VozHY3zhC1+YKTmws7MDYwzOnj2LRqMBay2q1SqMMW4ne29vD5VKxRFGZpJstVquCHC73cZoNEK5XMZgMMDly5edEQTAtc1i3MBsTbNsNutcxdLpNLa2trC7u4t0Oo16ve6uRwOZxcOZxAWAI3Isq7CxsQFgn1jVajUsLS3h8uXLMwYTf1dC4BMvNcxViVM1hoYz75H357epP+pKORqNcOXKFdx1110z11ZyQIOPLqWJRGLGYPTvQ13t2M+9vT3s7OzMpHinCySvowoXz1eVjsfQMKWBbIxxCUmq1Sp2dnbQaDRmiB2AGYOWf2s8kRIPn4xwPFTZYN8JEisly3Rz297exsMPP4x6vY5yuYwTJ07g/PnzOHXqFO644w48+eSTePzxx90GghJfXQe8ho5ZnGskiQYAF8tXKpVmFBdV3/w1RxXOV1qVMPrkzVcwtU0do0aj4e7tmWeemYlXU7c+xoI++eSTbuwvXryIt73tbeh0Ovj85z+P173udTh9+jSef/75GbdEX4HSz5XoDYdDR1BIbtSdUxVofsb1D+zHxWqsoBJtEjNdO0ry9HiNq6Pr5Tw3R1Wi9XknIeRmiBIt3ouq/7xuLpdz70ESSnoW+OtOXUj53plMJiiVSjM171TBpFsxExHxPXkzcKwIHEwgcAEBAQEBh+Py5csoFouo1+vO2GSh7Waz6WLOzp07h2azifX1dYzHY5RKJWxvb2M8HuPs2bNIJpPY2dlxhInndrtdWBul5K/ValheXnbkiOUHut0uWq2WM9o7nQ42NjZcxj/GXxQKBWfMqHpTLBZdMpFisYi9vT00m02XQp0ZJMvlMoAoo+GpU6ecAcjYHaoUiURU1+rSpUsu/gOIinifPHkSjUYDAK4zyn3DWd2rlCwR+jeNUlVN6ALK3XQtvqsGt6pMk8kETz31FN785je7pBxKDnk+75PKF7M/qlrkQ1WbZrOJa9euOUIW5+rJvmsc0d7e3owKR+NZSVypVHKxZ8xqmc/nXXvsg1/7yzeKldjEuSnSVU8VQnVh9A1pVUytjbJaDgYDrK2t4dKlS7j99tuxuLiIW265BadOncKdd96JRx99FE888YTbpCCJ8F35+C+voe55XBc08vf29lwCoEKh4Pqs7nHqTsk2SOB4X3Fufkq8/TGMI4eTycRlcG21Wvj85z/vYiF5jyz6rBsETz/9ND70oQ+hVCrhwoULeN/73oef//mfx2c+8xk88MAD6PV62NzcdOUj6KLLtc73gNZfpLpE4khXV7r4+S6Q3W4XxuyXldA0/xx/JisiGdN6f3Tp5NriOLKEBT9nX9mGQte0n7CGpHs8Hru4R44lx17fMZlMBtlsFoVCwSl6+g7R54Zt6jOt65LvWI4n26XSzuRDo9EIrVbLbd7cDBwrAmdwc6uiBwQEBAS8OkA3x6tXr2JhYQFnz55Fu91Gs9mEMWam0Har1XIGU7PZRCaTwalTp9DtdrG5uemMUxYQppvR8vIyFhcXnRFCw4yxF/1+H4uLi0gkEmi327h69aozoEn+6GpJA5CkiEZoLpfD3t4eGo2GK3OwvLzsShCwBtjCwgJOnjw544pmbZRopFQqwVqLXq+H9fV1p3jQoKby0uv1AMy6Tsa5yalyQ+Ms7lgSDE3n7bvQ0fWKqb+5qx9HuC5duuTiEn1ywH75il8mk4mNZfFVPgCOtLAtEhN1y9LYHU2+wL5zLJi9j7Wq8vk8rLXOaKbhyb85VuybZtfT+/GVNXUJJJiRUhUU38jluVxzfip3/rRaLXz6059GoVDAvffei/Pnz+PcuXOoVCpYXl7GY489ho2NDWfQc141K6F/PVXmSN4YD2aMcSq4jqeep+tCVR4SHCWluh7m/cStCwDO5fmJJ55At9vF4uLiDKk0xjhypC6uly9fxgc+8AFks1mcOXMG7373u/GLv/iL+NznPoe7777bbcSowgrAbd4QSr74zPJYKkq6nniObhxollh1U1TSTpAIcgzUvZPrMZvNzmxWqMusPoPaDuPVstksRqORS17Dfmr2SP85zmQyKBaLrnYnx4nPDrBfy43r3lrrSpaoksm1yXWqiVvy+bzL9krPi93dXeTzedwsHErgjDE/BuArAaxba++dfvbPAXwVgF0ATwL4s9bahjHmPIDPAXh8evpHrbV/8eXoeHxfQxmBgICAgIDDMRgMYEzk/sji11evXkWpVMK5c+fQ6XSc0ra0tIS1tTVsb2/jxIkTOHHiBJ555hn3H32n03HGBssG1Go1nD9/Hvl8Hp1OB1tbW84QYV2t1dVVdLtddLtd9Ho9F+9Et0saqzRwaXwwC5oxBo1GA+12G+PxGCdOnMDJkyddVsFKpYJkMonV1VUXAwdEShwNLM062W63XXwdCSDvi/F36h6pxqz/rxp+qpKpixqNdz2X3zNT5mQSlWygQcykMFRkVIG5fPky1tfXce7cuetihtgPJcDJZNLtsKvxr/em5G99fd0VCfbdyHg/ep4moWBfVFGh0UoSqUapplDXOD29ZhzR8LPiqQKh96Zk0DfWleRo7FgcSSK5HA6H+MQnPoEvfOELOHv2LC5cuIB7770XZ8+exUc+8hFcuXLF1bPTWD62ReNa50vvlYk1mE213+/PbGT4a0/nDph1I1TC6xPgONLmg+RlfX0dxhh85jOfmXFxVZA8al9brZYrMfCVX/mVuPXWW/Hud78b73//+/HUU0/h9ttvx+c+9zn3jHKjgPfkx4L5yUtU9VbyRlWtWCzOZLrUcdY1pGtClTJd13ouY8+steh2u25ta+p/kkZeV7NA8r1DdQ/ATAIofY5JqlgHUe9bib+uHSX13BAC4K5tTOT6zvck1yefTV6bm3iFQuGLPgvljwP4NwB+Qj77HwC+01o7MsZ8P4DvBPB3pt89aa29/6Xs5FFhEMoIBAQEBAQcjmw2i6WlJQCRQdVsNl1WRpYDYHwUM8RduHABo9EITz/9tFNe2u32jFtjOp3GwsICbrnlFpcIpdVqodvtzhifmUwGm5ubzg0LgEuhzaQCdKWkwcRMfJlMBv1+H/1+3xkhZ86cQbVadVnTSqUS0uk0brvtNkwmE6ytrbn4ECp1dNskKdnc3EQul5u5Dt2neH9xKhqhv/tubT55A/aNQj1f3Z8YM9br9bC0tIRCoeBUMD2Phlqn08G1a9ecQqfqCkE3Shq7dFHlbv08ctput7G1tTVDNGiIkuTyvnlvND6pTNBwJHGj+6aqZWro+/FrOn7+WPpkhv1W414/V6WIhMd3ZeQ5StS0Da4JVVkHgwGefPJJDAYD3H777VhZWcFb3vIWl62y1WrNqGJK7nkfvmKjCSdI7plEiPFNqsKpwsbPOV9xCTh4v34WRX8sdU3QPXk8HuPKlSszsZT+OFFJ5lyTAD766KPI5/P48i//ctxzzz3Y2trCxz72MSwsLODixYt49NFH3bG8d703kpW4TI2qcLK/JF+cM03ZT5KYzWaRy+VczJkq0Dpu3FjQjZTxeOw2nKgsM3suN6Y4lxoTxzHhe8Z3peQaUHdgZhHmc6uKHtcK1Xsq3TyObqd8T1AB5HNJF9N+v+/eo6zvyXpwbPeLmsBZaz84Vdb0s/8uf34UwNe8xP16QTAhBi4gICAg4AjI5/PY2tpCqVRCIhFl1yOR43/cTF9er9exsrKCtbU1dDodl+Gs3+87I2AymaBQKODMmTOoVCrY29vDM888g16v5wx9kj3uNNNoaDabznApFovOoNKd9n6/79zYut2uM9Doqra7u+uSktCwWFhYQKPRcG6Sk0lU4mB5eRnVahXr6+vIZDJYXFzE7/3e77kdfcaylEolZ6DNI280jn1DXH8n9G8aaWqMKtHTdhKJBFZXVx1ZGo1GuHTpkusLXcUmkwk+//nP4y1veYsbR91153Vo6DIhQblcRrFYnHFVVUIzHA5dcXX2jfdOV0ifULFPJCNUGUiKaeCqEaiGsbo36lj5cWu8tzj1TBUlX1FU0qP3rEoL26DRy2upux7vXQn7ZDLB888/j263i3PnzuHkyZMoFAoolUr43Oc+h52dHUfMdSw1Fsl3a+U9kIQxK6CqlTqGviLsu7z6yqkmhjlIhWNfd3d3sbm5CWOMKyehBErXOkkYr8Xv9/b28MlPfhKZTAbvec978M53vtMpmQ899BDuvPNOXLp0yaW01/nShClARMJ0vZFwK2lirCffW1wHJK9UZtUlU12EdQ1QHdd1SSWWa4Pzw42XnZ0dR7A0LpCbUKr66juBY0qyl06nkc/nXbwf70PnnGuA71K6tXPceW88V92ZqRxyA4YxhXyXM/ELXXJvFl4K6vjNAH5O/r7VGPN7AFoA/oG19nfiTjLGfAuAbwGAc+fOvQTdiGLgQhmBgICAgIDDsLm56dK0X7p0ybk4FotFZLNZNBoNjEYjLC8vI5FI4JlnnnEGP3eKWRg7kYhqqJ09exYLCwtot9uu1ECv10MiEWWB1GK8jE2jYkajQZUcXoexZ1RsGGCfyWScYsYEJcPhENVqFePx2CVUWVhYcIVpz549i729PTz99NMolUqo1+suzi+RiOpApdNpnDt3ziVUIOKMYz8mB7ievPnulHqPSqj0GFVOxuMx1tfXUS6XZ1wF1SimEfrEE09gZ2cH9Xp9xg1R26ZRyp98Pu8yz7FNvWemMtdiwgBmUpWTiGh6c94nk6qQsCvpiFMllbAp4eL3/Nt3AYxrg3/TcFaCx+94PPtNcuCrSTxXY4nUzc6PMWw2m3jyySdRLpeRz+dx+vRp5HI5PPLII9jY2JhRWWhM65yqy6ASURrOu7u7zpVSx0CJKvvHeVejW8dA47iUAPlrgf9ysyedTqPb7aJWq103N2ybxFGTqfBeBoMBHn74YSwtLeGhhx7CW9/6Vly9ehWf+tSn8Ja3vAWTyQRXrlyZycCo643XU/KpKp/emyaS0WQ+JHdKqPwNFfaf7zo+C+l0+jqipeM0HA4duc3n8zPkiX3kutP1y/sj2SMZU7dFrj8tPcK2dS3zOeQ8AHCJnXq9nlP0lpaW0Gw2XWmIXq+HfD4/oygq8SQxvFl4UQTOGPP3AYwA/NT0o6sAzllrt4wxrwfwX4wx91hrW/651tofAfAjAPDggw++JKwrKHABAQEBAUdBuVxGMpnEk08+ieeee84ZByQl1WoVuVwOly9fdjFpqdT/n70/CbIzza4DwfPe8zfPg88jfIBjDMSQMTHJiGQyJaZSHGQylkxc1UKmMpm1qTdaVPWqZDIrU6161asy62a3TKZqFUtJUkxjkhliZmRmZGQggAACowPugMPn4c3zPPTC41zc9+F3RIgiAyT6v2Ywd3/vH77p/3HPd869d0TqtjF+yufzIZVKYWJiAj6fD+VyGfl8XmoKtdtt+U/e6/UiGAzC5/OhWq2iVqtJPBelOpT38FxKOXVyAIKeer0Or9eL5eVliS1JpVKo1+toNpuIRqPwer0CysLhMNLptCRlabfbuHfvHvb39xGLxZDP58W5Z9ISLZ3kzj8TJwDPgjU6j5opAoblknrn24w90447P2e6dl0/TycyIVNJWerDhw8xOTkp8TjmtbWckzvvrC+m5ZfAifSLINYEqCZLph1mOq2UrXK90CFlvA77bwXa9FhqQKCBh76O/lyPOcGtlinS8Wb7TRZPjxmAoTTyAITN0XFlWorJ69brdXz22WcYGxvD8vIyxsfHxfGn3FUDY53FkW0xGUI67WTiuInC46ykpCazys/1eJiJYzif+lheK5fLiSya4MIcMz2WWsapx4mM+s9//nNEIhFcuXIFv/mbv4n/9J/+E9bW1vDmm2+iUqmIXFqPOTd82AadpIW/E/Dwe732CUj0eGswz/Fi3CLHhuPEWmh6jZqMF/A03pggiElpmGiFx5lMNtcvnxe219xA0fXr2G5z3ZgMNMeP71mXy4VwOIxWqyWbdQS5LP3idrtFmcA6iabK4Ou0vzKAczgc/z1Okpv8xuCLlT0YDFoAWl/8/pnD4XgM4CyA638Nbf0KbbJj4GyzzTbbbPtyY5IS1lhjOn6n04mxsTH0+31hCRKJhMR2sFwAAUUqlcLo6KgcT8eO/7nrmJCpqSmpHcQYDOAkTX8sFgMAKRze7/clFsXv9wtAIMvj9/uRSCSkBlwikUA4HEapVEK1WkUsFoPH40E+n5ffc7kcms2mSJry+TwymQxmZmYkUUsgEIDP5xsqBK6Bi5Y7mUbH9HkySn6uzcrpNr8n2KUDRokXnTSC4GKxiFu3buH1118Xx0s7bgCGGAM6pZFIROrwaXaDsS8aUGoGj20AnrI9Pp9PmDadYIHOr67nptke3U4ta+PfVqzU8+JwtEPNe3GsCRq1xFAzUBpsc72zH6Y8UANB3Q860/3+Sc203d1djI2NYXR0VGICWUdL18kzk/ZooG/GPrbbbZFTmuvIZOK0XJNjoaV+2unX86rXGdfa4eEh2u02MpnM0LhZrQvOn2aMNDvc6/VQKBTw0UcfIR6PY3FxEe+99x7+/M//HOvr61hZWZHyIASuXFvcINLSUL4fKKd2OBwyrpox1WyrlbyW80EwRlkyr0VmT8+RjunULJ9e08BTplVnYNXJWkZGRmSTye12IxqNyvuH4Ir3HQwGAuI4Nlw/7XZ7aE3wd2a7LBQK0pdQKITNzU2Ew2GJ56PUnc+xfm71pseLsL8SgHM4HN/FSdKS9weDQV19PgogPxgMeg6HYxHACoDNv5aWfrWW2QycbbbZZpttX2qlUgnASYFqr9crzkUikUCpVJJMY06nU2JQ6JwzUcnY2JjEsLlcLmQyGXH4W62WgIFEIgG/3490Oi0JGGgejwfhcFiyutFhoQPDmC/KhChvHB0dFbDn9XrR6/VwdHSEwWCAYDAoWSOTyaRIEEdGRhCNRoeYtlarhVdeeQU/+MEPJKZOx4lop1yzIKftPGvnWP+uwZw+1wQfBFcaWAAYSpZgxrvo45xOJ548eYKDgwOMjo6KE2nlzNOBHhkZQSgUkphB9r3b7SKfz4vTzftomR2NiWCY5Y9xbpqxoJOrgZOWsQHPZpYk42BK1EwgpQGJ7qMJBDkenEsTlJnMqna+TWaV1+d64OdmaYVer4dGo4FsNotKpYLz588jHo9jeXkZ/X5fsqZyk0LLUflTg17dVgIMM6GFKU3V69ME8JS06nP0+jCfARbfJjA1E9GYGwacd0r7dBs5rt1uF1tbW/jggw/w27/927h06RIODg5w69YtjI6O4uzZs/j888+HWGNKMMk+EQCFQiFJ7sJra2kl2SQtLdVrhuPIZ87n88n1tPyWGwSUZ+tkKszcqDcRtLRYlwfhsZSYc/24XC7pC8Gojj+jQoAJWciqsc4bN14ILMnU640FxrcdHR3J9d9//33k83lsbGzI+5jHUu5L0KcZ/q/bvkoZgf8dwLcApBwOxx6A/xknWSe9AD74YiJZLuA9AP/G4XB0AfQA/IvBYJD/G2q7RVsBm4OzzTbbbLPty4zsFjOO0UHI5/PiEPb7fVQqFXFg/H4/PB4PEokEYrEYWq0W8vm8SBsrlYrs7NJJZExduVwW4KadaSYKabVasotMkMj09pVKRdqdTCbh8/mwt7eHcDiMsbExtFotFItFAaKDwQChUEhAZbvdRiQSAXDC8Pn9frTbbWxubmJ2dhZXr15Fp9ORZB4sQq6dec2skf0yzYpJ059pEGeCPBoBB51OfTzHTjMkptzP5/Ph4OBAmAvKzExHS4MiMqSpVAqZTEbmiUyqBig6iyWdU50R0e/3S4IFgiX2SbfXjJcyWTUeQweUx2qAoBkB00EnONP30n02pa2nMYq8JhkZzeSZkk8aASPbSvDCsUyn0xgbG5N6fUyqYSbMIOOq2UdzLTI2q91uP1NuwTQNxPiPCXs0gDPlsXqzoN/vo1wuY3d3Vwpo81kz59b8XctctZxVr8P19XV8+OGH+N73vod3330X29vb+PTTT/Gbv/mbmJ6exu7urqxNAicyYnzfsMQIQZPup+6XmQGW7PpgMJBSD2QneTwBHseJUkK91vk9wThBEwBREXBeCSZ1LBmPZZupjhgMTuq3BYNBaQvbqZ8XtlWXnuC7ATjZbGH2X67jWq2G4+NjzM/PI5FIoNfrYXZ2Vop16/eVZhr/VksoB4PB71t8/P885dj/BOA//bc26q9qDtgxcLbZZptttn25NRoNVKtVBINBTE5Ool6vI5PJoNfriUOXz+eFTWHms7GxManXVq/X0Wg0JCaLu7lMhsK6V5RZcWfYqh4TnYJoNCrxKx6PRxyziYkJhEIh5HI5lMtlRKNRRCIRqQFHgNbtdhGPx9HtdiUxSzweH/qOqfgHgwH29/fF+aVUkdIpDZS006vNZBusHJrTPjPBl2YHtIxOy8+0xFA7oRxXv9+PUqmE69ev45133pF50GDDZOAImqLRKEZHR5HNZmWHX8vNNKPF67BeHmNjyObwHDJc+hr8nfdlW6wkk6fJ8bQj/jz5npZ+EvyYIFszMfq6mmEw78n2ca3qNaLZOP4jSKnX6zg6OsLIyAhisRii0SimpqZwdHSEVqs1BC75vJimE2wAT6WUBCgmG6nHyVyvjGPVsjhz7DT73O12cXBwIKVG9Fzq83QmT/3c6GP0PJBtBIA7d+5gdnYW77zzDr71rW/h+9//Pm7cuIE333wTxWIR5XIZg8FA3g8EUPF4XEAK26zZN72pQCkir2GVbVZLJDUrxnXBdxcBjgZ2XFc6nT/jZ8lecQx4b75zPB6P1JTTkk2uQ8bOBYNBRCIRVKtVOBwOSfrEnyY7rzO/ZjIZDAYDYTLb7TYqlQr29/elHdxg4/04lxwXU575dduLK2DwN2AOOwbONttss822r2DdbhfJZBKxWAzpdFr+k+Z/1K1WS9ibcDiMkZERjI2NIZlMSvxYs9mUmDO9s0wZot4F17u3sVgMTqcTlUpF4lei0ajEfDSbTXi9XlSrVbhcLpw/fx4ejwd7e3sYDAaSuZnSzXA4jH6/j0ajIen28/k8fD4f5ubmhjKqtdttFAoFKUVApzmRSAh7SCmTNg02tPOsAYLplD5vd1o72SbLYSZJMe+hZWHmnDL5zObmJh4+fIhkMinJQ0zwqZN/OJ1O+P1+pFIpRCIRkcPqnXcNRJxO55CsluybZnL4ux43glMCNs2kmfJJK6ClwRpBggaGmj2jM63ljmasmJlaX7PDes55TT3uBBHmZ5x7bmDomCWH46RWXDabFSd9dHRUnim2h5JJqwLfBAZ6nbFUhpXpMdWOPeO6uD7M9aTXJEFMs9nE2tqaSPYI0s3+c3z1RoFujx5/U7pZr9dx7do1TE1NYWlpCW+88QZu3ryJ+fl5XLlyBR999BG8Xq9sIlH6HQgEZD1p0EPApceMa5/jzfhesqyaldSSVJ3gxJSico4JbDVg5vFaMsprEdSxrT6fD36/X8AWJaIAhmpSspai3jSp1+tot9tD8813MDfCgsEg7t+/j729PekTQWylUoHD4RD5PAGlfka8Xi9isRiOj4/RaDQs19zXYS8XgIPjmRe0bbbZZptttpk2NjaGer2O3d1dcUD1DjVj0Hw+H8LhMBKJhGQfy+VyKBaLKBQKIt/qdDoSn9FqtTA5OYl+v49SqSSOv96JpvSHWQq73S6q1SpGRkYQiURQr9cRiUSwurqKYrGI4+NjBAIBxONxkfZR9slYD7/fL+AsFoshHA4jm82i2WxiMHiaDp/AD8CQsww8BV3aYWHWOA1KgeGC0Ob5NO0AmseYcUP6OzpfVmwIr6sdceDEuWMZh1wuh+vXr+P8+fOScdSU/GlWjw5oPB7H+Pi4xCtq55QgSDOjWjapZWQ6/oft1c6ulgZq9lEzjHpu9Bib1+D3dIjNflqBbfZfM4A83wRtej60vJVzap6nf2opJwBxxiuVCg4ODjAxMYFwOIxIJCKyQN6LWQIZQ2Wygdq5JwPO+nEEeVayRo4Js8ISqNDMsSMA7vf7kuV0ZGQE+XxeEoHwfL0u9Vjra2pwZ84Lf+7u7uJnP/sZ/sE/+Ad48803sbe3h2vXruF73/seVlZW8PDhQ6lbGI/HJSmM1+sVibMGppSosj+aiSbjxI0TSoD180HJoE7FzznSiXrIhHPe9HgQ1LOoNhM96Y0JxsRpUKzXk65Pp+dGj6FO8kJQRpYvGAxiamoKvV5vSHGh3wHsL8EfASnXFEGblvy+CHu5AJzNwNlmm2222fYVjLFudBS4g8s4kna7jXA4jImJCUxOTsLpdOLo6AjpdFqSnDBZCaV7PNfn86FYLKJYLCIQCEi8HO9DxzSVSgE4SZPfaDQELNbrdcTjcZw5c0bYwbGxMbhcLimCHAwG5dxYLCbfOZ0nRa8djpMMf0xBDkDkQMza12g0xEErl8tDTrtmvsyMdwQoZjyblUzNBHT6b9ORNNk2DR75t3Z0TTkaHa1gMIhcLod79+5hfX0do6OjljXh2B4NpHw+HyYnJ/H48eOhBCIcB16Hmf5YXkKzbWyrzsJnBdA0COK9NFPFNan7bgJELVE0WTQt+aLETLN7mhXWY2nFAmoQTmmjlhfqfus1QTDGNtPJp/y00WggHA4jmUyiXq+LHJn3rNfrQ3GMGuxyHRBQtFoteQ41uDXHQz/nzKxogl69RtlH1k/c2toCAEnwodegfn70vc31aspV9dgRkK6trSGVSuHXf/3X8eabb+JP/uRPcPPmTfzqr/4qstmsxG5qMENGn2CIG0ecf732CIr5TLLshl6zlDtqqSPn0ZTV6kylnANKbDXw0uyeXtNkqF0u19DmiX5H6PnXoB2AxB7zedLPI2sGptNpDAYDlEolKeeii51z3bE/ZObYF77zC4WCMNovyl4uAAc7Bs4222yzzbYvt2aziWQyiU6n80xWSJfLhcnJSUxOTkqSkO3tbaTTaWQyGXQ6HQmEpwys2+1KIW1Kwbi7X6vVhmqSlUoljIyMoFarSfwZU2m3221MTEzA7/dLBsTx8XH0+32JfSEgBIDR0VFUKhV0Oh3EYjH5myUD6NRGo1E0Gg3s7e0BeOqY+nw+RCIR2Q2n86LZnFdeeQVerxfb29tSAkEzLXSatIOqTTM6NO1Ma+dXs2M8R5+rHTory+fzSCQSODw8RD6fx9WrV7G6ujrERphyOc3CuVwnhc+Xl5ext7eHbDYrTAOdTII51u7TgEHHjZmsi5mMQ/fJqi16XHiclpxqBs1kMzVw0Gwq502zJFpuplk1Xk+nnzfZHL/fL8fpWD69GWDOtWZMmXwnGAxibGxMJHIEcXwueB0NAM01oNPbW42nBr1erxeRSEQYOz0HJkPLNV6r1XD79m2Uy2WRK+oMlKY0lfNusqem/JOfm2PVarVw7do1TE9PY2lpCRcuXMD6+jpWV1dx/vx5AWuUPZrjpu+rWVaOFceL65YSbq4Nj8cjc0mZIwEZY0E51ho46iyWeh2R7WPmTI4Xs7Vy3bEdOsaMa1avYa7BTqcjCZ+oiCCYbTQaIklngqOtra0hRl0rCzj+TCpltWFFmacG5S/CXi4A95yXum222WabbbbRmGlMOxI+nw+xWAxjY2OYnZ2F03mSlfL4+Bh7e3soFosStN9oNCT7HACRL3KXm7vf3HEmSKTDx93cRCIh0qLFxUUEAgFUq1V0u13EYjH4fD6RarIW0vHxsQCvcrkMp9OJ8fFxeDweHB4eitMyGAwQDocRDofFWaaMstVqSfwI8LQuk3a0AGBqagozMzPitBeLRQGPZtyVafz/WLNoPE/v1mtHjYBDAwmT2TP/n9cgJ5fLIZlMwuPxoNls4saNG3jrrbekULcV06Jlh1wHCwsLWFlZQb1elzhBzUQQqGjmTYM1KyZL7/Jr00lPTLZKAxcT8Oq/9dxxHDVgoYPK47RTao6xjssy78V2EajyWiboIejjWreKdez1ejK+WkJnlmygTNJkLTUgJjvEBEEmq6ZBoNPpRCQSEfbUCtCbfWk0GlhfX8f169dFRqrbYI6Dvo42vRmhWWsThHO+SqUSfv7znyMej+Odd97B3t4erl+/jt/6rd/Czs4OstmssHCcXwIvzYJyTHStPZ2EhWNKYEJmi8k6arXaMyUx2G5KwgnqNJOmYyAJAvV60+wbgGfapdcVv+d64hixNIupHGBSKcYzsx+6Dp9madkeDTL5zHINPg+Mf9324tKn/A2ZDd9ss80222z7MisWi8hms5KowufzYXx8HDMzM5ienpaslFtbW3j48CGOjo5Qr9dRq9XQ7/cRiUQQj8clBkrLhbg7D5w4eLoYdK/XE9kld5VDoRBWV1fh8XjEEWGNuVarJXXnBoMBCoWCALtSqYRIJIKJiQn0+31pI5OQ0JkiU1gulyWOhUyHjtsChmN+6LwwmyUZu9MKR2vHFxhOlU92j38TFOiC3Ka07HnMiDZ9HLNHEpjWajX87Gc/w8HBwTPZ6bTjrpkap/MkI+Xq6ipmZ2dFOqnHigkUmKGUYI6gVP/TIEEDORMIaTmZmTVQs3Z6btgPbTpGTTu+7KsGVyY7arJ85rxxrHQcFD/TsjkNZtgf3X/eh9lSmfFTjynPJ/tprh9zbMlgm+tRrx2H40Qmy9qMWu6n15HuuwZwZAwJ6jWA0/NgMqm67+bapenYUt631+the3sbP/7xjxGJRPCNb3wDe3t7uHv3Li5evDg0NgTA3JjhmHCM+NzrjI78RzYLAAKBAEKhkAA+smsEmdxo0NJSrgXKNbXcWF9fP3O8N9esjsXj9xoo6rULnGyakQWngoDZgnlvMosE3WQXG42GJDzRUtJOp4NqtSrqiFarJUmgdB1KvgNeJGn0kjFwsBGcbbbZZpttX2oEDm63G8lkUv6NjIzg+PgY+Xwe6XQa+Xx+6D95ymdYc41p6ymro3PCjI/MEsf/7LvdrjgVXq8Xs7OziEQiKBaLaLfbiMfjcm673UY0GoXf7xcnd2ZmBrlcDpVKRcBFtVoV54VMH1m/Xq+HlZUViQ8hgCQYczqdaDQaz+wm0wnrdDooFArCAloZHTTtJJ9mWmbGY62khTr2DLBOA6+dZD2vbrcboVBIinLfuXMHn3322VBhb737zmtp4DkyMoKZmRlcvnxZgDsdSQJ+DTQ0K2HFsul7ETjTNNNgxTya8j9zHKzMBHF0OjXTyvuZTKp5P35mAjnNXFrNJ/9puS3HWgMyjm00GpUkHAQLZD50aQmT6dRMGWujWRnbFovFhH3T7ddjzXbSqd/b28ONGzeETeYzo0GtKZ012RqrdpnrXYMcnURjf38fR0dHuHDhAh48eIDr16/jwoULmJubw6NHjyQukcCJLDrHUzOUDodD3l+aPdTvJ7J6ZEg1mOL6onHjQs+BVhkQ9GmQDzyVSxIg833K7zVI5LxqyTDHm5lAyc41Gg3ZCCKYA55msOQmA1UFHDuWBOH1zLhevV543dPeiV+HvVwADg4bv9lmm2222falxv+oZ2dnMTo6KnFgzWZTCvWWy2VxepjJ0O12S1YzOgJMpc6d70AggEwmg1arhXA4PFRQdnR0VJKSzM3NoVqtolAowOFwIJlMwu12o1QqATiJb4tGo3jy5Al8Ph+mp6eRz+cBAAsLC+j3+0PAggW/k8kkKpUKAoEA5ubmkMlk8OjRIwFwdOZ7vZ6AP+180mlpt9sol8sAnmbOBJ7ujGuHnKaBxWlOK4BnHFU9L/o7LbkyTbdVO5bFYhHhcFjmpVqt4qc//SlWV1clW6S+ttkHtiMQCODMmTMoFAp49OiRMKcu19M06zpLpMngmHXdeF06lARY2lHkMXrsNIPJsTdT/3MctTNuxr5pWSbwVI6mszxq0GUFbjjGmknk8TrJBNvKv7Usk7I6DRTJNmuHmd/xulw3miHUjCU/4zOp55L3C4VCGB0dFfbtNBDM/nS7XdRqNdy7dw+bm5sIBALCJul76DVtrlF+p9eZ+bn5u17/ZMH/8i//Er/zO7+Dd955B3/6p3+Ka9eu4a233pKkKlYbRWQL9fxy7nVyIA28GVdHIM0Ml3rtaACu1y1ZO76XGI8WDAbh9/uFydcgmUwXgaAuH8DEO5p11Zs7fCZHRkZQr9eFKeOzyWdcrwG+x9lHvgtrtZrEUDI5DY/VMlO+N3V5gxdhLxeAc1hrjm2zzTbbbLNNWyQSQSqVwvz8PEZGRiR+LZ/PI5fLSXYyj8eDWCwmzq/O6DY9PQ2X6yT7Y71eRygUwmAwkBi1kZERkVz1+32Mj48jEokgFoshGAzi+PgY5XJZJF39/knWPbfbjUgkglKphHQ6jcnJSYTDYaTTaUm5zgLe4XAYDocD1WoVU1NTQ9I7sk+FQkGcYx2I7/F4hEnQMR4ahDSbTdllJgui4wZN0w7x88CbmRiA9zPBoBmfZHUvDSZ6vR4ODw/x9ttvo1wuY3t7G06nEzs7O/jJT36CRCIxlDZcs2Zme51OJ2KxGM6dO4dOp4PNzU30+/2hLHp6vMy/TZZPS1V1f83zNODRsVsasPI7s838TjvoHFOzdh6ZRq5tzg3BJ9us20tZmgZLZsY/DRb4vOg2c43qvuvnB4AADw1GzT6agJP/2u22yJg1o+Z2uzE2NoZYLDbEevKaGnyS/ep0Oshms7h+/TpqtRpSqZSAEsa56vnVAM3q+dDr9jTTQJh/t9ttPHr0CNevX8dv/MZvYHl5GXfv3sWFCxdw4cIF3L59G+FwGMBJen7GfOl2cPPAlM+azzIZOx5PAGMCTK4nHdPK9jLTre6Tx+ORNcPzKWlkkiG9BvW7hqwYgZUphfb5fCiXy/L+5LrWrBrZcoI+XofrNRwOo9lsCghkSQMqLvSGBcHfi7SXC8DBVlDaZpttttn25ba0tISpqSk4nSflAQaDATKZDNLp9FBq6ZGRETSbTWHo6vU6ut0uAoEADg8PxaFl4e1msymsW7vdFiePu/8zMzNIp9MSkxUKhRAKhcRZZBHbXC6HdruNhYUFdDodbG1tIZFIwO12o1gsDjnIpVIJTqdTZEaxWAz9fh+5XA4+n0+caO0MBQIBBAIB1Gq1IZCgHWXt5NDhMhkD7RxaAaDTZGMaqOkEDjTNzpgxWppx4vXYDofDIU7Y7OysFOTudrv47LPPsLy8jHg8PhSTpaVRZtyUy+XC6Ogozp49i2q1ikwmM5QkwwSYPEczUCaLxbYTnGgAZ7IawLNp8PU1CdSsGEQNAvW5HHM931rWZgUKT2OKNFtnSgg162fVH7ZTt0kzbpod1WPE9crr8jyTiTPHPplMYmxsbCgjqQmcCeD4PFYqFdy9excPHz4U8MBEQM8D7iZ4M5k3c57051pGq8e11Wrh5s2bOHPmDF599VWsr6/j448/xve+9z08efJEANVgMBhKVhIIBIYkjPoeOq5NM28cTy051sCd1+Ba4LjrYuAEkJRFDgYnNebIbOp4OdaGo2SVbWGb2+023G63ZO0Fnso4uUHm8/nQbDbl3lo6yXbrzQDNKJL983q98v6lYoEsHIEe72v13H2d9nIBOIddRsA222yzzbYvt4WFBZRKJWSzWbRaLWQyGanvxh1dnRWwVquhWq0iGAwiHo/LLrXP55Og+JGREQSDQTQaDQQCgaHd4snJSUxPT+Pg4ADZbBYARDLZbDYxMjIiZQiy2SxCoRBSqZSkvJ6YmBCJEJ2cQqEgsikyfcvLy8jlclIkuVgsPsNy0UmnHNOUqplOGh1C03TWPFPup9khUw5Io+OtwRfbo1kj7WhpJ/Q0kOB0OrG+vo733nsP4+PjqNVqcDqdyGaz+Iu/+AvMzc3B4/EgEomIs62TOfA+vIfP58PMzAyazSYePHggDrzuj3badXIGK3ZN7+TrMdbX039rwMf+ajbLNO2U6nvqMTTnQMsiTXmfBmn8ZzVOeu5Oiy/ksbpNBFv1eh1+v38oE6Vee1wHdOx5LZ30RTMqetxDoRCmp6dPLepusm/cgNnZ2cFPf/pTNBoNee4p0dNxYZpRtGIt9Rhps9rgMEG8lgzm83ncvHkT3/ve93D58mXcuHEDxWIRFy5cwCeffCLsMvvCZCtkv7Qc1e12IxgMyvg2m01JgKTj1jTo0RsHbKdemzpREAFbMBiUcWA7NDjTzwvnj/PAz/QGFK/R6/UQCoVk82pkZESKimsgyrqb3KzS5Q/YV6fTKRtolItrppAgkBs+uj7ci7KXDMA5MLA5ONtss802277E9vf3pRh3qVRCJpNBrVZDIBCA1+tFIBCQFNR0gsLhsMSYUM7D7Hl0Clhkm4WvY7GYOP+bm5toNBpyfQJDv9+PsbExaQ9j2G7fvo1YLIZoNCrxZ0yg0O12EY/H4XA4UCwWMTExAbfbjcePH6PZbOLixYuoVCrIZrOyg03HiAySGcOhd6k1CNPyKQ3GTAkb8HyHlL+bTJBVHBqdUIIqK+CnAafJglWrVdTrdSwsLGB3d1cY1SdPnuDDDz+UGmDsEx1J3Xd9ba/Xi7m5OfT7fWxuboqja8XAAcPgVt9Dt92UAXLsTZZEj7sGRho0amfSZPp4nC6OrMdRMz0aIFoBSz2HjBeis01gx7Wl+0GmiUaHX88zAYB27MlOsQ/m3PPaBCEcBy0hdbvdmJqaQiKRsCzabYI3Mi+VSgWfffYZHjx4INkeGU+ms2Sa425lz3P0rb7T8kY9V/1+H48fP8bGxgbOnz+Phw8f4v79+/jt3/5t3Lp1a6icAM/j+8vhcMiYmLGwBCw0c5w0SDM3Y/QmgGZLtTEelfFqZOu03FGDJY4L55MbZazzxvVElo+JS3RMKp8nnTDIXOcOh2OojAmBGTeO2CaeqzNPajbuRdhLVUbALuRtm2222WbbV7FKpYJWq4VisYijoyM0m03JLMZsjizyzf+4Kc1xuVwSLzEyMiLOCR0BxoBMTExgeXkZ5XJZ6rP5fD4EAgFxRBKJBJLJJPb391EsFhGJRHB8fIxqtYrV1VWMjo5KNkm9cx0OhzEYDNBoNDAzM4NQKISDgwM4HA6cO3cOmUwGOzs7KJVKsnPNxAbhcFhi4nRwPh12kwGgk0Kn3ZTK0XHSTv7zHFY6Rvqe+hwNnOikm9fTTpTVMYPBAI8fP5Y4R80c/OxnP8PPf/5zZDIZkXxxXDWbY7YpHA7jzJkzWFpaGspiyO81g6WZIc3UaIBHB1qfb8ouTdMSPzqbjCPS7JHppPb7fRSLRaTTaemn0zmcUEXL9TQoM6V87Kd2ZvmZdoQ1YNAOse6zyWLxM11nTSeLAU7ABWOi9Doia6RloGSvp6ennykboNeaBm/MZPj48WP89Kc/Rb1eRyAQGErBb9Yo0+OkzWQm9bp9nvyO7dFjys/K5TI++eQTOJ1OnD17Fvv7+wCAd955R+SLvDfZokajIX9z3vnsatDk9XqlhACPIyul26LrzAGQseH7kOdqmSETCmlZImNJKZvUcW+ateN1uZlEcMf3uG5To9FAtVpFu92Wa7ndblFFsExCMBgUWShLvegspiwETnDL9y+LfDcajaGyFV+3vVQMHBx2DJxtttlmm21fbpVKBZlMRuLJmNig0WiIc6OlkCwJEI/HZbc3Go3KrjDjMOjYnj17FsFgENvb28jlcvD7/YjH4yK3dLlO0pm3220cHh4ikUjA5XJhY2MDY2NjWFlZGQJ1dCTC4TDGxsZwfHwMt9uNlZUV7Ozs4ODgAKOjowiFQkin0yIp0pIyl8s1lA2OxWo1aAOGZV/6b+3EA0938a125QEMSe20s2flmJrSM31vk6mic8d7WEnXHA4H0uk0/H6/OLnVahXASdr6v/zLv5QyDKlUSs6nk8j+mX0PBoOYmZmBw+HAzs4OGo2G9I/AQJ+j2wc8KzvVAJamnXeredBjqgGalq7xe53FMxgMirOrx1XLIzXbqpk2fR+T3SMToceAjjH7quWS5hqzkoFqVlZnRzTjMPU9zbIALpcLiUQCMzMzCAaDljGJ5pgTEKfTafziF7/Azs6OxJDRcee19b05xlbzpWWi/Pw0M6+hnw3d73Q6jbt372J5eRk3b97EtWvX8Pbbb+P27dsol8tDz6TJRBHoErhpoK4ZLAJln883VNpBs20AhtYjz9O1EfnOI+jRgAyAbEBwrpkhknOu16h+Tsme9ft9qctIEAY8ZWP9fv9QjJ3TeZJhlsCM73u2z2TeeB7bzHe+z+d7JhPp12kvGQNnIzjbbLPNNtu+3LLZLHK5HILBIFKplOxsO51O1Go1NBoNBINBBAIBcSDoIESjUYyPj4vj4vF44Pf74ff7MTo6iitXrqDX62Fzc1NklNFoFM1mE61WC6lUCmNjY8hms+j3+1haWkKr1cLx8TEuXbqECxcu4NGjRyiXy4hEIgK2/H4/Wq0WHj16BLfbjcnJSTx48ACNRgOvvvoq3G63/B0MBpFOp4d2rH0+nzhj3GnWTr/JhJmmmTnN1GiHVDv/pgMEDMuu9E/AutabbospVTOdY4JnHtdut3Hv3j2srq4ilUoNAYXj42N8//vfx9raGsrlsjjnOuOmFaPicrkQjUYxNzeHhYUFRCKRIfZJO8I834zho2nwSwbClLCeJmnVGSZNYMQx4vXIRHg8HolHIjAj80igz2vT+TbrxvEnY4xMltQEhXqN0bk3ZaI6oYzJpOnraoBhspV0/PUcx+NxnDlzBrFY7Jm51GBKs2/ACcC/efMmPvroIzgcDkQiEVnLvV5PwIOebyuAqtc072mCe9PMTRLgKbjk93wf3L17F4VCAXNzc/jZz34Gn8+H5eXloWeTWUJ14hbNavLaTMRkAkWd/ZGsl7km+Fxw3XAsCLQ4ppRy6uyVVCIwQRTvqdej0+lEvV4XYMp58Pl8CAaDcn+yh9yk4hwR1HEcAAzFBvb7fSkKrseEzCBLyxSLRdRqNTSbzaFn6EXZywXgHLBj4GyzzTbbbPtSK5VKGB8fRywWG0r20Gg0xEmmlEtLkaanpyX2jOCKjsf8/DwmJydxcHCAvb099Pt9qUdWq9XQ6XTkfgcHB4hGowgGg3j48CF6vR7efvttBINBfP755+JMMevh1NSUyODm5+fhdDpx48YNAMDY2Bg2NjZwcHAgYHR3d1eYQkp/6FSXSqUhKaR2qLXzph1vYNjppZmMAc/T7JEV26YZDH5nxVToz04DlnTUzKxwg8EA29vbaDabmJycHDpnMBhgc3MTP/rRj7C7uyvzQyBHFsmUSdIBDofDmJ6exuzsLEKh0DPOuTmuuq1a7mj2WWfIMwGqyZrp+dPHa2Co224W99ZsGj+n00zmpNlsCmOiZXQaRPJczq8GRCZzShbHBH56fLhm+LcGX5pJ0nPCNnNdxWIxzM/Py/NmyiZ5LVM6yYyvf/mXf4l0Oi1OPZk3PYamLJbjb0qQ9Xd6TvUa5+9mAg9+zjGhzLDdbiOTyWBrawuvvPIK+v0+rl27hnfffVfaR/kjy17ojY7BYCDfE5ACT9kwgjxmsvR6vUPxjvycUlm32y0JSwiC2u22bFrxfixvwDheLZUFTkogaDkz67tRgsvraYAXCoXkHa43IbSEs1KpSJkBvVkSCoXkfc41wPH2eDySJIVtZV84/y8SwL1UEko7Bs4222yzzbavYpOTk8LWVKtVkZiRZSOI8/v9qFar8Hg8WFpaQr1elzi4YrGIdruNeDyO1dVVdDodHB4eSnZKxprV63V4PB5Eo1HU63UUi0WEQiFUKhUcHR1hdXUVExMT2NjYQK1Ww+rqKgqFAvb39zE+Po5oNIp8Po9ms4l4PI6HDx9iMBhgZmYG9XodDx48kALFpVJJsrCZDiX7q6VxNH2cNivnmseb4M3cvednVk45nSQzmQXboUEd48jYJ35u3ltnaeT3xWIRW1tbOHv2LNbW1lAsFqUN3W4Xn376KSKRCL73ve9hcXERwWBQnHLt3FpJ9xgHNzIygsPDQ5RKpWdArpkiXoMdOq/muJiySFPWyPawv5o14Pl6XGkmg8W2kFHp9XpoNpsS80S20eFwIBgMinNLEENnn9fmvcxEGVasE6Wd/Pu0TKN6venEKOZ9uZZ7vR7i8TjOnTtnWTJAX88Eb61WC7u7u/jRj36E27dvw+fzIZVKCTPP/uvU+tpOez6smGV93GnMnDl/5rPV6/Xw6NEjvPbaa5ibm8PHH3+My5cv49y5c7h+/bqsTzKpHHPGfLJkCe9BkMpzNNDXmRc1wNKbMHxOOX+tVgvVahUulwt+v182QxhvxjWqASTXtS4BoJOw8F78jGuZbB6vxyRRvE6lUhHJOI9nEpWZmRl0Oh3s7u7KMVo+2mw2JaZOg1dzfr5ue7kAnK2gtM0222yz7SsY/5MuFouoVCoIBAKIRqOo1WoAgFQqJdnZwuEwJiYmxIljGQCXy4WlpSXMzMxIJst+/6QOGxObAEAikYDT6UQ+n0cgEMDs7Cy2trbg8Xjw+uuvo1gs4saNGwgEApifn8eTJ0+QzWYxPT0Nj8eDbDYrDtT+/j4ikQimpqbw5MkTFItFTE5OYmRkBNlsFoPBQBg/LWNkAgc6adpJJkNHM3fqgWfZNyvHxQq8aekknVPttPK+GsTo363uaYISHT9jnjcYDPDw4UP8k3/yT3D+/Hl8+umnQ+xjr9fDRx99JLIrzdRRYqVjdXRbXC6X1PbzeDyS2ZTtYf81kLZi5/RnZkZO7aQSqLhcLkmlrtk47eCaTBXvo2uF6THUawEYzmrZ7XYlBbvuO40g1WT02EdmADVlk7wWHWOmgCdQMI21uHhP3V4Ch3g8jrNnz2JyclLWvDkGPE+Dt3a7jUKhgKtXr+KTTz7BYDDA5OSksF26H+y/yaix7abxe64Hc+71fJiA1wR45iZJpVLBgwcPMD09jc3NTWxubuLVV1/F559/LhtNZL8AyGd8t+lYRd0GAj7G9lIyqzMykvnk86HBPQG+ziCr1ypjjbm+tCSY61GXNGi1WsIm8h1tSkt5LOWgHDPK25nAR8fusvzK2NgYJiYm0G63UalUZMz1c6CfGQJA8xn7Ou3lAnB4Vjtsm2222Wabbab5fD7k83mJUQsEAqjX6/B6vUgmk+h2u1LUFQAymYykFucO7+LiIkZGRnB8fIxSqQS32y3JSMhkJJNJFAoFNJtNXLhwAW63G2trayK/KxQKKBaLuHz5Mnw+H27duoWDgwOcOXMGlUoF/X4fyWQSR0dH6PV6OHPmDJxOJ7a3twEA09PTUhtOF+yl1EfHTPFvneVNm3YwTbZAH2s661bHauZJsylaMqalltrR0wwc76fjw05rF4GB6fzv7u7i/v37uHDhAjY2NpDJZOS6wEl8zn/5L/8FXq8Xv/Zrv4bZ2dkhp9bn8wmTQ6dU3zMQCGBqagoejweHh4eyrqwYF91mSrBMZoptMz/Xsi3tsJrjpcdZA3EtYeT8mUki/H7/0DrR4MJqvRDM6PnTQIaMymlrAYAAAA2KCNY0WGFfdAp8fe14PI7FxUWMj48LeNPt10DaBG+lUgnXrl3DH//xH+Pg4ACzs7OYmJjA48ePAeAZOSmvpxOnmLJWK2ZVr7vT/FUrltlM4a/n78mTJ5iZmUE0GsUHH3yAf/Wv/hUWFhbw6NEjhMNhea75XGgWV7OalByS3fL5fEOsLDewyPhq9o3X0JJtHXPGdwLHXScfMZMhaVBGttPj8UjWSq/X+0xtNs0us21kHtvtNgKBACKRiCQy4rWKxSIePXqEdDo9BFZ5PT4TjBMk+8aNnReZxOTlAnA2A2ebbbbZZttXsKOjI/T7fUxNTaHT6Uj2MSYKIcNRLBZlJ9jr9cLn8yEajWJ6ehqDwQDpdFoyUnq9XnEq4vE4BoMB9vf34XA4MDMzg6OjIxSLRQF+m5ubCIVCUmz6xo0bqFQqCIfDOD4+lns9fvwYPp8P586dQ7Vaxfb2NkKhELrdLnK5HGKxmDijPp8PBwcH4ihpxsbr9aLRaIjToxkcYDh1vJXTrgGF+bsJVkzpl05soIEF76Ede1Py5na7h2pDmQySvqdVRsN+v4/r16/jt3/7tzE+Pi5MpW5ztVrFX/zFX6Df7+M3fuM3MDk5OdQ/xhFRvqUZIIfDIdks6WCm02mJp2QbdDs1M8nrmGyCdvrNcdXz8zxwzWtqYGRKVPkd14x2ovV86euw/7rNGizqODoyWM/L1KgBno6d05I8Xa9L348xb3NzcxgdHR2S65mxZCbz1ul0UK1Wcf/+ffzZn/0Zdnd34ff7ceHCBVQqlSHQw80QM55OM9X6PrqvVmtWP4Mm0DTNXC/68+PjY9y7dw/xeBzb29t48uQJXn31Vdy/f18Amk5ko58RDYC48WMCMrJvPp8PACRzo1nDjSCTIE9fl/JGvpN0DCVBHuddlzjR9yITrGvdca0zUzDHTksgWUaB7JzexOCGT7FYlIRVmnlmv4PBoKgqms3mM8D1RdjLBeBgx8DZZpttttn25RaJRBAIBITlcrlcUqeNMh1KZMbHxwGc/IfOxCPFYlEcolQqBeAkMUo0GkUymUSpVMLx8TECgQA8Hg+2trbg8/lw/vx55PN5PH78GL1eT5iGRqMhNeEKhYKktt/f38fs7CwWFxdx79491Ot1hMNhkUgmk0lxOlgX6eDgAMDTWCQ6ikwcoB1Gq119AM8AAF03it9rOw28kY3hZ7wfd9xN4GYFHOnQmffQTBbnkI6jCTDS6TQePnyI1157DcfHx8LC6fvk83n88Ic/BAC89957mJubk+/IxBEY6NpxmklKJpPwer0IBoM4PDwUEKBZKS2nM8dLAyYtvdOgwQRv5nxq9s4KOLD92pEnCKUDT+dZxx2aDKlm7whu9ZySAQsEAkPjqM1sO/tpghoyH1pG2Ov14Pf7kUwmJbkQGTKrTQgN3jh/pVIJa2tr+MM//EPcvn0bLpcLly5dQiqVwtbW1tAaJCDRwNHcqOBYnvY86HWspa/a9ByaYwVAQAj70263sbm5iaWlJTidTly7dg3/+B//Y4RCoaH50+nxNXtJkDUYDIRp1rFu9XpdNoFYgoRJTTgnuh6aWXqAxxAMBwIB2SgwZdyDwdP4TR5DNUQgEJBYRb47Oeb1en0oeYl+JsnYDQaDoX5xzVPGXalUhO0DngLKZrMp9wkEAkPr70UW8n6pABwsdi1ss80222yzzTSPxyNSN4/HIywaAInPSCaT8Pl8qFarApYcDodknQwEAuKcVqtVBINBzM7OIpvNIpPJYGxsDMViEaVSCSsrK0gkEtja2kI+n0c4HMb+/r7EmaysrKBcLqNQKCCZTKJWq6Hb7WJ5eRmBQAB37tyRwt/ZbFacmm63i0QigUqlInWvHj58KE4Y+6pBjQZKZtyaFbgwZXumaQdZA0AAz4AWzYJYsQn8acaCmQyQydTwMy1p01LHXq+HtbU1nD17FleuXMEvfvELqeFGeZfD4UCtVsMHH3wAAPj1X/91TE5OIhgMisNMdocOvJWkkpkLPR4PMpmMJKAxmUUTfJljp51rk0myktlp0EbTIE5n2DMZIjq2ZBzI1gEn4IXjq4/X92AbTbCqwZRupwbxeo71MYzRotEx5/E+nw8TExOYmppCJBIZSrxhgjduHHCuudnx4MED/Mmf/Alu3ryJbreLM2fO4JVXXkE2m0WlUhFAwTT0OoMm+6zj+fQ8meyqOfcmsDN/1xsU5vzq5xk4eWc1Gg14vV7s7OygWCziypUrePjwoYA1LVXketdJenQyG65r3SdKETkWHBvWzzQzlurnE4DIKjmGfId5vV6Uy+UhuS03n3SBca47PS56E0oDKv3+4udk6gKBgABfvSFgFo/nWOi4PvM9aL4/v057qQAch9RqR8M222yzzTbbaNlsFg6HQ2Jl+J86cJLAJBgMolwuS624RCIh8RN+v18klpRXxuNxhEIhrK2tod/vIxgM4ujoCOFwGJcvX0a9XsfHH38sdecODw8xMjKCiYkJRKNRHB4eot/vIxKJoFwuIxgMiiP56NEj+P1+BAIB5PN5ictjGnBmyUylUlhbWwNw4jg3m02pl8SdeAICHZwPPAuwrJgbU16pY2foGD/v/1/Kueg0mdfWDA6dQ7bNBHL6OA3irJxVtjWbzeLq1av4tV/7NRweHuL+/ftDEkPgxGErFov4wQ9+gHq9jm9961tYWFhAOBwWZ9Hv94tUkolhTMeSzGsoFEI4HEY2m5UEJyZbZsW46fFmv62cfBMUsD9mGQK2SwMQnt9sNsUxJwOjM0jqRA1m6njN3uj50YwLGTqdoIRzqzcTCBbMRCA8VoOgWCyG6elpjI2NSZFuq/g6zVIyvonM2927d/GHf/iHuHnzJjqdDiKRCN59911EIhHcvHlTJJvtdlueIx2HqPuuNxbMeTI3OPRcss8mkNdzT2P/9FrjuPR6PRQKBUxOTmJvbw8ffPAB3njjDclYaxVPSEDCObGKjWUsnH7WGcMGQDa/NNjj33pDhudUKhWUSiXE43GZ11AohMFggHK5PMTwcxNEx/Wy1Aelj7wvJZomw0jZK3ACBskcslwIj2VcH+/B83mMTtbCjSLG2b0oe6kAnG222WabbbZ9FWNWs3a7jWAwKD9nZ2fR6/VwfHyMbrcrcU3FYhH9fl+C6Z1Op0gu5+bmcHh4iI2NDczNzaHdbuPJkyeYn5/H4uIi1tfXJZU9M1+Gw2GcOXMGhUIBuVwO4XAYlUoFxWIR09PTGB8fx/b2tmTBJCMXDAZFRtntdpHP56WY9JMnT7C/vy+OCJ1vveOtnUiyB2Y8lxUrZwIGfub3+7GysoLR0VFcvXpVMsRpo/Onf2rARtOf6UQRJnA0GR3dRkqozLT/7Ovjx4+xurqKixcvYmdnZ6g4sAZOtVoNP/nJT1Cv1/Hd734Xc3NziMVistvv9/vFGSRwZGIGmtvtRjweh8/nQygUEjaOTBcdWI6/Gb+nwYBOu08nW4Ncmj7GlGjqOddzyNhNHWtE02OsmQqdEZLAkPfXEjan0ylJduj0asde95tzRqCvsxuy3U6nE4lEAuPj40gkEgI4tfSS5+hzNUNTqVSwvr6OH/zgB7h+/bpIoVdXVzEzM4P9/X3JKKtj78y0+XrtsT8mu8ox1ONtSpb19yaDynsSbOlYUs1CA5Bnz+Fw4P79+3j99dcBnEi7w+HwEIuqAS3XFufA3BCgbJDfM4GInnuCKcoa+a5hEhFeU5cWCIfD6Pf72NvbE1mjBu+cfz5fHDO2mdJGPR+UWJJp0xsQHF+uM5ZUGAye1sQj+KQyQwNIAjayylx7L8peKgDHNT8Y2GpK22yzzTbbTrfB4KS4ayKRwGAwwNjYGBKJhJQDCAQCmJmZQbvdRr1eR693Ul/K6/WiXq+jXq8jmUxKpjqXy4V3330XBwcH2NnZwcWLFzExMYFbt26hVqtheXlZdp8jkQjC4TAePXqEkZERxGIx5PN5AMDi4iJ8Ph/W19cRDAbh8/mkzAFZQpYJ8Pv9iMViKJfLqFar4mj4/X6J7dPZE7UjrJ0ujgedLFMySZCnpYZ0JJlYYHx8fCh+y8qxMR12EyhaOfdahqZZNpOh0ICGO+wakPGYZrOJ69ev41d+5VewtLSEe/fuCYtqWrVaxUcffYRqtYq/9/f+Hs6fP49YLAbgKdjwer1DCRs0G8c2s75gMBiUmn6lUklANseEjjWTPDBtvXb69dhrNlKPC4Ch+CCer+WMun0ECSaLSqdVywRdLheCweAQC6XnWwMQtp9xSIyd0tJJDUDIshBQaqDPzK+jo6NIJpMIh8NDMZ40DeJ0nBiBRLFYxPr6Or7//e/jk08+EXYlkUhgaWkJnU4HOzs7aDQaMibNZlM2Qsx78T7metcgSK9fE+SZv+t54Xjr6+h76XEfDAZot9uo1WqYnJzEwcEBHj58iOXlZVy7dk2S8LAfnU5HgDXnkeOk3wP8xwyN1WpVmH0tkyTwazQaQyCp1+uJ5JJKgFarJZktKe/WGR5brZaoDNhv/Yw5HCe15DqdDprNpmRO1clRCCJ5DMeVcc0+n08+azabaDQaApApIeXmhs50qjfDNPB9EfZyAbgvRJR2HhPbbLPNNtueZx6PB4lEAoFAAGNjY4hEIsjn82g0GhgdHUUkEhHgNjIygmQyCZfLJQVd5+fnMTIygkePHiGVSiEQCOD69evo9Xr4xje+gWq1ig8//FDkl/v7+3C5XIjFYqhUKtjf30cwGEQoFEKpVEIoFEIqlUKpVEI2m8XMzIwwcqxJR2Cps8kdHR0JK8GMmb/1W7+FP/7jP4bP55NivmbSADpcZrybyRxoSZt26vl3t9vFo0ePsLm5+QwrZrJmNA0MTJClr83PCQr0Tru+tnakKO17HoDc39/H3bt3MTs7i+PjY8lIyrbpPna7Xdy6dQvVahXdbheXL19GLBYTJqfb7UpcHJ1MyvTI/LDt4XBYMtqFQiHkcjnUajUZC9NpN2O+aGbsj8k+Wc2jHm9zPnV/TbaT7TEZIpMp0jJA3cZmsylSQwIHLW/V7CAASZJBiTKd9mQyibGxMcn2akpBOXf8aca7Ebwx2+Qnn3wiIN/j8WB8fBzxeBy5XE5YbLaXcYF6TWkmU68bttkcQ6u2nsbWmVJLU0qpr2EyjrVaDfF4HA6HA1tbW/j2t7+Njz/+WFgpbtzoJDx6jepn3IwDI7iq1+sinaxUKkPjwWdRs7hkqvnempiYENBFQBUOhxEMBpHL5WRDhccz1pesF8F7v98X6TmBKRl49kMn4jE3jCiFr9fraDQaQxsqHFNuJPBZDIfD8q5tNBpD9TO/bnu5AJwwcAM8jYizzTbbbLPNtmFjLNrk5CTa7TZ2dnYwMjIikrdyuQwAUuC72WyiVqshGo1KIe5KpYK5uTmUy2Vsb29jfHwcyWQSe3t7AsKazSY2NzcRi8WQSCRwdHQEAFhaWkKz2USlUsHk5CTcbjc2NjbgdrsRDAYF8IXDYZRKJQEG/X4fiUQCjUYD5XJZkjc0m01JyvLgwQNhP3T6cJYQoDNjlYjiNLDAYzSLoJ11fq//1swRgCGQpe+tGR6ex59m6nn+PjIyMlQHit9x15zfmyAVOImF2djYgN/vx9LSEur1uiRRYPvZR4Kdx48f44/+6I8Qi8UQiUTkPrp8Ax1kOpJ0HrXU0OPxIB6PIxAIIBaLoVQqIZ/PC2NqOpkcL82ucUx0bT/gadY8zbLqmCYCGg1E6Nzquef19Zyac2DOHZ1/s9aY3++Xz51OJ3K5HPx+v8QR6XnTbQQgmQcJrljnUK9FqzXDMaDcr9VqIZfL4c6dO/jP//k/49atW0OOeSgUwvLyMrxeLz7//HN53hyOpwmLuHnwPMbleYDMHEOr542/mzJHU3ps1XeClUKhIOtgZ2cHg8EAs7OzkpCFmWi5tslAmuUANOPH90673ZZEJD6fD81mE51OR9hebvZwzVGGGAwGJdEJ5d79fl/G1uv1wuFwyGYaN0ZMVpJz6nA4kEgkRPJIMOp2u4cySLL9uuyAZoD7/b7U7my1WqhUKsK28n5utxvRaBROpxPpdFrYR8a4tlqtU9fD37S9XADui582A2ebbbbZZtvzbHFxEfF4HOl0GsViEbFYDNFoFJ1OR5ydWCyGUCiEYrGIdruNubk5BAIB3Lp1C16vFxMTEzg8PAQAXLlyBcFgEDdv3sTIyAiuXLmC9fV1lEolSVSSzWYRiUTgcrnEkT1//jyazSYePXok0spMJoNIJCLOB+MwnE6nyKNarRZGR0cBALlcDtFoFI1GAx6PB/v7++h2u0N1jSh91EDAlEoCzybLMB1O/ZkVO6CdP95L7+RrR9hMrKCBDiV3uh1a7qcB4GAwEOeNTh535OnMatmew3GS4XB3dxdnz57F7Owsnjx5IjWm6DSbDnapVMKHH36Ivb09LCwsYGpqCtFoVO7JRBd0iAmiyOJoeRzlY8FgEJFIRLKVkuHVQFsnY9BsqQbMViyqZnI4tpwLDVbprGpwZAIQMtHm9TWzx/FmfFSr1UIoFAIAKXvh9/slaQrXn5Zt8jrxeBypVEqeQbIqJnjh/GvAoRmjRqOBdDqNmzdv4s/+7M9w584dAZMsND01NYXFxUUcHBxgf39frtvvnxTv5oaAFROmNzTYHys22XxWrNg5bljoz9kOPcf6meX9OYesacnnZ319HdPT01KPUo+NHjPGNfLZ0u3j+iVbxoQ3BE7ms6IzWppJkzQjCpywYEwc1G63Za41EOOY6k2bWq2GYrE4VOhbyyy5ccL1SFBMwKVBJ8dd13qrVqsiS+emWrlcRr1ex97enoDY09jRr8NeLgCnYuBss80222yz7TQLhUJIp9PodruYmJhAIBBAvV6X2Ix4PA4AUjT7woULyGaz2NzcxOTkpAC9WCyGlZUVHB0d4e7du5ienkY0GsX9+/dRKpUwPj6OdruN4+NjxGIxKRw8MTGBSCSCbDaLbDaLZDKJRqOBarUqEj0NSvx+P1KpFPb399HpdDAxMSFOj8/nQzqdxvHxMdxuN8rl8lDBYTp2NA2arBg1bdrJ0+ecBt60PI7n0MnjdfS1NBukU5P3+31JLkOWiG3VQMM0HsdYRd1efc5gMEAul8Pe3h5mZmbQ6/Xw6NEj+c6Udw4GA2QyGTx+/FjWxK/8yq/g3LlzkgmRjimlWXT+KGFlNkNez+l0CpALh8NIJpMol8sol8sSI8c200nW8WomEGd7rZg3UyLJtaFBop5TnTEUgGSRpPV6PZEyasd9MBgIgxIKhQQQ+P1+aRNrhGlmiY53OBwW4BYIBARUPG99ciz4jwCCRe9/+ctf4oMPPsDe3p6ME7MKxmIxnDlzBs1mExsbG0OMW7VafQZYmjJXzfCa61q3+XngzVyXXxUUmGuabSDQcjgcuHbtGt5//32k02mRU/Ncr9criUD0pgfXHeeHDBzvw3P4twaDbIeWMTLmDXi6gdDv9wUAcXOhXq9LMinGWTKulO8BrpV6vS5jzIRC3W5X5o9SXMbK6RITfMe73W55t/R6Pcn0S0lnLpcT9pjqBi2tZjKWF2UvGYBjDJyN4GyzzTbbbDvd9vf3EQgEMD8/j1arhVKphE6ng1AohOnpaZRKJWxtbWFhYQGTk5NIp9MolUq4fPkyCoUCqtUqzpw5g2g0irW1NRSLRbz66quoVCr45S9/Cb/fj9HRUXEo4vE4yuUyarUapqamUKvVcHh4CKfTiVQqhW63i3A4jF6vh2q1ikAgIBKu0dFRuFwu5PN5qVVXLBaRSCRQq9WQTqfFQabTQyeEzqx2tLXTCzxlYbTzaH5mJdkiMOB1tWyJppkDExRp9kbH3hBUMH6K/QGexrjpwsHaASU7EQwGBUhYGc/J5/OIxWKYnJxEsVhENpuVa5vj0+v1sLGxgWAwCIfDgXQ6jddeew3vvPMOZmdnJUsl61ux3AABg06QYAI5xgkFg0HE43FUKhVJetNoNASEa2BgJckznX/NhOifGuDR2adT3u/3JfEEv2fbrcCtjqsjCCNzTHZEjyclvTzX5/MhHA4jHo8jEokIcNNAk2ZKEjWLQqDRarVQLBaxubmJH//4x/jZz36GXC43tH4od52ZmUE8Hsfu7i6y2azcp9vtSiITvRmiWTW9+aCfGyuwafW3OV/6dw0KNdDVc6fboFk5LUnm2vH5fKjVapJ5l33k9TXDxtpwlEESmBPwAE/jMynt5rPHtU+Wjm3VgJ1zQIaMmxJc35S+UlrJf5xfXb6C2TX1u4psH/tkjhXXSLPZlM0ePo+hUAihUGgo6Us+nx8C8dyoOi350ddlLxWAo9kMnG222Wabbc8z1nqrVCool8twu92Yn59HMpnE7u4uCoUCVldX4XA4cOvWLSwsLEhdJZfLhTfeeAPVahUff/wxfD4frly5gsePH+PJkycYGxsDcFJrbm5uDj6fDzs7O3C5XFhaWhK5nHb4KdFpt9uYmJjA9vY2er0eRkdHkc1mMRgMhhKpzM7O4uDgAL1eD5OTk0MSKe4mj4yMSGC+BlFmzJEGYvpz07SDpNmIr2Ia1Gm5n1WWPc0I6cQEZOgo6dJOFZ1NLZ1k1jvTudXWarWQzWaxsrKC1dVV9Pt95HI5cRZ5jgabtVpNEsh88MEHePz4Md59911cunRJEuLQefT5fALONLi2YuToHHo8HkQiEbRaLdRqNYnRo7xSZw/VjJAeQ86nHg8TIGgAYbJ0ZEB4Lx1HxPtp1k+zMQCk3AavS+eecWcEuJQN02nWhdhPAz0m68a2MbPi4eEhbt26hR//+Me4c+fOEKPENeN0OjExMYG33noL9XodBwcHAmzIQmkWnONomgkeTHbNfJ503zQY0Mfodcq2mp8R+JjX5fuExzscDpTLZUSjUWxvbw+tfy11ZltN0KPnlplR9fPHe/C55Jqo1+tD2W75DAcCAbhcLlE7cB2a0mqOP/AUaOr3GOPrOHYEf2TsuCYY06afP65FXpPvSIfDgXa7PbRxpN8rkUgEPp8P9XpdAKDVe/LrspcKwL1AKaptttlmm21/h4zp+RuNhtQy8/l8uHPnDtrtNhYWFpBOp1Eul/Haa69hMBjgk08+wezsLCYmJvD5559jb28Pr732GmKxGH7xi1+gUqlgaWkJvV4P+Xwe8/PzGAxOkgkkEgl4PB7s7e1JApV6vS5MWzqdFgfizp07CAaDmJiYELAwOzsrCNyoKAABAABJREFUWeNSqRQKhcIQq6KZK/ZPsy06M5yVhEsDOZrpxOk4HStZ4mnXBoalklbH0rmis6cZOcZfARBQyniwwWAgSWZ4Tzq3oVAI9XpdnE0CJw1EgBNJ2OHhIaanpzE1NSUFh00Qp/ulyyqsra3h8PAQjx49wltvvYXl5WUkEokhWaXX6x2qG6eBFevH6RhAArlQKIR2u41UKoVqtYparSb/KC1jnxqNBgBICnbNOmiWU8+nls+asYVkz/SYakbMZGc5X1x3XK+8BmtzhUIhRCIRKZOha7mZ60ab3nzQwM3pdKLZbKJYLGJ7exsfffQRfvrTn+Lw8FCAqwZNwAnAXFxcRL1ex+7urtRZ5P1rtdqQZJWfa8bYBG/m2j6NOTSZM22nMalmHJze+ODYaVljo9GQ53RjYwOLi4tSooHsJzcPmOxHM2FMzKPHjO0je6Y3RQjGuIb4OxlMl8slYJhAORwOC2iktJJrTbODbBc3Zfi3BtpaWk0QS6knx51gUccAsu36HUmpJMdK96lWq4ksk1LgF2UvF4BjGQGbgbPNNttss+05RjZjamoKs7OzyGaz2NjYgM/nw8TEBHZ3dxGLxXDlyhU8efIElUoF586dQ61Ww4cffohAIID3338fmUwGP/zhDxEIBDA3N4dCoYBIJILFxUUcHR2h0+lgeXkZuVwOW1tbmJmZAQCRPdZqNal7VCqV0Gw2MTk5iW63i93dXczMzGB2dlYSQlSrVezu7ooUKhwOo91ui0RMx7tp551Ol+kI0rQTzr+t2AWTGTnN2aaTanUf/bk+35SLeTweiRFjkWmXy4VsNiuAot8/yWZHdo7XI2jTDqMGMSYTUa1WkclkEIvFMD4+Lk6e2X79N+/vdDpRKBTwi1/8Ag8fPsSbb76JK1euYGFhAbFYTGL5mBCDBYK1c0uHWjNedIAJ/ngd7v4zM2qz2ZQxKBaLQ4wO2VJgWGbHv62ANYGKBiu6OLcJMKzmmA4v2USybH6/X+RpmsW1+qnXn5ZKakaQ62B/fx/Xr1/HT3/6U9y5c2co/lFfk206d+4cJiYmpJRDuVyWaxEYaPmkZu/MtlqNCT/TvxMQcsx0/8zrmhsq+ns9L1qOyvtQYhwMBtHv91GpVIRFbLfbkiBJ10cjeCGA0psUug2m9JcSba5ryi01qBwMnmaGbTab8jxyzPgMmO8ZzSgTAGpASaDFdpnMod4YMDemdHIU/uOmkI51472Y9ITJW5xOJwKBwJCU++u2lwvAMYmJHQNnm2222Wbbc6zf7+PcuXOIRqPY3NxEpVLB4uIi8vk8tra28Oqrr8Lj8eCzzz7D5OQkzp07h/X1dTx58gQXLlzA0tISHj58iJs3b2JiYkKKa8/MzMDtdmNzcxPRaBRLS0t48uQJstkszpw5g1arhYODA4mPCwQCSCaT2N/fh8/nw+LiomQ7u3TpEiKRCI6PjzE5OYlarYb9/X04nSflAVwuFyqVChYWFrC3t4dcLjfE5OgsiGRntHMIfLWkCaYUzGTWTGffZPK0adkWr8VzuaseCATE4aO0jrvnLBSspVd0VAlc2b+RkRH4/X4p0svP6MDp9jD20OPxYG5uThxNfexpph3ew8ND/Pmf/zkePHiAb3zjG3jllVcwOTmJWCwmkk4yEQQyGsjpIsR0MjWDREec2fsoqSQbRzaSjmar1To12yfnVhvLH+ix0bJFPY90rDnXdOI5X5ScMeW6dqg1QDBBm95M0A42x4Vz3Wg0UCwWcXBwgJ///Of4+c9/LnXBTOCmpZOzs7OYnZ0VRlPXHvN4PCgWi7K22T+r9aw3IkwG3IqZ02veakPEBC7s/2nPKOdRrxGuCdZdczgcwqh5vV4Ui0VEo1E5x+PxCNNMsK8Zdt0PAlsCGG44cG65fnRbyagDkMQjugSBKd/USZA4Z0wK5HK5hkAn+0tgpSW6LNSt5aeavaTagfJK9kszkXyXulwu2UjyeDxSGgN4mpTlRdjLBeC++GkzcLbZZptttj3PLly4gEajgZs3byIWi2F1dRWHh4dotVp49913sbW1JfJJAPj444/hcrnw5ptvotls4oMPPkCz2cSFCxdwcHCAweCk3lImk5HabuFwGHfu3JG03nfu3EEoFEI0GkWpVMLy8jJcLhd2d3cxOjqKVCqFYrGIUCiE8+fPY2dnB7lcTurU0WlKJpPodDpIJBKYnp7G5uYm8vk8gKdFrekgkXEAIHEqWmplOo/aAdUyOx5rtTsODEskNSgzTTuvdHrJcgCQOBkW7I3FYnC73ajVavB4PEin00OAkYBDswTaiWR9NpYIYJIGXZ+N5/V6PZTLZTidToyOjqLRaEgmOisppQlo+H273cajR4+wt7eHW7du4e2338b58+cxPj6OaDSKQCCAfr8v64LAR4MFOvsEcQQuur3sqykrJCtCYNfpdOSnTq3OZBFW8k2arg/G7wg2CSYpDWU/GK+oU7zrtabHUbNammGiQ6+lkjrOjXLJW7du4ZNPPsHOzs6QjNY0ApOVlRVcunQJwInMkOwbjwmHwygWi+LIE2CbTI5mxDj/Zp806DUZJp7DsbVaS1/G8GmQwTXPzwjiyEBvbm7K+6VWqw1lfCXI47vD7XZLRkiCFpYlIEAi00Z5LOWy5uYNnz+uPwIrjquOO6QcWMephcPhoXheACJv5X0IVDkmHC9uhmhwxn5zbNjmbreLWq0mbTaZ32aziXg8jlAoJJtiLzIDJfCyAThh4GyzzTbbbLPtdGNR1oWFBQCQOJFAIIDr168jHA7j0qVL2Nvbw8bGBmZnZzE+Po4HDx7g4OAAY2NjGB8fx+bmJubm5jA1NYWdnR10Oh2cP38euVwODx8+lMyC1WoV8Xgc/f5JRriLFy9if38fmUwGk5OTcDgcePToESYnJzE6OoqDgwOEw2FhU5iRbXp6Wpi+8fFxrK2tDWVOBJ46gNVqVeRvwNNAfxOk6XNo2pnm9yYLZ55D08kVaGRrzGsRhACQ2kp+v18cN7I5iUQCwNP09tqB03FtZBooeWJijN3dXUnAwBgxDXbIIBAgcE6YSMQEUDQzkYfp9K2treHg4AB3797F66+/jgsXLuDKlSsYDAao1+vCktGh1AkzNJAzE3ZoRoH35vFer3eIPdHHm6wWAT3ZMHNudd90nS2rnxrgaDZNX1ODEzMRjlUfNXCr1WooFArY29vD/fv3ce3aNTx69EiKK5trV69Hh8OBubk5fPe730U2m5Wss9lsVrIREozyuSFY1Vko9fWtmEl+rkGcVbtMwGbKJ61Mf24+w+amDEEV218qleQZ4vtEyyHZXz4TOtU+cMKe9ft9yS6pGWzdfkoxKTEMBoNDMWxcj1wnlCHyedVrluu4Xq+LBFwnOeF7g9ciM603cPQ7Qo8dAR4ZQa/XKzJnHR/HAuR8N8ViMfj9fkl0xM2JF2FfCuAcDsf/C8BvAUgPBoNLX3yWAPAfASwA2ALwTwaDQeGL7/5vAP4ZgB6A/+tgMPiLv5GWW7UV1v8R2WabbbbZZps2v9+P8fFxZLNZNBoNXL58Gel0Gnfv3sXy8jJ8Ph8+//xz1Ot1LC0todPp4P79+/B4PPjGN76Bg4MDZLNZvPLKKwiFQrh//z6i0SjOnTuH7e1tlEolJJNJpNNpSWJRq9UwNjYGr9eLW7duiTQnm83C4/Hg1VdfRbvdxvb2NmZnZ7G3t4dKpSK72H6/H9VqFefPn0e/38e1a9cQCoUwNzeHhw8fAnia1EA7ZW63WwL1taOuzXR4eC3TsdTMghXTQUfNjH8zEyFoxx94ulMfiUQE9PJ7OmqJROIZJ5jOnmZy6PQxOYjP50MymcTx8bE4f7xfp9NBs9kU4ESZZj6fRyQSwfT0tGTvY/81G2eOlzbu+pdKJXz++efY2tpCOp3G5OQk9vb24PF4EI/HEQwGBXRS0kVGS4MmzqUGZfqnCZDYJgIYU67HPgDP1vKyWhvmT/N3q3P02FhJETW41EwbWZF2u41qtSrS5rt37+LWrVvY3t4ektOZ96JxTUSjUVy8eFHKM/R6PRwfH0uGV4fDgdXVVWQyGZEFalaLfdJSTA3YzfUOPJUTmhsl+lx9Pu9xGvCz2jh53pxwDPkZk4VwI4esGdva7/eHmGo+ywQ/BFlW9yW4Mst9ACfgT28I6XhcXbKDx3Q6HQQCAWHOc7mcJHvi/fmc8Dqa/WU72T+/3y+ZL3UtOeDkveT3+6WAeKlUEiZuMBjI5grnRMddUoL7ouyrMHD/bwD/DwD/Tn32PwH4y8Fg8L86HI7/6Yu//0eHw3EBwD8FcBHAFID/4nA4zg4Gg+cLyP+azGbgbLPNNtts+yoWDAbFmW61Wrh27Ro8Hg+uXLmCcrmMa9euYXZ2FsvLyzg8PEQ6nUY0GsWZM2ewv78Pt9uNt956C5lMBmtra7h48SISiQSuXr0KAJKUJBaLST2p2dlZ1Go1PH78GBMTE/D7/bh//z46nQ7OnDmDTz/9FLFYDIlEArdu3cJgMEAgEEAkEpF4jStXrmBvbw+PHz/GwsICIpGIMH/a9E435U7mDr7p9GmGjZ/p46zAnU6DTqMza+WsEyRxR5vOEbMS6hTzgy8kn4PBAMFgEH6/X2RyBF/aaeaOOR1VDbQmJydRqVSETaM8DHjKuvHeWko5PT2NSqWCTCYjgJDX1P3TUlIzOYgucH3t2jXZ5Xc6nVhdXcXs7CySyaQk+WCCD7JyGsxxXvg758IEQVrSZ8X2mHP6PObny77Tv5v/tDxSAxbNrJnMIJmQcrmMbDaLra0t3L9/H3fv3sXOzo5I6fT9rdpI8B+Px/Hmm28iFouJ1LhSqQwlwxkdHcWFCxfw7//9vxfAS/aK19Jsl479NOff3EzQbLH+WwMSvTmgGTzK9QjEdZ/1tfTvun181trtNkqlksiRuZbJWBPQOZ1OYfs5R0zXT6aMEkqOjS6GzTXLMgE6cZKWa5KhJgOm1wgBF98XlCvqeE5KoQnM9Nwz0Y/ewNElSDhfBK36mY1GoxgZGUGtVpN3HzNfOhwOAYFUFFix8l+XfSmAGwwGP3M4HAvGx78L4Ftf/P7/AfAhgP/xi8//v4PBoAXgicPheATgLQC//Gtq71cym4CzzTbbbLPteVar1bC6uoqdnR3s7+9jZWUFqVQKGxsbSKfTuHz5MtxuN9LpNPL5PMbGxhAMBvHo0SOMj4/D4/Hg5s2bCIfDeOedd5BOp/HJJ58gmUzC4XDg8PAQ4XAYrVYLkUgEkUgER0dH6Ha7eP/999FsNnH79m0sLCxgbGwMW1tbGB0dRb/fx9bWFgKBAPx+P8bGxrC/v4/Z2VlMTk5iY2MDuVwOi4uL6Ha72Nrakhg8OnbcnQZOds0JIMlUnSb5omngZsWw6M/1Dj/wVCqpAYTe7dY/eezY2BgCgYDIrhgPowv3plKpIemWTljCPlO6RbaBu+vFYhGRSASzs7PY2NhAt9tFq9USJ51/s/4Tyw0Ui0X4fD6ZFya70M45+0EzAZ6W2XG3vlAoIJ1OI5fL4bPPPsPs7CzOnTuH+fl5TExMIB6PCwOhs1VqQKfjBgmkCfq0FM38ZyZveR6bqo8zYxxNBkYDNSuWz8wcqeP1+Hu73Ua9Xkc2m8Xx8THW19dx7949PHr0CKVSSep16fue1n6OyejoKL75zW8iEomIo89accw26Ha78f777yMYDCKXyw3VHTRjAk1WmuPC+TbZM3PszHViriOrMdTPltXYm9czATPbz/XN8WcMGPBUYsh1xDlh5kcAku2S67LVaqHRaMgcEvg1Gg0ZW10sm/fhvA8GAwFhXNuhUAgAJDsv78tMqwBkg4NxewRiel1xLJjsR8d76k0Mh8Mh7xpKlxkDZyYxYmwgpaRer/eFxsH9VWPgxgeDwSEADAaDQ4fDMfbF59MAPlHH7X3x2TPmcDj+BwD/AwDMzc39FZvxzDVPfrEBnG222Wabbc+xZDKJ27dvo9/v480334TT6cT169fhcDhw5coVHB8fI51OI5lM4tKlS8jn80in01hcXESj0cDu7i5eeeUVeDwe3LlzB8ViEeFwGEdHR6hUKnC5XGg0Gjh37hxGRkZwdHSEiYkJTE5OShwdC4WXSiWp8+V0OpFKpRCNRjE6Oort7W1cuXIFXq8Xn332GZxOJ+LxOPb399FoNIZ2r2l0jnq9HiqVypADqdky7chYgTjtLFs5yjq+RMu7yGqYMVqamaCTxPbTeRsMTlL6cwe90+lI4o9cLicOqWbzNJvB2BnNOvT7fWQyGVy8eBG5XA5HR0cAIHE+ZN20XIqMRLfbRSQSkdIClFUR/Hm9Xqk1Z5q5O+90OlGtVvGLX/wCPp8PACQhx8OHD5FKpbC4uIjl5WXMzc1hdHQUi4uL6PV6Q+BSx2YRbNDxNsebv3O+TTbO6nerv60AkmmaXTN/mp+R/Wm322g0GsJy7u7u4u7du3j8+DH29/dF0mf267S+6DU2OzuL7373uxgZGUE2m5X7Hx0doVgsCuBfWFjAP/2n/xT/9t/+W2FaOJ4mMNWgTd9fAx89NhogmTF//N4Ea7wO/2mQrMG4+exqdtAEd5pB49/sR71el2QkvEer1ZL1xOeCcxaLxRCNRrGzsyNsaSwWQygUQqVSQavVEjkm5coEjHzOCIzD4fDQRgTbRTaeoJ7F7LnemdRIZ3TlGHId6jnUyZ1MdpRAkXXdGEfK/nITxYotfZnqwFlt4VjCqcFg8L8B+N8A4Bvf+MZfC+SSLJQ2grPNNttss+05dvPmTUxPT0sykfv37yMej2Nqagr7+/sC3pLJJHZ2dpBKpXDx4kVsbGzA5XLh9ddfRz6fx8bGhuwAHx8fi6woFAphYWEB2WwWxWIRFy9ehMPhwMcffwy/34/XX38dBwcHqFarCIfDqNfriEajsms8MjKCvb09zM7O4uDgAIeHh1LU+ejoCL1eD4lEAq1WS7LoAcOxJ/xbS7WAp8CCTBPttBgbLc/S0iwzHsZkC3SKcEqlyAJ6PB4kEglEo1H4/X44nScZ6Y6PjyXZCK/HDHT5fH6ozhSZtsFggHA4LIwnJVQEeIyHKRaLeO211/CTn/xE5F3NZlPu3+v1JEMfEygAEHllPB7HYDCQBBjhcBgrKytDdce+iqSq3+9LoWWyPP1+H+l0Gul0Grdv38bMzAwuXLiAxcVFHB4eolqtwufzPRMvp+MEtUxNJxXRMVvmPz3PplnJJrWDzH/8m+BdgzRT2smMmM1mE6VSCblcDoeHh9jZ2cH6+jp2dnZkfE1W6bR2mawcQdnv/u7vwuFwYG9vT67BunkEOsFgEP/yX/5LtNttPHz4UI6zSoRhJWNkG83EPfo5MiWU2syNEv2smkzmaZssGqjrNuuC2wQkZK5NCSVj4/hM8aeWqwKQshz62Q4EAhgZGUG1WhVpImPb/H4//H6/xLDxc4K4drstiYo454xP1SUNuLb5bA8GA2EHdSIUHdvncDjQbDaHpJJk3DknLF3Ad5Nm9rnRpOWbzMjJNX4ac/112F8VwB07HI7JL9i3SQDpLz7fAzCrjpsBcPDf0sD/GhMCzsZvttlmm222PceuXLmCsbExfP7552g0GlhaWkKz2cTVq1fhcrkkI+XBwQHOnTuHVquFO3fuYGFhAefOncMvfvELSeX/6NEjjIyMIBqNotFoYGJiAslkEtvb2/B6vbh48SKOjo6QTqexsLCAVCqF9fV1kSgNBgNEo1GRJhWLRXi9XiQSCaytrWFkZASxWAzVahWVSkWklfV6XeR2ppnyRQByL35HR00DN+1gWkm6TOdSm3YetUySn/X7ffj9fsTjcdk5p2RSO4vFYlHkUXQ66/U6jo+PJfZGx9a43W6Uy2VhxgiECR7oXB8cHGB5eRmXLl3CzZs3RVZFJpNtZrwhmRC2hVJOMmnVahU3btwQJ1n308p0bJL+jPGAvA/7GgwG8emnn+LWrVvC8E5NTWFsbAyxWGxIZmlmryRgO41F0kzVafNpyizZXhO0mb9rIEeWjUXHCdqOjo6wubmJg4MD7O/vy5zra5jt43q0Yt50f19//XW89dZbqFQqKBQK8nm73UalUpG6gG63G9/5znfwxhtv4Mc//jGy2ayAN3McTYYLeMpm829zbq0YayvZre6TVR9NMGgVd6rHgu3U4ItrlKCoXC4LuNLM4WAwkOdCxwACECaq1WpJkiA+N9VqVa5NEBQIBARktdttWXOUHvI9QXZMvzd0CZRAICCbLZr10ll1yeyxRhsl0bymji1l/B1j6/r9vgBajq/eCCMTr+N2Cfz+LtaB+88A/nsA/+sXP/9Eff4fHA7H/x0nSUxWAHz639rIr2pPGTjbbLPNNttse779+Mc/RjKZxOLiIh49eoTj42OMj49jcXERx8fH6Pf7eP3117G9vY1sNov3338ffr8fv/zlL9FsNhEIBLC9vQ2/3y91kmZnZ9HpdHB0dITJyUlEIhGsra1hMBjgtddeQ6fTwa1btwS4xONxcTpcLhdyuRwSiQTq9Tq2trZEYsTi3vF4HLFYDMViEXNzc0MSMy2LouNJB4zxKTrZyfN2j00HH3jWIeXfVjE+dCbpmNHRoWRSlwlg0exms4lKpSKyKTp2ZNPy+bz0QTu1dALJohUKBYmn8/v9EnvWbDZx7949vP3228hkMpJdkiCOQIgOG/uqE4O4XC6ZO7IOHC89Hs8DcTQdj1atVgW4ULYFAB9++CG2traQyWREHhqPx6WMRSqVksQ3gUBAYnOYbMKUAn4ZE2dlGjywDyag03FGZElqtRoqlQry+Tzy+Tz29/ext7eH4+NjVCoVVKtVAa0asBDo6PgyjrFVuwi0vF4vXnvtNbzxxhsin+V3ZFczmQyq1SpGRkYwNjaGf/bP/hl8Ph9u3749VCRelw7QbbGaa37GNWgygjzWakPEvJ6O0bKaB97H6nven4wT76OzwnLN9ft9BINBYaH4kyCFY0aQpGujccxDoZAAOi0V1Sn/AQjLzTbxd16HY8B3BOPqAoHAM2Ov14NeK0xuxNqK3FTQGV05BqY0leezDSwcrp9HAj22h5tOjUbjmXn4uuyrlBH433GSsCTlcDj2APzPOAFu/4fD4fhnAHYA/HcAMBgM7jkcjv8DwH0AXQD/l8HXlIHyi7bii3Z8Xbe0zTbbbLPt76DduHEDc3NziMfjuHPnDmq1msS0bWxsYGVlBeFwGDdu3EA4HMabb76JbDaLu3fvimSnXC5L3Fa/38fMzAwajQaazSZWV1fhdrtx//59BAIBLC8vY29vD8ViURyS8fFxcRq5qx2Px3F0dIRms4lQKIRGoyGA5cKFC1IXjvXgwuHwEChzOp2IxWICQMhAhcNheL1elEqlZyRZVqDDyok87W/NStB0KnbugPv9fgSDQUQiEanFVqvVJLNboVAQ+ZwZ65PL5VAsFsXZ18wAk1OYrATjxthGANjd3cXq6ip+9Vd/FZlMRooCc4efiQ40EKbppCr8zuVyiSyPY2KylV9mOlU7cAJI8/k8fvnLXw5JuFhsOJvNYmNjQ5zhUCiEVCqFZDIpgC4UCiESiQhLR8kl44bMGm7PA3KmbFLLIXUCmGq1inK5jHw+j2KxiHQ6jWw2i3w+j1KpNBQrqEGgHjeTfeI4n8ZIEaD5fD68++67WFhYQKlUkhIDBBPNZhPHx8fI5/PS73/+z/855ufnUalUsLGxIXGVBG9mGQFzjVv5mho4ndZmXktvEmiAx++fJ1HWz642zRJqUMhnULNWlGTX6/UhtpFjRkBH2SDnv9PpIBgMylrgmDERCOPtyHxzDM1i9TolP88ZDAbCuDcaDYTDYVSr1Wdkr5RBAhBG1eFwIBgMYjA4SY4SiUSkjXpOWPeR0myy3gR7HDsCND47GrCxH2b236/TvkoWyt8/5avfOOX4/wXA//Lf0qi/qomE8kXc3DbbbLPNtr8zdunSJRQKBdy9exdOpxNvvvmmpC1/4403cHh4iM8//xyvvfYaPB4PPvvsM5RKJSwuLmJ/fx/dbhepVArtdhvJZBL9fh+Hh4fwer1YWlrC1tYWjo6OEI/HEQqF8ODBA5EgeTwepFIp1Go1BINB5PN5cbQPDg7g9XoxNjaGXC6HVquFsbExnD9/Hul0WuIyKFna2toSUKhjj7hDTAfJ7/cjGo3C4/FIHIp2/nQsj97h1yDKdBbpUGnHlvcmm6VZHyYboKyKcWmNRgOtVksAGkEU78ekAppJoGOmAQh3xweDgWTB0zv9/Pzq1av4nd/5Hbzxxhv45S9/OQQYCUoYq6WLifO+bJNmD5ggQWfAO81Mx940zZLQUdWOPb8bDAZS1+zo6Eiy+emC6MFgEKFQCKFQSAoRs+YV54jrktc3mS867e12W9i1ZrMpyUcI3AqFgjDFZOJMcGrGbJ0Wz8bfzdgxzVCRXYxEIrhy5QomJiaknXpsWbD7+PhYPnvrrbfwrW99Cw6HA+l0WuooaqDBv022jD+51nW/9BrUfdCbAjr2VDNk5nnaTILClD3r55PssDmWHC8+N4PBQJQDetNBSygDgYBsGnGNk3lmKY5ms4lmsykbAwAkYQnbTiDIdws3AChz9Hq9ApC4GRIIBFCv11Gr1QQocVOIcnBdqkCvfwAC0phYhXNBwMm2su5kMBgU9pLrnOykzvrK+D2ydS/K/rqTmLxQEwmljeBss80222x7jm1sbKBQKODMmTOYmprCw4cPMTU1hbfffhtra2vodDp45513kM1msbe3B7fbDZ/Ph1u3biGRSEhdsvHxcdRqNZTLZSwuLsLpdOLjjz+G2+3GwsICDg4OxOnJ5/MidWMSjEKhgFQqhUajgVKphHg8Do/Hg0KhgFarJfF0Dx8+FEARi8Vk1ziRSAB46gg6HCdpvCnz4456KBQSh0azCiZLpDNKAhiSDmkzA/g1sOH1O50O3G43YrGYgATGohAMkF1icWXu6OuYlGq1isePHw8lQNHJBhhHxjHQfeHYAE8TN2SzWXz22Wd49913kclk8ODBg2fYO4IWnViBTjaBHJkf7RSyzpyVBNDKTpPL8bzTztXgUTNkdC4rlcqQ5I6ms1e6XC4kEgnJvkfQa7aN12XcEGWP7KcZE2fVR6s+W32uAQkBjf7HvhPUT0xM4NVXX0UymRxi+LiOWq0WCoUCDg8PZf34fD5897vfRTKZBHDyLjg4OHhGZqoTdZiSU6t+6u+swBifmeeBct7bZI3MMTJBsDlmjDkzZYJk0+r1OkqlkiQXIYPGZ5KJREKhkCQPikQi8uwy066+N+WT7A+fnUAgIJsyvA+fI24ycZ3zPRCJRGSThEmGyLwzdg2APH/tdls2Xvr9vgBLPqPVanXovcgxYpu4UUO2lpJqAkXOKQuGcw7/LsbA/e00LlSbg7PNNttss+051u12JSbt4cOHWFlZgdPpxGeffYaRkRHMz8/j6OgI+/v78Hq94rBcvHgRvV4P8XgcnU4HT548AQCcO3cOzWYTa2trCIVCmJ6eRjabRTAYFKd3aWkJjUYD8Xgc3W4XlUoFExMTKJfL6Pf7iMViEqfT7/dx9uxZACd1w5ioJBKJIJ/PS3B/v9+X3WuaudNOlkKzRoA1sDCllFrGRQdTp6un485ztVyKu+UOx0nMGxk5ACLdYmIWxqnRyQ0EAmi1WuKQcYy0A8i2DgYD2WHXTIeWTJnA69atW1heXsYbb7yBbDYrMWZ0lulw0skkm6XZGQ3iaA6HQ2K7eC2ddMJkUPRnpp0WB3Xa3JlzZnUegRide6Z5Z+FlDZROuwZ/N//+KmaCmuedpxNrkEHihkQ8Hse7776LaDQq4ESfR4kiE5noYvYXL17E66+/LizugwcPADwt/M1/GrABT0GhfhZ4nsmEWY2NOd/6OBNsmWBQf25KOU2waJ5P2S/XN8eVAIf3Z5ZFJjahbDAWi0nbqtUqvF6vME96I4dt00lBdBycy+WSkgVafkg2XjPqjInleFPSWK/XpW16TBijp2u18Z1IZo6163g/Sj4Zb0olgK6Xx77q9yDfb7zGi7KXCsDJq87Gb7bZZptttj3H3nrrLdy8eRORSASvvPIKDg8PUS6XMTs7i2QyiTt37kgGu3w+j3g8LjEVc3NzePLkCe7du4e5uTmcP38ea2trKJVKOHPmDAaDAcrlssggB4MBJiYmpFQAZW/xeByZTEacoUajIVkaw+EwKpUKut0uQqGQADxeo1arIZFIYGpqCj/+8Y+fYSo0EKM8CICAKCsgAQxL1EzTjqSWWvJzOtiU8Hm9XnGAuJvNWLdarSYgjg4TQQ/rv/G67XYbhUIBPp9P4mQo8aJph5l90P0wpZmtVgs/+MEP8A//4T/Eu+++i5/85CcoFotDY6KdQDproVBIdvH1uAQCgSFwp0GcOR+mc38aq3MayNN9ex4A0nNoJbUbDE6KixM8c+y+zP5rwZrZhue1Vx/DOdDAJRQKYWpqCufPn5eY01qtJmtFSzYbjYZIOhnrFIvF8O6778r8lMtlrK+vy8YE15RmxcwNCz3uOtZMj6sGWeY8mEDttGub52pApu9nHse/NXvIz/gcOBwOYfSBp+w0n1vWfWN6fsonycgT+Gi5pWZiCaoIxAKBgMi8NXDketOlCZi0iO8EnRxGs5dmqQfOnd54IZvf6XSkvfl8Ho1GA4PBAIlEQjabut0uyuXyEKhlxkkCTjLzbN/f6iQmf5eM69fGb7bZZptttj3Pbty4gVQqhVAohLt378Lv9+PcuXMoFov45S9/KbuxPp8PZ86ckeQfgUAAN2/exNHREebn57GwsIAbN26g3+9jYmICh4eHUl4gl8shmUyiVCqh0WhIvFs4HEYoFJJEJXQ6PR4PYrEYnE4ncrkcwuGwxGeUSiW0222Ew2G0220sLi7C4XDg+vXr4oxomRGdDqfTiXA4jHg8jnq9LpIpOk5er1dihkymwDQzDkw7YZROcQedThjjVShpKpfLaDQaEkPDum08T8vwKJWiY6ZrjNEZNFkG04kkINBOGK9/fHyMq1ev4u///b+ParWKn/3sZ8JOaaaLjiDlkQTV7DPBhU7QMBgMBIBr4GYFvp4Hak4DQeb5VqCQZiWze959re7J6+i/rVgmEzjzPKvkHqY8UQNvbYypTCQSmJ2dxfT0NEKhELLZLIDhjQWe22w2JX6qUqmInJcxrel0GqOjozg6OsKtW7ekPbp8hBUIMgGm1VhYAbTTNkXM4zXTcxpgM8Givo6eYw08zXECnkqMGQNHOSILdxPAOJ1OyXbLzJBM+MPnST//zHjLmDan04lmsymyTCa+IROmnw9TDq1ZUM4Pn2WybnxP8FljSQ49Lt1uV97hZPIIMPkOZJ8YP6jfb7qNjO0kc/ei7OUCcOCCfsENsc0222yz7W+1TU5OolAo4Pj4GHNzc4hEInj48CGKxaI4Fqy5tbu7i/HxcQwGA9y+fRsejwe/+qu/inq9jlu3bmF0dBShUAjpdFqKcHu9XiSTSaTTaYyPj6Pf76NQKCCZTKJYLMLtdgujx6xo0WgU1WoVHo8H4XAYDsdJlsHd3V1JjR0MBvHaa69hZ2cHe3t7mJqaEjBDx6zb7UqWuGAwiLm5OclMGQwGn5E6AaezAcBTaaROIgI8dTzpcNH51clamLSkXC5L4gJmnKODpuvTWdW3YjyPBm9mW/VxmnXj9zxXJ3rpdDq4e/cuVlZW8Pbbb6PRaODatWsix9NJPABIvF6n00Gr1UI0Gh1i4xyOk/g8pmd3OByyEcBYn+c58qZph/w0UGX1/Wm/sy96/qxA3GnA8ssYNP39aSBHA5PTACiPISCIRCJYWFjA/Pw8YrGYgH4915xPMjwsY1AsFtFqteD1eiV2dH19XTZjnjx5MlQvTMeI8tpkhtg23Ua2X7M2VmyYlu+yvSYIM0GaZvn0tcxrm3PAZ5TPK+NtU6kUcrmcMHCsncbnlOdRHsh+s63RaFQyRAKQzQ6eD0CeL27KMGMkyzjouMJOpyNZeJl8hPJJ/k4gxtizarUq9e04LixDAkDazvcRv2c2XzKq0WhUWETGduoSCtwM4rPNPnNdOBwOyYz5ouzlAnDCwNkIzjbbbLPNttNtb28PrVYLr732GgDg/v374gRUq1WcP38eIyMj2NrawtLSEjKZDA4ODjA3N4fx8XE8ePBAina3222k02kJgp+amgIAHB4eYnx8HJVKBU7nSXr/RqOBaDSKUCg0xOpFo1EcHBxgcnJSjqnX6wL6SqWSAMoPP/wQnU4Ho6OjuHv3rmSIo+mMaQ6HA+VyWX43HXAyRjqGjsdq05kRzc8opyTA5E47k6Zwx1zXU9O/A6ezSPycO/2aPSTTZcbp8frceeeuu/5H63a7+OijjzA3N4d33nkHrVYL165de2ac9DlOp1MYxFAohHA4LI4fAClwTPlWoVBAsVgc2sW3Ysisxp1jruOseA09VvrnaQDRPO608bYCXVZgzgTRJvtmXsNsh9W1NKPJYvbnz5/H2NgYer2eSNx0PCeBSLfbFWe82Wwik8mg0WhgZGQEyWQS7XYbm5ubKBaLSKVSuHr1Kg4ODmR9EkSQgdMxbnrjgOCITI0VEON5OpGOCf6s2D3zuNNMt8mMQaVpcNtsNnF0dDQkeyZYY21GSgl1PwiW2NeRkRFEIpEh2S3ngs8dk6VoiSMT5FDVwHeOfl5HRkakDAA3e/Ra4buK7a9Wq0ObK2ZRcIJJDdC8Xq/IyTnvTOzSaDQQiUQwMjKCRqMh7zGWOuH6JtCjLPNF2csF4L74aTNwttlmm222Pc8oO3z06JHspFISRCllpVLB4uIiHj58CL/fj1dffRXtdhs3b97E2NgYLl++jHv37gmzBQBLS0uSDY873qwbR3YNgCTNWFhYkLiw8fFxlMtljI+PS/zdxMQEdnd3ceHCBdTrdXz66aeSyOPatWuYnp6G1+sVRwuAOLB0bpg1M5/PDwENAEPOn/5bm/7MlOHRCWWiAJoGhgSXbBd3wrVcUgMxXpf35j/9mems6rZpcKgz02nwpq+7ubmJv/iLv8Dv/d7v4b333kOlUsH6+roAehrP1X2r1+sol8sIBoOIRqPiDFOS5vV6JQEL26j7QKACYIgdNFkZDZCs5Hp6LvR9TrPngUirnyZrZnUN3V4NtJ/HJHI8NXChbHh6ehqLi4vw+/0ydyaL1+/30Wg0JJaSbEw+nxeZ2/j4OLrdLo6OjqRm3r1795BIJKSGHx15XT7Aqu2alTP7ogtom3Nkyhd5jNXnVn9zXMykGc9LWKOfTfZJP4/MaMs2M96LzBTZZt5Xl/NgNlkyWIyh63Q68Pl8kmCJckzKFLmhRBaeY2+CJl3/ktlEycyxnh3Zw0AgINkxWT6DcmeOF4G02+0WgMnMqwSb4XAYkUhEnl0NkinXpJSUGTdtBu6vyZ4ycLbZZpttttl2uq2urmJnZ0cchFqthkAggEQigd3dXXFQ7t69i7Nnz2J+fh4bGxvIZrO4ePEikskk7t27B+AklTUdzuPjY8TjcYn1ikajEgfi9/uRy+VQqVTg8/lw/vx5qVEUCoXgcDgwNjaGzc1NjI6OwuFw4OjoCKurqzg+Psb29jaWl5exv7+PWq2G119/Hfl8fgi80Vmkc8gdY0obadrxMJ0QAguCCV3rypSB6bIB3M2no8e6T0w8op1sEzgSHJksm1kyQDvDlIjxd7ZJgyU6W1rCyOP079euXcPi4iJef/11vPfee+h0OtjY2DgV0Oq+M0lCrVZDKBQaylbJJBsm20jjbj7Bb7vdHqp7ZQIW057HyJnHWTFhz2N5rO5pBeSsrn/a77yG+bvD4ZB1E4/HMTc3h6mpqSFWlcfxMwJoMpysCUZpXygUQiwWg9/vx6effgqXy4VSqYSNjQ0sLCxIEfZWqyXPu2bPAAzJeq1YUKuNBG383hwfK5B32hjRNHgznx/N9OnnRMeV6ngzAJiYmBDWnNcgMK1Wq5Kch+8vl8sla53XISjjecyWy3cFgRLl4VzbZDkptybDV61WMRgMJHEKC4jrmpbcwOI7IxAICNPPEi1k9/Q7kAmVmKyEICydTkvRe4JIyqV5X7aRY+n3+5+pcfh128sF4DC8c2GbbbbZZpttVsaC2aynNjk5CYfDIUxYtVpFr9fDN7/5TXS7XXz66acIBAJ488030Ww2cePGDSmOPT4+DqfTiUwmg0gkgt3dXUnbXywWEQ6H0el08ODBAwwGA4yNjWFxcRF7e3uIRqMCfkZGRrC3t4elpSUcHR0hEAjg1VdfxcOHD7G3t4dwOIx79+4hHA5jaWkJjx8/HpIyneY8X7hwAdFoFNlsVhw+ndqepkEbnWQ6QMCzdarMuB/tKDFGhNKoUqmESqUin+k2min2tcNu1o3icZpt4+9kaMgGaMePx9Gx1P1ktrs/+qM/QiQSwfLyMr7zne+g0Whgb2/vGQaSfaZDCUDkd8wwyrIDZHjM89lPZkckm8EMgHSSTXmlCehOY9H0vaxkfs+z5wFFq8+tZH+n3U8zdDQ66pFIBJFIBFNTU8KEcP1wvXGe6/U60uk0crkcyuWyMEtk3eLxOOLxOBYXF/Enf/IniMViOHv2LNLpNCqVCrLZLDweD/L5vLBPmhUznwHNYmkZItcUAczzZJFWc2M+YyYr92WAW7OceqOF7DPZNM3esb2dTkdiOCkx1NJFMmS69hk3Lig5rFarsgmhy2swSYnX6xXwUywWJdsk+63lq7w3mbFoNCoAWj/XBNu8H5Ol9Pt9VCoVGWtu3HDzimNCFQDnnAlQqMrgmPJ8JlsCTp5zJnLhtV6UvVQAjhpKG7/ZZpttttn2PAsEAsIGzc/Po1gsSgFZZrd76623sLe3h0ePHmFlZQWLi4vY3NxEqVRCJBJBt9vF0tIScrkcPB4PxsbGcHBwgGQyKTWPxsfH0Ww2sb+/j36/j5mZGfh8PmxvbyMej0sxcUq+Zmdncf/+fZw7dw4ejwc3btyQWI/j42MsLy/D5XLhwYMH6Pf7GB8fx+bm5lCMGDM/0rmgLJOfazMZNb3LrKWWwFPQZ8ot6YDSGdLArt/vS7wYAZ5VchE6nRoU0UnWDplp/Fxfi0DOlCRq54wOM8et1+uhVCrh//w//0/8i3/xLzA6Oopvfetb+NGPfoR0On1q4g+2yePxYHR0FIPBSQmJZrOJQqEgyQ90QgjN4jDhA0sq6LpXup3m71YAyUqCanXul31uBRKspH1WTBT79jzgxmsRXBDshkIhjI2NSXF6nTSHAKnRaCCTyeDo6Aj5fF5kdgAEsDgcJ8l/FhYW8NOf/lSe12KxKJI7ssWZTEYAhJm10QSjvAfbrvuqx8gcE3PN6WfLipHTGxRfxpJq088gnyO9Jvx+P6rVqrwjstks5ufnhzLWMtGITiZCltntdoscksCKc8MkJhrUcFydTifK5fIQe8Z7EFjyvhxHyq0pL2biFQJ4xtdSgqmBGMecddyYbZKSUDJoWrnA+nKtVksYSRY2J7AEIO91AsNQKPSV5uZvwl4qAPfVlrhtttlmm23//24s0B2Px7G/v4/R0VFh46anpzE1NYUHDx4gl8vh7NmziEQiuHr1qtSDA4CzZ89ic3MTExMTaDQa2N/fl8LcvV4PKysr2N/fx5MnT+ByuXD27FlxVKanp+F0OjEzM4N79+5hYmICAHDz5k1cunQJBwcHAgyZRW95eRn5fB7ZbFZ2jwuFwlC/BoOBpOwmWAsGg7KLrpNrAMNySWBYgghAnFrNdJmyQu2UUzJJR7fRaAg4oaOrk55YyTe1I8v+c8fb6hxdpFnHvtHB1KBR94XX0oByb28Pf/AHf4Df//3fx8LCAn7zN38Tf/7nf47j4+Oh/mpjhr1kMinJZ+jIakaHLEW9Xn9GUklnXRc35necBzJS+nM976eBK30PfbzZH90O/bfZFitwZn5nBX5oZHBisZgwl8FgUMp6cM40w0Xglk6nkc1mh0ACx5hrZXZ2FufPn8dPf/pTZDIZAEA2m8Xx8TH8fr/ESYXDYZTL5aEyFbyvbrdmnk3ml2ayZhpI6XHSINFkok021WoueC8raa9Ogc9zBoOTIvc61pIAinLd6elpASqhUAiFQgGFQgGxWEyAGcEbnykybJFIRN45LHitwSwZZrLLfCb4btIbOBrgM56Of2t5K/tq3osAlNfyer0IBAISf0fwxjjVfr8v1yVII9vP2D4CO7aBG0T9fl+UBi/KXi4AJy+ZF9wQ22yzzTbb/lbbhQsXUKvVcHR0hEQiIVkCmTTh7t27qFaruHTpEjqdDo6OjvDWW28hk8mIk8gd7EKhgGw2i+npaRSLRTidToyNjWF9fR2Hh4dwu91IpVISI8Vsb9VqFQ8ePMDq6iq2t7fRaDQwNzeH69evY3R0FJOTk9je3kY0GsXExASOjo5QKBQQj8dRrValrls4HEapVJK+aaeRwf4+n28oXbjpoJq/m44m8JQRMwEegRCZJIJCZgdkenfgaWwMnUsepxkpfV0t2bRqq8muaVZEsyWMu9PnaKmmtsePH+M//sf/iN///d/H3Nwcvv3tb+MnP/kJDg8PZRy0EXgdHx+L5KpSqUiCBJfLhXA4jGQyiaOjo2dYSgJUfT39k+PhdrtRr9eHnFaT1bICV19mz2P5TICh/zZBoSmNNNtAAOPz+RAKhaQoeigUQjQafaaOHiVszACbzWZFRscx0cApEokglUohHo/j448/RqFQGCr8znXU7XZRqVQAQOLfWLNQt1ePMzcezNgzOvtkqfiZ3gjRoITyS3NurBg3K/bttE0PtpEsNxkic275TOlND8ZoMhkSARZBjS50zThWAJJQpFarybNP4MXzCYDK5bK0hTJEjgmvy7nnO4TvDc3UEszzWpTB6/IRnU5H1hQZPr4LyOCRDSTg5aZBvV6XDRiTJSUjzLawDMKLspcLwH3x0y4jYJttttlm2/OsVCohk8kgHA7j4OAA8XgcS0tLaLfbWFtbQzQaxdmzZ5HNZhEKhfDee+/h+PgYs7Ozwu5MTk5ia2tLinPv7u4imUzC5/NhfX1d2DzGffh8PjSbTYyMjGB9fR3j4+NYWVnBw4cPMTk5icFggAcPHmBhYQH9fh8bGxu4cuUKnE4nHjx4IHEqx8fHqNfrCAaDiMViCIVCEsujmSim1i4WiwgEAvLP5/OJY2UCGYI0YNiZPy1LpQZWOmGJjj/TgETfSwNN01mlw60BIfulTQMy3T59LbIAGrjxWBP4sS1ra2v4d//u3+F3f/d3sbi4CLfbjR/96Ec4PDx8BkDxWsx8BzytTUWmIhaLoV6vD2W2TKVScLvdkt5ds5JaRgfgmeQRplk5/ia4sgKrVmNvzrsViON3+ngTbPBvsmxkcSiXTCaTGB0dHWJgCLZarRaOj4+Ry+WQTqeFPdF9I/PDcWu1WqhWq9jY2BiqFaZBLmOyut0udnZ2AEASaXi93qHNBn2uKScmoGM/tZTTig0lENFxjfqnZpGszArUmUDRjE/lvXT7ySbx3vp5oVSbm0zsEyWQ1WpVwA9ZLEoyAYgEmMlhOAaVSkVidTnW7MvIyIhkkWw0Guh2uwiFQrIJ4vf7BdRpCSXBNuegWq0Ku0cWlUCs2+1KjCmfUc4H26XfU9x40uw5AMmGGQwGRV75Iu3lAnB2DJxtttlmm21fwWq1GpxOJ4rFIi5cuICFhQU8fvwY6XQay8vLmJ2dxdbWFs6cOYNkMolsNovZ2Vn0+32Uy2W0Wi3s7e2h2WwiFAqhVqthYWEBHo8Ha2traLVaWFpawsHBAUKhkMh7WO/tzJkz6PdPUtiTzXvy5AlisZgwDW+88Qaq1arEywHA1tYWXC4X4vE4gsEgDg4OpJ4cjTvbdND29/cltXcwGBT5kunA0TRIIHjSf+u4OTIKdFK5a68TFZjMGO/Ne2lwoB1PAFLol4kWTNNt1QBIx79ptoEOsGbjdHtog8EAGxsb+A//4T/g/fffx4ULF/D+++/jk08+wdbWlvRNX5OOn5lpk/PGRAqMt3rllVewu7srQJvgheOoz9djZ5oGA+ZcWv1tmtXx+lpWgMPqOP7U8U3M/MffuYHAfyz4DJywxeVyGZlMBvl8HqVS6ZlNAM65Bu10tOn4EzSTfdZSN9ZMHBsbE7mcy+WSrIImw2sCHdMILk4bKw2ieDzbbI69FeNmdT+y1mabOC5cT5RK60yx3NjpdruyHp1O5xD4YYxZOByGy+USKSHHXM8JN2zcbjd8Pt9Q0g+ydkwwopOVNJtNBAIB2fBgXTU+u263G+FweKj+HM+j6cQsPM/v9wtIZMZLZsMFMJQQh+8sXoNyUcpLyRJqWWYwGJQNALbhRdnLCeBebDNss80222z7O2BerxfvvPMOnE4n7t69i0AggG9/+9uo1WpIp9NYXV2VtNRnzpyRneR8Pg+Xy4VEIoFAIIBMJoNYLDZUImBiYgLb29sC7ug0pdNpLC4uolgsitTn888/R6fTQSKRQL1ex9TUFCYmJvDgwQO0220sLi6iVCphZ2cHXq9Xihrv7+8jGAxiYmIC+XwewDAjRGcvl8vB7XZLsgg6HdpZ1MDMBEXmsby+Njpd3Cn3er3PFM3WgMkEd/p7LYms1+uS8U4zNdq0UwlA4nlMpk2zWyY40m3UwODw8BB/+qd/inv37uGb3/wmvv3tb+P69esC0s3xJnjjmLG9GlgQ4FQqFRweHqLX6yGVSsHn8+Hw8FBAhWbldDt5TTrqp4ECDa41uDD/6bZqM9eHaZrZIcPm9Xol3pLZCRmPqeMydd3AWq2GYrEo8W1aImfFjprj4HA4ZO2RNaJDb9Z247pst9vI5XKS9ZOMjBXLa6419luvKR27yXZbsXca8OvNhNOYNysz4750jB4/I7ji31rCzHtTkkhZZL/fFzbM4XAIwNNMHOPGyLbzWnzH8R/B22AwkDnQ46MzYjYaDVQqFfR6PQFRfHcRiDabzaEabFoezX5STk7wzvcAr0cFBNef+ZP36fV6CIfDQ3JOMo8cSyYn+q+Zt79ue7kAnF1GwDbbbLPNtq9gqVQKS0tLODw8RLVaxZkzZ3DhwgVkMhn4/X6cOXNGagb1ej1kMhl4PB6USiVEo1E0m01ks1lsbGxgbGwMhUIBzWYTLpcLgUAAV69eRSKRkFpUuVwOTudJXaX19XWkUil0u13cvHlTnNmjoyO88sorAihdLpfUfdva2kI4HMbi4iL6/T62trYQj8dx4cIF3LlzZ4gRM2O7GO/DwtKsOWcFXEwQxx16K9PJSOg0OZ1OGTd9PQCyu6+LafMeOiGBzipJ2Zk+j/IpmgYjVqBH38cKuFiZZjlY2LtYLOLy5cu4dOkSgsEgbty4IWCDY8Z+aybRBJ1s4w9/+ENJ8e7z+ZBKpbC9vS331xLX08Y/HA4PsQCmDFUDBv05mQcrx968jpWU0Ol0SmwSY4kI0AiKCOro+PInwWe73UY2m8Xe3h6KxeJQfBvnUrdfA1BTGkmQTAaKoJ4ZJ/Va0Cwn47so/dMbDuYa0+Ohx8hk3XiMyVaa82jFZFrdz5RPmkmHTHCkAZ6ZiVLPHxljJnbRsWH9fh/FYlHu6ff7h9pHiTCBXq/Xk5ICsVgMpVIJrVYLgUDgGfkm1wR/5zrk+GuZJ6WVlDrq2NxSqST3TyaT0g6OBZk4XW5gMDipVUcwqOvWcZMlmUwCgEieCSYJ/pjJ1GQEv257uQCczcDZZpttttn2FWx+fh5ra2uIx+N466234HQ6sbGxgbNnzyKVSolzUCqV0Gw2MT09jXw+j6mpKezt7SGTyeCzzz6D2+1GLpfD3NwcZmdnUavV8PjxY4yNjWFqagrBYBCHh4fieDabTcTjcUlmMTExgWw2i0AggNdeew3Hx8dSR25iYgI3btxALpfD7OwsFhcX0el0UCgUkEgkEAwGcevWLdy5c0fScwNPg+01+1MoFCSRiXbGdGybKRcz5YUmGDEzU/JzZnPj8To+SDugGjTqvzWo0Dv1GiTRydTttGLdTNaP1zLlk1bsk5aG1ut1ZDIZfPTRR9jZ2cHrr7+Ob37zm7hx44bEHwIYKgOgQawGHszGRyao3W7j9u3b4jxrhs2MPdTjrTMHkjXRKeG1sR/mPBMYm2ypCdT4TzMjjCvi70wZr2MW2Q89lqwvtr+/j0wmI06wFTtoJTHk/ZgNkP3WGwD8nYyMbjuzuJI54jieBua5kWCuO36n+2euIf38aACmx9kKoFv1W7O9PJf95Xhr6bK5rrWsmDFigUAA9Xodbrdbau+RceKGFLMvMh6NSUEob9bSylarJYlAuNY51kyUwrVHGSXBI/ukGT3NunP++E7j2HMMvV4visUiACAUCgmj1mw2h4Ai49sI8NjuXq+HZDIprB4/Gx0dRafTkbhhbiAxDvlF2UsF4Gg2AWebbbbZZtvz7N69exgfH8err76KWq0miUwGgwHW19fx4MEDTExMwO/3izPSarWws7ODfD4vcsZms4mlpSU0m02sra3B6/VidHQUU1NTUmw4Fouh2WxKTEk+n8fo6Cg8Hg+y2SyWlpYwNjaGjY0NlEoljI6Oolgs4ic/+YnUmgsEAvjss8/gcDiwsrICv9+P69evyw46ZZ3a0dGgqlarIR6PP5OdTYMe7RDyb23aodbn6O8JLOgwA0+ZNy2Lo8RN/w0Mp/inkTE5jQm0Amm6Pfzd/Ex/bv5tMiA649z29jZyuRxWV1exsrKCtbU1AZp0djmOOvmIw3GSzIRAXoMcMgAEu2Q3CQjpyGr2ZzA4qTnHOB86x2TGuB50Ons9Lxoc0gHXwEGfrxk083eyV5oN4xxyXNrtNqrVKhqNBsrl8hBw0qDSZLo0eNFt0etbgxK9xlwuF2KxmLA0ZOLYBg1OCX506npzXfD54LH6GP2s6XP0xoUJ6ExW7quAOX1dM16PrBq/83g8z8gzzQ0UXoNjQ6aJCUl4TTJRlKrqNP66nzrZzGBwIs9k5luuZUogCbwJpgDIRgLnguuWLGm5XB5KHkJpeK/XExk5YysJEtkHM/aNZT3YB7aB8X6UuJMt5ryx78lk8rly279pe6kA3NNFbiM422yzzTbbTre5uTmEw2H88Ic/RL/fxyuvvAKv14t79+6hXq/j8ePHGB8fx8HBAXZ3d+F0OlGtVmVXuVaroVAowOPx4PPPP8fCwgLee+897O3tAQCOj4/hdDoRjUZRq9UwMzODTqeDfD6PeDwOh+MkffzKygrcbje2trYAAOfOnZP4uMXFRUQiEeTzeezt7WFsbAwTExM4PDzE4eEhIpEIKpWKlBCgc8J4j1AoJNcqFosYHR1FIBBAPB4fiovRDt3zYjpMWZ0Vc8XvdFFeOnhmpjcNGkzJnJUjqx1OnebbZNI0M6gBmcmG8XP2zTzW7Lt2HMvlMm7evIlIJCLJDvS5Pp8P/X5fMve1Wi383u/9HgKBAH7wgx8MgQHGC+ksk5oRIuujGQc9JrrIsY7p0cCH82L+5FyRWSBbQmebPznmnFfWFiNQ4PdcU/V6XTL+tVotYVjI+NA5N0GOCVD1mqL0jrFMbIteN1yXbrcbMzMziEajiEaj8Pv94ugPBgPs7u5KMedGoyHJLTh+BGl67bJd+p+OddNr5TQ277TvuG6tQB77b4IlPZd8NjiXlB+ayXR0chOON8E+k74MBgMplM33lMPhQL1eFzDM2n2cW95HS2T1Jg9ZKy2f1oCTAJHHa2DEJDRkrcnYMpvpYHASR8ckJpRycs0QMPJejO0jSHM4HAgEAmg0GiINdTqdSCQS8Pl8MuZ+v39I5jkyMjJUvuXrtpcLwH3x02bgbLPNNttse561222sr6/Lf9o3b95EOBxGs9lEp9NBrVbDkydPRH54fHwsmRzz+TzK5TIcDgcajQYuXbqEc+fOYXt7G/V6HY1GA+Pj47Lre/nyZTx+/FhquFHSc+bMGdRqNTx8+BCRSAQejwc7OzvodDoS05HNZlGtVjE/P4+VlRXcu3cP2WwWqVQK6XQajUYDfr8fhUJhyNEuFAribBSLRezu7mJ1dVWyy/l8PrRaraF4OTP2TTvRpqRLgxwNRoCnaePb7bYkSuAOtna2rRxWOlaaDWQb6ZCyPWasmxUAPO37/xrTfdeFfjnWZMr0/egE0hEeGRnBxsaGFGLXcXzc4dfsCAABSjq7JsfhtDni2Fk5+1bnaNCv/9EB1tfTYIEAWn9vJYvlOayFGI1GsbGxIe01Nww0wNGAUidI6fdPMsGyP/zH83w+HyYnJ5FIJKTGG6VzPp9Pnjun0ykyQCuG9zRQptcvwYaVjJLX1d9ZSSOtmDcTdJ9mJhOuASwT/5BpYnu5NslCkRGm9DkQCAwV6Ob6ZqZKMr5sNxl3jgkASd3P4uEmW0egyfvpc7hxoIvac025XC5EIpGhZ0LH0LXb7SHQRuZVA0z+I5gMBoNyHjckAoGAvMP4jPt8PvlZqVRQqVQsN5q+Lnu5AJwdA2ebbbbZZttXsE6nI9JGFvY9PDxEMpmEw3GSRfHg4ACVSgWFQkHilfb398WxiMViuHDhAhKJBHZ2djA7O4tSqSTOzWBwEjB/7do1eL1eRKNRlMtlTE1NIRQK4fj4GMViEfF4HJVKRRz7sbExNJtNKUR89uxZRCIRXL16FY1GA+FwGDs7OwiFQpicnJS4DwIiOr5sZ6fTwebmJrrdLnw+H2KxGKLR6DPlB/x+vzhs2uE0mTTNPgDPpj+nc+Xz+eD3+4cYGzpddOLIHpmOkAnAACAcDgOAtJGOsRVwMD97Hmh7HvMGDMfDEYyyPayZZbafDq2W6e3t7aHb7SIcDg8l0tDsgykF5P20dJVjp4GqKV8EhiWIp8n2NONnskxWgEOPj9VY6WOYjZCAs1gsSmIMM06Pf7PI88zMDM6fP49msyksMxMJsYyDnlu2l7URAQhjREeetcvcbjfOnz+PkZERfPrpp1J7TMt8NftmAjE9huZYmoBZJ9DQ7J4eW82gmsywHtfnbaiYMmgdO0owztg1vdngcrnQaDSkbh6zQHJziu8TgrharSbgUGfSJSAi0NPJbBiHRjDF9ctng20naCPoI0PPREHtdnvoO8amkkVmu5m8hvcnE6wl3QSybDvfl/1+H5FIBJFIRKSUPIcgT7PHdhmBvyZ7moXyBTfENttss822v9XG//zfeecdHB8fY3t7e8gh4M9sNotyuSz/UdOZnpqawurqqqTon5iYwObmJhKJBFZWVvDkyRNkMhncvn0bo6OjCIfDaDQaOHPmDJxOp7BnwInccjAYIBwOI5lMolgsSsD8zMwMut0ufvnLXwpgePz4MaLRKOLxOPx+P4rF4hBIcThOahcRXAAndchYE4vZMU15HTO90UwWQDuNZhyZvpZmQhjkzzaR9WMciRlDp01LJgGIZJXH6aQMpjSS19Mg1Mop1u19HsgzASslZIzvsRoTK4ChE5VQNkmHm4yAdsh5b91WDbCt5oDt4XGnyfnMMTLH5XnnmPc3+0/JGfvKPrGPOvMjk+tEo1GEQiGEQiGMjo6i1+vh29/+NqLRKP7gD/4AwWAQa2trp7IewWAQLpcLlUpFrk+wrc8hGKtUKlL/UWcT1IlA2E8TYJsyRhPwEsxpMK7HTv9txbKZ51l9bl5LA0zNjhI8cv0RPFEu6XCc1Der1+totVoIh8Oy4VKr1eD3++U+ZKsIxgj8eU+99shwatmk2fbB4ET+yOdArxctfWTGUOBpoiAmOiG443piQh1miRwMBlKKRI8fJZFsm07Woy0QCMja5f8LfA+xTS/CXi4AJwycjeBss80222w73TweDyYmJnD//n1MTEzg7bffxpMnT3D79m1Uq1WJo2i1WqjVakgkEpLBcX5+HlNTU9jf35faQ7u7u7h06RL8fj8+/fTTIakdnZuVlRUUCgUcHh7KDjWD/L1eL4LBIHK5HKrVKlKpFAKBAI6Pj1GtVnH+/Hns7Oxge3sb4XAYfr8f7XYbGxsbODw8FECkpUetVkuA587ODhqNhshAk8nkUEC/Cc40e0PTTpcpFTMZntHRUdTrdYkRIcupY5b0/bWTb8VkAJAdeC1d432tWDi2WbfXiuE4rS/6b82QMFU6ExxooGuOjdkfOtE6XklnvePuvhUrSUeUwM+U7en5oSOt26KdV6vx/SrAzRwjK9A8MjKCcDiMYDCISCQisrR4PC4JgwAgkUggkUjA7XZL5sJcLodisYitrS1MTk7izp07uHPnDn7/938fKysr+Nf/+l9LgW/ONcspkFWhBLrdbmNmZkbWS7/flxgngg/NRtP512vRlKOSPdLjDWAIJGkQbQI5/f1pbBvtq8yRvp5mosy5CYfDKBaLMhbcNCAw6nQ6kmSpUqkgGAwKI1sul+H1egXQsQC3y+WSGDT93Hm9XlSrVdkQ4ntJlwGhDFPXO2Q5DcoyGT9J+TWfeT4XGpQCT5l/j8cj7KHD4ZAEP+12WzJu6hIxZAwZ88YkLlQs6OQmvC8Aycr5ouzlAnBf/LQZONtss802255nrVYLzWYTV65cQTAYRDabFfDE3dZCoSCFud1uN4LBIJaXl6UGHLNQHhwc4MKFCzg6OkI6ncZrr72GZrOJx48fo91uIxgMYmlpCffv30epVEIymRSH3ev1IhKJSKyay+XC/Py8yB69Xi/i8bgweqlUCl6vF/l8HgcHB+j3+4jFYshms+h0OkPyqFqtJokGWq0W7ty5g3feeQc+nw+JREJiUEwzU/RbsS0afOkYHjpR3B3nDjidQe6qm04fzQSN/Aw4cWh18gyra5jslWlmHBM/+zLwotnFcDiMWCw2FAdkdTyvqRkbExho6SMdcF2GQbMWOmOeFXDS46dB3Gl9Pq2fX3aMFRjW4xOJRIQhnp2dRbvdxq/8yq9geXkZjUYDW1tbyOfz4oxXKhXs7++j3+/L5gSToHz66aeoVqtIJpNYXl7GP/pH/wjb29tDSYIo+6METv/sdDoYGxvD6OiosHE6K2q5XEYikRBwYyWJ0yCMLI/e9CCINMdIgwt+ZiWVNQG+CbTNuT7NzE0YfV0+h2x/KpWS8hfM1Mj15/F4JMZwZGQEjUYDjUZDNlD6/b6UkOA7rFqtot1uS300/UzyJ8ExN7d6vR4qlQqczpP6mH6/Hx6PR8pMAE9jSRlXyyyVPp8PnU5H2DbgaZ033pNScgDy3mBClFarNST3pDybwJFMnLmZxPHj5o1ZH+/rtJcLwJGBswGcbbbZZpttz7FoNIp2u418Po87d+7g+vXrqFQqUl+KSUomJyflP+qFhQWJWSuXyxIrUSqV8OjRI0QiEXzjG9/A+vo6dnZ20Ov1MDU1hdnZWdy9exf9fh+Tk5NDsSUEWHSwotEoisUiWq0WRkdH0Ww2sbGxgV6vh+XlZXg8Hty5c0dqOLlcLuzt7SGbzUrsD8EBWRo6Ph9//DHeeust+P1+TExMDCUF0eeZckz9k6ZjbkwA0+12pawBExToHXh9Pp1/AjwrAEbgwj7xOC3L0+eZwOc0sKPty0AcHXgW3A4Gg+KQ6v6YAEjv0NPRN0GreQ+ONVOyszwAnUt9T13E+TQQZwK45/X1NIZHg7TTmDjgRG4WjUYldqlQKCAWi+HixYu4dOmSZOzU88esr2trazg6OsL6+jqy2Syy2aycz9jS1157DZcvX4bP58PExARKpRJ2d3fRbDbhcDgQCoXg9/tRq9XQ758kO2k2mygWi5KRkqCKn09PT8tz32w2ZRNE1+TTc8K+m3Onx4d91ABAA2rNsFpJMM1xt5L5mpsEGthrGTOTeABPZbVkcnO5nLClBFfNZhN+vx+dTkfS8dfr9aGEMCMjIwiFQkMp+7lRY6bWZ9sYi+hwPC3gzWeKAK5arQrrRrkivyd7T2Cly1fwGdGSST6flKoTwPG+TqdTEqKQmeO12WazNAvZZY7xaYXfvw57qQAcOThbQmmbbbbZZtvzrNPpYG9vD/fv30cmk4HL5cLU1BQymQxqtRrm5uYkmQgZMqfTiYWFBRwfH4uUqtVqIRqN4vDwEOVyGR999BGKxSJSqRQuXrwIv9+P27dvi+OfzWYxGAzg9/ufSZzAAuJk5XK5HPb29jAyMoKzZ88in8/jwYMH6Ha7mJ2dRa/Xw+7urrSNMkodZ6V3zQ8ODlCtViVmz+fzoVariXNFJ0UDDcDaYdcOKk078wRWzCzHnXSdal4fa8W8AU+ZCv4OPHWETQmlyUydxlyYx3wVQDMYnCQsiMfjkjGULALXgnbYrfqiE5uc1iYeQ2c1kUjgzTffxNraGjY3N5+J9XteX01n/zQA9lWZNtNMEE7WIhKJSObWYrGIsbEx3LlzB7FYDOPj4+L4c/yOjo7w5MkT3L17F48fP8bBwQHK5bIk5+n3+7h27RrOnz+Pn//852i1Wpifn8fk5CQcDofUwmNym0AggFgsJiCu2+2iVCrJNRm/RMlqtVrF2bNncXR0JAyxmVVRx0WRgeIYnjZGVgDMfLb0NczPv8xMwKfni6CQCVIoIyTAefz4MbrdriQFKRaLwmaRhWN2W6fTiVAoJLX8/H6/vKfi8TgODg6GWE2+T/T7gbLIXu9pMW8COrJ5vV5P5oMsG9k5ljggIxiLxUTizvcL36ssMQFAYt+YbbPVaiEUCkmdOz2OzWZTYnaZ1KXf7yMajUrcXTQaFYaX4PVF2UsF4GwGzjbbbLPNtq9i169fR6FQQCQSweTkJEqlEvb29pBIJPDqq6+KNDCVSqFer2N2dhaNRgN7e3tot9vw+XyIRCJIp9PY2dnB2bNnUS6XcXh4iJmZGbz77rt49OgRrl69iqmpKUnA4Ha7MT4+jlgshkwmI7vHXq8XhUJBAEuhUECpVEI0GsXY2BgODg6wv78vWSq73S7S6bTsSMdiMXGQmGWNoAOAZGNbX1/H+fPnEYvFkEwmkcvlnknYoDNYAtaMlhmHYoIwzbDQGTKzTpoA0ZSS8XzTSdJxdFZxb6Y9D+RYMYxWx9B5i8fjiMVimJ6elvhEzaiYjBvHRCdLAJ5ND6/BM4+PxWL4zne+A7/fjxs3bjyz228yPFZtZxs4v1bHmmCWfTZZy9PACr9jmvUnT56IjI5xVt///vexubmJ5eVlzM3NCVu8vr6Oa9eu4fHjxxIvyU0U4CTTayKRwN7eHv7Nv/k3aDQaIjPNZDJYXl7Ge++9h2vXrmFzc3NIAkcQQoaIyYnI7HBcmETjwoUL+Pzzz8WxN+dUS1/NZ8YcIz2nXPe8pq6/eNq8mdJJ/bdeK9wUATBUXsJk/nq9nmzekGljHBj7wzkLBoMi4WXZk3K5LGudbUqn0/B4PJidnUU+n0cmkxEgpdvNn/q9pAEUGT4NYJnBVm/SBINB6QOAIckr33t8V3Dc0+k0nE6nlBFgHUItE+e67fV6Ul6CdeF4XK1Wk1hBgly+116UvVwA7kU3wDbbbLPNtr8TVq/XsbKyIrvMoVAIr7/+uuw0p1IpkemQYePObigUwtzcHDY2NlCpVDA/P4+9vT00m01cunQJc3Nz+Pjjj5HL5XDlyhXUajVsb2/D4/HgypUrKBQK2NragsvlwujoKCqVCsrlMsbGxuByuUR+OTMzg1AohI2NDRQKBczNzSEajSKdTiOdTosDEQqFpOYTGS/WNKpWqxIjVK1W8eTJE6yurkqtrI2NjSGJEHfGTbPKisckLdzZpwPIwr+mlIp/Py9mTN9DO8zazPZpIHgauNAOpQZWp7FLpvn9fsneSQfYjDXTbdXjyb6bMWn6bxNkhsNhnDlzBoeHh3jw4AF2dnaGzjXNHCOTjTkNpOljrcbLbJfVd8CJExyNRiV2TYOMdruNg4MD5HI5XLt2TZ4tyuR8Ph9KpRIcDgf29vZE1phIJDA9PY1ms4lSqSRghcxyOp1Gv9/H/Pw8vvGNbyCRSODevXvC4HCdMFmMBjY6UYzT6cStW7fwa7/2a3jzzTdx8+ZNAMOp//V8nTYu5nGmHJLG+7Mt/N5kprX8VW9+kBnU64j3tKo5Z84ZWUa/3y8ghfLAwWAwlLSEPyljJBByOE7KDGQyGVSrVQCQee/3+1Jag4lhqtWqMG9k4VhCA3haxoLMG2WKlUoFACTRDWPOCNDIwrF/bHM4HEa5XBbmv9/vS9kYgnxm0uR7nnPA9cJ7cYyazaYkWanVajJuL8peLgAnD8sLbohtttlmm21/q+3cuXPodDpIp9MST0PWaX5+HsViUeLTMpkMotEoAEg9t/v374ucrlQqIRgM4vLly2g2m7h+/TpSqZQ4g/v7+4jFYrh06RLu378vwf7xeBzHx8cAgKmpKZRKJRwfH4vUrFqt4s6dO+h0Ojhz5gwcDgf29/dxdHQEv98vcSF0Upimn3EeXq9XJEPACWjd3NxEs9lEIBDAysoKPv7441PTzZusi1Vsmt/vRzAYlBgbt9stpQJM06waMAx4zJ+alTPP1+2hY2vFVOi/zd9pp4E4/Tmlk9FoVGKl9vf3hxxuOr+67UzXTkdcA1sN/kzmkSxrPp/HxsaGOMintfd5IFRLXU1n8zTm6HnXt2JWyE6Ojo6iUCigWq1KP4Cnhb8pd2SsabVahcfjwdTUFHw+H+7cuQO324133nkHsVgM1WpVYim9Xi+SySTcbjeePHmCkZERSeZTqVTkWUilUpI8h4y0rqOnx0SDb5fLhY8//hjf+c53cPnyZdy/fx/A05IDmnFmn8iUmoBJx0NaMXRko6xMH2PGN54G3oHhODq2U88b+8F26SyNPE9nsuW5zM4JQGLEarWanMf5djqdktxHKwPY7lAoNBRT5/P5ZAyYObTf7yMej8vcsk4lGTJdcFuz7hwXnqeTsDCbZjAYHJJ1ko0DMATi9DuJGTkjkQiApzXyMpmMjLldRuCvySQLpR0DZ5ttttlm23NsZGQEpVIJY2NjImeMx+NwOBzIZDLw+XzI5XIYDE7SUlPu2Gw2cXR0hHfeeQcAcO/ePczMzMDj8WB7exutVgsXL15Ep9PBT37yE9TrdYyOjiIQCODq1atwuVwioczlcggEAhgfH0e5XMbx8TFGR0eRSCRwdHSEfD6P0dFRRKNR9Pt9PHr0COl0WhJo+P1+eL1e5HI57O/vI5fLiSxKx4XQ4XG73djc3BRwOj8/L04RnRE6tHSo6CBppxSAFFwmiGHdJTqnz4sNMWPaTpPm0Tmm46UZB37G++pdeBP8mZ+bzMhp4IXfRSIRxGIxGUedcMXhOMlKOTo6Ko5mq9USRoGxQZRnEdxoNlIzKE6nE8FgEJlMBkdHR89INK36oNtr9sP8acWkWo29eT39mcl08pqtVktYK7aVUkaPx4NAIIBKpQKv1ytM9rlz5/DkyRPcu3cPy8vLWFpaEpCn2cv/H3t/FmTHmaYHY0+efd9PndqrUAUUVhIk2Ojm0hyy2WxOu2NmOhSasawJ2SNZYVmKUOjGF/7tC0fIvy7+cMjhC10oLIcW37T1jzSanqVnhs1pdnNpkiBIAgSIvVB71dn3fU1fVD8vvpPIU0BPLxjxzzcCUVXn5Mn88ss8iff5nud93n6/j1gshgsXLohjJeet2WyiUCgI+8vXadTBui+VQTSCK87vm2++iddeew3PP/883n///TGwwPPktpqmjbUdMIJr9VjG66YGwZeRVeM9oraqMAJxVZ6rXmsubNDoQx03GUz2iSSAIgvF50C5XIbf74fD4UCj0UAwGBwDYRybujDT7/cxMzODYrE4tlChtmigOyhBPdlSn88ndW/8ngQCAVmk4vddvfc5N+z7xybjdrtdGnHTkIXPDZfLhcFggF6vJ89WMn/tdlvq8QhMgcPnW6VSQbFYFNWB2h/vScSXC8BZNXBWWGGFFVY8RvR6PaytraHdbqNer0sNm1rkrpqMpFIppNNpxGIxTE1NYWtrC4VCAcvLyxgMBigUCtA0Dc888wzu3r0rvd6mp6cxMzOD3d1dJJNJJJNJuFwuFItFxONxAA+abKdSKTidTmSzWQwGA8zOziISiaBcLkuj8ampKfR6PQSDQUSjUYxGI2xtbSGTyYjEk4CBUqBGoyGgr9FoYGdnB6lUCqFQCEtLS1J7RFdMSqDYfkANJomhUEikpmTcWMuiNvY1mm4A5hJKI8M3iTEyyjApazKrRzFLqNXPmjGOxu1Z67i0tIRut4t2uz12rJmZGXz1q1/F8vKyyCs5906nEzabDfV6HTs7O/j8889F6qoCR4fDgVQqJf3RGo0GstmsMB3G8RuvxSSpnjHMmLijGMpJzJ7ZMfr9PpLJJJaWlvDhhx9KUq7KFAmmNE0T9vqjjz5CNpsVCWSn05HP8R7iPm7evIlMJiN1SWqdXSgUgt1uR7lcFhCn1r6ZyXGNgJfn/9Zbb+HFF1/E8vIy9vb2Hpo/FfzR6ZVsK+9P9foaQbQaqkxS/dvIcKrMGrczgkOOj+OiQQnnycgk8nvDuWm32/B6vdB1HeVyWRaDBoMBgsGgyBkjkQjq9TqGwyHa7bYch9cuFAqNGXzQVZIW/rxf2u02hsMhgsEgAoGAMGCtVgudTkfcM9V+dZRz1mo1MaPhM46gLRQKiZqC5iderxej0YP2BzS74cKP3+9Hs9kcMzuhKQ9rgofDIaLRKNxut4DdJxlfTgD3ZIdhhRVWWGHF3/J46qmnEAwGcfv2bayurmJ3dxexWAyDwUDqNQaDAaLRKHRdx9bWFlZWVuB0OrGzswOn04mXXnpJZInT09MIh8NSPxMKhWQl+datW5iensbi4iLS6TTK5TKmp6cxGh06Q7pcLiSTSVSrVZFHxmIxkSPt7OzA5XIhEonA4/FI0tZoNHD58mUUCgXYbDYp6FcBCtmwcDgMTdPQ6/Vw8+ZNnD17Fi6XC4uLi7h165YkSHRhU90pKa0is+H1emU1vtPpiByLDaYnmYlMkisyVMDHMNYFGX9y9dzo4DcpaVbZEuP7xm1pDhMMBmXe2TNL0w7NZ06fPo2nnnpK+vOxlohSLpodsJYrm80KG8AxUPLHpsKlUklMPB5X5mg212bnre7rKGZo0rUyA4m8Bq1WC8vLy1haWkI+nxepnN/vh8vlQrPZxMrKCmKxGIrFInZ2dlAoFHDixAkkk8kxOSkXAVTGhU2WVWDH+4MtAigfZq2WygofNXeqpHI0GuHjjz/GsWPHkEwm5fvFc1dllSoDps6Puj/jPaaybMD4Pa4CbH5WlXpyG2Mjd3WfKlBV7zH18w6HQ+oV2UKAoJfgSa1n1XVdasII2MjKqTLG0WgkNXSBQGCsrUC9XpdrR2BFx12aLB0cHIyBPNbyqnLcWq0mgBmASGWHwyE8Hg9KpZIw8wSIBNesmSNQ4zHIdPN7SPknXS8BSH002fhyuWwxcL+s0PDwA9kKK6ywwgorjBGNRrGxsYFWq4UbN27g/PnzuHXrlhiLqElHs9nEqVOn0G63sbu7i9nZWbjdbly5cgXD4RBra2sYDAb47LPPpDZNdUlcXl6Gw+HAF198gUAggOXlZbRaLZTLZWHkOp0OWq0WgsHgmJlJpVIRADE9PQ3gMEnb3t7G+vq6JEo222FPo1KpJKwUkxUmY2QTNzY2UC6XMTMzg9XVVbjdbtTrdemBxXo/urwxYaW8jz2WyHSQ+VB7tBnZLu6PoQIpM5B2lEOfynJQmjhJPmhkKoxJtZG9UsdO6aTb7cbBwYGwSAQPKsumMiSUV7E5ME0bKA9Tg46KzWYTtVptrIbsFwnjuah/k4056hiPklQaQXCr1cL29jbm5+dx5swZ7O3toV6vy7nY7XbE43FhT4LBIPb29jA/P49wOCzsDlkzh8OBRCKB5eVl3L59WxYYWINFENDv99FqtbC7u4tGo4FarSaLD5xrSjaBBw6mNDghY8p7Q9d1YWg2Nzdx7NixsfGp14/XnQY1BOacG2N9o/Ee5HiMzCBfU+dXrVPl/a86NBrlmgQsqnySYyNTztfJtvG77nQ6pfUIm5bzcx6PB5VKBZ1OB+FwGLp+aDSijpnW/t1uF36/H5p2WHPXarXkfUoVCaRarRbq9fpY70ouSJEp5IKYz+cTCTmlkKPRSPoPqteIC3CcIzoI83lIWS+vAZ+bo9HoIdMVykzZJ7Tf78uC15OILxWAg8XAWWGFFVZY8Rjx9ttvizPk17/+dWxtbSESichKfiwWQ6FQQKlUwurqKq5fv47BYCDga319HcFgEAsLC9jb28P29jamp6exsrIiyUkul0MsFkOtVkOtVsOxY8cwHA6xv7+PTqeDWCwmduj9fh/xeBx+vx+tVgsHBwcYjQ4tve12O4LBoMiQcrmcSDZttsMeTZFIBOvr61K8HwgExhI+yivtdjsqlQo2NzcRj8cxMzODSCQijm00WKGVOHtFMYkZDAYiNRqNRsIWMRlkYmxclTcLlTVQGQOjnFJNZI1STL6m1l2p++NKump0wn2pCbUxyabJDI0LVPkmV+b7/T7u3LmDSCSCpaUlqadkA3PWxPX7fZRKJRwcHEgSqx6/1+vJPcK6HeO5m82bcdx8bVLwfngc1mASIDZK9rgdZcS3bt3C1NQUjh8/jvPnz+NP/uRPsL29jU6ng2AwiOFwiGQyiXv37gF4IMVl7SABMKXAuVxOXiMjx+bL1WpVZJl0tGQ9F4Gx0+nE6uoqXnvtNezv7+PDDz+U7ViraJw/9kckiJufn0cikUClUhkDCATxlA+r86VeByOYBswNfIDxthzcTn1PBXbqtVDrPSkVVK81vxtkmXq9nvR7oxRRdeZkzRmvBQ2RaOBBYyTOFyWGZADJirO+ltLFXq8nANzj8QhQJDtHlo9gnQs0lEDyfc4Fxx0MBsdcIRuNhtS38X4AID3l+DfbF6iMHhcQeK0J0vhdrtVqIjdvtVrmX6BfQ3ypAJyYmFgIzgorrLDCiiMinU5D13WcP38edrsda2trqFarSKVSmJubw97eHu7evYvhcIh79+4hGAxibW0NGxsbKJVKWFlZgdvtxsbGBjKZDE6cOIGzZ89iZ2cHXq8XmUwGc3NzyOfzYmxCdmU4HGJxcVEYCrvdLgYqhUIBtVoNmqbB5/OJvIgr3Ht7eygWi2IuUC6XUSwWcXBwgEqlIoCAiSxX4uv1OhKJBILBIPL5PG7duoXTp0/D7/djcXEROzs7Y0ksZYCqGQlXxmksQNdLHkNlBsyYCAa3P0pSafwMQwUP6j+1tYDdbpfVeCZjlUpFQOUkCR2DzahZl8NETjWT4Lml02m8/fbbmJubw/nz53Hy5EmkUikZe6PRwMHBAW7cuIF79+7JNaHUEoA0mSZomBRmckcz5tD4GTN5pNnv6t9moHbS/gga+v0+rl+/DpvNhkuXLuEHP/gByuUy2u02pqenxSHyypUr6PV6iMfjch/wvOnA2W630W63xYiDNUt0BKQVPBlmACJz5ftkcWq1Gt577z2Uy2XUajVh4czOV9d1WewgODg4OBCJrOpoqbJvlN0Z6xvVeVWlq8DD97ha/0bDDx5HrQUEMMasmQF51f1UBXEEUXTYpeyXgIqsJs+NoEitVxsOh1IfbDQPMi7gcJtqtTrWyNvhcMDn84lKQP1ukQElUCKIIwgkwOS15TOPz0neK9VqVZ5jvD90XZc+blxo433H54XKPnq9Xpkfu90utXdkXC0Xyl9SPPjCWAjOCiussMKKyUFJ1xdffCG1E3NzcwAOm3zfu3cPnU4HlUoFTz/9NEKhEK5evQq3240zZ86gVqthd3cX8Xgc58+fx2g0wrVr11Cr1ST5v3nzJmKxGNbW1oQ18/v9mJ2dxf7+PvL5PCKRiDTmrtfrqNfr8Hg8Uo9GqVC328X6+rowGS6XC7FYDG63G/fv38dwOEQsFkOr1UK320Wr1ZIEiSvg09PTcLvdaLfbuHPnDgqFAjweD1ZWVvDhhx9KkqYaULCOizIlrow3Gg1pHWBkjIzyR1Umpq70q++bhZrgmrFyRiDIRNbpdCIYDMLr9SKfz6NarT5UW6fux8jCkdFUk2gmpGbSzkqlgnK5jN3dXWxvb+NrX/saEokEtre30Ww2paF7sVgEgDGgS7e7Vqv1UH+7o9g1M9BmxjAafzfu6yg2zrh/9XeV/VTnEDisXapUKmJBr2ka+v2+9IIbDAZYXV0V5oosJ3BYy/baa6/hRz/6kSweEOgSbITDYTEcYu0djWVoOEGAzOS/Wq0KowxAjH7M5oCgn+czGAxw584dnDhxQpgp4IE1v7FJuxHAqSyxGmZATq2t4/wYv0N0lmSwJyF/Z6sLFRRxTKzpIoDiQhHNQ/x+P+r1ujDx/I7zWkQiEWHxCKZLpZKwePyOOJ1OqRdV7wUy02SnachEUxQCI46J/dcYPA4NSHgsNhwfDAbirEspO4/HMZBN5LONc9Pv96XOkuwkFQgEjR6PR56H6nPsScTfGMBpmnYSwP+svLQC4P8GIALg/wAg/7PX/6+6rv/F3/Q4P9eYfvbTYuCssMIKK6w4Ku7evYt6vT7W0PX+/fvyH3i9XofX68XS0hJqtRq2t7exsLCASCQiEshkMoloNIp0Oo1arYZcLocLFy4AANbX1xGJRLC8vIyNjQ00Gg0sLy9jNBoJE5NIJHD8+HGUSiVks1mpZ+PKr6ZpknhQpsj33W43MpkMrly5gkajgVAohFqthk6nIyYE/X5fJEfAIRtEedVoNMLe3h7i8Tjm5+cRiUSQzWZRqVSkBpDgj5IjJjyNRuOhZskqc2QGOMwMRsxCBRZMYiexPnxdBWdkgghEybiYjcN4PNY/RSIRMXZQz4uglkyLUfpZq9Vw6dIlqZ2i2+j29rawo+q5d7tdscxn/aBxbEexZWbjnwTouI2RhSS7M0lKanYNCSyOSl7JWgCH90Y2m0UmkwEAXLx4UQANgRfrBTudDt59910BIpqmCePr8/mQTCbR6XSkprBSqQhQI5Bh8q+6IPJasqZLPWf1fHl+6nwQ3Ozs7GB+fh7tdnuMTSP7Y8ZYqiBNnX917sn2cH8EKdxGbRPAujD12CrAY7hcLjkeX6eZB/dJBikYDKJcLst3h4s0vN40hLHZDlsLRCIRkbHSoIY9/VjPSRMePo94fSlVpELA7/eLfJvgiz39CM4pE2crCuABoPR4PLLAxb/JkvKauFwuMSLRdV2AnwoMgUNwSskn+8dR2sv/J7ggwPvkv0sAp+v6HQDPAICmaXYA+wD+GMA/AvD/0nX9X/8yBvjzBOfRwm9WWGGFFVYcFXQqI9MVi8Vgt9uRz+fFXGRmZkbA0rlz52C327G1tYXBYIBEIoHRaISNjQ1JPF555RVkMhlsbGwglUqh0+ng3r17wrr1+32k02kMBgMkk0ksLi6iVCphY2MD4XBYmtiqRg6lUgn5fB65XA7hcBhTU1OIx+O4fv06rl+/Dr/fj1Qqhd3dXWEZuEKs1viMRiNUKhUxO6lWq7h79y5WV1fhcDiQTCaRzWZRr9cFJBIEMTG22Q4t8Wmlb1bDc1TtmxkrZAbsKL0yGn6oZiFMsI0JMXCY3O3v7wtDp77HYAKsJupM/sPhsNS4qZI4bk92Q22XwBgMBjg4OMD+/v5D88CxMGnvdrsyn0fVvU2SMxpjEogzA2PGUOdVnV/1fePnj5K/qu/z+MPhEPPz85JEc258Ph++8Y1voFqt4rPPPpOaJy40sFk8+x6S1aGM0GazjTVjJshWLeiBQwZvZWUF6XRaviu9Xk8Scyb+vK9U1lfTNFSrVSQSiYecJdXzU41LJoFp1RGT4JOf5bZcGDFzoqQEkPWS6jwTuPE1gkHWvDUaDVnU8Xg8wtapPSAJgHkMGvVwLiuVChqNhjBbnPfRaPSQIy1r22jsAxzWnVFlwAUWHl+VSfIZQHkn54FKBrYHUJuD01yE3+VAICD3GtvD+Hw+kdhyXskCq+ZP/Js983iP8Pp6vd6JDdl/HfHLOvI3AdzXdX37SaLRBy6UT2wIVlhhhRVW/HcQ/M+XyTjNP9rtNmZmZjA1NQWXy4VUKiW26PV6HT6fDwsLC2g2m8J0zc7Owul04vr16+h2uzhx4gQ6nY44sHm9XrRaLZRKJQyHQ8zOziKRSOD+/ftoNBqIRCKIRCLSR0zTNGEH9/f30Wq1MDc3h5mZGUSjUfzkJz/B7u4ujh07hmg0ivX1dVQqFQAPrK7Ze4lNvQeDgSRXTPIymQz29/cxPT2N2dlZ3Lx5U1bMjQkwwRyTPJV9MtbyGIGZMdRk1shiMVT3OzX4OvejHssIPlSQZ0y4gXFjB+47EAgIcOD4jEAReNhRk1I6lbVTQY/RKp4JLmWrRwEz9VyN52AEVsb9PArwqWyakZFSj208pnGbScfifDDBjsViYtnOWsXV1VWsr6+jVCoJcGAyT0CdSCQQi8WEVdnZ2UGv10MoFBLJMF0JAQhYUGvo2KhZ7VvIBJzH5Fyoro8qqKvX60ilUsLoGBlN1eBEBc/8aQS3vJ95XpTtGtlSMnScF/7OcXFb9XzUn2SdDg4OpAccj632OmOdq91ul2cQGTECRwI1gjfVfTIajYqjJKWtfM6qxik2m02YLHX/NF9ifRrr79icmw6XNHQCHkiR2e6B58BelhyfKtdU61C9Xq98P/lZgrVutyugvVaryT3CRS4z5vzXFb8sAPe/AfD/U/7+55qm/e8AfALg/6Tretn4AU3T/gmAfwIAi4uLv5RBCANnITgrrLDCCiuOCCbQZ8+eFYkiGQKn0wmn04m1tTUEg0Fsbm4KS+Xz+VAul1GpVKQObTQaIZPJIBwOw2azYWdnB4PBADMzM7DZbMLGeDwenD59Gpqm4f79+9A0TerfyDC0Wi3kcjkxOHE6nXjqqafg8Xiwu7uL9957D61WC6dPn4bP58PVq1extbUFh8OBeDwuciRd1wVwhkIhKe6v1WqIxWKyWn3t2jXE43GcOnUKn376KTKZDKrVqrheqnVDZOBY/wE83F/MaMqgSg3NWKSjjErUbbkPjsWM4TBjjNRjGo9hzBU8Ho9ItIz7Mo6TCaDqXMfXjdJPJuDqnLHfIMHE4zBsk+ZIBasckxE8mH3WyJAZ9/nzhvG6qcY2wKGlu5rIu91uLCws4PTp0/jwww9Fvkb3T6/Xi2g0imAwiFQqhVQqBbfbjVKpBL/fD7/fL+03CBYos1PdAdV7aHt7W0Cd2jgcwJhBCQEmwRHPL51OY2pqSq6pkSVWrwd/N7tXuW8VYAAYAwRcECB448ICLfpVcx11HyqI5CKIzWbD1NQUrl27JvJsgrdms4lAIACfzyfbGmve2A+O42At7Wg0kl5wlHd2u115bvBe50KF3W6H3+8XObdqGELQ2G63BVypiyMEeqwz5vOA++ecer1eYdvooKvrOoLBoCxicUEhGo3KnKvgmd9X1jMXCgU5ls/nE/dTY13jrzN+YQCnaZoLwO8A+L/87KV/C+B/xKGS8X8E8P8E8L83fk7X9X8H4N8BwFe+8pVfCuKyLEyssMIKK6x4nFheXsZrr72GwWCAd955B8PhEFNTU7Jy+9RTT6Hb7eL+/fuIxWKIxWLQNE1Wl2l0ARwmWktLS0in02g2m3C5XFhZWQEAbG1twev1wuPxIJFIIJPJoFAoSA2Pw+GQn4VCAfl8XpzVZmdnkUql0O/3cf/+fezs7CAQCOCpp56Cruu4cuXKmKzr4OAAg8FA+iY1m0202234/X4BQJQA+f1+aSdw7tw5LC4uYnV1FblcTvrIqXJMFvhTUgSMyxiBhw1MGEamS01mjeydmviqNVRGwwAjy2am/jEm0WbbqiCGkjLVREI9r0m1dEywjSykysapDB2bJdNlUR2HcX6OCjMAZpSUPg4gfBywZsb+HbU/sm4q03T+/HlkMhlJngOBgLRiUM0mPB4PUqkUlpeXEQgEJNGemZmRHmDtdhu5XA7AoTQyEolgNBohGo3Kvb2zswPgQe83Soj5nfN6vcICqYybuuigmu9wfmu12pjjJcET3zd+B1Qmj/ND2SKvkfoZFTAaQTlDdZk0MtjqT5VpvHnzpjwfdF0X9kmVQrPliNvtFiklwRuBDo/LMVBtQMaKDH4wGBQjEZWFJXtGOayu6wJIVfMQNSjhZBNuNmu32Q57w1H2SPMinoPT6RwzZ+G8eDweRCKRh2SR7P1GUKv2vWu1WiJx5zkax/nrjF8GA/e/AvCZrutZAOBPANA07f8D4M9/Ccd4vBAG7td2RCussMIKK/47jO9+97vY29vDpUuXoGkannnmGQFmJ0+exM7ODtrtNo4dO4apqSmUSiVZtZ6dnYXf70ehUBD50e3bt9FutxGPxxGPx1GtVsfq3wBgc3NTXPQoVRyNRohEIigUCrh//77Uf4TDYSwsLMBms2FzcxO5XA5nz57FwsIC7t27h5s3b6Lf7+PkyZOo1+u4e/eusBeVSkVYuFarJSvFtAivVquYmZlBqVRCrVbD5cuXpZfZp59+Opas0K2PbolMPlXgpia5k9g1I2g6yi6fYWS9jEYpZoyRkUlSk28j86Tux2azjTXudTgcUtej1jSp532UTNTIuqjj6ff7aDQaY7Vvk1gy4z7N5IsqQDCybpOYuKNAm9l2jwswzcCbzWZDPB7H9PQ0FhYWsLOzI7VOxWJRarkIJhKJBF599VWsrq4iGAwK8KV0sFgsolqtCuD2+XyIxWJYXFzESy+9hEwmg88//1zqrxqNhrB7LpcLbrcbjUYD+XxezDVoyqNeYxUQq0Arm83i6aefRq1WG5NtGkNlZ8kkqUHGj/cav2tGIKkCRJvNJkwQazzVxQ7gARhVj8/+jwCkj6M6TrYXIMgFIIsZrBVk8Nhk7NiTj+1KKHPkYhgAWZRSz4lmTb1eT9x3uZjVaDREPunxeOSZQ/aLDb1rtRrC4bAck89PmqwQKJN5U9tRFAoF+Yx6rdvtNoLBIDwezxizqT5DKbX8772R99+HIp/UNG1G1/X0z/78OwC++CUc47FCauAsDs4KK6ywwooj4rPPPkOn08Gzzz4rUraZmRnMzc3h3r17iEQimJ2dhcfjwcHBgUiz6OSWTqeF2aKD29TUFJxOJ/L5PGw2GxKJBNbW1tBoNHDz5k0kk0l4PB6USiUxypiZmcH6+joymQxSqRSGwyFSqRRisRgqlQquX7+Oer2OU6dO4cSJEyKZTCQSmJ6elv5vrEcpFAri3MaVZPZ7AiB9jKLRKMLhMJrNJu7fv49Tp05JrdHe3h56vZ64uzGxpHRSlTQyVICkJmn8m9sAeCi5NIaZZBF4uK2AClLUzxpjEgul7oN1P9w/nfi40s/9GMGLUTJqHIPK5BA4dDodNJtNYTSM7AxfM57TJDmkytBMYiONEk0jo/PzhBmYUxkq4/uj0Qhf+cpXsLOzg3/2z/4ZDg4O8L3vfU9YGjpIkmmLRCJYW1tDIpEwPZdYLIZ4PI5CoSDyvbm5Obz22ms4f/486vU6otGoSIQJXGhKwxooAHJt+f1RnQmNjBrPiwwca2CNhjvqmFWwr5py8DXKBLngYgTp/J2yTwDS51G93vxHYGG83sPhEMViUY7f6/WEteQ+Wq2WMKGUJbJ+lsfmPUv5J1m1crmMcrkswM1ut0t9IhkvFbDSaIQMv8vlQjgcFjAVCAREPQA8MD6hGgCAGNmwhpBzEwwG5Try3iIrx7YsnU4HjUZDWGD2fOS1ZcNv1diF15DzGwgEHnKy/HXGLwTgNE3zAfgWgP+j8vL/Q9O0Z3CoZNwyvPcrDfnOWPjNCiussMKKIyIYDOLpp5/G3t4ePB4P1tbWYLfbce3aNSSTSZElVqtV+U+fNtn9fh/RaBTtdhv1eh26rmNubk4K6SnfWVxcxO7uLnZ3dwEA29vb8Pl8WFpawtzcHOr1Oq5evYp6vS41HXNzc1hdXcWtW7dw+fJl2O12vPLKK/D5fLh06RJarRbOnDkDj8eDjY2NsfGl02mpA2KNX6fTkYSPyVuz2UQmk8HU1BRGoxEajQZu3LiBixcvIplMIp1Oi1yJbAowzoCprIPKUKkJ7ySGyrgSr25HNz6juYkR1KmAcVLSy78njUMFH6oLH5NYshIAxtwMjcn6UYCTP0ejEZLJpEhbaW1vlNcZ50k9hrq9kXE0yvZU5tE4J0ajjaOAg/E81d85ZpWtMmPseDzWXr3wwgt4++23sbe3J4sLrLVio3j2KDMLv9+PYDAoDDMlrLu7uwiFQkgmk1hdXcW3vvUt1Go1FAoFAeSadugmqWka5ufn0Wg0UKlU0Gq1xvrHkfEh+2e8rmSxyJ5x/51O5yH2k0wW98V7Ra2xM7KoKsBmrZg6x2TCuR/jIgbr4ux2+1i9JWWj09PTAp48Ho+wlaxP0zRtTMqo1p7yWDxXtg1g7XAgEEAgEBCANBwOhQFT709KNsnmAQ/aA6j1ZWy5Qgt/l8sl1521lASldBTlXJFx63Q68v3NZrPw+XwyN6xdTqfTYm5Ft0peK0pPgUMG02azoVAoHMnC/6rjFwJwuq63AMQNr/1vf6ERWWGFFVZYYcWvOGZmZnDlyhWEw2HMz8+Lvf+JEycQCoVQr9fRbDYluWSyQwe3Wq2G4XCIZDIpkjgmJYFAAG63G7dv35Y6NDrwhcNhPPXUU2g0GigWi9C0Q7trn8+HEydOwOfz4d1338XW1hYWFxfx1FNPYWtrC1euXIGmaTh+/DicTidyuRwcDgei0Sg0TUM6nZYkj32qmNiRdWNC1ul0pA6PQGprawunTp3C8ePHsb6+jna7/VCjbjN2CHjYSfIoFojJqjGZ5f5VIEKJ2OOEcWzq30YQZxyfakgyGo0wPT2Nv//3/z5yuRzeeecdABhr3muUhqpAhom6WvvGhDyTyaBcLothjvHzHIuaqBulkuq5MQhMjAynGTNpxuAZ2Rqj7NKM2VNfV0GFeizOqc/nQyQSgdvtlhYaa2tr2NzclHs/GAyKKQmlbpPC4/HgxIkTuHXrFlqtlljC93o9rK+v4/Tp00gmk1JT5ff7pX9cPp8Xt9GpqakxpsZmswl7Q4bIjG1kE2oaqfBcnU6n1JeRKeL9Yryv1WNSFqnWUvK4BDFcgAEeNsxRrx/fJ5ghY1Qul6WvI8fMhQq1hx3rC3kNaMPPeSJQpWlIp9MRIxa/3y/gl8BcbSNAcxKeG8FaMBgU50eqBnjebPPCfWqaJjV0PEf24ePY+Fqr1RLXyV6vh1gshmq1KoCPgJWgPhwOy/3MxTreD5x7Xieyr+FweOJ9+quOJ9fA4FcQFgFnhRVWWGHF48QXX3yBxcVFxONx7OzsSG2b0+mUhtiBQADJZFLqbph47O/vS8NZtT3AYDBAPB7HaDRCLpeDrusC2hqNBmZnZ3H69Gmk02lsbGyIRCkSiWBxcRG1Wg1/9Vd/BU3T8LWvfQ0ulwsfffQRer2emDrUajWsr69LYsy+YzQmIchkktHr9VCr1aQgnwYAjUYDW1tbkjxxv+fPn0cymcTGxob0f1KL9c3YHAIIJqtqggmMy8gmsSqTQgUK6r4mBbdVtzcCEmMw+eaKvd/vRzweF+bU5/OJJTnbM6hzwASdc6DOg5q8kw1i7SPPj8wTE0eXy4VqtfrQPDLBVa8Bk/5J7Jg6j2qorA/nzTjnR4XKuqlzz8+rtVurq6uYm5tDJBLBU089hUQigVQqJed14cIFLC4uolwui5Rve3sbZ8+eNTXFoSQPgDR7Ho1G2N7eRq/Xw40bN7C0tIStrS188cUXIsnjAofdbofT6cTe3h58Ph+8Xq+MXTXpUY+n3ofdblcYc4I5gn/WY3k8HrRaLWHCKQ3knBEIGNlo9b5Ve4ypbTXUeTcCOM49P0u2sNPpiHSQ46c8kj3aWJPJVgBqDRtZOgDSA05d0CATxrnUdR3FYlGukdPplLlhiwC2MqD7I8dMiSVrzCgBVaWsNFrifBG08XvabrdFhmmz2cSwRG2FwIW5druNUCgkx+RigM/nk7pfPkcpHWXtZTYrth+/9vhyATh5ED3hgVhhhRVWWPG3Ok6dOgWb7bAhcDAYxNzcnPwH3ev14Pf7MTMzg2q1KhbSTJASiQS8Xi9qtZr0riKD0O12xdafPePa7TbW1tYQj8fx+eefY3NzUxidqakpHD9+HKVSCbdu3cLU1BTOnDmDbreL69evw+FwYHFxETMzM0in0yiVSohGo1J7R+MVMoYssCfQ4Io+ky632z3GSIXDYTnn27dvY3FxEXNzc9ja2nqIOZiU7Bvt4o3bmyXhBBkqW6WCjEcBCDNmatL76v7MgIrRAOLWrVv4t//236JWq8FutyMYDMLlco31yGJdoJGNI5uiglb+azQaktSr41GlZLFYTOSVDNVkQT0HSuTU66Lu1yhZU8dpTPzVnntm8kl1Hs1YN4bqUMjPETjR2ZDsVjAYhNvtxvPPP4+1tTVks1lks1mUSiXkcjmsrKyYmkTwuK1WSxiZ0WiEvb09AEAul8O9e/dQKpWEueKY+TddBFUQYLPZZJ/quRvvUd4zNCKioyK/b9wnAUMikYDdbkepVBIAyHsNeMCyGaWxKoA3SpYJmtTrSBDIe4nzVC4fdvIiMGIzb5qI8H5kPWG/30csFhMgWKvVRLJINor1cpRva5om5iqBQACVSmXMoITXifcBmT1KHoPBICqViixm2Gw2WTzjvdZqtUSaqYI/r9cr91StVsNgMEAsFkOz2ZTvFq8h544OlQRtao+64XAIt9uNVqsl3yPeF5TZklF/1HPqVxlfMgB3+NMyMbHCCiussOKosNvtKBaL4l63ubmJ/f19hEIhRKNRaZBdKpVEchOLxQAcJkr5fF4SJxbrZ7NZkUXSprzb7WJ1dRWtVgs/+MEPkMlk0O12Ybfb8eyzz2JhYQEbGxvY2trC3NwcTp48iWKxiPX1dcTjcSwtLaHT6eD+/fvodDoyhlarJbUbBJ5qjRuTK9bKEOiRhRsOh+h2u6hUKkgkErJKf/PmTaytrSGVSiGXy42BGzNm5yipm1GaZ2zObWRw+BpDfc+sZs5Ya2RkoYyvG49jlJ6p0q779+8Lk0lWjhI5yqtYV8NaQTOQxePTuEQFZ+rYyMjQ2ZT7ossp7e75OY7NOGeT5lJlkYxzZPa+8fNGRlP9pzI/RvCmaYeN7CORiIC3zz//HLVaDefPn0e324XP50M0GsXs7CxyuRzeffdd7O3tIZ1OI5VKjTW4Zy/Dq1ev4uDgQOR2BCUAUCqVZDFDbcrMOaYM+tlnnxUn1na7LUYqRrBrrO0jW9psNhGPxxEKhYRNI6PF72QkEoHT6USn0xFLfbV1hHoNaHKiMroqi6ve9xwDwZoqmyXLRDdKArh6vS5OiqVSCf1+XwyTWDOnsm6j0YPm2nSmdTqdYprEulH2pWPfymKxiNFoJKCMbJ2u64hGowIkQ6EQbDab9Fnr9/tiRhIIBMbANmuNORdk/bkv2v3XajX4fD6pe+TYueiigrRyuSzMLOe3Xq8jHj+sDCNA57NL13X5LMEmx/sk4ssF4H7202LgrLDCCiusOCrq9ToWFxfhcrlw8+ZN5PN5aRZcKBSwtbUlDAfwwIUsEAhge3tbVn7D4TBqtZrIDWl2wtoe9nG7ffs2MpkMOp0OotEoXn75ZWiahi+++ELklSdOnMD+/j6y2SympqawuLiIUqmEdDoNu92O6elpkQWNRiNZBde0Q0e0crksDm1M4AgsaADg8/mEEen3+yiXy/B6vbKKvbe3h/n5eSQSCeRyOQEc3MfPE0YAwCQTwEPsFcNoasLPqiwIY5JM0AzQGN9TwYrqDKhKEjl/bI7Ofn4ejwd+vx9ut1vAOMGc0UKfST2la+rxjedIJsJmO2yYzmSabn/8nFFuZ7YvVUppZNbU94ySSyODZwa2VdAxCbSpAFHXdezv72M0GuH69evY3NzE1NQUlpeXcfv2bQE7brcbsVgMc3Nz2N7exubmJjKZDBKJhJiaDAYD7O7u4tq1aygWi2i329ImQL1u6nnabDZJ0oFDJmptbQ3PPvss9vf3YbPZ8OmnnwKAADmemxkrSeOLXC4niyVs7k2Gi0wUmaN2u/0Q0J/EcPOnKnNVZZqqvJLPJ8oNCRA5B/V6HfV6Xa4dJYJkk1QFAWWQ6uIBwRJNYyglJ8ACIPXA8Xgc9XpdZOEEVjQSsdlswk76fD5xmRyNRlK3y0UngkWyamQhaSZC0Njv98V4hcYynPtQKASXywWv1ysMmvrs4/UlsGu329LCQL3nyWpyMYAmOASDTyq+XABOGDgrrLDCCiusmBypVArFYlFMDZaWlhCJRFCpVCQR0DRNVpmZGN64cUNkUYlEAnfu3AFw6JTGmjY2/qZE8/r16+h2u5iamkIsFsNXv/pV5HI5fPHFF/D7/VhdXYXT6cTNmzdht9uxsrKCUCiEYrGIbreL+fl5YWVarRZcLhcikYg0g2YSRFttt9uNTqcjUj4me/V6HX6/X3phkRliSwS66N26dQvHjx8XaSaTSGPNzqPq0Ywgybj9JLAGjBunPEoiacYsGbcxk/sZ96XrOiKRCHq9ntS+8D2aKAQCAUSjUbz00kvIZrPY2tpCu90WJz6VYeE5sCan3+8/BJDUc9Z1XZJDGtTQgIH7U9kZFXgak3/jXJiFOidmP/mPx1X3rY7B7FjqNZidnYWmHbpEVqtVhEIhLC4uYmlpCel0WtgX1gbGYjHcv38fd+/exfT0tLTpIAtULBaRTqeF0SS4IWOj9vBjs2o2tweARCKB3//938fFixfx5ptv4ubNm/D5fKhWq2MgyzhP6vnPz8/j5s2bYlBEMMftKA9VmTKze8MI4tS5U8PsuqoGOYFAAC6XC7VaTZg7AFJzSVUAJdbAg5rKfD6Pg4MDxGIxJBIJqWXj84MMdK1WE1MnAGLmRCaPZiYAxLIfOFQo8J7pdDoIhUIYDAbwer0ix6Qk0uFwjBk/sS6U3wlKmAlqY7EYSqUSqtWqvB8Oh+XYZOX8fr/0GSQIZD0br0EoFBIDG84f2Xa2jahUKlKnqmkaCoWC2Vfr1xJfKgBHDu5JalKtsMIKK6z42x+tVguVSgWDwUBc8orFovzNpJXNXDudDkqlEjweD1ZWVqBpmrAH4XBYVncjkQimpqbQarWws7MjPdlmZmawuLiIQCCAS5cuYWNjA4lEAufOncP+/r7Uuy0vLyOVSuHOnTuS/MbjcZGFpVIptNtt7O3twW63Y3l5GV988QVstsMm3oPBQCRMlEWpCTj7HKkrx2zUS5BWLBaxuLiIRCIhq9FchX4c8GYmyzOTh6lMg/o5NY4CgUxeuU9jom2UCJoxUPybEY/Hpck2E351bO12G0tLS3j99dexvr6Ozc1NhMPhMRt09p7i3NL8xAgMzIJgJBKJSG0O50hN/lUGTZ1LtZ6KczZJQmqcI+N1MGPuzEDjJCaQ46EkzWY7bMtx+vRpOJ1OTE1NYWZmBplMBplMRs6fDE+tVkM+nwdwyBx1u12USiXU63WUy2WUSiVxV1SNJ8icMymfmZkRQw2fz4dXX30VoVAI169fx87OjoB1LtKYLSqo9zKBELcjA6Xep2R81OtBtpyfU9leHlsFV5xnlbUmE2Q2Nh6TrGOtVhP5JIEYx0KpJ+9V9ihstVoIhUKIRCLSFJvH4PUql8uoVCoi056dnR2TiKrnR5BHJo7XiSY0dLd0Op1Sy8i5Zf82no/qotloNOD3+1GpVKRm2eFwIJFIAIBI3+kWyeOT5W42m/D7/cLEEeCz1pnzxGvKpvMEwqrb5pOKLxWAsxg4K6ywwgorHicymQxGo5HUYezu7kriWK1W4fV6x5gt4NDwY2pqCul0GtVqVdzVmFzH43F4PB7cvXsX9XpdErLl5WXMz8+jWq3io48+AgCcO3cOJ0+exJUrV3Djxg0kk0kcP34cHo8HH374IVwuF5aWllCv14UlTCaTKBaL2N7eRiAQwPLyMnZ2dsRJTzUbAB4kfGqCzt5Mbrdb5EZMnsjMdTodbGxsYGFhAdlsViRYRsClBt9XE0oGEzDgAQijJNKsps34uhoEEKqpjFGuZwRuxjEb2ThuQ+vxdrs9VqekOnAOh0NcunQJXq8Xt27dQiaTwb/4F/8Cn3zyCXK5nMi8mBhT5qUal3BfRqkjf/d6vYjFYtjZ2Rk7D7KwZiwZw8wQ5qh4HLbHaJahbjOJIVXBjLpQQvMMm82Gfr+PZDKJjz/+GO+//z7W1tYQCATQarXkvuPnAIjpRKFQEPkkreNpJT8YDNDr9cYS61gsJgsU8/PzAIA/+7M/E/BGKbJxPo1zw7m4cOECNjc3JYFXpY4EGpQ5E0wat+McAA/fm8ADIK5KV4EHDefVYB0YjTh4DsViUZgwXiOv1yt99rgfm82Gbrcr9XqDwQCFQkGcKglauJBFA5JKpSJmIe12W2SqlJOrQJZgjPJSgtBGoyHH5fOLIJmsF/fndrvFaZfPaU3TkEwmEY/HxXRoOBxK/TEBfbPZhKZpUo9os9lkzOFwWNjc0Wgk7r6s6fN6vcjn8xgMBtIOo1qtolKpIJVKPXTv/7riywXg+IuF4KywwgorrDginE4nFhcXkc/nkcvlMDU1JewTzSpYPxIMBqU9wO3btyUZpHkJk5NKpYLt7W2pkSIDEI1Gkc/nce/ePfj9fkSjUYxGI7z11lvIZDJIJpM4efIk2u027t27h2QyiVAohHa7DQCYmpqCz+fDvXv30G638eyzzwqA4Oo2V9NdLhecTqe4HTKYGDIx4XY0NWDSQ2e3crmMaDSKSCQi58jVauBhEMekVK3/MguVlZgkoTRj2owxaRzGeFxFDpNt1kQZWScAIikrFov43ve+B+ABc1Aul6XGkSCOFvJkFoznYsYE+nw+JJNJZLNZYd+Mn+HnCAjMatNUcKgeSw0zUGb8NwmgmZ2DEdSNRoe2+pSsdTodBINBBINBVKtV3Lp1S/qD3blzB/V6HUtLS8hms5L40+WRzaXZcLtaraLT6cDv9+PixYu4evUqgEOGlIYZfr8fTz31FCKRCGq1GhwOB2KxGAqFgjQRb7fbY6yWOnb+zevMax0IBMTgR7XRB8YZT0o6CfzV980YOd6HxrHwdSPbShklpdAEUOzbxoUnfqe5MELzI4JBtU6WfdG63S6KxSICgQCABwwopa7cD+eVCxQ0+eD3ZTAYiJlIuVyWXoDValWMRdSaXspO+TwDIItNfr9fzEkoV+WxK5WKSJRVdpSLPeo14tyxzx3bwJCJo4zT7XbD5XKJrHJ6elpq5FqtFmKxmDCJTyK+XACON7WF4KywwgorrDginn76aXz88ccolUo4ceIEer0e0uk0PB6P9CsajUaYnZ0VF7W7d+9KQhIKhTAcDgWgbW9vywqt3W5HOByWerTt7W3UajXEYjHE43F0u13s7Oyg3+/j4sWLWF5exsHBAcrlMqanpwE86J3EWjUmu+fOnUMul8OtW7cQDoeRSqWkLoNgi1JQJofGZJ61LEyKGI1GA9FoFG63G/1+H9vb21heXpYaJSZcgLmc0exYfE+1NmeoUiuVaZgEGAj+1LYF3OejgCM/bwZo1J9qw2RK8yjd6vV6Uqelnue/+lf/SlwOKVdlvRMbOqvjMwIdsmt+v19MdOgY6PV6Ua/XZUxGeeqk+ZoEvIyyx0ngy6yebdK+jMfhvaBpGur1urCJkUgEc3Nz0HUd2WwWn376KSKRCDKZjBjC7O/vIxgMivEEv3sej0dkkHQV9Hg8uHDhAp5++mlcvXpVGldr2qHz5enTp/FP/+k/xdbWForFooAPXkP1PuICBUGVeo8Y3Rn7/b5Io4+q1TQ28SYwU18zss4MSggJEFRXSuO1Vz9LUMqG8WT61POo1+vwer1IJBJj9y0AAVYEqwCEkSaDBkAWfvj9IEPH+5aGKqxHI+gjYCOIHA6H4vRICSS3b7VaIm/XNE1MmOioy+tI10m1Px1ZRoI6Aj3W3dntdnleMvg9LxQKsNvt0geu2WwiEonI+TWbTTFIedQC0q8yvlwA7mc/rRI4K6ywwgorjoq33noL/X4fKysrqFQqIteKRCKSONJeu9lsIp1Oi6U2kz06ne3s7CCXy2FmZgYA4Pf7xQRlY2MDLpcLZ86cgd1uR7Vaxc7ODkKhENbW1uByufD555+j2WxibW1N5Fwqk5bNZhGPxxGNRpHNZnFwcIBEIoFYLIZMJoNSqSQyoHq9LvVXk5weKaVkg2omInRL9Pl8IksrlUpjzpePm7CoyayZUQPDWH+lJs0qkDAyImT7GEymjTVw6ngmjd3IgDBBZvIcjUbh8/mEaWs0GmNJM2VhPKaRgXgUeHM6ndKLMJ/PixSMCwF0uHxUDZ+ZLHRSGD9rBLRmr6ufPUpCSUAOHF6X+fl53L59G/F4HBcuXEC5XMb29jbu3LkjCTdldqrkbmZmRvoZ8vvG3mEEDxcvXhTZqd/vR6vVQiQSweLiIv7hP/yHeO6557C1tYVwOCySVkos+bNSqYw5uKqsqzpHNBSanp7G7du3hZ1Sg/ePWuepst9GIG48nvG6GBcL1G3VnoQqmOR9qko16cxIieNgMECtVkMwGBQmim6gfJ/On/wMGT2CIp/PJ2oFjs9ut0svQy4QVatVAcb8yd5xBwcHAA6NZSg95vHcbjeSyaS4Zfp8PlQqFVEwsCE5wSG/rwRifMZxvskCsyaO58FxO51OUT3QJZNgkOdNFpGg1Woj8EsKu+1nKxkjC8FZYYUVVlgxOcLhMDwejzRjjUQiIuMJh8MIBoMAgGKxKAxIMBhEq9WC3++XFVmycmz8evz4cWGwNjc3JZnUdR25XA75fB5ra2twu93Y3NyUXlff+MY3kE6nUavVEI1GpRmuzWbDsWPHABzW7fV6PSwtLSEej+PevXuo1WpIpVIol8vY29uTWhHack8Kgj2n0ym24nydkkzW0cRiMam/MrJlahjBkxFoGNk3o1yNwc9NOo56POCBwcqkYx8lI1THYhwXV/S9Xi+OHTuGhYUFbG1t4cMPP0Sj0ZCxEaipQXbHWIdoPE+afJw/fx6bm5soFApj4DWXyz10PkZgoBq4GOfGbF75u9l2k15X3zN7TR2fWg/JxYIXX3wR4XAY8XhctuM9qH4+EAiIbb0qP6U0lSwYjWNOnz6NH/zgB3A6nVhYWICu68hkMjh16hSee+45qRnt9XrSVLrT6Ui9Y6FQQLVaBfBgUYBMFdk8ghTgEBxsbW2Ja6IxzAx1jIsXmqZJ82+Cc/XzDLVBtrov9T7QdX0MRPR6PVQqFanf4vVQ69y8Xq/UE9JCn99t7oNSzna7LeBOlXZy0YE1wHRZpcMk26jQAbPX64l80u12YzQ67LnmcrnETIRMGWvnaExCQ5J2u41YLAZdP2xOzt5vBGn9fl+OW61WRTaqaZo0ACfQbbVaAl65WMMFKrZIoKsw90/jFtbs8ZhPKr6UAG5kUXBWWGGFFVYcEaPRCNVqVfofMRkKBoPyn3m1WkW1WoXf7xc5XCQSQTAYRKlUkjqYcDgsrQPoVkbGgU2yd3Z20O12sbKygkgkgqtXr6LX62Fqagqzs7P49NNP0e12MTc3B5fLJTVQJ06ckAbPBJq6ruPKlStwOp1IpVKSIHo8HszOzsJut+PGjRsol8sPyQvVBF2tn6PFNnAomYpGoyIp40q22k/K2ERarTkxysoeR4JnVg9nBAxm8ktuZwQSRkBz1DiMRi88DzKSBwcH8Pv9eP7558fsytnTilIzdZxMBidJOynjikajWFtbw/7+Pra3t8fORR27kZF8FMA6ioEzzo1ZHDVf3Id6jElzPRgMcHBwgD/4gz9Ar9dDLpcT10O6GHJ79v6ikyrrTulUyJpCAquVlRXE43E0m00sLi7i5MmTAB60W2g2m1hfX8fu7q7UhbGeiewyHSTpPEvpMqV1ZILINj311FO4fPmyLHoYr4saRnMT3uO0oCdDrpr2qJJK4IF00sjMqSZAaj1ot9uVtgtkg3mf8nz8fr8sUFEWyPo2XhOCMp/PJ1JMAjsyUirgo5ycx+PzgteN9WS9Xg8OhwPValVYM7vdLqoHXdcFULdaLdRqNWmPQGMS9tLkc8nhcKBcLsuxKSnnmL1er6ga+KwPh8Oo1+tickL2UW37EAqFZOGKTrLRaFTqIfkseFLxpQJwjp8BuIHFwFlhhRVWWHFENBoNJJNJRCIRWQlmPQXrv1jDQXe3mZkZeDweHBwcoFariZNbIBBAOBzGaDTCzs4OKpUKzpw5g2AwiHw+j+3tbcRiMSwtLaHX6+GTTz5BMBjE/Pw8SqUSLl++jMXFRaRSKbRaLWxsbCCVSuGFF17AYDDA7du3ARyamQwGA+TzeQQCAaRSKVlh50p+sViUuhIjUwOMJ9q9Xg/ValXcJwleVAlptVpFu92WJJSOd2qo8sdJ5iNHgTmVSWLiqbYHMMor1W1VWaeRdTOySerfKhAajUaSWBr3S6B7/fp1FAoFYRMikQhefvllrK+v4/r162MSSiaA/GkEO5zHeDyOUCiEzz//XNgBszlTQ2VgJrFnZtd60jwYP6++poKKSdeN12rS/GraYbsNl8uF+fl5fPLJJ7JQwoQ6GAyK1JTJNsEA902XyWazCa/XC7fbjfPnz6NYLMLr9eLUqVN4+eWXkUgkpNcY6+xqtRqazaYAOPaSq1arIhn0eDzCuJDx4utOpxMulwsLCwuoVCpSw2U0GzG7dsa6NgIC1ZmU3xv1eqvfRwaZMtVVUt3/cDiUvoFcgGAtG2v4yMyRqQKAYDAoElL2fyPTxFo/lami1JxzRzZuNBqJCUg+nxdnWz5bu90uEomEtIzgd4xgmY6lPPdisYjp6Wlpak/pOhk7ullSounxeFCtVkUuyWe7aiYDQFoGhEIhqZ/TNE2uJ01tKOVlnSDr88gqcz6fVHypAJwlobTCCiussOJx4uzZs3C5XKhUKpJUUWaTTqeFTWs0GnA4HFhaWsJoNEI6nRYThUAgMFbLwRXZ1dVVaSfQ7/dx4sQJ+Hw+lMtlVKvVMYmk3W7Hc889h36/j3Q6jXa7jQsXLmBhYQEHBwe4d++etBQgIHS5XEgkEiIFstvt2N7eRi6XQzabFfBAMGGUdKnJdavVErMAJnS03U6lUmPyKDq5MfE8iqGZlMwzVGCm/k7pmrof1cnPmLiagZyj2CezbbjCzuRTTZwJwEajEfb398W5k8k0WQkmuY9i3/jZ48ePY35+HlevXh1r/TAJhBnP81FAT93GOP9GI4xJrJ6ZdNM4HrPjqtsMh0MUCgXkcjksLy9jeXlZjEsoQ9N1XcwuHA4HIpGIJMZkjGglT1dAm82GU6dOoV6vIxwO46tf/Sqmp6fxgx/8AMPhEK1WC++//z7u3LmDRqOBTqcj/f0qlYrYwtMhUWWTKCdUGZtAIIBnnnkGb7/99kMtAFQQxXuZAMAo61Ut9NV6Od7bRgZO3a/KwvG7yGOTKWffN36GwEZlL1XGjw6f7Kvm8Xikzqvb7cLtdqPZbGI0GkltGxUBDocDgUAAkUhEvrPNZlNMZ8g2tlot6dVGWTgXmWimRJCnukoCD0xV+J7L5RK2EDhUC/D+MLb/IKurXsdgMIh6vS7MX7PZlIWber0u8ndKTofDIXq9nkjuNU0ThpCfeVLxpQJwDlr9Di0AZ4UVVlhhxeSIxWJIp9PI5/Middzf30c6nRZGgIX/dIYslUrodrvQNA2RSAThcBgAZLV5amoKy8vL6HQ6uH37NprNJk6dOoVoNIpcLidNv5kchUIhuN1u+bzX65VGue+//z5GoxEWFhYwPz8vskm73Y6VlRVZkU6lUvjzP/9zbG9vS/E/exyR6VElgkY2bjgcCgvHBImAZmdnB6dOnRIpE7c3giwz+SNDTfxVIDGJ/VFZN3W/an8zysdUyRnf43mZsXBHHZ9ySdbdqOdnHAPvjR/+8IcC4FTZKP821r7RVXJtbQ0vvfQSrl27hnK5LDI4FWQbz+dRkkU1VCbTuB++byZ5NJs/vm9k/iYBSON7ZIevXbuGQCCAqakpaYsRDofFbMNms8n7AIQN4gIJa1Ddbjc2NjZw7tw5zM/P40c/+hE8Hg+Wl5dRq9Uk8a/Vatjf30ez2US1WkWj0UCtVkO9Xker1RJwQck0rykZRUr+eN1OnjyJ3d1d7OzsSGNy45zzfFUTF5Wh5L4IwMjmsF+kes2MCxzq/UGAqQI4l8uFra0tMdhR6/MIGrlAATzov3ZwcCDNu2nvT3MUMp4Oh0OadNN0hvsne82G3ZRdapoGv98vDBiBN/fJBROfzyfSSbYvqdfr0p/T4XCIsRKZM4JI9fvP4/DY3W53DKSTYavVagLY2ZqC88FnKs+NvTxjsZgsIDWbTXEzbbVaVh+4X1bY7RYDZ4UVVlhhxaPjww8/RKfTwXPPPQe324179+6hVCpJA1muxPp8PmSzWWiahnK5jEgkItKbZrOJ3d1dAMCxY8eQSCSkrxyZtXg8jqtXr2J3dxfnz58XkwE6XBYKBbjdbklqm80mPv/8c4RCIZw7dw4OhwP7+/toNBqYnZ3F3NwcvF6vMGYffvghNE0TNzZKj9Smz1zdnySDIzvB9ggAxNyg0+ngxIkTuHHjhtQiqZJF7uMoEKeGCtSO2oZhrKlTE1yeI5Nmo+umGQPC343bcLWeQIL9rAjaWB9lxoyobKeRfVOldKFQCCsrK7h48SIuXbqE69evm4IrdbyqvM5s7GbX1DgHZmBv0nyo2xgZt0kMnXEfxu3a7TY+/vhjhEIhPPfcc2IlH4vFxHDD5XKJfJnJezQaRTAYxM7ODgKBAE6ePCng5Dd+4zfEGXFubk5+Z4NvOlrWajU0Gg3kcjm02210u10BC2ScAIhJClk+soNcFGm1WtjZ2RkDTQyjmYkRtKl/8z4heFO3Mc6hkeUkCOF14T0fiURQLpdRq9Vk4YHsmhE8Uuo4HA5RqVRQq9UQCoVEJqgCRYIsfhcoL+U1IOij4yOl12Sp2WidzbDpjjkajWTu2VfN7/ejVqshm80iHA6L0Yqu6/JcIitLMMhxkSEcDofSeoFGKqxXZdsDgvJWqyWOkwDk3LhAx2tBsE7w12q1xNxlampqrA3Lrzu+VADOqoGzwgorrLDicaLT6eDpp5+Gruv45JNPZKWZjbaDwSDC4TCKxaKwBNPT01L3trm5iWq1inA4jNXVVdjtdty/fx+j0QjxeBzT09MYDAb4i7/4C7TbbczPz2NjYwOapiGVSsFut4/1Y6LFNV0qFxcXUS6Xkc1mpcHx6dOnMRwOxcHyzTfflLoXAEgmk2g0GnC73ZL4q7JHs2CyUqvVpNaHduO6riOdTuONN95AIBDAlStXUKvVADyQOqpJ/CQQZyb/m2RacpQ004yBUpNcdb9mDNEkUMR9s7YFgDjsqX3nOLZJ58ifKiPHhJ+JZKlUwn/7b/9NmCJj/Zjxd3W+HgXezNg7dVsVrBr3Z3Y+Rvb0KEbQeHz1OjabTZTLZXz22WcYDAZYXl5Gs9mEpmmYm5sTZrtcLiMejwvLe+rUKQEW58+fx+LiIi5duoRvfetbUo+Wz+cxNTWFO3fu4Pvf/z4qlQoGg4G0IygUCiiVSmLAw7kkw0SgQTbG7XYLi83r4/F4MBwOsb29PcYMqYsGqpmIyg6pixv8yc+p19DsnuU4uQhjt9tF4qs2Do/FYrhy5Qo6nY4API6P58nX6TJLZ92ZmRl59jE8Hg9arZZIxCm5pJMnnUKbzaaAcAI5OnzyfMnOsW0BwSsAqecleOr3+5idnYXX6xU5O11gaTbD5x0NRthw2263o9vtyhzTZZPf63a7jVAoJHPPuaMEs9VqCXhzOBwCILmQxXu03++j3W5jZmZGFs2eVHypANyDGrgn11jPCiussMKKv/3xla98Bevr60in0/Kf9uLiosh6gsGg2P5TTuV2u1Eul5HL5eB0OrGysoKpqSm0Wi3cvn0bwWBQjE729/fx2WefIRAIYGFhAYPBAMFgEJFIRGRBoVBIau1qtRr29vYQjUbhcrlQKpVwcHAATdNw9uxZpFIpkf9kMhl89NFHUs8xPT2NZDKJu3fvSnJJRz82lD5KPgg8MECg6QABZbVaxZ07d/DCCy8gk8lIewK1XgV42LRBBTlqzzazxP9RYba9GdNmZCu4nQpgjKzGJBA3HA5FskcWxqxdgHEfRqZMlbW2Wq0xJ0/juMzO0QzMqb9PkjVOYjhVYGUEaUedl9m5Gccx6TVd18Wk5PPPPxeGWtM0kQ07HA50u12Rsj399NN4+umnpbXG9PS0GPesr69jenoan3/+uRiUvPvuu7h3754A8EKhIP0d2cNQlS/y+8z6L13XBbxxHgm+n3vuOfz0pz8dczIEzJtvqwsI/D5omjbWokCVA6uLH6pBED+jXieCLAIzbvvpp5+iVCqN1Ykx1Bo5AGKRb7PZkEgkRGrdbrfFtImMKO917oNOtS6XS6SS1WpVXFjdbrcAQ4/Hg0ajIYtHmUxGwBPB5Wg0GpNQsqUAjUXYb61SqYjZCXvWUcaoGprwmvJ+Y+Nu1sHxO6i2F4jH4wI6ef7xeFzYtkAgIHWFXExYXFxEIBBAsVi0GLhfVlgMnBVWWGGFFY8Tly9fFgbM6XRiZmYGXq8XoVBIQAsAzM/PS8Kxt7cnFtazs7PSTuDWrVtYWFjA0tISarUabt26hUwmgzNnzsDn82Fvbw+JREIYMpoDJBIJ6LqOra0t6efW6XSkzmN6ehrHjh0TORN7aF29ehXFYhGVSgWnTp1CMBjEwcEBQqEQ5ubmRDpUqVRkJZ8AZJKroK7raLfb4vjGVft+v487d+4gkUjg6aefRqvVEhc5rk6rbIKakALmQMKMtVOBlxnYm+SIqH5O/UegYnSxfJwgiOt2u/B6vWJgwDo5VSKpAkFVPqmeqypr45hUVu1RTNijwoyZexxp489zDDMmzuz9Sa9lMhmcPXsWmqZhb28PoVBIGJJoNIp2u41kMonR6NCJcnp6GuFwWJJ32v5vbm4imUzi3r17+Oyzz9DtdrG+vo6DgwMUCgXUajX512w2RRLp8XgEPLGNQbPZRKlUGpNN8r6lscWFCxdQqVSQTqcRj8elnmoSq837j8wZz1814CEw5L2uaZqwgZwTdQGC47Hb7VI/SzBZKpWwu7srLp1kCwEIIOUCDuWKlIizDySBCZ9PXq9XgCpZNB4/EokI69VqteB2u4WVo5MqzaHIIBIc6foD91GjJFPTNKlJPDg4kHYA1WoVmqbB5/ONtZmg0oCf57my5lLTDo1nWHdHkMr3BoOBsL3dbheBQEAAHwGp0+lEsVgUR8/hcIjl5WUBwTRweVLxpQJwlgulFVZYYYUVjxPdbhd+vx+6riORSCAYDGJ2dha5XE5ssh0OB9xuNwAgnU5jMBhgaWkJMzMzGA6H2NvbQ7FYxMzMDBYXF7G5uYnt7W0MBgPMzc0BADY2NjA3N4dgMIh0Og3gsB0ArbYPDg4QjUYFnDEhikQimJ6eFle8lZUVlEolXLp0Cevr6+j3+7hw4QLK5TIqlQpmZ2dRqVSkCJ8JK5sFs3fWJAYHeCApYsLLXlHtdhuffPIJ3njjDQFxlABSOmVkutQwc5s01gkxJskAjUBQBY7c1sxow8h2qfudVPvF19kXi8kaE1+yRaqBiWpaov7TNG3MzMRms8Hr9cJutyOZTGJra+uh81YTX3VezK6ZMSYBdPUcH8WCGufpUcc3sppmx6MDq8fjQaFQEBONSCQidae6rkvdab/fR7VaRTqdFtv/3d1dYUM+//xzqT+t1+uoVquoVCqoVCrodDpoNpvQ9QdNrtVm13Q5pM0+WSvej3wtFAohlUrhj/7oj6RGj0yYCsJVYGa8h4zzZGSm1X+U46l1lTwH1oNR5gccgrpisYharSZSSZ4TXRYJVlQ3TbrNEswOBgPpqxaPx6FpmhiVDIdDeL1emRcymWTrW60Wksmk9K1MJBLSysTn80n/TAJULgpxPtX+a36/H9lsVhwpeU36/T4ajQZCoRBGo5E06QYOn+Ns4cL9sb6RpiYEdZ1OR5QFZNna7bacH4EunXlrtZrcE2qdMmvnyMI9qfhSAThxobQAnBVWWGGFFUcEV3sDgQDi8TgajQbef/996PphOwE2u+12uygWi9B1Haurq5ifn0ej0ZAWAYuLiwiFQrh+/Tr29/cxPz8vjm02mw2nT59GqVTCxsYGvF4vZmdnoWkaMpkMOp0OEokE/H7/WK0UQSPrQ86ePYtSqYR3330Xu7u78Hq9OH78OPb29jA1NYXV1VUUi0V4PB6cPHkSN2/efEjiyETTyKKoP5kgsnkuTQ9stsO2Au+//z5ef/11XLhwAZ9++qn0XNJ1XRgHI9ulNhxWwRtDrQni54wOlGQ0JhmIGM/TyOhNkgJOklEax0eJFc0YaGygGptwHlR2Th2/KqlzOp34+te/jvv37z8EQtnj7JVXXsFPf/pT5PN507GbMWtGOaQRaJnJMY9iAI33iZFZNANxk6Lf72NnZwfPPfccWq0WwuEwhsMhkskkjh07hnw+L73ISqUS9vf34fV6cfPmTdRqNVy+fFnA28HBATY2NpDL5TA9PY1MJoPNzU0Ui0Wpg6KMj/cNwaFqNT8/Pw8A0lSaLJCmHdbCPf/883jrrbfQbDYRj8cFBFGCp7LMBOrc5ijASyaQ94PX6xVQwO2NNYr9fl/q2Ph3Pp9HPp+Xmi+2N+F5q7VzXGix2+0iO6SVfzKZlHo2MvEqY0nwyP1xrjTt0DypWCyKaQivoaZp0u5BXfjgeNgYncchGKWpTKPRQCAQkGcSrwuBI/dHIyMyZ263W5QRBFsExslkEtVqFW63G8ViEZ1OB8FgUOaC0vZGoyE1mrp+2FMumUxKPSBlnKp89EnElwvA/cyFcjC0auCssMIKK6yYHGxm63Q6cfPmTTQaDSQSCXGHjEQi0lvJ5/NhcXER09PT2N/fx82bN6V58HA4xN27d1Gr1XD27FnpdRSNRhEKhVAoFET+GIvF4HA4cPfuXYTDYSQSCVllJvs2Go0kAVpYWEA8HsedO3dw8+ZNbG1tSYKztbWF48ePIxQKST+5SCSCWq2GWCwmLASTHzOHNRXoqHU73W5XJFA2m03mIpPJ4PLly/jWt76FwWCATz/9VGRqrMdRgZbKOqmSQ2Myq26jhhHEHSWHVBNeY2I9CcSpAM6YdBsBC80qer2e1GkZ7eIJ2owASj3vpaUlAejFYvEhqd1gMMDCwgIWFhZMjS0eJ9RjElwbwbMRtBrB5lHbTgKIR4E4XT80xKG7ZL1eF9Bz8eJFVCoVfPDBB6hUKtje3ka9Xpc2ADTAoJHF/v6+gLV6vS7W86pLKuupRqMRms0mGo2GsKRcmFhYWMD+/r7UmhFg9Ho9vP7667h37x729vbg8/kQCAREitfv9+VcVRZZZeOAcTMTsmMcHxdsuE/VAVI1wOHfZP0YzWYT6XQauq4jGo2i0+kICCGrxl52ZN/VGk5ec4/HM+bOyIUK9mhTZaX8bLfbxWg0Qjgclp5oNOhRQRkBI8fPNgQqSPP7/RgOh8jn8/KcIQincoDN2dlonXPt9XqlpUCv1xOGkc6anU5HGD6+7vV6ZV9k5ygRJTPbbrdFnmm32xGPx+H1egXoeb1e6Smomr/8uuNLBeDsmlUDZ4UVVlhhxaODYGp9fR2tVguxWAzBYHCsRUCtVhMpo8PhwPXr15HP5xGNRjE3N4dOp4NCoQBd13Hs2DGx0k6lUtB1HdlsFt1uF8FgUOp8dnd3xX7a5XKh2WzCbrcL6Gq1Wpiensbi4iIODg7w1ltv4datW2i321heXhZm4sKFC5JILy8vo91ujyVT1WoVg8FAEhGjgYJai6UyWwQTNDJgfzgmkPfv30cymcTzzz+PdruNGzduoNlsiuvbUfVYRkmkarCgJqdmzNik/ahSSpX1O4pVU2OS9M/scypIY1JsdJFUpW/quHVdx/z8PF5//XWsra3hL//yL8XRU5VcsolwPp9Ht9t9aB5+3jhKBmkGuCaxleq+HhfEGberVCr47LPP8OKLLyKVSsl3oFgsYm1tTeTABGWUp5FtAQ6BSz6fR6VSgcfjEYaFUkOCMbJOvV5P3AMJaNxuN/x+P3Z2dqQejozRcDjEK6+8gvv37+PSpUuw2+3iughgTJYMjNeoGc9bBeBqvRy/S5T61Wq1sXuec8bvHevUAAjAyWaz0rON9WAcIw09VMdKm80Gn8+Hubk5ASJ85tDMhUCGY/N4PPD7/WP3OhdsZmdnkclkoOuH5iP9fl9ALhlP1sM1m000m02RrPP4fK9er0vvTdUh0mazCdPFMdGAJRqNjn3XeJ3K5bLUvtFEhYtqyWRSmrxTxsxaVz5HWCOn67qYThG8AZDedpxPPnOfRHypAJzNpsGmWTVwVlhhhRVWHB1utxt7e3twOByIRqNYWlpCKBSCrutYX1+H2+3G7OwsVlZWkE6ncfv2bbTbbZw7dw4ulwu5XA79fh9OpxOBQAC7u7vS34jF/Kxl6/f72NraQq/Xw+LiotS05PN5eDweHDt2DNlsFtlsFsePH8fU1BSazSYuX76MW7duIRaLIZVKYXd3F4uLizh58iTu3LmDQCCA1dVVAU5utxterxfZbFZc5srlMnRdF6mRugIPjDfIBh4k7KPRSKSUNpsN4XBYkuJPPvkEiUQCX/va19BsNnHv3r2xVWy1L5axmTXDyFwYGSI1+VffP0pKqcrlVHA1CVSaHcu4DT9vxkqR0TlKOqh+hj0Cw+EwotGoAGp1zu12O2ZmZsbcEFWwNYmRM76unuOjmLJJINZ43R4lDTSOw/j6YDDA+vo6zp49i9dffx1nz57Fzs4ONjc3EQwGkUgkcPr0aUSjUWxsbGB9fV3AARtIl0olASwqMOH9QXDNVgK8PuxnRmAzHA4RCoVkDPfv30er1cJv//ZvYzQa4fLly+j3+wiHw1IzBhw6MRLQGM+ZckMVzKssGr8XrFPz+/2m0kn+o6OiWo82Gh32eaSsm+/RGInXRGW+COxoQDIcDjE1NSXMPQEQa8koJaXbJHAoOScQjsfjqFQqIq2s1+vweDxIpVKo1+uy8EAHVxVQhsNhpNNpkWaXSiUkk0l4PB4B7JwrSho5Ptb50YCGskpNO3STLJfL8Hg8qFarwtb5fD6USiWpiWPtM42KNE0TUEjwarPZ4Pf7EYlE4Pf75TUuQtApM51OC5v+JOJLBeCAwzo4i4GzwgorrLDiqPjiiy8wHA6xtLSESCQCm82G3d1dabJ94sQJTE9P49atW9jd3YXNZsMLL7yAbreLdDqNbreL2dlZtNttFAoFxONx+Hw+5HI53Lp1C4FAAMePH0e5XJZ6jOPHjwvjVa/XkUgkEAqFsLu7i1qthueffx42mw31eh03b97EwcEB5ubmxOzi/PnzcLlc+OCDD7C4uIjV1VVpauvxeNBsNrGzs4N4PI6pqSmsr69jNBohFApJk186wKmOlEa5IPAg4Vbd5DhP7XYbb7/9Nt544w28/PLL6PV62N7efqgnkgq0zCSSwDhIMANyxs+pUkojI2eUWxoljOo+jmKa1O3402zsKkAy+5xx/41GA3/8x388Vp9kjOFwiPfee09MLYyOnJOkoEbQdtS5GudtEptmxkAaz9kMHE46BpP9Tz75BH/37/5drKyswOl04sc//jHu3LmDU6dOYXFxEfV6HeFwGE8//TR6vR52dnak6TRr2FSDDt7LlB+r14qLJXRwJKg4ffo0fv/3fx/NZhP/+l//a7jdbrz66qtwOBz4kz/5EzG3YD9Afgd8Pp98J4Bxua7qKmpcPFAbd5OZUhlXowEOx8zG42SnyuUyMpmMmBtx37quC3BiJJNJkRzGYjFZ6AkGg3IOnEO6Vw4GA/j9fmmcTRYsl8thNBohGo2O2fJnMhkBZgR7ZO/IjhI809VR0zS0Wi30+33EYjFpxs3vLcdEWWQ4HB5j7SiD5bzb7XZsb2/LtaW9v8vlEpmmzXbYQiAajcrn2fydx6MTJd0lCSCBw76QVAqwLpqs45OKLx2As9s0i4GzwgorrLDiyKADXiqVQjQaxc7ODmq1GmZnZ4UFuHbtGra3t7G8vIylpSWUy2Xk83nU63UsLCyg0WigVCohHo8jFAoJK7e0tIRer4c7d+7A5XIhFApheXkZ3W4X1WoVwWAQq6urGA6HuHfvHjweD77xjW+gUqng/v37KJfLKBQKSCQSiEaj6PV6ePbZZ8WE4fXXXxcJGFeUAaBcLuP48eMYDofY2dkZa4vABJZF+MADmZKxqbCakLOOhCviTIBqtRp++MMf4nd/93fxyiuv4M0335T2AjyGKtFUa9HUBJtJLxlCFZypIEAFOyqIAx7uOcdjG0HNJGmmOg4zsGN02DSTRz4quK1RYml2nHa7PQaszdgzM1bOaDJi3H4SmFV/nzRPxv1OAndm2xq3u3PnDv7Nv/k3WFpawsrKClKpFK5du4ZOp4OTJ0/i3Llz0keMsmIam6jtAbhfygsJjNR2DbxvydwsLy/DZrPh29/+NgDg3//7f49SqYQ/+IM/QCaTwR/90R+hVquJGQadJ3kvE9QYFxBUIEdwoV4bo2lJOBxGqVQC8MD9kNvyPCjnI5vfaDTElVNdoOD+ySCpYwAOmTAyZmwV0O/34ff7xXGT7JrH40E0GpXasampKZRKJfT7fVkIIjtYqVSkR2a73Ua73RYTFbUdCpt0U4bI6xYOh+W7zWvI8+WcOJ1OaXcAQCSvKvCt1+siA2VvOBqVUDaraZo0YafZSb1eFxaXiwvBYBDxeFyO1263BdhxgYAKB6fTKU6oTyK+dADOYdMwGFoAzgorrLDCislx7NgxRKNRBINBbG5uYjgc4plnnsHs7Cy63S4++OAD7Ozs4JlnnsHy8jLu3bsnFtcLCwvQ9UNrdFrt7+3twel0Ynp6WhpgU54zOzsLv9+PcrksPedKpRKuXbuG48eP48UXX8SVK1fw1ltvweVyYXl5Gaurq+h0OohEItB1HTs7OwgEAlhZWYHdbse1a9dgt9sxOzsLAMJaqM2QQ6GQJDdMPlkLxFVnIzAyY3BarZYALNbr8ThvvvkmvvOd7+CNN97A22+/jb29vbGaErXWTQVmxuOqAGMSW6eG6lTJBEyt8aOMTGVEJrUU+JswVmYgTN3G7DjGn2ZAUgV6RiClAkkVwBlNY9Qxmu17ElNnFpPA3KTzMobZPA2HQ7zzzjv4l//yX+If/IN/gOeee07MRnZ3d+F0OqXB/b179+ReZQKtygS73a4k23a7HdPT02JEwTERxIXDYYRCIezt7eF73/sednd3EY1G8c//+T/Hxx9/jJ/85CeS1Pv9fgQCAQEUqk2/CtgAjC1U8J4zzoc6Ftrdq4sZqkyQMk262ZLJymazwqRzW7YCMDM8GQwGAkI9Hg9qtZr0viTQJcACILV+PEYkEkEmk0G9XsdwOEQ2mwUAkWnzOP1+X6ScrIXl/NC0hAYiNEZxu91yXs1mE51OB6FQSAxJ2IKA0ktd14VhU01Vms0mAoGAGDZR1s6fnHfWClI6W6/XxcCEc8/WKbxnR6ORSCTL5bLMNZUIPO8nFV86AGe3axg+4sFvhRVWWGHF/7JjenoapVIJe3t7GAwGWFxcRCwWQ6PRkPqSl19+GalUCvfv38fe3p6sTvd6PdTrdUSjUfT7fRwcHMDv90tNS7fbFZMUJg4Ef2fPnpXmw2fOnMG5c+fw4Ycf4tNPP4XdbsfZs2cxNTWF0WiEeDyOTqeD9fV1JJNJLCwsoN/vSw3J1NSUWPlTbtfr9aQFgN/vRzQahaZp4vqnJnpHMSzAuDSRhfulUklaMHQ6Hezv7+NHP/oRvvvd7+KNN97An//5nwsTqUrGmCSpTIRRGslxqUkaQYuRzVMTaDV4jtyOTISZXNGM2VJ/N2MkzeZnkoTwUfNrdmyzv9XXjZ9XryOBnyrfm3ROk0CqCgwnvW88Z7NQQabZOXe7Xfzwhz/EaDTCd77zHVy4cAE7OzuYmppCp9PB5cuXUavVUCqVkMvlcHBwIEwwWTHWean911SAw20I8EqlEra2tsRu/9VXX8XFixfx5ptv4uOPPxbbe5/Ph0gkInV26qIDAZLK9DJ4jxrdT1UQEYlE0Gq1JPFXtyWr0+l0pJ1ItVpFp9NBsVgUxk6VY6rfG13XxaSFLFmpVEK1WkU4HJYxUlbIWjxd1xEOh+H3+0XiGAqFcPfuXRk3+6txvHSSJKj2+/3QNE2cbtXG4w6HAysrK+h2u8LOZbNZqVOLRCIol8sC0mlCQraScmJjX0TKXGu1mjT59ng8aLVaY8wp3TIbjQbC4TDy+bwsrrEJOBemWHNJ6afdbh9rueB2u8VF9dVXX8XS0tKR34NfZXzpAJzDplk1cFZYYYUVVhwZd+7cQaVSwcLCAhYXFwEc9peibGl5eRkAcPXqVeRyOczPz2MwGKBer4tTZT6fh8PhwNzcHCKRiCRYPp8PoVBIEgGv14tkMolwOIxyuYz9/X2cO3cOi4uLeO+99/DOO+/A6XTitddeG+sJVyqVkM/nceLECUQiEezt7aHZbCIajcJutyOfz6Pf7yORSEhR/ezsLAqFgiQZZN+Y0Kks1VHmICrTA0BaKtjtdhQKBQCQupm9vT289dZbeOONN/Bbv/VbePfdd7G5uSnJHOuTVCdMFcSpkjSutnMMgHlzapV1U9kqo6GJmhxzX/ycGVg5iqVS31f/Vl87CthMAoKT9mv83KNeU8HZJBBoDDOWzuyn2ZgngUz196M+32g08M4778DhcKBcLmN1dRXpdBqJRAJf//rX8c477+D27dvI5XKoVqsP1QNSNkiJHAEMjUy4ENDtdgU02e12LCws4O/9vb+HW7du4T/8h/+A7e1tuVe4OEHgoMow1eNT3kcjG9VOXpV38v6jS2K73ZYG8KrEUq2L4zGLxSJ6vR6q1SoKhYIwbWSY+N3hd0yVi7pcLlQqFei6jlAoJM6LnU5HwA0bY7OFABuhezwe7OzsSLNtgiuOE3jAgHc6HbhcLng8HmEvgQeGLmRF+Wzs9/toNptot9vST63T6UjrFABotVoAIGCMz61SqQSPxyOSz2AwiHw+j1KphGAwKC6XdMMk2Acgzcqr1Sqq1eqYMQ3lsmTYeG3ZqLxer0ttHNk+ytSnpqYe+g78uuJLB+CsGjgrrLDCCiseFblcDmtrazh79iyGwyE+/vhjtFotLCwsiLFIpVJBMBiUupFWqyVmIeVyGW63G8ePH4fP58PBwYG4nUUiEQEKsVgMc3NzaDabKBQKGAwGuHjxIoLBIP74j/8Yly5dwpkzZ/Diiy/Cbrej1WqhVqvh4OAALpcLa2trGAwGuHr1qhia9Ho9tNttsd6uVqtYWVlBLBbD9vY2fD6f9H/z+/2S5LrdbjE6UAEHE0CyZIC5RK7f70sNDF0u3W43er0e7t69C5vNhu9+97v45je/iR/+8IfY29sT0wljHZl6bCM7xvGox+fvRmYOMDdI4bZqc2UGweQklkxlT9S54LHMmC2zmCSTnBRHMW9HvXaUHFPd5nFem7SNcXt1jiaBz0edu67rKJVK+OEPfyjyN5fLhbt378LtdmNubg7xeBw//elPxxhm9d50OBxYWlqCy+VCLBZDLBbDRx99hGw2K4xNOBwWKfN3v/tdxONx/Jf/8l+kSbi6L/Zv5P2jAiSVHVZZYuN9rd6PBGMET6ztUmWgBI5k0vx+v4Ccer2Og4ODsbo3VSKpSjq5z9FohGq1KvVtBH5cnCK4IcAhu2S329Fut5HL5QAcgrBKpYJAICDSQq/XK+YeZCvZMHswGMDr9cLr9YrEMBKJoFKpiPEJ264Mh0Pp+5bP52U/wIP+eY1GA6FQCE6nU3qzsQ1AKBRCqVSS60pzEwaZPcrZWVNJt04+FzweD8LhsMwJFwC4qEAwabMdulSm02kEAgHMzc0hm83i+9//vtRT/rrjSwfgLBdKK6ywwgorHhXnzp3D6dOnkc1mkcvloOs6zp07N9bMd3FxES6XCwcHB7DZbALkhsMh5ufnEY1GxRq90+lgZmZGLK5tNhs8Hg/i8ThyuRzy+TzC4TBOnTqF0WiE//pf/ytu3LiB3/iN38DZs2ehaRry+bysECeTSaRSKZFfRqNRKdQHDhMUSpJWVlZQq9Vw584dAMDc3JyAvZs3bwr7wNVlJpUAZCXfyDwxjICCRixM4NnkdjAY4O7du3jzzTfx+uuv44033sCPf/xj3L9/HwAkaVOTTSasRtBoVv91FHtlBHtGeaXRIdCY8E46dzUmAaZJINBsnHztKMnlpH09CoA9ChwedexJ708Ks+Maf/959lmtVvHWW29B13V885vfhKZpuHnzJsrlMrxeL2KxGJ577jncv38fmUwGrVZLgIvf70c4HIbL5ZKFE6fTiVQqJQn91772NXg8HgQCAdy8eRNXrlzB/v7+Q/WSoVAIoVBorGm2kXFSzUEmsa5m9yPrTY1AEHjQ742SRn5fm80mstksms3mGOBjjRilfbyXCQJpWsSxqjWCdIPkd6DZbAowJjs2NzeH4XCIarUqTrlkNPnZTqcjMvFmswkAokwgYAQOWb1er4dAIIB6vY5mswm32y11ZATQ3DeAMaYSOJS+8lnBti1UP7AdB81GOO9sUE7pNw1O1GvGJt0ej0cklTSFYjNx1sF5vV5UKhU4HA4EAgFZjKOU9EnElw7AWQycFVZYYYUVj4pjx47h/v37aLfb0HUdp0+fllqKbrcr0phisSjynFwuB4fDgVgsBr/fj1KphFarhU6ng0AggF6vh3K5DJ/PB7/fj2QyiWw2i9FohIWFBczOzuLu3bv4i7/4CzgcDvydv/N3xOJ6Y2NDVr4vXLiAUCiEfD6PYrGI2dlZtFot5HI5SWBo9T09PY29vT188MEHWFtbw3PPPYdms4nBYIBisYjFxUVUKhVJeLm6reu6sAEAxmy5GWpDbLXWis6U3B+Tr16vh6tXr6LX6+Hb3/42Xn75ZYxGI+zs7KDdbgtYVNkJ9ZhM0hhHMWSTpJMquFCBnArijMc8SjI5KdRE0Nj64CiAZ3zv5znm4wDCo8Zqtp9J7N1RTOBR75mBSfW9SWNtt9v4sz/7M+zv7+Mf/aN/hBdeeAE3btzArVu3cOPGDQE8zzzzDDY3N6UO9Dd+4zfw4osvYmtrC/fv30ehUBA549zcnNR67ezs4NNPP0WhUBBreBXMs2kz72f+47640KCyXKpE11hTSuaONWa0xOfr/J3MD8EJrfzVhuXqd5fHaDabsm+6R5JhJ0vGXm48D9Z0ARBA1el0kEwmsb+/j2KxiEgkgqmpKRkv2w8MBgPUajWRXXo8HpGQ6roOn8+HmZkZ1Ot1MVEqlUrSCLter6PdbgtApmxyNBohHA6PySVpMELWDIA4WarGTMFgUBwieT17vZ4wrmRri8WizAfn0uVyIZFIiFSSzyeqGti+gdeHhlU+n0/Y0WAwKON7EvGlA3BWDZwVVlhhhRWPii+++AKDwQAOhwMzMzPIZDLSZDmZTErNBhOivb09hEIhpFIp7O/vo16vi63/wsICcrmcbBsKheD3+7G+vg5d17G6uoqFhQX89V//NS5duoTp6WmcOXNGVohZ0B+NRnHmzBn4fD5sbW2hVqthdXUV3W4XvV4PyWRSgAqlRXt7e6jX63jttdcwPz+PmzdvAoDIN1lr4vV6xU2SbpRM7JjEU3JoNGEwMgq6rouEislrMpmEw+FAr9fD7du34XA48Oqrr+I73/kO3nvvPdy4cQMAJIEyyiaZmJqZmxiBGENlMDh+sxYExp88thHUmY3nKMZqEms3CRAdJU18HHnlpG2PAlZ8f5IU8qjPGUOd10ms3+OM4ajzvXLlCu7du4elpSV897vfxT/+x/8YP/nJT5BOp6HrOi5evAiHwyFAjO0Hnn/+eVy/fl0YO0qWDw4OsLe3h2q1Kkm5OkabzSZmP6wXZZBt4ndFHbNas6mCK/X+M95rBIPqPU3TDO6fPdFoWqKagnD/BE1Gk6BWqyUNstW6PTJvavNugrVisSgMWjweRzAYFLaSBiXdblcADr/3iURCmEI+RyqVioCvWq0mLp71eh0ApPaOss5gMCg1eJp2aICSz+cxMzMj8k2CYLfbLb3lwuGwmIvQvASAsIIEwQBELcC6SI5/enpawFmz2RQG1mY7bDNAkOn1esXpkvVvrINmveCTii8dgDtk4CwXSiussMIKKybHYDDA6uoq7HY7dnd3USgUEIvF4PP5sLGxgUAgIMX5rVYLU1NTmJ+fF6Dn8/mQSqUQiUSwtbWFfr+PkydPSm+j27dvIxgM4vTp07DZbPjDP/xDbG1t4bnnnhOw0+/3UalUMBwOEY/HsbS0hGaziZ/+9KdwOp1YW1uTWp5wOCyMWTgcRr1eR7FYRCwWw8mTJ6FpGn70ox+h1+thbW1NpJ+apsl5OhwOcdhUE0+CNiblKkulGp4A44l4q9UaA3+xWEx6NN28eRODwQC//du/jTfeeAM2m21MzmnGtgEQSZgKGs3khXydiZpZ0mwEhQSoajJOFkUNM2Cjgg4joFXfO0pO+Tig8FFx1PZGFnESiFXP6eeNo9hEdQzG341xlCS00Wjgxo0buHnzJlKpFJ566iksLy+j3W7j888/h8PhwPPPP49isQiPxwObzYZPP/0UzWYT+/v7yGQysujB2jnjtSKQCAQCwgARWKnMmyoH5OfVhQJVlqvr+hhLp95/KvNGiSZle6z9Go1GKBaLyOfzyOVyIp10u90CAFWQyM9SAkkQROt+jtdut4u7ZyQSAXDI4OVyOam7BSD1vgQ6dMTUtEOpqtfrlZo5AmjWC9LGn4wfAVEmk5H5YE0e2wO4XC4Bj6ylZQ83yhP5veVngQeglw6S7XZbpI40XHG5XMIw8hrwHpidnRVzm16vJ43Ga7UaIpGIqAk4PqfTiWg0KnWalHjSmOZJxZcSwFl94KywwgorrDgqTp06hXa7jY2NDfR6PczMzEhNhtfrxezsLGq1mkgmw+Ewdnd30Ww2EYvFpACfzatnZmakv1M2m8Xs7CzOnDmD/f19/PVf/zXa7TZefvllkR0xsfH5fNIi4IsvvkCz2UQoFJJESl21r1QqiMViwoAtLi6K+2Umk0E8HsfCwgJGo5GwfzyXXq+HdDotZgUEP6qpCRNQgiBVhmjGKGiaJhJUvp9KpSQBolz09ddfxze+8Q34fD58/vnnklgZk3u1Hs4sVMCp1gQZWUKz1gHqfo0ATP3bWA9oPL763qMYqMepBTMDj0ZgdBQoPGpf6jZHgbWj9vM4IOyo4xjn7Kj98H5Tf2azWWQymTFpIy326XTIa6H2NFNldep5qPeN3+9HLBYb6xemyifVZvTqeaoLDyqoVxt483OqTFN9j2w1P9PtdlGpVFAoFAS8qW6qqpRT7clIgEkg4fP5pI6XMke/349Wq4VAICBul81mUyz4CdCCwSAcDof0fWPNF+3+2fib46FB0mAwkH5p6vkRgBJ8ETRpmiYOj7yuNIiKx+PClnLRiTXJuq4LM6hph3Vu3I6gis9Myt15DQj6FhcXxYhKBW+soeNrPp8P2WwWw+FQFszY4qBWqyEej4/V/z2J+NIBOKfdZtXAWWGFFVZYcWR0u10UCgWphahUKsjlciKn2tnZgdPpRDAYRLvdxu3bt6Vf3NraGmq1GgqFAgKBAJaWlsQ1LZ/PY2VlBXNzc7h8+TLW19cRDofx/PPPC3hinycmf36/H/fu3UOpVEI0GpVVaMqpmJTFYjFJVCjpYa8sp9OJ2dlZlEol3Lt3D5FIRJKmWCyGYrEorQVYw8FVe8A8wVeTUGPiymCjYTVBpytcr9fDjRs30Gw28Zu/+Zv4+te/jlAohMuXLyOXy8nquBlgMQNmahjZMTMnSrWVAPfJxNxsn2pNkzHhP0oKaQQ5Ztv+PADqccCbcS7MgIp63EljNgNXZudjNv9Gpo0AWN3G7HhqGC33Gcb6RsoLafVudu8Yw2xeyYAFg0FEo9Exxkhl4CYBazU4RpWx47aq+ykBI+8/TdOE4SII47Mjl8uh0WiI1Nj43dN1fazBNQERgLFnAmvi+AygwySBTK1WQ7fbFWAyOzuL6elpdDodtNttNBoNaS9AIOX1etFutwW8UarI2jLW83L8BMZ0e6Q8kYCJrCcAYe92dnbgcDgwPT0NXdelxsxmO2yDQtBHOSUARKNRdDodAdzs4aaaw9Ctkn3ogMPnrirLpMMlTUqq1Sqmp6dloYt9PnkdWMf3pOIXAnCapm0BqAMYAhjouv4VTdNiAP5nAMsAtgD8r3VdL/9iw3z8sFs1cFZYYYUVVjwi7t+/j3g8jng8jtu3b6Pf7yMWiyEUCuHg4AA+nw/RaBTNZlMs/U+dOoXp6WncuXMH6XQaMzMzWFxcxGg0wvb2NgaDAZ5++mm43W78+Mc/xmAwwPHjx2VFnT3emIRMT08jk8lgb28Pmqbh1KlTqFQq0pCWCdloNJLi+larBb/fD5/Ph2q1il6vh6mpKRl3NptFMBiUVe9IJIJsNivyKfYvIohkENTQ8p/JJjBuYAKMSxOZYLZarbG6oGQyKSYE9+7dQ7/fxze/+U1cvHgR4XAY77zzDvb398VaHcBDoI3HMGM8GExyzYADmRxjywAV8BldBs2OYQQ76v4nsXCT3jOeh3F/Ztv8PHEUIDeCXrPtjGBw0jZMzHntAPN+fWZ/HzWux41HsXpmUk4yP6FQSNgmdR6M7JvZORtDdZNk0JREZQzp/kgAxkbXwGHz8Xw+j3w+P+aWSLCnsm+6rgsYYg82th5gHRrBnd/vR6fTkbqvWCwmnxsMBiiVSojFYlhYWEAwGES5XEa/30ev14PX6x1zhSRrR2kjQbSmaWMMHAEjm2R7PB6pdet0OuLwGA6HpcaODpibm5vybFtYWEC9Xke5XIbD4cDs7CzK5bLUAPb7fSwsLKBWq6HRaKBcLsv8qvJU4PDZlkwmpb0Ke+XxPTKT2WwWXq8XuVwOrVYLiURCzFPY2kHTNPh8PlQqlTHnzCcRvwwG7hu6rheUv/8HAD/Sdf1/0jTtf/jZ3//nX8JxHisclgulFVZYYYUVjwiCtx/96EcoFAp48cUXkUqlcO/ePZHK1Ot1lEol+Hw+nDp1CsPhEB988AEKhQJOnTqFhYUF5PN5HBwcYGZmBidPnkQ+n8fly5exvLyM2dlZ5HI5BAIBVKtVBINBZDIZ9Pt9zM/Po1wuI5PJYGlpCX6/H/1+X4wENE2T3klOp1Nq5cisseYkkUgAANLptIA/fsblcmFzcxO6rmN6elrAoypBY6LIhExlv1TplhGQkG1RwQpraZhgpVIpYQx3dnbwp3/6p/j2t7+NM2fOIBQK4Sc/+Qnu378vrRlUUwaVgTGG0dRETXJVxkJl3lTWTZWzqT/V/annZWTZjIDrcZkyNR4FWh4FhMxCfV8FoyqAMdvHUUDtqOM8anszdvJR+zKbZ7N9Pk6o+6YLI5t0k3kzG796H3KRQgV4tNQ3ux94H9IQhewX/1YbYuu6Ln3X0uk0Go2G1HPxsxwnmR4agfR6PQFNPp8PTqdTxkXmqVqtCnPFerJMJiPui7quY3Z2FouLi9jc3EShUICmaQgEAvL9d7vdiMVi6Ha70jwbgDhTAodMFheaaGpit9sRDoelF1sul5N2I5Qo0hil1+uhWCwCOGxFMDU1BbfbDb/fj729PUSjUZTLhzwQ+8pFIhG02210Oh2RX7K9xGAwQCQSgcfjQa1WkzFXKhV4vV65xqwh1HVdxkfgyb53VDs0Gg3YbDaReOq6LvPypOJXIaH8LoBXf/b7/xfAT/BrBHCHDJxlYmKFFVZYYcXk8Hq9+OEPf4hWq4WXXnoJkUgEN2/ehNvtRjweRzqdhsfjwezsLGZmZlAqlVAsFjEajXDhwgUEg0Fks1m0Wi0cP34coVAIW1tb2NnZwZkzZyR5CAQCkrxtb2/D5XIhmUwin88jm81idXVVjAji8bhIMe12O2ZnZ6HrOjY2NmC325FKpWT1m9bnlPGUSiXUajVpJF6v1/GXf/mXsNvtOH/+PNrtNnw+31hSRbMAyrDIuhEA0cXODEgYJXsMMnGMVCoFv98vSdpf/uVfotls4itf+Qp+8zd/E++88w7u3LkjzphqggtgbBxGUDeJ/QLGWyCYgThN0wSgDgaDh2rvVOnmo4DaL8KcGefvcdi7SftQP2M07jDKGVUW1TjmSYDLOE4jS2U8B7N9PYqR+3nYuKPAoXofUP7n8/lEWqfKMwk4VOZs0phUhsfYIJ6gi3b9lEyTJTMyyZ1OB5lMBul0WmTNxnuc9z9NPiitVGvP+ExQWwXQdXF6eloYuVqthlwuh1qthmKxiLm5OQSDQeRyOZFhOxwO+Hw+dDodkQ2Slff5fGN1ezQwYZ2a6gjp9/sBHBrSsBcb6/X4bGSrgOFwKM+mQCCA4XCI9fV1TE9PY2ZmBvl8Hk6nE+FwWOShmqahWCxKC4VCoSBukslkEsFgEKVSCS6XSxx4vV4vdF2X8+O1yWQycLlc8ixVG5ETzGqaJmOlIoIM35OKXxTA6QB+qGmaDuD/rev6vwOQ0nU9DQC6rqc1TZsy+6Cmaf8EwD8BgMXFxV9wGA/CYdfQ7VsAzgorrLDCisnxn//zf4amaTh37hxqtRr29vaQSCQwHA6xtbWFaDSKY8eOwefzoVwuS1H8M888g1arhXK5DJvNhuPHj4ut+WAwwOnTp8dqKXw+H4rFIsrlMlZXV9Hr9bCzs4PBYIDz58+jWq2iWCwilUrBZrOhXC4jEAhIL6Zr167B5XJhcXFRVoJVQNLv95HNZlGtVhEKhWSFulwu49y5c7KvcrmMXq+H0WgkJgW1Wk3kVHa7XVbxgQcsGJ0vVeYKMLfKZ9DYhAxfKpVCOBxGp9NBsVjEX/3VX6FSqeDFF1/Ed77zHczOzuLjjz9GoVBAt9sdc8U0Mh1qTZuahJv1j1OlkqqcktuobQhU1oXHUAGfEciqxzHOg3r8RwExIwB5HPnhJBBp9v4k+afZ8cz2dRRoNdYcPgrsHsWsTRqLcftJoM04T5S3MYGnWYVar0YgojpEEvhPAnFGNk4Nl8sl8mUCDQJD3lOsx2Kbg3Q6jVarJey1ei48jrEPHEES5Yp0YCQAI9BIJBKIRqMAAI/HI8xRpVJBIpEQE5B8Pi+tSdiCod/vI5FIwOVyiQqBYyOAYR+3YDCISqUyxoZTKtrv98fuFZqX8NlCcBgMBscknu12G61WC9lsVli73d1dhMPhMbknwZnNdtgOIh6Pw+l0Ip1OSz1xs9kUgyrKSslA0uWXgI/unew1x8/S+KTdbiMSiYicdHp62vSe/XXELwrgXtJ1/eBnIO0tTdNuP+4Hfwb2/h0AfOUrX/mlaR7tNhsGI/NVISussMIKK6wADht52+12NBoNNJtNcWocDAY4efIkYrEYgMPeQoVCAQsLC5ibm0Mmk8HW1hbm5+exsLAAXdfFmj8SiaDVaknftW63iy+++AJ+vx+Li4vY29vDp59+ipWVFWkv4HK5kEqlRMI4NTUFr9eLQqGAzc1NWUHXNE3qW9hMFjhsNN5utxGLxaTH22g0QjQalSa5LpcLgUBAmgKTpbPb7dL4WLVLHwwGYhgBPEgk1URsEkhhosueW8BhnUksFsPx48dRLBaRyWTwwQcfoFgs4vXXX8fFixfh8/nwySefYG9vT2pNeHwzpofHVWvZVAfJR21vfA14wLpxHni+6j5VhsSszoq/T3qN8ShpoXHcj8PIHcVITnrfOBbj+RhlpL/I8R83zECmGfgzvq5KFp1Op9SSkoFSQZfRFVJ1nXyc8auv83h+vx+6fmi8EQqF8NRTT6Hf7+Pq1asy3m63K88U1lrRGMO4f95/qvkO6w5Zx6W20eAxyPiPRqOxGi1KKtWWAO12G91uFz6fTySOBC2hUAgAEIvFREIYDocFVLJfGgCp6eNiSLfbhdvtFtBJWTddHnVdR6lUEiYxFAqNAdd4PC6AymazIZPJiDFLqVSSRSeanDidTmkBsL+/j1AohFAohGazKUDV6XQKQKScfDgcwu/3ywJYMBhEOp2G3W5Ht9uVPnVsIUApOuWkPw9T/suOXwjA6bp+8LOfOU3T/hjAVwFkNU2b+Rn7NgMg90sY52OHVQNnhRVWWGHFo4LJRSgUQjgcllq11dVVKbTnv9XVVSQSCdy8eRN7e3s4deoUVlZWMBwOkc/noeu6yBk7nQ4ajQYKhQL29/cxPz8Pj8eD9957D8ViEV/72teQSqXEuXFqagqtVkukUK1WC4VCAa1WC2tra7h//z56vR6eeeYZWT3e3NxEJBKR1e1wOCxyHrrMAZAV7fv376Ner0sTX7KKW1tbaDabY32paNFv1ofNTFZoBt74frfblb5Md+/exerqKl566SW8+eab2N7exrVr11AsFvHKK6/g/PnzmJubw/vvv487d+6Ilbhqpa6yEGqtGo9pBGcMI8hT96eCOCafaq84dU7U/Zqd/6T4mwKbxwV5P0+YgU4zkGeUBj5qn8ZtJ4Hbo96bBNwmHV8FYWS6VPBGAKcahqisGwEHmTH1HI4CbgR8lDfy91qtBpvtsMn17//+7yMej+NP//RPBXx1u13pv5bP54XRmTQPqkMnmTeOmcApHA7L73R4rNfriMfjwj71ej1xnQ2HwyIlbbVaUntGeWG9Xsfi4iI6nQ4ODg7G3CPdbrc8X/r9vki/K5WKGJSwAXYwGBQ1AFsP8Jk3GAykppcLX5Qw6vphHWE+n4emPTAM4XXL5/MCukqlkjzHA4EA7HY78vk8fD6f1DCrjdJ5DJ/Ph4ODA4TDYSwsLCCTyQj4q1arYxJbguTBYICpqSm4XC6pl2MP0ScVf2MAp2maH4BN1/X6z35/A8D/HcCfAvgDAP/Tz37+yS9joI8blgulFVZYYYUVjwqbzYaZmRnY7XZUKhUEg0HpEUR77X6/j+XlZTgcDly+fBnVahXPPfccpqamUCgUhO2y2WzSK0nTNLHaPnHiBADg9u3bsNls+Na3vgVN01CtVhGJRBAKhcSuW9M0pNNpBAIBeDwehEIheDwezM/Pw+VyIRaLIZvN4osvvsDCwoIwcARylDMx0QoGgwKAgEPAOj8/LxJKrjLTbY4r8UYHSMC895URyExKvgeDAWq1GnRdl5o8j8cjyeXBwQF+8IMfoNFo4Pnnn8e3vvUtRKNRXL58GcViUZIn1VhFlT8aa72MoSbDDKP7JBN29XW+xiRTTaQfJWs0+10FI2Zs3KQwkyQexYap43kcueGkYx4F2ozvG7c1+9uMLZv0++OyGlx0UOvYKJsk66YuThilkirjrO5PHQPr3NTrp7J4BFX8flDOWK/Xce3aNWxsbMBmO+x/1mg0kE6nUSqVhHkzglT+rv5T+90RrFEiyfuXMkOv14tYLIbFxUWpsyVzz3pUp9OJTCYj/czITmmaJrLxWq029t1lSwIuDpFNIytIcxXa+bMFCrel4YjX60Wj0RD2j4ZN/AxNQnh9yMKRBeM8tVotqWVjvV02m4XT6UQgEBDnTfaJAw5ZwnA4jHK5LCxgrVYTaW2r1ZI55jOHbR54fpTSu1wuWWR6UvGLMHApAH/8s8l0APierut/pWnaZQB/qGnaPwawA+D3fvFhPn4cMnBWDZwVVlhhhRWTY25uDm63G4VCAbFYDPPz8xgMBlK87/F4sLq6ina7jVu3bsHr9eLs2bNwOBzY3d0dkzLSZrper6NWqyEajSKRSKBYLCKfzyOVSolEU9d1hEIh2Gw2FAoFhEIhASmUS+bzefR6PTERCAQCuHTpEvb29jA7OytJQzweF0mQWncHHCY4mqbB6XQKE8c+TVtbW5iZmUEoFBKWjMkRV/1dLpfUsZiBNCOYIItlJrljvd3m5ib+8A//UJw2CTLL5TLefPNN7O/v49VXX8Urr7yCVCqFDz74ADs7OyJ1UpNkjkE1JwEebkVgNnaV2VBZO5WZ42dU4KeyNMZ5MP5tfN0M6B313iRQ9Cg55aPeOwrsmh3LjDkzAjLj/tS6RSP4NR7HjO0yvm52LBVMEbwRtKm1bqo5Da872RiyrSowUplXNVRTHIbb7Raw4Ha7xX314OAA3/ve9+B2u6W5eK1Ww8HBAYrFIlqt1pjEeNLxOB7um4wX+5exfsxms8Hn84nEMZFIoFQqSU85GiJxnzQW4WISZdYrKyuIx+PY2dlBvV4XV0uCLLJ7fH6VSiUkk0m0221xxGy327I4w75xbJvCuSIQpARR13X0+31xm6Qxye7urtQRl8tlaJoGt9stfd5UE5RGoyFtU2gepcq+u92utCaw2WxIpVIoFouw2WyYmpoSRpTNz3u9HpxO59hzsVqtotPpIBAIjLWaeVLxNwZwuq5vADhv8noRwDd/kUH9ImExcFZYYYUVVjwqRqMRqtUqkskkEokECoWCJA5qc+9CoYDZ2Vlxbmw2mwgGgwiFQqjX6yJ/LBQKsNlsiEQicLvdqFaraDabWF5eFkc6l8slrm60uu52u1LDRpe1QqGAeDwu8qibN2+i1WphaWkJbrdbwCcZLBbzz8zMIJ1OY2pqShIVlZVjQre0tCTObel0Gvv7+7KSzvYCqiMkMLkOTn1/EgvF+aYpQavVQiQSQTQaRSwWg6Zp6Ha7uHLlCkqlEl577TWcOXMG09PT+OlPf4ovvvhC6veYtKpAhCvmZuMwhuocaAbIjHJLNaGfJDfk70eBq0fJDI2vTwozpvNRYbbNo8Y5CeCZyRqNc6OCXmM9odreQd3OyDAaQbQRfBIkkmUjcCNo43sM1bBGZXMnnY/Z2NTzpGEJ5XlOp3NsgYES4uFwiHq9jt3dXVQqFZE0Gu8H9dzUOaP8MhAIjNW+EQD2+31hz9geYHNzE5qmiW1+LBaDrutivDEYDODz+RAMBuV5duzYMXi9Xni9Xpw/fx43b97Ezs7OWG2p0+mU2t5EIiEtSQjwKIEcDAYIBoNwu92iDiCLx4UYTdNEtcB+cWTs7Ha7sIPhcBilUgl+v1960bFlgd1uFxmqx+NBJBJBtVqV50mv10M0GkW/30cymRxz1qxWq9JrkwtiHIumacLqcdz9fl96ebKGzmazSVuCJxG/ijYCTzSsGjgrrLDCCiseFYPBAPPz88KE2Ww2BAIBkRQVCoftTaPRKLxer6wMMwmhexyTOzbm5mq70+nEsWPHMBwOpQcc7baBw1q1RqMhQM7n8yGTySCfz2NmZgbRaBStVgvVahW1Wk1cKqenpxEIBLC/vy+r+dPT04hEIkin09jY2MBgMJDEjXVArIGhYxxlmul0GrFYTFbcCSgZZmyKyroBD1v3GxNjNfkmm0bTlk6nI9KudruNjY0N5PN5vPDCC/jqV7+K3/md38GJEyfw3nvvYXNzU8ZFMKDWtamMhtGYRP2cem5HtSmgtMt4vupccDvj70Ygqf5tBpKM+zDGoySTf5NQxzkJ+B7FtBlBm7oPVY6ofkcIBsxcQ/k59TjG8yPbpta6qQYlKpOmfobbMEknuzRJGnwUcKQEuNPpAIDU2Q0GA7hcLpEDsln2/v4+yuWy9ClTz0udc46T7S14/5Ft0zRNWgYY54v90yqVChqNhrB2NPOoVqsADpuGu91ueL1eYaZcLhdmZmbwk5/8BM8++yyeffZZqfHlmPmsI1hqtVqIRqMCljgXZAi73S5yuUMLDD6DWq2WgDQCI5qp0CHS6XQin8/D4XBgenoajUYD4XAY/X4f9XodHo9HJKFkHHn/VKtVuFwuUVIQhE1NTaFWq6FeryMcDotsnUwlWwywXo7XklLPaDQq7ByvLetk/3uVUP6tDLvNhsHQAnBWWGGFFVZMjsXFRTgcDuRyOWHO5ufnsbW1BV3XJTHodrtjNvNM9MloDYdDRKNRrK6uCnijy2Ov10OtVhOWqdFoiNMbXdyYOFByRIkkQRYZQK6uD4dD3L9/H9lsFp1OB3Nzc9IEPJvNYmZmBrFYDD6fDz6fT5jCeDyOQCCAWq2GpaUlRCIRfPTRR5JEAZAVdDUpYYJI5guYLPliYm7GaKjB2hlK2Liiz95KrVYL7777LjY3N/Gd73wHzzzzDJLJJN5//31cv35dDBBUa3/1GCpQMCbpauJslFlOCu7LCOJUYKf+fpRMkvGoYz4K0Bn3c9T+zWSQxmNMGoPxb/Wzxr/5k2BKlTnyOEYQp87fpP3xcwQ4rDujoQePZ+YySTaODoSs4WKowN/IIBoXBDRNQzgchtvtFsMSsmWqXf5oNEK73Rbw1mg0BAgddS3JtqksIg1ECFSBcVdWOjOGw2Hcu3dPxtNut3Hs2DEMBgO0221Uq1VxVIzH4+j1esjn85idnUWj0cC7776LjY0N7O7uolar4ZVXXgEAbGxsiDsvm1pTsphIJOSaEITx7+3tbXHB7ff7KJfLIjUNBoNi1+9wOKQHHSWddrtdFpqCwSBqtZowZ1z08ng8IqPkfUz1BCWUlFS2223k83lMTU0JuFtYWJAm4OFwWNhMgjQCTNbe8b5jewGqFSwA90sMi4GzwgorrLDiUVGtVtFqtRAMBuHz+TA1NYW7d+/C5/OJSQjrHcjw0Op6MBhgc3MTpVIJi4uLmJmZQaVSQSaTQSKRQCKRQL/fR61Ww9TUFDqdDmq1GmZnZ0VSVK1WHzIGACBJkMfjwb1796Tuo1arAQCazabYga+trUmy2W63kUgkxE2O9uGtVktWoofDIVKpFCqVCt588004HA6p4SgUCuJkScMEJqRMGNUaIiNQYdJjTH4nBZlJzkev10MsFhPWsNvt4v79+/hP/+k/4YUXXsDLL7+M3/u938PJkyfx4YcfYnNzUyRhqswLGGfZVJYOeJjtMdbVGcfIf0awN4mRexwJ5aT3jUwnx3tU/DzvGxk34/tmrJDZ9ma/q9ur/4xMHDC5TtHsOARJaq0b2SmCBXVbFcDxPZfLJTJmhmpsoh7X2NCd+3S5XDhx4gTsdjvW19elXpImF2Sead6RzWZRKpXQaDSkRtVsbvlTBW8Em3yPoKderwtgoFELm2tvbW2JG+1wOMT8/DwcDgfa7TYqlYpILePxuJiDkFnr9/soFArSH217exvZbBaZTAbtdlsWmwjkdF2XRSIACAQCKBQK0osuk8nI62Tas9ksIpEIFhYWZCFJ1w+bmfO7XyqVYLfbxWGS59xoNETCzlpAl8sFAPKcI5gjaGQrFboCz83NSb+95eVlcRB2Op1wu93SJoGqAMpyec6hUAiZTEaAIuv7fhEG/BeNLx2As9utGjgrrLDCCiuODiYDU1NTcDgc2NnZwWg0wuLiokit2IiXCXWpVMLOzg7K5TJGoxGOHTuGaDSKbDYr9tuU/Xg8Hpw5cwbAofV1PB4X17ler4dIJCJJX7/fFyaKRfTb29uo1+uYn5+Hz+cT0AYAq6urSKVS2NvbE4twXdcRj8elUS4AqUNhbyfKpthg1+l04tSpUyiXy1hfXxeZFZMjSqxUYMaE3tjkmr+r2/B3s224TyaIw+EQvV4PnU5nrMlwpVLBW2+9hf39fXz729/G2bNnsby8jE8++QQff/wxDg4OxnrWqUHgDTzc7NsYRjBHQKgyjwwjGFMBl1E6asZWqvOg/m0ES2Zzqe5fHYtxO5WZMNuv2ViM+za+P4kl4+dUsMY5NdaSsckzgbXR+Ma4vcpyEcgBeIilUsesyiVpA6+CN2DcidQI3ozn6/F4sLCwgHa7jf39fdmW50IHWF3XUS6Xkc/nUa1WBbxNukbqcYzXy263jzH0NNPgT4/Hg6mpKQAQ4yQuoqRSKXg8HhSLRZRKJem9RgdIoytjtVpFpVKRxZypqSns7u4KG6YyUGxQzlYAMzMzKBQKokqgAZPf78dwOJS6v+npaUxNTYmqwOFwSANuGo+wrjCfz4uTZ6vVQigUEvdHGrmYLZjQ1KRarWJ2dhbD4RCFQgEzMzOigJidnYXP58Pu7i68Xq9I6H0+HxqNxtg9zRq7ZDIp7QVU0Mznw5OKLx2Ac1oulFZYYYUVVjwiRqMRlpeX0el0UCqVoGkaZmdnsbOzI5Il4NCaut/vo91uo16vo16vIxaLid02wdiFCxfgcrmQzWbFba1araJQKODWrVuSUB4/fnws2er1erDb7QIKXS4XLl26BJfLhePHjyMQCKDRaMDv94+5Jd64cQPA4Sq3y+WSdgDAYRNtr9eLTqeDer2OYDCIWCwmzpb1eh3Hjx+H3W5HPB5HMpkEAOkLRZe6brc75tgHPJBSGoHBo0CLKp0DxmuUdF0XN0+yAtFoFNFoFH6/H71eDzdu3MDu7i4uXLiAl19+Gd/5znfw1FNP4d1338Xnn38uLAOBobHWiMc0tg046v5Q+7+ZMW5mEkQjO6nKBxlHASrjvBgBlbo/I5BT5YAqE2U81qRrZAbejOM1soRmLJvxb35eHZPZearHAyCSQbUxtZlU0sjAsa9YvV5/CLgZQZrZuXI7su5+vx/7+/vC9hqvk8/nQ7/fx9bWlrBWNCsxgl31uLwXudDA8ZMBd7vdIvvk5whKaZ7SaDREejwYDBCLxeDxeJDL5WSfMzMz0o+RcvCFhQWEQiEUCgVsbm6KRPP06dMIBoPI5XIYDAZwu92Ix+PY39+HrusioaxUKojH49JIOxKJYHd3VxaGyLzRXZdOl+VyeayGzO12y70biUSEeXM4HKhUKgiFQgKWPB6PKBTYZoUMPnBYB9hutxGPx+H1erG3tyfPkHQ6jUgkApvNhu3tbQCHz85KpSJuwmzO7fF4ZIFvenpaFsgCgQDcbrewkUajp193fOkAnN1msxg4K6ywwgorjozFxUUUi0Vsb2/Lf/LlclmAhN1ux9bWFtrtNqLRKFwuFwKBAFKpFJLJpLBQPp8Pq6ur6PV6+OSTTxAIBJDNZqFph65sn3/+OZxOJyKRCE6ePIlwOIxsNgufzyfW56rE6caNGwgEAlhcXJR6OfaJI3NGNzX2h6KZAM1LfD7fWENdurrp+mHfo3A4LKvLbMJLgxTWoDH5JBtHhozsgFlza/6uJuSqTM4oY1QZFyZETIrIGrJ2jyv+b7/9Nm7duoVvf/vb+OpXv4rf+73fw+nTp/Hee+/h/v37UmukmmqoxzW2HWCo4yQjqNbZma34m4E7M3ZOnRv196PYLuPfk2SMk6SWZoBI/dso2TT7jApSVcBiHL86LlWaeBSwU49r3LfKrNlsh05/DodD2CMzho81SUtLS7DZbMJOT5p31bDGeHyOkxI6fj+4kKGytRcuXEChUMBPf/pTcXlVzUrM5vuoOeQxeK/ys5Rbu1wuqfUqFAqIRqOw2Wyo1+uIRqNSq8afqVQKwGHDb0qzw+EwgsEgGo0GisWiMHrnz5/Ha6+9hm63i8uXLwur1mw2hQltt9sol8vw+XzodrtSZ7u9vS2ArN1uy8JBKpUSp0e2LmAjbpVZDIVCYiai67oARLoF89ycTqdIN1UAFQwGhdFjCwKazaTTadhsNlFLDIdDkWwCh2qMfr8v4Jc1tpFIBMDhs8lms4kktNvtisrhUdLoX2V86QCcw27VwFlhhRVWWHF0XL9+HY1GA+fOnUM0GpUkNRwOo1gsSqPr5eVlaXLNRt90d6O0anNzEx999JGwZalUCvPz8/jJT34Ct9st9SJzc3O4e/cuNE0TS2qu/NL44NixY0gmk2NNZVkfw3qV4XAoSRhX1LvdrvRnokFAPB5HrVZDpVKRlgU0PWBdHq283W63WIOXy2VZ1ScT1Ww2Jak0ayOgMjIq68Lt1c9wP2TKVEBFt0z1XzAYRCKREDbu4OAA//E//kd88skneP311/HMM8/g+PHjuH79Oi5dujQG5FQgOcnQhGCBoI3g3MzkhAmoyjZOAm/G4xj/NmPH1Pk0Mm9HHeNRxzfK+IxSxUeFkYEzgk8VcBlZMeNnVCaUQcZL3YafYaKuOkyq/xwOh/Rky2azaDabY+NVwbw6XvV46jg0TRNTDd43XGyhpDgSieDcuXP48MMPce3aNTQaDZFMmklujd8VszGxWTSlk9yGx2bNGB1qKWWs1+tIJpOIxWLStoBukVQTBINBAT+ssdva2pI6sKefflpMnMrlMtrttrBmZC3r9Tr6/b64NZbLZcTjcZw4cUKkk9ym3+8jEomIEoAySvZro6zV7XYjEokgn88LWE+n0/D7/ahUKrDZbNJDs9vtioEIlQCNRgNTU1NiEOVwOESiSem5w+EQGeZgMJDnKxfqRqMREokE3G43isWiOFgOh0N5PvJZS5devj49Pf3I786vKr50AM7qA2eFFVZYYcWjot1u4+LFi4hGo6hUKrLazEJ+uiI2Gg2Uy2WcOHFC7Li5ih0IBLCxsYH19XXMzs6iUqng3LlzOHbsGK5cuYJisSjyxeeee05aDdBJjbUp3W4X3W4XZ86cQTAYRCaTkVVxNXEjWCNb5vV6ZVs28mXyQRkVa8ry+Tx8Ph/C4bCsVLPZba/Xw/Hjx9FoNMZqYSijZA2MzWYbq4ljgqtKKoEHCSsTNfU9AjcCIWPtGAAxgKEsjMlbNBpFJBKB0+lEu93GlStXsLm5ia9+9at49dXDBuCnT5/G1atX8dFHH+H+/ftHSil5Hky4af1uHJfx5yTwZsaWGY9tTOTNpHVqGLef9N6k4x7FGhrHO2n/KsgxslV836z+zYyhYxiliEbWTQUvBCJzc3MoFovwer1oNpvCRrXbbYxGI+TzeVOwOIktVMfPfzSvACDgg3PUbrcxHA6llvRP//RPsbu7i1arhXq9btrf7SiAziAA5XeCbDcAkSySfSezFo1Gkc/nxaAjFouh3++jUqmgUqnIMUKhkLTKoIstAOzt7YkSIJlM4tixY2g2m2i1Wsjn8wIMZ2ZmkEqlsLGxIWCp1WqJlDGbzSIej0szbD6D4vE4IpGI9KiMRCLSEoH1fTabTZgzgrK9vT04nU5Uq1UMBgPMzs7K911VIvC5k0wmRXlAdQOfmwSnZNXYF47GKGTjWU+ZTqelRx6bedPAJB6PS7NvPtNoJPOk4ksH4CwXSiussMIKKx4VzzzzDJxOJz744AMAwNraGsrlMjRNk4SQxiJra2vScsDj8SCRSKBer+P69evCiG1sbODZZ5+F3+/HD37wA2xsbOD48eNYW1vD7OwsNE2TOhJN0+D1ejEcDiUROnfuHDRNQyaTQa1WQzKZlBoPGjEwcfH5fBgOh7h27Zr0e2N/JdZ5lMtlSWSuXbuGU6dOScPd0WgktXehUEhq9vL5PKLRKKanp8XshPKtZrOJRqMhrCClicZ6LDVBNhqAkEkYjUZSr2ZMeFUjEa6S+3w+WbEn26DK6t5++21cuXIFL730Ep5//nm88cYbuHjxIi5fvoyPPvpIpLA8llntm1HqqZ6b+lNljo6SR5r9NPvdrK5OjccBVcZ9GYGD2XjN6ujMmEKzfZkBRaN0UmXQ1G3V5tpG0GbcxiiRZPJM+RqZHtZTGRlV/jRjM1WAR2BDsMgeaqyt4r1MYJ/L5bC/vy99zVqt1kN1ocbrYnYPkKGmWybfM7Y8UGsB/X4/pqenhZmkEqBQKAgzRIliLBZDq9VCIBCQ+ep0Orh3795YrdjKygpcLpdY7heLRem5NhqNsLW1JfLqXC4n+wkGg7DZbDg4OIDb7RZX2bm5OZFEss1KvV6XeeBnuWBGaXaz2RS2PxAIIBaLyQIS50pVEfh8PrH1Z09LSt2LxSKAw7q4bDaLXq+HZDKJWq0m7QIKhQICgQDsdjuy2SwcDoeYxtTrdVlsSiQSwuzSUdTlciEWi4nj5pOILx2As/8MwE1a9bDCCiussMKKbreLO3fuIBwOY25uTmRx9XodwIPkcHp6Gt1uVxq5ejweZLNZtFot+Q9/f38fTz31FPx+P3784x/D6/Xit37rt2T1u16vo1AoCOPDWhKuTp84cQLdblcazLLBOCVGtKtmAhcIBNBqtZBKpaTBbSAQQDgcRq1Wg6Yd1pRcunQJrVYLFy5ckF50dMXrdDrSb+n27du4ffs2kskkfD4fEokEdnd3x2rpyPzRYMFY46P+4/vGpFll5ICHHRTNgBXPj852BHKhUEhkT61WC4VCAX/2Z3+Gzz77DC+99BJefPFFfOc738Fzzz2Hd999F5cvX8bBwYHYsJu1H+BYGEaG7XFq3tT5MO7PGJMAl7oP49jMQJaZvJKfnfSecR9HgQ7jcY3ySyNrZgRkKmBSAZz6umouooIx4EHfMxpm8G8CQOM+zcZoFlxQIIjiog0XOFQnUrJi+XwepVJJeoiprNskxs3IdKosJRdn2MCbMkL1NS6i0FCl1Wqh0WjI84XMEdlBsvFkj1wul3zv0+m0GBu5XC5MT0/Dbrej0WhIexOv1wu32y190/jsosV/oVAQN0bgkM2z2+3wer0CClUHWMobdV0XYMTzYONsSsprtRrsdrsAq0ajAafTKXJzSkuDwaAs7gQCAezv78u9UywWRebebrdFlcBFqFQqhXK5LMYtNGvp9/sIBAJot9tyf8TjcWktwFpASmhLpZJVA/fLDIft8IsxHOlw2C0AZ4UVVlhhxcNRKBSwuLiI+fl5qRMLBoNSG8bV6Hq9jnA4jEgkMrYqPzMzIyvRFy9ehNfrxfr6Op5++mnMzc2JEx1wKEXk/gCIbDKZTIoDZS6Xg8vlQjgcRrfbFfaKIMPr9UrvIZUVYw+lZDKJUqkkltzf//73sbKygmeeeQa6ruP69esYDAaIx+Pw+XyIx+MYDAbI5/MIhUI4ffq0SIqq1SoWFhYAAJubm6jX63C5XGM1IGrirUoOCcJUmSQTerNm4CrrpibARjZOrY3zer3o9XpoNpsIBoMIh8OSCO/u7uL73/8+fvKTn+Bb3/oWLly4gN/93d/FK6+8go8++giXLl3Czs6OsIkcN4ElE3lN0yQ5nwTWjGycEXg87iIyz9n4ebPtJu3XCByMNWZGUPko5k9l0IzHV19X2zRwcYJ/qywX75VJhiEqgFMBjllwW1Wqq57vUeCZYyDLRcaLLBAXN4AHvQ0HgwFKpRIKhQJarZZ8B4zSYXVuzBYpjMwbQQO/43a7HT6fD7quCxgbDAZIJBLw+XzCOLGRNZ8vxsb1wWBQDJZ8Ph86nQ48Hg/u3Lkjxiculwurq6tIJBIADo08MpkMhsMhZmZmcOrUKXS7XWxtbQnj2ev1ROpJE5PRaCTA6sSJE1IvzNo7Lv7Q3p/NsSlpDIVCKJVKcLlcIovlefO7zgUv4HBBJxgMyt/JZBIbGxvweDyIx+NiCJVIJFAul9FoNBCNRjEajVCr1ZBKpVCr1cQgqVQqiUEMa4ABSMNzp9MpPeLcbjeGw6H02yR7+KTiSwfg7D/7wg9GOhz2R2xshRVWWGHF/yJjYWEBPp8Pm5ubqFQqWFhYQKFQQLVaxdraGhqNBqrVKmKxmBgA1Ot1OBwOkfY0Gg3EYjE4HA4Ui0VxTGw2m8jn8+h0OiLpIUvEgvilpSWUy2VpXkuzE8ommZzRpU1tBMxELRQKYXp6GsFgEKPRCOVyGR9++CFsNhuef/55kT3RoIM253Nzc0gkEsLwMekbjUbIZrOYmZmBz+dDNpsdS37YCBd4wJSoCexRtXBMhpncGps5E7AdJQ2kQQMTJzYtJsANBAJSL1UoFPC9730P7733Hr7+9a/jhRdewO/8zu/g4sWLuHTpEi5fvoyNjQ0BbmT2VEMVnt+kOjIzWZ7xdbMwAxoqaDEm+2qY/a2ydSrzZsYmGsGb8fjG1yZJLVVwRuBmZMNUx0jWUJody+gsOQkEG1k19R40mxP1MyoDSMMUdX/83qoSWtaBlctlVKtVAW6U/xrPRZ1fs/fV83C5XLKgwcURv98vklCXyyVOiMFgEJFIBBsbG9A0TcxU1KBxkdfrhaZpWFlZQbVaFcYrn8///9t79xjH0vS87/nIIlm834ssVnVdunt6ZnpmRzvawVjSYLUrQZY2spSNgsRYAVZk5CIrsQDLCeBEQoAoCQIIju3YBgwna1vAyruxIkBaWJIFS3uztKvL7uxOz07PZbu7eqq6614ssni/kyd/sJ53vjpDVs+9qmveH9AoXg4PP55Dnv6e733f58Xm5qYYNj3yyCPIZDIiUBqNhkTBHn30URQKBdy8eRPGGKmV7Xa7IsKA8cIUhU08HsdwOEQ0GpVIFReiKDYpSun0GwgEZOFqMBjA6/Uik8nI9S8UCmF2dlayHUajEcLhsJzPfD6Pvb09iTry/KVSKfk8vB60Wi3Mz8/LZ0gmk/I8r392v8BIJCImKHYKp+OM+202m00xujkrLpyAYwROjUwURVGUaczOzmJ3d1f+M19fX0cqlcIzzzyDWq2Gw8NDJBIJJJNJqZdg5IuRmatXr0odDNMrOYGlTbbP58NoNEKlUkEwGMTs7CxWV1fR6/VQKpVkore4uCg1XbVaDQAkRYkih5MxikI6S25sbIj74ic/+Uk88cQTJyJevV4PuVwOly5dQqPRwAsvvIAbN27gE5/4hET2BoOBTFRjsRiy2axMLpmmyEmWHVHj5Ns2C3FP+t3plHa/MncEa5pYsu+z5QBX+9vtNoLBoEQ1Y7GYTLq2trbw+c9/Hl/+8pfxIz/yI3j66afx0z/90/jEJz6BGzdu4Fvf+hZu374tbqAcr90Hzp0ix3FMEmzTJnRuAeR+3BZDvG2fe7f4Oi2CNimti9Fct7Bwn4dJ588tluw0RY6XAs1+zt6nXddmv880U5RJIoy3bXt9+zV2uiijem6RyV6JFDy22ynPOR1faQjS7XZPtO5wj9U+jqelwtrHilE2pnAy7ZDbMRKVTqeRyWSwvr4u9VmM2vOYMnLMa0Mmk5HvcrVaRa/Xk5RoYwx+8Ad/UIRgqVSSHneXLl3C/Pw8isWiCFVe6yhoeZ3jYhTfn1GyWCyGZDIpLRWCwSBKpRJCoZD0v2y32yKYgfEiFcfO1g1sAdBsNuUals1mJQMil8thb28PnU4HiUQCpVJJjJmYcs10bzpqdrtdbG9vI51OSwaD4zgyFjZk53FnlJDnyePxyHW9UqnA7/eLoDwLLpyA8zKFcqgCTlEURZnM/fv3ZTV1f38fS0tLuHz5Mu7du4dbt26JvfWTTz6JF198EcPhUBzYYrEYgsEgyuWypFgmk0lpYNtut6XgvtfroVKpwHEcseuv1WpYX18XG2tOrJgSyfoS1uGxhxMb+rJur9vt4otf/CK+9rWvYXV1FT/7sz+LTCYjKVXtdlsc3lKplDT3vXbtmuyL6Vvdbhc+nw+PP/44ms2mpIBy1dtu2mu3BuBnJLZAmCQq3BGKSbVlkybn9nYUEozEtdttiV4MBgOsrq7iqaeewk/8xE/gq1/9Kr7+9a9je3sbn/vc5/CVr3wFzz77LH7oh34IP/qjP4pnn30WL7/8Mv7sz/4Mf/EXf4H9/f2J47AjcZMiWO5ImPt5d/TKPh52DZktivhZ3cf2tKjcJMH5IKE0SYxOig5yPPZjtgkHUxvtiBr3MamBti263OOzPz/TC20h6Bb+7mNkizXeZtSZ/9zGNTRIqVQq4oLKRYJpDZsnpZW6n6fAsRc0gDeikoy62yY/wNiAIxaLYWtrSwxFeF2JRCJigMQFnWAwiFwuh2q1ilAohHa7je3tbWkLEo1G8dhjj+Gpp57C3bt3USqVUK1Wsb+/j0KhgOkYpnEAAEgGSURBVGw2i3a7LYtVTE3msaHoq1QqJ+rGZmZmcHR0hGAwiEuXLmFxcRG7u7uYnZ2V9EO6/TKiV6lUZN/2+eIx4L6ZZplIJGQRqVAo4OjoCB6PB6FQCIeHh3KdYj2d/d2Jx+MIh8PS8zMej+Pg4AAzMzNiiFKtVtHpdDA3NydRQJqwcCzBYBCxWAxHR0fynXFHQj9ILpyAY93bYEIxtKIoiqIA4wiZ44wbW1+5cgWLi4u4efMmbt++jWAwiB/4gR/A8vIy1tbWMBwOkc/nMRgMMD8/j16vhxdeeAHZbBb5fB6xWAzAuDVBsViUCS3FGleWGeU5PDyUiTANCdikl+6KnPBGIhFJWWKNXDKZxEsvvYQ/+7M/Q7Vaxac//Wk89thjErFjHZtdB8OoldfrxdzcHIDxBJI1daFQSEQZ07AWFxexv7+PwWCAZDKJTqeDUqkkaV71el1q3Ag/l50OyducULmjS+RBAsUd7eA+aFRAFz72yHr55Zdx9epVrK2tSTrZ9vY2vvjFL+JLX/oSvu/7vg/PPfccnnjiCTz11FPI5XL4whe+IEYKpwmjSeNz355kpOEWRnZ0yK4hm/R53ZGpaWNwPzbpuWnY0aJJaYCTDEns6NqkKKM7RXLaMbG357hpfsPJvi26JtUM0liI58/n80lEhYYc9mcZDAbSmJltNLrdrtS32m6p7oUJt/h1H0duY6ePcvy8JrCuyufziakGMG68nUql5HoCAD6fT4w/bJOSYDCIw8NDfN/3fR8ef/xxvPzyy1hbW0O9Xpc6UUbGCoUCLl26hEqlgs3NTezv7yOTySCdTmNjY0MMRmyLfKYV+v1+SSmkqOGiFbMQ7t27h5WVFVy+fBn3799HKBRCNBpFtVpFtVpFOp2WWjrHcSQSylTGmZkZMTDh4hXbEQyHQywsLIiQ8/l8koIej8cl4shx8TrAdPDZ2VmpFXYcB+FwGMlkEo1GA/F4HPF4HLlcDl6vF4eHh2Ikw98p3X4Z1UylUjg6Opr0M/pAuHACzmuZmCiKoijKJMrlMgaDAZaXl5HNZvGd73wHr776KlZWVrCysiKpRbTzHw6HWF1dxb1793Dz5k0UCgWx326329jc3AQAWaWtVquoVCrIZrNoNpsol8ti/sHaCRbpc9V/aWlJzBW4Eg1Atmctyre+9S1sbGxIb7pcLidiDIBMQpn+WavVpGav2Wzi0UcflRoVvhdTwxgB5PjodAlA+sEVi0WZuDDliZMvx3EktXJmZkYifca80QDbruezcQuUacJjUsog3T7pDlipVPCd73wHyWRSentFo1GEQiGZqH/lK1/B17/+dVy5cgXPPPMMlpeXxeykVCrJeO30QXtckwTVaSJrUiTOLeDcYgnACdHr3h/HQ3HsPnaTnD3fCpPE2KTom52qaL+WY3anVE46LtyXOxJo79vtFur+brCOlMKS7TE8Hg8ajQY2NjZkOwDSIqRWq0lfMAo2u77yNLHsNorhc27xahv68PdPIxVGeNigmj3bstks6vW6GKzwt1SpVERQzc/Pi6EPU7vn5ubQ7/dxcHCAer0u79fpdKQP5M7ODnZ3d3H79m1JJ9ze3hbRyP56AEQoDQYDVKtVSSOkKyx/33NzcxiNRrh//z6MMbh69eoJcdPv97G8vIx2uy2Omd1uF6lU6kQU1e/3S/81n8+HSCSCfr8v27ZaLUmZZi83HjumUdqiOBQKoVwuw+MZNwTndZnijQtYg8EA+XweiUQCr7zyitT38fsSj8fhOA52dnakzQE/w1lx4QSc1sApiqIoD4Irs8YYfOMb30CxWMTly5cxOzuL9fV1FAoFZDIZ6amUSCTwzW9+E+vr61heXsaVK1cwMzODer0uKU6hUAjhcBjFYhFra2tiFMAGto7jSMF+u90WNzU2uk0kEgAg9RZ2ahpTqPb29uDz+fCRj3xE0n88Ho8YB5BUKiWW39xnLBZDoVCA3+9Ho9GQfdMljimTTNPM5/O4desWFhYWUCwW4ff7US6XUa1WJeWJdXI0A2GUj5MiChru950ItEnPTYqC8D3r9brUJjK1KxgMyoSOjc4Ztfvud7+Ll156CeFwGE899RSeffZZ7O3t4f79+zg8PJQJM4A3CQkbt/iYFmGyhckkQw13WqHbLGbS+9piyY5ivhsBZ6cu2o/b4tMt6Pi+09oFcL/uxwnfj33ZbGHKf3ZkjtG5WCwmE362vigWiyciXtxvo9FAvV6XqCxr2+xauElpvZMiou6FBPs7bqfDcsxcjDHGSDsM/pYYhY/FYuKSCowXTvidZpSe0aJarSb3O50OGo0Gbt68KX0gQ6EQ/H4/HnvsMfj9fty9exczMzN47bXXkEwmZSEnl8shkUjId5L2+qxfq9VqUh8IvGGWAkAEHa9lzWYT+/v7WF1dxdraGjqdDlKpFPb390/0qeP1zq4FtKPfNEYxxiCTyUgfQC56sT0ARboxb7hj8phy3PPz89LsPRwOY3Fx8YTLLZuR37lzR9I7Z2dnpe4vFovh9u3bIuxisRgODg4kTfcsuHACji6UGoFTFEVRpsHC9ddffx2j0QhPP/00KpUK6vU6lpeXxemtUCig3W7jhRdegOM4ePbZZ3Hp0iWMRiN0Oh3cv39fzEr6/T52dnbw0ksv4fHHH5c0otFohEgkIkX53W4Xc3NzEu2iOUE8Hpf0H07euMJMu+7BYIBIJIJIJAK/3y8TQ9qFO44jKZIApF+SMUb6O+3t7UnxPht6G2NEJJbLZSSTSdy9exf5fB6ZTAazs7MoFovodrvSQqFarcrklBPOQCCAwWAg7wm8OWIxKQrnFjvuKBexjU6miSRbyNFCnQYyrVYL1WpVonE0PaB5zFe/+lUYY7CysoL5+XlcvnxZnEppjmCbZTyoBsodnbNNSiY1sj4trdA+NrZQOO19bdFzWmRwUnropNRYOxpnR28nic5pY7OjbdOiVUzRs4UUt2Wa5MzMDObm5pBKpZBIJMR05ODgAJ1ORwSeMUa+DzyPtOOnXT1T9CaJ80mLBfZxtZkURXSLSP5jv7ZoNCrHkREovs6Ycd1ZsViUBRO63Rozbubt9/txeHiIWCyGz3/+83Kb+7969SqKxaJEz4rFooi1RqOB5eVlZDIZORYej0fSFCnOmGJNkcaoHBdCbOF1dHSEcDh8YvFqd3dXeq9RADmOIxEsYwyOjo7k+pFMJuWcZDIZqb9Np9MS+UomkwAgIjwcDst1JRQKnWhVMBgMsL+/L2YqhUIBa2trYnZUKBSwsbGBUqkki1qMWmazWezs7KBSqUgkj8cnnU6/6fvyQXHhBJxG4BRFUZQHcXBwINb/LIr3+XzS1Jt1b4eHh9jc3EShUMDCwsIJm/+DgwOpf6NV/t7eHq5fv46FhQWsr69LjUksFkOxWJRJYrPZlOhLv9+XlWSmVTEViBO6Xq8ntv9cOac1t50+yWbX3C8nU+FwGI1GA0dHR2KiwMbhXEUejUbw+Xy4dOkS2u22tFoYjUaYm5sTB7nBYIBarSZ1JtVqVUQn05+Ak5NZe6JrO/lNiqbZz51m2DHpNW5obNJqtRAIBETEdjodEXXBYFCc+5rNJlqtFjY2NqRGJ51OY3FxEQcHByIA2ANrkvBxf253CiKFjx2Fs/dhi7lJ+5km8ialWZJJ6X726+xInbvPmv1e9ljdxiJ21G3Se7iFjVu02u/ptuq3a9u4GEL7+larhe9973uo1WqSgsjvNM14GG1jDRkXGZgqOQ332CY97xbU/Lz257FTcGlcQvdJiiCmIHs8HrTbbXGldRxH0v1YAxsKhcScpNPpSCSt3W4jl8uJEUihUMBrr72Gq1ev4tKlS1hbWxOTjk6ng+eee04WPJiiyEgVF474W6F7JIUaHSZbrRbC4bBEvkKhEAaDAW7duoWPfvSjuHHjhpiG9Ho9xONx+b6xGTfFEYATqZlsxk0zErY9YMSuXC6L2yXTIZnCTqMVGp14vV5Eo1EsLS1hc3NT3H6vXbuG/f19bG1twXEcEZ0AJPJXKpXQ6/WwuLgofQHZUuasuHgCzssaODUxURRFUSZTr9exuroqIoRpdpwcLCwsSNQrk8ng0qVL0sj66OgI3W4XsVhMehTRHe6pp56C1+tFpVJBo9HA3Nwckskk6vU6wuGwbEdzA1pXx+NxSa2k0GBdF1MTQ6GQWP7bk067AS6jcJxkcKK7u7srrmrBYFBS0HgsvF4vOp0OjDEyFo/Hg0QicaIGh6lLhUIBBwcHYgjAz2WMkUgBJ6NMpZzUsJvYQmya0HDzVrdnCifHHggEZNJMkWynwHIiW6vV0G63ce/ePQBAIpFAKBRCIpGQmiAKgtMEEsdgR63sdgzAm50byWnukZPMYGyRZKeInSbu3O9jiw4b26zEHveD9jcpRZLfGZ4bbseIGT8fU+FyuRxyuRxmZ2eRSqWwtbWF7e1t3Lt3T7bluLnIwP5mjUZDHqNw4zlzj2/agsGkNEr3AoM7OmkfC/u80G2RkfR+vy/1emyHwUWeer0uYiKRSGBxcREejwflclnqx3i9GQ6HiMVi8htntG15eRn5fF5EoeOMHVw//vGP44knnsC9e/ekSTndOYPB4IkeizT0YFSKrpLAOMrP45BKpeDxeHB0dIRMJiM1Y2xHQGHJffF3yQUBmksNBgOpV6UoYw83AJJxAIwFH6P6uVxO3C65qMQ08kAggPn5eZRKJfneXLt2DZ1OR1opcBHN6/UinU4jFArh7t27ODo6QjKZRDAYxObmJjwez4lMh7Pg4gk4jcApiqIoD2B5eVlWhIE3HBlZgwJAajcikYikD7EgPhKJSLoNU7UWFhbQ6XRkMsRIAZvWMpVrbm7uhANeLpeTRrKRSATRaFRquJiaGQ6HpfaDLnTcXyAQkEbjnMj2ej3Mz8+jVqthe3sbvV4P5XJZUilZZ8doWiwWg9/vx97eHnK5HAqFgky6GClg3Q1FJhvfHh0dibMmJ7acnPP1dlTOxj0BttP93imTUgXtNE729GJUjrWErDGiC9/8/Ly4Wvp8PnHg5L55rux+e5yUuuuo+B3j5N5t8GH/tY+H/df9nLsH36RtbCF2Wh2dG7cAs9M/7bRP27BkUrTQPX53JM9OI6WAY9Qkm82iUCjId393dxd3797Fq6++KpFeijf+Pnu9nog2u3fbNOE27fs3KW3Sfo37/qS0Wvt4ccGGvz1eVyiM2Eet0WiciGLz+AQCASwuLqJWq6Hf7+PSpUvw+/3o9/vY399HIBAQY41cLodyuYyDgwOsrq5iYWEBlUpFovSj0QjXrl1DJBLB7u7uibGyrtc2halWq5J+zHN+cHCAbrcLv9+PTqeD4XAoKeC09K9WqyiVSrIgxAUsOvL2+31Eo1E5P6FQSK53bDjO9iYUnTy+tVrtxO+JDsFs+UDx32g0pO3C/Pw86vU61tfX0Wq1cPnyZQyHQ0mjp3BjdDGTyeDw8BC1Wg2RSATJZBLFYhH9fh/pdBrRaBR37tx5S7+n94MLJ+BYAzfQPnCKoijKFDihCwQCYkPPRtz9fh+NRkP6n9HwgPbZnBiyjiUajSIQCKBUKkkfpUKhgFQqJWk6fD/WrtCKOpFIIJfLyftFo1Hs7u7KJIj1IowY2YYj3W5X7Lc7nY6kXwKQPlGbm5uIx+MIBALY2tqSfnX8vJ1OB9lsViKRTM+kMPD5fOh2uyiVSrIazwliPp+H4zhiyMK0UH5eToaYEkpR4xZpdnTKnZb4ToSce3Lthu/d7XZFyDEKRyE3OzsLv9+PaDSKRx99FJ/5zGfw/PPP48aNG7h79y76/b5ERyn6eZ7ofGfXFOVyOYkKNZtNdDqdE9GoaSmYZFoEjQKZtwkNSOz7doTIjtrZRhtuQWJvY5ty2MfYnQI6LRXU/kx2PRh7mCWTSaTTaczPz2N2dlZq2m7evIlyuSzpwoxIAxDBwN8TU2BpRsJz4F5AcB9f+/PbKY+TxJobW6TZ9+20SbYz8Pv9SCQSUvdGp0n2TGNtFccbDocRiUSkDUKz2cT169fh9XrR6/VQr9flGsQI1t7eHvr9Ph555BEkk0lpWM1/uVwO4XAY8Xgcfr8f+/v7MGZsqsJoOdMnWfMGjH/T0WgU9XodwDiiValU4PV6JSpNYxFmKtAIZHl5GaPRCLVaTcbD74DP55NaXV5Ld3Z2JCvC7/dLb7dAICCGJfzu1+t1aXPCazMjkTSn4bWUdbzpdBo+nw/37t1Ds9kU8xOm3+bzeZRKJWxsbKDX62FlZQWj0QiNRgOJRALxeBz37t3TNgLvJRqBUxRFUR5Eo9FAMpmU+jJ7xZ01X4FAAPv7+zKZ4ISFIox91hzHwcbGBmZmZnB4eIh0Oi0TgGq1KtEtikNG2oLBICKRiDjQhUIhKZa3U6G4ys1oG5sLx2IxGGMkBcl27uNq+9LSkkTystksgDf6SXECxD5N4XAYc3NzsrLPdC6mXjFtsN1uI5FIYGtrCx6PRxzeaGzAiRBNCGyhYk+M3Wlpk2rKHiTiTptUT3vMvT0nzBTBtHW3ow6/+Zu/iUwmg2g0ikuXLklrBkZ1mE7G+qZkMoknn3wSfr8fq6ureO655yQNbGNjAxsbG9jc3MTa2pqk5HLSPimi9lZEnv35bPE26f4kk5FJAmxaiuekerdJ27ijdfye03wkEolgYWFBbPCPjo5w9+5dSb3jseB55gSdxiMU4IzoULSxvo2/52kRWfd3wn0dmPSaSaKO33N3+wQKXKYN0jzH5/NhZ2dHvmOMGoZCoRP1X0ybLpVKCAaDuHbtmizAbG1tSSYBf3PdbhfBYBBLS0sYDAbY2dmRsbCGLpFIIBKJIJvNisChQKLhEiPVzC6geGMUPxaLSQbC7OysCOZIJCLXqrm5ORlPKpXC9va2HD/bYIYLSc1mE/l8XrIEOp2OpJhy20qlItcax3HQarWwsLAgrRNsMckFmoWFBaTTaZRKJUkBpRBltoL9HoVCAd1uVxZqlpaWEAqF8Oqrr0orhn6/LzVzZ8WFE3BB//gi1epOTilQFEVRFJqAMOrC/4iZuhUOh7G1tYXd3V2pGeMEyHEcVCoVaUp7eHgo6TzXrl1DLBbD/v4+Dg8PT/SmogU2G24znSgcDgOAFOMzlcd2imNfOPZuo8Nbu90+IZSYNsT+Uo7jiEBkKwMaPTSbTenflEgkpJaEE1Dal9Mw4bXXXpMoE1Oi6vU6+v0+Hn/8cbRaLWxubkpkgC0FAMh72s2Y3ZGaSdGRB02Q3M+7o3u2wHOny7lfOxqNRBy0Wi2ZeNdqNdy9exfhcFiOJS3f7fPX6XQkjXJnZwf37t2Dx+NBPp/HjRs38JGPfASLi4u4cuUKPv7xj8Pn8+H111/H0dERNjc3sbu7K+Y6dEqkWLejY+7jYze3tsUw/9rngJ/dFhiTIm7Am/u82ZE2ewx2PR/fjxFMTngTiQSSyaT0GmOq3sHBAe7cuSN9F5nSbEfZRqMRhsOhGG/Y//jdZ12o7SY56byf9h2a9F1xR9bs17gjjPYCCsfNqL7f70ckEpHI/dbWlvxeGa1lFA6ARN2GwyGKxSLi8TiWlpZE2JRKJak3cxwH6XQa29vbGA6HSKVScq6q1aocP25PF8UvfelL0ivSduDk943tQRhNr9frInLoAkmhxKbiNIXhAg73TxdK9ra0I339fl/aC+zt7SEWi8mxs88dMyAouDqdDuLxOGZmZnB0dIThcIi5uTns7++L0FtaWkIul8P+/r5kXHDBipFwXnP7/T7y+TxisRheeeUVGGOQzWYRjUaxvb0tCw8+nw/b29vodruIx+OnfrfeTy6cgEuExs5D1Xb/jEeiKIqinFfsCSfrwSKRCAqFAgKBADY2NnB4eIhsNotyuSy9poCxi2KhUJCJCVMIs9ksvF4vtre3ZULCqAMna5wMG2PEeMQYg3K5jEAgAADSyLfX62F/f18c69iYNxwOYzQanajpoajghIdRNLunXDAYlNdwgry3t4fV1VUEAgHU63WZzFDEMKXp0qVLJxwzg8Egrl+/jueff16MFiqVCkKhEO7cuYNOpyMTQE7+Obl2iwZjzJtE3YPSKKdNrN37mDZ5P21S7zjOCUFAoxqmWvJY87zyXPJ8UlCwNq5Wq+GFF17ASy+9JNG5VCqFTCaD1dVVrK6uIp/PY2lpCZFIRNJSmUJYq9VQLpdRq9WkJocptHaEiQKCESG77s/+6xZgwEl3Sf4+KEbsOjVO4Pkau3cZaz4TiQRSqZREnSgyGo0G9vb2cPPmTTSbTTSbTVmAYOSMvy9blPG7yMiOLdpYe8h6uEnndlI01/6OnBatnXbf/q7w8/H48HvHdDyPxyMpfBQb3H53d1dus/n07OysRIh6vR4KhQLS6bQ43bJejDb68XhcokPZbBYej0e+tzRGYVQtkUjIIoGd+sxoJb/nACR1kgtFAKRJNgBpwcHrGr+T8XhcHH4HgwHW1takrpGtEni+2N5hOBwikUjA7/fL4gnPP69VPAehUAitVguxWAyBQACHh4eSFVAsFmVBbX5+HpFIBPv7+2g0GpiZmUE6nUaz2ZR9UWBzwSyXy+Hu3bvSoy+dTov7bDabFeMqpq9P+158EFw4ARcPjgVcRQWcoiiKMgWmJbJgPR6PI5PJwHEc3L9/H/fu3cPy8jKKxaJYbDNNiwYfBwcHWF9fx8LCAq5cuYJ6vY5bt25J+hYnc7FYTCZDnNyFw2FJ4SyXyyciU6lUCu12W8wJWKRP8QBA6jm8Xi9isZiMDYBYqLMmjqvpyWQSrVYL7XZbTBO63S6WlpbQ6/VEKHY6HakDY+PhUCiE1dVVbGxsAADm5+fFCOC1115DNBqVFfiVlRWx4eckm/2eOAm164PcqZR2iuU0pom3t4O77ssdYbH/sfcUJ+F0r6SQY60b//G5Se6SR0dHKJfLuHPnDv7yL/8SgUBAapJyuZzUgkWjUcTjcRQKBUQiEYmoMm2wWq1K3ZQdOWy1WmKZz4gWBR6dBW0XUwoxijTWJfl8PnENpDilUyft71k7yM/ZbDalp969e/dQqVQkdY2GIkwz5DjsCBt/O0yPtGvY3MLOdmOddA4nneNp0bZJ3yP399LeJ7Gjjm4THz7GKD8jOazJYtsDWyzzHHAB6OrVq/K74m88GAwinU7D7/ej3W7jlVdekQgYF2wYgWJd7XA4RDablXRfYwxyuZxEBXlsKZKZjslIPL/njK75/X6J7jG7gKYmh4eH0m5lf39faswASKN1v98v79dqtZBOpzE7OytZDqxpZJ0cXSc5HtawlUolEX9c4BgMBlhcXEQul0OpVJLfyNLSkvw2eK3ksY1Go0in05LCHggE5JpPR81MJgOfz4fDw0NJuaQT5llwYQWcRuAURVGUaXCCxFQl1k0Ui0XUajWxm2bftXv37iEUCmFxcVEmqIeHh1heXsb169fFHS8QCCCdTosdNq3POdn0eDxSY8W6D7o6svEuJ+KswwIgf+30oVarhXw+L6vZbALOidZwOES9XhcRyGiIMQaZTAbGGGxuborVONsosPbIcZwTNTl+vx/Xr19Hq9WSPkjRaBQrKysYDoc4ODhAPp+H3++XtE+KDNZhMVpk17sRTqqnWfK7J+E2DxJ07oiLez/T0jbdEUEKYraYYJTFTqlkBMSOWvFx+xxwLMPhENVqFUdHR7h//z48nnFjdooAnv9sNou5uTlEo1Ekk0lEIhHEYjGkUikRWxTvHCvPI0UoI1p8juO20/7s11PccXJOUc7aSEZzjo6OUK/XJSJGAcb9cRHCTm/kOFhLaAs2CjuKOwo8LghME2xugTYpJdJ9f5K4m/Zdst/TjrzZEUxb5LMNx2g0wv7+vrSuYBScCzJsl2CP7cqVK5KyzEUQOp/aEbyZmRksLS0hFotJj8pEIoFGoyE93ebm5mQRiMI7kUhIlA6A1IDyHHNciURCTJwYwWIfSNbw8XgcHR0hFAphdnYWR0dHWFhYwN7enpgh5XI5WWxgPVo8Hpc6uHA4LO1MmC6ZSCRECPM7SRdgv9+PbDaLra0tdDodua6xpyN7w83NzaHX68l1n8eSJlFsBF8sFiVSFwqFcPv2bWldkUgksL29jVqtBsdxJMJ8Vlw4ARf0eeH3elBpqYBTFEVRJsNVcZoC7O7uSpTI7/ejXC5LDcp3v/tdJBIJafjNlefLly/j8uXLeP7553Hnzh3Mzc0hl8tJCiIjMUwbovMjC/1ZgxGLxSQaRxtxTlgY2aCwYkoW6+1qtZqYIDSbTcRiMZlYcqLFiB5d7MrlsqRpsUaP9WycMNF9jRP8eDwuvek4iapWq1I3whQl1us8+eSTaLfb+OY3vyntGZgmx8n7tDRJfj67vouiz50O91Yjcfb+T3vNg+rk+BhX8N2ROU7EWcdIAWSnzvIxCj9iu0nak2JGaUqlEr73ve9N7OtGsc/eYkyb43fIFhiMWtkW7RRWdqTLjphVKpUTkS++P5+3j40dKeM2FI62QKNgo5jh+eb2dsQQeMPkZpJoOy2Ndtq5nHTOp+3PjR15s88ba1WZVsrjwdq2cDgsx8aOeNpReqbZBgIBxGIxWQCJx+Py/ep0OlhbW5O+hLFYDJ1ORyJvc3NzcBwHxWIRqVRK0pyvXr2K1dVVlMtl7O3tSXokF2T4u6Og4rXMmHF/SAovNtKmIyUAtFotGePm5ib8fr8YhbRaLRFBh4eHGI1GSKfTItJo0sIoWygUEvHF9+Pxo8srF5gODg4kWsf6W8dxsLq6CgCSFspaQzYc7/V68Hq9WFhYkPrT2dlZJBIJJBIJvPrqq1JHR1Oq/f19uQ6dZfokcAEFnDEGsaBPI3CKoijKVKLRKPL5PGZmZvDaa6/h8PBQIhl0catWq7hx4wby+TwWFxext7cn6Uf5fB75fB4vv/wyvvvd72JlZUWa7B4eHooBRrVaRSqVQigUOmFkwOgfJ25M1eHKs20MwdoSutdxjNvb22g2m4hGo1JDw30yUsHJj9tdkTVxjz32GGZnZ8VdjiYodu1HPp+XyWWtVkMoFJIJWDqdxosvviiTKU48Z2dnsba2Ji6XnKgzbZMTVwqHB9W6uW3v7RQ8d/Ts7dTN2ZP1aeJtkrmFe78ATggcLgZ4PJ43iTm7rsz9l9tTqBNGo9zROx4HOu5xQm3MG02xgZMNtzn5tKOhdkql/Tlt19BJrQUosvj5KQIZUaPYZU2gLcrc//g49zHpfNjnetJ5n3ReOP7T6iZPE3HTJur28eV54W+Nv2mes0QiIemJbAfCc5JMJnHp0iURt7wOxeNxiSLNzs5K+xBG6Omm6PF4pB8ja1R3d3fR6XSQTqcBvCHwo9EoIpGIiKNutytpgIzIBoNBqSPjsWN7DduYhWKO0ODj4OBAFhD4fWYq5+3bt5HP58U8iW0TWAvMz80FDNYF83q2sLAgKYzxeBzlchk7OzsIh8MiOoE3Fg3C4TDW19ffZJ7CtMxCoYBKpSI1yIwIbm1todVqYXFxUdw0Nzc3JYXU4/FIlsRZceEEHADEgzOoqYBTFEVRplAoFNDpdHDjxg0Ui0VcvnxZolFerxd//ud/juFwiMcff1zSdbg6TLOJl19+Gbu7u8jn82Jg4vV6JU2IdR2hUEgiLbSbZwTQ6/Xi4OBAUqs4yeSEkBPyaDQqqVTGGBwcHIjJCh3U2PqArnE0DaCBAlMYmWpJww2aYrD2hhEjTgw5AWcEkIKk0Wjg4OAAsVgMW1tb6Ha7SCQS0sfJ6/XikUceQbfbFXMBRn3YcsCOCBF7sm5HXex/AN4kaNyT7kmT9dNqpCYJtdNW2SdN8Ck27YgSU8JYz2NH6+y6Ofc/+7Nye74f71NE2IKOr2Eap/353DV5boMT9+ewPyMn0dyWQo1ii98tW6DZx4H37Sibna7nPofudNdJonpaKqWdZjntXNmfddK5nRTldde82dFQ9mRkLRdfw7RAO02U4igYDErjeF6HgPH1iemPXMRhyxO6fDJSVyqVJFpOB1z2dLQFV6lUwvr6urjdsnUBU7xtt0mmWdbrdYka8nfKrAJGvZjuG41GcffuXQCQvocAkEgkJKXSNmC5c+cOPB6PWPzbLQxobMIU7l6vh3w+j/39fQDj2jWfz4disSjRR2AcVY5GowBwwhGXNb5Mxc1ms1hdXUW73cbe3p4I11Qqhd3dXZRKJSwtLSGbzaLZbGJ7e1vSTXmNtX+TZ8GFFHCJkB+Vdu+sh6EoiqKcU/b29mR1+9q1a1KI7ziONL9mT7RisSiToEwmg0AggN3dXXi9XqysrIjJSSQSERdARrtshzbWhdFsoNVqYW9vDwDEop5pSwDEIZP74ASOzn1sut3r9VCtVhGPx2XiadcV0eaeERF+Vttshe6ZdKFkg2FSrVYRCoWkTq9UKqHb7WJlZUUiCqPRCOVyGc1mE5lM5oSLXTqdxp07dyQCwbQ54M1iAXgjZdJ2qrSNT5jG5/V6TzgucttpYm7SfY5hmrhzM03Uud/D/su6OGJHsyjCbOMLW8TZoswt7OznKOzIJAMVPs6Jpy2ibHMR9+eyzUZsEeZOn3QLNfdrbVHHhYpJYnmSOHOnwdqfe5owe1CUblpapXt7e4x2qwA+z987jz/PG6Phg8EAPp8P7Xb7xPllfWGj0cDKygqMGfdAowkNzTuMMej1epibmxNhzrRrjmF2dhb1eh2dTgeJREJMYa5fvy5mMpubmzg6OsKVK1dExNH90uPxSH/DSCSCYrF4wvEWeMOEiC1C+Jkdx5HWCIlEQloO8PU0Jcnn8+IyyRpamrmEQiE0Gg25PkQiEblOJRIJcY+k6dTt27clBZguuDTaMcbIYpn9nWdLmJWVFXi9XjFbMmacxlosFrG1tYX5+XmkUqkTRkFcDKN4dbc5+KC5kAIuHvThoH52zjCKoijK+ebo6Ajtdltst9lbqdfrSRpiu91GtVoFMF51zmQy6HQ62NvbO5FSyMbdTK+kCKIlfLFYPBG1cBxH+hCxDo3RMZqfDIfjPm6cENM1stFoIBAISMpRv98/YXLASQVbBjB1qtfrnZhkMnLCOj0AWF5eRrvdlpQtpmfdvn0b169fl9YEdM2MRqPodDpot9tYWVkRswJOeuy6p2AwiPn5eczMzGBzcxO1Wu2ECOHnt6NxdhTEFjw0g2H0zh2dmSTO7H3yr1s0nhaxmyQYbCHCx+3IoTti6Bas9mv4ubkAQAFgCzlb4HG/tpHGaVEpOyXSjT0u+7Yd6eRf+zO7I2w8N7ZRifv4uPftTtWcdJ7c52ZaOqT7cX7WtxJNtTntvSeJYtsYhL9Xn8+HdDqNVqsl0Uua3tginQY3vGbwOtLv90+4U7L5drPZlEWg4XAoLS6A8SJLMBhEMplEp9ORRZd4PC6/R2PGTqE3b95EIpGA4zgnHERp/sFFGDpa0piENbo8LrwGMBUyl8uhXC4DgNTPMeKfyWTEGTUcDuP69evSUoI96srlMjweD1KplFzfeB1i9H5+fh6vv/46qtWqZBqwno/OuYyW8RrI4wsAi4uL8Hq9ePHFFyVCWSgUsLe3h83NTaysrCCdTqPRaGBzcxPBYBCO44jZDxesbJfXs+DCCrjb+/UHb6goiqJ8KPF4POJY1uv18Prrr4ub2+zsrKRM0t49mUxKvQVrOwKBAObn55HL5aQeghPYZDIpUS3W1xljTqQEhcNhiY5RlABvTBg5OaCJBFeAmYrHFCVjjNSZhEKhEz2dksmkPM+V6Xa7LZNMTjjpMhgIBODz+aRuLRqNYnl5WVaeS6USarWa2KKHQiEEg0F0u10sLi6iXq+LHbff70etVsP+/r64xXW7XWQyGYkkclLMyeW0aJwtGGzHRFsknBYZs0WXe7/TXmNvc9rkf1pUxxYAnLDbtvd8zm1KYgs693GwhdukKJw7QmfvY1KkyhZYkx6zo2l2WqKdSvmgY+g+VpMenxT1s8fqjtRNi6Da20xKozztnHMbvh/HNenY8v0ovmjGwd9dPp8Xs59JiwX9fl8s7OksyT6TNONwnHE/QBrTHB0dAYAImlKpJOmPTMHOZrNYW1vDwcGB9JPc2NhApVKRxQHClPDBYCA9B+kMyXTsUqmESCTyJlHE6BkbqjM7gQZJjBzatWw0Y6EQ4u8/lUrB7/djb28Pg8FArg/NZhPZbFbs+j0eD+bn53FwcCA1a36/X0xMKKK5cMRUUDYG5/EJh8N48cUXxVRqfn4etVoNxWIR+XweqVQKsVgMOzs7sojW7/fFWIWilILxrLiwAk5NTBRFUZRpUKBQzGQyGSwsLMAYI72EOKniSjqdKWnZHgqFkMlk0G63xSa72+1Kgf7NmzfF2joYDMrqe7fbRTAYFLt9O6LEKAtTiCjePB4PksnkCTHC9MpAIIBms3liwsheb4yGMGLHOhcAsjrN9CUKvGw2K5N4Cj86xW1tbcljrDuhQQrH0mg08NJLL8mxc5yxWcLOzs4J0Vyv1+Xz2yl19rHgaykkbMe/SdEd3rYnqpPE02lRGfdzbiHh3sae7NtCg5P2aWLALVbtqN40wWhHutwRIvdnmBRts4+HvT/bVdJ+3H5f+7O/ndTEScLZ/juJSQJ00r7t+/axe1AkctIY3VFcfv/tY2RHPLnYwQg4yefzYlff6XQkdZS1sM1mE/F4XDIAVldXkc1mEY1GUa1WxeXWcRxJ2aZzI51gWcc2MzODer2OZrOJn/zJn8T+/j4qlQpmZmawuroKr9eLvb09idQPh0PZBzBOidza2kKpVEK/38fi4iIymQxmZ2ext7cnAo+tEPgbZH0dTT0KhYKYN/F9qtWqXCer1SoSiQRGoxFisRjK5TKOjo7w5JNPYn19XWreGPWjAQuPHYVeo9EQw6VgMIiDgwO0Wi1xjvT7/eLuy8/XaDTESTcUCuHVV19FvV6Xnov9fh/3799HPB5HNptFNpvF5uYmBoOBXFuZds7jxgbriURi6nf4/Wbyr/shJx70od4ZYDg6u9xURVEU5fzCujHWf6RSKQDj1EqmDLFhcaPRwM7OjhgHxGIxSU1stVpwnLFl/9bWFtLpNHq9Hv7kT/4E6+vrMsFh+g5bBHA1F4BEwDh5dhxH6tkqlYo04badDLkqPxgMUK/XkUgkkEwmxYTEdqDkJIO1K7aIsF3y6HJpG2MEg0EMBgPs7++jVquhWq3K47bosmtjPB4Pvv/7vx8LCwvY2NiQvnIcczgcRj6fRzweRzQaPVHnxxRPOr1xfO5m05xou1MK3aYCfH6SeHMLwEmRqmniwS0E3PvhuPkZ7Pd3CyFub9eUTdq3PR47vdEWcu40SPdj7uPlTpO038cdbbJTJd3bPei4ucc/KfLn3sbe56Tj/qDX2vcnRR/dz9nng9E19zb2czMzM9KgmtHybDYrCzpsvM1G2GwrMDc3h06ng0gkgsXFRSwsLEgNLMWCHZlrtVoSLYrH41Iby7FtbGwgkUig2+1KejMjgDT9oMgMh8Po9/tyHg8PD9FqtcQQJZFIwBhzIj2Rv29+9kwmI2IuGAxiZWUFtVpNMgTq9TqOjo5Qq9Uk0hYOhxEIBCSSyP51bCkBAOl0WoxbmALOOjbWztGghaYoFMOZTAahUAitVksW4PiZZ2dncenSJWQyGdy9exfFYlF6Kfb7fdy9exezs7OYm5vD0tKSiGD26jTGyLWfYpaLabyGnwUXNgIHALV2H8mw/4xHoyiKopw3tra2Ttjyc1W7WCzKyiwnmUxV9Hg8yOfzUo/BSBJrIq5evYrZ2Vlsb29LbVsul5N6FYo5vo6wQTLfIxaLodlsolKpIJVKSXoW613owFapVKT3EgBxlLPFg+0s2el0pE4uFovJZJ5pX8B4gk/ThUgkguFwKA6VnBQ1m01xf6MpgB39MMbg6tWr2NjYwMrKikxkmerFVfpcLnciEgVAUscofOxInC0iJqU42ilivG+bh0yrs3KLPO5vkvCzz5MtZtzRQTt1zj4uAE6Mn/ft/UyKWNnvNy1SN0002Z/H3m5SNJG1iHyNWyBOum2/z4NEmfu82bWC9vP2a7iNu2WEe7/TIqvu42ljHwP3wgDf2y14GW2muytTCufm5lCpVBCPx6XROQCJWLdaLXG0TSQSWFlZQT6flwWbvb09idjRwdY2UGJdbiQSkZTtF198UUxH9vf3cevWLXGwLJfLSCQSCIfDaLVaIiA9nrG1f6lUkhTHfr+PdDoNj8eDer0ux6zRaMjYjTHi3svFIda8cTu2JaABC8Wfz+eDMQatVgvtdhuFQgHGGGxvb8u1hteH+fl5ifj5fD6J2JXLZbmGNptN6S3HRuA0g7HTWwOBANLpNMLhMO7fv4+9vT3E43HMz8/D5/Ph7t27SCQSiMfjuHz5MnZ2drC7uyvOvgBO1Ds7jiNp7ACkXchZ8I4FnDHmEoDfBJAHMALwWcdx/okx5tcA/DcAiseb/qrjOH/4bgf6dkiGxwLuqNVTAacoiqK8CZ/PJ5b3pFQqIZfLYWFhQVISO52O1HzRhIN9jrgynkqlkM/n0ev1cHBwIGlC/MdVeL/fLxO7aDQqj3OCxkjU4eGhFPZzEkEzFU6y2u027t+/j0KhIM6PV69ehTHjwn+/349KpYK9vT2pv+PnAHBC5HGyxsk7x88JLSdRnNhzIsqoHffHdKZLly7B6/VicXERkUgE6+vrElmYm5uT9gbAG/U8Pp9Pmh2znQKFZKPRmFiLxcm3u+7LttunaYwtMgn3YQsbO43TrksE3mwEYr/WFlgUbxQctiialPbpji5NSuG00/jcn+O0tEB3lI9j4fcNwIlG2vZ+3KLHLZbcwsgt8Pgat/id9Bknjd0ex2nPnbZPezv3+Pm9cUcV7SiubbDDSAyjxbOzs+KgmMlk5PfVaDQkcmSnIKdSKZTLZUQiETz99NOIx+MnIlVsME1xWK/XEYvFRKDV63UEg0Gph11bW8P6+joKhQLW19fxsY99DPl8Hv1+XxZzKAKj0aj8xv1+P46Ojk706QuHw2LHzzq4er2OSCQi/evogEnRl06ncf/+fUk3Hw6HqFQq0k6EUTSPxyM92hqNBubm5jAzMyNmJwsLC6jVaqjVashmswAg199cLodqtSqRRIrJZrOJSCQiC1z1el1q+ICxqy9rAOPxOF5//XUcHR0hHA5jfn4eoVAIt27dAgDE43Hk83mUy2Vsb29LJgEAMW6iuQsARCIRqfvl4t5Z8G4icAMA/4PjOC8YY6IAvmOM+dLxc/+X4zj/4N0P752RDo//gzps9HA5e1ajUBRFUc4r2WxWCt658ptKpTA3N4dyufwmEwFOSBqNBowx2N/fF5ESi8VQqVSkuJ1RNNZyMPpGa3+mDrktwL1eL6rVKiqVCjKZDBqNhtiMG2OwvLwMYwzW19exs7MjrpGDwQDLy8vodrviNrmzs4OtrS0UCgXMzMxgf38fs7OzSKVSIp6Gw6HUAto1TqyXY9SNka1sNiur9kyJGg6HUstHe2/HcaQfE9ONOImPx+PY2dkR8czXs4Gvx+ORVE2mgVIEudMQbYFC7Nouu35mUrTHFlq2OLMjgpP2z/d2Cz/e5nvbjoUUeHakaJrw4n7sfdsRMft5e/tJIofvzedZy0PBkEwmJULqFsDc3yQzEPtx93u6j5n9WaeNcZqotT/btCjepOMwLRppH5NJ54SRaN7mOZ6ZmRHDikAggHA4LDVSwWAQ5XIZ8XhcFny4HYWd3+/H4eEhEokEHn/8cWSzWTz22GN48cUX4Thjp1rHcaT26+DgQNqEMDrH2rXBYID19XV873vfQyaTQTgcRqPRwI0bN5BKpXB0dIRsNisCigtB/P3s7++LQBkMBkgmkwiHwzg6OhKDkWKxKBF4ti8YjUYSnVtcXJS0ahqDrK2tweMZ93Xzer3Sa5KCcTgcolAoSPYATUC63S4CgQBisRharZaMjfXFNJTi9aJcLiMajSKdTiMWi6FWq8nn43WCaaShUAh37tyRhTKmWt66dQvtdhtLS0uyCLa3t/em6D6v6aw/pMGKx+ORVjBnxTsWcI7j7ALYPb5dN8a8BmDhvRrYuyEToYA7u9CmoiiKcn6hiGL6XC6XkxVxpkXaqUy03u/1etjY2EAqlcL8/Lz0J2INWzAYlIkehRAnyDQ86HQ6EpEyxkg9WblcRr1elwgVjRL8fr9MGHd3d8XxkalH0WhUVu+j0SgODw/R6XQk2kVHOqZCGmPEsMReQeZ9ThTv3bsnDbcpvvi+W1tbuHLlinweTni5oh8KhWTSk06nZYyM7rHdAVe87fSqYrEIY8ZmMvYkm9ExACcm3m4owDgmTlztaJodPbMFxjQ3RDuN0RZvwElDEb7GbWxip+DZ+50kXOxtJ31Ot6iblE7p/pzcF7/zjNLye83P5Z7AMhXNcaY33HYz6TO6j8+k+5P2+1bEmDsiNykCx0UAilfWiU7aFyOV9vkOh8OSnswea6z5siNoXOChaQZr1+iS+MQTT0iKdqVSEbMhjp3p0lzMAICDgwO5ptRqNZTLZWxsbCCfz0t9K1MfbVFCweXxjG356/U6SqUSgPH1r1ariXhjWw8KlmAwKNEsZiQwjZKLXGwb4Pf7xZ2XDr0AJNrPVNKlpSX5DI1GA5FIBN1uF3t7e/jYxz6GO3fuoFKpYDQa4cqVK+j3+6hWq2I0xWwG2wGXkTu2V+DzCwsL8Pl80iycbR1CoRDu378vPelyuRyazSZ2d3fld8vemMxm4OJGPB4X0c7o20PfRsAYswLgaQDfBPAcgF8yxvwXAL6NcZTuaMJrfgHALwBvnNT3imxUBZyiKIoynV/8xV98a02hzhnXrl37wN7r8uXLEx//2Mc+9oGNQVEURXkz79qF0hgTAfA7AH7ZcZwagH8O4AqAj2IcofuHk17nOM5nHcd5xnGcZ5jz+l6RCvvhMUCxrgJOURRFURRFUZSLw7sScMYYH8bi7QuO4/wuADiOs+84ztBxnBGAfwHg2Xc/zLeH12OQCvs1AqcoiqIoiqIoyoXiHQs4M04y/lcAXnMc5x9Zj89bm/0MgJff+fDeOZlIAMX62eWmKoqiKIqiKIqivNe8mxq45wD8HICbxpgXjx/7VQA/a4z5KAAHwAaAv/Uu3uMdk40GUNQInKIoiqIoiqIoF4h340L5DQCTisA/0J5v08hEAni92DzrYSiKoiiKoiiKorxnvGsTk/NKJjKugXP3CFEURVEURVEURXlYubACLhebRXcwQqXVP+uhKIqiKIqiKIqivCdcWAH3aD4KAHhtt3bGI1EURVEURVEURXlvuLAC7vp8DADwqgo4RVEURVEURVEuCBdWwKUjAeRjs3hlRwWcoiiKoiiKoigXgwsr4ADgeiGGV1XAKYqiKIqiKIpyQbjQAu6JQgxrxQY6/eFZD0VRFEVRFEVRFOVdc6EF3PX5GIYjB7f362c9FEVRFEVRFEVRlHfNhRZwTxTiAKB1cIqiKIqiKIqiXAgutIBbTAYRDcxoHZyiKIqiKIqiKBeCCy3gPB6DxwsxvLJTPeuhKIqiKIqiKIqivGsutIADgKeXEri5XUWt0z/roSiKoiiKoiiKorwrLryA+/HrefSHDr72vYOzHoqiKIqiKIqiKMq74sILuKcvJTAXDeDfv7x31kNRFEVRFEVRFEV5V1x4AefxGPz4Ezn8h1tFtHvaD05RFEVRFEVRlIeXCy/gAOBTT8yj3R/iT+8Uz3ooiqIoiqIoiqIo75gPhYD7K5dTiAd9+Nd/cQ/dgUbhFEVRFEVRFEV5OPlQCDif14O/+2OP4Btrh/jf/+DVsx6OoiiKoiiKoijKO+JDIeAA4G8+t4qfeXoBv//dXfSHo7MejqIoiqIoiqIoytvmQyPgAOAnPzKParuPv7hbOuuhKIqiKIqiKIqivG0+VALu449kEJ2dwf/x715Dsd496+EoiqIoiqIoiqK8LT5UAm7W58X//Tc+hnvlJn7ld2+e9XAURVEURVEURVHeFh8qAQcAz13N4Jd/7Bq+/No+vvzq/lkPR1EURVEURVEU5S3zoRNwAPBfPreKR+Yi+LXff0WbeyuKoiiKoiiK8tDwoRRw/hkP/rdPP4mtozb+2dfWzno4iqIoiqIoiqIob4kPpYADgB+8ksbPPL2A/+dP7+IPb+7CcZyzHpKiKIqiKIqiKMqpfGgFHAD8z3/tcTyWj+G/+8IL+NQ//jr+8nVtL6AoiqIoiqIoyvnlQy3g0pEAfue//SH8/f/sKTR7A3zms3+J//pzz6PRHZz10BRFURRFURRFUd7Eh1rAAeN6uL/+zCX88d/9Yfy9Tz2Kr90q4qf+6dfx/z1/H6ORplUqiqIoiqIoinJ+MOeh9uuZZ55xvv3tb5/1MAAAf3K7iH/4x7fw0lYVsz4PPrIQxycfncNiMohPPjqHeNB31kNUFEVRJmCM+Y7jOM+c9TgURVEU5f1k5qwHcN74xLUsfviRDP7dzV18594Rvvl6Gf/nH90CAARmPFhJh/Ejj83hiUIMP/5EDoEZ7xmPWFEURVEURVGUDwsq4CZgjMFPPVXATz1VAAAcNXvYKDXx+9/dxWu7NXz2T+9i5AAhvxeXs2FcyUbkXy4WwJVsBImQD8aYM/4kiqIoiqIoiqJcJFTAvQWSYT+SYT+eXkoCAPrDEf78bglf+94B7hYb+PbGEf7tizsnXuP3ehAP+ZAM+ZAI+pGO+LGQCGIxGUQqEkDQ50XQ50V0dgbxoA/R2RlEZ33wz3zoyxIVRVEURVEURZmCCrh3gM/rwSeuZfGJa1l5rNUbYOOwhf16B2v7DZSaPVTbPRw1+6i0e7i9X8fXbh2g0x+dum//jAexYzEXCcwcC7sZRAI+RAJeRKzb4cDM+J9/BqGAd/zX70XIP34uMOPRKKCiKIqiKIqiXCBUwL1HhPwzuF6I4Tpi+JFH5yZu4zgOSs0eKq0+Ov0hWr0hau0+qu0+Gt0B6p0+6p0B6t3B+O/x/cPDJprdIeqdPpq9IYZv0R3TY3BS3AW8CPlnEPZ7EQoc//XPIOx6POT3IjDjxazPg1mfF7PW7YDPI8/5vSoQFUVRFEVRFOWDRAXcB4gxBplIAJlI4B3vw3EcdAcj1DsDNLsDNHsDtHpjMdjqDtDsDdHqDdDsuv7K8wOUmj3cL7fQ6g3R7I5fP3gHLROMAWZnvAj6x+mgsz4Pgn4KvvH9gCUA/TPjf4EZLwIzHgSO7/u9Hvi8Hsx4zfivx8A344HPw8cMZo5v+70ezHAbvsbjgW9mvI3Pa1RUKoqiKIqiKBeW903AGWM+BeCfAPAC+JeO4/z6+/VeHyaMMcfiyIts9J0LQTe9weiE0Ov0R+gMhuj2R+j0h+gMhuPH+kN0+kN0B+Pb7d74uXZvdBxVHKB7vK9yc4Tu8eu6g/FruoMReoPT00jfLV6PEYHn8xrMeD3wecZ/Kfhmjh+fOd52xmvg9Yy38x7fn/F4Tjw3I48fb+s18l7cl9f+Z1z3jx/zHL+Gf92P2a+b9Jh7X7xtDOAxBh4zPgYqZBVFURRFUS4e74uAM8Z4AfwzAH8VwBaA540xv+c4zqvvx/sp755xdMyPROj9fy/HcdAbjoUcBV1/OEJ/6GAwGmEwHD8/GDoYDEfoj47/Dh30hyMMRsfbHm8vj7v28ebtT+5rOHpj205/hMFoiOHx/cFo/Hx/ODrebvw6Ps73Pu+93m0x5zEYi75jsef18PYbou/Nz518jedYSHrMeDHhxG1j4PFA9uk11m0PxeVYdHqMdd9A9m2O92WAE++JE/ePtzGAgev1wPHnefC2cL3H5Pcev47PnRzrm7cF3jge3HbS5+E47fee9Ppp45z4XjLOB7wX9+fBA44zXwtdDFAURVGUc8T7FYF7FsCa4zivA4Ax5rcAfBqACjgFxpjjNEovomc9mHfJaGSJvdEIw6GDoTO+f+Kf45zY1v3Y6Pg+b9uPTdqXfX/kOBg5GP8dWbcdHN+f9rwzeTvr9tBx4DgORiOc3P54DI51eyx4jz+XMxbq4+fs29ZrrP06DuCArxtv7+CN50bjDcb3rcdPvs4594L6YeZUsYhjAegSj/ZrvFwssMQ8t/u5H1jGz//Qyll/REVRFEV5KHi/BNwCgE3r/haAv2JvYIz5BQC/AABLS0vv0zAU5f3F4zHwj8MhCEKbup8HHEv0PVDsTdzuzeJx2uvfzrawBOqp73X8GUYjPHBcOHH/jc/uuN/LfVycycJZ9jl60DEZv85x7GNxckz2tvaiAMX8yBpDKuz/AL8hiqIoivJw834JuEn5NifWxh3H+SyAzwLAM888o+vmiqK8J0i64MTLkKIoiqIoysPN+9U1egvAJev+IoCdKdsqiqIoiqIoiqIob4H3S8A9D+ARY8yqMcYP4DMAfu99ei9FURRFURRFUZQPBe9LCqXjOANjzC8B+COM2wj8huM4r7wf76UoiqIoiqIoivJh4X3rA+c4zh8C+MP3a/+KoiiKoiiKoigfNt6vFEpFURRFURRFURTlPUYFnKIoiqIoiqIoykOCCjhFURRFURRFUZSHBBVwiqIoiqIoiqIoDwkq4BRFURRFURRFUR4SVMApiqIoiqIoiqI8JKiAUxRFURRFURRFeUhQAacoiqIoiqIoivKQoAJOURRFURRFURTlIUEFnKIoiqIoiqIoykOCCjhFURRFURRFUZSHBBVwiqIoiqIoiqIoDwnGcZyzHgOMMUUA996j3WUAHL5H+/ogeRjH/TCOGdBxf9DouD9YPszjXnYcJ/teDEZRFEVRzivnQsC9lxhjvu04zjNnPY63y8M47odxzICO+4NGx/3BouNWFEVRlIuNplAqiqIoiqIoiqI8JKiAUxRFURRFURRFeUi4iALus2c9gHfIwzjuh3HMgI77g0bH/cGi41YURVGUC8yFq4FTFEVRFEVRFEW5qFzECJyiKIqiKIqiKMqFRAWcoiiKoiiKoijKQ8KFEXDGmE8ZY24ZY9aMMf/TWY/nNIwxG8aYm8aYF40x3z5+LGWM+ZIx5s7x3+Q5GOdvGGMOjDEvW49NHacx5leOj/8tY8xPnM2op47714wx28fH/EVjzE9az535uI0xl4wxXzPGvGaMecUY83eOHz/Xx/uUcZ/34z1rjPmWMea7x+P+X48fP+/He9q4z/XxtsbiNcbcMMb8wfH9c328FUVRFOU8ciFq4IwxXgC3AfxVAFsAngfws47jvHqmA5uCMWYDwDOO4xxaj/19AGXHcX79WIAmHcf5H89qjMdj+mEADQC/6TjOk6eN0xhzHcC/AfAsgAKALwO45jjO8JyM+9cANBzH+Qeubc/FuI0x8wDmHcd5wRgTBfAdAP8JgL+Jc3y8Txn3X8f5Pt4GQNhxnIYxxgfgGwD+DoD/FOf7eE8b96dwjo+3NZ7/HsAzAGKO4/zUw3A9URRFUZTzxkWJwD0LYM1xnNcdx+kB+C0Anz7jMb1dPg3gc8e3P4fxJPhMcRznTwGUXQ9PG+enAfyW4zhdx3HWAaxhfF4+cKaMexrnYtyO4+w6jvPC8e06gNcALOCcH+9Txj2N8zJux3GcxvFd3/E/B+f/eE8b9zTOxbgBwBizCOCvAfiXrvGd2+OtKIqiKOeRiyLgFgBsWve3cPok8qxxAPyxMeY7xphfOH4s5zjOLjCeFAOYO7PRnc60cT4M5+CXjDEvHadYMlXr3I3bGLMC4GkA38RDdLxd4wbO+fE+Tud7EcABgC85jvNQHO8p4wbO+fEG8I8B/D0AI+uxc3+8FUVRFOW8cVEEnJnw2HnODX3OcZzvB/AfAfjbxyl/Dzvn/Rz8cwBXAHwUwC6Af3j8+LkatzEmAuB3APyy4zi10zad8Nh5Gve5P96O4wwdx/kogEUAzxpjnjxl8/M+7nN9vI0xPwXgwHGc77zVl0x47DxdTxRFURTlzLgoAm4LwCXr/iKAnTMaywNxHGfn+O8BgC9inBq0f1xPxLqig7Mb4alMG+e5PgeO4+wfT3xHAP4F3kjHOjfjPq5p+h0AX3Ac53ePHz73x3vSuB+G400cx6kA+A8Y15Gd++NN7HE/BMf7OQD/8XH9728B+FFjzOfxEB1vRVEURTkvXBQB9zyAR4wxq8YYP4DPAPi9Mx7TRIwx4WOzBxhjwgB+HMDLGI/35483+3kA//ZsRvhApo3z9wB8xhgTMMasAngEwLfOYHwT4STxmJ/B+JgD52Tcx+YU/wrAa47j/CPrqXN9vKeN+yE43lljTOL4dhDAjwH4Hs7/8Z447vN+vB3H+RXHcRYdx1nB+Pr8Vcdx/gbO+fFWFEVRlPPIzFkP4L3AcZyBMeaXAPwRAC+A33Ac55UzHtY0cgC+OJ73YgbA/+s4zr83xjwP4LeNMf8VgPsA/vMzHCMAwBjzbwB8EkDGGLMF4H8B8OuYME7HcV4xxvw2gFcBDAD87TN0ups07k8aYz6KcRrWBoC/BZyrcT8H4OcA3DyubwKAX8X5P97Txv2z5/x4zwP43LGDrQfAbzuO8wfGmL/A+T7e08b9r8/58Z7Gef9+K4qiKMq540K0EVAURVEURVEURfkwcFFSKBVFURRFURRFUS48KuAURVEURVEURVEeElTAKYqiKIqiKIqiPCSogFMURVEURVEURXlIUAGnKIqiKIqiKIrykKACTlEURVEURVEU5SFBBZyiKIqiKIqiKMpDwv8PbO4x1Ae9K+MAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAGoCAYAAAAHGAe8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eZhlyX0Viq448zzkVFVZQ1dXD6WepG53S0itecTGlgzciwcMHgD7mhke3IsN+GEw5l0DBh6DAfPka/vaCBvbgEEWBnxlyboaW/LV0C211HPXkJXjmYfMc068P/ZZketE7ZOZPZY6Hev78qvMs/eOHTsi9qnfivUbjLUWAQEBAQEBAQEBAQEBAV//SNzoDgQEBAQEBAQEBAQEBAQcDYHABQQEBAQEBAQEBAQEvEIQCFxAQEBAQEBAQEBAQMArBIHABQQEBAQEBAQEBAQEvEIQCFxAQEBAQEBAQEBAQMArBKkb3QEAWFpasufPn7/R3QgICAgIeAXjs5/97Ka1dvlG9yMgICAgIOClxNcFgTt//jweeuihG92NgICAgIBXMIwxT9/oPgQEBAQEBLzUCC6UAQEBAQEBAQEBAQEBrxAEAhcQEBAQEBAQEBAQEPAKQSBwAQEBAQEBAQEBAQEBrxAEAhcQEBAQEBAQEBAQEPAKQSBwAQEBAQEBAQEBAQEBrxAEAhcQEBAQEBAQEBAQEPAKQSBwAQEBAQEBAQEBAQEBrxAEAhcQEBAQEBAQEBAQEPAKQSBwAQEBAQEBAQEBAQEBrxAEAhcQEBAQEBAQEBAQEPAKQSBwAQEBAQEBAQEBAQEBrxAcSuCMMWeNMR82xnzZGPOwMeYvTj9fMMb8d2PM16b/1uWaHzbGPGaMedQY8/tfygcICAgICAgICAgICAj4vYKjKHAjAH/FWnsHgNcD+LPGmDsB/BCA37LW3gbgt6Z/Y3rsOwDcBeAbAfyUMSb5UnQ+ICAgICAgICAgICDg9xIOJXDW2qvW2s9Nf28D+DKA0wC+FcDPTU/7OQB/cPr7twL4d9baobX2SQCPAXjdi9zvgICAgICAgICAgICA33N4TjFwxpjzAO4D8CkAJ6y1V4GI5AFYmZ52GsCzctml6Wd+Wz9gjHnIGPPQxsbG8+h6QEBAQEBAQEBAQEDA7y0cmcAZY0oAfhXAX7LWtg46NeYze90H1v60tfYBa+0Dy8vLR+3GXLQGe/gXH34MX756UNcCAgICAgICAgICAgJeuTgSgTPGpBGRt1+01v7a9ONrxphT0+OnAKxPP78E4KxcfgbAlRenu/PR6u/hH/zmo/jipeZLfauAgICAgICAgICAgIAbgqNkoTQA3g/gy9bafySHfh3A90x//x4A/0k+/w5jTNYYczOA2wB8+sXr8tx+AgDs9WJfQEBAQEBAQEBAQEDAsUDqCOe8EcAfB/BFY8z/M/3srwP43wH8sjHmTwJ4BsAfAQBr7cPGmF8G8AiiDJZ/1lo7frE77oN+mzbwt4CAgICAgICAgICAY4pDCZy19mOIj2sDgHfOuebHAfz4C+jXc8ZUgAv6W0BAQEBAQEBAQEDAscVzykL59Qwz5ZhBgQsICAgICAgICAgIOK44PgTOKXCBwQUEBAQEBAQEBAQEHE8cHwI3/TcocAEBAQEBAQEBAQEBxxXHhsAhxMAFBAQEBAQEBAQEBBxzHBsCZxyDCxQuICAgICAgICAgIOB44vgQuKDABQQEBAQEBAQEBAQccxwfAjf9NwhwAQEBAQEBAQEBAQHHFceHwBmWEQgMLiAgICAgICAgICDgeOL4ELjpv4G+BQQEBAQEBAQEBAQcVxwfAhdymAQEBAQEBAQEBAQEHHMcHwI31eACfwsICAgICAgICAgIOK44NgRuv4pAoHABAQEBAQEBAQEBAccTx4bA0YUyICAgICAgICAgICDguOL4ELjpv0GACwgICAgICAgICAg4rjg+BI5lBEIUXEBAQEBAQEBAQEDAMcXxIXDTf4MCFxAQEBAQEBAQEBBwXHF8CByTmNzYbgQEBAQEBAQEBAQEBLxkOD4EjmUEAoMLCAgICAgICAgICDimOD4EzilwgcEFBAQEBAQEBAQEBBxPHBsCRwQFLiAgICAgICAgICDguOLYELhQBy4gICAgICAgICAg4Ljj+BA4FwMXJLiAgICAgICAgICAgOOJ40PgGAMX+FtAQEBAQEBAQEBAwDHF8SFw038DfwsICAgICAgICAgIOK44PgTOhDICAQEBAQEBAQEBAQHHG8eHwE3/DWUEAgICAgICAgICAgKOK44PgQtZKAMCAgICAr5uYIz5V8aYH7nR/YiDMebNxphHb3Q/AgICAp4Pjg2BI4ILZUBAQEDAc4Ex5nuMMdYY86fks+81xoyNMR35eZscXzDG/AdjTNcY87Qx5o/eiL5/PcNa+4PW2h+70f0AgOn83sq/rbW/Y629+CLf4+3GmA8bY5rGmKdijt9rjPmd6fFLxpj/txz7695a6xtjJsaYpQPu9xeNMU9O1+CXjTG3Tz83xpi/YYx5xhjTMsb8O2NMRa77X40xm8aYLxlj7pbP32iM+Y/P8Zl/2xgzmPZ50xjza8aYU8+ljZcSc97jjjFm9Ub3zYcxJmOM+RVjzFPT9fq2Q86f+x10WFvGmA9547FrjPmiHJ+7VqfH/+j0nl1jzH80xizIsYe9tkfGmP88PbZkjPm/jTFbxpiGMeYTxpg3yrV3G2N+c7qWYi16Y8x3TNd71xjzuDHmzUd85h81xux5fbtw0BjPgzHm9caY/26M2TbGbBhj/r2ue2NMzRjzc8aY9enPj8qx1PSdbEznoSzH/oYx5i8fpQ/HhsAZxsDd4H4EBAQEBLw0GI1GL3qbxpg6gB8G8HDM4U9Ya0vy89ty7F8A2AVwAsB3AfiXxpi7XvQOvkwwxqRudB+eL76O+t4F8DMA/tc5x/8tgI8CWADwVgB/2hjzPgCw1v49XWsAfgLAb1trN+MaMtFmw58E8M0ASgC+BQDP/W4AfxzAGwGsAsgD+GfT605Nr7sA4F8B+N+nn6cA/CSAv/Q8nvvPTft867Qv//B5tPFSwn+PS9baK/5Jcevoua6tF2EtfgzAHwOwdoRzD/sOmtuWtfabvPX2cQD/Xk6Zu1an9/jXiNbYCQA9AD8lbd8l7ZYBPCNtdwD8CQDLAOqI1vl/lnHbA/DLiNbodTDGvHt6zfdN234LgCeO8sxT/JK3Dp6Yc95hqAP4aQDnAdwEoA3g/5Dj/xhAYXr8dQD+uDHm+6bH/jAiurIEoAXgf5k+280A3ovpu3oYjg2BcwgSXEBAQMCxwfnz5/ETP/ETePWrX41isfhSkLj/D4B/in3j91AYY4oA/icAP2Kt7VhrPwbg1xEZNEe5Pm+M+cnpDnbTGPMxY0x+eux90x3shonUjTvkuqdMpJ58Ybr7/H5jzInpLm7bGPM/poQUxpjz013oHzDGXDHGXDXG/BVp60enu9W/YIxpAfheY0x12uZVY8xlY8zfNcYkp+ffaoz5yLS/m8aYX5p+bowx/3i6y9yc9u3u6bGfNcb8Xbnn9xtjHpvuWv+6ERVk2tcfNMZ8zRizY4z5F8bEB0fM6fvrTLSb35j2/58bYzLT8z86vfTz0133bzfGvM0Yc0navGM63o3p+L/vKHOpsNZ+2lr7f2LWoFScB/CL1tqxtfZxRMbmdaR/+tx/HMDPzXn+BIC/BeAvW2sfsREet9ZuT095L4D3W2uftdZ2EBm8326MKQA4B+B3rbUtAP8DEZEDIuL269bap57rcxPW2gaA/wjgXunrq8y+UvGoMebb5NgLeQ/+6nStNY0xv2SMyT2fPk/b+mvGmC8A6E7XuTXG/EljzDMA/i9jTMIY8zen/Vw3xvy8MaY6vf68f/7z6QcAWGt3rbX/ZPp9Mj6k3wd+Bz3Hts4DeDOA/1M+Po/5a/W7APxna+1Hp+vrRwD8YSNKkuAtAFYA/Oq0XwNr7aPW2gmi9BVjRGRoYXr8UWvt+xG/oQYAfxvA37HWftJaO7HWXrbWXn6uzzxnHOauVR/W2g9Za/+9tbZlre0B+OeINkyI9wL4+9ba3vSdej8i4goANyPanBkB+DD238F/CuCvTj8/FMeKwBkTFLiAgICA44YPfOAD+OAHP4hGo4FU6voN7le/+tWo1WoAcO/U4NOfn7rugimMMa8D8AAiJSIO903JyleNMT9i9neJbwcwttZ+Vc79PGKM8Tn4hwDuB/AgIsPlfwMwMZEL3AcQGdPLAH4D0e50Rq79nwC8e9qH9wL4EIC/jmg3NwHgL3j3ejuA2wC8B8APGWPeJce+FcCvAKgB+EVEhGGESEm5b3oN3Up/DMB/Q2RsncH+LvF7EBlpt0/b+XYAW/4DG2PegYgsfxuAUwCeBvDvvNO+BcBrAbxmet7v99s5oO9jAH95Og5vAPBOAH8GAKy1b5le85rprvsveX1LA/jP0+dbAfDnAfyiMebi9PgPxawr93NAH338EwDfbYxJT9t+AyIS5ePNiJSNX53Tzpnpz93GmGdN5Eb5t6fEDogMYyW/BkAW0Tp4DMA9xpgagHcBeNgYcxbAd+AFKmfGmEVE6sJj07+LAP47IjVnBcB3Avgps68SvZD34NsAfCMiY/jVAL73BXT9OxEpmTVE6x+IVKc7EK3B753+vB2RsV1CZLAr9PwZGGPOHbR+zPNzv36h30GK7wbwO9baJ+Wzf4L5a/Wu6b0AAFOCtzvtk4/vAfAr1tqufjglzANEpPP/Z61dP6yTJtpMegDAsok2gi5NN2ryR3xOAHjvlKA9bIz509L2YWv1MLwF15NO/x2ku/KXALxjup7fjugd/EMANqfk82iw1t7wn/vvv9++GLj5h/6L/Qf/9SsvSlsBAQEBATceN910k33/+99/pHMBPGSP+P8OgCSAhwC8Yfr3bwP4U3L8AiLjMAHgHgCPAPjh6bE3A1jz2vt+RLuqh903AaCPiEz4x34EwC97514G8Lbp308B+C45/qsA/qX8/ecB/Mfp7+cR7Wm+So7/fUTKDAD8KICPyrETAIYA8vLZdwL48PT3n0fkMnTG6/M7AHwVwOsBJLxjPwvg705/fz+iHWkeKyFylzo//dsCeJMc/2UAPzRnDGf6PuecvwTgP8jfFsCt8vfbAFzS+dT+IyIQP3rU9eTd+10Anor5/EFE5GY07c/fnnP9+wH87AHtPzi9/oOISMf56Rx8//T4n5r+fR5AFZGRbLG/1r8TwOcQkf+bAPwaIsL77QA+AuA/+fN8QF9+G5ELXXN6j/8HwLnpsW9HRAz0/H+NSD18oe/BH/PW9b+a07/vnY53Q34el+NPAfgT8vf56XNckM9+C8Cfkb8vIlq7qbjzX4wfAJf4vHOOH/k76AhtPQbge4+6Vqfj8YPe+Zf9eyByIWzNuzeA3HQtfk/MsVsBWO+z1WlfHkK0CbQE4P8G8ONHeWYAd07bSE6f7yqA7zxsrR5hrl4NYBvAm+WzX0D0XpWnz/I4gOH0mEHkuvwFRN+pi4jemxUAP47IdfWnAGQOuu8xU+BMKCMQEBAQcMxw9uzZl6LZPwPgC9baT8QdtNY+Ya190kZuOl8E8HcA/M/Twx0AFe+SCqI4iMOwhMhweTzm2CoiZYp9mAB4FsBpOeea/N6P+bvktfms/P709B5xx24CkAZwVZSlf43IqAAidcQA+PR09/pPTPv4fyFSI/4FgGvGmJ82kjDjgGfrIFLq9Nk0bqUX8yzzngvGmNuNMf/FGLNmIrfKv4dorI+CVQDPTsebeNrr2wuCiZI8/FdE6ygH4CyA32+M+TPeeXkAfwRz3Cen6E///fvW2oaNXLT+NYA/MP38ZxAR0N9GpAp8ePr5JQCw1n7AWvsN1tpvQqQKDAH8LiJF7L2I4pWeixr3F6y1VUSGLBVaIFpTv89TK78LwEm88PfguayVT1pra/Jzi3f82Zhr9LOZ/kx/TyHa9DiojZcSL+Q7yMEY8yZE8/Er8tlha/Wo9/7DiIjNR+LubSN3yg8g8gx4zRG6y3X/z6y1V20UH/qPsL/uD4SN3I2v2Mgt9OMA/r/Y/06fu1anCqpLfKJtmigx0ocA/EVr7e/Iob8w7e/XEG2IfAD775+11v6QtfbV1tofAPBDiLxAHpj+vBVABvsul7E4XgQOIQQuICAg4LjBHFIn5q677kKpVAIil0c/29w898h3AvhDU4N/DdGO7E8aY3zXKMJi3yXmqwBSxpjb5PhrMD9uQ7GJyHXINyIB4AoiQwKAi4U6i2h3+/lC2e+56T0I/R/zWUSG/JIYuhVr7V0AYK1ds9Z+v7V2FVHQ/U9NjRdYa/+ptfZ+RK5VtyM+iYf/bEVEO8/P99n8/+3/JYCvALjNWltB5FZ61AJDVwCcFRdEIBqry9O++hkiO/MMugNwAZHL289ba0fW2kuIXEh945NG728f0NajiFzWYi2e6abD37LWnrfWnkG0Li/DG+spWfx7AP4KIvfKZ20UG/cZRGTsOWG60fF3ATB+8VkAH/HIU8la+6fx8r8HB3b9kM9m+oNobYwwu3ky1/r0CUDMz3c9jz6/kO8gxfcA+LXphgpx2Fp9eHovAICJMjlmp33y2/55aw+1zNPYjwObC2vtDiIS9GJZ+vqdPnetWmufsbMJXwAAxpibELmV/piNYl+1r9vW2u+y1p6cfocmAHza74CJ4oUfRKTE3QPgs9PxOvQdPF4ELsTABQQEBPyew8MPP4xOpwNEyRn8bHM/OOey70UUs3Lv9OchRAHyfwMAjDHfZIw5Mf39VYjcuv4TANgonuPXAPwdY0zRRGmwvxWSBMDMSQM+VRN+BsA/MsasGmOSxpg3GGOyiNwGv9kY804TxWX9FUSk6uPPe3CAHzHGFKaxHN8H4JfiTrLWXkUUA/aTxpiKiRI33GKMeev0ef6IMYbKyg6i/27HxpjXGmN+37S/XURGeVwCgX8L4PtMlJ48i4g4fMq+gKQZHsqI3LU60/n6097xa5hvJH4KUd//t2nMz9sQKVH/Drg+Q6T/w0amY5ZDZJAaY0zO7MdtfXX62R+dnncSkdvW5zGLQ41eGyVN+KVpf8vTefl+AP9l2o+F6dwZY8ydiFSKv+MpjADwNxG5al5BlCnw4nTNvx3TRCxmP0nH+Xn98fBziFTb9037c7sx5o9PxzU9XS933ID34IXgAwD+sjHmZmNMCdHa/SV7xGQTPgGI+flFnmuMyZr9hCyZ6Rq6biPiiN9BB7Zl9tXen/WaP2yt/iKiWLI3Tzdi/g4iEugUuOmafDs8JdlE6fffZKKU/3ljzF9DpGR+anrcTPvMBES56Zog/g8Af94Ys2KihE1/CdN1f9gzG2O+1RhTn97jdYhUsv80PXfuWvXHftrWaUQJa/6Ftfa6TcLp+7c4XdffBOAHEG1u6DkGkefCX5y+D08CeNP0O+OtmJ8MCcBxI3AwQYELCAgICDgUU9ezNf4gUjRa1trm9JR3AviCMaaLKInCryEy3Ig/gyg9+zoiA+9PW2sfBpzx0gHwRcTjr06PfQaR2vITiOKvHkWUAvufIVIo3gvgvdba3RfwqB9BFMvyWwD+obX2vx1w7ncjMpweQUTSfgVRrAkQJRf5lIkUp19HZHQ8ich16t9Mz38akVvkde531trfQkSCfxVR7MktiBJnvFj4qwD+KCI3rn+D64nqjwL4ORO5R81kl5uO7/sAfBOicf8pAN9trf3Kc+zDWxC5Tf0GIpWmj4gUY6ps/WFEiVZ2EMW8fAlRzAsAZxS+A1G84QxMVBRdDcU/h2iNXQHwCUQE+Wemx5amfegicu/6GWvtT3vtXUSUgOafTft3FVFczsOIDNsfnp56FtG8Hkn9mo7lP0WUHbE9vcd3TPu5hmit0yB/ud6DN5jrVa/XPofrfwYRMfooIiN7gCje9KXAo4jWzWkAvzn9/SbAKcEfknPnfgcd1tYUfxBR7OKH5bND1+r0Hj+IiMitI9o8mXEFRpQN8xM2SnCiyCIiLVuI1tQfAPDNdr+sw03TfvI5+tPnIH4M0Xr5KoAvI3L9/XE5ftAzfwei78I2onfsJ6y1Pzd9psPWqo8/hWhD6G+ZeDX+fkRru40oedN3eXMDRBtqX7LWPjT9+9em995A5J3wr+fcGwBgDlM2jTE/gygz1Lq1lqmBfwlRECcQBdA2rLX3Tndovoz9wf7kAbufDg888IB96KGHDjvtUNz+Nz+E73vjefzwN8US5oCAgICAYwxjzGettQ98HfTjjwG4y1r7w4ee/NL14TwiYzN9VKUgIMCHMeZvAtiw1h5oTAYEBLy8OErBwZ9FFKDsdoSstd/O340xP4mIwROPW2vvfZH695xggOBDGRAQEBBwQ2Gt/YUb3YeAgBcD1tq/e/hZAQEBLzcOJXDW2o/O832e+m9+GyLJ/4YjxMAFBAQEBAQEBAQEBBxnvNAYuDcDuGat/Zp8drMx5neNMR8xxrx53oXGmB8wxjxkjHloY2PjBXZj2iYMDnMJDQgICAgIOO6w1j5lrTXBfTIgICDg+OGFErjvRBQ4SVxFVMDxPgD/LwD/1sTXg4G19qettQ9Yax9YXl5+gd2IYEwoIxAQEBAQEBAQEBAQcHxxlBi4WBhjUoiy1NzPz6y1Q0SpXmGt/awx5nFENWFeeIaSo/QJwYUyICAgIOBwVKtV99+FMcbVmvO9OHiMP4lE4kjnE4lEItYzxFqLRCJx3T30OP+NySI+cz3P8c+11s58Nq8t9kHvy/bijvv38vvu3yOuHb+PhUIBlUoFmUwGyWQSiUQCiUQCuVwO6XQaxhgMBgMMBgOk02kkk0mk02kUi0VkMhlks1GyOM5PJpNx/RqPx+7z0WiEwWCA4XCIXC6HcrnsPh8OhxgMBkgmkzDGYDKZYDKZYDwewxiDfD6PbDbrnn8ymcAYg1wuh1wuh+FwiFarhcFggMlkgt3dXUwmE6RSKSQSCXdva617Tj4TAPec4/HYnQsAqVQK6XQaCwsLWF5edu0VCgWMx2N3H85JLpdz4zUcDl17o9EIu7u7MMYgnU4jnU4jkUggnU7DWoter4fRaOTGiuM8Hu9XhUgkEkilUu752G+Ox97eHvb29mbO51zFIZ1Ou7EYj8fY29tz9+ZYsL1MJoNEIoFer4fhcAhrLdLptBv/TCaDTCaq2jAej12fdnd3XT84TjxPx5/tW2vdWgCAQqGAQqGARCKB8XiM8XiMyWTi3j/2MZlMIpvNIpVKYTQauXN43mQycXNgrXXzyme11mJvb8/NCdvm946Cc6RrlPOUSqVm3kmeNx6PZ+aC64LrRs9PJpNIpVLuh8eTyeTMtewfn4Xv0u7urjvmv/vJZNK94/quc12nUilks1mk02lMJhMMBgM3ZtbamXsmEgk3rtpeMplEJpNxa9J/lznGvDf7pD9cP/pdxTHg+CQSCbztbW87ar3JFxXPm8ABeBeAr9iowB8AwBizDGDbWjs2UWG/23BIHYMXE9EL8HLdLSAgICDgOMAnI/xMcRjB8s9Xg4sGlH+eT2zmHeO1eq7f73kkKa7Pem1c3+dhHnmLu5cijlyyvWQyiUqlgnq97owxYH/8RqORM+RIWknQCoUCSqUSSqWSM2ALhQKy2awzwGnc0djf29vDcDh0xttgMHDXJhIJZLNZZ/RzXJLJ5AyRTCaTjmjQoG23264tGovAPrkZjUbo9/sYjUbY29tzz6WEiPenYUwkk0mcPHkSi4uLrk0+497enjM0afjyHnwuHXslRgBcOxxzzgHJjI4NCd3e3p4jgiReJJJsh+NCMgxExALYX89qOCsJIdllXzjnJDgkRyRtPG8ymbgx4b35/GybfRkMBq4djgvvy8+z2SxyuZwjZEpKstksEokEdnd3HUFUQsHnItHh3ySnXCcK7TfHiefwXVEyyGNKKJVUctw413xGEiGOuZJ/PjMJDN9fXqdrPJVKub7GbegoOSOx03XGNvks+jlJMY/zPvpu8PuA/SfYHtskAdXPlIATnJtMJoNUKuXWtL7TvI9uvt0oHErgjDEfAPA2AEvGmEsA/pa19v2IaiV8wDv9LYiKCo4QFfL8QWvt9ovb5QP6CsAGDS4gICAg4BDEqVXzyIj/n3ScGuUfjyNFPhHT6+eRqHnER38/6Frtr0/24lQ+XzGMu2beeMzDvP5ls1ksLCwgl8s5I89vkzvw/Dufz6NcLs8YmjS6qZTs7u7OGH8kFkoASew6nQ6stSgWi47M9Pt995yZTAb5fH7GGFWDcjKZoNlszhiEJIGpVMqpYzRIVZXj9QAcieEckPgVi0Xk83kUi0WMx2NHHDqdjntuqg2pVMoZ2CRw7PdkMnHEYW9vD6lUyikU/jomyaPhTtJijMFwOHSGuM6RKmdcQz6Z4LiRdPGeqq74ahXHaTwez5AuVdvYFxr3OhdKODOZDHK5HMbjsZtjqn8kaFRrcrkc8vm8I/0kjlSkqNKRiFPV4jOSOHHsOLZUinWDQEnKvHeAz8K/dUNIj/vkRNUq/3uJJI1qJlUlXgfsq3lcN1R0OQ7sPzcp+G6pqqb9UDJIcq190X4rySWh0rWqhIrtKTheXGv8l+OkCqRuKmQyGaTTaezu7s6sKW1TSfCNwlGyUH7nnM+/N+azX0VUpPPGIMTABQQEBAQ8BxzmMnjQNb6K5f+u5x52j3lk8Ch993+Pa9PvWxyJO+g+cSSQbR5lrPScRCKBcrmMpaUl5HI59Ho9Zzz5xj/vk0qlUCgUUKvVYK1FLpdzBtRoNHJKSa/Xm3Hlo/GZTqdx/vx5NJtNjMdjR9TS6TRqtZpTU6hGqWseMGtgsm/9fh/dbhcAZlSLZDKJXq83Q6b4k0qlXF8BODLEPqo72NLSEkqlknv+XC6H0WiEXq/nyAZVELqAqrJijJlRCrUPdAVVFzQSVj4D5yybzTr1xVrrCAznx1rrXAdpSPsKtJIUVafUsFe1SMdcCQJJF8kbCSMAZ9DrpgYJn7qxsn/sh45dMpl0rrKqvHHN+Z+R4HAe+TfvrQROn083SjgPANzGg37O+SM54vUcf96Ta4qfk8DzWn3HeT1VXyVkXAskK1ShOP6qvOn8cgw4DrpJoZtXPvlSVVDnWdexHuM1bM9XV7VvupbU/Z2qOkkp50rXjpJRuojyfSHR91W8lxMvxIXy6w43TsgMCAgICHilIU6hOooSN+88n9TEqWM+YYwje3EKl08a45Qw/1w9P+48vWccgYzrh0/kDoN/XiqVQrVaxcrKCjKZDHZ3d50qQhVKyRxVnVqthkKh4NqhMpJOp5HP5wHsG3Xtdht7e3vI5/Po9/vY29vD6dOnnbIEREZqPp9HtVqFMfvxYnSd03g3ng/sk4p+v49Wq+UMZ3XF6/f77r4kB+PxGPl8HvV63alOVMmstc49kYpOuVx2hmg2m0Umk3Hn0+ikYd7r9WbGmkYllcdUKuX6oG54SqLU/U9dzTjO6pLHe9HIVjc1rh9fbSZh4jlqdKt7nJJHvw2Sabanype63PK92t3dde6mjCkkUeaccY5IXqm+0B2TiqnGA6rLpLX7cWsaY8e2+TwcQyXNnAN9fn0WPj/v47/XPtng3ySJPnHzyQaVTHUf5fOqmqfrlOTNJ+WcL40NU/dGVd782Dmdi3luomxfNwhUkeQa9kkyx0pj3nyXUR1TX5XjPXSdcjw11vNG4HgRuOe4exkQEBAQEED4ZAa4XiWjEXKY6jSPuLFN3xg7KKYijrT5/dJ2daf+MDIYdx8fcUrhvL7OA12TqtUqyuWySzJCYxnYN8Q4xul0GqVSCUtLS84VkkYdyRiNehqCdI1jgo9kMolz584hnU5jZ2cHrVYL1lrUajXnlkhFC4gSVuTz+ZkYMO62p1Ip7O3tuWQfPIcueslkEq1Wy6k5wH6yByo7/FsNehKKRCJKTFIulx3BobJHksa+lMtlWGvR6XRmVAoa0DRCOa5KoDhvJIHFYtGtP3UL1HaU/PrrS41xrmW6d9Lw5VgRPMYx0tjGOLc5dcWjesIx09gyKoV0mdTkKEo21M2W6mY2m51xp6Qaq26PSub4HBpr5m+MsN+q3PL7Qd1I+V4pKSH8eLaD3PbUhVQVSZ17jikJqxI17asf+6VKm6qDbF/bIwHyCRzb1LhAzjPfC84r+8LxUNLqj7WOI8k7n0PXM+eD7x9diTm/7DfvyaQv6XTabfJQ1dV37EbgmBG4kIUyICAgIOC5wf9POI4sqeHLz/R3Nari1Cy/bb+Neefq8cNUN/++RyVece0ehZwdpNYpUqmUSzaiqgkNLfZd1YtCoYB6vY7l5WVYa9FoNJwioUbqaDRyLn69Xg+JRALFYhGtVsslOUmn02i1Ws59slQqOXJCYz+VSiGfzzvCBOxnFwTg4se63a5TClRJI8Hs9XozqgaJG4kqE5loIgaSApJbJXY0FDWOq1AoOOWH56iyQ+N4MBg44kyjl8Zqv993xqsa9lSTqErqxoJmklTXQSpHSsZV1aKRrq5t7Ku6ramKoyoV+zwcDh1JUKLD+5A4kIjt7e2h3+87oqrZOUn08/m8S3xjrXWqG5+JhHI4HLoNA1XaSIzU9ZHjQ0LJ83xFSPuvqj3Hm/dQ5UrjD9UlUF0S2Y6vnCk5UcVVk6fwHCUnvnqq7yrnnWvJVwvjvjt5f51nVS3V5VX7xLFQ10WSXt0M0CySPM62eV8lovq+8x7qcknCnkgkXDwu1/5z2cR6sXG8CBxCDFxAQEBAwNExj7jEGR1x1/guSj6J8smRb9jM200/jGzFqW7+OZroQJ/noGvmwTcwD+oPQUVpcXHRGc+qmnEnWw0tEo6VlRUUCgXnisi4LWaQ3NvbcyUAmBGRRKXX6+Gmm25CIpFw13c6HeceSSKmmSeVvGncGnfxd3d30e12nfrG/qoLYiqVQrlcBgAXV1QoFNyuPdukGx/HSLNwUtkjAdMEGuVy2RmRmqVR3RdVSQP23SRJKGikMnEMiaQa7TRuSXL9rH8k4ZqsgmoLSQbnkWSKz8r1ThKuBjawn8pf3ewYx0eCwL5w7PW51ODWjJRU7OjeyqQ3JPh0dVXVTTMRAvukVd1luYY1zksVOlU/1XWVY+ATO46FkgmOq+8ayH6o2sd1oHPBsSKR9dVVTV6iz6PkRu+r7y3nXxO36HcBx5Cfc7NC1TtV+qhkq+rKseL7qnGPnA9dv1wT7Bv7xw0bjZ/kXBljHEnnWPLd0fXK9v0xuRE4XgTOmJCFMiAgICDgSDiq6hR33lGu9RWqeeqZf65/XRxp8n/X3XFg3+XIP+YTQ5/cKSE7TKnz+6HGTCqVQq1Wc3XLqByQOGg6eFUTyuWyI3wkWQsLC+58tp3NZp36ReO83W4jlUpheXnZGavtdtuROGA/fbxmYiwUCjMGLOPF6DbY6XScYqNqE8lVLpdz8Xm8D90w1e2KxI/uegBQKpVQr9fdWCgBo1sZ+6KZEjkXmUxmxmBVFy+qIUy3T7WTMXV8Xq2TRgM6l8s5w5gEivME7Lub0bBVRZMkhvdVxYpzr7XduF5J3qiA8VnZlhI9JThM5U/CVyqVnLsqCboSZmajZG03Ej2fvJFI6UYISZcSSYLkSF0IFRw/JVxKapWs8XwlYf53SFx8mapV6i5I1ViVU2vtTB06/x1T+ORQx4Hzwo0UEjd/g4p9UvLGtvS7QL+DlCzpOLENdeUl4eIxVdE45iTk3HBR116ueZ+Aclz4/iqR9sfp5cTxInAIClxAQEBAwOHQXW/FQa6G+pmvPM1rQ+81jyD6588jSX4/1KhT8nbY+XHPE3e+fzxOhYs7L5vN4sSJE1hYWAAAlxwkn8/PqD4AnBGYSqVQqVRcvFu320W323WxJwBcTFgmk3Gucel02sWHFYtFR/w0UyMNPWZRpFFfLpedMkjCoOrRaDRy9d3K5TLOnTuHZrOJ7e1tNJtN7O3toVgsujp0JC80HIfDITqdzkzpALpX5nI5FIvFGXJLI5znk1AwCQnbpzJIdYNGqhr6NJTVnZCfa+FvzgGvZ/843hp7pPfhcRrlJEAaN0TypqqeuqWSsKjqxnZYw0+TXPBvPrOSN/ZTNwYSiYRTe0nos9msK8VAl1Ylk3x2JVFKpNQ1ksY8CbTv1qlj5Lvt+d8/Ou86NppkRcmCunBq5kslNPo350OJE5U49kvXiK4ndUnkWHGdsz0dLz+u1VfqtF++CyXHhqRO3ydex3eU8881p8TaH+O4+EQtQ0FvAR7n+6eunfre8ZpA4F4kmBADFxAQEBDwHDBPXVNiMo/QHUSalFzNU9+UUM1ziTzIZXLetX6//OP8TBWzuOfwx0CvnTceLA9QrVadSsYMjGoUksSl02kUi0UsLy/PuLIx1oxGJ0nVeBzV8ALgDL1KpeIMqW636+LaaNgp6aC6RIWMRjhVGBqvLBFgjEGtVkOpVAIwW5eORGAwGKDX682kFmctOCUHJDalUgnFYtH1i30nwaRBTAOTRBaAy6zI8zQzoiZVobFM4pLP5x0J4fPyGUjUlHBRGVGDmFB3RT4DDXKSJE0hT8OfBI9zRxJBUkpy1+/3YYxxhJ/kjc9GY51GPu+r6ilLQKiiB2AmUUm/30ev13Pxj4yDU4LgK0BUHn2FSJUZfR59VkUcsdPYx7h3jPfUuMw4lYnvIu9PYqrfC7xOXSaVnPpJcLi2gX0FnH3SZ1O3Yl0TfgF5VSh9Msg2VQ3U2FmdC72HtsPvDI4Nx5zzwb+p8Kprpqq/mthENyxupOskcawIHGCCAhcQEBAQ8Jzhk6SjKFVKaOYRsLg2fNcfbU/b9Amaf089rkalf36ccXdQP/0x8Mlb3NikUiksLCygXq/PkA1rrUvzT4KkZKFcLmNhYcGNx3A4RLvdxmQycXFwdBns9XqOfPV6PdRqNUcMrbXY3NxEt9t1xIAujDSUC4WCK8zN52MWSu72j0YjV0uOBI3Fwa9eveoUNRrc/X7fGZNaG4yEg0Y526O7pxIwVWbYrhKpUqnkCAf7ncvlUC6XHUldWlrCwsICarUaKpWKK3ZOw1cTXug60vih3d1d9Pt9dDodNBoNtFot7OzsoNvtzvSPyU3UiCUh8N3SSHgZR6bxcDTqNfZuPB47F0/2jSDJICHiOKjqxnnnM/F+JAFchyTdmulT1VclMVSqOL+qKvq1zvg7n5dqlLrH6nnAfukDEhCNm9O14hMWtqEqlsabUYHk3HMt8loSaj+ujGtQ+0virOuXz8W1pPfhvVR505g9vZZ90vg/EkC2w80MVQw1m6bGFfpqpcZpkrAR6tZM1V3jTtWFlmPFvnCz4UbhWBG46HspMLiAgICAgMMxj8T4BomeD+y7SPmKFH8/TNXz25vXN95HFbCDiKFPAOc9Y5y6N6/Pce34al0mk8Hq6ipqtdpMUgzdRaehReOKLpMaa8XU7ZlMBuVy2WVbpHJUq9UAREbXwsICyuUyhsMhGo2GUyaoNlm7X3iaBnixWLwuq52SB8aPJRIJ5PN5rK6uOuJEYseYNi3O7ZM1YD/pAhU2xlyRKNDo5PV8fk2eoAZ+oVDAqVOnsLy8jOXlZZw4ccIRNS174M8tEff3QWtQ559JYBqNhnMhXV9fx/r6OjqdzkzCFM4tE4voGCmZUhKgiS40S6Aa/Gqoc5yp0JFgsuYbx1LJINukskuVkoSEY88C8VTyOA7sJ7D/vaClDQg/K6eSXFUq+czsh74zvss150BJkc6hkkeSDiaQIaFS5YhERjM2xsXf+X3SNn3yFvcZ59JX6ZTAsW1Vy+KUTX23+Px+rBuv42equOk1XGe+JwPdJhknq31WN2equlRwbxSOF4FDiIELCAgICDgcqi7FfRb3o+f5BkmcsUxjS9vQXWdfLfPJlK+W+MdVedPzDiOUioPI3UHjQ5RKJSwvLzs1SA1Qus0xUYiqL6zBxlgn7mRns1mXVITqWCaTceQwn8+jUqmg0+lgfX0du7u72NnZcbv0WrSZ5E3TxOvuPtUUYD9pCI3OYrHoCGWn08FgMHBKkio+AFx/SexocHNnv1gsolKpOBJB1zf2gYoejelkMol6vY56vY6bb74Zt9xyCyqVilPUSJD8LJ5xcxX390GkTUkB/2VCGhYhpzLCcWg2m7h06RKefvppdLtd7O7uOqKr8WpKXtgO1wrVHZInEhtuYmhCDhrsVLk4znot1wPXxN7eHrrdrlN3WYuQc8W4RN7DJ+NUkdT1Ub8HOCYArnOB5POq+yA/5/oj8VN1j+okCacSMP3+IWHxa5vxeo45n0WVYi1QPm9NUMXVmDE9ruRJ55vjpwqjEjeuXd2o8jfP+DeJqZYf4L9K0OK+V/m3Em/+qOrN36l0UlHWjQQA7juh2+26uLkbgeNF4EwgcAEBAQEBzx2+EeyTOf9c/htHoHzSF2dQ+KARNE/10j761/t/q2EZp7rMey5f6TuI+AEReVtcXHSxSTSINJtdoVBw5E3doei6RJI3Ho9d9kka4sPh0Klmu7u7KBaLmEwmzq2P7owAXEwZd89pZLM8gLpdaUY+1gRLp9Mol8vodDqoVqvI5XLuPoPBYMYVUuPC9NnomkXXUJJRqhaaHIUZ+4bDIfr9Pmq1Gm6++WacPHkS586dw5kzZ5zC5KuwJB2HzaMqFqoEHbSGfFWH61KPsT0SoEqlgrNnz+L1r3899vb2cO3aNVy5cgXr6+u4cuUK1tbWZsZc+6gxglxHPE4Sx3Gl6y3Hjeomx1eJtdZ3G41G6HQ66HQ6Ts30a+PRrZbGu5INHUtNGEKoqx8JGd8hddejKumTKlV+lUip26SWNeAxVe84ZnSZ5FoH9jOicnyoZlL9Jinl2uVnyWTSxc+piyLvSRdYdbFUl0+OHceI7yD7ys/9ceMa03FQJV/XD9enup2yn1oCQTcPqNRq3CRJP5/Vz5zKuZtMJu67h4mQbhSOF4FDKCMQEBAQEHA4fCM2Tm2LM5wBzBgnceRNd5/nEai4fih58kmf38ZByptPFucF3M9T++YRN1UOarWaUyyongBw2R9pWGtadRp33LUeDocolUozakk6nXYui8lk0sV95XI5tNtt59KoakO1WnXxaOx7Op2eSW5CtzoaagCc6x2VhcFggFqthmQyie3t7ZnkJGyHhh2NVcZ4kTBSqeIOP8eNypufeOOOO+7AHXfcgXPnzjnSxzU0b579taqJLOLWrs7vvPn3143+zf77rm+6RmlAZ7NZnD17FmfOnHFjvr29jaeffhqPPvoodnZ2nEFO0kKi4t9bFSp1k+v3+y6ZCxPbkPBPJhPnrkpVlMpbMplEtVp1hjsQpY5XNZPkVPvH5/Pjquhy6GcF5frjWuE8kABwbfBv9kU3NXhPY8x12Vt9t0y+kyRUVD95LckKSY2qjepCrH+TtJBYkwBxDnx3XVXDOCb6Pem7G5PYqsrJ3303Z46F3oPj6a9VVeTUJVnfBSV5rLWoiXmYoIXrVNceN3RyuRxqtVogcC8WggIXEBAQEPB8MI+8xRm184iY/svf48496FrfdXEeiZtH3uL6EHevg+C3pX8XCgWsrKw4YxHYN4hoTJbLZbeLTeOSBmOlUkEikXA125jYgwaS7oQzWQbVA8anqKFF0qdxVsxAqCnhqcxRzWMCCxrz2WwWpVIJ1lpsbW05osiMkzRiqdjo83LMCoUCFhYW3GdUT6gatdttpNNpnD9/HrfeeituvfVWrKysXEf449aYuowpadM58wmVutn58xqnOM/7O07lU0KnpFSVX7qiVqtV3HLLLXjzm9+MK1eu4Mknn8TXvvY1XL582amRXEckNVqImUSIWQE5B7lczhnhVIYKhYJba51Ox8UtMtMkVbZUKoVSqeRInhIEraVHcjIvXbzvDstzVZ1S9ZdED9jPRMnjHGemr+emhravxFZVUrpXkjxRhdTsk1oInfdXMsP+8Zm0Rp+/BnX+9TtL152uD63TZ4xxMYtczySy+r3Bz3guyacmcPHjAvl9w2vpos3vCr5fWjtQCSXHAtiPe+P6VlfWcrmMUqk0d3Ps5cDxInAIKUwCAgICAo4Gn+jEGatHITzz2lQcxe1RyZjvTqWE0j837jnilDSfZM5TEOPOTyQSqNfrWFxcnHF3UyNnMpmgWq3OqBaMQWLqfBpBrMdFI5aGn6a6p4I2GAxcbBUVDBZhpiEGwCkLmn6eRj+JIVU1tpXP51GtVmGMcS521loX70blTNPus11gPyFHNpt1dd2AfeOPhnUmk8F9992H++67D4uLi67//vz7SoIqCLp2aLxqTJ+vivmkLg7z1joNa40bUuOax9hHxhjSLVEz+A2HQ9fOqVOnsLq6invvvRfb29t45JFH8PDDD7uEEGyP7WsphW63i0Qi4eZXs4Fy/EnAWMAdiFwISdxHo5Fzr2QNPo1jI9HXd0vdm0mSuA4Ze0Zixb7zX5IXVXb0/fUTZdDFl+6fAGYUObarZJFzwvGO2xRRl1cl3PodwFg33ZxR10TdNPDJkxIufq7rU9dU3Hekxrzp2PJ39l9VbXX/VHdJXpvL5dwGAc/RrLMsIVEul909VFklueNmDkl+Npt1mXXnxQ6+HDheBM6EMgIBAQEBAYfjIIVLjxNxCpdPlOLUt6O0w8+1nTj1ZJ7L2zzXuoNwlHN4v0wm41LU01Dn7rW6mVUqFRSLxZkEIvqczFYIREY1FQAqIul0Gt1u16lqJFzMHMi+UFXg7noikXDJQjT7oZJBIFLE2Ja11j3TeDxGt9udcamiEQ7MkjFVQWiUU+nQmmY0Ik+ePIlXvepVuPvuu517Ztw6IWkngVFD3Se2PlnzkyzEkYPnAl8R9H/XkgHziJ2mz6cipO55uVwOq6urOHXqFN7whjfg8ccfx8MPP4xnnnkGvV7PKS1KppkMx1qLTqfj1g9LKpCENxoN9Ho9ZLNZVCoVAHCF3xmTyfVItZdEX6FKD5+fz0KDn8RAXYVVmdL3QBOdKOEhqeKmAlPa63E/6QZJs+/uqcSNa4XrSgk931klKqpS6eaMEifNsqlJPvzNA3XN5PohOWKf4hKx8Fr+zYQsHG8SQlVFlcjzfoVCwSmuJPNcq6PRCO12260HrlVN1MLvEI2D49jqWChxfLlxrAgcgBADFxAQEBDwgjCPWM07Jw4HuTbGkUeftMUpYvP6E+f+Ng8HKYS+wpdIJFAqlbCwsIBcLudczpi2nzvzTPtP1zVNzqAGkKaP1/vSgO71em6Hm6nrlVBpsgoSLJKFfD7v2mYWRM1cyCySNPjpuqgEkeoLiQLVOoJGMu9D0khFkgYz27/vvvtwyy23oFwuz8Tu+JsGvpJC1YRGqWbNnEfc4n78NeavLX9N+ERt3oaAqnPq0qnZ/TQWSd30SAD0OQqFAu655x5cvHgRW1tbeOihh/D000+j1WrNFFjn+lKXR7pMWmvRbDaxtbWFwWCAfD7vSB0VV8aDURHM5XIzhcxVZVPypi59xkTxmKqC6bwqySA5pPKjCUhU9dPU/xw7PabtUomiayVd+9gvkhElOTxvXmIPbjyoq6ZuWlBN05IXSqjYR31P9PlVLeY64lioS6d/TOPwNGZQFUEeI0FX0smNlWKx6NYa3bB7vZ57ZmP2k9fwPCY3okrP7z7/vTns/4GXEseKwJngQxkQEBAQ8BygySLmIY7c6Od6Ho2tw9S3uHscdI4SOp/c8X76mZJEnzDGue7RGFGFaWlpCSsrK87gNMY441njkAqFAkqlkisZkMlk0G63Xdp/AM5diQYX20skEuh0OjM76nRx0rg2JpogCaMxzux8wP6u+XA4dIYzydxgMEA2m8XFixed2tbr9dBqtdDv911CFBZ1JqHT7HpUJ6hW0ECkKjIajXDhwgXce++9uHjxIgqFwnUESOdJY5d8VdMnaof96/+u63HeOpynICsx4+eqsCl5I3ic17HcgcaD8W+Nm6NayzFdXV3F+973PrTbbXzqU5/CF77wBTQajZlEIwCci2EqFdVwa7fbaDQaLsEEM5aSlJdKJWQyGXS7XQBArVZzLpT8UbdEfW5gP6EIybpuYPC51aVPx4zXkvhTAQb2FS2SyThFle8dSSdJFQkLxxvYd7cEMBMDymfjsygZ4rrWzQJg3xURgFubbJekVMkbiR+fV8dGY+z02fQ7iv/yPFWlOb66ttg23WGpovL7gvNIl2u+01RvqdhznKhasph9p9Nx3wmqPmtcYYiBe5FgTOBvAQEBAQHPD/6O6lFVNv98n+jF3cdvwz8/ru15n6khoUTMv5ffv3nqXj6fx5kzZ1yGyL29Pad+7O7uOqPJGOOyUXa7XVhrnWLFeDR1saLL0Xg8dvEpmhmPLnC6y18oFFy8ynA4dESK9eDoQsY4N7Y9mUzQbredexUQ1ZhjVkljjEt+UalUnDFrjHFZDgE4l026tfF3HT/G/r3pTW/Cbbfd5voVp4iqwkPi58exzSNoShD8a9iPeXFwcevI71fcjxrQcT88j8Y1r6FayWelyx8NbxrYzCKpCgjX1Tvf+U58wzd8Az7/+c/js5/9LJrNplsTXFf9fh/NZhOdTgfWWufmy8yUGq/U6/WcQko1RgmTKm86ViTxNNzV1VLdRbU4tippnAeWyyDx0YQsHBeOpapQXL8cM43r4niTFHJTQOvA6fvO94SbNCRpPEddLjWO1Cdl/saBrkd9dh7Tdc7n8p9T16S+W1Tu/L7pus3lcq4+pKrwdI3kWlWSpz8cG5b1aLfbrj4g+5FMJrGwsIB0Oo1Wq+U2k24UjheBw9EyfgUEBAQE/N6GT158Y2vezqoaxL6CEad2+cbzPCLm3yOOPMYpez4Rm6fkqWE07//JRCKBWq2Gc+fOIZvNulTtmriDxnMqlXKFnWk0MVsc40p4P2Z85O56LpebUdJobAOzigTVFU3lXy6XUalUXPpu9osKRaFQwO7uLprNpiOVy8vLSCSizJedTge5XG6GoNEI0/g5Gu2MpdHEFxzDfr+PXC6Hb/iGb8B9992HhYWFuYkaVJ1StS1OPVOFRF3s9HMaw0r0OB5x8+/3xTeUVX3TdeITNZ/AxcXA6bkAnKJJAk7VQ6+lGy1JENfLwsIC3vrWt+Kee+7Bpz71KTz22GOun51Ox9Xq49qg+y2JOdcaXeZIvumuG1emQFUjEiWOCVU0Ehpgvwg8DX5VrkhUGH/JueN6VQXZr3VG4sRNA3VZ5DgC+xkk/VT+JDzss2Zx5YaJ/33AvnDONWGLPjvPSSQSrl2+T0qwuH5VTScZU8JOcszjGg/HMdF1qOuLc5TJZFAqldw1fFaCmzl+H4nhcOjiJweDgasXyPtVKhW3OcPvvBuJ40XgggIXEBAQEHAEzCNJwPUkZx7p8V0PD1Ps9Bqf7MW1r+dpH+IUFP183n0Oeh7uLq+uriKdTjujSHf2V1ZWAERGGQkeXSppjNIwZDKARqPh1BUaRBrTRDc3Zsqz1rrse0xewTT/lUrFFdmmUUz3R+6yM4kFXelOnz6NarWK9fV1ZxSynpwmYVESSaOZSR0YE0fjnMTptttuw4MPPujGbF6MGz/zSZeqFwBm+qRKjX7O/rEdf+0ctjngk0t1VQNmCzXzXjwvzoBmAhoqUVSfaPz7ygmJjipFNKipcKo6xXsvLS3hPe95D+677z58+tOfxte+9jW0Wi3s7e2hWCw6tZiusIyJ1JT6GjPmk1N9Rs4JSZqSFo4hyRKfh+TQJ3CcH5I/rjGN2YyLweP8cu1xrPnu8R1R98i4uDgSIyVRWppA1TiNV9NNBc4LECWD4fl8dqryqrypmqgJUZQI6tj464vHSACB2c0WXb88R0k1r9XvJyquVFrZV/av1Wqh1Wo5TwHGV/K++h2xt7fn1u2NwvEicAh14AICAgICDsdBZMsnPwe5o+nvcUTLJ2l+u3Hk7ShE0O/vvH/j1Bb/eD6fx8LCAsrl8gxRYDxNNpt1CSFoiFLd4m4+M+IBmFHOWq0WUqmo8DcQ1eaiYUQDiwY744BYGoCGF+urMRkI03rrrr+1Fo1GA+12G4PBAIuLi1hdXUW328VTTz11nbKTz+cdMWI7JA1URWg889mMieKOKpUK7r//frzmNa9xiVXi1gLHOS4JiSptJGk0sElaaZTOS2Iyj8jPU1tpUGt/uQY0wYRew+fW2Cj9nPPBseFcFwoFtFqtmfuqgU6DmCov15DGL1GRY/upVAqnTp3CH/gDfwCPPPIIPvKRj2BtbQ3FYtHNI101udYSiQSKxSKMMTMF4DX5SBxZU+WKa4wGuypm3DxQdVZJoB8TRzLAcdMC1xxXklC2OR6PnXrH9abuiKrGcbx4T1Vv1VVTVVuSb2Oud7Hk2veJJvusbpOaYTVuLAE41VP7p58rISPZ4tj47q0kfSRZTDpCwsp+K7R9quxMoNRsNmGtRbFYdK63+XzezftwOESr1ZrpTyBwLxKMMUGBCwgICAh43pjnFhOndPjkaB5543G/rTiipkTwKH2a16b+7u9ME8lkErVazbmaaQZB7kJT3bDWukQgJFc0+mjkMU6OiUEGgwGKxSKWlpbQ7XbRaDRm6m+RqCWTSVQqFbfDTYOdBKpSqTj3Rqp+rK3Fgt/MJmmMwate9SoYY7C5uYlWqzVDdBgPpQap1vJiDa18Po/FxUV3Ho3mCxcu4E1vehPOnj3r1I44IuWrbL5rpCpsWqtOFbe4GLc4qBGpazBOHfY3JQ6Drh39V8dEidloNMLGxga2t7dn4t9UmdM+qUHNUgEkciQco9FopgRFOp3GPffcg7Nnz+Jzn/scPvOZz7i1ydhKbjCUSiU3v+yzJlYhwQIws6bUBZLna5IbVX6pUKnboCYT4RySTAJw642fA/vuw0wOxHet3++7z0nw9TmYrEczP/r3pTpO5c0nXuwTk77we0AJLufMj7VUJYtETFVifq8As6UZ+I5zs4TkVVVN9pvPzXY4Z5r9lPfV2FoleryOiUqYRIffCdw84KaNbtyQFOp7oDF8NwLHi8DhYL/vgICAgIAAH3HqGHB4YhGeEwefhAGz9aRUgYtrY57Sx2NxhGzec/m7xDSclpaWUK1WnbGmabIzmQyKxSKKxaKrm8Q2qZoA+6n1GVemaflPnTqFer2OXq+HTqczoxLQIC8UCs4gpruTFv+mwazZJAG4uLxOp4NWq4XxeOyURAC4cuUKBoOBc7/r9Xqu0DZdKDkfNDRJABYWFlz2zV6v5479vt/3+3DPPfegUqk4BUmJPOdiXkwbjUD+kMCStMaVDdA14pMzf13FxUj6f89LFhGn4unzxBFDkgOfWNKIVuOZhjbVNlVXNKEFyRpJjGYuJckFImN7cXER73nPe3Du3Dl84hOfwPb2Nnq9nss06Rf8plpM914l3ySiJI/+PLK/xhinmvE94vVKypTQaqIetsvrOHZ8No1342ckjrrpoOqYltqgGs0fluXQcgBcB0o6uSnCta4ulqpGqguwEnD/O0nfDb2eY6gklPOsz8f54EaSEkdjogREjE/j2OZyuesUVr0nP2M8YrPZdK61tVrNjQ/VNz8OjwST737ce/Ny4lgROIQYuICAgICAI0AJFBAfV+a7OsbBN67nqW4AYomU/jvPJU7vQ6hR7auBcc/J36kCLCwsuNTqmoBCjVwahzS2SN54f2anZAFujbE5c+YMyuUyGo0GGo0GMpmMU+4mk4lTGIAoOyATnTC7JN0leU8qejRSh8Mhut0u2u22i89LJpNoNpsuqUK5XEaxWHTtdLtdp5qRSDCZBBApOysrK6hUKo4ojsdjrKys4A1veANuvvlmZyD72f2UCNDAVRc6XkPCxh8/cYca3/Pmfx7p4rxoXJffhhJ6XRdxxE//9deTqjHaFxq5/D2OoO3u7qJer6NWq7lMoRonp+cqoSERYXZB9u3222/HyZMn8fGPfxyf+MQnHLnR/rE/Gv9FZY4kRVU5VedIEOhGpwa9uuwxFowqFD/jBomSHrbLuDjG6ZHMkLjw2dkWAPfOsf9cu5x3PjPHS1VO9lvLVyj51FIPVOL4/aDz6quXJEi8v64bVV7VdZVrUTcVdCNJvy9V3WSf+bkSNCZGItQlnG1rTKkSaGDfVVZjGEkm9R3n/AQXyhcJBggMLiAgICDgOWMe8ZpnUMf9x60kKs5NLS4m4yg7uHHG9GHEUq/lPdLpNGq1mku1zgLYdE+yNiqqDMARDHVlo9HEezKjH0nT7u4uTp06hdXVVVhrsbGx4bK1lctlNJtNAHCG6nA4RKfTcQZ8LpdzfaOiAMApDFQc+v0+dnZ2XMmCpaUlJJNJNBoNdDodZLNZl+57b28PrVbLnTuZTNwzKvnIZDI4e/Ys8vm8c68yxuCWW27BW97yFtRqtZkU6jp3ca6SNPyYgMXaqNA0M9xpfJcawvPWR5wK658zj7zNU3nj2o1rO06Z9ttV49Y/rooNFYyNjQ2XiZRkiutZSR9dTLXmH2t6MSmFMVGGwHe96104c+YMPvGJT2Bra+u68VPiqsk+gNlskfwb2C8IbYxx2Sb1+dh/9kUztvJ6JQ0keHQHpssi47h4LVUgKn4cI413Y19V2VPCyc0GLaVBV1ASbSUxmnxG4+ustS6jI4mSuijq+JLMcg6V5CiJU7Wf7wqP6frjs+TzebfRoe8Zx0YzgFKZ4z051jyPhJ2u45NJlEiJmwUk8qq86v8DunkTygi8SDDGwAYGFxAQEBDwPHAQmYojeHGKxTwlTM/RduIM8XkGt55/0P3irtdEJVS/uFPN3Xe6aVGN0BgfGnvcoWc2yW63i8FggFKphNOnT2NpaQmDwQCbm5szu9+9Xs/dM5FIuDpKNKZKpdJMvBKwr/KNx2PUajUsLCxge3sbW1tbzgUzl8u5uk10vatWq0gmkxgMBmi1Wi6ZBQ1KVRtoxJ8+fRrJZHLGSH/ggQdw7733olqtxroeKuHw3SVJPljDrtfrOTdRGtRqjPpzFrdBoITooPP0fP8c//q4tXIQWYwjcnHX8FxV69gX/t1oNGZimJRc6Ljwd8aBaUIRna9UKoU777wTCwsL+J3f+R08++yzM3FeXFdKikhyVFUB9ok+yT5j3niM7WjWUJJCPifbUnc73ovkzRjjVGJNh89YOca2ackDrl/NhOnH92ltOrZBcsI+6TV8Lo3zIlFTdZT3VzVN14AWKednHAv+rv8qIVI1je3qPdVVmPfiHDCBTalUmkmoRAI4mUxcOZLxeOwye5IwUp3VGDv2jW2Q1Kn6F2LgXiSELJQBAQEBAc8HBxEv30g+CsHyz+dxPVev8V3T/Hb138PO0WPJZNKRI/4w/kaNSXWJojrHHerRaIROp4NUKuVqnW1vbzujtlaruVT6GxsbzlBSA5lp0weDgSMxTISSy+VQLBZnYkt6vd6M8VQoFFzyASpk5XIZe3t7jgjQLTSRSLgMmJ1OB/1+H9ls1mW/pOrIrHUksjR0C4UC3vCGN+Duu+92KqM/90owNNmIqkZUMUnc6DI5L8ZN52+eCyX/9ZWtw1Q4f/3FHfPvoZ/H4SBlzwf7qeRHCS/JbhyR43PS1Y+KFd0IuZ6A6F09deoUvvmbvxmf/OQn8eUvf9mta65FTWhCBU1JI5Pn5PN5p2BxDFR9IUEi4eBz+Ak52E9V+ahukyB2u13nMsr4K75f6lqqBJFqGfukBI1rjUSPiVaoppHYalyqxqUB+0ldNElLXPISP4W/ltrQMfITkOj6JZliv1QB43eFKl4aV6qKpu/GShKm8bOsFcfx5nr0Sz/oM8Wpb5yLG4XjReBMIHABAQEBAYcjjgAd5mY2jzj5O876Hz+v0+uVEMa5zs0zjOOIoBr0+hw0vMrlsksGoi5ZNFZ8IzadTqNYLKJSqbhU7qypxjID6pJ14sQJlEolp7oxcQjJl7WR+2QqlXJkiuSuUCjMEEoAM4YYlYTRaIRr165hPI7SqTNz5WAwQL/fRzKZxMrKiiN0nU7HKTM0PFnomZkl2+22M5QLhQLK5bJzd3zHO96BW2+91cVRxa0DVd5oSJJgsP8kbjQeaejy2nlrT+c5TrWNWxO6ZlSp8NfaQc/jq4z+NXHX+xsPcWvUv5c+O9eIjiUVJ1VEfDdLJpvQGDmt81UsFvGmN70JpVIJDz30kGtDlU9uFnD9A5hx1QT2S0BojKK2xb95nro36gYG54PkUWPx/FT63EhQ8hZH1vkeKcmy1s5kctVsilyfjLlTl0Qq2nzfOD5UnnS82Ja6MVLR1vWmsXA8l98NfDb9vvLXi64nP35QFUjNeqljyQ2jRqPhagayfAjJHNXfuHeb40HiSiKq79eNJHHHi8AhuFAGBAQEBBwdPvkBnpvC5idxiCNk2iYNBP+YthH3md83Pe7/MJB/cXFxZvechhYVBrpBUuVi2QASF6pHNIiVjDBxSLFYRKfTcXFwmrAgn8+7Gl0kb8PhEOl0GqVSCeVyeUYBoHJnjEGhUIAxBu1226klmqmv2+1iPB6jXq9jdXUVk8kE3W7X1R6j2yez8DG7JHfeGdNGAre3t4dqtYq3v/3tuPnmm2cMV39efOVNFSQqjHxWElaSN5/cH0XBiiN4/rpQaAyZur8dpsAp/I0B/Xzetb4RHPc++e1ptkJVMamqcP2SvCnh43EttjwYDNx6yeVyeOCBB1CtVvGRj3wEW1tbzuBW4k2iReVPlZbxeDzjpqlKG981rgNuilC50vgoErLJZL+WG4kMiRbfLbo7KnkFMKMocR64vlWF4nuuxcLprgzsu7HyfmyTbtN8b7Q2nBIo321T588nXOo6qSSQY8J3MC6xDn/U3VKfQb/bmCRJ1xm/d3Z2dpwyZ6113x0+udaEL75yGvedHfdd/nLieBG4oMAFBAQEBBwBccrZUd3BCF81O0w50/vOM+IPMnrj1A//70wmg0qlguXlZVdHioYtjbJSqeQMLi0VAGDGjZHQGmXdbhfpdBqLi4sAgM3NTfR6Pecaxj5oMpLBYOCSiLCuG1UT7myzbhfVAhYCV4WASl+v10Mul0O1WsXi4qIjb1tbW0gkEsjn8y6+KJVKoVKpoFgsOvWuVCoBAMrlMvL5vFPj3vWud+HcuXOHkjc/3o2JEUhwmagkzmXyoLXk33MeifLXlL+u/Ot1k0F/4p5vXh/0+qOu83nvk785oQRFlR0lAzTWleDx2Hg8dmTFT0KTTCZx2223AQB+8zd/Ezs7OwBmY6s05ozKDNUsjUFT5QnYL+TNGDv9DiAZ0OyJJJUkTOyHMcYptwBQLBZdQhOSNc1+SnVbC3NrQhYtiA7AbYwkEomZ7JxKQEhK+TfJrGa/pEKvpMdXxeKUZSpkvK9+rmPjf5/5Gw/aNgmXtq1Jhuiy3Gg0XH1Bfa/VdZLzxc+o4nIu45RpXqd9erlxrAgcEJJQBgQEBAQcDv1Pmn/HKQkHXe//raQwTkGbp6LMa9vv02HKS6FQQL1ex9LSkiMpAGbco2q1mos1KpVKqFarrvYW1Rqi3+/DWotisehUt4WFBSSTSXQ6HZeYgwpCLpdDoVBArVZDIpFAp9NxigKJVa1Wc8YpANeGpkzndVQNAeDkyZOOFGWzWSwtLbksk3SlZM04uitms1lX545ElgojY+U6nQ4qlQre+ta34qabbppxpzpMedN6blpMvNfrzdQe8408f+5ogHJNzlsPPuI2IeatGZ1bdcfzMwnGwSd0cX3wjVtd/3pcyaTflrrVkRBQ6RmNRjh9+jRSqRQajcZM/BOfh0pcoVBwJA6IiOHtt9+OfD6P//Af/gN2dnaui/ek0qZKFOdPFSKOF9coFTVmPtTxVnJBt0xudJCAkPRrgiAlTryW5JYbJKoWsh8kaIzb5Lr0s8lq0Xp1aVQXwb29Pae+k8Cyzpq6JfOZ+W4omfMTuejckwj6ijTXmKqPXKeqmPF5dbOJc8QSIyw9Qk8AvrNsS9U9dVXlHKprucYh8l7PdcPvxcaxInDRQrrRvQgICAgIeCXgKK6McccPU9TiDO6DCNtB1x2lb4lElBJ7cXHRKWqZTMYZhjRKU6kU+v3+TLpsko3d3V2XsCSbzaLf7wOAU71oGA8GA2e8sog3DcdqteqSjVCFoisSY/GAfeViOByi3W67/gBAo9Fw7dIlc3Fx0SUlqdVqTi2h6kCXMxq9NE5rtRqAyKAjOVRXylarhXq9jre+9a04e/bsDHnTufWVN7pDUpkkcev3+248VUnSeYojcwetC9+lTK87CnieTwx9QqXxSHGKQ9y1BxG/w66dB+0PMBuTdPXqVVQqFUdkCI4Rk37k83nk83mnwlBhOXv2LN73vvfhQx/6EK5du+Yyoo7HY7Tb7RllRhNv6DtOVY6GvTFmxoWSKhnJGmOxSJT8otCaeIMqEM9jTJ0ScM2wSFWcZIkEluSNrp8+eWSiELbDd1QzVOqmgq+W6WaAulz6iUP0b3WV5ZxpTJ0SQa4Tji1JNNcm76dzz+8hfrfwGVgTkNf7c0Lw+4ht8hz2gffQBC1HWc8vJY4XgQMQNLiAgICAgKNgHmE67D/nw0hbHFnTnd2DXND8z1WpiDPC6TLJLI7AvhsYDUBNLc6slCRIAGZqKHGHnm6WzWbT7UxTLaCxyPT8TAKSyWQckaELGxOVZLPZ62LFaLhmMhn0ej10u11X3Hs0GmFhYQF7e3vY3NzEZDLBiRMnkM1mnWLIODM17IBIicxms+h2u0ilUo7w1Wq1GTfMcrmMt771rTNuk3FzpgSOhjWJG9vic6vLpL+W+Jm6DMbhKC6KbJM/z8WgjDvHd2ObR/iO2k8/pumga+PUOCW6Og8kR1Rj1E1Rz2OtQWOMW+epVArnz5/HH/yDfxC/8Ru/ge3tbUf4df6pEKn7Iw13bkpQzdJC8FpTzSccTDjCd1BVb2ZBVaJG1Y8EgmRISaSWHaCSOJlMZkoekLxp35QwkVBqwXA/86WuMX6PaIyl/8zqTqrusHH35RhpTKIqX/rMwL6rp6p7nHuOM0umUN3nHPgbcJochoRdVWn2i/1VxVcTJN0oHC8CF2LgAgICAgKOABoYwOEuk76BGecu6X+m7fr3OOx+cefEETuWBaDroMZwjMdjlwiERI/ZIEmemLyDMWtUjvh7r9dzBXS73S5KpZJzL9vd3XUxR8zsyJgvGl9UA9VdisSLxqy1Fo1GwxXSpSFVr9ddDAtLBDC2jX3rdruuHQBOfcnlcmi1Wm4MSHJzuZwz6lKpFB588EGcO3fuOuVNx91X36hi0G2z2+3OKJI09OJU2ri14K+DeQqdkis1NOPW0FEVvTjQYFWFKc5IjXumw5TouHMOUrs13k3JGY+RRJGgaBIRa60j8lybNPpPnTqFd7/73fiv//W/YmNjwxE99k3JCTAbm8dxJ1ngM/jzo4mDgMh9mX1hvBvdPlWd03ll3JqSVHX1pEJIksZ1SVKn74WeT8LCuVb1S5VY//uN0HWnhEeVUT/TJ0mhtmetdW6gGpPnuxTr2Or7odfwu0tJn6pu/NzfNOH1Os4kzHElI7S8BTcTbhSOH4G70Z0ICAgICPi6R1zwuRou/P2w5BMK/7w4o/0wZcVXJuL6R0JSKpVcID938alOUKliNrtKpeJUIwCoVqsYDocuJm1nZweZTAb1et0RE2MMer2eU7GoZnBMqGhRTWBCh3w+71y9uLMOYCZmjtkpNzY2MBgMXI22ZDKJcrmMbreLRqOBXC6HWq2GVCqFdrvtridBo2JHJaNUKrk+l8tl1Go1l+iEmfiy2Sxe+9rX4uLFi86NLm4+aExqzJvG3HW7XbTbbdeuKm9+e/68qmuWP/f+vGv/9DiVCH6mSR98NU3Vl8PWpRrSvNZPKDGPrMWRUr/deUrzvL/V+Gc7h6mZvA/XlTHGKb7GGJw7dw7f+I3fiA9+8IPodDrXuQWqSqOZD7kJQGJJkqBKlsZiqlpnjJlxe1Tyyb85r2xPk2twfdGVMp1OuxIcdOMF4N4/bjZwnbB9fR6OldbgYx/UnZGgeq5qmpIl9lOVPJ0PEkiSNFX7lCSzz3QL5brVeSZRp7soS6BwPHicbSYSCacgkvDx+TimyWTSJVRSFZ0Ejiokx+IoivdLheNF4DC/4GRAQEBAQMBB8NWJgzKMxRnlcYpDHOYZvtrGvGtLpRJWVlacCxnT5dMY4c4/a7cxWQnT9CcSCZRKJQyHQ5eQZGtrC0DkbsUC2iRr+Xzexb4x/XYqlUK9XkcymXRp/mlcsQByMpl0JQp2d3fR7XadkZXJZDAcDtFsNp3LE++TSCRczabFxcWZQuJ02aS7G42x8XiMcrmMXC7nlI18Po8TJ06gXq+7mDwmMrnllltw5513Xlek258TVd2ouGimSSpvJLUHrRed+zgFbh4xYj+AWYOb8OPB4gjdQapXnHIcd+841764vmr7h21GPBf4LqlKBgG42C/FaDRyKjLfEyp1qVQKZ86cwRvf+Eb81m/91oyxr+8giRSNe2Y0VEJJQsQ4Uarc6mbHTI7qUqhEUd9bJvXR2DVgP86L7wBJIdc2+0k1TmvRUTXjeSR+JCaErn1gv54aFUEqzX7SFo4XSZnG2ul5/uYIx48ETlVIJWs6BvxuoeLI8eSz+1lffeWW7Wvhcu2nxsxxniaTyUw9PX+cbgQOJXDGmJ8B8C0A1q21d08/+1EA3w9gY3raX7fW/sb02A8D+JMAxgD+grX2N1+Cfs/pa1DgAgICAgIOR5za4RvWep7/9zzD9yClzf/8MNVC+5jP57G8vIx6vY50Ou2yqwH7u83Ly8vOCLTWOhdGqkUkOsPhEOVy2SUGoXFOt0iqdMVi0RXgbrfbmEwmLhmJtfu1pbi7XywWUSgUnPHIbJVad4kEjarHysoKarWaS47S6XSQyWRw4sQJJJNJlxiE5AnYL+pM1aBcLru/d3d3US6XceLECZeNkOpgIpFAtVrFa1/7WlQqlQNJhB/fQzWj3++j3W67mDe6s8WpFTqnvoLkz2/c+lDExaTFrT01KH0VThWjg9S0OCi5oQEcp1z6Crb21SevcWN12JzwPN99lP2jOsLPgCi5CTcJGB9GEnTXXXdhOBziYx/7GHq93oyixjEigdHaYBxrEr9cLufiRrWWm1+Wg2NBopJOp50KrAl4SLpIFqi0cx6ZybXX67mNkXK57OL0SDzVlVNLEmjbnE8SPN0A8JOF8PmBfZVOM02qas1nVVdcTQhCUkW3UPaFbopULnmOryhz80TrWvLemp3UJ1kksZxHziXXhbpJ8tlTqRRqtRrS6TTW19dd0qcbKRodRYH7WQD/HMDPe5//Y2vtP9QPjDF3AvgOAHcBWAXwP4wxt1trx3gZYBBi4AICAgICDofvlsZ/D3MB478HKQ8HqQ1xhDBOddPzyuXyDHmjqxQNMrptcVecRG08HmNra8vtIKfTaVQqFQBAq9VyagRdovg7lTDGvtEYrNfrqFQqLrsfAFdIWY1Q1mBjfBgQJRaZTCZotVqOKGp2Pn5eKpVcpkGm5KehTKOz0+kgnU5jaWlpRh0EItfQkydPwlqLdrvtXBtJIO+//34sLi7OGG/+XKjhRwNU69l1u11nPOpuvxIVP3GDf495KtU8AhOXgILX+O3p59ofuoEqiaPBehQFmO1xzjTeSPuv952n1B30/hwGHQufHPlt8Hi/33cxcVRtGDd6991349q1a/jKV74CAG5e1UWOSpa2S5c6vntMvQ9E653naQwbx41KNNUe3pMZWamAk7hwvkjkNBFQKpVCoVBAMpl0tRNJDkko+U5qTCCfTWMH+cyMzYtL/6+kimRUC58TGjuo37f+uiERVNLG8SGZ5vtL9U3r4dFlVOeK34PsI99pPp+qfJqshcSNY8jPs9ks8vk8yuUy+v2++z76uk5iYq39qDHm/BHb+1YA/85aOwTwpDHmMQCvA/CJ59/F5wBjggIXEBAQEHBkxJGmOBVj3k6rb4jreXGEbh550zb4O3fVT5w44RSj8XiMYrHormUGSBaTpnFE1YuJEhYXF1Gr1bC3t4eNjQ13/WAwcG5avV5vpogwjZRcLodKpeLIIxONpNNpFAoFF3dCV8JUKuWKZrNcQbfbdcQnmUw6Itlut9FoNJBIRKUQqOC1Wi2X1ZFZMovFInq9HowxWFxcRKFQcG0aY3DmzBmsrKyg3W67GDmWTrDW4r777sOFCxdis8fpXKjbJNUBEje6TTKGRt2p2A4/U/Lmbw7EbQbEKcA+OfLdKeOUqHnki9DYHxrIaszGrUXtD/9WBWYesXwp4Csr/vPPuy+VOJbJ4DtWLBbxxje+Ee12G48//jiAyBVxOBzOGOpMhELSQmVG67ZxzQP7STbohsg1xfeWJI/qExOPUEWnGsY+a+wVlUTWfWM76t5I90i2z6RBJJE6ZnR75Frgs+p3IUkX2yEJ0pg9Pre6IPJHy474CjDJWy6Xc66KVATj4uQKhQIqlQqazeaM+yyJoLqV6/tAUql98zOO6rzxeo45yTfH/EbihcTA/TljzHcDeAjAX7HW7gA4DeCTcs6l6WfXwRjzAwB+AADOnTv3ArohbWJ+Vq+AgICAgAAfh6kDBxmEcW3FtRPnKqY/cQZ3sVhEtVp1iThoLNFgZL0opjJn4g5NOkEytrS0BGsttre3naHU6XSQy+WwtLSEVquFVqvldv7ZFg2VXC7nXJao5DG2jlkq6f5FdQaAS6TALJNUMVgeoNfrAYBTEJggot1uo9PpOBWE/aAaSPK3ubnpjp8+fRrLy8vOpYzGF3fLz549i3vuuccphfMIhhpwagDTlZOGtSp7OsfqPqZrgmpN3D3nqWhxx/RzVZzUIOazk3jEqb78l+3zWZXI+UZ+XP9UaVQXTR2TFxvaLgkG15wqfz755cYDY+LoSpdOp1Gv1/Hggw9ifX3dbQgwiYaf2MPa/TgpYD8OkSRL54RQlUpJF/ut7oIkYswwWSgUZrK/agFxuvGxfSp0mrCIrsu6lqgqM/6N88++c71yTjXBCNtV6JqPi5/THz63jp8SO/ZRM32yvAnHkOVJSPA0ds7f5OA77c+HKm+MKfY3V7h+GIerrq98b24Uni+B+5cAfgxRyNmPAfhJAH8CLMU2i9j/+ay1Pw3gpwHggQceeFFY10v0XREQEBAQcExxkDrmH5tH0BT+OT5ZUAMh7t7MBFksFmcMNLpX0WgYDofOoKCBpsYgDZxqtYpms+li5mgcLiwsoFKpzKQep0uZMWYmmyTJihq1jAfpdDpO+aMhSaNmMBg4JYxtLy4uIp1Oo9lsYjweo16vu3IGrVbLkaTRaOSybDKuJ5FIYHl5GalUCjs7O7DWYmFhASdPnkQ6nUaj0XCG5t7e3owL5Wte8xosLi7OLRnAceW/NB7pNskMmhw/JW8E1ToAzuD2kylwruPWGu/tEyWNx1H4xqO26SczUZVMj/l9o5sZAGe8KymLW7u8jv3nGL/YRC7u3jTOuU7846yNRpAQ5PN5N4eMKTt79ize/OY342Mf+5gra6GbLFwX6XQay8vL7plzuRxOnz6Nvb09XLp0aaYOIjcASK7y+bwrl8FzSN6ogFE1ZxIivttU3aiK85mZ3p5unFzzzKxIMsSxobquLpOcbz4jgBkSzzXDflP55XFmuFRFluPKcfeTt3DetPwJPQKoivnxdrw3CZWuV13TSh7VjZN/a5ZPtsex8d2KSQytnS3toO3cCDwvAmetvcbfjTH/BsB/mf55CcBZOfUMgCvPu3fPESEGLiAgICDgKDhIdYsjbgepcL4rkL/zP8/49d3n6vW6y6aoMSA0HBYXFwHAZYpkWnTuJDNGpFgs4uTJkwCAjY0o11i5XHYZI1dWVlAoFLC5uelUORq6NF5Y7Ju78jRo1GWy2Wy6PrAGHHf/ScZo8LJvjF8jCQTgMu/R0M1ms65EQavVQrfbdUkimFSFCVBOnDjh2gAiEkW3TBrSr3vd63Drrbc6Y9ifW3XFU/dJGrn9ft/1jwas7zpJ0kjjV9UvNXTj5p5/K5FTY/S5KsDqaumvUa4XrZXlq22auEVj3Q4qXKzqBY14PwPh84WOh/7tKyT+GPjvn57LchKqKqfTabzqVa/CtWvX8Oijj7ryGKlUCtVqFYPBAI1GwyXyKJfL7t1grGalUsGJEyfQ6/Vw9epV54ZJNY1kheRJMxsy5k3jSieTiVt77Cc3bLREAMmmJhbiO8e55Nz4KfRVQVX1jGOi13Pda/xbnEsk3zWOPz0GqOzpOqTCR7dNdf2meyrvxzXIGpC+6ux/pyrZ4vco+09iy9/9jQr+6EaGHy/3dR0DFwdjzClr7dXpn38IwJemv/86gH9rjPlHiJKY3Abg0y+4l0fvF2yIggsICAgIOALmGZZqBM4znuepaP6PqifzVJdUKuVS3hPcgQfgUor7hvny8jIAuLi48XiMSqWClZUV9Ho9F1s2Go3QbreRSqWQy+UwHA6xtbWFbreLdDqN4XDoCBILYasrJu/JeCGqUnRBoyHHWLdOp+OUNxJDxtXwmcrlMqy1LlaORIkFj0ejkXNnozFKd0gAWFlZwcrKyswueLfbde6gNBar1Sre8pa3oFwuz7hn+cqTkg+qGiwYTgNaXSd94kejUxUofx0pKfPXgv973Pl+vw8iRfPWMA1WEnNV5Pw4OCWgqn5QtYgzmnkvjpGfDv65wCdu856P4Hyo652/oULjm0k8MpmMU3zp8vu6170OV65cwebmJhKJhFtnzERIAsW1ynsbY1wZgTvuuAN33XUXPvrRj2Jzc9O57nKdUJ2i+sN1xXc9m81iPJ4tf5HP5918KnnLZDKuDc4r507XqCb/YAKV8Xg8816RuJFsWmtnXJKppPlER8cZ2HcNVfVXvwv5vUdlS0mkqvk6Xlo0m5lpNb5QM5ByTtRrQZOx+Gqcfmery6Wf7Ijfh8lkEqVS6bks5xcdRykj8AEAbwOwZIy5BOBvAXibMeZeRO6RTwH4XwDAWvuwMeaXATwCYATgz9qXKQMlEBS4gICAgICjIY54AfGuk/w87rgeiyNwPmHw200kElhYWEC1WgUAZzgtLCw496xkMolWq+V2o9W1iokQgP1Yl/X1dWdkMDaNWSCpTjFBynA4RKlUmklUwl1qGjMkbpPJBJ1OxxEuEhomX6DyRlIGwBmuJFOMmWNSExpKrFFnjHEZKfkMo9EIOzs7SCQSqNVqzmWSRjqP7+zsOEOYx173utdhdXU11nXSn0NV3+g+yWyTNJjVLdJXx6gQxJG0efdWA1uJhr+2DiJsccou21ajlOf45/uZHFVxUNVSx4cExlfZdN1rBsDDxj8O80hu3PukZIXn0FDXv3WMWeeQa4xuiMvLy7j//vvxwQ9+0CXUoTpFgkViw1i4QqHgVKS9vT00m03ceeed+LZv+zZ86EMfwrVr19yaVBWNGwV0g2QJAa4/Esd8Pn8dcWPMKt002b4qafO+f1S5o5pPws2U/ACcQsl1QIVdVTYdc41545pRFZDnKcHkj7peUk3k51T9uVZVsaaqqMqYrglNssJ1rUmIuDHBdc2+a0wx2yOBJQFnKZcbgaNkofzOmI/ff8D5Pw7gx19Ip54vjAkELiAgICDgaIhTxPydZf6u/+o1cSqBqhq+ka+GZC6Xw8LCgouBIegWmEhEdcs2NzcB7CcKqFar2N3ddeSt3+/PqAqqNLFdZo/s9XrIZrOoVCozddQ0k6Sqb1oigEoUAKdasPTAzs4OhsOhI2XMjsmkIhwfkjMmA2FsS61WQzIZFQZnJj9mmaSSV6/Xsbq66u7Z7/fRaDSc8UqDN5GIipVfvHgRDz74oEuxHke8feVN1bd+v+8IHNULP8kJoe6n/hrz76vrIm7dxSFuLcWpiXFqmEL77LelRrXG+vC5fDLnEzlV5LRdkmqtIfZccFS1UedE46L4rxrj/Jc11OguyZjTixcv4rHHHsMjjzyCWq2GSqXiSlXwGfL5vCMsTIrCDY9+v49HH30U999/P9773vfiF37hF1wGVroBckMA2FfcjTFO9eX7x7qLdAnmfJC8MTMq+0bCxe8VJT0AZu5PMkZ3bW5AcK1zo8aY/SQtJJwkMRr3qoqYzg/vzf5xrqi08ZlUGeN3DQA3tiSZVAkZD0xXbr0niRs3XfhucqNFYyB5f3UZ9ssWKHZ3d10NuhuFF5KF8usOBsGFMiAgICDgcPiKW5yKEbdzTcS5x+n1/n3070QigcXFRZRKJZeoJJVKYWFhwSUzYFxZt9tFJpNxpQNGoxG63a47TgOKyslkMnEJGIwxzhCiUcSYG7omFotFV16ARjuNHWaGJFnSlPo0cHq9Hra3t12f9/b2cOLECSwsLDgDkQSKWSTp1gTAlRQoFosupk4VPaoPp0+fRqlUcupGq9Vy2fnoTsX4oXPnzuH+++/HhQsXXLwf1QnOnc6rKmrss8blcWz0PBqoSnZ9AuMblIq4ZCX+MSV3PinSNeqvS39txqm/foyc3yf+zc/UsFUXSlU5mHwiTtEmKVQXUx9KsPz++s8Yt/nCPhN+DTWNyVKix40OGupMAvTggw+i3W6jWCy6BDzc4KCKxueli2MqlXKbE61WC08++SRe//rX47WvfS0+85nPuDFU8kbVzZj92on6/un601qPJFJUhFQ5Ym06PqOSHxITbupo31U55bzyHBI/tst1QCKp2ST5Lqk7IueX/dQ4Orqiamwes9+qWyOJVLFYRKFQQKfTcSSc1/E59Hy2oWRWx8VX3ZTUsR19Fxmb+Hzdg18MHCsCh6DABQQEBAQcEXHKmH7uu8kd5sZ2kKFJA4ap+6meMe6MCT1arZYzyLrdriN4yWQSOzs7GI1GLtFJqVRyO/XMUsfEAywqTIIH7LtY0ogrl8szmSmpwqTTaZfEpNVquQQKjMdh7Eyz2XSxdMyeedtttwHYL3x87tw59Ho9NJtNWGuxtLSE4XDonpPZMLe3tx3xBKIYFz7j0tISisUiut2uc6W855570O128cUvftGVQHjVq16F173udahUKq5wc7lcdjvrcW54PsGhEsO4IDWSVb3x59YnWQclN1D3MsU818DDlDQfSiqPeg2hBqkSQRrAatCrMqfKnWYR9BVCdWU7rH8HETp/Lv1jSjxVEfdjtUg+uLHBDYZMJoOVlRXcc889uHTp0oz7JIkbn7vX67mC9Yzx5GbHlStX0Ov1cN999+Gxxx5z5TGUMGQyGRfv1u12XRKhXC7nlODxeOxirlQVM2Y/BT7nI5PJOKLHzRuOh8aYUXHjNUrEdIOCKh4V92w2O5OkRF02VYnVunRsXzc6uCZIAkkeqfZR1dQNEZJ/3ZiiS6uSdX0Gts/3Vsefx1Rl5LpTl0puULDPqn7eKBwvAhcQEBAQEHBE+Iacr6YB8W5qcW34MTb+OdlsFvV6HUtLS87IoLLGxCBM508jSnf0Wcy6UqmgXC4DgIt90WyP3MVXFY4EUI1LqgokZzT48/m8K6ZNRQyAy7LHWJ+dnR2nhJE8LSwsoN/vo91uo1wuI5vNYmdnB9vb26799fV1ABFRolKxvb2N7e1tRzi5218qlVCv17G3t4enn34amUwGN998M0ajET7zmc84peKOO+7A7bffjjNnzqDRaOBzn/scVldXXRwhY2l0vnz3SaqHJL5+vbd55G3eOlL46lmcequkTuNw+NlhiFOh4q6bt34JGq1q/PrqtKpXmtiExjuNX5IDX4nkeB6U1fKoiFMnlQzwmaggatp8TdKi6ekZ1zkajXD+/HlXlxCAi1PjGNGtke8JXfq63a7rw/r6ukt+4icL0c0XKkksNcBkQRwrPgcTlXB8tTaZr4ppPTeOh2apVAJFgk7SxDnVudaYQm72cAxJJvkucYz1GrbJ7xzfbZIbUPqdpO+c1rnjJhETJPnqqqp9upngbyLwGdVlmO7mWhSdJJkbYHQnvVE4VgTOAMGBMiAgICDgUMxzeQTiY93irlHSpsatb5QWi0UsLS05d75MJoN2u+2MBdZE03g1a62LiWGMW71ed1kkrY1iYqhk5XI5l20yk8mgUqnM1OPivbRgsBYsVpctFq2m0UbVjYbS1tYW1tbWAABnzpzBHXfc4eLXWq2Wu/fm5iaazaYjjlQImUAgn8870qrjWigUUKlUUK1W0Wg00Ov1cOHCBaTTaXzlK19Bs9lENpvFLbfcgle/+tWo1+vY2NjAJz/5SVy5cgWZTAYPPvigi2eaR2Q0gQINYz9Bi7pYqZIBzGY41PUQt9Z8VTcOvjJ3GLmJc6ucRx7j7hm3YeHfP45s8hxf1WC2RCpwWv9PFRuOgRYO1zGdR0D1/tpO3POrmx4/10QVvA/nTM/TLI3cdFlbW3OqmKpOdMMjuSCo5E0mEzzzzDMueZCOCYCZum3FYtGpcVrzTUsP6DvsK5x8Fq5lfk8w9pBum+y/jiHVU008o6qzqqqEKnD6PaPqlRY3VzLH+Db+zfEnMVLXVlXhdC0kEvtJnEgY2X8lcrreSYKVoJKkURkkSWOMHO9H4gvAEe15HhkvB44XgTOAvXFF0QMCAgICXiHwDR8gPh26wjcg1WiZd26xWMSZM2dQLpexuLiIhYUF7OzszCh+LF7NHfFSqYRareYSh5TL5ZlEBkwg0mw2naHJtorFIk6dOoV8Po9Op4N2u+1iTFjDjUH/NHDopgnAxbNxZz2RSKBSqWAymaDRaGB9fd3Vcrv11luxurrq1DoAWFhYwO7uLq5ejSoNMY6F6l6j0cBkMsHi4iJGo5FTGACgWq06RXI8HrvMfdlsFs888wy2trZgjMGJEydw77334sKFC9ja2sJnP/tZXL582SmRd911F06ePHldCvA4l1j+rkavqm+aoGEe8QLgjO04177DyNs8knmQ8qYEyn9Gv6/6mW9wahvaZ78Pce+IP65si2SOxrHGyGltQyXH3Gw46Jnj+h73rH5fSSY0xb6fdVCVWGutS6TDjYInnnhiZryo2AH7MWZU57jRQfWr2WxiZ2fHbdIoaSGZYO1Ha627lq6HPFfjD/3vL33W4XB4HXnTJDJU3dgufzRWTTOTqkrlk0XeV8sBkESpi62/Rkn0tKC2nwhHYy41hlW/c5m8RfujNQFVlSNJ9d8DKonsD5+RaqA/roxLZBzyjcLxInAwsAgMLiAgICDgYPgGhe9+o+fFKXC+8qbX0qCpVqsuxuv06dMol8vY3Nx0NdkqlcpMunxro3T/zEzZ6XRQr9eRzWbR6XRm+kFliwW6R6MRqtUqKpUKarWaK3ZN46RSqSCfz7vYLu7EF4tFlwqbGSCp0DERQrfbxdramsuGuby8jJtuugnZbBbNZhOj0QiVSgXj8RhbW1vY2tpCqVRCMplEo9GAtdYpC3TnVJWLfaCBz0yVxhgMBgN0Oh2nQN5+++24ePEihsMhPv/5z+OZZ55xpHAymSCbzeLOO+90MXw6v4QSOTVgmbxE1TcFx4zQeVNVh/fQNaRqxkGIIyBKsLTvPOY/p56jfYoz+vW+/v21vzTodbNiHrnjOCnRobLCRDNKdkmASO6OCn+M55FXJZbqTumrcBxLqljsU7lcxvnz53HlyhUYs+8mmM1m0e/33fjQtZLZZVutFkqlEgqFAq5duzbjPqhF37Uwt7oGaiFuql/qFkhViM9IxZx9UpWPBFProrEPWvzbV9nUxZEkSonWZDJxyqvv+su59ctR+H1n4XI/0YyucyXequaxfcb9arZItkW3VhJ2f2y5fki8NWEPx4NklDGePFeJ7suN40XgQhKTgICAgIAjIG43eJ7xeBCJU6OELj+lUsmRqcXFRZw5cwbpdBpra2tuxziXy6HX6zlXxXw+j3K5PGM8Li4uYnd31xW05i747u4uSqWSI3IkgydPnoQxBu12G+122xmC9XodyWRyhrzR/YipuNvtNobDoTMyWWh7Z2cHly9fxsbGBpLJJO644w7U63U0Gg20Wi2nKjKhydraGowx7j5U80gGx+OxS3tOQscyBt1uF+vr644AcKwSiQRuueUWXLx4EcViEY888gguX77sDE/dNS+VSrjlllvczjnhuyeqoUmi4RfrJunirn7czr2/llSV0PYPgk+8FOpOqERQVSPfONZnVAMzToE7Cvxn8de8tu8/F/ugWSrpoqhkgUTgucTFHUba2K6+s9oXP0ulqnVU4UgqV1dXZ9yVScTK5bJLOKQulHSvq9VqLsZVszxyHrUuGdUcKj/qWupfqy5+qhARqqLFlXdQMqsKHNtW0gLslw0h0VG1SmPHfLdDTSJDIsex9ckbn5XEU9Vv3aTwM9nye5dkznf9pXJmzGzSFk2+omNMYqlkj2tGFUP/+pcbx4/A3ehOBAQEBAR83WOe+uAfI1Rt89uhgZLP512R6UKhgFKp5P6mix/rmlUqFee2WK1WZ9wbE4moYDXVLRqVmqGOfaRiV61WXQwck3swiyMAt1u8t7eHfD7vYnm63a47xh1npt1fW1vDxsYGRqMRFhYWcPHiRaTTaVy9ehX9fh8nTpxAoVDAxsaGI6fMCEdiynEjWWUcDw3XWq2GcrmMjY0N505JxYBxJnfddReq1SqeeeYZrK+vuxhB34i01uLChQuoVquxdd84j/48c1zoPqm1o9TVL46cxf3tr4+jKm/z+sfffeUkLq4sbl2zXb/PcRsTPK5GsJ4P7BNEdZub926wbe033QM1oyOwH7901Hpx+nzqCumrizyX64WbJFyHVOe0HZ7DPrIWHBX0UqmEVCqFYrHoCBQ3JDgWdIvsdDpOaVf1m4pkv9+feW5/zaj7ohJNzgGV4729PVdPjuOs7otaHoA1GFWpJXkhGSMZ0vhAn6RpNlF9H/X9o8KoqpnG86n6qUo1+8V5ocJI6PvJMWIf+be6o/K7kERYSaU+ixJ5fk9xY2EwGLjNsRcjCc8LwfEicJhfsycgICAgIMDHUYzPg1zPgGjHeGVlBUtLS25nn/XNxuMxrly5grW1NWcosrYZjRVmneOOf6lUmlHdSC6KxSJKpdJMau6FhQUkEglsbW05hY0ZHIvFoquRRsOEcT1AVLKg3++7uB0ALrEIXRMTiQSWlpZw7tw59Pt9XLp0CYVCAdVqFf1+H81m0xGqQqHgUvAzgxufi4oBC4Nns1lUq1V0Oh1cvnx5JpmDMcYR2nw+j52dHTzxxBMuBbs/RwCcEXf77be7mMCD5lznnUoh3af8+lD83TfWfDUqbo2oMRpHzlS9i2tDP9ekGaqSaF+1L/PUQH6uZEXv45MhHzpucW6qvkrtzxOfg+udGwp8FrrqPZcaWz5Z9D/nvdlnqjUcD39ulXSyaPTJkyfRbDZdbOp4PMbCwgKMMU4RJ+lLJpMuJpObF1SdlTSoyySJLJU0Eh/dQPCfT8eLZNNPLqLrmGPPvrAPJD2adIZzDCB2rcW5RKqyTiWRz8X2NJEMP9ONCO2PEiotYaEkkq7T5XIZnU4H/X7fkWvWu/Rr6um7wbEiec5ms47oc2xZc5Lzxfnnd+mNwPEicEGBCwgICAg4AuJUCMI3Wn0ypwYwVTbWcwPgdr13dnbcf/RUpOhWmc/n0e12XbwbSc5wOMT29jYKhQKWl5ddKn8qVa1WyxlX9Xodo9EIm5ubrqhssVh0ZQba7bbLrEhSx3tQDaNbIxBly9zZ2cG1a9fQ7Xaxu7uL1dVVrK6uYn19Hb1ezxmqOzs7Ti0k+Izj8RjLy8uwNsp0SWOOCU3K5TLq9TquXr3qFD4SExJMGrmdTgebm5szRIpGsB9/srS0hBMnTszs/vvKkv7QoNfYN1998wnAQTvuPgk7THmLI2m+mub3E9g37HkPfxyUcGqMl65jX1k5bM2rwR5HJuLin/x2/DGi+yvXKI1kdaeMU1Lnvbtxqpv/L9eP/ihh1fkgISO5qtfrblOkXC5jOByi2Wy6zRhuPOzu7rrsqolEwhE4YF/l0eyVXO+qJtG1EIBz7WV/OSYkNQBcG5xzdUnUNcLnJ7imVLkicaZqqIlQFKrUGWNcXCvB52BbfH5uJGl8JvvJsVfyxn6p4qXrny6UjFfUdaXtUKX0kxupms1z+V3GZDD8Tufz+qr0jcCxInBAiIELCAgICDgcagDGKWy+u5hvuGcyGSwuLqJSqQCYJQf8z39vb88Vkx4MBigUClhdXUW1WsXu7i7q9TrS6TS2t7fRarVcAeF0Oo3FxUX0+300Gg0sLCxgeXkZ6+vrrqYUEGWM3NjYcLvNxWIR1WrVxcDxmTKZjDOO6WJJl08qXslkEmtra+h2u07JW1paQqVScYQulUo59yEaa4wF0sQA3OnudrsA4JTDVCqFer2O8XiMr3zlK86opZFIosfMhTSE6frF55nnLnfq1CnUarW5Rr9v7FON0B8/9s2/p0KNZF07vgI0T2VTNYzQmDf+q3Wr1M2LhrkSPYX+7RvL/EzP1fghNU79d8X/3SdyOh48FqcGcixGo5HbMCgUCsjn80gkEi4WSRWcuHH13+N5LpQcIyU/JCx6zFfzmMExm81iYWEBW1tbTnHO5/MzMWxUbZhVtlAooNlsOpdJEijNPsnrNb5KCTbHSMlW3AYDgJn1oMqivz44z5riH8B1MV56rcaaqsqnNeoAOPdYeiOQBPFZrbUz2SVJOOM2yvRd53cj50QzZ1IVA+AUNG5qad05/51Wl1CSZ87r1taWI7EcA1Uo57lpv1w4VgTOGBMUuICAgICA54SDjMs4YzCXy2FlZcVlnUskEi45A1UpxrGRvOXzeZfQoNPpuNgZFrpm/MpoNMLi4iL29vawvr7uXHTW1tZc0WwAblefCRWKxaIrpE1XQ2utU+SMMWi1Wuj1ekgmk8hms66+m7UWa2trMwWFFxYWUCwWnSunJvYoFAozO+CVSsXVptrc3HRxJ4z1q9frqNVqqNVquHLlCi5fvjxjsOZyOZf0RePRaHTRsKYBmkqlZtQ/7pCvrq665BFxypsPGmV0qzpIfeM6UdCg8xU3X8WJI49x/fJVN40H8smS/6PrVQmjqgz+vTRGkaRG3SJpQKuBr+fH/fjxcQep3PyMmwgkN0zSw+QRnHOfsMUpbPqvf54SGM6zEnafpKtLH8lHrVZzBFNjyorF4kyiEcZ3UR2n4qSZC6koaTwZ+6sJfHwXXvZXXQgZ0+evEd9Nlv3V9UAiFqew8bi673IuSPD4ricSCefGyfa4AVOr1VyNSRJnKmcaj6gKKZ+N/eb3rF6jG20k1dZGpRhIsDgWJF28F7+zqA4qCWU7Gxsb7jtxPB47d3e++zcSx4vAAUGCCwgICAg4MuJc7YB44zqRSLjCvjQC0uk0BoOBK1LNRCZApJCx5hvTiVPJopHRaDRc3Ax33judDjKZDE6ePIlOp4Pt7W3nWsgdYWOMS71Po3Jzc9OpFslkEqVSCaVSCZPJxNV3Y+FbIDJSRqMRWq2WqyvHayeTCXZ2dlyxb8YCMc6NO+IM7KcR1Gq13G47SxrccsstSCaTePTRR11tt9Fo5DJQcqe+3W67uCGOt5ICgsRDjeV0Oo3V1dVDEwsoSVI1RH/UlUuv89cIjWNVr9Soj9udn0fa9HdVBIB98kLSpcfi2pvn2uWrHHHPBMSXD1DlT9URtqvGPp+Bx/ivT6p5LvvFseNGiCb64TjwHmq4+yQljjTHjTVJCTOv6rrQvvEeyWQShULBvQPsi8aQUgVikg6+U3t7e86d2nctZAxXJpNxmxeqvrFtnwhrfTeOM99drZvGcdU2tS1dc/rOaQZJnXMtR6BxfVTIjDHuc9ZNo6s2s0/6Si/VZZ9E6jzzWvZPk5X4rpSquqnrMfvH+Z5MJo6Qcxzo/srx4FxyHZOMBwL3IsKEGLiAgICAgOcI36jVz/h5KpVyrow0+FjHjYbKeDx25K3RaGA4HCKbzc7Ep7DQNYkZ48XoZthoNFwGS2ahZAA+FbdcLucIFDOrbWxsoFarYWVlBdeuXXMkiiSRu9N0WWKtOBoynU4H+Xx+hiDQYO10OqhUKiiVSs49tF6vo9fruYQBp0+fdr/T8FtZWcGFCxcwGAzw8MMPo9FoOOWNtekWFxfRaDRcNj4aTwCuM+Z8A5tzA0TGPYm1zttBc6vkzS9HwPNUAZsHJXJ677i+qyLlkzB1DSMpIoGII2zaVz+hBDCbtEPHjuoFx8B3zWR7SpR8A18NcN7TV+P8548Dn1vVVCBSdZrNJobDoduEAPZTves4H/R3HImjUa+kQZUef43xGrr31ut1XLlyBUC0YUGjnmSTzzMeRyUzer0e2u22iwelmy83PdiuukZqUg+qo/ycx1S54n01jlOfTZ9PSa/Wu+Oz8r1j/7ixxDVCNVIzQnIzixtavV7PuZ0yxpffPfoOqBsm76/rVZU5EmFex2s4j5PJBJ1OxyWoYYZOnqNjx+fk/f1sqHQj13cFgFP+2aeDNoteahwvAocgwAUEBAQEHB1q4McZ/MYY555YLpddnFa1WgUAVzttMpm4+LNMJuMyoFElO336tCNhk8nEqV5LS0uo1WqoVqtYW1tzZQGY3COXy2F3dxeNRsPF1NDgyOVy6Ha7SCSiTJEs1N1sNrGysuIMSLoO0bBjYfBUKuWSltAIVEUinU6j2Wy65240GgDgXKHoDlWpVNBsNl069Fwuh5MnT2JpaQnPPvssrl696rLwcce7Xq+7cggkUXQb88mQGtNxhMoYg2q1inK5fJ1BNU+NoUGrJC4uTiZuvfjkkf31ydU8MqGf8Toat/4xjYXz+0Qjnga+qi5Mdz4YDGYUHJ4bF1ukmfeo+FI9UVVR46NoKGtiCFWvaCTzXDXg/TH055WG9N7enkvMA8ym1fcJZNy8zVPi5rlR+udxnKk412o1PP30084Nms/G8Wddx263i52dHbcRQ4We8X0A3Dhz/VNxU0XXr4fGPqpbqT6LusES3AjQY76S668xVUV9V2ESIaryXCNMSMNjJKbc4FJFkSST9/L7rG6UGuumqjD7rLFp1u67ULLOJX8nqeV8JBKJmRqF6XTalRPhPUhgtQ5nUOBeZBhjYIMGFxAQEBBwBPjGir+Tn0wmUa/XXaHpRCLhYnMYN0VV7NSpU2g2mwAiV51ut+t27W+55Rbk83lH9hqNhovZqlQqKJfLztC7ePGiSxCyt7fnDJDBYDBTBDmZTKLZbKJarSKfz7u+MxkIlbJCoYDxeOzuCewH+a+trWFzc9MlINGsczRSarUahsOhI3nJZNKpDjSsOp2OG8NyuYzTp08DAJ544gm0Wi23az6ZRFkml5eXAcAZ53xeVQiU7MwjQ/q5xiTGzW3cPKsa45cOmEfgfDdAYNblME698fvqK2SsPee7hPHfyWTiSjVQKWGSGBJ4EjPG59AFDth3OVX4MUZMt85+Ul3lWtPn5QZCNpudKTqtxENdD1VF4vVxZDROSeP8NJtNjMdjp0Zr0ey4eZ43VzonNOS5uaHE0IcSuFKp5OJVqUbR1Y7vHd+TXq/nyoaQMDDjrJJjdQ/UMgNaN05j30haVJ1Tgs055mf+vOjmAF2YuRaUoKmrIcdFlTl+d4zHY3S7XUf+Sdx8gum70vK56KLtq6D6TnL8dBNA686RaGWzWfddq8oiSR77wLVNl3Beq+Oi7rM6dlw7BynzLzWOF4FDUOACAgICAp4bfPc6Y6L4spWVFZTLZWcM5/N5R0a4Q8skISRvu7u7WF9fRyKRwLlz53Dx4kVYa/HMM884xcpai5MnT2J5edlloRyPx3jggQdgjMGzzz7rlL6trS00m01n6LF+FtsConIBLOY9mUwwHA5x+fJlFItFF1ND0lapVDAYDHDlyhVXkoBZH2lgN5tNnDhxArlcDp1Ox9V2o9HDfyeTKIEJ3dGYmdNaiytXrriYH00MUKlUkEqlXGIAEjg18DgnNN7mGUm6Y7+4uDiTMtw3En1yAOy7UGrMmSpB6sLpK0SaUILH49RcX9FVo1SJK4sNK+mhgkrXUzWAmTiCfeExrk8+n08o9Rl4TA1RGqvaniYk4f1ZiiKRSDg1OI7Q6f103NUtzlcF48j6ZDJxZTFI5OaROJ+4+cqnEmhVXX0Cr+uIx7nGCoUCGo2Ge099NW8wGODatWsA4MaFSm86nUaxWHQbJUqmOD6qOKvipmtUY9rUvZVqrK4PX3XkD4kPr1e1jwmO/B9eowpbp9NxmXbp8qprX906tc6cliCYNx9sg+f6mxxcl1Q1SfZYD1I3NOgCys+4ccVYXyp3HDfeS108tb24Nfhy4XgROBMIXEBAQEDA0eEbi0z+sbS05FQ3a60rjM34NRo/iUQCV69edfWfer0estkszp8/j3vvvRe7u7t4/PHH8cQTT8AYg1qthsXFRZw8eRLWWqyvryOVSuHixYvodDq4cuWKS8/PeA66atFQ5+5yvV5Hs9l0Bjd3wPv9Psrl8sxO+XA4dAoCXSFZWoAK0Hg8RiaTwerqKjKZjIt94z273a6L9aHSQ1dMjk+328XGxoZL8kCjiYkFqAbSUFTXReD61Pf8jHOkxigxmUS15bLZrCuNwF36ODVFiZSSON9QjVsrek+/TYUeVyPS2si9i0XDAThjc3d3F2tra24Dod/vu/T6vosv+w/AKYha04//ziOvOr5KGIB9o5rn8zjHnu6CNMiZdISGPdcD1SlVf/SeqpbGkTd1Y+Y1/X7fjSNJkL/5ctCc6xioMT7PfVb7RgLH+FeWCuBxYJ9kNRoNl4yI5IIknWuVGxg6X3yXe73ejHKmc+aTG64DkmKuZ12Lqmaynzr+JKH6HP77wPeYrrV8Vtapy+VyM26lqv5p+QBV0nh/1mzTazXejeRSNxg0VpTgc/F7hd9TJK88J5VKuZIp7AO/V0n8+D3Cwt8cE72f/z3wcuJYETgglBEICAgICDgcvkEMwNV5WlhYcK40mUwGlUoFp0+fxtramlPDuDM+HA6Rz+dd0W0AuHjxIl796lej2+3ia1/7Gh555BEsLi4ik8m4RCi9Xg+NRgPlchknTpzA9vY2Ll++7BSPzc1NjEYj1Go1p74xsxvj6miMDQYDNJtNdLtdZ9BqDaRut4vxeIxWq+XUQRYiZlmDra0tl2ABADqdDpaWlpBKpbCxseFKDtBAy2QybsedY8Gi25r1jm5KuoMN7Kc+J4nx41v8JA68RudP1Rvf6NJ7qZriK2aatEUNWCXM/Hse9D5xBEAVt52dHezu7jp1VJNOtNttR4qYvVDHhH8zNooGsSZi0bFhvA+NTr2Wa4Of0dgG4FRijfNRZVNVCbZFQ5fkr9froVgsOmWO8UdKSFRd8kmXT5ZVwWQsJRVgX3U9iATqPClhUxKnrpQ8RhUpkYgyni4vL2NnZ8etO64XuuFdvXrVEQiuLyYdSiSi4t5amkOTjpC4qOuern+SIh0bPqf2kaDCDMyqeFSYNN6ObfP9BPbjHLXAuLp2MwMv43NJnvR9oirrz5VmzdXnYv80Eyafg/3T56O7Ocs5aOZWzouqkMz6y7IqqvhzXFhWRWOHVQnUzYMbgWNF4CIFLlC4gICAgICD4buUFQoFl1BE/5O21iKbzWJra8sV287lck7pocHQ7XZRrVZxyy234Pz582g2m7h06RJarRYAoFKpYGlpCaVSCRsbG9jc3MT58+exsLCAa9euYWNjA8ZE5QbW1tbQbreduyETHEwmUbpxZp6kYUqljglPuGPMYHwWSmZmuLNnzyKXy7nab91uFydOnAAA7OzsoFqt4uTJk5hMovIDTE7iKz6FQsEZMr1ez5UQ4P/DrOumaiWwb1D6CoIa6vOIEw0tGqLAfiwODdg4F0pVXQg16HwXSl8hiuuLtuErPBq3tLe3h1ar5Xb7x+MxnnnmGWc8qvKg6oKqk6oQAvuElyor+6JxOpolUF0zOb48rsYw15QSOzXu2YaqEJqMgucnEomZTYVyuYxCoeCInE+QtT3en/PmEzM+d7vddu+Mvq86Z/PUOLYfN/ccI3++lcgx5qtSqbh1x6LejUYDrVZrJrELSQWVcralhayVzGlB+/F4PJM4hmPF95x/cz513JTAsN+cQy1GrSoe1WF1d+Q7polAtBwI61VyI0E3SNiOEmWNP/Q3aDgevA/7xbWmGwU6blQuVe1VlU7XDt9LJZR6nGuDmyNK4DnG9Ci4UTheBO5GdyAgICAg4BUDug4xyyR3rcvlMtrtNtrtNoAoVfiZM2dckehqterSiY9GI1y+fBm1Wg333nsvMpkM1tfXnXHZ7/exvLyMarWKQqGA7e1tPPXUUzh37hySySSuXr2Kra0tR3auXbuG3d1dLC0tAYArog1E8XZ0byRhGo1GWFlZgTHGJRfJZDLY2tpy7pd7e3vodDrY3d3F2bNnUSqVnDG3s7Pj4uQGgwFWVlZw1113OTWNKlE+n3dGGlU13alut9vOSASAhYWFGVWIblJqMAO4zniL+0wJIA1rGlO6Y67nsh0lPD5UBYxzhYpzk/SVnDi1jwbqZDJxiVr6/T4SiQR2dnbQ6XRcsgca9SRoviKon/vxgUp4fXfTeePpK1v+uPjkRZM1aLILdY1T5YpGsZIKGt3dbhf5fN5lNWXflCj6OIiADYdDp3pzI0Wf17/Wf7Z5CpySXR0rjjOfXRNoAHBuypPJBJcuXUIikUC1WnXJdUgalFhzrLgWdS59kqNKGPuk6izP0/aVAGn7+u5q9lK6w5K0cY0ytjGRSMxky2RNNN7L3+xQdZKbJUzFrwQ6Tinl+Bw0hwBm4i6VoDK2lmRQXTl5HUmwzrG+t7qhwfdA12pwoXyRYEIMXEBAQEDAEWBMFGdENy/+pz4cDtFut51x0u/3Xbr+TCbjygEUCgWXGv/8+fO47bbbnIHOtOxXrlxx8XSFQgEbGxtoNptu1/7q1asA4OrJbWxsOJVMXaJImOr1ujM6GO9WKpVcsgsacDs7O7DWolarod1uY3NzE8YY3H333a6uG+sc0WBpNBpOEXzqqadcnFOv14O1UbwRFTcaSowvUXc/ICJ4qhrSUNRMj+yrJt0A9pUlYF+NUuLiu8bxGt3JJ/x25xEwdTP0XQ7nwVfeVE3c3d3F9vY2ut0uBoMBarUaWq0WWq2WWxtU3WgYkpCo+6kaj6pAcGxUNeC40uBXF0sdK8InxepyRoNbjXAdT7bNvtNlj9f6aiTbJ3nhxgITkdDIV+Lkk7o4FZRGeqvVciq6nzEzbt78v5XIad95XA18Ja9c16VSyT2ftda5j9IFj653XIdc95xHEjslg+wTx3p3d9etG13LWneR/VYix/OUXBEkb9xY4VioWj4ajVwSFgAzqhWfi4oW29e1zXeT48pzeQ6TMmnCFD9mUte8kkV+xjHkvHAjie8VCSjHll4UdAElgVQljmvV34zQcVbX1BuB40XgEMoIBAQEBAQcjlKp5OJnNJ03axrRqOCuMxAl/ahWq64mWjKZxLlz57C0tITd3V10u10XM7a2toaFhQXUajVYa3H58mXngjkajbC+vo5MJoNareYKYOdyOecexAQJy8vLWFxcRLvddkYiFZx0Ou12ilm/qNfroVarIZ/PY3NzE71eD4uLi7jzzjvRbDbx7LPPOqLAUgEsIm6tnVEdW62Wi9di/E4ymXSkdnd3F5ubm87tajKZuDTvJJ5Mq07jMJFI4OTJkxgMBtjZ2QFwfV00fua7Qup5Sir8pBt6Dq9h6Qe/PTValYDEKWtxLnVxbT322GPY2Nhw87W5uYlCoeDUUL1WSxjoLr9/X79fdL2jAe8rcLoBoPdTtzTtPxPn6H00yyBJADCbkU/7xD4oofbd/ZiZdDAYoNvtuiyuvLe6nvoqmD/37AOVOJIK3QDR8/w1oUqmkmB/nnmuT5IymQza7TaKxSKA/Y2Yy5cvY2trC2fOnMFwOMTW1hZqtdqM6yAJE1PYG2NcynsSOiW3+txalkPdP3XNkKwoedJn1s0PAI74M/EM29ByBlxnVFC5BhWcNyb80KQ6eq5uVJBwcRPAXz+8VudVVT1VQjmm/nNyXJSo6Vr23w8l9txM4D1IDpmJ+EbheBG4oMAFBAQEBBwBCwsLzjgtlUpOkUulUmg2mzMxH3SBWllZwe7uLprNJur1OlZXV935NEAY21Sr1bCwsIC9vT1cuXLFZa7sdDrIZrNOhdve3nYp8LkTTqOKu+3dbtclDaCbJAAXZ8MYvNFohAsXLmAymeDq1atOHSQBXFtbQ6fTcbXhVEmgi+RoNEKz2XS13ahqJBIJpwIsLS2h1Wphc3PT7Vazv1o4VzPs0XhikpRWqxWbcEQRZ4ADs+5ZvmoSdw0NwjiDzidhh0FJi6pu/HwwGKDRaDjDkOtIx4Njou6FCn0+Gqe8FwkZ14mvAMSRECVYfkIUPa5rgvPK+2jiEl8VZRu+YqYEzCcSfH4qQCQF+uw+MdQ54DlcA8PhEJ1Ox6lDJBBx86fPrzGDB82/v9ZIuAaDgVPqqTz3ej2srq5ie3sb9XodiUTCrQlVnTRTItU1dYvkPRirpllGlcBp7JvGgymB0g0Pn9wbY9z96Y1gjHHZZhlXy37ymmw267KCUpmj6yWTt+jmBNcWVWpV4uLmWZVn/q0bMlyLmuk2k8k47wL2k5simjGU45LNZmdIMNeOjqFP7vm8h62ZlxrHj8Dd6E4EBAQEBHzdgwlCgMhwKJVKTsWi0cCU+axt1Gg0MJlMcOutt2J1dRWdTsepbul0Gl/5ylcAACdOnHDui4yH63a7KJVKWFlZQTqddgWul5aWkEgksL297QwWGk75fN4lCTDGuJg3qn3cLaf75JkzZ1zdsGQyibvuugsAcPXqVZeYgMYmjd1MJoNTp06hWCxie3vbkVHG8tC4YqKK5eVlbG9v48qVK4580OhhSQJgP9sdMOtG1+/3Z+qa0dAnNNGGGui+G5/uwvNvJQhx0IQFhBJIX1HS++nfvnHHc6hIUhUDcJ0apC5r6h6nGSHV6PXvz7Y0+QSNVH8c9Vl5nu8CxnMVGkfE52D7o9FoJssfFQtuNihZV0NZyRhJk6owe3t7qNfrMzFV2ne/nz4hAeCUbF1v89aEzrU/lz7J99cfj/NdIlGp1WrY3t4GALzvfe/D7/7u7+JLX/oS6vW6+/5gHGGn08F4PHbvMImRlgBQVcifD5Jt/zx1tVXyzDHjmJA8c3ODXggkWNyMYfxmNpt1NTFZIiSZTLoaatbaGfdgrguN59RkKrw3v/M0G6Z+L/jJpEjW+a74ihw9KXgO50zXEMdQi9QrkdcNC/2+0Y0WziPH4kbgeBE4xNf/CAgICAgIUHD3nMkk6BLDuC0qdCdPngQAbG1tufpui4uLuHbtGrrdLoDISCdJuvnmm1Gv19Fut3H58mV0Oh30ej3k83mcOnUK/X4fW1tbSKVSOHnyJGq1GnZ2dpyBzR335eVlt2PMMgEkXuPx2Llmtttt5PN5JBIJPPnkk+h2uzh//jwuXryIZrOJq1evYnt725EGPl86ncbCwoJLxPLUU0/NGCNUjmjIMJav0Wi4WnV0uyLR1Lg4GuZqADNBghrKNEI1ucA8NU0NNd0Rpxuirzz50Hgc/7w4Aqh/qwKjBj+P0ZijK58azQBmYnKUvClpU/JGg13jflQpI/Q5lDRzTPUcun9xLLQ9ki/fxVDTwmsiDnWn1Lb8edVjqvyQKKg7IRAlEGL9RfbJj2uLmzs+BzczmCRFFRz/fO1vnBLsu9v59mUul3P9q1arSKfTePLJJ/HEE08gl8vhLW95CyaTCb70pS9hYWEBi4uLrsyGH1ulxEqJiSpqXHdc6wTVLs1WqWPOvnN98HotuK4ESpOy0JW7Wq060sJ3aDAYuEQhGrcG7G9U6IYMszvquXpvrhe/v3wPWH+OCZOUAPLdGQ6HLsaN7qm6GcTP/OyUVCE1qYpuUnA81T3zoO+alwPHisAhKHABAQEBAUcAyVcul0Ov13PxJ8Vi0SU2WVlZQbPZxGQywYULF3DixAn0+30888wzMMZgMBig1Wqh3W6jXq/jvvvug7VRce6nnnoKW1tb7n7GGKytraHf76NSqaBeryOTyeDKlStoNpsu/iOXyzljb3d315Uv0BpwuVzOuSAWi0Xs7OxgMBggn8/jxIkTyGQyePLJJ7G1teWyYTLujeTt/PnzqFaraDabLrkKa7qlUilXJHk8HqNSqaBcLmNjY8PVt6LRrbv23H33s0/GEQ81xn0FaF6GN3WD5I+6ZPkkzDe81UjzDXOflOl1+re6NCoxHQwGrl6etuvHAPmqD+/hKwBaADoucyeNS3+suI45LkpYx+OxUyj8pC40wnm+9sVXvqiYpVIp97xU5QDMqBdsh5/T0FaVTvugLpU+GVFio9DxHo1Grri8HzumoAHuryf2WdVFtu3fm66Ro9HIJQ76zGc+g16vh42NDZw9exZvf/vbUSwW8elPfxr1eh0nT57E2tqaS6JBYq9xbRxzzayoc6zrSMkPgBn11k8Ao/Oh5EQVT5I0Kukk1CRsjJnV/lBB1LWh3xF8Rn9sVSXW5CxKEFURo9LJ9yOVSmEwGLj3gP2mSzgJ9mAwcKSe6hwQKeaa4dNPnMLNDhJHbp6pEqr19l5uHCsCZ4DA4AICAgICDsXZs2extbWFjY0Ntzu8urrqFKVUKoW1tTUUCgXceuutqFar2N7exvb2tosLYWr+m266CWfPnsVwOMTTTz/tiBp3mMvlsivcW6/XUa1WMRwOsb297RQI7nIXi0Wn+jGOjcZ1uVx27pbc9d/e3ka73cbKygpuvvlm5PN5rK2tYWNjw7lb+qpCtVoFEKmKjUbDpT8niTxx4sSMGynr4LFuHEmFZnNj25oGX5UC3bH2CRWNSU0K4KtkSoYU/JzGnj6nfx4NRDVYlZzEuctpWzRKlXjQxWxzcxNbW1tOgVT1UZUUH2yLZKtcLjvCvbe354xPdbNjv5Wcce4Yx0TjOJfLuRjPUqnk+sDi7iS/zOZIY9vPxumTHf6tJEGVQ72OffbJMfsf5wY7mUyuKzfgryNtV+eR2VNJPNQF0R937btPDLWv/loEIgK3s7ODjY0Ntw4ee+wxAMCHP/xhvPOd78SZM2fw+te/HgDwyU9+EktLSzh9+vRMoW/NRElFSjNO6tgo+VfCrWOhpDmO8FJd51rWtQLAKXl0m2TiIq5r1vbjfOi8+t83XFtKgMfj/aLYPqHz55fkje8awTXqJ/3h9wj7r5sGJGuM6dO1wY0ojr8qiXx3SqWS++7jdx3H7EbgeBE4YwJ/CwgICAg4FE8++SSazaarAbe0tOQyLQ6HQ3S7XZw5cwanTp2CtRZPP/00+v0+8vm8q502Ho9x1113IZ/Po9FoYHNz0yUTSSaTWFlZQSqVQqfTcTXcxuMx1tfX0el0nBFUqVRQqVSwsLDgFLVnnnnG7Xhz15v9ojqxtbWF8XiMixcvol6vw1qLtbU1XL58eSaBCBMQqNva5cuX3a4yAFSrVaysrCCZTLrSAZVKxWVRXF9fdzvPJJR03eSOvgb2qxGviRTU+FUiwnggGqm+IegTKz++q9frzbjiKdTdUuNx9HrfSNf7+u3wWSaTyQx5oxucukWqekQSkUqlHEHj3DB7ImOKiEKh4DKXsm0WU06n06hUKsjlcqjValhcXHQF2Wl4W2vR7/dnCJ66m7GddruNbDaLRqOBXq+Ha9euYTAYOBWXrnSqPqi6SINWx9jPDsofdcfU+eTYUi2mq7DWUdO1wzlRQs0xYjkO9lljEVVpVfKmazNunRH8jONIVejSpUu4du0aVlZW8PnPfx4A8Pa3v92RuEQigY9//ONYXFzEmTNnsL6+PhMLqi6MJHC6/ki4NWGIulVStSM50XpwnAsqpdygUXUUgFNWucnD8aFyTRdETcDDceV9tUSAvvvq+swNC5JVPo+6GSuh0nkimdP51vb5HUdiyGRVbJNZhrluudZ8t1bOCWthGhMlulK3Td974OXE8SJwOFoWqYCAgICA39sYj8coFApYXFzE4uKiq0tFV6hbb70VJ0+eRKvVcopXvV7HtWvXMJlMUKvVsLKygvF47OLfut0uOp0OhsMhTp486ZQA7tK22210Oh0Xp7O7u4vFxUUsLy+jXC4jnU5jfX0dly9fBrBfT6lQKKDb7WIyiWLzer0eGo0GCoUCyuUyrLVoNBrY2tpycSk0umiQMYYEiJI90MDhPSqVCrLZrEvKQsJorXVEUQkH0/KrAa2GMEmdr8L5qpYSJ/aX8DMXxpE4IDK4m83mdfWoFIwzUqKgyoyvvvEe/Ff7wXM6nQ7W19extbXlXBf9JBRKGhKJBC5cuIBr1645kqwElq5dNDzVzUyzWtbrdVy4cAHlctnVBhwOh+j3+7h27Zoz3BnjSTJDw5N945gUi0Ukk0kUCgW3WfDAAw+gVCqh2Wyi0Wig1Wrh6tWrePrppzEYDBwh1KLM+qxUWpSU0PDXeeWmAs9VUqhJLLh2/fnx1UB1x+z1ejNJPeKM7TjXWf0sjtTrvVn0OpFI4Ktf/eqMm+MjjzwCAHjHO96BM2fO4IEHHsDe3h4+/vGP46abbsKZM2fw9NNPXxeP5ZMhf10pefA3Szge+twKJUQkPSS3jC2rVCrXkSB1KdSx0syOqqaOx+OZTRiuZ1Vi/XXDDRh+r7BfSvzZJ50HVR5J1oDZ0hgkfVxnVADz+TyGw6GLzeU5OpZUHROJhCtsThf8uBjLlwvHi8CFGLiAgICAgCMgm826eDcqXxsbG1hZWcHp06cxHo/xzDPPIJ1OY3Fx0aXNn0wmuOmmm1AsFvHYY4+h0Wjg9OnTAIC1tTXs7u5iaWnJGaqVSmUmVo5GAO9LhaXT6aDVajmDkMbQaDRyBLJSqaDf76Pb7aJWq2E0GuHatWszO+JqsFHJUILA+m2ZTMaVCFCjhDvvvV4PqVQKly5dmonT4XXqJqkGmcYMUUmKI2DAvssljVGNnYkznHWX3XeBW1tbm8k851/Hfqp6oiSJUEPY77uqPIx72tjYcJkE/aLIaphTUbly5QparRYAOBLElOcag0PSRjWGGUxPnz4NY6JkN51OB1/72tfQ6XRcMXXtK9vkWvIJKJ+bmTOz2SwWFxddFlK6yV64cAHj8Rh33323iwF95plnsLm56cpaaLZKGtM0flXJ8snSvM8BuOyGo9EI9Xr9OiVOCWOcqyBdULmB4te50zHQ9ekrcHrc/9nb20OpVAIAPPvss45oj8dj9Pt9fP7zn0e/38d73vMe3HTTTXj961+P8XiMhx56CGfPnsWZM2fwzDPPzKw9vm+j0ci9a3yXNJU/x0Cv0Wfi+o5bvyTPSqbz+fyMOyffEboccsOHc6rjyfO5zlQxjtsAUWWT1+pzaoZgVRaVXPtEkNfwHvp9pASYz86NKI5ptVp1tSv5XcLvY36H8DrGAeo9X24cLwKHUAcuICAgIOBwUHG76aabkE6n0Ww2cdNNN6FWq2EwGLhYt1KphHa7jWvXriGfz+Puu+/G3t4eHnvsMTSbTSwtLbkaa4wxIhFKJBIzmS2BKKZseXnZZbns9XouUyXPYSwM4+aojvAYSRYNK63nBOy7tOnfjIUiMavX61hcXEQ+n3fEkgrMYDBAsVh0sXwAXJ27QqEwYyjPM9Z1ZxzYj0FTBY3GGHfKOT7cLfcVOzUC1Q3PGIMrV664OB22r8Y3+6lufarw8B4au6bQv621aLVa2NjYcMYf50HdC/3ECIwHUkOd48KxUcUqmUzi/PnzTmkbjUZ49tln0W63ZzLs6bPoGPOZfOXJV6qI8Xjs3EG3t7dRqVRQKpVQKBRw++23uziv17zmNbjjjjuwvb2Np59+Gl/5ylfc2PPZ+Jzsgx7j3NAFUA167Q9J/WAwcGvUz3rJ8/x1x+fRgthUHHUe/RgurpWDoGsQiN7Dp556Ck899dRMHBlJ/Ve/+lVks1m84x3vwNmzZ/GGN7zBkbuLFy/izJkzbqOEz0CXQrrvcfNE32u/HxoTqcSNpEv7z3aYyIPfV1Tn6WpIMkZFnW3rvZmRVmPHOO+qYlEho7LGNaGkkf3lPXzVkWPL9jj3+h5TvWMpFD2Xz8/n6nQ6bkMkn8+jXC6jVquh0+lgb28PW1tbM3MyGo3Q7/dhrZ1R+24EjheBMwY2aHABAQEBAYdgdXUVKysrLoX/uXPnkM1mce3aNezu7qJQKDhjdjQa4cSJE1hcXMSzzz6LnZ0dR4QuX76MXq/nlJFr1665GDUqI+12G5VKBSdPnsTS0hLq9TqMMe4YSQwzRgJwqf/z+TxWVlYARC571kalA5hYANjPOAjAxUd1u13njnjq1CkUCgWn5BWLRdRqNeTzeZdshTvKu7u7yOVy2NrawubmpmuDRh6JAzBboJvw45uA+GyQSlyA/QLVNLjVpYrw21XFaWdnB5ubm1hdXZ0hBXou+8YfrWfmtxdHUmlM0lWWREhjtrjrT2OWz0r3SBI5tun3gy5uxWIRy8vLLibz8ccfd2NPg5PQDJAkqVwTOsZ+3Nk8kMT3+32sr68jlUrhiSeeQCKRQK1Ww913343d3V3U63WcPn0at9xyi0ufz0QoqvjpeNLQZl/4typEhBreNLSZrv+gdaWGvboQkzTMU9XYhhJPH3oeiXu328VnPvMZNBoNnDlzZqYPxkRJNb7whS+g3W7j3e9+N2699Va87W1vQ7/fx+OPP4477rgD586dc0qckhh1J/TVNFXcuK6YqZbKHdesFqdmWyRddCckEVNXSJIjvpOMm/T7QiLH86hUcQz4PcL7kbCRJJK8MbskCTfdYEngNMmOkkolscxAybHJ5XLOtVw3b/iuss2trS1MJhNXh9Na61zJ6TacTCYxHA5dTbp2uz33PXqpcbwIHIICFxAQEBBwOFZWVnD16lUkk0mcOnUKrVYLrVYLS0tLyOVyrmh3JpPBzTffjPF4jK997WszJQd2dnZgjMHZs2fRaDRgrUW1WoUxxu1k7+3toVKpOMLITJKtVssVAW632xiNRiiXyxgMBrh8+bIzggC4tlmMG5itaZbNZp2rWDqdxtbWFnZ3d5FOp1Gv1939aCCzeDiTuABwRI5lFTY2NgDsE6tarYalpSVcvnx5xmDi70oIfOKlhrkqcarG0HDmM/L5/Db1R10pR6MRrly5gjvuuGPm3koOaPDRpTSRSMwYjP5zqKsd+7m3t4ednZ2ZFO90geR9VOHi9arS8RwapjSQjTEuIUm1WsXOzg4ajcYMsQMwY9Dyb40nUuLhkxGOhyob7DtBYqVkmW5u29vbeOihh1Cv11Eul3HixAmcP38ep06dwm233YbHH38cjz76qNtAUOKr64D30DGLc40k0QDgYvlKpdKM4qLqm7/mqML5SqsSRp+8+Qqmtqlj1Gg03LM99dRTM/Fq6tbHWNDHH3/cjf3Fixfxlre8BZ1OB1/96lfxmte8BqdPn8azzz4745boK1D6uRK94XDoCArJjbpzqgLNz7j+gf24WI0VVKJNYqZrR0menq9xdXS9nOfmqEq0vu8khNwMUaLFZ1H1n/fN5XLue5CEkp4F/rpTF1J+70wmE5RKpZmad6pg0q2YiYj4PXkjcKwIHEwgcAEBAQEBh+Py5csoFouo1+vO2GSh7Waz6WLOzp07h2azifX1dYzHY5RKJWxvb2M8HuPs2bNIJpPY2dlxhInXdrtdWBul5K/ValheXnbkiOUHut0uWq2WM9o7nQ42NjZcxj/GXxQKBWfMqHpTLBZdMpFisYi9vT00m02XQp0ZJMvlMoAoo+GpU6ecAcjYHaoUiURU1+rSpUsu/gOIinifPHkSjUYDAK4zyn3DWd2rlCwR+jeNUlVN6ALK3XQtvqsGt6pMk8kETzzxBN7whje4pBxKDnk9n5PKF7M/qlrkQ1WbZrOJa9euOUIW5+rJvmsc0d7e3owKR+NZSVypVHKxZ8xqmc/nXXvsg1/7yzeKldjEuSnSVU8VQnVh9A1pVUytjbJaDgYDrK2t4dKlS7j11luxuLiIm266CadOncLtt9+ORx55BI899pjbpCCJ8F35+C/voe55XBc08vf29lwCoEKh4Pqs7nHqTsk2SOD4XHFufkq8/TGMI4eTycRlcG21WvjqV7/qYiH5jCz6rBsETz75JD72sY+hVCrhwoULeN/73odf+ZVfwRe/+EXcd9996PV62NzcdOUj6KLLtc7vAa2/SHWJxJGurnTx810gu90ujNkvK6Fp/jn+TFZEMqb1/ujSybXFcWQJC37OvrINha5pP2ENSfd4PHZxjxxLjr1+x2QyGWSzWRQKBafo6XeIvjdsU99pXZf8juV4sl0q7Uw+NBqN0Gq13ObNjcCxInAGN7YqekBAQEDAKwN0c7x69SoWFhZw9uxZtNttNJtNGGNmCm23Wi1nMDWbTWQyGZw6dQrdbhebm5vOOGUBYboZLS8vY3Fx0RkhNMwYe9Hv97G4uIhEIoF2u42rV686A5rkj66WNABJimiE5nI57O3todFouDIHy8vLrgQBa4AtLCzg5MmTM65o1kaJRkqlEqy16PV6WF9fd4oHDWoqL71eD8Cs62Scm5wqNzTO4s4lwdB03r4LHV2vmPqbu/pxhOvSpUsuLtEnB+yXr/hlMpnYWBZf5QPgSAvbIjFRtyyN3dHkC+w7x4LZ+1irKp/Pw1rrjGYanvybY8W+aXY9fR5fWVOXQIIZKVVB8Y1cXss156dy50+r1cIXvvAFFAoF3H333Th//jzOnTuHSqWC5eVlfOUrX8HGxoYz6DmvmpXQv58qcyRvjAczxjgVXMdTr9N1oSoPCY6SUl0P837i1gUA5/L82GOPodvtYnFxcYZUGmMcOVIX18uXL+PDH/4wstkszpw5g3e96134tV/7NXz5y1/GnXfe6TZiVGEF4DZvCCVffGd5LhUlXU+8RjcONEusuikqaSdIBDkG6t7J9ZjNZmc2K9RlVt9BbYfxatlsFqPRyCWvYT81e6T/HmcyGRSLRVe7k+PEdwfYr+XGdW+tdSVLVMnk2uQ61cQt+XzeZXul58Xu7i7y+TxuFA4lcMaYnwHwLQDWrbV3Tz/7BwDeC2AXwOMAvs9a2zDGnAfwZQCPTi//pLX2B1+Kjsf3NZQRCAgICAg4HIPBAMZE7o8sfn316lWUSiWcO3cOnU7HKW1LS0tYW1vD9vY2Tpw4gRMnTuCpp55y/9F3Oh1nbLBsQK1Ww/nz55HP59HpdLC1teUMEdbVWl1dRbfbRbfbRa/Xc/FOdLuksUoDl8YHs6AZY9BoNNButzEej3HixAmcPHnSZRWsVCpIJpNYXV11MXBApMTRwNKsk+1228XXkQDyuRh/p+6Rasz6/6rhpyqZuqjReNdreZyZMieTqGQDDWImhaEiowrM5cuXsb6+jnPnzl0XM8R+KAFOJpNuh12Nf302JX/r6+uuSLDvRsbn0es0CQX7oooKjVaSSDVKNYW6xunpPeOIhp8VTxUIfTYlg76xriRHY8fiSBLJ5XA4xGc/+1l87Wtfw9mzZ3HhwgXcfffdOHv2LD7xiU/gypUrrp6dxvKxLRrXOl/6rEyswWyq/X5/ZiPDX3s6d8CsG6ESXp8Ax5E2HyQv6+vrMMbgi1/84oyLq4LkUfvaarVciYFv+ZZvwc0334x3vetd+OAHP4gnnngCt956K7785S+7d5QbBXwmPxbMT16iqreSN6pqxWJxJtOljrOuIV0TqpTputZrGXtmrUW323VrW1P/kzTyvpoFkt87VPcAzCSA0veYpIp1EPW5lfjr2lFSzw0hAO7exkSu7/ye5Prku8l7cxOvUCh83Weh/FkA/xzAz8tn/x3AD1trR8aYnwDwwwD+2vTY49bae1/MTh4VBqGMQEBAQEDA4chms1haWgIQGVTNZtNlZWQ5AMZHMUPchQsXMBqN8OSTTzrlpd1uz7g1ptNpLCws4KabbnKJUFqtFrrd7ozxmclksLm56dywALgU2kwqQFdKGkzMxJfJZNDv99Hv950RcubMGVSrVZc1rVQqIZ1O45ZbbsFkMsHa2pqLD6FSR7dNkpLNzU3kcrmZ+9B9is8Xp6IR+rvv1uaTN2DfKNTr1f2JMWO9Xg9LS0soFApOBdPraKh1Oh1cu3bNKXSqrhB0o6SxSxdV7tbPI6ftdhtbW1szRIOGKEkun5vPRuOTygQNRxI3um+qWqaGvh+/puPnj6VPZthvNe71c1WKSHh8V0Zeo0RN2+CaUJV1MBjg8ccfx2AwwK233oqVlRW86U1vctkqW63WjCqm5J7P4Ss2mnCC5J5JhBjfpCqcKmz8nPMVl4CDz+tnUfTHUtcE3ZPH4zGuXLkyE0vpjxOVZM41CeAjjzyCfD6Pb/zGb8Rdd92Fra0tfOpTn8LCwgIuXryIRx55xJ3LZ9dnI1mJy9SoCif7S/LFOdOU/SSJ2WwWuVzOxZypAq3jxo0F3UgZj8duw4nKMrPncmOKc6kxcRwTfs/4rpRcA+oOzCzCfG9V0eNaoXpPpZvn0e2U3xNUAPle0sW03++771HW92Q9OLb7dU3grLUfnSpr+tl/kz8/CeB/fpH79bxgQgxcQEBAQMARkM/nsbW1hVKphEQiyq5HIsf/uJm+vF6vY2VlBWtra+h0Oi7DWb/fd0bAZDJBoVDAmTNnUKlUsLe3h6eeegq9Xs8Z+iR73Gmm0dBsNp3hUiwWnUGlO+39ft+5sXW7XWeg0VVtd3fXJSWhYbGwsIBGo+HcJCeTqMTB8vIyqtUq1tfXkclksLi4iN/93d91O/qMZSmVSs5Am0feaBz7hrj+TujfNNLUGFWip+0kEgmsrq46sjQajXDp0iXXF7qKTSYTfPWrX8Wb3vQmN46668770NBlQoJyuYxisTjjqqqEZjgcuuLq7Bufna6QPqFin0hGqDKQFNPAVSNQDWN1b9Sx8uPW+Gxx6pkqSr6iqKRHn1mVFrZBo5f3Unc9PrsS9slkgmeffRbdbhfnzp3DyZMnUSgUUCqV8OUvfxk7OzuOmOtYaiyS79bKZyAJY1ZAVSt1DH1F2Hd59ZVTTQxzkArHvu7u7mJzcxPGGFdOQgmUrnWSMN6Lx/f29vC5z30OmUwG7373u/H2t7/dKZkPPvggbr/9dly6dMmltNf50oQpQETCdL2RcCtpYqwnv7e4DkheqcyqS6a6COsaoDqu65JKLNcG54cbLzs7O45gaVwgN6FU9dXvBI4pyV46nUY+n3fxfnwOnXOuAX6X0q2d485n47XqzkzlkBswjCnkdzkTv9Al90bhxaCOfwLAL8nfNxtjfhdAC8DftNb+TtxFxpgfAPADAHDu3LkXoRtRDFwoIxAQEBAQcBg2NzddmvZLly45F8disYhsNotGo4HRaITl5WUkEgk89dRTzuDnTjELYycSUQ21s2fPYmFhAe1225Ua6PV6SCSiLJBajJexaVTMaDSoksP7MPaMig0D7DOZjFPMmKBkOByiWq1iPB67hCoLCwuuMO3Zs2ext7eHJ598EqVSCfV63cX5JRJRHah0Oo1z5865hApEnHHsx+QA15M3351Sn1EJlZ6jysl4PMb6+jrK5fKMq6AaxTRCH3vsMezs7KBer8+4IWrbNEr5k8/nXeY5tqnPzFTmWkwYwEyqchIRTW/O52RSFRJ2JR1xqqQSNiVcPM6/fRfAuDb4Nw1nJXg8xvPZb5IDX03itRpLpG52foxhs9nE448/jnK5jHw+j9OnTyOXy+Hhhx/GxsbGjMpCY1rnVF0GlYjScN7d3XWulDoGSlTZP867Gt06BhrHpQTIXwv8l5s96XQa3W4XtVrturlh2ySOmkyFzzIYDPDQQw9haWkJDz74IN785jfj6tWr+PznP483velNmEwmuHLlykwGRl1vvJ+ST1X59Nk0kYwm8yG5U0Llb6iw//yu47uQTqevI1o6TsPh0JHbfD4/Q57YR647Xb98PpI9kjF1W+T609IjbFvXMt9DzgMAl9ip1+s5RW9paQnNZtOVhuj1esjn8zOKohJPEsMbhRdE4IwxfwPACMAvTj+6CuCctXbLGHM/gP9ojLnLWtvyr7XW/jSAnwaABx544EVhXUGBCwgICAg4CsrlMpLJJB5//HE888wzzjggKalWq8jlcrh8+bKLSUulUq5uG+OncrkclpaWcPLkSeRyObRaLWxvb7uaQru7u+4/+Ww2i2KxiFwuh06ng2636+K56KpD9x5eS1dOTQ5A0tPr9ZDNZnHrrbe62JKlpSX0ej0MBgNUq1Vks1lHysrlMtbX111Slt3dXTz88MO4fPkyarUatre3nXHPpCXqOsmdfyZOAK4nazQeVSkCZt0ldefbjz1Tw52fM1271s/TRCZUKumW+uijj+LUqVMuHsdvW905ufPO+mLqfglErl8ksT5B9VUyNZhptNJtleuFBinjdfj8caRNx1IJgRKP/z97fxYkZ5pdB4LH3cP33T32HbEgsCZyqcxEssjMYrEklkpcZDK2TPXUDzK1yWxM86KH7nlqmcza1E/zNE9tNsMZmUw9araKpFjGYlWKVVlVWZmJBBJIrAFEBAKxL77v+zIPkefi+oc/kCmKTJCY/5rBIsL9X77t/3HPd869V19Hf67HnOBWyxTpeLP9JounxwzAQBp5AMLm6LgyLcXkdWu1Gj777DOMjo5iaWkJY2Nj4vhT7qqBsc7iyLaYDCGddjJx3EThcVZSUpNZ5ed6PMzEMZxPfSyvlc1mRRZNcGGOmR5LLePU40RG/Ze//CUikQiuXLmC3/7t38Z/+k//Caurq3jzzTdRLpdFLq3HnBs+bINO0sLfCXj4vV77BCR6vDWY53gxbpFjw3FiLTS9Rk3GC3gab0wQxKQ0TLTC40wmm+uXzwvba26g6Pp1bLe5bkwGmuPH96zL5UI4HEaz2ZTNOoJcln5xu92iTGCdRFNl8HXaXxnAORyO/x4nyU1+q//Fyu73+00AzS9+/8zhcDwGcBbAjb+Gtn6FNtkxcLbZZptttn25MUkJa6wxHb/T6cTo6Ch6vZ6wBIlEQmI7WC6AgGJ4eBgjIyNyPB07/ueuY0ImJyeldhBjMICTNP2xWAwApHB4r9eTWBS/3y8AgSyP3+9HIpGQGnCJRALhcBjFYhGVSgWxWAwejwe5XE5+z2azaDQaImnK5XJIp9OYnp6WRC2BQAA+n2+gELgGLlruZBod0+fJKPm5Niun2/yeYJcOGCVedNIIgguFAm7fvo3XX39dHC/tuAEYYAzolEYiEanDp9kNxr5oQKkZPLYBeMr2+Hw+Ydp0ggU6v7qem2Z7dDu1rI1/W7FSz4vD0Q4178WxJmjUEkPNQGmwzfXOfpjyQA0EdT/oTPd6JzXTdnd3MTo6ipGREYkJZB0tXSfPTNqjgb4Z+9hqtUROaa4jk4nTck2OhZb6aadfz6teZ1xrh4eHaLVaSKfTA+NmtS44f5ox0uxwt9tFPp/Hhx9+iHg8joWFBbz77rv4i7/4C6ytrWF5eVnKgxC4cm1xg0hLQ/l+oJza4XDIuGrGVLOtVvJazgfBGGXJvBaZPT1HOqZTs3x6TQNPmVadgVUnaxkaGpJNJrfbjWg0Ku8fgivet9/vC4jj2HD9tFqtgTXB35ntMp/PS19CoRA2NzcRDoclno9Sdz7H+rnVmx4vwv5KAM7hcHwXJ0lL3uv3+zX1+QiAXL/f7zocjgUAywA2/1pa+tVaZjNwttlmm222fakVi0UAJwWqvV6vOBeJRALFYlEyjTmdTolBoXPORCWjo6MSw+ZyuZBOp8XhbzabAgYSiQT8fj9SqZQkYKB5PB6Ew2HJ6kaHhQ4MY74oE6K8cWRkRMCe1+tFt9vF0dER+v0+gsGgZI1MJpMiQRwaGkI0Gh1g2prNJl555RX88Ic/lJg6HSeinXLNgpy286ydY/27BnP6XBN8EFxpYAFgIFmCGe+ij3M6nXjy5AkODg4wMjIiTqSVM08HemhoCKFQSGIG2fdOp4NcLidON++jZXY0JoJhlj/GuWnGgk6uBk5axgY8m1mSjIMpUTOBlAYkuo8mEOR4cC5NUGYyq9r5NplVXp/rgZ+bpRW63S7q9ToymQzK5TLOnz+PeDyOpaUl9Ho9yZrKTQotR+VPDXp1WwkwzIQWpjRVr08TwFPSqs/R68N8Blh8m8DUTERjbhhw3int023kuHY6HWxtbeH999/H7/7u7+LSpUs4ODjA7du3MTIygrNnz+Lzzz8fYI0pwST7RAAUCoUkuQuvraWVZJO0tFSvGY4jnzmfzyfX0/JbbhBQnq2TqTBzo95E0NJiXR6Ex1JizvXjcrmkLwSjOv6MCgEmZCGrxjpv3HghsCRTrzcWGN92dHQk13/vvfeQy+Wwvr4u72MeS7kvQZ9m+L9u+yplBP53AN8CMOxwOPYA/M84yTrpBfD+FxPJcgHvAvg3DoejA6AL4F/0+/3c31DbLdoK2BycbbbZZpttX2Zkt5hxjA5CLpcTh7DX66FcLosD4/f74fF4kEgkEIvF0Gw2kcvlRNpYLpdlZ5dOImPqSqWSADftTDNRSLPZlF1kgkSmty+Xy9LuZDIJn8+Hvb09hMNhjI6OotlsolAoCBDt9/sIhUICKlutFiKRCIAThs/v96PVamFzcxMzMzO4du0a2u22JPNgEXLtzGtmjeyXaVZMmv5MgzgT5NEIOOh06uM5dpohMeV+Pp8PBwcHwlxQZmY6WhoUkSEdHh5GOp2WeSKTqgGKzmJJ51RnRPT7/ZJggWCJfdLtNeOlTFaNx9AB5bEaIGhGwHTQCc70vXSfTWnraYwir0lGRjN5puSTRsDIthK8cCxTqRRGR0elXh+TapgJM8i4avbRXIuMzWq1Ws+UWzBNAzH+Y8IeDeBMeazeLOj1eiiVStjd3ZUC2nzWzLk1f9cyVy1n1etwbW0NH3zwAb73ve/hnXfewfb2Nj799FP89m//NqamprC7uytrk8CJjBjfNywxQtCk+6n7ZWaAJbve7/el1APZSR5PgMdxopRQr3V+TzBO0ARAVAScV4JJHUvGY9lmqiP6/ZP6bcFgUNrCdurnhW3VpSf4bgBONluY/ZfruFqt4vj4GHNzc0gkEuh2u5iZmZFi3fp9pZnGv9USyn6//32Lj/+fpxz7nwD8p//WRv1VzQE7Bs4222yzzbYvt3q9jkqlgmAwiImJCdRqNaTTaXS7XXHocrmcsCnMfDY6Oir12mq1Gur1usRkcTeXyVBY94oyK+4MW9VjolMQjUYlfsXj8YhjNj4+jlAohGw2i1KphGg0ikgkIjXgCNA6nQ7i8Tg6nY4kZonH4wPfMRV/v9/H/v6+OL+UKlI6pYGSdnq1mWyDlUNz2mcm+NLsgJbRafmZlhhqJ5Tj6vf7USwWcePGDVy9elXmQYMNk4EjaIpGoxgZGUEmk5Edfi0304wWr8N6eYyNIZvDc8hw6Wvwd96XbbGSTJ4mx9OO+PPke1r6SfBjgmzNxOjraobBvCfbx7Wq14hm4/iPIKVWq+Ho6AhDQ0OIxWKIRqOYnJzE0dERms3mALjk82KaTrABPJVSEqCYbKQeJ3O9Mo5Vy+LMsdPsc6fTwcHBgZQa0XOpz9OZPPVzo4/R80C2EQDu3r2LmZkZXL16Fd/61rfwgx/8ADdv3sSbb76JQqGAUqmEfr8v7wcCqHg8LiCFbdbsm95UoBSR17DKNqslkpoV47rgu4sARwM7riudzp/xs2SvOAa8N985Ho9HasppySbXIWPngsEgIpEIKpUKHA6HJH3iT5Od15lf0+k0+v2+MJmtVgvlchn7+/vSDm6w8X6cS46LKc/8uu3FFTD4GzCHHQNnm2222WbbV7BOp4NkMolYLIZUKiX/SfM/6mazKexNOBzG0NAQRkdHkUwmJX6s0WhIzJneWaYMUe+C693bWCwGp9OJcrks8SvRaFRiPhqNBrxeLyqVClwuF86fPw+Px4O9vT30+33J3EzpZjgcRq/XQ71el3T7uVwOPp8Ps7OzAxnVWq0W8vm8lCKg05xIJIQ9pJRJmwYb2nnWAMF0Sp+3O62dbJPlMJOkmPfQsjBzTpl8ZnNzE48ePUIymZTkISb41Mk/nE4n/H4/hoeHEYlERA6rd941EHE6nQOyWrJvmsnh73rcCE4J2DSTZsonrYCWBmsECRoYavaMzrSWO5qxYmZqfc0O6znnNfW4E0SYn3HuuYGhY5YcjpNacZlMRpz0kZEReabYHkomrQp8ExjodcZSGVamx1Q79ozr4vow15NekwQxjUYDq6urItkjSDf7z/HVGwW6PXr8TelmrVbD9evXMTk5icXFRbzxxhu4desW5ubmcOXKFXz44Yfwer2yiUTpdyAQkPWkQQ8Blx4zrn2ON+N7ybJqVlJLUnWCE1OKyjkmsNWAmcdrySivRVDHtvp8Pvj9fgFblIgCGKhJyVqKetOkVquh1WoNzDffwdwICwaDePDgAfb29qRPBLHlchkOh0Pk8wSU+hnxer2IxWI4Pj5GvV63XHNfh71cAA6OZ17Qttlmm2222Wba6OgoarUadnd3xQHVO9SMQfP5fAiHw0gkEpJ9LJvNolAoIJ/Pi3yr3W5LfEaz2cTExAR6vR6KxaI4/nonmtIfZinsdDqoVCoYGhpCJBJBrVZDJBLBysoKCoUCjo+PEQgEEI/HRdpH2SdjPfx+v4CzWCyGcDiMTCaDRqOBfv9pOnwCPwADzjLwFHRph4VZ4zQoBQYLQpvn07QDaB5jxg3p7+h8WbEhvK52xIET545lHLLZLG7cuIHz589LxlFT8qdZPTqg8XgcY2NjEq+onVOCIM2MatmklpHp+B+2Vzu7Whqo2UfNMOq50WNsXoPf0yE2+2kFttl/zQDyfBO06fnQ8lbOqXme/qmlnADEGS+Xyzg4OMD4+DjC4TAikYjIAnkvZglkDJXJBmrnngw468cR5FnJGjkmzApLoEIzx44AuNfrSZbToaEh5HI5SQTC8/W61GOtr6nBnTkv/Lm7u4tf/OIX+Af/4B/gzTffxN7eHq5fv47vfe97WF5exqNHj6RuYTwel6QwXq9XJM4amFKiyv5oJpqMEzdOKAHWzwclgzoVP+dIJ+ohE8550+NBUM+i2kz0pDcmGBOnQbFeT7o+nZ4bPYY6yQtBGVm+YDCIyclJdLvdAcWFfgewvwR/BKRcUwRtWvL7IuzlAnA2A2ebbbbZZttXMMa60VHgDi7jSFqtFsLhMMbHxzExMQGn04mjoyOkUilJcsJkJZTu8Vyfz4dCoYBCoYBAICDxcrwPHdPh4WEAJ2ny6/W6gMVarYZ4PI4zZ84IOzg6OgqXyyVFkIPBoJwbi8XkO6fzpOi1w3GS4Y8pyAGIHIhZ++r1ujhopVJpwGnXzJeZ8Y4AxYxns5KpmYBO/206kibbpsEj/9aOrilHo6MVDAaRzWZx//59rK2tYWRkxLImHNujgZTP58PExAQeP348kECE48DrMNMfy0toto1t1Vn4rACaBkG8l2aquCZ1302AqCWKJoumJV+UmGl2T7PCeiytWEANwilt1PJC3W+9JgjG2GY6+ZSf1ut1hMNhJJNJ1Go1kSPznrVabSCOUYNdrgMCimazKc+hBrfmeOjnnJkVTdCr1yj7yPqJW1tbACAJPvQa1M+Pvre5Xk25qh47AtLV1VUMDw/jN3/zN/Hmm2/iT//0T3Hr1i38+q//OjKZjMRuajBDRp9giBtHnH+99giK+Uyy7IZes5Q7aqkj59GU1epMpZwDSmw18NLsnl7TZKhdLtfA5ol+R+j516AdgMQe83nSzyNrBqZSKfT7fRSLRSnnooudc92xP2Tm2Be+8/P5vDDaL8peLgAHOwbONttss822L7dGo4FkMol2u/1MVkiXy4WJiQlMTExIkpDt7W2kUimk02m0220JhKcMrNPpSCFtSsG4u1+tVgdqkhWLRQwNDaFarUr8GVNpt1otjI+Pw+/3SwbEsbEx9Ho9iX0hIASAkZERlMtltNttxGIx+ZslA+jURqNR1Ot17O3tAXjqmPp8PkQiEdkNp/Oi2ZxXXnkFXq8X29vbUgJBMy10mrSDqk0zOjTtTGvnV7NjPEefqx06K8vlckgkEjg8PEQul8O1a9ewsrIywEaYcjnNwrlcJ4XPl5aWsLe3h0wmI0wDnUyCOdbu04BBx42ZrIuZjEP3yaotelx4nJacagbNZDM1cNBsKudNsyRabqZZNV5Pp5832Ry/3y/H6Vg+vRlgzrVmTJl8JxgMYnR0VCRyBHF8LngdDQDNNaDT21uNpwa9Xq8XkUhEGDs9ByZDyzVerVZx584dlEolkSvqDJSmNJXzbrKnpvyTn5tj1Ww2cf36dUxNTWFxcREXLlzA2toaVlZWcP78eQFrlD2a46bvq1lWjhXHi+uWEm6uDY/HI3NJmSMBGWNBOdYaOOoslnodke1j5kyOF7O1ct2xHTrGjGtWr2GuwXa7LQmfqIggmK3X6yJJZ4Kjra2tAUZdKws4/kwqZbVhRZmnBuUvwl4uAPecl7ptttlmm2220ZhpTDsSPp8PsVgMo6OjmJmZgdN5kpXy+PgYe3t7KBQKErRfr9cl+xwAkS9yl5u739xxJkikw8fd3EQiIdKihYUFBAIBVCoVdDodxGIx+Hw+kWqyFtLx8bEAr1KpBKfTibGxMXg8HhweHorT0u/3EQ6HEQ6HxVmmjLLZbEr8CPC0LpN2tABgcnIS09PT4rQXCgUBj2bclWn8/1izaDxP79ZrR42AQwMJk9kz/5/XICebzSKZTMLj8aDRaODmzZt46623pFC3FdOiZYdcB/Pz81heXkatVpM4Qc1EEKho5k2DNSsmS+/ya9NJT0y2SgMXE/Dqv/XccRw1YKGDyuO0U2qOsY7LMu/FdhGo8lom6CHo41q3inXsdrsyvlpCZ5ZsoEzSZC01ICY7xARBJqumQaDT6UQkEhH21ArQm32p1+tYW1vDjRs3REaq22COg76ONr0ZoVlrE4RzvorFIn75y18iHo/j6tWr2Nvbw40bN/A7v/M72NnZQSaTERaO80vgpVlQjomutaeTsHBMCUzIbDFZR7VafaYkBttNSThBnWbSdAwkQaBeb5p9A/BMu/S64vdcTxwjlmYxlQNMKsV4ZvZD1+HTLC3bo0Emn1muweeB8a/bXlz6lL8hs+GbbbbZZpttX2aFQgGZTEYSVfh8PoyNjWF6ehpTU1OSlXJrawuPHj3C0dERarUaqtUqer0eIpEI4vG4xEBpuRB354ETB08Xg+52uyK75K5yKBTCysoKPB6POCKsMddsNqXuXL/fRz6fF2BXLBYRiUQwPj6OXq8nbWQSEjpTZApLpZLEsZDp0HFbwGDMD50XZrMkY3da4Wjt+AKDqfLJ7vFvggJdkNuUlj2PGdGmj2P2SALTarWKX/ziFzg4OHgmO5123DVT43SeZKRcWVnBzMyMSCf1WDGBAjOUEswRlOp/GiRoIGcCIS0nM7MGatZOzw37oU3HqGnHl33V4MpkR02Wz5w3jpWOg+JnWjanwQz7o/vP+zBbKjN+6jHl+WQ/zfVjji0ZbHM96rXjcJzIZFmbUcv99DrSfdcAjowhQb0GcHoeTCZV991cuzQdW8r7drtdbG9v46c//SkikQi+8Y1vYG9vD/fu3cPFixcHxoYAmBszHBOOEZ97ndGR/8hmAUAgEEAoFBLAR3aNIJMbDVpayrVAuaaWG+vr62eO9+aa1bF4/F4DRb12gZNNM7LgVBAwWzDvTWaRoJvsYr1el4QnWkrabrdRqVREHdFsNiUJlK5DyXfAiySNXjIGDjaCs80222yz7UuNwMHtdiOZTMq/oaEhHB8fI5fLIZVKIZfLDfwnT/kMa64xbT1ldXROmPGRWeL4n32n0xGnwuv1YmZmBpFIBIVCAa1WC/F4XM5ttVqIRqPw+/3i5E5PTyObzaJcLgu4qFQq4ryQ6SPr1+12sby8LPEhBJAEY06nE/V6/ZndZDph7XYb+XxeWEAro4OmneTTTMvMeKyVtFDHngHWaeC1k6zn1e12IxQKSVHuu3fv4rPPPhso7K1333ktDTyHhoYwPT2Ny5cvC3CnI0nAr4GGZiWsWDZ9LwJnmmYarJhHU/5njoOVmSCOTqdmWnk/k0k178fPTCCnmUur+eQ/LbflWGtAxrGNRqOShINggcyHLi1hMp2aKWNtNCtj22KxmLBvuv16rNlOOvV7e3u4efOmsMl8ZjSoNaWzJltj1S5zvWuQo5No7O/v4+joCBcuXMDDhw9x48YNXLhwAbOzs9jY2JC4RAInsugcT81QOhwOeX9p9lC/n8jqkSHVYIrri8aNCz0HWmVA0KdBPvBULkmAzPcpv9cgkfOqJcMcb2YCJTtXr9dlI4hgDniawZKbDFQVcOxYEoTXM+N69XrhdU97J34d9nIBODhs/GabbbbZZtuXGv+jnpmZwcjIiMSBNRoNKdRbKpXE6WEmQ7fbLVnN6AgwlTp3vgOBANLpNJrNJsLh8EBB2ZGREUlKMjs7i0qlgnw+D4fDgWQyCbfbjWKxCOAkvi0ajeLJkyfw+XyYmppCLpcDAMzPz6PX6w0ACxb8TiaTKJfLCAQCmJ2dRTqdxsbGhgA4OvPdblfAn3Y+6bS0Wi2USiUATzNnAk93xrVDTtPA4jSnFcAzjqqeF/2dllyZptuqHctCoYBwOCzzUqlU8POf/xwrKyuSLVJf2+wD2xEIBHDmzBnk83lsbGwIc+pyPU2zrrNEmgyOWdeN16VDSYClHUUeo8dOM5gcezP1P8dRO+Nm7JuWZQJP5Wg6y6MGXVbghmOsmUQer5NMsK38W8syKavTQJFss3aY+R2vy3WjGULNWPIzPpN6Lnm/UCiEkZERYd9OA8HsT6fTQbVaxf3797G5uYlAICBskr6HXtPmGuV3ep2Zn5u/6/VPFvwv//Iv8Xu/93u4evUq/uzP/gzXr1/HW2+9JUlVrDaKyBbq+eXc6+RAGngzro5Amhku9drRAFyvW7J2fC8xHi0YDMLv9wuTr0EymS4CQV0+gIl3NOuqN3f4TA4NDaFWqwlTxmeTz7heA3yPs498F1arVYmhZHIaHqtlpnxv6vIGL8JeLgDnsNYc22abbbbZZpu2SCSC4eFhzM3NYWhoSOLXcrkcstmsZCfzeDyIxWLi/OqMblNTU3C5TrI/1mo1hEIh9Pt9iVEbGhoSyVWv18PY2BgikQhisRiCwSCOj49RKpVE0tXrnWTdc7vdiEQiKBaLSKVSmJiYQDgcRiqVkpTrLOAdDofhcDhQqVQwOTk5IL0j+5TP58U51oH4Ho9HmAQd46FBSKPRkF1msiA6btA07RA/D7yZiQF4PxMMmvFJVvfSYKLb7eLw8BBvv/02SqUStre34XQ6sbOzg5/97GdIJBIDacM1a2a21+l0IhaL4dy5c2i329jc3ESv1xvIoqfHy/zbZPm0VFX31zxPAx4du6UBK78z28zvtIPOMTVr55Fp5Nrm3BB8ss26vZSlabBkZvzTYIHPi24z16juu35+AAjw0GDU7KMJOPmv1WqJjFkzam63G6Ojo4jFYgOsJ6+pwSfZr3a7jUwmgxs3bqBarWJ4eFhACeNc9fxqgGb1fOh1e5ppIMy/W60WNjY2cOPGDfzWb/0WlpaWcO/ePVy4cAEXLlzAnTt3EA6HAZyk52fMl24HNw9M+az5LJOx4/EEMCbA5HrSMa1sLzPd6j55PB5ZMzyfkkYmGdJrUL9ryIoRWJlSaJ/Ph1KpJO9PrmvNqpEtJ+jjdbhew+EwGo2GgECWNKDiQm9YEPy9SHu5ABxsBaVtttlmm21fbouLi5icnITTeVIeoN/vI51OI5VKDaSWHhoaQqPREIauVquh0+kgEAjg8PBQHFoW3m40GsK6tVotcfK4+z89PY1UKiUxWaFQCKFQSJxFFrHNZrNotVqYn59Hu93G1tYWEokE3G43CoXCgINcLBbhdDpFZhSLxdDr9ZDNZuHz+cSJ1s5QIBBAIBBAtVodAAnaUdZODh0ukzHQzqEVADpNNqaBmk7gQNPsjBmjpRknXo/tcDgc4oTNzMxIQe5Op4PPPvsMS0tLiMfjAzFZWhplxk25XC6MjIzg7NmzqFQqSKfTA0kyTIDJczQDZbJYbDvBiQZwJqsBPJsGX1+TQM2KQdQgUJ/LMdfzrWVtVqDwNKZIs3WmhFCzflb9YTt1mzTjptlRPUZcr7wuzzOZOHPsk8kkRkdHBzKSmsCZAI7PY7lcxr179/Do0SMBD0wE9DzgboI3k3kz50l/rmW0elybzSZu3bqFM2fO4NVXX8Xa2ho++ugjfO9738OTJ08EUPX7/YFkJYFAYEDCqO+h49o088bx1JJjDdx5Da4FjrsuBk4ASVlkv39SY47Mpo6XY204SlbZFra51WrB7XZL1l7gqYyTG2Q+nw+NRkPuraWTbLfeDNCMItk/r9cr718qFsjCEejxvlbP3ddpLxeAc9hlBGyzzTbbbPtym5+fR7FYRCaTQbPZRDqdlvpu3NHVWQGr1SoqlQqCwSDi8bjsUvt8PgmKHxoaQjAYRL1eRyAQGNgtnpiYwNTUFA4ODpDJZABAJJONRgNDQ0NShiCTySAUCmF4eFhSXo+Pj4tEiE5OPp8X2RSZvqWlJWSzWSmSXCgUnmG56KRTjmlK1UwnjQ6haTprnin30+yQKQek0fHW4Ivt0ayRdrS0E3oaSHA6nVhbW8O7776LsbExVKtVOJ1OZDIZ/PjHP8bs7Cw8Hg8ikYg42zqZA+/De/h8PkxPT6PRaODhw4fiwOv+aKddJ2ewYtf0Tr4eY309/bcGfOyvZrNM006pvqceQ3MOtCzSlPdpkMZ/VuOk5+60+EIeq9tEsFWr1eD3+wcyUeq1x3VAx57X0klfNKOixz0UCmFqaurUou4m+8YNmJ2dHfz85z9HvV6X554SPR0XphlFK9ZSj5E2qw0OE8RryWAul8OtW7fwve99D5cvX8bNmzdRKBRw4cIFfPLJJ8Iusy9MtkL2S8tR3W43gsGgjG+j0ZAESDpuTYMevXHAduq1qRMFEbAFg0EZB7ZDgzP9vHD+OA/8TG9A8RrdbhehUEg2r4aGhqSouAairLvJzSpd/oB9dTqdsoFGubhmCgkCueGj68O9KHvJAJwDfZuDs80222yz7Utsf39finEXi0Wk02lUq1UEAgF4vV4EAgFJQU0nKBwOS4wJ5TzMnkengEW2Wfg6FouJ87+5uYl6vS7XJzD0+/0YHR2V9jCG7c6dO4jFYohGoxJ/xgQKnU4H8XgcDocDhUIB4+PjcLvdePz4MRqNBi5evIhyuYxMJiM72HSMyCCZMRx6l1qDMC2f0mDMlLABz3dI+bvJBFnFodEJJaiyAn4acJosWKVSQa1Ww/z8PHZ3d4VRffLkCT744AOpAcY+0ZHUfdfX9nq9mJ2dRa/Xw+bmpji6VgwcMAhu9T10200ZIMfeZEn0uGtgpEGjdiZNpo/H6eLIehw106MBohWw1HPIeCE62wR2XFu6H2SaaHT49TwTAGjHnuwU+2DOPa9NEMJx0BJSt9uNyclJJBIJy6LdJngj81Iul/HZZ5/h4cOHku2R8WQ6S6Y57lb2PEff6jstb9Rz1ev18PjxY6yvr+P8+fN49OgRHjx4gN/93d/F7du3B8oJ8Dy+vxwOh4yJGQtLwEIzx0mDNHMzRm8CaLZUG+NRGa9Gtk7LHTVY4rhwPrlRxjpvXE9k+Zi4RMek8nnSCYPMde5wOAbKmBCYceOIbeK5OvOkZuNehL1UZQTsQt622WabbbZ9FSuXy2g2mygUCjg6OkKj0ZDMYszmyCLf/I+b0hyXyyXxEkNDQ+Kc0BFgDMj4+DiWlpZQKpWkPpvP50MgEBBHJJFIIJlMYn9/H4VCAZFIBMfHx6hUKlhZWcHIyIhkk9Q71+FwGP1+H/V6HdPT0wiFQjg4OIDD4cC5c+eQTqexs7ODYrEoO9dMbBAOhyUmTgfn02E3GQA6KXTaTakcHSft5D/PYaVjpO+pz9HAiU66eT3tRFkd0+/38fjxY4lz1MzBL37xC/zyl79EOp0WyRfHVbM5ZpvC4TDOnDmDxcXFgSyG/F4zWJoZ0kyNBnh0oPX5puzSNC3xo7PJOCLNHplOaq/XQ6FQQCqVkn46nYMJVbRcT4MyU8rHfmpnlp9pR1gDBu0Q6z6bLBY/03XWdLIY4ARcMCZKryOyRloGSvZ6amrqmbIBeq1p8MZMho8fP8bPf/5z1Go1BAKBgRT8Zo0yPU7aTGZSr9vnye/YHj2m/KxUKuGTTz6B0+nE2bNnsb+/DwC4evWqyBd5b7JF9Xpd/ua889nVoMnr9UoJAR5HVkq3RdeZAyBjw/chz9UyQyYU0rJExpJSNqnj3jRrx+tyM4ngju9x3aZ6vY5KpYJWqyXXcrvdoopgmYRgMCiyUJZ60VlMWQic4JbvXxb5rtfrA2Urvm57qRg4OOwYONtss802277cyuUy0um0xJMxsUG9XhfnRkshWRIgHo/Lbm80GpVdYcZh0LE9e/YsgsEgtre3kc1m4ff7EY/HRW7pcp2kM2+1Wjg8PEQikYDL5cL6+jpGR0exvLw8AOroSITDYYyOjuL4+BhutxvLy8vY2dnBwcEBRkZGEAqFkEqlRFKkJWUul2sgGxyL1WrQBgzKvvTf2okHnu7iW+3KAxiQ2mlnz8oxNaVn+t4mU0Xnjvewkq45HA6kUin4/X5xciuVCoCTtPV/+Zd/KWUYhoeH5Xw6ieyf2fdgMIjp6Wk4HA7s7OygXq9L/wgM9Dm6fcCzslMNYGnaebeaBz2mGqBp6Rq/11k8g8GgOLt6XLU8UrOtmmnT9zHZPTIRegzoGLOvWi5prjErGahmZXV2RDMOU9/TLAvgcrmQSCQwPT2NYDBoGZNojjkBcSqVwq9+9Svs7OxIDBkdd15b35tjbDVfWibKz08z8xr62dD9TqVSuHfvHpaWlnDr1i1cv34db7/9Nu7cuYNSqTTwTJpMFIEugZsG6prBIlD2+XwDpR002wZgYD3yPF0bke88gh4NyADIBgTnmhkiOed6jernlOxZr9eTuowEYcBTNtbv9w/E2DmdJxlmCcz4vmf7TOaN57HNfOf7fL5nMpF+nfaSMXA2grPNNttss+3LLZPJIJvNIhgMYnh4WHa2nU4nqtUq6vU6gsEgAoGAOBB0EKLRKMbGxsRx8Xg88Pv98Pv9GBkZwZUrV9DtdrG5uSkyymg0ikajgWazieHhYYyOjiKTyaDX62FxcRHNZhPHx8e4dOkSLly4gI2NDZRKJUQiEQFbfr8fzWYTGxsbcLvdmJiYwMOHD1Gv1/Hqq6/C7XbL38FgEKlUamDH2ufziTPGnWbt9JtMmGmamdNMjXZItfNvOkDAoOxK/wSsa73ptphSNdM5Jnjmca1WC/fv38fKygqGh4cHgMLx8TF+8IMfYHV1FaVSSZxznXHTilFxuVyIRqOYnZ3F/Pw8IpHIAPukHWGeb8bw0TT4JQNhSlhPk7TqDJMmMOIY8XpkIjwej8QjEZiReSTQ57XpfJt14/iTMUYmS2qCQr3G6NybMlGdUMZk0vR1NcAw2Uo6/nqO4/E4zpw5g1gs9sxcajCl2TfgBODfunULH374IRwOByKRiKzlbrcr4EHPtxVA1Wua9zTBvWnmJgnwFFzye74P7t27h3w+j9nZWfziF7+Az+fD0tLSwLPJLKE6cYtmNXltJmIygaLO/kjWy1wTfC64bjgWBFocU0o5dfZKKhGYIIr31OvR6XSiVqsJMOU8+Hw+BINBuT/ZQ25ScY4I6jgOAAZiA3u9nhQF12NCZpClZQqFAqrVKhqNxsAz9KLs5QJwDtgxcLbZZptttn2pFYtFjI2NIRaLDSR7qNfr4iRTyqWlSFNTUxJ7RnBFx2Nubg4TExM4ODjA3t4eer2e1COrVqtot9tyv4ODA0SjUQSDQTx69Ajdbhdvv/02gsEgPv/8c3GmmPVwcnJSZHBzc3NwOp24efMmAGB0dBTr6+s4ODgQMLq7uytMIaU/dKqLxeKAFFI71Np50443MOj00kzGgOdp9siKbdMMBr+zYir0Z6cBSzpqZla4fr+P7e1tNBoNTExMDJzT7/exubmJn/zkJ9jd3ZX5IZAji2TKJOkAh8NhTE1NYWZmBqFQ6Bnn3BxX3VYtdzT7rDPkmQDVZM30/OnjNTDUbTeLe2s2jZ/TaSZz0mg0hDHRMjoNInku51cDIpM5JYtjAj89Plwz/FuDL80k6Tlhm7muYrEY5ubm5HkzZZO8limdZMbXv/zLv0QqlRKnnsybHkNTFsvxNyXI+js9p3qN83czgQc/55hQZthqtZBOp7G1tYVXXnkFvV4P169fxzvvvCPto/yRZS/0Rke/35fvCUiBp2wYQR4zWXq93oF4R35Oqazb7ZaEJQRBrVZLNq14P5Y3YByvlsoCJyUQtJyZ9d0oweX1NMALhULyDtebEFrCWS6XpcyA3iwJhULyPuca4Hh7PB5JksK2si+c/xcJ4F4qCaUdA2ebbbbZZttXsYmJCWFrKpWKSMzIshHE+f1+VCoVeDweLC4uolarSRxcoVBAq9VCPB7HysoK2u02Dg8PJTslY81qtRo8Hg+i0ShqtRoKhQJCoRDK5TKOjo6wsrKC8fFxrK+vo1qtYmVlBfl8Hvv7+xgbG0M0GkUul0Oj0UA8HsejR4/Q7/cxPT2NWq2Ghw8fSoHiYrEoWdhMh5L91dI4mj5Om5VzzeNN8Gbu3vMzK6ecTpKZzILt0KCOcWTsEz83762zNPL7QqGAra0tnD17FqurqygUCtKGTqeDTz/9FJFIBN/73vewsLCAYDAoTrl2bq2ke4yDGxoawuHhIYrF4jMg10wRr8EOnVdzXExZpClrZHvYX80a8Hw9rjSTwWJbyKh0u100Gg2JeSLb6HA4EAwGxbkliKGzz2vzXmaiDCvWidJO/n1aplG93nRiFPO+XMvdbhfxeBznzp2zLBmgr2eCt2azid3dXfzkJz/BnTt34PP5MDw8LMw8+69T62s77fmwYpb1cacxc+b8mc9Wt9vFxsYGXnvtNczOzuKjjz7C5cuXce7cOdy4cUPWJ5lUjjljPlmyhPcgSOU5GujrzIsaYOlNGD6nnL9ms4lKpQKXywW/3y+bIYw34xrVAJLrWpcA0ElYeC9+xrVMNo/XY5IoXqdcLotknMczicr09DTa7TZ2d3flGC0fbTQaElOnwas5P1+3vVwAzlZQ2mabbbbZ9hWM/0kXCgWUy2UEAgFEo1FUq1UAwPDwsGRnC4fDGB8fFyeOZQBcLhcWFxcxPT0tmSx7vZM6bExsAgCJRAJOpxO5XA6BQAAzMzPY2tqCx+PB66+/jkKhgJs3byIQCGBubg5PnjxBJpPB1NQUPB4PMpmMOFD7+/uIRCKYnJzEkydPUCgUMDExgaGhIWQyGfT7fWH8tIyRCRzopGknmQwdzdypB55l36wcFyvwpqWTdE6108r7ahCjf7e6pwlKdPyMeV6/38ejR4/wT/7JP8H58+fx6aefDrCP3W4XH374ociuNFNHiZWO1dFtcblcUtvP4/FIZlO2h/3XQNqKndOfmRk5tZNKoOJyuSSVumbjtINrMlW8j64VpsdQrwVgMKtlp9ORFOy67zSCVJPRYx+ZAdSUTfJadIyZAp5AwTTW4uI9dXsJHOLxOM6ePYuJiQlZ8+YY8DwN3lqtFvL5PK5du4ZPPvkE/X4fExMTwnbpfrD/JqPGtpvG77kezLnX82ECXhPgmZsk5XIZDx8+xNTUFDY3N7G5uYlXX30Vn3/+uWw0kf0CIJ/x3aZjFXUbCPgY20vJrM7ISOaTz4cG9wT4OoOsXquMNeb60pJgrkdd0qDZbAqbyHe0KS3lsZSDcswob2cCHx27y/Iro6OjGB8fR6vVQrlcljHXz4F+ZggAzWfs67SXC8DhWe2wbbbZZptttpnm8/mQy+UkRi0QCKBWq8Hr9SKZTKLT6UhRVwBIp9OSWpw7vAsLCxgaGsLx8TGKxSLcbrckIyGTkUwmkc/n0Wg0cOHCBbjdbqyuror8Lp/Po1Ao4PLly/D5fLh9+zYODg5w5swZlMtl9Ho9JJNJHB0dodvt4syZM3A6ndje3gYATE1NSW04XbCXUh8dM8W/dZY3bdrBNNkCfazprFsdq5knzaZoyZiWWmpHTzNwvJ+ODzutXQQGpvO/u7uLBw8e4MKFC1hfX0c6nZbrAifxOf/lv/wXeL1e/MZv/AZmZmYGnFqfzydMDp1Sfc9AIIDJyUl4PB4cHh7KurJiXHSbKcEymSm2zfxcy7a0w2qOlx5nDcS1hJHzZyaJ8Pv9A+tEgwur9UIwo+dPAxkyKqetBQACADQoIljTYIV90Snw9bXj8TgWFhYwNjYm4E23XwNpE7wVi0Vcv34df/Inf4KDgwPMzMxgfHwcjx8/BoBn5KS8nk6cYsparZhVve5O81etWGYzhb+evydPnmB6ehrRaBTvv/8+/tW/+leYn5/HxsYGwuGwPNd8LjSLq1lNSg7Jbvl8vgFWlhtYZHw1+8ZraMm2jjnjO4HjrpOPmMmQNCgj2+nxeCRrpdfrfaY2m2aX2TYyj61WC4FAAJFIRBIZ8VqFQgEbGxtIpVIDYJXX4zPBOEGyb9zYeZFJTF4uAGczcLbZZptttn0FOzo6Qq/Xw+TkJNrttmQfY6IQMhyFQkF2gr1eL3w+H6LRKKamptDv95FKpSQjpdfrFaciHo+j3+9jf38fDocD09PTODo6QqFQEOC3ubmJUCgkxaZv3ryJcrmMcDiM4+Njudfjx4/h8/lw7tw5VCoVbG9vIxQKodPpIJvNIhaLiTPq8/lwcHAgjpJmbLxeL+r1ujg9msEBBlPHWzntGlCYv5tgxZR+6cQGGljwHtqxNyVvbrd7oDaUySDpe1plNOz1erhx4wZ+93d/F2NjY8JU6jZXKhX8+Mc/Rq/Xw2/91m9hYmJioH+MI6J8SzNADodDslnSwUylUhJPyTbodmpmktcx2QTt9JvjqufneeCa19TAyJSo8juuGe1E6/nS12H/dZs1WNRxdGSwnpepUQM8HTunJXm6Xpe+H2PeZmdnMTIyMiDXM2PJTOat3W6jUqngwYMH+PM//3Ps7u7C7/fjwoULKJfLA6CHmyFmPJ1mqvV9dF+t1qx+Bk2gaZq5XvTnx8fHuH//PuLxOLa3t/HkyRO8+uqrePDggQA0nchGPyMaAHHjxwRkZN98Ph8ASOZGs4YbQSZBnr4u5Y18J+kYSoI8zrsucaLvRSZY17rjWmemYI6dlkCyjALZOb2JwQ2fQqEgCas088x+B4NBUVU0Go1ngOuLsJcLwMGOgbPNNttss+3LLRKJIBAICMvlcrmkThtlOpTIjI2NATj5D52JRwqFgjhEw8PDAE4So0SjUSSTSRSLRRwfHyMQCMDj8WBraws+nw/nz59HLpfD48eP0e12hWmo1+tSEy6fz0tq+/39fczMzGBhYQH3799HrVZDOBwWiWQymRSng3WRDg4OADyNRaKjyMQB2mG02tUH8AwA0HWj+L2208Ab2Rh+xvtxx90EblbAkQ6deQ/NZHEO6TiaACOVSuHRo0d47bXXcHx8LCycvk8ul8OPfvQjAMC7776L2dlZ+Y5MHIGBrh2nmaRkMgmv14tgMIjDw0MBAZqV0nI6c7w0YNLSOw0aTPBmzqdm76yAA9uvHXmCUDrwdJ513KHJkGr2juBWzykZsEAgMDCO2sy2s58mqCHzoWWE3W4Xfr8fyWRSkguRIbPahNDgjfNXLBaxurqKP/qjP8KdO3fgcrlw6dIlDA8PY2tra2ANEpBo4GhuVHAsT3se9DrW0ldteg7NsQIgIIT9abVa2NzcxOLiIpxOJ65fv45//I//MUKh0MD86fT4mr0kyOr3+8I061i3Wq0mm0AsQcKkJpwTXQ/NLD3AYwiGA4GAbBSYMu5+/2n8Jo+hGiIQCEisIt+dHPNarTaQvEQ/k2Ts+v3+QL+45injLpfLwvYBTwFlo9GQ+wQCgYH19yILeb9UAA4Wuxa22WabbbbZZprH4xGpm8fjERYNgMRnJJNJ+Hw+VCoVAUsOh0OyTgYCAXFOK5UKgsEgZmZmkMlkkE6nMTo6ikKhgGKxiOXlZSQSCWxtbSGXyyEcDmN/f1/iTJaXl1EqlZDP55FMJlGtVtHpdLC0tIRAIIC7d+9K4e9MJiNOTafTQSKRQLlclrpXjx49EieMfdWgRgMlM27NClyYsj3TtIOsASCAZ0CLZkGs2AT+NGPBTAbIZGr4mZa0aaljt9vF6uoqzp49iytXruBXv/qV1HCjvMvhcKBareL9998HAPzmb/4mJiYmEAwGxWEmu0MH3kpSycyFHo8H6XRaEtCYzKIJvsyx0861ySRZyew0aKNpEKcz7JkMER1bMg5k64AT8MLx1cfre7CNJljVYEq3U4N4Pcf6GMZo0eiY83ifz4fx8XFMTk4iEokMJN4wwRs3DjjX3Ox4+PAh/vRP/xS3bt1Cp9PBmTNn8MorryCTyaBcLgugYBp6nUGTfdbxfHqeTHbVnHsT2Jm/6w0Kc3718wycvLPq9Tq8Xi92dnZQKBRw5coVPHr0SMCalipyveskPTqZDde17hOliBwLjg3rZ5oZS/XzCUBklRxDvsO8Xi9KpdKA3JabT7rAONedHhe9CaUBlX5/8XMydYFAQICv3hAwi8dzLHRcn/keNN+fX6e9VACOQ2q1o2GbbbbZZptttEwmA4fDIbEy/E8dOElgEgwGUSqVpFZcIpGQ+Am/3y8SS8or4/E4QqEQVldX0ev1EAwGcXR0hHA4jMuXL6NWq+Gjjz6SunOHh4cYGhrC+Pg4otEoDg8P0ev1EIlEUCqVEAwGxZHc2NiA3+9HIBBALpeTuDymAWeWzOHhYayurgI4cZwbjYbUS+JOPAGBDs4HngVYVsyNKa/UsTN0jJ/3/y/lXHSazGtrBofOIdtmAjl9nAZxVs4q25rJZHDt2jX8xm/8Bg4PD/HgwYMBiSFw4rAVCgX88Ic/RK1Ww7e+9S3Mz88jHA6Ls+j3+0UqycQwpmNJ5jUUCiEcDiOTyUiCE5Mts2Lc9Hiz31ZOvgkK2B+zDAHbpQEIz280GuKYk4HRGSR1ogYzdbxmb/T8aMaFDJ1OUMK51ZsJBAtmIhAeq0FQLBbD1NQURkdHpUi3VXydZikZ30Tm7d69e/ijP/oj3Lp1C+12G5FIBO+88w4ikQhu3bolks1WqyXPkY5D1H3XGwvmPJkbHHou2WcTyOu5p7F/eq1xXLrdLvL5PCYmJrC3t4f3338fb7zxhmSstYonJCDhnFjFxjIWTj/rjGEDIJtfGuzxb70hw3PK5TKKxSLi8bjMaygUQr/fR6lUGmD4uQmi43pZ6oPSR96XEk2TYaTsFTgBg2QOWS6ExzKuj/fg+TxGJ2vhRhHj7F6UvVQAzjbbbLPNNtu+ijGrWavVQjAYlJ8zMzPodrs4Pj5Gp9ORuKZCoYBeryfB9E6nUySXs7OzODw8xPr6OmZnZ9FqtfDkyRPMzc1hYWEBa2trksqemS/D4TDOnDmDfD6PbDaLcDiMcrmMQqGAqakpjI2NYXt7W7JgkpELBoMio+x0OsjlclJM+smTJ9jf3xdHhM633vHWTiTZAzOey4qVMwEDP/P7/VheXsbIyAiuXbsmGeK00fnTPzVgo+nPdKIIEziajI5uIyVUZtp/9vXx48dYWVnBxYsXsbOzM1AcWAOnarWKn/3sZ6jVavjud7+L2dlZxGIx2e33+/3iDBI4MjEDze12Ix6Pw+fzIRQKCRtHposOLMffjN/TYECn3aeTrUEuTR9jSjT1nOs5ZOymjjWi6THWTIXOCElgyPtrCZvT6ZQkO3R6tWOv+805I9DX2Q3ZbqfTiUQigbGxMSQSCQGcWnrJc/S5mqEpl8tYW1vDD3/4Q9y4cUOk0CsrK5iensb+/r5klNWxd2bafL322B+TXeUY6vE2Jcv6e5NB5T0JtnQsqWahAciz53A48ODBA7z++usATqTd4XB4gEXVgJZri3NgbghQNsjvmUBEzz3BFGWNfNcwiQivqUsLhMNh9Ho97O3tiaxRg3fOP58vjhnbTGmjng9KLMm06Q0Iji/XGUsq9PtPa+IRfFKZoQEkARtZZa69F2UvFYDjmu/3bTWlbbbZZpttp1u/f1LcNZFIoN/vY3R0FIlEQsoBBAIBTE9Po9VqoVarods9qS/l9XpRq9VQq9WQTCYlU53L5cI777yDg4MD7Ozs4OLFixgfH8ft27dRrVaxtLQku8+RSAThcBgbGxsYGhpCLBZDLpcDACwsLMDn82FtbQ3BYBA+n0/KHJAlZJkAv9+PWCyGUqmESqUijobf75fYPp09UTvC2unieNDJMiWTBHlaakhHkokFxsbGBuK3rBwb02E3gaKVc69laJplMxkKDWi4w64BGY9pNBq4ceMGfu3Xfg2Li4u4f/++sKimVSoVfPjhh6hUKvh7f+/v4fz584jFYgCegg2v1zuQsEGzcWwz6wsGg0Gp6VcsFgVkc0zoWDPJA9PWa6dfj71mI/W4ABiID+L5Ws6o20eQYLKodFq1TNDlciEYDA6wUHq+NQBh+xmHxNgpLZ3UAIQsCwGlBvrM/DoyMoJkMolwODwQ40nTIE7HiRFIFAoFrK2t4Qc/+AE++eQTYVcSiQQWFxfRbrexs7ODer0uY9JoNGQjxLwX72Oudw2C9Po1QZ75u54Xjre+jr6XHvd+v49Wq4VqtYqJiQkcHBzg0aNHWFpawvXr1yUJD/vRbrcFWHMeOU76PcB/zNBYqVSE2dcySQK/er0+AJK63a5ILqkEaDabktmS8m6d4bHZbIrKgP3Wz5jDcVJLrt1uo9FoSOZUnRyFIJLHcFwZ1+zz+eSzRqOBer0uAJkSUm5u6EynejNMA98XYS8XgPtCRGnnMbHNNttss+155vF4kEgkEAgEMDo6ikgkglwuh3q9jpGREUQiEQFuQ0NDSCaTcLlcUtB1bm4OQ0ND2NjYwPDwMAKBAG7cuIFut4tvfOMbqFQq+OCDD0R+ub+/D5fLhVgshnK5jP39fQSDQYRCIRSLRYRCIQwPD6NYLCKTyWB6eloYOdakI7DU2eSOjo6ElWDGzN/5nd/Bn/zJn8Dn80kxXzNpAB0uM97NZA60pE079fy70+lgY2MDm5ubz7BiJmtG08DABFn62vycoEDvtOtra0eK0r7nAcj9/X3cu3cPMzMzOD4+loykbJvuY6fTwe3bt1GpVNDpdHD58mXEYjFhcjqdjsTF0cmkTI/MD9seDoclo10oFEI2m0W1WpWxMJ12M+aLZsb+mOyT1Tzq8TbnU/fXZDvZHpMhMpkiLQPUbWw0GiI1JHDQ8lbNDgKQJBmUKNNpTyaTGB0dlWyvphSUc8efZrwbwRuzTX7yyScC8j0eD8bGxhCPx5HNZoXFZnsZF6jXlGYy9bphm80xtGrraWydKbU0pZT6GibjWK1WEY/H4XA4sLW1hW9/+9v46KOPhJXixo1OwqPXqH7GzTgwgqtarSbSyXK5PDAefBY1i0ummu+t8fFxAV0EVOFwGMFgENlsVjZUeDxjfcl6Ebz3ej2RnhOYkoFnP3QiHnPDiFL4Wq2Ger0+sKHCMeVGAp/FcDgs79p6vT5QP/PrtpcLwAkD18fTiDjbbLPNNttsGzTGok1MTKDVamFnZwdDQ0MieSuVSgAgBb4bjQaq1Sqi0agU4i6Xy5idnUWpVML29jbGxsaQTCaxt7cnIKzRaGBzcxOxWAyJRAJHR0cAgMXFRTQaDZTLZUxMTMDtdmN9fR1utxvBYFAAXzgcRrFYFGDQ6/WQSCRQr9dRKpUkeUOj0ZCkLA8fPhT2Q6cPZwkBOjNWiShOAws8RrMI2lnn9/pvzRwBGABZ+t6a4eF5/GmmnufvQ0NDA3Wg+B13zfm9CVKBk1iY9fV1+P1+LC4uolarSRIFtp99JNh5/Pgx/viP/xixWAyRSETuo8s30EGmI0nnUUsNPR4P4vE4AoEAYrEYisUicrmcMKamk8nx0uwax0TX9gOeZs3TLKuOaSKg0UCEzq2ee15fz6k5B+bc0fk3a435/X753Ol0IpvNwu/3SxyRnjfdRgCSeZDginUO9Vq0WjMcA8r9ms0mstks7t69i//8n/8zbt++PeCYh0IhLC0twev14vPPP5fnzeF4mrCImwfPY1yeB8jMMbR63vi7KXM0pcdWfSdYyefzsg52dnbQ7/cxMzMjCVmYiZZrmwykWQ5AM35877RaLUlE4vP50Gg00G63he3lZg/XHGWIwWBQEp1Q7t3r9WRsvV4vHA6HbKZxY8RkJTmnDocDiURCJI8Eo263eyCDJNuvyw5oBrjX60ntzmaziXK5LGwr7+d2uxGNRuF0OpFKpYR9ZIxrs9k8dT38TdvLBeC++GkzcLbZZptttj3PFhYWEI/HkUqlUCgUEIvFEI1G0W63xdmJxWIIhUIoFApotVqYnZ1FIBDA7du34fV6MT4+jsPDQwDAlStXEAwGcevWLQwNDeHKlStYW1tDsViURCWZTAaRSAQul0sc2fPnz6PRaGBjY0Oklel0GpFIRJwPxmE4nU6RRzWbTYyMjAAAstksotEo6vU6PB4P9vf30el0BuoaUfqogYAplQSeTZZhOpz6Myt2QDt/vJfeydeOsJlYQQMdSu50O7TcTwPAfr8vzhudPO7I05nVsj2H4yTD4e7uLs6ePYuZmRk8efJEakzRaTYd7GKxiA8++AB7e3uYn5/H5OQkotGo3JOJLugQE0SRxdHyOMrHgsEgIpGIZCslw6uBtk7GoNlSDZitWFTN5HBsORcarNJZ1eDIBCBkos3ra2aP4834qGaziVAoBABS9sLv90vSFK4/LdvkdeLxOIaHh+UZJKtighfOvwYcmjGq1+tIpVK4desW/vzP/xx3794VMMlC05OTk1hYWMDBwQH29/flur3eSfFubghYMWF6Q4P9sWKTzWfFip3jhoX+nO3Qc6yfWd6fc8ialnx+1tbWMDU1JfUo9djoMWNcI58t3T6uX7JlTHhD4GQ+KzqjpZk0STOiwAkLxsRBrVZL5loDMY6p3rSpVqsoFAoDhb61zJIbJ1yPBMUEXBp0ctx1rbdKpSKydG6qlUol1Go17O3tCYg9jR39OuzlAnAqBs4222yzzTbbTrNQKIRUKoVOp4Px8XEEAgHUajWJzYjH4wAgRbMvXLiATCaDzc1NTExMCNCLxWJYXl7G0dER7t27h6mpKUSjUTx48ADFYhFjY2NotVo4Pj5GLBaTwsHj4+OIRCLIZDLIZDJIJpOo1+uoVCoi0dOgxO/3Y3h4GPv7+2i32xgfHxenx+fzIZVK4fj4GG63G6VSaaDgMB07mgZNVoyaNu3k6XNOA29aHsdz6OTxOvpamg3Sqcl7vZ4klyFLxLZqoGEaj2Osom6vPqff7yObzWJvbw/T09PodrvY2NiQ70x5Z7/fRzqdxuPHj2VN/Nqv/RrOnTsnmRDpmFKaReePElZmM+T1nE6nALlwOIxkMolSqYRSqSQxcmwznWQdr2YCcbbXinkzJZJcGxok6jnVGUMBSBZJWrfbFSmjdtz7/b4wKKFQSACB3++XNrFGmGaW6HiHw2EBboFAQEDF89Ynx4L/CCBY9P7jjz/G+++/j729PRknZhWMxWI4c+YMGo0G1tfXBxi3SqXyDLA0Za6a4TXXtW7z88CbuS6/Kigw1zTbQKDlcDhw/fp1vPfee0ilUiKn5rler1cSgehND647zg8ZON6H5/BvDQbZDi1jZMwb8HQDodfrCQDi5kKtVpNkUoyzZFwp3wNcK7VaTcaYCYU6nY7MH6W4jJXTJSb4jne73fJu6Xa7kumXks5sNivsMdUNWlrNZCwvyl4yAMcYOBvB2WabbbbZdrrt7+8jEAhgbm4OzWYTxWIR7XYboVAIU1NTKBaL2Nrawvz8PCYmJpBKpVAsFnH58mXk83lUKhWcOXMG0WgUq6urKBQKePXVV1Eul/Hxxx/D7/djZGREHIp4PI5SqYRqtYrJyUlUq1UcHh7C6XRieHgYnU4H4XAY3W4XlUoFgUBAJFwjIyNwuVzI5XJSq65QKCCRSKBarSKVSomDTKeHTgidWe1oa6cXeMrCaOfR/MxKskVgwOtq2RJNMwcmKNLsjY69Iahg/BT7AzyNcdOFg7UDSnYiGAwKkLAynpPL5RCLxTAxMYFCoYBMJiPXNsen2+1ifX0dwWAQDocDqVQKr732Gq5evYqZmRnJUsn6Viw3QMCgEySYQI5xQsFgEPF4HOVyWZLe1Ot1AeEaGFhJ8kznXzMh+qcGeHT26ZT3ej1JPMHv2XYrcKvj6gjCyByTHdHjSUkvz/X5fAiHw4jH44hEIgLcNNCkmZJEzaIQaDSbTRQKBWxubuKnP/0pfvGLXyCbzQ6sH8pdp6enEY/Hsbu7i0wmI/fpdDqSyERvhmhWTW8+6OfGCmxa/W3Ol/5dg0INdPXc6TZoVk5Lkrl2fD4fqtWqZN5lH3l9zbCxNhxlkATmBDzA0/hMSrv57HHtk6VjWzVg5xyQIeOmBNc3pa+UVvIf51eXr2B2Tf2uItvHPpljxTXSaDRks4fPYygUQigUGkj6ksvlBkA8N6pOS370ddlLBeBoNgNnm2222Wbb84y13srlMkqlEtxuN+bm5pBMJrG7u4t8Po+VlRU4HA7cvn0b8/PzUlfJ5XLhjTfeQKVSwUcffQSfz4crV67g8ePHePLkCUZHRwGc1JqbnZ2Fz+fDzs4OXC4XFhcXRS6nHX5KdFqtFsbHx7G9vY1ut4uRkRFkMhn0+/2BRCozMzM4ODhAt9vFxMTEgESKu8lDQ0MSmK9BlBlzpIGY/tw07SBpNuKrmAZ1Wu5nlWVPM0I6MQEZOkq6tFNFZ1NLJ5n1znRutTWbTWQyGSwvL2NlZQW9Xg/ZbFacRZ6jwWa1WpUEMu+//z4eP36Md955B5cuXZKEOHQefT6fgDMNrq0YOTqHHo8HkUgEzWYT1WpVYvQor9TZQzUjpMeQ86nHwwQIGkCYLB0ZEN5LxxHxfpr102wMACm3wevSuWfcGQEuZcN0mnUh9tNAj8m6sW3MrHh4eIjbt2/jpz/9Ke7evTvAKHHNOJ1OjI+P46233kKtVsPBwYEAG7JQmgXnOJpmggeTXTOfJ903DQb0MXqdsq3mZwQ+5nX5PuHxDocDpVIJ0WgU29vbA+tfS53ZVhP06LllZlT9/PEefC65Jmq12kC2Wz7DgUAALpdL1A5ch6a0muMPPAWa+j3G+DqOHcEfGTuuCca06eePa5HX5DvS4XCg1WoNbBzp90okEoHP50OtVhMAaPWe/LrspQJwL1CKapttttlm298hY3r+er0utcx8Ph/u3r2LVquF+fl5pFIplEolvPbaa+j3+/jkk08wMzOD8fFxfP7559jb28Nrr72GWCyGX/3qVyiXy1hcXES320Uul8Pc3Bz6/ZNkAolEAh6PB3t7e5JApVarCdOWSqXEgbh79y6CwSDGx8cFLMzMzEjWuOHhYeTz+QFWRTNX7J9mW3RmOCsJlwZyNNOJ03E6VrLE064NDEolrY6lc0VnTzNyjL8CIKCU8WD9fl+SzPCedG5DoRBqtZo4mwROGogAJ5Kww8NDTE1NYXJyUgoOmyBO90uXVVhdXcXh4SE2Njbw1ltvYWlpCYlEYkBW6fV6B+rGaWDF+nE6BpBALhQKodVqYXh4GJVKBdVqVf5RWsY+1et1AJAU7Jp10Cynnk8tnzVjC8me6THVjJjJznK+uO64XnkN1uYKhUKIRCJSJkPXcjPXjTa9+aCBm9PpRKPRQKFQwPb2Nj788EP8/Oc/x+HhoQBXDZqAE4C5sLCAWq2G3d1dqbPI+1er1QHJKj/X6ZNAmQABAABJREFUjLEJ3sy1fRpzaDJn2k5jUs04OL3xwbHTssZ6vS7P6fr6OhYWFqREA9lPbh4w2Y9mwpiYR48Z20f2TG+KEIxxDfF3Mpgul0vAMIFyOBwW0EhpJdeaZgfZLm7K8G8NtLW0miCWUk+OO8GijgFk2/U7klJJjpXuU7VaFVkmpcAvyl4uAMcyAjYDZ5ttttlm23OMbMbk5CRmZmaQyWSwvr4On8+H8fFx7O7uIhaL4cqVK3jy5AnK5TLOnTuHarWKDz74AIFAAO+99x7S6TR+9KMfIRAIYHZ2Fvl8HpFIBAsLCzg6OkK73cbS0hKy2Sy2trYwPT0NACJ7rFarUveoWCyi0WhgYmICnU4Hu7u7mJ6exszMjCSEqFQq2N3dFSlUOBxGq9USiZiOd9POO50u0xGkaSecf1uxCyYzcpqzTSfV6j76c32+KRfzeDwSI8Yi0y6XC5lMRgBFr3eSzY7sHK9H0KYdRg1iTCaiUqkgnU4jFothbGxMnDyz/fpv3t/pdCKfz+NXv/oVHj16hDfffBNXrlzB/Pw8YrGYxPIxIQYLBGvnlg61ZrzoABP88Trc/Wdm1EajIWNQKBQGGB2ypcCgzI5/WwFrAhUNVnRxbhNgWM0xHV6yiWTZ/H6/yNM0i2v1U68/LZXUjCDXwf7+Pm7cuIGf//znuHv37kD8o74m23Tu3DmMj49LKYdSqSTXIjDQ8knN3plttRoTfqZ/JyDkmOn+mdc1N1T093petByV96HEOBgMotfroVwuC4vYarUkQZKuj0bwQgClNyl0G0zpLyXaXNeUW2pQ2e8/zQzbaDTkeeSY8Rkw3zOaUSYA1ICSQIvtMplDvTFgbkzp5Cj8x00hHevGezHpCZO3OJ1OBAKBASn3120vF4BjEhM7Bs4222yzzbbnWK/Xw7lz5xCNRrG5uYlyuYyFhQXkcjlsbW3h1VdfhcfjwWeffYaJiQmcO3cOa2trePLkCS5cuIDFxUU8evQIt27dwvj4uBTXnp6ehtvtxubmJqLRKBYXF/HkyRNkMhmcOXMGzWYTBwcHEh8XCASQTCaxv78Pn8+HhYUFyXZ26dIlRCIRHB8fY2JiAtVqFfv7+3A6T8oDuFwulMtlzM/PY29vD9lsdoDJ0VkQyc5o5xD4akkTTCmYyayZzr7J5GnTsi1ei+dyVz0QCIjDR2kdd89ZKFhLr+ioEriyf0NDQ/D7/VKkl5/RgdPtYeyhx+PB7OysOJr62NNMO7yHh4f4i7/4Czx8+BDf+MY38Morr2BiYgKxWEwknWQiCGQ0kNNFiOlkagaJjjiz91FSSTaObCQdzWazeWq2T86tNpY/0GOjZYt6HulYc67pxHO+KDljynXtUGuAYII2vZmgHWyOC+e6Xq+jUCjg4OAAv/zlL/HLX/5S6oKZwE1LJ2dmZjAzMyOMpq495vF4UCgUZG2zf1brWW9EmAy4FTOn17zVhogJXNj/055RzqNeI1wTrLvmcDiEUfN6vSgUCohGo3KOx+MRpplgXzPsuh8EtgQw3HDg3HL96LaSUQcgiUd0CQJTvqmTIHHOmBTI5XINgE72l8BKS3RZqFvLTzV7SbUD5ZXsl2Yi+S51uVyykeTxeKQ0BvA0KcuLsJcLwH3x02bgbLPNNttse55duHAB9Xodt27dQiwWw8rKCg4PD9FsNvHOO+9ga2tL5JMA8NFHH8HlcuHNN99Eo9HA+++/j0ajgQsXLuDg4AD9/km9pXQ6LbXdwuEw7t69K2m97969i1AohGg0imKxiKWlJbhcLuzu7mJkZATDw8MoFAoIhUI4f/48dnZ2kM1mpU4dnaZkMol2u41EIoGpqSlsbm4il8sBeFrUmg4SGQcAEqeipVam86gdUC2z47FWu+PAoERSgzLTtPNKp5csBwCJk2HB3lgsBrfbjWq1Co/Hg1QqNQAYCTg0S6CdSNZnY4kAJmnQ9dl4XrfbRalUgtPpxMjICOr1umSis5JSmoCG37daLWxsbGBvbw+3b9/G22+/jfPnz2NsbAzRaBSBQAC9Xk/WBYGPBgt09gniCFx0e9lXU1ZIVoTArt1uy0+dWp3JIqzkmzRdH4zfEWwSTFIayn4wXlGneNdrTY+jZrU0w0SHXksldZwb5ZK3b9/GJ598gp2dnQEZrWkEJsvLy7h06RKAE5kh2TceEw6HUSgUxJEnwDaZHM2Icf7NPmnQazJMPIdja7WWvozh0yCDa56fEcSRgd7c3JT3S7VaHcj4SpDHd4fb7ZaMkAQtLEtAgESmjfJYymXNzRs+f1x/BFYcVx13SDmwjlMLh8MD8bwARN7K+xCockw4XtwM0eCM/ebYsM2dTgfValXabDK/jUYD8XgcoVBINsVeZAZK4GUDcMLA2WabbbbZZtvpxqKs8/PzACBxIoFAADdu3EA4HMalS5ewt7eH9fV1zMzMYGxsDA8fPsTBwQFGR0cxNjaGzc1NzM7OYnJyEjs7O2i32zh//jyy2SwePXokmQUrlQri8Th6vZOMcBcvXsT+/j7S6TQmJibgcDiwsbGBiYkJjIyM4ODgAOFwWNgUZmSbmpoSpm9sbAyrq6sDmROBpw5gpVIR+RvwNNDfBGn6HJp2pvm9ycKZ59B0cgUa2RrzWgQhAKS2kt/vF8eNbE4ikQDwNL29duB0XBuZBkqemBhjd3dXEjAwRkyDHTIIBAicEyYSMQEUzUzkYTp9q6urODg4wL179/D666/jwoULuHLlCvr9Pmq1mrBkdCh1wgwN5MyEHZpR4L15vNfrHWBP9PEmq0VATzbMnFvdN11ny+qnBjiaTdPX1ODETIRj1UcN3KrVKvL5PPb29vDgwQNcv34dGxsbUlzZXLt6PTocDszOzuK73/0uMpmMZJ3NZDKSjZBglM8NwarOQqmvb8VM8nMN4qzaZQI2Uz5pZfpz8xk2N2UIqtj+YrEozxDfJ1oOyf7ymdCp9oET9qzX60l2Sc1g6/ZTikmJYTAYHIhh43rkOqEMkc+rXrNcx7VaTSTgOskJ3xu8FplpvYGj3xF67AjwyAh6vV6ROev4OBYg57spFovB7/dLoiNuTrwI+1IA53A4/l8AfgdAqt/vX/riswSA/whgHsAWgH/S7/fzX3z3fwPwzwB0Afxf+/3+j/9GWm7VVlj/R2SbbbbZZptt2vx+P8bGxpDJZFCv13H58mWkUincu3cPS0tL8Pl8+Pzzz1Gr1bC4uIh2u40HDx7A4/HgG9/4Bg4ODpDJZPDKK68gFArhwYMHiEajOHfuHLa3t1EsFpFMJpFKpSSJRbVaxejoKLxeL27fvi3SnEwmA4/Hg1dffRWtVgvb29uYmZnB3t4eyuWy7GL7/X5UKhWcP38evV4P169fRygUwuzsLB49egTgaVID7ZS53W4J1NeOujbT4eG1TMdSMwtWTAcdNTP+zUyEoB1/4OlOfSQSEdDL7+moJRKJZ5xgOnuayaHTx+QgPp8PyWQSx8fH4vzxfu12G41GQ4ATZZq5XA6RSARTU1OSvY/912ycOV7auOtfLBbx+eefY2trC6lUChMTE9jb24PH40E8HkcwGBTQSUkXGS0NmjiXGpTpnyZAYpsIYEy5HvsAPFvLy2ptmD/N363O0WNjJUXU4FIzbWRFWq0WKpWKSJvv3buH27dvY3t7e0BOZ96LxjURjUZx8eJFKc/Q7XZxfHwsGV4dDgdWVlaQTqdFFqhZLfZJSzE1YDfXO/BUTmhulOhz9fm8x2nAz2rj5HlzwjHkZ0wWwo0csmZsa6/XG2Cq+SwT/BBkWd2X4Mos9wGcgD+9IaTjcXXJDh7TbrcRCASEOc9ms5Lsiffnc8LraPaX7WT//H6/ZL7UteSAk/eS3++XAuLFYlGYuH6/L5srnBMdd0kJ7ouyr8LA/b8B/D8A/Dv12f8E4C/7/f7/6nA4/qcv/v4fHQ7HBQD/FMBFAJMA/ovD4Tjb7/efLyD/azKbgbPNNttss+2rWDAYFGe62Wzi+vXr8Hg8uHLlCkqlEq5fv46ZmRksLS3h8PAQqVQK0WgUZ86cwf7+PtxuN9566y2k02msrq7i4sWLSCQSuHbtGgBIUpJYLCb1pGZmZlCtVvH48WOMj4/D7/fjwYMHaLfbOHPmDD799FPEYjEkEgncvn0b/X4fgUAAkUhE4jWuXLmCvb09PH78GPPz84hEIsL8adM73ZQ7mTv4ptOnGTZ+po+zAnc6DTqNzqyVs06QxB1tOkfMSqhTzPe/kHz2+30Eg0H4/X6RyRF8aaeZO+Z0VDXQmpiYQLlcFjaN8jDgKevGe2sp5dTUFMrlMtLptABCXlP3T0tJzeQgusD19evXZZff6XRiZWUFMzMzSCaTkuSDCT7Iymkwx3nh75wLEwRpSZ8V22PO6fOYny/7Tv9u/tPySA1YNLNmMoNkQkqlEjKZDLa2tvDgwQPcu3cPOzs7IqXT97dqI8F/PB7Hm2++iVgsJlLjcrk8kAxnZGQEFy5cwL//9/9eAC/ZK15Ls1069tOcf3MzQbPF+m8NSPTmgGbwKNcjENd91tfSv+v28VlrtVooFosiR+ZaJmNNQOd0OoXt5xwxXT+ZMkooOTa6GDbXLMsE6MRJWq5JhpoMmF4jBFx8X1CuqOM5KYUmMNNzz0Q/egNHlyDhfBG06mc2Go1iaGgI1WpV3n3MfOlwOAQEUlFgxcp/XfalAK7f7//C4XDMGx//PoBvffH7/wfABwD+xy8+///2+/0mgCcOh2MDwFsAPv5rau9XMpuAs80222yz7XlWrVaxsrKCnZ0d7O/vY3l5GcPDw1hfX0cqlcLly5fhdruRSqWQy+UwOjqKYDCIjY0NjI2NwePx4NatWwiHw7h69SpSqRQ++eQTJJNJOBwOHB4eIhwOo9lsIhKJIBKJ4OjoCJ1OB++99x4ajQbu3LmD+fl5jI6OYmtrCyMjI+j1etja2kIgEIDf78fo6Cj29/cxMzODiYkJrK+vI5vNYmFhAZ1OB1tbWxKDR8eOu9PAya45ASSZqtMkXzQN3KwYFv253uEHnkolNYDQu936J48dHR1FIBAQ2RXjYXTh3uHh4QHplk5Ywj5TukW2gbvrhUIBkUgEMzMzWF9fR6fTQbPZFCedf7P+E8sNFAoF+Hw+mRcmu9DOOftBMwGeltlxtz6fzyOVSiGbzeKzzz7DzMwMzp07h7m5OYyPjyMejwsDobNVakCn4wYJpAn6tBTN/Gcmb3kem6qPM2McTQZGAzUrls/MHKnj9fh7q9VCrVZDJpPB8fEx1tbWcP/+fWxsbKBYLEq9Ln3f09rPMRkZGcE3v/lNRCIRcfRZK47ZBt1uN9577z0Eg0Fks9mBuoNmTKDJSnNcON8me2aOnblOzHVkNYb62bIae/N6JmBm+7m+Of6MAQOeSgy5jjgnzPwIQLJdcl02m03U63WZQwK/er0uY6uLZfM+nPd+vy8gjGs7FAoBgGTn5X2ZaRWAbHAwbo9ATK8rjgWT/eh4T72J4XA45F1D6TJj4MwkRowNpJTU6/W+0Di4v2oM3Fi/3z8EgH6/f+hwOEa/+HwKwCfquL0vPnvGHA7H/wDgfwCA2dnZv2IznrnmyS82gLPNNttss+05lkwmcefOHfR6Pbz55ptwOp24ceMGHA4Hrly5guPjY6RSKSSTSVy6dAm5XA6pVAoLCwuo1+vY3d3FK6+8Ao/Hg7t376JQKCAcDuPo6Ajlchkulwv1eh3nzp3D0NAQjo6OMD4+jomJCYmjY6HwYrEodb6cTieGh4cRjUYxMjKC7e1tXLlyBV6vF5999hmcTifi8Tj29/dRr9cHdq9pdI663S7K5fKAA6nZMu3IWIE47SxbOco6vkTLu8hqmDFampmgk8T203nr909S+nMHvd1uS+KPbDYrDqlm8zSbwdgZzTr0ej2k02lcvHgR2WwWR0dHACBxPmTdtFyKjESn00EkEpHSApRVEfx5vV6pNWeauTvvdDpRqVTwq1/9Cj6fDwAkIcejR48wPDyMhYUFLC0tYXZ2FiMjI1hYWEC32x0Alzo2i2CDjrc53vyd822ycVa/W/1tBZBM0+ya+dP8jOxPq9VCvV4XlnN3dxf37t3D48ePsb+/L5I+s1+n9UWvsZmZGXz3u9/F0NAQMpmM3P/o6AiFQkEA//z8PP7pP/2n+Lf/9t8K08LxNIGpBm36/hr46LHRAMmM+eP3JljjdfhPg2QNxs1nV7ODJrjTDBr/Zj9qtZokI+E9ms2mrCc+F5yzWCyGaDSKnZ0dYUtjsRhCoRDK5TKazabIMSlXJmDkc0ZgHA6HBzYi2C6y8QT1LGbP9c6kRjqjK8eQ61DPoU7uZLKjBIqs68Y4UvaXmyhWbOnLVAfOagvHEk71+/3/DcD/BgDf+MY3/logl2ShtBGcbbbZZpttz7Fbt25hampKkok8ePAA8Xgck5OT2N/fF/CWTCaxs7OD4eFhXLx4Eevr63C5XHj99deRy+Wwvr4uO8DHx8ciKwqFQpifn0cmk0GhUMDFixfhcDjw0Ucfwe/34/XXX8fBwQEqlQrC4TBqtRqi0ajsGg8NDWFvbw8zMzM4ODjA4eGhFHU+OjpCt9tFIpFAs9mULHrAYOwJ/9ZSLeApsCDTRDstxkbLs7Q0y4yHMdkCnSKcUimygB6PB4lEAtFoFH6/H07nSUa64+NjSTbC6zEDXS6XG6gzRaat3+8jHA4L40kJFQEe42EKhQJee+01/OxnPxN5V6PRkPt3u13J0McECgBEXhmPx9Hv9yUBRjgcxvLy8kDdsa8iqer1elJomSxPr9dDKpVCKpXCnTt3MD09jQsXLmBhYQGHh4eoVCrw+XzPxMvpOEEtU9NJRXTMlvlPz7NpVrJJ7SDzH/8meNcgzZR2MiNmo9FAsVhENpvF4eEhdnZ2sLa2hp2dHRlfk1U6rV0mK0dQ9vu///twOBzY29uTa7BuHoFOMBjEv/yX/xKtVguPHj2S46wSYVjJGNlGM3GPfo5MCaU2c6NEP6smk3naJosG6rrNuuA2AQmZa1NCydg4PlP8qeWqAKQsh362A4EAhoaGUKlURJrI2Da/3w+/3y8xbPycIK7VakmiIs4541N1SQOubT7b/X5f2EGdCEXH9jkcDjQajQGpJBl3zglLF/DdpJl9bjRp+SYzcnKNn8Zcfx32VwVwxw6HY+IL9m0CQOqLz/cAzKjjpgEc/Lc08L/GhICz8Zttttlmm23PsStXrmB0dBSff/456vU6FhcX0Wg0cO3aNbhcLslIeXBwgHPnzqHZbOLu3buYn5/HuXPn8Ktf/UpS+W9sbGBoaAjRaBT1eh3j4+NIJpPY3t6G1+vFxYsXcXR0hFQqhfn5eQwPD2NtbU0kSv1+H9FoVKRJhUIBXq8XiUQCq6urGBoaQiwWQ6VSQblcFmllrVYTuZ1ppnwRgNyL39FR08BNO5hWki7TudSmnUctk+RnvV4Pfr8f8Xhcds4pmdTOYqFQEHkUnc5arYbj42OJvdGxNW63G6VSSZgxAmGCBzrXBwcHWFpawqVLl3Dr1i2RVZHJZJsZb0gmhG2hlJNMWqVSwc2bN8VJ1v20Mh2bpD9jPCDvw74Gg0F8+umnuH37tjC8k5OTGB0dRSwWG5BZmtkrCdhOY5E0U3XafJoyS7bXBG3m7xrIkWVj0XGCtqOjI2xubuLg4AD7+/sy5/oaZvu4Hq2YN93f119/HW+99RbK5TLy+bx83mq1UC6XpS6g2+3Gd77zHbzxxhv46U9/ikwmI+DNHEeT4QKestn825xbK8baSnar+2TVRxMMWsWd6rFgOzX44holKCqVSgKuNHPY7/fludAxgACEiWo2m5IkiM9NpVKRaxMEBQIBAVmtVkvWHKWHfE+QHdPvDV0CJRAIyGaLZr10Vl0ye6zRRkk0r6ljSxl/x9i6Xq8ngJbjqzfCyMTruF0Cv7+LdeD+M4D/HsD/+sXPP1Wf/weHw/F/x0kSk2UAn/63NvKr2lMGzjbbbLPNNtuebz/96U+RTCaxsLCAjY0NHB8fY2xsDAsLCzg+Pkav18Prr7+O7e1tZDIZvPfee/D7/fj444/RaDQQCASwvb0Nv98vdZJmZmbQbrdxdHSEiYkJRCIRrK6uot/v47XXXkO73cbt27cFuMTjcXE6XC4XstksEokEarUatra2RGLE4t7xeByxWAyFQgGzs7MDEjMti6LjSQeM8Sk62cnzdo9NBx941iHl31YxPnQm6ZjR0aFkUpcJYNHsRqOBcrkssik6dmTTcrmc9EE7tXQCyaLl83mJp/P7/RJ71mg0cP/+fbz99ttIp9OSXZIgjkCIDhv7qhODuFwumTuyDhwvPR7PA3E0HY9WqVQEuFC2BQAffPABtra2kE6nRR4aj8eljMXw8LAkvgkEAhKbw2QTphTwy5g4K9PggX0wAZ2OMyJLUq1WUS6XkcvlkMvlsL+/j729PRwfH6NcLqNSqQho1YCFQEfHl3GMrdpFoOX1evHaa6/hjTfeEPksvyO7mk6nUalUMDQ0hNHRUfyzf/bP4PP5cOfOnYEi8bp0gG6L1VzzM65BkxHksVYbIub1dIyW1TzwPlbf8/5knHgfnRWWa67X6yEYDAoLxZ8EKRwzgiRdG41jHgqFBNBpqahO+Q9AWG62ib/zOhwDviMYVxcIBJ4Ze70e9FphciPWVuSmgs7oyjEwpak8n21g4XD9PBLosT3cdKrX68/Mw9dlX6WMwP+Ok4Qlww6HYw/A/4wT4PZ/OByOfwZgB8B/BwD9fv++w+H4PwA8ANAB8H/pf00ZKL9oK75ox9d1S9tss8022/4O2s2bNzE7O4t4PI67d++iWq1KTNv6+jqWl5cRDodx8+ZNhMNhvPnmm8hkMrh3755IdkqlksRt9Xo9TE9Po16vo9FoYGVlBW63Gw8ePEAgEMDS0hL29vZQKBTEIRkbGxOnkbva8XgcR0dHaDQaCIVCqNfrAlguXLggdeFYDy4cDg+AMqfTiVgsJgCEDFQ4HIbX60WxWHxGkmUFOqycyNP+1qwETadi5w643+9HMBhEJBKRWmzValUyu+XzeZHPmbE+2WwWhUJBnH3NDDA5hclKMG6MbQSA3d1drKys4Nd//deRTqelKDB3+JnoQANhmk6qwu9cLpfI8jgmJlv5ZaZTtQMngDSXy+Hjjz8ekHCx2HAmk8H6+ro4w6FQCMPDw0gmkwLoQqEQIpGIsHSUXDJuyKzh9jwgZ8omtRxSJ4CpVCoolUrI5XIoFApIpVLIZDLI5XIoFosDsYIaBOpxM9knjvNpjBQBms/nwzvvvIP5+XkUi0UpMUAw0Wg0cHx8jFwuJ/3+5//8n2Nubg7lchnr6+sSV0nwZpYRMNe4la+pgdNpbea19CaBBnj8/nkSZf3satMsoQaFfAY1a0VJdq1WG2AbOWYEdJQNcv7b7TaCwaCsBY4ZE4Ew3o7MN8fQLFavU/LznH6/L4x7vV5HOBxGpVJ5RvZKGSQAYVQdDgeCwSD6/ZPkKJFIRNqo54R1HynNJutNsMexI0Djs6MBG/thZv/9Ou2rZKH8/ilf/dYpx/8vAP6X/5ZG/VVNJJQv4ua22Wabbbb9nbFLly4hn8/j3r17cDqdePPNNyVt+RtvvIHDw0N8/vnneO211+DxePDZZ5+hWCxiYWEB+/v76HQ6GB4eRqvVQjKZRK/Xw+HhIbxeLxYXF7G1tYWjoyPE43GEQiE8fPhQJEgejwfDw8OoVqsIBoPI5XLiaB8cHMDr9WJ0dBTZbBbNZhOjo6M4f/48UqmUxGVQsrS1tSWgUMcecYeYDpLf70c0GoXH45E4FO386VgevcOvQZTpLNKh0o4t7002S7M+TDZAWRXj0ur1OprNpgA0gijej0kFNJNAx0wDEO6O9/t9yYKnd/r5+bVr1/B7v/d7eOONN/Dxxx8PAEaCEsZq6WLivC/bpNkDJkjQGfBOM9OxN02zJHRUtWPP7/r9vtQ1Ozo6kmx+uiB6MBhEKBRCKBSSQsSsecU54rrk9U3mi057q9USdq3RaEjyEQK3fD4vTDGZOBOcmjFbp8Wz8XczdkwzVGQXI5EIrly5gvHxcWmnHlsW7D4+PpbP3nrrLXzrW9+Cw+FAKpWSOooaaPBvky3jT6513S+9BnUf9KaAjj3VDJl5njaToDBlz/r5JDtsjiXHi89Nv98X5YDedNASykAgIJtGXONknlmKo9FooNFoyMYAAElYwrYTCPLdwg0Ayhy9Xq8AJG6GBAIB1Go1VKtVAUrcFKIcXJcq0OsfgIA0JlbhXBBwsq2sOxkMBoW95DonO6mzvjJ+j2zdi7K/7iQmL9REQmkjONtss802255j6+vryOfzOHPmDCYnJ/Ho0SNMTk7i7bffxurqKtrtNq5evYpMJoO9vT243W74fD7cvn0biURC6pKNjY2hWq2iVCphYWEBTqcTH330EdxuN+bn53FwcCBOTy6XE6kbk2Dk83kMDw+jXq+jWCwiHo/D4/Egn8+j2WxKPN2jR48EUMRiMdk1TiQSAJ46gg7HSRpvyvy4ox4KhcSh0ayCyRLpjJIABqRD2swAfg1seP12uw23241YLCYggbEoBANkl1hcmTv6OialUqng8ePHAwlQdLIBxpFxDHRfODbA08QNmUwGn332Gd555x2k02k8fPjwGfaOoEUnVqCTTSBH5kc7hawzZyUBtLLT5HI877RzNXjUDBmdy3K5PCC5o+nslS6XC4lEQrLvEfSabeN1GTdE2SP7acbEWfXRqs9Wn2tAQkCj/7HvBPXj4+N49dVXkUwmBxg+rqNms4l8Po/Dw0NZPz6fD9/97neRTCYBnLwLDg4OnpGZ6kQdpuTUqp/6OyswxmfmeaCc9zZZI3OMTBBsjhljzkyZINm0Wq2GYrEoyUXIoPGZZCKRUCgkyYMikYg8u8y0q+9N+ST7w2cnEAjIpgzvw+eIm0xc53wPRCIR2SRhkiEy74xdAyDPX6vVko2XXq8nwJLPaKVSGXgvcozYJm7UkK2lpJpAkXPKguGcw7+LMXB/O40L1ebgbLPNNttse451Oh2JSXv06BGWl5fhdDrx2WefYWhoCHNzczg6OsL+/j68Xq84LBcvXkS320U8Hke73caTJ08AAOfOnUOj0cDq6ipCoRCmpqaQyWQQDAbF6V1cXES9Xkc8Hken00G5XMb4+DhKpRJ6vR5isZjE6fR6PZw9exbASd0wJiqJRCLI5XIS3N/r9WT3mmbutJOl0KwRYA0sTCmllnHRwdTp6um481wtl+JuucNxEvNGRg6ASLeYmIVxanRyA4EAms2mOGQcI+0Asq39fl922DXToSVTJvC6ffs2lpaW8MYbbyCTyUiMGZ1lOpx0MslmaXZGgziaw+GQ2C5eSyedMBkU/Zlpp8VBnTZ35pxZnUcgRueead5ZeFkDpdOuwd/Nv7+KmaDmeefpxBpkkLghEY/H8c477yAajQo40edRoshEJrqY/cWLF/H6668Li/vw4UMATwt/858GbMBTUKifBZ5nMmFWY2POtz7OBFsmGNSfm1JOEyya51P2y/XNcSXA4f2ZZZGJTSgbjMVi0rZKpQKv1yvMk97IYdt0UhAdB+dyuaRkgZYfko3XjDpjYjnelDTWajVpmx4TxujpWm18J5KZY+063o+ST8abUgmg6+Wxr/o9yPcbr/Gi7KUCcPKqs/GbbbbZZpttz7G33noLt27dQiQSwSuvvILDw0OUSiXMzMwgmUzi7t27ksEul8shHo9LTMXs7CyePHmC+/fvY3Z2FufPn8fq6iqKxSLOnDmDfr+PUqkkMsh+v4/x8XEpFUDZWzweRzqdFmeoXq9LlsZwOIxyuYxOp4NQKCQAj9eoVqtIJBKYnJzET3/602eYCg3EKA8CICDKCkgAgxI107QjqaWW/JwONiV8Xq9XHCDuZjPWrVqtCoijw0TQw/pvvG6r1UI+n4fP55M4GUq8aNphZh90P0xpZrPZxA9/+EP8w3/4D/HOO+/gZz/7GQqFwsCYaCeQzlooFJJdfD0ugUBgANxpEGfOh+ncn8bqnAbydN+eB4D0HFpJ7fr9k+LiBM8cuy+z/1qwZrbhee3Vx3AONHAJhUKYnJzE+fPnJea0Wq3KWtGSzXq9LpJOxjrFYjG88847Mj+lUglra2uyMcE1pVkxc8NCj7uONdPjqkGWOQ8mUDvt2ua5GpDp+5nH8W/NHvIzPgcOh0MYfeApO83nlnXfmJ6f8kky8gQ+Wm6pmViCKgKxQCAgMm8NHLnedGkCJi3iO0Enh9HspVnqgXOnN17I5rfbbWlvLpdDvV5Hv99HIpGQzaZOp4NSqTQAaplxkoCTzDzb97c6icnfJeP6tfGbbbbZZpttz7ObN29ieHgYoVAI9+7dg9/vx7lz51AoFPDxxx/LbqzP58OZM2ck+UcgEMCtW7dwdHSEubk5zM/P4+bNm+j1ehgfH8fh4aGUF8hms0gmkygWi6jX6xLvFg6HEQqFJFEJnU6Px4NYLAan04lsNotwOCzxGcViEa1WC+FwGK1WCwsLC3A4HLhx44Y4I1pmRKfD6XQiHA4jHo+jVquJZIqOk9frlZghkykwzYwD004YpVPcQacTxngVSppKpRLq9brE0LBuG8/TMjxKpeiY6RpjdAZNlsF0IgkItBPG6x8fH+PatWv4+3//76NSqeAXv/iFsFOa6aIjSHkkQTX7THChEzT0+30B4Bq4WYGv54Ga00CQeb4VKKRZyeyed1+re/I6+m8rlskEzjzPKrmHKU/UwFsbYyoTiQRmZmYwNTWFUCiETCYDYHBjgec2Gg2JnyqXyyLnZUxrKpXCyMgIjo6OcPv2bWmPLh9hBYJMgGk1FlYA7bRNEfN4zfScBthMsKivo+dYA09znICnEmPGwFGOyMLdBDBOp1Oy3TIzJBP+8HnSzz8z3jKmzel0otFoiCyTiW/IhOnnw5RDaxaU88Nnmawb3xN81liSQ49Lp9ORdziZPAJMvgPZJ8YP6vebbiNjO8ncvSh7uQAcuKBfcENss80222z7W20TExPI5/M4Pj7G7OwsIpEIHj16hEKhII4Fa27t7u5ibGwM/X4fd+7cgcfjwa//+q+jVqvh9u3bGBkZQSgUQiqVkiLcXq8XyWQSqVQKY2Nj6PV6yOfzSCaTKBQKcLvdwugxK1o0GkWlUoHH40E4HIbDcZJlcHd3V1JjB4NBvPbaa9jZ2cHe3h4mJycFzNAx63Q6kiUuGAxidnZWMlMGg8FnpE7A6WwA8FQaqZOIAE8dTzpcdH51shYmLSmVSpK4gBnn6KDp+nRW9a0Yz6PBm9lWfZxm3fg9z9WJXtrtNu7du4fl5WW8/fbbqNfruH79usjxdBIPABKv12630Ww2EY1GB9g4h+MkPo/p2R0Oh2wEMNbneY68adohPw1UWX1/2u/si54/KxB3GrD8MgZNf38ayNHA5DQAymMICCKRCObn5zE3N4dYLCagX88155MMD8sYFAoFNJtNeL1eiR1dW1uTzZgnT54M1AvTMaK8Npkhtk23ke3XrI0VG6blu2yvCcJMkKZZPn0t89rmHPAZ5fPKeNvh4WFks1lh4Fg7jc8pz6M8kP1mW6PRqGSIBCCbHTwfgDxf3JRhxkiWcdBxhe12W7LwMvkI5ZP8nUCMsWeVSkXq23FcWIYEgLSd7yN+z2y+ZFSj0aiwiIzt1CUUuBnEZ5t95rpwOBySGfNF2csF4ISBsxGcbbbZZpttp9ve3h6azSZee+01AMCDBw/ECahUKjh//jyGhoawtbWFxcVFpNNpHBwcYHZ2FmNjY3j48KEU7W61WkilUhIEPzk5CQA4PDzE2NgYyuUynM6T9P71eh3RaBShUGiA1YtGozg4OMDExIQcU6vVBPQVi0UBlB988AHa7TZGRkZw7949yRBH0xnTHA4HSqWS/G464GSMdAwdj9WmMyOan1FOSYDJnXYmTeGOua6npn8HTmeR+Dl3+jV7SKbLjNPj9bnzzl13/Y/W6XTw4YcfYnZ2FlevXkWz2cT169efGSd9jtPpFAYxFAohHA6L4wdAChxTvpXP51EoFAZ28a0YMqtx55jrOCteQ4+V/nkaQDSPO228rUCXFZgzQbTJvpnXMNthdS3NaLKY/fnz5zE6OoputysSNx3PSSDS6XTEGW80Gkin06jX6xgaGkIymUSr1cLm5iYKhQKGh4dx7do1HBwcyPokiCADp2Pc9MYBwRGZGisgxvN0Ih0T/Fmxe+Zxp5lukxmDStPgttFo4OjoaED2TLDG2oyUEup+ECyxr0NDQ4hEIgOyW84FnzsmS9ESRybIoaqB7xz9vA4NDUkZAG726LXCdxXbX6lUBjZXzKLgBJMaoHm9XpGTc96Z2KVeryMSiWBoaAj1el3eYyx1wvVNoEdZ5ouylwvAffHTZuBss80222x7nlF2uLGxITuplARRSlkul7GwsIBHjx7B7/fj1VdfRavVwq1btzA6OorLly/j/v37wmwBwOLiomTD444368aRXQMgSTPm5+clLmxsbAylUgljY2MSfzc+Po7d3V1cuHABtVoNn376qSTyuH79OqampuD1esXRAiAOLJ0bZs3M5XIDQAPAgPOn/9amPzNleHRCmSiApoEhwSXbxZ1wLZfUQIzX5b35T39mOqu6bRoc6sx0Grzp625ubuLHP/4x/uAP/gDvvvsuyuUy1tbWBNDTeK7uW61WQ6lUQjAYRDQaFWeYkjSv1ysJWNhG3QcCFQAD7KDJymiAZCXX03Oh73OaPQ9EWv00WTOra+j2aqD9PCaR46mBC2XDU1NTWFhYgN/vl7kzWbxer4d6vS6xlGRjcrmcyNzGxsbQ6XRwdHQkNfPu37+PRCIhNfzoyOvyAVZt16yc2RddQNucI1O+yGOsPrf6m+NiJs14XsIa/WyyT/p5ZEZbtpnxXmSmyDbzvrqcB7PJksFiDF273YbP55MES5RjUqbIDSWy8Bx7EzTp+pfMJkpmjvXsyB4GAgHJjsnyGZQ7c7wIpN1utwBMZl4l2AyHw4hEIvLsapBMuSalpMy4aTNwf032lIGzzTbbbLPNttNtZWUFOzs74iBUq1UEAgEkEgns7u6Kg3Lv3j2cPXsWc3NzWF9fRyaTwcWLF5FMJnH//n0AJ6ms6XAeHx8jHo9LrFc0GpU4EL/fj2w2i3K5DJ/Ph/Pnz0uNolAoBIfDgdHRUWxubmJkZAQOhwNHR0dYWVnB8fExtre3sbS0hP39fVSrVbz++uvI5XID4I3OIp1D7hhT2kjTjofphBBYEEzoWlemDEyXDeBuPh091n1i4hHtZJvAkeDIZNnMkgHaGaZEjL+zTRos0dnSEkYep3+/fv06FhYW8Prrr+Pdd99Fu93G+vr6qYBW951JEqrVKkKh0EC2SibZMNlGGnfzCX5brdZA3SsTsJj2PEbOPM6KCXsey2N1TysgZ3X9037nNczfHQ6HrJt4PI7Z2VlMTk4OsKo8jp8RQJPhZE0wSvtCoRBisRj8fj8+/fRTuFwuFItFrK+vY35+XoqwN5tNed41ewZgQNZrxYJabSRo4/fm+FiBvNPGiKbBm/n8aKZPPyc6rlTHmwHA+Pi4sOa8BoFppVKR5Dx8f7lcLlnrvA5BGc9jtly+KwiUKA/n2ibLSbk1Gb5KpYJ+vy+JU1hAXNe05AYW3xmBQECYfpZoIbun34FMqMRkJQRhqVRKit4TRFIuzfuyjRxLv9//TI3Dr9teLgCHwZ0L22yzzTbbbLMyFsxmPbWJiQk4HA5hwiqVCrrdLr75zW+i0+ng008/RSAQwJtvvolGo4GbN29KceyxsTE4nU6k02lEIhHs7u5K2v5CoYBwOIx2u42HDx+i3+9jdHQUCwsL2NvbQzQaFfAzNDSEvb09LC4u4ujoCIFAAK+++ioePXqEvb09hMNh3L9/H+FwGIuLi3j8+PGAlOk05/nChQuIRqPIZDLi8OnU9jQN2ugk0wECnq1TZcb9aEeJMSKURhWLRZTLZflMt9FMsa8ddrNuFI/TbBt/J0NDNkA7fjyOjqXuJ7Pd/fEf/zEikQiWlpbwne98B/V6HXt7e88wkOwzHUoAIr9jhlGWHSDDY57PfjI7ItkMZgCkk2zKK01AdxqLpu9lJfN7nj0PKFp9biX7O+1+mqGj0VGPRCKIRCKYnJwUJoTrh+uN81yr1ZBKpZDNZlEqlYRZIusWj8cRj8exsLCAP/3TP0UsFsPZs2eRSqVQLpeRyWTg8XiQy+WEfdKsmPkMaBZLyxC5pghgnieLtJob8xkzWbkvA9ya5dQbLWSfyaZp9o7tbbfbEsNJiaGWLpIh07XPuHFByWGlUpFNCF1eg0lKvF6vgJ9CoSDZJtlvLV/lvcmMRaNRAdD6uSbY5v2YLKXX66FcLstYc+OGm1ccE6oAOOdMgEJVBseU5zPZEnDynDORC6/1ouylAnDUUNr4zTbbbLPNtudZIBAQNmhubg6FQkEKyDK73VtvvYW9vT1sbGxgeXkZCwsL2NzcRLFYRCQSQafTweLiIrLZLDweD0ZHR3FwcIBkMik1j8bGxtBoNLC/v49er4fp6Wn4fD5sb28jHo9LMXFKvmZmZvDgwQOcO3cOHo8HN2/elFiP4+NjLC0tweVy4eHDh+j1ehgbG8Pm5uZAjBgzP9K5oCyTn2szGTW9y6yllsBT0GfKLemA0hnSwK7X60m8GAGeVXIROp0aFNFJ1g6ZafxcX4tAzpQkaueMDjPHrdvtolgs4v/8P/9P/It/8S8wMjKCb33rW/jJT36CVCp1auIPtsnj8WBkZAT9/kkJiUajgXw+L8kPdEIIzeIw4QNLKui6V7qd5u9WAMlKgmp17pd9bgUSrKR9VkwU+/Y84MZrEVwQ7IZCIYyOjkpxep00hwCpXq8jnU7j6OgIuVxOZHYABLA4HCfJf+bn5/Hzn/9cntdCoSCSO7LF6XRaAISZtdEEo7wH2677qsfIHBNzzelny4qR0xsUX8aSatPPIJ8jvSb8fj8qlYq8IzKZDObm5gYy1jLRiE4mQpbZ7XaLHJLAinPDJCYa1HBcnU4nSqXSAHvGexBY8r4cR8qtKS9m4hUCeMbXUoKpgRjHnHXcmG2SklAyaFq5wPpyzWZTGEkWNiewBCDvdQLDUCj0lebmb8JeKgD31Za4bbbZZptt//9uLNAdj8exv7+PkZERYeOmpqYwOTmJhw8fIpvN4uzZs4hEIrh27ZrUgwOAs2fPYnNzE+Pj46jX69jf35fC3N1uF8vLy9jf38eTJ0/gcrlw9uxZcVSmpqbgdDoxPT2N+/fvY3x8HABw69YtXLp0CQcHBwIMmUVvaWkJuVwOmUxGdo/z+fxAv/r9vqTsJlgLBoOyi66TawCDcklgUIIIQJxazXSZskLtlFMySUe3Xq8LOKGjq5OeWMk3tSPL/nPH2+ocXaRZx77RwdSgUfeF19KAcm9vD3/4h3+I73//+5ifn8dv//Zv4y/+4i9wfHw80F9tzLCXTCYl+QwdWc3okKWo1WrPSCrprOvixvyO80BGSn+u5/00cKXvoY83+6Pbof8222IFzszvrMAPjQxOLBYT5jIYDEpZD86ZZrgI3FKpFDKZzABI4BhzrczMzOD8+fP4+c9/jnQ6DQDIZDI4Pj6G3++XOKlwOIxSqTRQpoL31e3WzLPJ/NJM1kwDKT1OGiSaTLTJplrNBe9lJe3VKfB5Tr9/UuRex1oSQFGuOzU1JUAlFAohn88jn88jFosJMCN44zNFhi0Sicg7hwWvNZglw0x2mc8E3016A0cDfMbT8W8tb2VfzXsRgPJaXq8XgUBA4u8I3hin2uv15LoEaWT7GdtHYMc2cIOo1+uJ0uBF2csF4OQl84IbYpttttlm299qu3DhAqrVKo6OjpBIJCRLIJMm3Lt3D5VKBZcuXUK73cbR0RHeeustpNNpcRK5g53P55HJZDA1NYVCoQCn04nR0VGsra3h8PAQbrcbw8PDEiPFbG+VSgUPHz7EysoKtre3Ua/XMTs7ixs3bmBkZAQTExPY3t5GNBrF+Pg4jo6OkM/nEY/HUalUpK5bOBxGsViUvmmnkcH+Pp9vIF246aCav5uOJvCUETMBHoEQmSSCQmYHZHp34GlsDJ1LHqcZKX1dLdm0aqvJrmlWRLMljLvT52ipprbHjx/jP/7H/4jvf//7mJ2dxbe//W387Gc/w+HhoYyDNgKv4+NjkVyVy2VJkOByuRAOh5FMJnF0dPQMS0mAqq+nf3I83G43arXagNNqslpW4OrL7Hksnwkw9N8mKDSlkWYbCGB8Ph9CoZAURQ+FQohGo8/U0aOEjRlgM5mMyOg4Jho4RSIRDA8PIx6P46OPPkI+nx8o/M511Ol0UC6XAUDi31izULdXjzM3HszYMzr7ZKn4md4I0aCE8ktzbqwYNyv27bRND7aRLDcZInNu+UzpTQ/GaDIZEgEWQY0udM04VgCSUKRarcqzT+DF8wmASqWStIUyRI4Jr8u55zuE7w3N1BLM81qUwevyEe12W9YUGT6+C8jgkQ0k4OWmQa1Wkw0YkyUlI8y2sAzCi7KXC8B98dMuI2CbbbbZZtvzrFgsIp1OIxwO4+DgAPF4HIuLi2i1WlhdXUU0GsXZs2eRyWQQCoXw7rvv4vj4GDMzM8LuTExMYGtrS4pz7+7uIplMwufzYW1tTdg8xn34fD40Gg0MDQ1hbW0NY2NjWF5exqNHjzAxMYF+v4+HDx9ifn4evV4P6+vruHLlCpxOJx4+fChxKsfHx6jVaggGg4jFYgiFQhLLo5koptYuFAoIBALyz+fziWNlAhmCNGDQmT8tS6UGVjphiY4/04BE30sDTdNZpcOtASH7pU0DMt0+fS2yABq48VgT+LEtq6ur+Hf/7t/h93//97GwsAC3242f/OQnODw8fAZA8VrMfAc8rU1FpiIWi6FWqw1kthweHobb7Zb07pqV1DI6AM8kjzDNyvE3wZUVWLUae3PerUAcv9PHm2CDf5NlI4tDuWQymcTIyMgAA0Ow1Ww2cXx8jGw2i1QqJeyJ7huZH45bs9lEpVLB+vr6QK0wDXIZk9XpdLCzswMAkkjD6/UObDboc005MQEd+6mlnFZsKIGIjmvUPzWLZGVWoM4EimZ8Ku+l2082iffWzwul2txkYp8ogaxUKgJ+yGJRkglAJMBMDsMxKJfLEqvLsWZfhoaGJItkvV5Hp9NBKBSSTRC/3y+gTksoCbY5B5VKRdg9sqgEYp1OR2JM+YxyPtgu/Z7ixpNmzwFINsxgMCjyyhdpLxeAs2PgbLPNNtts+wpWrVbhdDpRKBRw4cIFzM/P4/Hjx0ilUlhaWsLMzAy2trZw5swZJJNJZDIZzMzMoNfroVQqodlsYm9vD41GA6FQCNVqFfPz8/B4PFhdXUWz2cTi4iIODg4QCoVE3sN6b2fOnEGvd5LCnmzekydPEIvFhGl44403UKlUJF4OALa2tuByuRCPxxEMBnFwcCD15Gjc2aaDtr+/L6m9g8GgyJdMB46mQQLBk/5bx82RUaCTyl17najAZMZ4b95LgwPteAKQQr9MtGCabqsGQDr+TbMNdIA1G6fbQ+v3+1hfX8d/+A//Ae+99x4uXLiA9957D5988gm2trakb/qadPzMTJucNyZSYLzVK6+8gt3dXQHaBC8cR32+HjvTNBgw59Lqb9OsjtfXsgIcVsfxp45vYuY//s4NBP5jwWfghC0ulUpIp9PI5XIoFovPbAJwzjVop6NNx5+gmeyzlrqxZuLo6KjI5Vwul2QVNBleE+iYRnBx2lhpEMXj2WZz7K0YN6v7kbU228Rx4XqiVFpniuXGTqfTkfXodDoHwA9jzMLhMFwul0gJOeZ6Trhh43a74fP5BpJ+kLVjghGdrKTRaCAQCMiGB+uq8dl1u90Ih8MD9ed4Hk0nZuF5fr9fQCIzXjIbLoCBhDh8Z/EalItSXkqWUMsyg8GgbACwDS/KXk4A92KbYZttttlm298B83q9uHr1KpxOJ+7du4dAIIBvf/vbqFarSKVSWFlZkbTUZ86ckZ3kXC4Hl8uFRCKBQCCAdDqNWCw2UCJgfHwc29vbAu7oNKVSKSwsLKBQKIjU5/PPP0e73UYikUCtVsPk5CTGx8fx8OFDtFotLCwsoFgsYmdnB16vV4oa7+/vIxgMYnx8HLlcDsAgI0RnL5vNwu12S7IIOh3aWdTAzARF5rG8vjY6Xdwp93q9zxTN1oDJBHf6ey2JrNVqkvFOMzXatFMJQOJ5TKZNs1smONJt1MDg8PAQf/Znf4b79+/jm9/8Jr797W/jxo0bAtLN8SZ445ixvRpYEOCUy2UcHh6i2+1ieHgYPp8Ph4eHAio0K6fbyWvSUT8NFGhwrcGF+U+3VZu5PkzTzA4ZNq/XK/GWzE7IeEwdl6nrBlarVRQKBYlv0xI5K3bUHAeHwyFrj6wRHXqzthvXZavVQjablayfZGSsWF5zrbHfek3p2E2224q904BfbyacxrxZmRn3pWP0+BnBFf/WEmbem5JEyiJ7vZ6wYQ6HQwCeZuIYN0a2ndfiO47/CN76/b7MgR4fnRGzXq+jXC6j2+0KiOK7i0C00WgM1GDT8mj2k3Jygne+B3g9KiC4/syfvE+320U4HB6Qc5J55FgyOdF/zbz9ddvLBeDsMgK22WabbbZ9BRseHsbi4iIODw9RqVRw5swZXLhwAel0Gn6/H2fOnJGaQd1uF+l0Gh6PB8ViEdFoFI1GA5lMBuvr6xgdHUU+n0ej0YDL5UIgEMC1a9eQSCSkFlU2m4XTeVJXaW1tDcPDw+h0Orh165Y4s0dHR3jllVcEULpcLqn7trW1hXA4jIWFBfR6PWxtbSEej+PChQu4e/fuACNmxnYx3oeFpVlzzgq4mCCOO/RWppOR0GlyOp0ybvp6AGR3XxfT5j10QgKdVZKyM30e5VM0DUasQI++jxVwsTLNcrCwd6FQwOXLl3Hp0iUEg0HcvHlTwAbHjP3WTKIJOtnGH/3oR5Li3efzYXh4GNvb23J/LXE9bfzD4fAAC2DKUDVg0J+TebBy7M3rWEkJnU6nxCYxlogAjaCIoI6OL38SfLZaLWQyGezt7aFQKAzEt3Eudfs1ADWlkQTJZKAI6plxUq8FzXIyvovSP73hYK4xPR56jEzWjceYbKU5j1ZMptX9TPmkmXTIBEca4JmZKPX8kTFmYhcdG9br9VAoFOSefr9/oH2UCBPodbtdKSkQi8VQLBbRbDYRCASekW9yTfB3rkOOv5Z5UlpJqaOOzS0Wi3L/ZDIp7eBYkInT5Qb6/ZNadQSDum4dN1mSySQAiOSZYJLgj5lMTUbw67aXC8DZDJxtttlmm21fwebm5rC6uop4PI633noLTqcT6+vrOHv2LIaHh8U5KBaLaDQamJqaQi6Xw+TkJPb29pBOp/HZZ5/B7XYjm81idnYWMzMzqFarePz4MUZHRzE5OYlgMIjDw0NxPBuNBuLxuCSzGB8fRyaTQSAQwGuvvYbj42OpIzc+Po6bN28im81iZmYGCwsLaLfbyOfzSCQSCAaDuH37Nu7evSvpuYGnwfaa/cnn85LIRDtjOrbNlIuZ8kITjJiZKfk5s7nxeB0fpB1QDRr13xpU6J16DZLoZOp2WrFuJuvHa5nySSv2SUtDa7Ua0uk0PvzwQ+zs7OD111/HN7/5Tdy8eVPiDwEMlAHQIFYDD2bjIxPUarVw584dcZ41w2bGHurx1pkDyZrolPDa2A9zngmMTbbUBGr8p5kRxhXxd6aM1zGL7IceS9YX29/fRzqdFifYih20khjyfswGyH7rDQD+TkZGt51ZXMkccRxPA/PcSDDXHb/T/TPXkH5+NADT42wF0K36rdlensv+cry1dNlc11pWzBixQCCAWq0Gt9sttffIOHFDitkXGY/GpCCUN2tpZbPZlEQgXOscayZK4dqjjJLgkX3SjJ5m3Tl/fKdx7DmGXq8XhUIBABAKhYRRazQaA0CR8W0EeGx3t9tFMpkUVo+fjYyMoN1uS9wwN5AYh/yi7KUCcDSbgLPNNttss+15dv/+fYyNjeHVV19FtVqVRCb9fh9ra2t4+PAhxsfH4ff7xRlpNpvY2dlBLpcTOWOj0cDi4iIajQZWV1fh9XoxMjKCyclJKTYci8XQaDQkpiSXy2FkZAQejweZTAaLi4sYHR3F+vo6isUiRkZGUCgU8LOf/UxqzQUCAXz22WdwOBxYXl6G3+/HjRs3ZAedsk7t6GhQVa1WEY/Hn8nOpkGPdgj5tzbtUOtz9PcEFnSYgafMm5bFUeKm/wYGU/zTyJicxgRagTTdHv5ufqY/N/82GRCdcW57exvZbBYrKytYXl7G6uqqAE06uxxHnXzE4ThJZkIgr0EOGQCCXbKbBIR0ZDX70++f1JxjnA+dYzJjXA86nb2eFw0O6YBr4KDP1wya+TvZK82GcQ45Lq1WC5VKBfV6HaVSaQA4aVBpMl0avOi26PWtQYleYy6XC7FYTFgaMnFsgwanBD86db25Lvh88Fh9jH7W9Dl648IEdCYr91XAnL6uGa9HVo3feTyeZ+SZ5gYKr8GxIdPEhCS8JpkoSlV1Gn/dT51spt8/kWcy8y3XMiWQBN4EUwBkI4FzwXVLlrRUKg0kD6E0vNvtioycsZUEieyDGfvGsh7sA9vAeD9K3MkWc97Y92Qy+Vy57d+0vVQA7ukitxGcbbbZZpttp9vs7CzC4TB+9KMfodfr4ZVXXoHX68X9+/dRq9Xw+PFjjI2N4eDgALu7u3A6nahUKrKrXK1Wkc/n4fF48Pnnn2N+fh7vvvsu9vb2AADHx8dwOp2IRqOoVquYnp5Gu91GLpdDPB6Hw3GSPn55eRlutxtbW1sAgHPnzkl83MLCAiKRCHK5HPb29jA6Oorx8XEcHh7i8PAQkUgE5XJZSgjQOWG8RygUkmsVCgWMjIwgEAggHo8PxMVoh+55MR2mrM6KueJ3uigvHTwz05sGDaZkzsqR1Q6nTvNtMmmaGdSAzGTD+Dn7Zh5r9l07jqVSCbdu3UIkEpFkB/pcn8+HXq8nmfuazSb+4A/+AIFAAD/84Q8HwADjhXSWSc0IkfXRjIMeE13kWMf0aODDeTF/cq7ILJAtobPNnxxzzitrixEo8HuuqVqtJhn/ms2mMCxkfOicmyDHBKh6TVF6x1gmtkWvG65Lt9uN6elpRKNRRKNR+P1+cfT7/T52d3elmHO9XpfkFhw/gjS9dtku/U/Huum1chqbd9p3XLdWII/9N8GSnks+G5xLyg/NZDo6uQnHm2CfSV/6/b4UyuZ7yuFwoFarCRhm7T7OLe+jJbJ6k4eslZZPa8BJgMjjNTBiEhqy1mRsmc203z+Jo2MSE0o5uWYIGHkvxvYRpDkcDgQCAdTrdZGGOp1OJBIJ+Hw+GXO/3z8g8xwaGhoo3/J128sF4L74aTNwttlmm222Pc9arRbW1tbkP+1bt24hHA6j0Wig3W6jWq3iyZMnIj88Pj6WTI65XA6lUgkOhwP1eh2XLl3CuXPnsL29jVqthnq9jrGxMdn1vXz5Mh4/fiw13CjpOXPmDKrVKh49eoRIJAKPx4OdnR20222J6chkMqhUKpibm8Py8jLu37+PTCaD4eFhpFIp1Ot1+P1+5PP5AUc7n8+Ls1EoFLC7u4uVlRXJLufz+dBsNgfi5czYN+1Em5IuDXI0GAGepo1vtVqSKIE72NrZtnJY6VhpNpBtpEPK9pixblYA8LTv/2tM910X+uVYkynT96MTSEd4aGgI6+vrUohdx/Fxh1+zIwAEKOnsmhyH0+aIY2fl7Fudo0G//kcHWF9PgwUCaP29lSyW57AWYjQaxfr6urTX3DDQAEcDSp0gpdc7yQTL/vAfz/P5fJiYmEAikZAab5TO+Xw+ee6cTqfIAK0Y3tNAmV6/BBtWMkpeV39nJY20Yt5M0H2amUy4BrBM/EOmie3l2iQLRUaY0udAIDBQoJvrm5kqyfiy3WTcOSYAJHU/i4ebbB2BJu+nz+HGgS5qzzXlcrkQiUQGngkdQ9dqtQZAG5lXDTD5j2AyGAzKedyQCAQC8g7jM+7z+eRnuVxGuVy23Gj6uuzlAnB2DJxtttlmm21fwdrttkgbWdj38PAQyWQSDsdJFsWDgwOUy2Xk83mJV9rf3xfHIhaL4cKFC0gkEtjZ2cHMzAyKxaI4N/3+ScD89evX4fV6EY1GUSqVMDk5iVAohOPjYxQKBcTjcZTLZXHsR0dH0Wg0pBDx2bNnEYlEcO3aNdTrdYTDYezs7CAUCmFiYkLiPgiI6Piyne12G5ubm+h0OvD5fIjFYohGo8+UH/D7/eKwaYfTZNI0+wA8m/6czpXP54Pf7x9gbOh00Ykje2Q6QiYAA4BwOAwA0kY6xlbAwfzseaDtecwbMBgPRzDK9rBmltl+OrRapre3t4dOp4NwODyQSEOzD6YUkPfT0lWOnQaqpnwRGJQgnibb04yfyTJZAQ49PlZjpY9hNkICzkKhIIkxzDg9/s0iz9PT0zh//jwajYawzEwkxDIOem7ZXtZGBCCMER151i5zu904f/48hoaG8Omnn0rtMS3z1eybCcT0GJpjaQJmnUBDs3t6bDWDajLDelyft6FiyqB17CjBOGPX9GaDy+VCvV6XunnMAsnNKb5PCOKq1aqAQ51Jl4CIQE8ns2EcGsEU1y+fDbadoI2gjww9EwW1Wq2B7xibShaZ7WbyGt6fTLCWdBPIsu18X/Z6PUQiEUQiEZFS8hyCPM0e22UE/prsaRbKF9wQ22yzzTbb/lYb//O/evUqjo+Psb29PeAQ8Gcmk0GpVJL/qOlMT05OYmVlRVL0j4+PY3NzE4lEAsvLy3jy5AnS6TTu3LmDkZERhMNh1Ot1nDlzBk6nU9gz4ERu2e/3EQ6HkUwmUSgUJGB+enoanU4HH3/8sQCGx48fIxqNIh6Pw+/3o1AoDIAUh+OkdhHBBXBSh4w1sZgd05TXMdMbzWQBtNNoxpHpa2kmhEH+bBNZP8aRmDF02rRkEoBIVnmcTspgSiN5PQ1CrZxi3d7ngTwTsFJCxvgeqzGxAhg6UQllk3S4yQhoh5z31m3VANtqDtgeHneanM8cI3NcnneOeX+z/5Scsa/sE/uoMz8yuU40GkUoFEIoFMLIyAi63S6+/e1vIxqN4g//8A8RDAaxurp6KusRDAbhcrlQLpfl+gTb+hyCsXK5LPUfdTZBnQiE/TQBtiljNAEvwZwG43rs9N9WLJt5ntXn5rU0wNTsKMEj1x/BE+WSDsdJfbNarYZms4lwOCwbLtVqFX6/X+5DtopgjMCf99Rrjwynlk2abe/3T+SPfA70etHSR2YMBZ4mCmKiE4I7ricm1GGWyH6/L6VI9PhREsm26WQ92gKBgKxd/r/A9xDb9CLs5QJwwsDZCM4222yzzbbTzePxYHx8HA8ePMD4+DjefvttPHnyBHfu3EGlUpE4imaziWq1ikQiIRkc5+bmMDk5if39fak9tLu7i0uXLsHv9+PTTz8dkNrRuVleXkY+n8fh4aHsUDPI3+v1IhgMIpvNolKpYHh4GIFAAMfHx6hUKjh//jx2dnawvb2NcDgMv9+PVquF9fV1HB4eCiDS0qNmsynAc2dnB/V6XWSgyWRyIKDfBGeavaFpp8uUipkMz8jICGq1msSIkOXUMUv6/trJt2IyAMgOvJau8b5WLBzbrNtrxXCc1hf9t2ZImCqdCQ400DXHxuwPnWgdr6Sz3nF334qVpCNK4GfK9vT80JHWbdHOq9X4fhXgZo6RFWgeGhpCOBxGMBhEJBIRWVo8HpeEQQCQSCSQSCTgdrslc2E2m0WhUMDW1hYmJiZw9+5d3L17F9///vexvLyMf/2v/7UU+OZcs5wCWRVKoFutFqanp2W99Ho9iXEi+NBsNJ1/vRZNOSrZIz3eAAZAkgbRJpDT35/GttG+yhzp62kmypybcDiMQqEgY8FNAwKjdrstSZbK5TKCwaAwsqVSCV6vVwAdC3C7XC6JQdPPndfrRaVSkQ0hvpd0GRDKMHW9Q5bToCyT8ZOUX/OZ53OhQSnwlPn3eDzCHjocDknw02q1JOOmLhFDxpAxb0ziQsWCTm7C+wKQrJwvyl4uAPfFT5uBs80222yz7XnWbDbRaDRw5coVBINBZDIZAU/cbc3n81KY2+12IxgMYmlpSWrAMQvlwcEBLly4gKOjI6RSKbz22mtoNBp4/PgxWq0WgsEgFhcX8eDBAxSLRSSTSXHYvV4vIpGIxKq5XC7Mzc2J7NHr9SIejwujNzw8DK/Xi1wuh4ODA/R6PcRiMWQyGbTb7QF5VLValUQDzWYTd+/exdWrV+Hz+ZBIJCQGxTQzRb8V26LBl47hoRPF3XHugNMZ5K666fTRTNDIz4ATh1Ynz7C6hslemWbGMfGzLwMvml0Mh8OIxWIDcUBWx/OamrExgYGWPtIB12UYNGuhM+ZZASc9fhrEndbn0/r5ZcdYgWE9PpFIRBjimZkZtFot/Nqv/RqWlpZQr9extbWFXC4nzni5XMb+/j56vZ5sTjAJyqeffopKpYJkMomlpSX8o3/0j7C9vT2QJIiyP0rg9M92u43R0VGMjIwIG6ezopZKJSQSCQE3VpI4DcLI8uhND4JIc4w0uOBnVlJZE+CbQNuc69PM3ITR1+VzyPYPDw9L+QtmauT683g8EmM4NDSEer2Oer0uGyi9Xk9KSPAdVqlU0Gq1pD6afib5k+CYm1vdbhflchlO50l9TL/fD4/HI2UmgKexpIyrZZZKn8+HdrstbBvwtM4b70kpOQB5bzAhSrPZHJB7Up5N4EgmztxM4vhx88asj/d12ssF4MjA2QDONttss82251g0GkWr1UIul8Pdu3dx48YNlMtlqS/FJCUTExPyH/X8/LzErJVKJYmVKBaL2NjYQCQSwTe+8Q2sra1hZ2cH3W4Xk5OTmJmZwb1799Dr9TAxMTEQW0KARQcrGo2iUCig2WxiZGQEjUYD6+vr6Ha7WFpagsfjwd27d6WGk8vlwt7eHjKZjMT+EByQpaHj89FHH+Gtt96C3+/H+Pj4QFIQfZ4px9Q/aTrmxgQwnU5HyhowQYHegdfn0/knwLMCYAQu7BOP07I8fZ4JfE4DO9q+DMTRgWfB7WAwKA6p7o8JgPQOPR19E7Sa9+BYMyU7ywPQudT31EWcTwNxJoB7Xl9PY3g0SDuNiQNO5GbRaFRil/L5PGKxGC5evIhLly5Jxk49f8z6urq6iqOjI6ytrSGTySCTycj5jC197bXXcPnyZfh8PoyPj6NYLGJ3dxeNRgMOhwOhUAh+vx/VahW93kmyk0ajgUKhIBkpCar4+dTUlDz3jUZDNkF0TT49J+y7OXd6fNhHDQA0oNYMq5UE0xx3K5mvuUmggb2WMTOJB/BUVksmN5vNCltKcNVoNOD3+9FutyUdf61WG0gIMzQ0hFAoNJCynxs1Zmp9to2xiA7H0wLefKYI4CqVirBulCvye7L3BFa6fAWfES2Z5PNJqToBHO/rdDolIQqZOV6bbTZLs5Bd5hifVvj967CXCsCRg7MllLbZZptttj3P2u029vb28ODBA6TTabhcLkxOTiKdTqNarWJ2dlaSiZAhczqdmJ+fx/HxsUipms0motEoDg8PUSqV8OGHH6JQKGB4eBgXL16E3+/HnTt3xPHPZDLo9/vw+/3PJE5gAXGyctlsFnt7exgaGsLZs2eRy+Xw8OFDdDodzMzMoNvtYnd3V9pGGaWOs9K75gcHB6hUKhKz5/P5UK1Wxbmik6KBBmDtsGsHlaadeQIrZpbjTrpONa+PtWLegKdMBX8HnjrCpoTSZKZOYy7MY74KoOn3TxIWxONxyRhKFoFrQTvsVn3RiU1OaxOPobOaSCTw5ptvYnV1FZubm8/E+j2vr6azfxoA+6pMm2kmCCdrEYlEJHNroVDA6Ogo7t69i1gshrGxMXH8OX5HR0d48uQJ7t27h8ePH+Pg4AClUkmS8/R6PVy/fh3nz5/HL3/5SzSbTczNzWFiYgIOh0Nq4TG5TSAQQCwWExDX6XRQLBblmoxfomS1Uqng7NmzODo6EobYzKqo46LIQHEMTxsjKwBmPlv6GubnX2Ym4NPzRVDIBCmUERLgPH78GJ1OR5KCFAoFYbPIwjG7rdPpRCgUklp+fr9f3lPxeBwHBwcDrCbfJ/r9QFlkt/u0mDcBHdm8brcr80GWjewcSxyQEYzFYiJx5/uF71WWmAAgsW/MttlsNhEKhaTOnR7HRqMhMbtM6tLr9RCNRiXuLhqNCsNL8Pqi7KUCcDYDZ5ttttlm21exGzduIJ/PIxKJYGJiAsViEXt7e0gkEnj11VdFGjg8PIxarYaZmRnU63Xs7e2h1WrB5/MhEokglUphZ2cHZ8+eRalUwuHhIaanp/HOO+9gY2MD165dw+TkpCRgcLvdGBsbQywWQzqdlt1jr9eLfD4vgCWfz6NYLCIajWJ0dBQHBwfY39+XLJWdTgepVEp2pGOxmDhIzLJG0AFAsrGtra3h/PnziMViSCaTyGazzyRs0BksAWtGy4xDMUGYZljoDJlZJ02AaErJeL7pJOk4Oqu4N9OeB3KsGEarY+i8xeNxxGIxTE1NSXyiZlRMxo1jopMlAM+mh9fgmcfHYjF85zvfgd/vx82bN5/Z7TcZHqu2sw2cX6tjTTDLPpus5Wlghd8xzfqTJ09ERsc4qx/84AfY3NzE0tISZmdnhS1eW1vD9evX8fjxY4mX5CYKcJLpNZFIYG9vD//m3/wb1Ot1kZmm02ksLS3h3XffxfXr17G5uTkggSMIIUPE5ERkdjguTKJx4cIFfP755+LYm3Oqpa/mM2OOkZ5TrnteU9dfPG3eTOmk/luvFW6KABgoL2Eyf91uVzZvyLQxDoz94ZwFg0GR8LLsSalUkrXONqVSKXg8HszMzCCXyyGdTguQ0u3mT/1e0gCKDJ8GsMxgqzdpgsGg9AHAgOSV7z2+KzjuqVQKTqdTygiwDqGWiXPddrtdKS/BunA8rlqtSqwgQS7fay/KXi4A96IbYJttttlm298Jq9VqWF5ell3mUCiE119/XXaah4eHRaZDho07u6FQCLOzs1hfX0e5XMbc3Bz29vbQaDRw6dIlzM7O4qOPPkI2m8WVK1dQrVaxvb0Nj8eDK1euIJ/PY2trCy6XCyMjIyiXyyiVShgdHYXL5RL55fT0NEKhENbX15HP5zE7O4toNIpUKoVUKiUORCgUkppPZLxY06hSqUiMUKVSwZMnT7CysiK1stbX1wckQtwZN80qKx6TtHBnnw4gC/+aUir+/byYMX0P7TBrM9ungeBp4EI7lBpYncYumeb3+yV7Jx1gM9ZMt1WPJ/tuxqTpv02QGQ6HcebMGRweHuLhw4fY2dkZONc0c4xMNuY0kKaPtRovs11W3wEnTnA0GpXYNQ0yWq0WDg4OkM1mcf36dXm2KJPz+XwoFotwOBzY29sTWWMikcDU1BQajQaKxaKAFTLLqVQKvV4Pc3Nz+MY3voFEIoH79+8Lg8N1wmQxGtjoRDFOpxO3b9/Gb/zGb+DNN9/ErVu3AAym/tfzddq4mMeZckga78+28HuTmdbyV735QWZQryPe06rmnDlnZBn9fr+AFMoD+/3+QNIS/qSMkUDI4TgpM5BOp1GpVABA5r3X60lpDSaGqVQqwryRhWMJDeBpGQsyb5QplstlAJBEN4w5I0AjC8f+sc3hcBilUkmY/16vJ2VjCPKZSZPvec4B1wvvxTFqNBqSZKVarcq4vSh7uQCcPCwvuCG22Wabbbb9rbZz586h3W4jlUpJPA1Zp7m5ORQKBYlPS6fTiEajACD13B48eCByumKxiGAwiMuXL6PRaODGjRsYHh4WZ3B/fx+xWAyXLl3CgwcPJNg/Ho/j+PgYADA5OYlisYjj42ORmlUqFdy9exftdhtnzpyBw+HA/v4+jo6O4Pf7JS6ETgrT9DPOw+v1imQIOAGtm5ubaDQaCAQCWF5exkcffXRqunmTdbGKTfP7/QgGgxJj43a7pVSAaZpVAwYBj/lTs3Lm+bo9dGytmAr9t/k77TQQpz+ndDIajUqs1P7+/oDDTedXt53p2umIa2CrwZ/JPJJlzeVyWF9fFwf5tPY+D4RqqavpbJ7GHD3v+lbMCtnJkZER5PN5VCoV6QfwtPA35Y6MNa1UKvB4PJicnITP58Pdu3fhdrtx9epVxGIxVCoViaX0er1IJpNwu9148uQJhoaGJJlPuVyWZ2F4eFiS55CR1nX09Jho8O1yufDRRx/hO9/5Di5fvowHDx4AeFpyQDPO7BOZUhMw6XhIK4aObJSV6WPM+MbTwDswGEfHdup5Yz/YLp2lkefpTLY8l9k5AUiMWLValfM4306nU5L7aGUA2x0KhQZi6nw+n4wBM4f2ej3E43GZW9apJEOmC25r1p3jwvN0EhZm0wwGgwOyTrJxAAZAnH4nMSNnJBIB8LRGXjqdljG3ywj8NZlkobRj4GyzzTbbbHuODQ0NoVgsYnR0VOSM8XgcDocD6XQaPp8P2WwW/f5JWmrKHRuNBo6OjnD16lUAwP379zE9PQ2Px4Pt7W00m01cvHgR7XYbP/vZz1Cr1TAyMoJAIIBr167B5XKJhDKbzSIQCGBsbAylUgnHx8cYGRlBIpHA0dERcrkcRkZGEI1G0ev1sLGxgVQqJQk0/H4/vF4vstks9vf3kc1mRRal40Lo8Ljdbmxubgo4nZubE6eIzggdWjpUdJC0UwpACi4TxLDuEp3T58WGmDFtp0nz6BzT8dKMAz/jffUuvAn+zM9NZuQ08MLvIpEIYrGYjKNOuOJwnGSlHBkZEUez2WwKo8DYIMqzCG40G6kZFKfTiWAwiHQ6jaOjo2ckmlZ90O01+2H+tGJSrcbevJ7+zGQ6ec1msymsFdtKKaPH40EgEEC5XIbX6xUm+9y5c3jy5Anu37+PpaUlLC4uCsjT7GW73UYikcDrr78uGSs5btVqFZlMRthffs5EHYz70gyiCa44vj/+8Y/x7W9/G1evXsWHH344ABbYTx7rcDgGyg6Y4Frfy5w3bQRfJqvGNaJLVZhAXMtz9VxzY4OJPnS7yWCyTiQBFFkovgfy+TyCwSCGhoZQqVQQDocHQBjbpjdm2u02JiYmkM1mBzYqdIkGZgclqCdbGggEJO6Nz0koFJJNKj7veu1zbFj3j0XGXS6XFOJmQha+NzweDzqdDlqtlrxbyfzV63WJxyMwBU7eb4VCAdlsVlQHuj7ei7CXC8DZMXC22WabbbZ9BWu1Wv8/9v4sSJIzzQ7Fjse+75GRe2ZlVmWtQAGFrm4sjQEag8a02mamjUaOKI5RGlI0UaQZjS960JUeZEZdPlyTUaYHPtBEGRe9tHiHHE7P0jODxjS6AXQDKBSAAqpQe+5b7Pu+uh6yz1d/eHlkVU8vReL6Z1aWmREe7r//7uH1nf+c73xYW1tDu91GvV6XGja1yF01GUmlUkin04jFYpiamsL29jYKhQKWl5cxGAxQKBSgaRqeeeYZ3Lt3T3q9TU9PY2ZmBnt7e0gmk0gmk3C5XCgWi4jH4wAeNNlOpVJwOp3IZrMYDAaYnZ1FJBJBuVyWRuNTU1Po9XoIBoOIRqMYjUbY3t5GJpMRiScBA6VAjUZDQF+j0cDu7i5SqRRCoRCWlpak9oiumJRAsf2AGkwSQ6GQSE3JuLGWRW3sazTdAMwllEaGbxJjZJRhUtZkVo9illCrnzVjHI3bs9ZxaWkJ3W4X7XZ77FgzMzP46le/iuXlZZFXcu6dTidsNhvq9Tp2d3fx+eefi9RVBY4OhwOpVEr6ozUaDWSzWWE6jOM3XotJUj1jmDFxxzGUk5g9s2P0+30kk0ksLS3hgw8+kKRclSkSTGmaJuz1hx9+iGw2KxLITqcjn+M9xH3cunULmUxG6pLUOrtQKAS73Y5yuSwgTq19M5PjGgEvz/+tt97Ciy++iOXlZezv7z80fyr4o9Mr2Vben+r1NYJoNVSZpPq3keFUmTVuZwSHHB/HRYMSzpORSeT3hnPTbrfh9Xqh6zrK5bIsBg0GAwSDQZEzRiIR1Ot1DIdDtNttOQ6vXSgUGjP4oKskLfx5v7TbbQyHQwSDQQQCAWHAWq0WOp2OuGeq/eoo56zVamJGw2ccQVsoFBI1Bc1PvF4vRqMH7Q9odsOFH7/fj2azOWZ2QlMe1gQPh0NEo1G43W4Bu08yvpwA7skOwworrLDCiv/G46mnnkIwGMSdO3ewurqKvb09xGIxDAYDqdcYDAaIRqPQdR3b29tYWVmB0+nE7u4unE4nXnrpJZElTk9PIxwOS/1MKBSSleTbt29jenoai4uLSKfTKJfLmJ6exmh05AzpcrmQTCZRrVZFHhmLxUSOtLu7C5fLhUgkAo/HI0lbo9HA1atXUSgUYLPZpKBfBShkw8LhMDRNQ6/Xw61bt3D+/Hm4XC4sLi7i9u3bkiDRhU11p6S0isyG1+uV1fhOpyNyLDaYnmQmMkmuyFABH8NYF2T8ydVzo4PfpKRZZUuM7xu3pTlMMBiUeWfPLE07Mp85e/YsnnrqKenPx1oiSrlodsBarmw2K2wAx0DJH5sKl0olMfF4XJmj2Vybnbe6r+OYoUnXygwk8hq0Wi0sLy9jaWkJ+XxepHJ+vx8ulwvNZhMrKyuIxWIoFovY3d1FoVDAqVOnkEwmx+SkXARQGRc2WVaBHe8PtgigfJi1WiorfNzcqZLK0WiEjz76CCdOnEAymZTvF89dlVWqDJg6P+r+jPeYyrIB4/e4CrD5WVXqyW2MjdzVfapAVb3H1M87HA6pV2QLAYJegie1nlXXdakJI2AjK6fKGEejkdTQBQKBsbYC9Xpdrh2BFR13abJ0eHg4BvJYy6vKcWu1mgBmACKVHQ6H8Hg8KJVKwswTIBJcs2aOQI3HINPN7yHln3S9BCD10WTjy+WyxcD9skLDww9kK6ywwgorrDBGNBrF5uYmWq0Wbt68iYsXL+L27dtiLKImHc1mE2fOnEG73cbe3h5mZ2fhdrtx7do1DIdDrK2tYTAY4NNPP5XaNNUlcXl5GQ6HA1988QUCgQCWl5fRarVQLpeFket0Omi1WggGg2NmJpVKRQDE9PQ0gKMkbWdnB+vr65Io2WxHPY1KpZKwUkxWmIyRTdzc3ES5XMbMzAxWV1fhdrtRr9elBxbr/ejyxoSV8j72WCLTQeZD7dFmZLu4P4YKpMxA2nEOfSrLQWniJPmgkakwJtVG9kodO6WTbrcbh4eHwiIRPKgsm8qQUF7F5sA0baA8TA06KjabTdRqtbEasl8kjOei/k025rhjPEpSaQTBrVYLOzs7mJ+fx7lz57C/v496vS7nYrfbEY/HhT0JBoPY39/H/Pw8wuGwsDtkzRwOBxKJBJaXl3Hnzh1ZYGANFkFAv99Hq9XC3t4eGo0GarWaLD5wrinZBB44mNLghIwp7w1d14Wh2drawokTJ8bGp14/Xnca1BCYc26M9Y3Ge5DjMTKDfE2dX7VOlfe/6tBolGsSsKjySY6NTDlfJ9vG77rT6ZTWI2xazs95PB5UKhV0Oh2Ew2Ho+pHRiDpmWvt3u134/X5o2lHNXavVkvcpVSSQarVaqNfrY70ruSBFppALYj6fTyTklEKORiPpP6heIy7AcY7oIMznIWW9vAZ8bo5Go4dMVygzZZ/Qfr8vC15PIr5UAA4WA2eFFVZYYcVjxNtvvy3OkF//+texvb2NSCQiK/mxWAyFQgGlUgmrq6u4ceMGBoOBgK/19XUEg0EsLCxgf38fOzs7mJ6exsrKiiQnuVwOsVgMtVoNtVoNJ06cwHA4xMHBATqdDmKxmNih9/t9xONx+P1+tFotHB4eYjQ6svS22+0IBoMiQ8rlciLZtNmOejRFIhGsr69L8X4gEBhL+CivtNvtqFQq2NraQjwex8zMDCKRiDi20WCFVuLsFcUkZjAYiNRoNBoJW8RkkImxcVXeLFTWQGUMjHJKNZE1SjH5mlp3pe6PK+mq0Qn3pSbUxiSbJjM0LlDlm1yZ7/f7uHv3LiKRCJaWlqSekg3MWRPX7/dRKpVweHgoSax6/F6vJ/cI63aM5242b8Zx87VJwfvhcViDSYDYKNnjdpQR3759G1NTUzh58iQuXryIP/mTP8HOzg46nQ6CwSCGwyGSySTu378P4IEUl7WDBMCUAudyOXmNjBybL1erVZFl0tGS9VwExk6nE6urq3jttddwcHCADz74QLZjraJx/tgfkSBufn4eiUQClUplDCAQxFM+rM6Xeh2MYBowN/ABxttycDv1PRXYqddCrfekVFC91vxukGXq9XrS741SRNWZkzVnvBY0RKKBB42ROF+UGJIBJCvO+lpKF3u9ngBwj8cjQJHsHFk+gnUu0FACyfc5Fxx3MBgcc4VsNBpS38b7AYD0lOPfbF+gMnpcQOC1Jkjjd7lWq4ncvNVqmX+Bfg3xpQJwYmJiITgrrLDCCiuOiXQ6DV3XcfHiRdjtdqytraFarSKVSmFubg77+/u4d+8ehsMh7t+/j2AwiLW1NWxubqJUKmFlZQVutxubm5vIZDI4deoUzp8/j93dXXi9XmQyGczNzSGfz4uxCdmV4XCIxcVFYSjsdrsYqBQKBdRqNWiaBp/PJ/IirnDv7++jWCyKuUC5XEaxWMTh4SEqlYoAAiayXImv1+tIJBIIBoPI5/O4ffs2zp49C7/fj8XFRezu7o4lsZQBqmYkXBmnsQBdL3kMlRkwYyIY3P44SaXxMwwVPKj/1NYCdrtdVuOZjFUqFQGVkyR0DDajZl0OEznVTILnlk6n8fbbb2Nubg4XL17E6dOnkUqlZOyNRgOHh4e4efMm7t+/L9eEUksA0mSaoGFSmMkdzZhD42fM5JFmv6t/m4HaSfsjaOj3+7hx4wZsNhuuXLmC73//+yiXy2i325ienhaHyGvXrqHX6yEej8t9wPOmA2e73Ua73RYjDtYs0RGQVvBkmAGIzJXvk8Wp1Wp47733UC6XUavVhIUzO19d12Wxg+Dg8PBQJLKqo6XKvlF2Z6xvVOdVla4CD9/jav0bDT94HLUWEMAYs2YG5FX3UxXEEUTRYZeyXwIqspo8N4IitV5tOBxKfbDRPMi4gMNtqtXqWCNvh8MBn88nKgH1u0UGlECJII4gkACT15bPPD4nea9Uq1V5jvH+0HVd+rhxoY33HZ8XKvvo9Xplfux2u9TekXG1XCh/SfHgC2MhOCussMIKKyYHJV1ffPGF1E7Mzc0BOGryff/+fXQ6HVQqFTz99NMIhUL47LPP4Ha7ce7cOdRqNezt7SEej+PixYsYjUa4fv06arWaJP+3bt1CLBbD2tqasGZ+vx+zs7M4ODhAPp9HJBKRxtz1eh31eh0ej0fq0SgV6na7WF9fFybD5XIhFovB7XZjY2MDw+EQsVgMrVYL3W4XrVZLEiSugE9PT8PtdqPdbuPu3bsoFArweDxYWVnBBx98IEmaakDBOi7KlLgy3mg0pHWAkTEyyh9VmZi60q++bxZqgmvGyhmBIBNZp9OJYDAIr9eLfD6ParX6UG2duh8jC0dGU02imZCaSTsrlQrK5TL29vaws7ODr33ta0gkEtjZ2UGz2ZSG7sViEQDGgC7d7lqt1kP97Y5j18xAmxnDaPzduK/j2Djj/tXfVfZTnUPgqHapUqmIBb2maej3+9ILbjAYYHV1VZgrspzAUS3ba6+9hh/+8IeyeECgS7ARDofFcIi1dzSWoeEEATKT/2q1KowyADH6MZsDgn6ez2AwwN27d3Hq1ClhpoAH1vzGJu1GAKeyxGqYATm1to7zY/wO0VmSwZ6E/J2tLlRQxDGxposAigtFNA/x+/2o1+vCxPM7zmsRiUSExSOYLpVKwuLxO+J0OqVeVL0XyEyTnaYhE01RCIw4JvZfY/A4NCDhsdhwfDAYiLMupew8HsdANpHPNs5Nv9+XOkuyk1QgEDR6PB55HqrPsScRf2MAp2naaQD/s/LSCoD/G4AIgP8DgPzPXv+/6rr+F3/T4/xcY/rZT4uBs8IKK6yw4ri4d+8e6vX6WEPXjY0N+Q+8Xq/D6/ViaWkJtVoNOzs7WFhYQCQSEQlkMplENBpFOp1GrVZDLpfDpUuXAADr6+uIRCJYXl7G5uYmGo0GlpeXMRqNhIlJJBI4efIkSqUSstms1LNx5VfTNEk8KFPk+263G5lMBteuXUOj0UAoFEKtVkOn0xETgn6/L5Ij4IgNorxqNBphf38f8Xgc8/PziEQiyGazqFQqUgNI8EfJEROeRqPxULNklTkyAxxmBiNmoQILJrGTWB++roIzMkEEomRczMZhPB7rnyKRiBg7qOdFUEumxSj9rNVquHLlitRO0W10Z2dH2FH13Lvdrljms37QOLbj2DKz8U8CdNzGyEKS3ZkkJTW7hgQWxyWvZC2Ao3sjm80ik8kAAC5fviyAhsCL9YKdTgfvvvuuABFN04Tx9fl8SCaT6HQ6UlNYqVQEqBHIMPlXXRB5LVnTpZ6zer48P3U+CG52d3cxPz+Pdrs9xqaR/TFjLFWQps6/Ovdke7g/ghRuo7YJYF2YemwV4DFcLpccj6/TzIP7JIMUDAZRLpflu8NFGl5vGsLYbEetBSKRiMhYaVDDnn6s56QJD59HvL6UKlIh4Pf7Rb5N8MWefgTnlImzFQXwAFB6PB5Z4OLfZEl5TVwulxiR6LouwE8FhsAROKXkk/3jKO3l/xNcEOB98t8lgNN1/S6AZwBA0zQ7gAMAfwzgHwL4f+m6/q9+GQP8eYLzaOE3K6ywwgorjgs6lZHpisVisNvtyOfzYi4yMzMjYOnChQuw2+3Y3t7GYDBAIpHAaDTC5uamJB6vvPIKMpkMNjc3kUql0Ol0cP/+fWHd+v0+0uk0BoMBkskkFhcXUSqVsLm5iXA4LE1sVSOHUqmEfD6PXC6HcDiMqakpxONx3LhxAzdu3IDf70cqlcLe3p6wDFwhVmt8RqMRKpWKmJ1Uq1Xcu3cPq6urcDgcSCaTyGazqNfrAhIJgpgY22xHlvi00jer4Tmu9s2MFTIDdpReGQ0/VLMQJtjGhBg4Su4ODg6EoVPfYzABVhN1Jv/hcFhq3FRJHLcnu6G2S2AMBgMcHh7i4ODgoXngWJi0d7tdmc/j6t4myRmNMQnEmYExY6jzqs6v+r7x88fJX9X3efzhcIj5+XlJojk3Pp8P3/jGN1CtVvHpp59KzRMXGtgsnn0PyepQRmiz2caaMRNkqxb0wBGDt7KygnQ6Ld+VXq8niTkTf95XKuuraRqq1SoSicRDzpLq+anGJZPAtOqISfDJz3JbLoyYOVFSAsh6SXWeCdz4GsEga94ajYYs6ng8HmHr1B6QBMA8Bo16OJeVSgWNRkOYLc77aDR6yJGWtW009gGO6s6oMuACC4+vyiT5DKC8k/NAJQPbA6jNwWkuwu9yIBCQe43tYXw+n0hsOa9kgVXzJ/7Nnnm8R3h9vV7vxIbsv474ZR35NwFs6Lq+8yTR6AMXyic2BCussMIKK/47CP7ny2Sc5h/tdhszMzOYmpqCy+VCKpUSW/R6vQ6fz4eFhQU0m01humZnZ+F0OnHjxg10u12cOnUKnU5HHNi8Xi9arRZKpRKGwyFmZ2eRSCSwsbGBRqOBSCSCSCQifcQ0TRN28ODgAK1WC3Nzc5iZmUE0GsWPf/xj7O3t4cSJE4hGo1hfX0elUgHwwOqavZfY1HswGEhyxSQvk8ng4OAA09PTmJ2dxa1bt2TF3JgAE8wxyVPZJ2MtjxGYGUNNZo0sFkN1v1ODr3M/6rGM4EMFecaEGxg3duC+A4GAAAeOzwgUgYcdNSmlU1k7FfQYreKZ4FK2ehwwU8/VeA5GYGXcz6MAn8qmGRkp9djGYxq3mXQszgcT7FgsJpbtrFVcXV3F+vo6SqWSAAcm8wTUiUQCsVhMWJXd3V30ej2EQiGRDNOVEICABbWGjo2a1b6FTMB5TM6F6vqogrp6vY5UKiWMjpHRVA1OVPDMn0Zwy/uZ50XZrpEtJUPHeeHvHBe3Vc9H/UnW6fDwUHrA8dhqrzPWudrtdnkGkREjcCRQI3hT3Sej0ag4SlLayuesapxis9mEyVL3T/Ml1qex/o7NuelwSUMn4IEUme0eeA7sZcnxqXJNtQ7V6/XK95OfJVjrdrsC2mu1mtwjXOQyY85/XfHLAnD/GwD/P+Xvf6Zp2v8OwMcA/k+6rpeNH9A07R8D+McAsLi4+EsZhDBwFoKzwgorrLDimGACff78eZEokiFwOp1wOp1YW1tDMBjE1taWsFQ+nw/lchmVSkXq0EajETKZDMLhMGw2G3Z3dzEYDDAzMwObzSZsjMfjwdmzZ6FpGjY2NqBpmtS/kWFotVrI5XJicOJ0OvHUU0/B4/Fgb28P7733HlqtFs6ePQufz4fPPvsM29vbcDgciMfjIkfSdV0AZygUkuL+Wq2GWCwmq9XXr19HPB7HmTNn8MknnyCTyaBarYrrpVo3RAaO9R/Aw/3FjKYMqtTQjEU6zqhE3Zb74FjMGA4zxkg9pvEYxlzB4/GIRMu4L+M4mQCqznV83Sj9ZAKuzhn7DRJMPA7DNmmOVLDKMRnBg9lnjQyZcZ8/bxivm2psAxxZuquJvNvtxsLCAs6ePYsPPvhA5Gt0//R6vYhGowgGg0ilUkilUnC73SiVSvD7/fD7/dJ+g2CBMjvVHVC9h3Z2dgTUqY3DAYwZlBBgEhzx/NLpNKampuSaGlli9Xrwd7N7lftWAQaAMUDABQGCNy4s0KJfNddR96GCSC6C2Gw2TE1N4fr16yLPJnhrNpsIBALw+XyyrbHmjf3gOA7W0o5GI+kFR3lnt9uV5wbvdS5U2O12+P1+kXOrhiEEje12W8CVujhCoMc6Yz4PuH/OqdfrFbaNDrq6riMYDMoiFhcUotGozLkKnvl9ZT1zoVCQY/l8PnE/NdY1/jrjFwZwmqa5APwugP/Lz176NwD+RxwpGf9HAP9PAP974+d0Xf+3AP4tAHzlK1/5pSAuy8LECiussMKKx4nl5WW89tprGAwGeOeddzAcDjE1NSUrt0899RS63S42NjYQi8UQi8WgaZqsLtPoAjhKtJaWlpBOp9FsNuFyubCysgIA2N7ehtfrhcfjQSKRQCaTQaFQkBoeh8MhPwuFAvL5vDirzc7OIpVKod/vY2NjA7u7uwgEAnjqqaeg6zquXbs2Jus6PDzEYDCQvknNZhPtdht+v18AECVAfr9f2glcuHABi4uLWF1dRS6Xkz5yqhyTBf6UFAHjMkbgYQMThpHpUpNZI3unJr5qDZXRMMDIspmpf4xJtNm2KoihpEw1kVDPa1ItHRNsIwupsnEqQ8dmyXRZVMdhnJ/jwgyAGSWljwMIHwesmbF/x+2PrJvKNF28eBGZTEaS50AgIK0YVLMJj8eDVCqF5eVlBAIBSbRnZmakB1i73UYulwNwJI2MRCIYjUaIRqNyb+/u7gJ40PuNEmJ+57xer7BAKuOmLjqo5juc31qtNuZ4SfDE943fAZXJ4/xQtshrpH5GBYxGUM5QXSaNDLb6U2Uab926Jc8HXdeFfVKl0Gw54na7RUpJ8Eagw+NyDFQbkLEigx8MBsVIRGVhyZ5RDqvrugBS1TxEDUo42YSbzdpttqPecJQ90ryI5+B0OsfMWTgvHo8HkUjkIVkke78R1Kp971qtlkjceY7Gcf4645fBwP2vAHyq63oWAPgTADRN+/8A+PNfwjEeL4SB+7Ud0QorrLDCiv8O4zvf+Q729/dx5coVaJqGZ555RoDZ6dOnsbu7i3a7jRMnTmBqagqlUklWrWdnZ+H3+1EoFER+dOfOHbTbbcTjccTjcVSr1bH6NwDY2toSFz1KFUejESKRCAqFAjY2NqT+IxwOY2FhATabDVtbW8jlcjh//jwWFhZw//593Lp1C/1+H6dPn0a9Xse9e/eEvahUKsLCtVotWSmmRXi1WsXMzAxKpRJqtRquXr0qvcw++eSTsWSFbn10S2TyqQI3NcmdxK4ZQdNxdvkMI+tlNEoxY4yMTJKafBuZJ3U/NpttrHGvw+GQuh61pkk97+NkokbWRR1Pv99Ho9EYq32bxJIZ92kmX1QBgpF1m8TEHQfazLZ7XIBpBt5sNhvi8Timp6exsLCA3d1dqXUqFotSy0UwkUgk8Oqrr2J1dRXBYFCAL6WDxWIR1WpVALfP50MsFsPi4iJeeuklZDIZfP7551J/1Wg0hN1zuVxwu91oNBrI5/NirkFTHvUaq4BYBVrZbBZPP/00arXamGzTGCo7SyZJDTJ+vNf4XTMCSRUg2mw2YYJY46kudgAPwKh6fPZ/BCB9HNVxsr0AQS4AWcxgrSCDxyZjx558bFdCmSMXwwDIopR6TjRr6vV64r7LxaxGoyHySY/HI88csl9s6F2r1RAOh+WYfH7SZIVAmcyb2o6iUCjIZ9Rr3W63EQwG4fF4xphN9RlKqeV/7428/x4U+aSmaTO6rqd/9uffAvDFL+EYjxVSA2dxcFZYYYUVVhwTn376KTqdDp599lmRss3MzGBubg73799HJBLB7OwsPB4PDg8PRZpFJ7d0Oi3MFh3cpqam4HQ6kc/nYbPZkEgksLa2hkajgVu3biGZTMLj8aBUKolRxszMDNbX15HJZJBKpTAcDpFKpRCLxVCpVHDjxg3U63WcOXMGp06dEslkIpHA9PS09H9jPUqhUBDnNq4ks98TAOljFI1GEQ6H0Ww2sbGxgTNnzkit0f7+Pnq9nri7MbGkdFKVNDJUgKQmafyb2wB4KLk0hplkEXi4rYAKUtTPGmMSC6Xug3U/3D+d+LjSz/0YwYtRMmocg8rkEDh0Oh00m01hNIzsDF8zntMkOaTK0ExiI40STSOj8/OEGZhTGSrj+6PRCF/5ylewu7uLf/pP/ykODw/x3e9+V1gaOkiSaYtEIlhbW0MikTA9l1gshng8jkKhIPK9ubk5vPbaa7h48SLq9Tqi0ahIhAlcaErDGigAcm35/VGdCY2MGs+LDBxrYI2GO+qYVbCvmnLwNcoEueBiBOn8nbJPANLnUb3e/EdgYbzew+EQxWJRjt/r9YS15D5arZYwoZQlsn6Wx+Y9S/knWbVyuYxyuSzAzW63S30iGS8VsNJohAy/y+VCOBwWMBUIBEQ9ADwwPqEaAIAY2bCGkHMTDAblOvLeIivHtiydTgeNRkNYYPZ85LVlw2/V2IXXkPMbCAQecrL8dcYvBOA0TfMB+CaA/6Py8v9D07RncKRk3Da89ysN+c5Y+M0KK6ywwopjIhgM4umnn8b+/j48Hg/W1tZgt9tx/fp1JJNJkSVWq1X5T5822f1+H9FoFO12G/V6HbquY25uTgrpKd9ZXFzE3t4e9vb2AAA7Ozvw+XxYWlrC3Nwc6vU6PvvsM9TrdanpmJubw+rqKm7fvo2rV6/CbrfjlVdegc/nw5UrV9BqtXDu3Dl4PB5sbm6OjS+dTksdEGv8Op2OJHxM3prNJjKZDKampjAajdBoNHDz5k1cvnwZyWQS6XRa5EpkU4BxBkxlHVSGSk14JzFUxpV4dTu68RnNTYygTgWMk5Je/j1pHCr4UF34mMSSlQAw5mZoTNaPA5z8ORqNkEwmRdpKa3ujvM44T+ox1O2NjKNRtqcyj8Y5MRptHAccjOep/s4xq2yVGWPH47H26oUXXsDbb7+N/f19WVxgrRUbxbNHmVn4/X4Eg0FhmClh3dvbQygUQjKZxOrqKr75zW+iVquhUCgIINe0IzdJTdMwPz+PRqOBSqWCVqs11j+OjA/ZP+N1JYtF9oz773Q6D7GfZLK4L94rao2dkUVVATZrxdQ5JhPO/RgXMVgXZ7fbx+otKRudnp4W8OTxeIStZH2apmljUka19pTH4rmybQBrhwOBAAKBgACk4XAoDJh6f1KySTYPeNAeQK0vY8sVWvi7XC657qylJCiloyjnioxbp9OR7282m4XP55O5Ye1yOp0Wcyu6VfJaUXoKHDGYNpsNhULhWBb+Vx2/EIDTdb0FIG547X/7C43ICiussMIKK37FMTMzg2vXriEcDmN+fl7s/U+dOoVQKIR6vY5msynJJZMdOrjVajUMh0Mkk0mRxDEpCQQCcLvduHPnjtSh0YEvHA7jqaeeQqPRQLFYhKYd2V37fD6cOnUKPp8P7777Lra3t7G4uIinnnoK29vbuHbtGjRNw8mTJ+F0OpHL5eBwOBCNRqFpGtLptCR57FPFxI6sGxOyTqcjdXgEUtvb2zhz5gxOnjyJ9fV1tNvthxp1m7FDwMNOksexQExWjcks968CEUrEHieMY1P/NoI44/hUQ5LRaITp6Wn8vb/395DL5fDOO+8AwFjzXqM0VAUyTNTV2jcm5JlMBuVyWQxzjJ/nWNRE3SiVVM+NQWBiZDjNmEkzBs/I1hhll2bMnvq6CirUY3FOfT4fIpEI3G63tNBYW1vD1taW3PvBYFBMSSh1mxQejwenTp3C7du30Wq1xBK+1+thfX0dZ8+eRTKZlJoqv98v/ePy+by4jU5NTY0xNTabTdgbMkRmbCObUNNIhefqdDqlvoxMEe8X432tHpOySLWWkscliOECDPCwYY56/fg+wQwZo3K5LH0dOWYuVKg97FhfyGtAG37OE4EqTUM6nY4Ysfj9fgG/BOZqGwGak/DcCNaCwaA4P1I1wPNmmxfuU9M0qaHjObIPH8fG11qtlrhO9no9xGIxVKtVAXwErAT14XBY7mcu1vF+4NzzOpF9DYfDE+/TX3U8uQYGv4KwCDgrrLDCCiseJ7744gssLi4iHo9jd3dXatucTqc0xA4EAkgmk1J3w8Tj4OBAGs6q7QEGgwHi8ThGoxFyuRx0XRfQ1mg0MDs7i7NnzyKdTmNzc1MkSpFIBIuLi6jVavirv/oraJqGr33ta3C5XPjwww/R6/XE1KFWq2F9fV0SY/YdozEJQSaTjF6vh1qtJgX5NABoNBrY3t6W5In7vXjxIpLJJDY3N6X/k1qsb8bmEEAwWVUTTGBcRjaJVZkUKlBQ9zUpuK26vRGQGIPJN1fs/X4/4vG4MKc+n08sydmeQZ0DJuicA3Ue1OSdbBBrH3l+ZJ6YOLpcLlSr1YfmkQmueg2Y9E9ix9R5VENlfThvxjk/LlTWTZ17fl6t3VpdXcXc3BwikQieeuopJBIJpFIpOa9Lly5hcXER5XJZpHw7Ozs4f/68qSkOJXkApNnzaDTCzs4Oer0ebt68iaWlJWxvb+OLL74QSR4XOOx2O5xOJ/b39+Hz+eD1emXsqkmPejz1Pux2u8KYE8wR/LMey+PxoNVqCRNOaSDnjEDAyEar963aY0xtq6HOuxHAce75WbKFnU5HpIMcP+WR7NHGmky2AlBr2MjSAZAecOqCBpkwzqWu6ygWi3KNnE6nzA1bBLCVAd0fOWZKLFljRgmoKmWl0RLni6CN39N2uy0yTJvNJoYlaisELsy1222EQiE5JhcDfD6f1P3yOUrpKGsvs1mx/fi1x5cLwMmD6AkPxAorrLDCiv+m48yZM7DZjhoCB4NBzM3NyX/QvV4Pfr8fMzMzqFarYiHNBCmRSMDr9aJWq0nvKjII3W5XbP3ZM67dbmNtbQ3xeByff/45tra2hNGZmprCyZMnUSqVcPv2bUxNTeHcuXPodru4ceMGHA4HFhcXMTMzg3Q6jVKphGg0KrV3NF4hY8gCewINrugz6XK73WOMVDgclnO+c+cOFhcXMTc3h+3t7YeYg0nJvtEu3ri9WRJOkKGyVSrIeBSAMGOmJr2v7s8MqBgNIG7fvo1/82/+DWq1Gux2O4LBIFwu11iPLNYFGtk4sikqaOW/RqMhSb06HlVKFovFRF7JUE0W1HOgRE69Lup+jZI1dZzGxF/tuWcmn1Tn0Yx1Y6gOhfwcgROdDcluBYNBuN1uPP/881hbW0M2m0U2m0WpVEIul8PKyoqpSQSP22q1hJEZjUbY398HAORyOdy/fx+lUkmYK46Zf9NFUAUBNptN9qmeu/Ee5T1DIyI6KvL7xn0SMCQSCdjtdpRKJQGAvNeAByybURqrAnijZJmgSb2OBIG8lzhP5fJRJy8CIzbzpokI70fWE/b7fcRiMQGCtVpNJItko1gvR/m2pmlirhIIBFCpVMYMSnideB+Q2aPkMRgMolKpyGKGzWaTxTPea61WS6SZKvjzer1yT9VqNQwGA8RiMTSbTflu8Rpy7uhQSdCm9qgbDodwu91otVryPeJ9QZktGfVHPad+lfElA3BHPy0TEyussMIKK44Lu92OYrEo7nVbW1s4ODhAKBRCNBqVBtmlUkkkN7FYDMBRopTP5yVxYrF+NpsVWSRtyrvdLlZXV9FqtfD9738fmUwG3W4Xdrsdzz77LBYWFrC5uYnt7W3Mzc3h9OnTKBaLWF9fRzwex9LSEjqdDjY2NtDpdGQMrVZLajcIPNUaNyZXrJUh0CMLNxwO0e12UalUkEgkZJX+1q1bWFtbQyqVQi6XGwM3ZszOcVI3ozTP2JzbyODwNYb6nlnNnLHWyMhCGV83HscoPVOlXRsbG8JkkpWjRI7yKtbVsFbQDGTx+DQuUcGZOjYyMnQ25b7ockq7e36OYzPO2aS5VFkk4xyZvW/8vJHRVP+pzI8RvGnaUSP7SCQi4O3zzz9HrVbDxYsX0e124fP5EI1GMTs7i1wuh3fffRf7+/tIp9NIpVJjDe7Zy/Czzz7D4eGhyO0ISgCgVCrJYobalJlzTBn0s88+K06s7XZbjFSMYNdY20e2tNlsIh6PIxQKCZtGRovfyUgkAqfTiU6nI5b6ausI9RrQ5ERldFUWV73vOQaCNVU2S5aJbpQEcPV6XZwUS6US+v2+GCaxZk5l3UajB8216UzrdDrFNIl1o+xLx76VxWIRo9FIQBnZOl3XEY1GBUiGQiHYbDbps9bv98WMJBAIjIFt1hpzLsj6c1+0+6/VavD5fFL3yLFz0UUFaeVyWZhZzm+9Xkc8flQZRoDOZ5eu6/JZgk2O90nElwvA/eynxcBZYYUVVlhxXNTrdSwuLsLlcuHWrVvI5/PSLLhQKGB7e1sYDuCBC1kgEMDOzo6s/IbDYdRqNZEb0uyEtT3s43bnzh1kMhl0Oh1Eo1G8/PLL0DQNX3zxhcgrT506hYODA2SzWUxNTWFxcRGlUgnpdBp2ux3T09MiCxqNRrIKrmlHjmjlclkc2pjAEVjQAMDn8wkj0u/3US6X4fV6ZRV7f38f8/PzSCQSyOVyAji4j58njACASSaAh9grhtHUhJ9VWRDGJJmgGaAxvqeCFdUZUJUkcv7YHJ39/DweD/x+P9xut4BxgjmjhT6TekrX1OMbz5FMhM121DCdyTTd/vg5o9zObF+qlNLIrKnvGSWXRgbPDGyroGMSaFMBoq7rODg4wGg0wo0bN7C1tYWpqSksLy/jzp07AnbcbjdisRjm5uaws7ODra0tZDIZJBIJMTUZDAbY29vD9evXUSwW0W63pU2Aet3U87TZbJKkA0dM1NraGp599lkcHBzAZrPhk08+AQABcjw3M1aSxhe5XE4WS9jcmwwXmSgyR+12+yGgP4nh5k9V5qrKNFV5JZ9PlBsSIHIO6vU66vW6XDtKBMkmqQoCyiDVxQOCJZrGUEpOgAVA6oHj8Tjq9brIwgmsaCRis9mEnfT5fOIyORqNpG6Xi04Ei2TVyELSTISgsd/vi/EKjWU496FQCC6XC16vVxg09dnH60tg1263pYWBes+T1eRiAE1wCAafVHy5AJwwcFZYYYUVVlgxOVKpFIrFopgaLC0tIRKJoFKpSCKgaZqsMjMxvHnzpsiiEokE7t69C+DIKY01bWz8TYnmjRs30O12MTU1hVgshq9+9avI5XL44osv4Pf7sbq6CqfTiVu3bsFut2NlZQWhUAjFYhHdbhfz8/PCyrRaLbhcLkQiEWkGzSSIttputxudTkekfEz26vU6/H6/9MIiM8SWCHTRu337Nk6ePCnSTCaRxpqdR9WjGUGScftJYA0YN055lETSjFkybmMm9zPuS9d1RCIR9Ho9qX3hezRRCAQCiEajeOmll5DNZrG9vY12uy1OfCrDwnNgTU6/338IIKnnrOu6JIc0qKEBA/ensjMq8DQm/8a5MAt1Tsx+8h+Pq+5bHYPZsdRrMDs7C007comsVqsIhUJYXFzE0tIS0um0sC+sDYzFYtjY2MC9e/cwPT0tbTrIAhWLRaTTaWE0CW7I2Kg9/Nisms3tASCRSOD3f//3cfnyZbz55pu4desWfD4fqtXqGMgyzpN6/vPz87h165YYFBHMcTvKQ1WmzOzeMII4de7UMLuuqkFOIBCAy+VCrVYT5g6A1FxSFUCJNfCgpjKfz+Pw8BCxWAyJREJq2fj8IANdq9XE1AmAmDmRyaOZCQCx7AeOFAq8ZzqdDkKhEAaDAbxer8gxKYl0OBxjxk+sC+V3ghJmgtpYLIZSqYRqtSrvh8NhOTZZOb/fL30GCQJZz8ZrEAqFxMCG80e2nW0jKpWK1KlqmoZCoWD21fq1xJcKwJGDe5KaVCussMIKK/7bj1arhUqlgsFgIC55xWJR/mbSymaunU4HpVIJHo8HKysr0DRN2INwOCyru5FIBFNTU2i1Wtjd3ZWebDMzM1hcXEQgEMCVK1ewubmJRCKBCxcu4ODgQOrdlpeXkUqlcPfuXUl+4/G4yMJSqRTa7Tb29/dht9uxvLyML774AjbbURPvwWAgEibKotQEnH2O1JVjNuolSCsWi1hcXEQikZDVaK5CPw54M5PlmcnDVKZB/Zwax4FAJq/cpzHRNkoEzRgo/s2Ix+PSZJsJvzq2druNpaUlvP7661hfX8fW1hbC4fCYDTp7T3FuaX5iBAZmQTASiUSkNodzpCb/KoOmzqVaT8U5myQhNc6R8TqYMXdmoHESE8jxUJJmsx215Th79iycTiempqYwMzODTCaDTCYj50+Gp1arIZ/PAzhijrrdLkqlEur1OsrlMkqlkrgrqsYTZM6ZlM/MzIihhs/nw6uvvopQKIQbN25gd3dXwDoXacwWFdR7mUCI25GBUu9TMj7q9SBbzs+pbC+PrYIrzrPKWpMJMhsbj0nWsVariXySQIxjodST9yp7FLZaLYRCIUQiEWmKzWPwepXLZVQqFZFpz87OjklE1fMjyCMTx+tEExq6WzqdTqll5NyyfxvPR3XRbDQa8Pv9qFQqUrPscDiQSCQAQKTvdIvk8clyN5tN+P1+YeII8FnrzHniNWXTeQJh1W3zScWXCsBZDJwVVlhhhRWPE5lMBqPRSOow9vb2JHGsVqvwer1jzBZwZPgxNTWFdDqNarUq7mpMruPxODweD+7du4d6vS4J2fLyMubn51GtVvHhhx8CAC5cuIDTp0/j2rVruHnzJpLJJE6ePAmPx4MPPvgALpcLS0tLqNfrwhImk0kUi0Xs7OwgEAhgeXkZu7u74qSnmg0ADxI+NUFnbya32y1yIyZPZOY6nQ42NzexsLCAbDYrEiwj4FKD76sJJYMJGPAAhFESaVbTZnxdDQII1VTGKNczAjfjmI1sHLeh9Xi73R6rU1IdOIfDIa5cuQKv14vbt28jk8ngn//zf46PP/4YuVxOZF5MjCnzUo1LuC+j1JG/e71exGIx7O7ujp0HWVgzloxhZghzXDwO22M0y1C3mcSQqmBGXSiheYbNZkO/30cymcRHH32En/zkJ1hbW0MgEECr1ZL7jp8DIKYThUJB5JO0jqeV/GAwQK/XG0usY7GYLFDMz88DAP7sz/5MwBulyMb5NM4N5+LSpUvY2tqSBF6VOhJoUOZMMGncjnMAPHxvAg+AuCpdBR40nFeDdWA04uA5FItFYcJ4jbxer/TZ435sNhu63a7U6w0GAxQKBXGqJGjhQhYNSCqVipiFtNttkalSTq4CWYIxyksJQhuNhhyXzy+CZLJe3J/b7RanXT6nNU1DMplEPB4X06HhcCj1xwT0zWYTmqZJPaLNZpMxh8NhYXNHo5G4+7Kmz+v1Ip/PYzAYSDuMarWKSqWCVCr10L3/64ovF4DjLxaCs8IKK6yw4phwOp1YXFxEPp9HLpfD1NSUsE80q2D9SDAYlPYAd+7ckWSQ5iVMTiqVCnZ2dqRGigxANBpFPp/H/fv34ff7EY1GMRqN8NZbbyGTySCZTOL06dNot9u4f/8+kskkQqEQ2u02AGBqago+nw/3799Hu93Gs88+KwCCq9tcTXe5XHA6neJ2yGBiyMSE29HUgEkPnd3K5TKi0SgikYicI1ergYdBHJNStf7LLFRWYpKE0oxpM8akcRjjcRU5TLZZE2VknQCIpKxYLOK73/0ugAfMQblclhpHgjhayJNZMJ6LGRPo8/mQTCaRzWaFfTN+hp8jIDCrTVPBoXosNcxAmfHfJIBmdg5GUDcaHdnqU7LW6XQQDAYRDAZRrVZx+/Zt6Q929+5d1Ot1LC0tIZvNSuJPl0c2l2bD7Wq1ik6nA7/fj8uXL+Ozzz4DcMSQ0jDD7/fjqaeeQiQSQa1Wg8PhQCwWQ6FQkCbi7XZ7jNVSx86/eZ15rQOBgBj8qDb6wDjjSUkngb/6vhkjx/vQOBa+bmRbKaOkFJoAin3buPDE7zQXRmh+RDCo1smyL1q320WxWEQgEADwgAGl1JX74bxygYImH/y+DAYDMRMpl8vSC7BarYqxiFrTS9kpn2cAZLHJ7/eLOQnlqjx2pVIRibLKjnKxR71GnDv2uWMbGDJxlHG63W64XC6RVU5PT0uNXKvVQiwWEybxScSXC8DxprYQnBVWWGGFFcfE008/jY8++gilUgmnTp1Cr9dDOp2Gx+ORfkWj0Qizs7Pionbv3j1JSEKhEIbDoQC0nZ0dWaG12+0Ih8NSj7azs4NarYZYLIZ4PI5ut4vd3V30+31cvnwZy8vLODw8RLlcxvT0NIAHvZNYq8Zk98KFC8jlcrh9+zbC4TBSqZTUZRBsUQrK5NCYzLOWhUkRo9FoIBqNwu12o9/vY2dnB8vLy1KjxIQLMJczmh2L76nW5gxVaqUyDZMAA8Gf2raA+3wUcOTnzQCN+lNtmExpHqVbvV5P6rTU8/yX//Jfissh5aqsd2JDZ3V8RqBDds3v94uJDh0DvV4v6vW6jMkoT500X5OAl1H2OAl8mdWzTdqX8Ti8FzRNQ71eFzYxEolgbm4Ouq4jm83ik08+QSQSQSaTEUOYg4MDBINBMZ7gd8/j8YgMkq6CHo8Hly5dwtNPP43PPvtMGldr2pHz5dmzZ/FP/sk/wfb2NorFooAPXkP1PuICBUGVeo8Y3Rn7/b5Io4+r1TQ28SYwU18zss4MSggJEFRXSuO1Vz9LUMqG8WT61POo1+vwer1IJBJj9y0AAVYEqwCEkSaDBkAWfvj9IEPH+5aGKqxHI+gjYCOIHA6H4vRICSS3b7VaIm/XNE1MmOioy+tI10m1Px1ZRoI6Aj3W3dntdnleMvg9LxQKsNvt0geu2WwiEonI+TWbTTFIedQC0q8yvlwA7mc/rRI4K6ywwgorjou33noL/X4fKysrqFQqIteKRCKSONJeu9lsIp1Oi6U2kz06ne3u7iKXy2FmZgYA4Pf7xQRlc3MTLpcL586dg91uR7Vaxe7uLkKhENbW1uByufD555+j2WxibW1N5Fwqk5bNZhGPxxGNRpHNZnF4eIhEIoFYLIZMJoNSqSQyoHq9LvVXk5weKaVkg2omInRL9Pl8IksrlUpjzpePm7CoyayZUQPDWH+lJs0qkDAyImT7GEymjTVw6ngmjd3IgDBBZvIcjUbh8/mEaWs0GmNJM2VhPKaRgXgUeHM6ndKLMJ/PixSMCwF0uHxUDZ+ZLHRSGD9rBLRmr6ufPU5CSUAOHF2X+fl53LlzB/F4HJcuXUK5XMbOzg7u3r0rCTdldqrkbmZmRvoZ8vvG3mEED5cvXxbZqd/vR6vVQiQSweLiIv7BP/gHeO6557C9vY1wOCySVkos+bNSqYw5uKqsqzpHNBSanp7GnTt3hJ1Sg/ePWuepst9GIG48nvG6GBcL1G3VnoQqmOR9qko16cxIieNgMECtVkMwGBQmim6gfJ/On/wMGT2CIp/PJ2oFjs9ut0svQy4QVatVAcb8yd5xh4eHAI6MZSg95vHcbjeSyaS4Zfp8PlQqFVEwsCE5wSG/rwRifMZxvskCsyaO58FxO51OUT3QJZNgkOdNFpGg1Woj8EsKu+1nKxkjC8FZYYUVVlgxOcLhMDwejzRjjUQiIuMJh8MIBoMAgGKxKAxIMBhEq9WC3++XFVmycmz8evLkSWGwtra2JJnUdR25XA75fB5ra2twu93Y2tqSXlff+MY3kE6nUavVEI1GpRmuzWbDiRMnABzV7fV6PSwtLSEej+P+/fuo1WpIpVIol8vY39+XWhHack8Kgj2n0ym24nydkkzW0cRiMam/MrJlahjBkxFoGNk3o1yNwc9NOo56POCBwcqkYx8nI1THYhwXV/S9Xi9OnDiBhYUFbG9v44MPPkCj0ZCxEaipQXbHWIdoPE+afFy8eBFbW1soFApj4DWXyz10PkZgoBq4GOfGbF75u9l2k15X3zN7TR2fWg/JxYIXX3wR4XAY8XhctuM9qH4+EAiIbb0qP6U0lSwYjWPOnj2L73//+3A6nVhYWICu68hkMjhz5gyee+45qRnt9XrSVLrT6Ui9Y6FQQLVaBfBgUYBMFdk8ghTgCBxsb2+La6IxzAx1jIsXmqZJ82+Cc/XzDLVBtrov9T7QdX0MRPR6PVQqFanf4vVQ69y8Xq/UE9JCn99t7oNSzna7LeBOlXZy0YE1wHRZpcMk26jQAbPX64l80u12YzQ66rnmcrnETIRMGWvnaExCQ5J2u41YLAZdP2pOzt5vBGn9fl+OW61WRTaqaZo0ACfQbbVaAl65WMMFKrZIoKsw90/jFtbs8ZhPKr6UAG5kUXBWWGGFFVYcE6PRCNVqVfofMRkKBoPyn3m1WkW1WoXf7xc5XCQSQTAYRKlUkjqYcDgsrQPoVkbGgU2yd3d30e12sbKygkgkgs8++wy9Xg9TU1OYnZ3FJ598gm63i7m5ObhcLqmBOnXqlDR4JtDUdR3Xrl2D0+lEKpWSBNHj8WB2dhZ2ux03b95EuVx+SF6oJuhq/RwttoEjyVQ0GhVJGVey1X5SxibSas2JUVb2OBI8s3o4I2Awk19yOyOQMAKa48ZhNHrheZCRPDw8hN/vx/PPPz9mV86eVpSaqeNkMjhJ2kkZVzQaxdraGg4ODrCzszN2LurYjYzkowDWcQyccW7M4rj54j7UY0ya68FggMPDQ/zBH/wBer0ecrmcuB7SxZDbs/cXnVRZd0qnQtYUElitrKwgHo+j2WxicXERp0+fBvCg3UKz2cT6+jr29vakLoz1TGSX6SBJ51lKlymtIxNEtumpp57C1atXZdHDeF3UMJqb8B6nBT0ZctW0R5VUAg+kk0ZmTjUBUutBu92utF0gG8z7lOfj9/tlgYqyQNa38ZoQlPl8PpFiEtiRkVIBH+XkPB6fF7xurCfr9XpwOByoVqvCmtntdlE96LougLrVaqFWq0l7BBqTsJcmn0sOhwPlclmOTUk5x+z1ekXVwGd9OBxGvV4XkxOyj2rbh1AoJAtXdJKNRqNSD8lnwZOKLxWAc/wMwA0sBs4KK6ywwopjotFoIJlMIhKJyEow6ylY/8UaDrq7zczMwOPx4PDwELVaTZzcAoEAwuEwRqMRdnd3UalUcO7cOQSDQeTzeezs7CAWi2FpaQm9Xg8ff/wxgsEg5ufnUSqVcPXqVSwuLiKVSqHVamFzcxOpVAovvPACBoMB7ty5A+DIzGQwGCCfzyMQCCCVSskKO1fyi8Wi1JUYmRpgPNHu9XqoVqviPknwokpIq9Uq2u22JKF0vFNDlT9OMh85DsypTBITT7U9gFFeqW6ryjqNrJuRTVL/VoHQaDSSxNK4XwLdGzduoFAoCJsQiUTw8ssvY319HTdu3BiTUDIB5E8j2OE8xuNxhEIhfP7558IOmM2ZGioDM4k9M7vWk+bB+Hn1NRVUTLpuvFaT5lfTjtptuFwuzM/P4+OPP5aFEibUwWBQpKZMtgkGuG+6TDabTXi9Xrjdbly8eBHFYhFerxdnzpzByy+/jEQiIb3GWGdXq9XQbDYFwLGXXLVaFcmgx+MRxoWMF193Op1wuVxYWFhApVKRGi6j2YjZtTPWtREQqM6k/N6o11v9PjLIlKmukur+h8Oh9A3kAgRr2VjDR2aOTBUABINBkZCy/xuZJtb6qUwVpeacO7Jxo9FITEDy+bw42/LZ2u12kUgkpGUEv2MEy3Qs5bkXi0VMT09LU3tK18nY0c2SEk2Px4NqtSpyST7bVTMZANIyIBQKSf2cpmlyPWlqQykv6wRZn0dWmfP5pOJLBeAsCaUVVlhhhRWPE+fPn4fL5UKlUpGkijKbdDotbFqj0YDD4cDS0hJGoxHS6bSYKAQCgbFaDq7Irq6uSjuBfr+PU6dOwefzoVwuo1qtjkkk7XY7nnvuOfT7faTTabTbbVy6dAkLCws4PDzE/fv3paUAAaHL5UIikRApkN1ux87ODnK5HLLZrIAHggmjpEtNrlutlpgFMKGj7XYqlRqTR9HJjYnncQzNpGSeoQIz9XdK19T9qE5+xsTVDOQcxz6ZbcMVdiafauJMADYajXBwcCDOnUymyUowyX0U+8bPnjx5EvPz8/jss8/GWj9MAmHG83wU0FO3Mc6/0QhjEqtnJt00jsfsuOo2w+EQhUIBuVwOy8vLWF5eFuMSytB0XRezC4fDgUgkIokxGSNaydMV0Gaz4cyZM6jX6wiHw/jqV7+K6elpfP/738dwOESr1cJPfvIT3L17F41GA51OR/r7VSoVsYWnQ6LKJlFOqDI2gUAAzzzzDN5+++2HWgCoIIr3MgGAUdarWuir9XK8t40MnLpflYXjd5HHJlPOvm/8DIGNyl6qjB8dPtlXzePxSJ1Xt9uF2+1Gs9nEaDSS2jYqAhwOBwKBACKRiHxnm82mmM6QbWy1WtKrjbJwLjLRTIkgT3WVBB6YqvA9l8slbCFwpBbg/WFs/0FWV72OwWAQ9XpdmL9msykLN/V6XeTvlJwOh0P0ej2R3GuaJgwhP/Ok4ksF4By0+h1aAM4KK6ywworJEYvFkE6nkc/nRep4cHCAdDotjAAL/+kMWSqV0O12oWkaIpEIwuEwAMhq89TUFJaXl9HpdHDnzh00m02cOXMG0WgUuVxOmn4zOQqFQnC73fJ5r9crjXJ/8pOfYDQaYWFhAfPz8yKbtNvtWFlZkRXpVCqFP//zP8fOzo4U/7PHEZkeVSJoZOOGw6GwcEyQCGh2d3dx5swZkTJxeyPIMpM/MtTEXwUSk9gflXVT96v2N6N8TJWc8T2elxkLd9zxKZdk3Y16fsYx8N74wQ9+IABOlY3yb2PtG10l19bW8NJLL+H69esol8sig1NBtvF8HiVZVENlMo374ftmkkez+eP7RuZvEoA0vkd2+Pr16wgEApiampK2GOFwWMw2bDabvA9A2CAukLAG1e12Y3NzExcuXMD8/Dx++MMfwuPxYHl5GbVaTRL/Wq2Gg4MDNJtNVKtVNBoN1Go11Ot1tFotAReUTPOaklGk5I/X7fTp09jb28Pu7q40JjfOOc9XNXFRGUruiwCMbA77RarXzLjAod4fBJgqgHO5XNje3haDHbU+j6CRCxTAg/5rh4eH0ryb9v40RyHj6XA4pEk3TWe4f7LXbNhN2aWmafD7/cKAEXhzn1ww8fl8Ip1k+5J6vS79OR0OhxgrkTkjiFS//zwOj93tdsdAOhm2Wq0mgJ2tKTgffKby3NjLMxaLyQJSs9kUN9NWq2X1gftlhd1uMXBWWGGFFVY8Oj744AN0Oh0899xzcLvduH//PkqlkjSQ5Uqsz+dDNpuFpmkol8uIRCIivWk2m9jb2wMAnDhxAolEQvrKkVmLx+P47LPPsLe3h4sXL4rJAB0uC4UC3G63JLXNZhOff/45QqEQLly4AIfDgYODAzQaDczOzmJubg5er1cYsw8++ACapokbG6VHatNnru5PksGRnWB7BABibtDpdHDq1CncvHlTapFUySL3cRyIU0MFasdtwzDW1KkJLs+RSbPRddOMAeHvxm24Wk8gwX5WBG2sjzJjRlS208i+qVK6UCiElZUVXL58GVeuXMGNGzdMwZU6XlVeZzZ2s2tqnAMzsDdpPtRtjIzbJIbOuA/jdu12Gx999BFCoRCee+45sZKPxWJiuOFyuUS+zOQ9Go0iGAxid3cXgUAAp0+fFnDyG7/xG+KMODc3J7+zwTcdLWu1GhqNBnK5HNrtNrrdroAFMk4AxCSFLB/ZQS6KtFot7O7ujoEmhtHMxAja1L95nxC8qdsY59DIchKE8Lrwno9EIiiXy6jVarLwQHbNCB4pdRwOh6hUKqjVagiFQiITVIEiQRa/C5SX8hoQ9NHxkdJrstRstM5m2HTHHI1GMvfsq+b3+1Gr1ZDNZhEOh8VoRdd1eS6RlSUY5LjIEA6HQ2m9QCMV1quy7QFBeavVEsdJAHJuXKDjtSBYJ/hrtVpi7jI1NTXWhuXXHV8qAGfVwFlhhRVWWPE40el08PTTT0PXdXz88cey0sxG28FgEOFwGMViUViC6elpqXvb2tpCtVpFOBzG6uoq7HY7NjY2MBqNEI/HMT09jcFggL/4i79Au93G/Pw8Njc3oWkaUqkU7Hb7WD8mWlzTpXJxcRHlchnZbFYaHJ89exbD4VAcLN98802pewGAZDKJRqMBt9stib8qezQLJiu1Wk1qfWg3rus60uk03njjDQQCAVy7dg21Wg3AA6mjmsRPAnFm8r9JpiXHSTPNGCg1yVX3a8YQTQJF3DdrWwCIw57ad45jm3SO/Kkyckz4mUiWSiX81//6X4UpMtaPGX9X5+tR4M2MvVO3VcGqcX9m52NkT49jBI3HV69js9lEuVzGp59+isFggOXlZTSbTWiahrm5OWG2y+Uy4vG4sLxnzpwRYHHx4kUsLi7iypUr+OY3vyn1aPl8HlNTU7h79y6+973voVKpYDAYSDuCQqGAUqkkBjycSzJMBBpkY9xut7DYvD4ejwfD4RA7OztjzJC6aKCaiajskLq4wZ/8nHoNze5ZjpOLMHa7XSS+auPwWCyGa9euodPpCMDj+HiefJ0us3TWnZmZkWcfw+PxoNVqiUSckks6edIptNlsCggnkKPDJ8+X7BzbFhC8ApB6XoKnfr+P2dlZeL1ekbPTBZZmM3ze0WCEDbftdju63a7MMV02+b1ut9sIhUIy95w7SjBbrZaAN4fDIQCSC1m8R/v9PtrtNmZmZmTR7EnFlwrAPaiBe3KN9aywwgorrPhvP77yla9gfX0d6XRa/tNeXFwUWU8wGBTbf8qp3G43yuUycrkcnE4nVlZWMDU1hVarhTt37iAYDIrRycHBAT799FMEAgEsLCxgMBggGAwiEomILCgUCkmtXa1Ww/7+PqLRKFwuF0qlEg4PD6FpGs6fP49UKiXyn0wmgw8//FDqOaanp5FMJnHv3j1JLunox4bSx8kHgQcGCDQdIKCsVqu4e/cuXnjhBWQyGWlPoNarAA+bNqggR+3ZZpb4PyrMtjdj2oxsBbdTAYyR1ZgE4obDoUj2yMKYtQsw7sPIlKmy1larNebkaRyX2TmagTn190myxkkMpwqsjCDtuPMyOzfjOCa9puu6mJR8/vnnwlBrmiayYYfDgW63K1K2p59+Gk8//bS01pienhbjnvX1dUxPT+Pzzz8Xg5J3330X9+/fFwBeKBSkvyN7GKryRX6fWf+l67qAN84jwfdzzz2Hn/70p2NOhoB58211AYHfB03TxloUqHJgdfFDNQjiZ9TrRJBFYMZtP/nkE5RKpbE6MYZaIwdALPJtNhsSiYRIrdvttpg2kRHlvc590KnW5XKJVLJarYoLq9vtFmDo8XjQaDRk8SiTyQh4IrgcjUZjEkq2FKCxCPutVSoVMTthzzrKGFVDE15T3m9s3M06OH4H1fYC8XhcQCfPPx6PC9sWCASkrpCLCYuLiwgEAigWixYD98sKi4GzwgorrLDiceLq1avCgDmdTszMzMDr9SIUCgloAYD5+XlJOPb398XCenZ2VtoJ3L59GwsLC1haWkKtVsPt27eRyWRw7tw5+Hw+7O/vI5FICENGc4BEIgFd17G9vS393DqdjtR5TE9P48SJEyJnYg+tzz77DMViEZVKBWfOnEEwGMTh4SFCoRDm5uZEOlSpVGQlnwBkkqugrutot9vi+MZV+36/j7t37yKRSODpp59Gq9USFzmuTqtsgpqQAuZAwoy1U4GXGdib5Iiofk79R6BidLF8nCCI63a78Hq9YmDAOjlVIqkCQVU+qZ6rKmvjmFRW7VFM2KPCjJl7HGnjz3MMMybO7P1Jr2UyGZw/fx6apmF/fx+hUEgYkmg0ina7jWQyidHoyIlyenoa4XBYknfa/m9tbSGZTOL+/fv49NNP0e12sb6+jsPDQxQKBdRqNfnXbDZFEunxeAQ8sY1Bs9lEqVQak03yvqWxxaVLl1CpVJBOpxGPx6WeahKrzfuPzBnPXzXgITDkva5pmrCBnBN1AYLjsdvtUj9LMFkqlbC3tycunWQLAQgg5QIO5YqUiLMPJIEJn09er1eAKlk0Hj8SiQjr1Wq14Ha7hZWjkyrNocggEhzp+gP3UaMkU9M0qUk8PDyUdgDVahWapsHn8421maDSgJ/nubLmUtOOjGdYd0eQyvcGg4Gwvd1uF4FAQAAfAanT6USxWBRHz+FwiOXlZQHBNHB5UvGlAnCWC6UVVlhhhRWPE91uF36/H7quI5FIIBgMYnZ2FrlcTmyyHQ4H3G43ACCdTmMwGGBpaQkzMzMYDofY399HsVjEzMwMFhcXsbW1hZ2dHQwGA8zNzQEANjc3MTc3h2AwiHQ6DeCoHQCttg8PDxGNRgWcMSGKRCKYnp4WV7yVlRWUSiVcuXIF6+vr6Pf7uHTpEsrlMiqVCmZnZ1GpVKQInwkrmwWzd9YkBgd4ICliwsteUe12Gx9//DHeeOMNAXGUAFI6ZWS61DBzmzTWCTEmyQCNQFAFjtzWzGjDyHap+51U+8XX2ReLyRoTX7JFqoGJalqi/tM0bczMxGazwev1wm63I5lMYnt7+6HzVhNfdV7MrpkxJgF09RwfxYIa5+lRxzeymmbHowOrx+NBoVAQE41IJCJ1p7quS91pv99HtVpFOp0W2/+9vT1hQz7//HOpP63X66hWq6hUKqhUKuh0Omg2m9D1B02u1WbXdDmkzT5ZK96PfC0UCiGVSuGP/uiPpEaPTJgKwlVgZryHjPNkZKbVf5TjqXWVPAfWg1HmBxyBumKxiFqtJlJJnhNdFglWVDdNus0SzA4GA+mrFo/HoWmaGJUMh0N4vV6ZFzKZZOtbrRaSyaT0rUwkEtLKxOfzSf9MAlQuCnE+1f5rfr8f2WxWHCl5Tfr9PhqNBkKhEEajkTTpBo6e42zhwv2xvpGmJgR1nU5HlAVk2drttpwfgS6deWu1mtwTap0ya+fIwj2p+FIBOHGhtACcFVZYYYUVxwRXewOBAOLxOBqNBn7yk59A14/aCbDZbbfbRbFYhK7rWF1dxfz8PBqNhrQIWFxcRCgUwo0bN3BwcID5+XlxbLPZbDh79ixKpRI2Nzfh9XoxOzsLTdOQyWTQ6XSQSCTg9/vHaqUIGlkfcv78eZRKJbz77rvY29uD1+vFyZMnsb+/j6mpKayurqJYLMLj8eD06dO4devWQxJHJppGFkX9yQSRzXNpemCzHbUV+MlPfoLXX38dly5dwieffCI9l3RdF8bByHapDYdV8MZQa4L4OaMDJRmNSQYixvM0MnqTpICTZJTG8VFiRTMGGhuoxiacB5WdU8evSuqcTie+/vWvY2Nj4yEQyh5nr7zyCn76058in8+bjt2MWTPKIY1Ay0yOeRwDaLxPjMyiGYibFP1+H7u7u3juuefQarUQDocxHA6RTCZx4sQJ5PN56UVWKpVwcHAAr9eLW7duoVar4erVqwLeDg8Psbm5iVwuh+npaWQyGWxtbaFYLEodFGV8vG8IDlWr+fn5eQCQptJkgTTtqBbu+eefx1tvvYVms4l4PC4giBI8lWUmUOc2xwFeMoG8H7xer4ACbm+sUez3+1LHxr/z+Tzy+bzUfLG9Cc9brZ3jQovdbhfZIa38k8mk1LORiVcZS4JH7o9zpWlH5knFYlFMQ3gNNU2Tdg/qwgfHw8boPA7BKE1lGo0GAoGAPJN4XQgcuT8aGZE5c7vdoowg2CIwTiaTqFarcLvdKBaL6HQ6CAaDMheUtjcaDanR1PWjnnLJZFLqASnjVOWjTyK+XADuZy6Ug6FVA2eFFVZYYcXkYDNbp9OJW7duodFoIJFIiDtkJBKR3ko+nw+Li4uYnp7GwcEBbt26Jc2Dh8Mh7t27h1qthvPnz0uvo2g0ilAohEKhIPLHWCwGh8OBe/fuIRwOI5FIyCoz2bfRaCQJ0MLCAuLxOO7evYtbt25he3tbEpzt7W2cPHkSoVBI+slFIhHUajXEYjFhIZj8mDmsqUBHrdvpdrsigbLZbDIXmUwGV69exTe/+U0MBgN88sknIlNjPY4KtFTWSZUcGpNZdRs1jCDuODmkmvAaE+tJIE4FcMak2whYaFbR6/WkTstoF0/QZgRQ6nkvLS0JQC8Wiw9J7QaDARYWFrCwsGBqbPE4oR6T4NoIno2g1Qg2j9t2EkA8DsTp+pEhDt0l6/W6gJ7Lly+jUqng/fffR6VSwc7ODur1urQBoAEGjSwODg4ErNXrdbGeV11SWU81Go3QbDbRaDSEJeXCxMLCAg4ODqTWjACj1+vh9ddfx/3797G/vw+fz4dAICBSvH6/L+eqssgqGweMm5mQHeP4uGDDfaoOkKoBDv8m68doNptIp9PQdR3RaBSdTkdACFk19rIj+67WcPKaezyeMXdGLlSwR5sqK+Vnu90uRqMRwuGw9ESjQY8KyggYOX62IVBBmt/vx3A4RD6fl+cMQTiVA2zOzkbrnGuv1ystBXq9njCMdNbsdDrC8PF1r9cr+yI7R4komdl2uy3yTLvdjng8Dq/XK0DP6/VKT0HV/OXXHV8qAGfXrBo4K6ywwgorHh0EU+vr62i1WojFYggGg2MtAmq1mkgZHQ4Hbty4gXw+j2g0irm5OXQ6HRQKBei6jhMnToiVdiqVgq7ryGaz6Ha7CAaDUuezt7cn9tMulwvNZhN2u11AV6vVwvT0NBYXF3F4eIi33noLt2/fRrvdxvLysjATly5dkkR6eXkZ7XZ7LJmqVqsYDAaSiBgNFNRaLJXZIpigkQH7wzGB3NjYQDKZxPPPP492u42bN2+i2WyK69tx9VhGSaRqsKAmp2bM2KT9qFJKlfU7jlVTY5L0z+xzKkhjUmx0kVSlb+q4dV3H/Pw8Xn/9daytreEv//IvxdFTlVyyiXA+n0e3231oHn7eOE4GaQa4JrGV6r4eF8QZt6tUKvj000/x4osvIpVKyXegWCxibW1N5MAEZZSnkW0BjoBLPp9HpVKBx+MRhoVSQ4Ixsk69Xk/cAwlo3G43/H4/dnd3pR6OjNFwOMQrr7yCjY0NXLlyBXa7XVwXAYzJkoHxGjXjeasAXK2X43eJUr9arTZ2z3PO+L1jnRoAATjZbFZ6trEejGOkoYfqWGmz2eDz+TA3NydAhM8cmrkQyHBsHo8Hfr9/7F7ngs3s7CwymQx0/ch8pN/vC8gl48l6uGaziWazKZJ1Hp/v1et16b2pOkTabDZhujgmGrBEo9Gx7xqvU7lclto3mqhwUS2ZTEqTd8qYWevK5whr5HRdF9MpgjcA0tuO88ln7pOILxWAs9k02DSrBs4KK6ywworjw+12Y39/Hw6HA9FoFEtLSwiFQtB1Hevr63C73ZidncXKygrS6TTu3LmDdruNCxcuwOVyIZfLod/vw+l0IhAIYG9vT/obsZiftWz9fh/b29vo9XpYXFyUmpZ8Pg+Px4MTJ04gm80im83i5MmTmJqaQrPZxNWrV3H79m3EYjGkUins7e1hcXERp0+fxt27dxEIBLC6uirAye12w+v1IpvNistcuVyGrusiNVJX4IHxBtnAg4R9NBqJlNJmsyEcDktS/PHHHyORSOBrX/sams0m7t+/P7aKrfbFMjazZhiZCyNDpCb/6vvHSSlVuZwKriaBSrNjGbfh581YKTI6x0kH1c+wR2A4HEY0GhVArc653W7HzMzMmBuiCrYmMXLG19VzfBRTNgnEGq/bo6SBxnEYXx8MBlhfX8f58+fx+uuv4/z589jd3cXW1haCwSASiQTOnj2LaDSKzc1NrK+vCzhgA+lSqSSARQUmvD8IrtlKgNeH/cwIbIbDIUKhkIxhY2MDrVYLv/M7v4PRaISrV6+i3+8jHA5LzRhw5MRIQGM8Z8oNVTCvsmj8XrBOze/3m0on+Y+Oimo92mh01OeRsm6+R2MkXhOV+SKwowHJcDjE1NSUMPcEQKwlo5SUbpPAkeScQDgej6NSqYi0sl6vw+PxIJVKoV6vy8IDHVxVQBkOh5FOp0WaXSqVkEwm4fF4BLBzrihp5PhY50cDGsoqNe3ITbJcLsPj8aBarQpb5/P5UCqVpCaOtc80KtI0TUAhwavNZoPf70ckEoHf75fXuAhBp8x0Oi1s+pOILxWAA47q4CwGzgorrLDCiuPiiy++wHA4xNLSEiKRCGw2G/b29qTJ9qlTpzA9PY3bt29jb28PNpsNL7zwArrdLtLpNLrdLmZnZ9Fut1EoFBCPx+Hz+ZDL5XD79m0EAgGcPHkS5XJZ6jFOnjwpjFe9XkcikUAoFMLe3h5qtRqef/552Gw21Ot13Lp1C4eHh5ibmxOzi4sXL8LlcuH999/H4uIiVldXpamtx+NBs9nE7u4u4vE4pqamsL6+jtFohFAoJE1+6QCnOlIa5YLAg4RbdZPjPLXbbbz99tt444038PLLL6PX62FnZ+ehnkgq0DKTSALjIMEMyBk/p0opjYycUW5plDCq+ziOaVK340+zsasAyexzxv03Gg388R//8Vh9kjGGwyHee+89MbUwOnJOkoIaQdtx52qct0lsmhkDaTxnM3A46RhM9j/++GP87b/9t7GysgKn04kf/ehHuHv3Ls6cOYPFxUXU63WEw2E8/fTT6PV62N3dlabTrGFTDTp4L1N+rF4rLpbQwZGg4uzZs/j93/99NJtN/Kt/9a/gdrvx6quvwuFw4E/+5E/E3IL9APkd8Pl88p0AxuW6qquocfFAbdxNZkplXI0GOBwzG4+TnSqXy8hkMmJuxH3rui7AiZFMJkVyGIvFZKEnGAzKOXAO6V45GAzg9/ulcTZZsFwuh9FohGg0OmbLn8lkBJgR7JG9IztK8ExXR03T0Gq10O/3EYvFpBk3v7ccE2WR4XB4jLWjDJbzbrfbsbOzI9eW9v4ul0tkmjbbUQuBaDQqn2fzdx6PTpR0lySABI76QlIpwLposo5PKr50AM5u0ywGzgorrLDCimODDnipVArRaBS7u7uo1WqYnZ0VFuD69evY2dnB8vIylpaWUC6Xkc/nUa/XsbCwgEajgVKphHg8jlAoJKzc0tISer0e7t69C5fLhVAohOXlZXS7XVSrVQSDQayurmI4HOL+/fvweDz4xje+gUqlgo2NDZTLZRQKBSQSCUSjUfR6PTz77LNiwvD666+LBIwrygBQLpdx8uRJDIdD7O7ujrVFYALLInzggUzJ2FRYTchZR8IVcSZAtVoNP/jBD/B3/s7fwSuvvII333xT2gvwGKpEU61FUxNsJr1kCFVwpoIAFeyoIA54uOccj20ENZOkmeo4zMCO0WHTTB75qOC2Roml2XHa7fYYsDZjz8xYOaPJiHH7SWBW/X3SPBn3OwncmW1r3O7u3bv41//6X2NpaQkrKytIpVK4fv06Op0OTp8+jQsXLkgfMcqKaWyitgfgfikvJDBS2zXwviVzs7y8DJvNhm9961sAgH/37/4dSqUS/uAP/gCZTAZ/9Ed/hFqtJmYYdJ7kvUxQY1xAUIEcwYV6bYymJeFwGKVSCcAD90Nuy/OgnI9sfqPREFdOdYGC+yeDpI4BOGLCyJixVUC/34ff7xfHTbJrHo8H0WhUasempqZQKpXQ7/dlIYjsYKVSkR6Z7XYb7XZbTFTUdihs0k0ZIq9bOByW7zavIc+Xc+J0OqXdAQCRvKrAt16viwyUveFoVELZrKZp0oSdZif1el1YXC4uBINBxONxOV673RZgxwUCKhycTqc4oT6J+NIBOIdNw2BoATgrrLDCCismx4kTJxCNRhEMBrG1tYXhcIhnnnkGs7Oz6Ha7eP/997G7u4tnnnkGy8vLuH//vlhcLywsQNePrNFptb+/vw+n04np6WlpgE15zuzsLPx+P8rlsvScK5VKuH79Ok6ePIkXX3wR165dw1tvvQWXy4Xl5WWsrq6i0+kgEolA13Xs7u4iEAhgZWUFdrsd169fh91ux+zsLAAIa6E2Qw6FQpLcMPlkLRBXnY3AyIzBabVaArBYr8fjvPnmm/j2t7+NN954A2+//Tb29/fHakrUWjcVmBmPqwKMSWydGqpTJRMwtcaPMjKVEZnUUuBvwliZgTB1G7PjGH+aAUkV6BmBlAokVQBnNI1Rx2i270lMnVlMAnOTzssYZvM0HA7xzjvv4F/8i3+Bv//3/z6ee+45MRvZ29uD0+mUBvf379+Xe5UJtCoT7Ha7kmzb7XZMT0+LEQXHRBAXDocRCoWwv7+P7373u9jb20M0GsU/+2f/DB999BF+/OMfS1Lv9/sRCAQEUKg2/SpgAzC2UMF7zjgf6lhod68uZqgyQco06WZLJiubzQqTzm3ZCsDM8GQwGAgI9Xg8qNVq0vuSQJcAC4DU+vEYkUgEmUwG9Xodw+EQ2WwWAESmzeP0+32RcrIWlvND0xIaiNAYxe12y3k1m010Oh2EQiExJGELAkovdV0Xhk01VWk2mwgEAmLYRFk7f3LeWStI6Wy9XhcDE849W6fwnh2NRiKRLJfLMtdUIvC8n1R86QCc3a5h+IgHvxVWWGGFFf/LjunpaZRKJezv72MwGGBxcRGxWAyNRkPqS15++WWkUilsbGxgf39fVqd7vR7q9Tqi0Sj6/T4ODw/h9/ulpqXb7YpJChMHgr/z589L8+Fz587hwoUL+OCDD/DJJ5/Abrfj/PnzmJqawmg0QjweR6fTwfr6OpLJJBYWFtDv96WGZGpqSqz8Kbfr9XrSAsDv9yMajULTNHH9UxO94xgWYFyayML9UqkkLRg6nQ4ODg7wwx/+EN/5znfwxhtv4M///M+FiVQlY0ySVCbCKI3kuNQkjaDFyOapCbQaPEduRybCTK5oxmypv5sxkmbzM0lC+Kj5NTu22d/q68bPq9eRwE+V7006p0kgVQWGk943nrNZqCDT7Jy73S5+8IMfYDQa4dvf/jYuXbqE3d1dTE1NodPp4OrVq6jVaiiVSsjlcjg8PBQmmKwY67zU/msqwOE2BHilUgnb29tit//qq6/i8uXLePPNN/HRRx+J7b3P50MkEpE6O3XRgQBJZXoZvEeN7qcqiIhEImi1WpL4q9uS1el0OtJOpFqtotPpoFgsCmOnyjHV742u62LSQpasVCqhWq0iHA7LGCkrZC2erusIh8Pw+/0icQyFQrh3756Mm/3VOF46SRJU+/1+aJomTrdq43GHw4GVlRV0u11h57LZrNSpRSIRlMtlAek0ISFbSTmxsS8iZa61Wk2afHs8HrRarTHmlG6ZjUYD4XAY+XxeFtfYBJwLU6y5pPTTbrePtVxwu93iovrqq69iaWnp2O/BrzK+dADOYdOsGjgrrLDCCiuOjbt376JSqWBhYQGLi4sAjvpLUba0vLwMAPjss8+Qy+UwPz+PwWCAer0uTpX5fB4OhwNzc3OIRCKSYPl8PoRCIUkEvF4vkskkwuEwyuUyDg4OcOHCBSwuLuK9997DO++8A6fTiddee22sJ1ypVEI+n8epU6cQiUSwv7+PZrOJaDQKu92OfD6Pfr+PRCIhRfWzs7MoFAqSZJB9Y0KnslTHmYOoTA8Aaalgt9tRKBQAQOpm9vf38dZbb+GNN97Ab//2b+Pdd9/F1taWJHOsT1KdMFUQp0rSuNrOMQDmzalV1k1lq4yGJmpyzH3xc2Zg5TiWSn1f/Vt97ThgMwkITtqv8XOPek0FZ5NAoDHMWDqzn2ZjngQy1d+P+3yj0cA777wDh8OBcrmM1dVVpNNpJBIJfP3rX8c777yDO3fuIJfLoVqtPlQPSNkgJXIEMDQy4UJAt9sV0GS327GwsIC/+3f/Lm7fvo1//+//PXZ2duRe4eIEgYMqw1SPT3kfjWxUO3lV3sn7jy6J7XZbGsCrEku1Lo7HLBaL6PV6qFarKBQKwrSRYeJ3h98xVS7qcrlQqVSg6zpCoZA4L3Y6HQE3bIzNFgJshO7xeLC7uyvNtgmuOE7gAQPe6XTgcrng8XiEvQQeGLqQFeWzsd/vo9lsot1uSz+1TqcjrVMAoNVqAYCAMT63SqUSPB6PSD6DwSDy+TxKpRKCwaC4XNINk2AfgDQrr1arqFarY8Y0lMuSYeO1ZaPyer0utXFk+yhTn5qaeug78OuKLx2As2rgrLDCCiuseFTkcjmsra3h/PnzGA6H+Oijj9BqtbCwsCDGIpVKBcFgUOpGWq2WmIWUy2W43W6cPHkSPp8Ph4eH4nYWiUQEKMRiMczNzaHZbKJQKGAwGODy5csIBoP44z/+Y1y5cgXnzp3Diy++CLvdjlarhVqthsPDQ7hcLqytrWEwGOCzzz4TQ5Ner4d2uy3W29VqFSsrK4jFYtjZ2YHP55P+b36/X5Jct9stRgcq4GACSJYMMJfI9ft9qYGhy6Xb7Uav18O9e/dgs9nwne98B7/5m7+JH/zgB9jf3xfTCWMdmXpsIzvG8ajH5+9GZg4wN0jhtmpzZQbB5CSWTGVP1LngscyYLbOYJJOcFMcxb8e9dpwcU93mcV6btI1xe3WOJoHPR527rusolUr4wQ9+IPI3l8uFe/fuwe12Y25uDvF4HD/96U/HGGb13nQ4HFhaWoLL5UIsFkMsFsOHH36IbDYrjE04HBYp83e+8x3E43H85//8n6VJuLov9m/k/aMCJJUdVlli432t3o8EYwRPrO1SZaAEjmTS/H6/gJx6vY7Dw8OxujdVIqlKOrnP0WiEarUq9W0EflycIrghwCG7ZLfb0W63kcvlAByBsEqlgkAgINJCr9cr5h5kK9kwezAYwOv1wuv1isQwEomgUqmI8QnbrgyHQ+n7ls/nZT/Ag/55jUYDoVAITqdTerOxDUAoFEKpVJLrSnMTBpk9ytlZU0m3Tj4XPB4PwuGwzAkXALioQDBpsx25VKbTaQQCAczNzSGbzeJ73/ue1FP+uuNLB+AsF0orrLDCCiseFRcuXMDZs2eRzWaRy+Wg6zouXLgw1sx3cXERLpcLh4eHsNlsAuSGwyHm5+cRjUbFGr3T6WBmZkYsrm02GzweD+LxOHK5HPL5PMLhMM6cOYPRaIT/8l/+C27evInf+I3fwPnz56FpGvL5vKwQJ5NJpFIpkV9Go1Ep1AeOEhRKklZWVlCr1XD37l0AwNzcnIC9W7duCfvA1WUmlQBkJd/IPDGMgIJGLEzg2eR2MBjg3r17ePPNN/H666/jjTfewI9+9CNsbGwAgCRtarLJhNUIGs3qv45jr4xgzyivNDoEGhPeSeeuxiTANAkEmo2Trx0nuZy0r0cBsEeBw+OOPen9SWF2XOPvP88+q9Uq3nrrLei6jt/8zd+Epmm4desWyuUyvF4vYrEYnnvuOWxsbCCTyaDVaglw8fv9CIfDcLlcsnDidDqRSqUkof/a174Gj8eDQCCAW7du4dq1azg4OHioXjIUCiEUCo01zTYyTqo5yCTW1ex+ZL2pEQgCD/q9UdLI72uz2UQ2m0Wz2RwDfKwRo7SP9zJBIE2LOFa1RpBukPwONJtNAcZkx+bm5jAcDlGtVsUpl4wmP9vpdEQm3mw2AUCUCQSMwBGr1+v1EAgEUK/X0Ww24Xa7pY6MAJr7BjDGVAJH0lc+K9i2heoHtuOg2QjnnQ3KKf2mwYl6zdik2+PxiKSSplBsJs46OK/Xi0qlAofDgUAgIItxlJI+ifjSATiLgbPCCiussOJRceLECWxsbKDdbkPXdZw9e1ZqKbrdrkhjisWiyHNyuRwcDgdisRj8fj9KpRJarRY6nQ4CgQB6vR7K5TJ8Ph/8fj+SySSy2SxGoxEWFhYwOzuLe/fu4S/+4i/gcDjwt/7W3xKL683NTVn5vnTpEkKhEPL5PIrFImZnZ9FqtZDL5SSBodX39PQ09vf38f7772NtbQ3PPfccms0mBoMBisUiFhcXUalUJOHl6rau68IGABiz5WaoDbHVWis6U3J/TL56vR4+++wz9Ho9fOtb38LLL7+M0WiE3d1dtNttAYsqO6Eek0ka4ziGbJJ0UgUXKpBTQZzxmMdJJieFmggaWx8cB/CM7/08x3wcQHjcWM32M4m9O44JPO49MzCpvjdprO12G3/2Z3+Gg4MD/MN/+A/xwgsv4ObNm7h9+zZu3rwpgOeZZ57B1taW1IH+xm/8Bl588UVsb29jY2MDhUJB5Ixzc3NS67W7u4tPPvkEhUJBrOFVMM+mzbyf+Y/74kKDynKpEl1jTSmZO9aY0RKfr/N3Mj8EJ7TyVxuWq99dHqPZbMq+6R5Jhp0sGXu58TxY0wVAAFWn00EymcTBwQGKxSIikQimpqZkvGw/MBgMUKvVRHbp8XhEQqrrOnw+H2ZmZlCv18VEqVQqSSPser2OdrstAJmyydFohHA4PCaXpMEIWTMA4mSpGjMFg0FxiOT17PV6wriSrS0WizIfnEuXy4VEIiFSST6fqGpg+wZeHxpW+Xw+YUeDwaCM70nElw7AWTVwVlhhhRVWPCq++OILDAYDOBwOzMzMIJPJSJPlZDIpNRtMiPb39xEKhZBKpXBwcIB6vS62/gsLC8jlcrJtKBSC3+/H+vo6dF3H6uoqFhYW8Nd//de4cuUKpqence7cOVkhZkF/NBrFuXPn4PP5sL29jVqthtXVVXS7XfR6PSSTSQEqlBbt7++jXq/jtddew/z8PG7dugUAIt9krYnX6xU3SbpRMrFjEk/JodGEwcgo6LouEiomr8lkEg6HA71eD3fu3IHD4cCrr76Kb3/723jvvfdw8+ZNAJAEyiibZGJqZm5iBGIMlcHg+M1aEBh/8thGUGc2nuMYq0ms3SRAdJw08XHklZO2PQ5Y8f1JUsjjPmcMdV4nsX6PM4bjzvfatWu4f/8+lpaW8J3vfAf/6B/9I/z4xz9GOp2Gruu4fPkyHA6HADG2H3j++edx48YNYewoWT48PMT+/j6q1aok5eoYbTabmP2wXpRBtonfFXXMas2mCq7U+894rxEMqvc0TTO4f/ZEo2mJagrC/RM0GU2CWq2WNMhW6/bIvKnNuwnWisWiMGjxeBzBYFDYShqUdLtdATj83icSCWEK+RypVCoCvmq1mrh41ut1AJDaO8o6g8Gg1OBp2pEBSj6fx8zMjMg3CYLdbrf0lguHw2IuQvMSAMIKEgQDELUA6yI5/unpaQFnzWZTGFib7ajNAEGm1+sVp0vWv7EOmvWCTyq+dADuiIGzXCitsMIKK6yYHIPBAKurq7Db7djb20OhUEAsFoPP58Pm5iYCgYAU57daLUxNTWF+fl6Ans/nQyqVQiQSwfb2Nvr9Pk6fPi29je7cuYNgMIizZ8/CZrPhD//wD7G9vY3nnntOwE6/30elUsFwOEQ8HsfS0hKazSZ++tOfwul0Ym1tTWp5wuGwMGbhcBj1eh3FYhGxWAynT5+Gpmn44Q9/iF6vh7W1NZF+apom5+lwOMRhU008CdqYlKsslWp4Aown4q1Wawz8xWIx6dF069YtDAYD/M7v/A7eeOMN2Gy2MTmnGdsGQCRhKmg0kxfydSZqZkmzERQSoKrJOFkUNcyAjQo6jIBWfe84OeXjgMJHxXHbG1nESSBWPaefN45jE9UxGH83xnGS0EajgZs3b+LWrVtIpVJ46qmnsLy8jHa7jc8//xwOhwPPP/88isUiPB4PbDYbPvnkEzSbTRwcHCCTyciiB2vnjNeKQCIQCAgDRGClMm+qHJCfVxcKVFmurutjLJ16/6nMGyWalO2x9ms0GqFYLCKfzyOXy4l00u12CwBUQSI/SwkkQRCt+zleu90u7p6RSATAEYOXy+Wk7haA1PsS6NARU9OOpKper1dq5gigWS9IG38yfgREmUxG5oM1eWwP4HK5BDyylpY93ChP5PeWnwUegF46SLbbbZE60nDF5XIJw8hrwHtgdnZWzG16vZ40Gq/VaohEIqIm4PicTiei0ajUaVLiSWOaJxVfSgBn9YGzwgorrLDiuDhz5gza7TY2NzfR6/UwMzMjNRlerxezs7Oo1WoimQyHw9jb20Oz2UQsFpMCfDavnpmZkf5O2WwWs7OzOHfuHA4ODvDXf/3XaLfbePnll0V2xMTG5/NJi4AvvvgCzWYToVBIEil11b5SqSAWiwkDtri4KO6XmUwG8XgcCwsLGI1Gwv7xXHq9HtLptJgVEPyopiZMQAmCVBmiGaOgaZpIUPl+KpWSBIhy0ddffx3f+MY34PP58Pnnn0tiZUzu1Xo4s1ABp1oTZGQJzVoHqPs1AjD1b2M9oPH46nuPYqAepxbMDDwagdFxoPC4fanbHAfWjtvP44Cw445jnLPj9sP7Tf2ZzWaRyWTGpI202KfTIa+F2tNMldWp56HeN36/H7FYbKxfmCqfVJvRq+epLjyooF5t4M3PqTJN9T2y1fxMt9tFpVJBoVAQ8Ka6qapSTrUnIwEmgYTP55M6Xsoc/X4/Wq0WAoGAuF02m02x4CdACwaDcDgc0veNNV+0+2fjb46HBkmDwUD6pannRwBK8EXQpGmaODzyutIgKh6PC1vKRSfWJOu6Lsygph3VuXE7gio+Myl35zUg6FtcXBQjKhW8sYaOr/l8PmSzWQyHQ1kwY4uDWq2GeDw+Vv/3JOJLB+CcdptVA2eFFVZYYcWx0e12USgUpBaiUqkgl8uJnGp3dxdOpxPBYBDtdht37tyRfnFra2uo1WooFAoIBAJYWloS17R8Po+VlRXMzc3h6tWrWF9fRzgcxvPPPy/giX2emPz5/X7cv38fpVIJ0WhUVqEpp2JSFovFJFGhpIe9spxOJ2ZnZ1EqlXD//n1EIhFJmmKxGIrForQWYA0HV+0B8wRfTUKNiSuDjYbVBJ2ucL1eDzdv3kSz2cRv/dZv4etf/zpCoRCuXr2KXC4nq+NmgMUMmKlhZMfMnCjVVgLcJxNzs32qNU3GhP84KaQR5Jht+/MAqMcBb8a5MAMq6nEnjdkMXJmdj9n8G5k2AmB1G7PjqWG03GcY6xspL6TVu9m9YwyzeSUDFgwGEY1GxxgjlYGbBKzV4BhVxo7bqu6nBIy8/zRNE4aLIIzPjlwuh0ajIVJj43dP1/WxBtcERADGngmsieMzgA6TBDK1Wg3dbleAyezsLKanp9HpdNBut9FoNKS9AIGU1+tFu90W8EapImvLWM/L8RMY0+2R8kQCJrKeAIS9293dhcPhwPT0NHRdlxozm+2oDQpBH+WUABCNRtHpdARws4ebag5Dt0r2oQOOnruqLJMOlzQpqVarmJ6eloUu9vnkdWAd35OKXwjAaZq2DaAOYAhgoOv6VzRNiwH4nwEsA9gG8L/Wdb38iw3z8cNu1cBZYYUVVljxiNjY2EA8Hkc8HsedO3fQ7/cRi8UQCoVweHgIn8+HaDSKZrMplv5nzpzB9PQ07t69i3Q6jZmZGSwuLmI0GmFnZweDwQBPP/003G43fvSjH2EwGODkyZOyos4eb0xCpqenkclksL+/D03TcObMGVQqFWlIy4RsNBpJcX2r1YLf74fP50O1WkWv18PU1JSMO5vNIhgMyqp3JBJBNpsV+RT7FxFEMghqaPnPZBMYNzABxqWJTDBbrdZYXVAymRQTgvv376Pf7+M3f/M3cfnyZYTDYbzzzjs4ODgQa3UAD4E2HsOM8WAwyTUDDmRyjC0DVMBndBk0O4YR7Kj7n8TCTXrPeB7G/Zlt8/PEcYDcCHrNtjOCwUnbMDHntQPM+/WZ/X3cuB43HsXqmUk5yfyEQiFhm9R5MLJvZudsDNVNkkFTEpUxpPsjARgbXQNHzcfz+Tzy+fyYWyLBnsq+6bouYIg92Nh6gHVoBHd+vx+dTkfqvmKxmHxuMBigVCohFothYWEBwWAQ5XIZ/X4fvV4PXq93zBWSrB2ljQTRmqaNMXAEjGyS7fF4pNat0+mIw2M4HJYaOzpgbm1tybNtYWEB9Xod5XIZDocDs7OzKJfLUgPY7/exsLCAWq2GRqOBcrks86vKU4GjZ1symZT2KuyVx/fITGazWXi9XuRyObRaLSQSCTFPYWsHTdPg8/lQqVTGnDOfRPwyGLhv6LpeUP7+HwD8UNf1/0nTtP/hZ3//n38Jx3mscFgulFZYYYUVVjwiCN5++MMfolAo4MUXX0QqlcL9+/dFKlOv11EqleDz+XDmzBkMh0O8//77KBQKOHPmDBYWFpDP53F4eIiZmRmcPn0a+XweV69exfLyMmZnZ5HL5RAIBFCtVhEMBpHJZNDv9zE/P49yuYxMJoOlpSX4/X70+30xEtA0TXonOZ1OqZUjs8aak0QiAQBIp9MC/vgZl8uFra0t6LqO6elpAY+qBI2JIhMylf1SpVtGQEK2RQUrrKVhgpVKpYQx3N3dxZ/+6Z/iW9/6Fs6dO4dQKIQf//jH2NjYkNYMqimDysAYw2hqoia5KmOhMm8q66bK2dSf6v7U8zKybEbA9bhMmRqPAi2PAkJmob6vglEVwJjt4zigdtxxHrW9GTv5qH2ZzbPZPh8n1H3ThZFNusm8mY1fvQ+5SKECPFrqm90PvA9piEL2i3+rDbF1XZe+a+l0Go1GQ+q5+FmOk0wPjUB6vZ6AJp/PB6fTKeMi81StVoW5Yj1ZJpMR90Vd1zE7O4vFxUVsbW2hUChA0zQEAgH5/rvdbsRiMXS7XWmeDUCcKYEjJosLTTQ1sdvtCIfD0ostl8tJuxFKFGmM0uv1UCwWARy1IpiamoLb7Ybf78f+/j6i0SjK5SMeiH3lIpEI2u02Op2OyC/ZXmIwGCASicDj8aBWq8mYK5UKvF6vXGPWEOq6LuMj8GTfO6odGo0GbDabSDx1XZd5eVLxq5BQfgfAqz/7/f8L4Mf4NQK4IwbOMjGxwgorrLBicni9XvzgBz9Aq9XCSy+9hEgkglu3bsHtdiMejyOdTsPj8WB2dhYzMzMolUooFosYjUa4dOkSgsEgstksWq0WTp48iVAohO3tbezu7uLcuXOSPAQCAUnednZ24HK5kEwmkc/nkc1msbq6KkYE8XhcpJh2ux2zs7PQdR2bm5uw2+1IpVKy+k3rc8p4SqUSarWaNBKv1+v4y7/8S9jtdly8eBHtdhs+n28sqaJZAGVYZN0IgOhiZwYkjJI9Bpk4RiqVgt/vlyTtL//yL9FsNvGVr3wFv/Vbv4V33nkHd+/eFWdMNcEFMDYOI6ibxH4B4y0QzECcpmkCUAeDwUO1d6p081FA7Rdhzozz9zjs3aR9qJ8xGncY5Ywqi2oc8yTAZRynkaUynoPZvh7FyP08bNxx4FC9Dyj/8/l8Iq1T5ZkEHCpzNmlMKsNjbBBP0EW7fkqmyZIZmeROp4NMJoN0Oi2yZuM9zvufJh+UVqq1Z3wmqK0C6Lo4PT0tjFytVkMul0OtVkOxWMTc3ByCwSByuZzIsB0OB3w+HzqdjsgGycr7fL6xuj0amLBOTXWE9Pv9AI4MadiLjfV6fDayVcBwOJRnUyAQwHA4xPr6OqanpzEzM4N8Pg+n04lwOCzyUE3TUCwWpYVCoVAQN8lkMolgMIhSqQSXyyUOvF6vF7quy/nx2mQyGbhcLnmWqo3ICWY1TZOxUhFBhu9JxS8K4HQAP9A0TQfw/9Z1/d8CSOm6ngYAXdfTmqZNmX1Q07R/DOAfA8Di4uIvOIwH4bBr6PYtAGeFFVZYYcXk+E//6T9B0zRcuHABtVoN+/v7SCQSGA6H2N7eRjQaxYkTJ+Dz+VAul6Uo/plnnkGr1UK5XIbNZsPJkyfF1nwwGODs2bNjtRQ+nw/FYhHlchmrq6vo9XrY3d3FYDDAxYsXUa1WUSwWkUqlYLPZUC6XEQgEpBfT9evX4XK5sLi4KCvBKiDp9/vIZrOoVqsIhUKyQl0ul3HhwgXZV7lcRq/Xw2g0EpOCWq0mciq73S6r+MADFozOlypzBZhb5TNobEKGL5VKIRwOo9PpoFgs4q/+6q9QqVTw4osv4tvf/jZmZ2fx0UcfoVAooNvtjrliGpkOtaZNTcLN+sepUklVTslt1DYEKuvCY6iAzwhk1eMY50E9/qOAmBGAPI78cBKINHt/kvzT7Hhm+zoOtBprDh8Fdo9j1iaNxbj9JNBmnCfK25jA06xCrVcjEFEdIgn8J4E4IxunhsvlEvkygQaBIe8p1mOxzUE6nUar1RL2Wj0XHsfYB44giXJFOjASgBFoJBIJRKNRAIDH4xHmqFKpIJFIiAlIPp+X1iRswdDv95FIJOByuUSFwLERwLCPWzAYRKVSGWPDKRXt9/tj9wrNS/hsITgMBoNjEs92u41Wq4VsNius3d7eHsLh8Jjck+DMZjtqBxGPx+F0OpFOp6WeuNlsikEVZaVkIOnyS8BH9072muNnaXzSbrcRiURETjo9PW16z/464hcFcC/pun74M5D2lqZpdx73gz8De/8WAL7yla/80jSPdpsNg5H5qpAVVlhhhRVWAEeNvO12OxqNBprNpjg1DgYDnD59GrFYDMBRb6FCoYCFhQXMzc0hk8lge3sb8/PzWFhYgK7rYs0fiUTQarWk71q328UXX3wBv9+PxcVF7O/v45NPPsHKyoq0F3C5XEilUiJhnJqagtfrRaFQwNbWlqyga5om9S1sJgscNRpvt9uIxWLS4200GiEajUqTXJfLhUAgIE2BydLZ7XZpfKzapQ8GAzGMAB4kkmoiNgmkMNFlzy3gqM4kFovh5MmTKBaLyGQyeP/991EsFvH666/j8uXL8Pl8+Pjjj7G/vy+1Jjy+GdPD46q1bKqD5KO2N74GPGDdOA88X3WfKkNiVmfF3ye9xniUtNA47sdh5I5jJCe9bxyL8XyMMtJf5PiPG2Yg0wz8GV9XJYtOp1NqSclAqaDL6Aqpuk4+zvjV13k8v98PXT8y3giFQnjqqafQ7/fx2WefyXi73a48U1hrRWMM4/55/6nmO6w7ZB2X2kaDxyDjPxqNxmq0KKlUWwK02210u134fD6ROBK0hEIhAEAsFhMJYTgcFlDJfmkApKaPiyHdbhdut1tAJ2XddHnUdR2lUkmYxFAoNAZc4/G4ACqbzYZMJiPGLKVSSRadaHLidDqlBcDBwQFCoRBCoRCazaYAVafTKQCRcvLhcAi/3y8LYMFgEOl0Gna7Hd1uV/rUsYUApeiUk/48TPkvO34hAKfr+uHPfuY0TftjAF8FkNU0beZn7NsMgNwvYZyPHVYNnBVWWGGFFY8KJhehUAjhcFhq1VZXV6XQnv9WV1eRSCRw69Yt7O/v48yZM1hZWcFwOEQ+n4eu6yJn7HQ6aDQaKBQKODg4wPz8PDweD9577z0Ui0V87WtfQyqVEufGqakptFotkUK1Wi0UCgW0Wi2sra1hY2MDvV4PzzzzjKweb21tIRKJyOp2OBwWOQ9d5gDIivbGxgbq9bo08SWruL29jWazOdaXihb9Zn3YzGSFZuCN73e7XenLdO/ePayuruKll17Cm2++iZ2dHVy/fh3FYhGvvPIKLl68iLm5OfzkJz/B3bt3xUpctVJXWQi1Vo3HNIIzhhHkqftTQRyTT7VXnDon6n7Nzn9S/E2BzeOCvJ8nzECnGcgzSgMftU/jtpPA7XHvTQJuk46vgjAyXSp4I4BTDUNU1o2Ag8yYeg7HATcCPsob+XutVoPNdtTk+vd///cRj8fxp3/6pwK+ut2u9F/L5/PC6EyaB9Whk8wbx0zgFA6H5Xc6PNbrdcTjcWGfer2euM6Gw2GRkrZaLak9o7ywXq9jcXERnU4Hh4eHY+6Rbrdbni/9fl+k35VKRQxK2AA7GAyKGoCtB/jMGwwGUtPLhS9KGHX9qI4wn89D0x4YhvC65fN5AV2lUkme44FAAHa7Hfl8Hj6fT2qY1UbpPIbP58Ph4SHC4TAWFhaQyWQE/FWr1TGJLUHyYDDA1NQUXC6X1Muxh+iTir8xgNM0zQ/Aput6/We/vwHg/w7gTwH8AYD/6Wc//+SXMdDHDcuF0gorrLDCikeFzWbDzMwM7HY7KpUKgsGg9AiivXa/38fy8jIcDgeuXr2KarWK5557DlNTUygUCsJ22Ww26ZWkaZpYbZ86dQoAcOfOHdhsNnzzm9+EpmmoVquIRCIIhUJi161pGtLpNAKBADweD0KhEDweD+bn5+FyuRCLxZDNZvHFF19gYWFBGDgCOcqZmGgFg0EBQMARYJ2fnxcJJVeZ6TbHlXijAyRg3vvKCGQmJd+DwQC1Wg26rktNnsfjkeTy8PAQ3//+99FoNPD888/jm9/8JqLRKK5evYpisSjJk2qsosofjbVexlCTYYbRfZIJu/o6X2OSqSbSj5I1mv2ughEzNm5SmEkSj2PD1PE8jtxw0jGPA23G943bmv1txpZN+v1xWQ0uOqh1bJRNknVTFyeMUkmVcVb3p46BdW7q9VNZPIIqfj8oZ6zX67h+/To2Nzdhsx31P2s0Gkin0yiVSsK8GUEqf1f/qf3uCNYokeT9S5mh1+tFLBbD4uKi1NmSuWc9qtPpRCaTkX5mZKc0TRPZeK1WG/vusiUBF4fIppEVpLkK7fzZAoXb0nDE6/Wi0WgI+0fDJn6GJiG8PmThyIJxnlqtltSysd4um83C6XQiEAiI8yb7xAFHLGE4HEa5XBYWsFaribS21WrJHPOZwzYPPD9K6V0ulywyPan4RRi4FIA//tlkOgB8V9f1v9I07SqAP9Q07R8B2AXwe7/4MB8/jhg4qwbOCiussMKKyTE3Nwe3241CoYBYLIb5+XkMBgMp3vd4PFhdXUW73cbt27fh9Xpx/vx5OBwO7O3tjUkZaTNdr9dRq9UQjUaRSCRQLBaRz+eRSqVEoqnrOkKhEGw2GwqFAkKhkIAUyiXz+Tx6vZ6YCAQCAVy5cgX7+/uYnZ2VpCEej4skSK27A44SHE3T4HQ6hYljn6bt7W3MzMwgFAoJS8bkiKv+LpdL6ljMQJoRTJDFMpPcsd5ua2sLf/iHfyhOmwSZ5XIZb775Jg4ODvDqq6/ilVdeQSqVwvvvv4/d3V2ROqlJMsegmpMAD7ciMBu7ymyorJ3KzPEzKvBTWRrjPBj/Nr5uBvSOe28SKHqUnPJR7x0Hds2OZcacGQGZcX9q3aIR/BqPY8Z2GV83O5YKpgjeCNrUWjfVnIbXnWwM2VYVGKnMqxqqKQ7D7XYLWHC73eK+enh4iO9+97twu93SXLxWq+Hw8BDFYhGtVmtMYjzpeBwP903Gi/3LWD9ms9ng8/lE4phIJFAqlaSnHA2RuE8ai3AxiTLrlZUVxONx7O7uol6vi6slQRbZPT6/SqUSkskk2u22OGK2221ZnGHfOLZN4VwRCFKCqOs6+v2+uE3SmGRvb0/qiMvlMjRNg9vtlj5vqglKo9GQtik0j1Jl391uV1oT2Gw2pFIpFItF2Gw2TE1NCSPK5ue9Xg9Op3PsuVitVtHpdBAIBMZazTyp+BsDOF3XNwFcNHm9COA3f5FB/SJhMXBWWGGFFVY8KkajEarVKpLJJBKJBAqFgiQOanPvQqGA2dlZcW5sNpsIBoMIhUKo1+sifywUCrDZbIhEInC73ahWq2g2m1heXhZHOpfLJa5utLrudrtSw0aXtUKhgHg8LvKoW7duodVqYWlpCW63W8AnGSwW88/MzCCdTmNqakoSFZWVY0K3tLQkzm3pdBoHBweyks72AqojJDC5Dk59fxILxfmmKUGr1UIkEkE0GkUsFoOmaeh2u7h27RpKpRJee+01nDt3DtPT0/jpT3+KL774Qur3mLSqQIQr5mbjMIbqHGgGyIxySzWhnyQ35O/HgatHyQyNr08KM6bzUWG2zaPGOQngmckajXOjgl5jPaHa3kHdzsgwGkG0EXwSJJJlI3AjaON7DNWwRmVzJ52P2djU86RhCeV5TqdzbIGBEuLhcIh6vY69vT1UKhWRNBrvB/Xc1Dmj/DIQCIzVvhEA9vt9Yc/YHmBrawuapoltfiwWg67rYrwxGAzg8/kQDAbleXbixAl4vV54vV5cvHgRt27dwu7u7lhtqdPplNreRCIhLUkI8CiBHAwGCAaDcLvdog4gi8eFGE3TRLXAfnFk7Ox2u7CD4XAYpVIJfr9fetGxZYHdbhcZqsfjQSQSQbValedJr9dDNBpFv99HMpkcc9asVqvSa5MLYhyLpmnC6nHc/X5fenmyhs5ms0lbgicRv4o2Ak80rBo4K6ywwgorHhWDwQDz8/PChNlsNgQCAZEUFQpH7U2j0Si8Xq+sDDMJoXsckzs25uZqu9PpxIkTJzAcDqUHHO22gaNatUajIUDO5/Mhk8kgn89jZmYG0WgUrVYL1WoVtVpNXCqnp6cRCARwcHAgq/nT09OIRCJIp9PY3NzEYDCQxI11QKyBoWMcZZrpdBqxWExW3AkoGWZsisq6AQ9b9xsTYzX5JptG05ZOpyPSrna7jc3NTeTzebzwwgv46le/it/93d/FqVOn8N5772Fra0vGRTCg1rWpjIbRmET9nHpux7UpoLTLeL7qXHA74+9GIKn+bQaSjPswxqMkk3+TUMc5Cfgex7QZQZu6D1WOqH5HCAbMXEP5OfU4xvMj26bWuqkGJSqTpn6G2zBJJ7s0SRp8HHCkBLjT6QCA1NkNBgO4XC6RA7JZ9sHBAcrlsvQpU89LnXOOk+0teP+RbdM0TVoGGOeL/dMqlQoajYawdjTzqFarAI6ahrvdbni9XmGmXC4XZmZm8OMf/xjPPvssnn32Wanx5Zj5rCNYarVaiEajApY4F2QIu90ucrkjCww+g1qtloA0AiOaqdAh0ul0Ip/Pw+FwYHp6Go1GA+FwGP1+H/V6HR6PRyShZBx5/1SrVbhcLlFSEIRNTU2hVquhXq8jHA6LbJ1MJVsMsF6O15JSz2g0Kuwcry3rZP97lVD+Nxl2mw2DoQXgrLDCCiusmByLi4twOBzI5XLCnM3Pz2N7exu6rkti0O12x2zmmeiT0RoOh4hGo1hdXRXwRpfHXq+HWq0mLFOj0RCnN7q4MXGg5IgSSYIsMoBcXR8Oh9jY2EA2m0Wn08Hc3Jw0Ac9ms5iZmUEsFoPP54PP5xOmMB6PIxAIoFarYWlpCZFIBB9++KEkUQBkBV1NSpggkvkCJku+mJibMRpqsHaGEjau6LO3UqvVwrvvvoutrS18+9vfxjPPPINkMomf/OQnuHHjhhggqNb+6jFUoGBM0tXE2SiznBTclxHEqcBO/f04mSTjUcd8FKAz7ue4/ZvJII3HmDQG49/qZ41/8yfBlCpz5HGMIE6dv0n74+cIcFh3RkMPHs/MZZJsHB0IWcPFUIG/kUE0LghomoZwOAy32y2GJWTLVLv80WiEdrst4K3RaAgQOu5akm1TWUQaiBCoAuOurHRmDIfDuH//voyn3W7jxIkTGAwGaLfbqFar4qgYj8fR6/WQz+cxOzuLRqOBd999F5ubm9jb20OtVsMrr7wCANjc3BR3Xja1pmQxkUjINSEI4987Ozvigtvv91Eul0VqGgwGxa7f4XBIDzpKOu12uyw0BYNB1Go1Yc646OXxeERGyfuY6glKKCmpbLfbyOfzmJqaEnC3sLAgTcDD4bCwmQRpBJisveN9x/YCVCtYAO6XGBYDZ4UVVlhhxaOiWq2i1WohGAzC5/NhamoK9+7dg8/nE5MQ1juQ4aHV9WAwwNbWFkqlEhYXFzEzM4NKpYJMJoNEIoFEIoF+v49arYapqSl0Oh3UajXMzs6KpKharT5kDABAkiCPx4P79+9L3UetVgMANJtNsQNfW1uTZLPdbiORSIibHO3DW62WrEQPh0OkUilUKhW8+eabcDgcUsNRKBTEyZKGCUxImTCqNURGoMKkx5j8Tgoyk5yPXq+HWCwmrGG328XGxgb+43/8j3jhhRfw8ssv4/d+7/dw+vRpfPDBB9ja2hJJmCrzAsZZNpWlAx5me4x1dcYx8p8R7E1i5B5HQjnpfSPTyfEeFz/P+0bGzfi+GStktr3Z7+r26j8jEwdMrlM0Ow5BklrrRnaKYEHdVgVwfM/lcomMmaEam6jHNTZ05z5dLhdOnToFu92O9fV1qZekyQWZZ5p3ZLNZlEolNBoNqVE1m1v+VMEbwSbfI+ip1+sCGGjUwuba29vb4kY7HA4xPz8Ph8OBdruNSqUiUst4PC7mIGTW+v0+CoWC9Efb2dlBNptFJpNBu92WxSYCOV3XZZEIAAKBAAqFgvSiy2Qy8jqZ9mw2i0gkgoWFBVlI0vWjZub87pdKJdjtdnGY5Dk3Gg2RsLMW0OVyAYA85wjmCBrZSoWuwHNzc9Jvb3l5WRyEnU4n3G63tEmgKoCyXJ5zKBRCJpMRoMj6vl+EAf9F40sH4Ox2qwbOCiussMKK44PJwNTUFBwOB3Z3dzEajbC4uChSKzbiZUJdKpWwu7uLcrmM0WiEEydOIBqNIpvNiv02ZT8ejwfnzp0DcGR9HY/HxXWu1+shEolI0tfv94WJYhH9zs4O6vU65ufn4fP5BLQBwOrqKlKpFPb398UiXNd1xONxaZQLQOpQ2NuJsik22HU6nThz5gzK5TLW19dFZsXkiBIrFZgxoTc2uebv6jb83Wwb7pMJ4nA4RK/XQ6fTGWsyXKlU8NZbb+Hg4ADf+ta3cP78eSwvL+Pjjz/GRx99hMPDw7GedWoQeAMPN/s2hhHMERCqzCPDCMZUwGWUjpqxleo8qH8bwZLZXKr7V8di3E5lJsz2azYW476N709iyfg5FaxxTo21ZGzyTGBtNL4xbq+yXARyAB5iqdQxq3JJ2sCr4A0YdyI1gjfj+Xo8HiwsLKDdbuPg4EC25bnQAVbXdZTLZeTzeVSrVQFvk66Rehzj9bLb7WMMPc00+NPj8WBqagoAxDiJiyipVAoejwfFYhGlUkl6r9EB0ujKWK1WUalUZDFnamoKe3t7woapDBQblLMVwMzMDAqFgqgSaMDk9/sxHA6l7m96ehpTU1OiKnA4HNKAm8YjrCvM5/Pi5NlqtRAKhcT9kUYuZgsmNDWpVquYnZ3FcDhEoVDAzMyMKCBmZ2fh8/mwt7cHr9crEnqfz4dGozF2T7PGLplMSnsBFTTz+fCk4ksH4JyWC6UVVlhhhRWPiNFohOXlZXQ6HZRKJWiahtnZWezu7opkCTiypu73+2i326jX66jX64jFYmK3TTB26dIluFwuZLNZcVurVqsoFAq4ffu2JJQnT54cS7Z6vR7sdruAQpfLhStXrsDlcuHkyZMIBAJoNBrw+/1jbok3b94EcLTK7XK5pB0AcNRE2+v1otPpoF6vIxgMIhaLibNlvV7HyZMnYbfbEY/HkUwmAUD6QtGlrtvtjjn2AQ+klEZg8CjQokrngPEaJV3Xxc2TrEA0GkU0GoXf70ev18PNmzext7eHS5cu4eWXX8a3v/1tPPXUU3j33Xfx+eefC8tAYGisNeIxjW0Djrs/1P5vZoybmQTRyE6q8kHGcYDKOC9GQKXuzwjkVDmgykQZjzXpGpmBN+N4jSyhGctm/JufV8dkdp7q8QCIZFBtTG0mlTQycOwrVq/XHwJuRpBmdq7cjqy73+/HwcGBsL3G6+Tz+dDv97G9vS2sFc1KjGBXPS7vRS40cPxkwN1ut8g++TmCUpqnNBoNkR4PBgPEYjF4PB7kcjnZ58zMjPRjpBx8YWEBoVAIhUIBW1tbItE8e/YsgsEgcrkcBoMB3G434vE4Dg4OoOu6SCgrlQri8bg00o5EItjb25OFITJvdNel02W5XB6rIXO73XLvRiIRYd4cDgcqlQpCoZCAJY/HIwoFtlkhgw8c1QG2223E43F4vV7s7+/LMySdTiMSicBms2FnZwfA0bOzUqmImzCbc3s8Hlngm56elgWyQCAAt9stbKTR6OnXHV86AGe32SwGzgorrLDCimNjcXERxWIROzs78p98uVwWIGG327G9vY12u41oNAqXy4VAIIBUKoVkMikslM/nw+rqKnq9Hj7++GMEAgFks1lo2pEr2+effw6n04lIJILTp08jHA4jm83C5/OJ9bkqcbp58yYCgQAWFxelXo594sic0U2N/aFoJkDzEp/PN9ZQl65uun7U9ygcDsvqMpvw0iCFNWhMPsnGkSEjO2DW3Jq/qwm5KpMzyhhVxoUJEZMisoas3eOK/9tvv43bt2/jW9/6Fr761a/i937v93D27Fm899572NjYkFoj1VRDPa6x7QBDHScZQbXOzmzF3wzcmbFz6tyovx/Hdhn/niRjnCS1NANE6t9GyabZZ1SQqgIW4/jVcanSxOOAnXpc475VZs1mO3L6czgcwh6ZMXysSVpaWoLNZhN2etK8q4Y1xuNznJTQ8fvBhQyVrb106RIKhQJ++tOfisuralZiNt/HzSGPwXuVn6Xc2uVySa1XoVBANBqFzWZDvV5HNBqVWjX+TKVSAI4aflOaHQ6HEQwG0Wg0UCwWhdG7ePEiXnvtNXS7XVy9elVYtWazKUxou91GuVyGz+dDt9uVOtudnR0BZO12WxYOUqmUOD2ydQEbcavMYigUEjMRXdcFINItmOfmdDpFuqkCqGAwKIweWxDQbCadTsNms4laYjgcimQTOFJj9Pt9Ab+ssY1EIgCOnk02m00kod1uV1QOj5JG/yrjSwfgHHarBs4KK6ywworj48aNG2g0Grhw4QKi0agkqeFwGMViURpdLy8vS5NrNvqmuxulVVtbW/jwww+FLUulUpifn8ePf/xjuN1uqReZm5vDvXv3oGmaWFJz5ZfGBydOnEAymRxrKsv6GNarDIdDScK4ot7tdqU/Ew0C4vE4arUaKpWKtCyg6QHr8mjl7Xa7xRq8XC7Lqj6ZqGazKUmlWRsBlZFRWRdur36G+yFTpgIqumWq/4LBIBKJhLBxh4eH+A//4T/g448/xuuvv45nnnkGJ0+exI0bN3DlypUxIKcCyUmGJgQLBG0E52YmJ0xAVbZxEngzHsf4txk7ps6nkXk77hiPOr5RxmeUKj4qjAycEXyqgMvIihk/ozKhDDJe6jb8DBN11WFS/edwOKQnWzabRbPZHBuvCubV8arHU8ehaZqYavC+4WILJcWRSAQXLlzABx98gOvXr6PRaIhk0kxya/yumI2JzaIpneQ2PDZrxuhQSyljvV5HMplELBaTtgV0i6SaIBgMCvhhjd329rbUgT399NNi4lQul9Fut4U1I2tZr9fR7/fFrbFcLiMej+PUqVMineQ2/X4fkUhElACUUbJfG2WtbrcbkUgE+XxewHo6nYbf70elUoHNZpMemt1uVwxEqARoNBqYmpoSgyiHwyESTUrPHQ6HyDAHg4E8X7lQNxqNkEgk4Ha7USwWxcFyOBzK85HPWrr08vXp6elHfnd+VfGlA3BWHzgrrLDCCiseFe12G5cvX0Y0GkWlUpHVZhby0xWx0WigXC7j1KlTYsfNVexAIIDNzU2sr69jdnYWlUoFFy5cwIkTJ3Dt2jUUi0WRLz733HPSaoBOaqxN6Xa76Ha7OHfuHILBIDKZjKyKq4kbwRrZMq/XK9uykS+TD8qoWFOWz+fh8/kQDodlpZrNbnu9Hk6ePIlGozFWC0MZJWtgbDbbWE0cE1xVUgk8SFiZqKnvEbgRCBlrxwCIAQxlYUzeotEoIpEInE4n2u02rl27hq2tLXz1q1/Fq68eNQA/e/YsPvvsM3z44YfY2Ng4VkrJ82DCTet347iMPyeBNzO2zHhsYyJvJq1Tw7j9pPcmHfc41tA43kn7V0GOka3i+2b1b2YMHcMoRTSybip4IRCZm5tDsViE1+tFs9kUNqrdbmM0GiGfz5uCxUlsoTp+/qN5BQABH5yjdruN4XAotaR/+qd/ir29PbRaLdTrddP+bscBdAYBKL8TZLsBiGSR7DuZtWg0inw+LwYdsVgM/X4flUoFlUpFjhEKhaRVBl1sAWB/f1+UAMlkEidOnECz2USr1UI+nxdgODMzg1Qqhc3NTQFLrVZLpIzZbBbxeFyaYfMZFI/HEYlEpEdlJBKRlgis77PZbMKcEZTt7+/D6XSiWq1iMBhgdnZWvu+qEoHPnWQyKcoDqhv43CQ4JavGvnA0RiEbz3rKdDotPfLYzJsGJvF4XJp985lGI5knFV86AGe5UFphhRVWWPGoeOaZZ+B0OvH+++8DANbW1lAul6FpmiSENBZZW1uTlgMejweJRAL1eh03btwQRmxzcxPPPvss/H4/vv/972NzcxMnT57E2toaZmdnoWma1JFomgav14vhcCiJ0IULF6BpGjKZDGq1GpLJpNR40IiBiYvP58NwOMT169el3xv7K7HOo1wuSyJz/fp1nDlzRhrujkYjqb0LhUJSs5fP5xGNRjE9PS1mJ5RvNZtNNBoNYQUpTTTWY6kJstEAhEzCaDSSejVjwqsaiXCV3OfzyYo92QZVVvf222/j2rVreOmll/D888/jjTfewOXLl3H16lV8+OGHIoXlscxq34xST/Xc1J8qc3ScPNLsp9nvZnV1ajwOqDLuywgczMZrVkdnxhSa7csMKBqlkyqDpm6rNtc2gjbjNkaJJJNnytfI9LCeysio8qcZm6kCPAIbgkX2UGNtFe9lAvtcLoeDgwPpa9ZqtR6qCzVeF7N7gAw13TL5nrHlgVoL6Pf7MT09LcwklQCFQkGYIUoUY7EYWq0WAoGAzFen08H9+/fHasVWVlbgcrnEcr9YLErPtdFohO3tbZFX53I52U8wGITNZsPh4SHcbre4ys7NzYkkkm1W6vW6zAM/ywUzSrObzaaw/YFAALFYTBaQOFeqisDn84mtP3taUupeLBYBHNXFZbNZ9Ho9JJNJ1Go1aRdQKBQQCARgt9uRzWbhcDjENKZer8tiUyKREGaXjqIulwuxWEwcN59EfOkAnP1nAG7SqocVVlhhhRVWdLtd3L17F+FwGHNzcyKLq9frAB4kh9PT0+h2u9LI1ePxIJvNotVqyX/4BwcHeOqpp+D3+/GjH/0IXq8Xv/3bvy2r3/V6HYVCQRgf1pJwdfrUqVPodrvSYJYNxikxol01E7hAIIBWq4VUKiUNbgOBAMLhMGq1GjTtqKbkypUraLVauHTpkvSioytep9ORfkt37tzBnTt3kEwm4fP5kEgksLe3N1ZLR+aPBgvGGh/1H983Js0qIwc87KBoBqx4fnS2I5ALhUIie2q1WigUCvizP/szfPrpp3jppZfw4osv4tvf/jaee+45vPvuu7h69SoODw/Fht2s/QDHwjAybI9T86bOh3F/xpgEuNR9GMdmBrLM5JX87KT3jPs4DnQYj2uUXxpZMyMgUwGTCuDU11VzERWMAQ/6ntEwg38TABr3aTZGs+CCAkEUF224wKE6kZIVy+fzKJVK0kNMZd0mMW5GplNlKbk4wwbelBGqr3ERhYYqrVYLjUZDni9kjsgOko0ne+RyueR7n06nxdjI5XJhenoadrsdjUZD2pt4vV643W7pm8ZnFy3+C4WCuDECR2ye3W6H1+sVUKg6wFLeqOu6ACOeBxtnU1Jeq9Vgt9sFWDUaDTidTpGbU1oaDAZlcScQCODg4EDunWKxKDL3drstqgQuQqVSKZTLZTFuoVlLv99HIBBAu92W+yMej0trAdYCUkJbKpWsGrhfZjhsR1+M4UiHw24BOCussMIKKx6OQqGAxcVFzM/PS51YMBiU2jCuRtfrdYTDYUQikbFV+ZmZGVmJvnz5MrxeL9bX1/H0009jbm5OnOiAIyki9wdAZJPJZFIcKHO5HFwuF8LhMLrdrrBXBBler1d6D6msGHsoJZNJlEolseT+3ve+h5WVFTzzzDPQdR03btzAYDBAPB6Hz+dDPB7HYDBAPp9HKBTC2bNnRVJUrVaxsLAAANja2kK9XofL5RqrAVETb1VySBCmyiSZ0Js1A1dZNzUBNrJxam2c1+tFr9dDs9lEMBhEOByWRHhvbw/f+9738OMf/xjf/OY3cenSJfydv/N38Morr+DDDz/ElStXsLu7K2wix01gyURe0zRJzieBNSMbZwQej7uIzHM2ft5su0n7NQIHY42ZEVQ+ivlTGTTj8dXX1TYNXJzg3yrLxXtlkmGICuBUgGMW3FaV6qrnexx45hjIcpHxIgvExQ3gQW/DwWCAUqmEQqGAVqsl3wGjdFidG7NFCiPzRtDA77jdbofP54Ou6wLGBoMBEokEfD6fME5sZM3ni7FxfTAYFIMln8+HTqcDj8eDu3fvivGJy+XC6uoqEokEgCMjj0wmg+FwiJmZGZw5cwbdbhfb29vCePZ6PZF60sRkNBoJsDp16pTUC7P2jos/tPdnc2xKGkOhEEqlElwul8hied78rnPBCzha0AkGg/J3MpnE5uYmPB4P4vG4GEIlEgmUy2U0Gg1Eo1GMRiPUajWkUinUajUxSCqVSmIQwxpgANLw3Ol0So84t9uN4XAo/TbJHj6p+NIBOPvPvvCDkQ6H/REbW2GFFVZY8b/IWFhYgM/nw9bWFiqVChYWFlAoFFCtVrG2toZGo4FqtYpYLCYGAPV6HQ6HQ6Q9jUYDsVgMDocDxWJRHBObzSby+Tw6nY5IesgSsSB+aWkJ5XJZmtfS7ISySSZndGlTGwEzUQuFQpienkYwGMRoNEK5XMYHH3wAm82G559/XmRPNOigzfnc3BwSiYQwfEz6RqMRstksZmZm4PP5kM1mx5IfNsIFHjAlagJ7XC0ck2Emt8ZmzgRsx0kDadDAxIlNiwlwA4GA1EsVCgV897vfxXvvvYevf/3reOGFF/C7v/u7uHz5Mq5cuYKrV69ic3NTgBuZPdVQhec3qY7MTJZnfN0szICGClqMyb4aZn+rbJ3KvJmxiUbwZjy+8bVJUksVnBG4Gdkw1TGSNZRmxzI6S04CwUZWTb0HzeZE/YzKANIwRd0fv7eqhJZ1YOVyGdVqVYAb5b/Gc1Hn1+x99TxcLpcsaHBxxO/3iyTU5XKJE2IwGEQkEsHm5iY0TRMzFTVoXOT1eqFpGlZWVlCtVoXxyufz2NvbE8OmU6dOIZFICEBpNBrCgp0+fRqzs7O4ceMGNE2TWtlutysgDDhamCKwCYfDGA6HCAaDwlRxIYpgk6CUTr9ut1sWrgaDAex2OxKJhDz/fD4fPB6PqB1GoxH8fr9cz+npaWQyGWEdef1isZicD58HrVYLMzMzcg7RaFTe5/NP7RcYCATEBEWVcOr6Ub/NZrMpRjdPKr50AI4MnGVkYoUVVlhhxaTweDxIp9Pyn/nW1hZisRi+8pWvoFaroVAoIPL/b+/dYyRLz/O+56vqquq637uq790zs8Pd2eWSKy7WkhYUKUGWGFkKoyAxSMCKjFxkJRZgOQGcSAgQJUEAwbEd24DhhLYFUCZjRYBEWJIFS7xZIimKXO7O7s7eZqZnu2f63tVVXfd71ckf1c+7X5+t6tl79/S+P2DQdTl16qtzqs58z/e+7/MmEkgmk1IvwcgXIzNXrlyROhimV3ICS5tsn8+H4XCIcrmMYDCI6elprK6uotvtolgsykRvYWFBarqq1SoASIoSRQ4nYxSFdJbc2NgQ98VPf/rTePTRR09EvLrdLnK5HBYXF1Gv1/Hcc8/h+vXr+NSnPiWRvX6/LxPVWCyGbDYrk0umKXKSZUfUOPm2zULck353OqXdr8wdwZokluz7bDnA1f5Wq4VgMChRzVgsJpOura0tfOlLX8LXvvY1/PiP/zieeOIJ/NzP/Rw+9alP4fr16/j+97+PW7duiRsox2v3gXOnyHEc4wTbpAmdWwC5H7fFEG/b594tvk6LoI1L62I01y0s3Odh3PlziyU7TZHjpUCzn7P3ade12e8zyRRlnAjjbdte336NnS7KqJ5bZLJXIgWP7XbKc07HVxqCdDqdE6073GO1j+NpqbD2sWKUjSmcTDvkdoxEpdNpZDIZrK+vS30Wo/Y8powc89qQyWTku1ypVNDtdiUl2hiDH/mRHxEhWCwWpcfd4uIiZmdnUSgURKjyWkdBy+scF6P4/oySxWIxJJNJaakQDAZRLBYRCoWk/2Wr1RLBDIwWqTh2tm5gC4BGoyHXsGw2KxkQuVwOe3t7aLfbSCQSKBaLYszElGume9NRs9PpYHt7G+l0WjIYHMeRsbAhO487o4Q8Tx6PR67r5XIZfr9fBOVZcOEEnJcplAMVcIqiKMp47t27J6up+/v7WFpawqVLl3D37l3cvHlT7K0fe+wxPP/88xgMBuLAFovFEAwGUSqVJMUymUxKA9tWqyUF991uF+VyGY7jiF1/tVrF+vq62FhzYsWUSNaXsA6PPZzY0Jd1e51OB1/5ylfwzW9+E6urq/j85z+PTCYjKVWtVksc3lKplDT3vXr1quyL6VudTgc+nw+PPPIIGo2GpIBy1dtu2mu3BuBnJLZAGCcq3BGKcbVl4ybn9nYUEozEtVotiV70+32srq7i8ccfx0//9E/jG9/4Br71rW9he3sbX/ziF/H1r38dTz31FH70R38UP/ETP4GnnnoKL730Er7zne/gu9/9Lvb398eOw47EjYtguSNh7ufd0Sv7eNg1ZLYo4md1H9vTonLjBOf9hNI4MTouOsjx2I/ZJhxMbbQjatzHuAbatuhyj8/+/EwvtIWgW/i7j5Et1nibUWf+cxvX0CClXC6LCyoXCSY1bB6XVup+ngLHXtAA3ohKMupum/wAIwOOWCyGra0tMRThdSUSiYgBEhd0gsEgcrkcKpUKQqEQWq0Wtre3pS1INBrFww8/jMcffxx37txBsVhEpVLB/v4+5ubmkM1m0Wq1ZLGKqck8NhR95XL5RN3Y1NQUjo6OEAwGsbi4iIWFBezu7mJ6elrSD+n2y4heuVyWfdvni8eA+2aaZSKRkEWkubk5HB0dwePxIBQK4fDwUK5TrKezvzvxeBzhcFh6fsbjcRwcHGBqakoMUSqVCtrtNmZmZiQKSBMWjiUYDCIWi+Ho6Ei+M+5I6AfJhRNwrHvrjymGVhRFURRgFCFznFFj68uXL2NhYQE3btzArVu3EAwG8cM//MNYXl7G2toaBoMB8vk8+v0+Zmdn0e128dxzzyGbzSKfzyMWiwEYtSYoFAoyoaVY48oyozyHh4cyEaYhAZv00l2RE95IJCIpS6yRSyaTePHFF/Gd73wHlVBP1GgAAEb2SURBVEoFn/3sZ/Hwww9LxI51bHYdDKNWXq8XMzMzAEYTSNbUhUIhEWVMw1pYWMD+/j76/T6SySTa7TaKxaKkedVqNalxI/xcdjokb3NC5Y4ukfsJFHe0g/ugUQFd+Ngj66WXXsKVK1ewtrYm6WTb29v4yle+gq9+9av42Mc+hqeffhqPPvooHn/8ceRyOXz5y18WI4XThNG48blvjzPScAsjOzpk15CN+7zuyNSkMbgfG/fcJOxo0bg0wHGGJHZ0bVyU0Z0iOemY2Ntz3DS/4WTfFl3jagZpLMTz5/P5JKJCQw77s/T7fWnMzDYanU5H6lttt1T3woRb/LqPI7ex00c5fl4TWFfl8/nEVAMYNd5OpVJyPQEAn88nxh+2SUkwGMTh4SE+9rGP4ZFHHsFLL72EtbU11Go1qRNlZGxubg6Li4sol8vY3NzE/v4+MpkM0uk0NjY2xGDEtshnWqHf75eUQooaLloxC+Hu3btYWVnBpUuXcO/ePYRCIUSjUVQqFVQqFaTTaamlcxxHIqFMZZyamhIDEy5esR3BYDDA/Py8CDmfzycp6PF4XCKOHBevA0wHn56ellphx3EQDoeRTCZRr9cRj8cRj8eRy+Xg9XpxeHgoRjL8ndLtl1HNVCqFo6OjcT+jD4QLJ+C8lomJoiiKooyjVCqh3+9jeXkZ2WwWzz77LF555RWsrKxgZWVFUoto5z8YDLC6uoq7d+/ixo0bmJubE/vtVquFzc1NAJBV2kqlgnK5jGw2i0ajgVKpJOYfrJ1gkT5X/ZeWlsRcgSvRAGR71qJ8//vfx8bGhvSmy+VyIsYAyCSU6Z/ValVq9hqNBj7ykY9IjQrfi6lhjAByfHS6BCD94AqFgkxcmPLEyZfjOJJaOTU1JZE+Y95ogG3X89m4Bcok4TEuZZBun3QHLJfLePbZZ5FMJqW3VzQaRSgUkon617/+dXzrW9/C5cuX8eSTT2J5eVnMTorFoozXTh+0xzVOUJ0mssZF4twCzi2WAJwQve79cTwUx+5jN87Z860wToyNi77ZqYr2azlmd0rluOPCfbkjgfa+3W6h7u8G60gpLNkew+PxoF6vY2NjQ7YDIC1CqtWq9AWjYLPrK08Ty26jGD7nFq+2oQ9//zRSYYSHDarZsy2bzaJWq4nBCn9L5XJZBNXs7KwY+jC1e2ZmBr1eDwcHB6jVavJ+7XZb+kDu7Oxgd3cXt27dknTC7e1tEY3srwdAhFK/30elUpE0QrrC8vc9MzOD4XCIe/fuwRiDK1eunBA3vV4Py8vLaLVa4pjZ6XSQSqVORFH9fr/0X/P5fIhEIuj1erJts9mUlGn2cuOxYxqlLYpDoRBKpRI8nlFDcF6XKd64gNXv95HP55FIJPDyyy9LfR+/L/F4HI7jYGdnR9oc8DOcFRdOwGkNnKIoinI/uDJrjMG3v/1tFAoFXLp0CdPT01hfX8fc3BwymYz0VEokEvje976H9fV1LC8v4/Lly5iamkKtVpMUp1AohHA4jEKhgLW1NTEKYANbx3GkYL/VaombGhvdJhIJAJB6Czs1jSlUe3t78Pl8+OhHPyrpPx6PR4wDSCqVEstv7jMWi2Fubg5+vx/1el32TZc4pkwyTTOfz+PmzZuYn59HoVCA3+9HqVRCpVKRlCfWydEMhFE+ToooaLjfdyLQxj03LgrC96zValKbyNSuYDAoEzo2OmfU7oUXXsCLL76IcDiMxx9/HE899RT29vZw7949HB4eyoQZwJuEhI1bfEyKMNnCZJyhhjut0G0WM+59bbFkRzHfjYCzUxftx23x6RZ0fN9J7QK4X/fjhO/Hvmy2MOU/OzLH6FwsFpMJP1tfFAqFExEv7rder6NWq0lUlrVtdi3cuLTecRFR90KC/R2302E5Zi7GGGOkHQZ/S4zCx2IxcUkFRgsn/E4zSs9oUbValfvtdhv1eh03btyQPpChUAh+vx8PP/ww/H4/7ty5g6mpKbz66qtIJpOykJPL5ZBIJOQ7SXt91q9Vq1WpDwTeMEsBIIKO17JGo4H9/X2srq5ibW0N7XYbqVQK+/v7J/rU8Xpn1wLa0W8aoxhjkMlkpA8gF73YHoAi3Zg33DF5TDnu2dlZafYeDoexsLBwwuWWzchv374t6Z3T09NS9xeLxXDr1i0RdrFYDAcHB5KmexZcOAFHF0qNwCmKoiiTYOH666+/juFwiCeeeALlchm1Wg3Ly8vi9DY3N4dWq4XnnnsOjuPgqaeewuLiIobDIdrtNu7duydmJb1eDzs7O3jxxRfxyCOPSBrRcDhEJBKRovxOp4OZmRmJdtGcIB6PS/oPJ29cYaZdd7/fRyQSQSQSgd/vl4kh7cIdx5EUSQDSL8kYI/2d9vb2pHifDb2NMSISS6USkskk7ty5g3w+j0wmg+npaRQKBXQ6HWmhUKlUZHLKCWcgEEC/35f3BN4csRgXhXOLHXeUi9hGJ5NEki3kaKFOA5lms4lKpSLROJoe0DzmG9/4BowxWFlZwezsLC5duiROpTRHsM0y7lcD5Y7O2SYl4xpZn5ZWaB8bWyic9r626DktMjguPXRcaqwdjbOjt+NE56Sx2dG2SdEqpujZQorbMk1yamoKMzMzSKVSSCQSYjpycHCAdrstAs8YI98Hnkfa8dOunil648T5uMUC+7jajIsiukUk/7FfWzQalePICBRfZ8yo7qxQKMiCCd1ujRk18/b7/Tg8PEQsFsOXvvQluc39X7lyBYVCQaJnhUJBxFq9Xsfy8jIymYwcC4/HI2mKFGdMsaZIY1SOCyG28Do6OkI4HD6xeLW7uyu91yiAHMeRCJYxBkdHR3L9SCaTck4ymYzU36bTaYl8JZNJABARHg6H5boSCoVOtCro9/vY398XM5W5uTmsra2J2dHc3Bw2NjZQLBZlUYtRy2w2i52dHZTLZYnk8fik0+k3fV8+KC6cgNMInKIoinI/Dg4OxPqfRfE+n0+aerPu7fDwEJubm5ibm8P8/PwJm/+DgwOpf6NV/t7eHq5du4b5+Xmsr69LjUksFkOhUJBJYqPRkOhLr9eTlWSmVTEViBO6brcrtv9cOac1t50+yWbX3C8nU+FwGPV6HUdHR2KiwMbhXEUeDofw+XxYXFxEq9WSVgvD4RAzMzPiINfv91GtVqXOpFKpiOhk+hNwcjJrT3RtJ79x0TT7udMMO8a9xg2NTZrNJgKBgIjYdrstoi4YDIpzX6PRQLPZxMbGhtTopNNpLCws4ODgQAQAe2CNEz7uz+1OQaTwsaNw9j5sMTduP5NE3rg0SzIu3c9+nR2pc/dZs9/LHqvbWMSOuo17D7ewcYtW+z3dVv12bRsXQ2hf32w28dprr6FarUoKIr/TNONhtI01ZFxkYKrkJNxjG/e8W1Dz89qfx07BpXEJ3ScpgpiC7PF40Gq1xJXWcRxJ92MNbCgUEnOSdrstkbRWq4VcLidGIHNzc3j11Vdx5coVLC4uYm1tTUw62u02nn76aVnwYIoiI1VcOOJvhe6RFGp0mGw2mwiHwxL5CoVC6Pf7uHnzJj7+8Y/j+vXrYhrS7XYRj8fl+8Zm3BRHAE6kZrIZN81I2PaAEbtSqSRul0yHZAo7jVZodOL1ehGNRrG0tITNzU1x+7169Sr29/extbUFx3FEdAKQyF+xWES328XCwoL0BWRLmbPi4gk4L2vg1MREURRFGU+tVsPq6qqIEKbZcXIwPz8vUa9MJoPFxUVpZH10dIROp4NYLCY9iugO9/jjj8Pr9aJcLqNer2NmZgbJZBK1Wg3hcFi2o7kBravj8bikVlJosK6LqYmhUEgs/+1Jp90Al1E4TjI40d3d3RVXtWAwKCloPBZerxftdhvGGBmLx+NBIpE4UYPD1KW5uTkcHByIIQA/lzFGIgWcjDKVclzDbmILsUlCw81b3Z4pnBx7IBCQSTNFsp0Cy4lstVpFq9XC3bt3AQCJRAKhUAiJREJqgigIThNIHIMdtbLbMQBvdm4kp7lHjjODsUWSnSJ2mrhzv48tOmxssxJ73Pfb37gUSX5neG64HSNm/HxMhcvlcsjlcpienkYqlcLW1ha2t7dx9+5d2Zbj5iID+5vV63V5jMKN58w9vkkLBuPSKN0LDO7opH0s7PNCt0VG0nu9ntTrsR0GF3lqtZqIiUQigYWFBXg8HpRKJakf4/VmMBggFovJb5zRtuXlZeTzeRGFjjNycP3kJz+JRx99FHfv3pUm5XTnDAaDJ3os0tCDUSm6SgKjKD+PQyqVgsfjwdHRETKZjNSMsR0BhSX3xd8lFwRoLtXv96VelaKMPdwASMYBMBJ8jOrncjlxu+SiEtPIA4EAZmdnUSwW5Xtz9epVtNttaaXARTSv14t0Oo1QKIQ7d+7g6OgIyWQSwWAQm5ub8Hg8JzIdzoKLJ+A0AqcoiqLch+XlZVkRBt5wZGQNCgCp3YhEIpI+xIL4SCQi6TZM1Zqfn0e73ZbJECMFbFrLVK6ZmZkTDni5XE4ayUYiEUSjUanhYmpmOByW2g+60HF/gUBAGo1zItvtdjE7O4tqtYrt7W10u12USiVJpWSdHaNpsVgMfr8fe3t7yOVymJubk0kXIwWsu6HIZOPbo6MjcdbkxJaTc77ejsrZuCfAdrrfO2VcqqCdxsmeXozKsZaQNUZ04ZudnRVXS5/PJw6c3DfPld1vj5NSdx0Vv2Oc3LsNPuy/9vGw/7qfc/fgG7eNLcROq6Nz4xZgdvqnnfZpG5aMixa6x++O5NlppBRwjJpks1nMzc3Jd393dxd37tzBK6+8IpFeijf+Prvdrog2u3fbJOE26fs3Lm3Sfo37/ri0Wvt4ccGGvz1eVyiM2EetXq+fiGLz+AQCASwsLKBaraLX62FxcRF+vx+9Xg/7+/sIBAJirJHL5VAqlXBwcIDV1VXMz8+jXC5LlH44HOLq1auIRCLY3d09MVbW9dqmMJVKRdKPec4PDg7Q6XTg9/vRbrcxGAwkBZyW/pVKBcViURaEuIBFR95er4doNCrnJxQKyfWODcfZ3oSik8e3Wq2e+D3RIZgtHyj+6/W6tF2YnZ1FrVbD+vo6ms0mLl26hMFgIGn0FG6MLmYyGRweHqJarSISiSCZTKJQKKDX6yGdTiMajeL27dtv6ff0fnDhBBxr4PraB05RFEWZACd0gUBAbOjZiLvX66Fer0v/Mxoe0D6bE0PWsUSjUQQCARSLRemjNDc3h1QqJWk6fD/WrtCKOpFIIJfLyftFo1Hs7u7KJIj1IowY2YYjnU5H7Lfb7bakXwKQPlGbm5uIx+MIBALY2tqSfnX8vO12G9lsViKRTM+kMPD5fOh0OigWi7IazwliPp+H4zhiyMK0UH5eToaYEkpR4xZpdnTKnZb4ToSce3Lthu/d6XREyDEKRyE3PT0Nv9+PaDSKj3zkI/jc5z6HZ555BtevX8edO3fQ6/UkOkrRz/NE5zu7piiXy0lUqNFooN1un4hGTUrBJJMiaBTIvE1oQGLftyNEdtTONtpwCxJ7G9uUwz7G7hTQSamg9mey68HYwyyZTCKdTmN2dhbT09NS03bjxg2USiVJF2ZEGoAIBv6emAJLMxKeA/cCgvv42p/fTnkcJ9bc2CLNvm+nTbKdgd/vRyKRkLo3Ok2yZxprqzjecDiMSCQibRAajQauXbsGr9eLbreLWq0m1yBGsPb29tDr9fDQQw8hmUxKw2r+y+VyCIfDiMfj8Pv92N/fhzEjUxVGy5k+yZo3YPSbjkajqNVqAEYRrXK5DK/XK1FpGoswU4FGIMvLyxgOh6hWqzIefgd8Pp/U6vJaurOzI1kRfr9fersFAgExLOF3v1arSZsTXpsZiaQ5Da+lrONNp9Pw+Xy4e/cuGo2GmJ8w/Tafz6NYLGJjYwPdbhcrKysYDoeo1+tIJBKIx+O4e/euthF4L9EInKIoinI/6vU6ksmk1JfZK+6s+QoEAtjf35fJBCcsFGHss+Y4DjY2NjA1NYXDw0Ok02mZAFQqFYluURwy0hYMBhGJRMSBLhQKSbG8nQrFVW5G29hcOBaLwRgjKUi2cx9X25eWliSSl81mAbzRT4oTIPZpCofDmJmZkZV9pnMx9Yppg61WC4lEAltbW/B4POLwRmMDToRoQmALFXti7E5LG1dTdj8Rd9qketJj7u05YaYIpq27HXX47d/+bWQyGUSjUSwuLkprBkZ1mE7G+qZkMonHHnsMfr8fq6urePrppyUNbGNjAxsbG9jc3MTa2pqk5HLSPi6i9lZEnv35bPE27v44k5FxAmxSiue4erdx27ijdfye03wkEolgfn5ebPCPjo5w584dSb3jseB55gSdxiMU4IzoULSxvo2/50kRWfd3wn0dGPeacaKO33N3+wQKXKYN0jzH5/NhZ2dHvmOMGoZCoRP1X0ybLhaLCAaDuHr1qizAbG1tSSYBf3OdTgfBYBBLS0vo9/vY2dmRsbCGLpFIIBKJIJvNisChQKLhEiPVzC6geGMUPxaLSQbC9PS0COZIJCLXqpmZGRlPKpXC9va2HD/bYIYLSY1GA/l8XrIE2u22pJhy23K5LNcax3HQbDYxPz8vrRNsMckFmvn5eaTTaRSLRUkBpRBltoL9HnNzc+h0OrJQs7S0hFAohFdeeUVaMfR6PamZOysunIAL+kcXqWZnfEqBoiiKotAEhFEX/kfM1K1wOIytrS3s7u5KzRgnQI7joFwuS1Paw8NDSee5evUqYrEY9vf3cXh4eKI3FS2w2XCb6UThcBgApBifqTy2Uxz7wrF3Gx3eWq3WCaHEtCH2l3IcRwQiWxnQ6KHRaEj/pkQiIbUknIDSvpyGCa+++qpEmZgSVavV0Ov18Mgjj6DZbGJzc1MiA2wpAEDe027G7I7UjIuO3G+C5H7eHd2zBZ47Xc792uFwKOKg2WzKxLtareLOnTsIh8NyLGn5bp+/drstaZQ7Ozu4e/cuPB4P8vk8rl+/jo9+9KNYWFjA5cuX8clPfhI+nw+vv/46jo6OsLm5id3dXTHXoVMixbodHXMfH7u5tS2G+dc+B/zstsAYF3ED3tznzY602WOw6/n4foxgcsKbSCSQTCal1xhT9Q4ODnD79m3pu8iUZjvKNhwOMRgMxHjD/sfvPutCbTfJcef9tO/QuO+KO7Jmv8YdYbQXUDhuRvX9fj8ikYhE7re2tuT3ymgto3AAJOo2GAxQKBQQj8extLQkwqZYLEq9meM4SKfT2N7exmAwQCqVknNVqVTk+HF7uih+9atflV6RtgMnv29sD8Joeq1WE5FDF0gKJTYVpykMF3C4f7pQsrelHenr9XrSXmBvbw+xWEyOnX3umAFBwdVutxGPxzE1NYWjoyMMBgPMzMxgf39fhN7S0hJyuRz29/cl44ILVoyE85rb6/WQz+cRi8Xw8ssvwxiDbDaLaDSK7e1tWXjw+XzY3t5Gp9NBPB4/9bv1fnLhBFwiNHIeqrR6ZzwSRVEU5bxiTzhZDxaJRDA3N4dAIICNjQ0cHh4im82iVCpJrylg5KI4NzcnExOmEGazWXi9Xmxvb8uEhFEHTtY4GTbGiPGIMQalUgmBQAAApJFvt9vF/v6+ONaxMW84HMZwODxR00NRwQkPo2h2T7lgMCiv4QR5b28Pq6urCAQCqNVqMpmhiGFK0+Li4gnHzGAwiGvXruGZZ54Ro4VyuYxQKITbt2+j3W7LBJCTf06u3aLBGPMmUXe/NMpJE2v3PiZN3k+b1DuOc0IQ0KiGqZY81jyvPJc8nxQUrI2rVqt47rnn8OKLL0p0LpVKIZPJYHV1Faurq8jn81haWkIkEpG0VKYQVqtVlEolVKtVqclhCq0dYaKAYETIrvuz/7oFGHDSXZK/D4oRu06NE3i+xu5dxprPRCKBVColUSeKjHq9jr29Pdy4cQONRgONRkMWIBg54+/LFmX8LjKyY4s21h6yHm7cuR0XzbW/I6dFayfdt78r/Hw8PvzeMR3P4/FICh/FBrff3d2V22w+PT09LRGibreLubk5pNNpcbplvRht9OPxuESHstksPB6PfG9pjMKoWiKRkEUCO/WZ0Up+zwFI6iQXigBIk2wA0oKD1zV+J+PxuDj89vt9rK2tSV0jWyXwfLG9w2AwQCKRgN/vl8UTnn9eq3gOQqEQms0mYrEYAoEADg8PJSugUCjIgtrs7CwikQj29/dRr9cxNTWFdDqNRqMh+6LA5oJZLpfDnTt3pEdfOp0W99lsNivGVUxfn/S9+CC4cAIuHhwJuLIKOEVRFGUCTEtkwXo8Hkcmk4HjOLh37x7u3r2L5eVlFAoFsdhmmhYNPg4ODrC+vo75+XlcvnwZtVoNN2/elPQtTuZisZhMhji5C4fDksJZKpVORKZSqRRarZaYE7BIn+IBgNRzeL1exGIxGRsAsVBnTRxX05PJJJrNJlqtlpgmdDodLC0todvtilBst9tSB8bGw6FQCKurq9jY2AAAzM7OihHAq6++img0KivwKysrYsPPSTb7PXESatcHuVMp7RTLSUwSb28Hd92XO8Ji/2PvKU7C6V5JIcdaN/7jc+PcJY+OjlAqlXD79m385V/+JQKBgNQk5XI5qQWLRqOIx+OYm5tDJBKRiCrTBiuVitRN2ZHDZrMplvmMaFHg0VnQdjGlEKNIY12Sz+cT10CKUzp10v6etYP8nI1GQ3rq3b17F+VyWVLXaCjCNEOOw46w8bfD9Ei7hs0t7Gw31nHncNw5nhRtG/c9cn8v7X0SO+roNvHhY4zyM5LDmiy2PbDFMs8BF4CuXLkivyv+xoPBINLpNPx+P1qtFl5++WWJgHHBhhEo1tUOBgNks1lJ9zXGIJfLSVSQx5YimemYjMTze87omt/vl+geswtoanJ4eCjtVvb396XGDIA0Wvf7/fJ+zWYT6XQa09PTkuXAmkbWydF1kuNhDVuxWBTxxwWOfr+PhYUF5HI5FItF+Y0sLS3Jb4PXSh7baDSKdDotKeyBQECu+XTUzGQy8Pl8ODw8lJRLOmGeBRdWwGkETlEURZkEJ0hMVWLdRKFQQLVaFbtp9l27e/cuQqEQFhYWZIJ6eHiI5eVlXLt2TdzxAoEA0um02GHT+pyTTY/HIzVWrPugqyMb73IizjosAPLXTh9qNpvI5/Oyms0m4JxoDQYD1Go1EYGMhhhjkMlkYIzB5uamWI2zjQJrjxzHOVGT4/f7ce3aNTSbTemDFI1GsbKygsFggIODA+Tzefj9fkn7pMhgHRajRXa9G+GkepIlv3sSbnM/QeeOuLj3Mylt0x0RpCBmiwlGWeyUSkZA7KgVH7fPAccyGAxQqVRwdHSEe/fuweMZNWanCOD5z2azmJmZQTQaRTKZRCQSQSwWQyqVErFF8c6x8jxShDKixec4bjvtz349xR0n5xTlrI1kNOfo6Ai1Wk0iYhRg3B8XIez0Ro6DtYS2YKOwo7ijwOOCwCTB5hZo41Ii3ffHibtJ3yX7Pe3Imx3BtEU+23AMh0Ps7+9L6wpGwbkgw3YJ9tguX74sKctcBKHzqR3Bm5qawtLSEmKxmPSoTCQSqNfr0tNtZmZGFoEovBOJhETpAEgNKM8xx5VIJMTEiREs9oFkDR+Px9HREUKhEKanp3F0dIT5+Xns7e2JGVIul5PFBtajxeNxqYMLh8PSzoTpkolEQoQwv5N0Afb7/chms9ja2kK73ZbrGns6sjfczMwMut2uXPd5LGkSxUbwhUJBInWhUAi3bt2S1hWJRALb29uoVqtwHEcizGfFhRNwQZ8Xfq8H5aYKOEVRFGU8XBWnKcDu7q5Eifx+P0qlktSgvPDCC0gkEtLwmyvPly5dwqVLl/DMM8/g9u3bmJmZQS6XkxRERmKYNkTnRxb6swYjFotJNI424pywMLJBYcWULNbbVatVMUFoNBqIxWIyseREixE9utiVSiVJ02KNHuvZOGGi+xon+PF4XHrTcRJVqVSkboQpSqzXeeyxx9BqtfC9731P2jMwTY6T90lpkvx8dn0XRZ87He6tRuLs/Z/2mvvVyfExruC7I3OciLOOkQLITp3lYxR+xHaTtCfFjNIUi0W89tprY/u6UeyztxjT5vgdsgUGo1a2RTuFlR3psiNm5XL5ROSL78/n7WNjR8q4DYWjLdAo2ChmeL65vR0xBN4wuRkn2k5Lo510Lsed80n7c2NH3uzzxlpVppXyeLC2LRwOy7GxI552lJ5ptoFAALFYTBZA4vG4fL/a7TbW1takL2EsFkO73ZbI28zMDBzHQaFQQCqVkjTnK1euYHV1FaVSCXt7e5IeyQUZ/u4oqHgtM2bUH5LCi4206UgJAM1mU8a4ubkJv98vRiHNZlNE0OHhIYbDIdLptIg0mrQwyhYKhUR88f14/OjyygWmg4MDidax/tZxHKyurgKApIWy1pANx7vdLrxeL+bn56X+dHp6GolEAolEAq+88orU0dGUan9/X65DZ5k+CVxAAWeMQSzo0wicoiiKMpFoNIp8Po+pqSm8+uqrODw8lEgGXdwqlQquX7+OfD6PhYUF7O3tSfpRPp9HPp/HSy+9hBdeeAErKyvSZPfw8FAMMCqVClKpFEKh0AkjA0b/OHFjqg5Xnm1jCNaW0L2OY9ze3kaj0UA0GpUaGu6TkQpOftzuiqyJe/jhhzE9PS3ucjRBsWs/8vm8TC6r1SpCoZBMwNLpNJ5//nmZTHHiOT09jbW1NXG55ESdaZucuFI43K/WzW17b6fguaNnb6duzp6sTxJv48wt3PsFcELgcDHA4/G8SczZdWXuv9yeQp0wGuWO3vE40HGPE2pj3miKDZxsuM3Jpx0NtVMq7c9pu4aOay1AkcXPTxHIiBrFLmsCbVHm/sfHuY9x58M+1+PO+7jzwvGfVjd5moibNFG3jy/PC39r/E3znCUSCUlPZDsQnpNkMonFxUURt7wOxeNxiSJNT09L+xBG6Omm6PF4pB8ja1R3d3fRbreRTqcBvCHwo9EoIpGIiKNOpyNpgIzIBoNBqSPjsWN7DduYhWKO0ODj4OBAFhD4fWYq561bt5DP58U8iW0TWAvMz80FDNYF83o2Pz8vKYzxeBylUgk7OzsIh8MiOoE3Fg3C4TDW19ffZJ7CtMy5uTmUy2WpQWZEcGtrC81mEwsLC+Kmubm5KSmkHo9HsiTOigsn4AAgHpxCVQWcoiiKMoG5uTm0221cv34dhUIBly5dkmiU1+vFX/zFX2AwGOCRRx6RdB2uDtNs4qWXXsLu7i7y+bwYmHi9XkkTYl1HKBSSSAvt5hkB9Hq9ODg4kNQqTjI5IeSEPBqNSiqVMQYHBwdiskIHNbY+oGscTQNooMAURqZa0nCDphisvWHEiBNDTsAZAaQgqdfrODg4QCwWw9bWFjqdDhKJhPRx8nq9eOihh9DpdMRcgFEfthywI0LEnqzbURf7H4A3CRr3pHvcZP20GqlxQu20VfZxE3yKTTuixJQw1vPY0Tq7bs79z/6s3J7vx/sUEbag42uYxml/PndNntvgxP057M/ISTS3pVCj2OJ3yxZo9nHgfTvKZqfruc+hO911nKielEppp1lOOlf2Zx13bsdFed01b3Y0lD0ZWcvF1zAt0E4TpTgKBoPSOJ7XIWB0fWL6Ixdx2PKELp+M1BWLRYmW0wGXPR1twVUsFrG+vi5ut2xdwBRv222SaZa1Wk2ihvydMquAUS+m+0ajUdy5cwcApO8hACQSCUmptA1Ybt++DY/HIxb/dgsDGpswhbvb7SKfz2N/fx/AqHbN5/OhUChI9BEYRZWj0SgAnHDEZY0vU3Gz2SxWV1fRarWwt7cnwjWVSmF3dxfFYhFLS0vIZrNoNBrY3t6WdFNeY+3f5FlwIQVcIuRHudU962EoiqIo55S9vT1Z3b569aoU4juOI82v2ROtUCjIJCiTySAQCGB3dxderxcrKytichKJRMQFkNEu26GNdWE0G2g2m9jb2wMAsahn2hIAccjkPjiBo3Mfm253u11UKhXE43GZeNp1RbS5Z0SEn9U2W6F7Jl0o2WCYVCoVhEIhqdMrFovodDpYWVmRiMJwOESpVEKj0UAmkznhYpdOp3H79m2JQDBtDnizWADeSJm0nSpt4xOm8Xm93hOOi9x2kpgbd59jmCTu3EwSde73sP+yLo7Y0SyKMNv4whZxtihzCzv7OQo7Ms5AhY9z4mmLKNtcxP25bLMRW4S50yfdQs39WlvUcaFinFgeJ87cabD2554kzO4XpZuUVune3h6j3SqAz/P3zuPP88ZoeL/fh8/nQ6vVOnF+WV9Yr9exsrICY0Y90GhCQ/MOYwy63S5mZmZEmDPtmmOYnp5GrVZDu91GIpEQU5hr166Jmczm5iaOjo5w+fJlEXF0v/R4PNLfMBKJoFAonHC8Bd4wIWKLEH5mx3GkNUIikZCWA3w9TUny+by4TLKGlmYuoVAI9Xpdrg+RSESuU4lEQtwjaTp169YtSQGmCy6Ndowxslhmf+fZEmZlZQVer1fMlowZpbEWCgVsbW1hdnYWqVTqhFEQF8MoXt1tDj5oLqSAiwd9OKidnTOMoiiKcr45OjpCq9US2232Vup2u5KG2Gq1UKlUAIxWnTOZDNrtNvb29k6kFLJxN9MrKYJoCV8oFE5ELRzHkT5ErENjdIzmJ4PBqI8bJ8R0jazX6wgEApJy1Ov1TpgccFLBlgFMnep2uycmmYycsE4PAJaXl9FqtSRli+lZt27dwrVr16Q1AV0zo9Eo2u02Wq0WVlZWxKyAkx677ikYDGJ2dhZTU1PY3NxEtVo9IUL4+e1onB0FsQUPzWAYvXNHZ8aJM3uf/OsWjadF7MYJBluI8HE7cuiOGLoFq/0afm4uAFAA2ELOFnjcr22kcVpUyk6JdGOPy75tRzr51/7M7ggbz41tVOI+Pu59u1M1x50n97mZlA7pfpyf9a1EU21Oe+9xotg2BuHv1efzIZ1Oo9lsSvSSpje2SKfBDa8ZvI70er0T7pRsvt1oNGQRaDAYSIsLYLTIEgwGkUwm0W63ZdElHo/L79GYkVPojRs3kEgk4DjOCQdRmn9wEYaOljQmYY0ujwuvAUyFzOVyKJVKACD1c4z4ZzIZcUYNh8O4du2atJRgj7pSqQSPx4NUKiXXN16HGL2fnZ3F66+/jkqlIpkGrOejcy6jZbwG8vgCwMLCArxeL55//nmJUM7NzWFvbw+bm5tYWVlBOp1GvV7H5uYmgsEgHMcRsx8uWNkur2fBhRVwt/Zr999QURRF+VDi8XjEsazb7eL1118XN7fp6WlJmaS9ezKZlHoL1nYEAgHMzs4il8tJPQQnsMlkUqJarK8zxpxICQqHwxIdoygB3pgwcnJAEwmuADMVjylKxhipMwmFQid6OiWTSXmeK9OtVksmmZxw0mUwEAjA5/NJ3Vo0GsXy8rKsPBeLRVSrVbFFD4VCCAaD6HQ6WFhYQK1WEztuv9+ParWK/f19cYvrdDrIZDISSeSkmJPLSdE4WzDYjom2SDgtMmaLLvd+J73G3ua0yf+kqI4tADhht23v+ZzblMQWdO7jYAu3cVE4d4TO3se4SJUtsMY9ZkfT7LREO5XyfsfQfazGPT4u6meP1R2pmxRBtbcZl0Z52jnnNnw/jmvcseX7UXzRjIO/u3w+L2Y/4xYLer2eWNjTWZJ9JmnG4TijfoA0pjk6OgIAETTFYlHSH5mCnc1msba2hoODA+knubGxgXK5LIsDhCnh/X5feg7SGZLp2MViEZFI5E2iiNEzNlRndgINkhg5tGvZaMZCIcTffyqVgt/vx97eHvr9vlwfGo0Gstms2PV7PB7Mzs7i4OBAatb8fr+YmFBEc+GIqaBsDM7jEw6H8fzzz4up1OzsLKrVKgqFAvL5PFKpFGKxGHZ2dmQRrdfribEKRSkF41lxYQWcmpgoiqIok6BAoZjJZDKYn5+HMUZ6CXFSxZV0OlPSsj0UCiGTyaDVaolNdqfTkQL9GzduiLV1MBiU1fdOp4NgMCh2+3ZEiVEWphBRvHk8HiSTyRNihOmVgUAAjUbjxISRvd4YDWHEjnUuAGR1mulLFHjZbFYm8RR+dIrb2tqSx1h3QoMUjqVer+PFF1+UY+c4I7OEnZ2dE6K5VqvJ57dT6uxjwddSSNiOf+OiO7xtT1THiafTojLu59xCwr2NPdm3hQYn7ZPEgFus2lG9SYLRjnS5I0TuzzAu2mYfD3t/tquk/bj9vvZnfzupieOEs/13HOME6Lh92/ftY3e/SOS4MbqjuPz+28fIjnhysYMRcJLP58Wuvt1uS+ooa2EbjQbi8bhkAKyuriKbzSIajaJSqYjLreM4krJN50Y6wbKObWpqCrVaDY1GAz/zMz+D/f19lMtlTE1NYXV1FV6vF3t7exKpHwwGsg9glBK5tbWFYrGIXq+HhYUFZDIZTE9PY29vTwQeWyHwN8j6Opp6zM3NiXkT36dSqch1slKpIJFIYDgcIhaLoVQq4ejoCI899hjW19el5o1RPxqw8NhR6NXrdTFcCgaDODg4QLPZFOdIv98v7r78fPV6XZx0Q6EQXnnlFdRqNem52Ov1cO/ePcTjcWSzWWSzWWxubqLf78u1lWnnPG5ssJ5IJCZ+h99vxv+6H3DiQR9q7T4Gw7PLTVUURVHOL6wbY/1HKpUCMEqtZMoQGxbX63Xs7OyIcUAsFpPUxGazCccZWfZvbW0hnU6j2+3iz/7sz7C+vi4THKbvsEUAV3MBSASMk2fHcaSerVwuSxNu28mQq/L9fh+1Wg2JRALJZFJMSGwHSk4yWLtiiwjbJY8ul7YxRjAYRL/fx/7+PqrVKiqVijxuiy67Nsbj8eCHfuiHMD8/j42NDekrxzGHw2Hk83nE43FEo9ETdX5M8aTTG8fnbjbNibY7pdBtKsDnx4k3twAcF6maJB7cQsC9H46bn8F+f7cQ4vZ2Tdm4fdvjsdMbbSHnToN0P+Y+Xu40Sft93NEmO1XSvd39jpt7/OMif+5t7H2OO+73e619f1z00f2cfT4YXXNvYz83NTUlDaoZLc9ms7Kgw8bbbITNtgIzMzNot9uIRCJYWFjA/Py81MBSLNiRuWazKdGieDwutbEc28bGBhKJBDqdjqQ3MwJI0w+KzHA4jF6vJ+fx8PAQzWZTDFESiQSMMSfSE/n75mfPZDIi5oLBIFZWVlCtViVDoFar4ejoCNVqVSJt4XAYgUBAIonsX8eWEgCQTqfFuIUp4KxjY+0cDVpoikIxnMlkEAqF0Gw2ZQGOn3l6ehqLi4vIZDK4c+cOCoWC9FLs9Xq4c+cOpqenMTMzg6WlJRHB7NVpjJFrP8UsF9N4DT8LLmwEDgCqrR6SYf8Zj0ZRFEU5b2xtbZ2w5eeqdqFQkJVZTjKZqujxeJDP56Ueg5Ek1kRcuXIF09PT2N7eltq2XC4n9SoUc3wdYYNkvkcsFkOj0UC5XEYqlZL0LNa70IGtXC5L7yUA4ihniwfbWbLdbkudXCwWk8k8076A0QSfpguRSASDwUAcKjkpajQa4v5GUwA7+mGMwZUrV7CxsYGVlRWZyDLVi6v0uVzuRCQKgKSOUfjYkThbRIxLcbRTxHjfNg+ZVGflFnnc3zjhZ58nW8y4o4N26px9XACcGD/v2/sZF7Gy329SpG6SaLI/j73duGgiaxH5GrdAHHfbfp/7iTL3ebNrBe3n7ddwG3fLCPd+J0VW3cfTxj4G7oUBvrdb8DLaTHdXphTOzMygXC4jHo9Lo3MAErFuNpviaJtIJLCysoJ8Pi8LNnt7exKxo4OtbaDEutxIJCIp288//7yYjuzv7+PmzZviYFkqlZBIJBAOh9FsNkVAejwja/9isSgpjr1eD+l0Gh6PB7VaTY5ZvV6XsRtjxL2Xi0OseeN2bEtAAxaKP5/PB2MMms0mWq0W5ubmYIzB9va2XGt4fZidnZWIn8/nk4hdqVSSa2ij0ZDecmwETjMYO701EAggnU4jHA7j3r172NvbQzwex+zsLHw+H+7cuYNEIoF4PI5Lly5hZ2cHu7u74uwL4ES9s+M4ksYOQNqFnAXvWMAZYxYB/DaAPIAhgC84jvNPjDG/AeC/AVA43vTXHcf543c70LdDMjwScEfNrgo4RVEU5U34fD6xvCfFYhG5XA7z8/OSkthut6XmiyYc7HPElfFUKoV8Po9ut4uDgwNJE+I/rsL7/X6Z2EWjUXmcEzRGog4PD6Wwn5MImqlwktVqtXDv3j3Mzc2J8+OVK1dgzKjw3+/3o1wuY29vT+rv+DkAnBB5nKxx8s7xc0LLSRQn9pyIMmrH/TGdaXFxEV6vFwsLC4hEIlhfX5fIwszMjLQ3AN6o5/H5fNLsmO0UKCTr9frYWixOvt11X7bdPk1jbJFJuA9b2NhpnHZdIvBmIxD7tbbAonij4LBF0bi0T3d0aVwKp53G5/4cp6UFuqN8HAu/bwBONNK29+MWPW6x5BZGboHH17jF77jPOG7s9jhOe+60fdrbucfP7407qmhHcW2DHUZiGC2enp4WB8VMJiO/r3q9LpEjOwU5lUqhVCohEongiSeeQDwePxGpYoNpisNarYZYLCYCrVarIRgMSj3s2toa1tfXMTc3h/X1dXziE59APp9Hr9eTxRyKwGg0Kr9xv9+Po6OjE336wuGw2PGzDq5WqyESiUj/OjpgUvSl02ncu3dP0s0HgwHK5bK0E2EUzePxSI+2er2OmZkZTE1NidnJ/Pw8qtUqqtUqstksAMj1N5fLoVKpSCSRYrLRaCASicgCV61Wkxo+YOTqyxrAeDyO119/HUdHRwiHw5idnUUoFMLNmzcBAPF4HPl8HqVSCdvb25JJAECMm2juAgCRSETqfrm4dxa8mwhcH8D/4DjOc8aYKIBnjTFfPX7u/3Ic5x+8++G9M9Lh0X9Qh/UuLmXPahSKoijKeSWbzUrBO1d+U6kUZmZmUCqV3mQiwAlJvV6HMQb7+/siUmKxGMrlshS3M4rGWg5G32jtz9QhtwW41+tFpVJBuVxGJpNBvV4Xm3FjDJaXl2GMwfr6OnZ2dsQ1st/vY3l5GZ1OR9wmd3Z2sLW1hbm5OUxNTWF/fx/T09NIpVIingaDgdQC2jVOrJdj1I2RrWw2K6v2TIkaDAZSy0d7b8dxpB8T0404iY/H49jZ2RHxzNezga/H45FUTaaBUgS50xBtgULs2i67fmZctMcWWrY4syOC4/bP93YLP97me9uOhRR4dqRokvDifux92xEx+3l7+3Eih+/N51nLQ8GQTCYlQuoWwNzfODMQ+3H3e7qPmf1ZJ41xkqi1P9ukKN644zApGmkfk3HnhJFo3uY5npqaEsOKQCCAcDgsNVLBYBClUgnxeFwWfLgdhZ3f78fh4SESiQQeeeQRZLNZPPzww3j++efhOCOnWsdxpPbr4OBA2oQwOsfatX6/j/X1dbz22mvIZDIIh8Oo1+u4fv06UqkUjo6OkM1mRUBxIYi/n/39fREo/X4fyWQS4XAYR0dHYjBSKBQkAs/2BcPhUKJzCwsLklZNY5C1tTV4PKO+bl6vV3pNUjAOBgPMzc1J9gBNQDqdDgKBAGKxGJrNpoyN9cU0lOL1olQqIRqNIp1OIxaLoVqtyufjdYJppKFQCLdv35aFMqZa3rx5E61WC0tLS7IItre396boPq/prD+kwYrH45FWMGfFOxZwjuPsAtg9vl0zxrwKYP69Gti7IROhgDu70KaiKIpyfqGIYvpcLpeTFXGmRdqpTLTe73a72NjYQCqVwuzsrPQnYg1bMBiUiR6FECfINDxot9sSkTLGSD1ZqVRCrVaTCBWNEvx+v0wYd3d3xfGRqUfRaFRW76PRKA4PD9FutyXaRUc6pkIaY8SwxF5B5n1OFO/evSsNtym++L5bW1u4fPmyfB5OeLmiHwqFZNKTTqdljIzusd0BV7zt9KpCoQBjRmYy9iSb0TEAJybebijAOCZOXO1omh09swXGJDdEO43RFm/ASUMRvsZtbGKn4Nn7HSdc7G3HfU63qBuXTun+nNwXv/OM0vJ7zc/lnsAyFc1xJjfcdjPuM7qPz7j74/b7VsSYOyI3LgLHRQCKV9aJjtsXI5X2+Q6Hw5KezB5rrPmyI2hc4KFpBmvX6JL46KOPSop2uVwWsyGOnenSXMwAgIODA7mmVKtVlEolbGxsIJ/PS30rUx9tUULB5fGMbPlrtRqKxSKA0fWvWq2KeGNbDwqWYDAo0SxmJDCNkotcbBvg9/vFnZcOvQAk2s9U0qWlJfkM9XodkUgEnU4He3t7+MQnPoHbt2+jXC5jOBzi8uXL6PV6qFQqYjTFbAbbAZeRO7ZX4PPz8/Pw+XzSLJxtHUKhEO7duyc96XK5HBqNBnZ3d+V3y96YzGbg4kY8HhfRzujbA99GwBizAuAJAN8D8DSAXzHG/BcAfoBRlO5ozGt+CcAvAW+c1PeKbFQFnKIoijKZX/7lX35rTaHOGVevXv3A3uvSpUtjH//EJz7xgY1BURRFeTPv2oXSGBMB8HsAftVxnCqAfw7gMoCPYxSh+4fjXuc4zhccx3nScZwnmfP6XpEK++ExQKGmAk5RFEVRFEVRlIvDuxJwxhgfRuLty47j/D4AOI6z7zjOwHGcIYB/AeCpdz/Mt4fXY5AK+zUCpyiKoiiKoijKheIdCzgzSjL+VwBedRznH1mPz1qb/TyAl9758N45mUgAhdrZ5aYqiqIoiqIoiqK817ybGrinAfwCgBvGmOePH/t1AJ83xnwcgANgA8Dfehfv8Y7JRgMoaAROURRFURRFUZQLxLtxofw2gHFF4B9oz7dJZCIBvF5onPUwFEVRFEVRFEVR3jPetYnJeSUTGdXAuXuEKIqiKIqiKIqiPKhcWAGXi02j0x+i3Oyd9VAURVEURVEURVHeEy6sgPtIPgoAeHW3esYjURRFURRFURRFeW+4sALu2mwMAPCKCjhFURRFURRFUS4IF1bApSMB5GPTeHlHBZyiKIqiKIqiKBeDCyvgAODaXAyvqIBTFEVRFEVRFOWCcKEF3KNzMawV6mj3Bmc9FEVRFEVRFEVRlHfNhRZw12ZjGAwd3NqvnfVQFEVRFEVRFEVR3jUXWsA9OhcHAK2DUxRFURRFURTlQnChBdxCMohoYErr4BRFURRFURRFuRBcaAHn8Rg8MhfDyzuVsx6KoiiKoiiKoijKu+ZCCzgAeGIpgRvbFVTbvbMeiqIoiqIoiqIoyrviwgu4n7qWR2/g4JuvHZz1UBRFURRFURRFUd4VF17APbGYwEw0gH//0t5ZD0VRFEVRFEVRFOVdceEFnMdj8FOP5vAfbhbQ6mo/OEVRFEVRFEVRHlwuvIADgM88OotWb4A/v10466EoiqIoiqIoiqK8Yz4UAu6vXEohHvThX3/3Ljp9jcIpiqIoiqIoivJg8qEQcD6vB3/3Jx/Ct9cO8b//0StnPRxFURRFURRFUZR3xIdCwAHA33x6FT//xDz+8IVd9AbDsx6OoiiKoiiKoijK2+ZDI+AA4Gc+OotKq4fv3ime9VAURVEURVEURVHeNh8qAffJhzKITk/h//h3r6JQ65z1cBRFURRFURRFUd4WHyoBN+3z4v/+G5/A3VIDv/b7N856OIqiKIqiKIqiKG+LD5WAA4Cnr2Twqz95FV97dR9fe2X/rIejKIqiKIqiKIrylvnQCTgA+C+fXsVDMxH8xh++rM29FUVRFEVRFEV5YPhQCjj/lAf/22cfw9ZRC//sm2tnPRxFURRFURRFUZS3xIdSwAHAj1xO4+efmMf/8+d38Mc3duE4zlkPSVEURVEURVEU5VQ+tAIOAP7nv/YIHs7H8N99+Tl85h9/C3/5urYXUBRFURRFURTl/PKhFnDpSAC/99/+KP7+f/Y4Gt0+PveFv8R//cVnUO/0z3poiqIoiqIoiqIob+JDLeCAUT3cX39yEX/6d38Mf+8zH8E3bxbws//0W/j/nrmH4VDTKhVFURRFURRFOT+Y81D79eSTTzo/+MEPznoYAIA/u1XAP/zTm3hxq4JpnwcfnY/j0x+ZwUIyiE9/ZAbxoO+sh6goiqKMwRjzrOM4T571OBRFURTl/WTqrAdw3vjU1Sx+7KEM/t2NXTx79wjfe72E//NPbgIAAlMerKTD+PGHZ/DoXAw/9WgOgSnvGY9YURRFURRFUZQPCyrgxmCMwc8+PoeffXwOAHDU6GKj2MAfvrCLV3er+MKf38HQAUJ+Ly5lw7icjci/XCyAy9kIEiEfjDFn/EkURVEURVEURblIqIB7CyTDfiTDfjyxlAQA9AZD/MWdIr752gHuFOr4wcYR/u3zOyde4/d6EA/5kAz5kAj6kY74MZ8IYiEZRCoSQNDnRdDnRXR6CvGgD9HpKUSnffBPfejLEhVFURRFURRFmYAKuHeAz+vBp65m8amrWXms2e1j47CJ/Voba/t1FBtdVFpdHDV6KLe6uLVfwzdvHqDdG566b/+UB7FjMRcJTB0LuylEAj5EAl5ErNvhwNTon38KoYB39NfvRcg/ei4w5dEooKIoiqIoiqJcIFTAvUeE/FO4NhfDNcTw4x+ZGbuN4zgoNrooN3to9wZodgeotnqotHqod/qotXuotfuodfqjv8f3Dw8baHQGqLV7aHQHGLxFd0yPwUlxF/Ai5J9C2O9FKHD81z+FsOvxkN+LwJQX0z4Ppn1eTFu3Az6PPOf3qkBUFEVRFEVRlA8SFXAfIMYYZCIBZCKBd7wPx3HQ6Q9Ra/fR6PTR6PbR7I7EYLPTR6M7QLPbR6Pj+ivP91FsdHGv1ESzO0CjM3p9/x20TDAGmJ7yIugfpYNO+zwI+in4RvcDlgD0T43+Baa8CEx5EDi+7/d64PN6MOU1o78eA9+UBz4PHzOYOr7t93owxW34Go8HvqnRNj6vUVGpKIqiKIqiXFjeNwFnjPkMgH8CwAvgXzqO85vv13t9mDDGHIsjL7LRdy4E3XT7wxNCr90bot0foNMbot0boN0fjB7rDdDuDdDpj263uqPnWt3hcVSxj87xvkqNITrHr+v0R6/p9Ifo9k9PI323eD1GBJ7PazDl9cDnGf2l4Js6fnzqeNspr4HXM9rOe3x/yuM58dyUPH68rdfIe3FfXvufcd0/fsxz/Br+dT9mv27cY+598bYxgMcYeMzoGKiQVRRFURRFuXi8LwLOGOMF8M8A/FUAWwCeMcb8geM4r7wf76e8e0bRMT8Soff/vRzHQXcwEnIUdL3BEL2Bg/5wiP5g9Hx/4KA/GKI3PP47cNAbDNEfHm97vL087trHm7c/ua/B8I1t270h+sMBBsf3+8PR873B8Hi70ev4ON/7vPd6t8Wcx2Ak+o7FntfD22+Ivjc/d/I1nmMh6TGjxYQTt42BxwPZp9dYtz0UlyPR6THWfQPZtznelwFOvCdO3D/exgAGrtcDx5/n/tvC9R7j33v0Oj53cqxv3hZ443hw23Gfh+O033vc6yeNc+x7yTjv817cnwf3Oc58LXQxQFEURVHOEe9XBO4pAGuO47wOAMaY3wHwWQAq4BQYY47TKL2InvVg3iXDoSX2hkMMBg4Gzuj+iX+Oc2Jb92PD4/u8bT82bl/2/aHjYOhg9Hdo3XZwfH/S88747azbA8eB4zgYDnFy++MxONbtkeA9/lzOSKiPnrNvW6+x9us4gAO+brS9gzeeG442GN23Hj/5OufcC+oHmVPFIo4FoEs82q/xcrHAEvPc7hd+eBm/+KMrZ/0RFUVRFOWB4P0ScPMANq37WwD+ir2BMeaXAPwSACwtLb1Pw1CU9xePx8A/CocgCG3qfh5wLNF3X7E3drs3i8dJr38728ISqKe+1/FnGA5x33HhxP03Prvjfi/3cXHGC2fZ5/B+x2T0Osexj8XJMdnb2osCFPNDawypsP8D/IYoiqIoyoPN+yXgxuXbnFgbdxznCwC+AABPPvmkrpsrivKeIOmCYy9DiqIoiqIoDzbvV9foLQCL1v0FADsTtlUURVEURVEURVHeAu+XgHsGwEPGmFVjjB/A5wD8wfv0XoqiKIqiKIqiKB8K3pcUSsdx+saYXwHwJxi1Efgtx3Fefj/eS1EURVEURVEU5cPC+9YHznGcPwbwx+/X/hVFURRFURRFUT5svF8plIqiKIqiKIqiKMp7jAo4RVEURVEURVGUBwQVcIqiKIqiKIqiKA8IKuAURVEURVEURVEeEFTAKYqiKIqiKIqiPCCogFMURVEURVEURXlAUAGnKIqiKIqiKIrygKACTlEURVEURVEU5QFBBZyiKIqiKIqiKMoDggo4RVEURVEURVGUBwQVcIqiKIqiKIqiKA8IKuAURVEURVEURVEeEIzjOGc9BhhjCgDuvke7ywA4fI/29UHyII77QRwzoOP+oNFxf7B8mMe97DhO9r0YjKIoiqKcV86FgHsvMcb8wHGcJ896HG+XB3HcD+KYAR33B42O+4NFx60oiqIoFxtNoVQURVEURVEURXlAUAGnKIqiKIqiKIrygHARBdwXznoA75AHcdwP4pgBHfcHjY77g0XHrSiKoigXmAtXA6coiqIoiqIoinJRuYgROEVRFEVRFEVRlAuJCjhFURRFURRFUZQHhAsj4IwxnzHG3DTGrBlj/qezHs9pGGM2jDE3jDHPG2N+cPxYyhjzVWPM7eO/yXMwzt8yxhwYY16yHps4TmPMrx0f/5vGmJ8+m1FPHPdvGGO2j4/588aYn7GeO/NxG2MWjTHfNMa8aox52Rjzd44fP9fH+5Rxn/fjPW2M+b4x5oXjcf+vx4+f9+M9adzn+nhbY/EaY64bY/7o+P65Pt6KoiiKch65EDVwxhgvgFsA/iqALQDPAPi84zivnOnAJmCM2QDwpOM4h9Zjfx9AyXGc3zwWoEnHcf7Hsxrj8Zh+DEAdwG87jvPYaeM0xlwD8G8APAVgDsDXAFx1HGdwTsb9GwDqjuP8A9e252LcxphZALOO4zxnjIkCeBbAfwLgb+IcH+9Txv3Xcb6PtwEQdhynbozxAfg2gL8D4D/F+T7ek8b9GZzj422N578H8CSAmOM4P/sgXE8URVEU5bxxUSJwTwFYcxzndcdxugB+B8Bnz3hMb5fPAvji8e0vYjQJPlMcx/lzACXXw5PG+VkAv+M4TsdxnHUAaxidlw+cCeOexLkYt+M4u47jPHd8uwbgVQDzOOfH+5RxT+K8jNtxHKd+fNd3/M/B+T/ek8Y9iXMxbgAwxiwA+GsA/qVrfOf2eCuKoijKeeSiCLh5AJvW/S2cPok8axwAf2qMedYY80vHj+Ucx9kFRpNiADNnNrrTmTTOB+Ec/Iox5sXjFEumap27cRtjVgA8AeB7eICOt2vcwDk/3sfpfM8DOADwVcdxHojjPWHcwDk/3gD+MYC/B2BoPXbuj7eiKIqinDcuioAzYx47z7mhTzuO80MA/iMAf/s45e9B57yfg38O4DKAjwPYBfAPjx8/V+M2xkQA/B6AX3Ucp3rapmMeO0/jPvfH23GcgeM4HwewAOApY8xjp2x+3sd9ro+3MeZnARw4jvPsW33JmMfO0/VEURRFUc6MiyLgtgAsWvcXAOyc0Vjui+M4O8d/DwB8BaPUoP3jeiLWFR2c3QhPZdI4z/U5cBxn/3jiOwTwL/BGOta5GfdxTdPvAfiy4zi/f/zwuT/e48b9IBxv4jhOGcB/wKiO7Nwfb2KP+wE43k8D+I+P639/B8BPGGO+hAfoeCuKoijKeeGiCLhnADxkjFk1xvgBfA7AH5zxmMZijAkfmz3AGBMG8FMAXsJovL94vNkvAvi3ZzPC+zJpnH8A4HPGmIAxZhXAQwC+fwbjGwsnicf8PEbHHDgn4z42p/hXAF51HOcfWU+d6+M9adwPwPHOGmMSx7eDAH4SwGs4/8d77LjP+/F2HOfXHMdZcBxnBaPr8zccx/kbOOfHW1EURVHOI1NnPYD3Asdx+saYXwHwJwC8AH7LcZyXz3hYk8gB+Mpo3ospAP+v4zj/3hjzDIDfNcb8VwDuAfjPz3CMAABjzL8B8GkAGWPMFoD/BcBvYsw4Hcd52RjzuwBeAdAH8LfP0Olu3Lg/bYz5OEZpWBsA/hZwrsb9NIBfAHDjuL4JAH4d5/94Txr358/58Z4F8MVjB1sPgN91HOePjDHfxfk+3pPG/a/P+fGexHn/fiuKoijKueNCtBFQFEVRFEVRFEX5MHBRUigVRVEURVEURVEuPCrgFEVRFEVRFEVRHhBUwCmKoiiKoiiKojwgqIBTFEVRFEVRFEV5QFABpyiKoiiKoiiK8oCgAk5RFEVRFEVRFOUBQQWcoiiKoiiKoijKA8L/D6FuNkSszriVAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -3176,7 +3176,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAGoCAYAAAAHGAe8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eZxlyV0diJ94+77kVlVZS1dXV3ep1d1SN2oJqbULScYGhLfBeLANxjbe8QK2wcYDMwYGbGP/hjFe8ICBYfWw2GCx2MYYIWtBLcmS6JZa6r1rycr17Uvmey9+f9x3Is+Lui8zq7dSJ3E+n/xU5nv3xo0bEffW98T5LsZai4CAgICAgICAgICAgIAvfiRudQcCAgICAgICAgICAgICjoZA4AICAgICAgICAgICAl4hCAQuICAgICAgICAgICDgFYJA4AICAgICAgICAgICAl4hCAQuICAgICAgICAgICDgFYLUre4AACwtLdnz58/f6m4EBAQEBLyC8fGPf3zTWrt8q/sREBAQEBDwUuKLgsCdP38eDz/88K3uRkBAQEDAKxjGmGdudR8CAgICAgJeagQXyoCAgICAgICAgICAgFcIAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIDiVwxpizxpjfMsZ81hjziDHmb0w/XzDG/BdjzBem/9blnG83xjxujHnMGPMHXsobCAgICAgICAgICAgI+P2CoyhwIwDfYq29G8AbAfxVY8yrAXwbgN+01t4J4Denf2P63dcCuAfAlwP4l8aY5EvR+YCAgICAgICAgICAgN9POJTAWWuvWWs/Mf29DeCzAE4D+GoAPz497McB/OHp718N4GettUNr7VMAHgfwhhe53wEBAQEBAQEBAQEBAb/vcFMxcMaY8wAeAPBRACestdeAiOQBWJkedhrAc3La5elnflvfZIx52Bjz8MbGxvPoekBAQEBAQEBAQEBAwO8vHJnAGWNKAH4BwN+01rYOOjTmM3vDB9b+sLX2QWvtg8vLy0ftxly0Bnv4od96HJ+9dlDXAgICAgICAgICAgICXrk4EoEzxqQRkbefstb+4vTj68aYU9PvTwFYn35+GcBZOf0MgKsvTnfno9Xfwz/5jcfwmcvNl/pSAQEBAQEBAQEBAQEBtwRHyUJpAPwIgM9aa/+ZfPXLAL5++vvXA/iP8vnXGmOyxpjbAdwJ4HdfvC7P7ScAwN4o9gUEBAQEBAQEBAQEBBwLpI5wzJsB/GkAnzHG/M/pZ38fwPcB+PfGmD8H4FkA/wsAWGsfMcb8ewCPIspg+VetteMXu+M+6LdpA38LCAgICAgICAgICDimOJTAWWs/iPi4NgD4sjnnfA+A73kB/bppTAW4oL8FBAQEBAQEBAQEBBxb3FQWyi9mmCnHDApcQEBAQEBAQEBAQMBxxfEhcE6BCwwuICAgICAgICAgIOB44vgQuOm/QYELCAgICAgICAgICDiuODYEDiEGLiAgICAgICAgICDgmOPYEDjjGFygcAEBAQEBAQEBAQEBxxPHh8AFBS4gICAgICAgICAg4Jjj+BC46b9BgAsICAgICAgICAgIOK44PgTOsIxAYHABAQEBAQEBAQEBAccTx4fATf8N9C0gICAgICAgICAg4Lji+BC4kMMkICAgICAgICAgIOCY4/gQuKkGF/hbQEBAQEBAQEBAQMBxxbEhcPtVBAKFCwgICAgICAgICAg4njg2BI4ulAEBAQEBAQEBAQEBAccVx4fATf8NAlxAQEBAQEBAQEBAwHHF8SFwLCMQouACAgICAgICAgICAo4pjg+Bm/4bFLiAgICAgICAgICAgOOK40PgmMTk1nYjICAgICAgICAgICDgJcPxIXAsIxAYXEBAQEBAQEBAQEDAMcXxIXBOgQsMLiAgICAgICAgICDgeOLYEDgiKHABAQEBAQEBAQEBAccVx4bAhTpwAQEBAQEBAQEBAQHHHceHwLkYuCDBBQQEBAQEBAQEBAQcTxwfAscYuMDfAgICAgICAgICAgKOKY4PgZv+G/hbQEBAQEBAQEBAQMBxxfEhcCaUEQgICAgICAgICAgION44PgRu+m8oIxAQEBAQEBAQEBAQcFxxfAhcyEIZEBAQEBDwRQNjzL82xvzDW92POBhj3mqMeexW9yMgICDg+eDYEDgiuFAGBAQEBBwFxhhrjOkaYzrTn//H+/5vGWPWjDFNY8yPGmOy8t2CMeaXpuc/Y4z5X1/+O/jihrX2L1lr/9Gt7gfg5voi/7bW/o619tKLfI2/Y4z5PWNM2xjzlDHm73jfnzfG/JYxpmeM+Zwx5t3e9399el7LGPOwMeYtB1zraWNMX9buf55z3L/z733az81pX++Vz99sjPkPN3nP/90YM5j2YdMY84vGmFM308ZLCWPMNxhjxjJO/Fm91X2LgzHmzxtjHp/28dcP6qcx5m5jzH+bvp8eN8b8Efnu67z77U3Xweum3z/vtWqM+QpjzAeNMY3p+/HfGmPK8v2CMebnputh0xjzU8aYyvS7t8bMhTXG/LHp9/caY35jet4NFv1B793D7nl6zJcYYz4w/f66MeZv3OwcTdt59fQZ3Zn+/FdjzKvle2OM+X5jzNb05x8bE0lNxpiUMeZnp+P3a97Y/QNjzN86Sh+ODYEzjIG7xf0ICAgICHhpMBqNXopmX2utLU1//jw/NMb8AQDfBuDLAJwHcAHA/y7n/RCAXQAnAHwdgH9ljLnnpejgywFjTOpW9+H54ouo7wbAnwFQB/DlAP6aMeZr5fufAfBJAIsA/gGAnzfGLAOAMeZLAXwfgD8OoArgRwD8kjEmecD1vkrW7ntv6ExEAO/wPjsF4M8hWs//enpNjuEPAPibN3nPAPDXrLUlABcBlAD80+fRxkuJD8s48eeqf1DcOrrZtfVC1qIx5u0AvhfAVwNYAPAUojUz7zr/EcB/mh77TQB+0hhzFwBYa39K7xfAXwHwJIBPsAk8z7WKaH1+N4BVAHcDOAPgn8i53z1t9wKi9XcCwHdN+/U7Xr++EkAHwK9Pz90D8O8RrdE4zH3vHnbPxpil6XX+zfS+LgKI3fg4Aq4ielYXACwB+GUAPyvffxOAPwzgtQBeM73Pvzj97o8ioitLAFr83BhzO4CvAvB/H6UDx4bAOQQJLiAgIODY4Pz58/j+7/9+vOY1r0GxWHypSFwcvh7Aj1hrH7HW7gD4RwC+AQCMMUUAfwzAP7TWdqy1H0T0H/ifPkrDxpi8MeYHpjvIzeludn763fuMMY9Md2f/uzHmbjnv6enO+aenO9A/Yow5Md3FbU93gevTY89Pd5+/yRhz1RhzzRjzLdLWdxljft4Y85PGmBaAbzDGVKdtXjPGXDHGfDcJhDHmojHmt6f93TTG/Nz0c2OM+efGmPXpd582U1XHGPNjxpjvlmv+BRMpBdvGmF82oi5M+/qXjDFfmO5o/xB3rGPGL67vbzDGfHg6bteMMf/CGJOZHv+B6amfMtHO+58wxrzDGHNZ2rx7Ot6N6fi/7yhzqbDW/mNr7SestSNr7WOIDOw3T9u/C8CXAPhOa23fWvsLAD6DaB0B0SbBI9baj9uooO1PIDLwVm62H9PrpRAZgn/N++ocgE9aa1sA/isiIxuIiNsvW2uffj7XAwBrbQPAfwBwv/TjVcaY/zKd88eMMV8j372Q5+Bbp2utaSK1J/d8+jxt6+8ZYz4NoDtd59YY8+eMMc8C+G/GmIQx5jum/Vw3xvyEMaY6Pf+8f/zz6ccUXwXg/5u+c3YRvXPeZoy5I+bYVyEiUP/cWju21v43AP8D899BXw/gJ6Zr6wWtVWvtT1trf91a25u+G/8tz53idgD/wVrbstY2AfwSgHmbW18P4Oettd1p249Za38EwCP+gebm37sz9wzgbwP4jSnRG1pr29baz0r7c9eqD2ttw1r79LRtA2CMiBDqtX/AWnvZWnsF0ebIN8j4/Hdr7QjAb2H/GfxBAN86/fxQHCsCZ0xQ4AICAgKOG37mZ34G73//+9FoNJBK3bjB/ZrXvAa1Wg0A7p8afPrzLw9p/gMmcgP6RWPMefn8HgCfkr8/BeCEMWYRwF0Axtbaz3vfH1WB+6cAXgfgIUQ7uH8XwGRqOP0MImN6GcCvAvgVEpEp/hiA90z78FUAfg3A30dk7CcAfLN3rXcCuBPAewF8m5l12/tqAD8PoAbgpwD8OIARIkPkgek5VCX/EaLd6jqiHXfuEr8XwNum/akB+BMAtvwbNsa8C8D/CeBrAJwC8Axmd6yBaJf69Yh2rb8GwB/w2zmg72MAf2s6Dm9CpJz+FQCw1r5teg7V1p/z+pYG8CvT+1sB8NcB/JQx5tL0+2+LWVfuJ65zU/L5VuwbovcAeNJa25bDdM38GoCkMeZLTUSavxHA/wSwdsAY/JQxZsMY85+NMa/1vvtbAD5grf209/njAO4zxtQAvBvAI8aYswC+Fi9QOZs+G390eg0a3P8FwE8jGtc/CeBfmn2l+oU8B1+DSDm6HZHC8Q0voOt/EsBXIFpLNJ7fjkhd+gPTtr8B0bN0AZHK+C+8NvT4GRhjzh20fsy+G6DBfk4+yO/34kbEbW6YuGONMbchekZ/Iuac57NWfbwNs4TrhwB8pTGmbqINpT+GaH371y0gUrF+fE67Po783p1zz28EsG2M+dCUiP+KMebc9PjD1mosps//ANH78Hvlq7j/P9jW7wF413Q9vxPRM/hHAGxOSemRcLwIHIIAFxAQEHDc8M3f/M04e/Ys8vl87Pef/vSn0Wg0AOB/Wmtr3s9fOaDptyNSPl6FyCXmP5l9F6gSgKYcy9/LMd/x+zIOgTEmgcg4/xvW2ivT3fMPWWuHiMjP+621/8Vau4fIwM0jMnCJ/9tae326q/s7AD5qrf3k9PxfQkS8FP+7tbZrrf0MgH+HyDAhPmyt/Q/W2gmACoA/COBvTo9fB/DPERn2QOTadBuAVWvtQAyNvel9vwqAsdZ+1lp7LebWvw7Aj053/YcAvh3AmzzS/H3Tne1nEe1M33/AULq+T1WCj1trPzJVFJ5G5Cb19gPOV7wR0Zx+n7V2d6pm/CdMx8pa+30x68r9zGnzuxDZWP9u+vdha6YN4BcAfBDAEMB3AvgmUQ98fB2itXsborH6jSkpw5SQ/UUA/5t/krV2C8D3IFKKvgLAtwL4vwD8PQB/xEQq6380xpyZc904/KAxpglgExGB/uvTz78SwNPW2n83nZdPTO/xj78Iz8EPWmuvWmu3EZHv+w/o3xs9wvSE339r7XPW2r589l3T56CPaKz/mbX2SWttB9Ha/Voz6y6px8/AWvvsQevHWvvT00N/FcDXGGNeM1Ui/zdEukQh5p4+B2AdwN8xxqSNMe9FtN7jjv0zAH7HWvvUnPH5LtzcWnUwxrwHkdqka+0TADKINnK2EG2uxG2k/TFEa+a35/TLx828d+Pu+cy0r38DkRKtLqpz1+pBHZo+/1VESvcnD+hrE0BpSpZ/dXrth6ef/yyi5/3vGWO+x0Qxev/S27C4AceLwBkTyggEBAQEHDOcPXv2JWnXWvuBqcHeQPSf+u2IdtGBKC6jIofz93bMd/y+jcOxBCAHwDcigcgl6hnp3wTAcwBOyzHX5fd+zN8lr83n5PdnpteI++42AGkA10RZ+jfYd+H7u4j2SX/XRK5t3zjt439DpEb8EIDrxpgfNtOEBYfcWweRcaf3pmpTL+Ze5t0XjDF3GWP+01RNbSHaDV864Hy/b89Nx5t4xuvbkWGM+WuIDMivmBIS4PA18+cREZp7EBm/fwrRhkJsEgtr7f+YEteetfb/BNBApKIAwP8PwP9hI/e1uHN/xlr7JdbaP4hIsRkiMj7/KaZufLg5Ne6brbVVREoYFVogWlNf6qmVXwfgJF74c3Aza+UjHmHyXRKfizlHP5vpz/T3FKI4rIPauClYa38TkSH/C9NrPI1ofVyOOXYPUYzVVyAai29BFDt2w7GI1mKsyvU81yrPfSMixeqPe6rY/wfg84iIVQXRHP9kzOV9F8fDcDPv3bh77gP4JWvtx6y1A0QxzQ9N3WHnrtWpguqSo/gXspH7578G8BPGGL4v4/7/6Nh9fJu19jXW2m9CFGv9rwE8OP15O6J3wDceNBjHi8AhKHABAQEBxw3mkDox99xzD0qlEgA8YG7McPavb+JSjGcAIpcgdUt7LYDrUwXj8wBSxpg7ve9viNuIwSYil5u4uJariAwJAM616SyAK0e9gRgo+z03vQah/2M+h8iQXxJDt2KtZYKANWvtX7DWriJSd/6lmWY2tNb+oLX2dYjIx10AZjLazbm3IqJEAs/33vz/7f8VIlXiTmttBZFb6VELDF0FcHaqChHn2DdjzN+PWVexBt2U2H4bgC+z1qox/QiAC0YyzmF2zbwWwK9Yaz8/VRV/HcA1zKpOB0HX7pcB+CdTMkui82HjZUqdqjzfi8j4vxMRiW0B+BgiMnZTsJHK+90AGL/4HIDf9shTyVr7l/HyPwcHdv2Qz2b6g2htjDC7eTLX+vQJQMzP17lGrP0ha+2d1toVREQuhcjl7sYOWvtpa+3brbWL1to/gMi983e9a78ZEQH9+Zh+Pd+1CmPMA4jiz75xSjzhHftvpopkBxE5+UPetc8CeAfmuHXOwZHeuwfc86cxO0/8/cC1OlVQNTlKHBKI1E9uMsT9/xEX13cvomf8hwHcB4AxsIc+g8eLwIUYuICAgIDfd3jkkUfQ6XSAKDmDn23uL8WdY4y5xxhzvzEmaYwpIQoyvwKAQe0/AeDPmShddB3AdwD4McDtuP4igP/DGFOcGgxfDeD/lfatMeYd/nWnasKPAvhnxpjV6fXfZKISBf8ewFcYY77MRHFZ34KIVH3oBQzPPzTGFKaxHH8WwM/FHWQjt8f/DOAHjDEVEyVuuMNEmfFgjPlfxK1uB9F/t2NjzOtNFLeVBtBFZJSPYy7x0wD+7HTMs4iIw0ftC0ia4aGMKKNbxxjzKgB/2fv+OvaTBfj4KKK+/92pO9o7EClRPwsA1trvjVlXNxh0U0P8ewG8x1r7pF5gqlD8TwDfaYzJmSjm5TWIjHQgMti+whhzwURgnOMNxvuUELzZGJOZtvV3ECla/2N6yF2IDMb7se9a+FWIXGwV3wHgx2yUkfFZAJeMMScQxeU8Ob0Wk3ScnzN2Pn4ckWr7PkRuqHcZY/70dFzT0/Vy9y14Dl4IfgbA3zLG3D59V3wvgJ+zR0w24ROAmJ+fAoDpXN47nf9ziIz6/8tGiUJugIlcLXPT5/tbEcWW/ph32NcD+AU7G8/2gtbqlHT8OoC/bq39lZiufQzAnzdRkpo8ooyMn/KO+dMAPmStnVFgp/eeQ6RAcUyy034d+t496J4RuYj+kek7KA3gHwL44NQDY+5ajbk/GGPeY4x5YLpuKwD+GaL3ov7/8beNMadNpKJ/C7y5mW5M/BAiN+IJIrfKt5jIdfLtmD6D83C8CBxMUOACAgICAo6CE4jITAvRf5TnAXzl1DUJUwXkHyOKL3pm+vOdcv5fQRSXs47IwPvL1tpHAGBKdDqIMrfF4Vun330MwDaA7weQsFE2uD+FKCB+E5HR/VU2ykj3fPHbiJJK/CaAf2qtPSht9p9BZDg9isgY+XlERiEQJRf5qIkUp19GZHQ8hcg16N9Oj38GkVvkDe530136f4jICLyGSHn5Wv+4F4BvBfC/InKn+re4kah+F4AfN5F71Ex2uen4vg9RDOAmonidP2Ot/dxN9uG7EamKHzPxCvDXInKR2sG0ZIC1dmP63U8gIoz/HdGa/EEAf5F9MFFRdLZVRqQ47iDadPhyAH9wqg7DWrs+VUzXrLVU4DatxGeZKEHLezFNRjMl8N+HSCX4ZkRxXkCkfD2DI6pf07H8QUSZAtvTa3wtIhVrDdFaZz3Fl+s5eJO5UfV6/U2c/6OISMIHEBnZA+zH+b2YyCHa6OggUtI+jOiZAeCUYE0G8qcRPUvriFTX99h9N0hMidDXIN598oWs1W9BlFzmR+RcVZe+EdH79DKidXMBNyaZmefWeRsiV0e21wfwmHw/97172D3byN377wN4//T8i4jeGTjCWvVRm16/ichF9CKAL7eRayYQuZ//CqL1/XvTa/4br40/C+D3rLUPT//+xem1NxDNjX/8DIw9hPEYY34UUXDfurWWqYF/DgALYNYANKy19093aD6L/cH+yLzdT8WDDz5oH3744cMOOxR3fcev4c+++Ty+/Q/GEuaAgICAgGMMY8zHrbUPfhH0408BuMda++2HHvzS9eE8ImMzfVSlICDAhzHmOwBsWGsPNCYDAgJeXhyl4OCPIQpQdn6q1to/wd+NMT+A2UwrT1hr73+R+ndTMEDwoQwICAgIuKWw1sYF7AcEvOJgrf3uw48KCAh4uXEogbPWfmCe7/PUf/NrALzrRe7X80KIgQsICAgICAgICAgIOM54oTFwb0WUlesL8tntxphPmqiWyFvnnWiM+SZjzMPGmIc3NjbmHXZTiGLgAoULCAgICPj9DWvt09ZaE9wnAwICAo4fXiiB+5PYL4IHRMGU56y1DwD42wB+2sTXg4G19oettQ9aax9cXl5+gd2IYEwoIxAQEBAQEBAQEBAQcHxxlBi4WJioAv0fBfA6fjbNfjOc/v5xE1W7vwtRtfGXHAbBhTIgICAg4HBUq1X334UxxtWa8704+B1/EonEkY4nEolErGeItRaJROKGa+j3/NfE1MHT83mMf6y1duazeW2xD3pdthf3vX8tv+/+NeLa8ftYKBRQqVSQyWSQTCaRSCSQSCSQy+WQTqdhjMFgMMBgMEA6nUYymUQ6nUaxWEQmk0E2GyWL4/xkMhnXr/F47D4fjUYYDAYYDofI5XIol8vu8+FwiMFggGQyCWMMJpMJJpMJxuMxjDHI5/PIZrPu/ieTCYwxyOVyyOVyGA6HaLVaGAwGmEwm2N3dxWQyQSqVQiKRcNe21rr75D0BcPc5Ho/dsQCQSqWQTqexsLCA5eVl116hUMB4PHbX4Zzkcjk3XsPh0LU3Go2wu7sLYwzS6TTS6TQSiQTS6TSstej1ehiNRm6sOM7j8X5ViEQigVQq5e6P/eZ47O3tYW9vb+Z4zlUc0um0G4vxeIy9vT13bY4F28tkMkgkEuj1ehgOh7DWIp1Ou/HPZDLIZDIAgPF47Pq0u7vr+sFx4nE6/mzfWuvWAgAUCgUUCgUkEgmMx2OMx2NMJhP3/LGPyWQS2WwWqVQKo9HIHcPjJpOJmwNrrZtX3qu1Fnt7e25O2DbfOwrOka5RzlMqlZp5JnnceDyemQuuC64bPT6ZTCKVSrkffp9MJmfOZf94L3yWdnd33Xf+s59MJt0zrs8613UqlUI2m0U6ncZkMsFgMHBjZq2duWYikXDjqu0lk0lkMhm3Jv1nmWPMa7NP+sP1o+8qjgHHJ5FI4B3veMdR602+qHjeBA7AuwF8zkrxP2PMMoBta+3YGHMBUWHIA+sYvJiIHoCX62oBAQEBAccBPhnhZ4rDCJZ/vBpcNKD843xiM+87nqvH+v2eR5Li+qznxvV9HuaRt7hrKeLIJdtLJpOoVCqo1+vOGAP2x280GjlDjqSVBK1QKKBUKqFUKjkDtlAoIJvNOgOcxh2N/b29PQyHQ2e8DQYDd24ikUA2m3VGP8clmUzOEMlkMumIBg3adrvt2qKxCOyTm9FohH6/j9FohL29PXdfSoh4fRrGRDKZxMmTJ7G4uOja5D3u7e05Q5OGL6/B+9KxV2IEwLXDMecckMzo2JDQ7e3tOSJI4kUiyXY4LiTDQEQsgP31rIazkhCSXfaFc06CQ3JE0sbjJpOJGxNem/fPttmXwWDg2uG48Lr8PJvNIpfLOUKmpCSbzSKRSGB3d9cRRCUUvC8SHf5Ncsp1otB+c5x4DJ8VJYP8TgmlkkqOG+ea90gixDFX8s97JoHh88vzdI2nUinX17gNHSVnJHa6ztgm70U/Jynm97yOPht8H7D/BNtjmySg+pkScIJzk8lkkEql3JrWZ5rX0c23W4VDCZwx5mcQVUtfMsZcBvCd1tofQVQr4We8w9+GqMDeCFEhz79krd1+cbt8QF8B2KDBBQQEBAQcgji1ah4Z8f+TjlOj/O/jSJFPxPT8eSRqHvHR3w86V/vrk704lc9XDOPOmTce8zCvf9lsFgsLC8jlcs7I89vkDjz/zufzKJfLM4YmjW4qJbu7uzPGH4mFEkASu06nA2stisWiIzP9ft/dZyaTQT6fnzFG1aCcTCZoNpszBiFJYCqVcuoYDVJV5Xg+AEdiOAckfsViEfl8HsViEePx2BGHTqfj7ptqQyqVcgY2CRz7PZlMHHHY29tDKpVyCoW/jknyaLiTtBhjMBwOnSGuc6TKGdeQTyY4biRdvKaqK75axXEaj8czpEvVNvaFxr3OhRLOTCaDXC6H8Xjs5pjqHwka1ZpcLod8Pu9IP4kjFSmqdCTiVLV4jyROHDuOLZVi3SBQkjLvGeC98G/dENLvfXKiapX/XiJJo5pJVYnnAftqHtcNFV2OA/vPTQo+W6qqaT+UDJJca1+030pySah0rSqhYnsKjhfXGv/lOKkCqZsKmUwG6XQau7u7M2tK21QSfKtwlCyUf3LO598Q89kvYFqp/ZYgxMAFBAQEBNwEDnMZPOgcX8Xyf9djD7vGPDJ4lL77v8e16fctjsQddJ04Esg2jzJWekwikUC5XMbS0hJyuRx6vZ4znnzjn9dJpVIoFAqo1Wqw1iKXyzkDajQaOaWk1+vNuPLR+Eyn0zh//jyazSbG47Ejaul0GrVazakpVKPUNQ+YNTDZt36/j263CwAzqkUymUSv15shU/xJpVKurwAcGWIf1R1saWkJpVLJ3X8ul8NoNEKv13NkgyoIXUBVWTHGzCiF2ge6gqoLGgkr74Fzls1mnfpirXUEhvNjrXWugzSkfQVaSYqqU2rYq1qkY64EgaSL5I2EEYAz6HVTg4RP3VjZP/ZDxy6ZTDpXWVXeuOb8z0hwOI/8m9dWAqf3pxslnAcAbuNBP+f8kRzxfI4/r8k1xc9J4HmuPuM8n6qvEjKuBZIVqlAcf1XedH45BhwH3aTQzSuffKkqqPOs61i/4zlsz1dXtW+6ltT9nao6SSnnSteOklG6iPJ5IdH3VbyXEy/EhfKLDrdOyAwICAgIeKUhTqE6ihI37zif1MSpYz5hjCN7cQqXTxrjlDD/WD0+7ji9ZhyBjOuHT+QOg39cKpVCtVrFysoKMpkMdnd3nSpCFUrJHFWdWq2GQqHg2qEykk6nkc/nAewbde12G3t7e8jn8+j3+9jb28Pp06edsgRERmo+n0e1WoUx+/FidJ3TeDceD+yTin6/j1ar5QxndcXr9/vuuiQH4/EY+Xwe9XrdqU5Uyay1zj2Rik65XHaGaDabRSaTccfT6KRh3uv1ZsaaRiWVx1Qq5fqgbnhKotT9T13NOM7qksdr0chWNzWuH19tJmHiMWp0q3uckke/DZJptqfKl7rc8rna3d117qaMKSRR5pxxjkheqb7QHZOKqcYDqsuktftxaxpjx7Z5PxxDJc2cA71/vRfeP6/jP9c+2eDfJIk+cfPJBpVMdR/l/aqap+uU5M0n5ZwvjQ1T90ZV3vzYOZ2LeW6ibF83CFSR5Br2STLHSmPefJdRHVNfleM1dJ1yPDXW81bgeBG4m9y9DAgICAgIIHwyA9yoktEIOUx1mkfc2KZvjB0UUxFH2vx+abu6U38YGYy7jo84pXBeX+eBrknVahXlctklGaGxDOwbYhzjdDqNUqmEpaUl5wpJo45kjEY9DUG6xjHBRzKZxLlz55BOp7Gzs4NWqwVrLWq1mnNLpKIFRAkr8vn8TAwYd9tTqRT29vZcsg8eQxe9ZDKJVqvl1BxgP9kDlR3+rQY9CUUiESUmKZfLjuBQ2SNJY1/K5TKsteh0OjMqBQ1oGqEcVyVQnDeSwGKx6NafugVqO0p+/fWlxjjXMt07afhyrAh+xzHS2MY4tzl1xaN6wjHT2DIqhXSZ1OQoSjbUzZbqZjabnXGnpBqrbo9K5ngfGmvmb4yw36rc8v2gbqR8rpSUEH4820Fue+pCqoqkzj3HlIRViZr21Y/9UqVN1UG2r+2RAPkEjm1qXCDnmc8F55V94XgoafXHWseR5J33oeuZ88Hnj67EnF/2m9dk0pd0Ou02eajq6jN2K3DMCFzIQhkQEBAQcHPw/xOOI0tq+PIz/V2Nqjg1y2/bb2Pesfr9Yaqbf92jEq+4do9Czg5S6xSpVMolG1HVhIYW+67qRaFQQL1ex/LyMqy1aDQaTpFQI3U0GjkXv16vh0QigWKxiFar5ZKcpNNptFot5z5ZKpUcOaGxn0qlkM/nHWEC9rMLAnDxY91u1ykFqqSRYPZ6vRlVg8SNRJWJTDQRA0kBya0SOxqKGsdVKBSc8sNjVNmhcTwYDBxxptFLY7Xf7zvjVQ17qklUJXVjQTNJqusglSMl46pq0UhX1zb2Vd3WVMVRlYp9Hg6HjiQo0eF1SBxIxPb29tDv9x1R1eycJPr5fN4lvrHWOtWN90RCORwO3YaBKm0kRur6yPEhoeRxviKk/VfVnuPNa6hypfGH6hKoLolsx1fOlJyo4qrJU3iMkhNfPdVnlfPOteSrhXHvTl5f51lVS3V51T5xLNR1kaRXNwM0iyS/Z9u8rhJRfd55DXW5JGFPJBIuHpdr/2Y2sV5sHC8ChxADFxAQEBBwdMwjLnFGR9w5vouST6J8cuQbNvN20w8jW3Gqm3+MJjrQ+znonHnwDcyD+kNQUVpcXHTGs6pm3MlWQ4uEY2VlBYVCwbkiMm6LGST39vZcCQBmRCRR6fV6uO2225BIJNz5nU7HuUeSiGnmSSVvGrfGXfzd3V10u12nvrG/6oKYSqVQLpcBwMUVFQoFt2vPNunGxzHSLJxU9kjANIFGuVx2RqRmaVT3RVXSgH03SRIKGqlMHEMiqUY7jVuSXD/rH0m4Jqug2kKSwXkkmeK9cr2ThKuBDeyn8lc3O8bxkSCwLxx7vS81uDUjJRU7urcy6Q0JPl1dVXXTTITAPmlVd1muYY3zUoVO1U91XeUY+MSOY6FkguPquwayH6r2cR3oXHCsSGR9dVWTl+j9KLnR6+pzy/nXxC36LuAY8nNuVqh6p0oflWxVXTlWfF417pHzoeuXa4J9Y/+4YaPxk5wrY4wj6RxLPju6Xtm+Pya3AseLwBkTslAGBAQEBBwJR1Wd4o47yrm+QjVPPfOP9c+LI03+77o7Duy7HPnf+cTQJ3dKyA5T6vx+qDGTSqVQq9Vc3TIqByQOmg5e1YRyuewIH0nWwsKCO55tZ7NZp37ROG+320ilUlheXnbGarvddiQO2E8fr5kYC4XCjAHLeDG6DXY6HafYqNpEcpXL5Vx8Hq9DN0x1uyLxo7seAJRKJdTrdTcWSsDoVsa+aKZEzkUmk5kxWNXFi2oI0+1T7WRMHe9X66TRgM7lcs4wJoHiPAH77mY0bFXRJInhdVWx4txrbTeuV5I3KmC8V7alRE8JDlP5k/CVSiXnrkqCroSZ2ShZ241EzydvJFK6EULSpUSSIDlSF0IFx08Jl5JaJWs8XkmY/w6Jiy9TtUrdBakaq3JqrZ2pQ+c/YwqfHOo4cF64kULi5m9QsU9K3tiWvgv0HaRkSceJbagrLwkXv1MVjWNOQs4NF3Xt5Zr3CSjHhc+vEml/nF5OHC8Ch6DABQQEBAQcDt31Vhzkaqif+crTvDb0WvMIon/8PJLk90ONOiVvhx0fdz9xx/vfx6lwccdls1mcOHECCwsLAOCSg+Tz+RnVB4AzAlOpFCqViot363a76Ha7LvYEgIsJy2QyzjUunU67+LBiseiIn2ZqpKHHLIo06svlslMGSRhUPRqNRq6+W7lcxrlz59BsNrG9vY1ms4m9vT0Ui0VXh47khYbjcDhEp9OZKR1A98pcLodisThDbmmE83gSCiYhYftUBqlu0EhVQ5+GsroT8nMt/M054PnsH8dbY4/0OvyeRjkJkMYNkbypqqduqSQsqrqxHdbw0yQX/Jv3rOSN/dSNgUQi4dReEvpsNutKMdClVckk711JlBIpdY2kMU8C7bt16hj5bnv++0fnXcdGk6woWVAXTs18qYRG/+Z8KHGiEsd+6RrR9aQuiRwrrnO2p+Plx7X6Sp32y3eh5NiQ1OnzxPP4jHL+ueaUWPtjHBefqGUo6C3A7/n8qWunPnc8JxC4FwkmxMAFBAQEBNwE5qlrSkzmEbqDSJOSq3nqmxKqeS6RB7lMzjvX75f/PT9TxSzuPvwx0HPnjQfLA1SrVaeSMQOjGoUkcel0GsViEcvLyzOubIw1o9FJUjUeRzW8ADhDr1KpOEOq2+26uDYadko6qC5RIaMRThWGxitLBBhjUKvVUCqVAMzWpSMRGAwG6PV6M6nFWQtOyQGJTalUQrFYdP1i30kwaRDTwCSRBeAyK/I4zYyoSVVoLJO45PN5R0J4v7wHEjUlXFRG1CAm1F2R90CDnCRJU8jT8CfB49yRRJCUktz1+30YYxzhJ3njvdFYp5HP66p6yhIQqugBmElU0u/30ev1XPwj4+CUIPgKEJVHXyFSZUbvR+9VEUfsNPYx7hnjNTUuM05l4rPI65OY6nuB56nLpJJTPwkO1zawr4CzT3pv6lasa8IvIK8KpU8G2aaqgRo7q3Oh19B2+M7g2HDMOR/8mwqvumaq+quJTXTD4la6ThLHisABJihwAQEBAQE3DZ8kHUWpUkIzj4DFteG7/mh72qZP0Pxr6vdqVPrHxxl3B/XTHwOfvMWNTSqVwsLCAur1+gzZsNa6NP8kSEoWyuUyFhYW3HgMh0O0221MJhMXB0eXwV6v58hXr9dDrVZzxNBai83NTXS7XUcM6MJIQ7lQKLjC3Lw/ZqHkbv9oNHK15EjQWBz82rVrTlGjwd3v950xqbXBSDholLM9unsqAVNlhu0qkSqVSo5wsN+5XA7lctmR1KWlJSwsLKBWq6FSqbhi5zR8NeGFriONH9rd3UW/30en00Gj0UCr1cLOzg663e5M/5jcRI1YEgLfLY2El3FkGg9Ho15j78bjsXPxZN8IkgwSIo6Dqm6cd94Tr0cSwHVI0q2ZPlV9VRJDpYrzq6qiX+uMv/N+qUape6weB+yXPiAB0bg5XSs+YWEbqmJpvBkVSM491yLPJaH248q4BrW/JM66fnlfXEt6HV5LlTeN2dNz2SeN/yMBZDvczFDFULNpalyhr1ZqnCYJG6FuzVTdNe5UXWg5VuwLNxtuFY4VgYveS4HBBQQEBAQcjnkkxjdI9Hhg30XKV6T4+2Gqnt/evL7xOqqAHUQMfQI47x7j1L15fY5rx1frMpkMVldXUavVZpJi6C46DS0aV3SZ1Fgrpm7PZDIol8su2yKVo1qtBiAyuhYWFlAulzEcDtFoNJwyQbXJ2v3C0zTAi8XiDVntlDwwfiyRSCCfz2N1ddURJxI7xrRpcW6frAH7SReosDHmikSBRifP5/1r8gQ18AuFAk6dOoXl5WUsLy/jxIkTjqhp2QN/bom4vw9agzr/TALTaDScC+n6+jrW19fR6XRmEqZwbplYRMdIyZSSAE10oVkC1eBXQ53jTIWOBJM13ziWSgbZJpVdqpQkJBx7FoinksdxYD+B/feCljYg/KycSnJVqeQ9sx/6zPgu15wDJUU6h0oeSTqYQIaESpUjEhnN2BgXf+f3Sdv0yVvcZ5xLX6VTAse2VS2LUzb12eL9+7FuPI+fqeKm53Cd+Z4MdJtknKz2Wd2cqepSwb1VOF4EDiEGLiAgICDgcKi6FPdZ3I8e5xskccYyjS1tQ3edfbXMJ1O+WuJ/r8qbHncYoVQcRO4OGh+iVCpheXnZqUFqgNJtjolCVH1hDTbGOnEnO5vNuqQiVMcymYwjh/l8HpVKBZ1OB+vr69jd3cXOzo7bpdeizSRvmiZed/eppgD7SUNodBaLRUcoO50OBoOBU5JU8QHg+ktiR4ObO/vFYhGVSsWRCLq+sQ9U9GhMJ5NJ1Ot11Ot13H777bjjjjtQqVScokaC5GfxjJuruL8PIm1KCvgvE9KwCDmVEY5Ds9nE5cuX8cwzz6Db7WJ3d9cRXY1XU/LCdrhWqO6QPJHYcBNDE3LQYKfKxXHWc7keuCb29vbQ7XadustahJwrxiXyGj4Zp4qkro/6HuCYALjBBZL3q+6D/Jzrj8RP1T2qkyScSsD0/UPC4tc24/kcc96LKsVaoHzemqCKqzFj+r2SJ51vjp8qjErcuHZ1o8rfPOPfJKZafoD/KkGLe6/ybyXe/FHVm79T6aSirBsJANw7odvturi5W4HjReBMIHABAQEBATcP3wj2yZx/LP+NI1A+6YszKHzQCJqnemkf/fP9v9WwjFNd5t2Xr/QdRPyAiLwtLi662CQaRJrNrlAoOPKm7lB0XSLJG4/HLvskDfHhcOhUs93dXRSLRUwmE+fWR3dGAC6mjLvnNLJZHkDdrjQjH2uCpdNplMtldDodVKtV5HI5d53BYDDjCqlxYXpvdM2iayjJKFULTY7CjH3D4RD9fh+1Wg233347Tp48iXPnzuHMmTNOYfJVWJKOw+ZRFQtVgg5aQ76qw3Wp37E9EqBKpYKzZ8/ijW98I/b29nD9+nVcvXoV6+vruHr1KtbW1mbGXPuoMYJcR/yeJI7jStdbjhvVTY6vEmut7zYajdDpdNDpdJya6dfGo1stjXclGzqWmjCEUFc/EjI+Q+quR1XSJ1Wq/CqRUrdJLWvA71S945jRZZJrHdjPiMrxoZpJ9ZuklGuXnyWTSRc/py6KvCZdYNXFUl0+OXYcIz6D7Cs/98eNa0zHQZV8XT9cn+p2yn5qCQTdPKBSq3GTJP28Vz9zKuduMpm4dw8TId0qHC8Ch1BGICAgICDgcPhGbJzaFmc4A5gxTuLIm+4+zyNQcf1Q8uSTPr+Ng5Q3nyzOC7ifp/bNI26qHNRqNadYUD0B4LI/0rDWtOo07rhrPRwOUSqVZtSSdDrtXBaTyaSL+8rlcmi3286lUdWGarXq4tHY93Q6PZPchG51NNQAONc7KguDwQC1Wg3JZBLb29szyUnYDg07GquM8SJhpFLFHX6OG5U3P/HG3Xffjbvvvhvnzp1zpI9raN48+2tVE1nErV2d33nz768b/Zv9913fdI3SgM5mszh79izOnDnjxnx7exvPPPMMHnvsMezs7DiDnKSFRMW/tipU6ibX7/ddMhcmtiHhn0wmzl2VqiiVt2QyiWq16gx3IEodr2omyan2j/fnx1XR5dDPCsr1x7XCeSAB4Nrg3+yLbmrwmsaYG7K3+m6ZfCZJqKh+8lySFZIaVRvVhVj/JmkhsSYB4hz47rqqhnFM9D3puxuT2KrKyd99N2eOhV6D4+mvVVXk1CVZnwUleay1qIl5mKCF61TXHjd0crkcarVaIHAvFoICFxAQEBDwfDCPvMUZtfOImP7L3+OOPehc33VxHombR97i+hB3rYPgt6V/FwoFrKysOGMR2DeIaEyWy2W3i03jkgZjpVJBIpFwNduY2IMGku6EM1kG1QPGp6ihRdKncVbMQKgp4anMUc1jAgsa89lsFqVSCdZabG1tOaLIjJM0YqnY6P1yzAqFAhYWFtxnVE+oGrXbbaTTaZw/fx4XL17ExYsXsbKycgPhj1tj6jKmpE3nzCdU6mbnz2uc4jzv7ziVTwmdklJVfumKWq1Wcccdd+Ctb30rrl69iqeeegpf+MIXcOXKFadGch2R1GghZhIhZgXkHORyOWeEUxkqFApurXU6HRe3yEyTVNlSqRRKpZIjeUoQtJYeycm8dPG+OyyPVXVK1V8SPWA/EyW/5zgzfT03NbR9JbaqktK9kuSJKqRmn9RC6Ly+khn2j/ekNfr8Najzr+8sXXe6PrROnzHGxSxyPZPI6nuDn/FYkk9N4OLHBfJ9w3Ppos13BZ8vrR2ohJJjAezHvXF9qytruVxGqVSauzn2cuB4ETiEFCYBAQEBAUeDT3TijNWjEJ55bSqO4vaoZMx3p1JC6R8bdx9xSppPMucpiHHHJxIJ1Ot1LC4uzri7qZEzmUxQrVZnVAvGIDF1Po0g1uOiEUvDT1PdU0EbDAYutooKBosw0xAD4JQFTT9Po5/EkKoa28rn86hWqzDGOBc7a62Ld6Nypmn32S6wn5Ajm826um7AvvFHwzqTyeCBBx7AAw88gMXFRdd/f/59JUEVBF07NF41ps9XxXxSF4d5a52GtcYNqXHN79hHxhjSLVEz+A2HQ9fOqVOnsLq6ivvvvx/b29t49NFH8cgjj7iEEGyP7WsphW63i0Qi4eZXs4Fy/EnAWMAdiFwISdxHo5Fzr2QNPo1jI9HXZ0vdm0mSuA4Ze0Zixb7zX5IXVXb0+fUTZdDFl+6fAGYUObarZJFzwvGO2xRRl1cl3PoOYKybbs6oa6JuGvjkSQkXP9f1qWsq7h2pMW86tvyd/VdVW90/1V2S5+ZyObdBwGM06yxLSJTLZXcNVVZJ7riZQ5KfzWZdZt15sYMvB44XgTOhjEBAQEBAwOE4SOHS74k4hcsnSnHq21Ha4efaTpx6Ms/lbZ5r3UE4yjG8XiaTcSnqaahz91rdzCqVCorF4kwCEb1PZisEIqOaCgAVkXQ6jW6361Q1Ei5mDmRfqCpwdz2RSLhkIZr9UMkgEClibMta6+5pPB6j2+3OuFTRCAdmyZiqIDTKqXRoTTMakSdPnsSrXvUq3Hvvvc49M26dkLSTwKih7hNbn6z5SRbiyMHNwFcE/d+1ZMA8Yqfp86kIqXteLpfD6uoqTp06hTe96U144okn8Mgjj+DZZ59Fr9dzSouSaSbDsdai0+m49cOSCiThjUYDvV4P2WwWlUoFAFzhd8Zkcj1S7SXRV6jSw/vnvdDgJzFQV2FVpvQ50EQnSnhIqripwJT2+r2fdIOk2Xf3VOLGtcJ1pYSez6wSFVWpdHNGiZNm2dQkH/7mgbpmcv2QHLFPcYlYeC7/ZkIWjjcJoaqiSuR5vUKh4BRXknmu1dFohHa77dYD16omauE7ROPgOLY6FkocX24cKwIHIMTABQQEBAS8IMwjVvOOicNBro1x5NEnbXGK2Lz+xLm/zcNBCqGv8CUSCZRKJSwsLCCXyzmXM6bt58480/7TdU2TM6gBpOnj9bo0oHu9ntvhZup6JVSarIIEi2Qhn8+7tpkFUTMXMoskDX66LipBpPpCokC1jqCRzOuQNFKRpMHM9h944AHccccdKJfLM7E7/qaBr6RQNaFRqlkz5xG3uB9/jflry18TPlGbtyGg6py6dGp2P41FUjc9EgC9j0KhgPvuuw+XLl3C1tYWHn74YTzzzDNotVozBda5vtTlkS6T1lo0m01sbW1hMBggn887UkfFlfFgVARzudxMIXNV2ZS8qUufMVE8pqpgOq9KMkgOqfxoAhJV/TT1P8dOv9N2qUTRtZKufewXyYiSHB43L7EHNx7UVVM3LaimackLJVTsoz4nev+qFnMdcSzUpdP/TuPwNGZQFUF+R4KupJMbK8Vi0a01umH3ej13z8bsJ6/hcUxuRJWe7z7/uTns/4GXEseKwJngQxkQEBAQcBPQZBHzEEdu9HM9jsbWYepb3DUOOkYJnU/ueD39TEmiTxjjXPdojKjCtLS0hJWVFWdwGmOc8axxSIVCAaVSyZUMyGQyaLfbLu0/AOeuRIOL7SUSCXQ6nZkddbo4aVwbE02QhNEYZ3Y+YH/XfDgcOsOZZG4wGCCbzeLSpUtObev1emi1Wuj3+y4hCos6k9Bpdj2qE1QraCBSFRmNRrhw4QLuv/9+XLp0CYVC4QYCpPOksUu+qukTtcP+9X/X9ThvHc5TkJWY8XNV2JS8Efye57HcgcaD8W+Nm6NayzFdXV3F+973PrTbbXz0ox/Fpz/9aTQajZlEIwCci2EqFdVwa7fbaDQaLsEEM5aSlJdKJWQyGXS7XQBArVZzLpT8UbdEvW9gP6EIybpuYPC+1aVPx4znkvhTAQb2FS2SyThFlc8dSSdJFQkLxxvYd7cEMBMDynvjvSgZ4rrWzQJg3xURgFubbJekVMkbiR/vV8dGY+z03vQdxX95nKrSHF9dW2yb7rBUUfm+4DzS5ZrPNNVbKvYcJ6qWLGbf6XTcO0HVZ40rDDFwLxKMCfwtICAgIOD5wd9RParK5h/vE7246/ht+MfHtT3vMzUklIj51/L7N0/dy+fzOHPmjMsQube359SP3d1dZzQZY1w2ym63C2utU6wYj6YuVnQ5Go/HLj5FM+PRBU53+QuFgotXGQ6HjkixHhxdyBjnxrYnkwna7bZzrwKiGnPMKmmMcckvKpWKM2aNMS7LIQDnskm3Nv6u48fYv7e85S248847Xb/iFFFVeEj8/Di2eQRNCYJ/DvsxLw4ubh35/Yr7UQM67ofH0bjmOVQrea90+aPhTQObWSRVAeG6+rIv+zJ8yZd8CT71qU/h4x//OJrNplsTXFf9fh/NZhOdTgfWWufmy8yUGq/U6/WcQko1RgmTKm86ViTxNNzV1VLdRbU4tippnAeWyyDx0YQsHBeOpapQXL8cM43r4niTFHJTQOvA6fPO54SbNCRpPEZdLjWO1Cdl/saBrke9d36n65z35d+nrkl9tqjc+X3TdZvL5Vx9SFXh6RrJtaokT384Nizr0W63XX1A9iOZTGJhYQHpdBqtVsttJt0qHC8Ch6Nl/AoICAgI+P0Nn7z4xta8nVU1iH0FI07t8o3neUTMv0YceYxT9nwiNk/JU8No3v+TiUQCtVoN586dQzabdanaNXEHjedUKuUKO9NoYrY4xpXwesz4yN31XC43o6TR2AZmFQmqK5rKv1wuo1KpuPTd7BcVikKhgN3dXTSbTUcql5eXkUhEmS87nQ5yudwMQaMRpvFzNNoZS6OJLziG/X4fuVwOX/IlX4IHHngACwsLcxM1qDqlaluceqYKibrY6ec0hpXocTzi5t/vi28oq/qm68Qnaj6Bi4uB02MBOEWTBJyqh55LN1qSIK6XhYUFvP3tb8d9992Hj370o3j88cddPzudjqvVx7VB91sSc641usyRfNNdN65MgapGJEocE6poJDTAfhF4GvyqXJGoMP6Sc8f1qgqyX+uMxImbBuqyyHEE9jNI+qn8SXjYZ83iyg0T/33AvnDONWGL3juPSSQSrl0+T0qwuH5VTScZU8JOcszvNR6OY6LrUNcX5yiTyaBUKrlzeK8EN3P8PhLD4dDFTw4GA1cvkNerVCpuc4bvvFuJ40XgggIXEBAQEHAEzCNJwI0kZx7p8V0PD1Ps9Byf7MW1r8dpH+IUFP183nUOuh/uLq+uriKdTjujSHf2V1ZWAERGGQkeXSppjNIwZDKARqPh1BUaRBrTRDc3Zsqz1rrse0xewTT/lUrFFdmmUUz3R+6yM4kFXelOnz6NarWK9fV1ZxSynpwmYVESSaOZSR0YE0fjnMTpzjvvxEMPPeTGbF6MGz/zSZeqFwBm+qRKjX7O/rEdf+0ctjngk0t1VQNmCzXzWjwuzoBmAhoqUVSfaPz7ygmJjipFNKipcKo6xWsvLS3hve99Lx544AH87u/+Lr7whS+g1Wphb28PxWLRqcV0hWVMpKbU15gxn5zqPXJOSNKUtHAMSZZ4PySHPoHj/JD8cY1pzGZcDB7nl2uPY81nj8+IukfGxcWRGCmJ0tIEqsZpvJpuKnBegCgZDI/nvVOVV+VN1URNiKJEUMfGX1/8jgQQmN1s0fXLY5RU81x9P1FxpdLKvrJ/rVYLrVbLeQowvpLX1XfE3t6eW7e3CseLwCHUgQsICAgIOBwHkS2f/Bzkjqa/xxEtn6T57caRt6MQQb+/8/6NU1v87/P5PBYWFlAul2eIAuNpstmsSwhBQ5TqFnfzmREPwIxy1mq1kEpFhb+BqDYXDSMaWDTYGQfE0gA0vFhfjclAmNZbd/2ttWg0Gmi32xgMBlhcXMTq6iq63S6efvrpG5SdfD7viBHbIWmgKkLjmfdmTBR3VKlU8LrXvQ6vfe1rXWKVuLXAcY5LQqJKG0kaDWySVhql85KYzCPy89RWGtTaX64BTTCh5/C+NTZKP+d8cGw414VCAa1Wa+a6aqDTIKbKyzWk8UtU5Nh+KpXCqVOn8If+0B/Co48+it/+7d/G2toaisWim0e6anKtJRIJFItFGGNmCsBr8pE4sqbKFdcYDXZVzLh5oOqskkA/Jo5kgOOmBa45riShbHM8Hjv1jutN3RFVjeN48Zqq3qqrpqq2JN/G3OhiybXvE032Wd0mNcNq3FgCcKqn9k8/V0JGssWx8d1bSfpIsph0hISV/VZo+1TZmUCp2WzCWotisehcb/P5vJv34XCIVqs1059A4F4kGGOCAhcQEBAQ8Lwxzy0mTunwydE88sbv/bbiiJoSwaP0aV6b+ru/M00kk0nUajXnaqYZBLkLTXXDWusSgZBc0eijkcc4OSYGGQwGKBaLWFpaQrfbRaPRmKm/RaKWTCZRqVTcDjcNdhKoSqXi3Bup+rG2Fgt+M5ukMQavetWrYIzB5uYmWq3WDNFhPJQapFrLizW08vk8FhcX3XE0mi9cuIC3vOUtOHv2rFM74oiUr7L5rpGqsGmtOlXc4mLc4qBGpK7BOHXY35Q4DLp29F8dEyVmo9EIGxsb2N7enol/U2VO+6QGNUsFkMiRcIxGo5kSFOl0Gvfddx/Onj2LT3ziE/jYxz7m1iZjK7nBUCqV3Pyyz5pYhQQLwMyaUhdIHq9JblT5pUKlboOaTIRzSDIJwK03fg7suw8zORCftX6/7z4nwdf7YLIezfzoX5fqOJU3n3ixT0z6wveAElzOmR9rqUoWiZiqxHyvALOlGfiMc7OE5FVVTfab9812OGea/ZTX1dhaJXo8j4lKmESH7wRuHnDTRjduSAr1OdAYvluB40XgcLDfd0BAQEBAgI84dQw4PLEIj4mDT8KA2XpSqsDFtTFP6eN3cYRs3n35u8Q0nJaWllCtVp2xpmmyM5kMisUiisWiq5vENqmaAPup9RlXpmn5T506hXq9jl6vh06nM6MS0CAvFArOIKa7kxb/psGs2SQBuLi8TqeDVquF8XjslEQAuHr1KgaDgXO/6/V6rtA2XSg5HzQ0SQAWFhZc9s1er+e++9Iv/VLcd999qFQqTkFSIs+5mBfTRiOQPySwJK1xZQN0jfjkzF9XcTGS/t/zkkXEqXh6P3HEkOTAJ5Y0otV4pqFNtU3VFU1oQbJGEqOZS0lygcjYXlxcxHvf+16cO3cOH/7wh7G9vY1er+cyTfoFv6kW071XyTeJKMmjP4/srzHGqWZ8jni+kjIltJqoh+3yPI4d703j3fgZiaNuOqg6pqU2qEbzh2U5tBwA14GSTm6KcK2ri6WqkeoCrATcfyfps6HncwyVhHKe9f44H9xIUuJoTJSAiPFpHNtcLneDwqrX5GeMR2w2m861tlarufGh+ubH4ZFg8tmPe25eThwrAocQAxcQEBAQcAQogQLi48p8V8c4+Mb1PNUNQCyR0n/nucTpdQg1qn01MO4++TtVgIWFBZdaXRNQqJFL45DGFskbr8/slCzArTE2Z86cQblcRqPRQKPRQCaTccrdZDJxCgMQZQdkohNml6S7JK9JRY9G6nA4RLfbRbvddvF5yWQSzWbTJVUol8soFouunW6361QzEgkmkwAiZWdlZQWVSsURxfF4jJWVFbzpTW/C7bff7gxkP7ufEgEauOpCx3NI2PjjJ+5Q43ve/M8jXZwXjevy21BCr+sijvjpv/56UjVG+0Ijl7/HEbTd3V3U63XUajWXKVTj5PRYJTQkIswuyL7dddddOHnyJD70oQ/hwx/+sCM32j/2R+O/qMyRpKgqp+ocCQLd6NSgV5c9xoJRheJn3CBR0sN2GRfHOD2SGRIX3jvbAuCeOfafa5fzznvmeKnKyX5r+Qoln1rqgUoc3w86r756SYLE6+u6UeVVXVe5FnVTQTeS9H2p6ib7zM+VoDExEqEu4WxbY0qVQAP7rrIaw0gyqc845ye4UL5IMEBgcAEBAQEBN415xGueQR33H7eSqDg3tbiYjKPs4MYZ04cRSz2X10in06jVai7VOgtg0z3J2qioMgBHMNSVjUYTr8mMfiRNu7u7OHXqFFZXV2GtxcbGhsvWVi6X0Ww2AcAZqsPhEJ1OxxnwuVzO9Y2KAgCnMFBx6Pf72NnZcSULlpaWkEwm0Wg00Ol0kM1mXbrvvb09tFotd+xkMnH3qOQjk8ng7NmzyOfzzr3KGIM77rgDb3vb21Cr1WZSqOvcxblK0vBjAhZro0LTzHCn8V1qCM9bH3EqrH/MPPI2T+WNazeu7Thl2m9XjVv/e1VsqGBsbGy4TKQkU1zPSvroYqo1/1jTi0kpjIkyBL773e/GmTNn8OEPfxhbW1s3jJ8SV032Acxmi+TfwH5BaGOMyzap98f+sy+asZXnK2kgwaM7MF0WGcfFc6kCUfHjGGm8G/uqyp4STm42aCkNuoKSaCuJ0eQzGl9nrXUZHUmU1EVRx5dklnOoJEdJnKr9fFb4na4/3ks+n3cbHfqccWw0AyiVOV6TY83jSNjpOj6ZRImUuFlAIq/Kq/4/oJs3oYzAiwRjDGxgcAEBAQEBzwMHkak4ghenWMxTwvQYbSfOEJ9ncOvxB10v7nxNVEL1izvV3H2nmxbVCI3xobHHHXpmk+x2uxgMBiiVSjh9+jSWlpYwGAywubk5s/vd6/XcNROJhKujRGOqVCrNxCsB+yrfeDxGrVbDwsICtre3sbW15Vwwc7mcq9tE17tqtYpkMonBYIBWq+WSWdCgVLWBRvzp06eRTCZnjPQHH3wQ999/P6rVaqzroRIO312S5IM17Hq9nnMTpUGtxqg/Z3EbBEqIDjpOj/eP8c+PWysHkcU4Ihd3Do9VtY594d+NRmMmhknJhY4Lf2ccmCYU0flKpVJ49atfjYWFBfzO7/wOnnvuuZk4L64rJUUkOaqqAPtEn2SfMW/8ju1o1lCSQt4n21J3O16L5M0Y41RiTYfPWDnGtmnJA65fzYTpx/dpbTq2QXLCPuk5vC+N8yJRU3WU11c1TdeAFinnZxwL/q7/KiFSNY3t6jXVVZjX4hwwgU2pVJpJqEQCOJlMXDmS8XjsMnuSMFKd1Rg79o1tkNSp+hdi4F4khCyUAQEBAQHPBwcRL99IPgrB8o/n93qsnuO7pvnt6r+HHaPfJZNJR474w/gbNSbVJYrqHHeoR6MROp0OUqmUq3W2vb3tjNpareZS6W9sbDhDSQ1kpk0fDAaOxDARSi6XQ7FYnIkt6fV6M8ZToVBwyQeokJXLZezt7TkiQLfQRCLhMmB2Oh30+31ks1mX/ZKqI7PWkcjS0C0UCnjTm96Ee++916mM/twrwdBkI6oaUcUkcaPL5LwYN52/eS6U/NdXtg5T4fz1F/edfw39PA4HKXs+2E8lP0p4SXbjiBzvk65+VKzoRsj1BETP6qlTp/AVX/EV+MhHPoLPfvazbl1zLWpCEypoShqZPCefzzsFi2Og6gsJEgkH78NPyMF+qspHdZsEsdvtOpdRxl/x+VLXUiWIVMvYJyVoXGskeky0QjWNxFbjUjUuDdhP6qJJWuKSl/gp/LXUho6Rn4BE1y/JFPulChjfFap4aVypKpq+GytJmMbPslYcx5vr0S/9oPcUp75xLm4VjheBM4HABQQEBAQcjjgCdJib2Tzi5O8463/8PE/PV0IY5zo3zzCOI4Jq0Ot90PAql8suGYi6ZNFY8Y3YdDqNYrGISqXiUrmzphrLDKhL1okTJ1AqlZzqxsQhJF/WRu6TqVTKkSmSu0KhMEMoAcwYYlQSRqMRrl+/jvE4SqfOzJWDwQD9fh/JZBIrKyuO0HU6HafM0PBkoWdmlmy3285QLhQKKJfLzt3xXe96Fy5evOjiqOLWgSpvNCRJMNh/EjcajzR0ee68tafzHKfaxq0JXTOqVPhr7aD78VVG/5y48/2Nh7g16l9L751rRMeSipMqIr6bJZNNaIyc1vkqFot4y1veglKphIcffti1oconNwu4/gHMuGoC+yUgNEZR2+LfPE7dG3UDg/NB8qixeH4qfW4kKHmLI+t8jpRkWWtnMrlqNkWuT8bcqUsiFW0+bxwfKk86XmxL3RipaOt601g4Hst3A+9N31f+etH15McPqgKpWS91LLlh1Gg0XM1Alg8hmaP6G/dsczxIXElE9fm6lSTueBE4BBfKgICAgICjwyc/wM0pbH4ShzhCpm3SQPC/0zbiPvP7pt/7PwzkX1xcnNk9p6FFhYFukFS5WDaAxIXqEQ1iJSNMHFIsFtHpdFwcnCYsyOfzrkYXydtwOEQ6nUapVEK5XJ5RAKjcGWNQKBRgjEG73XZqiWbq63a7GI/HqNfrWF1dxWQyQbfbdbXH6PbJLHzMLsmdd8a0kcDt7e2hWq3ine98J26//fYZw9WfF195UwWJCiPvlYSV5M0n90dRsOIInr8uFBpDpu5vhylwCn9jQD+fd65vBMc9T357mq1QVUyqKly/JG9K+Pi9FlseDAZuveRyOTz44IOoVqv47d/+bWxtbTmDW4k3iRaVP1VaxuPxjJumKm181rgOuClC5Urjo0jIJpP9Wm4kMiRafLbo7qjkFcCMosR54PpWFYrPuRYLp7sysO/GyuuxTbpN87nR2nBKoHy3TZ0/n3Cp66SSQI4Jn8G4xDr8UXdLvQd9tzFJkq4zvnd2dnacMmetde8On1xrwhdfOY17Z8e9y19OHC8CFxS4gICAgIAjIE45O6o7GOGrZocpZ3rdeUb8QUZvnPrh/53JZFCpVLC8vOzqSNGwpVFWKpWcwaWlAgDMuDESWqOs2+0inU5jcXERALC5uYler+dcw9gHTUYyGAxcEhHWdaNqwp1t1u2iWsBC4KoQUOnr9XrI5XKoVqtYXFx05G1rawuJRAL5fN7FF6VSKVQqFRSLRafelUolAEC5XEY+n3dq3Lvf/W6cO3fuUPLmx7sxMQIJLhOVxLlMHrSW/GvOI1H+mvLXlX++bjLoT9z9zeuDnn/UdT7vefI3J5SgqLKjZIDGuhI8fjcejx1Z8ZPQJJNJ3HnnnQCA3/iN38DOzg6A2dgqjTmjMkM1S2PQVHkC9gt5M8ZO3wEkA5o9kaSShIn9MMY45RYAisWiS2hCsqbZT6lua2FuTciiBdEBuI2RRCIxk51TCQhJKf8mmdXsl1TolfT4qlicskyFjNfVz3Vs/PeZv/GgbZNwaduaZIguy41Gw9UX1OdaXSc5X/yMKi7nMk6Z5nnap5cbx4rAASEJZUBAQEDA4dD/pPl3nJJw0Pn+30oK4xS0eSrKvLb9Ph2mvBQKBdTrdSwtLTmSAmDGPapWq7lYo1KphGq16mpvUa0h+v0+rLUoFotOdVtYWEAymUSn03GJOagg5HI5FAoF1Go1JBIJdDodpyiQWNVqNWecAnBtaMp0nkfVEABOnjzpSFE2m8XS0pLLMklXStaMo7tiNpt1de5IZKkwMlau0+mgUqng7W9/O2677bYZd6rDlDet56bFxHu93kztMd/I8+eOBijX5Lz14CNuE2LemtG5VXc8P5NgHHxCF9cH37jV9a/fK5n021K3OhICKj2j0QinT59GKpVCo9GYiX/i/VCJKxQKjsQBETG86667kM/n8Uu/9EvY2dm5Id6TSpsqUZw/VYg4XlyjVNSY+VDHW8kF3TK50UECQtKvCYKUOPFckltukKhayH6QoDFuk+vSzyarRevVpVFdBPf29pz6TgLLOmvqlsx75rOhZM5P5KJzTyLoK9JcY6o+cp2qYsb71c0mzhFLjLD0CD0B+MyyLVX31FWVc6iu5RqHyGvd7Ibfi41jReCihXSrexEQEBAQ8ErAUVwZ474/TFGLM7gPImwHnXeUviUSUUrsxcVFp6hlMhlnGNIoTaVS6Pf7M+mySTZ2d3ddwpJsNot+vw8ATvWiYTwYDJzxyiLeNByr1apLNkIViq5IjMUD9pWL4XCIdrvt+gMAjUbDtUuXzMXFRZeUpFarObWEqgNdzmj00jit1WoAIoOO5FBdKVutFur1Ot7+9rfj7NmzM+RN59ZX3ugOSWWSxK3f77vxVCVJ5ymOzB20LnyXMj3vKOBxPjH0CZXGI8UpDnHnHkT8Djt3HrQ/wGxM0rVr11CpVByRIThGTPqRz+eRz+edCkOF5ezZs3jf+96HX/u1X8P169ddRtTxeIx2uz2jzGjiDX3GqcrRsDfGzLhQUiUjWWMsFomSXxRaE29QBeJxjKlTAq4ZFqmKkyyRwJK80fXTJ49MFMJ2+IxqhkrdVPDVMt0MUJdLP3GI/q2uspwzjalTIsh1wrElieba5PV07vke4ruF98CagDzfnxOC7yO2yWPYB15DE7QcZT2/lDheBA5A0OACAgICAo6CeYTpsP+cDyNtcWRNd3YPckHzP1elIs4Ip8skszgC+25gNAA1tTizUpIgAZipocQderpZNptNtzNNtYDGItPzMwlIJpNxRIYubExUks1mb4gVo+GayWTQ6/XQ7XZdce/RaISFhQXs7e1hc3MTk8kEJ06cQDabdYoh48zUsAMiJTKbzaLb7SKVSjnCV6vVZtwwy+Uy3v72t8+4TcbNmRI4GtYkbmyL960uk/5a4mfqMhiHo7gosk3+3IxBGXeM78Y2j/AdtZ9+TNNB58apcUp0dR5IjqjGqJuiHsdag8YYt85TqRTOnz+PP/yH/zB+9Vd/Fdvb247w6/xTIVL3Rxru3JSgmqWF4LWmmk84mHCEz6Cq3syCqkSNqh8JBMmQkkgtO0AlcTKZzJQ8IHnTvilhIqHUguF+5ktdY3yPaIylf8/qTqrusHHX5RhpTKIqX3rPwL6rp6p7nHuOM0umUN3nHPgbcJochoRdVWn2i/1VxVcTJN0qHC8CF2LgAgICAgKOABoYwOEuk76BGecu6X+m7frXOOx6ccfEETuWBaDroMZwjMdjlwiERI/ZIEmemLyDMWtUjvh7r9dzBXS73S5KpZJzL9vd3XUxR8zsyJgvGl9UA9VdisSLxqy1Fo1GwxXSpSFVr9ddDAtLBDC2jX3rdruuHQBOfcnlcmi1Wm4MSHJzuZwz6lKpFB566CGcO3fuBuVNx91X36hi0G2z2+3OKJI09OJU2ri14K+DeQqdkis1NOPW0FEVvTjQYFWFKc5Ijbunw5TouGMOUrs13k3JGb8jiSJB0SQi1lpH5Lk2afSfOnUK73nPe/Drv/7r2NjYcESPfVNyAszG5nHcSRZ4D/78aOIgIHJfZl8Y70a3T1XndF4Zt6YkVV09qRCSpHFdktTpc6HHk7BwrlX9UiXWf78Ruu6U8Kgy6mf6JCnU9qy1zg1UY/J8l2IdW30+9By+u5T0qerGz/1NE56v40zCHFcyQstbcDPhVuH4Ebhb3YmAgICAgC96xAWfq+HC3w9LPqHwj4sz2g9TVnxlIq5/JCSlUskF8nMXn+oElSpms6tUKk41AoBqtYrhcOhi0nZ2dpDJZFCv1x0xMcag1+s5FYtqBseEihbVBCZ0yOfzztWLO+sAZmLmmJ1yY2MDg8HA1WhLJpMol8vodrtoNBrI5XKo1WpIpVJot9vufBI0KnZUMkqlkutzuVxGrVZziU6YiS+bzeL1r389Ll265Nzo4uaDxqTGvGnMXbfbRbvddu2q8ua358+rumb5c+/Pu/ZPv6cSwc806YOvpqn6cti6VEOa5/oJJeaRtThS6rc7T2me97ca/2znMDWT1+G6MsY4xdcYg3PnzuHLv/zL8f73vx+dTucGt0BVaTTzITcBSCxJElTJ0lhMVeuMMTNuj0o++Tfnle1pcg2uL7pSptNpV4KDbrwA3PPHzQauE7av98Ox0hp87IO6MxJUz1VNU7LEfqqSp/NBAkmSpmqfkmT2mW6hXLc6zyTqdBdlCRSOB79nm4lEwimIJHy8P45pMpl0CZVURSeBowrJsTiK4v1S4XgROMwvOBkQEBAQEHAQfHXioAxjcUZ5nOIQh3mGr7Yx79xSqYSVlRXnQsZ0+TRGuPPP2m1MVsI0/YlEAqVSCcPh0CUk2draAhC5W7GANslaPp93sW9Mv51KpVCv15FMJl2afxpXLICcTCZdiYLd3V10u11nZGUyGQyHQzSbTefyxOskEglXs2lxcXGmkDhdNunuRmNsPB6jXC4jl8s5ZSOfz+PEiROo1+suJo+JTO644w68+tWvvqFItz8nqrpRcdFMk1TeSGoPWi8693EK3DxixH4AswY34ceDxRG6g1SvOOU47tpxrn1xfdX2D9uMuBn4LqlKBgG42C/FaDRyKjKfEyp1qVQKZ86cwZvf/Gb85m/+5oyxr88giRSNe2Y0VEJJQsQ4Uarc6mbHTI7qUqhEUZ9bJvXR2DVgP86LzwBJIdc2+0k1TmvRUTXjcSR+JCaErn1gv54aFUEqzX7SFo4XSZnG2ulx/uYIx48ETlVIJWs6Bny3UHHkePLe/ayvvnLL9rVwufZTY+Y4T5PJZKaenj9OtwKHEjhjzI8C+EoA69bae6effReAvwBgY3rY37fW/ur0u28H8OcAjAF8s7X2N16Cfs/pa1DgAgICAgIOR5za4RvWepz/9zzD9yClzf/8MNVC+5jP57G8vIx6vY50Ou2yqwH7u83Ly8vOCLTWOhdGqkUkOsPhEOVy2SUGoXFOt0iqdMVi0RXgbrfbmEwmLhmJtfu1pbi7XywWUSgUnPHIbJVad4kEjarHysoKarWaS47S6XSQyWRw4sQJJJNJlxiE5AnYL+pM1aBcLru/d3d3US6XceLECZeNkOpgIpFAtVrF61//elQqlQNJhB/fQzWj3++j3W67mDe6s8WpFTqnvoLkz2/c+lDExaTFrT01KH0VThWjg9S0OCi5oQEcp1z6Crb21SevcWN12JzwON99lP2jOsLPgCi5CTcJGB9GEnTPPfdgOBzigx/8IHq93oyixjEigdHaYBxrEr9cLufiRrWWm1+Wg2NBopJOp50KrAl4SLpIFqi0cx6ZybXX67mNkXK57OL0SDzVlVNLEmjbnE8SPN0A8JOF8P6BfZVOM02qas17VVdcTQhCUkW3UPaFbopULnmMryhz80TrWvLamp3UJ1kksZxHziXXhbpJ8t5TqRRqtRrS6TTW19dd0qdbKRodRYH7MQD/AsBPeJ//c2vtP9UPjDGvBvC1AO4BsArgvxpj7rLWjvEywCDEwAUEBAQEHA7fLY3/HuYCxn8PUh4OUhviCGGc6qbHlcvlGfJGVykaZHTb4q44idp4PMbW1pbbQU6n06hUKgCAVqvl1Ai6RPF3KmGMfaMxWK/XUalUXHY/AK6QshqhrMHG+DAgSiwymUzQarUcUdTsfPy8VCq5TINMyU9DmUZnp9NBOp3G0tLSjDoIRK6hJ0+ehLUW7XbbuTaSQL7uda/D4uLijPHmz4UafjRAtZ5dt9t1xqPu9itR8RM3+NeYp1LNIzBxCSh4jt+efq79oRuokjgarEdRgNke50zjjbT/et15St1Bz89h0LHwyZHfBr/v9/suJo6qDeNG7733Xly/fh2f+9znAMDNq7rIUcnSdulSx2ePqfeBaL3zOI1h47hRiabaw2syIysVcBIXzheJnCYCSqVSKBQKSCaTrnYiySEJJZ9JjQnkvWnsIO+ZsXlx6f+VVJGMauFzQmMH9X3rrxsSQSVtHB+SaT6/VN+0Hh5dRnWu+B5kH/lM8/5U5dNkLSRuHEN+ns1mkc/nUS6X0e/33fvoizqJibX2A8aY80ds76sB/Ky1dgjgKWPM4wDeAODDz7+LNwFjggIXEBAQEHBkxJGmOBVj3k6rb4jrcXGEbh550zb4O3fVT5w44RSj8XiMYrHozmUGSBaTpnFE1YuJEhYXF1Gr1bC3t4eNjQ13/mAwcG5avV5vpogwjZRcLodKpeLIIxONpNNpFAoFF3dCV8JUKuWKZrNcQbfbdcQnmUw6Itlut9FoNJBIRKUQqOC1Wi2X1ZFZMovFInq9HowxWFxcRKFQcG0aY3DmzBmsrKyg3W67GDmWTrDW4oEHHsCFCxdis8fpXKjbJNUBEje6TTKGRt2p2A4/U/Lmbw7EbQbEKcA+OfLdKeOUqHnki9DYHxrIaszGrUXtD/9WBWYesXwp4Csr/v3Puy6VOJbJ4DNWLBbx5je/Ge12G0888QSAyBVxOBzOGOpMhELSQmVG67ZxzQP7STbohsg1xeeWJI/qExOPUEWnGsY+a+wVlUTWfWM76t5I90i2z6RBJJE6ZnR75Frgveq7kKSL7ZAEacwe71tdEPmjZUd8BZjkLZfLOVdFKoJxcXKFQgGVSgXNZnPGfZZEUN3K9XkgqdS++RlHdd54Psec5JtjfivxQmLg/pox5s8AeBjAt1hrdwCcBvAROeby9LMbYIz5JgDfBADnzp17Ad2QNjE/q1dAQEBAQICPw9SBgwzCuLbi2olzFdOfOIO7WCyiWq26RBw0lmgwsl4UU5kzcYcmnSAZW1pagrUW29vbzlDqdDrI5XJYWlpCq9VCq9VyO/9si4ZKLpdzLktU8hhbxyyVdP+iOgPAJVJglkmqGCwP0Ov1AMApCEwQ0W630el0nArCflANJPnb3Nx0358+fRrLy8vOpYzGF3fLz549i/vuu88phfMIhhpwagDTlZOGtSp7OsfqPqZrgmpN3DXnqWhx3+nnqjipQcx7J/GIU335L9vnvSqR8438uP6p0qgumjomLza0XRIMrjlV/nzyy40HxsTRlS6dTqNer+Ohhx7C+vq62xBgEg0/sYe1+3FSwH4cIkmWzgmhKpWSLvZb3QVJxJhhslAozGR/1QLidONj+1ToNGERXZd1LVFVZvwb559953rlnGqCEbar0DUfFz+nP7xvHT8lduyjZvpkeROOIcuTkOBp7Jy/ycFn2p8PVd4YU+xvrnD9MA5XXV/53NwqPF8C968A/CNEIWf/CMAPAPhGsBTbLGL/57PW/jCAHwaABx988EVhXS/RuyIgICAg4JjiIHXM/24eQVP4x/hkQQ2EuGszE2SxWJwx0OheRaNhOBw6g4IGmhqDNHCq1SqazaaLmaNxuLCwgEqlMpN6nC5lxpiZbJIkK2rUMh6k0+k45Y+GJI2awWDglDC2vbi4iHQ6jWazifF4jHq97soZtFotR5JGo5HLssm4nkQigeXlZaRSKezs7MBai4WFBZw8eRLpdBqNRsMZmnt7ezMulK997WuxuLg4t2QAx5X/0nik2yQzaHL8lLwRVOsAOIPbT6bAuY5ba7y2T5Q0HkfhG4/app/MRFUy/c7vG93MADjjXUlZ3Nrleew/x/jFJnJx16ZxznXif8/aaAQJQT6fd3PImLKzZ8/irW99Kz74wQ+6sha6ycJ1kU6nsby87O45l8vh9OnT2Nvbw+XLl2fqIHIDgOQqn8+7chk8huSNChhVcyYh4rNN1Y2qOO+Z6e3pxsk1z8yKJEMcG6rr6jLJ+eY9Apgh8Vwz7DeVX37PDJeqyHJcOe5+8hbOm5Y/oUcAVTE/3o7XJqHS9aprWsmjunHyb83yyfY4Nr5bMYmhtbOlHbSdW4HnReCstdf5uzHm3wL4T9M/LwM4K4eeAXD1effuJhFi4AICAgICjoKDVLc44naQCue7Avk7//OMX999rl6vu2yKGgNCw2FxcREAXKZIpkXnTjJjRIrFIk6ePAkA2NiIco2Vy2WXMXJlZQWFQgGbm5tOlaOhS+OFxb65K0+DRl0mm82m6wNrwHH3n2SMBi/7xvg1kkAALvMeDd1sNutKFLRaLXS7XZckgklVmADlxIkTrg0gIlF0y6Qh/YY3vAEXL150xrA/t+qKp+6TNHL7/b7rHw1Y33WSpJHGr6pfaujGzT3/ViKnxujNKsDqaumvUa4XrZXlq22auEVj3Q4qXKzqBY14PwPh84WOh/7tKyT+GPjPnx7LchKqKqfTabzqVa/C9evX8dhjj7nyGKlUCtVqFYPBAI1GwyXyKJfL7tlgrGalUsGJEyfQ6/Vw7do154ZJNY1kheRJMxsy5k3jSieTiVt77Cc3bLREAMmmJhbiM8e55Nz4KfRVQVX1jGOi53Pda/xbnEsknzWOPz0GqOzpOqTCR7dNdf2meyqvxzXIGpC+6uy/U5Vs8T3K/pPY8nd/o4I/upHhx8t9UcfAxcEYc8pae2365x8B8HvT338ZwE8bY/4ZoiQmdwL43Rfcy6P3CzZEwQUEBAQEHAHzDEs1AucZz/NUNP9H1ZN5qksqlXIp7wnuwANwKcV9w3x5eRkAXFzceDxGpVLBysoKer2eiy0bjUZot9tIpVLI5XIYDofY2tpCt9tFOp3GcDh0BImFsNUVk9dkvBBVKbqg0ZBjrFun03HKG4kh42p4T+VyGdZaFytHosSCx6PRyLmz0RilOyQArKysYGVlZWYXvNvtOndQGovVahVve9vbUC6XZ9yzfOVJyQdVDRYMpwGtrpM+8aPRqQqUv46UlPlrwf897ni/3weRonlrmAYribkqcn4cnBJQVT+oWsQZzbwWx8hPB38z8InbvPsjOB/qeudvqND4ZhKPTCbjFF+6/L7hDW/A1atXsbm5iUQi4dYZMxGSQHGt8trGGFdG4O6778Y999yDD3zgA9jc3HSuu1wnVKeo/nBd8VnPZrMYj2fLX+TzeTefSt4ymYxrg/PKudM1qsk/mEBlPB7PPFckbiSb1toZl2QqaT7R0XEG9l1DVf3VdyHfe1S2lESqmq/jpUWzmZlW4ws1AynnRL0WNBmLr8bpO1tdLv1kR3wfJpNJlEqlm1nOLzqOUkbgZwC8A8CSMeYygO8E8A5jzP2I3COfBvAXAcBa+4gx5t8DeBTACMBftS9TBkogKHABAQEBAUdDHPEC4l0n+Xnc9/pdHIHzCYPfbiKRwMLCAqrVKgA4w2lhYcG5ZyWTSbRaLbcbra5VTIQA7Me6rK+vOyODsWnMAkl1iglShsMhSqXSTKIS7lLTmCFxm0wm6HQ6jnCR0DD5ApU3kjIAznAlmWLMHJOa0FBijTpjjMtIyXsYjUbY2dlBIpFArVZzLpM00vn9zs6OM4T53Rve8Aasrq7Guk76c6jqG90nmW2SBrO6RfrqGBWCOJI279pqYCvR8NfWQYQtTtll22qU8hj/eD+ToyoOqlrq+JDA+CqbrnvNAHjY+MdhHsmNe56UrPAYGur6t44x6xxyjdENcXl5Ga973evw/ve/3yXUoTpFgkViw1i4QqHgVKS9vT00m028+tWvxtd8zdfg137t13D9+nW3JlVF40YB3SBZQoDrj8Qxn8/fQNwYs0o3TbavStq8948qd1TzSbiZkh+AUyi5Dqiwq8qmY64xb1wzqgLyOCWY/FHXS6qJ/JyqP9eqKtZUFVUZ0zWhSVa4rjUJETcmuK7Zd40pZnsksCTgLOVyK3CULJR/MubjHzng+O8B8D0vpFPPF8YEAhcQEBAQcDTEKWL+zjJ/13/1nDiVQFUN38hXQzKXy2FhYcHFwBB0C0wkorplm5ubAPYTBVSrVezu7jry1u/3Z1QFVZrYLrNH9no9ZLNZVCqVmTpqmklS1TctEUAlCoBTLVh6YGdnB8Ph0JEyZsdkUhGOD8kZk4EwtqVWqyGZjAqDM5Mfs0xSyavX61hdXXXX7Pf7aDQaznilwZtIRMXKL126hIceesilWI8j3r7ypupbv993BI7qhZ/khFD3U3+N+dfVdRG37uIQt5bi1MQ4NUyhffbbUqNaY314Xz6Z84mcKnLaLkm11hC7GRxVbdQ50bgo/qvGOP9lDTW6SzLm9NKlS3j88cfx6KOPolaroVKpuFIVvId8Pu8IC5OicMOj3+/jsccew+te9zp81Vd9FX7yJ3/SZWClGyA3BIB9xd0Y41RfPn+su0iXYM4HyRszo7JvJFx8ryjpATBzfZIxumtzA4JrnRs1xuwnaSHhJInRuFdVxHR+eG32j3NFpY33pMoY3zUA3NiSZFIlZDwwXbn1miRu3HThs8mNFo2B5PXVZdgvW6DY3d11NehuFV5IFsovOhgEF8qAgICAgMPhK25xKkbczjUR5x6n5/vX0b8TiQQWFxdRKpVcopJUKoWFhQWXzIBxZd1uF5lMxpUOGI1G6Ha77nsaUFROJpOJS8BgjHGGEI0ixtzQNbFYLLryAjTaaewwMyTJkqbUp4HT6/Wwvb3t+ry3t4cTJ05gYWHBGYgkUMwiSbcmAK6kQLFYdDF1quhRfTh9+jRKpZJTN1qtlsvOR3cqxg+dO3cOr3vd63DhwgUX70d1gnOn86qKGvuscXkcGz2OBqqSXZ/A+AalIi5Zif+dkjufFOka9delvzbj1F8/Rs7vE//mZ2rYqgulqhxMPhGnaJMUqoupDyVYfn/9e4zbfGGfCb+GmsZkKdHjRgcNdSYBeuihh9But1EsFl0CHm5wUEXj/dLFMZVKuc2JVquFp556Cm984xvx+te/Hh/72MfcGCp5o+pmzH7tRH3+dP1prUcSKSpCqhyxNh3vUckPiQk3dbTvqpxyXnkMiR/b5TogkdRsknyW1B2R88t+ahwdXVE1No/Zb9WtkUSqWCyiUCig0+k4Es7zeB96PNtQMqvj4qtuSurYjj6LjE18vu7BLwaOFYFDUOACAgICAo6IOGVMP/fd5A5zYzvI0KQBw9T9VM8Yd8aEHq1Wyxlk3W7XEbxkMomdnR2MRiOX6KRUKrmdemapY+IBFhUmwQP2XSxpxJXL5ZnMlFRh0um0S2LSarVcAgXG4zB2ptlsulg6Zs+88847AewXPj537hx6vR6azSastVhaWsJwOHT3yWyY29vbjngCUYwL73FpaQnFYhHdbte5Ut53333odrv4zGc+40ogvOpVr8Ib3vAGVCoVV7i5XC67nfU4Nzyf4FCJYVyQGsmq3vhz65Osg5IbqHuZYp5r4GFKmg8llUc9h1CDVIkgDWA16FWZU+VOswj6CqG6sh3Wv4MInT+X/ndKPFUR92O1SD64scENhkwmg5WVFdx33324fPnyjPskiRvvu9fruYL1jPHkZsfVq1fR6/XwwAMP4PHHH3flMZQwZDIZF+/W7XZdEqFcLueU4PF47GKuVBUzZj8FPucjk8k4osfNG46HxphRceM5SsR0g4IqHhX3bDY7k6REXTZVidW6dGxfNzq4JkgCSR6p9lHV1A0Rkn/dmKJLq5J1vQe2z+dWx5/fqcrIdaculdygYJ9V/bxVOF4ELiAgICAg4IjwDTlfTQPi3dTi2vBjbPxjstks6vU6lpaWnJFBZY2JQZjOn0aU7uizmHWlUkG5XAYAF/ui2R65i68qHAmgGpdUFUjOaPDn83lXTJuKGACXZY+xPjs7O04JI3laWFhAv99Hu91GuVxGNpvFzs4Otre3Xfvr6+sAIqJEpWJ7exvb29uOcHK3v1QqoV6vY29vD8888wwymQxuv/12jEYjfOxjH3NKxd1334277roLZ86cQaPRwCc+8Qmsrq66OELG0uh8+e6TVA9JfP16b/PI27x1pPDVszj1VkmdxuHws8MQp0LFnTdv/RI0WtX49dVpVa80sQmNdxq/JAe+EsnxPCir5VERp04qGeA9UUHUtPmapEXT0zOuczQa4fz5864uIQAXp8YxolsjnxO69HW7XdeH9fV1l/zETxaimy9UklhqgMmCOFa8DyYq4fhqbTJfFdN6bhwPzVKpBIoEnaSJc6pzrTGF3OzhGJJM8lniGOs5bJPvHN9tkhtQ+k7SZ07r3HGTiAmSfHVV1T7dTPA3EXiP6jJMd3Mtik6SzA0wupPeKhwrAmeA4EAZEBAQEHAo5rk8AvGxbnHnKGlT49Y3SovFIpaWlpw7XyaTQbvddsYCa6JpvJq11sXEMMatXq+7LJLWRjExVLJyuZzLNpnJZFCpVGbqcfFaWjBYCxaryxaLVtNoo+pGQ2lrawtra2sAgDNnzuDuu+928WutVstde3NzE81m0xFHKoRMIJDP5x1p1XEtFAqoVCqoVqtoNBro9Xq4cOEC0uk0Pve5z6HZbCKbzeKOO+7Aa17zGtTrdWxsbOAjH/kIrl69ikwmg4ceesjFM80jMppAgYaxn6BFXaxUyQBmMxzqeohba76qGwdfmTuM3MS5Vc4jj3HXjNuw8K8fRzZ5jK9qMFsiFTit/6eKDcdAC4frmM4joHp9bSfu/tVNj59rogpeh3Omx2mWRm66rK2tOVVMVSe64ZFcEFTyJpMJnn32WZc8SMcEwEzdtmKx6NQ4rfmmpQf0GfYVTt4L1zLfE4w9pNsm+69jSPVUE8+o6qyqKqEKnL5nVL3S4uZK5hjfxr85/iRG6tqqKpyuhURiP4kTCSP7r0RO1ztJsBJUkjQqgyRpjJHj9Uh8ATiiPc8j4+XA8SJwBrC3rih6QEBAQMArBL7hA8SnQ1f4BqQaLfOOLRaLOHPmDMrlMhYXF7GwsICdnZ0ZxY/Fq7kjXiqVUKvVXOKQcrk8k8iACUSazaYzNNlWsVjEqVOnkM/n0el00G63XYwJa7gx6J8GDt00Abh4Nu6sJxIJVCoVTCYTNBoNrK+vu1puFy9exOrqqlPrAGBhYQG7u7u4di2qNMQ4Fqp7jUYDk8kEi4uLGI1GTmEAgGq16hTJ8XjsMvdls1k8++yz2NragjEGJ06cwP33348LFy5ga2sLH//4x3HlyhWnRN5zzz04efLkDSnA41xi+bsavaq+aYKGecQLgDO241z7DiNv80jmQcqbEij/Hv2+6me+waltaJ/9PsQ9I/64si2SORrHGiOntQ2VHHOz4aB7jut73L36fSWZ0BT7ftZBVWKttS6RDjcKnnzyyZnxomIH7MeYUZ3jRgfVr2aziZ2dHbdJo6SFZIK1H6217ly6HvJYjT/03196r8Ph8AbypklkqLqxXf5orJpmJlWVyieLvK6WAyCJUhdbf42S6GlBbT8RjsZcagyrvnOZvEX7ozUBVZUjSfWfAyqJ7A/vkWqgP66MS2Qc8q3C8SJwMLAIDC4gICAg4GD4BoXvfqPHxSlwvvKm59KgqVarLsbr9OnTKJfL2NzcdDXZKpXKTLp8a6N0/8xM2el0UK/Xkc1m0el0ZvpBZYsFukejEarVKiqVCmq1mit2TeOkUqkgn8+72C7uxBeLRZcKmxkgqdAxEUK328Xa2prLhrm8vIzbbrsN2WwWzWYTo9EIlUoF4/EYW1tb2NraQqlUQjKZRKPRgLXWKQt051SVi32ggc9MlcYYDAYDdDodp0DedddduHTpEobDIT71qU/h2WefdaRwMpkgm83i1a9+tYvh0/kllMipAcvkJaq+KThmhM6bqjq8hq4hVTMOQhwBUYKlfed3/n3qMdqnOKNfr+tfX/tLg143K+aRO46TEh0qK0w0o2SXBIjk7qjwx3geeVViqe6UvgrHsaSKxT6Vy2WcP38eV69ehTH7boLZbBb9ft+ND10rmV221WqhVCqhUCjg+vXrM+6DWvRdC3Ora6AW4qb6pW6BVIV4j1TM2SdV+UgwtS4a+6DFv32VTV0cSaKUaE0mE6e8+q6/nFu/HIXfdxYu9xPN6DpX4q1qHttn3K9mi2RbdGslYffHluuHxFsT9nA8SEYZ48ljlei+3DheBC4kMQkICAgIOALidoPnGY8HkTg1SujyUyqVHJlaXFzEmTNnkE6nsba25naMc7kcer2ec1XM5/Mol8szxuPi4iJ2d3ddQWvugu/u7qJUKjkiRzJ48uRJGGPQbrfRbredIViv15FMJmfIG92PmIq73W5jOBw6I5OFtnd2dnDlyhVsbGwgmUzi7rvvRr1eR6PRQKvVcqoiE5qsra3BGOOuQzWPZHA8Hru05yR0LGPQ7Xaxvr7uCADHKpFI4I477sClS5dQLBbx6KOP4sqVK87w1F3zUqmEO+64w+2cE757ohqaJBp+sW6SLu7qx+3c+2tJVQlt/yD4xEuh7oRKBFU18o1jvUc1MOMUuKPAvxd/zWv7/n2xD5qlki6KShZIBG4mLu4w0sZ29ZnVvvhZKlWtowpHUrm6ujrjrkwiVi6XXcIhdaGke12tVnMxrprlkfOodcmo5lD5UddS/1x18VOFiFAVLa68g5JZVeDYtpIWYL9sCImOqlUaO+a7HWoSGRI5jq1P3nivJJ6qfusmhZ/Jlu9dkjnf9ZfKmTGzSVs0+YqOMYmlkj2uGVUM/fNfbhw/AnerOxEQEBAQ8EWPeeqD/x2hapvfDg2UfD7vikwXCgWUSiX3N138WNesUqk4t8VqtTrj3phIRAWrqW7RqNQMdewjFbtqtepi4Jjcg1kcAbjd4r29PeTzeRfL0+123XfccWba/bW1NWxsbGA0GmFhYQGXLl1COp3GtWvX0O/3ceLECRQKBWxsbDhyyoxwJKYcN5JVxvHQcK3VaiiXy9jY2HDulFQMGGdyzz33oFqt4tlnn8X6+rqLEfSNSGstLly4gGq1Glv3jfPozzPHhe6TWjtKXf3iyFnc3/76OKryNq9//N1XTuLiyuLWNdv1+xy3McHv1QjW44F9gqhuc/OeDbat/aZ7oGZ0BPbjl45aL07vT10hfXWRx3K9cJOE65DqnLbDY9hH1oKjgl4qlZBKpVAsFh2B4oYEx4JukZ1Oxyntqn5Tkez3+zP37a8ZdV9Uosk5oHK8t7fn6slxnNV9UcsDsAajKrUkLyRjJEMaH+iTNM0mqs+jPn9UGFU103g+VT9VqWa/OC9UGAl9PjlG7CP/VndUvgtJhJVU6r0oked7ihsLg8HAbY69GEl4XgiOF4HD/Jo9AQEBAQEBPo5ifB7kegZEO8YrKytYWlpyO/usbzYej3H16lWsra05Q5G1zWisMOscd/xLpdKM6kZyUSwWUSqVZlJzLywsIJFIYGtryylszOBYLBZdjTQaJozrAaKSBf1+38XtAHCJReiamEgksLS0hHPnzqHf7+Py5csoFAqoVqvo9/toNpuOUBUKBZeCnxnceF9UDFgYPJvNolqtotPp4MqVKzPJHIwxjtDm83ns7OzgySefdCnY/TkC4Iy4u+66y8UEHjTnOu9UCuk+5deH4u++searUXFrRI3ROHKm6l1cG/q5Js1QlUT7qn2ZpwbycyUreh2fDPnQcYtzU/VVan+eeB9c79xQ4L3QVe9mamz5ZNH/nNdmn6nWcDz8uVXSyaLRJ0+eRLPZdLGp4/EYCwsLMMY4RZykL5lMuphMbl5QdVbSoC6TJLJU0kh8dAPBvz8dL5JNP7mIrmOOPfvCPpD0aNIZzjGA2LUW5xKpyjqVRN4X29NEMvxMNyK0P0qotISFkki6TpfLZXQ6HfT7fUeuWe/Sr6mnzwbHiuQ5m806os+xZc1Jzhfnn+/SW4HjReCCAhcQEBAQcATEqRCEb7T6ZE4NYKpsrOcGwO167+zsuP/oqUjRrTKfz6Pb7bp4N5Kc4XCI7e1tFAoFLC8vu1T+VKparZYzrur1OkajETY3N11R2WKx6MoMtNttl1mRpI7XoBpGt0Ygypa5s7OD69evo9vtYnd3F6urq1hdXcX6+jp6vZ4zVHd2dpxaSPAex+MxlpeXYW2U6ZLGHBOalMtl1Ot1XLt2zSl8JCYkmDRyO50ONjc3Z4gUjWA//mRpaQknTpyY2f33lSX9oUGvsW+++uYTgIN23H0SdpjyFkfSfDXN7yewb9jzGv44KOHUGC9dx76yctiaV4M9jkzExT/57fhjRPdXrlEayepOGaekznt241Q3/1+uH/1RwqrzQUJGclWv192mSLlcxnA4RLPZdJsx3HjY3d112VUTiYQjcMC+yqPZK7neVU2iayEA59rL/nJMSGoAuDY45+qSqGuE909wTalyReJM1VAToShUqTPGuLhWgvfBtnj/3EjS+Ez2k2Ov5I39UsVL1z9dKBmvqOtK26FK6Sc3UjWbx/JdxmQwfKfzfn1V+lbgWBE4IMTABQQEBAQcDjUA4xQ2313MN9wzmQwWFxdRqVQAzJID/ue/t7fnikkPBgMUCgWsrq6iWq1id3cX9Xod6XQa29vbaLVaroBwOp3G4uIi+v0+Go0GFhYWsLy8jPX1dVdTCogyRm5sbLjd5mKxiGq16mLgeE+ZTMYZx3SxpMsnFa9kMom1tTV0u12n5C0tLaFSqThCl0qlnPsQjTXGAmliAO50d7tdAHDKYSqVQr1ex3g8xuc+9zln1NJIJNFj5kIawnT94v3Mc5c7deoUarXaXKPfN/apRuiPH/vmX1OhRrKuHV8BmqeyqRpGaMwb/9W6VermRcNciZ5C//aNZX6mx2r8kBqn/rPi/+4TOR0PfhenBnIsRqOR2zAoFArI5/NIJBIuFkkVnLhx9Z/jeS6UHCMlPyQs+p2v5jGDYzabxcLCAra2tpzinM/nZ2LYqNowq2yhUECz2XQukyRQmn2S52t8lRJsjpGSrbgNBgAz60GVRX99cJ41xT+AG2K89FyNNVWVT2vUAXDusfRGIAnivVprZ7JLknDGbZTps853I+dEM2dSFQPgFDRuamndOf+ZVpdQkmfO69bWliOxHANVKOe5ab9cOFYEzhgTFLiAgICAgJvCQcZlnDGYy+WwsrLiss4lEgmXnIGqFOPYSN7y+bxLaNDpdFzsDAtdM35lNBphcXERe3t7WF9fdy46a2trrmg2ALerz4QKxWLRFdKmq6G11ilyxhi0Wi30ej0kk0lks1lX381ai7W1tZmCwgsLCygWi86VUxN7FAqFmR3wSqXialNtbm66uBPG+tXrddRqNdRqNVy9ehVXrlyZMVhzuZxL+qLxaDS6aFjTAE2lUjPqH3fIV1dXXfKIOOXNB40yulUdpL5xnSho0PmKm6/ixJHHuH75qpvGA/lkyf/R9aqEUVUG/1oao0hSo26RNKDVwNfj4378+LiDVG5+xk0Ekhsm6WHyCM65T9jiFDb91z9OCQznWQm7T9LVpY/ko1arOYKpMWXFYnEm0Qjju6iOU3HSzIVUlDSejP3VBD6+Cy/7qy6EjOnz14jvJsv+6nogEYtT2Pi9uu9yLkjw+KwnEgnnxsn2uAFTq9VcjUkSZypnGo+oCinvjf3me1bP0Y02kmpro1IMJFgcC5IuXovvLKqDSkLZzsbGhnsnjsdj5+7OZ/9W4ngROCBIcAEBAQEBR0acqx0Qb1wnEglX2JdGQDqdxmAwcEWqmcgEiBQy1nxjOnEqWTQyGo2Gi5vhznun00Emk8HJkyfR6XSwvb3tXAu5I2yMcan3aVRubm461SKZTKJUKqFUKmEymbj6bix8C0RGymg0QqvVcnXleO5kMsHOzo4r9s1YIMa5cUecgf00glqtltttZ0mDO+64A8lkEo899pir7TYajVwGSu7Ut9ttFzfE8VZSQJB4qLGcTqexurp6aGIBJUmqhuiPunLpef4aoXGs6pUa9XG78/NIm/6uigCwT15IuvS7uPbmuXb5KkfcPQHx5QNU+VN1hO2qsc974Hf81yfVPJb94thxI0QT/XAceA013H2SEkea48aapISZV3VdaN94jWQyiUKh4J4B9kVjSKkCMUkHn6m9vT3nTu27FjKGK5PJuM0LVd/Ytk+Etb4bx5nPrtZN47hqm9qWrjl95jSDpM65liPQuD4qZMYY9znrptFVm9knfaWX6rJPInWeeS77p8lKfFdKVd3U9Zj943xPJhNHyDkOdH/leHAuuY5JxgOBexFhQgxcQEBAQMBNwjdq9TN+nkqlnCsjDT7WcaOhMh6PHXlrNBoYDofIZrMz8SksdE1ixngxuhk2Gg2XwZJZKBmAT8Utl8s5AsXMahsbG6jValhZWcH169cdiSJJ5O40XZZYK46GTKfTQT6fnyEINFg7nQ4qlQpKpZJzD63X6+j1ei5hwOnTp93vNPxWVlZw4cIFDAYDPPLII2g0Gk55Y226xcVFNBoNl42PxhOAG4w538Dm3ACRcU9irfN20NwqefPLEfA4VcDmQYmcXjuu76pI+SRMXcNIikgg4gib9tVPKAHMJu3QsaN6wTHwXTPZnhIl38BXA5zX9NU4//7jwPtWNRWIVJ1ms4nhcOg2IYD9VO86zgf9HUfiaNQraVClx19jPIfuvfV6HVevXgUQbVjQqCfZ5P2Mx1HJjF6vh3a77eJB6ebLTQ+2q66RmtSD6ig/53eqXPG6Gsep96b3p6RX693xXvncsX/cWOIaoRqpGSG5mcUNrV6v59xOGePLd48+A+qGyevrelVljkSY5/EczuNkMkGn03EJapihk8fo2PE+eX0/GyrdyPVZAeCUf/bpoM2ilxrHi8AhCHABAQEBAUeHGvhxBr8xxrknlstlF6dVrVYBwNVOm0wmLv4sk8m4DGhUyU6fPu1I2GQycarX0tISarUaqtUq1tbWXFkAJvfI5XLY3d1Fo9FwMTU0OHK5HLrdLhKJKFMkC3U3m02srKw4A5KuQzTsWBg8lUq5pCU0AlWRSKfTaDab7r4bjQYAOFcoukNVKhU0m02XDj2Xy+HkyZNYWlrCc889h2vXrrksfNzxrtfrrhwCSRTdxnwypMZ0HKEyxqBaraJcLt9gUM1TY2jQKomLi5OJWy8+eWR/fXI1j0zoZzyPxq3/ncbC+X2iEU8DX1UXpjsfDAYzCg6PjYst0sx7VHypnqiqqPFRNJQ1MYSqVzSSeawa8P4Y+vNKQ3pvb88l5gFm0+r7BDJu3uYpcfPcKP3jOM5UnGu1Gp555hnnBs174/izrmO328XOzo7biKFCz/g+AG6cuf6puKmi69dDYx/VrVTvRd1gCW4E6He+kuuvMVVFfVdhEiGq8lwjTEjD70hMucGliiJJJq/l91ndKDXWTVVh9llj06zdd6FknUv+TlLL+UgkEjM1CtPptCsnwmuQwGodzqDAvcgwxsAGDS4gICAg4AjwjRV/Jz+ZTKJer7tC04lEwsXmMG6KqtipU6fQbDYBRK463W7X7drfcccdyOfzjuw1Gg0Xs1WpVFAul52hd+nSJZcgZG9vzxkgg8FgpghyMplEs9lEtVpFPp93fWcyECplhUIB4/HYXRPYD/JfW1vD5uamS0CiWedopNRqNQyHQ0fyksmkUx1oWHU6HTeG5XIZp0+fBgA8+eSTaLVabtd8MomyTC4vLwOAM855v6oQKNmZR4b0c41JjJvbuHlWNcYvHTCPwPlugMCsy2GceuP31VfIWHvOdwnjv5PJxJVqoFLCJDEk8CRmjM+hCxyw73Kq8GOMmG6d/aS6yrWm98sNhGw2O1N0WomHuh6qisTz48honJLG+Wk2mxiPx06N1qLZcfM8b650TmjIc3NDiaEPJXClUsnFq1KNoqsdnzs+J71ez5UNIWFgxlklx+oeqGUGtG6cxr6RtKg6pwSbc8zP/HnRzQG6MHMtKEFTV0OOiypzfHeMx2N0u11H/kncfILpu9Lyvuii7aug+kxy/HQTQOvOkWhls1n3rlVlkSSPfeDapks4z9VxUfdZHTuunYOU+Zcax4vAIShwAQEBAQE3B9+9zpgovmxlZQXlctkZw/l83pER7tAySQjJ2+7uLtbX15FIJHDu3DlcunQJ1lo8++yzTrGy1uLkyZNYXl52WSjH4zEefPBBGGPw3HPPOaVva2sLzWbTGXqsn8W2gKhcAIt5TyYTDIdDXLlyBcVi0cXUkLRVKhUMBgNcvXrVlSRg1kca2M1mEydOnEAul0On03G13Wj08N/JJEpgQnc0Zua01uLq1asu5kcTA1QqFaRSKZcYgARODTzOCY23eUaS7tgvLi7OpAz3jUSfHAD7LpQac6ZKkLpw+gqRJpTg93Fqrq/oqlGqxJXFhpX0UEGl66kawEwcwb7wO65P3p9PKPUe+J0aojRWtT1NSMLrsxRFIpFwanAcodPr6birW5yvCsaR9clk4spikMjNI3E+cfOVTyXQqrr6BF7XEb/nGisUCmg0Gu459dW8wWCA69evA4AbFyq96XQaxWLRbZQomeL4qOKsipuuUY1pU/dWqrG6PnzVkT8kPjxf1T4mOPJ/eI4qbJ1Ox2Xapcurrn1169Q6c1qCYN58sA0e629ycF1S1STZYz1I3dCgCyg/48YVY32p3HHceC118dT24tbgy4XjReBMIHABAQEBAUeHbywy+cfS0pJT3ay1rjA249do/CQSCVy7ds3Vf+r1eshmszh//jzuv/9+7O7u4oknnsCTTz4JYwxqtRoWFxdx8uRJWGuxvr6OVCqFS5cuodPp4OrVqy49P+M56KpFQ527y/V6Hc1m0xnc3AHv9/sol8szO+XD4dApCHSFZGkBKkDj8RiZTAarq6vIZDIu9o3X7Ha7LtaHSg9dMTk+3W4XGxsbLskDjSYmFqAaSENRXReBG1Pf8zPOkRqjxGQS1ZbLZrOuNAJ36ePUFCVSSuJ8QzVureg1/TYV+r0akdZG7l0sGg7AGZu7u7tYW1tzGwj9ft+l1/ddfNl/AE5B1Jp+/HceedXxVcIA7BvVPJ7fc+zpLkiDnElHaNhzPVCdUvVHr6lqaRx5UzdmntPv9904kgT5my8HzbmOgRrj89xntW8kcIx/ZakAfg/sk6xGo+GSEZFckKRzrXIDQ+eLz3Kv15tRznTOfHLDdUBSzPWsa1HVTPZTx58kVO/Dfx74HNO1lvfKOnW5XG7GrVTVPy0foEoar8+abXquxruRXOoGg8aKErwvvlf4niJ55TGpVMqVTGEf+F4l8eN7hIW/OSZ6Pf898HLiWBE4IJQRCAgICAg4HL5BDMDVeVpYWHCuNJlMBpVKBadPn8ba2ppTw7gzPhwOkc/nXdFtALh06RJe85rXoNvt4gtf+AIeffRRLC4uIpPJuEQovV4PjUYD5XIZJ06cwPb2Nq5cueIUj83NTYxGI9RqNae+MbMb4+pojA0GAzSbTXS7XWfQag2kbreL8XiMVqvl1EEWImZZg62tLZdgAQA6nQ6WlpaQSqWwsbHhSg7QQMtkMm7HnWPBotua9Y5uSrqDDeynPieJ8eNb/CQOPEfnT9Ub3+jSa6ma4itmmrRFDVglzPx7HvQ6cQRAFbednR3s7u46dVSTTrTbbUeKmL1Qx4R/MzaKBrEmYtGxYbwPjU49l2uDn9HYBuBUYo3zUWVTVQm2RUOX5K/X66FYLDpljvFHSkhUXfJJl0+WVcFkLCUVYF91PYgE6jwpYVMSp66U/I4qUiIRZTxdXl7Gzs6OW3dcL3TDu3btmiMQXF9MOpRIRMW9tTSHJh0hcVHXPV3/JEU6NrxP7SNBhRmYVfGoMGm8Hdvm8wnsxzlqgXF17WYGXsbnkjzp80RV1p8rzZqr98X+aSZM3gf7p/dHd3OWc9DMrZwXVSGZ9ZdlVVTx57iwrIrGDqsSqJsHtwLHisBFClygcAEBAQEBB8N3KSsUCi6hiP4nba1FNpvF1taWK7ady+Wc0kODodvtolqt4o477sD58+fRbDZx+fJltFotAEClUsHS0hJKpRI2NjawubmJ8+fPY2FhAdevX8fGxgaMicoNrK2tod1uO3dDJjiYTKJ048w8ScOUSh0TnnDHmMH4LJTMzHBnz55FLpdztd+63S5OnDgBANjZ2UG1WsXJkycxmUTlB5icxFd8CoWCM2R6vZ4rIcD/h1nXTdVKYN+g9BUENdTnEScaWjREgf1YHBqwcS6UqroQatD5LpS+QhTXF23DV3g0bmlvbw+tVsvt9o/HYzz77LPOeFTlQdUFVSdVIQT2CS9VVvZF43Q0S6C6ZnJ8+b0aw1xTSuzUuGcbqkJoMgoen0gkZjYVyuUyCoWCI3I+Qdb2eH3Om0/MeN/tdts9M/q86pzNU+PYftzcc4z8+VYix5ivSqXi1h2LejcaDbRarZnELiQVVMrZlhayVjKnBe3H4/FM4hiOFZ9z/s351HFTAsN+cw61GLWqeFSH1d2Rz5gmAtFyIKxXyY0E3SBhO0qUNf7Q36DhePA67BfXmm4U6LhRuVS1V1U6XTt8LpVQ6vdcG9wcUQLPMaZHwa3C8SJwt7oDAQEBAQGvGNB1iFkmuWtdLpfRbrfRbrcBRKnCz5w544pEV6tVl058NBrhypUrqNVquP/++5HJZLC+vu6My36/j+XlZVSrVRQKBWxvb+Ppp5/GuXPnkEwmce3aNWxtbTmyc/36dezu7mJpaQkAXBFtIIq3o3sjCdNoNMLKygqMMS65SCaTwdbWlnO/3NvbQ6fTwe7uLs6ePYtSqeSMuZ2dHRcnNxgMsLKygnvuucepaVSJ8vm8M9KoqulOdbvddkYiACwsLMyoQnSTUoMZwA3GW9xnSgBpWNOY0h1zPZbtKOHxoSpgnCtUnJukr+TEqX00UCeTiUvU0u/3kUgksLOzg06n45I90KgnQfMVQf3cjw9Uwuu7m84bT1/Z8sfFJy+arEGTXahrnCpXNIqVVNDo7na7yOfzLqsp+6ZE0cdBBGw4HDrVmxsper/+uf69zVPglOzqWHGcee+aQAOAc1OeTCa4fPkyEokEqtWqS65D0qDEmmPFtahz6ZMcVcLYJ1VneZy2rwRI29dnV7OX0h2WpI1rlLGNiURiJlsma6LxWv5mh6qT3CxhKn4l0HFKKcfnoDkEMBN3qQSVsbUkg+rKyfNIgnWO9bnVDQ0+B7pWgwvliwQTYuACAgICAo4AY6I4I7p58T/14XCIdrvtjJN+v+/S9WcyGVcOoFAouNT458+fx5133ukMdKZlv3r1qounKxQK2NjYQLPZdLv2165dAwBXT25jY8OpZOoSRcJUr9ed0cF4t1Kp5JJd0IDb2dmBtRa1Wg3tdhubm5swxuDee+91dd1Y54gGS6PRcIrg008/7eKcer0erI3ijai40VBifIm6+wERwVPVkIaiZnpkXzXpBrCvLAH7apQSF981jufoTj7htzuPgKmboe9yOA++8qZq4u7uLra3t9HtdjEYDFCr1dBqtdBqtdzaoOpGw5CERN1P1XhUBYJjo6oBx5UGv7pY6lgRPilWlzMa3GqE63iybfadLns811cj2T7JCzcWmIiERr4SJ5/UxamgNNJbrZZT0f2MmXHz5v+tRE77zu/VwFfyynVdKpXc/VlrnfsoXfDoesd1yHXPeSSxUzLIPnGsd3d33brRtax1F9lvJXI8TskVQfLGjRWOharlo9HIJWEBMKNa8b6oaLF9Xdt8NjmuPJbHMCmTJkzxYyZ1zStZ5GccQ84LN5L4XJGAcmzpRUEXUBJIVeK4Vv3NCB1ndU29FTheBA6hjEBAQEBAwOEolUoufkbTebOmEY0K7joDUdKParXqaqIlk0mcO3cOS0tL2N3dRbfbdTFja2trWFhYQK1Wg7UWV65ccS6Yo9EI6+vryGQyqNVqrgB2Lpdz7kFMkLC8vIzFxUW0221nJFLBSafTbqeY9Yt6vR5qtRry+Tw2NzfR6/WwuLiIV7/61Wg2m3juueccUWCpABYRt9bOqI6tVsvFazF+J5lMOlK7u7uLzc1N53Y1mUxcmncST6ZVp3GYSCRw8uRJDAYD7OzsALixLho/810h9TglFX7SDT2G57D0g9+eGq1KQOKUtTiXuri2Hn/8cWxsbLj52tzcRKFQcGqonqslDHSX37+u3y+63tGA9xU43QDQ66lbmvafiXP0OpplkCQAmM3Ip31iH5RQ++5+zEw6GAzQ7XZdFldeW11PfRXMn3v2gUocSYVugOhx/ppQJVNJsD/PPNYnSZlMBu12G8ViEcD+RsyVK1ewtbWFM2fOYDgcYmtrC7VabcZ1kISJKeyNMS7lPQmdklu9by3Loe6fumZIVpQ86T3r5gcAR/yZeIZtaDkDrjMqqFyDCs4bE35oUh09VjcqSLi4CeCvH56r86qqniqhHFP/PjkuStR0LfvPhxJ7bibwGiSHzER8q3C8CFxQ4AICAgICjoCFhQVnnJZKJafIpVIpNJvNmZgPukCtrKxgd3cXzWYT9Xodq6ur7ngaIIxtqtVqWFhYwN7eHq5eveoyV3Y6HWSzWafCbW9vuxT43AmnUcXd9m6365IG0E0SgIuzYQzeaDTChQsXMJlMcO3aNacOkgCura2h0+m42nCqJNBFcjQaodlsutpuVDUSiYRTAZaWltBqtbC5uel2q9lfLZyrGfZoPDFJSqvVik04oogzwIFZ9yxfNYk7hwZhnEHnk7DDoKRFVTd+PhgM0Gg0nGHIdaTjwTFR90KF3h+NU16LhIzrxFcA4kiIEiw/IYp+r2uC88rraOISXxVlG75ipgTMJxK8fypAJAV67z4x1DngMVwDw+EQnU7HqUMkEHHzp/evMYMHzb+/1ki4BoOBU+qpPPd6PayurmJ7exv1eh2JRMKtCVWdNFMi1TV1i+Q1GKumWUaVwGnsm8aDKYHSDQ+f3Btj3PXpjWCMcdlmGVfLfvKcbDbrsoJSmaPrJZO36OYE1xZValXi4uZZlWf+rRsyXIua6TaTyTjvAvaTmyKaMZTjks1mZ0gw146OoU/ueb+HrZmXGsePwN3qTgQEBAQEfNGDCUKAyHAolUpOxaLRwJT5rG3UaDQwmUxw8eJFrK6uotPpONUtnU7jc5/7HADgxIkTzn2R8XDdbhelUgkrKytIp9OuwPXS0hISiQS2t7edwULDKZ/PuyQBxhgX80a1j7vldJ88c+aMqxuWTCZxzz33AACuXbvmEhPQ2KSxm8lkcOrUKRSLRWxvbzsyylgeGldMVLG8vIzt7W1cvXrVkQ8aPSxJAOxnuwNm3ej6/f5MXTMa+oQm2lAD3Xfj0114/q0EIQ6asIBQAukrSno9/ds37ngMFUmqYgBuUIPUZU3d4zQjpBq9/vXZliafoJHqj6PeK4/zXcB4rELjiHgfbH80Gs1k+aNiwc0GJetqKCsZI2lSFWZvbw/1en0mpkr77vfTJyQAnJKt623emtC59ufSJ/n++uP3fJZIVGq1Gra3twEA73vf+/DJT34Sv/d7v4d6ve7eH4wj7HQ6GI/H7hkmMdISAKoK+fNBsu0fp662Sp45ZhwTkmdubtALgQSLmzGM38xms64mJkuEJJNJV0PNWjvjHsx1ofGcmkyF1+Y7T7Nh6nvBTyZFss5nxVfk6EnBYzhnuoY4hlqkXom8bljo+0Y3WjiPHItbgeNF4BBf/yMgICAgIEDB3XMmk6BLDOO2qNCdPHkSALC1teXquy0uLuL69evodrsAIiOdJOn2229HvV5Hu93GlStX0Ol00Ov1kM/ncerUKfT7fWxtbSGVSuHkyZOo1WrY2dlxBjZ33JeXl92OMcsEkHiNx2Pnmtlut5HP55FIJPDUU0+h2+3i/PnzuHTpEprNJq5du4bt7W1HGnh/6XQaCwsLLhHL008/PWOMUDmiIcNYvkaj4WrV0e2KRFPj4miYqwHMBAlqKNMI1eQC89Q0NdR0R5xuiL7y5EPjcfzj4gig/q0KjBr8/I7GHF351GgGMBOTo+RNSZuSNxrsGvejShmh96GkmWOqx9D9i2Oh7ZF8+S6GmhZeE3GoO6W25c+rfqfKD4mCuhMCUQIh1l9kn/y4tri5431wM4NJUlTB8Y/X/sYpwb67nW9f5nI5179qtYp0Oo2nnnoKTz75JHK5HN72trdhMpng937v97CwsIDFxUVXZsOPrVJipcREFTWuO651gmqXZqvUMWffuT54vhZcVwKlSVnoyl2tVh1p4TM0GAxcohCNWwP2Nyp0Q4bZHfVYvTbXi99fPgesP8eESUoA+ewMh0MX40b3VN0M4md+dkqqkJpURTcpOJ7qnnnQu+blwLEicAgKXEBAQEDAEUDylcvl0Ov1XPxJsVh0iU1WVlbQbDYxmUxw4cIFnDhxAv1+H88++yyMMRgMBmi1Wmi326jX63jggQdgbVSc++mnn8bW1pa7njEGa2tr6Pf7qFQqqNfryGQyuHr1KprNpov/yOVyztjb3d115Qu0Blwul3MuiMViETs7OxgMBsjn8zhx4gQymQyeeuopbG1tuWyYjHsjeTt//jyq1SqazaZLrsKabqlUyhVJHo/HqFQqKJfL2NjYcPWtaHTrrj133/3sk3HEQ41xXwGal+FN3SD5oy5ZPgnzDW810nzD3Cdlep7+rS6NSkwHg4Grl6ft+jFAvurDa/gKgBaAjsvcSePSHyuuY46LEtbxeOwUCj+pC41wHq998ZUvKmapVMrdL1U5ADPqBdvh5zS0VaXTPqhLpU9GlNgodLxHo5ErLu/HjilogPvriX1WdZFt+9ema+RoNHKJgz72sY+h1+thY2MDZ8+exTvf+U4Ui0X87u/+Lur1Ok6ePIm1tTWXRIPEXuPaOOaaWVHnWNeRkh8AM+qtnwBG50PJiSqeJGlU0kmoSdgYM6v9oYKoa0PfEbxHf2xVJdbkLEoQVRGj0snnI5VKYTAYuOeA/aZLOAn2YDBwpJ7qHBAp5prh00+cws0OEkdunqkSqvX2Xm4cKwJngMDgAgICAgIOxdmzZ7G1tYWNjQ23O7y6uuoUpVQqhbW1NRQKBVy8eBHVahXb29vY3t52cSFMzX/bbbfh7NmzGA6HeOaZZxxR4w5zuVx2hXvr9Tqq1SqGwyG2t7edAsFd7mKx6FQ/xrHRuC6Xy87dkrv+29vbaLfbWFlZwe233458Po+1tTVsbGw4d0tfVahWqwAiVbHRaLj05ySRJ06cmHEjZR081o0jqdBsbmxb0+CrUqA71j6hojGpSQF8lUzJkIKf09jT+/SPo4GoBquSkzh3OW2LRqkSD7qYbW5uYmtryymQqj6qkuKDbZFslctlR7j39vac8aluduy3kjPOHeOYaBzncjkX41kqlVwfWNyd5JfZHGls+9k4fbLDv5UkqHKo57HPPjlm/+PcYCeTyQ3lBvx1pO3qPDJ7KomHuiD6465994mh9tVfi0BE4HZ2drCxseHWweOPPw4A+K3f+i182Zd9Gc6cOYM3vvGNAICPfOQjWFpawunTp2cKfWsmSipSmnFSx0bJvxJuHQslzXGEl+o617KuFQBOyaPbJBMXcV2zth/nQ+fVf99wbSkBHo/3i2L7hM6fX5I3PmsE16if9IfvEfZfNw1I1hjTp2uDG1Ecf1US+eyUSiX37uO7jmN2K3C8CJwxgb8FBAQEBByKp556Cs1m09WAW1pacpkWh8Mhut0uzpw5g1OnTsFai2eeeQb9fh/5fN7VThuPx7jnnnuQz+fRaDSwubnpkokkk0msrKwglUqh0+m4Gm7j8Rjr6+vodDrOCKpUKqhUKlhYWHCK2rPPPut2vLnrzX5Rndja2sJ4PMalS5dQr9dhrcXa2hquXLkyk0CECQjUbe3KlStuVxkAqtUqVlZWkEwmXemASqXisiiur6+7nWcSSrpuckdfA/vViNdECmr8KhFhPBCNVN8Q9ImVH9/V6/VmXPEU6m6p8Th6vm+k63X9dngvk8lkhrzRDU7dIlU9IolIpVKOoHFumD2RMUVEoVBwmUvZNospp9NpVCoV5HI51Go1LC4uuoLsNLyttej3+zMET93N2E673UY2m0Wj0UCv18P169cxGAyciktXOlUfVF2kQatj7GcH5Y+6Y+p8cmypFtNVWOuo6drhnCih5hixHAf7rLGIqrQqedO1GbfOCH7GcaQqdPnyZVy/fh0rKyv41Kc+BQB45zvf6UhcIpHAhz70ISwuLuLMmTNYX1+fiQVVF0YSOF1/JNyaMETdKqnakZxoPTjOBZVSbtCoOgrAKavc5OH4ULmmC6Im4OG48rpaIkCffXV95oYFySrvR92MlVDpPJHM6Xxr+3zHkRgyWRXbZJZhrluuNd+tlXPCWpjGRImu1G3T9x54OXG8CByOlkUqICAgIOD3N8bjMQqFAhYXF7G4uOjqUtEV6uLFizh58iRarZZTvOr1Oq5fv47JZIJarYaVlRWMx2MX/9btdtHpdDAcDnHy5EmnBHCXtt1uo9PpuDid3d1dLC4uYnl5GeVyGel0Guvr67hy5QqA/XpKhUIB3W4Xk0kUm9fr9dBoNFAoFFAul2GtRaPRwNbWlotLodFFg4wxJECU7IEGDq9RqVSQzWZdUhYSRmutI4pKOJiWXw1oNYRJ6nwVzle1lDixv4SfuTCOxAGRwd1sNm+oR6VgnJESBVVmfPWN1+C/2g8e0+l0sL6+jq2tLee66CehUNKQSCRw4cIFXL9+3ZFkJbB07aLhqW5mmtWyXq/jwoULKJfLrjbgcDhEv9/H9evXneHOGE+SGRqe7BvHpFgsIplMolAouM2CBx98EKVSCc1mE41GA61WC9euXcMzzzyDwWDgCKEWZdZ7pdKipISGv84rNxV4rJJCTWLBtevPj68Gqjtmr9ebSeoRZ2zHuc7qZ3GkXq/NoteJRAKf//znZ9wcH330UQDAu971Lpw5cwYPPvgg9vb28KEPfQi33XYbzpw5g2eeeeaGeCyfDPnrSsmDv1nC8dD7VighIukhuWVsWaVSuYEEqUuhjpVmdlQ1dTwez2zCcD2rEuuvG27A8L3CfinxZ590HlR5JFkDZktjkPRxnVEBzOfzGA6HLjaXx+hYUnVMJBKusDld8ONiLF8uHC8CF2LgAgICAgKOgGw26+LdqHxtbGxgZWUFp0+fxng8xrPPPot0Oo3FxUWXNn8ymeC2225DsVjE448/jkajgdOnTwMA1tbWsLu7i6WlJWeoViqVmVg5GgG8LhWWTqeDVqvlDEIaQ6PRyBHISqWCfr+PbreLWq2G0WiE69evz+yIq8FGJUMJAuu3ZTIZVyJAjRLuvPd6PaRSKVy+fHkmTofnqZukGmQaM0QlKY6AAfsulzRGNXYmznDWXXbfBW5tbW0m85x/Hvup6omSJEINYb/vqvIw7mljY8NlEvSLIqthTkXl6tWraLVaAOBIEFOeawwOSRvVGGYwPX36NIyJkt10Oh184QtfQKfTccXUta9sk2vJJ6C8b2bOzGazWFxcdFlI6SZ74cIFjMdj3HvvvS4G9Nlnn8Xm5qYra6HZKmlM0/hVJcsnS/M+B+CyG45GI9Tr9RuUOCWMca6CdEHlBopf507HQNenr8Dp9/7P3t4eSqUSAOC5555zRHs8HqPf7+NTn/oU+v0+3vve9+K2227DG9/4RozHYzz88MM4e/Yszpw5g2effXZm7fF5G41G7lnjs6Sp/DkGeo7eE9d33PoleVYync/nZ9w5+YzQ5ZAbPpxTHU8ez3WminHcBogqmzxX71MzBKuyqOTaJ4I8h9fQ95ESYN47N6I4ptVq1dWu5LuE72O+Q3ge4wD1mi83jheBQ6gDFxAQEBBwOKi43XbbbUin02g2m7jttttQq9UwGAxcrFupVEK73cb169eRz+dx7733Ym9vD48//jiazSaWlpZcjTXGGJEIJRKJmcyWQBRTtry87LJc9no9l6mSxzAWhnFzVEf4HUkWDSut5wTsu7Tp34yFIjGr1+tYXFxEPp93xJIKzGAwQLFYdLF8AFydu0KhMGMozzPWdWcc2I9BUwWNxhh3yjk+3C33FTs1AtUNzxiDq1evujgdtq/GN/upbn2q8PAaGrum0L+ttWi1WtjY2HDGH+dB3Qv9xAiMB1JDnePCsVHFKplM4vz5805pG41GeO6559But2cy7Om96BjznnzlyVeqiPF47NxBt7e3UalUUCqVUCgUcNddd7k4r9e+9rW4++67sb29jWeeeQaf+9zn3Njz3nif7IN+x7mhC6Aa9NofkvrBYODWqJ/1ksf56473owWxqTjqPPoxXFwrB0HXIBA9h08//TSefvrpmTgykvrPf/7zyGazeNe73oWzZ8/iTW96kyN3ly5dwpkzZ9xGCe+BLoV03+PmiT7Xfj80JlKJG0mX9p/tMJEH31dU5+lqSDJGRZ1t67WZkVZjxzjvqmJRIaOyxjWhpJH95TV81ZFjy/Y49/ocU71jKRQ9lvfP++p0Om5DJJ/Po1wuo1arodPpYG9vD1tbWzNzMhqN0O/3Ya2dUftuBY4XgTMGNmhwAQEBAQGHYHV1FSsrKy6F/7lz55DNZnH9+nXs7u6iUCg4Y3Y0GuHEiRNYXFzEc889h52dHUeErly5gl6v55SR69evuxg1KiPtdhuVSgUnT57E0tIS6vU6jDHuO5IYZowE4FL/5/N5rKysAIhc9qyNSgcwsQCwn3EQgIuP6na7zh3x1KlTKBQKTskrFouo1WrI5/Mu2Qp3lHd3d5HL5bC1tYXNzU3XBo08EgdgtkA34cc3AfHZIJW4APsFqmlwq0sV4beritPOzg42Nzexuro6Qwr0WPaNP1rPzG8vjqTSmKSrLImQxmxx15/GLO+V7pEkcmzT7wdd3IrFIpaXl11M5hNPPOHGngYnoRkgSVK5JnSM/bizeSCJ7/f7WF9fRyqVwpNPPolEIoFarYZ7770Xu7u7qNfrOH36NO644w6XPp+JUFTx0/Gkoc2+8G9ViAg1vGloM13/QetKDXt1ISZpmKeqsQ0lnj70OBL3breLj33sY2g0Gjhz5sxMH4yJkmp8+tOfRrvdxnve8x5cvHgR73jHO9Dv9/HEE0/g7rvvxrlz55wSpyRG3Ql9NU0VN64rZqqlcsc1q8Wp2RZJF90JScTUFZLkiM8k4yb9vpDI8TgqVRwDvkd4PRI2kkSSN2aXJOGmGywJnCbZUVKpJJYZKDk2uVzOuZbr5g2fVba5tbWFyWTi6nBaa50rOd2Gk8kkhsOhq0nXbrfnPkcvNY4XgUNQ4AICAgICDsfKygquXbuGZDKJU6dOodVqodVqYWlpCblczhXtzmQyuP322zEej/GFL3xhpuTAzs4OjDE4e/YsGo0GrLWoVqswxrid7L29PVQqFUcYmUmy1Wq5IsDtdhuj0QjlchmDwQBXrlxxRhAA1zaLcQOzNc2y2axzFUun09ja2sLu7i7S6TTq9bq7Hg1kFg9nEhcAjsixrMLGxgaAfWJVq9WwtLSEK1euzBhM/F0JgU+81DBXJU7VGBrOvEfen9+m/qgr5Wg0wtWrV3H33XfPXFvJAQ0+upQmEokZg9G/D3W1Yz/39vaws7Mzk+KdLpC8jipcPF9VOh5Dw5QGsjHGJSSpVqvY2dlBo9GYIXYAZgxa/q3xREo8fDLC8VBlg30nSKyULNPNbXt7Gw8//DDq9TrK5TJOnDiB8+fP49SpU7jzzjvxxBNP4LHHHnMbCEp8dR3wGjpmca6RJBoAXCxfqVSaUVxUffPXHFU4X2lVwuiTN1/B1DZ1jBqNhru3p59+eiZeTd36GAv6xBNPuLG/dOkS3va2t6HT6eDzn/88Xvva1+L06dN47rnnZtwSfQVKP1eiNxwOHUEhuVF3TlWg+RnXP7AfF6uxgkq0Scx07SjJ0+M1ro6ul/PcHFWJ1uedhJCbIUq0eC+q/vO6uVzOvQdJKOlZ4K87dSHle2cymaBUKs3UvFMFk27FTETE9+StwLEicDCBwAUEBAQEHI4rV66gWCyiXq87Y5OFtpvNpos5O3fuHJrNJtbX1zEej1EqlbC9vY3xeIyzZ88imUxiZ2fHESae2+12YW2Ukr9Wq2F5edmRI5Yf6Ha7aLVazmjvdDrY2NhwGf8Yf1EoFJwxo+pNsVh0yUSKxSL29vbQbDZdCnVmkCyXywCijIanTp1yBiBjd6hSJBJRXavLly+7+A8gKuJ98uRJNBoNALjBKPcNZ3WvUrJE6N80SlU1oQsod9O1+K4a3KoyTSYTPPnkk3jTm97kknIoOeT5vE8qX8z+qGqRD1Vtms0mrl+/7ghZnKsn+65xRHt7ezMqHI1nJXGlUsnFnjGrZT6fd+2xD37tL98oVmIT56ZIVz1VCNWF0TekVTG1NspqORgMsLa2hsuXL+PixYtYXFzEbbfdhlOnTuGuu+7Co48+iscff9xtUpBE+K58/JfXUPc8rgsa+Xt7ey4BUKFQcH1W9zh1p2QbJHC8rzg3PyXe/hjGkcPJZOIyuLZaLXz+8593sZC8RxZ91g2Cp556Ch/84AdRKpVw4cIFvO9978PP//zP4zOf+QweeOAB9Ho9bG5uuvIRdNHlWud7QOsvUl0icaSrK138fBfIbrcLY/bLSmiaf44/kxWRjGm9P7p0cm1xHFnCgp+zr2xDoWvaT1hD0j0ej13cI8eSY6/vmEwmg2w2i0Kh4BQ9fYfoc8M29ZnWdcl3LMeT7VJpZ/Kh0WiEVqvlNm9uBY4VgTO4tVXRAwICAgJeGaCb47Vr17CwsICzZ8+i3W6j2WzCGDNTaLvVajmDqdlsIpPJ4NSpU+h2u9jc3HTGKQsI081oeXkZi4uLzgihYcbYi36/j8XFRSQSCbTbbVy7ds0Z0CR/dLWkAUhSRCM0l8thb28PjUbDlTlYXl52JQhYA2xhYQEnT56ccUWzNko0UiqVYK1Fr9fD+vq6UzxoUFN56fV6AGZdJ+Pc5FS5oXEWdywJhqbz9l3o6HrF1N/c1Y8jXJcvX3ZxiT45YL98xS+TycTGsvgqHwBHWtgWiYm6ZWnsjiZfYN85Fszex1pV+Xwe1lpnNNPw5N8cK/ZNs+vp/fjKmroEEsxIqQqKb+TyXK45P5U7f1qtFj796U+jUCjg3nvvxfnz53Hu3DlUKhUsLy/jc5/7HDY2NpxBz3nVrIT+9VSZI3ljPJgxxqngOp56nq4LVXlIcJSU6nqY9xO3LgA4l+fHH38c3W4Xi4uLM6TSGOPIkbq4XrlyBb/1W7+FbDaLM2fO4N3vfjd+8Rd/EZ/97Gfx6le/2m3EqMIKwG3eEEq++MzyWCpKup54jm4caJZYdVNU0k6QCHIM1L2T6zGbzc5sVqjLrD6D2g7j1bLZLEajkUtew35q9kj/Oc5kMigWi652J8eJzw6wX8uN695a60qWqJLJtcl1qolb8vm8y/ZKz4vd3V3k83ncKhxK4IwxPwrgKwGsW2vvnX72TwB8FYBdAE8A+LPW2oYx5jyAzwJ4bHr6R6y1f+ml6Hh8X0MZgYCAgICAwzEYDGBM5P7I4tfXrl1DqVTCuXPn0Ol0nNK2tLSEtbU1bG9v48SJEzhx4gSefvpp9x99p9NxxgbLBtRqNZw/fx75fB6dTgdbW1vOEGFdrdXVVXS7XXS7XfR6PRfvRLdLGqs0cGl8MAuaMQaNRgPtdhvj8RgnTpzAyZMnXVbBSqWCZDKJ1dVVFwMHREocDSzNOtlut118HQkg74vxd+oeqcas/68afqqSqYsajXc9l98zU+ZkEpVsoEHMpDBUZFSBuXLlCtbX13Hu3LkbYobYDyXAyWTS7bCr8a/3puRvfX3dFQn23ch4P3qeJqFgX1RRodFKEqlGqaZQ1zg9vWYc0fCz4qkCofemZNA31pXkaOxYHEkiuRwOh/j4xz+OL3zhCzh79iwuXLiAe++9F2fPnsWHP/xhXL161dWz01g+tkXjWudL75WJNZhNtd/vz2xk+GtP5w6YdSNUwusT4DjS5oPkZX19HcYYfOYzn5lxcVWQPGpfW62WKzHwlV/5lbj99tvx7ne/G+9///vx5JNP4uLFi/jsZz/rnlFuFPCe/FgwP3mJqt5K3qiqFYvFmUyXOs66hnRNqFKm61rPZeyZtRbdbtetbU39T9LI62oWSL53qO4BmEkApc8xSRXrIOp9K/HXtaOknhtCANy1jYlc3/me5Prks8lrcxOvUCh80Weh/DEA/wLAT8hn/wXAt1trR8aY7wfw7QD+3vS7J6y197+YnTwqDEIZgYCAgICAw5HNZrG0tAQgMqiazabLyshyAIyPYoa4CxcuYDQa4amnnnLKS7vdnnFrTKfTWFhYwG233eYSobRaLXS73RnjM5PJYHNz07lhAXAptJlUgK6UNJiYiS+TyaDf76Pf7zsj5MyZM6hWqy5rWqlUQjqdxh133IHJZIK1tTUXH0Kljm6bJCWbm5vI5XIz16H7FO8vTkUj9Hffrc0nb8C+Uajnq/sTY8Z6vR6WlpZQKBScCqbn0VDrdDq4fv26U+hUXSHoRkljly6q3K2fR07b7Ta2trZmiAYNUZJc3jfvjcYnlQkajiRudN9UtUwNfT9+TcfPH0ufzLDfatzr56oUkfD4row8R4matsE1oSrrYDDAE088gcFggIsXL2JlZQVvectbXLbKVqs1o4opued9+IqNJpwguWcSIcY3qQqnChs/53zFJeDg/fpZFP2x1DVB9+TxeIyrV6/OxFL640QlmXNNAvjoo48in8/jy7/8y3HPPfdga2sLH/3oR7GwsIBLly7h0Ucfdcfy3vXeSFbiMjWqwsn+knxxzjRlP0liNptFLpdzMWeqQOu4cWNBN1LG47HbcKKyzOy53JjiXGpMHMeE7xnflZJrQN2BmUWYz60qelwrVO+pdPM4up3yPUEFkM8lXUz7/b57j7K+J+vBsd0vagJnrf3AVFnTz/6z/PkRAH/8Re7X84IJMXABAQEBAUdAPp/H1tYWSqUSEokoux6JHP/jZvryer2OlZUVrK2todPpuAxn/X7fGQGTyQSFQgFnzpxBpVLB3t4enn76afR6PWfok+xxp5lGQ7PZdIZLsVh0BpXutPf7fefG1u12nYFGV7Xd3V2XlISGxcLCAhqNhnOTnEyiEgfLy8uoVqtYX19HJpPB4uIiPvnJT7odfcaylEolZ6DNI280jn1DXH8n9G8aaWqMKtHTdhKJBFZXVx1ZGo1GuHz5susLXcUmkwk+//nP4y1veYsbR91153Vo6DIhQblcRrFYnHFVVUIzHA5dcXX2jfdOV0ifULFPJCNUGUiKaeCqEaiGsbo36lj5cWu8tzj1TBUlX1FU0qP3rEoL26DRy2upux7vXQn7ZDLBc889h263i3PnzuHkyZMoFAoolUr47Gc/i52dHUfMdSw1Fsl3a+U9kIQxK6CqlTqGviLsu7z6yqkmhjlIhWNfd3d3sbm5CWOMKyehBErXOkkYr8Xv9/b28IlPfAKZTAbvec978M53vtMpmQ899BDuuusuXL582aW01/nShClARMJ0vZFwK2lirCffW1wHJK9UZtUlU12EdQ1QHdd1SSWWa4Pzw42XnZ0dR7A0LpCbUKr66juBY0qyl06nkc/nXbwf70PnnGuA71K6tXPceW88V92ZqRxyA4YxhXyXM/ELXXJvFV4M6viNAH5O/r7dGPNJAC0A32Gt/Z24k4wx3wTgmwDg3LlzL0I3ohi4UEYgICAgIOAwbG5uujTtly9fdi6OxWIR2WwWjUYDo9EIy8vLSCQSePrpp53Bz51iFsZOJKIaamfPnsXCwgLa7bYrNdDr9ZBIRFkgtRgvY9OomNFoUCWH12HsGRUbBthnMhmnmDFByXA4RLVaxXg8dglVFhYWXGHas2fPYm9vD0899RRKpRLq9bqL80skojpQ6XQa586dcwkViDjj2I/JAW4kb747pd6jEio9RpWT8XiM9fV1lMvlGVdBNYpphD7++OPY2dlBvV6fcUPUtmmU8iefz7vMc2xT75mpzLWYMICZVOUkIprenPfJpCok7Eo64lRJJWxKuPg9//ZdAOPa4N80nJXg8Tsez36THPhqEs/VWCJ1s/NjDJvNJp544gmUy2Xk83mcPn0auVwOjzzyCDY2NmZUFhrTOqfqMqhElIbz7u6uc6XUMVCiyv5x3tXo1jHQOC4lQP5a4L/c7Emn0+h2u6jVajfMDdsmcdRkKryXwWCAhx9+GEtLS3jooYfw1re+FdeuXcOnPvUpvOUtb8FkMsHVq1dnMjDqeuP1lHyqyqf3polkNJkPyZ0SKn9Dhf3nu47PQjqdvoFo6TgNh0NHbvP5/Ax5Yh+57nT98v5I9kjG1G2R609Lj7BtXct8DjkPAFxip16v5xS9paUlNJtNVxqi1+shn8/PKIpKPEkMbxVeEIEzxvwDACMAPzX96BqAc9baLWPM6wD8B2PMPdbaln+utfaHAfwwADz44IMvCusKClxAQEBAwFFQLpeRTCbxxBNP4Nlnn3XGAUlJtVpFLpfDlStXXExaKpVyddsYP5XL5bC0tISTJ08il8uh1Wphe3vb1RTa3d11/8lns1kUi0Xkcjl0Oh10u10Xz0VXHbr38Fy6cmpyAJKeXq+HbDaLixcvutiSpaUl9Hr/f/b+LEjONLsOBI+7h++7e+w7YkFgTeRSmYlkkZnFYkkslbjIZGyZ6qkfZGqT2ZjmRQ/d89QymbWpn+ZpntpshjMymXrUbBVJsYzFqhSrsqqyMhMJJJBYA4gIBGJffN/3ZR4iz8X1D38gUxSZIDH/NYNFhPu/fNv/457vnHtvDY1GA9FoFF6vV0BZOBxGKpWSpCytVgv379/H/v4+YrEYcrmcOPdMWqKlk9z5Z+IE4FmwRudRM0XAoFxS73ybsWfacefnTNeu6+fpRCZkKilLffToESYmJiQex7y2lnNy5531xbT8EjiRfhHEmgDVZMm0w0ynlbJVrhc6pIzXYf+tQJseSw0INPDQ19Gf6zEnuNUyRTrebL/J4ukxAzCQRh6AsDk6rkxLMXndWq2Gzz77DKOjo1haWsLY2Jg4/pS7amCssziyLSZDSKedTBw3UXiclZTUZFb5uR4PM3EM51Mfy2tls1mRRRNcmGOmx1LLOPU4kVH/5S9/iUgkgitXruC3f/u38Z/+03/C6uoq3nzzTZTLZZFL6zHnhg/boJO08HcCHn6v1z4BiR5vDeY5Xoxb5NhwnFgLTa9Rk/ECnsYbEwQxKQ0TrfA4k8nm+uXzwvaaGyi6fh3bba4bk4Hm+PE963K5EA6H0Ww2ZbOOIJelX9xutygTWCfRVBl8nfZXBnAOh+O/x0lyk9/qf7Gy+/1+E0Dzi98/czgcjwGcBXDjr6GtX6FNdgycbbbZZpttX25MUsIaa0zH73Q6MTo6il6vJyxBIpGQ2A6WCyCgGB4exsjIiBxPx47/ueuYkMnJSakdxBgM4CRNfywWAwApHN7r9SQWxe/3C0Agy+P3+5FIJKQGXCKRQDgcRrFYRKVSQSwWg8fjQS6Xk9+z2SwajYZImnK5HNLpNKanpyVRSyAQgM/nGygEroGLljuZRsf0eTJKfq7Nyuk2vyfYpQNGiRedNILgQqGA27dv4/XXXxfHSztuAAYYAzqlkUhE6vBpdoOxLxpQagaPbQCesj0+n0+YNp1ggc6vruem2R7dTi1r499WrNTz4nC0Q817cawJGrXEUDNQGmxzvbMfpjxQA0HdDzrTvd5JzbTd3V2Mjo5iZGREYgJZR0vXyTOT9migb8Y+tlotkVOa68hk4rRck2OhpX7a6dfzqtcZ19rh4SFarRbS6fTAuFmtC86fZow0O9ztdpHP5/Hhhx8iHo9jYWEB7777Lv7iL/4Ca2trWF5elvIgBK5cW9wg0tJQvh8op3Y4HDKumjHVbKuVvJbzQTBGWTKvRWZPz5GO6dQsn17TwFOmVWdg1clahoaGZJPJ7XYjGo3K+4fgivft9/sC4jg2XD+tVmtgTfB3ZrvM5/PSl1AohM3NTYTDYYnno9Sdz7F+bvWmx4uwvxKAczgc38VJ0pL3+v1+TX0+AiDX7/e7DodjAcAygM2/lpZ+tZbZDJxtttlmm21fasViEcBJgWqv1yvORSKRQLFYlExjTqdTYlDonDNRyejoqMSwuVwupNNpcfibzaaAgUQiAb/fj1QqJQkYaB6PB+FwWLK60WGhA8OYL8qEKG8cGRkRsOf1etHtdnF0dIR+v49gMChZI5PJpEgQh4aGEI1GB5i2ZrOJV155BT/84Q8lpk7HiWinXLMgp+08a+dY/67BnD7XBB8EVxpYABhIlmDGu+jjnE4nnjx5goODA4yMjIgTaeXM04EeGhpCKBSSmEH2vdPpIJfLidPN+2iZHY2JYJjlj3FumrGgk6uBk5axAc9mliTjYErUTCClAYnuowkEOR6cSxOUmcyqdr5NZpXX53rg52ZphW63i3q9jkwmg3K5jPPnzyMej2NpaQm9Xk+ypnKTQstR+VODXt1WAgwzoYUpTdXr0wTwlLTqc/T6MJ8BFt8mMDUT0ZgbBpx3Svt0GzmunU4HW1tbeP/99/G7v/u7uHTpEg4ODnD79m2MjIzg7Nmz+PzzzwdYY0owyT4RAIVCIUnuwmtraSXZJC0t1WuG48hnzufzyfW0/JYbBJRn62QqzNyoNxG0tFiXB+GxlJhz/bhcLukLwaiOP6NCgAlZyKqxzhs3XggsydTrjQXGtx0dHcn133vvPeRyOayvr8v7mMdS7kvQpxn+r9u+ShmB/x3AtwAMOxyOPQD/M06yTnoBvP/FRLJcwLsA/o3D4egA6AL4F/1+P/c31HaLtgI2B2ebbbbZZtuXGdktZhyjg5DL5cQh7PV6KJfL4sD4/X54PB4kEgnEYjE0m03kcjmRNpbLZdnZpZPImLpSqSTATTvTTBTSbDZlF5kgkenty+WytDuZTMLn82Fvbw/hcBijo6NoNpsoFAoCRPv9PkKhkIDKVquFSCQC4ITh8/v9aLVa2NzcxMzMDK5du4Z2uy3JPFiEXDvzmlkj+2WaFZOmP9MgzgR5NAIOOp36eI6dZkhMuZ/P58PBwYEwF5SZmY6WBkVkSIeHh5FOp2WeyKRqgKKzWNI51RkR/X6/JFggWGKfdHvNeCmTVeMxdEB5rAYImhEwHXSCM30v3WdT2noao8hrkpHRTJ4p+aQRMLKtBC8cy1QqhdHRUanXx6QaZsIMMq6afTTXImOzWq3WM+UWTNNAjP+YsEcDOFMeqzcLer0eSqUSdnd3pYA2nzVzbs3ftcxVy1n1OlxbW8MHH3yA733ve3jnnXewvb2NTz/9FL/927+Nqakp7O7uytokcCIjxvcNS4wQNOl+6n6ZGWDJrvf7fSn1QHaSxxPgcZwoJdRrnd8TjBM0ARAVAeeVYFLHkvFYtpnqiH7/pH5bMBiUtrCd+nlhW3XpCb4bgJPNFmb/5TquVqs4Pj7G3NwcEokEut0uZmZmpFi3fl9ppvFvtYSy3+9/3+Lj/+cpx/4nAP/pv7VRf1VzwI6Bs80222yz7cutXq+jUqkgGAxiYmICtVoN6XQa3W5XHLpcLidsCjOfjY6OSr22Wq2Ger0uMVnczWUyFNa9osyKO8NW9ZjoFESjUYlf8Xg84piNj48jFAohm82iVCohGo0iEolIDTgCtE6ng3g8jk6nI4lZ4vH4wHdMxd/v97G/vy/OL6WKlE5poKSdXm0m22Dl0Jz2mQm+NDugZXRafqYlhtoJ5bj6/X4Ui0XcuHEDV69elXnQYMNk4AiaotEoRkZGkMlkZIdfy800o8XrsF4eY2PI5vAcMlz6Gvyd92VbrCSTp8nxtCP+PPmeln4S/JggWzMx+rqaYTDvyfZxreo1otk4/iNIqdVqODo6wtDQEGKxGKLRKCYnJ3F0dIRmszkALvm8mKYTbABPpZQEKCYbqcfJXK+MY9WyOHPsNPvc6XRwcHAgpUb0XOrzdCZP/dzoY/Q8kG0EgLt372JmZgZXr17Ft771LfzgBz/AzZs38eabb6JQKKBUKqHf78v7gQAqHo8LSGGbNfumNxUoReQ1rLLNaomkZsW4LvjuIsDRwI7rSqfzZ/ws2SuOAe/Nd47H45GaclqyyXXI2LlgMIhIJIJKpQKHwyFJn/jTZOd15td0Oo1+vy9MZqvVQrlcxv7+vrSDG2y8H+eS42LKM79ue3EFDP4GzGHHwNlmm2222fYVrNPpIJlMIhaLIZVKyX/S/I+62WwKexMOhzE0NITR0VEkk0mJH2s0GhJzpneWKUPUu+B69zYWi8HpdKJcLkv8SjQalZiPRqMBr9eLSqUCl8uF8+fPw+PxYG9vD/1+XzI3U7oZDofR6/VQr9cl3X4ul4PP58Ps7OxARrVWq4V8Pi+lCOg0JxIJYQ8pZdKmwYZ2njVAMJ3S5+1OayfbZDnMJCnmPbQszJxTJp/Z3NzEo0ePkEwmJXmICT518g+n0wm/34/h4WFEIhGRw+qddw1EnE7ngKyW7Jtmcvi7HjeCUwI2zaSZ8kkroKXBGkGCBoaaPaMzreWOZqyYmVpfs8N6znlNPe4EEeZnnHtuYOiYJYfjpFZcJpMRJ31kZESeKbaHkkmrAt8EBnqdsVSGlekx1Y4947q4Psz1pNckQUyj0cDq6qpI9gjSzf5zfPVGgW6PHn9Tulmr1XD9+nVMTk5icXERb7zxBm7duoW5uTlcuXIFH374Ibxer2wiUfodCARkPWnQQ8Clx4xrn+PN+F6yrJqV1JJUneDElKJyjglsNWDm8VoyymsR1LGtPp8Pfr9fwBYlogAGalKylqLeNKnVami1WgPzzXcwN8KCwSAePHiAvb096RNBbLlchsPhEPk8AaV+RrxeL2KxGI6Pj1Gv1y3X3NdhLxeAg+OZF7Rtttlmm222mTY6OoparYbd3V1xQPUONWPQfD4fwuEwEomEZB/LZrMoFArI5/Mi32q32xKf0Ww2MTExgV6vh2KxKI6/3omm9IdZCjudDiqVCoaGhhCJRFCr1RCJRLCysoJCoYDj42MEAgHE43GR9lH2yVgPv98v4CwWiyEcDiOTyaDRaKDff5oOn8APwICzDDwFXdphYdY4DUqBwYLQ5vk07QCax5hxQ/o7Ol9WbAivqx1x4MS5YxmHbDaLGzdu4Pz585Jx1JT8aVaPDmg8HsfY2JjEK2rnlCBIM6NaNqllZDr+h+3Vzq6WBmr2UTOMem70GJvX4Pd0iM1+WoFt9l8zgDzfBG16PrS8lXNqnqd/aiknAHHGy+UyDg4OMD4+jnA4jEgkIrJA3otZAhlDZbKB2rknA876cQR5VrJGjgmzwhKo0MyxIwDu9XqS5XRoaAi5XE4SgfB8vS71WOtranBnzgt/7u7u4he/+AX+wT/4B3jzzText7eH69ev43vf+x6Wl5fx6NEjqVsYj8clKYzX6xWJswamlKiyP5qJJuPEjRNKgPXzQcmgTsXPOdKJesiEc970eBDUs6g2Ez3pjQnGxGlQrNeTrk+n50aPoU7yQlBGli8YDGJychLdbndAcaHfAewvwR8BKdcUQZuW/L4Ie7kAnM3A2WabbbbZ9hWMsW50FLiDyziSVquFcDiM8fFxTExMwOl04ujoCKlUSpKcMFkJpXs81+fzoVAooFAoIBAISLwc70PHdHh4GMBJmvx6vS5gsVarIR6P48yZM8IOjo6OwuVySRHkYDAo58ZiMfnO6Twpeu1wnGT4YwpyACIHYta+er0uDlqpVBpw2jXzZWa8I0Ax49msZGomoNN/m46kybZp8Mi/taNrytHoaAWDQWSzWdy/fx9ra2sYGRmxrAnH9mgg5fP5MDExgcePHw8kEOE48DrM9MfyEpptY1t1Fj4rgKZBEO+lmSquSd13EyBqiaLJomnJFyVmmt3TrLAeSysWUINwShu1vFD3W68JgjG2mU4+5af1eh3hcBjJZBK1Wk3kyLxnrVYbiGPUYJfrgICi2WzKc6jBrTke+jlnZkUT9Oo1yj6yfuLW1hYASIIPvQb186Pvba5XU66qx46AdHV1FcPDw/jN3/xNvPnmm/jTP/1T3Lp1C7/+67+OTCYjsZsazJDRJxjixhHnX689gmI+kyy7odcs5Y5a6sh5NGW1OlMp54ASWw28NLun1zQZapfLNbB5ot8Rev41aAcgscd8nvTzyJqBqVQK/X4fxWJRyrnoYudcd+wPmTn2he/8fD4vjPaLspcLwMGOgbPNNttss+3LrdFoIJlMot1uP5MV0uVyYWJiAhMTE5IkZHt7G6lUCul0Gu12WwLhKQPrdDpSSJtSMO7uV6vVgZpkxWIRQ0NDqFarEn/GVNqtVgvj4+Pw+/2SAXFsbAy9Xk9iXwgIAWBkZATlchntdhuxWEz+ZskAOrXRaBT1eh17e3sAnjqmPp8PkUhEdsPpvGg255VXXoHX68X29raUQNBMC50m7aBq04wOTTvT2vnV7BjP0edqh87KcrkcEokEDg8PkcvlcO3aNaysrAywEaZcTrNwLtdJ4fOlpSXs7e0hk8kI00Ank2COtfs0YNBxYybrYibj0H2yaoseFx6nJaeaQTPZTA0cNJvKedMsiZabaVaN19Pp5002x+/3y3E6lk9vBphzrRlTJt8JBoMYHR0ViRxBHJ8LXkcDQHMN6PT2VuOpQa/X60UkEhHGTs+BydByjVerVdy5cwelUknkijoDpSlN5byb7Kkp/+Tn5lg1m01cv34dU1NTWFxcxIULF7C2toaVlRWcP39ewBplj+a46ftqlpVjxfHiuqWEm2vD4/HIXFLmSEDGWFCOtQaOOoulXkdk+5g5k+PFbK1cd2yHjjHjmtVrmGuw3W5LwicqIghm6/W6SNKZ4Ghra2uAUdfKAo4/k0pZbVhR5qlB+YuwlwvAPeelbpttttlmm200ZhrTjoTP50MsFsPo6ChmZmbgdJ5kpTw+Psbe3h4KhYIE7dfrdck+B0Dki9zl5u43d5wJEunwcTc3kUiItGhhYQGBQACVSgWdTgexWAw+n0+kmqyFdHx8LMCrVCrB6XRibGwMHo8Hh4eH4rT0+32Ew2GEw2FxlimjbDabEj8CPK3LpB0tAJicnMT09LQ47YVCQcCjGXdlGv8/1iwaz9O79dpRI+DQQMJk9sz/5zXIyWazSCaT8Hg8aDQauHnzJt566y0p1G3FtGjZIdfB/Pw8lpeXUavVJE5QMxEEKpp502DNisnSu/zadNITk63SwMUEvPpvPXccRw1Y6KDyOO2UmmOs47LMe7FdBKq8lgl6CPq41q1iHbvdroyvltCZJRsokzRZSw2IyQ4xQZDJqmkQ6HQ6EYlEhD21AvRmX+r1OtbW1nDjxg2Rkeo2mOOgr6NNb0Zo1toE4ZyvYrGIX/7yl4jH47h69Sr29vZw48YN/M7v/A52dnaQyWSEheP8EnhpFpRjomvt6SQsHFMCEzJbTNZRrVafKYnBdlMSTlCnmTQdA0kQqNebZt8APNMuva74PdcTx4ilWUzlAJNKMZ6Z/dB1+DRLy/ZokMlnlmvweWD867YXlz7lb8hs+GabbbbZZtuXWaFQQCaTkUQVPp8PY2NjmJ6extTUlGSl3NrawqNHj3B0dIRarYZqtYper4dIJIJ4PC4xUFouxN154MTB08Wgu92uyC65qxwKhbCysgKPxyOOCGvMNZtNqTvX7/eRz+cF2BWLRUQiEYyPj6PX60kbmYSEzhSZwlKpJHEsZDp03BYwGPND54XZLMnYnVY4Wju+wGCqfLJ7/JugQBfkNqVlz2NGtOnjmD2SwLRareIXv/gFDg4OnslOpx13zdQ4nScZKVdWVjAzMyPSST1WTKDADKUEcwSl+p8GCRrImUBIy8nMrIGatdNzw35o0zFq2vFlXzW4MtlRk+Uz541jpeOg+JmWzWkww/7o/vM+zJbKjJ96THk+2U9z/ZhjSwbbXI967TgcJzJZ1mbUcj+9jnTfNYAjY0hQrwGcngeTSdV9N9cuTceW8r7dbhfb29v46U9/ikgkgm984xvY29vDvXv3cPHixYGxIQDmxgzHhGPE515ndOQ/slkAEAgEEAqFBPCRXSPI5EaDlpZyLVCuqeXG+vr6meO9uWZ1LB6/10BRr13gZNOMLDgVBMwWzHuTWSToJrtYr9cl4YmWkrbbbVQqFVFHNJtNSQKl61DyHfAiSaOXjIGDjeBss80222z7UiNwcLvdSCaT8m9oaAjHx8fI5XJIpVLI5XID/8lTPsOaa0xbT1kdnRNmfGSWOP5n3+l0xKnwer2YmZlBJBJBoVBAq9VCPB6Xc1utFqLRKPx+vzi509PTyGazKJfLAi4qlYo4L2T6yPp1u10sLy9LfAgBJMGY0+lEvV5/ZjeZTli73UY+nxcW0MrooGkn+TTTMjMeayUt1LFngHUaeO0k63l1u90IhUJSlPvu3bv47LPPBgp76913XksDz6GhIUxPT+Py5csC3OlIEvBroKFZCSuWTd+LwJmmmQYr5tGU/5njYGUmiKPTqZlW3s9kUs378TMTyGnm0mo++U/LbTnWGpBxbKPRqCThIFgg86FLS5hMp2bKWBvNyti2WCwm7Jtuvx5rtpNO/d7eHm7evClsMp8ZDWpN6azJ1li1y1zvGuToJBr7+/s4OjrChQsX8PDhQ9y4cQMXLlzA7OwsNjY2JC6RwIksOsdTM5QOh0PeX5o91O8nsnpkSDWY4vqiceNCz4FWGRD0aZAPPJVLEiDzfcrvNUjkvGrJMMebmUDJztXrddkIIpgDnmaw5CYDVQUcO5YE4fXMuF69Xnjd096JX4e9XAAODhu/2WabbbbZ9qXG/6hnZmYwMjIicWCNRkMK9ZZKJXF6mMnQ7XZLVjM6Akylzp3vQCCAdDqNZrOJcDg8UFB2ZGREkpLMzs6iUqkgn8/D4XAgmUzC7XajWCwCOIlvi0ajePLkCXw+H6amppDL5QAA8/Pz6PV6A8CCBb+TySTK5TICgQBmZ2eRTqexsbEhAI7OfLfbFfCnnU86La1WC6VSCcDTzJnA051x7ZDTNLA4zWkF8IyjqudFf6clV6bptmrHslAoIBwOy7xUKhX8/Oc/x8rKimSL1Nc2+8B2BAIBnDlzBvl8HhsbG8KculxP06zrLJEmg2PWdeN16VASYGlHkcfosdMMJsfeTP3PcdTOuBn7pmWZwFM5ms7yqEGXFbjhGGsmkcfrJBNsK//WskzK6jRQJNusHWZ+x+ty3WiGUDOW/IzPpJ5L3i8UCmFkZETYt9NAMPvT6XRQrVZx//59bG5uIhAICJuk76HXtLlG+Z1eZ+bn5u96/ZMF/8u//Ev83u/9Hq5evYo/+7M/w/Xr1/HWW29JUhWrjSKyhXp+Ofc6OZAG3oyrI5Bmhku9djQA1+uWrB3fS4xHCwaD8Pv9wuRrkEymi0BQlw9g4h3NuurNHT6TQ0NDqNVqwpTx2eQzrtcA3+PsI9+F1WpVYiiZnIbHapkp35u6vMGLsJcLwDmsNce22WabbbbZpi0SiWB4eBhzc3MYGhqS+LVcLodsNivZyTweD2KxmDi/OqPb1NQUXK6T7I+1Wg2hUAj9fl9i1IaGhkRy1ev1MDY2hkgkglgshmAwiOPjY5RKJZF09XonWffcbjcikQiKxSJSqRQmJiYQDoeRSqUk5ToLeIfDYTgcDlQqFUxOTg5I78g+5fN5cY51IL7H4xEmQcd4aBDSaDRkl5ksiI4bNE07xM8Db2ZiAN7PBINmfJLVvTSY6Ha7ODw8xNtvv41SqYTt7W04nU7s7OzgZz/7GRKJxEDacM2ame11Op2IxWI4d+4c2u02Njc30ev1BrLo6fEy/zZZPi1V1f01z9OAR8duacDK78w28zvtoHNMzdp5ZBq5tjk3BJ9ss24vZWkaLJkZ/zRY4POi28w1qvuunx8AAjw0GDX7aAJO/mu1WiJj1oya2+3G6OgoYrHYAOvJa2rwSfar3W4jk8ngxo0bqFarGB4eFlDCOFc9vxqgWT0fet2eZhoI8+9Wq4WNjQ3cuHEDv/Vbv4WlpSXcu3cPFy5cwIULF3Dnzh2Ew2EAJ+n5GfOl28HNA1M+az7LZOx4PAGMCTC5nnRMK9vLTLe6Tx6PR9YMz6ekkUmG9BrU7xqyYgRWphTa5/OhVCrJ+5PrWrNqZMsJ+ngdrtdwOIxGoyEgkCUNqLjQGxYEfy/SXi4AB1tBaZttttlm25fb4uIiJicn4XSelAfo9/tIp9NIpVIDqaWHhobQaDSEoavVauh0OggEAjg8PBSHloW3G42GsG6tVkucPO7+T09PI5VKSUxWKBRCKBQSZ5FFbLPZLFqtFubn59Fut7G1tYVEIgG3241CoTDgIBeLRTidTpEZxWIx9Ho9ZLNZ+Hw+caK1MxQIBBAIBFCtVgdAgnaUtZNDh8tkDLRzaAWATpONaaCmEzjQNDtjxmhpxonXYzscDoc4YTMzM1KQu9Pp4LPPPsPS0hLi8fhATJaWRplxUy6XCyMjIzh79iwqlQrS6fRAkgwTYPIczUCZLBbbTnCiAZzJagDPpsHX1yRQs2IQNQjU53LM9XxrWZsVKDyNKdJsnSkh1KyfVX/YTt0mzbhpdlSPEdcrr8vzTCbOHPtkMonR0dGBjKQmcCaA4/NYLpdx7949PHr0SMADEwE9D7ib4M1k3sx50p9rGa0e12aziVu3buHMmTN49dVXsba2ho8++gjf+9738OTJEwFU/X5/IFlJIBAYkDDqe+i4Ns28cTy15FgDd16Da4HjrouBE0BSFtnvn9SYI7Op4+VYG46SVbaFbW61WnC73ZK1F3gq4+QGmc/nQ6PRkHtr6STbrTcDNKNI9s/r9cr7l4oFsnAEeryv1XP3ddrLBeAcdhkB22yzzTbbvtzm5+dRLBaRyWTQbDaRTqelvht3dHVWwGq1ikqlgmAwiHg8LrvUPp9PguKHhoYQDAZRr9cRCAQGdosnJiYwNTWFg4MDZDIZABDJZKPRwNDQkJQhyGQyCIVCGB4elpTX4+PjIhGik5PP50U2RaZvaWkJ2WxWiiQXCoVnWC466ZRjmlI100mjQ2iazppnyv00O2TKAWl0vDX4Yns0a6QdLe2EngYSnE4n1tbW8O6772JsbAzVahVOpxOZTAY//vGPMTs7C4/Hg0gkIs62TubA+/AePp8P09PTaDQaePjwoTjwuj/aadfJGazYNb2Tr8dYX0//rQEf+6vZLNO0U6rvqcfQnAMtizTlfRqk8Z/VOOm5Oy2+kMfqNhFs1Wo1+P3+gUyUeu1xHdCx57V00hfNqOhxD4VCmJqaOrWou8m+cQNmZ2cHP//5z1Gv1+W5p0RPx4VpRtGKtdRjpM1qg8ME8VoymMvlcOvWLXzve9/D5cuXcfPmTRQKBVy4cAGffPKJsMvsC5OtkP3SclS3241gMCjj22g0JAGSjlvToEdvHLCdem3qREEEbMFgUMaB7dDgTD8vnD/OAz/TG1C8RrfbRSgUks2roaEhKSqugSjrbnKzSpc/YF+dTqdsoFEurplCgkBu+Oj6cC/KXjIA50Df5uBss80222z7Etvf35di3MViEel0GtVqFYFAAF6vF4FAQFJQ0wkKh8MSY0I5D7Pn0SlgkW0Wvo7FYuL8b25uol6vy/UJDP1+P0ZHR6U9jGG7c+cOYrEYotGoxJ8xgUKn00E8HofD4UChUMD4+DjcbjceP36MRqOBixcvolwuI5PJyA42HSMySGYMh96l1iBMy6c0GDMlbMDzHVL+bjJBVnFodEIJqqyAnwacJgtWqVRQq9UwPz+P3d1dYVSfPHmCDz74QGqAsU90JHXf9bW9Xi9mZ2fR6/Wwubkpjq4VAwcMglt9D912UwbIsTdZEj3uGhhp0KidSZPp43G6OLIeR830aIBoBSz1HDJeiM42gR3Xlu4HmSYaHX49zwQA2rEnO8U+mHPPaxOEcBy0hNTtdmNychKJRMKyaLcJ3si8lMtlfPbZZ3j48KFke2Q8mc6SaY67lT3P0bf6Tssb9Vz1ej08fvwY6+vrOH/+PB49eoQHDx7gd3/3d3H79u2BcgI8j+8vh8MhY2LGwhKw0Mxx0iDN3IzRmwCaLdXGeFTGq5Gt03JHDZY4LpxPbpSxzhvXE1k+Ji7RMal8nnTCIHOdOxyOgTImBGbcOGKbeK7OPKnZuBdhL1UZAbuQt2222WabbV/FyuUyms0mCoUCjo6O0Gg0JLMYszmyyDf/46Y0x+VySbzE0NCQOCd0BBgDMj4+jqWlJZRKJanP5vP5EAgExBFJJBJIJpPY399HoVBAJBLB8fExKpUKVlZWMDIyItkk9c51OBxGv99HvV7H9PQ0QqEQDg4O4HA4cO7cOaTTaezs7KBYLMrONRMbhMNhiYnTwfl02E0GgE4KnXZTKkfHSTv5z3NY6Rjpe+pzNHCik25eTztRVsf0+308fvxY4hw1c/CLX/wCv/zlL5FOp0XyxXHVbI7ZpnA4jDNnzmBxcXEgiyG/1wyWZoY0U6MBHh1ofb4puzRNS/zobDKOSLNHppPa6/VQKBSQSqWkn07nYEIVLdfToMyU8rGf2pnlZ9oR1oBBO8S6zyaLxc90nTWdLAY4AReMidLriKyRloGSvZ6amnqmbIBeaxq8MZPh48eP8fOf/xy1Wg2BQGAgBb9Zo0yPkzaTmdTr9nnyO7ZHjyk/K5VK+OSTT+B0OnH27Fns7+8DAK5evSryRd6bbFG9Xpe/Oe98djVo8nq9UkKAx5GV0m3RdeYAyNjwfchztcyQCYW0LJGxpJRN6rg3zdrxutxMIrjje1y3qV6vo1KpoNVqybXcbreoIlgmIRgMiiyUpV50FlMWAie45fuXRb7r9fpA2Yqv214qBg4OOwbONttss822L7dyuYx0Oi3xZExsUK/XxbnRUkiWBIjH47LbG41GZVeYcRh0bM+ePYtgMIjt7W1ks1n4/X7E43GRW7pcJ+nMW60WDg8PkUgk4HK5sL6+jtHRUSwvLw+AOjoS4XAYo6OjOD4+htvtxvLyMnZ2dnBwcICRkRGEQiGkUimRFGlJmcvlGsgGx2K1GrQBg7Iv/bd24oGnu/hWu/IABqR22tmzckxN6Zm+t8lU0bnjPaykaw6HA6lUCn6/X5zcSqUC4CRt/V/+5V9KGYbh4WE5n04i+2f2PRgMYnp6Gg6HAzs7O6jX69I/AgN9jm4f8KzsVANYmnbereZBj6kGaFq6xu91Fs9gMCjOrh5XLY/UbKtm2vR9THaPTIQeAzrG7KuWS5przEoGqllZnR3RjMPU9zTLArhcLiQSCUxPTyMYDFrGJJpjTkCcSqXwq1/9Cjs7OxJDRsed19b35hhbzZeWifLz08y8hn42dL9TqRTu3buHpaUl3Lp1C9evX8fbb7+NO3fuoFQqDTyTJhNFoEvgpoG6ZrAIlH0+30BpB822ARhYjzxP10bkO4+gRwMyALIBwblmhkjOuV6j+jkle9br9aQuI0EY8JSN9fv9AzF2TudJhlkCM77v2T6TeeN5bDPf+T6f75lMpF+nvWQMnI3gbLPNNtts+3LLZDLIZrMIBoMYHh6WnW2n04lqtYp6vY5gMIhAICAOBB2EaDSKsbExcVw8Hg/8fj/8fj9GRkZw5coVdLtdbG5uiowyGo2i0Wig2WxieHgYo6OjyGQy6PV6WFxcRLPZxPHxMS5duoQLFy5gY2MDpVIJkUhEwJbf70ez2cTGxgbcbjcmJibw8OFD1Ot1vPrqq3C73fJ3MBhEKpUa2LH2+XzijHGnWTv9JhNmmmbmNFOjHVLt/JsOEDAou9I/Aetab7otplTNdI4Jnnlcq9XC/fv3sbKyguHh4QGgcHx8jB/84AdYXV1FqVQS51xn3LRiVFwuF6LRKGZnZzE/P49IJDLAPmlHmOebMXw0DX7JQJgS1tMkrTrDpAmMOEa8HpkIj8cj8UgEZmQeCfR5bTrfZt04/mSMkcmSmqBQrzE696ZMVCeUMZk0fV0NMEy2ko6/nuN4PI4zZ84gFos9M5caTGn2DTgB+Ldu3cKHH34Ih8OBSCQia7nb7Qp40PNtBVD1muY9TXBvmrlJAjwFl/ye74N79+4hn89jdnYWv/jFL+Dz+bC0tDTwbDJLqE7collNXpuJmEygqLM/kvUy1wSfC64bjgWBFseUUk6dvZJKBCaI4j31enQ6najVagJMOQ8+nw/BYFDuT/aQm1ScI4I6jgOAgdjAXq8nRcH1mJAZZGmZQqGAarWKRqMx8Ay9KHu5AJwDdgycbbbZZpttX2rFYhFjY2OIxWIDyR7q9bo4yZRyaSnS1NSUxJ4RXNHxmJubw8TEBA4ODrC3t4deryf1yKrVKtrtttzv4OAA0WgUwWAQjx49Qrfbxdtvv41gMIjPP/9cnClmPZycnBQZ3NzcHJxOJ27evAkAGB0dxfr6Og4ODgSM7u7uClNI6Q+d6mKxOCCF1A61dt604w0MOr00kzHgeZo9smLbNIPB76yYCv3ZacCSjpqZFa7f72N7exuNRgMTExMD5/T7fWxubuInP/kJdnd3ZX4I5MgimTJJOsDhcBhTU1OYmZlBKBR6xjk3x1W3VcsdzT7rDHkmQDVZMz1/+ngNDHXbzeLemk3j53SayZw0Gg1hTLSMToNInsv51YDIZE7J4pjAT48P1wz/1uBLM0l6TthmrqtYLIa5uTl53kzZJK9lSieZ8fUv//IvkUqlxKkn86bH0JTFcvxNCbL+Ts+pXuP83Uzgwc85JpQZtlotpNNpbG1t4ZVXXkGv18P169fxzjvvSPsof2TZC73R0e/35XsCUuApG0aQx0yWXq93IN6Rn1Mq63a7JWEJQVCr1ZJNK96P5Q0Yx6ulssBJCQQtZ2Z9N0pweT0N8EKhkLzD9SaElnCWy2UpM6A3S0KhkLzPuQY43h6PR5KksK3sC+f/RQK4l0pCacfA2WabbbbZ9lVsYmJC2JpKpSISM7JsBHF+vx+VSgUejweLi4uo1WoSB1coFNBqtRCPx7GysoJ2u43Dw0PJTslYs1qtBo/Hg2g0ilqthkKhgFAohHK5jKOjI6ysrGB8fBzr6+uoVqtYWVlBPp/H/v4+xsbGEI1Gkcvl0Gg0EI/H8ejRI/T7fUxPT6NWq+Hhw4dSoLhYLEoWNtOhZH+1NI6mj9Nm5VzzeBO8mbv3/MzKKaeTZCazYDs0qGMcGfvEz8176yyN/L5QKGBrawtnz57F6uoqCoWCtKHT6eDTTz9FJBLB9773PSwsLCAYDIpTrp1bK+ke4+CGhoZweHiIYrH4DMg1U8RrsEPn1RwXUxZpyhrZHvZXswY8X48rzWSw2BYyKt1uF41GQ2KeyDY6HA4Eg0Fxbgli6Ozz2ryXmSjDinWitJN/n5ZpVK83nRjFvC/XcrfbRTwex7lz5yxLBujrmeCt2Wxid3cXP/nJT3Dnzh34fD4MDw8LM8/+69T62k57PqyYZX3cacycOX/ms9XtdrGxsYHXXnsNs7Oz+Oijj3D58mWcO3cON27ckPVJJpVjzphPlizhPQhSeY4G+jrzogZYehOGzynnr9lsolKpwOVywe/3y2YI4824RjWA5LrWJQB0Ehbei59xLZPN4/WYJIrXKZfLIhnn8UyiMj09jXa7jd3dXTlGy0cbjYbE1Gnwas7P120vF4CzFZS22WabbbZ9BeN/0oVCAeVyGYFAANFoFNVqFQAwPDws2dnC4TDGx8fFiWMZAJfLhcXFRUxPT0smy17vpA4bE5sAQCKRgNPpRC6XQyAQwMzMDLa2tuDxePD666+jUCjg5s2bCAQCmJubw5MnT5DJZDA1NQWPx4NMJiMO1P7+PiKRCCYnJ/HkyRMUCgVMTExgaGgImUwG/X5fGD8tY2QCBzpp2kkmQ0czd+qBZ9k3K8fFCrxp6SSdU+208r4axOjfre5pghIdP2Oe1+/38ejRI/yTf/JPcP78eXz66acD7GO328WHH34osivN1FFipWN1dFtcLpfU9vN4PJLZlO1h/zWQtmLn9GdmRk7tpBKouFwuSaWu2Tjt4JpMFe+ja4XpMdRrARjMatnpdCQFu+47jSDVZPTYR2YANWWTvBYdY6aAJ1AwjbW4eE/dXgKHeDyOs2fPYmJiQta8OQY8T4O3VquFfD6Pa9eu4ZNPPkG/38fExISwXbof7L/JqLHtpvF7rgdz7vV8mIDXBHjmJkm5XMbDhw8xNTWFzc1NbG5u4tVXX8Xnn38uG01kvwDIZ3y36VhF3QYCPsb2UjKrMzKS+eTzocE9Ab7OIKvXKmONub60JJjrUZc0aDabwibyHW1KS3ks5aAcM8rbmcBHx+6y/Mro6CjGx8fRarVQLpdlzPVzoJ8ZAkDzGfs67eUCcHhWO2ybbbbZZpttpvl8PuRyOYlRCwQCqNVq8Hq9SCaT6HQ6UtQVANLptKQW5w7vwsIChoaGcHx8jGKxCLfbLclIyGQkk0nk83k0Gg1cuHABbrcbq6urIr/L5/MoFAq4fPkyfD4fbt++jYODA5w5cwblchm9Xg/JZBJHR0fodrs4c+YMnE4ntre3AQBTU1NSG04X7KXUR8dM8W+d5U2bdjBNtkAfazrrVsdq5kmzKVoypqWW2tHTDBzvp+PDTmsXgYHp/O/u7uLBgwe4cOEC1tfXkU6n5brASXzOf/kv/wVerxe/8Ru/gZmZmQGn1ufzCZNDp1TfMxAIYHJyEh6PB4eHh7KurBgX3WZKsExmim0zP9eyLe2wmuOlx1kDcS1h5PyZSSL8fv/AOtHgwmq9EMzo+dNAhozKaWsBgAAADYoI1jRYYV90Cnx97Xg8joWFBYyNjQl40+3XQNoEb8ViEdevX8ef/Mmf4ODgADMzMxgfH8fjx48B4Bk5Ka+nE6eYslYrZlWvu9P8VSuW2Uzhr+fvyZMnmJ6eRjQaxfvvv49/9a/+Febn57GxsYFwOCzPNZ8LzeJqVpOSQ7JbPp9vgJXlBhYZX82+8Rpasq1jzvhO4Ljr5CNmMiQNysh2ejweyVrp9Xqfqc2m2WW2jcxjq9VCIBBAJBKRREa8VqFQwMbGBlKp1ABY5fX4TDBOkOwbN3ZeZBKTlwvA2QycbbbZZpttX8GOjo7Q6/UwOTmJdrst2ceYKIQMR6FQkJ1gr9cLn8+HaDSKqakp9Pt9pFIpyUjp9XrFqYjH4+j3+9jf34fD4cD09DSOjo5QKBQE+G1ubiIUCkmx6Zs3b6JcLiMcDuP4+Fju9fjxY/h8Ppw7dw6VSgXb29sIhULodDrIZrOIxWLijPp8PhwcHIijpBkbr9eLer0uTo9mcIDB1PFWTrsGFObvJlgxpV86sYEGFryHduxNyZvb7R6oDWUySPqeVhkNe70ebty4gd/93d/F2NiYMJW6zZVKBT/+8Y/R6/XwW7/1W5iYmBjoH+OIKN/SDJDD4ZBslnQwU6mUxFOyDbqdmpnkdUw2QTv95rjq+XkeuOY1NTAyJar8jmtGO9F6vvR12H/dZg0WdRwdGaznZWrUAE/HzmlJnq7Xpe/HmLfZ2VmMjIwMyPXMWDKTeWu326hUKnjw4AH+/M//HLu7u/D7/bhw4QLK5fIA6OFmiBlPp5lqfR/dV6s1q59BE2iaZq4X/fnx8THu37+PeDyO7e1tPHnyBK+++ioePHggAE0nstHPiAZA3PgxARnZN5/PBwCSudGs4UaQSZCnr0t5I99JOoaSII/zrkuc6HuRCda17rjWmSmYY6clkCyjQHZOb2Jww6dQKEjCKs08s9/BYFBUFY1G4xng+iLs5QJwsGPgbLPNNtts+3KLRCIIBALCcrlcLqnTRpkOJTJjY2MATv5DZ+KRQqEgDtHw8DCAk8Qo0WgUyWQSxWIRx8fHCAQC8Hg82Nrags/nw/nz55HL5fD48WN0u11hGur1utSEy+fzktp+f38fMzMzWFhYwP3791Gr1RAOh0UimUwmxelgXaSDgwMAT2OR6CgycYB2GK129QE8AwB03Sh+r+008EY2hp/xftxxN4GbFXCkQ2feQzNZnEM6jibASKVSePToEV577TUcHx8LC6fvk8vl8KMf/QgA8O6772J2dla+IxNHYKBrx2kmKZlMwuv1IhgM4vDwUECAZqW0nM4cLw2YtPROgwYTvJnzqdk7K+DA9mtHniCUDjydZx13aDKkmr0juNVzSgYsEAgMjKM2s+3spwlqyHxoGWG324Xf70cymZTkQmTIrDYhNHjj/BWLRayuruKP/uiPcOfOHbhcLly6dAnDw8PY2toaWIMEJBo4mhsVHMvTnge9jrX0VZueQ3OsAAgIYX9arRY2NzexuLgIp9OJ69ev4x//43+MUCg0MH86Pb5mLwmy+v2+MM061q1Wq8kmEEuQMKkJ50TXQzNLD/AYguFAICAbBaaMu99/Gr/JY6iGCAQCEqvIdyfHvFarDSQv0c8kGbt+vz/QL655yrjL5bKwfcBTQNloNOQ+gUBgYP29yELeLxWAg8WuhW222WabbbaZ5vF4ROrm8XiERQMg8RnJZBI+nw+VSkXAksPhkKyTgUBAnNNKpYJgMIiZmRlkMhmk02mMjo6iUCigWCxieXkZiUQCW1tbyOVyCIfD2N/flziT5eVllEol5PN5JJNJVKtVdDodLC0tIRAI4O7du1L4O5PJiFPT6XSQSCRQLpel7tWjR4/ECWNfNajRQMmMW7MCF6ZszzTtIGsACOAZ0KJZECs2gT/NWDCTATKZGn6mJW1a6tjtdrG6uoqzZ8/iypUr+NWvfiU13CjvcjgcqFareP/99wEAv/mbv4mJiQkEg0FxmMnu0IG3klQyc6HH40E6nZYENCazaIIvc+y0c20ySVYyOw3aaBrE6Qx7JkNEx5aMA9k64AS8cHz18foebKMJVjWY0u3UIF7PsT6GMVo0OuY83ufzYXx8HJOTk4hEIgOJN0zwxo0DzjU3Ox4+fIg//dM/xa1bt9DpdHDmzBm88soryGQyKJfLAiiYhl5n0GSfdTyfnieTXTXn3gR25u96g8KcX/08AyfvrHq9Dq/Xi52dHRQKBVy5cgWPHj0SsKalilzvOkmPTmbDda37RCkix4Jjw/qZZsZS/XwCEFklx5DvMK/Xi1KpNCC35eaTLjDOdafHRW9CaUCl31/8nExdIBAQ4Ks3BMzi8RwLHddnvgfN9+fXaS8VgOOQWu1o2GabbbbZZhstk8nA4XBIrAz/UwdOEpgEg0GUSiWpFZdIJCR+wu/3i8SS8sp4PI5QKITV1VX0ej0Eg0EcHR0hHA7j8uXLqNVq+Oijj6Tu3OHhIYaGhjA+Po5oNIrDw0P0ej1EIhGUSiUEg0FxJDc2NuD3+xEIBJDL5SQuj2nAmSVzeHgYq6urAE4c50ajIfWSuBNPQKCD84FnAZYVc2PKK3XsDB3j5/3/SzkXnSbz2prBoXPItplATh+nQZyVs8q2ZjIZXLt2Db/xG7+Bw8NDPHjwYEBiCJw4bIVCAT/84Q9Rq9XwrW99C/Pz8wiHw+Is+v1+kUoyMYzpWJJ5DYVCCIfDyGQykuDEZMusGDc93uy3lZNvggL2xyxDwHZpAMLzG42GOOZkYHQGSZ2owUwdr9kbPT+acSFDpxOUcG71ZgLBgpkIhMdqEBSLxTA1NYXR0VEp0m0VX6dZSsY3kXm7d+8e/uiP/gi3bt1Cu91GJBLBO++8g0gkglu3bolks9VqyXOk4xB13/XGgjlP5gaHnkv22QTyeu5p7J9eaxyXbreLfD6PiYkJ7O3t4f3338cbb7whGWut4gkJSDgnVrGxjIXTzzpj2ADI5pcGe/xbb8jwnHK5jGKxiHg8LvMaCoXQ7/dRKpUGGH5ugui4Xpb6oPSR96VE02QYKXsFTsAgmUOWC+GxjOvjPXg+j9HJWrhRxDi7F2UvFYCzzTbbbLPNtq9izGrWarUQDAbl58zMDLrdLo6Pj9HpdCSuqVAooNfrSTC90+kUyeXs7CwODw+xvr6O2dlZtFotPHnyBHNzc1hYWMDa2pqksmfmy3A4jDNnziCfzyObzSIcDqNcLqNQKGBqagpjY2PY3t6WLJhk5ILBoMgoO50OcrmcFJN+8uQJ9vf3xRGh8613vLUTSfbAjOeyYuVMwMDP/H4/lpeXMTIygmvXrkmGOG10/vRPDdho+jOdKMIEjiajo9tICZWZ9p99ffz4MVZWVnDx4kXs7OwMFAfWwKlareJnP/sZarUavvvd72J2dhaxWEx2+/1+vziDBI5MzEBzu92Ix+Pw+XwIhULCxpHpogPL8Tfj9zQY0Gn36WRrkEvTx5gSTT3neg4Zu6ljjWh6jDVToTNCEhjy/lrC5nQ6JckOnV7t2Ot+c84I9HV2Q7bb6XQikUhgbGwMiURCAKeWXvIcfa5maMrlMtbW1vDDH/4QN27cECn0ysoKpqensb+/LxlldeydmTZfrz32x2RXOYZ6vE3Jsv7eZFB5T4ItHUuqWWgA8uw5HA48ePAAr7/+OoATaXc4HB5gUTWg5driHJgbApQN8nsmENFzTzBFWSPfNUwiwmvq0gLhcBi9Xg97e3sia9TgnfPP54tjxjZT2qjngxJLMm16A4Ljy3XGkgr9/tOaeASfVGZoAEnARlaZa+9F2UsF4Ljm+31bTWmbbbbZZtvp1u+fFHdNJBLo9/sYHR1FIpGQcgCBQADT09NotVqo1Wrodk/qS3m9XtRqNdRqNSSTSclU53K58M477+Dg4AA7Ozu4ePEixsfHcfv2bVSrVSwtLcnucyQSQTgcxsbGBoaGhhCLxZDL5QAACwsL8Pl8WFtbQzAYhM/nkzIHZAlZJsDv9yMWi6FUKqFSqYij4ff7JbZPZ0/UjrB2ujgedLJMySRBnpYa0pFkYoGxsbGB+C0rx8Z02E2gaOXcaxmaZtlMhkIDGu6wa0DGYxqNBm7cuIFf+7Vfw+LiIu7fvy8sqmmVSgUffvghKpUK/t7f+3s4f/48YrEYgKdgw+v1DiRs0Gwc28z6gsFgUGr6FYtFAdkcEzrWTPLAtPXa6ddjr9lIPS4ABuKDeL6WM+r2ESSYLCqdVi0TdLlcCAaDAyyUnm8NQNh+xiExdkpLJzUAIctCQKmBPjO/joyMIJlMIhwOD8R40jSI03FiBBKFQgFra2v4wQ9+gE8++UTYlUQigcXFRbTbbezs7KBer8uYNBoN2Qgx78X7mOtdgyC9fk2QZ/6u54Xjra+j76XHvd/vo9VqoVqtYmJiAgcHB3j06BGWlpZw/fp1ScLDfrTbbQHWnEeOk34P8B8zNFYqFWH2tUySwK9erw+ApG63K5JLKgGazaZktqS8W2d4bDabojJgv/Uz5nCc1JJrt9toNBqSOVUnRyGI5DEcV8Y1+3w++azRaKBerwtApoSUmxs606neDNPA90XYywXgvhBR2nlMbLPNNttse555PB4kEgkEAgGMjo4iEokgl8uhXq9jZGQEkUhEgNvQ0BCSySRcLpcUdJ2bm8PQ0BA2NjYwPDyMQCCAGzduoNvt4hvf+AYqlQo++OADkV/u7+/D5XIhFouhXC5jf38fwWAQoVAIxWIRoVAIw8PDKBaLyGQymJ6eFkaONekILHU2uaOjI2ElmDHzd37nd/Anf/In8Pl8UszXTBpAh8uMdzOZAy1p0049/+50OtjY2MDm5uYzrJjJmtE0MDBBlr42Pyco0Dvt+trakaK073kAcn9/H/fu3cPMzAyOj48lIynbpvvY6XRw+/ZtVCoVdDodXL58GbFYTJicTqcjcXF0MinTI/PDtofDYcloFwqFkM1mUa1WZSxMp92M+aKZsT8m+2Q1j3q8zfnU/TXZTrbHZIhMpkjLAHUbG42GSA0JHLS8VbODACRJBiXKdNqTySRGR0cl26spBeXc8acZ70bwxmyTn3zyiYB8j8eDsbExxONxZLNZYbHZXsYF6jWlmUy9bthmcwyt2noaW2dKLU0ppb6GyThWq1XE43E4HA5sbW3h29/+Nj766CNhpbhxo5Pw6DWqn3EzDozgqlariXSyXC4PjAefRc3ikqnme2t8fFxAFwFVOBxGMBhENpuVDRUez1hfsl4E771eT6TnBKZk4NkPnYjH3DCiFL5Wq6Ferw9sqHBMuZHAZzEcDsu7tl6vD9TP/Lrt5QJwwsD18TQizjbbbLPNNtsGjbFoExMTaLVa2NnZwdDQkEjeSqUSAEiB70ajgWq1img0KoW4y+UyZmdnUSqVsL29jbGxMSSTSezt7QkIazQa2NzcRCwWQyKRwNHREQBgcXERjUYD5XIZExMTcLvdWF9fh9vtRjAYFMAXDodRLBYFGPR6PSQSCdTrdZRKJUne0Gg0JCnLw4cPhf3Q6cNZQoDOjFUiitPAAo/RLIJ21vm9/lszRwAGQJa+t2Z4eB5/mqnn+fvQ0NBAHSh+x11zfm+CVOAkFmZ9fR1+vx+Li4uo1WqSRIHtZx8Jdh4/fow//uM/RiwWQyQSkfvo8g10kOlI0nnUUkOPx4N4PI5AIIBYLIZisYhcLieMqelkcrw0u8Yx0bX9gKdZ8zTLqmOaCGg0EKFzq+ee19dzas6BOXd0/s1aY36/Xz53Op3IZrPw+/0SR6TnTbcRgGQeJLhinUO9Fq3WDMeAcr9ms4lsNou7d+/iP//n/4zbt28POOahUAhLS0vwer34/PPP5XlzOJ4mLOLmwfMYl+cBMnMMrZ43/m7KHE3psVXfCVby+bysg52dHfT7fczMzEhCFmai5domA2mWA9CMH987rVZLEpH4fD40Gg20221he7nZwzVHGWIwGJREJ5R793o9GVuv1wuHwyGbadwYMVlJzqnD4UAikRDJI8Go2+0eyCDJ9uuyA5oB7vV6Uruz2WyiXC4L28r7ud1uRKNROJ1OpFIpYR8Z49psNk9dD3/T9nIBuC9+2gycbbbZZpttz7OFhQXE43GkUikUCgXEYjFEo1G0221xdmKxGEKhEAqFAlqtFmZnZxEIBHD79m14vV6Mj4/j8PAQAHDlyhUEg0HcunULQ0NDuHLlCtbW1lAsFiVRSSaTQSQSgcvlEkf2/PnzaDQa2NjYEGllOp1GJBIR54NxGE6nU+RRzWYTIyMjAIBsNotoNIp6vQ6Px4P9/X10Op2BukaUPmogYEolgWeTZZgOp/7Mih3Qzh/vpXfytSNsJlbQQIeSO90OLffTALDf74vzRiePO/J0ZrVsz+E4yXC4u7uLs2fPYmZmBk+ePJEaU3SaTQe7WCzigw8+wN7eHubn5zE5OYloNCr3ZKILOsQEUWRxtDyO8rFgMIhIJCLZSsnwaqCtkzFotlQDZisWVTM5HFvOhQardFY1ODIBCJlo8/qa2eN4Mz6q2WwiFAoBgJS98Pv9kjSF60/LNnmdeDyO4eFheQbJqpjghfOvAYdmjOr1OlKpFG7duoU///M/x927dwVMstD05OQkFhYWcHBwgP39fblur3dSvJsbAlZMmN7QYH+s2GTzWbFi57hhoT9nO/Qc62eW9+ccsqYln5+1tTVMTU1JPUo9NnrMGNfIZ0u3j+uXbBkT3hA4mc+KzmhpJk3SjChwwoIxcVCr1ZK51kCMY6o3barVKgqFwkChby2z5MYJ1yNBMQGXBp0cd13rrVKpiCydm2qlUgm1Wg17e3sCYk9jR78Oe7kAnIqBs80222yzzbbTLBQKIZVKodPpYHx8HIFAALVaTWIz4vE4AEjR7AsXLiCTyWBzcxMTExMC9GKxGJaXl3F0dIR79+5hamoK0WgUDx48QLFYxNjYGFqtFo6PjxGLxaRw8Pj4OCKRCDKZDDKZDJLJJOr1OiqVikj0NCjx+/0YHh7G/v4+2u02xsfHxenx+XxIpVI4Pj6G2+1GqVQaKDhMx46mQZMVo6ZNO3n6nNPAm5bH8Rw6ebyOvpZmg3Rq8l6vJ8llyBKxrRpomMbjGKuo26vP6ff7yGaz2Nvbw/T0NLrdLjY2NuQ7U97Z7/eRTqfx+PFjWRO/9mu/hnPnzkkmRDqmlGbR+aOEldkMeT2n0ylALhwOI5lMolQqoVQqSYwc20wnWcermUCc7bVi3kyJJNeGBol6TnXGUACSRZLW7XZFyqgd936/LwxKKBQSQOD3+6VNrBGmmSU63uFwWIBbIBAQUPG89cmx4D8CCBa9//jjj/H+++9jb29PxolZBWOxGM6cOYNGo4H19fUBxq1SqTwDLE2Zq2Z4zXWt2/w88Gauy68KCsw1zTYQaDkcDly/fh3vvfceUqmUyKl5rtfrlUQgetOD647zQwaO9+E5/FuDQbZDyxgZ8wY83UDo9XoCgLi5UKvVJJkU4ywZV8r3ANdKrVaTMWZCoU6nI/NHKS5j5XSJCb7j3W63vFu63a5k+qWkM5vNCntMdYOWVjMZy4uylwzAMQbORnC22Wabbbadbvv7+wgEApibm0Oz2USxWES73UYoFMLU1BSKxSK2trYwPz+PiYkJpFIpFItFXL58Gfl8HpVKBWfOnEE0GsXq6ioKhQJeffVVlMtlfPzxx/D7/RgZGRGHIh6Po1QqoVqtYnJyEtVqFYeHh3A6nRgeHkan00E4HEa320WlUkEgEBAJ18jICFwuF3K5nNSqKxQKSCQSqFarSKVS4iDT6aETQmdWO9ra6QWesjDaeTQ/s5JsERjwulq2RNPMgQmKNHujY28IKhg/xf4AT2PcdOFg7YCSnQgGgwIkrIzn5HI5xGIxTExMoFAoIJPJyLXN8el2u1hfX0cwGITD4UAqlcJrr72Gq1evYmZmRrJUsr4Vyw0QMOgECSaQY5xQMBhEPB5HuVyWpDf1el1AuAYGVpI80/nXTIj+qQEenX065b1eTxJP8Hu23Qrc6rg6gjAyx2RH9HhS0stzfT4fwuEw4vE4IpGIADcNNGmmJFGzKAQazWYThUIBm5ub+OlPf4pf/OIXyGazA+uHctfp6WnE43Hs7u4ik8nIfTqdjiQy0ZshmlXTmw/6ubECm1Z/m/Olf9egUANdPXe6DZqV05Jkrh2fz4dqtSqZd9lHXl8zbKwNRxkkgTkBD/A0PpPSbj57XPtk6dhWDdg5B2TIuCnB9U3pK6WV/Mf51eUrmF1Tv6vI9rFP5lhxjTQaDdns4fMYCoUQCoUGkr7kcrkBEM+NqtOSH31d9lIBOJrNwNlmm2222fY8Y623crmMUqkEt9uNubk5JJNJ7O7uIp/PY2VlBQ6HA7dv38b8/LzUVXK5XHjjjTdQqVTw0Ucfwefz4cqVK3j8+DGePHmC0dFRACe15mZnZ+Hz+bCzswOXy4XFxUWRy2mHnxKdVquF8fFxbG9vo9vtYmRkBJlMBv1+fyCRyszMDA4ODtDtdjExMTEgkeJu8tDQkATmaxBlxhxpIKY/N007SJqN+CqmQZ2W+1ll2dOMkE5MQIaOki7tVNHZ1NJJZr0znVttzWYTmUwGy8vLWFlZQa/XQzabFWeR52iwWa1WJYHM+++/j8ePH+Odd97BpUuXJCEOnUefzyfgTINrK0aOzqHH40EkEkGz2US1WpUYPcordfZQzQjpMeR86vEwAYIGECZLRwaE99JxRLyfZv00GwNAym3wunTuGXdGgEvZMJ1mXYj9NNBjsm5sGzMrHh4e4vbt2/jpT3+Ku3fvDjBKXDNOpxPj4+N46623UKvVcHBwIMCGLJRmwTmOppngwWTXzOdJ902DAX2MXqdsq/kZgY95Xb5PeLzD4UCpVEI0GsX29vbA+tdSZ7bVBD16bpkZVT9/vAefS66JWq02kO2Wz3AgEIDL5RK1A9ehKa3m+ANPgaZ+jzG+jmNH8EfGjmuCMW36+eNa5DX5jnQ4HGi1WgMbR/q9EolE4PP5UKvVBABavSe/LnupANwLlKLaZpttttn2d8iYnr9er0stM5/Ph7t376LVamF+fh6pVAqlUgmvvfYa+v0+PvnkE8zMzGB8fByff/459vb28NprryEWi+FXv/oVyuUyFhcX0e12kcvlMDc3h37/JJlAIpGAx+PB3t6eJFCp1WrCtKVSKXEg7t69i2AwiPHxcQELMzMzkjVueHgY+Xx+gFXRzBX7p9kWnRnOSsKlgRzNdOJ0nI6VLPG0awODUkmrY+lc0dnTjBzjrwAIKGU8WL/flyQzvCed21AohFqtJs4mgZMGIsCJJOzw8BBTU1OYnJyUgsMmiNP90mUVVldXcXh4iI2NDbz11ltYWlpCIpEYkFV6vd6BunEaWLF+PPkjaAABAABJREFUnI4BJJALhUJotVoYHh5GpVJBtVqVf5SWsU/1eh0AJAW7Zh00y6nnU8tnzdhCsmd6TDUjZrKznC+uO65XXoO1uUKhECKRiJTJ0LXczHWjTW8+aODmdDrRaDRQKBSwvb2NDz/8ED//+c9xeHgowFWDJuAEYC4sLKBWq2F3d1fqLPL+1Wp1QLLKzzVjbII3c22fxhyazJm205hUMw5Ob3xw7LSssV6vy3O6vr6OhYUFKdFA9pObB0z2o5kwJubRY8b2kT3TmyIEY1xD/J0MpsvlEjBMoBwOhwU0UlrJtabZQbaLmzL8WwNtLa0miKXUk+NOsKhjANl2/Y6kVJJjpftUrVZFlkkp8IuylwvAsYyAzcDZZpttttn2HCObMTk5iZmZGWQyGayvr8Pn82F8fBy7u7uIxWK4cuUKnjx5gnK5jHPnzqFareKDDz5AIBDAe++9h3Q6jR/96EcIBAKYnZ1FPp9HJBLBwsICjo6O0G63sbS0hGw2i62tLUxPTwOAyB6r1arUPSoWi2g0GpiYmECn08Hu7i6mp6cxMzMjCSEqlQp2d3dFChUOh9FqtUQipuPdtPNOp8t0BGnaCeffVuyCyYyc5mzTSbW6j/5cn2/KxTwej8SIsci0y+VCJpMRQNHrnWSzIzvH6xG0aYdRgxiTiahUKkin04jFYhgbGxMnz2y//pv3dzqdyOfz+NWvfoVHjx7hzTffxJUrVzA/P49YLCaxfEyIwQLB2rmlQ60ZLzrABH+8Dnf/mRm10WjIGBQKhQFGh2wpMCiz499WwJpARYMVXZzbBBhWc0yHl2wiWTa/3y/yNM3iWv3U609LJTUjyHWwv7+PGzdu4Oc//znu3r07EP+or8k2nTt3DuPj41LKoVQqybUIDLR8UrN3ZlutxoSf6d8JCDlmun/mdc0NFf29nhctR+V9KDEOBoPo9Xool8vCIrZaLUmQpOujEbwQQOlNCt0GU/pLiTbXNeWWGlT2+08zwzYaDXkeOWZ8Bsz3jGaUCQA1oCTQYrtM5lBvDJgbUzo5Cv9xU0jHuvFeTHrC5C1OpxOBQGBAyv1128sF4JjExI6Bs80222yz7TnW6/Vw7tw5RKNRbG5uolwuY2FhAblcDltbW3j11Vfh8Xjw2WefYWJiAufOncPa2hqePHmCCxcuYHFxEY8ePcKtW7cwPj4uxbWnp6fhdruxubmJaDSKxcVFPHnyBJlMBmfOnEGz2cTBwYHExwUCASSTSezv78Pn82FhYUGynV26dAmRSATHx8eYmJhAtVrF/v4+nM6T8gAulwvlchnz8/PY29tDNpsdYHJ0FkSyM9o5BL5a0gRTCmYya6azbzJ52rRsi9fiudxVDwQC4vBRWsfdcxYK1tIrOqoEruzf0NAQ/H6/FOnlZ3TgdHsYe+jxeDA7OyuOpj72NNMO7+HhIf7iL/4CDx8+xDe+8Q288sormJiYQCwWE0knmQgCGQ3kdBFiOpmaQaIjzux9lFSSjSMbSUez2Wyemu2Tc6uN5Q/02GjZop5HOtacazrxnC9KzphyXTvUGiCYoE1vJmgHm+PCua7X6ygUCjg4OMAvf/lL/PKXv5S6YCZw09LJmZkZzMzMCKOpa495PB4UCgVZ2+yf1XrWGxEmA27FzOk1b7UhYgIX9v+0Z5TzqNcI1wTrrjkcDmHUvF4vCoUCotGonOPxeIRpJtjXDLvuB4EtAQw3HDi3XD+6rWTUAUjiEV2CwJRv6iRInDMmBXK5XAOgk/0lsNISXRbq1vJTzV5S7UB5JfulmUi+S10ul2wkeTweKY0BPE3K8iLs5QJwX/y0GTjbbLPNNtueZxcuXEC9XsetW7cQi8WwsrKCw8NDNJtNvPPOO9ja2hL5JAB89NFHcLlcePPNN9FoNPD++++j0WjgwoULODg4QL9/Um8pnU5LbbdwOIy7d+9KWu+7d+8iFAohGo2iWCxiaWkJLpcLu7u7GBkZwfDwMAqFAkKhEM6fP4+dnR1ks1mpU0enKZlMot1uI5FIYGpqCpubm8jlcgCeFrWmg0TGAYDEqWiplek8agdUy+x4rNXuODAokdSgzDTtvNLpJcsBQOJkWLA3FovB7XajWq3C4/EglUoNAEYCDs0SaCeS9dlYIoBJGnR9Np7X7XZRKpXgdDoxMjKCer0umeispJQmoOH3rVYLGxsb2Nvbw+3bt/H222/j/PnzGBsbQzQaRSAQQK/Xk3VB4KPBAp19gjgCF91e9tWUFZIVIbBrt9vyU6dWZ7IIK/kmTdcH43cEmwSTlIayH4xX1Cne9VrT46hZLc0w0aHXUkkd50a55O3bt/HJJ59gZ2dnQEZrGoHJ8vIyLl26BOBEZkj2jceEw2EUCgVx5AmwTSZHM2Kcf7NPGvSaDBPP4dharaUvY/g0yOCa52cEcWSgNzc35f1SrVYHMr4S5PHd4Xa7JSMkQQvLEhAgkWmjPJZyWXPzhs8f1x+BFcdVxx1SDqzj1MLh8EA8LwCRt/I+BKocE44XN0M0OGO/OTZsc6fTQbValTabzG+j0UA8HkcoFJJNsReZgRJ42QCcMHC22WabbbbZdrqxKOv8/DwASJxIIBDAjRs3EA6HcenSJezt7WF9fR0zMzMYGxvDw4cPcXBwgNHRUYyNjWFzcxOzs7OYnJzEzs4O2u02zp8/j2w2i0ePHklmwUqlgng8jl7vJCPcxYsXsb+/j3Q6jYmJCTgcDmxsbGBiYgIjIyM4ODhAOBwWNoUZ2aampoTpGxsbw+rq6kDmROCpA1ipVET+BjwN9DdBmj6Hpp1pfm+ycOY5NJ1cgUa2xrwWQQgAqa3k9/vFcSObk0gkADxNb68dOB3XRqaBkicmxtjd3ZUEDIwR02CHDAIBAueEiURMAEUzE3mYTt/q6ioODg5w7949vP7667hw4QKuXLmCfr+PWq0mLBkdSp0wQwM5M2GHZhR4bx7v9XoH2BN9vMlqEdCTDTPnVvdN19my+qkBjmbT9DU1ODET4Vj1UQO3arWKfD6Pvb09PHjwANevX8fGxoYUVzbXrl6PDocDs7Oz+O53v4tMJiNZZzOZjGQjJBjlc0OwqrNQ6utbMZP8XIM4q3aZgM2UT1qZ/tx8hs1NGYIqtr9YLMozxPeJlkOyv3wmdKp94IQ96/V6kl1SM9i6/ZRiUmIYDAYHYti4HrlOKEPk86rXLNdxrVYTCbhOcsL3Bq9FZlpv4Oh3hB47Ajwygl6vV2TOOj6OBcj5borFYvD7/ZLoiJsTL8K+FMA5HI7/F4DfAZDq9/uXvvgsAeA/ApgHsAXgn/T7/fwX3/3fAPwzAF0A/9d+v//jv5GWW7UV1v8R2WabbbbZZps2v9+PsbExZDIZ1Ot1XL58GalUCvfu3cPS0hJ8Ph8+//xz1Go1LC4uot1u48GDB/B4PPjGN76Bg4MDZDIZvPLKKwiFQnjw4AGi0SjOnTuH7e1tFItFJJNJpFIpSWJRrVYxOjoKr9eL27dvizQnk8nA4/Hg1VdfRavVwvb2NmZmZrC3t4dyuSy72H6/H5VKBefPn0ev18P169cRCoUwOzuLR48eAXia1EA7ZW63WwL1taOuzXR4eC3TsdTMghXTQUfNjH8zEyFoxx94ulMfiUQE9PJ7OmqJROIZJ5jOnmZy6PQxOYjP50MymcTx8bE4f7xfu91Go9EQ4ESZZi6XQyQSwdTUlGTvY/81G2eOlzbu+heLRXz++efY2tpCKpXCxMQE9vb24PF4EI/HEQwGBXRS0kVGS4MmzqUGZfqnCZDYJgIYU67HPgDP1vKyWhvmT/N3q3P02FhJETW41EwbWZFWq4VKpSLS5nv37uH27dvY3t4ekNOZ96JxTUSjUVy8eFHKM3S7XRwfH0uGV4fDgZWVFaTTaZEFalaLfdJSTA3YzfUOPJUTmhsl+lx9Pu9xGvCz2jh53pxwDPkZk4VwI4esGdva6/UGmGo+ywQ/BFlW9yW4Mst9ACfgT28I6XhcXbKDx7TbbQQCAWHOs9msJHvi/fmc8Dqa/WU72T+/3y+ZL3UtOeDkveT3+6WAeLFYFCau3+/L5grnRMddUoL7ouyrMHD/bwD/DwD/Tn32PwH4y36//786HI7/6Yu//0eHw3EBwD8FcBHAJID/4nA4zvb7/ecLyP+azGbgbLPNNtts+yoWDAbFmW42m7h+/To8Hg+uXLmCUqmE69evY2ZmBktLSzg8PEQqlUI0GsWZM2ewv78Pt9uNt956C+l0Gqurq7h48SISiQSuXbsGAJKUJBaLST2pmZkZVKtVPH78GOPj4/D7/Xjw4AHa7TbOnDmDTz/9FLFYDIlEArdv30a/30cgEEAkEpF4jStXrmBvbw+PHz/G/Pw8IpGIMH/a9E435U7mDr7p9GmGjZ/p46zAnU6DTqMza+WsEyRxR5vOEbMS6hTz/S8kn/1+H8FgEH6/X2RyBF/aaeaOOR1VDbQmJiZQLpeFTaM8DHjKuvHeWko5NTWFcrmMdDotgJDX1P3TUlIzOYgucH39+nXZ5Xc6nVhZWcHMzAySyaQk+WCCD7JyGsxxXvg758IEQVrSZ8X2mHP6PObny77Tv5v/tDxSAxbNrJnMIJmQUqmETCaDra0tPHjwAPfu3cPOzo5I6fT9rdpI8B+Px/Hmm28iFouJ1LhcLg8kwxkZGcGFCxfw7//9vxfAS/aK19Jsl479NOff3EzQbLH+WwMSvTmgGTzK9QjEdZ/1tfTvun181lqtForFosiRuZbJWBPQOZ1OYfs5R0zXT6aMEkqOjS6GzTXLMgE6cZKWa5KhJgOm1wgBF98XlCvqeE5KoQnM9Nwz0Y/ewNElSDhfBK36mY1GoxgaGkK1WpV3HzNfOhwOAYFUFFix8l+XfSmA6/f7v3A4HPPGx78P4Ftf/P7/AfABgP/xi8//v/1+vwngicPh2ADwFoCP/5ra+5XMJuBss80222x7nlWrVaysrGBnZwf7+/tYXl7G8PAw1tfXkUqlcPnyZbjdbqRSKeRyOYyOjiIYDGJjYwNjY2PweDy4desWwuEwrl69ilQqhU8++QTJZBIOhwOHh4cIh8NoNpuIRCKIRCI4OjpCp9PBe++9h0ajgTt37mB+fh6jo6PY2trCyMgIer0etra2EAgE4Pf7MTo6iv39fczMzGBiYgLr6+vIZrNYWFhAp9PB1taWxODRsePuNHCya04ASabqNMkXTQM3K4ZFf653+IGnUkkNIPRut/7JY0dHRxEIBER2xXgYXbh3eHh4QLqlE5awz5RukW3g7nqhUEAkEsHMzAzW19fR6XTQbDbFSeffrP/EcgOFQgE+n0/mhckutHPOftBMgKdldtytz+fzSKVSyGaz+OyzzzAzM4Nz585hbm4O4+PjiMfjwkDobJUa0Om4QQJpgj4tRTP/mclbnsem6uPMGEeTgdFAzYrlMzNH6ng9/t5qtVCr1ZDJZHB8fIy1tTXcv38fGxsbKBaLUq9L3/e09nNMRkZG8M1vfhORSEQcfdaKY7ZBt9uN9957D8FgENlsdqDuoBkTaLLSHBfOt8memWNnrhNzHVmNoX62rMbevJ4JmNl+rm+OP2PAgKcSQ64jzgkzPwKQbJdcl81mE/V6XeaQwK9er8vY6mLZvA/nvd/vCwjj2g6FQgAg2Xl5X2ZaBSAbHIzbIxDT64pjwWQ/Ot5Tb2I4HA5511C6zBg4M4kRYwMpJfV6vS80Du6vGgM31u/3DwGg3+8fOhyO0S8+nwLwiTpu74vPnjGHw/E/APgfAGB2dvav2Ixnrnnyiw3gbLPNNttse44lk0ncuXMHvV4Pb775JpxOJ27cuAGHw4ErV67g+PgYqVQKyWQSly5dQi6XQyqVwsLCAur1OnZ3d/HKK6/A4/Hg7t27KBQKCIfDODo6QrlchsvlQr1ex7lz5zA0NISjoyOMj49jYmJC4uhYKLxYLEqdL6fTieHhYUSjUYyMjGB7extXrlyB1+vFZ599BqfTiXg8jv39fdTr9YHdaxqdo263i3K5POBAarZMOzJWIE47y1aOso4v0fIushpmjJZmJugksf103vr9k5T+3EFvt9uS+CObzYpDqtk8zWYwdkazDr1eD+l0GhcvXkQ2m8XR0REASJwPWTctlyIj0el0EIlEpLQAZVUEf16vV2rNmWbuzjudTlQqFfzqV7+Cz+cDAEnI8ejRIwwPD2NhYQFLS0uYnZ3FyMgIFhYW0O12B8Cljs0i2KDjbY43f+d8m2yc1e9Wf1sBJNM0u2b+ND8j+9NqtVCv14Xl3N3dxb179/D48WPs7++LpM/s12l90WtsZmYG3/3udzE0NIRMJiP3Pzo6QqFQEMA/Pz+Pf/pP/yn+7b/9t8K0cDxNYKpBm76/Bj56bDRAMmP++L0J1ngd/tMgWYNx89nV7KAJ7jSDxr/Zj1qtJslIeI9msynric8F5ywWiyEajWJnZ0fY0lgshlAohHK5jGazKXJMypUJGPmcERiHw+GBjQi2i2w8QT2L2XO9M6mRzujKMeQ61HOokzuZ7CiBIuu6MY6U/eUmihVb+jLVgbPawrGEU/1+/38D8L8BwDe+8Y2/FsglWShtBGebbbbZZttz7NatW5iampJkIg8ePEA8Hsfk5CT29/cFvCWTSezs7GB4eBgXL17E+vo6XC4XXn/9deRyOayvr8sO8PHxsciKQqEQ5ufnkclkUCgUcPHiRTgcDnz00Ufw+/14/fXXcXBwgEqlgnA4jFqthmg0KrvGQ0ND2Nvbw8zMDA4ODnB4eChFnY+OjtDtdpFIJNBsNiWLHjAYe8K/tVQLeAosyDTRToux0fIsLc0y42FMtkCnCKdUiiygx+NBIpFANBqF3++H03mSke74+FiSjfB6zECXy+UG6kyRaev3+wiHw8J4UkJFgMd4mEKhgNdeew0/+9nPRN7VaDTk/t1uVzL0MYECAJFXxuNx9Pt9SYARDoexvLw8UHfsq0iqer2eFFomy9Pr9ZBKpZBKpXDnzh1MT0/jwoULWFhYwOHhISqVCnw+3zPxcjpOUMvUdFIRHbNl/tPzbJqVbFI7yPzHvwneNUgzpZ3MiNloNFAsFpHNZnF4eIidnR2sra1hZ2dHxtdklU5rl8nKEZT9/u//PhwOB/b29uQarJtHoBMMBvEv/+W/RKvVwqNHj+Q4q0QYVjJGttFM3KOfI1NCqc3cKNHPqslknrbJooG6brMuuE1AQubalFAyNo7PFH9quSoAKcuhn+1AIIChoSFUKhWRJjK2ze/3w+/3SwwbPyeIa7VakqiIc874VF3SgGubz3a/3xd2UCdC0bF9DocDjUZjQCpJxp1zwtIFfDdpZp8bTVq+yYycXOOnMddfh/1VAdyxw+GY+IJ9mwCQ+uLzPQAz6rhpAAf/LQ38rzEh4Gz8Zpttttlm23PsypUrGB0dxeeff456vY7FxUU0Gg1cu3YNLpdLMlIeHBzg3LlzaDabuHv3Lubn53Hu3Dn86le/klT+GxsbGBoaQjQaRb1ex/j4OJLJJLa3t+H1enHx4kUcHR0hlUphfn4ew8PDWFtbE4lSv99HNBoVaVKhUIDX60UikcDq6iqGhoYQi8VQqVRQLpdFWlmr1URuZ5opXwQg9+J3dNQ0cNMOppWky3QutWnnUcsk+Vmv14Pf70c8Hpedc0omtbNYKBREHkWns1ar4fj4WGJvdGyN2+1GqVQSZoxAmOCBzvXBwQGWlpZw6dIl3Lp1S2RVZDLZZsYbkglhWyjlJJNWqVRw8+ZNcZJ1P61MxybpzxgPyPuwr8FgEJ9++ilu374tDO/k5CRGR0cRi8UGZJZm9koCttNYJM1UnTafpsyS7TVBm/m7BnJk2Vh0nKDt6OgIm5ubODg4wP7+vsy5vobZPq5HK+ZN9/f111/HW2+9hXK5jHw+L5+3Wi2Uy2WpC+h2u/Gd73wHb7zxBn76058ik8kIeDPH0WS4gKdsNv8259aKsbaS3eo+WfXRBINWcad6LNhODb64RgmKSqWSgCvNHPb7fXkudAwgAGGims2mJAnic1OpVOTaBEGBQEBAVqvVkjVH6SHfE2TH9HtDl0AJBAKy2aJZL51Vl8wea7RREs1r6thSxt8xtq7X6wmg5fjqjTAy8Tpul8Dv72IduP8M4L8H8L9+8fNP1ef/weFw/N9xksRkGcCn/62N/Kr2lIGzzTbbbLPNtufbT3/6UySTSSwsLGBjYwPHx8cYGxvDwsICjo+P0ev18Prrr2N7exuZTAbvvfce/H4/Pv74YzQaDQQCAWxvb8Pv90udpJmZGbTbbRwdHWFiYgKRSASrq6vo9/t47bXX0G63cfv2bQEu8XhcnA6Xy4VsNotEIoFarYatrS2RGLG4dzweRywWQ6FQwOzs7IDETMui6HjSAWN8ik528rzdY9PBB551SPm3VYwPnUk6ZnR0KJnUZQJYNLvRaKBcLotsio4d2bRcLid90E4tnUCyaPl8XuLp/H6/xJ41Gg3cv38fb7/9NtLptGSXJIgjEKLDxr7qxCAul0vmjqwDx0uPx/NAHE3Ho1UqFQEulG0BwAcffICtrS2k02mRh8bjcSljMTw8LIlvAoGAxOYw2YQpBfwyJs7KNHhgH0xAp+OMyJJUq1WUy2Xkcjnkcjns7+9jb28Px8fHKJfLqFQqAlo1YCHQ0fFlHGOrdhFoeb1evPbaa3jjjTdEPsvvyK6m02lUKhUMDQ1hdHQU/+yf/TP4fD7cuXNnoEi8Lh2g22I11/yMa9BkBHms1YaIeT0do2U1D7yP1fe8Pxkn3kdnheWa6/V6CAaDwkLxJ0EKx4wgSddG45iHQiEBdFoqqlP+AxCWm23i77wOx4DvCMbVBQKBZ8Zerwe9VpjciLUVuamgM7pyDExpKs9nG1g4XD+PBHpsDzed6vX6M/PwddlXKSPwv+MkYcmww+HYA/A/4wS4/R8Oh+OfAdgB8N8BQL/fv+9wOP4PAA8AdAD8X/pfUwbKL9qKL9rxdd3SNttss822v4N28+ZNzM7OIh6P4+7du6hWqxLTtr6+juXlZYTDYdy8eRPhcBhvvvkmMpkM7t27J5KdUqkkcVu9Xg/T09Oo1+toNBpYWVmB2+3GgwcPEAgEsLS0hL29PRQKBXFIxsbGxGnkrnY8HsfR0REajQZCoRDq9boAlgsXLkhdONaDC4fDA6DM6XQiFosJACEDFQ6H4fV6USwWn5FkWYEOKyfytL81K0HTqdi5A+73+xEMBhGJRKQWW7Valcxu+Xxe5HNmrE82m0WhUBBnXzMDTE5hshKMG2MbAWB3dxcrKyv49V//daTTaSkKzB1+JjrQQJimk6rwO5fLJbI8jonJVn6Z6VTtwAkgzeVy+PjjjwckXCw2nMlksL6+Ls5wKBTC8PAwksmkALpQKIRIJCIsHSWXjBsya7g9D8iZskkth9QJYCqVCkqlEnK5HAqFAlKpFDKZDHK5HIrF4kCsoAaBetxM9onjfBojRYDm8/nwzjvvYH5+HsViUUoMEEw0Gg0cHx8jl8tJv//5P//nmJubQ7lcxvr6usRVEryZZQTMNW7la2rgdFqbeS29SaABHr9/nkRZP7vaNEuoQSGfQc1aUZJdq9UG2EaOGQEdZYOc/3a7jWAwKGuBY8ZEIIy3I/PNMTSL1euU/Dyn3+8L416v1xEOh1GpVJ6RvVIGCUAYVYfDgWAwiH7/JDlKJBKRNuo5Yd1HSrPJehPscewI0PjsaMDGfpjZf79O+ypZKL9/yle/dcrx/wuA/+W/pVF/VRMJ5Yu4uW222WabbX9n7NKlS8jn87h37x6cTifefPNNSVv+xhtv4PDwEJ9//jlee+01eDwefPbZZygWi1hYWMD+/j46nQ6Gh4fRarWQTCbR6/VweHgIr9eLxcVFbG1t4ejoCPF4HKFQCA8fPhQJksfjwfDwMKrVKoLBIHK5nDjaBwcH8Hq9GB0dRTabRbPZxOjoKM6fP49UKiVxGZQsbW1tCSjUsUfcIaaD5Pf7EY1G4fF4JA5FO386lkfv8GsQZTqLdKi0Y8t7k83SrA+TDVBWxbi0er2OZrMpAI0givdjUgHNJNAx0wCEu+P9fl+y4Omdfn5+7do1/N7v/R7eeOMNfPzxxwOAkaCEsVq6mDjvyzZp9oAJEnQGvNPMdOxN0ywJHVXt2PO7fr8vdc2Ojo4km58uiB4MBhEKhRAKhaQQMWtecY64Lnl9k/mi095qtYRdazQaknyEwC2fzwtTTCbOBKdmzNZp8Wz83Ywd0wwV2cVIJIIrV65gfHxc2qnHlgW7j4+P5bO33noL3/rWt+BwOJBKpaSOogYa/Ntky/iTa133S69B3Qe9KaBjTzVDZp6nzSQoTNmzfj7JDptjyfHic9Pv90U5oDcdtIQyEAjIphHXOJlnluJoNBpoNBqyMQBAEpaw7QSCfLdwA4AyR6/XKwCJmyGBQAC1Wg3ValWAEjeFKAfXpQr0+gcgII2JVTgXBJxsK+tOBoNBYS+5zslO6qyvjN8jW/ei7K87ickLNZFQ2gjONttss82259j6+jry+TzOnDmDyclJPHr0CJOTk3j77bexurqKdruNq1evIpPJYG9vD263Gz6fD7dv30YikZC6ZGNjY6hWqyiVSlhYWIDT6cRHH30Et9uN+fl5HBwciNOTy+VE6sYkGPl8HsPDw6jX6ygWi4jH4/B4PMjn82g2mxJP9+jRIwEUsVhMdo0TiQSAp46gw3GSxpsyP+6oh0IhcWg0q2CyRDqjJIAB6ZA2M4BfAxtev91uw+12IxaLCUhgLArBANklFlfmjr6OSalUKnj8+PFAAhSdbIBxZBwD3ReODfA0cUMmk8Fnn32Gd955B+l0Gg8fPnyGvSNo0YkV6GQTyJH50U4h68xZSQCt7DS5HM877VwNHjVDRueyXC4PSO5oOnuly+VCIpGQ7HsEvWbbeF3GDVH2yH6aMXFWfbTqs9XnGpAQ0Oh/7DtB/fj4OF599VUkk8kBho/rqNlsIp/P4/DwUNaPz+fDd7/7XSSTSQAn74KDg4NnZKY6UYcpObXqp/7OCozxmXkeKOe9TdbIHCMTBJtjxpgzUyZINq1Wq6FYLEpyETJofCaZSCQUCknyoEgkIs8uM+3qe1M+yf7w2QkEArIpw/vwOeImE9c53wORSEQ2SZhkiMw7Y9cAyPPXarVk46XX6wmw5DNaqVQG3oscI7aJGzVkaympJlDknLJgOOfw72IM3N9O40K1OTjbbLPNNtueY51OR2LSHj16hOXlZTidTnz22WcYGhrC3Nwcjo6OsL+/D6/XKw7LxYsX0e12EY/H0W638eTJEwDAuXPn0Gg0sLq6ilAohKmpKWQyGQSDQXF6FxcXUa/XEY/H0el0UC6XMT4+jlKphF6vh1gsJnE6vV4PZ8+eBXBSN4yJSiKRCHK5nAT393o92b2mmTvtZCk0awRYAwtTSqllXHQwdbp6Ou48V8uluFvucJzEvJGRAyDSLSZmYZwandxAIIBmsykOGcdIO4Bsa7/flx12zXRoyZQJvG7fvo2lpSW88cYbyGQyEmNGZ5kOJ51MslmandEgjuZwOCS2i9fSSSdMBkV/ZtppcVCnzZ05Z1bnEYjRuWeadxZe1kDptGvwd/Pvr2ImqHneeTqxBhkkbkjE43G88847iEajAk70eZQoMpGJLmZ/8eJFvP7668LiPnz4EMDTwt/8pwEb8BQU6meB55lMmNXYmPOtjzPBlgkG9eemlNMEi+b5lP1yfXNcCXB4f2ZZZGITygZjsZi0rVKpwOv1CvOkN3LYNp0URMfBuVwuKVmg5Ydk4zWjzphYjjcljbVaTdqmx4QxerpWG9+JZOZYu473o+ST8aZUAuh6eeyrfg/y/cZrvCh7qQCcvOps/GabbbbZZttz7K233sKtW7cQiUTwyiuv4PDwEKVSCTMzM0gmk7h7965ksMvlcojH4xJTMTs7iydPnuD+/fuYnZ3F+fPnsbq6imKxiDNnzqDf76NUKokMst/vY3x8XEoFUPYWj8eRTqfFGarX65KlMRwOo1wuo9PpIBQKCcDjNarVKhKJBCYnJ/HTn/70GaZCAzHKgwAIiLICEsCgRM007UhqqSU/p4NNCZ/X6xUHiLvZjHWrVqsC4ugwEfSw/huv22q1kM/n4fP5JE6GEi+adpjZB90PU5rZbDbxwx/+EP/wH/5DvPPOO/jZz36GQqEwMCbaCaSzFgqFZBdfj0sgEBgAdxrEmfNhOvensTqngTzdt+cBID2HVlK7fv+kuDjBM8fuy+y/FqyZbXhee/UxnAMNXEKhECYnJ3H+/HmJOa1Wq7JWtGSzXq+LpJOxTrFYDO+8847MT6lUwtrammxMcE1pVszcsNDjrmPN9LhqkGXOgwnUTru2ea4GZPp+5nH8W7OH/IzPgcPhEEYfeMpO87ll3Tem56d8kow8gY+WW2omlqCKQCwQCIjMWwNHrjddmoBJi/hO0MlhNHtplnrg3OmNF7L57XZb2pvL5VCv19Hv95FIJGSzqdPpoFQqDYBaZpwk4CQzz/b9rU5i8nfJuH5t/GabbbbZZtvz7ObNmxgeHkYoFMK9e/fg9/tx7tw5FAoFfPzxx7Ib6/P5cObMGUn+EQgEcOvWLRwdHWFubg7z8/O4efMmer0exsfHcXh4KOUFstkskskkisUi6vW6xLuFw2GEQiFJVEKn0+PxIBaLwel0IpvNIhwOS3xGsVhEq9VCOBxGq9XCwsICHA4Hbty4Ic6IlhnR6XA6nQiHw4jH46jVaiKZouPk9XolZshkCkwz48C0E0bpFHfQ6YQxXoWSplKphHq9LjE0rNvG87QMj1IpOma6xhidQZNlMJ1IAgLthPH6x8fHuHbtGv7+3//7qFQq+MUvfiHslGa66AhSHklQzT4TXOgEDf1+XwC4Bm5W4Ot5oOY0EGSebwUKaVYyu+fd1+qevI7+24plMoEzz7NK7mHKEzXw1saYykQigZmZGUxNTSEUCiGTyQAY3FjguY1GQ+KnyuWyyHkZ05pKpTAyMoKjoyPcvn1b2qPLR1iBIBNgWo2FFUA7bVPEPF4zPacBNhMs6uvoOdbA0xwn4KnEmDFwlCOycDcBjNPplGy3zAzJhD98nvTzz4y3jGlzOp1oNBoiy2TiGzJh+vkw5dCaBeX88Fkm68b3BJ81luTQ49LpdOQdTiaPAJPvQPaJ8YP6/abbyNhOMncvyl4uAAcu6BfcENtss8022/5W28TEBPL5PI6PjzE7O4tIJIJHjx6hUCiIY8GaW7u7uxgbG0O/38edO3fg8Xjw67/+66jVarh9+zZGRkYQCoWQSqWkCLfX60UymUQqlcLY2Bh6vR7y+TySySQKhQLcbrcwesyKFo1GUalU4PF4EA6H4XCcZBnc3d2V1NjBYBCvvfYadnZ2sLe3h8nJSQEzdMw6nY5kiQsGg5idnZXMlMFg8BmpE3A6GwA8lUbqJCLAU8eTDhedX52shUlLSqWSJC5gxjk6aLo+nVV9K8bzaPBmtlUfp1k3fs9zdaKXdruNe/fuYXl5GW+//Tbq9TquX78ucjydxAOAxOu12200m01Eo9EBNs7hOInPY3p2h8MhGwGM9XmeI2+adshPA1VW35/2O/ui588KxJ0GLL+MQdPfnwZyNDA5DYDyGAKCSCSC+fl5zM3NIRaLCejXc835JMPDMgaFQgHNZhNer1diR9fW1mQz5smTJwP1wnSMKK9NZoht021k+zVrY8WGafku22uCMBOkaZZPX8u8tjkHfEb5vDLednh4GNlsVhg41k7jc8rzKA9kv9nWaDQqGSIByGYHzwcgzxc3ZZgxkmUcdFxhu92WLLxMPkL5JH8nEGPsWaVSkfp2HBeWIQEgbef7iN8zmy8Z1Wg0KiwiYzt1CQVuBvHZZp+5LhwOh2TGfFH2cgE4YeBsBGebbbbZZtvptre3h2aziddeew0A8ODBA3ECKpUKzp8/j6GhIWxtbWFxcRHpdBoHBweYnZ3F2NgYHj58KEW7W60WUqmUBMFPTk4CAA4PDzE2NoZyuQyn8yS9f71eRzQaRSgUGmD1otEoDg4OMDExIcfUajUBfcViUQDlBx98gHa7jZGREdy7d08yxNF0xjSHw4FSqSS/mw44GSMdQ8djtenMiOZnlFMSYHKnnUlTuGOu66np34HTWSR+zp1+zR6S6TLj9Hh97rxz113/o3U6HXz44YeYnZ3F1atX0Ww2cf369WfGSZ/jdDqFQQyFQgiHw+L4AZACx5Rv5fN5FAqFgV18K4bMatw55jrOitfQY6V/ngYQzeNOG28r0GUF5kwQbbJv5jXMdlhdSzOaLGZ//vx5jI6OotvtisRNx3MSiHQ6HXHGG40G0uk06vU6hoaGkEwm0Wq1sLm5iUKhgOHhYVy7dg0HBweyPgkiyMDpGDe9cUBwRKbGCojxPJ1IxwR/VuyeedxppttkxqDSNLhtNBo4OjoakD0TrLE2I6WEuh8ES+zr0NAQIpHIgOyWc8HnjslStMSRCXKoauA7Rz+vQ0NDUgaAmz16rfBdxfZXKpWBzRWzKDjBpAZoXq9X5OScdyZ2qdfriEQiGBoaQr1el/cYS51wfRPoUZb5ouzlAnBf/LQZONtss802255nlB1ubGzITiolQZRSlstlLCws4NGjR/D7/Xj11VfRarVw69YtjI6O4vLly7h//74wWwCwuLgo2fC44826cWTXAEjSjPn5eYkLGxsbQ6lUwtjYmMTfjY+PY3d3FxcuXECtVsOnn34qiTyuX7+OqakpeL1ecbQAiANL54ZZM3O53ADQADDg/Om/tenPTBkenVAmCqBpYEhwyXZxJ1zLJTUQ43V5b/7Tn5nOqm6bBoc6M50Gb/q6m5ub+PGPf4w/+IM/wLvvvotyuYy1tTUB9DSeq/tWq9VQKpUQDAYRjUbFGaYkzev1SgIWtlH3gUAFwAA7aLIyGiBZyfX0XOj7nGbPA5FWP03WzOoaur0aaD+PSeR4auBC2fDU1BQWFhbg9/tl7kwWr9froV6vSywl2ZhcLicyt7GxMXQ6HRwdHUnNvPv37yORSEgNPzryunyAVds1K2f2RRfQNufIlC/yGKvPrf7muJhJM56XsEY/m+yTfh6Z0ZZtZrwXmSmyzbyvLufBbLJksBhD12634fP5JMES5ZiUKXJDiSw8x94ETbr+JbOJkpljPTuyh4FAQLJjsnwG5c4cLwJpt9stAJOZVwk2w+EwIpGIPLsaJFOuSSkpM27aDNxfkz1l4GyzzTbbbLPtdFtZWcHOzo44CNVqFYFAAIlEAru7u+Kg3Lt3D2fPnsXc3BzW19eRyWRw8eJFJJNJ3L9/H8BJKms6nMfHx4jH4xLrFY1GJQ7E7/cjm82iXC7D5/Ph/PnzUqMoFArB4XBgdHQUm5ubGBkZgcPhwNHREVZWVnB8fIzt7W0sLS1hf38f1WoVr7/+OnK53AB4o7NI55A7xpQ20rTjYTohBBYEE7rWlSkD02UDuJtPR491n5h4RDvZJnAkODJZNrNkgHaGKRHj72yTBkt0trSEkcfp369fv46FhQW8/vrrePfdd9Fut7G+vn4qoNV9Z5KEarWKUCg0kK2SSTZMtpHG3XyC31arNVD3ygQspj2PkTOPs2LCnsfyWN3TCshZXf+033kN83eHwyHrJh6PY3Z2FpOTkwOsKo/jZwTQZDhZE4zSvlAohFgsBr/fj08//RQulwvFYhHr6+uYn5+XIuzNZlOed82eARiQ9VqxoFYbCdr4vTk+ViDvtDGiafBmPj+a6dPPiY4r1fFmADA+Pi6sOa9BYFqpVCQ5D99fLpdL1jqvQ1DG85gtl+8KAiXKw7m2yXJSbk2Gr1KpoN/vS+IUFhDXNS25gcV3RiAQEKafJVrI7ul3IBMqMVkJQVgqlZKi9wSRlEvzvmwjx9Lv9z9T4/DrtpcLwGFw58I222yzzTbbrIwFs1lPbWJiAg6HQ5iwSqWCbreLb37zm+h0Ovj0008RCATw5ptvotFo4ObNm1Ice2xsDE6nE+l0GpFIBLu7u5K2v1AoIBwOo91u4+HDh+j3+xgdHcXCwgL29vYQjUYF/AwNDWFvbw+Li4s4OjpCIBDAq6++ikePHmFvbw/hcBj3799HOBzG4uIiHj9+PCBlOs15vnDhAqLRKDKZjDh8OrU9TYM2Osl0gIBn61SZcT/aUWKMCKVRxWIR5XJZPtNtNFPsa4fdrBvF4zTbxt/J0JAN0I4fj6NjqfvJbHd//Md/jEgkgqWlJXznO99BvV7H3t7eMwwk+0yHEoDI75hhlGUHyPCY57OfzI5INoMZAOkkm/JKE9CdxqLpe1nJ/J5nzwOKVp9byf5Ou59m6Gh01CORCCKRCCYnJ4UJ4frheuM812o1pFIpZLNZlEolYZbIusXjccTjcSwsLOBP//RPEYvFcPbsWaRSKZTLZWQyGXg8HuRyOWGfNCtmPgOaxdIyRK4pApjnySKt5sZ8xkxW7ssAt2Y59UYL2WeyaZq9Y3vb7bbEcFJiqKWLZMh07TNuXFByWKlUZBNCl9dgkhKv1yvgp1AoSLZJ9lvLV3lvMmPRaFQAtH6uCbZ5PyZL6fV6KJfLMtbcuOHmFceEKgDOOROgUJXBMeX5TLYEnDznTOTCa70oe6kAHDWUNn6zzTbbbLPteRYIBIQNmpubQ6FQkAKyzG731ltvYW9vDxsbG1heXsbCwgI2NzdRLBYRiUTQ6XSwuLiIbDYLj8eD0dFRHBwcIJlMSs2jsbExNBoN7O/vo9frYXp6Gj6fD9vb24jH41JMnJKvmZkZPHjwAOfOnYPH48HNmzcl1uP4+BhLS0twuVx4+PAher0exsbGsLm5ORAjxsyPdC4oy+Tn2kxGTe8ya6kl8BT0mXJLOqB0hjSw6/V6Ei9GgGeVXIROpwZFdJK1Q2YaP9fXIpAzJYnaOaPDzHHrdrsoFov4P//P/xP/4l/8C4yMjOBb3/oWfvKTnyCVSp2a+INt8ng8GBkZQb9/UkKi0Wggn89L8gOdEEKzOEz4wJIKuu6Vbqf5uxVAspKgWp37ZZ9bgQQraZ8VE8W+PQ+48VoEFwS7oVAIo6OjUpxeJ80hQKrX60in0zg6OkIulxOZHQABLA7HSfKf+fl5/PznP5fntVAoiOSObHE6nRYAYWZtNMEo78G2677qMTLHxFxz+tmyYuT0BsWXsaTa9DPI50ivCb/fj0qlIu+ITCaDubm5gYy1TDSik4mQZXa73SKHJLDi3DCJiQY1HFen04lSqTTAnvEeBJa8L8eRcmvKi5l4hQCe8bWUYGogxjFnHTdmm6QklAyaVi6wvlyz2RRGkoXNCSwByHudwDAUCn2lufmbsJcKwH21JW6bbbbZZtv/vxsLdMfjcezv72NkZETYuKmpKUxOTuLhw4fIZrM4e/YsIpEIrl27JvXgAODs2bPY3NzE+Pg46vU69vf3pTB3t9vF8vIy9vf38eTJE7hcLpw9e1YclampKTidTkxPT+P+/fsYHx8HANy6dQuXLl3CwcGBAENm0VtaWkIul0Mmk5Hd43w+P9Cvfr8vKbsJ1oLBoOyi6+QawKBcEhiUIAIQp1YzXaasUDvllEzS0a3X6wJO6OjqpCdW8k3tyLL/3PG2OkcXadaxb3QwNWjUfeG1NKDc29vDH/7hH+L73/8+5ufn8du//dv4i7/4CxwfHw/0Vxsz7CWTSUk+Q0dWMzpkKWq12jOSSjrrurgxv+M8kJHSn+t5Pw1c6Xvo483+6Hbov822WIEz8zsr8EMjgxOLxYS5DAaDUtaDc6YZLgK3VCqFTCYzABI4xlwrMzMzOH/+PH7+858jnU4DADKZDI6Pj+H3+yVOKhwOo1QqDZSp4H11uzXzbDK/NJM100BKj5MGiSYTbbKpVnPBe1lJe3UKfJ7T758UudexlgRQlOtOTU0JUAmFQsjn88jn84jFYgLMCN74TJFhi0Qi8s5hwWsNZskwk13mM8F3k97A0QCf8XT8W8tb2VfzXgSgvJbX60UgEJD4O4I3xqn2ej25LkEa2X7G9hHYsQ3cIOr1eqI0eFH2cgE4ecm84IbYZpttttn2t9ouXLiAarWKo6MjJBIJyRLIpAn37t1DpVLBpUuX0G63cXR0hLfeegvpdFqcRO5g5/N5ZDIZTE1NoVAowOl0YnR0FGtrazg8PITb7cbw8LDESDHbW6VSwcOHD7GysoLt7W3U63XMzs7ixo0bGBkZwcTEBLa3txGNRjE+Po6joyPk83nE43FUKhWp6xYOh1EsFqVv2mlksL/P5xtIF246qObvpqMJPGXETIBHIEQmiaCQ2QGZ3h14GhtD55LHaUZKX1dLNq3aarJrmhXRbAnj7vQ5Wqqp7fHjx/iP//E/4vvf/z5mZ2fx7W9/Gz/72c9weHgo46CNwOv4+FgkV+VyWRIkuFwuhMNhJJNJHB0dPcNSEqDq6+mfHA+3241arTbgtJqslhW4+jJ7HstnAgz9twkKTWmk2QYCGJ/Ph1AoJEXRQ6EQotHoM3X0KGFjBthMJiMyOo6JBk6RSATDw8OIx+P46KOPkM/nBwq/cx11Oh2Uy2UAkPg31izU7dXjzI0HM/aMzj5ZKn6mN0I0KKH80pwbK8bNin07bdODbSTLTYbInFs+U3rTgzGaTIZEgEVQowtdM44VgCQUqVar8uwTePF8AqBSqSRtoQyRY8Lrcu75DuF7QzO1BPO8FmXwunxEu92WNUWGj+8CMnhkAwl4uWlQq9VkA8ZkSckIsy0sg/Ci7OUCcF/8tMsI2GabbbbZ9jwrFotIp9MIh8M4ODhAPB7H4uIiWq0WVldXEY1GcfbsWWQyGYRCIbz77rs4Pj7GzMyMsDsTExPY2tqS4ty7u7tIJpPw+XxYW1sTNo9xHz6fD41GA0NDQ1hbW8PY2BiWl5fx6NEjTExMoN/v4+HDh5ifn0ev18P6+jquXLkCp9OJhw8fSpzK8fExarUagsEgYrEYQqGQxPJoJoqptQuFAgKBgPzz+XziWJlAhiANGHTmT8tSqYGVTlii4880INH30kDTdFbpcGtAyH5p04BMt09fiyyABm481gR+bMvq6ir+3b/7d/j93/99LCwswO124yc/+QkODw+fAVC8FjPfAU9rU5GpiMViqNVqA5kth4eH4Xa7Jb27ZiW1jA7AM8kjTLNy/E1wZQVWrcbenHcrEMfv9PEm2ODfZNnI4lAumUwmMTIyMsDAEGw1m00cHx8jm80ilUoJe6L7RuaH49ZsNlGpVLC+vj5QK0yDXMZkdTod7OzsAIAk0vB6vQObDfpcU05MQMd+aimnFRtKIKLjGvVPzSJZmRWoM4GiGZ/Ke+n2k03ivfXzQqk2N5nYJ0ogK5WKgB+yWJRkAhAJMJPDcAzK5bLE6nKs2ZehoSHJIlmv19HpdBAKhWQTxO/3C6jTEkqCbc5BpVIRdo8sKoFYp9ORGFM+o5wPtku/p7jxpNlzAJINMxgMirzyRdrLBeDsGDjbbLPNNtu+glWrVTidThQKBVy4cAHz8/N4/PgxUqkUlpaWMDMzg62tLZw5cwbJZBKZTAYzMzPo9XoolUpoNpvY29tDo9FAKBRCtVrF/Pw8PB4PVldX0Ww2sbi4iIODA4RCIZH3sN7bmTNn0OudpLAnm/fkyRPEYjFhGt544w1UKhWJlwOAra0tuFwuxONxBINBHBwcSD05Gne26aDt7+9Lau9gMCjyJdOBo2mQQPCk/9Zxc2QU6KRy114nKjCZMd6b99LgQDueAKTQLxMtmKbbqgGQjn/TbAMdYM3G6fbQ+v0+1tfX8R/+w3/Ae++9hwsXLuC9997DJ598gq2tLembviYdPzPTJueNiRQYb/XKK69gd3dXgDbBC8dRn6/HzjQNBsy5tPrbNKvj9bWsAIfVcfyp45uY+Y+/cwOB/1jwGThhi0ulEtLpNHK5HIrF4jObAJxzDdrpaNPxJ2gm+6ylbqyZODo6KnI5l8slWQVNhtcEOqYRXJw2VhpE8Xi22Rx7K8bN6n5krc02cVy4niiV1pliubHT6XRkPTqdzgHwwxizcDgMl8slUkKOuZ4Tbti43W74fL6BpB9k7ZhgRCcraTQaCAQCsuHBump8dt1uN8Lh8ED9OZ5H04lZeJ7f7xeQyIyXzIYLYCAhDt9ZvAblopSXkiXUssxgMCgbAGzDi7KXE8C92GbYZpttttn2d8C8Xi+uXr0Kp9OJe/fuIRAI4Nvf/jaq1SpSqRRWVlYkLfWZM2dkJzmXy8HlciGRSCAQCCCdTiMWiw2UCBgfH8f29raAOzpNqVQKCwsLKBQKIvX5/PPP0W63kUgkUKvVMDk5ifHxcTx8+BCtVgsLCwsoFovY2dmB1+uVosb7+/sIBoMYHx9HLpcDMMgI0dnLZrNwu92SLIJOh3YWNTAzQZF5LK+vjU4Xd8q9Xu8zRbM1YDLBnf5eSyJrtZpkvNNMjTbtVAKQeB6TadPslgmOdBs1MDg8PMSf/dmf4f79+/jmN7+Jb3/727hx44aAdHO8Cd44ZmyvBhYEOOVyGYeHh+h2uxgeHobP58Ph4aGACs3K6XbymnTUTwMFGlxrcGH+023VZq4P0zSzQ4bN6/VKvCWzEzIeU8dl6rqB1WoVhUJB4tu0RM6KHTXHweFwyNoja0SH3qztxnXZarWQzWYl6ycZGSuW11xr7LdeUzp2k+22Yu804NebCacxb1Zmxn3pGD1+RnDFv7WEmfemJJGyyF6vJ2yYw+EQgKeZOMaNkW3ntfiO4z+Ct36/L3Ogx0dnxKzX6yiXy+h2uwKi+O4iEG00GgM12LQ8mv2knJzgne8BXo8KCK4/8yfv0+12EQ6HB+ScZB45lkxO9F8zb3/d9nIBOLuMgG222WabbV/BhoeHsbi4iMPDQ1QqFZw5cwYXLlxAOp2G3+/HmTNnpGZQt9tFOp2Gx+NBsVhENBpFo9FAJpPB+vo6RkdHkc/n0Wg04HK5EAgEcO3aNSQSCalFlc1m4XSe1FVaW1vD8PAwOp0Obt26Jc7s0dERXnnlFQGULpdL6r5tbW0hHA5jYWEBvV4PW1tbiMfjuHDhAu7evTvAiJmxXYz3YWFp1pyzAi4miOMOvZXpZCR0mpxOp4ybvh4A2d3XxbR5D52QQGeVpOxMn0f5FE2DESvQo+9jBVysTLMcLOxdKBRw+fJlXLp0CcFgEDdv3hSwwTFjvzWTaIJOtvFHP/qRpHj3+XwYHh7G9va23F9LXE8b/3A4PMACmDJUDRj052QerBx78zpWUkKn0ymxSYwlIkAjKCKoo+PLnwSfrVYLmUwGe3t7KBQKA/FtnEvdfg1ATWkkQTIZKIJ6ZpzUa0GznIzvovRPbziYa0yPhx4jk3XjMSZbac6jFZNpdT9TPmkmHTLBkQZ4ZiZKPX9kjJnYRceG9Xo9FAoFuaff7x9oHyXCBHrdbldKCsRiMRSLRTSbTQQCgWfkm1wT/J3rkOOvZZ6UVlLqqGNzi8Wi3D+ZTEo7OBZk4nS5gX7/pFYdwaCuW8dNlmQyCQAieSaYJPhjJlOTEfy67eUCcDYDZ5ttttlm21ewubk5rK6uIh6P46233oLT6cT6+jrOnj2L4eFhcQ6KxSIajQampqaQy+UwOTmJvb09pNNpfPbZZ3C73chms5idncXMzAyq1SoeP36M0dFRTE5OIhgM4vDwUBzPRqOBeDwuySzGx8eRyWQQCATw2muv4fj4WOrIjY+P4+bNm8hms5iZmcHCwgLa7Tby+TwSiQSCwSBu376Nu3fvSnpu4GmwvWZ/8vm8JDLRzpiObTPlYqa80AQjZmZKfs5sbjxexwdpB1SDRv23BhV6p16DJDqZup1WrJvJ+vFapnzSin3S0tBarYZ0Oo0PP/wQOzs7eP311/HNb34TN2/elPhDAANlADSI1cCD2fjIBLVaLdy5c0ecZ82wmbGHerx15kCyJjolvDb2w5xnAmOTLTWBGv9pZoRxRfydKeN1zCL7oceS9cX29/eRTqfFCbZiB60khrwfswGy33oDgL+TkdFtZxZXMkccx9PAPDcSzHXH73T/zDWknx8NwPQ4WwF0q35rtpfnsr8cby1dNte1lhUzRiwQCKBWq8HtdkvtPTJO3JBi9kXGozEpCOXNWlrZbDYlEQjXOseaiVK49iijJHhknzSjp1l3zh/faRx7jqHX60WhUAAAhEIhYdQajcYAUGR8GwEe293tdpFMJoXV42cjIyNot9sSN8wNJMYhvyh7qQAczSbgbLPNNttse57dv38fY2NjePXVV1GtViWRSb/fx9raGh4+fIjx8XH4/X5xRprNJnZ2dpDL5UTO2Gg0sLi4iEajgdXVVXi9XoyMjGByclKKDcdiMTQaDYkpyeVyGBkZgcfjQSaTweLiIkZHR7G+vo5isYiRkREUCgX87Gc/k1pzgUAAn332GRwOB5aXl+H3+3Hjxg3ZQaesUzs6GlRVq1XE4/FnsrNp0KMdQv6tTTvU+hz9PYEFHWbgKfOmZXGUuOm/gcEU/zQyJqcxgVYgTbeHv5uf6c/Nv00GRGec297eRjabxcrKCpaXl7G6uipAk84ux1EnH3E4TpKZEMhrkEMGgGCX7CYBIR1Zzf70+yc15xjnQ+eYzBjXg05nr+dFg0M64Bo46PM1g2b+TvZKs2GcQ45Lq9VCpVJBvV5HqVQaAE4aVJpMlwYvui16fWtQoteYy+VCLBYTloZMHNugwSnBj05db64LPh88Vh+jnzV9jt64MAGdycp9FTCnr2vG65FV43cej+cZeaa5gcJrcGzINDEhCa9JJopSVZ3GX/dTJ5vp90/kmcx8y7VMCSSBN8EUANlI4Fxw3ZIlLZVKA8lDKA3vdrsiI2dsJUEi+2DGvrGsB/vANjDejxJ3ssWcN/Y9mUw+V277N20vFYB7ushtBGebbbbZZtvpNjs7i3A4jB/96Efo9Xp45ZVX4PV6cf/+fdRqNTx+/BhjY2M4ODjA7u4unE4nKpWK7CpXq1Xk83l4PB58/vnnmJ+fx7vvvou9vT0AwPHxMZxOJ6LRKKrVKqanp9Fut5HL5RCPx+FwnKSPX15ehtvtxtbWFgDg3LlzEh+3sLCASCSCXC6Hvb09jI6OYnx8HIeHhzg8PEQkEkG5XJYSAnROGO8RCoXkWoVCASMjIwgEAojH4wNxMdqhe15Mhymrs2Ku+J0uyksHz8z0pkGDKZmzcmS1w6nTfJtMmmYGNSAz2TB+zr6Zx5p9145jqVTCrVu3EIlEJNmBPtfn86HX60nmvmaziT/4gz9AIBDAD3/4wwEwwHghnWVSM0JkfTTjoMdEFznWMT0a+HBezJ+cKzILZEvobPMnx5zzytpiBAr8nmuqVqtJxr9msykMCxkfOucmyDEBql5TlN4xlolt0euG69LtdmN6ehrRaBTRaBR+v18c/X6/j93dXSnmXK/XJbkFx48gTa9dtkv/07Fueq2cxuad9h3XrRXIY/9NsKTnks8G55LyQzOZjk5uwvEm2GfSl36/L4Wy+Z5yOByo1WoChlm7j3PL+2iJrN7kIWul5dMacBIg8ngNjJiEhqw1GVtmM+33T+LomMSEUk6uGQJG3ouxfQRpDocDgUAA9XpdpKFOpxOJRAI+n0/G3O/3D8g8h4aGBsq3fN32cgG4L37aDJxtttlmm23Ps1arhbW1NflP+9atWwiHw2g0Gmi326hWq3jy5InID4+PjyWTYy6XQ6lUgsPhQL1ex6VLl3Du3Dlsb2+jVquhXq9jbGxMdn0vX76Mx48fSw03SnrOnDmDarWKR48eIRKJwOPxYGdnB+12W2I6MpkMKpUK5ubmsLy8jPv37yOTyWB4eBipVAr1eh1+vx/5fH7A0c7n8+JsFAoF7O7uYmVlRbLL+Xw+NJvNgXg5M/ZNO9GmpEuDHA1GgKdp41utliRK4A62dratHFY6VpoNZBvpkLI9ZqybFQA87fv/GtN914V+OdZkyvT96ATSER4aGsL6+roUYtdxfNzh1+wIAAFKOrsmx+G0OeLYWTn7Vudo0K//0QHW19NggQBaf28li+U5rIUYjUaxvr4u7TU3DDTA0YBSJ0jp9U4ywbI//MfzfD4fJiYmkEgkpMYbpXM+n0+eO6fTKTJAK4b3NFCm1y/BhpWMktfV31lJI62YNxN0n2YmE64BLBP/kGlie7k2yUKREab0ORAIDBTo5vpmpkoyvmw3GXeOCQBJ3c/i4SZbR6DJ++lzuHGgi9pzTblcLkQikYFnQsfQtVqtAdBG5lUDTP4jmAwGg3IeNyQCgYC8w/iM+3w++Vkul1Euly03mr4ue7kAnB0DZ5ttttlm21ewdrst0kYW9j08PEQymYTDcZJF8eDgAOVyGfl8XuKV9vf3xbGIxWK4cOECEokEdnZ2MDMzg2KxKM5Nv38SMH/9+nV4vV5Eo1GUSiVMTk4iFArh+PgYhUIB8Xgc5XJZHPvR0VE0Gg0pRHz27FlEIhFcu3YN9Xod4XAYOzs7CIVCmJiYkLgPAiI6vmxnu93G5uYmOp0OfD4fYrEYotHoM+UH/H6/OGza4TSZNM0+AM+mP6dz5fP54Pf7BxgbOl104sgemY6QCcAAIBwOA4C0kY6xFXAwP3seaHse8wYMxsMRjLI9rJlltp8OrZbp7e3todPpIBwODyTS0OyDKQXk/bR0lWOngaopXwQGJYinyfY042eyTFaAQ4+P1VjpY5iNkICzUChIYgwzTo9/s8jz9PQ0zp8/j0ajISwzEwmxjIOeW7aXtREBCGNER561y9xuN86fP4+hoSF8+umnUntMy3w1+2YCMT2G5liagFkn0NDsnh5bzaCazLAe1+dtqJgyaB07SjDO2DW92eByuVCv16VuHrNAcnOK7xOCuGq1KuBQZ9IlICLQ08lsGIdGMMX1y2eDbSdoI+gjQ89EQa1Wa+A7xqaSRWa7mbyG9ycTrCXdBLJsO9+XvV4PkUgEkUhEpJQ8hyBPs8d2GYG/JnuahfIFN8Q222yzzba/1cb//K9evYrj42Nsb28POAT8mclkUCqV5D9qOtOTk5NYWVmRFP3j4+PY3NxEIpHA8vIynjx5gnQ6jTt37mBkZAThcBj1eh1nzpyB0+kU9gw4kVv2+32Ew2Ekk0kUCgUJmJ+enkan08HHH38sgOHx48eIRqOIx+Pw+/0oFAoDIMXhOKldRHABnNQhY00sZsc05XXM9EYzWQDtNJpxZPpamglhkD/bRNaPcSRmDJ02LZkEIJJVHqeTMpjSSF5Pg1Arp1i393kgzwSslJAxvsdqTKwAhk5UQtkkHW4yAtoh5711WzXAtpoDtofHnSbnM8fIHJfnnWPe3+w/JWfsK/vEPurMj0yuE41GEQqFEAqFMDIygm63i29/+9uIRqP4wz/8QwSDQayurp7KegSDQbhcLpTLZbk+wbY+h2CsXC5L/UedTVAnAmE/TYBtyhhNwEswp8G4Hjv9txXLZp5n9bl5LQ0wNTtK8Mj1R/BEuaTDcVLfrFarodlsIhwOy4ZLtVqF3++X+5CtIhgj8Oc99dojw6llk2bb+/0T+SOfA71etPSRGUOBp4mCmOiE4I7riQl1mCWy3+9LKRI9fpREsm06WY+2QCAga5f/L/A9xDa9CHu5AJwwcDaCs80222yz7XTzeDwYHx/HgwcPMD4+jrfffhtPnjzBnTt3UKlUJI6i2WyiWq0ikUhIBse5uTlMTk5if39fag/t7u7i0qVL8Pv9+PTTTwekdnRulpeXkc/ncXh4KDvUDPL3er0IBoPIZrOoVCoYHh5GIBDA8fExKpUKzp8/j52dHWxvbyMcDsPv96PVamF9fR2Hh4cCiLT0qNlsCvDc2dlBvV4XGWgymRwI6DfBmWZvaNrpMqViJsMzMjKCWq0mMSJkOXXMkr6/dvKtmAwAsgOvpWu8rxULxzbr9loxHKf1Rf+tGRKmSmeCAw10zbEx+0MnWscr6ax33N23YiXpiBL4mbI9PT90pHVbtPNqNb5fBbiZY2QFmoeGhhAOhxEMBhGJRESWFo/HJWEQACQSCSQSCbjdbslcmM1mUSgUsLW1hYmJCdy9exd3797F97//fSwvL+Nf/+t/LQW+Odcsp0BWhRLoVquF6elpWS+9Xk9inAg+NBtN51+vRVOOSvZIjzeAAZCkQbQJ5PT3p7FttK8yR/p6moky5yYcDqNQKMhYcNOAwKjdbkuSpXK5jGAwKIxsqVSC1+sVQMcC3C6XS2LQ9HPn9XpRqVRkQ4jvJV0GhDJMXe+Q5TQoy2T8JOXXfOb5XGhQCjxl/j0ej7CHDodDEvy0Wi3JuKlLxJAxZMwbk7hQsaCTm/C+ACQr54uylwvAffHTZuBss80222x7njWbTTQaDVy5cgXBYBCZTEbAE3db8/m8FOZ2u90IBoNYWlqSGnDMQnlwcIALFy7g6OgIqVQKr732GhqNBh4/foxWq4VgMIjFxUU8ePAAxWIRyWRSHHav14tIJCKxai6XC3NzcyJ79Hq9iMfjwugNDw/D6/Uil8vh4OAAvV4PsVgMmUwG7XZ7QB5VrVYl0UCz2cTdu3dx9epV+Hw+JBIJiUExzUzRb8W2aPClY3joRHF3nDvgdAa5q246fTQTNPIz4MSh1ckzrK5hslemmXFM/OzLwItmF8PhMGKx2EAckNXxvKZmbExgoKWPdMB1GQbNWuiMeVbASY+fBnGn9fm0fn7ZMVZgWI9PJBIRhnhmZgatVgu/9mu/hqWlJdTrdWxtbSGXy4kzXi6Xsb+/j16vJ5sTTILy6aefolKpIJlMYmlpCf/oH/0jbG9vDyQJouyPEjj9s91uY3R0FCMjI8LG6ayopVIJiURCwI2VJE6DMLI8etODINIcIw0u+JmVVNYE+CbQNuf6NDM3YfR1+Ryy/cPDw1L+gpkauf48Ho/EGA4NDaFer6Ner8sGSq/XkxISfIdVKhW0Wi2pj6afSf4kOObmVrfbRblchtN5Uh/T7/fD4/FImQngaSwp42qZpdLn86HdbgvbBjyt88Z7UkoOQN4bTIjSbDYH5J6UZxM4kokzN5M4fty8MevjfZ32cgE4MnA2gLPNNttss+05Fo1G0Wq1kMvlcPfuXdy4cQPlclnqSzFJycTEhPxHPT8/LzFrpVJJYiWKxSI2NjYQiUTwjW98A2tra9jZ2UG328Xk5CRmZmZw79499Ho9TExMDMSWEGDRwYpGoygUCmg2mxgZGUGj0cD6+jq63S6Wlpbg8Xhw9+5dqeHkcrmwt7eHTCYjsT8EB2Rp6Ph89NFHeOutt+D3+zE+Pj6QFESfZ8ox9U+ajrkxAUyn05GyBkxQoHfg9fl0/gnwrAAYgQv7xOO0LE+fZwKf08COti8DcXTgWXA7GAyKQ6r7YwIgvUNPR98EreY9ONZMyc7yAHQu9T11EefTQJwJ4J7X19MYHg3STmPigBO5WTQaldilfD6PWCyGixcv4tKlS5KxU88fs76urq7i6OgIa2tryGQyyGQycj5jS1977TVcvnwZPp8P4+PjKBaL2N3dRaPRgMPhQCgUgt/vR7VaRa93kuyk0WigUChIRkqCKn4+NTUlz32j0ZBNEF2TT88J+27OnR4f9lEDAA2oNcNqJcE0x91K5mtuEmhgr2XMTOIBPJXVksnNZrPClhJcNRoN+P1+tNttScdfq9UGEsIMDQ0hFAoNpOznRo2ZWp9tYyyiw/G0gDefKQK4SqUirBvlivye7D2BlS5fwWdESyb5fFKqTgDH+zqdTkmIQmaO12abzdIsZJc5xqcVfv867KUCcOTgbAmlbbbZZpttz7N2u429vT08ePAA6XQaLpcLk5OTSKfTqFarmJ2dlWQiZMicTifm5+dxfHwsUqpms4loNIrDw0OUSiV8+OGHKBQKGB4exsWLF+H3+3Hnzh1x/DOZDPr9Pvx+/zOJE1hAnKxcNpvF3t4ehoaGcPbsWeRyOTx8+BCdTgczMzPodrvY3d2VtlFGqeOs9K75wcEBKpWKxOz5fD5Uq1VxruikaKABWDvs2kGlaWeewIqZ5biTrlPN62OtmDfgKVPB34GnjrApoTSZqdOYC/OYrwJo+v2ThAXxeFwyhpJF4FrQDrtVX3Rik9PaxGPorCYSCbz55ptYXV3F5ubmM7F+z+ur6eyfBsC+KtNmmgnCyVpEIhHJ3FooFDA6Ooq7d+8iFothbGxMHH+O39HREZ48eYJ79+7h8ePHODg4QKlUkuQ8vV4P169fx/nz5/HLX/4SzWYTc3NzmJiYgMPhkFp4TG4TCAQQi8UExHU6HRSLRbkm45coWa1UKjh79iyOjo6EITazKuq4KDJQHMPTxsgKgJnPlr6G+fmXmQn49HwRFDJBCmWEBDiPHz9Gp9ORpCCFQkHYLLJwzG7rdDoRCoWklp/f75f3VDwex8HBwQCryfeJfj9QFtntPi3mTUBHNq/b7cp8kGUjO8cSB2QEY7GYSNz5fuF7lSUmAEjsG7NtNptNhEIhqXOnx7HRaEjMLpO69Ho9RKNRibuLRqPC8BK8vih7qQCczcDZZpttttn2VezGjRvI5/OIRCKYmJhAsVjE3t4eEokEXn31VZEGDg8Po1arYWZmBvV6HXt7e2i1WvD5fIhEIkilUtjZ2cHZs2dRKpVweHiI6elpvPPOO9jY2MC1a9cwOTkpCRjcbjfGxsYQi8WQTqdl99jr9SKfzwtgyefzKBaLiEajGB0dxcHBAfb39yVLZafTQSqVkh3pWCwmDhKzrBF0AJBsbGtrazh//jxisRiSySSy2ewzCRt0BkvAmtEy41BMEKYZFjpDZtZJEyCaUjKebzpJOo7OKu7NtOeBHCuG0eoYOm/xeByxWAxTU1MSn6gZFZNx45joZAnAs+nhNXjm8bFYDN/5znfg9/tx8+bNZ3b7TYbHqu1sA+fX6lgTzLLPJmt5Gljhd0yz/uTJE5HRMc7qBz/4ATY3N7G0tITZ2Vlhi9fW1nD9+nU8fvxY4iW5iQKcZHpNJBLY29vDv/k3/wb1el1kpul0GktLS3j33Xdx/fp1bG5uDkjgCELIEDE5EZkdjguTaFy4cAGff/65OPbmnGrpq/nMmGOk55TrntfU9RdPmzdTOqn/1muFmyIABspLmMxft9uVzRsybYwDY384Z8FgUCS8LHtSKpVkrbNNqVQKHo8HMzMzyOVySKfTAqR0u/lTv5c0gCLDpwEsM9jqTZpgMCh9ADAgeeV7j+8KjnsqlYLT6ZQyAqxDqGXiXLfdblfKS7AuHI+rVqsSK0iQy/fai7KXC8C96AbYZpttttn2d8JqtRqWl5dllzkUCuH111+Xnebh4WGR6ZBh485uKBTC7Ows1tfXUS6XMTc3h729PTQaDVy6dAmzs7P46KOPkM1mceXKFVSrVWxvb8Pj8eDKlSvI5/PY2tqCy+XCyMgIyuUySqUSRkdH4XK5RH45PT2NUCiE9fV15PN5zM7OIhqNIpVKIZVKiQMRCoWk5hMZL9Y0qlQqEiNUqVTw5MkTrKysSK2s9fX1AYkQd8ZNs8qKxyQt3NmnA8jCv6aUin8/L2ZM30M7zNrM9mkgeBq40A6lBlansUum+f1+yd5JB9iMNdNt1ePJvpsxafpvE2SGw2GcOXMGh4eHePjwIXZ2dgbONc0cI5ONOQ2k6WOtxstsl9V3wIkTHI1GJXZNg4xWq4WDgwNks1lcv35dni3K5Hw+H4rFIhwOB/b29kTWmEgkMDU1hUajgWKxKGCFzHIqlUKv18Pc3By+8Y1vIJFI4P79+8LgcJ0wWYwGNjpRjNPpxO3bt/Ebv/EbePPNN3Hr1i0Ag6n/9XydNi7mcaYcksb7sy383mSmtfxVb36QGdTriPe0qjlnzhlZRr/fLyCF8sB+vz+QtIQ/KWMkEHI4TsoMpNNpVCoVAJB57/V6UlqDiWEqlYowb2ThWEIDeFrGgswbZYrlchkAJNENY84I0MjCsX9sczgcRqlUEua/1+tJ2RiCfGbS5Huec8D1wntxjBqNhiRZqVarMm4vyl4uACcPywtuiG222WabbX+r7dy5c2i320ilUhJPQ9Zpbm4OhUJB4tPS6TSi0SgASD23Bw8eiJyuWCwiGAzi8uXLaDQauHHjBoaHh8UZ3N/fRywWw6VLl/DgwQMJ9o/H4zg+PgYATE5Oolgs4vj4WKRmlUoFd+/eRbvdxpkzZ+BwOLC/v4+joyP4/X6JC6GTwjT9jPPwer0iGQJOQOvm5iYajQYCgQCWl5fx0UcfnZpu3mRdrGLT/H4/gsGgxNi43W4pFWCaZtWAQcBj/tSsnHm+bg8dWyumQv9t/k47DcTpzymdjEajEiu1v78/4HDT+dVtZ7p2OuIa2GrwZzKPZFlzuRzW19fFQT6tvc8DoVrqajqbpzFHz7u+FbNCdnJkZAT5fB6VSkX6ATwt/E25I2NNK5UKPB4PJicn4fP5cPfuXbjdbly9ehWxWAyVSkViKb1eL5LJJNxuN548eYKhoSFJ5lMul+VZGB4eluQ5ZKR1HT09Jhp8u1wufPTRR/jOd76Dy5cv48GDBwCelhzQjDP7RKbUBEw6HtKKoSMbZWX6GDO+8TTwDgzG0bGdet7YD7ZLZ2nkeTqTLc9ldk4AEiNWrVblPM630+mU5D5aGcB2h0KhgZg6n88nY8DMob1eD/F4XOaWdSrJkOmC25p157jwPJ2Ehdk0g8HggKyTbByAARCn30nMyBmJRAA8rZGXTqdlzO0yAn9NJlko7Rg422yzzTbbnmNDQ0MoFosYHR0VOWM8HofD4UA6nYbP50M2m0W/f5KWmnLHRqOBo6MjXL16FQBw//59TE9Pw+PxYHt7G81mExcvXkS73cbPfvYz1Go1jIyMIBAI4Nq1a3C5XCKhzGazCAQCGBsbQ6lUwvHxMUZGRpBIJHB0dIRcLoeRkRFEo1H0ej1sbGwglUpJAg2/3w+v14tsNov9/X1ks1mRRem4EDo8brcbm5ubAk7n5ubEKaIzQoeWDhUdJO2UApCCywQxrLtE5/R5sSFmTNtp0jw6x3S8NOPAz3hfvQtvgj/zc5MZOQ288LtIJIJYLCbjqBOuOBwnWSlHRkbE0Ww2m8IoMDaI8iyCG81GagbF6XQiGAwinU7j6OjoGYmmVR90e81+mD+tmFSrsTevpz8zmU5es9lsCmvFtlLK6PF4EAgEUC6X4fV6hck+d+4cnjx5gvv372NpaQmLi4sC8jR72W63kUgk8Prrr0vGSo5btVpFJpMR9pefM1EH4740g2iCK47vj3/8Y3z729/G1atX8eGHHw6ABfaTxzocjoGyAya41vcy500bwZfJqnGN6FIVJhDX8lw919zYYKIP3W4ymKwTSQBFForvgXw+j2Aw+P9j78+CJDnT7FDseOz7Hhm5Z1ZmVdYKFFDo6sbSGKAxaEyrbWbaaOSI4hilIUUTRZrR+KIHXelBZtTlwzUZZXrgA02UcdFLi3fI4fQsPTNoTKMbQDeAQgEooAq1577Fvu+r6yH7fPWHl0dW9fRSJK5/ZmWZGeHh/vvvHl7f+c/5zgeHw4FGo4FgMDgGwjg2dWGm3+9jZmYGxWJxbKFCbdFAd1CCerKlPp9P6t74PQkEArJIxe+7eu9zbtj3j03G7Xa7NOKmIQufGy6XC4PBAL1eT56tZP7a7bbU4xGYAkfPt0qlgmKxKKoDtT/ek4gvF4CzauCssMIKK6x4jOj1elhbW0O73Ua9XpcaNrXIXTUZSaVSSKfTiMVimJqawvb2NgqFApaXlzEYDFAoFKBpGp555hncu3dPer1NT09jZmYGe3t7SCaTSCaTcLlcKBaLiMfjAB402U6lUnA6nchmsxgMBpidnUUkEkG5XJZG41NTU+j1eggGg4hGoxiNRtje3kYmkxGJJwEDpUCNRkNAX6PRwO7uLlKpFEKhEJaWlqT2iK6YlECx/YAaTBJDoZBITcm4sZZFbexrNN0AzCWURoZvEmNklGFS1mRWj2KWUKufNWMcjduz1nFpaQndbhftdnvsWDMzM/jqV7+K5eVlkVdy7p1OJ2w2G+r1OnZ3d/H555+L1FUFjg6HA6lUSvqjNRoNZLNZYTqM4zdei0lSPWOYMXHHMZSTmD2zY/T7fSSTSSwtLeGDDz6QpFyVKRJMaZom7PWHH36IbDYrEshOpyOf4z3Efdy6dQuZTEbqktQ6u1AoBLvdjnK5LCBOrX0zk+MaAS/P/6233sKLL76I5eVl7O/vPzR/Kvij0yvZVt6f6vU1gmg1VJmk+reR4VSZNW5nBIccH8dFgxLOk5FJ5PeGc9Nut+H1eqHrOsrlsiwGDQYDBINBkTNGIhHU63UMh0O02205Dq9dKBQaM/igqyQt/Hm/tNttDIdDBINBBAIBYcBarRY6nY64Z6r96ijnrNVqYkbDZxxBWygUEjUFzU+8Xi9GowftD2h2w4Ufv9+PZrM5ZnZCUx7WBA+HQ0SjUbjdbgG7TzK+nADuyQ7DCiussMKK/8bjqaeeQjAYxJ07d7C6uoq9vT3EYjEMBgOp1xgMBohGo9B1Hdvb21hZWYHT6cTu7i6cTideeuklkSVOT08jHA5L/UwoFJKV5Nu3b2N6ehqLi4tIp9Mol8uYnp7GaHTkDOlyuZBMJlGtVkUeGYvFRI60u7sLl8uFSCQCj8cjSVuj0cDVq1dRKBRgs9mkoF8FKGTDwuEwNE1Dr9fDrVu3cP78ebhcLiwuLuL27duSINGFTXWnpLSKzIbX65XV+E6nI3IsNpieZCYySa7IUAEfw1gXZPzJ1XOjg9+kpFllS4zvG7elOUwwGJR5Z88sTTsynzl79iyeeuop6c/HWiJKuWh2wFqubDYrbADHQMkfmwqXSiUx8XhcmaPZXJudt7qv45ihSdfKDCTyGrRaLSwvL2NpaQn5fF6kcn6/Hy6XC81mEysrK4jFYigWi9jd3UWhUMCpU6eQTCbH5KRcBFAZFzZZVoEd7w+2CKB8mLVaKit83NypksrRaISPPvoIJ06cQDKZlO8Xz12VVaoMmDo/6v6M95jKsgHj97gKsPlZVerJbYyN3NV9qkBVvcfUzzscDqlXZAsBgl6CJ7WeVdd1qQkjYCMrp8oYR6OR1NAFAoGxtgL1el2uHYEVHXdpsnR4eDgG8ljLq8pxa7WaAGYAIpUdDofweDwolUrCzBMgElyzZo5Ajccg083vIeWfdL0EIPXRZOPL5bLFwP2yQsPDD2QrrLDCCiusMEY0GsXm5iZarRZu3ryJixcv4vbt22IsoiYdzWYTZ86cQbvdxt7eHmZnZ+F2u3Ht2jUMh0Osra1hMBjg008/ldo01SVxeXkZDocDX3zxBQKBAJaXl9FqtVAul4WR63Q6aLVaCAaDY2YmlUpFAMT09DSAoyRtZ2cH6+vrkijZbEc9jUqlkrBSTFaYjJFN3NzcRLlcxszMDFZXV+F2u1Gv16UHFuv96PLGhJXyPvZYItNB5kPt0WZku7g/hgqkzEDacQ59KstBaeIk+aCRqTAm1Ub2Sh07pZNutxuHh4fCIhE8qCybypBQXsXmwDRtoDxMDToqNptN1Gq1sRqyXySM56L+TTbmuGM8SlJpBMGtVgs7OzuYn5/HuXPnsL+/j3q9Ludit9sRj8eFPQkGg9jf38f8/DzC4bCwO2TNHA4HEokElpeXcefOHVlgYA0WQUC/30er1cLe3h4ajQZqtZosPnCuKdkEHjiY0uCEjCnvDV3XhaHZ2trCiRMnxsanXj9edxrUEJhzboz1jcZ7kOMxMoN8TZ1ftU6V97/q0GiUaxKwqPJJjo1MOV8n28bvutPplNYjbFrOz3k8HlQqFXQ6HYTDYej6kdGIOmZa+3e7Xfj9fmjaUc1dq9WS9ylVJJBqtVqo1+tjvSu5IEWmkAtiPp9PJOSUQo5GI+k/qF4jLsBxjuggzOchZb28Bnxujkajh0xXKDNln9B+vy8LXk8ivlQADhYDZ4UVVlhhxWPE22+/Lc6QX//617G9vY1IJCIr+bFYDIVCAaVSCaurq7hx4wYGg4GAr/X1dQSDQSwsLGB/fx87OzuYnp7GysqKJCe5XA6xWAy1Wg21Wg0nTpzAcDjEwcEBOp0OYrGY2KH3+33E43H4/X60Wi0cHh5iNDqy9Lbb7QgGgyJDyuVyItm02Y56NEUiEayvr0vxfiAQGEv4KK+02+2oVCrY2tpCPB7HzMwMIpGIOLbRYIVW4uwVxSRmMBiI1Gg0GglbxGSQibFxVd4sVNZAZQyMcko1kTVKMfmaWnel7o8r6arRCfelJtTGJJsmMzQuUOWbXJnv9/u4e/cuIpEIlpaWpJ6SDcxZE9fv91EqlXB4eChJrHr8Xq8n9wjrdoznbjZvxnHztUnB++FxWINJgNgo2eN2lBHfvn0bU1NTOHnyJC5evIg/+ZM/wc7ODjqdDoLBIIbDIZLJJO7fvw/ggRSXtYMEwJQC53I5eY2MHJsvV6tVkWXS0ZL1XATGTqcTq6ureO2113BwcIAPPvhAtmOtonH+2B+RIG5+fh6JRAKVSmUMIBDEUz6szpd6HYxgGjA38AHG23JwO/U9Fdip10Kt96RUUL3W/G6QZer1etLvjVJE1ZmTNWe8FjREooEHjZE4X5QYkgEkK876WkoXe72eAHCPxyNAkewcWT6CdS7QUALJ9zkXHHcwGBxzhWw0GlLfxvsBgPSU499sX6AyelxA4LUmSON3uVaridy81WqZf4F+DfGlAnBiYmIhOCussMIKK46JdDoNXddx8eJF2O12rK2toVqtIpVKYW5uDvv7+7h37x6GwyHu37+PYDCItbU1bG5uolQqYWVlBW63G5ubm8hkMjh16hTOnz+P3d1deL1eZDIZzM3NIZ/Pi7EJ2ZXhcIjFxUVhKOx2uxioFAoF1Go1aJoGn88n8iKucO/v76NYLIq5QLlcRrFYxOHhISqVigACJrJcia/X60gkEggGg8jn87h9+zbOnj0Lv9+PxcVF7O7ujiWxlAGqZiRcGaexAF0veQyVGTBjIhjc/jhJpfEzDBU8qP/U1gJ2u11W45mMVSoVAZWTJHQMNqNmXQ4TOdVMgueWTqfx9ttvY25uDhcvXsTp06eRSqVk7I1GA4eHh7h58ybu378v14RSSwDSZJqgYVKYyR3NmEPjZ8zkkWa/q3+bgdpJ+yNo6Pf7uHHjBmw2G65cuYLvf//7KJfLaLfbmJ6eFofIa9euodfrIR6Py33A86YDZ7vdRrvdFiMO1izREZBW8GSYAYjMle+TxanVanjvvfdQLpdRq9WEhTM7X13XZbGD4ODw8FAksqqjpcq+UXZnrG9U51WVrgIP3+Nq/RsNP3gctRYQwBizZgbkVfdTFcQRRNFhl7JfAiqymjw3giK1Xm04HEp9sNE8yLiAw22q1epYI2+HwwGfzycqAfW7RQaUQIkgjiCQAJPXls88Pid5r1SrVXmO8f7QdV36uHGhjfcdnxcq++j1emV+7Ha71N6RcbVcKH9J8eALYyE4K6ywwgorJgclXV988YXUTszNzQE4avJ9//59dDodVCoVPP300wiFQvjss8/gdrtx7tw51Go17O3tIR6P4+LFixiNRrh+/TpqtZok/7du3UIsFsPa2pqwZn6/H7Ozszg4OEA+n0ckEpHG3PV6HfV6HR6PR+rRKBXqdrtYX18XJsPlciEWi8HtdmNjYwPD4RCxWAytVgvdbhetVksSJK6AT09Pw+12o91u4+7duygUCvB4PFhZWcEHH3wgSZpqQME6LsqUuDLeaDSkdYCRMTLKH1WZmLrSr75vFmqCa8bKGYEgE1mn04lgMAiv14t8Po9qtfpQbZ26HyMLR0ZTTaKZkJpJOyuVCsrlMvb29rCzs4Ovfe1rSCQS2NnZQbPZlIbuxWIRAMaALt3uWq3WQ/3tjmPXzECbGcNo/N24r+PYOOP+1d9V9lOdQ+CodqlSqYgFvaZp6Pf70gtuMBhgdXVVmCuynMBRLdtrr72GH/7wh7J4QKBLsBEOh8VwiLV3NJah4QQBMpP/arUqjDIAMfoxmwOCfp7PYDDA3bt3cerUKWGmgAfW/MYm7UYAp7LEapgBObW2jvNj/A7RWZLBnoT8na0uVFDEMbGmiwCKC0U0D/H7/ajX68LE8zvOaxGJRITFI5gulUrC4vE74nQ6pV5UvRfITJOdpiETTVEIjDgm9l9j8Dg0IOGx2HB8MBiIsy6l7Dwex0A2kc82zk2/35c6S7KTVCAQNHo8Hnkeqs+xJxF/YwCnadppAP+z8tIKgP8bgAiA/wOA/M9e/7/quv4Xf9Pj/Fxj+tlPi4GzwgorrLDiuLh37x7q9fpYQ9eNjQ35D7xer8Pr9WJpaQm1Wg07OztYWFhAJBIRCWQymUQ0GkU6nUatVkMul8OlS5cAAOvr64hEIlheXsbm5iYajQaWl5cxGo2EiUkkEjh58iRKpRKy2azUs3HlV9M0STwoU+T7brcbmUwG165dQ6PRQCgUQq1WQ6fTEROCfr8vkiPgiA2ivGo0GmF/fx/xeBzz8/OIRCLIZrOoVCpSA0jwR8kRE55Go/FQs2SVOTIDHGYGI2ahAgsmsZNYH76ugjMyQQSiZFzMxmE8HuufIpGIGDuo50VQS6bFKP2s1Wq4cuWK1E7RbXRnZ0fYUfXcu92uWOazftA4tuPYMrPxTwJ03MbIQpLdmSQlNbuGBBbHJa9kLYCjeyObzSKTyQAALl++LICGwIv1gp1OB++++64AEU3ThPH1+XxIJpPodDpSU1ipVASoEcgw+VddEHktWdOlnrN6vjw/dT4IbnZ3dzE/P492uz3GppH9MWMsVZCmzr8692R7uD+CFG6jtglgXZh6bBXgMVwulxyPr9PMg/skgxQMBlEul+W7w0UaXm8awthsR60FIpGIyFhpUMOefqznpAkPn0e8vpQqUiHg9/tFvk3wxZ5+BOeUibMVBfAAUHo8Hlng4t9kSXlNXC6XGJHoui7ATwWGwBE4peST/eMo7eX/E1wQ4H3y3yWA03X9LoBnAEDTNDuAAwB/DOAfAvh/6br+r34ZA/x5gvNo4TcrrLDCCiuOCzqVkemKxWKw2+3I5/NiLjIzMyNg6cKFC7Db7dje3sZgMEAikcBoNMLm5qYkHq+88goymQw2NzeRSqXQ6XRw//59Yd36/T7S6TQGgwGSySQWFxdRKpWwubmJcDgsTWxVI4dSqYR8Po9cLodwOIypqSnE43HcuHEDN27cgN/vRyqVwt7enrAMXCFWa3xGoxEqlYqYnVSrVdy7dw+rq6twOBxIJpPIZrOo1+sCEgmCmBjbbEeW+LTSN6vhOa72zYwVMgN2lF4ZDT9UsxAm2MaEGDhK7g4ODoShU99jMAFWE3Um/+FwWGrcVEkctye7obZLYAwGAxweHuLg4OCheeBYmLR3u12Zz+Pq3ibJGY0xCcSZgTFjqPOqzq/6vvHzx8lf1fd5/OFwiPn5eUmiOTc+nw/f+MY3UK1W8emnn0rNExca2CyefQ/J6lBGaLPZxpoxE2SrFvTAEYO3srKCdDot35VeryeJORN/3lcq66tpGqrVKhKJxEPOkur5qcYlk8C06ohJ8MnPclsujJg5UVICyHpJdZ4J3PgawSBr3hqNhizqeDweYevUHpAEwDwGjXo4l5VKBY1GQ5gtzvtoNHrIkZa1bTT2AY7qzqgy4AILj6/KJPkMoLyT80AlA9sDqM3BaS7C73IgEJB7je1hfD6fSGw5r2SBVfMn/s2eebxHeH29Xu/Ehuy/jvhlHfk3AWzour7zJNHoAxfKJzYEK6ywwgor/jsI/ufLZJzmH+12GzMzM5iamoLL5UIqlRJb9Hq9Dp/Ph4WFBTSbTWG6Zmdn4XQ6cePGDXS7XZw6dQqdTkcc2LxeL1qtFkqlEobDIWZnZ5FIJLCxsYFGo4FIJIJIJCJ9xDRNE3bw4OAArVYLc3NzmJmZQTQaxY9//GPs7e3hxIkTiEajWF9fR6VSAfDA6pq9l9jUezAYSHLFJC+TyeDg4ADT09OYnZ3FrVu3ZMXcmAATzDHJU9knYy2PEZgZQ01mjSwWQ3W/U4Ovcz/qsYzgQwV5xoQbGDd24L4DgYAAB47PCBSBhx01KaVTWTsV9Bit4pngUrZ6HDBTz9V4DkZgZdzPowCfyqYZGSn12MZjGreZdCzOBxPsWCwmlu2sVVxdXcX6+jpKpZIABybzBNSJRAKxWExYld3dXfR6PYRCIZEM05UQgIAFtYaOjZrVvoVMwHlMzoXq+qiCunq9jlQqJYyOkdFUDU5U8MyfRnDL+5nnRdmukS0lQ8d54e8cF7dVz0f9Sdbp8PBQesDx2GqvM9a52u12eQaRESNwJFAjeFPdJ6PRqDhKUtrK56xqnGKz2YTJUvdP8yXWp7H+js256XBJQyfggRSZ7R54DuxlyfGpck21DtXr9cr3k58lWOt2uwLaa7Wa3CNc5DJjzn9d8csCcP8bAP8/5e9/pmna/w7AxwD+T7qul40f0DTtHwP4xwCwuLj4SxmEMHAWgrPCCiussOKYYAJ9/vx5kSiSIXA6nXA6nVhbW0MwGMTW1pawVD6fD+VyGZVKRerQRqMRMpkMwuEwbDYbdnd3MRgMMDMzA5vNJmyMx+PB2bNnoWkaNjY2oGma1L+RYWi1WsjlcmJw4nQ68dRTT8Hj8WBvbw/vvfceWq0Wzp49C5/Ph88++wzb29twOByIx+MiR9J1XQBnKBSS4v5arYZYLCar1devX0c8HseZM2fwySefIJPJoFqtiuulWjdEBo71H8DD/cWMpgyq1NCMRTrOqETdlvvgWMwYDjPGSD2m8RjGXMHj8YhEy7gv4ziZAKrOdXzdKP1kAq7OGfsNEkw8DsM2aY5UsMoxGcGD2WeNDJlxnz9vGK+bamwDHFm6q4m82+3GwsICzp49iw8++EDka3T/9Hq9iEajCAaDSKVSSKVScLvdKJVK8Pv98Pv90n6DYIEyO9UdUL2HdnZ2BNSpjcMBjBmUEGASHPH80uk0pqam5JoaWWL1evB3s3uV+1YBBoAxQMAFAYI3LizQol8111H3oYJILoLYbDZMTU3h+vXrIs8meGs2mwgEAvD5fLKtseaN/eA4DtbSjkYj6QVHeWe325XnBu91LlTY7Xb4/X6Rc6uGIQSN7XZbwJW6OEKgxzpjPg+4f86p1+sVto0OurquIxgMyiIWFxSi0ajMuQqe+X1lPXOhUJBj+Xw+cT811jX+OuMXBnCaprkA/C6A/8vPXvo3AP5HHCkZ/0cA/08A/3vj53Rd/7cA/i0AfOUrX/mlIC7LwsQKK6ywworHieXlZbz22msYDAZ45513MBwOMTU1JSu3Tz31FLrdLjY2NhCLxRCLxaBpmqwu0+gCOEq0lpaWkE6n0Ww24XK5sLKyAgDY3t6G1+uFx+NBIpFAJpNBoVCQGh6HwyE/C4UC8vm8OKvNzs4ilUqh3+9jY2MDu7u7CAQCeOqpp6DrOq5duzYm6zo8PMRgMJC+Sc1mE+12G36/XwAQJUB+v1/aCVy4cAGLi4tYXV1FLpeTPnKqHJMF/pQUAeMyRuBhAxOGkelSk1kje6cmvmoNldEwwMiymal/jEm02bYqiKGkTDWRUM9rUi0dE2wjC6mycSpDx2bJdFlUx2Gcn+PCDIAZJaWPAwgfB6yZsX/H7Y+sm8o0Xbx4EZlMRpLnQCAgrRhUswmPx4NUKoXl5WUEAgFJtGdmZqQHWLvdRi6XA3AkjYxEIhiNRohGo3Jv7+7uAnjQ+40SYn7nvF6vsEAq46YuOqjmO5zfWq025nhJ8MT3jd8Blcnj/FC2yGukfkYFjEZQzlBdJo0MtvpTZRpv3bolzwdd14V9UqXQbDnidrtFSknwRqDD43IMVBuQsSKDHwwGxUhEZWHJnlEOq+u6AFLVPEQNSjjZhJvN2m22o95wlD3SvIjn4HQ6x8xZOC8ejweRSOQhWSR7vxHUqn3vWq2WSNx5jsZx/jrjl8HA/a8AfKrrehYA+BMANE37/wD481/CMR4vhIH7tR3RCiussMKK/w7jO9/5Dvb393HlyhVomoZnnnlGgNnp06exu7uLdruNEydOYGpqCqVSSVatZ2dn4ff7USgURH50584dtNttxONxxONxVKvVsfo3ANja2hIXPUoVR6MRIpEICoUCNjY2pP4jHA5jYWEBNpsNW1tbyOVyOH/+PBYWFnD//n3cunUL/X4fp0+fRr1ex71794S9qFQqwsK1Wi1ZKaZFeLVaxczMDEqlEmq1Gq5evSq9zD755JOxZIVufXRLZPKpAjc1yZ3ErhlB03F2+Qwj62U0SjFjjIxMkpp8G5kndT82m22sca/D4ZC6HrWmST3v42SiRtZFHU+/30ej0RirfZvEkhn3aSZfVAGCkXWbxMQdB9rMtntcgGkG3mw2G+LxOKanp7GwsIDd3V2pdSoWi1LLRTCRSCTw6quvYnV1FcFgUIAvpYPFYhHValUAt8/nQywWw+LiIl566SVkMhl8/vnnUn/VaDSE3XO5XHC73Wg0Gsjn82KuQVMe9RqrgFgFWtlsFk8//TRqtdqYbNMYKjtLJkkNMn681/hdMwJJFSDabDZhgljjqS52AA/AqHp89n8EIH0c1XGyvQBBLgBZzGCtIIPHJmPHnnxsV0KZIxfDAMiilHpONGvq9XrivsvFrEajIfJJj8cjzxyyX2zoXavVEA6H5Zh8ftJkhUCZzJvajqJQKMhn1GvdbrcRDAbh8XjGmE31GUqp5X/vjbz/HhT5pKZpM7qup3/2598C8MUv4RiPFVIDZ3FwVlhhhRVWHBOffvopOp0Onn32WZGyzczMYG5uDvfv30ckEsHs7Cw8Hg8ODw9FmkUnt3Q6LcwWHdympqbgdDqRz+dhs9mQSCSwtraGRqOBW7duIZlMwuPxoFQqiVHGzMwM1tfXkclkkEqlMBwOkUqlEIvFUKlUcOPGDdTrdZw5cwanTp0SyWQikcD09LT0f2M9SqFQEOc2riSz3xMA6WMUjUYRDofRbDaxsbGBM2fOSK3R/v4+er2euLsxsaR0UpU0MlSApCZp/JvbAHgouTSGmWQReLitgApS1M8aYxILpe6DdT/cP534uNLP/RjBi1EyahyDyuQQOHQ6HTSbTWE0jOwMXzOe0yQ5pMrQTGIjjRJNI6Pz84QZmFMZKuP7o9EIX/nKV7C7u4t/+k//KQ4PD/Hd735XWBo6SJJpi0QiWFtbQyKRMD2XWCyGeDyOQqEg8r25uTm89tpruHjxIur1OqLRqEiECVxoSsMaKABybfn9UZ0JjYwaz4sMHGtgjYY76phVsK+acvA1ygS54GIE6fydsk8A0udRvd78R2BhvN7D4RDFYlGO3+v1hLXkPlqtljChlCWyfpbH5j1L+SdZtXK5jHK5LMDNbrdLfSIZLxWw0miEDL/L5UI4HBYwFQgERD0APDA+oRoAgBjZsIaQcxMMBuU68t4iK8e2LJ1OB41GQ1hg9nzktWXDb9XYhdeQ8xsIBB5ysvx1xi8E4DRN8wH4JoD/o/Ly/0PTtGdwpGTcNrz3Kw35zlj4zQorrLDCimMiGAzi6aefxv7+PjweD9bW1mC323H9+nUkk0mRJVarVflPnzbZ/X4f0WgU7XYb9Xoduq5jbm5OCukp31lcXMTe3h729vYAADs7O/D5fFhaWsLc3Bzq9To+++wz1Ot1qemYm5vD6uoqbt++jatXr8Jut+OVV16Bz+fDlStX0Gq1cO7cOXg8Hmxubo6NL51OSx0Qa/w6nY4kfEzems0mMpkMpqamMBqN0Gg0cPPmTVy+fBnJZBLpdFrkSmRTgHEGTGUdVIZKTXgnMVTGlXh1O7rxGc1NjKBOBYyTkl7+PWkcKvhQXfiYxJKVADDmZmhM1o8DnPw5Go2QTCZF2kpre6O8zjhP6jHU7Y2Mo1G2pzKPxjkxGm0cBxyM56n+zjGrbJUZY8fjsfbqhRdewNtvv439/X1ZXGCtFRvFs0eZWfj9fgSDQWGYKWHd29tDKBRCMpnE6uoqvvnNb6JWq6FQKAgg17QjN0lN0zA/P49Go4FKpYJWqzXWP46MD9k/43Uli0X2jPvvdDoPsZ9ksrgv3itqjZ2RRVUBNmvF1DkmE879GBcxWBdnt9vH6i0pG52enhbw5PF4hK1kfZqmaWNSRrX2lMfiubJtAGuHA4EAAoGAAKThcCgMmHp/UrJJNg940B5ArS9jyxVa+LtcLrnurKUkKKWjKOeKjFun05Hvbzabhc/nk7lh7XI6nRZzK7pV8lpRegocMZg2mw2FQuFYFv5XHb8QgNN1vQUgbnjtf/sLjcgKK6ywwgorfsUxMzODa9euIRwOY35+Xuz9T506hVAohHq9jmazKcklkx06uNVqNQyHQySTSZHEMSkJBAJwu924c+eO1KHRgS8cDuOpp55Co9FAsViEph3ZXft8Ppw6dQo+nw/vvvsutre3sbi4iKeeegrb29u4du0aNE3DyZMn4XQ6kcvl4HA4EI1GoWka0um0JHnsU8XEjqwbE7JOpyN1eARS29vbOHPmDE6ePIn19XW02+2HGnWbsUPAw06Sx7FATFaNySz3rwIRSsQeJ4xjU/82gjjj+FRDktFohOnpafy9v/f3kMvl8M477wDAWPNeozRUBTJM1NXaNybkmUwG5XJZDHOMn+dY1ETdKJVUz41BYGJkOM2YSTMGz8jWGGWXZsye+roKKtRjcU59Ph8ikQjcbre00FhbW8PW1pbc+8FgUExJKHWbFB6PB6dOncLt27fRarXEEr7X62F9fR1nz55FMpmUmiq/3y/94/L5vLiNTk1NjTE1NptN2BsyRGZsI5tQ00iF5+p0OqW+jEwR7xfjfa0ek7JItZaSxyWI4QIM8LBhjnr9+D7BDBmjcrksfR05Zi5UqD3sWF/Ia0Abfs4TgSpNQzqdjhix+P1+Ab8E5mobAZqT8NwI1oLBoDg/UjXA82abF+5T0zSpoeM5sg8fx8bXWq2WuE72ej3EYjFUq1UBfASsBPXhcFjuZy7W8X7g3PM6kX0Nh8MT79NfdTy5Bga/grAIOCussMIKKx4nvvjiCywuLiIej2N3d1dq25xOpzTEDgQCSCaTUnfDxOPg4EAazqrtAQaDAeLxOEajEXK5HHRdF9DWaDQwOzuLs2fPIp1OY3NzUyRKkUgEi4uLqNVq+Ku/+itomoavfe1rcLlc+PDDD9Hr9cTUoVarYX19XRJj9h2jMQlBJpOMXq+HWq0mBfk0AGg0Gtje3pbkifu9ePEikskkNjc3pf+TWqxvxuYQQDBZVRNMYFxGNolVmRQqUFD3NSm4rbq9EZAYg8k3V+z9fj/i8bgwpz6fTyzJ2Z5BnQMm6JwDdR7U5J1sEGsfeX5knpg4ulwuVKvVh+aRCa56DZj0T2LH1HlUQ2V9OG/GOT8uVNZNnXt+Xq3dWl1dxdzcHCKRCJ566ikkEgmkUik5r0uXLmFxcRHlclmkfDs7Ozh//rypKQ4leQCk2fNoNMLOzg56vR5u3ryJpaUlbG9v44svvhBJHhc47HY7nE4n9vf34fP54PV6ZeyqSY96PPU+7Ha7wpgTzBH8sx7L4/Gg1WoJE05pIOeMQMDIRqv3rdpjTG2roc67EcBx7vlZsoWdTkekgxw/5ZHs0caaTLYCUGvYyNIBkB5w6oIGmTDOpa7rKBaLco2cTqfMDVsEsJUB3R85ZkosWWNGCagqZaXREueLoI3f03a7LTJMm80mhiVqKwQuzLXbbYRCITkmFwN8Pp/U/fI5Sukoay+zWbH9+LXHlwvAyYPoCQ/ECiussMKK/6bjzJkzsNmOGgIHg0HMzc3Jf9C9Xg9+vx8zMzOoVqtiIc0EKZFIwOv1olarSe8qMgjdblds/dkzrt1uY21tDfF4HJ9//jm2traE0ZmamsLJkydRKpVw+/ZtTE1N4dy5c+h2u7hx4wYcDgcWFxcxMzODdDqNUqmEaDQqtXc0XiFjyAJ7Ag2u6DPpcrvdY4xUOByWc75z5w4WFxcxNzeH7e3th5iDScm+0S7euL1ZEk6QobJVKsh4FIAwY6Ymva/uzwyoGA0gbt++jX/zb/4NarUa7HY7gsEgXC7XWI8s1gUa2TiyKSpo5b9GoyFJvToeVUoWi8VEXslQTRbUc6BETr0u6n6NkjV1nMbEX+25ZyafVOfRjHVjqA6F/ByBE50NyW4Fg0G43W48//zzWFtbQzabRTabRalUQi6Xw8rKiqlJBI/barWEkRmNRtjf3wcA5HI53L9/H6VSSZgrjpl/00VQBQE2m032qZ678R7lPUMjIjoq8vvGfRIwJBIJ2O12lEolAYC814AHLJtRGqsCeKNkmaBJvY4EgbyXOE/l8lEnLwIjNvOmiQjvR9YT9vt9xGIxAYK1Wk0ki2SjWC9H+bamaWKuEggEUKlUxgxKeJ14H5DZo+QxGAyiUqnIYobNZpPFM95rrVZLpJkq+PN6vXJP1Wo1DAYDxGIxNJtN+W7xGnLu6FBJ0Kb2qBsOh3C73Wi1WvI94n1BmS0Z9Uc9p36V8SUDcEc/LRMTK6ywwgorjgu73Y5isSjudVtbWzg4OEAoFEI0GpUG2aVSSSQ3sVgMwFGilM/nJXFisX42mxVZJG3Ku90uVldX0Wq18P3vfx+ZTAbdbhd2ux3PPvssFhYWsLm5ie3tbczNzeH06dMoFotYX19HPB7H0tISOp0ONjY20Ol0ZAytVktqNwg81Ro3JleslSHQIws3HA7R7XZRqVSQSCRklf7WrVtYW1tDKpVCLpcbAzdmzM5xUjejNM/YnNvI4PA1hvqeWc2csdbIyEIZXzcexyg9U6VdGxsbwmSSlaNEjvIq1tWwVtAMZPH4NC5RwZk6NjIydDblvuhySrt7fo5jM87ZpLlUWSTjHJm9b/y8kdFU/6nMjxG8adpRI/tIJCLg7fPPP0etVsPFixfR7Xbh8/kQjUYxOzuLXC6Hd999F/v7+0in00ilUmMN7tnL8LPPPsPh4aHI7QhKAKBUKslihtqUmXNMGfSzzz4rTqztdluMVIxg11jbR7a02WwiHo8jFAoJm0ZGi9/JSCQCp9OJTqcjlvpq6wj1GtDkRGV0VRZXve85BoI1VTZLlolulARw9XpdnBRLpRL6/b4YJrFmTmXdRqMHzbXpTOt0OsU0iXWj7EvHvpXFYhGj0UhAGdk6XdcRjUYFSIZCIdhsNumz1u/3xYwkEAiMgW3WGnMuyPpzX7T7r9Vq8Pl8UvfIsXPRRQVp5XJZmFnOb71eRzx+VBlGgM5nl67r8lmCTY73ScSXC8D97KfFwFlhhRVWWHFc1Ot1LC4uwuVy4datW8jn89IsuFAoYHt7WxgO4IELWSAQwM7Ojqz8hsNh1Go1kRvS7IS1PezjdufOHWQyGXQ6HUSjUbz88svQNA1ffPGFyCtPnTqFg4MDZLNZTE1NYXFxEaVSCel0Gna7HdPT0yILGo1GsgquaUeOaOVyWRzamMARWNAAwOfzCSPS7/dRLpfh9XplFXt/fx/z8/NIJBLI5XICOLiPnyeMAIBJJoCH2CuG0dSEn1VZEMYkmaAZoDG+p4IV1RlQlSRy/tgcnf38PB4P/H4/3G63gHGCOaOFPpN6StfU4xvPkUyEzXbUMJ3JNN3++Dmj3M5sX6qU0sisqe8ZJZdGBs8MbKugYxJoUwGirus4ODjAaDTCjRs3sLW1hampKSwvL+POnTsCdtxuN2KxGObm5rCzs4OtrS1kMhkkEgkxNRkMBtjb28P169dRLBbRbrelTYB63dTztNlskqQDR0zU2toann32WRwcHMBms+GTTz4BAAFyPDczVpLGF7lcThZL2NybDBeZKDJH7Xb7IaA/ieHmT1Xmqso0VXkln0+UGxIgcg7q9Trq9bpcO0oEySapCgLKINXFA4IlmsZQSk6ABUDqgePxOOr1usjCCaxoJGKz2YSd9Pl84jI5Go2kbpeLTgSLZNXIQtJMhKCx3++L8QqNZTj3oVAILpcLXq9XGDT12cfrS2DXbrelhYF6z5PV5GIATXAIBp9UfLkAnDBwVlhhhRVWWDE5UqkUisWimBosLS0hEomgUqlIIqBpmqwyMzG8efOmyKISiQTu3r0L4MgpjTVtbPxNieaNGzfQ7XYxNTWFWCyGr371q8jlcvjiiy/g9/uxuroKp9OJW7duwW63Y2VlBaFQCMViEd1uF/Pz88LKtFotuFwuRCIRaQbNJIi22m63G51OR6R8TPbq9Tr8fr/0wiIzxJYIdNG7ffs2Tp48KdJMJpHGmp1H1aMZQZJx+0lgDRg3TnmURNKMWTJuYyb3M+5L13VEIhH0ej2pfeF7NFEIBAKIRqN46aWXkM1msb29jXa7LU58KsPCc2BNTr/ffwggqees67okhzSooQED96eyMyrwNCb/xrkwC3VOzH7yH4+r7lsdg9mx1GswOzsLTTtyiaxWqwiFQlhcXMTS0hLS6bSwL6wNjMVi2NjYwL179zA9PS1tOsgCFYtFpNNpYTQJbsjYqD382Kyaze0BIJFI4Pd///dx+fJlvPnmm7h16xZ8Ph+q1eoYyDLOk3r+8/PzuHXrlhgUEcxxO8pDVabM7N4wgjh17tQwu66qQU4gEIDL5UKtVhPmDoDUXFIVQIk18KCmMp/P4/DwELFYDIlEQmrZ+PwgA12r1cTUCYCYOZHJo5kJALHsB44UCrxnOp0OQqEQBoMBvF6vyDEpiXQ4HGPGT6wL5XeCEmaC2lgshlKphGq1Ku+Hw2E5Nlk5v98vfQYJAlnPxmsQCoXEwIbzR7adbSMqlYrUqWqahkKhYPbV+rXElwrAkYN7kppUK6ywwgor/tuPVquFSqWCwWAgLnnFYlH+ZtLKZq6dTgelUgkejwcrKyvQNE3Yg3A4LKu7kUgEU1NTaLVa2N3dlZ5sMzMzWFxcRCAQwJUrV7C5uYlEIoELFy7g4OBA6t2Wl5eRSqVw9+5dSX7j8bjIwlKpFNrtNvb392G327G8vIwvvvgCNttRE+/BYCASJsqi1AScfY7UlWM26iVIKxaLWFxcRCKRkNVorkI/Dngzk+WZycNUpkH9nBrHgUAmr9ynMdE2SgTNGCj+zYjH49Jkmwm/OrZ2u42lpSW8/vrrWF9fx9bWFsLh8JgNOntPcW5pfmIEBmZBMBKJRKQ2h3OkJv8qg6bOpVpPxTmbJCE1zpHxOpgxd2agcRITyPFQkmazHbXlOHv2LJxOJ6ampjAzM4NMJoNMJiPnT4anVqshn88DOGKOut0uSqUS6vU6yuUySqWSuCuqxhNkzpmUz8zMiKGGz+fDq6++ilAohBs3bmB3d1fAOhdpzBYV1HuZQIjbkYFS71MyPur1IFvOz6lsL4+tgivOs8pakwkyGxuPSdaxVquJfJJAjGOh1JP3KnsUtlothEIhRCIRaYrNY/B6lctlVCoVkWnPzs6OSUTV8yPIIxPH60QTGrpbOp1OqWXk3LJ/G89HddFsNBrw+/2oVCpSs+xwOJBIJABApO90i+TxyXI3m034/X5h4gjwWevMeeI1ZdN5AmHVbfNJxZcKwFkMnBVWWGGFFY8TmUwGo9FI6jD29vYkcaxWq/B6vWPMFnBk+DE1NYV0Oo1qtSruakyu4/E4PB4P7t27h3q9LgnZ8vIy5ufnUa1W8eGHHwIALly4gNOnT+PatWu4efMmkskkTp48CY/Hgw8++AAulwtLS0uo1+vCEiaTSRSLRezs7CAQCGB5eRm7u7vipKeaDQAPEj41QWdvJrfbLXIjJk9k5jqdDjY3N7GwsIBsNisSLCPgUoPvqwklgwkY8ACEURJpVtNmfF0NAgjVVMYo1zMCN+OYjWwct6H1eLvdHqtTUh04h8Mhrly5Aq/Xi9u3byOTyeCf//N/jo8//hi5XE5kXkyMKfNSjUu4L6PUkb97vV7EYjHs7u6OnQdZWDOWjGFmCHNcPA7bYzTLULeZxJCqYEZdKKF5hs1mQ7/fRzKZxEcffYSf/OQnWFtbQyAQQKvVkvuOnwMgphOFQkHkk7SOp5X8YDBAr9cbS6xjsZgsUMzPzwMA/uzP/kzAG6XIxvk0zg3n4tKlS9ja2pIEXpU6EmhQ5kwwadyOcwA8fG8CD4C4Kl0FHjScV4N1YDTi4DkUi0VhwniNvF6v9Nnjfmw2G7rdrtTrDQYDFAoFcaokaOFCFg1IKpWKmIW0222RqVJOrgJZgjHKSwlCG42GHJfPL4Jksl7cn9vtFqddPqc1TUMymUQ8HhfToeFwKPXHBPTNZhOapkk9os1mkzGHw2Fhc0ejkbj7sqbP6/Uin89jMBhIO4xqtYpKpYJUKvXQvf/rii8XgOMvFoKzwgorrLDimHA6nVhcXEQ+n0cul8PU1JSwTzSrYP1IMBiU9gB37tyRZJDmJUxOKpUKdnZ2pEaKDEA0GkU+n8f9+/fh9/sRjUYxGo3w1ltvIZPJIJlM4vTp02i327h//z6SySRCoRDa7TYAYGpqCj6fD/fv30e73cazzz4rAIKr21xNd7lccDqd4nbIYGLIxITb0dSASQ+d3crlMqLRKCKRiJwjV6uBh0Eck1K1/sssVFZikoTSjGkzxqRxGONxFTlMtlkTZWSdAIikrFgs4rvf/S6AB8xBuVyWGkeCOFrIk1kwnosZE+jz+ZBMJpHNZoV9M36GnyMgMKtNU8Gheiw1zECZ8d8kgGZ2DkZQNxod2epTstbpdBAMBhEMBlGtVnH79m3pD3b37l3U63UsLS0hm81K4k+XRzaXZsPtarWKTqcDv9+Py5cv47PPPgNwxJDSMMPv9+Opp55CJBJBrVaDw+FALBZDoVCQJuLtdnuM1VLHzr95nXmtA4GAGPyoNvrAOONJSSeBv/q+GSPH+9A4Fr5uZFspo6QUmgCKfdu48MTvNBdGaH5EMKjWybIvWrfbRbFYRCAQAPCAAaXUlfvhvHKBgiYf/L4MBgMxEymXy9ILsFqtirGIWtNL2SmfZwBkscnv94s5CeWqPHalUhGJssqOcrFHvUacO/a5YxsYMnGUcbrdbrhcLpFVTk9PS41cq9VCLBYTJvFJxJcLwPGmthCcFVZYYYUVx8TTTz+Njz76CKVSCadOnUKv10M6nYbH45F+RaPRCLOzs+Kidu/ePUlIQqEQhsOhALSdnR1ZobXb7QiHw1KPtrOzg1qthlgshng8jm63i93dXfT7fVy+fBnLy8s4PDxEuVzG9PQ0gAe9k1irxmT3woULyOVyuH37NsLhMFKplNRlEGxRCsrk0JjMs5aFSRGj0WggGo3C7Xaj3+9jZ2cHy8vLUqPEhAswlzOaHYvvqdbmDFVqpTINkwADwZ/atoD7fBRw5OfNAI36U22YTGkepVu9Xk/qtNTz/Jf/8l+KyyHlqqx3YkNndXxGoEN2ze/3i4kOHQO9Xi/q9bqMyShPnTRfk4CXUfY4CXyZ1bNN2pfxOLwXNE1DvV4XNjESiWBubg66riObzeKTTz5BJBJBJpMRQ5iDgwMEg0ExnuB3z+PxiAySroIejweXLl3C008/jc8++0waV2vakfPl2bNn8U/+yT/B9vY2isWigA9eQ/U+4gIFQZV6jxjdGfv9vkijj6vVNDbxJjBTXzOyzgxKCAkQVFdK47VXP0tQyobxZPrU86jX6/B6vUgkEmP3LQABVgSrAISRJoMGQBZ++P0gQ8f7loYqrEcj6CNgI4gcDofi9EgJJLdvtVoib9c0TUyY6KjL60jXSbU/HVlGgjoCPdbd2e12eV4y+D0vFAqw2+3SB67ZbCISicj5NZtNMUh51ALSrzK+XADuZz+tEjgrrLDCCiuOi7feegv9fh8rKyuoVCoi14pEIpI40l672WwinU6LpTaTPTqd7e7uIpfLYWZmBgDg9/vFBGVzcxMulwvnzp2D3W5HtVrF7u4uQqEQ1tbW4HK58Pnnn6PZbGJtbU3kXCqTls1mEY/HEY1Gkc1mcXh4iEQigVgshkwmg1KpJDKger0u9VeTnB4ppWSDaiYidEv0+XwiSyuVSmPOl4+bsKjJrJlRA8NYf6UmzSqQMDIiZPsYTKaNNXDqeCaN3ciAMEFm8hyNRuHz+YRpazQaY0kzZWE8ppGBeBR4czqd0oswn8+LFIwLAXS4fFQNn5ksdFIYP2sEtGavq589TkJJQA4cXZf5+XncuXMH8Xgcly5dQrlcxs7ODu7evSsJN2V2quRuZmZG+hny+8beYQQPly9fFtmp3+9Hq9VCJBLB4uIi/sE/+Ad47rnnsL29jXA4LJJWSiz5s1KpjDm4qqyrOkc0FJqensadO3eEnVKD949a56my30Ygbjye8boYFwvUbdWehCqY5H2qSjXpzEiJ42AwQK1WQzAYFCaKbqB8n86f/AwZPYIin88nagWOz263Sy9DLhBVq1UBxvzJ3nGHh4cAjoxlKD3m8dxuN5LJpLhl+nw+VCoVUTCwITnBIb+vBGJ8xnG+yQKzJo7nwXE7nU5RPdAlk2CQ500WkaDVaiPwSwq77WcrGSMLwVlhhRVWWDE5wuEwPB6PNGONRCIi4wmHwwgGgwCAYrEoDEgwGESr1YLf75cVWbJybPx68uRJYbC2trYkmdR1HblcDvl8Hmtra3C73dja2pJeV9/4xjeQTqdRq9UQjUalGa7NZsOJEycAHNXt9Xo9LC0tIR6P4/79+6jVakilUiiXy9jf35daEdpyTwqCPafTKbbifJ2STNbRxGIxqb8ysmVqGMGTEWgY2TejXI3Bz006jno84IHByqRjHycjVMdiHBdX9L1eL06cOIGFhQVsb2/jgw8+QKPRkLERqKlBdsdYh2g8T5p8XLx4EVtbWygUCmPgNZfLPXQ+RmCgGrgY58ZsXvm72XaTXlffM3tNHZ9aD8nFghdffBHhcBjxeFy24z2ofj4QCIhtvSo/pTSVLBiNY86ePYvvf//7cDqdWFhYgK7ryGQyOHPmDJ577jmpGe31etJUutPpSL1joVBAtVoF8GBRgEwV2TyCFOAIHGxvb4trojHMDHWMixeapknzb4Jz9fMMtUG2ui/1PtB1fQxE9Ho9VCoVqd/i9VDr3Lxer9QT0kKf323ug1LOdrst4E6VdnLRgTXAdFmlwyTbqNABs9friXzS7XZjNDrqueZyucRMhEwZa+doTEJDkna7jVgsBl0/ak7O3m8Eaf1+X45brVZFNqppmjQAJ9BttVoCXrlYwwUqtkigqzD3T+MW1uzxmE8qvpQAbmRRcFZYYYUVVhwTo9EI1WpV+h8xGQoGg/KfebVaRbVahd/vFzlcJBJBMBhEqVSSOphwOCytA+hWRsaBTbJ3d3fR7XaxsrKCSCSCzz77DL1eD1NTU5idncUnn3yCbreLubk5uFwuqYE6deqUNHgm0NR1HdeuXYPT6UQqlZIE0ePxYHZ2Fna7HTdv3kS5XH5IXqgm6Gr9HC22gSPJVDQaFUkZV7LVflLGJtJqzYlRVvY4EjyzejgjYDCTX3I7I5AwAprjxmE0euF5kJE8PDyE3+/H888/P2ZXzp5WlJqp42QyOEnaSRlXNBrF2toaDg4OsLOzM3Yu6tiNjOSjANZxDJxxbsziuPniPtRjTJrrwWCAw8ND/MEf/AF6vR5yuZy4HtLFkNuz9xedVFl3SqdC1hQSWK2srCAej6PZbGJxcRGnT58G8KDdQrPZxPr6Ovb29qQujPVMZJfpIEnnWUqXKa0jE0S26amnnsLVq1dl0cN4XdQwmpvwHqcFPRly1bRHlVQCD6STRmZONQFS60G73a60XSAbzPuU5+P3+2WBirJA1rfxmhCU+Xw+kWIS2JGRUgEf5eQ8Hp8XvG6sJ+v1enA4HKhWq8Ka2e12UT3oui6AutVqoVarSXsEGpOwlyafSw6HA+VyWY5NSTnH7PV6RdXAZ304HEa9XheTE7KPatuHUCgkC1d0ko1Go1IPyWfBk4ovFYBz/AzADSwGzgorrLDCimOi0WggmUwiEonISjDrKVj/xRoOurvNzMzA4/Hg8PAQtVpNnNwCgQDC4TBGoxF2d3dRqVRw7tw5BINB5PN57OzsIBaLYWlpCb1eDx9//DGCwSDm5+dRKpVw9epVLC4uIpVKodVqYXNzE6lUCi+88AIGgwHu3LkD4MjMZDAYIJ/PIxAIIJVKyQo7V/KLxaLUlRiZGmA80e71eqhWq+I+SfCiSkir1Sra7bYkoXS8U0OVP04yHzkOzKlMEhNPtT2AUV6pbqvKOo2sm5FNUv9WgdBoNJLE0rhfAt0bN26gUCgImxCJRPDyyy9jfX0dN27cGJNQMgHkTyPY4TzG43GEQiF8/vnnwg6YzZkaKgMziT0zu9aT5sH4efU1FVRMum68VpPmV9OO2m24XC7Mz8/j448/loUSJtTBYFCkpky2CQa4b7pMNptNeL1euN1uXLx4EcViEV6vF2fOnMHLL7+MRCIhvcZYZ1er1dBsNgXAsZdctVoVyaDH4xHGhYwXX3c6nXC5XFhYWEClUpEaLqPZiNm1M9a1ERCozqT83qjXW/0+MsiUqa6S6v6Hw6H0DeQCBGvZWMNHZo5MFQAEg0GRkLL/G5km1vqpTBWl5pw7snGj0UhMQPL5vDjb8tna7XaRSCSkZQS/YwTLdCzluReLRUxPT0tTe0rXydjRzZISTY/Hg2q1KnJJPttVMxkA0jIgFApJ/ZymaXI9aWpDKS/rBFmfR1aZ8/mk4ksF4CwJpRVWWGGFFY8T58+fh8vlQqVSkaSKMpt0Oi1sWqPRgMPhwNLSEkajEdLptJgoBAKBsVoOrsiurq5KO4F+v49Tp07B5/OhXC6jWq2OSSTtdjuee+459Pt9pNNptNttXLp0CQsLCzg8PMT9+/elpQABocvlQiKRECmQ3W7Hzs4OcrkcstmsgAeCCaOkS02uW62WmAUwoaPtdiqVGpNH0cmNiedxDM2kZJ6hAjP1d0rX1P2oTn7GxNUM5BzHPpltwxV2Jp9q4kwANhqNcHBwIM6dTKbJSjDJfRT7xs+ePHkS8/Pz+Oyzz8ZaP0wCYcbzfBTQU7cxzr/RCGMSq2cm3TSOx+y46jbD4RCFQgG5XA7Ly8tYXl4W4xLK0HRdF7MLh8OBSCQiiTEZI1rJ0xXQZrPhzJkzqNfrCIfD+OpXv4rp6Wl8//vfx3A4RKvVwk9+8hPcvXsXjUYDnU5H+vtVKhWxhadDosomUU6oMjaBQADPPPMM3n777YdaAKggivcyAYBR1qta6Kv1cry3jQycul+VheN3kccmU86+b/wMgY3KXqqMHx0+2VfN4/FInVe324Xb7Uaz2cRoNJLaNioCHA4HAoEAIpGIfGebzaaYzpBtbLVa0quNsnAuMtFMiSBPdZUEHpiq8D2XyyVsIXCkFuD9YWz/QVZXvY7BYBD1el2Yv2azKQs39Xpd5O+UnA6HQ/R6PZHca5omDCE/86TiSwXgHLT6HVoAzgorrLDCiskRi8WQTqeRz+dF6nhwcIB0Oi2MAAv/6QxZKpXQ7XahaRoikQjC4TAAyGrz1NQUlpeX0el0cOfOHTSbTZw5cwbRaBS5XE6afjM5CoVCcLvd8nmv1yuNcn/yk59gNBphYWEB8/PzIpu02+1YWVmRFelUKoU///M/x87OjhT/s8cRmR5VImhk44bDobBwTJAIaHZ3d3HmzBmRMnF7I8gykz8y1MRfBRKT2B+VdVP3q/Y3o3xMlZzxPZ6XGQt33PEpl2TdjXp+xjHw3vjBD34gAE6VjfJvY+0bXSXX1tbw0ksv4fr16yiXyyKDU0G28XweJVlUQ2Uyjfvh+2aSR7P54/tG5m8SgDS+R3b4+vXrCAQCmJqakrYY4XBYzDZsNpu8D0DYIC6QsAbV7XZjc3MTFy5cwPz8PH74wx/C4/FgeXkZtVpNEv9arYaDgwM0m01Uq1U0Gg3UajXU63W0Wi0BF5RM85qSUaTkj9ft9OnT2Nvbw+7urjQmN845z1c1cVEZSu6LAIxsDvtFqtfMuMCh3h8EmCqAc7lc2N7eFoMdtT6PoJELFMCD/muHh4fSvJv2/jRHIePpcDikSTdNZ7h/stds2E3ZpaZp8Pv9woAReHOfXDDx+XwinWT7knq9Lv05HQ6HGCuROSOIVL//PA6P3e12x0A6GbZarSaAna0pOB98pvLc2MszFovJAlKz2RQ301arZfWB+2WF3W4xcFZYYYUVVjw6PvjgA3Q6HTz33HNwu924f/8+SqWSNJDlSqzP50M2m4WmaSiXy4hEIiK9aTab2NvbAwCcOHECiURC+sqRWYvH4/jss8+wt7eHixcviskAHS4LhQLcbrcktc1mE59//jlCoRAuXLgAh8OBg4MDNBoNzM7OYm5uDl6vVxizDz74AJqmiRsbpUdq02eu7k+SwZGdYHsEAGJu0Ol0cOrUKdy8eVNqkVTJIvdxHIhTQwVqx23DMNbUqQkuz5FJs9F104wB4e/GbbhaTyDBflYEbayPMmNGVLbTyL6pUrpQKISVlRVcvnwZV65cwY0bN0zBlTpeVV5nNnaza2qcAzOwN2k+1G2MjNskhs64D+N27XYbH330EUKhEJ577jmxko/FYmK44XK5RL7M5D0ajSIYDGJ3dxeBQACnT58WcPIbv/Eb4ow4Nzcnv7PBNx0ta7UaGo0Gcrkc2u02ut2ugAUyTgDEJIUsH9lBLoq0Wi3s7u6OgSaG0czECNrUv3mfELyp2xjn0MhyEoTwuvCej0QiKJfLqNVqsvBAds0IHil1HA6HqFQqqNVqCIVCIhNUgSJBFr8LlJfyGhD00fGR0muy1Gy0zmbYdMccjUYy9+yr5vf7UavVkM1mEQ6HxWhF13V5LpGVJRjkuMgQDodDab1AIxXWq7LtAUF5q9USx0kAcm5coOO1IFgn+Gu1WmLuMjU1NdaG5dcdXyoAZ9XAWWGFFVZY8TjR6XTw9NNPQ9d1fPzxx7LSzEbbwWAQ4XAYxWJRWILp6Wmpe9va2kK1WkU4HMbq6irsdjs2NjYwGo0Qj8cxPT2NwWCAv/iLv0C73cb8/Dw2NzehaRpSqRTsdvtYPyZaXNOlcnFxEeVyGdlsVhocnz17FsPhUBws33zzTal7AYBkMolGowG32y2Jvyp7NAsmK7VaTWp9aDeu6zrS6TTeeOMNBAIBXLt2DbVaDcADqaOaxE8CcWbyv0mmJcdJM80YKDXJVfdrxhBNAkXcN2tbAIjDntp3jmObdI78qTJyTPiZSJZKJfzX//pfhSky1o8Zf1fn61HgzYy9U7dVwapxf2bnY2RPj2MEjcdXr2Oz2US5XMann36KwWCA5eVlNJtNaJqGubk5YbbL5TLi8biwvGfOnBFgcfHiRSwuLuLKlSv45je/KfVo+XweU1NTuHv3Lr73ve+hUqlgMBhIO4JCoYBSqSQGPJxLMkwEGmRj3G63sNi8Ph6PB8PhEDs7O2PMkLpooJqJqOyQurjBn/yceg3N7lmOk4swdrtdJL5q4/BYLIZr166h0+kIwOP4eJ58nS6zdNadmZmRZx/D4/Gg1WqJRJySSzp50im02WwKCCeQo8Mnz5fsHNsWELwCkHpegqd+v4/Z2Vl4vV6Rs9MFlmYzfN7RYIQNt+12O7rdrswxXTb5vW632wiFQjL3nDtKMFutloA3h8MhAJILWbxH+/0+2u02ZmZmZNHsScWXCsA9qIF7co31rLDCCius+G8/vvKVr2B9fR3pdFr+015cXBRZTzAYFNt/yqncbjfK5TJyuRycTidWVlYwNTWFVquFO3fuIBgMitHJwcEBPv30UwQCASwsLGAwGCAYDCISiYgsKBQKSa1drVbD/v4+otEoXC4XSqUSDg8PoWkazp8/j1QqJfKfTCaDDz/8UOo5pqenkUwmce/ePUku6ejHhtLHyQeBBwYINB0goKxWq7h79y5eeOEFZDIZaU+g1qsAD5s2qCBH7dlmlvg/Ksy2N2PajGwFt1MBjJHVmATihsOhSPbIwpi1CzDuw8iUqbLWVqs15uRpHJfZOZqBOfX3SbLGSQynCqyMIO248zI7N+M4Jr2m67qYlHz++efCUGuaJrJhh8OBbrcrUrann34aTz/9tLTWmJ6eFuOe9fV1TE9P4/PPPxeDknfffRf3798XAF4oFKS/I3sYqvJFfp9Z/6XruoA3ziPB93PPPYef/vSnY06GgHnzbXUBgd8HTdPGWhSocmB18UM1COJn1OtEkEVgxm0/+eQTlEqlsToxhlojB0As8m02GxKJhEit2+22mDaREeW9zn3QqdblcolUslqtigur2+0WYOjxeNBoNGTxKJPJCHgiuByNRmMSSrYUoLEI+61VKhUxO2HPOsoYVUMTXlPeb2zczTo4fgfV9gLxeFxAJ88/Ho8L2xYIBKSukIsJi4uLCAQCKBaLFgP3ywqLgbPCCiussOJx4urVq8KAOZ1OzMzMwOv1IhQKCWgBgPn5eUk49vf3xcJ6dnZW2gncvn0bCwsLWFpaQq1Ww+3bt5HJZHDu3Dn4fD7s7+8jkUgIQ0ZzgEQiAV3Xsb29Lf3cOp2O1HlMT0/jxIkTImdiD63PPvsMxWIRlUoFZ86cQTAYxOHhIUKhEObm5kQ6VKlUZCWfAGSSq6Cu62i32+L4xlX7fr+Pu3fvIpFI4Omnn0ar1RIXOa5Oq2yCmpAC5kDCjLVTgZcZ2JvkiKh+Tv1HoGJ0sXycIIjrdrvwer1iYMA6OVUiqQJBVT6pnqsqa+OYVFbtUUzYo8KMmXscaePPcwwzJs7s/UmvZTIZnD9/HpqmYX9/H6FQSBiSaDSKdruNZDKJ0ejIiXJ6ehrhcFiSd9r+b21tIZlM4v79+/j000/R7Xaxvr6Ow8NDFAoF1Go1+ddsNkUS6fF4BDyxjUGz2USpVBqTTfK+pbHFpUuXUKlUkE6nEY/HpZ5qEqvN+4/MGc9fNeAhMOS9rmmasIGcE3UBguOx2+1SP0swWSqVsLe3Jy6dZAsBCCDlAg7lipSIsw8kgQmfT16vV4AqWTQePxKJCOvVarXgdruFlaOTKs2hyCASHOn6A/dRoyRT0zSpSTw8PJR2ANVqFZqmwefzjbWZoNKAn+e5suZS046MZ1h3R5DK9waDgbC93W4XgUBAAB8BqdPpRLFYFEfP4XCI5eVlAcE0cHlS8aUCcJYLpRVWWGGFFY8T3W4Xfr8fuq4jkUggGAxidnYWuVxObLIdDgfcbjcAIJ1OYzAYYGlpCTMzMxgOh9jf30exWMTMzAwWFxextbWFnZ0dDAYDzM3NAQA2NzcxNzeHYDCIdDoN4KgdAK22Dw8PEY1GBZwxIYpEIpienhZXvJWVFZRKJVy5cgXr6+vo9/u4dOkSyuUyKpUKZmdnUalUpAifCSubBbN31iQGB3ggKWLCy15R7XYbH3/8Md544w0BcZQAUjplZLrUMHObNNYJMSbJAI1AUAWO3NbMaMPIdqn7nVT7xdfZF4vJGhNfskWqgYlqWqL+0zRtzMzEZrPB6/XCbrcjmUxie3v7ofNWE191XsyumTEmAXT1HB/Fghrn6VHHN7KaZsejA6vH40GhUBATjUgkInWnuq5L3Wm/30e1WkU6nRbb/729PWFDPv/8c6k/rdfrqFarqFQqqFQq6HQ6aDab0PUHTa7VZtd0OaTNPlkr3o98LRQKIZVK4Y/+6I+kRo9MmArCVWBmvIeM82RkptV/lOOpdZU8B9aDUeYHHIG6YrGIWq0mUkmeE10WCVZUN026zRLMDgYD6asWj8ehaZoYlQyHQ3i9XpkXMplk61utFpLJpPStTCQS0srE5/NJ/0wCVC4KcT7V/mt+vx/ZbFYcKXlN+v0+Go0GQqEQRqORNOkGjp7jbOHC/bG+kaYmBHWdTkeUBWTZ2u22nB+BLp15a7Wa3BNqnTJr58jCPan4UgE4caG0AJwVVlhhhRXHBFd7A4EA4vE4Go0GfvKTn0DXj9oJsNltt9tFsViErutYXV3F/Pw8Go2GtAhYXFxEKBTCjRs3cHBwgPn5eXFss9lsOHv2LEqlEjY3N+H1ejE7OwtN05DJZNDpdJBIJOD3+8dqpQgaWR9y/vx5lEolvPvuu9jb24PX68XJkyexv7+PqakprK6uolgswuPx4PTp07h169ZDEkcmmkYWRf3JBJHNc2l6YLMdtRX4yU9+gtdffx2XLl3CJ598Ij2XdF0XxsHIdqkNh1XwxlBrgvg5owMlGY1JBiLG8zQyepOkgJNklMbxUWJFMwYaG6jGJpwHlZ1Tx69K6pxOJ77+9a9jY2PjIRDKHmevvPIKfvrTnyKfz5uO3YxZM8ohjUDLTI55HANovE+MzKIZiJsU/X4fu7u7eO6559BqtRAOhzEcDpFMJnHixAnk83npRVYqlXBwcACv14tbt26hVqvh6tWrAt4ODw+xubmJXC6H6elpZDIZbG1toVgsSh0UZXy8bwgOVav5+fl5AJCm0mSBNO2oFu7555/HW2+9hWaziXg8LiCIEjyVZSZQ5zbHAV4ygbwfvF6vgAJub6xR7Pf7UsfGv/P5PPL5vNR8sb0Jz1utneNCi91uF9khrfyTyaTUs5GJVxlLgkfuj3OlaUfmScViUUxDeA01TZN2D+rCB8fDxug8DsEoTWUajQYCgYA8k3hdCBy5PxoZkTlzu92ijCDYIjBOJpOoVqtwu90oFovodDoIBoMyF5S2NxoNqdHU9aOecslkUuoBKeNU5aNPIr5cAO5nLpSDoVUDZ4UVVlhhxeRgM1un04lbt26h0WggkUiIO2QkEpHeSj6fD4uLi5iensbBwQFu3bolzYOHwyHu3buHWq2G8+fPS6+jaDSKUCiEQqEg8sdYLAaHw4F79+4hHA4jkUjIKjPZt9FoJAnQwsIC4vE47t69i1u3bmF7e1sSnO3tbZw8eRKhUEj6yUUiEdRqNcRiMWEhmPyYOaypQEet2+l2uyKBstlsMheZTAZXr17FN7/5TQwGA3zyySciU2M9jgq0VNZJlRwak1l1GzWMIO44OaSa8BoT60kgTgVwxqTbCFhoVtHr9aROy2gXT9BmBFDqeS8tLQlALxaLD0ntBoMBFhYWsLCwYGps8TihHpPg2giejaDVCDaP23YSQDwOxOn6kSEO3SXr9bqAnsuXL6NSqeD9999HpVLBzs4O6vW6tAGgAQaNLA4ODgSs1et1sZ5XXVJZTzUajdBsNtFoNIQl5cLEwsICDg4OpNaMAKPX6+H111/H/fv3sb+/D5/Ph0AgIFK8fr8v56qyyCobB4ybmZAd4/i4YMN9qg6QqgEO/ybrx2g2m0in09B1HdFoFJ1OR0AIWTX2siP7rtZw8pp7PJ4xd0YuVLBHmyor5We73S5GoxHC4bD0RKNBjwrKCBg5frYhUEGa3+/HcDhEPp+X5wxBOJUDbM7ORuuca6/XKy0Fer2eMIx01ux0OsLw8XWv1yv7IjtHiSiZ2Xa7LfJMu92OeDwOr9crQM/r9UpPQdX85dcdXyoAZ9esGjgrrLDCCiseHQRT6+vraLVaiMViCAaDYy0CarWaSBkdDgdu3LiBfD6PaDSKubk5dDodFAoF6LqOEydOiJV2KpWCruvIZrPodrsIBoNS57O3tyf20y6XC81mE3a7XUBXq9XC9PQ0FhcXcXh4iLfeegu3b99Gu93G8vKyMBOXLl2SRHp5eRntdnssmapWqxgMBpKIGA0U1FosldkimKCRAfvDMYHc2NhAMpnE888/j3a7jZs3b6LZbIrr23H1WEZJpGqwoCanZszYpP2oUkqV9TuOVVNjkvTP7HMqSGNSbHSRVKVv6rh1Xcf8/Dxef/11rK2t4S//8i/F0VOVXLKJcD6fR7fbfWgeft44TgZpBrgmsZXqvh4XxBm3q1Qq+PTTT/Hiiy8ilUrJd6BYLGJtbU3kwARllKeRbQGOgEs+n0elUoHH4xGGhVJDgjGyTr1eT9wDCWjcbjf8fj92d3elHo6M0XA4xCuvvIKNjQ1cuXIFdrtdXBcBjMmSgfEaNeN5qwBcrZfjd4lSv1qtNnbPc874vWOdGgABONlsVnq2sR6MY6Shh+pYabPZ4PP5MDc3J0CEzxyauRDIcGwejwd+v3/sXueCzezsLDKZDHT9yHyk3+8LyCXjyXq4ZrOJZrMpknUen+/V63Xpvak6RNpsNmG6OCYasESj0bHvGq9TuVyW2jeaqHBRLZlMSpN3yphZ68rnCGvkdF0X0ymCNwDS247zyWfuk4gvFYCz2TTYNKsGzgorrLDCiuPD7XZjf38fDocD0WgUS0tLCIVC0HUd6+vrcLvdmJ2dxcrKCtLpNO7cuYN2u40LFy7A5XIhl8uh3+/D6XQiEAhgb29P+huxmJ+1bP1+H9vb2+j1elhcXJSalnw+D4/HgxMnTiCbzSKbzeLkyZOYmppCs9nE1atXcfv2bcRiMaRSKezt7WFxcRGnT5/G3bt3EQgEsLq6KsDJ7XbD6/Uim82Ky1y5XIau6yI1UlfggfEG2cCDhH00GomU0mazIRwOS1L88ccfI5FI4Gtf+xqazSbu378/toqt9sUyNrNmGJkLI0OkJv/q+8dJKVW5nAquJoFKs2MZt+HnzVgpMjrHSQfVz7BHYDgcRjQaFUCtzrndbsfMzMyYG6IKtiYxcsbX1XN8FFM2CcQar9ujpIHGcRhfHwwGWF9fx/nz5/H666/j/Pnz2N3dxdbWFoLBIBKJBM6ePYtoNIrNzU2sr68LOGAD6VKpJIBFBSa8Pwiu2UqA14f9zAhshsMhQqGQjGFjYwOtVgu/8zu/g9FohKtXr6Lf7yMcDkvNGHDkxEhAYzxnyg1VMK+yaPxesE7N7/ebSif5j46Kaj3aaHTU55Gybr5HYyReE5X5IrCjAclwOMTU1JQw9wRArCWjlJRuk8CR5JxAOB6Po1KpiLSyXq/D4/EglUqhXq/LwgMdXFVAGQ6HkU6nRZpdKpWQTCbh8XgEsHOuKGnk+FjnRwMayio17chNslwuw+PxoFqtClvn8/lQKpWkJo61zzQq0jRNQCHBq81mg9/vRyQSgd/vl9e4CEGnzHQ6LWz6k4gvFYADjurgLAbOCiussMKK4+KLL77AcDjE0tISIpEIbDYb9vb2pMn2qVOnMD09jdu3b2Nvbw82mw0vvPACut0u0uk0ut0uZmdn0W63USgUEI/H4fP5kMvlcPv2bQQCAZw8eRLlclnqMU6ePCmMV71eRyKRQCgUwt7eHmq1Gp5//nnYbDbU63XcunULh4eHmJubE7OLixcvwuVy4f3338fi4iJWV1elqa3H40Gz2cTu7i7i8Timpqawvr6O0WiEUCgkTX7pAKc6UhrlgsCDhFt1k+M8tdttvP3223jjjTfw8ssvo9frYWdn56GeSCrQMpNIAuMgwQzIGT+nSimNjJxRbmmUMKr7OI5pUrfjT7OxqwDJ7HPG/TcaDfzxH//xWH2SMYbDId577z0xtTA6ck6SghpB23Hnapy3SWyaGQNpPGczcDjpGEz2P/74Y/ztv/23sbKyAqfTiR/96Ee4e/cuzpw5g8XFRdTrdYTDYTz99NPo9XrY3d2VptOsYVMNOngvU36sXisultDBkaDi7Nmz+P3f/300m038q3/1r+B2u/Hqq6/C4XDgT/7kT8Tcgv0A+R3w+XzynQDG5bqqq6hx8UBt3E1mSmVcjQY4HDMbj5OdKpfLyGQyYm7Efeu6LsCJkUwmRXIYi8VkoScYDMo5cA7pXjkYDOD3+6VxNlmwXC6H0WiEaDQ6ZsufyWQEmBHskb0jO0rwTFdHTdPQarXQ7/cRi8WkGTe/txwTZZHhcHiMtaMMlvNut9uxs7Mj15b2/i6XS2SaNttRC4FoNCqfZ/N3Ho9OlHSXJIAEjvpCUinAumiyjk8qvnQAzm7TLAbOCiussMKKY4MOeKlUCtFoFLu7u6jVapidnRUW4Pr169jZ2cHy8jKWlpZQLpeRz+dRr9exsLCARqOBUqmEeDyOUCgkrNzS0hJ6vR7u3r0Ll8uFUCiE5eVldLtdVKtVBINBrK6uYjgc4v79+/B4PPjGN76BSqWCjY0NlMtlFAoFJBIJRKNR9Ho9PPvss2LC8Prrr4sEjCvKAFAul3Hy5EkMh0Ps7u6OtUVgAssifOCBTMnYVFhNyFlHwhVxJkC1Wg0/+MEP8Hf+zt/BK6+8gjfffFPaC/AYqkRTrUVTE2wmvWQIVXCmggAV7KggDni45xyPbQQ1k6SZ6jjMwI7RYdNMHvmo4LZGiaXZcdrt9hiwNmPPzFg5o8mIcftJYFb9fdI8Gfc7CdyZbWvc7u7du/jX//pfY2lpCSsrK0ilUrh+/To6nQ5Onz6NCxcuSB8xyoppbKK2B+B+KS8kMFLbNfC+JXOzvLwMm82Gb33rWwCAf/fv/h1KpRL+4A/+AJlMBn/0R3+EWq0mZhh0nuS9TFBjXEBQgRzBhXptjKYl4XAYpVIJwAP3Q27L86Ccj2x+o9EQV051gYL7J4OkjgE4YsLImLFVQL/fh9/vF8dNsmsejwfRaFRqx6amplAqldDv92UhiOxgpVKRHpntdhvtdltMVNR2KGzSTRkir1s4HJbvNq8hz5dz4nQ6pd0BAJG8qsC3Xq+LDJS94WhUQtmspmnShJ1mJ/V6XVhcLi4Eg0HE43E5XrvdFmDHBQIqHJxOpzihPon40gE4h03DYGgBOCussMIKKybHiRMnEI1GEQwGsbW1heFwiGeeeQazs7Podrt4//33sbu7i2eeeQbLy8u4f/++WFwvLCxA14+s0Wm1v7+/D6fTienpaWmATXnO7Ows/H4/yuWy9JwrlUq4fv06Tp48iRdffBHXrl3DW2+9BZfLheXlZayurqLT6SASiUDXdezu7iIQCGBlZQV2ux3Xr1+H3W7H7OwsAAhroTZDDoVCktww+WQtEFedjcDIjMFptVoCsFivx+O8+eab+Pa3v4033ngDb7/9Nvb398dqStRaNxWYGY+rAoxJbJ0aqlMlEzC1xo8yMpURmdRS4G/CWJmBMHUbs+MYf5oBSRXoGYGUCiRVAGc0jVHHaLbvSUydWUwCc5POyxhm8zQcDvHOO+/gX/yLf4G///f/Pp577jkxG9nb24PT6ZQG9/fv35d7lQm0KhPsdruSbNvtdkxPT4sRBcdEEBcOhxEKhbC/v4/vfve72NvbQzQaxT/7Z/8MH330EX784x9LUu/3+xEIBARQqDb9KmADMLZQwXvOOB/qWGh3ry5mqDJByjTpZksmK5vNCpPObdkKwMzwZDAYCAj1eDyo1WrS+5JAlwALgNT68RiRSASZTAb1eh3D4RDZbBYARKbN4/T7fZFyshaW80PTEhqI0BjF7XbLeTWbTXQ6HYRCITEkYQsCSi91XReGTTVVaTabCAQCYthEWTt/ct5ZK0jpbL1eFwMTzj1bp/CeHY1GIpEsl8sy11Qi8LyfVHzpAJzdrmH4iAe/FVZYYYUV/8uO6elplEol7O/vYzAYYHFxEbFYDI1GQ+pLXn75ZaRSKWxsbGB/f19Wp3u9Hur1OqLRKPr9Pg4PD+H3+6WmpdvtikkKEweCv/Pnz0vz4XPnzuHChQv44IMP8Mknn8But+P8+fOYmprCaDRCPB5Hp9PB+vo6kskkFhYW0O/3pYZkampKrPwpt+v1etICwO/3IxqNQtM0cf1TE73jGBZgXJrIwv1SqSQtGDqdDg4ODvDDH/4Q3/nOd/DGG2/gz//8z4WJVCVjTJJUJsIojeS41CSNoMXI5qkJtBo8R25HJsJMrmjGbKm/mzGSZvMzSUL4qPk1O7bZ3+rrxs+r15HAT5XvTTqnSSBVBYaT3jees1moINPsnLvdLn7wgx9gNBrh29/+Ni5duoTd3V1MTU2h0+ng6tWrqNVqKJVKyOVyODw8FCaYrBjrvNT+ayrA4TYEeKVSCdvb22K3/+qrr+Ly5ct488038dFHH4ntvc/nQyQSkTo7ddGBAEllehm8R43upyqIiEQiaLVakvir25LV6XQ60k6kWq2i0+mgWCwKY6fKMdXvja7rYtJClqxUKqFarSIcDssYKStkLZ6u6wiHw/D7/SJxDIVCuHfvnoyb/dU4XjpJElT7/X5omiZOt2rjcYfDgZWVFXS7XWHnstms1KlFIhGUy2UB6TQhIVtJObGxLyJlrrVaTZp8ezwetFqtMeaUbpmNRgPhcBj5fF4W19gEnAtTrLmk9NNut4+1XHC73eKi+uqrr2JpaenY78GvMr50AM5h06waOCussMIKK46Nu3fvolKpYGFhAYuLiwCO+ktRtrS8vAwA+Oyzz5DL5TA/P4/BYIB6vS5Olfl8Hg6HA3Nzc4hEIpJg+Xw+hEIhSQS8Xi+SySTC4TDK5TIODg5w4cIFLC4u4r333sM777wDp9OJ1157bawnXKlUQj6fx6lTpxCJRLC/v49ms4loNAq73Y58Po9+v49EIiFF9bOzsygUCpJkkH1jQqeyVMeZg6hMDwBpqWC321EoFABA6mb29/fx1ltv4Y033sBv//Zv491338XW1pYkc6xPUp0wVRCnStK42s4xAObNqVXWTWWrjIYmanLMffFzZmDlOJZKfV/9W33tOGAzCQhO2q/xc496TQVnk0CgMcxYOrOfZmOeBDLV34/7fKPRwDvvvAOHw4FyuYzV1VWk02kkEgl8/etfxzvvvIM7d+4gl8uhWq0+VA9I2SAlcgQwNDLhQkC32xXQZLfbsbCwgL/7d/8ubt++jX//7/89dnZ25F7h4gSBgyrDVI9PeR+NbFQ7eVXeyfuPLontdlsawKsSS7UujscsFovo9XqoVqsoFArCtJFh4neH3zFVLupyuVCpVKDrOkKhkDgvdjodATdsjM0WAmyE7vF4sLu7K822Ca44TuABA97pdOByueDxeIS9BB4YupAV5bOx3++j2Wyi3W5LP7VOpyOtUwCg1WoBgIAxPrdKpRI8Ho9IPoPBIPL5PEqlEoLBoLhc0g2TYB+ANCuvVquoVqtjxjSUy5Jh47Vlo/J6vS61cWT7KFOfmpp66Dvw64ovHYCzauCssMIKK6x4VORyOaytreH8+fMYDof46KOP0Gq1sLCwIMYilUoFwWBQ6kZarZaYhZTLZbjdbpw8eRI+nw+Hh4fidhaJRAQoxGIxzM3NodlsolAoYDAY4PLlywgGg/jjP/5jXLlyBefOncOLL74Iu92OVquFWq2Gw8NDuFwurK2tYTAY4LPPPhNDk16vh3a7Ldbb1WoVKysriMVi2NnZgc/nk/5vfr9fkly32y1GByrgYAJIlgwwl8j1+32pgaHLpdvtRq/Xw71792Cz2fCd73wHv/mbv4kf/OAH2N/fF9MJYx2ZemwjO8bxqMfn70ZmDjA3SOG2anNlBsHkJJZMZU/UueCxzJgts5gkk5wUxzFvx712nBxT3eZxXpu0jXF7dY4mgc9Hnbuu6yiVSvjBD34g8jeXy4V79+7B7XZjbm4O8XgcP/3pT8cYZvXedDgcWFpagsvlQiwWQywWw4cffohsNiuMTTgcFinzd77zHcTjcfzn//yfpUm4ui/2b+T9owIklR1WWWLjfa3ejwRjBE+s7VJloASOZNL8fr+AnHq9jsPDw7G6N1UiqUo6uc/RaIRqtSr1bQR+XJwiuCHAIbtkt9vRbreRy+UAHIGwSqWCQCAg0kKv1yvmHmQr2TB7MBjA6/XC6/WKxDASiaBSqYjxCduuDIdD6fuWz+dlP8CD/nmNRgOhUAhOp1N6s7ENQCgUQqlUkutKcxMGmT3K2VlTSbdOPhc8Hg/C4bDMCRcAuKhAMGmzHblUptNpBAIBzM3NIZvN4nvf+57UU/6640sH4CwXSiussMIKKx4VFy5cwNmzZ5HNZpHL5aDrOi5cuDDWzHdxcREulwuHh4ew2WwC5IbDIebn5xGNRsUavdPpYGZmRiyubTYbPB4P4vE4crkc8vk8wuEwzpw5g9FohP/yX/4Lbt68id/4jd/A+fPnoWka8vm8rBAnk0mkUimRX0ajUSnUB44SFEqSVlZWUKvVcPfuXQDA3NycgL1bt24J+8DVZSaVAGQl38g8MYyAgkYsTODZ5HYwGODevXt488038frrr+ONN97Aj370I2xsbACAJG1qssmE1Qgazeq/jmOvjGDPKK80OgQaE95J567GJMA0CQSajZOvHSe5nLSvRwGwR4HD44496f1JYXZc4+8/zz6r1Sreeust6LqO3/zN34Smabh16xbK5TK8Xi9isRiee+45bGxsIJPJoNVqCXDx+/0Ih8NwuVyycOJ0OpFKpSSh/9rXvgaPx4NAIIBbt27h2rVrODg4eKheMhQKIRQKjTXNNjJOqjnIJNbV7H5kvakRCAIP+r1R0sjva7PZRDabRbPZHAN8rBGjtI/3MkEgTYs4VrVGkG6Q/A40m00BxmTH5ubmMBwOUa1WxSmXjCY/2+l0RCbebDYBQJQJBIzAEavX6/UQCARQr9fRbDbhdruljowAmvsGMMZUAkfSVz4r2LaF6ge246DZCOedDcop/abBiXrN2KTb4/GIpJKmUGwmzjo4r9eLSqUCh8OBQCAgi3GUkj6J+NIBOIuBs8IKK6yw4lFx4sQJbGxsoN1uQ9d1nD17Vmoput2uSGOKxaLIc3K5HBwOB2KxGPx+P0qlElqtFjqdDgKBAHq9HsrlMnw+H/x+P5LJJLLZLEajERYWFjA7O4t79+7hL/7iL+BwOPC3/tbfEovrzc1NWfm+dOkSQqEQ8vk8isUiZmdn0Wq1kMvlJIGh1ff09DT29/fx/vvvY21tDc899xyazSYGgwGKxSIWFxdRqVQk4eXqtq7rwgYAGLPlZqgNsdVaKzpTcn9Mvnq9Hj777DP0ej1861vfwssvv4zRaITd3V20220Biyo7oR6TSRrjOIZsknRSBRcqkFNBnPGYx0kmJ4WaCBpbHxwH8Izv/TzHfBxAeNxYzfYzib07jgk87j0zMKm+N2ms7XYbf/Znf4aDgwP8w3/4D/HCCy/g5s2buH37Nm7evCmA55lnnsHW1pbUgf7Gb/wGXnzxRWxvb2NjYwOFQkHkjHNzc1Lrtbu7i08++QSFQkGs4VUwz6bNvJ/5j/viQoPKcqkSXWNNKZk71pjREp+v83cyPwQntPJXG5ar310eo9lsyr7pHkmGnSwZe7nxPFjTBUAAVafTQTKZxMHBAYrFIiKRCKampmS8bD8wGAxQq9VEdunxeERCqus6fD4fZmZmUK/XxUSpVCpJI+x6vY52uy0AmbLJ0WiEcDg8JpekwQhZMwDiZKkaMwWDQXGI5PXs9XrCuJKtLRaLMh+cS5fLhUQiIVJJPp+oamD7Bl4fGlb5fD5hR4PBoIzvScSXDsBZNXBWWGGFFVY8Kr744gsMBgM4HA7MzMwgk8lIk+VkMik1G0yI9vf3EQqFkEqlcHBwgHq9Lrb+CwsLyOVysm0oFILf78f6+jp0Xcfq6ioWFhbw13/917hy5Qqmp6dx7tw5WSFmQX80GsW5c+fg8/mwvb2NWq2G1dVVdLtd9Ho9JJNJASqUFu3v76Ner+O1117D/Pw8bt26BQAi32StidfrFTdJulEysWMST8mh0YTByCjoui4SKiavyWQSDocDvV4Pd+7cgcPhwKuvvopvf/vbeO+993Dz5k0AkATKKJtkYmpmbmIEYgyVweD4zVoQGH/y2EZQZzae4xirSazdJEB0nDTxceSVk7Y9Dljx/UlSyOM+Zwx1Xiexfo8zhuPO99q1a7h//z6Wlpbwne98B//oH/0j/PjHP0Y6nYau67h8+TIcDocAMbYfeP7553Hjxg1h7ChZPjw8xP7+PqrVqiTl6hhtNpuY/bBelEG2id8VdcxqzaYKrtT7z3ivEQyq9zRNM7h/9kSjaYlqCsL9EzQZTYJarZY0yFbr9si8qc27CdaKxaIwaPF4HMFgUNhKGpR0u10BOPzeJxIJYQr5HKlUKgK+arWauHjW63UAkNo7yjqDwaDU4GnakQFKPp/HzMyMyDcJgt1ut/SWC4fDYi5C8xIAwgoSBAMQtQDrIjn+6elpAWfNZlMYWJvtqM0AQabX6xWnS9a/sQ6a9YJPKr50AO6IgbNcKK2wwgorrJgcg8EAq6ursNvt2NvbQ6FQQCwWg8/nw+bmJgKBgBTnt1otTE1NYX5+XoCez+dDKpVCJBLB9vY2+v0+Tp8+Lb2N7ty5g2AwiLNnz8Jms+EP//APsb29jeeee07ATr/fR6VSwXA4RDwex9LSEprNJn7605/C6XRibW1NannC4bAwZuFwGPV6HcViEbFYDKdPn4amafjhD3+IXq+HtbU1kX5qmibn6XA4xGFTTTwJ2piUqyyVangCjCfirVZrDPzFYjHp0XTr1i0MBgP8zu/8Dt544w3YbLYxOacZ2wZAJGEqaDSTF/J1JmpmSbMRFBKgqsk4WRQ1zICNCjqMgFZ97zg55eOAwkfFcdsbWcRJIFY9p583jmMT1TEYfzfGcZLQRqOBmzdv4tatW0ilUnjqqaewvLyMdruNzz//HA6HA88//zyKxSI8Hg9sNhs++eQTNJtNHBwcIJPJyKIHa+eM14pAIhAICANEYKUyb6ockJ9XFwpUWa6u62MsnXr/qcwbJZqU7bH2azQaoVgsIp/PI5fLiXTS7XYLAFRBIj9LCSRBEK37OV673S7unpFIBMARg5fL5aTuFoDU+xLo0BFT046kql6vV2rmCKBZL0gbfzJ+BESZTEbmgzV5bA/gcrkEPLKWlj3cKE/k95afBR6AXjpIttttkTrScMXlcgnDyGvAe2B2dlbMbXq9njQar9VqiEQioibg+JxOJ6LRqNRpUuJJY5onFV9KAGf1gbPCCiussOK4OHPmDNrtNjY3N9Hr9TAzMyM1GV6vF7Ozs6jVaiKZDIfD2NvbQ7PZRCwWkwJ8Nq+emZmR/k7ZbBazs7M4d+4cDg4O8Nd//ddot9t4+eWXRXbExMbn80mLgC+++ALNZhOhUEgSKXXVvlKpIBaLCQO2uLgo7peZTAbxeBwLCwsYjUbC/vFcer0e0um0mBUQ/KimJkxACYJUGaIZo6BpmkhQ+X4qlZIEiHLR119/Hd/4xjfg8/nw+eefS2JlTO7VejizUAGnWhNkZAnNWgeo+zUCMPVvYz2g8fjqe49ioB6nFswMPBqB0XGg8Lh9qdscB9aO28/jgLDjjmOcs+P2w/tN/ZnNZpHJZMakjbTYp9Mhr4Xa00yV1annod43fr8fsVhsrF+YKp9Um9Gr56kuPKigXm3gzc+pMk31PbLV/Ey320WlUkGhUBDwprqpqlJOtScjASaBhM/nkzpeyhz9fj9arRYCgYC4XTabTbHgJ0ALBoNwOBzS9401X7T7Z+NvjocGSYPBQPqlqedHAErwRdCkaZo4PPK60iAqHo8LW8pFJ9Yk67ouzKCmHdW5cTuCKj4zKXfnNSDoW1xcFCMqFbyxho6v+Xw+ZLNZDIdDWTBji4NarYZ4PD5W//ck4ksH4Jx2m1UDZ4UVVlhhxbHR7XZRKBSkFqJSqSCXy4mcand3F06nE8FgEO12G3fu3JF+cWtra6jVaigUCggEAlhaWhLXtHw+j5WVFczNzeHq1atYX19HOBzG888/L+CJfZ6Y/Pn9fty/fx+lUgnRaFRWoSmnYlIWi8UkUaGkh72ynE4nZmdnUSqVcP/+fUQiEUmaYrEYisWitBZgDQdX7QHzBF9NQo2JK4ONhtUEna5wvV4PN2/eRLPZxG/91m/h61//OkKhEK5evYpcLier42aAxQyYqWFkx8ycKNVWAtwnE3Ozfao1TcaE/zgppBHkmG378wCoxwFvxrkwAyrqcSeN2QxcmZ2P2fwbmTYCYHUbs+OpYbTcZxjrGykvpNW72b1jDLN5JQMWDAYRjUbHGCOVgZsErNXgGFXGjtuq7qcEjLz/NE0ThosgjM+OXC6HRqMhUmPjd0/X9bEG1wREAMaeCayJ4zOADpMEMrVaDd1uV4DJ7Owspqen0el00G630Wg0pL0AgZTX60W73RbwRqkia8tYz8vxExjT7ZHyRAImsp4AhL3b3d2Fw+HA9PQ0dF2XGjOb7agNCkEf5ZQAEI1G0el0BHCzh5tqDkO3SvahA46eu6oskw6XNCmpVquYnp6WhS72+eR1YB3fk4pfCMBpmrYNoA5gCGCg6/pXNE2LAfifASwD2Abwv9Z1vfyLDfPxw27VwFlhhRVWWPGI2NjYQDweRzwex507d9Dv9xGLxRAKhXB4eAifz4doNIpmsymW/mfOnMH09DTu3r2LdDqNmZkZLC4uYjQaYWdnB4PBAE8//TTcbjd+9KMfYTAY4OTJk7Kizh5vTEKmp6eRyWSwv78PTdNw5swZVCoVaUjLhGw0GklxfavVgt/vh8/nQ7VaRa/Xw9TUlIw7m80iGAzKqnckEkE2mxX5FPsXEUQyCGpo+c9kExg3MAHGpYlMMFut1lhdUDKZFBOC+/fvo9/v4zd/8zdx+fJlhMNhvPPOOzg4OBBrdQAPgTYew4zxYDDJNQMOZHKMLQNUwGd0GTQ7hhHsqPufxMJNes94Hsb9mW3z88RxgNwIes22M4LBSdswMee1A8z79Zn9fdy4HjcexeqZSTnJ/IRCIWGb1Hkwsm9m52wM1U2SQVMSlTGk+yMBGBtdA0fNx/P5PPL5/JhbIsGeyr7pui5giD3Y2HqAdWgEd36/H51OR+q+YrGYfG4wGKBUKiEWi2FhYQHBYBDlchn9fh+9Xg9er3fMFZKsHaWNBNGapo0xcASMbJLt8Xik1q3T6YjDYzgclho7OmBubW3Js21hYQH1eh3lchkOhwOzs7Mol8tSA9jv97GwsIBarYZGo4FyuSzzq8pTgaNnWzKZlPYq7JXH98hMZrNZeL1e5HI5tFotJBIJMU9hawdN0+Dz+VCpVMacM59E/DIYuG/oul5Q/v4fAPxQ1/X/SdO0/+Fnf/+ffwnHeaxwWC6UVlhhhRVWPCII3n74wx+iUCjgxRdfRCqVwv3790UqU6/XUSqV4PP5cObMGQyHQ7z//vsoFAo4c+YMFhYWkM/ncXh4iJmZGZw+fRr5fB5Xr17F8vIyZmdnkcvlEAgEUK1WEQwGkclk0O/3MT8/j3K5jEwmg6WlJfj9fvT7fTES0DRNeic5nU6plSOzxpqTRCIBAEin0wL++BmXy4WtrS3ouo7p6WkBj6oEjYkiEzKV/VKlW0ZAQrZFBSuspWGClUqlhDHc3d3Fn/7pn+Jb3/oWzp07h1AohB//+MfY2NiQ1gyqKYPKwBjDaGqiJrkqY6EybyrrpsrZ1J/q/tTzMrJsRsD1uEyZGo8CLY8CQmahvq+CURXAmO3jOKB23HEetb0ZO/mofZnNs9k+HyfUfdOFkU26ybyZjV+9D7lIoQI8Wuqb3Q+8D2mIQvaLf6sNsXVdl75r6XQajUZD6rn4WY6TTA+NQHq9noAmn88Hp9Mp4yLzVK1WhbliPVkmkxH3RV3XMTs7i8XFRWxtbaFQKEDTNAQCAfn+u91uxGIxdLtdaZ4NQJwpgSMmiwtNNDWx2+0Ih8PSiy2Xy0m7EUoUaYzS6/VQLBYBHLUimJqagtvtht/vx/7+PqLRKMrlIx6IfeUikQja7TY6nY7IL9leYjAYIBKJwOPxoFaryZgrlQq8Xq9cY9YQ6rou4yPwZN87qh0ajQZsNptIPHVdl3l5UvGrkFB+B8CrP/v9/wvgx/g1ArgjBs4yMbHCCiussGJyeL1e/OAHP0Cr1cJLL72ESCSCW7duwe12Ix6PI51Ow+PxYHZ2FjMzMyiVSigWixiNRrh06RKCwSCy2SxarRZOnjyJUCiE7e1t7O7u4ty5c5I8BAIBSd52dnbgcrmQTCaRz+eRzWaxuroqRgTxeFykmHa7HbOzs9B1HZubm7Db7UilUrL6TetzynhKpRJqtZo0Eq/X6/jLv/xL2O12XLx4Ee12Gz6fbyypolkAZVhk3QiA6GJnBiSMkj0GmThGKpWC3++XJO0v//Iv0Ww28ZWvfAW/9Vu/hXfeeQd3794VZ0w1wQUwNg4jqJvEfgHjLRDMQJymaQJQB4PBQ7V3qnTzUUDtF2HOjPP3OOzdpH2onzEadxjljCqLahzzJMBlHKeRpTKeg9m+HsXI/Txs3HHgUL0PKP/z+XwirVPlmQQcKnM2aUwqw2NsEE/QRbt+SqbJkhmZ5E6ng0wmg3Q6LbJm4z3O+58mH5RWqrVnfCaorQLoujg9PS2MXK1WQy6XQ61WQ7FYxNzcHILBIHK5nMiwHQ4HfD4fOp2OyAbJyvt8vrG6PRqYsE5NdYT0+/0Ajgxp2IuN9Xp8NrJVwHA4lGdTIBDAcDjE+vo6pqenMTMzg3w+D6fTiXA4LPJQTdNQLBalhUKhUBA3yWQyiWAwiFKpBJfLJQ68Xq8Xuq7L+fHaZDIZuFwueZaqjcgJZjVNk7FSEUGG70nFLwrgdAA/0DRNB/D/1nX93wJI6bqeBgBd19Oapk2ZfVDTtH8M4B8DwOLi4i84jAfhsGvo9i0AZ4UVVlhhxeT4T//pP0HTNFy4cAG1Wg37+/tIJBIYDofY3t5GNBrFiRMn4PP5UC6XpSj+mWeeQavVQrlchs1mw8mTJ8XWfDAY4OzZs2O1FD6fD8ViEeVyGaurq+j1etjd3cVgMMDFixdRrVZRLBaRSqVgs9lQLpcRCASkF9P169fhcrmwuLgoK8EqIOn3+8hms6hWqwiFQrJCXS6XceHCBdlXuVxGr9fDaDQSk4JarSZyKrvdLqv4wAMWjM6XKnMFmFvlM2hsQoYvlUohHA6j0+mgWCzir/7qr1CpVPDiiy/i29/+NmZnZ/HRRx+hUCig2+2OuWIamQ61pk1Nws36x6lSSVVOyW3UNgQq68JjqIDPCGTV4xjnQT3+o4CYEYA8jvxwEog0e3+S/NPseGb7Og60GmsOHwV2j2PWJo3FuP0k0GacJ8rbmMDTrEKtVyMQUR0iCfwngTgjG6eGy+US+TKBBoEh7ynWY7HNQTqdRqvVEvZaPRcex9gHjiCJckU6MBKAEWgkEglEo1EAgMfjEeaoUqkgkUiICUg+n5fWJGzB0O/3kUgk4HK5RIXAsRHAsI9bMBhEpVIZY8MpFe33+2P3Cs1L+GwhOAwGg2MSz3a7jVarhWw2K6zd3t4ewuHwmNyT4MxmO2oHEY/H4XQ6kU6npZ642WyKQRVlpWQg6fJLwEf3Tvaa42dpfNJutxGJREROOj09bXrP/jriFwVwL+m6fvgzkPaWpml3HveDPwN7/xYAvvKVr/zSNI92mw2DkfmqkBVWWGGFFVYAR4287XY7Go0Gms2mODUOBgOcPn0asVgMwFFvoUKhgIWFBczNzSGTyWB7exvz8/NYWFiArutizR+JRNBqtaTvWrfbxRdffAG/34/FxUXs7+/jk08+wcrKirQXcLlcSKVSImGcmpqC1+tFoVDA1taWrKBrmib1LWwmCxw1Gm+324jFYtLjbTQaIRqNSpNcl8uFQCAgTYHJ0tntdml8rNqlDwYDMYwAHiSSaiI2CaQw0WXPLeCoziQWi+HkyZMoFovIZDJ4//33USwW8frrr+Py5cvw+Xz4+OOPsb+/L7UmPL4Z08PjqrVsqoPko7Y3vgY8YN04DzxfdZ8qQ2JWZ8XfJ73GeJS00Djux2HkjmMkJ71vHIvxfIwy0l/k+I8bZiDTDPwZX1cli06nU2pJyUCpoMvoCqm6Tj7O+NXXeTy/3w9dPzLeCIVCeOqpp9Dv9/HZZ5/JeLvdrjxTWGtFYwzj/nn/qeY7rDtkHZfaRoPHIOM/Go3GarQoqVRbArTbbXS7Xfh8PpE4ErSEQiEAQCwWEwlhOBwWUMl+aQCkpo+LId1uF263W0AnZd10edR1HaVSSZjEUCg0Blzj8bgAKpvNhkwmI8YspVJJFp1ocuJ0OqUFwMHBAUKhEEKhEJrNpgBVp9MpAJFy8uFwCL/fLwtgwWAQ6XQadrsd3W5X+tSxhQCl6JST/jxM+S87fiEAp+v64c9+5jRN+2MAXwWQ1TRt5mfs2wyA3C9hnI8dVg2cFVZYYYUVjwomF6FQCOFwWGrVVldXpdCe/1ZXV5FIJHDr1i3s7+/jzJkzWFlZwXA4RD6fh67rImfsdDpoNBooFAo4ODjA/Pw8PB4P3nvvPRSLRXzta19DKpUS58apqSm0Wi2RQrVaLRQKBbRaLaytrWFjYwO9Xg/PPPOMrB5vbW0hEonI6nY4HBY5D13mAMiK9sbGBur1ujTxJau4vb2NZrM51peKFv1mfdjMZIVm4I3vd7td6ct07949rK6u4qWXXsKbb76JnZ0dXL9+HcViEa+88gouXryIubk5/OQnP8Hdu3fFSly1UldZCLVWjcc0gjOGEeSp+1NBHJNPtVecOifqfs3Of1L8TYHN44K8nyfMQKcZyDNKAx+1T+O2k8Dtce9NAm6Tjq+CMDJdKngjgFMNQ1TWjYCDzJh6DscBNwI+yhv5e61Wg8121OT693//9xGPx/Gnf/qnAr663a70X8vn88LoTJoH1aGTzBvHTOAUDofldzo81ut1xONxYZ96vZ64zobDYZGStlotqT2jvLBer2NxcRGdTgeHh4dj7pFut1ueL/1+X6TflUpFDErYADsYDIoagK0H+MwbDAZS08uFL0oYdf2ojjCfz0PTHhiG8Lrl83kBXaVSSZ7jgUAAdrsd+XwePp9PapjVRuk8hs/nw+HhIcLhMBYWFpDJZAT8VavVMYktQfJgMMDU1BRcLpfUy7GH6JOKvzGA0zTND8Cm63r9Z7+/AeD/DuBPAfwBgP/pZz//5Jcx0McNy4XSCiussMKKR4XNZsPMzAzsdjsqlQqCwaD0CKK9dr/fx/LyMhwOB65evYpqtYrnnnsOU1NTKBQKwnbZbDbplaRpmlhtnzp1CgBw584d2Gw2fPOb34SmaahWq4hEIgiFQmLXrWka0uk0AoEAPB4PQqEQPB4P5ufn4XK5EIvFkM1m8cUXX2BhYUEYOAI5ypmYaAWDQQFAwBFgnZ+fFwklV5npNseVeKMDJGDe+8oIZCYl34PBALVaDbquS02ex+OR5PLw8BDf//730Wg08Pzzz+Ob3/wmotEorl69imKxKMmTaqyiyh+NtV7GUJNhhtF9kgm7+jpfY5KpJtKPkjWa/a6CETM2blKYSRKPY8PU8TyO3HDSMY8Dbcb3jdua/W3Glk36/XFZDS46qHVslE2SdVMXJ4xSSZVxVvenjoF1bur1U1k8gip+PyhnrNfruH79OjY3N2GzHfU/azQaSKfTKJVKwrwZQSp/V/+p/e4I1iiR5P1LmaHX60UsFsPi4qLU2ZK5Zz2q0+lEJpORfmZkpzRNE9l4rVYb++6yJQEXh8imkRWkuQrt/NkChdvScMTr9aLRaAj7R8MmfoYmIbw+ZOHIgnGeWq2W1LKx3i6bzcLpdCIQCIjzJvvEAUcsYTgcRrlcFhawVquJtLbVaskc85nDNg88P0rpXS6XLDI9qfhFGLgUgD/+2WQ6AHxX1/W/0jTtKoA/1DTtHwHYBfB7v/gwHz+OGDirBs4KK6ywworJMTc3B7fbjUKhgFgshvn5eQwGAyne93g8WF1dRbvdxu3bt+H1enH+/Hk4HA7s7e2NSRlpM12v11Gr1RCNRpFIJFAsFpHP55FKpUSiqes6QqEQbDYbCoUCQqGQgBTKJfP5PHq9npgIBAIBXLlyBfv7+5idnZWkIR6PiyRIrbsDjhIcTdPgdDqFiWOfpu3tbczMzCAUCglLxuSIq/4ul0vqWMxAmhFMkMUyk9yx3m5rawt/+Id/KE6bBJnlchlvvvkmDg4O8Oqrr+KVV15BKpXC+++/j93dXZE6qUkyx6CakwAPtyIwG7vKbKisncrM8TMq8FNZGuM8GP82vm4G9I57bxIoepSc8lHvHQd2zY5lxpwZAZlxf2rdohH8Go9jxnYZXzc7lgqmCN4I2tRaN9WchtedbAzZVhUYqcyrGqopDsPtdgtYcLvd4r56eHiI7373u3C73dJcvFar4fDwEMViEa1Wa0xiPOl4HA/3TcaL/ctYP2az2eDz+UTimEgkUCqVpKccDZG4TxqLcDGJMuuVlRXE43Hs7u6iXq+LqyVBFtk9Pr9KpRKSySTa7bY4YrbbbVmcYd84tk3hXBEIUoKo6zr6/b64TdKYZG9vT+qIy+UyNE2D2+2WPm+qCUqj0ZC2KTSPUmXf3W5XWhPYbDakUikUi0XYbDZMTU0JI8rm571eD06nc+y5WK1W0el0EAgExlrNPKn4GwM4Xdc3AVw0eb0I4Dd/kUH9ImExcFZYYYUVVjwqRqMRqtUqkskkEokECoWCJA5qc+9CoYDZ2Vlxbmw2mwgGgwiFQqjX6yJ/LBQKsNlsiEQicLvdqFaraDabWF5eFkc6l8slrm60uu52u1LDRpe1QqGAeDwu8qhbt26h1WphaWkJbrdbwCcZLBbzz8zMIJ1OY2pqShIVlZVjQre0tCTObel0GgcHB7KSzvYCqiMkMLkOTn1/EgvF+aYpQavVQiQSQTQaRSwWg6Zp6Ha7uHbtGkqlEl577TWcO3cO09PT+OlPf4ovvvhC6veYtKpAhCvmZuMwhuocaAbIjHJLNaGfJDfk78eBq0fJDI2vTwozpvNRYbbNo8Y5CeCZyRqNc6OCXmM9odreQd3OyDAaQbQRfBIkkmUjcCNo43sM1bBGZXMnnY/Z2NTzpGEJ5XlOp3NsgYES4uFwiHq9jr29PVQqFZE0Gu8H9dzUOaP8MhAIjNW+EQD2+31hz9geYGtrC5qmiW1+LBaDrutivDEYDODz+RAMBuV5duLECXi9Xni9Xly8eBG3bt3C7u7uWG2p0+mU2t5EIiEtSQjwKIEcDAYIBoNwu92iDiCLx4UYTdNEtcB+cWTs7Ha7sIPhcBilUgl+v1960bFlgd1uFxmqx+NBJBJBtVqV50mv10M0GkW/30cymRxz1qxWq9JrkwtiHIumacLqcdz9fl96ebKGzmazSVuCJxG/ijYCTzSsGjgrrLDCCiseFYPBAPPz88KE2Ww2BAIBkRQVCkftTaPRKLxer6wMMwmhexyTOzbm5mq70+nEiRMnMBwOpQcc7baBo1q1RqMhQM7n8yGTySCfz2NmZgbRaBStVgvVahW1Wk1cKqenpxEIBHBwcCCr+dPT04hEIkin09jc3MRgMJDEjXVArIGhYxxlmul0GrFYTFbcCSgZZmyKyroBD1v3GxNjNfkmm0bTlk6nI9KudruNzc1N5PN5vPDCC/jqV7+K3/3d38WpU6fw3nvvYWtrS8ZFMKDWtamMhtGYRP2cem7HtSmgtMt4vupccDvj70Ygqf5tBpKM+zDGoySTf5NQxzkJ+B7HtBlBm7oPVY6ofkcIBsxcQ/k59TjG8yPbpta6qQYlKpOmfobbMEknuzRJGnwccKQEuNPpAIDU2Q0GA7hcLpEDsln2wcEByuWy9ClTz0udc46T7S14/5Ft0zRNWgYY54v90yqVChqNhrB2NPOoVqsAjpqGu91ueL1eYaZcLhdmZmbw4x//GM8++yyeffZZqfHlmPmsI1hqtVqIRqMCljgXZAi73S5yuSMLDD6DWq2WgDQCI5qp0CHS6XQin8/D4XBgenoajUYD4XAY/X4f9XodHo9HJKFkHHn/VKtVuFwuUVIQhE1NTaFWq6FeryMcDotsnUwlWwywXo7XklLPaDQq7ByvLetk/3uVUP43GXabDYOhBeCssMIKK6yYHIuLi3A4HMjlcsKczc/PY3t7G7quS2LQ7XbHbOaZ6JPRGg6HiEajWF1dFfBGl8der4darSYsU6PREKc3urgxcaDkiBJJgiwygFxdHw6H2NjYQDabRafTwdzcnDQBz2azmJmZQSwWg8/ng8/nE6YwHo8jEAigVqthaWkJkUgEH374oSRRAGQFXU1KmCCS+QImS76YmJsxGmqwdoYSNq7os7dSq9XCu+++i62tLXz729/GM888g2QyiZ/85Ce4ceOGGCCo1v7qMVSgYEzS1cTZKLOcFNyXEcSpwE79/TiZJONRx3wUoDPu57j9m8kgjceYNAbj3+pnjX/zJ8GUKnPkcYwgTp2/Sfvj5whwWHdGQw8ez8xlkmwcHQhZw8VQgb+RQTQuCGiahnA4DLfbLYYlZMtUu/zRaIR2uy3grdFoCBA67lqSbVNZRBqIEKgC466sdGYMh8O4f/++jKfdbuPEiRMYDAZot9uoVqviqBiPx9Hr9ZDP5zE7O4tGo4F3330Xm5ub2NvbQ61WwyuvvAIA2NzcFHdeNrWmZDGRSMg1IQjj3zs7O+KC2+/3US6XRWoaDAbFrt/hcEgPOko67Xa7LDQFg0HUajVhzrjo5fF4REbJ+5jqCUooKalst9vI5/OYmpoScLewsCBNwMPhsLCZBGkEmKy9433H9gJUK1gA7pcYFgNnhRVWWGHFo6JaraLVaiEYDMLn82Fqagr37t2Dz+cTkxDWO5DhodX1YDDA1tYWSqUSFhcXMTMzg0qlgkwmg0QigUQigX6/j1qthqmpKXQ6HdRqNczOzoqkqFqtPmQMAECSII/Hg/v370vdR61WAwA0m02xA19bW5Nks91uI5FIiJsc7cNbrZasRA+HQ6RSKVQqFbz55ptwOBxSw1EoFMTJkoYJTEiZMKo1REagwqTHmPxOCjKTnI9er4dYLCasYbfbxcbGBv7jf/yPeOGFF/Dyyy/j937v93D69Gl88MEH2NraEkmYKvMCxlk2laUDHmZ7jHV1xjHynxHsTWLkHkdCOel9I9PJ8R4XP8/7RsbN+L4ZK2S2vdnv6vbqPyMTB0yuUzQ7DkGSWutGdopgQd1WBXB8z+VyiYyZoRqbqMc1NnTnPl0uF06dOgW73Y719XWpl6TJBZlnmndks1mUSiU0Gg2pUTWbW/5UwRvBJt8j6KnX6wIYaNTC5trb29viRjscDjE/Pw+Hw4F2u41KpSJSy3g8LuYgZNb6/T4KhYL0R9vZ2UE2m0Umk0G73ZbFJgI5XddlkQgAAoEACoWC9KLLZDLyOpn2bDaLSCSChYUFWUjS9aNm5vzul0ol2O12cZjkOTcaDZGwsxbQ5XIBgDznCOYIGtlKha7Ac3Nz0m9veXlZHISdTifcbre0SaAqgLJcnnMoFEImkxGgyPq+X4QB/0XjSwfg7HarBs4KK6ywworjg8nA1NQUHA4Hdnd3MRqNsLi4KFIrNuJlQl0qlbC7u4tyuYzRaIQTJ04gGo0im82K/TZlPx6PB+fOnQNwZH0dj8fFda7X6yESiUjS1+/3hYliEf3Ozg7q9Trm5+fh8/kEtAHA6uoqUqkU9vf3xSJc13XE43FplAtA6lDY24myKTbYdTqdOHPmDMrlMtbX10VmxeSIEisVmDGhNza55u/qNvzdbBvukwnicDhEr9dDp9MZazJcqVTw1ltv4eDgAN/61rdw/vx5LC8v4+OPP8ZHH32Ew8PDsZ51ahB4Aw83+zaGEcwREKrMI8MIxlTAZZSOmrGV6jyofxvBktlcqvtXx2LcTmUmzPZrNhbjvo3vT2LJ+DkVrHFOjbVkbPJMYG00vjFur7JcBHIAHmKp1DGrcknawKvgDRh3IjWCN+P5ejweLCwsoN1u4+DgQLbludABVtd1lMtl5PN5VKtVAW+TrpF6HOP1stvtYww9zTT40+PxYGpqCgDEOImLKKlUCh6PB8ViEaVSSXqv0QHS6MpYrVZRqVRkMWdqagp7e3vChqkMFBuUsxXAzMwMCoWCqBJowOT3+zEcDqXub3p6GlNTU6IqcDgc0oCbxiOsK8zn8+Lk2Wq1EAqFxP2RRi5mCyY0NalWq5idncVwOEShUMDMzIwoIGZnZ+Hz+bC3twev1ysSep/Ph0ajMXZPs8YumUxKewEVNPP58KTiSwfgnJYLpRVWWGGFFY+I0WiE5eVldDodlEolaJqG2dlZ7O7uimQJOLKm7vf7aLfbqNfrqNfriMViYrdNMHbp0iW4XC5ks1lxW6tWqygUCrh9+7YklCdPnhxLtnq9Hux2u4BCl8uFK1euwOVy4eTJkwgEAmg0GvD7/WNuiTdv3gRwtMrtcrmkHQBw1ETb6/Wi0+mgXq8jGAwiFouJs2W9XsfJkydht9sRj8eRTCYBQPpC0aWu2+2OOfYBD6SURmDwKNCiSueA8RolXdfFzZOsQDQaRTQahd/vR6/Xw82bN7G3t4dLly7h5Zdfxre//W089dRTePfdd/H5558Ly0BgaKw14jGNbQOOuz/U/m9mjJuZBNHITqryQcZxgMo4L0ZApe7PCORUOaDKRBmPNekamYE343iNLKEZy2b8m59Xx2R2nurxAIhkUG1MbSaVNDJw7CtWr9cfAm5GkGZ2rtyOrLvf78fBwYGwvcbr5PP50O/3sb29LawVzUqMYFc9Lu9FLjRw/GTA3W63yD75OYJSmqc0Gg2RHg8GA8RiMXg8HuRyOdnnzMyM9GOkHHxhYQGhUAiFQgFbW1si0Tx79iyCwSByuRwGgwHcbjfi8TgODg6g67pIKCuVCuLxuDTSjkQi2Nvbk4UhMm9016XTZblcHqshc7vdcu9GIhFh3hwOByqVCkKhkIAlj8cjCgW2WSGDDxzVAbbbbcTjcXi9Xuzv78szJJ1OIxKJwGazYWdnB8DRs7NSqYibMJtzezweWeCbnp6WBbJAIAC32y1spNHo6dcdXzoAZ7fZLAbOCiussMKKY2NxcRHFYhE7Ozvyn3y5XBYgYbfbsb29jXa7jWg0CpfLhUAggFQqhWQyKSyUz+fD6uoqer0ePv74YwQCAWSzWWjakSvb559/DqfTiUgkgtOnTyMcDiObzcLn84n1uSpxunnzJgKBABYXF6Vejn3iyJzRTY39oWgmQPMSn8831lCXrm66ftT3KBwOy+oym/DSIIU1aEw+ycaRISM7YNbcmr+rCbkqkzPKGFXGhQkRkyKyhqzd44r/22+/jdu3b+Nb3/oWvvrVr+L3fu/3cPbsWbz33nvY2NiQWiPVVEM9rrHtAEMdJxlBtc7ObMXfDNyZsXPq3Ki/H8d2Gf+eJGOcJLU0A0Tq30bJptlnVJCqAhbj+NVxqdLE44CdelzjvlVmzWY7cvpzOBzCHpkxfKxJWlpags1mE3Z60ryrhjXG43OclNDx+8GFDJWtvXTpEgqFAn7605+Ky6tqVmI238fNIY/Be5Wfpdza5XJJrVehUEA0GoXNZkO9Xkc0GpVaNf5MpVIAjhp+U5odDocRDAbRaDRQLBaF0bt48SJee+01dLtdXL16VVi1ZrMpTGi73Ua5XIbP50O325U6252dHQFk7XZbFg5SqZQ4PbJ1ARtxq8xiKBQSMxFd1wUg0i2Y5+Z0OkW6qQKoYDAojB5bENBsJp1Ow2aziVpiOByKZBM4UmP0+30Bv6yxjUQiAI6eTTabTSSh3W5XVA6Pkkb/KuNLB+AcdqsGzgorrLDCiuPjxo0baDQauHDhAqLRqCSp4XAYxWJRGl0vLy9Lk2s2+qa7G6VVW1tb+PDDD4UtS6VSmJ+fx49//GO43W6pF5mbm8O9e/egaZpYUnPll8YHJ06cQDKZHGsqy/oY1qsMh0NJwrii3u12pT8TDQLi8ThqtRoqlYq0LKDpAevyaOXtdrvFGrxcLsuqPpmoZrMpSaVZGwGVkVFZF26vfob7IVOmAiq6Zar/gsEgEomEsHGHh4f4D//hP+Djjz/G66+/jmeeeQYnT57EjRs3cOXKlTEgpwLJSYYmBAsEbQTnZiYnTEBVtnESeDMex/i3GTumzqeReTvuGI86vlHGZ5QqPiqMDJwRfKqAy8iKGT+jMqEMMl7qNvwME3XVYVL953A4pCdbNptFs9kcG68K5tXxqsdTx6Fpmphq8L7hYgslxZFIBBcuXMAHH3yA69evo9FoiGTSTHJr/K6YjYnNoimd5DY8NmvG6FBLKWO9XkcymUQsFpO2BXSLpJogGAwK+GGN3fb2ttSBPf3002LiVC6X0W63hTUja1mv19Hv98WtsVwuIx6P49SpUyKd5Db9fh+RSESUAJRRsl8bZa1utxuRSAT5fF7Aejqdht/vR6VSgc1mkx6a3W5XDESoBGg0GpiamhKDKIfDIRJNSs8dDofIMAeDgTxfuVA3Go2QSCTgdrtRLBbFwXI4HMrzkc9auvTy9enp6Ud+d35V8aUDcFYfOCussMIKKx4V7XYbly9fRjQaRaVSkdVmFvLTFbHRaKBcLuPUqVNix81V7EAggM3NTayvr2N2dhaVSgUXLlzAiRMncO3aNRSLRZEvPvfcc9JqgE5qrE3pdrvodrs4d+4cgsEgMpmMrIqriRvBGtkyr9cr27KRL5MPyqhYU5bP5+Hz+RAOh2Wlms1ue70eTp48iUajMVYLQxkla2BsNttYTRwTXFVSCTxIWJmoqe8RuBEIGWvHAIgBDGVhTN6i0SgikQicTifa7TauXbuGra0tfPWrX8Wrrx41AD979iw+++wzfPjhh9jY2DhWSsnzYMJN63fjuIw/J4E3M7bMeGxjIm8mrVPDuP2k9yYd9zjW0DjeSftXQY6RreL7ZvVvZgwdwyhFNLJuKnghEJmbm0OxWITX60Wz2RQ2qt1uYzQaIZ/Pm4LFSWyhOn7+o3kFAAEfnKN2u43hcCi1pH/6p3+Kvb09tFot1Ot10/5uxwF0BgEovxNkuwGIZJHsO5m1aDSKfD4vBh2xWAz9fh+VSgWVSkWOEQqFpFUGXWwBYH9/X5QAyWQSJ06cQLPZRKvVQj6fF2A4MzODVCqFzc1NAUutVkukjNlsFvF4XJph8xkUj8cRiUSkR2UkEpGWCKzvs9lswpwRlO3v78PpdKJarWIwGGB2dla+76oSgc+dZDIpygOqG/jcJDglq8a+cDRGIRvPesp0Oi098tjMmwYm8Xhcmn3zmUYjmScVXzoAZ7lQWmGFFVZY8ah45pln4HQ68f777wMA1tbWUC6XoWmaJIQ0FllbW5OWAx6PB4lEAvV6HTdu3BBGbHNzE88++yz8fj++//3vY3NzEydPnsTa2hpmZ2ehaZrUkWiaBq/Xi+FwKInQhQsXoGkaMpkMarUaksmk1HjQiIGJi8/nw3A4xPXr16XfG/srsc6jXC5LInP9+nWcOXNGGu6ORiOpvQuFQlKzl8/nEY1GMT09LWYnlG81m000Gg1hBSlNNNZjqQmy0QCETMJoNJJ6NWPCqxqJcJXc5/PJij3ZBlVW9/bbb+PatWt46aWX8Pzzz+ONN97A5cuXcfXqVXz44YciheWxzGrfjFJP9dzUnypzdJw80uyn2e9mdXVqPA6oMu7LCBzMxmtWR2fGFJrtywwoGqWTKoOmbqs21zaCNuM2Rokkk2fK18j0sJ7KyKjypxmbqQI8AhuCRfZQY20V72UC+1wuh4ODA+lr1mq1HqoLNV4Xs3uADDXdMvmeseWBWgvo9/sxPT0tzCSVAIVCQZghShRjsRharRYCgYDMV6fTwf3798dqxVZWVuByucRyv1gsSs+10WiE7e1tkVfncjnZTzAYhM1mw+HhIdxut7jKzs3NiSSSbVbq9brMAz/LBTNKs5vNprD9gUAAsVhMFpA4V6qKwOfzia0/e1pS6l4sFgEc1cVls1n0ej0kk0nUajVpF1AoFBAIBGC325HNZuFwOMQ0pl6vy2JTIpEQZpeOoi6XC7FYTBw3n0R86QCc/WcAbtKqhxVWWGGFFVZ0u13cvXsX4XAYc3NzIour1+sAHiSH09PT6Ha70sjV4/Egm82i1WrJf/gHBwd46qmn4Pf78aMf/Qherxe//du/Lavf9XodhUJBGB/WknB1+tSpU+h2u9Jglg3GKTGiXTUTuEAggFarhVQqJQ1uA4EAwuEwarUaNO2opuTKlStotVq4dOmS9KKjK16n05F+S3fu3MGdO3eQTCbh8/mQSCSwt7c3VktH5o8GC8YaH/Uf3zcmzSojBzzsoGgGrHh+dLYjkAuFQiJ7arVaKBQK+LM/+zN8+umneOmll/Diiy/i29/+Np577jm8++67uHr1Kg4PD8WG3az9AMfCMDJsj1Pzps6HcX/GmAS41H0Yx2YGsszklfzspPeM+zgOdBiPa5RfGlkzIyBTAZMK4NTXVXMRFYwBD/qe0TCDfxMAGvdpNkaz4IICQRQXbbjAoTqRkhXL5/MolUrSQ0xl3SYxbkamU2UpuTjDBt6UEaqvcRGFhiqtVguNRkOeL2SOyA6SjSd75HK55HufTqfF2MjlcmF6ehp2ux2NRkPam3i9XrjdbumbxmcXLf4LhYK4MQJHbJ7dbofX6xVQqDrAUt6o67oAI54HG2dTUl6r1WC32wVYNRoNOJ1OkZtTWhoMBmVxJxAI4ODgQO6dYrEoMvd2uy2qBC5CpVIplMtlMW6hWUu/30cgEEC73Zb7Ix6PS2sB1gJSQlsqlawauF9mOGxHX4zhSIfDbgE4K6ywwgorHo5CoYDFxUXMz89LnVgwGJTaMK5G1+t1hMNhRCKRsVX5mZkZWYm+fPkyvF4v1tfX8fTTT2Nubk6c6IAjKSL3B0Bkk8lkUhwoc7kcXC4XwuEwut2usFcEGV6vV3oPqawYeyglk0mUSiWx5P7e976HlZUVPPPMM9B1HTdu3MBgMEA8HofP50M8HsdgMEA+n0coFMLZs2dFUlStVrGwsAAA2NraQr1eh8vlGqsBURNvVXJIEKbKJJnQmzUDV1k3NQE2snFqbZzX60Wv10Oz2UQwGEQ4HJZEeG9vD9/73vfw4x//GN/85jdx6dIl/J2/83fwyiuv4MMPP8SVK1ewu7srbCLHTWDJRF7TNEnOJ4E1IxtnBB6Pu4jMczZ+3my7Sfs1AgdjjZkRVD6K+VMZNOPx1dfVNg1cnODfKsvFe2WSYYgK4FSAYxbcVpXqqud7HHjmGMhykfEiC8TFDeBBb8PBYIBSqYRCoYBWqyXfAaN0WJ0bs0UKI/NG0MDvuN1uh8/ng67rAsYGgwESiQR8Pp8wTmxkzeeLsXF9MBgUgyWfz4dOpwOPx4O7d++K8YnL5cLq6ioSiQSAIyOPTCaD4XCImZkZnDlzBt1uF9vb28J49no9kXrSxGQ0GgmwOnXqlNQLs/aOiz+092dzbEoaQ6EQSqUSXC6XyGJ53vyuc8ELOFrQCQaD8ncymcTm5iY8Hg/i8bgYQiUSCZTLZTQaDUSjUYxGI9RqNaRSKdRqNTFIKpVKYhDDGmAA0vDc6XRKjzi3243hcCj9NskePqn40gE4+8++8IORDof9ERtbYYUVVljxv8hYWFiAz+fD1tYWKpUKFhYWUCgUUK1Wsba2hkajgWq1ilgsJgYA9XodDodDpD2NRgOxWAwOhwPFYlEcE5vNJvL5PDqdjkh6yBKxIH5paQnlclma19LshLJJJmd0aVMbATNRC4VCmJ6eRjAYxGg0QrlcxgcffACbzYbnn39eZE806KDN+dzcHBKJhDB8TPpGoxGy2SxmZmbg8/mQzWbHkh82wgUeMCVqAntcLRyTYSa3xmbOBGzHSQNp0MDEiU2LCXADgYDUSxUKBXz3u9/Fe++9h69//et44YUX8Lu/+7u4fPkyrly5gqtXr2Jzc1OAG5k91VCF5zepjsxMlmd83SzMgIYKWozJvhpmf6tsncq8mbGJRvBmPL7xtUlSSxWcEbgZ2TDVMZI1lGbHMjpLTgLBRlZNvQfN5kT9jMoA0jBF3R+/t6qElnVg5XIZ1WpVgBvlv8ZzUefX7H31PFwulyxocHHE7/eLJNTlcokTYjAYRCQSwebmJjRNEzMVNWhc5PV6oWkaVlZWUK1WhfHK5/PY29sTw6ZTp04hkUgIQGk0GsKCnT59GrOzs7hx4wY0TZNa2W63KyAMOFqYIrAJh8MYDocIBoPCVHEhimCToJROv263WxauBoMB7HY7EomEPP98vv9/e+8eI1l6nvc9X1VXVdf93lV9756ZHe7OLpdccbGWtKBICbLEyFIYBYlBAlZk5CIrsQDLCeBEQoAoCQIIju3YBgwntC2AMhkrAiTCkixY4s0SSVHkcnd2d/Y2Mz3bPdP3rq7qut+rTv6oft79+mxVz967p/f9AYOuy6lTX51TdeZ7vvd9nzeE6elpyXYYDocIh8NyPvP5PPb29iTqyPOXSqXk8/B60Gw2MTs7K58hmUzK87z+2f0CI5GImKDYKZyOM+q32Wg0xOjmrLhwAo4RODUyURRFUSYxPT2N3d1d+c98fX0dqVQKTz75JKrVKg4PD5FIJJBMJqVegpEvRmauXLkidTBMr+QEljbZPp8Pw+EQ5XIZwWAQ09PTWF1dRbfbRbFYlInewsKC1HRVq1UAkBQlihxOxigK6Sy5sbEh7ouf/vSn8eijj56IeHW7XeRyOSwuLqJer+O5557D9evX8alPfUoie/1+XyaqsVgM2WxWJpdMU+Qky46ocfJtm4W4J/3udEq7X5k7gjVJLNn32XKAq/2tVgvBYFCimrFYTCZdW1tb+NKXvoSvfe1r+PEf/3E88cQT+Lmf+zl86lOfwvXr1/H9738ft27dEjdQjtfuA+dOkeM4xgm2SRM6twByP26LId62z71bfJ0WQRuX1sVorltYuM/DuPPnFkt2miLHS4FmP2fv065rs99nkinKOBHG27a9vv0aO12UUT23yGSvRAoe2+2U55yOrzQE6XQ6J1p3uMdqH8fTUmHtY8UoG1M4mXbI7RiJSqfTyGQyWF9fl/osRu15TBk55rUhk8nId7lSqaDb7UpKtDEGP/IjPyJCsFgsSo+7xcVFzM7OolAoiFDltY6Cltc5Lkbx/Rkli8ViSCaT0lIhGAyiWCwiFApJ/8tWqyWCGRgtUnHsbN3AFgCNRkOuYdlsVjIgcrkc9vb20G63kUgkUCwWxZiJKddM96ajZqfTwfb2NtLptGQwOI4jY2FDdh53Rgl5njwej1zXy+Uy/H6/CMqz4MIJOC9TKAcq4BRFUZTx3Lt3T1ZT9/f3sbS0hEuXLuHu3bu4efOm2Fs/9thjeP755zEYDMSBLRaLIRgMolQqSYplMpmUBratVksK7rvdLsrlMhzHEbv+arWK9fV1sbHmxIopkawvYR0eezixoS/r9jqdDr7yla/gm9/8JlZXV/H5z38emUxGUqparZY4vKVSKWnue/XqVdkX07c6nQ58Ph8eeeQRNBoNSQHlqrfdtNduDcDPSGyBME5UuCMU42rLxk3O7e0oJBiJa7VaEr3o9/tYXV3F448/jp/+6Z/GN77xDXzrW9/C9vY2vvjFL+LrX/86nnrqKfzoj/4ofuInfgJPPfUUXnrpJXznO9/Bd7/7Xezv748dhx2JGxfBckfC3M+7o1f28bBryGxRxM/qPranReXGCc77CaVxYnRcdJDjsR+zTTiY2mhH1LiPcQ20bdHlHp/9+ZleaAtBt/B3HyNbrPE2o8785zauoUFKuVwWF1QuEkxq2DwurdT9PAWOvaABvBGVZNTdNvkBRgYcsVgMW1tbYijC60okEhEDJC7oBINB5HI5VCoVhEIhtFotbG9vS1uQaDSKhx9+GI8//jju3LmDYrGISqWC/f19zM3NIZvNotVqyWIVU5N5bCj6yuXyibqxqakpHB0dIRgMYnFxEQsLC9jd3cX09LSkH9LtlxG9crks+7bPF48B9800y0QiIYtIc3NzODo6gsfjQSgUwuHhoVynWE9nf3fi8TjC4bD0/IzH4zg4OMDU1JQYolQqFbTbbczMzEgUkCYsHEswGEQsFsPR0ZF8Z3uFZO0AAEd9SURBVNyR0A+SCyfgWPfWH1MMrSiKoijAKELmOKPG1pcvX8bCwgJu3LiBW7duIRgM4od/+IexvLyMtbU1DAYD5PN59Pt9zM7Ootvt4rnnnkM2m0U+n0csFgMwak1QKBRkQkuxxpVlRnkODw9lIkxDAjbppbsiJ7yRSERSllgjl0wm8eKLL+I73/kOKpUKPvvZz+Lhhx+WiB3r2Ow6GEatvF4vZmZmAIwmkKypC4VCIsqYhrWwsID9/X30+30kk0m0220Ui0VJ86rValLjRvi57HRI3uaEyh1dIvcTKO5oB/dBowK68LFH1ksvvYQrV65gbW1N0sm2t7fxla98BV/96lfxsY99DE8//TQeffRRPP7448jlcvjyl78sRgqnCaNx43PfHmek4RZGdnTIriEb93ndkalJY3A/Nu65SdjRonFpgOMMSezo2rgooztFctIxsbfnuGl+w8m+LbrG1QzSWIjnz+fzSUSFhhz2Z+n3+9KYmW00Op2O1LfabqnuhQm3+HUfR25jp49y/LwmsK7K5/OJqQYwarydSqXkegIAPp9PjD9sk5JgMIjDw0N87GMfwyOPPIKXXnoJa2trqNVqUifKyNjc3BwWFxdRLpexubmJ/f19ZDIZpNNpbGxsiMGIbZHPtEK/3y8phRQ1XLRiFsLdu3exsrKCS5cu4d69ewiFQohGo6hUKqhUKkin01JL5ziOREKZyjg1NSUGJly8YjuCwWCA+fl5EXI+n09S0OPxuEQcOS5eB5gOPj09LbXCjuMgHA4jmUyiXq8jHo8jHo8jl8vB6/Xi8PBQjGT4O6XbL6OaqVQKR0dH435GHwgXTsB5LRMTRVEURRlHqVRCv9/H8vIystksnn32WbzyyitYWVnBysqKpBbRzn8wGGB1dRV3797FjRs3MDc3J/bbrVYLm5ubACCrtJVKBeVyGdlsFo1GA6VSScw/WDvBIn2u+i8tLYm5AleiAcj2rEX5/ve/j42NDelNl8vlRIwBkEko0z+r1arU7DUaDXzkIx+RGhW+F1PDGAHk+Oh0CUD6wRUKBZm4MOWJky/HcSS1cmpqSiJ9xrzRANuu57NxC5RJwmNcyiDdPukOWC6X8eyzzyKZTEpvr2g0ilAoJBP1r3/96/jWt76Fy5cv48knn8Ty8rKYnRSLRRmvnT5oj2ucoDpNZI2LxLkFnFssATghet3743gojt3Hbpyz51thnBgbF32zUxXt13LM7pTKcceF+3JHAu19u91C3d8N1pFSWLI9hsfjQb1ex8bGhmwHQFqEVKtV6QtGwWbXV54mlt1GMXzOLV5tQx/+/mmkwggPG1SzZ1s2m0WtVhODFf6WyuWyCKrZ2Vkx9GFq98zMDHq9Hg4ODlCr1eT92u229IHc2dnB7u4ubt26JemE29vbIhrZXw+ACKV+v49KpSJphHSF5e97ZmYGw+EQ9+7dgzEGV65cOSFuer0elpeX0Wq1xDGz0+kglUqdiKL6/X7pv+bz+RCJRNDr9WTbZrMpKdPs5cZjxzRKWxSHQiGUSiV4PKOG4LwuU7xxAavf7yOfzyORSODll1+W+j5+X+LxOBzHwc7OjrQ54Gc4Ky6cgNMaOEVRFOV+cGXWGINvf/vbKBQKuHTpEqanp7G+vo65uTlkMhnpqZRIJPC9730P6+vrWF5exuXLlzE1NYVarSYpTqFQCOFwGIVCAWtra2IUwAa2juNIwX6r1RI3NTa6TSQSACD1FnZqGlOo9vb24PP58NGPflTSfzwejxgHkFQqJZbf3GcsFsPc3Bz8fj/q9brsmy5xTJlkmmY+n8fNmzcxPz+PQqEAv9+PUqmESqUiKU+sk6MZCKN8nBRR0HC/70SgjXtuXBSE71mr1aQ2kaldwWBQJnRsdM6o3QsvvIAXX3wR4XAYjz/+OJ566ins7e3h3r17ODw8lAkzgDcJCRu3+JgUYbKFyThDDXdaodssZtz72mLJjmK+GwFnpy7aj9vi0y3o+L6T2gVwv+7HCd+PfdlsYcp/dmSO0blYLCYTfra+KBQKJyJe3G+9XketVpOoLGvb7Fq4cWm94yKi7oUE+ztup8NyzFyMMcZIOwz+lhiFj8Vi4pIKjBZO+J1mlJ7Romq1Kvfb7Tbq9Tpu3LghfSBDoRD8fj8efvhh+P1+3LlzB1NTU3j11VeRTCZlISeXyyGRSMh3kvb6rF+rVqtSHwi8YZYCQAQdr2WNRgP7+/tYXV3F2toa2u02UqkU9vf3T/Sp4/XOrgW0o980RjHGIJPJSB9ALnqxPQBFujFvuGPymHLcs7Oz0uw9HA5jYWHhhMstm5Hfvn1b0junp6el7i8Wi+HWrVsi7GKxGA4ODiRN9yy4cAKOLpQagVMURVEmwcL1119/HcPhEE888QTK5TJqtRqWl5fF6W1ubg6tVgvPPfccHMfBU089hcXFRQyHQ7Tbbdy7d0/MSnq9HnZ2dvDiiy/ikUcekTSi4XCISCQiRfmdTgczMzMS7aI5QTwel/QfTt64wky77n6/j0gkgkgkAr/fLxND2oU7jiMpkgCkX5IxRvo77e3tSfE+G3obY0QklkolJJNJ3LlzB/l8HplMBtPT0ygUCuh0OtJCoVKpyOSUE85AIIB+vy/vCbw5YjEuCucWO+4oF7GNTiaJJFvI0UKdBjLNZhOVSkWicTQ9oHnMN77xDRhjsLKygtnZWVy6dEmcSmmOYJtl3K8Gyh2ds01KxjWyPi2t0D42tlA47X1t0XNaZHBceui41Fg7GmdHb8eJzkljs6Ntk6JVTNGzhRS3ZZrk1NQUZmZmkEqlkEgkxHTk4OAA7XZbBJ4xRr4PPI+046ddPVP0xonzcYsF9nG1GRdFdItI/mO/tmg0KseRESi+zphR3VmhUJAFE7rdGjNq5u33+3F4eIhYLIYvfelLcpv7v3LlCgqFgkTPCoWCiLV6vY7l5WVkMhk5Fh6PR9IUKc6YYk2RxqgcF0Js4XV0dIRwOHxi8Wp3d1d6r1EAOY4jESxjDI6OjuT6kUwm5ZxkMhmpv02n0xL5SiaTACAiPBwOy3UlFAqdaFXQ7/exv78vZipzc3NYW1sTs6O5uTlsbGygWCzKohajltlsFjs7OyiXyxLJ4/FJp9Nv+r58UFw4AacROEVRFOV+HBwciPU/i+J9Pp809Wbd2+HhITY3NzE3N4f5+fkTNv8HBwdS/0ar/L29PVy7dg3z8/NYX1+XGpNYLIZCoSCTxEajIdGXXq8nK8lMq2IqECd03W5XbP+5ck5rbjt9ks2uuV9OpsLhMOr1Oo6OjsREgY3DuYo8HA7h8/mwuLiIVqslrRaGwyFmZmbEQa7f76NarUqdSaVSEdHJ9Cfg5GTWnujaTn7jomn2c6cZdox7jRsamzSbTQQCARGx7XZbRF0wGBTnvkajgWaziY2NDanRSafTWFhYwMHBgQgA9sAaJ3zcn9udgkjhY0fh7H3YYm7cfiaJvHFplmRcup/9OjtS5+6zZr+XPVa3sYgddRv3Hm5h4xat9nu6rfrt2jYuhtC+vtls4rXXXkO1WpUURH6nacbDaBtryLjIwFTJSbjHNu55t6Dm57U/j52CS+MSuk9SBDEF2ePxoNVqiSut4ziS7sca2FAoJOYk7XZbImmtVgu5XE6MQObm5vDqq6/iypUrWFxcxNramph0tNttPP3007LgwRRFRqq4cMTfCt0jKdToMNlsNhEOhyXyFQqF0O/3cfPmTXz84x/H9evXxTSk2+0iHo/L943NuCmOAJxIzWQzbpqRsO0BI3alUkncLpkOyRR2Gq3Q6MTr9SIajWJpaQmbm5vi9nv16lXs7+9ja2sLjuOI6AQgkb9isYhut4uFhQXpC8iWMmfFxRNwXtbAqYmJoiiKMp5arYbV1VURIUyz4+Rgfn5eol6ZTAaLi4vSyPro6AidTgexWEx6FNEd7vHHH4fX60W5XEa9XsfMzAySySRqtRrC4bBsR3MDWlfH43FJraTQYF0XUxNDoZBY/tuTTrsBLqNwnGRworu7uyuuasFgUFLQeCy8Xi/a7TaMMTIWj8eDRCJxogaHqUtzc3M4ODgQQwB+LmOMRAo4GWUq5biG3cQWYpOEhpu3uj1TODn2QCAgk2aKZDsFlhPZarWKVquFu3fvAgASiQRCoRASiYTUBFEQnCaQOAY7amW3YwDe7NxITnOPHGcGY4skO0XsNHHnfh9bdNjYZiX2uO+3v3EpkvzO8NxwO0bM+PmYCpfL5ZDL5TA9PY1UKoWtrS1sb2/j7t27si3HzUUG9jer1+vyGIUbz5l7fJMWDMalUboXGNzRSftY2OeFbouMpPd6PanXYzsMLvLUajURE4lEAgsLC/B4PCiVSlI/xuvNYDBALBaT3zijbcvLy8jn8yIKHWfk4PrJT34Sjz76KO7evStNyunOGQwGT/RYpKEHo1J0lQRGUX4eh1QqBY/Hg6OjI2QyGakZYzsCCkvui79LLgjQXKrf70u9KkUZe7gBkIwDYCT4GNXP5XLidslFJaaRBwIBzM7Oolgsyvfm6tWraLfb0kqBi2herxfpdBqhUAh37tzB0dERkskkgsEgNjc34fF4TmQ6nAUXT8BpBE5RFEW5D8vLy7IiDLzhyMgaFABSuxGJRCR9iAXxkUhE0m2YqjU/P492uy2TIUYK2LSWqVwzMzMnHPByuZw0ko1EIohGo1LDxdTMcDgstR90oeP+AoGANBrnRLbb7WJ2dhbVahXb29vodrsolUqSSsk6O0bTYrEY/H4/9vb2kMvlMDc3J5MuRgpYd0ORyca3R0dH4qzJiS0n53y9HZWzcU+A7XS/d8q4VEE7jZM9vRiVYy0ha4zowjc7Oyuulj6fTxw4uW+eK7vfHiel7joqfsc4uXcbfNh/7eNh/3U/5+7BN24bW4idVkfnxi3A7PRPO+3TNiwZFy10j98dybPTSCngGDXJZrOYm5uT7/7u7i7u3LmDV155RSK9FG/8fXa7XRFtdu+2ScJt0vdvXNqk/Rr3/XFptfbx4oINf3u8rlAYsY9avV4/EcXm8QkEAlhYWEC1WkWv18Pi4iL8fj96vR729/cRCATEWCOXy6FUKuHg4ACrq6uYn59HuVyWKP1wOMTVq1cRiUSwu7t7Yqys67VNYSqViqQf85wfHByg0+nA7/ej3W5jMBhICjgt/SuVCorFoiwIcQGLjry9Xg/RaFTOTygUkusdG46zvQlFJ49vtVo98XuiQzBbPlD81+t1abswOzuLWq2G9fV1NJtNXLp0CYPBQNLoKdwYXcxkMjg8PES1WkUkEkEymUShUECv10M6nUY0GsXt27ff0u/p/eDCCTjWwPW1D5yiKIoyAU7oAoGA2NCzEXev10O9Xpf+ZzQ8oH02J4asY4lGowgEAigWi9JHaW5uDqlUStJ0+H6sXaEVdSKRQC6Xk/eLRqPY3d2VSRDrRRgxsg1HOp2O2G+3221JvwQgfaI2NzcRj8cRCASwtbUl/er4edvtNrLZrEQimZ5JYeDz+dDpdFAsFmU1nhPEfD4Px3HEkIVpofy8nAwxJZSixi3S7OiUOy3xnQg59+TaDd+70+mIkGMUjkJuenoafr8f0WgUH/nIR/C5z30OzzzzDK5fv447d+6g1+tJdJSin+eJznd2TVEul5OoUKPRQLvdPhGNmpSCSSZF0CiQeZvQgMS+b0eI7KidbbThFiT2NrYph32M3Smgk1JB7c9k14Oxh1kymUQ6ncbs7Cymp6elpu3GjRsolUqSLsyINAARDPw9MQWWZiQ8B+4FBPfxtT+/nfI4Tqy5sUWafd9Om2Q7A7/fj0QiIXVvdJpkzzTWVnG84XAYkUhE2iA0Gg1cu3YNXq8X3W4XtVpNrkGMYO3t7aHX6+Ghhx5CMpmUhtX8l8vlEA6HEY/H4ff7sb+/D2NGpiqMljN9kjVvwOg3HY1GUavVAIwiWuVyGV6vV6LSNBZhpgKNQJaXlzEcDlGtVmU8/A74fD6p1eW1dGdnR7Ii/H6/9HYLBAJiWMLvfq1WkzYnvDYzEklzGl5LWcebTqfh8/lw9+5dNBoNMT9h+m0+n0exWMTGxga63S5WVlYwHA5Rr9eRSCQQj8dx9+5dbSPwXqIROEVRFOV+1Ot1JJNJqS+zV9xZ8xUIBLC/vy+TCU5YKMLYZ81xHGxsbGBqagqHh4dIp9MyAahUKhLdojhkpC0YDCISiYgDXSgUkmJ5OxWKq9yMtrG5cCwWgzFGUpBs5z6uti8tLUkkL5vNAnijnxQnQOzTFA6HMTMzIyv7TOdi6hXTBlutFhKJBLa2tuDxeMThjcYGnAjRhMAWKvbE2J2WNq6m7H4i7rRJ9aTH3NtzwkwRTFt3O+rw27/928hkMohGo1hcXJTWDIzqMJ2M9U3JZBKPPfYY/H4/VldX8fTTT0sa2MbGBjY2NrC5uYm1tTVJyeWkfVxE7a2IPPvz2eJt3P1xJiPjBNikFM9x9W7jtnFH6/g9p/lIJBLB/Py82OAfHR3hzp07knrHY8HzzAk6jUcowBnRoWhjfRt/z5Misu7vhPs6MO4140Qdv+fu9gkUuEwbpHmOz+fDzs6OfMcYNQyFQifqv5g2XSwWEQwGcfXqVVmA2drakkwC/uY6nQ6CwSCWlpbQ7/exs7MjY2ENXSKRQCQSQTabFYFDgUTDJUaqmV1A8cYofiwWkwyE6elpEcyRSESuVTMzMzKeVCqF7e1tOX62wQwXkhqNBvL5vGQJtNttSTHltuVyWa41juOg2Wxifn5eWifYYpILNPPz80in0ygWi5ICSiHKbAX7Pebm5tDpdGShZmlpCaFQCK+88oq0Yuj1elIzd1ZcOAEX9I8uUs3O+JQCRVEURaEJCKMu/I+YqVvhcBhbW1vY3d2VmjFOgBzHQblclqa0h4eHks5z9epVxGIx7O/v4/Dw8ERvKlpgs+E204nC4TAASDE+U3lspzj2hWPvNjq8tVqtE0KJaUPsL+U4jghEtjKg0UOj0ZD+TYlEQmpJOAGlfTkNE1599VWJMjElqlarodfr4ZFHHkGz2cTm5qZEBthSAIC8p92M2R2pGRcdud8Eyf28O7pnCzx3upz7tcPhUMRBs9mUiXe1WsWdO3cQDoflWNLy3T5/7XZb0ih3dnZw9+5deDwe5PN5XL9+HR/96EexsLCAy5cv45Of/CR8Ph9ef/11HB0dYXNzE7u7u2KuQ6dEinU7OuY+PnZza1sM8699DvjZbYExLuIGvLnPmx1ps8dg1/Px/RjB5IQ3kUggmUxKrzGm6h0cHOD27dvSd5EpzXaUbTgcYjAYiPGG/Y/ffdaF2m6S4877ad+hcd8Vd2TNfo07wmgvoHDcjOr7/X5EIhGJ3G9tbcnvldFaRuEASNRtMBigUCggHo9jaWlJhE2xWJR6M8dxkE6nsb29jcFggFQqJeeqUqnI8eP2dFH86le/Kr0ibQdOft/YHoTR9FqtJiKHLpAUSmwqTlMYLuBw/3ShZG9LO9LX6/WkvcDe3h5isZgcO/vcMQOCgqvdbiMej2NqagpHR0cYDAaYmZnB/v6+CL2lpSXkcjns7+9LxgUXrBgJ5zW31+shn88jFovh5ZdfhjEG2WwW0WgU29vbsvDg8/mwvb2NTqeDeDx+6nfr/eTCCbhEaOQ8VGn1zngkiqIoynnFnnCyHiwSiWBubg6BQAAbGxs4PDxENptFqVSSXlPAyEVxbm5OJiZMIcxms/B6vdje3pYJCaMOnKxxMmyMEeMRYwxKpRICgQAASCPfbreL/f19caxjY95wOIzhcHiipoeighMeRtHsnnLBYFBewwny3t4eVldXEQgEUKvVZDJDEcOUpsXFxROOmcFgENeuXcMzzzwjRgvlchmhUAi3b99Gu92WCSAn/5xcu0WDMeZNou5+aZSTJtbufUyavJ82qXcc54QgoFENUy15rHleeS55PikoWBtXrVbx3HPP4cUXX5ToXCqVQiaTwerqKlZXV5HP57G0tIRIJCJpqUwhrFarKJVKqFarUpPDFFo7wkQBwYiQXfdn/3ULMOCkuyR/HxQjdp0aJ/B8jd27jDWfiUQCqVRKok4UGfV6HXt7e7hx4wYajQYajYYsQDByxt+XLcr4XWRkxxZtrD1kPdy4czsummt/R06L1k66b39X+Pl4fPi9Yzqex+ORFD6KDW6/u7srt9l8enp6WiJE3W4Xc3NzSKfT4nTLejHa6MfjcYkOZbNZeDwe+d7SGIVRtUQiIYsEduozo5X8ngOQ1EkuFAGQJtkApAUHr2v8TsbjcXH47ff7WFtbk7pGtkrg+WJ7h8FggEQiAb/fL4snPP+8VvEchEIhNJtNxGIxBAIBHB4eSlZAoVCQBbXZ2VlEIhHs7++jXq9jamoK6XQajUZD9kWBzQWzXC6HO3fuSI++dDot7rPZbFaMq5i+Pul78UFw4QRcPDgScGUVcIqiKMoEmJbIgvV4PI5MJgPHcXDv3j3cvXsXy8vLKBQKYrHNNC0afBwcHGB9fR3z8/O4fPkyarUabt68KelbnMzFYjGZDHFyFw6HJYWzVCqdiEylUim0Wi0xJ2CRPsUDAKnn8Hq9iMViMjYAYqHOmjiupieTSTSbTbRaLTFN6HQ6WFpaQrfbFaHYbrelDoyNh0OhEFZXV7GxsQEAmJ2dFSOAV199FdFoVFbgV1ZWxIafk2z2e+Ik1K4PcqdS2imWk5gk3t4O7rovd4TF/sfeU5yE072SQo61bvzH58a5Sx4dHaFUKuH27dv4y7/8SwQCAalJyuVyUgsWjUYRj8cxNzeHSCQiEVWmDVYqFambsiOHzWZTLPMZ0aLAo7Og7WJKIUaRxrokn88nroEUp3TqpP09awf5ORuNhvTUu3v3LsrlsqSu0VCEaYYchx1h42+H6ZF2DZtb2NlurOPO4bhzPCnaNu575P5e2vskdtTRbeLDxxjlZySHNVlse2CLZZ4DLgBduXJFflf8jQeDQaTTafj9frRaLbz88ssSAeOCDSNQrKsdDAbIZrOS7muMQS6Xk6ggjy1FMtMxGYnn95zRNb/fL9E9ZhfQ1OTw8FDarezv70uNGQBptO73++X9ms0m0uk0pqenJcuBNY2sk6PrJMfDGrZisSjijwsc/X4fCwsLyOVyKBaL8htZWlqS3wavlTy20WgU6XRaUtgDgYBc8+momclk4PP5cHh4KCmXdMI8Cy6sgNMInKIoijIJTpCYqsS6iUKhgGq1KnbT7Lt29+5dhEIhLCwsyAT18PAQy8vLuHbtmrjjBQIBpNNpscOm9Tknmx6PR2qsWPdBV0c23uVEnHVYAOSvnT7UbDaRz+dlNZtNwDnRGgwGqNVqIgIZDTHGIJPJwBiDzc1NsRpnGwXWHjmOc6Imx+/349q1a2g2m9IHKRqNYmVlBYPBAAcHB8jn8/D7/ZL2SZHBOixGi+x6N8JJ9SRLfvck3OZ+gs4dcXHvZ1LapjsiSEHMFhOMstgplYyA2FErPm6fA45lMBigUqng6OgI9+7dg8czasxOEcDzn81mMTMzg2g0imQyiUgkglgshlQqJWKL4p1j5XmkCGVEi89x3Hban/16ijtOzinKWRvJaM7R0RFqtZpExCjAuD8uQtjpjRwHawltwUZhR3FHgccFgUmCzS3QxqVEuu+PE3eTvkv2e9qRNzuCaYt8tuEYDofY39+X1hWMgnNBhu0S7LFdvnxZUpa5CELnUzuCNzU1haWlJcRiMelRmUgkUK/XpafbzMyMLAJReCcSCYnSAZAaUJ5jjiuRSIiJEyNY7APJGj4ej6OjI4RCIUxPT+Po6Ajz8/PY29sTM6RcLieLDaxHi8fjUgcXDoelnQnTJROJhAhhfifpAuz3+5HNZrG1tYV2uy3XNfZ0ZG+4mZkZdLtdue7zWNIkio3gC4WCROpCoRBu3bolrSsSiQS2t7dRrVbhOI5EmM+KCyfggj4v/F4Pyk0VcIqiKMp4uCpOU4Dd3V2JEvn9fpRKJalBeeGFF5BIJKThN1eeL126hEuXLuGZZ57B7du3MTMzg1wuJymIjMQwbYjOjyz0Zw1GLBaTaBxtxDlhYWSDwoopWay3q1arYoLQaDQQi8VkYsmJFiN6dLErlUqSpsUaPdazccJE9zVO8OPxuPSm4ySqUqlI3QhTlFiv89hjj6HVauF73/uetGdgmhwn75PSJPn57Pouij53OtxbjcTZ+z/tNferk+NjXMF3R+Y4EWcdIwWQnTrLxyj8iO0maU+KGaUpFot47bXXxvZ1o9hnbzGmzfE7ZAsMRq1si3YKKzvSZUfMyuXyicgX35/P28fGjpRxGwpHW6BRsFHM8HxzeztiCLxhcjNOtJ2WRjvpXI4755P258aOvNnnjbWqTCvl8WBtWzgclmNjRzztKD3TbAOBAGKxmCyAxONx+X61222sra1JX8JYLIZ2uy2Rt5mZGTiOg0KhgFQqJWnOV65cwerqKkqlEvb29iQ9kgsy/N1RUPFaZsyoPySFFxtp05ESAJrNpoxxc3MTfr9fjEKazaaIoMPDQwyHQ6TTaRFpNGlhlC0UCon44vvx+NHllQtMBwcHEq1j/a3jOFhdXQUASQtlrSEbjne7XXi9XszPz0v96fT0NBKJBBKJBF555RWpo6Mp1f7+vlyHzjJ9EriAAs4Yg1jQpxE4RVEUZSLRaBT5fB5TU1N49dVXcXh4KJEMurhVKhVcv34d+XweCwsL2Nvbk/SjfD6PfD6Pl156CS+88AJWVlakye7h4aEYYFQqFaRSKYRCoRNGBoz+ceLGVB2uPNvGEKwtoXsdx7i9vY1Go4FoNCo1NNwnIxWc/LjdFVkT9/DDD2N6elrc5WiCYtd+5PN5mVxWq1WEQiGZgKXTaTz//PMymeLEc3p6Gmtra+JyyYk60zY5caVwuF+tm9v23k7Bc0fP3k7dnD1ZnyTexplbuPcL4ITA4WKAx+N5k5iz68rcf7k9hTphNModveNxoOMeJ9TGvNEUGzjZcJuTTzsaaqdU2p/Tdg0d11qAIoufnyKQETWKXdYE2qLM/Y+Pcx/jzod9rsed93HnheM/rW7yNBE3aaJuH1+eF/7W+JvmOUskEpKeyHYgPCfJZBKLi4sibnkdisfjEkWanp6W9iGM0NNN0ePxSD9G1qju7u6i3W4jnU4DeEPgR6NRRCIREUedTkfSABmRDQaDUkfGY8f2GrYxC8UcocHHwcGBLCDw+8xUzlu3biGfz4t5EtsmsBaYn5sLGKwL5vVsfn5eUhjj8ThKpRJ2dnYQDodFdAJvLBqEw2Gsr6+/yTyFaZlzc3Mol8tSg8yI4NbWFprNJhYWFsRNc3NzU1JIPR6PZEmcFRdOwAFAPDiFqgo4RVEUZQJzc3Not9u4fv06CoUCLl26JNEor9eLv/iLv8BgMMAjjzwi6TpcHabZxEsvvYTd3V3k83kxMPF6vZImxLqOUCgkkRbazTMC6PV6cXBwIKlVnGRyQsgJeTQalVQqYwwODg7EZIUOamx9QNc4mgbQQIEpjEy1pOEGTTFYe8OIESeGnIAzAkhBUq/XcXBwgFgshq2tLXQ6HSQSCenj5PV68dBDD6HT6Yi5AKM+bDlgR4SIPVm3oy72PwBvEjTuSfe4yfppNVLjhNppq+zjJvgUm3ZEiSlhrOexo3V23Zz7n/1ZuT3fj/cpImxBx9cwjdP+fO6aPLfBiftz2J+Rk2huS6FGscXvli3Q7OPA+3aUzU7Xc59Dd7rrOFE9KZXSTrOcdK7szzru3I6L8rpr3uxoKHsyspaLr2FaoJ0mSnEUDAalcTyvQ8Do+sT0Ry7isOUJXT4ZqSsWixItpwMuezragqtYLGJ9fV3cbtm6gCnettsk0yxrtZpEDfk7ZVYBo15M941Go7hz5w4ASN9DAEgkEpJSaRuw3L59Gx6PRyz+7RYGNDZhCne320U+n8f+/j6AUe2az+dDoVCQ6CMwiipHo1EAOOGIyxpfpuJms1msrq6i1Wphb29PhGsqlcLu7i6KxSKWlpaQzWbRaDSwvb0t6aa8xtq/ybPgQgq4RMiPcqt71sNQFEVRzil7e3uyun316lUpxHccR5pfsydaoVCQSVAmk0EgEMDu7i68Xi9WVlbE5CQSiYgLIKNdtkMb68JoNtBsNrG3twcAYlHPtCUA4pDJfXACR+c+Nt3udruoVCqIx+My8bTrimhzz4gIP6tttkL3TLpQssEwqVQqCIVCUqdXLBbR6XSwsrIiEYXhcIhSqYRGo4FMJnPCxS6dTuP27dsSgWDaHPBmsQC8kTJpO1XaxidM4/N6vSccF7ntJDE37j7HMEncuZkk6tzvYf9lXRyxo1kUYbbxhS3ibFHmFnb2cxR2ZJyBCh/nxNMWUba5iPtz2WYjtghzp0+6hZr7tbao40LFOLE8Tpy502Dtzz1JmN0vSjcprdK9vT1Gu1UAn+fvncef543R8H6/D5/Ph1ardeL8sr6wXq9jZWUFxox6oNGEhuYdxhh0u13MzMyIMGfaNccwPT2NWq2GdruNRCIhpjDXrl0TM5nNzU0cHR3h8uXLIuLofunxeKS/YSQSQaFQOOF4C7xhQsQWIfzMjuNIa4REIiEtB/h6mpLk83lxmWQNLc1cQqEQ6vW6XB8ikYhcpxKJhLhH0nTq1q1bkgJMF1wa7RhjZLHM/s6zJczKygq8Xq+YLRkzSmMtFArY2trC7OwsUqnUCaMgLoZRvLrbHHzQXEgBFw/6cFA7O2cYRVEU5XxzdHSEVqslttvsrdTtdiUNsdVqoVKpABitOmcyGbTbbezt7Z1IKWTjbqZXUgTREr5QKJyIWjiOI32IWIfG6BjNTwaDUR83TojpGlmv1xEIBCTlqNfrnTA54KSCLQOYOtXtdk9MMhk5YZ0eACwvL6PVaknKFtOzbt26hWvXrklrArpmRqNRtNtttFotrKysiFkBJz123VMwGMTs7CympqawubmJarV6QoTw89vRODsKYgsemsEweueOzowTZ/Y++dctGk+L2I0TDLYQ4eN25NAdMXQLVvs1/NxcAKAAsIWcLfC4X9tI47SolJ0S6cYel33bjnTyr/2Z3RE2nhvbqMR9fNz7dqdqjjtP7nMzKR3S/Tg/61uJptqc9t7jRLFtDMLfq8/nQzqdRrPZlOglTW9skU6DG14zeB3p9Xon3CnZfLvRaMgi0GAwkBYXwGiRJRgMIplMot1uy6JLPB6X36MxI6fQGzduIJFIwHGcEw6iNP/gIgwdLWlMwhpdHhdeA5gKmcvlUCqVAEDq5xjxz2Qy4owaDodx7do1aSnBHnWlUgkejwepVEqub7wOMXo/OzuL119/HZVKRTINWM9H51xGy3gN5PEFgIWFBXi9Xjz//PMSoZybm8Pe3h42NzexsrKCdDqNer2Ozc1NBINBOI4jZj9csLJdXs+CCyvgbu3X7r+hoiiK8qHE4/GIY1m328Xrr78ubm7T09OSMkl792QyKfUWrO0IBAKYnZ1FLpeTeghOYJPJpES1WF9njDmREhQOhyU6RlECvDFh5OSAJhJcAWYqHlOUjDFSZxIKhU70dEomk/I8V6ZbrZZMMjnhpMtgIBCAz+eTurVoNIrl5WVZeS4Wi6hWq2KLHgqFEAwG0el0sLCwgFqtJnbcfr8f1WoV+/v74hbX6XSQyWQkkshJMSeXk6JxtmCwHRNtkXBaZMwWXe79TnqNvc1pk/9JUR1bAHDCbtve8zm3KYkt6NzHwRZu46Jw7gidvY9xkSpbYI17zI6m2WmJdirl/Y6h+1iNe3xc1M8eqztSNymCam8zLo3ytHPObfh+HNe4Y8v3o/iiGQd/d/l8Xsx+xi0W9Ho9sbCnsyT7TNKMw3FG/QBpTHN0dAQAImiKxaKkPzIFO5vNYm1tDQcHB9JPcmNjA+VyWRYHCFPC+/2+9BykMyTTsYvFIiKRyJtEEaNnbKjO7AQaJDFyaNey0YyFQoi//1QqBb/fj729PfT7fbk+NBoNZLNZsev3eDyYnZ3FwcGB1Kz5/X4xMaGI5sIRU0HZGJzHJxwO4/nnnxdTqdnZWVSrVRQKBeTzeaRSKcRiMezs7MgiWq/XE2MVilIKxrPiwgo4NTFRFEVRJkGBQjGTyWQwPz8PY4z0EuKkiivpdKakZXsoFEImk0Gr1RKb7E6nIwX6N27cEGvrYDAoq++dTgfBYFDs9u2IEqMsTCGiePN4PEgmkyfECNMrA4EAGo3GiQkje70xGsKIHetcAMjqNNOXKPCy2axM4in86BS3tbUlj7HuhAYpHEu9XseLL74ox85xRmYJOzs7J0RzrVaTz2+n1NnHgq+lkLAd/8ZFd3jbnqiOE0+nRWXcz7mFhHsbe7JvCw1O2ieJAbdYtaN6kwSjHelyR4jcn2FctM0+Hvb+bFdJ+3H7fe3P/nZSE8cJZ/vvOMYJ0HH7tu/bx+5+kchxY3RHcfn9t4+RHfHkYgcj4CSfz4tdfbvdltRR1sI2Gg3E43HJAFhdXUU2m0U0GkWlUhGXW8dxJGWbzo10gmUd29TUFGq1GhqNBn7mZ34G+/v7KJfLmJqawurqKrxeL/b29iRSPxgMZB/AKCVya2sLxWIRvV4PCwsLyGQymJ6ext7engg8tkLgb5D1dTT1mJubE/Mmvk+lUpHrZKVSQSKRwHA4RCwWQ6lUwtHRER577DGsr69LzRujfjRg4bGj0KvX62K4FAwGcXBwgGazKc6Rfr9f3H35+er1ujjphkIhvPLKK6jVatJzsdfr4d69e4jH48hms8hms9jc3ES/35drK9POedzYYD2RSEz8Dr/fjP91P+DEgz7U2n0MhmeXm6ooiqKcX1g3xvqPVCoFYJRayZQhNiyu1+vY2dkR44BYLCapic1mE44zsuzf2tpCOp1Gt9vFn/3Zn2F9fV0mOEzfYYsAruYCkAgYJ8+O40g9W7lclibctpMhV+X7/T5qtRoSiQSSyaSYkNgOlJxksHbFFhG2Sx5dLm1jjGAwiH6/j/39fVSrVVQqFXncFl12bYzH48EP/dAPYX5+HhsbG9JXjmMOh8PI5/OIx+OIRqMn6vyY4kmnN47P3WyaE213SqHbVIDPjxNvbgE4LlI1STy4hYB7Pxw3P4P9/m4hxO3tmrJx+7bHY6c32kLOnQbpfsx9vNxpkvb7uKNNdqqke7v7HTf3+MdF/tzb2Pscd9zv91r7/rjoo/s5+3wwuubexn5uampKGlQzWp7NZmVBh4232QibbQVmZmbQbrcRiUSwsLCA+fl5qYGlWLAjc81mU6JF8XhcamM5to2NDSQSCXQ6HUlvZgSQph8UmeFwGL1eT87j4eEhms2mGKIkEgkYY06kJ/L3zc+eyWREzAWDQaysrKBarUqGQK1Ww9HREarVqkTawuEwAoGARBLZv44tJQAgnU6LcQtTwFnHxto5GrTQFIViOJPJIBQKodlsygIcP/P09DQWFxeRyWRw584dFAoF6aXY6/Vw584dTE9PY2ZmBktLSyKC2avTGCPXfopZLqbxGn4WXNgIHABUWz0kw/4zHo2iKIpy3tja2jphy89V7UKhICuznGQyVdHj8SCfz0s9BiNJrIm4cuUKpqensb29LbVtuVxO6lUo5vg6wgbJfI9YLIZGo4FyuYxUKiXpWax3oQNbuVyW3ksAxFHOFg+2s2S73ZY6uVgsJpN5pn0Bowk+TRcikQgGg4E4VHJS1Gg0xP2NpgB29MMYgytXrmBjYwMrKysykWWqF1fpc7nciUgUAEkdo/CxI3G2iBiX4miniPG+bR4yqc7KLfK4v3HCzz5PtphxRwft1Dn7uAA4MX7et/czLmJlv9+kSN0k0WR/Hnu7cdFE1iLyNW6BOO62/T73E2Xu82bXCtrP26/hNu6WEe79Toqsuo+njX0M3AsDfG+34GW0me6uTCmcmZlBuVxGPB6XRucAJGLdbDbF0TaRSGBlZQX5fF4WbPb29iRiRwdb20CJdbmRSERStp9//nkxHdnf38fNmzfFwbJUKiGRSCAcDqPZbIqA9HhG1v7FYlFSHHu9HtLpNDweD2q1mhyzer0uYzfGiHsvF4dY88bt2JaABiwUfz6fD8YYNJtNtFotzM3NwRiD7e1tudbw+jA7OysRP5/PJxG7Uqkk19BGoyG95dgInGYwdnprIBBAOp1GOBzGvXv3sLe3h3g8jtnZWfh8Pty5cweJRALxeByXLl3Czs4Odnd3xdkXwIl6Z8dxJI0dgLQLOQvesYAzxiwC+G0AeQBDAF9wHOefGGN+A8B/A6BwvOmvO47zx+92oG+HZHgk4I6aXRVwiqIoypvw+XxieU+KxSJyuRzm5+clJbHdbkvNF0042OeIK+OpVAr5fB7dbhcHBweSJsR/XIX3+/0ysYtGo/I4J2iMRB0eHkphPycRNFPhJKvVauHevXuYm5sT58crV67AmFHhv9/vR7lcxt7entTf8XMAOCHyOFnj5J3j54SWkyhO7DkRZdSO+2M60+LiIrxeLxYWFhCJRLC+vi6RhZmZGWlvALxRz+Pz+aTZMdspUEjW6/WxtVicfLvrvmy7fZrG2CKTcB+2sLHTOO26RODNRiD2a22BRfFGwWGLonFpn+7o0rgUTjuNz/05TksLdEf5OBZ+3wCcaKRt78ctetxiyS2M3AKPr3GL33GfcdzY7XGc9txp+7S3c4+f3xt3VNGO4toGO4zEMFo8PT0tDoqZTEZ+X/V6XSJHdgpyKpVCqVRCJBLBE088gXg8fiJSxQbTFIe1Wg2xWEwEWq1WQzAYlHrYtbU1rK+vY25uDuvr6/jEJz6BfD6PXq8nizkUgdFoVH7jfr8fR0dHJ/r0hcNhseNnHVytVkMkEpH+dXTApOhLp9O4d++epJsPBgOUy2VpJ8IomsfjkR5t9XodMzMzmJqaErOT+fl5VKtVVKtVZLNZAJDrby6XQ6VSkUgixWSj0UAkEpEFrlqtJjV8wMjVlzWA8Xgcr7/+Oo6OjhAOhzE7O4tQKISbN28CAOLxOPL5PEqlEra3tyWTAIAYN9HcBQAikYjU/XJx7yx4NxG4PoD/wXGc54wxUQDPGmO+evzc/+U4zj9498N7Z6TDo/+gDutdXMqe1SgURVGU80o2m5WCd678plIpzMzMoFQqvclEgBOSer0OYwz29/dFpMRiMZTLZSluZxSNtRyMvtHan6lDbgtwr9eLSqWCcrmMTCaDer0uNuPGGCwvL8MYg/X1dezs7IhrZL/fx/LyMjqdjrhN7uzsYGtrC3Nzc5iamsL+/j6mp6eRSqVEPA0GA6kFtGucWC/HqBsjW9lsVlbtmRI1GAyklo/23o7jSD8mphtxEh+Px7GzsyPima9nA1+PxyOpmkwDpQhypyHaAoXYtV12/cy4aI8ttGxxZkcEx+2f7+0WfrzN97YdCynw7EjRJOHF/dj7tiNi9vP29uNEDt+bz7OWh4IhmUxKhNQtgLm/cWYg9uPu93QfM/uzThrjJFFrf7ZJUbxxx2FSNNI+JuPOCSPRvM1zPDU1JYYVgUAA4XBYaqSCwSBKpRLi8bgs+HA7Cju/34/Dw0MkEgk88sgjyGazePjhh/H888/DcUZOtY7jSO3XwcGBtAlhdI61a/1+H+vr63jttdeQyWQQDodRr9dx/fp1pFIpHB0dIZvNioDiQhB/P/v7+yJQ+v0+kskkwuEwjo6OxGCkUChIBJ7tC4bDoUTnFhYWJK2axiBra2vweEZ93bxer/SapGAcDAaYm5uT7AGagHQ6HQQCAcRiMTSbTRkb64tpKMXrRalUQjQaRTqdRiwWQ7Valc/H6wTTSEOhEG7fvi0LZUy1vHnzJlqtFpaWlmQRbG9v703RfV7TWX9IgxWPxyOtYM6KdyzgHMfZBbB7fLtmjHkVwPx7NbB3QyZCAXd2oU1FURTl/EIRxfS5XC4nK+JMi7RTmWi93+12sbGxgVQqhdnZWelPxBq2YDAoEz0KIU6QaXjQbrclImWMkXqyUqmEWq0mESoaJfj9fpkw7u7uiuMjU4+i0ais3kejURweHqLdbku0i450TIU0xohhib2CzPucKN69e1cablN88X23trZw+fJl+Tyc8HJFPxQKyaQnnU7LGBndY7sDrnjb6VWFQgHGjMxk7Ek2o2MATky83VCAcUycuNrRNDt6ZguMSW6IdhqjLd6Ak4YifI3b2MROwbP3O0642NuO+5xuUTcundL9ObkvfucZpeX3mp/LPYFlKprjTG647WbcZ3Qfn3H3x+33rYgxd0RuXASOiwAUr6wTHbcvRirt8x0OhyU9mT3WWPNlR9C4wEPTDNau0SXx0UcflRTtcrksZkMcO9OluZgBAAcHB3JNqVarKJVK2NjYQD6fl/pWpj7aooSCy+MZ2fLXajUUi0UAo+tftVoV8ca2HhQswWBQolnMSGAaJRe52DbA7/eLOy8degFItJ+ppEtLS/IZ6vU6IpEIOp0O9vb28IlPfAK3b99GuVzGcDjE5cuX0ev1UKlUxGiK2Qy2Ay4jd2yvwOfn5+fh8/mkWTjbOoRCIdy7d0960uVyOTQaDezu7srvlr0xmc3AxY14PC6indG3B76NgDFmBcATAL4H4GkAv2KM+S8A/ACjKN3RmNf8EoBfAt44qe8V2agKOEVRFGUyv/zLv/zWmkKdM65evfqBvdelS5fGPv6JT3ziAxuDoiiK8mbetQulMSYC4PcA/KrjOFUA/xzAZQAfxyhC9w/Hvc5xnC84jvOk4zhPMuf1vSIV9sNjgEJNBZyiKIqiKIqiKBeHdyXgjDE+jMTblx3H+X0AcBxn33GcgeM4QwD/AsBT736Ybw+vxyAV9msETlEURVEURVGUC8U7FnBmlGT8rwC86jjOP7Ien7U2+3kAL73z4b1zMpEACrWzy01VFEVRFEVRFEV5r3k3NXBPA/gFADeMMc8fP/brAD5vjPk4AAfABoC/9S7e4x2TjQZQ0AicoiiKoiiKoigXiHfjQvltAOOKwD/Qnm+TyEQCeL3QOOthKIqiKIqiKIqivGe8axOT80omMqqBc/cIURRFURRFURRFeVC5sAIuF5tGpz9Eudk766EoiqIoiqIoiqK8J1xYAfeRfBQA8Opu9YxHoiiKoiiKoiiK8t5wYQXctdkYAOAVFXCKoiiKoiiKolwQLqyAS0cCyMem8fKOCjhFURRFURRFUS4GF1bAAcC1uRheUQGnKIqiKIqiKMoF4UILuEfnYlgr1NHuDc56KIqiKIqiKIqiKO+aCy3grs3GMBg6uLVfO+uhKIqiKIqiKIqivGsutIB7dC4OAFoHpyiKoiiKoijKheBCC7iFZBDRwJTWwSmKoiiKoiiKciG40ALO4zF4ZC6Gl3cqZz0URVEURVEURVGUd82FFnAA8MRSAje2K6i2e2c9FEVRFEVRFEVRlHfFhRdwP3Utj97AwTdfOzjroSiKoiiKoiiKorwrLryAe2IxgZloAP/+pb2zHoqiKIqiKIqiKMq74sILOI/H4KcezeE/3Cyg1dV+cIqiKIqiKIqiPLhceAEHAJ95dBat3gB/frtw1kNRFEVRFEVRFEV5x3woBNxfuZRCPOjDv/7uXXT6GoVTFEVRFEVRFOXB5EMh4HxeD/7uTz6Eb68d4n//o1fOejiKoiiKoiiKoijviA+FgAOAv/n0Kn7+iXn84Qu76A2GZz0cRVEURVEURVGUt82HRsABwM98dBaVVg/fvVM866EoiqIoiqIoiqK8bT5UAu6TD2UQnZ7C//HvXkWh1jnr4SiKoiiKoiiKorwtPlQCbtrnxf/9Nz6Bu6UGfu33b5z1cBRFURRFURRFUd4WHyoBBwBPX8ngV3/yKr726j6+9sr+WQ9HURRFURRFURTlLfOhE3AA8F8+vYqHZiL4jT98WZt7K4qiKIqiKIrywPChFHD+KQ/+t88+hq2jFv7ZN9fOejiKoiiKoiiKoihviQ+lgAOAH7mcxs8/MY//58/v4I9v7MJxnLMekqIoiqIoiqIoyql8aAUcAPzPf+0RPJyP4b/78nP4zD/+Fv7ydW0voCiKoiiKoijK+eVDLeDSkQB+77/9Ufz9/+xxNLp9fO4Lf4n/+ovPoN7pn/XQFEVRFEVRFEVR3sSHWsABo3q4v/7kIv707/4Y/t5nPoJv3izgZ//pt/D/PXMPw6GmVSqKoiiKoiiKcn4w56H268knn3R+8IMfnPUwAAB/dquAf/inN/HiVgXTPg8+Oh/Hpz8yg4VkEJ/+yAziQd9ZD1FRFEUZgzHmWcdxnjzrcSiKoijK+8nUWQ/gvPGpq1n82EMZ/Lsbu3j27hG+93oJ/+ef3AQABKY8WEmH8eMPz+DRuRh+6tEcAlPeMx6xoiiKoiiKoigfFlTAjcEYg599fA4/+/gcAOCo0cVGsYE/fGEXr+5W8YU/v4OhA4T8XlzKhnE5G5F/uVgAl7MRJEI+GGPO+JMoiqIoiqIoinKRUAH3FkiG/UiG/XhiKQkA6A2G+Is7RXzztQPcKdTxg40j/Nvnd068xu/1IB7yIRnyIRH0Ix3xYz4RxEIyiFQkgKDPi6DPi+j0FOJBH6LTU4hO++Cf+tCXJSqKoiiKoiiKMgEVcO8An9eDT13N4lNXs/JYs9vHxmET+7U21vbrKDa6qLS6OGr0UG51cWu/hm/ePEC7Nzx13/4pD2LHYi4SmDoWdlOIBHyIBLyIWLfDganRP/8UQgHv6K/fi5B/9FxgyqNRQEVRFEVRFEW5QKiAe48I+adwbS6Ga4jhxz8yM3Ybx3FQbHRRbvbQ7g3Q7A5QbfVQafVQ7/RRa/dQa/dR6/RHf4/vHx420OgMUGv30OgOMHiL7pgeg5PiLuBFyD+FsN+LUOD4r38KYdfjIb8XgSkvpn0eTPu8mLZuB3weec7vVYGoKIqiKIqiKB8kKuA+QIwxyEQCyEQC73gfjuOg0x+i1u6j0emj0e2j2R2JwWanj0Z3gGa3j0bH9Vee76PY6OJeqYlmd4BGZ/T6/jtomWAMMD3lRdA/Sged9nkQ9FPwje4HLAHonxr9C0x5EZjyIHB83+/1wOf1YMprRn89Br4pD3wePmYwdXzb7/VgitvwNR4PfFOjbXxeo6JSURRFURRFubC8bwLOGPMZAP8EgBfAv3Qc5zffr/f6MGGMORZHXmSj71wIuun2hyeEXrs3RLs/QKc3RLs3QLs/GD3WG6DdG6DTH91udUfPtbrD46hiH53jfZUaQ3SOX9fpj17T6Q/R7Z+eRvpu8XqMCDyf12DK64HPM/pLwTd1/PjU8bZTXgOvZ7Sd9/j+lMdz4rkpefx4W6+R9+K+vPY/47p//Jjn+DX8637Mft24x9z74m1jAI8x8JjRMVAhqyiKoiiKcvF4XwScMcYL4J8B+KsAtgA8Y4z5A8dxXnk/3k9594yiY34kQu//ezmOg+5gJOQo6HqDIXoDB/3hEP3B6Pn+wEF/MERvePx34KA3GKI/PN72eHt53LWPN29/cl+D4RvbtntD9IcDDI7v94ej53uD4fF2o9fxcb73ee/1bos5j8FI9B2LPa+Ht98QfW9+7uRrPMdC0mNGiwknbhsDjweyT6+xbnsoLkei02Os+wayb3O8LwOceE+cuH+8jQEMXK8Hjj/P/beF6z3Gv/fodXzu5FjfvC3wxvHgtuM+D8dpv/e4108a59j3knHe5724Pw/uc5z5WuhigKIoiqKcI96vCNxTANYcx3kdAIwxvwPgswBUwCkwxhynUXoRPevBvEuGQ0vsDYcYDBwMnNH9E/8c58S27seGx/d5235s3L7s+0PHwdDB6O/Quu3g+P6k553x21m3B44Dx3EwHOLk9sdjcKzbI8F7/LmckVAfPWfftl5j7ddxAAd83Wh7B288NxxtMLpvPX7ydc65F9QPMqeKRRwLQJd4tF/j5WKBJea53S/88DJ+8UdXzvojKoqiKMoDwfsl4OYBbFr3twD8FXsDY8wvAfglAFhaWnqfhqEo7y8ej4F/FA5BENrU/TzgWKLvvmJv7HZvFo+TXv92toUlUE99r+PPMBzivuPCiftvfHbH/V7u4+KMF86yz+H9jsnodY5jH4uTY7K3tRcFKOaH1hhSYf8H+A1RFEVRlAeb90vAjcu3ObE27jjOFwB8AQCefPJJXTdXFOU9QdIFx16GFEVRFEVRHmzer67RWwAWrfsLAHYmbKsoiqIoiqIoiqK8Bd4vAfcMgIeMMavGGD+AzwH4g/fpvRRFURRFURRFUT4UvC8plI7j9I0xvwLgTzBqI/BbjuO8/H68l6IoiqIoiqIoyoeF960PnOM4fwzgj9+v/SuKoiiKoiiKonzYeL9SKBVFURRFURRFUZT3GBVwiqIoiqIoiqIoDwgq4BRFURRFURRFUR4QVMApiqIoiqIoiqI8IKiAUxRFURRFURRFeUBQAacoiqIoiqIoivKAoAJOURRFURRFURTlAUEFnKIoiqIoiqIoygOCCjhFURRFURRFUZQHBBVwiqIoiqIoiqIoDwgq4BRFURRFURRFUR4QVMApiqIoiqIoiqI8IBjHcc56DDDGFADcfY92lwFw+B7t64PkQRz3gzhmQMf9QaPj/mD5MI972XGc7HsxGEVRFEU5r5wLAfdeYoz5geM4T571ON4uD+K4H8QxAzruDxod9weLjltRFEVRLjaaQqkoiqIoiqIoivKAoAJOURRFURRFURTlAeEiCrgvnPUA3iEP4rgfxDEDOu4PGh33B4uOW1EURVEuMBeuBk5RFEVRFEVRFOWichEjcIqiKIqiKIqiKBcSFXCKoiiKoiiKoigPCBdGwBljPmOMuWmMWTPG/E9nPZ7TMMZsGGNuGGOeN8b84PixlDHmq8aY28d/k+dgnL9ljDkwxrxkPTZxnMaYXzs+/jeNMT99NqOeOO7fMMZsHx/z540xP2M9d+bjNsYsGmO+aYx51RjzsjHm7xw/fq6P9ynjPu/He9oY831jzAvH4/5fjx8/78d70rjP9fG2xuI1xlw3xvzR8f1zfbwVRVEU5TxyIWrgjDFeALcA/FUAWwCeAfB5x3FeOdOBTcAYswHgScdxDq3H/j6AkuM4v3ksQJOO4/yPZzXG4zH9GIA6gN92HOex08ZpjLkG4N8AeArAHICvAbjqOM7gnIz7NwDUHcf5B65tz8W4jTGzAGYdx3nOGBMF8CyA/wTA38Q5Pt6njPuv43wfbwMg7DhO3RjjA/BtAH8HwH+K8328J437MzjHx9saz38P4EkAMcdxfvZBuJ4oiqIoynnjokTgngKw5jjO647jdAH8DoDPnvGY3i6fBfDF49tfxGgSfKY4jvPnAEquhyeN87MAfsdxnI7jOOsA1jA6Lx84E8Y9iXMxbsdxdh3Hee74dg3AqwDmcc6P9ynjnsR5GbfjOE79+K7v+J+D83+8J417Eudi3ABgjFkA8NcA/EvX+M7t8VYURVGU88hFEXDzADat+1s4fRJ51jgA/tQY86wx5peOH8s5jrMLjCbFAGbObHSnM2mcD8I5+BVjzIvHKZZM1Tp34zbGrAB4AsD38AAdb9e4gXN+vI/T+Z4HcADgq47jPBDHe8K4gXN+vAH8YwB/D8DQeuzcH29FURRFOW9cFAFnxjx2nnNDn3Yc54cA/EcA/vZxyt+Dznk/B/8cwGUAHwewC+AfHj9+rsZtjIkA+D0Av+o4TvW0Tcc8dp7Gfe6Pt+M4A8dxPg5gAcBTxpjHTtn8vI/7XB9vY8zPAjhwHOfZt/qSMY+dp+uJoiiKopwZF0XAbQFYtO4vANg5o7HcF8dxdo7/HgD4CkapQfvH9USsKzo4uxGeyqRxnutz4DjO/vHEdwjgX+CNdKxzM+7jmqbfA/Blx3F+//jhc3+8x437QTjexHGcMoD/gFEd2bk/3sQe9wNwvJ8G8B8f1//+DoCfMMZ8CQ/Q8VYURVGU88JFEXDPAHjIGLNqjPED+ByAPzjjMY3FGBM+NnuAMSYM4KcAvITReH/xeLNfBPBvz2aE92XSOP8AwOeMMQFjzCqAhwB8/wzGNxZOEo/5eYyOOXBOxn1sTvGvALzqOM4/sp4618d70rgfgOOdNcYkjm8HAfwkgNdw/o/32HGf9+PtOM6vOY6z4DjOCkbX5284jvM3cM6Pt6IoiqKcR6bOegDvBY7j9I0xvwLgTwB4AfyW4zgvn/GwJpED8JXRvBdTAP5fx3H+vTHmGQC/a4z5rwDcA/Cfn+EYAQDGmH8D4NMAMsaYLQD/C4DfxJhxOo7zsjHmdwG8AqAP4G+fodPduHF/2hjzcYzSsDYA/C3gXI37aQC/AODGcX0TAPw6zv/xnjTuz5/z4z0L4IvHDrYeAL/rOM4fGWO+i/N9vCeN+1+f8+M9ifP+/VYURVGUc8eFaCOgKIqiKIqiKIryYeCipFAqiqIoiqIoiqJceFTAKYqiKIqiKIqiPCCogFMURVEURVEURXlAUAGnKIqiKIqiKIrygKACTlEURVEURVEU5QFBBZyiKIqiKIqiKMoDggo4RVEURVEURVGUB4T/H6QIM1WxxDznAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAGoCAYAAAAHGAe8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebxt2V0Vio+5+7453b333KZu3WpuKlWVVJFKSCp9SCIIBOUpgigKKmKH+tOnovhAER/Yvh8qKu+BwBMDiKBIjKgYCTENqSSmqUoq1d+6zbmn3X1zzt57vj/WHvOMPe/a55xqb+owx+dzPvecvdeaa64551r3O+b4NsZai4CAgICAgICAgICAgICvfCRudgcCAgICAgICAgICAgICjoZA4AICAgICAgICAgICAl4hCAQuICAgICAgICAgICDgFYJA4AICAgICAgICAgICAl4hCAQuICAgICAgICAgICDgFYLUze4AACwtLdnz58/f7G4EBAQEBLyC8alPfWrTWrt8s/sREBAQEBDwUuIrgsCdP38eDz300M3uRkBAQEDAKxjGmGdudh8CAgICAgJeagQXyoCAgICAgICAgICAgFcIAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIDiVwxpizxpgPGWO+aIx52Bjz56efLxhj/qsx5rHpv3U55/uMMY8bYx41xvyul/IGAgICAgICAgICAgICfqfgKArcCMBfstbeBeCNAP6MMebVAP4agN+w1t4B4Demf2P63bcCuBvA1wL4cWNM8qXofEBAQEBAQEBAQEBAwO8kHErgrLXXrLWfnv7eBvBFAKcBfBOAn5ke9jMAfs/0928C8PPW2qG19ikAjwN4w4vc74CAgICAgICAgICAgN9xeE4xcMaY8wDuB/AJACestdeAiOQBWJkedhrAs3La5elnflvfbYx5yBjz0MbGxvPoekBAQEBAQEBAQEBAwO8sHJnAGWNKAP4dgL9grW0ddGjMZ/aGD6z9CWvtA9baB5aXl4/ajbloDfbwzz70OL547aCuBQQEBAQEBAQEBAQEvHJxJAJnjEkjIm8/Z6395enH140xp6bfnwKwPv38MoCzcvoZAFdfnO7OR6u/h7//64/i85ebL/WlAgICAgICAgICAgICbgqOkoXSAPhJAF+01v4j+epXAfyR6e9/BMB/kM+/1RiTNcbcCuAOAL/94nV5bj8BAPZGsS8gICAgICAgICAgIOBYIHWEY94M4A8D+Lwx5n9NP/vrAH4EwC8aY/4YgEsAfj8AWGsfNsb8IoBHEGWw/DPW2vGL3XEf9Nu0gb8FBAQEBAQEBAQEBBxTHErgrLUfQXxcGwB8zZxzfhjAD7+Afj1nTAW4oL8FBAQEBAQEBAQEBBxbPKcslF/JMFOOGRS4gICAgICAgICAgIDjiuND4JwCFxhcQEBAQEBAQEBAQMDxxPEhcNN/gwIXEBAQEBAQEBAQEHBccWwIHEIMXEBAQEBAQEBAQEDAMcexIXDGMbhA4QICAgICAgICAgICjieOD4ELClxAQEBAQEBAQEBAwDHH8SFw03+DABcQEBAQEBAQEBAQcFxxfAicYRmBwOACAgICAgICAgICAo4njg+Bm/4b6FtAQEBAQEBAQEBAwHHF8SFwIYdJQEBAQEBAQEBAQMAxx/EhcFMNLvC3gICAgICAgICAgIDjimND4ParCAQKFxAQEBAQEBAQEBBwPHFsCBxdKAMCAgICAgICAgICAo4rjg+Bm/4bBLiAgICAgICAgICAgOOK40PgWEYgRMEFBAQEBAQEBAQEBBxTHB8CN/03KHABAQEBAQEBAQEBAccVx4fAMYnJze1GQEBAQEBAQEBAQEDAS4bjQ+BYRiAwuICAgICAgICAgICAY4rjQ+CcAhcYXEBAQEBAQEBAQEDA8cSxIXBEUOACAgICAgICAgICAo4rjg2BC3XgAgICAgICAgICAgKOO44PgXMxcEGCCwgICAgICAgICAg4njg+BI4xcIG/BQQEBAQEBAQEBAQcUxwfAjf9N/C3gICAgICAgICAgIDjiuND4EwoIxAQEBAQEBAQEBAQcLxxfAjc9N9QRiAgICAgICAgICAg4Lji+BC4kIUyICAgICDgKwbGmH9hjPmbN7sfcTDGvNUY8+jN7kdAQEDA88GxIXBEcKEMCAgICDgKjDHWGNM1xnSmP/+P9/1fNMasGWOaxpifMsZk5bsFY8yvTM9/xhjzB1/+O/jKhrX2e6y1P3Sz+wG4ub6df1trf8tae/FFvsb/boz5gjGmbYx5yhjzv3vfnzfGfMgY0zPGfMkY827v+z83Pa9ljHnIGPOWA671tDGmL2v3v8w57l/59z7t5+a0r/fI5282xvz753jP/8MYM5j2YdMY88vGmFPPpY2XEsaYP2qMGcs48Wf1ZvfNhzEmY4z5pencWmPMOw45fu476LC2jDEf9MZj1xjzefn+PmPMb03ffZeNMf+Hd/4fnF6za4z598aYBfnuYa/tkTHmP06/WzLG/E9jzJYxpmGM+Zgx5s1y7j3GmF+frqVYi94Y863GmC9Or/2EMeatR7znHzTG7Hl9u3DQGM+DMeaNxpj/aozZNsZsGGP+ra57Y0zNGPMzxpj16c8PyncpY8zPT+//g8aYsnz3N4wxf/EofTg2BM4wBu4m9yMgICAg4KXBaDR6KZp9rbW2NP354/zQGPO7APw1AF8D4DyACwD+lpz3zwDsAjgB4NsB/HNjzN0vRQdfDhhjUje7D88XX0F9NwC+A0AdwNcC+LPGmG+V798P4DMAFgH8DQC/ZIxZBgBjzFcD+BEAvw9AFcBPAvgVY0zygOt9o6zd997QmYgA3uZ9dgrAH0O0nv/F9Jocw38I4C88x3sGgD9rrS0BuB1ACcA/eB5tvJT4mIwTf676B8Wto+e6tl6EtfgRAH8IwNoRjj3sHTS3LWvt1+l4APgogH8rh/wbAB8GsADg7QD+lDHmfQAwvca/BPCHp9fuAfhxaftuabcM4JK03QHwXQCWET0nPwrgP8q47QH4RURr9AYYY94zPec7p22/DcCTR7nnKX7BWwdPzjnuMNQB/ASi/xtuAdAG8K/k+38MoDD9/g0A/rAx5jun330zIrqyBKAF4E9O7+1WAN8I4J8cpQPHhsA5BAkuICAg4Njg/Pnz+NEf/VG85jWvQbFYfKlIXBz+CICftNY+bK3dAfBDAP4oABhjigD+NwB/01rbsdZ+BMCvIjJoDoUxJm+M+YfTHeymMeYjxpj89Lv3TXewGyZSN+6S8542kXryuenu808aY05Md3Hbxpj/ZoypT489P92F/m5jzFVjzDVjzF+Stn5wulv9r40xLQB/1BhTnbZ5zRhzxRjzd0ggjDG3G2N+c9rfTWPML0w/N8aYfzzdZW5O+3bP9LufNsb8HbnmnzDGPD7dtf5VIyrItK/fY4x5zBizY4z5Z8bEB0fM6fsbTLSb35j2/58aYzLT4z88PfWz0133P2CMeYcx5rK0edd0vBvT8X/fUeZSYa39e9baT1trR9baRwH8BwBvnrZ/J4CvAvAD1tq+tfbfAfg8onUERIbew9baT9mooO3PIjLwVp5rP6bXSyEyBP+s99U5AJ+x1rYA/DdERA6IiNuvWmuffj7XAwBrbQPAvwdwn/TjVWZfqXjUGPMt8t0LeQ7+8nStNY0xv2CMyT2fPk/b+qvGmM8B6E7XuTXG/DFjzCUA/90YkzDGfP+0n+vGmJ81xlSn55/3j38+/QAAa+2utfb/mr5Pxof0+8B30HNs6zyAtwL4f+Xj8wB+zlo7ttY+gYgYkRx+O4D/aK39sLW2A+BvAvhmI0qS4G2I1vC/m/ZrYK191Fo7QbThMUZEhham3z9qrf1JAA/P6e7fAvC3rbUft9ZOrLVXrLVXnus9zxmHuWvVh7X2g9baf2utbVlrewD+KabP+hTfCODvWWt702fqJxERVwC4FcD/sNaOAHwI+8/gjwH4y9PPD8WxInDGBAUuICAg4Ljh/e9/Pz7wgQ+g0Wgglbpxg/s1r3kNarUaANw3Nfj058dvOGEWHzaRm+QvTw0Z4m4An5W/PwvghDFmEcCdAMbW2i973x9VgfsHAF4H4EFEhstfATCZGvnvR2RMLwP4T4h2pzNy7v8G4D3TPnwjgA8C+OuIjP0EgO/1rvVOAHcAeC+Av2Zm3fa+CcAvAagB+DkAPwNghEhJuX96DlXJHwLwXxAZW2ewv0v8XkRG2p3Tdv4AgC3/ho0x7wLwfwL4FgCnADwD4Oe9w74BwOsBvHZ63O/y2zmg72MAf3E6Dm9CpJz+aQCw1r5teg7V1l/w+pYG8B+n97cC4M8B+DljzMXp938tZl25n7jOTcnnW7FviN4N4ElrbVsO0zXzQQBJY8xXm4g0fxeA/4WDlZifM5H71n8xxrzW++4vAviwtfZz3uePA7jXGFMD8G4ADxtjzgL4VrxA5Wz6bHzz9BokGf8VkZqzAuDbAPy42VeJXshz8C2IVM5bAbwG082V54lvA/D1iNYSjee3A7gL0Rr8o9OfdyIytkuIDHaFHj8DY8y5g9aPeX7u1y/0HaT4DgC/Za19Sj77vwB8hzEmPX0O3oSI8APeu3FK8HanffLxRwD8krW2qx9OCfMAEen8f6y164d1cvpcPABg2UQbQZenGzX5I94nAHzjlKA9bIz5U9L2YWv1MLwNN5JO4/1Od+UvAHjXdD2/E9Ez+HsBbE7J55FwvAgcggAXEBAQcNzwvd/7vTh79izy+fj/pz/3uc+h0WgAwP+y1ta8nz99QNNvR7TT/CoAVwH8mtl35SkBaMqx/L0c8x2/j9uBnoExJoHIOP/z093jsbX2o9baISLy8wFr7X+11u4hMnDziAxc4p9Ya69Pd51/C8AnrLWfmZ7/K4iIl+JvWWu71trPI3Lx+Tb57mPW2n8/3Q2vAPg6AH9hevw6IjcgugDuIXIVWp3uon9EPi8jGkNjrf2itfZazK1/O4CfmipUQwDfB+BNHmn+EWttw1p7CdHO9H0HDKXr+1TR+tR0V3403fH+l4jm9yh4I6I5/ZHpLv5/B/BrmI6VtfZHYtaV+5nT5g8isrHoVnXYmmkjUik+AmAI4AcAfPdUjYvDt2PffetDAH59SsowJWR/EsD/4Z9krd0C8MOIlKKvB/CXAfz/AfxVAL/XRCrrfzDGnJlz3Tj8mDGmCWATEYH+c9PPvwHA09bafzWdl09P7/H3vQjPwY9Za69aa7cRke/7DujfGz3C9ITff2vts9bavnz2g9PnoI9orP+RtfbJqeL0fQC+1cy6S+rxM7DWXjpo/Vhr/80BfZ+H5/0OisF3APhp77NfQ+TO2wfwJUTeCJ98Ltc2xhSmbfhtw1r7GkTvnD+IaM0fBScApKdtvhXRnN8P4PuPeP4vIiLZywD+BID/wxjD9+HctXpYo8aY1yB61jTm9T8j2jArmyj+9LsQuVQC0YbEUwAeQjRuP4/oef+rxpgfNsZ82Bjz496GxQ04XgTOmFBGICAgIOCY4ezZsy9Ju1MXoF0buX79eUS7+XTV6iAyMAj+3o75jt+3cTiWAOQA+EYkAKwiUqbYvwmAZwGclmOuy+/9mL9LXpvPyu/PTK8R990tiIyja6Is/Uvsu/D9FUT7pL893b3+rmkf/zsiNeKfAbhujPkJY4w/NnH31kGk1Om9qdrUi7mXefcFY8ydxphfm6qpLQB/F9FYHwWrAJ6djjfxjNe3I8MY82cRGcVfPyUkwOFr5o8jMvLuBpBBFMfza2ZOsg1r7f+cEteetfb/BNBAZNQCkXryt621vpHNc99vrf0qa+3XIVIFhohi8/4BIlX33+K5qXHfa62tIlLCqNAC0Zr6ak+t/HYAJ/HCn4PnslY+7hGm27zvn405Rz+b6c/09xQiQnFQGy8lXsg7yMFEcZInEanZ/GwBEQH524jm6CyA32WM4WbYUa/9zQC2Afxm3LWnG0HvR0R0fAU5DiTH/8Rae81auwngHwH43Uc4F9baR6akf2yt/SiijQsStLlrdaqgusQn2uaUnH0Q0UbEb8lX3zvt72OIXKnfD+DytB/WWvvXrLWvsdZ+N6JY63+BSF18ANHGUwb7LpexOF4EDkGBCwgICDhuMIfUibn77rtRKpUA4H5zY7a5f/EcLmWx7/byMCJXPuK1AK5PFYwvA0gZY+7wvp8Xt6HYROQ65BuRQKQC3sI/pm54ZwFcOeoNxEDZ77npNQj9H/NZRIb8khi6FWvt3QBgrV2z1v4Ja+0qInXnx6fGC6y1P2atfR0i8nEnZnei591bEVEyj+d7b/7/9v8ckVJwh7W2gsit9KgFhq4CODtVhYhz7Jsx5q/HrKt5Bt13YZr8xlp7Wb56GMAFMxsnpGvmtYjiir48VRX/M4BrmFWdDoKu3a8B8PenZJZE52O+q97U9ezvAvhLiNxsn7VRbNwnEZGx54Spyvt3ADB+8VkAv+mRp5K19k/h5X8ODuz6IZ/N9AfR2hhhdvNkrvXpE4CYn29/Hn1+Ie8gxR8B8MvTDRXiAiL3zJ+dqlGXEalEJEoz70YTZXLMTvvkt/2zB6jIRBr7cWBzYaNY5Mt48aKl9JmZu1anCqomfAEAGGNuQeRW+kPW2v93pmFrt621326tPTl9hyYA/LbfARPFCz+IKCHKvQAYA3voM3i8CFyIgQsICAj4HYeHH34YnU4HiJIz+NnmvifuHGPM3SZKlZ00xpQQZeC7AuCL00N+FsAfM8a82kSJQb4fU1cgG8Vz/DKAv22MKZooDfY3QZIAmDlpwKdqwk8B+EfGmNXp9d9kohIFvwjg640xX2OiuKy/hIhUffQFDM/fNMYUprEc3wngF+IOspHb438B8A+NMRUTJW64zRjz9un9/H5xq9tB9N/t2BjzehPFbaUBdBEZ5XEJBP4NgO+cjnkWEXH4hH0BSTM8lBFldOsYY14F4E9531/HfCPxE4j6/ldMFPPzDkRK1M8DgLX278asqziD7tun9/Ue62W3s1Gs0v8C8APGmJyJYl5eg2lyB0QG29cbYy6YCIxz/ILf2SkheLOJ0qbnTFSuYAnA/5weciciA/s+7LsWfiMiF1vF9wP4aRtlZLwE4KIx5gSiuJwnp9diko7zc8bOx88gUm3fh8gN705jzB+ejmt6ul7uugnPwQvB+wH8RWPMrdN3xd9FlM3wSMkmfAIQ8/NzPNYYkzX7CVk4vzdsRBzxHXRgW1MC//txo4vjl6OvzR+cvgdOInJrZdzbzyGKJXvrdCPmbyMigU6Bm74r3oloPUA+f6Mx5i3TtZs3xvxVRErmJ6bfm2mfmYAoZ6R8CyKX5D9njFmZvpf/AqJ1dug9G2O+yRhTn17jDYhUsv8wPXbuWvXHftrWaURuyP/MWnvDJuH03bk4XddfB+C7EW1u6DEGkefCn58+D08BeIuJXCffjtnsmjfgeBE4mKDABQQEBAQcBScQkZkWov8ozwP4BhvF3GCqgPw9RPFFz0x/fkDO/9OI4nLWERl4f8pa+zDgjJcOoiyDcfjL0+8+icjF6EcBJGyUufAPIUoQsonI6P5Ga+3uC7jP30SUVOI3APwDa21svbApvgOR4fQIIpL2S4gSjgBRcpFPmEhx+lVERsdTiFyn/u/p8c8gcou8wf3OWvsbiLLV/TtEytJt2I+vezHwlxHF07Sn/fGJ6g8C+BkTuUfNZJebju/7EMUAbiJKif4d1tovPcc+/B1EquInTbwC/K2IXKR2MC0ZYK3dmH73s4gI4/9AtCZ/DMCfZB9MVBSdbZURKY47iDYdvhbA103VYVhr16eK6Zq1lgrcppX4LBMlpngvpslopgT+RxCpK9+LKM4LiJSvZ3BE9Ws6lj+GKDtie3qNb0WkYq0hWus0yF+u5+BN5kbV6/XP4fyfQkSMPozIyB5gP87vxcajiFzvTgP49envtwBOCf6gHDv3HXRYW1P8HkQxWB/SDkxV2G9GlAhnB9HGwxcQxU5ieo3vQUTk1hGtRz/W+A8jilP1XWSziEjLFqI19bsRuRrTM+CWaT95H/3pfRA/hGi9fBnRZttn2K8j3PO3InoXthE9bz9qrf2Z6T0dtlZ9/HFEG0I/YOLV+NchWtttRMmbvt2bGyDaUPuCtfah6d+/PL32BqL3yL+cc20AUcDxQd/DGPNTiIL71q21TA38CwBYALMGoGGtvW+6Q/NF7A/2x+ftfioeeOAB+9BDDx122KG48/s/iO9883l839fFEuaAgICAgGMMY8ynrLUPfAX04w8BuNta+32HHvzS9eE8ImMzfVSlICDAhzHm+wFsWGsPNCYDAgJeXhyl4OBPIwpQ/ll+YK39A/zdGPMPMZuN5glr7X0vUv+eEwwQfCgDAgICAm4qrLX/+mb3ISDgxYC19u8cflRAQMDLjUMJnLX2w/N8n6f+m98C4F0vcr+eF0IMXEBAQEBAQEBAQEDAccYLjYF7K6KsXI/JZ7caYz5joloib513ojHmu40xDxljHtrY2Jh32HNCFAMXKFxAQEBAwO9sWGufttaa4D4ZEBAQcPzwQgnctyEKnCSuAThnrb0fwP8PwL8x8fVgYK39CWvtA9baB5aXl19gNyIYE8oIBAQEBAQEBAQEBAQcXxwlBi4WJqpA/82IMq0AAGxUsHI4/f1TJqp2fyeiauMvOQyCC2VAQEBAwOGoVqvuvwtjjKs153tx8Dv+JBKJIx1PJBKJWM8Qay0SicQN19Dv+W9MFvGZ83mMf6y1duazeW2xD3pdthf3vX8tv+/+NeLa8ftYKBRQqVSQyWSQTCaRSCSQSCSQy+WQTqdhjMFgMMBgMEA6nUYymUQ6nUaxWEQmk0E2GyWL4/xkMhnXr/F47D4fjUYYDAYYDofI5XIol8vu8+FwiMFggGQyCWMMJpMJJpMJxuMxjDHI5/PIZrPu/ieTCYwxyOVyyOVyGA6HaLVaGAwGmEwm2N3dxWQyQSqVQiKRcNe21rr75D0BcPc5Ho/dsQCQSqWQTqexsLCA5eVl116hUMB4PHbX4Zzkcjk3XsPh0LU3Go2wu7sLYwzS6TTS6TQSiQTS6TSstej1ehiNRm6sOM7j8X5ViEQigVQq5e6P/eZ47O3tYW9vb+Z4zlUc0um0G4vxeIy9vT13bY4F28tkMkgkEuj1ehgOh7DWIp1Ou/HPZDLIZDIAgPF47Pq0u7vr+sFx4nE6/mzfWuvWAgAUCgUUCgUkEgmMx2OMx2NMJhP3/LGPyWQS2WwWqVQKo9HIHcPjJpOJmwNrrZtX3qu1Fnt7e25O2DbfOwrOka5RzlMqlZp5JnnceDyemQuuC64bPT6ZTCKVSrkffp9MJmfOZf94L3yWdnd33Xf+s59MJt0zrs8613UqlUI2m0U6ncZkMsFgMHBjZq2duWYikXDjqu0lk0lkMhm3Jv1nmWPMa7NP+sP1o+8qjgHHJ5FI4B3veMdR602+qHjeBA7AuwF8yUqhSmPMMoBta+3YRIX97sAhdQxeTEQPwMt1tYCAgICA4wCfjPAzxWEEyz9eDS4aUP5xPrGZ9x3P1WP9fs8jSXF91nPj+j4P88hb3LUUceSS7SWTSVQqFdTrdWeMAfvjNxqNnCFH0kqCVigUUCqVUCqVnAFbKBSQzWadAU7jjsb+3t4ehsOhM94Gg4E7N5FIIJvNOqOf45JMJmeIZDKZdESDBm273XZt0VgE9snNaDRCv9/HaDTC3t6euy8lRLw+DWMimUzi5MmTWFxcdG3yHvf29pyhScOX1+B96dgrMQLg2uGYcw5IZnRsSOj29vYcESTxIpFkOxwXkmEgIhbA/npWw1lJCMku+8I5J8EhOSJp43GTycSNCa/N+2fb7MtgMHDtcFx4XX6ezWaRy+UcIVNSks1mkUgksLu76wiiEgreF4kO/yY55TpRaL85TjyGz4qSQX6nhFJJJceNc817JBHimCv55z2TwPD55Xm6xlOplOtr3IaOkjMSO11nbJP3op+TFPN7XkefDb4P2H+C7bFNElD9TAk4wbnJZDJIpVJuTeszzevo5tvNwqEEzhjzfgDvALBkjLkM4AestT+JqFbC+73D34aoqOAIUSHP77HWbr+4XT6grwBs0OACAgICAg5BnFo1j4z4/0nHqVH+93GkyCdiev48EjWP+OjvB52r/fXJXpzK5yuGcefMG495mNe/bDaLhYUF5HI5Z+T5bXIHnn/n83mUy+UZQ5NGN5WS3d3dGeOPxEIJIIldp9OBtRbFYtGRmX6/7+4zk8kgn8/PGKNqUE4mEzSbzRmDkCQwlUo5dYwGqapyPB+AIzGcAxK/YrGIfD6PYrGI8XjsiEOn03H3TbUhlUo5A5sEjv2eTCaOOOzt7SGVSjmFwl/HJHk03ElajDEYDofOENc5UuWMa8gnExw3ki5eU9UVX63iOI3H4xnSpWob+0LjXudCCWcmk0Eul8N4PHZzTPWPBI1qTS6XQz6fd6SfxJGKFFU6EnGqWrxHEieOHceWSrFuEChJmfcM8F74t24I6fc+OVG1yn8vkaRRzaSqxPOAfTWP64aKLseB/ecmBZ8tVdW0H0oGSa61L9pvJbkkVLpWlVCxPQXHi2uN/3KcVIHUTYVMJoN0Oo3d3d2ZNaVtKgm+WThKFspvm/P5H4357N8hKtJ5cxBi4AICAgICngMOcxk86BxfxfJ/12MPu8Y8MniUvvu/x7Xp9y2OxB10nTgSyDaPMlZ6TCKRQLlcxtLSEnK5HHq9njOefOOf10mlUigUCqjVarDWIpfLOQNqNBo5paTX68248tH4TKfTOH/+PJrNJsbjsSNq6XQatVrNqSlUo9Q1D5g1MNm3fr+PbrcLADOqRTKZRK/XmyFT/EmlUq6vABwZYh/VHWxpaQmlUsndfy6Xw2g0Qq/Xc2SDKghdQFVZMcbMKIXaB7qCqgsaCSvvgXOWzWad+mKtdQSG82Otda6DNKR9BVpJiqpTatirWqRjrgSBpIvkjYQRgDPodVODhE/dWNk/9kPHLplMOldZVd645vzPSHA4j/yb11YCp/enGyWcBwBu40E/5/yRHPF8jj+vyTXFz0ngea4+4zyfqq8SMq4FkhWqUBx/Vd50fjkGHAfdpNDNK598qSqo86zrWL/jOWzPV1e1b7qW1P2dqjpJKedK146SUbqI8nkh0fdVvJcTL8SF8isON0/IDAgICAh4pSFOoTqKEjfvOJ/UxKljPmGMI3txCpdPGuOUMP9YPT7uOL1mHIGM64dP5A6Df1wqlUK1WsXKygoymQx2d3edKkIVSskcVZ1arYZCoeDaoTKSTqeRz+cB7Bt17XYbe3t7yOfz6Pf72Nvbw+nTp52yBERGaj6fR7VahTH78WJ0ndN4Nx4P7JOKfr+PVqvlDGd1xev3++66JAfj8Rj5fB71et2pTlTJrLXOPZGKTrlcdoZoNptFJpNxx9PopGHe6/VmxppGJZXHVCrl+qBueEqi1P1PXc04zuqSx2vRyFY3Na4fX20mYeIxanSre5ySR78Nkmm2p8qXutzyudrd3XXupowpJFHmnHGOSF6pvtAdk4qpxgOqy6S1+3FrGmPHtnk/HEMlzZwDvX+9F94/r+M/1z7Z4N8kiT5x88kGlUx1H+X9qpqn65TkzSflnC+NDVP3RlXe/Ng5nYt5bqJsXzcIVJHkGvZJMsdKY958l1EdU1+V4zV0nXI8NdbzZuB4EbjnuHsZEBAQEBBA+GQGuFEloxFymOo0j7ixTd8YOyimIo60+f3SdnWn/jAyGHcdH3FK4by+zgNdk6rVKsrlsksyQmMZ2DfEOMbpdBqlUglLS0vOFZJGHckYjXoagnSNY4KPZDKJc+fOIZ1OY2dnB61WC9Za1Go155ZIRQuIElbk8/mZGDDutqdSKezt7blkHzyGLnrJZBKtVsupOcB+sgcqO/xbDXoSikQiSkxSLpcdwaGyR5LGvpTLZVhr0el0ZlQKGtA0QjmuSqA4bySBxWLRrT91C9R2lPz660uNca5lunfS8OVYEfyOY6SxjXFuc+qKR/WEY6axZVQK6TKpyVGUbKibLdXNbDY7405JNVbdHpXM8T401szfGGG/Vbnl+0HdSPlcKSkh/Hi2g9z21IVUFUmde44pCasSNe2rH/ulSpuqg2xf2yMB8gkc29S4QM4znwvOK/vC8VDS6o+1jiPJO+9D1zPng88fXYk5v+w3r8mkL+l02m3yUNXVZ+xm4JgRuJCFMiAgICDgucH/TziOLKnhy8/0dzWq4tQsv22/jXnH6veHqW7+dY9KvOLaPQo5O0itU6RSKZdsRFUTGlrsu6oXhUIB9Xody8vLsNai0Wg4RUKN1NFo5Fz8er0eEokEisUiWq2WS3KSTqfRarWc+2SpVHLkhMZ+KpVCPp93hAnYzy4IwMWPdbtdpxSokkaC2ev1ZlQNEjcSVSYy0UQMJAUkt0rsaChqHFehUHDKD49RZYfG8WAwcMSZRi+N1X6/74xXNeypJlGV1I0FzSSproNUjpSMq6pFI11d29hXdVtTFUdVKvZ5OBw6kqBEh9chcSAR29vbQ7/fd0RVs3OS6OfzeZf4xlrrVDfeEwnlcDh0GwaqtJEYqesjx4eEksf5ipD2X1V7jjevocqVxh+qS6C6JLIdXzlTcqKKqyZP4TFKTnz1VJ9VzjvXkq8Wxr07eX2dZ1Ut1eVV+8SxUNdFkl7dDNAskvyebfO6SkT1eec11OWShD2RSLh4XK7957KJ9WLjeBE4hBi4gICAgICjYx5xiTM64s7xXZR8EuWTI9+wmbebfhjZilPd/GM00YHez0HnzINvYB7UH4KK0uLiojOeVTXjTrYaWiQcKysrKBQKzhWRcVvMILm3t+dKADAjIolKr9fDLbfcgkQi4c7vdDrOPZJETDNPKnnTuDXu4u/u7qLb7Tr1jf1VF8RUKoVyuQwALq6oUCi4XXu2STc+jpFm4aSyRwKmCTTK5bIzIjVLo7ovqpIG7LtJklDQSGXiGBJJNdpp3JLk+ln/SMI1WQXVFpIMziPJFO+V650kXA1sYD+Vv7rZMY6PBIF94djrfanBrRkpqdjRvZVJb0jw6eqqqptmIgT2Sau6y3INa5yXKnSqfqrrKsfAJ3YcCyUTHFffNZD9ULWP60DngmNFIuurq5q8RO9HyY1eV59bzr8mbtF3AceQn3OzQtU7VfqoZKvqyrHi86pxj5wPXb9cE+wb+8cNG42f5FwZYxxJ51jy2dH1yvb9MbkZOF4EzpiQhTIgICAg4Eg4quoUd9xRzvUVqnnqmX+sf14cafJ/191xYN/lyP/OJ4Y+uVNCdphS5/dDjZlUKoVarebqllE5IHHQdPCqJpTLZUf4SLIWFhbc8Ww7m8069YvGebvdRiqVwvLysjNW2+22I3HAfvp4zcRYKBRmDFjGi9FtsNPpOMVG1SaSq1wu5+LzeB26YarbFYkf3fUAoFQqoV6vu7FQAka3MvZFMyVyLjKZzIzBqi5eVEOYbp9qJ2PqeL9aJ40GdC6Xc4YxCRTnCdh3N6Nhq4omSQyvq4oV515ru3G9krxRAeO9si0lekpwmMqfhK9UKjl3VRJ0JczMRsnabiR6PnkjkdKNEJIuJZIEyZG6ECo4fkq4lNQqWePxSsL8d0hcfJmqVeouSNVYlVNr7UwdOv8ZU/jkUMeB88KNFBI3f4OKfVLyxrb0XaDvICVLOk5sQ115Sbj4napoHHMScm64qGsv17xPQDkufH6VSPvj9HLieBE4BAUuICAgIOBw6K634iBXQ/3MV57mtaHXmkcQ/ePnkSS/H2rUKXk77Pi4+4k73v8+ToWLOy6bzeLEiRNYWFgAAJccJJ/Pz6g+AJwRmEqlUKlUXLxbt9tFt9t1sScAXExYJpNxrnHpdNrFhxWLRUf8NFMjDT1mUaRRXy6XnTJIwqDq0Wg0cvXdyuUyzp07h2azie3tbTSbTezt7aFYLLo6dCQvNByHwyE6nc5M6QC6V+ZyORSLxRlySyOcx5NQMAkJ26cySHWDRqoa+jSU1Z2Qn2vhb84Bz2f/ON4ae6TX4fc0ykmANG6I5E1VPXVLJWFR1Y3tsIafJrng37xnJW/sp24MJBIJp/aS0GezWVeKgS6tSiZ570qilEipaySNeRJo361Tx8h32/PfPzrvOjaaZEXJgrpwauZLJTT6N+dDiROVOPZL14iuJ3VJ5FhxnbM9HS8/rtVX6rRfvgslx4akTp8nnsdnlPPPNafE2h/juPhELUNBbwF+z+dPXTv1ueM5gcC9SDAhBi4gICAg4DlgnrqmxGQeoTuINCm5mqe+KaGa5xJ5kMvkvHP9fvnf8zNVzOLuwx8DPXfeeLA8QLVadSoZMzCqUUgSl06nUSwWsby8POPKxlgzGp0kVeNxVMMLgDP0KpWKM6S63a6La6Nhp6SD6hIVMhrhVGFovLJEgDEGtVoNpVIJwGxdOhKBwWCAXq83k1qcteCUHJDYlEolFItF1y/2nQSTBjENTBJZAC6zIo/TzIiaVIXGMolLPp93JIT3y3sgUVPCRWVEDWJC3RV5DzTISZI0hTwNfxI8zh1JBEkpyV2/34cxxhF+kjfeG411Gvm8rqqnLAGhih6AmUQl/X4fvV7PxT8yDk4Jgq8AUXn0FSJVZvR+9F4VccROYx/jnjFeU+My41QmPou8Pompvhd4nrpMKjn1k+BwbQP7Cjj7pPembsW6JvwC8qpQ+mSQbaoaqLGzOhd6DW2H7wyODcec88G/qfCqa6aqv5rYRDcsbqbrJHGsCBxgggIXEBAQEPCc4ZOkoyhVSmjmEbC4NnzXH21P2/QJmn9N/V6NSv/4OOPuoH76Y+CTt7ixSaVSWFhYQL1enyEb1lqX5p8ESclCuVzGwsKCG4/hcIh2u43JZOLi4Ogy2Ov1HPnq9Xqo1WqOGFprsbm5iW6364gBXRhpKBcKBVeYm/fHLJTc7R+NRq6WHAkai4Nfu3bNKWo0uPv9vjMmtTYYCQeNcrZHd08lYKrMsF0lUqVSyREO9juXy6FcLjuSurS0hIWFBdRqNVQqFVfsnIavJrzQdaTxQ7u7u+j3++h0Omg0Gmi1WtjZ2UG3253pH5ObqBFLQuC7pZHwMo5M4+Fo1Gvs3Xg8di6e7BtBkkFCxHFQ1Y3zznvi9UgCuA5JujXTp6qvSmKoVHF+VVX0a53xd94v1Sh1j9XjgP3SByQgGjena8UnLGxDVSyNN6MCybnnWuS5JNR+XBnXoPaXxFnXL++La0mvw2up8qYxe3ou+6TxfySAbIebGaoYajZNjSv01UqN0yRhI9Stmaq7xp2qCy3Hin3hZsPNwrEicNF7KTC4gICAgIDDMY/E+AaJHg/su0j5ihR/P0zV89ub1zdeRxWwg4ihTwDn3WOcujevz3Ht+GpdJpPB6uoqarXaTFIM3UWnoUXjii6TGmvF1O2ZTAblctllW6RyVKvVAERG18LCAsrlMobDIRqNhlMmqDZZu194mgZ4sVi8IaudkgfGjyUSCeTzeayurjriRGLHmDYtzu2TNWA/6QIVNsZckSjQ6OT5vH9NnqAGfqFQwKlTp7C8vIzl5WWcOHHCETUte+DPLRH390FrUOefSWAajYZzIV1fX8f6+jo6nc5MwhTOLROL6BgpmVISoIkuNEugGvxqqHOcqdCRYLLmG8dSySDbpLJLlZKEhGPPAvFU8jgO7Cew/17Q0gaEn5VTSa4qlbxn9kOfGd/lmnOgpEjnUMkjSQcTyJBQqXJEIqMZG+Pi7/w+aZs+eYv7jHPpq3RK4Ni2qmVxyqY+W7x/P9aN5/EzVdz0HK4z35OBbpOMk9U+q5szVV0quDcLx4vAIcTABQQEBAQcDlWX4j6L+9HjfIMkzlimsaVt6K6zr5b5ZMpXS/zvVXnT4w4jlIqDyN1B40OUSiUsLy87NUgNULrNMVGIqi+swcZYJ+5kZ7NZl1SE6lgmk3HkMJ/Po1KpoNPpYH19Hbu7u9jZ2XG79Fq0meRN08Tr7j7VFGA/aQiNzmKx6Ahlp9PBYDBwSpIqPgBcf0nsaHBzZ79YLKJSqTgSQdc39oGKHo3pZDKJer2Oer2OW2+9FbfddhsqlYpT1EiQ/CyecXMV9/dBpE1JAf9lQhoWIacywnFoNpu4fPkynnnmGXS7Xezu7jqiq/FqSl7YDtcK1R2SJxIbbmJoQg4a7FS5OM56LtcD18Te3h663a5Td1mLkHPFuERewyfjVJHU9VHfAxwTADe4QPJ+1X2Qn3P9kfipukd1koRTCZi+f0hY/NpmPJ9jzntRpVgLlM9bE1RxNWZMv1fypPPN8VOFUYkb165uVPmbZ/ybxFTLD/BfJWhx71X+rcSbP6p683cqnVSUdSMBgHsndLtdFzd3M3C8CJwJBC4gICAg4LnDN4J9Mucfy3/jCJRP+uIMCh80guapXtpH/3z/bzUs41SXefflK30HET8gIm+Li4suNokGkWazKxQKjrypOxRdl0jyxuOxyz5JQ3w4HDrVbHd3F8ViEZPJxLn10Z0RgIsp4+45jWyWB1C3K83Ix5pg6XQa5XIZnU4H1WoVuVzOXWcwGMy4QmpcmN4bXbPoGkoyStVCk6MwY99wOES/30etVsOtt96KkydP4ty5czhz5oxTmHwVlqTjsHlUxUKVoIPWkK/qcF3qd2yPBKhSqeDs2bN44xvfiL29PVy/fh1Xr17F+vo6rl69irW1tZkx1z5qjCDXEb8nieO40vWW40Z1k+OrxFrru41GI3Q6HXQ6Hadm+rXx6FZL413Jho6lJgwh1NWPhIzPkLrrUZX0SZUqv0qk1G1SyxrwO1XvOGZ0meRaB/YzonJ8qGZS/SYp5drlZ8lk0sXPqYsir0kXWHWxVJdPjh3HiM8g+8rP/XHjGtNxUCVf1w/Xp7qdsp9aAkE3D6jUatwkST/v1c+cyrmbTCbu3cNESDcLx4vAIZQRCAgICAg4HL4RG6e2xRnOAGaMkzjyprvP8whUXD+UPPmkz2/jIOXNJ4vzAu7nqX3ziJsqB7VazSkWVE8AuOyPNKw1rTqNO+5aD4dDlEqlGbUknU47l8VkMunivnK5HNrttnNpVLWhWq26eDT2PZ1OzyQ3oVsdDTUAzvWOysJgMECtVkMymcT29vZMchK2Q8OOxipjvEgYqVRxh5/jRuXNT7xx11134a677sK5c+cc6eMamjfP/lrVRBZxa1fnd978++tG/2b/fdc3XaM0oLPZLM6ePYszZ864Md/e3sYzzzyDRx99FDs7O84gJ2khUfGvrQqVusn1+32XzIWJbUj4J5OJc1elKkrlLZlMolqtOsMdiFLHq5pJcqr94/35cVV0OfSzgnL9ca1wHkgAuDb4N/uimxq8pjHmhuytvlsmn0kSKqqfPJdkhaRG1UZ1Ida/SVpIrEmAOAe+u66qYRwTfU/67sYktqpy8nffzZljodfgePprVRU5dUnWZ0FJHmstamIeJmjhOtW1xw2dXC6HWq0WCNyLhaDABQQEBAQ8H8wjb3FG7Twipv/y97hjDzrXd12cR+Lmkbe4PsRd6yD4benfhUIBKysrzlgE9g0iGpPlctntYtO4pMFYqVSQSCRczTYm9qCBpDvhTJZB9YDxKWpokfRpnBUzEGpKeCpzVPOYwILGfDabRalUgrUWW1tbjigy4ySNWCo2er8cs0KhgIWFBfcZ1ROqRu12G+l0GufPn8ftt9+O22+/HSsrKzcQ/rg1pi5jStp0znxCpW52/rzGKc7z/o5T+ZTQKSlV5ZeuqNVqFbfddhve+ta34urVq3jqqafw2GOP4cqVK06N5DoiqdFCzCRCzArIOcjlcs4IpzJUKBTcWut0Oi5ukZkmqbKlUimUSiVH8pQgaC09kpN56eJ9d1geq+qUqr8kesB+Jkp+z3Fm+npuamj7SmxVJaV7JckTVUjNPqmF0Hl9JTPsH+9Ja/T5a1DnX99Zuu50fWidPmOMi1nkeiaR1fcGP+OxJJ+awMWPC+T7hufSRZvvCj5fWjtQCSXHAtiPe+P6VlfWcrmMUqk0d3Ps5cDxInAIKUwCAgICAo4Gn+jEGatHITzz2lQcxe1RyZjvTqWE0j827j7ilDSfZM5TEOOOTyQSqNfrWFxcnHF3UyNnMpmgWq3OqBaMQWLqfBpBrMdFI5aGn6a6p4I2GAxcbBUVDBZhpiEGwCkLmn6eRj+JIVU1tpXP51GtVmGMcS521loX70blTNPus11gPyFHNpt1dd2AfeOPhnUmk8H999+P+++/H4uLi67//vz7SoIqCLp2aLxqTJ+vivmkLg7z1joNa40bUuOa37GPjDGkW6Jm8BsOh66dU6dOYXV1Fffddx+2t7fxyCOP4OGHH3YJIdge29dSCt1uF4lEws2vZgPl+JOAsYA7ELkQkriPRiPnXskafBrHRqKvz5a6N5MkcR0y9ozEin3nvyQvquzo8+snyqCLL90/AcwocmxXySLnhOMdtymiLq9KuPUdwFg33ZxR10TdNPDJkxIufq7rU9dU3DtSY950bPk7+6+qtrp/qrskz83lcm6DgMdo1lmWkCiXy+4aqqyS3HEzhyQ/m826zLrzYgdfDhwvAmdCGYGAgICAgMNxkMKl3xNxCpdPlOLUt6O0w8+1nTj1ZJ7L2zzXuoNwlGN4vUwm41LU01Dn7rW6mVUqFRSLxZkEInqfzFYIREY1FQAqIul0Gt1u16lqJFzMHMi+UFXg7noikXDJQjT7oZJBIFLE2Ja11t3TeDxGt9udcamiEQ7MkjFVQWiUU+nQmmY0Ik+ePIlXvepVuOeee5x7Ztw6IWkngVFD3Se2PlnzkyzEkYPnAl8R9H/XkgHziJ2mz6cipO55uVwOq6urOHXqFN70pjfhiSeewMMPP4xLly6h1+s5pUXJNJPhWGvR6XTc+mFJBZLwRqOBXq+HbDaLSqUCAK7wO2MyuR6p9pLoK1Tp4f3zXmjwkxioq7AqU/ocaKITJTwkVdxUYEp7/d5PukHS7Lt7KnHjWuG6UkLPZ1aJiqpUujmjxEmzbGqSD3/zQF0zuX5IjtinuEQsPJd/MyELx5uEUFVRJfK8XqFQcIoryTzX6mg0QrvdduuBa1UTtfAdonFwHFsdCyWOLzeOFYEDEGLgAgICAgJeEOYRq3nHxOEg18Y48uiTtjhFbF5/4tzf5uEghdBX+BKJBEqlEhYWFpDL5ZzLGdP2c2eeaf/puqbJGdQA0vTxel0a0L1ez+1wM3W9EipNVkGCRbKQz+dd28yCqJkLmUWSBj9dF5UgUn0hUaBaR9BI5nVIGqlI0mBm+/fffz9uu+02lMvlmdgdf9PAV1KomtAo1ayZ84hb3I+/xvy15a8Jn6jN2xBQdU5dOjW7n8YiqZseCYDeR6FQwL333ouLFy9ia2sLDz30EJ555hm0Wq2ZAutcX+rySJdJay2azSa2trYwGAyQz+cdqaPiyngwKoK5XG6mkLmqbEre1KXPmCgeU1UwnVclGSSHVH40AYmqfpr6n2On32m7VKLoWknXPvaLZERJDo+bl9iDGw/qqqmbFlTTtOSFEir2UZ8TvX9Vi7mOOBbq0ul/p3F4GjOoiiC/I0FX0smNlWKx6NYa3bB7vZ67Z2P2k9fwOCY3okrPd5//3Bz2/8BLiWNF4EzwoQwICAgIeA7QZBHzEEdu9HM9jsbWYepb3DUOOkYJnU/ueD39TEmiTxjjXPdojKjCtLS0hJWVFWdwGmOc8axxSIVCAaVSyZUMyGQyaLfbLu0/AOeuRIOL7SUSCXQ6nZkddbo4aVwbE02QhNEYZ3Y+YH/XfDgcOsOZZG4wGCCbzeLixYtObev1emi1Wuj3+y4hCos6k9Bpdj2qE1QraCBSFRmNRrhw4QLuu+8+XLx4EYVC4QYCpPOksUu+qukTtcP+9X/X9ThvHc5TkJWY8XNV2JS8Efye57HcgcaD8W+Nm6NayzFdXV3F+973PrTbbXziE5/A5z73OTQajZlEIwCci2EqFdVwa7fbaDQaLsEEM5aSlJdKJWQyGXS7XQBArVZzLpT8UbdEvW9gP6EIybpuYPC+1aVPx4znkvhTAQb2FS2SyThFlc8dSSdJFQkLxxvYd7cEMBMDynvjvSgZ4rrWzQJg3xURgFubbJekVMkbiR/vV8dGY+z03vQdxX95nKrSHF9dW2yb7rBUUfm+4DzS5ZrPNNVbKvYcJ6qWLGbf6XTcO0HVZ40rDDFwLxKMCfwtICAgIOD5wd9RParK5h/vE7246/ht+MfHtT3vMzUklIj51/L7N0/dy+fzOHPmjMsQube359SP3d1dZzQZY1w2ym63C2utU6wYj6YuVnQ5Go/HLj5FM+PRBU53+QuFgotXGQ6HjkixHhxdyBjnxrYnkwna7bZzrwKiGnPMKmmMcckvKpWKM2aNMS7LIQDnskm3Nv6u48fYv7e85S244447XL/iFFFVeEj8/Di2eQRNCYJ/DvsxLw4ubh35/Yr7UQM67ofH0bjmOVQrea90+aPhTQObWSRVAeG6+pqv+Rp81Vd9FT772c/iU5/6FJrNplsTXFf9fh/NZhOdTgfWWufmy8yUGq/U6/WcQko1RgmTKm86ViTxNNzV1VLdRbU4tippnAeWyyDx0YQsHBeOpapQXL8cM43r4niTFHJTQOvA6fPO54SbNCRpPEZdLjWO1Cdl/saBrke9d36n65z35d+nrkl9tqjc+X3TdZvL5Vx9SFXh6RrJtaokT384Nizr0W63XX1A9iOZTGJhYQHpdBqtVsttJt0sHC8Ch6Nl/AoICAgI+J0Nn7z4xta8nVU1iH0FI07t8o3neUTMv0YceYxT9nwiNk/JU8No3v+TiUQCtVoN586dQzabdanaNXEHjedUKuUKO9NoYrY4xpXwesz4yN31XC43o6TR2AZmFQmqK5rKv1wuo1KpuPTd7BcVikKhgN3dXTSbTUcql5eXkUhEmS87nQ5yudwMQaMRpvFzNNoZS6OJLziG/X4fuVwOX/VVX4X7778fCwsLcxM1qDqlaluceqYKibrY6ec0hpXocTzi5t/vi28oq/qm68Qnaj6Bi4uB02MBOEWTBJyqh55LN1qSIK6XhYUFvP3tb8e9996LT3ziE3j88cddPzudjqvVx7VB91sSc641usyRfNNdN65MgapGJEocE6poJDTAfhF4GvyqXJGoMP6Sc8f1qgqyX+uMxImbBuqyyHEE9jNI+qn8SXjYZ83iyg0T/33AvnDONWGL3juPSSQSrl0+T0qwuH5VTScZU8JOcszvNR6OY6LrUNcX5yiTyaBUKrlzeK8EN3P8PhLD4dDFTw4GA1cvkNerVCpuc4bvvJuJ40XgggIXEBAQEHAEzCNJwI0kZx7p8V0PD1Ps9Byf7MW1r8dpH+IUFP183nUOuh/uLq+uriKdTjujSHf2V1ZWAERGGQkeXSppjNIwZDKARqPh1BUaRBrTRDc3Zsqz1rrse0xewTT/lUrFFdmmUUz3R+6yM4kFXelOnz6NarWK9fV1ZxSynpwmYVESSaOZSR0YE0fjnMTpjjvuwIMPPujGbF6MGz/zSZeqFwBm+qRKjX7O/rEdf+0ctjngk0t1VQNmCzXzWjwuzoBmAhoqUVSfaPz7ygmJjipFNKipcKo6xWsvLS3hve99L+6//3789m//Nh577DG0Wi3s7e2hWCw6tZiusIyJ1JT6GjPmk1O9R84JSZqSFo4hyRLvh+TQJ3CcH5I/rjGN2YyLweP8cu1xrPns8RlR98i4uDgSIyVRWppA1TiNV9NNBc4LECWD4fG8d6ryqrypmqgJUZQI6tj464vfkQACs5stun55jJJqnqvvJyquVFrZV/av1Wqh1Wo5TwHGV/K6+o7Y29tz6/Zm4XgROIQ6cAEBAQEBh+MgsuWTn4Pc0fT3OKLlkzS/3TjydhQi6Pd33r9xaov/fT6fx8LCAsrl8gxRYDxNNpt1CSFoiFLd4m4+M+IBmFHOWq0WUqmo8DcQ1eaiYUQDiwY744BYGoCGF+urMRkI03rrrr+1Fo1GA+12G4PBAIuLi1hdXUW328XTTz99g7KTz+cdMWI7JA1URWg8896MieKOKpUKXve61+G1r32tS6wStxY4znFJSFRpI0mjgU3SSqN0XhKTeUR+ntpKg1r7yzWgCSb0HN63xkbp55wPjg3nulAooNVqzVxXDXQaxFR5uYY0fomKHNtPpVI4deoUfvfv/t145JFH8Ju/+ZtYW1tDsVh080hXTa61RCKBYrEIY8xMAXhNPhJH1lS54hqjwa6KGTcPVJ1VEujHxJEMcNy0wDXHlSSUbY7HY6fecb2pO6KqcRwvXlPVW3XVVNWW5NuYG10sufZ9osk+q9ukZliNG0sATvXU/unnSshItjg2vnsrSR9JFpOOkLCy3wptnyo7Eyg1m01Ya1EsFp3rbT6fd/M+HA7RarVm+hMI3IsEY0xQ4AICAgICnjfmucXEKR0+OZpH3vi931YcUVMieJQ+zWtTf/d3polkMolareZczTSDIHehqW5Ya10iEJIrGn008hgnx8Qgg8EAxWIRS0tL6Ha7aDQaM/W3SNSSySQqlYrb4abBTgJVqVSceyNVP9bWYsFvZpM0xuBVr3oVjDHY3NxEq9WaITqMh1KDVGt5sYZWPp/H4uKiO45G84ULF/CWt7wFZ8+edWpHHJHyVTbfNVIVNq1Vp4pbXIxbHNSI1DUYpw77mxKHQdeO/qtjosRsNBphY2MD29vbM/Fvqsxpn9SgZqkAEjkSjtFoNFOCIp1O495778XZs2fx6U9/Gp/85Cfd2mRsJTcYSqWSm1/2WROrkGABmFlT6gLJ4zXJjSq/VKjUbVCTiXAOSSYBuPXGz4F992EmB+Kz1u/33eck+HofTNajmR/961Idp/LmEy/2iUlf+B5Qgss582MtVckiEVOVmO8VYLY0A59xbpaQvKqqyX7zvtkO50yzn/K6GlurRI/nMVEJk+jwncDNA27a6MYNSaE+BxrDdzNwvAgcDvb7DggICAgI8BGnjgGHJxbhMXHwSRgwW09KFbi4NuYpffwujpDNuy9/l5iG09LSEqrVqjPWNE12JpNBsVhEsVh0dZPYJlUTYD+1PuPKNC3/qVOnUK/X0ev10Ol0ZlQCGuSFQsEZxHR30uLfNJg1myQAF5fX6XTQarUwHo+dkggAV69exWAwcO53vV7PFdqmCyXng4YmCcDCwoLLvtnr9dx3X/3VX417770XlUrFKUhK5DkX82LaaATyhwSWpDWubICuEZ+c+esqLkbS/3tesog4FU/vJ44Ykhz4xJJGtBrPNLSptqm6ogktSNZIYjRzKUkuEBnbi4uLeO9734tz587hYx/7GLa3t9Hr9VymSb/gN9Viuvcq+SYRJXn055H9NcY41YzPEc9XUqaEVhP1sF2ex7HjvWm8Gz8jcdRNB1XHtNQG1Wj+sCyHlgPgOlDSyU0RrnV1sVQ1Ul2AlYD77yR9NvR8jqGSUM6z3h/ngxtJShyNiRIQMT6NY5vL5W5QWPWa/IzxiM1m07nW1mo1Nz5U3/w4PBJMPvtxz83LiWNF4BBi4AICAgICjgAlUEB8XJnv6hgH37iep7oBiCVS+u88lzi9DqFGta8Gxt0nf6cKsLCw4FKrawIKNXJpHNLYInnj9ZmdkgW4NcbmzJkzKJfLaDQaaDQayGQyTrmbTCZOYQCi7IBMdMLsknSX5DWp6NFIHQ6H6Ha7aLfbLj4vmUyi2Wy6pArlchnFYtG10+12nWpGIsFkEkCk7KysrKBSqTiiOB6PsbKygje96U249dZbnYHsZ/dTIkADV13oeA4JG3/8xB1qfM+b/3mki/OicV1+G0rodV3EET/9119PqsZoX2jk8vc4gra7u4t6vY5areYyhWqcnB6rhIZEhNkF2bc777wTJ0+exEc/+lF87GMfc+RG+8f+aPwXlTmSFFXlVJ0jQaAbnRr06rLHWDCqUPyMGyRKetgu4+IYp0cyQ+LCe2dbANwzx/5z7XLeec8cL1U52W8tX6HkU0s9UInj+0Hn1VcvSZB4fV03qryq6yrXom4q6EaSvi9V3WSf+bkSNCZGItQlnG1rTKkSaGDfVVZjGEkm9Rnn/AQXyhcJBggMLiAgICDgOWMe8ZpnUMf9x60kKs5NLS4m4yg7uHHG9GHEUs/lNdLpNGq1mku1zgLYdE+yNiqqDMARDHVlo9HEazKjH0nT7u4uTp06hdXVVVhrsbGx4bK1lctlNJtNAHCG6nA4RKfTcQZ8LpdzfaOiAMApDFQc+v0+dnZ2XMmCpaUlJJNJNBoNdDodZLNZl+57b28PrVbLHTuZTNw9KvnIZDI4e/Ys8vm8c68yxuC2227D2972NtRqtZkU6jp3ca6SNPyYgMXaqNA0M9xpfJcawvPWR5wK6x8zj7zNU3nj2o1rO06Z9ttV49b/XhUbKhgbGxsuEynJFNezkj66mGrNP9b0YlIKY6IMge9+97tx5swZfOxjH8PW1tYN46fEVZN9ALPZIvk3sF8Q2hjjsk3q/bH/7ItmbOX5ShpI8OgOTJdFxnHxXKpAVPw4Rhrvxr6qsqeEk5sNWkqDrqAk2kpiNPmMxtdZa11GRxIldVHU8SWZ5RwqyVESp2o/nxV+p+uP95LP591Ghz5nHBvNAEpljtfkWPM4Ena6jk8mUSIlbhaQyKvyqv8P6OZNKCPwIsEYAxsYXEBAQEDA88BBZCqO4MUpFvOUMD1G24kzxOcZ3Hr8QdeLO18TlVD94k41d9/ppkU1QmN8aOxxh57ZJLvdLgaDAUqlEk6fPo2lpSUMBgNsbm7O7H73ej13zUQi4eoo0ZgqlUoz8UrAvso3Ho9Rq9WwsLCA7e1tbG1tORfMXC7n6jbR9a5arSKZTGIwGKDVarlkFjQoVW2gEX/69Gkkk8kZI/2BBx7Afffdh2q1Gut6qITDd5ck+WANu16v59xEaVCrMerPWdwGgRKig47T4/1j/PPj1spBZDGOyMWdw2NVrWNf+Hej0ZiJYVJyoePC3xkHpglFdL5SqRRe/epXY2FhAb/1W7+FZ599dibOi+tKSRFJjqoqwD7RJ9lnzBu/YzuaNZSkkPfJttTdjtcieTPGOJVY0+EzVo6xbVrygOtXM2H68X1am45tkJywT3oO70vjvEjUVB3l9VVN0zWgRcr5GceCv+u/SohUTWO7ek11Fea1OAdMYFMqlWYSKpEATiYTV45kPB67zJ4kjFRnNcaOfWMbJHWq/oUYuBcJIQtlQEBAQMDzwUHEyzeSj0Kw/OP5vR6r5/iuaX67+u9hx+h3yWTSkSP+MP5GjUl1iaI6xx3q0WiETqeDVCrlap1tb287o7ZWq7lU+hsbG85QUgOZadMHg4EjMUyEksvlUCwWZ2JLer3ejPFUKBRc8gEqZOVyGXt7e44I0C00kUi4DJidTgf9fh/ZbNZlv6TqyKx1JLI0dAuFAt70pjfhnnvucSqjP/dKMDTZiKpGVDFJ3OgyOS/GTedvngsl//WVrcNUOH/9xX3nX0M/j8NByp4P9lPJjxJekt04Isf7pKsfFSu6EXI9AdGzeurUKXz91389Pv7xj+OLX/yiW9dci5rQhAqakkYmz8nn807B4hio+kKCRMLB+/ATcrCfqvJR3SZB7Ha7zmWU8Vd8vtS1VAki1TL2SQka1xqJHhOtUE0jsdW4VI1LA/aTumiSlrjkJX4Kfy21oWPkJyDR9UsyxX6pAsZ3hSpeGleqiqbvxkoSpvGzrBXH8eZ69Es/6D3FqW+ci5uF40XgTCBwAQEBAQGHI44AHeZmNo84+TvO+h8/z9PzlRDGuc7NM4zjiKAa9HofNLzK5bJLBqIuWTRWfCM2nU6jWCyiUqm4VO6sqcYyA+qSdeLECZRKJae6MXEIyZe1kftkKpVyZIrkrlAozBBKADOGGJWE0WiE69evYzyO0qkzc+VgMEC/30cymcTKyoojdJ1OxykzNDxZ6JmZJdvttjOUC4UCyuWyc3d817vehdtvv93FUcWtA1XeaEiSYLD/JG40Hmno8tx5a0/nOU61jVsTumZUqfDX2kH346uM/jlx5/sbD3Fr1L+W3jvXiI4lFSdVRHw3Syab0Bg5rfNVLBbxlre8BaVSCQ899JBrQ5VPbhZw/QOYcdUE9ktAaIyitsW/eZy6N+oGBueD5FFj8fxU+txIUPIWR9b5HCnJstbOZHLVbIpcn4y5U5dEKtp83jg+VJ50vNiWujFS0db1prFwPJbvBt6bvq/89aLryY8fVAVSs17qWHLDqNFouJqBLB9CMkf1N+7Z5niQuJKI6vN1M0nc8SJwCC6UAQEBAQFHh09+gOemsPlJHOIImbZJA8H/TtuI+8zvm37v/zCQf3FxcWb3nIYWFQa6QVLlYtkAEheqRzSIlYwwcUixWESn03FxcJqwIJ/PuxpdJG/D4RDpdBqlUgnlcnlGAaByZ4xBoVCAMQbtdtupJZqpr9vtYjweo16vY3V1FZPJBN1u19Ueo9sns/AxuyR33hnTRgK3t7eHarWKd77znbj11ltnDFd/XnzlTRUkKoy8VxJWkjef3B9FwYojeP66UGgMmbq/HabAKfyNAf183rm+ERz3PPntabZCVTGpqnD9krwp4eP3Wmx5MBi49ZLL5fDAAw+gWq3iN3/zN7G1teUMbiXeJFpU/lRpGY/HM26aqrTxWeM64KYIlSuNjyIhm0z2a7mRyJBo8dmiu6OSVwAzihLngetbVSg+51osnO7KwL4bK6/HNuk2zedGa8MpgfLdNnX+fMKlrpNKAjkmfAbjEuvwR90t9R703cYkSbrO+N7Z2dlxypy11r07fHKtCV985TTunR33Ln85cbwIXFDgAgICAgKOgDjl7KjuYISvmh2mnOl15xnxBxm9ceqH/3cmk0GlUsHy8rKrI0XDlkZZqVRyBpeWCgAw48ZIaI2ybreLdDqNxcVFAMDm5iZ6vZ5zDWMfNBnJYDBwSURY142qCXe2WbeLagELgatCQKWv1+shl8uhWq1icXHRkbetrS0kEgnk83kXX5RKpVCpVFAsFp16VyqVAADlchn5fN6pce9+97tx7ty5Q8mbH+/GxAgkuExUEucyedBa8q85j0T5a8pfV/75usmgP3H3N68Pev5R1/m858nfnFCCosqOkgEa60rw+N14PHZkxU9Ck0wmcccddwAAfv3Xfx07OzsAZmOrNOaMygzVLI1BU+UJ2C/kzRg7fQeQDGj2RJJKEib2wxjjlFsAKBaLLqEJyZpmP6W6rYW5NSGLFkQH4DZGEonETHZOJSAkpfybZFazX1KhV9Ljq2JxyjIVMl5XP9ex8d9n/saDtk3CpW1rkiG6LDcaDVdfUJ9rdZ3kfPEzqricyzhlmudpn15uHCsCB4QklAEBAQEBh0P/k+bfcUrCQef7fyspjFPQ5qko89r2+3SY8lIoFFCv17G0tORICoAZ96hareZijUqlEqrVqqu9RbWG6Pf7sNaiWCw61W1hYQHJZBKdTscl5qCCkMvlUCgUUKvVkEgk0Ol0nKJAYlWr1ZxxCsC1oSnTeR5VQwA4efKkI0XZbBZLS0suyyRdKVkzju6K2WzW1bkjkaXCyFi5TqeDSqWCt7/97bjllltm3KkOU960npsWE+/1ejO1x3wjz587GqBck/PWg4+4TYh5a0bnVt3x/EyCcfAJXVwffONW179+r2TSb0vd6kgIqPSMRiOcPn0aqVQKjUZjJv6J90MlrlAoOBIHRMTwzjvvRD6fx6/8yq9gZ2fnhnhPKm2qRHH+VCHieHGNUlFj5kMdbyUXdMvkRgcJCEm/JghS4sRzSW65QaJqIftBgsa4Ta5LP5usFq1Xl0Z1Edzb23PqOwks66ypWzLvmc+Gkjk/kYvOPYmgr0hzjan6yHWqihnvVzebOEcsMcLSI/QE4DPLtlTdU1dVzqG6lmscIq/1XDf8XmwcKwIXLaSb3YuAgICAgFcCjuLKGPf9YYpanMF9EGE76Lyj9C2RiFJiLy4uOkUtk8k4w5BGaSqVQr/fn0mXTbKxu7vrEpZks1n0+30AcKoXDePBYOCMVxbxpuFYrVZdshGqUHRFYiwesK9cDIdDtNtt1x8AaDQarl26ZC4uLrqkJLVazaklVB3ockajl8ZprVYDEBl0JIfqStlqtVCv1/H2t78dZ8+enSFvOre+8kZ3SCqTJG79ft+NpypJOk9xZO6gdeG7lOl5RwGP84mhT6g0HilOcYg79yDid9i586D9AWZjkq5du4ZKpeKIDMExYtKPfD6PfD7vVBgqLGfPnsX73vc+fPCDH8T169ddRtTxeIx2uz2jzGjiDX3GqcrRsDfGzLhQUiUjWWMsFomSXxRaE29QBeJxjKlTAq4ZFqmKkyyRwJK80fXTJ49MFMJ2+IxqhkrdVPDVMt0MUJdLP3GI/q2uspwzjalTIsh1wrElieba5PV07vke4ruF98CagDzfnxOC7yO2yWPYB15DE7QcZT2/lDheBA5A0OACAgICAo6CeYTpsP+cDyNtcWRNd3YPckHzP1elIs4Ip8skszgC+25gNAA1tTizUpIgAZipocQderpZNptNtzNNtYDGItPzMwlIJpNxRIYubExUks1mb4gVo+GayWTQ6/XQ7XZdce/RaISFhQXs7e1hc3MTk8kEJ06cQDabdYoh48zUsAMiJTKbzaLb7SKVSjnCV6vVZtwwy+Uy3v72t8+4TcbNmRI4GtYkbmyL960uk/5a4mfqMhiHo7gosk3+PBeDMu4Y341tHuE7aj/9mKaDzo1T45To6jyQHFGNUTdFPY61Bo0xbp2nUimcP38ev+f3/B78p//0n7C9ve0Iv84/FSJ1f6Thzk0JqllaCF5rqvmEgwlH+Ayq6s0sqErUqPqRQJAMKYnUsgNUEieTyUzJA5I37ZsSJhJKLRjuZ77UNcb3iMZY+ves7qTqDht3XY6RxiSq8qX3DOy7eqq6x7nnOLNkCtV9zoG/AafJYUjYVZVmv9hfVXw1QdLNwvEicCEGLiAgICDgCKCBARzuMukbmHHukv5n2q5/jcOuF3dMHLFjWQC6DmoMx3g8dolASPSYDZLkick7GLNG5Yi/93o9V0C32+2iVCo597Ld3V0Xc8TMjoz5ovFFNVDdpUi8aMxaa9FoNFwhXRpS9XrdxbCwRABj29i3brfr2gHg1JdcLodWq+XGgCQ3l8s5oy6VSuHBBx/EuXPnblDedNx99Y0qBt02u93ujCJJQy9OpY1bC/46mKfQKblSQzNuDR1V0YsDDVZVmOKM1Lh7OkyJjjvmILVb492UnPE7kigSFE0iYq11RJ5rk0b/qVOn8J73vAf/+T//Z2xsbDiix74pOQFmY/M47iQLvAd/fjRxEBC5L7MvjHej26eqczqvjFtTkqqunlQISdK4Lknq9LnQ40lYONeqfqkS67/fCF13SnhUGfUzfZIUanvWWucGqjF5vkuxjq0+H3oO311K+lR14+f+pgnP13EmYY4rGaHlLbiZcLNw/Ajcze5EQEBAQMBXPOKCz9Vw4e+HJZ9Q+MfFGe2HKSu+MhHXPxKSUqnkAvm5i091gkoVs9lVKhWnGgFAtVrFcDh0MWk7OzvIZDKo1+uOmBhj0Ov1nIpFNYNjQkWLagITOuTzeefqxZ11ADMxc8xOubGxgcFg4Gq0JZNJlMtldLtdNBoN5HI51Go1pFIptNttdz4JGhU7KhmlUsn1uVwuo1aruUQnzMSXzWbx+te/HhcvXnRudHHzQWNSY9405q7b7aLdbrt2VXnz2/PnVV2z/Ln35137p99TieBnmvTBV9NUfTlsXaohzXP9hBLzyFocKfXbnac0z/tbjX+2c5iayetwXRljnOJrjMG5c+fwtV/7tfjABz6ATqdzg1ugqjSa+ZCbACSWJAmqZGkspqp1xpgZt0cln/yb88r2NLkG1xddKdPptCvBQTdeAO7542YD1wnb1/vhWGkNPvZB3RkJqueqpilZYj9VydP5IIEkSVO1T0ky+0y3UK5bnWcSdbqLsgQKx4Pfs81EIuEURBI+3h/HNJlMuoRKqqKTwFGF5FgcRfF+qXC8CBzmF5wMCAgICAg4CL46cVCGsTijPE5xiMM8w1fbmHduqVTCysqKcyFjunwaI9z5Z+02Jithmv5EIoFSqYThcOgSkmxtbQGI3K1YQJtkLZ/Pu9g3pt9OpVKo1+tIJpMuzT+NKxZATiaTrkTB7u4uut2uM7IymQyGwyGazaZzeeJ1EomEq9m0uLg4U0icLpt0d6MxNh6PUS6XkcvlnLKRz+dx4sQJ1Ot1F5PHRCa33XYbXv3qV99QpNufE1XdqLhopkkqbyS1B60Xnfs4BW4eMWI/gFmDm/DjweII3UGqV5xyHHftONe+uL5q+4dtRjwX+C6pSgYBuNgvxWg0cioynxMqdalUCmfOnMGb3/xm/MZv/MaMsa/PIIkUjXtmNFRCSULEOFGq3Opmx0yO6lKoRFGfWyb10dg1YD/Oi88ASSHXNvtJNU5r0VE143EkfiQmhK59YL+eGhVBKs1+0haOF0mZxtrpcf7mCMePBE5VSCVrOgZ8t1Bx5Hjy3v2sr75yy/a1cLn2U2PmOE+TyWSmnp4/TjcDhxI4Y8xPAfgGAOvW2numn/0ggD8BYGN62F+31v6n6XffB+CPARgD+F5r7a+/BP2e09egwAUEBAQEHI44tcM3rPU4/+95hu9BSpv/+WGqhfYxn89jeXkZ9Xod6XTaZVcD9nebl5eXnRForXUujFSLSHSGwyHK5bJLDELjnG6RVOmKxaIrwN1utzGZTFwyEmv3a0txd79YLKJQKDjjkdkqte4SCRpVj5WVFdRqNZccpdPpIJPJ4MSJE0gmky4xCMkTsF/UmapBuVx2f+/u7qJcLuPEiRMuGyHVwUQigWq1ite//vWoVCoHkgg/vodqRr/fR7vddjFvdGeLUyt0Tn0FyZ/fuPWhiItJi1t7alD6KpwqRgepaXFQckMDOE659BVs7atPXuPG6rA54XG++yj7R3WEnwFRchNuEjA+jCTo7rvvxnA4xEc+8hH0er0ZRY1jRAKjtcE41iR+uVzOxY1qLTe/LAfHgkQlnU47FVgT8JB0kSxQaec8MpNrr9dzGyPlctnF6ZF4qiunliTQtjmfJHi6AeAnC+H9A/sqnWaaVNWa96quuJoQhKSKbqHsC90UqVzyGF9R5uaJ1rXktTU7qU+ySGI5j5xLrgt1k+S9p1Ip1Go1pNNprK+vu6RPN1M0OooC99MA/imAn/U+/8fW2n+gHxhjXg3gWwHcDWAVwH8zxtxprR3jZYBBiIELCAgICDgcvlsa/z3MBYz/HqQ8HKQ2xBHCONVNjyuXyzPkja5SNMjotsVdcRK18XiMra0tt4OcTqdRqVQAAK1Wy6kRdIni71TCGPtGY7Ber6NSqbjsfgBcIWU1QlmDjfFhQJRYZDKZoNVqOaKo2fn4ealUcpkGmZKfhjKNzk6ng3Q6jaWlpRl1EIhcQ0+ePAlrLdrttnNtJIF83eteh8XFxRnjzZ8LNfxogGo9u26364xH3e1XouInbvCvMU+lmkdg4hJQ8By/Pf1c+0M3UCVxNFiPogCzPc6Zxhtp//W685S6g56fw6Bj4ZMjvw1+3+/3XUwcVRvGjd5zzz24fv06vvSlLwGAm1d1kaOSpe3SpY7PHlPvA9F653Eaw8ZxoxJNtYfXZEZWKuAkLpwvEjlNBJRKpVAoFJBMJl3tRJJDEko+kxoTyHvT2EHeM2Pz4tL/K6kiGdXC54TGDur71l83JIJK2jg+JNN8fqm+aT08uozqXPE9yD7ymeb9qcqnyVpI3DiG/DybzSKfz6NcLqPf77v30Vd0EhNr7YeNMeeP2N43Afh5a+0QwFPGmMcBvAHAx55/F58DjAkKXEBAQEDAkRFHmuJUjHk7rb4hrsfFEbp55E3b4O/cVT9x4oRTjMbjMYrFojuXGSBZTJrGEVUvJkpYXFxErVbD3t4eNjY23PmDwcC5afV6vZkiwjRScrkcKpWKI49MNJJOp1EoFFzcCV0JU6mUK5rNcgXdbtcRn2Qy6Yhku91Go9FAIhGVQqCC12q1XFZHZsksFovo9XowxmBxcRGFQsG1aYzBmTNnsLKygna77WLkWDrBWov7778fFy5ciM0ep3OhbpNUB0jc6DbJGBp1p2I7/EzJm785ELcZEKcA++TId6eMU6LmkS9CY39oIKsxG7cWtT/8WxWYecTypYCvrPj3P++6VOJYJoPPWLFYxJvf/Ga022088cQTACJXxOFwOGOoMxEKSQuVGa3bxjUP7CfZoBsi1xSfW5I8qk9MPEIVnWoY+6yxV1QSWfeN7ah7I90j2T6TBpFE6pjR7ZFrgfeq70KSLrZDEqQxe7xvdUHkj5Yd8RVgkrdcLudcFakIxsXJFQoFVCoVNJvNGfdZEkF1K9fngaRS++ZnHNV54/kcc5JvjvnNxAuJgfuzxpjvAPAQgL9krd0BcBrAx+WYy9PPboAx5rsBfDcAnDt37gV0Q9rE/KxeAQEBAQEBPg5TBw4yCOPaimsnzlVMf+IM7mKxiGq16hJx0Fiiwch6UUxlzsQdmnSCZGxpaQnWWmxvbztDqdPpIJfLYWlpCa1WC61Wy+38sy0aKrlczrksUcljbB2zVNL9i+oMAJdIgVkmqWKwPECv1wMApyAwQUS73Uan03EqCPtBNZDkb3Nz031/+vRpLC8vO5cyGl/cLT979izuvfdepxTOIxhqwKkBTFdOGtaq7Okcq/uYrgmqNXHXnKeixX2nn6vipAYx753EI0715b9sn/eqRM438uP6p0qjumjqmLzY0HZJMLjmVPnzyS83HhgTR1e6dDqNer2OBx98EOvr625DgEk0/MQe1u7HSQH7cYgkWTonhKpUSrrYb3UXJBFjhslCoTCT/VULiNONj+1TodOERXRd1rVEVZnxb5x/9p3rlXOqCUbYrkLXfFz8nP7wvnX8lNixj5rpk+VNOIYsT0KCp7Fz/iYHn2l/PlR5Y0yxv7nC9cM4XHV95XNzs/B8Cdw/B/BDiELOfgjAPwTwXWAptlnE/s9nrf0JAD8BAA888MCLwrpeondFQEBAQMAxxUHqmP/dPIKm8I/xyYIaCHHXZibIYrE4Y6DRvYpGw3A4dAYFDTQ1BmngVKtVNJtNFzNH43BhYQGVSmUm9ThdyowxM9kkSVbUqGU8SKfTccofDUkaNYPBwClhbHtxcRHpdBrNZhPj8Rj1et2VM2i1Wo4kjUYjl2WTcT2JRALLy8tIpVLY2dmBtRYLCws4efIk0uk0Go2GMzT39vZmXChf+9rXYnFxcW7JAI4r/6XxSLdJZtDk+Cl5I6jWAXAGt59MgXMdt9Z4bZ8oaTyOwjcetU0/mYmqZPqd3ze6mQFwxruSsri1y/PYf47xi03k4q5N45zrxP+etdEIEoJ8Pu/mkDFlZ8+exVvf+lZ85CMfcWUtdJOF6yKdTmN5edndcy6Xw+nTp7G3t4fLly/P1EHkBgDJVT6fd+UyeAzJGxUwquZMQsRnm6obVXHeM9Pb042Ta56ZFUmGODZU19VlkvPNewQwQ+K5ZthvKr/8nhkuVZHluHLc/eQtnDctf0KPAKpifrwdr01CpetV17SSR3Xj5N+a5ZPtcWx8t2ISQ2tnSztoOzcDz4vAWWuv83djzP8N4Nemf14GcFYOPQPg6vPu3XNEiIELCAgICDgKDlLd4ojbQSqc7wrk7/zPM35997l6ve6yKWoMCA2HxcVFAHCZIpkWnTvJjBEpFos4efIkAGBjI8o1Vi6XXcbIlZUVFAoFbG5uOlWOhi6NFxb75q48DRp1mWw2m64PrAHH3X+SMRq87Bvj10gCAbjMezR0s9msK1HQarXQ7XZdkggmVWEClBMnTrg2gIhE0S2ThvQb3vAG3H777c4Y9udWXfHUfZJGbr/fd/2jAeu7TpI00vhV9UsN3bi5599K5NQYfa4KsLpa+muU60VrZflqmyZu0Vi3gwoXq3pBI97PQPh8oeOhf/sKiT8G/vOnx7KchKrK6XQar3rVq3D9+nU8+uijrjxGKpVCtVrFYDBAo9FwiTzK5bJ7NhirWalUcOLECfR6PVy7ds25YVJNI1khedLMhox507jSyWTi1h77yQ0bLRFAsqmJhfjMcS45N34KfVVQVT3jmOj5XPca/xbnEslnjeNPjwEqe7oOqfDRbVNdv+meyutxDbIGpK86++9UJVt8j7L/JLb83d+o4I9uZPjxcl/RMXBxMMacstZem/75ewF8Yfr7rwL4N8aYf4QoickdAH77Bffy6P2CDVFwAQEBAQFHwDzDUo3AecbzPBXN/1H1ZJ7qkkqlXMp7gjvwAFxKcd8wX15eBgAXFzcej1GpVLCysoJer+diy0ajEdrtNlKpFHK5HIbDIba2ttDtdpFOpzEcDh1BYiFsdcXkNRkvRFWKLmg05Bjr1ul0nPJGYsi4Gt5TuVyGtdbFypEoseDxaDRy7mw0RukOCQArKytYWVmZ2QXvdrvOHZTGYrVaxdve9jaUy+UZ9yxfeVLyQVWDBcNpQKvrpE/8aHSqAuWvIyVl/lrwf4873u/3QaRo3hqmwUpiroqcHwenBFTVD6oWcUYzr8Ux8tPBPxf4xG3e/RGcD3W98zdUaHwziUcmk3GKL11+3/CGN+Dq1avY3NxEIpFw64yZCEmguFZ5bWOMKyNw11134e6778aHP/xhbG5uOtddrhOqU1R/uK74rGezWYzHs+Uv8vm8m08lb5lMxrXBeeXc6RrV5B9MoDIej2eeKxI3kk1r7YxLMpU0n+joOAP7rqGq/uq7kO89KltKIlXN1/HSotnMTKvxhZqBlHOiXguajMVX4/SdrS6XfrIjvg+TySRKpdJzWc4vOo5SRuD9AN4BYMkYcxnADwB4hzHmPkTukU8D+JMAYK192BjziwAeATAC8Gfsy5SBEggKXEBAQEDA0RBHvIB410l+Hve9fhdH4HzC4LebSCSwsLCAarUKAM5wWlhYcO5ZyWQSrVbL7UaraxUTIQD7sS7r6+vOyGBsGrNAUp1igpThcIhSqTSTqIS71DRmSNwmkwk6nY4jXCQ0TL5A5Y2kDIAzXEmmGDPHpCY0lFijzhjjMlLyHkajEXZ2dpBIJFCr1ZzLJI10fr+zs+MMYX73hje8Aaurq7Guk/4cqvpG90lmm6TBrG6RvjpGhSCOpM27thrYSjT8tXUQYYtTdtm2GqU8xj/ez+SoioOqljo+JDC+yqbrXjMAHjb+cZhHcuOeJyUrPIaGuv6tY8w6h1xjdENcXl7G6173OnzgAx9wCXWoTpFgkdgwFq5QKDgVaW9vD81mE69+9avxLd/yLfjgBz+I69evuzWpKho3CugGyRICXH8kjvl8/gbixphVummyfVXS5r1/VLmjmk/CzZT8AJxCyXVAhV1VNh1zjXnjmlEVkMcpweSPul5STeTnVP25VlWxpqqoypiuCU2ywnWtSYi4McF1zb5rTDHbI4ElAWcpl5uBo2Sh/LaYj3/ygON/GMAPv5BOPV8YEwhcQEBAQMDREKeI+TvL/F3/1XPiVAJVNXwjXw3JXC6HhYUFFwND0C0wkYjqlm1ubgLYTxRQrVaxu7vryFu/359RFVRpYrvMHtnr9ZDNZlGpVGbqqGkmSVXftEQAlSgATrVg6YGdnR0Mh0NHypgdk0lFOD4kZ0wGwtiWWq2GZDIqDM5MfswySSWvXq9jdXXVXbPf76PRaDjjlQZvIhEVK7948SIefPBBl2I9jnj7ypuqb/1+3xE4qhd+khNC3U/9NeZfV9dF3LqLQ9xailMT49QwhfbZb0uNao314X35ZM4ncqrIabsk1VpD7LngqGqjzonGRfFfNcb5L2uo0V2SMacXL17E448/jkceeQS1Wg2VSsWVquA95PN5R1iYFIUbHv1+H48++ihe97rX4Ru/8Rvxr//1v3YZWOkGyA0BYF9xN8Y41ZfPH+su0iWY80Hyxsyo7BsJF98rSnoAzFyfZIzu2tyA4FrnRo0x+0laSDhJYjTuVRUxnR9em/3jXFFp4z2pMsZ3DQA3tiSZVAkZD0xXbr0miRs3XfhscqNFYyB5fXUZ9ssWKHZ3d10NupuFF5KF8isOBsGFMiAgICDgcPiKW5yKEbdzTcS5x+n5/nX070QigcXFRZRKJZeoJJVKYWFhwSUzYFxZt9tFJpNxpQNGoxG63a77ngYUlZPJZOISMBhjnCFEo4gxN3RNLBaLrrwAjXYaO8wMSbKkKfVp4PR6PWxvb7s+7+3t4cSJE1hYWHAGIgkUs0jSrQmAKylQLBZdTJ0qelQfTp8+jVKp5NSNVqvlsvPRnYrxQ+fOncPrXvc6XLhwwcX7UZ3g3Om8qqLGPmtcHsdGj6OBqmTXJzC+QamIS1bif6fkzidFukb9demvzTj114+R8/vEv/mZGrbqQqkqB5NPxCnaJIXqYupDCZbfX/8e4zZf2GfCr6GmMVlK9LjRQUOdSYAefPBBtNttFItFl4CHGxxU0Xi/dHFMpVJuc6LVauGpp57CG9/4Rrz+9a/HJz/5STeGSt6ouhmzXztRnz9df1rrkUSKipAqR6xNx3tU8kNiwk0d7bsqp5xXHkPix3a5DkgkNZsknyV1R+T8sp8aR0dXVI3NY/ZbdWskkSoWiygUCuh0Oo6E8zzehx7PNpTM6rj4qpuSOrajzyJjE5+ve/CLgWNF4BAUuICAgICAIyJOGdPPfTe5w9zYDjI0acAwdT/VM8adMaFHq9VyBlm323UEL5lMYmdnB6PRyCU6KZVKbqeeWeqYeIBFhUnwgH0XSxpx5XJ5JjMlVZh0Ou2SmLRaLZdAgfE4jJ1pNpsulo7ZM++44w4A+4WPz507h16vh2azCWstlpaWMBwO3X0yG+b29rYjnkAU48J7XFpaQrFYRLfbda6U9957L7rdLj7/+c+7EgivetWr8IY3vAGVSsUVbi6Xy25nPc4Nzyc4VGIYF6RGsqo3/tz6JOug5AbqXqaY5xp4mJLmQ0nlUc8h1CBVIkgDWA16VeZUudMsgr5CqK5sh/XvIELnz6X/nRJPVcT9WC2SD25scIMhk8lgZWUF9957Ly5fvjzjPknixvvu9XquYD1jPLnZcfXqVfR6Pdx///14/PHHXXkMJQyZTMbFu3W7XZdEKJfLOSV4PB67mCtVxYzZT4HP+chkMo7ocfOG46ExZlTceI4SMd2goIpHxT2bzc4kKVGXTVVitS4d29eNDq4JkkCSR6p9VDV1Q4TkXzem6NKqZF3vge3zudXx53eqMnLdqUslNyjYZ1U/bxaOF4ELCAgICAg4InxDzlfTgHg3tbg2/Bgb/5hsNot6vY6lpSVnZFBZY2IQpvOnEaU7+ixmXalUUC6XAcDFvmi2R+7iqwpHAqjGJVUFkjMa/Pl83hXTpiIGwGXZY6zPzs6OU8JInhYWFtDv99Fut1Eul5HNZrGzs4Pt7W3X/vr6OoCIKFGp2N7exvb2tiOc3O0vlUqo1+vY29vDM888g0wmg1tvvRWj0Qif/OQnnVJx11134c4778SZM2fQaDTw6U9/Gqurqy6OkLE0Ol+++yTVQxJfv97bPPI2bx0pfPUsTr1VUqdxOPzsMMSpUHHnzVu/BI1WNX59dVrVK01sQuOdxi/Jga9EcjwPymp5VMSpk0oGeE9UEDVtviZp0fT0jOscjUY4f/68q0sIwMWpcYzo1sjnhC593W7X9WF9fd0lP/GThejmC5UklhpgsiCOFe+DiUo4vlqbzFfFtJ4bx0OzVCqBIkEnaeKc6lxrTCE3eziGJJN8ljjGeg7b5DvHd5vkBpS+k/SZ0zp33CRigiRfXVW1TzcT/E0E3qO6DNPdXIuikyRzA4zupDcLx4rAGSA4UAYEBAQEHIp5Lo9AfKxb3DlK2tS49Y3SYrGIpaUl586XyWTQbredscCaaBqvZq11MTGMcavX6y6LpLVRTAyVrFwu57JNZjIZVCqVmXpcvJYWDNaCxeqyxaLVNNqoutFQ2trawtraGgDgzJkzuOuuu1z8WqvVctfe3NxEs9l0xJEKIRMI5PN5R1p1XAuFAiqVCqrVKhqNBnq9Hi5cuIB0Oo0vfelLaDabyGazuO222/Ca17wG9XodGxsb+PjHP46rV68ik8ngwQcfdPFM84iMJlCgYewnaFEXK1UygNkMh7oe4taar+rGwVfmDiM3cW6V88hj3DXjNiz868eRTR7jqxrMlkgFTuv/qWLDMdDC4Tqm8wioXl/bibt/ddPj55qogtfhnOlxmqWRmy5ra2tOFVPViW54JBcElbzJZIJLly655EE6JgBm6rYVi0WnxmnNNy09oM+wr3DyXriW+Z5g7CHdNtl/HUOqp5p4RlVnVVUJVeD0PaPqlRY3VzLH+Db+zfEnMVLXVlXhdC0kEvtJnEgY2X8lcrreSYKVoJKkURkkSWOMHK9H4gvAEe15HhkvB44XgTOAvXlF0QMCAgICXiHwDR8gPh26wjcg1WiZd2yxWMSZM2dQLpexuLiIhYUF7OzszCh+LF7NHfFSqYRareYSh5TL5ZlEBkwg0mw2naHJtorFIk6dOoV8Po9Op4N2u+1iTFjDjUH/NHDopgnAxbNxZz2RSKBSqWAymaDRaGB9fd3Vcrv99tuxurrq1DoAWFhYwO7uLq5diyoNMY6F6l6j0cBkMsHi4iJGo5FTGACgWq06RXI8HrvMfdlsFpcuXcLW1haMMThx4gTuu+8+XLhwAVtbW/jUpz6FK1euOCXy7rvvxsmTJ29IAR7nEsvf1ehV9U0TNMwjXgCcsR3n2ncYeZtHMg9S3pRA+ffo91U/8w1ObUP77Pch7hnxx5VtkczRONYYOa1tqOSYmw0H3XNc3+Pu1e8ryYSm2PezDqoSa611iXS4UfDkk0/OjBcVO2A/xozqHDc6qH41m03s7Oy4TRolLSQTrP1orXXn0vWQx2r8of/+0nsdDoc3kDdNIkPVje3yR2PVNDOpqlQ+WeR1tRwASZS62PprlERPC2r7iXA05lJjWPWdy+Qt2h+tCaiqHEmq/xxQSWR/eI9UA/1xZVwi45BvFo4XgYOBRWBwAQEBAQEHwzcofPcbPS5OgfOVNz2XBk21WnUxXqdPn0a5XMbm5qaryVapVGbS5VsbpftnZspOp4N6vY5sNotOpzPTDypbLNA9Go1QrVZRqVRQq9VcsWsaJ5VKBfl83sV2cSe+WCy6VNjMAEmFjokQut0u1tbWXDbM5eVl3HLLLchms2g2mxiNRqhUKhiPx9ja2sLW1hZKpRKSySQajQastU5ZoDunqlzsAw18Zqo0xmAwGKDT6TgF8s4778TFixcxHA7x2c9+FpcuXXKkcDKZIJvN4tWvfrWL4dP5JZTIqQHL5CWqvik4ZoTOm6o6vIauIVUzDkIcAVGCpX3nd/596jHapzijX6/rX1/7S4NeNyvmkTuOkxIdKitMNKNklwSI5O6o8Md4HnlVYqnulL4Kx7GkisU+lctlnD9/HlevXoUx+26C2WwW/X7fjQ9dK5ldttVqoVQqoVAo4Pr16zPug1r0XQtzq2ugFuKm+qVugVSFeI9UzNknVflIMLUuGvugxb99lU1dHEmilGhNJhOnvPquv5xbvxyF33cWLvcTzeg6V+Ktah7bZ9yvZotkW3RrJWH3x5brh8RbE/ZwPEhGGePJY5Xovtw4XgQuJDEJCAgICDgC4naD5xmPB5E4NUro8lMqlRyZWlxcxJkzZ5BOp7G2tuZ2jHO5HHq9nnNVzOfzKJfLM8bj4uIidnd3XUFr7oLv7u6iVCo5IkcyePLkSRhj0G630W63nSFYr9eRTCZnyBvdj5iKu91uYzgcOiOThbZ3dnZw5coVbGxsIJlM4q677kK9Xkej0UCr1XKqIhOarK2twRjjrkM1j2RwPB67tOckdCxj0O12sb6+7ggAxyqRSOC2227DxYsXUSwW8cgjj+DKlSvO8NRd81KphNtuu83tnBO+e6IamiQafrFuki7u6sft3PtrSVUJbf8g+MRLoe6ESgRVNfKNY71HNTDjFLijwL8Xf81r+/59sQ+apZIuikoWSASeS1zcYaSN7eozq33xs1SqWkcVjqRydXV1xl2ZRKxcLruEQ+pCSfe6Wq3mYlw1yyPnUeuSUc2h8qOupf656uKnChGhKlpceQcls6rAsW0lLcB+2RASHVWrNHbMdzvUJDIkchxbn7zxXkk8Vf3WTQo/ky3fuyRzvusvlTNjZpO2aPIVHWMSSyV7XDOqGPrnv9w4fgTuZnciICAgIOArHvPUB/87QtU2vx0aKPl83hWZLhQKKJVK7m+6+LGuWaVScW6L1Wp1xr0xkYgKVlPdolGpGerYRyp21WrVxcAxuQezOAJwu8V7e3vI5/Mulqfb7brvuOPMtPtra2vY2NjAaDTCwsICLl68iHQ6jWvXrqHf7+PEiRMoFArY2Nhw5JQZ4UhMOW4kq4zjoeFaq9VQLpexsbHh3CmpGDDO5O6770a1WsWlS5ewvr7uYgR9I9JaiwsXLqBarcbWfeM8+vPMcaH7pNaOUle/OHIW97e/Po6qvM3rH3/3lZO4uLK4dc12/T7HbUzwezWC9XhgnyCq29y8Z4Nta7/pHqgZHYH9+KWj1ovT+1NXSF9d5LFcL9wk4TqkOqft8Bj2kbXgqKCXSiWkUikUi0VHoLghwbGgW2Sn03FKu6rfVCT7/f7MfftrRt0XlWhyDqgc7+3tuXpyHGd1X9TyAKzBqEotyQvJGMmQxgf6JE2zierzqM8fFUZVzTSeT9VPVarZL84LFUZCn0+OEfvIv9Udle9CEmEllXovSuT5nuLGwmAwcJtjL0YSnheC40XgML9mT0BAQEBAgI+jGJ8HuZ4B0Y7xysoKlpaW3M4+65uNx2NcvXoVa2trzlBkbTMaK8w6xx3/Uqk0o7qRXBSLRZRKpZnU3AsLC0gkEtja2nIKGzM4FotFVyONhgnjeoCoZEG/33dxOwBcYhG6JiYSCSwtLeHcuXPo9/u4fPkyCoUCqtUq+v0+ms2mI1SFQsGl4GcGN94XFQMWBs9ms6hWq+h0Orhy5cpMMgdjjCO0+XweOzs7ePLJJ10Kdn+OADgj7s4773QxgQfNuc47lUK6T/n1ofi7b6z5alTcGlFjNI6cqXoX14Z+rkkzVCXRvmpf5qmB/FzJil7HJ0M+dNzi3FR9ldqfJ94H1zs3FHgvdNV7LjW2fLLof85rs89Uazge/twq6WTR6JMnT6LZbLrY1PF4jIWFBRhjnCJO0pdMJl1MJjcvqDoraVCXSRJZKmkkPrqB4N+fjhfJpp9cRNcxx559YR9IejTpDOcYQOxai3OJVGWdSiLvi+1pIhl+phsR2h8lVFrCQkkkXafL5TI6nQ76/b4j16x36dfU02eDY0XynM1mHdHn2LLmJOeL88936c3A8SJwQYELCAgICDgC4lQIwjdafTKnBjBVNtZzA+B2vXd2dtx/9FSk6FaZz+fR7XZdvBtJznA4xPb2NgqFApaXl10qfypVrVbLGVf1eh2j0Qibm5uuqGyxWHRlBtrttsusSFLHa1ANo1sjEGXL3NnZwfXr19HtdrG7u4vV1VWsrq5ifX0dvV7PGao7OztOLSR4j+PxGMvLy7A2ynRJY44JTcrlMur1Oq5du+YUPhITEkwauZ1OB5ubmzNEikawH3+ytLSEEydOzOz++8qS/tCg19g3X33zCcBBO+4+CTtMeYsjab6a5vcT2DfseQ1/HJRwaoyXrmNfWTlszavBHkcm4uKf/Hb8MaL7K9cojWR1p4xTUuc9u3Gqm/8v14/+KGHV+SAhI7mq1+tuU6RcLmM4HKLZbLrNGG487O7uuuyqiUTCEThgX+XR7JVc76om0bUQgHPtZX85JiQ1AFwbnHN1SdQ1wvsnuKZUuSJxpmqoiVAUqtQZY1xcK8H7YFu8f24kaXwm+8mxV/LGfqnipeufLpSMV9R1pe1QpfSTG6mazWP5LmMyGL7Teb++Kn0zcKwIHBBi4AICAgICDocagHEKm+8u5hvumUwGi4uLqFQqAGbJAf/z39vbc8WkB4MBCoUCVldXUa1Wsbu7i3q9jnQ6je3tbbRaLVdAOJ1OY3FxEf1+H41GAwsLC1heXsb6+rqrKQVEGSM3NjbcbnOxWES1WnUxcLynTCbjjGO6WNLlk4pXMpnE2toaut2uU/KWlpZQqVQcoUulUs59iMYaY4E0MQB3urvdLgA45TCVSqFer2M8HuNLX/qSM2ppJJLoMXMhDWG6fvF+5rnLnTp1CrVaba7R7xv7VCP0x49986+pUCNZ146vAM1T2VQNIzTmjf9q3Sp186JhrkRPoX/7xjI/02M1fkiNU/9Z8X/3iZyOB7+LUwM5FqPRyG0YFAoF5PN5JBIJF4ukCk7cuPrP8TwXSo6Rkh8SFv3OV/OYwTGbzWJhYQFbW1tOcc7n8zMxbFRtmFW2UCig2Ww6l0kSKM0+yfM1vkoJNsdIyVbcBgOAmfWgyqK/PjjPmuIfwA0xXnquxpqqyqc16gA491h6I5AE8V6ttTPZJUk44zbK9Fnnu5FzopkzqYoBcAoaN7W07pz/TKtLKMkz53Vra8uRWI6BKpTz3LRfLhwrAmeMCQpcQEBAQMBzwkHGZZwxmMvlsLKy4rLOJRIJl5yBqhTj2Eje8vm8S2jQ6XRc7AwLXTN+ZTQaYXFxEXt7e1hfX3cuOmtra65oNgC3q8+ECsVi0RXSpquhtdYpcsYYtFot9Ho9JJNJZLNZV9/NWou1tbWZgsILCwsoFovOlVMTexQKhZkd8Eql4mpTbW5uurgTxvrV63XUajXUajVcvXoVV65cmTFYc7mcS/qi8Wg0umhY0wBNpVIz6h93yFdXV13yiDjlzQeNMrpVHaS+cZ0oaND5ipuv4sSRx7h++aqbxgP5ZMn/0fWqhFFVBv9aGqNIUqNukTSg1cDX4+N+/Pi4g1RufsZNBJIbJulh8gjOuU/Y4hQ2/dc/TgkM51kJu0/S1aWP5KNWqzmCqTFlxWJxJtEI47uojlNx0syFVJQ0noz91QQ+vgsv+6suhIzp89eI7ybL/up6IBGLU9j4vbrvci5I8PisJxIJ58bJ9rgBU6vVXI1JEmcqZxqPqAop74395ntWz9GNNpJqa6NSDCRYHAuSLl6L7yyqg0pC2c7GxoZ7J47HY+fuzmf/ZuJ4ETggSHABAQEBAUdGnKsdEG9cJxIJV9iXRkA6ncZgMHBFqpnIBIgUMtZ8YzpxKlk0MhqNhoub4c57p9NBJpPByZMn0el0sL297VwLuSNsjHGp92lUbm5uOtUimUyiVCqhVCphMpm4+m4sfAtERspoNEKr1XJ15XjuZDLBzs6OK/bNWCDGuXFHnIH9NIJarZbbbWdJg9tuuw3JZBKPPvqoq+02Go1cBkru1LfbbRc3xPFWUkCQeKixnE6nsbq6emhiASVJqoboj7py6Xn+GqFxrOqVGvVxu/PzSJv+rooAsE9eSLr0u7j25rl2+SpH3D0B8eUDVPlTdYTtqrHPe+B3/Ncn1TyW/eLYcSNEE/1wHHgNNdx9khJHmuPGmqSEmVd1XWjfeI1kMolCoeCeAfZFY0ipAjFJB5+pvb09507tuxYyhiuTybjNC1Xf2LZPhLW+G8eZz67WTeO4apvalq45feY0g6TOuZYj0Lg+KmTGGPc566bRVZvZJ32ll+qyTyJ1nnku+6fJSnxXSlXd1PWY/eN8TyYTR8g5DnR/5XhwLrmOScYDgXsRYUIMXEBAQEDAc4Rv1Opn/DyVSjlXRhp8rONGQ2U8Hjvy1mg0MBwOkc1mZ+JTWOiaxIzxYnQzbDQaLoMls1AyAJ+KWy6XcwSKmdU2NjZQq9WwsrKC69evOxJFksjdabossVYcDZlOp4N8Pj9DEGiwdjodVCoVlEol5x5ar9fR6/VcwoDTp0+732n4rays4MKFCxgMBnj44YfRaDSc8sbadIuLi2g0Gi4bH40nADcYc76BzbkBIuOexFrn7aC5VfLmlyPgcaqAzYMSOb12XN9VkfJJmLqGkRSRQMQRNu2rn1ACmE3aoWNH9YJj4Ltmsj0lSr6BrwY4r+mrcf79x4H3rWoqEKk6zWYTw+HQbUIA+6nedZwP+juOxNGoV9KgSo+/xngO3Xvr9TquXr0KINqwoFFPssn7GY+jkhm9Xg/tdtvFg9LNl5sebFddIzWpB9VRfs7vVLnidTWOU+9N709Jr9a7473yuWP/uLHENUI1UjNCcjOLG1q9Xs+5nTLGl+8efQbUDZPX1/WqyhyJMM/jOZzHyWSCTqfjEtQwQyeP0bHjffL6fjZUupHrswLAKf/s00GbRS81jheBQxDgAgICAgKODjXw4wx+Y4xzTyyXyy5Oq1qtAoCrnTaZTFz8WSaTcRnQqJKdPn3akbDJZOJUr6WlJdRqNVSrVaytrbmyAEzukcvlsLu7i0aj4WJqaHDkcjl0u10kElGmSBbqbjabWFlZcQYkXYdo2LEweCqVcklLaASqIpFOp9FsNt19NxoNAHCuUHSHqlQqaDabLh16LpfDyZMnsbS0hGeffRbXrl1zWfi4412v1105BJIouo35ZEiN6ThCZYxBtVpFuVy+waCap8bQoFUSFxcnE7defPLI/vrkah6Z0M94Ho1b/zuNhfP7RCOeBr6qLkx3PhgMZhQcHhsXW6SZ96j4Uj1RVVHjo2goa2IIVa9oJPNYNeD9MfTnlYb03t6eS8wDzKbV9wlk3LzNU+LmuVH6x3GcqTjXajU888wzzg2a98bxZ13HbreLnZ0dtxFDhZ7xfQDcOHP9U3FTRdevh8Y+qlup3ou6wRLcCNDvfCXXX2OqivquwiRCVOW5RpiQht+RmHKDSxVFkkxey++zulFqrJuqwuyzxqZZu+9CyTqX/J2klvORSCRmahSm02lXToTXIIHVOpxBgXuRYYyBDRpcQEBAQMAR4Bsr/k5+MplEvV53haYTiYSLzWHcFFWxU6dOodlsAohcdbrdrtu1v+2225DP5x3ZazQaLmarUqmgXC47Q+/ixYsuQcje3p4zQAaDwUwR5GQyiWaziWq1inw+7/rOZCBUygqFAsbjsbsmsB/kv7a2hs3NTZeARLPO0Uip1WoYDoeO5CWTSac60LDqdDpuDMvlMk6fPg0AePLJJ9Fqtdyu+WQSZZlcXl4GAGec835VIVCyM48M6ecakxg3t3HzrGqMXzpgHoHz3QCBWZfDOPXG76uvkLH2nO8Sxn8nk4kr1UClhEliSOBJzBifQxc4YN/lVOHHGDHdOvtJdZVrTe+XGwjZbHam6LQSD3U9VBWJ58eR0TgljfPTbDYxHo+dGq1Fs+Pmed5c6ZzQkOfmhhJDH0rgSqWSi1elGkVXOz53fE56vZ4rG0LCwIyzSo7VPVDLDGjdOI19I2lRdU4JNueYn/nzopsDdGHmWlCCpq6GHBdV5vjuGI/H6Ha7jvyTuPkE03el5X3RRdtXQfWZ5PjpJoDWnSPRymaz7l2ryiJJHvvAtU2XcJ6r46Luszp2XDsHKfMvNY4XgUNQ4AICAgICnht89zpjoviylZUVlMtlZwzn83lHRrhDyyQhJG+7u7tYX19HIpHAuXPncPHiRVhrcenSJadYWWtx8uRJLC8vuyyU4/EYDzzwAIwxePbZZ53St7W1hWaz6Qw91s9iW0BULoDFvCeTCYbDIa5cuYJisehiakjaKpUKBoMBrl696koSMOsjDexms4kTJ04gl8uh0+m42m40evjvZBIlMKE7GjNzWmtx9epVF/OjiQEqlQpSqZRLDEACpwYe54TG2zwjSXfsFxcXZ1KG+0aiTw6AfRdKjTlTJUhdOH2FSBNK8Ps4NddXdNUoVeLKYsNKeqig0vVUDWAmjmBf+B3XJ+/PJ5R6D/xODVEaq9qeJiTh9VmKIpFIODU4jtDp9XTc1S3OVwXjyPpkMnFlMUjk5pE4n7j5yqcSaFVdfQKv64jfc40VCgU0Gg33nPpq3mAwwPXr1wHAjQuV3nQ6jWKx6DZKlExxfFRxVsVN16jGtKl7K9VYXR++6sgfEh+er2ofExz5PzxHFbZOp+My7dLlVde+unVqnTktQTBvPtgGj/U3ObguqWqS7LEepG5o0AWUn3HjirG+VO44bryWunhqe3Fr8OXC8SJwJhC4gICAgICjwzcWmfxjaWnJqW7WWlcYm/FrNH4SiQSuXbvm6j/1ej1ks1mcP38e9913H3Z3d/HEE0/gySefhDEGtVoNi4uLOHnyJKy1WF9fRyqVwsWLF9HpdHD16lWXnp/xHHTVoqHO3eV6vY5ms+kMbu6A9/t9lMvlmZ3y4XDoFAS6QrK0ABWg8XiMTCaD1dVVZDIZF/vGa3a7XRfrQ6WHrpgcn263i42NDZfkgUYTEwtQDaShqK6LwI2p7/kZ50iNUWIyiWrLZbNZVxqBu/RxaooSKSVxvqEat1b0mn6bCv1ejUhrI/cuFg0H4IzN3d1drK2tuQ2Efr/v0uv7Lr7sPwCnIGpNP/47j7zq+CphAPaNah7P7zn2dBekQc6kIzTsuR6oTqn6o9dUtTSOvKkbM8/p9/tuHEmC/M2Xg+Zcx0CN8Xnus9o3EjjGv7JUAL8H9klWo9FwyYhILkjSuVa5gaHzxWe51+vNKGc6Zz654TogKeZ61rWoaib7qeNPEqr34T8PfI7pWst7ZZ26XC4341aq6p+WD1AljddnzTY9V+PdSC51g0FjRQneF98rfE+RvPKYVCrlSqawD3yvkvjxPcLC3xwTvZ7/Hng5cawIHBDKCAQEBAQEHA7fIAbg6jwtLCw4V5pMJoNKpYLTp09jbW3NqWHcGR8Oh8jn867oNgBcvHgRr3nNa9DtdvHYY4/hkUceweLiIjKZjEuE0uv10Gg0UC6XceLECWxvb+PKlStO8djc3MRoNEKtVnPqGzO7Ma6OxthgMECz2US323UGrdZA6na7GI/HaLVaTh1kIWKWNdja2nIJFgCg0+lgaWkJqVQKGxsbruQADbRMJuN23DkWLLqtWe/opqQ72MB+6nOSGD++xU/iwHN0/lS98Y0uvZaqKb5ipklb1IBVwsy/50GvE0cAVHHb2dnB7u6uU0c16US73XakiNkLdUz4N2OjaBBrIhYdG8b70OjUc7k2+BmNbQBOJdY4H1U2VZVgWzR0Sf56vR6KxaJT5hh/pIRE1SWfdPlkWRVMxlJSAfZV14NIoM6TEjYlcepKye+oIiUSUcbT5eVl7OzsuHXH9UI3vGvXrjkCwfXFpEOJRFTcW0tzaNIREhd13dP1T1KkY8P71D4SVJiBWRWPCpPG27FtPp/AfpyjFhhX125m4GV8LsmTPk9UZf250qy5el/sn2bC5H2wf3p/dDdnOQfN3Mp5URWSWX9ZVkUVf44Ly6po7LAqgbp5cDNwrAhcpMAFChcQEBAQcDB8l7JCoeASiuh/0tZaZLNZbG1tuWLbuVzOKT00GLrdLqrVKm677TacP38ezWYTly9fRqvVAgBUKhUsLS2hVCphY2MDm5ubOH/+PBYWFnD9+nVsbGzAmKjcwNraGtrttnM3ZIKDySRKN87MkzRMqdQx4Ql3jBmMz0LJzAx39uxZ5HI5V/ut2+3ixIkTAICdnR1Uq1WcPHkSk0lUfoDJSXzFp1AoOEOm1+u5EgL8f5h13VStBPYNSl9BUEN9HnGioUVDFNiPxaEBG+dCqaoLoQad70LpK0RxfdE2fIVH45b29vbQarXcbv94PMalS5ec8ajKg6oLqk6qQgjsE16qrOyLxulolkB1zeT48ns1hrmmlNipcc82VIXQZBQ8PpFIzGwqlMtlFAoFR+R8gqzt8fqcN5+Y8b7b7bZ7ZvR51Tmbp8ax/bi55xj5861EjjFflUrFrTsW9W40Gmi1WjOJXUgqqJSzLS1krWROC9qPx+OZxDEcKz7n/JvzqeOmBIb95hxqMWpV8agOq7sjnzFNBKLlQFivkhsJukHCdpQoa/yhv0HD8eB12C+uNd0o0HGjcqlqr6p0unb4XCqh1O+5Nrg5ogSeY0yPgpuF40XgbnYHAgICAgJeMaDrELNMcte6XC6j3W6j3W4DiFKFnzlzxhWJrlarLp34aDTClStXUKvVcN999yGTyWB9fd0Zl/1+H8vLy6hWqygUCtje3sbTTz+Nc+fOIZlM4tq1a9ja2nJk5/r169jd3cXS0hIAuCLaQBRvR/dGEqbRaISVlRUYY1xykUwmg62tLed+ube3h06ng93dXZw9exalUskZczs7Oy5ObjAYYGVlBXfffbdT06gS5fN5Z6RRVdOd6na77YxEAFhYWJhRhegmpQYzgBuMt7jPlADSsKYxpTvmeizbUcLjQ1XAOFeoODdJX8mJU/tooE4mE5eopd/vI5FIYGdnB51OxyV7oFFPguYrgvq5Hx+ohNd3N503nr6y5Y+LT140WYMmu1DXOFWuaBQrqaDR3e12kc/nXVZT9k2Joo+DCNhwOHSqNzdS9H79c/17m6fAKdnVseI48941gQYA56Y8mUxw+fJlJBIJVKtVl1yHpEGJNceKa1Hn0ic5qoSxT6rO8jhtXwmQtq/PrmYvpTssSRvXKGMbE4nETLZM1kTjtfzNDlUnuVnCVPxKoOOUUo7PQXMIYCbuUgkqY2tJBtWVk+eRBOsc63OrGxp8DnStBhfKFwkmxMAFBAQEBBwBxkRxRnTz4n/qw+EQ7XbbGSf9ft+l689kMq4cQKFQcKnxz58/jzvuuMMZ6EzLfvXqVRdPVygUsLGxgWaz6Xbtr127BgCuntzGxoZTydQlioSpXq87o4PxbqVSySW7oAG3s7MDay1qtRra7TY2NzdhjME999zj6rqxzhENlkaj4RTBp59+2sU59Xo9WBvFG1Fxo6HE+BJ19wMigqeqIQ1FzfTIvmrSDWBfWQL21SglLr5rHM/RnXzCb3ceAVM3Q9/lcB585U3VxN3dXWxvb6Pb7WIwGKBWq6HVaqHVarm1QdWNhiEJibqfqvGoCgTHRlUDjisNfnWx1LEifFKsLmc0uNUI1/Fk2+w7XfZ4rq9Gsn2SF24sMBEJjXwlTj6pi1NBaaS3Wi2novsZM+Pmzf9biZz2nd+rga/kleu6VCq5+7PWOvdRuuDR9Y7rkOue80hip2SQfeJY7+7uunWja1nrLrLfSuR4nJIrguSNGyscC1XLR6ORS8ICYEa14n1R0WL7urb5bHJceSyPYVImTZjix0zqmleyyM84hpwXbiTxuSIB5djSi4IuoCSQqsRxrfqbETrO6pp6M3C8CBxCGYGAgICAgMNRKpVc/Iym82ZNIxoV3HUGoqQf1WrV1URLJpM4d+4clpaWsLu7i26362LG1tbWsLCwgFqtBmstrly54lwwR6MR1tfXkclkUKvVXAHsXC7n3IOYIGF5eRmLi4tot9vOSKSCk06n3U4x6xf1ej3UajXk83lsbm6i1+thcXERr371q9FsNvHss886osBSASwibq2dUR1brZaL12L8TjKZdKR2d3cXm5ubzu1qMpm4NO8knkyrTuMwkUjg5MmTGAwG2NnZAXBjXTR+5rtC6nFKKvykG3oMz2HpB789NVqVgMQpa3EudXFtPf7449jY2HDztbm5iUKh4NRQPVdLGOguv39dv190vaMB7ytwugGg11O3NO0/E+fodTTLIEkAMJuRT/vEPiih9t39mJl0MBig2+26LK68trqe+iqYP/fsA5U4kgrdANHj/DWhSqaSYH+eeaxPkjKZDNrtNorFIoD9jZgrV65ga2sLZ86cwXA4xNbWFmq12ozrIAkTU9gbY1zKexI6Jbd631qWQ90/dc2QrCh50nvWzQ8Ajvgz8Qzb0HIGXGdUULkGFZw3JvzQpDp6rG5UkHBxE8BfPzxX51VVPVVCOab+fXJclKjpWvafDyX23EzgNUgOmYn4ZuF4EbigwAUEBAQEHAELCwvOOC2VSk6RS6VSaDabMzEfdIFaWVnB7u4ums0m6vU6VldX3fE0QBjbVKvVsLCwgL29PVy9etVlrux0Oshms06F297edinwuRNOo4q77d1u1yUNoJskABdnwxi80WiECxcuYDKZ4Nq1a04dJAFcW1tDp9NxteFUSaCL5Gg0QrPZdLXdqGokEgmnAiwtLaHVamFzc9PtVrO/WjhXM+zReGKSlFarFZtwRBFngAOz7lm+ahJ3Dg3COIPOJ2GHQUmLqm78fDAYoNFoOMOQ60jHg2Oi7oUKvT8ap7wWCRnXia8AxJEQJVh+QhT9XtcE55XX0cQlvirKNnzFTAmYTyR4/1SASAr03n1iqHPAY7gGhsMhOp2OU4dIIOLmT+9fYwYPmn9/rZFwDQYDp9RTee71elhdXcX29jbq9ToSiYRbE6o6aaZEqmvqFslrMFZNs4wqgdPYN40HUwKlGx4+uTfGuOvTG8EY47LNMq6W/eQ52WzWZQWlMkfXSyZv0c0Jri2q1KrExc2zKs/8WzdkuBY1020mk3HeBewnN0U0YyjHJZvNzpBgrh0dQ5/c834PWzMvNY4fgbvZnQgICAgI+IoHE4QAkeFQKpWcikWjgSnzWduo0WhgMpng9ttvx+rqKjqdjlPd0uk0vvSlLwEATpw44dwXGQ/X7XZRKpWwsrKCdDrtClwvLS0hkUhge3vbGSw0nPL5vEsSYIxxMW9U+7hbTvfJM2fOuLphyWQSd999NwDg2rVrLjEBjU0au5lMBqdOnUKxWMT29rYjo4zloXHFRBXLy8vY3t7G1atXHfmg0cOSBMB+tjtg1o2u3+/P1DWjoU9oog010H03Pt2F599KEOKgCQsIJZC+oqTX0799447HUJGkKgbgBjVIXdbUPU4zQqrR61+fbWnyCRqp/jjqvfI43wWMxyo0joj3wfZHo9FMlj8qFtxsULKuhrKSMZImVWH29vZQr9dnYqq0734/fUICwCnZut7mrQmda38ufZLvrz9+z2eJRKVWq2F7exsA8L73vQ+f+cxn8IUvfAH1et29PxhH2Ol0MB6P3TNMYqQlAFQV8ueDZNs/Tl1tlTxzzDgmJM/c3KAXAgkWN2MYv5nNZl1NTJYISSaTroaatXbGPZjrQuM5NZkKr813nmbD1PeCn0yKZJ3Piq/I0ZOCx3DOdA1xDLVIvRJ53bDQ941utHAeORY3A8eLwCG+/kdAQEBAQICCu+dMJkGXGMZtUaE7efIkAGBra8vVd1tcXMT169fR7XYBREY6SdKtt96Ker2OdruNK1euoNPpoNfrIZ/P49SpU+j3+9ja2kIqlcLJkydRq9Wws7PjDGzuuC8vL7sdY5YJIPEaj8fONbPdbiOfzyORSOCpp55Ct9vF+fPncfHiRTSbTVy7dg3b29uONPD+0uk0FhYWXCKWp59+esYYoXJEQ4axfI1Gw9Wqo9sViabGxdEwVwOYCRLUUKYRqskF5qlpaqjpjjjdEH3lyYfG4/jHxRFA/VsVGDX4+R2NObryqdEMYCYmR8mbkjYlbzTYNe5HlTJC70NJM8dUj6H7F8dC2yP58l0MNS28JuJQd0pty59X/U6VHxIFdScEogRCrL/IPvlxbXFzx/vgZgaTpKiC4x+v/Y1Tgn13O9++zOVyrn/VahXpdBpPPfUUnnzySeRyObztbW/DZDLBF77wBSwsLGBxcdGV2fBjq5RYKTFRRY3rjmudoNql2Sp1zNl3rg+erwXXlUBpUha6clerVUda+AwNBgOXKETj1oD9jQrdkGF2Rz1Wr8314veXzwHrzzFhkhJAPjvD4dDFuNE9VTeD+JmfnZIqpCZV0U0Kjqe6Zx70rnk5cKwIHIICFxAQEBBwBJB85XI59Ho9F39SLBZdYpOVlRU0m01MJhNcuHABJ06cQL/fx6VLl2CMwWAwQKvVQrvdRr1ex/333w9ro+LcTz/9NLa2ttz1jDFYW1tDv99HpVJBvV5HJpPB1atX0Ww2XfxHLpdzxt7u7q4rX6A14HK5nHNBLBaL2NnZwWAwQD6fx4kTJ5DJZPDUU09ha2vLZcNk3BvJ2/nz51GtVtFsNl1yFdZ0S6VSrkjyeDxGpVJBuVzGxsaGq29Fo1t37bn77mefjCMeaoz7CtC8DG/qBskfdcnySZhveKuR5hvmPinT8/RvdWlUYjoYDFy9PG3XjwHyVR9ew1cAtAB0XOZOGpf+WHEdc1yUsI7HY6dQ+EldaITzeO2Lr3xRMUulUu5+qcoBmFEv2A4/p6GtKp32QV0qfTKixEah4z0ajVxxeT92TEED3F9P7LOqi2zbvzZdI0ejkUsc9MlPfhK9Xg8bGxs4e/Ys3vnOd6JYLOK3f/u3Ua/XcfLkSaytrbkkGiT2GtfGMdfMijrHuo6U/ACYUW/9BDA6H0pOVPEkSaOSTkJNwsaYWe0PFURdG/qO4D36Y6sqsSZnUYKoihiVTj4fqVQKg8HAPQfsN13CSbAHg4Ej9VTngEgx1wyffuIUbnaQOHLzTJVQrbf3cuNYETgDBAYXEBAQEHAozp49i62tLWxsbLjd4dXVVacopVIprK2toVAo4Pbbb0e1WsX29ja2t7ddXAhT899yyy04e/YshsMhnnnmGUfUuMNcLpdd4d56vY5qtYrhcIjt7W2nQHCXu1gsOtWPcWw0rsvlsnO35K7/9vY22u02VlZWcOuttyKfz2NtbQ0bGxvO3dJXFarVKoBIVWw0Gi79OUnkiRMnZtxIWQePdeNIKjSbG9vWNPiqFOiOtU+oaExqUgBfJVMypODnNPb0Pv3jaCCqwarkJM5dTtuiUarEgy5mm5ub2Nracgqkqo+qpPhgWyRb5XLZEe69vT1nfKqbHfut5IxzxzgmGse5XM7FeJZKJdcHFncn+WU2RxrbfjZOn+zwbyUJqhzqeeyzT47Z/zg32MlkckO5AX8dabs6j8yeSuKhLoj+uGvffWKoffXXIhARuJ2dHWxsbLh18PjjjwMAPvShD+FrvuZrcObMGbzxjW8EAHz84x/H0tISTp8+PVPoWzNRUpHSjJM6Nkr+lXDrWChpjiO8VNe5lnWtAHBKHt0mmbiI65q1/TgfOq/++4ZrSwnweLxfFNsndP78krzxWSO4Rv2kP3yPsP+6aUCyxpg+XRvciOL4q5LIZ6dUKrl3H991HLObgeNF4IwJ/C0gICAg4FA89dRTaDabrgbc0tKSy7Q4HA7R7XZx5swZnDp1CtZaPPPMM+j3+8jn86522ng8xt133418Po9Go4HNzU2XTCSZTGJlZQWpVAqdTsfVcBuPx1hfX0en03FGUKVSQaVSwcLCglPULl265Ha8uevNflGd2Nrawng8xsWLF1Gv12GtxdraGq5cuTKTQIQJCNRt7cqVK25XGQCq1SpWVlaQTCZd6YBKpeKyKK6vr7udZxJKum5yR18D+9WI10QKavwqEWE8EI1U3xD0iZUf39Xr9WZc8RTqbqnxOHq+b6Trdf12eC+TyWSGvNENTt0iVT0iiUilUo6gcW6YPZExRUShUHCZS9k2iymn02lUKhXkcjnUajUsLi66guw0vK216Pf7MwRP3c3YTrvdRjabRaPRQK/Xw/Xr1zEYDJyKS1c6VR9UXaRBq2PsZwflj7pj6nxybKkW01VY66jp2uGcKKHmGLEcB/ussYiqtCp507UZt84IfsZxpCp0+fJlXL9+HSsrK/jsZz8LAHjnO9/pSFwikcBHP/pRLC4u4syZM1hfX5+JBVUXRhI4XX8k3JowRN0qqdqRnGg9OM4FlVJu0Kg6CsApq9zk4fhQuaYLoibg4bjyuloiQJ99dX3mhgXJKu9H3YyVUOk8kczpfGv7fMeRGDJZFdtklmGuW641362Vc8JamMZEia7UbdP3Hng5cbwIHI6WRSogICAg4Hc2xuMxCoUCFhcXsbi46OpS0RXq9ttvx8mTJ9FqtZziVa/Xcf36dUwmE9RqNaysrGA8Hrv4t263i06ng+FwiJMnTzolgLu07XYbnU7Hxens7u5icXERy8vLKJfLSKfTWF9fx5UrVwDs11MqFArodruYTKLYvF6vh0ajgUKhgHK5DGstGo0Gtra2XFwKjS4aZIwhAaJkDzRweI1KpYJsNuuSspAwWmsdUVTCwbT8akCrIUxS56twvqqlxIn9JfzMhXEkDogM7mazeUM9KgXjjJQoqDLjq2+8Bv/VfvCYTqeD9fV1bG1tOddFPwmFkoZEIoELFy7g+vXrjiQrgaVrFw1PdTPTrJb1eh0XLlxAuVx2tQGHwyH6/T6uX7/uDHfGeJLM0PBk3zgmxWIRyWQShULBbRY88MADKJVKaDabaDQaaLVauHbtGp555hkMBgNHCLUos94rlRYlJTT8dV65qcBjlRRqEguuXX9+fDVQ3TF7vd5MUo84YzvOdVY/iyP1em0WvU4kEvjyl7884+b4yCOPAADe9a534cyZM3jggQewt7eHj370o7jllltw5swZPPPMMzfEY/lkyF9XSh78zRKOh963QgkRSQ/JLWPLKpXKDSRIXQp1rDSzo6qp4/F4ZhOG61mVWH/dcAOG7xX2S4k/+6TzoMojyRowWxqDpI/rjApgPp/HcDh0sbk8RseSqmMikXCFzemCHxdj+XLheBG4EAMXEBAQEHAEZLNZF+9G5WtjYwMrKys4ffo0xuMxLl26hHQ6jcXFRZc2fzKZ4JZbbkGxWMTjjz+ORqOB06dPAwDW1tawu7uLpaUlZ6hWKpWZWDkaAbwuFZZOp4NWq+UMQhpDo9HIEchKpYJ+v49ut4tarYbRaITr16/P7IirwUYlQwkC67dlMhlXIkCNEu6893o9pFIpXL58eSZOh+epm6QaZBozRCUpjoAB+y6XNEY1dibOcNZddt8Fbm1tbSbznH8e+6nqiZIkQg1hv++q8jDuaWNjw2US9Isiq2FOReXq1atotVoA4EgQU55rDA5JG9UYZjA9ffo0jImS3XQ6HTz22GPodDqumLr2lW1yLfkElPfNzJnZbBaLi4suCyndZC9cuIDxeIx77rnHxYBeunQJm5ubrqyFZqukMU3jV5UsnyzN+xyAy244Go1Qr9dvUOKUMMa5CtIFlRsofp07HQNdn74Cp9/7P3t7eyiVSgCAZ5991hHt8XiMfr+Pz372s+j3+3jve9+LW265BW984xsxHo/x0EMP4ezZszhz5gwuXbo0s/b4vI1GI/es8VnSVP4cAz1H74nrO279kjwrmc7n8zPunHxG6HLIDR/OqY4nj+c6U8U4bgNElU2eq/epGYJVWVRy7RNBnsNr6PtICTDvnRtRHNNqtepqV/Jdwvcx3yE8j3GAes2XG8eLwCHUgQsICAgIOBxU3G655Rak02k0m03ccsstqNVqGAwGLtatVCqh3W7j+vXryOfzuOeee7C3t4fHH38czWYTS0tLrsYaY4xIhBKJxExmSyCKKVteXnZZLnu9nstUyWMYC8O4Oaoj/I4ki4aV1nMC9l3a9G/GQpGY1et1LC4uIp/PO2JJBWYwGKBYLLpYPgCuzl2hUJgxlOcZ67ozDuzHoKmCRmOMO+UcH+6W+4qdGoHqhmeMwdWrV12cDttX45v9VLc+VXh4DY1dU+jf1lq0Wi1sbGw444/zoO6FfmIExgOpoc5x4dioYpVMJnH+/HmntI1GIzz77LNot9szGfb0XnSMeU++8uQrVcR4PHbuoNvb26hUKiiVSigUCrjzzjtdnNdrX/ta3HXXXdje3sYzzzyDL33pS27seW+8T/ZBv+Pc0AVQDXrtD0n9YDBwa9TPesnj/HXH+9GC2FQcdR79GC6ulYOgaxCInsOnn34aTz/99EwcGUn9l7/8ZWSzWbzrXe/C2bNn8aY3vcmRu4sXL+LMmTNuo4T3QJdCuu9x80Sfa78fGhOpxI2kS/vPdpjIg+8rqvN0NSQZo6LOtvXazEirsWOcd1WxqJBRWeOaUNLI/vIavurIsWV7nHt9jqnesRSKHsv75311Oh23IZLP51Eul1Gr1dDpdLC3t4etra2ZORmNRuj3+7DWzqh9NwPHi8AZAxs0uICAgICAQ7C6uoqVlRWXwv/cuXPIZrO4fv06dnd3USgUnDE7Go1w4sQJLC4u4tlnn8XOzo4jQleuXEGv13PKyPXr112MGpWRdruNSqWCkydPYmlpCfV6HcYY9x1JDDNGAnCp//P5PFZWVgBELnvWRqUDmFgA2M84CMDFR3W7XeeOeOrUKRQKBafkFYtF1Go15PN5l2yFO8q7u7vI5XLY2trC5uama4NGHokDMFugm/Djm4D4bJBKXID9AtU0uNWlivDbVcVpZ2cHm5ubWF1dnSEFeiz7xh+tZ+a3F0dSaUzSVZZESGO2uOtPY5b3SvdIEjm26feDLm7FYhHLy8suJvOJJ55wY0+Dk9AMkCSpXBM6xn7c2TyQxPf7fayvryOVSuHJJ59EIpFArVbDPffcg93dXdTrdZw+fRq33XabS5/PRCiq+Ol40tBmX/i3KkSEGt40tJmu/6B1pYa9uhCTNMxT1diGEk8fehyJe7fbxSc/+Uk0Gg2cOXNmpg/GREk1Pve5z6HdbuM973kPbr/9drzjHe9Av9/HE088gbvuugvnzp1zSpySGHUn9NU0Vdy4rpiplsod16wWp2ZbJF10JyQRU1dIkiM+k4yb9PtCIsfjqFRxDPge4fVI2EgSSd6YXZKEm26wJHCaZEdJpZJYZqDk2ORyOedarps3fFbZ5tbWFiaTiavDaa11ruR0G04mkxgOh64mXbvdnvscvdQ4XgQOQYELCAgICDgcKysruHbtGpLJJE6dOoVWq4VWq4WlpSXkcjlXtDuTyeDWW2/FeDzGY489NlNyYGdnB8YYnD17Fo1GA9ZaVKtVGGPcTvbe3h4qlYojjMwk2Wq1XBHgdruN0WiEcrmMwWCAK1euOCMIgGubxbiB2Zpm2WzWuYql02lsbW1hd3cX6XQa9XrdXY8GMouHM4kLAEfkWFZhY2MDwD6xqtVqWFpawpUrV2YMJv6uhMAnXmqYqxKnagwNZ94j789vU3/UlXI0GuHq1au46667Zq6t5IAGH11KE4nEjMHo34e62rGfe3t72NnZmUnxThdIXkcVLp6vKh2PoWFKA9kY4xKSVKtV7OzsoNFozBA7ADMGLf/WeCIlHj4Z4XiossG+EyRWSpbp5ra9vY2HHnoI9Xod5XIZJ06cwPnz53Hq1CnccccdeOKJJ/Doo4+6DQQlvroOeA0dszjXSBINAC6Wr1QqzSguqr75a44qnK+0KmH0yZuvYGqbOkaNRsPd29NPPz0Tr6ZufYwFfeKJJ9zYX7x4EW9729vQ6XTw5S9/Ga997Wtx+vRpPPvsszNuib4CpZ8r0RsOh46gkNyoO6cq0PyM6x/Yj4vVWEEl2iRmunaU5OnxGldH18t5bo6qROvzTkLIzRAlWrwXVf953Vwu596DJJT0LPDXnbqQ8r0zmUxQKpVmat6pgkm3YiYi4nvyZuBYETiYQOACAgICAg7HlStXUCwWUa/XnbHJQtvNZtPFnJ07dw7NZhPr6+sYj8colUrY3t7GeDzG2bNnkUwmsbOz4wgTz+12u7A2Sslfq9WwvLzsyBHLD3S7XbRaLWe0dzodbGxsuIx/jL8oFArOmFH1plgsumQixWIRe3t7aDabLoU6M0iWy2UAUUbDU6dOOQOQsTtUKRKJqK7V5cuXXfwHEBXxPnnyJBqNBgDcYJT7hrO6VylZIvRvGqWqmtAFlLvpWnxXDW5VmSaTCZ588km86U1vckk5lBzyfN4nlS9mf1S1yIeqNs1mE9evX3eELM7Vk33XOKK9vb0ZFY7Gs5K4UqnkYs+Y1TKfz7v22Ae/9pdvFCuxiXNTpKueKoTqwugb0qqYWhtltRwMBlhbW8Ply5dx++23Y3FxEbfccgtOnTqFO++8E4888ggef/xxt0lBEuG78vFfXkPd87guaOTv7e25BECFQsH1Wd3j1J2SbZDA8b7i3PyUePtjGEcOJ5OJy+DaarXw5S9/2cVC8h5Z9Fk3CJ566il85CMfQalUwoULF/C+970Pv/RLv4TPf/7zuP/++9Hr9bC5uenKR9BFl2ud7wGtv0h1icSRrq508fNdILvdLozZLyuhaf45/kxWRDKm9f7o0sm1xXFkCQt+zr6yDYWuaT9hDUn3eDx2cY8cS469vmMymQyy2SwKhYJT9PQdos8N29RnWtcl37EcT7ZLpZ3Jh0ajEVqtltu8uRk4VgTO4OZWRQ8ICAgIeGWAbo7Xrl3DwsICzp49i3a7jWazCWPMTKHtVqvlDKZms4lMJoNTp06h2+1ic3PTGacsIEw3o+XlZSwuLjojhIYZYy/6/T4WFxeRSCTQbrdx7do1Z0CT/NHVkgYgSRGN0Fwuh729PTQaDVfmYHl52ZUgYA2whYUFnDx5csYVzdoo0UipVIK1Fr1eD+vr607xoEFN5aXX6wGYdZ2Mc5NT5YbGWdyxJBiaztt3oaPrFVN/c1c/jnBdvnzZxSX65ID98hW/TCYTG8viq3wAHGlhWyQm6palsTuafIF951gwex9rVeXzeVhrndFMw5N/c6zYN82up/fjK2vqEkgwI6UqKL6Ry3O55vxU7vxptVr43Oc+h0KhgHvuuQfnz5/HuXPnUKlUsLy8jC996UvY2NhwBj3nVbMS+tdTZY7kjfFgxhingut46nm6LlTlIcFRUqrrYd5P3LoA4FyeH3/8cXS7XSwuLs6QSmOMI0fq4nrlyhV86EMfQjabxZkzZ/Dud78bv/zLv4wvfvGLePWrX+02YlRhBeA2bwglX3xmeSwVJV1PPEc3DjRLrLopKmknSAQ5BureyfWYzWZnNivUZVafQW2H8WrZbBaj0cglr2E/NXuk/xxnMhkUi0VXu5PjxGcH2K/lxnVvrXUlS1TJ5NrkOtXELfl83mV7pefF7u4u8vk8bhYOJXDGmJ8C8A0A1q2190w/+/sAvhHALoAnAHyntbZhjDkP4IsAHp2e/nFr7fe8FB2P72soIxAQEBAQcDgGgwGMidwfWfz62rVrKJVKOHfuHDqdjlPalpaWsLa2hu3tbZw4cQInTpzA008/7f6j73Q6zthg2YBarYbz588jn8+j0+lga2vLGSKsq7W6uoput4tut4ter+fineh2SWOVBi6ND2ZBM8ag0Wig3W5jPB7jxIkTOHnypMsqWKlUkEwmsbq66mLggEiJo4GlWSfb7baLryMB5H0x/k7dI9WY9f9Vw09VMnVRo/Gu5/J7ZsqcTKKSDTSImRSGiowqMFeuXMH6+jrOnTt3Q8wQ+6EEOJlMuh12Nf713pT8ra+vuyLBvhsZ70fP0yQU7IsqKjRaSSLVKNUU6hqnp9eMIxp+VjxVIPTelAz6xrqSHI0diyNJJJfD4RCf+tSn8Nhjj+Hs2bO4cOEC7rnnHpw9exYf+9jHcPXqVVfPTmP52BaNa50vvVcm1mA21X6/P7OR4a89nTtg1o1QCa9PgONImw+Sl/X1dRhj8PnPf37GxVVB8qh9bbVarsTAN3zDN+DWW2/Fu9/9bnzgAx/Ak08+idtvvx1f/OIX3TPKjQLekx8L5icvUdVbyRtVtWKxOJPpUsdZ15CuCVXKdF3ruYw9s9ai2+26ta2p/0kaeV3NAsn3DtU9ADMJoPQ5JqliHUS9byX+unaU1HNDCIC7tjGR6zvfk1yffDZ5bW7iFQqFr/gslD8N4J8C+Fn57L8C+D5r7cgY86MAvg/AX51+94S19r4Xs5NHhUEoIxAQEBAQcDiy2SyWlpYARAZVs9l0WRlZDoDxUcwQd+HCBYxGIzz11FNOeWm32zNujel0GgsLC7jllltcIpRWq4VutztjfGYyGWxubjo3LAAuhTaTCtCVkgYTM/FlMhn0+330+31nhJw5cwbVatVlTSuVSkin07jtttswmUywtrbm4kOo1NFtk6Rkc3MTuVxu5jp0n+L9xalohP7uu7X55A3YNwr1fHV/YsxYr9fD0tISCoWCU8H0PBpqnU4H169fdwqdqisE3Shp7NJFlbv188hpu93G1tbWDNGgIUqSy/vmvdH4pDJBw5HEje6bqpapoe/Hr+n4+WPpkxn2W417/VyVIhIe35WR5yhR0za4JlRlHQwGeOKJJzAYDHD77bdjZWUFb3nLW1y2ylarNaOKKbnnffiKjSacILlnEiHGN6kKpwobP+d8xSXg4P36WRT9sdQ1Qffk8XiMq1evzsRS+uNEJZlzTQL4yCOPIJ/P42u/9mtx9913Y2trC5/4xCewsLCAixcv4pFHHnHH8t713khW4jI1qsLJ/pJ8cc40ZT9JYjabRS6XczFnqkDruHFjQTdSxuOx23CisszsudyY4lxqTBzHhO8Z35WSa0DdgZlFmM+tKnpcK1TvqXTzOLqd8j1BBZDPJV1M+/2+e4+yvifrwbHdr2gCZ6398FRZ08/+i/z5cQC/70Xu1/OCCTFwAQEBAQFHQD6fx9bWFkqlEhKJKLseiRz/42b68nq9jpWVFaytraHT6bgMZ/1+3xkBk8kEhUIBZ86cQaVSwd7eHp5++mn0ej1n6JPscaeZRkOz2XSGS7FYdAaV7rT3+33nxtbtdp2BRle13d1dl5SEhsXCwgIajYZzk5xMohIHy8vLqFarWF9fRyaTweLiIj7zmc+4HX3GspRKJWegzSNvNI59Q1x/J/RvGmlqjCrR03YSiQRWV1cdWRqNRrh8+bLrC13FJpMJvvzlL+Mtb3mLG0fdded1aOgyIUG5XEaxWJxxVVVCMxwOXXF19o33TldIn1CxTyQjVBlIimngqhGohrG6N+pY+XFrvLc49UwVJV9RVNKj96xKC9ug0ctrqbse710J+2QywbPPPotut4tz587h5MmTKBQKKJVK+OIXv4idnR1HzHUsNRbJd2vlPZCEMSugqpU6hr4i7Lu8+sqpJoY5SIVjX3d3d7G5uQljjCsnoQRK1zpJGK/F7/f29vDpT38amUwG73nPe/DOd77TKZkPPvgg7rzzTly+fNmltNf50oQpQETCdL2RcCtpYqwn31tcBySvVGbVJVNdhHUNUB3XdUkllmuD88ONl52dHUewNC6Qm1Cq+uo7gWNKspdOp5HP5128H+9D55xrgO9SurVz3HlvPFfdmakccgOGMYV8lzPxC11ybxZeDOr4XQB+Qf6+1RjzGQAtAN9vrf2tuJOMMd8N4LsB4Ny5cy9CN6IYuFBGICAgICDgMGxubro07ZcvX3YujsViEdlsFo1GA6PRCMvLy0gkEnj66aedwc+dYhbGTiSiGmpnz57FwsIC2u22KzXQ6/WQSERZILUYL2PTqJjRaFAlh9dh7BkVGwbYZzIZp5gxQclwOES1WsV4PHYJVRYWFlxh2rNnz2Jvbw9PPfUUSqUS6vW6i/NLJKI6UOl0GufOnXMJFYg449iPyQFuJG++O6XeoxIqPUaVk/F4jPX1dZTL5RlXQTWKaYQ+/vjj2NnZQb1en3FD1LZplPInn8+7zHNsU++Zqcy1mDCAmVTlJCKa3pz3yaQqJOxKOuJUSSVsSrj4Pf/2XQDj2uDfNJyV4PE7Hs9+kxz4ahLP1VgidbPzYwybzSaeeOIJlMtl5PN5nD59GrlcDg8//DA2NjZmVBYa0zqn6jKoRJSG8+7urnOl1DFQosr+cd7V6NYx0DguJUD+WuC/3OxJp9Podruo1Wo3zA3bJnHUZCq8l8FggIceeghLS0t48MEH8da3vhXXrl3DZz/7WbzlLW/BZDLB1atXZzIw6nrj9ZR8qsqn96aJZDSZD8mdEip/Q4X957uOz0I6nb6BaOk4DYdDR27z+fwMeWIfue50/fL+SPZIxtRtketPS4+wbV3LfA45DwBcYqder+cUvaWlJTSbTVcaotfrIZ/PzyiKSjxJDG8WXhCBM8b8DQAjAD83/egagHPW2i1jzOsA/HtjzN3W2pZ/rrX2JwD8BAA88MADLwrrCgpcQEBAQMBRUC6XkUwm8cQTT+DSpUvOOCApqVaryOVyuHLliotJS6VSrm4b46dyuRyWlpZw8uRJ5HI5tFotbG9vu5pCu7u77j/5bDaLYrGIXC6HTqeDbrfr4rnoqkP3Hp5LV05NDkDS0+v1kM1mcfv/x96fBNmZZteB4Hnv+ZvnwecRPsAxBmLIiEAwyYhkMiWmUhxkMpZMuaqFTGUya1NvtKjqVclkVqZa9apXZdbNbplM1SqWkqSYxmRmiJmRmZERgQACCMyAO+DweXjzPA+98DgX9334HRGiyACJ/q8ZzN3f+4dv+n/c851z711eltiSVCqFer2OZrOJaDQKr9croCwcDiOdTktSlna7jbt372Jvbw+xWAz5fF6ceyYt0dJJ7vwzcQLwLFij86iZImBYLql3vs3YM+2483Oma9f183QiEzKVlKU+fPgQk5OTEo9jXlvLObnzzvpiWn4JHEu/CGJNgGqyZNphptNK2SrXCx1Sxuuw/1agTY+lBgQaeOjr6M/1mBPcapkiHW+232Tx9JgBGEojD0DYHB1XpqWYvG69Xsdnn32GsbExLC8vY3x8XBx/yl01MNZZHNkWkyGk004mjpsoPM5KSmoyq/xcj4eZOIbzqY/ltXK5nMiiCS7MMdNjqWWcepzIqP/yl79EJBLBpUuX8Nu//dv4T//pP+H+/ft48803UalURC6tx5wbPmyDTtLC3wl4+L1e+wQkerw1mOd4MW6RY8NxYi00vUZNxgt4Gm9MEMSkNEy0wuNMJpvrl88L22tuoOj6dWy3uW5MBprjx/esy+VCOBxGq9WSzTqCXJZ+cbvdokxgnURTZfB12l8ZwDkcjv8ex8lNfmvwxcoeDAYtAK0vfv/M4XA8BnAawLW/hrZ+hTbZMXC22WabbbZ9uTFJCWusMR2/0+nE2NgY+v2+sASJREJiO1gugIAilUphdHRUjqdjx//cdUzI1NSU1A5iDAZwnKY/FosBgBQO7/f7Eovi9/sFIJDl8fv9SCQSUgMukUggHA6jVCqhWq0iFovB4/Egn8/L77lcDs1mUyRN+XwemUwGMzMzkqglEAjA5/MNFQLXwEXLnUyjY/o8GSU/12bldJvfE+zSAaPEi04aQXCxWMTNmzfx+uuvi+OlHTcAQ4wBndJIJCJ1+DS7wdgXDSg1g8c2AE/ZHp/PJ0ybTrBA51fXc9Nsj26nlrXxbytW6nlxONqh5r041gSNWmKoGSgNtrne2Q9THqiBoO4Hnel+/7hm2s7ODsbGxjA6OioxgayjpevkmUl7NNA3Yx/b7bbIKc11ZDJxWq7JsdBSP+3063nV64xr7eDgAO12G5lMZmjcrNYF508zRpod7vV6KBQK+PDDDxGPx7G4uIh3330Xf/EXf4G1tTWsrKxIeRACV64tbhBpaSjfD5RTOxwOGVfNmGq21Upey/kgGKMsmdcis6fnSMd0apZPr2ngKdOqM7DqZC0jIyOyyeR2uxGNRuX9Q3DF+w4GAwFxHBuun3a7PbQm+DuzXRYKBelLKBTCxsYGwuGwxPNR6s7nWD+3etPjRdhfCcA5HI7v4jhpyXuDwaCuPh8FkB8MBj2Hw7EIYAXAxl9LS79ay2wGzjbbbLPNti+1UqkE4LhAtdfrFecikUigVCpJpjGn0ykxKHTOmahkbGxMYthcLhcymYw4/K1WS8BAIpGA3+9HOp2WBAw0j8eDcDgsWd3osNCBYcwXZUKUN46OjgrY83q96PV6ODw8xGAwQDAYlKyRyWRSJIgjIyOIRqNDTFur1cIrr7yCH/7whxJTp+NEtFOuWZCTdp61c6x/12BOn2uCD4IrDSwADCVLMONd9HFOpxNPnjzB/v4+RkdHxYm0cubpQI+MjCAUCknMIPve7XaRz+fF6eZ9tMyOxkQwzPLHODfNWNDJ1cBJy9iAZzNLknEwJWomkNKARPfRBIIcD86lCcpMZlU73yazyutzPfBzs7RCr9dDo9FANptFpVLB2bNnEY/Hsby8jH6/L1lTuUmh5aj8qUGvbisBhpnQwpSm6vVpAnhKWvU5en2YzwCLbxOYmolozA0DzjulfbqNHNdut4vNzU28//77+N3f/V1cuHAB+/v7uHnzJkZHR3H69Gl8/vnnQ6wxJZhknwiAQqGQJHfhtbW0kmySlpbqNcNx5DPn8/nkelp+yw0CyrN1MhVmbtSbCFparMuD8FhKzLl+XC6X9IVgVMefUSHAhCxk1VjnjRsvBJZk6vXGAuPbDg8P5frvvfce8vk81tfX5X3MYyn3JejTDP/XbV+ljMD/DuBbAFIOh2MXwP+M46yTXgDvfzGRLBfwLoB/43A4ugB6AP7FYDDI/w213aKtgM3B2WabbbbZ9mVGdosZx+gg5PN5cQj7/T4qlYo4MH6/Hx6PB4lEArFYDK1WC/l8XqSNlUpFdnbpJDKmrlwuC3DTzjQThbRaLdlFJkhkevtKpSLtTiaT8Pl82N3dRTgcxtjYGFqtForFogDRwWCAUCgkoLLdbiMSiQA4Zvj8fj/a7TY2NjYwOzuLK1euoNPpSDIPFiHXzrxm1sh+mWbFpOnPNIgzQR6NgINOpz6eY6cZElPu5/P5sL+/L8wFZWamo6VBERnSVCqFTCYj80QmVQMUncWSzqnOiOj3+yXBAsES+6Tba8ZLmawaj6EDymM1QNCMgOmgE5zpe+k+m9LWkxhFXpOMjGbyTMknjYCRbSV44Vim02mMjY1JvT4m1TATZpBx1eyjuRYZm9Vut58pt2CaBmL8x4Q9GsCZ8li9WdDv91Eul7GzsyMFtPmsmXNr/q5lrlrOqtfh2toaPvjgA3zve9/DO++8g62tLXz66af47d/+bUxPT2NnZ0fWJoETGTG+b1hihKBJ91P3y8wAS3Z9MBhIqQeykzyeAI/jRCmhXuv8nmCcoAmAqAg4rwSTOpaMx7LNVEcMBsf124LBoLSF7dTPC9uqS0/w3QAcb7Yw+y/Xca1Ww9HREebn55FIJNDr9TA7OyvFuvX7SjONf6sllIPB4PsWH/8/Tzj2PwH4T/+tjfqrmgN2DJxtttlmm21fbo1GA9VqFcFgEJOTk6jX68hkMuj1euLQ5fN5YVOY+WxsbEzqtdXrdTQaDYnJ4m4uk6Gw7hVlVtwZtqrHRKcgGo1K/IrH4xHHbGJiAqFQCLlcDuVyGdFoFJFIRGrAEaB1u13E43F0u11JzBKPx4e+Yyr+wWCAvb09cX4pVaR0SgMl7fRqM9kGK4fmpM9M8KXZAS2j0/IzLTHUTijH1e/3o1Qq4dq1a7h8+bLMgwYbJgNH0BSNRjE6OopsNis7/FpuphktXof18hgbQzaH55Dh0tfg77wv22IlmTxJjqcd8efJ97T0k+DHBNmaidHX1QyDeU+2j2tVrxHNxvEfQUq9Xsfh4SFGRkYQi8UQjUYxNTWFw8NDtFqtIXDJ58U0nWADeCqlJEAx2Ug9TuZ6ZRyrlsWZY6fZ5263i/39fSk1oudSn6czeernRh+j54FsIwDcvn0bs7OzuHz5Mr71rW/hBz/4Aa5fv44333wTxWIR5XIZg8FA3g8EUPF4XEAK26zZN72pQCkir2GVbVZLJDUrxnXBdxcBjgZ2XFc6nT/jZ8lecQx4b75zPB6P1JTTkk2uQ8bOBYNBRCIRVKtVOBwOSfrEnyY7rzO/ZjIZDAYDYTLb7TYqlQr29vakHdxg4/04lxwXU575dduLK2DwN2AOOwbONttss822r2DdbhfJZBKxWAzpdFr+k+Z/1K1WS9ibcDiMkZERjI2NIZlMSvxYs9mUmDO9s0wZot4F17u3sVgMTqcTlUpF4lei0ajEfDSbTXi9XlSrVbhcLpw9exYejwe7u7sYDAaSuZnSzXA4jH6/j0ajIen28/k8fD4f5ubmhjKqtdttFAoFKUVApzmRSAh7SCmTNg02tPOsAYLplD5vd1o72SbLYSZJMe+hZWHmnDL5zMbGBh4+fIhkMinJQ0zwqZN/OJ1O+P1+pFIpRCIRkcPqnXcNRJxO55CsluybZnL4ux43glMCNs2kmfJJK6ClwRpBggaGmj2jM63ljmasmJlaX7PDes55TT3uBBHmZ5x7bmDomCWH47hWXDabFSd9dHRUnim2h5JJqwLfBAZ6nbFUhpXpMdWOPeO6uD7M9aTXJEFMs9nE/fv3RbJHkG72n+OrNwp0e/T4m9LNer2Oq1evYmpqCktLS3jjjTdw48YNzM/P49KlS/jwww/h9XplE4nS70AgIOtJgx4CLj1mXPscb8b3kmXVrKSWpOoEJ6YUlXNMYKsBM4/XklFei6CObfX5fPD7/QK2KBEFMFSTkrUU9aZJvV5Hu90emm++g7kRFgwGce/ePezu7kqfCGIrlQocDofI5wko9TPi9XoRi8VwdHSERqNhuea+Dnu5ABwcz7ygbbPNNttss820sbEx1Ot17OzsiAOqd6gZg+bz+RAOh5FIJCT7WC6XQ7FYRKFQEPlWp9OR+IxWq4XJyUn0+32USiVx/PVONKU/zFLY7XZRrVYxMjKCSCSCer2OSCSC1dVVFItFHB0dIRAIIB6Pi7SPsk/Gevj9fgFnsVgM4XAY2WwWzWYTg8HTdPgEfgCGnGXgKejSDguzxmlQCgwXhDbPp2kH0DzGjBvS39H5smJDeF3tiAPHzh3LOORyOVy7dg1nz56VjKOm5E+zenRA4/E4xsfHJV5RO6cEQZoZ1bJJLSPT8T9sr3Z2tTRQs4+aYdRzo8fYvAa/p0Ns9tMKbLP/mgHk+SZo0/Oh5a2cU/M8/VNLOQGIM16pVLC/v4+JiQmEw2FEIhGRBfJezBLIGCqTDdTOPRlw1o8jyLOSNXJMmBWWQIVmjh0BcL/flyynIyMjyOfzkgiE5+t1qcdaX1ODO3Ne+HNnZwe/+MUv8A/+wT/Am2++id3dXVy9ehXf+973sLKygocPH0rdwng8LklhvF6vSJw1MKVElf3RTDQZJ26cUAKsnw9KBnUqfs6RTtRDJpzzpseDoJ5FtZnoSW9MMCZOg2K9nnR9Oj03egx1kheCMrJ8wWAQU1NT6PV6Q4oL/Q5gfwn+CEi5pgjatOT3RdjLBeBsBs4222yzzbavYIx1o6PAHVzGkbTbbYTDYUxMTGBychJOpxOHh4dIp9OS5ITJSijd47k+nw/FYhHFYhGBQEDi5XgfOqapVArAcZr8RqMhYLFeryMej+PUqVPCDo6NjcHlckkR5GAwKOfGYjH5zuk8LnrtcBxn+GMKcgAiB2LWvkajIQ5auVwecto182VmvCNAMePZrGRqJqDTf5uOpMm2afDIv7Wja8rR6GgFg0HkcjncvXsXa2trGB0dtawJx/ZoIOXz+TA5OYnHjx8PJRDhOPA6zPTH8hKabWNbdRY+K4CmQRDvpZkqrknddxMgaomiyaJpyRclZprd06ywHksrFlCDcEobtbxQ91uvCYIxtplOPuWnjUYD4XAYyWQS9Xpd5Mi8Z71eH4pj1GCX64CAotVqyXOowa05Hvo5Z2ZFE/TqNco+sn7i5uYmAEiCD70G9fOj722uV1OuqseOgPT+/ftIpVL4zd/8Tbz55pv40z/9U9y4cQO//uu/jmw2K7GbGsyQ0ScY4sYR51+vPYJiPpMsu6HXLOWOWurIeTRltTpTKeeAElsNvDS7p9c0GWqXyzW0eaLfEXr+NWgHILHHfJ7088iagel0GoPBAKVSScq56GLnXHfsD5k59oXv/EKhIIz2i7KXC8DBjoGzzTbbbLPty63ZbCKZTKLT6TyTFdLlcmFychKTk5OSJGRrawvpdBqZTAadTkcC4SkD63a7UkibUjDu7tdqtaGaZKVSCSMjI6jVahJ/xlTa7XYbExMT8Pv9kgFxfHwc/X5fYl8ICAFgdHQUlUoFnU4HsVhM/mbJADq10WgUjUYDu7u7AJ46pj6fD5FIRHbD6bxoNueVV16B1+vF1taWlEDQTAudJu2gatOMDk0709r51ewYz9HnaofOyvL5PBKJBA4ODpDP53HlyhWsrq4OsRGmXE6zcC7XceHz5eVl7O7uIpvNCtNAJ5NgjrX7NGDQcWMm62Im49B9smqLHhcepyWnmkEz2UwNHDSbynnTLImWm2lWjdfT6edNNsfv98txOpZPbwaYc60ZUybfCQaDGBsbE4kcQRyfC15HA0BzDej09lbjqUGv1+tFJBIRxk7PgcnQco3XajXcunUL5XJZ5Io6A6UpTeW8m+ypKf/k5+ZYtVotXL16FdPT01haWsK5c+ewtraG1dVVnD17VsAaZY/muOn7apaVY8Xx4rqlhJtrw+PxyFxS5khAxlhQjrUGjjqLpV5HZPuYOZPjxWytXHdsh44x45rVa5hrsNPpSMInKiIIZhuNhkjSmeBoc3NziFHXygKOP5NKWW1YUeapQfmLsJcLwD3npW6bbbbZZpttNGYa046Ez+dDLBbD2NgYZmdn4XQeZ6U8OjrC7u4uisWiBO03Gg3JPgdA5Ivc5ebuN3ecCRLp8HE3N5FIiLRocXERgUAA1WoV3W4XsVgMPp9PpJqshXR0dCTAq1wuw+l0Ynx8HB6PBwcHB+K0DAYDhMNhhMNhcZYpo2y1WhI/Ajyty6QdLQCYmprCzMyMOO3FYlHAoxl3ZRr/P9YsGs/Tu/XaUSPg0EDCZPbM/+c1yMnlckgmk/B4PGg2m7h+/TreeustKdRtxbRo2SHXwcLCAlZWVlCv1yVOUDMRBCqaedNgzYrJ0rv82nTSE5Ot0sDFBLz6bz13HEcNWOig8jjtlJpjrOOyzHuxXQSqvJYJegj6uNatYh17vZ6Mr5bQmSUbKJM0WUsNiMkOMUGQyappEOh0OhGJRIQ9tQL0Zl8ajQbW1tZw7do1kZHqNpjjoK+jTW9GaNbaBOGcr1KphF/+8peIx+O4fPkydnd3ce3aNfzO7/wOtre3kc1mhYXj/BJ4aRaUY6Jr7ekkLBxTAhMyW0zWUavVnimJwXZTEk5Qp5k0HQNJEKjXm2bfADzTLr2u+D3XE8eIpVlM5QCTSjGemf3Qdfg0S8v2aJDJZ5Zr8Hlg/Ou2F5c+5W/IbPhmm2222Wbbl1mxWEQ2m5VEFT6fD+Pj45iZmcH09LRkpdzc3MTDhw9xeHiIer2OWq2Gfr+PSCSCeDwuMVBaLsTdeeDYwdPFoHu9nsguuascCoWwuroKj8cjjghrzLVaLak7NxgMUCgUBNiVSiVEIhFMTEyg3+9LG5mEhM4UmcJyuSxxLGQ6dNwWMBzzQ+eF2SzJ2J1UOFo7vsBwqnyye/yboEAX5DalZc9jRrTp45g9ksC0VqvhF7/4Bfb395/JTqcdd83UOJ3HGSlXV1cxOzsr0kk9VkygwAylBHMEpfqfBgkayJlASMvJzKyBmrXTc8N+aNMxatrxZV81uDLZUZPlM+eNY6XjoPiZls1pMMP+6P7zPsyWyoyfekx5PtlPc/2YY0sG21yPeu04HMcyWdZm1HI/vY503zWAI2NIUK8BnJ4Hk0nVfTfXLk3HlvK+vV4PW1tb+OlPf4pIJIJvfOMb2N3dxZ07d3D+/PmhsSEA5sYMx4RjxOdeZ3TkP7JZABAIBBAKhQTwkV0jyORGg5aWci1Qrqnlxvr6+pnjvblmdSwev9dAUa9d4HjTjCw4FQTMFsx7k1kk6Ca72Gg0JOGJlpJ2Oh1Uq1VRR7RaLUkCpetQ8h3wIkmjl4yBg43gbLPNNtts+1IjcHC73Ugmk/JvZGQER0dHyOfzSKfTyOfzQ//JUz7DmmtMW09ZHZ0TZnxkljj+Z9/tdsWp8Hq9mJ2dRSQSQbFYRLvdRjwel3Pb7Tai0Sj8fr84uTMzM8jlcqhUKgIuqtWqOC9k+sj69Xo9rKysSHwIASTBmNPpRKPReGY3mU5Yp9NBoVAQFtDK6KBpJ/kk0zIzHmslLdSxZ4B1GnjtJOt5dbvdCIVCUpT79u3b+Oyzz4YKe+vdd15LA8+RkRHMzMzg4sWLAtzpSBLwa6ChWQkrlk3fi8CZppkGK+bRlP+Z42BlJoij06mZVt7PZFLN+/EzE8hp5tJqPvlPy2051hqQcWyj0agk4SBYIPOhS0uYTKdmylgbzcrYtlgsJuybbr8ea7aTTv3u7i6uX78ubDKfGQ1qTemsydZYtctc7xrk6CQae3t7ODw8xLlz5/DgwQNcu3YN586dw9zcHB49eiRxiQROZNE5npqhdDgc8v7S7KF+P5HVI0OqwRTXF40bF3oOtMqAoE+DfOCpXJIAme9Tfq9BIudVS4Y53swESnau0WjIRhDBHPA0gyU3Gagq4NixJAivZ8b16vXC6570Tvw67OUCcHDY+M0222yzzbYvNf5HPTs7i9HRUYkDazabUqi3XC6L08NMhm63W7Ka0RFgKnXufAcCAWQyGbRaLYTD4aGCsqOjo5KUZG5uDtVqFYVCAQ6HA8lkEm63G6VSCcBxfFs0GsWTJ0/g8/kwPT2NfD4PAFhYWEC/3x8CFiz4nUwmUalUEAgEMDc3h0wmg0ePHgmAozPf6/UE/Gnnk05Lu91GuVwG8DRzJvB0Z1w75DQNLE5yWgE846jqedHfacmVabqt2rEsFosIh8MyL9VqFT//+c+xuroq2SL1tc0+sB2BQACnTp1CoVDAo0ePhDl1uZ6mWddZIk0Gx6zrxuvSoSTA0o4ij9FjpxlMjr2Z+p/jqJ1xM/ZNyzKBp3I0neVRgy4rcMMx1kwij9dJJthW/q1lmZTVaaBItlk7zPyO1+W60QyhZiz5GZ9JPZe8XygUwujoqLBvJ4Fg9qfb7aJWq+Hu3bvY2NhAIBAQNknfQ69pc43yO73OzM/N3/X6Jwv+l3/5l/i93/s9XL58GX/2Z3+Gq1ev4q233pKkKlYbRWQL9fxy7nVyIA28GVdHIM0Ml3rtaACu1y1ZO76XGI8WDAbh9/uFydcgmUwXgaAuH8DEO5p11Zs7fCZHRkZQr9eFKeOzyWdcrwG+x9lHvgtrtZrEUDI5DY/VMlO+N3V5gxdhLxeAc1hrjm2zzTbbbLNNWyQSQSqVwvz8PEZGRiR+LZ/PI5fLSXYyj8eDWCwmzq/O6DY9PQ2X6zj7Y71eRygUwmAwkBi1kZERkVz1+32Mj48jEokgFoshGAzi6OgI5XJZJF39/nHWPbfbjUgkglKphHQ6jcnJSYTDYaTTaUm5zgLe4XAYDocD1WoVU1NTQ9I7sk+FQkGcYx2I7/F4hEnQMR4ahDSbTdllJgui4wZN0w7x88CbmRiA9zPBoBmfZHUvDSZ6vR4ODg7w9ttvo1wuY2trC06nE9vb2/jZz36GRCIxlDZcs2Zme51OJ2KxGM6cOYNOp4ONjQ30+/2hLHp6vMy/TZZPS1V1f83zNODRsVsasPI7s838TjvoHFOzdh6ZRq5tzg3BJ9us20tZmgZLZsY/DRb4vOg2c43qvuvnB4AADw1GzT6agJP/2u22yJg1o+Z2uzE2NoZYLDbEevKaGnyS/ep0Oshms7h27RpqtRpSqZSAEsa56vnVAM3q+dDr9iTTQJh/t9ttPHr0CNeuXcNv/dZvYXl5GXfu3MG5c+dw7tw53Lp1C+FwGMBxen7GfOl2cPPAlM+azzIZOx5PAGMCTK4nHdPK9jLTre6Tx+ORNcPzKWlkkiG9BvW7hqwYgZUphfb5fCiXy/L+5LrWrBrZcoI+XofrNRwOo9lsCghkSQMqLvSGBcHfi7SXC8DBVlDaZpttttn25ba0tISpqSk4ncflAQaDATKZDNLp9FBq6ZGRETSbTWHo6vU6ut0uAoEADg4OxKFl4e1msymsW7vdFiePu/8zMzNIp9MSkxUKhRAKhcRZZBHbXC6HdruNhYUFdDodbG5uIpFIwO12o1gsDjnIpVIJTqdTZEaxWAz9fh+5XA4+n0+caO0MBQIBBAIB1Gq1IZCgHWXt5NDhMhkD7RxaAaCTZGMaqOkEDjTNzpgxWppx4vXYDofDIU7Y7OysFOTudrv47LPPsLy8jHg8PhSTpaVRZtyUy+XC6OgoTp8+jWq1ikwmM5QkwwSYPEczUCaLxbYTnGgAZ7IawLNp8PU1CdSsGEQNAvW5HHM931rWZgUKT2KKNFtnSgg162fVH7ZTt0kzbpod1WPE9crr8jyTiTPHPplMYmxsbCgjqQmcCeD4PFYqFdy5cwcPHz4U8MBEQM8D7iZ4M5k3c57051pGq8e11Wrhxo0bOHXqFF599VWsra3ho48+wve+9z08efJEANVgMBhKVhIIBIYkjPoeOq5NM28cTy051sCd1+Ba4LjrYuAEkJRFDgbHNebIbOp4OdaGo2SVbWGb2+023G63ZO0Fnso4uUHm8/nQbDbl3lo6yXbrzQDNKJL983q98v6lYoEsHIEe72v13H2d9nIBOIddRsA222yzzbYvt4WFBZRKJWSzWbRaLWQyGanvxh1dnRWwVquhWq0iGAwiHo/LLrXP55Og+JGREQSDQTQaDQQCgaHd4snJSUxPT2N/fx/ZbBYARDLZbDYxMjIiZQiy2SxCoRBSqZSkvJ6YmBCJEJ2cQqEgsikyfcvLy8jlclIkuVgsPsNy0UmnHNOUqplOGh1C03TWPFPup9khUw5Io+OtwRfbo1kj7WhpJ/QkkOB0OrG2toZ3330X4+PjqNVqcDqdyGaz+PGPf4y5uTl4PB5EIhFxtnUyB96H9/D5fJiZmUGz2cSDBw/Egdf90U67Ts5gxa7pnXw9xvp6+m8N+NhfzWaZpp1SfU89huYcaFmkKe/TII3/rMZJz91J8YU8VreJYKter8Pv9w9lotRrj+uAjj2vpZO+aEZFj3soFML09PSJRd1N9o0bMNvb2/j5z3+ORqMhzz0lejouTDOKVqylHiNtVhscJojXksF8Po8bN27ge9/7Hi5evIjr16+jWCzi3Llz+OSTT4RdZl+YbIXsl5ajut1uBINBGd9msykJkHTcmgY9euOA7dRrUycKImALBoMyDmyHBmf6eeH8cR74md6A4jV6vR5CoZBsXo2MjEhRcQ1EWXeTm1W6/AH76nQ6ZQONcnHNFBIEcsNH14d7UfaSATgHBjYHZ5ttttlm25fY3t6eFOMulUrIZDKo1WoIBALwer0IBAKSgppOUDgclhgTynmYPY9OAYtss/B1LBYT539jYwONRkOuT2Do9/sxNjYm7WEM261btxCLxRCNRiX+jAkUut0u4vE4HA4HisUiJiYm4Ha78fjxYzSbTZw/fx6VSgXZbFZ2sOkYkUEyYzj0LrUGYVo+pcGYKWEDnu+Q8neTCbKKQ6MTSlBlBfw04DRZsGq1inq9joWFBezs7Aij+uTJE3zwwQdSA4x9oiOp+66v7fV6MTc3h36/j42NDXF0rRg4YBjc6nvotpsyQI69yZLocdfASING7UyaTB+P08WR9ThqpkcDRCtgqeeQ8UJ0tgnsuLZ0P8g00ejw63kmANCOPdkp9sGce16bIITjoCWkbrcbU1NTSCQSlkW7TfBG5qVSqeCzzz7DgwcPJNsj48l0lkxz3K3seY6+1Xda3qjnqt/v4/Hjx1hfX8fZs2fx8OFD3Lt3D7/7u7+LmzdvDpUT4Hl8fzkcDhkTMxaWgIVmjpMGaeZmjN4E0GypNsajMl6NbJ2WO2qwxHHhfHKjjHXeuJ7I8jFxiY5J5fOkEwaZ69zhcAyVMSEw48YR28RzdeZJzca9CHupygjYhbxts80222z7KlapVNBqtVAsFnF4eIhmsymZxZjNkUW++R83pTkul0viJUZGRsQ5oSPAGJCJiQksLy+jXC5LfTafz4dAICCOSCKRQDKZxN7eHorFIiKRCI6OjlCtVrG6uorR0VHJJql3rsPhMAaDARqNBmZmZhAKhbC/vw+Hw4EzZ84gk8lge3sbpVJJdq6Z2CAcDktMnA7Op8NuMgB0Uui0m1I5Ok7ayX+ew0rHSN9Tn6OBE51083raibI6ZjAY4PHjxxLnqJmDX/ziF/jlL3+JTCYjki+Oq2ZzzDaFw2GcOnUKS0tLQ1kM+b1msDQzpJkaDfDoQOvzTdmlaVriR2eTcUSaPTKd1H6/j2KxiHQ6Lf10OocTqmi5ngZlppSP/dTOLD/TjrAGDNoh1n02WSx+puus6WQxwDG4YEyUXkdkjbQMlOz19PT0M2UD9FrT4I2ZDB8/foyf//znqNfrCAQCQyn4zRplepy0mcykXrfPk9+xPXpM+Vm5XMYnn3wCp9OJ06dPY29vDwBw+fJlkS/y3mSLGo2G/M1557OrQZPX65USAjyOrJRui64zB0DGhu9DnqtlhkwopGWJjCWlbFLHvWnWjtflZhLBHd/juk2NRgPVahXtdluu5Xa7RRXBMgnBYFBkoSz1orOYshA4wS3fvyzy3Wg0hspWfN32UjFwcNgxcLbZZptttn25VSoVZDIZiSdjYoNGoyHOjZZCsiRAPB6X3d5oNCq7wozDoGN7+vRpBINBbG1tIZfLwe/3Ix6Pi9zS5TpOZ95ut3FwcIBEIgGXy4X19XWMjY1hZWVlCNTRkQiHwxgbG8PR0RHcbjdWVlawvb2N/f19jI6OIhQKIZ1Oi6RIS8pcLtdQNjgWq9WgDRiWfem/tRMPPN3Ft9qVBzAktdPOnpVjakrP9L1NporOHe9hJV1zOBxIp9Pw+/3i5FarVQDHaev/8i//UsowpFIpOZ9OIvtn9j0YDGJmZgYOhwPb29toNBrSPwIDfY5uH/Cs7FQDWJp23q3mQY+pBmhausbvdRbPYDAozq4eVy2P1GyrZtr0fUx2j0yEHgM6xuyrlkuaa8xKBqpZWZ0d0YzD1Pc0ywK4XC4kEgnMzMwgGAxaxiSaY05AnE6n8atf/Qrb29sSQ0bHndfW9+YYW82Xlony85PMvIZ+NnS/0+k07ty5g+XlZdy4cQNXr17F22+/jVu3bqFcLg89kyYTRaBL4KaBumawCJR9Pt9QaQfNtgEYWo88T9dG5DuPoEcDMgCyAcG5ZoZIzrleo/o5JXvW7/elLiNBGPCUjfX7/UMxdk7ncYZZAjO+79k+k3njeWwz3/k+n++ZTKRfp71kDJyN4GyzzTbbbPtyy2azyOVyCAaDSKVSsrPtdDpRq9XQaDQQDAYRCATEgaCDEI1GMT4+Lo6Lx+OB3++H3+/H6OgoLl26hF6vh42NDZFRRqNRNJtNtFotpFIpjI2NIZvNot/vY2lpCa1WC0dHR7hw4QLOnTuHR48eoVwuIxKJCNjy+/1otVp49OgR3G43Jicn8eDBAzQaDbz66qtwu93ydzAYRDqdHtqx9vl84oxxp1k7/SYTZppm5jRTox1S7fybDhAwLLvSPwHrWm+6LaZUzXSOCZ55XLvdxt27d7G6uopUKjUEFI6OjvCDH/wA9+/fR7lcFudcZ9y0YlRcLhei0Sjm5uawsLCASCQyxD5pR5jnmzF8NA1+yUCYEtaTJK06w6QJjDhGvB6ZCI/HI/FIBGZkHgn0eW0632bdOP5kjJHJkpqgUK8xOvemTFQnlDGZNH1dDTBMtpKOv57jeDyOU6dOIRaLPTOXGkxp9g04Bvg3btzAhx9+CIfDgUgkImu51+sJeNDzbQVQ9ZrmPU1wb5q5SQI8BZf8nu+DO3fuoFAoYG5uDr/4xS/g8/mwvLw89GwyS6hO3KJZTV6biZhMoKizP5L1MtcEnwuuG44FgRbHlFJOnb2SSgQmiOI99Xp0Op2o1+sCTDkPPp8PwWBQ7k/2kJtUnCOCOo4DgKHYwH6/L0XB9ZiQGWRpmWKxiFqthmazOfQMvSh7uQCcA3YMnG222WabbV9qpVIJ4+PjiMViQ8keGo2GOMmUcmkp0vT0tMSeEVzR8Zifn8fk5CT29/exu7uLfr8v9chqtRo6nY7cb39/H9FoFMFgEA8fPkSv18Pbb7+NYDCIzz//XJwpZj2cmpoSGdz8/DycTieuX78OABgbG8P6+jr29/cFjO7s7AhTSOkPnepSqTQkhdQOtXbetOMNDDu9NJMx4HmaPbJi2zSDwe+smAr92UnAko6amRVuMBhga2sLzWYTk5OTQ+cMBgNsbGzgJz/5CXZ2dmR+COTIIpkySTrA4XAY09PTmJ2dRSgUesY5N8dVt1XLHc0+6wx5JkA1WTM9f/p4DQx1283i3ppN4+d0msmcNJtNYUy0jE6DSJ7L+dWAyGROyeKYwE+PD9cM/9bgSzNJek7YZq6rWCyG+fl5ed5M2SSvZUonmfH1L//yL5FOp8WpJ/Omx9CUxXL8TQmy/k7PqV7j/N1M4MHPOSaUGbbbbWQyGWxubuKVV15Bv9/H1atX8c4770j7KH9k2Qu90TEYDOR7AlLgKRtGkMdMll6vdyjekZ9TKut2uyVhCUFQu92WTSvej+UNGMerpbLAcQkELWdmfTdKcHk9DfBCoZC8w/UmhJZwVioVKTOgN0tCoZC8z7kGON4ej0eSpLCt7Avn/0UCuJdKQmnHwNlmm2222fZVbHJyUtiaarUqEjOybARxfr8f1WoVHo8HS0tLqNfrEgdXLBbRbrcRj8exurqKTqeDg4MDyU7JWLN6vQ6Px4NoNIp6vY5isYhQKIRKpYLDw0Osrq5iYmIC6+vrqNVqWF1dRaFQwN7eHsbHxxGNRpHP59FsNhGPx/Hw4UMMBgPMzMygXq/jwYMHUqC4VCpJFjbToWR/tTSOpo/TZuVc83gTvJm79/zMyimnk2Qms2A7NKhjHBn7xM/Ne+ssjfy+WCxic3MTp0+fxv3791EsFqUN3W4Xn376KSKRCL73ve9hcXERwWBQnHLt3FpJ9xgHNzIygoODA5RKpWdArpkiXoMdOq/muJiySFPWyPawv5o14Pl6XGkmg8W2kFHp9XpoNpsS80S20eFwIBgMinNLEENnn9fmvcxEGVasE6Wd/PukTKN6venEKOZ9uZZ7vR7i8TjOnDljWTJAX88Eb61WCzs7O/jJT36CW7duwefzIZVKCTPP/uvU+tpOej6smGV93EnMnDl/5rPV6/Xw6NEjvPbaa5ibm8NHH32Eixcv4syZM7h27ZqsTzKpHHPGfLJkCe9BkMpzNNDXmRc1wNKbMHxOOX+tVgvVahUulwt+v182QxhvxjWqASTXtS4BoJOw8F78jGuZbB6vxyRRvE6lUhHJOI9nEpWZmRl0Oh3s7OzIMVo+2mw2JaZOg1dzfr5ue7kAnK2gtM0222yz7SsY/5MuFouoVCoIBAKIRqOo1WoAgFQqJdnZwuEwJiYmxIljGQCXy4WlpSXMzMxIJst+/7gOGxObAEAikYDT6UQ+n0cgEMDs7Cw2Nzfh8Xjw+uuvo1gs4vr16wgEApifn8eTJ0+QzWYxPT0Nj8eDbDYrDtTe3h4ikQimpqbw5MkTFItFTE5OYmRkBNlsFoPBQBg/LWNkAgc6adpJJkNHM3fqgWfZNyvHxQq8aekknVPttPK+GsTo363uaYISHT9jnjcYDPDw4UP8k3/yT3D27Fl8+umnQ+xjr9fDhx9+KLIrzdRRYqVjdXRbXC6X1PbzeDyS2ZTtYf81kLZi5/RnZkZO7aQSqLhcLkmlrtk47eCaTBXvo2uF6THUawEYzmrZ7XYlBbvuO40g1WT02EdmADVlk7wWHWOmgCdQMI21uHhP3V4Ch3g8jtOnT2NyclLWvDkGPE+Dt3a7jUKhgCtXruCTTz7BYDDA5OSksF26H+y/yaix7abxe64Hc+71fJiA1wR45iZJpVLBgwcPMD09jY2NDWxsbODVV1/F559/LhtNZL8AyGd8t+lYRd0GAj7G9lIyqzMykvnk86HBPQG+ziCr1ypjjbm+tCSY61GXNGi1WsIm8h1tSkt5LOWgHDPK25nAR8fusvzK2NgYJiYm0G63UalUZMz1c6CfGQJA8xn7Ou3lAnB4Vjtsm2222Wabbab5fD7k83mJUQsEAqjX6/B6vUgmk+h2u1LUFQAymYykFucO7+LiIkZGRnB0dIRSqQS32y3JSMhkJJNJFAoFNJtNnDt3Dm63G/fv3xf5XaFQQLFYxMWLF+Hz+XDz5k3s7+/j1KlTqFQq6Pf7SCaTODw8RK/Xw6lTp+B0OrG1tQUAmJ6eltpwumAvpT46Zop/6yxv2rSDabIF+ljTWbc6VjNPmk3RkjEttdSOnmbgeD8dH3ZSuwgMTOd/Z2cH9+7dw7lz57C+vo5MJiPXBY7jc/7Lf/kv8Hq9+I3f+A3Mzs4OObU+n0+YHDql+p6BQABTU1PweDw4ODiQdWXFuOg2U4JlMlNsm/m5lm1ph9UcLz3OGohrCSPnz0wS4ff7h9aJBhdW64VgRs+fBjJkVE5aCwAEAGhQRLCmwQr7olPg62vH43EsLi5ifHxcwJtuvwbSJngrlUq4evUq/uRP/gT7+/uYnZ3FxMQEHj9+DADPyEl5PZ04xZS1WjGret2d5K9ascxmCn89f0+ePMHMzAyi0Sjef/99/Kt/9a+wsLCAR48eIRwOy3PN50KzuJrVpOSQ7JbP5xtiZbmBRcZXs2+8hpZs65gzvhM47jr5iJkMSYMysp0ej0eyVnq93mdqs2l2mW0j89hutxEIBBCJRCSREa9VLBbx6NEjpNPpIbDK6/GZYJwg2Tdu7LzIJCYvF4CzGTjbbLPNNtu+gh0eHqLf72NqagqdTkeyjzFRCBmOYrEoO8Ferxc+nw/RaBTT09MYDAZIp9OSkdLr9YpTEY/HMRgMsLe3B4fDgZmZGRweHqJYLArw29jYQCgUkmLT169fR6VSQTgcxtHRkdzr8ePH8Pl8OHPmDKrVKra2thAKhdDtdpHL5RCLxcQZ9fl82N/fF0dJMzZerxeNRkOcHs3gAMOp462cdg0ozN9NsGJKv3RiAw0seA/t2JuSN7fbPVQbymSQ9D2tMhr2+31cu3YNv/u7v4vx8XFhKnWbq9UqfvzjH6Pf7+O3fuu3MDk5OdQ/xhFRvqUZIIfDIdks6WCm02mJp2QbdDs1M8nrmGyCdvrNcdXz8zxwzWtqYGRKVPkd14x2ovV86euw/7rNGizqODoyWM/L1KgBno6d05I8Xa9L348xb3NzcxgdHR2S65mxZCbz1ul0UK1Wce/ePfz5n/85dnZ24Pf7ce7cOVQqlSHQw80QM55OM9X6PrqvVmtWP4Mm0DTNXC/686OjI9y9exfxeBxbW1t48uQJXn31Vdy7d08Amk5ko58RDYC48WMCMrJvPp8PACRzo1nDjSCTIE9fl/JGvpN0DCVBHuddlzjR9yITrGvdca0zUzDHTksgWUaB7JzexOCGT7FYlIRVmnlmv4PBoKgqms3mM8D1RdjLBeBgx8DZZpttttn25RaJRBAIBITlcrlcUqeNMh1KZMbHxwEc/4fOxCPFYlEcolQqBeA4MUo0GkUymUSpVMLR0RECgQA8Hg82Nzfh8/lw9uxZ5PN5PH78GL1eT5iGRqMhNeEKhYKktt/b28Ps7CwWFxdx9+5d1Ot1hMNhkUgmk0lxOlgXaX9/H8DTWCQ6ikwcoB1Gq119AM8AAF03it9rOwm8kY3hZ7wfd9xN4GYFHOnQmffQTBbnkI6jCTDS6TQePnyI1157DUdHR8LC6fvk83n86Ec/AgC8++67mJubk+/IxBEY6NpxmklKJpPwer0IBoM4ODgQEKBZKS2nM8dLAyYtvdOgwQRv5nxq9s4KOLD92pEnCKUDT+dZxx2aDKlm7whu9ZySAQsEAkPjqM1sO/tpghoyH1pG2Ov14Pf7kUwmJbkQGTKrTQgN3jh/pVIJ9+/fxx/90R/h1q1bcLlcuHDhAlKpFDY3N4fWIAGJBo7mRgXH8qTnQa9jLX3VpufQHCsAAkLYn3a7jY2NDSwtLcHpdOLq1av4x//4HyMUCg3Nn06Pr9lLgqzBYCBMs451q9frsgnEEiRMasI50fXQzNIDPIZgOBAIyEaBKeMeDJ7Gb/IYqiECgYDEKvLdyTGv1+tDyUv0M0nGbjAYDPWLa54y7kqlImwf8BRQNptNuU8gEBhafy+ykPdLBeBgsWthm2222WabbaZ5PB6Runk8HmHRAEh8RjKZhM/nQ7VaFbDkcDgk62QgEBDntFqtIhgMYnZ2FtlsFplMBmNjYygWiyiVSlhZWUEikcDm5iby+TzC4TD29vYkzmRlZQXlchmFQgHJZBK1Wg3dbhfLy8sIBAK4ffu2FP7OZrPi1HS7XSQSCVQqFal79fDhQ3HC2FcNajRQMuPWrMCFKdszTTvIGgACeAa0aBbEik3gTzMWzGSATKaGn2lJm5Y69no93L9/H6dPn8alS5fwq1/9Smq4Ud7lcDhQq9Xw/vvvAwB+8zd/E5OTkwgGg+Iwk92hA28lqWTmQo/Hg0wmIwloTGbRBF/m2Gnn2mSSrGR2GrTRNIjTGfZMhoiOLRkHsnXAMXjh+Orj9T3YRhOsajCl26lBvJ5jfQxjtGh0zHm8z+fDxMQEpqamEIlEhhJvmOCNGweca252PHjwAH/6p3+KGzduoNvt4tSpU3jllVeQzWZRqVQEUDANvc6gyT7reD49Tya7as69CezM3/UGhTm/+nkGjt9ZjUYDXq8X29vbKBaLuHTpEh4+fChgTUsVud51kh6dzIbrWveJUkSOBceG9TPNjKX6+QQgskqOId9hXq8X5XJ5SG7LzSddYJzrTo+L3oTSgEq/v/g5mbpAICDAV28ImMXjORY6rs98D5rvz6/TXioAxyG12tGwzTbbbLPNNlo2m4XD4ZBYGf6nDhwnMAkGgyiXy1IrLpFISPyE3+8XiSXllfF4HKFQCPfv30e/30cwGMTh4SHC4TAuXryIer2Ojz76SOrOHRwcYGRkBBMTE4hGozg4OEC/30ckEkG5XEYwGBRH8tGjR/D7/QgEAsjn8xKXxzTgzJKZSqVw//59AMeOc7PZlHpJ3IknINDB+cCzAMuKuTHllTp2ho7x8/7/pZyLTpN5bc3g0Dlk20wgp4/TIM7KWWVbs9ksrly5gt/4jd/AwcEB7t27NyQxBI4dtmKxiB/+8Ieo1+v41re+hYWFBYTDYXEW/X6/SCWZGMZ0LMm8hkIhhMNhZLNZSXBismVWjJseb/bbysk3QQH7Y5YhYLs0AOH5zWZTHHMyMDqDpE7UYKaO1+yNnh/NuJCh0wlKOLd6M4FgwUwEwmM1CIrFYpiensbY2JgU6baKr9MsJeObyLzduXMHf/RHf4QbN26g0+kgEongnXfeQSQSwY0bN0Sy2W635TnScYi673pjwZwnc4NDzyX7bAJ5Pfc09k+vNY5Lr9dDoVDA5OQkdnd38f777+ONN96QjLVW8YQEJJwTq9hYxsLpZ50xbABk80uDPf6tN2R4TqVSQalUQjwel3kNhUIYDAYol8tDDD83QXRcL0t9UPrI+1KiaTKMlL0Cx2CQzCHLhfBYxvXxHjyfx+hkLdwoYpzdi7KXCsDZZpttttlm21cxZjVrt9sIBoPyc3Z2Fr1eD0dHR+h2uxLXVCwW0e/3JZje6XSK5HJubg4HBwdYX1/H3Nwc2u02njx5gvn5eSwuLmJtbU1S2TPzZTgcxqlTp1AoFJDL5RAOh1GpVFAsFjE9PY3x8XFsbW1JFkwycsFgUGSU3W4X+Xxeikk/efIEe3t74ojQ+dY73tqJJHtgxnNZsXImYOBnfr8fKysrGB0dxZUrVyRDnDY6f/qnBmw0/ZlOFGECR5PR0W2khMpM+8++Pn78GKurqzh//jy2t7eHigNr4FSr1fCzn/0M9Xod3/3udzE3N4dYLCa7/X6/X5xBAkcmZqC53W7E43H4fD6EQiFh48h00YHl+JvxexoM6LT7dLI1yKXpY0yJpp5zPYeM3dSxRjQ9xpqp0BkhCQx5fy1hczqdkmSHTq927HW/OWcE+jq7IdvtdDqRSCQwPj6ORCIhgFNLL3mOPlczNJVKBWtra/jhD3+Ia9euiRR6dXUVMzMz2Nvbk4yyOvbOTJuv1x77Y7KrHEM93qZkWX9vMqi8J8GWjiXVLDQAefYcDgfu3buH119/HcCxtDscDg+xqBrQcm1xDswNAcoG+T0TiOi5J5iirJHvGiYR4TV1aYFwOIx+v4/d3V2RNWrwzvnn88UxY5spbdTzQYklmTa9AcHx5TpjSYXB4GlNPIJPKjM0gCRgI6vMtfei7KUCcFzzg4GtprTNNttss+1kGwyOi7smEgkMBgOMjY0hkUhIOYBAIICZmRm0223U63X0esf1pbxeL+r1Our1OpLJpGSqc7lceOedd7C/v4/t7W2cP38eExMTuHnzJmq1GpaXl2X3ORKJIBwO49GjRxgZGUEsFkM+nwcALC4uwufzYW1tDcFgED6fT8ockCVkmQC/349YLIZyuYxqtSqOht/vl9g+nT1RO8La6eJ40MkyJZMEeVpqSEeSiQXGx8eH4resHBvTYTeBopVzr2VommUzGQoNaLjDrgEZj2k2m7h27Rp+7dd+DUtLS7h7966wqKZVq1V8+OGHqFar+Ht/7+/h7NmziMViAJ6CDa/XO5SwQbNxbDPrCwaDQanpVyqVBGRzTOhYM8kD09Zrp1+PvWYj9bgAGIoP4vlazqjbR5Bgsqh0WrVM0OVyIRgMDrFQer41AGH7GYfE2CktndQAhCwLAaUG+sz8Ojo6imQyiXA4PBTjSdMgTseJEUgUi0Wsra3hBz/4AT755BNhVxKJBJaWltDpdLC9vY1GoyFj0mw2ZSPEvBfvY653DYL0+jVBnvm7nheOt76Ovpce98FggHa7jVqthsnJSezv7+Phw4dYXl7G1atXJQkP+9HpdARYcx45Tvo9wH/M0FitVoXZ1zJJAr9GozEEknq9nkguqQRotVqS2ZLybp3hsdVqicqA/dbPmMNxXEuu0+mg2WxK5lSdHIUgksdwXBnX7PP55LNms4lGoyEAmRJSbm7oTKd6M0wD3xdhLxeA+0JEaecxsc0222yz7Xnm8XiQSCQQCAQwNjaGSCSCfD6PRqOB0dFRRCIRAW4jIyNIJpNwuVxS0HV+fh4jIyN49OgRUqkUAoEArl27hl6vh2984xuoVqv44IMPRH65t7cHl8uFWCyGSqWCvb09BINBhEIhlEolhEIhpFIplEolZLNZzMzMCCPHmnQEljqb3OHhobASzJj5O7/zO/iTP/kT+Hw+KeZrJg2gw2XGu5nMgZa0aaeef3e7XTx69AgbGxvPsGIma0bTwMAEWfra/JygQO+062trR4rSvucByL29Pdy5cwezs7M4OjqSjKRsm+5jt9vFzZs3Ua1W0e12cfHiRcRiMWFyut2uxMXRyaRMj8wP2x4OhyWjXSgUQi6XQ61Wk7EwnXYz5otmxv6Y7JPVPOrxNudT99dkO9kekyEymSItA9RtbDabIjUkcNDyVs0OApAkGZQo02lPJpMYGxuTbK+mFJRzx59mvBvBG7NNfvLJJwLyPR4PxsfHEY/HkcvlhMVmexkXqNeUZjL1umGbzTG0autJbJ0ptTSllPoaJuNYq9UQj8fhcDiwubmJb3/72/joo4+EleLGjU7Co9eofsbNODCCq3q9LtLJSqUyNB58FjWLS6aa762JiQkBXQRU4XAYwWAQuVxONlR4PGN9yXoRvPf7fZGeE5iSgWc/dCIec8OIUvh6vY5GozG0ocIx5UYCn8VwOCzv2kajMVQ/8+u2lwvACQM3wNOIONtss80222wbNsaiTU5Oot1uY3t7GyMjIyJ5K5fLACAFvpvNJmq1GqLRqBTirlQqmJubQ7lcxtbWFsbHx5FMJrG7uysgrNlsYmNjA7FYDIlEAoeHhwCApaUlNJtNVCoVTE5Owu12Y319HW63G8FgUABfOBxGqVQSYNDv95FIJNBoNFAulyV5Q7PZlKQsDx48EPZDpw9nCQE6M1aJKE4CCzxGswjaWef3+m/NHAEYAln63prh4Xn8aaae5+8jIyNDdaD4HXfN+b0JUoHjWJj19XX4/X4sLS2hXq9LEgW2n30k2Hn8+DH++I//GLFYDJFIRO6jyzfQQaYjSedRSw09Hg/i8TgCgQBisRhKpRLy+bwwpqaTyfHS7BrHRNf2A55mzdMsq45pIqDRQITOrZ57Xl/PqTkH5tzR+Tdrjfn9fvnc6XQil8vB7/dLHJGeN91GAJJ5kOCKdQ71WrRaMxwDyv1arRZyuRxu376N//yf/zNu3rw55JiHQiEsLy/D6/Xi888/l+fN4XiasIibB89jXJ4HyMwxtHre+LspczSlx1Z9J1gpFAqyDra3tzEYDDA7OysJWZiJlmubDKRZDkAzfnzvtNttSUTi8/nQbDbR6XSE7eVmD9ccZYjBYFASnVDu3e/3ZWy9Xi8cDodspnFjxGQlOacOhwOJREIkjwSjbrd7KIMk26/LDmgGuN/vS+3OVquFSqUibCvv53a7EY1G4XQ6kU6nhX1kjGur1TpxPfxN28sF4L74aTNwttlmm222Pc8WFxcRj8eRTqdRLBYRi8UQjUbR6XTE2YnFYgiFQigWi2i325ibm0MgEMDNmzfh9XoxMTGBg4MDAMClS5cQDAZx48YNjIyM4NKlS1hbW0OpVJJEJdlsFpFIBC6XSxzZs2fPotls4tGjRyKtzGQyiEQi4nwwDsPpdIo8qtVqYXR0FACQy+UQjUbRaDTg8Xiwt7eHbrc7VNeI0kcNBEypJPBssgzT4dSfWbED2vnjvfROvnaEzcQKGuhQcqfboeV+GgAOBgNx3ujkcUeezqyW7TkcxxkOd3Z2cPr0aczOzuLJkydSY4pOs+lgl0olfPDBB9jd3cXCwgKmpqYQjUblnkx0QYeYIIosjpbHUT4WDAYRiUQkWykZXg20dTIGzZZqwGzFomomh2PLudBglc6qBkcmACETbV5fM3scb8ZHtVothEIhAJCyF36/X5KmcP1p2SavE4/HkUql5Bkkq2KCF86/BhyaMWo0Gkin07hx4wb+/M//HLdv3xYwyULTU1NTWFxcxP7+Pvb29uS6/f5x8W5uCFgxYXpDg/2xYpPNZ8WKneOGhf6c7dBzrJ9Z3p9zyJqWfH7W1tYwPT0t9Sj12OgxY1wjny3dPq5fsmVMeEPgZD4rOqOlmTRJM6LAMQvGxEHtdlvmWgMxjqnetKnVaigWi0OFvrXMkhsnXI8ExQRcGnRy3HWtt2q1KrJ0bqqVy2XU63Xs7u4KiD2JHf067OUCcCoGzjbbbLPNNttOslAohHQ6jW63i4mJCQQCAdTrdYnNiMfjACBFs8+dO4dsNouNjQ1MTk4K0IvFYlhZWcHh4SHu3LmD6elpRKNR3Lt3D6VSCePj42i32zg6OkIsFpPCwRMTE4hEIshms8hms0gmk2g0GqhWqyLR06DE7/cjlUphb28PnU4HExMT4vT4fD6k02kcHR3B7XajXC4PFRymY0fToMmKUdOmnTx9zkngTcvjeA6dPF5HX0uzQTo1eb/fl+QyZInYVg00TONxjFXU7dXnDAYD5HI57O7uYmZmBr1eD48ePZLvTHnnYDBAJpPB48ePZU382q/9Gs6cOSOZEOmYUppF548SVmYz5PWcTqcAuXA4jGQyiXK5jHK5LDFybDOdZB2vZgJxtteKeTMlklwbGiTqOdUZQwFIFklar9cTKaN23AeDgTAooVBIAIHf75c2sUaYZpboeIfDYQFugUBAQMXz1ifHgv8IIFj0/uOPP8b777+P3d1dGSdmFYzFYjh16hSazSbW19eHGLdqtfoMsDRlrprhNde1bvPzwJu5Lr8qKDDXNNtAoOVwOHD16lW89957SKfTIqfmuV6vVxKB6E0PrjvODxk43ofn8G8NBtkOLWNkzBvwdAOh3+8LAOLmQr1el2RSjLNkXCnfA1wr9XpdxpgJhbrdrswfpbiMldMlJviOd7vd8m7p9XqS6ZeSzlwuJ+wx1Q1aWs1kLC/KXjIAxxg4G8HZZpttttl2su3t7SEQCGB+fh6tVgulUgmdTgehUAjT09MolUrY3NzEwsICJicnkU6nUSqVcPHiRRQKBVSrVZw6dQrRaBT3799HsVjEq6++ikqlgo8//hh+vx+jo6PiUMTjcZTLZdRqNUxNTaFWq+Hg4ABOpxOpVArdbhfhcBi9Xg/VahWBQEAkXKOjo3C5XMjn81KrrlgsIpFIoFarIZ1Oi4NMp4dOCJ1Z7Whrpxd4ysJo59H8zEqyRWDA62rZEk0zByYo0uyNjr0hqGD8FPsDPI1x04WDtQNKdiIYDAqQsDKek8/nEYvFMDk5iWKxiGw2K9c2x6fX62F9fR3BYBAOhwPpdBqvvfYaLl++jNnZWclSyfpWLDdAwKATJJhAjnFCwWAQ8XgclUpFkt40Gg0B4RoYWEnyTOdfMyH6pwZ4dPbplPf7fUk8we/Zditwq+PqCMLIHJMd0eNJSS/P9fl8CIfDiMfjiEQiAtw00KSZkkTNohBotFotFItFbGxs4Kc//Sl+8YtfIJfLDa0fyl1nZmYQj8exs7ODbDYr9+l2u5LIRG+GaFZNbz7o58YKbFr9bc6X/l2DQg109dzpNmhWTkuSuXZ8Ph9qtZpk3mUfeX3NsLE2HGWQBOYEPMDT+ExKu/nsce2TpWNbNWDnHJAh46YE1zelr5RW8h/nV5evYHZN/a4i28c+mWPFNdJsNmWzh89jKBRCKBQaSvqSz+eHQDw3qk5KfvR12UsF4Gg2A2ebbbbZZtvzjLXeKpUKyuUy3G435ufnkUwmsbOzg0KhgNXVVTgcDty8eRMLCwtSV8nlcuGNN95AtVrFRx99BJ/Ph0uXLuHx48d48uQJxsbGABzXmpubm4PP58P29jZcLheWlpZELqcdfkp02u02JiYmsLW1hV6vh9HRUWSzWQwGg6FEKrOzs9jf30ev18Pk5OSQRIq7ySMjIxKYr0GUGXOkgZj+3DTtIGk24quYBnVa7meVZU8zQjoxARk6Srq0U0VnU0snmfXOdG61tVotZLNZrKysYHV1Ff1+H7lcTpxFnqPBZq1WkwQy77//Ph4/fox33nkHFy5ckIQ4dB59Pp+AMw2urRg5OocejweRSAStVgu1Wk1i9Civ1NlDNSOkx5DzqcfDBAgaQJgsHRkQ3kvHEfF+mvXTbAwAKbfB69K5Z9wZAS5lw3SadSH2k0CPybqxbcyseHBwgJs3b+KnP/0pbt++PcQocc04nU5MTEzgrbfeQr1ex/7+vgAbslCaBec4mmaCB5NdM58n3TcNBvQxep2yreZnBD7mdfk+4fEOhwPlchnRaBRbW1tD619LndlWE/TouWVmVP388R58Lrkm6vX6ULZbPsOBQAAul0vUDlyHprSa4w88BZr6Pcb4Oo4dwR8ZO64JxrTp549rkdfkO9LhcKDdbg9tHOn3SiQSgc/nQ71eFwBo9Z78uuylAnAvUIpqm2222Wbb3yFjev5GoyG1zHw+H27fvo12u42FhQWk02mUy2W89tprGAwG+OSTTzA7O4uJiQl8/vnn2N3dxWuvvYZYLIZf/epXqFQqWFpaQq/XQz6fx/z8PAaD42QCiUQCHo8Hu7u7kkClXq8L05ZOp8WBuH37NoLBICYmJgQszM7OSta4VCqFQqEwxKpo5or902yLzgxnJeHSQI5mOnE6TsdKlnjStYFhqaTVsXSu6OxpRo7xVwAElDIebDAYSJIZ3pPObSgUQr1eF2eTwEkDEeBYEnZwcIDp6WlMTU1JwWETxOl+6bIK9+/fx8HBAR49eoS33noLy8vLSCQSQ7JKr9c7VDdOAyvWEkI0BAABAABJREFUj9MxgARyoVAI7XYbqVQK1WoVtVpN/lFaxj41Gg0AkBTsmnXQLKeeTy2fNWMLyZ7pMdWMmMnOcr647rheeQ3W5gqFQohEIlImQ9dyM9eNNr35oIGb0+lEs9lEsVjE1tYWPvzwQ/z85z/HwcGBAFcNmoBjgLm4uIh6vY6dnR2ps8j712q1IckqP9eMsQnezLV9EnNoMmfaTmJSzTg4vfHBsdOyxkajIc/p+vo6FhcXpUQD2U9uHjDZj2bCmJhHjxnbR/ZMb4oQjHEN8XcymC6XS8AwgXI4HBbQSGkl15pmB9kubsrwbw20tbSaIJZST447waKOAWTb9TuSUkmOle5TrVYTWSalwC/KXi4AxzICNgNnm2222Wbbc4xsxtTUFGZnZ5HNZrG+vg6fz4eJiQns7OwgFovh0qVLePLkCSqVCs6cOYNarYYPPvgAgUAA7733HjKZDH70ox8hEAhgbm4OhUIBkUgEi4uLODw8RKfTwfLyMnK5HDY3NzEzMwMAInus1WpS96hUKqHZbGJychLdbhc7OzuYmZnB7OysJISoVqvY2dkRKVQ4HEa73RaJmI530847nS7TEaRpJ5x/W7ELJjNykrNNJ9XqPvpzfb4pF/N4PBIjxiLTLpcL2WxWAEW/f5zNjuwcr0fQph1GDWJMJqJarSKTySAWi2F8fFycPLP9+m/e3+l0olAo4Fe/+hUePnyIN998E5cuXcLCwgJisZjE8jEhBgsEa+eWDrVmvOgAE/zxOtz9Z2bUZrMpY1AsFocYHbKlwLDMjn9bAWsCFQ1WdHFuE2BYzTEdXrKJZNn8fr/I0zSLa/VTrz8tldSMINfB3t4erl27hp///Oe4ffv2UPyjvibbdObMGUxMTEgph3K5LNciMNDySc3emW21GhN+pn8nIOSY6f6Z1zU3VPT3el60HJX3ocQ4GAyi3++jUqkIi9hutyVBkq6PRvBCAKU3KXQbTOkvJdpc15RbalA5GDzNDNtsNuV55JjxGTDfM5pRJgDUgJJAi+0ymUO9MWBuTOnkKPzHTSEd68Z7MekJk7c4nU4EAoEhKffXbS8XgGMSEzsGzjbbbLPNtudYv9/HmTNnEI1GsbGxgUqlgsXFReTzeWxubuLVV1+Fx+PBZ599hsnJSZw5cwZra2t48uQJzp07h6WlJTx8+BA3btzAxMSEFNeemZmB2+3GxsYGotEolpaW8OTJE2SzWZw6dQqtVgv7+/sSHxcIBJBMJrG3twefz4fFxUXJdnbhwgVEIhEcHR1hcnIStVoNe3t7cDqPywO4XC5UKhUsLCxgd3cXuVxuiMnRWRDJzmjnEPhqSRNMKZjJrJnOvsnkadOyLV6L53JXPRAIiMNHaR13z1koWEuv6KgSuLJ/IyMj8Pv9UqSXn9GB0+1h7KHH48Hc3Jw4mvrYk0w7vAcHB/iLv/gLPHjwAN/4xjfwyiuvYHJyErFYTCSdZCIIZDSQ00WI6WRqBomOOLP3UVJJNo5sJB3NVqt1YrZPzq02lj/QY6Nli3oe6VhzrunEc74oOWPKde1Qa4Bggja9maAdbI4L57rRaKBYLGJ/fx+//OUv8ctf/lLqgpnATUsnZ2dnMTs7K4ymrj3m8XhQLBZlbbN/VutZb0SYDLgVM6fXvNWGiAlc2P+TnlHOo14jXBOsu+ZwOIRR83q9KBaLiEajco7H4xGmmWBfM+y6HwS2BDDccODccv3otpJRByCJR3QJAlO+qZMgcc6YFMjlcg2BTvaXwEpLdFmoW8tPNXtJtQPlleyXZiL5LnW5XLKR5PF4pDQG8DQpy4uwlwvAffHTZuBss80222x7np07dw6NRgM3btxALBbD6uoqDg4O0Gq18M4772Bzc1PkkwDw0UcfweVy4c0330Sz2cT777+PZrOJc+fOYX9/H4PBcb2lTCYjtd3C4TBu374tab1v376NUCiEaDSKUqmE5eVluFwu7OzsYHR0FKlUCsViEaFQCGfPnsX29jZyuZzUqaPTlEwm0el0kEgkMD09jY2NDeTzeQBPi1rTQSLjAEDiVLTUynQetQOqZXY81mp3HBiWSGpQZpp2Xun0kuUAIHEyLNgbi8XgdrtRq9Xg8XiQTqeHACMBh2YJtBPJ+mwsEcAkDbo+G8/r9Xool8twOp0YHR1Fo9GQTHRWUkoT0PD7druNR48eYXd3Fzdv3sTbb7+Ns2fPYnx8HNFoFIFAAP1+X9YFgY8GC3T2CeIIXHR72VdTVkhWhMCu0+nIT51anckirOSbNF0fjN8RbBJMUhrKfjBeUad412tNj6NmtTTDRIdeSyV1nBvlkjdv3sQnn3yC7e3tIRmtaQQmKysruHDhAoBjmSHZNx4TDodRLBbFkSfANpkczYhx/s0+adBrMkw8h2NrtZa+jOHTIINrnp8RxJGB3tjYkPdLrVYbyvhKkMd3h9vtloyQBC0sS0CARKaN8ljKZc3NGz5/XH8EVhxXHXdIObCOUwuHw0PxvABE3sr7EKhyTDhe3AzR4Iz95tiwzd1uF7VaTdpsMr/NZhPxeByhUEg2xV5kBkrgZQNwwsDZZpttttlm28nGoqwLCwsAIHEigUAA165dQzgcxoULF7C7u4v19XXMzs5ifHwcDx48wP7+PsbGxjA+Po6NjQ3Mzc1hamoK29vb6HQ6OHv2LHK5HB4+fCiZBavVKuLxOPr944xw58+fx97eHjKZDCYnJ+FwOPDo0SNMTk5idHQU+/v7CIfDwqYwI9v09LQwfePj47h///5Q5kTgqQNYrVZF/gY8DfQ3QZo+h6adaX5vsnDmOTSdXIFGtsa8FkEIAKmt5Pf7xXEjm5NIJAA8TW+vHTgd10amgZInJsbY2dmRBAyMEdNghwwCAQLnhIlETABFMxN5mE7f/fv3sb+/jzt37uD111/HuXPncOnSJQwGA9TrdWHJ6FDqhBkayJkJOzSjwHvzeK/XO8Se6ONNVouAnmyYObe6b7rOltVPDXA0m6avqcGJmQjHqo8auNVqNRQKBezu7uLevXu4evUqHj16JMWVzbWr16PD4cDc3By++93vIpvNStbZbDYr2QgJRvncEKzqLJT6+lbMJD/XIM6qXSZgM+WTVqY/N59hc1OGoIrtL5VK8gzxfaLlkOwvnwmdah84Zs/6/b5kl9QMtm4/pZiUGAaDwaEYNq5HrhPKEPm86jXLdVyv10UCrpOc8L3Ba5GZ1hs4+h2hx44Aj4yg1+sVmbOOj2MBcr6bYrEY/H6/JDri5sSLsC8FcA6H4/8F4HcApAeDwYUvPksA+I8AFgBsAvgng8Gg8MV3/zcA/wxAD8D/dTAY/PhvpOVWbYX1f0S22WabbbbZps3v92N8fBzZbBaNRgMXL15EOp3GnTt3sLy8DJ/Ph88//xz1eh1LS0vodDq4d+8ePB4PvvGNb2B/fx/ZbBavvPIKQqEQ7t27h2g0ijNnzmBrawulUgnJZBLpdFqSWNRqNYyNjcHr9eLmzZsizclms/B4PHj11VfRbrextbWF2dlZ7O7uolKpyC623+9HtVrF2bNn0e/3cfXqVYRCIczNzeHhw4cAniY10E6Z2+2WQH3tqGszHR5ey3QsNbNgxXTQUTPj38xECNrxB57u1EciEQG9/J6OWiKReMYJprOnmRw6fUwO4vP5kEwmcXR0JM4f79fpdNBsNgU4UaaZz+cRiUQwPT0t2fvYf83GmeOljbv+pVIJn3/+OTY3N5FOpzE5OYnd3V14PB7E43EEg0EBnZR0kdHSoIlzqUGZ/mkCJLaJAMaU67EPwLO1vKzWhvnT/N3qHD02VlJEDS4100ZWpN1uo1qtirT5zp07uHnzJra2tobkdOa9aFwT0WgU58+fl/IMvV4PR0dHkuHV4XBgdXUVmUxGZIGa1WKftBRTA3ZzvQNP5YTmRok+V5/Pe5wE/Kw2Tp43JxxDfsZkIdzIIWvGtvb7/SGmms8ywQ9BltV9Ca7Mch/AMfjTG0I6HleX7OAxnU4HgUBAmPNcLifJnnh/Pie8jmZ/2U72z+/3S+ZLXUsOOH4v+f1+KSBeKpWEiRsMBrK5wjnRcZeU4L4o+yoM3P8bwP8DwL9Tn/1PAP5yMBj8rw6H43/64u//0eFwnAPwTwGcBzAF4L84HI7Tg8Hg+QLyvyazGTjbbLPNNtu+igWDQXGmW60Wrl69Co/Hg0uXLqFcLuPq1auYnZ3F8vIyDg4OkE6nEY1GcerUKezt7cHtduOtt95CJpPB/fv3cf78eSQSCVy5cgUAJClJLBaTelKzs7Oo1Wp4/PgxJiYm4Pf7ce/ePXQ6HZw6dQqffvopYrEYEokEbt68icFggEAggEgkIvEaly5dwu7uLh4/foyFhQVEIhFh/rTpnW7KncwdfNPp0wwbP9PHWYE7nQadRmfWylknSOKONp0jZiXUKeYHX0g+B4MBgsEg/H6/yOQIvrTTzB1zOqoaaE1OTqJSqQibRnkY8JR14721lHJ6ehqVSgWZTEYAIa+p+6elpGZyEF3g+urVq7LL73Q6sbq6itnZWSSTSUnywQQfZOU0mOO88HfOhQmCtKTPiu0x5/R5zM+Xfad/N/9peaQGLJpZM5lBMiHlchnZbBabm5u4d+8e7ty5g+3tbZHS6ftbtZHgPx6P480330QsFhOpcaVSGUqGMzo6inPnzuHf//t/L4CX7BWvpdkuHftpzr+5maDZYv23BiR6c0AzeJTrEYjrPutr6d91+/istdttlEolkSNzLZOxJqBzOp3C9nOOmK6fTBkllBwbXQyba5ZlAnTiJC3XJENNBkyvEQIuvi8oV9TxnJRCE5jpuWeiH72Bo0uQcL4IWvUzG41GMTIyglqtJu8+Zr50OBwCAqkosGLlvy77UgA3GAx+4XA4FoyPfx/At774/f8D4AMA/+MXn/9/B4NBC8ATh8PxCMBbAD7+a2rvVzKbgLPNNttss+15VqvVsLq6iu3tbezt7WFlZQWpVArr6+tIp9O4ePEi3G430uk08vk8xsbGEAwG8ejRI4yPj8Pj8eDGjRsIh8O4fPky0uk0PvnkEySTSTgcDhwcHCAcDqPVaiESiSASieDw8BDdbhfvvfcems0mbt26hYWFBYyNjWFzcxOjo6Po9/vY3NxEIBCA3+/H2NgY9vb2MDs7i8nJSayvryOXy2FxcRHdbhebm5sSg0fHjrvTwPGuOQEkmaqTJF80DdysGBb9ud7hB55KJTWA0Lvd+iePHRsbQyAQENkV42F04d5UKjUk3dIJS9hnSrfINnB3vVgsIhKJYHZ2Fuvr6+h2u2i1WuKk82/Wf2K5gWKxCJ/PJ/PCZBfaOWc/aCbA0zI77tYXCgWk02nkcjl89tlnmJ2dxZkzZzA/P4+JiQnE43FhIHS2Sg3odNwggTRBn5aimf/M5C3PY1P1cWaMo8nAaKBmxfKZmSN1vB5/b7fbqNfryGazODo6wtraGu7evYtHjx6hVCpJvS5935PazzEZHR3FN7/5TUQiEXH0WSuO2Qbdbjfee+89BINB5HK5obqDZkygyUpzXDjfJntmjp25Tsx1ZDWG+tmyGnvzeiZgZvu5vjn+jAEDnkoMuY44J8z8CECyXXJdtlotNBoNmUMCv0ajIWOri2XzPpz3wWAgIIxrOxQKAYBk5+V9mWkVgGxwMG6PQEyvK44Fk/3oeE+9ieFwOORdQ+kyY+DMJEaMDaSU1Ov1vtA4uL9qDNz4YDA4AIDBYHDgcDjGvvh8GsAn6rjdLz57xhwOx/8A4H8AgLm5ub9iM5655vEvNoCzzTbbbLPtOZZMJnHr1i30+328+eabcDqduHbtGhwOBy5duoSjoyOk02kkk0lcuHAB+Xwe6XQai4uLaDQa2NnZwSuvvAKPx4Pbt2+jWCwiHA7j8PAQlUoFLpcLjUYDZ86cwcjICA4PDzExMYHJyUmJo2Oh8FKpJHW+nE4nUqkUotEoRkdHsbW1hUuXLsHr9eKzzz6D0+lEPB7H3t4eGo3G0O41jc5Rr9dDpVIZciA1W6YdGSsQp51lK0dZx5doeRdZDTNGSzMTdJLYfjpvg8FxSn/uoHc6HUn8kcvlxCHVbJ5mMxg7o1mHfr+PTCaD8+fPI5fL4fDwEAAkzoesm5ZLkZHodruIRCJSWoCyKoI/r9crteZMM3fnnU4nqtUqfvWrX8Hn8wGAJOR4+PAhUqkUFhcXsby8jLm5OYyOjmJxcRG9Xm8IXOrYLIINOt7mePN3zrfJxln9bvW3FUAyTbNr5k/zM7I/7XYbjUZDWM6dnR3cuXMHjx8/xt7enkj6zH6d1Be9xmZnZ/Hd734XIyMjyGazcv/Dw0MUi0UB/AsLC/in//Sf4t/+238rTAvH0wSmGrTp+2vgo8dGAyQz5o/fm2CN1+E/DZI1GDefXc0OmuBOM2j8m/2o1+uSjIT3aLVasp74XHDOYrEYotEotre3hS2NxWIIhUKoVCpotVoix6RcmYCRzxmBcTgcHtqIYLvIxhPUs5g91zuTGumMrhxDrkM9hzq5k8mOEiiyrhvjSNlfbqJYsaUvUx04qy0cSzg1GAz+NwD/GwB84xvf+GuBXJKF0kZwttlmm222Pcdu3LiB6elpSSZy7949xONxTE1NYW9vT8BbMpnE9vY2UqkUzp8/j/X1dbhcLrz++uvI5/NYX1+XHeCjoyORFYVCISwsLCCbzaJYLOL8+fNwOBz46KOP4Pf78frrr2N/fx/VahXhcBj1eh3RaFR2jUdGRrC7u4vZ2Vns7+/j4OBAijofHh6i1+shkUig1WpJFj1gOPaEf2upFvAUWJBpop0UY6PlWVqaZcbDmGyBThFOqRRZQI/Hg0QigWg0Cr/fD6fzOCPd0dGRJBvh9ZiBLp/PD9WZItM2GAwQDoeF8aSEigCP8TDFYhGvvfYafvazn4m8q9lsyv17vZ5k6GMCBQAir4zH4xgMBpIAIxwOY2VlZaju2FeRVPX7fSm0TJan3+8jnU4jnU7j1q1bmJmZwblz57C4uIiDgwNUq1X4fL5n4uV0nKCWqemkIjpmy/yn59k0K9mkdpD5j38TvGuQZko7mRGz2WyiVCohl8vh4OAA29vbWFtbw/b2toyvySqd1C6TlSMo+/3f/304HA7s7u7KNVg3j0AnGAziX/7Lf4l2u42HDx/KcVaJMKxkjGyjmbhHP0emhFKbuVGin1WTyTxpk0UDdd1mXXCbgITMtSmhZGwcnyn+1HJVAFKWQz/bgUAAIyMjqFarIk1kbJvf74ff75cYNn5OENdutyVREeec8am6pAHXNp/twWAg7KBOhKJj+xwOB5rN5pBUkow754SlC/hu0sw+N5q0fJMZObnGT2Kuvw77qwK4I4fDMfkF+zYJIP3F57sAZtVxMwD2/1sa+F9jQsDZ+M0222yzzbbn2KVLlzA2NobPP/8cjUYDS0tLaDabuHLlClwul2Sk3N/fx5kzZ9BqtXD79m0sLCzgzJkz+NWvfiWp/B89eoSRkRFEo1E0Gg1MTEwgmUxia2sLXq8X58+fx+HhIdLpNBYWFpBKpbC2tiYSpcFggGg0KtKkYrEIr9eLRCKB+/fvY2RkBLFYDNVqFZVKRaSV9Xpd5HammfJFAHIvfkdHTQM37WBaSbpM51Kbdh61TJKf9ft9+P1+xONx2TmnZFI7i8ViUeRRdDrr9TqOjo4k9kbH1rjdbpTLZWHGCIQJHuhc7+/vY3l5GRcuXMCNGzdEVkUmk21mvCGZELaFUk4yadVqFdevXxcnWffTynRskv6M8YC8D/saDAbx6aef4ubNm8LwTk1NYWxsDLFYbEhmaWavJGA7iUXSTNVJ82nKLNleE7SZv2sgR5aNRccJ2g4PD7GxsYH9/X3s7e3JnOtrmO3jerRi3nR/X3/9dbz11luoVCooFAryebvdRqVSkbqAbrcb3/nOd/DGG2/gpz/9KbLZrIA3cxxNhgt4ymbzb3NurRhrK9mt7pNVH00waBV3qseC7dTgi2uUoKhcLgu40szhYDCQ50LHAAIQJqrVakmSID431WpVrk0QFAgEBGS1221Zc5Qe8j1Bdky/N3QJlEAgIJstmvXSWXXJ7LFGGyXRvKaOLWX8HWPr+v2+AFqOr94IIxOv43YJ/P4u1oH7zwD+ewD/6xc//1R9/h8cDsf/HcdJTFYAfPrf2sivak8ZONtss80222x7vv30pz9FMpnE4uIiHj16hKOjI4yPj2NxcRFHR0fo9/t4/fXXsbW1hWw2i/feew9+vx8ff/wxms0mAoEAtra24Pf7pU7S7OwsOp0ODg8PMTk5iUgkgvv372MwGOC1115Dp9PBzZs3BbjE43FxOlwuF3K5HBKJBOr1OjY3N0VixOLe8XgcsVgMxWIRc3NzQxIzLYui40kHjPEpOtnJ83aPTQcfeNYh5d9WMT50JumY0dGhZFKXCWDR7GaziUqlIrIpOnZk0/L5vPRBO7V0AsmiFQoFiafz+/0Se9ZsNnH37l28/fbbyGQykl2SII5AiA4b+6oTg7hcLpk7sg4cLz0ezwNxNB2PVq1WBbhQtgUAH3zwATY3N5HJZEQeGo/HpYxFKpWSxDeBQEBic5hswpQCfhkTZ2UaPLAPJqDTcUZkSWq1GiqVCvL5PPL5PPb29rC7u4ujoyNUKhVUq1UBrRqwEOjo+DKOsVW7CLS8Xi9ee+01vPHGGyKf5XdkVzOZDKrVKkZGRjA2NoZ/9s/+GXw+H27dujVUJF6XDtBtsZprfsY1aDKCPNZqQ8S8no7RspoH3sfqe96fjBPvo7PCcs31+30Eg0FhofiTIIVjRpCka6NxzEOhkAA6LRXVKf8BCMvNNvF3XodjwHcE4+oCgcAzY6/Xg14rTG7E2orcVNAZXTkGpjSV57MNLByun0cCPbaHm06NRuOZefi67KuUEfjfcZywJOVwOHYB/M84Bm7/h8Ph+GcAtgH8dwAwGAzuOhyO/wPAPQBdAP+XwdeUgfKLtuKLdnxdt7TNNttss+3voF2/fh1zc3OIx+O4ffs2arWaxLStr69jZWUF4XAY169fRzgcxptvvolsNos7d+6IZKdcLkvcVr/fx8zMDBqNBprNJlZXV+F2u3Hv3j0EAgEsLy9jd3cXxWJRHJLx8XFxGrmrHY/HcXh4iGaziVAohEajIYDl3LlzUheO9eDC4fAQKHM6nYjFYgJAyECFw2F4vV6USqVnJFlWoMPKiTzpb81K0HQqdu6A+/1+BINBRCIRqcVWq9Uks1uhUBD5nBnrk8vlUCwWxdnXzACTU5isBOPG2EYA2NnZwerqKn79138dmUxGigJzh5+JDjQQpumkKvzO5XKJLI9jYrKVX2Y6VTtwDEjz+Tw+/vjjIQkXiw1ns1msr6+LMxwKhZBKpZBMJgXQhUIhRCIRYekouWTckFnD7XlAzpRNajmkTgBTrVZRLpeRz+dRLBaRTqeRzWaRz+dRKpWGYgU1CNTjZrJPHOeTGCkCNJ/Ph3feeQcLCwsolUpSYoBgotls4ujoCPl8Xvr9z//5P8f8/DwqlQrW19clrpLgzSwjYK5xK19TA6eT2sxr6U0CDfD4/fMkyvrZ1aZZQg0K+Qxq1oqS7Hq9PsQ2cswI6Cgb5Px3Oh0Eg0FZCxwzJgJhvB2Zb46hWaxep+TnOYPBQBj3RqOBcDiMarX6jOyVMkgAwqg6HA4Eg0EMBsfJUSKRiLRRzwnrPlKaTdabYI9jR4DGZ0cDNvbDzP77ddpXyUL5/RO++q0Tjv9fAPwv/y2N+quaSChfxM1ts80222z7O2MXLlxAoVDAnTt34HQ68eabb0ra8jfeeAMHBwf4/PPP8dprr8Hj8eCzzz5DqVTC4uIi9vb20O12kUql0G63kUwm0e/3cXBwAK/Xi6WlJWxubuLw8BDxeByhUAgPHjwQCZLH40EqlUKtVkMwGEQ+nxdHe39/H16vF2NjY8jlcmi1WhgbG8PZs2eRTqclLoOSpc3NTQGFOvaIO8R0kPx+P6LRKDwej8ShaOdPx/LoHX4NokxnkQ6Vdmx5b7JZmvVhsgHKqhiX1mg00Gq1BKARRPF+TCqgmQQ6ZhqAcHd8MBhIFjy908/Pr1y5gt/7vd/DG2+8gY8//ngIMBKUMFZLFxPnfdkmzR4wQYLOgHeSmY69aZoloaOqHXt+NxgMpK7Z4eGhZPPTBdGDwSBCoRBCoZAUImbNK84R1yWvbzJfdNrb7bawa81mU5KPELgVCgVhisnEmeDUjNk6KZ6Nv5uxY5qhIrsYiURw6dIlTExMSDv12LJg99HRkXz21ltv4Vvf+hYcDgfS6bTUUdRAg3+bbBl/cq3rfuk1qPugNwV07KlmyMzztJkEhSl71s8n2WFzLDlefG4Gg4EoB/Smg5ZQBgIB2TTiGifzzFIczWYTzWZTNgYASMIStp1AkO8WbgBQ5uj1egUgcTMkEAigXq+jVqsJUOKmEOXgulSBXv8ABKQxsQrngoCTbWXdyWAwKOwl1znZSZ31lfF7ZOtelP11JzF5oSYSShvB2WabbbbZ9hxbX19HoVDAqVOnMDU1hYcPH2Jqagpvv/027t+/j06ng8uXLyObzWJ3dxdutxs+nw83b95EIpGQumTj4+Oo1Wool8tYXFyE0+nERx99BLfbjYWFBezv74vTk8/nRerGJBiFQgGpVAqNRgOlUgnxeBwejweFQgGtVkvi6R4+fCiAIhaLya5xIpEA8NQRdDiO03hT5scd9VAoJA6NZhVMlkhnlAQwJB3SZgbwa2DD63c6HbjdbsRiMQEJjEUhGCC7xOLK3NHXMSnVahWPHz8eSoCikw0wjoxjoPvCsQGeJm7IZrP47LPP8M477yCTyeDBgwfPsHcELTqxAp1sAjkyP9opZJ05KwmglZ0kl+N5J52rwaNmyOhcViqVIckdTWevdLlcSCQSkn2PoNdsG6/LuCHKHtlPMybOqo9Wfbb6XAMSAhr9j30nqJ+YmMCrr76KZDI5xPBxHbVaLRQKBRwcHMj68fl8+O53v4tkMgng+F2wv7//jMxUJ+owJadW/dTfWYExPjPPA+W8t8kamWNkgmBzzBhzZsoEyabV63WUSiVJLkIGjc8kE4mEQiFJHhSJROTZZaZdfW/KJ9kfPjuBQEA2ZXgfPkfcZOI653sgEonIJgmTDJF5Z+waAHn+2u22bLz0+30BlnxGq9Xq0HuRY8Q2caOGbC0l1QSKnFMWDOcc/l2MgfvbaVyoNgdnm2222Wbbc6zb7UpM2sOHD7GysgKn04nPPvsMIyMjmJ+fx+HhIfb29uD1esVhOX/+PHq9HuLxODqdDp48eQIAOHPmDJrNJu7fv49QKITp6Wlks1kEg0FxepeWltBoNBCPx9HtdlGpVDAxMYFyuYx+v49YLCZxOv1+H6dPnwZwXDeMiUoikQjy+bwE9/f7fdm9ppk77WQpNGsEWAMLU0qpZVx0MHW6ejruPFfLpbhb7nAcx7yRkQMg0i0mZmGcGp3cQCCAVqslDhnHSDuAbOtgMJAdds10aMmUCbxu3ryJ5eVlvPHGG8hmsxJjRmeZDiedTLJZmp3RII7mcDgktovX0kknTAZFf2baSXFQJ82dOWdW5xGI0blnmncWXtZA6aRr8Hfz769iJqh53nk6sQYZJG5IxONxvPPOO4hGowJO9HmUKDKRiS5mf/78ebz++uvC4j548ADA08Lf/KcBG/AUFOpngeeZTJjV2JjzrY8zwZYJBvXnppTTBIvm+ZT9cn1zXAlweH9mWWRiE8oGY7GYtK1arcLr9QrzpDdy2DadFETHwblcLilZoOWHZOM1o86YWI43JY31el3apseEMXq6VhvfiWTmWLuO96Pkk/GmVALoennsq34P8v3Ga7woe6kAnLzqbPxmm2222Wbbc+ytt97CjRs3EIlE8Morr+Dg4ADlchmzs7NIJpO4ffu2ZLDL5/OIx+MSUzE3N4cnT57g7t27mJubw9mzZ3H//n2USiWcOnUKg8EA5XJZZJCDwQATExNSKoCyt3g8jkwmI85Qo9GQLI3hcBiVSgXdbhehUEgAHq9Rq9WQSCQwNTWFn/70p88wFRqIUR4EQECUFZAAhiVqpmlHUkst+TkdbEr4vF6vOEDczWasW61WExBHh4mgh/XfeN12u41CoQCfzydxMpR40bTDzD7ofpjSzFarhR/+8If4h//wH+Kdd97Bz372MxSLxaEx0U4gnbVQKCS7+HpcAoHAELjTIM6cD9O5P4nVOQnk6b49DwDpObSS2g0Gx8XFCZ45dl9m/7VgzWzD89qrj+EcaOASCoUwNTWFs2fPSsxprVaTtaIlm41GQySdjHWKxWJ45513ZH7K5TLW1tZkY4JrSrNi5oaFHncda6bHVYMscx5MoHbStc1zNSDT9zOP49+aPeRnfA4cDocw+sBTdprPLeu+MT0/5ZNk5Al8tNxSM7EEVQRigUBAZN4aOHK96dIETFrEd4JODqPZS7PUA+dOb7yQze90OtLefD6PRqOBwWCARCIhm03dbhflcnkI1DLjJAEnmXm27291EpO/S8b1a+M322yzzTbbnmfXr19HKpVCKBTCnTt34Pf7cebMGRSLRXz88ceyG+vz+XDq1ClJ/hEIBHDjxg0cHh5ifn4eCwsLuH79Ovr9PiYmJnBwcCDlBXK5HJLJJEqlEhqNhsS7hcNhhEIhSVRCp9Pj8SAWi8HpdCKXyyEcDkt8RqlUQrvdRjgcRrvdxuLiIhwOB65duybOiJYZ0elwOp0Ih8OIx+Oo1+simaLj5PV6JWbIZApMM+PAtBNG6RR30OmEMV6FkqZyuYxGoyExNKzbxvO0DI9SKTpmusYYnUGTZTCdSAIC7YTx+kdHR7hy5Qr+/t//+6hWq/jFL34h7JRmuugIUh5JUM0+E1zoBA2DwUAAuAZuVuDreaDmJBBknm8FCmlWMrvn3dfqnryO/tuKZTKBM8+zSu5hyhM18NbGmMpEIoHZ2VlMT08jFAohm80CGN5Y4LnNZlPipyqVish5GdOaTqcxOjqKw8ND3Lx5U9qjy0dYgSATYFqNhRVAO2lTxDxeMz0nATYTLOrr6DnWwNMcJ+CpxJgxcJQjsnA3AYzT6ZRst8wMyYQ/fJ7088+Mt4xpczqdaDabIstk4hsyYfr5MOXQmgXl/PBZJuvG9wSfNZbk0OPS7XblHU4mjwCT70D2ifGD+v2m28jYTjJ3L8peLgAHLugX3BDbbLPNNtv+Vtvk5CQKhQKOjo4wNzeHSCSChw8folgsimPBmls7OzsYHx/HYDDArVu34PF48Ou//uuo1+u4efMmRkdHEQqFkE6npQi31+tFMplEOp3G+Pg4+v0+CoUCkskkisUi3G63MHrMihaNRlGtVuHxeBAOh+FwHGcZ3NnZkdTYwWAQr732Gra3t7G7u4upqSkBM3TMut2uZIkLBoOYm5uTzJTBYPAZqRNwMhsAPJVG6iQiwFPHkw4XnV+drIVJS8rlsiQuYMY5Omi6Pp1VfSvG82jwZrZVH6dZN37Pc3Wil06ngzt37mBlZQVvv/02Go0Grl69KnI8ncQDgMTrdTodtFotRKPRITbO4TiOz2N6dofDIRsBjPV5niNvmnbITwJVVt+f9Dv7oufPCsSdBCy/jEHT358EcjQwOQmA8hgCgkgkgoWFBczPzyMWiwno13PN+STDwzIGxWIRrVYLXq9XYkfX1tZkM+bJkydD9cJ0jCivTWaIbdNtZPs1a2PFhmn5LttrgjATpGmWT1/LvLY5B3xG+bwy3jaVSiGXywkDx9ppfE55HuWB7DfbGo1GJUMkANns4PkA5PnipgwzRrKMg44r7HQ6koWXyUcon+TvBGKMPatWq1LfjuPCMiQApO18H/F7ZvMloxqNRoVFZGynLqHAzSA+2+wz14XD4ZDMmC/KXi4AJwycjeBss80222w72XZ3d9FqtfDaa68BAO7duydOQLVaxdmzZzEyMoLNzU0sLS0hk8lgf38fc3NzGB8fx4MHD6Rod7vdRjqdliD4qakpAMDBwQHGx8dRqVTgdB6n9280GohGowiFQkOsXjQaxf7+PiYnJ+WYer0uoK9UKgmg/OCDD9DpdDA6Ooo7d+5IhjiazpjmcDhQLpfld9MBJ2OkY+h4rDadGdH8jHJKAkzutDNpCnfMdT01/TtwMovEz7nTr9lDMl1mnB6vz5137rrrf7Rut4sPP/wQc3NzuHz5MlqtFq5evfrMOOlznE6nMIihUAjhcFgcPwBS4JjyrUKhgGKxOLSLb8WQWY07x1zHWfEaeqz0z5MAonncSeNtBbqswJwJok32zbyG2Q6ra2lGk8Xsz549i7GxMfR6PZG46XhOApFutyvOeLPZRCaTQaPRwMjICJLJJNrtNjY2NlAsFpFKpXDlyhXs7+/L+iSIIAOnY9z0xgHBEZkaKyDG83QiHRP8WbF75nEnmW6TGYNK0+C22Wzi8PBwSPZMsMbajJQS6n4QLLGvIyMjiEQiQ7JbzgWfOyZL0RJHJsihqoHvHP28joyMSBkAbvbotcJ3FdtfrVaHNlfMouAEkxqgeb1ekZNz3pnYpdFoIBKJYGRkBI1GQ95jLHXC9U2gR1nmi7KXC8B98dNm4GyzzTbbbHueUXb46NEj2UmlJIhSykqlgsXFRTx8+BB+vx+vvvoq2u02bty4gbGxMVy8eBF3794VZgsAlpaWJBsed7xZN47sGgBJmrGwsCBxYePj4yiXyxgfH5f4u4mJCezs7ODcuXOo1+v49NNPJZHH1atXMT09Da/XK44WAHFg6dwwa2Y+nx8CGgCGnD/9tzb9mSnDoxPKRAE0DQwJLtku7oRruaQGYrwu781/+jPTWdVt0+BQZ6bT4E1fd2NjAz/+8Y/xB3/wB3j33XdRqVSwtrYmgJ7Gc3Xf6vU6yuUygsEgotGoOMOUpHm9XknAwjbqPhCoABhiB01WRgMkK7mengt9n5PseSDS6qfJmlldQ7dXA+3nMYkcTw1cKBuenp7G4uIi/H6/zJ3J4vX7fTQaDYmlJBuTz+dF5jY+Po5ut4vDw0OpmXf37l0kEgmp4UdHXpcPsGq7ZuXMvugC2uYcmfJFHmP1udXfHBczacbzEtboZ5N90s8jM9qyzYz3IjNFtpn31eU8mE2WDBZj6DqdDnw+nyRYohyTMkVuKJGF59iboEnXv2Q2UTJzrGdH9jAQCEh2TJbPoNyZ40Ug7Xa7BWAy8yrBZjgcRiQSkWdXg2TKNSklZcZNm4H7a7KnDJxtttlmm222nWyrq6vY3t4WB6FWqyEQCCCRSGBnZ0cclDt37uD06dOYn5/H+vo6stkszp8/j2Qyibt37wI4TmVNh/Po6AjxeFxivaLRqMSB+P1+5HI5VCoV+Hw+nD17VmoUhUIhOBwOjI2NYWNjA6Ojo3A4HDg8PMTq6iqOjo6wtbWF5eVl7O3toVar4fXXX0c+nx8Cb3QW6Rxyx5jSRpp2PEwnhMCCYELXujJlYLpsAHfz6eix7hMTj2gn2wSOBEcmy2aWDNDOMCVi/J1t0mCJzpaWMPI4/fvVq1exuLiI119/He+++y46nQ7W19dPBLS670ySUKvVEAqFhrJVMsmGyTbSuJtP8Ntut4fqXpmAxbTnMXLmcVZM2PNYHqt7WgE5q+uf9DuvYf7ucDhk3cTjcczNzWFqamqIVeVx/IwAmgwna4JR2hcKhRCLxeD3+/Hpp5/C5XKhVCphfX0dCwsLUoS91WrJ867ZMwBDsl4rFtRqI0EbvzfHxwrknTRGNA3ezOdHM336OdFxpTreDAAmJiaENec1CEyr1aok5+H7y+VyyVrndQjKeB6z5fJdQaBEeTjXNllOyq3J8FWrVQwGA0mcwgLiuqYlN7D4zggEAsL0s0QL2T39DmRCJSYrIQhLp9NS9J4gknJp3pdt5Fj6/f5nahx+3fZyATgM71zYZpttttlmm5WxYDbrqU1OTsLhcAgTVq1W0ev18M1vfhPdbheffvopAoEA3nzzTTSbTVy/fl2KY4+Pj8PpdCKTySASiWBnZ0fS9heLRYTDYXQ6HTx48ACDwQBjY2NYXFzE7u4uotGogJ+RkRHs7u5iaWkJh4eHCAQCePXVV/Hw4UPs7u4iHA7j7t27CIfDWFpawuPHj4ekTCc5z+fOnUM0GkU2mxWHT6e2p2nQRieZDhDwbJ0qM+5HO0qMEaE0qlQqoVKpyGe6jWaKfe2wm3WjeJxm2/g7GRqyAdrx43F0LHU/me3uj//4jxGJRLC8vIzvfOc7aDQa2N3dfYaBZJ/pUAIQ+R0zjLLsABke83z2k9kRyWYwAyCdZFNeaQK6k1g0fS8rmd/z7HlA0epzK9nfSffTDB2NjnokEkEkEsHU1JQwIVw/XG+c53q9jnQ6jVwuh3K5LMwSWbd4PI54PI7FxUX86Z/+KWKxGE6fPo10Oo1KpYJsNguPx4N8Pi/sk2bFzGdAs1hahsg1RQDzPFmk1dyYz5jJyn0Z4NYsp95oIftMNk2zd2xvp9ORGE5KDLV0kQyZrn3GjQtKDqvVqmxC6PIaTFLi9XoF/BSLRck2yX5r+SrvTWYsGo0KgNbPNcE278dkKf1+H5VKRcaaGzfcvOKYUAXAOWcCFKoyOKY8n8mWgOPnnIlceK0XZS8VgKOG0sZvttlmm222Pc8CgYCwQfPz8ygWi1JAltnt3nrrLezu7uLRo0dYWVnB4uIiNjY2UCqVEIlE0O12sbS0hFwuB4/Hg7GxMezv7yOZTErNo/HxcTSbTezt7aHf72NmZgY+nw9bW1uIx+NSTJySr9nZWdy7dw9nzpyBx+PB9evXJdbj6OgIy8vLcLlcePDgAfr9PsbHx7GxsTEUI8bMj3QuKMvk59pMRk3vMmupJfAU9JlySzqgdIY0sOv3+xIvRoBnlVyETqcGRXSStUNmGj/X1yKQMyWJ2jmjw8xx6/V6KJVK+D//z/8T/+Jf/AuMjo7iW9/6Fn7yk58gnU6fmPiDbfJ4PBgdHcVgcFxCotlsolAoSPIDnRBCszhM+MCSCrrulW6n+bsVQLKSoFqd+2WfW4EEK2mfFRPFvj0PuPFaBBcEu6FQCGNjY1KcXifNIUBqNBrIZDI4PDxEPp8XmR0AASwOx3Hyn4WFBfz85z+X57VYLIrkjmxxJpMRAGFmbTTBKO/Btuu+6jEyx8Rcc/rZsmLk9AbFl7Gk2vQzyOdIrwm/349qtSrviGw2i/n5+aGMtUw0opOJkGV2u90ihySw4twwiYkGNRxXp9OJcrk8xJ7xHgSWvC/HkXJryouZeIUAnvG1lGBqIMYxZx03ZpukJJQMmlYusL5cq9USRpKFzQksAch7ncAwFAp9pbn5m7CXCsB9tSVum2222Wbb/78bC3TH43Hs7e1hdHRU2Ljp6WlMTU3hwYMHyOVyOH36NCKRCK5cuSL14ADg9OnT2NjYwMTEBBqNBvb29qQwd6/Xw8rKCvb29vDkyRO4XC6cPn1aHJXp6Wk4nU7MzMzg7t27mJiYAADcuHEDFy5cwP7+vgBDZtFbXl5GPp9HNpuV3eNCoTDUr8FgICm7CdaCwaDsouvkGsCwXBIYliACEKdWM12mrFA75ZRM0tFtNBoCTujo6qQnVvJN7ciy/9zxtjpHF2nWsW90MDVo1H3htTSg3N3dxR/+4R/i+9//PhYWFvDbv/3b+Iu/+AscHR0N9VcbM+wlk0lJPkNHVjM6ZCnq9fozkko667q4Mb/jPJCR0p/reT8JXOl76OPN/uh26L/NtliBM/M7K/BDI4MTi8WEuQwGg1LWg3OmGS4Ct3Q6jWw2OwQSOMZcK7Ozszh79ix+/vOfI5PJAACy2SyOjo7g9/slTiocDqNcLg+VqeB9dbs182wyvzSTNdNASo+TBokmE22yqVZzwXtZSXt1CnyeMxgcF7nXsZYEUJTrTk9PC1AJhUIoFAooFAqIxWICzAje+EyRYYtEIvLOYcFrDWbJMJNd5jPBd5PewNEAn/F0/FvLW9lX814EoLyW1+tFIBCQ+DuCN8ap9vt9uS5BGtl+xvYR2LEN3CDq9/uiNHhR9nIBOHnJvOCG2GabbbbZ9rfazp07h1qthsPDQyQSCckSyKQJd+7cQbVaxYULF9DpdHB4eIi33noLmUxGnETuYBcKBWSzWUxPT6NYLMLpdGJsbAxra2s4ODiA2+1GKpWSGClme6tWq3jw4AFWV1extbWFRqOBubk5XLt2DaOjo5icnMTW1hai0SgmJiZweHiIQqGAeDyOarUqdd3C4TBKpZL0TTuNDPb3+XxD6cJNB9X83XQ0gaeMmAnwCITIJBEUMjsg07sDT2Nj6FzyOM1I6etqyaZVW012TbMimi1h3J0+R0s1tT1+/Bj/8T/+R3z/+9/H3Nwcvv3tb+NnP/sZDg4OZBy0EXgdHR2J5KpSqUiCBJfLhXA4jGQyicPDw2dYSgJUfT39k+PhdrtRr9eHnFaT1bICV19mz2P5TICh/zZBoSmNNNtAAOPz+RAKhaQoeigUQjQafaaOHiVszACbzWZFRscx0cApEokglUohHo/jo48+QqFQGCr8znXU7XZRqVQAQOLfWLNQt1ePMzcezNgzOvtkqfiZ3gjRoITyS3NurBg3K/btpE0PtpEsNxkic275TOlND8ZoMhkSARZBjS50zThWAJJQpFarybNP4MXzCYDK5bK0hTJEjgmvy7nnO4TvDc3UEszzWpTB6/IRnU5H1hQZPr4LyOCRDSTg5aZBvV6XDRiTJSUjzLawDMKLspcLwH3x0y4jYJttttlm2/OsVCohk8kgHA5jf38f8XgcS0tLaLfbuH//PqLRKE6fPo1sNotQKIR3330XR0dHmJ2dFXZncnISm5ubUpx7Z2cHyWQSPp8Pa2trwuYx7sPn86HZbGJkZARra2sYHx/HysoKHj58iMnJSQwGAzx48AALCwvo9/tYX1/HpUuX4HQ68eDBA4lTOTo6Qr1eRzAYRCwWQygUklgezUQxtXaxWEQgEJB/Pp9PHCsTyBCkAcPO/ElZKjWw0glLdPyZBiT6Xhpoms4qHW4NCNkvbRqQ6fbpa5EF0MCNx5rAj225f/8+/t2/+3f4/d//fSwuLsLtduMnP/kJDg4OngFQvBYz3wFPa1ORqYjFYqjX60OZLVOpFNxut6R316ykltEBeCZ5hGlWjr8JrqzAqtXYm/NuBeL4nT7eBBv8mywbWRzKJZPJJEZHR4cYGIKtVquFo6Mj5HI5pNNpYU9038j8cNxarRaq1SrW19eHaoVpkMuYrG63i+3tbQCQRBper3dos0Gfa8qJCejYTy3ltGJDCUR0XKP+qVkkK7MCdSZQNONTeS/dfrJJvLd+XijV5iYT+0QJZLVaFfBDFouSTAAiAWZyGI5BpVKRWF2ONfsyMjIiWSQbjQa63S5CoZBsgvj9fgF1WkJJsM05qFarwu6RRSUQ63a7EmPKZ5TzwXbp9xQ3njR7DkCyYQaDQZFXvkh7uQCcHQNnm2222WbbV7BarQan04lisYhz585hYWEBjx8/RjqdxvLyMmZnZ7G5uYlTp04hmUwim81idnYW/X4f5XIZrVYLu7u7aDabCIVCqNVqWFhYgMfjwf3799FqtbC0tIT9/X2EQiGR97De26lTp9DvH6ewJ5v35MkTxGIxYRreeOMNVKtViZcDgM3NTbhcLsTjcQSDQezv70s9ORp3tumg7e3tSWrvYDAo8iXTgaNpkEDwpP/WcXNkFOikctdeJyowmTHem/fS4EA7ngCk0C8TLZim26oBkI5/02wDHWDNxun20AaDAdbX1/Ef/sN/wHvvvYdz587hvffewyeffILNzU3pm74mHT8z0ybnjYkUGG/1yiuvYGdnR4A2wQvHUZ+vx840DQbMubT62zSr4/W1rACH1XH8qeObmPmPv3MDgf9Y8Bk4ZovL5TIymQzy+TxKpdIzmwCccw3a6WjT8SdoJvuspW6smTg2NiZyOZfLJVkFTYbXBDqmEVycNFYaRPF4ttkceyvGzep+ZK3NNnFcuJ4oldaZYrmx0+12ZT06nc4h8MMYs3A4DJfLJVJCjrmeE27YuN1u+Hy+oaQfZO2YYEQnK2k2mwgEArLhwbpqfHbdbjfC4fBQ/TmeR9OJWXie3+8XkMiMl8yGC2AoIQ7fWbwG5aKUl5Il1LLMYDAoGwBsw4uylxPAvdhm2GabbbbZ9nfAvF4vLl++DKfTiTt37iAQCODb3/42arUa0uk0VldXJS31qVOnZCc5n8/D5XIhkUggEAggk8kgFosNlQiYmJjA1taWgDs6Tel0GouLiygWiyL1+fzzz9HpdJBIJFCv1zE1NYWJiQk8ePAA7XYbi4uLKJVK2N7ehtfrlaLGe3t7CAaDmJiYQD6fBzDMCNHZy+VycLvdkiyCTod2FjUwM0GReSyvr41OF3fKvV7vM0WzNWAywZ3+Xksi6/W6ZLzTTI027VQCkHgek2nT7JYJjnQbNTA4ODjAn/3Zn+Hu3bv45je/iW9/+9u4du2agHRzvAneOGZsrwYWBDiVSgUHBwfo9XpIpVLw+Xw4ODgQUKFZOd1OXpOO+kmgQINrDS7Mf7qt2sz1YZpmdsiweb1eibdkdkLGY+q4TF03sFaroVgsSnyblshZsaPmODgcDll7ZI3o0Ju13bgu2+02crmcZP0kI2PF8pprjf3Wa0rHbrLdVuydBvx6M+Ek5s3KzLgvHaPHzwiu+LeWMPPelCRSFtnv94UNczgcAvA0E8e4MbLtvBbfcfxH8DYYDGQO9PjojJiNRgOVSgW9Xk9AFN9dBKLNZnOoBpuWR7OflJMTvPM9wOtRAcH1Z/7kfXq9HsLh8JCck8wjx5LJif5r5u2v214uAGeXEbDNNttss+0rWCqVwtLSEg4ODlCtVnHq1CmcO3cOmUwGfr8fp06dkppBvV4PmUwGHo8HpVIJ0WgUzWYT2WwW6+vrGBsbQ6FQQLPZhMvlQiAQwJUrV5BIJKQWVS6Xg9N5XFdpbW0NqVQK3W4XN27cEGf28PAQr7zyigBKl8sldd82NzcRDoexuLiIfr+Pzc1NxONxnDt3Drdv3x5ixMzYLsb7sLA0a85ZARcTxHGH3sp0MhI6TU6nU8ZNXw+A7O7rYtq8h05IoLNKUnamz6N8iqbBiBXo0fexAi5WplkOFvYuFou4ePEiLly4gGAwiOvXrwvY4Jix35pJNEEn2/ijH/1IUrz7fD6kUilsbW3J/bXE9aTxD4fDQyyAKUPVgEF/TubByrE3r2MlJXQ6nRKbxFgiAjSCIoI6Or78SfDZbreRzWaxu7uLYrE4FN/GudTt1wDUlEYSJJOBIqhnxkm9FjTLyfguSv/0hoO5xvR46DEyWTceY7KV5jxaMZlW9zPlk2bSIRMcaYBnZqLU80fGmIlddGxYv99HsViUe/r9/qH2USJMoNfr9aSkQCwWQ6lUQqvVQiAQeEa+yTXB37kOOf5a5klpJaWOOja3VCrJ/ZPJpLSDY0EmTpcbGAyOa9URDOq6ddxkSSaTACCSZ4JJgj9mMjUZwa/bXi4AZzNwttlmm222fQWbn5/H/fv3EY/H8dZbb8HpdGJ9fR2nT59GKpUS56BUKqHZbGJ6ehr5fB5TU1PY3d1FJpPBZ599BrfbjVwuh7m5OczOzqJWq+Hx48cYGxvD1NQUgsEgDg4OxPFsNpuIx+OSzGJiYgLZbBaBQACvvfYajo6OpI7cxMQErl+/jlwuh9nZWSwuLqLT6aBQKCCRSCAYDOLmzZu4ffu2pOcGngbba/anUChIIhPtjOnYNlMuZsoLTTBiZqbk58zmxuN1fJB2QDVo1H9rUKF36jVIopOp22nFupmsH69lyiet2CctDa3X68hkMvjwww+xvb2N119/Hd/85jdx/fp1iT8EMFQGQINYDTyYjY9MULvdxq1bt8R51gybGXuox1tnDiRrolPCa2M/zHkmMDbZUhOo8Z9mRhhXxN+ZMl7HLLIfeixZX2xvbw+ZTEacYCt20EpiyPsxGyD7rTcA+DsZGd12ZnElc8RxPAnMcyPBXHf8TvfPXEP6+dEATI+zFUC36rdme3ku+8vx1tJlc11rWTFjxAKBAOr1Otxut9TeI+PEDSlmX2Q8GpOCUN6spZWtVksSgXCtc6yZKIVrjzJKgkf2STN6mnXn/PGdxrHnGHq9XhSLRQBAKBQSRq3ZbA4BRca3EeCx3b1eD8lkUlg9fjY6OopOpyNxw9xAYhzyi7KXCsDRbALONttss82259ndu3cxPj6OV199FbVaTRKZDAYDrK2t4cGDB5iYmIDf7xdnpNVqYXt7G/l8XuSMzWYTS0tLaDabuH//PrxeL0ZHRzE1NSXFhmOxGJrNpsSU5PN5jI6OwuPxIJvNYmlpCWNjY1hfX0epVMLo6CiKxSJ+9rOfSa25QCCAzz77DA6HAysrK/D7/bh27ZrsoFPWqR0dDapqtRri8fgz2dk06NEOIf/Wph1qfY7+nsCCDjPwlHnTsjhK3PTfwHCKfxoZk5OYQCuQptvD383P9Ofm3yYDojPObW1tIZfLYXV1FSsrK7h//74ATTq7HEedfMThOE5mQiCvQQ4ZAIJdspsEhHRkNfszGBzXnGOcD51jMmNcDzqdvZ4XDQ7pgGvgoM/XDJr5O9krzYZxDjku7XYb1WoVjUYD5XJ5CDhpUGkyXRq86Lbo9a1BiV5jLpcLsVhMWBoycWyDBqcEPzp1vbku+HzwWH2Mftb0OXrjwgR0Jiv3VcCcvq4Zr0dWjd95PJ5n5JnmBgqvwbEh08SEJLwmmShKVXUaf91PnWxmMDiWZzLzLdcyJZAE3gRTAGQjgXPBdUuWtFwuDyUPoTS81+uJjJyxlQSJ7IMZ+8ayHuwD28B4P0rcyRZz3tj3ZDL5XLnt37S9VADu6SK3EZxtttlmm20n29zcHMLhMH70ox+h3+/jlVdegdfrxd27d1Gv1/H48WOMj49jf38fOzs7cDqdqFarsqtcq9VQKBTg8Xjw+eefY2FhAe+++y52d3cBAEdHR3A6nYhGo6jVapiZmUGn00E+n0c8HofDcZw+fmVlBW63G5ubmwCAM2fOSHzc4uIiIpEI8vk8dnd3MTY2homJCRwcHODg4ACRSASVSkVKCNA5YbxHKBSSaxWLRYyOjiIQCCAejw/FxWiH7nkxHaaszoq54ne6KC8dPDPTmwYNpmTOypHVDqdO820yaZoZ1IDMZMP4OftmHmv2XTuO5XIZN27cQCQSkWQH+lyfz4d+vy+Z+1qtFv7gD/4AgUAAP/zhD4fAAOOFdJZJzQiR9dGMgx4TXeRYx/Ro4MN5MX9yrsgskC2hs82fHHPOK2uLESjwe66per0uGf9arZYwLGR86JybIMcEqHpNUXrHWCa2Ra8brku3242ZmRlEo1FEo1H4/X5x9AeDAXZ2dqSYc6PRkOQWHD+CNL122S79T8e66bVyEpt30ndct1Ygj/03wZKeSz4bnEvKD81kOjq5CcebYJ9JXwaDgRTK5nvK4XCgXq8LGGbtPs4t76MlsnqTh6yVlk9rwEmAyOM1MGISGrLWZGyZzXQwOI6jYxITSjm5ZggYeS/G9hGkORwOBAIBNBoNkYY6nU4kEgn4fD4Zc7/fPyTzHBkZGSrf8nXbywXgvvhpM3C22WabbbY9z9rtNtbW1uQ/7Rs3biAcDqPZbKLT6aBWq+HJkyciPzw6OpJMjvl8HuVyGQ6HA41GAxcuXMCZM2ewtbWFer2ORqOB8fFx2fW9ePEiHj9+LDXcKOk5deoUarUaHj58iEgkAo/Hg+3tbXQ6HYnpyGazqFarmJ+fx8rKCu7evYtsNotUKoV0Oo1GowG/349CoTDkaBcKBXE2isUidnZ2sLq6KtnlfD4fWq3WULycGfumnWhT0qVBjgYjwNO08e12WxIlcAdbO9tWDisdK80Gso10SNkeM9bNCgCe9P1/jem+60K/HGsyZfp+dALpCI+MjGB9fV0Kses4Pu7wa3YEgAAlnV2T43DSHHHsrJx9q3M06Nf/6ADr62mwQACtv7eSxfIc1kKMRqNYX1+X9pobBhrgaECpE6T0+8eZYNkf/uN5Pp8Pk5OTSCQSUuON0jmfzyfPndPpFBmgFcN7EijT65dgw0pGyevq76ykkVbMmwm6TzKTCdcAlol/yDSxvVybZKHICFP6HAgEhgp0c30zUyUZX7abjDvHBICk7mfxcJOtI9Dk/fQ53DjQRe25plwuFyKRyNAzoWPo2u32EGgj86oBJv8RTAaDQTmPGxKBQEDeYXzGfT6f/KxUKqhUKpYbTV+XvVwAzo6Bs80222yz7StYp9MRaSML+x4cHCCZTMLhOM6iuL+/j0qlgkKhIPFKe3t74ljEYjGcO3cOiUQC29vbmJ2dRalUEudmMDgOmL969Sq8Xi+i0SjK5TKmpqYQCoVwdHSEYrGIeDyOSqUijv3Y2BiazaYUIj59+jQikQiuXLmCRqOBcDiM7e1thEIhTE5OStwHAREdX7az0+lgY2MD3W4XPp8PsVgM0Wj0mfIDfr9fHDbtcJpMmmYfgGfTn9O58vl88Pv9Q4wNnS46cWSPTEfIBGAAEA6HAUDaSMfYCjiYnz0PtD2PeQOG4+EIRtke1swy20+HVsv0dnd30e12EQ6HhxJpaPbBlALyflq6yrHTQNWULwLDEsSTZHua8TNZJivAocfHaqz0McxGSMBZLBYlMYYZp8e/WeR5ZmYGZ8+eRbPZFJaZiYRYxkHPLdvL2ogAhDGiI8/aZW63G2fPnsXIyAg+/fRTqT2mZb6afTOBmB5DcyxNwKwTaGh2T4+tZlBNZliP6/M2VEwZtI4dJRhn7JrebHC5XGg0GlI3j1kguTnF9wlBXK1WE3CoM+kSEBHo6WQ2jEMjmOL65bPBthO0EfSRoWeioHa7PfQdY1PJIrPdTF7D+5MJ1pJuAlm2ne/Lfr+PSCSCSCQiUkqeQ5Cn2WO7jMBfkz3NQvmCG2KbbbbZZtvfauN//pcvX8bR0RG2traGHAL+zGazKJfL8h81nempqSmsrq5Kiv6JiQlsbGwgkUhgZWUFT548QSaTwa1btzA6OopwOIxGo4FTp07B6XQKewYcyy0HgwHC4TCSySSKxaIEzM/MzKDb7eLjjz8WwPD48WNEo1HE43H4/X4Ui8UhkOJwHNcuIrgAjuuQsSYWs2Oa8jpmeqOZLIB2Gs04Mn0tzYQwyJ9tIuvHOBIzhk6blkwCEMkqj9NJGUxpJK+nQaiVU6zb+zyQZwJWSsgY32M1JlYAQycqoWySDjcZAe2Q8966rRpgW80B28PjTpLzmWNkjsvzzjHvb/afkjP2lX1iH3XmRybXiUajCIVCCIVCGB0dRa/Xw7e//W1Eo1H84R/+IYLBIO7fv38i6xEMBuFyuVCpVOT6BNv6HIKxSqUi9R91NkGdCIT9NAG2KWM0AS/BnAbjeuz031Ysm3me1efmtTTA1OwowSPXH8ET5ZIOx3F9s3q9jlarhXA4LBsutVoNfr9f7kO2imCMwJ/31GuPDKeWTZptHwyO5Y98DvR60dJHZgwFniYKYqITgjuuJybUYZbIwWAgpUj0+FESybbpZD3aAoGArF3+v8D3ENv0IuzlAnDCwNkIzjbbbLPNtpPN4/FgYmIC9+7dw8TEBN5++208efIEt27dQrValTiKVquFWq2GRCIhGRzn5+cxNTWFvb09qT20s7ODCxcuwO/349NPPx2S2tG5WVlZQaFQwMHBgexQM8jf6/UiGAwil8uhWq0ilUohEAjg6OgI1WoVZ8+exfb2Nra2thAOh+H3+9Fut7G+vo6DgwMBRFp61Gq1BHhub2+j0WiIDDSZTA4F9JvgTLM3NO10mVIxk+EZHR1FvV6XGBGynDpmSd9fO/lWTAYA2YHX0jXe14qFY5t1e60YjpP6ov/WDAlTpTPBgQa65tiY/aETreOVdNY77u5bsZJ0RAn8TNmenh860rot2nm1Gt+vAtzMMbICzSMjIwiHwwgGg4hEIiJLi8fjkjAIABKJBBKJBNxut2QuzOVyKBaL2NzcxOTkJG7fvo3bt2/j+9//PlZWVvCv//W/lgLfnGuWUyCrQgl0u93GzMyMrJd+vy8xTgQfmo2m86/XoilHJXukxxvAEEjSINoEcvr7k9g22leZI309zUSZcxMOh1EsFmUsuGlAYNTpdCTJUqVSQTAYFEa2XC7D6/UKoGMBbpfLJTFo+rnzer2oVquyIcT3ki4DQhmmrnfIchqUZTJ+kvJrPvN8LjQoBZ4y/x6PR9hDh8MhCX7a7bZk3NQlYsgYMuaNSVyoWNDJTXhfAJKV80XZywXgvvhpM3C22WabbbY9z1qtFprNJi5duoRgMIhsNivgibuthUJBCnO73W4Eg0EsLy9LDThmodzf38e5c+dweHiIdDqN1157Dc1mE48fP0a73UYwGMTS0hLu3buHUqmEZDIpDrvX60UkEpFYNZfLhfn5eZE9er1exONxYfRSqRS8Xi/y+Tz29/fR7/cRi8WQzWbR6XSG5FG1Wk0SDbRaLdy+fRuXL1+Gz+dDIpGQGBTTzBT9VmyLBl86hodOFHfHuQNOZ5C76qbTRzNBIz8Djh1anTzD6home2WaGcfEz74MvGh2MRwOIxaLDcUBWR3Pa2rGxgQGWvpIB1yXYdCshc6YZwWc9PhpEHdSn0/q55cdYwWG9fhEIhFhiGdnZ9Fut/Frv/ZrWF5eRqPRwObmJvL5vDjjlUoFe3t76Pf7sjnBJCiffvopqtUqkskklpeX8Y/+0T/C1tbWUJIgyv4ogdM/O50OxsbGMDo6KmyczopaLpeRSCQE3FhJ4jQII8ujNz0IIs0x0uCCn1lJZU2AbwJtc65PMnMTRl+XzyHbn0qlpPwFMzVy/Xk8HokxHBkZQaPRQKPRkA2Ufr8vJST4DqtWq2i321IfTT+T/ElwzM2tXq+HSqUCp/O4Pqbf74fH45EyE8DTWFLG1TJLpc/nQ6fTEbYNeFrnjfeklByAvDeYEKXVag3JPSnPJnAkE2duJnH8uHlj1sf7Ou3lAnBk4GwAZ5ttttlm23MsGo2i3W4jn8/j9u3buHbtGiqVitSXYpKSyclJ+Y96YWFBYtbK5bLESpRKJTx69AiRSATf+MY3sLa2hu3tbfR6PUxNTWF2dhZ37txBv9/H5OTkUGwJARYdrGg0imKxiFarhdHRUTSbTayvr6PX62F5eRkejwe3b9+WGk4ulwu7u7vIZrMS+0NwQJaGjs9HH32Et956C36/HxMTE0NJQfR5phxT/6TpmBsTwHS7XSlrwAQFegden0/nnwDPCoARuLBPPE7L8vR5JvA5Cexo+zIQRweeBbeDwaA4pLo/JgDSO/R09E3Qat6DY82U7CwPQOdS31MXcT4JxJkA7nl9PYnh0SDtJCYOOJabRaNRiV0qFAqIxWI4f/48Lly4IBk79fwx6+v9+/dxeHiItbU1ZLNZZLNZOZ+xpa+99houXrwIn8+HiYkJlEol7OzsoNlswuFwIBQKwe/3o1arod8/TnbSbDZRLBYlIyVBFT+fnp6W577ZbMomiK7Jp+eEfTfnTo8P+6gBgAbUmmG1kmCa424l8zU3CTSw1zJmJvEAnspqyeTmcjlhSwmums0m/H4/Op2OpOOv1+tDCWFGRkYQCoWGUvZzo8ZMrc+2MRbR4XhawJvPFAFctVoV1o1yRX5P9p7ASpev4DOiJZN8PilVJ4DjfZ1OpyREITPHa7PNZmkWsssc45MKv38d9lIBOHJwtoTSNttss82251mn08Hu7i7u3buHTCYDl8uFqakpZDIZ1Go1zM3NSTIRMmROpxMLCws4OjoSKVWr1UI0GsXBwQHK5TI+/PBDFItFpFIpnD9/Hn6/H7du3RLHP5vNYjAYwO/3P5M4gQXEycrlcjns7u5iZGQEp0+fRj6fx4MHD9DtdjE7O4ter4ednR1pG2WUOs5K75rv7++jWq1KzJ7P50OtVhPnik6KBhqAtcOuHVSaduYJrJhZjjvpOtW8PtaKeQOeMhX8HXjqCJsSSpOZOom5MI/5KoBmMDhOWBCPxyVjKFkErgXtsFv1RSc2OalNPIbOaiKRwJtvvon79+9jY2PjmVi/5/XVdPZPAmBflWkzzQThZC0ikYhkbi0WixgbG8Pt27cRi8UwPj4ujj/H7/DwEE+ePMGdO3fw+PFj7O/vo1wuS3Kefr+Pq1ev4uzZs/jlL3+JVquF+fl5TE5OwuFwSC08JrcJBAKIxWIC4rrdLkqlklyT8UuUrFarVZw+fRqHh4fCEJtZFXVcFBkojuFJY2QFwMxnS1/D/PzLzAR8er4ICpkghTJCApzHjx+j2+1KUpBisShsFlk4Zrd1Op0IhUJSy8/v98t7Kh6PY39/f4jV5PtEvx8oi+z1nhbzJqAjm9fr9WQ+yLKRnWOJAzKCsVhMJO58v/C9yhITACT2jdk2W60WQqGQ1LnT49hsNiVml0ld+v0+otGoxN1Fo1FheAleX5S9VADOZuBss80222z7Knbt2jUUCgVEIhFMTk6iVCphd3cXiUQCr776qkgDU6kU6vU6Zmdn0Wg0sLu7i3a7DZ/Ph0gkgnQ6je3tbZw+fRrlchkHBweYmZnBO++8g0ePHuHKlSuYmpqSBAxutxvj4+OIxWLIZDKye+z1elEoFASwFAoFlEolRKNRjI2NYX9/H3t7e5KlstvtIp1Oy450LBYTB4lZ1gg6AEg2trW1NZw9exaxWAzJZBK5XO6ZhA06gyVgzWiZcSgmCNMMC50hM+ukCRBNKRnPN50kHUdnFfdm2vNAjhXDaHUMnbd4PI5YLIbp6WmJT9SMism4cUx0sgTg2fTwGjzz+Fgshu985zvw+/24fv36M7v9JsNj1Xa2gfNrdawJZtlnk7U8CazwO6ZZf/LkicjoGGf1gx/8ABsbG1heXsbc3JywxWtra7h69SoeP34s8ZLcRAGOM70mEgns7u7i3/ybf4NGoyEy00wmg+XlZbz77ru4evUqNjY2hiRwBCFkiJiciMwOx4VJNM6dO4fPP/9cHHtzTrX01XxmzDHSc8p1z2vq+osnzZspndR/67XCTREAQ+UlTOav1+vJ5g2ZNsaBsT+cs2AwKBJelj0pl8uy1tmmdDoNj8eD2dlZ5PN5ZDIZAVK63fyp30saQJHh0wCWGWz1Jk0wGJQ+ABiSvPK9x3cFxz2dTsPpdEoZAdYh1DJxrtteryflJVgXjsfVajWJFSTI5XvtRdnLBeBedANss80222z7O2H1eh0rKyuyyxwKhfD666/LTnMqlRKZDhk27uyGQiHMzc1hfX0dlUoF8/Pz2N3dRbPZxIULFzA3N4ePPvoIuVwOly5dQq1Ww9bWFjweDy5duoRCoYDNzU24XC6Mjo6iUqmgXC5jbGwMLpdL5JczMzMIhUJYX19HoVDA3NwcotEo0uk00um0OBChUEhqPpHxYk2jarUqMULVahVPnjzB6uqq1MpaX18fkghxZ9w0q6x4TNLCnX06gCz8a0qp+PfzYsb0PbTDrM1snwaCJ4EL7VBqYHUSu2Sa3++X7J10gM1YM91WPZ7suxmTpv82QWY4HMapU6dwcHCABw8eYHt7e+hc08wxMtmYk0CaPtZqvMx2WX0HHDvB0WhUYtc0yGi329jf30cul8PVq1fl2aJMzufzoVQqweFwYHd3V2SNiUQC09PTaDabKJVKAlbILKfTafT7fczPz+Mb3/gGEokE7t69KwwO1wmTxWhgoxPFOJ1O3Lx5E7/xG7+BN998Ezdu3AAwnPpfz9dJ42IeZ8ohabw/28LvTWZay1/15geZQb2OeE+rmnPmnJFl9Pv9AlIoDxwMBkNJS/iTMkYCIYfjuMxAJpNBtVoFAJn3fr8vpTWYGKZarQrzRhaOJTSAp2UsyLxRplipVABAEt0w5owAjSwc+8c2h8NhlMtlYf77/b6UjSHIZyZNvuc5B1wvvBfHqNlsSpKVWq0m4/ai7OUCcPKwvOCG2GabbbbZ9rfazpw5g06ng3Q6LfE0ZJ3m5+dRLBYlPi2TySAajQKA1HO7d++eyOlKpRKCwSAuXryIZrOJa9euIZVKiTO4t7eHWCyGCxcu4N69exLsH4/HcXR0BACYmppCqVTC0dGRSM2q1Spu376NTqeDU6dOweFwYG9vD4eHh/D7/RIXQieFafoZ5+H1ekUyBByD1o2NDTSbTQQCAaysrOCjjz46Md28ybpYxab5/X4Eg0GJsXG73VIqwDTNqgHDgMf8qVk583zdHjq2VkyF/tv8nXYSiNOfUzoZjUYlVmpvb2/I4abzq9vOdO10xDWw1eDPZB7Jsubzeayvr4uDfFJ7nwdCtdTVdDZPYo6ed30rZoXs5OjoKAqFAqrVqvQDeFr4m3JHxppWq1V4PB5MTU3B5/Ph9u3bcLvduHz5MmKxGKrVqsRSer1eJJNJuN1uPHnyBCMjI5LMp1KpyLOQSqUkeQ4ZaV1HT4+JBt8ulwsfffQRvvOd7+DixYu4d+8egKclBzTjzD6RKTUBk46HtGLoyEZZmT7GjG88CbwDw3F0bKeeN/aD7dJZGnmezmTLc5mdE4DEiNVqNTmP8+10OiW5j1YGsN2hUGgops7n88kYMHNov99HPB6XuWWdSjJkuuC2Zt05LjxPJ2FhNs1gMDgk6yQbB2AIxOl3EjNyRiIRAE9r5GUyGRlzu4zAX5NJFko7Bs4222yzzbbn2MjICEqlEsbGxkTOGI/H4XA4kMlk4PP5kMvlMBgcp6Wm3LHZbOLw8BCXL18GANy9exczMzPweDzY2tpCq9XC+fPn0el08LOf/Qz1eh2jo6MIBAK4cuUKXC6XSChzuRwCgQDGx8dRLpdxdHSE0dFRJBIJHB4eIp/PY3R0FNFoFP1+H48ePUI6nZYEGn6/H16vF7lcDnt7e8jlciKL0nEhdHjcbjc2NjYEnM7Pz4tTRGeEDi0dKjpI2ikFIAWXCWJYd4nO6fNiQ8yYtpOkeXSO6XhpxoGf8b56F94Ef+bnJjNyEnjhd5FIBLFYTMZRJ1xxOI6zUo6Ojoqj2Wq1hFFgbBDlWQQ3mo3UDIrT6UQwGEQmk8Hh4eEzEk2rPuj2mv0wf1oxqVZjb15Pf2Yynbxmq9US1optpZTR4/EgEAigUqnA6/UKk33mzBk8efIEd+/exfLyMpaWlgTkafay0+kgkUjg9ddfl4yVHLdarYZsNivsLz9nog7GfWkG0QRXHN8f//jH+Pa3v43Lly/jww8/HAIL7CePdTgcQ2UHTHCt72XOmzaCL5NV4xrRpSpMIK7luXquubHBRB+63WQwWSeSAOr/x96fBUlyptmh2PHY9z0ycs+szKqsFSig0NWNpTFAY9CYVtvMtNHIEcUxSkOKJoo0o/FFD7rSg8yoy4drMsr0wAeaKOOilxbvkMPpWXpm0JhGN4BuAIUCUEAVas99i33fV9dD9vnqDy+PrOrppUhc/8zKMjPCw/333z28vvOf852PLBSfA+VyGX6/Hw6HA41GA8FgcAyEcWzqwky/38fMzAyKxeLYQoXaooHuoAT1ZEt9Pp/UvfF7EggEZJGK33f13ufcsO8fm4zb7XZpxE1DFj43XC4XBoMBer2ePFvJ/LXbbanHIzAFjp5vlUoFxWJRVAdqf7wnEV8uAGfVwFlhhRVWWPEY0ev1sLa2hna7jXq9LjVsapG7ajKSSqWQTqcRi8UwNTWF7e1tFAoFLC8vYzAYoFAoQNM0PPPMM7h37570epuensbMzAz29vaQTCaRTCbhcrlQLBYRj8cBPGiynUql4HQ6kc1mMRgMMDs7i0gkgnK5LI3Gp6am0Ov1EAwGEY1GMRqNsL29jUwmIxJPAgZKgRqNhoC+RqOB3d1dpFIphEIhLC0tSe0RXTEpgWL7ATWYJIZCIZGaknFjLYva2NdougGYSyiNDN8kxsgow6SsyawexSyhVj9rxjgat2et49LSErrdLtrt9tixZmZm8NWvfhXLy8sir+TcO51O2Gw21Ot17O7u4vPPPxepqwocHQ4HUqmU9EdrNBrIZrPCdBjHb7wWk6R6xjBj4o5jKCcxe2bH6Pf7SCaTWFpawgcffCBJuSpTJJjSNE3Y6w8//BDZbFYkkJ1ORz7He4j7uHXrFjKZjNQlqXV2oVAIdrsd5XJZQJxa+2YmxzUCXp7/W2+9hRdffBHLy8vY399/aP5U8EenV7KtvD/V62sE0WqoMkn1byPDqTJr3M4IDjk+josGJZwnI5PI7w3npt1uw+v1Qtd1lMtlWQwaDAYIBoMiZ4xEIqjX6xgOh2i323IcXrtQKDRm8EFXSVr4835pt9sYDocIBoMIBALCgLVaLXQ6HXHPVPvVUc5Zq9XEjIbPOIK2UCgkagqan3i9XoxGD9of0OyGCz9+vx/NZnPM7ISmPKwJHg6HiEajcLvdAnafZHw5AdyTHYYVVlhhhRX/jcdTTz2FYDCIO3fuYHV1FXt7e4jFYhgMBlKvMRgMEI1Goes6tre3sbKyAqfTid3dXTidTrz00ksiS5yenkY4HJb6mVAoJCvJt2/fxvT0NBYXF5FOp1EulzE9PY3R6MgZ0uVyIZlMolqtijwyFouJHGl3dxculwuRSAQej0eStkajgatXr6JQKMBms0lBvwpQyIaFw2FomoZer4dbt27h/PnzcLlcWFxcxO3btyVBogub6k5JaRWZDa/XK6vxnU5H5FhsMD3JTGSSXJGhAj6GsS7I+JOr50YHv0lJs8qWGN83bktzmGAwKPPOnlmadmQ+c/bsWTz11FPSn4+1RJRy0eyAtVzZbFbYAI6Bkj82FS6VSmLi8bgyR7O5NjtvdV/HMUOTrpUZSOQ1aLVaWF5extLSEvL5vEjl/H4/XC4Xms0mVlZWEIvFUCwWsbu7i0KhgFOnTiGZTI7JSbkIoDIubLKsAjveH2wRQPkwa7VUVvi4uVMllaPRCB999BFOnDiBZDIp3y+euyqrVBkwdX7U/RnvMZVlA8bvcRVg87Oq1JPbGBu5q/tUgap6j6mfdzgcUq/IFgIEvQRPaj2rrutSE0bARlZOlTGORiOpoQsEAmNtBer1ulw7Ais67tJk6fDwcAzksZZXlePWajUBzABEKjscDuHxeFAqlYSZJ0AkuGbNHIEaj0Gmm99Dyj/peglA6qPJxpfLZYuB+2WFhocfyFZYYYUVVlhhjGg0is3NTbRaLdy8eRMXL17E7du3xVhETTqazSbOnDmDdruNvb09zM7Owu1249q1axgOh1hbW8NgMMCnn34qtWmqS+Ly8jIcDge++OILBAIBLC8vo9VqoVwuCyPX6XTQarUQDAbHzEwqlYoAiOnpaQBHSdrOzg7W19clUbLZjnoalUolYaWYrDAZI5u4ubmJcrmMmZkZrK6uwu12o16vSw8s1vvR5Y0JK+V97LFEpoPMh9qjzch2cX8MFUiZgbTjHPpUloPSxEnyQSNTYUyqjeyVOnZKJ91uNw4PD4VFInhQWTaVIaG8is2BadpAeZgadFRsNpuo1WpjNWS/SBjPRf2bbMxxx3iUpNIIglutFnZ2djA/P49z585hf38f9XpdzsVutyMejwt7EgwGsb+/j/n5eYTDYWF3yJo5HA4kEgksLy/jzp07ssDAGiyCgH6/j1arhb29PTQaDdRqNVl84FxTsgk8cDClwQkZU94buq4LQ7O1tYUTJ06MjU+9frzuNKghMOfcGOsbjfcgx2NkBvmaOr9qnSrvf9Wh0SjXJGBR5ZMcG5lyvk62jd91p9MprUfYtJyf83g8qFQq6HQ6CIfD0PUjoxF1zLT273a78Pv90LSjmrtWqyXvU6pIINVqtVCv18d6V3JBikwhF8R8Pp9IyCmFHI1G0n9QvUZcgOMc0UGYz0PKenkN+NwcjUYPma5QZso+of1+Xxa8nkR8qQAcLAbOCiussMKKx4i3335bnCG//vWvY3t7G5FIRFbyY7EYCoUCSqUSVldXcePGDQwGAwFf6+vrCAaDWFhYwP7+PnZ2djA9PY2VlRVJTnK5HGKxGGq1Gmq1Gk6cOIHhcIiDgwN0Oh3EYjGxQ+/3+4jH4/D7/Wi1Wjg8PMRodGTpbbfbEQwGRYaUy+VEsmmzHfVoikQiWF9fl+L9QCAwlvBRXmm321GpVLC1tYV4PI6ZmRlEIhFxbKPBCq3E2SuKScxgMBCp0Wg0EraIySATY+OqvFmorIHKGBjllGoia5Ri8jW17krdH1fSVaMT7ktNqI1JNk1maFygyje5Mt/v93H37l1EIhEsLS1JPSUbmLMmrt/vo1Qq4fDwUJJY9fi9Xk/uEdbtGM/dbN6M4+Zrk4L3w+OwBpMAsVGyx+0oI759+zampqZw8uRJXLx4EX/yJ3+CnZ0ddDodBINBDIdDJJNJ3L9/H8ADKS5rBwmAKQXO5XLyGhk5Nl+uVqsiy6SjJeu5CIydTidWV1fx2muv4eDgAB988IFsx1pF4/yxPyJB3Pz8PBKJBCqVyhhAIIinfFidL/U6GME0YG7gA4y35eB26nsqsFOvhVrvSamgeq353SDL1Ov1pN8bpYiqMydrzngtaIhEAw8aI3G+KDEkA0hWnPW1lC72ej0B4B6PR4Ai2TmyfATrXKChBJLvcy447mAwOOYK2Wg0pL6N9wMA6SnHv9m+QGX0uIDAa02Qxu9yrVYTuXmr1TL/Av0a4ksF4MTExEJwVlhhhRVWHBPpdBq6ruPixYuw2+1YW1tDtVpFKpXC3Nwc9vf3ce/ePQyHQ9y/fx/BYBBra2vY3NxEqVTCysoK3G43Njc3kclkcOrUKZw/fx67u7vwer3IZDKYm5tDPp8XYxOyK8PhEIuLi8JQ2O12MVApFAqo1WrQNA0+n0/kRVzh3t/fR7FYFHOBcrmMYrGIw8NDVCoVAQRMZLkSX6/XkUgkEAwGkc/ncfv2bZw9exZ+vx+Li4vY3d0dS2IpA1TNSLgyTmMBul7yGCozYMZEMLj9cZJK42cYKnhQ/6mtBex2u6zGMxmrVCoCKidJ6BhsRs26HCZyqpkEzy2dTuPtt9/G3NwcLl68iNOnTyOVSsnYG40GDg8PcfPmTdy/f1+uCaWWAKTJNEHDpDCTO5oxh8bPmMkjzX5X/zYDtZP2R9DQ7/dx48YN2Gw2XLlyBd///vdRLpfRbrcxPT0tDpHXrl1Dr9dDPB6X+4DnTQfOdruNdrstRhysWaIjIK3gyTADEJkr3yeLU6vV8N5776FcLqNWqwkLZ3a+uq7LYgfBweHhoUhkVUdLlX2j7M5Y36jOqypdBR6+x9X6Nxp+8DhqLSCAMWbNDMir7qcqiCOIosMuZb8EVGQ1eW4ERWq92nA4lPpgo3mQcQGH21Sr1bFG3g6HAz6fT1QC6neLDCiBEkEcQSABJq8tn3l8TvJeqVar8hzj/aHruvRx40Ib7zs+L1T20ev1yvzY7XapvSPjarlQ/pLiwRfGQnBWWGGFFVZMDkq6vvjiC6mdmJubA3DU5Pv+/fvodDqoVCp4+umnEQqF8Nlnn8HtduPcuXOo1WrY29tDPB7HxYsXMRqNcP36ddRqNUn+b926hVgshrW1NWHN/H4/ZmdncXBwgHw+j0gkIo256/U66vU6PB6P1KNRKtTtdrG+vi5MhsvlQiwWg9vtxsbGBobDIWKxGFqtFrrdLlqtliRIXAGfnp6G2+1Gu93G3bt3USgU4PF4sLKygg8++ECSNNWAgnVclClxZbzRaEjrACNjZJQ/qjIxdaVffd8s1ATXjJUzAkEmsk6nE8FgEF6vF/l8HtVq9aHaOnU/RhaOjKaaRDMhNZN2VioVlMtl7O3tYWdnB1/72teQSCSws7ODZrMpDd2LxSIAjAFdut21Wq2H+tsdx66ZgTYzhtH4u3Ffx7Fxxv2rv6vspzqHwFHtUqVSEQt6TdPQ7/elF9xgMMDq6qowV2Q5gaNattdeew0//OEPZfGAQJdgIxwOi+EQa+9oLEPDCQJkJv/ValUYZQBi9GM2BwT9PJ/BYIC7d+/i1KlTwkwBD6z5jU3ajQBOZYnVMANyam0d58f4HaKzJIM9Cfk7W12ooIhjYk0XARQXimge4vf7Ua/XhYnnd5zXIhKJCItHMF0qlYTF43fE6XRKvah6L5CZJjtNQyaaohAYcUzsv8bgcWhAwmOx4fhgMBBnXUrZeTyOgWwin22cm36/L3WWZCepQCBo9Hg88jxUn2NPIv7GAE7TtNMA/mflpRUA/zcAEQD/BwD5n73+f9V1/S/+psf5ucb0s58WA2eFFVZYYcVxce/ePdTr9bGGrhsbG/IfeL1eh9frxdLSEmq1GnZ2drCwsIBIJCISyGQyiWg0inQ6jVqthlwuh0uXLgEA1tfXEYlEsLy8jM3NTTQaDSwvL2M0GgkTk0gkcPLkSZRKJWSzWaln48qvpmmSeFCmyPfdbjcymQyuXbuGRqOBUCiEWq2GTqcjJgT9fl8kR8ARG0R51Wg0wv7+PuLxOObn5xGJRJDNZlGpVKQGkOCPkiMmPI1G46FmySpzZAY4zAxGzEIFFkxiJ7E+fF0FZ2SCCETJuJiNw3g81j9FIhExdlDPi6CWTItR+lmr1XDlyhWpnaLb6M7OjrCj6rl3u12xzGf9oHFsx7FlZuOfBOi4jZGFJLszSUpqdg0JLI5LXslaAEf3RjabRSaTAQBcvnxZAA2BF+sFO50O3n33XQEimqYJ4+vz+ZBMJtHpdKSmsFKpCFAjkGHyr7og8lqypks9Z/V8eX7qfBDc7O7uYn5+Hu12e4xNI/tjxliqIE2df3XuyfZwfwQp3EZtE8C6MPXYKsBjuFwuOR5fp5kH90kGKRgMolwuy3eHizS83jSEsdmOWgtEIhGRsdKghj39WM9JEx4+j3h9KVWkQsDv94t8m+CLPf0IzikTZysK4AGg9Hg8ssDFv8mS8pq4XC4xItF1XYCfCgyBI3BKySf7x1Hay/8nuCDA++S/SwCn6/pdAM8AgKZpdgAHAP4YwD8E8P/Sdf1f/TIG+PME59HCb1ZYYYUVVhwXdCoj0xWLxWC325HP58VcZGZmRsDShQsXYLfbsb29jcFggEQigdFohM3NTUk8XnnlFWQyGWxubiKVSqHT6eD+/fvCuvX7faTTaQwGAySTSSwuLqJUKmFzcxPhcFia2KpGDqVSCfl8HrlcDuFwGFNTU4jH47hx4wZu3LgBv9+PVCqFvb09YRm4QqzW+IxGI1QqFTE7qVaruHfvHlZXV+FwOJBMJpHNZlGv1wUkEgQxMbbZjizxaaVvVsNzXO2bGStkBuwovTIafqhmIUywjQkxcJTcHRwcCEOnvsdgAqwm6kz+w+Gw1LipkjhuT3ZDbZfAGAwGODw8xMHBwUPzwLEwae92uzKfx9W9TZIzGmMSiDMDY8ZQ51WdX/V94+ePk7+q7/P4w+EQ8/PzkkRzbnw+H77xjW+gWq3i008/lZonLjSwWTz7HpLVoYzQZrONNWMmyFYt6IEjBm9lZQXpdFq+K71eTxJzJv68r1TWV9M0VKtVJBKJh5wl1fNTjUsmgWnVEZPgk5/ltlwYMXOipASQ9ZLqPBO48TWCQda8NRoNWdTxeDzC1qk9IAmAeQwa9XAuK5UKGo2GMFuc99Fo9JAjLWvbaOwDHNWdUWXABRYeX5VJ8hlAeSfngUoGtgdQm4PTXITf5UAgIPca28P4fD6R2HJeyQKr5k/8mz3zeI/w+nq93okN2X8d8cs68m8C2NB1fedJotEHLpRPbAhWWGGFFVb8dxD8z5fJOM0/2u02ZmZmMDU1BZfLhVQqJbbo9XodPp8PCwsLaDabwnTNzs7C6XTixo0b6Ha7OHXqFDqdjjiweb1etFotlEolDIdDzM7OIpFIYGNjA41GA5FIBJFIRPqIaZom7ODBwQFarRbm5uYwMzODaDSKH//4x9jb28OJEycQjUaxvr6OSqUC4IHVNXsvsan3YDCQ5IpJXiaTwcHBAaanpzE7O4tbt27JirkxASaYY5Knsk/GWh4jMDOGmswaWSyG6n6nBl/nftRjGcGHCvKMCTcwbuzAfQcCAQEOHJ8RKAIPO2pSSqeydiroMVrFM8GlbPU4YKaeq/EcjMDKuJ9HAT6VTTMyUuqxjcc0bjPpWJwPJtixWEws21mruLq6ivX1dZRKJQEOTOYJqBOJBGKxmLAqu7u76PV6CIVCIhmmKyEAAQtqDR0bNat9C5mA85icC9X1UQV19XodqVRKGB0jo6kanKjgmT+N4Jb3M8+Lsl0jW0qGjvPC3zkubquej/qTrNPh4aH0gOOx1V5nrHO12+3yDCIjRuBIoEbwprpPRqNRcZSktJXPWdU4xWazCZOl7p/mS6xPY/0dm3PT4ZKGTsADKTLbPfAc2MuS41Plmmodqtfrle8nP0uw1u12BbTXajW5R7jIZcac/7rilwXg/jcA/n/K3/9M07T/HYCPAfyfdF0vGz+gado/BvCPAWBxcfGXMghh4CwEZ4UVVlhhxTHBBPr8+fMiUSRD4HQ64XQ6sba2hmAwiK2tLWGpfD4fyuUyKpWK1KGNRiNkMhmEw2HYbDbs7u5iMBhgZmYGNptN2BiPx4OzZ89C0zRsbGxA0zSpfyPD0Gq1kMvlxODE6XTiqaeegsfjwd7eHt577z20Wi2cPXsWPp8Pn332Gba3t+FwOBCPx0WOpOu6AM5QKCTF/bVaDbFYTFarr1+/jng8jjNnzuCTTz5BJpNBtVoV10u1bogMHOs/gIf7ixlNGVSpoRmLdJxRibot98GxmDEcZoyRekzjMYy5gsfjEYmWcV/GcTIBVJ3r+LpR+skEXJ0z9hskmHgchm3SHKlglWMyggezzxoZMuM+f94wXjfV2AY4snRXE3m3242FhQWcPXsWH3zwgcjX6P7p9XoRjUYRDAaRSqWQSqXgdrtRKpXg9/vh9/ul/QbBAmV2qjugeg/t7OwIqFMbhwMYMyghwCQ44vml02lMTU3JNTWyxOr14O9m9yr3rQIMAGOAgAsCBG9cWKBFv2quo+5DBZFcBLHZbJiamsL169dFnk3w1mw2EQgE4PP5ZFtjzRv7wXEcrKUdjUbSC47yzm63K88N3utcqLDb7fD7/SLnVg1DCBrb7baAK3VxhECPdcZ8HnD/nFOv1ytsGx10dV1HMBiURSwuKESjUZlzFTzz+8p65kKhIMfy+Xzifmqsa/x1xi8M4DRNcwH4XQD/l5+99G8A/I84UjL+jwD+nwD+98bP6br+bwH8WwD4yle+8ktBXJaFiRVWWGGFFY8Ty8vLeO211zAYDPDOO+9gOBxiampKVm6feuopdLtdbGxsIBaLIRaLQdM0WV2m0QVwlGgtLS0hnU6j2WzC5XJhZWUFALC9vQ2v1wuPx4NEIoFMJoNCoSA1PA6HQ34WCgXk83lxVpudnUUqlUK/38fGxgZ2d3cRCATw1FNPQdd1XLt2bUzWdXh4iMFgIH2Tms0m2u02/H6/ACBKgPx+v7QTuHDhAhYXF7G6uopcLid95FQ5Jgv8KSkCxmWMwMMGJgwj06Ums0b2Tk181Roqo2GAkWUzU/8Yk2izbVUQQ0mZaiKhntekWjom2EYWUmXjVIaOzZLpsqiOwzg/x4UZADNKSh8HED4OWDNj/47bH1k3lWm6ePEiMpmMJM+BQEBaMahmEx6PB6lUCsvLywgEApJoz8zMSA+wdruNXC4H4EgaGYlEMBqNEI1G5d7e3d0F8KD3GyXE/M55vV5hgVTGTV10UM13OL+1Wm3M8ZLgie8bvwMqk8f5oWyR10j9jAoYjaCcobpMGhls9afKNN66dUueD7quC/ukSqHZcsTtdouUkuCNQIfH5RioNiBjRQY/GAyKkYjKwpI9oxxW13UBpKp5iBqUcLIJN5u122xHveEoe6R5Ec/B6XSOmbNwXjweDyKRyEOySPZ+I6hV+961Wi2RuPMcjeP8dcYvg4H7XwH4VNf1LADwJwBomvb/AfDnv4RjPF4IA/drO6IVVlhhhRX/HcZ3vvMd7O/v48qVK9A0Dc8884wAs9OnT2N3dxftdhsnTpzA1NQUSqWSrFrPzs7C7/ejUCiI/OjOnTtot9uIx+OIx+OoVqtj9W8AsLW1JS56lCqORiNEIhEUCgVsbGxI/Uc4HMbCwgJsNhu2traQy+Vw/vx5LCws4P79+7h16xb6/T5Onz6Ner2Oe/fuCXtRqVSEhWu1WrJSTIvwarWKmZkZlEol1Go1XL16VXqZffLJJ2PJCt366JbI5FMFbmqSO4ldM4Km4+zyGUbWy2iUYsYYGZkkNfk2Mk/qfmw221jjXofDIXU9ak2Tet7HyUSNrIs6nn6/j0ajMVb7NoklM+7TTL6oAgQj6zaJiTsOtJlt97gA0wy82Ww2xONxTE9PY2FhAbu7u1LrVCwWpZaLYCKRSODVV1/F6uoqgsGgAF9KB4vFIqrVqgBun8+HWCyGxcVFvPTSS8hkMvj888+l/qrRaAi753K54Ha70Wg0kM/nxVyDpjzqNVYBsQq0stksnn76adRqtTHZpjFUdpZMkhpk/Hiv8btmBJIqQLTZbMIEscZTXewAHoBR9fjs/whA+jiq42R7AYJcALKYwVpBBo9Nxo49+diuhDJHLoYBkEUp9Zxo1tTr9cR9l4tZjUZD5JMej0eeOWS/2NC7VqshHA7LMfn8pMkKgTKZN7UdRaFQkM+o17rdbiMYDMLj8Ywxm+ozlFLL/94bef89KPJJTdNmdF1P/+zPvwXgi1/CMR4rpAbO4uCssMIKK6w4Jj799FN0Oh08++yzImWbmZnB3Nwc7t+/j0gkgtnZWXg8HhweHoo0i05u6XRamC06uE1NTcHpdCKfz8NmsyGRSGBtbQ2NRgO3bt1CMpmEx+NBqVQSo4yZmRmsr68jk8kglUphOBwilUohFouhUqngxo0bqNfrOHPmDE6dOiWSyUQigenpaen/xnqUQqEgzm1cSWa/JwDSxygajSIcDqPZbGJjYwNnzpyRWqP9/X30ej1xd2NiSemkKmlkqABJTdL4N7cB8FByaQwzySLwcFsBFaSonzXGJBZK3Qfrfrh/OvFxpZ/7MYIXo2TUOAaVySFw6HQ6aDabwmgY2Rm+ZjynSXJIlaGZxEYaJZpGRufnCTMwpzJUxvdHoxG+8pWvYHd3F//0n/5THB4e4rvf/a6wNHSQJNMWiUSwtraGRCJhei6xWAzxeByFQkHke3Nzc3jttddw8eJF1Ot1RKNRkQgTuNCUhjVQAOTa8vujOhMaGTWeFxk41sAaDXfUMatgXzXl4GuUCXLBxQjS+TtlnwCkz6N6vfmPwMJ4vYfDIYrFohy/1+sJa8l9tFotYUIpS2T9LI/Ne5byT7Jq5XIZ5XJZgJvdbpf6RDJeKmCl0QgZfpfLhXA4LGAqEAiIegB4YHxCNQAAMbJhDSHnJhgMynXkvUVWjm1ZOp0OGo2GsMDs+chry4bfqrELryHnNxAIPORk+euMXwjAaZrmA/BNAP9H5eX/h6Zpz+BIybhteO9XGvKdsfCbFVZYYYUVx0QwGMTTTz+N/f19eDwerK2twW634/r160gmkyJLrFar8p8+bbL7/T6i0Sja7Tbq9Tp0Xcfc3JwU0lO+s7i4iL29Pezt7QEAdnZ24PP5sLS0hLm5OdTrdXz22Weo1+tS0zE3N4fV1VXcvn0bV69ehd1uxyuvvAKfz4crV66g1Wrh3Llz8Hg82NzcHBtfOp2WOiDW+HU6HUn4mLw1m01kMhlMTU1hNBqh0Wjg5s2buHz5MpLJJNLptMiVyKYA4wyYyjqoDJWa8E5iqIwr8ep2dOMzmpsYQZ0KGCclvfx70jhU8KG68DGJJSsBYMzN0JisHwc4+XM0GiGZTIq0ldb2RnmdcZ7UY6jbGxlHo2xPZR6Nc2I02jgOOBjPU/2dY1bZKjPGjsdj7dULL7yAt99+G/v7+7K4wForNopnjzKz8Pv9CAaDwjBTwrq3t4dQKIRkMonV1VV885vfRK1WQ6FQEECuaUdukpqmYX5+Ho1GA5VKBa1Wa6x/HBkfsn/G60oWi+wZ99/pdB5iP8lkcV+8V9QaOyOLqgJs1oqpc0wmnPsxLmKwLs5ut4/VW1I2Oj09LeDJ4/EIW8n6NE3TxqSMau0pj8VzZdsA1g4HAgEEAgEBSMPhUBgw9f6kZJNsHvCgPYBaX8aWK7Twd7lcct1ZS0lQSkdRzhUZt06nI9/fbDYLn88nc8Pa5XQ6LeZWdKvktaL0FDhiMG02GwqFwrEs/K86fiEAp+t6C0Dc8Nr/9hcakRVWWGGFFVb8imNmZgbXrl1DOBzG/Py82PufOnUKoVAI9XodzWZTkksmO3Rwq9VqGA6HSCaTIoljUhIIBOB2u3Hnzh2pQ6MDXzgcxlNPPYVGo4FisQhNO7K79vl8OHXqFHw+H959911sb29jcXERTz31FLa3t3Ht2jVomoaTJ0/C6XQil8vB4XAgGo1C0zSk02lJ8tiniokdWTcmZJ1OR+rwCKS2t7dx5swZnDx5Euvr62i32w816jZjh4CHnSSPY4GYrBqTWe5fBSKUiD1OGMem/m0EccbxqYYko9EI09PT+Ht/7+8hl8vhnXfeAYCx5r1GaagKZJioq7VvTMgzmQzK5bIY5hg/z7GoibpRKqmeG4PAxMhwmjGTZgyeka0xyi7NmD31dRVUqMfinPp8PkQiEbjdbmmhsba2hq2tLbn3g8GgmJJQ6jYpPB4PTp06hdu3b6PVaoklfK/Xw/r6Os6ePYtkMik1VX6/X/rH5fN5cRudmpoaY2psNpuwN2SIzNhGNqGmkQrP1el0Sn0ZmSLeL8b7Wj0mZZFqLSWPSxDDBRjgYcMc9frxfYIZMkblcln6OnLMXKhQe9ixvpDXgDb8nCcCVZqGdDodMWLx+/0CfgnM1TYCNCfhuRGsBYNBcX6kaoDnzTYv3KemaVJDx3NkHz6Oja+1Wi1xnez1eojFYqhWqwL4CFgJ6sPhsNzPXKzj/cC553Ui+xoOhyfep7/qeHINDH4FYRFwVlhhhRVWPE588cUXWFxcRDwex+7urtS2OZ1OaYgdCASQTCal7oaJx8HBgTScVdsDDAYDxONxjEYj5HI56LouoK3RaGB2dhZnz55FOp3G5uamSJQikQgWFxdRq9XwV3/1V9A0DV/72tfgcrnw4YcfotfrialDrVbD+vq6JMbsO0ZjEoJMJhm9Xg+1Wk0K8mkA0Gg0sL29LckT93vx4kUkk0lsbm5K/ye1WN+MzSGAYLKqJpjAuIxsEqsyKVSgoO5rUnBbdXsjIDEGk2+u2Pv9fsTjcWFOfT6fWJKzPYM6B0zQOQfqPKjJO9kg1j7y/Mg8MXF0uVyoVqsPzSMTXPUaMOmfxI6p86iGyvpw3oxzflyorJs69/y8Wru1urqKubk5RCIRPPXUU0gkEkilUnJely5dwuLiIsrlskj5dnZ2cP78eVNTHEryAEiz59FohJ2dHfR6Pdy8eRNLS0vY3t7GF198IZI8LnDY7XY4nU7s7+/D5/PB6/XK2FWTHvV46n3Y7XaFMSeYI/hnPZbH40Gr1RImnNJAzhmBgJGNVu9btceY2lZDnXcjgOPc87NkCzudjkgHOX7KI9mjjTWZbAWg1rCRpQMgPeDUBQ0yYZxLXddRLBblGjmdTpkbtghgKwO6P3LMlFiyxowSUFXKSqMlzhdBG7+n7XZbZJg2m00MS9RWCFyYa7fbCIVCckwuBvh8Pqn75XOU0lHWXmazYvvxa48vF4CTB9ETHogVVlhhhRX/TceZM2dgsx01BA4Gg5ibm5P/oHu9Hvx+P2ZmZlCtVsVCmglSIpGA1+tFrVaT3lVkELrdrtj6s2dcu93G2toa4vE4Pv/8c2xtbQmjMzU1hZMnT6JUKuH27duYmprCuXPn0O12cePGDTgcDiwuLmJmZgbpdBqlUgnRaFRq72i8QsaQBfYEGlzRZ9LldrvHGKlwOCznfOfOHSwuLmJubg7b29sPMQeTkn2jXbxxe7MknCBDZatUkPEoAGHGTE16X92fGVAxGkDcvn0b/+bf/BvUajXY7XYEg0G4XK6xHlmsCzSycWRTVNDKf41GQ5J6dTyqlCwWi4m8kqGaLKjnQImcel3U/Rola+o4jYm/2nPPTD6pzqMZ68ZQHQr5OQInOhuS3QoGg3C73Xj++eextraGbDaLbDaLUqmEXC6HlZUVU5MIHrfVagkjMxqNsL+/DwDI5XK4f/8+SqWSMFccM/+mi6AKAmw2m+xTPXfjPcp7hkZEdFTk9437JGBIJBKw2+0olUoCAHmvAQ9YNqM0VgXwRskyQZN6HQkCeS9xnsrlo05eBEZs5k0TEd6PrCfs9/uIxWICBGu1mkgWyUaxXo7ybU3TxFwlEAigUqmMGZTwOvE+ILNHyWMwGESlUpHFDJvNJotnvNdarZZIM1Xw5/V65Z6q1WoYDAaIxWJoNpvy3eI15NzRoZKgTe1RNxwO4Xa70Wq15HvE+4IyWzLqj3pO/SrjSwbgjn5aJiZWWGGFFVYcF3a7HcViUdzrtra2cHBwgFAohGg0Kg2yS6WSSG5isRiAo0Qpn89L4sRi/Ww2K7JI2pR3u12srq6i1Wrh+9//PjKZDLrdLux2O5599lksLCxgc3MT29vbmJubw+nTp1EsFrG+vo54PI6lpSV0Oh1sbGyg0+nIGFqtltRuEHiqNW5MrlgrQ6BHFm44HKLb7aJSqSCRSMgq/a1bt7C2toZUKoVcLjcGbsyYneOkbkZpnrE5t5HB4WsM9T2zmjljrZGRhTK+bjyOUXqmSrs2NjaEySQrR4kc5VWsq2GtoBnI4vFpXKKCM3VsZGTobMp90eWUdvf8HMdmnLNJc6mySMY5Mnvf+Hkjo6n+U5kfI3jTtKNG9pFIRMDb559/jlqthosXL6Lb7cLn8yEajWJ2dha5XA7vvvsu9vf3kU6nkUqlxhrcs5fhZ599hsPDQ5HbEZQAQKlUksUMtSkz55gy6GeffVacWNvtthipGMGusbaPbGmz2UQ8HkcoFBI2jYwWv5ORSAROpxOdTkcs9dXWEeo1oMmJyuiqLK5633MMBGuqbJYsE90oCeDq9bo4KZZKJfT7fTFMYs2cyrqNRg+aa9OZ1ul0imkS60bZl459K4vFIkajkYAysnW6riMajQqQDIVCsNls0met3++LGUkgEBgD26w15lyQ9ee+aPdfq9Xg8/mk7pFj56KLCtLK5bIws5zfer2OePyoMowAnc8uXdflswSbHO+TiC8XgPvZT4uBs8IKK6yw4rio1+tYXFyEy+XCrVu3kM/npVlwoVDA9va2MBzAAxeyQCCAnZ0dWfkNh8Oo1WoiN6TZCWt72Mftzp07yGQy6HQ6iEajePnll6FpGr744guRV546dQoHBwfIZrOYmprC4uIiSqUS0uk07HY7pqenRRY0Go1kFVzTjhzRyuWyOLQxgSOwoAGAz+cTRqTf76NcLsPr9coq9v7+Pubn55FIJJDL5QRwcB8/TxgBAJNMAA+xVwyjqQk/q7IgjEkyQTNAY3xPBSuqM6AqSeT8sTk6+/l5PB74/X643W4B4wRzRgt9JvWUrqnHN54jmQib7ahhOpNpuv3xc0a5ndm+VCmlkVlT3zNKLo0MnhnYVkHHJNCmAkRd13FwcIDRaIQbN25ga2sLU1NTWF5exp07dwTsuN1uxGIxzM3NYWdnB1tbW8hkMkgkEmJqMhgMsLe3h+vXr6NYLKLdbkubAPW6qedps9kkSQeOmKi1tTU8++yzODg4gM1mwyeffAIAAuR4bmasJI0vcrmcLJawuTcZLjJRZI7a7fZDQH8Sw82fqsxVlWmq8ko+nyg3JEDkHNTrddTrdbl2lAiSTVIVBJRBqosHBEs0jaGUnAALgNQDx+Nx1Ot1kYUTWNFIxGazCTvp8/nEZXI0GkndLhedCBbJqpGFpJkIQWO/3xfjFRrLcO5DoRBcLhe8Xq8waOqzj9eXwK7dbksLA/WeJ6vJxQCa4BAMPqn4cgE4YeCssMIKK6ywYnKkUikUi0UxNVhaWkIkEkGlUpFEQNM0WWVmYnjz5k2RRSUSCdy9exfAkVMaa9rY+JsSzRs3bqDb7WJqagqxWAxf/epXkcvl8MUXX8Dv92N1dRVOpxO3bt2C3W7HysoKQqEQisUiut0u5ufnhZVptVpwuVyIRCLSDJpJEG213W43Op2OSPmY7NXrdfj9fumFRWaILRHoonf79m2cPHlSpJlMIo01O4+qRzOCJOP2k8AaMG6c8iiJpBmzZNzGTO5n3Jeu64hEIuj1elL7wvdoohAIBBCNRvHSSy8hm81ie3sb7XZbnPhUhoXnwJqcfr//EEBSz1nXdUkOaVBDAwbuT2VnVOBpTP6Nc2EW6pyY/eQ/HlfdtzoGs2Op12B2dhaaduQSWa1WEQqFsLi4iKWlJaTTaWFfWBsYi8WwsbGBe/fuYXp6Wtp0kAUqFotIp9PCaBLckLFRe/ixWTWb2wNAIpHA7//+7+Py5ct48803cevWLfh8PlSr1TGQZZwn9fzn5+dx69YtMSgimON2lIeqTJnZvWEEcercqWF2XVWDnEAgAJfLhVqtJswdAKm5pCqAEmvgQU1lPp/H4eEhYrEYEomE1LLx+UEGulariakTADFzIpNHMxMAYtkPHCkUeM90Oh2EQiEMBgN4vV6RY1IS6XA4xoyfWBfK7wQlzAS1sVgMpVIJ1WpV3g+Hw3JssnJ+v1/6DBIEsp6N1yAUComBDeePbDvbRlQqFalT1TQNhULB7Kv1a4kvFYAjB/ckNalWWGGFFVb8tx+tVguVSgWDwUBc8orFovzNpJXNXDudDkqlEjweD1ZWVqBpmrAH4XBYVncjkQimpqbQarWwu7srPdlmZmawuLiIQCCAK1euYHNzE4lEAhcuXMDBwYHUuy0vLyOVSuHu3buS/MbjcZGFpVIptNtt7O/vw263Y3l5GV988QVstqMm3oPBQCRMlEWpCTj7HKkrx2zUS5BWLBaxuLiIRCIhq9FchX4c8GYmyzOTh6lMg/o5NY4DgUxeuU9jom2UCJoxUPybEY/Hpck2E351bO12G0tLS3j99dexvr6Ora0thMPhMRt09p7i3NL8xAgMzIJgJBKJSG0O50hN/lUGTZ1LtZ6KczZJQmqcI+N1MGPuzEDjJCaQ46EkzWY7astx9uxZOJ1OTE1NYWZmBplMBplMRs6fDE+tVkM+nwdwxBx1u12USiXU63WUy2WUSiVxV1SNJ8icMymfmZkRQw2fz4dXX30VoVAIN27cwO7uroB1LtKYLSqo9zKBELcjA6Xep2R81OtBtpyfU9leHlsFV5xnlbUmE2Q2Nh6TrGOtVhP5JIEYx0KpJ+9V9ihstVoIhUKIRCLSFJvH4PUql8uoVCoi056dnR2TiKrnR5BHJo7XiSY0dLd0Op1Sy8i5Zf82no/qotloNOD3+1GpVKRm2eFwIJFIAIBI3+kWyeOT5W42m/D7/cLEEeCz1pnzxGvKpvMEwqrb5pOKLxWAsxg4K6ywwgorHicymQxGo5HUYezt7UniWK1W4fV6x5gt4MjwY2pqCul0GtVqVdzVmFzH43F4PB7cu3cP9XpdErLl5WXMz8+jWq3iww8/BABcuHABp0+fxrVr13Dz5k0kk0mcPHkSHo8HH3zwAVwuF5aWllCv14UlTCaTKBaL2NnZQSAQwPLyMnZ3d8VJTzUbAB4kfGqCzt5Mbrdb5EZMnsjMdTodbG5uYmFhAdlsViRYRsClBt9XE0oGEzDgAQijJNKsps34uhoEEKqpjFGuZwRuxjEb2ThuQ+vxdrs9VqekOnAOh0NcuXIFXq8Xt2/fRiaTwT//5/8cH3/8MXK5nMi8mBhT5qUal3BfRqkjf/d6vYjFYtjd3R07D7KwZiwZw8wQ5rh4HLbHaJahbjOJIVXBjLpQQvMMm82Gfr+PZDKJjz76CD/5yU+wtraGQCCAVqsl9x0/B0BMJwqFgsgnaR1PK/nBYIBerzeWWMdiMVmgmJ+fBwD82Z/9mYA3SpGN82mcG87FpUuXsLW1JQm8KnUk0KDMmWDSuB3nAHj43gQeAHFVugo8aDivBuvAaMTBcygWi8KE8Rp5vV7ps8f92Gw2dLtdqdcbDAYoFAriVEnQwoUsGpBUKhUxC2m32yJTpZxcBbIEY5SXEoQ2Gg05Lp9fBMlkvbg/t9stTrt8TmuahmQyiXg8LqZDw+FQ6o8J6JvNJjRNk3pEm80mYw6Hw8LmjkYjcfdlTZ/X60U+n8dgMJB2GNVqFZVKBalU6qF7/9cVXy4Ax18sBGeFFVZYYcUx4XQ6sbi4iHw+j1wuh6mpKWGfaFbB+pFgMCjtAe7cuSPJIM1LmJxUKhXs7OxIjRQZgGg0inw+j/v378Pv9yMajWI0GuGtt95CJpNBMpnE6dOn0W63cf/+fSSTSYRCIbTbbQDA1NQUfD4f7t+/j3a7jWeffVYABFe3uZrucrngdDrF7ZDBxJCJCbejqQGTHjq7lctlRKNRRCIROUeuVgMPgzgmpWr9l1morMQkCaUZ02aMSeMwxuMqcphssybKyDoBEElZsVjEd7/7XQAPmINyuSw1jgRxtJAns2A8FzMm0OfzIZlMIpvNCvtm/Aw/R0BgVpumgkP1WGqYgTLjv0kAzewcjKBuNDqy1adkrdPpIBgMIhgMolqt4vbt29If7O7du6jX61haWkI2m5XEny6PbC7NhtvVahWdTgd+vx+XL1/GZ599BuCIIaVhht/vx1NPPYVIJIJarQaHw4FYLIZCoSBNxNvt9hirpY6df/M681oHAgEx+FFt9IFxxpOSTgJ/9X0zRo73oXEsfN3ItlJGSSk0ART7tnHhid9pLozQ/IhgUK2TZV+0breLYrGIQCAA4AEDSqkr98N55QIFTT74fRkMBmImUi6XpRdgtVoVYxG1ppeyUz7PAMhik9/vF3MSylV57EqlIhJllR3lYo96jTh37HPHNjBk4ijjdLvdcLlcIqucnp6WGrlWq4VYLCZM4pOILxeA401tITgrrLDCCiuOiaeffhofffQRSqUSTp06hV6vh3Q6DY/HI/2KRqMRZmdnxUXt3r17kpCEQiEMh0MBaDs7O7JCa7fbEQ6HpR5tZ2cHtVoNsVgM8Xgc3W4Xu7u76Pf7uHz5MpaXl3F4eIhyuYzp6WkAD3onsVaNye6FCxeQy+Vw+/ZthMNhpFIpqcsg2KIUlMmhMZlnLQuTIkaj0UA0GoXb7Ua/38fOzg6Wl5elRokJF2AuZzQ7Ft9Trc0ZqtRKZRomAQaCP7VtAff5KODIz5sBGvWn2jCZ0jxKt3q9ntRpqef5L//lvxSXQ8pVWe/Ehs7q+IxAh+ya3+8XEx06Bnq9XtTrdRmTUZ46ab4mAS+j7HES+DKrZ5u0L+NxeC9omoZ6vS5sYiQSwdzcHHRdRzabxSeffIJIJIJMJiOGMAcHBwgGg2I8we+ex+MRGSRdBT0eDy5duoSnn34an332mTSu1rQj58uzZ8/in/yTf4Lt7W0Ui0UBH7yG6n3EBQqCKvUeMboz9vt9kUYfV6tpbOJNYKa+ZmSdGZQQEiCorpTGa69+lqCUDePJ9KnnUa/X4fV6kUgkxu5bAAKsCFYBCCNNBg2ALPzw+0GGjvctDVVYj0bQR8BGEDkcDsXpkRJIbt9qtUTermmamDDRUZfXka6Tan86sowEdQR6rLuz2+3yvGTwe14oFGC326UPXLPZRCQSkfNrNptikPKoBaRfZXy5ANzPflolcFZYYYUVVhwXb731Fvr9PlZWVlCpVESuFYlEJHGkvXaz2UQ6nRZLbSZ7dDrb3d1FLpfDzMwMAMDv94sJyubmJlwuF86dOwe73Y5qtYrd3V2EQiGsra3B5XLh888/R7PZxNramsi5VCYtm80iHo8jGo0im83i8PAQiUQCsVgMmUwGpVJJZED1el3qryY5PVJKyQbVTETolujz+USWViqVxpwvHzdhUZNZM6MGhrH+Sk2aVSBhZETI9jGYTBtr4NTxTBq7kQFhgszkORqNwufzCdPWaDTGkmbKwnhMIwPxKPDmdDqlF2E+nxcpGBcC6HD5qBo+M1nopDB+1ghozV5XP3uchJKAHDi6LvPz87hz5w7i8TguXbqEcrmMnZ0d3L17VxJuyuxUyd3MzIz0M+T3jb3DCB4uX74sslO/349Wq4VIJILFxUX8g3/wD/Dcc89he3sb4XBYJK2UWPJnpVIZc3BVWVd1jmgoND09jTt37gg7pQbvH7XOU2W/jUDceDzjdTEuFqjbqj0JVTDJ+1SVatKZkRLHwWCAWq2GYDAoTBTdQPk+nT/5GTJ6BEU+n0/UChyf3W6XXoZcIKpWqwKM+ZO94w4PDwEcGctQeszjud1uJJNJccv0+XyoVCqiYGBDcoJDfl8JxPiM43yTBWZNHM+D43Y6naJ6oEsmwSDPmywiQavVRuCXFHbbz1YyRhaCs8IKK6ywYnKEw2F4PB5pxhqJRETGEw6HEQwGAQDFYlEYkGAwiFarBb/fLyuyZOXY+PXkyZPCYG1tbUkyqes6crkc8vk81tbW4Ha7sbW1Jb2uvvGNbyCdTqNWqyEajUozXJvNhhMnTgA4qtvr9XpYWlpCPB7H/fv3UavVkEqlUC6Xsb+/L7UitOWeFAR7TqdTbMX5OiWZrKOJxWJSf2Vky9Qwgicj0DCyb0a5GoOfm3Qc9XjAA4OVScc+TkaojsU4Lq7oe71enDhxAgsLC9je3sYHH3yARqMhYyNQU4PsjrEO0XieNPm4ePEitra2UCgUxsBrLpd76HyMwEA1cDHOjdm88nez7Sa9rr5n9po6PrUekosFL774IsLhMOLxuGzHe1D9fCAQENt6VX5KaSpZMBrHnD17Ft///vfhdDqxsLAAXdeRyWRw5swZPPfcc1Iz2uv1pKl0p9OResdCoYBqtQrgwaIAmSqyeQQpwBE42N7eFtdEY5gZ6hgXLzRNk+bfBOfq5xlqg2x1X+p9oOv6GIjo9XqoVCpSv8Xroda5eb1eqSekhT6/29wHpZztdlvAnSrt5KIDa4DpskqHSbZRoQNmr9cT+aTb7cZodNRzzeVyiZkImTLWztGYhIYk7XYbsVgMun7UnJy93wjS+v2+HLdarYpsVNM0aQBOoNtqtQS8crGGC1RskUBXYe6fxi2s2eMxn1R8KQHcyKLgrLDCCiusOCZGoxGq1ar0P2IyFAwG5T/zarWKarUKv98vcrhIJIJgMIhSqSR1MOFwWFoH0K2MjAObZO/u7qLb7WJlZQWRSASfffYZer0epqamMDs7i08++QTdbhdzc3NwuVxSA3Xq1Clp8Eygqes6rl27BqfTiVQqJQmix+PB7Ows7HY7bt68iXK5/JC8UE3Q1fo5WmwDR5KpaDQqkjKuZKv9pIxNpNWaE6Os7HEkeGb1cEbAYCa/5HZGIGEENMeNw2j0wvMgI3l4eAi/34/nn39+zK6cPa0oNVPHyWRwkrSTMq5oNIq1tTUcHBxgZ2dn7FzUsRsZyUcBrOMYOOPcmMVx88V9qMeYNNeDwQCHh4f4gz/4A/R6PeRyOXE9pIsht2fvLzqpsu6UToWsKSSwWllZQTweR7PZxOLiIk6fPg3gQbuFZrOJ9fV17O3tSV0Y65nILtNBks6zlC5TWkcmiGzTU089hatXr8qih/G6qGE0N+E9Tgt6MuSqaY8qqQQeSCeNzJxqAqTWg3a7XWm7QDaY9ynPx+/3ywIVZYGsb+M1ISjz+XwixSSwIyOlAj7KyXk8Pi943VhP1uv14HA4UK1WhTWz2+2ietB1XQB1q9VCrVaT9gg0JmEvTT6XHA4HyuWyHJuSco7Z6/WKqoHP+nA4jHq9LiYnZB/Vtg+hUEgWrugkG41GpR6Sz4InFV8qAOf4GYAbWAycFVZYYYUVx0Sj0UAymUQkEpGVYNZTsP6LNRx0d5uZmYHH48Hh4SFqtZo4uQUCAYTDYYxGI+zu7qJSqeDcuXMIBoPI5/PY2dlBLBbD0tISer0ePv74YwSDQczPz6NUKuHq1atYXFxEKpVCq9XC5uYmUqkUXnjhBQwGA9y5cwfAkZnJYDBAPp9HIBBAKpWSFXau5BeLRakrMTI1wHii3ev1UK1WxX2S4EWVkFarVbTbbUlC6Xinhip/nGQ+chyYU5kkJp5qewCjvFLdVpV1Glk3I5uk/q0CodFoJImlcb8Eujdu3EChUBA2IRKJ4OWXX8b6+jpu3LgxJqFkAsifRrDDeYzH4wiFQvj888+FHTCbMzVUBmYSe2Z2rSfNg/Hz6msqqJh03XitJs2vph2123C5XJifn8fHH38sCyVMqIPBoEhNmWwTDHDfdJlsNpvwer1wu924ePEiisUivF4vzpw5g5dffhmJREJ6jbHOrlarodlsCoBjL7lqtSqSQY/HI4wLGS++7nQ64XK5sLCwgEqlIjVcRrMRs2tnrGsjIFCdSfm9Ua+3+n1kkClTXSXV/Q+HQ+kbyAUI1rKxho/MHJkqAAgGgyIhZf83Mk2s9VOZKkrNOXdk40ajkZiA5PN5cbbls7Xb7SKRSEjLCH7HCJbpWMpzLxaLmJ6elqb2lK6TsaObJSWaHo8H1WpV5JJ8tqtmMgCkZUAoFJL6OU3T5HrS1IZSXtYJsj6PrDLn80nFlwrAWRJKK6ywwgorHifOnz8Pl8uFSqUiSRVlNul0Wti0RqMBh8OBpaUljEYjpNNpMVEIBAJjtRxckV1dXZV2Av1+H6dOnYLP50O5XEa1Wh2TSNrtdjz33HPo9/tIp9Not9u4dOkSFhYWcHh4iPv370tLAQJCl8uFRCIhUiC73Y6dnR3kcjlks1kBDwQTRkmXmly3Wi0xC2BCR9vtVCo1Jo+ikxsTz+MYmknJPEMFZurvlK6p+1Gd/IyJqxnIOY59MtuGK+xMPtXEmQBsNBrh4OBAnDuZTJOVYJL7KPaNnz158iTm5+fx2WefjbV+mATCjOf5KKCnbmOcf6MRxiRWz0y6aRyP2XHVbYbDIQqFAnK5HJaXl7G8vCzGJZSh6bouZhcOhwORSEQSYzJGtJKnK6DNZsOZM2dQr9cRDofx1a9+FdPT0/j+97+P4XCIVquFn/zkJ7h79y4ajQY6nY7096tUKmILT4dElU2inFBlbAKBAJ555hm8/fbbD7UAUEEU72UCAKOsV7XQV+vleG8bGTh1vyoLx+8ij02mnH3f+BkCG5W9VBk/Onyyr5rH45E6r263C7fbjWazidFoJLVtVAQ4HA4EAgFEIhH5zjabTTGdIdvYarWkVxtl4VxkopkSQZ7qKgk8MFXhey6XS9hC4EgtwPvD2P6DrK56HYPBIOr1ujB/zWZTFm7q9brI3yk5HQ6H6PV6IrnXNE0YQn7mScWXCsA5aPU7tACcFVZYYYUVkyMWiyGdTiOfz4vU8eDgAOl0WhgBFv7TGbJUKqHb7ULTNEQiEYTDYQCQ1eapqSksLy+j0+ngzp07aDabOHPmDKLRKHK5nDT9ZnIUCoXgdrvl816vVxrl/uQnP8FoNMLCwgLm5+dFNmm327GysiIr0qlUCn/+53+OnZ0dKf5njyMyPapE0MjGDYdDYeGYIBHQ7O7u4syZMyJl4vZGkGUmf2Soib8KJCaxPyrrpu5X7W9G+ZgqOeN7PC8zFu6441Muybob9fyMY+C98YMf/EAAnCob5d/G2je6Sq6treGll17C9evXUS6XRQangmzj+TxKsqiGymQa98P3zSSPZvPH943M3yQAaXyP7PD169cRCAQwNTUlbTHC4bCYbdhsNnkfgLBBXCBhDarb7cbm5iYuXLiA+fl5/PCHP4TH48Hy8jJqtZok/rVaDQcHB2g2m6hWq2g0GqjVaqjX62i1WgIuKJnmNSWjSMkfr9vp06ext7eH3d1daUxunHOer2riojKU3BcBGNkc9otUr5lxgUO9PwgwVQDncrmwvb0tBjtqfR5BIxcogAf91w4PD6V5N+39aY5CxtPhcEiTbprOcP9kr9mwm7JLTdPg9/uFASPw5j65YOLz+UQ6yfYl9Xpd+nM6HA4xViJzRhCpfv95HB672+2OgXQybLVaTQA7W1NwPvhM5bmxl2csFpMFpGazKW6mrVbL6gP3ywq73WLgrLDCCiuseHR88MEH6HQ6eO655+B2u3H//n2USiVpIMuVWJ/Ph2w2C03TUC6XEYlERHrTbDaxt7cHADhx4gQSiYT0lSOzFo/H8dlnn2Fvbw8XL14UkwE6XBYKBbjdbklqm80mPv/8c4RCIVy4cAEOhwMHBwdoNBqYnZ3F3NwcvF6vMGYffPABNE0TNzZKj9Smz1zdnySDIzvB9ggAxNyg0+ng1KlTuHnzptQiqZJF7uM4EKeGCtSO24ZhrKlTE1yeI5Nmo+umGQPC343bcLWeQIL9rAjaWB9lxoyobKeRfVOldKFQCCsrK7h8+TKuXLmCGzdumIIrdbyqvM5s7GbX1DgHZmBv0nyo2xgZt0kMnXEfxu3a7TY++ugjhEIhPPfcc2IlH4vFxHDD5XKJfJnJezQaRTAYxO7uLgKBAE6fPi3g5Dd+4zfEGXFubk5+Z4NvOlrWajU0Gg3kcjm02210u10BC2ScAIhJClk+soNcFGm1Wtjd3R0DTQyjmYkRtKl/8z4heFO3Mc6hkeUkCOF14T0fiURQLpdRq9Vk4YHsmhE8Uuo4HA5RqVRQq9UQCoVEJqgCRYIsfhcoL+U1IOij4yOl12Sp2WidzbDpjjkajWTu2VfN7/ejVqshm80iHA6L0Yqu6/JcIitLMMhxkSEcDofSeoFGKqxXZdsDgvJWqyWOkwDk3LhAx2tBsE7w12q1xNxlampqrA3Lrzu+VADOqoGzwgorrLDicaLT6eDpp5+Gruv4+OOPZaWZjbaDwSDC4TCKxaKwBNPT01L3trW1hWq1inA4jNXVVdjtdmxsbGA0GiEej2N6ehqDwQB/8Rd/gXa7jfn5eWxubkLTNKRSKdjt9rF+TLS4pkvl4uIiyuUystmsNDg+e/YshsOhOFi++eabUvcCAMlkEo1GA263WxJ/VfZoFkxWarWa1PrQblzXdaTTabzxxhsIBAK4du0aarUagAdSRzWJnwTizOR/k0xLjpNmmjFQapKr7teMIZoEirhv1rYAEIc9te8cxzbpHPlTZeSY8DORLJVK+K//9b8KU2SsHzP+rs7Xo8CbGXunbquCVeP+zM7HyJ4exwgaj69ex2aziXK5jE8//RSDwQDLy8toNpvQNA1zc3PCbJfLZcTjcWF5z5w5I8Di4sWLWFxcxJUrV/DNb35T6tHy+TympqZw9+5dfO9730OlUsFgMJB2BIVCAaVSSQx4OJdkmAg0yMa43W5hsXl9PB4PhsMhdnZ2xpghddFANRNR2SF1cYM/+Tn1GprdsxwnF2HsdrtIfNXG4bFYDNeuXUOn0xGAx/HxPPk6XWbprDszMyPPPobH40Gr1RKJOCWXdPKkU2iz2RQQTiBHh0+eL9k5ti0geAUg9bwET/1+H7Ozs/B6vSJnpwsszWb4vKPBCBtu2+12dLtdmWO6bPJ73W63EQqFZO45d5RgtlotAW8Oh0MAJBeyeI/2+320223MzMzIotmTii8VgHtQA/fkGutZYYUVVljx33585Stfwfr6OtLptPynvbi4KLKeYDAotv+UU7ndbpTLZeRyOTidTqysrGBqagqtVgt37txBMBgUo5ODgwN8+umnCAQCWFhYwGAwQDAYRCQSEVlQKBSSWrtarYb9/X1Eo1G4XC6USiUcHh5C0zScP38eqVRK5D+ZTAYffvih1HNMT08jmUzi3r17klzS0Y8NpY+TDwIPDBBoOkBAWa1WcffuXbzwwgvIZDLSnkCtVwEeNm1QQY7as80s8X9UmG1vxrQZ2QpupwIYI6sxCcQNh0OR7JGFMWsXYNyHkSlTZa2tVmvMydM4LrNzNANz6u+TZI2TGE4VWBlB2nHnZXZuxnFMek3XdTEp+fzzz4Wh1jRNZMMOhwPdblekbE8//TSefvppaa0xPT0txj3r6+uYnp7G559/LgYl7777Lu7fvy8AvFAoSH9H9jBU5Yv8PrP+S9d1AW+cR4Lv5557Dj/96U/HnAwB8+bb6gICvw+apo21KFDlwOrih2oQxM+o14kgi8CM237yyScolUpjdWIMtUYOgFjk22w2JBIJkVq3220xbSIjynud+6BTrcvlEqlktVoVF1a32y3A0OPxoNFoyOJRJpMR8ERwORqNxiSUbClAYxH2W6tUKmJ2wp51lDGqhia8przf2LibdXD8DqrtBeLxuIBOnn88Hhe2LRAISF0hFxMWFxcRCARQLBYtBu6XFRYDZ4UVVlhhxePE1atXhQFzOp2YmZmB1+tFKBQS0AIA8/PzknDs7++LhfXs7Ky0E7h9+zYWFhawtLSEWq2G27dvI5PJ4Ny5c/D5fNjf30cikRCGjOYAiUQCuq5je3tb+rl1Oh2p85iensaJEydEzsQeWp999hmKxSIqlQrOnDmDYDCIw8NDhEIhzM3NiXSoUqnISj4ByCRXQV3X0W63xfGNq/b9fh93795FIpHA008/jVarJS5yXJ1W2QQ1IQXMgYQZa6cCLzOwN8kRUf2c+o9Axehi+ThBENftduH1esXAgHVyqkRSBYKqfFI9V1XWxjGprNqjmLBHhRkz9zjSxp/nGGZMnNn7k17LZDI4f/48NE3D/v4+QqGQMCTRaBTtdhvJZBKj0ZET5fT0NMLhsCTvtP3f2tpCMpnE/fv38emnn6Lb7WJ9fR2Hh4coFAqo1Wryr9lsiiTS4/EIeGIbg2aziVKpNCab5H1LY4tLly6hUqkgnU4jHo9LPdUkVpv3H5kznr9qwENgyHtd0zRhAzkn6gIEx2O326V+lmCyVCphb29PXDrJFgIQQMoFHMoVKRFnH0gCEz6fvF6vAFWyaDx+JBIR1qvVasHtdgsrRydVmkORQSQ40vUH7qNGSaamaVKTeHh4KO0AqtUqNE2Dz+cbazNBpQE/z3NlzaWmHRnPsO6OIJXvDQYDYXu73S4CgYAAPgJSp9OJYrEojp7D4RDLy8sCgmng8qTiSwXgLBdKK6ywwgorHie63S78fj90XUcikUAwGMTs7CxyuZzYZDscDrjdbgBAOp3GYDDA0tISZmZmMBwOsb+/j2KxiJmZGSwuLmJraws7OzsYDAaYm5sDAGxubmJubg7BYBDpdBrAUTsAWm0fHh4iGo0KOGNCFIlEMD09La54KysrKJVKuHLlCtbX19Hv93Hp0iWUy2VUKhXMzs6iUqlIET4TVjYLZu+sSQwO8EBSxISXvaLa7TY+/vhjvPHGGwLiKAGkdMrIdKlh5jZprBNiTJIBGoGgChy5rZnRhpHtUvc7qfaLr7MvFpM1Jr5ki1QDE9W0RP2nadqYmYnNZoPX64XdbkcymcT29vZD560mvuq8mF0zY0wC6Oo5PooFNc7To45vZDXNjkcHVo/Hg0KhICYakUhE6k51XZe6036/j2q1inQ6Lbb/e3t7woZ8/vnnUn9ar9dRrVZRqVRQqVTQ6XTQbDah6w+aXKvNrulySJt9sla8H/laKBRCKpXCH/3RH0mNHpkwFYSrwMx4DxnnychMq/8ox1PrKnkOrAejzA84AnXFYhG1Wk2kkjwnuiwSrKhumnSbJZgdDAbSVy0ej0PTNDEqGQ6H8Hq9Mi9kMsnWt1otJJNJ6VuZSCSklYnP55P+mQSoXBTifKr91/x+P7LZrDhS8pr0+300Gg2EQiGMRiNp0g0cPcfZwoX7Y30jTU0I6jqdjigLyLK12205PwJdOvPWajW5J9Q6ZdbOkYV7UvGlAnDiQmkBOCussMIKK44JrvYGAgHE43E0Gg385Cc/ga4ftRNgs9tut4tisQhd17G6uor5+Xk0Gg1pEbC4uIhQKIQbN27g4OAA8/Pz4thms9lw9uxZlEolbG5uwuv1YnZ2FpqmIZPJoNPpIJFIwO/3j9VKETSyPuT8+fMolUp49913sbe3B6/Xi5MnT2J/fx9TU1NYXV1FsViEx+PB6dOncevWrYckjkw0jSyK+pMJIpvn0vTAZjtqK/CTn/wEr7/+Oi5duoRPPvlEei7pui6Mg5HtUhsOq+CNodYE8XNGB0oyGpMMRIznaWT0JkkBJ8kojeOjxIpmDDQ2UI1NOA8qO6eOX5XUOZ1OfP3rX8fGxsZDIJQ9zl555RX89Kc/RT6fNx27GbNmlEMagZaZHPM4BtB4nxiZRTMQNyn6/T52d3fx3HPPodVqIRwOYzgcIplM4sSJE8jn89KLrFQq4eDgAF6vF7du3UKtVsPVq1cFvB0eHmJzcxO5XA7T09PIZDLY2tpCsViUOijK+HjfEByqVvPz8/MAIE2lyQJp2lEt3PPPP4+33noLzWYT8XhcQBAleCrLTKDObY4DvGQCeT94vV4BBdzeWKPY7/eljo1/5/N55PN5qfliexOet1o7x4UWu90uskNa+SeTSalnIxOvMpYEj9wf50rTjsyTisWimIbwGmqaJu0e1IUPjoeN0XkcglGayjQaDQQCAXkm8boQOHJ/NDIic+Z2u0UZQbBFYJxMJlGtVuF2u1EsFtHpdBAMBmUuKG1vNBpSo6nrRz3lksmk1ANSxqnKR59EfLkA3M9cKAdDqwbOCiussMKKycFmtk6nE7du3UKj0UAikRB3yEgkIr2VfD4fFhcXMT09jYODA9y6dUuaBw+HQ9y7dw+1Wg3nz5+XXkfRaBShUAiFQkHkj7FYDA6HA/fu3UM4HEYikZBVZrJvo9FIEqCFhQXE43HcvXsXt27dwvb2tiQ429vbOHnyJEKhkPSTi0QiqNVqiMViwkIw+TFzWFOBjlq30+12RQJls9lkLjKZDK5evYpvfvObGAwG+OSTT0SmxnocFWiprJMqOTQms+o2ahhB3HFySDXhNSbWk0CcCuCMSbcRsNCsotfrSZ2W0S6eoM0IoNTzXlpaEoBeLBYfktoNBgMsLCxgYWHB1NjicUI9JsG1ETwbQasRbB637SSAeByI0/UjQxy6S9brdQE9ly9fRqVSwfvvv49KpYKdnR3U63VpA0ADDBpZHBwcCFir1+tiPa+6pLKeajQaodlsotFoCEvKhYmFhQUcHBxIrRkBRq/Xw+uvv4779+9jf38fPp8PgUBApHj9fl/OVWWRVTYOGDczITvG8XHBhvtUHSBVAxz+TdaP0Ww2kU6noes6otEoOp2OgBCyauxlR/ZdreHkNfd4PGPujFyoYI82VVbKz3a7XYxGI4TDYemJRoMeFZQRMHL8bEOggjS/34/hcIh8Pi/PGYJwKgfYnJ2N1jnXXq9XWgr0ej1hGOms2el0hOHj616vV/ZFdo4SUTKz7XZb5Jl2ux3xeBxer1eAntfrlZ6CqvnLrzu+VADOrlk1cFZYYYUVVjw6CKbW19fRarUQi8UQDAbHWgTUajWRMjocDty4cQP5fB7RaBRzc3PodDooFArQdR0nTpwQK+1UKgVd15HNZtHtdhEMBqXOZ29vT+ynXS4Xms0m7Ha7gK5Wq4Xp6WksLi7i8PAQb731Fm7fvo12u43l5WVhJi5duiSJ9PLyMtrt9lgyVa1WMRgMJBExGiiotVgqs0UwQSMD9odjArmxsYFkMonnn38e7XYbN2/eRLPZFNe34+qxjJJI1WBBTU7NmLFJ+1GllCrrdxyrpsYk6Z/Z51SQxqTY6CKpSt/Uceu6jvn5ebz++utYW1vDX/7lX4qjpyq5ZBPhfD6Pbrf70Dz8vHGcDNIMcE1iK9V9PS6IM25XqVTw6aef4sUXX0QqlZLvQLFYxNramsiBCcooTyPbAhwBl3w+j0qlAo/HIwwLpYYEY2Sder2euAcS0Ljdbvj9fuzu7ko9HBmj4XCIV155BRsbG7hy5Qrsdru4LgIYkyUD4zVqxvNWAbhaL8fvEqV+tVpt7J7nnPF7xzo1AAJwstms9GxjPRjHSEMP1bHSZrPB5/Nhbm5OgAifOTRzIZDh2DweD/x+/9i9zgWb2dlZZDIZ6PqR+Ui/3xeQS8aT9XDNZhPNZlMk6zw+36vX69J7U3WItNlswnRxTDRgiUajY981XqdyuSy1bzRR4aJaMpmUJu+UMbPWlc8R1sjpui6mUwRvAKS3HeeTz9wnEV8qAGezabBpVg2cFVZYYYUVx4fb7cb+/j4cDgei0SiWlpYQCoWg6zrW19fhdrsxOzuLlZUVpNNp3LlzB+12GxcuXIDL5UIul0O/34fT6UQgEMDe3p70N2IxP2vZ+v0+tre30ev1sLi4KDUt+XweHo8HJ06cQDabRTabxcmTJzE1NYVms4mrV6/i9u3biMViSKVS2Nvbw+LiIk6fPo27d+8iEAhgdXVVgJPb7YbX60U2mxWXuXK5DF3XRWqkrsAD4w2ygQcJ+2g0EimlzWZDOByWpPjjjz9GIpHA1772NTSbTdy/f39sFVvti2VsZs0wMhdGhkhN/tX3j5NSqnI5FVxNApVmxzJuw8+bsVJkdI6TDqqfYY/AcDiMaDQqgFqdc7vdjpmZmTE3RBVsTWLkjK+r5/gopmwSiDVet0dJA43jML4+GAywvr6O8+fP4/XXX8f58+exu7uLra0tBINBJBIJnD17FtFoFJubm1hfXxdwwAbSpVJJAIsKTHh/EFyzlQCvD/uZEdgMh0OEQiEZw8bGBlqtFn7nd34Ho9EIV69eRb/fRzgclpox4MiJkYDGeM6UG6pgXmXR+L1gnZrf7zeVTvIfHRXVerTR6KjPI2XdfI/GSLwmKvNFYEcDkuFwiKmpKWHuCYBYS0YpKd0mgSPJOYFwPB5HpVIRaWW9XofH40EqlUK9XpeFBzq4qoAyHA4jnU6LNLtUKiGZTMLj8Qhg51xR0sjxsc6PBjSUVWrakZtkuVyGx+NBtVoVts7n86FUKklNHGufaVSkaZqAQoJXm80Gv9+PSCQCv98vr3ERgk6Z6XRa2PQnEV8qAAcc1cFZDJwVVlhhhRXHxRdffIHhcIilpSVEIhHYbDbs7e1Jk+1Tp05henoat2/fxt7eHmw2G1544QV0u12k02l0u13Mzs6i3W6jUCggHo/D5/Mhl8vh9u3bCAQCOHnyJMrlstRjnDx5Uhiver2ORCKBUCiEvb091Go1PP/887DZbKjX67h16xYODw8xNzcnZhcXL16Ey+XC+++/j8XFRayurkpTW4/Hg2azid3dXcTjcUxNTWF9fR2j0QihUEia/NIBTnWkNMoFgQcJt+omx3lqt9t4++238cYbb+Dll19Gr9fDzs7OQz2RVKBlJpEExkGCGZAzfk6VUhoZOaPc0ihhVPdxHNOkbsefZmNXAZLZ54z7bzQa+OM//uOx+iRjDIdDvPfee2JqYXTknCQFNYK2487VOG+T2DQzBtJ4zmbgcNIxmOx//PHH+Nt/+29jZWUFTqcTP/rRj3D37l2cOXMGi4uLqNfrCIfDePrpp9Hr9bC7uytNp1nDphp08F6m/Fi9VlwsoYMjQcXZs2fx+7//+2g2m/hX/+pfwe1249VXX4XD4cCf/MmfiLkF+wHyO+Dz+eQ7AYzLdVVXUePigdq4m8yUyrgaDXA4ZjYeJztVLpeRyWTE3Ij71nVdgBMjmUyK5DAWi8lCTzAYlHPgHNK9cjAYwO/3S+NssmC5XA6j0QjRaHTMlj+TyQgwI9gje0d2lOCZro6apqHVaqHf7yMWi0kzbn5vOSbKIsPh8BhrRxks591ut2NnZ0euLe39XS6XyDRttqMWAtFoVD7P5u88Hp0o6S5JAAkc9YWkUoB10WQdn1R86QCc3aZZDJwVVlhhhRXHBh3wUqkUotEodnd3UavVMDs7KyzA9evXsbOzg+XlZSwtLaFcLiOfz6Ner2NhYQGNRgOlUgnxeByhUEhYuaWlJfR6Pdy9exculwuhUAjLy8vodruoVqsIBoNYXV3FcDjE/fv34fF48I1vfAOVSgUbGxsol8soFApIJBKIRqPo9Xp49tlnxYTh9ddfFwkYV5QBoFwu4+TJkxgOh9jd3R1ri8AElkX4wAOZkrGpsJqQs46EK+JMgGq1Gn7wgx/g7/ydv4NXXnkFb775prQX4DFUiaZai6Ym2Ex6yRCq4EwFASrYUUEc8HDPOR7bCGomSTPVcZiBHaPDppk88lHBbY0SS7PjtNvtMWBtxp6ZsXJGkxHj9pPArPr7pHky7ncSuDPb1rjd3bt38a//9b/G0tISVlZWkEqlcP36dXQ6HZw+fRoXLlyQPmKUFdPYRG0PwP1SXkhgpLZr4H1L5mZ5eRk2mw3f+ta3AAD/7t/9O5RKJfzBH/wBMpkM/uiP/gi1Wk3MMOg8yXuZoMa4gKACOYIL9doYTUvC4TBKpRKAB+6H3JbnQTkf2fxGoyGunOoCBfdPBkkdA3DEhJExY6uAfr8Pv98vjptk1zweD6LRqNSOTU1NoVQqod/vy0IQ2cFKpSI9MtvtNtrttpioqO1Q2KSbMkRet3A4LN9tXkOeL+fE6XRKuwMAInlVgW+9XhcZKHvD0aiEsllN06QJO81O6vW6sLhcXAgGg4jH43K8drstwI4LBFQ4OJ1OcUJ9EvGlA3AOm4bB0AJwVlhhhRVWTI4TJ04gGo0iGAxia2sLw+EQzzzzDGZnZ9HtdvH+++9jd3cXzzzzDJaXl3H//n2xuF5YWICuH1mj02p/f38fTqcT09PT0gCb8pzZ2Vn4/X6Uy2XpOVcqlXD9+nWcPHkSL774Iq5du4a33noLLpcLy8vLWF1dRafTQSQSga7r2N3dRSAQwMrKCux2O65fvw673Y7Z2VkAENZCbYYcCoUkuWHyyVogrjobgZEZg9NqtQRgsV6Px3nzzTfx7W9/G2+88Qbefvtt7O/vj9WUqLVuKjAzHlcFGJPYOjVUp0omYGqNH2VkKiMyqaXA34SxMgNh6jZmxzH+NAOSKtAzAikVSKoAzmgao47RbN+TmDqzmATmJp2XMczmaTgc4p133sG/+Bf/An//7/99PPfcc2I2sre3B6fTKQ3u79+/L/cqE2hVJtjtdiXZttvtmJ6eFiMKjokgLhwOIxQKYX9/H9/97next7eHaDSKf/bP/hk++ugj/PjHP5ak3u/3IxAICKBQbfpVwAZgbKGC95xxPtSx0O5eXcxQZYKUadLNlkxWNpsVJp3bshWAmeHJYDAQEOrxeFCr1aT3JYEuARYAqfXjMSKRCDKZDOr1OobDIbLZLACITJvH6ff7IuVkLSznh6YlNBChMYrb7Zbzajab6HQ6CIVCYkjCFgSUXuq6LgybaqrSbDYRCATEsImydv7kvLNWkNLZer0uBiace7ZO4T07Go1EIlkul2WuqUTgeT+p+NIBOLtdw/ARD34rrLDCCiv+lx3T09MolUrY39/HYDDA4uIiYrEYGo2G1Je8/PLLSKVS2NjYwP7+vqxO93o91Ot1RKNR9Pt9HB4ewu/3S01Lt9sVkxQmDgR/58+fl+bD586dw4ULF/DBBx/gk08+gd1ux/nz5zE1NYXRaIR4PI5Op4P19XUkk0ksLCyg3+9LDcnU1JRY+VNu1+v1pAWA3+9HNBqFpmni+qcmescxLMC4NJGF+6VSSVowdDodHBwc4Ic//CG+853v4I033sCf//mfCxOpSsaYJKlMhFEayXGpSRpBi5HNUxNoNXiO3I5MhJlc0YzZUn83YyTN5meShPBR82t2bLO/1deNn1evI4GfKt+bdE6TQKoKDCe9bzxns1BBptk5d7td/OAHP8BoNMK3v/1tXLp0Cbu7u5iamkKn08HVq1dRq9VQKpWQy+VweHgoTDBZMdZ5qf3XVIDDbQjwSqUStre3xW7/1VdfxeXLl/Hmm2/io48+Ett7n8+HSCQidXbqogMBksr0MniPGt1PVRARiUTQarUk8Ve3JavT6XSknUi1WkWn00GxWBTGTpVjqt8bXdfFpIUsWalUQrVaRTgcljFSVshaPF3XEQ6H4ff7ReIYCoVw7949GTf7q3G8dJIkqPb7/dA0TZxu1cbjDocDKysr6Ha7ws5ls1mpU4tEIiiXywLSaUJCtpJyYmNfRMpca7WaNPn2eDxotVpjzCndMhuNBsLhMPL5vCyusQk4F6ZYc0npp91uH2u54Ha7xUX11VdfxdLS0rHfg19lfOkAnMOmWTVwVlhhhRVWHBt3795FpVLBwsICFhcXARz1l6JsaXl5GQDw2WefIZfLYX5+HoPBAPV6XZwq8/k8HA4H5ubmEIlEJMHy+XwIhUKSCHi9XiSTSYTDYZTLZRwcHODChQtYXFzEe++9h3feeQdOpxOvvfbaWE+4UqmEfD6PU6dOIRKJYH9/H81mE9FoFHa7Hfl8Hv1+H4lEQorqZ2dnUSgUJMkg+8aETmWpjjMHUZkeANJSwW63o1AoAIDUzezv7+Ott97CG2+8gd/+7d/Gu+++i62tLUnmWJ+kOmGqIE6VpHG1nWMAzJtTq6ybylYZDU3U5Jj74ufMwMpxLJX6vvq3+tpxwGYSEJy0X+PnHvWaCs4mgUBjmLF0Zj/NxjwJZKq/H/f5RqOBd955Bw6HA+VyGaurq0in00gkEvj617+Od955B3fu3EEul0O1Wn2oHpCyQUrkCGBoZMKFgG63K6DJbrdjYWEBf/fv/l3cvn0b//7f/3vs7OzIvcLFCQIHVYapHp/yPhrZqHbyqryT9x9dEtvttjSAVyWWal0cj1ksFtHr9VCtVlEoFIRpI8PE7w6/Y6pc1OVyoVKpQNd1hEIhcV7sdDoCbtgYmy0E2Ajd4/Fgd3dXmm0TXHGcwAMGvNPpwOVywePxCHsJPDB0ISvKZ2O/30ez2US73ZZ+ap1OR1qnAECr1QIAAWN8bpVKJXg8HpF8BoNB5PN5lEolBINBcbmkGybBPgBpVl6tVlGtVseMaSiXJcPGa8tG5fV6XWrjyPZRpj41NfXQd+DXFV86AGfVwFlhhRVWWPGoyOVyWFtbw/nz5zEcDvHRRx+h1WphYWFBjEUqlQqCwaDUjbRaLTELKZfLcLvdOHnyJHw+Hw4PD8XtLBKJCFCIxWKYm5tDs9lEoVDAYDDA5cuXEQwG8cd//Me4cuUKzp07hxdffBF2ux2tVgu1Wg2Hh4dwuVxYW1vDYDDAZ599JoYmvV4P7XZbrLer1SpWVlYQi8Wws7MDn88n/d/8fr8kuW63W4wOVMDBBJAsGWAukev3+1IDQ5dLt9uNXq+He/fuwWaz4Tvf+Q5+8zd/Ez/4wQ+wv78vphPGOjL12EZ2jONRj8/fjcwcYG6Qwm3V5soMgslJLJnKnqhzwWOZMVtmMUkmOSmOY96Oe+04Oaa6zeO8Nmkb4/bqHE0Cn486d13XUSqV8IMf/EDkby6XC/fu3YPb7cbc3Bzi8Th++tOfjjHM6r3pcDiwtLQEl8uFWCyGWCyGDz/8ENlsVhibcDgsUubvfOc7iMfj+M//+T9Lk3B1X+zfyPtHBUgqO6yyxMb7Wr0fCcYInljbpcpACRzJpPn9fgE59Xodh4eHY3VvqkRSlXRyn6PRCNVqVerbCPy4OEVwQ4BDdslut6PdbiOXywE4AmGVSgWBQECkhV6vV8w9yFayYfZgMIDX64XX6xWJYSQSQaVSEeMTtl0ZDofS9y2fz8t+gAf98xqNBkKhEJxOp/RmYxuAUCiEUqkk15XmJgwye5Szs6aSbp18Lng8HoTDYZkTLgBwUYFg0mY7cqlMp9MIBAKYm5tDNpvF9773Pamn/HXHlw7AWS6UVlhhhRVWPCouXLiAs2fPIpvNIpfLQdd1XLhwYayZ7+LiIlwuFw4PD2Gz2QTIDYdDzM/PIxqNijV6p9PBzMyMWFzbbDZ4PB7E43Hkcjnk83mEw2GcOXMGo9EI/+W//BfcvHkTv/Ebv4Hz589D0zTk83lZIU4mk0ilUiK/jEajUqgPHCUolCStrKygVqvh7t27AIC5uTkBe7du3RL2gavLTCoByEq+kXliGAEFjViYwLPJ7WAwwL179/Dmm2/i9ddfxxtvvIEf/ehH2NjYAABJ2tRkkwmrETSa1X8dx14ZwZ5RXml0CDQmvJPOXY1JgGkSCDQbJ187TnI5aV+PAmCPAofHHXvS+5PC7LjG33+efVarVbz11lvQdR2/+Zu/CU3TcOvWLZTLZXi9XsRiMTz33HPY2NhAJpNBq9US4OL3+xEOh+FyuWThxOl0IpVKSUL/ta99DR6PB4FAALdu3cK1a9dwcHDwUL1kKBRCKBQaa5ptZJxUc5BJrKvZ/ch6UyMQBB70e6Okkd/XZrOJbDaLZrM5BvhYI0ZpH+9lgkCaFnGsao0g3SD5HWg2mwKMyY7Nzc1hOByiWq2KUy4ZTX620+mITLzZbAKAKBMIGIEjVq/X6yEQCKBer6PZbMLtdksdGQE09w1gjKkEjqSvfFawbQvVD2zHQbMRzjsblFP6TYMT9ZqxSbfH4xFJJU2h2EycdXBerxeVSgUOhwOBQEAW4yglfRLxpQNwFgNnhRVWWGHFo+LEiRPY2NhAu92Grus4e/as1FJ0u12RxhSLRZHn5HI5OBwOxGIx+P1+lEoltFotdDodBAIB9Ho9lMtl+Hw++P1+JJNJZLNZjEYjLCwsYHZ2Fvfu3cNf/MVfwOFw4G/9rb8lFtebm5uy8n3p0iWEQiHk83kUi0XMzs6i1Wohl8tJAkOr7+npaezv7+P999/H2toannvuOTSbTQwGAxSLRSwuLqJSqUjCy9VtXdeFDQAwZsvNUBtiq7VWdKbk/ph89Xo9fPbZZ+j1evjWt76Fl19+GaPRCLu7u2i32wIWVXZCPSaTNMZxDNkk6aQKLlQgp4I44zGPk0xOCjURNLY+OA7gGd/7eY75OIDwuLGa7WcSe3ccE3jce2ZgUn1v0ljb7Tb+7M/+DAcHB/iH//Af4oUXXsDNmzdx+/Zt3Lx5UwDPM888g62tLakD/Y3f+A28+OKL2N7exsbGBgqFgsgZ5+bmpNZrd3cXn3zyCQqFgljDq2CeTZt5P/Mf98WFBpXlUiW6xppSMnesMaMlPl/n72R+CE5o5a82LFe/uzxGs9mUfdM9kgw7WTL2cuN5sKYLgACqTqeDZDKJg4MDFItFRCIRTE1NyXjZfmAwGKBWq4ns0uPxiIRU13X4fD7MzMygXq+LiVKpVJJG2PV6He12WwAyZZOj0QjhcHhMLkmDEbJmAMTJUjVmCgaD4hDJ69nr9YRxJVtbLBZlPjiXLpcLiURCpJJ8PlHVwPYNvD40rPL5fMKOBoNBGd+TiC8dgLNq4KywwgorrHhUfPHFFxgMBnA4HJiZmUEmk5Emy8lkUmo2mBDt7+8jFAohlUrh4OAA9XpdbP0XFhaQy+Vk21AoBL/fj/X1dei6jtXVVSwsLOCv//qvceXKFUxPT+PcuXOyQsyC/mg0inPnzsHn82F7exu1Wg2rq6vodrvo9XpIJpMCVCgt2t/fR71ex2uvvYb5+XncunULAES+yVoTr9crbpJ0o2RixySekkOjCYORUdB1XSRUTF6TySQcDgd6vR7u3LkDh8OBV199Fd/+9rfx3nvv4ebNmwAgCZRRNsnE1MzcxAjEGCqDwfGbtSAw/uSxjaDObDzHMVaTWLtJgOg4aeLjyCsnbXscsOL7k6SQx33OGOq8TmL9HmcMx53vtWvXcP/+fSwtLeE73/kO/tE/+kf48Y9/jHQ6DV3XcfnyZTgcDgFibD/w/PPP48aNG8LYUbJ8eHiI/f19VKtVScrVMdpsNjH7Yb0og2wTvyvqmNWaTRVcqfef8V4jGFTvaZpmcP/siUbTEtUUhPsnaDKaBLVaLWmQrdbtkXlTm3cTrBWLRWHQ4vE4gsGgsJU0KOl2uwJw+L1PJBLCFPI5UqlUBHzVajVx8azX6wAgtXeUdQaDQanB07QjA5R8Po+ZmRmRbxIEu91u6S0XDofFXITmJQCEFSQIBiBqAdZFcvzT09MCzprNpjCwNttRmwGCTK/XK06XrH9jHTTrBZ9UfOkA3BEDZ7lQWmGFFVZYMTkGgwFWV1dht9uxt7eHQqGAWCwGn8+Hzc1NBAIBKc5vtVqYmprC/Py8AD2fz4dUKoVIJILt7W30+32cPn1aehvduXMHwWAQZ8+ehc1mwx/+4R9ie3sbzz33nICdfr+PSqWC4XCIeDyOpaUlNJtN/PSnP4XT6cTa2prU8oTDYWHMwuEw6vU6isUiYrEYTp8+DU3T8MMf/hC9Xg9ra2si/dQ0Tc7T4XCIw6aaeBK0MSlXWSrV8AQYT8RbrdYY+IvFYtKj6datWxgMBvid3/kdvPHGG7DZbGNyTjO2DYBIwlTQaCYv5OtM1MySZiMoJEBVk3GyKGqYARsVdBgBrfrecXLKxwGFj4rjtjeyiJNArHpOP28cxyaqYzD+bozjJKGNRgM3b97ErVu3kEql8NRTT2F5eRntdhuff/45HA4Hnn/+eRSLRXg8HthsNnzyySdoNps4ODhAJpORRQ/WzhmvFYFEIBAQBojASmXeVDkgP68uFKiyXF3Xx1g69f5TmTdKNCnbY+3XaDRCsVhEPp9HLpcT6aTb7RYAqIJEfpYSSIIgWvdzvHa7Xdw9I5EIgCMGL5fLSd0tAKn3JdChI6amHUlVvV6v1MwRQLNekDb+ZPwIiDKZjMwHa/LYHsDlcgl4ZC0te7hRnsjvLT8LPAC9dJBst9sidaThisvlEoaR14D3wOzsrJjb9Ho9aTReq9UQiURETcDxOZ1ORKNRqdOkxJPGNE8qvpQAzuoDZ4UVVlhhxXFx5swZtNttbG5uotfrYWZmRmoyvF4vZmdnUavVRDIZDoext7eHZrOJWCwmBfhsXj0zMyP9nbLZLGZnZ3Hu3DkcHBzgr//6r9Fut/Hyyy+L7IiJjc/nkxYBX3zxBZrNJkKhkCRS6qp9pVJBLBYTBmxxcVHcLzOZDOLxOBYWFjAajYT947n0ej2k02kxKyD4UU1NmIASBKkyRDNGQdM0kaDy/VQqJQkQ5aKvv/46vvGNb8Dn8+Hzzz+XxMqY3Kv1cGahAk61JsjIEpq1DlD3awRg6t/GekDj8dX3HsVAPU4tmBl4NAKj40DhcftStzkOrB23n8cBYccdxzhnx+2H95v6M5vNIpPJjEkbabFPp0NeC7WnmSqrU89DvW/8fj9isdhYvzBVPqk2o1fPU114UEG92sCbn1Nlmup7ZKv5mW63i0qlgkKhIOBNdVNVpZxqT0YCTAIJn88ndbyUOfr9frRaLQQCAXG7bDabYsFPgBYMBuFwOKTvG2u+aPfPxt8cDw2SBoOB9EtTz48AlOCLoEnTNHF45HWlQVQ8Hhe2lItOrEnWdV2YQU07qnPjdgRVfGZS7s5rQNC3uLgoRlQqeGMNHV/z+XzIZrMYDoeyYMYWB7VaDfF4fKz+70nElw7AOe02qwbOCiussMKKY6Pb7aJQKEgtRKVSQS6XEznV7u4unE4ngsEg2u027ty5I/3i1tbWUKvVUCgUEAgEsLS0JK5p+XweKysrmJubw9WrV7G+vo5wOIznn39ewBP7PDH58/v9uH//PkqlEqLRqKxCU07FpCwWi0miQkkPe2U5nU7Mzs6iVCrh/v37iEQikjTFYjEUi0VpLcAaDq7aA+YJvpqEGhNXBhsNqwk6XeF6vR5u3ryJZrOJ3/qt38LXv/51hEIhXL16FblcTlbHzQCLGTBTw8iOmTlRqq0EuE8m5mb7VGuajAn/cVJII8gx2/bnAVCPA96Mc2EGVNTjThqzGbgyOx+z+TcybQTA6jZmx1PDaLnPMNY3Ul5Iq3eze8cYZvNKBiwYDCIajY4xRioDNwlYq8Exqowdt1XdTwkYef9pmiYMF0EYnx25XA6NRkOkxsbvnq7rYw2uCYgAjD0TWBPHZwAdJglkarUaut2uAJPZ2VlMT0+j0+mg3W6j0WhIewECKa/Xi3a7LeCNUkXWlrGel+MnMKbbI+WJBExkPQEIe7e7uwuHw4Hp6Wnoui41ZjbbURsUgj7KKQEgGo2i0+kI4GYPN9Uchm6V7EMHHD13VVkmHS5pUlKtVjE9PS0LXezzyevAOr4nFb8QgNM0bRtAHcAQwEDX9a9omhYD8D8DWAawDeB/ret6+Rcb5uOH3aqBs8IKK6yw4hGxsbGBeDyOeDyOO3fuoN/vIxaLIRQK4fDwED6fD9FoFM1mUyz9z5w5g+npady9exfpdBozMzNYXFzEaDTCzs4OBoMBnn76abjdbvzoRz/CYDDAyZMnZUWdPd6YhExPTyOTyWB/fx+apuHMmTOoVCrSkJYJ2Wg0kuL6VqsFv98Pn8+HarWKXq+HqakpGXc2m0UwGJRV70gkgmw2K/Ip9i8iiGQQ1NDyn8kmMG5gAoxLE5lgtlqtsbqgZDIpJgT3799Hv9/Hb/7mb+Ly5csIh8N45513cHBwINbqAB4CbTyGGePBYJJrBhzI5BhbBqiAz+gyaHYMI9hR9z+JhZv0nvE8jPsz2+bnieMAuRH0mm1nBIOTtmFizmsHmPfrM/v7uHE9bjyK1TOTcpL5CYVCwjap82Bk38zO2RiqmySDpiQqY0j3RwIwNroGjpqP5/N55PP5MbdEgj2VfdN1XcAQe7Cx9QDr0Aju/H4/Op2O1H3FYjH53GAwQKlUQiwWw8LCAoLBIMrlMvr9Pnq9Hrxe75grJFk7ShsJojVNG2PgCBjZJNvj8UitW6fTEYfHcDgsNXZ0wNza2pJn28LCAur1OsrlMhwOB2ZnZ1Eul6UGsN/vY2FhAbVaDY1GA+VyWeZXlacCR8+2ZDIp7VXYK4/vkZnMZrPwer3I5XJotVpIJBJinsLWDpqmwefzoVKpjDlnPon4ZTBw39B1vaD8/T8A+KGu6/+Tpmn/w8/+/j//Eo7zWOGwXCitsMIKK6x4RBC8/fCHP0ShUMCLL76IVCqF+/fvi1SmXq+jVCrB5/PhzJkzGA6HeP/991EoFHDmzBksLCwgn8/j8PAQMzMzOH36NPL5PK5evYrl5WXMzs4il8shEAigWq0iGAwik8mg3+9jfn4e5XIZmUwGS0tL8Pv96Pf7YiSgaZr0TnI6nVIrR2aNNSeJRAIAkE6nBfzxMy6XC1tbW9B1HdPT0wIeVQkaE0UmZCr7pUq3jICEbIsKVlhLwwQrlUoJY7i7u4s//dM/xbe+9S2cO3cOoVAIP/7xj7GxsSGtGVRTBpWBMYbR1ERNclXGQmXeVNZNlbOpP9X9qedlZNmMgOtxmTI1HgVaHgWEzEJ9XwWjKoAx28dxQO244zxqezN28lH7Mptns30+Tqj7pgsjm3STeTMbv3ofcpFCBXi01De7H3gf0hCF7Bf/Vhti67oufdfS6TQajYbUc/GzHCeZHhqB9Ho9AU0+nw9Op1PGReapWq0Kc8V6skwmI+6Luq5jdnYWi4uL2NraQqFQgKZpCAQC8v13u92IxWLodrvSPBuAOFMCR0wWF5poamK32xEOh6UXWy6Xk3YjlCjSGKXX66FYLAI4akUwNTUFt9sNv9+P/f19RKNRlMtHPBD7ykUiEbTbbXQ6HZFfsr3EYDBAJBKBx+NBrVaTMVcqFXi9XrnGrCHUdV3GR+DJvndUOzQaDdhsNpF46rou8/Kk4lchofwOgFd/9vv/F8CP8WsEcEcMnGViYoUVVlhhxeTwer34wQ9+gFarhZdeegmRSAS3bt2C2+1GPB5HOp2Gx+PB7OwsZmZmUCqVUCwWMRqNcOnSJQSDQWSzWbRaLZw8eRKhUAjb29vY3d3FuXPnJHkIBAKSvO3s7MDlciGZTCKfzyObzWJ1dVWMCOLxuEgx7XY7Zmdnoes6Njc3YbfbkUqlZPWb1ueU8ZRKJdRqNWkkXq/X8Zd/+Zew2+24ePEi2u02fD7fWFJFswDKsMi6EQDRxc4MSBglewwycYxUKgW/3y9J2l/+5V+i2WziK1/5Cn7rt34L77zzDu7evSvOmGqCC2BsHEZQN4n9AsZbIJiBOE3TBKAOBoOHau9U6eajgNovwpwZ5+9x2LtJ+1A/YzTuMMoZVRbVOOZJgMs4TiNLZTwHs309ipH7edi448Cheh9Q/ufz+URap8ozCThU5mzSmFSGx9ggnqCLdv2UTJMlMzLJnU4HmUwG6XRaZM3Ge5z3P00+KK1Ua8/4TFBbBdB1cXp6Whi5Wq2GXC6HWq2GYrGIubk5BINB5HI5kWE7HA74fD50Oh2RDZKV9/l8Y3V7NDBhnZrqCOn3+wEcGdKwFxvr9fhsZKuA4XAoz6ZAIIDhcIj19XVMT09jZmYG+XweTqcT4XBY5KGapqFYLEoLhUKhIG6SyWQSwWAQpVIJLpdLHHi9Xi90XZfz47XJZDJwuVzyLFUbkRPMapomY6Uiggzfk4pfFMDpAH6gaZoO4P+t6/q/BZDSdT0NALqupzVNmzL7oKZp/xjAPwaAxcXFX3AYD8Jh19DtWwDOCiussMKKyfGf/tN/gqZpuHDhAmq1Gvb395FIJDAcDrG9vY1oNIoTJ07A5/OhXC5LUfwzzzyDVquFcrkMm82GkydPiq35YDDA2bNnx2opfD4fisUiyuUyVldX0ev1sLu7i8FggIsXL6JaraJYLCKVSsFms6FcLiMQCEgvpuvXr8PlcmFxcVFWglVA0u/3kc1mUa1WEQqFZIW6XC7jwoULsq9yuYxer4fRaCQmBbVaTeRUdrtdVvGBBywYnS9V5gowt8pn0NiEDF8qlUI4HEan00GxWMRf/dVfoVKp4MUXX8S3v/1tzM7O4qOPPkKhUEC32x1zxTQyHWpNm5qEm/WPU6WSqpyS26htCFTWhcdQAZ8RyKrHMc6DevxHATEjAHkc+eEkEGn2/iT5p9nxzPZ1HGg11hw+Cuwex6xNGotx+0mgzThPlLcxgadZhVqvRiCiOkQS+E8CcUY2Tg2XyyXyZQINAkPeU6zHYpuDdDqNVqsl7LV6LjyOsQ8cQRLlinRgJAAj0EgkEohGowAAj8cjzFGlUkEikRATkHw+L61J2IKh3+8jkUjA5XKJCoFjI4BhH7dgMIhKpTLGhlMq2u/3x+4Vmpfw2UJwGAwGxySe7XYbrVYL2WxWWLu9vT2Ew+ExuSfBmc121A4iHo/D6XQinU5LPXGz2RSDKspKyUDS5ZeAj+6d7DXHz9L4pN1uIxKJiJx0enra9J79dcQvCuBe0nX98Gcg7S1N0+487gd/Bvb+LQB85Stf+aVpHu02GwYj81UhK6ywwgorrACOGnnb7XY0Gg00m01xahwMBjh9+jRisRiAo95ChUIBCwsLmJubQyaTwfb2Nubn57GwsABd18WaPxKJoNVqSd+1breLL774An6/H4uLi9jf38cnn3yClZUVaS/gcrmQSqVEwjg1NQWv14tCoYCtrS1ZQdc0Tepb2EwWOGo03m63EYvFpMfbaDRCNBqVJrkulwuBQECaApOls9vt0vhYtUsfDAZiGAE8SCTVRGwSSGGiy55bwFGdSSwWw8mTJ1EsFpHJZPD++++jWCzi9ddfx+XLl+Hz+fDxxx9jf39fak14fDOmh8dVa9lUB8lHbW98DXjAunEeeL7qPlWGxKzOir9Peo3xKGmhcdyPw8gdx0hOet84FuP5GGWkv8jxHzfMQKYZ+DO+rkoWnU6n1JKSgVJBl9EVUnWdfJzxq6/zeH6/H7p+ZLwRCoXw1FNPod/v47PPPpPxdrtdeaaw1orGGMb98/5TzXdYd8g6LrWNBo9Bxn80Go3VaFFSqbYEaLfb6Ha78Pl8InEkaAmFQgCAWCwmEsJwOCygkv3SAEhNHxdDut0u3G63gE7KuunyqOs6SqWSMImhUGgMuMbjcQFUNpsNmUxGjFlKpZIsOtHkxOl0SguAg4MDhEIhhEIhNJtNAapOp1MAIuXkw+EQfr9fFsCCwSDS6TTsdju63a70qWMLAUrRKSf9eZjyX3b8QgBO1/XDn/3MaZr2xwC+CiCradrMz9i3GQC5X8I4HzusGjgrrLDCCiseFUwuQqEQwuGw1Kqtrq5KoT3/ra6uIpFI4NatW9jf38eZM2ewsrKC4XCIfD4PXddFztjpdNBoNFAoFHBwcID5+Xl4PB689957KBaL+NrXvoZUKiXOjVNTU2i1WiKFarVaKBQKaLVaWFtbw8bGBnq9Hp555hlZPd7a2kIkEpHV7XA4LHIeuswBkBXtjY0N1Ot1aeJLVnF7exvNZnOsLxUt+s36sJnJCs3AG9/vdrvSl+nevXtYXV3FSy+9hDfffBM7Ozu4fv06isUiXnnlFVy8eBFzc3P4yU9+grt374qVuGqlrrIQaq0aj2kEZwwjyFP3p4I4Jp9qrzh1TtT9mp3/pPibApvHBXk/T5iBTjOQZ5QGPmqfxm0ngdvj3psE3CYdXwVhZLpU8EYApxqGqKwbAQeZMfUcjgNuBHyUN/L3Wq0Gm+2oyfXv//7vIx6P40//9E8FfHW7Xem/ls/nhdGZNA+qQyeZN46ZwCkcDsvvdHis1+uIx+PCPvV6PXGdDYfDIiVttVpSe0Z5Yb1ex+LiIjqdDg4PD8fcI91utzxf+v2+SL8rlYoYlLABdjAYFDUAWw/wmTcYDKSmlwtflDDq+lEdYT6fh6Y9MAzhdcvn8wK6SqWSPMcDgQDsdjvy+Tx8Pp/UMKuN0nkMn8+Hw8NDhMNhLCwsIJPJCPirVqtjEluC5MFggKmpKbhcLqmXYw/RJxV/YwCnaZofgE3X9frPfn8DwP8dwJ8C+AMA/9PPfv7JL2OgjxuWC6UVVlhhhRWPCpvNhpmZGdjtdlQqFQSDQekRRHvtfr+P5eVlOBwOXL16FdVqFc899xympqZQKBSE7bLZbNIrSdM0sdo+deoUAODOnTuw2Wz45je/CU3TUK1WEYlEEAqFxK5b0zSk02kEAgF4PB6EQiF4PB7Mz8/D5XIhFoshm83iiy++wMLCgjBwBHKUMzHRCgaDAoCAI8A6Pz8vEkquMtNtjivxRgdIwLz3lRHITEq+B4MBarUadF2XmjyPxyPJ5eHhIb7//e+j0Wjg+eefxze/+U1Eo1FcvXoVxWJRkifVWEWVPxprvYyhJsMMo/skE3b1db7GJFNNpB8lazT7XQUjZmzcpDCTJB7HhqnjeRy54aRjHgfajO8btzX724wtm/T747IaXHRQ69gomyTrpi5OGKWSKuOs7k8dA+vc1OunsngEVfx+UM5Yr9dx/fp1bG5uwmY76n/WaDSQTqdRKpWEeTOCVP6u/lP73RGsUSLJ+5cyQ6/Xi1gshsXFRamzJXPPelSn04lMJiP9zMhOaZomsvFarTb23WVLAi4OkU0jK0hzFdr5swUKt6XhiNfrRaPREPaPhk38DE1CeH3IwpEF4zy1Wi2pZWO9XTabhdPpRCAQEOdN9okDjljCcDiMcrksLGCtVhNpbavVkjnmM4dtHnh+lNK7XC5ZZHpS8YswcCkAf/yzyXQA+K6u63+ladpVAH+oado/ArAL4Pd+8WE+fhwxcFYNnBVWWGGFFZNjbm4ObrcbhUIBsVgM8/PzGAwGUrzv8XiwurqKdruN27dvw+v14vz583A4HNjb2xuTMtJmul6vo1arIRqNIpFIoFgsIp/PI5VKiURT13WEQiHYbDYUCgWEQiEBKZRL5vN59Ho9MREIBAK4cuUK9vf3MTs7K0lDPB4XSZBadwccJTiapsHpdAoTxz5N29vbmJmZQSgUEpaMyRFX/V0ul9SxmIE0I5ggi2UmuWO93dbWFv7wD/9QnDYJMsvlMt58800cHBzg1VdfxSuvvIJUKoX3338fu7u7InVSk2SOQTUnAR5uRWA2dpXZUFk7lZnjZ1Tgp7I0xnkw/m183QzoHffeJFD0KDnlo947DuyaHcuMOTMCMuP+1LpFI/g1HseM7TK+bnYsFUwRvBG0qbVuqjkNrzvZGLKtKjBSmVc1VFMchtvtFrDgdrvFffXw8BDf/e534Xa7pbl4rVbD4eEhisUiWq3WmMR40vE4Hu6bjBf7l7F+zGazwefzicQxkUigVCpJTzkaInGfNBbhYhJl1isrK4jH49jd3UW9XhdXS4Issnt8fpVKJSSTSbTbbXHEbLfbsjjDvnFsm8K5IhCkBFHXdfT7fXGbpDHJ3t6e1BGXy2Vomga32y193lQTlEajIW1TaB6lyr673a60JrDZbEilUigWi7DZbJiamhJGlM3Pe70enE7n2HOxWq2i0+kgEAiMtZp5UvE3BnC6rm8CuGjyehHAb/4ig/pFwmLgrLDCCiuseFSMRiNUq1Ukk0kkEgkUCgVJHNTm3oVCAbOzs+Lc2Gw2EQwGEQqFUK/XRf5YKBRgs9kQiUTgdrtRrVbRbDaxvLwsjnQul0tc3Wh13e12pYaNLmuFQgHxeFzkUbdu3UKr1cLS0hLcbreATzJYLOafmZlBOp3G1NSUJCoqK8eEbmlpSZzb0uk0Dg4OZCWd7QVUR0hgch2c+v4kForzTVOCVquFSCSCaDSKWCwGTdPQ7XZx7do1lEolvPbaazh37hymp6fx05/+FF988YXU7zFpVYEIV8zNxmEM1TnQDJAZ5ZZqQj9JbsjfjwNXj5IZGl+fFGZM56PCbJtHjXMSwDOTNRrnRgW9xnpCtb2Dup2RYTSCaCP4JEgky0bgRtDG9xiqYY3K5k46H7OxqedJwxLK85xO59gCAyXEw+EQ9Xode3t7qFQqImk03g/qualzRvllIBAYq30jAOz3+8KesT3A1tYWNE0T2/xYLAZd18V4YzAYwOfzIRgMyvPsxIkT8Hq98Hq9uHjxIm7duoXd3d2x2lKn0ym1vYlEQlqSEOBRAjkYDBAMBuF2u0UdQBaPCzGapolqgf3iyNjZ7XZhB8PhMEqlEvx+v/SiY8sCu90uMlSPx4NIJIJqtSrPk16vh2g0in6/j2QyOeasWa1WpdcmF8Q4Fk3ThNXjuPv9vvTyZA2dzWaTtgRPIn4VbQSeaFg1cFZYYYUVVjwqBoMB5ufnhQmz2WwIBAIiKSoUjtqbRqNReL1eWRlmEkL3OCZ3bMzN1Xan04kTJ05gOBxKDzjabQNHtWqNRkOAnM/nQyaTQT6fx8zMDKLRKFqtFqrVKmq1mrhUTk9PIxAI4ODgQFbzp6enEYlEkE6nsbm5icFgIIkb64BYA0PHOMo00+k0YrGYrLgTUDLM2BSVdQMetu43JsZq8k02jaYtnU5HpF3tdhubm5vI5/N44YUX8NWvfhW/+7u/i1OnTuG9997D1taWjItgQK1rUxkNozGJ+jn13I5rU0Bpl/F81bngdsbfjUBS/dsMJBn3YYxHSSb/JqGOcxLwPY5pM4I2dR+qHFH9jhAMmLmG8nPqcYznR7ZNrXVTDUpUJk39DLdhkk52aZI0+DjgSAlwp9MBAKmzGwwGcLlcIgdks+yDgwOUy2XpU6aelzrnHCfbW/D+I9umaZq0DDDOF/unVSoVNBoNYe1o5lGtVgEcNQ13u93wer3CTLlcLszMzODHP/4xnn32WTz77LNS48sx81lHsNRqtRCNRgUscS7IEHa7XeRyRxYYfAa1Wi0BaQRGNFOhQ6TT6UQ+n4fD4cD09DQajQbC4TD6/T7q9To8Ho9IQsk48v6pVqtwuVyipCAIm5qaQq1WQ71eRzgcFtk6mUq2GGC9HK8lpZ7RaFTYOV5b1sn+9yqh/G8y7DYbBkMLwFlhhRVWWDE5FhcX4XA4kMvlhDmbn5/H9vY2dF2XxKDb7Y7ZzDPRJ6M1HA4RjUaxuroq4I0uj71eD7VaTVimRqMhTm90cWPiQMkRJZIEWWQAubo+HA6xsbGBbDaLTqeDubk5aQKezWYxMzODWCwGn88Hn88nTGE8HkcgEECtVsPS0hIikQg+/PBDSaIAyAq6mpQwQSTzBUyWfDExN2M01GDtDCVsXNFnb6VWq4V3330XW1tb+Pa3v41nnnkGyWQSP/nJT3Djxg0xQFCt/dVjqEDBmKSribNRZjkpuC8jiFOBnfr7cTJJxqOO+ShAZ9zPcfs3k0EajzFpDMa/1c8a/+ZPgilV5sjjGEGcOn+T9sfPEeCw7oyGHjyemcsk2Tg6ELKGi6ECfyODaFwQ0DQN4XAYbrdbDEvIlql2+aPRCO12W8Bbo9EQIHTctSTbprKINBAhUAXGXVnpzBgOh3H//n0ZT7vdxokTJzAYDNBut1GtVsVRMR6Po9frIZ/PY3Z2Fo1GA++++y42Nzext7eHWq2GV155BQCwubkp7rxsak3JYiKRkGtCEMa/d3Z2xAW33++jXC6L1DQYDIpdv8PhkB50lHTa7XZZaAoGg6jVasKccdHL4/GIjJL3MdUTlFBSUtlut5HP5zE1NSXgbmFhQZqAh8NhYTMJ0ggwWXvH+47tBahWsADcLzEsBs4KK6ywwopHRbVaRavVQjAYhM/nw9TUFO7duwefzycmIax3IMNDq+vBYICtrS2USiUsLi5iZmYGlUoFmUwGiUQCiUQC/X4ftVoNU1NT6HQ6qNVqmJ2dFUlRtVp9yBgAgCRBHo8H9+/fl7qPWq0GAGg2m2IHvra2Jslmu91GIpEQNznah7daLVmJHg6HSKVSqFQqePPNN+FwOKSGo1AoiJMlDROYkDJhVGuIjECFSY8x+Z0UZCY5H71eD7FYTFjDbreLjY0N/Mf/+B/xwgsv4OWXX8bv/d7v4fTp0/jggw+wtbUlkjBV5gWMs2wqSwc8zPYY6+qMY+Q/I9ibxMg9joRy0vtGppPjPS5+nveNjJvxfTNWyGx7s9/V7dV/RiYOmFynaHYcgiS11o3sFMGCuq0K4Piey+USGTNDNTZRj2ts6M59ulwunDp1Cna7Hevr61IvSZMLMs8078hmsyiVSmg0GlKjaja3/KmCN4JNvkfQU6/XBTDQqIXNtbe3t8WNdjgcYn5+Hg6HA+12G5VKRaSW8XhczEHIrPX7fRQKBemPtrOzg2w2i0wmg3a7LYtNBHK6rssiEQAEAgEUCgXpRZfJZOR1Mu3ZbBaRSAQLCwuykKTrR83M+d0vlUqw2+3iMMlzbjQaImFnLaDL5QIAec4RzBE0spUKXYHn5uak397y8rI4CDudTrjdbmmTQFUAZbk851AohEwmI0CR9X2/CAP+i8aXDsDZ7VYNnBVWWGGFFccHk4GpqSk4HA7s7u5iNBphcXFRpFZsxMuEulQqYXd3F+VyGaPRCCdOnEA0GkU2mxX7bcp+PB4Pzp07B+DI+joej4vrXK/XQyQSkaSv3+8LE8Ui+p2dHdTrdczPz8Pn8wloA4DV1VWkUins7++LRbiu64jH49IoF4DUobC3E2VTbLDrdDpx5swZlMtlrK+vi8yKyRElViowY0JvbHLN39Vt+LvZNtwnE8ThcIher4dOpzPWZLhSqeCtt97CwcEBvvWtb+H8+fNYXl7Gxx9/jI8++giHh4djPevUIPAGHm72bQwjmCMgVJlHhhGMqYDLKB01YyvVeVD/NoIls7lU96+OxbidykyY7ddsLMZ9G9+fxJLxcypY45waa8nY5JnA2mh8Y9xeZbkI5AA8xFKpY1blkrSBV8EbMO5EagRvxvP1eDxYWFhAu93GwcGBbMtzoQOsrusol8vI5/OoVqsC3iZdI/U4xutlt9vHGHqaafCnx+PB1NQUAIhxEhdRUqkUPB4PisUiSqWS9F6jA6TRlbFaraJSqchiztTUFPb29oQNUxkoNihnK4CZmRkUCgVRJdCAye/3YzgcSt3f9PQ0pqamRFXgcDikATeNR1hXmM/nxcmz1WohFAqJ+yONXMwWTGhqUq1WMTs7i+FwiEKhgJmZGVFAzM7OwufzYW9vD16vVyT0Pp8PjUZj7J5mjV0ymZT2Aipo5vPhScWXDsA5LRdKK6ywwgorHhGj0QjLy8vodDoolUrQNA2zs7PY3d0VyRJwZE3d7/fRbrdRr9dRr9cRi8XEbptg7NKlS3C5XMhms+K2Vq1WUSgUcPv2bUkoT548OZZs9Xo92O12AYUulwtXrlyBy+XCyZMnEQgE0Gg04Pf7x9wSb968CeBoldvlckk7AOCoibbX60Wn00G9XkcwGEQsFhNny3q9jpMnT8JutyMejyOZTAKA9IWiS1232x1z7AMeSCmNwOBRoEWVzgHjNUq6roubJ1mBaDSKaDQKv9+PXq+HmzdvYm9vD5cuXcLLL7+Mb3/723jqqafw7rvv4vPPPxeWgcDQWGvEYxrbBhx3f6j938wYNzMJopGdVOWDjOMAlXFejIBK3Z8RyKlyQJWJMh5r0jUyA2/G8RpZQjOWzfg3P6+Oyew81eMBEMmg2pjaTCppZODYV6xerz8E3IwgzexcuR1Zd7/fj4ODA2F7jdfJ5/Oh3+9je3tbWCualRjBrnpc3otcaOD4yYC73W6RffJzBKU0T2k0GiI9HgwGiMVi8Hg8yOVyss+ZmRnpx0g5+MLCAkKhEAqFAra2tkSiefbsWQSDQeRyOQwGA7jdbsTjcRwcHEDXdZFQVioVxONxaaQdiUSwt7cnC0Nk3uiuS6fLcrk8VkPmdrvl3o1EIsK8ORwOVCoVhEIhAUsej0cUCmyzQgYfOKoDbLfbiMfj8Hq92N/fl2dIOp1GJBKBzWbDzs4OgKNnZ6VSETdhNuf2eDyywDc9PS0LZIFAAG63W9hIo9HTrzu+dADObrNZDJwVVlhhhRXHxuLiIorFInZ2duQ/+XK5LEDCbrdje3sb7XYb0WgULpcLgUAAqVQKyWRSWCifz4fV1VX0ej18/PHHCAQCyGaz0LQjV7bPP/8cTqcTkUgEp0+fRjgcRjabhc/nE+tzVeJ08+ZNBAIBLC4uSr0c+8SROaObGvtD0UyA5iU+n2+soS5d3XT9qO9ROByW1WU24aVBCmvQmHySjSNDRnbArLk1f1cTclUmZ5QxqowLEyImRWQNWbvHFf+3334bt2/fxre+9S189atfxe/93u/h7NmzeO+997CxsSG1RqqphnpcY9sBhjpOMoJqnZ3Zir8ZuDNj59S5UX8/ju0y/j1JxjhJamkGiNS/jZJNs8+oIFUFLMbxq+NSpYnHATv1uMZ9q8yazXbk9OdwOIQ9MmP4WJO0tLQEm80m7PSkeVcNa4zH5zgpoeP3gwsZKlt76dIlFAoF/PSnPxWXV9WsxGy+j5tDHoP3Kj9LubXL5ZJar0KhgGg0CpvNhnq9jmg0KrVq/JlKpQAcNfymNDscDiMYDKLRaKBYLAqjd/HiRbz22mvodru4evWqsGrNZlOY0Ha7jXK5DJ/Ph263K3W2Ozs7Asja7bYsHKRSKXF6ZOsCNuJWmcVQKCRmIrquC0CkWzDPzel0inRTBVDBYFAYPbYgoNlMOp2GzWYTtcRwOBTJJnCkxuj3+wJ+WWMbiUQAHD2bbDabSEK73a6oHB4ljf5VxpcOwDnsVg2cFVZYYYUVx8eNGzfQaDRw4cIFRKNRSVLD4TCKxaI0ul5eXpYm12z0TXc3Squ2trbw4YcfCluWSqUwPz+PH//4x3C73VIvMjc3h3v37kHTNLGk5sovjQ9OnDiBZDI51lSW9TGsVxkOh5KEcUW92+1KfyYaBMTjcdRqNVQqFWlZQNMD1uXRytvtdos1eLlcllV9MlHNZlOSSrM2Aiojo7Iu3F79DPdDpkwFVHTLVP8Fg0EkEglh4w4PD/Ef/sN/wMcff4zXX38dzzzzDE6ePIkbN27gypUrY0BOBZKTDE0IFgjaCM7NTE6YgKps4yTwZjyO8W8zdkydTyPzdtwxHnV8o4zPKFV8VBgZOCP4VAGXkRUzfkZlQhlkvNRt+Bkm6qrDpPrP4XBIT7ZsNotmszk2XhXMq+NVj6eOQ9M0MdXgfcPFFkqKI5EILly4gA8++ADXr19Ho9EQyaSZ5Nb4XTEbE5tFUzrJbXhs1ozRoZZSxnq9jmQyiVgsJm0L6BZJNUEwGBTwwxq77e1tqQN7+umnxcSpXC6j3W4La0bWsl6vo9/vi1tjuVxGPB7HqVOnRDrJbfr9PiKRiCgBKKNkvzbKWt1uNyKRCPL5vID1dDoNv9+PSqUCm80mPTS73a4YiFAJ0Gg0MDU1JQZRDodDJJqUnjscDpFhDgYDeb5yoW40GiGRSMDtdqNYLIqD5XA4lOcjn7V06eXr09PTj/zu/KriSwfgrD5wVlhhhRVWPCra7TYuX76MaDSKSqUiq80s5KcrYqPRQLlcxqlTp8SOm6vYgUAAm5ubWF9fx+zsLCqVCi5cuIATJ07g2rVrKBaLIl987rnnpNUAndRYm9LtdtHtdnHu3DkEg0FkMhlZFVcTN4I1smVer1e2ZSNfJh+UUbGmLJ/Pw+fzIRwOy0o1m932ej2cPHkSjUZjrBaGMkrWwNhstrGaOCa4qqQSeJCwMlFT3yNwIxAy1o4BEAMYysKYvEWjUUQiETidTrTbbVy7dg1bW1v46le/ildfPWoAfvbsWXz22Wf48MMPsbGxcayUkufBhJvW78ZxGX9OAm9mbJnx2MZE3kxap4Zx+0nvTTrucayhcbyT9q+CHCNbxffN6t/MGDqGUYpoZN1U8EIgMjc3h2KxCK/Xi2azKWxUu93GaDRCPp83BYuT2EJ1/PxH8woAAj44R+12G8PhUGpJ//RP/xR7e3totVqo1+um/d2OA+gMAlB+J8h2AxDJItl3MmvRaBT5fF4MOmKxGPr9PiqVCiqVihwjFApJqwy62ALA/v6+KAGSySROnDiBZrOJVquFfD4vwHBmZgapVAqbm5sCllqtlkgZs9ks4vG4NMPmMygejyMSiUiPykgkIi0RWN9ns9mEOSMo29/fh9PpRLVaxWAwwOzsrHzfVSUCnzvJZFKUB1Q38LlJcEpWjX3haIxCNp71lOl0WnrksZk3DUzi8bg0++YzjUYyTyq+dADOcqG0wgorrLDiUfHMM8/A6XTi/fffBwCsra2hXC5D0zRJCGkssra2Ji0HPB4PEokE6vU6bty4IYzY5uYmnn32Wfj9fnz/+9/H5uYmTp48ibW1NczOzkLTNKkj0TQNXq8Xw+FQEqELFy5A0zRkMhnUajUkk0mp8aARAxMXn8+H4XCI69evS7839ldinUe5XJZE5vr16zhz5ow03B2NRlJ7FwqFpGYvn88jGo1ienpazE4o32o2m2g0GsIKUpporMdSE2SjAQiZhNFoJPVqxoRXNRLhKrnP55MVe7INqqzu7bffxrVr1/DSSy/h+eefxxtvvIHLly/j6tWr+PDDD0UKy2OZ1b4ZpZ7quak/VeboOHmk2U+z383q6tR4HFBl3JcROJiN16yOzowpNNuXGVA0SidVBk3dVm2ubQRtxm2MEkkmz5SvkelhPZWRUeVPMzZTBXgENgSL7KHG2ireywT2uVwOBwcH0tes1Wo9VBdqvC5m9wAZarpl8j1jywO1FtDv92N6elqYSSoBCoWCMEOUKMZiMbRaLQQCAZmvTqeD+/fvj9WKrayswOVyieV+sViUnmuj0Qjb29sir87lcrKfYDAIm82Gw8NDuN1ucZWdm5sTSSTbrNTrdZkHfpYLZpRmN5tNYfsDgQBisZgsIHGuVBWBz+cTW3/2tKTUvVgsAjiqi8tms+j1ekgmk6jVatIuoFAoIBAIwG63I5vNwuFwiGlMvV6XxaZEIiHMLh1FXS4XYrGYOG4+ifjSATj7zwDcpFUPK6ywwgorrOh2u7h79y7C4TDm5uZEFlev1wE8SA6np6fR7XalkavH40E2m0Wr1ZL/8A8ODvDUU0/B7/fjRz/6EbxeL377t39bVr/r9ToKhYIwPqwl4er0qVOn0O12pcEsG4xTYkS7aiZwgUAArVYLqVRKGtwGAgGEw2HUajVo2lFNyZUrV9BqtXDp0iXpRUdXvE6nI/2W7ty5gzt37iCZTMLn8yGRSGBvb2+slo7MHw0WjDU+6j++b0yaVUYOeNhB0QxY8fzobEcgFwqFRPbUarVQKBTwZ3/2Z/j000/x0ksv4cUXX8S3v/1tPPfcc3j33Xdx9epVHB4eig27WfsBjoVhZNgep+ZNnQ/j/owxCXCp+zCOzQxkmckr+dlJ7xn3cRzoMB7XKL80smZGQKYCJhXAqa+r5iIqGAMe9D2jYQb/JgA07tNsjGbBBQWCKC7acIFDdSIlK5bP51EqlaSHmMq6TWLcjEynylJycYYNvCkjVF/jIgoNVVqtFhqNhjxfyByRHSQbT/bI5XLJ9z6dTouxkcvlwvT0NOx2OxqNhrQ38Xq9cLvd0jeNzy5a/BcKBXFjBI7YPLvdDq/XK6BQdYClvFHXdQFGPA82zqakvFarwW63C7BqNBpwOp0iN6e0NBgMyuJOIBDAwcGB3DvFYlFk7u12W1QJXIRKpVIol8ti3EKzln6/j0AggHa7LfdHPB6X1gKsBaSEtlQqWTVwv8xw2I6+GMORDofdAnBWWGGFFVY8HIVCAYuLi5ifn5c6sWAwKLVhXI2u1+sIh8OIRCJjq/IzMzOyEn358mV4vV6sr6/j6aefxtzcnDjRAUdSRO4PgMgmk8mkOFDmcjm4XC6Ew2F0u11hrwgyvF6v9B5SWTH2UEomkyiVSmLJ/b3vfQ8rKyt45plnoOs6bty4gcFggHg8Dp/Ph3g8jsFggHw+j1AohLNnz4qkqFqtYmFhAQCwtbWFer0Ol8s1VgOiJt6q5JAgTJVJMqE3awausm5qAmxk49TaOK/Xi16vh2aziWAwiHA4LInw3t4evve97+HHP/4xvvnNb+LSpUv4O3/n7+CVV17Bhx9+iCtXrmB3d1fYRI6bwJKJvKZpkpxPAmtGNs4IPB53EZnnbPy82XaT9msEDsYaMyOofBTzpzJoxuOrr6ttGrg4wb9Vlov3yiTDEBXAqQDHLLitKtVVz/c48MwxkOUi40UWiIsbwIPehoPBAKVSCYVCAa1WS74DRumwOjdmixRG5o2ggd9xu90On88HXdcFjA0GAyQSCfh8PmGc2Miazxdj4/pgMCgGSz6fD51OBx6PB3fv3hXjE5fLhdXVVSQSCQBHRh6ZTAbD4RAzMzM4c+YMut0utre3hfHs9Xoi9aSJyWg0EmB16tQpqRdm7R0Xf2jvz+bYlDSGQiGUSiW4XC6RxfK8+V3nghdwtKATDAbl72Qyic3NTXg8HsTjcTGESiQSKJfLaDQaiEajGI1GqNVqSKVSqNVqYpBUKpXEIIY1wACk4bnT6ZQecW63G8PhUPptkj18UvGlA3D2n33hByMdDvsjNrbCCiussOJ/kbGwsACfz4etrS1UKhUsLCygUCigWq1ibW0NjUYD1WoVsVhMDADq9TocDodIexqNBmKxGBwOB4rFojgmNptN5PN5dDodkfSQJWJB/NLSEsrlsjSvpdkJZZNMzujSpjYCZqIWCoUwPT2NYDCI0WiEcrmMDz74ADabDc8//7zInmjQQZvzubk5JBIJYfiY9I1GI2SzWczMzMDn8yGbzY4lP2yECzxgStQE9rhaOCbDTG6NzZwJ2I6TBtKggYkTmxYT4AYCAamXKhQK+O53v4v33nsPX//61/HCCy/gd3/3d3H58mVcuXIFV69exebmpgA3MnuqoQrPb1IdmZksz/i6WZgBDRW0GJN9Ncz+Vtk6lXkzYxON4M14fONrk6SWKjgjcDOyYapjJGsozY5ldJacBIKNrJp6D5rNifoZlQGkYYq6P35vVQkt68DK5TKq1aoAN8p/jeeizq/Z++p5uFwuWdDg4ojf7xdJqMvlEifEYDCISCSCzc1NaJomZipq0LjI6/VC0zSsrKygWq0K45XP57G3tyeGTadOnUIikRCA0mg0hAU7ffo0ZmdncePGDWiaJrWy3W5XQBhwtDBFYBMOhzEcDhEMBoWp4kIUwSZBKZ1+3W63LFwNBgPY///tvXuMZOl53vd8VV1VXfd7V/W9e2Z2uDu7XHLFxVrSgiIlyBIjS2EUJAYJWJGRi6zEAiwngBMJAaIkCCA4tmMbMJzQtgDKZKwIkAhLsmCJN0skRZHL3dnd2dvM9Gz3TN+7uqrrfq86+aP6effrs1U9e++e3vcHDLoup059dU7Vme/53vd9Xq8XmUxGrn+hUAjT09OS7TAcDhEOh+V85vN57O3tSdSR5y+VSsnn4fWg2WxidnZWPkMymZTnef2z+wVGIhExQbFTOB1n1G+z0WiI0c1ZceEEHCNwamSiKIqiTGJ6ehq7u7vyn/n6+jpSqRSefPJJVKtVHB4eIpFIIJlMSr0EI1+MzFy5ckXqYJheyQksbbJ9Ph+GwyHK5TKCwSCmp6exurqKbreLYrEoE72FhQWp6apWqwAgKUoUOZyMURTSWXJjY0PcFz/96U/j0UcfPRHx6na7yOVyWFxcRL1ex3PPPYfr16/jU5/6lET2+v2+TFRjsRiy2axMLpmmyEmWHVHj5Ns2C3FP+t3plHa/MncEa5JYsu+z5QBX+1utFoLBoEQ1Y7GYTLq2trbwpS99CV/72tfw4z/+43jiiSfwcz/3c/jUpz6F69ev4/vf/z5u3bolbqAcr90Hzp0ix3GME2yTJnRuAeR+3BZDvG2fe7f4Oi2CNi6ti9Fct7Bwn4dx588tluw0RY6XAs1+zt6nXddmv88kU5RxIoy3bXt9+zV2uiijem6RyV6JFDy22ynPOR1faQjS6XROtO5wj9U+jqelwtrHilE2pnAy7ZDbMRKVTqeRyWSwvr4u9VmM2vOYMnLMa0Mmk5HvcqVSQbfblZRoYwx+5Ed+RIRgsViUHneLi4uYnZ1FoVAQocprHQUtr3NcjOL7M0oWi8WQTCalpUIwGESxWEQoFJL+l61WSwQzMFqk4tjZuoEtABqNhlzDstmsZEDkcjns7e2h3W4jkUigWCyKMRNTrpnuTUfNTqeD7e1tpNNpyWBwHEfGwobsPO6MEvI8eTweua6Xy2X4/X4RlGfBhRNwXqZQDlTAKYqiKOO5d++erKbu7+9jaWkJly5dwt27d3Hz5k2xt37sscfw/PPPYzAYiANbLBZDMBhEqVSSFMtkMikNbFutlhTcd7tdlMtlOI4jdv3VahXr6+tiY82JFVMiWV/COjz2cGJDX9btdTodfOUrX8E3v/lNrK6u4vOf/zwymYykVLVaLXF4S6VS0tz36tWrsi+mb3U6Hfh8PjzyyCNoNBqSAspVb7tpr90agJ+R2AJhnKhwRyjG1ZaNm5zb21FIMBLXarUketHv97G6uorHH38cP/3TP41vfOMb+Na3voXt7W188YtfxNe//nU89dRT+NEf/VH8xE/8BJ566im89NJL+M53voPvfve72N/fHzsOOxI3LoLljoS5n3dHr+zjYdeQ2aKIn9V9bE+Lyo0TnPcTSuPE6LjoIMdjP2abcDC10Y6ocR/jGmjboss9PvvzM73QFoJu4e8+RrZY421GnfnPbVxDg5RyuSwuqFwkmNSweVxaqft5Chx7QQN4IyrJqLtt8gOMDDhisRi2trbEUITXlUgkIgZIXNAJBoPI5XKoVCoIhUJotVrY3t6WtiDRaBQPP/wwHn/8cdy5cwfFYhGVSgX7+/uYm5tDNptFq9WSxSqmJvPYUPSVy+UTdWNTU1M4OjpCMBjE4uIiFhYWsLu7i+npaUk/pNsvI3rlcln2bZ8vHgPum2mWiURCFpHm5uZwdHQEj8eDUCiEw8NDuU6xns7+7sTjcYTDYen5GY/HcXBwgKmpKTFEqVQqaLfbmJmZkSggTVg4lmAwiFgshqOjI/nOuL0c/ywAAEd8SURBVCOhHyQXTsCx7q0/phhaURRFUYBRhMxxRo2tL1++jIWFBdy4cQO3bt1CMBjED//wD2N5eRlra2sYDAbI5/Po9/uYnZ1Ft9vFc889h2w2i3w+j1gsBmDUmqBQKMiElmKNK8uM8hweHspEmIYEbNJLd0VOeCORiKQssUYumUzixRdfxHe+8x1UKhV89rOfxcMPPywRO9ax2XUwjFp5vV7MzMwAGE0gWVMXCoVElDENa2FhAfv7++j3+0gmk2i32ygWi5LmVavVpMaN8HPZ6ZC8zQmVO7pE7idQ3NEO7oNGBXThY4+sl156CVeuXMHa2pqkk21vb+MrX/kKvvrVr+JjH/sYnn76aTz66KN4/PHHkcvl8OUvf1mMFE4TRuPG5749zkjDLYzs6JBdQzbu87ojU5PG4H5s3HOTsKNF49IAxxmS2NG1cVFGd4rkpGNib89x0/yGk31bdI2rGaSxEM+fz+eTiAoNOezP0u/3pTEz22h0Oh2pb7XdUt0LE27x6z6O3MZOH+X4eU1gXZXP5xNTDWDUeDuVSsn1BAB8Pp8Yf9gmJcFgEIeHh/jYxz6GRx55BC+99BLW1tZQq9WkTpSRsbm5OSwuLqJcLmNzcxP7+/vIZDJIp9PY2NgQgxHbIp9phX6/X1IKKWq4aMUshLt372JlZQWXLl3CvXv3EAqFEI1GUalUUKlUkE6npZbOcRyJhDKVcWpqSgxMuHjFdgSDwQDz8/Mi5Hw+n6Sgx+NxiThyXLwOMB18enpaaoUdx0E4HEYymUS9Xkc8Hkc8Hkcul4PX68Xh4aEYyfB3SrdfRjVTqRSOjo7G/Yw+EC6cgPNaJiaKoiiKMo5SqYR+v4/l5WVks1k8++yzeOWVV7CysoKVlRVJLaKd/2AwwOrqKu7evYsbN25gbm5O7LdbrRY2NzcBQFZpK5UKyuUystksGo0GSqWSmH+wdoJF+lz1X1paEnMFrkQDkO1Zi/L9738fGxsb0psul8uJGAMgk1Cmf1arVanZazQa+MhHPiI1KnwvpoYxAsjx0ekSgPSDKxQKMnFhyhMnX47jSGrl1NSURPqMeaMBtl3PZ+MWKJOEx7iUQbp90h2wXC7j2WefRTKZlN5e0WgUoVBIJupf//rX8a1vfQuXL1/Gk08+ieXlZTE7KRaLMl47fdAe1zhBdZrIGheJcws4t1gCcEL0uvfH8VAcu4/dOGfPt8I4MTYu+manKtqv5ZjdKZXjjgv35Y4E2vt2u4W6vxusI6WwZHsMj8eDer2OjY0N2Q6AtAipVqvSF4yCza6vPE0su41i+JxbvNqGPvz900iFER42qGbPtmw2i1qtJgYr/C2Vy2URVLOzs2Low9TumZkZ9Ho9HBwcoFaryfu1223pA7mzs4Pd3V3cunVL0gm3t7dFNLK/HgARSv1+H5VKRdII6QrL3/fMzAyGwyHu3bsHYwyuXLlyQtz0ej0sLy+j1WqJY2an00EqlToRRfX7/dJ/zefzIRKJoNfrybbNZlNSptnLjceOaZS2KA6FQiiVSvB4Rg3BeV2meOMCVr/fRz6fRyKRwMsvvyz1ffy+xONxOI6DnZ0daXPAz3BWXDgBpzVwiqIoyv3gyqwxBt/+9rdRKBRw6dIlTE9PY319HXNzc8hkMtJTKZFI4Hvf+x7W19exvLyMy5cvY2pqCrVaTVKcQqEQwuEwCoUC1tbWxCiADWwdx5GC/VarJW5qbHSbSCQAQOot7NQ0plDt7e3B5/Phox/9qKT/eDweMQ4gqVRKLL+5z1gshrm5Ofj9ftTrddk3XeKYMsk0zXw+j5s3b2J+fh6FQgF+vx+lUgmVSkVSnlgnRzMQRvk4KaKg4X7fiUAb99y4KAjfs1arSW0iU7uCwaBM6NjonFG7F154AS+++CLC4TAef/xxPPXUU9jb28O9e/dweHgoE2YAbxISNm7xMSnCZAuTcYYa7rRCt1nMuPe1xZIdxXw3As5OXbQft8WnW9DxfSe1C+B+3Y8Tvh/7stnClP/syByjc7FYTCb8bH1RKBRORLy433q9jlqtJlFZ1rbZtXDj0nrHRUTdCwn2d9xOh+WYuRhjjJF2GPwtMQofi8XEJRUYLZzwO80oPaNF1WpV7rfbbdTrddy4cUP6QIZCIfj9fjz88MPw+/24c+cOpqam8OqrryKZTMpCTi6XQyKRkO8k7fVZv1atVqU+EHjDLAWACDpeyxqNBvb397G6uoq1tTW0222kUins7++f6FPH651dC2hHv2mMYoxBJpORPoBc9GJ7AIp0Y95wx+Qx5bhnZ2el2Xs4HMbCwsIJl1s2I799+7akd05PT0vdXywWw61bt0TYxWIxHBwcSJruWXDhBBxdKDUCpyiKokyCheuvv/46hsMhnnjiCZTLZdRqNSwvL4vT29zcHFqtFp577jk4joOnnnoKi4uLGA6HaLfbuHfvnpiV9Ho97Ozs4MUXX8QjjzwiaUTD4RCRSESK8judDmZmZiTaRXOCeDwu6T+cvHGFmXbd/X4fkUgEkUgEfr9fJoa0C3ccR1IkAUi/JGOM9Hfa29uT4n029DbGiEgslUpIJpO4c+cO8vk8MpkMpqenUSgU0Ol0pIVCpVKRySknnIFAAP1+X94TeHPEYlwUzi123FEuYhudTBJJtpCjhToNZJrNJiqVikTjaHpA85hvfOMbMMZgZWUFs7OzuHTpkjiV0hzBNsu4Xw2UOzpnm5SMa2R9WlqhfWxsoXDa+9qi57TI4Lj00HGpsXY0zo7ejhOdk8ZmR9smRauYomcLKW7LNMmpqSnMzMwglUohkUiI6cjBwQHa7bYIPGOMfB94HmnHT7t6puiNE+fjFgvs42ozLoroFpH8x35t0WhUjiMjUHydMaO6s0KhIAsmdLs1ZtTM2+/34/DwELFYDF/60pfkNvd/5coVFAoFiZ4VCgURa/V6HcvLy8hkMnIsPB6PpClSnDHFmiKNUTkuhNjC6+joCOFw+MTi1e7urvReowByHEciWMYYHB0dyfUjmUzKOclkMlJ/m06nJfKVTCYBQER4OByW60ooFDrRqqDf72N/f1/MVObm5rC2tiZmR3Nzc9jY2ECxWJRFLUYts9ksdnZ2UC6XJZLH45NOp9/0ffmguHACTiNwiqIoyv04ODgQ638Wxft8Pmnqzbq3w8NDbG5uYm5uDvPz8yds/g8ODqT+jVb5e3t7uHbtGubn57G+vi41JrFYDIVCQSaJjUZDoi+9Xk9WkplWxVQgTui63a7Y/nPlnNbcdvokm11zv5xMhcNh1Ot1HB0diYkCG4dzFXk4HMLn82FxcRGtVktaLQyHQ8zMzIiDXL/fR7ValTqTSqUiopPpT8DJyaw90bWd/MZF0+znTjPsGPcaNzQ2aTabCAQCImLb7baIumAwKM59jUYDzWYTGxsbUqOTTqexsLCAg4MDEQDsgTVO+Lg/tzsFkcLHjsLZ+7DF3Lj9TBJ549Isybh0P/t1dqTO3WfNfi97rG5jETvqNu493MLGLVrt93Rb9du1bVwMoX19s9nEa6+9hmq1KimI/E7TjIfRNtaQcZGBqZKTcI9t3PNuQc3Pa38eOwWXxiV0n6QIYgqyx+NBq9USV1rHcSTdjzWwoVBIzEna7bZE0lqtFnK5nBiBzM3N4dVXX8WVK1ewuLiItbU1Melot9t4+umnZcGDKYqMVHHhiL8VukdSqNFhstlsIhwOS+QrFAqh3+/j5s2b+PjHP47r16+LaUi320U8HpfvG5txUxwBOJGayWbcNCNh2wNG7EqlkrhdMh2SKew0WqHRidfrRTQaxdLSEjY3N8Xt9+rVq9jf38fW1hYcxxHRCUAif8ViEd1uFwsLC9IXkC1lzoqLJ+C8rIFTExNFURRlPLVaDaurqyJCmGbHycH8/LxEvTKZDBYXF6WR9dHRETqdDmKxmPQoojvc448/Dq/Xi3K5jHq9jpmZGSSTSdRqNYTDYdmO5ga0ro7H45JaSaHBui6mJoZCIbH8tyeddgNcRuE4yeBEd3d3V1zVgsGgpKDxWHi9XrTbbRhjZCwejweJROJEDQ5Tl+bm5nBwcCCGAPxcxhiJFHAyylTKcQ27iS3EJgkNN291e6ZwcuyBQEAmzRTJdgosJ7LVahWtVgt3794FACQSCYRCISQSCakJoiA4TSBxDHbUym7HALzZuZGc5h45zgzGFkl2ithp4s79PrbosLHNSuxx329/41Ik+Z3hueF2jJjx8zEVLpfLIZfLYXp6GqlUCltbW9je3sbdu3dlW46biwzsb1av1+UxCjeeM/f4Ji0YjEujdC8wuKOT9rGwzwvdFhlJ7/V6Uq/Hdhhc5KnVaiImEokEFhYW4PF4UCqVpH6M15vBYIBYLCa/cUbblpeXkc/nRRQ6zsjB9ZOf/CQeffRR3L17V5qU050zGAye6LFIQw9GpegqCYyi/DwOqVQKHo8HR0dHyGQyUjPGdgQUltwXf5dcEKC5VL/fl3pVijL2cAMgGQfASPAxqp/L5cTtkotKTCMPBAKYnZ1FsViU783Vq1fRbrellQIX0bxeL9LpNEKhEO7cuYOjoyMkk0kEg0Fsbm7C4/GcyHQ4Cy6egNMInKIoinIflpeXZUUYeMORkTUoAKR2IxKJSPoQC+IjkYik2zBVa35+Hu12WyZDjBSwaS1TuWZmZk444OVyOWkkG4lEEI1GpYaLqZnhcFhqP+hCx/0FAgFpNM6JbLfbxezsLKrVKra3t9HtdlEqlSSVknV2jKbFYjH4/X7s7e0hl8thbm5OJl2MFLDuhiKTjW+Pjo7EWZMTW07O+Xo7KmfjngDb6X7vlHGpgnYaJ3t6MSrHWkLWGNGFb3Z2VlwtfT6fOHBy3zxXdr89TkrddVT8jnFy7zb4sP/ax8P+637O3YNv3Da2EDutjs6NW4DZ6Z922qdtWDIuWugevzuSZ6eRUsAxapLNZjE3Nyff/d3dXdy5cwevvPKKRHop3vj77Ha7Itrs3m2ThNuk79+4tEn7Ne7749Jq7ePFBRv+9nhdoTBiH7V6vX4iis3jEwgEsLCwgGq1il6vh8XFRfj9fvR6Pezv7yMQCIixRi6XQ6lUwsHBAVZXVzE/P49yuSxR+uFwiKtXryISiWB3d/fEWFnXa5vCVCoVST/mOT84OECn04Hf70e73cZgMJAUcFr6VyoVFItFWRDiAhYdeXu9HqLRqJyfUCgk1zs2HGd7E4pOHt9qtXri90SHYLZ8oPiv1+vSdmF2dha1Wg3r6+toNpu4dOkSBoOBpNFTuDG6mMlkcHh4iGq1ikgkgmQyiUKhgF6vh3Q6jWg0itu3b7+l39P7wYUTcKyB62sfOEVRFGUCnNAFAgGxoWcj7l6vh3q9Lv3PaHhA+2xODFnHEo1GEQgEUCwWpY/S3NwcUqmUpOnw/Vi7QivqRCKBXC4n7xeNRrG7uyuTINaLMGJkG450Oh2x326325J+CUD6RG1ubiIejyMQCGBra0v61fHzttttZLNZiUQyPZPCwOfzodPpoFgsymo8J4j5fB6O44ghC9NC+Xk5GWJKKEWNW6TZ0Sl3WuI7EXLuybUbvnen0xEhxygchdz09DT8fj+i0Sg+8pGP4HOf+xyeeeYZXL9+HXfu3EGv15PoKEU/zxOd7+yaolwuJ1GhRqOBdrt9Iho1KQWTTIqgUSDzNqEBiX3fjhDZUTvbaMMtSOxtbFMO+xi7U0AnpYLan8muB2MPs2QyiXQ6jdnZWUxPT0tN240bN1AqlSRdmBFpACIY+HtiCizNSHgO3AsI7uNrf3475XGcWHNjizT7vp02yXYGfr8fiURC6t7oNMmeaayt4njD4TAikYi0QWg0Grh27Rq8Xi+63S5qtZpcgxjB2tvbQ6/Xw0MPPYRkMikNq/kvl8shHA4jHo/D7/djf38fxoxMVRgtZ/oka96A0W86Go2iVqsBGEW0yuUyvF6vRKVpLMJMBRqBLC8vYzgcolqtynj4HfD5fFKry2vpzs6OZEX4/X7p7RYIBMSwhN/9Wq0mbU54bWYkkuY0vJayjjedTsPn8+Hu3btoNBpifsL023w+j2KxiI2NDXS7XaysrGA4HKJeryORSCAej+Pu3bvaRuC9RCNwiqIoyv2o1+tIJpNSX2avuLPmKxAIYH9/XyYTnLBQhLHPmuM42NjYwNTUFA4PD5FOp2UCUKlUJLpFcchIWzAYRCQSEQe6UCgkxfJ2KhRXuRltY3PhWCwGY4ykINnOfVxtX1pakkheNpsF8EY/KU6A2KcpHA5jZmZGVvaZzsXUK6YNtlotJBIJbG1twePxiMMbjQ04EaIJgS1U7ImxOy1tXE3Z/UTcaZPqSY+5t+eEmSKYtu521OG3f/u3kclkEI1Gsbi4KK0ZGNVhOhnrm5LJJB577DH4/X6srq7i6aefljSwjY0NbGxsYHNzE2tra5KSy0n7uIjaWxF59uezxdu4++NMRsYJsEkpnuPq3cZt447W8XtO85FIJIL5+XmxwT86OsKdO3ck9Y7HgueZE3Qaj1CAM6JD0cb6Nv6eJ0Vk3d8J93Vg3GvGiTp+z93tEyhwmTZI8xyfz4ednR35jjFqGAqFTtR/MW26WCwiGAzi6tWrsgCztbUlmQT8zXU6HQSDQSwtLaHf72NnZ0fGwhq6RCKBSCSCbDYrAocCiYZLjFQzu4DijVH8WCwmGQjT09MimCORiFyrZmZmZDypVArb29ty/GyDGS4kNRoN5PN5yRJot9uSYspty+WyXGscx0Gz2cT8/Ly0TrDFJBdo5ufnkU6nUSwWJQWUQpTZCvZ7zM3NodPpyELN0tISQqEQXnnlFWnF0Ov1pGburLhwAi7oH12kmp3xKQWKoiiKQhMQRl34HzFTt8LhMLa2trC7uys1Y5wAOY6DcrksTWkPDw8lnefq1auIxWLY39/H4eHhid5UtMBmw22mE4XDYQCQYnym8thOcewLx95tdHhrtVonhBLThthfynEcEYhsZUCjh0ajIf2bEomE1JJwAkr7chomvPrqqxJlYkpUrVZDr9fDI488gmazic3NTYkMsKUAAHlPuxmzO1IzLjpyvwmS+3l3dM8WeO50Ofdrh8OhiINmsykT72q1ijt37iAcDsuxpOW7ff7a7bakUe7s7ODu3bvweDzI5/O4fv06PvrRj2JhYQGXL1/GJz/5Sfh8Prz++us4OjrC5uYmdnd3xVyHTokU63Z0zH187ObWthjmX/sc8LPbAmNcxA14c583O9Jmj8Gu5+P7MYLJCW8ikUAymZReY0zVOzg4wO3bt6XvIlOa7SjbcDjEYDAQ4w37H7/7rAu13STHnffTvkPjvivuyJr9GneE0V5A4bgZ1ff7/YhEIhK539rakt8ro7WMwgGQqNtgMEChUEA8HsfS0pIIm2KxKPVmjuMgnU5je3sbg8EAqVRKzlWlUpHjx+3povjVr35VekXaDpz8vrE9CKPptVpNRA5dICmU2FScpjBcwOH+6ULJ3pZ2pK/X60l7gb29PcRiMTl29rljBgQFV7vdRjwex9TUFI6OjjAYDDAzM4P9/X0RektLS8jlctjf35eMCy5YMRLOa26v10M+n0csFsPLL78MYwyy2Syi0Si2t7dl4cHn82F7exudTgfxePzU79b7yYUTcInQyHmo0uqd8UgURVGU84o94WQ9WCQSwdzcHAKBADY2NnB4eIhsNotSqSS9poCRi+Lc3JxMTJhCmM1m4fV6sb29LRMSRh04WeNk2BgjxiPGGJRKJQQCAQCQRr7dbhf7+/viWMfGvOFwGMPh8ERND0UFJzyMotk95YLBoLyGE+S9vT2srq4iEAigVqvJZIYihilNi4uLJxwzg8Egrl27hmeeeUaMFsrlMkKhEG7fvo12uy0TQE7+Obl2iwZjzJtE3f3SKCdNrN37mDR5P21S7zjOCUFAoxqmWvJY87zyXPJ8UlCwNq5areK5557Diy++KNG5VCqFTCaD1dVVrK6uIp/PY2lpCZFIRNJSmUJYrVZRKpVQrValJocptHaEiQKCESG77s/+6xZgwEl3Sf4+KEbsOjVO4Pkau3cZaz4TiQRSqZREnSgy6vU69vb2cOPGDTQaDTQaDVmAYOSMvy9blPG7yMiOLdpYe8h6uHHndlw01/6OnBatnXTf/q7w8/H48HvHdDyPxyMpfBQb3H53d1dus/n09PS0RIi63S7m5uaQTqfF6Zb1YrTRj8fjEh3KZrPweDzyvaUxCqNqiURCFgns1GdGK/k9ByCpk1woAiBNsgFICw5e1/idjMfj4vDb7/extrYmdY1slcDzxfYOg8EAiUQCfr9fFk94/nmt4jkIhUJoNpuIxWIIBAI4PDyUrIBCoSALarOzs4hEItjf30e9XsfU1BTS6TQajYbsiwKbC2a5XA537tyRHn3pdFrcZ7PZrBhXMX190vfig+DCCbh4cCTgyirgFEVRlAkwLZEF6/F4HJlMBo7j4N69e7h79y6Wl5dRKBTEYptpWjT4ODg4wPr6Oubn53H58mXUajXcvHlT0rc4mYvFYjIZ4uQuHA5LCmepVDoRmUqlUmi1WmJOwCJ9igcAUs/h9XoRi8VkbADEQp01cVxNTyaTaDabaLVaYprQ6XSwtLSEbrcrQrHdbksdGBsPh0IhrK6uYmNjAwAwOzsrRgCvvvoqotGorMCvrKyIDT8n2ez3xEmoXR/kTqW0UywnMUm8vR3cdV/uCIv9j72nOAmneyWFHGvd+I/PjXOXPDo6QqlUwu3bt/GXf/mXCAQCUpOUy+WkFiwajSIej2Nubg6RSEQiqkwbrFQqUjdlRw6bzaZY5jOiRYFHZ0HbxZRCjCKNdUk+n09cAylO6dRJ+3vWDvJzNhoN6al39+5dlMtlSV2joQjTDDkOO8LG3w7TI+0aNrews91Yx53Dced4UrRt3PfI/b2090nsqKPbxIePMcrPSA5rstj2wBbLPAdcALpy5Yr8rvgbDwaDSKfT8Pv9aLVaePnllyUCxgUbRqBYVzsYDJDNZiXd1xiDXC4nUUEeW4pkpmMyEs/vOaNrfr9fonvMLqCpyeHhobRb2d/flxozANJo3e/3y/s1m02k02lMT09LlgNrGlknR9dJjoc1bMViUcQfFzj6/T4WFhaQy+VQLBblN7K0tCS/DV4reWyj0SjS6bSksAcCAbnm01Ezk8nA5/Ph8PBQUi7phHkWXFgBpxE4RVEUZRKcIDFViXUThUIB1WpV7KbZd+3u3bsIhUJYWFiQCerh4SGWl5dx7do1cccLBAJIp9Nih03rc042PR6P1Fix7oOujmy8y4k467AAyF87fajZbCKfz8tqNpuAc6I1GAxQq9VEBDIaYoxBJpOBMQabm5tiNc42Cqw9chznRE2O3+/HtWvX0Gw2pQ9SNBrFysoKBoMBDg4OkM/n4ff7Je2TIoN1WIwW2fVuhJPqSZb87km4zf0EnTvi4t7PpLRNd0SQgpgtJhhlsVMqGQGxo1Z83D4HHMtgMEClUsHR0RHu3bsHj2fUmJ0igOc/m81iZmYG0WgUyWQSkUgEsVgMqVRKxBbFO8fK80gRyogWn+O47bQ/+/UUd5ycU5SzNpLRnKOjI9RqNYmIUYBxf1yEsNMbOQ7WEtqCjcKO4o4CjwsCkwSbW6CNS4l03x8n7iZ9l+z3tCNvdgTTFvlswzEcDrG/vy+tKxgF54IM2yXYY7t8+bKkLHMRhM6ndgRvamoKS0tLiMVi0qMykUigXq9LT7eZmRlZBKLwTiQSEqUDIDWgPMccVyKREBMnRrDYB5I1fDweR0dHCIVCmJ6extHREebn57G3tydmSLlcThYbWI8Wj8elDi4cDks7E6ZLJhIJEcL8TtIF2O/3I5vNYmtrC+12W65r7OnI3nAzMzPodrty3eexpEkUG8EXCgWJ1IVCIdy6dUtaVyQSCWxvb6NarcJxHIkwnxUXTsAFfV74vR6UmyrgFEVRlPFwVZymALu7uxIl8vv9KJVKUoPywgsvIJFISMNvrjxfunQJly5dwjPPPIPbt29jZmYGuVxOUhAZiWHaEJ0fWejPGoxYLCbRONqIc8LCyAaFFVOyWG9XrVbFBKHRaCAWi8nEkhMtRvToYlcqlSRNizV6rGfjhInua5zgx+Nx6U3HSVSlUpG6EaYosV7nscceQ6vVwve+9z1pz8A0OU7eJ6VJ8vPZ9V0Ufe50uLcaibP3f9pr7lcnx8e4gu+OzHEizjpGCiA7dZaPUfgR203SnhQzSlMsFvHaa6+N7etGsc/eYkyb43fIFhiMWtkW7RRWdqTLjpiVy+UTkS++P5+3j40dKeM2FI62QKNgo5jh+eb2dsQQeMPkZpxoOy2NdtK5HHfOJ+3PjR15s88ba1WZVsrjwdq2cDgsx8aOeNpReqbZBgIBxGIxWQCJx+Py/Wq321hbW5O+hLFYDO12WyJvMzMzcBwHhUIBqVRK0pyvXLmC1dVVlEol7O3tSXokF2T4u6Og4rXMmFF/SAovNtKmIyUANJtNGePm5ib8fr8YhTSbTRFBh4eHGA6HSKfTItJo0sIoWygUEvHF9+Pxo8srF5gODg4kWsf6W8dxsLq6CgCSFspaQzYc73a78Hq9mJ+fl/rT6elpJBIJJBIJvPLKK1JHR1Oq/f19uQ6dZfokcAEFnDEGsaBPI3CKoijKRKLRKPL5PKampvDqq6/i8PBQIhl0catUKrh+/Try+TwWFhawt7cn6Uf5fB75fB4vvfQSXnjhBaysrEiT3cPDQzHAqFQqSKVSCIVCJ4wMGP3jxI2pOlx5to0hWFtC9zqOcXt7G41GA9FoVGpouE9GKjj5cbsrsibu4YcfxvT0tLjL0QTFrv3I5/MyuaxWqwiFQjIBS6fTeP7552UyxYnn9PQ01tbWxOWSE3WmbXLiSuFwv1o3t+29nYLnjp69nbo5e7I+SbyNM7dw7xfACYHDxQCPx/MmMWfXlbn/cnsKdcJolDt6x+NAxz1OqI15oyk2cLLhNiefdjTUTqm0P6ftGjqutQBFFj8/RSAjahS7rAm0RZn7Hx/nPsadD/tcjzvv484Lx39a3eRpIm7SRN0+vjwv/K3xN81zlkgkJD2R7UB4TpLJJBYXF0Xc8joUj8clijQ9PS3tQxihp5uix+ORfoysUd3d3UW73UY6nQbwhsCPRqOIRCIijjqdjqQBMiIbDAaljozHju01bGMWijlCg4+DgwNZQOD3mamct27dQj6fF/Mktk1gLTA/NxcwWBfM69n8/LykMMbjcZRKJezs7CAcDovoBN5YNAiHw1hfX3+TeQrTMufm5lAul6UGmRHBra0tNJtNLCwsiJvm5uampJB6PB7JkjgrLpyAA4B4cApVFXCKoijKBObm5tBut3H9+nUUCgVcunRJolFerxd/8Rd/gcFggEceeUTSdbg6TLOJl156Cbu7u8jn82Jg4vV6JU2IdR2hUEgiLbSbZwTQ6/Xi4OBAUqs4yeSEkBPyaDQqqVTGGBwcHIjJCh3U2PqArnE0DaCBAlMYmWpJww2aYrD2hhEjTgw5AWcEkIKkXq/j4OAAsVgMW1tb6HQ6SCQS0sfJ6/XioYceQqfTEXMBRn3YcsCOCBF7sm5HXex/AN4kaNyT7nGT9dNqpMYJtdNW2cdN8Ck27YgSU8JYz2NH6+y6Ofc/+7Nye74f71NE2IKOr2Eap/353DV5boMT9+ewPyMn0dyWQo1ii98tW6DZx4H37Sibna7nPofudNdxonpSKqWdZjnpXNmfddy5HRfldde82dFQ9mRkLRdfw7RAO02U4igYDErjeF6HgNH1iemPXMRhyxO6fDJSVywWJVpOB1z2dLQFV7FYxPr6urjdsnUBU7xtt0mmWdZqNYka8nfKrAJGvZjuG41GcefOHQCQvocAkEgkJKXSNmC5ffs2PB6PWPzbLQxobMIU7m63i3w+j/39fQCj2jWfz4dCoSDRR2AUVY5GowBwwhGXNb5Mxc1ms1hdXUWr1cLe3p4I11Qqhd3dXRSLRSwtLSGbzaLRaGB7e1vSTXmNtX+TZ8GFFHCJkB/lVvesh6EoiqKcU/b29mR1++rVq1KI7ziONL9mT7RCoSCToEwmg0AggN3dXXi9XqysrIjJSSQSERdARrtshzbWhdFsoNlsYm9vDwDEop5pSwDEIZP74ASOzn1sut3tdlGpVBCPx2XiadcV0eaeERF+Vttshe6ZdKFkg2FSqVQQCoWkTq9YLKLT6WBlZUUiCsPhEKVSCY1GA5lM5oSLXTqdxu3btyUCwbQ54M1iAXgjZdJ2qrSNT5jG5/V6TzgucttJYm7cfY5hkrhzM0nUud/D/su6OGJHsyjCbOMLW8TZoswt7OznKOzIOAMVPs6Jpy2ibHMR9+eyzUZsEeZOn3QLNfdrbVHHhYpxYnmcOHOnwdqfe5Iwu1+UblJapXt7e4x2qwA+z987jz/PG6Ph/X4fPp8PrVbrxPllfWG9XsfKygqMGfVAowkNzTuMMeh2u5iZmRFhzrRrjmF6ehq1Wg3tdhuJREJMYa5duyZmMpubmzg6OsLly5dFxNH90uPxSH/DSCSCQqFwwvEWeMOEiC1C+Jkdx5HWCIlEQloO8PU0Jcnn8+IyyRpamrmEQiHU63W5PkQiEblOJRIJcY+k6dStW7ckBZguuDTaMcbIYpn9nWdLmJWVFXi9XjFbMmaUxlooFLC1tYXZ2VmkUqkTRkFcDKN4dbc5+KC5kAIuHvThoHZ2zjCKoijK+ebo6AitVktst9lbqdvtShpiq9VCpVIBMFp1zmQyaLfb2NvbO5FSyMbdTK+kCKIlfKFQOBG1cBxH+hCxDo3RMZqfDAajPm6cENM1sl6vIxAISMpRr9c7YXLASQVbBjB1qtvtnphkMnLCOj0AWF5eRqvVkpQtpmfdunUL165dk9YEdM2MRqNot9totVpYWVkRswJOeuy6p2AwiNnZWUxNTWFzcxPVavWECOHnt6NxdhTEFjw0g2H0zh2dGSfO7H3yr1s0nhaxGycYbCHCx+3IoTti6Bas9mv4ubkAQAFgCzlb4HG/tpHGaVEpOyXSjT0u+7Yd6eRf+zO7I2w8N7ZRifv4uPftTtUcd57c52ZSOqT7cX7WtxJNtTntvceJYtsYhL9Xn8+HdDqNZrMp0Uua3tginQY3vGbwOtLr9U64U7L5dqPRkEWgwWAgLS6A0SJLMBhEMplEu92WRZd4PC6/R2NGTqE3btxAIpGA4zgnHERp/sFFGDpa0piENbo8LrwGMBUyl8uhVCoBgNTPMeKfyWTEGTUcDuPatWvSUoI96kqlEjweD1KplFzfeB1i9H52dhavv/46KpWKZBqwno/OuYyW8RrI4wsACwsL8Hq9eP755yVCOTc3h729PWxubmJlZQXpdBr1eh2bm5sIBoNwHEfMfrhgZbu8ngUXVsDd2q/df0NFURTlQ4nH4xHHsm63i9dff13c3KanpyVlkvbuyWRS6i1Y2xEIBDA7O4tcLif1EJzAJpNJiWqxvs4YcyIlKBwOS3SMogR4Y8LIyQFNJLgCzFQ8pigZY6TOJBQKnejplEwm5XmuTLdaLZlkcsJJl8FAIACfzyd1a9FoFMvLy7LyXCwWUa1WxRY9FAohGAyi0+lgYWEBtVpN7Lj9fj+q1Sr29/fFLa7T6SCTyUgkkZNiTi4nReNswWA7Jtoi4bTImC263Pud9Bp7m9Mm/5OiOrYA4ITdtr3nc25TElvQuY+DLdzGReHcETp7H+MiVbbAGveYHU2z0xLtVMr7HUP3sRr3+Lionz1Wd6RuUgTV3mZcGuVp55zb8P04rnHHlu9H8UUzDv7u8vm8mP2MWyzo9XpiYU9nSfaZpBmH44z6AdKY5ujoCABE0BSLRUl/ZAp2NpvF2toaDg4OpJ/kxsYGyuWyLA4QpoT3+33pOUhnSKZjF4tFRCKRN4kiRs/YUJ3ZCTRIYuTQrmWjGQuFEH//qVQKfr8fe3t76Pf7cn1oNBrIZrNi1+/xeDA7O4uDgwOpWfP7/WJiQhHNhSOmgrIxOI9POBzG888/L6ZSs7OzqFarKBQKyOfzSKVSiMVi2NnZkUW0Xq8nxioUpRSMZ8WFFXBqYqIoiqJMggKFYiaTyWB+fh7GGOklxEkVV9LpTEnL9lAohEwmg1arJTbZnU5HCvRv3Lgh1tbBYFBW3zudDoLBoNjt2xElRlmYQkTx5vF4kEwmT4gRplcGAgE0Go0TE0b2emM0hBE71rkAkNVppi9R4GWzWZnEU/jRKW5ra0seY90JDVI4lnq9jhdffFGOneOMzBJ2dnZOiOZarSaf306ps48FX0shYTv+jYvu8LY9UR0nnk6LyrifcwsJ9zb2ZN8WGpy0TxIDbrFqR/UmCUY70uWOELk/w7hom3087P3ZrpL24/b72p/97aQmjhPO9t9xjBOg4/Zt37eP3f0ikePG6I7i8vtvHyM74snFDkbAST6fF7v6drstqaOshW00GojH45IBsLq6imw2i2g0ikqlIi63juNIyjadG+kEyzq2qakp1Go1NBoN/MzP/Az29/dRLpcxNTWF1dVVeL1e7O3tSaR+MBjIPoBRSuTW1haKxSJ6vR4WFhaQyWQwPT2Nvb09EXhshcDfIOvraOoxNzcn5k18n0qlItfJSqWCRCKB4XCIWCyGUqmEo6MjPPbYY1hfX5eaN0b9aMDCY0ehV6/XxXApGAzi4OAAzWZTnCP9fr+4+/Lz1et1cdINhUJ45ZVXUKvVpOdir9fDvXv3EI/Hkc1mkc1msbm5iX6/L9dWpp3zuLHBeiKRmPgdfr8Z/+t+wIkHfai1+xgMzy43VVEURTm/sG6M9R+pVArAKLWSKUNsWFyv17GzsyPGAbFYTFITm80mHGdk2b+1tYV0Oo1ut4s/+7M/w/r6ukxwmL7DFgFczQUgETBOnh3HkXq2crksTbhtJ0Ouyvf7fdRqNSQSCSSTSTEhsR0oOclg7YotImyXPLpc2sYYwWAQ/X4f+/v7qFarqFQq8rgtuuzaGI/Hgx/6oR/C/Pw8NjY2pK8cxxwOh5HP5xGPxxGNRk/U+THFk05vHJ+72TQn2u6UQrepAJ8fJ97cAnBcpGqSeHALAfd+OG5+Bvv93UKI29s1ZeP2bY/HTm+0hZw7DdL9mPt4udMk7fdxR5vsVEn3dvc7bu7xj4v8ubex9znuuN/vtfb9cdFH93P2+WB0zb2N/dzU1JQ0qGa0PJvNyoIOG2+zETbbCszMzKDdbiMSiWBhYQHz8/NSA0uxYEfmms2mRIvi8bjUxnJsGxsbSCQS6HQ6kt7MCCBNPygyw+Ewer2enMfDw0M0m00xREkkEjDGnEhP5O+bnz2TyYiYCwaDWFlZQbValQyBWq2Go6MjVKtVibSFw2EEAgGJJLJ/HVtKAEA6nRbjFqaAs46NtXM0aKEpCsVwJpNBKBRCs9mUBTh+5unpaSwuLiKTyeDOnTsoFArSS7HX6+HOnTuYnp7GzMwMlpaWRASzV6cxRq79FLNcTOM1/Cy4sBE4AKi2ekiG/Wc8GkVRFOW8sbW1dcKWn6vahUJBVmY5yWSqosfjQT6fl3oMRpJYE3HlyhVMT09je3tbattyuZzUq1DM8XWEDZL5HrFYDI1GA+VyGalUStKzWO9CB7ZyuSy9lwCIo5wtHmxnyXa7LXVysVhMJvNM+wJGE3yaLkQiEQwGA3Go5KSo0WiI+xtNAezohzEGV65cwcbGBlZWVmQiy1QvrtLncrkTkSgAkjpG4WNH4mwRMS7F0U4R433bPGRSnZVb5HF/44SffZ5sMeOODtqpc/ZxAXBi/Lxv72dcxMp+v0mRukmiyf489nbjoomsReRr3AJx3G37fe4nytznza4VtJ+3X8Nt3C0j3PudFFl1H08b+xi4Fwb43m7By2gz3V2ZUjgzM4NyuYx4PC6NzgFIxLrZbIqjbSKRwMrKCvL5vCzY7O3tScSODra2gRLrciORiKRsP//882I6sr+/j5s3b4qDZalUQiKRQDgcRrPZFAHp8Yys/YvFoqQ49no9pNNpeDwe1Go1OWb1el3GbowR914uDrHmjduxLQENWCj+fD4fjDFoNptotVqYm5uDMQbb29tyreH1YXZ2ViJ+Pp9PInalUkmuoY1GQ3rLsRE4zWDs9NZAIIB0Oo1wOIx79+5hb28P8Xgcs7Oz8Pl8uHPnDhKJBOLxOC5duoSdnR3s7u6Ksy+AE/XOjuNIGjsAaRdyFrxjAWeMWQTw2wDyAIYAvuA4zj8xxvwGgP8GQOF40193HOeP3+1A3w7J8EjAHTW7KuAURVGUN+Hz+cTynhSLReRyOczPz0tKYrvdlpovmnCwzxFXxlOpFPL5PLrdLg4ODiRNiP+4Cu/3+2ViF41G5XFO0BiJOjw8lMJ+TiJopsJJVqvVwr179zA3NyfOj1euXIExo8J/v9+PcrmMvb09qb/j5wBwQuRxssbJO8fPCS0nUZzYcyLKqB33x3SmxcVFeL1eLCwsIBKJYH19XSILMzMz0t4AeKOex+fzSbNjtlOgkKzX62NrsTj5dtd92Xb7NI2xRSbhPmxhY6dx2nWJwJuNQOzX2gKL4o2CwxZF49I+3dGlcSmcdhqf+3OclhbojvJxLPy+ATjRSNvej1v0uMWSWxi5BR5f4xa/4z7juLHb4zjtudP2aW/nHj+/N+6ooh3FtQ12GIlhtHh6elocFDOZjPy+6vW6RI7sFORUKoVSqYRIJIInnngC8Xj8RKSKDaYpDmu1GmKxmAi0Wq2GYDAo9bBra2tYX1/H3Nwc1tfX8YlPfAL5fB69Xk8WcygCo9Go/Mb9fj+Ojo5O9OkLh8Nix886uFqthkgkIv3r6IBJ0ZdOp3Hv3j1JNx8MBiiXy9JOhFE0j8cjPdrq9TpmZmYwNTUlZifz8/OoVquoVqvIZrMAINffXC6HSqUikUSKyUajgUgkIgtctVpNaviAkasvawDj8Thef/11HB0dIRwOY3Z2FqFQCDdv3gQAxONx5PN5lEolbG9vSyYBADFuorkLAEQiEan75eLeWfBuInB9AP+D4zjPGWOiAJ41xnz1+Ln/y3Gcf/Duh/fOSIdH/0Ed1ru4lD2rUSiKoijnlWw2KwXvXPlNpVKYmZlBqVR6k4kAJyT1eh3GGOzv74tIicViKJfLUtzOKBprORh9o7U/U4fcFuBerxeVSgXlchmZTAb1el1sxo0xWF5ehjEG6+vr2NnZEdfIfr+P5eVldDodcZvc2dnB1tYW5ubmMDU1hf39fUxPTyOVSol4GgwGUgto1zixXo5RN0a2stmsrNozJWowGEgtH+29HceRfkxMN+IkPh6PY2dnR8QzX88Gvh6PR1I1mQZKEeROQ7QFCrFru+z6mXHRHlto2eLMjgiO2z/f2y38eJvvbTsWUuDZkaJJwov7sfdtR8Ts5+3tx4kcvjefZy0PBUMymZQIqVsAc3/jzEDsx93v6T5m9medNMZJotb+bJOieOOOw6RopH1Mxp0TRqJ5m+d4ampKDCsCgQDC4bDUSAWDQZRKJcTjcVnw4XYUdn6/H4eHh0gkEnjkkUeQzWbx8MMP4/nnn4fjjJxqHceR2q+DgwNpE8LoHGvX+v0+1tfX8dprryGTySAcDqNer+P69etIpVI4OjpCNpsVAcWFIP5+9vf3RaD0+30kk0mEw2EcHR2JwUihUJAIPNsXDIdDic4tLCxIWjWNQdbW1uDxjPq6eb1e6TVJwTgYDDA3NyfZAzQB6XQ6CAQCiMViaDabMjbWF9NQiteLUqmEaDSKdDqNWCyGarUqn4/XCaaRhkIh3L59WxbKmGp58+ZNtFotLC0tySLY3t7em6L7vKaz/pAGKx6PR1rBnBXvWMA5jrMLYPf4ds0Y8yqA+fdqYO+GTIQC7uxCm4qiKMr5hSKK6XO5XE5WxJkWaacy0Xq/2+1iY2MDqVQKs7Oz0p+INWzBYFAmehRCnCDT8KDdbktEyhgj9WSlUgm1Wk0iVDRK8Pv9MmHc3d0Vx0emHkWjUVm9j0ajODw8RLvdlmgXHemYCmmMEcMSewWZ9zlRvHv3rjTcpvji+25tbeHy5cvyeTjh5Yp+KBSSSU86nZYxMrrHdgdc8bbTqwqFAowZmcnYk2xGxwCcmHi7oQDjmDhxtaNpdvTMFhiT3BDtNEZbvAEnDUX4GrexiZ2CZ+93nHCxtx33Od2iblw6pftzcl/8zjNKy+81P5d7AstUNMeZ3HDbzbjP6D4+4+6P2+9bEWPuiNy4CBwXASheWSc6bl+MVNrnOxwOS3oye6yx5suOoHGBh6YZrF2jS+Kjjz4qKdrlclnMhjh2pktzMQMADg4O5JpSrVZRKpWwsbGBfD4v9a1MfbRFCQWXxzOy5a/VaigWiwBG179qtSrijW09KFiCwaBEs5iRwDRKLnKxbYDf7xd3Xjr0ApBoP1NJl5aW5DPU63VEIhF0Oh3s7e3hE5/4BG7fvo1yuYzhcIjLly+j1+uhUqmI0RSzGWwHXEbu2F6Bz8/Pz8Pn80mzcLZ1CIVCuHfvnvSky+VyaDQa2N3dld8te2Mym4GLG/F4XEQ7o28PfBsBY8wKgCcAfA/A0wB+xRjzXwD4AUZRuqMxr/klAL8EvHFS3yuyURVwiqIoymR++Zd/+a01hTpnXL169QN7r0uXLo19/BOf+MQHNgZFURTlzbxrF0pjTATA7wH4VcdxqgD+OYDLAD6OUYTuH457neM4X3Ac50nHcZ5kzut7RSrsh8cAhZoKOEVRFEVRFEVRLg7vSsAZY3wYibcvO47z+wDgOM6+4zgDx3GGAP4FgKfe/TDfHl6PQSrs1wicoiiKoiiKoigXincs4MwoyfhfAXjVcZx/ZD0+a2328wBeeufDe+dkIgEUameXm6ooiqIoiqIoivJe825q4J4G8AsAbhhjnj9+7NcBfN4Y83EADoANAH/rXbzHOyYbDaCgEThFURRFURRFUS4Q78aF8tsAxhWBf6A93yaRiQTweqFx1sNQFEVRFEVRFEV5z3jXJibnlUxkVAPn7hGiKIqiKIqiKIryoHJhBVwuNo1Of4hys3fWQ1EURVEURVEURXlPuLAC7iP5KADg1d3qGY9EURRFURRFURTlveHCCrhrszEAwCsq4BRFURRFURRFuSBcWAGXjgSQj03j5R0VcIqiKIqiKIqiXAwurIADgGtzMbyiAk5RFEVRFEVRlAvChRZwj87FsFaoo90bnPVQFEVRFEVRFEVR3jUXWsBdm41hMHRwa7921kNRFEVRFEVRFEV511xoAffoXBwAtA5OURRFURRFUZQLwYUWcAvJIKKBKa2DUxRFURRFURTlQnChBZzHY/DIXAwv71TOeiiKoiiKoiiKoijvmgst4ADgiaUEbmxXUG33znooiqIoiqIoiqIo74oLL+B+6loevYGDb752cNZDURRFURRFURRFeVdceAH3xGICM9EA/v1Le2c9FEVRFEVRFEVRlHfFhRdwHo/BTz2aw3+4WUCrq/3gFEVRFEVRFEV5cLnwAg4APvPoLFq9Af78duGsh6IoiqIoiqIoivKO+VAIuL9yKYV40Id//d276PQ1CqcoiqIoiqIoyoPJh0LA+bwe/N2ffAjfXjvE//5Hr5z1cBRFURRFURRFUd4RHwoBBwB/8+lV/PwT8/jDF3bRGwzPejiKoiiKoiiKoihvmw+NgAOAn/noLCqtHr57p3jWQ1EURVEURVEURXnbfKgE3CcfyiA6PYX/49+9ikKtc9bDURRFURRFURRFeVt8qATctM+L//tvfAJ3Sw382u/fOOvhKIqiKIqiKIqivC0+VAIOAJ6+ksGv/uRVfO3VfXztlf2zHo6iKIqiKIqiKMpb5kMn4ADgv3x6FQ/NRPAbf/iyNvdWFEVRFEVRFOWB4UMp4PxTHvxvn30MW0ct/LNvrp31cBRFURRFURRFUd4SH0oBBwA/cjmNn39iHv/Pn9/BH9/YheM4Zz0kRVEURVEURVGUU/nQCjgA+J//2iN4OB/Df/fl5/CZf/wt/OXr2l5AURRFURRFUZTzy4dawKUjAfzef/uj+Pv/2eNodPv43Bf+Ev/1F59BvdM/66EpiqIoiqIoiqK8iQ+1gANG9XB//clF/Onf/TH8vc98BN+8WcDP/tNv4f975h6GQ02rVBRFURRFURTl/GDOQ+3Xk08+6fzgBz8462EAAP7sVgH/8E9v4sWtCqZ9Hnx0Po5Pf2QGC8kgPv2RGcSDvrMeoqIoijIGY8yzjuM8edbjUBRFUZT3k6mzHsB541NXs/ixhzL4dzd28ezdI3zv9RL+zz+5CQAITHmwkg7jxx+ewaNzMfzUozkEprxnPGJFURRFURRFUT4sqIAbgzEGP/v4HH728TkAwFGji41iA3/4wi5e3a3iC39+B0MHCPm9uJQN43I2Iv9ysQAuZyNIhHwwxpzxJ1EURVEURVEU5SKhAu4tkAz7kQz78cRSEgDQGwzxF3eK+OZrB7hTqOMHG0f4t8/vnHiN3+tBPORDMuRDIuhHOuLHfCKIhWQQqUgAQZ8XQZ8X0ekpxIM+RKenEJ32wT/1oS9LVBRFURRFURRlAirg3gE+rwefuprFp65m5bFmt4+Nwyb2a22s7ddRbHRRaXVx1Oih3Ori1n4N37x5gHZveOq+/VMexI7FXCQwdSzsphAJ+BAJeBGxbocDU6N//imEAt7RX78XIf/oucCUR6OAiqIoiqIoinKBUAH3HhHyT+HaXAzXEMOPf2Rm7DaO46DY6KLc7KHdG6DZHaDa6qHS6qHe6aPW7qHW7qPW6Y/+Ht8/PGyg0Rmg1u6h0R1g8BbdMT0GJ8VdwIuQfwphvxehwPFf/xTCrsdDfi8CU15M+zyY9nkxbd0O+DzynN+rAlFRFEVRFEVRPkhUwH2AGGOQiQSQiQTe8T4cx0GnP0St3Uej00ej20ezOxKDzU4fje4AzW4fjY7rrzzfR7HRxb1SE83uAI3O6PX9d9AywRhgesqLoH+UDjrt8yDop+Ab3Q9YAtA/NfoXmPIiMOVB4Pi+3+uBz+vBlNeM/noMfFMe+Dx8zGDq+Lbf68EUt+FrPB74pkbb+LxGRaWiKIqiKIpyYXnfBJwx5jMA/gkAL4B/6TjOb75f7/VhwhhzLI68yEbfuRB00+0PTwi9dm+Idn+ATm+Idm+Adn8weqw3QLs3QKc/ut3qjp5rdYfHUcU+Osf7KjWG6By/rtMfvabTH6LbPz2N9N3i9RgReD6vwZTXA59n9JeCb+r48anjbae8Bl7PaDvv8f0pj+fEc1Py+PG2XiPvxX157X/Gdf/4Mc/xa/jX/Zj9unGPuffF28YAHmPgMaNjoEJWURRFURTl4vG+CDhjjBfAPwPwVwFsAXjGGPMHjuO88n68n/LuGUXH/EiE3v/3chwH3cFIyFHQ9QZD9AYO+sMh+oPR8/2Bg/5giN7w+O/AQW8wRH94vO3x9vK4ax9v3v7kvgbDN7Zt94boDwcYHN/vD0fP9wbD4+1Gr+PjfO/z3uvdFnMeg5HoOxZ7Xg9vvyH63vzcydd4joWkx4wWE07cNgYeD2SfXmPd9lBcjkSnx1j3DWTf5nhfBjjxnjhx/3gbAxi4Xg8cf577bwvXe4x/79Hr+NzJsb55W+CN48Ftx30ejtN+73GvnzTOse8l47zPe3F/HtznOPO10MUARVEURTlHvF8RuKcArDmO8zoAGGN+B8BnAaiAU2CMOU6j9CJ61oN5lwyHltgbDjEYOBg4o/sn/jnOiW3djw2P7/O2/di4fdn3h46DoYPR36F128Hx/UnPO+O3s24PHAeO42A4xMntj8fgWLdHgvf4czkjoT56zr5tvcbar+MADvi60fYO3nhuONpgdN96/OTrnHMvqB9kThWLOBaALvFov8bLxQJLzHO7X/jhZfzij66c9UdUFEVRlAeC90vAzQPYtO5vAfgr9gbGmF8C8EsAsLS09D4NQ1HeXzweA/8oHIIgtKn7ecCxRN99xd7Y7d4sHie9/u1sC0ugnvpex59hOMR9x4UT99/47I77vdzHxRkvnGWfw/sdk9HrHMc+FifHZG9rLwpQzA+tMaTC/g/wG6IoiqIoDzbvl4Abl29zYm3ccZwvAPgCADz55JO6bq4oynuCpAuOvQwpiqIoiqI82LxfXaO3ACxa9xcA7EzYVlEURVEURVEURXkLvF8C7hkADxljVo0xfgCfA/AH79N7KYqiKIqiKIqifCh4X1IoHcfpG2N+BcCfYNRG4Lccx3n5/XgvRVEURVEURVGUDwvvWx84x3H+GMAfv1/7VxRFURRFURRF+bDxfqVQKoqiKIqiKIqiKO8xKuAURVEURVEURVEeEFTAKYqiKIqiKIqiPCCogFMURVEURVEURXlAUAGnKIqiKIqiKIrygKACTlEURVEURVEU5QFBBZyiKIqiKIqiKMoDggo4RVEURVEURVGUBwQVcIqiKIqiKIqiKA8IKuAURVEURVEURVEeEFTAKYqiKIqiKIqiPCCogFMURVEURVEURXlAMI7jnPUYYIwpALj7Hu0uA+DwPdrXB8mDOO4HccyAjvuDRsf9wfJhHvey4zjZ92IwiqIoinJeORcC7r3EGPMDx3GePOtxvF0exHE/iGMGdNwfNDruDxYdt6IoiqJcbDSFUlEURVEURVEU5QFBBZyiKIqiKIqiKMoDwkUUcF846wG8Qx7EcT+IYwZ03B80Ou4PFh23oiiKolxgLlwNnKIoiqIoiqIoykXlIkbgFEVRFEVRFEVRLiQq4BRFURRFURRFUR4QLoyAM8Z8xhhz0xizZoz5n856PKdhjNkwxtwwxjxvjPnB8WMpY8xXjTG3j/8mz8E4f8sYc2CMecl6bOI4jTG/dnz8bxpjfvpsRj1x3L9hjNk+PubPG2N+xnruzMdtjFk0xnzTGPOqMeZlY8zfOX78XB/vU8Z93o/3tDHm+8aYF47H/b8eP37ej/ekcZ/r422NxWuMuW6M+aPj++f6eCuKoijKeeRC1MAZY7wAbgH4qwC2ADwD4POO47xypgObgDFmA8CTjuMcWo/9fQAlx3F+81iAJh3H+R/PaozHY/oxAHUAv+04zmOnjdMYcw3AvwHwFIA5AF8DcNVxnME5GfdvAKg7jvMPXNuei3EbY2YBzDqO85wxJgrgWQD/CYC/iXN8vE8Z91/H+T7eBkDYcZy6McYH4NsA/g6A/xTn+3hPGvdncI6PtzWe/x7AkwBijuP87INwPVEURVGU88ZFicA9BWDNcZzXHcfpAvgdAJ894zG9XT4L4IvHt7+I0ST4THEc588BlFwPTxrnZwH8juM4Hcdx1gGsYXRePnAmjHsS52LcjuPsOo7z3PHtGoBXAczjnB/vU8Y9ifMybsdxnPrxXd/xPwfn/3hPGvckzsW4AcAYswDgrwH4l67xndvjrSiKoijnkYsi4OYBbFr3t3D6JPKscQD8qTHmWWPMLx0/lnMcZxcYTYoBzJzZ6E5n0jgfhHPwK8aYF49TLJmqde7GbYxZAfAEgO/hATrernED5/x4H6fzPQ/gAMBXHcd5II73hHED5/x4A/jHAP4egKH12Lk/3oqiKIpy3rgoAs6Meew854Y+7TjODwH4jwD87eOUvwed834O/jmAywA+DmAXwD88fvxcjdsYEwHwewB+1XGc6mmbjnnsPI373B9vx3EGjuN8HMACgKeMMY+dsvl5H/e5Pt7GmJ8FcOA4zrNv9SVjHjtP1xNFURRFOTMuioDbArBo3V8AsHNGY7kvjuPsHP89APAVjFKD9o/riVhXdHB2IzyVSeM81+fAcZz944nvEMC/wBvpWOdm3Mc1Tb8H4MuO4/z+8cPn/niPG/eDcLyJ4zhlAP8Bozqyc3+8iT3uB+B4Pw3gPz6u//0dAD9hjPkSHqDjrSiKoijnhYsi4J4B8JAxZtUY4wfwOQB/cMZjGosxJnxs9gBjTBjATwF4CaPx/uLxZr8I4N+ezQjvy6Rx/gGAzxljAsaYVQAPAfj+GYxvLJwkHvPzGB1z4JyM+9ic4l8BeNVxnH9kPXWuj/ekcT8AxztrjEkc3w4C+EkAr+H8H++x4z7vx9txnF9zHGfBcZwVjK7P33Ac52/gnB9vRVEURTmPTJ31AN4LHMfpG2N+BcCfAPAC+C3HcV4+42FNIgfgK6N5L6YA/L+O4/x7Y8wzAH7XGPNfAbgH4D8/wzECAIwx/wbApwFkjDFbAP4XAL+JMeN0HOdlY8zvAngFQB/A3z5Dp7tx4/60MebjGKVhbQD4W8C5GvfTAH4BwI3j+iYA+HWc/+M9adyfP+fHexbAF48dbD0AftdxnD8yxnwX5/t4Txr3vz7nx3sS5/37rSiKoijnjgvRRkBRFEVRFEVRFOXDwEVJoVQURVEURVEURbnwqIBTFEVRFEVRFEV5QFABpyiKoiiKoiiK8oCgAk5RFEVRFEVRFOUBQQWcoiiKoiiKoijKA4IKOEVRFEVRFEVRlAcEFXCKoiiKoiiKoigPCP8/N6ECXJcL+c8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -3188,7 +3188,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAGoCAYAAAAHGAe8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eZxlyV0diJ94+77kVlVZS1dXL6XepG7UElKjfTM2IIPtwWDGGLDN4A0v4DHYZmDMMjA2+DMeg238AwM/9mEzWCy2MUZotKCWsCS6pZZ6ra4lK9e3L5nvvZg/7juR50Xdl5m9ljqJ8/nkpzLfvTdu3Ii4r74nzncx1loEBAQEBAQEBAQEBAQEfP4jcbM7EBAQEBAQEBAQEBAQEHA0BAIXEBAQEBAQEBAQEBDwCkEgcAEBAQEBAQEBAQEBAa8QBAIXEBAQEBAQEBAQEBDwCkEgcAEBAQEBAQEBAQEBAa8QpG52BwBgaWnJnj9//mZ3IyAgICDgFYyPfexjm9ba5Zvdj4CAgICAgJcSnxcE7vz583j44YdvdjcCAgICAl7BMMY8c7P7EBAQEBAQ8FIjuFAGBAQEBAQEBAQEBAS8QhAIXEBAQEBAQEBAQEBAwCsEgcAFBAQEBAQEBAQEBAS8QhAIXEBAQEBAQEBAQEBAwCsEgcAFBAQEBAQEBAQEBAS8QhAIXEBAQEBAQEBAQEBAwCsEgcAFBAQEBAQEBAQEBAS8QhAIXEBAQEBAQEBAQEBAwCsEgcAFBAQEBAQEBAQEBAS8QhAIXEBAQEBAQEBAQEBAwCsEgcAFBAQEBAQEBAQEBAS8QnAogTPGnDXG/J4x5tPGmEeMMX93+vmCMea/GGM+N/23Ltd8uzHmcWPMY8aYP/VSPkBAQEBAQEBAQEBAQMCfFBxFgRsB+BZr7V0A3gDgbxlj7gbwbQB+11p7B4Dfnf6N6bGvAnAPgC8G8CPGmORL0fmAgICAgICAgICAgIA/STiUwFlrr1lrPz79vQ3g0wBOA/izAH5yetpPAvjy6e9/FsDPW2uH1tqnADwO4PUvcr8DAgICAgICAgICAgL+xOE5xcAZY84DeADARwCcsNZeAyKSB2BletppAM/KZZenn/ltfaMx5mFjzMMbGxvPo+sBAQEBAQEBAQEBAQF/snBkAmeMKQH4ZQB/z1rbOujUmM/sDR9Y+6PW2gettQ8uLy8ftRtz0Rrs4Yd/73F8+tpBXQsICAgICAgICAgICHjl4kgEzhiTRkTefsZa+yvTj68bY05Nj58CsD79/DKAs3L5GQBXX5zuzkerv4d//juP4VOXmy/1rQICAgICAgICAgICAm4KjpKF0gD4MQCfttb+kBz6dQB/Zfr7XwHwH+XzrzLGZI0xtwK4A8AfvnhdnttPAIC9UewLCAgICAgICAgICAg4Fkgd4ZwvAvCXAXzKGPM/pp/9YwDfD+AXjTF/FcAlAP8TAFhrHzHG/CKARxFlsPxb1trxi91xH/TbtIG/BQQEBAQEBAQEBAQcUxxK4Ky1H0B8XBsAvHPONd8L4HtfQL+eM6YCXNDfAgICAgICAgICAgKOLZ5TFsrPZ5gpxwwKXEBAQEBAQEBAQEDAccXxIXBOgQsMLiAgICAgICAgICDgeOL4ELjpv0GBCwgICAgICAgICAg4rjg2BA4hBi4gICAgICAgICAg4Jjj2BA44xhcoHABAQEBAQEBAQEBAccTx4fABQUuICAgICAgICAgIOCY4/gQuOm/QYALCAgICAgICAgICDiuOD4EzrCMQGBwAQEBAQEBAQEBAQHHE8eHwE3/DfQtICAgICAgICAgIOC44vgQuJDDJCAgICAgICAgICDgmOP4ELipBhf4W0BAQEBAQEBAQEDAccWxIXD7VQQChQsICAgICAgICAgIOJ44NgSOLpQBAQEBAQEBAQEBAQHHFceHwE3/DQJcQEBAQEBAQEBAQMBxxfEhcCwjEKLgAgICAgICAgICAgKOKY4PgZv+GxS4gICAgICAgICAgIDjiuND4JjE5OZ2IyAgICAgICAgICAg4CXD8SFwLCMQGFxAQEBAQEBAQEBAwDHF8SFwToELDC4gICAgICAgICAg4Hji2BA4IihwAQEBAQEBAQEBAQHHFceGwIU6cAEBAQEBAQEBAQEBxx3Hh8C5GLggwQUEBAQEBAQEBAQEHE8cHwLHGLjA3wICAgICAgICAgICjimOD4Gb/hv4W0BAQEBAQEBAQEDAccXxIXAmlBEICAgICAgICAgICDjeOD4EbvpvKCMQEBAQEBAQEBAQEHBccXwIXMhCGRAQEBAQ8HkDY8y/NcZ8x83uRxyMMW82xjx2s/sREBAQ8HxwbAgcEVwoAwICAgKOAmOMNcZ0jTGd6c//T459nTFmLMc6xpi3yfEFY8yvTq9/xhjzl27GM3w+w1r7Tdba777Z/QDcXN/Ov621f2Ctvfgi3+MfGmP+2BjTNsY8ZYz5h3JsxRjzc8aYq8aYpjHm/zXGfKEcN8aYf2KMuWSMaRljft4YUznCPd86fbbv8T7/S9N12TXG/JoxZsHr5+a0r/fK519kjPm15/jM/90YM5i+H5vGmF8xxpx6Lm28lJjzHneMMas3u29xMMb8NWPM49M+/vZB/TTG3GWM+W/T9fS4MeYr5NjXeM/bm66T106Pz12r0+PnjTG/N73uM8aYd8mxLzHGfMAY0zDGrBlj/r0xpizHF4wxvzBdD5vGmJ/hWp5unPhzYY0xf356/F5jzO9Mr7vBoj/oe/ewZ56e8wXGmPdPj183xvzd5zpH03buNsY8bIzZmf78V2PM3XLcGGN+wBizNf35P42JpCZjTGr6fjeMMb/ljd0/Mcb8/aP04dgQOMMYuJvcj4CAgICAlwaj0eilaPY11trS9Oevecc+JMdK1tr/Lsd+GMAugBMAvgbAvzHG3PNSdPDlgDEmdbP78HzxedR3A+BrAdQBfDGAv22M+arpsRKAjwJ4LYAFAD8J4H3GmNL0+NcC+MsAvgjAKoA8gP/7wJsZkwbwfwH4iPf5PQD+3bS9EwB6AH5keuwUgL8K4AKAfwvg+6efpwD8IIC/9zye+29ba0sAbp8+5794Hm28lPDf45K19qp/Utw6eq5r64WsRWPMWwF8H4A/i2iNPAXg5w64z38E8J+m534jgJ82xtwJANban9HnBfA3ATwJ4ONsAvPXKqb3/SMAiwD+CYBfMsYsT49VAXwPonV6F4AzAP65XPs903YvALgN0Rr8rmm//sDr15cC6AD47em1ewB+EdEajcPc793DntkYszS9z7+bPtftAP7znPschqsA/gKisV8C8OsAfl6OfyOALwfwGgCvnj7n/zI99ucQ0ZUlAC1+boy5FcCX4ZD3njg2BM4hSHABAQEBxwbnz5/HD/zAD+DVr341isXiS0XinhOMMUUAfx7Ad1hrO9baDyD6D/wvH/H6vDHmB6c7yM3pbnZ+euy9xphHpruz/90Yc5dc9/R05/yT0x3oHzPGnJju4ranu8D16bnnp7vP32gi1eeaMeZbpK3vMsb8kjHmp40xLQBfZ4ypTtu8Zoy5Yoz5HmNMcnr+7caY35/2d9MY8wvTz40x5l8aY9anxz5ppqqOMeYnjChDxpi/biKlYNsY8+tG1IVpX7/JGPO56Y72D3PHOmb84vr+emPMh6bjds0Y86+NMZnp+e+fXvoJE+28/0VjzNuMMZelzbum492Yjv97jzKXCmvt/2mt/bi1dmStfQyRgf1F02NPWmt/yFp7zVo7ttb+KIAMAKqAXwbgx6y1z1prOwB+AMBfNMYUDrjltyAyQD/jff41AH7DWvv+aVvfAeDPTXf6zwH4I2ttC8B/RWRkAxFx+3Vr7dPP9bnl+RsAfg3A/fzMGPMqY8x/mc75Y8aYr5RjL+Q9+NbpWmuaSO3JPZ8+T9v6R8aYTwLoTte5Ncb8VWPMJQD/zRiTMMb802k/140xP2WMqU6vP++f/3z6McWXAfh/rLWPWGt3AXw3gLcYY26LOfdViAjUv5yup/8G4P/F/O+gvwLgp+y0WPJBa9VEJPALAHyntbZvrf1lAJ9C9J0Ha+3PWmt/21rbs9buAPj3vHaKWwH8mrW2Za1tAvhVAPM2t/4KgF+y1nanbT9mrf0xAI/4J5rn/r0788wA/gGA35kSvaG1tm2t/bS0P3et+rDWNqy1T0/bNgDGiAih3vsHrbWXrbVXEG2OfJ2Mz3+31o4A/B7238F/BeBbp58fimNF4IwJClxAQEDAccPP/dzP4X3vex8ajQZSqRs3uF/96lejVqsBwP1Tg09/fuSQ5t9vIjegXzHGnPeOPTAlK581xnyH2d9dvxPA2Fr7WTn3E5hvpPj4F4iUmIcQ7eD+rwAmU8Pp5xAZ08sAfhPAb5CITPHnAbx72ocvA/BbAP4xot3cBIBv9u71dgB3AHgPgG8z4gqFaKf/lwDUAPwMIlVohMgQeWB6DVXJ70ZEFuqIdty5S/weAG+Z9qcG4C8C2PIf2BjzDgD/B4CvBHAKwDOY3bEGol3q1yHatf5KAH/Kb+eAvo8B/P3pOLwRwDsR7cDDWvuW6TVUW3/B61sawG9Mn28FwN8B8DPGmIvT498Ws67cT1znpuTzzYgxRKfH70dE4B7nR9jPx8a/s4jmLu76WwB8A4B/FnP4HkTrEdPnfwKRanHn9H73GWNqAN4F4BFjzFkAX4UXqJwZYxYRqQuPT/8uAvgvAH4W0bh+NYAfMftK9Qt5D74SkXJ0KyKF4+teQNe/GsCXIFpLNJ7fikhd+lPTtr8O0bt0AZHK+K+9NvT8GRhjzh20fsy+G2DcGgCAe3Ej4jY3TNy507XyFgA/FXNN3Fq9B8CT1tq2nHbQ99tbMLvOfxjAlxpj6ibaUPrziL6n/PsWEKlYPzmnXR9H/t6d88xvALBtjPnglIj/hjHm3PT8w9ZqLKbv/wDR9+H3yaGZd9Dr5x8DeMd0Pb8d0Tv4FQA2p6T0SDheBA5BgAsICAg4bvjmb/5mnD17Fvl8Pvb4Jz/5STQaDQD4H9bamvfzNw9o+q0AziPazb4K4D8JSXs/ImNoBZEB8tUAGCdSAtD02moCKOMQGGMSiAzvv2utvTLdPf+gtXaIiPy8z1r7X6y1e4gM3DwiA5f4v62116e7un8A4CPW2j+aXv+riIiX4n+31nattZ8C8B+mz0F8yFr7a9baCYAKgD8N4O9Nz18H8C8RGfZA5Np0C4BVa+1ADI296XO/CoCx1n7aWnst5tG/BsCPT3f9hwC+HcAbPdL8/dOd7UuIdqbvP2AoXd+nKsHHrLUfnioKTyNyk3rrAdcr3oBoTr/fWrs7VTP+E6ZjZa39/ph15X7mtPldiGys/+AfMFE80P8f0dxwHf0WgL82VXSqAP7R9PN5Cty/wlSJiDk2d31aa7cAfC8ipehLAHwrIjfMfwTgK0yksv5HY8yZOfeN7YsxpglgExGB/jvTz78UwNPW2v8wnZePA/hlAH/hRXgP/pW19qq1dhsR+b7/gP69wSNMT/j9nyqfffnsu6bvQR/R2v0hG6moHURr96vMrLuknj8Da+2lg9aPtfZnp6f+JoCvNMa8eqpE/m+IdIm4NfAZAOsA/qExJm2MeQ+i9R537tcC+ANr7VNzxue7MLtWj/z9Zox5NyK16X+Tjz+OaHNia/ozxtSF18OfR7Rmfn9Ov3w8l+/duGc+M+3r30WkRKuL6ty1elCHpu9/FcDfRuRyOq+vTQClKVn+zem9H55+/vMAvhPAPzLGfK+JYvR+xNuwuAHHi8AZE8oIBAQEBBwznD179iVp10YuZrs2cv36u4h28++aHnvSWvvUlCB8CpHSwf/MO4gIj6ICoI3DsQQgB8A3IoHIJeoZ6d8EwLMATss51+X3fszfJcziWfn9mek94o7dAiAN4JooS/8OEYEFInXEAPhDE7m2fcO0j/8NkRrxwwCuG2N+1MQn3/CfrYPIuNNnW5PfezHPMu+5YIy50xjzn6ZqagvRbvjSAdf7fXt2Ot7EM17fjgxjzN9GZEB+yZSQ6LE8IsLxYWvt/yGHfhyRMfnfEakZvzf9/DI8GGO+DBEZ+wX/2BQHrk9r7c9Za7/AWvunEW1SDBEZn/8CUzc+PDc17puttVVEShgVWiBaU1/oqZVfA+AkXvh78FzWyoc9wuS7JD4bc41+NtOf6e8pRHFYB7XxnGCt/V1EhvwvT+/xNKI5u2ENTIntlyMi4WuI3Gl/Me5cRGsxVuWas1aP9P1mjHkDIsXqL3iq2P8D4LOIiFUF0Rz/dMztfRfHw/BcvnfjnrkP4FettR+11g4A/O8AHppumMxdq1MF1SVH8W9kI/fPfwvgp4wx/L70+1oB0LH7+DZr7auttd8I4Num1z84/XkrIgL8DQcNxvEicAgKXEBAQMBxgzmkTsw999yDUqkERC6Pfoazf/scbsV4hsOOfRZAyhij7m2vwRx3OQ+biFxu4uJariIyJAA416azAK4cod15UPZ7bnoPQv/HfBaRIb8khm7FWssEAWvW2r9urV1FFHT/I2aa1dFa+6+sta9F5CJ0J/aVyoOerYgokcDzfTb/f/t/g0iVuMNaW0HkVnrUAkNXAZydqkLEOfbNGPOPY9ZVrEE3JbbfBuCd1trL3rEsohixK9hPaBA9TLRR8J3W2vPW2jOI1tIVxI/POwE8OCWra4gUq79njPmP0+OPIFqPvO8FRO6YamSTTH4fIuP/DkQktoUo2cqrDxqwOEw3Or4HAOMXnwXw+x55Kllr/wZe/vfgwK4f8tlMfxCtjRFmN0/mWp8+AYj5+RrXiLU/bK29w1q7gojIpRC53N3YQWs/aa19q7V20Vr7pxC5d/6hd28mxfmlmH7NW6uPALhgJDsivO83Y8wDiOLPvmFKPOGd+++mimQHETn5M969zwJ4G+a4dc7Bkb53D3jmT2J2nvj7gWt1qqBqcpQ4JBCpn9xkmHkH4/o57eu9iJTlHwVwH4CPTQntoe/g8SJwIQYuICAg4E8cHnnkEXQ6HSBKzuBnm/umuGuMMfcYY+43xiRNlAnwBxEZiJ+eHv/TxpgT099fhSgRxH8E3I7rrwD4Z8aY4tRg+LOI3OLYvjVSdoCYqgk/DuCHjDGr0/u/cWrc/yKALzHGvNNEcVnfgohUffAFDM93GGMKJorl+HoAsaqNjdwe/zOAHzTGVEyUuOE2E2XGgzHmfxK3uh1E/92OjTGvM8Z84bS/XURG+TjmFj8L4OunY55FRBw+Yl9A0gwPZUQZ3TrT+fob3vHr2E8W4OMjiPr+v07d0d6GSIn6eQCw1n5fzLq6waCbGuLfB+Dd1ton9QbT8fklRCrA13pqH0yUHv02E+FuAD8E4J/5503xHYiI8v3Tn19HlEji66fHfwbAl5koZXsRkXr8K3Y2pgkA/imAn7BRRsZLAC5O1/zbEWXv0yQd5+eMnY+fRKTavheRG+qdxpi/PB3X9HS93HUT3oMXgp8D8PeNMbdOvyu+D8Av2CMmm/AJQMzPzwCAMSZnojT6xkSxWT8K4P+yUaKQG2AiV8vc9P3+VkSxpT/hnfZXAPyyP/cHrdWpmvY/AHzntP2vQEQmfnl67b2Isjn+HWvtb8R07aOI3IHz002Cb8RsPBgQJR75oI3iM7VfxkQJaZiAKDddE0f63j3omRG5iH7F9Dsojeg9+oCNPDDmrtWY54Mx5t3GmAem67aC6H3dwfT/D0TE9B8YY06bKFnTt8Cbm+nGxA8jciOeIHKrfJOJXCffiuk7OA/Hi8DBBAUuICAgIOAoOIGIzLQQ/Ud5HsCXTl2TgEjl+KQxposoZuFXMBuk/jcRxeWsIzLw/oa19hEAmBKdDqLMbXH41umxjwLYRpRxMGGjbHD/M6KA+E1EJOLLbJSR7vni9xEllfhdAP/CWntQ2uyvRWQ4PYrIGPklREYhECUX+YiJFKdfR2R0PIXINejfT89/BpFb5A3ud9Nd+u9AZAReQ6S8fJV/3gvAtwL4S4jcqf49biSq3wXgJ03kHjWTXW46vu9FFAO4iShe52uttX52x8PwPYhUxY+aGxXghxDF2bwHQEOOv3l6fAnROusiiof7cRtlqgQAmKgo+r+d9rc9VUTXrLVriEhh10bxYJiuw29CROTWEZHbmVhQEyVoeQ+myWimBP77EakE34wozguIlK9ncET1azqWjM9rT+/xVYhUrDVEaz07Pf3leg/eaG5UvV73HK7/cUQk4f2IjOwB9uP8XkzkEG10dBApaR9C9M4AcEqwJgP5y4jepXVE31fvtuKyOyVCX4l498mD1ioQzdmDiN7r70fkJrkxPfYtiJLL/Jhcq+rSNyD6Pr2MaN1cwI1JZua5dd6CaD2zvT6Ax+T43O/dw57ZRu7e/xjA+6bX347oOwNHWKs+atP7NxG5iN4O4Itt5JoJRO7nv4Foff/x9J7/zmvj6wH8sbX24enfvzK99waiufHPn4GxhzAeY8yPI/rSWbfWMjXwL2A/9W0NQMNae/90h+bT2B/sD8/b/VQ8+OCD9uGHHz7stENx5z/9LXz9F53Ht//pWMIcEBAQEHCMYYz5mLX2wc+DfvzPAO6x1n77oSe/dH04j8jYTB9VKQgI8GGM+acANqy1BxqTAQEBLy+OUnDwJxAFKDs/VWvtX+TvxpgfxGymlSestfe/SP17TjBA8KEMCAgICLipsNbGBewHBLziYK39nsPPCggIeLlxKIGz1r5/nu/z1H/zKwG840Xu1/NCiIELCAgICAgICAgICDjOeKExcG8GcN1a+zn57FZjzB+ZqJbIm+ddaIz5RmPMw8aYhzc2Nuad9pwQxcAFChcQEBAQ8Ccb1tqnrbUmuE8GBAQEHD+8UAL31dgvggdEwZTnrLUPAPgHAH7WxNeDgbX2R621D1prH1xeXn6B3YhgTCgjEBAQEBAQEBAQEBBwfHGUGLhYmKgC/Z8D8Fp+Ns1+M5z+/jETVbu/E1G18ZccBsGFMiAgICDgcFSrVfffhTHG1ZrzvTh4jD+JROJI5xOJRCLWM8Rai0QiccM99Dj/NTF18PR6nuOfa62d+WxeW+yD3pftxR337+X33b9HXDt+HwuFAiqVCjKZDJLJJBKJBBKJBHK5HNLpNIwxGAwGGAwGSKfTSCaTSKfTKBaLyGQyyGajZHGcn0wm4/o1Ho/d56PRCIPBAMPhELlcDuVy2X0+HA4xGAyQTCZhjMFkMsFkMsF4PIYxBvl8Htls1j3/ZDKBMQa5XA65XA7D4RCtVguDwQCTyQS7u7uYTCZIpVJIJBLu3tZa95x8JgDuOcfjsTsXAFKpFNLpNBYWFrC8vOzaKxQKGI/H7j6ck1wu58ZrOBy69kajEXZ3d2GMQTqdRjqdRiKRQDqdhrUWvV4Po9HIjRXHeTzerwqRSCSQSqXc87HfHI+9vT3s7e3NnM+5ikM6nXZjMR6Psbe35+7NsWB7mUwGiUQCvV4Pw+EQ1lqk02k3/plMBplMBgAwHo9dn3Z3d10/OE48T8ef7Vtr3VoAgEKhgEKhgEQigfF4jPF4jMlk4t4/9jGZTCKbzSKVSmE0GrlzeN5kMnFzYK1188pntdZib2/PzQnb5veOgnOka5TzlEqlZt5Jnjcej2fmguuC60bPTyaTSKVS7ofHk8nkzLXsH5+F79Lu7q475r/7yWTSveP6rnNdp1IpZLNZpNNpTCYTDAYDN2bW2pl7JhIJN67aXjKZRCaTcWvSf5c5xrw3+6Q/XD/6XcUx4PgkEgm87W1vO2q9yRcVz5vAAXgXgM9YKf5njFkGsG2tHZuocOQdOKSOwYuJ6AV4ue4WEBAQEHAc4JMRfqY4jGD556vBRQPKP88nNvOO8Vo91+/3PJIU12e9Nq7v8zCPvMXdSxFHLtleMplEpVJBvV53xhiwP36j0cgZciStJGiFQgGlUgmlUskZsIVCAdls1hngNO5o7O/t7WE4HDrjbTAYuGsTiQSy2awz+jkuyWRyhkgmk0lHNGjQtttt1xaNRWCf3IxGI/T7fYxGI+zt7bnnUkLE+9MwJpLJJE6ePInFxUXXJp9xb2/PGZo0fHkPPpeOvRIjAK4djjnngGRGx4aEbm9vzxFBEi8SSbbDcSEZBiJiAeyvZzWclYSQ7LIvnHMSHJIjkjaeN5lM3Jjw3nx+ts2+DAYD1w7Hhffl59lsFrlczhEyJSXZbBaJRAK7u7uOICqh4HOR6PBvklOuE4X2m+PEc/iuKBnkMSWUSio5bpxrPiOJEMdcyT+fmQSG7y+v0zWeSqVcX+M2dJSckdjpOmObfBb9nKSYx3kffTf4fcD+E2yPbZKA6mdKwAnOTSaTQSqVcmta32neRzffbhYOJXDGmJ9DVC19yRhzGcB3Wmt/DFGthJ/zTn8LogJ7I0SFPL+JdUleDkQKXGBwAQEBAQEHI06tmkdG/P+k49Qo/3gcKfKJmF4/j0TNIz76+0HXan99shen8vmKYdw188ZjHub1L5vNYmFhAblczhl5fpvcgeff+Xwe5XJ5xtCk0U2lZHd3d8b4I7FQAkhi1+l0YK1FsVh0ZKbf77vnzGQyyOfzM8aoGpSTyQTNZnPGICQJTKVSTh2jQaqqHK8H4EgM54DEr1gsIp/Po1gsYjweO+LQ6XTcc1NtSKVSzsAmgWO/J5OJIw57e3tIpVJOofDXMUkeDXeSFmMMhsOhM8R1jlQ54xryyQTHjaSL91R1xVerOE7j8XiGdKnaxr7QuNe5UMKZyWSQy+UwHo/dHFP9I0GjWpPL5ZDP5x3pJ3GkIkWVjkScqhafkcSJY8expVKsGwRKUua9A3wW/q0bQnrcJyeqVvnfSyRpVDOpKvE6YF/N47qhostxYP+5ScF3S1U17YeSQZJr7Yv2W0kuCZWuVSVUbE/B8eJa478cJ1UgdVMhk8kgnU5jd3d3Zk1pm0qCbxaOkoXyq+d8/nUxn/0yppXabwpCDFxAQEBAwHPAYS6DB13jq1j+73ruYfeYRwaP0nf/97g2/b7FkbiD7hNHAtnmUcZKz0kkEiiXy1haWkIul0Ov13PGk2/88z6pVAqFQgG1Wg3WWuRyOWdAjUYjp5T0er0ZVz4an+l0GufPn0ez2cR4PHZELZ1Oo1arOTWFapS65gGzBib71u/30e12AWBGtUgmk+j1ejNkij+pVMr1FYAjQ+yjuoMtLS2hVCq558/lchiNRuj1eo5sUAWhC6gqK8aYGaVQ+0BXUHVBI2HlM3DOstmsU1+stY7AcH6stc51kIa0r0ArSVF1Sg17VYt0zJUgkHSRvJEwAnAGvW5qkPCpGyv7x37o2CWTSecqq8ob15z/GQkO55F/895K4PT5dKOE8wDAbTzo55w/kiNez/HnPbmm+DkJPK/Vd5zXU/VVQsa1QLJCFYrjr8qbzi/HgOOgmxS6eeWTL1UFdZ51HesxXsP2fHVV+6ZrSd3fqaqTlHKudO0oGaWLKN8XEn1fxXs58UJcKD/vcPOEzICAgICAVxriFKqjKHHzzvNJTZw65hPGOLIXp3D5pDFOCfPP1fPjztN7xhHIuH74RO4w+OelUilUq1WsrKwgk8lgd3fXqSJUoZTMUdWp1WooFAquHSoj6XQa+XwewL5R1263sbe3h3w+j36/j729PZw+fdopS0BkpObzeVSrVRizHy9G1zmNd+P5wD6p6Pf7aLVaznBWV7x+v+/uS3IwHo+Rz+dRr9ed6kSVzFrr3BOp6JTLZWeIZrNZZDIZdz6NThrmvV5vZqxpVFJ5TKVSrg/qhqckSt3/1NWM46wuebwXjWx1U+P68dVmEiaeo0a3uscpefTbIJlme6p8qcst36vd3V3nbsqYQhJlzhnniOSV6gvdMamYajygukxaux+3pjF2bJvPwzFU0sw50OfXZ+Hz8z7+e+2TDf5NkugTN59sUMlU91E+r6p5uk5J3nxSzvnS2DB1b1TlzY+d07mY5ybK9nWDQBVJrmGfJHOsNObNdxnVMfVVOd5D1ynHU2M9bwaOF4F7jruXAQEBAQEBhE9mgBtVMhohh6lO84gb2/SNsYNiKuJIm98vbVd36g8jg3H38RGnFM7r6zzQNalaraJcLrskIzSWgX1DjGOcTqdRKpWwtLTkXCFp1JGM0ainIUjXOCb4SCaTOHfuHNLpNHZ2dtBqtWCtRa1Wc26JVLSAKGFFPp+fiQHjbnsqlcLe3p5L9sFz6KKXTCbRarWcmgPsJ3ugssO/1aAnoUgkosQk5XLZERwqeyRp7Eu5XIa1Fp1OZ0aloAFNI5TjqgSK80YSWCwW3fpTt0BtR8mvv77UGOdapnsnDV+OFcFjHCONbYxzm1NXPKonHDONLaNSSJdJTY6iZEPdbKluZrPZGXdKqrHq9qhkjs+hsWb+xgj7rcotvx/UjZTvlZISwo9nO8htT11IVZHUueeYkrAqUdO++rFfqrSpOsj2tT0SIJ/AsU2NC+Q8873gvLIvHA8lrf5Y6ziSvPM5dD1zPvj+0ZWY88t+855M+pJOp90mD1VdfcduBo4ZgQtZKAMCAgICnhv8/4TjyJIavvxMf1ejKk7N8tv225h3rh4/THXz73tU4hXX7lHI2UFqnSKVSrlkI6qa0NBi31W9KBQKqNfrWF5ehrUWjUbDKRJqpI5GI+fi1+v1kEgkUCwW0Wq1XJKTdDqNVqvl3CdLpZIjJzT2U6kU8vm8I0zAfnZBAC5+rNvtOqVAlTQSzF6vN6NqkLiRqDKRiSZiICkguVViR0NR47gKhYJTfniOKjs0jgeDgSPONHpprPb7fWe8qmFPNYmqpG4saCZJdR2kcqRkXFUtGunq2sa+qtuaqjiqUrHPw+HQkQQlOrwPiQOJ2N7eHvr9viOqmp2TRD+fz7vEN9Zap7rxmUgoh8Oh2zBQpY3ESF0fOT4klDzPV4S0/6rac7x5D1WuNP5QXQLVJZHt+MqZkhNVXDV5Cs9RcuKrp/quct65lny1MO67k/fXeVbVUl1etU8cC3VdJOnVzQDNIsnjbJv3VSKq7zvvoS6XJOyJRMLF43LtP5dNrBcbx4vAIcTABQQEBAQcHfOIS5zREXeN76LkkyifHPmGzbzd9MPIVpzq5p+jiQ70eQ66Zh58A/Og/hBUlBYXF53xrKoZd7LV0CLhWFlZQaFQcK6IjNtiBsm9vT1XAoAZEUlUer0ebrnlFiQSCXd9p9Nx7pEkYpp5Usmbxq1xF393dxfdbtepb+yvuiCmUimUy2UAcHFFhULB7dqzTbrxcYw0CyeVPRIwTaBRLpedEalZGtV9UZU0YN9NkoSCRioTx5BIqtFO45Yk18/6RxKuySqotpBkcB5JpvisXO8k4WpgA/up/NXNjnF8JAjsC8den0sNbs1IScWO7q1MekOCT1dXVd00EyGwT1rVXZZrWOO8VKFT9VNdVzkGPrHjWCiZ4Lj6roHsh6p9XAc6FxwrEllfXdXkJfo8Sm70vvrecv41cYt+F3AM+Tk3K1S9U6WPSraqrhwrvq8a98j50PXLNcG+sX/csNH4Sc6VMcaRdI4l3x1dr2zfH5ObgeNF4IwJWSgDAgICAo6Eo6pOcecd5VpfoZqnnvnn+tfFkSb/d90dB/ZdjvxjPjH0yZ0SssOUOr8fasykUinUajVXt4zKAYmDpoNXNaFcLjvCR5K1sLDgzmfb2WzWqV80ztvtNlKpFJaXl52x2m63HYkD9tPHaybGQqEwY8AyXoxug51Oxyk2qjaRXOVyORefx/vQDVPdrkj86K4HAKVSCfV63Y2FEjC6lbEvmimRc5HJZGYMVnXxohrCdPtUOxlTx+fVOmk0oHO5nDOMSaA4T8C+uxkNW1U0SWJ4X1WsOPda243rleSNChiflW0p0VOCw1T+JHylUsm5q5KgK2FmNkrWdiPR88kbiZRuhJB0KZEkSI7UhVDB8VPCpaRWyRrPVxLmf4fExZepWqXuglSNVTm11s7UofPfMYVPDnUcOC/cSCFx8zeo2Cclb2xLvwv0O0jJko4T21BXXhIuHlMVjWNOQs4NF3Xt5Zr3CSjHhe+vEml/nF5OHC8Ch6DABQQEBAQcDt31Vhzkaqif+crTvDb0XvMIon/+PJLk90ONOiVvh50f9zxx5/vH41S4uPOy2SxOnDiBhYUFAHDJQfL5/IzqA8AZgalUCpVKxcW7dbtddLtdF3sCwMWEZTIZ5xqXTqddfFixWHTETzM10tBjFkUa9eVy2SmDJAyqHo1GI1ffrVwu49y5c2g2m9je3kaz2cTe3h6KxaKrQ0fyQsNxOByi0+nMlA6ge2Uul0OxWJwhtzTCeT4JBZOQsH0qg1Q3aKSqoU9DWd0J+bkW/uYc8Hr2j+OtsUd6Hx6nUU4CpHFDJG+q6qlbKgmLqm5shzX8NMkF/+YzK3ljP3VjIJFIOLWXhD6bzbpSDHRpVTLJZ1cSpURKXSNpzJNA+26dOka+257//aPzrmOjSVaULKgLp2a+VEKjf3M+lDhRiWO/dI3oelKXRI4V1znb0/Hy41p9pU775btQcmxI6vR94nV8Rzn/XHNKrP0xjotP1DIU9Bbgcb5/6tqp7x2vCQTuRYIJMXABAQEBAc8B89Q1JSbzCN1BpEnJ1Tz1TQnVPJfIg1wm513r98s/zs9UMYt7Dn8M9Np548HyANVq1alkzMCoRiFJXDqdRrFYxPLy8owrG2PNaHSSVI3HUQ0vAM7Qq1QqzpDqdrsuro2GnZIOqktUyGiEU4Wh8coSAcYY1Go1lEolALN16UgEBoMBer3eTGpx1oJTckBiUyqVUCwWXb/YdxJMGsQ0MElkAbjMijxPMyNqUhUayyQu+XzekRA+L5+BRE0JF5URNYgJdVfkM9AgJ0nSFPI0/EnwOHckESSlJHf9fh/GGEf4Sd74bDTWaeTzvqqesgSEKnoAZhKV9Pt99Ho9F//IODglCL4CROXRV4hUmdHn0WdVxBE7jX2Me8d4T43LjFOZ+C7y/iSm+r3A69RlUsmpnwSHaxvYV8DZJ302dSvWNeEXkFeF0ieDbFPVQI2d1bnQe2g7/M7g2HDMOR/8mwqvumaq+quJTXTD4ma6ThLHisABJihwAQEBAQHPGT5JOopSpYRmHgGLa8N3/dH2tE2foPn31ONqVPrnxxl3B/XTHwOfvMWNTSqVwsLCAur1+gzZsNa6NP8kSEoWyuUyFhYW3HgMh0O0221MJhMXB0eXwV6v58hXr9dDrVZzxNBai83NTXS7XUcM6MJIQ7lQKLjC3Hw+ZqHkbv9oNHK15EjQWBz82rVrTlGjwd3v950xqbXBSDholLM9unsqAVNlhu0qkSqVSo5wsN+5XA7lctmR1KWlJSwsLKBWq6FSqbhi5zR8NeGFriONH9rd3UW/30en00Gj0UCr1cLOzg663e5M/5jcRI1YEgLfLY2El3FkGg9Ho15j78bjsXPxZN8IkgwSIo6Dqm6cdz4T70cSwHVI0q2ZPlV9VRJDpYrzq6qiX+uMv/N5qUape6yeB+yXPiAB0bg5XSs+YWEbqmJpvBkVSM491yKvJaH248q4BrW/JM66fvlcXEt6H95LlTeN2dNr2SeN/yMBZDvczFDFULNpalyhr1ZqnCYJG6FuzVTdNe5UXWg5VuwLNxtuFo4VgYu+lwKDCwgICAg4HPNIjG+Q6PnAvouUr0jx98NUPb+9eX3jfVQBO4gY+gRw3jPGqXvz+hzXjq/WZTIZrK6uolarzSTF0F10Glo0rugyqbFWTN2eyWRQLpddtkUqR7VaDUBkdC0sLKBcLmM4HKLRaDhlgmqTtfuFp2mAF4vFG7LaKXlg/FgikUA+n8fq6qojTiR2jGnT4tw+WQP2ky5QYWPMFYkCjU5ez+fX5Alq4BcKBZw6dQrLy8tYXl7GiRMnHFHTsgf+3BJxfx+0BnX+mQSm0Wg4F9L19XWsr6+j0+nMJEzh3DKxiI6RkiklAZroQrMEqsGvhjrHmQodCSZrvnEslQyyTSq7VClJSDj2LBBPJY/jwH4C+98LWtqA8LNyKslVpZLPzH7oO+O7XHMOlBTpHCp5JOlgAhkSKlWOSGQ0Y2Nc/J3fJ23TJ29xn3EufZVOCRzbVrUsTtnUd4vP78e68Tp+poqbXsN15nsy0G2ScbLaZ3VzpqpLBfdm4XgROIQYuICAgICAw6HqUtxncT96nm+QxBnLNLa0Dd119tUyn0z5aol/XJU3Pe8wQqk4iNwdND5EqVTC8vKyU4PUAKXbHBOFqPrCGmyMdeJOdjabdUlFqI5lMhlHDvP5PCqVCjqdDtbX17G7u4udnR23S69Fm0neNE287u5TTQH2k4bQ6CwWi45QdjodDAYDpySp4gPA9ZfEjgY3d/aLxSIqlYojEXR9Yx+o6NGYTiaTqNfrqNfruPXWW3HbbbehUqk4RY0Eyc/iGTdXcX8fRNqUFPBfJqRhEXIqIxyHZrOJy5cv45lnnkG328Xu7q4juhqvpuSF7XCtUN0heSKx4SaGJuSgwU6Vi+Os13I9cE3s7e2h2+06dZe1CDlXjEvkPXwyThVJXR/1e4BjAuAGF0g+r7oP8nOuPxI/VfeoTpJwKgHT7x8SFr+2Ga/nmPNZVCnWAuXz1gRVXI0Z0+NKnnS+OX6qMCpx49rVjSp/84x/k5hq+QH+qwQt7nuVfyvx5o+q3vydSicVZd1IAOC+E7rdroubuxk4XgTOBAIXEBAQEPDc4RvBPpnzz+W/cQTKJ31xBoUPGkHzVC/to3+9/7calnGqy7zn8pW+g4gfEJG3xcVFF5tEg0iz2RUKBUfe1B2KrkskeePx2GWfpCE+HA6dara7u4tisYjJZOLc+ujOCMDFlHH3nEY2ywOo25Vm5GNNsHQ6jXK5jE6ng2q1ilwu5+4zGAxmXCE1Lkyfja5ZdA0lGaVqoclRmLFvOByi3++jVqvh1ltvxcmTJ3Hu3DmcOXPGKUy+CkvScdg8qmKhStBBa8hXdbgu9RjbIwGqVCo4e/Ys3vCGN2Bvbw/Xr1/H1atXsb6+jqtXr2JtbW1mzLWPGiPIdcTjJHEcV7rectyobnJ8lVhrfbfRaIROp4NOp+PUTL82Ht1qabwr2dCx1IQhhLr6kZDxHVJ3PaqSPqlS5VeJlLpNalkDHlP1jmNGl0mudWA/IyrHh2om1W+SUq5dfpZMJl38nLoo8p50gVUXS3X55NhxjPgOsq/83B83rjEdB1Xydf1wfarbKfupJRB084BKrcZNkvTzWf3MqZy7yWTivnuYCOlm4XgROIQyAgEBAQEBh8M3YuPUtjjDGcCMcRJH3nT3eR6BiuuHkief9PltHKS8+WRxXsD9PLVvHnFT5aBWqznFguoJAJf9kYa1plWnccdd6+FwiFKpNKOWpNNp57KYTCZd3Fcul0O73XYujao2VKtVF4/GvqfT6ZnkJnSro6EGwLneUVkYDAao1WpIJpPY3t6eSU7CdmjY0VhljBcJI5Uq7vBz3Ki8+Yk37rrrLtx11104d+6cI31cQ/Pm2V+rmsgibu3q/M6bf3/d6N/sv+/6pmuUBnQ2m8XZs2dx5swZN+bb29t45pln8Nhjj2FnZ8cZ5CQtJCr+vVWhUje5fr/vkrkwsQ0J/2Qyce6qVEWpvCWTSVSrVWe4A1HqeFUzSU61f3w+P66KLod+VlCuP64VzgMJANcG/2ZfdFOD9zTG3JC91XfL5DtJQkX1k9eSrJDUqNqoLsT6N0kLiTUJEOfAd9dVNYxjot+Tvrsxia2qnPzdd3PmWOg9OJ7+WlVFTl2S9V1Qksdai5qYhwlauE517XFDJ5fLoVarBQL3YiEocAEBAQEBzwfzyFucUTuPiOm//D3u3IOu9V0X55G4eeQtrg9x9zoIflv6d6FQwMrKijMWgX2DiMZkuVx2u9g0LmkwVioVJBIJV7ONiT1oIOlOOJNlUD1gfIoaWiR9GmfFDISaEp7KHNU8JrCgMZ/NZlEqlWCtxdbWliOKzDhJI5aKjT4vx6xQKGBhYcF9RvWEqlG73UY6ncb58+dx++234/bbb8fKysoNhD9ujanLmJI2nTOfUKmbnT+vcYrzvL/jVD4ldEpKVfmlK2q1WsVtt92GN7/5zbh69SqeeuopfO5zn8OVK1ecGsl1RFKjhZhJhJgVkHOQy+WcEU5lqFAouLXW6XRc3CIzTVJlS6VSKJVKjuQpQdBaeiQn89LF++6wPFfVKVV/SfSA/UyUPM5xZvp6bmpo+0psVSWleyXJE1VIzT6phdB5fyUz7B+fSWv0+WtQ51+/s3Td6frQOn3GGBezyPVMIqvfG/yM55J8agIXPy6Q3ze8li7a/K7g+6W1A5VQciyA/bg3rm91ZS2XyyiVSnM3x14OHC8Ch5DCJCAgICDgaPCJTpyxehTCM69NxVHcHpWM+e5USij9c+OeI05J80nmPAUx7vxEIoF6vY7FxcUZdzc1ciaTCarV6oxqwRgkps6nEcR6XDRiafhpqnsqaIPBwMVWUcFgEWYaYgCcsqDp52n0kxhSVWNb+Xwe1WoVxhjnYmetdfFuVM407T7bBfYTcmSzWVfXDdg3/mhYZzIZPPDAA3jggQewuLjo+u/Pv68kqIKga4fGq8b0+aqYT+riMG+t07DWuCE1rnmMfWSMId0SNYPfcDh07Zw6dQqrq6u4//77sb29jUcffRSPPPKISwjB9ti+llLodrtIJBJufjUbKMefBIwF3IHIhZDEfTQaOfdK1uDTODYSfX231L2ZJInrkLFnJFbsO/8leVFlR99fP1EGXXzp/glgRpFju0oWOScc77hNEXV5VcKt3wGMddPNGXVN1E0Dnzwp4eLnuj51TcV9R2rMm44tf2f/VdVW9091l+S1uVzObRDwHM06yxIS5XLZ3UOVVZI7buaQ5GezWZdZd17s4MuB40XgTCgjEBAQEBBwOA5SuPQ4Eadw+UQpTn07Sjv8XNuJU0/mubzNc607CEc5h/fLZDIuRT0Nde5eq5tZpVJBsVicSSCiz8lshUBkVFMBoCKSTqfR7XadqkbCxcyB7AtVBe6uJxIJlyxEsx8qGQQiRYxtWWvdM43HY3S73RmXKhrhwCwZUxWERjmVDq1pRiPy5MmTeNWrXoV7773XuWfGrROSdhIYNdR9YuuTNT/JQhw5eC7wFUH/dy0ZMI/Yafp8KkLqnpfL5bC6uopTp07hjW98I5544gk88sgjuHTpEnq9nlNalEwzGY61Fp1Ox60fllQgCW80Guj1eshms6hUKgDgCr8zJpPrkWovib5ClR4+P5+FBj+JgboKqzKl74EmOlHCQ1LFTQWmtNfjftINkmbf3VOJG9cK15USer6zSlRUpdLNGSVOmmVTk3z4mwfqmsn1Q3LEPsUlYuG1/JsJWTjeJISqiiqR5/0KhYJTXEnmuVZHoxHa7bZbD1yrmqiF3yEaB8ex1bFQ4vhy41gROAAhBi4gICAg4AVhHrGad04cDnJtjCOPPmmLU8Tm9SfO/W0eDlIIfYUvkUigVCphYWEBuVzOuZwxbT935pn2n65rmpxBDSBNH6/3pQHd6/XcDjdT1yuh0mQVJFgkC/l83rXNLIiauZBZJGnw03VRCSLVFxIFqnUEjWTeh6SRiiQNZrb/wAMP4LbbbkO5XJ6J3fE3DXwlhaoJjVLNmjmPuMX9+GvMX1v+mvCJ2rwNAVXn1KVTs/tpLJK66ZEA6HMUCgXcd999uHjxIra2tvDwww/jmWeeQavVmimwzvWlLo90mbTWotlsYmtrC4PBAPl83pE6Kq6MB6MimMvlZgqZq8qm5E1d+oyJ4jFVBdN5VZJBckjlRxOQqOqnqf85dnpM26USRddKuvaxXyQjSnJ43rzEHtx4UFdN3bSgmqYlL5RQsY/6nujzq1rMdcSxUJdO/5jG4WnMoCqCPEaCrqSTGyvFYtGtNbph93o998zG7Cev4XlMbkSVnt99/ntz2P8DLyWOFYEzwYcyICAgIOA5QJNFzEMcudHP9TwaW4epb3H3OOgcJXQ+ueP99DMliT5hjHPdozGiCtPS0hJWVlacwWmMccazxiEVCgWUSiVXMiCTyaDdbru0/wCcuxINLraXSCTQ6XRmdtTp4qRxbUw0QRJGY5zZ+YD9XfPhcOgMZ5K5wWCAbDaLixcvOrWt1+uh1Wqh3++7hCgs6kxCp9n1qE5QraCBSFVkNBrhwoULuP/++3Hx4kUUCoUbCJDOk8Yu+aqmT9QO+9f/XdfjvHU4T0FWYsbPVWFT8kbwOK9juQONB+PfGjdHtZZjurq6ive+971ot9v4yEc+gk9+8pNoNBoziUYAOBfDVCqq4dZut9FoNFyCCWYsJSkvlUrIZDLodrsAgFqt5lwo+aNuifrcwH5CEZJ13cDgc6tLn44ZryXxpwIM7CtaJJNxiirfO5JOkioSFo43sO9uCWAmBpTPxmdRMsR1rZsFwL4rIgC3NtkuSamSNxI/Pq+OjcbY6bPpdxT/5XmqSnN8dW2xbbrDUkXl9wXnkS7XfKep3lKx5zhRtWQx+06n474TVH3WuMIQA/ciwZjA3wICAgICnh/8HdWjqmz++T7Ri7uP34Z/flzb8z5TQ0KJmH8vv3/z1L18Po8zZ864DJF7e3tO/djd3XVGkzHGZaPsdruw1jrFivFo6mJFl6PxeOziUzQzHl3gdJe/UCi4eJXhcOiIFOvB0YWMcW5sezKZoN1uO/cqIKoxx6ySxhiX/KJSqThj1hjjshwCcC6bdGvj7zp+jP1705vehDvuuMP1K04RVYWHxM+PY5tH0JQg+NewH/Pi4OLWkd+vuB81oON+eB6Na15DtZLPSpc/Gt40sJlFUhUQrqt3vvOd+IIv+AJ84hOfwMc+9jE0m023Jriu+v0+ms0mOp0OrLXOzZeZKTVeqdfrOYWUaowSJlXedKxI4mm4q6uluotqcWxV0jgPLJdB4qMJWTguHEtVobh+OWYa18XxJinkpoDWgdP3ne8JN2lI0niOulxqHKlPyvyNA12P+uw8puucz+U/p65Jfbeo3Pl903Wby+VcfUhV4ekaybWqJE9/ODYs69Fut119QPYjmUxiYWEB6XQarVbLbSbdLBwvAoejZfwKCAgICPiTDZ+8+MbWvJ1VNYh9BSNO7fKN53lEzL9HHHmMU/Z8IjZPyVPDaN7/k4lEArVaDefOnUM2m3Wp2jVxB43nVCrlCjvTaGK2OMaV8H7M+Mjd9VwuN6Ok0dgGZhUJqiuayr9cLqNSqbj03ewXFYpCoYDd3V00m01HKpeXl5FIRJkvO50OcrncDEGjEabxczTaGUujiS84hv1+H7lcDl/wBV+ABx54AAsLC3MTNag6pWpbnHqmCom62OnnNIaV6HE84ubf74tvKKv6puvEJ2o+gYuLgdNzAThFkwScqodeSzdakiCul4WFBbz1rW/Ffffdh4985CN4/PHHXT87nY6r1ce1QfdbEnOuNbrMkXzTXTeuTIGqRiRKHBOqaCQ0wH4ReBr8qlyRqDD+knPH9aoKsl/rjMSJmwbqsshxBPYzSPqp/El42GfN4soNE//7gH3hnGvCFn12npNIJFy7fJ+UYHH9qppOMqaEneSYxzUejmOi61DXF+cok8mgVCq5a/isBDdz/D4Sw+HQxU8OBgNXL5D3q1QqbnOG33k3E8eLwAUFLiAgICDgCJhHkoAbSc480uO7Hh6m2Ok1PtmLa1/P0z7EKSj6+bz7HPQ83F1eXV1FOp12RpHu7K+srACIjDISPLpU0hilYchkAI1Gw6krNIg0polubsyUZ6112feYvIJp/iuViiuyTaOY7o/cZWcSC7rSnT59GtVqFevr684oZD05TcKiJJJGM5M6MCaOxjmJ0x133IGHHnrIjdm8GDd+5pMuVS8AzPRJlRr9nP1jO/7aOWxzwCeX6qoGzBZq5r14XpwBzQQ0VKKoPtH495UTEh1VimhQU+FUdYr3Xlpawnve8x488MAD+MM//EN87nOfQ6vVwt7eHorFolOL6QrLmEhNqa8xYz451WfknJCkKWnhGJIs8XlIDn0Cx/kh+eMa05jNuBg8zi/XHsea7x7fEXWPjIuLIzFSEqWlCVSN03g13VTgvABRMhiez2enKq/Km6qJmhBFiaCOjb++eIwEEJjdbNH1y3OUVPNa/X6i4kqllX1l/1qtFlqtlvMUYHwl76vfEXt7e27d3iwcLwKHUAcuICAgIOBwHES2fPJzkDua/h5HtHyS5rcbR96OQgT9/s77N05t8Y/n83ksLCygXC7PEAXG02SzWZcQgoYo1S3u5jMjHoAZ5azVaiGVigp/A1FtLhpGNLBosDMOiKUBaHixvhqTgTCtt+76W2vRaDTQbrcxGAywuLiI1dVVdLtdPP300zcoO/l83hEjtkPSQFWExjOfzZgo7qhSqeC1r30tXvOa17jEKnFrgeMcl4RElTaSNBrYJK00SuclMZlH5OeprTSotb9cA5pgQq/hc2tslH7O+eDYcK4LhQJardbMfdVAp0FMlZdrSOOXqMix/VQqhVOnTuHP/Jk/g0cffRS///u/j7W1NRSLRTePdNXkWkskEigWizDGzBSA1+QjcWRNlSuuMRrsqphx80DVWSWBfkwcyQDHTQtcc1xJQtnmeDx26h3Xm7ojqhrH8eI9Vb1VV01VbUm+jbnRxZJr3yea7LO6TWqG1bixBOBUT+2ffq6EjGSLY+O7t5L0kWQx6QgJK/ut0PapsjOBUrPZhLUWxWLRud7m83k378PhEK1Wa6Y/gcC9SDDGBAUuICAgIOB5Y55bTJzS4ZOjeeSNx/224oiaEsGj9Glem/q7vzNNJJNJ1Go152qmGQS5C011w1rrEoGQXNHoo5HHODkmBhkMBigWi1haWkK320Wj0Zipv0WilkwmUalU3A43DXYSqEql4twbqfqxthYLfjObpDEGr3rVq2CMwebmJlqt1gzRYTyUGqRay4s1tPL5PBYXF915NJovXLiAN73pTTh79qxTO+KIlK+y+a6RqrBprTpV3OJi3OKgRqSuwTh12N+UOAy6dvRfHRMlZqPRCBsbG9je3p6Jf1NlTvukBjVLBZDIkXCMRqOZEhTpdBr33Xcfzp49i49//OP46Ec/6tYmYyu5wVAqldz8ss+aWIUEC8DMmlIXSJ6vSW5U+aVCpW6DmkyEc0gyCcCtN34O7LsPMzkQ37V+v+8+J8HX52CyHs386N+X6jiVN594sU9M+sLvASW4nDM/1lKVLBIxVYn5vQLMlmbgO87NEpJXVTXZbz432+GcafZT3ldja5Xo8TomKmESHX4ncPOAmza6cUNSqO+BxvDdDBwvAoeD/b4DAgICAgJ8xKljwOGJRXhOHHwSBszWk1IFLq6NeUofj8URsnnP5e8S03BaWlpCtVp1xpqmyc5kMigWiygWi65uEtukagLsp9ZnXJmm5T916hTq9Tp6vR46nc6MSkCDvFAoOIOY7k5a/JsGs2aTBODi8jqdDlqtFsbjsVMSAeDq1asYDAbO/a7X67lC23Sh5HzQ0CQBWFhYcNk3e72eO/aFX/iFuO+++1CpVJyCpESeczEvpo1GIH9IYEla48oG6BrxyZm/ruJiJP2/5yWLiFPx9HniiCHJgU8saUSr8UxDm2qbqiua0IJkjSRGM5eS5AKRsb24uIj3vOc9OHfuHD70oQ9he3sbvV7PZZr0C35TLaZ7r5JvElGSR38e2V9jjFPN+B7xeiVlSmg1UQ/b5XUcOz6bxrvxMxJH3XRQdUxLbVCN5g/Lcmg5AK4DJZ3cFOFaVxdLVSPVBVgJuP+dpO+GXs8xVBLKedbn43xwI0mJozFRAiLGp3Fsc7ncDQqr3pOfMR6x2Ww619parebGh+qbH4dHgsl3P+69eTlxrAgcQgxcQEBAQMARoAQKiI8r810d4+Ab1/NUNwCxREr/necSp/ch1Kj21cC45+TvVAEWFhZcanVNQKFGLo1DGlskb7w/s1OyALfG2Jw5cwblchmNRgONRgOZTMYpd5PJxCkMQJQdkIlOmF2S7pK8JxU9GqnD4RDdbhftdtvF5yWTSTSbTZdUoVwuo1gsuna63a5TzUgkmEwCiJSdlZUVVCoVRxTH4zFWVlbwxje+EbfeeqszkP3sfkoEaOCqCx2vIWHjj5+4Q43vefM/j3RxXjSuy29DCb2uizjip//660nVGO0LjVz+HkfQdnd3Ua/XUavVXKZQjZPTc5XQkIgwuyD7duedd+LkyZP44Ac/iA996EOO3Gj/2B+N/6IyR5KiqpyqcyQIdKNTg15d9hgLRhWKn3GDREkP22VcHOP0SGZIXPjsbAuAe+fYf65dzjufmeOlKif7reUrlHxqqQcqcfx+0Hn11UsSJN5f140qr+q6yrWomwq6kaTfl6puss/8XAkaEyMR6hLOtjWmVAk0sO8qqzGMJJP6jnN+ggvliwQDBAYXEBAQEPCcMY94zTOo4/7jVhIV56YWF5NxlB3cOGP6MGKp1/Ie6XQatVrNpVpnAWy6J1kbFVUG4AiGurLRaOI9mdGPpGl3dxenTp3C6uoqrLXY2Nhw2drK5TKazSYAOEN1OByi0+k4Az6Xy7m+UVEA4BQGKg79fh87OzuuZMHS0hKSySQajQY6nQ6y2axL9723t4dWq+XOnUwm7hmVfGQyGZw9exb5fN65VxljcNttt+Etb3kLarXaTAp1nbs4V0kafkzAYm1UaJoZ7jS+Sw3heesjToX1z5lH3uapvHHtxrUdp0z77apx6x9XxYYKxsbGhstESjLF9aykjy6mWvOPNb2YlMKYKEPgu971Lpw5cwYf+tCHsLW1dcP4KXHVZB/AbLZI/g3sF4Q2xrhsk/p87D/7ohlbeb2SBhI8ugPTZZFxXLyWKhAVP46Rxruxr6rsKeHkZoOW0qArKIm2khhNPqPxddZal9GRREldFHV8SWY5h0pylMSp2s93hcd0/fFZ8vm82+jQ94xjoxlAqczxnhxrnkfCTtfxySRKpMTNAhJ5VV71/wHdvAllBF4kGGNgA4MLCAgICHgeOIhMxRG8OMVinhKm52g7cYb4PINbzz/ofnHXa6ISql/cqebuO920qEZojA+NPe7QM5tkt9vFYDBAqVTC6dOnsbS0hMFggM3NzZnd716v5+6ZSCRcHSUaU6VSaSZeCdhX+cbjMWq1GhYWFrC9vY2trS3ngpnL5VzdJrreVatVJJNJDAYDtFotl8yCBqWqDTTiT58+jWQyOWOkP/jgg7j//vtRrVZjXQ+VcPjukiQfrGHX6/WcmygNajVG/TmL2yBQQnTQeXq+f45/fdxaOYgsxhG5uGt4rqp17Av/bjQaMzFMSi50XPg748A0oYjOVyqVwt13342FhQX8wR/8AZ599tmZOC+uKyVFJDmqqgD7RJ9knzFvPMZ2NGsoSSGfk22pux3vRfJmjHEqsabDZ6wcY9u05AHXr2bC9OP7tDYd2yA5YZ/0Gj6XxnmRqKk6yvurmqZrQIuU8zOOBX/Xf5UQqZrGdvWe6irMe3EOmMCmVCrNJFQiAZxMJq4cyXg8dpk9SRipzmqMHfvGNkjqVP0LMXAvEkIWyoCAgICA54ODiJdvJB+FYPnn87ieq9f4rml+u/rvYefosWQy6cgRfxh/o8akukRRneMO9Wg0QqfTQSqVcrXOtre3nVFbq9VcKv2NjQ1nKKmBzLTpg8HAkRgmQsnlcigWizOxJb1eb8Z4KhQKLvkAFbJyuYy9vT1HBOgWmkgkXAbMTqeDfr+PbDbrsl9SdWTWOhJZGrqFQgFvfOMbce+99zqV0Z97JRiabERVI6qYJG50mZwX46bzN8+Fkv/6ytZhKpy//uKO+ffQz+NwkLLng/1U8qOEl2Q3jsjxOenqR8WKboRcT0D0rp46dQpf8iVfgg9/+MP49Kc/7dY116ImNKGCpqSRyXPy+bxTsDgGqr6QIJFw8Dn8hBzsp6p8VLdJELvdrnMZZfwV3y91LVWCSLWMfVKCxrVGosdEK1TTSGw1LlXj0oD9pC6apCUueYmfwl9LbegY+QlIdP2STLFfqoDxu0IVL40rVUXTd2MlCdP4WdaK43hzPfqlH/SZ4tQ3zsXNwvEicCYQuICAgICAwxFHgA5zM5tHnPwdZ/2Pn9fp9UoI41zn5hnGcURQDXp9Dhpe5XLZJQNRlywaK74Rm06nUSwWUalUXCp31lRjmQF1yTpx4gRKpZJT3Zg4hOTL2sh9MpVKOTJFclcoFGYIJYAZQ4xKwmg0wvXr1zEeR+nUmblyMBig3+8jmUxiZWXFEbpOp+OUGRqeLPTMzJLtdtsZyoVCAeVy2bk7vuMd78Dtt9/u4qji1oEqbzQkSTDYfxI3Go80dHntvLWn8xyn2satCV0zqlT4a+2g5/FVRv+auOv9jYe4NerfS5+da0THkoqTKiK+myWTTWiMnNb5KhaLeNOb3oRSqYSHH37YtaHKJzcLuP4BzLhqAvslIDRGUdvi3zxP3Rt1A4PzQfKosXh+Kn1uJCh5iyPrfI+UZFlrZzK5ajZFrk/G3KlLIhVtvm8cHypPOl5sS90YqWjretNYOJ7L7wY+m35f+etF15MfP6gKpGa91LHkhlGj0XA1A1k+hGSO6m/cu83xIHElEdX362aSuONF4BBcKAMCAgICjg6f/ADPTWHzkzjEETJtkwaCf0zbiPvM75se938YyL+4uDize05DiwoD3SCpcrFsAIkL1SMaxEpGmDikWCyi0+m4ODhNWJDP512NLpK34XCIdDqNUqmEcrk8owBQuTPGoFAowBiDdrvt1BLN1NftdjEej1Gv17G6uorJZIJut+tqj9Htk1n4mF2SO++MaSOB29vbQ7Vaxdvf/nbceuutM4arPy++8qYKEhVGPisJK8mbT+6PomDFETx/XSg0hkzd3w5T4BT+xoB+Pu9a3wiOe5/89jRboaqYVFW4fknelPDxuBZbHgwGbr3kcjk8+OCDqFar+P3f/31sbW05g1uJN4kWlT9VWsbj8YybpiptfNe4DrgpQuVK46NIyCaT/VpuJDIkWny36O6o5BXAjKLEeeD6VhWK77kWC6e7MrDvxsr7sU26TfO90dpwSqB8t02dP59wqeukkkCOCd/BuMQ6/FF3S30G/W5jkiRdZ/ze2dnZccqctdZ9d/jkWhO++Mpp3Hd23Hf5y4njReCCAhcQEBAQcATEKWdHdQcjfNXsMOVM7zvPiD/I6I1TP/y/M5kMKpUKlpeXXR0pGrY0ykqlkjO4tFQAgBk3RkJrlHW7XaTTaSwuLgIANjc30ev1nGsY+6DJSAaDgUsiwrpuVE24s826XVQLWAhcFQIqfb1eD7lcDtVqFYuLi468bW1tIZFIIJ/Pu/iiVCqFSqWCYrHo1LtSqQQAKJfLyOfzTo1717vehXPnzh1K3vx4NyZGIMFlopI4l8mD1pJ/z3kkyl9T/rryr9dNBv2Je755fdDrj7rO571P/uaEEhRVdpQM0FhXgsdj4/HYkRU/CU0ymcQdd9wBAPid3/kd7OzsAJiNrdKYMyozVLM0Bk2VJ2C/kDdj7PQ7gGRAsyeSVJIwsR/GGKfcAkCxWHQJTUjWNPsp1W0tzK0JWbQgOgC3MZJIJGaycyoBISnl3ySzmv2SCr2SHl8Vi1OWqZDxvvq5jo3/feZvPGjbJFzatiYZostyo9Fw9QX1vVbXSc4XP6OKy7mMU6Z5nfbp5caxInBASEIZEBAQEHA49D9p/h2nJBx0vf+3ksI4BW2eijKvbb9PhykvhUIB9XodS0tLjqQAmHGPqtVqLtaoVCqhWq262ltUa4h+vw9rLYrFolPdFhYWkEwm0el0XGIOKgi5XA6FQgG1Wg2JRAKdTscpCiRWtVrNGacAXBuaMp3XUTUEgJMnTzpSlM1msbS05LJM0pWSNePorpjNZl2dOxJZKoyMlet0OqhUKnjrW9+KW265Zcad6jDlTeu5aTHxXq83U3vMN/L8uaMByjU5bz34iNuEmLdmdG7VHc/PJBgHn9DF9cE3bnX963Elk35b6lZHQkClZzQa4fTp00ilUmg0GjPxT3weKnGFQsGROCAihnfeeSfy+Tx+9Vd/FTs7OzfEe1JpUyWK86cKEceLa5SKGjMf6ngruaBbJjc6SEBI+jVBkBInXktyyw0SVQvZDxI0xm1yXfrZZLVovbo0qovg3t6eU99JYFlnTd2S+cx8N5TM+YlcdO5JBH1FmmtM1UeuU1XM+Ly62cQ5YokRlh6hJwDfWbal6p66qnIO1bVc4xB5r+e64fdi41gRuGgh3exeBAQEBAS8EnAUV8a444cpanEG90GE7aDrjtK3RCJKib24uOgUtUwm4wxDGqWpVAr9fn8mXTbJxu7urktYks1m0e/3AcCpXjSMB4OBM15ZxJuGY7VadclGqELRFYmxeMC+cjEcDtFut11/AKDRaLh26ZK5uLjokpLUajWnllB1oMsZjV4ap7VaDUBk0JEcqitlq9VCvV7HW9/6Vpw9e3aGvOnc+sob3SGpTJK49ft9N56qJOk8xZG5g9aF71Km1x0FPM8nhj6h0nikOMUh7tqDiN9h186D9geYjUm6du0aKpWKIzIEx4hJP/L5PPL5vFNhqLCcPXsW733ve/Fbv/VbuH79usuIOh6P0W63Z5QZTbyh7zhVORr2xpgZF0qqZCRrjMUiUfKLQmviDapAPI8xdUrANcMiVXGSJRJYkje6fvrkkYlC2A7fUc1QqZsKvlqmmwHqcuknDtG/1VWWc6YxdUoEuU44tiTRXJu8n849v4f43cJnYE1AXu/PCcHvI7bJc9gH3kMTtBxlPb+UOF4EDkDQ4AICAgICjoJ5hOmw/5wPI21xZE13dg9yQfM/V6UizginyySzOAL7bmA0ADW1OLNSkiABmKmhxB16ulk2m023M021gMYi0/MzCUgmk3FEhi5sTFSSzWZviBWj4ZrJZNDr9dDtdl1x79FohIWFBezt7WFzcxOTyQQnTpxANpt1iiHjzNSwAyIlMpvNotvtIpVKOcJXq9Vm3DDL5TLe+ta3zrhNxs2ZEjga1iRubIvPrS6T/lriZ+oyGIejuCiyTf48F4My7hzfjW0e4TtqP/2YpoOujVPjlOjqPJAcUY1RN0U9j7UGjTFunadSKZw/fx5f/uVfjt/8zd/E9va2I/w6/1SI1P2Rhjs3JahmaSF4ranmEw4mHOE7qKo3s6AqUaPqRwJBMqQkUssOUEmcTCYzJQ9I3rRvSphIKLVguJ/5UtcYv0c0xtJ/ZnUnVXfYuPtyjDQmUZUvfWZg39VT1T3OPceZJVOo7nMO/A04TQ5Dwq6qNPvF/qriqwmSbhaOF4ELMXABAQEBAUcADQzgcJdJ38CMc5f0P9N2/Xscdr+4c+KIHcsC0HVQYzjG47FLBEKix2yQJE9M3sGYNSpH/L3X67kCut1uF6VSybmX7e7uupgjZnZkzBeNL6qB6i5F4kVj1lqLRqPhCunSkKrX6y6GhSUCGNvGvnW7XdcOAKe+5HI5tFotNwYkublczhl1qVQKDz30EM6dO3eD8qbj7qtvVDHottntdmcUSRp6cSpt3Frw18E8hU7JlRqacWvoqIpeHGiwqsIUZ6TGPdNhSnTcOQep3RrvpuSMx0iiSFA0iYi11hF5rk0a/adOncK73/1u/PZv/zY2NjYc0WPflJwAs7F5HHeSBT6DPz+aOAiI3JfZF8a70e1T1TmdV8atKUlVV08qhCRpXJckdfpe6PkkLJxrVb9UifW/3whdd0p4VBn1M32SFGp71lrnBqoxeb5LsY6tvh96Db+7lPSp6sbP/U0TXq/jTMIcVzJCy1twM+Fm4fgRuJvdiYCAgICAz3vEBZ+r4cLfD0s+ofDPizPaD1NWfGUirn8kJKVSyQXycxef6gSVKmazq1QqTjUCgGq1iuFw6GLSdnZ2kMlkUK/XHTExxqDX6zkVi2oGx4SKFtUEJnTI5/PO1Ys76wBmYuaYnXJjYwODwcDVaEsmkyiXy+h2u2g0GsjlcqjVakilUmi32+56EjQqdlQySqWS63O5XEatVnOJTpiJL5vN4nWvex0uXrzo3Oji5oPGpMa8acxdt9tFu9127ary5rfnz6u6Zvlz78+79k+PU4ngZ5r0wVfTVH05bF2qIc1r/YQS88haHCn1252nNM/7W41/tnOYmsn7cF0ZY5zia4zBuXPn8MVf/MV43/veh06nc4NboKo0mvmQmwAkliQJqmRpLKaqdcaYGbdHJZ/8m/PK9jS5BtcXXSnT6bQrwUE3XgDu/eNmA9cJ29fn4VhpDT72Qd0ZCarnqqYpWWI/VcnT+SCBJElTtU9JMvtMt1CuW51nEnW6i7IECseDx9lmIpFwCiIJH5+PY5pMJl1CJVXRSeCoQnIsjqJ4v1Q4XgQO8wtOBgQEBAQEHARfnTgow1icUR6nOMRhnuGrbcy7tlQqYWVlxbmQMV0+jRHu/LN2G5OVME1/IpFAqVTCcDh0CUm2trYARO5WLKBNspbP513sG9Nvp1Ip1Ot1JJNJl+afxhULICeTSVeiYHd3F91u1xlZmUwGw+EQzWbTuTzxPolEwtVsWlxcnCkkTpdNurvRGBuPxyiXy8jlck7ZyOfzOHHiBOr1uovJYyKT2267DXffffcNRbr9OVHVjYqLZpqk8kZSe9B60bmPU+DmESP2A5g1uAk/HiyO0B2kesUpx3H3jnPti+urtn/YZsRzge+SqmQQgIv9UoxGI6ci8z2hUpdKpXDmzBl80Rd9EX73d393xtjXd5BEisY9MxoqoSQhYpwoVW51s2MmR3UpVKKo7y2T+mjsGrAf58V3gKSQa5v9pBqnteiomvE8Ej8SE0LXPrBfT42KIJVmP2kLx4ukTGPt9Dx/c4TjRwKnKqSSNR0DfrdQceR48tn9rK++csv2tXC59lNj5jhPk8lkpp6eP043A4cSOGPMjwP4UgDr1tp7p599F4C/DmBjeto/ttb+5vTYtwP4qwDGAL7ZWvs7L0G/5/Q1KHABAQEBAYcjTu3wDWs9z/97nuF7kNLmf36YaqF9zOfzWF5eRr1eRzqddtnVgP3d5uXlZWcEWmudCyPVIhKd4XCIcrnsEoPQOKdbJFW6YrHoCnC3221MJhOXjMTa/dpS3N0vFosoFArOeGS2Sq27RIJG1WNlZQW1Ws0lR+l0OshkMjhx4gSSyaRLDELyBOwXdaZqUC6X3d+7u7sol8s4ceKEy0ZIdTCRSKBareJ1r3sdKpXKgSTCj++hmtHv99Fut13MG93Z4tQKnVNfQfLnN259KOJi0uLWnhqUvgqnitFBaloclNzQAI5TLn0FW/vqk9e4sTpsTnie7z7K/lEd4WdAlNyEmwSMDyMJuueeezAcDvGBD3wAvV5vRlHjGJHAaG0wjjWJXy6Xc3GjWsvNL8vBsSBRSafTTgXWBDwkXSQLVNo5j8zk2uv13MZIuVx2cXoknurKqSUJtG3OJwmebgD4yUL4/MC+SqeZJlW15rOqK64mBCGpolso+0I3RSqXPMdXlLl5onUteW/NTuqTLJJYziPnkutC3ST57KlUCrVaDel0Guvr6y7p080UjY6iwP0EgH8N4Ke8z/+ltfZf6AfGmLsBfBWAewCsAvivxpg7rbVjvAwwCDFwAQEBAQGHw3dL47+HuYDx34OUh4PUhjhCGKe66XnlcnmGvNFVigYZ3ba4K06iNh6PsbW15XaQ0+k0KpUKAKDVajk1gi5R/J1KGGPfaAzW63VUKhWX3Q+AK6SsRihrsDE+DIgSi0wmE7RaLUcUNTsfPy+VSi7TIFPy01Cm0dnpdJBOp7G0tDSjDgKRa+jJkydhrUW73XaujSSQr33ta7G4uDhjvPlzoYYfDVCtZ9ftdp3xqLv9SlT8xA3+PeapVPMITFwCCl7jt6efa3/oBqokjgbrURRgtsc503gj7b/ed55Sd9D7cxh0LHxy5LfB4/1+38XEUbVh3Oi9996L69ev4zOf+QwAuHlVFzkqWdouXer47jH1PhCtd56nMWwcNyrRVHt4T2ZkpQJO4sL5IpHTRECpVAqFQgHJZNLVTiQ5JKHkO6kxgXw2jR3kMzM2Ly79v5IqklEtfE5o7KB+3/rrhkRQSRvHh2Sa7y/VN62HR5dRnSt+D7KPfKf5fKryabIWEjeOIT/PZrPI5/Mol8vo9/vu++jzOomJtfb9xpjzR2zvzwL4eWvtEMBTxpjHAbwewIeefxefA4wJClxAQEBAwJERR5riVIx5O62+Ia7nxRG6eeRN2+Dv3FU/ceKEU4zG4zGKxaK7lhkgWUyaxhFVLyZKWFxcRK1Ww97eHjY2Ntz1g8HAuWn1er2ZIsI0UnK5HCqViiOPTDSSTqdRKBRc3AldCVOplCuazXIF3W7XEZ9kMumIZLvdRqPRQCIRlUKggtdqtVxWR2bJLBaL6PV6MMZgcXERhULBtWmMwZkzZ7CysoJ2u+1i5Fg6wVqLBx54ABcuXIjNHqdzoW6TVAdI3Og2yRgadadiO/xMyZu/ORC3GRCnAPvkyHenjFOi5pEvQmN/aCCrMRu3FrU//FsVmHnE8qWAr6z4zz/vvlTiWCaD71ixWMQXfdEXod1u44knngAQuSIOh8MZQ52JUEhaqMxo3TaueWA/yQbdELmm+N6S5FF9YuIRquhUw9hnjb2iksi6b2xH3RvpHsn2mTSIJFLHjG6PXAt8Vv0uJOliOyRBGrPH51YXRP5o2RFfASZ5y+VyzlWRimBcnFyhUEClUkGz2ZxxnyURVLdyfR9IKrVvfsZRnTdezzEn+eaY30y8kBi4v22M+VoADwP4FmvtDoDTAD4s51yefnYDjDHfCOAbAeDcuXMvoBvSJuZn9QoICAgICPBxmDpwkEEY11ZcO3GuYvoTZ3AXi0VUq1WXiIPGEg1G1otiKnMm7tCkEyRjS0tLsNZie3vbGUqdTge5XA5LS0totVpotVpu559t0VDJ5XLOZYlKHmPrmKWS7l9UZwC4RArMMkkVg+UBer0eADgFgQki2u02Op2OU0HYD6qBJH+bm5vu+OnTp7G8vOxcymh8cbf87NmzuO+++5xSOI9gqAGnBjBdOWlYq7Knc6zuY7omqNbE3XOeihZ3TD9XxUkNYj47iUec6st/2T6fVYmcb+TH9U+VRnXR1DF5saHtkmBwzany55NfbjwwJo6udOl0GvV6HQ899BDW19fdhgCTaPiJPazdj5MC9uMQSbJ0TghVqZR0sd/qLkgixgyThUJhJvurFhCnGx/bp0KnCYvouqxriaoy4984/+w71yvnVBOMsF2Frvm4+Dn94XPr+CmxYx810yfLm3AMWZ6EBE9j5/xNDr7T/nyo8saYYn9zheuHcbjq+sr35mbh+RK4fwPguxGFnH03gB8E8A1gKbZZxP7PZ639UQA/CgAPPvjgi8K6XqLvioCAgICAY4qD1DH/2DyCpvDP8cmCGghx92YmyGKxOGOg0b2KRsNwOHQGBQ00NQZp4FSrVTSbTRczR+NwYWEBlUplJvU4XcqMMTPZJElW1KhlPEin03HKHw1JGjWDwcApYWx7cXER6XQazWYT4/EY9XrdlTNotVqOJI1GI5dlk3E9iUQCy8vLSKVS2NnZgbUWCwsLOHnyJNLpNBqNhjM09/b2ZlwoX/Oa12BxcXFuyQCOK/+l8Ui3SWbQ5PgpeSOo1gFwBrefTIFzHbfWeG+fKGk8jsI3HrVNP5mJqmR6zO8b3cwAOONdSVnc2uV17D/H+MUmcnH3pnHOdeIfZ200goQgn8+7OWRM2dmzZ/HmN78ZH/jAB1xZC91k4bpIp9NYXl52z5zL5XD69Gns7e3h8uXLM3UQuQFAcpXP5125DJ5D8kYFjKo5kxDx3abqRlWcz8z09nTj5JpnZkWSIY4N1XV1meR88xkBzJB4rhn2m8ovjzPDpSqyHFeOu5+8hfOm5U/oEUBVzI+3471JqHS96ppW8qhunPxbs3yyPY6N71ZMYmjtbGkHbedm4HkROGvtdf5ujPn3AP7T9M/LAM7KqWcAXH3evXuOCDFwAQEBAQFHwUGqWxxxO0iF812B/J3/ecav7z5Xr9ddNkWNAaHhsLi4CAAuUyTTonMnmTEixWIRJ0+eBABsbES5xsrlsssYubKygkKhgM3NTafK0dCl8cJi39yVp0GjLpPNZtP1gTXguPtPMkaDl31j/BpJIACXeY+GbjabdSUKWq0Wut2uSxLBpCpMgHLixAnXBhCRKLpl0pB+/etfj9tvv90Zw/7cqiueuk/SyO33+65/NGB910mSRhq/qn6poRs39/xbiZwao89VAVZXS3+Ncr1orSxfbdPELRrrdlDhYlUvaMT7GQifL3Q89G9fIfHHwH//9FyWk1BVOZ1O41WvehWuX7+Oxx57zJXHSKVSqFarGAwGaDQaLpFHuVx27wZjNSuVCk6cOIFer4dr1645N0yqaSQrJE+a2ZAxbxpXOplM3NpjP7lhoyUCSDY1sRDfOc4l58ZPoa8KqqpnHBO9nute49/iXCL5rnH86TFAZU/XIRU+um2q6zfdU3k/rkHWgPRVZ/87VckWv0fZfxJb/u5vVPBHNzL8eLnP6xi4OBhjTllrr03//AoAfzz9/dcB/Kwx5ocQJTG5A8AfvuBeHr1fsCEKLiAgICDgCJhnWKoROM94nqei+T+qnsxTXVKplEt5T3AHHoBLKe4b5svLywDg4uLG4zEqlQpWVlbQ6/VcbNloNEK73UYqlUIul8NwOMTW1ha63S7S6TSGw6EjSCyEra6YvCfjhahK0QWNhhxj3TqdjlPeSAwZV8NnKpfLsNa6WDkSJRY8Ho1Gzp2NxijdIQFgZWUFKysrM7vg3W7XuYPSWKxWq3jLW96Ccrk8457lK09KPqhqsGA4DWh1nfSJH41OVaD8daSkzF8L/u9x5/v9PogUzVvDNFhJzFWR8+PglICq+kHVIs5o5r04Rn46+OcCn7jNez6C86Gud/6GCo1vJvHIZDJO8aXL7+tf/3pcvXoVm5ubSCQSbp0xEyEJFNcq722McWUE7rrrLtxzzz14//vfj83NTee6y3VCdYrqD9cV3/VsNovxeLb8RT6fd/Op5C2Tybg2OK+cO12jmvyDCVTG4/HMe0XiRrJprZ1xSaaS5hMdHWdg3zVU1V/9LuT3HpUtJZGq5ut4adFsZqbV+ELNQMo5Ua8FTcbiq3H6na0ul36yI34fJpNJlEql57KcX3QcpYzAzwF4G4AlY8xlAN8J4G3GmPsRuUc+DeB/AQBr7SPGmF8E8CiAEYC/ZV+mDJRAUOACAgICAo6GOOIFxLtO8vO443osjsD5hMFvN5FIYGFhAdVqFQCc4bSwsODcs5LJJFqtltuNVtcqJkIA9mNd1tfXnZHB2DRmgaQ6xQQpw+EQpVJpJlEJd6lpzJC4TSYTdDodR7hIaJh8gcobSRkAZ7iSTDFmjklNaCixRp0xxmWk5DOMRiPs7OwgkUigVqs5l0ka6Ty+s7PjDGEee/3rX4/V1dVY10l/DlV9o/sks03SYFa3SF8do0IQR9Lm3VsNbCUa/to6iLDFKbtsW41SnuOf72dyVMVBVUsdHxIYX2XTda8ZAA8b/zjMI7lx75OSFZ5DQ13/1jFmnUOuMbohLi8v47WvfS3e9773uYQ6VKdIsEhsGAtXKBScirS3t4dms4m7774bX/mVX4nf+q3fwvXr192aVBWNGwV0g2QJAa4/Esd8Pn8DcWPMKt002b4qafO+f1S5o5pPws2U/ACcQsl1QIVdVTYdc41545pRFZDnKcHkj7peUk3k51T9uVZVsaaqqMqYrglNssJ1rUmIuDHBdc2+a0wx2yOBJQFnKZebgaNkofzqmI9/7IDzvxfA976QTj1fGBMIXEBAQEDA0RCniPk7y/xd/9Vr4lQCVTV8I18NyVwuh4WFBRcDQ9AtMJGI6pZtbm4C2E8UUK1Wsbu768hbv9+fURVUaWK7zB7Z6/WQzWZRqVRm6qhpJklV37REAJUoAE61YOmBnZ0dDIdDR8qYHZNJRTg+JGdMBsLYllqthmQyKgzOTH7MMkklr16vY3V11d2z3++j0Wg445UGbyIRFSu/ePEiHnroIZdiPY54+8qbqm/9ft8ROKoXfpITQt1P/TXm31fXRdy6i0PcWopTE+PUMIX22W9LjWqN9eFz+WTOJ3KqyGm7JNVaQ+y54Khqo86JxkXxXzXG+S9rqNFdkjGnFy9exOOPP45HH30UtVoNlUrFlargM+TzeUdYmBSFGx79fh+PPfYYXvva1+LLvuzL8NM//dMuAyvdALkhAOwr7sYYp/ry/WPdRboEcz5I3pgZlX0j4eL3ipIeADP3JxmjuzY3ILjWuVFjzH6SFhJOkhiNe1VFTOeH92b/OFdU2vhMqozxuwaAG1uSTKqEjAemK7fek8SNmy58N7nRojGQvL+6DPtlCxS7u7uuBt3NwgvJQvl5B4PgQhkQEBAQcDh8xS1OxYjbuSbi3OP0ev8++ncikcDi4iJKpZJLVJJKpbCwsOCSGTCurNvtIpPJuNIBo9EI3W7XHacBReVkMpm4BAzGGGcI0ShizA1dE4vFoisvQKOdxg4zQ5IsaUp9Gji9Xg/b29uuz3t7ezhx4gQWFhacgUgCxSySdGsC4EoKFItFF1Onih7Vh9OnT6NUKjl1o9Vquex8dKdi/NC5c+fw2te+FhcuXHDxflQnOHc6r6qosc8al8ex0fNooCrZ9QmMb1Aq4pKV+MeU3PmkSNeovy79tRmn/voxcn6f+Dc/U8NWXShV5WDyiThFm6RQXUx9KMHy++s/Y9zmC/tM+DXUNCZLiR43OmioMwnQQw89hHa7jWKx6BLwcIODKhqfly6OqVTKbU60Wi089dRTeMMb3oDXve51+OhHP+rGUMkbVTdj9msn6vun609rPZJIURFS5Yi16fiMSn5ITLipo31X5ZTzynNI/Ngu1wGJpGaT5Luk7oicX/ZT4+joiqqxecx+q26NJFLFYhGFQgGdTseRcF7H59Dz2YaSWR0XX3VTUsd29F1kbOLzdQ9+MXCsCByCAhcQEBAQcETEKWP6ue8md5gb20GGJg0Ypu6nesa4Myb0aLVaziDrdruO4CWTSezs7GA0GrlEJ6VSye3UM0sdEw+wqDAJHrDvYkkjrlwuz2SmpAqTTqddEpNWq+USKDAeh7EzzWbTxdIxe+Ydd9wBYL/w8blz59Dr9dBsNmGtxdLSEobDoXtOZsPc3t52xBOIYlz4jEtLSygWi+h2u86V8r777kO328WnPvUpVwLhVa96FV7/+tejUqm4ws3lctntrMe54fkEh0oM44LUSFb1xp9bn2QdlNxA3csU81wDD1PSfCipPOo1hBqkSgRpAKtBr8qcKneaRdBXCNWV7bD+HUTo/Ln0jynxVEXcj9Ui+eDGBjcYMpkMVlZWcN999+Hy5csz7pMkbnzuXq/nCtYzxpObHVevXkWv18MDDzyAxx9/3JXHUMKQyWRcvFu323VJhHK5nFOCx+Oxi7lSVcyY/RT4nI9MJuOIHjdvOB4aY0bFjdcoEdMNCqp4VNyz2exMkhJ12VQlVuvSsX3d6OCaIAkkeaTaR1VTN0RI/nVjii6tStb1Gdg+31sdfx5TlZHrTl0quUHBPqv6ebNwvAhcQEBAQEDAEeEbcr6aBsS7qcW14cfY+Odks1nU63UsLS05I4PKGhODMJ0/jSjd0Wcx60qlgnK5DAAu9kWzPXIXX1U4EkA1LqkqkJzR4M/n866YNhUxAC7LHmN9dnZ2nBJG8rSwsIB+v492u41yuYxsNoudnR1sb2+79tfX1wFERIlKxfb2Nra3tx3h5G5/qVRCvV7H3t4ennnmGWQyGdx6660YjUb46Ec/6pSKu+66C3feeSfOnDmDRqOBj3/841hdXXVxhIyl0fny3SepHpL4+vXe5pG3eetI4atnceqtkjqNw+FnhyFOhYq7bt76JWi0qvHrq9OqXmliExrvNH5JDnwlkuN5UFbLoyJOnVQywGeigqhp8zVJi6anZ1znaDTC+fPnXV1CAC5OjWNEt0a+J3Tp63a7rg/r6+su+YmfLEQ3X6gksdQAkwVxrPgcTFTC8dXaZL4qpvXcOB6apVIJFAk6SRPnVOdaYwq52cMxJJnku8Qx1mvYJr9zfLdJbkDpd5K+c1rnjptETJDkq6uq9ulmgr+JwGdUl2G6m2tRdJJkboDRnfRm4VgROAMEB8qAgICAgEMxz+URiI91i7tGSZsat75RWiwWsbS05Nz5MpkM2u22MxZYE03j1ay1LiaGMW71et1lkbQ2iomhkpXL5Vy2yUwmg0qlMlOPi/fSgsFasFhdtli0mkYbVTcaSltbW1hbWwMAnDlzBnfddZeLX2u1Wu7em5ubaDabjjhSIWQCgXw+70irjmuhUEClUkG1WkWj0UCv18OFCxeQTqfxmc98Bs1mE9lsFrfddhte/epXo16vY2NjAx/+8Idx9epVZDIZPPTQQy6eaR6R0QQKNIz9BC3qYqVKBjCb4VDXQ9xa81XdOPjK3GHkJs6tch55jLtn3IaFf/84sslzfFWD2RKpwGn9P1VsOAZaOFzHdB4B1ftrO3HPr256/FwTVfA+nDM9T7M0ctNlbW3NqWKqOtENj+SCoJI3mUxw6dIllzxIxwTATN22YrHo1Dit+aalB/Qd9hVOPgvXMr8nGHtIt032X8eQ6qkmnlHVWVVVQhU4/Z5R9UqLmyuZY3wb/+b4kxipa6uqcLoWEon9JE4kjOy/Ejld7yTBSlBJ0qgMkqQxRo73I/EF4Ij2PI+MlwPHi8AZwN68ougBAQEBAa8Q+IYPEJ8OXeEbkGq0zDu3WCzizJkzKJfLWFxcxMLCAnZ2dmYUPxav5o54qVRCrVZziUPK5fJMIgMmEGk2m87QZFvFYhGnTp1CPp9Hp9NBu912MSas4cagfxo4dNME4OLZuLOeSCRQqVQwmUzQaDSwvr7uarndfvvtWF1ddWodACwsLGB3dxfXrkWVhhjHQnWv0WhgMplgcXERo9HIKQwAUK1WnSI5Ho9d5r5sNotLly5ha2sLxhicOHEC999/Py5cuICtrS187GMfw5UrV5wSec899+DkyZM3pACPc4nl72r0qvqmCRrmES8AztiOc+07jLzNI5kHKW9KoPxn9Puqn/kGp7ahffb7EPeO+OPKtkjmaBxrjJzWNlRyzM2Gg545ru9xz+r3lWRCU+z7WQdVibXWukQ63Ch48sknZ8aLih2wH2NGdY4bHVS/ms0mdnZ23CaNkhaSCdZ+tNa6a+l6yHM1/tD//tJnHQ6HN5A3TSJD1Y3t8kdj1TQzqapUPlnkfbUcAEmUutj6a5RETwtq+4lwNOZSY1j1O5fJW7Q/WhNQVTmSVP89oJLI/vAZqQb648q4RMYh3ywcLwIHA4vA4AICAgICDoZvUPjuN3penALnK296LQ2aarXqYrxOnz6NcrmMzc1NV5OtUqnMpMu3Nkr3z8yUnU4H9Xod2WwWnU5nph9UtligezQaoVqtolKpoFaruWLXNE4qlQry+byL7eJOfLFYdKmwmQGSCh0TIXS7XaytrblsmMvLy7jllluQzWbRbDYxGo1QqVQwHo+xtbWFra0tlEolJJNJNBoNWGudskB3TlW52Aca+MxUaYzBYDBAp9NxCuSdd96JixcvYjgc4hOf+AQuXbrkSOFkMkE2m8Xdd9/tYvh0fgklcmrAMnmJqm8Kjhmh86aqDu+ha0jVjIMQR0CUYGnfecx/Tj1H+xRn9Ot9/ftrf2nQ62bFPHLHcVKiQ2WFiWaU7JIAkdwdFf4YzyOvSizVndJX4TiWVLHYp3K5jPPnz+Pq1aswZt9NMJvNot/vu/GhayWzy7ZaLZRKJRQKBVy/fn3GfVCLvmthbnUN1ELcVL/ULZCqEJ+Rijn7pCofCabWRWMftPi3r7KpiyNJlBKtyWTilFff9Zdz65ej8PvOwuV+ohld50q8Vc1j+4z71WyRbIturSTs/thy/ZB4a8IejgfJKGM8ea4S3Zcbx4vAhSQmAQEBAQFHQNxu8Dzj8SASp0YJXX5KpZIjU4uLizhz5gzS6TTW1tbcjnEul0Ov13Ouivl8HuVyecZ4XFxcxO7uritozV3w3d1dlEolR+RIBk+ePAljDNrtNtrttjME6/U6ksnkDHmj+xFTcbfbbQyHQ2dkstD2zs4Orly5go2NDSSTSdx1112o1+toNBpotVpOVWRCk7W1NRhj3H2o5pEMjsdjl/achI5lDLrdLtbX1x0B4FglEgncdtttuHjxIorFIh599FFcuXLFGZ66a14qlXDbbbe5nXPCd09UQ5NEwy/WTdLFXf24nXt/Lakqoe0fBJ94KdSdUImgqka+cazPqAZmnAJ3FPjP4q95bd9/LvZBs1TSRVHJAonAc4mLO4y0sV19Z7UvfpZKVeuowpFUrq6uzrgrk4iVy2WXcEhdKOleV6vVXIyrZnnkPGpdMqo5VH7UtdS/Vl38VCEiVEWLK++gZFYVOLatpAXYLxtCoqNqlcaO+W6HmkSGRI5j65M3PiuJp6rfuknhZ7Ll9y7JnO/6S+XMmNmkLZp8RceYxFLJHteMKob+9S83jh+Bu9mdCAgICAj4vMc89cE/Rqja5rdDAyWfz7si04VCAaVSyf1NFz/WNatUKs5tsVqtzrg3JhJRwWqqWzQqNUMd+0jFrlqtuhg4JvdgFkcAbrd4b28P+XzexfJ0u113jDvOTLu/traGjY0NjEYjLCws4OLFi0in07h27Rr6/T5OnDiBQqGAjY0NR06ZEY7ElONGsso4HhqutVoN5XIZGxsbzp2SigHjTO655x5Uq1VcunQJ6+vrLkbQNyKttbhw4QKq1Wps3TfOoz/PHBe6T2rtKHX1iyNncX/76+Ooytu8/vF3XzmJiyuLW9ds1+9z3MYEj6sRrOcD+wRR3ebmvRtsW/tN90DN6Ajsxy8dtV6cPp+6QvrqIs/leuEmCdch1Tlth+ewj6wFRwW9VCohlUqhWCw6AsUNCY4F3SI7nY5T2lX9piLZ7/dnnttfM+q+qESTc0DleG9vz9WT4zir+6KWB2ANRlVqSV5IxkiGND7QJ2maTVTfR33/qDCqaqbxfKp+qlLNfnFeqDAS+n5yjNhH/q3uqPwuJBFWUqnPokSe31PcWBgMBm5z7MVIwvNCcLwIHObX7AkICAgICPBxFOPzINczINoxXllZwdLSktvZZ32z8XiMq1evYm1tzRmKrG1GY4VZ57jjXyqVZlQ3kotisYhSqTSTmnthYQGJRAJbW1tOYWMGx2Kx6Gqk0TBhXA8QlSzo9/subgeASyxC18REIoGlpSWcO3cO/X4fly9fRqFQQLVaRb/fR7PZdISqUCi4FPzM4MbnomLAwuDZbBbVahWdTgdXrlyZSeZgjHGENp/PY2dnB08++aRLwe7PEQBnxN15550uJvCgOdd5p1JI9ym/PhR/9401X42KWyNqjMaRM1Xv4trQzzVphqok2lftyzw1kJ8rWdH7+GTIh45bnJuqr1L788Tn4HrnhgKfha56z6XGlk8W/c95b/aZag3Hw59bJZ0sGn3y5Ek0m00Xmzoej7GwsABjjFPESfqSyaSLyeTmBVVnJQ3qMkkiSyWNxEc3EPzn0/Ei2fSTi+g65tizL+wDSY8mneEcA4hda3EukaqsU0nkc7E9TSTDz3QjQvujhEpLWCiJpOt0uVxGp9NBv9935Jr1Lv2aevpucKxInrPZrCP6HFvWnOR8cf75XXozcLwIXFDgAgICAgKOgDgVgvCNVp/MqQFMlY313AC4Xe+dnR33Hz0VKbpV5vN5dLtdF+9GkjMcDrG9vY1CoYDl5WWXyp9KVavVcsZVvV7HaDTC5uamKypbLBZdmYF2u+0yK5LU8R5Uw+jWCETZMnd2dnD9+nV0u13s7u5idXUVq6urWF9fR6/Xc4bqzs6OUwsJPuN4PMby8jKsjTJd0phjQpNyuYx6vY5r1645hY/EhASTRm6n08Hm5uYMkaIR7MefLC0t4cSJEzO7/76ypD806DX2zVfffAJw0I67T8IOU97iSJqvpvn9BPYNe97DHwclnBrjpevYV1YOW/NqsMeRibj4J78df4zo/so1SiNZ3SnjlNR5726c6ub/y/WjP0pYdT5IyEiu6vW62xQpl8sYDodoNptuM4YbD7u7uy67aiKRcAQO2Fd5NHsl17uqSXQtBOBce9lfjglJDQDXBudcXRJ1jfD5Ca4pVa5InKkaaiIUhSp1xhgX10rwOdgWn58bSRqfyX5y7JW8sV+qeOn6pwsl4xV1XWk7VCn95EaqZvNcfpcxGQy/0/m8vip9M3CsCBwQYuACAgICAg6HGoBxCpvvLuYb7plMBouLi6hUKgBmyQH/89/b23PFpAeDAQqFAlZXV1GtVrG7u4t6vY50Oo3t7W20Wi1XQDidTmNxcRH9fh+NRgMLCwtYXl7G+vq6qykFRBkjNzY23G5zsVhEtVp1MXB8pkwm44xjuljS5ZOKVzKZxNraGrrdrlPylpaWUKlUHKFLpVLOfYjGGmOBNDEAd7q73S4AOOUwlUqhXq9jPB7jM5/5jDNqaSSS6DFzIQ1hun7xeea5y506dQq1Wm2u0e8b+1Qj9MePffPvqVAjWdeOrwDNU9lUDSM05o3/at0qdfOiYa5ET6F/+8YyP9NzNX5IjVP/XfF/94mcjgePxamBHIvRaOQ2DAqFAvL5PBKJhItFUgUnblz993ieCyXHSMkPCYse89U8ZnDMZrNYWFjA1taWU5zz+fxMDBtVG2aVLRQKaDabzmWSBEqzT/J6ja9Sgs0xUrIVt8EAYGY9qLLorw/Os6b4B3BDjJdeq7GmqvJpjToAzj2W3ggkQXxWa+1MdkkSzriNMn3X+d3IOdHMmVTFADgFjZtaWnfOf6fVJZTkmfO6tbXlSCzHQBXKeW7aLxeOFYEzxgQFLiAgICDgOeEg4zLOGMzlclhZWXFZ5xKJhEvOQFWKcWwkb/l83iU06HQ6LnaGha4ZvzIajbC4uIi9vT2sr687F521tTVXNBuA29VnQoVisegKadPV0FrrFDljDFqtFnq9HpLJJLLZrKvvZq3F2traTEHhhYUFFItF58qpiT0KhcLMDnilUnG1qTY3N13cCWP96vU6arUaarUarl69iitXrswYrLlcziV90Xg0Gl00rGmAplKpGfWPO+Srq6sueUSc8uaDRhndqg5S37hOFDTofMXNV3HiyGNcv3zVTeOBfLLk/+h6VcKoKoN/L41RJKlRt0ga0Grg6/lxP3583EEqNz/jJgLJDZP0MHkE59wnbHEKm/7rn6cEhvOshN0n6erSR/JRq9UcwdSYsmKxOJNohPFdVMepOGnmQipKGk/G/moCH9+Fl/1VF0LG9PlrxHeTZX91PZCIxSlsPK7uu5wLEjy+64lEwrlxsj1uwNRqNVdjksSZypnGI6pCymdjv/k9q9foRhtJtbVRKQYSLI4FSRfvxe8sqoNKQtnOxsaG+04cj8fO3Z3v/s3E8SJwQJDgAgICAgKOjDhXOyDeuE4kEq6wL42AdDqNwWDgilQzkQkQKWSs+cZ04lSyaGQ0Gg0XN8Od906ng0wmg5MnT6LT6WB7e9u5FnJH2BjjUu/TqNzc3HSqRTKZRKlUQqlUwmQycfXdWPgWiIyU0WiEVqvl6srx2slkgp2dHVfsm7FAjHPjjjgD+2kEtVott9vOkga33XYbkskkHnvsMVfbbTQauQyU3Klvt9subojjraSAIPFQYzmdTmN1dfXQxAJKklQN0R915dLr/DVC41jVKzXq43bn55E2/V0VAWCfvJB06bG49ua5dvkqR9wzAfHlA1T5U3WE7aqxz2fgMf7rk2qey35x7LgRool+OA68hxruPkmJI81xY01Swsyrui60b7xHMplEoVBw7wD7ojGkVIGYpIPv1N7ennOn9l0LGcOVyWTc5oWqb2zbJ8Ja343jzHdX66ZxXLVNbUvXnL5zmkFS51zLEWhcHxUyY4z7nHXT6KrN7JO+0kt12SeROs+8lv3TZCW+K6Wqbup6zP5xvieTiSPkHAe6v3I8OJdcxyTjgcC9iDAhBi4gICAg4DnCN2r1M36eSqWcKyMNPtZxo6EyHo8deWs0GhgOh8hmszPxKSx0TWLGeDG6GTYaDZfBklkoGYBPxS2XyzkCxcxqGxsbqNVqWFlZwfXr1x2JIknk7jRdllgrjoZMp9NBPp+fIQg0WDudDiqVCkqlknMPrdfr6PV6LmHA6dOn3e80/FZWVnDhwgUMBgM88sgjaDQaTnljbbrFxUU0Gg2XjY/GE4AbjDnfwObcAJFxT2Kt83bQ3Cp588sR8DxVwOZBiZzeO67vqkj5JExdw0iKSCDiCJv21U8oAcwm7dCxo3rBMfBdM9meEiXfwFcDnPf01Tj/+ePA51Y1FYhUnWazieFw6DYhgP1U7zrOB/0dR+Jo1CtpUKXHX2O8hu699XodV69eBRBtWNCoJ9nk84zHUcmMXq+Hdrvt4kHp5stND7arrpGa1IPqKD/nMVWueF+N49Rn0+dT0qv17visfO/YP24scY1QjdSMkNzM4oZWr9dzbqeM8eV3j74D6obJ++t6VWWORJjX8RrO42QyQafTcQlqmKGT5+jY8Tl5fz8bKt3I9V0B4JR/9umgzaKXGseLwCEIcAEBAQEBR4ca+HEGvzHGuSeWy2UXp1WtVgHA1U6bTCYu/iyTybgMaFTJTp8+7UjYZDJxqtfS0hJqtRqq1SrW1tZcWQAm98jlctjd3UWj0XAxNTQ4crkcut0uEokoUyQLdTebTaysrDgDkq5DNOxYGDyVSrmkJTQCVZFIp9NoNpvuuRuNBgA4Vyi6Q1UqFTSbTZcOPZfL4eTJk1haWsKzzz6La9euuSx83PGu1+uuHAJJFN3GfDKkxnQcoTLGoFqtolwu32BQzVNjaNAqiYuLk4lbLz55ZH99cjWPTOhnvI7GrX9MY+H8PtGIp4GvqgvTnQ8GgxkFh+fGxRZp5j0qvlRPVFXU+CgaypoYQtUrGsk8Vw14fwz9eaUhvbe35xLzALNp9X0CGTdv85S4eW6U/nkcZyrOtVoNzzzzjHOD5rNx/FnXsdvtYmdnx23EUKFnfB8AN85c/1TcVNH166Gxj+pWqs+ibrAENwL0mK/k+mtMVVHfVZhEiKo81wgT0vAYiSk3uFRRJMnkvfw+qxulxrqpKsw+a2yatfsulKxzyd9JajkfiURipkZhOp125UR4DxJYrcMZFLgXGcYY2KDBBQQEBAQcAb6x4u/kJ5NJ1Ot1V2g6kUi42BzGTVEVO3XqFJrNJoDIVafb7bpd+9tuuw35fN6RvUaj4WK2KpUKyuWyM/QuXrzoEoTs7e05A2QwGMwUQU4mk2g2m6hWq8jn867vTAZCpaxQKGA8Hrt7AvtB/mtra9jc3HQJSDTrHI2UWq2G4XDoSF4ymXSqAw2rTqfjxrBcLuP06dMAgCeffBKtVsvtmk8mUZbJ5eVlAHDGOZ9XFQIlO/PIkH6uMYlxcxs3z6rG+KUD5hE43w0QmHU5jFNv/L76Chlrz/kuYfx3Mpm4Ug1USpgkhgSexIzxOXSBA/ZdThV+jBHTrbOfVFe51vR5uYGQzWZnik4r8VDXQ1WReH0cGY1T0jg/zWYT4/HYqdFaNDtunufNlc4JDXlubigx9KEErlQquXhVqlF0teN7x/ek1+u5siEkDMw4q+RY3QO1zIDWjdPYN5IWVeeUYHOO+Zk/L7o5QBdmrgUlaOpqyHFRZY7fHePxGN1u15F/EjefYPqutHwuumj7Kqi+kxw/3QTQunMkWtls1n3XqrJIksc+cG3TJZzX6rio+6yOHdfOQcr8S43jReAQFLiAgICAgOcG373OmCi+bGVlBeVy2RnD+XzekRHu0DJJCMnb7u4u1tfXkUgkcO7cOVy8eBHWWly6dMkpVtZanDx5EsvLyy4L5Xg8xoMPPghjDJ599lmn9G1tbaHZbDpDj/Wz2BYQlQtgMe/JZILhcIgrV66gWCy6mBqStkqlgsFggKtXr7qSBMz6SAO72WzixIkTyOVy6HQ6rrYbjR7+O5lECUzojsbMnNZaXL161cX8aGKASqWCVCrlEgOQwKmBxzmh8TbPSNId+8XFxZmU4b6R6JMDYN+FUmPOVAlSF05fIdKEEjwep+b6iq4apUpcWWxYSQ8VVLqeqgHMxBHsC49xffL5fEKpz8BjaojSWNX2NCEJ789SFIlEwqnBcYRO76fjrm5xvioYR9Ynk4kri0EiN4/E+cTNVz6VQKvq6hN4XUc8zjVWKBTQaDTce+qreYPBANevXwcANy5UetPpNIrFotsoUTLF8VHFWRU3XaMa06burVRjdX34qiN/SHx4vap9THDk//AaVdg6nY7LtEuXV1376tapdea0BMG8+WAbPNff5OC6pKpJssd6kLqhQRdQfsaNK8b6UrnjuPFe6uKp7cWtwZcLx4vAmUDgAgICAgKODt9YZPKPpaUlp7pZa11hbMav0fhJJBK4du2aq//U6/WQzWZx/vx53H///djd3cUTTzyBJ598EsYY1Go1LC4u4uTJk7DWYn19HalUChcvXkSn08HVq1dden7Gc9BVi4Y6d5fr9TqazaYzuLkD3u/3US6XZ3bKh8OhUxDoCsnSAlSAxuMxMpkMVldXkclkXOwb79ntdl2sD5UeumJyfLrdLjY2NlySBxpNTCxANZCGorouAjemvudnnCM1RonJJKotl81mXWkE7tLHqSlKpJTE+YZq3FrRe/ptKvS4GpHWRu5dLBoOwBmbu7u7WFtbcxsI/X7fpdf3XXzZfwBOQdSafvx3HnnV8VXCAOwb1Tyfxzn2dBekQc6kIzTsuR6oTqn6o/dUtTSOvKkbM6/p9/tuHEmC/M2Xg+Zcx0CN8Xnus9o3EjjGv7JUAI8D+ySr0Wi4ZEQkFyTpXKvcwND54rvc6/VmlDOdM5/ccB2QFHM961pUNZP91PEnCdXn8N8Hvsd0reWzsk5dLpebcStV9U/LB6iSxvuzZpteq/FuJJe6waCxogSfi98r/J4ieeU5qVTKlUxhH/i9SuLH7xEW/uaY6P3874GXE8eKwAGhjEBAQEBAwOHwDWIArs7TwsKCc6XJZDKoVCo4ffo01tbWnBrGnfHhcIh8Pu+KbgPAxYsX8epXvxrdbhef+9zn8Oijj2JxcRGZTMYlQun1emg0GiiXyzhx4gS2t7dx5coVp3hsbm5iNBqhVqs59Y2Z3RhXR2NsMBig2Wyi2+06g1ZrIHW7XYzHY7RaLacOshAxyxpsbW25BAsA0Ol0sLS0hFQqhY2NDVdygAZaJpNxO+4cCxbd1qx3dFPSHWxgP/U5SYwf3+InceA1On+q3vhGl95L1RRfMdOkLWrAKmHm3/Og94kjAKq47ezsYHd316mjmnSi3W47UsTshTom/JuxUTSINRGLjg3jfWh06rVcG/yMxjYApxJrnI8qm6pKsC0auiR/vV4PxWLRKXOMP1JCouqST7p8sqwKJmMpqQD7qutBJFDnSQmbkjh1peQxqkiJRJTxdHl5GTs7O27dcb3QDe/atWuOQHB9MelQIhEV99bSHJp0hMRFXfd0/ZMU6djwObWPBBVmYFbFo8Kk8XZsm+8nsB/nqAXG1bWbGXgZn0vypO8TVVl/rjRrrj4X+6eZMPkc7J8+H93NWc5BM7dyXlSFZNZfllVRxZ/jwrIqGjusSqBuHtwMHCsCFylwgcIFBAQEBBwM36WsUCi4hCL6n7S1FtlsFltbW67Ydi6Xc0oPDYZut4tqtYrbbrsN58+fR7PZxOXLl9FqtQAAlUoFS0tLKJVK2NjYwObmJs6fP4+FhQVcv34dGxsbMCYqN7C2toZ2u+3cDZngYDKJ0o0z8yQNUyp1THjCHWMG47NQMjPDnT17FrlcztV+63a7OHHiBABgZ2cH1WoVJ0+exGQSlR9gchJf8SkUCs6Q6fV6roQA/x9mXTdVK4F9g9JXENRQn0ecaGjREAX2Y3FowMa5UKrqQqhB57tQ+gpRXF+0DV/h0bilvb09tFott9s/Ho9x6dIlZzyq8qDqgqqTqhAC+4SXKiv7onE6miVQXTM5vjyuxjDXlBI7Ne7ZhqoQmoyC5ycSiZlNhXK5jEKh4IicT5C1Pd6f8+YTMz53u91274y+rzpn89Q4th839xwjf76VyDHmq1KpuHXHot6NRgOtVmsmsQtJBZVytqWFrJXMaUH78Xg8kziGY8X3nH9zPnXclMCw35xDLUatKh7VYXV35DumiUC0HAjrVXIjQTdI2I4SZY0/9DdoOB68D/vFtaYbBTpuVC5V7VWVTtcO30sllHqca4ObI0rgOcb0KLhZOF4E7mZ3ICAgICDgFQO6DjHLJHety+Uy2u022u02gChV+JkzZ1yR6Gq16tKJj0YjXLlyBbVaDffffz8ymQzW19edcdnv97G8vIxqtYpCoYDt7W08/fTTOHfuHJLJJK5du4atrS1Hdq5fv47d3V0sLS0BgCuiDUTxdnRvJGEajUZYWVmBMcYlF8lkMtja2nLul3t7e+h0Otjd3cXZs2dRKpWcMbezs+Pi5AaDAVZWVnDPPfc4NY0qUT6fd0YaVTXdqW63285IBICFhYUZVYhuUmowA7jBeIv7TAkgDWsaU7pjrueyHSU8PlQFjHOFinOT9JWcOLWPBupkMnGJWvr9PhKJBHZ2dtDpdFyyBxr1JGi+Iqif+/GBSnh9d9N54+krW/64+ORFkzVosgt1jVPlikaxkgoa3d1uF/l83mU1Zd+UKPo4iIANh0OnenMjRZ/Xv9Z/tnkKnJJdHSuOM59dE2gAcG7Kk8kEly9fRiKRQLVadcl1SBqUWHOsuBZ1Ln2So0oY+6TqLM/T9pUAafv67mr2UrrDkrRxjTK2MZFIzGTLZE003svf7FB1kpslTMWvBDpOKeX4HDSHAGbiLpWgMraWZFBdOXkdSbDOsb63uqHB90DXanChfJFgQgxcQEBAQMARYEwUZ0Q3L/6nPhwO0W63nXHS7/dduv5MJuPKARQKBZca//z587jjjjucgc607FevXnXxdIVCARsbG2g2m27X/tq1awDg6sltbGw4lUxdokiY6vW6MzoY71YqlVyyCxpwOzs7sNaiVquh3W5jc3MTxhjce++9rq4b6xzRYGk0Gk4RfPrpp12cU6/Xg7VRvBEVNxpKjC9Rdz8gIniqGtJQ1EyP7Ksm3QD2lSVgX41S4uK7xvEa3ckn/HbnETB1M/RdDufBV95UTdzd3cX29ja63S4GgwFqtRparRZarZZbG1TdaBiSkKj7qRqPqkBwbFQ14LjS4FcXSx0rwifF6nJGg1uNcB1Pts2+02WP1/pqJNsneeHGAhOR0MhX4uSTujgVlEZ6q9VyKrqfMTNu3vy/lchp33lcDXwlr1zXpVLJPZ+11rmP0gWPrndch1z3nEcSOyWD7BPHend3160bXctad5H9ViLH85RcESRv3FjhWKhaPhqNXBIWADOqFZ+Lihbb17XNd5PjynN5DpMyacIUP2ZS17ySRX7GMeS8cCOJ7xUJKMeWXhR0ASWBVCWOa9XfjNBxVtfUm4HjReAQyggEBAQEBByOUqnk4mc0nTdrGtGo4K4zECX9qFarriZaMpnEuXPnsLS0hN3dXXS7XRcztra2hoWFBdRqNVhrceXKFeeCORqNsL6+jkwmg1qt5gpg53I55x7EBAnLy8tYXFxEu912RiIVnHQ67XaKWb+o1+uhVqshn89jc3MTvV4Pi4uLuPvuu9FsNvHss886osBSASwibq2dUR1brZaL12L8TjKZdKR2d3cXm5ubzu1qMpm4NO8knkyrTuMwkUjg5MmTGAwG2NnZAXBjXTR+5rtC6nlKKvykG3oOr2HpB789NVqVgMQpa3EudXFtPf7449jY2HDztbm5iUKh4NRQvVZLGOguv39fv190vaMB7ytwugGg91O3NO0/E+fofTTLIEkAMJuRT/vEPiih9t39mJl0MBig2+26LK68t7qe+iqYP/fsA5U4kgrdANHz/DWhSqaSYH+eea5PkjKZDNrtNorFIoD9jZgrV65ga2sLZ86cwXA4xNbWFmq12ozrIAkTU9gbY1zKexI6Jbf63FqWQ90/dc2QrCh50mfWzQ8Ajvgz8Qzb0HIGXGdUULkGFZw3JvzQpDp6rm5UkHBxE8BfP7xW51VVPVVCOab+c3JclKjpWvbfDyX23EzgPUgOmYn4ZuF4EbigwAUEBAQEHAELCwvOOC2VSk6RS6VSaDabMzEfdIFaWVnB7u4ums0m6vU6VldX3fk0QBjbVKvVsLCwgL29PVy9etVlrux0Oshms06F297edinwuRNOo4q77d1u1yUNoJskABdnwxi80WiECxcuYDKZ4Nq1a04dJAFcW1tDp9NxteFUSaCL5Gg0QrPZdLXdqGokEgmnAiwtLaHVamFzc9PtVrO/WjhXM+zReGKSlFarFZtwRBFngAOz7lm+ahJ3DQ3COIPOJ2GHQUmLqm78fDAYoNFoOMOQ60jHg2Oi7oUKfT4ap7wXCRnXia8AxJEQJVh+QhQ9rmuC88r7aOISXxVlG75ipgTMJxJ8fipAJAX67D4x1DngOVwDw+EQnU7HqUMkEHHzp8+vMYMHzb+/1ki4BoOBU+qpPPd6PayurmJ7exv1eh2JRMKtCVWdNFMi1TV1i+Q9GKumWUaVwGnsm8aDKYHSDQ+f3Btj3P3pjWCMcdlmGVfLfvKabDbrsoJSmaPrJZO36OYE1xZValXi4uZZlWf+rRsyXIua6TaTyTjvAvaTmyKaMZTjks1mZ0gw146OoU/u+byHrZmXGsePwN3sTgQEBAQEfN6DCUKAyHAolUpOxaLRwJT5rG3UaDQwmUxw++23Y3V1FZ1Ox6lu6XQan/nMZwAAJ06ccO6LjIfrdrsolUpYWVlBOp12Ba6XlpaQSCSwvb3tDBYaTvl83iUJMMa4mDeqfdwtp/vkmTNnXN2wZDKJe+65BwBw7do1l5iAxiaN3Uwmg1OnTqFYLGJ7e9uRUcby0Lhioorl5WVsb2/j6tWrjnzQ6GFJAmA/2x0w60bX7/dn6prR0Cc00YYa6L4bn+7C828lCHHQhAWEEkhfUdL76d++ccdzqEhSFQNwgxqkLmvqHqcZIdXo9e/PtjT5BI1Ufxz1WXme7wLGcxUaR8TnYPuj0Wgmyx8VC242KFlXQ1nJGEmTqjB7e3uo1+szMVXad7+fPiEB4JRsXW/z1oTOtT+XPsn31x+P810iUanVatje3gYAvPe978Uf/dEf4Y//+I9Rr9fd9wfjCDudDsbjsXuHSYy0BICqQv58kGz756mrrZJnjhnHhOSZmxv0QiDB4mYM4zez2ayrickSIclk0tVQs9bOuAdzXWg8pyZT4b35nafZMPV7wU8mRbLOd8VX5OhJwXM4Z7qGOIZapF6JvG5Y6PeNbrRwHjkWNwPHi8Ahvv5HQEBAQECAgrvnTCZBlxjGbVGhO3nyJABga2vL1XdbXFzE9evX0e12AURGOknSrbfeinq9jna7jStXrqDT6aDX6yGfz+PUqVPo9/vY2tpCKpXCyZMnUavVsLOz4wxs7rgvLy+7HWOWCSDxGo/HzjWz3W4jn88jkUjgqaeeQrfbxfnz53Hx4kU0m01cu3YN29vbjjTw+dLpNBYWFlwilqeffnrGGKFyREOGsXyNRsPVqqPbFYmmxsXRMFcDmAkS1FCmEarJBeapaWqo6Y443RB95cmHxuP458URQP1bFRg1+HmMxhxd+dRoBjATk6PkTUmbkjca7Br3o0oZoc+hpJljqufQ/Ytjoe2RfPkuhpoWXhNxqDultuXPqx5T5YdEQd0JgSiBEOsvsk9+XFvc3PE5uJnBJCmq4Pjna3/jlGDf3c63L3O5nOtftVpFOp3GU089hSeffBK5XA5vectbMJlM8Md//MdYWFjA4uKiK7Phx1YpsVJioooa1x3XOkG1S7NV6piz71wfvF4LriuB0qQsdOWuVquOtPAdGgwGLlGIxq0B+xsVuiHD7I56rt6b68XvL98D1p9jwiQlgHx3hsOhi3Gje6puBvEzPzslVUhNqqKbFBxPdc886Lvm5cCxInAIClxAQEBAwBFA8pXL5dDr9Vz8SbFYdIlNVlZW0Gw2MZlMcOHCBZw4cQL9fh+XLl2CMQaDwQCtVgvtdhv1eh0PPPAArI2Kcz/99NPY2tpy9zPGYG1tDf1+H5VKBfV6HZlMBlevXkWz2XTxH7lczhl7u7u7rnyB1oDL5XLOBbFYLGJnZweDwQD5fB4nTpxAJpPBU089ha2tLZcNk3FvJG/nz59HtVpFs9l0yVVY0y2VSrkiyePxGJVKBeVyGRsbG66+FY1u3bXn7ruffTKOeKgx7itA8zK8qRskf9QlyydhvuGtRppvmPukTK/Tv9WlUYnpYDBw9fK0XT8GyFd9eA9fAdAC0HGZO2lc+mPFdcxxUcI6Ho+dQuEndaERzvO1L77yRcUslUq556UqB2BGvWA7/JyGtqp02gd1qfTJiBIbhY73aDRyxeX92DEFDXB/PbHPqi6ybf/edI0cjUYucdBHP/pR9Ho9bGxs4OzZs3j729+OYrGIP/zDP0S9XsfJkyextrbmkmiQ2GtcG8dcMyvqHOs6UvIDYEa99RPA6HwoOVHFkySNSjoJNQkbY2a1P1QQdW3odwSf0R9bVYk1OYsSRFXEqHTy/UilUhgMBu49YL/pEk6CPRgMHKmnOgdEirlm+PQTp3Czg8SRm2eqhGq9vZcbx4rAGSAwuICAgICAQ3H27FlsbW1hY2PD7Q6vrq46RSmVSmFtbQ2FQgG33347qtUqtre3sb297eJCmJr/lltuwdmzZzEcDvHMM884osYd5nK57Ar31ut1VKtVDIdDbG9vOwWCu9zFYtGpfoxjo3FdLpeduyV3/be3t9Fut7GysoJbb70V+Xwea2tr2NjYcO6WvqpQrVYBRKpio9Fw6c9JIk+cODHjRso6eKwbR1Kh2dzYtqbBV6VAd6x9QkVjUpMC+CqZkiEFP6exp8/pn0cDUQ1WJSdx7nLaFo1SJR50Mdvc3MTW1pZTIFV9VCXFB9si2SqXy45w7+3tOeNT3ezYbyVnnDvGMdE4zuVyLsazVCq5PrC4O8kvsznS2Pazcfpkh38rSVDlUK9jn31yzP7HucFOJpMbyg3460jb1Xlk9lQSD3VB9Mdd++4TQ+2rvxaBiMDt7OxgY2PDrYPHH38cAPB7v/d7eOc734kzZ87gDW94AwDgwx/+MJaWlnD69OmZQt+aiZKKlGac1LFR8q+EW8dCSXMc4aW6zrWsawWAU/LoNsnERVzXrO3H+dB59b9vuLaUAI/H+0WxfULnzy/JG981gmvUT/rD7xH2XzcNSNYY06drgxtRHH9VEvnulEol993H7zqO2c3A8SJwxgT+FhAQEBBwKJ566ik0m01XA25pacllWhwOh+h2uzhz5gxOnToFay2eeeYZ9Pt95PN5VzttPB7jnnvuQT6fR6PRwObmpksmkkwmsbKyglQqhU6n42q4jcdjrK+vo9PpOCOoUqmgUqlgYWHBKWqXLl1yO97c9Wa/qE5sbW1hPB7j4sWLqNfrsNZibW0NV65cmUkgwgQE6rZ25coVt6sMANVqFSsrK0gmk650QKVScVkU19fX3c4zCSVdN7mjr4H9asRrIgU1fpWIMB6IRqpvCPrEyo/v6vV6M654CnW31Hgcvd430vW+fjt8lslkMkPe6AanbpGqHpFEpFIpR9A4N8yeyJgiolAouMylbJvFlNPpNCqVCnK5HGq1GhYXF11Bdhre1lr0+/0ZgqfuZmyn3W4jm82i0Wig1+vh+vXrGAwGTsWlK52qD6ou0qDVMfazg/JH3TF1Pjm2VIvpKqx11HTtcE6UUHOMWI6DfdZYRFValbzp2oxbZwQ/4zhSFbp8+TKuX7+OlZUVfOITnwAAvP3tb3ckLpFI4IMf/CAWFxdx5swZrK+vz8SCqgsjCZyuPxJuTRiibpVU7UhOtB4c54JKKTdoVB0F4JRVbvJwfKhc0wVRE/BwXHlfLRGg7766PnPDgmSVz6NuxkqodJ5I5nS+tX1+x5EYMlkV22SWYa5brjXfrZVzwlqYxkSJrtRt0/ceeDlxvAgcjpZFKiAgICDgTzbG4zEKhQIWFxexuLjo6lLRFer222/HyZMn0Wq1nOJVr9dx/fp1TCYT1Go1rKysYDweu/i3breLTqeD4XCIkydPOiWAu7TtdhudTsfF6ezu7mJxcRHLy8sol8tIp9NYX1/HlStXAOzXUyoUCuh2u5hMoti8Xq+HRqOBQqGAcrkMay0ajQa2trZcXAqNLhpkjCEBomQPNHB4j0qlgmw265KykDBaax1RVMLBtPxqQKshTFLnq3C+qqXEif0l/MyFcSQOiAzuZrN5Qz0qBeOMlCioMuOrb7wH/9V+8JxOp4P19XVsbW0510U/CYWShkQigQsXLuD69euOJCuBpWsXDU91M9OslvV6HRcuXEC5XHa1AYfDIfr9Pq5fv+4Md8Z4kszQ8GTfOCbFYhHJZBKFQsFtFjz44IMolUpoNptoNBpotVq4du0annnmGQwGA0cItSizPiuVFiUlNPx1XrmpwHOVFGoSC65df358NVDdMXu93kxSjzhjO851Vj+LI/V6bxa9TiQS+OxnPzvj5vjoo48CAN7xjnfgzJkzePDBB7G3t4cPfvCDuOWWW3DmzBk888wzN8Rj+WTIX1dKHvzNEo6HPrdCCRFJD8ktY8sqlcoNJEhdCnWsNLOjqqnj8XhmE4brWZVYf91wA4bfK+yXEn/2SedBlUeSNWC2NAZJH9cZFcB8Po/hcOhic3mOjiVVx0Qi4Qqb0wU/Lsby5cLxInAhBi4gICAg4AjIZrMu3o3K18bGBlZWVnD69GmMx2NcunQJ6XQai4uLLm3+ZDLBLbfcgmKxiMcffxyNRgOnT58GAKytrWF3dxdLS0vOUK1UKjOxcjQCeF8qLJ1OB61WyxmENIZGo5EjkJVKBf1+H91uF7VaDaPRCNevX5/ZEVeDjUqGEgTWb8tkMq5EgBol3Hnv9XpIpVK4fPnyTJwOr1M3STXINGaISlIcAQP2XS5pjGrsTJzhrLvsvgvc2traTOY5/zr2U9UTJUmEGsJ+31XlYdzTxsaGyyToF0VWw5yKytWrV9FqtQDAkSCmPNcYHJI2qjHMYHr69GkYEyW76XQ6+NznPodOp+OKqWtf2SbXkk9A+dzMnJnNZrG4uOiykNJN9sKFCxiPx7j33ntdDOilS5ewubnpylpotkoa0zR+VcnyydK8zwG47Iaj0Qj1ev0GJU4JY5yrIF1QuYHi17nTMdD16Stwetz/2dvbQ6lUAgA8++yzjmiPx2P0+3184hOfQL/fx3ve8x7ccssteMMb3oDxeIyHH34YZ8+exZkzZ3Dp0qWZtcf3bTQauXeN75Km8ucY6DX6TFzfceuX5FnJdD6fn3Hn5DtCl0Nu+HBOdTx5PteZKsZxGyCqbPJafU7NEKzKopJrnwjyGt5Dv4+UAPPZuRHFMa1Wq652Jb9L+H3M7xBexzhAvefLjeNF4BDqwAUEBAQEHA4qbrfccgvS6TSazSZuueUW1Go1DAYDF+tWKpXQbrdx/fp15PN53Hvvvdjb28Pjjz+OZrOJpaUlV2ONMUYkQolEYiazJRDFlC0vL7ssl71ez2Wq5DmMhWHcHNURHiPJomGl9ZyAfZc2/ZuxUCRm9Xodi4uLyOfzjlhSgRkMBigWiy6WD4Crc1coFGYM5XnGuu6MA/sxaKqg0RjjTjnHh7vlvmKnRqC64RljcPXqVRenw/bV+GY/1a1PFR7eQ2PXFPq3tRatVgsbGxvO+OM8qHuhnxiB8UBqqHNcODaqWCWTSZw/f94pbaPRCM8++yza7fZMhj19Fh1jPpOvPPlKFTEej5076Pb2NiqVCkqlEgqFAu68804X5/Wa17wGd911F7a3t/HMM8/gM5/5jBt7Phufk33QY5wbugCqQa/9IakfDAZujfpZL3mev+74PFoQm4qjzqMfw8W1chB0DQLRe/j000/j6aefnokjI6n/7Gc/i2w2i3e84x04e/Ys3vjGNzpyd/HiRZw5c8ZtlPAZ6FJI9z1unuh77fdDYyKVuJF0af/ZDhN58PuK6jxdDUnGqKizbb03M9Jq7BjnXVUsKmRU1rgmlDSyv7yHrzpybNke517fY6p3LIWi5/L5+VydTsdtiOTzeZTLZdRqNXQ6Hezt7WFra2tmTkajEfr9Pqy1M2rfzcDxInDGwAYNLiAgICDgEKyurmJlZcWl8D937hyy2SyuX7+O3d1dFAoFZ8yORiOcOHECi4uLePbZZ7Gzs+OI0JUrV9Dr9Zwycv36dRejRmWk3W6jUqng5MmTWFpaQr1ehzHGHSOJYcZIAC71fz6fx8rKCoDIZc/aqHQAEwsA+xkHAbj4qG6369wRT506hUKh4JS8YrGIWq2GfD7vkq1wR3l3dxe5XA5bW1vY3Nx0bdDII3EAZgt0E358ExCfDVKJC7BfoJoGt7pUEX67qjjt7Oxgc3MTq6urM6RAz2Xf+KP1zPz24kgqjUm6ypIIacwWd/1pzPJZ6R5JIsc2/X7Qxa1YLGJ5ednFZD7xxBNu7GlwEpoBkiSVa0LH2I87mweS+H6/j/X1daRSKTz55JNIJBKo1Wq49957sbu7i3q9jtOnT+O2225z6fOZCEUVPx1PGtrsC/9WhYhQw5uGNtP1H7Su1LBXF2KShnmqGttQ4ulDzyNx73a7+OhHP4pGo4EzZ87M9MGYKKnGJz/5SbTbbbz73e/G7bffjre97W3o9/t44okncNddd+HcuXNOiVMSo+6EvpqmihvXFTPVUrnjmtXi1GyLpIvuhCRi6gpJcsR3knGTfl9I5HgelSqOAb9HeD8SNpJEkjdmlyThphssCZwm2VFSqSSWGSg5NrlczrmW6+YN31W2ubW1hclk4upwWmudKzndhpPJJIbDoatJ1263575HLzWOF4FDUOACAgICAg7HysoKrl27hmQyiVOnTqHVaqHVamFpaQm5XM4V7c5kMrj11lsxHo/xuc99bqbkwM7ODowxOHv2LBqNBqy1qFarMMa4ney9vT1UKhVHGJlJstVquSLA7XYbo9EI5XIZg8EAV65ccUYQANc2i3EDszXNstmscxVLp9PY2trC7u4u0uk06vW6ux8NZBYPZxIXAI7IsazCxsYGgH1iVavVsLS0hCtXrswYTPxdCYFPvNQwVyVO1RgaznxGPp/fpv6oK+VoNMLVq1dx1113zdxbyQENPrqUJhKJGYPRfw51tWM/9/b2sLOzM5PinS6QvI8qXLxeVTqeQ8OUBrIxxiUkqVar2NnZQaPRmCF2AGYMWv6t8URKPHwywvFQZYN9J0islCzTzW17exsPP/ww6vU6yuUyTpw4gfPnz+PUqVO444478MQTT+Cxxx5zGwhKfHUd8B46ZnGukSQaAFwsX6lUmlFcVH3z1xxVOF9pVcLokzdfwdQ2dYwajYZ7tqeffnomXk3d+hgL+sQTT7ixv3jxIt7ylreg0+ngs5/9LF7zmtfg9OnTePbZZ2fcEn0FSj9XojccDh1BIblRd05VoPkZ1z+wHxersYJKtEnMdO0oydPzNa6Orpfz3BxVidb3nYSQmyFKtPgsqv7zvrlczn0PklDSs8Bfd+pCyu+dyWSCUqk0U/NOFUy6FTMREb8nbwaOFYGDCQQuICAgIOBwXLlyBcViEfV63RmbLLTdbDZdzNm5c+fQbDaxvr6O8XiMUqmE7e1tjMdjnD17FslkEjs7O44w8dputwtro5T8tVoNy8vLjhyx/EC320Wr1XJGe6fTwcbGhsv4x/iLQqHgjBlVb4rFoksmUiwWsbe3h2az6VKoM4NkuVwGEGU0PHXqlDMAGbtDlSKRiOpaXb582cV/AFER75MnT6LRaADADUa5bzire5WSJUL/plGqqgldQLmbrsV31eBWlWkymeDJJ5/EG9/4RpeUQ8khr+dzUvli9kdVi3yoatNsNnH9+nVHyOJcPdl3jSPa29ubUeFoPCuJK5VKLvaMWS3z+bxrj33wa3/5RrESmzg3RbrqqUKoLoy+Ia2KqbVRVsvBYIC1tTVcvnwZt99+OxYXF3HLLbfg1KlTuPPOO/Hoo4/i8ccfd5sUJBG+Kx//5T3UPY/rgkb+3t6eSwBUKBRcn9U9Tt0p2QYJHJ8rzs1Pibc/hnHkcDKZuAyurVYLn/3sZ10sJJ+RRZ91g+Cpp57CBz7wAZRKJVy4cAHvfe978Uu/9Ev41Kc+hQceeAC9Xg+bm5uufARddLnW+T2g9RepLpE40tWVLn6+C2S324Ux+2UlNM0/x5/JikjGtN4fXTq5tjiOLGHBz9lXtqHQNe0nrCHpHo/HLu6RY8mx1++YTCaDbDaLQqHgFD39DtH3hm3qO63rkt+xHE+2S6WdyYdGoxFarZbbvLkZOFYEzuDmVkUPCAgICHhlgG6O165dw8LCAs6ePYt2u41mswljzEyh7Var5QymZrOJTCaDU6dOodvtYnNz0xmnLCBMN6Pl5WUsLi46I4SGGWMv+v0+FhcXkUgk0G63ce3aNWdAk/zR1ZIGIEkRjdBcLoe9vT00Gg1X5mB5edmVIGANsIWFBZw8eXLGFc3aKNFIqVSCtRa9Xg/r6+tO8aBBTeWl1+sBmHWdjHOTU+WGxlncuSQYms7bd6Gj6xVTf3NXP45wXb582cUl+uSA/fIVv0wmExvL4qt8ABxpYVskJuqWpbE7mnyBfedYMHsfa1Xl83lYa53RTMOTf3Os2DfNrqfP4ytr6hJIMCOlKii+kctrueb8VO78abVa+OQnP4lCoYB7770X58+fx7lz51CpVLC8vIzPfOYz2NjYcAY951WzEvr3U2WO5I3xYMYYp4LreOp1ui5U5SHBUVKq62HeT9y6AOBcnh9//HF0u10sLi7OkEpjjCNH6uJ65coV/N7v/R6y2SzOnDmDd73rXfiVX/kVfPrTn8bdd9/tNmJUYQXgNm8IJV98Z3kuFSVdT7xGNw40S6y6KSppJ0gEOQbq3sn1mM1mZzYr1GVW30Fth/Fq2WwWo9HIJa9hPzV7pP8eZzIZFItFV7uT48R3B9iv5cZ1b611JUtUyeTa5DrVxC35fN5le6Xnxe7uLvL5PG4WDiVwxpgfB/ClANattfdOP/vnAL4MwC6AJwB8vbW2YYw5D+DTAB6bXv5ha+03vRQdj+9rKCMQEBAQEHA4BoMBjIncH1n8+tq1ayiVSjh37hw6nY5T2paWlrC2tobt7W2cOHECJ06cwNNPP+3+o+90Os7YYNmAWq2G8+fPI5/Po9PpYGtryxkirKu1urqKbreLbreLXq/n4p3odkljlQYujQ9mQTPGoNFooN1uYzwe48SJEzh58qTLKlipVJBMJrG6uupi4IBIiaOBpVkn2+22i68jAeRzMf5O3SPVmPX/VcNPVTJ1UaPxrtfyODNlTiZRyQYaxEwKQ0VGFZgrV65gfX0d586duyFmiP1QApxMJt0Ouxr/+mxK/tbX112RYN+NjM+j12kSCvZFFRUarSSRapRqCnWN09N7xhENPyueKhD6bEoGfWNdSY7GjsWRJJLL4XCIj33sY/jc5z6Hs2fP4sKFC7j33ntx9uxZfOhDH8LVq1ddPTuN5WNbNK51vvRZmViD2VT7/f7MRoa/9nTugFk3QiW8PgGOI20+SF7W19dhjMGnPvWpGRdXBcmj9rXVarkSA1/6pV+KW2+9Fe9617vwvve9D08++SRuv/12fPrTn3bvKDcK+Ex+LJifvERVbyVvVNWKxeJMpksdZ11DuiZUKdN1rdcy9sxai26369a2pv4naeR9NQskv3eo7gGYSQCl7zFJFesg6nMr8de1o6SeG0IA3L2NiVzf+T3J9cl3k/fmJl6hUPi8z0L5EwD+NYCfks/+C4Bvt9aOjDE/AODbAfyj6bEnrLX3v5idPCoMQhmBgICAgIDDkc1msbS0BCAyqJrNpsvKyHIAjI9ihrgLFy5gNBrhqaeecspLu92ecWtMp9NYWFjALbfc4hKhtFotdLvdGeMzk8lgc3PTuWEBcCm0mVSArpQ0mJiJL5PJoN/vo9/vOyPkzJkzqFarLmtaqVRCOp3GbbfdhslkgrW1NRcfQqWObpskJZubm8jlcjP3ofsUny9ORSP0d9+tzSdvwL5RqNer+xNjxnq9HpaWllAoFJwKptfRUOt0Orh+/bpT6FRdIehGSWOXLqrcrZ9HTtvtNra2tmaIBg1Rklw+N5+NxieVCRqOJG5031S1TA19P35Nx88fS5/MsN9q3OvnqhSR8PiujLxGiZq2wTWhKutgMMATTzyBwWCA22+/HSsrK3jTm97kslW2Wq0ZVUzJPZ/DV2w04QTJPZMIMb5JVThV2Pg55ysuAQef18+i6I+lrgm6J4/HY1y9enUmltIfJyrJnGsSwEcffRT5fB5f/MVfjHvuuQdbW1v4yEc+goWFBVy8eBGPPvqoO5fPrs9GshKXqVEVTvaX5Itzpin7SRKz2SxyuZyLOVMFWseNGwu6kTIej92GE5VlZs/lxhTnUmPiOCb8nvFdKbkG1B2YWYT53qqix7VC9Z5KN8+j2ym/J6gA8r2ki2m/33ffo6zvyXpwbPfzmsBZa98/Vdb0s/8sf34YwF94kfv1vGBCDFxAQEBAwBGQz+extbWFUqmERCLKrkcix/+4mb68Xq9jZWUFa2tr6HQ6LsNZv993RsBkMkGhUMCZM2dQqVSwt7eHp59+Gr1ezxn6JHvcaabR0Gw2neFSLBadQaU77f1+37mxdbtdZ6DRVW13d9clJaFhsbCwgEaj4dwkJ5OoxMHy8jKq1SrW19eRyWSwuLiIP/qjP3I7+oxlKZVKzkCbR95oHPuGuP5O6N800tQYVaKn7SQSCayurjqyNBqNcPnyZdcXuopNJhN89rOfxZve9CY3jrrrzvvQ0GVCgnK5jGKxOOOqqoRmOBy64ursG5+drpA+oWKfSEaoMpAU08BVI1ANY3Vv1LHy49b4bHHqmSpKvqKopEefWZUWtkGjl/dSdz0+uxL2yWSCZ599Ft1uF+fOncPJkydRKBRQKpXw6U9/Gjs7O46Y61hqLJLv1spnIAljVkBVK3UMfUXYd3n1lVNNDHOQCse+7u7uYnNzE8YYV05CCZSudZIw3ovH9/b28PGPfxyZTAbvfve78fa3v90pmQ899BDuvPNOXL582aW01/nShClARMJ0vZFwK2lirCe/t7gOSF6pzKpLproI6xqgOq7rkkos1wbnhxsvOzs7jmBpXCA3oVT11e8EjinJXjqdRj6fd/F+fA6dc64BfpfSrZ3jzmfjterOTOWQGzCMKeR3ORO/0CX3ZuHFoI7fAOAX5O9bjTF/BKAF4J9aa/8g7iJjzDcC+EYAOHfu3IvQjSgGLpQRCAgICAg4DJubmy5N++XLl52LY7FYRDabRaPRwGg0wvLyMhKJBJ5++mln8HOnmIWxE4mohtrZs2exsLCAdrvtSg30ej0kElEWSC3Gy9g0KmY0GlTJ4X0Ye0bFhgH2mUzGKWZMUDIcDlGtVjEej11ClYWFBVeY9uzZs9jb28NTTz2FUqmEer3u4vwSiagOVDqdxrlz51xCBSLOOPZjcoAbyZvvTqnPqIRKz1HlZDweY319HeVyecZVUI1iGqGPP/44dnZ2UK/XZ9wQtW0apfzJ5/Mu8xzb1GdmKnMtJgxgJlU5iYimN+dzMqkKCbuSjjhVUgmbEi4e59++C2BcG/ybhrMSPB7j+ew3yYGvJvFajSVSNzs/xrDZbOKJJ55AuVxGPp/H6dOnkcvl8Mgjj2BjY2NGZaExrXOqLoNKRGk47+7uOldKHQMlquwf512Nbh0DjeNSAuSvBf7LzZ50Oo1ut4tarXbD3LBtEkdNpsJnGQwGePjhh7G0tISHHnoIb37zm3Ht2jV84hOfwJve9CZMJhNcvXp1JgOjrjfeT8mnqnz6bJpIRpP5kNwpofI3VNh/ftfxXUin0zcQLR2n4XDoyG0+n58hT+wj152uXz4fyR7JmLotcv1p6RG2rWuZ7yHnAYBL7NTr9Zyit7S0hGaz6UpD9Ho95PP5GUVRiSeJ4c3CCyJwxph/AmAE4GemH10DcM5au2WMeS2AXzPG3GOtbfnXWmt/FMCPAsCDDz74orCuoMAFBAQEBBwF5XIZyWQSTzzxBC5duuSMA5KSarWKXC6HK1euuJi0VCrl6rYxfiqXy2FpaQknT55ELpdDq9XC9va2qym0u7vr/pPPZrMoFovI5XLodDr/H3t/EmRnml0Hgue952+eB59H+ADHGIghIwLBJCOSyZSYSnGQyVgy5aoWMpXJrE290aKqVyWTWZlq1atelVk3u2UyVatYSpJiGpOZIWZGZkZGBAIIIDAD7oDD5+HN8zz0wuNc3Pfhd0SIIgMk+r9mMHd/7x++6f9xz3fOvRe1Wk3iuSjVobyH51LKqZMDEPTU63V4vV4sLy9LbEkqlUK9Xkez2UQ0GoXX6xVQFg6HkU6nJSlLu93G3bt3sbe3h1gshnw+L849k5Zo6SR3/pk4AXgWrNF51EwRMCyX1DvfZuyZdtz5OdO16/p5OpEJmUrKUh8+fIjJyUmJxzGvreWc3HlnfTEtvwSOpV8EsSZANVky7TDTaaVsleuFDinjddh/K9Cmx1IDAg089HX053rMCW61TJGON9tvsnh6zAAMpZEHIGyOjivTUkxet16v47PPPsPY2BiWl5cxPj4ujj/lrhoY6yyObIvJENJpJxPHTRQeZyUlNZlVfq7Hw0wcw/nUx/JauVxOZNEEF+aY6bHUMk49TmTUf/nLXyISieDSpUv47d/+bfyn//SfcP/+fbz55puoVCoil9Zjzg0ftkEnaeHvBDz8Xq99AhI93hrMc7wYt8ix4TixFppeoybjBTyNNyYIYlIaJlrhcSaTzfXL54XtNTdQdP06tttcNyYDzfHje9blciEcDqPVaslmHUEuS7+43W5RJrBOoqky+DrtrwzgHA7Hf4/j5Ca/NfhiZQ8GgxaA1he/f+ZwOB4DOA3g2l9DW79Cm+wYONtss802277cmKSENdaYjt/pdGJsbAz9fl9YgkQiIbEdLBdAQJFKpTA6OirH07Hjf+46JmRqakpqBzEGAzhO0x+LxQBACof3+32JRfH7/QIQyPL4/X4kEgmpAZdIJBAOh1EqlVCtVhGLxeDxeJDP5+X3XC6HZrMpkqZ8Po9MJoOZmRlJ1BIIBODz+YYKgWvgouVOptExfZ6Mkp9rs3K6ze8JdumAUeJFJ40guFgs4ubNm3j99dfF8dKOG4AhxoBOaSQSkTp8mt1g7IsGlJrBYxuAp2yPz+cTpk0nWKDzq+u5abZHt1PL2vi3FSv1vDgc7VDzXhxrgkYtMdQMlAbbXO/shykP1EBQ94POdL9/XDNtZ2cHY2NjGB0dlZhA1tHSdfLMpD0a6Juxj+12W+SU5joymTgt1+RYaKmfdvr1vOp1xrV2cHCAdruNTCYzNG5W64LzpxkjzQ73ej0UCgV8+OGHiMfjWFxcxLvvvou/+Iu/wNraGlZWVqQ8CIEr1xY3iLQ0lO8HyqkdDoeMq2ZMNdtqJa/lfBCMUZbMa5HZ03OkYzo1y6fXNPCUadUZWHWylpGREdlkcrvdiEaj8v4huOJ9B4OBgDiODddPu90eWhP8ndkuC4WC9CUUCmFjYwPhcFji+Sh153Osn1u96fEi7K8E4BwOx3dxnLTkvcFgUFefjwLIDwaDnsPhWASwAmDjr6WlX61lNgNnm2222Wbbl1qpVAJwXKDa6/WKc5FIJFAqlSTTmNPplBgUOudMVDI2NiYxbC6XC5lMRhz+VqslYCCRSMDv9yOdTksCBprH40E4HJasbnRY6MAw5osyIcobR0dHBex5vV70ej0cHh5iMBggGAxK1shkMikSxJGREUSj0SGmrdVq4ZVXXsEPf/hDianTcSLaKdcsyEk7z9o51r9rMKfPNcEHwZUGFgCGkiWY8S76OKfTiSdPnmB/fx+jo6PiRFo583SgR0ZGEAqFJGaQfe92u8jn8+J08z5aZkdjIhhm+WOcm2Ys6ORq4KRlbMCzmSXJOJgSNRNIaUCi+2gCQY4H59IEZSazqp1vk1nl9bke+LlZWqHX66HRaCCbzaJSqeDs2bOIx+NYXl5Gv9+XrKncpNByVP7UoFe3lQDDTGhhSlP1+jQBPCWt+hy9PsxngMW3CUzNRDTmhgHnndI+3UaOa7fbxebmJt5//3387u/+Li5cuID9/X3cvHkTo6OjOH36ND7//PMh1pgSTLJPBEChUEiSu/DaWlpJNklLS/Wa4TjymfP5fHI9Lb/lBgHl2TqZCjM36k0ELS3W5UF4LCXmXD8ul0v6QjCq48+oEGBCFrJqrPPGjRcCSzL1emOB8W2Hh4dy/ffeew/5fB7r6+vyPuaxlPsS9GmG/+u2r1JG4H8H8C0AKYfDsQvgf8Zx1kkvgPe/mEiWC3gXwL9xOBxdAD0A/2IwGOT/htpu0VbA5uBss80222z7MiO7xYxjdBDy+bw4hP1+H5VKRRwYv98Pj8eDRCKBWCyGVquFfD4v0sZKpSI7u3QSGVNXLpcFuGlnmolCWq2W7CITJDK9faVSkXYnk0n4fD7s7u4iHA5jbGwMrVYLxWJRgOhgMEAoFBJQ2W63EYlEABwzfH6/H+12GxsbG5idncWVK1fQ6XQkmQeLkGtnXjNrZL9Ms2LS9GcaxJkgj0bAQadTH8+x0wyJKffz+XzY398X5oIyM9PR0qCIDGkqlUImk5F5IpOqAYrOYknnVGdE9Pv9kmCBYIl90u0146VMVo3H0AHlsRogaEbAdNAJzvS9dJ9NaetJjCKvSUZGM3mm5JNGwMi2ErxwLNPpNMbGxqReH5NqmAkzyLhq9tFci4zNarfbz5RbME0DMf5jwh4N4Ex5rN4s6Pf7KJfL2NnZkQLafNbMuTV/1zJXLWfV63BtbQ0ffPABvve97+Gdd97B1tYWPv30U/z2b/82pqensbOzI2uTwImMGN83LDFC0KT7qftlZoAluz4YDKTUA9lJHk+Ax3GilFCvdX5PME7QBEBUBJxXgkkdS8Zj2WaqIwaD4/ptwWBQ2sJ26ueFbdWlJ/huAI43W5j9l+u4Vqvh6OgI8/PzSCQS6PV6mJ2dlWLd+n2lmca/1RLKwWDwfYuP/58nHPufAPyn/9ZG/VXNATsGzjbbbLPNti+3RqOBarWKYDCIyclJ1Ot1ZDIZ9Ho9cejy+bywKcx8NjY2JvXa6vU6Go2GxGRxN5fJUFj3ijIr7gxb1WOiUxCNRiV+xePxiGM2MTGBUCiEXC6HcrmMaDSKSCQiNeAI0LrdLuLxOLrdriRmicfjQ98xFf9gMMDe3p44v5QqUjqlgZJ2erWZbIOVQ3PSZyb40uyAltFp+ZmWGGonlOPq9/tRKpVw7do1XL58WeZBgw2TgSNoikajGB0dRTablR1+LTfTjBavw3p5jI0hm8NzyHDpa/B33pdtsZJMniTH04748+R7WvpJ8GOCbM3E6OtqhsG8J9vHtarXiGbj+I8gpV6v4/DwECMjI4jFYohGo5iamsLh4SFardYQuOTzYppOsAE8lVISoJhspB4nc70yjlXL4syx0+xzt9vF/v6+lBrRc6nP05k89XOjj9HzQLYRAG7fvo3Z2VlcvnwZ3/rWt/CDH/wA169fx5tvvolisYhyuYzBYCDvBwKoeDwuIIVt1uyb3lSgFJHXsMo2qyWSmhXjuuC7iwBHAzuuK53On/GzZK84Brw33zkej0dqymnJJtchY+eCwSAikQiq1SocDockfeJPk53XmV8zmQwGg4Ewme12G5VKBXt7e9IObrDxfpxLjospz/y67cUVMPgbMIcdA2ebbbbZZttXsG63i2QyiVgshnQ6Lf9J8z/qVqsl7E04HMbIyAjGxsaQTCYlfqzZbErMmd5ZpgxR74Lr3dtYLAan04lKpSLxK9FoVGI+ms0mvF4vqtUqXC4Xzp49C4/Hg93dXQwGA8ncTOlmOBxGv99Ho9GQdPv5fB4+nw9zc3NDGdXa7TYKhYKUIqDTnEgkhD2klEmbBhvaedYAwXRKn7c7rZ1sk+Uwk6SY99CyMHNOmXxmY2MDDx8+RDKZlOQhJvjUyT+cTif8fj9SqRQikYjIYfXOuwYiTqdzSFZL9k0zOfxdjxvBKQGbZtJM+aQV0NJgjSBBA0PNntGZ1nJHM1bMTK2v2WE957ymHneCCPMzzj03MHTMksNxXCsum82Kkz46OirPFNtDyaRVgW8CA73OWCrDyvSYaseecV1cH+Z60muSIKbZbOL+/fsi2SNIN/vP8dUbBbo9evxN6Wa9XsfVq1cxNTWFpaUlvPHGG7hx4wbm5+dx6dIlfPjhh/B6vbKJROl3IBCQ9aRBDwGXHjOufY4343vJsmpWUktSdYITU4rKOSaw1YCZx2vJKK9FUMe2+nw++P1+AVuUiAIYqknJWop606Rer6Pdbg/NN9/B3AgLBoO4d+8ednd3pU8EsZVKBQ6HQ+TzBJT6GfF6vYjFYjg6OkKj0bBcc1+HvVwADo5nXtC22WabbbbZZtrY2Bjq9Tp2dnbEAdU71IxB8/l8CIfDSCQSkn0sl8uhWCyiUCiIfKvT6Uh8RqvVwuTkJPr9Pkqlkjj+eiea0h9mKex2u6hWqxgZGUEkEkG9XkckEsHq6iqKxSKOjo4QCAQQj8dF2kfZJ2M9/H6/gLNYLIZwOIxsNotms4nB4Gk6fAI/AEPOMvAUdGmHhVnjNCgFhgtCm+fTtANoHmPGDenv6HxZsSG8rnbEgWPnjmUccrkcrl27hrNnz0rGUVPyp1k9OqDxeBzj4+MSr6idU4IgzYxq2aSWken4H7ZXO7taGqjZR80w6rnRY2xeg9/TITb7aQW22X/NAPJ8E7Tp+dDyVs6peZ7+qaWcAMQZr1Qq2N/fx8TEBMLhMCKRiMgCeS9mCWQMlckGaueeDDjrxxHkWckaOSbMCkugQjPHjgC43+9LltORkRHk83lJBMLz9brUY62vqcGdOS/8ubOzg1/84hf4B//gH+DNN9/E7u4url69iu9973tYWVnBw4cPpW5hPB6XpDBer1ckzhqYUqLK/mgmmowTN04oAdbPByWDOhU/50gn6iETznnT40FQz6LaTPSkNyYYE6dBsV5Puj6dnhs9hjrJC0EZWb5gMIipqSn0er0hxYV+B7C/BH8EpFxTBG1a8vsi7OUCcDYDZ5ttttlm21cwxrrRUeAOLuNI2u02wuEwJiYmMDk5CafTicPDQ6TTaUlywmQllO7xXJ/Ph2KxiGKxiEAgIPFyvA8d01QqBeA4TX6j0RCwWK/XEY/HcerUKWEHx8bG4HK5pAhyMBiUc2OxmHzndB4XvXY4jjP8MQU5AJEDMWtfo9EQB61cLg857Zr5MjPeEaCY8WxWMjUT0Om/TUfSZNs0eOTf2tE15Wh0tILBIHK5HO7evYu1tTWMjo5a1oRjezSQ8vl8mJycxOPHj4cSiHAceB1m+mN5Cc22sa06C58VQNMgiPfSTBXXpO67CRC1RNFk0bTkixIzze5pVliPpRULqEE4pY1aXqj7rdcEwRjbTCef8tNGo4FwOIxkMol6vS5yZN6zXq8PxTFqsMt1QEDRarXkOdTg1hwP/Zwzs6IJevUaZR9ZP3FzcxMAJMGHXoP6+dH3NterKVfVY0dAev/+faRSKfzmb/4m3nzzTfzpn/4pbty4gV//9V9HNpuV2E0NZsjoEwxx44jzr9ceQTGfSZbd0GuWckctdeQ8mrJanamUc0CJrQZemt3Ta5oMtcvlGto80e8IPf8atAOQ2GM+T/p5ZM3AdDqNwWCAUqkk5Vx0sXOuO/aHzBz7wnd+oVAQRvtF2csF4GDHwNlmm2222fbl1mw2kUwm0el0nskK6XK5MDk5icnJSUkSsrW1hXQ6jUwmg06nI4HwlIF1u10ppE0pGHf3a7XaUE2yUqmEkZER1Go1iT9jKu12u42JiQn4/X7JgDg+Po5+vy+xLwSEADA6OopKpYJOp4NYLCZ/s2QAndpoNIpGo4Hd3V0ATx1Tn8+HSCQiu+F0XjSb88orr8Dr9WJra0tKIGimhU6TdlC1aUaHpp1p7fxqdozn6HO1Q2dl+XweiUQCBwcHyOfzuHLlClZXV4fYCFMup1k4l+u48Pny8jJ2d3eRzWaFaaCTSTDH2n0aMOi4MZN1MZNx6D5ZtUWPC4/TklPNoJlspgYOmk3lvGmWRMvNNKvG6+n08yab4/f75Tgdy6c3A8y51owpk+8Eg0GMjY2JRI4gjs8Fr6MBoLkGdHp7q/HUoNfr9SISiQhjp+fAZGi5xmu1Gm7duoVyuSxyRZ2B0pSmct5N9tSUf/Jzc6xarRauXr2K6elpLC0t4dy5c1hbW8Pq6irOnj0rYI2yR3Pc9H01y8qx4nhx3VLCzbXh8XhkLilzJCBjLCjHWgNHncVSryOyfcycyfFitlauO7ZDx5hxzeo1zDXY6XQk4RMVEQSzjUZDJOlMcLS5uTnEqGtlAcefSaWsNqwo89Sg/EXYywXgnvNSt80222yzzTYaM41pR8Ln8yEWi2FsbAyzs7NwOo+zUh4dHWF3dxfFYlGC9huNhmSfAyDyRe5yc/ebO84EiXT4uJubSCREWrS4uIhAIIBqtYput4tYLAafzydSTdZCOjo6EuBVLpfhdDoxPj4Oj8eDg4MDcVoGgwHC4TDC4bA4y5RRtlotiR8BntZl0o4WAExNTWFmZkac9mKxKODRjLsyjf8faxaN5+ndeu2oEXBoIGEye+b/8xrk5HI5JJNJeDweNJtNXL9+HW+99ZYU6rZiWrTskOtgYWEBKysrqNfrEieomQgCFc28abBmxWTpXX5tOumJyVZp4GICXv23njuOowYsdFB5nHZKzTHWcVnmvdguAlVeywQ9BH1c61axjr1eT8ZXS+jMkg2USZqspQbEZIeYIMhk1TQIdDqdiEQiwp5aAXqzL41GA2tra7h27ZrISHUbzHHQ19GmNyM0a22CcM5XqVTCL3/5S8TjcVy+fBm7u7u4du0afud3fgfb29vIZrPCwnF+Cbw0C8ox0bX2dBIWjimBCZktJuuo1WrPlMRguykJJ6jTTJqOgSQI1OtNs28AnmmXXlf8nuuJY8TSLKZygEmlGM/Mfug6fJqlZXs0yOQzyzX4PDD+dduLS5/yN2Q2fLPNNttss+3LrFgsIpvNSqIKn8+H8fFxzMzMYHp6WrJSbm5u4uHDhzg8PES9XketVkO/30ckEkE8HpcYKC0X4u48cOzg6WLQvV5PZJfcVQ6FQlhdXYXH4xFHhDXmWq2W1J0bDAYoFAoC7EqlEiKRCCYmJtDv96WNTEJCZ4pMYblcljgWMh06bgsYjvmh88JslmTsTiocrR1fYDhVPtk9/k1QoAtym9Ky5zEj2vRxzB5JYFqr1fCLX/wC+/v7z2Sn0467ZmqczuOMlKurq5idnRXppB4rJlBghlKCOYJS/U+DBA3kTCCk5WRm1kDN2um5YT+06Rg17fiyrxpcmeyoyfKZ88ax0nFQ/EzL5jSYYX90/3kfZktlxk89pjyf7Ke5fsyxJYNtrke9dhyOY5ksazNquZ9eR7rvGsCRMSSo1wBOz4PJpOq+m2uXpmNLed9er4etrS389Kc/RSQSwTe+8Q3s7u7izp07OH/+/NDYEABzY4ZjwjHic68zOvIf2SwACAQCCIVCAvjIrhFkcqNBS0u5FijX1HJjfX39zPHeXLM6Fo/fa6Co1y5wvGlGFpwKAmYL5r3JLBJ0k11sNBqS8ERLSTudDqrVqqgjWq2WJIHSdSj5DniRpNFLxsDBRnC22WabbbZ9qRE4uN1uJJNJ+TcyMoKjoyPk83mk02nk8/mh/+Qpn2HNNaatp6yOzgkzPjJLHP+z73a74lR4vV7Mzs4iEomgWCyi3W4jHo/Lue12G9FoFH6/X5zcmZkZ5HI5VCoVARfValWcFzJ9ZP16vR5WVlYkPoQAkmDM6XSi0Wg8s5tMJ6zT6aBQKAgLaGV00LSTfJJpmRmPtZIW6tgzwDoNvHaS9by63W6EQiEpyn379m189tlnQ4W99e47r6WB58jICGZmZnDx4kUB7nQkCfg10NCshBXLpu9F4EzTTIMV82jK/8xxsDITxNHp1Ewr72cyqeb9+JkJ5DRzaTWf/KflthxrDcg4ttFoVJJwECyQ+dClJUymUzNlrI1mZWxbLBYT9k23X48120mnfnd3F9evXxc2mc+MBrWmdNZka6zaZa53DXJ0Eo29vT0cHh7i3LlzePDgAa5du4Zz585hbm4Ojx49krhEAiey6BxPzVA6HA55f2n2UL+fyOqRIdVgiuuLxo0LPQdaZUDQp0E+8FQuSYDM9ym/1yCR86olwxxvZgIlO9doNGQjiGAOeJrBkpsMVBVw7FgShNcz43r1euF1T3onfh32cgE4OGz8Zpttttlm25ca/6OenZ3F6OioxIE1m00p1Fsul8XpYSZDt9stWc3oCDCVOne+A4EAMpkMWq0WwuHwUEHZ0dFRSUoyNzeHarWKQqEAh8OBZDIJt9uNUqkE4Di+LRqN4smTJ/D5fJienkY+nwcALCwsoN/vDwELFvxOJpOoVCoIBAKYm5tDJpPBo0ePBMDRme/1egL+tPNJp6XdbqNcLgN4mjkTeLozrh1ymgYWJzmtAJ5xVPW86O+05Mo03VbtWBaLRYTDYZmXarWKn//851hdXZVskfraZh/YjkAggFOnTqFQKODRo0fCnLpcT9Os6yyRJoNj1nXjdelQEmBpR5HH6LHTDCbH3kz9z3HUzrgZ+6ZlmcBTOZrO8qhBlxW44RhrJpHH6yQTbCv/1rJMyuo0UCTbrB1mfsfrct1ohlAzlvyMz6SeS94vFAphdHRU2LeTQDD70+12UavVcPfuXWxsbCAQCAibpO+h17S5RvmdXmfm5+bvev2TBf/Lv/xL/N7v/R4uX76MP/uzP8PVq1fx1ltvSVIVq40isoV6fjn3OjmQBt6MqyOQZoZLvXY0ANfrlqwd30uMRwsGg/D7/cLka5BMpotAUJcPYOIdzbrqzR0+kyMjI6jX68KU8dnkM67XAN/j7CPfhbVaTWIomZyGx2qZKd+burzBi7CXC8A5rDXHttlmm2222aYtEokglUphfn4eIyMjEr+Wz+eRy+UkO5nH40EsFhPnV2d0m56ehst1nP2xXq8jFAphMBhIjNrIyIhIrvr9PsbHxxGJRBCLxRAMBnF0dIRyuSySrn7/OOue2+1GJBJBqVRCOp3G5OQkwuEw0um0pFxnAe9wOAyHw4FqtYqpqakh6R3Zp0KhIM6xDsT3eDzCJOgYDw1Cms2m7DKTBdFxg6Zph/h54M1MDMD7mWDQjE+yupcGE71eDwcHB3j77bdRLpextbUFp9OJ7e1t/OxnP0MikRhKG65ZM7O9TqcTsVgMZ86cQafTwcbGBvr9/lAWPT1e5t8my6elqrq/5nka8OjYLQ1Y+Z3ZZn6nHXSOqVk7j0wj1zbnhuCTbdbtpSxNgyUz458GC3xedJu5RnXf9fMDQICHBqNmH03AyX/tdltkzJpRc7vdGBsbQywWG2I9eU0NPsl+dTodZLNZXLt2DbVaDalUSkAJ41z1/GqAZvV86HV7kmkgzL/b7TYePXqEa9eu4bd+67ewvLyMO3fu4Ny5czh37hxu3bqFcDgM4Dg9P2O+dDu4eWDKZ81nmYwdjyeAMQEm15OOaWV7melW98nj8cia4fmUNDLJkF6D+l1DVozAypRC+3w+lMtleX9yXWtWjWw5QR+vw/UaDofRbDYFBLKkARUXesOC4O9F2ssF4GArKG2zzTbbbPtyW1pawtTUFJzO4/IAg8EAmUwG6XR6KLX0yMgIms2mMHT1eh3dbheBQAAHBwfi0LLwdrPZFNat3W6Lk8fd/5mZGaTTaYnJCoVCCIVC4iyyiG0ul0O73cbCwgI6nQ42NzeRSCTgdrtRLBaHHORSqQSn0ykyo1gshn6/j1wuB5/PJ060doYCgQACgQBqtdoQSNCOsnZy6HCZjIF2Dq0A0EmyMQ3UdAIHmmZnzBgtzTjxemyHw+EQJ2x2dlYKcne7XXz22WdYXl5GPB4fisnS0igzbsrlcmF0dBSnT59GtVpFJpMZSpJhAkyeoxkok8Vi2wlONIAzWQ3g2TT4+poEalYMogaB+lyOuZ5vLWuzAoUnMUWarTMlhJr1s+oP26nbpBk3zY7qMeJ65XV5nsnEmWOfTCYxNjY2lJHUBM4EcHweK5UK7ty5g4cPHwp4YCKg5wF3E7yZzJs5T/pzLaPV49pqtXDjxg2cOnUKr776KtbW1vDRRx/he9/7Hp48eSKAajAYDCUrCQQCQxJGfQ8d16aZN46nlhxr4M5rcC1w3HUxcAJIyiIHg+Mac2Q2dbwca8NRssq2sM3tdhtut1uy9gJPZZzcIPP5fGg2m3JvLZ1ku/VmgGYUyf55vV55/1KxQBaOQI/3tXruvk57uQCcwy4jYJttttlm25fbwsICSqUSstksWq0WMpmM1Hfjjq7OClir1VCtVhEMBhGPx2WX2ufzSVD8yMgIgsEgGo0GAoHA0G7x5OQkpqensb+/j2w2CwAimWw2mxgZGZEyBNlsFqFQCKlUSlJeT0xMiESITk6hUBDZFJm+5eVl5HI5KZJcLBafYbnopFOOaUrVTCeNDqFpOmueKffT7JApB6TR8dbgi+3RrJF2tLQTehJIcDqdWFtbw7vvvovx8XHUajU4nU5ks1n8+Mc/xtzcHDweDyKRiDjbOpkD78N7+Hw+zMzMoNls4sGDB+LA6/5op10nZ7Bi1/ROvh5jfT39twZ87K9ms0zTTqm+px5Dcw60LNKU92mQxn9W46Tn7qT4Qh6r20SwVa/X4ff7hzJR6rXHdUDHntfSSV80o6LHPRQKYXp6+sSi7ib7xg2Y7e1t/PznP0ej0ZDnnhI9HRemGUUr1lKPkTarDQ4TxGvJYD6fx40bN/C9730PFy9exPXr11EsFnHu3Dl88sknwi6zL0y2QvZLy1HdbjeCwaCMb7PZlARIOm5Ngx69ccB26rWpEwURsAWDQRkHtkODM/28cP44D/xMb0DxGr1eD6FQSDavRkZGpKi4BqKsu8nNKl3+gH11Op2ygUa5uGYKCQK54aPrw70oe8kAnAMDm4OzzTbbbLPtS2xvb0+KcZdKJWQyGdRqNQQCAXi9XgQCAUlBTScoHA5LjAnlPMyeR6eARbZZ+DoWi4nzv7GxgUajIdcnMPT7/RgbG5P2MIbt1q1biMViiEajEn/GBArdbhfxeBwOhwPFYhETExNwu914/Pgxms0mzp8/j0qlgmw2KzvYdIzIIJkxHHqXWoMwLZ/SYMyUsAHPd0j5u8kEWcWh0QklqLICfhpwmixYtVpFvV7HwsICdnZ2hFF98uQJPvjgA6kBxj7RkdR919f2er2Ym5tDv9/HxsaGOLpWDBwwDG71PXTbTRkgx95kSfS4a2CkQaN2Jk2mj8fp4sh6HDXTowGiFbDUc8h4ITrbBHZcW7ofZJpodPj1PBMAaMee7BT7YM49r00QwnHQElK3242pqSkkEgnLot0meCPzUqlU8Nlnn+HBgweS7ZHxZDpLpjnuVvY8R9/qOy1v1HPV7/fx+PFjrK+v4+zZs3j48CHu3buH3/3d38XNmzeHygnwPL6/HA6HjIkZC0vAQjPHSYM0czNGbwJotlQb41EZr0a2TssdNVjiuHA+uVHGOm9cT2T5mLhEx6TyedIJg8x17nA4hsqYEJhx44ht4rk686Rm416EvVRlBOxC3rbZZptttn0Vq1QqaLVaKBaLODw8RLPZlMxizObIIt/8j5vSHJfLJfESIyMj4pzQEWAMyMTEBJaXl1Eul6U+m8/nQyAQEEckkUggmUxib28PxWIRkUgER0dHqFarWF1dxejoqGST1DvX4XAYg8EAjUYDMzMzCIVC2N/fh8PhwJkzZ5DJZLC9vY1SqSQ710xsEA6HJSZOB+fTYTcZADopdNpNqRwdJ+3kP89hpWOk76nP0cCJTrp5Pe1EWR0zGAzw+PFjiXPUzMEvfvEL/PKXv0QmkxHJF8dVszlmm8LhME6dOoWlpaWhLIb8XjNYmhnSTI0GeHSg9fmm7NI0LfGjs8k4Is0emU5qv99HsVhEOp2WfjqdwwlVtFxPgzJTysd+ameWn2lHWAMG7RDrPpssFj/TddZ0shjgGFwwJkqvI7JGWgZK9np6evqZsgF6rWnwxkyGjx8/xs9//nPU63UEAoGhFPxmjTI9TtpMZlKv2+fJ79gePab8rFwu45NPPoHT6cTp06ext7cHALh8+bLIF3lvskWNRkP+5rzz2dWgyev1SgkBHkdWSrdF15kDIGPD9yHP1TJDJhTSskTGklI2qePeNGvH63IzieCO73HdpkajgWq1ina7Lddyu92iimCZhGAwKLJQlnrRWUxZCJzglu9fFvluNBpDZSu+bnupGDg47Bg422yzzTbbvtwqlQoymYzEkzGxQaPREOdGSyFZEiAej8tubzQalV1hxmHQsT19+jSCwSC2traQy+Xg9/sRj8dFbulyHaczb7fbODg4QCKRgMvlwvr6OsbGxrCysjIE6uhIhMNhjI2N4ejoCG63GysrK9je3sb+/j5GR0cRCoWQTqdFUqQlZS6XaygbHIvVatAGDMu+9N/aiQee7uJb7coDGJLaaWfPyjE1pWf63iZTReeO97CSrjkcDqTTafj9fnFyq9UqgOO09X/5l38pZRhSqZScTyeR/TP7HgwGMTMzA4fDge3tbTQaDekfgYE+R7cPeFZ2qgEsTTvvVvOgx1QDNC1d4/c6i2cwGBRnV4+rlkdqtlUzbfo+JrtHJkKPAR1j9lXLJc01ZiUD1ayszo5oxmHqe5plAVwuFxKJBGZmZhAMBi1jEs0xJyBOp9P41a9+he3tbYkho+POa+t7c4yt5kvLRPn5SWZeQz8but/pdBp37tzB8vIybty4gatXr+Ltt9/GrVu3UC6Xh55Jk4ki0CVw00BdM1gEyj6fb6i0g2bbAAytR56nayPynUfQowEZANmA4FwzQyTnXK9R/ZySPev3+1KXkSAMeMrG+v3+oRg7p/M4wyyBGd/3bJ/JvPE8tpnvfJ/P90wm0q/TXjIGzkZwttlmm222fblls1nkcjkEg0GkUinZ2XY6najVamg0GggGgwgEAuJA0EGIRqMYHx8Xx8Xj8cDv98Pv92N0dBSXLl1Cr9fDxsaGyCij0SiazSZarRZSqRTGxsaQzWbR7/extLSEVquFo6MjXLhwAefOncOjR49QLpcRiUQEbPn9frRaLTx69AhutxuTk5N48OABGo0GXn31Vbjdbvk7GAwinU4P7Vj7fD5xxrjTrJ1+kwkzTTNzmqnRDql2/k0HCBiWXemfgHWtN90WU6pmOscEzzyu3W7j7t27WF1dRSqVGgIKR0dH+MEPfoD79++jXC6Lc64zbloxKi6XC9FoFHNzc1hYWEAkEhlin7QjzPPNGD6aBr9kIEwJ60mSVp1h0gRGHCNej0yEx+OReCQCMzKPBPq8Np1vs24cfzLGyGRJTVCo1xide1MmqhPKmEyavq4GGCZbScdfz3E8HsepU6cQi8WemUsNpjT7BhwD/Bs3buDDDz+Ew+FAJBKRtdzr9QQ86Pm2Aqh6TfOeJrg3zdwkAZ6CS37P98GdO3dQKBQwNzeHX/ziF/D5fFheXh56NpklVCdu0awmr81ETCZQ1NkfyXqZa4LPBdcNx4JAi2NKKafOXkklAhNE8Z56PTqdTtTrdQGmnAefz4dgMCj3J3vITSrOEUEdxwHAUGxgv9+XouB6TMgMsrRMsVhErVZDs9kceoZelL1cAM4BOwbONttss822L7VSqYTx8XHEYrGhZA+NRkOcZEq5tBRpenpaYs8Iruh4zM/PY3JyEvv7+9jd3UW/35d6ZLVaDZ1OR+63v7+PaDSKYDCIhw8fotfr4e2330YwGMTnn38uzhSzHk5NTYkMbn5+Hk6nE9evXwcAjI2NYX19Hfv7+wJGd3Z2hCmk9IdOdalUGpJCaodaO2/a8QaGnV6ayRjwPM0eWbFtmsHgd1ZMhf7sJGBJR83MCjcYDLC1tYVms4nJycmhcwaDATY2NvCTn/wEOzs7Mj8EcmSRTJkkHeBwOIzp6WnMzs4iFAo945yb46rbquWOZp91hjwToJqsmZ4/fbwGhrrtZnFvzabxczrNZE6azaYwJlpGp0Ekz+X8akBkMqdkcUzgp8eHa4Z/a/ClmSQ9J2wz11UsFsP8/Lw8b6ZsktcypZPM+PqXf/mXSKfT4tSTedNjaMpiOf6mBFl/p+dUr3H+bibw4OccE8oM2+02MpkMNjc38corr6Df7+Pq1at45513pH2UP7Lshd7oGAwG8j0BKfCUDSPIYyZLr9c7FO/IzymVdbvdkrCEIKjdbsumFe/H8gaM49VSWeC4BIKWM7O+GyW4vJ4GeKFQSN7hehNCSzgrlYqUGdCbJaFQSN7nXAMcb4/HI0lS2Fb2hfP/IgHcSyWhtGPgbLPNNtts+yo2OTkpbE21WhWJGVk2gji/349qtQqPx4OlpSXU63WJgysWi2i324jH41hdXUWn08HBwYFkp2SsWb1eh8fjQTQaRb1eR7FYRCgUQqVSweHhIVZXVzExMYH19XXUajWsrq6iUChgb28P4+PjiEajyOfzaDabiMfjePjwIQaDAWZmZlCv1/HgwQMpUFwqlSQLm+lQsr9aGkfTx2mzcq55vAnezN17fmbllNNJMpNZsB0a1DGOjH3i5+a9dZZGfl8sFrG5uYnTp0/j/v37KBaL0oZut4tPP/0UkUgE3/ve97C4uIhgMChOuXZuraR7jIMbGRnBwcEBSqXSMyDXTBGvwQ6dV3NcTFmkKWtke9hfzRrwfD2uNJPBYlvIqPR6PTSbTYl5ItvocDgQDAbFuSWIobPPa/NeZqIMK9aJ0k7+fVKmUb3edGIU875cy71eD/F4HGfOnLEsGaCvZ4K3VquFnZ0d/OQnP8GtW7fg8/mQSqWEmWf/dWp9bSc9H1bMsj7uJGbOnD/z2er1enj06BFee+01zM3N4aOPPsLFixdx5swZXLt2TdYnmVSOOWM+WbKE9yBI5Tka6OvMixpg6U0YPqecv1arhWq1CpfLBb/fL5shjDfjGtUAkutalwDQSVh4L37GtUw2j9djkihep1KpiGScxzOJyszMDDqdDnZ2duQYLR9tNpsSU6fBqzk/X7e9XADOVlDaZpttttn2FYz/SReLRVQqFQQCAUSjUdRqNQBAKpWS7GzhcBgTExPixLEMgMvlwtLSEmZmZiSTZb9/XIeNiU0AIJFIwOl0Ip/PIxAIYHZ2Fpubm/B4PHj99ddRLBZx/fp1BAIBzM/P48mTJ8hms5ienobH40E2mxUHam9vD5FIBFNTU3jy5AmKxSImJycxMjKCbDaLwWAgjJ+WMTKBA5007SSToaOZO/XAs+ybleNiBd60dJLOqXZaeV8NYvTvVvc0QYmOnzHPGwwGePjwIf7JP/knOHv2LD799NMh9rHX6+HDDz8U2ZVm6iix0rE6ui0ul0tq+3k8Hslsyvaw/xpIW7Fz+jMzI6d2UglUXC6XpFLXbJx2cE2mivfRtcL0GOq1AAxntex2u5KCXfedRpBqMnrsIzOAmrJJXouOMVPAEyiYxlpcvKduL4FDPB7H6dOnMTk5KWveHAOep8Fbu91GoVDAlStX8Mknn2AwGGByclLYLt0P9t9k1Nh20/g914M593o+TMBrAjxzk6RSqeDBgweYnp7GxsYGNjY28Oqrr+Lzzz+XjSayXwDkM77bdKyibgMBH2N7KZnVGRnJfPL50OCeAF9nkNVrlbHGXF9aEsz1qEsatFotYRP5jjalpTyWclCOGeXtTOCjY3dZfmVsbAwTExNot9uoVCoy5vo50M8MAaD5jH2d9nIBODyrHbbNNttss80203w+H/L5vMSoBQIB1Ot1eL1eJJNJdLtdKeoKAJlMRlKLc4d3cXERIyMjODo6QqlUgtvtlmQkZDKSySQKhQKazSbOnTsHt9uN+/fvi/yuUCigWCzi4sWL8Pl8uHnzJvb393Hq1ClUKhX0+30kk0kcHh6i1+vh1KlTcDqd2NraAgBMT09LbThdsJdSHx0zxb91ljdt2sE02QJ9rOmsWx2rmSfNpmjJmJZaakdPM3C8n44PO6ldBAam87+zs4N79+7h3LlzWF9fRyaTkesCx/E5/+W//Bd4vV78xm/8BmZnZ4ecWp/PJ0wOnVJ9z0AggKmpKXg8HhwcHMi6smJcdJspwTKZKbbN/FzLtrTDao6XHmcNxLWEkfNnJonw+/1D60SDC6v1QjCj508DGTIqJ60FAAIANCgiWNNghX3RKfD1tePxOBYXFzE+Pi7gTbdfA2kTvJVKJVy9ehV/8id/gv39fczOzmJiYgKPHz8GgGfkpLyeTpxiylqtmFW97k7yV61YZjOFv56/J0+eYGZmBtFoFO+//z7+1b/6V1hYWMCjR48QDoflueZzoVlczWpSckh2y+fzDbGy3MAi46vZN15DS7Z1zBnfCRx3nXzETIakQRnZTo/HI1krvV7vM7XZNLvMtpF5bLfbCAQCiEQiksiI1yoWi3j06BHS6fQQWOX1+EwwTpDsGzd2XmQSk5cLwNkMnG222WabbV/BDg8P0e/3MTU1hU6nI9nHmCiEDEexWJSdYK/XC5/Ph2g0iunpaQwGA6TTaclI6fV6xamIx+MYDAbY29uDw+HAzMwMDg8PUSwWBfhtbGwgFApJsenr16+jUqkgHA7j6OhI7vX48WP4fD6cOXMG1WoVW1tbCIVC6Ha7yOVyiMVi4oz6fD7s7++Lo6QZG6/Xi0ajIU6PZnCA4dTxVk67BhTm7yZYMaVfOrGBBha8h3bsTcmb2+0eqg1lMkj6nlYZDfv9Pq5du4bf/d3fxfj4uDCVus3VahU//vGP0e/38Vu/9VuYnJwc6h/jiCjf0gyQw+GQbJZ0MNPptMRTsg26nZqZ5HVMNkE7/ea46vl5HrjmNTUwMiWq/I5rRjvRer70ddh/3WYNFnUcHRms52Vq1ABPx85pSZ6u16Xvx5i3ubk5jI6ODsn1zFgyk3nrdDqoVqu4d+8e/vzP/xw7Ozvw+/04d+4cKpXKEOjhZogZT6eZan0f3VerNaufQRNommauF/350dER7t69i3g8jq2tLTx58gSvvvoq7t27JwBNJ7LRz4gGQNz4MQEZ2TefzwcAkrnRrOFGkEmQp69LeSPfSTqGkiCP865LnOh7kQnWte641pkpmGOnJZAso0B2Tm9icMOnWCxKwirNPLPfwWBQVBXNZvMZ4Poi7OUCcLBj4GyzzTbbbPtyi0QiCAQCwnK5XC6p00aZDiUy4+PjAI7/Q2fikWKxKA5RKpUCcJwYJRqNIplMolQq4ejoCIFAAB6PB5ubm/D5fDh79izy+TweP36MXq8nTEOj0ZCacIVCQVLb7+3tYXZ2FouLi7h79y7q9TrC4bBIJJPJpDgdrIu0v78P4GksEh1FJg7QDqPVrj6AZwCArhvF77WdBN7IxvAz3o877iZwswKOdOjMe2gmi3NIx9EEGOl0Gg8fPsRrr72Go6MjYeH0ffL5PH70ox8BAN59913Mzc3Jd2TiCAx07TjNJCWTSXi9XgSDQRwcHAgI0KyUltOZ46UBk5beadBggjdzPjV7ZwUc2H7tyBOE0oGn86zjDk2GVLN3BLd6TsmABQKBoXHUZrad/TRBDZkPLSPs9Xrw+/1IJpOSXIgMmdUmhAZvnL9SqYT79+/jj/7oj3Dr1i24XC5cuHABqVQKm5ubQ2uQgEQDR3OjgmN50vOg17GWvmrTc2iOFQABIexPu93GxsYGlpaW4HQ6cfXqVfzjf/yPEQqFhuZPp8fX7CVB1mAwEKZZx7rV63XZBGIJEiY14Zzoemhm6QEeQzAcCARko8CUcQ8GT+M3eQzVEIFAQGIV+e7kmNfr9aHkJfqZJGM3GAyG+sU1Txl3pVIRtg94CiibzabcJxAIDK2/F1nI+6UCcLDYtbDNNttss8020zwej0jdPB6PsGgAJD4jmUzC5/OhWq0KWHI4HJJ1MhAIiHNarVYRDAYxOzuLbDaLTCaDsbExFItFlEolrKysIJFIYHNzE/l8HuFwGHt7exJnsrKygnK5jEKhgGQyiVqthm63i+XlZQQCAdy+fVsKf2ezWXFqut0uEokEKpWK1L16+PChOGHsqwY1GiiZcWtW4MKU7ZmmHWQNAAE8A1o0C2LFJvCnGQtmMkAmU8PPtKRNSx17vR7u37+P06dP49KlS/jVr34lNdwo73I4HKjVanj//fcBAL/5m7+JyclJBINBcZjJ7tCBt5JUMnOhx+NBJpORBDQms2iCL3PstHNtMklWMjsN2mgaxOkMeyZDRMeWjAPZOuAYvHB89fH6HmyjCVY1mNLt1CBez7E+hjFaNDrmPN7n82FiYgJTU1OIRCJDiTdM8MaNA841NzsePHiAP/3TP8WNGzfQ7XZx6tQpvPLKK8hms6hUKgIomIZeZ9Bkn3U8n54nk101594EdubveoPCnF/9PAPH76xGowGv14vt7W0Ui0VcunQJDx8+FLCmpYpc7zpJj05mw3Wt+0QpIseCY8P6mWbGUv18AhBZJceQ7zCv14tyuTwkt+Xmky4wznWnx0VvQmlApd9f/JxMXSAQEOCrNwTM4vEcCx3XZ74Hzffn12kvFYDjkFrtaNhmm2222WYbLZvNwuFwSKwM/1MHjhOYBINBlMtlqRWXSCQkfsLv94vEkvLKeDyOUCiE+/fvo9/vIxgM4vDwEOFwGBcvXkS9XsdHH30kdecODg4wMjKCiYkJRKNRHBwcoN/vIxKJoFwuIxgMiiP56NEj+P1+BAIB5PN5ictjGnBmyUylUrh//z6AY8e52WxKvSTuxBMQ6OB84FmAZcXcmPJKHTtDx/h5//9SzkWnyby2ZnDoHLJtJpDTx2kQZ+Wssq3ZbBZXrlzBb/zGb+Dg4AD37t0bkhgCxw5bsVjED3/4Q9TrdXzrW9/CwsICwuGwOIt+v1+kkkwMYzqWZF5DoRDC4TCy2awkODHZMivGTY83+23l5JuggP0xyxCwXRqA8PxmsymOORkYnUFSJ2owU8dr9kbPj2ZcyNDpBCWcW72ZQLBgJgLhsRoExWIxTE9PY2xsTIp0W8XXaZaS8U1k3u7cuYM/+qM/wo0bN9DpdBCJRPDOO+8gEongxo0bItlst9vyHOk4RN13vbFgzpO5waHnkn02gbyeexr7p9cax6XX66FQKGBychK7u7t4//338cYbb0jGWqt4QgISzolVbCxj4fSzzhg2ALL5pcEe/9YbMjynUqmgVCohHo/LvIZCIQwGA5TL5SGGn5sgOq6XpT4ofeR9KdE0GUbKXoFjMEjmkOVCeCzj+ngPns9jdLIWbhQxzu5F2UsF4GyzzTbbbLPtqxizmrXbbQSDQfk5OzuLXq+Ho6MjdLtdiWsqFovo9/sSTO90OkVyOTc3h4ODA6yvr2Nubg7tdhtPnjzB/Pw8FhcXsba2JqnsmfkyHA7j1KlTKBQKyOVyCIfDqFQqKBaLmJ6exvj4OLa2tiQLJhm5YDAoMsput4t8Pi/FpJ88eYK9vT1xROh86x1v7USSPTDjuaxYORMw8DO/34+VlRWMjo7iypUrkiFOG50//VMDNpr+TCeKMIGjyejoNlJCZab9Z18fP36M1dVVnD9/Htvb20PFgTVwqtVq+NnPfoZ6vY7vfve7mJubQywWk91+v98vziCBIxMz0NxuN+LxOHw+H0KhkLBxZLrowHL8zfg9DQZ02n062Rrk0vQxpkRTz7meQ8Zu6lgjmh5jzVTojJAEhry/lrA5nU5JskOnVzv2ut+cMwJ9nd2Q7XY6nUgkEhgfH0cikRDAqaWXPEefqxmaSqWCtbU1/PCHP8S1a9dECr26uoqZmRns7e1JRlkde2emzddrj/0x2VWOoR5vU7KsvzcZVN6TYEvHkmoWGoA8ew6HA/fu3cPrr78O4FjaHQ6Hh1hUDWi5tjgH5oYAZYP8nglE9NwTTFHWyHcNk4jwmrq0QDgcRr/fx+7ursgaNXjn/PP54pixzZQ26vmgxJJMm96A4PhynbGkwmDwtCYewSeVGRpAErCRVebae1H2UgE4rvnBwFZT2mabbbbZdrINBsfFXROJBAaDAcbGxpBIJKQcQCAQwMzMDNrtNur1Onq94/pSXq8X9Xod9XodyWRSMtW5XC6888472N/fx/b2Ns6fP4+JiQncvHkTtVoNy8vLsvsciUQQDofx6NEjjIyMIBaLIZ/PAwAWFxfh8/mwtraGYDAIn88nZQ7IErJMgN/vRywWQ7lcRrVaFUfD7/dLbJ/OnqgdYe10cTzoZJmSSYI8LTWkI8nEAuPj40PxW1aOjemwm0DRyrnXMjTNspkMhQY03GHXgIzHNJtNXLt2Db/2a7+GpaUl3L17V1hU06rVKj788ENUq1X8vb/393D27FnEYjEAT8GG1+sdStig2Ti2mfUFg8Gg1PQrlUoCsjkmdKyZ5IFp67XTr8des5F6XAAMxQfxfC1n1O0jSDBZVDqtWibocrkQDAaHWCg93xqAsP2MQ2LslJZOagBCloWAUgN9Zn4dHR1FMplEOBweivGkaRCn48QIJIrFItbW1vCDH/wAn3zyibAriUQCS0tL6HQ62N7eRqPRkDFpNpuyEWLei/cx17sGQXr9miDP/F3PC8dbX0ffS4/7YDBAu91GrVbD5OQk9vf38fDhQywvL+Pq1auShIf96HQ6Aqw5jxwn/R7gP2ZorFarwuxrmSSBX6PRGAJJvV5PJJdUArRaLclsSXm3zvDYarVEZcB+62fM4TiuJdfpdNBsNiVzqk6OQhDJYziujGv2+XzyWbPZRKPREIBMCSk3N3SmU70ZpoHvi7CXC8B9IaK085jYZpttttn2PPN4PEgkEggEAhgbG0MkEkE+n0ej0cDo6CgikYgAt5GRESSTSbhcLinoOj8/j5GRETx69AipVAqBQADXrl1Dr9fDN77xDVSrVXzwwQciv9zb24PL5UIsFkOlUsHe3h6CwSBCoRBKpRJCoRBSqRRKpRKy2SxmZmaEkWNNOgJLnU3u8PBQWAlmzPyd3/kd/Mmf/Al8Pp8U8zWTBtDhMuPdTOZAS9q0U8+/u90uHj16hI2NjWdYMZM1o2lgYIIsfW1+TlCgd9r1tbUjRWnf8wDk3t4e7ty5g9nZWRwdHUlGUrZN97Hb7eLmzZuoVqvodru4ePEiYrGYMDndblfi4uhkUqZH5odtD4fDktEuFAohl8uhVqvJWJhOuxnzRTNjf0z2yWoe9Xib86n7a7KdbI/JEJlMkZYB6jY2m02RGhI4aHmrZgcBSJIMSpTptCeTSYyNjUm2V1MKyrnjTzPejeCN2SY/+eQTAfkejwfj4+OIx+PI5XLCYrO9jAvUa0ozmXrdsM3mGFq19SS2zpRamlJKfQ2TcazVaojH43A4HNjc3MS3v/1tfPTRR8JKceNGJ+HRa1Q/42YcGMFVvV4X6WSlUhkaDz6LmsUlU8331sTEhIAuAqpwOIxgMIhcLicbKjyesb5kvQje+/2+SM8JTMnAsx86EY+5YUQpfL1eR6PRGNpQ4ZhyI4HPYjgclndto9EYqp/5ddvLBeCEgRvgaUScbbbZZptttg0bY9EmJyfRbrexvb2NkZERkbyVy2UAkALfzWYTtVoN0WhUCnFXKhXMzc2hXC5ja2sL4+PjSCaT2N3dFRDWbDaxsbGBWCyGRCKBw8NDAMDS0hKazSYqlQomJyfhdruxvr4Ot9uNYDAogC8cDqNUKgkw6Pf7SCQSaDQaKJfLkryh2WxKUpYHDx4I+6HTh7OEAJ0Zq0QUJ4EFHqNZBO2s83v9t2aOAAyBLH1vzfDwPP40U8/z95GRkaE6UPyOu+b83gSpwHEszPr6Ovx+P5aWllCv1yWJAtvPPhLsPH78GH/8x3+MWCyGSCQi99HlG+gg05Gk86ilhh6PB/F4HIFAALFYDKVSCfl8XhhT08nkeGl2jWOia/sBT7PmaZZVxzQR0GggQudWzz2vr+fUnANz7uj8m7XG/H6/fO50OpHL5eD3+yWOSM+bbiMAyTxIcMU6h3otWq0ZjgHlfq1WC7lcDrdv38Z//s//GTdv3hxyzEOhEJaXl+H1evH555/L8+ZwPE1YxM2D5zEuzwNk5hhaPW/83ZQ5mtJjq74TrBQKBVkH29vbGAwGmJ2dlYQszETLtU0G0iwHoBk/vnfa7bYkIvH5fGg2m+h0OsL2crOHa44yxGAwKIlOKPfu9/sytl6vFw6HQzbTuDFispKcU4fDgUQiIZJHglG32z2UQZLt12UHNAPc7/eldmer1UKlUhG2lfdzu92IRqNwOp1Ip9PCPjLGtdVqnbge/qbt5QJwX/y0GTjbbLPNNtueZ4uLi4jH40in0ygWi4jFYohGo+h0OuLsxGIxhEIhFItFtNttzM3NIRAI4ObNm/B6vZiYmMDBwQEA4NKlSwgGg7hx4wZGRkZw6dIlrK2toVQqSaKSbDaLSCQCl8sljuzZs2fRbDbx6NEjkVZmMhlEIhFxPhiH4XQ6RR7VarUwOjoKAMjlcohGo2g0GvB4PNjb20O32x2qa0TpowYCplQSeDZZhulw6s+s2AHt/PFeeidfO8JmYgUNdCi50+3Qcj8NAAeDgThvdPK4I09nVsv2HI7jDIc7Ozs4ffo0Zmdn8eTJE6kxRafZdLBLpRI++OAD7O7uYmFhAVNTU4hGo3JPJrqgQ0wQRRZHy+MoHwsGg4hEIpKtlAyvBto6GYNmSzVgtmJRNZPDseVcaLBKZ1WDIxOAkIk2r6+ZPY4346NarRZCoRAASNkLv98vSVO4/rRsk9eJx+NIpVLyDJJVMcEL518DDs0YNRoNpNNp3LhxA3/+53+O27dvC5hkoempqSksLi5if38fe3t7ct1+/7h4NzcErJgwvaHB/lixyeazYsXOccNCf8526DnWzyzvzzlkTUs+P2tra5ienpZ6lHps9JgxrpHPlm4f1y/ZMia8IXAynxWd0dJMmqQZUeCYBWPioHa7LXOtgRjHVG/a1Go1FIvFoULfWmbJjROuR4JiAi4NOjnuutZbtVoVWTo31crlMur1OnZ3dwXEnsSOfh32cgE4FQNnm2222WabbSdZKBRCOp1Gt9vFxMQEAoEA6vW6xGbE43EAkKLZ586dQzabxcbGBiYnJwXoxWIxrKys4PDwEHfu3MH09DSi0Sju3buHUqmE8fFxtNttHB0dIRaLSeHgiYkJRCIRZLNZZLNZJJNJNBoNVKtVkehpUOL3+5FKpbC3t4dOp4OJiQlxenw+H9LpNI6OjuB2u1Eul4cKDtOxo2nQZMWoadNOnj7nJPCm5XE8h04er6OvpdkgnZq83+9LchmyRGyrBhqm8TjGKur26nMGgwFyuRx2d3cxMzODXq+HR48eyXemvHMwGCCTyeDx48eyJn7t134NZ86ckUyIdEwpzaLzRwkrsxnyek6nU4BcOBxGMplEuVxGuVyWGDm2mU6yjlczgTjba8W8mRJJrg0NEvWc6oyhACSLJK3X64mUUTvug8FAGJRQKCSAwO/3S5tYI0wzS3S8w+GwALdAICCg4nnrk2PBfwQQLHr/8ccf4/3338fu7q6ME7MKxmIxnDp1Cs1mE+vr60OMW7VafQZYmjJXzfCa61q3+XngzVyXXxUUmGuabSDQcjgcuHr1Kt577z2k02mRU/Ncr9criUD0pgfXHeeHDBzvw3P4twaDbIeWMTLmDXi6gdDv9wUAcXOhXq9LMinGWTKulO8BrpV6vS5jzIRC3W5X5o9SXMbK6RITfMe73W55t/R6Pcn0S0lnLpcT9pjqBi2tZjKWF2UvGYBjDJyN4GyzzTbbbDvZ9vb2EAgEMD8/j1arhVKphE6ng1AohOnpaZRKJWxubmJhYQGTk5NIp9MolUq4ePEiCoUCqtUqTp06hWg0ivv376NYLOLVV19FpVLBxx9/DL/fj9HRUXEo4vE4yuUyarUapqamUKvVcHBwAKfTiVQqhW63i3A4jF6vh2q1ikAgIBKu0dFRuFwu5PN5qVVXLBaRSCRQq9WQTqfFQabTQyeEzqx2tLXTCzxlYbTzaH5mJdkiMOB1tWyJppkDExRp9kbH3hBUMH6K/QGexrjpwsHaASU7EQwGBUhYGc/J5/OIxWKYnJxEsVhENpuVa5vj0+v1sL6+jmAwCIfDgXQ6jddeew2XL1/G7OysZKlkfSuWGyBg0AkSTCDHOKFgMIh4PI5KpSJJbxqNhoBwDQysJHmm86+ZEP1TAzw6+3TK+/2+JJ7g92y7FbjVcXUEYWSOyY7o8aSkl+f6fD6Ew2HE43FEIhEBbhpo0kxJomZRCDRarRaKxSI2Njbw05/+FL/4xS+Qy+WG1g/lrjMzM4jH49jZ2UE2m5X7dLtdSWSiN0M0q6Y3H/RzYwU2rf4250v/rkGhBrp67nQbNCunJclcOz6fD7VaTTLvso+8vmbYWBuOMkgCcwIe4Gl8JqXdfPa49snSsa0asHMOyJBxU4Lrm9JXSiv5j/Ory1cwu6Z+V5HtY5/MseIaaTabstnD5zEUCiEUCg0lfcnn80MgnhtVJyU/+rrspQJwNJuBs80222yz7XnGWm+VSgXlchlutxvz8/NIJpPY2dlBoVDA6uoqHA4Hbt68iYWFBamr5HK58MYbb6BareKjjz6Cz+fDpUuX8PjxYzx58gRjY2MAjmvNzc3NwefzYXt7Gy6XC0tLSyKX0w4/JTrtdhsTExPY2tpCr9fD6OgostksBoPBUCKV2dlZ7O/vo9frYXJyckgixd3kkZERCczXIMqMOdJATH9umnaQNBvxVUyDOi33s8qypxkhnZiADB0lXdqporOppZPMemc6t9parRay2SxWVlawurqKfr+PXC4nziLP0WCzVqtJApn3338fjx8/xjvvvIMLFy5IQhw6jz6fT8CZBtdWjBydQ4/Hg0gkglarhVqtJjF6lFfq7KGaEdJjyPnU42ECBA0gTJaODAjvpeOIeD/N+mk2BoCU2+B16dwz7owAl7JhOs26EPtJoMdk3dg2ZlY8ODjAzZs38dOf/hS3b98eYpS4ZpxOJyYmJvDWW2+hXq9jf39fgA1ZKM2CcxxNM8GDya6Zz5PumwYD+hi9TtlW8zMCH/O6fJ/weIfDgXK5jGg0iq2traH1r6XObKsJevTcMjOqfv54Dz6XXBP1en0o2y2f4UAgAJfLJWoHrkNTWs3xB54CTf0eY3wdx47gj4wd1wRj2vTzx7XIa/Id6XA40G63hzaO9HslEonA5/OhXq8LALR6T35d9lIBuBcoRbXNNttss+3vkDE9f6PRkFpmPp8Pt2/fRrvdxsLCAtLpNMrlMl577TUMBgN88sknmJ2dxcTEBD7//HPs7u7itddeQywWw69+9StUKhUsLS2h1+shn89jfn4eg8FxMoFEIgGPx4Pd3V1JoFKv14VpS6fT4kDcvn0bwWAQExMTAhZmZ2cla1wqlUKhUBhiVTRzxf5ptkVnhrOScGkgRzOdOB2nYyVLPOnawLBU0upYOld0vdeMPgABAABJREFU9jQjx/grAAJKGQ82GAwkyQzvSec2FAqhXq+Ls0ngpIEIcCwJOzg4wPT0NKampqTgsAnidL90WYX79+/j4OAAjx49wltvvYXl5WUkEokhWaXX6x2qG6eBFevH6RhAArlQKIR2u41UKoVqtYparSb/KC1jnxqNBgBICnbNOmiWU8+nls+asYVkz/SYakbMZGc5X1x3XK+8BmtzhUIhRCIRKZOha7mZ60ab3nzQwM3pdKLZbKJYLGJrawsffvghfv7zn+Pg4ECAqwZNwDHAXFxcRL1ex87OjtRZ5P1rtdqQZJWfa8bYBG/m2j6JOTSZM20nMalmHJze+ODYaVljo9GQ53R9fR2Li4tSooHsJzcPmOxHM2FMzKPHjO0je6Y3RQjGuIb4OxlMl8slYJhAORwOC2iktJJrTbODbBc3Zfi3BtpaWk0QS6knx51gUccAsu36HUmpJMdK96lWq4ksk1LgF2UvF4BjGQGbgbPNNttss+05RjZjamoKs7OzyGazWF9fh8/nw8TEBHZ2dhCLxXDp0iU8efIElUoFZ86cQa1WwwcffIBAIID33nsPmUwGP/rRjxAIBDA3N4dCoYBIJILFxUUcHh6i0+lgeXkZuVwOm5ubmJmZAQCRPdZqNal7VCqV0Gw2MTk5iW63i52dHczMzGB2dlYSQlSrVezs7IgUKhwOo91ui0RMx7tp551Ol+kI0rQTzr+t2AWTGTnJ2aaTanUf/bk+35SLeTweiRFjkWmXy4VsNiuAot8/zmZHdo7XI2jTDqMGMSYTUa1WkclkEIvFMD4+Lk6e2X79N+/vdDpRKBTwq1/9Cg8fPsSbb76JS5cuYWFhAbFYTGL5mBCDBYK1c0uHWjNedIAJ/ngd7v4zM2qz2ZQxKBaLQ4wO2VJgWGbHv62ANYGKBiu6OLcJMKzmmA4v2USybH6/X+RpmsW1+qnXn5ZKakaQ62Bvbw/Xrl3Dz3/+c9y+fXso/lFfk206c+YMJiYmpJRDuVyWaxEYaPmkZu/MtlqNCT/TvxMQcsx0/8zrmhsq+ns9L1qOyvtQYhwMBtHv91GpVIRFbLfbkiBJ10cjeCGA0psUug2m9JcSba5ryi01qBwMnmaGbTab8jxyzPgMmO8ZzSgTAGpASaDFdpnMod4YMDemdHIU/uOmkI51472Y9ITJW5xOJwKBwJCU++u2lwvAMYmJHQNnm2222Wbbc6zf7+PMmTOIRqPY2NhApVLB4uIi8vk8Njc38eqrr8Lj8eCzzz7D5OQkzpw5g7W1NTx58gTnzp3D0tISHj58iBs3bmBiYkKKa8/MzMDtdmNjYwPRaBRLS0t48uQJstksTp06hVarhf39fYmPCwQCSCaT2Nvbg8/nw+LiomQ7u3DhAiKRCI6OjjA5OYlarYa9vT04ncflAVwuFyqVChYWFrC7u4tcLjfE5OgsiGRntHMIfLWkCaYUzGTWTGffZPK0adkWr8VzuaseCATE4aO0jrvnLBSspVd0VAlc2b+RkRH4/X4p0svP6MDp9jD20OPxYG5uThxNfexJph3eg4MD/MVf/AUePHiAb3zjG3jllVcwOTmJWCwmkk4yEQQyGsjpIsR0MjWDREec2fsoqSQbRzaSjmar1Tox2yfnVhvLH+ix0bJFPY90rDnXdOI5X5ScMeW6dqg1QDBBm95M0A42x4Vz3Wg0UCwWsb+/j1/+8pf45S9/KXXBTOCmpZOzs7OYnZ0VRlPXHvN4PCgWi7K22T+r9aw3IkwG3IqZ02veakPEBC7s/0nPKOdRrxGuCdZdczgcwqh5vV4Ui0VEo1E5x+PxCNNMsK8Zdt0PAlsCGG44cG65fnRbyagDkMQjugSBKd/USZA4Z0wK5HK5hkAn+0tgpSW6LNSt5aeavaTagfJK9kszkXyXulwu2UjyeDxSGgN4mpTlRdjLBeC++GkzcLbZZptttj3Pzp07h0ajgRs3biAWi2F1dRUHBwdotVp45513sLm5KfJJAPjoo4/gcrnw5ptvotls4v3330ez2cS5c+ewv7+PweC43lImk5HabuFwGLdv35a03rdv30YoFEI0GkWpVMLy8jJcLhd2dnYwOjqKVCqFYrGIUCiEs2fPYnt7G7lcTurU0WlKJpPodDpIJBKYnp7GxsYG8vk8gKdFrekgkXEAIHEqWmplOo/aAdUyOx5rtTsODEskNSgzTTuvdHrJcgCQOBkW7I3FYnC73ajVavB4PEin00OAkYBDswTaiWR9NpYIYJIGXZ+N5/V6PZTLZTidToyOjqLRaEgmOisppQlo+H273cajR4+wu7uLmzdv4u2338bZs2cxPj6OaDSKQCCAfr8v64LAR4MFOvsEcQQuur3sqykrJCtCYNfpdOSnTq3OZBFW8k2arg/G7wg2CSYpDWU/GK+oU7zrtabHUbNammGiQ6+lkjrOjXLJmzdv4pNPPsH29vaQjNY0ApOVlRVcuHABwLHMkOwbjwmHwygWi+LIE2CbTI5mxDj/Zp806DUZJp7DsbVaS1/G8GmQwTXPzwjiyEBvbGzI+6VWqw1lfCXI47vD7XZLRkiCFpYlIEAi00Z5LOWy5uYNnz+uPwIrjquOO6QcWMephcPhoXheACJv5X0IVDkmHC9uhmhwxn5zbNjmbreLWq0mbTaZ32aziXg8jlAoJJtiLzIDJfCyAThh4GyzzTbbbLPtZGNR1oWFBQCQOJFAIIBr164hHA7jwoUL2N3dxfr6OmZnZzE+Po4HDx5gf38fY2NjGB8fx8bGBubm5jA1NYXt7W10Oh2cPXsWuVwODx8+lMyC1WoV8Xgc/f5xRrjz589jb28PmUwGk5OTcDgcePToESYnJzE6Oor9/X2Ew2FhU5iRbXp6Wpi+8fFx3L9/fyhzIvDUAaxWqyJ/A54G+psgTZ9D0840vzdZOPMcmk6uQCNbY16LIASA1Fby+/3iuJHNSSQSAJ6mt9cOnI5rI9NAyRMTY+zs7EgCBsaIabBDBoEAgXPCRCImgKKZiTxMp+/+/fvY39/HnTt38Prrr+PcuXO4dOkSBoMB6vW6sGR0KHXCDA3kzIQdmlHgvXm81+sdYk/08SarRUBPNsycW903XWfL6qcGOJpN09fU4MRMhGPVRw3carUaCoUCdnd3ce/ePVy9ehWPHj2S4srm2tXr0eFwYG5uDt/97neRzWYl62w2m5VshASjfG4IVnUWSn19K2aSn2sQZ9UuE7CZ8kkr05+bz7C5KUNQxfaXSiV5hvg+0XJI9pfPhE61DxyzZ/1+X7JLagZbt59STEoMg8HgUAwb1yPXCWWIfF71muU6rtfrIgHXSU743uC1yEzrDRz9jtBjR4BHRtDr9YrMWcfHsQA5302xWAx+v18SHXFz4kXYlwI4h8Px/wLwOwDSg8HgwhefJQD8RwALADYB/JPBYFD44rv/G4B/BqAH4P86GAx+/DfScqu2wvo/Ittss80222zT5vf7MT4+jmw2i0ajgYsXLyKdTuPOnTtYXl6Gz+fD559/jnq9jqWlJXQ6Hdy7dw8ejwff+MY3sL+/j2w2i1deeQWhUAj37t1DNBrFmTNnsLW1hVKphGQyiXQ6LUksarUaxsbG4PV6cfPmTZHmZLNZeDwevPrqq2i329ja2sLs7Cx2d3dRqVRkF9vv96NareLs2bPo9/u4evUqQqEQ5ubm8PDhQwBPkxpop8ztdkugvnbUtZkOD69lOpaaWbBiOuiomfFvZiIE7fgDT3fqI5GIgF5+T0ctkUg84wTT2dNMDp0+Jgfx+XxIJpM4OjoS54/363Q6aDabApwo08zn84hEIpienpbsfey/ZuPM8dLGXf9SqYTPP/8cm5ubSKfTmJycxO7uLjweD+LxOILBoIBOSrrIaGnQxLnUoEz/NAES20QAY8r12Afg2VpeVmvD/Gn+bnWOHhsrKaIGl5ppIyvSbrdRrVZF2nznzh3cvHkTW1tbQ3I68140roloNIrz589LeYZer4ejoyPJ8OpwOLC6uopMJiOyQM1qsU9aiqkBu7negadyQnOjRJ+rz+c9TgJ+Vhsnz5sTjiE/Y7IQbuSQNWNb+/3+EFPNZ5nghyDL6r4EV2a5D+AY/OkNIR2Pq0t28JhOp4NAICDMeS6Xk2RPvD+fE15Hs79sJ/vn9/sl86WuJQccv5f8fr8UEC+VSsLEDQYD2VzhnOi4S0pwX5R9FQbu/w3g/wHg36nP/icAfzkYDP5Xh8PxP33x9//ocDjOAfinAM4DmALwXxwOx+nBYPB8Aflfk9kMnG222WabbV/FgsGgONOtVgtXr16Fx+PBpUuXUC6XcfXqVczOzmJ5eRkHBwdIp9OIRqM4deoU9vb24Ha78dZbbyGTyeD+/fs4f/48EokErly5AgCSlCQWi0k9qdnZWdRqNTx+/BgTExPw+/24d+8eOp0OTp06hU8//RSxWAyJRAI3b97EYDBAIBBAJBKReI1Lly5hd3cXjx8/xsLCAiKRiDB/2vRON+VO5g6+6fRpho2f6eOswJ1Og06jM2vlrBMkcUebzhGzEuoU84MvJJ+DwQDBYBB+v19kcgRf2mnmjjkdVQ20JicnUalUhE2jPAx4yrrx3lpKOT09jUqlgkwmI4CQ19T901JSMzmILnB99epV2eV3Op1YXV3F7OwsksmkJPlggg+ychrMcV74O+fCBEFa0mfF9phz+jzm58u+07+b/7Q8UgMWzayZzCCZkHK5jGw2i83NTdy7dw937tzB9va2SOn0/a3aSPAfj8fx5ptvIhaLidS4UqkMJcMZHR3FuXPn8O///b8XwEv2itfSbJeO/TTn39xM0Gyx/lsDEr05oBk8yvUIxHWf9bX077p9fNba7TZKpZLIkbmWyVgT0DmdTmH7OUdM10+mjBJKjo0uhs01yzIBOnGSlmuSoSYDptcIARffF5Qr6nhOSqEJzPTcM9GP3sDRJUg4XwSt+pmNRqMYGRlBrVaTdx8zXzocDgGBVBRYsfJfl30pgBsMBr9wOBwLxse/D+BbX/z+/wHwAYD/8YvP/7+DwaAF4InD4XgE4C0AH/81tfcrmU3A2WabbbbZ9jyr1WpYXV3F9vY29vb2sLKyglQqhfX1daTTaVy8eBFutxvpdBr5fB5jY2MIBoN49OgRxsfH4fF4cOPGDYTDYVy+fBnpdBqffPIJkskkHA4HDg4OEA6H0Wq1EIlEEIlEcHh4iG63i/feew/NZhO3bt3CwsICxsbGsLm5idHRUfT7fWxubiIQCMDv92NsbAx7e3uYnZ3F5OQk1tfXkcvlsLi4iG63i83NTYnBo2PH3WngeNecAJJM1UmSL5oGblYMi/5c7/ADT6WSGkDo3W79k8eOjY0hEAiI7IrxMLpwbyqVGpJu6YQl7DOlW2QbuLteLBYRiUQwOzuL9fV1dLtdtFotcdL5N+s/sdxAsViEz+eTeWGyC+2csx80E+BpmR136wuFAtLpNHK5HD777DPMzs7izJkzmJ+fx8TEBOLxuDAQOlulBnQ6bpBAmqBPS9HMf2byluexqfo4M8bRZGA0ULNi+czMkTpej7+3223U63Vks1kcHR1hbW0Nd+/exaNHj1AqlaRel77vSe3nmIyOjuKb3/wmIpGIOPqsFcdsg263G++99x6CwSByudxQ3UEzJtBkpTkunG+TPTPHzlwn5jqyGkP9bFmNvXk9EzCz/VzfHH/GgAFPJYZcR5wTZn4EINkuuS5brRYajYbMIYFfo9GQsdXFsnkfzvtgMBAQxrUdCoUAQLLz8r7MtApANjgYt0cgptcVx4LJfnS8p97EcDgc8q6hdJkxcGYSI8YGUkrq9XpfaBzcXzUGbnwwGBwAwGAwOHA4HGNffD4N4BN13O4Xnz1jDofjfwDwPwDA3NzcX7EZz1zz+BcbwNlmm2222fYcSyaTuHXrFvr9Pt588004nU5cu3YNDocDly5dwtHREdLpNJLJJC5cuIB8Po90Oo3FxUU0Gg3s7OzglVdegcfjwe3bt1EsFhEOh3F4eIhKpQKXy4VGo4EzZ85gZGQEh4eHmJiYwOTkpMTRsVB4qVSSOl9OpxOpVArRaBSjo6PY2trCpUuX4PV68dlnn8HpdCIej2Nvbw+NRmNo95pG56jX66FSqQw5kJot046MFYjTzrKVo6zjS7S8i6yGGaOlmQk6SWw/nbfB4DilP3fQO52OJP7I5XLikGo2T7MZjJ3RrEO/30cmk8H58+eRy+VweHgIABLnQ9ZNy6XISHS7XUQiESktQFkVwZ/X65Vac6aZu/NOpxPVahW/+tWv4PP5AEAScjx8+BCpVAqLi4tYXl7G3NwcRkdHsbi4iF6vNwQudWwWwQYdb3O8+Tvn22TjrH63+tsKIJmm2TXzp/kZ2Z92u41GoyEs587ODu7cuYPHjx9jb29PJH1mv07qi15js7Oz+O53v4uRkRFks1m5/+HhIYrFogD+hYUF/NN/+k/xb//tvxWmheNpAlMN2vT9NfDRY6MBkhnzx+9NsMbr8J8GyRqMm8+uZgdNcKcZNP7NftTrdUlGwnu0Wi1ZT3wuOGexWAzRaBTb29vClsZiMYRCIVQqFbRaLZFjUq5MwMjnjMA4HA4PbUSwXWTjCepZzJ7rnUmNdEZXjiHXoZ5DndzJZEcJFFnXjXGk7C83UazY0pepDpzVFo4lnBoMBv8bgP8NAL7xjW/8tUAuyUJpIzjbbLPNNtueYzdu3MD09LQkE7l37x7i8Timpqawt7cn4C2ZTGJ7exupVArnz5/H+vo6XC4XXn/9deTzeayvr8sO8NHRkciKQqEQFhYWkM1mUSwWcf78eTgcDnz00Ufw+/14/fXXsb+/j2q1inA4jHq9jmg0KrvGIyMj2N3dxezsLPb393FwcCBFnQ8PD9Hr9ZBIJNBqtSSLHjAce8K/tVQLeAosyDTRToqx0fIsLc0y42FMtkCnCKdUiiygx+NBIpFANBqF3++H03mcke7o6EiSjfB6zECXz+eH6kyRaRsMBgiHw8J4UkJFgMd4mGKxiNdeew0/+9nPRN7VbDbl/r1eTzL0MYECAJFXxuNxDAYDSYARDoexsrIyVHfsq0iq+v2+FFomy9Pv95FOp5FOp3Hr1i3MzMzg3LlzWFxcxMHBAarVKnw+3zPxcjpOUMvUdFIRHbNl/tPzbJqVbFI7yPzHvwneNUgzpZ3MiNlsNlEqlZDL5XBwcIDt7W2sra1he3tbxtdklU5ql8nKEZT9/u//PhwOB3Z3d+UarJtHoBMMBvEv/+W/RLvdxsOHD+U4q0QYVjJGttFM3KOfI1NCqc3cKNHPqslknrTJooG6brMuuE1AQubalFAyNo7PFH9quSoAKcuhn+1AIICRkRFUq1WRJjK2ze/3w+/3SwwbPyeIa7fbkqiIc874VF3SgGubz/ZgMBB2UCdC0bF9DocDzWZzSCpJxp1zwtIFfDdpZp8bTVq+yYycXOMnMddfh/1VAdyRw+GY/IJ9mwSQ/uLzXQCz6rgZAPv/LQ38rzEh4Gz8Zpttttlm23Ps0qVLGBsbw+eff45Go4GlpSU0m01cuXIFLpdLMlLu7+/jzJkzaLVauH37NhYWFnDmzBn86le/klT+jx49wsjICKLRKBqNBiYmJpBMJrG1tQWv14vz58/j8PAQ6XQaCwsLSKVSWFtbE4nSYDBANBoVaVKxWITX60UikcD9+/cxMjKCWCyGarWKSqUi0sp6vS5yO9NM+SIAuRe/o6OmgZt2MK0kXaZzqU07j1omyc/6/T78fj/i8bjsnFMyqZ3FYrEo8ig6nfV6HUdHRxJ7o2Nr3G43yuWyMGMEwgQPdK739/exvLyMCxcu4MaNGyKrIpPJNjPekEwI20IpJ5m0arWK69evi5Os+2llOjZJf8Z4QN6HfQ0Gg/j0009x8+ZNYXinpqYwNjaGWCw2JLM0s1cSsJ3EImmm6qT5NGWWbK8J2szfNZAjy8ai4wRth4eH2NjYwP7+Pvb29mTO9TXM9nE9WjFvur+vv/463nrrLVQqFRQKBfm83W6jUqlIXUC3243vfOc7eOONN/DTn/4U2WxWwJs5jibDBTxls/m3ObdWjLWV7Fb3yaqPJhi0ijvVY8F2avDFNUpQVC6XBVxp5nAwGMhzoWMAAQgT1Wq1JEkQn5tqtSrXJggKBAICstrttqw5Sg/5niA7pt8bugRKIBCQzRbNeumsumT2WKONkmheU8eWMv6OsXX9fl8ALcdXb4SRiddxuwR+fxfrwP1nAP89gP/1i59/qj7/Dw6H4/+O4yQmKwA+/W9t5Fe1pwycbbbZZptttj3ffvrTnyKZTGJxcRGPHj3C0dERxsfHsbi4iKOjI/T7fbz++uvY2tpCNpvFe++9B7/fj48//hjNZhOBQABbW1vw+/1SJ2l2dhadTgeHh4eYnJxEJBLB/fv3MRgM8Nprr6HT6eDmzZsCXOLxuDgdLpcLuVwOiUQC9Xodm5ubIjFice94PI5YLIZisYi5ubkhiZmWRdHxpAPG+BSd7OR5u8emgw8865Dyb6sYHzqTdMzo6FAyqcsEsGh2s9lEpVIR2RQdO7Jp+Xxe+qCdWjqBZNEKhYLE0/n9fok9azabuHv3Lt5++21kMhnJLkkQRyBEh4191YlBXC6XzB1ZB46XHo/ngTiajkerVqsCXCjbAoAPPvgAm5ubyGQyIg+Nx+NSxiKVSknim0AgILE5TDZhSgG/jImzMg0e2AcT0Ok4I7IktVoNlUoF+Xwe+Xwee3t72N3dxdHRESqVCqrVqoBWDVgIdHR8GcfYql0EWl6vF6+99hreeOMNkc/yO7KrmUwG1WoVIyMjGBsbwz/7Z/8MPp8Pt27dGioSr0sH6LZYzTU/4xo0GUEea7UhYl5Px2hZzQPvY/U970/GiffRWWG55vr9PoLBoLBQ/EmQwjEjSNK10TjmoVBIAJ2WiuqU/wCE5Wab+DuvwzHgO4JxdYFA4Jmx1+tBrxUmN2JtRW4q6IyuHANTmsrz2QYWDtfPI4Ee28NNp0aj8cw8fF32VcoI/O84TliScjgcuwD+ZxwDt//D4XD8MwDbAP47ABgMBncdDsf/AeAegC6A/8vga8pA+UVb8UU7vq5b2mabbbbZ9nfQrl+/jrm5OcTjcdy+fRu1Wk1i2tbX17GysoJwOIzr168jHA7jzTffRDabxZ07d0SyUy6XJW6r3+9jZmYGjUYDzWYTq6urcLvduHfvHgKBAJaXl7G7u4tisSgOyfj4uDiN3NWOx+M4PDxEs9lEKBRCo9EQwHLu3DmpC8d6cOFweAiUOZ1OxGIxASBkoMLhMLxeL0ql0jOSLCvQYeVEnvS3ZiVoOhU7d8D9fj+CwSAikYjUYqvVapLZrVAoiHzOjPXJ5XIoFovi7GtmgMkpTFaCcWNsIwDs7OxgdXUVv/7rv45MJiNFgbnDz0QHGgjTdFIVfudyuUSWxzEx2covM52qHTgGpPl8Hh9//PGQhIvFhrPZLNbX18UZDoVCSKVSSCaTAuhCoRAikYiwdJRcMm7IrOH2PCBnyia1HFIngKlWqyiXy8jn8ygWi0in08hms8jn8yiVSkOxghoE6nEz2SeO80mMFAGaz+fDO++8g4WFBZRKJSkxQDDRbDZxdHSEfD4v/f7n//yfY35+HpVKBevr6xJXSfBmlhEw17iVr6mB00lt5rX0JoEGePz+eRJl/exq0yyhBoV8BjVrRUl2vV4fYhs5ZgR0lA1y/judDoLBoKwFjhkTgTDejsw3x9AsVq9T8vOcwWAgjHuj0UA4HEa1Wn1G9koZJABhVB0OB4LBIAaD4+QokUhE2qjnhHUfKc0m602wx7EjQOOzowEb+2Fm//067atkofz+CV/91gnH/y8A/pf/lkb9VU0klC/i5rbZZptttv2dsQsXLqBQKODOnTtwOp148803JW35G2+8gYODA3z++ed47bXX4PF48Nlnn6FUKmFxcRF7e3vodrtIpVJot9tIJpPo9/s4ODiA1+vF0tISNjc3cXh4iHg8jlAohAcPHogEyePxIJVKoVarIRgMIp/Pi6O9v78Pr9eLsbEx5HI5tFotjI2N4ezZs0in0xKXQcnS5uamgEIde8QdYjpIfr8f0WgUHo9H4lC086djefQOvwZRprNIh0o7trw32SzN+jDZAGVVjEtrNBpotVoC0AiieD8mFdBMAh0zDUC4Oz4YDCQLnt7p5+dXrlzB7/3e7+GNN97Axx9/PAQYCUoYq6WLifO+bJNmD5ggQWfAO8lMx940zZLQUdWOPb8bDAZS1+zw8FCy+emC6MFgEKFQCKFQSAoRs+YV54jrktc3mS867e12W9i1ZrMpyUcI3AqFgjDFZOJMcGrGbJ0Uz8bfzdgxzVCRXYxEIrh06RImJiaknXpsWbD76OhIPnvrrbfwrW99Cw6HA+l0WuooaqDBv022jD+51nW/9BrUfdCbAjr2VDNk5nnaTILClD3r55PssDmWHC8+N4PBQJQDetNBSygDgYBsGnGNk3lmKY5ms4lmsykbAwAkYQnbTiDIdws3AChz9Hq9ApC4GRIIBFCv11Gr1QQocVOIcnBdqkCvfwAC0phYhXNBwMm2su5kMBgU9pLrnOykzvrK+D2ydS/K/rqTmLxQEwmljeBss80222x7jq2vr6NQKODUqVOYmprCw4cPMTU1hbfffhv3799Hp9PB5cuXkc1msbu7C7fbDZ/Ph5s3byKRSEhdsvHxcdRqNZTLZSwuLsLpdOKjjz6C2+3GwsIC9vf3xenJ5/MidWMSjEKhgFQqhUajgVKphHg8Do/Hg0KhgFarJfF0Dx8+FEARi8Vk1ziRSAB46gg6HMdpvCnz4456KBQSh0azCiZLpDNKAhiSDmkzA/g1sOH1O50O3G43YrGYgATGohAMkF1icWXu6OuYlGq1isePHw8lQNHJBhhHxjHQfeHYAE8TN2SzWXz22Wd45513kMlk8ODBg2fYO4IWnViBTjaBHJkf7RSyzpyVBNDKTpLL8byTztXgUTNkdC4rlcqQ5I6ms1e6XC4kEgnJvkfQa7aN12XcEGWP7KcZE2fVR6s+W32uAQkBjf7HvhPUT0xM4NVXX0UymRxi+LiOWq0WCoUCDg4OZP34fD5897vfRTKZBHD8Ltjf339GZqoTdZiSU6t+6u+swBifmeeBct7bZI3MMTJBsDlmjDkzZYJk0+r1OkqlkiQXIYPGZ5KJREKhkCQPikQi8uwy066+N+WT7A+fnUAgIJsyvA+fI24ycZ3zPRCJRGSThEmGyLwzdg2APH/tdls2Xvr9vgBLPqPVanXovcgxYpu4UUO2lpJqAkXOKQuGcw7/LsbA/e00LlSbg7PNNttss+051u12JSbt4cOHWFlZgdPpxGeffYaRkRHMz8/j8PAQe3t78Hq94rCcP38evV4P8XgcnU4HT548AQCcOXMGzWYT9+/fRygUwvT0NLLZLILBoDi9S0tLaDQaiMfj6Ha7qFQqmJiYQLlcRr/fRywWkzidfr+P06dPAziuG8ZEJZFIBPl8XoL7+/2+7F7TzJ12shSaNQKsgYUppdQyLjqYOl09HXeeq+VS3C13OI5j3sjIARDpFhOzME6NTm4gEECr1RKHjGOkHUC2dTAYyA67Zjq0ZMoEXjdv3sTy8jLeeOMNZLNZiTGjs0yHk04m2SzNzmgQR3M4HBLbxWvppBMmg6I/M+2kOKiT5s6cM6vzCMTo3DPNOwsva6B00jX4u/n3VzET1DzvPJ1YgwwSNyTi8TjeeecdRKNRASf6PEoUmchEF7M/f/48Xn/9dWFxHzx4AOBp4W/+04ANeAoK9bPA80wmzGpszPnWx5lgywSD+nNTymmCRfN8yn65vjmuBDi8P7MsMrEJZYOxWEzaVq1W4fV6hXnSGzlsm04KouPgXC6XlCzQ8kOy8ZpRZ0wsx5uSxnq9Lm3TY8IYPV2rje9EMnOsXcf7UfLJeFMqAXS9PPZVvwf5fuM1XpS9VABOXnU2frPNNttss+059tZbb+HGjRuIRCJ45ZVXcHBwgHK5jNnZWSSTSdy+fVsy2OXzecTjcYmpmJubw5MnT3D37l3Mzc3h7NmzuH//PkqlEk6dOoXBYIByuSwyyMFggImJCSkVQNlbPB5HJpMRZ6jRaEiWxnA4jEqlgm63i1AoJACP16jVakgkEpiamsJPf/rTZ5gKDcQoDwIgIMoKSADDEjXTtCOppZb8nA42JXxer1ccIO5mM9atVqsJiKPDRNDD+m+8brvdRqFQgM/nkzgZSrxo2mFmH3Q/TGlmq9XCD3/4Q/zDf/gP8c477+BnP/sZisXi0JhoJ5DOWigUkl18PS6BQGAI3GkQZ86H6dyfxOqcBPJ0354HgPQcWkntBoPj4uIEzxy7L7P/WrBmtuF57dXHcA40cAmFQpiamsLZs2cl5rRWq8la0ZLNRqMhkk7GOsViMbzzzjsyP+VyGWtra7IxwTWlWTFzw0KPu4410+OqQZY5DyZQO+na5rkakOn7mcfxb80e8jM+Bw6HQxh94Ck7zeeWdd+Ynp/ySTLyBD5abqmZWIIqArFAICAybw0cud50aQImLeI7QSeH0eylWeqBc6c3XsjmdzodaW8+n0ej0cBgMEAikZDNpm63i3K5PARqmXGSgJPMPNv3tzqJyd8l4/q18Zttttlmm23Ps+vXryOVSiEUCuHOnTvw+/04c+YMisUiPv74Y9mN9fl8OHXqlCT/CAQCuHHjBg4PDzE/P4+FhQVcv34d/X4fExMTODg4kPICuVwOyWQSpVIJjUZD4t3C4TBCoZAkKqHT6fF4EIvF4HQ6kcvlEA6HJT6jVCqh3W4jHA6j3W5jcXERDocD165dE2dEy4zodDidToTDYcTjcdTrdZFM0XHyer0SM2QyBaaZcWDaCaN0ijvodMIYr0JJU7lcRqPRkBga1m3jeVqGR6kUHTNdY4zOoMkymE4kAYF2wnj9o6MjXLlyBX//7/99VKtV/OIXvxB2SjNddAQpjySoZp8JLnSChsFgIABcAzcr8PU8UHMSCDLPtwKFNCuZ3fPua3VPXkf/bcUymcCZ51kl9zDliRp4a2NMZSKRwOzsLKanpxEKhZDNZgEMbyzw3GazKfFTlUpF5LyMaU2n0xgdHcXh4SFu3rwp7dHlI6xAkAkwrcbCCqCdtCliHq+ZnpMAmwkW9XX0HGvgaY4T8FRizBg4yhFZuJsAxul0SrZbZoZkwh8+T/r5Z8ZbxrQ5nU40m02RZTLxDZkw/XyYcmjNgnJ++CyTdeN7gs8aS3Locel2u/IOJ5NHgMl3IPvE+EH9ftNtZGwnmbsXZS8XgAMX9AtuiG222WabbX+rbXJyEoVCAUdHR5ibm0MkEsHDhw9RLBbFsWDNrZ2dHYyPj2MwGODWrVvweDz49V//ddTrddy8eROjo6MIhUJIp9NShNvr9SKZTCKdTmN8fBz9fh+FQgHJZBLFYhFut1sYPWZFi0ajqFar8Hg8CIfDcDiOswzu7OxIauxgMIjXXnsN29vb2N3dxdTUlIAZOmbdbleyxAWDQczNzUlmymAw+IzUCTiZDQCeSiN1EhHgqeNJh4vOr07WwqQl5XJZEhcw4xwdNF2fzqq+FeN5NHgz26qP06wbv+e5OtFLp9PBnTt3sLKygrfffhuNRgNXr14VOZ5O4gFA4vU6nQ5arRai0egQG+dwHMfnMT27w+GQjQDG+jzPkTdNO+QngSqr70/6nX3R82cF4k4Cll/GoOnvTwI5GpicBEB5DAFBJBLBwsIC5ufnEYvFBPTrueZ8kuFhGYNisYhWqwWv1yuxo2tra7IZ8+TJk6F6YTpGlNcmM8S26Tay/Zq1sWLDtHyX7TVBmAnSNMunr2Ve25wDPqN8Xhlvm0qlkMvlhIFj7TQ+pzyP8kD2m22NRqOSIRKAbHbwfADyfHFThhkjWcZBxxV2Oh3JwsvkI5RP8ncCMcaeVatVqW/HcWEZEgDSdr6P+D2z+ZJRjUajwiIytlOXUOBmEJ9t9pnrwuFwSGbMF2UvF4ATBs5GcLbZZptttp1su7u7aLVaeO211wAA9+7dEyegWq3i7NmzGBkZwebmJpaWlpDJZLC/v4+5uTmMj4/jwYMHUrS73W4jnU5LEPzU1BQA4ODgAOPj46hUKnA6j9P7NxoNRKNRhEKhIVYvGo1if38fk5OTcky9XhfQVyqVBFB+8MEH6HQ6GB0dxZ07dyRDHE1nTHM4HCiXy/K76YCTMdIxdDxWm86MaH5GOSUBJnfamTSFO+a6npr+HTiZReLn3OnX7CGZLjNOj9fnzjt33fU/WrfbxYcffoi5uTlcvnwZrVYLV69efWac9DlOp1MYxFAohHA4LI4fAClwTPlWoVBAsVgc2sW3Ysisxp1jruOseA09VvrnSQDRPO6k8bYCXVZgzgTRJvtmXsNsh9W1NKPJYvZnz57F2NgYer2eSNx0PCeBSLfbFWe82Wwik8mg0WhgZGQEyWQS7XYbGxsbKBaLSKVSuHLlCvb392V9EkSQgdMxbnrjgOCITI0VEON5OpGOCf6s2D3zuJNMt8mMQaVpcNtsNnF4eDgkeyZYY21GSgl1PwiW2NeRkRFEIpEh2S3ngs8dk6VoiSMT5FDVwHeOfl5HRkakDAA3e/Ra4buK7a9Wq0ObK2ZRcIJJDdC8Xq/IyTnvTOzSaDQQiUQwMjKCRqMh7zGWOuH6JtCjLPNF2csF4L74aTNwttlmm222Pc8oO3z06JHspFISRCllpVLB4uIiHj58CL/fj1dffRXtdhs3btzA2NgYLl68iLt37wqzBQBLS0uSDY873qwbR3YNgCTNWFhYkLiw8fFxlMtljI+PS/zdxMQEdnZ2cO7cOdTrdXz66aeSyOPq1auYnp6G1+sVRwuAOLB0bpg1M5/PDwENAEPOn/5bm/7MlOHRCWWiAJoGhgSXbBd3wrVcUgMxXpf35j/9mems6rZpcKgz02nwpq+7sbGBH//4x/iDP/gDvPvuu6hUKlhbWxNAT+O5um/1eh3lchnBYBDRaFScYUrSvF6vJGBhG3UfCFQADLGDJiujAZKVXE/Phb7PSfY8EGn102TNrK6h26uB9vOYRI6nBi6UDU9PT2NxcRF+v1/mzmTx+v0+Go2GxFKSjcnn8yJzGx8fR7fbxeHhodTMu3v3LhKJhNTwoyOvywdYtV2zcmZfdAFtc45M+SKPsfrc6m+Oi5k043kJa/SzyT7p55EZbdlmxnuRmSLbzPvqch7MJksGizF0nU4HPp9PEixRjkmZIjeUyMJz7E3QpOtfMpsomTnWsyN7GAgEJDsmy2dQ7szxIpB2u90CMJl5lWAzHA4jEonIs6tBMuWalJIy46bNwP012VMGzjbbbLPNNttOttXVVWxvb4uDUKvVEAgEkEgksLOzIw7KnTt3cPr0aczPz2N9fR3ZbBbnz59HMpnE3bt3ARynsqbDeXR0hHg8LrFe0WhU4kD8fj9yuRwqlQp8Ph/Onj0rNYpCoRAcDgfGxsawsbGB0dFROBwOHB4eYnV1FUdHR9ja2sLy8jL29vZQq9Xw+uuvI5/PD4E3Oot0DrljTGkjTTsephNCYEEwoWtdmTIwXTaAu/l09Fj3iYlHtJNtAkeCI5NlM0sGaGeYEjH+zjZpsERnS0sYeZz+/erVq1hcXMTrr7+Od999F51OB+vr6ycCWt13Jkmo1WoIhUJD2SqZZMNkG2nczSf4bbfbQ3WvTMBi2vMYOfM4KybseSyP1T2tgJzV9U/6ndcwf3c4HLJu4vE45ubmMDU1NcSq8jh+RgBNhpM1wSjtC4VCiMVi8Pv9+PTTT+FyuVAqlbC+vo6FhQUpwt5qteR51+wZgCFZrxULarWRoI3fm+NjBfJOGiOaBm/m86OZPv2c6LhSHW8GABMTE8Ka8xoEptVqVZLz8P3lcrlkrfM6BGU8j9ly+a4gUKI8nGubLCfl1mT4qtUqBoOBJE5hAXFd05IbWHxnBAIBYfpZooXsnn4HMqESk5UQhKXTaSl6TxBJuTTvyzZyLP1+/zM1Dr9ue7kAHIZ3LmyzzTbbbLPNylgwm/XUJicn4XA4hAmrVqvo9Xr45je/iW63i08//RSBQABvvvkmms0mrl+/LsWxx8fH4XQ6kclkEIlEsLOzI2n7i8UiwuEwOp0OHjx4gMFggLGxMSwuLmJ3dxfRaFTAz8jICHZ3d7G0tITDw0MEAgG8+uqrePjwIXZ3dxEOh3H37l2Ew2EsLS3h8ePHQ1Kmk5znc+fOIRqNIpvNisOnU9vTNGijk0wHCHi2TpUZ96MdJcaIUBpVKpVQqVTkM91GM8W+dtjNulE8TrNt/J0MDdkA7fjxODqWup/MdvfHf/zHiEQiWF5exne+8x00Gg3s7u4+w0Cyz3QoAYj8jhlGWXaADI95PvvJ7IhkM5gBkE6yKa80Ad1JLJq+l5XM73n2PKBo9bmV7O+k+2mGjkZHPRKJIBKJYGpqSpgQrh+uN85zvV5HOp1GLpdDuVwWZomsWzweRzwex+LiIv70T/8UsVgMp0+fRjqdRqVSQTabhcfjQT6fF/ZJs2LmM6BZLC1D5JoigHmeLNJqbsxnzGTlvgxwa5ZTb7SQfSabptk7trfT6UgMJyWGWrpIhkzXPuPGBSWH1WpVNiF0eQ0mKfF6vQJ+isWiZJtkv7V8lfcmMxaNRgVA6+eaYJv3Y7KUfr+PSqUiY82NG25ecUyoAuCcMwEKVRkcU57PZEvA8XPORC681ouylwrAUUNp4zfbbLPNNtueZ4FAQNig+fl5FItFKSDL7HZvvfUWdnd38ejRI6ysrGBxcREbGxsolUqIRCLodrtYWlpCLpeDx+PB2NgY9vf3kUwmpebR+Pg4ms0m9vb20O/3MTMzA5/Ph62tLcTjcSkmTsnX7Ows7t27hzNnzsDj8eD69esS63F0dITl5WW4XC48ePAA/X4f4+Pj2NjYGIoRY+ZHOheUZfJzbSajpneZtdQSeAr6TLklHVA6QxrY9ft9iRcjwLNKLkKnU4MiOsnaITONn+trEciZkkTtnNFh5rj1ej2USiX8n//n/4l/8S/+BUZHR/Gtb30LP/nJT5BOp09M/ME2eTwejI6OYjA4LiHRbDZRKBQk+YFOCKFZHCZ8YEkFXfdKt9P83QogWUlQrc79ss+tQIKVtM+KiWLfngfceC2CC4LdUCiEsbExKU6vk+YQIDUaDWQyGRweHiKfz4vMDoAAFofjOPnPwsICfv7zn8vzWiwWRXJHtjiTyQiAMLM2mmCU92DbdV/1GJljYq45/WxZMXJ6g+LLWFJt+hnkc6TXhN/vR7ValXdENpvF/Pz8UMZaJhrRyUTIMrvdbpFDElhxbpjERIMajqvT6US5XB5iz3gPAkvel+NIuTXlxUy8QgDP+FpKMDUQ45izjhuzTVISSgZNKxdYX67VagkjycLmBJYA5L1OYBgKhb7S3PxN2EsF4L7aErfNNttss+3/340FuuPxOPb29jA6Oips3PT0NKampvDgwQPkcjmcPn0akUgEV65ckXpwAHD69GlsbGxgYmICjUYDe3t7Upi71+thZWUFe3t7ePLkCVwuF06fPi2OyvT0NJxOJ2ZmZnD37l1MTEwAAG7cuIELFy5gf39fgCGz6C0vLyOfzyObzcrucaFQGOrXYDCQlN0Ea8FgUHbRdXINYFguCQxLEAGIU6uZLlNWqJ1ySibp6DYaDQEndHR10hMr+aZ2ZNl/7nhbnaOLNOvYNzqYGjTqvvBaGlDu7u7iD//wD/H9738fCwsL+O3f/m38xV/8BY6Ojob6q40Z9pLJpCSfoSOrGR2yFPV6/RlJJZ11XdyY33EeyEjpz/W8nwSu9D308WZ/dDv032ZbrMCZ+Z0V+KGRwYnFYsJcBoNBKevBOdMMF4FbOp1GNpsdAgkcY66V2dlZnD17Fj//+c+RyWQAANlsFkdHR/D7/RInFQ6HUS6Xh8pU8L663Zp5NplfmsmaaSClx0mDRJOJNtlUq7ngvaykvToFPs8ZDI6L3OtYSwIoynWnp6cFqIRCIRQKBRQKBcRiMQFmBG98psiwRSIReeew4LUGs2SYyS7zmeC7SW/gaIDPeDr+reWt7Kt5LwJQXsvr9SIQCEj8HcEb41T7/b5clyCNbD9j+wjs2AZuEPX7fVEavCh7uQCcvGRecENss80222z7W23nzp1DrVbD4eEhEomEZAlk0oQ7d+6gWq3iwoUL6HQ6ODw8xFtvvYVMJiNOInewC4UCstkspqenUSwW4XQ6MTY2hrW1NRwcHMDtdiOVSkmMFLO9VatVPHjwAKurq9ja2kKj0cDc3ByuXbuG0dFRTE5OYmtrC9FoFBMTEzg8PEShUEA8Hke1WpW6buFwGKVSSfqmnUYG+/t8vqF04aaDav5uOprAU0bMBHgEQmSSCAqZHZDp3YGnsTF0LnmcZqT0dbVk06qtJrumWRHNljDuTp+jpZraHj9+jP/4H/8jvv/972Nubg7f/va38bOf/QwHBwcyDtoIvI6OjkRyValUJEGCy+VCOBxGMpnE4eHhMywlAaq+nv7J8XC73ajX60NOq8lqWYGrL7PnsXwmwNB/m6DQlEaabSCA8fl8CIVCUhQ9FAohGo0+U0ePEjZmgM1msyKj45ho4BSJRJBKpRCPx/HRRx+hUCgMFX7nOup2u6hUKgAg8W+sWajbq8eZGw9m7BmdfbJU/ExvhGhQQvmlOTdWjJsV+3bSpgfbSJabDJE5t3ym9KYHYzSZDIkAi6BGF7pmHCsASShSq9Xk2Sfw4vkEQOVyWdpCGSLHhNfl3PMdwveGZmoJ5nktyuB1+YhOpyNrigwf3wVk8MgGEvBy06Ber8sGjMmSkhFmW1gG4UXZywXgvvhplxGwzTbbbLPteVYqlZDJZBAOh7G/v494PI6lpSW0223cv38f0WgUp0+fRjabRSgUwrvvvoujoyPMzs4KuzM5OYnNzU0pzr2zs4NkMgmfz4e1tTVh8xj34fP50Gw2MTIygrW1NYyPj2NlZQUPHz7E5OQkBoMBHjx4gIWFBfT7fayvr+PSpUtwOp148OCBxKkcHR2hXq8jGAwiFoshFApJLI9mophau1gsIhAIyD+fzyeOlQlkCNKAYWf+pCyVGljphCU6/kwDEn0vDTRNZ5UOtwaE7Jc2Dch0+/S1yAJo4MZjTeDHtty/fx//7t/9O/z+7/8+FhcX4Xa78ZOf/AQHBwfPAChei5nvgKe1qchUxGIx1Ov1ocyWqVQKbrdb0rtrVlLL6AA8kzzCNCvH3wRXVmDVauzNebcCcfxOH2+CDf5Nlo0sDuWSyWQSo6OjQwwMwVar1cLR0RFyuRzS6bSwJ7pvZH44bq1WC9VqFevr60O1wjTIZUxWt9vF9vY2AEgiDa/XO7TZoM815cQEdOynlnJasaEEIjquUf/ULJKVWYE6Eyia8am8l24/2STeWz8vlGpzk4l9ogSyWq0K+CGLRUkmAJEAMzkMx6BSqUisLseafRkZGZEsko1GA91uF6FQSDZB/H6/gDotoSTY5hxUq1Vh98iiEoh1u12JMeUzyvlgu/R7ihtPmj0HINkwg8GgyCtfpL1cAM6OgbPNNttss+0rWK1Wg9PpRLFYxLlz57CwsIDHjx8jnU5jeXkZs7Oz2NzcxKlTp5BMJpHNZjE7O4t+v49yuYxWq4Xd3V00m02EQiHUajUsLCzA4/Hg/v37aLVaWFpawv7+PkKhkMh7WO/t1KlT6PePU9iTzXvy5AlisZgwDW+88Qaq1arEywHA5uYmXC4X4vE4gsEg9vf3pZ4cjTvbdND29vYktXcwGBT5kunA0TRIIHjSf+u4OTIKdFK5a68TFZjMGO/Ne2lwoB1PAFLol4kWTNNt1QBIx79ptoEOsGbjdHtog8EA6+vr+A//4T/gvffew7lz5/Dee+/hk08+webmpvRNX5OOn5lpk/PGRAqMt3rllVews7MjQJvgheOoz9djZ5oGA+ZcWv1tmtXx+lpWgMPqOP7U8U3M/MffuYHAfyz4DByzxeVyGZlMBvl8HqVS6ZlNAM65Bu10tOn4EzSTfdZSN9ZMHBsbE7mcy+WSrIImw2sCHdMILk4aKw2ieDzbbI69FeNmdT+y1mabOC5cT5RK60yx3NjpdruyHp1O5xD4YYxZOByGy+USKSHHXM8JN2zcbjd8Pt9Q0g+ydkwwopOVNJtNBAIB2fBgXTU+u263G+FweKj+HM+j6cQsPM/v9wtIZMZLZsMFMJQQh+8sXoNyUcpLyRJqWWYwGJQNALbhRdnLCeBebDNss80222z7O2BerxeXL1+G0+nEnTt3EAgE8O1vfxu1Wg3pdBqrq6uSlvrUqVOyk5zP5+FyuZBIJBAIBJDJZBCLxYZKBExMTGBra0vAHZ2mdDqNxcVFFItFkfp8/vnn6HQ6SCQSqNfrmJqawsTEBB48eIB2u43FxUWUSiVsb2/D6/VKUeO9vT0Eg0FMTEwgn88DGGaE6Ozlcjm43W5JFkGnQzuLGpiZoMg8ltfXRqeLO+Ver/eZotkaMJngTn+vJZH1el0y3mmmRpt2KgFIPI/JtGl2ywRHuo0aGBwcHODP/uzPcPfuXXzzm9/Et7/9bVy7dk1AujneBG8cM7ZXAwsCnEqlgoODA/R6PaRSKfh8PhwcHAio0KycbievSUf9JFCgwbUGF+Y/3VZt5vowTTM7ZNi8Xq/EWzI7IeMxdVymrhtYq9VQLBYlvk1L5KzYUXMcHA6HrD2yRnTozdpuXJftdhu5XE6yfpKRsWJ5zbXGfus1pWM32W4r9k4Dfr2ZcBLzZmVm3JeO0eNnBFf8W0uYeW9KEimL7Pf7woY5HA4BeJqJY9wY2XZei+84/iN4GwwGMgd6fHRGzEajgUqlgl6vJyCK7y4C0WazOVSDTcuj2U/KyQne+R7g9aiA4Pozf/I+vV4P4XB4SM5J5pFjyeRE/zXz9tdtLxeAs8sI2GabbbbZ9hUslUphaWkJBwcHqFarOHXqFM6dO4dMJgO/349Tp05JzaBer4dMJgOPx4NSqYRoNIpms4lsNov19XWMjY2hUCig2WzC5XIhEAjgypUrSCQSUosql8vB6Tyuq7S2toZUKoVut4sbN26IM3t4eIhXXnlFAKXL5ZK6b5ubmwiHw1hcXES/38fm5ibi8TjOnTuH27dvDzFiZmwX431YWJo156yAiwniuENvZToZCZ0mp9Mp46avB0B293Uxbd5DJyTQWSUpO9PnUT5F02DECvTo+1gBFyvTLAcLexeLRVy8eBEXLlxAMBjE9evXBWxwzNhvzSSaoJNt/NGPfiQp3n0+H1KpFLa2tuT+WuJ60viHw+EhFsCUoWrAoD8n82Dl2JvXsZISOp1OiU1iLBEBGkERQR0dX/4k+Gy328hms9jd3UWxWByKb+Nc6vZrAGpKIwmSyUAR1DPjpF4LmuVkfBelf3rDwVxjejz0GJmsG48x2UpzHq2YTKv7mfJJM+mQCY40wDMzUer5I2PMxC46Nqzf76NYLMo9/X7/UPsoESbQ6/V6UlIgFouhVCqh1WohEAg8I9/kmuDvXIccfy3zpLSSUkcdm1sqleT+yWRS2sGxIBOnyw0MBse16ggGdd06brIkk0kAEMkzwSTBHzOZmozg120vF4CzGTjbbLPNNtu+gs3Pz+P+/fuIx+N466234HQ6sb6+jtOnTyOVSolzUCqV0Gw2MT09jXw+j6mpKezu7iKTyeCzzz6D2+1GLpfD3NwcZmdnUavV8PjxY4yNjWFqagrBYBAHBwfieDabTcTjcUlmMTExgWw2i0AggNdeew1HR0dSR25iYgLXr19HLpfD7OwsFhcX0el0UCgUkEgkEAwGcfPmTdy+fVvScwNPg+01+1MoFCSRiXbGdGybKRcz5YUmGDEzU/JzZnPj8To+SDugGjTqvzWo0Dv1GiTRydTttGLdTNaP1zLlk1bsk5aG1ut1ZDIZfPjhh9je3sbrr7+Ob37zm7h+/brEHwIYKgOgQawGHszGRyao3W7j1q1b4jxrhs2MPdTjrTMHkjXRKeG1sR/mPBMYm2ypCdT4TzMjjCvi70wZr2MW2Q89lqwvtre3h0wmI06wFTtoJTHk/ZgNkP3WGwD8nYyMbjuzuJI54jieBOa5kWCuO36n+2euIf38aACmx9kKoFv1W7O9PJf95Xhr6bK5rrWsmDFigUAA9Xodbrdbau+RceKGFLMvMh6NSUEob9bSylarJYlAuNY51kyUwrVHGSXBI/ukGT3NunP++E7j2HMMvV4visUiACAUCgmj1mw2h4Ai49sI8NjuXq+HZDIprB4/Gx0dRafTkbhhbiAxDvlF2UsF4Gg2AWebbbbZZtvz7O7duxgfH8err76KWq0miUwGgwHW1tbw4MEDTExMwO/3izPSarWwvb2NfD4vcsZms4mlpSU0m03cv38fXq8Xo6OjmJqakmLDsVgMzWZTYkry+TxGR0fh8XiQzWaxtLSEsbExrK+vo1QqYXR0FMViET/72c+k1lwgEMBnn30Gh8OBlZUV+P1+XLt2TXbQKevUjo4GVbVaDfF4/JnsbBr0aIeQf2vTDrU+R39PYEGHGXjKvGlZHCVu+m9gOMU/jYzJSUygFUjT7eHv5mf6c/NvkwHRGee2traQy+WwurqKlZUV3L9/X4AmnV2Oo04+4nAcJzMhkNcghwwAwS7ZTQJCOrKa/RkMjmvOMc6HzjGZMa4Hnc5ez4sGh3TANXDQ52sGzfyd7JVmwziHHJd2u41qtYpGo4FyuTwEnDSoNJkuDV50W/T61qBErzGXy4VYLCYsDZk4tkGDU4IfnbreXBd8PnisPkY/a/ocvXFhAjqTlfsqYE5f14zXI6vG7zwezzPyTHMDhdfg2JBpYkISXpNMFKWqOo2/7qdONjMYHMszmfmWa5kSSAJvgikAspHAueC6JUtaLpeHkodQGt7r9URGzthKgkT2wYx9Y1kP9oFtYLwfJe5kizlv7HsymXyu3PZv2l4qAPd0kdsIzjbbbLPNtpNtbm4O4XAYP/rRj9Dv9/HKK6/A6/Xi7t27qNfrePz4McbHx7G/v4+dnR04nU5Uq1XZVa7VaigUCvB4PPj888+xsLCAd999F7u7uwCAo6MjOJ1ORKNR1Go1zMzMoNPpIJ/PIx6Pw+E4Th+/srICt9uNzc1NAMCZM2ckPm5xcRGRSAT5fB67u7sYGxvDxMQEDg4OcHBwgEgkgkqlIiUE6Jww3iMUCsm1isUiRkdHEQgEEI/Hh+JitEP3vJgOU1ZnxVzxO12Ulw6emelNgwZTMmflyGqHU6f5Npk0zQxqQGayYfycfTOPNfuuHcdyuYwbN24gEolIsgN9rs/nQ7/fl8x9rVYLf/AHf4BAIIAf/vCHQ2CA8UI6y6RmhMj6aMZBj4kucqxjejTw4byYPzlXZBbIltDZ5k+OOeeVtcUIFPg911S9XpeMf61WSxgWMj50zk2QYwJUvaYovWMsE9ui1w3XpdvtxszMDKLRKKLRKPx+vzj6g8EAOzs7Usy50WhIcguOH0GaXrtsl/6nY930WjmJzTvpO65bK5DH/ptgSc8lnw3OJeWHZjIdndyE402wz6Qvg8FACmXzPeVwOFCv1wUMs3Yf55b30RJZvclD1krLpzXgJEDk8RoYMQkNWWsytsxmOhgcx9ExiQmlnFwzBIy8F2P7CNIcDgcCgQAajYZIQ51OJxKJBHw+n4y53+8fknmOjIwMlW/5uu3lAnBf/LQZONtss802255n7XYba2tr8p/2jRs3EA6H0Ww20el0UKvV8OTJE5EfHh0dSSbHfD6PcrkMh8OBRqOBCxcu4MyZM9ja2kK9Xkej0cD4+Ljs+l68eBGPHz+WGm6U9Jw6dQq1Wg0PHz5EJBKBx+PB9vY2Op2OxHRks1lUq1XMz89jZWUFd+/eRTabRSqVQjqdRqPRgN/vR6FQGHK0C4WCOBvFYhE7OztYXV2V7HI+nw+tVmsoXs6MfdNOtCnp0iBHgxHgadr4drstiRK4g62dbSuHlY6VZgPZRjqkbI8Z62YFAE/6/r/GdN91oV+ONZkyfT86gXSER0ZGsL6+LoXYdRwfd/g1OwJAgJLOrslxOGmOOHZWzr7VORr06390gPX1NFgggNbfW8lieQ5rIUajUayvr0t7zQ0DDXA0oNQJUvr940yw7A//8Tyfz4fJyUkkEgmp8UbpnM/nk+fO6XSKDNCK4T0JlOn1S7BhJaPkdfV3VtJIK+bNBN0nmcmEawDLxD9kmtherk2yUGSEKX0OBAJDBbq5vpmpkowv203GnWMCQFL3s3i4ydYRaPJ++hxuHOii9lxTLpcLkUhk6JnQMXTtdnsItJF51QCT/wgmg8GgnMcNiUAgIO8wPuM+n09+VioVVCoVy42mr8teLgBnx8DZZpttttn2FazT6Yi0kYV9Dw4OkEwm4XAcZ1Hc399HpVJBoVCQeKW9vT1xLGKxGM6dO4dEIoHt7W3Mzs6iVCqJczMYHAfMX716FV6vF9FoFOVyGVNTUwiFQjg6OkKxWEQ8HkelUhHHfmxsDM1mUwoRnz59GpFIBFeuXEGj0UA4HMb29jZCoRAmJycl7oOAiI4v29npdLCxsYFutwufz4dYLIZoNPpM+QG/3y8Om3Y4TSZNsw/As+nP6Vz5fD74/f4hxoZOF504skemI2QCMAAIh8MAIG2kY2wFHMzPngfanse8AcPxcASjbA9rZpntp0OrZXq7u7vodrsIh8NDiTQ0+2BKAXk/LV3l2GmgasoXgWEJ4kmyPc34mSyTFeDQ42M1VvoYZiMk4CwWi5IYw4zT498s8jwzM4OzZ8+i2WwKy8xEQizjoOeW7WVtRADCGNGRZ+0yt9uNs2fPYmRkBJ9++qnUHtMyX82+mUBMj6E5liZg1gk0NLunx1YzqCYzrMf1eRsqpgxax44SjDN2TW82uFwuNBoNqZvHLJDcnOL7hCCuVqsJONSZdAmICPR0MhvGoRFMcf3y2WDbCdoI+sjQM1FQu90e+o6xqWSR2W4mr+H9yQRrSTeBLNvO92W/30ckEkEkEhEpJc8hyNPssV1G4K/JnmahfMENsc0222yz7W+18T//y5cv4+joCFtbW0MOAX9ms1mUy2X5j5rO9NTUFFZXVyVF/8TEBDY2NpBIJLCysoInT54gk8ng1q1bGB0dRTgcRqPRwKlTp+B0OoU9A47lloPBAOFwGMlkEsViUQLmZ2Zm0O128fHHHwtgePz4MaLRKOLxOPx+P4rF4hBIcTiOaxcRXADHdchYE4vZMU15HTO90UwWQDuNZhyZvpZmQhjkzzaR9WMciRlDp01LJgGIZJXH6aQMpjSS19Mg1Mop1u19HsgzASslZIzvsRoTK4ChE5VQNkmHm4yAdsh5b91WDbCt5oDt4XEnyfnMMTLH5XnnmPc3+0/JGfvKPrGPOvMjk+tEo1GEQiGEQiGMjo6i1+vh29/+NqLRKP7wD/8QwWAQ9+/fP5H1CAaDcLlcqFQqcn2CbX0OwVilUpH6jzqboE4Ewn6aANuUMZqAl2BOg3E9dvpvK5bNPM/qc/NaGmBqdpTgkeuP4IlySYfjuL5ZvV5Hq9VCOByWDZdarQa/3y/3IVtFMEbgz3vqtUeGU8smzbYPBsfyRz4Her1o6SMzhgJPEwUx0QnBHdcTE+owS+RgMJBSJHr8KIlk23SyHm2BQEDWLv9f4HuIbXoR9nIBOGHgbARnm2222WbbyebxeDAxMYF79+5hYmICb7/9Np48eYJbt26hWq1KHEWr1UKtVkMikZAMjvPz85iamsLe3p7UHtrZ2cGFCxfg9/vx6aefDknt6NysrKygUCjg4OBAdqgZ5O/1ehEMBpHL5VCtVpFKpRAIBHB0dIRqtYqzZ89ie3sbW1tbCIfD8Pv9aLfbWF9fx8HBgQAiLT1qtVoCPLe3t9FoNEQGmkwmhwL6TXCm2RuadrpMqZjJ8IyOjqJer0uMCFlOHbOk76+dfCsmA4DswGvpGu9rxcKxzbq9VgzHSX3Rf2uGhKnSmeBAA11zbMz+0InW8Uo66x13961YSTqiBH6mbE/PDx1p3RbtvFqN71cBbuYYWYHmkZERhMNhBINBRCIRkaXF43FJGAQAiUQCiUQCbrdbMhfmcjkUi0Vsbm5icnISt2/fxu3bt/H9738fKysr+Nf/+l9LgW/ONcspkFWhBLrdbmNmZkbWS7/flxgngg/NRtP512vRlKOSPdLjDWAIJGkQbQI5/f1JbBvtq8yRvp5mosy5CYfDKBaLMhbcNCAw6nQ6kmSpUqkgGAwKI1sul+H1egXQsQC3y+WSGDT93Hm9XlSrVdkQ4ntJlwGhDFPXO2Q5DcoyGT9J+TWfeT4XGpQCT5l/j8cj7KHD4ZAEP+12WzJu6hIxZAwZ88YkLlQs6OQmvC8Aycr5ouzlAnBf/LQZONtss802255nrVYLzWYTly5dQjAYRDabFfDE3dZCoSCFud1uN4LBIJaXl6UGHLNQ7u/v49y5czg8PEQ6ncZrr72GZrOJx48fo91uIxgMYmlpCffu3UOpVEIymRSH3ev1IhKJSKyay+XC/Py8yB69Xi/i8bgweqlUCl6vF/l8Hvv7++j3+4jFYshms+h0OkPyqFqtJokGWq0Wbt++jcuXL8Pn8yGRSEgMimlmin4rtkWDLx3DQyeKu+PcAaczyF110+mjmaCRnwHHDq1OnmF1DZO9Ms2MY+JnXwZeNLsYDocRi8WG4oCsjuc1NWNjAgMtfaQDrsswaNZCZ8yzAk56/DSIO6nPJ/Xzy46xAsN6fCKRiDDEs7OzaLfb+LVf+zUsLy+j0Whgc3MT+XxenPFKpYK9vT30+33ZnGASlE8//RTVahXJZBLLy8v4R//oH2Fra2soSRBlf5TA6Z+dTgdjY2MYHR0VNk5nRS2Xy0gkEgJurCRxGoSR5dGbHgSR5hhpcMHPrKSyJsA3gbY51yeZuQmjr8vnkO1PpVJS/oKZGrn+PB6PxBiOjIyg0Wig0WjIBkq/35cSEnyHVatVtNttqY+mn0n+JDjm5lav10OlUoHTeVwf0+/3w+PxSJkJ4GksKeNqmaXS5/Oh0+kI2wY8rfPGe1JKDkDeG0yI0mq1huSelGcTOJKJMzeTOH7cvDHr432d9nIBODJwNoCzzTbbbLPtORaNRtFut5HP53H79m1cu3YNlUpF6ksxScnk5KT8R72wsCAxa+VyWWIlSqUSHj16hEgkgm984xtYW1vD9vY2er0epqamMDs7izt37qDf72NycnIotoQAiw5WNBpFsVhEq9XC6Ogoms0m1tfX0ev1sLy8DI/Hg9u3b0sNJ5fLhd3dXWSzWYn9ITggS0PH56OPPsJbb70Fv9+PiYmJoaQg+jxTjql/0nTMjQlgut2ulDVgggK9A6/Pp/NPgGcFwAhc2Ccep2V5+jwT+JwEdrR9GYijA8+C28FgUBxS3R8TAOkdejr6Jmg178GxZkp2lgegc6nvqYs4nwTiTAD3vL6exPBokHYSEwccy82i0ajELhUKBcRiMZw/fx4XLlyQjJ16/pj19f79+zg8PMTa2hqy2Syy2aycz9jS1157DRcvXoTP58PExARKpRJ2dnbQbDbhcDgQCoXg9/tRq9XQ7x8nO2k2mygWi5KRkqCKn09PT8tz32w2ZRNE1+TTc8K+m3Onx4d91ABAA2rNsFpJMM1xt5L5mpsEGthrGTOTeABPZbVkcnO5nLClBFfNZhN+vx+dTkfS8dfr9aGEMCMjIwiFQkMp+7lRY6bWZ9sYi+hwPC3gzWeKAK5arQrrRrkivyd7T2Cly1fwGdGSST6flKoTwPG+TqdTEqKQmeO12WazNAvZZY7xSYXfvw57qQAcOThbQmmbbbbZZtvzrNPpYHd3F/fu3UMmk4HL5cLU1BQymQxqtRrm5uYkmQgZMqfTiYWFBRwdHYmUqtVqIRqN4uDgAOVyGR9++CGKxSJSqRTOnz8Pv9+PW7duieOfzWYxGAzg9/ufSZzAAuJk5XK5HHZ3dzEyMoLTp08jn8/jwYMH6Ha7mJ2dRa/Xw87OjrSNMkodZ6V3zff391GtViVmz+fzoVariXNFJ0UDDcDaYdcOKk078wRWzCzHnXSdal4fa8W8AU+ZCv4OPHWETQmlyUydxFyYx3wVQDMYHCcsiMfjkjGULALXgnbYrfqiE5uc1CYeQ2c1kUjgzTffxP3797GxsfFMrN/z+mo6+ycBsK/KtJlmgnCyFpFIRDK3FotFjI2N4fbt24jFYhgfHxfHn+N3eHiIJ0+e4M6dO3j8+DH29/dRLpclOU+/38fVq1dx9uxZ/PKXv0Sr1cL8/DwmJyfhcDikFh6T2wQCAcRiMQFx3W4XpVJJrsn4JUpWq9UqTp8+jcPDQ2GIzayKOi6KDBTH8KQxsgJg5rOlr2F+/mVmAj49XwSFTJBCGSEBzuPHj9HtdiUpSLFYFDaLLByz2zqdToRCIanl5/f75T0Vj8exv78/xGryfaLfD5RF9npPi3kT0JHN6/V6Mh9k2cjOscQBGcFYLCYSd75f+F5liQkAEvvGbJutVguhUEjq3OlxbDabErPLpC79fh/RaFTi7qLRqDC8BK8vyl4qAGczcLbZZptttn0Vu3btGgqFAiKRCCYnJ1EqlbC7u4tEIoFXX31VpIGpVAr1eh2zs7NoNBrY3d1Fu92Gz+dDJBJBOp3G9vY2Tp8+jXK5jIODA8zMzOCdd97Bo0ePcOXKFUxNTUkCBrfbjfHxccRiMWQyGdk99nq9KBQKAlgKhQJKpRKi0SjGxsawv7+Pvb09yVLZ7XaRTqdlRzoWi4mDxCxrBB0AJBvb2toazp49i1gshmQyiVwu90zCBp3BErBmtMw4FBOEaYaFzpCZddIEiKaUjOebTpKOo7OKezPteSDHimG0OobOWzweRywWw/T0tMQnakbFZNw4JjpZAvBsengNnnl8LBbDd77zHfj9fly/fv2Z3X6T4bFqO9vA+bU61gSz7LPJWp4EVvgd06w/efJEZHSMs/rBD36AjY0NLC8vY25uTtjitbU1XL16FY8fP5Z4SW6iAMeZXhOJBHZ3d/Fv/s2/QaPREJlpJpPB8vIy3n33XVy9ehUbGxtDEjiCEDJETE5EZofjwiQa586dw+effy6OvTmnWvpqPjPmGOk55brnNXX9xZPmzZRO6r/1WuGmCICh8hIm89fr9WTzhkwb48DYH85ZMBgUCS/LnpTLZVnrbFM6nYbH48Hs7Czy+TwymYwAKd1u/tTvJQ2gyPBpAMsMtnqTJhgMSh8ADEle+d7ju4Ljnk6n4XQ6pYwA6xBqmTjXba/Xk/ISrAvH42q1msQKEuTyvfai7OUCcC+6AbbZZptttv2dsHq9jpWVFdllDoVCeP3112WnOZVKiUyHDBt3dkOhEObm5rC+vo5KpYL5+Xns7u6i2WziwoULmJubw0cffYRcLodLly6hVqtha2sLHo8Hly5dQqFQwObmJlwuF0ZHR1GpVFAulzE2NgaXyyXyy5mZGYRCIayvr6NQKGBubg7RaBTpdBrpdFociFAoJDWfyHixplG1WpUYoWq1iidPnmB1dVVqZa2vrw9JhLgzbppVVjwmaeHOPh1AFv41pVT8+3kxY/oe2mHWZrZPA8GTwIV2KDWwOoldMs3v90v2TjrAZqyZbqseT/bdjEnTf5sgMxwO49SpUzg4OMCDBw+wvb09dK5p5hiZbMxJIE0fazVeZrusvgOOneBoNCqxaxpktNtt7O/vI5fL4erVq/JsUSbn8/lQKpXgcDiwu7srssZEIoHp6Wk0m02USiUBK2SW0+k0+v0+5ufn8Y1vfAOJRAJ3794VBofrhMliNLDRiWKcTidu3ryJ3/iN38Cbb76JGzduABhO/a/n66RxMY8z5ZA03p9t4fcmM63lr3rzg8ygXke8p1XNOXPOyDL6/X4BKZQHDgaDoaQl/EkZI4GQw3FcZiCTyaBarQKAzHu/35fSGkwMU61WhXkjC8cSGsDTMhZk3ihTrFQqACCJbhhzRoBGFo79Y5vD4TDK5bIw//1+X8rGEOQzkybf85wDrhfei2PUbDYlyUqtVpNxe1H2cgE4eVhecENss80222z7W21nzpxBp9NBOp2WeBqyTvPz8ygWixKflslkEI1GAUDqud27d0/kdKVSCcFgEBcvXkSz2cS1a9eQSqXEGdzb20MsFsOFCxdw7949CfaPx+M4OjoCAExNTaFUKuHo6EikZtVqFbdv30an08GpU6fgcDiwt7eHw8ND+P1+iQuhk8I0/Yzz8Hq9IhkCjkHrxsYGms0mAoEAVlZW8NFHH52Ybt5kXaxi0/x+P4LBoMTYuN1uKRVgmmbVgGHAY/7UrJx5vm4PHVsrpkL/bf5OOwnE6c8pnYxGoxIrtbe3N+Rw0/nVbWe6djriGthq8Gcyj2RZ8/k81tfXxUE+qb3PA6Fa6mo6mycxR8+7vhWzQnZydHQUhUIB1WpV+gE8LfxNuSNjTavVKjweD6ampuDz+XD79m243W5cvnwZsVgM1WpVYim9Xi+SySTcbjeePHmCkZERSeZTqVTkWUilUpI8h4y0rqOnx0SDb5fLhY8++gjf+c53cPHiRdy7dw/A05IDmnFmn8iUmoBJx0NaMXRko6xMH2PGN54E3oHhODq2U88b+8F26SyNPE9nsuW5zM4JQGLEarWanMf5djqdktxHKwPY7lAoNBRT5/P5ZAyYObTf7yMej8vcsk4lGTJdcFuz7hwXnqeTsDCbZjAYHJJ1ko0DMATi9DuJGTkjkQiApzXyMpmMjLldRuCvySQLpR0DZ5ttttlm23NsZGQEpVIJY2NjImeMx+NwOBzIZDLw+XzI5XIYDI7TUlPu2Gw2cXh4iMuXLwMA7t69i5mZGXg8HmxtbaHVauH8+fPodDr42c9+hnq9jtHRUQQCAVy5cgUul0sklLlcDoFAAOPj4yiXyzg6OsLo6CgSiQQODw+Rz+cxOjqKaDSKfr+PR48eIZ1OSwINv98Pr9eLXC6Hvb095HI5kUXpuBA6PG63GxsbGwJO5+fnxSmiM0KHlg4VHSTtlAKQgssEMay7ROf0ebEhZkzbSdI8Osd0vDTjwM94X70Lb4I/83OTGTkJvPC7SCSCWCwm46gTrjgcx1kpR0dHxdFstVrCKDA2iPIsghvNRmoGxel0IhgMIpPJ4PDw8BmJplUfdHvNfpg/rZhUq7E3r6c/M5lOXrPVaglrxbZSyujxeBAIBFCpVOD1eoXJPnPmDJ48eYK7d+9ieXkZS0tLAvI0e9npdJBIJPD6669LxkqOW61WQzabFfaXnzNRB+O+NINogiuO749//GN8+9vfxuXLl/Hhhx8OgQX2k8c6/n/s/VmQJGeaHYodj33fIyP3zMqsylqBAgpd3VgaAzQGjWm1zUwbjRxRHKM0pGiiSDMaX/SgKz3IjLp8uCajTA98oIkyLnpp8Q45nJ6lZwaNaXQD6AZQKAAFVKH23LfY9311PWSfr/7w8siqnl6KxPXPrCwzIzzcf//dw+s7/znf+TRtrO2AEVyrxzJeNzUIvoysGu8RtVWFEYir8lz1WnNhg0Yf6rjJYLJPJAEUWSg+B8rlMvx+PxwOBxqNBoLB4BgI49jUhZl+v4+ZmRkUi8WxhQq1RQPdQQnqyZb6fD6pe+P3JBAIyCIVv+/qvc+5Yd8/Nhm32+3SiJuGLHxuuFwuDAYD9Ho9ebaS+Wu321KPR2AKHD3fKpUKisWiqA7U/nhPIr5cAM6qgbPCCiussOIxotfrYW1tDe12G/V6XWrY1CJ31WQklUohnU4jFothamoK29vbKBQKWF5exmAwQKFQgKZpeOaZZ3Dv3j3p9TY9PY2ZmRns7e0hmUwimUzC5XKhWCwiHo8DeNBkO5VKwel0IpvNYjAYYHZ2FpFIBOVyWRqNT01NodfrIRgMIhqNYjQaYXt7G5lMRiSeBAyUAjUaDQF9jUYDu7u7SKVSCIVCWFpaktojumJSAsX2A2owSQyFQiI1JePGWha1sa/RdAMwl1AaGb5JjJFRhklZk1k9illCrX7WjHE0bs9ax6WlJXS7XbTb7bFjzczM4Ktf/SqWl5dFXsm5dzqdsNlsqNfr2N3dxeeffy5SVxU4OhwOpFIp6Y/WaDSQzWaF6TCO33gtJkn1jGHGxB3HUE5i9syO0e/3kUwmsbS0hA8++ECSclWmSDClaZqw1x9++CGy2axIIDudjnyO9xD3cevWLWQyGalLUuvsQqEQ7HY7yuWygDi19s1MjmsEvDz/t956Cy+++CKWl5exv7//0Pyp4I9Or2RbeX+q19cIotVQZZLq30aGU2XWuJ0RHHJ8HBcNSjhPRiaR3xvOTbvdhtfrha7rKJfLshg0GAwQDAZFzhiJRFCv1zEcDtFut+U4vHahUGjM4IOukrTw5/3SbrcxHA4RDAYRCASEAWu1Wuh0OuKeqfaro5yzVquJGQ2fcQRtoVBI1BQ0P/F6vRiNHrQ/oNkNF378fj+azeaY2QlNeVgTPBwOEY1G4Xa7Bew+yfhyArgnOwwrrLDCCiv+G4+nnnoKwWAQd+7cwerqKvb29hCLxTAYDKReYzAYIBqNQtd1bG9vY2VlBU6nE7u7u3A6nXjppZdEljg9PY1wOCz1M6FQSFaSb9++jenpaSwuLiKdTqNcLmN6ehqj0ZEzpMvlQjKZRLVaFXlkLBYTOdLu7i5cLhcikQg8Ho8kbY1GA1evXkWhUIDNZpOCfhWgkA0Lh8PQNA29Xg+3bt3C+fPn4XK5sLi4iNu3b0uCRBc21Z2S0ioyG16vV1bjO52OyLHYYHqSmcgkuSJDBXwMY12Q8SdXz40OfpOSZpUtMb5v3JbmMMFgUOadPbM07ch85uzZs3jqqaekPx9riSjlotkBa7my2aywARwDJX9sKlwqlcTE43FljmZzbXbe6r6OY4YmXSszkMhr0Gq1sLy8jKWlJeTzeZHK+f1+uFwuNJtNrKysIBaLoVgsYnd3F4VCAadOnUIymRyTk3IRQGVc2GRZBXa8P9gigPJh1mqprPBxc6dKKkejET766COcOHECyWRSvl88d1VWqTJg6vyo+zPeYyrLBozf4yrA5mdVqSe3MTZyV/epAlX1HlM/73A4pF6RLQQIegme1HpWXdelJoyAjaycKmMcjUZSQxcIBMbaCtTrdbl2BFZ03KXJ0uHh4RjIYy2vKset1WoCmAGIVHY4HMLj8aBUKgkzT4BIcM2aOQI1HoNMN7+HlH/S9RKA1EeTjS+XyxYD98sKDQ8/kK2wwgorrLDCGNFoFJubm2i1Wrh58yYuXryI27dvi7GImnQ0m02cOXMG7XYbe3t7mJ2dhdvtxrVr1zAcDrG2tobBYIBPP/1UatNUl8Tl5WU4HA588cUXCAQCWF5eRqvVQrlcFkau0+mg1WohGAyOmZlUKhUBENPT0wCOkrSdnR2sr69LomSzHfU0KpVKwkoxWWEyRjZxc3MT5XIZMzMzWF1dhdvtRr1elx5YrPejyxsTVsr72GOJTAeZD7VHm5Ht4v4YKpAyA2nHOfSpLAeliZPkg0amwphUG9krdeyUTrrdbhweHgqLRPCgsmwqQ0J5FZsD07SB8jA16KjYbDZRq9XGash+kTCei/o32ZjjjvEoSaURBLdaLezs7GB+fh7nzp3D/v4+6vW6nIvdbkc8Hhf2JBgMYn9/H/Pz8wiHw8LukDVzOBxIJBJYXl7GnTt3ZIGBNVgEAf1+H61WC3t7e2g0GqjVarL4wLmmZBN44GBKgxMyprw3dF0XhmZrawsnTpwYG596/XjdaVBDYM65MdY3Gu9BjsfIDPI1dX7VOlXe/6pDo1GuScCiyic5NjLlfJ1sG7/rTqdTWo+waTk/5/F4UKlU0Ol0EA6HoetHRiPqmGnt3+124ff7oWlHNXetVkvep1SRQKrVaqFer4/1ruSCFJlCLoj5fD6RkFMKORqNpP+geo24AMc5ooMwn4eU9fIa8Lk5Go0eMl2hzJR9Qvv9vix4PYn4UgE4WAycFVZYYYUVjxFvv/22OEN+/etfx/b2NiKRiKzkx2IxFAoFlEolrK6u4saNGxgMBgK+1tfXEQwGsbCwgP39fezs7GB6ehorKyuSnORyOcRiMdRqNdRqNZw4cQLD4RAHBwfodDqIxWJih97v9xGPx+H3+9FqtXB4eIjR6MjS2263IxgMigwpl8uJZNNmO+rRFIlEsL6+LsX7gUBgLOGjvNJut6NSqWBrawvxeBwzMzOIRCLi2EaDFVqJs1cUk5jBYCBSo9FoJGwRk0EmxsZVebNQWQOVMTDKKdVE1ijF5Gtq3ZW6P66kq0Yn3JeaUBuTbJrM0LhAlW9yZb7f7+Pu3buIRCJYWlqSeko2MGdNXL/fR6lUwuHhoSSx6vF7vZ7cI6zbMZ672bwZx83XJgXvh8dhDSYBYqNkj9tRRnz79m1MTU3h5MmTuHjxIv7kT/4EOzs76HQ6CAaDGA6HSCaTuH//PoAHUlzWDhIAUwqcy+XkNTJybL5crVZFlklHS9ZzERg7nU6srq7itddew8HBAT744APZjrWKxvljf0SCuPn5eSQSCVQqlTGAQBBP+bA6X+p1MIJpwNzABxhvy8Ht1PdUYKdeC7Xek1JB9Vrzu0GWqdfrSb83ShFVZ07WnPFa0BCJBh40RuJ8UWJIBpCsOOtrKV3s9XoCwD0ejwBFsnNk+QjWuUBDCSTf51xw3MFgcMwVstFoSH0b7wcA0lOOf7N9gcrocQGB15ogjd/lWq0mcvNWq2X+Bfo1xJcKwImJiYXgrLDCCiusOCbS6TR0XcfFixdht9uxtraGarWKVCqFubk57O/v4969exgOh7h//z6CwSDW1tawubmJUqmElZUVuN1ubG5uIpPJ4NSpUzh//jx2d3fh9XqRyWQwNzeHfD4vxiZkV4bDIRYXF4WhsNvtYqBSKBRQq9WgaRp8Pp/Ii7jCvb+/j2KxKOYC5XIZxWIRh4eHqFQqAgiYyHIlvl6vI5FIIBgMIp/P4/bt2zh79iz8fj8WFxexu7s7lsRSBqiakXBlnMYCdL3kMVRmwIyJYHD74ySVxs8wVPCg/lNbC9jtdlmNZzJWqVQEVE6S0DHYjJp1OUzkVDMJnls6ncbbb7+Nubk5XLx4EadPn0YqlZKxNxoNHB4e4ubNm7h//75cE0otAUiTaYKGSWEmdzRjDo2fMZNHmv2u/m0Gaiftj6Ch3+/jxo0bsNlsuHLlCr7//e+jXC6j3W5jenpaHCKvXbuGXq+HeDwu9wHPmw6c7XYb7XZbjDhYs0RHQFrBk2EGIDJXvk8Wp1ar4b333kO5XEatVhMWzux8dV2XxQ6Cg8PDQ5HIqo6WKvtG2Z2xvlGdV1W6Cjx8j6v1bzT84HHUWkAAY8yaGZBX3U9VEEcQRYddyn4JqMhq8twIitR6teFwKPXBRvMg4wIOt6lWq2ONvB0OB3w+n6gE1O8WGVACJYI4gkACTF5bPvP4nOS9Uq1W5TnG+0PXdenjxoU23nd8Xqjso9frlfmx2+1Se0fG1XKh/CXFgy+MheCssMIKK6yYHJR0ffHFF1I7MTc3B+Coyff9+/fR6XRQqVTw9NNPIxQK4bPPPoPb7ca5c+dQq9Wwt7eHeDyOixcvYjQa4fr166jVapL837p1C7FYDGtra8Ka+f1+zM7O4uDgAPl8HpFIRBpz1+t11Ot1eDweqUejVKjb7WJ9fV2YDJfLhVgsBrfbjY2NDQyHQ8RiMbRaLXS7XbRaLUmQuAI+PT0Nt9uNdruNu3fvolAowOPxYGVlBR988IEkaaoBBeu4KFPiynij0ZDWAUbGyCh/VGVi6kq/+r5ZqAmuGStnBIJMZJ1OJ4LBILxeL/L5PKrV6kO1dep+jCwcGU01iWZCaibtrFQqKJfL2Nvbw87ODr72ta8hkUhgZ2cHzWZTGroXi0UAGAO6dLtrtVoP9bc7jl0zA21mDKPxd+O+jmPjjPtXf1fZT3UOgaPapUqlIhb0mqah3+9LL7jBYIDV1VVhrshyAke1bK+99hp++MMfyuIBgS7BRjgcFsMh1t7RWIaGEwTITP6r1aowygDE6MdsDgj6eT6DwQB3797FqVOnhJkCHljzG5u0GwGcyhKrYQbk1No6zo/xO0RnSQZ7EvJ3trpQQRHHxJouAiguFNE8xO/3o16vCxPP7zivRSQSERaPYLpUKgmLx++I0+mUelH1XiAzTXaahkw0RSEw4pjYf43B49CAhMdiw/HBYCDOupSy83gcA9lEPts4N/1+X+osyU5SgUDQ6PF45HmoPseeRPyNAZymaacB/M/KSysA/m8AIgD+DwDyP3v9/6rr+l/8TY/zc43pZz8tBs4KK6ywworj4t69e6jX62MNXTc2NuQ/8Hq9Dq/Xi6WlJdRqNezs7GBhYQGRSEQkkMlkEtFoFOl0GrVaDblcDpcuXQIArK+vIxKJYHl5GZubm2g0GlheXsZoNBImJpFI4OTJkyiVSshms1LPxpVfTdMk8aBMke+73W5kMhlcu3YNjUYDoVAItVoNnU5HTAj6/b5IjoAjNojyqtFohP39fcTjcczPzyMSiSCbzaJSqUgNIMEfJUdMeBqNxkPNklXmyAxwmBmMmIUKLJjETmJ9+LoKzsgEEYiScTEbh/F4rH+KRCJi7KCeF0EtmRaj9LNWq+HKlStSO0W30Z2dHWFH1XPvdrtimc/6QePYjmPLzMY/CdBxGyMLSXZnkpTU7BoSWByXvJK1AI7ujWw2i0wmAwC4fPmyABoCL9YLdjodvPvuuwJENE0Txtfn8yGZTKLT6UhNYaVSEaBGIMPkX3VB5LVkTZd6zur58vzU+SC42d3dxfz8PNrt9hibRvbHjLFUQZo6/+rck+3h/ghSuI3aJoB1YeqxVYDHcLlccjy+TjMP7pMMUjAYRLlclu8OF2l4vWkIY7MdtRaIRCIiY6VBDXv6sZ6TJjx8HvH6UqpIhYDf7xf5NsEXe/oRnFMmzlYUwANA6fF4ZIGLf5Ml5TVxuVxiRKLrugA/FRgCR+CUkk/2j6O0l/9PcEGA98l/lwBO1/W7AJ4BAE3T7AAOAPwxgH8I4P+l6/q/+mUM8OcJzqOF36ywwgorrDgu6FRGpisWi8FutyOfz4u5yMzMjIClCxcuwG63Y3t7G4PBAIlEAqPRCJubm5J4vPLKK8hkMtjc3EQqlUKn08H9+/eFdev3+0in0xgMBkgmk1hcXESpVMLm5ibC4bA0sVWNHEqlEvL5PHK5HMLhMKamphCPx3Hjxg3cuHEDfr8fqVQKe3t7wjJwhVit8RmNRqhUKmJ2Uq1Wce/ePayursLhcCCZTCKbzaJerwtIJAhiYmyzHVni00rfrIbnuNo3M1bIDNhRemU0/FDNQphgGxNi4Ci5Ozg4EIZOfY/BBFhN1Jn8h8NhqXFTJXHcnuyG2i6BMRgMcHh4iIODg4fmgWNh0t7tdmU+j6t7myRnNMYkEGcGxoyhzqs6v+r7xs8fJ39V3+fxh8Mh5ufnJYnm3Ph8PnzjG99AtVrFp59+KjVPXGhgs3j2PSSrQxmhzWYba8ZMkK1a0ANHDN7KygrS6bR8V3q9niTmTPx5X6msr6ZpqFarSCQSDzlLquenGpdMAtOqIybBJz/LbbkwYuZESQkg6yXVeSZw42sEg6x5azQasqjj8XiErVN7QBIA8xg06uFcVioVNBoNYbY476PR6CFHWta20dgHOKo7o8qACyw8viqT5DOA8k7OA5UMbA+gNgenuQi/y4FAQO41tofx+XwiseW8kgVWzZ/4N3vm8R7h9fV6vRMbsv864pd15N8EsKHr+s6TRKMPXCif2BCssMIKK6z47yD4ny+TcZp/tNttzMzMYGpqCi6XC6lUSmzR6/U6fD4fFhYW0Gw2hemanZ2F0+nEjRs30O12cerUKXQ6HXFg83q9aLVaKJVKGA6HmJ2dRSKRwMbGBhqNBiKRCCKRiPQR0zRN2MGDgwO0Wi3Mzc1hZmYG0WgUP/7xj7G3t4cTJ04gGo1ifX0dlUoFwAOra/ZeYlPvwWAgyRWTvEwmg4ODA0xPT2N2dha3bt2SFXNjAkwwxyRPZZ+MtTxGYGYMNZk1slgM1f1ODb7O/ajHMoIPFeQZE25g3NiB+w4EAgIcOD4jUAQedtSklE5l7VTQY7SKZ4JL2epxwEw9V+M5GIGVcT+PAnwqm2ZkpNRjG49p3GbSsTgfTLBjsZhYtrNWcXV1Fevr6yiVSgIcmMwTUCcSCcRiMWFVdnd30ev1EAqFRDJMV0IAAhbUGjo2alb7FjIB5zE5F6rrowrq6vU6UqmUMDpGRlM1OFHBM38awS3vZ54XZbtGtpQMHeeFv3Nc3FY9H/UnWafDw0PpAcdjq73OWOdqt9vlGURGjMCRQI3gTXWfjEaj4ihJaSufs6pxis1mEyZL3T/Nl1ifxvo7NuemwyUNnYAHUmS2e+A5sJclx6fKNdU6VK/XK99PfpZgrdvtCmiv1Wpyj3CRy4w5/3XFLwvA/W8A/P+Uv/+Zpmn/OwAfA/g/6bpeNn5A07R/DOAfA8Di4uIvZRDCwFkIzgorrLDCimOCCfT58+dFokiGwOl0wul0Ym1tDcFgEFtbW8JS+Xw+lMtlVCoVqUMbjUbIZDIIh8Ow2WzY3d3FYDDAzMwMbDabsDEejwdnz56FpmnY2NiApmlS/0aGodVqIZfLicGJ0+nEU089BY/Hg729Pbz33ntotVo4e/YsfD4fPvvsM2xvb8PhcCAej4scSdd1AZyhUEiK+2u1GmKxmKxWX79+HfF4HGfOnMEnn3yCTCaDarUqrpdq3RAZONZ/AA/3FzOaMqhSQzMW6TijEnVb7oNjMWM4zBgj9ZjGYxhzBY/HIxIt476M42QCqDrX8XWj9JMJuDpn7DdIMPE4DNukOVLBKsdkBA9mnzUyZMZ9/rxhvG6qsQ1wZOmuJvJutxsLCws4e/YsPvjgA5Gv0f3T6/UiGo0iGAwilUohlUrB7XajVCrB7/fD7/dL+w2CBcrsVHdA9R7a2dkRUKc2DgcwZlBCgElwxPNLp9OYmpqSa2pkidXrwd/N7lXuWwUYAMYAARcECN64sECLftVcR92HCiK5CGKz2TA1NYXr16+LPJvgrdlsIhAIwOfzybbGmjf2g+M4WEs7Go2kFxzlnd1uV54bvNe5UGG32+H3+0XOrRqGEDS2220BV+riCIEe64z5POD+Oader1fYNjro6rqOYDAoi1hcUIhGozLnKnjm95X1zIVCQY7l8/nE/dRY1/jrjF8YwGma5gLwuwD+Lz976d8A+B9xpGT8HwH8PwH8742f03X93wL4twDwla985ZeCuCwLEyussMIKKx4nlpeX8dprr2EwGOCdd97BcDjE1NSUrNw+9dRT6Ha72NjYQCwWQywWg6ZpsrpMowvgKNFaWlpCOp1Gs9mEy+XCysoKAGB7exterxcejweJRAKZTAaFQkFqeBwOh/wsFArI5/PirDY7O4tUKoV+v4+NjQ3s7u4iEAjgqaeegq7ruHbt2pis6/DwEIPBQPomNZtNtNtt+P1+AUCUAPn9fmkncOHCBSwuLmJ1dRW5XE76yKlyTBb4U1IEjMsYgYcNTBhGpktNZo3snZr4qjVURsMAI8tmpv4xJtFm26oghpIy1URCPa9JtXRMsI0spMrGqQwdmyXTZVEdh3F+jgszAGaUlD4OIHwcsGbG/h23P7JuKtN08eJFZDIZSZ4DgYC0YlDNJjweD1KpFJaXlxEIBCTRnpmZkR5g7XYbuVwOwJE0MhKJYDQaIRqNyr29u7sL4EHvN0qI+Z3zer3CAqmMm7rooJrvcH5rtdqY4yXBE983fgdUJo/zQ9kir5H6GRUwGkE5Q3WZNDLY6k+Vabx165Y8H3RdF/ZJlUKz5Yjb7RYpJcEbgQ6PyzFQbUDGigx+MBgUIxGVhSV7RjmsrusCSFXzEDUo4WQTbjZrt9mOesNR9kjzIp6D0+kcM2fhvHg8HkQikYdkkez9RlCr9r1rtVoicec5Gsf564xfBgP3vwLwqa7rWQDgTwDQNO3/A+DPfwnHeLwQBu7XdkQrrLDCCiv+O4zvfOc72N/fx5UrV6BpGp555hkBZqdPn8bu7i7a7TZOnDiBqakplEolWbWenZ2F3+9HoVAQ+dGdO3fQbrcRj8cRj8dRrVbH6t8AYGtrS1z0KFUcjUaIRCIoFArY2NiQ+o9wOIyFhQXYbDZsbW0hl8vh/PnzWFhYwP3793Hr1i30+32cPn0a9Xod9+7dE/aiUqkIC9dqtWSlmBbh1WoVMzMzKJVKqNVquHr1qvQy++STT8aSFbr10S2RyacK3NQkdxK7ZgRNx9nlM4ysl9EoxYwxMjJJavJtZJ7U/dhstrHGvQ6HQ+p61Jom9byPk4kaWRd1PP1+H41GY6z2bRJLZtynmXxRBQhG1m0SE3ccaDPb7nEBphl4s9lsiMfjmJ6exsLCAnZ3d6XWqVgsSi0XwUQikcCrr76K1dVVBINBAb6UDhaLRVSrVQHcPp8PsVgMi4uLeOmll5DJZPD5559L/VWj0RB2z+Vywe12o9FoIJ/Pi7kGTXnUa6wCYhVoZbNZPP3006jVamOyTWOo7CyZJDXI+PFe43fNCCRVgGiz2YQJYo2nutgBPACj6vHZ/xGA9HFUx8n2AgS5AGQxg7WCDB6bjB178rFdCWWOXAwDIItS6jnRrKnX64n7LhezGo2GyCc9Ho88c8h+saF3rVZDOByWY/L5SZMVAmUyb2o7ikKhIJ9Rr3W73UYwGITH4xljNtVnKKWW/7038v57UOSTmqbN6Lqe/tmffwvAF7+EYzxWSA2cxcFZYYUVVlhxTHz66afodDp49tlnRco2MzODubk53L9/H5FIBLOzs/B4PDg8PBRpFp3c0um0MFt0cJuamoLT6UQ+n4fNZkMikcDa2hoajQZu3bqFZDIJj8eDUqkkRhkzMzNYX19HJpNBKpXCcDhEKpVCLBZDpVLBjRs3UK/XcebMGZw6dUokk4lEAtPT09L/jfUohUJBnNu4ksx+TwCkj1E0GkU4HEaz2cTGxgbOnDkjtUb7+/vo9Xri7sbEktJJVdLIUAGSmqTxb24D4KHk0hhmkkXg4bYCKkhRP2uMSSyUug/W/XD/dOLjSj/3YwQvRsmocQwqk0Pg0Ol00Gw2hdEwsjN8zXhOk+SQKkMziY00SjSNjM7PE2ZgTmWojO+PRiN85Stfwe7uLv7pP/2nODw8xHe/+11haeggSaYtEolgbW0NiUTC9FxisRji8TgKhYLI9+bm5vDaa6/h4sWLqNfriEajIhEmcKEpDWugAMi15fdHdSY0Mmo8LzJwrIE1Gu6oY1bBvmrKwdcoE+SCixGk83fKPgFIn0f1evMfgYXxeg+HQxSLRTl+r9cT1pL7aLVawoRSlsj6WR6b9yzln2TVyuUyyuWyADe73S71iWS8VMBKoxEy/C6XC+FwWMBUIBAQ9QDwwPiEagAAYmTDGkLOTTAYlOvIe4usHNuydDodNBoNYYHZ85HXlg2/VWMXXkPObyAQeMjJ8tcZvxCA0zTNB+CbAP6Pysv/D03TnsGRknHb8N6vNOQ7Y+E3K6ywwgorjolgMIinn34a+/v78Hg8WFtbg91ux/Xr15FMJkWWWK1W5T992mT3+31Eo1G0223U63Xouo65uTkppKd8Z3FxEXt7e9jb2wMA7OzswOfzYWlpCXNzc6jX6/jss89Qr9elpmNubg6rq6u4ffs2rl69CrvdjldeeQU+nw9XrlxBq9XCuXPn4PF4sLm5OTa+dDotdUCs8et0OpLwMXlrNpvIZDKYmprCaDRCo9HAzZs3cfnyZSSTSaTTaZErkU0BxhkwlXVQGSo14Z3EUBlX4tXt6MZnNDcxgjoVME5Kevn3pHGo4EN14WMSS1YCwJiboTFZPw5w8udoNEIymRRpK63tjfI64zypx1C3NzKORtmeyjwa58RotHEccDCep/o7x6yyVWaMHY/H2qsXXngBb7/9Nvb392VxgbVWbBTPHmVm4ff7EQwGhWGmhHVvbw+hUAjJZBKrq6v45je/iVqthkKhIIBc047cJDVNw/z8PBqNBiqVClqt1lj/ODI+ZP+M15UsFtkz7r/T6TzEfpLJ4r54r6g1dkYWVQXYrBVT55hMOPdjXMRgXZzdbh+rt6RsdHp6WsCTx+MRtpL1aZqmjUkZ1dpTHovnyrYBrB0OBAIIBAICkIbDoTBg6v1JySbZPOBBewC1vowtV2jh73K55LqzlpKglI6inCsybp1OR76/2WwWPp9P5oa1y+l0Wsyt6FbJa0XpKXDEYNpsNhQKhWNZ+F91/EIATtf1FoC44bX/7S80IiussMIKK6z4FcfMzAyuXbuGcDiM+fl5sfc/deoUQqEQ6vU6ms2mJJdMdujgVqvVMBwOkUwmRRLHpCQQCMDtduPOnTtSh0YHvnA4jKeeegqNRgPFYhGadmR37fP5cOrUKfh8Prz77rvY3t7G4uIinnrqKWxvb+PatWvQNA0nT56E0+lELpeDw+FANBqFpmlIp9OS5LFPFRM7sm5MyDqdjtThEUhtb2/jzJkzOHnyJNbX19Futx9q1G3GDgEPO0kexwIxWTUms9y/CkQoEXucMI5N/dsI4ozjUw1JRqMRpqen8ff+3t9DLpfDO++8AwBjzXuN0lAVyDBRV2vfmJBnMhmUy2UxzDF+nmNRE3WjVFI9NwaBiZHhNGMmzRg8I1tjlF2aMXvq6yqoUI/FOfX5fIhEInC73dJCY21tDVtbW3LvB4NBMSWh1G1SeDwenDp1Crdv30ar1RJL+F6vh/X1dZw9exbJZFJqqvx+v/SPy+fz4jY6NTU1xtTYbDZhb8gQmbGNbEJNIxWeq9PplPoyMkW8X4z3tXpMyiLVWkoelyCGCzDAw4Y56vXj+wQzZIzK5bL0deSYuVCh9rBjfSGvAW34OU8EqjQN6XQ6YsTi9/sF/BKYq20EaE7CcyNYCwaD4vxI1QDPm21euE9N06SGjufIPnwcG19rtVriOtnr9RCLxVCtVgXwEbAS1IfDYbmfuVjH+4Fzz+tE9jUcDk+8T3/V8eQaGPwKwiLgrLDCCiuseJz44osvsLi4iHg8jt3dXaltczqd0hA7EAggmUxK3Q0Tj4ODA2k4q7YHGAwGiMfjGI1GyOVy0HVdQFuj0cDs7CzOnj2LdDqNzc1NkShFIhEsLi6iVqvhr/7qr6BpGr72ta/B5XLhww8/RK/XE1OHWq2G9fV1SYzZd4zGJASZTDJ6vR5qtZoU5NMAoNFoYHt7W5In7vfixYtIJpPY3NyU/k9qsb4Zm0MAwWRVTTCBcRnZJFZlUqhAQd3XpOC26vZGQGIMJt9csff7/YjH48Kc+nw+sSRnewZ1Dpigcw7UeVCTd7JBrH3k+ZF5YuLocrlQrVYfmkcmuOo1YNI/iR1T51ENlfXhvBnn/LhQWTd17vl5tXZrdXUVc3NziEQieOqpp5BIJJBKpeS8Ll26hMXFRZTLZZHy7ezs4Pz586amOJTkAZBmz6PRCDs7O+j1erh58yaWlpawvb2NL774QiR5XOCw2+1wOp3Y39+Hz+eD1+uVsasmPerx1Puw2+0KY04wR/DPeiyPx4NWqyVMOKWBnDMCASMbrd63ao8xta2GOu9GAMe552fJFnY6HZEOcvyUR7JHG2sy2QpArWEjSwdAesCpCxpkwjiXuq6jWCzKNXI6nTI3bBHAVgZ0f+SYKbFkjRkloKqUlUZLnC+CNn5P2+22yDBtNpsYlqitELgw1263EQqF5JhcDPD5fFL3y+copaOsvcxmxfbj1x5fLgAnD6InPBArrLDCCiv+m44zZ87AZjtqCBwMBjE3Nyf/Qfd6Pfj9fszMzKBarYqFNBOkRCIBr9eLWq0mvavIIHS7XbH1Z8+4druNtbU1xONxfP7559ja2hJGZ2pqCidPnkSpVMLt27cxNTWFc+fOodvt4saNG3A4HFhcXMTMzAzS6TRKpRKi0ajU3tF4hYwhC+wJNLiiz6TL7XaPMVLhcFjO+c6dO1hcXMTc3By2t7cfYg4mJftGu3jj9mZJOEGGylapIONRAMKMmZr0vro/M6BiNIC4ffs2/s2/+Teo1Wqw2+0IBoNwuVxjPbJYF2hk48imqKCV/xqNhiT16nhUKVksFhN5JUM1WVDPgRI59bqo+zVK1tRxGhN/teeemXxSnUcz1o2hOhTycwROdDYkuxUMBuF2u/H8889jbW0N2WwW2WwWpVIJuVwOKysrpiYRPG6r1RJGZjQaYX9/HwCQy+Vw//59lEolYa44Zv5NF0EVBNhsNtmneu7Ge5T3DI2I6KjI7xv3ScCQSCRgt9tRKpUEAPJeAx6wbEZprArgjZJlgib1OhIE8l7iPJXLR528CIzYzJsmIrwfWU/Y7/cRi8UECNZqNZEsko1ivRzl25qmiblKIBBApVIZMyjhdeJ9QGaPksdgMIhKpSKLGTabTRbPeK+1Wi2RZqrgz+v1yj1Vq9UwGAwQi8XQbDblu8VryLmjQyVBm9qjbjgcwu12o9VqyfeI9wVltmTUH/Wc+lXGlwzAHf20TEyssMIKK6w4Lux2O4rForjXbW1t4eDgAKFQCNFoVBpkl0olkdzEYjEAR4lSPp+XxInF+tlsVmSRtCnvdrtYXV1Fq9XC97//fWQyGXS7Xdjtdjz77LNYWFjA5uYmtre3MTc3h9OnT6NYLGJ9fR3xeBxLS0vodDrY2NhAp9ORMbRaLandIPBUa9yYXLFWhkCPLNxwOES320WlUkEikZBV+lu3bmFtbQ2pVAq5XG4M3JgxO8dJ3YzSPGNzbiODw9cY6ntmNXPGWiMjC2V83Xgco/RMlXZtbGwIk0lWjhI5yqtYV8NaQTOQxePTuEQFZ+rYyMjQ2ZT7ossp7e75OY7NOGeT5lJlkYxzZPa+8fNGRlP9pzI/RvCmaUeN7CORiIC3zz//HLVaDRcvXkS324XP50M0GsXs7CxyuRzeffdd7O/vI51OI5VKjTW4Zy/Dzz77DIeHhyK3IygBgFKpJIsZalNmzjFl0M8++6w4sbbbbTFSMYJdY20f2dJms4l4PI5QKCRsGhktficjkQicTic6nY5Y6qutI9RrQJMTldFVWVz1vucYCNZU2SxZJrpREsDV63VxUiyVSuj3+2KYxJo5lXUbjR4016YzrdPpFNMk1o2yLx37VhaLRYxGIwFlZOt0XUc0GhUgGQqFYLPZpM9av98XM5JAIDAGtllrzLkg68990e6/VqvB5/NJ3SPHzkUXFaSVy2VhZjm/9Xod8fhRZRgBOp9duq7LZwk2Od4nEV8uAPeznxYDZ4UVVlhhxXFRr9exuLgIl8uFW7duIZ/PS7PgQqGA7e1tYTiABy5kgUAAOzs7svIbDodRq9VEbkizE9b2sI/bnTt3kMlk0Ol0EI1G8fLLL0PTNHzxxRcirzx16hQODg6QzWYxNTWFxcVFlEolpNNp2O12TE9PiyxoNBrJKrimHTmilctlcWhjAkdgQQMAn88njEi/30e5XIbX65VV7P39fczPzyORSCCXywng4D5+njACACaZAB5irxhGUxN+VmVBGJNkgmaAxvieClZUZ0BVksj5Y3N09vPzeDzw+/1wu90CxgnmjBb6TOopXVOPbzxHMhE221HDdCbTdPvj54xyO7N9qVJKI7OmvmeUXBoZPDOwrYKOSaBNBYi6ruPg4ACj0Qg3btzA1tYWpqamsLy8jDt37gjYcbvdiMVimJubw87ODra2tpDJZJBIJMTUZDAYYG9vD9evX0exWES73ZY2Aep1U8/TZrNJkg4cMVFra2t49tlncXBwAJvNhk8++QQABMjx3MxYSRpf5HI5WSxhc28yXGSiyBy12+2HgP4khps/VZmrKtNU5ZV8PlFuSIDIOajX66jX63LtKBEkm6QqCCiDVBcPCJZoGkMpOQEWAKkHjsfjqNfrIgsnsKKRiM1mE3bS5/OJy+RoNJK6XS46ESySVSMLSTMRgsZ+vy/GKzSW4dyHQiG4XC54vV5h0NRnH68vgV273ZYWBuo9T1aTiwE0wSEYfFLx5QJwwsBZYYUVVlhhxeRIpVIoFotiarC0tIRIJIJKpSKJgKZpssrMxPDmzZsii0okErh79y6AI6c01rSx8Tclmjdu3EC328XU1BRisRi++tWvIpfL4YsvvoDf78fq6iqcTidu3boFu92OlZUVhEIhFItFdLtdzM/PCyvTarXgcrkQiUSkGTSTINpqu91udDodkfIx2avX6/D7/dILi8wQWyLQRe/27ds4efKkSDOZRBprdh5Vj2YEScbtJ4E1YNw45VESSTNmybiNmdzPuC9d1xGJRNDr9aT2he/RRCEQCCAajeKll15CNpvF9vY22u22OPGpDAvPgTU5/X7/IYCknrOu65Ic0qCGBgzcn8rOqMDTmPwb58Is1Dkx+8l/PK66b3UMZsdSr8Hs7Cw07cglslqtIhQKYXFxEUtLS0in08K+sDYwFothY2MD9+7dw/T0tLTpIAtULBaRTqeF0SS4IWOj9vBjs2o2tweARCKB3//938fly5fx5ptv4tatW/D5fKhWq2MgyzhP6vnPz8/j1q1bYlBEMMftKA9VmTKze8MI4tS5U8PsuqoGOYFAAC6XC7VaTZg7AFJzSVUAJdbAg5rKfD6Pw8NDxGIxJBIJqWXj84MMdK1WE1MnAGLmRCaPZiYAxLIfOFIo8J7pdDoIhUIYDAbwer0ix6Qk0uFwjBk/sS6U3wlKmAlqY7EYSqUSqtWqvB8Oh+XYZOX8fr/0GSQIZD0br0EoFBIDG84f2Xa2jahUKlKnqmkaCoWC2Vfr1xJfKgBHDu5JalKtsMIKK6z4bz9arRYqlQoGg4G45BWLRfmbSSubuXY6HZRKJXg8HqysrEDTNGEPwuGwrO5GIhFMTU2h1Wphd3dXerLNzMxgcXERgUAAV65cwebmJhKJBC5cuICDgwOpd1teXkYqlcLdu3cl+Y3H4yILS6VSaLfb2N/fh91ux/LyMr744gvYbEdNvAeDgUiYKItSE3D2OVJXjtmolyCtWCxicXERiURCVqO5Cv044M1MlmcmD1OZBvVzahwHApm8cp/GRNsoETRjoPg3Ix6PS5NtJvzq2NrtNpaWlvD6669jfX0dW1tbCIfDYzbo7D3FuaX5iREYmAXBSCQSkdoczpGa/KsMmjqXaj0V52yShNQ4R8brYMbcmYHGSUwgx0NJms121Jbj7NmzcDqdmJqawszMDDKZDDKZjJw/GZ5arYZ8Pg/giDnqdrsolUqo1+sol8solUrirqgaT5A5Z1I+MzMjhho+nw+vvvoqQqEQbty4gd3dXQHrXKQxW1RQ72UCIW5HBkq9T8n4qNeDbDk/p7K9PLYKrjjPKmtNJshsbDwmWcdarSbySQIxjoVST96r7FHYarUQCoUQiUSkKTaPwetVLpdRqVREpj07OzsmEVXPjyCPTByvE01o6G7pdDqllpFzy/5tPB/VRbPRaMDv96NSqUjNssPhQCKRAACRvtMtkscny91sNuH3+4WJI8BnrTPnideUTecJhFW3zScVXyoAZzFwVlhhhRVWPE5kMhmMRiOpw9jb25PEsVqtwuv1jjFbwJHhx9TUFNLpNKrVqrirMbmOx+PweDy4d+8e6vW6JGTLy8uYn59HtVrFhx9+CAC4cOECTp8+jWvXruHmzZtIJpM4efIkPB4PPvjgA7hcLiwtLaFerwtLmEwmUSwWsbOzg0AggOXlZezu7oqTnmo2ADxI+NQEnb2Z3G63yI2YPJGZ63Q62NzcxMLCArLZrEiwjIBLDb6vJpQMJmDAAxBGSaRZTZvxdTUIIFRTGaNczwjcjGM2snHchtbj7XZ7rE5JdeAcDoe4cuUKvF4vbt++jUwmg3/+z/85Pv74Y+RyOZF5MTGmzEs1LuG+jFJH/u71ehGLxbC7uzt2HmRhzVgyhpkhzHHxOGyP0SxD3WYSQ6qCGXWhhOYZNpsN/X4fyWQSH330EX7yk59gbW0NgUAArVZL7jt+DoCYThQKBZFP0jqeVvKDwQC9Xm8ssY7FYrJAMT8/DwD4sz/7MwFvlCIb59M4N5yLS5cuYWtrSxJ4VepIoEGZM8GkcTvOAfDwvQk8AOKqdBV40HBeDdaB0YiD51AsFoUJ4zXyer3SZ4/7sdls6Ha7Uq83GAxQKBTEqZKghQtZNCCpVCpiFtJut0WmSjm5CmQJxigvJQhtNBpyXD6/CJLJenF/brdbnHb5nNY0DclkEvF4XEyHhsOh1B8T0DebTWiaJvWINptNxhwOh4XNHY1G4u7Lmj6v14t8Po/BYCDtMKrVKiqVClKp1EP3/q8rvlwAjr9YCM4KK6ywwopjwul0YnFxEfl8HrlcDlNTU8I+0ayC9SPBYFDaA9y5c0eSQZqXMDmpVCrY2dmRGikyANFoFPl8Hvfv34ff70c0GsVoNMJbb72FTCaDZDKJ06dPo91u4/79+0gmkwiFQmi32wCAqakp+Hw+3L9/H+12G88++6wACK5uczXd5XLB6XSK2yGDiSETE25HUwMmPXR2K5fLiEajiEQico5crQYeBnFMStX6L7NQWYlJEkozps0Yk8ZhjMdV5DDZZk2UkXUCIJKyYrGI7373uwAeMAflcllqHAniaCFPZsF4LmZMoM/nQzKZRDabFfbN+Bl+joDArDZNBYfqsdQwA2XGf5MAmtk5GEHdaHRkq0/JWqfTQTAYRDAYRLVaxe3bt6U/2N27d1Gv17G0tIRsNiuJP10e2VyaDber1So6nQ78fj8uX76Mzz77DMARQ0rDDL/fj6eeegqRSAS1Wg0OhwOxWAyFQkGaiLfb7TFWSx07/+Z15rUOBAJi8KPa6APjjCclnQT+6vtmjBzvQ+NY+LqRbaWMklJoAij2bePCE7/TXBih+RHBoFony75o3W4XxWIRgUAAwAMGlFJX7ofzygUKmnzw+zIYDMRMpFwuSy/AarUqxiJqTS9lp3yeAZDFJr/fL+YklKvy2JVKRSTKKjvKxR71GnHu2OeObWDIxFHG6Xa74XK5RFY5PT0tNXKtVguxWEyYxCcRXy4Ax5vaQnBWWGGFFVYcE08//TQ++ugjlEolnDp1Cr1eD+l0Gh6PR/oVjUYjzM7OiovavXv3JCEJhUIYDocC0HZ2dmSF1m63IxwOSz3azs4OarUaYrEY4vE4ut0udnd30e/3cfnyZSwvL+Pw8BDlchnT09MAHvROYq0ak90LFy4gl8vh9u3bCIfDSKVSUpdBsEUpKJNDYzLPWhYmRYxGo4FoNAq3241+v4+dnR0sLy9LjRITLsBczmh2LL6nWpszVKmVyjRMAgwEf2rbAu7zUcCRnzcDNOpPtWEypXmUbvV6PanTUs/zX/7Lfykuh5Srst6JDZ3V8RmBDtk1v98vJjp0DPR6vajX6zImozx10nxNAl5G2eMk8GVWzzZpX8bj8F7QNA31el3YxEgkgrm5Oei6jmw2i08++QSRSASZTEYMYQ4ODhAMBsV4gt89j8cjMki6Cno8Hly6dAlPP/00PvvsM2lcrWlHzpdnz57FP/kn/wTb29soFosCPngN1fuICxQEVeo9YnRn7Pf7Io0+rlbT2MSbwEx9zcg6MyghJEBQXSmN1179LEEpG8aT6VPPo16vw+v1IpFIjN23AARYEawCEEaaDBoAWfjh94MMHe9bGqqwHo2gj4CNIHI4HIrTIyWQ3L7Vaom8XdM0MWGioy6vI10n1f50ZBkJ6gj0WHdnt9vlecng97xQKMBut0sfuGaziUgkIufXbDbFIOVRC0i/yvhyAbif/bRK4KywwgorrDgu3nrrLfT7faysrKBSqYhcKxKJSOJIe+1ms4l0Oi2W2kz26HS2u7uLXC6HmZkZAIDf7xcTlM3NTbhcLpw7dw52ux3VahW7u7sIhUJYW1uDy+XC559/jmazibW1NZFzqUxaNptFPB5HNBpFNpvF4eEhEokEYrEYMpkMSqWSyIDq9brUX01yeqSUkg2qmYjQLdHn84ksrVQqjTlfPm7CoiazZkYNDGP9lZo0q0DCyIiQ7WMwmTbWwKnjmTR2IwPCBJnJczQahc/nE6at0WiMJc2UhfGYRgbiUeDN6XRKL8J8Pi9SMC4E0OHyUTV8ZrLQSWH8rBHQmr2ufvY4CSUBOXB0Xebn53Hnzh3E43FcunQJ5XIZOzs7uHv3riTclNmpkruZmRnpZ8jvG3uHETxcvnxZZKd+vx+tVguRSASLi4v4B//gH+C5557D9vY2wuGwSFopseTPSqUy5uCqsq7qHNFQaHp6Gnfu3BF2Sg3eP2qdp8p+G4G48XjG62JcLFC3VXsSqmCS96kq1aQzIyWOg8EAtVoNwWBQmCi6gfJ9On/yM2T0CIp8Pp+oFTg+u90uvQy5QFStVgUY8yd7xx0eHgI4Mpah9JjHc7vdSCaT4pbp8/lQqVREwcCG5ASH/L4SiPEZx/kmC8yaOJ4Hx+10OkX1QJdMgkGeN1lEglarjcAvKey2n61kjCwEZ4UVVlhhxeQIh8PweDzSjDUSiYiMJxwOIxgMAgCKxaIwIMFgEK1WC36/X1Zkycqx8evJkyeFwdra2pJkUtd15HI55PN5rK2twe12Y2trS3pdfeMb30A6nUatVkM0GpVmuDabDSdOnABwVLfX6/WwtLSEeDyO+/fvo1arIZVKoVwuY39/X2pFaMs9KQj2nE6n2IrzdUoyWUcTi8Wk/srIlqlhBE9GoGFk34xyNQY/N+k46vGABwYrk459nIxQHYtxXFzR93q9OHHiBBYWFrC9vY0PPvgAjUZDxkagpgbZHWMdovE8afJx8eJFbG1toVAojIHXXC730PkYgYFq4GKcG7N55e9m2016XX3P7DV1fGo9JBcLXnzxRYTDYcTjcdmO96D6+UAgILb1qvyU0lSyYDSOOXv2LL7//e/D6XRiYWEBuq4jk8ngzJkzeO6556RmtNfrSVPpTqcj9Y6FQgHVahXAg0UBMlVk8whSgCNwsL29La6JxjAz1DEuXmiaJs2/Cc7VzzPUBtnqvtT7QNf1MRDR6/VQqVSkfovXQ61z83q9Uk9IC31+t7kPSjnb7baAO1XayUUH1gDTZZUOk2yjQgfMXq8n8km3243R6KjnmsvlEjMRMmWsnaMxCQ1J2u02YrEYdP2oOTl7vxGk9ft9OW61WhXZqKZp0gCcQLfVagl45WINF6jYIoGuwtw/jVtYs8djPqn4UgK4kUXBWWGFFVZYcUyMRiNUq1Xpf8RkKBgMyn/m1WoV1WoVfr9f5HCRSATBYBClUknqYMLhsLQOoFsZGQc2yd7d3UW328XKygoikQg+++wz9Ho9TE1NYXZ2Fp988gm63S7m5ubgcrmkBurUqVPS4JlAU9d1XLt2DU6nE6lUShJEj8eD2dlZ2O123Lx5E+Vy+SF5oZqgq/VztNgGjiRT0WhUJGVcyVb7SRmbSKs1J0ZZ2eNI8Mzq4YyAwUx+ye2MQMIIaI4bh9HohedBRvLw8BB+vx/PP//8mF05e1pRaqaOk8ngJGknZVzRaBRra2s4ODjAzs7O2LmoYzcyko8CWMcxcMa5MYvj5ov7UI8xaa4HgwEODw/xB3/wB+j1esjlcuJ6SBdDbs/eX3RSZd0pnQpZU0hgtbKygng8jmazicXFRZw+fRrAg3YLzWYT6+vr2Nvbk7ow1jORXaaDJJ1nKV2mtI5MENmmp556ClevXpVFD+N1UcNobsJ7nBb0ZMhV0x5VUgk8kE4amTnVBEitB+12u9J2gWww71Oej9/vlwUqygJZ38ZrQlDm8/lEiklgR0ZKBXyUk/N4fF7wurGerNfrweFwoFqtCmtmt9tF9aDrugDqVquFWq0m7RFoTMJemnwuORwOlMtlOTYl5Ryz1+sVVQOf9eFwGPV6XUxOyD6qbR9CoZAsXNFJNhqNSj0knwVPKr5UAM7xMwA3sBg4K6ywwgorjolGo4FkMolIJCIrwaynYP0Xazjo7jYzMwOPx4PDw0PUajVxcgsEAgiHwxiNRtjd3UWlUsG5c+cQDAaRz+exs7ODWCyGpaUl9Ho9fPzxxwgGg5ifn0epVMLVq1exuLiIVCqFVquFzc1NpFIpvPDCCxgMBrhz5w6AIzOTwWCAfD6PQCCAVColK+xcyS8Wi1JXYmRqgPFEu9froVqtivskwYsqIa1Wq2i325KE0vFODVX+OMl85DgwpzJJTDzV9gBGeaW6rSrrNLJuRjZJ/VsFQqPRSBJL434JdG/cuIFCoSBsQiQSwcsvv4z19XXcuHFjTELJBJA/jWCH8xiPxxEKhfD5558LO2A2Z2qoDMwk9szsWk+aB+Pn1ddUUDHpuvFaTZpfTTtqt+FyuTA/P4+PP/5YFkqYUAeDQZGaMtkmGOC+6TLZbDbh9Xrhdrtx8eJFFItFeL1enDlzBi+//DISiYT0GmOdXa1WQ7PZFADHXnLValUkgx6PRxgXMl583el0wuVyYWFhAZVKRWq4jGYjZtfOWNdGQKA6k/J7o15v9fvIIFOmukqq+x8Oh9I3kAsQrGVjDR+ZOTJVABAMBkVCyv5vZJpY66cyVZSac+7Ixo1GIzEByefz4mzLZ2u320UikZCWEfyOESzTsZTnXiwWMT09LU3tKV0nY0c3S0o0PR4PqtWqyCX5bFfNZABIy4BQKCT1c5qmyfWkqQ2lvKwTZH0eWWXO55OKLxWAsySUVlhhhRVWPE6cP38eLpcLlUpFkirKbNLptLBpjUYDDocDS0tLGI1GSKfTYqIQCATGajm4Iru6uirtBPr9Pk6dOgWfz4dyuYxqtTomkbTb7XjuuefQ7/eRTqfRbrdx6dIlLCws4PDwEPfv35eWAgSELpcLiURCpEB2ux07OzvI5XLIZrMCHggmjJIuNblutVpiFsCEjrbbqVRqTB5FJzcmnscxNJOSeYYKzNTfKV1T96M6+RkTVzOQcxz7ZLYNV9iZfKqJMwHYaDTCwcGBOHcymSYrwST3UewbP3vy5EnMz8/js88+G2v9MAmEGc/zUUBP3cY4/0YjjEmsnpl00zges+Oq2wyHQxQKBeRyOSwvL2N5eVmMSyhD03VdzC4cDgcikYgkxmSMaCVPV0CbzYYzZ86gXq8jHA7jq1/9Kqanp/H9738fw+EQrVYLP/nJT3D37l00Gg10Oh3p71epVMQWng6JKptEOaHK2AQCATzzzDN4++23H2oBoIIo3ssEAEZZr2qhr9bL8d42MnDqflUWjt9FHptMOfu+8TMENip7qTJ+dPhkXzWPxyN1Xt1uF263G81mE6PRSGrbqAhwOBwIBAKIRCLynW02m2I6Q7ax1WpJrzbKwrnIRDMlgjzVVRJ4YKrC91wul7CFwJFagPeHsf0HWV31OgaDQdTrdWH+ms2mLNzU63WRv1NyOhwO0ev1RHKvaZowhPzMk4ovFYBz0Op3aAE4K6ywwgorJkcsFkM6nUY+nxep48HBAdLptDACLPynM2SpVEK324WmaYhEIgiHwwAgq81TU1NYXl5Gp9PBnTt30Gw2cebMGUSjUeRyOWn6zeQoFArB7XbL571erzTK/clPfoLRaISFhQXMz8+LbNJut2NlZUVWpFOpFP78z/8cOzs7UvzPHkdkelSJoJGNGw6HwsIxQSKg2d3dxZkzZ0TKxO2NIMtM/shQE38VSExif1TWTd2v2t+M8jFVcsb3eF5mLNxxx6dcknU36vkZx8B74wc/+IEAOFU2yr+NtW90lVxbW8NLL72E69evo1wuiwxOBdnG83mUZFENlck07ofvm0kezeaP7xuZv0kA0vge2eHr168jEAhgampK2mKEw2Ex27DZbPI+AGGDuEDCGlS3243NzU1cuHAB8/Pz+OEPfwiPx4Pl5WXUajVJ/Gu1Gg4ODtBsNlGtVtFoNFCr1VCv19FqtQRcUDLNa0pGkZI/XrfTp09jb28Pu7u70pjcOOc8X9XERWUouS8CMLI57BepXjPjAod6fxBgqgDO5XJhe3tbDHbU+jyCRi5QAA/6rx0eHkrzbtr70xyFjKfD4ZAm3TSd4f7JXrNhN2WXmqbB7/cLA0bgzX1ywcTn84l0ku1L6vW69Od0OBxirETmjCBS/f7zODx2t9sdA+lk2Gq1mgB2tqbgfPCZynNjL89YLCYLSM1mU9xMW62W1QfulxV2u8XAWWGFFVZY8ej44IMP0Ol08Nxzz8HtduP+/fsolUrSQJYrsT6fD9lsFpqmoVwuIxKJiPSm2Wxib28PAHDixAkkEgnpK0dmLR6P47PPPsPe3h4uXrwoJgN0uCwUCnC73ZLUNptNfP755wiFQrhw4QIcDgcODg7QaDQwOzuLubk5eL1eYcw++OADaJombmyUHqlNn7m6P0kGR3aC7REAiLlBp9PBqVOncPPmTalFUiWL3MdxIE4NFagdtw3DWFOnJrg8RybNRtdNMwaEvxu34Wo9gQT7WRG0sT7KjBlR2U4j+6ZK6UKhEFZWVnD58mVcuXIFN27cMAVX6nhVeZ3Z2M2uqXEOzMDepPlQtzEybpMYOuM+jNu122189NFHCIVCeO6558RKPhaLieGGy+US+TKT92g0imAwiN3dXQQCAZw+fVrAyW/8xm+IM+Lc3Jz8zgbfdLSs1WpoNBrI5XJot9vodrsCFsg4ARCTFLJ8ZAe5KNJqtbC7uzsGmhhGMxMjaFP/5n1C8KZuY5xDI8tJEMLrwns+EomgXC6jVqvJwgPZNSN4pNRxOByiUqmgVqshFAqJTFAFigRZ/C5QXsprQNBHx0dKr8lSs9E6m2HTHXM0Gsncs6+a3+9HrVZDNptFOBwWoxVd1+W5RFaWYJDjIkM4HA6l9QKNVFivyrYHBOWtVkscJwHIuXGBjteCYJ3gr9VqibnL1NTUWBuWX3d8qQCcVQNnhRVWWGHF40Sn08HTTz8NXdfx8ccfy0ozG20Hg0GEw2EUi0VhCaanp6XubWtrC9VqFeFwGKurq7Db7djY2MBoNEI8Hsf09DQGgwH+4i/+Au12G/Pz89jc3ISmaUilUrDb7WP9mGhxTZfKxcVFlMtlZLNZaXB89uxZDIdDcbB88803pe4FAJLJJBqNBtxutyT+quzRLJis1Go1qfWh3biu60in03jjjTcQCARw7do11Go1AA+kjmoSPwnEmcn/JpmWHCfNNGOg1CRX3a8ZQzQJFHHfrG0BIA57at85jm3SOfKnysgx4WciWSqV8F//638VpshYP2b8XZ2vR4E3M/ZO3VYFq8b9mZ2PkT09jhE0Hl+9js1mE+VyGZ9++ikGgwGWl5fRbDahaRrm5uaE2S6Xy4jH48LynjlzRoDFxYsXsbi4iCtXruCb3/ym1KPl83lMTU3h7t27+N73vodKpYLBYCDtCAqFAkqlkhjwcC7JMBFokI1xu93CYvP6eDweDIdD7OzsjDFD6qKBaiaiskPq4gZ/8nPqNTS7ZzlOLsLY7XaR+KqNw2OxGK5du4ZOpyMAj+PjefJ1uszSWXdmZkaefQyPx4NWqyUScUou6eRJp9BmsykgnECODp88X7JzbFtA8ApA6nkJnvr9PmZnZ+H1ekXOThdYms3weUeDETbcttvt6Ha7Msd02eT3ut1uIxQKydxz7ijBbLVaAt4cDocASC5k8R7t9/tot9uYmZmRRbMnFV8qAPegBu7JNdazwgorrLDiv/34yle+gvX1daTTaflPe3FxUWQ9wWBQbP8pp3K73SiXy8jlcnA6nVhZWcHU1BRarRbu3LmDYDAoRicHBwf49NNPEQgEsLCwgMFggGAwiEgkIrKgUCgktXa1Wg37+/uIRqNwuVwolUo4PDyEpmk4f/48UqmUyH8ymQw+/PBDqeeYnp5GMpnEvXv3JLmkox8bSh8nHwQeGCDQdICAslqt4u7du3jhhReQyWSkPYFarwI8bNqgghy1Z5tZ4v+oMNvejGkzshXcTgUwRlZjEogbDoci2SMLY9YuwLgPI1OmylpbrdaYk6dxXGbnaAbm1N8nyRonMZwqsDKCtOPOy+zcjOOY9Jqu62JS8vnnnwtDrWmayIYdDge63a5I2Z5++mk8/fTT0lpjenpajHvW19cxPT2Nzz//XAxK3n33Xdy/f18AeKFQkP6O7GGoyhf5fWb9l67rAt44jwTfzz33HH7605+OORkC5s231QUEfh80TRtrUaDKgdXFD9UgiJ9RrxNBFoEZt/3kk09QKpXG6sQYao0cALHIt9lsSCQSIrVut9ti2kRGlPc690GnWpfLJVLJarUqLqxut1uAocfjQaPRkMWjTCYj4IngcjQajUko2VKAxiLst1apVMTshD3rKGNUDU14TXm/sXE36+D4HVTbC8TjcQGdPP94PC5sWyAQkLpCLiYsLi4iEAigWCxaDNwvKywGzgorrLDCiseJq1evCgPmdDoxMzMDr9eLUCgkoAUA5ufnJeHY398XC+vZ2VlpJ3D79m0sLCxgaWkJtVoNt2/fRiaTwblz5+Dz+bC/v49EIiEMGc0BEokEdF3H9va29HPrdDpS5zE9PY0TJ06InIk9tD777DMUi0VUKhWcOXMGwWAQh4eHCIVCmJubE+lQpVKRlXwCkEmugrquo91ui+MbV+37/T7u3r2LRCKBp59+Gq1WS1zkuDqtsglqQgqYAwkz1k4FXmZgb5Ijovo59R+BitHF8nGCIK7b7cLr9YqBAevkVImkCgRV+aR6rqqsjWNSWbVHMWGPCjNm7nGkjT/PMcyYOLP3J72WyWRw/vx5aJqG/f19hEIhYUii0Sja7TaSySRGoyMnyunpaYTDYUneafu/tbWFZDKJ+/fv49NPP0W328X6+joODw9RKBRQq9XkX7PZFEmkx+MR8MQ2Bs1mE6VSaUw2yfuWxhaXLl1CpVJBOp1GPB6XeqpJrDbvPzJnPH/VgIfAkPe6pmnCBnJO1AUIjsdut0v9LMFkqVTC3t6euHSSLQQggJQLOJQrUiLOPpAEJnw+eb1eAapk0Xj8SCQirFer1YLb7RZWjk6qNIcig0hwpOsP3EeNkkxN06Qm8fDwUNoBVKtVaJoGn8831maCSgN+nufKmktNOzKeYd0dQSrfGwwGwvZ2u10EAgEBfASkTqcTxWJRHD2HwyGWl5cFBNPA5UnFlwrAWS6UVlhhhRVWPE50u134/X7ouo5EIoFgMIjZ2VnkcjmxyXY4HHC73QCAdDqNwWCApaUlzMzMYDgcYn9/H8ViETMzM1hcXMTW1hZ2dnYwGAwwNzcHANjc3MTc3ByCwSDS6TSAo3YAtNo+PDxENBoVcMaEKBKJYHp6WlzxVlZWUCqVcOXKFayvr6Pf7+PSpUsol8uoVCqYnZ1FpVKRInwmrGwWzN5Zkxgc4IGkiAkve0W12218/PHHeOONNwTEUQJI6ZSR6VLDzG3SWCfEmCQDNAJBFThyWzOjDSPbpe53Uu0XX2dfLCZrTHzJFqkGJqppifpP07QxMxObzQav1wu73Y5kMont7e2HzltNfNV5MbtmxpgE0NVzfBQLapynRx3fyGqaHY8OrB6PB4VCQUw0IpGI1J3qui51p/1+H9VqFel0Wmz/9/b2hA35/PPPpf60Xq+jWq2iUqmgUqmg0+mg2WxC1x80uVabXdPlkDb7ZK14P/K1UCiEVCqFP/qjP5IaPTJhKghXgZnxHjLOk5GZVv9RjqfWVfIcWA9GmR9wBOqKxSJqtZpIJXlOdFkkWFHdNOk2SzA7GAykr1o8HoemaWJUMhwO4fV6ZV7IZJKtb7VaSCaT0rcykUhIKxOfzyf9MwlQuSjE+VT7r/n9fmSzWXGk5DXp9/toNBoIhUIYjUbSpBs4eo6zhQv3x/pGmpoQ1HU6HVEWkGVrt9tyfgS6dOat1WpyT6h1yqydIwv3pOJLBeDEhdICcFZYYYUVVhwTXO0NBAKIx+NoNBr4yU9+Al0/aifAZrfdbhfFYhG6rmN1dRXz8/NoNBrSImBxcRGhUAg3btzAwcEB5ufnxbHNZrPh7NmzKJVK2NzchNfrxezsLDRNQyaTQafTQSKRgN/vH6uVImhkfcj58+dRKpXw7rvvYm9vD16vFydPnsT+/j6mpqawurqKYrEIj8eD06dP49atWw9JHJloGlkU9ScTRDbPpemBzXbUVuAnP/kJXn/9dVy6dAmffPKJ9FzSdV0YByPbpTYcVsEbQ60J4ueMDpRkNCYZiBjP08joTZICTpJRGsdHiRXNGGhsoBqbcB5Udk4dvyqpczqd+PrXv46NjY2HQCh7nL3yyiv46U9/inw+bzp2M2bNKIc0Ai0zOeZxDKDxPjEyi2YgblL0+33s7u7iueeeQ6vVQjgcxnA4RDKZxIkTJ5DP56UXWalUwsHBAbxeL27duoVarYarV68KeDs8PMTm5iZyuRymp6eRyWSwtbWFYrEodVCU8fG+IThUrebn5+cBQJpKkwXStKNauOeffx5vvfUWms0m4vG4gCBK8FSWmUCd2xwHeMkE8n7wer0CCri9sUax3+9LHRv/zufzyOfzUvPF9iY8b7V2jgstdrtdZIe08k8mk1LPRiZeZSwJHrk/zpWmHZknFYtFMQ3hNdQ0Tdo9qAsfHA8bo/M4BKM0lWk0GggEAvJM4nUhcOT+aGRE5sztdosygmCLwDiZTKJarcLtdqNYLKLT6SAYDMpcUNreaDSkRlPXj3rKJZNJqQekjFOVjz6J+HIBuJ+5UA6GVg2cFVZYYYUVk4PNbJ1OJ27duoVGo4FEIiHukJFIRHor+Xw+LC4uYnp6GgcHB7h165Y0Dx4Oh7h37x5qtRrOnz8vvY6i0ShCoRAKhYLIH2OxGBwOB+7du4dwOIxEIiGrzGTfRqORJEALCwuIx+O4e/cubt26he3tbUlwtre3cfLkSYRCIeknF4lEUKvVEIvFhIVg8mPmsKYCHbVup9vtigTKZrPJXGQyGVy9ehXf/OY3MRgM8Mknn4hMjfU4KtBSWSdVcmhMZtVt1DCCuOPkkGrCa0ysJ4E4FcAZk24jYKFZRa/Xkzoto108QZsRQKnnvbS0JAC9WCw+JLUbDAZYWFjAwsKCqbHF44R6TIJrI3g2glYj2Dxu20kA8TgQp+tHhjh0l6zX6wJ6Ll++jEqlgvfffx+VSgU7Ozuo1+vSBoAGGDSyODg4ELBWr9fFel51SWU91Wg0QrPZRKPREJaUCxMLCws4ODiQWjMCjF6vh9dffx3379/H/v4+fD4fAoGASPH6/b6cq8oiq2wcMG5mQnaM4+OCDfepOkCqBjj8m6wfo9lsIp1OQ9d1RKNRdDodASFk1djLjuy7WsPJa+7xeMbcGblQwR5tqqyUn+12uxiNRgiHw9ITjQY9KigjYOT42YZABWl+vx/D4RD5fF6eMwThVA6wOTsbrXOuvV6vtBTo9XrCMNJZs9PpCMPH171er+yL7BwlomRm2+22yDPtdjvi8Ti8Xq8APa/XKz0FVfOXX3d8qQCcXbNq4KywwgorrHh0EEytr6+j1WohFoshGAyOtQio1WoiZXQ4HLhx4wby+Tyi0Sjm5ubQ6XRQKBSg6zpOnDghVtqpVAq6riObzaLb7SIYDEqdz97enthPu1wuNJtN2O12AV2tVgvT09NYXFzE4eEh3nrrLdy+fRvtdhvLy8vCTFy6dEkS6eXlZbTb7bFkqlqtYjAYSCJiNFBQa7FUZotggkYG7A/HBHJjYwPJZBLPP/882u02bt68iWazKa5vx9VjGSWRqsGCmpyaMWOT9qNKKVXW7zhWTY1J0j+zz6kgjUmx0UVSlb6p49Z1HfPz83j99dextraGv/zLvxRHT1VyySbC+Xwe3W73oXn4eeM4GaQZ4JrEVqr7elwQZ9yuUqng008/xYsvvohUKiXfgWKxiLW1NZEDE5RRnka2BTgCLvl8HpVKBR6PRxgWSg0Jxsg69Xo9cQ8koHG73fD7/djd3ZV6ODJGw+EQr7zyCjY2NnDlyhXY7XZxXQQwJksGxmvUjOetAnC1Xo7fJUr9arXa2D3POeP3jnVqAATgZLNZ6dnGejCOkYYeqmOlzWaDz+fD3NycABE+c2jmQiDDsXk8Hvj9/rF7nQs2s7OzyGQy0PUj85F+vy8gl4wn6+GazSaazaZI1nl8vlev16X3puoQabPZhOnimGjAEo1Gx75rvE7lcllq32iiwkW1ZDIpTd4pY2atK58jrJHTdV1MpwjeAEhvO84nn7lPIr5UAM5m02DTrBo4K6ywwgorjg+32439/X04HA5Eo1EsLS0hFApB13Wsr6/D7XZjdnYWKysrSKfTuHPnDtrtNi5cuACXy4VcLod+vw+n04lAIIC9vT3pb8Riftay9ft9bG9vo9frYXFxUWpa8vk8PB4PTpw4gWw2i2w2i5MnT2JqagrNZhNXr17F7du3EYvFkEqlsLe3h8XFRZw+fRp3795FIBDA6uqqACe32w2v14tsNisuc+VyGbqui9RIXYEHxhtkAw8S9tFoJFJKm82GcDgsSfHHH3+MRCKBr33ta2g2m7h///7YKrbaF8vYzJphZC6MDJGa/KvvHyelVOVyKriaBCrNjmXchp83Y6XI6BwnHVQ/wx6B4XAY0WhUALU653a7HTMzM2NuiCrYmsTIGV9Xz/FRTNkkEGu8bo+SBhrHYXx9MBhgfX0d58+fx+uvv47z589jd3cXW1tbCAaDSCQSOHv2LKLRKDY3N7G+vi7ggA2kS6WSABYVmPD+ILhmKwFeH/YzI7AZDocIhUIyho2NDbRaLfzO7/wORqMRrl69in6/j3A4LDVjwJETIwGN8ZwpN1TBvMqi8XvBOjW/328qneQ/Oiqq9Wij0VGfR8q6+R6NkXhNVOaLwI4GJMPhEFNTU8LcEwCxloxSUrpNAkeScwLheDyOSqUi0sp6vQ6Px4NUKoV6vS4LD3RwVQFlOBxGOp0WaXapVEIymYTH4xHAzrmipJHjY50fDWgoq9S0IzfJcrkMj8eDarUqbJ3P50OpVJKaONY+06hI0zQBhQSvNpsNfr8fkUgEfr9fXuMiBJ0y0+m0sOlPIr5UAA44qoOzGDgrrLDCCiuOiy+++ALD4RBLS0uIRCKw2WzY29uTJtunTp3C9PQ0bt++jb29PdhsNrzwwgvodrtIp9PodruYnZ1Fu91GoVBAPB6Hz+dDLpfD7du3EQgEcPLkSZTLZanHOHnypDBe9XodiUQCoVAIe3t7qNVqeP7552Gz2VCv13Hr1i0cHh5ibm5OzC4uXrwIl8uF999/H4uLi1hdXZWmth6PB81mE7u7u4jH45iamsL6+jpGoxFCoZA0+aUDnOpIaZQLAg8SbtVNjvPUbrfx9ttv44033sDLL7+MXq+HnZ2dh3oiqUDLTCIJjIMEMyBn/JwqpTQycka5pVHCqO7jOKZJ3Y4/zcauAiSzzxn332g08Md//Mdj9UnGGA6HeO+998TUwujIOUkKagRtx52rcd4msWlmDKTxnM3A4aRjMNn/+OOP8bf/9t/GysoKnE4nfvSjH+Hu3bs4c+YMFhcXUa/XEQ6H8fTTT6PX62F3d1eaTrOGTTXo4L1M+bF6rbhYQgdHgoqzZ8/i93//99FsNvGv/tW/gtvtxquvvgqHw4E/+ZM/EXML9gPkd8Dn88l3AhiX66quosbFA7VxN5kplXE1GuBwzGw8TnaqXC4jk8mIuRH3reu6ACdGMpkUyWEsFpOFnmAwKOfAOaR75WAwgN/vl8bZZMFyuRxGoxGi0eiYLX8mkxFgRrBH9o7sKMEzXR01TUOr1UK/30csFpNm3PzeckyURYbD4THWjjJYzrvdbsfOzo5cW9r7u1wukWnabEctBKLRqHyezd95PDpR0l2SABI46gtJpQDrosk6Pqn40gE4u02zGDgrrLDCCiuODTrgpVIpRKNR7O7uolarYXZ2VliA69evY2dnB8vLy1haWkK5XEY+n0e9XsfCwgIajQZKpRLi8ThCoZCwcktLS+j1erh79y5cLhdCoRCWl5fR7XZRrVYRDAaxurqK4XCI+/fvw+Px4Bvf+AYqlQo2NjZQLpdRKBSQSCQQjUbR6/Xw7LPPignD66+/LhIwrigDQLlcxsmTJzEcDrG7uzvWFoEJLIvwgQcyJWNTYTUhZx0JV8SZANVqNfzgBz/A3/k7fwevvPIK3nzzTWkvwGOoEk21Fk1NsJn0kiFUwZkKAlSwo4I44OGeczy2EdRMkmaq4zADO0aHTTN55KOC2xollmbHabfbY8DajD0zY+WMJiPG7SeBWfX3SfNk3O8kcGe2rXG7u3fv4l//63+NpaUlrKysIJVK4fr16+h0Ojh9+jQuXLggfcQoK6axidoegPulvJDASG3XwPuWzM3y8jJsNhu+9a1vAQD+3b/7dyiVSviDP/gDZDIZ/NEf/RFqtZqYYdB5kvcyQY1xAUEFcgQX6rUxmpaEw2GUSiUAD9wPuS3Pg3I+svmNRkNcOdUFCu6fDJI6BuCICSNjxlYB/X4ffr9fHDfJrnk8HkSjUakdm5qaQqlUQr/fl4UgsoOVSkV6ZLbbbbTbbTFRUduhsEk3ZYi8buFwWL7bvIY8X86J0+mUdgcARPKqAt96vS4yUPaGo1EJZbOapkkTdpqd1Ot1YXG5uBAMBhGPx+V47XZbgB0XCKhwcDqd4oT6JOJLB+AcNg2DoQXgrLDCCiusmBwnTpxANBpFMBjE1tYWhsMhnnnmGczOzqLb7eL999/H7u4unnnmGSwvL+P+/fticb2wsABdP7JGp9X+/v4+nE4npqenpQE25Tmzs7Pw+/0ol8vSc65UKuH69es4efIkXnzxRVy7dg1vvfUWXC4XlpeXsbq6ik6ng0gkAl3Xsbu7i0AggJWVFdjtdly/fh12ux2zs7MAIKyF2gw5FApJcsPkk7VAXHU2AiMzBqfVagnAYr0ej/Pmm2/i29/+Nt544w28/fbb2N/fH6spUWvdVGBmPK4KMCaxdWqoTpVMwNQaP8rIVEZkUkuBvwljZQbC1G3MjmP8aQYkVaBnBFIqkFQBnNE0Rh2j2b4nMXVmMQnMTTovY5jN03A4xDvvvIN/8S/+Bf7+3//7eO6558RsZG9vD06nUxrc379/X+5VJtCqTLDb7UqybbfbMT09LUYUHBNBXDgcRigUwv7+Pr773e9ib28P0WgU/+yf/TN89NFH+PGPfyxJvd/vRyAQEECh2vSrgA3A2EIF7znjfKhjod29upihygQp06SbLZmsbDYrTDq3ZSsAM8OTwWAgINTj8aBWq0nvSwJdAiwAUuvHY0QiEWQyGdTrdQyHQ2SzWQAQmTaP0+/3RcrJWljOD01LaCBCYxS32y3n1Ww20el0EAqFxJCELQgovdR1XRg21VSl2WwiEAiIYRNl7fzJeWetIKWz9XpdDEw492ydwnt2NBqJRLJcLstcU4nA835S8aUDcHa7huEjHvxWWGGFFVb8Lzump6dRKpWwv7+PwWCAxcVFxGIxNBoNqS95+eWXkUqlsLGxgf39fVmd7vV6qNfriEaj6Pf7ODw8hN/vl5qWbrcrJilMHAj+zp8/L82Hz507hwsXLuCDDz7AJ598ArvdjvPnz2Nqagqj0QjxeBydTgfr6+tIJpNYWFhAv9+XGpKpqSmx8qfcrtfrSQsAv9+PaDQKTdPE9U9N9I5jWIBxaSIL90ulkrRg6HQ6ODg4wA9/+EN85zvfwRtvvIE///M/FyZSlYwxSVKZCKM0kuNSkzSCFiObpybQavAcuR2ZCDO5ohmzpf5uxkiazc8kCeGj5tfs2GZ/q68bP69eRwI/Vb436ZwmgVQVGE5633jOZqGCTLNz7na7+MEPfoDRaIRvf/vbuHTpEnZ3dzE1NYVOp4OrV6+iVquhVCohl8vh8PBQmGCyYqzzUvuvqQCH2xDglUolbG9vi93+q6++isuXL+PNN9/ERx99JLb3Pp8PkUhE6uzURQcCJJXpZfAeNbqfqiAiEomg1WpJ4q9uS1an0+lIO5FqtYpOp4NisSiMnSrHVL83uq6LSQtZslKphGq1inA4LGOkrJC1eLquIxwOw+/3i8QxFArh3r17Mm72V+N46SRJUO33+6Fpmjjdqo3HHQ4HVlZW0O12hZ3LZrNSpxaJRFAulwWk04SEbCXlxMa+iJS51mo1afLt8XjQarXGmFO6ZTYaDYTDYeTzeVlcYxNwLkyx5pLST7vdPtZywe12i4vqq6++iqWlpWO/B7/K+NIBOIdNs2rgrLDCCiusODbu3r2LSqWChYUFLC4uAjjqL0XZ0vLyMgDgs88+Qy6Xw/z8PAaDAer1ujhV5vN5OBwOzM3NIRKJSILl8/kQCoUkEfB6vUgmkwiHwyiXyzg4OMCFCxewuLiI9957D++88w6cTidee+21sZ5wpVIJ+Xwep06dQiQSwf7+PprNJqLRKOx2O/L5PPr9PhKJhBTVz87OolAoSJJB9o0JncpSHWcOojI9AKSlgt1uR6FQAACpm9nf38dbb72FN954A7/927+Nd999F1tbW5LMsT5JdcJUQZwqSeNqO8cAmDenVlk3la0yGpqoyTH3xc+ZgZXjWCr1ffVv9bXjgM0kIDhpv8bPPeo1FZxNAoHGMGPpzH6ajXkSyFR/P+7zjUYD77zzDhwOB8rlMlZXV5FOp5FIJPD1r38d77zzDu7cuYNcLodqtfpQPSBlg5TIEcDQyIQLAd1uV0CT3W7HwsIC/u7f/bu4ffs2/v2///fY2dmRe4WLEwQOqgxTPT7lfTSyUe3kVXkn7z+6JLbbbWkAr0os1bo4HrNYLKLX66FaraJQKAjTRoaJ3x1+x1S5qMvlQqVSga7rCIVC4rzY6XQE3LAxNlsIsBG6x+PB7u6uNNsmuOI4gQcMeKfTgcvlgsfjEfYSeGDoQlaUz8Z+v49ms4l2uy391DqdjrROAYBWqwUAAsb43CqVSvB4PCL5DAaDyOfzKJVKCAaD4nJJN0yCfQDSrLxaraJarY4Z01AuS4aN15aNyuv1utTGke2jTH1qauqh78CvK750AM6qgbPCCiussOJRkcvlsLa2hvPnz2M4HOKjjz5Cq9XCwsKCGItUKhUEg0GpG2m1WmIWUi6X4Xa7cfLkSfh8PhweHorbWSQSEaAQi8UwNzeHZrOJQqGAwWCAy5cvIxgM4o//+I9x5coVnDt3Di+++CLsdjtarRZqtRoODw/hcrmwtraGwWCAzz77TAxNer0e2u22WG9Xq1WsrKwgFothZ2cHPp9P+r/5/X5Jct1utxgdqICDCSBZMsBcItfv96UGhi6XbrcbvV4P9+7dg81mw3e+8x385m/+Jn7wgx9gf39fTCeMdWTqsY3sGMejHp+/G5k5wNwghduqzZUZBJOTWDKVPVHngscyY7bMYpJMclIcx7wd99pxckx1m8d5bdI2xu3VOZoEPh917rquo1Qq4Qc/+IHI31wuF+7duwe32425uTnE43H89Kc/HWOY1XvT4XBgaWkJLpcLsVgMsVgMH374IbLZrDA24XBYpMzf+c53EI/H8Z//83+WJuHqvti/kfePCpBUdlhliY33tXo/EowRPLG2S5WBEjiSSfP7/QJy6vU6Dg8Px+reVImkKunkPkejEarVqtS3EfhxcYrghgCH7JLdbke73UYulwNwBMIqlQoCgYBIC71er5h7kK1kw+zBYACv1wuv1ysSw0gkgkqlIsYnbLsyHA6l71s+n5f9AA/65zUaDYRCITidTunNxjYAoVAIpVJJrivNTRhk9ihnZ00l3Tr5XPB4PAiHwzInXADgogLBpM125FKZTqcRCAQwNzeHbDaL733ve1JP+euOLx2As1worbDCCiuseFRcuHABZ8+eRTabRS6Xg67ruHDhwlgz38XFRbhcLhweHsJmswmQGw6HmJ+fRzQaFWv0TqeDmZkZsbi22WzweDyIx+PI5XLI5/MIh8M4c+YMRqMR/st/+S+4efMmfuM3fgPnz5+HpmnI5/OyQpxMJpFKpUR+GY1GpVAfOEpQKElaWVlBrVbD3bt3AQBzc3MC9m7duiXsA1eXmVQCkJV8I/PEMAIKGrEwgWeT28FggHv37uHNN9/E66+/jjfeeAM/+tGPsLGxAQCStKnJJhNWI2g0q/86jr0ygj2jvNLoEGhMeCeduxqTANMkEGg2Tr52nORy0r4eBcAeBQ6PO/ak9yeF2XGNv/88+6xWq3jrrbeg6zp+8zd/E5qm4datWyiXy/B6vYjFYnjuueewsbGBTCaDVqslwMXv9yMcDsPlcsnCidPpRCqVkoT+a1/7GjweDwKBAG7duoVr167h4ODgoXrJUCiEUCg01jTbyDip5iCTWFez+5H1pkYgCDzo90ZJI7+vzWYT2WwWzWZzDPCxRozSPt7LBIE0LeJY1RpBukHyO9BsNgUYkx2bm5vDcDhEtVoVp1wymvxsp9MRmXiz2QQAUSYQMAJHrF6v10MgEEC9Xkez2YTb7ZY6MgJo7hvAGFMJHElf+axg2xaqH9iOg2YjnHc2KKf0mwYn6jVjk26PxyOSSppCsZk46+C8Xi8qlQocDgcCgYAsxlFK+iTiSwfgLAbOCiussMKKR8WJEyewsbGBdrsNXddx9uxZqaXodrsijSkWiyLPyeVycDgciMVi8Pv9KJVKaLVa6HQ6CAQC6PV6KJfL8Pl88Pv9SCaTyGazGI1GWFhYwOzsLO7du4e/+Iu/gMPhwN/6W39LLK43Nzdl5fvSpUsIhULI5/MoFouYnZ1Fq9VCLpeTBIZW39PT09jf38f777+PtbU1PPfcc2g2mxgMBigWi1hcXESlUpGEl6vbuq4LGwBgzJaboTbEVmut6EzJ/TH56vV6+Oyzz9Dr9fCtb30LL7/8MkajEXZ3d9FutwUsquyEekwmaYzjGLJJ0kkVXKhATgVxxmMeJ5mcFGoiaGx9cBzAM7738xzzcQDhcWM1288k9u44JvC498zApPrepLG222382Z/9GQ4ODvAP/+E/xAsvvICbN2/i9u3buHnzpgCeZ555BltbW1IH+hu/8Rt48cUXsb29jY2NDRQKBZEzzs3NSa3X7u4uPvnkExQKBbGGV8E8mzbzfuY/7osLDSrLpUp0jTWlZO5YY0ZLfL7O38n8EJzQyl9tWK5+d3mMZrMp+6Z7JBl2smTs5cbzYE0XAAFUnU4HyWQSBwcHKBaLiEQimJqakvGy/cBgMECtVhPZpcfjEQmpruvw+XyYmZlBvV4XE6VSqSSNsOv1OtrttgBkyiZHoxHC4fCYXJIGI2TNAIiTpWrMFAwGxSGS17PX6wnjSra2WCzKfHAuXS4XEomESCX5fKKqge0beH1oWOXz+YQdDQaDMr4nEV86AGfVwFlhhRVWWPGo+OKLLzAYDOBwODAzM4NMJiNNlpPJpNRsMCHa399HKBRCKpXCwcEB6vW62PovLCwgl8vJtqFQCH6/H+vr69B1Haurq1hYWMBf//Vf48qVK5iensa5c+dkhZgF/dFoFOfOnYPP58P29jZqtRpWV1fR7XbR6/WQTCYFqFBatL+/j3q9jtdeew3z8/O4desWAIh8k7UmXq9X3CTpRsnEjkk8JYdGEwYjo6DrukiomLwmk0k4HA70ej3cuXMHDocDr776Kr797W/jvffew82bNwFAEiijbJKJqZm5iRGIMVQGg+M3a0Fg/MljG0Gd2XiOY6wmsXaTANFx0sTHkVdO2vY4YMX3J0khj/ucMdR5ncT6Pc4Yjjvfa9eu4f79+1haWsJ3vvMd/KN/9I/w4x//GOl0Grqu4/Lly3A4HALE2H7g+eefx40bN4Sxo2T58PAQ+/v7qFarkpSrY7TZbGL2w3pRBtkmflfUMas1myq4Uu8/471GMKje0zTN4P7ZE42mJaopCPdP0GQ0CWq1WtIgW63bI/OmNu8mWCsWi8KgxeNxBINBYStpUNLtdgXg8HufSCSEKeRzpFKpCPiq1Wri4lmv1wFAau8o6wwGg1KDp2lHBij5fB4zMzMi3yQIdrvd0lsuHA6LuQjNSwAIK0gQDEDUAqyL5Pinp6cFnDWbTWFgbbajNgMEmV6vV5wuWf/GOmjWCz6p+NIBuCMGznKhtMIKK6ywYnIMBgOsrq7Cbrdjb28PhUIBsVgMPp8Pm5ubCAQCUpzfarUwNTWF+fl5AXo+nw+pVAqRSATb29vo9/s4ffq09Da6c+cOgsEgzp49C5vNhj/8wz/E9vY2nnvuOQE7/X4flUoFw+EQ8XgcS0tLaDab+OlPfwqn04m1tTWp5QmHw8KYhcNh1Ot1FItFxGIxnD59Gpqm4Yc//CF6vR7W1tZE+qlpmpynw+EQh0018SRoY1KuslSq4Qkwnoi3Wq0x8BeLxaRH061btzAYDPA7v/M7eOONN2Cz2cbknGZsGwCRhKmg0UxeyNeZqJklzUZQSICqJuNkUdQwAzYq6DACWvW94+SUjwMKHxXHbW9kESeBWPWcft44jk1Ux2D83RjHSUIbjQZu3ryJW7duIZVK4amnnsLy8jLa7TY+//xzOBwOPP/88ygWi/B4PLDZbPjkk0/QbDZxcHCATCYjix6snTNeKwKJQCAgDBCBlcq8qXJAfl5dKFBlubquj7F06v2nMm+UaFK2x9qv0WiEYrGIfD6PXC4n0km32y0AUAWJ/CwlkARBtO7neO12u7h7RiIRAEcMXi6Xk7pbAFLvS6BDR0xNO5Kqer1eqZkjgGa9IG38yfgREGUyGZkP1uSxPYDL5RLwyFpa9nCjPJHfW34WeAB66SDZbrdF6kjDFZfLJQwjrwHvgdnZWTG36fV60mi8VqshEomImoDjczqdiEajUqdJiSeNaZ5UfCkBnNUHzgorrLDCiuPizJkzaLfb2NzcRK/Xw8zMjNRkeL1ezM7OolariWQyHA5jb28PzWYTsVhMCvDZvHpmZkb6O2WzWczOzuLcuXM4ODjAX//1X6PdbuPll18W2RETG5/PJy0CvvjiCzSbTYRCIUmk1FX7SqWCWCwmDNji4qK4X2YyGcTjcSwsLGA0Ggn7x3Pp9XpIp9NiVkDwo5qaMAElCFJliGaMgqZpIkHl+6lUShIgykVff/11fOMb34DP58Pnn38uiZUxuVfr4cxCBZxqTZCRJTRrHaDu1wjA1L+N9YDG46vvPYqBepxaMDPwaARGx4HC4/albnMcWDtuP48Dwo47jnHOjtsP7zf1ZzabRSaTGZM20mKfToe8FmpPM1VWp56Het/4/X7EYrGxfmGqfFJtRq+ep7rwoIJ6tYE3P6fKNNX3yFbzM91uF5VKBYVCQcCb6qaqSjnVnowEmAQSPp9P6ngpc/T7/Wi1WggEAuJ22Ww2xYKfAC0YDMLhcEjfN9Z80e6fjb85HhokDQYD6Zemnh8BKMEXQZOmaeLwyOtKg6h4PC5sKRedWJOs67owg5p2VOfG7Qiq+Myk3J3XgKBvcXFRjKhU8MYaOr7m8/mQzWYxHA5lwYwtDmq1GuLx+Fj935OILx2Ac9ptVg2cFVZYYYUVx0a320WhUJBaiEqlglwuJ3Kq3d1dOJ1OBINBtNtt3LlzR/rFra2toVaroVAoIBAIYGlpSVzT8vk8VlZWMDc3h6tXr2J9fR3hcBjPP/+8gCf2eWLy5/f7cf/+fZRKJUSjUVmFppyKSVksFpNEhZIe9spyOp2YnZ1FqVTC/fv3EYlEJGmKxWIoFovSWoA1HFy1B8wTfDUJNSauDDYaVhN0usL1ej3cvHkTzWYTv/Vbv4Wvf/3rCIVCuHr1KnK5nKyOmwEWM2CmhpEdM3OiVFsJcJ9MzM32qdY0GRP+46SQRpBjtu3PA6AeB7wZ58IMqKjHnTRmM3Bldj5m829k2giA1W3MjqeG0XKfYaxvpLyQVu9m944xzOaVDFgwGEQ0Gh1jjFQGbhKwVoNjVBk7bqu6nxIw8v7TNE0YLoIwPjtyuRwajYZIjY3fPV3XxxpcExABGHsmsCaOzwA6TBLI1Go1dLtdASazs7OYnp5Gp9NBu91Go9GQ9gIEUl6vF+12W8AbpYqsLWM9L8dPYEy3R8oTCZjIegIQ9m53dxcOhwPT09PQdV1qzGy2ozYoBH2UUwJANBpFp9MRwM0ebqo5DN0q2YcOOHruqrJMOlzSpKRarWJ6eloWutjnk9eBdXxPKn4hAKdp2jaAOoAhgIGu61/RNC0G4H8GsAxgG8D/Wtf18i82zMcPu1UDZ4UVVlhhxSNiY2MD8Xgc8Xgcd+7cQb/fRywWQygUwuHhIXw+H6LRKJrNplj6nzlzBtPT07h79y7S6TRmZmawuLiI0WiEnZ0dDAYDPP3003C73fjRj36EwWCAkydPyoo6e7wxCZmenkYmk8H+/j40TcOZM2dQqVSkIS0TstFoJMX1rVYLfr8fPp8P1WoVvV4PU1NTMu5sNotgMCir3pFIBNlsVuRT7F9EEMkgqKHlP5NNYNzABBiXJjLBbLVaY3VByWRSTAju37+Pfr+P3/zN38Tly5cRDofxzjvv4ODgQKzVATwE2ngMM8aDwSTXDDiQyTG2DFABn9Fl0OwYRrCj7n8SCzfpPeN5GPdnts3PE8cBciPoNdvOCAYnbcPEnNcOMO/XZ/b3ceN63HgUq2cm5STzEwqFhG1S58HIvpmdszFUN0kGTUlUxpDujwRgbHQNHDUfz+fzyOfzY26JBHsq+6bruoAh9mBj6wHWoRHc+f1+dDodqfuKxWLyucFggFKphFgshoWFBQSDQZTLZfT7ffR6PXi93jFXSLJ2lDYSRGuaNsbAETCySbbH45Fat06nIw6P4XBYauzogLm1tSXPtoWFBdTrdZTLZTgcDszOzqJcLksNYL/fx8LCAmq1GhqNBsrlssyvKk8Fjp5tyWRS2quwVx7fIzOZzWbh9XqRy+XQarWQSCTEPIWtHTRNg8/nQ6VSGXPOfBLxy2DgvqHrekH5+38A8ENd1/8nTdP+h5/9/X/+JRznscJhuVBaYYUVVljxiCB4++EPf4hCoYAXX3wRqVQK9+/fF6lMvV5HqVSCz+fDmTNnMBwO8f7776NQKODMmTNYWFhAPp/H4eEhZmZmcPr0aeTzeVy9ehXLy8uYnZ1FLpdDIBBAtVpFMBhEJpNBv9/H/Pw8yuUyMpkMlpaW4Pf70e/3xUhA0zTpneR0OqVWjswaa04SiQQAIJ1OC/jjZ1wuF7a2tqDrOqanpwU8qhI0JopMyFT2S5VuGQEJ2RYVrLCWhglWKpUSxnB3dxd/+qd/im9961s4d+4cQqEQfvzjH2NjY0NaM6imDCoDYwyjqYma5KqMhcq8qaybKmdTf6r7U8/LyLIZAdfjMmVqPAq0PAoImYX6vgpGVQBjto/jgNpxx3nU9mbs5KP2ZTbPZvt8nFD3TRdGNukm82Y2fvU+5CKFCvBoqW92P/A+pCEK2S/+rTbE1nVd+q6l02k0Gg2p5+JnOU4yPTQC6fV6App8Ph+cTqeMi8xTtVoV5or1ZJlMRtwXdV3H7OwsFhcXsbW1hUKhAE3TEAgE5PvvdrsRi8XQ7XaleTYAcaYEjpgsLjTR1MRutyMcDksvtlwuJ+1GKFGkMUqv10OxWARw1IpgamoKbrcbfr8f+/v7iEajKJePeCD2lYtEImi32+h0OiK/ZHuJwWCASCQCj8eDWq0mY65UKvB6vXKNWUOo67qMj8CTfe+odmg0GrDZbCLx1HVd5uVJxa9CQvkdAK/+7Pf/L4Af49cI4I4YOMvExAorrLDCisnh9Xrxgx/8AK1WCy+99BIikQhu3boFt9uNeDyOdDoNj8eD2dlZzMzMoFQqoVgsYjQa4dKlSwgGg8hms2i1Wjh58iRCoRC2t7exu7uLc+fOSfIQCAQkedvZ2YHL5UIymUQ+n0c2m8Xq6qoYEcTjcZFi2u12zM7OQtd1bG5uwm63I5VKyeo3rc8p4ymVSqjVatJIvF6v4y//8i9ht9tx8eJFtNtt+Hy+saSKZgGUYZF1IwCii50ZkDBK9hhk4hipVAp+v1+StL/8y79Es9nEV77yFfzWb/0W3nnnHdy9e1ecMdUEF8DYOIygbhL7BYy3QDADcZqmCUAdDAYP1d6p0s1HAbVfhDkzzt/jsHeT9qF+xmjcYZQzqiyqccyTAJdxnEaWyngOZvt6FCP387Bxx4FD9T6g/M/n84m0TpVnEnCozNmkMakMj7FBPEEX7fopmSZLZmSSO50OMpkM0um0yJqN9zjvf5p8UFqp1p7xmaC2CqDr4vT0tDBytVoNuVwOtVoNxWIRc3NzCAaDyOVyIsN2OBzw+XzodDoiGyQr7/P5xur2aGDCOjXVEdLv9wM4MqRhLzbW6/HZyFYBw+FQnk2BQADD4RDr6+uYnp7GzMwM8vk8nE4nwuGwyEM1TUOxWJQWCoVCQdwkk8kkgsEgSqUSXC6XOPB6vV7oui7nx2uTyWTgcrnkWao2IieY1TRNxkpFBBm+JxW/KIDTAfxA0zQdwP9b1/V/CyCl63oaAHRdT2uaNmX2QU3T/jGAfwwAi4uLv+AwHoTDrqHbtwCcFVZYYYUVk+M//af/BE3TcOHCBdRqNezv7yORSGA4HGJ7exvRaBQnTpyAz+dDuVyWovhnnnkGrVYL5XIZNpsNJ0+eFFvzwWCAs2fPjtVS+Hw+FItFlMtlrK6uotfrYXd3F4PBABcvXkS1WkWxWEQqlYLNZkO5XEYgEJBeTNevX4fL5cLi4qKsBKuApN/vI5vNolqtIhQKyQp1uVzGhQsXZF/lchm9Xg+j0UhMCmq1msip7Ha7rOIDD1gwOl+qzBVgbpXPoLEJGb5UKoVwOIxOp4NisYi/+qu/QqVSwYsvvohvf/vbmJ2dxUcffYRCoYButzvmimlkOtSaNjUJN+sfp0olVTklt1HbEKisC4+hAj4jkFWPY5wH9fiPAmJGAPI48sNJINLs/UnyT7Pjme3rONBqrDl8FNg9jlmbNBbj9pNAm3GeKG9jAk+zCrVejUBEdYgk8J8E4oxsnBoul0vkywQaBIa8p1iPxTYH6XQarVZL2Gv1XHgcYx84giTKFenASABGoJFIJBCNRgEAHo9HmKNKpYJEIiEmIPl8XlqTsAVDv99HIpGAy+USFQLHRgDDPm7BYBCVSmWMDadUtN/vj90rNC/hs4XgMBgMjkk82+02Wq0WstmssHZ7e3sIh8Njck+CM5vtqB1EPB6H0+lEOp2WeuJmsykGVZSVkoGkyy8BH9072WuOn6XxSbvdRiQSETnp9PS06T3764hfFMC9pOv64c9A2luapt153A/+DOz9WwD4yle+8kvTPNptNgxG5qtCVlhhhRVWWAEcNfK22+1oNBpoNpvi1DgYDHD69GnEYjEAR72FCoUCFhYWMDc3h0wmg+3tbczPz2NhYQG6ros1fyQSQavVkr5r3W4XX3zxBfx+PxYXF7G/v49PPvkEKysr0l7A5XIhlUqJhHFqagperxeFQgFbW1uygq5pmtS3sJkscNRovN1uIxaLSY+30WiEaDQqTXJdLhcCgYA0BSZLZ7fbpfGxapc+GAzEMAJ4kEiqidgkkMJElz23gKM6k1gshpMnT6JYLCKTyeD9999HsVjE66+/jsuXL8Pn8+Hjjz/G/v6+1Jrw+GZMD4+r1rKpDpKP2t74GvCAdeM88HzVfaoMiVmdFX+f9BrjUdJC47gfh5E7jpGc9L5xLMbzMcpIf5HjP26YgUwz8Gd8XZUsOp1OqSUlA6WCLqMrpOo6+TjjV1/n8fx+P3T9yHgjFArhqaeeQr/fx2effSbj7Xa78kxhrRWNMYz75/2nmu+w7pB1XGobDR6DjP9oNBqr0aKkUm0J0G630e124fP5ROJI0BIKhQAAsVhMJIThcFhAJfulAZCaPi6GdLtduN1uAZ2UddPlUdd1lEolYRJDodAYcI3H4wKobDYbMpmMGLOUSiVZdKLJidPplBYABwcHCIVCCIVCaDabAlSdTqcARMrJh8Mh/H6/LIAFg0Gk02nY7XZ0u13pU8cWApSiU0768zDlv+z4hQCcruuHP/uZ0zTtjwF8FUBW07SZn7FvMwByv4RxPnZYNXBWWGGFFVY8KphchEIhhMNhqVVbXV2VQnv+W11dRSKRwK1bt7C/v48zZ85gZWUFw+EQ+Xweuq6LnLHT6aDRaKBQKODg4ADz8/PweDx47733UCwW8bWvfQ2pVEqcG6emptBqtUQK1Wq1UCgU0Gq1sLa2ho2NDfR6PTzzzDOyery1tYVIJCKr2+FwWOQ8dJkDICvaGxsbqNfr0sSXrOL29jaazeZYXypa9Jv1YTOTFZqBN77f7XalL9O9e/ewurqKl156CW+++SZ2dnZw/fp1FItFvPLKK7h48SLm5ubwk5/8BHfv3hUrcdVKXWUh1Fo1HtMIzhhGkKfuTwVxTD7VXnHqnKj7NTv/SfE3BTaPC/J+njADnWYgzygNfNQ+jdtOArfHvTcJuE06vgrCyHSp4I0ATjUMUVk3Ag4yY+o5HAfcCPgob+TvtVoNNttRk+vf//3fRzwex5/+6Z8K+Op2u9J/LZ/PC6MzaR5Uh04ybxwzgVM4HJbf6fBYr9cRj8eFfer1euI6Gw6HRUraarWk9ozywnq9jsXFRXQ6HRweHo65R7rdbnm+9Pt9kX5XKhUxKGED7GAwKGoAth7gM28wGEhNLxe+KGHU9aM6wnw+D017YBjC65bP5wV0lUoleY4HAgHY7Xbk83n4fD6pYVYbpfMYPp8Ph4eHCIfDWFhYQCaTEfBXrVbHJLYEyYPBAFNTU3C5XFIvxx6iTyr+xgBO0zQ/AJuu6/Wf/f4GgP87gD8F8AcA/qef/fyTX8ZAHzcsF0orrLDCCiseFTabDTMzM7Db7ahUKggGg9IjiPba/X4fy8vLcDgcuHr1KqrVKp577jlMTU2hUCgI22Wz2aRXkqZpYrV96tQpAMCdO3dgs9nwzW9+E5qmoVqtIhKJIBQKiV23pmlIp9MIBALweDwIhULweDyYn5+Hy+VCLBZDNpvFF198gYWFBWHgCOQoZ2KiFQwGBQABR4B1fn5eJJRcZabbHFfijQ6QgHnvKyOQmZR8DwYD1Go16LouNXkej0eSy8PDQ3z/+99Ho9HA888/j29+85uIRqO4evUqisWiJE+qsYoqfzTWehlDTYYZRvdJJuzq63yNSaaaSD9K1mj2uwpGzNi4SWEmSTyODVPH8zhyw0nHPA60Gd83bmv2txlbNun3x2U1uOig1rFRNknWTV2cMEolVcZZ3Z86Bta5qddPZfEIqvj9oJyxXq/j+vXr2NzchM121P+s0WggnU6jVCoJ82YEqfxd/af2uyNYo0SS9y9lhl6vF7FYDIuLi1JnS+ae9ahOpxOZTEb6mZGd0jRNZOO1Wm3su8uWBFwcIptGVpDmKrTzZwsUbkvDEa/Xi0ajIewfDZv4GZqE8PqQhSMLxnlqtVpSy8Z6u2w2C6fTiUAgIM6b7BMHHLGE4XAY5XJZWMBarSbS2larJXPMZw7bPPD8KKV3uVyyyPSk4hdh4FIA/vhnk+kA8F1d1/9K07SrAP5Q07R/BGAXwO/94sN8/Dhi4KwaOCussMIKKybH3Nwc3G43CoUCYrEY5ufnMRgMpHjf4/FgdXUV7XYbt2/fhtfrxfnz5+FwOLC3tzcmZaTNdL1eR61WQzQaRSKRQLFYRD6fRyqVEommrusIhUKw2WwoFAoIhUICUiiXzOfz6PV6YiIQCARw5coV7O/vY3Z2VpKGeDwukiC17g44SnA0TYPT6RQmjn2atre3MTMzg1AoJCwZkyOu+rtcLqljMQNpRjBBFstMcsd6u62tLfzhH/6hOG0SZJbLZbz55ps4ODjAq6++ildeeQWpVArvv/8+dnd3ReqkJskcg2pOAjzcisBs7CqzobJ2KjPHz6jAT2VpjPNg/Nv4uhnQO+69SaDoUXLKR713HNg1O5YZc2YEZMb9qXWLRvBrPI4Z22V83exYKpgieCNoU2vdVHMaXneyMWRbVWCkMq9qqKY4DLfbLWDB7XaL++rh4SG++93vwu12S3PxWq2Gw8NDFItFtFqtMYnxpONxPNw3GS/2L2P9mM1mg8/nE4ljIpFAqVSSnnI0ROI+aSzCxSTKrFdWVhCPx7G7u4t6vS6ulgRZZPf4/CqVSkgmk2i32+KI2W63ZXGGfePYNoVzRSBICaKu6+j3++I2SWOSvb09qSMul8vQNA1ut1v6vKkmKI1GQ9qm0DxKlX13u11pTWCz2ZBKpVAsFmGz2TA1NSWMKJuf93o9OJ3OseditVpFp9NBIBAYazXzpOJvDOB0Xd8EcNHk9SKA3/xFBvWLhMXAWWGFFVZY8agYjUaoVqtIJpNIJBIoFAqSOKjNvQuFAmZnZ8W5sdlsIhgMIhQKoV6vi/yxUCjAZrMhEonA7XajWq2i2WxieXlZHOlcLpe4utHqutvtSg0bXdYKhQLi8bjIo27duoVWq4WlpSW43W4Bn2SwWMw/MzODdDqNqakpSVRUVo4J3dLSkji3pdNpHBwcyEo62wuojpDA5Do49f1JLBTnm6YErVYLkUgE0WgUsVgMmqah2+3i2rVrKJVKeO2113Du3DlMT0/jpz/9Kb744gup32PSqgIRrpibjcMYqnOgGSAzyi3VhH6S3JC/HweuHiUzNL4+KcyYzkeF2TaPGuckgGcmazTOjQp6jfWEansHdTsjw2gE0UbwSZBIlo3AjaCN7zFUwxqVzZ10PmZjU8+ThiWU5zmdzrEFBkqIh8Mh6vU69vb2UKlURNJovB/Uc1PnjPLLQCAwVvtGANjv94U9Y3uAra0taJomtvmxWAy6rovxxmAwgM/nQzAYlOfZiRMn4PV64fV6cfHiRdy6dQu7u7tjtaVOp1NqexOJhLQkIcCjBHIwGCAYDMLtdos6gCweF2I0TRPVAvvFkbGz2+3CDobDYZRKJfj9fulFx5YFdrtdZKgejweRSATValWeJ71eD9FoFP1+H8lkcsxZs1qtSq9NLohxLJqmCavHcff7fenlyRo6m80mbQmeRPwq2gg80bBq4KywwgorrHhUDAYDzM/PCxNms9kQCAREUlQoHLU3jUaj8Hq9sjLMJITucUzu2Jibq+1OpxMnTpzAcDiUHnC02waOatUajYYAOZ/Ph0wmg3w+j5mZGUSjUbRaLVSrVdRqNXGpnJ6eRiAQwMHBgazmT09PIxKJIJ1OY3NzE4PBQBI31gGxBoaOcZRpptNpxGIxWXEnoGSYsSkq6wY8bN1vTIzV5JtsGk1bOp2OSLva7TY2NzeRz+fxwgsv4Ktf/Sp+93d/F6dOncJ7772Hra0tGRfBgFrXpjIaRmMS9XPquR3XpoDSLuP5qnPB7Yy/G4Gk+rcZSDLuwxiPkkz+TUId5yTgexzTZgRt6j5UOaL6HSEYMHMN5efU4xjPj2ybWuumGpSoTJr6GW7DJJ3s0iRp8HHAkRLgTqcDAFJnNxgM4HK5RA7IZtkHBwcol8vSp0w9L3XOOU62t+D9R7ZN0zRpGWCcL/ZPq1QqaDQawtrRzKNarQI4ahrudrvh9XqFmXK5XJiZmcGPf/xjPPvss3j22Welxpdj5rOOYKnVaiEajQpY4lyQIex2u8jljiww+AxqtVoC0giMaKZCh0in04l8Pg+Hw4Hp6Wk0Gg2Ew2H0+33U63V4PB6RhJJx5P1TrVbhcrlESUEQNjU1hVqthnq9jnA4LLJ1MpVsMcB6OV5LSj2j0aiwc7y2rJP971VC+d9k2G02DIYWgLPCCiussGJyLC4uwuFwIJfLCXM2Pz+P7e1t6LouiUG32x2zmWeiT0ZrOBwiGo1idXVVwBtdHnu9Hmq1mrBMjUZDnN7o4sbEgZIjSiQJssgAcnV9OBxiY2MD2WwWnU4Hc3Nz0gQ8m81iZmYGsVgMPp8PPp9PmMJ4PI5AIIBarYalpSVEIhF8+OGHkkQBkBV0NSlhgkjmC5gs+WJibsZoqMHaGUrYuKLP3kqtVgvvvvsutra28O1vfxvPPPMMkskkfvKTn+DGjRtigKBa+6vHUIGCMUlXE2ejzHJScF9GEKcCO/X342SSjEcd81GAzrif4/ZvJoM0HmPSGIx/q581/s2fBFOqzJHHMYI4df4m7Y+fI8Bh3RkNPXg8M5dJsnF0IGQNF0MF/kYG0bggoGkawuEw3G63GJaQLVPt8kejEdrttoC3RqMhQOi4a0m2TWURaSBCoAqMu7LSmTEcDuP+/fsynna7jRMnTmAwGKDdbqNarYqjYjweR6/XQz6fx+zsLBqNBt59911sbm5ib28PtVoNr7zyCgBgc3NT3HnZ1JqSxUQiIdeEIIx/7+zsiAtuv99HuVwWqWkwGBS7fofDIT3oKOm02+2y0BQMBlGr1YQ546KXx+MRGSXvY6onKKGkpLLdbiOfz2NqakrA3cLCgjQBD4fDwmYSpBFgsvaO9x3bC1CtYAG4X2JYDJwVVlhhhRWPimq1ilarhWAwCJ/Ph6mpKdy7dw8+n09MQljvQIaHVteDwQBbW1solUpYXFzEzMwMKpUKMpkMEokEEokE+v0+arUapqam0Ol0UKvVMDs7K5KiarX6kDEAAEmCPB4P7t+/L3UftVoNANBsNsUOfG1tTZLNdruNRCIhbnK0D2+1WrISPRwOkUqlUKlU8Oabb8LhcEgNR6FQECdLGiYwIWXCqNYQGYEKkx5j8jspyExyPnq9HmKxmLCG3W4XGxsb+I//8T/ihRdewMsvv4zf+73fw+nTp/HBBx9ga2tLJGGqzAsYZ9lUlg54mO0x1tUZx8h/RrA3iZF7HAnlpPeNTCfHe1z8PO8bGTfj+2askNn2Zr+r26v/jEwcMLlO0ew4BElqrRvZKYIFdVsVwPE9l8slMmaGamyiHtfY0J37dLlcOHXqFOx2O9bX16VekiYXZJ5p3pHNZlEqldBoNKRG1Wxu+VMFbwSbfI+gp16vC2CgUQuba29vb4sb7XA4xPz8PBwOB9rtNiqVikgt4/G4mIOQWev3+ygUCtIfbWdnB9lsFplMBu12WxabCOR0XZdFIgAIBAIoFArSiy6TycjrZNqz2SwikQgWFhZkIUnXj5qZ87tfKpVgt9vFYZLn3Gg0RMLOWkCXywUA8pwjmCNoZCsVugLPzc1Jv73l5WVxEHY6nXC73dImgaoAynJ5zqFQCJlMRoAi6/t+EQb8F40vHYCz260aOCussMIKK44PJgNTU1NwOBzY3d3FaDTC4uKiSK3YiJcJdalUwu7uLsrlMkajEU6cOIFoNIpsNiv225T9eDwenDt3DsCR9XU8HhfXuV6vh0gkIklfv98XJopF9Ds7O6jX65ifn4fP5xPQBgCrq6tIpVLY398Xi3Bd1xGPx6VRLgCpQ2FvJ8qm2GDX6XTizJkzKJfLWF9fF5kVkyNKrFRgxoTe2OSav6vb8HezbbhPJojD4RC9Xg+dTmesyXClUsFbb72Fg4MDfOtb38L58+exvLyMjz/+GB999BEODw/HetapQeANPNzs2xhGMEdAqDKPDCMYUwGXUTpqxlaq86D+bQRLZnOp7l8di3E7lZkw26/ZWIz7Nr4/iSXj51Swxjk11pKxyTOBtdH4xri9ynIRyAF4iKVSx6zKJWkDr4I3YNyJ1AjejOfr8XiwsLCAdruNg4MD2ZbnQgdYXddRLpeRz+dRrVYFvE26RupxjNfLbrePMfQ00+BPj8eDqakpABDjJC6ipFIpeDweFItFlEol6b1GB0ijK2O1WkWlUpHFnKmpKezt7QkbpjJQbFDOVgAzMzMoFAqiSqABk9/vx3A4lLq/6elpTE1NiarA4XBIA24aj7CuMJ/Pi5Nnq9VCKBQS90cauZgtmNDUpFqtYnZ2FsPhEIVCATMzM6KAmJ2dhc/nw97eHrxer0jofT4fGo3G2D3NGrtkMintBVTQzOfDk4ovHYBzWi6UVlhhhRVWPCJGoxGWl5fR6XRQKpWgaRpmZ2exu7srkiXgyJq63++j3W6jXq+jXq8jFouJ3TbB2KVLl+ByuZDNZsVtrVqtolAo4Pbt25JQnjx5cizZ6vV6sNvtAgpdLheuXLkCl8uFkydPIhAIoNFowO/3j7kl3rx5E8DRKrfL5ZJ2AMBRE22v14tOp4N6vY5gMIhYLCbOlvV6HSdPnoTdbkc8HkcymQQA6QtFl7putzvm2Ac8kFIagcGjQIsqnQPGa5R0XRc3T7IC0WgU0WgUfr8fvV4PN2/exN7eHi5duoSXX34Z3/72t/HUU0/h3Xffxeeffy4sA4GhsdaIxzS2DTju/lD7v5kxbmYSRCM7qcoHGccBKuO8GAGVuj8jkFPlgCoTZTzWpGtkBt6M4zWyhGYsm/Fvfl4dk9l5qscDIJJBtTG1mVTSyMCxr1i9Xn8IuBlBmtm5cjuy7n6/HwcHB8L2Gq+Tz+dDv9/H9va2sFY0KzGCXfW4vBe50MDxkwF3u90i++TnCEppntJoNER6PBgMEIvF4PF4kMvlZJ8zMzPSj5Fy8IWFBYRCIRQKBWxtbYlE8+zZswgGg8jlchgMBnC73YjH4zg4OICu6yKhrFQqiMfj0kg7Eolgb29PFobIvNFdl06X5XJ5rIbM7XbLvRuJRIR5czgcqFQqCIVCApY8Ho8oFNhmhQw+cFQH2G63EY/H4fV6sb+/L8+QdDqNSCQCm82GnZ0dAEfPzkqlIm7CbM7t8XhkgW96eloWyAKBANxut7CRRqOnX3d86QCc3WazGDgrrLDCCiuOjcXFRRSLRezs7Mh/8uVyWYCE3W7H9vY22u02otEoXC4XAoEAUqkUksmksFA+nw+rq6vo9Xr4+OOPEQgEkM1moWlHrmyff/45nE4nIpEITp8+jXA4jGw2C5/PJ9bnqsTp5s2bCAQCWFxclHo59okjc0Y3NfaHopkAzUt8Pt9YQ126uun6Ud+jcDgsq8tswkuDFNagMfkkG0eGjOyAWXNr/q4m5KpMzihjVBkXJkRMisgasnaPK/5vv/02bt++jW9961v46le/it/7vd/D2bNn8d5772FjY0NqjVRTDfW4xrYDDHWcZATVOjuzFX8zcGfGzqlzo/5+HNtl/HuSjHGS1NIMEKl/GyWbZp9RQaoKWIzjV8elShOPA3bqcY37Vpk1m+3I6c/hcAh7ZMbwsSZpaWkJNptN2OlJ864a1hiPz3FSQsfvBxcyVLb20qVLKBQK+OlPfyour6pZidl8HzeHPAbvVX6WcmuXyyW1XoVCAdFoFDabDfV6HdFoVGrV+DOVSgE4avhNaXY4HEYwGESj0UCxWBRG7+LFi3jttdfQ7XZx9epVYdWazaYwoe12G+VyGT6fD91uV+psd3Z2BJC1221ZOEilUuL0yNYFbMStMouhUEjMRHRdF4BIt2Cem9PpFOmmCqCCwaAwemxBQLOZdDoNm80maonhcCiSTeBIjdHv9wX8ssY2EokAOHo22Ww2kYR2u11ROTxKGv2rjC8dgHPYrRo4K6ywwgorjo8bN26g0WjgwoULiEajkqSGw2EUi0VpdL28vCxNrtnom+5ulFZtbW3hww8/FLYslUphfn4eP/7xj+F2u6VeZG5uDvfu3YOmaWJJzZVfGh+cOHECyWRyrKks62NYrzIcDiUJ44p6t9uV/kw0CIjH46jVaqhUKtKygKYHrMujlbfb7RZr8HK5LKv6ZKKazaYklWZtBFRGRmVduL36Ge6HTJkKqOiWqf4LBoNIJBLCxh0eHuI//If/gI8//hivv/46nnnmGZw8eRI3btzAlStXxoCcCiQnGZoQLBC0EZybmZwwAVXZxkngzXgc499m7Jg6n0bm7bhjPOr4RhmfUar4qDAycEbwqQIuIytm/IzKhDLIeKnb8DNM1FWHSfWfw+GQnmzZbBbNZnNsvCqYV8erHk8dh6ZpYqrB+4aLLZQURyIRXLhwAR988AGuX7+ORqMhkkkzya3xu2I2JjaLpnSS2/DYrBmjQy2ljPV6HclkErFYTNoW0C2SaoJgMCjghzV229vbUgf29NNPi4lTuVxGu90W1oysZb1eR7/fF7fGcrmMeDyOU6dOiXSS2/T7fUQiEVECUEbJfm2UtbrdbkQiEeTzeQHr6XQafr8flUoFNptNemh2u10xEKESoNFoYGpqSgyiHA6HSDQpPXc4HCLDHAwG8nzlQt1oNEIikYDb7UaxWBQHy+FwKM9HPmvp0svXp6enH/nd+VXFlw7AWX3grLDCCiuseFS0221cvnwZ0WgUlUpFVptZyE9XxEajgXK5jFOnTokdN1exA4EANjc3sb6+jtnZWVQqFVy4cAEnTpzAtWvXUCwWRb743HPPSasBOqmxNqXb7aLb7eLcuXMIBoPIZDKyKq4mbgRrZMu8Xq9sy0a+TD4oo2JNWT6fh8/nQzgclpVqNrvt9Xo4efIkGo3GWC0MZZSsgbHZbGM1cUxwVUkl8CBhZaKmvkfgRiBkrB0DIAYwlIUxeYtGo4hEInA6nWi327h27Rq2trbw1a9+Fa++etQA/OzZs/jss8/w4YcfYmNj41gpJc+DCTet343jMv6cBN7M2DLjsY2JvJm0Tg3j9pPem3Tc41hD43gn7V8FOUa2iu+b1b+ZMXQMoxTRyLqp4IVAZG5uDsViEV6vF81mU9iodruN0WiEfD5vChYnsYXq+PmP5hUABHxwjtrtNobDodSS/umf/in29vbQarVQr9dN+7sdB9AZBKD8TpDtBiCSRbLvZNai0Sjy+bwYdMRiMfT7fVQqFVQqFTlGKBSSVhl0sQWA/f19UQIkk0mcOHECzWYTrVYL+XxegOHMzAxSqRQ2NzcFLLVaLZEyZrNZxONxaYbNZ1A8HkckEpEelZFIRFoisL7PZrMJc0ZQtr+/D6fTiWq1isFggNnZWfm+q0oEPneSyaQoD6hu4HOT4JSsGvvC0RiFbDzrKdPptPTIYzNvGpjE43Fp9s1nGo1knlR86QCc5UJphRVWWGHFo+KZZ56B0+nE+++/DwBYW1tDuVyGpmmSENJYZG1tTVoOeDweJBIJ1Ot13LhxQxixzc1NPPvss/D7/fj+97+Pzc1NnDx5Emtra5idnYWmaVJHomkavF4vhsOhJEIXLlyApmnIZDKo1WpIJpNS40EjBiYuPp8Pw+EQ169fl35v7K/EOo9yuSyJzPXr13HmzBlpuDsajaT2LhQKSc1ePp9HNBrF9PS0mJ1QvtVsNtFoNIQVpDTRWI+lJshGAxAyCaPRSOrVjAmvaiTCVXKfzycr9mQbVFnd22+/jWvXruGll17C888/jzfeeAOXL1/G1atX8eGHH4oUlscyq30zSj3Vc1N/qszRcfJIs59mv5vV1anxOKDKuC8jcDAbr1kdnRlTaLYvM6BolE6qDJq6rdpc2wjajNsYJZJMnilfI9PDeiojo8qfZmymCvAIbAgW2UONtVW8lwnsc7kcDg4OpK9Zq9V6qC7UeF3M7gEy1HTL5HvGlgdqLaDf78f09LQwk1QCFAoFYYYoUYzFYmi1WggEAjJfnU4H9+/fH6sVW1lZgcvlEsv9YrEoPddGoxG2t7dFXp3L5WQ/wWAQNpsNh4eHcLvd4io7Nzcnkki2WanX6zIP/CwXzCjNbjabwvYHAgHEYjFZQOJcqSoCn88ntv7saUmpe7FYBHBUF5fNZtHr9ZBMJlGr1aRdQKFQQCAQgN1uRzabhcPhENOYer0ui02JREKYXTqKulwuxGIxcdx8EvGlA3D2nwG4SaseVlhhhRVWWNHtdnH37l2Ew2HMzc2JLK5erwN4kBxOT0+j2+1KI1ePx4NsNotWqyX/4R8cHOCpp56C3+/Hj370I3i9Xvz2b/+2rH7X63UUCgVhfFhLwtXpU6dOodvtSoNZNhinxIh21UzgAoEAWq0WUqmUNLgNBAIIh8Oo1WrQtKOakitXrqDVauHSpUvSi46ueJ1OR/ot3blzB3fu3EEymYTP50MikcDe3t5YLR2ZPxosGGt81H9835g0q4wc8LCDohmw4vnR2Y5ALhQKieyp1WqhUCjgz/7sz/Dpp5/ipZdewosvvohvf/vbeO655/Duu+/i6tWrODw8FBt2s/YDHAvDyLA9Ts2bOh/G/RljEuBS92EcmxnIMpNX8rOT3jPu4zjQYTyuUX5pZM2MgEwFTCqAU19XzUVUMAY86HtGwwz+TQBo3KfZGM2CCwoEUVy04QKH6kRKViyfz6NUKkkPMZV1m8S4GZlOlaXk4gwbeFNGqL7GRRQaqrRaLTQaDXm+kDkiO0g2nuyRy+WS7306nRZjI5fLhenpadjtdjQaDWlv4vV64Xa7pW8an120+C8UCuLGCByxeXa7HV6vV0Ch6gBLeaOu6wKMeB5snE1Jea1Wg91uF2DVaDTgdDpFbk5paTAYlMWdQCCAg4MDuXeKxaLI3NvttqgSuAiVSqVQLpfFuIVmLf1+H4FAAO12W+6PeDwurQVYC0gJbalUsmrgfpnhsB19MYYjHQ67BeCssMIKK6x4OAqFAhYXFzE/Py91YsFgUGrDuBpdr9cRDocRiUTGVuVnZmZkJfry5cvwer1YX1/H008/jbm5OXGiA46kiNwfAJFNJpNJcaDM5XJwuVwIh8PodrvCXhFkeL1e6T2ksmLsoZRMJlEqlcSS+3vf+x5WVlbwzDPPQNd13LhxA4PBAPF4HD6fD/F4HIPBAPl8HqFQCGfPnhVJUbVaxcLCAgBga2sL9XodLpdrrAZETbxVySFBmCqTZEJv1gxcZd3UBNjIxqm1cV6vF71eD81mE8FgEOFwWBLhvb09fO9738OPf/xjfPOb38SlS5fwd/7O38Err7yCDz/8EFeuXMHu7q6wiRw3gSUTeU3TJDmfBNaMbJwReDzuIjLP2fh5s+0m7dcIHIw1ZkZQ+SjmT2XQjMdXX1fbNHBxgn+rLBfvlUmGISqAUwGOWXBbVaqrnu9x4JljIMtFxossEBc3gAe9DQeDAUqlEgqFAlqtlnwHjNJhdW7MFimMzBtBA7/jdrsdPp8Puq4LGBsMBkgkEvD5fMI4sZE1ny/GxvXBYFAMlnw+HzqdDjweD+7evSvGJy6XC6urq0gkEgCOjDwymQyGwyFmZmZw5swZdLtdbG9vC+PZ6/VE6kkTk9FoJMDq1KlTUi/M2jsu/tDen82xKWkMhUIolUpwuVwii+V587vOBS/gaEEnGAzK38lkEpubm/B4PIjH42IIlUgkUC6X0Wg0EI1GMRqNUKvVkEqlUKvVxCCpVCqJQQxrgAFIw3On0yk94txuN4bDofTbJHv4pOJLB+DsP/vCD0Y6HPZHbGyFFVZYYcX/ImNhYQE+nw9bW1uoVCpYWFhAoVBAtVrF2toaGo0GqtUqYrGYGADU63U4HA6R9jQaDcRiMTgcDhSLRXFMbDabyOfz6HQ6IukhS8SC+KWlJZTLZWleS7MTyiaZnNGlTW0EzEQtFAphenoawWAQo9EI5XIZH3zwAWw2G55//nmRPdGggzbnc3NzSCQSwvAx6RuNRshms5iZmYHP50M2mx1LftgIF3jAlKgJ7HG1cEyGmdwamzkTsB0nDaRBAxMnNi0mwA0EAlIvVSgU8N3vfhfvvfcevv71r+OFF17A7/7u7+Ly5cu4cuUKrl69is3NTQFuZPZUQxWe36Q6MjNZnvF1szADGipoMSb7apj9rbJ1KvNmxiYawZvx+MbXJkktVXBG4GZkw1THSNZQmh3L6Cw5CQQbWTX1HjSbE/UzKgNIwxR1f/zeqhJa1oGVy2VUq1UBbpT/Gs9FnV+z99XzcLlcsqDBxRG/3y+SUJfLJU6IwWAQkUgEm5ub0DRNzFTUoHGR1+uFpmlYWVlBtVoVxiufz2Nvb08Mm06dOoVEIiEApdFoCAt2+vRpzM7O4saNG9A0TWplu92ugDDgaGGKwCYcDmP4/2/v3WMkS8/zvuer6qrqut+7qu/dM7PD3dnlkisu1pIWFClBlhhZCqMgMUjAioxcZCUWYDkBnEgIECVBAMGxHduA4YS2BVAmY0WARFiSBUu8WSIpilzuzu7O3mamZ7tn+t7VVV33e9XJH9XPu1+frerZe/f0vj9g0HU5deqrc6rOfM/3vu/zDgaIRqMSqeJCFMUmRSmdfgOBgCxc9ft9eL1eZDIZuf6FQiFMT09LtsNwOEQ4HJbzmc/nsbe3J1FHnr9UKiWfh9eDZrOJ2dlZ+QzJZFKe5/XP7hcYiUTEBMVO4XScUb/NRqMhRjdnxYUTcIzAqZGJoiiKMonp6Wns7u7Kf+br6+tIpVJ48sknUa1WcXh4iEQigWQyKfUSjHwxMnPlyhWpg2F6JSewtMn2+XwYDocol8sIBoOYnp7G6uoqut0uisWiTPQWFhakpqtarQKApChR5HAyRlFIZ8mNjQ1xX/z0pz+NRx999ETEq9vtIpfLYXFxEfV6Hc899xyuX7+OT33qUxLZ6/f7MlGNxWLIZrMyuWSaIidZdkSNk2/bLMQ96XenU9r9ytwRrEliyb7PlgNc7W+1WggGgxLVjMViMuna2trCl770JXzta1/Dj//4j+OJJ57Az/3cz+FTn/oUrl+/ju9///u4deuWuIFyvHYfOHeKHMcxTrBNmtC5BZD7cVsM8bZ97t3i67QI2ri0LkZz3cLCfR7GnT+3WLLTFDleCjT7OXufdl2b/T6TTFHGiTDetu317dfY6aKM6rlFJnslUvDYbqc853R8pSFIp9M50brDPVb7OJ6WCmsfK0bZmMLJtENux0hUOp1GJpPB+vq61Gcxas9jysgxrw2ZTEa+y5VKBd1uV1KijTH4kR/5ERGCxWJRetwtLi5idnYWhUJBhCqvdRS0vM5xMYrvzyhZLBZDMpmUlgrBYBDFYhGhUEj6X7ZaLRHMwGiRimNn6wa2AGg0GnINy2azkgGRy+Wwt7eHdruNRCKBYrEoxkxMuWa6Nx01O50Otre3kU6nJYPBcRwZCxuy87gzSsjz5PF45LpeLpfh9/tFUJ4FF07AeZlCOVABpyiKoozn3r17spq6v7+PpaUlXLp0CXfv3sXNmzfF3vqxxx7D888/j8FgIA5ssVgMwWAQpVJJUiyTyaQ0sG21WlJw3+12US6X4TiO2PVXq1Wsr6+LjTUnVkyJZH0J6/DYw4kNfVm31+l08JWvfAXf/OY3sbq6is9//vPIZDKSUtVqtcThLZVKSXPfq1evyr6YvtXpdODz+fDII4+g0WhICihXve2mvXZrAH5GYguEcaLCHaEYV1s2bnJub0chwUhcq9WS6EW/38fq6ioef/xx/PRP/zS+8Y1v4Fvf+ha2t7fxxS9+EV//+tfx1FNP4Ud/9EfxEz/xE3jqqafw0ksv4Tvf+Q6++93vYn9/f+w47EjcuAiWOxLmft4dvbKPh11DZosiflb3sT0tKjdOcN5PKI0To+OigxyP/ZhtwsHURjuixn2Ma6Btiy73+OzPz/RCWwi6hb/7GNlijbcZdeY/t3ENDVLK5bK4oHKRYFLD5nFppe7nKXDsBQ3gjagko+62yQ8wMuCIxWLY2toSQxFeVyKRiBggcUEnGAwil8uhUqkgFAqh1Wphe3tb2oJEo1E8/PDDePzxx3Hnzh0Ui0VUKhXs7+9jbm4O2WwWrVZLFquYmsxjQ9FXLpdP1I1NTU3h6OgIwWAQi4uLWFhYwO7uLqanpyX9kG6/jNKz6xsAAEfWSURBVOiVy2XZt32+eAy4b6ZZJhIJWUSam5vD0dERPB4PQqEQDg8P5TrFejr7uxOPxxEOh6XnZzwex8HBAaampsQQpVKpoN1uY2ZmRqKANGHhWILBIGKxGI6OjuQ7446EfpBcOAHHurf+mGJoRVEURQFGETLHGTW2vnz5MhYWFnDjxg3cunULwWAQP/zDP4zl5WWsra1hMBggn8+j3+9jdnYW3W4Xzz33HLLZLPL5PGKxGIBRa4JCoSATWoo1riwzynN4eCgTYRoSsEkv3RU54Y1EIpKyxBq5ZDKJF198Ed/5zndQqVTw2c9+Fg8//LBE7FjHZtfBMGrl9XoxMzMDYDSBZE1dKBQSUcY0rIWFBezv76Pf7yOZTKLdbqNYLEqaV61Wkxo3ws9lp0PyNidU7ugSuZ9AcUc7uA8aFdCFjz2yXnrpJVy5cgVra2uSTra9vY2vfOUr+OpXv4qPfexjePrpp/Hoo4/i8ccfRy6Xw5e//GUxUjhNGI0bn/v2OCMNtzCyo0N2Ddm4z+uOTE0ag/uxcc9Nwo4WjUsDHGdIYkfXxkUZ3SmSk46JvT3HTfMbTvZt0TWuZpDGQjx/Pp9PIio05LA/S7/fl8bMbKPR6XSkvtV2S3UvTLjFr/s4chs7fZTj5zWBdVU+n09MNYBR4+1UKiXXEwDw+Xxi/GGblASDQRweHuJjH/sYHnnkEbz00ktYW1tDrVaTOlFGxubm5rC4uIhyuYzNzU3s7+8jk8kgnU5jY2NDDEZsi3ymFfr9fkkppKjhohWzEO7evYuVlRVcunQJ9+7dQygUQjQaRaVSQaVSQTqdllo6x3EkEspUxqmpKTEw4eIV2xEMBgPMz8+LkPP5fJKCHo/HJeLIcfE6wHTw6elpqRV2HAfhcBjJZBL1eh3xeBzxeBy5XA5erxeHh4diJMPfKd1+GdVMpVI4Ojoa9zP6QLhwAs5rmZgoiqIoyjhKpRL6/T6Wl5eRzWbx7LPP4pVXXsHKygpWVlYktYh2/oPBAKurq7h79y5u3LiBubk5sd9utVrY3NwEAFmlrVQqKJfLyGazaDQaKJVKYv7B2gkW6XPVf2lpScwVuBINQLZnLcr3v/99bGxsSG+6XC4nYgyATEKZ/lmtVqVmr9Fo4CMf+YjUqPC9mBrGCCDHR6dLANIPrlAoyMSFKU+cfDmOI6mVU1NTEukz5o0G2HY9n41boEwSHuNSBun2SXfAcrmMZ599FslkUnp7RaNRhEIhmah//etfx7e+9S1cvnwZTz75JJaXl8XspFgsynjt9EF7XOME1Wkia1wkzi3g3GIJwAnR694fx0Nx7D5245w93wrjxNi46Judqmi/lmN2p1SOOy7clzsSaO/b7Rbq/m6wjpTCku0xPB4P6vU6NjY2ZDsA0iKkWq1KXzAKNru+8jSx7DaK4XNu8Wob+vD3TyMVRnjYoJo927LZLGq1mhis8LdULpdFUM3OzoqhD1O7Z2Zm0Ov1cHBwgFqtJu/XbrelD+TOzg52d3dx69YtSSfc3t4W0cj+egBEKPX7fVQqFUkjpCssf98zMzMYDoe4d+8ejDG4cuXKCXHT6/WwvLyMVqsljpmdTgepVOpEFNXv90v/NZ/Ph0gkgl6vJ9s2m01JmWYvNx47plHaojgUCqFUKsHjGTUE53WZ4o0LWP1+H/l8HolEAi+//LLU9/H7Eo/H4TgOdnZ2pM0BP8NZceEEnNbAKYqiKPeDK7PGGHz7299GoVDApUuXMD09jfX1dczNzSGTyUhPpUQige9973tYX1/H8vIyLl++jKmpKdRqNUlxCoVCCIfDKBQKWFtbE6MANrB1HEcK9lutlripsdFtIpEAAKm3sFPTmEK1t7cHn8+Hj370o5L+4/F4xDiApFIpsfzmPmOxGObm5uD3+1Gv12XfdIljyiTTNPP5PG7evIn5+XkUCgX4/X6USiVUKhVJeWKdHM1AGOXjpIiChvt9JwJt3HPjoiB8z1qtJrWJTO0KBoMyoWOjc0btXnjhBbz44osIh8N4/PHH8dRTT2Fvbw/37t3D4eGhTJgBvElI2LjFx6QIky1MxhlquNMK3WYx497XFkt2FPPdCDg7ddF+3BafbkHH953ULoD7dT9O+H7sy2YLU/6zI3OMzsViMZnws/VFoVA4EfHifuv1Omq1mkRlWdtm18KNS+sdFxF1LyTY33E7HZZj5mKMMUbaYfC3xCh8LBYTl1RgtHDC7zSj9IwWVatVud9ut1Gv13Hjxg3pAxkKheD3+/Hwww/D7/fjzp07mJqawquvvopkMikLOblcDolEQr6TtNdn/Vq1WpX6QOANsxQAIuh4LWs0Gtjf38fq6irW1tbQbreRSqWwv79/ok8dr3d2LaAd/aYxijEGmUxG+gBy0YvtASjSjXnDHZPHlOOenZ2VZu/hcBgLCwsnXG7ZjPz27duS3jk9PS11f7FYDLdu3RJhF4vFcHBwIGm6Z8GFE3B0odQInKIoijIJFq6//vrrGA6HeOKJJ1Aul1Gr1bC8vCxOb3Nzc2i1WnjuuefgOA6eeuopLC4uYjgcot1u4969e2JW0uv1sLOzgxdffBGPPPKIpBENh0NEIhEpyu90OpiZmZFoF80J4vG4pP9w8sYVZtp19/t9RCIRRCIR+P1+mRjSLtxxHEmRBCD9kowx0t9pb29PivfZ0NsYIyKxVCohmUzizp07yOfzyGQymJ6eRqFQQKfTkRYKlUpFJqeccAYCAfT7fXlP4M0Ri3FROLfYcUe5iG10Mkkk2UKOFuo0kGk2m6hUKhKNo+kBzWO+8Y1vwBiDlZUVzM7O4tKlS+JUSnME2yzjfjVQ7uicbVIyrpH1aWmF9rGxhcJp72uLntMig+PSQ8elxtrRODt6O050ThqbHW2bFK1iip4tpLgt0ySnpqYwMzODVCqFRCIhpiMHBwdot9si8Iwx8n3geaQdP+3qmaI3TpyPWyywj6vNuCiiW0TyH/u1RaNROY6MQPF1xozqzgqFgiyY0O3WmFEzb7/fj8PDQ8RiMXzpS1+S29z/lStXUCgUJHpWKBRErNXrdSwvLyOTycix8Hg8kqZIccYUa4o0RuW4EGILr6OjI4TD4ROLV7u7u9J7jQLIcRyJYBljcHR0JNePZDIp5ySTyUj9bTqdlshXMpkEABHh4XBYriuhUOhEq4J+v4/9/X0xU5mbm8Pa2pqYHc3NzWFjYwPFYlEWtRi1zGaz2NnZQblclkgej086nX7T9+WD4sIJOI3AKYqiKPfj4OBArP9ZFO/z+aSpN+veDg8Psbm5ibm5OczPz5+w+T84OJD6N1rl7+3t4dq1a5ifn8f6+rrUmMRiMRQKBZkkNhoNib70ej1ZSWZaFVOBOKHrdrti+8+Vc1pz2+mTbHbN/XIyFQ6HUa/XcXR0JCYKbBzOVeThcAifz4fFxUW0Wi1ptTAcDjEzMyMOcv1+H9VqVepMKpWKiE6mPwEnJ7P2RNd28hsXTbOfO82wY9xr3NDYpNlsIhAIiIhtt9si6oLBoDj3NRoNNJtNbGxsSI1OOp3GwsICDg4ORACwB9Y44eP+3O4URAofOwpn78MWc+P2M0nkjUuzJOPS/ezX2ZE6d581+73ssbqNReyo27j3cAsbt2i139Nt1W/XtnExhPb1zWYTr732GqrVqqQg8jtNMx5G21hDxkUGpkpOwj22cc+7BTU/r/157BRcGpfQfZIiiCnIHo8HrVZLXGkdx5F0P9bAhkIhMSdpt9sSSWu1WsjlcmIEMjc3h1dffRVXrlzB4uIi1tbWxKSj3W7j6aeflgUPpigyUsWFI/5W6B5JoUaHyWaziXA4LJGvUCiEfr+Pmzdv4uMf/ziuX78upiHdbhfxeFy+b2zGTXEE4ERqJptx04yEbQ8YsSuVSuJ2yXRIprDTaIVGJ16vF9FoFEtLS9jc3BS336tXr2J/fx9bW1twHEdEJwCJ/BWLRXS7XSwsLEhfQLaUOSsunoDzsgZOTUwURVGU8dRqNayurooIYZodJwfz8/MS9cpkMlhcXJRG1kdHR+h0OojFYtKjiO5wjz/+OLxeL8rlMur1OmZmZpBMJlGr1RAOh2U7mhvQujoej0tqJYUG67qYmhgKhcTy35502g1wGYXjJIMT3d3dXXFVCwaDkoLGY+H1etFut2GMkbF4PB4kEokTNThMXZqbm8PBwYEYAvBzGWMkUsDJKFMpxzXsJrYQmyQ03LzV7ZnCybEHAgGZNFMk2ymwnMhWq1W0Wi3cvXsXAJBIJBAKhZBIJKQmiILgNIHEMdhRK7sdA/Bm50ZymnvkODMYWyTZKWKniTv3+9iiw8Y2K7HHfb/9jUuR5HeG54bbMWLGz8dUuFwuh1wuh+npaaRSKWxtbWF7ext3796VbTluLjKwv1m9XpfHKNx4ztzjm7RgMC6N0r3A4I5O2sfCPi90W2QkvdfrSb0e22FwkadWq4mYSCQSWFhYgMfjQalUkvoxXm8GgwFisZj8xhltW15eRj6fF1HoOCMH109+8pN49NFHcffuXWlSTnfOYDB4osciDT0YlaKrJDCK8vM4pFIpeDweHB0dIZPJSM0Y2xFQWHJf/F1yQYDmUv1+X+pVKcrYww2AZBwAI8HHqH4ulxO3Sy4qMY08EAhgdnYWxWJRvjdXr15Fu92WVgpcRPN6vUin0wiFQrhz5w6Ojo6QTCYRDAaxubkJj8dzItPhLLh4Ak4jcIqiKMp9WF5elhVh4A1HRtagAJDajUgkIulDLIiPRCKSbsNUrfn5ebTbbZkMMVLAprVM5ZqZmTnhgJfL5aSRbCQSQTQalRoupmaGw2Gp/aALHfcXCASk0Tgnst1uF7Ozs6hWq9je3ka320WpVJJUStbZMZoWi8Xg9/uxt7eHXC6Hubk5mXQxUsC6G4pMNr49OjoSZ01ObDk55+vtqJyNewJsp/u9U8alCtppnOzpxagcawlZY0QXvtnZWXG19Pl84sDJffNc2f32OCl111HxO8bJvdvgw/5rHw/7r/s5dw++cdvYQuy0Ojo3bgFmp3/aaZ+2Ycm4aKF7/O5Inp1GSgHHqEk2m8Xc3Jx893d3d3Hnzh288sorEumleOPvs9vtimize7dNEm6Tvn/j0ibt17jvj0urtY8XF2z42+N1hcKIfdTq9fqJKDaPTyAQwMLCAqrVKnq9HhYXF+H3+9Hr9bC/v49AICDGGrlcDqVSCQcHB1hdXcX8/DzK5bJE6YfDIa5evYpIJILd3d0TY2Vdr20KU6lUJP2Y5/zg4ACdTgd+vx/tdhuDwUBSwGnpX6lUUCwWZUGIC1h05O31eohGo3J+QqGQXO/YcJztTSg6eXyr1eqJ3xMdgtnygeK/Xq9L24XZ2VnUajWsr6+j2Wzi0qVLGAwGkkZP4cboYiaTweHhIarVKiKRCJLJJAqFAnq9HtLpNKLRKG7fvv2Wfk/vBxdOwLEGrq994BRFUZQJcEIXCATEhp6NuHu9Hur1uvQ/o+EB7bM5MWQdSzQaRSAQQLFYlD5Kc3NzSKVSkqbD92PtCq2oE4kEcrmcvF80GsXu7q5MglgvwoiRbTjS6XTEfrvdbkv6JQDpE7W5uYl4PI5AIICtrS3pV8fP2263kc1mJRLJ9EwKA5/Ph06ng2KxKKvxnCDm83k4jiOGLEwL5eflZIgpoRQ1bpFmR6fcaYnvRMi5J9du+N6dTkeEHKNwFHLT09Pw+/2IRqP4yEc+gs997nN45plncP36ddy5cwe9Xk+ioxT9PE90vrNrinK5nESFGo0G2u32iWjUpBRMMimCRoHM24QGJPZ9O0JkR+1sow23ILG3sU057GPsTgGdlApqfya7How9zJLJJNLpNGZnZzE9PS01bTdu3ECpVJJ0YUakAYhg4O+JKbA0I+E5cC8guI+v/fntlMdxYs2NLdLs+3baJNsZ+P1+JBIJqXuj0yR7prG2iuMNh8OIRCLSBqHRaODatWvwer3odruo1WpyDWIEa29vD71eDw899BCSyaQ0rOa/XC6HcDiMeDwOv9+P/f19GDMyVWG0nOmTrHkDRr/paDSKWq0GYBTRKpfL8Hq9EpWmsQgzFWgEsry8jOFwiGq1KuPhd8Dn80mtLq+lOzs7khXh9/ult1sgEBDDEn73a7WatDnhtZmRSJrT8FrKOt50Og2fz4e7d++i0WiI+QnTb/P5PIrFIjY2NtDtdrGysoLhcIh6vY5EIoF4PI67d+9qG4H3Eo3AKYqiKPejXq8jmUxKfZm94s6ar0AggP39fZlMcMJCEcY+a47jYGNjA1NTUzg8PEQ6nZYJQKVSkegWxSEjbcFgEJFIRBzoQqGQFMvbqVBc5Wa0jc2FY7EYjDGSgmQ793G1fWlpSSJ52WwWwBv9pDgBYp+mcDiMmZkZWdlnOhdTr5g22Gq1kEgksLW1BY/HIw5vNDbgRIgmBLZQsSfG7rS0cTVl9xNxp02qJz3m3p4TZopg2rrbUYff/u3fRiaTQTQaxeLiorRmYFSH6WSsb0omk3jsscfg9/uxurqKp59+WtLANjY2sLGxgc3NTaytrUlKLift4yJqb0Xk2Z/PFm/j7o8zGRknwCaleI6rdxu3jTtax+85zUcikQjm5+fFBv/o6Ah37tyR1DseC55nTtBpPEIBzogORRvr2/h7nhSRdX8n3NeBca8ZJ+r4PXe3T6DAZdogzXN8Ph92dnbkO8aoYSgUOlH/xbTpYrGIYDCIq1evygLM1taWZBLwN9fpdBAMBrG0tIR+v4+dnR0ZC2voEokEIpEIstmsCBwKJBouMVLN7AKKN0bxY7GYZCBMT0+LYI5EInKtmpmZkfGkUilsb2/L8bMNZriQ1Gg0kM/nJUug3W5Liim3LZfLcq1xHAfNZhPz8/PSOsEWk1ygmZ+fRzqdRrFYlBRQClFmK9jvMTc3h06nIws1S0tLCIVCeOWVV6QVQ6/Xk5q5s+LCCbigf3SRanbGpxQoiqIoCk1AGHXhf8RM3QqHw9ja2sLu7q7UjHEC5DgOyuWyNKU9PDyUdJ6rV68iFothf38fh4eHJ3pT0QKbDbeZThQOhwFAivGZymM7xbEvHHu30eGt1WqdEEpMG2J/KcdxRCCylQGNHhqNhvRvSiQSUkvCCSjty2mY8Oqrr0qUiSlRtVoNvV4PjzzyCJrNJjY3NyUywJYCAOQ97WbM7kjNuOjI/SZI7ufd0T1b4LnT5dyvHQ6HIg6azaZMvKvVKu7cuYNwOCzHkpbv9vlrt9uSRrmzs4O7d+/C4/Egn8/j+vXr+OhHP4qFhQVcvnwZn/zkJ+Hz+fD666/j6OgIm5ub2N3dFXMdOiVSrNvRMffxsZtb22KYf+1zwM9uC4xxETfgzX3e7EibPQa7no/vxwgmJ7yJRALJZFJ6jTFV7+DgALdv35a+i0xptqNsw+EQg8FAjDfsf/zusy7UdpMcd95P+w6N+664I2v2a9wRRnsBheNmVN/v9yMSiUjkfmtrS36vjNYyCgdAom6DwQCFQgHxeBxLS0sibIrFotSbOY6DdDqN7e1tDAYDpFIpOVeVSkWOH7eni+JXv/pV6RVpO3Dy+8b2IIym12o1ETl0gaRQYlNxmsJwAYf7pwsle1vakb5eryftBfb29hCLxeTY2eeOGRAUXO12G/F4HFNTUzg6OsJgMMDMzAz29/dF6C0tLSGXy2F/f18yLrhgxUg4r7m9Xg/5fB6xWAwvv/wyjDHIZrOIRqPY3t6WhQefz4ft7W10Oh3E4/FTv1vvJxdOwCVCI+ehSqt3xiNRFEVRziv2hJP1YJFIBHNzcwgEAtjY2MDh4SGy2SxKpZL0mgJGLopzc3MyMWEKYTabhdfrxfb2tkxIGHXgZI2TYWOMGI8YY1AqlRAIBABAGvl2u13s7++LYx0b84bDYQyHwxM1PRQVnPAwimb3lAsGg/IaTpD39vawurqKQCCAWq0mkxmKGKY0LS4unnDMDAaDuHbtGp555hkxWiiXywiFQrh9+zba7bZMADn55+TaLRqMMW8SdfdLo5w0sXbvY9Lk/bRJveM4JwQBjWqYasljzfPKc8nzSUHB2rhqtYrnnnsOL774okTnUqkUMpkMVldXsbq6inw+j6WlJUQiEUlLZQphtVpFqVRCtVqVmhym0NoRJgoIRoTsuj/7r1uAASfdJfn7oBix69Q4gedr7N5lrPlMJBJIpVISdaLIqNfr2Nvbw40bN9BoNNBoNGQBgpEz/r5sUcbvIiM7tmhj7SHr4cad23HRXPs7clq0dtJ9+7vCz8fjw+8d0/E8Ho+k8FFscPvd3V25zebT09PTEiHqdruYm5tDOp0Wp1vWi9FGPx6PS3Qom83C4/HI95bGKIyqJRIJWSSwU58ZreT3HICkTnKhCIA0yQYgLTh4XeN3Mh6Pi8Nvv9/H2tqa1DWyVQLPF9s7DAYDJBIJ+P1+WTzh+ee1iucgFAqh2WwiFoshEAjg8PBQsgIKhYIsqM3OziISiWB/fx/1eh1TU1NIp9NoNBqyLwpsLpjlcjncuXNHevSl02lxn81ms2JcxfT1Sd+LD4ILJ+DiwZGAK6uAUxRFUSbAtEQWrMfjcWQyGTiOg3v37uHu3btYXl5GoVAQi22madHg4+DgAOvr65ifn8fly5dRq9Vw8+ZNSd/iZC4Wi8lkiJO7cDgsKZylUulEZCqVSqHVaok5AYv0KR4ASD2H1+tFLBaTsQEQC3XWxHE1PZlMotlsotVqiWlCp9PB0tISut2uCMV2uy11YGw8HAqFsLq6io2NDQDA7OysGAG8+uqriEajsgK/srIiNvycZLPfEyehdn2QO5XSTrGcxCTx9nZw1325Iyz2P/ae4iSc7pUUcqx14z8+N85d8ujoCKVSCbdv38Zf/uVfIhAISE1SLpeTWrBoNIp4PI65uTlEIhGJqDJtsFKpSN2UHTlsNptimc+IFgUenQVtF1MKMYo01iX5fD5xDaQ4pVMn7e9ZO8jP2Wg0pKfe3bt3US6XJXWNhiJMM+Q47AgbfztMj7Rr2NzCznZjHXcOx53jSdG2cd8j9/fS3iexo45uEx8+xig/IzmsyWLbA1ss8xxwAejKlSvyu+JvPBgMIp1Ow+/3o9Vq4eWXX5YIGBdsGIFiXe1gMEA2m5V0X2MMcrmcRAV5bCmSmY7JSDy/54yu+f1+ie4xu4CmJoeHh9JuZX9/X2rMAEijdb/fL+/XbDaRTqcxPT0tWQ6saWSdHF0nOR7WsBWLRRF/XODo9/tYWFhALpdDsViU38jS0pL8Nnit5LGNRqNIp9OSwh4IBOSaT0fNTCYDn8+Hw8NDSbmkE+ZZcGEFnEbgFEVRlElwgsRUJdZNFAoFVKtVsZtm37W7d+8iFAphYWFBJqiHh4dYXl7GtWvXxB0vEAggnU6LHTatzznZ9Hg8UmPFug+6OrLxLifirMMCIH/t9KFms4l8Pi+r2WwCzonWYDBArVYTEchoiDEGmUwGxhhsbm6K1TjbKLD2yHGcEzU5fr8f165dQ7PZlD5I0WgUKysrGAwGODg4QD6fh9/vl7RPigzWYTFaZNe7EU6qJ1nyuyfhNvcTdO6Ii3s/k9I23RFBCmK2mGCUxU6pZATEjlrxcfsccCyDwQCVSgVHR0e4d+8ePJ5RY3aKAJ7/bDaLmZkZRKNRJJNJRCIRxGIxpFIpEVsU7xwrzyNFKCNafI7jttP+7NdT3HFyTlHO2khGc46OjlCr1SQiRgHG/XERwk5v5DhYS2gLNgo7ijsKPC4ITBJsboE2LiXSfX+cuJv0XbLf04682RFMW+SzDcdwOMT+/r60rmAUnAsybJdgj+3y5cuSssxFEDqf2hG8qakpLC0tIRaLSY/KRCKBer0uPd1mZmZkEYjCO5FISJQOgNSA8hxzXIlEQkycGMFiH0jW8PF4HB0dIRQKYXp6GkdHR5ifn8fe3p6YIeVyOVlsYD1aPB6XOrhwOCztTJgumUgkRAjzO0kXYL/fj2w2i62tLbTbbbmusacje8PNzMyg2+3KdZ/HkiZRbARfKBQkUhcKhXDr1i1pXZFIJLC9vY1qtQrHcSTCfFZcOAEX9Hnh93pQbqqAUxRFUcbDVXGaAuzu7kqUyO/3o1QqSQ3KCy+8gEQiIQ2/ufJ86dIlXLp0Cc888wxu376NmZkZ5HI5SUFkJIZpQ3R+ZKE/azBisZhE42gjzgkLIxsUVkzJYr1dtVoVE4RGo4FYLCYTS060GNGji12pVJI0LdbosZ6NEya6r3GCH4/HpTcdJ1GVSkXqRpiixHqdxx57DK1WC9/73vekPQPT5Dh5n5Qmyc9n13dR9LnT4d5qJM7e/2mvuV+dHB/jCr47MseJOOsYKYDs1Fk+RuFHbDdJe1LMKE2xWMRrr702tq8bxT57izFtjt8hW2AwamVbtFNY2ZEuO2JWLpdPRL74/nzePjZ2pIzbUDjaAo2CjWKG55vb2xFD4A2Tm3Gi7bQ02knnctw5n7Q/N3bkzT5vrFVlWimPB2vbwuGwHBs74mlH6ZlmGwgEEIvFZAEkHo/L96vdbmNtbU36EsZiMbTbbYm8zczMwHEcFAoFpFIpSXO+cuUKVldXUSqVsLe3J+mRXJDh746CitcyY0b9ISm82EibjpQA0Gw2ZYybm5vw+/1iFNJsNkUEHR4eYjgcIp1Oi0ijSQujbKFQSMQX34/Hjy6vXGA6ODiQaB3rbx3HwerqKgBIWihrDdlwvNvtwuv1Yn5+XupPp6enkUgkkEgk8Morr0gdHU2p9vf35Tp0lumTwAUUcMYYxII+jcApiqIoE4lGo8jn85iamsKrr76Kw8NDiWTQxa1SqeD69evI5/NYWFjA3t6epB/l83nk83m89NJLeOGFF7CysiJNdg8PD8UAo1KpIJVKIRQKnTAyYPSPEzem6nDl2TaGYG0J3es4xu3tbTQaDUSjUamh4T4ZqeDkx+2uyJq4hx9+GNPT0+IuRxMUu/Yjn8/L5LJarSIUCskELJ1O4/nnn5fJFCee09PTWFtbE5dLTtSZtsmJK4XD/Wrd3Lb3dgqeO3r2durm7Mn6JPE2ztzCvV8AJwQOFwM8Hs+bxJxdV+b+y+0p1AmjUe7oHY8DHfc4oTbmjabYwMmG25x82tFQO6XS/py2a+i41gIUWfz8FIGMqFHssibQFmXuf3yc+xh3PuxzPe68jzsvHP9pdZOnibhJE3X7+PK88LfG3zTPWSKRkPREtgPhOUkmk1hcXBRxy+tQPB6XKNL09LS0D2GEnm6KHo9H+jGyRnV3dxftdhvpdBrAGwI/Go0iEomIOOp0OpIGyIhsMBiUOjIeO7bXsI1ZKOYIDT4ODg5kAYHfZ6Zy3rp1C/l8XsyT2DaBtcD83FzAYF0wr2fz8/OSwhiPx1EqlbCzs4NwOCyiE3hj0SAcDmN9ff1N5ilMy5ybm0O5XJYaZEYEt7a20Gw2sbCwIG6am5ubkkLq8XgkS+KsuHACDgDiwSlUVcApiqIoE5ibm0O73cb169dRKBRw6dIliUZ5vV78xV/8BQaDAR555BFJ1+HqMM0mXnrpJezu7iKfz4uBidfrlTQh1nWEQiGJtNBunhFAr9eLg4MDSa3iJJMTQk7Io9GopFIZY3BwcCAmK3RQY+sDusbRNIAGCkxhZKolDTdoisHaG0aMODHkBJwRQAqSer2Og4MDxGIxbG1todPpIJFISB8nr9eLhx56CJ1OR8wFGPVhywE7IkTsyboddbH/AXiToHFPusdN1k+rkRon1E5bZR83wafYtCNKTAljPY8drbPr5tz/7M/K7fl+vE8RYQs6voZpnPbnc9fkuQ1O3J/D/oycRHNbCjWKLX63bIFmHwfet6Nsdrqe+xy6013HiepJqZR2muWkc2V/1nHndlyU113zZkdD2ZORtVx8DdMC7TRRiqNgMCiN43kdAkbXJ6Y/chGHLU/o8slIXbFYlGg5HXDZ09EWXMViEevr6+J2y9YFTPG23SaZZlmr1SRqyN8pswoY9WK6bzQaxZ07dwBA+h4CQCKRkJRK24Dl9u3b8Hg8YvFvtzCgsQlTuLvdLvL5PPb39wGMatd8Ph8KhYJEH4FRVDkajQLACUdc1vgyFTebzWJ1dRWtVgt7e3siXFOpFHZ3d1EsFrG0tIRsNotGo4Ht7W1JN+U11v5NngUXUsAlQn6UW92zHoaiKIpyTtnb25PV7atXr0ohvuM40vyaPdEKhYJMgjKZDAKBAHZ3d+H1erGysiImJ5FIRFwAGe2yHdpYF0azgWazib29PQAQi3qmLQEQh0zugxM4Ovex6Xa320WlUkE8HpeJp11XRJt7RkT4WW2zFbpn0oWSDYZJpVJBKBSSOr1isYhOp4OVlRWJKAyHQ5RKJTQaDWQymRMudul0Grdv35YIBNPmgDeLBeCNlEnbqdI2PmEan9frPeG4yG0niblx9zmGSeLOzSRR534P+y/r4ogdzaIIs40vbBFnizK3sLOfo7Aj4wxU+DgnnraIss1F3J/LNhuxRZg7fdIt1NyvtUUdFyrGieVx4sydBmt/7knC7H5Ruklple7t7THarQL4PH/vPP48b4yG9/t9+Hw+tFqtE+eX9YX1eh0rKyswZtQDjSY0NO8wxqDb7WJmZkaEOdOuOYbp6WnUajW0220kEgkxhbl27ZqYyWxubuLo6AiXL18WEUf3S4/HI/0NI5EICoXCCcdb4A0TIrYI4Wd2HEdaIyQSCWk5wNfTlCSfz4vLJGtoaeYSCoVQr9fl+hCJROQ6lUgkxD2SplO3bt2SFGC64NJoxxgji2X2d54tYVZWVuD1esVsyZhRGmuhUMDW1hZmZ2eRSqVOGAVxMYzi1d3m4IPmQgq4eNCHg9rZOcMoiqIo55ujoyO0Wi2x3WZvpW63K2mIrVYLlUoFwGjVOZPJoN1uY29v70RKIRt3M72SIoiW8IVC4UTUwnEc6UPEOjRGx2h+MhiM+rhxQkzXyHq9jkAgIClHvV7vhMkBJxVsGcDUqW63e2KSycgJ6/QAYHl5Ga1WS1K2mJ5169YtXLt2TVoT0DUzGo2i3W6j1WphZWVFzAo46bHrnoLBIGZnZzE1NYXNzU1Uq9UTIoSf347G2VEQW/DQDIbRO3d0Zpw4s/fJv27ReFrEbpxgsIUIH7cjh+6IoVuw2q/h5+YCAAWALeRsgcf92kYap0Wl7JRIN/a47Nt2pJN/7c/sjrDx3NhGJe7j4963O1Vz3Hlyn5tJ6ZDux/lZ30o01ea09x4nim1jEP5efT4f0uk0ms2mRC9pemOLdBrc8JrB60iv1zvhTsnm241GQxaBBoOBtLgARosswWAQyWQS7XZbFl3i8bj8Ho0ZOYXeuHEDiUQCjuOccBCl+QcXYehoSWMS1ujyuPAawFTIXC6HUqkEAFI/x4h/JpMRZ9RwOIxr165JSwn2qCuVSvB4PEilUnJ943WI0fvZ2Vm8/vrrqFQqkmnAej465zJaxmsgjy8ALCwswOv14vnnn5cI5dzcHPb29rC5uYmVlRWk02nU63Vsbm4iGAzCcRwx++GCle3yehZcWAF3a792/w0VRVGUDyUej0ccy7rdLl5//XVxc5uenpaUSdq7J5NJqbdgbUcgEMDs7CxyuZzUQ3ACm0wmJarF+jpjzImUoHA4LNExihLgjQkjJwc0keAKMFPxmKJkjJE6k1AodKKnUzKZlOe5Mt1qtWSSyQknXQYDgQB8Pp/UrUWjUSwvL8vKc7FYRLVaFVv0UCiEYDCITqeDhYUF1Go1seP2+/2oVqvY398Xt7hOp4NMJiORRE6KObmcFI2zBYPtmGiLhNMiY7bocu930mvsbU6b/E+K6tgCgBN22/aez7lNSWxB5z4OtnAbF4VzR+jsfYyLVNkCa9xjdjTNTku0Uynvdwzdx2rc4+OifvZY3ZG6SRFUe5txaZSnnXNuw/fjuMYdW74fxRfNOPi7y+fzYvYzbrGg1+uJhT2dJdlnkmYcjjPqB0hjmqOjIwAQQVMsFiX9kSnY2WwWa2trODg4kH6SGxsbKJfLsjhAmBLe7/el5yCdIZmOXSwWEYlE3iSKGD1jQ3VmJ9AgiZFDu5aNZiwUQvz9p1Ip+P1+7O3tod/vy/Wh0Wggm82KXb/H48Hs7CwODg6kZs3v94uJCUU0F46YCsrG4Dw+4XAYzz//vJhKzc7OolqtolAoIJ/PI5VKIRaLYWdnRxbRer2eGKtQlFIwnhUXVsCpiYmiKIoyCQoUiplMJoP5+XkYY6SXECdVXEmnMyUt20OhEDKZDFqtlthkdzodKdC/ceOGWFsHg0FZfe90OggGg2K3b0eUGGVhChHFm8fjQTKZPCFGmF4ZCATQaDROTBjZ643REEbsWOcCQFanmb5EgZfNZmUST+FHp7itrS15jHUnNEjhWOr1Ol588UU5do4zMkvY2dk5IZprtZp8fjulzj4WfC2FhO34Ny66w9v2RHWceDotKuN+zi0k3NvYk31baHDSPkkMuMWqHdWbJBjtSJc7QuT+DOOibfbxsPdnu0raj9vva3/2t5OaOE4423/HMU6Ajtu3fd8+dveLRI4bozuKy++/fYzsiCcXOxgBJ/l8Xuzq2+22pI6yFrbRaCAej0sGwOrqKrLZLKLRKCqVirjcOo4jKdt0bqQTLOvYpqamUKvV0Gg08DM/8zPY399HuVzG1NQUVldX4fV6sbe3J5H6wWAg+wBGKZFbW1soFovo9XpYWFhAJpPB9PQ09vb2ROCxFQJ/g6yvo6nH3NycmDfxfSqVilwnK5UKEokEhsMhYrEYSqUSjo6O8Nhjj2F9fV1q3hj1owELjx2FXr1eF8OlYDCIg4MDNJtNcY70+/3i7svPV6/XxUk3FArhlVdeQa1Wk56LvV4P9+7dQzweRzabRTabxebmJvr9vlxbmXbO48YG64lEYuJ3+P1m/K/7ASce9KHW7mMwPLvcVEVRFOX8wrox1n+kUikAo9RKpgyxYXG9XsfOzo4YB8RiMUlNbDabcJyRZf/W1hbS6TS63S7+7M/+DOvr6zLBYfoOWwRwNReARMA4eXYcR+rZyuWyNOG2nQy5Kt/v91Gr1ZBIJJBMJsWExHag5CSDtSu2iLBd8uhyaRtjBINB9Pt97O/vo1qtolKpyOO26LJrYzweD37oh34I8/Pz2NjYkL5yHHM4HEY+n0c8Hkc0Gj1R58cUTzq9cXzuZtOcaLtTCt2mAnx+nHhzC8BxkapJ4sEtBNz74bj5Gez3dwshbm/XlI3btz0eO73RFnLuNEj3Y+7j5U6TtN/HHW2yUyXd293vuLnHPy7y597G3ue4436/19r3x0Uf3c/Z54PRNfc29nNTU1PSoJrR8mw2Kws6bLzNRthsKzAzM4N2u41IJIKFhQXMz89LDSzFgh2ZazabEi2Kx+NSG8uxbWxsIJFIoNPpSHozI4A0/aDIDIfD6PV6ch4PDw/RbDbFECWRSMAYcyI9kb9vfvZMJiNiLhgMYmVlBdVqVTIEarUajo6OUK1WJdIWDocRCAQkksj+dWwpAQDpdFqMW5gCzjo21s7RoIWmKBTDmUwGoVAIzWZTFuD4maenp7G4uIhMJoM7d+6gUChIL8Ver4c7d+5genoaMzMzWFpaEhHMXp3GGLn2U8xyMY3X8LPgwkbgAKDa6iEZ9p/xaBRFUZTzxtbW1glbfq5qFwoFWZnlJJOpih6PB/l8XuoxGEliTcSVK1cwPT2N7e1tqW3L5XJSr0Ixx9cRNkjme8RiMTQaDZTLZaRSKUnPYr0LHdjK5bL0XgIgjnK2eLCdJdvtttTJxWIxmcwz7QsYTfBpuhCJRDAYDMShkpOiRqMh7m80BbCjH8YYXLlyBRsbG1hZWZGJLFO9uEqfy+VORKIASOoYhY8dibNFxLgURztFjPdt85BJdVZukcf9jRN+9nmyxYw7OminztnHBcCJ8fO+vZ9xESv7/SZF6iaJJvvz2NuNiyayFpGvcQvEcbft97mfKHOfN7tW0H7efg23cbeMcO93UmTVfTxt7GPgXhjge7sFL6PNdHdlSuHMzAzK5TLi8bg0OgcgEetmsymOtolEAisrK8jn87Jgs7e3JxE7OtjaBkqsy41EIpKy/fzzz4vpyP7+Pm7evCkOlqVSCYlEAuFwGM1mUwSkxzOy9i8Wi5Li2Ov1kE6n4fF4UKvV5JjV63UZuzFG3Hu5OMSaN27HtgQ0YKH48/l8MMag2Wyi1Wphbm4Oxhhsb2/LtYbXh9nZWYn4+Xw+idiVSiW5hjYaDektx0bgNIOx01sDgQDS6TTC4TDu3buHvb09xONxzM7Owufz4c6dO0gkEojH47h06RJ2dnawu7srzr4ATtQ7O44jaewApF3IWfCOBZwxZhHAbwPIAxgC+ILjOP/EGPMbAP4bAIXjTX/dcZw/frcDfTskwyMBd9TsqoBTFEVR3oTP5xPLe1IsFpHL5TA/Py8pie12W2q+aMLBPkdcGU+lUsjn8+h2uzg4OJA0If7jKrzf75eJXTQalcc5QWMk6vDwUAr7OYmgmQonWa1WC/fu3cPc3Jw4P165cgXGjAr//X4/yuUy9vb2pP6OnwPACZHHyRon7xw/J7ScRHFiz4koo3bcH9OZFhcX4fV6sbCwgEgkgvX1dYkszMzMSHsD4I16Hp/PJ82O2U6BQrJer4+txeLk2133Zdvt0zTGFpmE+7CFjZ3GadclAm82ArFfawssijcKDlsUjUv7dEeXxqVw2ml87s9xWlqgO8rHsfD7BuBEI217P27R4xZLbmHkFnh8jVv8jvuM48Zuj+O0507bp72de/z83rijinYU1zbYYSSG0eLp6WlxUMxkMvL7qtfrEjmyU5BTqRRKpRIikQieeOIJxOPxE5EqNpimOKzVaojFYiLQarUagsGg1MOura1hfX0dc3NzWF9fxyc+8Qnk83n0ej1ZzKEIjEaj8hv3+/04Ojo60acvHA6LHT/r4Gq1GiKRiPSvowMmRV86nca9e/ck3XwwGKBcLks7EUbRPB6P9Gir1+uYmZnB1NSUmJ3Mz8+jWq2iWq0im80CgFx/c7kcKpWKRBIpJhuNBiKRiCxw1Wo1qeEDRq6+rAGMx+N4/fXXcXR0hHA4jNnZWYRCIdy8eRMAEI/Hkc/nUSqVsL29LZkEAMS4ieYuABCJRKTul4t7Z8G7icD1AfwPjuM8Z4yJAnjWGPPV4+f+L8dx/sG7H947Ix0e/Qd1WO/iUvasRqEoiqKcV7LZrBS8c+U3lUphZmYGpVLpTSYCnJDU63UYY7C/vy8iJRaLoVwuS3E7o2is5WD0jdb+TB1yW4B7vV5UKhWUy2VkMhnU63WxGTfGYHl5GcYYrK+vY2dnR1wj+/0+lpeX0el0xG1yZ2cHW1tbmJubw9TUFPb39zE9PY1UKiXiaTAYSC2gXePEejlG3RjZymazsmrPlKjBYCC1fLT3dhxH+jEx3YiT+Hg8jp2dHRHPfD0b+Ho8HknVZBooRZA7DdEWKMSu7bLrZ8ZFe2yhZYszOyI4bv98b7fw422+t+1YSIFnR4omCS/ux963HRGzn7e3Hydy+N58nrU8FAzJZFIipG4BzP2NMwOxH3e/p/uY2Z910hgniVr7s02K4o07DpOikfYxGXdOGInmbZ7jqakpMawIBAIIh8NSIxUMBlEqlRCPx2XBh9tR2Pn9fhweHiKRSOCRRx5BNpvFww8/jOeffx6OM3KqdRxHar8ODg6kTQijc6xd6/f7WF9fx2uvvYZMJoNwOIx6vY7r168jlUrh6OgI2WxWBBQXgvj72d/fF4HS7/eRTCYRDodxdHQkBiOFQkEi8GxfMBwOJTq3sLAgadU0BllbW4PHM+rr5vV6pdckBeNgMMDc3JxkD9AEpNPpIBAIIBaLodlsythYX0xDKV4vSqUSotEo0uk0YrEYqtWqfD5eJ5hGGgqFcPv2bVkoY6rlzZs30Wq1sLS0JItge3t7b4ru85rO+kMarHg8HmkFc1a8YwHnOM4ugN3j2zVjzKsA5t+rgb0bMhEKuLMLbSqKoijnF4oops/lcjlZEWdapJ3KROv9breLjY0NpFIpzM7OSn8i1rAFg0GZ6FEIcYJMw4N2uy0RKWOM1JOVSiXUajWJUNEowe/3y4Rxd3dXHB+ZehSNRmX1PhqN4vDwEO12W6JddKRjKqQxRgxL7BVk3udE8e7du9Jwm+KL77u1tYXLly/L5+GElyv6oVBIJj3pdFrGyOge2x1wxdtOryoUCjBmZCZjT7IZHQNwYuLthgKMY+LE1Y6m2dEzW2BMckO00xht8QacNBTha9zGJnYKnr3fccLF3nbc53SLunHplO7PyX3xO88oLb/X/FzuCSxT0RxncsNtN+M+o/v4jLs/br9vRYy5I3LjInBcBKB4ZZ3ouH0xUmmf73A4LOnJ7LHGmi87gsYFHppmsHaNLomPPvqopGiXy2UxG+LYmS7NxQwAODg4kGtKtVpFqVTCxsYG8vm81Lcy9dEWJRRcHs/Ilr9Wq6FYLAIYXf+q1aqIN7b1oGAJBoMSzWJGAtMoucjFtgF+v1/ceenQC0Ci/UwlXVpaks9Qr9cRiUTQ6XSwt7eHT3ziE7h9+zbK5TKGwyEuX76MXq+HSqUiRlPMZrAdcBm5Y3sFPj8/Pw+fzyfNwtnWIRQK4d69e9KTLpfLodFoYHd3V3637I3JbAYubsTjcRHtjL498G0EjDErAJ4A8D0ATwP4FWPMfwHgBxhF6Y7GvOaXAPwS8MZJfa/IRlXAKYqiKJP55V/+5bfWFOqccfXq1Q/svS5dujT28U984hMf2BgURVGUN/OuXSiNMREAvwfgVx3HqQL45wAuA/g4RhG6fzjudY7jfMFxnCcdx3mSOa/vFamwHx4DFGoq4BRFURRFURRFuTi8KwFnjPFhJN6+7DjO7wOA4zj7juMMHMcZAvgXAJ5698N8e3g9BqmwXyNwiqIoiqIoiqJcKN6xgDOjJON/BeBVx3H+kfX4rLXZzwN46Z0P752TiQRQqJ1dbqqiKIqiKIqiKMp7zbupgXsawC8AuGGMef74sV8H8HljzMcBOAA2APytd/Ee75hsNICCRuAURVEURVEURblAvBsXym8DGFcE/oH2fJtEJhLA64XGWQ9DURRFURRFURTlPeNdm5icVzKRUQ2cu0eIoiiKoiiKoijKg8qFFXC52DQ6/SHKzd5ZD0VRFEVRFEVRFOU94cIKuI/kowCAV3erZzwSRVEURVEURVGU94YLK+CuzcYAAK+ogFMURVEURVEU5YJwYQVcOhJAPjaNl3dUwCmKoiiKoiiKcjG4sAIOAK7NxfCKCjhFURRFURRFUS4IF1rAPToXw1qhjnZvcNZDURRFURRFURRFeddcaAF3bTaGwdDBrf3aWQ9FURRFURRFURTlXXOhBdyjc3EA0Do4RVEURVEURVEuBBdawC0kg4gGprQOTlEURVEURVGUC8GFFnAej8EjczG8vFM566EoiqIoiqIoiqK8ay60gAOAJ5YSuLFdQbXdO+uhKIqiKIqiKIqivCsuvID7qWt59AYOvvnawVkPRVEURVEURVEU5V1x4QXcE4sJzEQD+Pcv7Z31UBRFURRFURRFUd4VF17AeTwGP/VoDv/hZgGtrvaDUxRFURRFURTlweXCCzgA+Myjs2j1Bvjz24WzHoqiKIqiKIqiKMo75kMh4P7KpRTiQR/+9XfvotPXKJyiKIqiKIqiKA8mHwoB5/N68Hd/8iF8e+0Q//sfvXLWw1EURVEURVEURXlHfCgEHAD8zadX8fNPzOMPX9hFbzA86+EoiqIoiqIoiqK8bT40Ag4Afuajs6i0evjuneJZD0VRFEVRFEVRFOVt86EScJ98KIPo9BT+j3/3Kgq1zlkPR1EURVEURVEU5W3xoRJw0z4v/u+/8QncLTXwa79/46yHoyiKoiiKoiiK8rb4UAk4AHj6Sga/+pNX8bVX9/G1V/bPejiKoiiKoiiKoihvmQ+dgAOA//LpVTw0E8Fv/OHL2txbURRFURRFUZQHhg+lgPNPefC/ffYxbB218M++uXbWw1EURVEURVEURXlLfCgFHAD8yOU0fv6Jefw/f34Hf3xjF47jnPWQFEVRFEVRFEVRTuVDK+AA4H/+a4/g4XwM/92Xn8Nn/vG38Jeva3sBRVEURVEURVHOLx9qAZeOBPB7/+2P4u//Z4+j0e3jc1/4S/zXX3wG9U7/rIemKIqiKIqiKIryJj7UAg4Y1cP99ScX8ad/98fw9z7zEXzzZgE/+0+/hf/vmXsYDjWtUlEURVEURVGU84M5D7VfTz75pPODH/zgrIcBAPizWwX8wz+9iRe3Kpj2efDR+Tg+/ZEZLCSD+PRHZhAP+s56iIqiKMoYjDHPOo7z5FmPQ1EURVHeT6bOegDnjU9dzeLHHsrg393YxbN3j/C910v4P//kJgAgMOXBSjqMH394Bo/OxfBTj+YQmPKe8YgVRVEURVEURfmwoAJuDMYY/Ozjc/jZx+cAAEeNLjaKDfzhC7t4dbeKL/z5HQwdIOT34lI2jMvZiPzLxQK4nI0gEfLBGHPGn0RRFEVRFEVRlIuECri3QDLsRzLsxxNLSQBAbzDEX9wp4puvHeBOoY4fbBzh3z6/c+I1fq8H8ZAPyZAPiaAf6Ygf84kgFpJBpCIBBH1eBH1eRKenEA/6EJ2eQnTaB//Uh74sUVEURVEURVGUCaiAewf4vB586moWn7qalcea3T42DpvYr7Wxtl9HsdFFpdXFUaOHcquLW/s1fPPmAdq94an79k95EDsWc5HA1LGwm0Ik4EMk4EXEuh0OTI3++acQCnhHf/1ehPyj5wJTHo0CKoqiKIqiKMoFQgXce0TIP4VrczFcQww//pGZsds4joNio4tys4d2b4Bmd4Bqq4dKq4d6p49au4dau49apz/6e3z/8LCBRmeAWruHRneAwVt0x/QYnBR3AS9C/imE/V6EAsd//VMIux4P+b0ITHkx7fNg2ufFtHU74PPIc36vCkRFURRFURRF+SBRAfcBYoxBJhJAJhJ4x/twHAed/hC1dh+NTh+Nbh/N7kgMNjt9NLoDNLt9NDquv/J8H8VGF/dKTTS7AzQ6o9f330HLBGOA6Skvgv5ROui0z4Ogn4JvdD9gCUD/1OhfYMqLwJQHgeP7fq8HPq8HU14z+usx8E154PPwMYOp49t+rwdT3Iav8Xjgmxpt4/MaFZWKoiiKoijKheV9E3DGmM8A+CcAvAD+peM4v/l+vdeHCWPMsTjyIht950LQTbc/PCH02r0h2v0BOr0h2r0B2v3B6LHeAO3eAJ3+6HarO3qu1R0eRxX76Bzvq9QYonP8uk5/9JpOf4hu//Q00neL12NE4Pm8BlNeD3ye0V8Kvqnjx6eOt53yGng9o+28x/enPJ4Tz03J48fbeo28F/fltf8Z1/3jxzzHr+Ff92P268Y95t4XbxsDeIyBx4yOgQpZRVEURVGUi8f7IuCMMV4A/wzAXwWwBeAZY8wfOI7zyvvxfsq7ZxQd8yMRev/fy3EcdAcjIUdB1xsM0Rs46A+H6A9Gz/cHDvqDIXrD478DB73BEP3h8bbH28vjrn28efuT+xoM39i23RuiPxxgcHy/Pxw93xsMj7cbvY6P873Pe693W8x5DEai71jseT28/Yboe/NzJ1/jORaSHjNaTDhx2xh4PJB9eo1120NxORKdHmPdN5B9m+N9GeDEe+LE/eNtDGDgej1w/Hnuvy1c7zH+vUev43Mnx/rmbYE3jge3Hfd5OE77vce9ftI4x76XjPM+78X9eXCf48zXQhcDFEVRFOUc8X5F4J4CsOY4zusAYIz5HQCfBaACToEx5jiN0ovoWQ/mXTIcWmJvOMRg4GDgjO6f+Oc4J7Z1PzY8vs/b9mPj9mXfHzoOhg5Gf4fWbQfH9yc974zfzro9cBw4joPhECe3Px6DY90eCd7jz+WMhProOfu29Rprv44DOODrRts7eOO54WiD0X3r8ZOvc869oH6QOVUs4lgAusSj/RovFwssMc/tfuGHl/GLP7py1h9RURRFUR4I3i8BNw9g07q/BeCv2BsYY34JwC8BwNLS0vs0DEV5f/F4DPyjcAiC0Kbu5wHHEn33FXtjt3uzeJz0+rezLSyBeup7HX+G4RD3HRdO3H/jszvu93IfF2e8cJZ9Du93TEavcxz7WJwck72tvShAMT+0xpAK+z/Ab4iiKIqiPNi8XwJuXL7NibVxx3G+AOALAPDkk0/qurmiKO8Jki449jKkKIqiKIryYPN+dY3eArBo3V8AsDNhW0VRFEVRFEVRFOUt8H4JuGcAPGSMWTXG+AF8DsAfvE/vpSiKoiiKoiiK8qHgfUmhdBynb4z5FQB/glEbgd9yHOfl9+O9FEVRFEVRFEVRPiy8b33gHMf5YwB//H7tX1EURVEURVEU5cPG+5VCqSiKoiiKoiiKorzHqIBTFEVRFEVRFEV5QFABpyiKoiiKoiiK8oCgAk5RFEVRFEVRFOUBQQWcoiiKoiiKoijKA4IKOEVRFEVRFEVRlAcEFXCKoiiKoiiKoigPCCrgFEVRFEVRFEVRHhBUwCmKoiiKoiiKojwgqIBTFEVRFEVRFEV5QFABpyiKoiiKoiiK8oCgAk5RFEVRFEVRFOUBwTiOc9ZjgDGmAODue7S7DIDD92hfHyQP4rgfxDEDOu4PGh33B8uHedzLjuNk34vBKIqiKMp55VwIuPcSY8wPHMd58qzH8XZ5EMf9II4Z0HF/0Oi4P1h03IqiKIpysdEUSkVRFEVRFEVRlAcEFXCKoiiKoiiKoigPCBdRwH3hrAfwDnkQx/0gjhnQcX/Q6Lg/WHTciqIoinKBuXA1cIqiKIqiKIqiKBeVixiBUxRFURRFURRFuZCogFMURVEURVEURXlAuDACzhjzGWPMTWPMmjHmfzrr8ZyGMWbDGHPDGPO8MeYHx4+ljDFfNcbcPv6bPAfj/C1jzIEx5iXrsYnjNMb82vHxv2mM+emzGfXEcf+GMWb7+Jg/b4z5Geu5Mx+3MWbRGPNNY8yrxpiXjTF/5/jxc328Txn3eT/e08aY7xtjXjge9/96/Ph5P96Txn2uj7c1Fq8x5rox5o+O75/r460oiqIo55ELUQNnjPECuAXgrwLYAvAMgM87jvPKmQ5sAsaYDQBPOo5zaD329wGUHMf5zWMBmnQc5388qzEej+nHANQB/LbjOI+dNk5jzDUA/wbAUwDmAHwNwFXHcQbnZNy/AaDuOM4/cG17LsZtjJkFMOs4znPGmCiAZwH8JwD+Js7x8T5l3H8d5/t4GwBhx3HqxhgfgG8D+DsA/lOc7+M9adyfwTk+3tZ4/nsATwKIOY7zsw/C9URRFEVRzhsXJQL3FIA1x3FedxynC+B3AHz2jMf0dvksgC8e3/4iRpPgM8VxnD8HUHI9PGmcnwXwO47jdBzHWQewhtF5+cCZMO5JnItxO46z6zjOc8e3awBeBTCPc368Txn3JM7LuB3HcerHd33H/xyc/+M9adyTOBfjBgBjzAKAvwbgX7rGd26Pt6IoiqKcRy6KgJsHsGnd38Lpk8izxgHwp8aYZ40xv3T8WM5xnF1gNCkGMHNmozudSeN8EM7BrxhjXjxOsWSq1rkbtzFmBcATAL6HB+h4u8YNnPPjfZzO9zyAAwBfdRzngTjeE8YNnPPjDeAfA/h7AIbWY+f+eCuKoijKeeOiCDgz5rHznBv6tOM4PwTgPwLwt49T/h50zvs5+OcALgP4OIBdAP/w+PFzNW5jTATA7wH4VcdxqqdtOuax8zTuc3+8HccZOI7zcQALAJ4yxjx2yubnfdzn+ngbY34WwIHjOM++1ZeMeew8XU8URVEU5cy4KAJuC8CidX8BwM4ZjeW+OI6zc/z3AMBXMEoN2j+uJ2Jd0cHZjfBUJo3zXJ8Dx3H2jye+QwD/Am+kY52bcR/XNP0egC87jvP7xw+f++M9btwPwvEmjuOUAfwHjOrIzv3xJva4H4Dj/TSA//i4/vd3APyEMeZLeICOt6IoiqKcFy6KgHsGwEPGmFVjjB/A5wD8wRmPaSzGmPCx2QOMMWEAPwXgJYzG+4vHm/0igH97NiO8L5PG+QcAPmeMCRhjVgE8BOD7ZzC+sXCSeMzPY3TMgXMy7mNzin8F4FXHcf6R9dS5Pt6Txv0AHO+sMSZxfDsI4CcBvIbzf7zHjvu8H2/HcX7NcZwFx3FWMLo+f8NxnL+Bc368FUVRFOU8MnXWA3gvcBynb4z5FQB/AsAL4Lccx3n5jIc1iRyAr4zmvZgC8P86jvPvjTHPAPhdY8x/BeAegP/8DMcIADDG/BsAnwaQMcZsAfhfAPwmxozTcZyXjTG/C+AVAH0Af/sMne7GjfvTxpiPY5SGtQHgbwHnatxPA/gFADeO65sA4Ndx/o/3pHF//pwf71kAXzx2sPUA+F3Hcf7IGPNdnO/jPWnc//qcH+9JnPfvt6IoiqKcOy5EGwFFURRFURRFUZQPAxclhVJRFEVRFEVRFOXCowJOURRFURRFURTlAUEFnKIoiqIoiqIoygOCCjhFURRFURRFUZQHBBVwiqIoiqIoiqIoDwgq4BRFURRFURRFUR4QVMApiqIoiqIoiqI8IPz/AohAbjd7GWUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAGoCAYAAAAHGAe8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebht2V0WCr9j9X2zu3POPk2dOtWcVKoqqSKVkBTpO0FIUK8iiKKgcrFD/fReREG4Il64V/B+Nqh4QUAxgIiKhIiKkZAvDakkJqEqqVR/6jT77Hb1zd5rrfH9Mdc79rvGmWvvXe1Jbcb7PPs5e68555hjjjHmOr93vL/GWGsREBAQEBAQEBAQEBAQ8JWPxM3uQEBAQEBAQEBAQEBAQMDREAhcQEBAQEBAQEBAQEDAKwSBwAUEBAQEBAQEBAQEBLxCEAhcQEBAQEBAQEBAQEDAKwSBwAUEBAQEBAQEBAQEBLxCkLrZHQCApaUle/78+ZvdjYCAgICAVzA+/elPb1prl292PwICAgICAl5KfEUQuPPnz+Ohhx662d0ICAgICHgFwxjzzM3uQ0BAQEBAwEuN4EIZEBAQEBAQEBAQEBDwCkEgcAEBAQEBAQEBAQEBAa8QBAIXEBAQEBAQEBAQEBDwCkEgcAEBAQEBAQEBAQEBAa8QBAIXEBAQEBAQEBAQEBDwCkEgcAEBAQEBAQEBAQEBAa8QBAIXEBAQEBAQEBAQEBDwCkEgcAEBAQEBAQEBAQEBAa8QBAIXEBAQEBAQEBAQEBDwCkEgcAEBAQEBAQEBAQEBAa8QBAIXEBAQEBAQEBAQEBDwCsGhBM4Yc9YY82FjzBeNMQ8bY/7y9PMFY8x/NcY8Nv23Ltd8rzHmcWPMo8aY3/dSPkBAQEBAQEBAQEBAQMDvFRxFgRsB+GvW2rsAvBHAXzDGvBrA3wDwm9baOwD85vRvTI99M4C7AXwtgJ8wxiRfis4HBAQEBAQEBAQEBAT8XsKhBM5ae81a+5np720AXwRwGsA3AvjZ6Wk/C+APTH//RgC/YK0dWmufAvA4gDe8yP0OCAgICAgICAgICAj4PYfnFANnjDkP4H4AnwRwwlp7DYhIHoCV6WmnATwrl12efua39Z3GmIeMMQ9tbGw8j64HBAQEBAQEBAQEBAT83sKRCZwxpgTg3wH4K9ba1kGnxnxmb/jA2p+01j5grX1geXn5qN2Yi9ZgD//kw4/ji9cO6lpAQEBAQEBAQEBAQMArF0cicMaYNCLy9vPW2l+ZfnzdGHNqevwUgPXp55cBnJXLzwC4+uJ0dz5a/T3837/xKL5wuflS3yogICAgICAgICAgIOCm4ChZKA2AnwLwRWvtj8uhXwXwJ6e//0kA/1E+/2ZjTNYYcyuAOwD8zovX5bn9BADYG8W+gICAgICAgICAgICAY4HUEc75GgB/AsAXjDH/c/rZ3wTwIwB+yRjzpwFcAvBHAMBa+7Ax5pcAPIIog+VfsNaOX+yO+6Dfpg38LSAgICAgICAgICDgmOJQAmet/Sji49oA4F1zrvlhAD/8Avr1nDEV4IL+FhAQEBAQEBAQEBBwbPGcslB+JcNMOWZQ4AICAgICAgICAgICjiuOD4FzClxgcAEBAQEBAQEBAQEBxxPHh8BN/w0KXEBAQEBAQEBAQEDAccWxIXAIMXABAQEBAQEBAQEBAcccx4bAGcfgAoULCAgICAgICAgICDieOD4ELihwAQEBAQEBAQEBAQHHHMeHwE3/DQJcQEBAQEBAQEBAQMBxxfEhcIZlBAKDCwgICAgICAgICAg4njg+BG76b6BvAQEBAQEBAQEBAQHHFceHwIUcJgEBAQEBAQEBAQEBxxzHh8BNNbjA3wICAgICAgICAgICjiuODYHbryIQKFxAQEBAQEBAQEBAwPHEsSFwdKEMCAgICAgICAgICAg4rjg+BG76bxDgAgICAgICAgICAgKOK44PgWMZgRAFFxAQEBAQEBAQEBBwTHF8CNz036DABQQEBAQEBAQEBAQcVxwfAsckJje3GwEBAQEBAQEBAQEBAS8Zjg+BYxmBwOACAgICAgICAgICAo4pjg+BcwpcYHABAQEBAQEBAQEBAccTx4bAEUGBCwgICAgICAgICAg4rjg2BC7UgQsICAgICAgICAgIOO44PgTOxcAFCS4gICAgICAgICAg4Hji+BA4xsAF/hYQEBAQEBAQEBAQcExxfAjc9N/A3wICAgICAgICAgICjiuOD4EzoYxAQEBAQEBAQEBAQMDxxvEhcNN/QxmBgICAgICAgICAgIDjiuND4EIWyoCAgICAgK8YGGP+mTHm+292P+JgjHmLMebRm92PgICAgOeDY0PgiOBCGRAQEBBwFBhjrDGma4zpTH/+Xzn2p4wxYznWMca8XY4vGGP+/fT6Z4wxf+xmPMNXMqy132Wt/aGb3Q/AzfXt/Nta+9vW2osv8j3+N2PM7xpj2saYp4wx/5scWzHGfMAYc9UY0zTG/P+MMV8tx40x5m8ZYy4ZY1rGmF8wxlSOcM+3TZ/t73qf/7HpuuwaY/6DMWbB6+fmtK/3yOdfY4z5D8/xmf+HMWYwfT82jTG/Yow59VzaeCkx5z3uGGNWb3bffBhjMsaYXzbGPD2d07cfcv7c76DD2jLGfMgbj11jzBfk+H3GmN+ertXLxpi/7V1/0Pp62Gt7ZIz5T9NjS9O1v2WMaRhjPm6M+Rq59h5jzG9M11KsRW+M+WZjzBen937CGPOWIz7zDxpj9ry+XThojOfBGPNGY8x/NcZsG2M2jDH/Vte9MaZmjPlZY8z69OcH5Vhq+n43pvNQlmN/yxjzV4/Sh2ND4Axj4G5yPwICAgICXhqMRqOXotnXWmtL058/4x37uBwrWWv/hxz7JwB2AZwA8K0A/qkx5u6XooMvB4wxqZvdh+eLr6C+GwDfBqAO4GsB/EVjzDdPj5UAfArA6wAsAPhZAB80xpSmx78NwJ8A8DUAVgHkAfyjA29mTBrA/xfAJ73P7wbwz6ftnQDQA/AT02OnAPxpABcA/DMAPzL9PAXgxwD8lefx3H/RWlsCcPv0Of/+82jjpYT/HpestVf9k+LW0XNdWy/CWvwogD8OYO0I5x72HTS3LWvt1+l4APgYgH8rp/wbAB9BtFbfBuDPGWPeDxy8vqZt3y3tlgFckrY7AL4DwDKi9+RHAfwnGbc9AL+EaI3eAGPMe6bXfPu07bcCePIozzzFL3rr4Mk55x2GOoCfBHAewC0A2gD+pRz/BwAK0+NvAPAnjDHfPj32hxDRlSUALQD/6/TZbgXwPhzy3hPHhsA5BAkuICAg4Njg/Pnz+NEf/VG85jWvQbFYfKlI3HOCMaYI4H8B8P3W2o619qMAfhWRQXOU6/PGmB+b7mA3jTEfNcbkp8feP93BbphI3bhLrnvaROrJ56e7zz9ljDkx3cVtG2P+mzGmPj33/HQX+jtNpPpcM8b8NWnrB6e71f/aGNMC8KeMMdVpm9eMMVeMMX/XGJOcnn+7Mea3pv3dNMb84vRzY4z5B9Nd5ua0b/dMj/2MEWXIGPNnjTGPT3etf9WICjLt63cZYx4zxuwYY/6JMfHBEXP6/gYT7eY3pv3/x8aYzPT8j0wv/dx01/2PGmPeboy5LG3eNR3vxnT833+UuVRYa/8va+1nrLUja+2jAP4jIkIGa+2T1toft9Zes9aOrbU/CSADgCrg+wD8lLX2WWttB5GR+keNMYUDbvnXAPwXAF/yPv9WAP/JWvuRaVvfD+APTXf6zwH4rLW2BeC/ISJyQETcftVa+/RzfW55/gaA/wDgPn5mjHmV2VcqHjXGfJMceyHvwV+frrWmMeYXjTG559PnaVvfY4z5PIDudJ1bY8yfNsZcAvDfjTEJY8z3Tfu5boz5OWNMdXr9ef/859MPALDW7lpr/5/p98n4kH4f+B30HNs6D+AtAP6VfHwewM9P1+oTiIgRyeFB68vHWwGsAPh3034NrLWPWmsniDY8xojI0ML0+KPW2p8C8PCc7v4fAP6OtfYT1tqJtfaKtfbKc33mOeMwd636sNZ+yFr7b621LWttD8A/xvRdn+J9AP4va21v+k79FCLiCgC3Avgf1toRgA9j/x38hwD++vTzQ3GsCJwxQYELCAgIOG74wAc+gA9+8INoNBpIpW7c4H7Na16DWq0GAPdNDT79+YkbLpjFR4wxayZy/TrvHbt/Sla+bIz5frO/S3wngLG19sty7uewb+Achr+PSIl5EJHh8r8DmBhj7gTwAUTG9DKAX0e0O52Ra/8XAO+Z9uF9AD4E4G8i2s1NAPhu717vAHAHgPcC+BvGmHfLsW8E8MsAagB+HpEqNEKkpNw/vYaq5A8hIgt1AGewv0v8XkRG2p3Tdv4ogC3/gY0x7wTwfwL4JgCnADwD4Be8074BwOsBvHZ63u/z2zmg72MAf3U6Dm8C8C4Afx4ArLVvnV5DtfUXvb6lAfyn6fOtAPhLAH7eGHNxevxvxKwr9xPXuSn5fAvmGKLGmPsQEbjH+RH287Hx7yyiuYu7/hZEBuHfiTl8N6L1iOnzP4FIqblzer97jTE1AO8G8LAx5iyAb8YLVM6MMYuI1IXHp38XAfxXRGrOCoBvAfATZl8leiHvwTchUjlvBfAaAH/qBXT9WwB8PaK1ROP5bQDuQrQG/9T05x2IjO0SIoNdoefPwBhz7qD1Y56f+/UL/Q5SfBuA37bWPiWf/T8Avs0Yk56+B29CRPiBg9eXjz8J4JettV39cEqYB4hI5/9rrV0/rJMm2kx6AMCyiTaCLk83avJHfE4AeN+UoD1sjPlz0vZha/UwvBU3vuv++0x35d8F8M7pen4HonfwDwLYnJLPI+F4ETgEAS4gICDguOG7v/u7cfbsWeTz8f9Pf/7zn0ej0QCA/2mtrXk/f/6Apt+GaKf5VQCuAvg1IWkfQfQf7goi0vQtABjTVALQ9NpqInLpORDGmAQiw/svT3ePx9baj1lrh4jIzwettf/VWruHyMDNIzJwiX9krb0+3XX+bQCftNZ+dnr9v0dEvBT/h7W2a639AiIXn2+RYx+31v6H6W54BcDXAfgr0/PXEbkB0QVwD5Gr0Op0F/2j8nl5OobGWvtFa+21mEf/VgA/PVWohgC+F8CbPNL8I9bahrX2EqKd6fsOGErXd2tt31r76emu/Gi64/3PEc3vUfBGRHP6I9Nd/P8O4NcwHStr7Y/ErCv3M6fNH0RkY/1L/4CJYtv+FaK54Tr6EIA/M1V0qgC+Z/r5PAXuH2KqvsQcm7s+rbVbAH4YkVL09QD+OiI3zO8B8AdNpLL+R2PMmTn3je2LMaYJYBMRgf5L08+/AcDT1tp/OZ2XzyBSYv7wi/Ae/ENr7VVr7TYi8n3fAf17o0eYnvD7P1U++/LZD07fgz6itfvjUxW1g2jtfrOZdZfU82dgrb100Pqx1v6bA/o+D8/7OygG3wbgZ7zPfg3AHwbQR6Tw/pS19lPP5d4mUo//cEzbsNa+BtF3zh9DpO4dBScApKdtvgXRnN8P4PuOeP0vISLZywD+LIC/bYzh9+HctXpYo8aY1wD429j//wEA/jOiDbOyiWJvvwP77/KvA3gKwEOIxu0XAPwAgO8xxvywMeYjxpif8DYsbsDxInDGhDICAQEBAccMZ8+efUnanboA7drI9esvI9rNv2t67Elr7VNTgvAFREoH/zPvIDI+FBVEcRCHYQlADoBvRAJR7NMz0r8JgGcBnJZzrsvv/Zi/S5jFs/L7M9N7xB27BZFxdE2UpX+OiMACkTpiAPzOdPf6O6Z9/O+I1Ih/AuC6MeYnTXzyDf/ZOoiUOn02jVvpxTzLvOeCMeZOY8yvTdXUFoC/h2isj4JVAM9Ox5t4xuvbkWGM+YuIjOKvnxISPZZHRDg+Ya39P+XQTyNSnf4Hop38D08/vwwPxpj3ISJjv+gfm+LA9Wmt/YC19qustV+HaJNiCOCziIjS+xDFKz0XNe67rbVVREoYFVogWlNf7amV3wrgJF74e/Bc1sonPMJ0m3f82Zhr9LOZ/kx/TyEiFAe18VLihXwHORhj3oxoPn5ZPltARED+DqI5Ogvg9xljuBl21Hv/IQDbAH4r7t7TjaAPICI6rz1Cd0mO/5GNXJE3Afw4gN9/hGthrX1kSvrH1tqPIdq44Hf63LU6VVBd4hNtc0rOPoRoI+K35dB3T/v7GCJX6g9g+i7bCH/DWvsaa+13AvgbiOJRH5j+vA2ROv8dOADHi8AhKHABAQEBxw3mkDoxd999N0qlEhC5PPrZ5v7Zc7iVxazby7xjXwaQMsaoe9trMT9uQ7GJyHXINyKBSAW8hX9M3fDOArhyhHbnQdnvuek9CP0f81lEhvySGLoVa+3dAGCtXbPW/llr7SqioPufmBovsNb+Q2vt6xC5Vt2J2Z3oec9WBLD4Ap7N/9/+nyJSCu6w1lYQuZUetcDQVQBnp6oQcY59M8b8zZh1Nc+g+w5EBtm7rLWXvWNZRDFiVzBNXOAeJtoo+AFr7Xlr7RlEa+kK4sfnXQAemJLVNUSK1V8xxvzH6fGHEa1H3vcCIndMdbcjmfx7iGLp7kBEYluIkq285qABi8N0o+PvAmD84rMAfssjTyVr7Z/Dy/8eHNj1Qz6b6Q+itTHC7ObJXOvTJwAxP9/6PPr8Qr6DFH8SwK94Su4FRO6ZPzdVoy4jUolIlI60vqZt/5y1h1rmaezHgc2FtXYHEQl6sSx9/U6fu1anCqomfAHg3Jj/G4Afstb+q5mGrd221n6rtfbk9Ds0AeB3/A6YKF74QUQJUe4F8OnpeB36Dh4vAhdi4AICAgJ+z+Hhhx9Gp9MBouQMfra574q7xhhzt4lSZSdNlAnwxxAZiF+cHv86Y8yJ6e+vQhSo/x8BwEbxHL8C4O8YY4omSoP9jZAkAGZOGvCpmvDTAH7cGLM6vf+bpsb9LwH4emPMu0wUl/XXEJGqj72A4fl+Y0xhGsvx7QBiVRsbuT3+FwA/ZoypmChxw23GmLdNn+ePiFvdDqL/bsfGmNcbY7562t8uIqM8LoHAvwHw7dMxzyIiDp+0LyBphocyooxunel8/Tnv+HXMNxI/iajv/7uJYn7ejkiJ+gUAsNb+vZh1FWfQfev0ud5jvex20/H5ZUS78t/mqX0wUUr420yEVyNSFv6Of94U34+IKN83/flVAP8C0fwCUUzg+0xU666ISEn5FWutr5B8H4CfsVFGxksALk7X/Dswzexn9pN0nJ8zdj5+FpFq+35Ebnh3GmP+xHRc09P1ctdNeA9eCD4A4K8aY26dflf8PUTZDI+UbMInADE/P89zjTFZs5+QJWOMyZmYHawjfgcd2NaUwP8R3Oji+OXosPlj0++Bk4g2CRj3duj6mn5XvAPReoB8/kZjzJtNlPI/b4z5HkRK5ienx820z0xAlJuuCeJfAvhLJirLUUcUJ/lrR3lmY8w3GmPq03u8AZFKxk2PuWvVH/tpW6cRuSH/E2vtDZuE03d5cbquvw7AdyLa3NBzDCLPhb88fR+eAvBmE7lOvg2z2TVvwPEicDBBgQsICAgIOApOICIzLUT/UZ4H8A02irkBIpXj88aYLqKYhV9BZLgRfx5RXM46IgPvz1lrHwac8dIB8AXE469Pj30KkYvRjwJI2Chz4R9HlCBkExGJeJ+1dvcFPOdvIUoq8ZsA/r619r8ccO63ITKcHkFE0n4ZUcIRIEou8kkTKU6/isjoeAqR69S/mJ7/DCK3yBvc76y1v4mIePw7ANcQKS/f7J/3AvDXEcXTtKf98YnqDwL4WRO5R81kl5uO7/sRxQBuIkqJ/m3WWj+742H4u4hUxU+ZGxXgBxHF2bwXQEOOv2V6fAnROusicsn6aRtlqgQAmKgo+j+b9rc9VUTXrLVriEhh10bxYJiuw+9CZGivIyK3M7GgJkpM8V5Mk9FMCfyPIFJXvhtRnBcQKV/P4Ijq13QsGZ/Xnt7jmxGpWGuI1joN8pfrPXiTuVH1ev1zuP6nERGjjyAysgfYj/N7sfEoovk8DeA3pr/fAjgl+ENy7tzvoMPamuIPIIrB+rB8hqkK+4cQJQXaAfA/ESXe+OHp8UPXF6JsmB+3UYITRRYRadlCtKZ+PyJXY3oG3DLtJ5+jP30O4ocQrZcvI9ps+yz7dYRn/mZE34VtAD8H4EettT87fabD1qqPP4NoQ+gHTLwa/zpEa7uNKHnTt3pzA0QbLr9rrX1o+vevTO+9geh75J/PuTeAKOD4oOMwxvw0oi+ddWstUwP/IvZT39YANKy19013aL6I/cH+xLzdT8UDDzxgH3roocNOOxR3ft+H8O1fcx7f+3WxhDkgICAg4BjDGPNpa+0DXwH9+OMA7rbWfu+hJ790fTiPyNhMH1UpCAjwYYz5PgAb1toDjcmAgICXF0cpOPgziAKUf44fWGv/KH83xvwYZrPRPGGtve9F6t9zggGCD2VAQEBAwE2FtfZf3+w+BAS8GLDW/t3DzwoICHi5cSiBs9Z+ZJ7v89R/85sAvPNF7tfzQoiBCwgICAgICAgICAg4znihMXBvAXDdWvuYfHarMeazJqol8pZ5FxpjvtMY85Ax5qGNjY0X2I1pmzA4PNlNQEBAQEDA8Ya19mlrrQnukwEBAQHHDy+UwH0LosBJ4hqAc9ba+wH8fwD8GxNfDwbW2p+01j5grX1geXn5BXYjgjGhjEBAQEBAQEBAQEBAwPHFUWLgYmGiCvR/CFGmFQCAjQpWDqe/f9pE1e7vRFRt/CWHQXChDAgICAg4HNVq1f13YYxxteZ8Lw4e408ikTjS+UQikYj1DLHWIpFI3HAPPc5/Y7KIz1zPc/xzrbUzn81ri33Q+7K9uOP+vfy++/eIa8fvY6FQQKVSQSaTQTKZRCKRQCKRQC6XQzqdhjEGg8EAg8EA6XQayWQS6XQaxWIRmUwG2WyULI7zk8lkXL/G47H7fDQaYTAYYDgcIpfLoVwuu8+HwyEGgwGSySSMMZhMJphMJhiPxzDGIJ/PI5vNuuefTCYwxiCXyyGXy2E4HKLVamEwGGAymWB3dxeTyQSpVAqJRMLd21rrnpPPBMA953g8ducCQCqVQjqdxsLCApaXl117hUIB4/HY3Ydzksvl3HgNh0PX3mg0wu7uLowxSKfTSKfTSCQSSKfTsNai1+thNBq5seI4j8f7VSESiQRSqZR7Pvab47G3t4e9vb2Z8zlXcUin024sxuMx9vb23L05Fmwvk8kgkUig1+thOBzCWot0Ou3GP5PJIJPJAADG47Hr0+7urusHx4nn6fizfWutWwsAUCgUUCgUkEgkMB6PMR6PMZlM3PvHPiaTSWSzWaRSKYxGI3cOz5tMJm4OrLVuXvms1lrs7e25OWHb/N5RcI50jXKeUqnUzDvJ88bj8cxccF1w3ej5yWQSqVTK/fB4MpmcuZb947PwXdrd3XXH/Hc/mUy6d1zfda7rVCqFbDaLdDqNyWSCwWDgxsxaO3PPRCLhxlXbSyaTyGQybk367zLHmPdmn/SH60e/qzgGHJ9EIoG3v/3tR603+aLieRM4AO8G8CUrhSqNMcsAtq21YxMV9rsDh9QxeDERvQAv190CAgICAo4DfDLCzxSHESz/fDW4aED55/nEZt4xXqvn+v2eR5Li+qzXxvV9HuaRt7h7KeLIJdtLJpOoVCqo1+vOGAP2x280GjlDjqSVBK1QKKBUKqFUKjkDtlAoIJvNOgOcxh2N/b29PQyHQ2e8DQYDd20ikUA2m3VGP8clmUzOEMlkMumIBg3adrvt2qKxCOyTm9FohH6/j9FohL29PfdcSoh4fxrGRDKZxMmTJ7G4uOja5DPu7e05Q5OGL+/B59KxV2IEwLXDMecckMzo2JDQ7e3tOSJI4kUiyXY4LiTDQEQsgP31rIazkhCSXfaFc06CQ3JE0sbzJpOJGxPem8/PttmXwWDg2uG48L78PJvNIpfLOUKmpCSbzSKRSGB3d9cRRCUUfC4SHf5Ncsp1otB+c5x4Dt8VJYM8poRSSSXHjXPNZyQR4pgr+eczk8Dw/eV1usZTqZTra9yGjpIzEjtdZ2yTz6KfkxTzOO+j7wa/D9h/gu2xTRJQ/UwJOMG5yWQySKVSbk3rO8376ObbzcKhBM4Y8wEAbwewZIy5DOAHrLU/hahWwge809+KqKjgCFEhz+9iXZKXA5ECFxhcQEBAQMDBiFOr5pER/z/pODXKPx5HinwiptfPI1HziI/+ftC12l+f7MWpfL5iGHfNvPGYh3n9y2azWFhYQC6Xc0ae3yZ34Pl3Pp9HuVyeMTRpdFMp2d3dnTH+SCyUAJLYdTodWGtRLBYdmen3++45M5kM8vn8jDGqBuVkMkGz2ZwxCEkCU6mUU8dokKoqx+sBOBLDOSDxKxaLyOfzKBaLGI/Hjjh0Oh333FQbUqmUM7BJ4NjvyWTiiMPe3h5SqZRTKPx1TJJHw52kxRiD4XDoDHGdI1XOuIZ8MsFxI+niPVVd8dUqjtN4PJ4hXaq2sS807nUulHBmMhnkcjmMx2M3x1T/SNCo1uRyOeTzeUf6SRypSFGlIxGnqsVnJHHi2HFsqRTrBoGSlHnvAJ+Ff+uGkB73yYmqVf73Ekka1UyqSrwO2FfzuG6o6HIc2H9uUvDdUlVN+6FkkORa+6L9VpJLQqVrVQkV21NwvLjW+C/HSRVI3VTIZDJIp9PY3d2dWVPappLgm4WjZKH8ljmf/6mYz/4doiKdNwchBi4gICAg4DngMJfBg67xVSz/dz33sHvMI4NH6bv/e1ybft/iSNxB94kjgWzzKGOl5yQSCZTLZSwtLSGXy6HX6znjyTf+eZ9UKoVCoYBarQZrLXK5nDOgRqORU0p6vd6MKx+Nz3Q6jfPnz6PZbGI8Hjuilk6nUavVnJpCNUpd84BZA5N96/f76Ha7ADCjWiSTSfR6vRkyxZ9UKuX6CsCRIfZR3cGWlpZQKpXc8+dyOYxGI/R6PUc2qILQBVSVFWPMjFKofaArqLqgkbDyGThn2WzWqS/WWkdgOD/WWuc6SEPaV6CVpKg6pYa9qkU65koQSLpI3kgYATiDXjc1SPjUjZX9Yz907JLJpHOVVeWNa87/jASH88i/eW8lcPp8ulHCeQDgNh70c84fyRGv5/jznlxT/JwEntfqO87rqfoqIeNaIFmhCsXxV+VN55djwHHQTQrdvPLJl6qCOs+6jvUYr2F7vrqqfdO1pO7vVNVJSjlXunaUjNJFlO8Lib6v4r2ceCEulF9xuHlCZkBAQEDAKw1xCtVRlLh55/mkJk4d8wljHNmLU7h80hinhPnn6vlx5+k94whkXD98IncY/PNSqRSq1SpWVlaQyWSwu7vrVBGqUErmqOrUajUUCgXXDpWRdDqNfD4PYN+oa7fb2NvbQz6fR7/fx97eHk6fPu2UJSAyUvP5PKrVKozZjxej65zGu/F8YJ9U9Pt9tFotZzirK16/33f3JTkYj8fI5/Oo1+tOdaJKZq117olUdMrlsjNEs9ksMpmMO59GJw3zXq83M9Y0Kqk8plIp1wd1w1MSpe5/6mrGcVaXPN6LRra6qXH9+GozCRPPUaNb3eOUPPptkEyzPVW+1OWW79Xu7q5zN2VMIYky54xzRPJK9YXumFRMNR5QXSat3Y9b0xg7ts3n4RgqaeYc6PPrs/D5eR//vfbJBv8mSfSJm082qGSq+yifV9U8Xackbz4p53xpbJi6N6ry5sfO6VzMcxNl+7pBoIok17BPkjlWGvPmu4zqmPqqHO+h65TjqbGeNwPHi8A9x93LgICAgIAAwiczwI0qGY2Qw1SnecSNbfrG2EExFXGkze+Xtqs79YeRwbj7+IhTCuf1dR7omlStVlEul12SERrLwL4hxjFOp9MolUpYWlpyrpA06kjGaNTTEKRrHBN8JJNJnDt3Dul0Gjs7O2i1WrDWolarObdEKlpAlLAin8/PxIBxtz2VSmFvb88l++A5dNFLJpNotVpOzQH2kz1Q2eHfatCTUCQSUWKScrnsCA6VPZI09qVcLsNai06nM6NS0ICmEcpxVQLFeSMJLBaLbv2pW6C2o+TXX19qjHMt072Thi/HiuAxjpHGNsa5zakrHtUTjpnGllEppMukJkdRsqFutlQ3s9nsjDsl1Vh1e1Qyx+fQWDN/Y4T9VuWW3w/qRsr3SkkJ4cezHeS2py6kqkjq3HNMSViVqGlf/dgvVdpUHWT72h4JkE/g2KbGBXKe+V5wXtkXjoeSVn+sdRxJ3vkcup45H3z/6ErM+WW/eU8mfUmn026Th6quvmM3A8eMwIUslAEBAQEBzw3+f8JxZEkNX36mv6tRFadm+W37bcw7V48fprr59z0q8Ypr9yjk7CC1TpFKpVyyEVVNaGix76peFAoF1Ot1LC8vw1qLRqPhFAk1UkejkXPx6/V6SCQSKBaLaLVaLslJOp1Gq9Vy7pOlUsmRExr7qVQK+XzeESZgP7sgABc/1u12nVKgShoJZq/Xm1E1SNxIVJnIRBMxkBSQ3Cqxo6GocVyFQsEpPzxHlR0ax4PBwBFnGr00Vvv9vjNe1bCnmkRVUjcWNJOkug5SOVIyrqoWjXR1bWNf1W1NVRxVqdjn4XDoSIISHd6HxIFEbG9vD/1+3xFVzc5Jop/P513iG2utU934TCSUw+HQbRio0kZipK6PHB8SSp7nK0Laf1XtOd68hypXGn+oLoHqksh2fOVMyYkqrpo8hecoOfHVU31XOe9cS75aGPfdyfvrPKtqqS6v2ieOhboukvTqZoBmkeRxts37KhHV9533UJdLEvZEIuHicbn2n8sm1ouN40XgEGLgAgICAgKOjnnEJc7oiLvGd1HySZRPjnzDZt5u+mFkK05188/RRAf6PAddMw++gXlQfwgqSouLi854VtWMO9lqaJFwrKysoFAoOFdExm0xg+Te3p4rAcCMiCQqvV4Pt9xyCxKJhLu+0+k490gSMc08qeRN49a4i7+7u4tut+vUN/ZXXRBTqRTK5TIAuLiiQqHgdu3ZJt34OEaahZPKHgmYJtAol8vOiNQsjeq+qEoasO8mSUJBI5WJY0gk1WincUuS62f9IwnXZBVUW0gyOI8kU3xWrneScDWwgf1U/upmxzg+EgT2hWOvz6UGt2akpGJH91YmvSHBp6urqm6aiRDYJ63qLss1rHFeqtCp+qmuqxwDn9hxLJRMcFx910D2Q9U+rgOdC44ViayvrmryEn0eJTd6X31vOf+auEW/CziG/JybFareqdJHJVtVV44V31eNe+R86PrlmmDf2D9u2Gj8JOfKGONIOseS746uV7bvj8nNwPEicMaELJQBAQEBAUfCUVWnuPOOcq2vUM1Tz/xz/eviSJP/u+6OA/suR/4xnxj65E4J2WFKnd8PNWZSqRRqtZqrW0blgMRB08GrmlAulx3hI8laWFhw57PtbDbr1C8a5+12G6lUCsvLy85YbbfbjsQB++njNRNjoVCYMWAZL0a3wU6n4xQbVZtIrnK5nIvP433ohqluVyR+dNcDgFKphHq97sZCCRjdytgXzZTIuchkMjMGq7p4UQ1hun2qnYyp4/NqnTQa0LlczhnGJFCcJ2Df3YyGrSqaJDG8rypWnHut7cb1SvJGBYzPyraU6CnBYSp/Er5SqeTcVUnQlTAzGyVru5Ho+eSNREo3Qki6lEgSJEfqQqjg+CnhUlKrZI3nKwnzv0Pi4stUrVJ3QarGqpxaa2fq0PnvmMInhzoOnBdupJC4+RtU7JOSN7al3wX6HaRkSceJbagrLwkXj6mKxjEnIeeGi7r2cs37BJTjwvdXibQ/Ti8njheBQ1DgAgICAgIOh+56Kw5yNdTPfOVpXht6r3kE0T9/Hkny+6FGnZK3w86Pe5648/3jcSpc3HnZbBYnTpzAwsICALjkIPl8fkb1AeCMwFQqhUql4uLdut0uut2uiz0B4GLCMpmMc41Lp9MuPqxYLDrip5kaaegxiyKN+nK57JRBEgZVj0ajkavvVi6Xce7cOTSbTWxvb6PZbGJvbw/FYtHVoSN5oeE4HA7R6XRmSgfQvTKXy6FYLM6QWxrhPJ+EgklI2D6VQaobNFLV0KehrO6E/FwLf3MOeD37x/HW2CO9D4/TKCcB0rghkjdV9dQtlYRFVTe2wxp+muSCf/OZlbyxn7oxkEgknNpLQp/NZl0pBrq0KpnksyuJUiKlrpE05kmgfbdOHSPfbc///tF517HRJCtKFtSFUzNfKqHRvzkfSpyoxLFfukZ0PalLIseK65zt6Xj5ca2+Uqf98l0oOTYkdfo+8Tq+o5x/rjkl1v4Yx8UnahkKegvwON8/de3U947XBAL3IsGEGLiAgICAgOeAeeqaEpN5hO4g0qTkap76poRqnkvkQS6T8671++Uf52eqmMU9hz8Geu288WB5gGq16lQyZmBUo5AkLp1Oo1gsYnl5ecaVjbFmNDpJqsbjqIYXAGfoVSoVZ0h1u10X10bDTkkH1SUqZDTCqcLQeGWJAGMMarUaSqUSgNm6dCQCg8EAvV5vJrU4a8EpOSCxKZVKKBaLrl/sOwkmDWIamCSyAFxmRZ6nmRE1qQqNZRKXfD7vSAifl89AoqaEi8qIGsSEuivyGWiQkyRpCnka/iR4nDuSCJJSkrt+vw9jjCP8JG98NhrrNPJ5X1VPWQJCFT0AM4lK+v0+er2ei39kHJwSBF8BovLoK0SqzOjz6LMq4oidxj7GvWO8p8ZlxqlMfBd5fxJT/V7gdeoyqeTUT4LDtQ3sK+Dskz6buhXrmvALyKtC6ZNBtqlqoMbO6lzoPbQdfmdwbDjmnA/+TYVXXTNV/dXEJrphcTNdJ4ljReAAExS4gICAgIDnDJ8kHUWpUkIzj4DFteG7/mh72qZP0Px76nE1Kv3z44y7g/rpj4FP3uLGJpVKYWFhAfV6fYZsWGtdmn8SJCUL5XIZCwsLbjyGwyHa7TYmk4mLg6PLYK/Xc+Sr1+uhVqs5YmitxebmJrrdriMGdGGkoVwoFFxhbj4fs1Byt380GrlaciRoLA5+7do1p6jR4O73+86Y1NpgJBw0ytke3T2VgKkyw3aVSJVKJUc42O9cLodyuexI6tLSEhYWFlCr1VCpVFyxcxq+mvBC15HGD+3u7qLf76PT6aDRaKDVamFnZwfdbnemf0xuokYsCYHvlkbCyzgyjYejUa+xd+Px2Ll4sm8ESQYJEcdBVTfOO5+J9yMJ4Dok6dZMn6q+KomhUsX5VVXRr3XG3/m8VKPUPVbPA/ZLH5CAaNycrhWfsLANVbE03owKJOeea5HXklD7cWVcg9pfEmddv3wuriW9D++lypvG7Om17JPG/5EAsh1uZqhiqNk0Na7QVys1TpOEjVC3ZqruGneqLrQcK/aFmw03C8eKwEXfS4HBBQQEBAQcjnkkxjdI9Hxg30XKV6T4+2Gqnt/evL7xPqqAHUQMfQI47xnj1L15fY5rx1frMpkMVldXUavVZpJi6C46DS0aV3SZ1Fgrpm7PZDIol8su2yKVo1qtBiAyuhYWFlAulzEcDtFoNJwyQbXJ2v3C0zTAi8XiDVntlDwwfiyRSCCfz2N1ddURJxI7xrRpcW6frAH7SReosDHmikSBRiev5/Nr8gQ18AuFAk6dOoXl5WUsLy/jxIkTjqhp2QN/bom4vw9agzr/TALTaDScC+n6+jrW19fR6XRmEqZwbplYRMdIyZSSAE10oVkC1eBXQ53jTIWOBJM13ziWSgbZJpVdqpQkJBx7FoinksdxYD+B/e8FLW1A+Fk5leSqUslnZj/0nfFdrjkHSop0DpU8knQwgQwJlSpHJDKasTEu/s7vk7bpk7e4zziXvkqnBI5tq1oWp2zqu8Xn92PdeB0/U8VNr+E68z0Z6DbJOFnts7o5U9WlgnuzcLwIHEIMXEBAQEDA4VB1Ke6zuB89zzdI4oxlGlvahu46+2qZT6Z8tcQ/rsqbnncYoVQcRO4OGh+iVCpheXnZqUFqgNJtjolCVH1hDTbGOnEnO5vNuqQiVMcymYwjh/l8HpVKBZ1OB+vr69jd3cXOzo7bpdeizSRvmiZed/eppgD7SUNodBaLRUcoO50OBoOBU5JU8QHg+ktiR4ObO/vFYhGVSsWRCLq+sQ9U9GhMJ5NJ1Ot11Ot13HrrrbjttttQqVScokaC5GfxjJuruL8PIm1KCvgvE9KwCDmVEY5Ds9nE5cuX8cwzz6Db7WJ3d9cRXY1XU/LCdrhWqO6QPJHYcBNDE3LQYKfKxXHWa7keuCb29vbQ7XadustahJwrxiXyHj4Zp4qkro/6PcAxAXCDCySfV90H+TnXH4mfqntUJ0k4lYDp9w8Ji1/bjNdzzPksqhRrgfJ5a4IqrsaM6XElTzrfHD9VGJW4ce3qRpW/eca/SUy1/AD/VYIW973Kv5V480dVb/5OpZOKsm4kAHDfCd1u18XN3QwcLwJnAoELCAgICHju8I1gn8z55/LfOALlk744g8IHjaB5qpf20b/e/1sNyzjVZd5z+UrfQcQPiMjb4uKii02iQaTZ7AqFgiNv6g5F1yWSvPF47LJP0hAfDodONdvd3UWxWMRkMnFufXRnBOBiyrh7TiOb5QHU7Uoz8rEmWDqdRrlcRqfTQbVaRS6Xc/cZDAYzrpAaF6bPRtcsuoaSjFK10OQozNg3HA7R7/dRq9Vw66234uTJkzh37hzOnDnjFCZfhSXpOGweVbFQJeigNeSrOlyXeoztkQBVKhWcPXsWb3zjG7G3t4fr16/j6tWrWF9fx9WrV7G2tjYz5tpHjRHkOuJxkjiOK11vOW5UNzm+Sqy1vttoNEKn00Gn03Fqpl8bj261NN6VbOhYasIQQl39SMj4Dqm7HlVJn1Sp8qtESt0mtawBj6l6xzGjyyTXOrCfEZXjQzWT6jdJKdcuP0smky5+Tl0UeU+6wKqLpbp8cuw4RnwH2Vd+7o8b15iOgyr5un64PtXtlP3UEgi6eUClVuMmSfr5rH7mVM7dZDJx3z1MhHSzcLwIHEIZgYCAgICAw+EbsXFqW5zhDGDGOIkjb7r7PI9AxfVDyZNP+vw2DlLefLI4L+B+nto3j7ipclCr1ZxiQfUEgMv+SMNa06rTuOOu9XA4RKlUmlFL0um0c1lMJpMu7iuXy6HdbjuXRlUbqtWqi0dj39Pp9ExyE7rV0VAD4FzvqCwMBgPUajUkk0lsb2/PJCdhOzTsaKwyxouEkUoVd/g5blTe/MQbd911F+666y6cO3fOkT6uoXnz7K9VTWQRt3Z1fufNv79u9G/233d90zVKAzqbzeLs2bM4c+aMG/Pt7W0888wzePTRR7Gzs+MMcpIWEhX/3qpQqZtcv993yVyY2IaEfzKZOHdVqqJU3pLJJKrVqjPcgSh1vKqZJKfaPz6fH1dFl0M/KyjXH9cK54EEgGuDf7MvuqnBexpjbsje6rtl8p0koaL6yWtJVkhqVG1UF2L9m6SFxJoEiHPgu+uqGsYx0e9J392YxFZVTv7uuzlzLPQeHE9/raoipy7J+i4oyWOtRU3MwwQtXKe69rihk8vlUKvVAoF7sRAUuICAgICA54N55C3OqJ1HxPRf/h537kHX+q6L80jcPPIW14e4ex0Evy39u1AoYGVlxRmLwL5BRGOyXC67XWwalzQYK5UKEomEq9nGxB40kHQnnMkyqB4wPkUNLZI+jbNiBkJNCU9ljmoeE1jQmM9msyiVSrDWYmtryxFFZpykEUvFRp+XY1YoFLCwsOA+o3pC1ajdbiOdTuP8+fO4/fbbcfvtt2NlZeUGwh+3xtRlTEmbzplPqNTNzp/XOMV53t9xKp8SOiWlqvzSFbVareK2227DW97yFly9ehVPPfUUHnvsMVy5csWpkVxHJDVaiJlEiFkBOQe5XM4Z4VSGCoWCW2udTsfFLTLTJFW2VCqFUqnkSJ4SBK2lR3IyL1287w7Lc1WdUvWXRA/Yz0TJ4xxnpq/npoa2r8RWVVK6V5I8UYXU7JNaCJ33VzLD/vGZtEafvwZ1/vU7S9edrg+t02eMcTGLXM8ksvq9wc94LsmnJnDx4wL5fcNr6aLN7wq+X1o7UAklxwLYj3vj+lZX1nK5jFKpNHdz7OXA8SJwCClMAgICAgKOBp/oxBmrRyE889pUHMXtUcmY706lhNI/N+454pQ0n2TOUxDjzk8kEqjX61hcXJxxd1MjZzKZoFqtzqgWjEFi6nwaQazHRSOWhp+muqeCNhgMXGwVFQwWYaYhBsApC5p+nkY/iSFVNbaVz+dRrVZhjHEudtZaF+9G5UzT7rNdYD8hRzabdXXdgH3jj4Z1JpPB/fffj/vvvx+Li4uu//78+0qCKgi6dmi8akyfr4r5pC4O89Y6DWuNG1LjmsfYR8YY0i1RM/gNh0PXzqlTp7C6uor77rsP29vbeOSRR/Dwww+7hBBsj+1rKYVut4tEIuHmV7OBcvxJwFjAHYhcCEncR6ORc69kDT6NYyPR13dL3ZtJkrgOGXtGYsW+81+SF1V29P31E2XQxZfunwBmFDm2q2SRc8LxjtsUUZdXJdz6HcBYN92cUddE3TTwyZMSLn6u61PXVNx3pMa86djyd/ZfVW11/1R3SV6by+XcBgHP0ayzLCFRLpfdPVRZJbnjZg5JfjabdZl158UOvhw4XgTOhDICAQEBAQGH4yCFS48TcQqXT5Ti1LejtMPPtZ049WSey9s817qDcJRzeL9MJuNS1NNQ5+61uplVKhUUi8WZBCL6nMxWCERGNRUAKiLpdBrdbtepaiRczBzIvlBV4O56IpFwyUI0+6GSQSBSxNiWtdY903g8RrfbnXGpohEOzJIxVUFolFPp0JpmNCJPnjyJV73qVbjnnnuce2bcOiFpJ4FRQ90ntj5Z85MsxJGD5wJfEfR/15IB84idps+nIqTueblcDqurqzh16hTe9KY34YknnsDDDz+MS5cuodfrOaVFyTST4Vhr0el03PphSQWS8EajgV6vh2w2i0qlAgCu8DtjMrkeqfaS6CtU6eHz81lo8JMYqKuwKlP6HmiiEyU8JFXcVGBKez3uJ90gafbdPZW4ca1wXSmh5zurREVVKt2cUeKkWTY1yYe/eaCumVw/JEfsU1wiFl7Lv5mQheNNQqiqqBJ53q9QKDjFlWSea3U0GqHdbrv1wLWqiVr4HaJxcBxbHQslji83jhWBAxBi4AICAgICXhDmEat558ThINfGOPLok7Y4RWxef+Lc3+bhIIXQV/gSiQRKpRIWFhaQy+WcyxnT9nNnnmn/6bqmyRnUANL08XpfGtC9Xs/tcDN1vRIqTVZBgkWykM/nXdvMgqiZC5lFkgY/XReVIFJ9IVGgWkfQSOZ9SBqpSNJgZvv3338/brvtNpTL5ZnYHX/TwFdSqJrQKNWsmfOIW9yPv8b8teWvCZ+ozdsQUHVOXTo1u5/GIqmbHgmAPkehUMC9996LixcvYmtrCw899BCeeeYZtFqtmQLrXF/q8kiXSWstms0mtra2MBgMkM/nHamj4sp4MCqCuVxuppC5qmxK3tSlz5goHlNVMJ1XJRkkh1R+NAGJqn6a+p9jp8e0XSpRdK2kax/7RTKiJIfnzUvswY0HddXUTQuqaVryQgkV+6jviT6/qsVcRxwLden0j2kcnsYMqiLIYyToSjq5sVIsFt1aoxt2r9dzz2zMfvIansfkRlTp+d3nvzeH/T/wUuJYETgTfCgDAgICAp4DNFnEPMSRG/1cz6OxdZj6FnePg85RQueTO95PP1OS6BPGONc9GiOqMC0tLWFlZcUZnMYYZzxrHFKhUECpVHIlAzKZDNrttkv7D8C5K9HgYnuJRAKdTmdmR50uThrXxkQTJGE0xpmdD9jfNR8Oh85wJpkbDAbIZrO4ePGiU9t6vR5arRb6/b5LiMKiziR0ml2P6gTVChqIVEVGoxEuXLiA++67DxcvXkShULiBAOk8aeySr2r6RO2wf/3fdT3OW4fzFGQlZvxcFTYlbwSP8zqWO9B4MP6tcXNUazmmq6ureP/73492u41PfvKT+PznP49GozGTaASAczFMpaIabu12G41GwyWYYMZSkvJSqYRMJoNutwsAqNVqzoWSP+qWqM8N7CcUIVnXDQw+t7r06ZjxWhJ/KsDAvqJFMhmnqPK9I+kkqSJh4XgD++6WAGZiQPlsfBYlQ1zXulkA7LsiAnBrk+2SlCp5I/Hj8+rYaIydPpt+R/FfnqeqNMdX1xbbpjssVVR+X3Ae6XLNd5rqLRV7jhNVSxaz73Q67jtB1WeNKwwxcC8SjAn8LSAgICDg+cHfUT2qyuaf7xO9uPv4bfjnx7U97zM1JJSI+ffy+zdP3cvn8zhz5ozLELm3t+fUj93dXWc0GWNcNsputwtrrVOsGI+mLlZ0ORqPxy4+RTPj0QVOd/kLhYKLVxkOh45IsR4cXcgY58a2J5MJ2u22c68CohpzzCppjHHJLyqVijNmjTEuyyEA57JJtzb+ruPH2L83v/nNuOOOO1y/4hRRVXhI/Pw4tnkETQmCfw37MS8OLm4d+f2K+1EDOu6H59G45jVUK/msdPmj4U0Dm1kkVQHhunrXu96Fr/qqr8LnPvc5fPrTn0az2XRrguuq3++j2Wyi0+nAWuvcfJmZUuOVer2eU0ipxihhUuVNx4oknoa7ulqqu6gWx1YljfPAchkkPpqQhePCsVQViuuXY6ZxXRxvkkJuCmgdOH3f+Z5wk4Ykjeeoy6XGkfqkzN840PWoz85jus75XP5z6prUd4vKnd83Xbe5XM7Vh1QVnq6RXKtK8vSHY8OyHu1229UHZD+SySQWFhaQTqfRarXcZtLNwvEicDhaxq+AgICAgN/b8MmLb2zN21lVg9hXMOLULt94nkfE/HvEkcc4Zc8nYvOUPDWM5v0/mUgkUKvVcO7cOWSzWZeqXRN30HhOpVKusDONJmaLY1wJ78eMj9xdz+VyM0oajW1gVpGguqKp/MvlMiqVikvfzX5RoSgUCtjd3UWz2XSkcnl5GYlElPmy0+kgl8vNEDQaYRo/R6OdsTSa+IJj2O/3kcvl8FVf9VW4//77sbCwMDdRg6pTqrbFqWeqkKiLnX5OY1iJHscjbv79vviGsqpvuk58ouYTuLgYOD0XgFM0ScCpeui1dKMlCeJ6WVhYwNve9jbce++9+OQnP4nHH3/c9bPT6bhafVwbdL8lMedao8scyTfddePKFKhqRKLEMaGKRkID7BeBp8GvyhWJCuMvOXdcr6og+7XOSJy4aaAuixxHYD+DpJ/Kn4SHfdYsrtww8b8P2BfOuSZs0WfnOYlEwrXL90kJFtevqukkY0rYSY55XOPhOCa6DnV9cY4ymQxKpZK7hs9KcDPH7yMxHA5d/ORgMHD1Anm/SqXiNmf4nXczcbwIXFDgAgICAgKOgHkkCbiR5MwjPb7r4WGKnV7jk7249vU87UOcgqKfz7vPQc/D3eXV1VWk02lnFOnO/srKCoDIKCPBo0sljVEahkwG0Gg0nLpCg0hjmujmxkx51lqXfY/JK5jmv1KpuCLbNIrp/shddiaxoCvd6dOnUa1Wsb6+7oxC1pPTJCxKImk0M6kDY+JonJM43XHHHXjwwQfdmM2LceNnPulS9QLATJ9UqdHP2T+246+dwzYHfHKprmrAbKFm3ovnxRnQTEBDJYrqE41/Xzkh0VGliAY1FU5Vp3jvpaUlvPe978X999+P3/md38Fjjz2GVquFvb09FItFpxbTFZYxkZpSX2PGfHKqz8g5IUlT0sIxJFni85Ac+gSO80PyxzWmMZtxMXicX649jjXfPb4j6h4ZFxdHYqQkSksTqBqn8Wq6qcB5AaJkMDyfz05VXpU3VRM1IYoSQR0bf33xGAkgMLvZouuX5yip5rX6/UTFlUor+8r+tVottFot5ynA+EreV78j9vb23Lq9WTheBA6hDlxAQEBAwOE4iGz55OcgdzT9PY5o+STNbzeOvB2FCPr9nfdvnNriH8/n81hYWEC5XJ4hCoynyWazLiEEDVGqW9zNZ0Y8ADPKWavVQioVFf4GotpcNIxoYNFgZxwQSwPQ8GJ9NSYDYVpv3fW31qLRaKDdbmMwGGBxcRGrq6vodrt4+umnb1B28vm8I0Zsh6SBqgiNZz6bMVHcUaVSwete9zq89rWvdYlV4tYCxzkuCYkqbSRpNLBJWmmUzktiMo/Iz1NbaVBrf7kGNMGEXsPn1tgo/ZzzwbHhXBcKBbRarZn7qoFOg5gqL9eQxi9RkWP7qVQKp06dwu///b8fjzzyCH7rt34La2trKBaLbh7pqsm1lkgkUCwWYYyZKQCvyUfiyJoqV1xjNNhVMePmgaqzSgL9mDiSAY6bFrjmuJKEss3xeOzUO643dUdUNY7jxXuqequumqraknwbc6OLJde+TzTZZ3Wb1AyrcWMJwKme2j/9XAkZyRbHxndvJekjyWLSERJW9luh7VNlZwKlZrMJay2KxaJzvc3n827eh8MhWq3WTH8CgXuRYIwJClxAQEBAwPPGPLeYOKXDJ0fzyBuP+23FETUlgkfp07w29Xd/Z5pIJpOo1WrO1UwzCHIXmuqGtdYlAiG5otFHI49xckwMMhgMUCwWsbS0hG63i0ajMVN/i0QtmUyiUqm4HW4a7CRQlUrFuTdS9WNtLRb8ZjZJYwxe9apXwRiDzc1NtFqtGaLDeCg1SLWWF2to5fN5LC4uuvNoNF+4cAFvfvObcfbsWad2xBEpX2XzXSNVYdNadaq4xcW4xUGNSF2DceqwvylxGHTt6L86JkrMRqMRNjY2sL29PRP/psqc9kkNapYKIJEj4RiNRjMlKNLpNO69916cPXsWn/nMZ/CpT33KrU3GVnKDoVQqufllnzWxCgkWgJk1pS6QPF+T3KjyS4VK3QY1mQjnkGQSgFtv/BzYdx9mciC+a/1+331Ogq/PwWQ9mvnRvy/VcSpvPvFin5j0hd8DSnA5Z36spSpZJGKqEvN7BZgtzcB3nJslJK+qarLffG62wznT7Ke8r8bWKtHjdUxUwiQ6/E7g5gE3bXTjhqRQ3wON4bsZOF4EDgf7fQcEBAQEBPiIU8eAwxOL8Jw4+CQMmK0npQpcXBvzlD4eiyNk857L3yWm4bS0tIRqteqMNU2TnclkUCwWUSwWXd0ktknVBNhPrc+4Mk3Lf+rUKdTrdfR6PXQ6nRmVgAZ5oVBwBjHdnbT4Nw1mzSYJwMXldTodtFotjMdjpyQCwNWrVzEYDJz7Xa/Xc4W26ULJ+aChSQKwsLDgsm/2ej137Ku/+qtx7733olKpOAVJiTznYl5MG41A/pDAkrTGlQ3QNeKTM39dxcVI+n/PSxYRp+Lp88QRQ5IDn1jSiFbjmYY21TZVVzShBckaSYxmLiXJBSJje3FxEe9973tx7tw5fPzjH8f29jZ6vZ7LNOkX/KZaTPdeJd8koiSP/jyyv8YYp5rxPeL1SsqU0GqiHrbL6zh2fDaNd+NnJI666aDqmJbaoBrNH5bl0HIAXAdKOrkpwrWuLpaqRqoLsBJw/ztJ3w29nmOoJJTzrM/H+eBGkhJHY6IERIxP49jmcrkbFFa9Jz9jPGKz2XSutbVazY0P1Tc/Do8Ek+9+3HvzcuJYETiEGLiAgICAgCNACRQQH1fmuzrGwTeu56luAGKJlP47zyVO70OoUe2rgXHPyd+pAiwsLLjU6pqAQo1cGoc0tkjeeH9mp2QBbo2xOXPmDMrlMhqNBhqNBjKZjFPuJpOJUxiAKDsgE50wuyTdJXlPKno0UofDIbrdLtrttovPSyaTaDabLqlCuVxGsVh07XS7XaeakUgwmQQQKTsrKyuoVCqOKI7HY6ysrOBNb3oTbr31Vmcg+9n9lAjQwFUXOl5DwsYfP3GHGt/z5n8e6eK8aFyX34YSel0XccRP//XXk6ox2hcaufw9jqDt7u6iXq+jVqu5TKEaJ6fnKqEhEWF2QfbtzjvvxMmTJ/Gxj30MH//4xx250f6xPxr/RWWOJEVVOVXnSBDoRqcGvbrsMRaMKhQ/4waJkh62y7g4xumRzJC48NnZFgD3zrH/XLucdz4zx0tVTvZby1co+dRSD1Ti+P2g8+qrlyRIvL+uG1Ve1XWVa1E3FXQjSb8vVd1kn/m5EjQmRiLUJZxta0ypEmhg31VWYxhJJvUd5/wEF8oXCQYIDC4gICAg4DljHvGaZ1DH/cetJCrOTS0uJuMoO7hxxvRhxFKv5T3S6TRqtZpLtc4C2HRPsjYqqgzAEQx1ZaPRxHsyox9J0+7uLk6dOoXV1VVYa7GxseGytZXLZTSbTQBwhupwOESn03EGfC6Xc32jogDAKQxUHPr9PnZ2dlzJgqWlJSSTSTQaDXQ6HWSzWZfue29vD61Wy507mUzcMyr5yGQyOHv2LPL5vHOvMsbgtttuw1vf+lbUarWZFOo6d3GukjT8mIDF2qjQNDPcaXyXGsLz1kecCuufM4+8zVN549qNaztOmfbbVePWP66KDRWMjY0Nl4mUZIrrWUkfXUy15h9rejEphTFRhsB3v/vdOHPmDD7+8Y9ja2vrhvFT4qrJPoDZbJH8G9gvCG2Mcdkm9fnYf/ZFM7byeiUNJHh0B6bLIuO4eC1VICp+HCONd2NfVdlTwsnNBi2lQVdQEm0lMZp8RuPrrLUuoyOJkroo6viSzHIOleQoiVO1n+8Kj+n647Pk83m30aHvGcdGM4BSmeM9OdY8j4SdruOTSZRIiZsFJPKqvOr/A7p5E8oIvEgwxsAGBhcQEBAQ8DxwEJmKI3hxisU8JUzP0XbiDPF5Breef9D94q7XRCVUv7hTzd13umlRjdAYHxp73KFnNslut4vBYIBSqYTTp09jaWkJg8EAm5ubM7vfvV7P3TORSLg6SjSmSqXSTLwSsK/yjcdj1Go1LCwsYHt7G1tbW84FM5fLubpNdL2rVqtIJpMYDAZotVoumQUNSlUbaMSfPn0ayWRyxkh/4IEHcN9996Farca6Hirh8N0lST5Yw67X6zk3URrUaoz6cxa3QaCE6KDz9Hz/HP/6uLVyEFmMI3Jx1/BcVevYF/7daDRmYpiUXOi48HfGgWlCEZ2vVCqFV7/61VhYWMBv//Zv49lnn52J8+K6UlJEkqOqCrBP9En2GfPGY2xHs4aSFPI52Za62/FeJG/GGKcSazp8xsoxtk1LHnD9aiZMP75Pa9OxDZIT9kmv4XNpnBeJmqqjvL+qaboGtEg5P+NY8Hf9VwmRqmlsV++prsK8F+eACWxKpdJMQiUSwMlk4sqRjMdjl9mThJHqrMbYsW9sg6RO1b8QA/ciIWShDAgICAh4PjiIePlG8lEIln8+j+u5eo3vmua3q/8edo4eSyaTjhzxh/E3akyqSxTVOe5Qj0YjdDodpFIpV+tse3vbGbW1Ws2l0t/Y2HCGkhrITJs+GAwciWEilFwuh2KxOBNb0uv1ZoynQqHgkg9QISuXy9jb23NEgG6hiUTCZcDsdDro9/vIZrMu+yVVR2atI5GloVsoFPCmN70J99xzj1MZ/blXgqHJRlQ1oopJ4kaXyXkxbjp/81wo+a+vbB2mwvnrL+6Yfw/9PA4HKXs+2E8lP0p4SXbjiByfk65+VKzoRsj1BETv6qlTp/D1X//1+MQnPoEvfvGLbl1zLWpCEypoShqZPCefzzsFi2Og6gsJEgkHn8NPyMF+qspHdZsEsdvtOpdRxl/x/VLXUiWIVMvYJyVoXGskeky0QjWNxFbjUjUuDdhP6qJJWuKSl/gp/LXUho6Rn4BE1y/JFPulChi/K1Tx0rhSVTR9N1aSMI2fZa04jjfXo1/6QZ8pTn3jXNwsHC8CZwKBCwgICAg4HHEE6DA3s3nEyd9x1v/4eZ1er4QwznVunmEcRwTVoNfnoOFVLpddMhB1yaKx4hux6XQaxWIRlUrFpXJnTTWWGVCXrBMnTqBUKjnVjYlDSL6sjdwnU6mUI1Mkd4VCYYZQApgxxKgkjEYjXL9+HeNxlE6dmSsHgwH6/T6SySRWVlYcoet0Ok6ZoeHJQs/MLNlut52hXCgUUC6XnbvjO9/5Ttx+++0ujipuHajyRkOSBIP9J3Gj8UhDl9fOW3s6z3Gqbdya0DWjSoW/1g56Hl9l9K+Ju97feIhbo/699Nm5RnQsqTipIuK7WTLZhMbIaZ2vYrGIN7/5zSiVSnjooYdcG6p8crOA6x/AjKsmsF8CQmMUtS3+zfPUvVE3MDgfJI8ai+en0udGgpK3OLLO90hJlrV2JpOrZlPk+mTMnbokUtHm+8bxofKk48W21I2RirauN42F47n8buCz6feVv150Pfnxg6pAatZLHUtuGDUaDVczkOVDSOao/sa92xwPElcSUX2/biaJO14EDsGFMiAgICDg6PDJD/DcFDY/iUMcIdM2aSD4x7SNuM/8vulx/4eB/IuLizO75zS0qDDQDZIqF8sGkLhQPaJBrGSEiUOKxSI6nY6Lg9OEBfl83tXoInkbDodIp9MolUool8szCgCVO2MMCoUCjDFot9tOLdFMfd1uF+PxGPV6Haurq5hMJuh2u672GN0+mYWP2SW5886YNhK4vb09VKtVvOMd78Ctt946Y7j68+Irb6ogUWHks5Kwkrz55P4oClYcwfPXhUJjyNT97TAFTuFvDOjn8671jeC498lvT7MVqopJVYXrl+RNCR+Pa7HlwWDg1ksul8MDDzyAarWK3/qt38LW1pYzuJV4k2hR+VOlZTwez7hpqtLGd43rgJsiVK40PoqEbDLZr+VGIkOixXeL7o5KXgHMKEqcB65vVaH4nmuxcLorA/turLwf26TbNN8brQ2nBMp329T58wmXuk4qCeSY8B2MS6zDH3W31GfQ7zYmSdJ1xu+dnZ0dp8xZa913h0+uNeGLr5zGfWfHfZe/nDheBC4ocAEBAQEBR0CccnZUdzDCV80OU870vvOM+IOM3jj1w/87k8mgUqlgeXnZ1ZGiYUujrFQqOYNLSwUAmHFjJLRGWbfbRTqdxuLiIgBgc3MTvV7PuYaxD5qMZDAYuCQirOtG1YQ726zbRbWAhcBVIaDS1+v1kMvlUK1Wsbi46Mjb1tYWEokE8vm8iy9KpVKoVCooFotOvSuVSgCAcrmMfD7v1Lh3v/vdOHfu3KHkzY93Y2IEElwmKolzmTxoLfn3nEei/DXlryv/et1k0J+455vXB73+qOt83vvkb04oQVFlR8kAjXUleDw2Ho8dWfGT0CSTSdxxxx0AgN/4jd/Azs4OgNnYKo05ozJDNUtj0FR5AvYLeTPGTr8DSAY0eyJJJQkT+2GMccotABSLRZfQhGRNs59S3dbC3JqQRQuiA3AbI4lEYiY7pxIQklL+TTKr2S+p0Cvp8VWxOGWZChnvq5/r2PjfZ/7Gg7ZNwqVta5Ihuiw3Gg1XX1Dfa3Wd5HzxM6q4nMs4ZZrXaZ9ebhwrAgeEJJQBAQEBAYdD/5Pm33FKwkHX+38rKYxT0OapKPPa9vt0mPJSKBRQr9extLTkSAqAGfeoWq3mYo1KpRKq1aqrvUW1huj3+7DWolgsOtVtYWEByWQSnU7HJeaggpDL5VAoFFCr1ZBIJNDpdJyiQGJVq9WccQrAtaEp03kdVUMAOHnypCNF2WwWS0tLLsskXSlZM47uitls1tW5I5GlwshYuU6ng0qlgre97W245ZZbZtypDlPetJ6bFhPv9Xoztcd8I8+fOxqgXJPz1oOPuE2IeWtG51bd8fxMgnHwCV1cH3zjVte/Hlcy6belbnUkBFR6RqMRTp8+jVQqhUajMRP/xOehElcoFByJAyJieOeddyKfz+Pf//t/j52dnRviPam0qRLF+VOFiOPFNUpFjZkPdbyVXNAtkxsdJCAk/ZogSIkTryW55QaJqoXsBwka4za5Lv1sslq0Xl0a1UVwb2/Pqe8ksKyzpm7JfGa+G0rm/EQuOvckgr4izTWm6iPXqSpmfF7dbOIcscQIS4/QE4DvLNtSdU9dVTmH6lqucYi813Pd8HuxcawIXLSQbnYvAgICAgJeCTiKK2Pc8cMUtTiD+yDCdtB1R+lbIhGlxF5cXHSKWiaTcYYhjdJUKoV+vz+TLptkY3d31yUsyWaz6Pf7AOBULxrGg8HAGa8s4k3DsVqtumQjVKHoisRYPGBfuRgOh2i3264/ANBoNFy7dMlcXFx0SUlqtZpTS6g60OWMRi+N01qtBiAy6EgO1ZWy1WqhXq/jbW97G86ePTtD3nRufeWN7pBUJknc+v2+G09VknSe4sjcQevCdynT644CnucTQ59QaTxSnOIQd+1BxO+wa+dB+wPMxiRdu3YNlUrFERmCY8SkH/l8Hvl83qkwVFjOnj2L97///fjQhz6E69evu4yo4/EY7XZ7RpnRxBv6jlOVo2FvjJlxoaRKRrLGWCwSJb8otCbeoArE8xhTpwRcMyxSFSdZIoEleaPrp08emSiE7fAd1QyVuqngq2W6GaAul37iEP1bXWU5ZxpTp0SQ64RjSxLNtcn76dzze4jfLXwG1gTk9f6cEPw+Yps8h33gPTRBy1HW80uJ40XgAAQNLiAgICDgKJhHmA77z/kw0hZH1nRn9yAXNP9zVSrijHC6TDKLI7DvBkYDUFOLMyslCRKAmRpK3KGnm2Wz2XQ701QLaCwyPT+TgGQyGUdk6MLGRCXZbPaGWDEarplMBr1eD91u1xX3Ho1GWFhYwN7eHjY3NzGZTHDixAlks1mnGDLOTA07IFIis9ksut0uUqmUI3y1Wm3GDbNcLuNtb3vbjNtk3JwpgaNhTeLGtvjc6jLpryV+pi6DcTiKiyLb5M9zMSjjzvHd2OYRvqP2049pOujaODVOia7OA8kR1Rh1U9TzWGvQGOPWeSqVwvnz5/EH/sAfwK//+q9je3vbEX6dfypE6v5Iw52bElSztBC81lTzCQcTjvAdVNWbWVCVqFH1I4EgGVISqWUHqCROJpOZkgckb9o3JUwklFow3M98qWuM3yMaY+k/s7qTqjts3H05RhqTqMqXPjOw7+qp6h7nnuPMkilU9zkH/gacJochYVdVmv1if1Xx1QRJNwvHi8CFGLiAgICAgCOABgZwuMukb2DGuUv6n2m7/j0Ou1/cOXHEjmUB6DqoMRzj8dglAiHRYzZIkicm72DMGpUj/t7r9VwB3W63i1Kp5NzLdnd3XcwRMzsy5ovGF9VAdZci8aIxa61Fo9FwhXRpSNXrdRfDwhIBjG1j37rdrmsHgFNfcrkcWq2WGwOS3Fwu54y6VCqFBx98EOfOnbtBedNx99U3qhh02+x2uzOKJA29OJU2bi3462CeQqfkSg3NuDV0VEUvDjRYVWGKM1LjnukwJTrunIPUbo13U3LGYyRRJCiaRMRa64g81yaN/lOnTuE973kP/vN//s/Y2NhwRI99U3ICzMbmcdxJFvgM/vxo4iAgcl9mXxjvRrdPVed0Xhm3piRVXT2pEJKkcV2S1Ol7oeeTsHCuVf1SJdb/fiN03SnhUWXUz/RJUqjtWWudG6jG5PkuxTq2+n7oNfzuUtKnqhs/9zdNeL2OMwlzXMkILW/BzYSbheNH4G52JwICAgICvuIRF3yuhgt/Pyz5hMI/L85oP0xZ8ZWJuP6RkJRKJRfIz118qhNUqpjNrlKpONUIAKrVKobDoYtJ29nZQSaTQb1ed8TEGINer+dULKoZHBMqWlQTmNAhn887Vy/urAOYiZljdsqNjQ0MBgNXoy2ZTKJcLqPb7aLRaCCXy6FWqyGVSqHdbrvrSdCo2FHJKJVKrs/lchm1Ws0lOmEmvmw2i9e//vW4ePGic6OLmw8akxrzpjF33W4X7XbbtavKm9+eP6/qmuXPvT/v2j89TiWCn2nSB19NU/XlsHWphjSv9RNKzCNrcaTUb3ee0jzvbzX+2c5haibvw3VljHGKrzEG586dw9d+7dfigx/8IDqdzg1ugarSaOZDbgKQWJIkqJKlsZiq1hljZtwelXzyb84r29PkGlxfdKVMp9OuBAfdeAG494+bDVwnbF+fh2OlNfjYB3VnJKieq5qmZIn9VCVP54MEkiRN1T4lyewz3UK5bnWeSdTpLsoSKBwPHmebiUTCKYgkfHw+jmkymXQJlVRFJ4GjCsmxOIri/VLheBE4zC84GRAQEBAQcBB8deKgDGNxRnmc4hCHeYavtjHv2lKphJWVFedCxnT5NEa488/abUxWwjT9iUQCpVIJw+HQJSTZ2toCELlbsYA2yVo+n3exb0y/nUqlUK/XkUwmXZp/GlcsgJxMJl2Jgt3dXXS7XWdkZTIZDIdDNJtN5/LE+yQSCVezaXFxcaaQOF026e5GY2w8HqNcLiOXyzllI5/P48SJE6jX6y4mj4lMbrvtNrz61a++oUi3PyequlFx0UyTVN5Iag9aLzr3cQrcPGLEfgCzBjfhx4PFEbqDVK845Tju3nGufXF91fYP24x4LvBdUpUMAnCxX4rRaORUZL4nVOpSqRTOnDmDr/mar8Fv/uZvzhj7+g6SSNG4Z0ZDJZQkRIwTpcqtbnbM5KguhUoU9b1lUh+NXQP247z4DpAUcm2zn1TjtBYdVTOeR+JHYkLo2gf266lREaTS7Cdt4XiRlGmsnZ7nb45w/EjgVIVUsqZjwO8WKo4cTz67n/XVV27ZvhYu135qzBznaTKZzNTT88fpZuBQAmeM+WkA3wBg3Vp7z/SzHwTwZwFsTE/7m9baX58e+14AfxrAGMB3W2t/4yXo95y+BgUuICAgIOBwxKkdvmGt5/l/zzN8D1La/M8PUy20j/l8HsvLy6jX60in0y67GrC/27y8vOyMQGutc2GkWkSiMxwOUS6XXWIQGud0i6RKVywWXQHudruNyWTikpFYu19birv7xWIRhULBGY/MVql1l0jQqHqsrKygVqu55CidTgeZTAYnTpxAMpl0iUFInoD9os5UDcrlsvt7d3cX5XIZJ06ccNkIqQ4mEglUq1W8/vWvR6VSOZBE+PE9VDP6/T7a7baLeaM7W5xaoXPqK0j+/MatD0VcTFrc2lOD0lfhVDE6SE2Lg5IbGsBxyqWvYGtfffIaN1aHzQnP891H2T+qI/wMiJKbcJOA8WEkQXfffTeGwyE++tGPotfrzShqHCMSGK0NxrEm8cvlci5uVGu5+WU5OBYkKul02qnAmoCHpItkgUo755GZXHu9ntsYKZfLLk6PxFNdObUkgbbN+STB0w0AP1kInx/YV+k006Sq1nxWdcXVhCAkVXQLZV/opkjlkuf4ijI3T7SuJe+t2Ul9kkUSy3nkXHJdqJsknz2VSqFWqyGdTmN9fd0lfbqZotFRFLifAfCPAfyc9/k/sNb+ff3AGPNqAN8M4G4AqwD+mzHmTmvtGC8DDEIMXEBAQEDA4fDd0vjvYS5g/Pcg5eEgtSGOEMapbnpeuVyeIW90laJBRrct7oqTqI3HY2xtbbkd5HQ6jUqlAgBotVpOjaBLFH+nEsbYNxqD9XodlUrFZfcD4AopqxHKGmyMDwOixCKTyQStVssRRc3Ox89LpZLLNMiU/DSUaXR2Oh2k02ksLS3NqINA5Bp68uRJWGvRbredayMJ5Ote9zosLi7OGG/+XKjhRwNU69l1u11nPOpuvxIVP3GDf495KtU8AhOXgILX+O3p59ofuoEqiaPBehQFmO1xzjTeSPuv952n1B30/hwGHQufHPlt8Hi/33cxcVRtGDd6zz334Pr16/jSl74EAG5e1UWOSpa2S5c6vntMvQ9E653naQwbx41KNNUe3pMZWamAk7hwvkjkNBFQKpVCoVBAMpl0tRNJDkko+U5qTCCfTWMH+cyMzYtL/6+kimRUC58TGjuo37f+uiERVNLG8SGZ5vtL9U3r4dFlVOeK34PsI99pPp+qfJqshcSNY8jPs9ks8vk8yuUy+v2++z76ik5iYq39iDHm/BHb+0YAv2CtHQJ4yhjzOIA3APj48+/ic4AxQYELCAgICDgy4khTnIoxb6fVN8T1vDhCN4+8aRv8nbvqJ06ccIrReDxGsVh01zIDJItJ0zii6sVECYuLi6jVatjb28PGxoa7fjAYODetXq83U0SYRkoul0OlUnHkkYlG0uk0CoWCizuhK2EqlXJFs1muoNvtOuKTTCYdkWy322g0GkgkolIIVPBarZbL6sgsmcViEb1eD8YYLC4uolAouDaNMThz5gxWVlbQbrddjBxLJ1hrcf/99+PChQux2eN0LtRtkuoAiRvdJhlDo+5UbIefKXnzNwfiNgPiFGCfHPnulHFK1DzyRWjsDw1kNWbj1qL2h3+rAjOPWL4U8JUV//nn3ZdKHMtk8B0rFov4mq/5GrTbbTzxxBMAIlfE4XA4Y6gzEQpJC5UZrdvGNQ/sJ9mgGyLXFN9bkjyqT0w8QhWdahj7rLFXVBJZ943tqHsj3SPZPpMGkUTqmNHtkWuBz6rfhSRdbIckSGP2+NzqgsgfLTviK8Akb7lczrkqUhGMi5MrFAqoVCpoNpsz7rMkgupWru8DSaX2zc84qvPG6znmJN8c85uJFxID9xeNMd8G4CEAf81auwPgNIBPyDmXp5/dAGPMdwL4TgA4d+7cC+iGtIn5Wb0CAgICAgJ8HKYOHGQQxrUV106cq5j+xBncxWIR1WrVJeKgsUSDkfWimMqciTs06QTJ2NLSEqy12N7edoZSp9NBLpfD0tISWq0WWq2W2/lnWzRUcrmcc1miksfYOmappPsX1RkALpECs0xSxWB5gF6vBwBOQWCCiHa7jU6n41QQ9oNqIMnf5uamO3769GksLy87lzIaX9wtP3v2LO69916nFM4jGGrAqQFMV04a1qrs6Ryr+5iuCao1cfecp6LFHdPPVXFSg5jPTuIRp/ryX7bPZ1Ui5xv5cf1TpVFdNHVMXmxouyQYXHOq/PnklxsPjImjK106nUa9XseDDz6I9fV1tyHAJBp+Yg9r9+OkgP04RJIsnRNCVSolXey3uguSiDHDZKFQmMn+qgXE6cbH9qnQacIiui7rWqKqzPg3zj/7zvXKOdUEI2xXoWs+Ln5Of/jcOn5K7NhHzfTJ8iYcQ5YnIcHT2Dl/k4PvtD8fqrwxptjfXOH6YRyuur7yvblZeL4E7p8C+CFEIWc/BODHAHwHWIptFrH/81lrfxLATwLAAw888KKwrpfouyIgICAg4JjiIHXMPzaPoCn8c3yyoAZC3L2ZCbJYLM4YaHSvotEwHA6dQUEDTY1BGjjVahXNZtPFzNE4XFhYQKVSmUk9TpcyY8xMNkmSFTVqGQ/S6XSc8kdDkkbNYDBwShjbXlxcRDqdRrPZxHg8Rr1ed+UMWq2WI0mj0chl2WRcTyKRwPLyMlKpFHZ2dmCtxcLCAk6ePIl0Oo1Go+EMzb29vRkXyte+9rVYXFycWzKA48p/aTzSbZIZNDl+St4IqnUAnMHtJ1PgXMetNd7bJ0oaj6PwjUdt009moiqZHvP7RjczAM54V1IWt3Z5HfvPMX6xiVzcvWmcc534x1kbjSAhyOfzbg4ZU3b27Fm85S1vwUc/+lFX1kI3Wbgu0uk0lpeX3TPncjmcPn0ae3t7uHz58kwdRG4AkFzl83lXLoPnkLxRAaNqziREfLepulEV5zMzvT3dOLnmmVmRZIhjQ3VdXSY533xGADMknmuG/abyy+PMcKmKLMeV4+4nb+G8afkTegRQFfPj7XhvEipdr7qmlTyqGyf/1iyfbI9j47sVkxhaO1vaQdu5GXheBM5ae52/G2P+BYBfm/55GcBZOfUMgKvPu3fPESEGLiAgICDgKDhIdYsjbgepcL4rkL/zP8/49d3n6vW6y6aoMSA0HBYXFwHAZYpkWnTuJDNGpFgs4uTJkwCAjY0o11i5XHYZI1dWVlAoFLC5uelUORq6NF5Y7Ju78jRo1GWy2Wy6PrAGHHf/ScZo8LJvjF8jCQTgMu/R0M1ms65EQavVQrfbdUkimFSFCVBOnDjh2gAiEkW3TBrSb3jDG3D77bc7Y9ifW3XFU/dJGrn9ft/1jwas7zpJ0kjjV9UvNXTj5p5/K5FTY/S5KsDqaumvUa4XrZXlq22auEVj3Q4qXKzqBY14PwPh84WOh/7tKyT+GPjvn57LchKqKqfTabzqVa/C9evX8eijj7ryGKlUCtVqFYPBAI1GwyXyKJfL7t1grGalUsGJEyfQ6/Vw7do154ZJNY1kheRJMxsy5k3jSieTiVt77Cc3bLREAMmmJhbiO8e55Nz4KfRVQVX1jGOi13Pda/xbnEsk3zWOPz0GqOzpOqTCR7dNdf2meyrvxzXIGpC+6ux/pyrZ4vco+09iy9/9jQr+6EaGHy/3FR0DFwdjzClr7bXpn38QwO9Of/9VAP/GGPPjiJKY3AHgd15wL4/eL9gQBRcQEBAQcATMMyzVCJxnPM9T0fwfVU/mqS6pVMqlvCe4Aw/ApRT3DfPl5WUAcHFx4/EYlUoFKysr6PV6LrZsNBqh3W4jlUohl8thOBxia2sL3W4X6XQaw+HQESQWwlZXTN6T8UJUpeiCRkOOsW6dTscpbySGjKvhM5XLZVhrXawciRILHo9GI+fORmOU7pAAsLKygpWVlZld8G6369xBaSxWq1W89a1vRblcnnHP8pUnJR9UNVgwnAa0uk76xI9GpypQ/jpSUuavBf/3uPP9fh9EiuatYRqsJOaqyPlxcEpAVf2gahFnNPNeHCM/HfxzgU/c5j0fwflQ1zt/Q4XGN5N4ZDIZp/jS5fcNb3gDrl69is3NTSQSCbfOmImQBIprlfc2xrgyAnfddRfuvvtufOQjH8Hm5qZz3eU6oTpF9Yfriu96NpvFeDxb/iKfz7v5VPKWyWRcG5xXzp2uUU3+wQQq4/F45r0icSPZtNbOuCRTSfOJjo4zsO8aquqvfhfye4/KlpJIVfN1vLRoNjPTanyhZiDlnKjXgiZj8dU4/c5Wl0s/2RG/D5PJJEql0nNZzi86jlJG4AMA3g5gyRhzGcAPAHi7MeY+RO6RTwP4XwHAWvuwMeaXADwCYATgL9iXKQMlEBS4gICAgICjIY54AfGuk/w87rgeiyNwPmHw200kElhYWEC1WgUAZzgtLCw496xkMolWq+V2o9W1iokQgP1Yl/X1dWdkMDaNWSCpTjFBynA4RKlUmklUwl1qGjMkbpPJBJ1OxxEuEhomX6DyRlIGwBmuJFOMmWNSExpKrFFnjHEZKfkMo9EIOzs7SCQSqNVqzmWSRjqP7+zsOEOYx97whjdgdXU11nXSn0NV3+g+yWyTNJjVLdJXx6gQxJG0efdWA1uJhr+2DiJsccou21ajlOf45/uZHFVxUNVSx4cExlfZdN1rBsDDxj8O80hu3PukZIXn0FDXv3WMWeeQa4xuiMvLy3jd616HD37wgy6hDtUpEiwSG8bCFQoFpyLt7e2h2Wzi1a9+Nb7pm74JH/rQh3D9+nW3JlVF40YB3SBZQoDrj8Qxn8/fQNwYs0o3TbavStq87x9V7qjmk3AzJT8Ap1ByHVBhV5VNx1xj3rhmVAXkeUow+aOul1QT+TlVf65VVaypKqoypmtCk6xwXWsSIm5McF2z7xpTzPZIYEnAWcrlZuAoWSi/Jebjnzrg/B8G8MMvpFPPF8YEAhcQEBAQcDTEKWL+zjJ/13/1mjiVQFUN38hXQzKXy2FhYcHFwBB0C0wkorplm5ubAPYTBVSrVezu7jry1u/3Z1QFVZrYLrNH9no9ZLNZVCqVmTpqmklS1TctEUAlCoBTLVh6YGdnB8Ph0JEyZsdkUhGOD8kZk4EwtqVWqyGZjAqDM5Mfs0xSyavX61hdXXX37Pf7aDQaznilwZtIRMXKL168iAcffNClWI8j3r7ypupbv993BI7qhZ/khFD3U3+N+ffVdRG37uIQt5bi1MQ4NUyhffbbUqNaY334XD6Z84mcKnLaLkm11hB7Ljiq2qhzonFR/FeNcf7LGmp0l2TM6cWLF/H444/jkUceQa1WQ6VScaUq+Az5fN4RFiZF4YZHv9/Ho48+ite97nV43/veh3/9r/+1y8BKN0BuCAD7irsxxqm+fP9Yd5EuwZwPkjdmRmXfSLj4vaKkB8DM/UnG6K7NDQiudW7UGLOfpIWEkyRG415VEdP54b3ZP84VlTY+kypj/K4B4MaWJJMqIeOB6cqt9yRx46YL301utGgMJO+vLsN+2QLF7u6uq0F3s/BCslB+xcEguFAGBAQEBBwOX3GLUzHidq6JOPc4vd6/j/6dSCSwuLiIUqnkEpWkUiksLCy4ZAaMK+t2u8hkMq50wGg0QrfbdcdpQFE5mUwmLgGDMcYZQjSKGHND18RisejKC9Bop7HDzJAkS5pSnwZOr9fD9va26/Pe3h5OnDiBhYUFZyCSQDGLJN2aALiSAsVi0cXUqaJH9eH06dMolUpO3Wi1Wi47H92pGD907tw5vO51r8OFCxdcvB/VCc6dzqsqauyzxuVxbPQ8GqhKdn0C4xuUirhkJf4xJXc+KdI16q9Lf23Gqb9+jJzfJ/7Nz9SwVRdKVTmYfCJO0SYpVBdTH0qw/P76zxi3+cI+E34NNY3JUqLHjQ4a6kwC9OCDD6LdbqNYLLoEPNzgoIrG56WLYyqVcpsTrVYLTz31FN74xjfi9a9/PT71qU+5MVTyRtXNmP3aifr+6frTWo8kUlSEVDlibTo+o5IfEhNu6mjfVTnlvPIcEj+2y3VAIqnZJPkuqTsi55f91Dg6uqJqbB6z36pbI4lUsVhEoVBAp9NxJJzX8Tn0fLahZFbHxVfdlNSxHX0XGZv4fN2DXwwcKwKHoMAFBAQEBBwRccqYfu67yR3mxnaQoUkDhqn7qZ4x7owJPVqtljPIut2uI3jJZBI7OzsYjUYu0UmpVHI79cxSx8QDLCpMggfsu1jSiCuXyzOZKanCpNNpl8Sk1Wq5BAqMx2HsTLPZdLF0zJ55xx13ANgvfHzu3Dn0ej00m01Ya7G0tIThcOiek9kwt7e3HfEEohgXPuPS0hKKxSK63a5zpbz33nvR7XbxhS98wZVAeNWrXoU3vOENqFQqrnBzuVx2O+txbng+waESw7ggNZJVvfHn1idZByU3UPcyxTzXwMOUNB9KKo96DaEGqRJBGsBq0Ksyp8qdZhH0FUJ1ZTusfwcROn8u/WNKPFUR92O1SD64scENhkwmg5WVFdx77724fPnyjPskiRufu9fruYL1jPHkZsfVq1fR6/Vw//334/HHH3flMZQwZDIZF+/W7XZdEqFcLueU4PF47GKuVBUzZj8FPucjk8k4osfNG46HxphRceM1SsR0g4IqHhX3bDY7k6REXTZVidW6dGxfNzq4JkgCSR6p9lHV1A0Rkn/dmKJLq5J1fQa2z/dWx5/HVGXkulOXSm5QsM+qft4sHC8CFxAQEBAQcET4hpyvpgHxbmpxbfgxNv452WwW9XodS0tLzsigssbEIEznTyNKd/RZzLpSqaBcLgOAi33RbI/cxVcVjgRQjUuqCiRnNPjz+bwrpk1FDIDLssdYn52dHaeEkTwtLCyg3++j3W6jXC4jm81iZ2cH29vbrv319XUAEVGiUrG9vY3t7W1HOLnbXyqVUK/Xsbe3h2eeeQaZTAa33norRqMRPvWpTzml4q677sKdd96JM2fOoNFo4DOf+QxWV1ddHCFjaXS+fPdJqockvn69t3nkbd46UvjqWZx6q6RO43D42WGIU6Hirpu3fgkarWr8+uq0qlea2ITGO41fkgNfieR4HpTV8qiIUyeVDPCZqCBq2nxN0qLp6RnXORqNcP78eVeXEICLU+MY0a2R7wld+rrdruvD+vq6S37iJwvRzRcqSSw1wGRBHCs+BxOVcHy1Npmvimk9N46HZqlUAkWCTtLEOdW51phCbvZwDEkm+S5xjPUatsnvHN9tkhtQ+p2k75zWueMmERMk+eqqqn26meBvIvAZ1WWY7uZaFJ0kmRtgdCe9WThWBM4AwYEyICAgIOBQzHN5BOJj3eKuUdKmxq1vlBaLRSwtLTl3vkwmg3a77YwF1kTTeDVrrYuJYYxbvV53WSStjWJiqGTlcjmXbTKTyaBSqczU4+K9tGCwFixWly0WrabRRtWNhtLW1hbW1tYAAGfOnMFdd93l4tdarZa79+bmJprNpiOOVAiZQCCfzzvSquNaKBRQqVRQrVbRaDTQ6/Vw4cIFpNNpfOlLX0Kz2UQ2m8Vtt92G17zmNajX69jY2MAnPvEJXL16FZlMBg8++KCLZ5pHZDSBAg1jP0GLulipkgHMZjjU9RC31nxVNw6+MncYuYlzq5xHHuPuGbdh4d8/jmzyHF/VYLZEKnBa/08VG46BFg7XMZ1HQPX+2k7c86ubHj/XRBW8D+dMz9Msjdx0WVtbc6qYqk50wyO5IKjkTSYTXLp0ySUP0jEBMFO3rVgsOjVOa75p6QF9h32Fk8/CtczvCcYe0m2T/dcxpHqqiWdUdVZVlVAFTr9nVL3S4uZK5hjfxr85/iRG6tqqKpyuhURiP4kTCSP7r0RO1ztJsBJUkjQqgyRpjJHj/Uh8ATiiPc8j4+XA8SJwBrA3ryh6QEBAQMArBL7hA8SnQ1f4BqQaLfPOLRaLOHPmDMrlMhYXF7GwsICdnZ0ZxY/Fq7kjXiqVUKvVXOKQcrk8k8iACUSazaYzNNlWsVjEqVOnkM/n0el00G63XYwJa7gx6J8GDt00Abh4Nu6sJxIJVCoVTCYTNBoNrK+vu1put99+O1ZXV51aBwALCwvY3d3FtWtRpSHGsVDdazQamEwmWFxcxGg0cgoDAFSrVadIjsdjl7kvm83i0qVL2NragjEGJ06cwH333YcLFy5ga2sLn/70p3HlyhWnRN599904efLkDSnA41xi+bsavaq+aYKGecQLgDO241z7DiNv80jmQcqbEij/Gf2+6me+waltaJ/9PsS9I/64si2SORrHGiOntQ2VHHOz4aBnjut73LP6fSWZ0BT7ftZBVWKttS6RDjcKnnzyyZnxomIH7MeYUZ3jRgfVr2aziZ2dHbdJo6SFZIK1H6217lq6HvJcjT/0v7/0WYfD4Q3kTZPIUHVju/zRWDXNTKoqlU8WeV8tB0ASpS62/hol0dOC2n4iHI251BhW/c5l8hbtj9YEVFWOJNV/D6gksj98RqqB/rgyLpFxyDcLx4vAwcAiMLiAgICAgIPhGxS++42eF6fA+cqbXkuDplqtuhiv06dPo1wuY3Nz09Vkq1QqM+nyrY3S/TMzZafTQb1eRzabRafTmekHlS0W6B6NRqhWq6hUKqjVaq7YNY2TSqWCfD7vYru4E18sFl0qbGaApELHRAjdbhdra2suG+by8jJuueUWZLNZNJtNjEYjVCoVjMdjbG1tYWtrC6VSCclkEo1GA9ZapyzQnVNVLvaBBj4zVRpjMBgM0Ol0nAJ555134uLFixgOh/jc5z6HS5cuOVI4mUyQzWbx6le/2sXw6fwSSuTUgGXyElXfFBwzQudNVR3eQ9eQqhkHIY6AKMHSvvOY/5x6jvYpzujX+/r31/7SoNfNinnkjuOkRIfKChPNKNklASK5Oyr8MZ5HXpVYqjulr8JxLKlisU/lchnnz5/H1atXYcy+m2A2m0W/33fjQ9dKZpdttVoolUooFAq4fv36jPugFn3XwtzqGqiFuKl+qVsgVSE+IxVz9klVPhJMrYvGPmjxb19lUxdHkiglWpPJxCmvvusv59YvR+H3nYXL/UQzus6VeKuax/YZ96vZItkW3VpJ2P2x5foh8daEPRwPklHGePJcJbovN44XgQtJTAICAgICjoC43eB5xuNBJE6NErr8lEolR6YWFxdx5swZpNNprK2tuR3jXC6HXq/nXBXz+TzK5fKM8bi4uIjd3V1X0Jq74Lu7uyiVSo7IkQyePHkSxhi02220221nCNbrdSSTyRnyRvcjpuJut9sYDofOyGSh7Z2dHVy5cgUbGxtIJpO46667UK/X0Wg00Gq1nKrIhCZra2swxrj7UM0jGRyPxy7tOQkdyxh0u12sr687AsCxSiQSuO2223Dx4kUUi0U88sgjuHLlijM8dde8VCrhtttuczvnhO+eqIYmiYZfrJuki7v6cTv3/lpSVULbPwg+8VKoO6ESQVWNfONYn1ENzDgF7ijwn8Vf89q+/1zsg2appIuikgUSgecSF3cYaWO7+s5qX/wslarWUYUjqVxdXZ1xVyYRK5fLLuGQulDSva5Wq7kYV83yyHnUumRUc6j8qGupf626+KlCRKiKFlfeQcmsKnBsW0kLsF82hERH1SqNHfPdDjWJDIkcx9Ynb3xWEk9Vv3WTws9ky+9dkjnf9ZfKmTGzSVs0+YqOMYmlkj2uGVUM/etfbhw/AnezOxEQEBAQ8BWPeeqDf4xQtc1vhwZKPp93RaYLhQJKpZL7my5+rGtWqVSc22K1Wp1xb0wkooLVVLdoVGqGOvaRil21WnUxcEzuwSyOANxu8d7eHvL5vIvl6Xa77hh3nJl2f21tDRsbGxiNRlhYWMDFixeRTqdx7do19Pt9nDhxAoVCARsbG46cMiMciSnHjWSVcTw0XGu1GsrlMjY2Npw7JRUDxpncfffdqFaruHTpEtbX112MoG9EWmtx4cIFVKvV2LpvnEd/njkudJ/U2lHq6hdHzuL+9tfHUZW3ef3j775yEhdXFreu2a7f57iNCR5XI1jPB/YJorrNzXs32Lb2m+6BmtER2I9fOmq9OH0+dYX01UWey/XCTRKuQ6pz2g7PYR9ZC44KeqlUQiqVQrFYdASKGxIcC7pFdjodp7Sr+k1Fst/vzzy3v2bUfVGJJueAyvHe3p6rJ8dxVvdFLQ/AGoyq1JK8kIyRDGl8oE/SNJuovo/6/lFhVNVM4/lU/VSlmv3ivFBhJPT95Bixj/xb3VH5XUgirKRSn0WJPL+nuLEwGAzc5tiLkYTnheB4ETjMr9kTEBAQEBDg4yjG50GuZ0C0Y7yysoKlpSW3s8/6ZuPxGFevXsXa2pozFFnbjMYKs85xx79UKs2obiQXxWIRpVJpJjX3wsICEokEtra2nMLGDI7FYtHVSKNhwrgeICpZ0O/3XdwOAJdYhK6JiUQCS0tLOHfuHPr9Pi5fvoxCoYBqtYp+v49ms+kIVaFQcCn4mcGNz0XFgIXBs9ksqtUqOp0Orly5MpPMwRjjCG0+n8fOzg6efPJJl4LdnyMAzoi78847XUzgQXOu806lkO5Tfn0o/u4ba74aFbdG1BiNI2eq3sW1oZ9r0gxVSbSv2pd5aiA/V7Ki9/HJkA8dtzg3VV+l9ueJz8H1zg0FPgtd9Z5LjS2fLPqf897sM9Uajoc/t0o6WTT65MmTaDabLjZ1PB5jYWEBxhiniJP0JZNJF5PJzQuqzkoa1GWSRJZKGomPbiD4z6fjRbLpJxfRdcyxZ1/YB5IeTTrDOQYQu9biXCJVWaeSyOdie5pIhp/pRoT2RwmVlrBQEknX6XK5jE6ng36/78g16136NfX03eBYkTxns1lH9Dm2rDnJ+eL887v0ZuB4EbigwAUEBAQEHAFxKgThG60+mVMDmCob67kBcLveOzs77j96KlJ0q8zn8+h2uy7ejSRnOBxie3sbhUIBy8vLLpU/lapWq+WMq3q9jtFohM3NTVdUtlgsujID7XbbZVYkqeM9qIbRrRGIsmXu7Ozg+vXr6Ha72N3dxerqKlZXV7G+vo5er+cM1Z2dHacWEnzG8XiM5eVlWBtluqQxx4Qm5XIZ9Xod165dcwofiQkJJo3cTqeDzc3NGSJFI9iPP1laWsKJEydmdv99ZUl/aNBr7JuvvvkE4KAdd5+EHaa8xZE0X03z+wnsG/a8hz8OSjg1xkvXsa+sHLbm1WCPIxNx8U9+O/4Y0f2Va5RGsrpTximp897dONXN/5frR3+UsOp8kJCRXNXrdbcpUi6XMRwO0Ww23WYMNx52d3dddtVEIuEIHLCv8mj2Sq53VZPoWgjAufayvxwTkhoArg3Oubok6hrh8xNcU6pckThTNdREKApV6owxLq6V4HOwLT4/N5I0PpP95NgreWO/VPHS9U8XSsYr6rrSdqhS+smNVM3mufwuYzIYfqfzeX1V+mbgWBE4IMTABQQEBAQcDjUA4xQ2313MN9wzmQwWFxdRqVQAzJID/ue/t7fnikkPBgMUCgWsrq6iWq1id3cX9Xod6XQa29vbaLVaroBwOp3G4uIi+v0+Go0GFhYWsLy8jPX1dVdTCogyRm5sbLjd5mKxiGq16mLg+EyZTMYZx3SxpMsnFa9kMom1tTV0u12n5C0tLaFSqThCl0qlnPsQjTXGAmliAO50d7tdAHDKYSqVQr1ex3g8xpe+9CVn1NJIJNFj5kIawnT94vPMc5c7deoUarXaXKPfN/apRuiPH/vm31OhRrKuHV8BmqeyqRpGaMwb/9W6VermRcNciZ5C//aNZX6m52r8kBqn/rvi/+4TOR0PHotTAzkWo9HIbRgUCgXk83kkEgkXi6QKTty4+u/xPBdKjpGSHxIWPeareczgmM1msbCwgK2tLac45/P5mRg2qjbMKlsoFNBsNp3LJAmUZp/k9RpfpQSbY6RkK26DAcDMelBl0V8fnGdN8Q/ghhgvvVZjTVXl0xp1AJx7LL0RSIL4rNbameySJJxxG2X6rvO7kXOimTOpigFwCho3tbTunP9Oq0soyTPndWtry5FYjoEqlPPctF8uHCsCZ4wJClxAQEBAwHPCQcZlnDGYy+WwsrLiss4lEgmXnIGqFOPYSN7y+bxLaNDpdFzsDAtdM35lNBphcXERe3t7WF9fdy46a2trrmg2ALerz4QKxWLRFdKmq6G11ilyxhi0Wi30ej0kk0lks1lX381ai7W1tZmCwgsLCygWi86VUxN7FAqFmR3wSqXialNtbm66uBPG+tXrddRqNdRqNVy9ehVXrlyZMVhzuZxL+qLxaDS6aFjTAE2lUjPqH3fIV1dXXfKIOOXNB40yulUdpL5xnSho0PmKm6/ixJHHuH75qpvGA/lkyf/R9aqEUVUG/14ao0hSo26RNKDVwNfz4378+LiDVG5+xk0Ekhsm6WHyCM65T9jiFDb91z9PCQznWQm7T9LVpY/ko1arOYKpMWXFYnEm0Qjju6iOU3HSzIVUlDSejP3VBD6+Cy/7qy6EjOnz14jvJsv+6nogEYtT2Hhc3Xc5FyR4fNcTiYRz42R73ICp1WquxiSJM5UzjUdUhZTPxn7ze1av0Y02kmpro1IMJFgcC5Iu3ovfWVQHlYSynY2NDfedOB6Pnbs73/2bieNF4IAgwQUEBAQEHBlxrnZAvHGdSCRcYV8aAel0GoPBwBWpZiITIFLIWPON6cSpZNHIaDQaLm6GO++dTgeZTAYnT55Ep9PB9va2cy3kjrAxxqXep1G5ubnpVItkMolSqYRSqYTJZOLqu7HwLRAZKaPRCK1Wy9WV47WTyQQ7Ozuu2DdjgRjnxh1xBvbTCGq1Wm63nSUNbrvtNiSTSTz66KOutttoNHIZKLlT3263XdwQx1tJAUHiocZyOp3G6urqoYkFlCSpGqI/6sql1/lrhMaxqldq1Mftzs8jbfq7KgLAPnkh6dJjce3Nc+3yVY64ZwLiyweo8qfqCNtVY5/PwGP81yfVPJf94thxI0QT/XAceA813H2SEkea48aapISZV3VdaN94j2QyiUKh4N4B9kVjSKkCMUkH36m9vT3nTu27FjKGK5PJuM0LVd/Ytk+Etb4bx5nvrtZN47hqm9qWrjl95zSDpM65liPQuD4qZMYY9znrptFVm9knfaWX6rJPInWeeS37p8lKfFdKVd3U9Zj943xPJhNHyDkOdH/leHAuuY5JxgOBexFhQgxcQEBAQMBzhG/U6mf8PJVKOVdGGnys40ZDZTweO/LWaDQwHA6RzWZn4lNY6JrEjPFidDNsNBougyWzUDIAn4pbLpdzBIqZ1TY2NlCr1bCysoLr1687EkWSyN1puiyxVhwNmU6ng3w+P0MQaLB2Oh1UKhWUSiXnHlqv19Hr9VzCgNOnT7vfafitrKzgwoULGAwGePjhh9FoNJzyxtp0i4uLaDQaLhsfjScANxhzvoHNuQEi457EWuftoLlV8uaXI+B5qoDNgxI5vXdc31WR8kmYuoaRFJFAxBE27aufUAKYTdqhY0f1gmPgu2ayPSVKvoGvBjjv6atx/vPHgc+taioQqTrNZhPD4dBtQgD7qd51nA/6O47E0ahX0qBKj7/GeA3de+v1Oq5evQog2rCgUU+yyecZj6OSGb1eD+1228WD0s2Xmx5sV10jNakH1VF+zmOqXPG+Gsepz6bPp6RX693xWfnesX/cWOIaoRqpGSG5mcUNrV6v59xOGePL7x59B9QNk/fX9arKHIkwr+M1nMfJZIJOp+MS1DBDJ8/RseNz8v5+NlS6keu7AsAp/+zTQZtFLzWOF4FDEOACAgICAo4ONfDjDH5jjHNPLJfLLk6rWq0CgKudNplMXPxZJpNxGdCokp0+fdqRsMlk4lSvpaUl1Go1VKtVrK2tubIATO6Ry+Wwu7uLRqPhYmpocORyOXS7XSQSUaZIFupuNptYWVlxBiRdh2jYsTB4KpVySUtoBKoikU6n0Ww23XM3Gg0AcK5QdIeqVCpoNpsuHXoul8PJkyextLSEZ599FteuXXNZ+LjjXa/XXTkEkii6jflkSI3pOEJljEG1WkW5XL7BoJqnxtCgVRIXFycTt1588sj++uRqHpnQz3gdjVv/mMbC+X2iEU8DX1UXpjsfDAYzCg7PjYst0sx7VHypnqiqqPFRNJQ1MYSqVzSSea4a8P4Y+vNKQ3pvb88l5gFm0+r7BDJu3uYpcfPcKP3zOM5UnGu1Gp555hnnBs1n4/izrmO328XOzo7biKFCz/g+AG6cuf6puKmi69dDYx/VrVSfRd1gCW4E6DFfyfXXmKqivqswiRBVea4RJqThMRJTbnCpokiSyXv5fVY3So11U1WYfdbYNGv3XShZ55K/k9RyPhKJxEyNwnQ67cqJ8B4ksFqHMyhwLzKMMbBBgwsICAgIOAJ8Y8XfyU8mk6jX667QdCKRcLE5jJuiKnbq1Ck0m00AkatOt9t1u/a33XYb8vm8I3uNRsPFbFUqFZTLZWfoXbx40SUI2dvbcwbIYDCYKYKcTCbRbDZRrVaRz+dd35kMhEpZoVDAeDx29wT2g/zX1tawubnpEpBo1jkaKbVaDcPh0JG8ZDLpVAcaVp1Ox41huVzG6dOnAQBPPvkkWq2W2zWfTKIsk8vLywDgjHM+ryoESnbmkSH9XGMS4+Y2bp5VjfFLB8wjcL4bIDDrchin3vh99RUy1p7zXcL472QycaUaqJQwSQwJPIkZ43PoAgfsu5wq/BgjpltnP6mucq3p83IDIZvNzhSdVuKhroeqIvH6ODIap6RxfprNJsbjsVOjtWh23DzPmyudExry3NxQYuhDCVypVHLxqlSj6GrH947vSa/Xc2VDSBiYcVbJsboHapkBrRunsW8kLarOKcHmHPMzf150c4AuzFwLStDU1ZDjosocvzvG4zG63a4j/yRuPsH0XWn5XHTR9lVQfSc5froJoHXnSLSy2az7rlVlkSSPfeDapks4r9VxUfdZHTuunYOU+Zcax4vAIShwAQEBAQHPDb57nTFRfNnKygrK5bIzhvP5vCMj3KFlkhCSt93dXayvryORSODcuXO4ePEirLW4dOmSU6ystTh58iSWl5ddFsrxeIwHHngAxhg8++yzTunb2tpCs9l0hh7rZ7EtICoXwGLek8kEw+EQV65cQbFYdDE1JG2VSgWDwQBXr151JQmY9ZEGdrPZxIkTJ5DL5dDpdFxtNxo9/HcyiRKY0B2NmTmttbh69aqL+dHEAJVKBalUyiUGIIFTA49zQuNtnpGkO/aLi4szKcN9I9EnB8C+C6XGnKkSpC6cvkKkCSV4PE7N9RVdNUqVuLLYsJIeKqh0PVUDmIkj2Bce4/rk8/mEUp+Bx9QQpbGq7WlCEt6fpSgSiYRTg+MInd5Px13d4nxVMI6sTyYTVxaDRG4eifOJm698KoFW1dUn8LqOeJxrrFAooNFouPfUV/MGgwGuX78OAG5cqPSm02kUi0W3UaJkiuOjirMqbrpGNaZN3Vupxur68FVH/pD48HpV+5jgyP/hNaqwdTodl2mXLq+69tWtU+vMaQmCefPBNniuv8nBdUlVk2SP9SB1Q4MuoPyMG1eM9aVyx3HjvdTFU9uLW4MvF44XgTOBwAUEBAQEHB2+scjkH0tLS051s9a6wtiMX6Pxk0gkcO3aNVf/qdfrIZvN4vz587jvvvuwu7uLJ554Ak8++SSMMajValhcXMTJkydhrcX6+jpSqRQuXryITqeDq1evuvT8jOegqxYNde4u1+t1NJtNZ3BzB7zf76NcLs/slA+HQ6cg0BWSpQWoAI3HY2QyGayuriKTybjYN96z2+26WB8qPXTF5Ph0u11sbGy4JA80mphYgGogDUV1XQRuTH3PzzhHaowSk0lUWy6bzbrSCNylj1NTlEgpifMN1bi1ovf021TocTUirY3cu1g0HIAzNnd3d7G2tuY2EPr9vkuv77v4sv8AnIKoNf347zzyquOrhAHYN6p5Po9z7OkuSIOcSUdo2HM9UJ1S9UfvqWppHHlTN2Ze0+/33TiSBPmbLwfNuY6BGuPz3Ge1byRwjH9lqQAeB/ZJVqPRcMmISC5I0rlWuYGh88V3udfrzShnOmc+ueE6ICnmeta1qGom+6njTxKqz+G/D3yP6VrLZ2WdulwuN+NWquqflg9QJY33Z802vVbj3UgudYNBY0UJPhe/V/g9RfLKc1KplCuZwj7we5XEj98jLPzNMdH7+d8DLyeOFYEDQhmBgICAgIDD4RvEAFydp4WFBedKk8lkUKlUcPr0aaytrTk1jDvjw+EQ+XzeFd0GgIsXL+I1r3kNut0uHnvsMTzyyCNYXFxEJpNxiVB6vR4ajQbK5TJOnDiB7e1tXLlyxSkem5ubGI1GqNVqTn1jZjfG1dEYGwwGaDab6Ha7zqDVGkjdbhfj8RitVsupgyxEzLIGW1tbLsECAHQ6HSwtLSGVSmFjY8OVHKCBlslk3I47x4JFtzXrHd2UdAcb2E99ThLjx7f4SRx4jc6fqje+0aX3UjXFV8w0aYsasEqY+fc86H3iCIAqbjs7O9jd3XXqqCadaLfbjhQxe6GOCf9mbBQNYk3EomPDeB8anXot1wY/o7ENwKnEGuejyqaqEmyLhi7JX6/XQ7FYdMoc44+UkKi65JMunyyrgslYSirAvup6EAnUeVLCpiROXSl5jCpSIhFlPF1eXsbOzo5bd1wvdMO7du2aIxBcX0w6lEhExb21NIcmHSFxUdc9Xf8kRTo2fE7tI0GFGZhV8agwabwd2+b7CezHOWqBcXXtZgZexueSPOn7RFXWnyvNmqvPxf5pJkw+B/unz0d3c5Zz0MytnBdVIZn1l2VVVPHnuLCsisYOqxKomwc3A8eKwEUKXKBwAQEBAQEHw3cpKxQKLqGI/idtrUU2m8XW1pYrtp3L5ZzSQ4Oh2+2iWq3itttuw/nz59FsNnH58mW0Wi0AQKVSwdLSEkqlEjY2NrC5uYnz589jYWEB169fx8bGBoyJyg2sra2h3W47d0MmOJhMonTjzDxJw5RKHROecMeYwfgslMzMcGfPnkUul3O137rdLk6cOAEA2NnZQbVaxcmTJzGZROUHmJzEV3wKhYIzZHq9nishwP+HWddN1Upg36D0FQQ11OcRJxpaNESB/VgcGrBxLpSquhBq0PkulL5CFNcXbcNXeDRuaW9vD61Wy+32j8djXLp0yRmPqjyouqDqpCqEwD7hpcrKvmicjmYJVNdMji+PqzHMNaXETo17tqEqhCaj4PmJRGJmU6FcLqNQKDgi5xNkbY/357z5xIzP3W633Tuj76vO2Tw1ju3HzT3HyJ9vJXKM+apUKm7dsah3o9FAq9WaSexCUkGlnG1pIWslc1rQfjwezySO4VjxPeffnE8dNyUw7DfnUItRq4pHdVjdHfmOaSIQLQfCepXcSNANErajRFnjD/0NGo4H78N+ca3pRoGOG5VLVXtVpdO1w/dSCaUe59rg5ogSeI4xPQpuFo4XgbvZHQgICAgIeMWArkPMMsld63K5jHa7jXa7DSBKFX7mzBlXJLparbp04qPRCFeuXEGtVsN9992HTCaD9fV1Z1z2+30sLy+jWq2iUChge3sbTz/9NM6dO4dkMolr165ha2vLkZ3r169jd3cXS0tLAOCKaANRvB3dG0mYRqMRVlZWYIxxyUUymQy2trac++Xe3h46nQ52d3dx9uxZlEolZ8zt7Oy4OLnBYICVlRXcfffdTk2jSpTP552RRlVNd6rb7bYzEgFgYWFhRhWim5QazABuMN7iPlMCSMOaxpTumOu5bEcJjw9VAeNcoeLcJH0lJ07to4E6mUxcopZ+v49EIoGdnR10Oh2X7IFGPQmarwjq5358oBJe39103nj6ypY/Lj550WQNmuxCXeNUuaJRrKSCRne320U+n3dZTdk3JYo+DiJgw+HQqd7cSNHn9a/1n22eAqdkV8eK48xn1wQaAJyb8mQyweXLl5FIJFCtVl1yHZIGJdYcK65FnUuf5KgSxj6pOsvztH0lQNq+vruavZTusCRtXKOMbUwkEjPZMlkTjffyNztUneRmCVPxK4GOU0o5PgfNIYCZuEslqIytJRlUV05eRxKsc6zvrW5o8D3QtRpcKF8kmBADFxAQEBBwBBgTxRnRzYv/qQ+HQ7TbbWec9Pt9l64/k8m4cgCFQsGlxj9//jzuuOMOZ6AzLfvVq1ddPF2hUMDGxgaazabbtb927RoAuHpyGxsbTiVTlygSpnq97owOxruVSiWX7IIG3M7ODqy1qNVqaLfb2NzchDEG99xzj6vrxjpHNFgajYZTBJ9++mkX59Tr9WBtFG9ExY2GEuNL1N0PiAieqoY0FDXTI/uqSTeAfWUJ2FejlLj4rnG8RnfyCb/deQRM3Qx9l8N58JU3VRN3d3exvb2NbreLwWCAWq2GVquFVqvl1gZVNxqGJCTqfqrGoyoQHBtVDTiuNPjVxVLHivBJsbqc0eBWI1zHk22z73TZ47W+Gsn2SV64scBEJDTylTj5pC5OBaWR3mq1nIruZ8yMmzf/byVy2nceVwNfySvXdalUcs9nrXXuo3TBo+sd1yHXPeeRxE7JIPvEsd7d3XXrRtey1l1kv5XI8TwlVwTJGzdWOBaqlo9GI5eEBcCMasXnoqLF9nVt893kuPJcnsOkTJowxY+Z1DWvZJGfcQw5L9xI4ntFAsqxpRcFXUBJIFWJ41r1NyN0nNU19WbgeBE4hDICAQEBAQGHo1QqufgZTefNmkY0KrjrDERJP6rVqquJlkwmce7cOSwtLWF3dxfdbtfFjK2trWFhYQG1Wg3WWly5csW5YI5GI6yvryOTyaBWq7kC2LlczrkHMUHC8vIyFhcX0W63nZFIBSedTrudYtYv6vV6qNVqyOfz2NzcRK/Xw+LiIl796lej2Wzi2WefdUSBpQJYRNxaO6M6tlotF6/F+J1kMulI7e7uLjY3N53b1WQycWneSTyZVp3GYSKRwMmTJzEYDLCzswPgxrpo/Mx3hdTzlFT4STf0HF7D0g9+e2q0KgGJU9biXOri2nr88cexsbHh5mtzcxOFQsGpoXqtljDQXX7/vn6/6HpHA95X4HQDQO+nbmnafybO0ftolkGSAGA2I5/2iX1QQu27+zEz6WAwQLfbdVlceW91PfVVMH/u2QcqcSQVugGi5/lrQpVMJcH+PPNcnyRlMhm0220Ui0UA+xsxV65cwdbWFs6cOYPhcIitrS3UarUZ10ESJqawN8a4lPckdEpu9bm1LIe6f+qaIVlR8qTPrJsfABzxZ+IZtqHlDLjOqKByDSo4b0z4oUl19FzdqCDh4iaAv354rc6rqnqqhHJM/efkuChR07Xsvx9K7LmZwHuQHDIT8c3C8SJwQYELCAgICDgCFhYWnHFaKpWcIpdKpdBsNmdiPugCtbKygt3dXTSbTdTrdayurrrzaYAwtqlWq2FhYQF7e3u4evWqy1zZ6XSQzWadCre9ve1S4HMnnEYVd9u73a5LGkA3SQAuzoYxeKPRCBcuXMBkMsG1a9ecOkgCuLa2hk6n42rDqZJAF8nRaIRms+lqu1HVSCQSTgVYWlpCq9XC5uam261mf7VwrmbYo/HEJCmtVis24YgizgAHZt2zfNUk7hoahHEGnU/CDoOSFlXd+PlgMECj0XCGIdeRjgfHRN0LFfp8NE55LxIyrhNfAYgjIUqw/IQoelzXBOeV99HEJb4qyjZ8xUwJmE8k+PxUgEgK9Nl9YqhzwHO4BobDITqdjlOHSCDi5k+fX2MGD5p/f62RcA0GA6fUU3nu9XpYXV3F9vY26vU6EomEWxOqOmmmRKpr6hbJezBWTbOMKoHT2DeNB1MCpRsePrk3xrj70xvBGOOyzTKulv3kNdls1mUFpTJH10smb9HNCa4tqtSqxMXNsyrP/Fs3ZLgWNdNtJpNx3gXsJzdFNGMoxyWbzc6QYK4dHUOf3PN5D1szLzWOH4G72Z0ICAgICPiKBxOEAJHhUCqVnIpFo4Ep81nbqNFoYDKZ4Pbbb8fq6io6nY5T3dLpNL70pS8BAE6cOOHcFxkP1+12USqVsLKygnQ67QpcLy0tIZFIYHt72xksNJzy+bxLEmCMcTFvVPu4W073yTNnzri6YclkEnfffTcA4Nq1ay4xAY1NGruZTAanTp1CsVjE9va2I6OM5aFxxUQVy8vL2N7extWrVx35oNHDkgTAfrY7YNaNrt/vz9Q1o6FPaKINNdB9Nz7dheffShDioAkLCCWQvqKk99O/feOO51CRpCoG4AY1SF3W1D1OM0Kq0evfn21p8gkaqf446rPyPN8FjOcqNI6Iz8H2R6PRTJY/KhbcbFCyroaykjGSJlVh9vb2UK/XZ2KqtO9+P31CAsAp2bre5q0JnWt/Ln2S768/Hue7RKJSq9Wwvb0NAHj/+9+Pz372s/jd3/1d1Ot19/3BOMJOp4PxeOzeYRIjLQGgqpA/HyTb/nnqaqvkmWPGMSF55uYGvRBIsLgZw/jNbDbramKyREgymXQ11Ky1M+7BXBcaz6nJVHhvfudpNkz9XvCTSZGs813xFTl6UvAczpmuIY6hFqlXIq8bFvp9oxstnEeOxc3A8SJwiK//ERAQEBAQoODuOZNJ0CWGcVtU6E6ePAkA2NracvXdFhcXcf36dXS7XQCRkU6SdOutt6Jer6PdbuPKlSvodDro9XrI5/M4deoU+v0+tra2kEqlcPLkSdRqNezs7DgDmzvuy8vLbseYZQJIvMbjsXPNbLfbyOfzSCQSeOqpp9DtdnH+/HlcvHgRzWYT165dw/b2tiMNfL50Oo2FhQWXiOXpp5+eMUaoHNGQYSxfo9FwterodkWiqXFxNMzVAGaCBDWUaYRqcoF5apoaarojTjdEX3nyofE4/nlxBFD/VgVGDX4eozFHVz41mgHMxOQoeVPSpuSNBrvG/ahSRuhzKGnmmOo5dP/iWGh7JF++i6GmhddEHOpOqW3586rHVPkhUVB3QiBKIMT6i+yTH9cWN3d8Dm5mMEmKKjj++drfOCXYd7fz7ctcLuf6V61WkU6n8dRTT+HJJ59ELpfDW9/6VkwmE/zu7/4uFhYWsLi46Mps+LFVSqyUmKiixnXHtU5Q7dJslTrm7DvXB6/XgutKoDQpC125q9WqIy18hwaDgUsUonFrwP5GhW7IMLujnqv35nrx+8v3gPXnmDBJCSDfneFw6GLc6J6qm0H8zM9OSRVSk6roJgXHU90zD/queTlwrAgcggIXEBAQEHAEkHzlcjn0ej0Xf1IsFl1ik5WVFTSbTUwmE1y4cAEnTpxAv9/HpUuXYIzBYDBAq9VCu91GvV7H/fffD2uj4txPP/00tra23P2MMVhbW0O/30elUkG9Xkcmk8HVq1fRbDZd/Ecul3PG3u7uritfoDXgcrmcc0EsFovY2dnBYDBAPp/HiRMnkMlk8NRTT2Fra8tlw2TcG8nb+fPnUa1W0Ww2XXIV1nRLpVKuSPJ4PEalUkG5XMbGxoarb0WjW3ftufvuZ5+MIx5qjPsK0LwMb+oGyR91yfJJmG94q5HmG+Y+KdPr9G91aVRiOhgMXL08bdePAfJVH97DVwC0AHRc5k4al/5YcR1zXJSwjsdjp1D4SV1ohPN87YuvfFExS6VS7nmpygGYUS/YDj+noa0qnfZBXSp9MqLERqHjPRqNXHF5P3ZMQQPcX0/ss6qLbNu/N10jR6ORSxz0qU99Cr1eDxsbGzh79ize8Y53oFgs4nd+53dQr9dx8uRJrK2tuSQaJPYa18Yx18yKOse6jpT8AJhRb/0EMDofSk5U8SRJo5JOQk3CxphZ7Q8VRF0b+h3BZ/THVlViTc6iBFEVMSqdfD9SqRQGg4F7D9hvuoSTYA8GA0fqqc4BkWKuGT79xCnc7CBx5OaZKqFab+/lxrEicAYIDC4gICAg4FCcPXsWW1tb2NjYcLvDq6urTlFKpVJYW1tDoVDA7bffjmq1iu3tbWxvb7u4EKbmv+WWW3D27FkMh0M888wzjqhxh7lcLrvCvfV6HdVqFcPhENvb206B4C53sVh0qh/j2Ghcl8tl527JXf/t7W20222srKzg1ltvRT6fx9raGjY2Npy7pa8qVKtVAJGq2Gg0XPpzksgTJ07MuJGyDh7rxpFUaDY3tq1p8FUp0B1rn1DRmNSkAL5KpmRIwc9p7Olz+ufRQFSDVclJnLuctkWjVIkHXcw2NzextbXlFEhVH1VJ8cG2SLbK5bIj3Ht7e874VDc79lvJGeeOcUw0jnO5nIvxLJVKrg8s7k7yy2yONLb9bJw+2eHfShJUOdTr2GefHLP/cW6wk8nkhnID/jrSdnUemT2VxENdEP1x1777xFD76q9FICJwOzs72NjYcOvg8ccfBwB8+MMfxrve9S6cOXMGb3zjGwEAn/jEJ7C0tITTp0/PFPrWTJRUpDTjpI6Nkn8l3DoWSprjCC/Vda5lXSsAnJJHt0kmLuK6Zm0/zofOq/99w7WlBHg83i+K7RM6f35J3viuEVyjftIffo+w/7ppQLLGmD5dG9yI4virksh3p1Qque8+ftdxzG4GjheBMybwt4CAgICAQ/HUU0+h2Wy6GnBLS0su0+JwOES328WZM2dw6tQpWGvxzDPPoN/vI5/Pu9pp4/EYd999N/L5PBqNBjY3N10ykWQyiZWVFaRSKXQ6HVfDbTweY319HZ1OxxlBlUoFlUoFCwsLTlG7dOmS2/Hmrjf7RXVia2sL4/EYFy9eRL1eh7UWa2truHLlykwCESYgULe1K1euuF1lAKhWq1hZWUEymXSlAyqVisuiuL6+7naeSSjpuskdfQ3sVyNeEymo8atEhPFANFJ9Q9AnVn58V6/Xm3HFU6i7pcbj6PW+ka739dvhs0wmkxnyRjc4dYtU9YgkIpVKOYLGuWH2RMYUEYVCwWUuZdssppxOp1GpVJDL5VCr1bC4uOgKstPwttai3+/PEDx1N2M77XYb2WwWjUYDvV4P169fx2AwcCouXelUfVB1kQatjrGfHZQ/6o6p88mxpVpMV2Gto6Zrh3OihJpjxHIc7LPGIqrSquRN12bcOiP4GceRqtDly5dx/fp1rKys4HOf+xwA4B3veIcjcYlEAh/72MewuLiIM2fOYH19fSYWVF0YSeB0/ZFwa8IQdaukakdyovXgOBdUSrlBo+ooAKescpOH40Plmi6ImoCH48r7aokAfffV9ZkbFiSrfB51M1ZCpfNEMqfzre3zO47EkMmq2CazDHPdcq35bq2cE9bCNCZKdKVum773wMuJ40XgcLQsUgEBAQEBv7cxHo9RKBSwuLiIxcVFV5eKrlC33347Tp48iVar5RSver2O69evYzKZoFarYWVlBePx2MW/dbtddDodDIdDnDx50ikB3KVtt9vodDouTmd3dxeLi4tYXl5GuVxGOp3G+vo6rly5AmC/nlKhUEC328VkEsXm9Xo9NBoNFAoFlMtlWGvRaDSwtbXl4lJodNEgYwwJECV7oIHDe1QqFWSzWZeUhYTRWuuIohIOpuVXA1oNYZI6X4XzVS0lTuwv4WcujCNxQGRwN5vNG+pRKRhnpERBlRlffeM9+K/2g+d0Oh2sr69ja2vLuS76SSiUNCQSCVy4cAHXr193JFkJLF27aHiqm5lmtazX67hw4QLK5bKrDTgcDtHv93H9+nVnuDPGk2SGhif7xjEpFotIJpMoFApus+CBBx5AqVRCs9lEo9FAq9XCtWvX8Mwzz2AwGDhCqEWZ9VmptCgpoeGv88pNBZ6rpFCTWHDt+vPjq4Hqjtnr9WaSesQZ23Gus/pZHKnXe7PodSKRwJe//OUZN8dHHnkEAPDOd74TZ86cwQMPPIC9vT187GMfwy233IIzZ87gmWeeuSEeyydD/rpS8uBvlnA89LkVSohIekhuGVtWqVRuIEHqUqhjpZkdVU0dj8czmzBcz6rE+uuGGzD8XmG/lPizTzoPqjySrAGzpTFI+rjOqADm83kMh0MXm8tzdCypOiYSCVfYnC74cTGWLxeOF4ELMXABAQEBAUdANpt18W5UvjY2NrCysoLTp09jPB7j0qVLSKfTWFxcdGnzJ5MJbrnlFhSLRTz++ONoNBo4ffo0AGBtbQ27u7tYWlpyhmqlUpmJlaMRwPtSYel0Omi1Ws4gpDE0Go0cgaxUKuj3++h2u6jVahiNRrh+/frMjrgabFQylCCwflsmk3ElAtQo4c57r9dDKpXC5cuXZ+J0eJ26SapBpjFDVJLiCBiw73JJY1RjZ+IMZ91l913g1tbWZjLP+dexn6qeKEki1BD2+64qD+OeNjY2XCZBvyiyGuZUVK5evYpWqwUAjgQx5bnG4JC0UY1hBtPTp0/DmCjZTafTwWOPPYZOp+OKqWtf2SbXkk9A+dzMnJnNZrG4uOiykNJN9sKFCxiPx7jnnntcDOilS5ewubnpylpotkoa0zR+VcnyydK8zwG47Iaj0Qj1ev0GJU4JY5yrIF1QuYHi17nTMdD16Stwetz/2dvbQ6lUAgA8++yzjmiPx2P0+3187nOfQ7/fx3vf+17ccssteOMb34jxeIyHHnoIZ8+exZkzZ3Dp0qWZtcf3bTQauXeN75Km8ucY6DX6TFzfceuX5FnJdD6fn3Hn5DtCl0Nu+HBOdTx5PteZKsZxGyCqbPJafU7NEKzKopJrnwjyGt5Dv4+UAPPZuRHFMa1Wq652Jb9L+H3M7xBexzhAvefLjeNF4BDqwAUEBAQEHA4qbrfccgvS6TSazSZuueUW1Go1DAYDF+tWKpXQbrdx/fp15PN53HPPPdjb28Pjjz+OZrOJpaUlV2ONMUYkQolEYiazJRDFlC0vL7ssl71ez2Wq5DmMhWHcHNURHiPJomGl9ZyAfZc2/ZuxUCRm9Xodi4uLyOfzjlhSgRkMBigWiy6WD4Crc1coFGYM5XnGuu6MA/sxaKqg0RjjTjnHh7vlvmKnRqC64RljcPXqVRenw/bV+GY/1a1PFR7eQ2PXFPq3tRatVgsbGxvO+OM8qHuhnxiB8UBqqHNcODaqWCWTSZw/f94pbaPRCM8++yza7fZMhj19Fh1jPpOvPPlKFTEej5076Pb2NiqVCkqlEgqFAu68804X5/Xa174Wd911F7a3t/HMM8/gS1/6kht7Phufk33QY5wbugCqQa/9IakfDAZujfpZL3mev+74PFoQm4qjzqMfw8W1chB0DQLRe/j000/j6aefnokjI6n/8pe/jGw2i3e+8504e/Ys3vSmNzlyd/HiRZw5c8ZtlPAZ6FJI9z1unuh77fdDYyKVuJF0af/ZDhN58PuK6jxdDUnGqKizbb03M9Jq7BjnXVUsKmRU1rgmlDSyv7yHrzpybNke517fY6p3LIWi5/L5+VydTsdtiOTzeZTLZdRqNXQ6Hezt7WFra2tmTkajEfr9Pqy1M2rfzcDxInDGwAYNLiAgICDgEKyurmJlZcWl8D937hyy2SyuX7+O3d1dFAoFZ8yORiOcOHECi4uLePbZZ7Gzs+OI0JUrV9Dr9Zwycv36dRejRmWk3W6jUqng5MmTWFpaQr1ehzHGHSOJYcZIAC71fz6fx8rKCoDIZc/aqHQAEwsA+xkHAbj4qG6369wRT506hUKh4JS8YrGIWq2GfD7vkq1wR3l3dxe5XA5bW1vY3Nx0bdDII3EAZgt0E358ExCfDVKJC7BfoJoGt7pUEX67qjjt7Oxgc3MTq6urM6RAz2Xf+KP1zPz24kgqjUm6ypIIacwWd/1pzPJZ6R5JIsc2/X7Qxa1YLGJ5ednFZD7xxBNu7GlwEpoBkiSVa0LH2I87mweS+H6/j/X1daRSKTz55JNIJBKo1Wq45557sLu7i3q9jtOnT+O2225z6fOZCEUVPx1PGtrsC/9WhYhQw5uGNtP1H7Su1LBXF2KShnmqGttQ4ulDzyNx73a7+NSnPoVGo4EzZ87M9MGYKKnG5z//ebTbbbznPe/B7bffjre//e3o9/t44okncNddd+HcuXNOiVMSo+6EvpqmihvXFTPVUrnjmtXi1GyLpIvuhCRi6gpJcsR3knGTfl9I5HgelSqOAb9HeD8SNpJEkjdmlyThphssCZwm2VFSqSSWGSg5NrlczrmW6+YN31W2ubW1hclk4upwWmudKzndhpPJJIbDoatJ1263575HLzWOF4FDUOACAgICAg7HysoKrl27hmQyiVOnTqHVaqHVamFpaQm5XM4V7c5kMrj11lsxHo/x2GOPzZQc2NnZgTEGZ8+eRaPRgLUW1WoVxhi3k723t4dKpeIIIzNJtlotVwS43W5jNBqhXC5jMBjgypUrzggC4NpmMW5gtqZZNpt1rmLpdBpbW1vY3d1FOp1GvV5396OBzOLhTOICwBE5llXY2NgAsE+sarUalpaWcOXKlRmDib8rIfCJlxrmqsSpGkPDmc/I5/Pb1B91pRyNRrh69SruuuuumXsrOaDBR5fSRCIxYzD6z6Guduzn3t4ednZ2ZlK80wWS91GFi9erSsdzaJjSQDbGuIQk1WoVOzs7aDQaM8QOwIxBy781nkiJh09GOB6qbLDvBImVkmW6uW1vb+Ohhx5CvV5HuVzGiRMncP78eZw6dQp33HEHnnjiCTz66KNuA0GJr64D3kPHLM41kkQDgIvlK5VKM4qLqm/+mqMK5yutShh98uYrmNqmjlGj0XDP9vTTT8/Eq6lbH2NBn3jiCTf2Fy9exFvf+lZ0Oh18+ctfxmtf+1qcPn0azz777Ixboq9A6edK9IbDoSMoJDfqzqkKND/j+gf242I1VlCJNomZrh0leXq+xtXR9XKem6Mq0fq+kxByM0SJFp9F1X/eN5fLue9BEkp6FvjrTl1I+b0zmUxQKpVmat6pgkm3YiYi4vfkzcCxInAwgcAFBAQEBByOK1euoFgsol6vO2OThbabzaaLOTt37hyazSbW19cxHo9RKpWwvb2N8XiMs2fPIplMYmdnxxEmXtvtdmFtlJK/VqtheXnZkSOWH+h2u2i1Ws5o73Q62NjYcBn/GH9RKBScMaPqTbFYdMlEisUi9vb20Gw2XQp1ZpAsl8sAooyGp06dcgYgY3eoUiQSUV2ry5cvu/gPICriffLkSTQaDQC4wSj3DWd1r1KyROjfNEpVNaELKHfTtfiuGtyqMk0mEzz55JN405ve5JJyKDnk9XxOKl/M/qhqkQ9VbZrNJq5fv+4IWZyrJ/uucUR7e3szKhyNZyVxpVLJxZ4xq2U+n3ftsQ9+7S/fKFZiE+emSFc9VQjVhdE3pFUxtTbKajkYDLC2tobLly/j9ttvx+LiIm655RacOnUKd955Jx555BE8/vjjbpOCJMJ35eO/vIe653Fd0Mjf29tzCYAKhYLrs7rHqTsl2yCB43PFufkp8fbHMI4cTiYTl8G11Wrhy1/+souF5DOy6LNuEDz11FP46Ec/ilKphAsXLuD9738/fvmXfxlf+MIXcP/996PX62Fzc9OVj6CLLtc6vwe0/iLVJRJHurrSxc93gex2uzBmv6yEpvnn+DNZEcmY1vujSyfXFseRJSz4OfvKNhS6pv2ENSTd4/HYxT1yLDn2+h2TyWSQzWZRKBScoqffIfresE19p3Vd8juW48l2qbQz+dBoNEKr1XKbNzcDx4rAGdzcqugBAQEBAa8M0M3x2rVrWFhYwNmzZ9Fut9FsNmGMmSm03Wq1nMHUbDaRyWRw6tQpdLtdbG5uOuOUBYTpZrS8vIzFxUVnhNAwY+xFv9/H4uIiEokE2u02rl275gxokj+6WtIAJCmiEZrL5bC3t4dGo+HKHCwvL7sSBKwBtrCwgJMnT864olkbJRoplUqw1qLX62F9fd0pHjSoqbz0ej0As66TcW5yqtzQOIs7lwRD03n7LnR0vWLqb+7qxxGuy5cvu7hEnxywX77il8lkYmNZfJUPgCMtbIvERN2yNHZHky+w7xwLZu9jrap8Pg9rrTOaaXjyb44V+6bZ9fR5fGVNXQIJZqRUBcU3cnkt15yfyp0/rVYLn//851EoFHDPPffg/PnzOHfuHCqVCpaXl/GlL30JGxsbzqDnvGpWQv9+qsyRvDEezBjjVHAdT71O14WqPCQ4Skp1Pcz7iVsXAJzL8+OPP45ut4vFxcUZUmmMceRIXVyvXLmCD3/4w8hmszhz5gze/e5341d+5VfwxS9+Ea9+9avdRowqrADc5g2h5IvvLM+loqTridfoxoFmiVU3RSXtBIkgx0DdO7kes9nszGaFuszqO6jtMF4tm81iNBq55DXsp2aP9N/jTCaDYrHoandynPjuAPu13LjurbWuZIkqmVybXKeauCWfz7tsr/S82N3dRT6fx83CoQTOGPPTAL4BwLq19p7pZ/83gPcB2AXwBIBvt9Y2jDHnAXwRwKPTyz9hrf2ul6Lj8X0NZQQCAgICAg7HYDCAMZH7I4tfX7t2DaVSCefOnUOn03FK29LSEtbW1rC9vY0TJ07gxIkTePrpp91/9J1OxxkbLBtQq9Vw/vx55PN5dDodbG1tOUOEdbVWV1fR7XbR7XbR6/VcvBPdLmms0sCl8cEsaMYYNBoNtNttjMdjnDhxAidPnnRZBSuVCpLJJFZXV10MHBApcTSwNOtku9128XUkgHwuxt+pe6Qas/6/avipSqYuajTe9VoeZ6bMySQq2UCDmElhqMioAnPlyhWsr6/j3LlzN8QMsR9KgJPJpNthV+Nfn03J3/r6uisS7LuR8Xn0Ok1Cwb6ookKjlSRSjVJNoa5xenrPOKLhZ8VTBUKfTcmgb6wrydHYsTiSRHI5HA7x6U9/Go899hjOnj2LCxcu4J577sHZs2fx8Y9/HFevXnX17DSWj23RuNb50mdlYg1mU+33+zMbGf7a07kDZt0IlfD6BDiOtPkgeVlfX4cxBl/4whdmXFwVJI/a11ar5UoMfMM3fANuvfVWvPvd78YHP/hBPPnkk7j99tvxxS9+0b2j3CjgM/mxYH7yElW9lbxRVSsWizOZLnWcdQ3pmlClTNe1XsvYM2stut2uW9ua+p+kkffVLJD83qG6B2AmAZS+xyRVrIOoz63EX9eOknpuCAFw9zYmcn3n9yTXJ99N3pubeIVC4Ss+C+XPAPjHAH5OPvuvAL7XWjsyxvwogO8F8D3TY09Ya+97MTt5VBiEMgIBAQEBAYcjm81iaWkJQGRQNZtNl5WR5QAYH8UMcRcuXMBoNMJTTz3llJd2uz3j1phOp7GwsIBbbrnFJUJptVrodrszxmcmk8Hm5qZzwwLgUmgzqQBdKWkwMRNfJpNBv99Hv993RsiZM2dQrVZd1rRSqYR0Oo3bbrsNk8kEa2trLj6ESh3dNklKNjc3kcvlZu5D9yk+X5yKRujvvlubT96AfaNQr1f3J8aM9Xo9LC0toVAoOBVMr6Oh1ul0cP36dafQqbpC0I2Sxi5dVLlbP4+cttttbG1tzRANGqIkuXxuPhuNTyoTNBxJ3Oi+qWqZGvp+/JqOnz+WPplhv9W4189VKSLh8V0ZeY0SNW2Da0JV1sFggCeeeAKDwQC33347VlZW8OY3v9llq2y1WjOqmJJ7Poev2GjCCZJ7JhFifJOqcKqw8XPOV1wCDj6vn0XRH0tdE3RPHo/HuHr16kwspT9OVJI51ySAjzzyCPL5PL72a78Wd999N7a2tvDJT34SCwsLuHjxIh555BF3Lp9dn41kJS5Toyqc7C/JF+dMU/aTJGazWeRyORdzpgq0jhs3FnQjZTweuw0nKsvMnsuNKc6lxsRxTPg947tScg2oOzCzCPO9VUWPa4XqPZVunke3U35PUAHke0kX036/775HWd+T9eDY7lc0gbPWfmSqrOln/0X+/ASAP/wi9+t5wYQYuICAgICAIyCfz2NrawulUgmJRJRdj0SO/3EzfXm9XsfKygrW1tbQ6XRchrN+v++MgMlkgkKhgDNnzqBSqWBvbw9PP/00er2eM/RJ9rjTTKOh2Ww6w6VYLDqDSnfa+/2+c2PrdrvOQKOr2u7urktKQsNiYWEBjUbDuUlOJlGJg+XlZVSrVayvryOTyWBxcRGf/exn3Y4+Y1lKpZIz0OaRNxrHviGuvxP6N400NUaV6Gk7iUQCq6urjiyNRiNcvnzZ9YWuYpPJBF/+8pfx5je/2Y2j7rrzPjR0mZCgXC6jWCzOuKoqoRkOh664OvvGZ6crpE+o2CeSEaoMJMU0cNUIVMNY3Rt1rPy4NT5bnHqmipKvKCrp0WdWpYVt0OjlvdRdj8+uhH0ymeDZZ59Ft9vFuXPncPLkSRQKBZRKJXzxi1/Ezs6OI+Y6lhqL5Lu18hlIwpgVUNVKHUNfEfZdXn3lVBPDHKTCsa+7u7vY3NyEMcaVk1ACpWudJIz34vG9vT185jOfQSaTwXve8x684x3vcErmgw8+iDvvvBOXL192Ke11vjRhChCRMF1vJNxKmhjrye8trgOSVyqz6pKpLsK6BqiO67qkEsu1wfnhxsvOzo4jWBoXyE0oVX31O4FjSrKXTqeRz+ddvB+fQ+eca4DfpXRr57jz2XitujNTOeQGDGMK+V3OxC90yb1ZeDGo43cA+EX5+1ZjzGcBtAB8n7X2t+MuMsZ8J4DvBIBz5869CN2IYuBCGYGAgICAgMOwubnp0rRfvnzZuTgWi0Vks1k0Gg2MRiMsLy8jkUjg6aefdgY/d4pZGDuRiGqonT17FgsLC2i3267UQK/XQyIRZYHUYryMTaNiRqNBlRzeh7FnVGwYYJ/JZJxixgQlw+EQ1WoV4/HYJVRZWFhwhWnPnj2Lvb09PPXUUyiVSqjX6y7OL5GI6kCl02mcO3fOJVQg4oxjPyYHuJG8+e6U+oxKqPQcVU7G4zHW19dRLpdnXAXVKKYR+vjjj2NnZwf1en3GDVHbplHKn3w+7zLPsU19ZqYy12LCAGZSlZOIaHpzPieTqpCwK+mIUyWVsCnh4nH+7bsAxrXBv2k4K8HjMZ7PfpMc+GoSr9VYInWz82MMm80mnnjiCZTLZeTzeZw+fRq5XA4PP/wwNjY2ZlQWGtM6p+oyqESUhvPu7q5zpdQxUKLK/nHe1ejWMdA4LiVA/lrgv9zsSafT6Ha7qNVqN8wN2yZx1GQqfJbBYICHHnoIS0tLePDBB/GWt7wF165dw+c+9zm8+c1vxmQywdWrV2cyMOp64/2UfKrKp8+miWQ0mQ/JnRIqf0OF/ed3Hd+FdDp9A9HScRoOh47c5vP5GfLEPnLd6frl85HskYyp2yLXn5YeYdu6lvkech4AuMROvV7PKXpLS0toNpuuNESv10M+n59RFJV4khjeLLwgAmeM+VsARgB+fvrRNQDnrLVbxpjXAfgPxpi7rbUt/1pr7U8C+EkAeOCBB14U1hUUuICAgICAo6BcLiOZTOKJJ57ApUuXnHFAUlKtVpHL5XDlyhUXk5ZKpVzdNsZP5XI5LC0t4eTJk8jlcmi1Wtje3nY1hXZ3d91/8tlsFsViEblcDp1OB91u18Vz0VWH7j28lq6cmhyApKfX6yGbzeL22293sSVLS0vo9XoYDAaoVqvIZrOOlJXLZayvr7ukLLu7u3j44Ydx5coV1Go1bG9vO+OeSUvUdZI7/0ycANxI1mg8qlIEzLpL6s63H3umhjs/Z7p2rZ+niUyoVNIt9dFHH8WpU6dcPI7ftrpzcued9cXU/RKIXL9IYn2C+v9n78+C5Eyz60DwuHv4vrvHviMWBNZELpWZSBaZWSyWxFKJi0zGlqme+kGmNpmNaV700D1PLZNZm/ppnuapzWY4I5OpR81WkRTLWKxKsSqrKiszkUACiTWAiEAg9sX3fV/mIfJcXP/wBzJFkQkS818zWES4/8u3/T/u+c6595osmXaY6bRStsr1QoeU8TrsvxVo02OpAYEGHvo6+nM95gS3WqZIx5vtN1k8PWYABtLIAxA2R8eVaSkmr1ur1fDZZ59hdHQUS0tLGBsbE8efclcNjHUWR7bFZAjptJOJ4yYKj7OSkprMKj/X42EmjuF86mN5rWw2K7JoggtzzPRYahmnHicy6r/85S8RiURw5coV/PZv/zb+03/6T1hdXcWbb76Jcrkscmk95tzwYRt0khb+TsDD7/XaJyDR463BPMeLcYscG44Ta6HpNWoyXsDTeGOCICalYaIVHmcy2Vy/fF7YXnMDRdevY7vNdWMy0Bw/vmddLhfC4TCazaZs1hHksvSL2+0WZQLrJJoqg6/T/soAzuFw/Pc4SW7yW/0vVna/328CaH7x+2cOh+MxgLMAbvw1tPUrtMmOgbPNNttss+3LjUlKWGON6fidTidGR0fR6/WEJUgkEhLbwXIBBBTDw8MYGRmR4+nY8T93HRMyOTkptYMYgwGcpOmPxWIAIIXDe72exKL4/X4BCGR5/H4/EomE1IBLJBIIh8MoFouoVCqIxWLweDzI5XLyezabRaPREElTLpdDOp3G9PS0JGoJBALw+XwDhcA1cNFyJ9PomD5PRsnPtVk53eb3BLt0wCjxopNGEFwoFHD79m28/vrr4nhpxw3AAGNApzQSiUgdPs1uMPZFA0rN4LENwFO2x+fzCdOmEyzQ+dX13DTbo9upZW3824qVel4cjnaoeS+ONUGjlhhqBkqDba539sOUB2ogqPtBZ7rXO6mZtru7i9HRUYyMjEhMIOto6Tp5ZtIeDfTN2MdWqyVySnMdmUyclmtyLLTUTzv9el71OuNaOzw8RKvVQjqdHhg3q3XB+dOMkWaHu90u8vk8PvzwQ8TjcSwsLODdd9/FX/zFX2BtbQ3Ly8tSHoTAlWuLG0RaGsr3A+XUDodDxlUzpppttZLXcj4IxihL5rXI7Ok50jGdmuXTaxp4yrTqDKw6WcvQ0JBsMrndbkSjUXn/EFzxvv1+X0Acx4brp9VqDawJ/s5sl/l8XvoSCoWwubmJcDgs8XyUuvM51s+t3vR4EfZXAnAOh+O7OEla8l6/36+pz0cA5Pr9ftfhcCwAWAaw+dfS0q/WMpuBs80222yz7UutWCwCOClQ7fV6xblIJBIoFouSaczpdEoMCp1zJioZHR2VGDaXy4V0Oi0Of7PZFDCQSCTg9/uRSqUkAQPN4/EgHA5LVjc6LHRgGPNFmRDljSMjIwL2vF4vut0ujo6O0O/3EQwGJWtkMpkUCeLQ0BCi0egA09ZsNvHKK6/ghz/8ocTU6TgR7ZRrFuS0nWftHOvfNZjT55rgg+BKAwsAA8kSzHgXfZzT6cSTJ09wcHCAkZERcSKtnHk60ENDQwiFQhIzyL53Oh3kcjlxunkfLbOjMREMs/wxzk0zFnRyNXDSMjbg2cySZBxMiZoJpDQg0X00gSDHg3NpgjKTWdXOt8ms8vpcD/zcLK3Q7XZRr9eRyWRQLpdx/vx5xONxLC0todfrSdZUblJoOSp/atCr20qAYSa0MKWpen2aAJ6SVn2OXh/mM8Di2wSmZiIac8OA805pn24jx7XT6WBrawvvv/8+fvd3fxeXLl3CwcEBbt++jZGREZw9exaff/75AGtMCSbZJwKgUCgkyV14bS2tJJukpaV6zXAc+cz5fD65npbfcoOA8mydTIWZG/UmgpYW6/IgPJYSc64fl8slfSEY1fFnVAgwIQtZNdZ548YLgSWZer2xwPi2o6Mjuf57772HXC6H9fV1eR/zWMp9Cfo0w/9121cpI/C/A/gWgGGHw7EH4H/GSdZJL4D3v5hIlgt4F8C/cTgcHQBdAP+i3+/n/obabtFWwObgbLPNNtts+zIju8WMY3QQcrmcOIS9Xg/lclkcGL/fD4/Hg0QigVgshmaziVwuJ9LGcrksO7t0EhlTVyqVBLhpZ5qJQprNpuwiEyQyvX25XJZ2J5NJ+Hw+7O3tIRwOY3R0FM1mE4VCQYBov99HKBQSUNlqtRCJRACcMHx+vx+tVgubm5uYmZnBtWvX0G63JZkHi5BrZ14za2S/TLNi0vRnGsSZII9GwEGnUx/PsdMMiSn38/l8ODg4EOaCMjPT0dKgiAzp8PAw0um0zBOZVA1QdBZLOqc6I6Lf75cECwRL7JNurxkvZbJqPIYOKI/VAEEzAqaDTnCm76X7bEpbT2MUeU0yMprJMyWfNAJGtpXghWOZSqUwOjoq9fqYVMNMmEHGVbOP5lpkbFar1Xqm3IJpGojxHxP2aABnymP1ZkGv10OpVMLu7q4U0OazZs6t+buWuWo5q16Ha2tr+OCDD/C9730P77zzDra3t/Hpp5/it3/7tzE1NYXd3V1ZmwROZMT4vmGJEYIm3U/dLzMDLNn1fr8vpR7ITvJ4AjyOE6WEeq3ze4JxgiYAoiLgvBJM6lgyHss2Ux3R75/UbwsGg9IWtlM/L2yrLj3BdwNwstnC7L9cx9VqFcfHx5ibm0MikUC328XMzIwU69bvK800/q2WUPb7/e9bfPz/POXY/wTgP/23Nuqvag7YMXC22WabbbZ9udXrdVQqFQSDQUxMTKBWqyGdTqPb7YpDl8vlhE1h5rPR0VGp11ar1VCv1yUmi7u5TIbCuleUWXFn2KoeE52CaDQq8Ssej0ccs/HxcYRCIWSzWZRKJUSjUUQiEakBR4DW6XQQj8fR6XQkMUs8Hh/4jqn4+/0+9vf3xfmlVJHSKQ2UtNOrzWQbrBya0z4zwZdmB7SMTsvPtMRQO6EcV7/fj2KxiBs3buDq1asyDxpsmAwcQVM0GsXIyAgymYzs8Gu5mWa0eB3Wy2NsDNkcnkOGS1+Dv/O+bIuVZPI0OZ52xJ8n39PST4IfE2RrJkZfVzMM5j3ZPq5VvUY0G8d/BCm1Wg1HR0cYGhpCLBZDNBrF5OQkjo6O0Gw2B8AlnxfTdIIN4KmUkgDFZCP1OJnrlXGsWhZnjp1mnzudDg4ODqTUiJ5LfZ7O5KmfG32MngeyjQBw9+5dzMzM4OrVq/jWt76FH/zgB7h58ybefPNNFAoFlEol9Pt9eT8QQMXjcQEpbLNm3/SmAqWIvIZVtlktkdSsGNcF310EOBrYcV3pdP6MnyV7xTHgvfnO8Xg8UlNOSza5Dhk7FwwGEYlEUKlU4HA4JOkTf5rsvM78mk6n0e/3hclstVool8vY39+XdnCDjffjXHJcTHnm120vroDB34A57Bg422yzzTbbvoJ1Oh0kk0nEYjGkUin5T5r/UTebTWFvwuEwhoaGMDo6imQyKfFjjUZDYs70zjJliHoXXO/exmIxOJ1OlMtliV+JRqMS89FoNOD1elGpVOByuXD+/Hl4PB7s7e2h3+9L5mZKN8PhMHq9Hur1uqTbz+Vy8Pl8mJ2dHcio1mq1kM/npRQBneZEIiHsIaVM2jTY0M6zBgimU/q83WntZJssh5kkxbyHloWZc8rkM5ubm3j06BGSyaQkDzHBp07+4XQ64ff7MTw8jEgkInJYvfOugYjT6RyQ1ZJ900wOf9fjRnBKwKaZNFM+aQW0NFgjSNDAULNndKa13NGMFTNT62t2WM85r6nHnSDC/Ixzzw0MHbPkcJzUistkMuKkj4yMyDPF9lAyaVXgm8BArzOWyrAyPabasWdcF9eHuZ70miSIaTQaWF1dFckeQbrZf46v3ijQ7dHjb0o3a7Uarl+/jsnJSSwuLuKNN97ArVu3MDc3hytXruDDDz+E1+uVTSRKvwOBgKwnDXoIuPSYce1zvBnfS5ZVs5JakqoTnJhSVM4xga0GzDxeS0Z5LYI6ttXn88Hv9wvYokQUwEBNStZS1JsmtVoNrVZrYL75DuZGWDAYxIMHD7C3tyd9Iogtl8twOBwinyeg1M+I1+tFLBbD8fEx6vW65Zr7OuzlAnBwPPOCts0222yzzTbTRkdHUavVsLu7Kw6o3qFmDJrP50M4HEYikZDsY9lsFoVCAfl8XuRb7XZb4jOazSYmJibQ6/VQLBbF8dc70ZT+MEthp9NBpVLB0NAQIpEIarUaIpEIVlZWUCgUcHx8jEAggHg8LtI+yj4Z6+H3+wWcxWIxhMNhZDIZNBoN9PtP0+ET+AEYcJaBp6BLOyzMGqdBKTBYENo8n6YdQPMYM25If0fny4oN4XW1Iw6cOHcs45DNZnHjxg2cP39eMo6akj/N6tEBjcfjGBsbk3hF7ZwSBGlmVMsmtYxMx/+wvdrZ1dJAzT5qhlHPjR5j8xr8ng6x2U8rsM3+awaQ55ugTc+HlrdyTs3z9E8t5QQgzni5XMbBwQHGx8cRDocRiUREFsh7MUsgY6hMNlA792TAWT+OIM9K1sgxYVZYAhWaOXYEwL1eT7KcDg0NIZfLSSIQnq/XpR5rfU0N7sx54c/d3V384he/wD/4B/8Ab775Jvb29nD9+nV873vfw/LyMh49eiR1C+PxuCSF8Xq9InHWwJQSVfZHM9FknLhxQgmwfj4oGdSp+DlHOlEPmXDOmx4PgnoW1WaiJ70xwZg4DYr1etL16fTc6DHUSV4IysjyBYNBTE5OotvtDigu9DuA/SX4IyDlmiJo05LfF2EvF4CzGTjbbLPNNtu+gjHWjY4Cd3AZR9JqtRAOhzE+Po6JiQk4nU4cHR0hlUpJkhMmK6F0j+f6fD4UCgUUCgUEAgGJl+N96JgODw8DOEmTX6/XBSzWajXE43GcOXNG2MHR0VG4XC4pghwMBuXcWCwm3zmdJ0WvHY6TDH9MQQ5A5EDM2lev18VBK5VKA067Zr7MjHcEKGY8m5VMzQR0+m/TkTTZNg0e+bd2dE05Gh2tYDCIbDaL+/fvY21tDSMjI5Y14dgeDaR8Ph8mJibw+PHjgQQiHAdeh5n+WF5Cs21sq87CZwXQNAjivTRTxTWp+24CRC1RNFk0LfmixEyze5oV1mNpxQJqEE5po5YX6n7rNUEwxjbTyaf8tF6vIxwOI5lMolariRyZ96zVagNxjBrsch0QUDSbTXkONbg1x0M/58ysaIJevUbZR9ZP3NraAgBJ8KHXoH5+9L3N9WrKVfXYEZCurq5ieHgYv/mbv4k333wTf/qnf4pbt27h13/915HJZCR2U4MZMvoEQ9w44vzrtUdQzGeSZTf0mqXcUUsdOY+mrFZnKuUcUGKrgZdm9/SaJkPtcrkGNk/0O0LPvwbtACT2mM+Tfh5ZMzCVSqHf76NYLEo5F13snOuO/SEzx77wnZ/P54XRflH2cgE42DFwttlmm222fbk1Gg0kk0m02+1nskK6XC5MTExgYmJCkoRsb28jlUohnU6j3W5LIDxlYJ1ORwppUwrG3f1qtTpQk6xYLGJoaAjValXiz5hKu9VqYXx8HH6/XzIgjo2NodfrSewLASEAjIyMoFwuo91uIxaLyd8sGUCnNhqNol6vY29vD8BTx9Tn8yESichuOJ0Xzea88sor8Hq92N7elhIImmmh06QdVG2a0aFpZ1o7v5od4zn6XO3QWVkul0MikcDh4SFyuRyuXbuGlZWVATbClMtpFs7lOil8vrS0hL29PWQyGWEa6GQSzLF2nwYMOm7MZF3MZBy6T1Zt0ePC47TkVDNoJpupgYNmUzlvmiXRcjPNqvF6Ov28yeb4/X45Tsfy6c0Ac641Y8rkO8FgEKOjoyKRI4jjc8HraABorgGd3t5qPDXo9Xq9iEQiwtjpOTAZWq7xarWKO3fuoFQqiVxRZ6A0pamcd5M9NeWf/Nwcq2azievXr2NqagqLi4u4cOEC1tbWsLKygvPnzwtYo+zRHDd9X82ycqw4Xly3lHBzbXg8HplLyhwJyBgLyrHWwFFnsdTriGwfM2dyvJitleuO7dAxZlyzeg1zDbbbbUn4REUEwWy9XhdJOhMcbW1tDTDqWlnA8WdSKasNK8o8NSh/EfZyAbjnvNRts80222yzjcZMY9qR8Pl8iMViGB0dxczMDJzOk6yUx8fH2NvbQ6FQkKD9er0u2ecAiHyRu9zc/eaOM0EiHT7u5iYSCZEWLSwsIBAIoFKpoNPpIBaLwefziVSTtZCOj48FeJVKJTidToyNjcHj8eDw8FCcln6/j3A4jHA4LM4yZZTNZlPiR4CndZm0owUAk5OTmJ6eFqe9UCgIeDTjrkzj/8eaReN5erdeO2oEHBpImMye+f+8BjnZbBbJZBIejweNRgM3b97EW2+9JYW6rZgWLTvkOpifn8fy8jJqtZrECWomgkBFM28arFkxWXqXX5tOemKyVRq4mIBX/63njuOoAQsdVB6nnVJzjHVclnkvtotAldcyQQ9BH9e6Vaxjt9uV8dUSOrNkA2WSJmupATHZISYIMlk1DQKdTicikYiwp1aA3uxLvV7H2toabty4ITJS3QZzHPR1tOnNCM1amyCc81UsFvHLX/4S8XgcV69exd7eHm7cuIHf+Z3fwc7ODjKZjLBwnF8CL82Cckx0rT2dhIVjSmBCZovJOqrV6jMlMdhuSsIJ6jSTpmMgCQL1etPsG4Bn2qXXFb/neuIYsTSLqRxgUinGM7Mfug6fZmnZHg0y+cxyDT4PjH/d9uLSp/wNmQ3fbLPNNtts+zIrFArIZDKSqMLn82FsbAzT09OYmpqSrJRbW1t49OgRjo6OUKvVUK1W0ev1EIlEEI/HJQZKy4W4Ow+cOHi6GHS32xXZJXeVQ6EQVlZW4PF4xBFhjblmsyl15/r9PvL5vAC7YrGISCSC8fFx9Ho9aSOTkNCZIlNYKpUkjoVMh47bAgZjfui8MJslGbvTCkdrxxcYTJVPdo9/ExTogtymtOx5zIg2fRyzRxKYVqtV/OIXv8DBwcEz2em0466ZGqfzJCPlysoKZmZmRDqpx4oJFJihlGCOoFT/0yBBAzkTCGk5mZk1ULN2em7YD206Rk07vuyrBlcmO2qyfOa8cax0HBQ/07I5DWbYH91/3ofZUpnxU48pzyf7aa4fc2zJYJvrUa8dh+NEJsvajFrup9eR7rsGcGQMCeo1gNPzYDKpuu/m2qXp2FLet9vtYnt7Gz/96U8RiUTwjW98A3t7e7h37x4uXrw4MDYEwNyY4ZhwjPjc64yO/Ec2CwACgQBCoZAAPrJrBJncaNDSUq4FyjW13FhfXz9zvDfXrI7F4/caKOq1C5xsmpEFp4KA2YJ5bzKLBN1kF+v1uiQ80VLSdruNSqUi6ohmsylJoHQdSr4DXiRp9JIxcLARnG222WabbV9qBA5utxvJZFL+DQ0N4fj4GLlcDqlUCrlcbuA/ecpnWHONaespq6NzwoyPzBLH/+w7nY44FV6vFzMzM4hEIigUCmi1WojH43Juq9VCNBqF3+8XJ3d6ehrZbBblclnARaVSEeeFTB9Zv263i+XlZYkPIYAkGHM6najX68/sJtMJa7fbyOfzwgJaGR007SSfZlpmxmOtpIU69gywTgOvnWQ9r263G6FQSIpy3717F5999tlAYW+9+85raeA5NDSE6elpXL58WYA7HUkCfg00NCthxbLpexE40zTTYMU8mvI/cxyszARxdDo108r7mUyqeT9+ZgI5zVxazSf/abktx1oDMo5tNBqVJBwEC2Q+dGkJk+nUTBlro1kZ2xaLxYR90+3XY8120qnf29vDzZs3hU3mM6NBrSmdNdkaq3aZ612DHJ1EY39/H0dHR7hw4QIePnyIGzdu4MKFC5idncXGxobEJRI4kUXneGqG0uFwyPtLs4f6/URWjwypBlNcXzRuXOg50CoDgj4N8oGnckkCZL5P+b0GiZxXLRnmeDMTKNm5er0uG0EEc8DTDJbcZKCqgGPHkiC8nhnXq9cLr3vaO/HrsJcLwMFh4zfbbLPNNtu+1Pgf9czMDEZGRiQOrNFoSKHeUqkkTg8zGbrdbslqRkeAqdS58x0IBJBOp9FsNhEOhwcKyo6MjEhSktnZWVQqFeTzeTgcDiSTSbjdbhSLRQAn8W3RaBRPnjyBz+fD1NQUcrkcAGB+fh69Xm8AWLDgdzKZRLlcRiAQwOzsLNLpNDY2NgTA0ZnvdrsC/rTzSael1WqhVCoBeJo5E3i6M64dcpoGFqc5rQCecVT1vOjvtOTKNN1W7VgWCgWEw2GZl0qlgp///OdYWVmRbJH62mYf2I5AIIAzZ84gn89jY2NDmFOX62madZ0l0mRwzLpuvC4dSgIs7SjyGD12msHk2Jup/zmO2hk3Y9+0LBN4KkfTWR416LICNxxjzSTyeJ1kgm3l31qWSVmdBopkm7XDzO94Xa4bzRBqxpKf8ZnUc8n7hUIhjIyMCPt2GghmfzqdDqrVKu7fv4/NzU0EAgFhk/Q99Jo21yi/0+vM/Nz8Xa9/suB/+Zd/id/7vd/D1atX8Wd/9me4fv063nrrLUmqYrVRRLZQzy/nXicH0sCbcXUE0sxwqdeOBuB63ZK143uJ8WjBYBB+v1+YfA2SyXQRCOryAUy8o1lXvbnDZ3JoaAi1Wk2YMj6bfMb1GuB7nH3ku7BarUoMJZPT8FgtM+V7U5c3eBH2cgE4h7Xm2DbbbLPNNtu0RSIRDA8PY25uDkNDQxK/lsvlkM1mJTuZx+NBLBYT51dndJuamoLLdZL9sVarIRQKod/vS4za0NCQSK56vR7GxsYQiUQQi8UQDAZxfHyMUqkkkq5e7yTrntvtRiQSQbFYRCqVwsTEBMLhMFKplKRcZwHvcDgMh8OBSqWCycnJAekd2ad8Pi/OsQ7E93g8wiToGA8NQhqNhuwykwXRcYOmaYf4eeDNTAzA+5lg0IxPsrqXBhPdbheHh4d4++23USqVsL29DafTiZ2dHfzsZz9DIpEYSBuuWTOzvU6nE7FYDOfOnUO73cbm5iZ6vd5AFj09XubfJsunpaq6v+Z5GvDo2C0NWPmd2WZ+px10jqlZO49MI9c254bgk23W7aUsTYMlM+OfBgt8XnSbuUZ13/XzA0CAhwajZh9NwMl/rVZLZMyaUXO73RgdHUUsFhtgPXlNDT7JfrXbbWQyGdy4cQPVahXDw8MCShjnqudXAzSr50Ov29NMA2H+3Wq1sLGxgRs3buC3fuu3sLS0hHv37uHChQu4cOEC7ty5g3A4DOAkPT9jvnQ7uHlgymfNZ5mMHY8ngDEBJteTjmlle5npVvfJ4/HImuH5lDQyyZBeg/pdQ1aMwMqUQvt8PpRKJXl/cl1rVo1sOUEfr8P1Gg6H0Wg0BASypAEVF3rDguDvRdrLBeBgKyhts80222z7cltcXMTk5CSczpPyAP1+H+l0GqlUaiC19NDQEBqNhjB0tVoNnU4HgUAAh4eH4tCy8Haj0RDWrdVqiZPH3f/p6WmkUimJyQqFQgiFQuIssohtNptFq9XC/Pw82u02tra2kEgk4Ha7USgUBhzkYrEIp9MpMqNYLIZer4dsNgufzydOtHaGAoEAAoEAqtXqAEjQjrJ2cuhwmYyBdg6tANBpsjEN1HQCB5pmZ8wYLc048Xpsh8PhECdsZmZGCnJ3Oh189tlnWFpaQjweH4jJ0tIoM27K5XJhZGQEZ8+eRaVSQTqdHkiSYQJMnqMZKJPFYtsJTjSAM1kN4Nk0+PqaBGpWDKIGgfpcjrmeby1rswKFpzFFmq0zJYSa9bPqD9up26QZN82O6jHieuV1eZ7JxJljn0wmMTo6OpCR1ATOBHB8HsvlMu7du4dHjx4JeGAioOcBdxO8mcybOU/6cy2j1ePabDZx69YtnDlzBq+++irW1tbw0Ucf4Xvf+x6ePHkigKrf7w8kKwkEAgMSRn0PHdemmTeOp5Yca+DOa3AtcNx1MXACSMoi+/2TGnNkNnW8HGvDUbLKtrDNrVYLbrdbsvYCT2Wc3CDz+XxoNBpyby2dZLv1ZoBmFMn+eb1eef9SsUAWjkCP97V67r5Oe7kAnMMuI2CbbbbZZtuX2/z8PIrFIjKZDJrNJtLptNR3446uzgpYrVZRqVQQDAYRj8dll9rn80lQ/NDQEILBIOr1OgKBwMBu8cTEBKampnBwcIBMJgMAIplsNBoYGhqSMgSZTAahUAjDw8OS8np8fFwkQnRy8vm8yKbI9C0tLSGbzUqR5EKh8AzLRSedckxTqmY6aXQITdNZ80y5n2aHTDkgjY63Bl9sj2aNtKOlndDTQILT6cTa2hreffddjI2NoVqtwul0IpPJ4Mc//jFmZ2fh8XgQiUTE2dbJHHgf3sPn82F6ehqNRgMPHz4UB173RzvtOjmDFbumd/L1GOvr6b814GN/NZtlmnZK9T31GJpzoGWRprxPgzT+sxonPXenxRfyWN0mgq1arQa/3z+QiVKvPa4DOva8lk76ohkVPe6hUAhTU1OnFnU32TduwOzs7ODnP/856vW6PPeU6Om4MM0oWrGWeoy0WW1wmCBeSwZzuRxu3bqF733ve7h8+TJu3ryJQqGACxcu4JNPPhF2mX1hshWyX1qO6na7EQwGZXwbjYYkQNJxaxr06I0DtlOvTZ0oiIAtGAzKOLAdGpzp54Xzx3ngZ3oDitfodrsIhUKyeTU0NCRFxTUQZd1Nblbp8gfsq9PplA00ysU1U0gQyA0fXR/uRdlLBuAc6NscnG222WabbV9i+/v7Uoy7WCwinU6jWq0iEAjA6/UiEAhICmo6QeFwWGJMKOdh9jw6BSyyzcLXsVhMnP/NzU3U63W5PoGh3+/H6OiotIcxbHfu3EEsFkM0GpX4MyZQ6HQ6iMfjcDgcKBQKGB8fh9vtxuPHj9FoNHDx4kWUy2VkMhnZwaZjRAbJjOHQu9QahGn5lAZjpoQNeL5Dyt9NJsgqDo1OKEGVFfDTgNNkwSqVCmq1Gubn57G7uyuM6pMnT/DBBx9IDTD2iY6k7ru+ttfrxezsLHq9HjY3N8XRtWLggEFwq++h227KADn2Jkuix10DIw0atTNpMn08ThdH1uOomR4NEK2ApZ5DxgvR2Saw49rS/SDTRKPDr+eZAEA79mSn2Adz7nltghCOg5aQut1uTE5OIpFIWBbtNsEbmZdyuYzPPvsMDx8+lGyPjCfTWTLNcbey5zn6Vt9peaOeq16vh8ePH2N9fR3nz5/Ho0eP8ODBA/zu7/4ubt++PVBOgOfx/eVwOGRMzFhYAhaaOU4apJmbMXoTQLOl2hiPyng1snVa7qjBEseF88mNMtZ543oiy8fEJTomlc+TThhkrnOHwzFQxoTAjBtHbBPP1ZknNRv3IuylKiNgF/K2zTbbbLPtq1i5XEaz2UShUMDR0REajYZkFmM2Rxb55n/clOa4XC6JlxgaGhLnhI4AY0DGx8extLSEUqkk9dl8Ph8CgYA4IolEAslkEvv7+ygUCohEIjg+PkalUsHKygpGRkYkm6TeuQ6Hw+j3+6jX65ienkYoFMLBwQEcDgfOnTuHdDqNnZ0dFItF2blmYoNwOCwxcTo4nw67yQDQSaHTbkrl6DhpJ/95DisdI31PfY4GTnTSzetpJ8rqmH6/j8ePH0uco2YOfvGLX+CXv/wl0um0SL44rprNMdsUDodx5swZLC4uDmQx5PeawdLMkGZqNMCjA63PN2WXpmmJH51NxhFp9sh0Unu9HgqFAlKplPTT6RxMqKLlehqUmVI+9lM7s/xMO8IaMGiHWPfZZLH4ma6zppPFACfggjFReh2RNdIyULLXU1NTz5QN0GtNgzdmMnz8+DF+/vOfo1arIRAIDKTgN2uU6XHSZjKTet0+T37H9ugx5WelUgmffPIJnE4nzp49i/39fQDA1atXRb7Ie5Mtqtfr8jfnnc+uBk1er1dKCPA4slK6LbrOHAAZG74Pea6WGTKhkJYlMpaUskkd96ZZO16Xm0kEd3yP6zbV63VUKhW0Wi25ltvtFlUEyyQEg0GRhbLUi85iykLgBLd8/7LId71eHyhb8XXbS8XAwWHHwNlmm2222fblVi6XkU6nJZ6MiQ3q9bo4N1oKyZIA8Xhcdnuj0ajsCjMOg47t2bNnEQwGsb29jWw2C7/fj3g8LnJLl+sknXmr1cLh4SESiQRcLhfW19cxOjqK5eXlAVBHRyIcDmN0dBTHx8dwu91YXl7Gzs4ODg4OMDIyglAohFQqJZIiLSlzuVwD2eBYrFaDNmBQ9qX/1k488HQX32pXHsCA1E47e1aOqSk90/c2mSo6d7yHlXTN4XAglUrB7/eLk1upVACcpK3/y7/8SynDMDw8LOfTSWT/zL4Hg0FMT0/D4XBgZ2cH9Xpd+kdgoM/R7QOelZ1qAEvTzrvVPOgx1QBNS9f4vc7iGQwGxdnV46rlkZpt1Uybvo/J7pGJ0GNAx5h91XJJc41ZyUA1K6uzI5pxmPqeZlkAl8uFRCKB6elpBINBy5hEc8wJiFOpFH71q19hZ2dHYsjouPPa+t4cY6v50jJRfn6amdfQz4budyqVwr1797C0tIRbt27h+vXrePvtt3Hnzh2USqWBZ9Jkogh0Cdw0UNcMFoGyz+cbKO2g2TYAA+uR5+naiHznEfRoQAZANiA418wQyTnXa1Q/p2TPer2e1GUkCAOesrF+v38gxs7pPMkwS2DG9z3bZzJvPI9t5jvf5/M9k4n067SXjIGzEZxtttlmm21fbplMBtlsFsFgEMPDw7Kz7XQ6Ua1WUa/XEQwGEQgExIGggxCNRjE2NiaOi8fjgd/vh9/vx8jICK5cuYJut4vNzU2RUUajUTQaDTSbTQwPD2N0dBSZTAa9Xg+Li4toNps4Pj7GpUuXcOHCBWxsbKBUKiESiQjY8vv9aDab2NjYgNvtxsTEBB4+fIh6vY5XX30Vbrdb/g4Gg0ilUgM71j6fT5wx7jRrp99kwkzTzJxmarRDqp1/0wECBmVX+idgXetNt8WUqpnOMcEzj2u1Wrh//z5WVlYwPDw8ABSOj4/xgx/8AKurqyiVSuKc64ybVoyKy+VCNBrF7Ows5ufnEYlEBtgn7QjzfDOGj6bBLxkIU8J6mqRVZ5g0gRHHiNcjE+HxeCQeicCMzCOBPq9N59usG8efjDEyWVITFOo1RufelInqhDImk6avqwGGyVbS8ddzHI/HcebMGcRisWfmUoMpzb4BJwD/1q1b+PDDD+FwOBCJRGQtd7tdAQ96vq0Aql7TvKcJ7k0zN0mAp+CS3/N9cO/ePeTzeczOzuIXv/gFfD4flpaWBp5NZgnViVs0q8lrMxGTCRR19keyXuaa4HPBdcOxINDimFLKqbNXUonABFG8p16PTqcTtVpNgCnnwefzIRgMyv3JHnKTinNEUMdxADAQG9jr9aQouB4TMoMsLVMoFFCtVtFoNAaeoRdlLxeAc8COgbPNNttss+1LrVgsYmxsDLFYbCDZQ71eFyeZUi4tRZqampLYM4IrOh5zc3OYmJjAwcEB9vb20Ov1pB5ZtVpFu92W+x0cHCAajSIYDOLRo0fodrt4++23EQwG8fnnn4szxayHk5OTIoObm5uD0+nEzZs3AQCjo6NYX1/HwcGBgNHd3V1hCin9oVNdLBYHpJDaodbOm3a8gUGnl2YyBjxPs0dWbJtmMPidFVOhPzsNWNJRM7PC9ft9bG9vo9FoYGJiYuCcfr+Pzc1N/OQnP8Hu7q7MD4EcWSRTJkkHOBwOY2pqCjMzMwiFQs845+a46rZquaPZZ50hzwSoJmum508fr4GhbrtZ3FuzafycTjOZk0ajIYyJltFpEMlzOb8aEJnMKVkcE/jp8eGa4d8afGkmSc8J28x1FYvFMDc3J8+bKZvktUzpJDO+/uVf/iVSqZQ49WTe9BiasliOvylB1t/pOdVrnL+bCTz4OceEMsNWq4V0Oo2trS288sor6PV6uH79Ot555x1pH+WPLHuhNzr6/b58T0AKPGXDCPKYydLr9Q7EO/JzSmXdbrckLCEIarVasmnF+7G8AeN4tVQWOCmBoOXMrO9GCS6vpwFeKBSSd7jehNASznK5LGUG9GZJKBSS9znXAMfb4/FIkhS2lX3h/L9IAPdSSSjtGDjbbLPNNtu+ik1MTAhbU6lURGJGlo0gzu/3o1KpwOPxYHFxEbVaTeLgCoUCWq0W4vE4VlZW0G63cXh4KNkpGWtWq9Xg8XgQjUZRq9VQKBQQCoVQLpdxdHSElZUVjI+PY319HdVqFSsrK8jn89jf38fY2Bii0ShyuRwajQbi8TgePXqEfr+P6elp1Go1PHz4UAoUF4tFycJmOpTsr5bG0fRx2qycax5vgjdz956fWTnldJLMZBZshwZ1jCNjn/i5eW+dpZHfFwoFbG1t4ezZs1hdXUWhUJA2dDodfPrpp4hEIvje976HhYUFBINBccq1c2sl3WMc3NDQEA4PD1EsFp8BuWaKeA126Lya42LKIk1ZI9vD/mrWgOfrcaWZDBbbQkal2+2i0WhIzBPZRofDgWAwKM4tQQydfV6b9zITZVixTpR28u/TMo3q9aYTo5j35VrudruIx+M4d+6cZckAfT0TvDWbTezu7uInP/kJ7ty5A5/Ph+HhYWHm2X+dWl/bac+HFbOsjzuNmTPnz3y2ut0uNjY28Nprr2F2dhYfffQRLl++jHPnzuHGjRuyPsmkcswZ88mSJbwHQSrP0UBfZ17UAEtvwvA55fw1m01UKhW4XC74/X7ZDGG8GdeoBpBc17oEgE7CwnvxM65lsnm8HpNE8Trlclkk4zyeSVSmp6fRbrexu7srx2j5aKPRkJg6DV7N+fm67eUCcLaC0jbbbLPNtq9g/E+6UCigXC4jEAggGo2iWq0CAIaHhyU7Wzgcxvj4uDhxLAPgcrmwuLiI6elpyWTZ653UYWNiEwBIJBJwOp3I5XIIBAKYmZnB1tYWPB4PXn/9dRQKBdy8eROBQABzc3N48uQJMpkMpqam4PF4kMlkxIHa399HJBLB5OQknjx5gkKhgImJCQwNDSGTyaDf7wvjp2WMTOBAJ007yWToaOZOPfAs+2bluFiBNy2dpHOqnVbeV4MY/bvVPU1QouNnzPP6/T4ePXqEf/JP/gnOnz+PTz/9dIB97Ha7+PDDD0V2pZk6Sqx0rI5ui8vlktp+Ho9HMpuyPey/BtJW7Jz+zMzIqZ1UAhWXyyWp1DUbpx1ck6nifXStMD2Gei0Ag1ktO52OpGDXfacRpJqMHvvIDKCmbJLXomPMFPAECqaxFhfvqdtL4BCPx3H27FlMTEzImjfHgOdp8NZqtZDP53Ht2jV88skn6Pf7mJiYELZL94P9Nxk1tt00fs/1YM69ng8T8JoAz9wkKZfLePjwIaamprC5uYnNzU28+uqr+Pzzz2WjiewXAPmM7zYdq6jbQMDH2F5KZnVGRjKffD40uCfA1xlk9VplrDHXl5YEcz3qkgbNZlPYRL6jTWkpj6UclGNGeTsT+OjYXZZfGR0dxfj4OFqtFsrlsoy5fg70M0MAaD5jX6e9XAAOz2qHbbPNNttss800n8+HXC4nMWqBQAC1Wg1erxfJZBKdTkeKugJAOp2W1OLc4V1YWMDQ0BCOj49RLBbhdrslGQmZjGQyiXw+j0ajgQsXLsDtdmN1dVXkd/l8HoVCAZcvX4bP58Pt27dxcHCAM2fOoFwuo9frIZlM4ujoCN1uF2fOnIHT6cT29jYAYGpqSmrD6YK9lPromCn+rbO8adMOpskW6GNNZ93qWM08aTZFS8a01FI7epqB4/10fNhp7SIwMJ3/3d1dPHjwABcuXMD6+jrS6bRcFziJz/kv/+W/wOv14jd+4zcwMzMz4NT6fD5hcuiU6nsGAgFMTk7C4/Hg8PBQ1pUV46LbTAmWyUyxbebnWralHVZzvPQ4ayCuJYycPzNJhN/vH1gnGlxYrReCGT1/GsiQUTltLQAQAKBBEcGaBivsi06Br68dj8exsLCAsbExAW+6/RpIm+CtWCzi+vXr+JM/+RMcHBxgZmYG4+PjePz4MQA8Iyfl9XTiFFPWasWs6nV3mr9qxTKbKfz1/D158gTT09OIRqN4//338a/+1b/C/Pw8NjY2EA6H5bnmc6FZXM1qUnJIdsvn8w2wstzAIuOr2TdeQ0u2dcwZ3wkcd518xEyGpEEZ2U6PxyNZK71e7zO12TS7zLaReWy1WggEAohEIpLIiNcqFArY2NhAKpUaAKu8Hp8JxgmSfePGzotMYvJyATibgbPNNttss+0r2NHREXq9HiYnJ9FutyX7GBOFkOEoFAqyE+z1euHz+RCNRjE1NYV+v49UKiUZKb1erzgV8Xgc/X4f+/v7cDgcmJ6extHREQqFggC/zc1NhEIhKTZ98+ZNlMtlhMNhHB8fy70eP34Mn8+Hc+fOoVKpYHt7G6FQCJ1OB9lsFrFYTJxRn8+Hg4MDcZQ0Y+P1elGv18Xp0QwOMJg63spp14DC/N0EK6b0Syc20MCC99COvSl5c7vdA7WhTAZJ39Mqo2Gv18ONGzfwu7/7uxgbGxOmUre5Uqngxz/+MXq9Hn7rt34LExMTA/1jHBHlW5oBcjgcks2SDmYqlZJ4SrZBt1Mzk7yOySZop98cVz0/zwPXvKYGRqZEld9xzWgnWs+Xvg77r9uswaKOoyOD9bxMjRrg6dg5LcnT9br0/RjzNjs7i5GRkQG5nhlLZjJv7XYblUoFDx48wJ//+Z9jd3cXfr8fFy5cQLlcHgA93Awx4+k0U63vo/tqtWb1M2gCTdPM9aI/Pz4+xv379xGPx7G9vY0nT57g1VdfxYMHDwSg6UQ2+hnRAIgbPyYgI/vm8/kAQDI3mjXcCDIJ8vR1KW/kO0nHUBLkcd51iRN9LzLButYd1zozBXPstASSZRTIzulNDG74FAoFSVilmWf2OxgMiqqi0Wg8A1xfhL1cAA52DJxtttlmm21fbpFIBIFAQFgul8slddoo06FEZmxsDMDJf+hMPFIoFMQhGh4eBnCSGCUajSKZTKJYLOL4+BiBQAAejwdbW1vw+Xw4f/48crkcHj9+jG63K0xDvV6XmnD5fF5S2+/v72NmZgYLCwu4f/8+arUawuGwSCSTyaQ4HayLdHBwAOBpLBIdRSYO0A6j1a4+gGcAgK4bxe+1nQbeyMbwM96PO+4mcLMCjnTozHtoJotzSMfRBBipVAqPHj3Ca6+9huPjY2Hh9H1yuRx+9KMfAQDeffddzM7Oyndk4ggMdO04zSQlk0l4vV4Eg0EcHh4KCNCslJbTmeOlAZOW3mnQYII3cz41e2cFHNh+7cgThNKBp/Os4w5NhlSzdwS3ek7JgAUCgYFx1Ga2nf00QQ2ZDy0j7Ha78Pv9SCaTklyIDJnVJoQGb5y/YrGI1dVV/NEf/RHu3LkDl8uFS5cuYXh4GFtbWwNrkIBEA0dzo4JjedrzoNexlr5q03NojhUAASHsT6vVwubmJhYXF+F0OnH9+nX843/8jxEKhQbmT6fH1+wlQVa/3xemWce61Wo12QRiCRImNeGc6HpoZukBHkMwHAgEZKPAlHH3+0/jN3kM1RCBQEBiFfnu5JjXarWB5CX6mSRj1+/3B/rFNU8Zd7lcFrYPeAooG42G3CcQCAysvxdZyPulAnCw2LWwzTbbbLPNNtM8Ho9I3Twej7BoACQ+I5lMwufzoVKpCFhyOBySdTIQCIhzWqlUEAwGMTMzg0wmg3Q6jdHRURQKBRSLRSwvLyORSGBrawu5XA7hcBj7+/sSZ7K8vIxSqYR8Po9kMolqtYpOp4OlpSUEAgHcvXtXCn9nMhlxajqdDhKJBMrlstS9evTokThh7KsGNRoomXFrVuDClO2Zph1kDQABPANaNAtixSbwpxkLZjJAJlPDz7SkTUsdu90uVldXcfbsWVy5cgW/+tWvpIYb5V0OhwPVahXvv/8+AOA3f/M3MTExgWAwKA4z2R068FaSSmYu9Hg8SKfTkoDGZBZN8GWOnXauTSbJSmanQRtNgzidYc9kiOjYknEgWwecgBeOrz5e34NtNMGqBlO6nRrE6znWxzBGi0bHnMf7fD6Mj49jcnISkUhkIPGGCd64ccC55mbHw4cP8ad/+qe4desWOp0Ozpw5g1deeQWZTAblclkABdPQ6wya7LOO59PzZLKr5tybwM78XW9QmPOrn2fg5J1Vr9fh9Xqxs7ODQqGAK1eu4NGjRwLWtFSR610n6dHJbLiudZ8oReRYcGxYP9PMWKqfTwAiq+QY8h3m9XpRKpUG5LbcfNIFxrnu9LjoTSgNqPT7i5+TqQsEAgJ89YaAWTyeY6Hj+sz3oPn+/DrtpQJwHFKrHQ3bbLPNNttso2UyGTgcDomV4X/qwEkCk2AwiFKpJLXiEomExE/4/X6RWFJeGY/HEQqFsLq6il6vh2AwiKOjI4TDYVy+fBm1Wg0fffSR1J07PDzE0NAQxsfHEY1GcXh4iF6vh0gkglKphGAwKI7kxsYG/H4/AoEAcrmcxOUxDTizZA4PD2N1dRXAiePcaDSkXhJ34gkIdHA+8CzAsmJuTHmljp2hY/y8/38p56LTZF5bMzh0Dtk2E8jp4zSIs3JW2dZMJoNr167hN37jN3B4eIgHDx4MSAyBE4etUCjghz/8IWq1Gr71rW9hfn4e4XBYnEW/3y9SSSaGMR1LMq+hUAjhcBiZTEYSnJhsmRXjpseb/bZy8k1QwP6YZQjYLg1AeH6j0RDHnAyMziCpEzWYqeM1e6PnRzMuZOh0ghLOrd5MIFgwE4HwWA2CYrEYpqamMDo6KkW6reLrNEvJ+CYyb/fu3cMf/dEf4datW2i324hEInjnnXcQiURw69YtkWy2Wi15jnQcou673lgw58nc4NBzyT6bQF7PPY3902uN49LtdpHP5zExMYG9vT28//77eOONNyRjrVU8IQEJ58QqNpaxcPpZZwwbANn80mCPf+sNGZ5TLpdRLBYRj8dlXkOhEPr9Pkql0gDDz00QHdfLUh+UPvK+lGiaDCNlr8AJGCRzyHIhPJZxfbwHz+cxOlkLN4oYZ/ei7KUCcLbZZpttttn2VYxZzVqtFoLBoPycmZlBt9vF8fExOp2OxDUVCgX0ej0Jpnc6nSK5nJ2dxeHhIdbX1zE7O4tWq4UnT55gbm4OCwsLWFtbk1T2zHwZDodx5swZ5PN5ZLNZhMNhlMtlFAoFTE1NYWxsDNvb25IFk4xcMBgUGWWn00Eul5Ni0k+ePMH+/r44InS+9Y63diLJHpjxXFasnAkY+Jnf78fy8jJGRkZw7do1yRCnjc6f/qkBG01/phNFmMDRZHR0GymhMtP+s6+PHz/GysoKLl68iJ2dnYHiwBo4VatV/OxnP0OtVsN3v/tdzM7OIhaLyW6/3+8XZ5DAkYkZaG63G/F4HD6fD6FQSNg4Ml10YDn+ZvyeBgM67T6dbA1yafoYU6Kp51zPIWM3dawRTY+xZip0RkgCQ95fS9icTqck2aHTqx173W/OGYG+zm7IdjudTiQSCYyNjSGRSAjg1NJLnqPP1QxNuVzG2toafvjDH+LGjRsihV5ZWcH09DT29/clo6yOvTPT5uu1x/6Y7CrHUI+3KVnW35sMKu9JsKVjSTULDUCePYfDgQcPHuD1118HcCLtDofDAyyqBrRcW5wDc0OAskF+zwQieu4Jpihr5LuGSUR4TV1aIBwOo9frYW9vT2SNGrxz/vl8cczYZkob9XxQYkmmTW9AcHy5zlhSod9/WhOP4JPKDA0gCdjIKnPtvSh7qQAc13y/b6spbbPNNttsO936/ZPirolEAv1+H6Ojo0gkElIOIBAIYHp6Gq1WC7VaDd3uSX0pr9eLWq2GWq2GZDIpmepcLhfeeecdHBwcYGdnBxcvXsT4+Dhu376NarWKpaUl2X2ORCIIh8PY2NjA0NAQYrEYcrkcAGBhYQE+nw9ra2sIBoPw+XxS5oAsIcsE+P1+xGIxlEolVCoVcTT8fr/E9unsidoR1k4Xx4NOlimZJMjTUkM6kkwsMDY2NhC/ZeXYmA67CRStnHstQ9Msm8lQaEDDHXYNyHhMo9HAjRs38Gu/9mtYXFzE/fv3hUU1rVKp4MMPP0SlUsHf+3t/D+fPn0csFgPwFGx4vd6BhA2ajWObWV8wGAxKTb9isSggm2NCx5pJHpi2Xjv9euw1G6nHBcBAfBDP13JG3T6CBJNFpdOqZYIulwvBYHCAhdLzrQEI2884JMZOaemkBiBkWQgoNdBn5teRkREkk0mEw+GBGE+aBnE6ToxAolAoYG1tDT/4wQ/wySefCLuSSCSwuLiIdruNnZ0d1Ot1GZNGoyEbIea9eB9zvWsQpNevCfLM3/W8cLz1dfS99Lj3+320Wi1Uq1VMTEzg4OAAjx49wtLSEq5fvy5JeNiPdrstwJrzyHHS7wH+Y4bGSqUizL6WSRL41ev1AZDU7XZFckklQLPZlMyWlHfrDI/NZlNUBuy3fsYcjpNacu12G41GQzKn6uQoBJE8huPKuGafzyefNRoN1Ot1AciUkHJzQ2c61ZthGvi+CHu5ANwXIko7j4ltttlmm23PM4/Hg0QigUAggNHRUUQiEeRyOdTrdYyMjCASiQhwGxoaQjKZhMvlkoKuc3NzGBoawsbGBoaHhxEIBHDjxg10u1184xvfQKVSwQcffCDyy/39fbhcLsRiMZTLZezv7yMYDCIUCqFYLCIUCmF4eBjFYhGZTAbT09PCyLEmHYGlziZ3dHQkrAQzZv7O7/wO/uRP/gQ+n0+K+ZpJA+hwmfFuJnOgJW3aqeffnU4HGxsb2NzcfIYVM1kzmgYGJsjS1+bnBAV6p11fWztSlPY9D0Du7+/j3r17mJmZwfHxsWQkZdt0HzudDm7fvo1KpYJOp4PLly8jFosJk9PpdCQujk4mZXpkftj2cDgsGe1CoRCy2Syq1aqMhem0mzFfNDP2x2SfrOZRj7c5n7q/JtvJ9pgMkckUaRmgbmOj0RCpIYGDlrdqdhCAJMmgRJlOezKZxOjoqGR7NaWgnDv+NOPdCN6YbfKTTz4RkO/xeDA2NoZ4PI5sNissNtvLuEC9pjSTqdcN22yOoVVbT2PrTKmlKaXU1zAZx2q1ing8DofDga2tLXz729/GRx99JKwUN250Eh69RvUzbsaBEVzVajWRTpbL5YHx4LOoWVwy1XxvjY+PC+gioAqHwwgGg8hms7KhwuMZ60vWi+C91+uJ9JzAlAw8+6ET8ZgbRpTC12o11Ov1gQ0Vjik3EvgshsNhedfW6/WB+plft71cAE4YuD6eRsTZZpttttlm26AxFm1iYgKtVgs7OzsYGhoSyVupVAIAKfDdaDRQrVYRjUalEHe5XMbs7CxKpRK2t7cxNjaGZDKJvb09AWGNRgObm5uIxWJIJBI4OjoCACwuLqLRaKBcLmNiYgJutxvr6+twu90IBoMC+MLhMIrFogCDXq+HRCKBer2OUqkkyRsajYYkZXn48KGwHzp9OEsI0JmxSkRxGljgMZpF0M46v9d/a+YIwADI0vfWDA/P408z9Tx/HxoaGqgDxe+4a87vTZAKnMTCrK+vw+/3Y3FxEbVaTZIosP3sI8HO48eP8cd//MeIxWKIRCJyH12+gQ4yHUk6j1pq6PF4EI/HEQgEEIvFUCwWkcvlhDE1nUyOl2bXOCa6th/wNGueZll1TBMBjQYidG713PP6ek7NOTDnjs6/WWvM7/fL506nE9lsFn6/X+KI9LzpNgKQzIMEV6xzqNei1ZrhGFDu12w2kc1mcffuXfzn//yfcfv27QHHPBQKYWlpCV6vF59//rk8bw7H04RF3Dx4HuPyPEBmjqHV88bfTZmjKT226jvBSj6fl3Wws7ODfr+PmZkZScjCTLRc22QgzXIAmvHje6fVakkiEp/Ph0ajgXa7LWwvN3u45ihDDAaDkuiEcu9erydj6/V64XA4ZDONGyMmK8k5dTgcSCQSInkkGHW73QMZJNl+XXZAM8C9Xk9qdzabTZTLZWFbeT+3241oNAqn04lUKiXsI2Ncm83mqevhb9peLgD3xU+bgbPNNttss+15trCwgHg8jlQqhUKhgFgshmg0ina7Lc5OLBZDKBRCoVBAq9XC7OwsAoEAbt++Da/Xi/HxcRweHgIArly5gmAwiFu3bmFoaAhXrlzB2toaisWiJCrJZDKIRCJwuVziyJ4/fx6NRgMbGxsirUyn04hEIuJ8MA7D6XSKPKrZbGJkZAQAkM1mEY1GUa/X4fF4sL+/j06nM1DXiNJHDQRMqSTwbLIM0+HUn1mxA9r54730Tr52hM3EChroUHKn26HlfhoA9vt9cd7o5HFHns6slu05HCcZDnd3d3H27FnMzMzgyZMnUmOKTrPpYBeLRXzwwQfY29vD/Pw8JicnEY1G5Z5MdEGHmCCKLI6Wx1E+FgwGEYlEJFspGV4NtHUyBs2WasBsxaJqJodjy7nQYJXOqgZHJgAhE21eXzN7HG/GRzWbTYRCIQCQshd+v1+SpnD9adkmrxOPxzE8PCzPIFkVE7xw/jXg0IxRvV5HKpXCrVu38Od//ue4e/eugEkWmp6cnMTCwgIODg6wv78v1+31Top3c0PAignTGxrsjxWbbD4rVuwcNyz052yHnmP9zPL+nEPWtOTzs7a2hqmpKalHqcdGjxnjGvls6fZx/ZItY8IbAifzWdEZLc2kSZoRBU5YMCYOarVaMtcaiHFM9aZNtVpFoVAYKPStZZbcOOF6JCgm4NKgk+Oua71VKhWRpXNTrVQqoVarYW9vT0Dsaezo12EvF4BTMXC22WabbbbZdpqFQiGkUil0Oh2Mj48jEAigVqtJbEY8HgcAKZp94cIFZDIZbG5uYmJiQoBeLBbD8vIyjo6OcO/ePUxNTSEajeLBgwcoFosYGxtDq9XC8fExYrGYFA4eHx9HJBJBJpNBJpNBMplEvV5HpVIRiZ4GJX6/H8PDw9jf30e73cb4+Lg4PT6fD6lUCsfHx3C73SiVSgMFh+nY0TRosmLUtGknT59zGnjT8jieQyeP19HX0myQTk3e6/UkuQxZIrZVAw3TeBxjFXV79Tn9fh/ZbBZ7e3uYnp5Gt9vFxsaGfGfKO/v9PtLpNB4/fixr4td+7ddw7tw5yYRIx5TSLDp/lLAymyGv53Q6BciFw2Ekk0mUSiWUSiWJkWOb6STreDUTiLO9VsybKZHk2tAgUc+pzhgKQLJI0rrdrkgZtePe7/eFQQmFQgII/H6/tIk1wjSzRMc7HA4LcAsEAgIqnrc+ORb8RwDBovcff/wx3n//fezt7ck4MatgLBbDmTNn0Gg0sL6+PsC4VSqVZ4ClKXPVDK+5rnWbnwfezHX5VUGBuabZBgIth8OB69ev47333kMqlRI5Nc/1er2SCERvenDdcX7IwPE+PId/azDIdmgZI2PegKcbCL1eTwAQNxdqtZokk2KcJeNK+R7gWqnVajLGTCjU6XRk/ijFZaycLjHBd7zb7ZZ3S7fblUy/lHRms1lhj6lu0NJqJmN5UfaSATjGwNkIzjbbbLPNttNtf38fgUAAc3NzaDabKBaLaLfbCIVCmJqaQrFYxNbWFubn5zExMYFUKoVisYjLly8jn8+jUqngzJkziEajWF1dRaFQwKuvvopyuYyPP/4Yfr8fIyMj4lDE43GUSiVUq1VMTk6iWq3i8PAQTqcTw8PD6HQ6CIfD6Ha7qFQqCAQCIuEaGRmBy+VCLpeTWnWFQgGJRALVahWpVEocZDo9dELozGpHWzu9wFMWRjuP5mdWki0CA15Xy5ZomjkwQZFmb3TsDUEF46fYH+BpjJsuHKwdULITwWBQgISV8ZxcLodYLIaJiQkUCgVkMhm5tjk+3W4X6+vrCAaDcDgcSKVSeO2113D16lXMzMxIlkrWt2K5AQIGnSDBBHKMEwoGg4jH4yiXy5L0pl6vCwjXwMBKkmc6/5oJ0T81wKOzT6e81+tJ4gl+z7ZbgVsdV0cQRuaY7IgeT0p6ea7P50M4HEY8HkckEhHgpoEmzZQkahaFQKPZbKJQKGBzcxM//elP8Ytf/ALZbHZg/VDuOj09jXg8jt3dXWQyGblPp9ORRCZ6M0SzanrzQT83VmDT6m9zvvTvGhRqoKvnTrdBs3Jaksy14/P5UK1WJfMu+8jra4aNteEogyQwJ+ABnsZnUtrNZ49rnywd26oBO+eADBk3Jbi+KX2ltJL/OL+6fAWza+p3Fdk+9skcK66RRqMhmz18HkOhEEKh0EDSl1wuNwDiuVF1WvKjr8teKgBHsxk422yzzTbbnmes9VYul1EqleB2uzE3N4dkMond3V3k83msrKzA4XDg9u3bmJ+fl7pKLpcLb7zxBiqVCj766CP4fD5cuXIFjx8/xpMnTzA6OgrgpNbc7OwsfD4fdnZ24HK5sLi4KHI57fBTotNqtTA+Po7t7W10u12MjIwgk8mg3+8PJFKZmZnBwcEBut0uJiYmBiRS3E0eGhqSwHwNosyYIw3E9OemaQdJsxFfxTSo03I/qyx7mhHSiQnI0FHSpZ0qOptaOsmsd6Zzq63ZbCKTyWB5eRkrKyvo9XrIZrPiLPIcDTar1aokkHn//ffx+PFjvPPOO7h06ZIkxKHz6PP5BJxpcG3FyNE59Hg8iEQiaDabqFarEqNHeaXOHqoZIT2GnE89HiZA0ADCZOnIgPBeOo6I99Osn2ZjAEi5DV6Xzj3jzghwKRum06wLsZ8GekzWjW1jZsXDw0Pcvn0bP/3pT3H37t0BRolrxul0Ynx8HG+99RZqtRoODg4E2JCF0iw4x9E0EzyY7Jr5POm+aTCgj9HrlG01PyPwMa/L9wmPdzgcKJVKiEaj2N7eHlj/WurMtpqgR88tM6Pq54/34HPJNVGr1Qay3fIZDgQCcLlconbgOjSl1Rx/4CnQ1O8xxtdx7Aj+yNhxTTCmTT9/XIu8Jt+RDocDrVZrYONIv1cikQh8Ph9qtZoAQKv35NdlLxWAe4FSVNtss8022/4OGdPz1+t1qWXm8/lw9+5dtFotzM/PI5VKoVQq4bXXXkO/38cnn3yCmZkZjI+P4/PPP8fe3h5ee+01xGIx/OpXv0K5XMbi4iK63S5yuRzm5ubQ758kE0gkEvB4PNjb25MEKrVaTZi2VColDsTdu3cRDAYxPj4uYGFmZkayxg0PDyOfzw+wKpq5Yv8026Izw1lJuDSQo5lOnI7TsZIlnnZtYFAqaXUsnSs6e5qRY/wVAAGljAfr9/uSZIb3pHMbCoVQq9XE2SRw0kAEOJGEHR4eYmpqCpOTk1Jw2ARxul+6rMLq6ioODw+xsbGBt956C0tLS0gkEgOySq/XO1A3TgMr1o/TMYAEcqFQCK1WC8PDw6hUKqhWq/KP0jL2qV6vA4CkYNesg2Y59Xxq+awZW0j2TI+pZsRMdpbzxXXH9cprsDZXKBRC5D9TtAABAABJREFUJBKRMhm6lpu5brTpzQcN3JxOJxqNBgqFAra3t/Hhhx/i5z//OQ4PDwW4atAEnADMhYUF1Go17O7uSp1F3r9arQ5IVvm5ZoxN8Gau7dOYQ5M503Yak2rGwemND46dljXW63V5TtfX17GwsCAlGsh+cvOAyX40E8bEPHrM2D6yZ3pThGCMa4i/k8F0uVwChgmUw+GwgEZKK7nWNDvIdnFThn9roK2l1QSxlHpy3AkWdQwg267fkZRKcqx0n6rVqsgyKQV+UfZyATiWEbAZONtss802255jZDMmJycxMzODTCaD9fV1+Hw+jI+PY3d3F7FYDFeuXMGTJ09QLpdx7tw5VKtVfPDBBwgEAnjvvfeQTqfxox/9CIFAALOzs8jn84hEIlhYWMDR0RHa7TaWlpaQzWaxtbWF6elpABDZY7ValbpHxWIRjUYDExMT6HQ62N3dxfT0NGZmZiQhRKVSwe7urkihwuEwWq2WSMR0vJt23ul0mY4gTTvh/NuKXTCZkdOcbTqpVvfRn+vzTbmYx+ORGDEWmXa5XMhkMgIoer2TbHZk53g9gjbtMGoQYzIRlUoF6XQasVgMY2Nj4uSZ7dd/8/5OpxP5fB6/+tWv8OjRI7z55pu4cuUK5ufnEYvFJJaPCTFYIFg7t3SoNeNFB5jgj9fh7j8zozYaDRmDQqEwwOiQLQUGZXb82wpYE6hosKKLc5sAw2qO6fCSTSTL5vf7RZ6mWVyrn3r9aamkZgS5Dvb393Hjxg38/Oc/x927dwfiH/U12aZz585hfHxcSjmUSiW5FoGBlk9q9s5sq9WY8DP9OwEhx0z3z7yuuaGiv9fzouWovA8lxsFgEL1eD+VyWVjEVqslCZJ0fTSCFwIovUmh22BKfynR5rqm3FKDyn7/aWbYRqMhzyPHjM+A+Z7RjDIBoAaUBFpsl8kc6o0Bc2NKJ0fhP24K6Vg33otJT5i8xel0IhAIDEi5v257uQAck5jYMXC22WabbbY9x3q9Hs6dO4doNIrNzU2Uy2UsLCwgl8tha2sLr776KjweDz777DNMTEzg3LlzWFtbw5MnT3DhwgUsLi7i0aNHuHXrFsbHx6W49vT0NNxuNzY3NxGNRrG4uIgnT54gk8ngzJkzaDabODg4kPi4QCCAZDKJ/f19+Hw+LCwsSLazS5cuIRKJ4Pj4GBMTE6hWq9jf34fTeVIewOVyoVwuY35+Hnt7e8hmswNMjs6CSHZGO4fAV0uaYErBTGbNdPZNJk+blm3xWjyXu+qBQEAcPkrruHvOQsFaekVHlcCV/RsaGoLf75civfyMDpxuD2MPPR4PZmdnxdHUx55m2uE9PDzEX/zFX+Dhw4f4xje+gVdeeQUTExOIxWIi6SQTQSCjgZwuQkwnUzNIdMSZvY+SSrJxZCPpaDabzVOzfXJutbH8gR4bLVvU80jHmnNNJ57zRckZU65rh1oDBBO06c0E7WBzXDjX9XodhUIBBwcH+OUvf4lf/vKXUhfMBG5aOjkzM4OZmRlhNHXtMY/Hg0KhIGub/bNaz3ojwmTArZg5veatNkRM4ML+n/aMch71GuGaYN01h8MhjJrX60WhUEA0GpVzPB6PMM0E+5ph1/0gsCWA4YYD55brR7eVjDoASTyiSxCY8k2dBIlzxqRALpdrAHSyvwRWWqLLQt1afqrZS6odKK9kvzQTyXepy+WSjSSPxyOlMYCnSVlehL1cAO6LnzYDZ5ttttlm2/PswoULqNfruHXrFmKxGFZWVnB4eIhms4l33nkHW1tbIp8EgI8++ggulwtvvvkmGo0G3n//fTQaDVy4cAEHBwfo90/qLaXTaantFg6HcffuXUnrfffuXYRCIUSjURSLRSwtLcHlcmF3dxcjIyMYHh5GoVBAKBTC+fPnsbOzg2w2K3Xq6DQlk0m0220kEglMTU1hc3MTuVwOwNOi1nSQyDgAkDgVLbUynUftgGqZHY+12h0HBiWSGpSZpp1XOr1kOQBInAwL9sZiMbjdblSrVXg8HqRSqQHASMChWQLtRLI+G0sEMEmDrs/G87rdLkqlEpxOJ0ZGRlCv1yUTnZWU0gQ0/L7VamFjYwN7e3u4ffs23n77bZw/fx5jY2OIRqMIBALo9XqyLgh8NFigs08QR+Ci28u+mrJCsiIEdu12W37q1OpMFmEl36Tp+mD8jmCTYJLSUPaD8Yo6xbtea3ocNaulGSY69FoqqePcKJe8ffs2PvnkE+zs7AzIaE0jMFleXsalS5cAnMgMyb7xmHA4jEKhII48AbbJ5GhGjPNv9kmDXpNh4jkcW6u19GUMnwYZXPP8jCCODPTm5qa8X6rV6kDGV4I8vjvcbrdkhCRoYVkCAiQybZTHUi5rbt7w+eP6I7DiuOq4Q8qBdZxaOBweiOcFIPJW3odAlWPC8eJmiAZn7DfHhm3udDqoVqvSZpP5bTQaiMfjCIVCsin2IjNQAi8bgBMGzjbbbLPNNttONxZlnZ+fBwCJEwkEArhx4wbC4TAuXbqEvb09rK+vY2ZmBmNjY3j48CEODg4wOjqKsbExbG5uYnZ2FpOTk9jZ2UG73cb58+eRzWbx6NEjySxYqVQQj8fR651khLt48SL29/eRTqcxMTEBh8OBjY0NTExMYGRkBAcHBwiHw8KmMCPb1NSUMH1jY2NYXV0dyJwIPHUAK5WKyN+Ap4H+JkjT59C0M83vTRbOPIemkyvQyNaY1yIIASC1lfx+vzhuZHMSiQSAp+nttQOn49rINFDyxMQYu7u7koCBMWIa7JBBIEDgnDCRiAmgaGYiD9PpW11dxcHBAe7du4fXX38dFy5cwJUrV9Dv91Gr1YQlo0OpE2ZoIGcm7NCMAu/N471e7wB7oo83WS0CerJh5tzqvuk6W1Y/NcDRbJq+pgYnZiIcqz5q4FatVpHP57G3t4cHDx7g+vXr2NjYkOLK5trV69HhcGB2dhbf/e53kclkJOtsJpORbIQEo3xuCFZ1Fkp9fStmkp9rEGfVLhOwmfJJK9Ofm8+wuSlDUMX2F4tFeYb4PtFySPaXz4ROtQ+csGe9Xk+yS2oGW7efUkxKDIPB4EAMG9cj1wlliHxe9ZrlOq7VaiIB10lO+N7gtchM6w0c/Y7QY0eAR0bQ6/WKzFnHx7EAOd9NsVgMfr9fEh1xc+JF2JcCOIfD8f8C8DsAUv1+/9IXnyUA/EcA8wC2APyTfr+f/+K7/xuAfwagC+D/2u/3f/w30nKrtsL6PyLbbLPNNtts0+b3+zE2NoZMJoN6vY7Lly8jlUrh3r17WFpags/nw+eff45arYbFxUW02208ePAAHo8H3/jGN3BwcIBMJoNXXnkFoVAIDx48QDQaxblz57C9vY1isYhkMolUKiVJLKrVKkZHR+H1enH79m2R5mQyGXg8Hrz66qtotVrY3t7GzMwM9vb2UC6XZRfb7/ejUqng/Pnz6PV6uH79OkKhEGZnZ/Ho0SMAT5MaaKfM7XZLoL521LWZDg+vZTqWmlmwYjroqJnxb2YiBO34A0936iORiIBefk9HLZFIPOME09nTTA6dPiYH8fl8SCaTOD4+FueP92u322g0GgKcKNPM5XKIRCKYmpqS7H3sv2bjzPHSxl3/YrGIzz//HFtbW0ilUpiYmMDe3h48Hg/i8TiCwaCATkq6yGhp0MS51KBM/zQBEttEAGPK9dgH4NlaXlZrw/xp/m51jh4bKymiBpeaaSMr0mq1UKlURNp879493L59G9vb2wNyOvNeNK6JaDSKixcvSnmGbreL4+NjyfDqcDiwsrKCdDotskDNarFPWoqpAbu53oGnckJzo0Sfq8/nPU4DflYbJ8+bE44hP2OyEG7kkDVjW3u93gBTzWeZ4Icgy+q+BFdmuQ/gBPzpDSEdj6tLdvCYdruNQCAgzHk2m5VkT7w/nxNeR7O/bCf75/f7JfOlriUHnLyX/H6/FBAvFovCxPX7fdlc4ZzouEtKcF+UfRUG7v8N4P8B4N+pz/4nAH/Z7/f/V4fD8T998ff/6HA4LgD4pwAuApgE8F8cDsfZfr//fAH5X5PZDJxtttlmm21fxYLBoDjTzWYT169fh8fjwZUrV1AqlXD9+nXMzMxgaWkJh4eHSKVSiEajOHPmDPb39+F2u/HWW28hnU5jdXUVFy9eRCKRwLVr1wBAkpLEYjGpJzUzM4NqtYrHjx9jfHwcfr8fDx48QLvdxpkzZ/Dpp58iFoshkUjg9u3b6Pf7CAQCiEQiEq9x5coV7O3t4fHjx5ifn0ckEhHmT5ve6abcydzBN50+zbDxM32cFbjTadBpdGatnHWCJO5o0zliVkKdYr7/heSz3+8jGAzC7/eLTI7gSzvN3DGno6qB1sTEBMrlsrBplIcBT1k33ltLKaemplAul5FOpwUQ8pq6f1pKaiYH0QWur1+/Lrv8TqcTKysrmJmZQTKZlCQfTPBBVk6DOc4Lf+dcmCBIS/qs2B5zTp/H/HzZd/p385+WR2rAopk1kxkkE1IqlZDJZLC1tYUHDx7g3r172NnZESmdvr9VGwn+4/E43nzzTcRiMZEal8vlgWQ4IyMjuHDhAv79v//3AnjJXvFamu3SsZ/m/JubCZot1n9rQKI3BzSDR7kegbjus76W/l23j89aq9VCsVgUOTLXMhlrAjqn0ylsP+eI6frJlFFCybHRxbC5ZlkmQCdO0nJNMtRkwPQaIeDi+4JyRR3PSSk0gZmeeyb60Rs4ugQJ54ugVT+z0WgUQ0NDqFar8u5j5kuHwyEgkIoCK1b+67IvBXD9fv8XDodj3vj49wF864vf/z8APgDwP37x+f+33+83ATxxOBwbAN4C8PFfU3u/ktkEnG222Wabbc+zarWKlZUV7OzsYH9/H8vLyxgeHsb6+jpSqRQuX74Mt9uNVCqFXC6H0dFRBINBbGxsYGxsDB6PB7du3UI4HMbVq1eRSqXwySefIJlMwuFw4PDwEOFwGM1mE5FIBJFIBEdHR+h0OnjvvffQaDRw584dzM/PY3R0FFtbWxgZGUGv18PW1hYCgQD8fj9GR0exv7+PmZkZTExMYH19HdlsFgsLC+h0Otja2pIYPDp23J0GTnbNCSDJVJ0m+aJp4GbFsOjP9Q4/8FQqqQGE3u3WP3ns6OgoAoGAyK4YD6ML9w4PDw9It3TCEvaZ0i2yDdxdLxQKiEQimJmZwfr6OjqdDprNpjjp/Jv1n1huoFAowOfzybww2YV2ztkPmgnwtMyOu/X5fB6pVArZbBafffYZZmZmcO7cOczNzWF8fBzxeFwYCJ2tUgM6HTdIIE3Qp6Vo5j8zecvz2FR9nBnjaDIwGqhZsXxm5kgdr8ffW60WarUaMpkMjo+Psba2hvv372NjYwPFYlHqden7ntZ+jsnIyAi++c1vIhKJiKPPWnHMNuh2u/Hee+8hGAwim80O1B00YwJNVprjwvk22TNz7Mx1Yq4jqzHUz5bV2JvXMwEz28/1zfFnDBjwVGLIdcQ5YeZHAJLtkuuy2WyiXq/LHBL41et1GVtdLJv34bz3+30BYVzboVAIACQ7L+/LTKsAZIODcXsEYnpdcSyY7EfHe+pNDIfDIe8aSpcZA2cmMWJsIKWkXq/3hcbB/VVj4Mb6/f4hAPT7/UOHwzH6xedTAD5Rx+198dkz5nA4/gcA/wMAzM7O/hWb8cw1T36xAZxtttlmm23PsWQyiTt37qDX6+HNN9+E0+nEjRs34HA4cOXKFRwfHyOVSiGZTOLSpUvI5XJIpVJYWFhAvV7H7u4uXnnlFXg8Hty9exeFQgHhcBhHR0col8twuVyo1+s4d+4choaGcHR0hPHxcUxMTEgcHQuFF4tFqfPldDoxPDyMaDSKkZERbG9v48qVK/B6vfjss8/gdDoRj8exv7+Per0+sHtNo3PU7XZRLpcHHEjNlmlHxgrEaWfZylHW8SVa3kVWw4zR0swEnSS2n85bv3+S0p876O12WxJ/ZLNZcUg1m6fZDMbOaNah1+shnU7j4sWLyGazODo6AgCJ8yHrpuVSZCQ6nQ4ikYiUFqCsiuDP6/VKrTnTzN15p9OJSqWCX/3qV/D5fAAgCTkePXqE4eFhLCwsYGlpCbOzsxgZGcHCwgK63e4AuNSxWQQbdLzN8ebvnG+TjbP63epvK4BkmmbXzJ/mZ2R/Wq0W6vW6sJy7u7u4d+8eHj9+jP39fZH0mf06rS96jc3MzOC73/0uhoaGkMlk5P5HR0coFAoC+Ofn5/FP/+k/xb/9t/9WmBaOpwlMNWjT99fAR4+NBkhmzB+/N8Ear8N/GiRrMG4+u5odNMGdZtD4N/tRq9UkGQnv0Ww2ZT3xueCcxWIxRKNR7OzsCFsai8UQCoVQLpfRbDZFjkm5MgEjnzMC43A4PLARwXaRjSeoZzF7rncmNdIZXTmGXId6DnVyJ5MdJVBkXTfGkbK/3ESxYktfpjpwVls4lnCq3+//bwD+NwD4xje+8dcCuSQLpY3gbLPNNttse47dunULU1NTkkzkwYMHiMfjmJycxP7+voC3ZDKJnZ0dDA8P4+LFi1hfX4fL5cLrr7+OXC6H9fV12QE+Pj4WWVEoFML8/DwymQwKhQIuXrwIh8OBjz76CH6/H6+//joODg5QqVQQDodRq9UQjUZl13hoaAh7e3uYmZnBwcEBDg8Ppajz0dERut0uEokEms2mZNEDBmNP+LeWagFPgQWZJtppMTZanqWlWWY8jMkW6BThlEqRBfR4PEgkEohGo/D7/XA6TzLSHR8fS7IRXo8Z6HK53ECdKTJt/X4f4XBYGE9KqAjwGA9TKBTw2muv4Wc/+5nIuxqNhty/2+1Khj4mUAAg8sp4PI5+vy8JMMLhMJaXlwfqjn0VSVWv15NCy2R5er0eUqkUUqkU7ty5g+npaVy4cAELCws4PDxEpVKBz+d7Jl5OxwlqmZpOKqJjtsx/ep5Ns5JNageZ//g3wbsGaaa0kxkxG40GisUistksDg8PsbOzg7W1Nezs7Mj4mqzSae0yWTmCst///d+Hw+HA3t6eXIN18wh0gsEg/uW//JdotVp49OiRHGeVCMNKxsg2mol79HNkSii1mRsl+lk1mczTNlk0UNdt1gW3CUjIXJsSSsbG8ZniTy1XBSBlOfSzHQgEMDQ0hEqlItJExrb5/X74/X6JYePnBHGtVksSFXHOGZ+qSxpwbfPZ7vf7wg7qRCg6ts/hcKDRaAxIJcm4c05YuoDvJs3sc6NJyzeZkZNr/DTm+uuwvyqAO3Y4HBNfsG8TAFJffL4HYEYdNw3g4L+lgf81JgScjd9ss80222x7jl25cgWjo6P4/PPPUa/Xsbi4iEajgWvXrsHlcklGyoODA5w7dw7NZhN3797F/Pw8zp07h1/96leSyn9jYwNDQ0OIRqOo1+sYHx9HMpnE9vY2vF4vLl68iKOjI6RSKczPz2N4eBhra2siUer3+4hGoyJNKhQK8Hq9SCQSWF1dxdDQEGKxGCqVCsrlskgra7WayO1MM+WLAORe/I6OmgZu2sG0knSZzqU27TxqmSQ/6/V68Pv9iMfjsnNOyaR2FguFgsij6HTWajUcHx9L7I2OrXG73SiVSsKMEQgTPNC5Pjg4wNLSEi5duoRbt26JrIpMJtvMeEMyIWwLpZxk0iqVCm7evClOsu6nlenYJP0Z4wF5H/Y1GAzi008/xe3bt4XhnZycxOjoKGKx2IDM0sxeScB2GoukmarT5tOUWbK9Jmgzf9dAjiwbi44TtB0dHWFzcxMHBwfY39+XOdfXMNvH9WjFvOn+vv7663jrrbdQLpeRz+fl81arhXK5LHUB3W43vvOd7+CNN97AT3/6U2QyGQFv5jiaDBfwlM3m3+bcWjHWVrJb3SerPppg0CruVI8F26nBF9coQVGpVBJwpZnDfr8vz4WOAQQgTFSz2ZQkQXxuKpWKXJsgKBAICMhqtVqy5ig95HuC7Jh+b+gSKIFAQDZbNOuls+qS2WONNkqieU0dW8r4O8bW9Xo9AbQcX70RRiZex+0S+P1drAP3nwH89wD+1y9+/qn6/D84HI7/O06SmCwD+PS/tZFf1Z4ycLbZZpttttn2fPvpT3+KZDKJhYUFbGxs4Pj4GGNjY1hYWMDx8TF6vR5ef/11bG9vI5PJ4L333oPf78fHH3+MRqOBQCCA7e1t+P1+qZM0MzODdruNo6MjTExMIBKJYHV1Ff1+H6+99hra7TZu374twCUej4vT4XK5kM1mkUgkUKvVsLW1JRIjFveOx+OIxWIoFAqYnZ0dkJhpWRQdTzpgjE/RyU6et3tsOvjAsw4p/7aK8aEzSceMjg4lk7pMAItmNxoNlMtlkU3RsSOblsvlpA/aqaUTSBYtn89LPJ3f75fYs0ajgfv37+Ptt99GOp2W7JIEcQRCdNjYV50YxOVyydyRdeB46fF4Hoij6Xi0SqUiwIWyLQD44IMPsLW1hXQ6LfLQeDwuZSyGh4cl8U0gEJDYHCabMKWAX8bEWZkGD+yDCeh0nBFZkmq1inK5jFwuh1wuh/39fezt7eH4+BjlchmVSkVAqwYsBDo6voxjbNUuAi2v14vXXnsNb7zxhshn+R3Z1XQ6jUqlgqGhIYyOjuKf/bN/Bp/Phzt37gwUidelA3RbrOaan3ENmowgj7XaEDGvp2O0rOaB97H6nvcn48T76KywXHO9Xg/BYFBYKP4kSOGYESTp2mgc81AoJIBOS0V1yn8AwnKzTfyd1+EY8B3BuLpAIPDM2Ov1oNcKkxuxtiI3FXRGV46BKU3l+WwDC4fr55FAj+3hplO9Xn9mHr4u+yplBP53nCQsGXY4HHsA/mecALf/w+Fw/DMAOwD+OwDo9/v3HQ7H/wHgAYAOgP9L/2vKQPlFW/FFO76uW9pmm2222fZ30G7evInZ2VnE43HcvXsX1WpVYtrW19exvLyMcDiMmzdvIhwO480330Qmk8G9e/dEslMqlSRuq9frYXp6GvV6HY1GAysrK3C73Xjw4AECgQCWlpawt7eHQqEgDsnY2Jg4jdzVjsfjODo6QqPRQCgUQr1eF8By4cIFqQvHenDhcHgAlDmdTsRiMQEgZKDC4TC8Xi+KxeIzkiwr0GHlRJ72t2YlaDoVO3fA/X4/gsEgIpGI1GKrVquS2S2fz4t8zoz1yWazKBQK4uxrZoDJKUxWgnFjbCMA7O7uYmVlBb/+67+OdDotRYG5w89EBxoI03RSFX7ncrlElscxMdnKLzOdqh04AaS5XA4ff/zxgISLxYYzmQzW19fFGQ6FQhgeHkYymRRAFwqFEIlEhKWj5JJxQ2YNt+cBOVM2qeWQOgFMpVJBqVRCLpdDoVBAKpVCJpNBLpdDsVgciBXUIFCPm8k+cZxPY6QI0Hw+H9555x3Mz8+jWCxKiQGCiUajgePjY+RyOen3P//n/xxzc3Mol8tYX1+XuEqCN7OMgLnGrXxNDZxOazOvpTcJNMDj98+TKOtnV5tmCTUo5DOoWStKsmu12gDbyDEjoKNskPPfbrcRDAZlLXDMmAiE8XZkvjmGZrF6nZKf5/T7fWHc6/U6wuEwKpXKM7JXyiABCKPqcDgQDAbR758kR4lEItJGPSes+0hpNllvgj2OHQEanx0N2NgPM/vv12lfJQvl90/56rdOOf5/AfC//Lc06q9qIqF8ETe3zTbbbLPt74xdunQJ+Xwe9+7dg9PpxJtvvilpy9944w0cHh7i888/x2uvvQaPx4PPPvsMxWIRCwsL2N/fR6fTwfDwMFqtFpLJJHq9Hg4PD+H1erG4uIitrS0cHR0hHo8jFArh4cOHIkHyeDwYHh5GtVpFMBhELpcTR/vg4ABerxejo6PIZrNoNpsYHR3F+fPnkUqlJC6DkqWtrS0BhTr2iDvEdJD8fj+i0Sg8Ho/EoWjnT8fy6B1+DaJMZ5EOlXZseW+yWZr1YbIByqoYl1av19FsNgWgEUTxfkwqoJkEOmYagHB3vN/vSxY8vdPPz69du4bf+73fwxtvvIGPP/54ADASlDBWSxcT533ZJs0eMEGCzoB3mpmOvWmaJaGjqh17ftfv96Wu2dHRkWTz0wXRg8EgQqEQQqGQFCJmzSvOEdclr28yX3TaW62WsGuNRkOSjxC45fN5YYrJxJng1IzZOi2ejb+bsWOaoSK7GIlEcOXKFYyPj0s79diyYPfx8bF89tZbb+Fb3/oWHA4HUqmU1FHUQIN/m2wZf3Kt637pNaj7oDcFdOypZsjM87SZBIUpe9bPJ9lhcyw5Xnxu+v2+KAf0poOWUAYCAdk04hon88xSHI1GA41GQzYGAEjCEradQJDvFm4AUObo9XoFIHEzJBAIoFaroVqtClDiphDl4LpUgV7/AASkMbEK54KAk21l3clgMCjsJdc52Umd9ZXxe2TrXpT9dScxeaEmEkobwdlmm2222fYcW19fRz6fx5kzZzA5OYlHjx5hcnISb7/9NlZXV9Fut3H16lVkMhns7e3B7XbD5/Ph9u3bSCQSUpdsbGwM1WoVpVIJCwsLcDqd+Oijj+B2uzE/P4+DgwNxenK5nEjdmAQjn89jeHgY9XodxWIR8XgcHo8H+XwezWZT4ukePXokgCIWi8mucSKRAPDUEXQ4TtJ4U+bHHfVQKCQOjWYVTJZIZ5QEMCAd0mYG8Gtgw+u322243W7EYjEBCYxFIRggu8TiytzR1zEplUoFjx8/HkiAopMNMI6MY6D7wrEBniZuyGQy+Oyzz/DOO+8gnU7j4cOHz7B3BC06sQKdbAI5Mj/aKWSdOSsJoJWdJpfjeaedq8GjZsjoXJbL5QHJHU1nr3S5XEgkEpJ9j6DXbBuvy7ghyh7ZTzMmzqqPVn22+lwDEgIa/Y99J6gfHx/Hq6++imQyOcDwcR01m03k83kcHh7K+vH5fPjud7+LZDIJ4ORdcHBw8IzMVCfqMCWnVv3U31mBMT4zzwPlvLfJGpljZIJgc8wYc2bKBMmm1Wo1FItFSS5CBo3PJBOJhEIhSR4UiUTk2WWmXX1vyifZHz47gUBANmV4Hz5H3GTiOud7IBKJyCYJkwyReWfsGgB5/lqtlmy89Ho9AZZ8RiuVysB7kWPENnGjhmwtJdUEipxTFgznHP5djIH722lcqDYHZ5ttttlm23Os0+lITNqjR4+wvLwMp9OJzz77DENDQ5ibm8PR0RH29/fh9XrFYbl48SK63S7i8Tja7TaePHkCADh37hwajQZWV1cRCoUwNTWFTCaDYDAoTu/i4iLq9Tri8Tg6nQ7K5TLGx8dRKpXQ6/UQi8UkTqfX6+Hs2bMATuqGMVFJJBJBLpeT4P5erye71zRzp50shWaNAGtgYUoptYyLDqZOV0/HnedquRR3yx2Ok5g3MnIARLrFxCyMU6OTGwgE0Gw2xSHjGGkHkG3t9/uyw66ZDi2ZMoHX7du3sbS0hDfeeAOZTEZizOgs0+Gkk0k2S7MzGsTRHA6HxHbxWjrphMmg6M9MOy0O6rS5M+fM6jwCMTr3TPPOwssaKJ12Df5u/v1VzAQ1zztPJ9Ygg8QNiXg8jnfeeQfRaFTAiT6PEkUmMtHF7C9evIjXX39dWNyHDx8CeFr4m/80YAOegkL9LPA8kwmzGhtzvvVxJtgywaD+3JRymmDRPJ+yX65vjisBDu/PLItMbELZYCwWk7ZVKhV4vV5hnvRGDtumk4LoODiXyyUlC7T8kGy8ZtQZE8vxpqSxVqtJ2/SYMEZP12rjO5HMHGvX8X6UfDLelEoAXS+PfdXvQb7feI0XZS8VgJNXnY3fbLPNNttse4699dZbuHXrFiKRCF555RUcHh6iVCphZmYGyWQSd+/elQx2uVwO8XhcYipmZ2fx5MkT3L9/H7Ozszh//jxWV1dRLBZx5swZ9Pt9lEolkUH2+32Mj49LqQDK3uLxONLptDhD9XpdsjSGw2GUy2V0Oh2EQiEBeLxGtVpFIpHA5OQkfvrTnz7DVGggRnkQAAFRVkACGJSomaYdSS215Od0sCnh83q94gBxN5uxbtVqVUAcHSaCHtZ/43VbrRby+Tx8Pp/EyVDiRdMOM/ug+2FKM5vNJn74wx/iH/7Df4h33nkHP/vZz1AoFAbGRDuBdNZCoZDs4utxCQQCA+BOgzhzPkzn/jRW5zSQp/v2PACk59BKatfvnxQXJ3jm2H2Z/deCNbMNz2uvPoZzoIFLKBTC5OQkzp8/LzGn1WpV1oqWbNbrdZF0MtYpFovhnXfekfkplUpYW1uTjQmuKc2KmRsWetx1rJkeVw2yzHkwgdpp1zbP1YBM3888jn9r9pCf8TlwOBzC6ANP2Wk+t6z7xvT8lE+SkSfw0XJLzcQSVBGIBQIBkXlr4Mj1pksTMGkR3wk6OYxmL81SD5w7vfFCNr/dbkt7c7kc6vU6+v0+EomEbDZ1Oh2USqUBUMuMkwScZObZvr/VSUz+LhnXr43fbLPNNttse57dvHkTw8PDCIVCuHfvHvx+P86dO4dCoYCPP/5YdmN9Ph/OnDkjyT8CgQBu3bqFo6MjzM3NYX5+Hjdv3kSv18P4+DgODw+lvEA2m0UymUSxWES9Xpd4t3A4jFAoJIlK6HR6PB7EYjE4nU5ks1mEw2GJzygWi2i1WgiHw2i1WlhYWIDD4cCNGzfEGdEyIzodTqcT4XAY8XgctVpNJFN0nLxer8QMmUyBaWYcmHbCKJ3iDjqdMMarUNJUKpVQr9clhoZ123ieluFRKkXHTNcYozNosgymE0lAoJ0wXv/4+BjXrl3D3//7fx+VSgW/+MUvhJ3STBcdQcojCarZZ4ILnaCh3+8LANfAzQp8PQ/UnAaCzPOtQCHNSmb3vPta3ZPX0X9bsUwmcOZ5Vsk9THmiBt7aGFOZSCQwMzODqakphEIhZDIZAIMbCzy30WhI/FS5XBY5L2NaU6kURkZGcHR0hNu3b0t7dPkIKxBkAkyrsbACaKdtipjHa6bnNMBmgkV9HT3HGnia4wQ8lRgzBo5yRBbuJoBxOp2S7ZaZIZnwh8+Tfv6Z8ZYxbU6nE41GQ2SZTHxDJkw/H6YcWrOgnB8+y2Td+J7gs8aSHHpcOp2OvMPJ5BFg8h3IPjF+UL/fdBsZ20nm7kXZywXgwAX9ghtim2222Wbb32qbmJhAPp/H8fExZmdnEYlE8OjRIxQKBXEsWHNrd3cXY2Nj6Pf7uHPnDjweD379138dtVoNt2/fxsjICEKhEFKplBTh9nq9SCaTSKVSGBsbQ6/XQz6fRzKZRKFQgNvtFkaPWdGi0SgqlQo8Hg/C4TAcjpMsg7u7u5IaOxgM4rXXXsPOzg729vYwOTkpYIaOWafTkSxxwWAQs7OzkpkyGAw+I3UCTmcDgKfSSJ1EBHjqeNLhovOrk7UwaUmpVJLEBcw4RwdN16ezqm/FeB4N3sy26uM068bvea5O9NJut3Hv3j0sLy/j7bffRr1ex/Xr10WOp5N4AJB4vXa7jWaziWg0OsDGORwn8XlMz+5wOGQjgLE+z3PkTdMO+Wmgyur7035nX/T8WYG404DllzFo+vvTQI4GJqcBUB5DQBCJRDA/P4+5uTnEYjEB/XquOZ9keFjGoFAooNlswuv1Suzo2tqabMY8efJkoF6YjhHltckMsW26jWy/Zm2s2DAt32V7TRBmgjTN8ulrmdc254DPKJ9XxtsODw8jm80KA8faaXxOeR7lgew32xqNRiVDJADZ7OD5AOT54qYMM0ayjIOOK2y325KFl8lHKJ/k7wRijD2rVCpS347jwjIkAKTtfB/xe2bzJaMajUaFRWRspy6hwM0gPtvsM9eFw+GQzJgvyl4uACcMnI3gbLPNNttsO9329vbQbDbx2muvAQAePHggTkClUsH58+cxNDSEra0tLC4uIp1O4+DgALOzsxgbG8PDhw+laHer1UIqlZIg+MnJSQDA4eEhxsbGUC6X4XSepPev1+uIRqMIhUIDrF40GsXBwQEmJibkmFqtJqCvWCwKoPzggw/QbrcxMjKCe/fuSYY4ms6Y5nA4UCqV5HfTASdjpGPoeKw2nRnR/IxySgJM7rQzaQp3zHU9Nf07cDqLxM+506/ZQzJdZpwer8+dd+6663+0TqeDDz/8ELOzs7h69SqazSauX7/+zDjpc5xOpzCIoVAI4XBYHD8AUuCY8q18Po9CoTCwi2/FkFmNO8dcx1nxGnqs9M/TAKJ53GnjbQW6rMCcCaJN9s28htkOq2tpRpPF7M+fP4/R0VF0u12RuOl4TgKRTqcjznij0UA6nUa9XsfQ0BCSySRarRY2NzdRKBQwPDyMa9eu4eDgQNYnQQQZOB3jpjcOCI7I1FgBMZ6nE+mY4M+K3TOPO810m8wYVJoGt41GA0dHRwOyZ4I11maklFD3g2CJfR0aGkIkEhmQ3XIu+NwxWYqWODJBDlUNfOfo53VoaEjKAHCzR68VvqvY/kqlMrC5YhYFJ5jUAM3r9YqcnPPOxC71eh2RSARDQ0Oo1+vyHmOpE65vAj3KMl+UvVwA7oufNgNnm2222Wbb84yyw42NDdlJpSSIUspyuYyFhQU8evQIfr8fr776KlqtFm7duoXR0VFcvnwZ9+/fF2YLABYXFyUbHne8WTeO7BoASZoxPz8vcWFjY2MolUoYGxuT+Lvx8XHs7u7iwoULqNVq+PTTTyWRx/Xr1zE1NQWv1yuOFgBxYOncMGtmLpcbABoABpw//bc2/Zkpw6MTykQBNA0MCS7ZLu6Ea7mkBmK8Lu/Nf/oz01nVbdPgUGem0+BNX3dzcxM//vGP8Qd/8Ad49913US6Xsba2JoCexnN132q1GkqlEoLBIKLRqDjDlKR5vV5JwMI26j4QqAAYYAdNVkYDJCu5np4LfZ/T7Hkg0uqnyZpZXUO3VwPt5zGJHE8NXCgbnpqawsLCAvx+v8ydyeL1ej3U63WJpSQbk8vlROY2NjaGTqeDo6MjqZl3//59JBIJqeFHR16XD7Bqu2blzL7oAtrmHJnyRR5j9bnV3xwXM2nG8xLW6GeTfdLPIzPass2M9yIzRbaZ99XlPJhNlgwWY+ja7TZ8Pp8kWKIckzJFbiiRhefYm6BJ179kNlEyc6xnR/YwEAhIdkyWz6DcmeNFIO12uwVgMvMqwWY4HEYkEpFnV4NkyjUpJWXGTZuB+2uypwycbbbZZptttp1uKysr2NnZEQehWq0iEAggkUhgd3dXHJR79+7h7NmzmJubw/r6OjKZDC5evIhkMon79+8DOEllTYfz+PgY8XhcYr2i0ajEgfj9fmSzWZTLZfh8Ppw/f15qFIVCITgcDoyOjmJzcxMjIyNwOBw4OjrCysoKjo+Psb29jaWlJezv76NareL1119HLpcbAG90FukccseY0kaadjxMJ4TAgmBC17oyZWC6bAB38+nose4TE49oJ9sEjgRHJstmlgzQzjAlYvydbdJgic6WljDyOP379evXsbCwgNdffx3vvvsu2u021tfXTwW0uu9MklCtVhEKhQayVTLJhsk20ribT/DbarUG6l6ZgMW05zFy5nFWTNjzWB6re1oBOavrn/Y7r2H+7nA4ZN3E43HMzs5icnJygFXlcfyMAJoMJ2uCUdoXCoUQi8Xg9/vx6aefwuVyoVgsYn19HfPz81KEvdlsyvOu2TMAA7JeKxbUaiNBG783x8cK5J02RjQN3sznRzN9+jnRcaU63gwAxsfHhTXnNQhMK5WKJOfh+8vlcsla53UIynges+XyXUGgRHk41zZZTsqtyfBVKhX0+31JnMIC4rqmJTew+M4IBALC9LNEC9k9/Q5kQiUmKyEIS6VSUvSeIJJyad6XbeRY+v3+Z2ocft32cgE4DO5c2GabbbbZZpuVsWA266lNTEzA4XAIE1apVNDtdvHNb34TnU4Hn376KQKBAN588000Gg3cvHlTimOPjY3B6XQinU4jEolgd3dX0vYXCgWEw2G02208fPgQ/X4fo6OjWFhYwN7eHqLRqICfoaEh7O3tYXFxEUdHRwgEAnj11Vfx6NEj7O3tIRwO4/79+wiHw1hcXMTjx48HpEynOc8XLlxANBpFJpMRh0+ntqdp0EYnmQ4Q8GydKjPuRztKjBGhNKpYLKJcLstnuo1min3tsJt1o3icZtv4OxkasgHa8eNxdCx1P5nt7o//+I8RiUSwtLSE73znO6jX69jb23uGgWSf6VACEPkdM4yy7AAZHvN89pPZEclmMAMgnWRTXmkCutNYNH0vK5nf8+x5QNHqcyvZ32n30wwdjY56JBJBJBLB5OSkMCFcP1xvnOdarYZUKoVsNotSqSTMElm3eDyOeDyOhYUF/Omf/ilisRjOnj2LVCqFcrmMTCYDj8eDXC4n7JNmxcxnQLNYWobINUUA8zxZpNXcmM+Yycp9GeDWLKfeaCH7TDZNs3dsb7vdlhhOSgy1dJEMma59xo0LSg4rlYpsQujyGkxS4vV6BfwUCgXJNsl+a/kq701mLBqNCoDWzzXBNu/HZCm9Xg/lclnGmhs33LzimFAFwDlnAhSqMjimPJ/JloCT55yJXHitF2UvFYCjhtLGb7bZZptttj3PAoGAsEFzc3MoFApSQJbZ7d566y3s7e1hY2MDy8vLWFhYwObmJorFIiKRCDqdDhYXF5HNZuHxeDA6OoqDgwMkk0mpeTQ2NoZGo4H9/X30ej1MT0/D5/Nhe3sb8XhciolT8jUzM4MHDx7g3Llz8Hg8uHnzpsR6HB8fY2lpCS6XCw8fPkSv18PY2Bg2NzcHYsSY+ZHOBWWZ/FybyajpXWYttQSegj5TbkkHlM6QBna9Xk/ixQjwrJKL0OnUoIhOsnbITOPn+loEcqYkUTtndJg5bt1uF8ViEf/n//l/4l/8i3+BkZERfOtb38JPfvITpFKpUxN/sE0ejwcjIyPo909KSDQaDeTzeUl+oBNCaBaHCR9YUkHXvdLtNH+3AkhWElSrc7/scyuQYCXts2Ki2LfnATdei+CCYDcUCmF0dFSK0+ukOQRI9Xod6XQaR0dHyOVyIrMDIIDF4ThJ/jM/P4+f//zn8rwWCgWR3JEtTqfTAiDMrI0mGOU92HbdVz1G5piYa04/W1aMnN6g+DKWVJt+Bvkc6TXh9/tRqVTkHZHJZDA3NzeQsZaJRnQyEbLMbrdb5JAEVpwbJjHRoIbj6nQ6USqVBtgz3oPAkvflOFJuTXkxE68QwDO+lhJMDcQ45qzjxmyTlISSQdPKBdaXazabwkiysDmBJQB5rxMYhkKhrzQ3fxP2UgG4r7bEbbPNNtts+/93Y4HueDyO/f19jIyMCBs3NTWFyclJPHz4ENlsFmfPnkUkEsG1a9ekHhwAnD17FpubmxgfH0e9Xsf+/r4U5u52u1heXsb+/j6ePHkCl8uFs2fPiqMyNTUFp9OJ6elp3L9/H+Pj4wCAW7du4dKlSzg4OBBgyCx6S0tLyOVyyGQysnucz+cH+tXv9yVlN8FaMBiUXXSdXAMYlEsCgxJEAOLUaqbLlBVqp5ySSTq69XpdwAkdXZ30xEq+qR1Z9p873lbn6CLNOvaNDqYGjbovvJYGlHt7e/jDP/xDfP/738f8/Dx++7d/G3/xF3+B4+Pjgf5qY4a9ZDIpyWfoyGpGhyxFrVZ7RlJJZ10XN+Z3nAcyUvpzPe+ngSt9D3282R/dDv232RYrcGZ+ZwV+aGRwYrGYMJfBYFDKenDONMNF4JZKpZDJZAZAAseYa2VmZgbnz5/Hz3/+c6TTaQBAJpPB8fEx/H6/xEmFw2GUSqWBMhW8r263Zp5N5pdmsmYaSOlx0iDRZKJNNtVqLngvK2mvToHPc/r9kyL3OtaSAIpy3ampKQEqoVAI+Xwe+XwesVhMgBnBG58pMmyRSETeOSx4rcEsGWayy3wm+G7SGzga4DOejn9reSv7at6LAJTX8nq9CAQCEn9H8MY41V6vJ9clSCPbz9g+Aju2gRtEvV5PlAYvyl4uACcvmRfcENtss8022/5W24ULF1CtVnF0dIREIiFZApk04d69e6hUKrh06RLa7TaOjo7w1ltvIZ1Oi5PIHex8Po9MJoOpqSkUCgU4nU6Mjo5ibW0Nh4eHcLvdGB4elhgpZnurVCp4+PAhVlZWsL29jXq9jtnZWdy4cQMjIyOYmJjA9vY2otEoxsfHcXR0hHw+j3g8jkqlInXdwuEwisWi9E07jQz29/l8A+nCTQfV/N10NIGnjJgJ8AiEyCQRFDI7INO7A09jY+hc8jjNSOnrasmmVVtNdk2zIpotYdydPkdLNbU9fvwY//E//kd8//vfx+zsLL797W/jZz/7GQ4PD2UctBF4HR8fi+SqXC5LggSXy4VwOIxkMomjo6NnWEoCVH09/ZPj4Xa7UavVBpxWk9WyAldfZs9j+UyAof82QaEpjTTbQADj8/kQCoWkKHooFEI0Gn2mjh4lbMwAm8lkREbHMdHAKRKJYHh4GPF4HB999BHy+fxA4Xeuo06ng3K5DAAS/8aahbq9epy58WDGntHZJ0vFz/RGiAYllF+ac2PFuFmxb6dterCNZLnJEJlzy2dKb3owRpPJkAiwCGp0oWvGsQKQhCLValWefQIvnk8AVCqVpC2UIXJMeF3OPd8hfG9oppZgnteiDF6Xj2i327KmyPDxXUAGj2wgAS83DWq1mmzAmCwpGWG2hWUQXpS9XADui592GQHbbLPNNtueZ8ViEel0GuFwGAcHB4jH41hcXESr1cLq6iqi0SjOnj2LTCaDUCiEd999F8fHx5iZmRF2Z2JiAltbW1Kce3d3F8lkEj6fD2tra8LmMe7D5/Oh0WhgaGgIa2trGBsbw/LyMh49eoSJiQn0+308fPgQ8/Pz6PV6WF9fx5UrV+B0OvHw4UOJUzk+PkatVkMwGEQsFkMoFJJYHs1EMbV2oVBAIBCQfz6fTxwrE8gQpAGDzvxpWSo1sNIJS3T8mQYk+l4aaJrOKh1uDQjZL20akOn26WuRBdDAjceawI9tWV1dxb/7d/8Ov//7v4+FhQW43W785Cc/weHh4TMAitdi5jvgaW0qMhWxWAy1Wm0gs+Xw8DDcbrekd9espJbRAXgmeYRpVo6/Ca6swKrV2JvzbgXi+J0+3gQb/JssG1kcyiWTySRGRkYGGBiCrWaziePjY2SzWaRSKWFPdN/I/HDcms0mKpUK1tfXB2qFaZDLmKxOp4OdnR0AkEQaXq93YLNBn2vKiQno2E8t5bRiQwlEdFyj/qlZJCuzAnUmUDTjU3kv3X6ySby3fl4o1eYmE/tECWSlUhHwQxaLkkwAIgFmchiOQblcllhdjjX7MjQ0JFkk6/U6Op0OQqGQbIL4/X4BdVpCSbDNOahUKsLukUUlEOt0OhJjymeU88F26fcUN540ew5AsmEGg0GRV75Ie7kAnB0DZ5ttttlm21ewarUKp9OJQqGACxcuYH5+Ho8fP0YqlcLS0hJmZmawtbWFM2fOIJlMIpPJYGZmBr1eD6VSCc1mE3t7e2g0GgiFQqhWq5ifn4fH48Hq6iqazSYWFxdxcHCAUCgk8h7Weztz5gx6vZMU9mTznjx5glgsJkzDG2+8gUqlIvFyALC1tQWXy4V4PI5gMIiDgwOpJ0fjzjYdtP39fUntHQwGRb5kOnA0DRIInvTfOm6OjAKdVO7a60QFJjPGe/NeGhxoxxOAFPplogXTdFs1ANLxb5ptoAOs2TjdHlq/38f6+jr+w3/4D3jvvfdw4cIFvPfee/jkk0+wtbUlfdPXpONnZtrkvDGRAuOtXnnlFezu7grQJnjhOOrz9diZpsGAOZdWf5tmdby+lhXgsDqOP3V8EzP/8XduIPAfCz4DJ2xxqVRCOp1GLpdDsVh8ZhOAc65BOx1tOv4EzWSftdSNNRNHR0dFLudyuSSroMnwmkDHNIKL08ZKgygezzabY2/FuFndj6y12SaOC9cTpdI6Uyw3djqdjqxHp9M5AH4YYxYOh+FyuURKyDHXc8ING7fbDZ/PN5D0g6wdE4zoZCWNRgOBQEA2PFhXjc+u2+1GOBweqD/H82g6MQvP8/v9AhKZ8ZLZcAEMJMThO4vXoFyU8lKyhFqWGQwGZQOAbXhR9nICuBfbDNtss8022/4OmNfrxdWrV+F0OnHv3j0EAgF8+9vfRrVaRSqVwsrKiqSlPnPmjOwk53I5uFwuJBIJBAIBpNNpxGKxgRIB4+Pj2N7eFnBHpymVSmFhYQGFQkGkPp9//jna7TYSiQRqtRomJycxPj6Ohw8fotVqYWFhAcViETs7O/B6vVLUeH9/H8FgEOPj48jlcgAGGSE6e9lsFm63W5JF0OnQzqIGZiYoMo/l9bXR6eJOudfrfaZotgZMJrjT32tJZK1Wk4x3mqnRpp1KABLPYzJtmt0ywZFuowYGh4eH+LM/+zPcv38f3/zmN/Htb38bN27cEJBujjfBG8eM7dXAggCnXC7j8PAQ3W4Xw8PD8Pl8ODw8FFChWTndTl6TjvppoECDaw0uzH+6rdrM9WGaZnbIsHm9Xom3ZHZCxmPquExdN7BaraJQKEh8m5bIWbGj5jg4HA5Ze2SN6NCbtd24LlutFrLZrGT9JCNjxfKaa4391mtKx26y3VbsnQb8ejPhNObNysy4Lx2jx88Irvi3ljDz3pQkUhbZ6/WEDXM4HALwNBPHuDGy7bwW33H8R/DW7/dlDvT46IyY9Xod5XIZ3W5XQBTfXQSijUZjoAablkezn5STE7zzPcDrUQHB9Wf+5H263S7C4fCAnJPMI8eSyYn+a+btr9teLgBnlxGwzTbbbLPtK9jw8DAWFxdxeHiISqWCM2fO4MKFC0in0/D7/Thz5ozUDOp2u0in0/B4PCgWi4hGo2g0GshkMlhfX8fo6Cjy+TwajQZcLhcCgQCuXbuGRCIhtaiy2SyczpO6SmtraxgeHkan08GtW7fEmT06OsIrr7wigNLlckndt62tLYTDYSwsLKDX62FrawvxeBwXLlzA3bt3BxgxM7aL8T4sLM2ac1bAxQRx3KG3Mp2MhE6T0+mUcdPXAyC7+7qYNu+hExLorJKUnenzKJ+iaTBiBXr0fayAi5VploOFvQuFAi5fvoxLly4hGAzi5s2bAjY4Zuy3ZhJN0Mk2/uhHP5IU7z6fD8PDw9je3pb7a4nraeMfDocHWABThqoBg/6czIOVY29ex0pK6HQ6JTaJsUQEaARFBHV0fPmT4LPVaiGTyWBvbw+FQmEgvo1zqduvAagpjSRIJgNFUM+Mk3otaJaT8V2U/ukNB3ON6fHQY2SybjzGZCvNebRiMq3uZ8onzaRDJjjSAM/MRKnnj4wxE7vo2LBer4dCoSD39Pv9A+2jRJhAr9vtSkmBWCyGYrGIZrOJQCDwjHyTa4K/cx1y/LXMk9JKSh11bG6xWJT7J5NJaQfHgkycLjfQ75/UqiMY1HXruMmSTCYBQCTPBJMEf8xkajKCX7e9XADOZuBss80222z7CjY3N4fV1VXE43G89dZbcDqdWF9fx9mzZzE8PCzOQbFYRKPRwNTUFHK5HCYnJ7G3t4d0Oo3PPvsMbrcb2WwWs7OzmJmZQbVaxePHjzE6OorJyUkEg0EcHh6K49loNBCPxyWZxfj4ODKZDAKBAF577TUcHx9LHbnx8XHcvHkT2WwWMzMzWFhYQLvdRj6fRyKRQDAYxO3bt3H37l1Jzw08DbbX7E8+n5dEJtoZ07FtplzMlBeaYMTMTMnPmc2Nx+v4IO2AatCo/9agQu/Ua5BEJ1O304p1M1k/XsuUT1qxT1oaWqvVkE6n8eGHH2JnZwevv/46vvnNb+LmzZsSfwhgoAyABrEaeDAbH5mgVquFO3fuiPOsGTYz9lCPt84cSNZEp4TXxn6Y80xgbLKlJlDjP82MMK6IvzNlvI5ZZD/0WLK+2P7+PtLptDjBVuyglcSQ92M2QPZbbwDwdzIyuu3M4krmiON4GpjnRoK57vid7p+5hvTzowGYHmcrgG7Vb8328lz2l+OtpcvmutayYsaIBQIB1Go1uN1uqb1HxokbUsy+yHg0JgWhvFlLK5vNpiQC4VrnWDNRCtceZZQEj+yTZvQ068754zuNY88x9Hq9KBQKAIBQKCSMWqPRGACKjG8jwGO7u90uksmksHr8bGRkBO12W+KGuYHEOOQXZS8VgKPZBJxtttlmm23Ps/v372NsbAyvvvoqqtWqJDLp9/tYW1vDw4cPMT4+Dr/fL85Is9nEzs4OcrmcyBkbjQYWFxfRaDSwuroKr9eLkZERTE5OSrHhWCyGRqMhMSW5XA4jIyPweDzIZDJYXFzE6Ogo1tfXUSwWMTIygkKhgJ/97GdSay4QCOCzzz6Dw+HA8vIy/H4/bty4ITvolHVqR0eDqmq1ing8/kx2Ng16tEPIv7Vph1qfo78nsKDDDDxl3rQsjhI3/TcwmOKfRsbkNCbQCqTp9vB38zP9ufm3yYDojHPb29vIZrNYWVnB8vIyVldXBWjS2eU46uQjDsdJMhMCeQ1yyAAQ7JLdJCCkI6vZn37/pOYc43zoHJMZ43rQ6ez1vGhwSAdcAwd9vmbQzN/JXmk2jHPIcWm1WqhUKqjX6yiVSgPASYNKk+nS4EW3Ra9vDUr0GnO5XIjFYsLSkIljGzQ4JfjRqevNdcHng8fqY/Szps/RGxcmoDNZua8C5vR1zXg9smr8zuPxPCPPNDdQeA2ODZkmJiThNclEUaqq0/jrfupkM/3+iTyTmW+5limBJPAmmAIgGwmcC65bsqSlUmkgeQil4d1uV2TkjK0kSGQfzNg3lvVgH9gGxvtR4k62mPPGvieTyefKbf+m7aUCcE8XuY3gbLPNNttsO91mZ2cRDofxox/9CL1eD6+88gq8Xi/u37+PWq2Gx48fY2xsDAcHB9jd3YXT6USlUpFd5Wq1inw+D4/Hg88//xzz8/N49913sbe3BwA4Pj6G0+lENBpFtVrF9PQ02u02crkc4vE4HI6T9PHLy8twu93Y2toCAJw7d07i4xYWFhCJRJDL5bC3t4fR0VGMj4/j8PAQh4eHiEQiKJfLUkKAzgnjPUKhkFyrUChgZGQEgUAA8Xh8IC5GO3TPi+kwZXVWzBW/00V56eCZmd40aDAlc1aOrHY4dZpvk0nTzKAGZCYbxs/ZN/NYs+/acSyVSrh16xYikYgkO9Dn+nw+9Ho9ydzXbDbxB3/wBwgEAvjhD384AAYYL6SzTGpGiKyPZhz0mOgixzqmRwMfzov5k3NFZoFsCZ1t/uSYc15ZW4xAgd9zTdVqNcn412w2hWEh40Pn3AQ5JkDVa4rSO8YysS163XBdut1uTE9PIxqNIhqNwu/3i6Pf7/exu7srxZzr9bokt+D4EaTptct26X861k2vldPYvNO+47q1AnnsvwmW9Fzy2eBcUn5oJtPRyU043gT7TPrS7/elUDbfUw6HA7VaTcAwa/dxbnkfLZHVmzxkrbR8WgNOAkQer4ERk9CQtSZjy2ym/f5JHB2TmFDKyTVDwMh7MbaPIM3hcCAQCKBer4s01Ol0IpFIwOfzyZj7/f4BmefQ0NBA+Zav214uAPfFT5uBs80222yz7XnWarWwtrYm/2nfunUL4XAYjUYD7XYb1WoVT548Efnh8fGxZHLM5XIolUpwOByo1+u4dOkSzp07h+3tbdRqNdTrdYyNjcmu7+XLl/H48WOp4UZJz5kzZ1CtVvHo0SNEIhF4PB7s7Oyg3W5LTEcmk0GlUsHc3ByWl5dx//59ZDIZDA8PI5VKoV6vw+/3I5/PDzja+XxenI1CoYDd3V2srKxIdjmfz4dmszkQL2fGvmkn2pR0aZCjwQjwNG18q9WSRAncwdbOtpXDSsdKs4FsIx1StseMdbMCgKd9/19juu+60C/HmkyZvh+dQDrCQ0NDWF9fl0LsOo6PO/yaHQEgQEln1+Q4nDZHHDsrZ9/qHA369T86wPp6GiwQQOvvrWSxPIe1EKPRKNbX16W95oaBBjgaUOoEKb3eSSZY9of/eJ7P58PExAQSiYTUeKN0zufzyXPndDpFBmjF8J4GyvT6JdiwklHyuvo7K2mkFfNmgu7TzGTCNYBl4h8yTWwv1yZZKDLClD4HAoGBAt1c38xUScaX7SbjzjEBIKn7WTzcZOsINHk/fQ43DnRRe64pl8uFSCQy8EzoGLpWqzUA2si8aoDJfwSTwWBQzuOGRCAQkHcYn3Gfzyc/y+UyyuWy5UbT12UvF4CzY+Bss80222z7CtZut0XayMK+h4eHSCaTcDhOsigeHBygXC4jn89LvNL+/r44FrFYDBcuXEAikcDOzg5mZmZQLBbFuen3TwLmr1+/Dq/Xi2g0ilKphMnJSYRCIRwfH6NQKCAej6NcLotjPzo6ikajIYWIz549i0gkgmvXrqFeryMcDmNnZwehUAgTExMS90FARMeX7Wy329jc3ESn04HP50MsFkM0Gn2m/IDf7xeHTTucJpOm2Qfg2fTndK58Ph/8fv8AY0Oni04c2SPTETIBGACEw2EAkDbSMbYCDuZnzwNtz2PegMF4OIJRtoc1s8z206HVMr29vT10Oh2Ew+GBRBqafTClgLyflq5y7DRQNeWLwKAE8TTZnmb8TJbJCnDo8bEaK30MsxEScBYKBUmMYcbp8W8WeZ6ensb58+fRaDSEZWYiIZZx0HPL9rI2IgBhjOjIs3aZ2+3G+fPnMTQ0hE8//VRqj2mZr2bfTCCmx9AcSxMw6wQamt3TY6sZVJMZ1uP6vA0VUwatY0cJxhm7pjcbXC4X6vW61M1jFkhuTvF9QhBXrVYFHOpMugREBHo6mQ3j0AimuH75bLDtBG0EfWTomSio1WoNfMfYVLLIbDeT1/D+ZIK1pJtAlm3n+7LX6yESiSASiYiUkucQ5Gn22C4j8NdkT7NQvuCG2GabbbbZ9rfa+J//1atXcXx8jO3t7QGHgD8zmQxKpZL8R01nenJyEisrK5Kif3x8HJubm0gkElheXsaTJ0+QTqdx584djIyMIBwOo16v48yZM3A6ncKeASdyy36/j3A4jGQyiUKhIAHz09PT6HQ6+PjjjwUwPH78GNFoFPF4HH6/H4VCYQCkOBwntYsILoCTOmSsicXsmKa8jpneaCYLoJ1GM45MX0szIQzyZ5vI+jGOxIyh06YlkwBEssrjdFIGUxrJ62kQauUU6/Y+D+SZgJUSMsb3WI2JFcDQiUoom6TDTUZAO+S8t26rBthWc8D28LjT5HzmGJnj8rxzzPub/afkjH1ln9hHnfmRyXWi0ShCoRBCoRBGRkbQ7Xbx7W9/G9FoFH/4h3+IYDCI1dXVU1mPYDAIl8uFcrks1yfY1ucQjJXLZan/qLMJ6kQg7KcJsE0Zowl4CeY0GNdjp/+2YtnM86w+N6+lAaZmRwkeuf4IniiXdDhO6pvVajU0m02Ew2HZcKlWq/D7/XIfslUEYwT+vKdee2Q4tWzSbHu/fyJ/5HOg14uWPjJjKPA0URATnRDccT0xoQ6zRPb7fSlFosePkki2TSfr0RYIBGTt8v8FvofYphdhLxeAEwbORnC22Wabbbadbh6PB+Pj43jw4AHGx8fx9ttv48mTJ7hz5w4qlYrEUTSbTVSrVSQSCcngODc3h8nJSezv70vtod3dXVy6dAl+vx+ffvrpgNSOzs3y8jLy+TwODw9lh5pB/l6vF8FgENlsFpVKBcPDwwgEAjg+PkalUsH58+exs7OD7e1thMNh+P1+tFotrK+v4/DwUACRlh41m00Bnjs7O6jX6yIDTSaTAwH9JjjT7A1NO12mVMxkeEZGRlCr1SRGhCynjlnS99dOvhWTAUB24LV0jfe1YuHYZt1eK4bjtL7ovzVDwlTpTHCgga45NmZ/6ETreCWd9Y67+1asJB1RAj9Ttqfnh460bot2Xq3G96sAN3OMrEDz0NAQwuEwgsEgIpGIyNLi8bgkDAKARCKBRCIBt9stmQuz2SwKhQK2trYwMTGBu3fv4u7du/j+97+P5eVl/Ot//a+lwDfnmuUUyKpQAt1qtTA9PS3rpdfrSYwTwYdmo+n867VoylHJHunxBjAAkjSINoGc/v40to32VeZIX08zUebchMNhFAoFGQtuGhAYtdttSbJULpcRDAaFkS2VSvB6vQLoWIDb5XJJDJp+7rxeLyqVimwI8b2ky4BQhqnrHbKcBmWZjJ+k/JrPPJ8LDUqBp8y/x+MR9tDhcEiCn1arJRk3dYkYMoaMeWMSFyoWdHIT3heAZOV8UfZyAbgvftoMnG222Wabbc+zZrOJRqOBK1euIBgMIpPJCHjibms+n5fC3G63G8FgEEtLS1IDjlkoDw4OcOHCBRwdHSGVSuG1115Do9HA48eP0Wq1EAwGsbi4iAcPHqBYLCKZTIrD7vV6EYlEJFbN5XJhbm5OZI9erxfxeFwYveHhYXi9XuRyORwcHKDX6yEWiyGTyaDdbg/Io6rVqiQaaDabuHv3Lq5evQqfz4dEIiExKKaZKfqt2BYNvnQMD50o7o5zB5zOIHfVTaePZoJGfgacOLQ6eYbVNUz2yjQzjomffRl40exiOBxGLBYbiAOyOp7X1IyNCQy09JEOuC7DoFkLnTHPCjjp8dMg7rQ+n9bPLzvGCgzr8YlEIsIQz8zMoNVq4dd+7dewtLSEer2Ora0t5HI5ccbL5TL29/fR6/Vkc4JJUD799FNUKhUkk0ksLS3hH/2jf4Tt7e2BJEGU/VECp3+2222Mjo5iZGRE2DidFbVUKiGRSAi4sZLEaRBGlkdvehBEmmOkwQU/s5LKmgDfBNrmXJ9m5iaMvi6fQ7Z/eHhYyl8wUyPXn8fjkRjDoaEh1Ot11Ot12UDp9XpSQoLvsEqlglarJfXR9DPJnwTH3Nzqdrsol8twOk/qY/r9fng8HikzATyNJWVcLbNU+nw+tNttYduAp3XeeE9KyQHIe4MJUZrN5oDck/JsAkcyceZmEsePmzdmfbyv014uAEcGzgZwttlmm222Pcei0SharRZyuRzu3r2LGzduoFwuS30pJimZmJiQ/6jn5+clZq1UKkmsRLFYxMbGBiKRCL7xjW9gbW0NOzs76Ha7mJycxMzMDO7du4der4eJiYmB2BICLDpY0WgUhUIBzWYTIyMjaDQaWF9fR7fbxdLSEjweD+7evSs1nFwuF/b29pDJZCT2h+CALA0dn48++ghvvfUW/H4/xsfHB5KC6PNMOab+SdMxNyaA6XQ6UtaACQr0Drw+n84/AZ4VACNwYZ94nJbl6fNM4HMa2NH2ZSCODjwLbgeDQXFIdX9MAKR36Onom6DVvAfHminZWR6AzqW+py7ifBqIMwHc8/p6GsOjQdppTBxwIjeLRqMSu5TP5xGLxXDx4kVcunRJMnbq+WPW19XVVRwdHWFtbQ2ZTAaZTEbOZ2zpa6+9hsuXL8Pn82F8fBzFYhG7u7toNBpwOBwIhULw+/2oVqvo9U6SnTQaDRQKBclISVDFz6empuS5bzQasgmia/LpOWHfzbnT48M+agCgAbVmWK0kmOa4W8l8zU0CDey1jJlJPICnsloyudlsVthSgqtGowG/3492uy3p+Gu12kBCmKGhIYRCoYGU/dyoMVPrs22MRXQ4nhbw5jNFAFepVIR1o1yR35O9J7DS5Sv4jGjJJJ9PStUJ4Hhfp9MpCVHIzPHabLNZmoXsMsf4tMLvX4e9VACOHJwtobTNNttss+151m63sbe3hwcPHiCdTsPlcmFychLpdBrVahWzs7OSTIQMmdPpxPz8PI6Pj0VK1Ww2EY1GcXh4iFKphA8//BCFQgHDw8O4ePEi/H4/7ty5I45/JpNBv9+H3+9/JnECC4iTlctms9jb28PQ0BDOnj2LXC6Hhw8fotPpYGZmBt1uF7u7u9I2yih1nJXeNT84OEClUpGYPZ/Ph2q1Ks4VnRQNNABrh107qDTtzBNYMbMcd9J1qnl9rBXzBjxlKvg78NQRNiWUJjN1GnNhHvNVAE2/f5KwIB6PS8ZQsghcC9pht+qLTmxyWpt4DJ3VRCKBN998E6urq9jc3Hwm1u95fTWd/dMA2Fdl2kwzQThZi0gkIplbC4UCRkdHcffuXcRiMYyNjYnjz/E7OjrCkydPcO/ePTx+/BgHBwcolUqSnKfX6+H69es4f/48fvnLX6LZbGJubg4TExNwOBxSC4/JbQKBAGKxmIC4TqeDYrEo12T8EiWrlUoFZ8+exdHRkTDEZlZFHRdFBopjeNoYWQEw89nS1zA//zIzAZ+eL4JCJkihjJAA5/Hjx+h0OpIUpFAoCJtFFo7ZbZ1OJ0KhkNTy8/v98p6Kx+M4ODgYYDX5PtHvB8oiu92nxbwJ6MjmdbtdmQ+ybGTnWOKAjGAsFhOJO98vfK+yxAQAiX1jts1ms4lQKCR17vQ4NhoNidllUpder4doNCpxd9FoVBhegtcXZS8VgLMZONtss802276K3bhxA/l8HpFIBBMTEygWi9jb20MikcCrr74q0sDh4WHUajXMzMygXq9jb28PrVYLPp8PkUgEqVQKOzs7OHv2LEqlEg4PDzE9PY133nkHGxsbuHbtGiYnJyUBg9vtxtjYGGKxGNLptOwee71e5PN5ASz5fB7FYhHRaBSjo6M4ODjA/v6+ZKnsdDpIpVKyIx2LxcRBYpY1gg4Ako1tbW0N58+fRywWQzKZRDabfSZhg85gCVgzWmYcignCNMNCZ8jMOmkCRFNKxvNNJ0nH0VnFvZn2PJBjxTBaHUPnLR6PIxaLYWpqSuITNaNiMm4cE50sAXg2PbwGzzw+FovhO9/5Dvx+P27evPnMbr/J8Fi1nW3g/Foda4JZ9tlkLU8DK/yOadafPHkiMjrGWf3gBz/A5uYmlpaWMDs7K2zx2toarl+/jsePH0u8JDdRgJNMr4lEAnt7e/g3/+bfoF6vi8w0nU5jaWkJ7777Lq5fv47Nzc0BCRxBCBkiJicis8NxYRKNCxcu4PPPPxfH3pxTLX01nxlzjPScct3zmrr+4mnzZkon9d96rXBTBMBAeQmT+et2u7J5Q6aNcWDsD+csGAyKhJdlT0qlkqx1timVSsHj8WBmZga5XA7pdFqAlG43f+r3kgZQZPg0gGUGW71JEwwGpQ8ABiSvfO/xXcFxT6VScDqdUkaAdQi1TJzrttvtSnkJ1oXjcdVqVWIFCXL5XntR9nIBuBfdANtss8022/5OWK1Ww/Lysuwyh0IhvP7667LTPDw8LDIdMmzc2Q2FQpidncX6+jrK5TLm5uawt7eHRqOBS5cuYXZ2Fh999BGy2SyuXLmCarWK7e1teDweXLlyBfl8HltbW3C5XBgZGUG5XEapVMLo6ChcLpfIL6enpxEKhbC+vo58Po/Z2VlEo1GkUimkUilxIEKhkNR8IuPFmkaVSkVihCqVCp48eYKVlRWplbW+vj4gEeLOuGlWWfGYpIU7+3QAWfjXlFLx7+fFjOl7aIdZm9k+DQRPAxfaodTA6jR2yTS/3y/ZO+kAm7Fmuq16PNl3MyZN/22CzHA4jDNnzuDw8BAPHz7Ezs7OwLmmmWNksjGngTR9rNV4me2y+g44cYKj0ajErmmQ0Wq1cHBwgGw2i+vXr8uzRZmcz+dDsViEw+HA3t6eyBoTiQSmpqbQaDRQLBYFrJBZTqVS6PV6mJubwze+8Q0kEgncv39fGByuEyaL0cBGJ4pxOp24ffs2fuM3fgNvvvkmbt26BWAw9b+er9PGxTzOlEPSeH+2hd+bzLSWv+rNDzKDeh3xnlY158w5I8vo9/sFpFAe2O/3B5KW8CdljARCDsdJmYF0Oo1KpQIAMu+9Xk9KazAxTKVSEeaNLBxLaABPy1iQeaNMsVwuA4AkumHMGQEaWTj2j20Oh8MolUrC/Pd6PSkbQ5DPTJp8z3MOuF54L45Ro9GQJCvValXG7UXZywXg5GF5wQ2xzTbbbLPtb7WdO3cO7XYbqVRK4mnIOs3NzaFQKEh8WjqdRjQaBQCp5/bgwQOR0xWLRQSDQVy+fBmNRgM3btzA8PCwOIP7+/uIxWK4dOkSHjx4IMH+8Xgcx8fHAIDJyUkUi0UcHx+L1KxSqeDu3btot9s4c+YMHA4H9vf3cXR0BL/fL3EhdFKYpp9xHl6vVyRDwAlo3dzcRKPRQCAQwPLyMj766KNT082brItVbJrf70cwGJQYG7fbLaUCTNOsGjAIeMyfmpUzz9ftoWNrxVTov83faaeBOP05pZPRaFRipfb39wccbjq/uu1M105HXANbDf5M5pEsay6Xw/r6ujjIp7X3eSBUS11NZ/M05uh517diVshOjoyMIJ/Po1KpSD+Ap4W/KXdkrGmlUoHH48Hk5CR8Ph/u3r0Lt9uNq1evIhaLoVKpSCyl1+tFMpmE2+3GkydPMDQ0JMl8yuWyPAvDw8OSPIeMtK6jp8dEg2+Xy4WPPvoI3/nOd3D58mU8ePAAwNOSA5pxZp/IlJqAScdDWjF0ZKOsTB9jxjeeBt6BwTg6tlPPG/vBduksjTxPZ7LluczOCUBixKrVqpzH+XY6nZLcRysD2O5QKDQQU+fz+WQMmDm01+shHo/L3LJOJRkyXXBbs+4cF56nk7Awm2YwGByQdZKNAzAA4vQ7iRk5I5EIgKc18tLptIy5XUbgr8kkC6UdA2ebbbbZZttzbGhoCMViEaOjoyJnjMfjcDgcSKfT8Pl8yGaz6PdP0lJT7thoNHB0dISrV68CAO7fv4/p6Wl4PB5sb2+j2Wzi4sWLaLfb+NnPfoZarYaRkREEAgFcu3YNLpdLJJTZbBaBQABjY2MolUo4Pj7GyMgIEokEjo6OkMvlMDIygmg0il6vh42NDaRSKUmg4ff74fV6kc1msb+/j2w2K7IoHRdCh8ftdmNzc1PA6dzcnDhFdEbo0NKhooOknVIAUnCZIIZ1l+icPi82xIxpO02aR+eYjpdmHPgZ76t34U3wZ35uMiOngRd+F4lEEIvFZBx1whWH4yQr5cjIiDiazWZTGAXGBlGeRXCj2UjNoDidTgSDQaTTaRwdHT0j0bTqg26v2Q/zpxWTajX25vX0ZybTyWs2m01hrdhWShk9Hg8CgQDK5TK8Xq8w2efOncOTJ09w//59LC0tYXFxUUCeZi/b7TYSiQRef/11yVjJcatWq8hkMsL+8nMm6mDcl2YQTXDF8f3xj3+Mb3/727h69So+/PDDAbDAfvJYh8MxUHbABNf6Xua8aSP4Mlk1rhFdqsIE4lqeq+eaGxtM9KHbTQaTdSIJoMhC8T2Qz+cRDAYxNDSESqWCcDg8AMLYNr0x0263MTExgWw2O7BRoUs0MDsoQT3Z0kAgIHFvfE5CoZBsUvF512ufY8O6fywy7nK5pBA3E7LwveHxeNDpdNBqteTdSuavXq9LPB6BKXDyfisUCshms6I60PXx/n/s/VmQJGeaHYodj33fIyP3zMqsylqBAgpd3VgaAzQGjWm1zUwbjRxRHKM0pGiiSDMaX/SgKz3IjLp8uCajTA98oIkyLnpp8Q45nJ6lZwaNaXQD6AZQKAAFVKH23LfY9311PWSfr/7w8siqnl6KxPXPrCwzIzzcf//dw+s7/znf+Z5EfLkAnFUDZ4UVVlhhxWNEr9fD2toa2u026vW61LCpRe6qyUgqlUI6nUYsFsPU1BS2t7dRKBSwvLyMwWCAQqEATdPwzDPP4N69e9LrbXp6GjMzM9jb20MymUQymYTL5UKxWEQ8HgfwoMl2KpWC0+lENpvFYDDA7OwsIpEIyuWyNBqfmppCr9dDMBhENBrFaDTC9vY2MpmMSDwJGCgFajQaAvoajQZ2d3eRSqUQCoWwtLQktUd0xaQEiu0H1GCSGAqFRGpKxo21LGpjX6PpBmAuoTQyfJMYI6MMk7Ims3oUs4Ra/awZ42jcnrWOS0tL6Ha7aLfbY8eamZnBV7/6VSwvL4u8knPvdDphs9lQr9exu7uLzz//XKSuKnB0OBxIpVLSH63RaCCbzQrTYRy/8VpMkuoZw4yJO46hnMTsmR2j3+8jmUxiaWkJH3zwgSTlqkyRYErTNGGvP/zwQ2SzWZFAdjod+RzvIe7j1q1byGQyUpek1tmFQiHY7XaUy2UBcWrtm5kc1wh4ef5vvfUWXnzxRSwvL2N/f/+h+VPBH51eybby/lSvrxFEq6HKJNW/jQynyqxxOyM45Pg4LhqUcJ6MTCK/N5ybdrsNr9cLXddRLpdlMWgwGCAYDIqcMRKJoF6vYzgcot1uy3F47UKh0JjBB10laeHP+6XdbmM4HCIYDCIQCAgD1mq10Ol0xD1T7VdHOWetVhMzGj7jCNpCoZCoKWh+4vV6MRo9aH9Asxsu/Pj9fjSbzTGzE5rysCZ4OBwiGo3C7XYL2H2S8eUEcE92GFZYYYUVVvw3Hk899RSCwSDu3LmD1dVV7O3tIRaLYTAYSL3GYDBANBqFruvY3t7GysoKnE4ndnd34XQ68dJLL4kscXp6GuFwWOpnQqGQrCTfvn0b09PTWFxcRDqdRrlcxvT0NEajI2dIl8uFZDKJarUq8shYLCZypN3dXbhcLkQiEXg8HknaGo0Grl69ikKhAJvNJgX9KkAhGxYOh6FpGnq9Hm7duoXz58/D5XJhcXERt2/flgSJLmyqOyWlVWQ2vF6vrMZ3Oh2RY7HB9CQzkUlyRYYK+BjGuiDjT66eGx38JiXNKltifN+4Lc1hgsGgzDt7ZmnakfnM2bNn8dRTT0l/PtYSUcpFswPWcmWzWWEDOAZK/thUuFQqiYnH48oczeba7LzVfR3HDE26VmYgkdeg1WpheXkZS0tLyOfzIpXz+/1wuVxoNptYWVlBLBZDsVjE7u4uCoUCTp06hWQyOSYn5SKAyriwybIK7Hh/sEUA5cOs1VJZ4ePmTpVUjkYjfPTRRzhx4gSSyaR8v3juqqxSZcDU+VH3Z7zHVJYNGL/HVYDNz6pST25jbOSu7lMFquo9pn7e4XBIvSJbCBD0Ejyp9ay6rktNGAEbWTlVxjgajaSGLhAIjLUVqNfrcu0IrOi4S5Olw8PDMZDHWl5Vjlur1QQwAxCp7HA4hMfjQalUEmaeAJHgmjVzBGo8Bplufg8p/6TrJQCpjyYbXy6XLQbulxUaHn4gW2GFFVZYYYUxotEoNjc30Wq1cPPmTVy8eBG3b98WYxE16Wg2mzhz5gza7Tb29vYwOzsLt9uNa9euYTgcYm1tDYPBAJ9++qnUpqkuicvLy3A4HPjiiy8QCASwvLyMVquFcrksjFyn00Gr1UIwGBwzM6lUKgIgpqenARwlaTs7O1hfX5dEyWY76mlUKpWElWKywmSMbOLm5ibK5TJmZmawuroKt9uNer0uPbBY70eXNyaslPexxxKZDjIfao82I9vF/TFUIGUG0o5z6FNZDkoTJ8kHjUyFMak2slfq2CmddLvdODw8FBaJ4EFl2VSGhPIqNgemaQPlYWrQUbHZbKJWq43VkP0iYTwX9W+yMccd41GSSiMIbrVa2NnZwfz8PM6dO4f9/X3U63U5F7vdjng8LuxJMBjE/v4+5ufnEQ6Hhd0ha+ZwOJBIJLC8vIw7d+7IAgNrsAgC+v0+Wq0W9vb20Gg0UKvVZPGBc03JJvDAwZQGJ2RMeW/oui4MzdbWFk6cODE2PvX68brToIbAnHNjrG803oMcj5EZ5Gvq/Kp1qrz/VYdGo1yTgEWVT3JsZMr5Otk2ftedTqe0HmHTcn7O4/GgUqmg0+kgHA5D14+MRtQx09q/2+3C7/dD045q7lqtlrxPqSKBVKvVQr1eH+tdyQUpMoVcEPP5fCIhpxRyNBpJ/0H1GnEBjnNEB2E+Dynr5TXgc3M0Gj1kukKZKfuE9vt9WfB6EvGlAnCwGDgrrLDCCiseI95++21xhvz617+O7e1tRCIRWcmPxWIoFAoolUpYXV3FjRs3MBgMBHytr68jGAxiYWEB+/v72NnZwfT0NFZWViQ5yeVyiMViqNVqqNVqOHHiBIbDIQ4ODtDpdBCLxcQOvd/vIx6Pw+/3o9Vq4fDwEKPRkaW33W5HMBgUGVIulxPJps121KMpEolgfX1divcDgcBYwkd5pd1uR6VSwdbWFuLxOGZmZhCJRMSxjQYrtBJnrygmMYPBQKRGo9FI2CImg0yMjavyZqGyBipjYJRTqomsUYrJ19S6K3V/XElXjU64LzWhNibZNJmhcYEq3+TKfL/fx927dxGJRLC0tCT1lGxgzpq4fr+PUqmEw8NDSWLV4/d6PblHWLdjPHezeTOOm69NCt4Pj8MaTALERsket6OM+Pbt25iamsLJkydx8eJF/Mmf/Al2dnbQ6XQQDAYxHA6RTCZx//59AA+kuKwdJACmFDiXy8lrZOTYfLlarYosk46WrOciMHY6nVhdXcVrr72Gg4MDfPDBB7IdaxWN88f+iARx8/PzSCQSqFQqYwCBIJ7yYXW+1OtgBNOAuYEPMN6Wg9up76nATr0War0npYLqteZ3gyxTr9eTfm+UIqrOnKw547WgIRINPGiMxPmixJAMIFlx1tdSutjr9QSAezweAYpk58jyEaxzgYYSSL7PueC4g8HgmCtko9GQ+jbeDwCkpxz/ZvsCldHjAgKvNUEav8u1Wk3k5q1Wy/wL9GuILxWAExMTC8FZYYUVVlhxTKTTaei6josXL8Jut2NtbQ3VahWpVApzc3PY39/HvXv3MBwOcf/+fQSDQaytrWFzcxOlUgkrKytwu93Y3NxEJpPBqVOncP78eezu7sLr9SKTyWBubg75fF6MTciuDIdDLC4uCkNht9vFQKVQKKBWq0HTNPh8PpEXcYV7f38fxWJRzAXK5TKKxSIODw9RqVQEEDCR5Up8vV5HIpFAMBhEPp/H7du3cfbsWfj9fiwuLmJ3d3csiaUMUDUj4co4jQXoesljqMyAGRPB4PbHSSqNn2Go4EH9p7YWsNvtshrPZKxSqQionCShY7AZNetymMipZhI8t3Q6jbfffhtzc3O4ePEiTp8+jVQqJWNvNBo4PDzEzZs3cf/+fbkmlFoCkCbTBA2TwkzuaMYcGj9jJo80+1392wzUTtofQUO/38eNGzdgs9lw5coVfP/730e5XEa73cb09LQ4RF67dg29Xg/xeFzuA543HTjb7Tba7bYYcbBmiY6AtIInwwxAZK58nyxOrVbDe++9h3K5jFqtJiyc2fnqui6LHQQHh4eHIpFVHS1V9o2yO2N9ozqvqnQVePgeV+vfaPjB46i1gADGmDUzIK+6n6ogjiCKDruU/RJQkdXkuREUqfVqw+FQ6oON5kHGBRxuU61Wxxp5OxwO+Hw+UQmo3y0yoARKBHEEgQSYvLZ85vE5yXulWq3Kc4z3h67r0seNC2287/i8UNlHr9cr82O326X2joyr5UL5S4oHXxgLwVlhhRVWWDE5KOn64osvpHZibm4OwFGT7/v376PT6aBSqeDpp59GKBTCZ599BrfbjXPnzqFWq2Fvbw/xeBwXL17EaDTC9evXUavVJPm/desWYrEY1tbWhDXz+/2YnZ3FwcEB8vk8IpGINOau1+uo1+vweDxSj0apULfbxfr6ujAZLpcLsVgMbrcbGxsbGA6HiMViaLVa6Ha7aLVakiBxBXx6ehputxvtdht3795FoVCAx+PBysoKPvjgA0nSVAMK1nFRpsSV8UajIa0DjIyRUf6oysTUlX71fbNQE1wzVs4IBJnIOp1OBINBeL1e5PN5VKvVh2rr1P0YWTgymmoSzYTUTNpZqVRQLpext7eHnZ0dfO1rX0MikcDOzg6azaY0dC8WiwAwBnTpdtdqtR7qb3ccu2YG2swYRuPvxn0dx8YZ96/+rrKf6hwCR7VLlUpFLOg1TUO/35decIPBAKurq8JckeUEjmrZXnvtNfzwhz+UxQMCXYKNcDgshkOsvaOxDA0nCJCZ/FerVWGUAYjRj9kcEPTzfAaDAe7evYtTp04JMwU8sOY3Nmk3AjiVJVbDDMiptXWcH+N3iM6SDPYk5O9sdaGCIo6JNV0EUFwoonmI3+9HvV4XJp7fcV6LSCQiLB7BdKlUEhaP3xGn0yn1ouq9QGaa7DQNmWiKQmDEMbH/GoPHoQEJj8WG44PBQJx1KWXn8TgGsol8tnFu+v2+1FmSnaQCgaDR4/HI81B9jj2J+BsDOE3TTgP4n5WXVgD83wBEAPwfAOR/9vr/Vdf1v/ibHufnGtPPfloMnBVWWGGFFcfFvXv3UK/Xxxq6bmxsyH/g9XodXq8XS0tLqNVq2NnZwcLCAiKRiEggk8kkotEo0uk0arUacrkcLl26BABYX19HJBLB8vIyNjc30Wg0sLy8jNFoJExMIpHAyZMnUSqVkM1mpZ6NK7+apkniQZki33e73chkMrh27RoajQZCoRBqtRo6nY6YEPT7fZEcAUdsEOVVo9EI+/v7iMfjmJ+fRyQSQTabRaVSkRpAgj9KjpjwNBqNh5olq8yRGeAwMxgxCxVYMImdxPrwdRWckQkiECXjYjYO4/FY/xSJRMTYQT0vgloyLUbpZ61Ww5UrV6R2im6jOzs7wo6q597tdsUyn/WDxrEdx5aZjX8SoOM2RhaS7M4kKanZNSSwOC55JWsBHN0b2WwWmUwGAHD58mUBNARerBfsdDp49913BYhomiaMr8/nQzKZRKfTkZrCSqUiQI1Ahsm/6oLIa8maLvWc1fPl+anzQXCzu7uL+fl5tNvtMTaN7I8ZY6mCNHX+1bkn28P9EaRwG7VNAOvC1GOrAI/hcrnkeHydZh7cJxmkYDCIcrks3x0u0vB60xDGZjtqLRCJRETGSoMa9vRjPSdNePg84vWlVJEKAb/fL/Jtgi/29CM4p0ycrSiAB4DS4/HIAhf/JkvKa+JyucSIRNd1AX4qMASOwCkln+wfR2kv/5/gggDvk/8uAZyu63cBPAMAmqbZARwA+GMA/xDA/0vX9X/1yxjgzxOcRwu/WWGFFVZYcVzQqYxMVywWg91uRz6fF3ORmZkZAUsXLlyA3W7H9vY2BoMBEokERqMRNjc3JfF45ZVXkMlksLm5iVQqhU6ng/v37wvr1u/3kU6nMRgMkEwmsbi4iFKphM3NTYTDYWliqxo5lEol5PN55HI5hMNhTE1NIR6P48aNG7hx4wb8fj9SqRT29vaEZeAKsVrjMxqNUKlUxOykWq3i3r17WF1dhcPhQDKZRDabRb1eF5BIEMTE2GY7ssSnlb5ZDc9xtW9mrJAZsKP0ymj4oZqFMME2JsTAUXJ3cHAgDJ36HoMJsJqoM/kPh8NS46ZK4rg92Q21XQJjMBjg8PAQBwcHD80Dx8KkvdvtynweV/c2Sc5ojEkgzgyMGUOdV3V+1feNnz9O/qq+z+MPh0PMz89LEs258fl8+MY3voFqtYpPP/1Uap640MBm8ex7SFaHMkKbzTbWjJkgW7WgB44YvJWVFaTTafmu9Ho9ScyZ+PO+UllfTdNQrVaRSCQecpZUz081LpkEplVHTIJPfpbbcmHEzImSEkDWS6rzTODG1wgGWfPWaDRkUcfj8Qhbp/aAJADmMWjUw7msVCpoNBrCbHHeR6PRQ460rG2jsQ9wVHdGlQEXWHh8VSbJZwDlnZwHKhnYHkBtDk5zEX6XA4GA3GtsD+Pz+URiy3klC6yaP/Fv9szjPcLr6/V6JzZk/3XEL+vIvwlgQ9f1nSeJRh+4UD6xIVhhhRVWWPHfQfA/XybjNP9ot9uYmZnB1NQUXC4XUqmU2KLX63X4fD4sLCyg2WwK0zU7Owun04kbN26g2+3i1KlT6HQ64sDm9XrRarVQKpUwHA4xOzuLRCKBjY0NNBoNRCIRRCIR6SOmaZqwgwcHB2i1Wpibm8PMzAyi0Sh+/OMfY29vDydOnEA0GsX6+joqlQqAB1bX7L3Ept6DwUCSKyZ5mUwGBwcHmJ6exuzsLG7duiUr5sYEmGCOSZ7KPhlreYzAzBhqMmtksRiq+50afJ37UY9lBB8qyDMm3MC4sQP3HQgEBDhwfEagCDzsqEkpncraqaDHaBXPBJey1eOAmXquxnMwAivjfh4F+FQ2zchIqcc2HtO4zaRjcT6YYMdiMbFsZ63i6uoq1tfXUSqVBDgwmSegTiQSiMViwqrs7u6i1+shFAqJZJiuhAAELKg1dGzUrPYtZALOY3IuVNdHFdTV63WkUilhdIyMpmpwooJn/jSCW97PPC/Kdo1sKRk6zgt/57i4rXo+6k+yToeHh9IDjsdWe52xztVut8sziIwYgSOBGsGb6j4ZjUbFUZLSVj5nVeMUm80mTJa6f5ovsT6N9Xdszk2HSxo6AQ+kyGz3wHNgL0uOT5VrqnWoXq9Xvp/8LMFat9sV0F6r1eQe4SKXGXP+64pfFoD73wD4/yl//zNN0/53AD4G8H/Sdb1s/ICmaf8YwD8GgMXFxV/KIISBsxCcFVZYYYUVxwQT6PPnz4tEkQyB0+mE0+nE2toagsEgtra2hKXy+Xwol8uoVCpShzYajZDJZBAOh2Gz2bC7u4vBYICZmRnYbDZhYzweD86ePQtN07CxsQFN06T+jQxDq9VCLpcTgxOn04mnnnoKHo8He3t7eO+999BqtXD27Fn4fD589tln2N7ehsPhQDweFzmSrusCOEOhkBT312o1xGIxWa2+fv064vE4zpw5g08++QSZTAbValVcL9W6ITJwrP8AHu4vZjRlUKWGZizScUYl6rbcB8dixnCYMUbqMY3HMOYKHo9HJFrGfRnHyQRQda7j60bpJxNwdc7Yb5Bg4nEYtklzpIJVjskIHsw+a2TIjPv8ecN43VRjG+DI0l1N5N1uNxYWFnD27Fl88MEHIl+j+6fX60U0GkUwGEQqlUIqlYLb7UapVILf74ff75f2GwQLlNmp7oDqPbSzsyOgTm0cDmDMoIQAk+CI55dOpzE1NSXX1MgSq9eDv5vdq9y3CjAAjAECLggQvHFhgRb9qrmOug8VRHIRxGazYWpqCtevXxd5NsFbs9lEIBCAz+eTbY01b+wHx3GwlnY0GkkvOMo7u92uPDd4r3Ohwm63w+/3i5xbNQwhaGy32wKu1MURAj3WGfN5wP1zTr1er7BtdNDVdR3BYFAWsbigEI1GZc5V8MzvK+uZC4WCHMvn84n7qbGu8dcZvzCA0zTNBeB3AfxffvbSvwHwP+JIyfg/Avh/AvjfGz+n6/q/BfBvAeArX/nKLwVxWRYmVlhhhRVWPE4sLy/jtddew2AwwDvvvIPhcIipqSlZuX3qqafQ7XaxsbGBWCyGWCwGTdNkdZlGF8BRorW0tIR0Oo1mswmXy4WVlRUAwPb2NrxeLzweDxKJBDKZDAqFgtTwOBwO+VkoFJDP58VZbXZ2FqlUCv1+HxsbG9jd3UUgEMBTTz0FXddx7dq1MVnX4eEhBoOB9E1qNptot9vw+/0CgCgB8vv90k7gwoULWFxcxOrqKnK5nPSRU+WYLPCnpAgYlzECDxuYMIxMl5rMGtk7NfFVa6iMhgFGls1M/WNMos22VUEMJWWqiYR6XpNq6ZhgG1lIlY1TGTo2S6bLojoO4/wcF2YAzCgpfRxA+DhgzYz9O25/ZN1UpunixYvIZDKSPAcCAWnFoJpNeDwepFIpLC8vIxAISKI9MzMjPcDa7TZyuRyAI2lkJBLBaDRCNBqVe3t3dxfAg95vlBDzO+f1eoUFUhk3ddFBNd/h/NZqtTHHS4Invm/8DqhMHueHskVeI/UzKmA0gnKG6jJpZLDVnyrTeOvWLXk+6Lou7JMqhWbLEbfbLVJKgjcCHR6XY6DagIwVGfxgMChGIioLS/aMclhd1wWQquYhalDCySbcbNZusx31hqPskeZFPAen0zlmzsJ58Xg8iEQiD8ki2fuNoFbte9dqtUTiznM0jvPXGb8MBu5/BeBTXdezAMCfAKBp2v8HwJ//Eo7xeCEM3K/tiFZYYYUVVvx3GN/5znewv7+PK1euQNM0PPPMMwLMTp8+jd3dXbTbbZw4cQJTU1MolUqyaj07Owu/349CoSDyozt37qDdbiMejyMej6NarY7VvwHA1taWuOhRqjgajRCJRFAoFLCxsSH1H+FwGAsLC7DZbNja2kIul8P58+exsLCA+/fv49atW+j3+zh9+jTq9Tru3bsn7EWlUhEWrtVqyUoxLcKr1SpmZmZQKpVQq9Vw9epV6WX2ySefjCUrdOujWyKTTxW4qUnuJHbNCJqOs8tnGFkvo1GKGWNkZJLU5NvIPKn7sdlsY417HQ6H1PWoNU3qeR8nEzWyLup4+v0+Go3GWO3bJJbMuE8z+aIKEIys2yQm7jjQZrbd4wJMM/Bms9kQj8cxPT2NhYUF7O7uSq1TsViUWi6CiUQigVdffRWrq6sIBoMCfCkdLBaLqFarArh9Ph9isRgWFxfx0ksvIZPJ4PPPP5f6q0ajIeyey+WC2+1Go9FAPp8Xcw2a8qjXWAXEKtDKZrN4+umnUavVxmSbxlDZWTJJapDx473G75oRSKoA0WazCRPEGk91sQN4AEbV47P/IwDp46iOk+0FCHIByGIGawUZPDYZO/bkY7sSyhy5GAZAFqXUc6JZU6/XE/ddLmY1Gg2RT3o8HnnmkP1iQ+9arYZwOCzH5POTJisEymTe1HYUhUJBPqNe63a7jWAwCI/HM8Zsqs9QSi3/e2/k/fegyCc1TZvRdT39sz//FoAvfgnHeKyQGjiLg7PCCiussOKY+PTTT9HpdPDss8+KlG1mZgZzc3O4f/8+IpEIZmdn4fF4cHh4KNIsOrml02lhtujgNjU1BafTiXw+D5vNhkQigbW1NTQaDdy6dQvJZBIejwelUkmMMmZmZrC+vo5MJoNUKoXhcIhUKoVYLIZKpYIbN26gXq/jzJkzOHXqlEgmE4kEpqenpf8b61EKhYI4t3Elmf2eAEgfo2g0inA4jGaziY2NDZw5c0Zqjfb399Hr9cTdjYklpZOqpJGhAiQ1SePf3AbAQ8mlMcwki8DDbQVUkKJ+1hiTWCh1H6z74f7pxMeVfu7HCF6MklHjGFQmh8Ch0+mg2WwKo2FkZ/ia8ZwmySFVhmYSG2mUaBoZnZ8nzMCcylAZ3x+NRvjKV76C3d1d/NN/+k9xeHiI7373u8LS0EGSTFskEsHa2hoSiYTpucRiMcTjcRQKBZHvzc3N4bXXXsPFixdRr9cRjUZFIkzgQlMa1kABkGvL74/qTGhk1HheZOBYA2s03FHHrIJ91ZSDr1EmyAUXI0jn75R9ApA+j+r15j8CC+P1Hg6HKBaLcvxeryesJffRarWECaUskfWzPDbvWco/yaqVy2WUy2UBbna7XeoTyXipgJVGI2T4XS4XwuGwgKlAICDqAeCB8QnVAADEyIY1hJybYDAo15H3Flk5tmXpdDpoNBrCArPnI68tG36rxi68hpzfQCDwkJPlrzN+IQCnaZoPwDcB/B+Vl/8fmqY9gyMl47bhvV9pyHfGwm9WWGGFFVYcE8FgEE8//TT29/fh8XiwtrYGu92O69evI5lMiiyxWq3Kf/q0ye73+4hGo2i326jX69B1HXNzc1JIT/nO4uIi9vb2sLe3BwDY2dmBz+fD0tIS5ubmUK/X8dlnn6Fer0tNx9zcHFZXV3H79m1cvXoVdrsdr7zyCnw+H65cuYJWq4Vz587B4/Fgc3NzbHzpdFrqgFjj1+l0JOFj8tZsNpHJZDA1NYXRaIRGo4GbN2/i8uXLSCaTSKfTIlcimwKMM2Aq66AyVGrCO4mhMq7Eq9vRjc9obmIEdSpgnJT08u9J41DBh+rCxySWrASAMTdDY7J+HODkz9FohGQyKdJWWtsb5XXGeVKPoW5vZByNsj2VeTTOidFo4zjgYDxP9XeOWWWrzBg7Ho+1Vy+88ALefvtt7O/vy+ICa63YKJ49yszC7/cjGAwKw0wJ697eHkKhEJLJJFZXV/HNb34TtVoNhUJBALmmHblJapqG+fl5NBoNVCoVtFqtsf5xZHzI/hmvK1kssmfcf6fTeYj9JJPFffFeUWvsjCyqCrBZK6bOMZlw7se4iMG6OLvdPlZvSdno9PS0gCePxyNsJevTNE0bkzKqtac8Fs+VbQNYOxwIBBAIBAQgDYdDYcDU+5OSTbJ5wIP2AGp9GVuu0MLf5XLJdWctJUEpHUU5V2TcOp2OfH+z2Sx8Pp/MDWuX0+m0mFvRrZLXitJT4IjBtNlsKBQKx7Lwv+r4hQCcrustAHHDa//bX2hEVlhhhRVWWPErjpmZGVy7dg3hcBjz8/Ni73/q1CmEQiHU63U0m01JLpns0MGtVqthOBwimUyKJI5JSSAQgNvtxp07d6QOjQ584XAYTz31FBqNBorFIjTtyO7a5/Ph1KlT8Pl8ePfdd7G9vY3FxUU89dRT2N7exrVr16BpGk6ePAmn04lcLgeHw4FoNApN05BOpyXJY58qJnZk3ZiQdTodqcMjkNre3saZM2dw8uRJrK+vo91uP9So24wdAh52kjyOBWKyakxmuX8ViFAi9jhhHJv6txHEGcenGpKMRiNMT0/j7/29v4dcLod33nkHAMaa9xqloSqQYaKu1r4xIc9kMiiXy2KYY/w8x6Im6kappHpuDAITI8NpxkyaMXhGtsYouzRj9tTXVVChHotz6vP5EIlE4Ha7pYXG2toatra25N4PBoNiSkKp26TweDw4deoUbt++jVarJZbwvV4P6+vrOHv2LJLJpNRU+f1+6R+Xz+fFbXRqamqMqbHZbMLekCEyYxvZhJpGKjxXp9Mp9WVkini/GO9r9ZiURaq1lDwuQQwXYICHDXPU68f3CWbIGJXLZenryDFzoULtYcf6Ql4D2vBznghUaRrS6XTEiMXv9wv4JTBX2wjQnITnRrAWDAbF+ZGqAZ4327xwn5qmSQ0dz5F9+Dg2vtZqtcR1stfrIRaLoVqtCuAjYCWoD4fDcj9zsY73A+ee14nsazgcnnif/qrjyTUw+BWERcBZYYUVVljxOPHFF19gcXER8Xgcu7u7UtvmdDqlIXYgEEAymZS6GyYeBwcH0nBWbQ8wGAwQj8cxGo2Qy+Wg67qAtkajgdnZWZw9exbpdBqbm5siUYpEIlhcXEStVsNf/dVfQdM0fO1rX4PL5cKHH36IXq8npg61Wg3r6+uSGLPvGI1JCDKZZPR6PdRqNSnIpwFAo9HA9va2JE/c78WLF5FMJrG5uSn9n9RifTM2hwCCyaqaYALjMrJJrMqkUIGCuq9JwW3V7Y2AxBhMvrli7/f7EY/HhTn1+XxiSc72DOocMEHnHKjzoCbvZINY+8jzI/PExNHlcqFarT40j0xw1WvApH8SO6bOoxoq68N5M875caGyburc8/Nq7dbq6irm5uYQiUTw1FNPIZFIIJVKyXldunQJi4uLKJfLIuXb2dnB+fPnTU1xKMkDIM2eR6MRdnZ20Ov1cPPmTSwtLWF7extffPGFSPK4wGG32+F0OrG/vw+fzwev1ytjV0161OOp92G32xXGnGCO4J/1WB6PB61WS5hwSgM5ZwQCRjZavW/VHmNqWw113o0AjnPPz5It7HQ6Ih3k+CmPZI821mSyFYBaw0aWDoD0gFMXNMiEcS51XUexWJRr5HQ6ZW7YIoCtDOj+yDFTYskaM0pAVSkrjZY4XwRt/J62222RYdpsNjEsUVshcGGu3W4jFArJMbkY4PP5pO6Xz1FKR1l7mc2K7cevPb5cAE4eRE94IFZYYYUVVvw3HWfOnIHNdtQQOBgMYm5uTv6D7vV68Pv9mJmZQbVaFQtpJkiJRAJerxe1Wk16V5FB6Ha7YuvPnnHtdhtra2uIx+P4/PPPsbW1JYzO1NQUTp48iVKphNu3b2Nqagrnzp1Dt9vFjRs34HA4sLi4iJmZGaTTaZRKJUSjUam9o/EKGUMW2BNocEWfSZfb7R5jpMLhsJzznTt3sLi4iLm5OWxvbz/EHExK9o128cbtzZJwggyVrVJBxqMAhBkzNel9dX9mQMVoAHH79m38m3/zb1Cr1WC32xEMBuFyucZ6ZLEu0MjGkU1RQSv/NRoNSerV8ahSslgsJvJKhmqyoJ4DJXLqdVH3a5SsqeM0Jv5qzz0z+aQ6j2asG0N1KOTnCJzobEh2KxgMwu124/nnn8fa2hqy2Syy2SxKpRJyuRxWVlZMTSJ43FarJYzMaDTC/v4+ACCXy+H+/fsolUrCXHHM/JsugioIsNlssk/13I33KO8ZGhHRUZHfN+6TgCGRSMBut6NUKgkA5L0GPGDZjNJYFcAbJcsETep1JAjkvcR5KpePOnkRGLGZN01EeD+ynrDf7yMWiwkQrNVqIlkkG8V6Ocq3NU0Tc5VAIIBKpTJmUMLrxPuAzB4lj8FgEJVKRRYzbDabLJ7xXmu1WiLNVMGf1+uVe6pWq2EwGCAWi6HZbMp3i9eQc0eHSoI2tUfdcDiE2+1Gq9WS7xHvC8psyag/6jn1q4wvGYA7+mmZmFhhhRVWWHFc2O12FItFca/b2trCwcEBQqEQotGoNMgulUoiuYnFYgCOEqV8Pi+JE4v1s9msyCJpU97tdrG6uopWq4Xvf//7yGQy6Ha7sNvtePbZZ7GwsIDNzU1sb29jbm4Op0+fRrFYxPr6OuLxOJaWltDpdLCxsYFOpyNjaLVaUrtB4KnWuDG5Yq0MgR5ZuOFwiG63i0qlgkQiIav0t27dwtraGlKpFHK53Bi4MWN2jpO6GaV5xubcRgaHrzHU98xq5oy1RkYWyvi68ThG6Zkq7drY2BAmk6wcJXKUV7GuhrWCZiCLx6dxiQrO1LGRkaGzKfdFl1Pa3fNzHJtxzibNpcoiGefI7H3j542MpvpPZX6M4E3TjhrZRyIRAW+ff/45arUaLl68iG63C5/Ph2g0itnZWeRyObz77rvY399HOp1GKpUaa3DPXoafffYZDg8PRW5HUAIApVJJFjPUpsycY8qgn332WXFibbfbYqRiBLvG2j6ypc1mE/F4HKFQSNg0Mlr8TkYiETidTnQ6HbHUV1tHqNeAJicqo6uyuOp9zzEQrKmyWbJMdKMkgKvX6+KkWCqV0O/3xTCJNXMq6zYaPWiuTWdap9MppkmsG2VfOvatLBaLGI1GAsrI1um6jmg0KkAyFArBZrNJn7V+vy9mJIFAYAxss9aYc0HWn/ui3X+tVoPP55O6R46diy4qSCuXy8LMcn7r9Tri8aPKMAJ0Prt0XZfPEmxyvE8ivlwA7mc/LQbOCiussMKK46Jer2NxcREulwu3bt1CPp+XZsGFQgHb29vCcAAPXMgCgQB2dnZk5TccDqNWq4nckGYnrO1hH7c7d+4gk8mg0+kgGo3i5ZdfhqZp+OKLL0ReeerUKRwcHCCbzWJqagqLi4solUpIp9Ow2+2Ynp4WWdBoNJJVcE07ckQrl8vi0MYEjsCCBgA+n08YkX6/j3K5DK/XK6vY+/v7mJ+fRyKRQC6XE8DBffw8YQQATDIBPMReMYymJvysyoIwJskEzQCN8T0VrKjOgKokkfPH5ujs5+fxeOD3++F2uwWME8wZLfSZ1FO6ph7feI5kImy2o4bpTKbp9sfPGeV2ZvtSpZRGZk19zyi5NDJ4ZmBbBR2TQJsKEHVdx8HBAUajEW7cuIGtrS1MTU1heXkZd+7cEbDjdrsRi8UwNzeHnZ0dbG1tIZPJIJFIiKnJYDDA3t4erl+/jmKxiHa7LW0C1OumnqfNZpMkHThiotbW1vDss8/i4OAANpsNn3zyCQAIkOO5mbGSNL7I5XKyWMLm3mS4yESROWq32w8B/UkMN3+qMldVpqnKK/l8otyQAJFzUK/XUa/X5dpRIkg2SVUQUAapLh4QLNE0hlJyAiwAUg8cj8dRr9dFFk5gRSMRm80m7KTP5xOXydFoJHW7XHQiWCSrRhaSZiIEjf1+X4xXaCzDuQ+FQnC5XPB6vcKgqc8+Xl8Cu3a7LS0M1HuerCYXA2iCQzD4pOLLBeCEgbPCCiussMKKyZFKpVAsFsXUYGlpCZFIBJVKRRIBTdNklZmJ4c2bN0UWlUgkcPfuXQBHTmmsaWPjb0o0b9y4gW63i6mpKcRiMXz1q19FLpfDF198Ab/fj9XVVTidTty6dQt2ux0rKysIhUIoFovodruYn58XVqbVasHlciESiUgzaCZBtNV2u93odDoi5WOyV6/X4ff7pRcWmSG2RKCL3u3bt3Hy5EmRZjKJNNbsPKoezQiSjNtPAmvAuHHKoySSZsyScRszuZ9xX7quIxKJoNfrSe0L36OJQiAQQDQaxUsvvYRsNovt7W20221x4lMZFp4Da3L6/f5DAEk9Z13XJTmkQQ0NGLg/lZ1Rgacx+TfOhVmoc2L2k/94XHXf6hjMjqVeg9nZWWjakUtktVpFKBTC4uIilpaWkE6nhX1hbWAsFsPGxgbu3buH6elpadNBFqhYLCKdTgujSXBDxkbt4cdm1WxuDwCJRAK///u/j8uXL+PNN9/ErVu34PP5UK1Wx0CWcZ7U85+fn8etW7fEoIhgjttRHqoyZWb3hhHEqXOnhtl1VQ1yAoEAXC4XarWaMHcApOaSqgBKrIEHNZX5fB6Hh4eIxWJIJBJSy8bnBxnoWq0mpk4AxMyJTB7NTACIZT9wpFDgPdPpdBAKhTAYDOD1ekWOSUmkw+EYM35iXSi/E5QwE9TGYjGUSiVUq1V5PxwOy7HJyvn9fukzSBDIejZeg1AoJAY2nD+y7WwbUalUpE5V0zQUCgWzr9avJb5UAI4c3JPUpFphhRVWWPHffrRaLVQqFQwGA3HJKxaL8jeTVjZz7XQ6KJVK8Hg8WFlZgaZpwh6Ew2FZ3Y1EIpiamkKr1cLu7q70ZJuZmcHi4iICgQCuXLmCzc1NJBIJXLhwAQcHB1Lvtry8jFQqhbt370ryG4/HRRaWSqXQbrexv78Pu92O5eVlfPHFF7DZjpp4DwYDkTBRFqUm4OxzpK4cs1EvQVqxWMTi4iISiYSsRnMV+nHAm5ksz0wepjIN6ufUOA4EMnnlPo2JtlEiaMZA8W9GPB6XJttM+NWxtdttLC0t4fXXX8f6+jq2trYQDofHbNDZe4pzS/MTIzAwC4KRSCQitTmcIzX5Vxk0dS7VeirO2SQJqXGOjNfBjLkzA42TmECOh5I0m+2oLcfZs2fhdDoxNTWFmZkZZDIZZDIZOX8yPLVaDfl8HsARc9TtdlEqlVCv11Eul1EqlcRdUTWeIHPOpHxmZkYMNXw+H1599VWEQiHcuHEDu7u7Ata5SGO2qKDeywRC3I4MlHqfkvFRrwfZcn5OZXt5bBVccZ5V1ppMkNnYeEyyjrVaTeSTBGIcC6WevFfZo7DVaiEUCiESiUhTbB6D16tcLqNSqYhMe3Z2dkwiqp4fQR6ZOF4nmtDQ3dLpdEotI+eW/dt4PqqLZqPRgN/vR6VSkZplh8OBRCIBACJ9p1skj0+Wu9lswu/3CxNHgM9aZ84TrymbzhMIq26bTyq+VADOYuCssMIKK6x4nMhkMhiNRlKHsbe3J4ljtVqF1+sdY7aAI8OPqakppNNpVKtVcVdjch2Px+HxeHDv3j3U63VJyJaXlzE/P49qtYoPP/wQAHDhwgWcPn0a165dw82bN5FMJnHy5El4PB588MEHcLlcWFpaQr1eF5YwmUyiWCxiZ2cHgUAAy8vL2N3dFSc91WwAeJDwqQk6ezO53W6RGzF5IjPX6XSwubmJhYUFZLNZkWAZAZcafF9NKBlMwIAHIIySSLOaNuPrahBAqKYyRrmeEbgZx2xk47gNrcfb7fZYnZLqwDkcDnHlyhV4vV7cvn0bmUwG//yf/3N8/PHHyOVyIvNiYkyZl2pcwn0ZpY783ev1IhaLYXd3d+w8yMKasWQMM0OY4+Jx2B6jWYa6zSSGVAUz6kIJzTNsNhv6/T6SySQ++ugj/OQnP8Ha2hoCgQBarZbcd/wcADGdKBQKIp+kdTyt5AeDAXq93lhiHYvFZIFifn4eAPBnf/ZnAt4oRTbOp3FuOBeXLl3C1taWJPCq1JFAgzJngknjdpwD4OF7E3gAxFXpKvCg4bwarAOjEQfPoVgsChPGa+T1eqXPHvdjs9nQ7XalXm8wGKBQKIhTJUELF7JoQFKpVMQspN1ui0yVcnIVyBKMUV5KENpoNOS4fH4RJJP14v7cbrc47fI5rWkakskk4vG4mA4Nh0OpPyagbzab0DRN6hFtNpuMORwOC5s7Go3E3Zc1fV6vF/l8HoPBQNphVKtVVCoVpFKph+79X1d8uQAcf7EQnBVWWGGFFceE0+nE4uIi8vk8crkcpqamhH2iWQXrR4LBoLQHuHPnjiSDNC9hclKpVLCzsyM1UmQAotEo8vk87t+/D7/fj2g0itFohLfeeguZTAbJZBKnT59Gu93G/fv3kUwmEQqF0G63AQBTU1Pw+Xy4f/8+2u02nn32WQEQXN3marrL5YLT6RS3QwYTQyYm3I6mBkx66OxWLpcRjUYRiUTkHLlaDTwM4piUqvVfZqGyEpMklGZMmzEmjcMYj6vIYbLNmigj6wRAJGXFYhHf/e53ATxgDsrlstQ4EsTRQp7MgvFczJhAn8+HZDKJbDYr7JvxM/wcAYFZbZoKDtVjqWEGyoz/JgE0s3MwgrrR6MhWn5K1TqeDYDCIYDCIarWK27dvS3+wu3fvol6vY2lpCdlsVhJ/ujyyuTQbblerVXQ6Hfj9fly+fBmfffYZgCOGlIYZfr8fTz31FCKRCGq1GhwOB2KxGAqFgjQRb7fbY6yWOnb+zevMax0IBMTgR7XRB8YZT0o6CfzV980YOd6HxrHwdSPbShklpdAEUOzbxoUnfqe5MELzI4JBtU6WfdG63S6KxSICgQCABwwopa7cD+eVCxQ0+eD3ZTAYiJlIuVyWXoDValWMRdSaXspO+TwDIItNfr9fzEkoV+WxK5WKSJRVdpSLPeo14tyxzx3bwJCJo4zT7XbD5XKJrHJ6elpq5FqtFmKxmDCJTyK+XACON7WF4KywwgorrDgmnn76aXz00UcolUo4deoUer0e0uk0PB6P9CsajUaYnZ0VF7V79+5JQhIKhTAcDgWg7ezsyAqt3W5HOByWerSdnR3UajXEYjHE43F0u13s7u6i3+/j8uXLWF5exuHhIcrlMqanpwE86J3EWjUmuxcuXEAul8Pt27cRDoeRSqWkLoNgi1JQJofGZJ61LEyKGI1GA9FoFG63G/1+Hzs7O1heXpYaJSZcgLmc0exYfE+1NmeoUiuVaZgEGAj+1LYF3OejgCM/bwZo1J9qw2RK8yjd6vV6Uqelnue//Jf/UlwOKVdlvRMbOqvjMwIdsmt+v19MdOgY6PV6Ua/XZUxGeeqk+ZoEvIyyx0ngy6yebdK+jMfhvaBpGur1urCJkUgEc3Nz0HUd2WwWn3zyCSKRCDKZjBjCHBwcIBgMivEEv3sej0dkkHQV9Hg8uHTpEp5++ml89tln0rha046cL8+ePYt/8k/+Cba3t1EsFgV88Bqq9xEXKAiq1HvE6M7Y7/dFGn1craaxiTeBmfqakXVmUEJIgKC6UhqvvfpZglI2jCfTp55HvV6H1+tFIpEYu28BCLAiWAUgjDQZNACy8MPvBxk63rc0VGE9GkEfARtB5HA4FKdHSiC5favVEnm7pmliwkRHXV5Huk6q/enIMhLUEeix7s5ut8vzksHveaFQgN1ulz5wzWYTkUhEzq/ZbIpByqMWkH6V8eUCcD/7aZXAWWGFFVZYcVy89dZb6Pf7WFlZQaVSEblWJBKRxJH22s1mE+l0Wiy1mezR6Wx3dxe5XA4zMzMAAL/fLyYom5ubcLlcOHfuHOx2O6rVKnZ3dxEKhbC2tgaXy4XPP/8czWYTa2trIudSmbRsNot4PI5oNIpsNovDw0MkEgnEYjFkMhmUSiWRAdXrdam/muT0SCklG1QzEaFbos/nE1laqVQac7583IRFTWbNjBoYxvorNWlWgYSRESHbx2AybayBU8czaexGBoQJMpPnaDQKn88nTFuj0RhLmikL4zGNDMSjwJvT6ZRehPl8XqRgXAigw+WjavjMZKGTwvhZI6A1e1397HESSgJy4Oi6zM/P486dO4jH47h06RLK5TJ2dnZw9+5dSbgps1MldzMzM9LPkN839g4jeLh8+bLITv1+P1qtFiKRCBYXF/EP/sE/wHPPPYft7W2Ew2GRtFJiyZ+VSmXMwVVlXdU5oqHQ9PQ07ty5I+yUGrx/1DpPlf02AnHj8YzXxbhYoG6r9iRUwSTvU1WqSWdGShwHgwFqtRqCwaAwUXQD5ft0/uRnyOgRFPl8PlErcHx2u116GXKBqFqtCjDmT/aOOzw8BHBkLEPpMY/ndruRTCbFLdPn86FSqYiCgQ3JCQ75fSUQ4zOO800WmDVxPA+O2+l0iuqBLpkEgzxvsogErVYbgV9S2G0/W8kYWQjOCiussMKKyREOh+HxeKQZayQSERlPOBxGMBgEABSLRWFAgsEgWq0W/H6/rMiSlWPj15MnTwqDtbW1JcmkruvI5XLI5/NYW1uD2+3G1taW9Lr6xje+gXQ6jVqthmg0Ks1wbTYbTpw4AeCobq/X62FpaQnxeBz3799HrVZDKpVCuVzG/v6+1IrQlntSEOw5nU6xFefrlGSyjiYWi0n9lZEtU8MInoxAw8i+GeVqDH5u0nHU4wEPDFYmHfs4GaE6FuO4uKLv9Xpx4sQJLCwsYHt7Gx988AEajYaMjUBNDbI7xjpE43nS5OPixYvY2tpCoVAYA6+5XO6h8zECA9XAxTg3ZvPK3822m/S6+p7Za+r41HpILha8+OKLCIfDiMfjsh3vQfXzgUBAbOtV+SmlqWTBaBxz9uxZfP/734fT6cTCwgJ0XUcmk8GZM2fw3HPPSc1or9eTptKdTkfqHQuFAqrVKoAHiwJkqsjmEaQAR+Bge3tbXBONYWaoY1y80DRNmn8TnKufZ6gNstV9qfeBrutjIKLX66FSqUj9Fq+HWufm9XqlnpAW+vxucx+UcrbbbQF3qrSTiw6sAabLKh0m2UaFDpi9Xk/kk263G6PRUc81l8slZiJkylg7R2MSGpK0223EYjHo+lFzcvZ+I0jr9/ty3Gq1KrJRTdOkATiBbqvVEvDKxRouULFFAl2FuX8at7Bmj8d8UvGlBHAji4KzwgorrLDimBiNRqhWq9L/iMlQMBiU/8yr1Sqq1Sr8fr/I4SKRCILBIEqlktTBhMNhaR1AtzIyDmySvbu7i263i5WVFUQiEXz22Wfo9XqYmprC7OwsPvnkE3S7XczNzcHlckkN1KlTp6TBM4Gmruu4du0anE4nUqmUJIgejwezs7Ow2+24efMmyuXyQ/JCNUFX6+dosQ0cSaai0ahIyriSrfaTMjaRVmtOjLKyx5HgmdXDGQGDmfyS2xmBhBHQHDcOo9ELz4OM5OHhIfx+P55//vkxu3L2tKLUTB0nk8FJ0k7KuKLRKNbW1nBwcICdnZ2xc1HHbmQkHwWwjmPgjHNjFsfNF/ehHmPSXA8GAxweHuIP/uAP0Ov1kMvlxPWQLobcnr2/6KTKulM6FbKmkMBqZWUF8XgczWYTi4uLOH36NIAH7RaazSbW19ext7cndWGsZyK7TAdJOs9SukxpHZkgsk1PPfUUrl69KosexuuihtHchPc4LejJkKumPaqkEnggnTQyc6oJkFoP2u12pe0C2WDepzwfv98vC1SUBbK+jdeEoMzn84kUk8COjJQK+Cgn5/H4vOB1Yz1Zr9eDw+FAtVoV1sxut4vqQdd1AdStVgu1Wk3aI9CYhL00+VxyOBwol8tybErKOWav1yuqBj7rw+Ew6vW6mJyQfVTbPoRCIVm4opNsNBqVekg+C55UfKkAnONnAG5gMXBWWGGFFVYcE41GA8lkEpFIRFaCWU/B+i/WcNDdbWZmBh6PB4eHh6jVauLkFggEEA6HMRqNsLu7i0qlgnPnziEYDCKfz2NnZwexWAxLS0vo9Xr4+OOPEQwGMT8/j1KphKtXr2JxcRGpVAqtVgubm5tIpVJ44YUXMBgMcOfOHQBHZiaDwQD5fB6BQACpVEpW2LmSXywWpa7EyNQA44l2r9dDtVoV90mCF1VCWq1W0W63JQml450aqvxxkvnIcWBOZZKYeKrtAYzySnVbVdZpZN2MbJL6twqERqORJJbG/RLo3rhxA4VCQdiESCSCl19+Gevr67hx48aYhJIJIH8awQ7nMR6PIxQK4fPPPxd2wGzO1FAZmEnsmdm1njQPxs+rr6mgYtJ147WaNL+adtRuw+VyYX5+Hh9//LEslDChDgaDIjVlsk0wwH3TZbLZbMLr9cLtduPixYsoFovwer04c+YMXn75ZSQSCek1xjq7Wq2GZrMpAI695KrVqkgGPR6PMC5kvPi60+mEy+XCwsICKpWK1HAZzUbMrp2xro2AQHUm5fdGvd7q95FBpkx1lVT3PxwOpW8gFyBYy8YaPjJzZKoAIBgMioSU/d/INLHWT2WqKDXn3JGNG41GYgKSz+fF2ZbP1m63i0QiIS0j+B0jWKZjKc+9WCxienpamtpTuk7Gjm6WlGh6PB5Uq1WRS/LZrprJAJCWAaFQSOrnNE2T60lTG0p5WSfI+jyyypzPJxVfKgBnSSitsMIKK6x4nDh//jxcLhcqlYokVZTZpNNpYdMajQYcDgeWlpYwGo2QTqfFRCEQCIzVcnBFdnV1VdoJ9Pt9nDp1Cj6fD+VyGdVqdUwiabfb8dxzz6Hf7yOdTqPdbuPSpUtYWFjA4eEh7t+/Ly0FCAhdLhcSiYRIgex2O3Z2dpDL5ZDNZgU8EEwYJV1qct1qtcQsgAkdbbdTqdSYPIpObkw8j2NoJiXzDBWYqb9TuqbuR3XyMyauZiDnOPbJbBuusDP5VBNnArDRaISDgwNx7mQyTVaCSe6j2Dd+9uTJk5ifn8dnn3021vphEggznuejgJ66jXH+jUYYk1g9M+mmcTxmx1W3GQ6HKBQKyOVyWF5exvLyshiXUIam67qYXTgcDkQiEUmMyRjRSp6ugDabDWfOnEG9Xkc4HMZXv/pVTE9P4/vf/z6GwyFarRZ+8pOf4O7du2g0Guh0OtLfr1KpiC08HRJVNolyQpWxCQQCeOaZZ/D2228/1AJABVG8lwkAjLJe1UJfrZfjvW1k4NT9qiwcv4s8Nply9n3jZwhsVPZSZfzo8Mm+ah6PR+q8ut0u3G43ms0mRqOR1LZREeBwOBAIBBCJROQ722w2xXSGbGOr1ZJebZSFc5GJZkoEeaqrJPDAVIXvuVwuYQuBI7UA7w9j+w+yuup1DAaDqNfrwvw1m01ZuKnX6yJ/p+R0OByi1+uJ5F7TNGEI+ZknFV8qAOeg1e/QAnBWWGGFFVZMjlgshnQ6jXw+L1LHg4MDpNNpYQRY+E9nyFKphG63C03TEIlEEA6HAUBWm6emprC8vIxOp4M7d+6g2WzizJkziEajyOVy0vSbyVEoFILb7ZbPe71eaZT7k5/8BKPRCAsLC5ifnxfZpN1ux8rKiqxIp1Ip/Pmf/zl2dnak+J89jsj0qBJBIxs3HA6FhWOCRECzu7uLM2fOiJSJ2xtBlpn8kaEm/iqQmMT+qKybul+1vxnlY6rkjO/xvMxYuOOOT7kk627U8zOOgffGD37wAwFwqmyUfxtr3+gquba2hpdeegnXr19HuVwWGZwKso3n8yjJohoqk2ncD983kzyazR/fNzJ/kwCk8T2yw9evX0cgEMDU1JS0xQiHw2K2YbPZ5H0AwgZxgYQ1qG63G5ubm7hw4QLm5+fxwx/+EB6PB8vLy6jVapL412o1HBwcoNlsolqtotFooFaroV6vo9VqCbigZJrXlIwiJX+8bqdPn8be3h52d3elMblxznm+qomLylByXwRgZHPYL1K9ZsYFDvX+IMBUAZzL5cL29rYY7Kj1eQSNXKAAHvRfOzw8lObdtPenOQoZT4fDIU26aTrD/ZO9ZsNuyi41TYPf7xcGjMCb++SCic/nE+kk25fU63Xpz+lwOMRYicwZQaT6/edxeOxutzsG0smw1Wo1AexsTcH54DOV58ZenrFYTBaQms2muJm2Wi2rD9wvK+x2i4GzwgorrLDi0fHBBx+g0+ngueeeg9vtxv3791EqlaSBLFdifT4fstksNE1DuVxGJBIR6U2z2cTe3h4A4MSJE0gkEtJXjsxaPB7HZ599hr29PVy8eFFMBuhwWSgU4Ha7JaltNpv4/PPPEQqFcOHCBTgcDhwcHKDRaGB2dhZzc3Pwer3CmH3wwQfQNE3c2Cg9Ups+c3V/kgyO7ATbIwAQc4NOp4NTp07h5s2bUoukSha5j+NAnBoqUDtuG4axpk5NcHmOTJqNrptmDAh/N27D1XoCCfazImhjfZQZM6KynUb2TZXShUIhrKys4PLly7hy5Qpu3LhhCq7U8aryOrOxm11T4xyYgb1J86FuY2TcJjF0xn0Yt2u32/joo48QCoXw3HPPiZV8LBYTww2XyyXyZSbv0WgUwWAQu7u7CAQCOH36tICT3/iN3xBnxLm5OfmdDb7paFmr1dBoNJDL5dBut9HtdgUskHECICYpZPnIDnJRpNVqYXd3dww0MYxmJkbQpv7N+4TgTd3GOIdGlpMghNeF93wkEkG5XEatVpOFB7JrRvBIqeNwOESlUkGtVkMoFBKZoAoUCbL4XaC8lNeAoI+Oj5Rek6Vmo3U2w6Y75mg0krlnXzW/349arYZsNotwOCxGK7quy3OJrCzBIMdFhnA4HErrBRqpsF6VbQ8IylutljhOApBz4wIdrwXBOsFfq9USc5epqamxNiy/7vhSATirBs4KK6ywworHiU6ng6effhq6ruPjjz+WlWY22g4GgwiHwygWi8ISTE9PS93b1tYWqtUqwuEwVldXYbfbsbGxgdFohHg8junpaQwGA/zFX/wF2u025ufnsbm5CU3TkEqlYLfbx/ox0eKaLpWLi4sol8vIZrPS4Pjs2bMYDofiYPnmm29K3QsAJJNJNBoNuN1uSfxV2aNZMFmp1WpS60O7cV3XkU6n8cYbbyAQCODatWuo1WoAHkgd1SR+Eogzk/9NMi05TpppxkCpSa66XzOGaBIo4r5Z2wJAHPbUvnMc26Rz5E+VkWPCz0SyVCrhv/7X/ypMkbF+zPi7Ol+PAm9m7J26rQpWjfszOx8je3ocI2g8vnodm80myuUyPv30UwwGAywvL6PZbELTNMzNzQmzXS6XEY/HheU9c+aMAIuLFy9icXERV65cwTe/+U2pR8vn85iamsLdu3fxve99D5VKBYPBQNoRFAoFlEolMeDhXJJhItAgG+N2u4XF5vXxeDwYDofY2dkZY4bURQPVTERlh9TFDf7k59RraHbPcpxchLHb7SLxVRuHx2IxXLt2DZ1ORwAex8fz5Ot0maWz7szMjDz7GB6PB61WSyTilFzSyZNOoc1mU0A4gRwdPnm+ZOfYtoDgFYDU8xI89ft9zM7Owuv1ipydLrA0m+HzjgYjbLhtt9vR7XZljumyye91u91GKBSSuefcUYLZarUEvDkcDgGQXMjiPdrv99FutzEzMyOLZk8qvlQA7kEN3JNrrGeFFVZYYcV/+/GVr3wF6+vrSKfT8p/24uKiyHqCwaDY/lNO5Xa7US6Xkcvl4HQ6sbKygqmpKbRaLdy5cwfBYFCMTg4ODvDpp58iEAhgYWEBg8EAwWAQkUhEZEGhUEhq7Wq1Gvb39xGNRuFyuVAqlXB4eAhN03D+/HmkUimR/2QyGXz44YdSzzE9PY1kMol79+5JcklHPzaUPk4+CDwwQKDpAAFltVrF3bt38cILLyCTyUh7ArVeBXjYtEEFOWrPNrPE/1Fhtr0Z02ZkK7idCmCMrMYkEDccDkWyRxbGrF2AcR9GpkyVtbZarTEnT+O4zM7RDMypv0+SNU5iOFVgZQRpx52X2bkZxzHpNV3XxaTk888/F4Za0zSRDTscDnS7XZGyPf3003j66aeltcb09LQY96yvr2N6ehqff/65GJS8++67uH//vgDwQqEg/R3Zw1CVL/L7zPovXdcFvHEeCb6fe+45/PSnPx1zMgTMm2+rCwj8PmiaNtaiQJUDq4sfqkEQP6NeJ4IsAjNu+8knn6BUKo3ViTHUGjkAYpFvs9mQSCREat1ut8W0iYwo73Xug061LpdLpJLValVcWN1utwBDj8eDRqMhi0eZTEbAE8HlaDQak1CypQCNRdhvrVKpiNkJe9ZRxqgamvCa8n5j427WwfE7qLYXiMfjAjp5/vF4XNi2QCAgdYVcTFhcXEQgEECxWLQYuF9WWAycFVZYYYUVjxNXr14VBszpdGJmZgZerxehUEhACwDMz89LwrG/vy8W1rOzs9JO4Pbt21hYWMDS0hJqtRpu376NTCaDc+fOwefzYX9/H4lEQhgymgMkEgnouo7t7W3p59bpdKTOY3p6GidOnBA5E3toffbZZygWi6hUKjhz5gyCwSAODw8RCoUwNzcn0qFKpSIr+QQgk1wFdV1Hu90Wxzeu2vf7fdy9exeJRAJPP/00Wq2WuMhxdVplE9SEFDAHEmasnQq8zMDeJEdE9XPqPwIVo4vl4wRBXLfbhdfrFQMD1smpEkkVCKrySfVcVVkbx6Syao9iwh4VZszc40gbf55jmDFxZu9Pei2TyeD8+fPQNA37+/sIhULCkESjUbTbbSSTSYxGR06U09PTCIfDkrzT9n9rawvJZBL379/Hp59+im63i/X1dRweHqJQKKBWq8m/ZrMpkkiPxyPgiW0Mms0mSqXSmGyS9y2NLS5duoRKpYJ0Oo14PC71VJNYbd5/ZM54/qoBD4Eh73VN04QN5JyoCxAcj91ul/pZgslSqYS9vT1x6SRbCEAAKRdwKFekRJx9IAlM+Hzyer0CVMmi8fiRSERYr1arBbfbLawcnVRpDkUGkeBI1x+4jxolmZqmSU3i4eGhtAOoVqvQNA0+n2+szQSVBvw8z5U1l5p2ZDzDujuCVL43GAyE7e12uwgEAgL4CEidTieKxaI4eg6HQywvLwsIpoHLk4ovFYCzXCitsMIKK6x4nOh2u/D7/dB1HYlEAsFgELOzs8jlcmKT7XA44Ha7AQDpdBqDwQBLS0uYmZnBcDjE/v4+isUiZmZmsLi4iK2tLezs7GAwGGBubg4AsLm5ibm5OQSDQaTTaQBH7QBotX14eIhoNCrgjAlRJBLB9PS0uOKtrKygVCrhypUrWF9fR7/fx6VLl1Aul1GpVDA7O4tKpSJF+ExY2SyYvbMmMTjAA0kRE172imq32/j444/xxhtvCIijBJDSKSPTpYaZ26SxTogxSQZoBIIqcOS2ZkYbRrZL3e+k2i++zr5YTNaY+JItUg1MVNMS9Z+maWNmJjabDV6vF3a7HclkEtvb2w+dt5r4qvNids2MMQmgq+f4KBbUOE+POr6R1TQ7Hh1YPR4PCoWCmGhEIhGpO9V1XepO+/0+qtUq0um02P7v7e0JG/L5559L/Wm9Xke1WkWlUkGlUkGn00Gz2YSuP2hyrTa7psshbfbJWvF+5GuhUAipVAp/9Ed/JDV6ZMJUEK4CM+M9ZJwnIzOt/qMcT62r5DmwHowyP+AI1BWLRdRqNZFK8pzoskiworpp0m2WYHYwGEhftXg8Dk3TxKhkOBzC6/XKvJDJJFvfarWQTCalb2UikZBWJj6fT/pnEqByUYjzqfZf8/v9yGaz4kjJa9Lv99FoNBAKhTAajaRJN3D0HGcLF+6P9Y00NSGo63Q6oiwgy9Zut+X8CHTpzFur1eSeUOuUWTtHFu5JxZcKwIkLpQXgrLDCCiusOCa42hsIBBCPx9FoNPCTn/wEun7UToDNbrvdLorFInRdx+rqKubn59FoNKRFwOLiIkKhEG7cuIGDgwPMz8+LY5vNZsPZs2dRKpWwubkJr9eL2dlZaJqGTCaDTqeDRCIBv98/VitF0Mj6kPPnz6NUKuHdd9/F3t4evF4vTp48if39fUxNTWF1dRXFYhEejwenT5/GrVu3HpI4MtE0sijqTyaIbJ5L0wOb7aitwE9+8hO8/vrruHTpEj755BPpuaTrujAORrZLbTisgjeGWhPEzxkdKMloTDIQMZ6nkdGbJAWcJKM0jo8SK5ox0NhANTbhPKjsnDp+VVLndDrx9a9/HRsbGw+BUPY4e+WVV/DTn/4U+XzedOxmzJpRDmkEWmZyzOMYQON9YmQWzUDcpOj3+9jd3cVzzz2HVquFcDiM4XCIZDKJEydOIJ/PSy+yUqmEg4MDeL1e3Lp1C7VaDVevXhXwdnh4iM3NTeRyOUxPTyOTyWBrawvFYlHqoCjj431DcKhazc/PzwOANJUmC6RpR7Vwzz//PN566y00m03E43EBQZTgqSwzgTq3OQ7wkgnk/eD1egUUcHtjjWK/35c6Nv6dz+eRz+el5ovtTXjeau0cF1rsdrvIDmnln0wmpZ6NTLzKWBI8cn+cK007Mk8qFotiGsJrqGmatHtQFz44HjZG53EIRmkq02g0EAgE5JnE60LgyP3RyIjMmdvtFmUEwRaBcTKZRLVahdvtRrFYRKfTQTAYlLmgtL3RaEiNpq4f9ZRLJpNSD0gZpyoffRLx5QJwP3OhHAytGjgrrLDCCismB5vZOp1O3Lp1C41GA4lEQtwhI5GI9Fby+XxYXFzE9PQ0Dg4OcOvWLWkePBwOce/ePdRqNZw/f156HUWjUYRCIRQKBZE/xmIxOBwO3Lt3D+FwGIlEQlaZyb6NRiNJgBYWFhCPx3H37l3cunUL29vbkuBsb2/j5MmTCIVC0k8uEomgVqshFosJC8Hkx8xhTQU6at1Ot9sVCZTNZpO5yGQyuHr1Kr75zW9iMBjgk08+EZka63FUoKWyTqrk0JjMqtuoYQRxx8kh1YTXmFhPAnEqgDMm3UbAQrOKXq8ndVpGu3iCNiOAUs97aWlJAHqxWHxIajcYDLCwsICFhQVTY4vHCfWYBNdG8GwErUawedy2kwDicSBO148MceguWa/XBfRcvnwZlUoF77//PiqVCnZ2dlCv16UNAA0waGRxcHAgYK1er4v1vOqSynqq0WiEZrOJRqMhLCkXJhYWFnBwcCC1ZgQYvV4Pr7/+Ou7fv4/9/X34fD4EAgGR4vX7fTlXlUVW2Thg3MyE7BjHxwUb7lN1gFQNcPg3WT9Gs9lEOp2GruuIRqPodDoCQsiqsZcd2Xe1hpPX3OPxjLkzcqGCPdpUWSk/2+12MRqNEA6HpScaDXpUUEbAyPGzDYEK0vx+P4bDIfL5vDxnCMKpHGBzdjZa51x7vV5pKdDr9YRhpLNmp9MRho+ve71e2RfZOUpEycy2222RZ9rtdsTjcXi9XgF6Xq9Xegqq5i+/7vhSATi7ZtXAWWGFFVZY8eggmFpfX0er1UIsFkMwGBxrEVCr1UTK6HA4cOPGDeTzeUSjUczNzaHT6aBQKEDXdZw4cUKstFOpFHRdRzabRbfbRTAYlDqfvb09sZ92uVxoNpuw2+0CulqtFqanp7G4uIjDw0O89dZbuH37NtrtNpaXl4WZuHTpkiTSy8vLaLfbY8lUtVrFYDCQRMRooKDWYqnMFsEEjQzYH44J5MbGBpLJJJ5//nm0223cvHkTzWZTXN+Oq8cySiJVgwU1OTVjxibtR5VSqqzfcayaGpOkf2afU0Eak2Kji6QqfVPHres65ufn8frrr2NtbQ1/+Zd/KY6equSSTYTz+Ty63e5D8/DzxnEySDPANYmtVPf1uCDOuF2lUsGnn36KF198EalUSr4DxWIRa2trIgcmKKM8jWwLcARc8vk8KpUKPB6PMCyUGhKMkXXq9XriHkhA43a74ff7sbu7K/VwZIyGwyFeeeUVbGxs4MqVK7Db7eK6CGBMlgyM16gZz1sF4Gq9HL9LlPrVarWxe55zxu8d69QACMDJZrPSs431YBwjDT1Ux0qbzQafz4e5uTkBInzm0MyFQIZj83g88Pv9Y/c6F2xmZ2eRyWSg60fmI/1+X0AuGU/WwzWbTTSbTZGs8/h8r16vS+9N1SHSZrMJ08Ux0YAlGo2Ofdd4ncrlstS+0USFi2rJZFKavFPGzFpXPkdYI6fruphOEbwBkN52nE8+c59EfKkAnM2mwaZZNXBWWGGFFVYcH263G/v7+3A4HIhGo1haWkIoFIKu61hfX4fb7cbs7CxWVlaQTqdx584dtNttXLhwAS6XC7lcDv1+H06nE4FAAHt7e9LfiMX8rGXr9/vY3t5Gr9fD4uKi1LTk83l4PB6cOHEC2WwW2WwWJ0+exNTUFJrNJq5evYrbt28jFoshlUphb28Pi4uLOH36NO7evYtAIIDV1VUBTm63G16vF9lsVlzmyuUydF0XqZG6Ag+MN8gGHiTso9FIpJQ2mw3hcFiS4o8//hiJRAJf+9rX0Gw2cf/+/bFVbLUvlrGZNcPIXBgZIjX5V98/TkqpyuVUcDUJVJody7gNP2/GSpHROU46qH6GPQLD4TCi0agAanXO7XY7ZmZmxtwQVbA1iZEzvq6e46OYskkg1njdHiUNNI7D+PpgMMD6+jrOnz+P119/HefPn8fu7i62trYQDAaRSCRw9uxZRKNRbG5uYn19XcABG0iXSiUBLCow4f1BcM1WArw+7GdGYDMcDhEKhWQMGxsbaLVa+J3f+R2MRiNcvXoV/X4f4XBYasaAIydGAhrjOVNuqIJ5lUXj94J1an6/31Q6yX90VFTr0Uajoz6PlHXzPRoj8ZqozBeBHQ1IhsMhpqamhLknAGItGaWkdJsEjiTnBMLxeByVSkWklfV6HR6PB6lUCvV6XRYe6OCqAspwOIx0Oi3S7FKphGQyCY/HI4Cdc0VJI8fHOj8a0FBWqWlHbpLlchkejwfValXYOp/Ph1KpJDVxrH2mUZGmaQIKCV5tNhv8fj8ikQj8fr+8xkUIOmWm02lh059EfKkAHHBUB2cxcFZYYYUVVhwXX3zxBYbDIZaWlhCJRGCz2bC3tydNtk+dOoXp6Wncvn0be3t7sNlseOGFF9DtdpFOp9HtdjE7O4t2u41CoYB4PA6fz4dcLofbt28jEAjg5MmTKJfLUo9x8uRJYbzq9ToSiQRCoRD29vZQq9Xw/PPPw2azoV6v49atWzg8PMTc3JyYXVy8eBEulwvvv/8+FhcXsbq6Kk1tPR4Pms0mdnd3EY/HMTU1hfX1dYxGI4RCIWnySwc41ZHSKBcEHiTcqpsc56ndbuPtt9/GG2+8gZdffhm9Xg87OzsP9URSgZaZRBIYBwlmQM74OVVKaWTkjHJLo4RR3cdxTJO6HX+ajV0FSGafM+6/0Wjgj//4j8fqk4wxHA7x3nvviamF0ZFzkhTUCNqOO1fjvE1i08wYSOM5m4HDScdgsv/xxx/jb//tv42VlRU4nU786Ec/wt27d3HmzBksLi6iXq8jHA7j6aefRq/Xw+7urjSdZg2batDBe5nyY/VacbGEDo4EFWfPnsXv//7vo9ls4l/9q38Ft9uNV199FQ6HA3/yJ38i5hbsB8jvgM/nk+8EMC7XVV1FjYsHauNuMlMq42o0wOGY2Xic7FS5XEYmkxFzI+5b13UBToxkMimSw1gsJgs9wWBQzoFzSPfKwWAAv98vjbPJguVyOYxGI0Sj0TFb/kwmI8CMYI/sHdlRgme6OmqahlarhX6/j1gsJs24+b3lmCiLDIfDY6wdZbCcd7vdjp2dHbm2tPd3uVwi07TZjloIRKNR+Tybv/N4dKKkuyQBJHDUF5JKAdZFk3V8UvGlA3B2m2YxcFZYYYUVVhwbdMBLpVKIRqPY3d1FrVbD7OyssADXr1/Hzs4OlpeXsbS0hHK5jHw+j3q9joWFBTQaDZRKJcTjcYRCIWHllpaW0Ov1cPfuXbhcLoRCISwvL6Pb7aJarSIYDGJ1dRXD4RD379+Hx+PBN77xDVQqFWxsbKBcLqNQKCCRSCAajaLX6+HZZ58VE4bXX39dJGBcUQaAcrmMkydPYjgcYnd3d6wtAhNYFuEDD2RKxqbCakLOOhKuiDMBqtVq+MEPfoC/83f+Dl555RW8+eab0l6Ax1AlmmotmppgM+klQ6iCMxUEqGBHBXHAwz3neGwjqJkkzVTHYQZ2jA6bZvLIRwW3NUoszY7TbrfHgLUZe2bGyhlNRozbTwKz6u+T5sm430ngzmxb43Z3797Fv/7X/xpLS0tYWVlBKpXC9evX0el0cPr0aVy4cEH6iFFWTGMTtT0A90t5IYGR2q6B9y2Zm+XlZdhsNnzrW98CAPy7f/fvUCqV8Ad/8AfIZDL4oz/6I9RqNTHDoPMk72WCGuMCggrkCC7Ua2M0LQmHwyiVSgAeuB9yW54H5Xxk8xuNhrhyqgsU3D8ZJHUMwBETRsaMrQL6/T78fr84bpJd83g8iEajUjs2NTWFUqmEfr8vC0FkByuVivTIbLfbaLfbYqKitkNhk27KEHndwuGwfLd5DXm+nBOn0yntDgCI5FUFvvV6XWSg7A1HoxLKZjVNkybsNDup1+vC4nJxIRgMIh6Py/Ha7bYAOy4QUOHgdDrFCfVJxJcOwDlsGgZDC8BZYYUVVlgxOU6cOIFoNIpgMIitrS0Mh0M888wzmJ2dRbfbxfvvv4/d3V0888wzWF5exv3798XiemFhAbp+ZI1Oq/39/X04nU5MT09LA2zKc2ZnZ+H3+1Eul6XnXKlUwvXr13Hy5Em8+OKLuHbtGt566y24XC4sLy9jdXUVnU4HkUgEuq5jd3cXgUAAKysrsNvtuH79Oux2O2ZnZwFAWAu1GXIoFJLkhskna4G46mwERmYMTqvVEoDFej0e580338S3v/1tvPHGG3j77bexv78/VlOi1rqpwMx4XBVgTGLr1FCdKpmAqTV+lJGpjMiklgJ/E8bKDISp25gdx/jTDEiqQM8IpFQgqQI4o2mMOkazfU9i6sxiEpibdF7GMJun4XCId955B//iX/wL/P2///fx3HPPidnI3t4enE6nNLi/f/++3KtMoFWZYLfblWTbbrdjenpajCg4JoK4cDiMUCiE/f19fPe738Xe3h6i0Sj+2T/7Z/joo4/w4x//WJJ6v9+PQCAggEK16VcBG4CxhQrec8b5UMdCu3t1MUOVCVKmSTdbMlnZbFaYdG7LVgBmhieDwUBAqMfjQa1Wk96XBLoEWACk1o/HiEQiyGQyqNfrGA6HyGazACAybR6n3++LlJO1sJwfmpbQQITGKG63W86r2Wyi0+kgFAqJIQlbEFB6qeu6MGyqqUqz2UQgEBDDJsra+ZPzzlpBSmfr9boYmHDu2TqF9+xoNBKJZLlclrmmEoHn/aTiSwfg7HYNw0c8+K2wwgorrPhfdkxPT6NUKmF/fx+DwQCLi4uIxWJoNBpSX/Lyyy8jlUphY2MD+/v7sjrd6/VQr9cRjUbR7/dxeHgIv98vNS3dbldMUpg4EPydP39emg+fO3cOFy5cwAcffIBPPvkEdrsd58+fx9TUFEajEeLxODqdDtbX15FMJrGwsIB+vy81JFNTU2LlT7ldr9eTFgB+vx/RaBSaponrn5roHcewAOPSRBbul0olacHQ6XRwcHCAH/7wh/jOd76DN954A3/+538uTKQqGWOSpDIRRmkkx6UmaQQtRjZPTaDV4DlyOzIRZnJFM2ZL/d2MkTSbn0kSwkfNr9mxzf5WXzd+Xr2OBH6qfG/SOU0CqSownPS+8ZzNQgWZZufc7Xbxgx/8AKPRCN/+9rdx6dIl7O7uYmpqCp1OB1evXkWtVkOpVEIul8Ph4aEwwWTFWOel9l9TAQ63IcArlUrY3t4Wu/1XX30Vly9fxptvvomPPvpIbO99Ph8ikYjU2amLDgRIKtPL4D1qdD9VQUQkEkGr1ZLEX92WrE6n05F2ItVqFZ1OB8ViURg7VY6pfm90XReTFrJkpVIJ1WoV4XBYxkhZIWvxdF1HOByG3+8XiWMoFMK9e/dk3OyvxvHSSZKg2u/3Q9M0cbpVG487HA6srKyg2+0KO5fNZqVOLRKJoFwuC0inCQnZSsqJjX0RKXOt1WrS5Nvj8aDVao0xp3TLbDQaCIfDyOfzsrjGJuBcmGLNJaWfdrt9rOWC2+0WF9VXX30VS0tLx34PfpXxpQNwDptm1cBZYYUVVlhxbNy9exeVSgULCwtYXFwEcNRfirKl5eVlAMBnn32GXC6H+fl5DAYD1Ot1carM5/NwOByYm5tDJBKRBMvn8yEUCkki4PV6kUwmEQ6HUS6XcXBwgAsXLmBxcRHvvfce3nnnHTidTrz22mtjPeFKpRLy+TxOnTqFSCSC/f19NJtNRKNR2O125PN59Pt9JBIJKaqfnZ1FoVCQJIPsGxM6laU6zhxEZXoASEsFu92OQqEAAFI3s7+/j7feegtvvPEGfvu3fxvvvvsutra2JJljfZLqhKmCOFWSxtV2jgEwb06tsm4qW2U0NFGTY+6LnzMDK8exVOr76t/qa8cBm0lAcNJ+jZ971GsqOJsEAo1hxtKZ/TQb8ySQqf5+3OcbjQbeeecdOBwOlMtlrK6uIp1OI5FI4Otf/zreeecd3LlzB7lcDtVq9aF6QMoGKZEjgKGRCRcCut2ugCa73Y6FhQX83b/7d3H79m38+3//77GzsyP3ChcnCBxUGaZ6fMr7aGSj2smr8k7ef3RJbLfb0gBelViqdXE8ZrFYRK/XQ7VaRaFQEKaNDBO/O/yOqXJRl8uFSqUCXdcRCoXEebHT6Qi4YWNsthBgI3SPx4Pd3V1ptk1wxXECDxjwTqcDl8sFj8cj7CXwwNCFrCifjf1+H81mE+12W/qpdTodaZ0CAK1WCwAEjPG5VSqV4PF4RPIZDAaRz+dRKpUQDAbF5ZJumAT7AKRZebVaRbVaHTOmoVyWDBuvLRuV1+t1qY0j20eZ+tTU1EPfgV9XfOkAnFUDZ4UVVlhhxaMil8thbW0N58+fx3A4xEcffYRWq4WFhQUxFqlUKggGg1I30mq1xCykXC7D7Xbj5MmT8Pl8ODw8FLezSCQiQCEWi2Fubg7NZhOFQgGDwQCXL19GMBjEH//xH+PKlSs4d+4cXnzxRdjtdrRaLdRqNRweHsLlcmFtbQ2DwQCfffaZGJr0ej20222x3q5Wq1hZWUEsFsPOzg58Pp/0f/P7/ZLkut1uMTpQAQcTQLJkgLlErt/vSw0MXS7dbjd6vR7u3bsHm82G73znO/jN3/xN/OAHP8D+/r6YThjryNRjG9kxjkc9Pn83MnOAuUEKt1WbKzMIJiexZCp7os4Fj2XGbJnFJJnkpDiOeTvutePkmOo2j/PapG2M26tzNAl8PurcdV1HqVTCD37wA5G/uVwu3Lt3D263G3Nzc4jH4/jpT386xjCr96bD4cDS0hJcLhdisRhisRg+/PBDZLNZYWzC4bBImb/zne8gHo/jP//n/yxNwtV9sX8j7x8VIKnssMoSG+9r9X4kGCN4Ym2XKgMlcCST5vf7BeTU63UcHh6O1b2pEklV0sl9jkYjVKtVqW8j8OPiFMENAQ7ZJbvdjna7jVwuB+AIhFUqFQQCAZEWer1eMfcgW8mG2YPBAF6vF16vVySGkUgElUpFjE/YdmU4HErft3w+L/sBHvTPazQaCIVCcDqd0puNbQBCoRBKpZJcV5qbMMjsUc7Omkq6dfK54PF4EA6HZU64AMBFBYJJm+3IpTKdTiMQCGBubg7ZbBbf+973pJ7y1x1fOgBnuVBaYYUVVljxqLhw4QLOnj2LbDaLXC4HXddx4cKFsWa+i4uLcLlcODw8hM1mEyA3HA4xPz+PaDQq1uidTgczMzNicW2z2eDxeBCPx5HL5ZDP5xEOh3HmzBmMRiP8l//yX3Dz5k38xm/8Bs6fPw9N05DP52WFOJlMIpVKifwyGo1KoT5wlKBQkrSysoJarYa7d+8CAObm5gTs3bp1S9gHri4zqQQgK/lG5olhBBQ0YmECzya3g8EA9+7dw5tvvonXX38db7zxBn70ox9hY2MDACRpU5NNJqxG0GhW/3Uce2UEe0Z5pdEh0JjwTjp3NSYBpkkg0GycfO04yeWkfT0KgD0KHB537EnvTwqz4xp//3n2Wa1W8dZbb0HXdfzmb/4mNE3DrVu3UC6X4fV6EYvF8Nxzz2FjYwOZTAatVkuAi9/vRzgchsvlkoUTp9OJVColCf3XvvY1eDweBAIB3Lp1C9euXcPBwcFD9ZKhUAihUGisabaRcVLNQSaxrmb3I+tNjUAQeNDvjZJGfl+bzSay2SyazeYY4GONGKV9vJcJAmlaxLGqNYJ0g+R3oNlsCjAmOzY3N4fhcIhqtSpOuWQ0+dlOpyMy8WazCQCiTCBgBI5YvV6vh0AggHq9jmazCbfbLXVkBNDcN4AxphI4kr7yWcG2LVQ/sB0HzUY472xQTuk3DU7Ua8Ym3R6PRySVNIViM3HWwXm9XlQqFTgcDgQCAVmMo5T0ScSXDsBZDJwVVlhhhRWPihMnTmBjYwPtdhu6ruPs2bNSS9HtdkUaUywWRZ6Ty+XgcDgQi8Xg9/tRKpXQarXQ6XQQCATQ6/VQLpfh8/ng9/uRTCaRzWYxGo2wsLCA2dlZ3Lt3D3/xF38Bh8OBv/W3/pZYXG9ubsrK96VLlxAKhZDP51EsFjE7O4tWq4VcLicJDK2+p6ensb+/j/fffx9ra2t47rnn0Gw2MRgMUCwWsbi4iEqlIgkvV7d1XRc2AMCYLTdDbYit1lrRmZL7Y/LV6/Xw2Wefodfr4Vvf+hZefvlljEYj7O7uot1uC1hU2Qn1mEzSGMcxZJOkkyq4UIGcCuKMxzxOMjkp1ETQ2PrgOIBnfO/nOebjAMLjxmq2n0ns3XFM4HHvmYFJ9b1JY2232/izP/szHBwc4B/+w3+IF154ATdv3sTt27dx8+ZNATzPPPMMtra2pA70N37jN/Diiy9ie3sbGxsbKBQKImecm5uTWq/d3V188sknKBQKYg2vgnk2beb9zH/cFxcaVJZLlegaa0rJ3LHGjJb4fJ2/k/khOKGVv9qwXP3u8hjNZlP2TfdIMuxkydjLjefBmi4AAqg6nQ6SySQODg5QLBYRiUQwNTUl42X7gcFggFqtJrJLj8cjElJd1+Hz+TAzM4N6vS4mSqVSSRph1+t1tNttAciUTY5GI4TD4TG5JA1GyJoBECdL1ZgpGAyKQySvZ6/XE8aVbG2xWJT54Fy6XC4kEgmRSvL5RFUD2zfw+tCwyufzCTsaDAZlfE8ivnQAzqqBs8IKK6yw4lHxxRdfYDAYwOFwYGZmBplMRposJ5NJqdlgQrS/v49QKIRUKoWDgwPU63Wx9V9YWEAul5NtQ6EQ/H4/1tfXoes6VldXsbCwgL/+67/GlStXMD09jXPnzskKMQv6o9Eozp07B5/Ph+3tbdRqNayurqLb7aLX6yGZTApQobRof38f9Xodr732Gubn53Hr1i0AEPkma028Xq+4SdKNkokdk3hKDo0mDEZGQdd1kVAxeU0mk3A4HOj1erhz5w4cDgdeffVVfPvb38Z7772HmzdvAoAkUEbZJBNTM3MTIxBjqAwGx2/WgsD4k8c2gjqz8RzHWE1i7SYBouOkiY8jr5y07XHAiu9PkkIe9zljqPM6ifV7nDEcd77Xrl3D/fv3sbS0hO985zv4R//oH+HHP/4x0uk0dF3H5cuX4XA4BIix/cDzzz+PGzduCGNHyfLh4SH29/dRrVYlKVfHaLPZxOyH9aIMsk38rqhjVms2VXCl3n/Ge41gUL2naZrB/bMnGk1LVFMQ7p+gyWgS1Gq1pEG2WrdH5k1t3k2wViwWhUGLx+MIBoPCVtKgpNvtCsDh9z6RSAhTyOdIpVIR8FWr1cTFs16vA4DU3lHWGQwGpQZP044MUPL5PGZmZkS+SRDsdrult1w4HBZzEZqXABBWkCAYgKgFWBfJ8U9PTws4azabwsDabEdtBggyvV6vOF2y/o110KwXfFLxpQNwRwyc5UJphRVWWGHF5BgMBlhdXYXdbsfe3h4KhQJisRh8Ph82NzcRCASkOL/VamFqagrz8/MC9Hw+H1KpFCKRCLa3t9Hv93H69GnpbXTnzh0Eg0GcPXsWNpsNf/iHf4jt7W0899xzAnb6/T4qlQqGwyHi8TiWlpbQbDbx05/+FE6nE2tra1LLEw6HhTELh8Oo1+soFouIxWI4ffo0NE3DD3/4Q/R6PaytrYn0U9M0OU+HwyEOm2riSdDGpFxlqVTDE2A8EW+1WmPgLxaLSY+mW7duYTAY4Hd+53fwxhtvwGazjck5zdg2ACIJU0GjmbyQrzNRM0uajaCQAFVNxsmiqGEGbFTQYQS06nvHySkfBxQ+Ko7b3sgiTgKx6jn9vHEcm6iOwfi7MY6ThDYaDdy8eRO3bt1CKpXCU089heXlZbTbbXz++edwOBx4/vnnUSwW4fF4YLPZ8Mknn6DZbOLg4ACZTEYWPVg7Z7xWBBKBQEAYIAIrlXlT5YD8vLpQoMpydV0fY+nU+09l3ijRpGyPtV+j0QjFYhH5fB65XE6kk263WwCgChL5WUogCYJo3c/x2u12cfeMRCIAjhi8XC4ndbcApN6XQIeOmJp2JFX1er1SM0cAzXpB2viT8SMgymQyMh+syWN7AJfLJeCRtbTs4UZ5Ir+3/CzwAPTSQbLdbovUkYYrLpdLGEZeA94Ds7OzYm7T6/Wk0XitVkMkEhE1AcfndDoRjUalTpMSTxrTPKn4UgI4qw+cFVZYYYUVx8WZM2fQbrexubmJXq+HmZkZqcnwer2YnZ1FrVYTyWQ4HMbe3h6azSZisZgU4LN59czMjPR3ymazmJ2dxblz53BwcIC//uu/RrvdxssvvyyyIyY2Pp9PWgR88cUXaDabCIVCkkipq/aVSgWxWEwYsMXFRXG/zGQyiMfjWFhYwGg0EvaP59Lr9ZBOp8WsgOBHNTVhAkoQpMoQzRgFTdNEgsr3U6mUJECUi77++uv4xje+AZ/Ph88//1wSK2Nyr9bDmYUKONWaICNLaNY6QN2vEYCpfxvrAY3HV997FAP1OLVgZuDRCIyOA4XH7Uvd5jiwdtx+HgeEHXcc45wdtx/eb+rPbDaLTCYzJm2kxT6dDnkt1J5mqqxOPQ/1vvH7/YjFYmP9wlT5pNqMXj1PdeFBBfVqA29+TpVpqu+RreZnut0uKpUKCoWCgDfVTVWVcqo9GQkwCSR8Pp/U8VLm6Pf70Wq1EAgExO2y2WyKBT8BWjAYhMPhkL5vrPmi3T8bf3M8NEgaDAbSL009PwJQgi+CJk3TxOGR15UGUfF4XNhSLjqxJlnXdWEGNe2ozo3bEVTxmUm5O68BQd/i4qIYUangjTV0fM3n8yGbzWI4HMqCGVsc1Go1xOPxsfq/JxFfOgDntNusGjgrrLDCCiuOjW63i0KhILUQlUoFuVxO5FS7u7twOp0IBoNot9u4c+eO9ItbW1tDrVZDoVBAIBDA0tKSuKbl83msrKxgbm4OV69exfr6OsLhMJ5//nkBT+zzxOTP7/fj/v37KJVKiEajsgpNORWTslgsJokKJT3sleV0OjE7O4tSqYT79+8jEolI0hSLxVAsFqW1AGs4uGoPmCf4ahJqTFwZbDSsJuh0hev1erh58yaazSZ+67d+C1//+tcRCoVw9epV5HI5WR03AyxmwEwNIztm5kSpthLgPpmYm+1TrWkyJvzHSSGNIMds258HQD0OeDPOhRlQUY87acxm4MrsfMzm38i0EQCr25gdTw2j5T7DWN9IeSGt3s3uHWOYzSsZsGAwiGg0OsYYqQzcJGCtBseoMnbcVnU/JWDk/adpmjBcBGF8duRyOTQaDZEaG797uq6PNbgmIAIw9kxgTRyfAXSYJJCp1WrodrsCTGZnZzE9PY1Op4N2u41GoyHtBQikvF4v2u22gDdKFVlbxnpejp/AmG6PlCcSMJH1BCDs3e7uLhwOB6anp6HrutSY2WxHbVAI+iinBIBoNIpOpyOAmz3cVHMYulWyDx1w9NxVZZl0uKRJSbVaxfT0tCx0sc8nrwPr+J5U/EIATtO0bQB1AEMAA13Xv6JpWgzA/wxgGcA2gP+1ruvlX2yYjx92qwbOCiussMKKR8TGxgbi8Tji8Tju3LmDfr+PWCyGUCiEw8ND+Hw+RKNRNJtNsfQ/c+YMpqencffuXaTTaczMzGBxcRGj0Qg7OzsYDAZ4+umn4Xa78aMf/QiDwQAnT56UFXX2eGMSMj09jUwmg/39fWiahjNnzqBSqUhDWiZko9FIiutbrRb8fj98Ph+q1Sp6vR6mpqZk3NlsFsFgUFa9I5EIstmsyKfYv4ggkkFQQ8t/JpvAuIEJMC5NZILZarXG6oKSyaSYENy/fx/9fh+/+Zu/icuXLyMcDuOdd97BwcGBWKsDeAi08RhmjAeDSa4ZcCCTY2wZoAI+o8ug2TGMYEfd/yQWbtJ7xvMw7s9sm58njgPkRtBrtp0RDE7ahok5rx1g3q/P7O/jxvW48ShWz0zKSeYnFAoJ26TOg5F9MztnY6hukgyakqiMId0fCcDY6Bo4aj6ez+eRz+fH3BIJ9lT2Tdd1AUPswcbWA6xDI7jz+/3odDpS9xWLxeRzg8EApVIJsVgMCwsLCAaDKJfL6Pf76PV68Hq9Y66QZO0obSSI1jRtjIEjYGSTbI/HI7VunU5HHB7D4bDU2NEBc2trS55tCwsLqNfrKJfLcDgcmJ2dRblclhrAfr+PhYUF1Go1NBoNlMtlmV9VngocPduSyaS0V2GvPL5HZjKbzcLr9SKXy6HVaiGRSIh5Cls7aJoGn8+HSqUy5pz5JOKXwcB9Q9f1gvL3/wDgh7qu/0+apv0PP/v7//xLOM5jhcNyobTCCiussOIRQfD2wx/+EIVCAS+++CJSqRTu378vUpl6vY5SqQSfz4czZ85gOBzi/fffR6FQwJkzZ7CwsIB8Po/Dw0PMzMzg9OnTyOfzuHr1KpaXlzE7O4tcLodAIIBqtYpgMIhMJoN+v4/5+XmUy2VkMhksLS3B7/ej3++LkYCmadI7yel0Sq0cmTXWnCQSCQBAOp0W8MfPuFwubG1tQdd1TE9PC3hUJWhMFJmQqeyXKt0yAhKyLSpYYS0NE6xUKiWM4e7uLv70T/8U3/rWt3Du3DmEQiH8+Mc/xsbGhrRmUE0ZVAbGGEZTEzXJVRkLlXlTWTdVzqb+VPennpeRZTMCrsdlytR4FGh5FBAyC/V9FYyqAMZsH8cBteOO86jtzdjJR+3LbJ7N9vk4oe6bLoxs0k3mzWz86n3IRQoV4NFS3+x+4H1IQxSyX/xbbYit67r0XUun02g0GlLPxc9ynGR6aATS6/UENPl8PjidThkXmadqtSrMFevJMpmMuC/quo7Z2VksLi5ia2sLhUIBmqYhEAjI99/tdiMWi6Hb7UrzbADiTAkcMVlcaKKpid1uRzgcll5suVxO2o1QokhjlF6vh2KxCOCoFcHU1BTcbjf8fj/29/cRjUZRLh/xQOwrF4lE0G630el0RH7J9hKDwQCRSAQejwe1Wk3GXKlU4PV65RqzhlDXdRkfgSf73lHt0Gg0YLPZROKp67rMy5OKX4WE8jsAXv3Z7/9fAD/GrxHAHTFwlomJFVZYYYUVk8Pr9eIHP/gBWq0WXnrpJUQiEdy6dQtutxvxeBzpdBoejwezs7OYmZlBqVRCsVjEaDTCpUuXEAwGkc1m0Wq1cPLkSYRCIWxvb2N3dxfnzp2T5CEQCEjytrOzA5fLhWQyiXw+j2w2i9XVVTEiiMfjIsW02+2YnZ2FruvY3NyE3W5HKpWS1W9an1PGUyqVUKvVpJF4vV7HX/7lX8Jut+PixYtot9vw+XxjSRXNAijDIutGAEQXOzMgYZTsMcjEMVKpFPx+vyRpf/mXf4lms4mvfOUr+K3f+i288847uHv3rjhjqgkugLFxGEHdJPYLGG+BYAbiNE0TgDoYDB6qvVOlm48Car8Ic2acv8dh7ybtQ/2M0bjDKGdUWVTjmCcBLuM4jSyV8RzM9vUoRu7nYeOOA4fqfUD5n8/nE2mdKs8k4FCZs0ljUhkeY4N4gi7a9VMyTZbMyCR3Oh1kMhmk02mRNRvvcd7/NPmgtFKtPeMzQW0VQNfF6elpYeRqtRpyuRxqtRqKxSLm5uYQDAaRy+VEhu1wOODz+dDpdEQ2SFbe5/ON1e3RwIR1aqojpN/vB3BkSMNebKzX47ORrQKGw6E8mwKBAIbDIdbX1zE9PY2ZmRnk83k4nU6Ew2GRh2qahmKxKC0UCoWCuEkmk0kEg0GUSiW4XC5x4PV6vdB1Xc6P1yaTycDlcsmzVG1ETjCraZqMlYoIMnxPKn5RAKcD+IGmaTqA/7eu6/8WQErX9TQA6Lqe1jRtyuyDmqb9YwD/GAAWFxd/wWE8CIddQ7dvATgrrLDCCismx3/6T/8JmqbhwoULqNVq2N/fRyKRwHA4xPb2NqLRKE6cOAGfz4dyuSxF8c888wxarRbK5TJsNhtOnjwptuaDwQBnz54dq6Xw+XwoFosol8tYXV1Fr9fD7u4uBoMBLl68iGq1imKxiFQqBZvNhnK5jEAgIL2Yrl+/DpfLhcXFRVkJVgFJv99HNptFtVpFKBSSFepyuYwLFy7IvsrlMnq9HkajkZgU1Go1kVPZ7XZZxQcesGB0vlSZK8DcKp9BYxMyfKlUCuFwGJ1OB8ViEX/1V3+FSqWCF198Ed/+9rcxOzuLjz76CIVCAd1ud8wV08h0qDVtahJu1j9OlUqqckpuo7YhUFkXHkMFfEYgqx7HOA/q8R8FxIwA5HHkh5NApNn7k+SfZscz29dxoNVYc/gosHscszZpLMbtJ4E24zxR3sYEnmYVar0agYjqEEngPwnEGdk4NVwul8iXCTQIDHlPsR6LbQ7S6TRarZaw1+q58DjGPnAESZQr0oGRAIxAI5FIIBqNAgA8Ho8wR5VKBYlEQkxA8vm8tCZhC4Z+v49EIgGXyyUqBI6NAIZ93ILBICqVyhgbTqlov98fu1doXsJnC8FhMBgck3i22220Wi1ks1lh7fb29hAOh8fkngRnNttRO4h4PA6n04l0Oi31xM1mUwyqKCslA0mXXwI+uney1xw/S+OTdruNSCQictLp6WnTe/bXEb8ogHtJ1/XDn4G0tzRNu/O4H/wZ2Pu3APCVr3zll6Z5tNtsGIzMV4WssMIKK6ywAjhq5G2329FoNNBsNsWpcTAY4PTp04jFYgCOegsVCgUsLCxgbm4OmUwG29vbmJ+fx8LCAnRdF2v+SCSCVqslfde63S6++OIL+P1+LC4uYn9/H5988glWVlakvYDL5UIqlRIJ49TUFLxeLwqFAra2tmQFXdM0qW9hM1ngqNF4u91GLBaTHm+j0QjRaFSa5LpcLgQCAWkKTJbObrdL42PVLn0wGIhhBPAgkVQTsUkghYkue24BR3UmsVgMJ0+eRLFYRCaTwfvvv49isYjXX38dly9fhs/nw8cff4z9/X2pNeHxzZgeHletZVMdJB+1vfE14AHrxnng+ar7VBkSszor/j7pNcajpIXGcT8OI3ccIznpfeNYjOdjlJH+Isd/3DADmWbgz/i6Kll0Op1SS0oGSgVdRldI1XXyccavvs7j+f1+6PqR8UYoFMJTTz2Ffr+Pzz77TMbb7XblmcJaKxpjGPfP+08132HdIeu41DYaPAYZ/9FoNFajRUml2hKg3W6j2+3C5/OJxJGgJRQKAQBisZhICMPhsIBK9ksDIDV9XAzpdrtwu90COinrpsujrusolUrCJIZCoTHgGo/HBVDZbDZkMhkxZimVSrLoRJMTp9MpLQAODg4QCoUQCoXQbDYFqDqdTgGIlJMPh0P4/X5ZAAsGg0in07Db7eh2u9Knji0EKEWnnPTnYcp/2fELAThd1w9/9jOnadofA/gqgKymaTM/Y99mAOR+CeN87LBq4KywwgorrHhUMLkIhUIIh8NSq7a6uiqF9vy3urqKRCKBW7duYX9/H2fOnMHKygqGwyHy+Tx0XRc5Y6fTQaPRQKFQwMHBAebn5+HxePDee++hWCzia1/7GlKplDg3Tk1NodVqiRSq1WqhUCig1WphbW0NGxsb6PV6eOaZZ2T1eGtrC5FIRFa3w+GwyHnoMgdAVrQ3NjZQr9eliS9Zxe3tbTSbzbG+VLToN+vDZiYrNANvfL/b7Upfpnv37mF1dRUvvfQS3nzzTezs7OD69esoFot45ZVXcPHiRczNzeEnP/kJ7t69K1biqpW6ykKotWo8phGcMYwgT92fCuKYfKq94tQ5Ufdrdv6T4m8KbB4X5P08YQY6zUCeURr4qH0at50Ebo97bxJwm3R8FYSR6VLBGwGcahiism4EHGTG1HM4DrgR8FHeyN9rtRpstqMm17//+7+PeDyOP/3TPxXw1e12pf9aPp8XRmfSPKgOnWTeOGYCp3A4LL/T4bFeryMejwv71Ov1xHU2HA6LlLTVakntGeWF9Xodi4uL6HQ6ODw8HHOPdLvd8nzp9/si/a5UKmJQwgbYwWBQ1ABsPcBn3mAwkJpeLnxRwqjrR3WE+XwemvbAMITXLZ/PC+gqlUryHA8EArDb7cjn8/D5fFLDrDZK5zF8Ph8ODw8RDoexsLCATCYj4K9arY5JbAmSB4MBpqam4HK5pF6OPUSfVPyNAZymaX4ANl3X6z/7/Q0A/3cAfwrgDwD8Tz/7+Se/jIE+blgulFZYYYUVVjwqbDYbZmZmYLfbUalUEAwGpUcQ7bX7/T6Wl5fhcDhw9epVVKtVPPfcc5iamkKhUBC2y2azSa8kTdPEavvUqVMAgDt37sBms+Gb3/wmNE1DtVpFJBJBKBQSu25N05BOpxEIBODxeBAKheDxeDA/Pw+Xy4VYLIZsNosvvvgCCwsLwsARyFHOxEQrGAwKAAKOAOv8/LxIKLnKTLc5rsQbHSAB895XRiAzKfkeDAao1WrQdV1q8jwejySXh4eH+P73v49Go4Hnn38e3/zmNxGNRnH16lUUi0VJnlRjFVX+aKz1MoaaDDOM7pNM2NXX+RqTTDWRfpSs0ex3FYyYsXGTwkySeBwbpo7nceSGk455HGgzvm/c1uxvM7Zs0u+Py2pw0UGtY6NskqybujhhlEqqjLO6P3UMrHNTr5/K4hFU8ftBOWO9Xsf169exubkJm+2o/1mj0UA6nUapVBLmzQhS+bv6T+13R7BGiSTvX8oMvV4vYrEYFhcXpc6WzD3rUZ1OJzKZjPQzIzulaZrIxmu12th3ly0JuDhENo2sIM1VaOfPFijcloYjXq8XjUZD2D8aNvEzNAnh9SELRxaM89RqtaSWjfV22WwWTqcTgUBAnDfZJw44YgnD4TDK5bKwgLVaTaS1rVZL5pjPHLZ54PlRSu9yuWSR6UnFL8LApQD88c8m0wHgu7qu/5WmaVcB/KGmaf8IwC6A3/vFh/n4ccTAWTVwVlhhhRVWTI65uTm43W4UCgXEYjHMz89jMBhI8b7H48Hq6ira7TZu374Nr9eL8+fPw+FwYG9vb0zKSJvper2OWq2GaDSKRCKBYrGIfD6PVColEk1d1xEKhWCz2VAoFBAKhQSkUC6Zz+fR6/XERCAQCODKlSvY39/H7OysJA3xeFwkQWrdHXCU4GiaBqfTKUwc+zRtb29jZmYGoVBIWDImR1z1d7lcUsdiBtKMYIIslpnkjvV2W1tb+MM//ENx2iTILJfLePPNN3FwcIBXX30Vr7zyClKpFN5//33s7u6K1ElNkjkG1ZwEeLgVgdnYVWZDZe1UZo6fUYGfytIY58H4t/F1M6B33HuTQNGj5JSPeu84sGt2LDPmzAjIjPtT6xaN4Nd4HDO2y/i62bFUMEXwRtCm1rqp5jS87mRjyLaqwEhlXtVQTXEYbrdbwILb7Rb31cPDQ3z3u9+F2+2W5uK1Wg2Hh4coFototVpjEuNJx+N4uG8yXuxfxvoxm80Gn88nEsdEIoFSqSQ95WiIxH3SWISLSZRZr6ysIB6PY3d3F/V6XVwtCbLI7vH5VSqVkEwm0W63xRGz3W7L4gz7xrFtCueKQJASRF3X0e/3xW2SxiR7e3tSR1wul6FpGtxut/R5U01QGo2GtE2heZQq++52u9KawGazIZVKoVgswmazYWpqShhRNj/v9XpwOp1jz8VqtYpOp4NAIDDWauZJxd8YwOm6vgngosnrRQC/+YsM6hcJi4GzwgorrLDiUTEajVCtVpFMJpFIJFAoFCRxUJt7FwoFzM7OinNjs9lEMBhEKBRCvV4X+WOhUIDNZkMkEoHb7Ua1WkWz2cTy8rI40rlcLnF1o9V1t9uVGja6rBUKBcTjcZFH3bp1C61WC0tLS3C73QI+yWCxmH9mZgbpdBpTU1OSqKisHBO6paUlcW5Lp9M4ODiQlXS2F1AdIYHJdXDq+5NYKM43TQlarRYikQii0ShisRg0TUO328W1a9dQKpXw2muv4dy5c5iensZPf/pTfPHFF1K/x6RVBSJcMTcbhzFU50AzQGaUW6oJ/SS5IX8/Dlw9SmZofH1SmDGdjwqzbR41zkkAz0zWaJwbFfQa6wnV9g7qdkaG0QiijeCTIJEsG4EbQRvfY6iGNSqbO+l8zMamnicNSyjPczqdYwsMlBAPh0PU63Xs7e2hUqmIpNF4P6jnps4Z5ZeBQGCs9o0AsN/vC3vG9gBbW1vQNE1s82OxGHRdF+ONwWAAn8+HYDAoz7MTJ07A6/XC6/Xi4sWLuHXrFnZ3d8dqS51Op9T2JhIJaUlCgEcJ5GAwQDAYhNvtFnUAWTwuxGiaJqoF9osjY2e324UdDIfDKJVK8Pv90ouOLQvsdrvIUD0eDyKRCKrVqjxPer0eotEo+v0+ksnkmLNmtVqVXptcEONYNE0TVo/j7vf70suTNXQ2m03aEjyJ+FW0EXiiYdXAWWGFFVZY8agYDAaYn58XJsxmsyEQCIikqFA4am8ajUbh9XplZZhJCN3jmNyxMTdX251OJ06cOIHhcCg94Gi3DRzVqjUaDQFyPp8PmUwG+XweMzMziEajaLVaqFarqNVq4lI5PT2NQCCAg4MDWc2fnp5GJBJBOp3G5uYmBoOBJG6sA2INDB3jKNNMp9OIxWKy4k5AyTBjU1TWDXjYut+YGKvJN9k0mrZ0Oh2RdrXbbWxubiKfz+OFF17AV7/6Vfzu7/4uTp06hffeew9bW1syLoIBta5NZTSMxiTq59RzO65NAaVdxvNV54LbGX83Akn1bzOQZNyHMR4lmfybhDrOScD3OKbNCNrUfahyRPU7QjBg5hrKz6nHMZ4f2Ta11k01KFGZNPUz3IZJOtmlSdLg44AjJcCdTgcApM5uMBjA5XKJHJDNsg8ODlAul6VPmXpe6pxznGxvwfuPbJumadIywDhf7J9WqVTQaDSEtaOZR7VaBXDUNNztdsPr9Qoz5XK5MDMzgx//+Md49tln8eyzz0qNL8fMZx3BUqvVQjQaFbDEuSBD2O12kcsdWWDwGdRqtQSkERjRTIUOkU6nE/l8Hg6HA9PT02g0GgiHw+j3+6jX6/B4PCIJJePI+6darcLlcomSgiBsamoKtVoN9Xod4XBYZOtkKtligPVyvJaUekajUWHneG1ZJ/vfq4Tyv8mw22wYDC0AZ4UVVlhhxeRYXFyEw+FALpcT5mx+fh7b29vQdV0Sg263O2Yzz0SfjNZwOEQ0GsXq6qqAN7o89no91Go1YZkajYY4vdHFjYkDJUeUSBJkkQHk6vpwOMTGxgay2Sw6nQ7m5uakCXg2m8XMzAxisRh8Ph98Pp8whfF4HIFAALVaDUtLS4hEIvjwww8liQIgK+hqUsIEkcwXMFnyxcTcjNFQg7UzlLBxRZ+9lVqtFt59911sbW3h29/+Np555hkkk0n85Cc/wY0bN8QAQbX2V4+hAgVjkq4mzkaZ5aTgvowgTgV26u/HySQZjzrmowCdcT/H7d9MBmk8xqQxGP9WP2v8mz8JplSZI49jBHHq/E3aHz9HgMO6Mxp68HhmLpNk4+hAyBouhgr8jQyicUFA0zSEw2G43W4xLCFbptrlj0YjtNttAW+NRkOA0HHXkmybyiLSQIRAFRh3ZaUzYzgcxv3792U87XYbJ06cwGAwQLvdRrVaFUfFeDyOXq+HfD6P2dlZNBoNvPvuu9jc3MTe3h5qtRpeeeUVAMDm5qa487KpNSWLiURCrglBGP/e2dkRF9x+v49yuSxS02AwKHb9DodDetBR0mm322WhKRgMolarCXPGRS+PxyMySt7HVE9QQklJZbvdRj6fx9TUlIC7hYUFaQIeDoeFzSRII8Bk7R3vO7YXoFrBAnC/xLAYOCussMIKKx4V1WoVrVYLwWAQPp8PU1NTuHfvHnw+n5iEsN6BDA+trgeDAba2tlAqlbC4uIiZmRlUKhVkMhkkEgkkEgn0+33UajVMTU2h0+mgVqthdnZWJEXVavUhYwAAkgR5PB7cv39f6j5qtRoAoNlsih342tqaJJvtdhuJRELc5Ggf3mq1ZCV6OBwilUqhUqngzTffhMPhkBqOQqEgTpY0TGBCyoRRrSEyAhUmPcbkd1KQmeR89Ho9xGIxYQ273S42NjbwH//jf8QLL7yAl19+Gb/3e7+H06dP44MPPsDW1pZIwlSZFzDOsqksHfAw22OsqzOOkf+MYG8SI/c4EspJ7xuZTo73uPh53jcybsb3zVghs+3Nfle3V/8ZmThgcp2i2XEIktRaN7JTBAvqtiqA43sul0tkzAzV2EQ9rrGhO/fpcrlw6tQp2O12rK+vS70kTS7IPNO8I5vNolQqodFoSI2q2dzypwreCDb5HkFPvV4XwECjFjbX3t7eFjfa4XCI+fl5OBwOtNttVCoVkVrG43ExByGz1u/3USgUpD/azs4OstksMpkM2u22LDYRyOm6LotEABAIBFAoFKQXXSaTkdfJtGezWUQiESwsLMhCkq4fNTPnd79UKsFut4vDJM+50WiIhJ21gC6XCwDkOUcwR9DIVip0BZ6bm5N+e8vLy+Ig7HQ64Xa7pU0CVQGU5fKcQ6EQMpmMAEXW9/0iDPgvGl86AGe3WzVwVlhhhRVWHB9MBqampuBwOLC7u4vRaITFxUWRWrERLxPqUqmE3d1dlMtljEYjnDhxAtFoFNlsVuy3KfvxeDw4d+4cgCPr63g8Lq5zvV4PkUhEkr5+vy9MFIvod3Z2UK/XMT8/D5/PJ6ANAFZXV5FKpbC/vy8W4bquIx6PS6NcAFKHwt5OlE2xwa7T6cSZM2dQLpexvr4uMismR5RYqcCMCb2xyTV/V7fh72bbcJ9MEIfDIXq9HjqdzliT4UqlgrfeegsHBwf41re+hfPnz2N5eRkff/wxPvroIxweHo71rFODwBt4uNm3MYxgjoBQZR4ZRjCmAi6jdNSMrVTnQf3bCJbM5lLdvzoW43YqM2G2X7OxGPdtfH8SS8bPqWCNc2qsJWOTZwJro/GNcXuV5SKQA/AQS6WOWZVL0gZeBW/AuBOpEbwZz9fj8WBhYQHtdhsHBweyLc+FDrC6rqNcLiOfz6NarQp4m3SN1OMYr5fdbh9j6GmmwZ8ejwdTU1MAIMZJXERJpVLweDwoFosolUrSe40OkEZXxmq1ikqlIos5U1NT2NvbEzZMZaDYoJytAGZmZlAoFESVQAMmv9+P4XAodX/T09OYmpoSVYHD4ZAG3DQeYV1hPp8XJ89Wq4VQKCTujzRyMVswoalJtVrF7OwshsMhCoUCZmZmRAExOzsLn8+Hvb09eL1ekdD7fD40Go2xe5o1dslkUtoLqKCZz4cnFV86AOe0XCitsMIKK6x4RIxGIywvL6PT6aBUKkHTNMzOzmJ3d1ckS8CRNXW/30e73Ua9Xke9XkcsFhO7bYKxS5cuweVyIZvNittatVpFoVDA7du3JaE8efLkWLLV6/Vgt9sFFLpcLly5cgUulwsnT55EIBBAo9GA3+8fc0u8efMmgKNVbpfLJe0AgKMm2l6vF51OB/V6HcFgELFYTJwt6/U6Tp48Cbvdjng8jmQyCQDSF4oudd1ud8yxD3ggpTQCg0eBFlU6B4zXKOm6Lm6eZAWi0Sii0Sj8fj96vR5u3ryJvb09XLp0CS+//DK+/e1v46mnnsK7776Lzz//XFgGAkNjrRGPaWwbcNz9ofZ/M2PczCSIRnZSlQ8yjgNUxnkxAip1f0Ygp8oBVSbKeKxJ18gMvBnHa2QJzVg249/8vDoms/NUjwdAJINqY2ozqaSRgWNfsXq9/hBwM4I0s3PldmTd/X4/Dg4OhO01Xiefz4d+v4/t7W1hrWhWYgS76nF5L3KhgeMnA+52u0X2yc8RlNI8pdFoiPR4MBggFovB4/Egl8vJPmdmZqQfI+XgCwsLCIVCKBQK2NraEonm2bNnEQwGkcvlMBgM4Ha7EY/HcXBwAF3XRUJZqVQQj8elkXYkEsHe3p4sDJF5o7sunS7L5fJYDZnb7ZZ7NxKJCPPmcDhQqVQQCoUELHk8HlEosM0KGXzgqA6w3W4jHo/D6/Vif39fniHpdBqRSAQ2mw07OzsAjp6dlUpF3ITZnNvj8cgC3/T0tCyQBQIBuN1uYSONRk+/7vjSATi7zWYxcFZYYYUVVhwbi4uLKBaL2NnZkf/ky+WyAAm73Y7t7W20221Eo1G4XC4EAgGkUikkk0lhoXw+H1ZXV9Hr9fDxxx8jEAggm81C045c2T7//HM4nU5EIhGcPn0a4XAY2WwWPp9PrM9VidPNmzcRCASwuLgo9XLsE0fmjG5q7A9FMwGal/h8vrGGunR10/WjvkfhcFhWl9mElwYprEFj8kk2jgwZ2QGz5tb8XU3IVZmcUcaoMi5MiJgUkTVk7R5X/N9++23cvn0b3/rWt/DVr34Vv/d7v4ezZ8/ivffew8bGhtQaqaYa6nGNbQcY6jjJCKp1dmYr/mbgzoydU+dG/f04tsv49yQZ4ySppRkgUv82SjbNPqOCVBWwGMevjkuVJh4H7NTjGvetMms225HTn8PhEPbIjOFjTdLS0hJsNpuw05PmXTWsMR6f46SEjt8PLmSobO2lS5dQKBTw05/+VFxeVbMSs/k+bg55DN6r/Czl1i6XS2q9CoUCotEobDYb6vU6otGo1KrxZyqVAnDU8JvS7HA4jGAwiEajgWKxKIzexYsX8dprr6Hb7eLq1avCqjWbTWFC2+02yuUyfD4fut2u1Nnu7OwIIGu327JwkEqlxOmRrQvYiFtlFkOhkJiJ6LouAJFuwTw3p9Mp0k0VQAWDQWH02IKAZjPpdBo2m03UEsPhUCSbwJEao9/vC/hljW0kEgFw9Gyy2WwiCe12u6JyeJQ0+lcZXzoA57BbNXBWWGGFFVYcHzdu3ECj0cCFCxcQjUYlSQ2HwygWi9Loenl5WZpcs9E33d0ordra2sKHH34obFkqlcL8/Dx+/OMfw+12S73I3Nwc7t27B03TxJKaK780Pjhx4gSSyeRYU1nWx7BeZTgcShLGFfVutyv9mWgQEI/HUavVUKlUpGUBTQ9Yl0crb7fbLdbg5XJZVvXJRDWbTUkqzdoIqIyMyrpwe/Uz3A+ZMhVQ0S1T/RcMBpFIJISNOzw8xH/4D/8BH3/8MV5//XU888wzOHnyJG7cuIErV66MATkVSE4yNCFYIGgjODczOWECqrKNk8Cb8TjGv83YMXU+jczbccd41PGNMj6jVPFRYWTgjOBTBVxGVsz4GZUJZZDxUrfhZ5ioqw6T6j+HwyE92bLZLJrN5th4VTCvjlc9njoOTdPEVIP3DRdbKCmORCK4cOECPvjgA1y/fh2NRkMkk2aSW+N3xWxMbBZN6SS34bFZM0aHWkoZ6/U6kskkYrGYtC2gWyTVBMFgUMAPa+y2t7elDuzpp58WE6dyuYx2uy2sGVnLer2Ofr8vbo3lchnxeBynTp0S6SS36ff7iEQiogSgjJL92ihrdbvdiEQiyOfzAtbT6TT8fj8qlQpsNpv00Ox2u2IgQiVAo9HA1NSUGEQ5HA6RaFJ67nA4RIY5GAzk+cqFutFohEQiAbfbjWKxKA6Ww+FQno981tKll69PT08/8rvzq4ovHYCz+sBZYYUVVljxqGi327h8+TKi0SgqlYqsNrOQn66IjUYD5XIZp06dEjturmIHAgFsbm5ifX0ds7OzqFQquHDhAk6cOIFr166hWCyKfPG5556TVgN0UmNtSrfbRbfbxblz5xAMBpHJZGRVXE3cCNbIlnm9XtmWjXyZfFBGxZqyfD4Pn8+HcDgsK9Vsdtvr9XDy5Ek0Go2xWhjKKFkDY7PZxmrimOCqkkrgQcLKRE19j8CNQMhYOwZADGAoC2PyFo1GEYlE4HQ60W63ce3aNWxtbeGrX/0qXn31qAH42bNn8dlnn+HDDz/ExsbGsVJKngcTblq/G8dl/DkJvJmxZcZjGxN5M2mdGsbtJ7036bjHsYbG8U7avwpyjGwV3zerfzNj6BhGKaKRdVPBC4HI3NwcisUivF4vms2msFHtdhuj0Qj5fN4ULE5iC9Xx8x/NKwAI+OActdttDIdDqSX90z/9U+zt7aHVaqFer5v2dzsOoDMIQPmdINsNQCSLZN/JrEWjUeTzeTHoiMVi6Pf7qFQqqFQqcoxQKCStMuhiCwD7+/uiBEgmkzhx4gSazSZarRby+bwAw5mZGaRSKWxubgpYarVaImXMZrOIx+PSDJvPoHg8jkgkIj0qI5GItERgfZ/NZhPmjKBsf38fTqcT1WoVg8EAs7Oz8n1XlQh87iSTSVEeUN3A5ybBKVk19oWjMQrZeNZTptNp6ZHHZt40MInH49Lsm880Gsk8qfjSATjLhdIKK6ywwopHxTPPPAOn04n3338fALC2toZyuQxN0yQhpLHI2tqatBzweDxIJBKo1+u4ceOGMGKbm5t49tln4ff78f3vfx+bm5s4efIk1tbWMDs7C03TpI5E0zR4vV4Mh0NJhC5cuABN05DJZFCr1ZBMJqXGg0YMTFx8Ph+GwyGuX78u/d7YX4l1HuVyWRKZ69ev48yZM9JwdzQaSe1dKBSSmr18Po9oNIrp6WkxO6F8q9lsotFoCCtIaaKxHktNkI0GIGQSRqOR1KsZE17VSISr5D6fT1bsyTaosrq3334b165dw0svvYTnn38eb7zxBi5fvoyrV6/iww8/FCksj2VW+2aUeqrnpv5UmaPj5JFmP81+N6urU+NxQJVxX0bgYDZeszo6M6bQbF9mQNEonVQZNHVbtbm2EbQZtzFKJJk8U75Gpof1VEZGlT/N2EwV4BHYECyyhxprq3gvE9jncjkcHBxIX7NWq/VQXajxupjdA2So6ZbJ94wtD9RaQL/fj+npaWEmqQQoFArCDFGiGIvF0Gq1EAgEZL46nQ7u378/Viu2srICl8sllvvFYlF6ro1GI2xvb4u8OpfLyX6CwSBsNhsODw/hdrvFVXZubk4kkWyzUq/XZR74WS6YUZrdbDaF7Q8EAojFYrKAxLlSVQQ+n09s/dnTklL3YrEI4KguLpvNotfrIZlMolarSbuAQqGAQCAAu92ObDYLh8MhpjH1el0WmxKJhDC7dBR1uVyIxWLiuPkk4ksH4Ow/A3CTVj2ssMIKK6ywotvt4u7duwiHw5ibmxNZXL1eB/AgOZyenka325VGrh6PB9lsFq1WS/7DPzg4wFNPPQW/348f/ehH8Hq9+O3f/m1Z/a7X6ygUCsL4sJaEq9OnTp1Ct9uVBrNsME6JEe2qmcAFAgG0Wi2kUilpcBsIBBAOh1Gr1aBpRzUlV65cQavVwqVLl6QXHV3xOp2O9Fu6c+cO7ty5g2QyCZ/Ph0Qigb29vbFaOjJ/NFgw1vio//i+MWlWGTngYQdFM2DF86OzHYFcKBQS2VOr1UKhUMCf/dmf4dNPP8VLL72EF198Ed/+9rfx3HPP4d1338XVq1dxeHgoNuxm7Qc4FoaRYXucmjd1Poz7M8YkwKXuwzg2M5BlJq/kZye9Z9zHcaDDeFyj/NLImhkBmQqYVACnvq6ai6hgDHjQ94yGGfybANC4T7MxmgUXFAiiuGjDBQ7ViZSsWD6fR6lUkh5iKus2iXEzMp0qS8nFGTbwpoxQfY2LKDRUabVaaDQa8nwhc0R2kGw82SOXyyXf+3Q6LcZGLpcL09PTsNvtaDQa0t7E6/XC7XZL3zQ+u2jxXygUxI0ROGLz7HY7vF6vgELVAZbyRl3XBRjxPNg4m5LyWq0Gu90uwKrRaMDpdIrcnNLSYDAoizuBQAAHBwdy7xSLRZG5t9ttUSVwESqVSqFcLotxC81a+v0+AoEA2u223B/xeFxaC7AWkBLaUqlk1cD9MsNhO/piDEc6HHYLwFlhhRVWWPFwFAoFLC4uYn5+XurEgsGg1IZxNbperyMcDiMSiYytys/MzMhK9OXLl+H1erG+vo6nn34ac3Nz4kQHHEkRuT8AIptMJpPiQJnL5eByuRAOh9HtdoW9Isjwer3Se0hlxdhDKZlMolQqiSX39773PaysrOCZZ56Bruu4ceMGBoMB4vE4fD4f4vE4BoMB8vk8QqEQzp49K5KiarWKhYUFAMDW1hbq9TpcLtdYDYiaeKuSQ4IwVSbJhN6sGbjKuqkJsJGNU2vjvF4ver0ems0mgsEgwuGwJMJ7e3v43ve+hx//+Mf45je/iUuXLuHv/J2/g1deeQUffvghrly5gt3dXWETOW4CSybymqZJcj4JrBnZOCPweNxFZJ6z8fNm203arxE4GGvMjKDyUcyfyqAZj6++rrZp4OIE/1ZZLt4rkwxDVACnAhyz4LaqVFc93+PAM8dAlouMF1kgLm4AD3obDgYDlEolFAoFtFot+Q4YpcPq3JgtUhiZN4IGfsftdjt8Ph90XRcwNhgMkEgk4PP5hHFiI2s+X4yN64PBoBgs+Xw+dDodeDwe3L17V4xPXC4XVldXkUgkABwZeWQyGQyHQ8zMzODMmTPodrvY3t4WxrPX64nUkyYmo9FIgNWpU6ekXpi1d1z8ob0/m2NT0hgKhVAqleByuUQWy/Pmd50LXsDRgk4wGJS/k8kkNjc34fF4EI/HxRAqkUigXC6j0WggGo1iNBqhVqshlUqhVquJQVKpVBKDGNYAA5CG506nU3rEud1uDIdD6bdJ9vBJxZcOwNl/9oUfjHQ47I/Y2AorrLDCiv9FxsLCAnw+H7a2tlCpVLCwsIBCoYBqtYq1tTU0Gg1Uq1XEYjExAKjX63A4HCLtaTQaiMVicDgcKBaL4pjYbDaRz+fR6XRE0kOWiAXxS0tLKJfL0ryWZieUTTI5o0ub2giYiVooFML09DSCwSBGoxHK5TI++OAD2Gw2PP/88yJ7okEHbc7n5uaQSCSE4WPSNxqNkM1mMTMzA5/Ph2w2O5b8sBEu8IApURPY42rhmAwzuTU2cyZgO04aSIMGJk5sWkyAGwgEpF6qUCjgu9/9Lt577z18/etfxwsvvIDf/d3fxeXLl3HlyhVcvXoVm5ubAtzI7KmGKjy/SXVkZrI84+tmYQY0VNBiTPbVMPtbZetU5s2MTTSCN+Pxja9Nklqq4IzAzciGqY6RrKE0O5bRWXISCDayauo9aDYn6mdUBpCGKer++L1VJbSsAyuXy6hWqwLcKP81nos6v2bvq+fhcrlkQYOLI36/XyShLpdLnBCDwSAikQg2NzehaZqYqahB4yKv1wtN07CysoJqtSqMVz6fx97enhg2nTp1ColEQgBKo9EQFuz06dOYnZ3FjRs3oGma1Mp2u10BYcDRwhSBTTgcxnA4RDAYFKaKC1EEmwSldPp1u92ycDUYDGC325FIJOT55/P54PF4RO0wGo3g9/vlek5PTyOTyQjryOsXi8XkfPg8aLVamJmZkXOIRqPyPp9/ar/AQCAgJiiqhFPXj/ptNptNMbp5UvGlA3Bk4CwjEyussMIKKyaFx+NBOp2W/8y3trYQi8Xwlf9/e+8eI1l6nvc9X1VXVdf93lV9756ZHe7OLpdccbGWtKBICbLEyFIYBYlBAlZk5CIrsQDLCeBEQoAoCQIIju3YBgwntC2AMhkrAiTCkixY4s0SSVHkcnd2d/Y2Mz3bPdP3rq7qut+rTv6oft79+mxVz967p/f9AYOuy6lTX51TdeZ7vvd9n/fJJ1GtVnF4eIhEIoFkMin1Eox8MTJz5coVqYNheiUnsLTJ9vl8GA6HKJfLCAaDmJ6exurqKrrdLorFokz0FhYWpKarWq0CgKQoUeRwMkZRSGfJjY0NcV/89Kc/jUcfffRExKvb7SKXy2FxcRH1eh3PPfccrl+/jk996lMS2ev3+zJRjcViyGazMrlkmiInWXZEjZNv2yzEPel3p1Pa/crcEaxJYsm+z5YDXO1vtVoIBoMS1YzFYjLp2trawpe+9CV87Wtfw4//+I/jiSeewM/93M/hU5/6FK5fv47vf//7uHXrlriBcrx2Hzh3ihzHMU6wTZrQuQWQ+3FbDPG2fe7d4uu0CNq4tC5Gc93Cwn0exp0/t1iy0xQ5Xgo0+zl7n3Zdm/0+k0xRxokw3rbt9e3X2OmijOq5RSZ7JVLw2G6nPOd0fKUhSKfTOdG6wz1W+zielgprHytG2ZjCybRDbsdIVDqdRiaTwfr6utRnMWrPY8rIMa8NmUxGvsuVSgXdbldSoo0x+JEf+RERgsViUXrcLS4uYnZ2FoVCQYQqr3UUtLzOcTGK788oWSwWQzKZlJYKwWAQxWIRoVBI+l+2Wi0RzMBokYpjZ+sGtgBoNBpyDctms5IBkcvlsLe3h3a7jUQigWKxKMZMTLlmujcdNTudDra3t5FOpyWDwXEcGQsbsvO4M0rI8+TxeOS6Xi6X4ff7RVCeBRdOwHmZQjlQAacoiqKM5969e7Kaur+/j6WlJVy6dAl3797FzZs3xd76sccew/PPP4/BYCAObLFYDMFgEKVSSVIsk8mkNLBttVpScN/tdlEul+E4jtj1V6tVrK+vi401J1ZMiWR9Cevw2MOJDX1Zt9fpdPCVr3wF3/zmN7G6uorPf/7zyGQyklLVarXE4S2VSklz36tXr8q+mL7V6XTg8/nwyCOPoNFoSAooV73tpr12awB+RmILhHGiwh2hGFdbNm5ybm9HIcFIXKvVkuhFv9/H6uoqHn/8cfz0T/80vvGNb+Bb3/oWtre38cUvfhFf//rX8dRTT+FHf/RH8RM/8RN46qmn8NJLL+E73/kOvvvd72J/f3/sOOxI3LgIljsS5n7eHb2yj4ddQ2aLIn5W97E9LSo3TnDeTyiNE6PjooMcj/2YbcLB1EY7osZ9jGugbYsu9/jsz8/0QlsIuoW/+xjZYo23GXXmP7dxDQ1SyuWyuKBykWBSw+ZxaaXu5ylw7AUN4I2oJKPutskPMDLgiMVi2NraEkMRXlcikYgYIHFBJxgMIpfLoVKpIBQKodVqYXt7W9qCRKNRPPzww3j88cdx584dFItFVCoV7O/vY25uDtlsFq1WSxarmJrMY0PRVy6XT9SNTU1N4ejoCMFgEIuLi1hYWMDu7i6mp6cl/ZBuv4zolctl2bd9vngMuG+mWSYSCVlEmpubw9HRETweD0KhEA4PD+U6xXo6+7sTj8cRDoel52c8HsfBwQGmpqbEEKVSqaDdbmNmZkaigDRh4ViCwSBisRiOjo7kO+OOhH6QXDgBx7q3/phiaEVRFEUBRhEyxxk1tr58+TIWFhZw48YN3Lp1C8FgED/8wz+M5eVlrK2tYTAYIJ/Po9/vY3h9+jAAAEc7SURBVHZ2Ft1uF8899xyy2Szy+TxisRiAUWuCQqEgE1qKNa4sM8pzeHgoE2EaErBJL90VOeGNRCKSssQauWQyiRdffBHf+c53UKlU8NnPfhYPP/ywROxYx2bXwTBq5fV6MTMzA2A0gWRNXSgUElHGNKyFhQXs7++j3+8jmUyi3W6jWCxKmletVpMaN8LPZadD8jYnVO7oErmfQHFHO7gPGhXQhY89sl566SVcuXIFa2trkk62vb2Nr3zlK/jqV7+Kj33sY3j66afx6KOP4vHHH0cul8OXv/xlMVI4TRiNG5/79jgjDbcwsqNDdg3ZuM/rjkxNGoP7sXHPTcKOFo1LAxxnSGJH18ZFGd0pkpOOib09x03zG072bdE1rmaQxkI8fz6fTyIqNOSwP0u/35fGzGyj0el0pL7Vdkt1L0y4xa/7OHIbO32U4+c1gXVVPp9PTDWAUePtVCol1xMA8Pl8Yvxhm5QEg0EcHh7iYx/7GB555BG89NJLWFtbQ61WkzpRRsbm5uawuLiIcrmMzc1N7O/vI5PJIJ1OY2NjQwxGbIt8phX6/X5JKaSo4aIVsxDu3r2LlZUVXLp0Cffu3UMoFEI0GkWlUkGlUkE6nZZaOsdxJBLKVMapqSkxMOHiFdsRDAYDzM/Pi5Dz+XySgh6PxyXiyHHxOsB08OnpaakVdhwH4XAYyWQS9Xod8Xgc8XgcuVwOXq8Xh4eHYiTD3yndfhnVTKVSODo6Gvcz+kC4cALOa5mYKIqiKMo4SqUS+v0+lpeXkc1m8eyzz+KVV17BysoKVlZWJLWIdv6DwQCrq6u4e/cubty4gbm5ObHfbrVa2NzcBABZpa1UKiiXy8hms2g0GiiVSmL+wdoJFulz1X9paUnMFbgSDUC2Zy3K97//fWxsbEhvulwuJ2IMgExCmf5ZrValZq/RaOAjH/mI1KjwvZgaxgggx0enSwDSD65QKMjEhSlPnHw5jiOplVNTUxLpM+aNBth2PZ+NW6BMEh7jUgbp9kl3wHK5jGeffRbJZFJ6e0WjUYRCIZmof/3rX8e3vvUtXL58GU8++SSWl5fF7KRYLMp47fRBe1zjBNVpImtcJM4t4NxiCcAJ0eveH8dDcew+duOcPd8K48TYuOibnapov5ZjdqdUjjsu3Jc7Emjv2+0W6v5usI6UwpLtMTweD+r1OjY2NmQ7ANIipFqtSl8wCja7vvI0sew2iuFzbvFqG/rw908jFUZ42KCaPduy2SxqtZoYrPC3VC6XRVDNzs6KoQ9Tu2dmZtDr9XBwcIBarSbv1263pQ/kzs4Odnd3cevWLUkn3N7eFtHI/noARCj1+31UKhVJI6QrLH/fMzMzGA6HuHfvHowxuHLlyglx0+v1sLy8jFarJY6ZnU4HqVTqRBTV7/dL/zWfz4dIJIJeryfbNptNSZlmLzceO6ZR2qI4FAqhVCrB4xk1BOd1meKNC1j9fh/5fB6JRAIvv/yy1Pfx+xKPx+E4DnZ2dqTNAT/DWXHhBJzWwCmKoij3gyuzxhh8+9vfRqFQwKVLlzA9PY319XXMzc0hk8lIT6VEIoHvfe97WF9fx/LyMi5fvoypqSnUajVJcQqFQgiHwygUClhbWxOjADawdRxHCvZbrZa4qbHRbSKRAACpt7BT05hCtbe3B5/Ph49+9KOS/uPxeMQ4gKRSKbH85j5jsRjm5ubg9/tRr9dl33SJY8ok0zTz+Txu3ryJ+fl5FAoF+P1+lEolVCoVSXlinRzNQBjl46SIgob7fScCbdxz46IgfM9arSa1iUztCgaDMqFjo3NG7V544QW8+OKLCIfDePzxx/HUU09hb28P9+7dw+HhoUyYAbxJSNi4xcekCJMtTMYZarjTCt1mMePe1xZLdhTz3Qg4O3XRftwWn25Bx/ed1C6A+3U/Tvh+7MtmC1P+syNzjM7FYjGZ8LP1RaFQOBHx4n7r9TpqtZpEZVnbZtfCjUvrHRcRdS8k2N9xOx2WY+ZijDFG2mHwt8QofCwWE5dUYLRwwu80o/SMFlWrVbnfbrdRr9dx48YN6QMZCoXg9/vx8MMPw+/3486dO5iamsKrr76KZDIpCzm5XA6JREK+k7TXZ/1atVqV+kDgDbMUACLoeC1rNBrY39/H6uoq1tbW0G63kUqlsL+/f6JPHa93di2gHf2mMYoxBplMRvoActGL7QEo0o15wx2Tx5Tjnp2dlWbv4XAYCwsLJ1xu2Yz89u3bkt45PT0tdX+xWAy3bt0SYReLxXBwcCBpumfBhRNwdKHUCJyiKIoyCRauv/766xgOh3jiiSdQLpdRq9WwvLwsTm9zc3NotVp47rnn4DgOnnrqKSwuLmI4HKLdbuPevXtiVtLr9bCzs4MXX3wRjzzyiKQRDYdDRCIRKcrvdDqYmZmRaBfNCeLxuKT/cPLGFWbadff7fUQiEUQiEfj9fpkY0i7ccRxJkQQg/ZKMMdLfaW9vT4r32dDbGCMisVQqIZlM4s6dO8jn88hkMpienkahUECn05EWCpVKRSannHAGAgH0+315T+DNEYtxUTi32HFHuYhtdDJJJNlCjhbqNJBpNpuoVCoSjaPpAc1jvvGNb8AYg5WVFczOzuLSpUviVEpzBNss4341UO7onG1SMq6R9WlphfaxsYXCae9ri57TIoPj0kPHpcba0Tg7ejtOdE4amx1tmxStYoqeLaS4LdMkp6amMDMzg1QqhUQiIaYjBwcHaLfbIvCMMfJ94HmkHT/t6pmiN06cj1sssI+rzbgooltE8h/7tUWjUTmOjEDxdcaM6s4KhYIsmNDt1phRM2+/34/Dw0PEYjF86Utfktvc/5UrV1AoFCR6VigURKzV63UsLy8jk8nIsfB4PJKmSHHGFGuKNEbluBBiC6+joyOEw+ETi1e7u7vSe40CyHEciWAZY3B0dCTXj2QyKeckk8lI/W06nZbIVzKZBAAR4eFwWK4roVDoRKuCfr+P/f19MVOZm5vD2tqamB3Nzc1hY2MDxWJRFrUYtcxms9jZ2UG5XJZIHo9POp1+0/flg+LCCTiNwCmKoij34+DgQKz/WRTv8/mkqTfr3g4PD7G5uYm5uTnMz8+fsPk/ODiQ+jda5e/t7eHatWuYn5/H+vq61JjEYjEUCgWZJDYaDYm+9Ho9WUlmWhVTgTih63a7YvvPlXNac9vpk2x2zf1yMhUOh1Gv13F0dCQmCmwczlXk4XAIn8+HxcVFtFotabUwHA4xMzMjDnL9fh/ValXqTCqViohOpj8BJyez9kTXdvIbF02znzvNsGPca9zQ2KTZbCIQCIiIbbfbIuqCwaA49zUaDTSbTWxsbEiNTjqdxsLCAg4ODkQAsAfWOOHj/tzuFEQKHzsKZ+/DFnPj9jNJ5I1LsyTj0v3s19mROnefNfu97LG6jUXsqNu493ALG7dotd/TbdVv17ZxMYT29c1mE6+99hqq1aqkIPI7TTMeRttYQ8ZFBqZKTsI9tnHPuwU1P6/9eewUXBqX0H2SIogpyB6PB61WS1xpHceRdD/WwIZCITEnabfbEklrtVrI5XJiBDI3N4dXX30VV65cweLiItbW1sSko91u4+mnn5YFD6YoMlLFhSP+VugeSaFGh8lms4lwOCyRr1AohH6/j5s3b+LjH/84rl+/LqYh3W4X8Xhcvm9sxk1xBOBEaiabcdOMhG0PGLErlUridsl0SKaw02iFRiderxfRaBRLS0vY3NwUt9+rV69if38fW1tbcBxHRCcAifwVi0V0u10sLCxIX0C2lDkrLp6A87IGTk1MFEVRlPHUajWsrq6KCGGaHScH8/PzEvXKZDJYXFyURtZHR0fodDqIxWLSo4jucI8//ji8Xi/K5TLq9TpmZmaQTCZRq9UQDodlO5ob0Lo6Ho9LaiWFBuu6mJoYCoXE8t+edNoNcBmF4ySDE93d3V1xVQsGg5KCxmPh9XrRbrdhjJGxeDweJBKJEzU4TF2am5vDwcGBGALwcxljJFLAyShTKcc17Ca2EJskNNy81e2ZwsmxBwIBmTRTJNspsJzIVqtVtFot3L17FwCQSCQQCoWQSCSkJoiC4DSBxDHYUSu7HQPwZudGcpp75DgzGFsk2Slip4k79/vYosPGNiuxx32//Y1LkeR3hueG2zFixs/HVLhcLodcLofp6WmkUilsbW1he3sbd+/elW05bi4ysL9ZvV6XxyjceM7c45u0YDAujdK9wOCOTtrHwj4vdFtkJL3X60m9HtthcJGnVquJmEgkElhYWIDH40GpVJL6MV5vBoMBYrGY/MYZbVteXkY+nxdR6DgjB9dPfvKTePTRR3H37l1pUk53zmAweKLHIg09GJWiqyQwivLzOKRSKXg8HhwdHSGTyUjNGNsRUFhyX/xdckGA5lL9fl/qVSnK2MMNgGQcACPBx6h+LpcTt0suKjGNPBAIYHZ2FsViUb43V69eRbvdllYKXETzer1Ip9MIhUK4c+cOjo6OkEwmEQwGsbm5CY/HcyLT4Sy4eAJOI3CKoijKfVheXpYVYeANR0bWoACQ2o1IJCLpQyyIj0Qikm7DVK35+Xm0222ZDDFSwKa1TOWamZk54YCXy+WkkWwkEkE0GpUaLqZmhsNhqf2gCx33FwgEpNE4J7Ldbhezs7OoVqvY3t5Gt9tFqVSSVErW2TGaFovF4Pf7sbe3h1wuh7m5OZl0MVLAuhuKTDa+PTo6EmdNTmw5Oefr7aicjXsCbKf7vVPGpQraaZzs6cWoHGsJWWNEF77Z2VlxtfT5fOLAyX3zXNn99jgpdddR8TvGyb3b4MP+ax8P+6/7OXcPvnHb2ELstDo6N24BZqd/2mmftmHJuGihe/zuSJ6dRkoBx6hJNpvF3NycfPd3d3dx584dvPLKKxLppXjj77Pb7Ypos3u3TRJuk75/49Im7de4749Lq7WPFxds+NvjdYXCiH3U6vX6iSg2j08gEMDCwgKq1Sp6vR4WFxfh9/vR6/Wwv7+PQCAgxhq5XA6lUgkHBwdYXV3F/Pw8yuWyROmHwyGuXr2KSCSC3d3dE2NlXa9tClOpVCT9mOf84OAAnU4Hfr8f7XYbg8FAUsBp6V+pVFAsFmVBiAtYdOTt9XqIRqNyfkKhkFzv2HCc7U0oOnl8q9Xqid8THYLZ8oHiv16vS9uF2dlZ1Go1rK+vo9ls4tKlSxgMBpJGT+HG6GImk8Hh4SGq1SoikQiSySQKhQJ6vR7S6TSi0Shu3779ln5P7wcXTsCxBq6vfeAURVGUCXBCFwgExIaejbh7vR7q9br0P6PhAe2zOTFkHUs0GkUgEECxWJQ+SnNzc0ilUpKmw/dj7QqtqBOJBHK5nLxfNBrF7u6uTIJYL8KIkW040ul0xH673W5L+iUA6RO1ubmJeDyOQCCAra0t6VfHz9tut5HNZiUSyfRMCgOfz4dOp4NisSir8Zwg5vN5OI4jhixMC+Xn5WSIKaEUNW6RZken3GmJ70TIuSfXbvjenU5HhByjcBRy09PT8Pv9iEaj+MhHPoLPfe5zeOaZZ3D9+nXcuXMHvV5PoqMU/TxPdL6za4pyuZxEhRqNBtrt9olo1KQUTDIpgkaBzNuEBiT2fTtCZEftbKMNtyCxt7FNOexj7E4BnZQKan8mux6MPcySySTS6TRmZ2cxPT0tNW03btxAqVSSdGFGpAGIYODviSmwNCPhOXAvILiPr/357ZTHcWLNjS3S7Pt22iTbGfj9fiQSCal7o9Mke6axtorjDYfDiEQi0gah0Wjg2rVr8Hq96Ha7qNVqcg1iBGtvbw+9Xg8PPfQQksmkNKzmv1wuh3A4jHg8Dr/fj/39fRgzMlVhtJzpk6x5A0a/6Wg0ilqtBmAU0SqXy/B6vRKVprEIMxVoBLK8vIzhcIhqtSrj4XfA5/NJrS6vpTs7O5IV4ff7pbdbIBAQwxJ+92u1mrQ54bWZkUia0/BayjredDoNn8+Hu3fvotFoiPkJ02/z+TyKxSI2NjbQ7XaxsrKC4XCIer2ORCKBeDyOu3fvahuB9xKNwCmKoij3o16vI5lMSn2ZveLOmq9AIID9/X2ZTHDCQhHGPmuO42BjYwNTU1M4PDxEOp2WCUClUpHoFsUhI23BYBCRSEQc6EKhkBTL26lQXOVmtI3NhWOxGIwxkoJkO/dxtX1paUkiedlsFsAb/aQ4AWKfpnA4jJmZGVnZZzoXU6+YNthqtZBIJLC1tQWPxyMObzQ24ESIJgS2ULEnxu60tHE1ZfcTcadNqic95t6eE2aKYNq621GH3/7t30Ymk0E0GsXi4qK0ZmBUh+lkrG9KJpN47LHH4Pf7sbq6iqefflrSwDY2NrCxsYHNzU2sra1JSi4n7eMiam9F5NmfzxZv4+6PMxkZJ8AmpXiOq3cbt407WsfvOc1HIpEI5ufnxQb/6OgId+7ckdQ7HgueZ07QaTxCAc6IDkUb69v4e54UkXV/J9zXgXGvGSfq+D13t0+gwGXaIM1zfD4fdnZ25DvGqGEoFDpR/8W06WKxiGAwiKtXr8oCzNbWlmQS8DfX6XQQDAaxtLSEfr+PnZ0dGQtr6BKJBCKRCLLZrAgcCiQaLjFSzewCijdG8WOxmGQgTE9Pi2CORCJyrZqZmZHxpFIpbG9vy/GzDWa4kNRoNJDP5yVLoN1uS4opty2Xy3KtcRwHzWYT8/Pz0jrBFpNcoJmfn0c6nUaxWJQUUApRZivY7zE3N4dOpyMLNUtLSwiFQnjllVekFUOv15OaubPiwgm4oH90kWp2xqcUKIqiKApNQBh14X/ETN0Kh8PY2trC7u6u1IxxAuQ4DsrlsjSlPTw8lHSeq1evIhaLYX9/H4eHhyd6U9ECmw23mU4UDocBQIrxmcpjO8WxLxx7t9HhrdVqnRBKTBtifynHcUQgspUBjR4ajYb0b0okElJLwgko7ctpmPDqq69KlIkpUbVaDb1eD4888giazSY2NzclMsCWAgDkPe1mzO5IzbjoyP0mSO7n3dE9W+C50+Xcrx0OhyIOms2mTLyr1Sru3LmDcDgsx5KW7/b5a7fbkka5s7ODu3fvwuPxIJ/P4/r16/joRz+KhYUFXL58GZ/85Cfh8/nw+uuv4+joCJubm9jd3RVzHTolUqzb0TH38bGbW9timH/tc8DPbguMcRE34M193uxImz0Gu56P78cIJie8iUQCyWRSeo0xVe/g4AC3b9+WvotMabajbMPhEIPBQIw37H/87rMu1HaTHHfeT/sOjfuuuCNr9mvcEUZ7AYXjZlTf7/cjEolI5H5ra0t+r4zWMgoHQKJug8EAhUIB8XgcS0tLImyKxaLUmzmOg3Q6je3tbQwGA6RSKTlXlUpFjh+3p4viV7/6VekVaTtw8vvG9iCMptdqNRE5dIGkUGJTcZrCcAGH+6cLJXtb2pG+Xq8n7QX29vYQi8Xk2NnnjhkQFFztdhvxeBxTU1M4OjrCYDDAzMwM9vf3RegtLS0hl8thf39fMi64YMVIOK+5vV4P+XwesVgML7/8MowxyGaziEaj2N7eloUHn8+H7e1tdDodxOPxU79b7ycXTsAlQiPnoUqrd8YjURRFUc4r9oST9WCRSARzc3MIBALY2NjA4eEhstksSqWS9JoCRi6Kc3NzMjFhCmE2m4XX68X29rZMSBh14GSNk2FjjBiPGGNQKpUQCAQAQBr5drtd7O/vi2MdG/OGw2EMh8MTNT0UFZzwMIpm95QLBoPyGk6Q9/b2sLq6ikAggFqtJpMZihimNC0uLp5wzAwGg7h27RqeeeYZMVool8sIhUK4ffs22u22TAA5+efk2i0ajDFvEnX3S6OcNLF272PS5P20Sb3jOCcEAY1qmGrJY83zynPJ80lBwdq4arWK5557Di+++KJE51KpFDKZDFZXV7G6uop8Po+lpSVEIhFJS2UKYbVaRalUQrValZocptDaESYKCEaE7Lo/+69bgAEn3SX5+6AYsevUOIHna+zeZaz5TCQSSKVSEnWiyKjX69jb28ONGzfQaDTQaDRkAYKRM/6+bFHG7yIjO7ZoY+0h6+HGndtx0Vz7O3JatHbSffu7ws/H48PvHdPxPB6PpPBRbHD73d1duc3m09PT0xIh6na7mJubQzqdFqdb1ovRRj8ej0t0KJvNwuPxyPeWxiiMqiUSCVkksFOfGa3k9xyApE5yoQiANMkGIC04eF3jdzIej4vDb7/fx9ramtQ1slUCzxfbOwwGAyQSCfj9flk84fnntYrnIBQKodlsIhaLIRAI4PDwULICCoWCLKjNzs4iEolgf38f9XodU1NTSKfTaDQasi8KbC6Y5XI53LlzR3r0pdNpcZ/NZrNiXMX09Unfiw+CCyfg4sGRgCurgFMURVEmwLREFqzH43FkMhk4joN79+7h7t27WF5eRqFQEIttpmnR4OPg4ADr6+uYn5/H5cuXUavVcPPmTUnf4mQuFovJZIiTu3A4LCmcpVLpRGQqlUqh1WqJOQGL9CkeAEg9h9frRSwWk7EBEAt11sRxNT2ZTKLZbKLVaolpQqfTwdLSErrdrgjFdrstdWBsPBwKhbC6uoqNjQ0AwOzsrBgBvPrqq4hGo7ICv7KyIjb8nGSz3xMnoXZ9kDuV0k6xnMQk8fZ2cNd9uSMs9j/2nuIknO6VFHKsdeM/PjfOXfLo6AilUgm3b9/GX/7lXyIQCEhNUi6Xk1qwaDSKeDyOubk5RCIRiagybbBSqUjdlB05bDabYpnPiBYFHp0FbRdTCjGKNNYl+Xw+cQ2kOKVTJ+3vWTvIz9loNKSn3t27d1EulyV1jYYiTDPkOOwIG387TI+0a9jcws52Yx13Dsed40nRtnHfI/f30t4nsaOObhMfPsYoPyM5rMli2wNbLPMccAHoypUr8rvibzwYDCKdTsPv96PVauHll1+WCBgXbBiBYl3tYDBANpuVdF9jDHK5nEQFeWwpkpmOyUg8v+eMrvn9fonuMbuApiaHh4fSbmV/f19qzABIo3W/3y/v12w2kU6nMT09LVkOrGlknRxdJzke1rAVi0URf1zg6Pf7WFhYQC6XQ7FYlN/I0tKS/DZ4reSxjUajSKfTksIeCATkmk9HzUwmA5/Ph8PDQ0m5pBPmWXBhBZxG4BRFUZRJcILEVCXWTRQKBVSrVbGbZt+1u3fvIhQKYWFhQSaoh4eHWF5exrVr18QdLxAIIJ1Oix02rc852fR4PFJjxboPujqy8S4n4qzDAiB/7fShZrOJfD4vq9lsAs6J1mAwQK1WExHIaIgxBplMBsYYbG5uitU42yiw9shxnBM1OX6/H9euXUOz2ZQ+SNFoFCsrKxgMBjg4OEA+n4ff75e0T4oM1mExWmTXuxFOqidZ8rsn4Tb3E3TuiIt7P5PSNt0RQQpitphglMVOqWQExI5a8XH7HHAsg8EAlUoFR0dHuHfvHjyeUWN2igCe/2w2i5mZGUSjUSSTSUQiEcRiMaRSKRFbFO8cK88jRSgjWnyO47bT/uzXU9xxck5RztpIRnOOjo5Qq9UkIkYBxv1xEcJOb+Q4WEtoCzYKO4o7CjwuCEwSbG6BNi4l0n1/nLib9F2y39OOvNkRTFvksw3HcDjE/v6+tK5gFJwLMmyXYI/t8uXLkrLMRRA6n9oRvKmpKSwtLSEWi0mPykQigXq9Lj3dZmZmZBGIwjuRSEiUDoDUgPIcc1yJREJMnBjBYh9I1vDxeBwdHSEUCmF6ehpHR0eYn5/H3t6emCHlcjlZbGA9Wjwelzq4cDgs7UyYLplIJEQI8ztJF2C/349sNoutrS202225rrGnI3vDzczMoNvtynWfx5ImUWwEXygUJFIXCoVw69YtaV2RSCSwvb2NarUKx3EkwnxWXDgBF/R54fd6UG6qgFMURVHGw1VxmgLs7u5KlMjv96NUKkkNygsvvIBEIiENv7nyfOnSJVy6dAnPPPMMbt++jZmZGeRyOUlBZCSGaUN0fmShP2swYrGYRONoI84JCyMbFFZMyWK9XbVaFROERqOBWCwmE0tOtBjRo4tdqVSSNC3W6LGejRMmuq9xgh+Px6U3HSdRlUpF6kaYosR6ncceewytVgvf+973pD0D0+Q4eZ+UJsnPZ9d3UfS50+HeaiTO3v9pr7lfnRwf4wq+OzLHiTjrGCmA7NRZPkbhR2w3SXtSzChNsVjEa6+9NravG8U+e4sxbY7fIVtgMGplW7RTWNmRLjtiVi6XT0S++P583j42dqSM21A42gKNgo1ihueb29sRQ+ANk5txou20NNpJ53LcOZ+0Pzd25M0+b6xVZVopjwdr28LhsBwbO+JpR+mZZhsIBBCLxWQBJB6Py/er3W5jbW1N+hLGYjG0222JvM3MzMBxHBQKBaRSKUlzvnLlClZXV1EqlbC3tyfpkVyQ4e+OgorXMmNG/SEpvNhIm46UANBsNmWMm5ub8Pv9YhTSbDZFBB0eHmI4HCKdTotIo0kLo2yhUEjEF9+Px48ur1xgOjg4kGgd628dx8Hq6ioASFooaw3ZcLzb7cLr9WJ+fl7qT6enp5FIJJBIJPDKK69IHR1Nqfb39+U6dJbpk8AFFHDGGMSCPo3AKYqiKBOJRqPI5/OYmprCq6++isPDQ4lk0MWtUqng+vXryOfzWFhYwN7enqQf5fN55PN5vPTSS3jhhRewsrIiTXYPDw/FAKNSqSCVSiEUCp0wMmD0jxM3pupw5dk2hmBtCd3rOMbt7W00Gg1Eo1GpoeE+Gang5MftrsiauIcffhjT09PiLkcTFLv2I5/Py+SyWq0iFArJBCydTuP555+XyRQnntPT01hbWxOXS07UmbbJiSuFw/1q3dy293YKnjt69nbq5uzJ+iTxNs7cwr1fACcEDhcDPB7Pm8ScXVfm/svtKdQJo1Hu6B2PAx33OKE25o2m2MDJhtucfNrRUDul0v6ctmvouNYCFFn8/BSBjKhR7LIm0BZl7n98nPsYdz7scz3uvI87Lxz/aXWTp4m4SRN1+/jyvPC3xt80z1kikZD0RLYD4TlJJpNYXFwUccvrUDwelyjS9PS0tA9hhJ5uih6PR/oxskZ1d3cX7XYb6XQawBsCPxqNIhKJiDjqdDqSBsiIbDAYlDoyHju217CNWSjmCA0+Dg4OZAGB32emct66dQv5fF7Mk9g2gbXA/NxcwGBdMK9n8/PzksIYj8dRKpWws7ODcDgsohN4Y9EgHA5jfX39TeYpTMucm5tDuVyWGmRGBLe2ttBsNrGwsCBumpubm5JC6vF4JEvirLhwAg4A4sEpVFXAKYqiKBOYm5tDu93G9evXUSgUcOnSJYlGeb1e/MVf/AUGgwEeeeQRSdfh6jDNJl566SXs7u4in8+LgYnX65U0IdZ1hEIhibTQbp4RQK/Xi4ODA0mt4iSTE0JOyKPRqKRSGWNwcHAgJit0UGPrA7rG0TSABgpMYWSqJQ03aIrB2htGjDgx5AScEUAKknq9joODA8RiMWxtbaHT6SCRSEgfJ6/Xi4ceegidTkfMBRj1YcsBOyJE7Mm6HXWx/wF4k6BxT7rHTdZPq5EaJ9ROW2UfN8Gn2LQjSkwJYz2PHa2z6+bc/+zPyu35frxPEWELOr6GaZz253PX5LkNTtyfw/6MnERzWwo1ii1+t2yBZh8H3rejbHa6nvscutNdx4nqSamUdprlpHNlf9Zx53ZclNdd82ZHQ9mTkbVcfA3TAu00UYqjYDAojeN5HQJG1yemP3IRhy1P6PLJSF2xWJRoOR1w2dPRFlzFYhHr6+vidsvWBUzxtt0mmWZZq9UkasjfKbMKGPVium80GsWdO3cAQPoeAkAikZCUStuA5fbt2/B4PGLxb7cwoLEJU7i73S7y+Tz29/cBjGrXfD4fCoWCRB+BUVQ5Go0CwAlHXNb4MhU3m81idXUVrVYLe3t7IlxTqRR2d3dRLBaxtLSEbDaLRqOB7e1tSTflNdb+TZ4FF1LAJUJ+lFvdsx6GoiiKck7Z29uT1e2rV69KIb7jONL8mj3RCoWCTIIymQwCgQB2d3fh9XqxsrIiJieRSERcABntsh3aWBdGs4Fms4m9vT0AEIt6pi0BEIdM7oMTODr3sel2t9tFpVJBPB6XiaddV0Sbe0ZE+FltsxW6Z9KFkg2GSaVSQSgUkjq9YrGITqeDlZUViSgMh0OUSiU0Gg1kMpkTLnbpdBq3b9+WCATT5oA3iwXgjZRJ26nSNj5hGp/X6z3huMhtJ4m5cfc5hknizs0kUed+D/sv6+KIHc2iCLONL2wRZ4syt7Czn6OwI+MMVPg4J562iLLNRdyfyzYbsUWYO33SLdTcr7VFHRcqxonlceLMnQZrf+5Jwux+UbpJaZXu7e0x2q0C+Dx/7zz+PG+Mhvf7ffh8PrRarRPnl/WF9XodKysrMGbUA40mNDTvMMag2+1iZmZGhDnTrjmG6elp1Go1tNttJBIJMYW5du2amMlsbm7i6OgIly9fFhFH90uPxyP9DSORCAqFwgnHW+ANEyK2COFndhxHWiMkEglpOcDX05Qkn8+LyyRraGnmEgqFUK/X5foQiUTkOpVIJMQ9kqZTt27dkhRguuDSaMcYI4tl9neeLWFWVlbg9XrFbMmYURproVDA1tYWZmdnkUqlThgFcTGM4tXd5uCD5kIKuHjQh4Pa2TnDKIqiKOebo6MjtFotsd1mb6VutytpiK1WC5VKBcBo1TmTyaDdbmNvb+9ESiEbdzO9kiKIlvCFQuFE1MJxHOlDxDo0RsdofjIYjPq4cUJM18h6vY5AICApR71e74TJAScVbBnA1Klut3tiksnICev0AGB5eRmtVktStpiedevWLVy7dk1aE9A1MxqNot1uo9VqYWVlRcwKOOmx656CwSBmZ2cxNTWFzc1NVKvVEyKEn9+OxtlREFvw0AyG0Tt3dGacOLP3yb9u0XhaxG6cYLCFCB+3I4fuiKFbsNqv4efmAgAFgC3kbIHH/dpGGqdFpeyUSDf2uOzbdqSTf+3P7I6w8dzYRiXu4+PetztVc9x5cp+bSemQ7sf5Wd9KNNXmtPceJ4ptYxD+Xn0+H9LpNJrNpkQvaXpji3Qa3PCawetIr9c74U7J5tuNRkMWgQaDgbS4AEaLLMFgEMlkEu12WxZd4vG4/B6NGTmF3rhxA4lEAo7jnHAQpfkHF2HoaEljEtbo8rjwGsBUyFwuh1KpBABSP8eIfyaTEWfUcDiMa9euSUsJ9qgrlUrweDxIpVJyfeN1iNH72dlZvP7666hUKpJpwHo+OucyWsZrII8vACwsLMDr9eL555+XCOXc3Bz29vawubmJlZUVpNNp1Ot1bG5uIhgMwnEcMfvhgpXt8noWXFgBd2u/dv8NFUVRlA8lHo9HHMu63S5ef/11cXObnp6WlEnauyeTSam3YG1HIBDA7Owscrmc1ENwAptMJiWqxfo6Y8yJlKBwOCzRMYoS4I0JIycHNJHgCjBT8ZiiZIyROpNQKHSip1MymZTnuTLdarVkkskJJ10GA4EAfD6f1K1Fo1EsLy/LynOxWES1WhVb9FAohGAwiE6ng4WFBdRqNbHj9vv9qFar2N/fF7e4TqeDTCYjkUROijm5nBSNswWD7Zhoi4TTImO26HLvd9Jr7G1Om/xPiurYAoATdtv2ns+5TUlsQec+DrZwGxeFc0fo7H2Mi1TZAmvcY3Y0zU5LtFMp73cM3cdq3OPjon72WN2RukkRVHubcWmUp51zbsP347jGHVu+H8UXzTj4u8vn82L2M26xoNfriYU9nSXZZ5JmHI4z6gdIY5qjoyMAEEFTLBYl/ZEp2NlsFmtrazg4OJB+khsbGyiXy7I4QJgS3u/3pecgnSGZjl0sFhGJRN4kihg9Y0N1ZifQIImRQ7uWjWYsFEL8/adSKfj9fuzt7aHf78v1odFoIJvNil2/x+PB7OwsDg4OpGbN7/eLiQlFNBeOmArKxuA8PuFwGM8//7yYSs3OzqJaraJQKCCfzyOVSiEWi2FnZ0cW0Xq9nhirUJRSMJ4VF1bAqYmJoiiKMgkKFIqZTCaD+fl5GGOklxAnVVxJpzMlLdtDoRAymQxarZbYZHc6HSnQv3HjhlhbB4NBWX3vdDoIBoNit29HlBhlYQoRxZvH40EymTwhRpheGQgE0Gg0TkwY2euN0RBG7FjnAkBWp5m+RIGXzWZlEk/hR6e4ra0teYx1JzRI4Vjq9TpefPFFOXaOMzJL2NnZOSGaa7WafH47pc4+FnwthYTt+DcuusPb9kR1nHg6LSrjfs4tJNzb2JN9W2hw0j5JDLjFqh3VmyQY7UiXO0Lk/gzjom328bD3Z7tK2o/b72t/9reTmjhOONt/xzFOgI7bt33fPnb3i0SOG6M7isvvv32M7IgnFzsYASf5fF7s6tvttqSOsha20WggHo9LBsDq6iqy2Syi0SgqlYq43DqOIynbdG6kEyzr2KamplCr1dBoNPAzP/Mz2N/fR7lcxtTUFFZXV+H1erG3tyeR+sFgIPsARimRW1tbKBaL6PV6WFhYQCaTwfT0NPb29kTgsRUCf4Osr6Opx9zcnJg38X0qlYpcJyuVChKJBIbDIWKxGEqlEo6OjvDYY49hfX1dat4Y9aMBC48dhV69XhfDpWAwiIODAzSbTXGO9Pv94u7Lz1ev18VJNxQK4ZVXXkGtVpOei71eD/fu3UM8Hkc2m0U2m8Xm5ib6/b5cW5l2zuPGBuuJRGLid/j9Zvyv+wEnHvSh1u5jMDy73FRFURTl/MK6MdZ/pFIpAKPUSqYMsWFxvV7Hzs6OGAfEYjFJTWw2m3CckWX/1tYW0uk0ut0u/uzP/gzr6+sywWH6DlsEcDUXgETAOHl2HEfq2crlsjThtp0MuSrf7/dRq9WQSCSQTCbFhMR2oOQkg7UrtoiwXfLocmkbYwSDQfT7fezv76NaraJSqcjjtuiya2M8Hg9+6Id+CPPz89jY2JC+chxzOBxGPp9HPB5HNBo9UefHFE86vXF87mbTnGi7UwrdpgJ8fpx4cwvAcZGqSeLBLQTc++G4+Rns93cLIW5v15SN27c9Hju90RZy7jRI92Pu4+VOk7Tfxx1tslMl3dvd77i5xz8u8ufext7nuON+v9fa98dFH93P2eeD0TX3NvZzU1NT0qCa0fJsNisLOmy8zUbYbCswMzODdruNSCSChYUFzM/PSw0sxYIdmWs2mxItisfjUhvLsW1sbCCRSKDT6Uh6MyOANP2gyAyHw+j1enIeDw8P0Ww2xRAlkUjAGHMiPZG/b372TCYjYi4YDGJlZQXValUyBGq1Go6OjlCtViXSFg6HEQgEJJLI/nVsKQEA6XRajFuYAs46NtbO0aCFpigUw5lMBqFQCM1mUxbg+Jmnp6exuLiITCaDO3fuoFAoSC/FXq+HO3fuYHp6GjMzM1haWhIRzF6dxhi59lPMcjGN1/Cz4MJG4ACg2uohGfaf8WgURVGU88bW1tYJW36uahcKBVmZ5SSTqYoejwf5fF7qMRhJYk3ElStXMD09je3tbalty+VyUq9CMcfXETZI5nvEYjE0Gg2Uy2WkUilJz2K9Cx3YyuWy9F4CII5ytniwnSXb7bbUycViMZnMM+0LGE3waboQiUQwGAzEoZKTokajIe5vNAWwox/GGFy5cgUbGxtYWVmRiSxTvbhKn8vlTkSiAEjqGIWPHYmzRcS4FEc7RYz3bfOQSXVWbpHH/Y0TfvZ5ssWMOzpop87ZxwXAifHzvr2fcREr+/0mReomiSb789jbjYsmshaRr3ELxHG37fe5nyhznze7VtB+3n4Nt3G3jHDvd1Jk1X08bexj4F4Y4Hu7BS+jzXR3ZUrhzMwMyuUy4vG4NDoHIBHrZrMpjraJRAIrKyvI5/OyYLO3tycROzrY2gZKrMuNRCKSsv3888+L6cj+/j5u3rwpDpalUgmJRALhcBjNZlMEpMczsvYvFouS4tjr9ZBOp+HxeFCr1eSY1et1GbsxRtx7uTjEmjdux7YENGCh+PP5fDDGoNlsotVqYW5uDsYYbG9vy7WG14fZ2VmJ+Pl8PonYlUoluYY2Gg3pLcdG4DSDsdNbA4EA0uk0wuEw7t27h729PcTjcczOzsLn8+HOnTtIJBKIx+O4dOkSdnZ2sLu7K86+AE7UOzuOI2nsAKRdyFnwjgWcMWYRwG8DyAMYAviC4zj/xBjzGwD+GwCF401/3XGcP363A307JMMjAXfU7KqAUxRFUd6Ez+cTy3tSLBaRy+UwPz8vKYntdltqvmjCwT5HXBlPpVLI5/Podrs4ODiQNCH+4yq83++XiV00GpXHOUFjJOrw8FAK+zmJoJkKJ1mtVgv37t3D3NycOD9euXIFxowK//1+P8rlMvb29qT+jp8DwAmRx8kaJ+8cPye0nERxYs+JKKN23B/TmRYXF+H1erGwsIBIJIL19XWJLMzMzEh7A+CNeh6fzyfNjtlOgUKyXq+PrcXi5Ntd92Xb7dM0xhaZhPuwhY2dxmnXJQJvNgKxX2sLLIo3Cg5bFI1L+3RHl8alcNppfO7PcVpaoDvKx7Hw+wbgRCNtez9u0eMWS25h5BZ4fI1b/I77jOPGbo/jtOdO26e9nXv8/N64o4p2FNc22GEkhtHi6elpcVDMZDLy+6rX6xI5slOQU6kUSqUSIpEInnjiCcTj8RORKjaYpjis1WqIxWIi0Gq1GoLBoNTDrq2tYX19HXNzc1hfX8cnPvEJ5PN59Ho9WcyhCIxGo/Ib9/v9ODo6OtGnLxwOix0/6+BqtRoikYj0r6MDJkVfOp3GvXv3JN18MBigXC5LOxFG0Twej/Roq9frmJmZwdTUlJidzM/Po1qtolqtIpvNAoBcf3O5HCqVikQSKSYbjQYikYgscNVqNanhA0auvqwBjMfjeP3113F0dIRwOIzZ2VmEQiHcvHkTABCPx5HP51EqlbC9vS2ZBADEuInmLgAQiUSk7peLe2fBu4nA9QH8D47jPGeMiQJ41hjz1ePn/i/Hcf7Bux/eOyMdHv0HdVjv4lL2rEahKIqinFey2awUvHPlN5VKYWZmBqVS6U0mApyQ1Ot1GGOwv78vIiUWi6FcLktxO6NorOVg9I3W/kwdcluAe71eVCoVlMtlZDIZ1Ot1sRk3xmB5eRnGGKyvr2NnZ0dcI/v9PpaXl9HpdMRtcmdnB1tbW5ibm8PU1BT29/cxPT2NVCol4mkwGEgtoF3jxHo5Rt0Y2cpms7Jqz5SowWAgtXy093YcR/oxMd2Ik/h4PI6dnR0Rz3w9G/h6PB5J1WQaKEWQOw3RFijEru2y62fGRXtsoWWLMzsiOG7/fG+38ONtvrftWEiBZ0eKJgkv7sfetx0Rs5+3tx8ncvjefJ61PBQMyWRSIqRuAcz9jTMDsR93v6f7mNmfddIYJ4la+7NNiuKNOw6TopH2MRl3ThiJ5m2e46mpKTGsCAQCCIfDUiMVDAZRKpUQj8dlwYfbUdj5/X4cHh4ikUjgkUceQTabxcMPP4znn38ejjNyqnUcR2q/Dg4OpE0Io3OsXev3+1hfX8drr72GTCaDcDiMer2O69evI5VK4ejoCNlsVgQUF4L4+9nf3xeB0u/3kUwmEQ6HcXR0JAYjhUJBIvBsXzAcDiU6t7CwIGnVNAZZW1uDxzPq6+b1eqXXJAXjYDDA3NycZA/QBKTT6SAQCCAWi6HZbMrYWF9MQyleL0qlEqLRKNLpNGKxGKrVqnw+XieYRhoKhXD79m1ZKGOq5c2bN9FqtbC0tCSLYHt7e2+K7vOazvpDGqx4PB5pBXNWvGMB5zjOLoDd49s1Y8yrAObfq4G9GzIRCrizC20qiqIo5xeKKKbP5XI5WRFnWqSdykTr/W63i42NDaRSKczOzkp/ItawBYNBmehRCHGCTMODdrstESljjNSTlUol1Go1iVDRKMHv98uEcXd3VxwfmXoUjUZl9T4ajeLw8BDtdluiXXSkYyqkMUYMS+wVZN7nRPHu3bvScJvii++7tbWFy5cvy+fhhJcr+qFQSCY96XRaxsjoHtsdcMXbTq8qFAowZmQmY0+yGR0DcGLi7YYCjGPixNWOptnRM1tgTHJDtNMYbfEGnDQU4WvcxiZ2Cp6933HCxd523Od0i7px6ZTuz8l98TvPKC2/1/xc7gksU9EcZ3LDbTfjPqP7+Iy7P26/b0WMuSNy4yJwXASgeGWd6Lh9MVJpn+9wOCzpyeyxxpovO4LGBR6aZrB2jS6Jjz76qKRol8tlMRvi2JkuzcUMADg4OJBrSrVaRalUwsbGBvL5vNS3MvXRFiUUXB7PyJa/VquhWCwCGF3/qtWqiDe29aBgCQaDEs1iRgLTKLnIxbYBfr9f3Hnp0AtAov1MJV1aWpLPUK/XEYlE0Ol0sLe3h0984hO4ffs2yuUyhsMhLl++jF6vh0qlIkZTzGawHXAZuWN7BT4/Pz8Pn88nzcLZ1iEUCuHevXvSky6Xy6HRaGB3d1d+t+yNyWwGLm7E43ER7Yy+PfBtBIwxKwCeAPA9AE8D+BVjzH8B4AcYRemOxrzmlwD8EvDGSX2vyEZVwCmKoiiT+eVf/uW31hTqnHH16tUP7L0uXbo09vFPfOITH9gYFEVRlDfzrl0ojTERAL8H4Fcdx6kC+OcALgP4OEYRun847nWO43zBcZwnHcd5kjmv7xWpsB8eAxRqKuAURVEURVEURbk4vCsBZ4zxYSTevuw4zu8DgOM4+47jDBzHGQL4FwCeevfDfHt4PQapsF8jcIqiKIqiKIqiXCjesYAzoyTjfwXgVcdx/pH1+Ky12c8DeOmdD++dk4kEUKidXW6qoiiKoiiKoijKe827qYF7GsAvALhhjHn++LFfB/B5Y8zHATgANgD8rXfxHu+YbDSAgkbgFEVRFEVRFEW5QLwbF8pvAxhXBP6B9nybRCYSwOuFxlkPQ1EURVEURVEU5T3jXZuYnFcykVENnLtHiKIoiqIoiqIoyoPKhRVwudg0Ov0hys3eWQ9FURRFURRFURTlPeHCCriP5KMAgFd3q2c8EkVRFEVRFEVRlPeGCyvgrs3GAACvqIBTFEVRFEVRFOWCcGEFXDoSQD42jZd3VMApiqIoiqIoinIxuLACDgCuzcXwigo4RVEURVEURVEuCBdawD06F8NaoY52b3DWQ1EURVEURVEURXnXXGgBd202hsHQwa392lkPRVEURVEURVEU5V1zoQXco3NxANA6OEVRFEVRFEVRLgQXWsAtJIOIBqa0Dk5RFEVRFEVRlAvBhRZwHo/BI3MxvLxTOeuhKIqiKIqiKIqivGsutIADgCeWErixXUG13TvroSiKoiiKoiiKorwrLryA+6lrefQGDr752sFZD0VRFEVRFEVRFOVdceEF3BOLCcxEA/j3L+2d9VAURVEURVEURVHeFRdewHk8Bj/1aA7/4WYBra72g1MURVEURVEU5cHlwgs4APjMo7No9Qb489uFsx6KoiiKoiiKoijKO+ZDIeD+yqUU4kEf/vV376LT1yicoiiKoiiKoigPJh8KAefzevB3f/IhfHvtEP/7H71y1sNRFEVRFEVRFEV5R3woBBwA/M2nV/HzT8zjD1/YRW8wPOvhKIqiKIqiKIqivG0+NAIOAH7mo7OotHr47p3iWQ9FURRFURRFURTlbfOhEnCffCiD6PQU/o9/9yoKtc5ZD0dRFEVRFEVRFOVt8aEScNM+L/7vv/EJ3C018Gu/f+Osh6MoiqIoiqIoivK2+FAJOAB4+koGv/qTV/G1V/fxtVf2z3o4iqIoiqIoiqIob5kPnYADgP/y6VU8NBPBb/zhy9rcW1EURVEURVGUB4YPpYDzT3nwv332MWwdtfDPvrl21sNRFEVRFEVRFEV5S3woBRwA/MjlNH7+iXn8P39+B398YxeO45z1kBRFURRFURRFUU7lQyvgAOB//muP4OF8DP/dl5/DZ/7xt/CXr2t7AUVRFEVRFEVRzi8fagGXjgTwe//tj+Lv/2ePo9Ht43Nf+Ev81198BvVO/6yHpiiKoiiKoiiK8iY+1AIOGNXD/fUnF/Gnf/fH8Pc+8xF882YBP/tPv4X/75l7GA41rVJRFEVRFEVRlPODOQ+1X08++aTzgx/84KyHAQD4s1sF/MM/vYkXtyqY9nnw0fk4Pv2RGSwkg/j0R2YQD/rOeoiKoijKGIwxzzqO8+RZj0NRFEVR3k+mznoA541PXc3ixx7K4N/d2MWzd4/wvddL+D//5CYAIDDlwUo6jB9/eAaPzsXwU4/mEJjynvGIFUVRFEVRFEX5sKACbgzGGPzs43P42cfnAABHjS42ig384Qu7eHW3ii/8+R0MHSDk9+JSNozL2Yj8y8UCuJyNIBHywRhzxp9EURRFURRFUZSLhAq4t0Ay7Ecy7McTS0kAQG8wxF/cKeKbrx3gTqGOH2wc4d8+v3PiNX6vB/GQD8mQD4mgH+mIH/OJIBaSQaQiAQR9XgR9XkSnpxAP+hCdnkJ02gf/1Ie+LFFRFEVRFEVRlAmogHsH+LwefOpqFp+6mpXHmt0+Ng6b2K+1sbZfR7HRRaXVxVGjh3Kri1v7NXzz5gHaveGp+/ZPeRA7FnORwNSxsJtCJOBDJOBFxLodDkyN/vmnEAp4R3/9XoT8o+cCUx6NAiqKoiiKoijKBUIF3HtEyD+Fa3MxXEMMP/6RmbHbOI6DYqOLcrOHdm+AZneAaquHSquHeqePWruHWruPWqc/+nt8//CwgUZngFq7h0Z3gMFbdMf0GJwUdwEvQv4phP1ehALHf/1TCLseD/m9CEx5Me3zYNrnxbR1O+DzyHN+rwpERVEURVEURfkgUQH3AWKMQSYSQCYSeMf7cBwHnf4QtXYfjU4fjW4fze5IDDY7fTS6AzS7fTQ6rr/yfB/FRhf3Sk00uwM0OqPX999BywRjgOkpL4L+UTrotM+DoJ+Cb3Q/YAlA/9ToX2DKi8CUB4Hj+36vBz6vB1NeM/rrMfBNeeDz8DGDqePbfq8HU9yGr/F44JsabePzGhWViqIoiqIoyoXlfRNwxpjPAPgnALwA/qXjOL/5fr3XhwljzLE48iIbfedC0E23Pzwh9Nq9Idr9ATq9Idq9Adr9weix3gDt3gCd/uh2qzt6rtUdHkcV++gc76vUGKJz/LpOf/SaTn+Ibv/0NNJ3i9djROD5vAZTXg98ntFfCr6p48enjred8hp4PaPtvMf3pzyeE89NyePH23qNvBf35bX/Gdf948c8x6/hX/dj9uvGPebeF28bA3iMgceMjoEKWUVRFEVRlIvH+yLgjDFeAP8MwF8FsAXgGWPMHziO88r78X7Ku2cUHfMjEXr/38txHHQHIyFHQdcbDNEbOOgPh+gPRs/3Bw76gyF6w+O/Awe9wRD94fG2x9vL4659vHn7k/saDN/Ytt0boj8cYHB8vz8cPd8bDI+3G72Oj/O9z3uvd1vMeQxGou9Y7Hk9vP2G6Hvzcydf4zkWkh4zWkw4cdsYeDyQfXqNddtDcTkSnR5j3TeQfZvjfRngxHvixP3jbQxg4Ho9cPx57r8tXO8x/r1Hr+NzJ8f65m2BN44Htx33eThO+73HvX7SOMe+l4zzPu/F/Xlwn+PM10IXAxRFURTlHPF+ReCeArDmOM7rAGCM+R0AnwWgAk6BMeY4jdKL6FkP5l0yHFpibzjEYOBg4Izun/jnOCe2dT82PL7P2/Zj4/Zl3x86DoYORn+H1m0Hx/cnPe+M3866PXAcOI6D4RAntz8eg2PdHgne48/ljIT66Dn7tvUaa7+OAzjg60bbO3jjueFog9F96/GTr3POvaB+kDlVLOJYALrEo/0aLxcLLDHP7X7hh5fxiz+6ctYfUVEURVEeCN4vATcPYNO6vwXgr9gbGGN+CcAvAcDS0tL7NAxFeX/xeAz8o3AIgtCm7ucBxxJ99xV7Y7d7s3ic9Pq3sy0sgXrqex1/huEQ9x0XTtx/47M77vdyHxdnvHCWfQ7vd0xGr3Mc+1icHJO9rb0oQDE/tMaQCvs/wG+IoiiKojzYvF8Cbly+zYm1ccdxvgDgCwDw5JNP6rq5oijvCZIuOPYypCiKoiiK8mDzfnWN3gKwaN1fALAzYVtFURRFURRFURTlLfB+CbhnADxkjFk1xvgBfA7AH7xP76UoiqIoiqIoivKh4H1JoXQcp2+M+RUAf4JRG4Hfchzn5ffjvRRFURRFURRFUT4svG994BzH+WMAf/x+7V9RFEVRFEVRFOXDxvuVQqkoiqIoiqIoiqK8x6iAUxRFURRFURRFeUBQAacoiqIoiqIoivKAoAJOURRFURRFURTlAUEFnKIoiqIoiqIoygOCCjhFURRFURRFUZQHBBVwiqIoiqIoiqIoDwgq4BRFURRFURRFUR4QVMApiqIoiqIoiqI8IKiAUxRFURRFURRFeUBQAacoiqIoiqIoivKAoAJOURRFURRFURTlAcE4jnPWY4AxpgDg7nu0uwyAw/doXx8kD+K4H8QxAzruDxod9wfLh3ncy47jZN+LwSiKoijKeeVcCLj3EmPMDxzHefKsx/F2eRDH/SCOGdBxf9DouD9YdNyKoiiKcrHRFEpFURRFURRFUZQHBBVwiqIoiqIoiqIoDwgXUcB94awH8A55EMf9II4Z0HF/0Oi4P1h03IqiKIpygblwNXCKoiiKoiiKoigXlYsYgVMURVEURVEURbmQqIBTFEVRFEVRFEV5QLgwAs4Y8xljzE1jzJox5n866/GchjFmwxhzwxjzvDHmB8ePpYwxXzXG3D7+mzwH4/wtY8yBMeYl67GJ4zTG/Nrx8b9pjPnpsxn1xHH/hjFm+/iYP2+M+RnruTMftzFm0RjzTWPMq8aYl40xf+f48XN9vE8Z93k/3tPGmO8bY144Hvf/evz4eT/ek8Z9ro+3NRavMea6MeaPju+f6+OtKIqiKOeRC1EDZ4zxArgF4K8C2ALwDIDPO47zypkObALGmA0ATzqOc2g99vcBlBzH+c1jAZp0HOd/PKsxHo/pxwDUAfy24ziPnTZOY8w1AP8GwFMA5gB8DcBVx3EG52TcvwGg7jjOP3Btey7GbYyZBTDrOM5zxpgogGcB/CcA/ibO8fE+Zdx/Hef7eBsAYcdx6sYYH4BvA/g7AP5TnO/jPWncn8E5Pt7WeP57AE8CiDmO87MPwvVEURRFUc4bFyUC9xSANcdxXnccpwvgdwB89ozH9Hb5LIAvHt/+IkaT4DPFcZw/B1ByPTxpnJ8F8DuO43Qcx1kHsIbRefnAmTDuSZyLcTuOs+s4znPHt2sAXgUwj3N+vE8Z9yTOy7gdx3Hqx3d9x/8cnP/jPWnckzgX4wYAY8wCgL8G4F+6xnduj7eiKIqinEcuioCbB7Bp3d/C6ZPIs8YB8KfGmGeNMb90/FjOcZxdYDQpBjBzZqM7nUnjfBDOwa8YY148TrFkqta5G7cxZgXAEwC+hwfoeLvGDZzz432czvc8gAMAX3Uc54E43hPGDZzz4w3gHwP4ewCG1mPn/ngriqIoynnjogg4M+ax85wb+rTjOD8E4D8C8LePU/4edM77OfjnAC4D+DiAXQD/8PjxczVuY0wEwO8B+FXHcaqnbTrmsfM07nN/vB3HGTiO83EACwCeMsY8dsrm533c5/p4G2N+FsCB4zjPvtWXjHnsPF1PFEVRFOXMuCgCbgvAonV/AcDOGY3lvjiOs3P89wDAVzBKDdo/ridiXdHB2Y3wVCaN81yfA8dx9o8nvkMA/wJvpGOdm3Ef1zT9HoAvO47z+8cPn/vjPW7cD8LxJo7jlAH8B4zqyM798Sb2uB+A4/00gP/4uP73dwD8hDHmS3iAjreiKIqinBcuioB7BsBDxphVY4wfwOcA/MEZj2ksxpjwsdkDjDFhAD8F4CWMxvuLx5v9IoB/ezYjvC+TxvkHAD5njAkYY1YBPATg+2cwvrFwknjMz2N0zIFzMu5jc4p/BeBVx3H+kfXUuT7ek8b9ABzvrDEmcXw7COAnAbyG83+8x477vB9vx3F+zXGcBcdxVjC6Pn/DcZy/gXN+vBVFURTlPDJ11gN4L3Acp2+M+RUAfwLAC+C3HMd5+YyHNYkcgK+M5r2YAvD/Oo7z740xzwD4XWPMfwXgHoD//AzHCAAwxvwbAJ8GkDHGbAH4XwD8JsaM03Gcl40xvwvgFQB9AH/7DJ3uxo3708aYj2OUhrUB4G8B52rcTwP4BQA3juubAODXcf6P96Rxf/6cH+9ZAF88drD1APhdx3H+yBjzXZzv4z1p3P/6nB/vSZz377eiKIqinDsuRBsBRVEURVEURVGUDwMXJYVSURRFURRFURTlwqMCTlEURVEURVEU5QFBBZyiKIqiKIqiKMoDggo4RVEURVEURVGUBwQVcIqiKIqiKIqiKA8IKuAURVEURVEURVEeEFTAKYqiKIqiKIqiPCD8/5YSD3Xj7ofJAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -3205,96 +3205,6 @@ " plot_svd(coffee_image, reconst_img, r, original_shape)" ] }, - { - "cell_type": "code", - "execution_count": 87, - "id": "4c8b4b0b", - "metadata": {}, - "outputs": [ - { - "ename": "ValueError", - "evalue": "cannot select an axis to squeeze out which has size not equal to one", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32mC:\\Users\\DELLPR~1\\AppData\\Local\\Temp/ipykernel_20612/635175836.py\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mx\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msqueeze\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbrain_image\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m:\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[1;32m<__array_function__ internals>\u001b[0m in \u001b[0;36msqueeze\u001b[1;34m(*args, **kwargs)\u001b[0m\n", - "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\numpy\\core\\fromnumeric.py\u001b[0m in \u001b[0;36msqueeze\u001b[1;34m(a, axis)\u001b[0m\n\u001b[0;32m 1504\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0msqueeze\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1505\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1506\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0msqueeze\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1507\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1508\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;31mValueError\u001b[0m: cannot select an axis to squeeze out which has size not equal to one" - ] - } - ], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 80, - "id": "f7e1a1c3", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[[ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " ..., \n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.]],\n", - "\n", - " [[ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " ..., \n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.]],\n", - "\n", - " [[ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " ..., \n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.]],\n", - "\n", - " ..., \n", - " [[ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " ..., \n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.]],\n", - "\n", - " [[ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " ..., \n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.]],\n", - "\n", - " [[ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " ..., \n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.]]])" - ] - }, - "execution_count": 80, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "brain_image" - ] - }, { "cell_type": "code", "execution_count": null, diff --git a/ch2/ch2.ipynb b/ch2/ch2.ipynb index 8822a2c..e45b7a7 100644 --- a/ch2/ch2.ipynb +++ b/ch2/ch2.ipynb @@ -32,7 +32,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 1, "id": "f4328fee", "metadata": {}, "outputs": [ @@ -296,7 +296,7 @@ "[303 rows x 14 columns]" ] }, - "execution_count": 6, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } @@ -309,7 +309,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 2, "id": "887ecd7a", "metadata": {}, "outputs": [ @@ -523,7 +523,7 @@ "max 3.000000 1.000000 " ] }, - "execution_count": 7, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -536,7 +536,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 3, "id": "09e28402", "metadata": {}, "outputs": [ @@ -559,7 +559,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 4, "id": "e4810f7a", "metadata": {}, "outputs": [ @@ -579,7 +579,7 @@ "dtype: float64" ] }, - "execution_count": 9, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -594,7 +594,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 5, "id": "41ff84ad", "metadata": {}, "outputs": [ @@ -614,7 +614,7 @@ "dtype: float64" ] }, - "execution_count": 10, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -625,7 +625,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 6, "id": "f8117a56", "metadata": {}, "outputs": [ @@ -645,7 +645,7 @@ "dtype: float64" ] }, - "execution_count": 11, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -658,7 +658,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 7, "id": "33366cc6", "metadata": {}, "outputs": [ @@ -856,7 +856,7 @@ "target 0.147678 0.352609 -0.430124 1.000000 " ] }, - "execution_count": 12, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -867,7 +867,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 8, "id": "982ae37a", "metadata": {}, "outputs": [ @@ -897,7 +897,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 9, "id": "4b3f2ceb", "metadata": {}, "outputs": [ @@ -1065,7 +1065,7 @@ "max 2.394438e+00 2.803756e+00 2.289429e+00 3.203615e+00 1.000000 " ] }, - "execution_count": 16, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -1076,7 +1076,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 10, "id": "5b6643df", "metadata": {}, "outputs": [ @@ -1274,7 +1274,7 @@ "target 0.137230 0.421741 -0.391724 1.000000 " ] }, - "execution_count": 17, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -1285,7 +1285,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 11, "id": "2d587b61", "metadata": {}, "outputs": [ @@ -1295,7 +1295,7 @@ "" ] }, - "execution_count": 18, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, @@ -1326,7 +1326,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 12, "id": "f6371c2f", "metadata": {}, "outputs": [ @@ -1344,7 +1344,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 13, "id": "201ef5a7", "metadata": {}, "outputs": [], @@ -1355,7 +1355,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 14, "id": "8945007e", "metadata": {}, "outputs": [], @@ -1367,7 +1367,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 15, "id": "2b7ff6dd", "metadata": {}, "outputs": [], @@ -1377,13 +1377,13 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 16, "id": "c63c8ae3", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA6kElEQVR4nO3de1zO9/8/8MfVmUjpnJROIklOK+dyShEqp23GB5vNYY7bjH6bzw62fTaz2T5mDsN82pBSCSFUjiFEkZROSkdJkg5X1/X7w2d95sssVK/r6nrcb7fdbnMdXu/H9flYj57v632QyOVyOYiIiFSEmugAREREzYnFR0REKoXFR0REKoXFR0REKoXFR0REKoXFR0REKoXFR0REKoXFR0REKoXFR0REKoXFR0REKoXFR0REKoXFR0REKoXFR0REKoXFR0REKoXFR0REKoXFR0REKoXFR0REKoXFR0rpl19+weeff4779++LjkJESobFR0pp3759+OSTT2BhYcECJKLnIpHL5XLRIYiel5eXFw4fPgwAUFNTg0QiwZIlS5CUlITWrVvDwcEB3bt3R8+ePdG1a1dIJBLBiYlIUbD4SGnIZDLs2bMH69evx8mTJ1FTUwN1dXWoq6tj7Nix+Oqrr5CamooHDx4gNTUVSUlJiI+Ph76+PmbMmIEZM2agXbt2oj8GEQnG4iOlkJ2djZkzZ+LevXt47733EBISgsjISCxcuBDLli2DoaHhU98nk8kQFxeHjRs34vjx4/jhhx/g7+/PCZBIhbH4SOElJCTAx8cHixcvxvvvvw8NDQ3k5+dDW1sb7du3b/A6J0+exFtvvQUPDw+sW7cOamr8iptIFbH4SKFdu3YNQ4cOxYYNGzBu3LiXXu/+/fvw8fGBg4MDfvnlF05+RCqIv/KSwpJKpXj99dfx+eefN0rpAUDbtm1x8OBBXLlyBRs2bGiUNYlIuXDiI4X1448/Ijw8HEeOHGn0yezatWsYMmQILly4ACsrq0Zdm4gUG4uPFJJcLoednR127dqFvn37Nsk23n//fcjlcqxevbpJ1icixcRdnaSQTp06hVatWqFPnz5Nto133nkHv/76K6qrq5tsG0SkeFh8pJBOnTqFUaNGNenBJ3Z2drCyskJiYmKTbYOIFA+LjxTStWvX0K1btybfTs+ePXHhwoUm3w4RKQ4WHymkO3fuwNjYuMm3Y2Vlhfz8/CbfDhEpDhYfKSQtLS3U1NQ0+XZ4Hh+R6mHxkUIyMjJqlknszp070NPTa/LtEJHi0BAdgOhpXnnlFcTFxWH+/Pl/+9qSimqEXMjF9YJylFdJoaejgS5mepjY2xKGbbSf+d5Lly7B19e3sWITkRLgeXykkNLS0jBo0CDk5ORAS0vrqa+5fKsM62LTEXejGABQLZXVP6ejoQY5AA9HY8wdYo8eHfWfeP/du3dhY2ODrKws6Os/+TwRtUzc1UkKycHBAd26dUNISMhTnw+Kz8KUTfGITilEtVT2WOkBQNV/Hzt8rRBTNsUjKD7riTW2bduG0aNHs/SIVAwnPlJYUVFRWLBgARITE6Grq1v/eFB8FlYdSMHDWtkz3v24VppqCPTpiqnunQAApaWl6N69O8LCwvDKK680dnQiUmAsPlJob7zxBtq2bYuffvoJwKPdm1M2xeNhbd1jr6vKvYbyM7tRnXcdstoqaLQ1RCvbPjAYNgsSdU0AQCtNdeya7Y7uHdrh9ddfh7GxMdauXdvsn4mIxGLxkUK7e/cuBg4cCH9/f3z66ad4O+gColMK8ee/tQ+uxaEk8ltALoOmiQ20zR0gvVeEqpwkdFzwG9R02gAAJBJgpJMpdM7/BydPnsTx48cfmySJSDWw+EjhFRcXY8SIEXDu3Q/nzH1RU/e/v7Ky2irkrZsBWdV96HbzhOGYxZBIHn11XXs3Hxp6RvUTHwBIZHUwOvUdoveF8bs9IhXFg1tI4RkbGyMuLg7Fbe2euKB0dW4KZFX3AQDt+k+uLz0A0DQwf6z0gEdT3xsrf2LpEakwFh8phXbt2qFrv2GQaDx+akNdZVn9v2u0M/nbdWQSdWSW8m4MRKqMxUdKo7xK+sRj6q316/9deq+ogevUNlYkIlJCLD5SGno6T15oSLtD1/qDV+6d3gW5/H+nOEjvFUFe92RZ6uloPvEYEakOXrKMlEYXMz1oaxQ8drK6mpYODEa8jTv7vsODqzGoKc6Ctnln1FWU4mHWJXR8NwgS9Tb1r9fRUEMX87Yi4hORguDER0pjQm/Lpz7eppsnTF/9Aq3s+qCuvBgVyUdRe+cW2vbwgkTz8Wt1ygFM6PX0dYhINXDiI6Vh1EYbQzobP3EeHwDoWDlDx8r5me+XSABPR+O/vXA1EbVsnPhIqczzsIeOhvoLvVdWW417Z3YjPj4epaWljZyMiJQFi4+USo+O+gj06YJWms/3V7eVphrs7l3Gzp++xsCBA2FmZoY2bdpgwoQJTZSUiBQVi4+UzlT3Tlju3QUakOHvbqAukTy6RmegT1cc+XklOnXqhLq6OtTW1qKmpgZOTk7NE5qIFAaLj5ROXV0dtq6YCfnR7+DlZAptDTXoaDz+V1lHQw3aGmrwcjLFrtnumOreCWpqatiyZQtatWoFAKitrcXNmzchkzX8Lg9EpPx4rU5SKsnJyfD390daWhqmTZuGX3/9FXcqqhFyMRfX8++jvKoWejqa6GLeFhN6Pf0O7IMHD8bZs2fxww8/YPHixdDT08ORI0fg7Pzsg2OIqGVg8ZFSqK2txUcffYQffvgBDx8+hJqaGrZv347XX3/9udfKzs5GZmYmPDw8UFFRgZEjR+Ls2bNYsWIFPvvssyZIT0SKhMVHSiEjIwPOzs6oqalBXV0d2rZti+DgYIwaNapR1l+3bh0WLVoEe3t7xMTEwMzMrFHWJSLFw+/4SCnY2toiLS0NEokE6urqqKmpgaGhYaOtP2/ePGRmZqK2thZWVlbYvHlzo61NRIqFxUdKY+XKldDW1saxY8cwePBg2NraNur6lpaWSE9Px8KFCzF79mwMGTIElZWVjboNIhKPuzpJKWRnZ8PW1hZbtmzB9OnTm3x7Fy9exMiRI1FVVYXQ0FB4eXk1+TaJqHmw+EgpuLq6orq6GikpKc22TZlMhsmTJyM0NBRTpkxBUFAQ1NS4k4RI2fG/YlJ4ISEhuHLlCsLDw5t1u2pqati9ezciIyMREREBc3NzJCUlNWsGImp8LD5SaDKZDLNmzcKUKVPg6OgoJMPo0aNRWFgIe3t7uLq6YsWKFUJyEFHj4K5OUmhz587Ftm3bUFZWBi0tLdFxsH79eixYsAC2traIiYmBhYWF6EhE9Jw48ZHCys3NxYYNG/D9998rROkBwJw5c5CVlQW5XA5ra2ts3LhRdCQiek6c+Ehh9enTB+Xl5bhx44boKE+1bNkyrF69Gv3798ehQ4fQunVr0ZGIqAE48ZFC2rt3Ly5evIiwsDDRUf7Sv/71L1y4cAGpqakwNjZGVFSU6EhE1ACc+EjhyGQyGBoaYtiwYQgJCREd52/JZDK89tprCA4OxqRJk/D777/ztAciBcbiI4WzePFi/Pzzz7h79y50dHREx2mwqKgoTJgwAbq6uoiOjkaPHj1ERyKip+CvpaRQCgoK8OOPP+Kbb75RqtIDAG9vbxQXF8PR0RG9evXCsmXLREcioqfgxEcKxd3dHUVFRcjIyBAd5aVs3LgR8+bNg42NDWJjY3naA5EC4cRHCiMqKgrnzp3Dnj17REd5abNnz0ZOTg4kEgmsra2xfv160ZGI6L848ZFCkMlkMDExwYABAxARESE6TqNavnw5vv76a7i7u+PQoUNo06aN6EhEKo0THymEDz/8EBUVFdixY4foKI3uyy+/RGJiItLT02FiYoJ9+/aJjkSk0lh8JFxJSQnWrFmDL774osWeBN69e3fk5+fDz88PY8eOxcSJEyGTyUTHIlJJ3NVJwg0aNAjZ2dnIyckRHaVZHDp0CAEBAdDR0cHhw4fRq1cv0ZGIVAonPhLq6NGjOHXqFEJDQ0VHaTZeXl4oKipCt27d0LdvX7z//vuiIxGpFE58JJSpqSl69+6NAwcOiI4ixC+//II5c+bAysoKsbGxsLS0FB2JqMXjxEfCfPTRRygrK0NwcLDoKMLMmjULOTk50NTUhI2NDf7973+LjkTU4rH4SIi7d+/iq6++wj//+U+VP7zfzMwMKSkpWLZsGRYuXIh+/fqhoqJCdCyiFou7OkmIoUOHIjU1FXl5eaKjKJTk5GQMHz4c5eXl2LlzJ8aOHSs6ElGLw4mPmt3x48cRGxurFHdeaG7Ozs64ffs2JkyYgPHjxyMgIABSqVR0LKIWhRMfNTsLCwt069YN0dHRoqMotOjoaPj5+UFbWxuHDh1Cnz59REciahE48VGz+vzzz1FcXIzdu3eLjqLwRowYgZKSEri4uOCVV17BkiVLREciahE48VGzKS8vh5GREQIDA7Fy5UrRcZTKli1b8M4776Bjx46IiYmBlZWV6EhESovFR83Gy8sLly9fRkFBgegoSqmoqAienp5ITU3Fd999h3fffVd0JCKlxF2d1CzOnDmD6Oho7Ny5U3QUpWViYoKrV68iMDAQixYtgpubG8rLy0XHIlI6nPioWVhaWsLe3h6xsbGio7QI165dw7Bhw1BWVoadO3di3LhxoiMRKQ1OfNTkvv76axQWFraIG8wqCicnJ+Tl5WHSpEnw8/ODn58fT3sgaiBOfNSkKioqYGhoiKVLl+KLL74QHadFOnbsGMaNGwdNTU0cOnQIffv2FR2JSKGx+KhJjRkzBufOnUNBQQHU1LiDoalUVVVhzJgxOHbsGN59912sXbtWdCQihcWfRNRkLly4gAMHDuC3335j6TUxHR0dHDlyBFu3bsX69ethY2OD7Oxs0bGIFBInPmoynTp1QocOHXDq1CnRUVRKcXExPD09cf36daxevRqLFi0SHYlIofDXcGoS33//PXJzcxEWFiY6isoxNjZGcnIyPv74YyxduhR9+/blaQ9Ef8KJjxpdZWUl2rdvj/nz52P16tWi46i069evY+jQobh79y6CgoIQEBAgOhKRcCw+anR+fn44fvw4iouL+d2eApDJZHjzzTexbds2+Pr6IjQ0FBoaGqJjEQnD4qNGdeXKFbi6umLfvn3w8fERHYf+JDY2FmPHjoWGhgaioqLg5uYmOhKRECw+alR2dnYwMjLC2bNnRUehp6ipqcGYMWNw5MgRzJs3Dz/++KPoSETNjvuhqNGsX78eWVlZPKBFgWlpaeHw4cPYvn07Nm7ciE6dOiEzM1N0LKJmxeKjRlFTU4MlS5Zg7ty5sLCwEB2H/sbUqVORl5cHPT09ODg44NtvvxUdiajZcFcnNYpJkybh8OHDKC0t5QEtSmbVqlX4+OOP0bNnTxw5cgT6+vqiIxE1Kf6EopeWkpKCkJAQbN26laWnhAIDA5GSkoL8/HyYmZkhJCREdCSiJsWJj16ao6MjdHV1cfHiRdFR6CXIZDLMnj0bW7ZsgY+PD8LDw3naA7VI/PWcXsovv/yC9PR0hIeHi45CL0lNTQ2bN29GbGwsTpw4AWNjY5w5c0Z0LKJGx+KjF1ZTU4MFCxbgrbfegpWVleg41EgGDx6M4uJiuLm5YcCAAZg7dy5kMpnoWESNhrs66YVNnToVkZGRuHv3Lr/ba6F27NiBf/zjHzA1NUVcXBxsbGxERyJ6afxpRS8kLS0Nv//+OzZt2sTSa8FeffVV5Ofno3379nBwcMA333wjOhLRS+PERy+kW7duUFdXx5UrV0RHoWby5Zdf4v/9v/+HHj164NixYzztgZQWf1Wn5xYUFITr169j7969oqNQM1q+fDlSU1NRXFwMMzMz7Nq1S3QkohfC4qPnIpVK8c4772DatGno1KmT6DjUzOzt7ZGdnY3p06fj1VdfhY+PD2pqakTHInou3NVJz2XmzJkIDg5GWVkZz/FScSdPnsTo0aMhkUiwf/9+DBgwQHQkogbhxEcNlpmZiV9//RXr169n6REGDhyI4uJi9O/fH4MGDcI777zD0x5IKXDiowZzcXGBVCrFtWvXREchBbNr1y5Mnz4dxsbGiI2NhZ2dnehIRH+JEx81SHBwMJKTkxERESE6CimgyZMno6CgAMbGxnB0dMRXX30lOhLRX+LER39LJpPBwMAAvr6+CAoKEh2HFNzXX3+NFStWwNnZGceOHUP79u1FRyJ6DCc++ltz586FVCrFli1bREchJfDBBx8gNTUVpaWlsLCwwI4dO0RHInoMi4+eKTc3F5s2bcIPP/wALS0t0XFISdjZ2SErKwszZszA66+/jlGjRvG0B1IY3NVJz9S7d2/cv38fN27cEB2FlNTp06fh4+MDuVyOffv2YdCgQaIjkYrjxEd/KTw8HJcuXeIBLfRS+vfvj+LiYgwaNAhDhgzBW2+9xdMeSChOfPRUMpkMhoaGGDFiBIKDg0XHoRYiJCQEU6dOhZGREWJiYuDg4CA6EqkgTnz0VIsWLUJVVRW2b98uOgq1IBMmTEBBQQHMzMzQpUsXrFq1SnQkUkGc+OgJ+fn5sLS0xL///W/MmTNHdBxqob799lssW7YMTk5OOHbsGIyMjERHIhXB4qMnuLm5oaSkBDdv3hQdhVq4zMxMeHp6Ij8/H7/88gumTp0qOhKpAO7qpMccOHAA58+fR1hYmOgopAJsbGyQlZWF2bNnY9q0aRg5ciRPe6Amx4mP6slkMhgbG2PQoEEIDw8XHYdUTHx8PLy9vVFXV4fIyEgMGTJEdCRqoTjxUb1ly5bhwYMHvNIGCeHu7o7i4mJ4enrC09MTM2fO5GkP1CQ48REAoLi4GObm5li9ejUWLVokOg6puNDQUEydOhUGBgaIiYmBo6Oj6EjUgrD4CMCje6vdunUL2dnZoqMQAQDKy8sxbNgwXLx4EStXrsTHH38sOhK1ENzVSYiOjsbp06exZ88e0VGI6unp6eH8+fP49ttv8emnn6J79+4oKSkRHYtaAE58Kk4mk8HMzAx9+/bF/v37Rccheqrs7Gx4eHjg9u3b2LRpE6ZNmyY6EikxTnwq7qOPPsK9e/ewa9cu0VGI/pK1tTUyMzPxzjvv4B//+AeGDx+Oqqoq0bFISXHiU2GlpaUwNTXFqlWr8MEHH4iOQ9Qg58+fh5eXF2praxEREYGhQ4eKjkRKhsWnwjw8PJCeno7c3FzRUYiei1QqxcSJExEREYE33ngDW7duhZoad2BRw/BvioqKi4vD8ePHsXv3btFRiJ6bhoYGwsLCEBoaiuDgYHTo0AEpKSmiY5GSYPGpqClTpmD48OHo16+f6ChEL8zPzw+FhYWwsrKCs7Mz/vnPf4qOREqAxaeCPvnkE9y5cwchISGioxC9ND09PZw9exZr1qzB559/jm7duqGoqEh0LFJgLD4Vc+/ePaxatQofffQR9PT0RMchajQLFy5ERkYGqqqqYGlpia1bt4qORAqKB7eomBEjRiA5ORn5+fmioxA1mSVLluD777+Hh4cHDhw4AB0dHdGRSIFw4lMhZ86cwdGjRxEcHCw6ClGTWrNmDc6dO4fLly/D2NgYR48eFR2JFAgnPhViaWkJBwcHxMTEiI5C1CykUikmT56MsLAwTJ06Fdu2beNpD8SJT1V89dVXKCwsRGhoqOgoRM1GQ0MDoaGhCA8PR0hICCwsLHD16lXRsUgwFp8KqKiowMqVK7Fs2TK0b99edByiZjd27FgUFRXBxsYGLi4u+Oijj0RHIoG4q1MF+Pj4ICEhAYWFhZBIJKLjEAn173//G4sXL4a9vT1iYmJgZmYmOhI1M058Ldz58+dx8OBB7Nixg6VHBGD+/PnIzMxEbW0trKys8Msvv4iORM2ME18LZ21tjY4dO+LkyZOioxApnPfffx/ffvstBg8ejAMHDqB169aiI1Ez4MTXgq1ZswZ5eXkIDw8XHYVIIX3zzTdISEhAcnIyTExMEB0dLToSNQMWXwtVWVmJFStWYMmSJTAyMhIdh0hh9erVC0VFRfD29oaXlxdef/11yGQy0bGoCXFXZws1fvx4nDx5EkVFRTxviaiB9u3bh0mTJqFt27Y4evQonJ2dRUeiJsCfiC1QYmIi9u7di//85z8sPaLnMGbMGBQVFcHe3h49evRAYGCg6EjUBDjxtUC2trYwMTFBfHy86ChESmv9+vVYsGABbG1tERcXx9MeWhCOAy3MunXrkJOTwwNaiF7SnDlzkJmZCblcjo4dO2Ljxo2iI1EjYfG1IFVVVXjvvfcwb948/nZK1AgsLS1x48YNLFmyBHPmzMHgwYNRWVkpOha9JO7qbEEmTpyII0eO4M6dO/xuj6iRJSYmYuTIkaisrMTu3bvh7e0tOhK9IP50bCGuXr2K0NBQ/Prrryw9oibg6uqKgoICjBkzBqNHj8arr77K0x6UFCe+FqJz587Q09NDQkKC6ChELV5UVBQmTJgAXV1dHDlyBC4uLqIj0XPgaNACbN68GTdv3uQBLUTNxNvbG8XFxXB0dETPnj2xfPly0ZHoOXDiU3I1NTXQ19fH9OnTsX79etFxiFTOhg0bMH/+fNjY2CA2NhYWFhaiI9Hf4MSn5GbMmAFNTU2sW7dOdBQilfT2228jOzsbEokE1tbW/AVUCbD4lFhaWhp27NiBzZs384AWIoEsLCyQmpqK9957D/Pnz8fAgQN52oMC465OJda1a1doa2sjMTFRdBQi+q/k5GQMGzYMFRUV2L17N3x8fERHov+DY4KS2r59O27cuIGIiAjRUYjoT5ydnZGfn4/x48djzJgxmDRpEk97UDCc+JSQVCqFvr4+Jk+ezLtHEymwQ4cOISAgAK1atUJ0dDRcXV1FRyJw4lNKb775JiQSCTZs2CA6ChE9g5eXF4qKiuDk5ITevXvjgw8+EB2JwIlP6WRkZMDBwQHbt2/H66+/LjoOETXQ5s2bMXfuXFhbWyMmJgaWlpaiI6ksFp+ScXFxQV1dHa5evSo6ChE9p4KCAnh6eiI9PR3ff/895s2bJzqSSuKuTiWya9cuJCcnY+/evaKjENELMDMzQ0pKCpYtW4YFCxagX79+qKioEB1L5XDiUxJ1dXUwMDDAuHHj8J///Ed0HCJ6SVevXsWwYcNQXl6OnTt3YuzYsaIjqQxOfEpizpw5qKurw5YtW0RHIaJG0K1bN9y+fRsTJkzA+PHjMWHCBEilUtGxVAInPiWQk5MDGxsbbN68GTNmzBAdh4gaWXR0NPz8/KCjo4PDhw+jV69eoiO1aCw+JdCzZ09UVlYiNTVVdBQiaiJVVVXw9vZGXFwcFi9ejG+//VZ0pBaLuzoVXGhoKC5fvswrtBC1cDo6OoiJicHmzZvx448/ws7ODjk5OaJjtUgsPgUmk8kwa9YsTJo0CV26dBEdh4iawcyZM5GbmwsdHR3Y2trixx9/FB2pxWHxKbCFCxeipqYG27dvFx2FiJqRiYkJrl69isDAQCxatAju7u4oLy8XHavFYPEpqNu3b+Onn37Cd999By0tLdFxiEiATz75BElJScjOzoapqSm/8mgkPLhFQb3yyisoLS1Fenq66ChEJJhMJsPMmTOxfft2jB8/HsHBwdDQ0BAdS2lx4lNA+/btQ0JCAsLDw0VHISIFoKamhm3btuHIkSOIjo6GqakpEhISmj3HsmXLEBkZCWWflzjxKRiZTAYjIyN4eHhgz549ouMQkYKpqqrCmDFjcOzYMSxcuBDfffdds227Xbt2qK2tRceOHbF69WqMGTMGEomk2bbfWFh8Cmbp0qVYt24dysrKoKOjIzoOESmoX3/9FW+99RYsLS0RGxsLKyurJt2eXC5H27Zt8eDBAwCPplA9PT188MEHSEhIgJ6eHpycnNC9e3f07dsXhoaGTZrnZXBXpwIpKirC2rVr8c0337D0iOiZpk+fjry8PLRu3Rq2trZYu3Ztk2ynsrIS69evh6urKyorKwEAWlpaaN26NaZPnw5fX1+8+uqr6N+/P/Ly8vDNN9/Azs4Ofn5+iIyMVMi7z3PiUyD9+/dHfn4+MjMzRUchIiXy6aef4pNPPkHv3r1x5MgR6OnpNcq6p0+fxj/+8Q907doVCxYswKRJk+q39+abb0JbW/up7ysvL8fu3buxbt06tG3bFhs3boSjo2OjZGoUclIIBw8elEskEvmFCxdERyEiJZSSkiI3NzeX6+joyENDQ196vU2bNsnNzMweWyspKUleVVXV4DWkUql87dq1ckNDw0bJ1Fg48SkAmUwGU1NTuLu7IzIyUnQcIlJSMpkMb775JrZt2wZfX1+Ehoa+0GkPO3fuxNKlSxEXFwd7e/uXznXp0iX4+Phg7dq19VOjSCw+BbB8+XKsWbMGd+/eRevWrUXHISIlFxsbi7Fjx0JDQwNRUVFwc3Nr8Huzs7PRu3dvxMTEoHv37o2W6cqVKxg2bBhOnjwpfLcnD24R7M6dO1i9ejVWrVrF0iOiRuHh4YGSkhL06dMH/fr1w4IFCxr83kWLFmHhwoWNWnoA4OLigpUrV2LGjBnCD3jhxCfYkCFDkJGRgVu3bomOQkQtUFBQEGbNmgVzc3PExcXB2tr6L1+bkZEBNzc33Lp1q0mOLJfJZHB1dcV3332HYcOGNfr6DcWJT6Bjx47hxIkTCAkJER2FiFqoqVOnIi8vD3p6erCzs3vmff6CgoIwZcqUJjudSk1NDXPmzMH69eubZP2G4sQnkJmZGVxdXXHw4EHRUYhIBaxatQoff/wxevbsiaNHj6Jdu3aPPT9ixAgsWbIE3t7eTZahuLgYDg4OuHv3rrCrvnDiE2TlypUoLS1FcHCw6ChEpCICAwORkpKC/Px8mJmZITQ09LHnr127BicnpybNYGxsDD09PWRkZDTpdp6FxSdAWVkZvvjiC6xcubLRTjQlImqIzp0749atW5g6dSomTpwIX19fSKVSAI+mMVNT0ybPYG1tjby8vCbfzl9h8QkQEBAAY2NjBAYGio5CRCpITU0NmzZtQmxsLI4fPw5jY2OcOXMGWlpaqK2tbfLti76wNYuvmZ08eRIxMTHcxUlEwg0ePBjFxcVwc3PDgAEDIJFIUFBQAJlMhk2bNqGmpqZJtltaWip0bxcPbmlmFhYW6Nq1K44ePSo6ChFRvR07dmDq1KkwMDDAnDlz8Pnnn2PNmjVYvHjxU19fUlGNkAu5uF5QjvIqKfR0NNDFTA8Te1vCsM3Tr+EJPLrotZGREcrKyqClpdVUH+eZWHzNaNWqVfjnP/+J4uJi6Ovri45DRPSYr776Cl988QXu378PAGjbti1yc3Mfm84u3yrDuth0xN0oBgBUS/93MrqOhhrkADwcjTF3iD16dNR/Yhv79+/HqlWrcPr06Sb9LM/C4msm5eXlMDIywvLly/HJJ5+IjkNE9ITCwkJYWFjUX1lFIpFgwYIF+P777wEAQfFZWHXgOqqkdXhWc0gkgI6GOgJ9umCqe6fHnvP19cX48eMxa9asJvoUf4/F10y8vb1x8eJFFBYWio5CRPRURUVF6NatG8rKyiCRSOoPdImKikKJfhesOpCCh7UNv9xYK001BPp0rS+/U6dOYeLEiUhLS4Ourm5TfIQGYfE1g/Pnz8PNzQ1Hjx6Fp6en6DhERH+pvLwcLi4u+PLLL2FtbY3Vq1fjQmYJWvkuR9WfSk8ulyNv/SzUlRcBACzeXA9No45PrNdKUx27ZrvDVl8DvXr1wr/+9S/4+fk12+d5Gh7V2QwCAgIwcOBAlh4RKTw9PT0EBQVh4cKFqK6uxp49e+C1ZM1j3+UBQPWt5PrSA4CKq8eeul6VtA5rj1yHj48Phg4dKrz0ABZfk1u9ejVu376NPXv2iI5CRNQgAwcORHBwMCZNmoTv1m9G3I3iJ77Te3A1BgCgZWr33z/H4Wk7EOVy4Oi1Atg59cBPP/3U5NkbgsXXhCorKxEYGIj33nsPRkZGouMQETWYh4cHjh07hl+OXUV1dfVjz8mltai8fgoAYDB0FtR02qCuvAjVt5KfupaGujrcXl0INTXFqBzFSNFCTZ48GW3btsUXX3whOgoR0XPr3r07hgW8AahrPvZ4Zfo5yKofQK21PrStnNHKri+A/02B/5cUakgtqGjyvA3F4msily5dwv79+/Hbb78pzG85RER/JT8/H0VFRU88fr+67onH/ii41vavQCJRQ+vO/R49fv0U5NKnX/KsvKrpL4XWUBqiA7RU/v7+cHd3h5eXl+goRER/a8mSJdi5cydsbW0xduxYjBw5EiYmJlCTVj32urqqCjzMSAAAVFw5jIorh+ufk1c/QGX6Weh2GfjE+no6mk88JgpHkSbw448/4tatWwgPDxcdhYjob9XW1qJVq1ZQU1NDRkYGvv/+e/j4+GDQoEGoKcqCtsb/qqIy5QRQJ4VEuzVaObjX/6NhYAEAeJD85O5OHQ01dDFv22yf5+9w4mtkVVVV+OCDD7BgwQKYmJiIjkNE9BipVIojR44gMjIS8fHxuHnzJu7duwc1NbX6ozI1NTXx2muvYfPmzSirqsOAf/3vVIUHV2MBAG1dR8HAc2b941U5SSj8fTkeZlxA3cNyqLf632XO5AAm9LJsls/XEDyBvZEFBAQgJiYGJSUl/G6PiISSSqWIiYnB3r17cebMGaSnp+PevXvQ0NCAqakpnJ2d4enpiQkTJsDIyAiGhobQ1tbG1q1bMWnSpPp1Zv8nAdEphc+8TNlfkUgALydT/Dy1TyN+spfDia8RJScnIywsDHv37mXpEVGzkslkiI2NRUREBM6cOYO0tDSUlZVBXV29vuQCAgIQEBCAzp07P3WNFStW4NVXX0XXrl0fe3yehz1OpJXgYe2TB7r8HR0Ndcz1sH+hz9RUOPE1Int7exgYGOD8+fOioxBRCyaTyXDixAlERETg9OnTuHHjBsrKyqCmpgYTExM4OTnB09MT/v7+T5TYi3p0geqXu1anouDE10g2btyIzMxMHD9+XHQUImpBZDIZTp8+jfDwcJw6dQo3btzA3bt3IZFI6ktu0aJF8Pf3h7Ozc5Pl+KO8XvbuDIqAE18jqKmpgb6+PmbMmIF169aJjkNESkomk+Hs2bMICwvDqVOnkJqaitLSUkgkEhgbG6Nr164YMmQI/P394eLiIiTjldwy/BSbjpjUYkgAVD3lfnyejsaY62EPF0t9IRn/DouvEUyZMgUHDx5EaWkpv9sjogaRyWQ4f/48wsPDceLECaSmpuLOnTuQSCQwMjJC165dMXjwYPj5+aFnz56i4z7hTkU1Qi7m4nr+fZRX1UJPRxNdzNtiQq9n34FdEbD4XtL169fh5OSE3bt3IyAgQHQcIlJAMpkMFy9eRFhYGE6cOIHr16+jpKQEAGBkZIQuXbpg0KBB8PPzQ69evfgLdBNj8b2kLl26oFWrVrh06ZLoKESkIBITExEaGooTJ04gJSUFJSUlkMvlMDQ0hKOjY33J9enThyUnAA9ueQlbt25FWloaMjIyREchIkGuXLmCPXv2IC4uDikpKSguLoZcLkf79u3h6OiI6dOnw8/PD25ubiw5BcGJ7wVJpVLo6+vjtddew8aNG0XHIaJmcPXqVYSGhiIuLg7Xrl1DUVER5HI5DAwM0LlzZwwcOBDjxo1D//79WXIKjMX3gqZNm4bw8HCUlpZCQ4ODM1FLk5KSUl9yV69eRVFREWQyGfT19dG5c2f0798f48aNw6BBg1hySoY/sV/AzZs3ERQUhN9//52lR9QCpKWlISQkBDExMbh69SoKCwtRV1cHfX19ODg4YOLEiRg3bhw8PDxYci0AJ74X4OzsDIlEgqSkJNFRiOg53bx5s77kkpOTUVhYCKlUinbt2sHe3h79+/eHr68vPD09+YttC8X/V5/Tb7/9hpSUFKSlpYmOQkR/IzMzs77kkpKSUFBQUF9ydnZ2GDduHHx9fTF8+HCWnArhxPccpFIpDAwM4O/vj19//VV0HCL6k5ycHISEhODo0aNISkpCfn4+pFIp9PT0YGdnBzc3N/j6+mLkyJEsORXH4nsOb775Jnbu3ImysjL+h0MkUG5ubn3JXblyBfn5+aitrUXbtm1ha2sLd3d3+Pj4YNSoUdDS0hIdlxQMf3o3UHZ2NrZu3YotW7aw9Iia0e3btxEaGoqjR48iMTER+fn5qKmpQZs2bWBjY4ORI0dizJgx8Pb2ZslRg3DiayBXV1dUV1cjJSVFdBSiFqugoAB79uxBdHQ0Ll++jLy8PNTU1EBXVxe2trbo06cPRo8ejdGjR0NHR0d0XFJSHF0aICQkBFeuXGHpETWi4uJihIaGIjo6GomJicjLy0N1dTV0dXXRqVMnDBkyBN7e3hgzZgxat24tOi61IJz4/oZMJoOBgQFGjx6N33//XXQcIqVUUlJSP8ldunQJubm5qK6uRuvWrdGpUyf06dMH3t7e8PX1ha6urui41MJx4vsb8+fPR21tLbZt2yY6CpFSKC0tRVhYGA4dOoTExETcunULVVVVaNWqFaytreHu7g5vb2+MGzcObdq0ER2XVBAnvmfIzc2FtbU11q9fj9mzZ4uOQ6RwysrKEB4ejkOHDuHixYvIycmpLzkrKyv07t0bXl5eGD9+PPT09ETHJQLA4numPn36oLy8HDdu3BAdhUi48vLy+pK7cOECcnJy8PDhQ+jo6MDKygq9evWqLzl9fX3RcYn+End1/oW9e/fi4sWLvCwZqaSKigpERETg4MGDSEhIQHZ2dn3JdezYEa6urnj//ffh5+eH9u3bi45L9Fw48T2FTCaDoaEhhg0bhpCQENFxiJpUZWUl9u7di6ioKCQkJCArKwuVlZXQ1taGpaUlevbsiREjRsDf3x9GRkai4xK9NBbfUyxatAgbNmzA3bt3ea4QtSiVlZXYt28foqKicP78eWRlZeHBgwfQ1tZGhw4d4OrqWl9yJiYmouMSNQkW3/9RUFAAS0tLrF27FvPmzRMdh+iFVVVVYf/+/Thw4ADOnTuHzMxMPHjwAFpaWujQoQN69OhRX3JmZmai4xI1Gxbf/+Hu7o6ioiJkZGSIjkLUYNXV1YiKisL+/ftx7tw5ZGRkoKKiApqamrCwsECPHj0wfPhwBAQEwMLCQnRcIqF4cMufREVF4dy5c7h48aLoKER/qaamBgcPHsT+/ftx9uxZZGRk4P79+9DU1IS5uTlcXFwwY8YMBAQEoGPHjqLjEikcTnz/JZPJYGJiggEDBiAiIkJ0HCIAQG1tLQ4fPox9+/YhPj4eGRkZKC8vh4aGRn3JDR06FAEBAbC2thYdl0gpcOL7rw8//BAVFRXYsWOH6CikoqRSKY4cOYLIyEjEx8cjPT29vuTMzMzQvXt3vPbaa5gwYQJsbGxExyVSWpz48Og6gmZmZvj666+xZMkS0XFIBdTV1SEmJgYRERGIj49HWloa7t27Bw0NDZiamsLZ2Rmenp4ICAiAvb296LhELQqLD8CgQYOQnZ2NnJwc0VGoBZLJZIiJiUFkZCROnz6NtLQ0lJWVQV1dvb7kPDw8EBAQgM6dO4uOS9TiqfyuzqNHj+LUqVM4e/as6CjUAshkMpw4cQIRERE4ffo0bty4gbKyMqipqcHExAROTk5YunQpAgIC0LVrV9FxiVSSyk98pqam6N27Nw4cOCA6CikZmUyG06dPIzw8HKdOncKNGzdw9+5dSCSS+pIbMmQI/P394ezsLDouEf2XSk98H330EcrKyhAcHCw6Cik4mUyG+Ph4RERE4OTJk0hNTUVpaSkkEgmMjY3RtWtXvPvuu/D394eLi4vouET0DCo78ZWWlsLU1BSffvopli9fLjoOKRCZTIaEhASEhYXhxIkTSE1NxZ07dyCRSGBkZIQuXbpg8ODB8PPzQ69evUTHJaLnpLLFN3ToUKSmpiIvL090FBJILpfj4sWL2LNnD06cOIHr16+jpKQEAOpLbtCgQfUlp6amJjgxEb0sldzVefz4ccTGxuLUqVOio1Azu3TpEsLCwhAXF1dfcnK5HIaGhnB0dMSsWbPg5+eHPn36sOSIWiiVnPjMzc3h7OyM6Oho0VGoCSUlJSE0NBRxcXFISUlBcXEx5HI52rdvD0dHRwwYMADjx4+Hu7s7S45IhajcxPfZZ5/hzp07vM9eC3P16tX6krt27RqKioogl8thYGCAzp07Y+rUqRg/fjz69+/PkiNScSo18ZWXl8PIyAiBgYFYuXKl6Dj0glJSUhAaGorY2Nj6kpPJZNDX10fnzp3Rv39/jBs3DoMGDWLJEdETVKr4vLy8cOXKFeTn54uOQg2UlpaGkJAQxMbGIjk5GYWFhairq4O+vj4cHBzQr18/jBs3Dh4eHiw5ImoQhd7V6e/vjyFDhuDtt99+6TuhnzlzBtHR0YiJiWmkdNTYMjIysHv3bsTExNSXnFQqRbt27WBvbw9/f3+MHTsWnp6e0NBQ6L+6RKTAFHri09XVhVwuh46ODlauXPlSBWhpaQl7e3vExsY2bkh6IVlZWfUll5SUhIKCgvqSs7Ozg7u7O3x9fTF8+HCWHBE1KoUtvocPH8LAwADV1dX1j2lra+Ptt9/GiRMn0K5dOzg5OaF79+4YMGAAunfv/pdrff311wgMDERhYSHat2/fHPHpT3JychASEoJjx47V72qWSqXQ09ODnZ0d3Nzc4OvrixEjRkBTU1N0XCJq4RSu+PLy8vDtt99i+/btuHv3LmQyGbS1tdGxY0esXLkSI0eOxK1bt1BaWoqrV68iKSkJ0dHRMDIywsyZM/HWW29BW1u7fr2KigoYGhpi6dKl+OKLLwR+MtWQm5uLkJAQHD16tL7kamtr0bZtW9ja2sLNzQ2jR4/GqFGjoKWlJTouEakghSk+uVyOoKAgLF26FNOmTcPcuXPRt29fdOjQAWvWrMGwYcMgkUie+t66ujocO3YMa9euRXp6OjZt2oRBgwYBAEaPHo3z58+joKCABz80stu3byM0NBRHjx5FYmIi8vPzUVNTgzZt2sDGxqa+5Ly9vR/7ZYSISCSFKD65XI4PP/wQ+/btQ1BQEHr27Ang0fU0DQwM/rLwniYsLAzz5s1DYGAg3Nzc8Morr+DQoUMYMWJEU8VXCQUFBdizZw+io6Nx+fJl5OXloaamBrq6urC1tUWfPn0wevRojB49+qUPRCIiakoKUXxffvklfv/9d8TGxsLQ0PCl18vMzMTQoUNx7949dO3alZcme04lJSUIDQ3F4cOHkZiYiLy8PFRXV0NXVxedOnVC37594e3tjTFjxqB169ai4xIRPRfhxXfx4kV4e3sjMTER5ubmjbbuxx9/jM8++wzR0dEYPnx4o63b0pSUlNRPcpcuXUJubi6qq6vRunVrWFtb15ecr68vdHV1RcclInppQotPLpejf//+mD17NmbMmNFo61ZWVqJ9+/YYOnQocnNzcenSJairqzfa+sqqtLQUYWFhOHToEBITE3Hr1i1UVVWhVatWsLa2Ru/eveHt7Y1x48ahTZs2ouMSETUJocWXkJCAyZMnIy0trVEPPPHz88Px48dRVFQEd3d3fPLJJ/Dx8Wm09ZVBWVkZIiIicPDgQVy4cOGxkrOyskLv3r3h5eWF8ePHQ09PT3RcIqJmI/TM4KCgILzxxhuNWnpXrlxBREQE9u3bB3V1dcyZMwcbNmxo0cVXXl6O8PBwHDp0CBcuXEBOTg4ePnwIHR0ddOzYEb1798aKFSswfvx46Ovri45LRCSU0InP3d0dq1evxsCBAxttTTs7OxgZGeHs2bMAHn2H5eDggNLS0uc6OlRRVVRUICIiAlFRUbhw4QKys7MfKzlXV1d4eXnBz8+PJ+sTET2FsIlPLpcjJSUFXbt2fem1fv75Z/z000/w9vZGVlYWTpw4Uf+ckZER2rRpg4yMDNjZ2b30tppTZWUlIiMjceDAASQkJCArKwuVlZXQ1taGpaUlevbsicWLF8Pf3x9GRkai4xIRKQWhuzrLy8thYGDw0uskJycjKSkJSUlJcHR0fOKKIObm5igpKVHo4qusrMS+ffsQFRWF8+fPIysrCw8ePIC2tjY6dOgAV1dXzJ8/HwEBATAxMREdl4hIaQkrPolEAi0tLdTW1r70VT3+fJuh9PR0DB48GNeuXXtsW4qkqqoK+/fvx/79+5GQkICMjAw8ePAAWlpa6NChA3r06IG5c+fC398fZmZmouMSEbUoQic+MzMz5OTkwMHB4aXWycrKAvDoItZOTk74/fffH3u+oKBA2PddNTU1OHDgAPbv349z584hIyMDFRUV0NLSgrm5OVxdXfHWW28hICAAFhYWQjISEakSocX3yiuv4OzZsw0qvpKKaoRcyMX1gnKUV0mhp6OBLmZ6mNjbEsnJyZBIJFizZg3eeeedx44SvXPnDsrKypplN2dNTQ0OHjyI/fv34+zZs8jIyMD9+/ehqakJc3NzuLi4YMaMGfD394eVlVWT5yEioicJParz559/RnR0NEJDQ//yNZdvlWFdbDribhQDAKqlsvrndDTUUCeToSLtHL57cxSmjOz3xPu3b9+O4OBg7Nu3r1GzS6VSHD58GJGRkTh79ixu3ryJ8vJyaGhowNzcHN27d8ewYcMQEBAAa2vrRt02ERG9OKHFd//+fVhbWyMxMfGpE1BQfBZWHbiOKmkdnpVSAkBHUx2BPl0w1b3TY8/169cPy5cvx9ixY184p1QqxZEjRxAZGYn4+HjcvHkT9+7dg4aGBszMzNC9e3d4enpiwoQJsLGxeeHtEBFR0xN+rc4VK1bgxo0b2L1792MHoTwqvRQ8rJU9492Pa6WphkCfrvXlFxwcjJUrVyIpKanBd/GWSqWIiYnB3r17cebMGaSnp9eXnKmpKZydnetLTpGPEiUioqcTXnxVVVXo1asXPvzwQ0ybNg3Ao92bUzbF42FtHQAg96eZqCsvevQGiRrUWutB26ILDIa9CU39x496bKWpjl2z3WEoeYDevXtj+/bt2Lx5M1asWAFXV9fHXiuTyRAbG4u9e/fi9OnTSEtLQ1lZGdTV1WFqaopu3brB09MT/v7+cHR0bPL/LYiIqOkJPbgFAHR0dLBz506MHDkS2tramDx5MtbFpqNKWvfEa1vZ9YWGvhkeZl7Ew7R4yKorYfba43dVr5LWYXVUEs58PRNTpkzBG2+8gTt37sDFxQX37t1DREQETp8+jRs3bqCsrAxqamowMTGBk5MTli5dioCAgEY5qZ6IiBST8InvD1euXMGoUaPw2sy3sVfyCmr+dBDLHxOfsX8gWnfuh8q0sygO/QzqbdrDcv72J9aS19XC+tJGnImNhlQqrX/8zyU3ZMgQ+Pv7w9nZuVk+HxERKQbhE98fXFxckJCQgIkfb0SNQRWgofXEayouH0ZV9hU8zLoEAGjduf/TF5PJkFje6rHS09fXx927d5skOxERKQ+FKT4AsLCwQN8R45CXePupzz+8ef5/f1DXhJaZ/VNfJ9HUxvQFy+HT/k1ERkZi//799TdYfdmrxBARkXJTqOIDgPIq6V8+Z+wfiFYO7qjJv4GCoGW4E/UDtK2cnzjABQAqpXJ4e3vD29sbwKODaFh6RETUeDfCayR6Os/uYolEAi0ze6hpagNyGaRlBX+xjuZjf9bR0Wm0jEREpLwUbuLrYqYHbY2Cx67Q8oc/vuOrKbwJWfUDSDS1oWXc6YnX6WiooYt522ZIS0REykbhim9Cb0t8d+TGU5/74zs+NW1daFs6od3A16Guq//E6+QAJvSybMKURESkrBSu+IzaaGNIZ2NEpxTWX6bMcu6WBr9fIgE8HY1h2Ibf5xER0ZMU7js+AJjnYQ8dDfUXeq+Ohjrmejz9aE8iIiKFLL4eHfUR6NMFrTSfL96ja3V2gYulftMEIyIipadwuzr/8MeFpht0dwbJo0nvaXdnICIi+jOFuWTZX7mSW4afYtMRk1oMCYCq/3M/Pjkefac318Oekx4REf0thS++P9ypqEbIxVxcz7+P8qpa6Olooot5W0zoZckDWYiIqMGUpviIiIgag0Ie3EJERNRUWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRSWHxERKRS/j8DrmcfiWTcywAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA6P0lEQVR4nO3dd0BT5+I+8CcLkhCmiIigKCAORMRdF4qj7lr3LgjWqr29tl7rqNZWrbWtWm1tK7j3wL1qXbiqKCpOUEFBERERWSFBQvL7w2+515/WOgInJM/nr5LknPMcW3n6npzzviKDwWAAERGRhRALHYCIiKgssfiIiMiisPiIiMiisPiIiMiisPiIiMiisPiIiMiisPiIiMiisPiIiMiisPiIiMiisPiIiMiisPiIiMiisPiIiMiisPiIiMiisPiIiMiisPiIiMiisPiIiMiisPiIiMiisPiIiCzcypUr8emnn+Lhw4dCRykTLD4iIgt39OhRLFy4ENWqVcO4cePMvgBFBoPBIHQIIiIqe3q9HhcuXMC4ceNw/PhxAIBIJAIAjBo1CleuXIGVlRWcnJzg5eUFb29veHt7o0mTJlAoFEJGfyssPiIiC2IwGHDs2DFs3LgR27dvh729PQoLC3H79m3IZDJIJBL07t0bs2fPxq1bt1BUVISHDx8iKSkJiYmJSEhIwLVr19C2bVt0794d/fr1g52dndCn9VpYfEREFuL06dOYNGkS0tLSEBoail69eqFmzZr46KOPsGLFCowbNw7/+c9/4Ojo+NL9ZGVlYd++fdi6dSuOHz+OcePGYezYsbC1tS2jM3k7LD4iIjOn0+kwYcIEbNq0CdOnT8cHH3wAqVRa8v7jx48hEong4ODw2vuOj4/HjBkzcOzYMaxfvx6tWrUyYvLSweIjIjJjeXl56NOnDwwGAzZu3PiPo7k39fvvv2P48OGYMmUK/vWvf5XKMYyFxUdEZKYMBgN69+4NOzs7LFmy5JlRXmlITk5G+/btMXnyZISGhpbqsd5G6f4pEBGRYObOnYv79+9j/fr1pV56AODp6Yndu3ejdevWqFWrFt55551SP+ab4IiPiMgMZWdnw8vLC2fPnkWNGjXK9Njr16/H/PnzERMTU/J4hCnhA+xERGbot99+Q9euXcu89ACgf//+KCwsxJ49e8r82K+CxUdEZIb27t2LoUOHCnJssViMDz/8EFu3bhXk+P+ElzqJiMyMTqeDo6MjUlNTYW9vL0iGq1evokePHkhKShLk+C/D4iMiMjPZ2dmoVq0acnJyBMtQWFgIW1tbPHnyRLAMf4eXOomIzIyVlZXghWOKN7X8hcVHRGRm5HI5FAoF7t+/L1iGe/fuwdnZWbDjvwyf4yMiMjNisRht27bFoUOHMGTIkNfaNjO/EFHnUpGQnotcrQ52cilqudqhb0N3VFBZv/J+jh49arLTl/E7PiIiM7Rq1SqsWLEChw4deqXLjhfvZmNRdCKO3ni6Fl+hTl/ynlwqhgFAkG9FjG7jjfoeDv+4v+DgYAwfPhzDhg1701MoNSw+IiIzpNPpULduXfz000/o2LHjSz+75nQyZu1NgFZXjJc1gkgEyKUSTOlSC0Oaef7t5w4fPowPP/wQ165dg0wme8MzKD38jo+IyAxJpVLMnTsX4eHhL/2u72npxUNT9PLSAwCDAdAUFWPW3nisOZ38ws88fPgQYWFhmDNnjkmWHsARHxGRWZs1axa2bduGgwcPPrfs0MW72RgQeRqaouKS1wwGA+79OgLFuRkAALewXyFz9nhuvwqZBBtHNoO/+3/3mZeXh3fffRdt27bFzJkzS+V8jIEjPiIiMzZ58mS0adMGDRs2RFxc3DPvLYpOhFZX/MxrhXevlJQeAORfPfzC/Wp1xfglOrHk5/j4eDRp0gT+/v74+uuvjXcCpYDFR0RkxkQiEebOnYtZs2ahQ4cOmDJlCrKyspCZX4ijNx4+d3lTffUIAMCqktf//XwUL7owaDAAR64/RHJ6JmbMmIHWrVtjwoQJ+PXXXyEWm3a1mHY6IiIyigEDBiA2NhYPHz6Ej48PQmYshl6vf+YzBl0RChJOAgAc242AWK5CcW4GCu9eeeE+dboiNB80Djdv3sSff/6JkJCQUj8PY2DxERFZiGrVqiEiIgKxsbHIFalQ9GzvoSDxDPSFaoiVDrCu6geFV2MA/x0F/v+KIUGXgWFYtWoVfHx8Sju+0bD4iIgsTPXq1eFVu95zr/9VcErvJhCJxFDWbP709YSTMOiKXrwzK2Wp5SwtnLmFiMiMpaenIzIyEoGBgWjSpAkqVqwIALCTP/vrv1ibD82tWABA/qU/kH/pj5L3DIVqFCTGwKZWy+f2byc3zUcWXobFR0Rkxh4+fIjp06dDpVJBo9FAIpHA2toalYIGw7peVxTqnt64UhB/HCjWQWSthLyqf8n2RZl3oHucBvWVI88Vn1wqRq3KtmV6PsbA4iMiMlPXr1/H8uXLAQC5ubkAgKKiIri5uWHV9NEYtuUOgKfFp74aDQCwDXgXjm1DS/ahvXMZD9ZNgubWORRrciFR2JW8ZwDQJ9C9TM7FmPgAOxGRmUhNTcWSJUuwa9cuXLt2DVqtFhUrVoRIJEJGRgYUCgUmTpyIqVOnQiQSYeTqWByIf/CPM7a8iEgEdKpTCb8NaWT8EyllvLmFiKicysrKwty5c9GiRQvY2trCw8MDCxYsgJOTExYsWAC1Wo2MjAx8/fXXkEgkiIiIwLRp00omrR4T5A25VPJGx5ZLJRgd5G3M0ykzHPEREZUTBQUFWLNmDTZt2oRz584hOzsbKpUK9evXR69evRASEgInJ6fntissLERycjJ8fX2fe++/c3Xqn3vv7yhkYkzpUvulE1WbMhYfEZGJ0ul0iIqKwtq1axETE4OHDx9CLpejbt266NatG8LCwuDu/vbfsRl7dQZTx+IjIjIRer0e+/fvx8qVK3HixAmkpaVBJpPBx8cHnTp1wsiRI184ajOGS6nZ+CU6EUeuP4QIgPYF6/G19a2I0UHez0xMXR6x+IiIBPTnn39iyZIliI6ORkpKCkQiEapXr47g4GCMGDECjRs3LtM8j/ILEXU+FUcu3EDsxavo3qk9alW2RZ/A11uB3ZSx+IiIytCVK1cQERGBAwcOIDExEcXFxXB3d0fr1q0REhKCtm3bmsQkz4MHD8a6deuQlZUFR0dHoeMYFYuPiKgUpaSkYPHixdi7dy8SEhJQWFgIV1dXNG/eHEOHDkXPnj1Nouj+V1FRESpUqIC8vDyMGzcO8+bNEzqSUbH4iIiMKCMjA0uXLsWOHTtw+fJlFBQUwMnJCU2aNMGAAQPQv39/yOVyoWO+1Jo1axAeHg6tVgu5XI7ExERUqVJF6FhGw+IjInoL+fn5WLFiBaKionDhwgXk5ubCzs4ODRo0QO/evTF8+HDY2dn9845MhF6vh5eXF5KTkwEAYrEYQ4YMwcqVK4UNZkScsoyI6DU8efIEGzZswIYNG3DmzBk8evQISqUSfn5+mDBhAsLDw+Hi4iJ0zDdWWFgIT09PKJVKXLt2DcHBwahatarQsYyKIz4iopfQ6/XYuXMn1qxZg5MnT+LBgwewsrKCr68vunTpgpEjR6J69epCxzS6uLg4NGzYEMXFxUJHMTqO+IiI/oder8fRo0exfPlyHD16FKmpqRCLxfDy8kKfPn0QHh4Of3//f95ROWdrawtzHRex+IjI4p0/fx6RkZE4dOgQbt26BYPBgKpVq6Jdu3YYMWIEWrZ8fh06c2djY2O2xcdLnURkcW7evImIiAj8/vvvuHHjBoqKilC5cmW0aNECH3zwAd59912Te8SgrOXn55vtqI/FR0RmLy0tDZGRkSXL9Wg0GlSsWBFNmjTB4MGD0bdvX0ilvAD2v/R6PSQSCYqKiszuz4bFR0RmJzs7G8uWLcO2bdtw8eJF5OXlwcHBAQ0bNkTfvn0xdOhQKJVKoWOaPJFIhJycnHL1OMarYPERUbmn1WpLluuJjY3F48ePoVKp4O/vj/feew8jRox44XI99HIikQj37t2Dm5ub0FGMyrzGr0RkEXQ6HbZu3Yp169bh1KlTyMjIgFwuR506dTB27FiEhYWZ3bNnQhCJRMjLyxM6htGx+IjI5On1ehw4cAArVqzAiRMncO/ePUilUvj4+GDw4MEIDw9H7dq1hY5pdkQiEdRqtdAxjI7FR0QmKSYmBpGRkThy5AhSUlIAAJ6enujcuTNGjBiBpk2bCpzQ/IlEIhQUFAgdw+hYfERkEq5evYrIyEjs378fSUlJ0Ol0cHd3R6tWrfDbb78hODjY4h8xKGtisZgjPiIiY7lz5w4iIiKwZ88eJCQkQKvVolKlSmjevDlmzpyJnj17mt1t9OWNWCxGfn6+0DGMjv9VEVGZyMzMxJIlS0qW61Gr1XByckKjRo3w8ccfY9CgQSa/XI+lEYvF0Gg0QscwOhYfEZWK/Px8rFq1ClFRUTh//jxycnJga2uLgIAAzJo1CyEhIWb3fJi5kUgk/I6PiOjvPHnyBJs2bcL69etx5swZZGZmQqFQwM/PD+PHj0dYWBhcXV2FjkmvQSKRcMRHRPQXvV6P3bt3Y/Xq1Th58iTS09Mhk8ng6+uL0NBQjBw5El5eXkLHpLfAER8RWbxjx45h2bJliI6Oxt27dyEWi1GjRg306tUL4eHhCAgIEDoiGZFUKuWIj4gsS1xcHCIjI3Hw4EHcunULer0eHh4eCAoKQmhoKFq3bi10RCpFEokEWq1W6BhGx+IjohJJSUmIiIjAvn37cP36dRQVFcHV1RUtWrTADz/8gK5du/JZOgsilUpZfERkXtLT0xEZGYmdO3fi6tWr0Gg0cHZ2RpMmTfD555+jb9++sLKyEjomCUQmk/FSJxGVb7m5uVi2bBm2bt2KuLg45OXlwd7eHoGBgfjhhx8wbNgwqFQqoWOSiZDJZCgsLBQ6htGx+IjMmFarxbp167Bx40bExsYiKysLNjY28Pf3x5QpUzBixAg4OzsLHZNMlEwm46VOIjJtOp0O27dvx9q1a3Hq1Ck8ePAAcrkctWrVwkcffYSRI0dyuR56ZTKZDE+ePBE6htGx+IjKMb1ej0OHDmHFihU4fvw4UlNTIZVK4e3tjYEDByIsLAx169YVOiaVUxzxEZFJOHv2LCIjI3H48GEkJyfDYDDA09MTnTp1QmhoKJo3by50RDIT1tbWHPERUdmLj48vWa7n5s2b0Ol0qFKlClq1aoVFixahQ4cOfMSASoWVlRVHfERU+lJTUxEREYHdu3cjPj4eWq0WLi4uaN68OaZPn45evXpxuR4qE1ZWVsjNzRU6htHxbw+RwLKysrB06VJs374dFy9ehFqthqOjIxo1aoSff/4ZgwYNgkKhEDomWSBe6iQioygoKMCqVauwefNmnD9/HtnZ2bC1tUX9+vUxY8YMhISEwMHBQeiYRJDL5SgqKhI6htGx+IhKWVFRETZv3oz169cjJiYGDx8+hEKhQN26dTFu3DiEhYXBzc1N6JhEz7G2tmbxEdE/0+v12LdvH1auXImTJ0/i/v37kMlkqFmzJoYNG4YPP/wQPj4+Qsck+kcc8RHR3zpx4gSWLl2K6Oho3LlzByKRCDVq1ECPHj0QHh6OwMBAoSMSvTa5XA6dTid0DKNj8RG9gUuXLiEyMhIHDhxAUlIS9Ho93N3dERQUhJCQELRp0wYikUjomERvRaFQsPiILNXt27cRERGBvXv34vr163jy5AkqVaqEFi1aYM6cOejevTufpSOzI5fLUVxcLHQMo2PxEb1ARkZGyXI9V65cQUFBASpUqIAmTZpg/Pjx6N+/P5frIbPHER+RGcvNzcXKlSsRFRWFuLg45Obmws7ODoGBgfjuu+8wfPhwLtdDFkehUHDER2QuCgsLsX79emzYsAFnz54tWa7Hz88PEydORFhYGCpWrCh0TCJBKZVKFh9ReaXX67F9+3asWbOmZLkeKysr1K5dG6NGjcLIkSNRrVo1oWMSmRSlUgm9Xi90DKNj8ZFZ0uv1OHLkCJYvX45jx44hNTUVEokE3t7e6NevH8LDw+Hn5yd0TCKTxhEfkYmLjY3FkiVLcOjQIdy+fRsGgwHVqlVDhw4dEBoaihYtWggdkahcsbGx4YiPyJRcv34dERER+P3330uW63Fzc0OrVq2wcOFCdOrUiY8YEL0FGxsbGAwGoWMYHYuPyo3U1FQsWbIEu3btwrVr16DValGxYkU0b94c06ZNQ+/evblcD5ERsfiIylhWVhaWL1+OrVu34tKlS8jPz4ejoyMaNmyIBQsWYMiQIVAqlULHJDJb5lp8IoM5nhWVSwUFBVizZg02bdqEc+fOITs7GyqVCvXr10evXr0QGhoKR0dHoWMSWYwHDx7A1dXV7MqPxUeC0el0iIqKwtq1a59ZrqdOnTro1q0bwsPDUaVKFaFjElmsgoICsxz1sfiozOj1euzfvx8rV67EiRMnkJaWBplMBh8fH7z77rsIDw+Hr6+v0DGJ6P/o9XpIJBIUFRWZ1ffnLD4qVSdPnixZriclJQUikQjVq1dHcHAwwsLC0KhRI6EjEtFLiEQiZGdnw97eXugoRmM+FU4m4cqVK4iIiMCBAweQmJiI4uJieHh4oE2bNliyZAmCgoL4iAFROZOXl8fiI/pLSkoKFi9ejL179yIhIQGFhYVwdXXFO++8g2+++QY9e/Zk0RGVYyKRCGq1WugYRlWuiq9z585QqVT45ptv4OPjI3Qci5SRkYGlS5dix44duHz5cslyPY0bN8a4cePQv39/yOVyoWMSkZGw+AR248YNJCcnY/fu3ejWrRsLsAzk5+djxYoViIqKwoULF0qW62nQoAG+/fZbDB8+HHZ2dkLHJKJSwuITgMFgwKVLl3Dw4EE8fPgQer0eWq0WUVFRiIqKQlhYGNatWwcrKyu4urrCy8sL3t7e8PX1RadOnVCjRg2hT6FcefLkyTPL9Tx69AhKpRJ+fn6YMGECwsPD4eLiInRMIiojYrEY+fn5QscwKpMtvtTUVCxcuBBbtmyBXq9H165dYW1tjby8PMjlcjRr1gyzZ89GkyZNMH/+fDx58gRpaWlISkpCYmIiYmJi8NVXX6FChQro2bMnxo4dCzc3N6FPy+To9Xrs3LkTq1evxp9//lmyXI+vry/Cw8MxcuRIVK9eXeiYRCQQsViMgoICoWMYlckV3+PHjzF79mwsXboUISEh2LJlC+rXrw+RSIS4uDgEBATgu+++Q4MGDUq2+WtlbCcnp2eWmtHr9Th79izWr18PPz8/DB06FJMmTYKrq2uZn5ep0Ov1OHr0KJYvX46jR4/i7t27kEgk8PLyQp8+fRAeHg5/f3+hYxKRiRCLxdBoNELHMCqTKr7Lly+jZ8+eaNeuHS5fvvzcCO3EiROvtT+xWIymTZuiadOmmDhxIr799ls0aNAAa9asQXBwsDGjm7Rz586VLNdz69YtGAwGVK1aFcHBwQgNDUXLli2FjkhEJkoikXDEV1oOHjyIQYMG4ccff8SgQYOMvn9XV1f8+OOP6NmzJwYPHozPP/8cn3zyidGPYwpu3rxZslzPjRs3UFRUhMqVK6NVq1b48ccf8e677/IRAyJ6JSy+UpKYmIhBgwZh8+bNaNOmTakeq23btoiJiUHLli1RuXJl9OvXr1SPVxbS0tIQGRlZslyPRqNBxYoV0bRpU0yePBl9+/Y1q+mGiKjsSCQSXuo0Nr1ej379+uHLL78s9dL7i4eHB3bs2IEOHTqgXr16qF27dpkc11iys7OxdOlSbNu2DRcvXkR+fj4cHBzQsGFDzJ8/H0OHDuVyPURkFFKplMVnbNu3b4dMJsPo0aPL9LgBAQGYMGECpk6diqioqDI99uvSarVYvXp1yXI9jx8/hkqlgr+/P6ZNm4YRI0bAyclJ6JhEZIZYfKVg7ty5mDhxIkQiUZkfe8yYMZg/fz6uXr2KunXrlvnx/45Op8OWLVuwbt06nD59GhkZGZDL5ahTpw7Gjh2LsLAwVK1aVeiYRGQBpFIptFqt0DGMStDiU6vViIuLQ5cuXQQ5vlKpRM+ePbF//35Bi0+v1+OPP/7AypUrcfz4caSlpUEqlcLHxweDBw9GeHh4ubscS0TmgcVnZBcuXEDdunVhbW0tWIY2bdpg48aN+PTTT8v0uKdOncLSpUtx5MgRJCcnQyQSwdPTE126dEFYWBiaNGlSpnmIiF5EJpOhsLBQ6BhGJfiIz9HRUcgIqFy5MrKyskr9OFevXkVERAT++OMPJCUlQafTwd3dHa1atUJERATatm3LRwyIyOTIZDKO+IzJyspK8P+TKK11eFNSUhAREYG9e/ciPj4ehYWFqFSpEpo3b46ZM2eiZ8+efMSAiEyeKfyeNjZBf/N6e3vj6tWr0Ov1go12rl+/Dk9Pz7feT2ZmJpYsWVKyXI9arYaTkxMaN26Mf/3rXxg4cCCX6yGicoeXOo3Mw8MDTk5OuHjx4jNzb76KzPxCRJ1LRUJ6LnK1OtjJpajlaoe+Dd1RQfXq3xlGR0ejQ4cOrxsd+fn5WLVqFTZv3owLFy4gJycHdnZ2CAgIwKxZsxASEsLleoio3LOyssKTJ0+EjmFUIkNpXet7RdOnT0dycjJWrFjxSp+/eDcbi6ITcfTGQwBAoU5f8p5cKoYBQJBvRYxu4436Hg4v3de9e/dQr149XLt27R8nrn7y5Ak2btyIDRs2ICYmpmS5nrp166JHjx4ICwuz6Mmvicg8tW/fHhqNBidPnhQ6itEIXnw5OTmoWbMmDhw48I+rAqw5nYxZexOg1RXjZalFIkAulWBKl1oY0szzbz83atQo2Nra4vvvv3/uPb1ej927d2PVqlX4888/kZ6eDisrK9SsWROdO3fGyJEj4eXl9aqnSURULnXt2hUZGRk4e/as0FGMRvC7K+zt7fHdd9/h/fffx+nTp+Hs7PzCzz0tvXhoivQvfP9/GQyApqgYs/bGA8Az5adWqzFjxgx4e3vj999/x7lz50reO3r0KJYtW1ayXI9YLEaNGjXQq1cvhIeHIyAg4K3OlYiovLG2tkZRUZHQMYxK8OIDgOHDhyM+Ph49evTAzp07nyu/i3ezMWtvwnOlp029htxTm1F4LwH6Ii2kthWgqNEIjsEjIJLIoCnSY9beBPi7O8Df3QEPHjxAu3btEB8fD1tbW0RGRmLq1Kk4ePAgbt++Db1eDw8PDwQFBSE0NBStW7cuyz8GIiKTY47FZzIPjn3zzTdo1aoVGjZsiJiYmGfeWxSdCK2u+JnX1NeO4sHaidAknYXEzhkqv7aQOrgiL24fDEX/vQNJqyvGL9GJSEhIQJ06dXDt2jUYDAbk5eVhwIAB2L59OwICArBt2zYUFRWVfN/I0iMiAuRyudkVn0mM+ICni8bOmTMHzZs3R/fu3dG9e3d88cUXsK3ohqM3Hj7znZ6+SIusP34DDHrY1G2LCt3GQSR62uFFj+9DJPvvXZ0GA/DHlTREjhwKvSa35HU7OztkZGTAysqqzM6RiKi8McfiM5kR31/ee+89XL9+HVWqVEHjxo3R69M5KC5+drRXmBoPvTYPAGD/Tv+S0gMAmWNliCSyZz5fXKyDS7Me6NixI/z8/CCTyZCTk4P8/PzSPyEionJMLpdDp9MJHcOoTK74AMDR0RFff/01bt68CftqtaEzPLtyQ3FBdsk/S+1d/nF/Iqk1+n/4Kfbv31/ycHliYqLg06UREZk6Fl8Zc3R0hIu753OvS5QOJf+sy8l4pX3laf/7L04mk8HLy0uQpZCIiMoThULB4itrdvLnv4a0rlIbYrkKAJDz50YYDP+921OXkwFD8fP/kuzksudeIyKil1MoFM993VTemczNLX+nlqsdrKXpz8zQIraSw7HDh3i0ez7UV4/gycNkWFeuieL8LGiSL8Dj4zUQSVQln5dLxahV2bbkZ71eD51OxxtbiIj+gTkWn8mP+Po0dH/h66q6bVFp4DdQeDVCce5D5F85hKJHd2Fbv9Mzd3UCgEarxed926By5cqwt7eHVCpFy5YtyyI+EVG5plQqza74TH7E56yyRpuaFXEg/sFz05TJq/pBXtXvpduLRICXUovDGfeQ83+vSSQSdO7cuXQCExGZEXMsPpMf8QHAmCBvyKWSN9pWLpVgfnhn7Nmzp2Sl9+LiYsycORNBQUE4deqUMaMSEZkVpVIJvf6fp4osT8pF8dX3cMCULrWgkL1eXIVMjCldasHf3QFdunTBokWLIBaL0b59e6xfvx5ZWVlo0aIFXFxcMGnSJBQUFJTSGRARlU82NjZmV3yCr87wOoyxOkNERAQaNWqEwMBAAE8XkJ08eTI2bNgAtVqNZs2aYfbs2ZyyjIgIwOnTp9GyZUuzeqShXBUfAFxKzcYv0Yk4cv0hRAC0L1iPr61vRYwO8oa/u8Nr7Xvnzp2YPn064uLi4OjoiOHDh+Prr7+GSqX6542JiMzQ5cuXERAQYFbf85W74vvLo/xCRJ1PRcL9PORqi2Anl6FWZVv0CXy9FdhfJDs7G1988QXWrl2LnJwcNGrUCDNmzECnTp2MlJ6IqHy4ffs2vLy8zOpyZ7ktvrKyf/9+TJ06FbGxsbC3t8egQYMwa9YsODg4CB2NiKjUZWRkoFKlSjCnqigXN7cIqVOnTjhz5gxyc3MREhKCDRs2wMnJCYGBgdi5c6fQ8YiISpWtre0/f6icYfG9IpVKhXnz5uHRo0c4fPgwFAoFevXqBTs7O4SHhyMzM1PoiERERvfXY2DmtDQRi+8NBAUF4eTJk8jPz8eYMWOwY8cOuLi4wN/fH5s2bRI6HhGR0YjFT2tCrVYLnMR4WHxvQaFQYPbs2cjIyMDJkyfh5OSEQYMGQaVSYfjw4UhPTxc6IhGRUZjT+qUsPiNp3rw5oqOjUVBQgPHjx+OPP/6Am5sbateujVWrVpnVHVFEZFlEIhGLj/6elZUVpk+fjvv37yM2Nhbu7u4YMWIEVCoVBg4ciDt37ggdkYjotYhEIl7qpFcTGBiIAwcOQKPRYOrUqTh+/DiqVauGmjVrIiIigqNAIioXxGIxi49ej1QqxaRJk5CamorLly/Dx8cHY8eOhVKpRO/evZGUlCR0RCKiv8URH70VPz8/7NmzB1qtFrNnz8a5c+fg7e2NGjVq4KeffuIokIhMjlgsNqtJ/Fl8AhGLxRg3bhySk5ORkJAAf39/jB8/HgqFAt27d0dCQoLQEYmIADxdw5TFR0bl6+uL7du3Q6PRYP78+bh27Rpq166NqlWr4vvvvzerWdGJqPzhiI9KjVgsxujRo5GUlIRbt26hadOmmDZtGhQKBd59911cunRJ6IhEZIEkEgk0Go3QMYyGxWeiqlevjs2bN0OtVmPx4sW4ffs2AgICUKVKFcycORNPnjwROiIRWQipVMoRH5UdsViM0NBQXL9+HXfu3EFQUBBmz54NpVKJ4OBgxMbGCh2RiMwcR3wkGHd3d6xduxZqtRorV65Eeno6mjRpAldXV0ydOhVarVboiERkhqRSqVn9fmHxlVODBw/G1atXcf/+fXTu3Bk//vgjbGxs0Lp1a5w8eVLoeERkRlh8ZFIqVaqE5cuXIy8vD5s2bUJOTg5atWqFihUrYsKECWZ1XZ6IhCGTyXipk0xT7969cfHiRWRmZqJ3795YvHgxbG1t0bx5cxw+fFjoeERUTslkMo74yLQ5OTnht99+Q05ODnbs2IGioiK0b98eTk5O+OSTT5Cbmyt0RCIqR2QyGQoLC4WOYTQsPjPXrVs3xMbGIjs7G0OGDMHq1avh4OCARo0aYd++fULHI6JygMVH5ZKdnR0WLlyIrKwsHDhwAFKpFN26dYODgwM++ugjZGVlCR2RiEyUlZWVWT07zOKzQMHBwTh9+jRycnIQHh6OzZs3w9nZGQEBAdi2bZvQ8YjIxFhZWXHER+ZBpVLh+++/R2ZmJo4dOwZbW1v06dMHtra2CA0NRUZGhtARicgEcMRHZqlly5Y4fvw41Go1PvnkE+zZsweurq7w8/PD+vXrhY5HRAKytrZm8ZH5ksvlmDlzJh48eICYmBi4uLhg6NChsLGxwZAhQ5CWliZ0RCIqY1ZWVigqKhI6htGw+OhvNW7cGIcPH0ZBQQE+//xzHD58GO7u7qhVqxaWL1/ORXOJLIRcLueIjyyLlZUVpk2bhrS0NJw/fx7VqlXDyJEjYWNjg379+iElJUXoiERUiqytrc1qXVAWH72WgIAA7N+/HxqNBl999RVOnz4NT09PeHt749dff+UokMgMyeVyXuokkkqlmDBhAu7cuYNr166hVq1a+OSTT6BUKtGrVy/cvHlT6IhEZCRyuZwjPqL/Vbt2bezevRtarRZz5sxBXFwcatasCU9PT/z4448cBRKVcwqFgsVH9CJisRiffPIJbt++jcTERAQGBmLixImQy+Xo2rUrrl69KnREInoDHPERvQIvLy9s3boVBQUF+Omnn3Djxg34+fnBw8MD3377rVn9JSIyd0ql0qz+zrL4qFSJxWJ8+OGHuHnzJpKTk9GiRQt89dVXUCgU6NixI+Li4oSOSET/QKlUori4WOgYRsPiozJTrVo1bNiwAWq1GkuWLMHdu3cRGBgINzc3fPXVV2b1nBCROVEoFGb1XT2Lj8qcWCzG8OHDER8fj9TUVLRv3x7ff/89lEol2rZti5iYGKEjEtH/4IiPyIjc3NywatUq5OfnY+3atcjMzETz5s1RqVIlTJ482axWfSYqr5RKJUd8RKWhf//+uHz5MtLT09G9e3f8/PPPsLGxQcuWLXHs2DGh4xFZLBsbGxYfUWlycXHBkiVLkJubi61bt0KtViMoKAjOzs747LPPkJ+fL3REIotiY2MDg8EgdAyjYfGRSevZsycuXLiArKws9OvXD0uXLoWdnR2aNm2KAwcOCB2PyCJwxEckAAcHB/zyyy/Izs7Gnj17oNfr0alTJzg6OuLjjz9GTk6O0BGJzJZKpeKIj0hInTt3xtmzZ5GdnY0PPvgA69atg6OjIxo2bIjdu3cLHY/I7KhUKqEjGBWLj8otOzs7zJ8/H48ePcLBgwdhbW2Nnj17wt7eHiNHjkRWVpbQEYnMAouPyAS1a9cOf/75J/Ly8jBq1Chs374dzs7O8Pf3R1RUlNDxiMo1a2trADCbSSZYfGRWlEol5syZg4yMDBw/fhyOjo4YMGAAVCoVPvjgA6SnpwsdkajcEYlEAAC1Wi1wEuNg8ZHZatGiBY4ePYr8/Hx8+umn2L9/P9zc3FCnTh2sWbNG6HhE5U5eXp7QEYyCxUdmTy6X4+uvv8b9+/dx5swZuLm54YMPPoBSqcSgQYOQmpoqdEQikycSiTjiIyqPGjVqhIMHD0Kr1WLKlCk4duwYPDw8ULNmTSxZssSsnlUiMiaRSGQ2k0ew+MgiSaVSTJkyBampqbh8+TK8vLzw0UcfwcbGBn369MHt27eFjkhkUsRiMUd8RObCz88P+/btg0ajwcyZM3H27FnUqFEDXl5e+PnnnzkKJMLT4isoKBA6hlGw+Ij+j1QqxWeffYaUlBQkJCTAz88Pn332GRQKBXr27Inr168LHZFIMCw+IjPn6+uLHTt2QKPRYO7cubhy5Qpq1aqFatWqYe7cudDpdEJHJCpTvNRJZCHEYjHGjh2LpKQk3Lp1C40bN8YXX3wBpVKJzp0748qVK0JHJCoTEomEIz4iS1O9enVERUVBrVbjl19+QVJSEurVqwd3d3fMmjWLo0AyaxKJBBqNRugYRsHiI3pNYrEYYWFhuHHjBu7evYvWrVtj1qxZUCgUaN++PWJjY4WOSGR0LD4iAgC4u7tj3bp1KCgowPLly5GWloYmTZqgcuXKmDZtGgoLC4WOSGQUUqmUxUdEzxoyZAiuXbuGtLQ0dOrUCfPmzYONjQ3atGmDU6dOCR2P6K2w+Ijob7m6umLFihXIz8/Hhg0b8PjxY7Ro0QIuLi74/PPPzeYGAbIsUqkUWq1W6BhGweIjKkV9+vTBpUuXkJGRgffeew+//fYbbG1t8c477yA6OlroeESvTCqVms2lexYfURlwdnZGREQEcnJysG3bNhQWFqJdu3aoUKECxo0bZzZzIJL5kslkHPER0Zvp0aMHzp07h6ysLAwaNAgrVqyAnZ0dGjdujP379wsdj+iFWHxE9NYcHBzw008/4fHjx9i/fz/EYjG6dOkCBwcHjB49GtnZ2UJHJCphZWXFS51EZDwdOnRATEwMcnJyMGLECGzatAlOTk5o0KABduzYIXQ8IshkMjx58kToGEbB4iMyISqVCnPnzkVmZiaio6NhY2OD999/H3Z2dggLC0NmZqbQEclCccRHRKWudevWOHHiBNRqNcaOHYtdu3bBxcUF9erVw8aNG4WORxbG2tqaIz4iKhtyuRzffPMNHjx4gFOnTsHZ2RmDBw+GSqXCsGHDkJaWJnREsgBWVlYsPiIqe02bNsWRI0dQUFCA//znPzh48CDc3d1Ru3ZtrFy5kovmUqmxtrZGUVGR0DGMgsVHVA5ZWVnhyy+/RFpaGs6dOwcPDw+EhYXBxsYGAwYMwJ07d4SOSGZGLpdzxEdEpqFBgwb4448/oNFo8OWXX+LkyZOoVq0afHx8sHjxYo4CySisra3NZuktFh+RmZBKpZg4cSLu3r2LK1euoGbNmvj444+hVCrx/vvvIykpSeiIVI7J5XJe6iQi01W3bl3s2bMHWq0W3377Lc6fPw9vb29Ur14dCxYs4CiQXptcLueIj4hMn1gsxr///W8kJyfjxo0bCAgIwOeffw65XI5u3bohPj5e6IhUTigUChYfEZUvPj4+2LZtGwoKCrBgwQIkJCSgTp06qFq1Kr777juz+aVGpYPFR0TlllgsxkcffYTExEQkJyejWbNm+PLLL6FQKNCpUyfExcUJHZFMkEKhQHFxsdAxjILFR2TBqlWrhk2bNkGtViMiIgIpKSkIDAyEm5sbvv76a7O5fZ3eHouPiMyKWCxGSEgIEhISkJqainbt2mHOnDlQKpVo164dzp49K3REEphSqWTxEZF5cnNzw5o1a6BWq7F69WpkZGSgadOmqFSpEqZMmWI2a7LR61EqlWZzNzCLj4j+1sCBA3HlyhWkp6eja9euWLhwIWxsbNCqVSucOHFC6HhUhlh8RGRRXFxcsGzZMuTl5SEqKgp5eXlo3bo1nJ2d8Z///AcFBQVCR6RSZmNjw+IjIsvUq1cvxMXFITMzE3379kVkZCRsbW3RrFkzHDp0SOh4VEpUKhWLj4gsm5OTE3799VdkZ2dj165d0Ol06NChA5ycnPCvf/0Lubm5QkckI1IqlTAYDELHMAoWHxG9tS5duiA2NhbZ2dkYOnQo1qxZAwcHBzRq1Ah79+4VOh4ZgUqlYvEREf3/7OzssGDBAmRlZeHgwYOQyWTo3r077O3tMWrUKGRlZQkdkd6QSqUSOoLRsPiIqFS0a9cOp06dQl5eHj788ENs2bIFzs7OqF+/PrZs2SJ0PHpNtra2QkcwGhYfEZUqpVKJ7777Dg8fPsSxY8dgb2+Pfv36wdbWFiEhIcjIyBA6Ir0CKysrADCL2XxYfERUZlq2bIljx45BrVbj3//+N/bt2wdXV1fUrVsXa9euFToevYK8vDyhI7w1Fh8RlTm5XI4ZM2YgPT0dMTExcHV1xfDhw2FjY4PBgwcjNTVV6Ij0N/Lz84WO8NZYfEQkqMaNG+PQoUMoKCjApEmTEB0djapVq8LX1xdLly41m2fHzIFIJGLxEREZi5WVFb744gvcu3cPcXFxqF69OkaNGgUbGxv07dsXKSkpQke0eCKRyCxm6WHxEZHJ8ff3x++//w6NRoMZM2YgJiYGnp6e8PLywi+//MJRoEDEYjFHfEREpUkqlWL8+PG4c+cOrl27hjp16mDcuHFQKBR47733cPPmTaEjWhSxWAy1Wi10jLfG4iOicqF27drYtWsXNBoNfvjhB1y6dAk1a9aEp6cn5s2bx1FgGRCLxbzUSURU1sRiMT7++GPcunULiYmJaNiwISZPngy5XI4uXbrg6tWrQkc0W2KxGBqNRugYb43FR0TllpeXF7Zs2YKCggL88ssvSExMRL169eDu7o7Zs2dDp9MJHdGsSCQSXuokIjIFYrEYYWFhuHHjBpKTk9GqVSvMmDEDCoUCHTp0wPnz54WOaBYkEglHfEREpqZq1apYv3491Go1li1bhtTUVDRq1AiVK1fG9OnTzWLKLaGw+IiITJhIJMLQoUMRHx+PtLQ0dOzYET/88AOUSiWCgoJw6tQpoSOWO1KplMVHRFQeuLq6YuXKlcjPz8e6deuQlZWFFi1awMXFBZMmTTKLOxXLAouPiKgc6tevHy5duoSMjAy89957WLRoEWxtbdGiRQscPXpU6HgmTSqVQqvVCh3jrbH4iMgiOTs7IyIiArm5udi2bRs0Gg3atm2LChUq4NNPPzWLGUqMTSaTsfiIiMxBjx49cP78eWRlZWHgwIFYvnw57Ozs0KRJE+zfv1/oeCZDKpWisLBQ6BhvjcVHRPR/HBwc8PPPP+Px48fYt28fAKBz585wcHDAmDFjkJ2dLWxAgXHER0Rkxjp16oQzZ84gNzcXoaGh2LBhA5ycnBAYGIidO3cKHU8QVlZWHPEREZk7lUqFefPm4dGjRzh8+DAUCgV69eoFOzs7hIeHIzMzU+iIpaK4uBjt2rXDsmXLSmbAsbKyMovnIFl8RESvKCgoCCdPnkR+fj7GjBmDHTt2wMXFBf7+/ti0aZPQ8YyqqKgI0dHR+OSTT+Dh4YFly5ZBJpOZRfGJDAaDQegQRETl1enTpzFx4kScOHECcrkcvXv3xpw5c+Dq6ip0tDd2584dHDlyBCEhIfjfipBKpbC3t4e7uzusra3h4eEBb29veHl5oV69emjcuDEkEomAyV8Ni4+IyAiePHmCb775BosXL8aDBw/g6+uLSZMmYciQIRCLTf/iWnp6OpYtW4atW7ciOTkZrVu3xvbt22EwGGBtbY06deqUPMe3atUqaDQa3LlzB4mJiUhKSsLZs2fx4MEDdOnSBX369EGXLl1M97wNRERkVOfOnTO0b9/eIJVKDQqFwjBgwABDSkqK0LFe6PHjx4bJkycbnJycDKNGjTIcPnzYUFRUZCgsLDRIJBJDq1atDKdPnzYYDAZD7969DfXq1fvbfd2+fduwcOFCQ4MGDQz169c3bNu2zaDX68vqVF4ZR3xERKVEp9Ph+++/x6JFi3Dv3j34+Phg/PjxCAsLM4nR0NmzZ/H++++jY8eOmD59Ojw8PJ55PysrC05OTiU/Dx48GOfPn0d8fPxL92swGLBr1y5MmzYNVapUwerVq5/Zj9CE/5MnIjJTUqkUkyZNQmpqKi5fvgwfHx+MHTsWSqUSvXv3RlJSkmDZNm/ejK5du+Lnn3/G0qVLnys9AM+VlbW1NYqKiv5x3yKRCD169MDZs2fh6+uLRo0a4cqVK0bL/rZYfEREZcDPzw979uyBVqvF7Nmzce7cOXh7e6N69er46aefoNfryyxLTEwMxowZgwMHDqBnz56vvJ1CoXitxX1lMhnmzZuH6dOno0uXLrh///6bxDU6Fh8RURkSi8UYN24ckpOTcf36ddSvXx/jx4+HQqFA9+7d//Ey4tvKzs5G3759ERkZifr167/WtnK5/I1WtR82bBhGjhyJnj17vtH2xsbiIyISSM2aNbF9+3ZoNBrMnz8f8fHxqFOnDqpWrYrvv/++VEpi0aJFCAoKeq2R3l/kcvkrXep8kSlTpkAul2Pt2rVvtL0xsfiIiAQmFosxevRoJCYm4vbt22jWrBmmTZsGhUKBd999F5cuXTLKcbRaLRYuXIhJkya90fYKhQLFxcVvtK1IJMLMmTPx1Vdflell3Rdh8RERmRBPT09s2rQJarUaERERuH37NgICAuDm5oaZM2e+1cwpFy5cQJUqVVC7du3X2i4lJQUeHh6YNWsWHj16BLlcjg8++OC1j9+6dWvIZDJcvnz5tbc1JhYfEZEJEovFCAkJwfXr13Hnzh20a9cOs2fPhlKpRHBwMM6ePfva+zxz5gyaNm362ttVqVIFBoOhZGUGiUSCDh06vPZ+AKBNmzaCL/jL4iMiMnHu7u5Ys2YN1Go1Vq1ahfT0dDRt2hSVKlXC1KlTX3mpoEePHqFy5cqvfXypVIp58+bB2toawNOJu/v37//a+wGejmiFvruTxUdEVI4MGjQIV69eRXp6Orp27Yoff/wRNjY2aN26NU6ePPnSbd9mdYU+ffqgQoUKAIBp06ZBKpW+0X5EItEbbWdMLD4ionLIxcUFy5YtQ15eHjZt2oTc3Fy0atUKFStWxIQJE1BQUPDcNu7u7rhx48YbHe+vxzAAIDQ09I1zp6SkoFKlSm+8vTGw+IiIyrnevXsjLi4OmZmZ6N27NxYvXgxbW1s0b94chw4dKvlccHAwDh8+/EZ3VWbmF6K4ZjtUHzQdYzZdwb83XsBvR5PwKP/1FqaNjo5GmzZtXvv4xsS5OomIzNCePXvw5Zdf4vz583BwcMDQoUMxY8YMBAcHY+LEiejduzeApwvOvmwpoYt3s7EoOhFHbzwEABTq/luacqkYBgBBvhUxuo036ns4vDTTn3/+iYEDB+LWrVuCLl/E4iMiMmO5ubmYOnUqVq9ejezsbHh7e6OgoAC3b99GdnY2atasiY0bN6Jjx47PbbvmdDJm7U2AVleMlzWFSATIpRJM6VILQ5p5vvAzBoMBwcHBGDx4MEaMGGGks3szvNRJRGTG7OzssGDBAmRlZeHAgQNwcnLCvXv3oFKp0L17d6jVarz//vs4f/78M9s9Lb14aIpeXnoAYDAAmqJizNobjzWnk1/4mR9++AGPHz/GsGHDjHRmb44jPiIiC3P//n3Uq1cPjx49KnnNxsYGly5dQo0aNXDxbjYGRJ6GpujpLC2pv4SiODfj6QdFYoiVdrB2qwXH4DDIHJ5daV4hk2DjyGbwd3coeW3jxo347LPPcOrUqReuAlHWOOIjIrIwlStXxm+//Vbys0gkglqtho+PD9avX49F0YnQ6p6fmkzh1Ri2gV0htraB5uZpPNq78LnPaHXF+CU6EcDT9QgnTZqECRMmYPfu3SZRegDwZg9iEBFRuebp6Ym+ffsiPj4e9+/fx/vvvw9HR0ccP3MBR1UOL7y8qarfEcqazVFwMwYPt8yALiv1uc8YDMCR6w8Rtet3fDdjGuzt7REbG4uKFSuWwVm9Gl7qJCKycIcPH8aXX36JjIwMNBwyEbGFlfCk+L/V8NelToVXY0gdXKFJvgDdo1TYBnaDU8dRz++wuAjS+P2YNSQIffv2NYnV5v8Xi4+IiGAwGBAdHY3JO6/jvvzZS5LPfMf3F4kMFTqNgcq//Qv3916AG37s36C04r4V06phIiIShEgkQtu2bVE7oOHffqbi+1NQ9fNdcB02FzAY8GjfQhRlp7/ws3la4Rec/TssPiIiKmEnf/mtHyKRCFau3hDLrAGDHrq/KT47uaw04hkFb24hIqIStVztYC1Nf2aGlr/kX/wD2pRLePIgCfpCNUQya1hV9Hzuc3KpGLUq25ZB2jfD4iMiohJ9Grpj/sEXT2StSXq6BqDY2gbW7nVg33IwJDYOz33OAKBPoHsppnw7LD4iIirhrLJGm5oVcSD+QckjDe6jl73y9iIR0Na3IiqorEsp4dvjd3xERPSMMUHekEvfbBJpuVSC0UHeRk5kXCw+IiJ6Rn0PB0zpUgsK2etVhEImxpQutZ6ZrswU8VInERE9569VFoy1OoMp4QPsRET0ty6lZuOX6EQcuf4QIgDaF6zH19a3IkYHeZv8SO8vLD4iIvpHj/ILEXU+FQn385CrLYKdXIZalW3RJ9DdpG9keREWHxERWRTe3EJERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBaFxUdERBbl/wGKBAYPmKMzfQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1399,7 +1399,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 17, "id": "76ccf38b", "metadata": {}, "outputs": [ @@ -1452,7 +1452,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 18, "id": "20368e16", "metadata": {}, "outputs": [ @@ -1627,7 +1627,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 19, "id": "6240631b", "metadata": {}, "outputs": [], @@ -1641,7 +1641,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 20, "id": "2cf98dc9", "metadata": {}, "outputs": [ @@ -1660,7 +1660,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 21, "id": "00d4a6e9", "metadata": {}, "outputs": [ @@ -1678,7 +1678,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 22, "id": "8850cd07", "metadata": {}, "outputs": [ @@ -1696,7 +1696,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 23, "id": "e4edd39f", "metadata": {}, "outputs": [ @@ -1714,7 +1714,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 24, "id": "f84705d9", "metadata": { "scrolled": true @@ -1780,7 +1780,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 25, "id": "fd0adcf7", "metadata": {}, "outputs": [ @@ -1794,11 +1794,11 @@ " [ 0.68523414+0.j -0.7098715 +0.j -0.7098715 -0.j ]\n", " [ 0.39090768+0.j 0.05884929-0.61099907j 0.05884929+0.61099907j]]\n", "\n", - "First Eigen Value (1.5628531146037397+0j) and corresponding Eigen vector = [0.61452857+0.j 0.68523414+0.j 0.39090768+0.j]\n", + "First Eigen Value (1.5628531146037385+0j) and corresponding Eigen vector = [0.61452857+0.j 0.68523414+0.j 0.39090768+0.j]\n", "\n", - "Second Eigen Value (-0.08361059829690798+0.3407471625105171j) and corresponding Eigen vector = [ 0.31057068+0.1511463j -0.7098715 +0.j 0.05884929-0.61099907j]\n", + "Second Eigen Value (-0.08361059829690796+0.340747162510517j) and corresponding Eigen vector = [ 0.31057068+0.1511463j -0.7098715 +0.j 0.05884929-0.61099907j]\n", "\n", - "Third Eigen Value (-0.08361059829690798-0.3407471625105171j) and corresponding Eigen vector = [ 0.31057068-0.1511463j -0.7098715 -0.j 0.05884929+0.61099907j]\n" + "Third Eigen Value (-0.08361059829690796-0.340747162510517j) and corresponding Eigen vector = [ 0.31057068-0.1511463j -0.7098715 -0.j 0.05884929+0.61099907j]\n" ] } ], @@ -1826,7 +1826,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 26, "id": "ffa734a8", "metadata": {}, "outputs": [ @@ -1866,7 +1866,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 27, "id": "85d9c76b", "metadata": {}, "outputs": [ @@ -1876,7 +1876,7 @@ "0.0843572577054717" ] }, - "execution_count": 34, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -1888,7 +1888,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 28, "id": "b671a297", "metadata": {}, "outputs": [ @@ -1898,7 +1898,7 @@ "array([0.07987194, 0.00448532])" ] }, - "execution_count": 35, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -1909,17 +1909,17 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 29, "id": "b514dea0", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.08435725770547171" + "0.0843572577054717" ] }, - "execution_count": 36, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -1930,17 +1930,17 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 30, "id": "a9384fad", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 37, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" }, @@ -1973,7 +1973,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 31, "id": "76a0d37a", "metadata": {}, "outputs": [ @@ -1983,7 +1983,7 @@ "array([0.07987194, 0.00448532])" ] }, - "execution_count": 38, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } @@ -1994,7 +1994,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 32, "id": "e869810e", "metadata": {}, "outputs": [ @@ -2004,7 +2004,7 @@ "array([0.94682951, 0.05317049])" ] }, - "execution_count": 39, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -2015,7 +2015,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 33, "id": "36601f82", "metadata": {}, "outputs": [ @@ -2025,7 +2025,7 @@ "1.0" ] }, - "execution_count": 40, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } @@ -2036,7 +2036,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 34, "id": "c16143d4", "metadata": {}, "outputs": [ @@ -2046,7 +2046,7 @@ "Text(0, 0.5, 'The explained variance ratio')" ] }, - "execution_count": 41, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" }, @@ -2079,7 +2079,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 35, "id": "c252d00c", "metadata": {}, "outputs": [ @@ -2092,7 +2092,7 @@ " [5, 0, 2]])" ] }, - "execution_count": 42, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } @@ -2106,7 +2106,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 36, "id": "4c3e4b09", "metadata": {}, "outputs": [ @@ -2116,7 +2116,7 @@ "array([3., 1., 1.])" ] }, - "execution_count": 43, + "execution_count": 36, "metadata": {}, "output_type": "execute_result" } @@ -2129,7 +2129,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 37, "id": "3d7ab4b7", "metadata": {}, "outputs": [ @@ -2142,7 +2142,7 @@ " [ 2., -1., 1.]])" ] }, - "execution_count": 44, + "execution_count": 37, "metadata": {}, "output_type": "execute_result" } @@ -2155,7 +2155,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 38, "id": "d9304f35", "metadata": {}, "outputs": [ @@ -2167,7 +2167,7 @@ " [ 0.66666667, -0.33333333, 0.66666667]])" ] }, - "execution_count": 45, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" } @@ -2180,7 +2180,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 39, "id": "6f12a269", "metadata": {}, "outputs": [ @@ -2193,7 +2193,7 @@ " [-0.27129904, 0.32674839, 0.90533548]]))" ] }, - "execution_count": 46, + "execution_count": 39, "metadata": {}, "output_type": "execute_result" } @@ -2207,7 +2207,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 40, "id": "93c206f7", "metadata": {}, "outputs": [ @@ -2233,7 +2233,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 41, "id": "362d886b", "metadata": {}, "outputs": [ @@ -2246,7 +2246,7 @@ " [-2.33268629, 0.73403206, 0.1406116 ]])" ] }, - "execution_count": 48, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } @@ -2259,7 +2259,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 42, "id": "3d67ec23", "metadata": {}, "outputs": [ @@ -2292,7 +2292,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 43, "id": "d6c046c6", "metadata": {}, "outputs": [ @@ -2331,7 +2331,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 44, "id": "01b99a1f", "metadata": {}, "outputs": [ @@ -2372,7 +2372,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 45, "id": "ee695ec4", "metadata": {}, "outputs": [ @@ -2404,7 +2404,7 @@ "True" ] }, - "execution_count": 52, + "execution_count": 45, "metadata": {}, "output_type": "execute_result" } @@ -2432,7 +2432,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 46, "id": "c7b862c2", "metadata": {}, "outputs": [ @@ -2443,7 +2443,7 @@ " [4., 4.]])" ] }, - "execution_count": 53, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" } @@ -2455,7 +2455,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 47, "id": "5e9c5101", "metadata": {}, "outputs": [ @@ -2467,7 +2467,7 @@ " [0. , 0. ]])" ] }, - "execution_count": 54, + "execution_count": 47, "metadata": {}, "output_type": "execute_result" } @@ -2486,7 +2486,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 48, "id": "6f21c93d", "metadata": {}, "outputs": [ @@ -2502,7 +2502,7 @@ " [0, 0, 0, 2, 2]])" ] }, - "execution_count": 55, + "execution_count": 48, "metadata": {}, "output_type": "execute_result" } @@ -2522,7 +2522,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 49, "id": "c3cd0ee2", "metadata": { "scrolled": true @@ -2538,20 +2538,20 @@ { "data": { "text/latex": [ - "$\\displaystyle \\left[\\begin{matrix}-0.140028008402801 & -2.92308089116858 \\cdot 10^{-18} & -0.985879877768348 & 0.0876610048582825 & -0.010376381187788 & -0.0250838740134759 & 0.00342077175081001\\\\-0.420084025208403 & -1.74749159500132 \\cdot 10^{-18} & 0.0551981213330852 & 0.0524059630583736 & 0.904161013789269 & -0.0149957735145323 & 0.00204502376277677\\\\-0.560112033611204 & 2.56509288200266 \\cdot 10^{-17} & 0.00768630622718297 & -0.769252128021981 & -0.212398840405494 & 0.220118666162865 & -0.0300183183279977\\\\-0.700140042014005 & -1.88876319207868 \\cdot 10^{-17} & 0.157908057772072 & 0.566425923610904 & -0.370502259711609 & -0.162080694018878 & 0.0221034860545701\\\\0 & -0.596284793999944 & 0 & -0.184970868407073 & 0 & -0.695046826276504 & -0.356567148750607\\\\0 & -0.74535599249993 & 0 & 0.184970868407073 & 0 & 0.634618141647933 & -0.0865449974088738\\\\0 & -0.298142396999972 & 0 & -0.0924854342035365 & 0 & -0.196451701566824 & 0.929496791023398\\end{matrix}\\right]$" + "$\\displaystyle \\left[\\begin{matrix}-0.140028008402801 & 0 & 9.49264007734763 \\cdot 10^{-17} & 0.990147542976675 & 0 & -3.95526669889485 \\cdot 10^{-17} & 2.96645002417114 \\cdot 10^{-18}\\\\-0.420084025208403 & 0 & -0.869020451756137 & -0.0594088525786004 & -0.0426401432711219 & 0.248667004926824 & -0.033911550718012\\\\-0.560112033611204 & 0 & 0.289673483918712 & -0.0792118034381341 & -0.767522578880197 & -0.0828890016422745 & 0.0113038502393373\\\\-0.700140042014005 & 0 & 0.289673483918713 & -0.0990147542976675 & 0.639602149066831 & -0.0828890016422746 & 0.0113038502393374\\\\0 & -0.596284793999944 & -0.184970868407073 & 0 & 0 & -0.695046826276504 & -0.356567148750607\\\\0 & -0.74535599249993 & 0.184970868407073 & 0 & 0 & 0.634618141647933 & -0.0865449974088738\\\\0 & -0.298142396999972 & -0.0924854342035365 & 0 & 0 & -0.196451701566824 & 0.929496791023398\\end{matrix}\\right]$" ], "text/plain": [ "Matrix([\n", - "[-0.140028008402801, -2.92308089116858e-18, -0.985879877768348, 0.0876610048582825, -0.010376381187788, -0.0250838740134759, 0.00342077175081001],\n", - "[-0.420084025208403, -1.74749159500132e-18, 0.0551981213330852, 0.0524059630583736, 0.904161013789269, -0.0149957735145323, 0.00204502376277677],\n", - "[-0.560112033611204, 2.56509288200266e-17, 0.00768630622718297, -0.769252128021981, -0.212398840405494, 0.220118666162865, -0.0300183183279977],\n", - "[-0.700140042014005, -1.88876319207868e-17, 0.157908057772072, 0.566425923610904, -0.370502259711609, -0.162080694018878, 0.0221034860545701],\n", - "[ 0, -0.596284793999944, 0, -0.184970868407073, 0, -0.695046826276504, -0.356567148750607],\n", - "[ 0, -0.74535599249993, 0, 0.184970868407073, 0, 0.634618141647933, -0.0865449974088738],\n", - "[ 0, -0.298142396999972, 0, -0.0924854342035365, 0, -0.196451701566824, 0.929496791023398]])" + "[-0.140028008402801, 0, 9.49264007734763e-17, 0.990147542976675, 0, -3.95526669889485e-17, 2.96645002417114e-18],\n", + "[-0.420084025208403, 0, -0.869020451756137, -0.0594088525786004, -0.0426401432711219, 0.248667004926824, -0.033911550718012],\n", + "[-0.560112033611204, 0, 0.289673483918712, -0.0792118034381341, -0.767522578880197, -0.0828890016422745, 0.0113038502393373],\n", + "[-0.700140042014005, 0, 0.289673483918713, -0.0990147542976675, 0.639602149066831, -0.0828890016422746, 0.0113038502393374],\n", + "[ 0, -0.596284793999944, -0.184970868407073, 0, 0, -0.695046826276504, -0.356567148750607],\n", + "[ 0, -0.74535599249993, 0.184970868407073, 0, 0, 0.634618141647933, -0.0865449974088738],\n", + "[ 0, -0.298142396999972, -0.0924854342035365, 0, 0, -0.196451701566824, 0.929496791023398]])" ] }, - "execution_count": 56, + "execution_count": 49, "metadata": {}, "output_type": "execute_result" } @@ -2567,7 +2567,7 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 50, "id": "fda788bb", "metadata": {}, "outputs": [ @@ -2581,18 +2581,18 @@ { "data": { "text/latex": [ - "$\\displaystyle \\left[\\begin{matrix}12.369316876853\\\\9.48683298050514\\\\1.86618551362258 \\cdot 10^{-15}\\\\3.16341117100511 \\cdot 10^{-16}\\\\6.89651511036463 \\cdot 10^{-31}\\end{matrix}\\right]$" + "$\\displaystyle \\left[\\begin{matrix}12.369316876853\\\\9.48683298050514\\\\3.16341117100511 \\cdot 10^{-16}\\\\2.88717586593088 \\cdot 10^{-16}\\\\1.63522227149888 \\cdot 10^{-32}\\end{matrix}\\right]$" ], "text/plain": [ "Matrix([\n", "[ 12.369316876853],\n", "[ 9.48683298050514],\n", - "[1.86618551362258e-15],\n", "[3.16341117100511e-16],\n", - "[6.89651511036463e-31]])" + "[2.88717586593088e-16],\n", + "[1.63522227149888e-32]])" ] }, - "execution_count": 57, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } @@ -2605,7 +2605,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 51, "id": "f859a480", "metadata": {}, "outputs": [ @@ -2618,7 +2618,7 @@ "12.3693168768530" ] }, - "execution_count": 58, + "execution_count": 51, "metadata": {}, "output_type": "execute_result" } @@ -2629,7 +2629,7 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 52, "id": "f1f4572d", "metadata": {}, "outputs": [ @@ -2642,7 +2642,7 @@ "9.48683298050514" ] }, - "execution_count": 59, + "execution_count": 52, "metadata": {}, "output_type": "execute_result" } @@ -2653,7 +2653,7 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 53, "id": "fdf34d98", "metadata": {}, "outputs": [ @@ -2667,18 +2667,18 @@ { "data": { "text/latex": [ - "$\\displaystyle \\left[\\begin{matrix}-0.577350269189626 & -0.577350269189626 & -0.577350269189626 & 0 & 0\\\\0 & 0 & 0 & -0.707106781186547 & -0.707106781186547\\\\-0.816496580927726 & 0.408248290463863 & 0.408248290463863 & 0 & 0\\\\0 & 0 & 0 & -0.707106781186547 & 0.707106781186547\\\\0 & -0.707106781186547 & 0.707106781186548 & 0 & 0\\end{matrix}\\right]$" + "$\\displaystyle \\left[\\begin{matrix}-0.577350269189626 & -0.577350269189626 & -0.577350269189626 & 0 & 0\\\\0 & 0 & 0 & -0.707106781186547 & -0.707106781186547\\\\0 & 0 & 0 & -0.707106781186547 & 0.707106781186547\\\\-0.816496580927726 & 0.408248290463863 & 0.408248290463863 & 0 & 0\\\\0 & 0.707106781186547 & -0.707106781186548 & 0 & 0\\end{matrix}\\right]$" ], "text/plain": [ "Matrix([\n", "[-0.577350269189626, -0.577350269189626, -0.577350269189626, 0, 0],\n", "[ 0, 0, 0, -0.707106781186547, -0.707106781186547],\n", - "[-0.816496580927726, 0.408248290463863, 0.408248290463863, 0, 0],\n", "[ 0, 0, 0, -0.707106781186547, 0.707106781186547],\n", - "[ 0, -0.707106781186547, 0.707106781186548, 0, 0]])" + "[-0.816496580927726, 0.408248290463863, 0.408248290463863, 0, 0],\n", + "[ 0, 0.707106781186547, -0.707106781186548, 0, 0]])" ] }, - "execution_count": 60, + "execution_count": 53, "metadata": {}, "output_type": "execute_result" } @@ -2691,27 +2691,27 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 54, "id": "54824557", "metadata": {}, "outputs": [ { "data": { "text/latex": [ - "$\\displaystyle \\left[\\begin{matrix}-1.73205080756888 & 0 & 0 & 0 & 1.11022302462516 \\cdot 10^{-16}\\\\-5.19615242270663 & 0 & 0 & 0 & 4.44089209850063 \\cdot 10^{-16}\\\\-6.92820323027551 & 0 & 0 & 0 & 4.44089209850063 \\cdot 10^{-16}\\\\-8.66025403784439 & 0 & 0 & 0 & 4.44089209850063 \\cdot 10^{-16}\\\\0 & -5.65685424949238 & 0 & 0 & 0\\\\0 & -7.07106781186547 & 0 & 0 & 0\\\\0 & -2.82842712474619 & 0 & 0 & 0\\end{matrix}\\right]$" + "$\\displaystyle \\left[\\begin{matrix}-1.73205080756888 & 0 & 0 & 0 & -1.11022302462516 \\cdot 10^{-16}\\\\-5.19615242270663 & 0 & 0 & 0 & -4.44089209850063 \\cdot 10^{-16}\\\\-6.92820323027551 & 0 & 0 & 0 & -4.44089209850063 \\cdot 10^{-16}\\\\-8.66025403784439 & 0 & 0 & 0 & -4.44089209850063 \\cdot 10^{-16}\\\\0 & -5.65685424949238 & 0 & 0 & 0\\\\0 & -7.07106781186547 & 0 & 0 & 0\\\\0 & -2.82842712474619 & 0 & 0 & 0\\end{matrix}\\right]$" ], "text/plain": [ "Matrix([\n", - "[-1.73205080756888, 0, 0, 0, 1.11022302462516e-16],\n", - "[-5.19615242270663, 0, 0, 0, 4.44089209850063e-16],\n", - "[-6.92820323027551, 0, 0, 0, 4.44089209850063e-16],\n", - "[-8.66025403784439, 0, 0, 0, 4.44089209850063e-16],\n", - "[ 0, -5.65685424949238, 0, 0, 0],\n", - "[ 0, -7.07106781186547, 0, 0, 0],\n", - "[ 0, -2.82842712474619, 0, 0, 0]])" + "[-1.73205080756888, 0, 0, 0, -1.11022302462516e-16],\n", + "[-5.19615242270663, 0, 0, 0, -4.44089209850063e-16],\n", + "[-6.92820323027551, 0, 0, 0, -4.44089209850063e-16],\n", + "[-8.66025403784439, 0, 0, 0, -4.44089209850063e-16],\n", + "[ 0, -5.65685424949238, 0, 0, 0],\n", + "[ 0, -7.07106781186547, 0, 0, 0],\n", + "[ 0, -2.82842712474619, 0, 0, 0]])" ] }, - "execution_count": 61, + "execution_count": 54, "metadata": {}, "output_type": "execute_result" } @@ -2722,7 +2722,7 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 55, "id": "916dd41f", "metadata": {}, "outputs": [ @@ -2742,7 +2742,7 @@ "[ 0]])" ] }, - "execution_count": 62, + "execution_count": 55, "metadata": {}, "output_type": "execute_result" } @@ -2753,7 +2753,7 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 56, "id": "ed3184c6", "metadata": {}, "outputs": [ @@ -2773,7 +2773,7 @@ "[-2.82842712474619]])" ] }, - "execution_count": 63, + "execution_count": 56, "metadata": {}, "output_type": "execute_result" } @@ -2784,17 +2784,17 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 57, "id": "397d7833", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "12.369316876852981" + "12.369316876852983" ] }, - "execution_count": 64, + "execution_count": 57, "metadata": {}, "output_type": "execute_result" } @@ -2808,7 +2808,7 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 58, "id": "3633f850", "metadata": {}, "outputs": [ @@ -2818,7 +2818,7 @@ "9.4868329805051381" ] }, - "execution_count": 65, + "execution_count": 58, "metadata": {}, "output_type": "execute_result" } @@ -2838,7 +2838,7 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 59, "id": "5719f198", "metadata": {}, "outputs": [ @@ -2862,23 +2862,23 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 60, "id": "86826aeb", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[ 1.73, -0. ],\n", - " [ 5.2 , -0. ],\n", - " [ 6.93, -0. ],\n", - " [ 8.66, -0. ],\n", - " [ 0. , 5.66],\n", - " [ 0. , 7.07],\n", - " [ 0. , 2.83]])" + "array([[ 1.73, 0. ],\n", + " [ 5.2 , 0. ],\n", + " [ 6.93, 0. ],\n", + " [ 8.66, 0. ],\n", + " [-0. , 5.66],\n", + " [-0. , 7.07],\n", + " [-0. , 2.83]])" ] }, - "execution_count": 67, + "execution_count": 60, "metadata": {}, "output_type": "execute_result" } @@ -2889,7 +2889,7 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 61, "id": "13dde383", "metadata": {}, "outputs": [ @@ -2909,21 +2909,21 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 62, "id": "6e87c2f8", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[ 7.14, -0. ],\n", - " [ 7.14, -0. ],\n", - " [ 7.14, -0. ],\n", + "array([[ 7.14, 0. ],\n", + " [ 7.14, 0. ],\n", + " [ 7.14, 0. ],\n", " [ 0. , 6.71],\n", " [ 0. , 6.71]])" ] }, - "execution_count": 69, + "execution_count": 62, "metadata": {}, "output_type": "execute_result" } @@ -2942,7 +2942,7 @@ }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 63, "id": "69e5295b", "metadata": {}, "outputs": [ @@ -2951,24 +2951,24 @@ "output_type": "stream", "text": [ "Requirement already satisfied: scikit-image in c:\\programdata\\anaconda3\\lib\\site-packages (0.19.3)\n", - "Requirement already satisfied: scipy>=1.4.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-image) (1.7.1)\n", - "Requirement already satisfied: imageio>=2.4.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-image) (2.9.0)\n", - "Requirement already satisfied: packaging>=20.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-image) (21.0)\n", + "Requirement already satisfied: networkx>=2.2 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-image) (2.6.3)\n", + "Requirement already satisfied: scipy>=1.4.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-image) (1.7.3)\n", + "Requirement already satisfied: numpy>=1.17.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-image) (1.22.4)\n", "Requirement already satisfied: PyWavelets>=1.1.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-image) (1.1.1)\n", "Requirement already satisfied: pillow!=7.1.0,!=7.1.1,!=8.3.0,>=6.1.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-image) (8.4.0)\n", - "Requirement already satisfied: networkx>=2.2 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-image) (2.6.3)\n", - "Requirement already satisfied: numpy>=1.17.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-image) (1.20.3)\n", "Requirement already satisfied: tifffile>=2019.7.26 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-image) (2021.7.2)\n", + "Requirement already satisfied: packaging>=20.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-image) (21.0)\n", + "Requirement already satisfied: imageio>=2.4.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-image) (2.9.0)\n", "Requirement already satisfied: pyparsing>=2.0.2 in c:\\programdata\\anaconda3\\lib\\site-packages (from packaging>=20.0->scikit-image) (3.0.4)\n", "Requirement already satisfied: pooch in c:\\programdata\\anaconda3\\lib\\site-packages (1.6.0)\n", + "Requirement already satisfied: requests>=2.19.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from pooch) (2.26.0)\n", "Requirement already satisfied: packaging>=20.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from pooch) (21.0)\n", "Requirement already satisfied: appdirs>=1.3.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from pooch) (1.4.4)\n", - "Requirement already satisfied: requests>=2.19.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from pooch) (2.26.0)\n", "Requirement already satisfied: pyparsing>=2.0.2 in c:\\programdata\\anaconda3\\lib\\site-packages (from packaging>=20.0->pooch) (3.0.4)\n", "Requirement already satisfied: certifi>=2017.4.17 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests>=2.19.0->pooch) (2021.10.8)\n", - "Requirement already satisfied: charset-normalizer~=2.0.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests>=2.19.0->pooch) (2.0.4)\n", + "Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests>=2.19.0->pooch) (1.25.4)\n", "Requirement already satisfied: idna<4,>=2.5 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests>=2.19.0->pooch) (3.2)\n", - "Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests>=2.19.0->pooch) (1.25.4)\n" + "Requirement already satisfied: charset-normalizer~=2.0.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests>=2.19.0->pooch) (2.0.4)\n" ] } ], @@ -2979,17 +2979,17 @@ }, { "cell_type": "code", - "execution_count": 135, + "execution_count": 64, "id": "d47342bb", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 135, + "execution_count": 64, "metadata": {}, "output_type": "execute_result" }, @@ -3017,7 +3017,7 @@ }, { "cell_type": "code", - "execution_count": 136, + "execution_count": 65, "id": "e8f8f775", "metadata": {}, "outputs": [ @@ -3036,7 +3036,7 @@ }, { "cell_type": "code", - "execution_count": 133, + "execution_count": 66, "id": "dc8ac145", "metadata": {}, "outputs": [], @@ -3062,7 +3062,7 @@ }, { "cell_type": "code", - "execution_count": 134, + "execution_count": 67, "id": "48cda02c", "metadata": {}, "outputs": [ @@ -3152,7 +3152,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAGoCAYAAAAHGAe8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebxt2V0Vio+5+7453b333KZu3WpuKlWVVJFKTCp9SAIKBFEegj4BUXk2iCKgoKj4BH+ior+HgoofEHi0PhoFQ6NiBPLSkEpiEqpSlVRftzn3tLtvztl7z/fH2mOesedd+5xzq7upwxyfz/ncc/Zea6655pxr3e+Y49sYay0CAgICAgICAgICAgICvvCRuNkdCAgICAgICAgICAgICDgaAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIUje7AwCwtLRkz58/f7O7ERAQEBDwCsbHP/7xTWvt8s3uR0BAQEBAwEuJLwgCd/78eTz00EM3uxsBAQEBAa9gGGOeudl9CAgICAgIeKkRXCgDAgICAgICAgICAgJeIQgELiAgICAgICAgICAg4BWCQOACAgICAgICAgICAgJeIQgELiAgICAgICAgICAg4BWCQOACAgICAgICAgICAgJeIQgELiAgICAgICAgICAg4BWCQOACAgICAgICAgICAgJeIQgELiAgICAgICAgICAg4BWCQOACAgICAgICAgICAgJeIQgELiAgICAgICAgICAg4BWCQOACAgICAgICAgICAgJeITiUwBljzhpjPmCM+awx5mFjzF+ffr5gjPlvxpjPT/+tyznfbYx53BjzmDHmS17KGwgICAgICAgICAgICPjDgqMocCMA326tvQvAGwH8VWPMqwF8F4DfttbeAeC3p39j+t3XArgbwJcC+BFjTPKl6HxAQEBAQEBAQEBAQMAfJhxK4Ky1V621n5j+3gbwWQCnAXwlgJ+cHvaTAP749PevBPDz1tqhtfYpAI8DeMOL3O+AgICAgICAgICAgIA/dLihGDhjzHkA9wP4KIAT1tqrQETyAKxMDzsN4Dk57dL0M7+tbzbGPGSMeWhjY+N5dD0gICAgICAgICAgIOAPF45M4IwxJQC/BOBvWGtbBx0a85m97gNrf9Ra+4C19oHl5eWjdmMuWoM9/PAHHsdnrx7UtYCAgICAgICAgICAgFcujkTgjDFpROTtZ6y1vzz9+Jox5tT0+1MA1qefXwJwVk4/A+DKi9Pd+Wj19/DPfusxfOZS86W+VEBAQEBAQEBAQEBAwE3BUbJQGgA/BuCz1tp/IV/9KoBvmP7+DQD+s3z+tcaYrDHmVgB3APj9F6/Lc/sJALDXi30BAQEBAQEBAQEBAQHHAqkjHPNmAH8WwGeMMf9r+tnfAfBPAPxHY8yfB/AsgP8NAKy1Dxtj/iOARxBlsPyr1trxi91xH/TbtIG/BQQEBAQEBAQEBAQcUxxK4Ky1H0R8XBsAfPGcc74fwPe/gH7dMKYCXNDfAgICAgICAgICAgKOLW4oC+UXMsyUYwYFLiAgICAgICAgICDguOL4EDinwAUGFxAQEBAQEBAQEBBwPHF8CNz036DABQQEBAQEBAQEBAQcVxwbAocQAxcQEBAQEBAQEBAQcMxxbAiccQwuULiAgICAgICAgICAgOOJ40PgggIXEBAQEBAQEBAQEHDMcXwI3PTfIMAFBAQEBAQEBAQEBBxXHB8CZ1hGIDC4gICAgICAgICAgIDjieND4Kb/BvoWEBAQEBAQEBAQEHBccXwIXMhhEhAQEBAQEBAQEBBwzHF8CNxUgwv8LSAgICAgICAgICDguOLYELj9KgKBwgUEBAQEBAQEBAQEHE8cGwJHF8qAgICAgICAgICAgIDjiuND4Kb/BgEuICAgICAgICAgIOC44vgQOJYRCFFwAQEBAQEBAQEBAQHHFMeHwE3/DQpcQEBAQEBAQEBAQMBxxfEhcExicnO7ERAQEBAQEBAQEBAQ8JLh+BA4lhEIDC4gICAgICAgICAg4Jji+BA4p8AFBhcQEBAQEBAQEBAQcDxxbAgcERS4gICAgICAgICAgIDjimND4EIduICAgICAgICAgICA447jQ+BcDFyQ4AICAgICAgICAgICjieOD4FjDFzgbwEBAQEBAQEBAQEBxxTHh8BN/w38LSAgICAgICAgICDguOL4EDgTyggEBAQEBAQEBAQEBBxvHB8CN/03lBEICAgICAgICAgICDiuOD4ELmShDAgICAgI+IKBMebfGmP+3s3uRxyMMW81xjx2s/sREBAQ8HxwbAgcEVwoAwICAgJuBMaYbzDGWGPMX/A+/zZjzJoxpmmM+XFjTFa+WzDG/IoxpmuMecYY86df/p5/YcNa+5estf/oZvcDAKbzezv/ttb+nrX24ot8jXcaYz4wXS9Pzznmrxtjnpqum88aY+6U75aNMT9rjGkYY3aMMT9zwLXuM8b83vRal4wxf9/rx2em7WxN1+lp+f47jTGbxpg/MMbcI5+/2Rjzn27wnv+nMWZgjOlM2/xlY8ypG2njpYQx5huNMeNp//Rn9Wb3LQ7GmL9gjHl82sffPKifxpi7jDH/Y7oGHjfGfJV892e8++1Nn4HXTb//zun8t6fr8Tu9ts9P13LPGPOoMebd8t2XGWM+OF1fa8aYf2+MKcv3C8aYX5iuh01jzM8YYyrT794aMxfWGPMnp9/fY4z5rel511n0B713D7vn6TFfZIz53en314wxf/1G52jazquNMQ9Nn9MdY8x/N8a8Wr43xpgfmD5/W8aYf2pMJDUZY1LGmJ+fjt9veGP3d40x33aUPhwbAmcYA3eT+xEQEBAQ8NJgNBq96G0aY+oAvhvAw97nXwLguwB8MYDzAC4A+IdyyA8D2AVwAsCfAfBvjDF3v+gdfJlgjEnd7D48X3wB9b0L4McBfGfclybaIPjzAL4MQAnAlwPYlEN+GcAagFsArAD45wdc62cB/C6ABQBvB/CXjTHvm373CIAvsdbWAKwC+DyAfzPtw6lpHy4A+LcA/sn08xSAHwTwN45+uw7fYq0tAbh9el8H9ftm4MPW2pL3c8U/KG4d3ejaeiFr0RjzdgD/GMBXIprXpwD83AHX+c8A/sv02G8G8NNmuiFgrf0ZvV8AfwXAkwA+wSYAfD2AOoAvBfAtxpivlUv8HIBPAlgE8HcB/KIxZnn6XRXA9yFaW3cBOAPgn8m53zdt9wKA2xC9I7932q/f8/r15QA6AH5zeu4egP+IaI3GYe5797B7NsYsTa/z76b3dTuA/zrnOofhCoCvRjT2SwB+FcDPy/ffDOCPA3gtgNdM7/P/mH73JxDRlSUALX5ujLkVwFcA+FdH6cCxIXAOQYILCAgIODY4f/48fuAHfgCvec1rUCwWXwoS9/8D8EOYNaQB4BsA/Ji19mFr7Q6AfwTgGwHAGFME8CcB/D1rbcda+0FE/4H/2aNc0BiTN8b84HQHuTndzc5Pv3ufMebh6e7s/zTG3CXnPT3dOf/0dAf6x4wxJ6a7uO3pLnB9euz56e7zNxtjrhhjrhpjvl3a+l5jzC8aY37aGNMC8I3GmOq0zavGmMvGmO8zxiSnx99ujPmdaX83jTG/MP3cGGP+pTFmffrdp81U1THG/IQx5vvkmn/RRErBtjHmV42oC9O+/iVjzOenO9o/zB3rmPGL6/sbjDEfno7bVWPMvzbGZKbH/+701E+ZaOf9Txlj3mGMuSRt3jUd78Z0/N8Xd+2DYK39fWvt/43IaPT7nADwDwB8m7X2ERvhCWvt9vT79wI4C+A7rbVNa+2etfaTB1zuPICfsdaOrbVPAPggABqy1zyCMkZkrALAOQCftNa2APx3REY2EBG3X7XWPn2j901YaxsA/hOA++S+X2WM+W/TOX/MGPM18t0LeQ6+Y7rWmiZSe3LPp8/Ttv62MebTALrTdW6NMX/eGPMsgP9hjEkYY75n2s91Y8xPGWOq0/PP+8c/n35M8RUA/p/pO2cX0TvnbcaY22KOfRUiAvUvp2vgfwD4fzH/HfQNAH7KToslW2v/qbX2E9bakbX2MURk8M3Te7oTwBcB+AfW2r619pcAfAbROw/W2p+11v6mtbY3fTf+e547xa0A/pO1tmWtbQL4FUzX5px+/aK1tjtt+zFr7Y/B21Cb9utG37sz9wzgbwL4rSnRG1pr29baz0r7c9eqD2ttw1r79LRtg9lnjNf+QWvtJWvtZUSbI98o4/M/rbUjAB/A/jP4QwC+Y/r5oThWBM6YoMAFBAQEHDf83M/9HN7//vej0Wgglbp+g/s1r3kNarUaANw3Nfj050fmtWuMeQOABxApET7uBvAp+ftTAE4YYxYB3AlgbK39nPf9URW4fw7gdQAeRLSD+7cATKaG088hMqaXAfw6gF8jEZniTwJ4z7QPXwHgNwD8HUS7uQkA3+pd650A7gDwXgDfZcQVCtFO/y8CqAH4GQA/CWCEyBC5f3oO3Ur/EaLd6jqiHXfuEr8XwNum/akB+FMAtvwbNsa8CxFZ/hoApwA8g9kdayDapX49ol3rrwHwJX47B/R9DODbpuPwJkTK6V8BAGvt26bnvHa6O/8LXt/SAH5ten8rAP4agJ8xxlycfv9dMevK/RzQR8WZ6c89xpjnTOS29g+nxA4A3gjgMQA/aSKXq4+ZSJGZh/8/gK83xqSn/XwTIkLGezo37VsfwHcA+KfTrx4HcK8xpgbg3QAeNsacBfC1eIHK2fTZ+BPTa9Dg/m+I1MIVAF8H4EfMvlL9Qp6Dr0GkHN2KSOH4xhfQ9a9DpIrWEK1/IFI170K0Br9x+vNORMZ2CcC/9trQ42fAuTjgh26ABvs5+SC/34PrEbe5YeKONcbcgugZ/amYczDdKHkr9knT3QCetNa25bCD3m9vwyzh+mEAX26MqZtoQ+lPInpP+dctIFKxfnJOuz6O/N6dc89vBLBtjPnQlIj/mjHm3PT4w9ZqLKbP2ADR+/Afy1dx/3+wrT8A8K7pen4nomfwqwBsTknpkXC8CByCABcQEBBw3PCt3/qtOHv2LPL5fOz3n/70p9FoNADgf1lra97PX4k7x0TK0o8A+GvW2knMISUATfmbv5djvuP3ZRyCqcH+TQD+urX28nT3/EPW2iEi8vN+a+1/s9buITJw84gMXOJfTRWWywB+D8BHrbWfnJ7/K4iIl+IfWmu71trPAPgPiAwT4sPW2v80vf8KgD8K4G9Mj18H8C8RGfZA5Np0C4BVa+1ADI296X2/CoCx1n7WWns15tb/DIAfn+76DxG5rb7JGHNejvkn053tZxHtTN93wFC6vk9Vgo9baz8yVRSeRuQmdRABUrwR0Zz+E2vt7lTN+C+YjpW19p/ErCv3c8RrnJn++14A9yIy3L4O+65iZ6bffQDASUQ79v/ZRG5fcfgviIzfPoBHEanFH+OX1tpnp31bAvA902Ngrd0C8P2IlKIvQ0Tu/i8AfxvAV5lIZf3PxpgzODp+yBjTRKRiLyEiwEBEyJ+21v6H6bx8AsAvAfjqF+E5+CFr7ZWpgvlrOHitvNEjTE/4/bfWPmet7ctn3zt9DvqI1u6/sNY+aa3tIFq7X2tm3SX1+BlwLg74+dnpob8O4GuMMa+ZKpF/H5EuUYi5p0cBrAP4zimJfy+i9R537NcD+D1r7VNzxud7EfGB/zD9+8jvN2PMexCpTX9fPv4EgAyijZwtRJsrcRtpfxLRmvmdOf3ycSPv3bh7PjPt619HpESri+rctXpQh6bPWBXAtyByOZ3X1yaA0pQs//r02g9NP/95ROr83zbGfL+JYvR+xNuwuA7Hi8AZE8oIBAQEBBwznD179qVo9q8A+LS19sNzvu8gIjUEf2/HfMfv2zgcSwByAHwjEohcop7hH1Ni9RyA03LMNfm9H/N3yWvzOfn9mek14r67BUAawFVRlv4dot1oIFJHDIDfN5Fr2zdN+/g/EKkRPwzgmjHmR800YcEh99ZBZNzpva3J772Ye5l3XzDG3GmM+S8mSqrQQrQbPo/8xPXtOY/IP+P17YWChv0/pfsVovH9Y/L909baH7OR++TPI7rHN/sNGWMWEMXy/J+I1tJZAF9ijLlus2JKcH4SERlMTT/7OWvtF1lr/ygixWaIyPj855i68eHG1LhvtdZWESlhVGiBaE39EU+t/DOICOoLfQ5uZK18xCNMvkviczHn6Gcz/Zn+nkIUh3VQGzcEa+1vIzLkf2l6jacRvVMuxRy7hyjG6ssQjcW3I4odu+5YRGQmVuUyxnzL9Psvm5Jn4IjvN2PMGxEpVl/tqWL/D4DPISJWFURz/NMxl/ddHA/Djbx34+65D+BXrLUfs9YOEMU0P2gid9i5a3WqoLrkKP6FbOT++W8B/JQxhu/LuP8/OnYf32WtfY219psRxVr/W0TeIA8gIuIZRBscc3G8CByCAhcQEBBw3GAOqRNz9913o1QqAcD95voMZ3HukUDkYvdVU4N/DdHu/g8aY+ga9TAiVz7itQCuTRWMzwFIGWPu8L6/Lm4jBpuIXG7i4lquIDIkADjXprMALh+h3XlQ9ntueg1C/8d8DpEhvySGbsVay7iqNWvtX7TWriIKuv8RM83qaK39IWvt6xC5CN2J+CQe/r0VESUSeL735v9v/28QqRJ3WGsriNxKj1pg6AqAs+LOCERjdXna178Ts67mGnRz8Bii5AvzrJRPH/CdjwuIXMl+aqoWXEK0i//H5hyfQkTEZ4zfqcrzjxEZ/3cgIrEtAB9DRMZuCFOV9/sAMH7xOQC/45GnkrX2L+Plfw4O7Pohn830B9HaGGF282Tu3PkEIObnz7hGrP1ha+0d1toVREQuhcjl7voOWvtpa+3brbWL1tovQbQuft+79psREdBfjOnXN2GaqGm6hoiHAVwwkh0R3vvNGHM/ovizb5oST3jH/rupItlBRE5m1qaJ3HbfgTlunXNwpPfuAffsP2P8/cC1OlVQNTlKHBKI1E9uMsT9/xEX13cPov97fhSRMv/xKaE99Bk8XgQuxMAFBAQE/KHDww8/jE6nA0TJGfxsc39pzmnfiChm5b7pz0OIdmT/7vT7nwLw502ULrqOyA3tJwC34/rLAP5PY0xxajB8JYD/m42bKLHBO/yLTtWEHwfwL4wxq8aYpDHmTSYqUfAfAXyZMeaLTRSX9e2ISNWHnt/IAAD+njGmMI3l+HMAfiHuIBu5Pf5XRCS2YqLEDbeZaRyWMeZ/E7e6HUT/3Y6NMa83xvyRaX+7iIzyccwlfhbAnzNR+vssIuLwUfsCkmZ4KCPK6NYxxrwKwF/2vr+G/WQBPj6KqO9/a+qO9g5EStTPA4C19h/HrKvrDLrpmOUQKZnGGJOjG5S1todo7P+WMaY8Hcu/iMgVEojcX+smKmmRNMZ8NSJj8P+N6e/npu3/6ek1TyJyO/zUtB9/whhzcfrdMoB/gejZ2Pba+R4AP2GjhCfPArhojDmByL3zyWlbTNJxfs7Y+fhJRGTxfdN7u9MY82en45qerpe7bsJz8ELwcwC+zRhzqzGmhGjt/oI9YrIJnwDE/PwMAEzXyz0mwjlERv3/ZaNEIdfBRK6Wuenz/R2IYkt/wjvsGwD8kp2NZ8OUNP5jAO+x1s4k3Zmqaf8LwD+Ytv9ViMjEL03PvQeRAvzXrLW/FtO1jwH4CyZKUpNHlJHxU94xfxbAh2yUgEf7ZabPEBMQ5aZr4kjv3YPuGZGL6FdN30FpAH8PwAdtlHxn7lqNuT8YY95jjLl/um4riJ6xHQBMivJTAP6mMea0iZI1fTu8uZluTPwwIjfiCSK3yrdM3xlvR0wyJMXxInAwQYELCAgICDgUUze2Nf4gUkeYNQ3W2t9ElPjhA4jcmZ5B5N5E/BVEcTnriAy8v2ytfRgApsZ5B1Hmtjh8x/S7jwHYBvADABI2ygb3vyMKiN9ERCK+wkYZ6Z4vfgdRUonfBvDPrbUHpc3+ekSG0yOIjJFfRGQUAlFykY+aSHH6VURGx1OIVJ1/Pz3+GURukde530136f8eIiPwKiLl5Wv9414AvgPAn0bkTvXvcT1R/V5ECUIaxssuNx3f9yGKAdxEFK/z9dbaR2+wD29D5Kb164hUmj5m05R/C6J1cQXAhxGR2h+f9mF72ofvQBQX810AvtJauwkAJiqK/m+nx7YQJQv5NkTj/r8QqTTfP73OaUQGdhvROpsAcDXCpu1dRBRz96+mbV5FVFLgYUSJcL57euhZRPN6JPVrOpY/hChTYHt6ja+d3vMaorXOeoov13PwJnO96vX6Gzj/xxGRhN9FZGQPsB/n92Iih2hNdBApaR9G9MwAcEqwJgP5s4iepXVEHgXvsftukJgSoa9BvPvk9yFSwD9m4r0VvhaRO98OonXx1dbajel3344oucyPybmqLn0ToiyplxCtmwu4PsnMPLfOWxA9N2yvj0i9Jua+dw+7Zxu5e/8dAO+fnn87oncGjrBWfdSm128ichG9HcCX2sg1E4jco38N0fr+g+k1/53Xxp8D8AfW2oemf//y9NobiObGP34Gxh7CeIwxP44ouG/dWsvUwL8AgAUwawAa1tr7pjs0n8X+YH/kgN1PhwceeMA+9NBDhx12KO78nt/An3vzeXz3H40lzAEBAQEBxxjGmI9bax/4AujH/w7gbmvtdx968EvXh/OIjM30UZWCgAAfxpjvAbBhrT3QmAwICHh5cZSCgz+BKEDZ+alaa/8UfzfG/CBmM608Ya2970Xq3w3BAMGHMiAgICDgpsJaGxewHxDwioO19vsOPyogIODlxqEEzlr7u/N8n6f+m18D4F0vcr+eF0IMXEBAQEBAQEBAQEDAccYLjYF7K6KsXJ+Xz241xnzSRLVE3jrvRGPMNxtjHjLGPLSxsTHvsBtCFAMXKFxAQEBAwB9uWGufttaa4D4ZEBAQcPzwQgnc12G/CB4QBVOes9beD+BvAvhZE18PBtbaH7XWPmCtfWB5efkFdiOCMaGMQEBAQEBAQEBAQEDA8cVRYuBiYaKCkH8CwOv42TT7zXD6+8dNVO3+TkTpmV9yGAQXyoCAgICAw1GtVt1/F8YYV2vO9+Lgd/xJJBJHOp5IJBKxniHWWiQSieuuod/zXxNTB0/P5zH+sdbamc/mtcU+6HXZXtz3/rX8vvvXiGvH72OhUEClUkEmk0EymUQikUAikUAul0M6nYYxBoPBAIPBAOl0GslkEul0GsViEZlMBtlslCyO85PJZFy/xuOx+3w0GmEwGGA4HCKXy6FcLrvPh8MhBoMBkskkjDGYTCaYTCYYj8cwxiCfzyObzbr7n0wmMMYgl8shl8thOByi1WphMBhgMplgd3cXk8kEqVQKiUTCXdta6+6T9wTA3ed4PHbHAkAqlUI6ncbCwgKWl5dde4VCAePx2F2Hc5LL5dx4DYdD195oNMLu7i6MMUin00in00gkEkin07DWotfrYTQaubHiOI/H+1UhEokEUqmUuz/2m+Oxt7eHvb29meM5V3FIp9NuLMbjMfb29ty1ORZsL5PJIJFIoNfrYTgcwlqLdDrtxj+TySCTyQAAxuOx69Pu7q7rB8eJx+n4s31rrVsLAFAoFFAoFJBIJDAejzEejzGZTNzzxz4mk0lks1mkUimMRiN3DI+bTCZuDqy1bl55r9Za7O3tuTlh23zvKDhHukY5T6lUauaZ5HHj8XhmLrguuG70+GQyiVQq5X74fTKZnDmX/eO98Fna3d113/nPfjKZdM+4Putc16lUCtlsFul0GpPJBIPBwI2ZtXbmmolEwo2rtpdMJpHJZNya9J9ljjGvzT7pD9ePvqs4BhyfRCKBd7zjHUetN/mi4nkTOADvBvColeJ/Jqo3sm2tHRtjLiAqDHlgHYMXE9ED8HJdLSAgICDgOMAnI/xMcRjB8o9Xg4sGlH+cT2zmfcdz9Vi/3/NIUlyf9dy4vs/DPPIWdy1FHLlke8lkEpVKBfV63RljwP74jUYjZ8iRtJKgFQoFlEollEolZ8AWCgVks1lngNO4o7G/t7eH4XDojLfBYODOTSQSyGazzujnuCSTyRkimUwmHdGgQdtut11bNBaBfXIzGo3Q7/cxGo2wt7fn7ksJEa9Pw5hIJpM4efIkFhcXXZu8x729PWdo0vDlNXhfOvZKjAC4djjmnAOSGR0bErq9vT1HBEm8SCTZDseFZBiIiAWwv57VcFYSQrLLvnDOSXBIjkjaeNxkMnFjwmvz/tk2+zIYDFw7HBdel59ns1nkcjlHyJSUZLNZJBIJ7O7uOoKohIL3RaLDv0lOuU4U2m+OE4/hs6JkkN8poVRSyXHjXPMeSYQ45kr+ec8kMHx+eZ6u8VQq5foat6Gj5IzETtcZ2+S96Ockxfye19Fng+8D9p9ge2yTBFQ/UwJOcG4ymQxSqZRb0/pM8zq6+XazcCiBM8b8HKJq6UvGmEsA/oG19scQ1Ur4Oe/wtyEqsDdCVMjzL9nrC0e+ZIgUuMDgAgICAgIORpxaNY+M+P9Jx6lR/vdxpMgnYnr+PBI1j/jo7wedq/31yV6cyucrhnHnzBuPeZjXv2w2i4WFBeRyOWfk+W1yB55/5/N5lMvlGUOTRjeVkt3d3Rnjj8RCCSCJXafTgbUWxWLRkZl+v+/uM5PJIJ/PzxijalBOJhM0m80Zg5AkMJVKOXWMBqmqcjwfgCMxnAMSv2KxiHw+j2KxiPF47IhDp9Nx9021IZVKOQObBI79nkwmjjjs7e0hlUo5hcJfxyR5NNxJWowxGA6HzhDXOVLljGvIJxMcN5IuXlPVFV+t4jiNx+MZ0qVqG/tC417nQglnJpNBLpfDeDx2c0z1jwSNak0ul0M+n3ekn8SRihRVOhJxqlq8RxInjh3HlkqxbhAoSZn3DPBe+LduCOn3PjlRtcp/L5GkUc2kqsTzgH01j+uGii7Hgf3nJgWfLVXVtB9KBkmutS/abyW5JFS6VpVQsT0Fx4trjf9ynFSB1E2FTCaDdDqN3d3dmTWlbSoJvlk4ShbKr5vz+TfGfPZLmFZqvykIMXABAQEBATeAw1wGDzrHV7H83/XYw64xjwwepe/+73Ft+n2LI3EHXSeOBLLNo4yVHpNIJFAul7G0tIRcLoder+eMJ9/453VSqRQKhQJqtRqstcjlcs6AGo1GTinp9Xozrnw0PtPpNM6fP49ms4nxeOyIWjqdRq1Wc2oK1Sh1zQNmDUz2rd/vo9vtAsCMapFMJtHr9WbIFH9SqZTrKwBHhthHdQdbWlpCqVRy95/L5TAajdDr9RzZoApCF1BVVowxM0qh9oGuoOqCRsLKe+CcZbNZp75Yax2B4fxYa53rIA1pX4FWkqLqlBr2qhbpmCtBIOkieSNhBOAMet3UIOFTN1b2j/3QsUsmk85VVpU3rjn/MxIcziP/5rWVwOn96UYJ5wGA23jQzzl/JEc8n+PPa3JN8XMSeJ6rzzjPp+qrhIxrgWSFKhTHX5U3nV+OAcdBNyl088onX6oK6jzrOtbveA7b89VV7ZuuJXV/p6pOUsq50rWjZJQuonxeSPR9Fe/lxAtxofyCw80TMgMCAgICXmmIU6iOosTNO84nNXHqmE8Y48henMLlk8Y4Jcw/Vo+PO06vGUcg4/rhE7nD4B+XSqVQrVaxsrKCTCaD3d1dp4pQhVIyR1WnVquhUCi4dqiMpNNp5PN5APtGXbvdxt7eHvL5PPr9Pvb29nD69GmnLAGRkZrP51GtVmHMfrwYXec03o3HA/ukot/vo9VqOcNZXfH6/b67LsnBeDxGPp9HvV53qhNVMmutc0+kolMul50hms1mkclk3PE0OmmY93q9mbGmUUnlMZVKuT6oG56SKHX/U1czjrO65PFaNLLVTY3rx1ebSZh4jBrd6h6n5NFvg2Sa7anypS63fK52d3eduyljCkmUOWecI5JXqi90x6RiqvGA6jJp7X7cmsbYsW3eD8dQSTPnQO9f74X3z+v4z7VPNvg3SaJP3HyyQSVT3Ud5v6rm6TolefNJOedLY8PUvVGVNz92Tudinpso29cNAlUkuYZ9ksyx0pg332VUx9RX5XgNXaccT431vBk4XgTuBncvAwICAgICCJ/MANerZDRCDlOd5hE3tukbYwfFVMSRNr9f2q7u1B9GBuOu4yNOKZzX13mga1K1WkW5XHZJRmgsA/uGGMc4nU6jVCphaWnJuULSqCMZo1FPQ5CucUzwkUwmce7cOaTTaezs7KDVasFai1qt5twSqWgBUcKKfD4/EwPG3fZUKoW9vT2X7IPH0EUvmUyi1Wo5NQfYT/ZAZYd/q0FPQpFIRIlJyuWyIzhU9kjS2JdyuQxrLTqdzoxKQQOaRijHVQkU540ksFgsuvWnboHajpJff32pMc61TPdOGr4cK4LfcYw0tjHObU5d8aiecMw0toxKIV0mNTmKkg11s6W6mc1mZ9wpqcaq26OSOd6Hxpr5GyPstyq3fD+oGymfKyUlhB/PdpDbnrqQqiKpc88xJWFVoqZ99WO/VGlTdZDta3skQD6BY5saF8h55nPBeWVfOB5KWv2x1nEkeed96HrmfPD5oysx55f95jWZ9CWdTrtNHqq6+ozdDBwzAheyUAYEBAQE3Bj8/4TjyJIavvxMf1ejKk7N8tv225h3rH5/mOrmX/eoxCuu3aOQs4PUOkUqlXLJRlQ1oaHFvqt6USgUUK/Xsby8DGstGo2GUyTUSB2NRs7Fr9frIZFIoFgsotVquSQn6XQarVbLuU+WSiVHTmjsp1Ip5PN5R5iA/eyCAFz8WLfbdUqBKmkkmL1eb0bVIHEjUWUiE03EQFJAcqvEjoaixnEVCgWn/PAYVXZoHA8GA0ecafTSWO33+854VcOeahJVSd1Y0EyS6jpI5UjJuKpaNNLVtY19Vbc1VXFUpWKfh8OhIwlKdHgdEgcSsb29PfT7fUdUNTsniX4+n3eJb6y1TnXjPZFQDodDt2GgShuJkbo+cnxIKHmcrwhp/1W153jzGqpcafyhugSqSyLb8ZUzJSequGryFB6j5MRXT/VZ5bxzLflqYdy7k9fXeVbVUl1etU8cC3VdJOnVzQDNIsnv2Tavq0RUn3deQ10uSdgTiYSLx+Xav5FNrBcbx4vAIcTABQQEBAQcHfOIS5zREXeO76LkkyifHPmGzbzd9MPIVpzq5h+jiQ70fg46Zx58A/Og/hBUlBYXF53xrKoZd7LV0CLhWFlZQaFQcK6IjNtiBsm9vT1XAoAZEUlUer0ebrnlFiQSCXd+p9Nx7pEkYpp5Usmbxq1xF393dxfdbtepb+yvuiCmUimUy2UAcHFFhULB7dqzTbrxcYw0CyeVPRIwTaBRLpedEalZGtV9UZU0YN9NkoSCRioTx5BIqtFO45Yk18/6RxKuySqotpBkcB5JpnivXO8k4WpgA/up/NXNjnF8JAjsC8de70sNbs1IScWO7q1MekOCT1dXVd00EyGwT1rVXZZrWOO8VKFT9VNdVzkGPrHjWCiZ4Lj6roHsh6p9XAc6FxwrEllfXdXkJXo/Sm70uvrccv41cYu+CziG/JybFareqdJHJVtVV44Vn1eNe+R86PrlmmDf2D9u2Gj8JOfKGONIOseSz46uV7bvj8nNwPEicMaELJQBAQEBAUfCUVWnuOOOcq6vUM1Tz/xj/fPiSJP/u+6OA/suR/53PjH0yZ0SssOUOr8fasykUinUajVXt4zKAYmDpoNXNaFcLjvCR5K1sLDgjmfb2WzWqV80ztvtNlKpFJaXl52x2m63HYkD9tPHaybGQqEwY8AyXoxug51Oxyk2qjaRXOVyORefx+vQDVPdrkj86K4HAKVSCfV63Y2FEjC6lbEvmimRc5HJZGYMVnXxohrCdPtUOxlTx/vVOmk0oHO5nDOMSaA4T8C+uxkNW1U0SWJ4XVWsOPda243rleSNChjvlW0p0VOCw1T+JHylUsm5q5KgK2FmNkrWdiPR88kbiZRuhJB0KZEkSI7UhVDB8VPCpaRWyRqPVxLmv0Pi4stUrVJ3QarGqpxaa2fq0PnPmMInhzoOnBdupJC4+RtU7JOSN7al7wJ9BylZ0nFiG+rKS8LF71RF45iTkHPDRV17ueZ9Aspx4fOrRNofp5cTx4vAIShwAQEBAQGHQ3e9FQe5GupnvvI0rw291jyC6B8/jyT5/VCjTsnbYcfH3U/c8f73cSpc3HHZbBYnTpzAwsICALjkIPl8fkb1AeCMwFQqhUql4uLdut0uut2uiz0B4GLCMpmMc41Lp9MuPqxYLDrip5kaaegxiyKN+nK57JRBEgZVj0ajkavvVi6Xce7cOTSbTWxvb6PZbGJvbw/FYtHVoSN5oeE4HA7R6XRmSgfQvTKXy6FYLM6QWxrhPJ6EgklI2D6VQaobNFLV0KehrO6E/FwLf3MOeD77x/HW2CO9Dr+nUU4CpHFDJG+q6qlbKgmLqm5shzX8NMkF/+Y9K3ljP3VjIJFIOLWXhD6bzbpSDHRpVTLJe1cSpURKXSNpzJNA+26dOka+257//tF517HRJCtKFtSFUzNfKqHRvzkfSpyoxLFfukZ0PalLIseK65zt6Xj5ca2+Uqf98l0oOTYkdfo88Tw+o5x/rjkl1v4Yx8UnahkKegvwez5/6tqpzx3PCQTuRYIJMXABAQEBATeAeeqaEpN5hO4g0qTkap76poRqnkvkQS6T8871++V/z89UMYu7D38M9Nx548HyANVq1alkzMCoRiFJXDqdRrFYxPLy8owrG2PNaHSSVI3HUQ0vAM7Qq1QqzpDqdrsuro2GnZIOqktUyGiEU4Wh8coSAcYY1Go1lEolALN16UgEBoMBer3eTGpx1oJTckBiUyqVUCwWXb/YdxJMGsQ0MElkAbjMijxOMyNqUhUayyQu+XzekRDeL++BRE0JF5URNYgJdVfkPdAgJ0nSFPI0/EnwOHckESSlJHf9fh/GGEf4Sd54bzTWaeTzuqqesgSEKnoAZhKV9Pt99Ho9F//IODglCL4CROXRV4hUmdH70XtVxBE7jX2Me8Z4TY3LjFOZ+Czy+iSm+l7geeoyqeTUT4LDtQ3sK+Dsk96buhXrmvALyKtC6ZNBtqlqoMbO6lzoNbQdvjM4Nhxzzgf/psKrrpmq/mpiE92wuJmuk8SxInCACQpcQEBAQMANwydJR1GqlNDMI2BxbfiuP9qetukTNP+a+r0alf7xccbdQf30x8Anb3Fjk0qlsLCwgHq9PkM2rLUuzT8JkpKFcrmMhYUFNx7D4RDtdhuTycTFwdFlsNfrOfLV6/VQq9UcMbTWYnNzE91u1xEDujDSUC4UCq4wN++PWSi52z8ajVwtORI0Fge/evWqU9RocPf7fWdMam0wEg4a5WyP7p5KwFSZYbtKpEqlkiMc7Hcul0O5XHYkdWlpCQsLC6jVaqhUKq7YOQ1fTXih60jjh3Z3d9Hv99HpdNBoNNBqtbCzs4NutzvTPyY3USOWhMB3SyPhZRyZxsPRqNfYu/F47Fw82TeCJIOEiOOgqhvnnffE65EEcB2SdGumT1VflcRQqeL8qqro1zrj77xfqlHqHqvHAfulD0hANG5O14pPWNiGqlgab0YFknPPtchzSaj9uDKuQe0vibOuX94X15Jeh9dS5U1j9vRc9knj/0gA2Q43M1Qx1GyaGlfoq5Uap0nCRqhbM1V3jTtVF1qOFfvCzYabhWNF4KL3UmBwAQEBAQGHYx6J8Q0SPR7Yd5HyFSn+fpiq57c3r2+8jipgBxFDnwDOu8c4dW9en+Pa8dW6TCaD1dVV1Gq1maQYuotOQ4vGFV0mNdaKqdszmQzK5bLLtkjlqFarAYiMroWFBZTLZQyHQzQaDadMUG2ydr/wNA3wYrF4XVY7JQ+MH0skEsjn81hdXXXEicSOMW1anNsna8B+0gUqbIy5IlGg0cnzef+aPEEN/EKhgFOnTmF5eRnLy8s4ceKEI2pa9sCfWyLu74PWoM4/k8A0Gg3nQrq+vo719XV0Op2ZhCmcWyYW0TFSMqUkQBNdaJZANfjVUOc4U6EjwWTNN46lkkG2SWWXKiUJCceeBeKp5HEc2E9g/72gpQ0IPyunklxVKnnP7Ic+M77LNedASZHOoZJHkg4mkCGhUuWIREYzNsbF3/l90jZ98hb3GefSV+mUwLFtVcvilE19tnj/fqwbz+NnqrjpOVxnvicD3SYZJ6t9VjdnqrpUcG8WjheBQ4iBCwgICAg4HKouxX0W96PH+QZJnLFMY0vb0F1nXy3zyZSvlvjfq/Kmxx1GKBUHkbuDxocolUpYXl52apAaoHSbY6IQVV9Yg42xTtzJzmazLqkI1bFMJuPIYT6fR6VSQafTwfr6OnZ3d7Gzs+N26bVoM8mbponX3X2qKcB+0hAancVi0RHKTqeDwWDglCRVfAC4/pLY0eDmzn6xWESlUnEkgq5v7AMVPRrTyWQS9Xod9Xodt956K2677TZUKhWnqJEg+Vk84+Yq7u+DSJuSAv7LhDQsQk5lhOPQbDZx6dIlPPPMM+h2u9jd3XVEV+PVlLywHa4VqjskTyQ23MTQhBw02KlycZz1XK4Hrom9vT10u12n7rIWIeeKcYm8hk/GqSKp66O+BzgmAK5zgeT9qvsgP+f6I/FTdY/qJAmnEjB9/5Cw+LXNeD7HnPeiSrEWKJ+3JqjiasyYfq/kSeeb46cKoxI3rl3dqPI3z/g3iamWH+C/StDi3qv8W4k3f1T15u9UOqko60YCAPdO6Ha7Lm7uZuB4ETgTCFxAQEBAwI3DN4J9Mucfy3/jCJRP+uIMCh80guapXtpH/3z/bzUs41SXefflK30HET8gIm+Li4suNokGkWazKxQKjrypOxRdl0jyxuOxyz5JQ3w4HDrVbHd3F8ViEZPJxLn10Z0RgIsp4+45jWyWB1C3K83Ix5pg6XQa5XIZnU4H1WoVuVzOXWcwGMy4QmpcmN4bXbPoGkoyStVCk6MwY99wOES/30etVsOtt96KkydP4ty5czhz5oxTmHwVlqTjsHlUxUKVoIPWkK/qcF3qd2yPBKhSqeDs2bN44xvfiL29PVy7dg1XrlzB+vo6rly5grW1tZkx1z5qjCDXEb8nieO40vWW40Z1k+OrxFrru41GI3Q6HXQ6Hadm+rXx6FZL413Jho6lJgwh1NWPhIzPkLrrUZX0SZUqv0qk1G1SyxrwO1XvOGZ0meRaB/YzonJ8qGZS/SYp5drlZ8lk0sXPqYsir0kXWHWxVJdPjh3HiM8g+8rP/XHjGtNxUCVf1w/Xp7qdsp9aAkE3D6jUatwkST/v1c+cyrmbTCbu3cNESDcLx4vAIZQRCAgICAg4HL4RG6e2xRnOAGaMkzjyprvP8whUXD+UPPmkz2/jIOXNJ4vzAu7nqX3ziJsqB7VazSkWVE8AuOyPNKw1rTqNO+5aD4dDlEqlGbUknU47l8VkMunivnK5HNrttnNpVLWhWq26eDT2PZ1OzyQ3oVsdDTUAzvWOysJgMECtVkMymcT29vZMchK2Q8OOxipjvEgYqVRxh5/jRuXNT7xx11134a677sK5c+cc6eMamjfP/lrVRBZxa1fnd978++tG/2b/fdc3XaM0oLPZLM6ePYszZ864Md/e3sYzzzyDxx57DDs7O84gJ2khUfGvrQqVusn1+32XzIWJbUj4J5OJc1elKkrlLZlMolqtOsMdiFLHq5pJcqr94/35cVV0OfSzgnL9ca1wHkgAuDb4N/uimxq8pjHmuuytvlsmn0kSKqqfPJdkhaRG1UZ1Ida/SVpIrEmAOAe+u66qYRwTfU/67sYktqpy8nffzZljodfgePprVRU5dUnWZ0FJHmstamIeJmjhOtW1xw2dXC6HWq0WCNyLhaDABQQEBAQ8H8wjb3FG7Twipv/y97hjDzrXd12cR+Lmkbe4PsRd6yD4benfhUIBKysrzlgE9g0iGpPlctntYtO4pMFYqVSQSCRczTYm9qCBpDvhTJZB9YDxKWpokfRpnBUzEGpKeCpzVPOYwILGfDabRalUgrUWW1tbjigy4ySNWCo2er8cs0KhgIWFBfcZ1ROqRu12G+l0GufPn8ftt9+O22+/HSsrK9cR/rg1pi5jStp0znxCpW52/rzGKc7z/o5T+ZTQKSlV5ZeuqNVqFbfddhve+ta34sqVK3jqqafw+c9/HpcvX3ZqJNcRSY0WYiYRYlZAzkEul3NGOJWhQqHg1lqn03Fxi8w0SZUtlUqhVCo5kqcEQWvpkZzMSxfvu8PyWFWnVP0l0QP2M1Hye44z09dzU0PbV2KrKindK0meqEJq9kkthM7rK5lh/3hPWqPPX4M6//rO0nWn60Pr9BljXMwi1zOJrL43+BmPJfnUBC5+XCDfNzyXLtp8V/D50tqBSig5FsB+3BvXt7qylstllEqluZtjLweOF4FDSGESEBAQEHA0+EQnzlg9CuGZ16biKG6PSsZ8dyollP6xcfcRp6T5JHOeghh3fCKRQL1ex+Li4oy7mxo5k8kE1Wp1RrVgDBJT59MIYj0uGrE0/DTVPRW0wWDgYquoYLAIMw0xAE5Z0PTzNPpJDKmqsa18Po9qtQpjjHOxs9a6eDcqZ5p2n+0C+wk5stmsq+sG7Bt/NKwzmQzuv/9+3H///VhcXHT99+ffVxJUQdC1Q+NVY/p8VcwndXGYt9ZpWGvckBrX/I59ZIwh3RI1g99wOHTtnDp1Cqurq7jvvvuwvb2NRx55BA8//LBLCMH22L6WUuh2u0gkEm5+NRsox58EjAXcgciFkMR9NBo590rW4NM4NhJ9fbbUvZkkieuQsWckVuw7/yV5UWVHn18/UQZdfOn+CWBGkWO7ShY5JxzvuE0RdXlVwq3vAMa66eaMuibqpoFPnpRw8XNdn7qm4t6RGvOmY8vf2X9VtdX9U90leW4ul3MbBDxGs86yhES5XHbXUGWV5I6bOST52WzWZdadFzv4cuB4ETgTyggEBAQEBByOgxQu/Z6IU7h8ohSnvh2lHX6u7cSpJ/Nc3ua51h2EoxzD62UyGZeinoY6d6/VzaxSqaBYLM4kENH7ZLZCIDKqqQBQEUmn0+h2u05VI+Fi5kD2haoCd9cTiYRLFqLZD5UMApEixraste6exuMxut3ujEsVjXBgloypCkKjnEqH1jSjEXny5Em86lWvwj333OPcM+PWCUk7CYwa6j6x9cman2QhjhzcCHxF0P9dSwbMI3aaPp+KkLrn5XI5rK6u4tSpU3jTm96EJ554Ag8//DCeffZZ9Ho9p7QomWYyHGstOp2OWz8sqUAS3mg00Ov1kM1mUalUAMAVfmdMJtcj1V4SfYUqPbx/3gsNfhIDdRVWZUqfA010ooSHpIqbCkxpr9/7STdImn13TyVuXCtcV0ro+cwqUVGVSjdnlDhplk1N8uFvHqhrJtcPyRH7FJeIhefybyZk4XiTEKoqqkSe1ysUCk5xJZnnWh2NRmi32249cK1qoha+QzQOjmOrY6HE8eXGsSJwAEIMXEBAQEDAC8I8YjXvmDgc5NoYRx590haniM3rT5z72zwcpBD6Cl8ikUCpVMLCwgJyuZxzOWPafu7MM+0/Xdc0OYMaQJo+Xq9LA7rX67kdbqauV0KlySpIsEgW8vm8a5tZEDVzIbNI0uCn66ISRKovJApU6wgaybwOSSMVSRrMbP/+++/HbbfdhnK5PBO7428a+EoKVRMapZo1cx5xi/vx15i/tvw14RO1eRsCqs6pS6dm99NYJHXTIwHQ+ygUCrj33ntx8eJFbG1t4aGHHsIzzzyDVqs1U2Cd60tdHukyaa1Fs9nE1tYWBoMB8vm8I3VUXBkPRkUwl8vNFDJXlU3Jm7r0GRPFY6oKpvOqJIPkkMqPJiBR1U9T/3Ps9Dttl0oUXSvp2sd+kYwoyeFx8xJ7cONBXTV104Jqmpa8UELFPupzovevajHXEcdCXTr97zQOT2MGVRHkdyToSjq5sVIsFt1aoxt2r9dz92zMfvIaHsfkRlTp+e7zn5vD/h94KXGsCJwJPpQBAQEBATcATRYxD3HkRj/X42hsHaa+xV3joGOU0PnkjtfTz5Qk+oQxznWPxogqTEtLS1hZWXEGpzHGGc8ah1QoFFAqlVzJgEwmg3a77dL+A3DuSjS42F4ikUCn05nZUaeLk8a1MdEESRiNcWbnA/Z3zYfDoTOcSeYGgwGy2SwuXrzo1LZer4dWq4V+v+8SorCoMwmdZtejOkG1ggYiVZHRaIQLFy7gvvvuw8WLF1EoFK4jQDpPGrvkq5o+UTvsX/93XY/z1uE8BVmJGT9XhU3JG8HveR7LHWg8GP/WuDmqtRzT1dVVvO9970O73cZHP/pRfPrTn0aj0ZhJNALAuRimUlENt3a7jUaj4RJMMGMpSXmpVEImk0G32wUA1Go150LJH3VL1PsG9hOKkKzrBgbvW136dMx4Lok/FWBgX9EimYxTVPnckXSSVJGwcLyBfXdLADMxoLw33ouSIa5r3SwA9l0RAbi1yXZJSpW8kfjxfnVsNMZO703fUfyXx6kqzfHVtcW26Q5LFZXvC84jXa75TFO9pWLPcaJqyWL2nU7HvRNUfda4whAD9yLBmMDfAgICAgKeH/wd1aOqbP7xPtGLu47fhn98XNvzPlNDQomYfy2/f/PUvXw+jzNnzrgMkXt7e0792N3ddUaTMcZlo+x2u7DWOsWK8WjqYkWXo/F47OJTNDMeXeB0l79QKLh4leFw6IgU68HRhYxxbmx7Mpmg3W479yogqjHHrJLGGJf8olKpOGPWGOOyHAJwLpt0a+PvOn6M/XvLW96CO+64w/UrThFVhYfEz49jm0fQlCD457Af8+Lg4taR36+4HzWg4354HI1rnkO1kvdKlz8a3jSwmUVSFRCuqy/+4i/GF33RF+FTn/oUPv7xj6PZbLo1wXXV7/fRbDbR6XRgrXVuvsxMqfFKvV7PKaRUY5QwqfKmY0UST8NdXS3VXVSLY6uSxnlguQwSH03IwnHhWKoKxfXLMdO4Lo43SSE3BbQOnD7vfE64SUOSxmPU5VLjSH1S5m8c6HrUe+d3us55X/596prUZ4vKnd83Xbe5XM7Vh1QVnq6RXKtK8vSHY8OyHu1229UHZD+SySQWFhaQTqfRarXcZtLNwvEicDhaxq+AgICAgD/c8MmLb2zN21lVg9hXMOLULt94nkfE/GvEkcc4Zc8nYvOUPDWM5v0/mUgkUKvVcO7cOWSzWZeqXRN30HhOpVKusDONJmaLY1wJr8eMj9xdz+VyM0oajW1gVpGguqKp/MvlMiqVikvfzX5RoSgUCtjd3UWz2XSkcnl5GYlElPmy0+kgl8vNEDQaYRo/R6OdsTSa+IJj2O/3kcvl8EVf9EW4//77sbCwMDdRg6pTqrbFqWeqkKiLnX5OY1iJHscjbv79vviGsqpvuk58ouYTuLgYOD0WgFM0ScCpeui5dKMlCeJ6WVhYwNvf/nbce++9+OhHP4rHH3/c9bPT6bhafVwbdL8lMedao8scyTfddePKFKhqRKLEMaGKRkID7BeBp8GvyhWJCuMvOXdcr6og+7XOSJy4aaAuixxHYD+DpJ/Kn4SHfdYsrtww8d8H7AvnXBO26L3zmEQi4drl86QEi+tX1XSSMSXsJMf8XuPhOCa6DnV9cY4ymQxKpZI7h/dKcDPH7yMxHA5d/ORgMHD1Anm9SqXiNmf4zruZOF4ELihwAQEBAQFHwDySBFxPcuaRHt/18DDFTs/xyV5c+3qc9iFOQdHP513noPvh7vLq6irS6bQzinRnf2VlBUBklJHg0aWSxigNQyYDaDQaTl2hQaQxTXRzY6Y8a63LvsfkFUzzX6lUXJFtGsV0f+QuO5NY0JXu9OnTqFarWF9fd0Yh68lpEhYlkTSamdSBMXE0zkmc7rjjDjz44INuzObFuPEzn3SpegFgpk+q1Ojn7B/b8dfOYZsDPrlUVzVgtlAzr8Xj4gxoJqChEkX1ica/r5yQ6KhSRIOaCqeqU7z20tIS3vve9+L+++/H7//+7+Pzn/88Wq0W9vb2UCwWnVpMV1jGRGpKfY0Z88mp3iPnhCRNSQvHkGSJ90Ny6BM4zg/JH9eYxmzGxeBxfrn2ONZ89viMqHtkXFwciZGSKC1NoGqcxqvppgLnBYiSwfB43jtVeVXeVE3UhChKBHVs/PXF70gAgdnNFl2/PEZJNc/V9xMVVyqt7Cv712q10Gq1nKcA4yt5XX1H7O3tuXV7s3C8CBxCHbiAgICAgMNxENnyyc9B7mj6exzR8kma324ceTsKEfT7O+/fOLXF/z6fz2NhYQHlcnmGKDCeJpvNuoQQNESpbnE3nxnxAMwoZ61WC6lUVPgbiGpz0TCigUWDnXFALA1Aw4v11ZgMhGm9ddffWotGo4F2u43BYIDFxUWsrq6i2+3i6aefvk7ZyefzjhixHZIGqiI0nnlvxkRxR5VKBa973evw2te+1iVWiVsLHOe4JCSqtJGk0cAmaaVROi+JyTwiP09tpUGt/eUa0AQTeg7vW2Oj9HPOB8eGc10oFNBqtWauqwY6DWKqvFxDGr9ERY7tp1IpnDp1Cn/sj/0xPPLII/id3/kdrK2toVgsunmkqybXWiKRQLFYhDFmpgC8Jh+JI2uqXHGN0WBXxYybB6rOKgn0Y+JIBjhuWuCa40oSyjbH47FT77je1B1R1TiOF6+p6q26aqpqS/JtzPUullz7PtFkn9VtUjOsxo0lAKd6av/0cyVkJFscG9+9laSPJItJR0hY2W+Ftk+VnQmUms0mrLUoFovO9Tafz7t5Hw6HaLVaM/0JBO5FgjEmKHABAQEBAc8b89xi4pQOnxzNI2/83m8rjqgpETxKn+a1qb/7O9NEMplErVZzrmaaQZC70FQ3rLUuEQjJFY0+GnmMk2NikMFggGKxiKWlJXS7XTQajZn6WyRqyWQSlUrF7XDTYCeBqlQqzr2Rqh9ra7HgN7NJGmPwqle9CsYYbG5uotVqzRAdxkOpQaq1vFhDK5/PY3Fx0R1Ho/nChQt4y1vegrNnzzq1I45I+Sqb7xqpCpvWqlPFLS7GLQ5qROoajFOH/U2Jw6BrR//VMVFiNhqNsLGxge3t7Zn4N1XmtE9qULNUAIkcCcdoNJopQZFOp3Hvvffi7Nmz+MQnPoGPfexjbm0ytpIbDKVSyc0v+6yJVUiwAMysKXWB5PGa5EaVXypU6jaoyUQ4hySTANx64+fAvvswkwPxWev3++5zEny9Dybr0cyP/nWpjlN584kX+8SkL3wPKMHlnPmxlqpkkYipSsz3CjBbmoHPODdLSF5V1WS/ed9sh3Om2U95XY2tVaLH85iohEl0+E7g5gE3bXTjhqRQnwON4bsZOF4EDgf7fQcEBAQEBPiIU8eAwxOL8Jg4+CQMmK0npQpcXBvzlD5+F0fI5t2Xv0tMw2lpaQnVatUZa5omO5PJoFgsolgsurpJbJOqCbCfWp9xZZqW/9SpU6jX6+j1euh0OjMqAQ3yQqHgDGK6O2nxbxrMmk0SgIvL63Q6aLVaGI/HTkkEgCtXrmAwGDj3u16v5wpt04WS80FDkwRgYWHBZd/s9Xruuz/yR/4I7r33XlQqFacgKZHnXMyLaaMRyB8SWJLWuLIBukZ8cuavq7gYSf/vecki4lQ8vZ84Ykhy4BNLGtFqPNPQptqm6oomtCBZI4nRzKUkuUBkbC8uLuK9730vzp07hw9/+MPY3t5Gr9dzmSb9gt9Ui+neq+SbRJTk0Z9H9tcY41QzPkc8X0mZElpN1MN2eR7Hjvem8W78jMRRNx1UHdNSG1Sj+cOyHFoOgOtASSc3RbjW1cVS1Uh1AVYC7r+T9NnQ8zmGSkI5z3p/nA9uJClxNCZKQMT4NI5tLpe7TmHVa/IzxiM2m03nWlur1dz4UH3z4/BIMPnsxz03LyeOFYFDiIELCAgICDgClEAB8XFlvqtjHHzjep7qBiCWSOm/81zi9DqEGtW+Ghh3n/ydKsDCwoJLra4JKNTIpXFIY4vkjddndkoW4NYYmzNnzqBcLqPRaKDRaCCTyTjlbjKZOIUBiLIDMtEJs0vSXZLXpKJHI3U4HKLb7aLdbrv4vGQyiWaz6ZIqlMtlFItF106323WqGYkEk0kAkbKzsrKCSqXiiOJ4PMbKygre9KY34dZbb3UGsp/dT4kADVx1oeM5JGz88RN3qPE9b/7nkS7Oi8Z1+W0oodd1EUf89F9/Pakao32hkcvf4wja7u4u6vU6arWayxSqcXJ6rBIaEhFmF2Tf7rzzTpw8eRIf+tCH8OEPf9iRG+0f+6PxX1TmSFJUlVN1jgSBbnRq0KvLHmPBqELxM26QKOlhu4yLY5weyQyJC++dbQFwzxz7z7XLeec9c7xU5WS/tXyFkk8t9UAlju8HnVdfvSRB4vV13ajyqq6rXIu6qaAbSfq+VHWTfebnStCYGIlQl3C2rTGlSqCBfVdZjWEkmdRnnPMTXChfJBggMLiAgICAgBvGPOI1z6CO+49bSVScm1pcTMZRdnDjjOnDiKWey2uk02nUajWXap0FsOmeZG1UVBmAIxjqykajiddkRj+Spt3dXZw6dQqrq6uw1mJjY8NlayuXy2g2mwDgDNXhcIhOp+MM+Fwu5/pGRQGAUxioOPT7fezs7LiSBUtLS0gmk2g0Guh0Oshmsy7d997eHlqtljt2Mpm4e1TykclkcPbsWeTzeedeZYzBbbfdhre97W2o1WozKdR17uJcJWn4MQGLtVGhaWa40/guNYTnrY84FdY/Zh55m6fyxrUb13acMu23q8at/70qNlQwNjY2XCZSkimuZyV9dDHVmn+s6cWkFMZEGQLf/e5348yZM/jwhz+Mra2t68ZPiasm+wBms0Xyb2C/ILQxxmWb1Ptj/9kXzdjK85U0kODRHZgui4zj4rlUgaj4cYw03o19VWVPCSc3G7SUBl1BSbSVxGjyGY2vs9a6jI4kSuqiqONLMss5VJKjJE7Vfj4r/E7XH+8ln8+7jQ59zjg2mgGUyhyvybHmcSTsdB2fTKJEStwsIJFX5VX/H9DNm1BG4EWCMQY2MLiAgICAgOeBg8hUHMGLUyzmKWF6jLYTZ4jPM7j1+IOuF3e+Jiqh+sWdau6+002LaoTG+NDY4w49s0l2u10MBgOUSiWcPn0aS0tLGAwG2NzcnNn97vV67pqJRMLVUaIxVSqVZuKVgH2Vbzweo1arYWFhAdvb29ja2nIumLlcztVtoutdtVpFMpnEYDBAq9VyySxoUKraQCP+9OnTSCaTM0b6Aw88gPvuuw/VajXW9VAJh+8uSfLBGna9Xs+5idKgVmPUn7O4DQIlRAcdp8f7x/jnx62Vg8hiHJGLO4fHqlrHvvDvRqMxE8Ok5ELHhb8zDkwTiuh8pVIpvPrVr8bCwgJ+7/d+D88999xMnBfXlZIikhxVVYB9ok+yz5g3fsd2NGsoSSHvk22pux2vRfJmjHEqsabDZ6wcY9u05AHXr2bC9OP7tDYd2yA5YZ/0HN6XxnmRqKk6yuurmqZrQIuU8zOOBX/Xf5UQqZrGdvWa6irMa3EOmMCmVCrNJFQiAZxMJq4cyXg8dpk9SRipzmqMHfvGNkjqVP0LMXAvEkIWyoCAgICA54ODiJdvJB+FYPnH83s9Vs/xXdP8dvXfw47R75LJpCNH/GH8jRqT6hJFdY471KPRCJ1OB6lUytU6297edkZtrVZzqfQ3NjacoaQGMtOmDwYDR2KYCCWXy6FYLM7ElvR6vRnjqVAouOQDVMjK5TL29vYcEaBbaCKRcBkwO50O+v0+stmsy35J1ZFZ60hkaegWCgW86U1vwj333ONURn/ulWBoshFVjahikrjRZXJejJvO3zwXSv7rK1uHqXD++ov7zr+Gfh6Hg5Q9H+ynkh8lvCS7cUSO90lXPypWdCPkegKiZ/XUqVP4si/7MnzkIx/BZz/7WbeuuRY1oQkVNCWNTJ6Tz+edgsUxUPWFBImEg/fhJ+RgP1Xlo7pNgtjtdp3LKOOv+Hypa6kSRKpl7JMSNK41Ej0mWqGaRmKrcakalwbsJ3XRJC1xyUv8FP5aakPHyE9AouuXZIr9UgWM7wpVvDSuVBVN342VJEzjZ1krjuPN9eiXftB7ilPfOBc3C8eLwJlA4AICAgICDkccATrMzWwecfJ3nPU/fp6n5yshjHOdm2cYxxFBNej1Pmh4lctllwxEXbJorPhGbDqdRrFYRKVScancWVONZQbUJevEiRMolUpOdWPiEJIvayP3yVQq5cgUyV2hUJghlABmDDEqCaPRCNeuXcN4HKVTZ+bKwWCAfr+PZDKJlZUVR+g6nY5TZmh4stAzM0u2221nKBcKBZTLZefu+K53vQu33367i6OKWweqvNGQJMFg/0ncaDzS0OW589aeznOcahu3JnTNqFLhr7WD7sdXGf1z4s73Nx7i1qh/Lb13rhEdSypOqoj4bpZMNqExclrnq1gs4i1veQtKpRIeeugh14Yqn9ws4PoHMOOqCeyXgNAYRW2Lf/M4dW/UDQzOB8mjxuL5qfS5kaDkLY6s8zlSkmWtncnkqtkUuT4Zc6cuiVS0+bxxfKg86XixLXVjpKKt601j4Xgs3w28N31f+etF15MfP6gKpGa91LHkhlGj0XA1A1k+hGSO6m/cs83xIHElEdXn62aSuONF4BBcKAMCAgICjg6f/AA3prD5SRziCJm2SQPB/07biPvM75t+7/8wkH9xcXFm95yGFhUGukFS5WLZABIXqkc0iJWMMHFIsVhEp9NxcXCasCCfz7saXSRvw+EQ6XQapVIJ5XJ5RgGgcmeMQaFQgDEG7XbbqSWaqa/b7WI8HqNer2N1dRWTyQTdbtfVHqPbJ7PwMbskd94Z00YCt7e3h2q1ine+85249dZbZwxXf1585U0VJCqMvFcSVpI3n9wfRcGKI3j+ulBoDJm6vx2mwCn8jQH9fN65vhEc9zz57Wm2QlUxqapw/ZK8KeHj91pseTAYuPWSy+XwwAMPoFqt4nd+53ewtbXlDG4l3iRaVP5UaRmPxzNumqq08VnjOuCmCJUrjY8iIZtM9mu5kciQaPHZorujklcAM4oS54HrW1UoPudaLJzuysC+GyuvxzbpNs3nRmvDKYHy3TZ1/nzCpa6TSgI5JnwG4xLr8EfdLfUe9N3GJEm6zvje2dnZccqctda9O3xyrQlffOU07p0d9y5/OXG8CFxQ4AICAgICjoA45eyo7mCEr5odppzpdecZ8QcZvXHqh/93JpNBpVLB8vKyqyNFw5ZGWalUcgaXlgoAMOPGSGiNsm63i3Q6jcXFRQDA5uYmer2ecw1jHzQZyWAwcElEWNeNqgl3tlm3i2oBC4GrQkClr9frIZfLoVqtYnFx0ZG3ra0tJBIJ5PN5F1+USqVQqVRQLBadelcqlQAA5XIZ+XzeqXHvfve7ce7cuUPJmx/vxsQIJLhMVBLnMnnQWvKvOY9E+WvKX1f++brJoD9x9zevD3r+Udf5vOfJ35xQgqLKjpIBGutK8PjdeDx2ZMVPQpNMJnHHHXcAAH7rt34LOzs7AGZjqzTmjMoM1SyNQVPlCdgv5M0YO30HkAxo9kSSShIm9sMY45RbACgWiy6hCcmaZj+luq2FuTUhixZEB+A2RhKJxEx2TiUgJKX8m2RWs19SoVfS46ticcoyFTJeVz/XsfHfZ/7Gg7ZNwqVta5Ihuiw3Gg1XX1Cfa3Wd5HzxM6q4nMs4ZZrnaZ9ebhwrAgeEJJQBAQEBAYdD/5Pm33FKwkHn+38rKYxT0OapKPPa9vt0mPJSKBRQr9extLTkSAqAGfeoWq3mYo1KpRKq1aqrvUW1huj3+7DWolgsOtVtYWEByWQSnU7HJeaggpDL5VAoFFCr1ZBIJNDpdJyiQGJVq9WccQrAtaEp03keVUMAOHnypCNF2WwWS0tLLsskXSlZM47uitls1tW5I5GlwshYuU6ng0qlgre//e245ZZbZtypDlPetJ6bFhPv9Xoztcd8I8+fOxqgXJPz1oOPuE2IeWtG51bd8fxMgnHwCV1cH3zjVte/fq9k0m9L3epICKj0jEYjnD59GqlUCo1GYyb+ifdDJa5QKDgSB0TE8M4770Q+n8ev/MqvYGdn57p4TyptqkRx/lQh4nhxjVJRY+ZDHW8lF3TL5EYHCQhJvyYIUuLEc0luuUGiaiH7QYLGuE2uSz+brBatV5dGdRHc29tz6jsJLOusqVsy75nPhpI5P5GLzj2JoK9Ic42p+sh1qooZ71c3mzhHLDHC0iP0BOAzy7ZU3VNXVc6hupZrHCKvdaMbfi82jhWBixbSze5FQEBAQMArAUdxZYz7/jBFLc7gPoiwHXTeUfqWSEQpsRcXF52ilslknGFIozSVSqHf78+kyybZ2N3ddQlLstks+v0+ADjVi4bxYDBwxiuLeNNwrFarLtkIVSi6IjEWD9hXLobDIdrttusPADQaDdcuXTIXFxddUpJarebUEqoOdDmj0UvjtFarAYgMOpJDdaVstVqo1+t4+9vfjrNnz86QN51bX3mjOySVSRK3fr/vxlOVJJ2nODJ30LrwXcr0vKOAx/nE0CdUGo8UpzjEnXsQ8Tvs3HnQ/gCzMUlXr15FpVJxRIbgGDHpRz6fRz6fdyoMFZazZ8/ife97H37jN34D165dcxlRx+Mx2u32jDKjiTf0GacqR8PeGDPjQkmVjGSNsVgkSn5RaE28QRWIxzGmTgm4ZlikKk6yRAJL8kbXT588MlEI2+EzqhkqdVPBV8t0M0BdLv3EIfq3uspyzjSmTokg1wnHliSaa5PX07nne4jvFt4DawLyfH9OCL6P2CaPYR94DU3QcpT1/FLieBE4AEGDCwgICAg4CuYRpsP+cz6MtMWRNd3ZPcgFzf9clYo4I5wuk8ziCOy7gdEA1NTizEpJggRgpoYSd+jpZtlsNt3ONNUCGotMz88kIJlMxhEZurAxUUk2m70uVoyGayaTQa/XQ7fbdcW9R6MRFhYWsLe3h83NTUwmE5w4cQLZbNYphowzU8MOiJTIbDaLbreLVCrlCF+tVptxwyyXy3j7298+4zYZN2dK4GhYk7ixLd63ukz6a4mfqctgHI7iosg2+XMjBmXcMb4b2zzCd9R++jFNB50bp8Yp0dV5IDmiGqNuinocaw0aY9w6T6VSOH/+PP74H//j+PVf/3Vsb287wq/zT4VI3R9puHNTgmqWFoLXmmo+4WDCET6DqnozC6oSNap+JBAkQ0oitewAlcTJZDJT8oDkTfumhImEUguG+5kvdY3xPaIxlv49qzupusPGXZdjpDGJqnzpPQP7rp6q7nHuOc4smUJ1n3Pgb8BpchgSdlWl2S/2VxVfTZB0s3C8CFyIgQsICAgIOAJoYACHu0z6Bmacu6T/mbbrX+Ow68UdE0fsWBaAroMawzEej10iEBI9ZoMkeWLyDsasUTni771ezxXQ7Xa7KJVKzr1sd3fXxRwxsyNjvmh8UQ1UdykSLxqz1lo0Gg1XSJeGVL1edzEsLBHA2Db2rdvtunYAOPUll8uh1Wq5MSDJzeVyzqhLpVJ48MEHce7cueuUNx13X32jikG3zW63O6NI0tCLU2nj1oK/DuYpdEqu1NCMW0NHVfTiQINVFaY4IzXung5TouOOOUjt1ng3JWf8jiSKBEWTiFhrHZHn2qTRf+rUKbznPe/Bb/7mb2JjY8MRPfZNyQkwG5vHcSdZ4D3486OJg4DIfZl9Ybwb3T5VndN5ZdyaklR19aRCSJLGdUlSp8+FHk/CwrlW9UuVWP/9Rui6U8Kjyqif6ZOkUNuz1jo3UI3J812KdWz1+dBz+O5S0qeqGz/3N014vo4zCXNcyQgtb8HNhJuF40fgbnYnAgICAgK+4BEXfK6GC38/LPmEwj8uzmg/TFnxlYm4/pGQlEolF8jPXXyqE1SqmM2uUqk41QgAqtUqhsOhi0nb2dlBJpNBvV53xMQYg16v51QsqhkcEypaVBOY0CGfzztXL+6sA5iJmWN2yo2NDQwGA1ejLZlMolwuo9vtotFoIJfLoVarIZVKod1uu/NJ0KjYUckolUquz+VyGbVazSU6YSa+bDaL17/+9bh48aJzo4ubDxqTGvOmMXfdbhftdtu1q8qb354/r+qa5c+9P+/aP/2eSgQ/06QPvpqm6sth61INaZ7rJ5SYR9biSKnf7jyled7favyzncPUTF6H68oY4xRfYwzOnTuHL/3SL8X73/9+dDqd69wCVaXRzIfcBCCxJElQJUtjMVWtM8bMuD0q+eTfnFe2p8k1uL7oSplOp10JDrrxAnDPHzcbuE7Yvt4Px0pr8LEP6s5IUD1XNU3JEvupSp7OBwkkSZqqfUqS2We6hXLd6jyTqNNdlCVQOB78nm0mEgmnIJLw8f44pslk0iVUUhWdBI4qJMfiKIr3S4XjReAwv+BkQEBAQEDAQfDViYMyjMUZ5XGKQxzmGb7axrxzS6USVlZWnAsZ0+XTGOHOP2u3MVkJ0/QnEgmUSiUMh0OXkGRrawtA5G7FAtoka/l83sW+Mf12KpVCvV5HMpl0af5pXLEAcjKZdCUKdnd30e12nZGVyWQwHA7RbDadyxOvk0gkXM2mxcXFmULidNmkuxuNsfF4jHK5jFwu55SNfD6PEydOoF6vu5g8JjK57bbb8OpXv/q6It3+nKjqRsVFM01SeSOpPWi96NzHKXDziBH7Acwa3IQfDxZH6A5SveKU47hrx7n2xfVV2z9sM+JG4LukKhkE4GK/FKPRyKnIfE6o1KVSKZw5cwZvfvOb8du//dszxr4+gyRSNO6Z0VAJJQkR40SpcqubHTM5qkuhEkV9bpnUR2PXgP04Lz4DJIVc2+wn1TitRUfVjMeR+JGYELr2gf16alQEqTT7SVs4XiRlGmunx/mbIxw/EjhVIZWs6Rjw3ULFkePJe/ezvvrKLdvXwuXaT42Z4zxNJpOZenr+ON0MHErgjDE/DuDLAaxba++Zfva9AP4igI3pYX/HWvvr0+++G8CfBzAG8K3W2t96Cfo9p69BgQsICAgIOBxxaodvWOtx/t/zDN+DlDb/88NUC+1jPp/H8vIy6vU60um0y64G7O82Ly8vOyPQWutcGKkWkegMh0OUy2WXGITGOd0iqdIVi0VXgLvdbmMymbhkJNbu15bi7n6xWEShUHDGI7NVat0lEjSqHisrK6jVai45SqfTQSaTwYkTJ5BMJl1iEJInYL+oM1WDcrns/t7d3UW5XMaJEydcNkKqg4lEAtVqFa9//etRqVQOJBF+fA/VjH6/j3a77WLe6M4Wp1bonPoKkj+/cetDEReTFrf21KD0VThVjA5S0+Kg5IYGcJxy6SvY2lefvMaN1WFzwuN891H2j+oIPwOi5CbcJGB8GEnQ3XffjeFwiA9+8IPo9XozihrHiARGa4NxrEn8crmcixvVWm5+WQ6OBYlKOp12KrAm4CHpIlmg0s55ZCbXXq/nNkbK5bKL0yPxVFdOLUmgbXM+SfB0A8BPFsL7B/ZVOs00qao171VdcTUhCEkV3ULZF7opUrnkMb6izM0TrWvJa2t2Up9kkcRyHjmXXBfqJsl7T6VSqNVqSKfTWF9fd0mfbqZodBQF7icA/GsAP+V9/i+ttf9cPzDGvBrA1wK4G8AqgP9ujLnTWjvGywCDEAMXEBAQEHA4fLc0/nuYCxj/PUh5OEhtiCOEcaqbHlcul2fIG12laJDRbYu74iRq4/EYW1tbbgc5nU6jUqkAAFqtllMj6BLF36mEMfaNxmC9XkelUnHZ/QC4QspqhLIGG+PDgCixyGQyQavVckRRs/Px81Kp5DINMiU/DWUanZ1OB+l0GktLSzPqIBC5hp48eRLWWrTbbefaSAL5ute9DouLizPGmz8XavjRANV6dt1u1xmPutuvRMVP3OBfY55KNY/AxCWg4Dl+e/q59oduoEriaLAeRQFme5wzjTfS/ut15yl1Bz0/h0HHwidHfhv8vt/vu5g4qjaMG73nnntw7do1PProowDg5lVd5Khkabt0qeOzx9T7QLTeeZzGsHHcqERT7eE1mZGVCjiJC+eLRE4TAaVSKRQKBSSTSVc7keSQhJLPpMYE8t40dpD3zNi8uPT/SqpIRrXwOaGxg/q+9dcNiaCSNo4PyTSfX6pvWg+PLqM6V3wPso98pnl/qvJpshYSN44hP89ms8jn8yiXy+j3++599AWdxMRa+7vGmPNHbO8rAfy8tXYI4CljzOMA3gDgw8+/izcAY4ICFxAQEBBwZMSRpjgVY95Oq2+I63FxhG4eedM2+Dt31U+cOOEUo/F4jGKx6M5lBkgWk6ZxRNWLiRIWFxdRq9Wwt7eHjY0Nd/5gMHBuWr1eb6aIMI2UXC6HSqXiyCMTjaTTaRQKBRd3QlfCVCrlimazXEG323XEJ5lMOiLZbrfRaDSQSESlEKjgtVotl9WRWTKLxSJ6vR6MMVhcXEShUHBtGmNw5swZrKysoN1uuxg5lk6w1uL+++/HhQsXYrPH6Vyo2yTVARI3uk0yhkbdqdgOP1Py5m8OxG0GxCnAPjny3SnjlKh55IvQ2B8ayGrMxq1F7Q//VgVmHrF8KeArK/79z7sulTiWyeAzViwW8eY3vxntdhtPPPEEgMgVcTgczhjqTIRC0kJlRuu2cc0D+0k26IbINcXnliSP6hMTj1BFpxrGPmvsFZVE1n1jO+reSPdIts+kQSSROmZ0e+Ra4L3qu5Cki+2QBGnMHu9bXRD5o2VHfAWY5C2XyzlXRSqCcXFyhUIBlUoFzWZzxn2WRFDdyvV5IKnUvvkZR3XeeD7HnOSbY34z8UJi4L7FGPP1AB4C8O3W2h0ApwF8RI65NP3sOhhjvhnANwPAuXPnXkA3pE3Mz+oVEBAQEBDg4zB14CCDMK6tuHbiXMX0J87gLhaLqFarLhEHjSUajKwXxVTmTNyhSSdIxpaWlmCtxfb2tjOUOp0OcrkclpaW0Gq10Gq13M4/26KhksvlnMsSlTzG1jFLJd2/qM4AcIkUmGWSKgbLA/R6PQBwCgITRLTbbXQ6HaeCsB9UA0n+Njc33fenT5/G8vKycymj8cXd8rNnz+Lee+91SuE8gqEGnBrAdOWkYa3Kns6xuo/pmqBaE3fNeSpa3Hf6uSpOahDz3kk84lRf/sv2ea9K5HwjP65/qjSqi6aOyYsNbZcEg2tOlT+f/HLjgTFxdKVLp9Oo1+t48MEHsb6+7jYEmETDT+xh7X6cFLAfh0iSpXNCqEqlpIv9VndBEjFmmCwUCjPZX7WAON342D4VOk1YRNdlXUtUlRn/xvln37leOaeaYITtKnTNx8XP6Q/vW8dPiR37qJk+Wd6EY8jyJCR4Gjvnb3LwmfbnQ5U3xhT7mytcP4zDVddXPjc3C8+XwP0bAP8IUcjZPwLwgwC+CSzFNovY//mstT8K4EcB4IEHHnhRWNdL9K4ICAgICDimOEgd87+bR9AU/jE+WVADIe7azARZLBZnDDS6V9FoGA6HzqCggabGIA2carWKZrPpYuZoHC4sLKBSqcykHqdLmTFmJpskyYoatYwH6XQ6TvmjIUmjZjAYOCWMbS8uLiKdTqPZbGI8HqNer7tyBq1Wy5Gk0WjksmwyrieRSGB5eRmpVAo7Ozuw1mJhYQEnT55EOp1Go9Fwhube3t6MC+VrX/taLC4uzi0ZwHHlvzQe6TbJDJocPyVvBNU6AM7g9pMpcK7j1hqv7RMljcdR+MajtuknM1GVTL/z+0Y3MwDOeFdSFrd2eR77zzF+sYlc3LVpnHOd+N+zNhpBQpDP590cMqbs7NmzeOtb34oPfvCDrqyFbrJwXaTTaSwvL7t7zuVyOH36NPb29nDp0qWZOojcACC5yufzrlwGjyF5owJG1ZxJiPhsU3WjKs57Znp7unFyzTOzIskQx4bqurpMcr55jwBmSDzXDPtN5ZffM8OlKrIcV467n7yF86blT+gRQFXMj7fjtUmodL3qmlbyqG6c/FuzfLI9jo3vVkxiaO1saQdt52bgeRE4a+01/m6M+fcA/sv0z0sAzsqhZwBced69u0GEGLiAgICAgKPgINUtjrgdpML5rkD+zv8849d3n6vX6y6bosaA0HBYXFwEAJcpkmnRuZPMGJFisYiTJ08CADY2olxj5XLZZYxcWVlBoVDA5uamU+Vo6NJ4YbFv7srToFGXyWaz6frAGnDc/ScZo8HLvjF+jSQQgMu8R0M3m826EgWtVgvdbtcliWBSFSZAOXHihGsDiEgU3TJpSL/hDW/A7bff7oxhf27VFU/dJ2nk9vt91z8asL7rJEkjjV9Vv9TQjZt7/q1ETo3RG1WA1dXSX6NcL1ory1fbNHGLxrodVLhY1Qsa8X4GwucLHQ/921dI/DHwnz89luUkVFVOp9N41atehWvXruGxxx5z5TFSqRSq1SoGgwEajYZL5FEul92zwVjNSqWCEydOoNfr4erVq84Nk2oayQrJk2Y2ZMybxpVOJhO39thPbthoiQCSTU0sxGeOc8m58VPoq4Kq6hnHRM/nutf4tziXSD5rHH96DFDZ03VIhY9um+r6TfdUXo9rkDUgfdXZf6cq2eJ7lP0nseXv/kYFf3Qjw4+X+4KOgYuDMeaUtfbq9M+vAvAH099/FcDPGmP+BaIkJncA+P0X3Muj9ws2RMEFBAQEBBwB8wxLNQLnGc/zVDT/R9WTeapLKpVyKe8J7sADcCnFfcN8eXkZAFxc3Hg8RqVSwcrKCnq9nostG41GaLfbSKVSyOVyGA6H2NraQrfbRTqdxnA4dASJhbDVFZPXZLwQVSm6oNGQY6xbp9NxyhuJIeNqeE/lchnWWhcrR6LEgsej0ci5s9EYpTskAKysrGBlZWVmF7zb7Tp3UBqL1WoVb3vb21Aul2fcs3zlSckHVQ0WDKcBra6TPvGj0akKlL+OlJT5a8H/Pe54v98HkaJ5a5gGK4m5KnJ+HJwSUFU/qFrEGc28FsfITwd/I/CJ27z7Izgf6nrnb6jQ+GYSj0wm4xRfuvy+4Q1vwJUrV7C5uYlEIuHWGTMRkkBxrfLaxhhXRuCuu+7C3Xffjd/93d/F5uamc93lOqE6RfWH64rPejabxXg8W/4in8+7+VTylslkXBucV86drlFN/sEEKuPxeOa5InEj2bTWzrgkU0nziY6OM7DvGqrqr74L+d6jsqUkUtV8HS8tms3MtBpfqBlIOSfqtaDJWHw1Tt/Z6nLpJzvi+zCZTKJUKt3Icn7RcZQyAj8H4B0AlowxlwD8AwDvMMbch8g98mkA/wcAWGsfNsb8RwCPABgB+Kv2ZcpACQQFLiAgICDgaIgjXkC86yQ/j/tev4sjcD5h8NtNJBJYWFhAtVoFAGc4LSwsOPesZDKJVqvldqPVtYqJEID9WJf19XVnZDA2jVkgqU4xQcpwOESpVJpJVMJdahozJG6TyQSdTscRLhIaJl+g8kZSBsAZriRTjJljUhMaSqxRZ4xxGSl5D6PRCDs7O0gkEqjVas5lkkY6v9/Z2XGGML97wxvegNXV1VjXSX8OVX2j+ySzTdJgVrdIXx2jQhBH0uZdWw1sJRr+2jqIsMUpu2xbjVIe4x/vZ3JUxUFVSx0fEhhfZdN1rxkADxv/OMwjuXHPk5IVHkNDXf/WMWadQ64xuiEuLy/jda97Hd7//ve7hDpUp0iwSGwYC1coFJyKtLe3h2aziVe/+tX4mq/5GvzGb/wGrl275takqmjcKKAbJEsIcP2ROObz+euIG2NW6abJ9lVJm/f+UeWOaj4JN1PyA3AKJdcBFXZV2XTMNeaNa0ZVQB6nBJM/6npJNZGfU/XnWlXFmqqiKmO6JjTJCte1JiHixgTXNfuuMcVsjwSWBJylXG4GjpKF8utiPv6xA47/fgDf/0I69XxhTCBwAQEBAQFHQ5wi5u8s83f9V8+JUwlU1fCNfDUkc7kcFhYWXAwMQbfARCKqW7a5uQlgP1FAtVrF7u6uI2/9fn9GVVClie0ye2Sv10M2m0WlUpmpo6aZJFV90xIBVKIAONWCpQd2dnYwHA4dKWN2TCYV4fiQnDEZCGNbarUaksmoMDgz+THLJJW8er2O1dVVd81+v49Go+GMVxq8iURUrPzixYt48MEHXYr1OOLtK2+qvvX7fUfgqF74SU4IdT/115h/XV0XcesuDnFrKU5NjFPDFNpnvy01qjXWh/flkzmfyKkip+2SVGsNsRvBUdVGnRONi+K/aozzX9ZQo7skY04vXryIxx9/HI888ghqtRoqlYorVcF7yOfzjrAwKQo3PPr9Ph577DG87nWvw1d8xVfgp3/6p10GVroBckMA2FfcjTFO9eXzx7qLdAnmfJC8MTMq+0bCxfeKkh4AM9cnGaO7NjcguNa5UWPMfpIWEk6SGI17VUVM54fXZv84V1TaeE+qjPFdA8CNLUkmVULGA9OVW69J4sZNFz6b3GjRGEheX12G/bIFit3dXVeD7mbhhWSh/IKDQXChDAgICAg4HL7iFqdixO1cE3HucXq+fx39O5FIYHFxEaVSySUqSaVSWFhYcMkMGFfW7XaRyWRc6YDRaIRut+u+pwFF5WQymbgEDMYYZwjRKGLMDV0Ti8WiKy9Ao53GDjNDkixpSn0aOL1eD9vb267Pe3t7OHHiBBYWFpyBSALFLJJ0awLgSgoUi0UXU6eKHtWH06dPo1QqOXWj1Wq57Hx0p2L80Llz5/C6170OFy5ccPF+VCc4dzqvqqixzxqXx7HR42igKtn1CYxvUCrikpX43ym580mRrlF/XfprM0799WPk/D7xb36mhq26UKrKweQTcYo2SaG6mPpQguX317/HuM0X9pnwa6hpTJYSPW500FBnEqAHH3wQ7XYbxWLRJeDhBgdVNN4vXRxTqZTbnGi1Wnjqqafwxje+Ea9//evxsY99zI2hkjeqbsbs107U50/Xn9Z6JJGiIqTKEWvT8R6V/JCYcFNH+67KKeeVx5D4sV2uAxJJzSbJZ0ndETm/7KfG0dEVVWPzmP1W3RpJpIrFIgqFAjqdjiPhPI/3ocezDSWzOi6+6qakju3os8jYxOfrHvxi4FgROAQFLiAgICDgiIhTxvRz303uMDe2gwxNGjBM3U/1jHFnTOjRarWcQdbtdh3BSyaT2NnZwWg0colOSqWS26lnljomHmBRYRI8YN/FkkZcuVyeyUxJFSadTrskJq1WyyVQYDwOY2eazaaLpWP2zDvuuAPAfuHjc+fOodfrodlswlqLpaUlDIdDd5/Mhrm9ve2IJxDFuPAel5aWUCwW0e12nSvlvffei263i8985jOuBMKrXvUqvOENb0ClUnGFm8vlsttZj3PD8wkOlRjGBamRrOqNP7c+yToouYG6lynmuQYepqT5UFJ51HMINUiVCNIAVoNelTlV7jSLoK8QqivbYf07iND5c+l/p8RTFXE/Vovkgxsb3GDIZDJYWVnBvffei0uXLs24T5K48b57vZ4rWM8YT252XLlyBb1eD/fffz8ef/xxVx5DCUMmk3Hxbt1u1yURyuVyTgkej8cu5kpVMWP2U+BzPjKZjCN63LzheGiMGRU3nqNETDcoqOJRcc9mszNJStRlU5VYrUvH9nWjg2uCJJDkkWofVU3dECH5140purQqWdd7YPt8bnX8+Z2qjFx36lLJDQr2WdXPm4XjReACAgICAgKOCN+Q89U0IN5NLa4NP8bGPyabzaJer2NpackZGVTWmBiE6fxpROmOPotZVyoVlMtlAHCxL5rtkbv4qsKRAKpxSVWB5IwGfz6fd8W0qYgBcFn2GOuzs7PjlDCSp4WFBfT7fbTbbZTLZWSzWezs7GB7e9u1v76+DiAiSlQqtre3sb297Qgnd/tLpRLq9Tr29vbwzDPPIJPJ4NZbb8VoNMLHPvYxp1TcdddduPPOO3HmzBk0Gg184hOfwOrqqosjZCyNzpfvPkn1kMTXr/c2j7zNW0cKXz2LU2+V1GkcDj87DHEqVNx589YvQaNVjV9fnVb1ShOb0Hin8Uty4CuRHM+DsloeFXHqpJIB3hMVRE2br0laND094zpHoxHOnz/v6hICcHFqHCO6NfI5oUtft9t1fVhfX3fJT/xkIbr5QiWJpQaYLIhjxftgohKOr9Ym81UxrefG8dAslUqgSNBJmjinOtcaU8jNHo4hySSfJY6xnsM2+c7x3Sa5AaXvJH3mtM4dN4mYIMlXV1Xt080EfxOB96guw3Q316LoJMncAKM76c3CsSJwBggOlAEBAQEBh2KeyyMQH+sWd46SNjVufaO0WCxiaWnJufNlMhm0221nLLAmmsarWWtdTAxj3Or1ussiaW0UE0MlK5fLuWyTmUwGlUplph4Xr6UFg7VgsbpssWg1jTaqbjSUtra2sLa2BgA4c+YM7rrrLhe/1mq13LU3NzfRbDYdcaRCyAQC+XzekVYd10KhgEqlgmq1ikajgV6vhwsXLiCdTuPRRx9Fs9lENpvFbbfdhte85jWo1+vY2NjARz7yEVy5cgWZTAYPPvigi2eaR2Q0gQINYz9Bi7pYqZIBzGY41PUQt9Z8VTcOvjJ3GLmJc6ucRx7jrhm3YeFfP45s8hhf1WC2RCpwWv9PFRuOgRYO1zGdR0D1+tpO3P2rmx4/10QVvA7nTI/TLI3cdFlbW3OqmKpOdMMjuSCo5E0mEzz77LMueZCOCYCZum3FYtGpcVrzTUsP6DPsK5y8F65lvicYe0i3TfZfx5DqqSaeUdVZVVVCFTh9z6h6pcXNlcwxvo1/c/xJjNS1VVU4XQuJxH4SJxJG9l+JnK53kmAlqCRpVAZJ0hgjx+uR+AJwRHueR8bLgeNF4Axgb15R9ICAgICAVwh8wweIT4eu8A1INVrmHVssFnHmzBmUy2UsLi5iYWEBOzs7M4ofi1dzR7xUKqFWq7nEIeVyeSaRAROINJtNZ2iyrWKxiFOnTiGfz6PT6aDdbrsYE9ZwY9A/DRy6aQJw8WzcWU8kEqhUKphMJmg0GlhfX3e13G6//Xasrq46tQ4AFhYWsLu7i6tXo0pDjGOhutdoNDCZTLC4uIjRaOQUBgCoVqtOkRyPxy5zXzabxbPPPoutrS0YY3DixAncd999uHDhAra2tvDxj38cly9fdkrk3XffjZMnT16XAjzOJZa/q9Gr6psmaJhHvAA4YzvOte8w8jaPZB6kvCmB8u/R76t+5huc2ob22e9D3DPijyvbIpmjcawxclrbUMkxNxsOuue4vsfdq99XkglNse9nHVQl1lrrEulwo+DJJ5+cGS8qdsB+jBnVOW50UP1qNpvY2dlxmzRKWkgmWPvRWuvOpeshj9X4Q//9pfc6HA6vI2+aRIaqG9vlj8aqaWZSVal8ssjrajkAkih1sfXXKImeFtT2E+FozKXGsOo7l8lbtD9aE1BVOZJU/zmgksj+8B6pBvrjyrhExiHfLBwvAgcDi8DgAgICAgIOhm9Q+O43elycAucrb3ouDZpqtepivE6fPo1yuYzNzU1Xk61Sqcyky7c2SvfPzJSdTgf1eh3ZbBadTmemH1S2WKB7NBqhWq2iUqmgVqu5Ytc0TiqVCvL5vIvt4k58sVh0qbCZAZIKHRMhdLtdrK2tuWyYy8vLuOWWW5DNZtFsNjEajVCpVDAej7G1tYWtrS2USiUkk0k0Gg1Ya52yQHdOVbnYBxr4zFRpjMFgMECn03EK5J133omLFy9iOBziU5/6FJ599llHCieTCbLZLF796le7GD6dX0KJnBqwTF6i6puCY0bovKmqw2voGlI14yDEERAlWNp3fuffpx6jfYoz+vW6/vW1vzTodbNiHrnjOCnRobLCRDNKdkmASO6OCn+M55FXJZbqTumrcBxLqljsU7lcxvnz53HlyhUYs+8mmM1m0e/33fjQtZLZZVutFkqlEgqFAq5duzbjPqhF37Uwt7oGaiFuql/qFkhViPdIxZx9UpWPBFProrEPWvzbV9nUxZEkSonWZDJxyqvv+su59ctR+H1n4XI/0YyucyXequaxfcb9arZItkW3VhJ2f2y5fki8NWEPx4NklDGePFaJ7suN40XgQhKTgICAgIAjIG43eJ7xeBCJU6OELj+lUsmRqcXFRZw5cwbpdBpra2tuxziXy6HX6zlXxXw+j3K5PGM8Li4uYnd31xW05i747u4uSqWSI3IkgydPnoQxBu12G+122xmC9XodyWRyhrzR/YipuNvtNobDoTMyWWh7Z2cHly9fxsbGBpLJJO666y7U63U0Gg20Wi2nKjKhydraGowx7jpU80gGx+OxS3tOQscyBt1uF+vr644AcKwSiQRuu+02XLx4EcViEY888gguX77sDE/dNS+VSrjtttvczjnhuyeqoUmi4RfrJunirn7czr2/llSV0PYPgk+8FOpOqERQVSPfONZ7VAMzToE7Cvx78de8tu/fF/ugWSrpoqhkgUTgRuLiDiNtbFefWe2Ln6VS1TqqcCSVq6urM+7KJGLlctklHFIXSrrX1Wo1F+OqWR45j1qXjGoOlR91LfXPVRc/VYgIVdHiyjsomVUFjm0raQH2y4aQ6KhapbFjvtuhJpEhkePY+uSN90riqeq3blL4mWz53iWZ811/qZwZM5u0RZOv6BiTWCrZ45pRxdA//+XG8SNwN7sTAQEBAQFf8JinPvjfEaq2+e3QQMnn867IdKFQQKlUcn/TxY91zSqVinNbrFarM+6NiURUsJrqFo1KzVDHPlKxq1arLgaOyT2YxRGA2y3e29tDPp93sTzdbtd9xx1npt1fW1vDxsYGRqMRFhYWcPHiRaTTaVy9ehX9fh8nTpxAoVDAxsaGI6fMCEdiynEjWWUcDw3XWq2GcrmMjY0N505JxYBxJnfffTeq1SqeffZZrK+vuxhB34i01uLChQuoVquxdd84j/48c1zoPqm1o9TVL46cxf3tr4+jKm/z+sfffeUkLq4sbl2zXb/PcRsT/F6NYD0e2CeI6jY379lg29pvugdqRkdgP37pqPXi9P7UFdJXF3ks1ws3SbgOqc5pOzyGfWQtOCropVIJqVQKxWLREShuSHAs6BbZ6XSc0q7qNxXJfr8/c9/+mlH3RSWanAMqx3t7e66eHMdZ3Re1PABrMKpSS/JCMkYypPGBPknTbKL6POrzR4VRVTON51P1U5Vq9ovzQoWR0OeTY8Q+8m91R+W7kERYSaXeixJ5vqe4sTAYDNzm2IuRhOeF4HgROMyv2RMQEBAQEODjKMbnQa5nQLRjvLKygqWlJbezz/pm4/EYV65cwdramjMUWduMxgqzznHHv1QqzahuJBfFYhGlUmkmNffCwgISiQS2tracwsYMjsVi0dVIo2HCuB4gKlnQ7/dd3A4Al1iEromJRAJLS0s4d+4c+v0+Ll26hEKhgGq1in6/j2az6QhVoVBwKfiZwY33RcWAhcGz2Syq1So6nQ4uX748k8zBGOMIbT6fx87ODp588kmXgt2fIwDOiLvzzjtdTOBBc67zTqWQ7lN+fSj+7htrvhoVt0bUGI0jZ6rexbWhn2vSDFVJtK/al3lqID9XsqLX8cmQDx23ODdVX6X254n3wfXODQXeC131bqTGlk8W/c95bfaZag3Hw59bJZ0sGn3y5Ek0m00Xmzoej7GwsABjjFPESfqSyaSLyeTmBVVnJQ3qMkkiSyWNxEc3EPz70/Ei2fSTi+g65tizL+wDSY8mneEcA4hda3EukaqsU0nkfbE9TSTDz3QjQvujhEpLWCiJpOt0uVxGp9NBv9935Jr1Lv2aevpscKxInrPZrCP6HFvWnOR8cf75Lr0ZOF4ELihwAQEBAQFHQJwKQfhGq0/m1ACmysZ6bgDcrvfOzo77j56KFN0q8/k8ut2ui3cjyRkOh9je3kahUMDy8rJL5U+lqtVqOeOqXq9jNBphc3PTFZUtFouuzEC73XaZFUnqeA2qYXRrBKJsmTs7O7h27Rq63S52d3exurqK1dVVrK+vo9frOUN1Z2fHqYUE73E8HmN5eRnWRpkuacwxoUm5XEa9XsfVq1edwkdiQoJJI7fT6WBzc3OGSNEI9uNPlpaWcOLEiZndf19Z0h8a9Br75qtvPgE4aMfdJ2GHKW9xJM1X0/x+AvuGPa/hj4MSTo3x0nXsKyuHrXk12OPIRFz8k9+OP0Z0f+UapZGs7pRxSuq8ZzdOdfP/5frRHyWsOh8kZCRX9XrdbYqUy2UMh0M0m023GcONh93dXZddNZFIOAIH7Ks8mr2S613VJLoWAnCuvewvx4SkBoBrg3OuLom6Rnj/BNeUKlckzlQNNRGKQpU6Y4yLayV4H2yL98+NJI3PZD859kre2C9VvHT904WS8Yq6rrQdqpR+ciNVs3ks32VMBsN3Ou/XV6VvBo4VgQNCDFxAQEBAwOFQAzBOYfPdxXzDPZPJYHFxEZVKBcAsOeB//nt7e66Y9GAwQKFQwOrqKqrVKnZ3d1Gv15FOp7G9vY1Wq+UKCKfTaSwuLqLf76PRaGBhYQHLy8tYX193NaWAKGPkxsaG220uFouoVqsuBo73lMlknHFMF0u6fFLxSiaTWFtbQ7fbdUre0tISKpWKI3SpVMq5D9FYYyyQJgbgTne32wUApxymUinU63WMx2M8+uijzqilkUiix8yFNITp+sX7mecud+rUKdRqtblGv2/sU43QHz/2zb+mQo1kXTu+AjRPZVM1jNCYN/6rdavUzYuGuRI9hf7tG8v8TI/V+CE1Tv1nxf/dJ3I6HvwuTg3kWIxGI7dhUCgUkM/nkUgkXCySKjhx4+o/x/NcKDlGSn5IWPQ7X81jBsdsNouFhQVsbW05xTmfz8/EsFG1YVbZQqGAZrPpXCZJoDT7JM/X+Col2BwjJVtxGwwAZtaDKov++uA8a4p/ANfFeOm5GmuqKp/WqAPg3GPpjUASxHu11s5klyThjNso02ed70bOiWbOpCoGwClo3NTSunP+M60uoSTPnNetrS1HYjkGqlDOc9N+uXCsCJwxJihwAQEBAQE3hIOMyzhjMJfLYWVlxWWdSyQSLjkDVSnGsZG85fN5l9Cg0+m42BkWumb8ymg0wuLiIvb29rC+vu5cdNbW1lzRbABuV58JFYrFoiukTVdDa61T5IwxaLVa6PV6SCaTyGazrr6btRZra2szBYUXFhZQLBadK6cm9igUCjM74JVKxdWm2tzcdHEnjPWr1+uo1Wqo1Wq4cuUKLl++PGOw5nI5l/RF49FodNGwpgGaSqVm1D/ukK+urrrkEXHKmw8aZXSrOkh94zpR0KDzFTdfxYkjj3H98lU3jQfyyZL/o+tVCaOqDP61NEaRpEbdImlAq4Gvx8f9+PFxB6nc/IybCCQ3TNLD5BGcc5+wxSls+q9/nBIYzrMSdp+kq0sfyUetVnMEU2PKisXiTKIRxndRHafipJkLqShpPBn7qwl8fBde9lddCBnT568R302W/dX1QCIWp7Dxe3Xf5VyQ4PFZTyQSzo2T7XEDplaruRqTJM5UzjQeURVS3hv7zfesnqMbbSTV1kalGEiwOBYkXbwW31lUB5WEsp2NjQ33ThyPx87dnc/+zcTxInBAkOACAgICAo6MOFc7IN64TiQSrrAvjYB0Oo3BYOCKVDORCRApZKz5xnTiVLJoZDQaDRc3w533TqeDTCaDkydPotPpYHt727kWckfYGONS79Oo3NzcdKpFMplEqVRCqVTCZDJx9d1Y+BaIjJTRaIRWq+XqyvHcyWSCnZ0dV+ybsUCMc+OOOAP7aQS1Wi23286SBrfddhuSySQee+wxV9ttNBq5DJTcqW+32y5uiOOtpIAg8VBjOZ1OY3V19dDEAkqSVA3RH3Xl0vP8NULjWNUrNerjdufnkTb9XRUBYJ+8kHTpd3HtzXPt8lWOuHsC4ssHqPKn6gjbVWOf98Dv+K9Pqnks+8Wx40aIJvrhOPAaarj7JCWONMeNNUkJM6/qutC+8RrJZBKFQsE9A+yLxpBSBWKSDj5Te3t7zp3ady1kDFcmk3GbF6q+sW2fCGt9N44zn12tm8Zx1Ta1LV1z+sxpBkmdcy1HoHF9VMiMMe5z1k2jqzazT/pKL9Vln0TqPPNc9k+TlfiulKq6qesx+8f5nkwmjpBzHOj+yvHgXHIdk4wHAvciwoQYuICAgICAG4Rv1Opn/DyVSjlXRhp8rONGQ2U8Hjvy1mg0MBwOkc1mZ+JTWOiaxIzxYnQzbDQaLoMls1AyAJ+KWy6XcwSKmdU2NjZQq9WwsrKCa9euORJFksjdabossVYcDZlOp4N8Pj9DEGiwdjodVCoVlEol5x5ar9fR6/VcwoDTp0+732n4rays4MKFCxgMBnj44YfRaDSc8sbadIuLi2g0Gi4bH40nANcZc76BzbkBIuOexFrn7aC5VfLmlyPgcaqAzYMSOb12XN9VkfJJmLqGkRSRQMQRNu2rn1ACmE3aoWNH9YJj4Ltmsj0lSr6BrwY4r+mrcf79x4H3rWoqEKk6zWYTw+HQbUIA+6nedZwP+juOxNGoV9KgSo+/xngO3Xvr9TquXLkCINqwoFFPssn7GY+jkhm9Xg/tdtvFg9LNl5sebFddIzWpB9VRfs7vVLnidTWOU+9N709Jr9a7473yuWP/uLHENUI1UjNCcjOLG1q9Xs+5nTLGl+8efQbUDZPX1/WqyhyJMM/jOZzHyWSCTqfjEtQwQyeP0bHjffL6fjZUupHrswLAKf/s00GbRS81jheBQxDgAgICAgKODjXw4wx+Y4xzTyyXyy5Oq1qtAoCrnTaZTFz8WSaTcRnQqJKdPn3akbDJZOJUr6WlJdRqNVSrVaytrbmyAEzukcvlsLu7i0aj4WJqaHDkcjl0u10kElGmSBbqbjabWFlZcQYkXYdo2LEweCqVcklLaASqIpFOp9FsNt19NxoNAHCuUHSHqlQqaDabLh16LpfDyZMnsbS0hOeeew5Xr151Wfi4412v1105BJIouo35ZEiN6ThCZYxBtVpFuVy+zqCap8bQoFUSFxcnE7defPLI/vrkah6Z0M94Ho1b/zuNhfP7RCOeBr6qLkx3PhgMZhQcHhsXW6SZ96j4Uj1RVVHjo2goa2IIVa9oJPNYNeD9MfTnlYb03t6eS8wDzKbV9wlk3LzNU+LmuVH6x3GcqTjXajU888wzzg2a98bxZ13HbreLnZ0dtxFDhZ7xfQDcOHP9U3FTRdevh8Y+qlup3ou6wRLcCNDvfCXXX2OqivquwiRCVOW5RpiQht+RmHKDSxVFkkxey++zulFqrJuqwuyzxqZZu+9CyTqX/J2klvORSCRmahSm02lXToTXIIHVOpxBgXuRYYyBDRpcQEBAQMAR4Bsr/k5+MplEvV53haYTiYSLzWHcFFWxU6dOodlsAohcdbrdrtu1v+2225DP5x3ZazQaLmarUqmgXC47Q+/ixYsuQcje3p4zQAaDwUwR5GQyiWaziWq1inw+7/rOZCBUygqFAsbjsbsmsB/kv7a2hs3NTZeARLPO0Uip1WoYDoeO5CWTSac60LDqdDpuDMvlMk6fPg0AePLJJ9Fqtdyu+WQSZZlcXl4GAGec835VIVCyM48M6ecakxg3t3HzrGqMXzpgHoHz3QCBWZfDOPXG76uvkLH2nO8Sxn8nk4kr1UClhEliSOBJzBifQxc4YN/lVOHHGDHdOvtJdZVrTe+XGwjZbHam6LQSD3U9VBWJ58eR0TgljfPTbDYxHo+dGq1Fs+Pmed5c6ZzQkOfmhhJDH0rgSqWSi1elGkVXOz53fE56vZ4rG0LCwIyzSo7VPVDLDGjdOI19I2lRdU4JNueYn/nzopsDdGHmWlCCpq6GHBdV5vjuGI/H6Ha7jvyTuPkE03el5X3RRdtXQfWZ5PjpJoDWnSPRymaz7l2ryiJJHvvAtU2XcJ6r46Luszp2XDsHKfMvNY4XgUNQ4AICAgICbgy+e50xUXzZysoKyuWyM4bz+bwjI9yhZZIQkrfd3V2sr68jkUjg3LlzuHjxIqy1ePbZZ51iZa3FyZMnsby87LJQjsdjPPDAAzDG4LnnnnNK39bWFprNpjP0WD+LbQFRuQAW855MJhgOh7h8+TKKxaKLqSFpq1QqGAwGuHLliitJwKyPNLCbzSZOnDiBXC6HTqfjarvR6OG/k0mUwITuaMzMaa3FlStXXMyPJgaoVCpIpVIuMQAJnBp4nBMab/OMJN2xX1xcnEkZ7huJPjkA9l0oNeZMlSB14fQVIk0owe/j1Fxf0VWjVIkriw0r6aGCStdTNYCZOIJ94Xdcn7w/n1DqPfA7NURprGp7mpCE12cpikQi4dTgOEKn19NxV7c4XxWMI+uTycSVxSCRm0fifOLmK59KoFV19Qm8riN+zzVWKBTQaDTcc+qreYPBANeuXQMANy5UetPpNIrFotsoUTLF8VHFWRU3XaMa06burVRjdX34qiN/SHx4vqp9THDk//AcVdg6nY7LtEuXV1376tapdea0BMG8+WAbPNbf5OC6pKpJssd6kLqhQRdQfsaNK8b6UrnjuPFa6uKp7cWtwZcLx4vAmUDgAgICAgKODt9YZPKPpaUlp7pZa11hbMav0fhJJBK4evWqq//U6/WQzWZx/vx53Hfffdjd3cUTTzyBJ598EsYY1Go1LC4u4uTJk7DWYn19HalUChcvXkSn08GVK1dcen7Gc9BVi4Y6d5fr9TqazaYzuLkD3u/3US6XZ3bKh8OhUxDoCsnSAlSAxuMxMpkMVldXkclkXOwbr9ntdl2sD5UeumJyfLrdLjY2NlySBxpNTCxANZCGorouAtenvudnnCM1RonJJKotl81mXWkE7tLHqSlKpJTE+YZq3FrRa/ptKvR7NSKtjdy7WDQcgDM2d3d3sba25jYQ+v2+S6/vu/iy/wCcgqg1/fjvPPKq46uEAdg3qnk8v+fY012QBjmTjtCw53qgOqXqj15T1dI48qZuzDyn3++7cSQJ8jdfDppzHQM1xue5z2rfSOAY/8pSAfwe2CdZjUbDJSMiuSBJ51rlBobOF5/lXq83o5zpnPnkhuuApJjrWdeiqpnsp44/Sajeh/888Dmmay3vlXXqcrncjFupqn9aPkCVNF6fNdv0XI13I7nUDQaNFSV4X3yv8D1F8spjUqmUK5nCPvC9SuLH9wgLf3NM9Hr+e+DlxLEicEAoIxAQEBAQcDh8gxiAq/O0sLDgXGkymQwqlQpOnz6NtbU1p4ZxZ3w4HCKfz7ui2wBw8eJFvOY1r0G328XnP/95PPLII1hcXEQmk3GJUHq9HhqNBsrlMk6cOIHt7W1cvnzZKR6bm5sYjUao1WpOfWNmN8bV0RgbDAZoNpvodrvOoNUaSN1uF+PxGK1Wy6mDLETMsgZbW1suwQIAdDodLC0tIZVKYWNjw5UcoIGWyWTcjjvHgkW3Nesd3ZR0BxvYT31OEuPHt/hJHHiOzp+qN77RpddSNcVXzDRpixqwSpj59zzodeIIgCpuOzs72N3ddeqoJp1ot9uOFDF7oY4J/2ZsFA1iTcSiY8N4Hxqdei7XBj+jsQ3AqcQa56PKpqoSbIuGLslfr9dDsVh0yhzjj5SQqLrkky6fLKuCyVhKKsC+6noQCdR5UsKmJE5dKfkdVaREIsp4ury8jJ2dHbfuuF7ohnf16lVHILi+mHQokYiKe2tpDk06QuKirnu6/kmKdGx4n9pHggozMKviUWHSeDu2zecT2I9z1ALj6trNDLyMzyV50ueJqqw/V5o1V++L/dNMmLwP9k/vj+7mLOegmVs5L6pCMusvy6qo4s9xYVkVjR1WJVA3D24GjhWBixS4QOECAgICAg6G71JWKBRcQhH9T9pai2w2i62tLVdsO5fLOaWHBkO320W1WsVtt92G8+fPo9ls4tKlS2i1WgCASqWCpaUllEolbGxsYHNzE+fPn8fCwgKuXbuGjY0NGBOVG1hbW0O73XbuhkxwMJlE6caZeZKGKZU6JjzhjjGD8VkomZnhzp49i1wu52q/dbtdnDhxAgCws7ODarWKkydPYjKJyg8wOYmv+BQKBWfI9Ho9V0KA/w+zrpuqlcC+QekrCGqozyNONLRoiAL7sTg0YONcKFV1IdSg810ofYUori/ahq/waNzS3t4eWq2W2+0fj8d49tlnnfGoyoOqC6pOqkII7BNeqqzsi8bpaJZAdc3k+PJ7NYa5ppTYqXHPNlSF0GQUPD6RSMxsKpTLZRQKBUfkfIKs7fH6nDefmPG+2+22e2b0edU5m6fGsf24uecY+fOtRI4xX5VKxa07FvVuNBpotVoziV1IKqiUsy0tZK1kTgvaj8fjmcQxHCs+5/yb86njpgSG/eYcajFqVfGoDqu7I58xTQSi5UBYr5IbCbpBwnaUKGv8ob9Bw/HgddgvrjXdKNBxo3Kpaq+qdLp2+FwqodTvuTa4OaIEnmNMj4KbheNF4G52BwICAgICXjGg6xCzTHLXulwuo91uo91uA4hShZ85c8YVia5Wqy6d+Gg0wuXLl1Gr1XDfffchk8lgfX3dGZf9fh/Ly8uoVqsoFArY3t7G008/jXPnziGZTOLq1avY2tpyZOfatWvY3d3F0tISALgi2kAUb0f3RhKm0WiElZUVGGNccpFMJoOtrS3nfrm3t4dOp4Pd3V2cPXsWpVLJGXM7OzsuTm4wGGBlZQV33323U9OoEuXzeWekUVXTnep2u+2MRABYWFiYUYXoJqUGM4DrjLe4z5QA0rCmMaU75nos21HC40NVwDhXqDg3SV/JiVP7aKBOJhOXqKXf7yORSGBnZwedTscle6BRT4LmK4L6uR8fqITXdzedN56+suWPi09eNFmDJrtQ1zhVrmgUK6mg0d3tdpHP511WU/ZNiaKPgwjYcDh0qjc3UvR+/XP9e5unwCnZ1bHiOPPeNYEGAOemPJlMcOnSJSQSCVSrVZdch6RBiTXHimtR59InOaqEsU+qzvI4bV8JkLavz65mL6U7LEkb1yhjGxOJxEy2TNZE47X8zQ5VJ7lZwlT8SqDjlFKOz0FzCGAm7lIJKmNrSQbVlZPnkQTrHOtzqxsafA50rQYXyhcJJsTABQQEBAQcAcZEcUZ08+J/6sPhEO122xkn/X7fpevPZDKuHEChUHCp8c+fP4877rjDGehMy37lyhUXT1coFLCxsYFms+l27a9evQoArp7cxsaGU8nUJYqEqV6vO6OD8W6lUsklu6ABt7OzA2starUa2u02Njc3YYzBPffc4+q6sc4RDZZGo+EUwaefftrFOfV6PVgbxRtRcaOhxPgSdfcDIoKnqiENRc30yL5q0g1gX1kC9tUoJS6+axzP0Z18wm93HgFTN0Pf5XAefOVN1cTd3V1sb2+j2+1iMBigVquh1Wqh1Wq5tUHVjYYhCYm6n6rxqAoEx0ZVA44rDX51sdSxInxSrC5nNLjVCNfxZNvsO132eK6vRrJ9khduLDARCY18JU4+qYtTQWmkt1otp6L7GTPj5s3/W4mc9p3fq4Gv5JXrulQqufuz1jr3Ubrg0fWO65DrnvNIYqdkkH3iWO/u7rp1o2tZ6y6y30rkeJySK4LkjRsrHAtVy0ejkUvCAmBGteJ9UdFi+7q2+WxyXHksj2FSJk2Y4sdM6ppXssjPOIacF24k8bkiAeXY0ouCLqAkkKrEca36mxE6zuqaejNwvAgcQhmBgICAgIDDUSqVXPyMpvNmTSMaFdx1BqKkH9Vq1dVESyaTOHfuHJaWlrC7u4tut+tixtbW1rCwsIBarQZrLS5fvuxcMEejEdbX15HJZFCr1VwB7Fwu59yDmCBheXkZi4uLaLfbzkikgpNOp91OMesX9Xo91Go15PN5bG5uotfrYXFxEa9+9avRbDbx3HPPOaLAUgEsIm6tnVEdW62Wi9di/E4ymXSkdnd3F5ubm87tajKZuDTvJJ5Mq07jMJFI4OTJkxgMBtjZ2QFwfV00fua7QupxSir8pBt6DM9h6Qe/PTValYDEKWtxLnVxbT3++OPY2Nhw87W5uYlCoeDUUD1XSxjoLr9/Xb9fdL2jAe8rcLoBoNdTtzTtPxPn6HU0yyBJADCbkU/7xD4oofbd/ZiZdDAYoNvtuiyuvLa6nvoqmD/37AOVOJIK3QDR4/w1oUqmkmB/nnmsT5IymQza7TaKxSKA/Y2Yy5cvY2trC2fOnMFwOMTW1hZqtdqM6yAJE1PYG2NcynsSOiW3et9alkPdP3XNkKwoedJ71s0PAI74M/EM29ByBlxnVFC5BhWcNyb80KQ6eqxuVJBwcRPAXz88V+dVVT1VQjmm/n1yXJSo6Vr2nw8l9txM4DVIDpmJ+GbheBG4oMAFBAQEBBwBCwsLzjgtlUpOkUulUmg2mzMxH3SBWllZwe7uLprNJur1OlZXV93xNEAY21Sr1bCwsIC9vT1cuXLFZa7sdDrIZrNOhdve3nYp8LkTTqOKu+3dbtclDaCbJAAXZ8MYvNFohAsXLmAymeDq1atOHSQBXFtbQ6fTcbXhVEmgi+RoNEKz2XS13ahqJBIJpwIsLS2h1Wphc3PT7Vazv1o4VzPs0XhikpRWqxWbcEQRZ4ADs+5ZvmoSdw4NwjiDzidhh0FJi6pu/HwwGKDRaDjDkOtIx4Njou6FCr0/Gqe8FgkZ14mvAMSRECVYfkIU/V7XBOeV19HEJb4qyjZ8xUwJmE8keP9UgEgK9N59YqhzwGO4BobDITqdjlOHSCDi5k/vX2MGD5p/f62RcA0GA6fUU3nu9XpYXV3F9vY26vU6EomEWxOqOmmmRKpr6hbJazBWTbOMKoHT2DeNB1MCpRsePrk3xrjr0xvBGOOyzTKulv3kOdls1mUFpTJH10smb9HNCa4tqtSqxMXNsyrP/Fs3ZLgWNdNtJpNx3gXsJzdFNGMoxyWbzc6QYK4dHUOf3PN+D1szLzWOH4G72Z0ICAgICPiCBxOEAJHhUCqVnIpFo4Ep81nbqNFoYDKZ4Pbbb8fq6io6nY5T3dLpNB599FEAwIkTJ5z7IuPhut0uSqUSVlZWkE6nXYHrpaUlJBIJbG9vO4OFhlM+n3dJAowxLuaNah93y+k+eebMGVc3LJlM4u677wYAXL161SUmoLFJYzeTyeDUqVMoFovY3t52ZJSxPDSumKhieXkZ29vbuHLliiMfNHpYkgDYz3YHzLrR9fv9mbpmNPQJTbShBrrvxqe78PxbCUIcNGEBoQTSV5T0evq3b9zxGCqSVMUAXKcGqcuausdpRkg1ev3rsy1NPkEj1R9HvVce57uA8ViFxhHxPtj+aDSayfJHxYKbDUrW1VBWMkbSpCrM3t4e6vX6TEyV9t3vp09IADglW9fbvDWhc+3PpU/y/fXH7/kskajUajVsb28DAN73vvfhk5/8JP7gD/4A9XrdvT8YR9jpdDAej90zTGKkJQBUFfLng2TbP05dbZU8c8w4JiTP3NygFwIJFjdjGL+ZzWZdTUyWCEkmk66GmrV2xj2Y60LjOTWZCq/Nd55mw9T3gp9MimSdz4qvyNGTgsdwznQNcQy1SL0Sed2w0PeNbrRwHjkWNwPHi8Ahvv5HQEBAQECAgrvnTCZBlxjGbVGhO3nyJABga2vL1XdbXFzEtWvX0O12AURGOknSrbfeinq9jna7jcuXL6PT6aDX6yGfz+PUqVPo9/vY2tpCKpXCyZMnUavVsLOz4wxs7rgvLy+7HWOWCSDxGo/HzjWz3W4jn88jkUjgqaeeQrfbxfnz53Hx4kU0m01cvXoV29vbjjTw/tLpNBYWFlwilqeffnrGGKFyREOGsXyNRsPVqqPbFYmmxsXRMFcDmAkS1FCmEarJBeapaWqo6Y443RB95cmHxuP4x8URQP1bFRg1+PkdjTm68qnRDGAmJkfJm5I2JW802DXuR5UyQu9DSTPHVI+h+xfHQtsj+fJdDDUtvCbiUHdKbcufV/1OlR8SBXUnBKIEQqy/yD75cW1xc8f74GYGk6SoguMfr/2NU4J9dzvfvszlcq5/1WoV6XQaTz31FJ588knkcjm87W1vw2QywR/8wR9gYWEBi4uLrsyGH1ulxEqJiSpqXHdc6wTVLs1WqWPOvnN98HwtuK4ESpOy0JW7Wq060sJnaDAYuEQhGrcG7G9U6IYMszvqsXptrhe/v3wOWH+OCZOUAPLZGQ6HLsaN7qm6GcTP/OyUVCE1qYpuUnA81T3zoHfNy4FjReAQFLiAgICAgCOA5CuXy6HX67n4k2Kx6BKbrKysoNlsYjKZ4MKFCzhx4gT6/T6effZZGGMwGAzQarXQbrdRr9dx//33w9qoOPfTTz+Nra0tdz1jDNbW1tDv91GpVFCv15HJZHDlyhU0m00X/5HL5Zyxt7u768oXaA24XC7nXBCLxSJ2dnYwGAyQz+dx4sQJZDIZPPXUU9ja2nLZMBn3RvJ2/vx5VKtVNJtNl1yFNd1SqZQrkjwej1GpVFAul7GxseHqW9Ho1l177r772SfjiIca474CNC/Dm7pB8kddsnwS5hveaqT5hrlPyvQ8/VtdGpWYDgYDVy9P2/VjgHzVh9fwFQAtAB2XuZPGpT9WXMccFyWs4/HYKRR+Uhca4Txe++IrX1TMUqmUu1+qcgBm1Au2w89paKtKp31Ql0qfjCixUeh4j0YjV1zejx1T0AD31xP7rOoi2/avTdfI0WjkEgd97GMfQ6/Xw8bGBs6ePYt3vvOdKBaL+P3f/33U63WcPHkSa2trLokGib3GtXHMNbOizrGuIyU/AGbUWz8BjM6HkhNVPEnSqKSTUJOwMWZW+0MFUdeGviN4j/7YqkqsyVmUIKoiRqWTz0cqlcJgMHDPAftNl3AS7MFg4Eg91TkgUsw1w6efOIWbHSSO3DxTJVTr7b3cOFYEzgCBwQUEBAQEHIqzZ89ia2sLGxsbbnd4dXXVKUqpVApra2soFAq4/fbbUa1Wsb29je3tbRcXwtT8t9xyC86ePYvhcIhnnnnGETXuMJfLZVe4t16vo1qtYjgcYnt72ykQ3OUuFotO9WMcG43rcrns3C2567+9vY12u42VlRXceuutyOfzWFtbw8bGhnO39FWFarUKIFIVG42GS39OEnnixIkZN1LWwWPdOJIKzebGtjUNvioFumPtEyoak5oUwFfJlAwp+DmNPb1P/zgaiGqwKjmJc5fTtmiUKvGgi9nm5ia2tracAqnqoyopPtgWyVa5XHaEe29vzxmf6mbHfis549wxjonGcS6XczGepVLJ9YHF3Ul+mc2RxrafjdMnO/xbSYIqh3oe++yTY/Y/zg12MplcV27AX0fars4js6eSeKgLoj/u2nefGGpf/bUIRARuZ2cHGxsbbh08/vjjAIAPfOAD+OIv/mKcOXMGb3zjGwEAH/nIR7C0tITTp0/PFPrWTJRUpDTjpI6Nkn8l3DoWSprjCC/Vda5lXSsAnJJHt0kmLuK6Zm0/zofOq/++4dpSAjwe7xfF9gmdP78kb3zWCK5RP+kP3yPsv24akKwxpk/XBjeiOP6qJPLZKZVK7t3Hdx3H7GbgeBE4YwJ/CwgICAg4FE899RSazaarAbe0tOQyLQ6HQ3S7XZw5cwanTp2CtRbPPPMM+v0+8vm8q502Ho9x9913I5/Po9FoYHNz0yUTSSaTWFlZQSqVQqfTcTXcxuMx1tfX0el0nBFUqVRQqVSwsLDgFLVnn33W7Xhz15v9ojqxtbWF8XiMixcvol6vw1qLtbU1XL58eSaBCBMQqNva5cuX3a4yAFSrVaysrCCZTLrSAZVKxWVRXF9fdzvPJJR03eSOvgb2qxGviRTU+FUiwnggGqm+IegTKz++q9frzbjiKdTdUuNx9HzfSNfr+u3wXiaTyQx5oxucukWqekQSkUqlHEHj3DB7ImOKiEKh4DKXsm0WU06n06hUKsjlcqjValhcXHQF2Wl4W2vR7/dnCJ66m7GddruNbDaLRqOBXq+Ha9euYTAYOBWXrnSqPqi6SINWx9jPDsofdcfU+eTYUi2mq7DWUdO1wzlRQs0xYjkO9lljEVVpVfKmazNunRH8jONIVejSpUu4du0aVlZW8KlPfQoA8M53vtORuEQigQ996ENYXFzEmTNnsL6+PhMLqi6MJHC6/ki4NWGIulVStSM50XpwnAsqpdygUXUUgFNWucnD8aFyTRdETcDDceV1tUSAPvvq+swNC5JV3o+6GSuh0nkimdP51vb5jiMxZLIqtsksw1y3XGu+WyvnhLUwjYkSXanbpu898HLieBE4HC2LVEBAQEDAH26Mx2MUCgUsLi5icXHR1aWiK9Ttt9+OkydPotVqOcWrXq/j2rVrmEwmqNVqWFlZwXg8dvFv3W4XnU4Hw+EQJ0+edEoAd2nb7TY6nY6L09nd3cXi4iKWl5dRLpeRTqexvr6Oy5cvA9ivp1QoFNDtdjGZRLF5vV4PjUYDhUIB5XIZ1lo0Gg1sbW25uBQaXTTIGEMCRMkeaODwGpVKBdls1iVlIWG01jqiqISDafnVgFZDmKTOV+F8VUuJE/tL+JkL40gcEBnczWbzunpUCsYZKVFQZcZX33gN/qv94DGdTgfr6+vY2tpyrot+EgolDYlEAhcuXMC1a9ccSVYCS9cuGp7qZqZZLev1Oi5cuIByuexqAw6HQ/T7fVy7ds0Z7ozxJJmh4cm+cUyKxSKSySQKhYLbLHjggQdQKpXQbDbRaDTQarVw9epVPPPMMxgMBo4QalFmvVcqLUpKaPjrvHJTgccqKdQkFly7/vz4aqC6Y/Z6vZmkHnHGdpzrrH4WR+r12ix6nUgk8LnPfW7GzfGRRx4BALzrXe/CmTNn8MADD2Bvbw8f+tCHcMstt+DMmTN45plnrovH8smQv66UPPibJRwPvW+FEiKSHpJbxpZVKpXrSJC6FOpYaWZHVVPH4/HMJgzXsyqx/rrhBgzfK+yXEn/2SedBlUeSNWC2NAZJH9cZFcB8Po/hcOhic3mMjiVVx0Qi4Qqb0wU/Lsby5cLxInAhBi4gICAg4AjIZrMu3o3K18bGBlZWVnD69GmMx2M8++yzSKfTWFxcdGnzJ5MJbrnlFhSLRTz++ONoNBo4ffo0AGBtbQ27u7tYWlpyhmqlUpmJlaMRwOtSYel0Omi1Ws4gpDE0Go0cgaxUKuj3++h2u6jVahiNRrh27drMjrgabFQylCCwflsmk3ElAtQo4c57r9dDKpXCpUuXZuJ0eJ66SapBpjFDVJLiCBiw73JJY1RjZ+IMZ91l913g1tbWZjLP+eexn6qeKEki1BD2+64qD+OeNjY2XCZBvyiyGuZUVK5cuYJWqwUAjgQx5bnG4JC0UY1hBtPTp0/DmCjZTafTwec//3l0Oh1XTF37yja5lnwCyvtm5sxsNovFxUWXhZRushcuXMB4PMY999zjYkCfffZZbG5uurIWmq2SxjSNX1WyfLI073MALrvhaDRCvV6/TolTwhjnKkgXVG6g+HXudAx0ffoKnH7v/+zt7aFUKgEAnnvuOUe0x+Mx+v0+PvWpT6Hf7+O9730vbrnlFrzxjW/EeDzGQw89hLNnz+LMmTN49tlnZ9Yen7fRaOSeNT5LmsqfY6Dn6D1xfcetX5JnJdP5fH7GnZPPCF0OueHDOdXx5PFcZ6oYx22AqLLJc/U+NUOwKotKrn0iyHN4DX0fKQHmvXMjimNarVZd7Uq+S/g+5juE5zEOUK/5cuN4ETiEOnABAQEBAYeDitstt9yCdDqNZrOJW265BbVaDYPBwMW6lUoltNttXLt2Dfl8Hvfccw/29vbw+OOPo9lsYmlpydVYY4wRiVAikZjJbAlEMWXLy8suy2Wv13OZKnkMY2EYN0d1hN+RZNGw0npOwL5Lm/7NWCgSs3q9jsXFReTzeUcsqcAMBgMUi0UXywfA1bkrFAozhvI8Y113xoH9GDRV0GiMcaec48Pdcl+xUyNQ3fCMMbhy5YqL02H7anyzn+rWpwoPr6Gxawr921qLVquFjY0NZ/xxHtS90E+MwHggNdQ5LhwbVaySySTOnz/vlLbRaITnnnsO7XZ7JsOe3ouOMe/JV558pYoYj8fOHXR7exuVSgWlUgmFQgF33nmni/N67Wtfi7vuugvb29t45pln8Oijj7qx573xPtkH/Y5zQxdANei1PyT1g8HArVE/6yWP89cd70cLYlNx1Hn0Y7i4Vg6CrkEgeg6ffvppPP300zNxZCT1n/vc55DNZvGud70LZ8+exZve9CZH7i5evIgzZ864jRLeA10K6b7HzRN9rv1+aEykEjeSLu0/22EiD76vqM7T1ZBkjIo629ZrMyOtxo5x3lXFokJGZY1rQkkj+8tr+Kojx5btce71OaZ6x1Ioeizvn/fV6XTchkg+n0e5XEatVkOn08He3h62trZm5mQ0GqHf78NaO6P23QwcLwJnDGzQ4AICAgICDsHq6ipWVlZcCv9z584hm83i2rVr2N3dRaFQcMbsaDTCiRMnsLi4iOeeew47OzuOCF2+fBm9Xs8pI9euXXMxalRG2u02KpUKTp48iaWlJdTrdRhj3HckMcwYCcCl/s/n81hZWQEQuexZG5UOYGIBYD/jIAAXH9Xtdp074qlTp1AoFJySVywWUavVkM/nXbIV7ijv7u4il8tha2sLm5ubrg0aeSQOwGyBbsKPbwLis0EqcQH2C1TT4FaXKsJvVxWnnZ0dbG5uYnV1dYYU6LHsG3+0npnfXhxJpTFJV1kSIY3Z4q4/jVneK90jSeTYpt8PurgVi0UsLy+7mMwnnnjCjT0NTkIzQJKkck3oGPtxZ/NAEt/v97G+vo5UKoUnn3wSiUQCtVoN99xzD3Z3d1Gv13H69GncdtttLn0+E6Go4qfjSUObfeHfqhARanjT0Ga6/oPWlRr26kJM0jBPVWMbSjx96HEk7t1uFx/72MfQaDRw5syZmT4YEyXV+PSnP412u433vOc9uP322/GOd7wD/X4fTzzxBO666y6cO3fOKXFKYtSd0FfTVHHjumKmWip3XLNanJptkXTRnZBETF0hSY74TDJu0u8LiRyPo1LFMeB7hNcjYSNJJHljdkkSbrrBksBpkh0llUpimYGSY5PL5ZxruW7e8Fllm1tbW5hMJq4Op7XWuZLTbTiZTGI4HLqadO12e+5z9FLjeBE4BAUuICAgIOBwrKys4OrVq0gmkzh16hRarRZarRaWlpaQy+Vc0e5MJoNbb70V4/EYn//852dKDuzs7MAYg7Nnz6LRaMBai2q1CmOM28ne29tDpVJxhJGZJFutlisC3G63MRqNUC6XMRgMcPnyZWcEAXBtsxg3MFvTLJvNOlexdDqNra0t7O7uIp1Oo16vu+vRQGbxcCZxAeCIHMsqbGxsANgnVrVaDUtLS7h8+fKMwcTflRD4xEsNc1XiVI2h4cx75P35beqPulKORiNcuXIFd91118y1lRzQ4KNLaSKRmDEY/ftQVzv2c29vDzs7OzMp3ukCyeuowsXzVaXjMTRMaSAbY1xCkmq1ip2dHTQajRliB2DGoOXfGk+kxMMnIxwPVTbYd4LESsky3dy2t7fx0EMPoV6vo1wu48SJEzh//jxOnTqFO+64A0888QQee+wxt4GgxFfXAa+hYxbnGkmiAcDF8pVKpRnFRdU3f81RhfOVViWMPnnzFUxtU8eo0Wi4e3v66adn4tXUrY+xoE888YQb+4sXL+Jtb3sbOp0OPve5z+G1r30tTp8+jeeee27GLdFXoPRzJXrD4dARFJIbdedUBZqfcf0D+3GxGiuoRJvETNeOkjw9XuPq6Ho5z81RlWh93kkIuRmiRIv3ouo/r5vL5dx7kISSngX+ulMXUr53JpMJSqXSTM07VTDpVsxERHxP3gwcKwIHEwhcQEBAQMDhuHz5MorFIur1ujM2WWi72Wy6mLNz586h2WxifX0d4/EYpVIJ29vbGI/HOHv2LJLJJHZ2dhxh4rndbhfWRin5a7UalpeXHTli+YFut4tWq+WM9k6ng42NDZfxj/EXhULBGTOq3hSLRZdMpFgsYm9vD81m06VQZwbJcrkMIMpoeOrUKWcAMnaHKkUiEdW1unTpkov/AKIi3idPnkSj0QCA64xy33BW9yolS4T+TaNUVRO6gHI3XYvvqsGtKtNkMsGTTz6JN73pTS4ph5JDns/7pPLF7I+qFvlQ1abZbOLatWuOkMW5erLvGke0t7c3o8LReFYSVyqVXOwZs1rm83nXHvvg1/7yjWIlNnFuinTVU4VQXRh9Q1oVU2ujrJaDwQBra2u4dOkSbr/9diwuLuKWW27BqVOncOedd+KRRx7B448/7jYpSCJ8Vz7+y2uoex7XBY38vb09lwCoUCi4Pqt7nLpTsg0SON5XnJufEm9/DOPI4WQycRlcW60WPve5z7lYSN4jiz7rBsFTTz2FD37wgyiVSrhw4QLe97734Rd/8Rfxmc98Bvfffz96vR42Nzdd+Qi66HKt8z2g9RepLpE40tWVLn6+C2S324Ux+2UlNM0/x5/JikjGtN4fXTq5tjiOLGHBz9lXtqHQNe0nrCHpHo/HLu6RY8mx13dMJpNBNptFoVBwip6+Q/S5YZv6TOu65DuW48l2qbQz+dBoNEKr1XKbNzcDx4rAGdzcqugBAQEBAa8M0M3x6tWrWFhYwNmzZ9Fut9FsNmGMmSm03Wq1nMHUbDaRyWRw6tQpdLtdbG5uOuOUBYTpZrS8vIzFxUVnhNAwY+xFv9/H4uIiEokE2u02rl696gxokj+6WtIAJCmiEZrL5bC3t4dGo+HKHCwvL7sSBKwBtrCwgJMnT864olkbJRoplUqw1qLX62F9fd0pHjSoqbz0ej0As66TcW5yqtzQOIs7lgRD03n7LnR0vWLqb+7qxxGuS5cuubhEnxywX77il8lkYmNZfJUPgCMtbIvERN2yNHZHky+w7xwLZu9jrap8Pg9rrTOaaXjyb44V+6bZ9fR+fGVNXQIJZqRUBcU3cnku15yfyp0/rVYLn/70p1EoFHDPPffg/PnzOHfuHCqVCpaXl/Hoo49iY2PDGfScV81K6F9PlTmSN8aDGWOcCq7jqefpulCVhwRHSamuh3k/cesCgHN5fvzxx9HtdrG4uDhDKo0xjhypi+vly5fxgQ98ANlsFmfOnMG73/1u/PIv/zI++9nP4tWvfrXbiFGFFYDbvCGUfPGZ5bFUlHQ98RzdONAsseqmqKSdIBHkGKh7J9djNpud2axQl1l9BrUdxqtls1mMRiOXvIb91OyR/nOcyWRQLBZd7U6OE58dYL+WG9e9tdaVLFElk2uT61QTt+TzeZftlZ4Xu7u7yOfzuFk4lMAZY34cwJcDWLfW3jP97J8B+AoAuwCeAPDnrLUNY8x5AJ8F8Nj09I9Ya//SS9Hx+L6GMgIBAQEBAYdjMBjAmMj9kcWvr169ilKphHPnzqHT6TilbWlpCWtra9je3saJEydw4sQJPP300+4/+k6n44wNlg2o1Wo4f/488vk8Op0Otra2nCHCulqrq6vodrvodrvo9Xou3olulzRWaeDS+GAWNGMMGo0G2u02xuMxTpw4gZMnT7qsgpVKBclkEqurqy4GDoiUOBpYmnWy3W67+DoSQN4X4+/UPVKNWf9fNfxUJVMXNRrvei6/Z6bMySQq2UCDmElhqMioAnP58mWsr6/j3Llz18UMsR9KgJPJpNthV+Nf703J3/r6uisS7LuR8X70PE1Cwb6ookKjlSRSjVJNoa5xenrNOKLhZ8VTBULvTcmgb6wrydHYsTiSRHI5HA7x8Y9/HJ///Odx9uxZXLhwAffccw/Onj2LD3/4w7hy5YqrZ6exfGyLxrXOl94rE2swm2q/35/ZyPDXns4dMOtGqITXJ8BxpM0Hycv6+jqMMfjMZz4z4+KqIHnUvrZaLVdi4Mu//Mtx66234t3vfjfe//7348knn8Ttt9+Oz372s+4Z5UYB78mPBfOTl6jqreSNqlqxWJzJdKnjrGtI14QqZbqu9VzGnllr0e123drW1P8kjbyuZoHke4fqHoCZBFD6HJNUsQ6i3rcSf107Suq5IQTAXduYyPWd70muTz6bvDY38QqFwhd8FsqfAPCvAfyUfPbfAHy3tXZkjPkBAN8N4G9Pv3vCWnvfi9nJo8IglBEICAgICDgc2WwWS0tLACKDqtlsuqyMLAfA+ChmiLtw4QJGoxGeeuopp7y02+0Zt8Z0Oo2FhQXccsstLhFKq9VCt9udMT4zmQw2NzedGxYAl0KbSQXoSkmDiZn4MpkM+v0++v2+M0LOnDmDarXqsqaVSiWk02ncdtttmEwmWFtbc/EhVOrotklSsrm5iVwuN3Mduk/x/uJUNEJ/993afPIG7BuFer66PzFmrNfrYWlpCYVCwalgeh4NtU6ng2vXrjmFTtUVgm6UNHbposrd+nnktN1uY2tra4Zo0BAlyeV9895ofFKZoOFI4kb3TVXL1ND349d0/Pyx9MkM+63GvX6uShEJj+/KyHOUqGkbXBOqsg4GAzzxxBMYDAa4/fbbsbKygre85S0uW2Wr1ZpRxZTc8z58xUYTTpDcM4kQ45tUhVOFjZ9zvuIScPB+/SyK/ljqmqB78ng8xpUrV2ZiKf1xopLMuSYBfOSRR5DP5/GlX/qluPvuu7G1tYWPfvSjWFhYwMWLF/HII4+4Y3nvem8kK3GZGlXhZH9JvjhnmrKfJDGbzSKXy7mYM1Wgddy4saAbKePx2G04UVlm9lxuTHEuNSaOY8L3jO9KyTWg7sDMIsznVhU9rhWq91S6eRzdTvmeoALI55Iupv1+371HWd+T9eDY7hc0gbPW/u5UWdPP/qv8+REAX/0i9+t5wYQYuICAgICAIyCfz2NrawulUgmJRJRdj0SO/3EzfXm9XsfKygrW1tbQ6XRchrN+v++MgMlkgkKhgDNnzqBSqWBvbw9PP/00er2eM/RJ9rjTTKOh2Ww6w6VYLDqDSnfa+/2+c2PrdrvOQKOr2u7urktKQsNiYWEBjUbDuUlOJlGJg+XlZVSrVayvryOTyWBxcRGf/OQn3Y4+Y1lKpZIz0OaRNxrHviGuvxP6N400NUaV6Gk7iUQCq6urjiyNRiNcunTJ9YWuYpPJBJ/73Ofwlre8xY2j7rrzOjR0mZCgXC6jWCzOuKoqoRkOh664OvvGe6crpE+o2CeSEaoMJMU0cNUIVMNY3Rt1rPy4Nd5bnHqmipKvKCrp0XtWpYVt0OjltdRdj/euhH0ymeC5555Dt9vFuXPncPLkSRQKBZRKJXz2s5/Fzs6OI+Y6lhqL5Lu18h5IwpgVUNVKHUNfEfZdXn3lVBPDHKTCsa+7u7vY3NyEMcaVk1ACpWudJIzX4vd7e3v4xCc+gUwmg/e85z145zvf6ZTMBx98EHfeeScuXbrkUtrrfGnCFCAiYbreSLiVNDHWk+8trgOSVyqz6pKpLsK6BqiO67qkEsu1wfnhxsvOzo4jWBoXyE0oVX31ncAxJdlLp9PI5/Mu3o/3oXPONcB3Kd3aOe68N56r7sxUDrkBw5hCvsuZ+IUuuTcLLwZ1/CYAvyB/32qM+SSAFoDvsdb+XtxJxphvBvDNAHDu3LkXoRtRDFwoIxAQEBAQcBg2NzddmvZLly45F8disYhsNotGo4HRaITl5WUkEgk8/fTTzuDnTjELYycSUQ21s2fPYmFhAe1225Ua6PV6SCSiLJBajJexaVTMaDSoksPrMPaMig0D7DOZjFPMmKBkOByiWq1iPB67hCoLCwuuMO3Zs2ext7eHp556CqVSCfV63cX5JRJRHah0Oo1z5865hApEnHHsx+QA15M3351S71EJlR6jysl4PMb6+jrK5fKMq6AaxTRCH3/8cezs7KBer8+4IWrbNEr5k8/nXeY5tqn3zFTmWkwYwEyqchIRTW/O+2RSFRJ2JR1xqqQSNiVc/J5/+y6AcW3wbxrOSvD4HY9nv0kOfDWJ52oskbrZ+TGGzWYTTzzxBMrlMvL5PE6fPo1cLoeHH34YGxsbMyoLjWmdU3UZVCJKw3l3d9e5UuoYKFFl/zjvanTrGGgclxIgfy3wX272pNNpdLtd1Gq16+aGbZM4ajIV3stgMMBDDz2EpaUlPPjgg3jrW9+Kq1ev4lOf+hTe8pa3YDKZ4MqVKzMZGHW98XpKPlXl03vTRDKazIfkTgmVv6HC/vNdx2chnU5fR7R0nIbDoSO3+Xx+hjyxj1x3un55fyR7JGPqtsj1p6VH2LauZT6HnAcALrFTr9dzit7S0hKazaYrDdHr9ZDP52cURSWeJIY3Cy+IwBlj/i6AEYCfmX50FcA5a+2WMeZ1AP6TMeZua23LP9da+6MAfhT/H3t/EmRnml0Hgue952+eB59H+IAZgZgHJhmRTKbEVIqDTMaSKVe1kKlMZm3qjRZVvSqZzMpUq171qsy62S2TqVrFUpIU05hkhpgRmRkZEQgggMAMuMMdPg9vnuehFx7n4r4PvyNCVDJAov9rBnP39/7hm/4f93zn3HsBvP76678S1GUzcLbZZptttn0dC4fDcLlcWF9fx/b2tjgHBCXRaBQ+nw97e3sSkzYyMiJ12xg/5fP5kEqlMDExAZ/Ph3K5jHw+LzWF2u22/Cfv9XoRDAbh8/lQrVZRq9UknotSHcp7eC6lnDo5AEFPvV6H1+vF8vKyxJakUinU63U0m01Eo1F4vV4BZeFwGOl0WpKytNtt3L17F3t7e4jFYsjn8+LcM2mJlk5y55+JE4CnwRqdR80UAcNySb3zbcaeacednzNdu66fpxOZkKmkLPXhw4eYnJyUeBzz2lrOyZ131hfT8kvgWPpFEGsCVJMl0w4znVbKVrle6JAyXof9twJteiw1INDAQ19Hf67HnOBWyxTpeLP9JounxwzAUBp5AMLm6LgyLcXkdev1Oj7//HOMjY1heXkZ4+Pj4vhT7qqBsc7iyLaYDCGddjJx3EThcVZSUpNZ5ed6PMzEMZxPfSyvlcvlRBZNcGGOmR5LLePU40RG/Re/+AUikQguX76M3/7t38Z/+k//Cffv38cbb7yBSqUicmk95tzwYRt0khb+TsDD7/XaJyDR463BPMeLcYscG44Ta6HpNWoyXsCTeGOCICalYaIVHmcy2Vy/fF7YXnMDRdevY7vNdWMy0Bw/vmddLhfC4TBarZZs1hHksvSL2+0WZQLrJJoqg2/S/toAzuFw/Pc4Tm7yW4MvV/ZgMGgBaH35++cOh2MdwGkA134Fbf0abbJj4GyzzTbbbPtqY5IS1lhjOn6n04mxsTH0+31hCRKJhMR2sFwAAUUqlcLo6KgcT8eO/7nrmJCpqSmpHcQYDOA4TX8sFgMAKRze7/clFsXv9wtAIMvj9/uRSCSkBlwikUA4HEapVEK1WkUsFoPH40E+n5ffc7kcms2mSJry+TwymQxmZmYkUUsgEIDP5xsqBK6Bi5Y7mUbH9FkySn6uzcrpNr8n2KUDRokXnTSC4GKxiJs3b+LVV18Vx0s7bgCGGAM6pZFIROrwaXaDsS8aUGoGj20AnrA9Pp9PmDadYIHOr67nptke3U4ta+PfVqzUs+JwtEPNe3GsCRq1xFAzUBpsc72zH6Y8UANB3Q860/3+cc20nZ0djI2NYXR0VGICWUdL18kzk/ZooG/GPrbbbZFTmuvIZOK0XJNjoaV+2unX86rXGdfawcEB2u02MpnM0LhZrQvOn2aMNDvc6/VQKBTw0UcfIR6PY3FxEe+++y7+4i/+Aqurq1hZWZHyIASuXFvcINLSUL4fKKd2OBwyrpox1WyrlbyW80EwRlkyr0VmT8+RjunULJ9e08ATplVnYNXJWkZGRmSTye12IxqNyvuH4Ir3HQwGAuI4Nlw/7XZ7aE3wd2a7LBQK0pdQKISNjQ2Ew2GJ56PUnc+xfm71psfzsL8WgHM4HN/DcdKS9waDQV19PgogPxgMeg6HYxHACoCNX0lLv17LbAbONttss822r7RSqQTguEC11+sV5yKRSKBUKkmmMafTKTEodM6ZqGRsbExi2FwuFzKZjDj8rVZLwEAikYDf70c6nZYEDDSPx4NwOCxZ3eiw0IFhzBdlQpQ3jo6OCtjzer3o9Xo4PDzEYDBAMBiUrJHJZFIkiCMjI4hGo0NMW6vVwksvvYQf/ehHElOn40S0U65ZkJN2nrVzrH/XYE6fa4IPgisNLAAMJUsw4130cU6nE48fP8b+/j5GR0fFibRy5ulAj4yMIBQKScwg+97tdpHP58Xp5n20zI7GRDDM8sc4N81Y0MnVwEnL2ICnM0uScTAlaiaQ0oBE99EEghwPzqUJykxmVTvfJrPK63M98HOztEKv10Oj0UA2m0WlUsG5c+cQj8exvLyMfr8vWVO5SaHlqPypQa9uKwGGmdDClKbq9WkCeEpa9Tl6fZjPAItvE5iaiWjMDQPOO6V9uo0c1263i83NTbz//vv43d/9XVy8eBH7+/u4efMmRkdHcfr0aXzxxRdDrDElmGSfCIBCoZAkd+G1tbSSbJKWluo1w3HkM+fz+eR6Wn7LDQLKs3UyFWZu1JsIWlqsy4PwWErMuX5cLpf0hWBUx59RIcCELGTVWOeNGy8ElmTq9cYC49sODw/l+u+99x7y+TzW1tbkfcxjKfcl6NMM/zdtX6eMwP8O4NsAUg6HYxfA/4zjrJNeAO9/OZEsF/AugH/jcDi6AHoA/sVgMMj/DbXdoq2AzcHZZpttttn2VUZ2ixnH6CDk83lxCPv9PiqVijgwfr8fHo8HiUQCsVgMrVYL+XxepI2VSkV2dukkMqauXC4LcNPONBOFtFot2UUmSGR6+0qlIu1OJpPw+XzY3d1FOBzG2NgYWq0WisWiANHBYIBQKCSgst1uIxKJADhm+Px+P9rtNjY2NjA7O4srV66g0+lIMg8WIdfOvGbWyH6ZZsWk6c80iDNBHo2Ag06nPp5jpxkSU+7n8/mwv78vzAVlZqajpUERGdJUKoVMJiPzRCZVAxSdxZLOqc6I6Pf7JcECwRL7pNtrxkuZrBqPoQPKYzVA0IyA6aATnOl76T6b0taTGEVek4yMZvJMySeNgJFtJXjhWKbTaYyNjUm9PibVMBNmkHHV7KO5Fhmb1W63nyq3YJoGYvzHhD0awJnyWL1Z0O/3US6XsbOzIwW0+ayZc2v+rmWuWs6q1+Hq6io+/PBDfP/738c777yDra0tfPbZZ/jt3/5tTE9PY2dnR9YmgRMZMb5vWGKEoEn3U/fLzABLdn0wGEipB7KTPJ4Aj+NEKaFe6/yeYJygCYCoCDivBJM6lozHss1URwwGx/XbgsGgtIXt1M8L26pLT/DdABxvtjD7L9dxrVbD0dER5ufnkUgk0Ov1MDs7K8W69ftKM41/qyWUg8HgBxYf/z9POPY/AfhP/62N+uuaA3YMnG222WabbV9tjUYD1WoVwWAQk5OTqNfryGQy6PV64tDl83lhU5j5bGxsTOq11et1NBoNicnibi6TobDuFWVW3Bm2qsdEpyAajUr8isfjEcdsYmICoVAIuVwO5XIZ0WgUkUhEasARoHW7XcTjcXS7XUnMEo/Hh75jKv7BYIC9vT1xfilVpHRKAyXt9Goz2QYrh+akz0zwpdkBLaPT8jMtMdROKMfV7/ejVCrh2rVrePvtt2UeNNgwGTiCpmg0itHRUWSzWdnh13IzzWjxOqyXx9gYsjk8hwyXvgZ/533ZFivJ5ElyPO2IP0u+p6WfBD8myNZMjL6uZhjMe7J9XKt6jWg2jv8IUur1Og4PDzEyMoJYLIZoNIqpqSkcHh6i1WoNgUs+L6bpBBvAEyklAYrJRupxMtcr41i1LM4cO80+d7td7O/vS6kRPZf6PJ3JUz83+hg9D2QbAeD27duYnZ3F22+/jW9/+9v44Q9/iOvXr+ONN95AsVhEuVzGYDCQ9wMBVDweF5DCNmv2TW8qUIrIa1hlm9USSc2KcV3w3UWAo4Ed15VO58/4WbJXHAPem+8cj8cjNeW0ZJPrkLFzwWAQkUgE1WoVDodDkj7xp8nO68yvmUwGg8FAmMx2u41KpYK9vT1pBzfYeD/OJcfFlGd+0/b8Chj8DZjDjoGzzTbbbLPta1i320UymUQsFkM6nZb/pPkfdavVEvYmHA5jZGQEY2NjSCaTEj/WbDYl5kzvLFOGqHfB9e5tLBaD0+lEpVKR+JVoNCoxH81mE16vF9VqFS6XC+fOnYPH48Hu7i4Gg4FkbqZ0MxwOo9/vo9FoSLr9fD4Pn8+Hubm5oYxq7XYbhUJBShHQaU4kEsIeUsqkTYMN7TxrgGA6pc/andZOtslymElSzHtoWZg5p0w+s7GxgYcPHyKZTEryEBN86uQfTqcTfr8fqVQKkUhE5LB6510DEafTOSSrJfummRz+rseN4JSATTNppnzSCmhpsEaQoIGhZs/oTGu5oxkrZqbW1+ywnnNeU487QYT5GeeeGxg6ZsnhOK4Vl81mxUkfHR2VZ4rtoWTSqsA3gYFeZyyVYWV6TLVjz7gurg9zPek1SRDTbDZx//59kewRpJv95/jqjQLdHj3+pnSzXq/j6tWrmJqawtLSEl577TXcuHED8/PzuHz5Mj766CN4vV7ZRKL0OxAIyHrSoIeAS48Z1z7Hm/G9ZFk1K6klqTrBiSlF5RwT2GrAzOO1ZJTXIqhjW30+H/x+v4AtSkQBDNWkZC1FvWlSr9fRbreH5pvvYG6EBYNB3Lt3D7u7u9IngthKpQKHwyHyeQJK/Yx4vV7EYjEcHR2h0WhYrrlvwl4sAAfHUy9o22yzzTbbbDNtbGwM9XodOzs74oDqHWrGoPl8PoTDYSQSCck+lsvlUCwWUSgURL7V6XQkPqPVamFychL9fh+lUkkcf70TTekPsxR2u11Uq1WMjIwgEomgXq8jEongzJkzKBaLODo6QiAQQDweF2kfZZ+M9fD7/QLOYrEYwuEwstksms0mBoMn6fAJ/AAMOcvAE9ClHRZmjdOgFBguCG2eT9MOoHmMGTekv6PzZcWG8LraEQeOnTuWccjlcrh27RrOnTsnGUdNyZ9m9eiAxuNxjI+PS7yidk4JgjQzqmWTWkam43/YXu3sammgZh81w6jnRo+xeQ1+T4fY7KcV2Gb/NQPI803QpudDy1s5p+Z5+qeWcgIQZ7xSqWB/fx8TExMIh8OIRCIiC+S9mCWQMVQmG6idezLgrB9HkGcla+SYMCssgQrNHDsC4H6/L1lOR0ZGkM/nJREIz9frUo+1vqYGd+a88OfOzg5+/vOf4x/8g3+AN954A7u7u7h69Sq+//3vY2VlBQ8fPpS6hfF4XJLCeL1ekThrYEqJKvujmWgyTtw4oQRYPx+UDOpU/JwjnaiHTDjnTY8HQT2LajPRk96YYEycBsV6Pen6dHpu9BjqJC8EZWT5gsEgpqam0Ov1hhQX+h3A/hL8EZByTRG0acnv87AXC8DZDJxtttlmm21fwxjrRkeBO7iMI2m32wiHw5iYmMDk5CScTicODw+RTqclyQmTlVC6x3N9Ph+KxSKKxSICgYDEy/E+dExTqRSA4zT5jUZDwGK9Xkc8HsepU6eEHRwbG4PL5ZIiyMFgUM6NxWLyndN5XPTa4TjO8McU5ABEDsSsfY1GQxy0crk85LRr5svMeEeAYsazWcnUTECn/zYdSZNt0+CRf2tH15Sj0dEKBoPI5XK4e/cuVldXMTo6alkTju3RQMrn82FychLr6+tDCUQ4DrwOM/2xvIRm29hWnYXPCqBpEMR7aaaKa1L33QSIWqJosmha8kWJmWb3NCusx9KKBdQgnNJGLS/U/dZrgmCMbaaTT/lpo9FAOBxGMplEvV4XOTLvWa/Xh+IYNdjlOiCgaLVa8hxqcGuOh37OmVnRBL16jbKPrJ+4ubkJAJLgQ69B/fzoe5vr1ZSr6rEjIL1//z5SqRR+8zd/E2+88Qb+9E//FDdu3MCv//qvI5vNSuymBjNk9AmGuHHE+ddrj6CYzyTLbug1S7mjljpyHk1Zrc5UyjmgxFYDL83u6TVNhtrlcg1tnuh3hJ5/DdoBSOwxnyf9PLJmYDqdxmAwQKlUknIuutg51x37Q2aOfeE7v1AoCKP9vOzFAnCwY+Bss80222z7ams2m0gmk+h0Ok9lhXS5XJicnMTk5KQkCdna2kI6nUYmk0Gn05FAeMrAut2uFNKmFIy7+7VabagmWalUwsjICGq1msSfMZV2u93GxMQE/H6/ZEAcHx9Hv9+X2BcCQgAYHR1FpVJBp9NBLBaTv1kygE5tNBpFo9HA7u4ugCeOqc/nQyQSkd1wOi+azXnppZfg9XqxtbUlJRA000KnSTuo2jSjQ9POtHZ+NTvGc/S52qGzsnw+j0QigYODA+TzeVy5cgVnzpwZYiNMuZxm4Vyu48Lny8vL2N3dRTabFaaBTibBHGv3acCg48ZM1sVMxqH7ZNUWPS48TktONYNmspkaOGg2lfOmWRItN9OsGq+n08+bbI7f75fjdCyf3gww51ozpky+EwwGMTY2JhI5gjg+F7yOBoDmGtDp7a3GU4Ner9eLSCQijJ2eA5Oh5Rqv1Wq4desWyuWyyBV1BkpTmsp5N9lTU/7Jz82xarVauHr1Kqanp7G0tITz589jdXUVZ86cwblz5wSsUfZojpu+r2ZZOVYcL65bSri5Njwej8wlZY4EZIwF5Vhr4KizWOp1RLaPmTM5XszWynXHdugYM65ZvYa5BjudjiR8oiKCYLbRaIgknQmONjc3hxh1rSzg+DOplNWGFWWeGpQ/D3uxANwzXuq22WabbbbZRmOmMe1I+Hw+xGIxjI2NYXZ2Fk7ncVbKo6Mj7O7uolgsStB+o9GQ7HMARL7IXW7ufnPHmSCRDh93cxOJhEiLFhcXEQgEUK1W0e12EYvF4PP5RKrJWkhHR0cCvMrlMpxOJ8bHx+HxeHBwcCBOy2AwQDgcRjgcFmeZMspWqyXxI8CTukza0QKAqakpzMzMiNNeLBYFPJpxV6bx/2PNovE8vVuvHTUCDg0kTGbP/H9eg5xcLodkMgmPx4Nms4nr16/jzTfflELdVkyLlh1yHSwsLGBlZQX1el3iBDUTQaCimTcN1qyYLL3Lr00nPTHZKg1cTMCr/9Zzx3HUgIUOKo/TTqk5xjouy7wX20WgymuZoIegj2vdKtax1+vJ+GoJnVmygTJJk7XUgJjsEBMEmayaBoFOpxORSETYUytAb/al0WhgdXUV165dExmpboM5Dvo62vRmhGatTRDO+SqVSvjFL36BeDyOt99+G7u7u7h27Rp+53d+B9vb28hms8LCcX4JvDQLyjHRtfZ0EhaOKYEJmS0m66jVak+VxGC7KQknqNNMmo6BJAjU602zbwCeapdeV/ye64ljxNIspnKASaUYz8x+6Dp8mqVlezTI5DPLNfgsMP5N2/NLn/I3ZDZ8s80222yz7ausWCwim81Kogqfz4fx8XHMzMxgenpaslJubm7i4cOHODw8RL1eR61WQ7/fRyQSQTwelxgoLRfi7jxw7ODpYtC9Xk9kl9xVDoVCOHPmDDwejzgirDHXarWk7txgMEChUBBgVyqVEIlEMDExgX6/L21kEhI6U2QKy+WyxLGQ6dBxW8BwzA+dF2azJGN3UuFo7fgCw6nyye7xb4ICXZDblJY9ixnRpo9j9kgC01qthp///OfY399/Kjuddtw1U+N0HmekPHPmDGZnZ0U6qceKCRSYoZRgjqBU/9MgQQM5EwhpOZmZNVCzdnpu2A9tOkZNO77sqwZXJjtqsnzmvHGsdBwUP9OyOQ1m2B/df96H2VKZ8VOPKc8n+2muH3NsyWCb61GvHYfjWCbL2oxa7qfXke67BnBkDAnqNYDT82Ayqbrv5tql6dhS3rfX62Fraws//elPEYlE8Prrr2N3dxd37tzBhQsXhsaGAJgbMxwTjhGfe53Rkf/IZgFAIBBAKBQSwEd2jSCTGw1aWsq1QLmmlhvr6+tnjvfmmtWxePxeA0W9doHjTTOy4FQQMFsw701mkaCb7GKj0ZCEJ1pK2ul0UK1WRR3RarUkCZSuQ8l3wPMkjV4wBg42grPNNttss+0rjcDB7XYjmUzKv5GRERwdHSGfzyOdTiOfzw/9J0/5DGuuMW09ZXV0TpjxkVni+J99t9sVp8Lr9WJ2dhaRSATFYhHtdhvxeFzObbfbiEaj8Pv94uTOzMwgl8uhUqkIuKhWq+K8kOkj69fr9bCysiLxIQSQBGNOpxONRuOp3WQ6YZ1OB4VCQVhAK6ODpp3kk0zLzHislbRQx54B1mngtZOs59XtdiMUCklR7tu3b+Pzzz8fKuytd995LQ08R0ZGMDMzg0uXLglwpyNJwK+BhmYlrFg2fS8CZ5pmGqyYR1P+Z46DlZkgjk6nZlp5P5NJNe/Hz0wgp5lLq/nkPy235VhrQMaxjUajkoSDYIHMhy4tYTKdmiljbTQrY9tisZiwb7r9eqzZTjr1u7u7uH79urDJfGY0qDWlsyZbY9Uuc71rkKOTaOzt7eHw8BDnz5/HgwcPcO3aNZw/fx5zc3N49OiRxCUSOJFF53hqhtLhcMj7S7OH+v1EVo8MqQZTXF80blzoOdAqA4I+DfKBJ3JJAmS+T/m9BomcVy0Z5ngzEyjZuUajIRtBBHPAkwyW3GSgqoBjx5IgvJ4Z16vXC6970jvxm7AXC8DBYeM322yzzTbbvtL4H/Xs7CxGR0clDqzZbEqh3nK5LE4PMxm63W7JakZHgKnUufMdCASQyWTQarUQDoeHCsqOjo5KUpK5uTlUq1UUCgU4HA4kk0m43W6USiUAx/Ft0WgUjx8/hs/nw/T0NPL5PABgYWEB/X5/CFiw4HcymUSlUkEgEMDc3BwymQwePXokAI7OfK/XE/CnnU86Le12G+VyGcCTzJnAk51x7ZDTNLA4yWkF8JSjqudFf6clV6bptmrHslgsIhwOy7xUq1X87Gc/w5kzZyRbpL622Qe2IxAI4NSpUygUCnj06JEwpy7XkzTrOkukyeCYdd14XTqUBFjaUeQxeuw0g8mxN1P/cxy1M27GvmlZJvBEjqazPGrQZQVuOMaaSeTxOskE28q/tSyTsjoNFMk2a4eZ3/G6XDeaIdSMJT/jM6nnkvcLhUIYHR0V9u0kEMz+dLtd1Go13L17FxsbGwgEAsIm6XvoNW2uUX6n15n5ufm7Xv9kwf/qr/4Kv/d7v4e3334bf/Znf4arV6/izTfflKQqVhtFZAv1/HLudXIgDbwZV0cgzQyXeu1oAK7XLVk7vpcYjxYMBuH3+4XJ1yCZTBeBoC4fwMQ7mnXVmzt8JkdGRlCv14Up47PJZ1yvAb7H2Ue+C2u1msRQMjkNj9UyU743dXmD52EvFoBzWGuObbPNNttss01bJBJBKpXC/Pw8RkZGJH4tn88jl8tJdjKPx4NYLCbOr87oNj09DZfrOPtjvV5HKBTCYDCQGLWRkRGRXPX7fYyPjyMSiSAWiyEYDOLo6AjlclkkXf3+cdY9t9uNSCSCUqmEdDqNyclJhMNhpNNpSbnOAt7hcBgOhwPVahVTU1ND0juyT4VCQZxjHYjv8XiESdAxHhqENJtN2WUmC6LjBk3TDvGzwJuZGID3M8GgGZ9kdS8NJnq9Hg4ODvDWW2+hXC5ja2sLTqcT29vb+OCDD5BIJIbShmvWzGyv0+lELBbD2bNn0el0sLGxgX6/P5RFT4+X+bfJ8mmpqu6veZ4GPDp2SwNWfme2md9pB51jatbOI9PItc25Ifhkm3V7KUvTYMnM+KfBAp8X3WauUd13/fwAEOChwajZRxNw8l+73RYZs2bU3G43xsbGEIvFhlhPXlODT7JfnU4H2WwW165dQ61WQyqVElDCOFc9vxqgWT0fet2eZBoI8+92u41Hjx7h2rVr+K3f+i0sLy/jzp07OH/+PM6fP49bt24hHA4DOE7Pz5gv3Q5uHpjyWfNZJmPH4wlgTIDJ9aRjWtleZrrVffJ4PLJmeD4ljUwypNegfteQFSOwMqXQPp8P5XJZ3p9c15pVI1tO0MfrcL2Gw2E0m00BgSxpQMWF3rAg+Hue9mIBONgKSttss802277alpaWMDU1BafzuDzAYDBAJpNBOp0eSi09MjKCZrMpDF29Xke320UgEMDBwYE4tCy83Ww2hXVrt9vi5HH3f2ZmBul0WmKyQqEQQqGQOIssYpvL5dBut7GwsIBOp4PNzU0kEgm43W4Ui8UhB7lUKsHpdIrMKBaLod/vI5fLwefziROtnaFAIIBAIIBarTYEErSjrJ0cOlwmY6CdQysAdJJsTAM1ncCBptkZM0ZLM068HtvhcDjECZudnZWC3N1uF59//jmWl5cRj8eHYrK0NMqMm3K5XBgdHcXp06dRrVaRyWSGkmSYAJPnaAbKZLHYdoITDeBMVgN4Og2+viaBmhWDqEGgPpdjrudby9qsQOFJTJFm60wJoWb9rPrDduo2acZNs6N6jLheeV2eZzJx5tgnk0mMjY0NZSQ1gTMBHJ/HSqWCO3fu4OHDhwIemAjoWcDdBG8m82bOk/5cy2j1uLZaLdy4cQOnTp3Cyy+/jNXVVXz88cf4/ve/j8ePHwugGgwGQ8lKAoHAkIRR30PHtWnmjeOpJccauPMaXAscd10MnACSssjB4LjGHJlNHS/H2nCUrLItbHO73Ybb7ZasvcATGSc3yHw+H5rNptxbSyfZbr0ZoBlFsn9er1fev1QskIUj0ON9rZ67b9JeLADnsMsI2GabbbbZ9tW2sLCAUqmEbDaLVquFTCYj9d24o6uzAtZqNVSrVQSDQcTjcdml9vl8EhQ/MjKCYDCIRqOBQCAwtFs8OTmJ6elp7O/vI5vNAoBIJpvNJkZGRqQMQTabRSgUQiqVkpTXExMTIhGik1MoFEQ2RaZveXkZuVxOiiQXi8WnWC466ZRjmlI100mjQ2iazppnyv00O2TKAWl0vDX4Yns0a6QdLe2EngQSnE4nVldX8e6772J8fBy1Wg1OpxPZbBZ/+Zd/ibm5OXg8HkQiEXG2dTIH3of38Pl8mJmZQbPZxIMHD8SB1/3RTrtOzmDFrumdfD3G+nr6bw342F/NZpmmnVJ9Tz2G5hxoWaQp79Mgjf+sxknP3UnxhTxWt4lgq16vw+/3D2Wi1GuP64COPa+lk75oRkWPeygUwvT09IlF3U32jRsw29vb+NnPfoZGoyHPPSV6Oi5MM4pWrKUeI21WGxwmiNeSwXw+jxs3buD73/8+Ll26hOvXr6NYLOL8+fP49NNPhV1mX5hsheyXlqO63W4Eg0EZ32azKQmQdNyaBj1644Dt1GtTJwoiYAsGgzIObIcGZ/p54fxxHviZ3oDiNXq9HkKhkGxejYyMSFFxDURZd5ObVbr8AfvqdDplA41ycc0UEgRyw0fXh3te9oIBOAcGNgdnm2222WbbV9je3p4U4y6VSshkMqjVaggEAvB6vQgEApKCmk5QOByWGBPKeZg9j04Bi2yz8HUsFhPnf2NjA41GQ65PYOj3+zE2NibtYQzbrVu3EIvFEI1GJf6MCRS63S7i8TgcDgeKxSImJibgdruxvr6OZrOJCxcuoFKpIJvNyg42HSMySGYMh96l1iBMy6c0GDMlbMCzHVL+bjJBVnFodEIJqqyAnwacJgtWrVZRr9exsLCAnZ0dYVQfP36MDz/8UGqAsU90JHXf9bW9Xi/m5ubQ7/exsbEhjq4VAwcMg1t9D912UwbIsTdZEj3uGhhp0KidSZPp43G6OLIeR830aIBoBSz1HDJeiM42gR3Xlu4HmSYaHX49zwQA2rEnO8U+mHPPaxOEcBy0hNTtdmNqagqJRMKyaLcJ3si8VCoVfP7553jw4IFke2Q8mc6SaY67lT3L0bf6Tssb9Vz1+32sr69jbW0N586dw8OHD3Hv3j387u/+Lm7evDlUToDn8f3lcDhkTMxYWAIWmjlOGqSZmzF6E0CzpdoYj8p4NbJ1Wu6owRLHhfPJjTLWeeN6IsvHxCU6JpXPk04YZK5zh8MxVMaEwIwbR2wTz9WZJzUb9zzshSojYBfyts0222yz7etYpVJBq9VCsVjE4eEhms2mZBZjNkcW+eZ/3JTmuFwuiZcYGRkR54SOAGNAJiYmsLy8jHK5LPXZfD4fAoGAOCKJRALJZBJ7e3soFouIRCI4OjpCtVrFmTNnMDo6Ktkk9c51OBzGYDBAo9HAzMwMQqEQ9vf34XA4cPbsWWQyGWxvb6NUKsnONRMbhMNhiYnTwfl02E0GgE4KnXZTKkfHSTv5z3JY6Rjpe+pzNHCik25eTztRVscMBgOsr69LnKNmDn7+85/jF7/4BTKZjEi+OK6azTHbFA6HcerUKSwtLQ1lMeT3msHSzJBmajTAowOtzzdll6ZpiR+dTcYRafbIdFL7/T6KxSLS6bT00+kcTqii5XoalJlSPvZTO7P8TDvCGjBoh1j32WSx+Jmus6aTxQDH4IIxUXodkTXSMlCy19PT00+VDdBrTYM3ZjJcX1/Hz372M9TrdQQCgaEU/GaNMj1O2kxmUq/bZ8nv2B49pvysXC7j008/hdPpxOnTp7G3twcAePvtt0W+yHuTLWo0GvI3553PrgZNXq9XSgjwOLJSui26zhwAGRu+D3mulhkyoZCWJTKWlLJJHfemWTtel5tJBHd8j+s2NRoNVKtVtNttuZbb7RZVBMskBINBkYWy1IvOYspC4AS3fP+yyHej0RgqW/FN2wvFwMFhx8DZZpttttn21VapVJDJZCSejIkNGo2GODdaCsmSAPF4XHZ7o9Go7AozDoOO7enTpxEMBrG1tYVcLge/3494PC5yS5frOJ15u93GwcEBEokEXC4X1tbWMDY2hpWVlSFQR0ciHA5jbGwMR0dHcLvdWFlZwfb2Nvb39zE6OopQKIR0Oi2SIi0pc7lcQ9ngWKxWgzZgWPal/9ZOPPBkF99qVx7AkNROO3tWjqkpPdP3NpkqOne8h5V0zeFwIJ1Ow+/3i5NbrVYBHKet/6u/+ispw5BKpeR8Oonsn9n3YDCImZkZOBwObG9vo9FoSP8IDPQ5un3A07JTDWBp2nm3mgc9phqgaekav9dZPIPBoDi7ely1PFKzrZpp0/cx2T0yEXoM6Bizr1ouaa4xKxmoZmV1dkQzDlPf0ywL4HK5kEgkMDMzg2AwaBmTaI45AXE6ncYvf/lLbG9vSwwZHXdeW9+bY2w1X1omys9PMvMa+tnQ/U6n07hz5w6Wl5dx48YNXL16FW+99RZu3bqFcrk89EyaTBSBLoGbBuqawSJQ9vl8Q6UdNNsGYGg98jxdG5HvPIIeDcgAyAYE55oZIjnneo3q55TsWb/fl7qMBGHAEzbW7/cPxdg5nccZZgnM+L5n+0zmjeexzXzn+3y+pzKRfpP2gjFwNoKzzTbbbLPtqy2bzSKXyyEYDCKVSsnOttPpRK1WQ6PRQDAYRCAQEAeCDkI0GsX4+Lg4Lh6PB36/H36/H6Ojo7h8+TJ6vR42NjZERhmNRtFsNtFqtZBKpTA2NoZsNot+v4+lpSW0Wi0cHR3h4sWLOH/+PB49eoRyuYxIJCJgy+/3o9Vq4dGjR3C73ZicnMSDBw/QaDTw8ssvw+12y9/BYBDpdHpox9rn84kzxp1m7fSbTJhpmpnTTI12SLXzbzpAwLDsSv8ErGu96baYUjXTOSZ45nHtdht3797FmTNnkEqlhoDC0dERfvjDH+L+/fsol8vinOuMm1aMisvlQjQaxdzcHBYWFhCJRIbYJ+0I83wzho+mwS8ZCFPCepKkVWeYNIERx4jXIxPh8XgkHonAjMwjgT6vTefbrBvHn4wxMllSExTqNUbn3pSJ6oQyJpOmr6sBhslW0vHXcxyPx3Hq1CnEYrGn5lKDKc2+AccA/8aNG/joo4/gcDgQiURkLfd6PQEPer6tAKpe07ynCe5NMzdJgCfgkt/zfXDnzh0UCgXMzc3h5z//OXw+H5aXl4eeTWYJ1YlbNKvJazMRkwkUdfZHsl7mmuBzwXXDsSDQ4phSyqmzV1KJwARRvKdej06nE/V6XYAp58Hn8yEYDMr9yR5yk4pzRFDHcQAwFBvY7/elKLgeEzKDLC1TLBZRq9XQbDaHnqHnZS8WgHPAjoGzzTbbbLPtK61UKmF8fByxWGwo2UOj0RAnmVIuLUWanp6W2DOCKzoe8/PzmJycxP7+PnZ3d9Hv96UeWa1WQ6fTkfvt7+8jGo0iGAzi4cOH6PV6eOuttxAMBvHFF1+IM8Wsh1NTUyKDm5+fh9PpxPXr1wEAY2NjWFtbw/7+voDRnZ0dYQop/aFTXSqVhqSQ2qHWzpt2vIFhp5dmMgY8T7NHVmybZjD4nRVToT87CVjSUTOzwg0GA2xtbaHZbGJycnLonMFggI2NDfzkJz/Bzs6OzA+BHFkkUyZJBzgcDmN6ehqzs7MIhUJPOefmuOq2armj2WedIc8EqCZrpudPH6+BoW67Wdxbs2n8nE4zmZNmsymMiZbRaRDJczm/GhCZzClZHBP46fHhmuHfGnxpJknPCdvMdRWLxTA/Py/Pmymb5LVM6SQzvv7VX/0V0um0OPVk3vQYmrJYjr8pQdbf6TnVa5y/mwk8+DnHhDLDdruNTCaDzc1NvPTSS+j3+7h69SreeecdaR/ljyx7oTc6BoOBfE9ACjxhwwjymMnS6/UOxTvyc0pl3W63JCwhCGq327JpxfuxvAHjeLVUFjgugaDlzKzvRgkur6cBXigUkne43oTQEs5KpSJlBvRmSSgUkvc51wDH2+PxSJIUtpV94fw/TwD3Qkko7Rg422yzzTbbvo5NTk4KW1OtVkViRpaNIM7v96NarcLj8WBpaQn1el3i4IrFItrtNuLxOM6cOYNOp4ODgwPJTslYs3q9Do/Hg2g0inq9jmKxiFAohEqlgsPDQ5w5cwYTExNYW1tDrVbDmTNnUCgUsLe3h/HxcUSjUeTzeTSbTcTjcTx8+BCDwQAzMzOo1+t48OCBFCgulUqShc10KNlfLY2j6eO0WTnXPN4Eb+buPT+zcsrpJJnJLNgODeoYR8Y+8XPz3jpLI78vFovY3NzE6dOncf/+fRSLRWlDt9vFZ599hkgkgu9///tYXFxEMBgUp1w7t1bSPcbBjYyM4ODgAKVS6SmQa6aI12CHzqs5LqYs0pQ1sj3sr2YNeL4eV5rJYLEtZFR6vR6azabEPJFtdDgcCAaD4twSxNDZ57V5LzNRhhXrRGkn/z4p06hebzoxinlfruVer4d4PI6zZ89algzQ1zPBW6vVws7ODn7yk5/g1q1b8Pl8SKVSwsyz/zq1vraTng8rZlkfdxIzZ86f+Wz1ej08evQIr7zyCubm5vDxxx/j0qVLOHv2LK5duybrk0wqx5wxnyxZwnsQpPIcDfR15kUNsPQmDJ9Tzl+r1UK1WoXL5YLf75fNEMabcY1qAMl1rUsA6CQsvBc/41omm8frMUkUr1OpVEQyzuOZRGVmZgadTgc7OztyjJaPNptNianT4NWcn2/aXiwAZysobbPNNtts+xrG/6SLxSIqlQoCgQCi0ShqtRoAIJVKSXa2cDiMiYkJceJYBsDlcmFpaQkzMzOSybLfP67DxsQmAJBIJOB0OpHP5xEIBDA7O4vNzU14PB68+uqrKBaLuH79OgKBAObn5/H48WNks1lMT0/D4/Egm82KA7W3t4dIJIKpqSk8fvwYxWIRk5OTGBkZQTabxWAwEMZPyxiZwIFOmnaSydDRzJ164Gn2zcpxsQJvWjpJ51Q7rbyvBjH6d6t7mqBEx8+Y5w0GAzx8+BD/5J/8E5w7dw6fffbZEPvY6/Xw0UcfiexKM3WUWOlYHd0Wl8sltf08Ho9kNmV72H8NpK3YOf2ZmZFTO6kEKi6XS1KpazZOO7gmU8X76Fphegz1WgCGs1p2u11Jwa77TiNINRk99pEZQE3ZJK9Fx5gp4AkUTGMtLt5Tt5fAIR6P4/Tp05icnJQ1b44Bz9Pgrd1uo1Ao4MqVK/j0008xGAwwOTkpbJfuB/tvMmpsu2n8nuvBnHs9HybgNQGeuUlSqVTw4MEDTE9PY2NjAxsbG3j55ZfxxRdfyEYT2S8A8hnfbTpWUbeBgI+xvZTM6oyMZD75fGhwT4CvM8jqtcpYY64vLQnmetQlDVqtlrCJfEeb0lIeSzkox4zydibw0bG7LL8yNjaGiYkJtNttVCoVGXP9HOhnhgDQfMa+SXuxABye1g7bZpttttlmm2k+nw/5fF5i1AKBAOr1OrxeL5LJJLrdrhR1BYBMJiOpxbnDu7i4iJGRERwdHaFUKsHtdksyEjIZyWQShUIBzWYT58+fh9vtxv3790V+VygUUCwWcenSJfh8Pty8eRP7+/s4deoUKpUK+v0+kskkDg8P0ev1cOrUKTidTmxtbQEApqenpTacLthLqY+OmeLfOsubNu1gmmyBPtZ01q2O1cyTZlO0ZExLLbWjpxk43k/Hh53ULgID0/nf2dnBvXv3cP78eaytrSGTych1geP4nP/yX/4LvF4vfuM3fgOzs7NDTq3P5xMmh06pvmcgEMDU1BQ8Hg8ODg5kXVkxLrrNlGCZzBTbZn6uZVvaYTXHS4+zBuJawsj5M5NE+P3+oXWiwYXVeiGY0fOngQwZlZPWAgABABoUEaxpsMK+6BT4+trxeByLi4sYHx8X8Kbbr4G0Cd5KpRKuXr2KP/mTP8H+/j5mZ2cxMTGB9fV1AHhKTsrr6cQppqzVilnV6+4kf9WKZTZT+Ov5e/z4MWZmZhCNRvH+++/jX/2rf4WFhQU8evQI4XBYnms+F5rF1awmJYdkt3w+3xAryw0sMr6afeM1tGRbx5zxncBx18lHzGRIGpSR7fR4PJK10uv1PlWbTbPLbBuZx3a7jUAggEgkIomMeK1isYhHjx4hnU4PgVVej88E4wTJvnFj53kmMXmxAJzNwNlmm2222fY17PDwEP1+H1NTU+h0OpJ9jIlCyHAUi0XZCfZ6vfD5fIhGo5iensZgMEA6nZaMlF6vV5yKeDyOwWCAvb09OBwOzMzM4PDwEMViUYDfxsYGQqGQFJu+fv06KpUKwuEwjo6O5F7r6+vw+Xw4e/YsqtUqtra2EAqF0O12kcvlEIvFxBn1+XzY398XR0kzNl6vF41GQ5wezeAAw6njrZx2DSjM302wYkq/dGIDDSx4D+3Ym5I3t9s9VBvKZJD0Pa0yGvb7fVy7dg2/+7u/i/HxcWEqdZur1Sr+8i//Ev1+H7/1W7+FycnJof4xjojyLc0AORwOyWZJBzOdTks8Jdug26mZSV7HZBO002+Oq56fZ4FrXlMDI1Oiyu+4ZrQTredLX4f9123WYFHH0ZHBelamRg3wdOycluTpel36fox5m5ubw+jo6JBcz4wlM5m3TqeDarWKe/fu4c///M+xs7MDv9+P8+fPo1KpDIEeboaY8XSaqdb30X21WrP6GTSBpmnmetGfHx0d4e7du4jH49ja2sLjx4/x8ssv4969ewLQdCIb/YxoAMSNHxOQkX3z+XwAIJkbzRpuBJkEefq6lDfynaRjKAnyOO+6xIm+F5lgXeuOa52Zgjl2WgLJMgpk5/QmBjd8isWiJKzSzDP7HQwGRVXRbDafAq7Pw14sAAc7Bs4222yzzbavtkgkgkAgICyXy+WSOm2U6VAiMz4+DuD4P3QmHikWi+IQpVIpAMeJUaLRKJLJJEqlEo6OjhAIBODxeLC5uQmfz4dz584hn89jfX0dvV5PmIZGoyE14QqFgqS239vbw+zsLBYXF3H37l3U63WEw2GRSCaTSXE6WBdpf38fwJNYJDqKTBygHUarXX0ATwEAXTeK32s7CbyRjeFnvB933E3gZgUc6dCZ99BMFueQjqMJMNLpNB4+fIhXXnkFR0dHwsLp++Tzefz4xz8GALz77ruYm5uT78jEERjo2nGaSUomk/B6vQgGgzg4OBAQoFkpLaczx0sDJi2906DBBG/mfGr2zgo4sP3akScIpQNP51nHHZoMqWbvCG71nJIBCwQCQ+OozWw7+2mCGjIfWkbY6/Xg9/uRTCYluRAZMqtNCA3eOH+lUgn379/HH/3RH+HWrVtwuVy4ePEiUqkUNjc3h9YgAYkGjuZGBcfypOdBr2MtfdWm59AcKwACQtifdruNjY0NLC0twel04urVq/jH//gfIxQKDc2fTo+v2UuCrMFgIEyzjnWr1+uyCcQSJExqwjnR9dDM0gM8hmA4EAjIRoEp4x4MnsRv8hiqIQKBgMQq8t3JMa/X60PJS/QzScZuMBgM9YtrnjLuSqUibB/wBFA2m025TyAQGFp/z7OQ9wsF4GCxa2GbbbbZZpttpnk8HpG6eTweYdEASHxGMpmEz+dDtVoVsORwOCTrZCAQEOe0Wq0iGAxidnYW2WwWmUwGY2NjKBaLKJVKWFlZQSKRwObmJvL5PMLhMPb29iTOZGVlBeVyGYVCAclkErVaDd1uF8vLywgEArh9+7YU/s5ms+LUdLtdJBIJVCoVqXv18OFDccLYVw1qNFAy49aswIUp2zNNO8gaAAJ4CrRoFsSKTeBPMxbMZIBMpoafaUmbljr2ej3cv38fp0+fxuXLl/HLX/5SarhR3uVwOFCr1fD+++8DAH7zN38Tk5OTCAaD4jCT3aEDbyWpZOZCj8eDTCYjCWhMZtEEX+bYaefaZJKsZHYatNE0iNMZ9kyGiI4tGQeydcAxeOH46uP1PdhGE6xqMKXbqUG8nmN9DGO0aHTMebzP58PExASmpqYQiUSGEm+Y4I0bB5xrbnY8ePAAf/qnf4obN26g2+3i1KlTeOmll5DNZlGpVARQMA29zqDJPut4Pj1PJrtqzr0J7Mzf9QaFOb/6eQaO31mNRgNerxfb29soFou4fPkyHj58KGBNSxW53nWSHp3Mhuta94lSRI4Fx4b1M82Mpfr5BCCySo4h32FerxflcnlIbsvNJ11gnOtOj4vehNKASr+/+DmZukAgIMBXbwiYxeM5Fjquz3wPmu/Pb9JeKADHIbXa0bDNNttss802WjabhcPhkFgZ/qcOHCcwCQaDKJfLUisukUhI/ITf7xeJJeWV8XgcoVAI9+/fR7/fRzAYxOHhIcLhMC5duoR6vY6PP/5Y6s4dHBxgZGQEExMTiEajODg4QL/fRyQSQblcRjAYFEfy0aNH8Pv9CAQCyOfzEpfHNODMkplKpXD//n0Ax45zs9mUeknciScg0MH5wNMAy4q5MeWVOnaGjvGz/v+lnItOk3ltzeDQOWTbTCCnj9MgzspZZVuz2SyuXLmC3/iN38DBwQHu3bs3JDEEjh22YrGIH/3oR6jX6/j2t7+NhYUFhMNhcRb9fr9IJZkYxnQsybyGQiGEw2Fks1lJcGKyZVaMmx5v9tvKyTdBAftjliFguzQA4fnNZlMcczIwOoOkTtRgpo7X7I2eH824kKHTCUo4t3ozgWDBTATCYzUIisVimJ6extjYmBTptoqv0ywl45vIvN25cwd/9Ed/hBs3bqDT6SASieCdd95BJBLBjRs3RLLZbrflOdJxiLrvemPBnCdzg0PPJftsAnk99zT2T681jkuv10OhUMDk5CR2d3fx/vvv47XXXpOMtVbxhAQknBOr2FjGwulnnTFsAGTzS4M9/q03ZHhOpVJBqVRCPB6XeQ2FQhgMBiiXy0MMPzdBdFwvS31Q+sj7UqJpMoyUvQLHYJDMIcuF8FjG9fEePJ/H6GQt3ChinN3zshcKwNlmm2222Wbb1zFmNWu32wgGg/JzdnYWvV4PR0dH6Ha7EtdULBbR7/clmN7pdIrkcm5uDgcHB1hbW8Pc3Bza7TYeP36M+fl5LC4uYnV1VVLZM/NlOBzGqVOnUCgUkMvlEA6HUalUUCwWMT09jfHxcWxtbUkWTDJywWBQZJTdbhf5fF6KST9+/Bh7e3viiND51jve2okke2DGc1mxciZg4Gd+vx8rKysYHR3FlStXJEOcNjp/+qcGbDT9mU4UYQJHk9HRbaSEykz7z76ur6/jzJkzuHDhAra3t4eKA2vgVKvV8MEHH6Ber+N73/se5ubmEIvFZLff7/eLM0jgyMQMNLfbjXg8Dp/Ph1AoJGwcmS46sBx/M35PgwGddp9Otga5NH2MKdHUc67nkLGbOtaIpsdYMxU6IySBIe+vJWxOp1OS7NDp1Y697jfnjEBfZzdku51OJxKJBMbHx5FIJARwauklz9HnaoamUqlgdXUVP/rRj3Dt2jWRQp85cwYzMzPY29uTjLI69s5Mm6/XHvtjsqscQz3epmRZf28yqLwnwZaOJdUsNAB59hwOB+7du4dXX30VwLG0OxwOD7GoGtBybXEOzA0Bygb5PROI6LknmKKske8aJhHhNXVpgXA4jH6/j93dXZE1avDO+efzxTFjmylt1PNBiSWZNr0BwfHlOmNJhcHgSU08gk8qMzSAJGAjq8y197zshQJwXPODga2mtM0222yz7WQbDI6LuyYSCQwGA4yNjSGRSEg5gEAggJmZGbTbbdTrdfR6x/WlvF4v6vU66vU6ksmkZKpzuVx45513sL+/j+3tbVy4cAETExO4efMmarUalpeXZfc5EokgHA7j0aNHGBkZQSwWQz6fBwAsLi7C5/NhdXUVwWAQPp9PyhyQJWSZAL/fj1gshnK5jGq1Ko6G3++X2D6dPVE7wtrp4njQyTIlkwR5WmpIR5KJBcbHx4fit6wcG9NhN4GilXOvZWiaZTMZCg1ouMOuARmPaTabuHbtGn7t134NS0tLuHv3rrCoplWrVXz00UeoVqv4e3/v7+HcuXOIxWIAnoANr9c7lLBBs3FsM+sLBoNBqelXKpUEZHNM6FgzyQPT1munX4+9ZiP1uAAYig/i+VrOqNtHkGCyqHRatUzQ5XIhGAwOsVB6vjUAYfsZh8TYKS2d1ACELAsBpQb6zPw6OjqKZDKJcDg8FONJ0yBOx4kRSBSLRayuruKHP/whPv30U2FXEokElpaW0Ol0sL29jUajIWPSbDZlI8S8F+9jrncNgvT6NUGe+bueF463vo6+lx73wWCAdruNWq2GyclJ7O/v4+HDh1heXsbVq1clCQ/70el0BFhzHjlO+j3Af8zQWK1WhdnXMkkCv0ajMQSSer2eSC6pBGi1WpLZkvJuneGx1WqJyoD91s+Yw3FcS67T6aDZbErmVJ0chSCSx3BcGdfs8/nks2aziUajIQCZElJubuhMp3ozTAPf52EvFoD7UkRp5zGxzTbbbLPtWebxeJBIJBAIBDA2NoZIJIJ8Po9Go4HR0VFEIhEBbiMjI0gmk3C5XFLQdX5+HiMjI3j06BFSqRQCgQCuXbuGXq+H119/HdVqFR9++KHIL/f29uByuRCLxVCpVLC3t4dgMIhQKIRSqYRQKIRUKoVSqYRsNouZmRlh5FiTjsBSZ5M7PDwUVoIZM3/nd34Hf/InfwKfzyfFfM2kAXS4zHg3kznQkjbt1PPvbreLR48eYWNj4ylWzGTNaBoYmCBLX5ufExTonXZ9be1IUdr3LAC5t7eHO3fuYHZ2FkdHR5KRlG3Tfex2u7h58yaq1Sq63S4uXbqEWCwmTE6325W4ODqZlOmR+WHbw+GwZLQLhULI5XKo1WoyFqbTbsZ80czYH5N9sppHPd7mfOr+mmwn22MyRCZTpGWAuo3NZlOkhgQOWt6q2UEAkiSDEmU67clkEmNjY5Lt1ZSCcu7404x3I3hjtslPP/1UQL7H48H4+Dji8ThyuZyw2Gwv4wL1mtJMpl43bLM5hlZtPYmtM6WWppRSX8NkHGu1GuLxOBwOBzY3N/Gd73wHH3/8sbBS3LjRSXj0GtXPuBkHRnBVr9dFOlmpVIbGg8+iZnHJVPO9NTExIaCLgCocDiMYDCKXy8mGCo9nrC9ZL4L3fr8v0nMCUzLw7IdOxGNuGFEKX6/X0Wg0hjZUOKbcSOCzGA6H5V3baDSG6md+0/ZiAThh4AZ4EhFnm2222WabbcPGWLTJyUm0221sb29jZGREJG/lchkApMB3s9lErVZDNBqVQtyVSgVzc3Mol8vY2trC+Pg4kskkdnd3BYQ1m01sbGwgFoshkUjg8PAQALC0tIRms4lKpYLJyUm43W6sra3B7XYjGAwK4AuHwyiVSgIM+v0+EokEGo0GyuWyJG9oNpuSlOXBgwfCfuj04SwhQGfGKhHFSWCBx2gWQTvr/F7/rZkjAEMgS99bMzw8jz/N1PP8fWRkZKgOFL/jrjm/N0EqcBwLs7a2Br/fj6WlJdTrdUmiwPazjwQ76+vr+OM//mPEYjFEIhG5jy7fQAeZjiSdRy019Hg8iMfjCAQCiMViKJVKyOfzwpiaTibHS7NrHBNd2w94kjVPs6w6pomARgMROrd67nl9PafmHJhzR+ffrDXm9/vlc6fTiVwuB7/fL3FEet50GwFI5kGCK9Y51GvRas1wDCj3a7VayOVyuH37Nv7zf/7PuHnz5pBjHgqFsLy8DK/Xiy+++EKeN4fjScIibh48i3F5FiAzx9DqeePvpszRlB5b9Z1gpVAoyDrY3t7GYDDA7OysJGRhJlqubTKQZjkAzfjxvdNutyURic/nQ7PZRKfTEbaXmz1cc5QhBoNBSXRCuXe/35ex9Xq9cDgcspnGjRGTleScOhwOJBIJkTwSjLrd7qEMkmy/LjugGeB+vy+1O1utFiqVirCtvJ/b7UY0GoXT6UQ6nRb2kTGurVbrxPXwN20vFoD78qfNwNlmm2222fYsW1xcRDweRzqdRrFYRCwWQzQaRafTEWcnFoshFAqhWCyi3W5jbm4OgUAAN2/ehNfrxcTEBA4ODgAAly9fRjAYxI0bNzAyMoLLly9jdXUVpVJJEpVks1lEIhG4XC5xZM+dO4dms4lHjx6JtDKTySASiYjzwTgMp9Mp8qhWq4XR0VEAQC6XQzQaRaPRgMfjwd7eHrrd7lBdI0ofNRAwpZLA08kyTIdTf2bFDmjnj/fSO/naETYTK2igQ8mdboeW+2kAOBgMxHmjk8cdeTqzWrbncBxnONzZ2cHp06cxOzuLx48fS40pOs2mg10qlfDhhx9id3cXCwsLmJqaQjQalXsy0QUdYoIosjhaHkf5WDAYRCQSkWylZHg10NbJGDRbqgGzFYuqmRyOLedCg1U6qxocmQCETLR5fc3scbwZH9VqtRAKhQBAyl74/X5JmsL1p2WbvE48HkcqlZJnkKyKCV44/xpwaMao0WggnU7jxo0b+PM//3Pcvn1bwCQLTU9NTWFxcRH7+/vY29uT6/b7x8W7uSFgxYTpDQ32x4pNNp8VK3aOGxb6c7ZDz7F+Znl/ziFrWvL5WV1dxfT0tNSj1GOjx4xxjXy2dPu4fsmWMeENgZP5rOiMlmbSJM2IAscsGBMHtdttmWsNxDimetOmVquhWCwOFfrWMktunHA9EhQTcGnQyXHXtd6q1arI0rmpVi6XUa/Xsbu7KyD2JHb0m7AXC8CpGDjbbLPNNttsO8lCoRDS6TS63S4mJiYQCARQr9clNiMejwOAFM0+f/48stksNjY2MDk5KUAvFothZWUFh4eHuHPnDqanpxGNRnHv3j2USiWMj4+j3W7j6OgIsVhMCgdPTEwgEokgm80im80imUyi0WigWq2KRE+DEr/fj1Qqhb29PXQ6HUxMTIjT4/P5kE6ncXR0BLfbjXK5PFRwmI4dTYMmK0ZNm3by9DkngTctj+M5dPJ4HX0tzQbp1OT9fl+Sy5AlYls10DCNxzFWUbdXnzMYDJDL5bC7u4uZmRn0ej08evRIvjPlnYPBAJlMBuvr67Imfu3Xfg1nz56VTIh0TCnNovNHCSuzGfJ6TqdTgFw4HEYymUS5XEa5XJYYObaZTrKOVzOBONtrxbyZEkmuDQ0S9ZzqjKEAJIskrdfriZRRO+6DwUAYlFAoJIDA7/dLm1gjTDNLdLzD4bAAt0AgIKDiWeuTY8F/BBAsev/JJ5/g/fffx+7urowTswrGYjGcOnUKzWYTa2trQ4xbtVp9CliaMlfN8JrrWrf5WeDNXJdfFxSYa5ptINByOBy4evUq3nvvPaTTaZFT81yv1yuJQPSmB9cd54cMHO/Dc/i3BoNsh5YxMuYNeLKB0O/3BQBxc6Fer0syKcZZMq6U7wGulXq9LmPMhELdblfmj1JcxsrpEhN8x7vdbnm39Ho9yfRLSWculxP2mOoGLa1mMpbnZS8YgGMMnI3gbLPNNttsO9n29vYQCAQwPz+PVquFUqmETqeDUCiE6elplEolbG5uYmFhAZOTk0in0yiVSrh06RIKhQKq1SpOnTqFaDSK+/fvo1gs4uWXX0alUsEnn3wCv9+P0dFRcSji8TjK5TJqtRqmpqZQq9VwcHAAp9OJVCqFbreLcDiMXq+HarWKQCAgEq7R0VG4XC7k83mpVVcsFpFIJFCr1ZBOp8VBptNDJ4TOrHa0tdMLPGFhtPNofmYl2SIw4HW1bImmmQMTFGn2RsfeEFQwfor9AZ7EuOnCwdoBJTsRDAYFSFgZz8nn84jFYpicnESxWEQ2m5Vrm+PT6/WwtraGYDAIh8OBdDqNV155BW+//TZmZ2clSyXrW7HcAAGDTpBgAjnGCQWDQcTjcVQqFUl602g0BIRrYGAlyTOdf82E6J8a4NHZp1Pe7/cl8QS/Z9utwK2OqyMII3NMdkSPJyW9PNfn8yEcDiMejyMSiQhw00CTZkoSNYtCoNFqtVAsFrGxsYGf/vSn+PnPf45cLje0fih3nZmZQTwex87ODrLZrNyn2+1KIhO9GaJZNb35oJ8bK7Bp9bc5X/p3DQo10NVzp9ugWTktSeba8fl8qNVqknmXfeT1NcPG2nCUQRKYE/AAT+IzKe3ms8e1T5aObdWAnXNAhoybElzflL5SWsl/nF9dvoLZNfW7imwf+2SOFddIs9mUzR4+j6FQCKFQaCjpSz6fHwLx3Kg6KfnRN2UvFICj2QycbbbZZpttzzLWeqtUKiiXy3C73Zifn0cymcTOzg4KhQLOnDkDh8OBmzdvYmFhQeoquVwuvPbaa6hWq/j444/h8/lw+fJlrK+v4/HjxxgbGwNwXGtubm4OPp8P29vbcLlcWFpaErmcdvgp0Wm325iYmMDW1hZ6vR5GR0eRzWYxGAyGEqnMzs5if38fvV4Pk5OTQxIp7iaPjIxIYL4GUWbMkQZi+nPTtIOk2YivYxrUabmfVZY9zQjpxARk6Cjp0k4VnU0tnWTWO9O51dZqtZDNZrGysoIzZ86g3+8jl8uJs8hzNNis1WqSQOb999/H+vo63nnnHVy8eFES4tB59Pl8As40uLZi5OgcejweRCIRtFot1Go1idGjvFJnD9WMkB5DzqceDxMgaABhsnRkQHgvHUfE+2nWT7MxAKTcBq9L555xZwS4lA3TadaF2E8CPSbrxrYxs+LBwQFu3ryJn/70p7h9+/YQo8Q143Q6MTExgTfffBP1eh37+/sCbMhCaRac42iaCR5Mds18nnTfNBjQx+h1yraanxH4mNfl+4THOxwOlMtlRKNRbG1tDa1/LXVmW03Qo+eWmVH188d78LnkmqjX60PZbvkMBwIBuFwuUTtwHZrSao4/8ARo6vcY4+s4dgR/ZOy4JhjTpp8/rkVek+9Ih8OBdrs9tHGk3yuRSAQ+nw/1el0AoNV78puyFwrAPUcpqm222WabbX+HjOn5G42G1DLz+Xy4ffs22u02FhYWkE6nUS6X8corr2AwGODTTz/F7OwsJiYm8MUXX2B3dxevvPIKYrEYfvnLX6JSqWBpaQm9Xg/5AcIZzQABAABJREFUfB7z8/MYDI6TCSQSCXg8Huzu7koClXq9LkxbOp0WB+L27dsIBoOYmJgQsDA7OytZ41KpFAqFwhCropkr9k+zLToznJWESwM5munE6TgdK1niSdcGhqWSVsfSuaKzpxk5xl8BEFDKeLDBYCBJZnhPOrehUAj1el2cTQInDUSAY0nYwcEBpqenMTU1JQWHTRCn+6XLKty/fx8HBwd49OgR3nzzTSwvLyORSAzJKr1e71DdOA2sWD9OxwASyIVCIbTbbaRSKVSrVdRqNflHaRn71Gg0AEBSsGvWQbOcej61fNaMLSR7psdUM2ImO8v54rrjeuU1WJsrFAohEolImQxdy81cN9r05oMGbk6nE81mE8ViEVtbW/joo4/ws5/9DAcHBwJcNWgCjgHm4uIi6vU6dnZ2pM4i71+r1YYkq/xcM8YmeDPX9knMocmcaTuJSTXj4PTGB8dOyxobjYY8p2tra1hcXJQSDWQ/uXnAZD+aCWNiHj1mbB/ZM70pQjDGNcTfyWC6XC4BwwTK4XBYQCOllVxrmh1ku7gpw7810NbSaoJYSj057gSLOgaQbdfvSEolOVa6T7VaTWSZlAI/L3uxABzLCNgMnG222Wabbc8wshlTU1OYnZ1FNpvF2toafD4fJiYmsLOzg1gshsuXL+Px48eoVCo4e/YsarUaPvzwQwQCAbz33nvIZDL48Y9/jEAggLm5ORQKBUQiESwuLuLw8BCdTgfLy8vI5XLY3NzEzMwMAIjssVarSd2jUqmEZrOJyclJdLtd7OzsYGZmBrOzs5IQolqtYmdnR6RQ4XAY7XZbJGI63k0773S6TEeQpp1w/m3FLpjMyEnONp1Uq/voz/X5plzM4/FIjBiLTLtcLmSzWQEU/f5xNjuyc7weQZt2GDWIMZmIarWKTCaDWCyG8fFxcfLM9uu/eX+n04lCoYBf/vKXePjwId544w1cvnwZCwsLiMViEsvHhBgsEKydWzrUmvGiA0zwx+tw95+ZUZvNpoxBsVgcYnTIlgLDMjv+bQWsCVQ0WNHFuU2AYTXHdHjJJpJl8/v9Ik/TLK7VT73+tFRSM4JcB3t7e7h27Rp+9rOf4fbt20Pxj/qabNPZs2cxMTEhpRzK5bJci8BAyyc1e2e21WpM+Jn+nYCQY6b7Z17X3FDR3+t50XJU3ocS42AwiH6/j0qlIixiu92WBEm6PhrBCwGU3qTQbTClv5Roc11TbqlB5WDwJDNss9mU55FjxmfAfM9oRpkAUANKAi22y2QO9caAuTGlk6PwHzeFdKwb78WkJ0ze4nQ6EQgEhqTc37S9WACOSUzsGDjbbLPNNtueYf1+H2fPnkU0GsXGxgYqlQoWFxeRz+exubmJl19+GR6PB59//jkmJydx9uxZrK6u4vHjxzh//jyWlpbw8OFD3LhxAxMTE1Jce2ZmBm63GxsbG4hGo1haWsLjx4+RzWZx6tQptFot7O/vS3xcIBBAMpnE3t4efD4fFhcXJdvZxYsXEYlEcHR0hMnJSdRqNezt7cHpPC4P4HK5UKlUsLCwgN3dXeRyuSEmR2dBJDujnUPg6yVNMKVgJrNmOvsmk6dNy7Z4LZ7LXfVAICAOH6V13D1noWAtvaKjSuDK/o2MjMDv90uRXn5GB063h7GHHo8Hc3Nz4mjqY08y7fAeHBzgL/7iL/DgwQO8/vrreOmllzA5OYlYLCaSTjIRBDIayOkixHQyNYNER5zZ+yipJBtHNpKOZqvVOjHbJ+dWG8sf6LHRskU9j3SsOdd04jlflJwx5bp2qDVAMEGb3kzQDjbHhXPdaDRQLBaxv7+PX/ziF/jFL34hdcFM4Kalk7Ozs5idnRVGU9ce83g8KBaLsrbZP6v1rDciTAbcipnTa95qQ8QELuz/Sc8o51GvEa4J1l1zOBzCqHm9XhSLRUSjUTnH4/EI00ywrxl23Q8CWwIYbjhwbrl+dFvJqAOQxCO6BIEp39RJkDhnTArkcrmGQCf7S2ClJbos1K3lp5q9pNqB8kr2SzORfJe6XC7ZSPJ4PFIaA3iSlOV52IsF4L78aTNwttlmm222PcvOnz+PRqOBGzduIBaL4cyZMzg4OECr1cI777yDzc1NkU8CwMcffwyXy4U33ngDzWYT77//PprNJs6fP4/9/X0MBsf1ljKZjNR2C4fDuH37tqT1vn37NkKhEKLRKEqlEpaXl+FyubCzs4PR0VGkUikUi0WEQiGcO3cO29vbyOVyUqeOTlMymUSn00EikcD09DQ2NjaQz+cBPClqTQeJjAMAiVPRUivTedQOqJbZ8Vir3XFgWCKpQZlp2nml00uWA4DEybBgbywWg9vtRq1Wg8fjQTqdHgKMBByaJdBOJOuzsUQAkzTo+mw8r9froVwuw+l0YnR0FI1GQzLRWUkpTUDD79vtNh49eoTd3V3cvHkTb731Fs6dO4fx8XFEo1EEAgH0+31ZFwQ+GizQ2SeII3DR7WVfTVkhWRECu06nIz91anUmi7CSb9J0fTB+R7BJMElpKPvBeEWd4l2vNT2OmtXSDBMdei2V1HFulEvevHkTn376Kba3t4dktKYRmKysrODixYsAjmWGZN94TDgcRrFYFEeeANtkcjQjxvk3+6RBr8kw8RyOrdVa+iqGT4MMrnl+RhBHBnpjY0PeL7VabSjjK0Ee3x1ut1syQhK0sCwBARKZNspjKZc1N2/4/HH9EVhxXHXcIeXAOk4tHA4PxfMCEHkr70OgyjHheHEzRIMz9ptjwzZ3u13UajVps8n8NptNxONxhEIh2RR7nhkogRcNwAkDZ5ttttlmm20nG4uyLiwsAIDEiQQCAVy7dg3hcBgXL17E7u4u1tbWMDs7i/HxcTx48AD7+/sYGxvD+Pg4NjY2MDc3h6mpKWxvb6PT6eDcuXPI5XJ4+PChZBasVquIx+Po948zwl24cAF7e3vIZDKYnJyEw+HAo0ePMDk5idHRUezv7yMcDgubwoxs09PTwvSNj4/j/v37Q5kTgScOYLVaFfkb8CTQ3wRp+hyadqb5vcnCmefQdHIFGtka81oEIQCktpLf7xfHjWxOIpEA8CS9vXbgdFwbmQZKnpgYY2dnRxIwMEZMgx0yCAQInBMmEjEBFM1M5GE6fffv38f+/j7u3LmDV199FefPn8fly5cxGAxQr9eFJaNDqRNmaCBnJuzQjALvzeO9Xu8Qe6KPN1ktAnqyYebc6r7pOltWPzXA0WyavqYGJ2YiHKs+auBWq9VQKBSwu7uLe/fu4erVq3j06JEUVzbXrl6PDocDc3Nz+N73vodsNitZZ7PZrGQjJBjlc0OwqrNQ6utbMZP8XIM4q3aZgM2UT1qZ/tx8hs1NGYIqtr9UKskzxPeJlkOyv3wmdKp94Jg96/f7kl1SM9i6/ZRiUmIYDAaHYti4HrlOKEPk86rXLNdxvV4XCbhOcsL3Bq9FZlpv4Oh3hB47Ajwygl6vV2TOOj6OBcj5borFYvD7/ZLoiJsTz8O+EsA5HI7/F4DfAZAeDAYXv/wsAeA/AlgAsAngnwwGg8KX3/3fAPwzAD0A/9fBYPCXfyMtt2orrP8jss0222yzzTZtfr8f4+PjyGazaDQauHTpEtLpNO7cuYPl5WX4fD588cUXqNfrWFpaQqfTwb179+DxePD6669jf38f2WwWL730EkKhEO7du4doNIqzZ89ia2sLpVIJyWQS6XRakljUajWMjY3B6/Xi5s2bIs3JZrPweDx4+eWX0W63sbW1hdnZWezu7qJSqcgutt/vR7Vaxblz59Dv93H16lWEQiHMzc3h4cOHAJ4kNdBOmdvtlkB97ahrMx0eXst0LDWzYMV00FEz49/MRAja8Qee7NRHIhEBvfyejloikXjKCaazp5kcOn1MDuLz+ZBMJnF0dCTOH+/X6XTQbDYFOFGmmc/nEYlEMD09Ldn72H/NxpnjpY27/qVSCV988QU2NzeRTqcxOTmJ3d1deDwexONxBINBAZ2UdJHR0qCJc6lBmf5pAiS2iQDGlOuxD8DTtbys1ob50/zd6hw9NlZSRA0uNdNGVqTdbqNarYq0+c6dO7h58ya2traG5HTmvWhcE9FoFBcuXJDyDL1eD0dHR5Lh1eFw4MyZM8hkMiIL1KwW+6SlmBqwm+sdeCInNDdK9Ln6fN7jJOBntXHyrDnhGPIzJgvhRg5ZM7a13+8PMdV8lgl+CLKs7ktwZZb7AI7Bn94Q0vG4umQHj+l0OggEAsKc53I5SfbE+/M54XU0+8t2sn9+v18yX+pacsDxe8nv90sB8VKpJEzcYDCQzRXOiY67pAT3ednXYeD+3wD+HwD+nfrsfwLwV4PB4H91OBz/05d//48Oh+M8gH8K4AKAKQD/xeFwnB4MBs8WkP+KzGbgbLPNNtts+zoWDAbFmW61Wrh69So8Hg8uX76McrmMq1evYnZ2FsvLyzg4OEA6nUY0GsWpU6ewt7cHt9uNN998E5lMBvfv38eFCxeQSCRw5coVAJCkJLFYTOpJzc7OolarYX19HRMTE/D7/bh37x46nQ5OnTqFzz77DLFYDIlEAjdv3sRgMEAgEEAkEpF4jcuXL2N3dxfr6+tYWFhAJBIR5k+b3umm3MncwTedPs2w8TN9nBW402nQaXRmrZx1giTuaNM5YlZCnWJ+8KXkczAYIBgMwu/3i0yO4Es7zdwxp6Oqgdbk5CQqlYqwaZSHAU9YN95bSymnp6dRqVSQyWQEEPKaun9aSmomB9EFrq9evSq7/E6nE2fOnMHs7CySyaQk+WCCD7JyGsxxXvg758IEQVrSZ8X2mHP6LObnq77Tv5v/tDxSAxbNrJnMIJmQcrmMbDaLzc1N3Lt3D3fu3MH29rZI6fT9rdpI8B+Px/HGG28gFouJ1LhSqQwlwxkdHcX58+fx7//9vxfAS/aK19Jsl479NOff3EzQbLH+WwMSvTmgGTzK9QjEdZ/1tfTvun181trtNkqlksiRuZbJWBPQOZ1OYfs5R0zXT6aMEkqOjS6GzTXLMgE6cZKWa5KhJgOm1wgBF98XlCvqeE5KoQnM9Nwz0Y/ewNElSDhfBK36mY1GoxgZGUGtVpN3HzNfOhwOAYFUFFix8t+UfSWAGwwGP3c4HAvGx78P4Ntf/v7/AfAhgP/xy8//v4PBoAXgscPheATgTQCf/Ira+7XMJuBss80222x7ltVqNZw5cwbb29vY29vDysoKUqkU1tbWkE6ncenSJbjdbqTTaeTzeYyNjSEYDOLRo0cYHx+Hx+PBjRs3EA6H8fbbbyOdTuPTTz9FMpmEw+HAwcEBwuEwWq0WIpEIIpEIDg8P0e128d5776HZbOLWrVtYWFjA2NgYNjc3MTo6in6/j83NTQQCAfj9foyNjWFvbw+zs7OYnJzE2toacrkcFhcX0e12sbm5KTF4dOy4Ow0c75oTQJKpOknyRdPAzYph0Z/rHX7giVRSAwi9261/8tixsTEEAgGRXTEeRhfuTaVSQ9ItnbCEfaZ0i2wDd9eLxSIikQhmZ2extraGbreLVqslTjr/Zv0nlhsoFovw+XwyL0x2oZ1z9oNmAjwts+NufaFQQDqdRi6Xw+eff47Z2VmcPXsW8/PzmJiYQDweFwZCZ6vUgE7HDRJIE/RpKZr5z0ze8iw2VR9nxjiaDIwGalYsn5k5Usfr8fd2u416vY5sNoujoyOsrq7i7t27ePToEUqlktTr0vc9qf0ck9HRUXzrW99CJBIRR5+14pht0O1247333kMwGEQulxuqO2jGBJqsNMeF822yZ+bYmevEXEdWY6ifLauxN69nAma2n+ub488YMOCJxJDriHPCzI8AJNsl12Wr1UKj0ZA5JPBrNBoytrpYNu/DeR8MBgLCuLZDoRAASHZe3peZVgHIBgfj9gjE9LriWDDZj4731JsYDodD3jWULjMGzkxixNhASkm9Xu9zjYP768bAjQ8GgwMAGAwGBw6HY+zLz6cBfKqO2/3ys6fM4XD8DwD+BwCYm5v7azbjqWse/2IDONtss802255hyWQSt27dQr/fxxtvvAGn04lr167B4XDg8uXLODo6QjqdRjKZxMWLF5HP55FOp7G4uIhGo4GdnR289NJL8Hg8uH37NorFIsLhMA4PD1GpVOByudBoNHD27FmMjIzg8PAQExMTmJyclDg6FgovlUpS58vpdCKVSiEajWJ0dBRbW1u4fPkyvF4vPv/8czidTsTjcezt7aHRaAztXtPoHPV6PVQqlSEHUrNl2pGxAnHaWbZylHV8iZZ3kdUwY7Q0M0Enie2n8zYYHKf05w56p9ORxB+5XE4cUs3maTaDsTOadej3+8hkMrhw4QJyuRwODw8BQOJ8yLppuRQZiW63i0gkIqUFKKsi+PN6vVJrzjRzd97pdKJareKXv/wlfD4fAEhCjocPHyKVSmFxcRHLy8uYm5vD6OgoFhcX0ev1hsCljs0i2KDjbY43f+d8m2yc1e9Wf1sBJNM0u2b+ND8j+9Nut9FoNITl3NnZwZ07d7C+vo69vT2R9Jn9Oqkveo3Nzs7ie9/7HkZGRpDNZuX+h4eHKBaLAvgXFhbwT//pP8W//bf/VpgWjqcJTDVo0/fXwEePjQZIZswfvzfBGq/DfxokazBuPruaHTTBnWbQ+Df7Ua/XJRkJ79FqtWQ98bngnMViMUSjUWxvbwtbGovFEAqFUKlU0Gq1RI5JuTIBI58zAuNwODy0EcF2kY0nqGcxe653JjXSGV05hlyHeg51cieTHSVQZF03xpGyv9xEsWJLX6Q6cFZbOJZwajAY/G8A/jcAeP31138lkEuyUNoIzjbbbLPNtmfYjRs3MD09LclE7t27h3g8jqmpKezt7Ql4SyaT2N7eRiqVwoULF7C2tgaXy4VXX30V+Xwea2trsgN8dHQksqJQKISFhQVks1kUi0VcuHABDocDH3/8Mfx+P1599VXs7++jWq0iHA6jXq8jGo3KrvHIyAh2d3cxOzuL/f19HBwcSFHnw8ND9Ho9JBIJtFotyaIHDMee8G8t1QKeAAsyTbSTYmy0PEtLs8x4GJMt0CnCKZUiC+jxeJBIJBCNRuH3++F0HmekOzo6kmQjvB4z0OXz+aE6U2TaBoMBwuGwMJ6UUBHgMR6mWCzilVdewQcffCDyrmazKffv9XqSoY8JFACIvDIej2MwGEgCjHA4jJWVlaG6Y19HUtXv96XQMlmefr+PdDqNdDqNW7duYWZmBufPn8fi4iIODg5QrVbh8/meipfTcYJapqaTiuiYLfOfnmfTrGST2kHmP/5N8K5BmintZEbMZrOJUqmEXC6Hg4MDbG9vY3V1Fdvb2zK+Jqt0UrtMVo6g7Pd///fhcDiwu7sr12DdPAKdYDCIf/kv/yXa7TYePnwox1klwrCSMbKNZuIe/RyZEkpt5kaJflZNJvOkTRYN1HWbdcFtAhIy16aEkrFxfKb4U8tVAUhZDv1sBwIBjIyMoFqtijSRsW1+vx9+v19i2Pg5QVy73ZZERZxzxqfqkgZc23y2B4OBsIM6EYqO7XM4HGg2m0NSSTLunBOWLuC7STP73GjS8k1m5OQaP4m5/ibsrwvgjhwOx+SX7NskgPSXn+8CmFXHzQDY/29p4H+NCQFn4zfbbLPNNtueYZcvX8bY2Bi++OILNBoNLC0todls4sqVK3C5XJKRcn9/H2fPnkWr1cLt27exsLCAs2fP4pe//KWk8n/06BFGRkYQjUbRaDQwMTGBZDKJra0teL1eXLhwAYeHh0in01hYWEAqlcLq6qpIlAaDAaLRqEiTisUivF4vEokE7t+/j5GREcRiMVSrVVQqFZFW1ut1kduZZsoXAci9+B0dNQ3ctINpJekynUtt2nnUMkl+1u/34ff7EY/HZeeckkntLBaLRZFH0ems1+s4OjqS2BsdW+N2u1Eul4UZIxAmeKBzvb+/j+XlZVy8eBE3btwQWRWZTLaZ8YZkQtgWSjnJpFWrVVy/fl2cZN1PK9OxSfozxgPyPuxrMBjEZ599hps3bwrDOzU1hbGxMcRisSGZpZm9koDtJBZJM1Unzacps2R7TdBm/q6BHFk2Fh0naDs8PMTGxgb29/ext7cnc66vYbaP69GKedP9ffXVV/Hmm2+iUqmgUCjI5+12G5VKReoCut1ufPe738Vrr72Gn/70p8hmswLezHE0GS7gCZvNv825tWKsrWS3uk9WfTTBoFXcqR4LtlODL65RgqJyuSzgSjOHg8FAngsdAwhAmKhWqyVJgvjcVKtVuTZBUCAQEJDVbrdlzVF6yPcE2TH93tAlUAKBgGy2aNZLZ9Uls8cabZRE85o6tpTxd4yt6/f7Amg5vnojjEy8jtsl8Pu7WAfuPwP47wH8r1/+/FP1+X9wOBz/dxwnMVkB8Nl/ayO/rj1h4GyzzTbbbLPt2fbTn/4UyWQSi4uLePToEY6OjjA+Po7FxUUcHR2h3+/j1VdfxdbWFrLZLN577z34/X588sknaDabCAQC2Nragt/vlzpJs7Oz6HQ6ODw8xOTkJCKRCO7fv4/BYIBXXnkFnU4HN2/eFOASj8fF6XC5XMjlckgkEqjX69jc3BSJEYt7x+NxxGIxFItFzM3NDUnMtCyKjicdMMan6GQnz9o9Nh184GmHlH9bxfjQmaRjRkeHkkldJoBFs5vNJiqVisim6NiRTcvn89IH7dTSCSSLVigUJJ7O7/dL7Fmz2cTdu3fx1ltvIZPJSHZJgjgCITps7KtODOJyuWTuyDpwvPR4PAvE0XQ8WrVaFeBC2RYAfPjhh9jc3EQmkxF5aDwelzIWqVRKEt8EAgGJzWGyCVMK+FVMnJVp8MA+mIBOxxmRJanVaqhUKsjn88jn89jb28Pu7i6Ojo5QqVRQrVYFtGrAQqCj48s4xlbtItDyer145ZVX8Nprr4l8lt+RXc1kMqhWqxgZGcHY2Bj+2T/7Z/D5fLh169ZQkXhdOkC3xWqu+RnXoMkI8lirDRHzejpGy2oeeB+r73l/Mk68j84KyzXX7/cRDAaFheJPghSOGUGSro3GMQ+FQgLotFRUp/wHICw328TfeR2OAd8RjKsLBAJPjb1eD3qtMLkRaytyU0FndOUYmNJUns82sHC4fh4J9Ngebjo1Go2n5uGbsq9TRuB/x3HCkpTD4dgF8D/jGLj9Hw6H458B2Abw3wHAYDC463A4/g8A9wB0AfxfBt9QBsov24ov2/FN3dI222yzzba/g3b9+nXMzc0hHo/j9u3bqNVqEtO2traGlZUVhMNhXL9+HeFwGG+88Qay2Szu3Lkjkp1yuSxxW/1+HzMzM2g0Gmg2mzhz5gzcbjfu3buHQCCA5eVl7O7uolgsikMyPj4uTiN3tePxOA4PD9FsNhEKhdBoNASwnD9/XurCsR5cOBweAmVOpxOxWEwACBmocDgMr9eLUqn0lCTLCnRYOZEn/a1ZCZpOxc4dcL/fj2AwiEgkIrXYarWaZHYrFAoinzNjfXK5HIrFojj7mhlgcgqTlWDcGNsIADs7Ozhz5gx+/dd/HZlMRooCc4efiQ40EKbppCr8zuVyiSyPY2KylV9lOlU7cAxI8/k8PvnkkyEJF4sNZ7NZrK2tiTMcCoWQSqWQTCYF0IVCIUQiEWHpKLlk3JBZw+1ZQM6UTWo5pE4AU61WUS6Xkc/nUSwWkU6nkc1mkc/nUSqVhmIFNQjU42ayTxznkxgpAjSfz4d33nkHCwsLKJVKUmKAYKLZbOLo6Aj5fF76/c//+T/H/Pw8KpUK1tbWJK6S4M0sI2CucStfUwOnk9rMa+lNAg3w+P2zJMr62dWmWUINCvkMataKkux6vT7ENnLMCOgoG+T8dzodBINBWQscMyYCYbwdmW+OoVmsXqfk5zmDwUAY90ajgXA4jGq1+pTslTJIAMKoOhwOBINBDAbHyVEikYi0Uc8J6z5Smk3Wm2CPY0eAxmdHAzb2w8z++03a18lC+YMTvvqtE47/XwD8L/8tjfrrmkgon8fNbbPNNtts+ztjFy9eRKFQwJ07d+B0OvHGG29I2vLXXnsNBwcH+OKLL/DKK6/A4/Hg888/R6lUwuLiIvb29tDtdpFKpdBut5FMJtHv93FwcACv14ulpSVsbm7i8PAQ8XgcoVAIDx48EAmSx+NBKpVCrVZDMBhEPp8XR3t/fx9erxdjY2PI5XJotVoYGxvDuXPnkE6nJS6DkqXNzU0BhTr2iDvEdJD8fj+i0Sg8Ho/EoWjnT8fy6B1+DaJMZ5EOlXZseW+yWZr1YbIByqoYl9ZoNNBqtQSgEUTxfkwqoJkEOmYagHB3fDAYSBY8vdPPz69cuYLf+73fw2uvvYZPPvlkCDASlDBWSxcT533ZJs0eMEGCzoB3kpmOvWmaJaGjqh17fjcYDKSu2eHhoWTz0wXRg8EgQqEQQqGQFCJmzSvOEdclr28yX3Ta2+22sGvNZlOSjxC4FQoFYYrJxJng1IzZOimejb+bsWOaoSK7GIlEcPnyZUxMTEg79diyYPfR0ZF89uabb+Lb3/42HA4H0um01FHUQIN/m2wZf3Kt637pNaj7oDcFdOypZsjM87SZBIUpe9bPJ9lhcyw5XnxuBoOBKAf0poOWUAYCAdk04hon88xSHM1mE81mUzYGAEjCEradQJDvFm4AUObo9XoFIHEzJBAIoF6vo1arCVDiphDl4LpUgV7/AASkMbEK54KAk21l3clgMCjsJdc52Umd9ZXxe2Trnpf9qpOYPFcTCaWN4GyzzTbbbHuGra2toVAo4NSpU5iamsLDhw8xNTWFt956C/fv30en08Hbb7+NbDaL3d1duN1u+Hw+3Lx5E4lEQuqSjY+Po1aroVwuY3FxEU6nEx9//DHcbjcWFhawv78vTk8+nxepG5NgFAoFpFIpNBoNlEolxONxeDweFAoFtFotiad7+PChAIpYLCa7xolEAsATR9DhOE7jTZkfd9RDoZA4NJpVMFkinVESwJB0SJsZwK+BDa/f6XTgdrsRi8UEJDAWhWCA7BKLK3NHX8ekVKtVrK+vDyVA0ckGGEfGMdB94dgATxI3ZLNZfP7553jnnXeQyWTw4MGDp9g7ghadWIFONoEcmR/tFLLOnJUE0MpOksvxvJPO1eBRM2R0LiuVypDkjqazV7pcLiQSCcm+R9Brto3XZdwQZY/spxkTZ9VHqz5bfa4BCQGN/se+E9RPTEzg5ZdfRjKZHGL4uI5arRYKhQIODg5k/fh8Pnzve99DMpkEcPwu2N/ff0pmqhN1mJJTq37q76zAGJ+ZZ4Fy3ttkjcwxMkGwOWaMOTNlgmTT6vU6SqWSJBchg8ZnkolEQqGQJA+KRCLy7DLTrr435ZPsD5+dQCAgmzK8D58jbjJxnfM9EIlEZJOESYbIvDN2DYA8f+12WzZe+v2+AEs+o9Vqdei9yDFim7hRQ7aWkmoCRc4pC4ZzDv8uxsD97TQuVJuDs80222yz7RnW7XYlJu3hw4dYWVmB0+nE559/jpGREczPz+Pw8BB7e3vwer3isFy4cAG9Xg/xeBydTgePHz8GAJw9exbNZhP3799HKBTC9PQ0stksgsGgOL1LS0toNBqIx+PodruoVCqYmJhAuVxGv99HLBaTOJ1+v4/Tp08DOK4bxkQlkUgE+Xxegvv7/b7sXtPMnXayFJo1AqyBhSml1DIuOpg6XT0dd56r5VLcLXc4jmPeyMgBEOkWE7MwTo1ObiAQQKvVEoeMY6QdQLZ1MBjIDrtmOrRkygReN2/exPLyMl577TVks1mJMaOzTIeTTibZLM3OaBBHczgcEtvFa+mkEyaDoj8z7aQ4qJPmzpwzq/MIxOjcM807Cy9roHTSNfi7+ffXMRPUPOs8nViDDBI3JOLxON555x1Eo1EBJ/o8ShSZyEQXs79w4QJeffVVYXEfPHgA4Enhb/7TgA14Agr1s8DzTCbMamzM+dbHmWDLBIP6c1PKaYJF83zKfrm+Oa4EOLw/sywysQllg7FYTNpWrVbh9XqFedIbOWybTgqi4+BcLpeULNDyQ7LxmlFnTCzHm5LGer0ubdNjwhg9XauN70Qyc6xdx/tR8sl4UyoBdL089lW/B/l+4zWel71QAE5edTZ+s80222yz7Rn25ptv4saNG4hEInjppZdwcHCAcrmM2dlZJJNJ3L59WzLY5fN5xONxiamYm5vD48ePcffuXczNzeHcuXO4f/8+SqUSTp06hcFggHK5LDLIwWCAiYkJKRVA2Vs8HkcmkxFnqNFoSJbGcDiMSqWCbreLUCgkAI/XqNVqSCQSmJqawk9/+tOnmAoNxCgPAiAgygpIAMMSNdO0I6mllvycDjYlfF6vVxwg7mYz1q1WqwmIo8NE0MP6b7xuu91GoVCAz+eTOBlKvGjaYWYfdD9MaWar1cKPfvQj/MN/+A/xzjvv4IMPPkCxWBwaE+0E0lkLhUKyi6/HJRAIDIE7DeLM+TCd+5NYnZNAnu7bswCQnkMrqd1gcFxcnOCZY/dV9l8L1sw2PKu9+hjOgQYuoVAIU1NTOHfunMSc1mo1WStastloNETSyVinWCyGd955R+anXC5jdXVVNia4pjQrZm5Y6HHXsWZ6XDXIMufBBGonXds8VwMyfT/zOP6t2UN+xufA4XAIow88Yaf53LLuG9PzUz5JRp7AR8stNRNLUEUgFggEROatgSPXmy5NwKRFfCfo5DCavTRLPXDu9MYL2fxOpyPtzefzaDQaGAwGSCQSstnU7XZRLpeHQC0zThJwkpln+/5WJzH5u2RcvzZ+s80222yz7Vl2/fp1pFIphEIh3LlzB36/H2fPnkWxWMQnn3wiu7E+nw+nTp2S5B+BQAA3btzA4eEh5ufnsbCwgOvXr6Pf72NiYgIHBwdSXiCXyyGZTKJUKqHRaEi8WzgcRigUkkQldDo9Hg9isRicTidyuRzC4bDEZ5RKJbTbbYTDYbTbbSwuLsLhcODatWvijGiZEZ0Op9OJcDiMeDyOer0ukik6Tl6vV2KGTKbANDMOTDthlE5xB51OGONVKGkql8toNBoSQ8O6bTxPy/AolaJjpmuM0Rk0WQbTiSQg0E4Yr390dIQrV67g7//9v49qtYqf//znwk5ppouOIOWRBNXsM8GFTtAwGAwEgGvgZgW+ngVqTgJB5vlWoJBmJbN71n2t7snr6L+tWCYTOPM8q+QepjxRA29tjKlMJBKYnZ3F9PQ0QqEQstksgOGNBZ7bbDYlfqpSqYiclzGt6XQao6OjODw8xM2bN6U9unyEFQgyAabVWFgBtJM2RczjNdNzEmAzwaK+jp5jDTzNcQKeSIwZA0c5Igt3E8A4nU7JdsvMkEz4w+dJP//MeMuYNqfTiWazKbJMJr4hE6afD1MOrVlQzg+fZbJufE/wWWNJDj0u3W5X3uFk8ggw+Q5knxg/qN9vuo2M7SRz97zsxQJw4IJ+zg2xzTbbbLPtb7VNTk6iUCjg6OgIc3NziEQiePjwIYrFojgWrLm1s7OD8fFxDAYD3Lp1Cx6PB7/+67+Oer2OmzdvYnR0FKFQCOl0Wopwe71eJJNJpNNpjI+Po9/vo1AoIJlMolgswu12C6PHrGjRaBTVahUejwfhcBgOx3GWwZ2dHUmNHQwG8corr2B7exu7u7uYmpoSMEPHrNvtSpa4YDCIubk5yUwZDAafkjoBJ7MBwBNppE4iAjxxPOlw0fnVyVqYtKRcLkviAmaco4Om69NZ1bdiPI8Gb2Zb9XGadeP3PFcneul0Orhz5w5WVlbw1ltvodFo4OrVqyLH00k8AEi8XqfTQavVQjQaHWLjHI7j+DymZ3c4HLIRwFifZznypmmH/CRQZfX9Sb+zL3r+rEDcScDyqxg0/f1JIEcDk5MAKI8hIIhEIlhYWMD8/DxisZiAfj3XnE8yPCxjUCwW0Wq14PV6JXZ0dXVVNmMeP348VC9Mx4jy2mSG2DbdRrZfszZWbJiW77K9JggzQZpm+fS1zGubc8BnlM8r421TqRRyuZwwcKydxueU51EeyH6zrdFoVDJEApDNDp4PQJ4vbsowYyTLOOi4wk6nI1l4mXyE8kn+TiDG2LNqtSr17TguLEMCQNrO9xG/ZzZfMqrRaFRYRMZ26hIK3Azis80+c104HA7JjPm87MUCcMLA2QjONttss822k213dxetVguvvPIKAODevXviBFSrVZw7dw4jIyPY3NzE0tISMpkM9vf3MTc3h/HxcTx48ECKdrfbbaTTaQmCn5qaAgAcHBxgfHwclUoFTudxev9Go4FoNIpQKDTE6kWjUezv72NyclKOqdfrAvpKpZIAyg8//BCdTgejo6O4c+eOZIij6YxpDocD5XJZfjcdcDJGOoaOx2rTmRHNzyinJMDkTjuTpnDHXNdT078DJ7NI/Jw7/Zo9JNNlxunx+tx55667/kfrdrv46KOPMDc3h7fffhutVgtXr159apz0OU6nUxjEUCiEcDgsjh8AKXBM+VahUECxWBzaxbdiyKzGnWOu46x4DT1W+udJANE87qTxtgJdVmDOBNEm+2Zew2yH1bU0o8li9ufOncPY2Bh6vZ5I3HQ8J4FIt9sVZ7zZbCKTyaDRaGBkZATJZBLtdhsbGxsoFotIpVK4cuUK9vf3ZX0SRJCB0zFueuOA4IhMjRUQ43k6kY4J/qzYPfO4k0y3yYxBpWlw22w2cXh4OCR7JlhjbUZKCXU/CJbY15GREUQikSHZLeeCzx2TpWiJIxPkUNXAd45+XkdGRqQMADd79Frhu4rtr1arQ5srZlFwgkkN0Lxer8jJOe9M7NJoNBCJRDAyMoJGoyHvMZY64fom0KMs83nZiwXgvvxpM3C22WabbbY9yyg7fPTokeykUhJEKWWlUsHi4iIePnwIv9+Pl19+Ge12Gzdu3MDY2BguXbqEu3fvCrMFAEtLS5INjzverBtHdg2AJM1YWFiQuLDx8XGUy2WMj49L/N3ExAR2dnZw/vx51Ot1fPbZZ5LI4+rVq5ienobX6xVHC4A4sHRumDUzn88PAQ0AQ86f/lub/syU4dEJZaIAmgaGBJdsF3fCtVxSAzFel/fmP/2Z6azqtmlwqDPTafCmr7uxsYG//Mu/xB/8wR/g3XffRaVSwerqqgB6Gs/VfavX6yiXywgGg4hGo+IMU5Lm9XolAQvbqPtAoAJgiB00WRkNkKzkenou9H1OsmeBSKufJmtmdQ3dXg20n8Ukcjw1cKFseHp6GouLi/D7/TJ3JovX7/fRaDQklpJsTD6fF5nb+Pg4ut0uDg8PpWbe3bt3kUgkpIYfHXldPsCq7ZqVM/uiC2ibc2TKF3mM1edWf3NczKQZz0pYo59N9kk/j8xoyzYz3ovMFNlm3leX82A2WTJYjKHrdDrw+XySYIlyTMoUuaFEFp5jb4ImXf+S2UTJzLGeHdnDQCAg2TFZPoNyZ44XgbTb7RaAycyrBJvhcBiRSESeXQ2SKdeklJQZN20G7ldkTxg422yzzTbbbDvZzpw5g+3tbXEQarUaAoEAEokEdnZ2xEG5c+cOTp8+jfn5eaytrSGbzeLChQtIJpO4e/cugONU1nQ4j46OEI/HJdYrGo1KHIjf70cul0OlUoHP58O5c+ekRlEoFILD4cDY2Bg2NjYwOjoKh8OBw8NDnDlzBkdHR9ja2sLy8jL29vZQq9Xw6quvIp/PD4E3Oot0DrljTGkjTTsephNCYEEwoWtdmTIwXTaAu/l09Fj3iYlHtJNtAkeCI5NlM0sGaGeYEjH+zjZpsERnS0sYeZz+/erVq1hcXMSrr76Kd999F51OB2traycCWt13Jkmo1WoIhUJD2SqZZMNkG2nczSf4bbfbQ3WvTMBi2rMYOfM4KybsWSyP1T2tgJzV9U/6ndcwf3c4HLJu4vE45ubmMDU1NcSq8jh+RgBNhpM1wSjtC4VCiMVi8Pv9+Oyzz+ByuVAqlbC2toaFhQUpwt5qteR51+wZgCFZrxULarWRoI3fm+NjBfJOGiOaBm/m86OZPv2c6LhSHW8GABMTE8Ka8xoEptVqVZLz8P3lcrlkrfM6BGU8j9ly+a4gUKI8nGubLCfl1mT4qtUqBoOBJE5hAXFd05IbWHxnBAIBYfpZooXsnn4HMqESk5UQhKXTaSl6TxBJuTTvyzZyLP1+/1M1Dr9pe7EAHIZ3LmyzzTbbbLPNylgwm/XUJicn4XA4hAmrVqvo9Xr41re+hW63i88++wyBQABvvPEGms0mrl+/LsWxx8fH4XQ6kclkEIlEsLOzI2n7i8UiwuEwOp0OHjx4gMFggLGxMSwuLmJ3dxfRaFTAz8jICHZ3d7G0tITDw0MEAgG8/PLLePjwIXZ3dxEOh3H37l2Ew2EsLS1hfX19SMp0kvN8/vx5RKNRZLNZcfh0anuaBm10kukAAU/XqTLjfrSjxBgRSqNKpRIqlYp8pttoptjXDrtZN4rHabaNv5OhIRugHT8eR8dS95PZ7v74j/8YkUgEy8vL+O53v4tGo4Hd3d2nGEj2mQ4lAJHfMcMoyw6Q4THPZz+ZHZFsBjMA0kk25ZUmoDuJRdP3spL5PcueBRStPreS/Z10P83Q0eioRyIRRCIRTE1NCRPC9cP1xnmu1+tIp9PI5XIol8vCLJF1i8fjiMfjWFxcxJ/+6Z8iFovh9OnTSKfTqFQqyGaz8Hg8yOfzwj5pVsx8BjSLpWWIXFMEMM+SRVrNjfmMmazcVwFuzXLqjRayz2TTNHvH9nY6HYnhpMRQSxfJkOnaZ9y4oOSwWq3KJoQur8EkJV6vV8BPsViUbJPst5av8t5kxqLRqABo/VwTbPN+TJbS7/dRqVRkrLlxw80rjglVAJxzJkChKoNjyvOZbAk4fs6ZyIXXel72QgE4aiht/GabbbbZZtuzLBAICBs0Pz+PYrEoBWSZ3e7NN9/E7u4uHj16hJWVFSwuLmJjYwOlUgmRSATdbhdLS0vI5XLweDwYGxvD/v4+ksmk1DwaHx9Hs9nE3t4e+v0+ZmZm4PP5sLW1hXg8LsXEKfmanZ3FvXv3cPbsWXg8Hly/fl1iPY6OjrC8vAyXy4UHDx6g3+9jfHwcGxsbQzFizPxI54KyTH6uzWTU9C6zlloCT0CfKbekA0pnSAO7fr8v8WIEeFbJReh0alBEJ1k7ZKbxc30tAjlTkqidMzrMHLder4dSqYT/8//8P/Ev/sW/wOjoKL797W/jJz/5CdLp9ImJP9gmj8eD0dFRDAbHJSSazSYKhYIkP9AJITSLw4QPLKmg617pdpq/WwEkKwmq1blf9bkVSLCS9lkxUezbs4Abr0VwQbAbCoUwNjYmxel10hwCpEajgUwmg8PDQ+TzeZHZARDA4nAcJ/9ZWFjAz372M3lei8WiSO7IFmcyGQEQZtZGE4zyHmy77qseI3NMzDWnny0rRk5vUHwVS6pNP4N8jvSa8Pv9qFar8o7IZrOYn58fyljLRCM6mQhZZrfbLXJIAivODZOYaFDDcXU6nSiXy0PsGe9BYMn7chwpt6a8mIlXCOAZX0sJpgZiHHPWcWO2SUpCyaBp5QLry7VaLWEkWdicwBKAvNcJDEOh0Neam78Je6EA3Ndb4rbZZptttv3/u7FAdzwex97eHkZHR4WNm56extTUFB48eIBcLofTp08jEongypUrUg8OAE6fPo2NjQ1MTEyg0Whgb29PCnP3ej2srKxgb28Pjx8/hsvlwunTp8VRmZ6ehtPpxMzMDO7evYuJiQkAwI0bN3Dx4kXs7+8LMGQWveXlZeTzeWSzWdk9LhQKQ/0aDAaSsptgLRgMyi66Tq4BDMslgWEJIgBxajXTZcoKtVNOySQd3UajIeCEjq5OemIl39SOLPvPHW+rc3SRZh37RgdTg0bdF15LA8rd3V384R/+IX7wgx9gYWEBv/3bv42/+Iu/wNHR0VB/tTHDXjKZlOQzdGQ1o0OWol6vPyWppLOuixvzO84DGSn9uZ73k8CVvoc+3uyPbof+22yLFTgzv7MCPzQyOLFYTJjLYDAoZT04Z5rhInBLp9PIZrNDIIFjzLUyOzuLc+fO4Wc/+xkymQwAIJvN4ujoCH6/X+KkwuEwyuXyUJkK3le3WzPPJvNLM1kzDaT0OGmQaDLRJptqNRe8l5W0V6fA5zmDwXGRex1rSQBFue709LQAlVAohEKhgEKhgFgsJsCM4I3PFBm2SCQi7xwWvNZglgwz2WU+E3w36Q0cDfAZT8e/tbyVfTXvRQDKa3m9XgQCAYm/I3hjnGq/35frEqSR7WdsH4Ed28ANon6/L0qD52UvFoCTl8xzbohtttlmm21/q+38+fOo1Wo4PDxEIpGQLIFMmnDnzh1Uq1VcvHgRnU4Hh4eHePPNN5HJZMRJ5A52oVBANpvF9PQ0isUinE4nxsbGsLq6ioODA7jdbqRSKYmRYra3arWKBw8e4MyZM9ja2kKj0cDc3ByuXbuG0dFRTE5OYmtrC9FoFBMTEzg8PEShUEA8Hke1WpW6buFwGKVSSfqmnUYG+/t8vqF04aaDav5uOprAE0bMBHgEQmSSCAqZHZDp3YEnsTF0LnmcZqT0dbVk06qtJrumWRHNljDuTp+jpZra1tfX8R//43/ED37wA8zNzeE73/kOPvjgAxwcHMg4aCPwOjo6EslVpVKRBAkulwvhcBjJZBKHh4dPsZQEqPp6+ifHw+12o16vDzmtJqtlBa6+yp7F8pkAQ/9tgkJTGmm2gQDG5/MhFApJUfRQKIRoNPpUHT1K2JgBNpvNioyOY6KBUyQSQSqVQjwex8cff4xCoTBU+J3rqNvtolKpAIDEv7FmoW6vHmduPJixZ3T2yVLxM70RokEJ5Zfm3Fgxblbs20mbHmwjWW4yRObc8pnSmx6M0WQyJAIsghpd6JpxrAAkoUitVpNnn8CL5xMAlctlaQtliBwTXpdzz3cI3xuaqSWY57Uog9flIzqdjqwpMnx8F5DBIxtIwMtNg3q9LhswJktKRphtYRmE52UvFoD78qddRsA222yzzbZnWalUQiaTQTgcxv7+PuLxOJaWltBut3H//n1Eo1GcPn0a2WwWoVAI7777Lo6OjjA7OyvszuTkJDY3N6U4987ODpLJJHw+H1ZXV4XNY9yHz+dDs9nEyMgIVldXMT4+jpWVFTx8+BCTk5MYDAZ48OABFhYW0O/3sba2hsuXL8PpdOLBgwcSp3J0dIR6vY5gMIhYLIZQKCSxPJqJYmrtYrGIQCAg/3w+nzhWJpAhSAOGnfmTslRqYKUTluj4Mw1I9L000DSdVTrcGhCyX9o0INPt09ciC6CBG481gR/bcv/+ffy7f/fv8Pu///tYXFyE2+3GT37yExwcHDwFoHgtZr4DntSmIlMRi8VQr9eHMlumUim43W5J765ZSS2jA/BU8gjTrBx/E1xZgVWrsTfn3QrE8Tt9vAk2+DdZNrI4lEsmk0mMjo4OMTAEW61WC0dHR8jlckin08Ke6L6R+eG4tVotVKtVrK2tDdUK0yCXMVndbhfb29sAIIk0vF7v0GaDPteUExPQsZ9aymnFhhKI6LhG/VOzSFZmBepMoGjGp/Jeuv1kk3hv/bxQqs1NJvaJEshqtSrghywWJZkARALM5DAcg0qlIrG6HGv2ZWRkRLJINhoNdLtdhEIh2QTx+/0C6rSEkmCbc1CtVoXdI4tKINbtdiXGlM8o54Pt0u8pbjxp9hyAZMMMBoMir3ye9mIBODsGzjbbbLPNtq9htVoNTqcTxWIR58+fx8LCAtbX15FOp7G8vIzZ2Vlsbm7i1KlTSCaTyGazmJ2dRb/fR7lcRqvVwu7uLprNJkKhEGq1GhYWFuDxeHD//n20Wi0sLS1hf38foVBI5D2s93bq1Cn0+8cp7MnmPX78GLFYTJiG1157DdVqVeLlAGBzcxMulwvxeBzBYBD7+/tST47GnW06aHt7e5LaOxgMinzJdOBoGiQQPOm/ddwcGQU6qdy114kKTGaM9+a9NDjQjicAKfTLRAum6bZqAKTj3zTbQAdYs3G6PbTBYIC1tTX8h//wH/Dee+/h/PnzeO+99/Dpp59ic3NT+qavScfPzLTJeWMiBcZbvfTSS9jZ2RGgTfDCcdTn67EzTYMBcy6t/jbN6nh9LSvAYXUcf+r4Jmb+4+/cQOA/FnwGjtnicrmMTCaDfD6PUqn01CYA51yDdjradPwJmsk+a6kbayaOjY2JXM7lcklWQZPhNYGOaQQXJ42VBlE8nm02x96KcbO6H1lrs00cF64nSqV1plhu7HS7XVmPTqdzCPwwxiwcDsPlcomUkGOu54QbNm63Gz6fbyjpB1k7JhjRyUqazSYCgYBseLCuGp9dt9uNcDg8VH+O59F0Yhae5/f7BSQy4yWz4QIYSojDdxavQbko5aVkCbUsMxgMygYA2/C87MUEcM+3GbbZZptttv0dMK/Xi7fffhtOpxN37txBIBDAd77zHdRqNaTTaZw5c0bSUp86dUp2kvP5PFwuFxKJBAKBADKZDGKx2FCJgImJCWxtbQm4o9OUTqexuLiIYrEoUp8vvvgCnU4HiUQC9XodU1NTmJiYwIMHD9But7G4uIhSqYTt7W14vV4pary3t4dgMIiJiQnk83kAw4wQnb1cLge32y3JIuh0aGdRAzMTFJnH8vra6HRxp9zr9T5VNFsDJhPc6e+1JLJer0vGO83UaNNOJQCJ5zGZNs1umeBIt1EDg4ODA/zZn/0Z7t69i29961v4zne+g2vXrglIN8eb4I1jxvZqYEGAU6lUcHBwgF6vh1QqBZ/Ph4ODAwEVmpXT7eQ16aifBAo0uNbgwvyn26rNXB+maWaHDJvX65V4S2YnZDymjsvUdQNrtRqKxaLEt2mJnBU7ao6Dw+GQtUfWiA69WduN67LdbiOXy0nWTzIyViyvudbYb72mdOwm223F3mnArzcTTmLerMyM+9IxevyM4Ip/awkz701JImWR/X5f2DCHwyEATzNxjBsj285r8R3HfwRvg8FA5kCPj86I2Wg0UKlU0Ov1BETx3UUg2mw2h2qwaXk0+0k5OcE73wO8HhUQXH/mT96n1+shHA4PyTnJPHIsmZzov2beftX2YgE4u4yAbbbZZpttX8NSqRSWlpZwcHCAarWKU6dO4fz588hkMvD7/Th16pTUDOr1eshkMvB4PCiVSohGo2g2m8hms1hbW8PY2BgKhQKazSZcLhcCgQCuXLmCRCIhtahyuRyczuO6Squrq0ilUuh2u7hx44Y4s4eHh3jppZcEULpcLqn7trm5iXA4jMXFRfT7fWxubiIej+P8+fO4ffv2ECNmxnYx3oeFpVlzzgq4mCCOO/RWppOR0GlyOp0ybvp6AGR3XxfT5j10QgKdVZKyM30e5VM0DUasQI++jxVwsTLNcrCwd7FYxKVLl3Dx4kUEg0Fcv35dwAbHjP3WTKIJOtnGH//4x5Li3efzIZVKYWtrS+6vJa4njX84HB5iAUwZqgYM+nMyD1aOvXkdKymh0+mU2CTGEhGgERQR1NHx5U+Cz3a7jWw2i93dXRSLxaH4Ns6lbr8GoKY0kiCZDBRBPTNO6rWgWU7Gd1H6pzcczDWmx0OPkcm68RiTrTTn0YrJtLqfKZ80kw6Z4EgDPDMTpZ4/MsZM7KJjw/r9PorFotzT7/cPtY8SYQK9Xq8nJQVisRhKpRJarRYCgcBT8k2uCf7Odcjx1zJPSispddSxuaVSSe6fTCalHRwLMnG63MBgcFyrjmBQ163jJksymQQAkTwTTBL8MZOpyQh+0/ZiATibgbPNNttss+1r2Pz8PO7fv494PI4333wTTqcTa2trOH36NFKplDgHpVIJzWYT09PTyOfzmJqawu7uLjKZDD7//HO43W7kcjnMzc1hdnYWtVoN6+vrGBsbw9TUFILBIA4ODsTxbDabiMfjksxiYmIC2WwWgUAAr7zyCo6OjqSO3MTEBK5fv45cLofZ2VksLi6i0+mgUCggkUggGAzi5s2buH37tqTnBp4E22v2p1AoSCIT7Yzp2DZTLmbKC00wYmam5OfM5sbjdXyQdkA1aNR/a1Chd+o1SKKTqdtpxbqZrB+vZconrdgnLQ2t1+vIZDL46KOPsL29jVdffRXf+ta3cP36dYk/BDBUBkCDWA08mI2PTFC73catW7fEedYMmxl7qMdbZw4ka6JTwmtjP8x5JjA22VITqPGfZkYYV8TfmTJexyyyH3osWV9sb28PmUxGnGArdtBKYsj7MRsg+603APg7GRnddmZxJXPEcTwJzHMjwVx3/E73z1xD+vnRAEyPsxVAt+q3Znt5LvvL8dbSZXNda1kxY8QCgQDq9TrcbrfU3iPjxA0pZl9kPBqTglDerKWVrVZLEoFwrXOsmSiFa48ySoJH9kkzepp15/zxncax5xh6vV4Ui0UAQCgUEkat2WwOAUXGtxHgsd29Xg/JZFJYPX42OjqKTqcjccPcQGIc8vOyFwrA0WwCzjbbbLPNtmfZ3bt3MT4+jpdffhm1Wk0SmQwGA6yuruLBgweYmJiA3+8XZ6TVamF7exv5fF7kjM1mE0tLS2g2m7h//z68Xi9GR0cxNTUlxYZjsRiazabElOTzeYyOjsLj8SCbzWJpaQljY2NYW1tDqVTC6OgoisUiPvjgA6k1FwgE8Pnnn8PhcGBlZQV+vx/Xrl2THXTKOrWjo0FVrVZDPB5/KjubBj3aIeTf2rRDrc/R3xNY0GEGnjBvWhZHiZv+GxhO8U8jY3ISE2gF0nR7+Lv5mf7c/NtkQHTGua2tLeRyOZw5cwYrKyu4f/++AE06uxxHnXzE4ThOZkIgr0EOGQCCXbKbBIR0ZDX7Mxgc15xjnA+dYzJjXA86nb2eFw0O6YBr4KDP1wya+TvZK82GcQ45Lu12G9VqFY1GA+VyeQg4aVBpMl0avOi26PWtQYleYy6XC7FYTFgaMnFsgwanBD86db25Lvh88Fh9jH7W9Dl648IEdCYr93XAnL6uGa9HVo3feTyep+SZ5gYKr8GxIdPEhCS8JpkoSlV1Gn/dT51sZjA4lmcy8y3XMiWQBN4EUwBkI4FzwXVLlrRcLg8lD6E0vNfriYycsZUEieyDGfvGsh7sA9vAeD9K3MkWc97Y92Qy+Uy57d+0vVAA7skitxGcbbbZZpttJ9vc3BzC4TB+/OMfo9/v46WXXoLX68Xdu3dRr9exvr6O8fFx7O/vY2dnB06nE9VqVXaVa7UaCoUCPB4PvvjiCywsLODdd9/F7u4uAODo6AhOpxPRaBS1Wg0zMzPodDrI5/OIx+NwOI7Tx6+srMDtdmNzcxMAcPbsWYmPW1xcRCQSQT6fx+7uLsbGxjAxMYGDgwMcHBwgEomgUqlICQE6J4z3CIVCcq1isYjR0VEEAgHE4/GhuBjt0D0rpsOU1VkxV/xOF+Wlg2dmetOgwZTMWTmy2uHUab5NJk0zgxqQmWwYP2ffzGPNvmvHsVwu48aNG4hEIpLsQJ/r8/nQ7/clc1+r1cIf/MEfIBAI4Ec/+tEQGGC8kM4yqRkhsj6acdBjoosc65geDXw4L+ZPzhWZBbIldLb5k2POeWVtMQIFfs81Va/XJeNfq9UShoWMD51zE+SYAFWvKUrvGMvEtuh1w3XpdrsxMzODaDSKaDQKv98vjv5gMMDOzo4Uc240GpLcguNHkKbXLtul/+lYN71WTmLzTvqO69YK5LH/JljSc8lng3NJ+aGZTEcnN+F4E+wz6ctgMJBC2XxPORwO1Ot1AcOs3ce55X20RFZv8pC10vJpDTgJEHm8BkZMQkPWmowts5kOBsdxdExiQikn1wwBI+/F2D6CNIfDgUAggEajIdJQp9OJRCIBn88nY+73+4dkniMjI0PlW75pe7EA3Jc/bQbONttss822Z1m73cbq6qr8p33jxg2Ew2E0m010Oh3UajU8fvxY5IdHR0eSyTGfz6NcLsPhcKDRaODixYs4e/Ystra2UK/X0Wg0MD4+Lru+ly5dwvr6utRwo6Tn1KlTqNVqePjwISKRCDweD7a3t9HpdCSmI5vNolqtYn5+HisrK7h79y6y2SxSqRTS6TQajQb8fj8KhcKQo10oFMTZKBaL2NnZwZkzZyS7nM/nQ6vVGoqXM2PftBNtSro0yNFgBHiSNr7dbkuiBO5ga2fbymGlY6XZQLaRDinbY8a6WQHAk77/rzHdd13ol2NNpkzfj04gHeGRkRGsra1JIXYdx8cdfs2OABCgpLNrchxOmiOOnZWzb3WOBv36Hx1gfT0NFgig9fdWsliew1qI0WgUa2tr0l5zw0ADHA0odYKUfv84Eyz7w388z+fzYXJyEolEQmq8UTrn8/nkuXM6nSIDtGJ4TwJlev0SbFjJKHld/Z2VNNKKeTNB90lmMuEawDLxD5kmtpdrkywUGWFKnwOBwFCBbq5vZqok48t2k3HnmACQ1P0sHm6ydQSavJ8+hxsHuqg915TL5UIkEhl6JnQMXbvdHgJtZF41wOQ/gslgMCjncUMiEAjIO4zPuM/nk5+VSgWVSsVyo+mbshcLwNkxcLbZZptttn0N63Q6Im1kYd+DgwMkk0k4HMdZFPf391GpVFAoFCReaW9vTxyLWCyG8+fPI5FIYHt7G7OzsyiVSuLcDAbHAfNXr16F1+tFNBpFuVzG1NQUQqEQjo6OUCwWEY/HUalUxLEfGxtDs9mUQsSnT59GJBLBlStX0Gg0EA6Hsb29jVAohMnJSYn7ICCi48t2djodbGxsoNvtwufzIRaLIRqNPlV+wO/3i8OmHU6TSdPsA/B0+nM6Vz6fD36/f4ixodNFJ47skekImQAMAMLhMABIG+kYWwEH87NngbZnMW/AcDwcwSjbw5pZZvvp0GqZ3u7uLrrdLsLh8FAiDc0+mFJA3k9LVzl2Gqia8kVgWIJ4kmxPM34my2QFOPT4WI2VPobZCAk4i8WiJMYw4/T4N4s8z8zM4Ny5c2g2m8IyM5EQyzjouWV7WRsRgDBGdORZu8ztduPcuXMYGRnBZ599JrXHtMxXs28mENNjaI6lCZh1Ag3N7umx1QyqyQzrcX3Whoopg9axowTjjF3Tmw0ulwuNRkPq5jELJDen+D4hiKvVagIOdSZdAiICPZ3MhnFoBFNcv3w22HaCNoI+MvRMFNRut4e+Y2wqWWS2m8lreH8ywVrSTSDLtvN92e/3EYlEEIlERErJcwjyNHtslxH4FdmTLJTPuSG22Wabbbb9rTb+5//222/j6OgIW1tbQw4Bf2azWZTLZfmPms701NQUzpw5Iyn6JyYmsLGxgUQigZWVFTx+/BiZTAa3bt3C6OgowuEwGo0GTp06BafTKewZcCy3HAwGCIfDSCaTKBaLEjA/MzODbreLTz75RADD+vo6otEo4vE4/H4/isXiEEhxOI5rFxFcAMd1yFgTi9kxTXkdM73RTBZAO41mHJm+lmZCGOTPNpH1YxyJGUOnTUsmAYhklcfppAymNJLX0yDUyinW7X0WyDMBKyVkjO+xGhMrgKETlVA2SYebjIB2yHlv3VYNsK3mgO3hcSfJ+cwxMsflWeeY9zf7T8kZ+8o+sY868yOT60SjUYRCIYRCIYyOjqLX6+E73/kOotEo/vAP/xDBYBD3798/kfUIBoNwuVyoVCpyfYJtfQ7BWKVSkfqPOpugTgTCfpoA25QxmoCXYE6DcT12+m8rls08z+pz81oaYGp2lOCR64/giXJJh+O4vlm9Xker1UI4HJYNl1qtBr/fL/chW0UwRuDPe+q1R4ZTyybNtg8Gx/JHPgd6vWjpIzOGAk8SBTHRCcEd1xMT6jBL5GAwkFIkevwoiWTbdLIebYFAQNYu/1/ge4hteh72YgE4YeBsBGebbbbZZtvJ5vF4MDExgXv37mFiYgJvvfUWHj9+jFu3bqFarUocRavVQq1WQyKRkAyO8/PzmJqawt7entQe2tnZwcWLF+H3+/HZZ58NSe3o3KysrKBQKODg4EB2qBnk7/V6EQwGkcvlUK1WkUqlEAgEcHR0hGq1inPnzmF7extbW1sIh8Pw+/1ot9tYW1vDwcGBACItPWq1WgI8t7e30Wg0RAaaTCaHAvpNcKbZG5p2ukypmMnwjI6Ool6vS4wIWU4ds6Tvr518KyYDgOzAa+ka72vFwrHNur1WDMdJfdF/a4aEqdKZ4EADXXNszP7QidbxSjrrHXf3rVhJOqIEfqZsT88PHWndFu28Wo3v1wFu5hhZgeaRkRGEw2EEg0FEIhGRpcXjcUkYBACJRAKJRAJut1syF+ZyORSLRWxubmJychK3b9/G7du38YMf/AArKyv41//6X0uBb841yymQVaEEut1uY2ZmRtZLv9+XGCeCD81G0/nXa9GUo5I90uMNYAgkaRBtAjn9/UlsG+3rzJG+nmaizLkJh8MoFosyFtw0IDDqdDqSZKlSqSAYDAojWy6X4fV6BdCxALfL5ZIYNP3ceb1eVKtV2RDie0mXAaEMU9c7ZDkNyjIZP0n5NZ95PhcalAJPmH+PxyPsocPhkAQ/7XZbMm7qEjFkDBnzxiQuVCzo5Ca8LwDJyvm87MUCcF/+tBk422yzzTbbnmWtVgvNZhOXL19GMBhENpsV8MTd1kKhIIW53W43gsEglpeXpQYcs1Du7+/j/PnzODw8RDqdxiuvvIJms4n19XW0220Eg0EsLS3h3r17KJVKSCaT4rB7vV5EIhGJVXO5XJifnxfZo9frRTweF0YvlUrB6/Uin89jf38f/X4fsVgM2WwWnU5nSB5Vq9Uk0UCr1cLt27fx9ttvw+fzIZFISAyKaWaKfiu2RYMvHcNDJ4q749wBpzPIXXXT6aOZoJGfAccOrU6eYXUNk70yzYxj4mdfBV40uxgOhxGLxYbigKyO5zU1Y2MCAy19pAOuyzBo1kJnzLMCTnr8NIg7qc8n9fOrjrECw3p8IpGIMMSzs7Not9v4tV/7NSwvL6PRaGBzcxP5fF6c8Uqlgr29PfT7fdmcYBKUzz77DNVqFclkEsvLy/hH/+gfYWtrayhJEGV/lMDpn51OB2NjYxgdHRU2TmdFLZfLSCQSAm6sJHEahJHl0ZseBJHmGGlwwc+spLImwDeBtjnXJ5m5CaOvy+eQ7U+lUlL+gpkauf48Ho/EGI6MjKDRaKDRaMgGSr/flxISfIdVq1W0222pj6afSf4kOObmVq/XQ6VSgdN5XB/T7/fD4/FImQngSSwp42qZpdLn86HT6QjbBjyp88Z7UkoOQN4bTIjSarWG5J6UZxM4kokzN5M4fty8MevjfZP2YgE4MnA2gLPNNttss+0ZFo1G0W63kc/ncfv2bVy7dg2VSkXqSzFJyeTkpPxHvbCwIDFr5XJZYiVKpRIePXqESCSC119/Haurq9je3kav18PU1BRmZ2dx584d9Pt9TE5ODsWWEGDRwYpGoygWi2i1WhgdHUWz2cTa2hp6vR6Wl5fh8Xhw+/ZtqeHkcrmwu7uLbDYrsT8EB2Rp6Ph8/PHHePPNN+H3+zExMTGUFESfZ8ox9U+ajrkxAUy325WyBkxQoHfg9fl0/gnwrAAYgQv7xOO0LE+fZwKfk8COtq8CcXTgWXA7GAyKQ6r7YwIgvUNPR98EreY9ONZMyc7yAHQu9T11EeeTQJwJ4J7V15MYHg3STmLigGO5WTQaldilQqGAWCyGCxcu4OLFi5KxU88fs77ev38fh4eHWF1dRTabRTablfMZW/rKK6/g0qVL8Pl8mJiYQKlUws7ODprNJhwOB0KhEPx+P2q1Gvr942QnzWYTxWJRMlISVPHz6elpee6bzaZsguiafHpO2Hdz7vT4sI8aAGhArRlWKwmmOe5WMl9zk0ADey1jZhIP4ImslkxuLpcTtpTgqtlswu/3o9PpSDr+er0+lBBmZGQEoVBoKGU/N2rM1PpsG2MRHY4nBbz5TBHAVatVYd0oV+T3ZO8JrHT5Cj4jWjLJ55NSdQI43tfpdEpCFDJzvDbbbJZmIbvMMT6p8Ps3YS8UgCMHZ0sobbPNNttse5Z1Oh3s7u7i3r17yGQycLlcmJqaQiaTQa1Ww9zcnCQTIUPmdDqxsLCAo6MjkVK1Wi1Eo1EcHBygXC7jo48+QrFYRCqVwoULF+D3+3Hr1i1x/LPZLAaDAfx+/1OJE1hAnKxcLpfD7u4uRkZGcPr0aeTzeTx48ADdbhezs7Po9XrY2dmRtlFGqeOs9K75/v4+qtWqxOz5fD7UajVxruikaKABWDvs2kGlaWeewIqZ5biTrlPN62OtmDfgCVPB34EnjrApoTSZqZOYC/OYrwNoBoPjhAXxeFwyhpJF4FrQDrtVX3Rik5PaxGPorCYSCbzxxhu4f/8+NjY2nor1e1ZfTWf/JAD2dZk200wQTtYiEolI5tZisYixsTHcvn0bsVgM4+Pj4vhz/A4PD/H48WPcuXMH6+vr2N/fR7lcluQ8/X4fV69exblz5/CLX/wCrVYL8/PzmJychMPhkFp4TG4TCAQQi8UExHW7XZRKJbkm45coWa1Wqzh9+jQODw+FITazKuq4KDJQHMOTxsgKgJnPlr6G+flXmQn49HwRFDJBCmWEBDjr6+vodruSFKRYLAqbRRaO2W2dTidCoZDU8vP7/fKeisfj2N/fH2I1+T7R7wfKInu9J8W8CejI5vV6PZkPsmxk51jigIxgLBYTiTvfL3yvssQEAIl9Y7bNVquFUCgkde70ODabTYnZZVKXfr+PaDQqcXfRaFQYXoLX52UvFICzGTjbbLPNNtu+jl27dg2FQgGRSASTk5MolUrY3d1FIpHAyy+/LNLAVCqFer2O2dlZNBoN7O7uot1uw+fzIRKJIJ1OY3t7G6dPn0a5XMbBwQFmZmbwzjvv4NGjR7hy5QqmpqYkAYPb7cb4+DhisRgymYzsHnu9XhQKBQEshUIBpVIJ0WgUY2Nj2N/fx97enmSp7Ha7SKfTsiMdi8XEQWKWNYIOAJKNbXV1FefOnUMsFkMymUQul3sqYYPOYAlYM1pmHIoJwjTDQmfIzDppAkRTSsbzTSdJx9FZxb2Z9iyQY8UwWh1D5y0ejyMWi2F6elriEzWjYjJuHBOdLAF4Oj28Bs88PhaL4bvf/S78fj+uX7/+1G6/yfBYtZ1t4PxaHWuCWfbZZC1PAiv8jmnWHz9+LDI6xln98Ic/xMbGBpaXlzE3Nyds8erqKq5evYr19XWJl+QmCnCc6TWRSGB3dxf/5t/8GzQaDZGZZjIZLC8v491338XVq1exsbExJIEjCCFDxOREZHY4Lkyicf78eXzxxRfi2JtzqqWv5jNjjpGeU657XlPXXzxp3kzppP5brxVuigAYKi9hMn+9Xk82b8i0MQ6M/eGcBYNBkfCy7Em5XJa1zjal02l4PB7Mzs4in88jk8kIkNLt5k/9XtIAigyfBrDMYKs3aYLBoPQBwJDkle89vis47ul0Gk6nU8oIsA6hlolz3fZ6PSkvwbpwPK5Wq0msIEEu32vPy14sAPe8G2CbbbbZZtvfCavX61hZWZFd5lAohFdffVV2mlOplMh0yLBxZzcUCmFubg5ra2uoVCqYn5/H7u4ums0mLl68iLm5OXz88cfI5XK4fPkyarUatra24PF4cPnyZRQKBWxubsLlcmF0dBSVSgXlchljY2NwuVwiv5yZmUEoFMLa2hoKhQLm5uYQjUaRTqeRTqfFgQiFQlLziYwXaxpVq1WJEapWq3j8+DHOnDkjtbLW1taGJELcGTfNKisek7RwZ58OIAv/mlIq/v2smDF9D+0wazPbp4HgSeBCO5QaWJ3ELpnm9/sleycdYDPWTLdVjyf7bsak6b9NkBkOh3Hq1CkcHBzgwYMH2N7eHjrXNHOMTDbmJJCmj7UaL7NdVt8Bx05wNBqV2DUNMtrtNvb395HL5XD16lV5tiiT8/l8KJVKcDgc2N3dFVljIpHA9PQ0ms0mSqWSgBUyy+l0Gv1+H/Pz83j99deRSCRw9+5dYXC4TpgsRgMbnSjG6XTi5s2b+I3f+A288cYbuHHjBoDh1P96vk4aF/M4Uw5J4/3ZFn5vMtNa/qo3P8gM6nXEe1rVnDPnjCyj3+8XkEJ54GAwGEpawp+UMRIIORzHZQYymQyq1SoAyLz3+30prcHEMNVqVZg3snAsoQE8KWNB5o0yxUqlAgCS6IYxZwRoZOHYP7Y5HA6jXC4L89/v96VsDEE+M2nyPc854HrhvThGzWZTkqzUajUZt+dlLxaAk4flOTfENttss822v9V29uxZdDodpNNpiach6zQ/P49isSjxaZlMBtFoFACkntu9e/dETlcqlRAMBnHp0iU0m01cu3YNqVRKnMG9vT3EYjFcvHgR9+7dk2D/eDyOo6MjAMDU1BRKpRKOjo5EalatVnH79m10Oh2cOnUKDocDe3t7ODw8hN/vl7gQOilM0884D6/XK5Ih4Bi0bmxsoNlsIhAIYGVlBR9//PGJ6eZN1sUqNs3v9yMYDEqMjdvtllIBpmlWDRgGPOZPzcqZ5+v20LG1Yir03+bvtJNAnP6c0sloNCqxUnt7e0MON51f3Xama6cjroGtBn8m80iWNZ/PY21tTRzkk9r7LBCqpa6ms3kSc/Ss61sxK2QnR0dHUSgUUK1WpR/Ak8LflDsy1rRarcLj8WBqago+nw+3b9+G2+3G22+/jVgshmq1KrGUXq8XyWQSbrcbjx8/xsjIiCTzqVQq8iykUilJnkNGWtfR02OiwbfL5cLHH3+M7373u7h06RLu3bsH4EnJAc04s09kSk3ApOMhrRg6slFWpo8x4xtPAu/AcBwd26nnjf1gu3SWRp6nM9nyXGbnBCAxYrVaTc7jfDudTknuo5UBbHcoFBqKqfP5fDIGzBza7/cRj8dlblmnkgyZLritWXeOC8/TSViYTTMYDA7JOsnGARgCcfqdxIyckUgEwJMaeZlMRsbcLiPwKzLJQmnHwNlmm2222fYMGxkZQalUwtjYmMgZ4/E4HA4HMpkMfD4fcrkcBoPjtNSUOzabTRweHuLtt98GANy9exczMzPweDzY2tpCq9XChQsX0Ol08MEHH6Ber2N0dBSBQABXrlyBy+USCWUul0MgEMD4+DjK5TKOjo4wOjqKRCKBw8ND5PN5jI6OIhqNot/v49GjR0in05JAw+/3w+v1IpfLYW9vD7lcTmRROi6EDo/b7cbGxoaA0/n5eXGK6IzQoaVDRQdJO6UApOAyQQzrLtE5fVZsiBnTdpI0j84xHS/NOPAz3lfvwpvgz/zcZEZOAi/8LhKJIBaLyTjqhCsOx3FWytHRUXE0W62WMAqMDaI8i+BGs5GaQXE6nQgGg8hkMjg8PHxKomnVB91esx/mTysm1Wrszevpz/5/7P1ZkB1nmh6MPXn2fT91aq9CFVBYSZBgo5tLc8hmszntjpnpUGjGsiZkj2SFZSlCoRtf+LcvHCH/uvjDIYcvdKGwHFp809Y/0mh6lp4ZNqfZzaVJgiAJECD2Qu1VZ9/3NX1R/bz4TiJPAT29YMQ/3whEVZ2TJ/PLL/Mk3ud7nvd5jUwn99ntdoW14lgpZXS5XPD5fKjX63C73cJknzp1Cpubm7hx4waOHz+O1dVVAXkqe9nv9xGLxXDhwgVxrOS8NZtNFAoFYX/5Oo06WPelMohGcMX5ffPNN/Haa6/h+eefx/vvvz8GFnie3FbTtLG2A0ZwrR7LeN3UIPgysmq8R9RWFUYgrspz1WvNhQ0afajjJoPJPpEEUGSh+Bwol8vw+/1wOBxoNBoIBoNjIIxjUxdm+v0+ZmZmUCwWxxYq1BYNdAclqCdb6vP5pO6N35NAICCLVPy+q/c+54Z9/9hk3G63SyNuGrLwueFyuTAYDNDr9eTZSuav3W5LPR6BKXD4fKtUKigWi6I6UPvjPYn4cgE4qwbOCiussMKKx4her4e1tTW0223U63WpYVOL3FWTkVQqhXQ6jVgshqmpKWxtbaFQKGB5eRmDwQCFQgGapuGZZ57B3bt3pdfb9PQ0ZmZmsLu7i2QyiWQyCZfLhWKxiHg8DuBBk+1UKgWn04lsNovBYIDZ2VlEIhGUy2VpND41NYVer4dgMIhoNIrRaIStrS1kMhmReBIwUArUaDQE9DUaDezs7CCVSiEUCmFpaUlqj+iKSQkU2w+owSQxFAqJ1JSMG2tZ1Ma+RtMNwFxCaWT4JjFGRhkmZU1m9ShmCbX6WTPG0bg9ax2XlpbQ7XbRbrfHjjUzM4OvfvWrWF5eFnkl597pdMJms6Fer2NnZweff/65SF1V4OhwOJBKpaQ/WqPRQDabFabDOH7jtZgk1TOGGRN3FEM5idkzO0a/30cymcTS0hI+/PBDScpVmSLBlKZpwl5/9NFHyGazIoHsdDryOd5D3MfNmzeRyWSkLkmtswuFQrDb7SiXywLi1No3MzmuEfDy/N966y28+OKLWF5ext7e3kPzp4I/Or2SbeX9qV5fI4hWQ5VJqn8bGU6VWeN2RnDI8XFcNCjhPBmZRH5vODftdhterxe6rqNcLsti0GAwQDAYFDljJBJBvV7HcDhEu92W4/DahUKhMYMPukrSwp/3S7vdxnA4RDAYRCAQEAas1Wqh0+mIe6bar45yzlqtJmY0fMYRtIVCIVFT0PzE6/ViNHrQ/oBmN1z48fv9aDabY2YnNOVhTfBwOEQ0GoXb7Raw+yTjywngnuwwrLDCCius+FseTz31FILBIG7fvo3V1VXs7u4iFothMBhIvcZgMEA0GoWu69ja2sLKygqcTid2dnbgdDrx0ksviSxxenoa4XBY6mdCoZCsJN+6dQvT09NYXFxEOp1GuVzG9PQ0RqNDZ0iXy4VkMolqtSryyFgsJnKknZ0duFwuRCIReDweSdoajQYuX76MQqEAm80mBf0qQCEbFg6HoWkaer0ebt68ibNnz8LlcmFxcRG3bt2SBIkubKo7JaVVZDa8Xq+sxnc6HZFjscH0JDORSXJFhgr4GMa6IONPrp4bHfwmJc0qW2J837gtzWGCwaDMO3tmadqh+czp06fx1FNPSX8+1hJRykWzA9ZyZbNZYQM4Bkr+2FS4VCqJicfjyhzN5trsvNV9HcUMTbpWZiCR16DVamF5eRlLS0vI5/MilfP7/XC5XGg2m1hZWUEsFkOxWMTOzg4KhQJOnDiBZDI5JiflIoDKuLDJsgrseH+wRQDlw6zVUlnho+ZOlVSORiN8/PHHOHbsGJLJpHy/eO6qrFJlwNT5UfdnvMdUlg0Yv8dVgM3PqlJPbmNs5K7uUwWq6j2mft7hcEi9IlsIEPQSPKn1rLquS00YARtZOVXGOBqNpIYuEAiMtRWo1+ty7Qis6LhLk6WDg4MxkMdaXlWOW6vVBDADEKnscDiEx+NBqVQSZp4AkeCaNXMEajwGmW5+Dyn/pOslAKmPJhtfLpctBu6XFRoefiBbYYUVVlhhhTGi0Sg2NjbQarVw48YNnD9/Hrdu3RJjETXpaDabOHXqFNrtNnZ3dzE7Owu3240rV65gOBxibW0Ng8EAn332mdSmqS6Jy8vLcDgc+OKLLxAIBLC8vIxWq4VyuSyMXKfTQavVQjAYHDMzqVQqAiCmp6cBHCZp29vbWF9fl0TJZjvsaVQqlYSVYrLCZIxs4sbGBsrlMmZmZrC6ugq32416vS49sFjvR5c3JqyU97HHEpkOMh9qjzYj28X9MVQgZQbSjnLoU1kOShMnyQeNTIUxqTayV+rYKZ10u904ODgQFongQWXZVIaE8io2B6ZpA+VhatBRsdlsolarjdWQ/SJhPBf1b7IxRx3jUZJKIwhutVrY3t7G/Pw8zpw5g729PdTrdTkXu92OeDwu7EkwGMTe3h7m5+cRDoeF3SFr5nA4kEgksLy8jNu3b8sCA2uwCAL6/T5arRZ2d3fRaDRQq9Vk8YFzTckm8MDBlAYnZEx5b+i6LgzN5uYmjh07NjY+9frxutOghsCcc2OsbzTegxyPkRnka+r8qnWqvP9Vh0ajXJOARZVPcmxkyvk62TZ+151Op7QeYdNyfs7j8aBSqaDT6SAcDkPXD41G1DHT2r/b7cLv90PTDmvuWq2WvE+pIoFUq9VCvV4f613JBSkyhVwQ8/l8IiGnFHI0Gkn/QfUacQGOc0QHYT4PKevlNeBzczQaPWS6Qpkp+4T2+31Z8HoS8aUCcLAYOCussMIKKx4j3n77bXGG/PrXv46trS1EIhFZyY/FYigUCiiVSlhdXcX169cxGAwEfK2vryMYDGJhYQF7e3vY3t7G9PQ0VlZWJDnJ5XKIxWKo1Wqo1Wo4duwYhsMh9vf30el0EIvFxA693+8jHo/D7/ej1Wrh4OAAo9GhpbfdbkcwGBQZUi6XE8mmzXbYoykSiWB9fV2K9wOBwFjCR3ml3W5HpVLB5uYm4vE4ZmZmEIlExLGNBiu0EmevKCYxg8FApEaj0UjYIiaDTIyNq/JmobIGKmNglFOqiaxRisnX1LordX9cSVeNTrgvNaE2Jtk0maFxgSrf5Mp8v9/HnTt3EIlEsLS0JPWUbGDOmrh+v49SqYSDgwNJYtXj93o9uUdYt2M8d7N5M46br00K3g+PwxpMAsRGyR63o4z41q1bmJqawvHjx3H+/Hn8yZ/8Cba3t9HpdBAMBjEcDpFMJnHv3j0AD6S4rB0kAKYUOJfLyWtk5Nh8uVqtiiyTjpas5yIwdjqdWF1dxWuvvYb9/X18+OGHsh1rFY3zx/6IBHHz8/NIJBKoVCpjAIEgnvJhdb7U62AE04C5gQ8w3paD26nvqcBOvRZqvSelguq15neDLFOv15N+b5Qiqs6crDnjtaAhEg08aIzE+aLEkAwgWXHW11K62Ov1BIB7PB4BimTnyPIRrHOBhhJIvs+54LiDweCYK2Sj0ZD6Nt4PAKSnHP9m+wKV0eMCAq81QRq/y7VaTeTmrVbL/Av0a4gvFYATExMLwVlhhRVWWHFEpNNp6LqO8+fPw263Y21tDdVqFalUCnNzc9jb28Pdu3cxHA5x7949BINBrK2tYWNjA6VSCSsrK3C73djY2EAmk8GJEydw9uxZ7OzswOv1IpPJYG5uDvl8XoxNyK4Mh0MsLi4KQ2G328VApVAooFarQdM0+Hw+kRdxhXtvbw/FYlHMBcrlMorFIg4ODlCpVAQQMJHlSny9XkcikUAwGEQ+n8etW7dw+vRp+P1+LC4uYmdnZyyJpQxQNSPhyjiNBeh6yWOozIAZE8Hg9kdJKo2fYajgQf2nthaw2+2yGs9krFKpCKicJKFjsBk163KYyKlmEjy3dDqNt99+G3Nzczh//jxOnjyJVColY280Gjg4OMCNGzdw7949uSaUWgKQJtMEDZPCTO5oxhwaP2MmjzT7Xf3bDNRO2h9BQ7/fx/Xr12Gz2XDp0iX84Ac/QLlcRrvdxvT0tDhEXrlyBb1eD/F4XO4DnjcdONvtNtrtthhxsGaJjoC0gifDDEBkrnyfLE6tVsN7772HcrmMWq0mLJzZ+eq6LosdBAcHBwcikVUdLVX2jbI7Y32jOq+qdBV4+B5X699o+MHjqLWAAMaYNTMgr7qfqiCOIIoOu5T9ElCR1eS5ERSp9WrD4VDqg43mQcYFHG5TrVbHGnk7HA74fD5RCajfLTKgBEoEcQSBBJi8tnzm8TnJe6VarcpzjPeHruvSx40Lbbzv+LxQ2Uev1yvzY7fbpfaOjKvlQvlLigdfGAvBWWGFFVZYMTko6friiy+kdmJubg7AYZPve/fuodPpoFKp4Omnn0YoFMLVq1fhdrtx5swZ1Go17O7uIh6P4/z58xiNRrh27RpqtZok/zdv3kQsFsPa2pqwZn6/H7Ozs9jf30c+n0ckEpHG3PV6HfV6HR6PR+rRKBXqdrtYX18XJsPlciEWi8HtduP+/fsYDoeIxWJotVrodrtotVqSIHEFfHp6Gm63G+12G3fu3EGhUIDH48HKygo+/PBDSdJUAwrWcVGmxJXxRqMhrQOMjJFR/qjKxNSVfvV9s1ATXDNWzggEmcg6nU4Eg0F4vV7k83lUq9WHauvU/RhZODKaahLNhNRM2lmpVFAul7G7u4vt7W187WtfQyKRwPb2NprNpjR0LxaLADAGdOl212q1HupvdxS7ZgbazBhG4+/GfR3Fxhn3r/6usp/qHAKHtUuVSkUs6DVNQ7/fl15wg8EAq6urwlyR5QQOa9lee+01/OhHP5LFAwJdgo1wOCyGQ6y9o7EMDScIkJn8V6tVYZQBiNGP2RwQ9PN8BoMB7ty5gxMnTggzBTyw5jc2aTcCOJUlVsMMyKm1dZwf43eIzpIM9iTk72x1oYIijok1XQRQXCiieYjf70e9Xhcmnt9xXotIJCIsHsF0qVQSFo/fEafTKfWi6r1AZprsNA2ZaIpCYMQxsf8ag8ehAQmPxYbjg8FAnHUpZefxOAayiXy2cW76/b7UWZKdpAKBoNHj8cjzUH2OPYn4GwM4TdNOAviflZdWAPzfAEQA/B8A5H/2+v9V1/W/+Jse5+ca089+WgycFVZYYYUVR8Xdu3dRr9fHGrrev39f/gOv1+vwer1YWlpCrVbD9vY2FhYWEIlERAKZTCYRjUaRTqdRq9WQy+Vw4cIFAMD6+joikQiWl5exsbGBRqOB5eVljEYjYWISiQSOHz+OUqmEbDYr9Wxc+dU0TRIPyhT5vtvtRiaTwZUrV9BoNBAKhVCr1dDpdMSEoN/vi+QIOGSDKK8ajUbY29tDPB7H/Pw8IpEIstksKpWK1AAS/FFyxISn0Wg81CxZZY7MAIeZwYhZqMCCSewk1oevq+CMTBCBKBkXs3EYj8f6p0gkIsYO6nkR1JJpMUo/a7UaLl26JLVTdBvd3t4WdlQ99263K5b5rB80ju0otsxs/JMAHbcxspBkdyZJSc2uIYHFUckrWQvg8N7IZrPIZDIAgIsXLwqgIfBivWCn08G7774rQETTNGF8fT4fkskkOp2O1BRWKhUBagQyTP5VF0ReS9Z0qeesni/PT50PgpudnR3Mz8+j3W6PsWlkf8wYSxWkqfOvzj3ZHu6PIIXbqG0CWBemHlsFeAyXyyXH4+s08+A+ySAFg0GUy2X57nCRhtebhjA222FrgUgkIjJWGtSwpx/rOWnCw+cRry+lilQI+P1+kW8TfLGnH8E5ZeJsRQE8AJQej0cWuPg3WVJeE5fLJUYkuq4L8FOBIXAITin5ZP84Snv5/wQXBHif/HcJ4HRdvwPgGQDQNM0OYB/AHwP4RwD+X7qu/+tfxgB/nuA8WvjNCiussMKKo4JOZWS6YrEY7HY78vm8mIvMzMwIWDp37hzsdju2trYwGAyQSCQwGo2wsbEhiccrr7yCTCaDjY0NpFIpdDod3Lt3T1i3fr+PdDqNwWCAZDKJxcVFlEolbGxsIBwOSxNb1cihVCohn88jl8shHA5jamoK8Xgc169fx/Xr1+H3+5FKpbC7uyssA1eI1Rqf0WiESqUiZifVahV3797F6uoqHA4Hkskkstks6vW6gESCICbGNtuhJT6t9M1qeI6qfTNjhcyAHaVXRsMP1SyECbYxIQYOk7v9/X1h6NT3GEyA1USdyX84HJYaN1USx+3JbqjtEhiDwQAHBwfY399/aB44Fibt3W5X5vOourdJckZjTAJxZmDMGOq8qvOrvm/8/FHyV/V9Hn84HGJ+fl6SaM6Nz+fDN77xDVSrVXz22WdS88SFBjaLZ99DsjqUEdpstrFmzATZqgU9cMjgraysIJ1Oy3el1+tJYs7En/eVyvpqmoZqtYpEIvGQs6R6fqpxySQwrTpiEnzys9yWCyNmTpSUALJeUp1nAje+RjDImrdGoyGLOh6PR9g6tQckATCPQaMezmWlUkGj0RBmi/M+Go0ecqRlbRuNfYDDujOqDLjAwuOrMkk+Ayjv5DxQycD2AGpzcJqL8LscCATkXmN7GJ/PJxJbzitZYNX8iX+zZx7vEV5fr9c7sSH7ryN+WUf+JoD7uq5vP0k0+sCF8okNwQorrLDCiv8Ogv/5Mhmn+Ue73cbMzAympqbgcrmQSqXEFr1er8Pn82FhYQHNZlOYrtnZWTidTly/fh3dbhcnTpxAp9MRBzav14tWq4VSqYThcIjZ2VkkEgncv38fjUYDkUgEkUhE+ohpmibs4P7+PlqtFubm5jAzM4NoNIqf/OQn2N3dxbFjxxCNRrG+vo5KpQLggdU1ey+xqfdgMJDkikleJpPB/v4+pqenMTs7i5s3b8qKuTEBJphjkqeyT8ZaHiMwM4aazBpZLIbqfqcGX+d+1GMZwYcK8owJNzBu7MB9BwIBAQ4cnxEoAg87alJKp7J2KugxWsUzwaVs9Shgpp6r8RyMwMq4n0cBPpVNMzJS6rGNxzRuM+lYnA8m2LFYTCzbWau4urqK9fV1lEolAQ5M5gmoE4kEYrGYsCo7Ozvo9XoIhUIiGaYrIQABC2oNHRs1q30LmYDzmJwL1fVRBXX1eh2pVEoYHSOjqRqcqOCZP43glvczz4uyXSNbSoaO88LfOS5uq56P+pOs08HBgfSA47HVXmesc7Xb7fIMIiNG4EigRvCmuk9Go1FxlKS0lc9Z1TjFZrMJk6Xun+ZLrE9j/R2bc9PhkoZOwAMpMts98BzYy5LjU+Waah2q1+uV7yc/S7DW7XYFtNdqNblHuMhlxpz/uuKXBeD+NwD+f8rf/1zTtP8dgE8A/J90XS8bP6Bp2j8B8E8AYHFx8ZcyCGHgLARnhRVWWGHFEcEE+uzZsyJRJEPgdDrhdDqxtraGYDCIzc1NYal8Ph/K5TIqlYrUoY1GI2QyGYTDYdhsNuzs7GAwGGBmZgY2m03YGI/Hg9OnT0PTNNy/fx+apkn9GxmGVquFXC4nBidOpxNPPfUUPB4Pdnd38d5776HVauH06dPw+Xy4evUqtra24HA4EI/HRY6k67oAzlAoJMX9tVoNsVhMVquvXbuGeDyOU6dO4dNPP0Umk0G1WhXXS7VuiAwc6z+Ah/uLGU0ZVKmhGYt0lFGJui33wbGYMRxmjJF6TOMxjLmCx+MRiZZxX8ZxMgFUnev4ulH6yQRcnTP2GySYeByGbdIcqWCVYzKCB7PPGhky4z5/3jBeN9XYBji0dFcTebfbjYWFBZw+fRoffvihyNfo/un1ehGNRhEMBpFKpZBKpeB2u1EqleD3++H3+6X9BsECZXaqO6B6D21vbwuoUxuHAxgzKCHAJDji+aXTaUxNTck1NbLE6vXg72b3KvetAgwAY4CACwIEb1xYoEW/aq6j7kMFkVwEsdlsmJqawrVr10SeTfDWbDYRCATg8/lkW2PNG/vBcRyspR2NRtILjvLObrcrzw3e61yosNvt8Pv9IudWDUMIGtvttoArdXGEQI91xnwecP+cU6/XK2wbHXR1XUcwGJRFLC4oRKNRmXMVPPP7ynrmQqEgx/L5fOJ+aqxr/HXGLwzgNE1zAfgdAP+Xn730bwH8jzhUMv6PAP6fAP73xs/puv7vAPw7APjKV77yS0FcloWJFVZYYYUVjxPLy8t47bXXMBgM8M4772A4HGJqakpWbp966il0u13cv38fsVgMsVgMmqbJ6jKNLoDDRGtpaQnpdBrNZhMulwsrKysAgK2tLXi9Xng8HiQSCWQyGRQKBanhcTgc8rNQKCCfz4uz2uzsLFKpFPr9Pu7fv4+dnR0EAgE89dRT0HUdV65cGZN1HRwcYDAYSN+kZrOJdrsNv98vAIgSIL/fL+0Ezp07h8XFRayuriKXy0kfOVWOyQJ/SoqAcRkj8LCBCcPIdKnJrJG9UxNftYbKaBhgZNnM1D/GJNpsWxXEUFKmmkio5zWplo4JtpGFVNk4laFjs2S6LKrjMM7PUWEGwIyS0scBhI8D1szYv6P2R9ZNZZrOnz+PTCYjyXMgEJBWDKrZhMfjQSqVwvLyMgKBgCTaMzMz0gOs3W4jl8sBOJRGRiIRjEYjRKNRubd3dnYAPOj9Rgkxv3Ner1dYIJVxUxcdVPMdzm+tVhtzvCR44vvG74DK5HF+KFvkNVI/owJGIyhnqC6TRgZb/akyjTdv3pTng67rwj6pUmi2HHG73SKlJHgj0OFxOQaqDchYkcEPBoNiJKKysGTPKIfVdV0AqWoeogYlnGzCzWbtNtthbzjKHmlexHNwOp1j5iycF4/Hg0gk8pAskr3fCGrVvnetVksk7jxH4zh/nfHLYOD+VwA+03U9CwD8CQCapv1/APz5L+EYjxfCwP3ajmiFFVZYYcV/h/Hd734Xe3t7uHTpEjRNwzPPPCPA7OTJk9jZ2UG73caxY8cwNTWFUqkkq9azs7Pw+/0oFAoiP7p9+zba7Tbi8Tji8Tiq1epY/RsAbG5uiosepYqj0QiRSASFQgH379+X+o9wOIyFhQXYbDZsbm4il8vh7NmzWFhYwL1793Dz5k30+32cPHkS9Xodd+/eFfaiUqkIC9dqtWSlmBbh1WoVMzMzKJVKqNVquHz5svQy+/TTT8eSFbr10S2RyacK3NQkdxK7ZgRNR9nlM4ysl9EoxYwxMjJJavJtZJ7U/dhstrHGvQ6HQ+p61Jom9byPkokaWRd1PP1+H41GY6z2bRJLZtynmXxRBQhG1m0SE3cUaDPb7nEBphl4s9lsiMfjmJ6exsLCAnZ2dqTWqVgsSi0XwUQikcCrr76K1dVVBINBAb6UDhaLRVSrVQHcPp8PsVgMi4uLeOmll5DJZPD5559L/VWj0RB2z+Vywe12o9FoIJ/Pi7kGTXnUa6wCYhVoZbNZPP3006jVamOyTWOo7CyZJDXI+PFe43fNCCRVgGiz2YQJYo2nutgBPACj6vHZ/xGA9HFUx8n2AgS5AGQxg7WCDB6bjB178rFdCWWOXAwDIItS6jnRrKnX64n7LhezGo2GyCc9Ho88c8h+saF3rVZDOByWY/L5SZMVAmUyb2o7ikKhIJ9Rr3W73UYwGITH4xljNtVnKKWW/7038v77UOSTmqbN6Lqe/tmffwfAF7+EYzxWSA2cxcFZYYUVVlhxRHz22WfodDp49tlnRco2MzODubk53Lt3D5FIBLOzs/B4PDg4OBBpFp3c0um0MFt0cJuamoLT6UQ+n4fNZkMikcDa2hoajQZu3ryJZDIJj8eDUqkkRhkzMzNYX19HJpNBKpXCcDhEKpVCLBZDpVLB9evXUa/XcerUKZw4cUIkk4lEAtPT09L/jfUohUJBnNu4ksx+TwCkj1E0GkU4HEaz2cT9+/dx6tQpqTXa29tDr9cTdzcmlpROqpJGhgqQ1CSNf3MbAA8ll8YwkywCD7cVUEGK+lljTGKh1H2w7of7pxMfV/q5HyN4MUpGjWNQmRwCh06ng2azKYyGkZ3ha8ZzmiSHVBmaSWykUaJpZHR+njADcypDZXx/NBrhK1/5CnZ2dvDP/tk/w8HBAb73ve8JS0MHSTJtkUgEa2trSCQSpucSi8UQj8dRKBREvjc3N4fXXnsN58+fR71eRzQaFYkwgQtNaVgDBUCuLb8/qjOhkVHjeZGBYw2s0XBHHbMK9lVTDr5GmSAXXIwgnb9T9glA+jyq15v/CCyM13s4HKJYLMrxe72esJbcR6vVEiaUskTWz/LYvGcp/ySrVi6XUS6XBbjZ7XapTyTjpQJWGo2Q4Xe5XAiHwwKmAoGAqAeAB8YnVAMAECMb1hByboLBoFxH3ltk5diWpdPpoNFoCAvMno+8tmz4rRq78BpyfgOBwENOlr/O+IUAnKZpPgDfAvB/VF7+f2ia9gwOlYxbhvd+pSHfGQu/WWGFFVZYcUQEg0E8/fTT2Nvbg8fjwdraGux2O65du4ZkMimyxGq1Kv/p0ya73+8jGo2i3W6jXq9D13XMzc1JIT3lO4uLi9jd3cXu7i4AYHt7Gz6fD0tLS5ibm0O9XsfVq1dRr9elpmNubg6rq6u4desWLl++DLvdjldeeQU+nw+XLl1Cq9XCmTNn4PF4sLGxMTa+dDotdUCs8et0OpLwMXlrNpvIZDKYmprCaDRCo9HAjRs3cPHiRSSTSaTTaZErkU0BxhkwlXVQGSo14Z3EUBlX4tXt6MZnNDcxgjoVME5Kevn3pHGo4EN14WMSS1YCwJiboTFZPwpw8udoNEIymRRpK63tjfI64zypx1C3NzKORtmeyjwa58RotHEUcDCep/o7x6yyVWaMHY/H2qsXXngBb7/9Nvb29mRxgbVWbBTPHmVm4ff7EQwGhWGmhHV3dxehUAjJZBKrq6v41re+hVqthkKhIIBc0w7dJDVNw/z8PBqNBiqVClqt1lj/ODI+ZP+M15UsFtkz7r/T6TzEfpLJ4r54r6g1dkYWVQXYrBVT55hMOPdjXMRgXZzdbh+rt6RsdHp6WsCTx+MRtpL1aZqmjUkZ1dpTHovnyrYBrB0OBAIIBAICkIbDoTBg6v1JySbZPOBBewC1vowtV2jh73K55LqzlpKglI6inCsybp1OR76/2WwWPp9P5oa1y+l0Wsyt6FbJa0XpKXDIYNpsNhQKhSNZ+F91/EIATtf1FoC44bX/7S80IiussMIKK6z4FcfMzAyuXLmCcDiM+fl5sfc/ceIEQqEQ6vU6ms2mJJdMdujgVqvVMBwOkUwmRRLHpCQQCMDtduP27dtSh0YHvnA4jKeeegqNRgPFYhGadmh37fP5cOLECfh8Prz77rvY2trC4uIinnrqKWxtbeHKlSvQNA3Hjx+H0+lELpeDw+FANBqFpmlIp9OS5LFPFRM7sm5MyDqdjtThEUhtbW3h1KlTOH78ONbX19Futx9q1G3GDgEPO0kexQIxWTUms9y/CkQoEXucMI5N/dsI4ozjUw1JRqMRpqen8ff//t9HLpfDO++8AwBjzXuN0lAVyDBRV2vfmJBnMhmUy2UxzDF+nmNRE3WjVFI9NwaBiZHhNGMmzRg8I1tjlF2aMXvq6yqoUI/FOfX5fIhEInC73dJCY21tDZubm3LvB4NBMSWh1G1SeDwenDhxArdu3UKr1RJL+F6vh/X1dZw+fRrJZFJqqvx+v/SPy+fz4jY6NTU1xtTYbDZhb8gQmbGNbEJNIxWeq9PplPoyMkW8X4z3tXpMyiLVWkoelyCGCzDAw4Y56vXj+wQzZIzK5bL0deSYuVCh9rBjfSGvAW34OU8EqjQN6XQ6YsTi9/sF/BKYq20EaE7CcyNYCwaD4vxI1QDPm21euE9N06SGjufIPnwcG19rtVriOtnr9RCLxVCtVgXwEbAS1IfDYbmfuVjH+4Fzz+tE9jUcDk+8T3/V8eQaGPwKwiLgrLDCCiuseJz44osvsLi4iHg8jp2dHaltczqd0hA7EAggmUxK3Q0Tj/39fWk4q7YHGAwGiMfjGI1GyOVy0HVdQFuj0cDs7CxOnz6NdDqNjY0NkShFIhEsLi6iVqvhr/7qr6BpGr72ta/B5XLho48+Qq/XE1OHWq2G9fV1SYzZd4zGJASZTDJ6vR5qtZoU5NMAoNFoYGtrS5In7vf8+fNIJpPY2NiQ/k9qsb4Zm0MAwWRVTTCBcRnZJFZlUqhAQd3XpOC26vZGQGIMJt9csff7/YjH48Kc+nw+sSRnewZ1Dpigcw7UeVCTd7JBrH3k+ZF5YuLocrlQrVYfmkcmuOo1YNI/iR1T51ENlfXhvBnn/KhQWTd17vl5tXZrdXUVc3NziEQieOqpp5BIJJBKpeS8Lly4gMXFRZTLZZHybW9v4+zZs6amOJTkAZBmz6PRCNvb2+j1erhx4waWlpawtbWFL774QiR5XOCw2+1wOp3Y29uDz+eD1+uVsasmPerx1Puw2+0KY04wR/DPeiyPx4NWqyVMOKWBnDMCASMbrd63ao8xta2GOu9GAMe552fJFnY6HZEOcvyUR7JHG2sy2QpArWEjSwdAesCpCxpkwjiXuq6jWCzKNXI6nTI3bBHAVgZ0f+SYKbFkjRkloKqUlUZLnC+CNn5P2+22yDBtNpsYlqitELgw1263EQqF5JhcDPD5fFL3y+copaOsvcxmxfbj1x5fLgAnD6InPBArrLDCCiv+VsepU6dgsx02BA4Gg5ibm5P/oHu9Hvx+P2ZmZlCtVsVCmglSIpGA1+tFrVaT3lVkELrdrtj6s2dcu93G2toa4vE4Pv/8c2xubgqjMzU1hePHj6NUKuHWrVuYmprCmTNn0O12cf36dTgcDiwuLmJmZgbpdBqlUgnRaFRq72i8QsaQBfYEGlzRZ9LldrvHGKlwOCznfPv2bSwuLmJubg5bW1sPMQeTkn2jXbxxe7MknCBDZatUkPEoAGHGTE16X92fGVAxGkDcunUL//bf/lvUajXY7XYEg0G4XK6xHlmsCzSycWRTVNDKf41GQ5J6dTyqlCwWi4m8kqGaLKjnQImcel3U/Rola+o4jYm/2nPPTD6pzqMZ68ZQHQr5OQInOhuS3QoGg3C73Xj++eextraGbDaLbDaLUqmEXC6HlZUVU5MIHrfVagkjMxqNsLe3BwDI5XK4d+8eSqWSMFccM/+mi6AKAmw2m+xTPXfjPcp7hkZEdFTk9437JGBIJBKw2+0olUoCAHmvAQ9YNqM0VgXwRskyQZN6HQkCeS9xnsrlw05eBEZs5k0TEd6PrCfs9/uIxWICBGu1mkgWyUaxXo7ybU3TxFwlEAigUqmMGZTwOvE+ILNHyWMwGESlUpHFDJvNJotnvNdarZZIM1Xw5/V65Z6q1WoYDAaIxWJoNpvy3eI15NzRoZKgTe1RNxwO4Xa70Wq15HvE+4IyWzLqj3pO/SrjSwbgDn9aJiZWWGGFFVYcFXa7HcViUdzrNjc3sb+/j1AohGg0Kg2yS6WSSG5isRiAw0Qpn89L4sRi/Ww2K7JI2pR3u12srq6i1WrhBz/4ATKZDLrdLux2O5599lksLCxgY2MDW1tbmJubw8mTJ1EsFrG+vo54PI6lpSV0Oh3cv38fnU5HxtBqtaR2g8BTrXFjcsVaGQI9snDD4RDdbheVSgWJREJW6W/evIm1tTWkUinkcrkxcGPG7BwldTNK84zNuY0MDl9jqO+Z1cwZa42MLJTxdeNxjNIzVdp1//59YTLJylEiR3kV62pYK2gGsnh8Gpeo4EwdGxkZOptyX3Q5pd09P8exGeds0lyqLJJxjszeN37eyGiq/1TmxwjeNO2wkX0kEhHw9vnnn6NWq+H8+fPodrvw+XyIRqOYnZ1FLpfDu+++i729PaTTaaRSqbEG9+xlePXqVRwcHIjcjqAEAEqlkixmqE2ZOceUQT/77LPixNput8VIxQh2jbV9ZEubzSbi8ThCoZCwaWS0+J2MRCJwOp3odDpiqa+2jlCvAU1OVEZXZXHV+55jIFhTZbNkmehGSQBXr9fFSbFUKqHf74thEmvmVNZtNHrQXJvOtE6nU0yTWDfKvnTsW1ksFjEajQSUka3TdR3RaFSAZCgUgs1mkz5r/X5fzEgCgcAY2GatMeeCrD/3Rbv/Wq0Gn88ndY8cOxddVJBWLpeFmeX81ut1xOOHlWEE6Hx26bounyXY5HifRHy5ANzPfloMnBVWWGGFFUdFvV7H4uIiXC4Xbt68iXw+L82CC4UCtra2hOEAHriQBQIBbG9vy8pvOBxGrVYTuSHNTljbwz5ut2/fRiaTQafTQTQaxcsvvwxN0/DFF1+IvPLEiRPY399HNpvF1NQUFhcXUSqVkE6nYbfbMT09LbKg0Wgkq+CaduiIVi6XxaGNCRyBBQ0AfD6fMCL9fh/lchler1dWsff29jA/P49EIoFcLieAg/v4ecIIAJhkAniIvWIYTU34WZUFYUySCZoBGuN7KlhRnQFVSSLnj83R2c/P4/HA7/fD7XYLGCeYM1roM6mndE09vvEcyUTYbIcN05lM0+2PnzPK7cz2pUopjcya+p5Rcmlk8MzAtgo6JoE2FSDquo79/X2MRiNcv34dm5ubmJqawvLyMm7fvi1gx+12IxaLYW5uDtvb29jc3EQmk0EikRBTk8FggN3dXVy7dg3FYhHtdlvaBKjXTT1Pm80mSTpwyEStra3h2Wefxf7+Pmw2Gz799FMAECDHczNjJWl8kcvlZLGEzb3JcJGJInPUbrcfAvqTGG7+VGWuqkxTlVfy+US5IQEi56Ber6Ner8u1o0SQbJKqIKAMUl08IFiiaQyl5ARYAKQeOB6Po16viyycwIpGIjabTdhJn88nLpOj0UjqdrnoRLBIVo0sJM1ECBr7/b4Yr9BYhnMfCoXgcrng9XqFQVOffby+BHbtdltaGKj3PFlNLgbQBIdg8EnFlwvACQNnhRVWWGGFFZMjlUqhWCyKqcHS0hIikQgqlYokApqmySozE8MbN26ILCqRSODOnTsADp3SWNPGxt+UaF6/fh3dbhdTU1OIxWL46le/ilwuhy+++AJ+vx+rq6twOp24efMm7HY7VlZWEAqFUCwW0e12MT8/L6xMq9WCy+VCJBKRZtBMgmir7Xa70el0RMrHZK9er8Pv90svLDJDbIlAF71bt27h+PHjIs1kEmms2XlUPZoRJBm3nwTWgHHjlEdJJM2YJeM2ZnI/4750XUckEkGv15PaF75HE4VAIIBoNIqXXnoJ2WwWW1tbaLfb4sSnMiw8B9bk9Pv9hwCSes66rktySIMaGjBwfyo7owJPY/JvnAuzUOfE7Cf/8bjqvtUxmB1LvQazs7PQtEOXyGq1ilAohMXFRSwtLSGdTgv7wtrAWCyG+/fv4+7du5ienpY2HWSBisUi0um0MJoEN2Rs1B5+bFbN5vYAkEgk8Pu///u4ePEi3nzzTdy8eRM+nw/VanUMZBnnST3/+fl53Lx5UwyKCOa4HeWhKlNmdm8YQZw6d2qYXVfVICcQCMDlcqFWqwlzB0BqLqkKoMQaeFBTmc/ncXBwgFgshkQiIbVsfH6Qga7VamLqBEDMnMjk0cwEgFj2A4cKBd4znU4HoVAIg8EAXq9X5JiURDocjjHjJ9aF8jtBCTNBbSwWQ6lUQrValffD4bAcm6yc3++XPoMEgaxn4zUIhUJiYMP5I9vOthGVSkXqVDVNQ6FQMPtq/VriSwXgyME9SU2qFVZYYYUVf/uj1WqhUqlgMBiIS16xWJS/mbSymWun00GpVILH48HKygo0TRP2IBwOy+puJBLB1NQUWq0WdnZ2pCfbzMwMFhcXEQgEcOnSJWxsbCCRSODcuXPY39+Xerfl5WWkUincuXNHkt94PC6ysFQqhXa7jb29PdjtdiwvL+OLL76AzXbYxHswGIiEibIoNQFnnyN15ZiNegnSisUiFhcXkUgkZDWaq9CPA97MZHlm8jCVaVA/p8ZRIJDJK/dpTLSNEkEzBop/M+LxuDTZZsKvjq3dbmNpaQmvv/461tfXsbm5iXA4PGaDzt5TnFuanxiBgVkQjEQiEanN4Rypyb/KoKlzqdZTcc4mSUiNc2S8DmbMnRlonMQEcjyUpNlsh205Tp8+DafTiampKczMzCCTySCTycj5k+Gp1WrI5/MADpmjbreLUqmEer2OcrmMUqkk7oqq8QSZcyblMzMzYqjh8/nw6quvIhQK4fr169jZ2RGwzkUas0UF9V4mEOJ2ZKDU+5SMj3o9yJbzcyrby2Or4IrzrLLWZILMxsZjknWs1WoinyQQ41go9eS9yh6FrVYLoVAIkUhEmmLzGLxe5XIZlUpFZNqzs7NjElH1/AjyyMTxOtGEhu6WTqdTahk5t+zfxvNRXTQbjQb8fj8qlYrULDscDiQSCQAQ6TvdInl8stzNZhN+v1+YOAJ81jpznnhN2XSeQFh123xS8aUCcBYDZ4UVVlhhxeNEJpPBaDSSOozd3V1JHKvVKrxe7xizBRwafkxNTSGdTqNarYq7GpPreDwOj8eDu3fvol6vS0K2vLyM+fl5VKtVfPTRRwCAc+fO4eTJk7hy5Qpu3LiBZDKJ48ePw+Px4MMPP4TL5cLS0hLq9bqwhMlkEsViEdvb2wgEAlheXsbOzo446almA8CDhE9N0Nmbye12i9yIyROZuU6ng42NDSwsLCCbzYoEywi41OD7akLJYAIGPABhlESa1bQZX1eDAEI1lTHK9YzAzThmIxvHbWg93m63x+qUVAfO4XCIS5cuwev14tatW8hkMvgX/+Jf4JNPPkEulxOZFxNjyrxU4xLuyyh15O9erxexWAw7Oztj50EW1owlY5gZwhwVj8P2GM0y1G0mMaQqmFEXSmieYbPZ0O/3kUwm8fHHH+P999/H2toaAoEAWq2W3Hf8HAAxnSgUCiKfpHU8reQHgwF6vd5YYh2LxWSBYn5+HgDwZ3/2ZwLeKEU2zqdxbjgXFy5cwObmpiTwqtSRQIMyZ4JJ43acA+DhexN4AMRV6SrwoOG8GqwDoxEHz6FYLAoTxmvk9Xqlzx73Y7PZ0O12pV5vMBigUCiIUyVBCxeyaEBSqVTELKTdbotMlXJyFcgSjFFeShDaaDTkuHx+ESST9eL+3G63OO3yOa1pGpLJJOLxuJgODYdDqT8moG82m9A0TeoRbTabjDkcDgubOxqNxN2XNX1erxf5fB6DwUDaYVSrVVQqFaRSqYfu/V9XfLkAHH+xEJwVVlhhhRVHhNPpxOLiIvL5PHK5HKampoR9olkF60eCwaC0B7h9+7YkgzQvYXJSqVSwvb0tNVJkAKLRKPL5PO7duwe/349oNIrRaIS33noLmUwGyWQSJ0+eRLvdxr1795BMJhEKhdButwEAU1NT8Pl8uHfvHtrtNp599lkBEFzd5mq6y+WC0+kUt0MGE0MmJtyOpgZMeujsVi6XEY1GEYlE5By5Wg08DOKYlKr1X2ahshKTJJRmTJsxJo3DGI+ryGGyzZooI+sEQCRlxWIR3/ve9wA8YA7K5bLUOBLE0UKezILxXMyYQJ/Ph2QyiWw2K+yb8TP8HAGBWW2aCg7VY6lhBsqM/yYBNLNzMIK60ejQVp+StU6ng2AwiGAwiGq1ilu3bkl/sDt37qBer2NpaQnZbFYSf7o8srk0G25Xq1V0Oh34/X5cvHgRV69eBXDIkNIww+/346mnnkIkEkGtVoPD4UAsFkOhUJAm4u12e4zVUsfOv3mdea0DgYAY/Kg2+sA440lJJ4G/+r4ZI8f70DgWvm5kWymjpBSaAIp927jwxO80F0ZofkQwqNbJsi9at9tFsVhEIBAA8IABpdSV++G8coGCJh/8vgwGAzETKZfL0guwWq2KsYha00vZKZ9nAGSxye/3izkJ5ao8dqVSEYmyyo5ysUe9Rpw79rljGxgycZRxut1uuFwukVVOT09LjVyr1UIsFhMm8UnElwvA8aa2EJwVVlhhhRVHxNNPP42PP/4YpVIJJ06cQK/XQzqdhsfjkX5Fo9EIs7Oz4qJ29+5dSUhCoRCGw6EAtO3tbVmhtdvtCIfDUo+2vb2NWq2GWCyGeDyObreLnZ0d9Pt9XLx4EcvLyzg4OEC5XMb09DSAB72TWKvGZPfcuXPI5XK4desWwuEwUqmU1GUQbFEKyuTQmMyzloVJEaPRaCAajcLtdqPf72N7exvLy8tSo8SECzCXM5odi++p1uYMVWqlMg2TAAPBn9q2gPt8FHDk580AjfpTbZhMaR6lW71eT+q01PP8V//qX4nLIeWqrHdiQ2d1fEagQ3bN7/eLiQ4dA71eL+r1uozJKE+dNF+TgJdR9jgJfJnVs03al/E4vBc0TUO9Xhc2MRKJYG5uDrquI5vN4tNPP0UkEkEmkxFDmP39fQSDQTGe4HfP4/GIDJKugh6PBxcuXMDTTz+Nq1evSuNqTTt0vjx9+jT+6T/9p9ja2kKxWBTwwWuo3kdcoCCoUu8Roztjv98XafRRtZrGJt4EZuprRtaZQQkhAYLqSmm89upnCUrZMJ5Mn3oe9XodXq8XiURi7L4FIMCKYBWAMNJk0ADIwg+/H2ToeN/SUIX1aAR9BGwEkcPhUJweKYHk9q1WS+TtmqaJCRMddXkd6Tqp9qcjy0hQR6DHuju73S7PSwa/54VCAXa7XfrANZtNRCIROb9msykGKY9aQPpVxpcLwP3sp1UCZ4UVVlhhxVHx1ltvod/vY2VlBZVKReRakUhEEkfaazebTaTTabHUZrJHp7OdnR3kcjnMzMwAAPx+v5igbGxswOVy4cyZM7Db7ahWq9jZ2UEoFMLa2hpcLhc+//xzNJtNrK2tiZxLZdKy2Szi8Tii0Siy2SwODg6QSCQQi8WQyWRQKpVEBlSv16X+apLTI6WUbFDNRIRuiT6fT2RppVJpzPnycRMWNZk1M2pgGOuv1KRZBRJGRoRsH4PJtLEGTh3PpLEbGRAmyEyeo9EofD6fMG2NRmMsaaYsjMc0MhCPAm9Op1N6EebzeZGCcSGADpePquEzk4VOCuNnjYDW7HX1s0dJKAnIgcPrMj8/j9u3byMej+PChQsol8vY3t7GnTt3JOGmzE6V3M3MzEg/Q37f2DuM4OHixYsiO/X7/Wi1WohEIlhcXMQ//If/EM899xy2trYQDodF0kqJJX9WKpUxB1eVdVXniIZC09PTuH37trBTavD+Ues8VfbbCMSNxzNeF+Nigbqt2pNQBZO8T1WpJp0ZKXEcDAao1WoIBoPCRNENlO/T+ZOfIaNHUOTz+UStwPHZ7XbpZcgFomq1KsCYP9k77uDgAMChsQylxzye2+1GMpkUt0yfz4dKpSIKBjYkJzjk95VAjM84zjdZYNbE8Tw4bqfTKaoHumQSDPK8ySIStFptBH5JYbf9bCVjZCE4K6ywwgorJkc4HIbH45FmrJFIRGQ84XAYwWAQAFAsFoUBCQaDaLVa8Pv9siJLVo6NX48fPy4M1ubmpiSTuq4jl8shn89jbW0Nbrcbm5ub0uvqG9/4BtLpNGq1GqLRqDTDtdlsOHbsGIDDur1er4elpSXE43Hcu3cPtVoNqVQK5XIZe3t7UitCW+5JQbDndDrFVpyvU5LJOppYLCb1V0a2TA0jeDICDSP7ZpSrMfi5ScdRjwc8MFiZdOyjZITqWIzj4oq+1+vFsWPHsLCwgK2tLXz44YdoNBoyNgI1NcjuGOsQjedJk4/z589jc3MThUJhDLzmcrmHzscIDFQDF+PcmM0rfzfbbtLr6ntmr6njU+shuVjw4osvIhwOIx6Py3a8B9XPBwIBsa1X5aeUppIFo3HM6dOn8YMf/ABOpxMLCwvQdR2ZTAanTp3Cc889JzWjvV5Pmkp3Oh2pdywUCqhWqwAeLAqQqSKbR5ACHIKDra0tcU00hpmhjnHxQtM0af5NcK5+nqE2yFb3pd4Huq6PgYher4dKpSL1W7weap2b1+uVekJa6PO7zX1QytlutwXcqdJOLjqwBpguq3SYZBsVOmD2ej2RT7rdboxGhz3XXC6XmImQKWPtHI1JaEjSbrcRi8Wg64fNydn7jSCt3+/LcavVqshGNU2TBuAEuq1WS8ArF2u4QMUWCXQV5v5p3MKaPR7zScWXEsCNLArOCiussMKKI2I0GqFarUr/IyZDwWBQ/jOvVquoVqvw+/0ih4tEIggGgyiVSlIHEw6HpXUA3crIOLBJ9s7ODrrdLlZWVhCJRHD16lX0ej1MTU1hdnYWn376KbrdLubm5uByuaQG6sSJE9LgmUBT13VcuXIFTqcTqVRKEkSPx4PZ2VnY7XbcuHED5XL5IXmhmqCr9XO02AYOJVPRaFQkZVzJVvtJGZtIqzUnRlnZ40jwzOrhjIDBTH7J7YxAwghojhqH0eiF50FG8uDgAH6/H88///yYXTl7WlFqpo6TyeAkaSdlXNFoFGtra9jf38f29vbYuahjNzKSjwJYRzFwxrkxi6Pmi/tQjzFprgeDAQ4ODvAHf/AH6PV6yOVy4npIF0Nuz95fdFJl3SmdCllTSGC1srKCeDyOZrOJxcVFnDx5EsCDdgvNZhPr6+vY3d2VujDWM5FdpoMknWcpXaa0jkwQ2aannnoKly9flkUP43VRw2huwnucFvRkyFXTHlVSCTyQThqZOdUESK0H7Xa70naBbDDvU56P3++XBSrKAlnfxmtCUObz+USKSWBHRkoFfJST83h8XvC6sZ6s1+vB4XCgWq0Ka2a320X1oOu6AOpWq4VarSbtEWhMwl6afC45HA6Uy2U5NiXlHLPX6xVVA5/14XAY9XpdTE7IPqptH0KhkCxc0Uk2Go1KPSSfBU8qvlQAzvEzADewGDgrrLDCCiuOiEajgWQyiUgkIivBrKdg/RdrOOjuNjMzA4/Hg4ODA9RqNXFyCwQCCIfDGI1G2NnZQaVSwZkzZxAMBpHP57G9vY1YLIalpSX0ej188sknCAaDmJ+fR6lUwuXLl7G4uIhUKoVWq4WNjQ2kUim88MILGAwGuH37NoBDM5PBYIB8Po9AIIBUKiUr7FzJLxaLUldiZGqA8US71+uhWq2K+yTBiyohrVaraLfbkoTS8U4NVf44yXzkKDCnMklMPNX2AEZ5pbqtKus0sm5GNkn9WwVCo9FIEkvjfgl0r1+/jkKhIGxCJBLByy+/jPX1dVy/fn1MQskEkD+NYIfzGI/HEQqF8Pnnnws7YDZnaqgMzCT2zOxaT5oH4+fV11RQMem68VpNml9NO2y34XK5MD8/j08++UQWSphQB4NBkZoy2SYY4L7pMtlsNuH1euF2u3H+/HkUi0V4vV6cOnUKL7/8MhKJhPQaY51drVZDs9kUAMdectVqVSSDHo9HGBcyXnzd6XTC5XJhYWEBlUpFariMZiNm185Y10ZAoDqT8nujXm/1+8ggU6a6Sqr7Hw6H0jeQCxCsZWMNH5k5MlUAEAwGRULK/m9kmljrpzJVlJpz7sjGjUYjMQHJ5/PibMtna7fbRSKRkJYR/I4RLNOxlOdeLBYxPT0tTe0pXSdjRzdLSjQ9Hg+q1arIJflsV81kAEjLgFAoJPVzmqbJ9aSpDaW8rBNkfR5ZZc7nk4ovFYCzJJRWWGGFFVY8Tpw9exYulwuVSkWSKsps0um0sGmNRgMOhwNLS0sYjUZIp9NiohAIBMZqObgiu7q6Ku0E+v0+Tpw4AZ/Ph3K5jGq1OiaRtNvteO6559Dv95FOp9Fut3HhwgUsLCzg4OAA9+7dk5YCBIQulwuJREKkQHa7Hdvb28jlcshmswIeCCaMki41uW61WmIWwISOttupVGpMHkUnNyaeRzE0k5J5hgrM1N8pXVP3ozr5GRNXM5BzFPtktg1X2Jl8qokzAdhoNML+/r44dzKZJivBJPdR7Bs/e/z4cczPz+Pq1atjrR8mgTDjeT4K6KnbGOffaIQxidUzk24ax2N2XHWb4XCIQqGAXC6H5eVlLC8vi3EJZWi6rovZhcPhQCQSkcSYjBGt5OkKaLPZcOrUKdTrdYTDYXz1q1/F9PQ0fvCDH2A4HKLVauH999/HnTt30Gg00Ol0pL9fpVIRW3g6JKpsEuWEKmMTCATwzDPP4O23336oBYAKongvEwAYZb2qhb5aL8d728jAqftVWTh+F3lsMuXs+8bPENio7KXK+NHhk33VPB6P1Hl1u1243W40m02MRiOpbaMiwOFwIBAIIBKJyHe22WyK6QzZxlarJb3aKAvnIhPNlAjyVFdJ4IGpCt9zuVzCFgKHagHeH8b2H2R11esYDAZRr9eF+Ws2m7JwU6/XRf5OyelwOESv1xPJvaZpwhDyM08qvlQAzkGr36EF4KywwgorrJgcsVgM6XQa+XxepI77+/tIp9PCCLDwn86QpVIJ3W4XmqYhEokgHA4DgKw2T01NYXl5GZ1OB7dv30az2cSpU6cQjUaRy+Wk6TeTo1AoBLfbLZ/3er3SKPf999/HaDTCwsIC5ufnRTZpt9uxsrIiK9KpVAp//ud/ju3tbSn+Z48jMj2qRNDIxg2HQ2HhmCAR0Ozs7ODUqVMiZeL2RpBlJn9kqIm/CiQmsT8q66buV+1vRvmYKjnjezwvMxbuqONTLsm6G/X8jGPgvfHDH/5QAJwqG+Xfxto3ukqura3hpZdewrVr11Aul0UGp4Js4/k8SrKohspkGvfD980kj2bzx/eNzN8kAGl8j+zwtWvXEAgEMDU1JW0xwuGwmG3YbDZ5H4CwQVwgYQ2q2+3GxsYGzp07h/n5efzoRz+Cx+PB8vIyarWaJP61Wg37+/toNpuoVqtoNBqo1Wqo1+totVoCLiiZ5jUlo0jJH6/byZMnsbu7i52dHWlMbpxznq9q4qIylNwXARjZHPaLVK+ZcYFDvT8IMFUA53K5sLW1JQY7an0eQSMXKIAH/dcODg6keTft/WmOQsbT4XBIk26aznD/ZK/ZsJuyS03T4Pf7hQEj8OY+uWDi8/lEOsn2JfV6XfpzOhwOMVYic0YQqX7/eRweu9vtjoF0Mmy1Wk0AO1tTcD74TOW5sZdnLBaTBaRmsylupq1Wy+oD98sKu91i4KywwgorrHh0fPjhh+h0Onjuuefgdrtx7949lEolaSDLlVifz4dsNgtN01AulxGJRER602w2sbu7CwA4duwYEomE9JUjsxaPx3H16lXs7u7i/PnzYjJAh8tCoQC32y1JbbPZxOeff45QKIRz587B4XBgf38fjUYDs7OzmJubg9frFcbsww8/hKZp4sZG6ZHa9Jmr+5NkcGQn2B4BgJgbdDodnDhxAjdu3JBaJFWyyH0cBeLUUIHaUdswjDV1aoLLc2TSbHTdNGNA+LtxG67WE0iwnxVBG+ujzJgRle00sm+qlC4UCmFlZQUXL17EpUuXcP36dVNwpY5XldeZjd3smhrnwAzsTZoPdRsj4zaJoTPuw7hdu93Gxx9/jFAohOeee06s5GOxmBhuuFwukS8zeY9GowgGg9jZ2UEgEMDJkycFnPzGb/yGOCPOzc3J72zwTUfLWq2GRqOBXC6HdruNbrcrYIGMEwAxSSHLR3aQiyKtVgs7OztjoIlhNDMxgjb1b94nBG/qNsY5NLKcBCG8LrznI5EIyuUyarWaLDyQXTOCR0odh8MhKpUKarUaQqGQyARVoEiQxe8C5aW8BgR9dHyk9JosNRutsxk23TFHo5HMPfuq+f1+1Go1ZLNZhMNhMVrRdV2eS2RlCQY5LjKEw+FQWi/QSIX1qmx7QFDearXEcRKAnBsX6HgtCNYJ/lqtlpi7TE1NjbVh+XXHlwrAWTVwVlhhhRVWPE50Oh08/fTT0HUdn3zyiaw0s9F2MBhEOBxGsVgUlmB6elrq3jY3N1GtVhEOh7G6ugq73Y779+9jNBohHo9jenoag8EAf/EXf4F2u435+XlsbGxA0zSkUinY7faxfky0uKZL5eLiIsrlMrLZrDQ4Pn36NIbDoThYvvnmm1L3AgDJZBKNRgNut1sSf1X2aBZMVmq1mtT60G5c13Wk02m88cYbCAQCuHLlCmq1GoAHUkc1iZ8E4szkf5NMS46SZpoxUGqSq+7XjCGaBIq4b9a2ABCHPbXvHMc26Rz5U2XkmPAzkSyVSvhv/+2/CVNkrB8z/q7O16PAmxl7p26rglXj/szOx8ieHsUIGo+vXsdms4lyuYzPPvsMg8EAy8vLaDab0DQNc3NzwmyXy2XE43FheU+dOiXA4vz581hcXMSlS5fwrW99S+rR8vk8pqamcOfOHXz/+99HpVLBYDCQdgSFQgGlUkkMeDiXZJgINMjGuN1uYbF5fTweD4bDIba3t8eYIXXRQDUTUdkhdXGDP/k59Rqa3bMcJxdh7Ha7SHzVxuGxWAxXrlxBp9MRgMfx8Tz5Ol1m6aw7MzMjzz6Gx+NBq9USiTgll3TypFNos9kUEE4gR4dPni/ZObYtIHgFIPW8BE/9fh+zs7Pwer0iZ6cLLM1m+LyjwQgbbtvtdnS7XZljumzye91utxEKhWTuOXeUYLZaLQFvDodDACQXsniP9vt9tNttzMzMyKLZk4ovFYB7UAP35BrrWWGFFVZY8bc/vvKVr2B9fR3pdFr+015cXBRZTzAYFNt/yqncbjfK5TJyuRycTidWVlYwNTWFVquF27dvIxgMitHJ/v4+PvvsMwQCASwsLGAwGCAYDCISiYgsKBQKSa1drVbD3t4eotEoXC4XSqUSDg4OoGkazp49i1QqJfKfTCaDjz76SOo5pqenkUwmcffuXUku6ejHhtJHyQeBBwYINB0goKxWq7hz5w5eeOEFZDIZaU+g1qsAD5s2qCBH7dlmlvg/Ksy2N2PajGwFt1MBjJHVmATihsOhSPbIwpi1CzDuw8iUqbLWVqs15uRpHJfZOZqBOfX3SbLGSQynCqyMIO2o8zI7N+M4Jr2m67qYlHz++efCUGuaJrJhh8OBbrcrUrann34aTz/9tLTWmJ6eFuOe9fV1TE9P4/PPPxeDknfffRf37t0TAF4oFKS/I3sYqvJFfp9Z/6XruoA3ziPB93PPPYef/vSnY06GgHnzbXUBgd8HTdPGWhSocmB18UM1COJn1OtEkEVgxm0//fRTlEqlsToxhlojB0As8m02GxKJhEit2+22mDaREeW9zn3QqdblcolUslqtigur2+0WYOjxeNBoNGTxKJPJCHgiuByNRmMSSrYUoLEI+61VKhUxO2HPOsoYVUMTXlPeb2zczTo4fgfV9gLxeFxAJ88/Ho8L2xYIBKSukIsJi4uLCAQCKBaLFgP3ywqLgbPCCiussOJx4vLly8KAOZ1OzMzMwOv1IhQKCWgBgPn5eUk49vb2xMJ6dnZW2gncunULCwsLWFpaQq1Ww61bt5DJZHDmzBn4fD7s7e0hkUgIQ0ZzgEQiAV3XsbW1Jf3cOp2O1HlMT0/j2LFjImdiD62rV6+iWCyiUqng1KlTCAaDODg4QCgUwtzcnEiHKpWKrOQTgExyFdR1He12WxzfuGrf7/dx584dJBIJPP3002i1WuIix9VplU1QE1LAHEiYsXYq8DIDe5McEdXPqf8IVIwulo8TBHHdbhder1cMDFgnp0okVSCoyifVc1VlbRyTyqo9igl7VJgxc48jbfx5jmHGxJm9P+m1TCaDs2fPQtM07O3tIRQKCUMSjUbRbreRTCYxGh06UU5PTyMcDkvyTtv/zc1NJJNJ3Lt3D5999hm63S7W19dxcHCAQqGAWq0m/5rNpkgiPR6PgCe2MWg2myiVSmOySd63NLa4cOECKpUK0uk04vG41FNNYrV5/5E54/mrBjwEhrzXNU0TNpBzoi5AcDx2u13qZwkmS6USdnd3xaWTbCEAAaRcwKFckRJx9oEkMOHzyev1ClAli8bjRyIRYb1arRbcbrewcnRSpTkUGUSCI11/4D5qlGRqmiY1iQcHB9IOoFqtQtM0+Hy+sTYTVBrw8zxX1lxq2qHxDOvuCFL53mAwELa32+0iEAgI4CMgdTqdKBaL4ug5HA6xvLwsIJgGLk8qvlQAznKhtMIKK6yw4nGi2+3C7/dD13UkEgkEg0HMzs4il8uJTbbD4YDb7QYApNNpDAYDLC0tYWZmBsPhEHt7eygWi5iZmcHi4iI2Nzexvb2NwWCAubk5AMDGxgbm5uYQDAaRTqcBHLYDoNX2wcEBotGogDMmRJFIBNPT0+KKt7KyglKphEuXLmF9fR39fh8XLlxAuVxGpVLB7OwsKpWKFOEzYWWzYPbOmsTgAA8kRUx42Suq3W7jk08+wRtvvCEgjhJASqeMTJcaZm6TxjohxiQZoBEIqsCR25oZbRjZLnW/k2q/+Dr7YjFZY+JLtkg1MFFNS9R/mqaNmZnYbDZ4vV7Y7XYkk0lsbW09dN5q4qvOi9k1M8YkgK6e46NYUOM8Per4RlbT7Hh0YPV4PCgUCmKiEYlEpO5U13WpO+33+6hWq0in02L7v7u7K2zI559/LvWn9Xod1WoVlUoFlUoFnU4HzWYTuv6gybXa7Jouh7TZJ2vF+5GvhUIhpFIp/NEf/ZHU6JEJU0G4CsyM95BxnozMtPqPcjy1rpLnwHowyvyAQ1BXLBZRq9VEKslzossiwYrqpkm3WYLZwWAgfdXi8Tg0TROjkuFwCK/XK/NCJpNsfavVQjKZlL6ViURCWpn4fD7pn0mAykUhzqfaf83v9yObzYojJa9Jv99Ho9FAKBTCaDSSJt3A4XOcLVy4P9Y30tSEoK7T6YiygCxbu92W8yPQpTNvrVaTe0KtU2btHFm4JxVfKgAnLpQWgLPCCiussOKI4GpvIBBAPB5Ho9HA+++/D10/bCfAZrfdbhfFYhG6rmN1dRXz8/NoNBrSImBxcRGhUAjXr1/H/v4+5ufnxbHNZrPh9OnTKJVK2NjYgNfrxezsLDRNQyaTQafTQSKRgN/vH6uVImhkfcjZs2dRKpXw7rvvYnd3F16vF8ePH8fe3h6mpqawurqKYrEIj8eDkydP4ubNmw9JHJloGlkU9ScTRDbPpemBzXbYVuD999/H66+/jgsXLuDTTz+Vnku6rgvjYGS71IbDKnhjqDVB/JzRgZKMxiQDEeN5Ghm9SVLASTJK4/gosaIZA40NVGMTzoPKzqnjVyV1TqcTX//613H//v2HQCh7nL3yyiv46U9/inw+bzp2M2bNKIc0Ai0zOeZRDKDxPjEyi2YgblL0+33s7OzgueeeQ6vVQjgcxnA4RDKZxLFjx5DP56UXWalUwv7+PrxeL27evIlarYbLly8LeDs4OMDGxgZyuRymp6eRyWSwubmJYrEodVCU8fG+IThUrebn5+cBQJpKkwXStMNauOeffx5vvfUWms0m4vG4gCBK8FSWmUCd2xwFeMkE8n7wer0CCri9sUax3+9LHRv/zufzyOfzUvPF9iY8b7V2jgstdrtdZIe08k8mk1LPRiZeZSwJHrk/zpWmHZonFYtFMQ3hNdQ0Tdo9qAsfHA8bo/M4BKM0lWk0GggEAvJM4nUhcOT+aGRE5sztdosygmCLwDiZTKJarcLtdqNYLKLT6SAYDMpcUNreaDSkRlPXD3vKJZNJqQekjFOVjz6J+HIBuJ+5UA6GVg2cFVZYYYUVk4PNbJ1OJ27evIlGo4FEIiHukJFIRHor+Xw+LC4uYnp6Gvv7+7h586Y0Dx4Oh7h79y5qtRrOnj0rvY6i0ShCoRAKhYLIH2OxGBwOB+7evYtwOIxEIiGrzGTfRqORJEALCwuIx+O4c+cObt68ia2tLUlwtra2cPz4cYRCIeknF4lEUKvVEIvFhIVg8mPmsKYCHbVup9vtigTKZrPJXGQyGVy+fBnf+ta3MBgM8Omnn4pMjfU4KtBSWSdVcmhMZtVt1DCCuKPkkGrCa0ysJ4E4FcAZk24jYKFZRa/Xkzoto108QZsRQKnnvbS0JAC9WCw+JLUbDAZYWFjAwsKCqbHF44R6TIJrI3g2glYj2Dxq20kA8SgQp+uHhjh0l6zX6wJ6Ll68iEqlgg8++ACVSgXb29uo1+vSBoAGGDSy2N/fF7BWr9fFel51SWU91Wg0QrPZRKPREJaUCxMLCwvY39+XWjMCjF6vh9dffx337t3D3t4efD4fAoGASPH6/b6cq8oiq2wcMG5mQnaM4+OCDfepOkCqBjj8m6wfo9lsIp1OQ9d1RKNRdDodASFk1djLjuy7WsPJa+7xeMbcGblQwR5tqqyUn+12uxiNRgiHw9ITjQY9KigjYOT42YZABWl+vx/D4RD5fF6eMwThVA6wOTsbrXOuvV6vtBTo9XrCMNJZs9PpCMPH171er+yL7BwlomRm2+22yDPtdjvi8Ti8Xq8APa/XKz0FVfOXX3d8qQCcXbNq4KywwgorrHh0EEytr6+j1WohFoshGAyOtQio1WoiZXQ4HLh+/Try+Tyi0Sjm5ubQ6XRQKBSg6zqOHTsmVtqpVAq6riObzaLb7SIYDEqdz+7urthPu1wuNJtN2O12AV2tVgvT09NYXFzEwcEB3nrrLdy6dQvtdhvLy8vCTFy4cEES6eXlZbTb7bFkqlqtYjAYSCJiNFBQa7FUZotggkYG7A/HBPL+/ftIJpN4/vnn0W63cePGDTSbTXF9O6oeyyiJVA0W1OTUjBmbtB9VSqmyfkexampMkv6ZfU4FaUyKjS6SqvRNHbeu65ifn8frr7+OtbU1/OVf/qU4eqqSSzYRzufz6Ha7D83DzxtHySDNANcktlLd1+OCOON2lUoFn332GV588UWkUin5DhSLRaytrYkcmKCM8jSyLcAhcMnn86hUKvB4PMKwUGpIMEbWqdfriXsgAY3b7Ybf78fOzo7Uw5ExGg6HeOWVV3D//n1cunQJdrtdXBcBjMmSgfEaNeN5qwBcrZfjd4lSv1qtNnbPc874vWOdGgABONlsVnq2sR6MY6Shh+pYabPZ4PP5MDc3J0CEzxyauRDIcGwejwd+v3/sXueCzezsLDKZDHT90Hyk3+8LyCXjyXq4ZrOJZrMpknUen+/V63Xpvak6RNpsNmG6OCYasESj0bHvGq9TuVyW2jeaqHBRLZlMSpN3yphZ68rnCGvkdF0X0ymCNwDS247zyWfuk4gvFYCz2TTYNKsGzgorrLDCiqPD7XZjb28PDocD0WgUS0tLCIVC0HUd6+vrcLvdmJ2dxcrKCtLpNG7fvo12u41z587B5XIhl8uh3+/D6XQiEAhgd3dX+huxmJ+1bP1+H1tbW+j1elhcXJSalnw+D4/Hg2PHjiGbzSKbzeL48eOYmppCs9nE5cuXcevWLcRiMaRSKezu7mJxcREnT57EnTt3EAgEsLq6KsDJ7XbD6/Uim82Ky1y5XIau6yI1UlfggfEG2cCDhH00GomU0mazIRwOS1L8ySefIJFI4Gtf+xqazSbu3bs3toqt9sUyNrNmGJkLI0OkJv/q+0dJKVW5nAquJoFKs2MZt+HnzVgpMjpHSQfVz7BHYDgcRjQaFUCtzrndbsfMzMyYG6IKtiYxcsbX1XN8FFM2CcQar9ujpIHGcRhfHwwGWF9fx9mzZ/H666/j7Nmz2NnZwebmJoLBIBKJBE6fPo1oNIqNjQ2sr68LOGAD6VKpJIBFBSa8Pwiu2UqA14f9zAhshsMhQqGQjOH+/ftotVr47d/+bYxGI1y+fBn9fh/hcFhqxoBDJ0YCGuM5U26ognmVReP3gnVqfr/fVDrJf3RUVOvRRqPDPo+UdfM9GiPxmqjMF4EdDUiGwyGmpqaEuScAYi0ZpaR0mwQOJecEwvF4HJVKRaSV9XodHo8HqVQK9XpdFh7o4KoCynA4jHQ6LdLsUqmEZDIJj8cjgJ1zRUkjx8c6PxrQUFapaYdukuVyGR6PB9VqVdg6n8+HUqkkNXGsfaZRkaZpAgoJXm02G/x+PyKRCPx+v7zGRQg6ZabTaWHTn0R8qQAccFgHZzFwVlhhhRVWHBVffPEFhsMhlpaWEIlEYLPZsLu7K022T5w4genpady6dQu7u7uw2Wx44YUX0O12kU6n0e12MTs7i3a7jUKhgHg8Dp/Ph1wuh1u3biEQCOD48eMol8tSj3H8+HFhvOr1OhKJBEKhEHZ3d1Gr1fD888/DZrOhXq/j5s2bODg4wNzcnJhdnD9/Hi6XCx988AEWFxexuroqTW09Hg+azSZ2dnYQj8cxNTWF9fV1jEYjhEIhafJLBzjVkdIoFwQeJNyqmxznqd1u4+2338Ybb7yBl19+Gb1eD9vb2w/1RFKBlplEEhgHCWZAzvg5VUppZOSMckujhFHdx1FMk7odf5qNXQVIZp8z7r/RaOCP//iPx+qTjDEcDvHee++JqYXRkXOSFNQI2o46V+O8TWLTzBhI4zmbgcNJx2Cy/8knn+Dv/t2/i5WVFTidTvz4xz/GnTt3cOrUKSwuLqJeryMcDuPpp59Gr9fDzs6ONJ1mDZtq0MF7mfJj9VpxsYQOjgQVp0+fxu///u+j2WziX//rfw23241XX30VDocDf/InfyLmFuwHyO+Az+eT7wQwLtdVXUWNiwdq424yUyrjajTA4ZjZeJzsVLlcRiaTEXMj7lvXdQFOjGQyKZLDWCwmCz3BYFDOgXNI98rBYAC/3y+Ns8mC5XI5jEYjRKPRMVv+TCYjwIxgj+wd2VGCZ7o6apqGVquFfr+PWCwmzbj5veWYKIsMh8NjrB1lsJx3u92O7e1tuba093e5XCLTtNkOWwhEo1H5PJu/83h0oqS7JAEkcNgXkkoB1kWTdXxS8aUDcHabZjFwVlhhhRVWHBl0wEulUohGo9jZ2UGtVsPs7KywANeuXcP29jaWl5extLSEcrmMfD6Per2OhYUFNBoNlEolxONxhEIhYeWWlpbQ6/Vw584duFwuhEIhLC8vo9vtolqtIhgMYnV1FcPhEPfu3YPH48E3vvENVCoV3L9/H+VyGYVCAYlEAtFoFL1eD88++6yYMLz++usiAeOKMgCUy2UcP34cw+EQOzs7Y20RmMCyCB94IFMyNhVWE3LWkXBFnAlQrVbDD3/4Q/zu7/4uXnnlFbz55pvSXoDHUCWaai2ammAz6SVDqIIzFQSoYEcFccDDPed4bCOomSTNVMdhBnaMDptm8shHBbc1SizNjtNut8eAtRl7ZsbKGU1GjNtPArPq75PmybjfSeDObFvjdnfu3MG/+Tf/BktLS1hZWUEqlcK1a9fQ6XRw8uRJnDt3TvqIUVZMYxO1PQD3S3khgZHaroH3LZmb5eVl2Gw2fPvb3wYA/Pt//+9RKpXwB3/wB8hkMvijP/oj1Go1McOg8yTvZYIa4wKCCuQILtRrYzQtCYfDKJVKAB64H3JbngflfGTzG42GuHKqCxTcPxkkdQzAIRNGxoytAvr9Pvx+vzhukl3zeDyIRqNSOzY1NYVSqYR+vy8LQWQHK5WK9Mhst9tot9tioqK2Q2GTbsoQed3C4bB8t3kNeb6cE6fTKe0OAIjkVQW+9XpdZKDsDUejEspmNU2TJuw0O6nX68LicnEhGAwiHo/L8drttgA7LhBQ4eB0OsUJ9UnElw7AOWwaBkMLwFlhhRVWWDE5jh07hmg0imAwiM3NTQyHQzzzzDOYnZ1Ft9vFBx98gJ2dHTzzzDNYXl7GvXv3xOJ6YWEBun5ojU6r/b29PTidTkxPT0sDbMpzZmdn4ff7US6XpedcqVTCtWvXcPz4cbz44ou4cuUK3nrrLbhcLiwvL2N1dRWdTgeRSAS6rmNnZweBQAArKyuw2+24du0a7HY7ZmdnAUBYC7UZcigUkuSGySdrgbjqbARGZgxOq9USgMV6PR7nzTffxHe+8x288cYbePvtt7G3tzdWU6LWuqnAzHhcFWBMYuvUUJ0qmYCpNX6UkamMyKSWAn8TxsoMhKnbmB3H+NMMSKpAzwikVCCpAjijaYw6RrN9T2LqzGISmJt0XsYwm6fhcIh33nkH//Jf/kv8g3/wD/Dcc8+J2cju7i6cTqc0uL93757cq0ygVZlgt9uVZNtut2N6elqMKDgmgrhwOIxQKIS9vT1873vfw+7uLqLRKP75P//n+Pjjj/GTn/xEknq/349AICCAQrXpVwEbgLGFCt5zxvlQx0K7e3UxQ5UJUqZJN1syWdlsVph0bstWAGaGJ4PBQECox+NBrVaT3pcEugRYAKTWj8eIRCLIZDKo1+sYDofIZrMAIDJtHqff74uUk7WwnB+altBAhMYobrdbzqvZbKLT6SAUCokhCVsQUHqp67owbKqpSrPZRCAQEMMmytr5k/POWkFKZ+v1uhiYcO7ZOoX37Gg0EolkuVyWuaYSgef9pOJLB+Dsdg3DRzz4rbDCCius+F92TE9Po1QqYW9vD4PBAIuLi4jFYmg0GlJf8vLLLyOVSuH+/fvY29uT1eler4d6vY5oNIp+v4+DgwP4/X6pael2u2KSwsSB4O/s2bPSfPjMmTM4d+4cPvzwQ3z66aew2+04e/YspqamMBqNEI/H0el0sL6+jmQyiYWFBfT7fakhmZqaEit/yu16vZ60APD7/YhGo9A0TVz/1ETvKIYFGJcmsnC/VCpJC4ZOp4P9/X386Ec/wne/+1288cYb+PM//3NhIlXJGJMklYkwSiM5LjVJI2gxsnlqAq0Gz5HbkYkwkyuaMVvq72aMpNn8TJIQPmp+zY5t9rf6uvHz6nUk8FPle5POaRJIVYHhpPeN52wWKsg0O+dut4sf/vCHGI1G+M53voMLFy5gZ2cHU1NT6HQ6uHz5Mmq1GkqlEnK5HA4ODoQJJivGOi+1/5oKcLgNAV6pVMLW1pbY7b/66qu4ePEi3nzzTXz88cdie+/z+RCJRKTOTl10IEBSmV4G71Gj+6kKIiKRCFqtliT+6rZkdTqdjrQTqVar6HQ6KBaLwtipckz1e6Prupi0kCUrlUqoVqsIh8MyRsoKWYun6zrC4TD8fr9IHEOhEO7evSvjZn81jpdOkgTVfr8fmqaJ063aeNzhcGBlZQXdblfYuWw2K3VqkUgE5XJZQDpNSMhWUk5s7ItImWutVpMm3x6PB61Wa4w5pVtmo9FAOBxGPp+XxTU2AefCFGsuKf202+1jLRfcbre4qL766qtYWlo68nvwq4wvHYBz2DSrBs4KK6ywwooj486dO6hUKlhYWMDi4iKAw/5SlC0tLy8DAK5evYpcLof5+XkMBgPU63Vxqszn83A4HJibm0MkEpEEy+fzIRQKSSLg9XqRTCYRDodRLpexv7+Pc+fOYXFxEe+99x7eeecdOJ1OvPbaa2M94UqlEvL5PE6cOIFIJIK9vT00m01Eo1HY7Xbk83n0+30kEgkpqp+dnUWhUJAkg+wbEzqVpTrKHERlegBISwW73Y5CoQAAUjezt7eHt956C2+88QZ+67d+C++++y42NzclmWN9kuqEqYI4VZLG1XaOATBvTq2ybipbZTQ0UZNj7oufMwMrR7FU6vvq3+prRwGbSUBw0n6Nn3vUayo4mwQCjWHG0pn9NBvzJJCp/n7U5xuNBt555x04HA6Uy2Wsrq4inU4jkUjg61//Ot555x3cvn0buVwO1Wr1oXpAygYpkSOAoZEJFwK63a6AJrvdjoWFBfy9v/f3cOvWLfyH//AfsL29LfcKFycIHFQZpnp8yvtoZKPayavyTt5/dElst9vSAF6VWKp1cTxmsVhEr9dDtVpFoVAQpo0ME787/I6pclGXy4VKpQJd1xEKhcR5sdPpCLhhY2y2EGAjdI/Hg52dHWm2TXDFcQIPGPBOpwOXywWPxyPsJfDA0IWsKJ+N/X4fzWYT7XZb+ql1Oh1pnQIArVYLAASM8blVKpXg8XhE8hkMBpHP51EqlRAMBsXlkm6YBPsApFl5tVpFtVodM6ahXJYMG68tG5XX63WpjSPbR5n61NTUQ9+BX1d86QCcVQNnhRVWWGHFoyKXy2FtbQ1nz57FcDjExx9/jFarhYWFBTEWqVQqCAaDUjfSarXELKRcLsPtduP48ePw+Xw4ODgQt7NIJCJAIRaLYW5uDs1mE4VCAYPBABcvXkQwGMQf//Ef49KlSzhz5gxefPFF2O12tFot1Go1HBwcwOVyYW1tDYPBAFevXhVDk16vh3a7Ldbb1WoVKysriMVi2N7ehs/nk/5vfr9fkly32y1GByrgYAJIlgwwl8j1+32pgaHLpdvtRq/Xw927d2Gz2fDd734X3/zmN/HDH/4Qe3t7YjphrCNTj21kxzge9fj83cjMAeYGKdxWba7MIJicxJKp7Ik6FzyWGbNlFpNkkpPiKObtqNeOkmOq2zzOa5O2MW6vztEk8Pmoc9d1HaVSCT/84Q9F/uZyuXD37l243W7Mzc0hHo/jpz/96RjDrN6bDocDS0tLcLlciMViiMVi+Oijj5DNZoWxCYfDImX+7ne/i3g8jv/yX/6LNAlX98X+jbx/VICkssMqS2y8r9X7kWCM4Im1XaoMlMCRTJrf7xeQU6/XcXBwMFb3pkokVUkn9zkajVCtVqW+jcCPi1MENwQ4ZJfsdjva7TZyuRyAQxBWqVQQCAREWuj1esXcg2wlG2YPBgN4vV54vV6RGEYiEVQqFTE+YduV4XAofd/y+bzsB3jQP6/RaCAUCsHpdEpvNrYBCIVCKJVKcl1pbsIgs0c5O2sq6dbJ54LH40E4HJY54QIAFxUIJm22Q5fKdDqNQCCAubk5ZLNZfP/735d6yl93fOkAnOVCaYUVVlhhxaPi3LlzOH36NLLZLHK5HHRdx7lz58aa+S4uLsLlcuHg4AA2m02A3HA4xPz8PKLRqFijdzodzMzMiMW1zWaDx+NBPB5HLpdDPp9HOBzGqVOnMBqN8F//63/FjRs38Bu/8Rs4e/YsNE1DPp+XFeJkMolUKiXyy2g0KoX6wGGCQknSysoKarUa7ty5AwCYm5sTsHfz5k1hH7i6zKQSgKzkG5knhhFQ0IiFCTyb3A4GA9y9exdvvvkmXn/9dbzxxhv48Y9/jPv37wOAJG1qssmE1Qgazeq/jmKvjGDPKK80OgQaE95J567GJMA0CQSajZOvHSW5nLSvRwGwR4HDo4496f1JYXZc4+8/zz6r1Sreeust6LqOb37zm9A0DTdv3kS5XIbX60UsFsNzzz2H+/fvI5PJoNVqCXDx+/0Ih8NwuVyycOJ0OpFKpSSh/9rXvgaPx4NAIICbN2/iypUr2N/ff6heMhQKIRQKjTXNNjJOqjnIJNbV7H5kvakRCAIP+r1R0sjva7PZRDabRbPZHAN8rBGjtI/3MkEgTYs4VrVGkG6Q/A40m00BxmTH5ubmMBwOUa1WxSmXjCY/2+l0RCbebDYBQJQJBIzAIavX6/UQCARQr9fRbDbhdruljowAmvsGMMZUAofSVz4r2LaF6ge246DZCOedDcop/abBiXrN2KTb4/GIpJKmUGwmzjo4r9eLSqUCh8OBQCAgi3GUkj6J+NIBOIuBs8IKK6yw4lFx7Ngx3L9/H+12G7qu4/Tp01JL0e12RRpTLBZFnpPL5eBwOBCLxeD3+1EqldBqtdDpdBAIBNDr9VAul+Hz+eD3+5FMJpHNZjEajbCwsIDZ2VncvXsXf/EXfwGHw4G/83f+jlhcb2xsyMr3hQsXEAqFkM/nUSwWMTs7i1arhVwuJwkMrb6np6ext7eHDz74AGtra3juuefQbDYxGAxQLBaxuLiISqUiCS9Xt3VdFzYAwJgtN0NtiK3WWtGZkvtj8tXr9XD16lX0ej18+9vfxssvv4zRaISdnR20220Biyo7oR6TSRrjKIZsknRSBRcqkFNBnPGYR0kmJ4WaCBpbHxwF8Izv/TzHfBxAeNRYzfYzib07igk86j0zMKm+N2ms7XYbf/Znf4b9/X38o3/0j/DCCy/gxo0buHXrFm7cuCGA55lnnsHm5qbUgf7Gb/wGXnzxRWxtbeH+/fsoFAoiZ5ybm5Nar52dHXz66acoFApiDa+CeTZt5v3Mf9wXFxpUlkuV6BprSsncscaMlvh8nb+T+SE4oZW/2rBc/e7yGM1mU/ZN90gy7GTJ2MuN58GaLgACqDqdDpLJJPb391EsFhGJRDA1NSXjZfuBwWCAWq0mskuPxyMSUl3X4fP5MDMzg3q9LiZKpVJJGmHX63W0220ByJRNjkYjhMPhMbkkDUbImgEQJ0vVmCkYDIpDJK9nr9cTxpVsbbFYlPngXLpcLiQSCZFK8vlEVQPbN/D60LDK5/MJOxoMBmV8TyK+dADOqoGzwgorrLDiUfHFF19gMBjA4XBgZmYGmUxGmiwnk0mp2WBCtLe3h1AohFQqhf39fdTrdbH1X1hYQC6Xk21DoRD8fj/W19eh6zpWV1exsLCAv/7rv8alS5cwPT2NM2fOyAoxC/qj0SjOnDkDn8+Hra0t1Go1rK6uotvtotfrIZlMClChtGhvbw/1eh2vvfYa5ufncfPmTQAQ+SZrTbxer7hJ0o2SiR2TeEoOjSYMRkZB13WRUDF5TSaTcDgc6PV6uH37NhwOB1599VV85zvfwXvvvYcbN24AgCRQRtkkE1MzcxMjEGOoDAbHb9aCwPiTxzaCOrPxHMVYTWLtJgGio6SJjyOvnLTtUcCK70+SQh71OWOo8zqJ9XucMRx1vleuXMG9e/ewtLSE7373u/jH//gf4yc/+QnS6TR0XcfFixfhcDgEiLH9wPPPP4/r168LY0fJ8sHBAfb29lCtViUpV8dos9nE7If1ogyyTfyuqGNWazZVcKXef8Z7jWBQvadpmsH9sycaTUtUUxDun6DJaBLUarWkQbZat0fmTW3eTbBWLBaFQYvH4wgGg8JW0qCk2+0KwOH3PpFICFPI50ilUhHwVavVxMWzXq8DgNTeUdYZDAalBk/TDg1Q8vk8ZmZmRL5JEOx2u6W3XDgcFnMRmpcAEFaQIBiAqAVYF8nxT09PCzhrNpvCwNpsh20GCDK9Xq84XbL+jXXQrBd8UvGlA3CHDJzlQmmFFVZYYcXkGAwGWF1dhd1ux+7uLgqFAmKxGHw+HzY2NhAIBKQ4v9VqYWpqCvPz8wL0fD4fUqkUIpEItra20O/3cfLkSeltdPv2bQSDQZw+fRo2mw1/+Id/iK2tLTz33HMCdvr9PiqVCobDIeLxOJaWltBsNvHTn/4UTqcTa2trUssTDoeFMQuHw6jX6ygWi4jFYjh58iQ0TcOPfvQj9Ho9rK2tifRT0zQ5T4fDIQ6bauJJ0MakXGWpVMMTYDwRb7VaY+AvFotJj6abN29iMBjgt3/7t/HGG2/AZrONyTnN2DYAIglTQaOZvJCvM1EzS5qNoJAAVU3GyaKoYQZsVNBhBLTqe0fJKR8HFD4qjtreyCJOArHqOf28cRSbqI7B+LsxjpKENhoN3LhxAzdv3kQqlcJTTz2F5eVltNttfP7553A4HHj++edRLBbh8Xhgs9nw6aefotlsYn9/H5lMRhY9WDtnvFYEEoFAQBggAiuVeVPlgPy8ulCgynJ1XR9j6dT7T2XeKNGkbI+1X6PRCMViEfl8HrlcTqSTbrdbAKAKEvlZSiAJgmjdz/Ha7XZx94xEIgAOGbxcLid1twCk3pdAh46YmnYoVfV6vVIzRwDNekHa+JPxIyDKZDIyH6zJY3sAl8sl4JG1tOzhRnkiv7f8LPAA9NJBst1ui9SRhisul0sYRl4D3gOzs7NibtPr9aTReK1WQyQSETUBx+d0OhGNRqVOkxJPGtM8qfhSAjirD5wVVlhhhRVHxalTp9But7GxsYFer4eZmRmpyfB6vZidnUWtVhPJZDgcxu7uLprNJmKxmBTgs3n1zMyM9HfKZrOYnZ3FmTNnsL+/j7/+679Gu93Gyy+/LLIjJjY+n09aBHzxxRdoNpsIhUKSSKmr9pVKBbFYTBiwxcVFcb/MZDKIx+NYWFjAaDQS9o/n0uv1kE6nxayA4Ec1NWECShCkyhDNGAVN00SCyvdTqZQkQJSLvv766/jGN74Bn8+Hzz//XBIrY3Kv1sOZhQo41ZogI0to1jpA3a8RgKl/G+sBjcdX33sUA/U4tWBm4NEIjI4ChUftS93mKLB21H4eB4QddRzjnB21H95v6s9sNotMJjMmbaTFPp0OeS3UnmaqrE49D/W+8fv9iMViY/3CVPmk2oxePU914UEF9WoDb35OlWmq75Gt5me63S4qlQoKhYKAN9VNVZVyqj0ZCTAJJHw+n9TxUubo9/vRarUQCATE7bLZbIoFPwFaMBiEw+GQvm+s+aLdPxt/czw0SBoMBtIvTT0/AlCCL4ImTdPE4ZHXlQZR8Xhc2FIuOrEmWdd1YQY17bDOjdsRVPGZSbk7rwFB3+LiohhRqeCNNXR8zefzIZvNYjgcyoIZWxzUajXE4/Gx+r8nEV86AOe026waOCussMIKK46MbreLQqEgtRCVSgW5XE7kVDs7O3A6nQgGg2i327h9+7b0i1tbW0OtVkOhUEAgEMDS0pK4puXzeaysrGBubg6XL1/G+vo6wuEwnn/+eQFP7PPE5M/v9+PevXsolUqIRqOyCk05FZOyWCwmiQolPeyV5XQ6MTs7i1KphHv37iESiUjSFIvFUCwWpbUAazi4ag+YJ/hqEmpMXBlsNKwm6HSF6/V6uHHjBprNJn7zN38TX//61xEKhXD58mXkcjlZHTcDLGbATA0jO2bmRKm2EuA+mZib7VOtaTIm/EdJIY0gx2zbnwdAPQ54M86FGVBRjztpzGbgyux8zObfyLQRAKvbmB1PDaPlPsNY30h5Ia3eze4dY5jNKxmwYDCIaDQ6xhipDNwkYK0Gx6gydtxWdT8lYOT9p2maMFwEYXx25HI5NBoNkRobv3u6ro81uCYgAjD2TGBNHJ8BdJgkkKnVauh2uwJMZmdnMT09jU6ng3a7jUajIe0FCKS8Xi/a7baAN0oVWVvGel6On8CYbo+UJxIwkfUEIOzdzs4OHA4Hpqenoeu61JjZbIdtUAj6KKcEgGg0ik6nI4CbPdxUcxi6VbIPHXD43FVlmXS4pElJtVrF9PS0LHSxzyevA+v4nlT8QgBO07QtAHUAQwADXde/omlaDMD/DGAZwBaA/7Wu6+VfbJiPH3arBs4KK6ywwopHxP379xGPxxGPx3H79m30+33EYjGEQiEcHBzA5/MhGo2i2WyKpf+pU6cwPT2NO3fuIJ1OY2ZmBouLixiNRtje3sZgMMDTTz8Nt9uNH//4xxgMBjh+/LisqLPHG5OQ6elpZDIZ7O3tQdM0nDp1CpVKRRrSMiEbjUZSXN9qteD3++Hz+VCtVtHr9TA1NSXjzmazCAaDsuodiUSQzWZFPsX+RQSRDIIaWv4z2QTGDUyAcWkiE8xWqzVWF5RMJsWE4N69e+j3+/jmN7+JixcvIhwO45133sH+/r5YqwN4CLTxGGaMB4NJrhlwIJNjbBmgAj6jy6DZMYxgR93/JBZu0nvG8zDuz2ybnyeOAuRG0Gu2nREMTtqGiTmvHWDer8/s76PG9bjxKFbPTMpJ5icUCgnbpM6DkX0zO2djqG6SDJqSqIwh3R8JwNjoGjhsPp7P55HP58fcEgn2VPZN13UBQ+zBxtYDrEMjuPP7/eh0OlL3FYvF5HODwQClUgmxWAwLCwsIBoMol8vo9/vo9Xrwer1jrpBk7ShtJIjWNG2MgSNgZJNsj8cjtW6dTkccHsPhsNTY0QFzc3NTnm0LCwuo1+sol8twOByYnZ1FuVyWGsB+v4+FhQXUajU0Gg2Uy2WZX1WeChw+25LJpLRXYa88vkdmMpvNwuv1IpfLodVqIZFIiHkKWztomgafz4dKpTLmnPkk4pfBwH1D1/WC8vf/AOBHuq7/T5qm/Q8/+/v//Es4zmOFw3KhtMIKK6yw4hFB8PajH/0IhUIBL774IlKpFO7duydSmXq9jlKpBJ/Ph1OnTmE4HOKDDz5AoVDAqVOnsLCwgHw+j4ODA8zMzODkyZPI5/O4fPkylpeXMTs7i1wuh0AggGq1imAwiEwmg36/j/n5eZTLZWQyGSwtLcHv96Pf74uRgKZp0jvJ6XRKrRyZNdacJBIJAEA6nRbwx8+4XC5sbm5C13VMT08LeFQlaEwUmZCp7Jcq3TICErItKlhhLQ0TrFQqJYzhzs4O/vRP/xTf/va3cebMGYRCIfzkJz/B/fv3pTWDasqgMjDGMJqaqEmuyliozJvKuqlyNvWnuj/1vIwsmxFwPS5TpsajQMujgJBZqO+rYFQFMGb7OAqoHXWcR21vxk4+al9m82y2z8cJdd90YWSTbjJvZuNX70MuUqgAj5b6ZvcD70MaopD94t9qQ2xd16XvWjqdRqPRkHoufpbjJNNDI5Beryegyefzwel0yrjIPFWrVWGuWE+WyWTEfVHXdczOzmJxcRGbm5soFArQNA2BQEC+/263G7FYDN1uV5pnAxBnSuCQyeJCE01N7HY7wuGw9GLL5XLSboQSRRqj9Ho9FItFAIetCKampuB2u+H3+7G3t4doNIpy+ZAHYl+5SCSCdruNTqcj8ku2lxgMBohEIvB4PKjVajLmSqUCr9cr15g1hLquy/gIPNn3jmqHRqMBm80mEk9d12VenlT8KiSU3wXw6s9+//8C+Al+jQDukIGzTEyssMIKK6yYHF6vFz/84Q/RarXw0ksvIRKJ4ObNm3C73YjH40in0/B4PJidncXMzAxKpRKKxSJGoxEuXLiAYDCIbDaLVquF48ePIxQKYWtrCzs7Ozhz5owkD4FAQJK37e1tuFwuJJNJ5PN5ZLNZrK6uihFBPB4XKabdbsfs7Cx0XcfGxgbsdjtSqZSsftP6nDKeUqmEWq0mjcTr9Tr+8i//Ena7HefPn0e73YbP5xtLqmgWQBkWWTcCILrYmQEJo2SPQSaOkUql4Pf7JUn7y7/8SzSbTXzlK1/Bb/7mb+Kdd97BnTt3xBlTTXABjI3DCOomsV/AeAsEMxCnaZoA1MFg8FDtnSrdfBRQ+0WYM+P8PQ57N2kf6meMxh1GOaPKohrHPAlwGcdpZKmM52C2r0cxcj8PG3cUOFTvA8r/fD6fSOtUeSYBh8qcTRqTyvAYG8QTdNGun5JpsmRGJrnT6SCTySCdTous2XiP8/6nyQellWrtGZ8JaqsAui5OT08LI1er1ZDL5VCr1VAsFjE3N4dgMIhcLicybIfDAZ/Ph06nI7JBsvI+n2+sbo8GJqxTUx0h/X4/gENDGvZiY70en41sFTAcDuXZFAgEMBwOsb6+junpaczMzCCfz8PpdCIcDos8VNM0FItFaaFQKBTETTKZTCIYDKJUKsHlcokDr9frha7rcn68NplMBi6XS56laiNygllN02SsVESQ4XtS8YsCOB3ADzVN0wH8v3Vd/3cAUrqupwFA1/W0pmlTZh/UNO2fAPgnALC4uPgLDuNBOOwaun0LwFlhhRVWWDE5/vN//s/QNA3nzp1DrVbD3t4eEokEhsMhtra2EI1GcezYMfh8PpTLZSmKf+aZZ9BqtVAul2Gz2XD8+HGxNR8MBjh9+vRYLYXP50OxWES5XMbq6ip6vR52dnYwGAxw/vx5VKtVFItFpFIp2Gw2lMtlBAIB6cV07do1uFwuLC4uykqwCkj6/T6y2Syq1SpCoZCsUJfLZZw7d072VS6X0ev1MBqNxKSgVquJnMput8sqPvCABaPzpcpcAeZW+Qwam5DhS6VSCIfD6HQ6KBaL+Ku/+itUKhW8+OKL+M53voPZ2Vl8/PHHKBQK6Ha7Y66YRqZDrWlTk3Cz/nGqVFKVU3IbtQ2ByrrwGCrgMwJZ9TjGeVCP/yggZgQgjyM/nAQizd6fJP80O57Zvo4Crcaaw0eB3aOYtUljMW4/CbQZ54nyNibwNKtQ69UIRFSHSAL/SSDOyMap4XK5RL5MoEFgyHuK9Vhsc5BOp9FqtYS9Vs+FxzH2gSNIolyRDowEYAQaiUQC0WgUAODxeIQ5qlQqSCQSYgKSz+elNQlbMPT7fSQSCbhcLlEhcGwEMOzjFgwGUalUxthwSkX7/f7YvULzEj5bCA6DweCYxLPdbqPVaiGbzQprt7u7i3A4PCb3JDiz2Q7bQcTjcTidTqTTaaknbjabYlBFWSkZSLr8EvDRvZO95vhZGp+0221EIhGRk05PT5ves7+O+EUB3Eu6rh/8DKS9pWna7cf94M/A3r8DgK985Su/NM2j3WbDYGS+KmSFFVZYYYUVwGEjb7vdjkajgWazKU6Ng8EAJ0+eRCwWA3DYW6hQKGBhYQFzc3PIZDLY2trC/Pw8FhYWoOu6WPNHIhG0Wi3pu9btdvHFF1/A7/djcXERe3t7+PTTT7GysiLtBVwuF1KplEgYp6am4PV6USgUsLm5KSvomqZJfQubyQKHjcbb7TZisZj0eBuNRohGo9Ik1+VyIRAISFNgsnR2u10aH6t26YPBQAwjgAeJpJqITQIpTHTZcws4rDOJxWI4fvw4isUiMpkMPvjgAxSLRbz++uu4ePEifD4fPvnkE+zt7UmtCY9vxvTwuGotm+og+ajtja8BD1g3zgPPV92nypCY1Vnx90mvMR4lLTSO+3EYuaMYyUnvG8diPB+jjPQXOf7jhhnINAN/xtdVyaLT6ZRaUjJQKugyukKqrpOPM371dR7P7/dD1w+NN0KhEJ566in0+31cvXpVxtvtduWZwlorGmMY98/7TzXfYd0h67jUNho8Bhn/0Wg0VqNFSaXaEqDdbqPb7cLn84nEkaAlFAoBAGKxmEgIw+GwgEr2SwMgNX1cDOl2u3C73QI6Keumy6Ou6yiVSsIkhkKhMeAaj8cFUNlsNmQyGTFmKZVKsuhEkxOn0yktAPb39xEKhRAKhdBsNgWoOp1OAYiUkw+HQ/j9flkACwaDSKfTsNvt6Ha70qeOLQQoRaec9Odhyn/Z8QsBOF3XD372M6dp2h8D+CqArKZpMz9j32YA5H4J43zssGrgrLDCCiuseFQwuQiFQgiHw1Krtrq6KoX2/Le6uopEIoGbN29ib28Pp06dwsrKCobDIfL5PHRdFzljp9NBo9FAoVDA/v4+5ufn4fF48N5776FYLOJrX/saUqmUODdOTU2h1WqJFKrVaqFQKKDVamFtbQ33799Hr9fDM888I6vHm5ubiEQisrodDodFzkOXOQCyon3//n3U63Vp4ktWcWtrC81mc6wvFS36zfqwmckKzcAb3+92u9KX6e7du1hdXcVLL72EN998E9vb27h27RqKxSJeeeUVnD9/HnNzc3j//fdx584dsRJXrdRVFkKtVeMxjeCMYQR56v5UEMfkU+0Vp86Jul+z858Uf1Ng87gg7+cJM9BpBvKM0sBH7dO47SRwe9R7k4DbpOOrIIxMlwreCOBUwxCVdSPgIDOmnsNRwI2Aj/JG/l6r1WCzHTa5/v3f/33E43H86Z/+qYCvbrcr/dfy+bwwOpPmQXXoJPPGMRM4hcNh+Z0Oj/V6HfF4XNinXq8nrrPhcFikpK1WS2rPKC+s1+tYXFxEp9PBwcHBmHuk2+2W50u/3xfpd6VSEYMSNsAOBoOiBmDrAT7zBoOB1PRy4YsSRl0/rCPM5/PQtAeGIbxu+XxeQFepVJLneCAQgN1uRz6fh8/nkxpmtVE6j+Hz+XBwcIBwOIyFhQVkMhkBf9VqdUxiS5A8GAwwNTUFl8sl9XLsIfqk4m8M4DRN8wOw6bpe/9nvbwD4vwP4UwB/AOB/+tnPP/llDPRxw3KhtMIKK6yw4lFhs9kwMzMDu92OSqWCYDAoPYJor93v97G8vAyHw4HLly+jWq3iueeew9TUFAqFgrBdNptNeiVpmiZW2ydOnAAA3L59GzabDd/61regaRqq1SoikQhCoZDYdWuahnQ6jUAgAI/Hg1AoBI/Hg/n5ebhcLsRiMWSzWXzxxRdYWFgQBo5AjnImJlrBYFAAEHAIWOfn50VCyVVmus1xJd7oAAmY974yAplJyfdgMECtVoOu61KT5/F4JLk8ODjAD37wAzQaDTz//PP41re+hWg0isuXL6NYLErypBqrqPJHY62XMdRkmGF0n2TCrr7O15hkqon0o2SNZr+rYMSMjZsUZpLEo9gwdTyPIzecdMyjQJvxfeO2Zn+bsWWTfn9cVoOLDmodG2WTZN3UxQmjVFJlnNX9qWNgnZt6/VQWj6CK3w/KGev1Oq5du4aNjQ3YbIf9zxqNBtLpNEqlkjBvRpDK39V/ar87gjVKJHn/Umbo9XoRi8WwuLgodbZk7lmP6nQ6kclkpJ8Z2SlN00Q2XqvVxr67bEnAxSGyaWQFaa5CO3+2QOG2NBzxer1oNBrC/tGwiZ+hSQivD1k4smCcp1arJbVsrLfLZrNwOp0IBALivMk+ccAhSxgOh1Eul4UFrNVqIq1ttVoyx3zmsM0Dz49SepfLJYtMTyp+EQYuBeCPfzaZDgDf03X9rzRNuwzgDzVN+8cAdgD83i8+zMePQwbOqoGzwgorrLBicszNzcHtdqNQKCAWi2F+fh6DwUCK9z0eD1ZXV9Fut3Hr1i14vV6cPXsWDocDu7u7Y1JG2kzX63XUajVEo1EkEgkUi0Xk83mkUimRaOq6jlAoBJvNhkKhgFAoJCCFcsl8Po9erycmAoFAAJcuXcLe3h5mZ2claYjH4yIJUuvugMMER9M0OJ1OYeLYp2lrawszMzMIhULCkjE54qq/y+WSOhYzkGYEE2SxzCR3rLfb3NzEH/7hH4rTJkFmuVzGm2++if39fbz66qt45ZVXkEql8MEHH2BnZ0ekTmqSzDGo5iTAw60IzMauMhsqa6cyc/yMCvxUlsY4D8a/ja+bAb2j3psEih4lp3zUe0eBXbNjmTFnRkBm3J9at2gEv8bjmLFdxtfNjqWCKYI3gja11k01p+F1JxtDtlUFRirzqoZqisNwu90CFtxut7ivHhwc4Hvf+x7cbrc0F6/Vajg4OECxWESr1RqTGE86HsfDfZPxYv8y1o/ZbDb4fD6ROCYSCZRKJekpR0Mk7pPGIlxMosx6ZWUF8XgcOzs7qNfr4mpJkEV2j8+vUqmEZDKJdrstjpjtdlsWZ9g3jm1TOFcEgpQg6rqOfr8vbpM0Jtnd3ZU64nK5DE3T4Ha7pc+baoLSaDSkbQrNo1TZd7fbldYENpsNqVQKxWIRNpsNU1NTwoiy+Xmv14PT6Rx7LlarVXQ6HQQCgbFWM08q/sYATtf1DQDnTV4vAvjmLzKoXyQsBs4KK6ywwopHxWg0QrVaRTKZRCKRQKFQkMRBbe5dKBQwOzsrzo3NZhPBYBChUAj1el3kj4VCATabDZFIBG63G9VqFc1mE8vLy+JI53K5xNWNVtfdbldq2OiyVigUEI/HRR518+ZNtFotLC0twe12C/gkg8Vi/pmZGaTTaUxNTUmiorJyTOiWlpbEuS2dTmN/f19W0tleQHWEBCbXwanvT2KhON80JWi1WohEIohGo4jFYtA0Dd1uF1euXEGpVMJrr72GM2fOYHp6Gj/96U/xxRdfSP0ek1YViHDF3GwcxlCdA80AmVFuqSb0k+SG/P0ocPUomaHx9UlhxnQ+Ksy2edQ4JwE8M1mjcW5U0GusJ1TbO6jbGRlGI4g2gk+CRLJsBG4EbXyPoRrWqGzupPMxG5t6njQsoTzP6XSOLTBQQjwcDlGv17G7u4tKpSKSRuP9oJ6bOmeUXwYCgbHaNwLAfr8v7BnbA2xubkLTNLHNj8Vi0HVdjDcGgwF8Ph+CwaA8z44dOwav1wuv14vz58/j5s2b2NnZGastdTqdUtubSCSkJQkBHiWQg8EAwWAQbrdb1AFk8bgQo2maqBbYL46Mnd1uF3YwHA6jVCrB7/dLLzq2LLDb7SJD9Xg8iEQiqFar8jzp9XqIRqPo9/tIJpNjzprValV6bXJBjGPRNE1YPY673+9LL0/W0NlsNmlL8CTiV9FG4ImGVQNnhRVWWGHFo2IwGGB+fl6YMJvNhkAgIJKiQuGwvWk0GoXX65WVYSYhdI9jcsfG3FxtdzqdOHbsGIbDofSAo902cFir1mg0BMj5fD5kMhnk83nMzMwgGo2i1WqhWq2iVquJS+X09DQCgQD29/dlNX96ehqRSATpdBobGxsYDAaSuLEOiDUwdIyjTDOdTiMWi8mKOwElw4xNUVk34GHrfmNirCbfZNNo2tLpdETa1W63sbGxgXw+jxdeeAFf/epX8Tu/8zs4ceIE3nvvPWxubsq4CAbUujaV0TAak6ifU8/tqDYFlHYZz1edC25n/N0IJNW/zUCScR/GeJRk8m8S6jgnAd+jmDYjaFP3ocoR1e8IwYCZayg/px7HeH5k29RaN9WgRGXS1M9wGybpZJcmSYOPAo6UAHc6HQCQOrvBYACXyyVyQDbL3t/fR7lclj5l6nmpc85xsr0F7z+ybZqmScsA43yxf1qlUkGj0RDWjmYe1WoVwGHTcLfbDa/XK8yUy+XCzMwMfvKTn+DZZ5/Fs88+KzW+HDOfdQRLrVYL0WhUwBLnggxht9tFLndogcFnUKvVEpBGYEQzFTpEOp1O5PN5OBwOTE9Po9FoIBwOo9/vo16vw+PxiCSUjCPvn2q1CpfLJUoKgrCpqSnUajXU63WEw2GRrZOpZIsB1svxWlLqGY1GhZ3jtWWd7H+vEsq/lWG32TAYWgDOCiussMKKybG4uAiHw4FcLifM2fz8PLa2tqDruiQG3W53zGaeiT4ZreFwiGg0itXVVQFvdHns9Xqo1WrCMjUaDXF6o4sbEwdKjiiRJMgiA8jV9eFwiPv37yObzaLT6WBubk6agGezWczMzCAWi8Hn88Hn8wlTGI/HEQgEUKvVsLS0hEgkgo8++kiSKACygq4mJUwQyXwBkyVfTMzNGA01WDtDCRtX9NlbqdVq4d1338Xm5ia+853v4JlnnkEymcT777+P69eviwGCau2vHkMFCsYkXU2cjTLLScF9GUGcCuzU34+SSTIedcxHATrjfo7av5kM0niMSWMw/q1+1vg3fxJMqTJHHscI4tT5m7Q/fo4Ah3VnNPTg8cxcJsnG0YGQNVwMFfgbGUTjgoCmaQiHw3C73WJYQrZMtcsfjUZot9sC3hqNhgCho64l2TaVRaSBCIEqMO7KSmfGcDiMe/fuyXja7TaOHTuGwWCAdruNarUqjorxeBy9Xg/5fB6zs7NoNBp49913sbGxgd3dXdRqNbzyyisAgI2NDXHnZVNrShYTiYRcE4Iw/r29vS0uuP1+H+VyWaSmwWBQ7PodDof0oKOk0263y0JTMBhErVYT5oyLXh6PR2SUvI+pnqCEkpLKdruNfD6PqakpAXcLCwvSBDwcDgubSZBGgMnaO953bC9AtYIF4H6JYTFwVlhhhRVWPCqq1SparRaCwSB8Ph+mpqZw9+5d+Hw+MQlhvQMZHlpdDwYDbG5uolQqYXFxETMzM6hUKshkMkgkEkgkEuj3+6jVapiamkKn00GtVsPs7KxIiqrV6kPGAAAkCfJ4PLh3757UfdRqNQBAs9kUO/C1tTVJNtvtNhKJhLjJ0T681WrJSvRwOEQqlUKlUsGbb74Jh8MhNRyFQkGcLGmYwISUCaNaQ2QEKkx6jMnvpCAzyfno9XqIxWLCGna7Xdy/fx//6T/9J7zwwgt4+eWX8Xu/93s4efIkPvzwQ2xubookTJV5AeMsm8rSAQ+zPca6OuMY+c8I9iYxco8joZz0vpHp5HiPip/nfSPjZnzfjBUy297sd3V79Z+RiQMm1ymaHYcgSa11IztFsKBuqwI4vudyuUTGzFCNTdTjGhu6c58ulwsnTpyA3W7H+vq61EvS5ILMM807stksSqUSGo2G1KiazS1/quCNYJPvEfTU63UBDDRqYXPtra0tcaMdDoeYn5+Hw+FAu91GpVIRqWU8HhdzEDJr/X4fhUJB+qNtb28jm80ik8mg3W7LYhOBnK7rskgEAIFAAIVCQXrRZTIZeZ1MezabRSQSwcLCgiwk6fphM3N+90ulEux2uzhM8pwbjYZI2FkL6HK5AECecwRzBI1spUJX4Lm5Oem3t7y8LA7CTqcTbrdb2iRQFUBZLs85FAohk8kIUGR93y/CgP+i8aUDcHa7VQNnhRVWWGHF0cFkYGpqCg6HAzs7OxiNRlhcXBSpFRvxMqEulUrY2dlBuVzGaDTCsWPHEI1Gkc1mxX6bsh+Px4MzZ84AOLS+jsfj4jrX6/UQiUQk6ev3+8JEsYh+e3sb9Xod8/Pz8Pl8AtoAYHV1FalUCnt7e2IRrus64vG4NMoFIHUo7O1E2RQb7DqdTpw6dQrlchnr6+sis2JyRImVCsyY0BubXPN3dRv+brYN98kEcTgcotfrodPpjDUZrlQqeOutt7C/v49vf/vbOHv2LJaXl/HJJ5/g448/xsHBwVjPOjUIvIGHm30bwwjmCAhV5pFhBGMq4DJKR83YSnUe1L+NYMlsLtX9q2MxbqcyE2b7NRuLcd/G9yexZPycCtY4p8ZaMjZ5JrA2Gt8Yt1dZLgI5AA+xVOqYVbkkbeBV8AaMO5EawZvxfD0eDxYWFtBut7G/vy/b8lzoAKvrOsrlMvL5PKrVqoC3SddIPY7xetnt9jGGnmYa/OnxeDA1NQUAYpzERZRUKgWPx4NisYhSqSS91+gAaXRlrFarqFQqspgzNTWF3d1dYcNUBooNytkKYGZmBoVCQVQJNGDy+/0YDodS9zc9PY2pqSlRFTgcDmnATeMR1hXm83lx8my1WgiFQuL+SCMXswUTmppUq1XMzs5iOByiUChgZmZGFBCzs7Pw+XzY3d2F1+sVCb3P50Oj0Ri7p1ljl0wmpb2ACpr5fHhS8aUDcE7LhdIKK6ywwopHxGg0wvLyMjqdDkqlEjRNw+zsLHZ2dkSyBBxaU/f7fbTbbdTrddTrdcRiMbHbJhi7cOECXC4XstmsuK1Vq1UUCgXcunVLEsrjx4+PJVu9Xg92u11AocvlwqVLl+ByuXD8+HEEAgE0Gg34/f4xt8QbN24AOFzldrlc0g4AOGyi7fV60el0UK/XEQwGEYvFxNmyXq/j+PHjsNvtiMfjSCaTACB9oehS1+12xxz7gAdSSiMweBRoUaVzwHiNkq7r4uZJViAajSIajcLv96PX6+HGjRvY3d3FhQsX8PLLL+M73/kOnnrqKbz77rv4/PPPhWUgMDTWGvGYxrYBR90fav83M8bNTIJoZCdV+SDjKEBlnBcjoFL3ZwRyqhxQZaKMx5p0jczAm3G8RpbQjGUz/s3Pq2MyO0/1eABEMqg2pjaTShoZOPYVq9frDwE3I0gzO1duR9bd7/djf39f2F7jdfL5fOj3+9ja2hLWimYlRrCrHpf3IhcaOH4y4G63W2Sf/BxBKc1TGo2GSI8HgwFisRg8Hg9yuZzsc2ZmRvoxUg6+sLCAUCiEQqGAzc1NkWiePn0awWAQuVwOg8EAbrcb8Xgc+/v70HVdJJSVSgXxeFwaaUciEezu7srCEJk3uuvS6bJcLo/VkLndbrl3I5GIMG8OhwOVSgWhUEjAksfjEYUC26yQwQcO6wDb7Tbi8Ti8Xi/29vbkGZJOpxGJRGCz2bC9vQ3g8NlZqVTETZjNuT0ejyzwTU9PywJZIBCA2+0WNtJo9PTrji8dgLPbbBYDZ4UVVlhhxZGxuLiIYrGI7e1t+U++XC4LkLDb7dja2kK73UY0GoXL5UIgEEAqlUIymRQWyufzYXV1Fb1eD5988gkCgQCy2Sw07dCV7fPPP4fT6UQkEsHJkycRDoeRzWbh8/nE+lyVON24cQOBQACLi4tSL8c+cWTO6KbG/lA0E6B5ic/nG2uoS1c3XT/sexQOh2V1mU14aZDCGjQmn2TjyJCRHTBrbs3f1YRclckZZYwq48KEiEkRWUPW7nHF/+2338atW7fw7W9/G1/96lfxe7/3ezh9+jTee+893L9/X2qNVFMN9bjGtgMMdZxkBNU6O7MVfzNwZ8bOqXOj/n4U22X8e5KMcZLU0gwQqX8bJZtmn1FBqgpYjONXx6VKE48CdupxjftWmTWb7dDpz+FwCHtkxvCxJmlpaQk2m03Y6UnzrhrWGI/PcVJCx+8HFzJUtvbChQsoFAr46U9/Ki6vqlmJ2XwfNYc8Bu9VfpZya5fLJbVehUIB0WgUNpsN9Xod0WhUatX4M5VKAThs+E1pdjgcRjAYRKPRQLFYFEbv/PnzeO2119DtdnH58mVh1ZrNpjCh7XYb5XIZPp8P3W5X6my3t7cFkLXbbVk4SKVS4vTI1gVsxK0yi6FQSMxEdF0XgEi3YJ6b0+kU6aYKoILBoDB6bEFAs5l0Og2bzSZqieFwKJJN4FCN0e/3BfyyxjYSiQA4fDbZbDaRhHa7XVE5PEoa/auMLx2Ac9itGjgrrLDCCiuOjuvXr6PRaODcuXOIRqOSpIbDYRSLRWl0vby8LE2u2eib7m6UVm1ubuKjjz4StiyVSmF+fh4/+clP4Ha7pV5kbm4Od+/ehaZpYknNlV8aHxw7dgzJZHKsqSzrY1ivMhwOJQnjinq325X+TDQIiMfjqNVqqFQq0rKApgesy6OVt9vtFmvwcrksq/pkoprNpiSVZm0EVEZGZV24vfoZ7odMmQqo6Jap/gsGg0gkEsLGHRwc4D/+x/+ITz75BK+//jqeeeYZHD9+HNevX8elS5fGgJwKJCcZmhAsELQRnJuZnDABVdnGSeDNeBzj32bsmDqfRubtqGM86vhGGZ9RqvioMDJwRvCpAi4jK2b8jMqEMsh4qdvwM0zUVYdJ9Z/D4ZCebNlsFs1mc2y8KphXx6seTx2HpmliqsH7hostlBRHIhGcO3cOH374Ia5du4ZGoyGSSTPJrfG7YjYmNoumdJLb8NisGaNDLaWM9XodyWQSsVhM2hbQLZJqgmAwKOCHNXZbW1tSB/b000+LiVO5XEa73RbWjKxlvV5Hv98Xt8ZyuYx4PI4TJ06IdJLb9Pt9RCIRUQJQRsl+bZS1ut1uRCIR5PN5AevpdBp+vx+VSgU2m016aHa7XTEQoRKg0WhgampKDKIcDodINCk9dzgcIsMcDAbyfOVC3Wg0QiKRgNvtRrFYFAfL4XAoz0c+a+nSy9enp6cf+d35VcWXDsBZfeCssMIKK6x4VLTbbVy8eBHRaBSVSkVWm1nIT1fERqOBcrmMEydOiB03V7EDgQA2Njawvr6O2dlZVCoVnDt3DseOHcOVK1dQLBZFvvjcc89JqwE6qbE2pdvtotvt4syZMwgGg8hkMrIqriZuBGtky7xer2zLRr5MPiijYk1ZPp+Hz+dDOByWlWo2u+31ejh+/DgajcZYLQxllKyBsdlsYzVxTHBVSSXwIGFloqa+R+BGIGSsHQMgBjCUhTF5i0ajiEQicDqdaLfbuHLlCjY3N/HVr34Vr7562AD89OnTuHr1Kj766CPcv3//SCklz4MJN63fjeMy/pwE3szYMuOxjYm8mbRODeP2k96bdNyjWEPjeCftXwU5RraK75vVv5kxdAyjFNHIuqnghUBkbm4OxWIRXq8XzWZT2Kh2u43RaIR8Pm8KFiexher4+Y/mFQAEfHCO2u02hsOh1JL+6Z/+KXZ3d9FqtVCv1037ux0F0BkEoPxOkO0GIJJFsu9k1qLRKPL5vBh0xGIx9Pt9VCoVVCoVOUYoFJJWGXSxBYC9vT1RAiSTSRw7dgzNZhOtVgv5fF6A4czMDFKpFDY2NgQstVotkTJms1nE43Fphs1nUDweRyQSkR6VkUhEWiKwvs9mswlzRlC2t7cHp9OJarWKwWCA2dlZ+b6rSgQ+d5LJpCgPqG7gc5PglKwa+8LRGIVsPOsp0+m09MhjM28amMTjcWn2zWcajWSeVHzpAJzlQmmFFVZYYcWj4plnnoHT6cQHH3wAAFhbW0O5XIamaZIQ0lhkbW1NWg54PB4kEgnU63Vcv35dGLGNjQ08++yz8Pv9+MEPfoCNjQ0cP34ca2trmJ2dhaZpUkeiaRq8Xi+Gw6EkQufOnYOmachkMqjVakgmk1LjQSMGJi4+nw/D4RDXrl2Tfm/sr8Q6j3K5LInMtWvXcOrUKWm4OxqNpPYuFApJzV4+n0c0GsX09LSYnVC+1Ww20Wg0hBWkNNFYj6UmyEYDEDIJo9FI6tWMCa9qJMJVcp/PJyv2ZBtUWd3bb7+NK1eu4KWXXsLzzz+PN954AxcvXsTly5fx0UcfiRSWxzKrfTNKPdVzU3+qzNFR8kizn2a/m9XVqfE4oMq4LyNwMBuvWR2dGVNoti8zoGiUTqoMmrqt2lzbCNqM2xglkkyeKV8j08N6KiOjyp9mbKYK8AhsCBbZQ421VbyXCexzuRz29/elr1mr1XqoLtR4XczuATLUdMvke8aWB2otoN/vx/T0tDCTVAIUCgVhhihRjMViaLVaCAQCMl+dTgf37t0bqxVbWVmBy+USy/1isSg910ajEba2tkRencvlZD/BYBA2mw0HBwdwu93iKjs3NyeSSLZZqdfrMg/8LBfMKM1uNpvC9gcCAcRiMVlA4lypKgKfzye2/uxpSal7sVgEcFgXl81m0ev1kEwmUavVpF1AoVBAIBCA3W5HNpuFw+EQ05h6vS6LTYlEQphdOoq6XC7EYjFx3HwS8aUDcPafAbhJqx5WWGGFFVZY0e12cefOHYTDYczNzYksrl6vA3iQHE5PT6Pb7UojV4/Hg2w2i1arJf/h7+/v46mnnoLf78ePf/xjeL1e/NZv/ZasftfrdRQKBWF8WEvC1ekTJ06g2+1Kg1k2GKfEiHbVTOACgQBarRZSqZQ0uA0EAgiHw6jVatC0w5qSS5cuodVq4cKFC9KLjq54nU5H+i3dvn0bt2/fRjKZhM/nQyKRwO7u7lgtHZk/GiwYa3zUf3zfmDSrjBzwsIOiGbDi+dHZjkAuFAqJ7KnVaqFQKODP/uzP8Nlnn+Gll17Ciy++iO985zt47rnn8O677+Ly5cs4ODgQG3az9gMcC8PIsD1OzZs6H8b9GWMS4FL3YRybGcgyk1fys5PeM+7jKNBhPK5RfmlkzYyATAVMKoBTX1fNRVQwBjzoe0bDDP5NAGjcp9kYzYILCgRRXLThAofqREpWLJ/Po1QqSQ8xlXWbxLgZmU6VpeTiDBt4U0aovsZFFBqqtFotNBoNeb6QOSI7SDae7JHL5ZLvfTqdFmMjl8uF6elp2O12NBoNaW/i9XrhdrulbxqfXbT4LxQK4sYIHLJ5drsdXq9XQKHqAEt5o67rAox4HmycTUl5rVaD3W4XYNVoNOB0OkVuTmlpMBiUxZ1AIID9/X25d4rFosjc2+22qBK4CJVKpVAul8W4hWYt/X4fgUAA7XZb7o94PC6tBVgLSAltqVSyauB+meGwHX4xhiMdDrsF4KywwgorrHg4CoUCFhcXMT8/L3ViwWBQasO4Gl2v1xEOhxGJRMZW5WdmZmQl+uLFi/B6vVhfX8fTTz+Nubk5caIDDqWI3B8AkU0mk0lxoMzlcnC5XAiHw+h2u8JeEWR4vV7pPaSyYuyhlEwmUSqVxJL7+9//PlZWVvDMM89A13Vcv34dg8EA8XgcPp8P8Xgcg8EA+XweoVAIp0+fFklRtVrFwsICAGBzcxP1eh0ul2usBkRNvFXJIUGYKpNkQm/WDFxl3dQE2MjGqbVxXq8XvV4PzWYTwWAQ4XBYEuHd3V18//vfx09+8hN861vfwoULF/C7v/u7eOWVV/DRRx/h0qVL2NnZETaR4yawZCKvaZok55PAmpGNMwKPx11E5jkbP2+23aT9GoGDscbMCCofxfypDJrx+OrrapsGLk7wb5Xl4r0yyTBEBXAqwDELbqtKddXzPQo8cwxkuch4kQXi4gbwoLfhYDBAqVRCoVBAq9WS74BROqzOjdkihZF5I2jgd9xut8Pn80HXdQFjg8EAiUQCPp9PGCc2subzxdi4PhgMisGSz+dDp9OBx+PBnTt3xPjE5XJhdXUViUQCwKGRRyaTwXA4xMzMDE6dOoVut4utrS1hPHu9nkg9aWIyGo0EWJ04cULqhVl7x8Uf2vuzOTYljaFQCKVSCS6XS2SxPG9+17ngBRwu6ASDQfk7mUxiY2MDHo8H8XhcDKESiQTK5TIajQai0ShGoxFqtRpSqRRqtZoYJJVKJTGIYQ0wAGl47nQ6pUec2+3GcDiUfptkD59UfOkAnP1nX/jBSIfD/oiNrbDCCius+F9kLCwswOfzYXNzE5VKBQsLCygUCqhWq1hbW0Oj0UC1WkUsFhMDgHq9DofDIdKeRqOBWCwGh8OBYrEojonNZhP5fB6dTkckPWSJWBC/tLSEcrkszWtpdkLZJJMzurSpjYCZqIVCIUxPTyMYDGI0GqFcLuPDDz+EzWbD888/L7InGnTQ5nxubg6JREIYPiZ9o9EI2WwWMzMz8Pl8yGazY8kPG+ECD5gSNYE9qhaOyTCTW2MzZwK2o6SBNGhg4sSmxQS4gUBA6qUKhQK+973v4b333sPXv/51vPDCC/id3/kdXLx4EZcuXcLly5exsbEhwI3MnmqowvObVEdmJsszvm4WZkBDBS3GZF8Ns79Vtk5l3szYRCN4Mx7f+NokqaUKzgjcjGyY6hjJGkqzYxmdJSeBYCOrpt6DZnOifkZlAGmYou6P31tVQss6sHK5jGq1KsCN8l/juajza/a+eh4ul0sWNLg48v9v791jHEvT877nI4tk8X4vsljVdenu6ZnpmR3taAdjSYPVrgRZ2shSNgoSYwVYkZGLrMQCLCeAEwkBoiQIIDi2YxswnKxtASvvxooAaWFJFiztzdKuLruzOz07PZft7uqp6q57scji/U6e/MF63vnqDFk996queX9Ao3g5PPx4Dnn6e773fZ83HA5LSqjf7xcnxGg0ikQigddffx3GGDFTsaFxUTAYhDEGly9fRrValYhXsVjE5uamGDY98sgjyGQyIlAajYZEwR599FEUCgXcvHkTxhiple12uyLCgPHCFIVNPB7HcDhENBqVSBUXoig2KUrp9BsIBGThajAYwOv1IpPJyPUvFAphdnZWsh1GoxHC4bCcz3w+j729PYk68vylUin5PLwetFotzM/Py2dIJpPyPK9/dr/ASCQiJih2CqfjjPttNptNMbo5Ky6cgGMETo1MFEVRlGnMzs5id3dX/jNfX19HKpXCM888g1qthsPDQyQSCSSTSamXYOSLkZmrV69KHQzTKzmBpU22z+fDaDRCpVJBMBjE7OwsVldX0ev1UCqVZKK3uLgoNV21Wg0AJEWJIoeTMYpCOktubGyI++InP/lJPPHEEyciXr1eD7lcDpcuXUKj0cALL7yAGzdu4BOf+IRE9gaDgUxUY7EYstmsTC6ZpshJlh1R4+TbNgtxT/rd6ZR2vzJ3BGuaWLLvs+UAV/vb7TaCwaBENWOxmEy6tra28PnPfx5f/vKX8SM/8iN4+umn8dM//dP4xCc+gRs3buBb3/oWbt++LW6gHK/dB86dIsdxTBJs0yZ0bgHkftwWQ7xtn3u3+DotgjYprYvRXLewcJ+HSefPLZbsNEWOlwLNfs7ep13XZr/PNFOUSSKMt217ffs1drooo3pukcleiRQ8ttspzzkdX2kI0u12T7TucI/VPo6npcLax4pRNqZwMu2Q2zESlU6nkclksL6+LvVZjNrzmDJyzGtDJpOR73K1WkWv15OUaGMMfvAHf1CEYKlUkh53ly5dwvz8PIrFoghVXusoaHmd42IU359RslgshmQyKS0VgsEgSqUSQqGQ9L9st9simIHxIhXHztYNbAHQbDblGpbNZiUDIpfLYW9vD51OB4lEAqVSSYyZmHLNdG86ana7XWxvbyOdTksGg+M4MhY2ZOdxZ5SQ58nj8ch1vVKpwO/3i6A8Cy6cgPMyhXKoAk5RFEWZzP3792U1dX9/H0tLS7h8+TLu3buHW7duib31k08+iRdffBHD4VAc2GKxGILBIMrlsqRYJpNJaWDbbrel4L7X66FSqcBxHLHrr9VqWF9fFxtrTqyYEsn6EtbhsYcTG/qybq/b7eKLX/wivva1r2F1dRU/+7M/i0wmIylV7XZbHN5SqZQ097127Zrsi+lb3W4XPp8Pjz/+OJrNpqSActXbbtprtwbgZyS2QJgkKtwRikm1ZZMm5/Z2FBKMxLXbbYleDAYDrK6u4qmnnsJP/MRP4Ktf/Sq+/vWvY3t7G5/73Ofwla98Bc8++yx+6Id+CD/6oz+KZ599Fi+//DL+7M/+DH/xF3+B/f39ieOwI3GTIljuSJj7eXf0yj4edg2ZLYr4Wd3H9rSo3CTB+SChNEmMTooOcjz2Y7YJB1Mb7Yga9zGpgbYtutzjsz8/0wttIegW/u5jZIs13mbUmf/cxjU0SKlUKuKCykWCaQ2bJ6WVup+nwLEXNIA3opKMutsmP8DYgCMWi2Fra0sMRXhdiUQiYoDEBZ1gMGHftysAAEg0SURBVIhcLodqtYpQKIR2u43t7W1pCxKNRvHYY4/hqaeewt27d1EqlVCtVrG/v49CoYBsNot2uy2LVUxN5rGh6KtUKifqxmZmZnB0dIRgMIhLly5hcXERu7u7mJ2dlfRDuv0yolepVGTf9vniMeC+mWaZSCRkEalQKODo6AgejwehUAiHh4dynWI9nf3dicfjCIfD0vMzHo/j4OAAMzMzYohSrVbR6XQwNzcnUUCasHAswWAQsVgMR0dH8p1xR0I/SC6cgGPd22BCMbSiKIqiAOMImeOMG1tfuXIFi4uLuHnzJm7fvo1gMIgf+IEfwPLyMtbW1jAcDpHP5zEYDDA/P49er4cXXngB2WwW+XwesVgMwLg1QbFYlAktxRpXlhnlOTw8lIkwDQnYpJfuipzwRiIRSVlijVwymcRLL72EP/uzP0O1WsWnP/1pPPbYYxKxYx2bXQfDqJXX68Xc3ByA8QSSNXWhUEhEGdOwFhcXsb+/j8FggGQyiU6ng1KpJGle9XpdatwIP5edDsnbnFC5o0vkQQLFHe3gPmhUQBc+9sh6+eWXcfXqVaytrUk62fb2Nr74xS/iS1/6Er7v+74Pzz33HJ544gk89dRTyOVy+MIXviBGCqcJo0njc9+eZKThFkZ2dMiuIZv0ed2RqWljcD826blp2NGiSWmAkwxJ7OjapCijO0Vy2jGxt+e4aX7Dyb4tuibVDNJYiOfP5/NJRIWGHPZnGQwG0piZbTS63a7Ut9puqe6FCbf4dR9HbmOnj3L8vCawrsrn84mpBjBuvJ1KpeR6AgA+n0+MP2yTkmAwiMPDQ3zf930fHn/8cbz88stYW1tDvV6XOlFGxgqFAi5duoRKpYLNzU3s7+8jk8kgnU5jY2NDDEZsi3ymFfr9fkkppKjhohWzEO7du4eVlRVcvnwZ9+/fRygUQjQaRbVaRbVaRTqdllo6x3EkEspUxpmZGTEw4eIV2xEMh0MsLCyIkPP5fJKCHo/HJeLIcfE6wHTw2dlZqRV2HAfhcBjJZBKNRgPxeBzxeBy5XA5erxeHh4diJMPfKd1+GdVMpVI4Ojqa9DP6QLhwAs5rmZgoiqIoyiTK5TIGgwGWl5eRzWbxne98B6+++ipWVlawsrIiqUW08x8Oh1hdXcW9e/dw8+ZNFAoFsd9ut9vY3NwEAFmlrVarqFQqyGazaDabKJfLYv7B2gkW6XPVf2lpScwVuBINQLZnLcq3vvUtbGxsSG+6XC4nYgyATEKZ/lmr1aRmr9ls4tFHH5UaFb4XU8MYAeT46HQJQPrBFYtFmbgw5YmTL8dxJLVyZmZGIn3GvNEA267ns3ELlGnCY1LKIN0+6Q5YqVTwne98B8lkUnp7RaNRhEIhmah/5Stfwde//nVcuXIFzzzzDJaXl8XspFQqyXjt9EF7XJME1Wkia1Ikzi3g3GIJwAnR694fx0Nx7D52k5w93wqTxNik6Judqmi/lmN2p1ROOi7clzsSaO/b7Rbq/m6wjpTCku0xPB4PGo0GNjY2ZDsA0iKkVqtJXzAKNru+8jSx7DaK4XNu8Wob+vD3TyMVRnjYoJo927LZLOr1uhis8LdUqVREUM3Pz4uhD1O75+bm0O/3cXBwgHq9Lu/X6XSkD+TOzg52d3dx+/ZtSSfc3t4W0cj+egBEKA0GA1SrVUkjpCssf99zc3MYjUa4f/8+jDG4evXqCXHT7/exvLyMdrstjpndbhepVOpEFNXv90v/NZ/Ph0gkgn6/L9u2Wi1JmWYvNx47plHaojgUCqFcLsPjGTcE53WZ4o0LWIPBAPl8HolEAq+88orU9/H7Eo/H4TgOdnZ2pM0BP8NZceEEnNbAKYqiKA+CK7PGGHzjG99AsVjE5cuXMTs7i/X1dRQKBWQyGemplEgk8M1vfhPr6+tYXl7GlStXMDMzg3q9LilOoVAI4XAYxWIRa2trYhTABraO40jBfrvdFjc1NrpNJBIAIPUWdmoaU6j29vbg8/nwkY98RNJ/PB6PGAeQVCollt/cZywWQ6FQgN/vR6PRkH3TJY4pk0zTzOfzuHXrFhYWFlAsFuH3+1Eul1GtViXliXVyNANhlI+TIgoa7vedCLRJz02KgvA96/W61CYytSsYDMqEjo3OGbX77ne/i5deegnhcBhPPfUUnn32Wezt7eH+/fs4PDyUCTOANwkJG7f4mBZhsoXJJEMNd1qh2yxm0vvaYsmOYr4bAWenLtqP2+LTLej4vtPaBXC/7scJ34992Wxhyn92ZI7RuVgsJhN+tr4oFosnIl7cb6PRQL1el6gsa9vsWrhJab2TIqLuhQT7O26nw3LMXIwxxkg7DP6WGIWPxWLikgqMF074nWaUntGiWq0m9zudDhqNBm7evCl9IEOhEPx+Px577DH4/X7cvXsXMzMzeO2115BMJmUhJ5fLIZFIyHeS9vqsX6vValIfCLxhlgJABB2vZc1mE/v7+1hdXcXa2ho6nQ5SqRT29/dP9Knj9c6uBbSj3zRGMcYgk8lIH0AuerE9AEW6MW+4Y/KYctzz8/PS7D0cDmNxcfGEyy2bkd+5c0fSO2dnZ6XuLxaL4fbt2yLsYrEYDg4OJE33LLhwAo4ulBqBUxRFUabBwvXXX38do9EITz/9NCqVCur1OpaXl8XprVAooN1u44UXXoDjOHj22Wdx6dIljEYjdDod3L9/X8xK+v0+dnZ28NJLL+Hxxx+XNKLRaIRIJCJF+d1uF3NzcxLtojlBPB6X9B9O3rjCTLvuwWCASCSCSCQCv98vE0PahTuOIymSAKRfkjFG+jvt7e1J8T4behtjRCSWy2Ukk0ncvXsX+XwemUwGs7OzKBaL6Ha70kKhWq3K5JQTzkAggMFgIO8JvDliMSkK5xY77igXsY1OpokkW8jRQp0GMq1WC9VqVaJxND2gecxXv/pVGGOwsrKC+fl5XL58WZxKaY5gm2U8qAbKHZ2zTUomNbI+La3QPja2UDjtfW3Rc1pkcFJ66KTUWDsaZ0dvJ4nOaWOzo23TolVM0bOFFLdlmuTMzAzm5uaQSqWQSCTEdOTg4ACdTkcEnjFGvg88j7Tjp109U/QmifNJiwX2cbWZFEV0i0j+Y7+2aDQqx5ERKL7OmHHdWbFYlAUTut0aM27m7ff7cXh4iFgshs9//vNym/u/evUqisWiRM+KxaKItUajgeXlZWQyGTkWHo9H0hQpzphiTZHGqBwXQmzhdXR0hHA4fGLxand3V3qvUQA5jiMRLGMMjo6O5PqRTCblnGQyGam/TafTEvlKJpMAICI8HA7LdSUUCp1oVTAYDLC/vy9mKoVCAWtra2J2VCgUsLGxgVKpJItajFpms1ns7OygUqlIJI/HJ51Ov+n78kFx4QScRuAURVGUB3FwcCDW/yyK9/l80tSbdW+Hh4fY3NxEoVDAwsLCCZv/g4MDqX+jVf7e3h6uX7+OhYUFrK+vS41JLBZDsViUSWKz2ZToS7/fl5VkplUxFYgTul6vJ7b/XDmnNbedPslm19wvJ1PhcBiNRgNHR0diosDG4VxFHo1G8Pl8uHTpEtrttrRaGI1GmJubEwe5wWCAWq0mdSbValVEJ9OfgJOTWXuiazv5TYqm2c+dZtgx6TVuaGzSarUQCARExHY6HRF1wWBQnPuazSZarRY2NjakRiedTmNxcREHBwciANgDa5LwcX9udwoihY8dhbP3YYu5SfuZJvImpVmSSel+9uvsSJ27z5r9XvZY3cYidtRt0nu4hY1btNrv6bbqt2vbuBhC+/pWq4Xvfe97qNVqkoLI7zTNeBhtYw0ZFxmYKjkN99gmPe8W1Py89uexU3BpXEL3SYogpiB7PB60221xpXUcR9L9WAMbCoXEnKTT6Ugkrd1uI5fLiRFIoVDAa6+9hqtXr+LSpUtYW1sTk45Op4PnnntOFjyYoshIFReO+FuheySFGh0mW60WwuGwRL5CoRAGgwFu3bqFj370o7hx44aYhvR6PcTjcfm+sRk3xRGAE6mZbMZNMxK2PWDErlwui9sl0yGZwk6jFRqdeL1eRKNRLC0tYXNzU9x+r127hv39fWxtbcFxHBGdACTyVyqV0Ov1sLi4KH0B2VLmrLh4As7LGjg1MVEURVEmU6/Xsbq6KiKEaXacHCwsLEjUK5PJ4NKlS9LI+ujoCN1uF7FYTHoU0R3uqaeegtfrRaVSQaPRwNzcHJLJJOr1OsLhsGxHcwNaV8fjcUmtpNBgXRdTE0OhkFj+25NOuwEuo3CcZHCiu7u7K65qwWBQUtB4LLxeLzqdDowxMhaPx4NEInGiBoepS4VCAQcHB2IIwM9ljJFIASejTKWc1LCb2EJsmtBw81a3Zwonxx4IBGTSTJFsp8ByIlur1dBut3Hv3j0AQCKRQCgUQiKRkJogCoLTBBLHYEet7HYMwJudG8lp7pGTzGBskWSniJ0m7tzvY4sOG9usxB73g/Y3KUWS3xmeG27HiBk/H1PhcrkccrkcZmdnkUqlsLW1he3tbdy7d0+25bi5yMD+Zo1GQx6jcOM5c49v2oLBpDRK9wKDOzppHwv7vNBtkZH0fr8v9Xpsh8FFnnq9LmIikUhgcXERHo8H5XJZ6sd4vRkOh4jFYvIbZ7RteXkZ+XxeRKHjjB1cP/7xj+OJJ57AvXv3pEk53TmDweCJHos09GBUiq6SwDjKz+OQSqXg8XhwdHSETCYjNWNsR0BhyX3xd8kFAZpLDQYDqVelKGMPNwCScQCMBR+j+rlcTtwuuajENPJAIID5+XmUSiX53ly7dg2dTkdaKXARzev1Ip1OIxQK4e7duzg6OkIymUQwGMTm5iY8Hs+JTIez4OIJOI3AKYqiKA9geXlZVoSBNxwZWYMCQGo3IpGIpA+xID4SiUi6DVO1FhYW0Ol0ZDLESAGb1jKVa25u7oQDXi6Xk0aykUgE0WhUariYmhkOh6X2gy503F8gEJBG45zI9no9zM/Po1arYXt7G71eD+VyWVIpWWfHaFosFoPf78fe3h5yuRwKhYJMuhgpYN0NRSYb3x4dHYmzJie2nJzz9XZUzsY9AbbT/d4pk1IF7TRO9vRiVI61hKwxogvf/Py8uFr6fD5x4OS+ea7sfnuclLrrqPgd4+TebfBh/7WPh/3X/Zy7B9+kbWwhdlodnRu3ALPTP+20T9uwZFK00D1+dyTPTiOlgGPUJJvNolAoyHd/d3cXd+/exauvviqRXoo3/j57vZ6INrt32zThNu37Nylt0n6N+/6ktFr7eHHBhr89XlcojNhHrdFonIhi8/gEAgEsLi6iVquh3+/j0qVL8Pv96Pf72N/fRyAQEGONXC6HcrmMg4MDrK6uYmFhAZVKRaL0o9EI165dQyQSwe7u7omxsq7XNoWpVquSfsxzfnBwgG63C7/fj06ng+FwKCngtPSvVqsolUqyIMQFLDry9vt9RKNROT+hUEiud2w4zvYmFJ08vrVa7cTviQ7BbPlA8d9oNKTtwvz8POr1OtbX19FqtXD58mUMh0NJo6dwY3Qxk8ng8PAQtVoNkUgEyWQSxWIR/X4f6XQa0WgUd+7ceUu/p/eDCyfgWAM30D5wiqIoyhQ4oQsEAmJDz0bc/X4fjUZD+p/R8ID22ZwYso4lGo0iEAigVCpJH6VCoYBUKiVpOnw/1q7QijqRSCCXy8n7RaNR7O7uyiSI9SKMGNmGI91uV+y3O52OpF8CkD5Rm5ubiMfjCAQC2Nrakn51/LydTgfZbFYikUzPpDDw+XzodrsolUqyGs8JYj6fh+M4YsjCtFB+Xk6GmBJKUeMWaXZ0yp2W+E6EnHty7Ybv3e12RcgxCkchNzs7C7/fj2g0ikcffRSf+cxn8Pzzz+PGjRu4e/cu+v2+REcp+nme6Hxn1xTlcjmJCjWbTXQ6nRPRqGkpmGRaBI0CmbcJDUjs+3aEyI7a2UYbbkFib2ObctjH2J0COi0V1P5Mdj0Ye5glk0mk02nMz89jdnZWatpu3ryJcrks6cKMSAMQwcDfE1NgaUbCc+BeQHAfX/vz2ymPk8SaG1uk2ffttEm2M/D7/UgkElL3RqdJ9kxjbRXHGw6HEYlEpA1Cs9nE9evX4fV60ev1UK/X5RrECNbe3h76/T4eeeQRJJNJaVjNf7lcDuFwGPF4HH6/H/v7+zBmbKrCaDnTJ1nzBox/09FoFPV6HcA4olWpVOD1eiUqTWMRZirQCGR5eRmj0Qi1Wk3Gw++Az+eTWl1eS3d2diQrwu/3S2+3QCAghiX87tfrdWlzwmszI5E0p+G1lHW86XQaPp8P9+7dQ7PZFPMTpt/m83mUSiVsbGyg1+thZWUFo9EIjUYDiUQC8Xgc9+7d0zYC7yUagVMURVEeRKPRQDKZlPoye8WdNV+BQAD7+/symeCEhSKMfdYcx8HGxgZmZmZweHiIdDotE4BqtSrRLYpDRtqCwSAikYg40IVCISmWt1OhuMrNaBubC8diMRhjJAXJdu7javvS0pJE8rLZLIA3+klxAsQ+TeFwGHNzc7Kyz3Qupl4xbbDdbiORSGBrawsej0cc3mhswIkQTQhsoWJPjN1paZNqyh4k4k6bVE97zL09J8wUwbR1t6MOv/mbv4lMJoNoNIpLly5JawZGdZhOxvqmZDKJJ598En6/H6urq3juueckDWxjYwMbGxvY3NzE2tqapORy0j4povZWRJ79+WzxNun+JJORSQJsWornpHq3Sdu4o3X8ntN8JBKJYGFhQWzwj46OcPfuXUm947HgeeYEncYjFOCM6FC0sb6Nv+dpEVn3d8J9HZj0mkmijt9zd/sEClymDdI8x+fzYWdnR75jjBqGQqET9V9Mmy6VSggGg7h27ZoswGxtbUkmAX9z3W4XwWAQS0tLGAwG2NnZkbGwhi6RSCASiSCbzYrAoUCi4RIj1cwuoHhjFD8Wi0kGwuzsrAjmSCQi16q5uTkZTyqVwvb2thw/22CGC0nNZhP5fF6yBDqdjqSYcttKpSLXGsdx0Gq1sLCwIK0TbDHJBZqFhQWk02mUSiVJAaUQZbaC/R6FQgHdblcWapaWlhAKhfDqq69KK4Z+vy81c2fFhRNwQf/4ItXqTk4pUBRFURSagDDqwv+ImboVDoextbWF3d1dqRnjBMhxHFQqFWlKe3h4KOk8165dQywWw/7+Pg4PD0/0pqIFNhtuM50oHA4DgBTjM5XHdopjXzj2bqPDW7vdPiGUmDbE/lKO44hAZCsDGj00m03p35RIJKSWhBNQ2pfTMOG1116TKBNTour1Ovr9Ph5//HG0Wi1sbm5KZIAtBQDIe9rNmN2RmknRkQdNkNzPu6N7tsBzp8u5XzsajUQctFotmXjXajXcvXsX4XBYjiUt3+3z1+l0JI1yZ2cH9+7dg8fjQT6fx40bN/CRj3wEi4uLuHLlCj7+8Y/D5/Ph9ddfx9HRETY3N7G7uyvmOnRKpFi3o2Pu42M3t7bFMP/a54Cf3RYYkyJuwJv7vNmRNnsMdj0f348RTE54E4kEksmk9Bpjqt7BwQHu3LkjfReZ0mxH2UajEYbDoRhv2P/43WddqO0mOem8n/YdmvRdcUfW7Ne4I4z2AgrHzai+3+9HJBKRyP3W1pb8XhmtZRQOgETdhsMhisUi4vE4lpaWRNiUSiWpN3McB+l0Gtvb2xgOh0ilUnKuqtWqHD9uTxfFL33pS9Ir0nbg5PeN7UEYTa/X6yJy6AJJocSm4jSF4QIO908XSva2tCN9/X5f2gvs7e0hFovJsbPPHTMgKLg6nQ7i8ThmZmZwdHSE4XCIubk57O/vi9BbWlpCLpfD/v6+ZFxwwYqRcF5z+/0+8vk8YrEYXnnlFRhjkM1mEY1Gsb29LQsPPp8P29vb6Ha7iMfjp3633k8unIBLhMbOQ9V2/4xHoiiKopxX7Akn68EikQgKhQICgQA2NjZweHiIbDaLcrksvaaAsYtioVCQiQlTCLPZLLxeL7a3t2VCwqgDJ2ucDBtjxHjEGINyuYxAIAAA0si31+thf39fHOvYmDccDmM0Gp2o6aGo4ISHUTS7p1wwGJTXcIK8t7eH1dVVBAIB1Ot1mcxQxDCl6dKlSyccM4PBIK5fv47nn39ejBYqlQpCoRDu3LmDTqcjE0BO/jm5dosGY8ybRN2D0iinTazd+5g2eT9tUu84zglBQKMaplryWPO88lzyfFJQsDauVqvhhRdewEsvvSTRuVQqhUwmg9XVVayuriKfz2NpaQmRSETSUplCWKvVUC6XUavVpCaHKbR2hIkCghEhu+7P/usWYMBJd0n+PihG7Do1TuD5Grt3GWs+E4kEUqmURJ0oMhqNBvb29nDz5k00m000m01ZgGDkjL8vW5Txu8jIji3aWHvIerhJ53ZSNNf+jpwWrZ123/6u8PPx+PB7x3Q8j8cjKXwUG9x+d3dXbrP59OzsrESIer0eCoUC0um0ON2yXow2+vF4XKJD2WwWHo9Hvrc0RmFULZFIyCKBnfrMaCW/5wAkdZILRQCkSTYAacHB6xq/k/F4XBx+B4MB1tbWpK6RrRJ4vtjeYTgcIpFIwO/3y+IJzz+vVTwHoVAIrVYLsVgMgUAAh4eHkhVQLBZlQW1+fh6RSAT7+/toNBqYmZlBOp1Gs9mUfVFgc8Esl8vh7t270qMvnU6L+2w2mxXjKqavT/tefBBcOAEXD44FXEUFnKIoijIFpiWyYD0ejyOTycBxHNy/fx/37t3D8vIyisWiWGwzTYsGHwcHB1hfX8fCwgKuXLmCer2OW7duSfoWJ3OxWEwmQ5zchcNhSeEsl8snIlOpVArtdlvMCVikT/EAQOo5vF4vYrGYjA2AWKizJo6r6clkEq1WC+12W0wTut0ulpaW0Ov1RCh2Oh2pA2Pj4VAohNXVVWxsbAAA5ufnxQjgtddeQzQalRX4lZUVseHnJJv9njgJteuD3KmUdorlNKaJt7eDu+7LHWGx/7H3FCfhdK+kkGOtG//xuUnukkdHRyiXy7hz5w7+8i//EoFAQGqScrmc1IJFo1HE43EUCgVEIhGJqDJtsFqtSt2UHTlstVpimc+IFgUenQVtF1MKMYo01iX5fD5xDaQ4pVMn7e9ZO8jP2Ww2pafevXv3UKlUJHWNhiJMM+Q47AgbfztMj7Rr2NzCznZjnXQOJ53jadG2Sd8j9/fS3iexo45uEx8+xig/IzmsyWLbA1ss8xxwAejq1avyu+JvPBgMIp1Ow+/3o91u45VXXpEIGBdsGIFiXe1wOEQ2m5V0X2MMcrmcRAV5bCmSmY7JSDy/54yu+f1+ie4xu4CmJoeHh9JuZX9/X2rMAEijdb/fL+/XarWQTqcxOzsrWQ6saWSdHF0nOR7WsJVKJRF/XOAYDAZYXFxELpdDqVSS38jS0pL8Nnit5LGNRqNIp9OSwh4IBOSaT0fNTCYDn8+Hw8NDSbmkE+ZZcGEFnEbgFEVRlGlwgsRUJdZNFItF1Go1sZtm37V79+4hFAphcXFRJqiHh4dYXl7G9evXxR0vEAggnU6LHTatzznZ9Hg8UmPFug+6OrLxLifirMMCIH/t9KFWq4V8Pi+r2WwCzonWcDhEvV4XEchoiDEGmUwGxhhsbm6K1TjbKLD2yHGcEzU5fr8f169fR6vVkj5I0WgUKysrGA6HODg4QD6fh9/vl7RPigzWYTFaZNe7EU6qp1nyuyfhNg8SdO6Ii3s/09I23RFBCmK2mGCUxU6pZATEjlrxcfsccCzD4RDVahVHR0e4f/8+PJ5xY3aKAJ7/bDaLubk5RKNRJJNJRCIRxGIxpFIpEVsU7xwrzyNFKCNafI7jttP+7NdT3HFyTlHO2khGc46OjlCv1yUiRgHG/XERwk5v5DhYS2gLNgo7ijsKPC4ITBNsboE2KSXSfX+SuJv2XbLf04682RFMW+SzDcdoNML+/r60rmAUnAsybJdgj+3KlSuSssxFEDqf2hG8mZkZLC0tIRaLSY/KRCKBRqMhPd3m5uZkEYjCO5FISJQOgNSA8hxzXIlEQkycGMFiH0jW8PF4HB0dIRQKYXZ2FkdHR1hYWMDe3p6YIeVyOVlsYD1aPB6XOrhwOCztTJgumUgkRAjzO0kXYL/fj2w2i62tLXQ6Hbmusacje8PNzc2h1+vJdZ/HkiZRbARfLBYlUhcKhXD79m1pXZFIJLC9vY1arQbHcSTCfFZcOAEX9Hnh93pQaamAUxRFUSbDVXGaAuzu7kqUyO/3o1wuSw3Kd7/7XSQSCWn4zZXny5cv4/Lly3j++edx584dzM3NIZfLSQoiIzFMG6LzIwv9WYMRi8UkGkcbcU5YGNmgsGJKFuvtarWamCA0m03EYjGZWHKixYgeXezK5bKkabFGj/VsnDDRfY0T/Hg8Lr3pOImqVqtSN8IUJdbrPPnkk2i32/jmN78p7RmYJsfJ+7Q0SX4+u76Los+dDvdWI3H2/k97zYPq5PgYV/DdkTlOxFnHSAFkp87yMQo/YrtJ2pNiRmlKpRK+973vTezrRrHP3mJMm+N3yBYYjFrZFu0UVnaky46YVSqVE5Evvj+ft4+NHSnjNhSOtkCjYKOY4fnm9nbEEHjD5GaSaDstjXbauZx0zqftz40debPPG2tVmVbK48HatnA4LMfGjnjaUXqm2QYCAcRiMVkAicfj8v3qdDpYW1uTvoSxWAydTkcib3Nzc3AcB8ViEalUStKcr169itXVVZTLZezt7Ul6JBdk+LujoOK1zJhxf0gKLzbSpiMlALRaLRnj5uYm/H6/GIW0Wi0RQYeHhxiNRkin0yLSaNLCKFsoFBLxxffj8aPLKxeYDg4OJFrH+lvHcbC6ugoAkhbKWkM2HO/1evB6vVhYWJD609nZWSQSCSQSCbz66qtSR0dTqv39fbkOnWX6JHABBZwxBrGgTyNwiqIoylSi0Sjy+TxmZmbw2muv4fDwUCIZdHGrVqu4ceMG8vk8FhcXsbe3J+lH+Xwe+XweL7/8Mr773e9iZWVFmuweHh6KAUa1WkUqlUIoFDphZMDoHyduTNXhyrNtDMHaErrXcYzb29toNpuIRqNSQ8N9MlLByY/bXZE1cY899hhmZ2fFXY4mKHbtRz6fl8llrVZDKBSSCVg6ncaLL74okylOPGdnZ7G2tiYul5yoM22TE1cKhwfVurlt7+0UPHf07O3UzdmT9WnibZK5hXu/AE4IHC4GeDyeN4k5u67M/ZfbU6gTRqPc0TseBzrucUJtzBtNsYGTDbc5+bSjoXZKpf05bdfQSa0FKLL4+SkCGVGj2GVNoC3K3P/4OPcx6XzY53rSeZ90Xjj+0+omTxNx0ybq9vHleeFvjb9pnrNEIiHpiWwHwnOSTCZx6dIlEbe8DsXjcYkizc7OSvsQRujppujxeKQfI2tUd3d30el0kE6nAbwh8KPRKCKRiIijbrcraYCMyAaDQakj47Fjew3bmIVijtDg4+DgQBYQ+H1mKuft27eRz+fFPIltE1gLzM/NBQzWBfN6trCwICmM8Xgc5XIZOzs7CIfDIjqBNxYNwuEw1tfX32SewrTMQqGASqUiNciMCG5tbaHVamFxcVHcNDc3NyWF1OPxSJbEWXHhBBwAxIMzqKmAUxRFUaZQKBTQ6XRw48YNFItFXL58WaJRXq8Xf/7nf47hcIjHH39c0nW4OkyziZdffhm7u7vI5/NiYOL1eiVNiHUdoVBIIi20m2cE0Ov14uDgQFKrOMnkhJAT8mg0KqlUxhgcHByIyQod1Nj6gK5xNA2ggQJTGJlqScMNmmKw9oYRI04MOQFnBJCCpNFo4ODgALFYDFtbW+h2u0gkEtLHyev14pFHHkG32xVzAUZ92HLAjggRe7JuR13sfwDeJGjck+5Jk/XTaqQmCbXTVtknTfApNu2IElPCWM9jR+vsujn3P/uzcnu+H+9TRNiCjq9hGqf9+dw1eW6DE/fnsD8jJ9HclkKNYovfLVug2ceB9+0om52u5z6H7nTXSaJ6WiqlnWY57VzZn3XSuZ0U5XXXvNnRUPZkZC0XX8O0QDtNlOIoGAxK43heh4Dx9Ynpj1zEYcsTunwyUlcqlSRaTgdc9nS0BVepVML6+rq43bJ1AVO8bbdJplnW63WJGvJ3yqwCRr2Y7huNRnH37l0AkL6HAJBIJCSl0jZguXPnDjwej1j82y0MaGzCFO5er4d8Po/9/X0A49o1n8+HYrEo0UdgHFWORqMAcMIRlzW+TMXNZrNYXV1Fu93G3t6eCNdUKoXd3V2USiUsLS0hm82i2Wxie3tb0k15jbV/k2fBhRRwiZAflXbvrIehKIqinFP29vZkdfvatWtSiO84jjS/Zk+0YrEok6BMJoNAIIDd3V14vV6srKyIyUkkEhEXQEa7bIc21oXRbKDVamFvbw8AxKKeaUsAxCGT++AEjs59bLrd6/VQrVYRj8dl4mnXFdHmnhERflbbbIXumXShZINhUq1WEQqFpE6vVCqh2+1iZWVFIgqj0QjlchnNZhOZTOaEi106ncadO3ckAsG0OeDNYgF4I2XSdqq0jU+Yxuf1ek84LnLbaWJu0n2OYZq4czNN1Lnfw/7LujhiR7MowmzjC1vE2aLMLezs5yjsyCQDFT7OiactomxzEffnss1GbBHmTp90CzX3a21Rx4WKSWJ5kjhzp8Han3uaMHtQlG5aWqV7e3uMdqsAPs/fO48/zxuj4YPBAD6fD+12+8T5ZX1ho9HAysoKjBn3QKMJDc07jDHo9XqYm5sTYc60a45hdnYW9XodnU4HiURCTGGuX78uZjKbm5s4OjrClStXRMTR/dLj8Uh/w0gkgmKxeMLxFnjDhIgtQviZHceR1giJREJaDvD1NCXJ5/PiMskaWpq5hEIhNBoNuT5EIhG5TiUSCXGPpOnU7du3JQWYLrg02jHGyGKZ/Z1nS5iVlRV4vV4xWzJmnMZaLBaxtbWF+fl5pFKpE0ZBXAyjeHW3OfiguZACLh704aB+ds4wiqIoyvnm6OgI7XZbbLfZW6nX60kaYrvdRrVaBTBedc5kMuh0Otjb2zuRUsjG3UyvpAiiJXyxWDwRtXAcR/oQsQ6N0TGanwyH4z5unBDTNbLRaCAQCEjKUb/fP2FywEkFWwYwdarX652YZDJywjo9AFheXka73ZaULaZn3b59G9evX5fWBHTNjEaj6HQ6aLfbWFlZEbMCTnrsuqdgMIj5+XnMzMxgc3MTtVrthAjh57ejcXYUxBY8NINh9M4dnZkkzux98q9bNJ4WsZskGGwhwsftyKE7YugWrPZr+Lm5AEABYAs5W+Bxv7aRxmlRKTsl0o09Lvu2HenkX/szuyNsPDe2UYn7+Lj37U7VnHSe3OdmWjqk+3F+1rcSTbU57b0niWLbGIS/V5/Ph3Q6jVarJdFLmt7YIp0GN7xm8DrS7/dPuFOy+Xaz2ZRFoOFwKC0ugPEiSzAYRDKZRKfTkUWXeDwuv0djxk6hN2/eRCKRgOM4JxxEaf7BRRg6WtKYhDW6PC68BjAVMpfLoVwuA4DUzzHin8lkxBk1HA7j+vXr0lKCPerK5TI8Hg9SqZRc33gdYvR+fn4er7/+OqrVqmQasJ6PzrmMlvEayOMLAIuLi/B6vXjxxRclQlkoFLC3t4fNzU2srKwgnU6j0Whgc3MTwWAQjuOI2Q8XrGyX17Pgwgq42/v1B2+oKIqifCjxeDziWNbr9fD666+Lm9vs7KykTNLePZlMSr0FazsCgQDm5+eRy+WkHoIT2GQyKVEt1tcZY06kBIXDYYmOUZQAb0wYOTmgiQRXgJmKxxQlY4zUmYRCoRM9nZLJpDzPlel2uy2TTE446TIYCATg8/mkbi0ajWJ5eVlWnkulEmq1mtiih0IhBINBdLtdLC4uol6vix233+9HrVbD/v6+uMV1u11kMhmJJHJSzMnltGicLRhsx0RbJJwWGbNFl3u/015jb3Pa5H9aVMcWAJyw27b3fM5tSmILOvdxsIXbpCicO0Jn72NSpMoWWJMes6NpdlqinUr5oGPoPlaTHp8U9bPH6o7UTYug2ttMSqM87ZxzG74fxzXp2PL9KL5oxsHfXT6fF7OfSYsF/X5fLOzpLMk+kzTjcJxxP0Aa0xwdHQGACJpSqSTpj0zBzmazWFtbw8HBgfST3NjYQKVSkcUBwpTwwWAgPQfpDMl07FKphEgk8iZRxOgZG6ozO4EGSYwc2rVsNGOhEOLvP5VKwe/3Y29vD4PBQK4PzWYT2WxW7Po9Hg/m5+dxcHAgNWt+v19MTCiiuXDEVFA2BufxCYfDePHFF8VUan5+HrVaDcViEfl8HqlUCrFYDDs7O7KI1u/3xViFopSC8ay4sAJOTUwURVGUaVCgUMxkMhksLCzAGCO9hDip4ko6nSlp2R4KhZDJZNBut8Umu9vtSoH+zZs3xdo6GAzK6nu320UwGBS7fTuixCgLU4go3jweD5LJ5AkxwvTKQCCAZrN5YsLIXm+MhjBixzoXALI6zfQlCrxsNiuTeAo/OsVtbW3JY6w7oUEKx9JoNPDSSy/JsXOcsVnCzs7OCdFcr9fl89spdfax4GspJGzHv0nRHd62J6qTxNNpURn3c24h4d7GnuzbQoOT9mliwC1W7ajeNMFoR7rcESL3Z5gUbbOPh70/21XSftx+X/uzv53UxEnC2f47iUkCdNK+7fv2sXtQJHLSGN1RXH7/7WNkRzy52MEIOMnn82JX3+l0JHWUtbDNZhPxeFwyAFZXV5HNZhGNRlGtVsXl1nEcSdmmcyOdYFnHNjMzg3q9jmaziZ/8yZ/E/v4+KpUKZmZmsLq6Cq/Xi729PYnUD4dD2QcwTonc2tpCqVRCv9/H4uIiMpkMZmdnsbe3JwKPrRD4G2R9HU09CoWCmDfxfarVqlwnq9UqEokERqMRYrEYyuUyjo6O8OSTT2J9fV1q3hj1owELjx2FXqPREMOlYDCIg4MDtFotcY70+/3i7svP12g0xEk3FArh1VdfRb1el56L/X4f9+/fRzweRzabRTabxebmJgaDgVxbmXbO48YG64lEYup3+P1m8q/7ISce9KHeGWA4OrvcVEVRFOX8wrox1n+kUikA49RKpgyxYXGj0cDOzo4YB8RiMUlNbLVacJyxZf/W1hbS6TR6vR7+5E/+BOvr6zLBYfoOWwRwNReARMA4eXYcR+rZKpWKNOG2nQy5Kj8YDFCv15FIJJBMJsWExHag5CSDtSu2iLBd8uhyaRtjBINBDAYD7O/vo1aroVqtyuO26LJrYzweD77/+78fCwsL2NjYkL5yHHM4HEY+n0c8Hkc0Gj1R58cUTzq9cXzuZtOcaLtTCt2mAnx+knhzC8BJkapp4sEtBNz74bj5Gez3dwshbm/XlE3atz0eO73RFnLuNEj3Y+7j5U6TtN/HHW2yUyXd2z3ouLnHPyny597G3uek4/6g19r3J0Uf3c/Z54PRNfc29nMzMzPSoJrR8mw2Kws6bLzNRthsKzA3N4dOp4NIJILFxUUsLCxIDSzFgh2Za7VaEi2Kx+NSG8uxbWxsIJFIoNvtSnozI4A0/aDIDIfD6Pf7ch4PDw/RarXEECWRSMAYcyI9kb9vfvZMJiNiLhgMYmVlBbVaTTIE6vU6jo6OUKvVJNIWDocRCAQkksj+dWwpAQDpdFqMW5gCzjo21s7RoIWmKBTDmUwGoVAIrVZLFuD4mWdnZ3Hp0iVkMhncvXsXxWJRein2+33cvXsXs7OzmJubw9LSkohg9uo0xsi1n2KWi2m8hp8FFzYCBwC1dh/JsP+MR6MoiqKcN7a2tk7Y8nNVu1gsysosJ5lMVfR4PMjn81KPwUgSayKuXr2K2dlZbG9vS21bLpeTehWKOb6OsEEy3yMWi6HZbKJSqSCVSkl6Futd6MBWqVSk9xIAcZSzxYPtLNnpdKROLhaLyWSeaV/AeIJP04VIJILhcCgOlZwUNZtNcX+jKYAd/TDG4OrVq9jY2MDKyopMZJnqxVX6XC53IhIFQFLHKHzsSJwtIialONopYrxvm4dMq7Nyizzub5Lws8+TLWbc0UE7dc4+LgBOjJ/37f1MiljZ7zctUjdNNNmfx95uUjSRtYh8jVsgTrptv8+DRJn7vNm1gvbz9mu4jbtlhHu/0yKr7uNpYx8D98IA39steBltprsrUwrn5uZQqVQQj8el0TkAiVi3Wi1xtE0kElhZWUE+n5cFm729PYnY0cHWNlBiXW4kEpGU7RdffFFMR/b393Hr1i1xsCyXy0gkEgiHw2i1WiIgPZ6xtX+pVJIUx36/j3Q6DY/Hg3q9Lses0WjI2I0x4t7LxSHWvHE7tiWgAQvFn8/ngzEGrVYL7XYbhUIBxhhsb2/LtYbXh/n5eYn4+Xw+idiVy2W5hjabTektx0bgNIOx01sDgQDS6TTC4TDu37+Pvb09xONxzM/Pw+fz4e7du0gkEojH47h8+TJ2dnawu7srzr4ATtQ7O44jaewApF3IWfCOBZwx5hKA3wSQBzAC8FnHcf6JMebXAPw3AIrHm/6q4zh/+G4H+nZIhscC7qjVUwGnKIqivAmfzyeW96RUKiGXy2FhYUFSEjudjtR80YSDfY64Mp5KpZDP59Hr9XBwcCBpQvzHVXi/3y8Tu2g0Ko9zgsZI1OHhoRT2cxJBMxVOstrtNu7fv49CoSDOj1evXoUx48J/v9+PSqWCvb09qb/j5wBwQuRxssbJO8fPCS0nUZzYcyLKqB33x3SmS5cuwev1YnFxEZFIBOvr6xJZmJubk/YGwBv1PD6fT5ods50ChWSj0ZhYi8XJt7vuy7bbp2mMLTIJ92ELGzuN065LBN5sBGK/1hZYFG8UHLYompT26Y4uTUrhtNP43J/jtLRAd5SPY+H3DcCJRtr2ftyixy2W3MLILfD4Grf4nfQZJ43dHsdpz522T3s79/j5vXFHFe0orm2ww0gMo8Wzs7PioJjJZOT31Wg0JHJkpyCnUimUy2VEIhE8/fTTiMfjJyJVbDBNcViv1xGLxUSg1et1BINBqYddW1vD+vo6CoUC1tfX8bGPfQz5fB79fl8WcygCo9Go/Mb9fj+Ojo5O9OkLh8Nix886uHq9jkgkIv3r6IBJ0ZdOp3H//n1JNx8Oh6hUKtJOhFE0j8cjPdoajQbm5uYwMzMjZicLCwuo1Wqo1WrIZrMAINffXC6HarUqkUSKyWaziUgkIgtc9XpdaviAsasvawDj8Thef/11HB0dIRwOY35+HqFQCLdu3QIAxONx5PN5lMtlbG9vSyYBADFuorkLAEQiEan75eLeWfBuInADAP+D4zgvGGOiAL5jjPnS8XP/l+M4/+DdD++dkQ6P/4M6bPRwOXtWo1AURVHOK9lsVgreufKbSqUwNzeHcrn8JhMBTkgajQaMMdjf3xeREovFUKlUpLidUTTWcjD6Rmt/pg65LcC9Xi+q1SoqlQoymQwajYbYjBtjsLy8DGMM1tfXsbOzI66Rg8EAy8vL6Ha74ja5s7ODra0tFAoFzMzMYH9/H7Ozs0ilUiKehsOh1ALaNU6sl2PUjZGtbDYrq/ZMiRoOh1LLR3tvx3GkHxPTjTiJj8fj2NnZEfHM17OBr8fjkVRNpoFSBLnTEG2BQuzaLrt+ZlK0xxZatjizI4KT9s/3dgs/3uZ7246FFHh2pGia8OJ+7H3bETH7eXv7SSKH783nWctDwZBMJiVC6hbA3N8kMxD7cfd7uo+Z/VmnjXGaqLU/27Qo3qTjMC0aaR+TSeeEkWje5jmemZkRw4pAIIBwOCw1UsFgEOVyGfF4XBZ8uB2Fnd/vx+HhIRKJBB5//HFks1k89thjePHFF+E4Y6dax3Gk9uvg4EDahDA6x9q1wWCA9fV1fO9730Mmk0E4HEaj0cCNGzeQSqVwdHSEbDYrAooLQfz97O/vi0AZDAZIJpMIh8M4OjoSg5FisSgReLYvGI1GEp1bXFyUtGoag6ytrcHjGfd183q90muSgnE4HKJQKEj2AE1Aut0uAoEAYrEYWq2WjI31xTSU4vWiXC4jGo0inU4jFouhVqvJ5+N1gmmkoVAId+7ckYUyplreunUL7XYbS0tLsgi2t7f3pug+r+msP6TBisfjkVYwZ8U7FnCO4+wC2D2+XTfGvAZg4b0a2LshE6GAO7vQpqIoinJ+oYhi+lwul5MVcaZF2qlMtN7v9XrY2NhAKpXC/Py89CdiDVswGJSJHoUQJ8g0POh0OhKRMsZIPVm5XEa9XpcIFY0S/H6/TBh3d3fF8ZGpR9FoVFbvo9EoDg8P0el0JNpFRzqmQhpjxLDEXkHmfU4U7927Jw23Kb74vltbW7hy5Yp8Hk54uaIfCoVk0pNOp2WMjO6x3QFXvO30qmKxCGPGZjL2JJvRMQAnJt5uKMA4Jk5c7WiaHT2zBcY0N0Q7jdEWb8BJQxG+xm1sYqfg2fudJFzsbSd9Treom5RO6f6c3Be/84zS8nvNz+WewDIVzXGmN9x2M+kzuo/PpPuT9vtWxJg7IjcpAsdFAIpX1olO2hcjlfb5DofDkp7MHmus+bIjaFzgoWkGa9fokvjEE09IinalUhGzIY6d6dJczACAg4MDuabUajWUy2VsbGwgn89LfStTH21RQsHl8Yxt+ev1OkqlEoDx9a9Wq4l4Y1sPCpZgMCjRLGYkMI2Si1xsG+D3+8Wdlw69ACTaz1TSpaUl+QyNRgORSATdbhd7e3v42Mc+hjt37qBSqWA0GuHKlSvo9/uoVqtiNMVsBtsBl5E7tlfg8wsLC/D5fNIsnG0dQqEQ7t+/Lz3pcrkcms0mdnd35XfL3pjMZuDiRjweF9HO6NtD30bAGLMC4GkA3wTwHIBfMsb8FwC+jXGU7mjCa34BwC8Ab5zU94psVAWcoiiKMp1f/MVffGtNoc4Z165d+8De6/LlyxMf/9jHPvaBjUFRFEV5M+/ahdIYEwHwOwB+2XGcGoB/DuAKgI9iHKH7h5Ne5zjOZx3HecZxnGeY8/pekQr74TFAsa4CTlEURVEURVGUi8O7EnDGGB/G4u0LjuP8LgA4jrPvOM7QcZwRgH8B4Nl3P8y3h9djkAr7NQKnKIqiKIqiKMqF4h0LODNOMv5XAF5zHOcfWY/PW5v9DICX3/nw3jmZSADF+tnlpiqKoiiKoiiKorzXvJsauOcA/ByAm8aYF48f+1UAP2uM+SgAB8AGgL/1Lt7jHZONBlDUCJyiKIqiKIqiKBeId+NC+Q0Ak4rAP9Ceb9PIRAJ4vdg862EoiqIoiqIoiqK8Z7xrE5PzSiYyroFz9whRFEVRFEVRFEV5WLmwAi4Xm0V3MEKl1T/roSiKoiiKoiiKorwnXFgB92g+CgB4bbd2xiNRFEVRFEVRFEV5b7iwAu76fAwA8KoKOEVRFEVRFEVRLggXVsClIwHkY7N4ZUcFnKIoiqIoiqIoF4MLK+AA4HohhldVwCmKoiiKoiiKckG40ALuiUIMa8UGOv3hWQ9FURRFURRFURTlXXOhBdz1+RiGIwe39+tnPRRFURRFURRFUZR3zYUWcE8U4gCgdXCKoiiKoiiKolwILrSAW0wGEQ3MaB2coiiKoiiKoigXggst4Dweg8cLMbyyUz3roSiKoiiKoiiKorxrLrSAA4CnlxK4uV1FrdM/66EoiqIoiqIoiqK8Ky68gPvx63n0hw6+9r2Dsx6KoiiKoiiKoijKu+LCC7inLyUwFw3g37+8d9ZDURRFURRFURRFeVdceAHn8Rj8+BM5/IdbRbR72g9OURRFURRFUZSHlwsv4ADgU0/Mo90f4k/vFM96KIqiKIqiKIqiKO+YD4WA+yuXU4gHffjXf3EP3YFG4RRFURRFURRFeTj5UAg4n9eDv/tjj+Aba4f43//g1bMejqIoiqIoiqIoyjviQyHgAOBvPreKn3l6Ab//3V30h6OzHo6iKIqiKIqiKMrb5kMj4ADgJz8yj2q7j7+4WzrroSiKoiiKoiiKorxtPlQC7uOPZBCdncH/8e9eQ7HePevhKIqiKIqiKIqivC0+VAJu1ufF//03PoZ75SZ+5XdvnvVwFEVRFEVRFEVR3hYfKgEHAM9dzeCXf+wavvzaPr786v5ZD0dRFEVRFEVRFOUt86ETcADwXz63ikfmIvi1339Fm3sriqIoiqIoivLQ8KEUcP4ZD/63Tz+JraM2/tnX1s56OIqiKIqiKIqiKG+JD6WAA4AfvJLGzzy9gP/nT+/iD2/uwnGcsx6SoiiKoiiKoijKqXxoBRwA/M9/7XE8lo/hv/vCC/jUP/46/vJ1bS+gKIqiKIqiKMr55UMt4NKRAH7nv/0h/P3/7Ck0ewN85rN/if/6c8+j0R2c9dAURVEURVEURVHexIdawAHjeri//swl/PHf/WH8vU89iq/dKuKn/unX8f89fx+jkaZVKoqiKIqiKIpyfjDnofbrmWeecb797W+f9TAAAH9yu4h/+Me38NJWFbM+Dz6yEMcnH53DYjKITz46h3jQd9ZDVBRFUSZgjPmO4zjPnPU4FEVRFOX9ZOasB3De+MS1LH74kQz+3c1dfOfeEb75ehn/5x/dAgAEZjxYSYfxI4/N4YlCDD/+RA6BGe8Zj1hRFEVRFEVRlA8LKuAmYIzBTz1VwE89VQAAHDV72Cg18fvf3cVruzV89k/vYuQAIb8Xl7NhXMlG5F8uFsCVbASJkA/GmDP+JIqiKIqiKIqiXCRUwL0FkmE/kmE/nl5KAgD6wxH+/G4JX/veAe4WG/j2xhH+7Ys7J17j93oQD/mQDPmQCPqRjvixkAhiMRlEKhJA0OdF0OdFdHYG8aAP0dkZRGd98M986MsSFUVRFEVRFEWZggq4d4DP68EnrmXxiWtZeazVG2DjsIX9egdr+w2Umj1U2z0cNfuotHu4vV/H124doNMfnbpv/4wHsWMxFwnMHAu7GUQCPkQCXkSs2+HAzPiffwahgHf81+9FyD9+LjDj0SigoiiKoiiKolwgVMC9R4T8M7heiOE6YviRR+cmbuM4DkrNHiqtPjr9IVq9IWrtPqrtPhrdAeqdPuqdAerdwfjv8f3Dwyaa3SHqnT6avSGGb9Ed02NwUtwFvAj5ZxD2exEKHP/1zyDsejzk9yIw48Wsz4NZnxez1u2AzyPP+b0qEBVFURRFURTlg0QF3AeIMQaZSACZSOAd78NxHHQHI9Q7AzS7AzR7A7R6YzHY6g7Q7A3R6g3Q7Lr+yvMDlJo93C+30OoN0eyOXz94By0TjAFmZ7wI+sfpoLM+D4J+Cr7x/YAlAP0z43+BGS8CMx4Eju/7vR74vB7MeM34r8fAN+OBz8PHDGaOb/u9HsxwG77G44FvZryNz2tUVCqKoiiKoigXlvdNwBljPgXgnwDwAviXjuP8+vv1Xh8mjDHH4siLbPSdC0E3vcHohNDr9EfoDIbo9kfo9IfoDIbjx/pDdPpDdAfj2+3e+Ll2b3QcVRyge7yvcnOE7vHruoPxa7qDEXqD09NI3y1ejxGB5/MazHg98HnGfyn4Zo4fnznedsZr4PWMt/Me35/xeE48NyOPH2/rNfJe3JfX/mdc948f8xy/hn/dj9mvm/SYe1+8bQzgMQYeMz4GKmQVRVEURVEuHu+LgDPGeAH8MwB/FcAWgOeNMb/nOM6r78f7Ke+ecXTMj0To/X8vx3HQG46FHAVdfzhCf+hgMBphMBw/Pxg6GAxH6I+O/w4d9IcjDEbH2x5vL4+79vHm7U/uazh6Y9tOf4TBaIjh8f3BaPx8fzg63m78Oj7O9z7vvd5tMecxGIu+Y7Hn9fD2G6Lvzc+dfI3nWEh6zHgx4cRtY+DxQPbpNdZtD8XlWHR6jHXfQPZtjvdlgBPviRP3j7cxgIHr9cDx53nwtnC9x+T3Hr+Oz50c65u3Bd44Htx20ufhOO33nvT6aeOc+F4yzge8F/fnwQOOM18LXQxQFEVRlHPE+xWBexbAmuM4rwOAMea3AHwagAo4BcaY4zRKL6JnPZh3yWhkib3RCMOhg6Ezvn/in+Oc2Nb92Oj4Pm/bj03al31/5DgYORj/HVm3HRzfn/a8M3k76/bQceA4DkYjnNz+eAyOdXsseI8/lzMW6uPn7NvWa6z9Og7ggK8bb+/gjedG4w3G963HT77OOfeC+mHmVLGIYwHoEo/2a7xcLLDEPLf7uR9Yxs//0MpZf0RFURRFeSh4vwTcAoBN6/4WgL9ib2CM+QUAvwAAS0tL79MwFOX9xeMx8I/DIQhCm7qfBxxL9D1Q7E3c7s3icdrr3862sATqqe91/BlGIzxwXDhx/43P7rjfy31cnMnCWfY5etAxGb/OcexjcXJM9rb2ogDF/MgaQyrs/wC/IYqiKIrycPN+CbhJ+TYn1sYdx/ksgM8CwDPPPKPr5oqivCdIuuDEy5CiKIqiKMrDzfvVNXoLwCXr/iKAnSnbKoqiKIqiKIqiKG+B90vAPQ/gEWPMqjHGD+AzAH7vfXovRVEURVEURVGUDwXvSwql4zgDY8wvAfgjjNsI/IbjOK+8H++lKIqiKIqiKIryYeF96wPnOM4fAvjD92v/iqIoiqIoiqIoHzberxRKRVEURVEURVEU5T1GBZyiKIqiKIqiKMpDggo4RVEURVEURVGUhwQVcIqiKIqiKIqiKA8JKuAURVEURVEURVEeElTAKYqiKIqiKIqiPCSogFMURVEURVEURXlIUAGnKIqiKIqiKIrykKACTlEURVEURVEU5SFBBZyiKIqiKIqiKMpDggo4RVEURVEURVGUhwQVcIqiKIqiKIqiKA8JxnGcsx4DjDFFAPfeo91lABy+R/v6IHkYx/0wjhnQcX/Q6Lg/WD7M4152HCf7XgxGURRFUc4r50LAvZcYY77tOM4zZz2Ot8vDOO6HccyAjvuDRsf9waLjVhRFUZSLjaZQKoqiKIqiKIqiPCSogFMURVEURVEURXlIuIgC7rNnPYB3yMM47odxzICO+4NGx/3BouNWFEVRlAvMhauBUxRFURRFURRFuahcxAicoiiKoiiKoijKhUQFnKIoiqIoiqIoykPChRFwxphPGWNuGWPWjDH/01mP5zSMMRvGmJvGmBeNMd8+fixljPmSMebO8d/kORjnbxhjDowxL1uPTR2nMeZXjo//LWPMT5zNqKeO+9eMMdvHx/xFY8xPWs+d+biNMZeMMV8zxrxmjHnFGPN3jh8/18f7lHGf9+M9a4z5ljHmu8fj/l+PHz/vx3vauM/18bbG4jXG3DDG/MHx/XN9vBVFURTlPHIhauCMMV4AtwH8VQBbAJ4H8LOO47x6pgObgjFmA8AzjuMcWo/9fQBlx3F+/ViAJh3H+R/PaozHY/phAA0Av+k4zpOnjdMYcx3AvwHwLIACgC8DuOY4zvCcjPvXADQcx/kHrm3PxbiNMfMA5h3HecEYEwXwHQD/CYC/iXN8vE8Z91/H+T7eBkDYcZyGMcYH4BsA/g6A/xTn+3hPG/encI6PtzWe/x7AMwBijuP81MNwPVEURVGU88ZFicA9C2DNcZzXHcfpAfgtAJ8+4zG9XT4N4HPHtz+H8ST4THEc508BlF0PTxvnpwH8luM4Xcdx1gGsYXxePnCmjHsa52LcjuPsOo7zwvHtOoDXACzgnB/vU8Y9jfMybsdxnMbxXd/xPwfn/3hPG/c0zsW4AcAYswjgrwH4l67xndvjrSiKoijnkYsi4BYAbFr3t3D6JPKscQD8sTHmO8aYXzh+LOc4zi4wnhQDmDuz0Z3OtHE+DOfgl4wxLx2nWDJV69yN2xizAuBpAN/EQ3S8XeMGzvnxPk7nexHAAYAvOY7zUBzvKeMGzvnxBvCPAfw9ACPrsXN/vBVFURTlvHFRBJyZ8Nh5zg19znGc7wfwHwH428cpfw875/0c/HMAVwB8FMAugH94/Pi5GrcxJgLgdwD8suM4tdM2nfDYeRr3uT/ejuMMHcf5KIBFAM8aY548ZfPzPu5zfbyNMT8F4MBxnO+81ZdMeOw8XU8URVEU5cy4KAJuC8Al6/4igJ0zGssDcRxn5/jvAYAvYpwatH9cT8S6ooOzG+GpTBvnuT4HjuPsH098RwD+Bd5Ixzo34z6uafodAF9wHOd3jx8+98d70rgfhuNNHMepAPgPGNeRnfvjTexxPwTH+zkA//Fx/e9vAfhRY8zn8RAdb0VRFEU5L1wUAfc8gEeMMavGGD+AzwD4vTMe00SMMeFjswcYY8IAfhzAyxiP9+ePN/t5AP/2bEb4QKaN8/cAfMYYEzDGrAJ4BMC3zmB8E+Ek8ZifwfiYA+dk3MfmFP8KwGuO4/wj66lzfbynjfshON5ZY0zi+HYQwI8B+B7O//GeOO7zfrwdx/kVx3EWHcdZwfj6/FXHcf4GzvnxVhRFUZTzyMxZD+C9wHGcgTHmlwD8EQAvgN9wHOeVMx7WNHIAvjie92IGwP/rOM6/N8Y8D+C3jTH/FYD7AP7zMxwjAMAY828AfBJAxhizBeB/AfDrmDBOx3FeMcb8NoBXAQwA/O0zdLqbNO5PGmM+inEa1gaAvwWcq3E/B+DnANw8rm8CgF/F+T/e08b9s+f8eM8D+Nyxg60HwG87jvMHxpi/wPk+3tPG/a/P+fGexnn/fiuKoijKueNCtBFQFEVRFEVRFEX5MHBRUigVRVEURVEURVEuPCrgFEVRFEVRFEVRHhJUwCmKoiiKoiiKojwkqIBTFEVRFEVRFEV5SFABpyiKoiiKoiiK8pCgAk5RFEVRFEVRFOUhQQWcoiiKoiiKoijKQ8L/DwuvMXjveUntAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAGoCAYAAAAHGAe8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eZhlyX0WCL9x933Jraqylq6uXkqt7pa6rZaQWrssCYMtGTxgbDx4gcFjNoM/zGCDAYMxn81g4DNgwPPZY3vwijFgkGUDRmNZo7UlIcndUqv36lqycr37knnvjfnj3DfyvVHnZmavpU7H+zz5VOY958SJExHn1u+N97cYay0CAgICAgICAgICAgICvvKRuNkdCAgICAgICAgICAgICDgaAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIUje7AwCwtLRkz58/f7O7ERAQEBDwCsanP/3pTWvt8s3uR0BAQEBAwEuJrwgCd/78eTz00EM3uxsBAQEBAa9gGGOeudl9CAgICAgIeKkRXCgDAgICAgICAgICAgJeIQgELiAgICAgICAgICAg4BWCQOACAgICAgICAgICAgJeIQgELiAgICAgICAgICAg4BWCQOACAgICAgICAgICAgJeIQgELiAgICAgICAgICAg4BWCQOACAgICAgICAgICAgJeIQgELiAgICAgICAgICAg4BWCQOACAgICAgICAgICAgJeIQgELiAgICAgICAgICAg4BWCQOACAgICAgICAgICAgJeITiUwBljzhpjPmSM+aIx5mFjzF+efr5gjPmvxpjHpv/W5ZrvN8Y8box51BjzB1/KBwgICAgICAgICAgICPj9gqMocCMAf9VaexeANwL4C8aYVwP4PgC/ba29A8BvT//G9Ng3AbgbwNcA+AljTPKl6HxAQEBAQEBAQEBAQMDvJxxK4Ky116y1n5n+3gbwRQCnAXw9gJ+dnvazAP7I9PevB/BL1tqhtfYpAI8DeMOL3O+AgICAgICAgICAgIDfd3hOMXDGmPMA7gfwCQAnrLXXgIjkAViZnnYawLNy2eXpZ35b32mMecgY89DGxsbz6HpAQEBAQEBAQEBAQMDvLxyZwBljSgD+HYC/Yq1tHXRqzGf2hg+s/Ulr7QPW2geWl5eP2o25aA328C8+9Di+eO2grgUEBAQEBAQEBAQEBLxycSQCZ4xJIyJvP2+t/bXpx9eNMaemx08BWJ9+fhnAWbn8DICrL05356PV38P//luP4guXmy/1rQICAgICAgICAgICAm4KjpKF0gD4KQBftNb+Yzn06wC+bfr7twH4j/L5NxljssaYWwHcAeCTL16X5/YTAGBvFPsCAgICAgICAgICAgKOBVJHOOfNAP4UgC8YY/7H9LO/AeBHAPyKMebPALgE4I8DgLX2YWPMrwB4BFEGy79grR2/2B33Qb9NG/hbQEBAQEBAQEBAQMAxxaEEzlr7EcTHtQHAV8+55ocB/PAL6NdzxlSAC/pbQEBAQEBAQEBAQMCxxXPKQvmVDDPlmEGBCwgICAgICAgICAg4rjg+BM4pcIHBBQQEBAQEBAQEBAQcTxwfAjf9NyhwAQEBAQEBAQEBAQHHFceGwCHEwAUEBAQEBAQEBAQEHHMcGwJnHIMLFC4gICAgICAgICAg4Hji+BC4oMAFBAQEBAQEBAQEBBxzHB8CN/03CHABAQEBAQEBAQEBAccVx4fAGZYRCAwuICAgICAgICAgIOB44vgQuOm/gb4FBAQEBAQEBAQEBBxXHB8CF3KYBAQEBAQEBAQEBAQccxwfAjfV4AJ/CwgICAgICAgICAg4rjg2BG6/ikCgcAEBAQEBAQEBAQEBxxPHhsDRhTIgICAgICAgICAgIOC44vgQuOm/QYALCAgICAgICAgICDiuOD4EjmUEQhRcQEBAQEBAQEBAQMAxxfEhcNN/gwIXEBAQEBAQEBAQEHBccXwIHJOY3NxuBAQEBAQEBAQEBAQEvGQ4PgSOZQQCgwsICAgICAgICAgIOKY4PgTOKXCBwQUEBAQEBAQEBAQEHE8cGwJHBAUuICAgICAgICAgIOC44tgQuFAHLiAgICAgICAgICDguOP4EDgXAxckuICAgICAgICAgICA44njQ+AYAxf4W0BAQEBAQEBAQEDAMcXxIXDTfwN/CwgICAgICAgICAg4rjg+BM6EMgIBAQEBAQEBAQEBAccbx4fATf8NZQQCAgICAgICAgICAo4rjg+BC1koAwICAgICvmJgjPlXxpi/dbP7EQdjzFuNMY/e7H4EBAQEPB8cGwJHBBfKgICAgIDnAmPMtxljrDHmf/E+/x5jzJoxpmmM+WljTFaOLRhj/r0xpmuMecYY8ydf/p5/ZcNa+13W2h+62f0AgOn83s6/rbW/a629+CLf453GmA9N18vTc875y8aYp6br5ovGmDvl2LIx5heMMQ1jzI4x5ucPuNd9xpjfnd7rsjHmb3v9+MK0na3pOj0tx/+aMWbTGPN7xph75PM3G2P+w3N85v/bGDMwxnSmbf6aMebUc2njpYQx5tuNMeNp//Rn9Wb3zYcxJmOM+VVjzNPT9fqOQ86f+x10WFvGmA9647FrjPmCHJ+7vqbH/+T0nl1jzH8wxizIsYe9tkfGmP80PbZkjPl/puuyYYz5mDHmzXLtPcaY35qupViL3hjzTdN3p2uMecIY89YjPvMPGmP2vL5dOGiM58EY80ZjzH81xmwbYzaMMf9W170xpmaM+VljzPr05wflWMoY80vT5/+gMaYsx/6mMeZ7jtKHY0PgDGPgbnI/AgICAgJeGoxGoxe9TWNMHcD3A3jY+/wPAvg+AF8N4DyACwD+rpzyLwDsAjgB4FsA/EtjzN0vegdfJhhjUje7D88XX0F97wL4aQB/Le6giTYI/gyArwVQAvB1ADbllF8DsAbgFgArAP7RAff6BQAfBrAA4O0A/pwx5v3TY48A+IPW2hqAVQCPAfiX0z6cmvbhAoB/BeBHpp+nAPwYgL9y9Md1+IvW2hKA26fPdVC/bwY+Zq0teT9X/ZPi1tFzXVsvwlr8CID/GdE6OAyHfQfNbcta+4d0PAB8FMC/lVPmrq/pPf41gD81vXcPwE9I23dLu2UAl6TtDoA/DWAZQB3AjwL4TzJuewB+BdEavQHGmPdMr/mOadtvA/DkUZ55il/21sGTc847DHUAP4no/4ZbALQB/J9y/J8AKEyPvwHAnzLGfMf02DcgoitLAFoA/tfps90K4H0A/tlROnBsCJxDkOACAgICjg3Onz+PH/3RH8VrXvMaFIvFl4LE/X8B/DhmDWkA+DYAP2WtfdhauwPghwB8OwAYY4oA/icAf8ta27HWfgTAryMyaA6FMSZvjPmx6Q520xjzEWNMfnrs/dMd7IaJ1I275LqnTaSefH66+/xTxpgT013ctjHmv00JKYwx56e70N9pjLlqjLlmjPmr0tYPTner/40xpgXg240x1Wmb14wxV4wxf98Yk5yef7sx5nem/d00xvzy9HNjjPkn013m5rRv90yP/Ywx5u/LPf+sMebx6a71rxtRQaZ9/S5jzGMmUp/+hTHxwRFz+v4GE+3mN6b9/+fGmMz0/A9PL/3cdNf9Txhj3mGMuSxt3jUd78Z0/N8fd++DYK39pLX2/8KsQcn2EwD+DoDvsdY+YiM8Ya3dnh5/L4CzAP6atbZprd2z1n72gNudB/Dz1tqxtfYJRIbr3dN+XPcIyhgRuQKAcwA+a61tAfhviIgcEBG3X7fWPv1cn5uw1jYA/AcA98lzv8rsKxWPGmO+UY69kPfge6drrWmM+WVjTO759Hna1l83xnweQHe6zq0x5s8YYy4B+O/GmIQx5gem/Vw3xvycMaY6vf68f/7z6QcAWGt3rbX/dPp9Mj6k3wd+Bz3Hts4DeCuA/0s+Po856wsRWfxP1toPW2s7AP4WgG8woiQJ3oZoM+LfTfs1sNY+aq2dIEpfMUZEhhamxx+11v4UvA01wd8F8PestR+31k6stVestVee6zPPGYe5a9WHtfaD1tp/a61tWWt7AP45gDfLKe8D8A+ttb3pO/VTiIgrANwK4P+21o4AfAj77+CPA/je6eeH4lgROGOCAhcQEBBw3PCLv/iL+MAHPoBGo4FU6sYN7te85jWo1WoAcN/U4NOfn7jhgimMMW8A8AAiJcLH3QA+J39/DsAJY8wigDsBjK21X/aOH1WB+0cAXgfgQUSGy/8GYGIid7pfRGRMLwP4DUS70xm59n8C8J5pH94H4IMA/gai3dwEgO/27vVOAHcAeC+A7zPGvFuOfT2AXwVQA/DzAH4WwAiRsX//9Bq6lf4QgP+CyNg6g/1d4vciMtLunLbzJwBs+Q9sjHkXIrL8jQBOAXgGwC95p30dgNcDeO30vD/ot3NA38cAvmc6Dm9CpJz+eQCw1r5tes1rp7vuv+z1LQ3gP02fbwXAXwLw88aYi9Pj3xezrtzPAX1UnJn+3GOMedZEbpR/d0rsAOCNAB4F8LMmci/7lDHm7Qe0908BfKsxJj3t55sQETI+07lp3/oAvhfAP5weehzAvcaYGoB3A3jYGHMWwDfhBSpn03fjG6b3IMn4r4jUnBUA3wzgJ8y+SvRC3oNvBPA1iIzh12C6ufI88c2IVNEaovUPRKrTXYjW4LdPf96JyNguITLYFXr+DDgXB/w8H/frF/odpPhWAL9rrX1KPvunmL++Zr4bpwRvd9onH98G4FettV39cEqYB4hI5//fWrt+WCdNtJn0AIBlE20EXZ5u1OSP+JwA8L4pQXvYGPPnpO3D1upheBtuJJ3G+53uyr8H4F3T9fxORO/gHwWwOSWfR8LxInAIAlxAQEDAccN3f/d34+zZs8jn4/+f/vznP49GowEA/8NaW/N+/nzcNVNj4CcA/KXpbrCPEoCm/M3fyzHHeDxuB9q/bwLRTuxfnu4ej621H7XWDhGRnw9Ya/+rtXYPkYGbR2TgEv9sqrBcAfC7AD5hrf3s9Pp/j4h4Kf6utbZrrf0CIhefb5ZjH7PW/ofp81cA/CEAf2V6/joiN6Bvmp67h8hVaHW6i/4R+bwM4FUAjLX2i9baazGP/i0Aftpa+5lpX78fwJumu//Ej1hrG9baS4h2pu87YChd3621fWvtp6e78qPpjve/RmRUHwVvRDSnPzLdxf/vAP4zpmNlrf2RmHXlfo54jzPTf98L4F5Ehts3Y99V7Mz02IcAnETkzvgfjTFLc9r7zwD+GCKC9iVEavGneNBae2natyUAPzA9B9baLQA/jEgp+lpE5O7/B+CvA/ijJlJZ/6Mx5gyOjh83xjQRqdhLiAgwEBHyp621/+d0Xj6DSIn5Yy/Ce/Dj1tqrUwXzP+HgtfJGjzA94fffWvustbYvn/3g9D3oI1q7/9ha++RUcfp+AN9kZt0l9fwZcC4O+PmFA/o+D8/7OygG3wrgZ7zPDlpfR7q3MaYwbcNvG9ba1yD6zvmTiNS9o+AEgPS0zbcimvP7Ea3vo+BXEJHsZQB/FsDfNsbw+3DuWj2sUWPMawD8bcy6Tv8mog2zsolib/80IpdKINqQeArAQ4jG7ZcQqfN/3Rjzw8aYDxtjfsLbsLgBx4vAGRPKCAQEBAQcM5w9e/alaPbPA/i8tfZjc453EBkYBH9vxxzj8fYR7rsEIAfANyKBKF7pGf4xJVbPAjgt51yX3/sxf5e8Np+V35+Z3iPu2C2IjKNroiz9a0S70UCkjhgAn5zuXv/paR//OyI14l8AuG6M+UljjD82cc/WQaTU6bNp3Eov5lnmPReMMXcaY/6ziZLOtAD8A0RjfRSsAnjWI/LPeH17oaBh/w+nJPVpROP7h+X409ban7KR++QvIXrGN/sNmShhxG8C+HuI1tJZAH/QGHPDZsWU4PwsIjKYmn72i9bar7LW/iFEqsAQwGcREaX3IYpXei5q3Hdba6uIlDAqtEC0pv6Ap1Z+CyKC+kLfg+eyVj7uEabbvOPPxlyjn830Z/p7ChGhOKiNlxIv5DvIwRjzFkTz8avy2WHr66j3/gYA2wB+J+7e042gX0REdF57hO7yHfpn1tpr1tpNAP8Y++/QgbCR6/JVbhYg2rggQZu7VqcKqkt8om1OydkHEW1E/K4c+u5pfx8D8B8RKcqXp/2w1trvs9a+xlr7nYhirf8VInXxAUQbTxnsu1zG4ngROAQFLiAgIOC4wRxSJ+buu+9GqVQCgPvNjdnm4twjgcjF7o9ODf41RLv7P2aMoWvUw4hc+YjXArg+VTC+DCBljLnDOz4vbkOxich1yDciAeAqIkMCQBRfhsh4unKEdudB2e+56T0I/R/zWUSG/JIYuhVrLeOq1qy1f9Zau4oo6P4npsYLrLU/bq19HSLXqjsRn8TDf7YigMUX8Gz+//b/EpFScIe1toLIrfSoBYauAjgr7oxANFZXpn39GzHrKtagOwCPInIzm2elfP6AYz4uIHKf+7mpWnAZ0S7+PEM2hYiIzxjdU9ezfwDgryJys33WRrFxn0JExp4Tpirv3wfA+MVnAfyOR55K1to/h5f/PTiw64d8NtMfRGtjhNnNk7lz5xOAmJ9veR59fiHfQYpvA/Br0w0V4rD1NfPdaKJMjtlpn/y2f87aQy3zNPbjwObCRrHIl/HiRUtZ7H9HzF2rUwVVE74AAIwxtyByK/0hG8W+al+3rbXfYq09Of0OTQD4pN8BE8ULP4goIcq9AD49Ha9D38HjReBCDFxAQEDA7zs8/PDD6HQ6QJScwc82911zLvt2RO40901/HkIUIP83p8d/DsCfMca82kSJQX4AU1cgG8Vz/BqAv2eMKZooDfbXQ5IAmDlpwKdqwk8D+MfGmFVjTNIY8yYTlSj4FQBfa4z5ahPFZf1VRKTqo89vZAAAf8sYU5jGcnwHgF+OO8lGbo//BRGJrZgoccNtZhqHZYz54+JWt4Pov9uxMeb1xpg/MO1vF5FRHpdA4BcAfIeJ0pNnERGHT9gXkDTDQxlRRreOMeZVAP6cd/w65huJn0DU9//NRDE/70CkRP0SAFhr/0HMuooz6BImSqaRjv40ObpB2SjRwS9P71GejuWfReSqBkTur3UTlbRIGmP+GCLF6f+J6e+Xp+3/yek9TyJyO/zctB/fYIy5OD22jEil+OxUjVP8AICfsVHCk0sALhpjTiBy73xy2haTdJyfM3Y+fhYRWXz/9NnuNMb8qem4pqfr5a6b8B68EPwigO8xxtxqjCkhWru/bI+YbMInADE/rlyEMSZr9hOyZKZr6IaNiCN+Bx3Y1pTA/3Hc6OJ44PpCFHP6PhPVUiwiUup+zVrrFLjp+n4novUA+fyNxpi3mCjlf94Y89cRKZmfmB430z4zAVHOSPkWRG7gf8kYszL9Xv4r2H+HDnxmY8zXG2Pq03u8AZFK9h+n585dq/7YT9s6jcgN+V9Ya2/YJJx+dy5O1/UfAvCdiDY39ByDyHPhL0/fh6cAvGX6nfF2xCRDUhwvAgcTFLiAgICAgEMxdWNb4w8idaRlrW1Oj/8mosQPH0LkMvUMojgF4s8jistZR2Tg/Tlr7cOAM146AL6AeHzv9NinELkY/SiAhLX2UUQpsP8ZIoXifQDeZ63dfQGP+juIkkr8NoB/ZK39Lwec+62IDKdHEJG0X0WUcASIkot8wkSK068jMjqeQqTq/B/T859B5BZ5g/udtfa3EWWr+3cAriFSXr7JP+8F4HsRxdO0p/3xieoPIkoQ0jBedrnp+L4fUQzgJqLYyG+11n7pOfbhbYjcpn4DkUrTR0SKib+IaF1cBfAxRKT2p6d92J724XsRxcV8H4Cvn7qJwURF0f/V9NwWIve070E07v8DUWKEH57e5zQiF7g2onU2AfBHtaMmSkzxXkyT0UwJ/I8gUle+G1GcFxApX8/giOrXdCx/HFF2xPb0Ht80feY1RGudBvnL9R68ydyoer3+OVz/04iI0YcRGdkD7Mf5vdh4FNG6OQ3gt6a/3wI4JfiDcu7c76DD2prijyBaax/SDhy2vqb3+C5ERG4d0eaJ7777pxDFqfousllEpGUL0Zr6wwC+1u5nTb1l2k8+R3/6HMQPIVovXwbwRUSuvz8sxw965m9C9F3YRrRB96PW2p+dPtNha9XH/4JoQ+jvmHg1/nWI1nYbUfKmb/HmBog21H7PWvvQ9O9fm957A5F3wr+ec28AUcDxQcdhjPlpRMF969Zapgb+ZQAsgFkD0LDW3jfdofki9gf74wfsfjo88MAD9qGHHjrstENx5w98EN/x5vP4/j8US5gDAgICAo4xjDGfttY+8BXQj/8ZwN3W2u8/9OSXrg/nERmb6aMqBQEBPowxPwBgw1p7oDEZEBDw8uIoBQd/BlGA8s/xA2vtn+Dvxpgfw2w2miestfe9SP17TjBA8KEMCAgICLipsNb+m5vdh4CAFwPW2r9/+FkBAQEvNw4lcNbaD8/zfZ76b34jgHe9yP16XggxcAEBAQEBAQEBAQEBxxkvNAburYiycj0mn91qjPmsiWqJvHXehcaY7zTGPGSMeWhjY+MFdmPaJgwOT3YTEBAQEBBwvGGtfdpaa4L7ZEBAQMDxwwslcN+MKHCSuAbgnLX2fgD/HwC/YOLrwcBa+5PW2gestQ8sLy+/wG5EMCaUEQgICAgICAgICAgIOL44SgxcLExUEPIbEGVaAQBYa4eIUr3CWvtpE1W7vxNReuaXHAbBhTIgICAg4HBUq1X334UxxtWa8704eIw/iUTiSOcTiUQi1jPEWotEInHDPfQ4/43JIj5zPc/xz7XWznw2ry32Qe/L9uKO+/fy++7fI64dv4+FQgGVSgWZTAbJZBKJRAKJRAK5XA7pdBrGGAwGAwwGA6TTaSSTSaTTaRSLRWQyGWSzUbI4zk8mk3H9Go/H7vPRaITBYIDhcIhcLodyuew+Hw6HGAwGSCaTMMZgMplgMplgPB7DGIN8Po9sNuuefzKZwBiDXC6HXC6H4XCIVquFwWCAyWSC3d1dTCYTpFIpJBIJd29rrXtOPhMA95zj8didCwCpVArpdBoLCwtYXl527RUKBYzHY3cfzkkul3PjNRwOXXuj0Qi7u7swxiCdTiOdTiORSCCdTsNai16vh9Fo5MaK4zwe71eFSCQSSKVS7vnYb47H3t4e9vb2Zs7nXMUhnU67sRiPx9jb23P35liwvUwmg0QigV6vh+FwCGst0um0G/9MJoNMJgMAGI/Hrk+7u7uuHxwnnqfjz/attW4tAEChUEChUEAikcB4PMZ4PMZkMnHvH/uYTCaRzWaRSqUwGo3cOTxvMpm4ObDWunnls1prsbe35+aEbfN7R8E50jXKeUqlUjPvJM8bj8czc8F1wXWj5yeTSaRSKffD48lkcuZa9o/Pwndpd3fXHfPf/WQy6d5xfde5rlOpFLLZLNLpNCaTCQaDgRsza+3MPROJhBtXbS+ZTCKTybg16b/LHGPem33SH64f/a7iGHB8EokE3vGOdxy13uSLiudN4AC8G8CXbFTgDwBgonoj29basYkK+92BQ+oYvJiIXoCX624BAQEBAccBPhnhZ4rDCJZ/vhpcNKD883xiM+8Yr9Vz/X7PI0lxfdZr4/o+D/PIW9y9FHHkku0lk0lUKhXU63VnjAH74zcajZwhR9JKglYoFFAqlVAqlZwBWygUkM1mnQFO447G/t7eHobDoTPeBoOBuzaRSCCbzTqjn+OSTCZniGQymXREgwZtu912bdFYBPbJzWg0Qr/fx2g0wt7ennsuJUS8Pw1jIplM4uTJk1hcXHRt8hn39vacoUnDl/fgc+nYKzEC4NrhmHMOSGZ0bEjo9vb2HBEk8SKRZDscF5JhICIWwP56VsNZSQjJLvvCOSfBITkiaeN5k8nEjQnvzedn2+zLYDBw7XBceF9+ns1mkcvlHCFTUpLNZpFIJLC7u+sIohIKPheJDv8mOeU6UWi/OU48h++KkkEeU0KppJLjxrnmM5IIccyV/POZSWD4/vI6XeOpVMr1NW5DR8kZiZ2uM7bJZ9HPSYp5nPfRd4PfB+w/wfbYJgmofqYEnODcZDIZpFIpt6b1neZ9dPPtZuFQAmeM+UUA7wCwZIy5DODvWGt/ClGthF/0Tn8boqKCI0SFPL/L3lg48iVDpMAFBhcQEBAQcDDi1Kp5ZMT/TzpOjfKPx5Ein4jp9fNI1Dzio78fdK321yd7cSqfrxjGXTNvPOZhXv+y2SwWFhaQy+Wckee3yR14/p3P51Eul2cMTRrdVEp2d3dnjD8SCyWAJHadTgfWWhSLRUdm+v2+e85MJoN8Pj9jjKpBOZlM0Gw2ZwxCksBUKuXUMRqkqsrxegCOxHAOSPyKxSLy+TyKxSLG47EjDp1Oxz031YZUKuUMbBI49nsymTjisLe3h1Qq5RQKfx2T5NFwJ2kxxmA4HDpDXOdIlTOuIZ9McNxIunhPVVd8tYrjNB6PZ0iXqm3sC417nQslnJlMBrlcDuPx2M0x1T8SNKo1uVwO+XzekX4SRypSVOlIxKlq8RlJnDh2HFsqxbpBoCRl3jvAZ+HfuiGkx31yomqV/71EkkY1k6oSrwP21TyuGyq6HAf2n5sUfLdUVdN+KBkkuda+aL+V5JJQ6VpVQsX2FBwvrjX+y3FSBVI3FTKZDNLpNHZ3d2fWlLapJPhm4ShZKL95zuffHvPZv0NUpPPmIMTABQQEBAQ8BxzmMnjQNb6K5f+u5x52j3lk8Ch993+Pa9PvWxyJO+g+cSSQbR5lrPScRCKBcrmMpaUl5HI59Ho9Zzz5xj/vk0qlUCgUUKvVYK1FLpdzBtRoNHJKSa/Xm3Hlo/GZTqdx/vx5NJtNjMdjR9TS6TRqtZpTU6hGqWseMGtgsm/9fh/dbhcAZlSLZDKJXq83Q6b4k0qlXF8BODLEPqo72NLSEkqlknv+XC6H0WiEXq/nyAZVELqAqrJijJlRCrUPdAVVFzQSVj4D5yybzTr1xVrrCAznx1rrXAdpSPsKtJIUVafUsFe1SMdcCQJJF8kbCSMAZ9DrpgYJn7qxsn/sh45dMpl0rrKqvHHN+Z+R4HAe+TfvrQROn083SjgPANzGg37O+SM54vUcf96Ta4qfk8DzWn3HeT1VXyVkXAskK1ShOP6qvOn8cgw4DrpJoZtXPvlSVVDnWdexHuM1bM9XV7VvupbU/Z2qOkkp50rXjpJRuojyfSHR91W8lxMvxIXyKw43T8gMCAgICHilIU6hOooSN+88n9TEqWM+YYwje3EKl08a45Qw/1w9P+48vWccgYzrh0/kDoN/XiqVQrVaxcrKCjKZDHZ3d50qQhVKyRxVnVqthkKh4NqhMpJOp5HP5wHsG3Xtdht7e3vI5/Po9/vY29vD6dOnnbIEREZqPp9HtVqFMfvxYnSd03g3ng/sk4p+v49Wq+UMZ3XF6/f77r4kB+PxGPl8HvV63alOVMmstc49kYpOuVx2hmg2m0Umk3Hn0+ikYd7r9WbGmkYllcdUKuX6oG54SqLU/U9dzTjO6pLHe9HIVjc1rh9fbSZh4jlqdKt7nJJHvw2Sabanype63PK92t3dde6mjCkkUeaccY5IXqm+0B2TiqnGA6rLpLX7cWsaY8e2+TwcQyXNnAN9fn0WPj/v47/XPtng3ySJPnHzyQaVTHUf5fOqmqfrlOTNJ+WcL40NU/dGVd782Dmdi3luomxfNwhUkeQa9kkyx0pj3nyXUR1TX5XjPXSdcjw11vNm4HgRuOe4exkQEBAQEED4ZAa4USWjEXKY6jSPuLFN3xg7KKYijrT5/dJ2daf+MDIYdx8fcUrhvL7OA12TqtUqyuWySzJCYxnYN8Q4xul0GqVSCUtLS84VkkYdyRiNehqCdI1jgo9kMolz584hnU5jZ2cHrVYL1lrUajXnlkhFC4gSVuTz+ZkYMO62p1Ip7O3tuWQfPIcueslkEq1Wy6k5wH6yByo7/FsNehKKRCJKTFIulx3BobJHksa+lMtlWGvR6XRmVAoa0DRCOa5KoDhvJIHFYtGtP3UL1HaU/PrrS41xrmW6d9Lw5VgRPMYx0tjGOLc5dcWjesIx09gyKoV0mdTkKEo21M2W6mY2m51xp6Qaq26PSub4HBpr5m+MsN+q3PL7Qd1I+V4pKSH8eLaD3PbUhVQVSZ17jikJqxI17asf+6VKm6qDbF/bIwHyCRzb1LhAzjPfC84r+8LxUNLqj7WOI8k7n0PXM+eD7x9diTm/7DfvyaQv6XTabfJQ1dV37GbgmBG4kIUyICAgIOC5wf9POI4sqeHLz/R3Nari1Cy/bb+Neefq8cNUN/++RyVece0ehZwdpNYpUqmUSzaiqgkNLfZd1YtCoYB6vY7l5WVYa9FoNJwioUbqaDRyLn69Xg+JRALFYhGtVsslOUmn02i1Ws59slQqOXJCYz+VSiGfzzvCBOxnFwTg4se63a5TClRJI8Hs9XozqgaJG4kqE5loIgaSApJbJXY0FDWOq1AoOOWH56iyQ+N4MBg44kyjl8Zqv993xqsa9lSTqErqxoJmklTXQSpHSsZV1aKRrq5t7Ku6ramKoyoV+zwcDh1JUKLD+5A4kIjt7e2h3+87oqrZOUn08/m8S3xjrXWqG5+JhHI4HLoNA1XaSIzU9ZHjQ0LJ83xFSPuvqj3Hm/dQ5UrjD9UlUF0S2Y6vnCk5UcVVk6fwHCUnvnqq7yrnnWvJVwvjvjt5f51nVS3V5VX7xLFQ10WSXt0M0CySPM62eV8lovq+8x7qcknCnkgkXDwu1/5z2cR6sXG8CBxCDFxAQEBAwNExj7jEGR1x1/guSj6J8smRb9jM200/jGzFqW7+OZroQJ/noGvmwTcwD+oPQUVpcXHRGc+qmnEnWw0tEo6VlRUUCgXnisi4LWaQ3NvbcyUAmBGRRKXX6+GWW25BIpFw13c6HeceSSKmmSeVvGncGnfxd3d30e12nfrG/qoLYiqVQrlcBgAXV1QoFNyuPdukGx/HSLNwUtkjAdMEGuVy2RmRmqVR3RdVSQP23SRJKGikMnEMiaQa7TRuSXL9rH8k4ZqsgmoLSQbnkWSKz8r1ThKuBjawn8pf3ewYx0eCwL5w7PW51ODWjJRU7OjeyqQ3JPh0dVXVTTMRAvukVd1luYY1zksVOlU/1XWVY+ATO46FkgmOq+8ayH6o2sd1oHPBsSKR9dVVTV6iz6PkRu+r7y3nXxO36HcBx5Cfc7NC1TtV+qhkq+rKseL7qnGPnA9dv1wT7Bv7xw0bjZ/kXBljHEnnWPLd0fXK9v0xuRk4XgTOmJCFMiAgICDgSDiq6hR33lGu9RWqeeqZf65/XRxp8n/X3XFg3+XIP+YTQ5/cKSE7TKnz+6HGTCqVQq1Wc3XLqByQOGg6eFUTyuWyI3wkWQsLC+58tp3NZp36ReO83W4jlUpheXnZGavtdtuROGA/fbxmYiwUCjMGLOPF6DbY6XScYqNqE8lVLpdz8Xm8D90w1e2KxI/uegBQKpVQr9fdWCgBo1sZ+6KZEjkXmUxmxmBVFy+qIUy3T7WTMXV8Xq2TRgM6l8s5w5gEivME7Lub0bBVRZMkhvdVxYpzr7XduF5J3qiA8VnZlhI9JThM5U/CVyqVnLsqCboSZmajZG03Ej2fvJFI6UYISZcSSYLkSF0IFRw/JVxKapWs8XwlYf53SFx8mapV6i5I1ViVU2vtTB06/x1T+ORQx4Hzwo0UEjd/g4p9UvLGtvS7QL+DlCzpOLENdeUl4eIxVdE45iTk3HBR116ueZ+Aclz4/iqR9sfp5cTxInAIClxAQEBAwOHQXW/FQa6G+pmvPM1rQ+81jyD6588jSX4/1KhT8nbY+XHPE3e+fzxOhYs7L5vN4sSJE1hYWAAAlxwkn8/PqD4AnBGYSqVQqVRcvFu320W323WxJwBcTFgmk3Gucel02sWHFYtFR/w0UyMNPWZRpFFfLpedMkjCoOrRaDRy9d3K5TLOnTuHZrOJ7e1tNJtN7O3toVgsujp0JC80HIfDITqdzkzpALpX5nI5FIvFGXJLI5znk1AwCQnbpzJIdYNGqhr6NJTVnZCfa+FvzgGvZ/843hp7pPfhcRrlJEAaN0TypqqeuqWSsKjqxnZYw0+TXPBvPrOSN/ZTNwYSiYRTe0nos9msK8VAl1Ylk3x2JVFKpNQ1ksY8CbTv1qlj5Lvt+d8/Ou86NppkRcmCunBq5kslNPo350OJE5U49kvXiK4ndUnkWHGdsz0dLz+u1VfqtF++CyXHhqRO3ydex3eU8881p8TaH+O4+EQtQ0FvAR7n+6eunfre8ZpA4F4kmBADFxAQEBDwHDBPXVNiMo/QHUSalFzNU9+UUM1ziTzIZXLetX6//OP8TBWzuOfwx0CvnTceLA9QrVadSsYMjGoUksSl02kUi0UsLy/PuLIx1oxGJ0nVeBzV8ALgDL1KpeIMqW636+LaaNgp6aC6RIWMRjhVGBqvLBFgjEGtVkOpVAIwW5eORGAwGKDX682kFmctOCUHJDalUgnFYtH1i30nwaRBTAOTRBaAy6zI8zQzoiZVobFM4pLP5x0J4fPyGUjUlHBRGVGDmFB3RT4DDXKSJE0hT8OfBI9zRxJBUkpy1+/3YYxxhJ/kjc9GY51GPu+r6ilLQKiiB2AmUUm/30ev13Pxj4yDU4LgK0BUHn2FSJUZfR59VkUcsdPYx7h3jPfUuMw4lYnvIu9PYqrfC7xOXSaVnPpJcLi2gX0FnH3SZ1O3Yl0TfgF5VSh9Msg2VQ3U2FmdC72HtsPvDI4Nx5zzwb+p8Kprpqq/mthENyxupuskcawIHGCCAhcQEBAQ8Jzhk6SjKFVKaOYRsLg2fNcfbU/b9Amaf089rkalf36ccXdQP/0x8Mlb3NikUiksLCygXq/PkA1rrUvzT4KkZKFcLmNhYcGNx3A4RLvdxmQycXFwdBns9XqOfPV6PdRqNUcMrbXY3NxEt9t1xIAujDSUC4WCK8zN52MWSu72j0YjV0uOBI3Fwa9du+YUNRrc/X7fGZNaG4yEg0Y526O7pxIwVWbYrhKpUqnkCAf7ncvlUC6XHUldWlrCwsICarUaKpWKK3ZOw1cTXug60vih3d1d9Pt9dDodNBoNtFot7OzsoNvtzvSPyU3UiCUh8N3SSHgZR6bxcDTqNfZuPB47F0/2jSDJICHiOKjqxnnnM/F+JAFchyTdmulT1VclMVSqOL+qKvq1zvg7n5dqlLrH6nnAfukDEhCNm9O14hMWtqEqlsabUYHk3HMt8loSaj+ujGtQ+0virOuXz8W1pPfhvVR505g9vZZ90vg/EkC2w80MVQw1m6bGFfpqpcZpkrAR6tZM1V3jTtWFlmPFvnCz4WbhWBG46HspMLiAgICAgMMxj8T4BomeD+y7SPmKFH8/TNXz25vXN95HFbCDiKFPAOc9Y5y6N6/Pce34al0mk8Hq6ipqtdpMUgzdRaehReOKLpMaa8XU7ZlMBuVy2WVbpHJUq9UAREbXwsICyuUyhsMhGo2GUyaoNlm7X3iaBnixWLwhq52SB8aPJRIJ5PN5rK6uOuJEYseYNi3O7ZM1YD/pAhU2xlyRKNDo5PV8fk2eoAZ+oVDAqVOnsLy8jOXlZZw4ccIRNS174M8tEff3QWtQ559JYBqNhnMhXV9fx/r6OjqdzkzCFM4tE4voGCmZUhKgiS40S6Aa/Gqoc5yp0JFgsuYbx1LJINukskuVkoSEY88C8VTyOA7sJ7D/vaClDQg/K6eSXFUq+czsh74zvss150BJkc6hkkeSDiaQIaFS5YhERjM2xsXf+X3SNn3yFvcZ59JX6ZTAsW1Vy+KUTX23+Px+rBuv42equOk1XGe+JwPdJhknq31WN2equlRwbxaOF4FDiIELCAgICDgcqi7FfRb3o+f5BkmcsUxjS9vQXWdfLfPJlK+W+MdVedPzDiOUioPI3UHjQ5RKJSwvLzs1SA1Qus0xUYiqL6zBxlgn7mRns1mXVITqWCaTceQwn8+jUqmg0+lgfX0du7u72NnZcbv0WrSZ5E3TxOvuPtUUYD9pCI3OYrHoCGWn08FgMHBKkio+AFx/SexocHNnv1gsolKpOBJB1zf2gYoejelkMol6vY56vY5bb70Vt912GyqVilPUSJD8LJ5xcxX390GkTUkB/2VCGhYhpzLCcWg2m7h8+TKeeeYZdLtd7O7uOqKr8WpKXtgO1wrVHZInEhtuYmhCDhrsVLk4znot1wPXxN7eHrrdrlN3WYuQc8W4RN7DJ+NUkdT1Ub8HOCYAbnCB5POq+yA/5/oj8VN1j+okCacSMP3+IWHxa5vxeo45n0WVYi1QPm9NUMXVmDE9ruRJ55vjpwqjEjeuXd2o8jfP+DeJqZYf4L9K0OK+V/m3Em/+qOrN36l0UlHWjQQA7juh2+26uLmbgeNF4EwgcAEBAQEBzx2+EeyTOf9c/htHoHzSF2dQ+KARNE/10j761/t/q2EZp7rMey5f6TuI+AEReVtcXHSxSTSINJtdoVBw5E3doei6RJI3Ho9d9kka4sPh0Klmu7u7KBaLmEwmzq2P7owAXEwZd89pZLM8gLpdaUY+1gRLp9Mol8vodDqoVqvI5XLuPoPBYMYVUuPC9NnomkXXUJJRqhaaHIUZ+4bDIfr9Pmq1Gm699VacPHkS586dw5kzZ5zC5KuwJB2HzaMqFqoEHbSGfFWH61KPsT0SoEqlgrNnz+KNb3wj9vb2cP36dVy9ehXr6+u4evUq1tbWZsZc+6gxglxHPE4Sx3Gl6y3Hjeomx1eJtdZ3G41G6HQ66HQ6Ts30a+PRrZbGu5INHUtNGEKoqx8JGd8hddejKumTKlV+lUip26SWNeAxVe84ZnSZ5FoH9jOicnyoZlL9Jinl2uVnyWTSxc+piyLvSRdYdbFUl0+OHceI7yD7ys/9ceMa03FQJV/XD9enup2yn1oCQTcPqNRq3CRJP5/Vz5zKuZtMJu67h4mQbhaOF4FDKCMQEBAQEHA4fCM2Tm2LM5wBzBgnceRNd5/nEai4fih58kmf38ZByptPFucF3M9T++YRN1UOarWaUyyongBw2R9pWGtadRp33LUeDocolUozakk6nXYui8lk0sV95XI5tNtt59KoakO1WnXxaOx7Op2eSW5CtzoaagCc6x2VhcFggFqthmQyie3t7ZnkJGyHhh2NVcZ4kTBSqeIOP8eNypufeOOuu+7CXXfdhXPnzjnSxzU0b579taqJLOLWrs7vvPn3143+zf77rm+6RmlAZ7NZnD17FmfOnHFjvr29jWeeeQaPPvoodnZ2nEFO0kKi4t9bFSp1k+v3+y6ZCxPbkPBPJhPnrkpVlMpbMplEtVp1hjsQpY5XNZPkVPvH5/Pjquhy6GcF5frjWuE8kABwbfBv9kU3NXhPY8wN2Vt9t0y+kyRUVD95LckKSY2qjepCrH+TtJBYkwBxDnx3XVXDOCb6Pem7G5PYqsrJ3303Z46F3oPj6a9VVeTUJVnfBSV5rLWoiXmYoIXrVNceN3RyuRxqtVogcC8WggIXEBAQEPB8MI+8xRm184iY/svf48496FrfdXEeiZtH3uL6EHevg+C3pX8XCgWsrKw4YxHYN4hoTJbLZbeLTeOSBmOlUkEikXA125jYgwaS7oQzWQbVA8anqKFF0qdxVsxAqCnhqcxRzWMCCxrz2WwWpVIJ1lpsbW05osiMkzRiqdjo83LMCoUCFhYW3GdUT6gatdttpNNpnD9/Hrfffjtuv/12rKys3ED449aYuowpadM58wmVutn58xqnOM/7O07lU0KnpFSVX7qiVqtV3HbbbXjrW9+Kq1ev4qmnnsJjjz2GK1euODWS64ikRgsxkwgxKyDnIJfLOSOcylChUHBrrdPpuLhFZpqkypZKpVAqlRzJU4KgtfRITuali/fdYXmuqlOq/pLoAfuZKHmc48z09dzU0PaV2KpKSvdKkieqkJp9Uguh8/5KZtg/PpPW6PPXoM6/fmfputP1oXX6jDEuZpHrmURWvzf4Gc8l+dQELn5cIL9veC1dtPldwfdLawcqoeRYAPtxb1zf6spaLpdRKpXmbo69HDheBA4hhUlAQEBAwNHgE504Y/UohGdem4qjuD0qGfPdqZRQ+ufGPUeckuaTzHkKYtz5iUQC9Xodi4uLM+5uauRMJhNUq9UZ1YIxSEydTyOI9bhoxNLw01T3VNAGg4GLraKCwSLMNMQAOGVB08/T6CcxpKrGtvL5PKrVKowxzsXOWuvi3aicadp9tgvsJ+TIZrOurhuwb/zRsM5kMrj//vtx//33Y3Fx0fXfn39fSVAFQdcOjVeN6fNVMZ/UxWHeWqdhrXFDalzzGPvIGEO6JWoGv+Fw6No5deoUVldXcd9992F7exuPPPIIHn74YZcQgu2xfS2l0O12kUgk3PxqNlCOPwkYC7gDkQshiftoNHLulazBp3FsJPr6bql7M0kS1yFjz0is2Hf+S/Kiyo6+v36iDLr40v0TwIwix3aVLHJOON5xmyLq8qqEW78DGOummzPqmqibBj55UsLFz3V96pqK+47UmDcdW/7O/quqre6f6i7Ja3O5nNsg4DmadZYlJMrlsruHKqskd9zMIcnPZrMus+682MGXA8eLwJlQRiAgICAg4HAcpHDpcSJO4fKJUpz6dpR2+Lm2E6eezHN5m+dadxCOcg7vl8lkXIp6GurcvVY3s0qlgmKxOJNARJ+T2QqByKimAkBFJJ1Oo9vtOlWNhIuZA9kXqgrcXU8kEi5ZiGY/VDIIRIoY27LWumcaj8fodrszLlU0woFZMqYqCI1yKh1a04xG5MmTJ/GqV70K99xzj3PPjFsnJO0kMGqo+8TWJ2t+koU4cvBc4CuC/u9aMmAesdP0+VSE1D0vl8thdXUVp06dwpve9CY88cQTePjhh3Hp0iX0ej2ntCiZZjIcay06nY5bPyypQBLeaDTQ6/WQzWZRqVQAwBV+Z0wm1yPVXhJ9hSo9fH4+Cw1+EgN1FVZlSt8DTXSihIekipsKTGmvx/2kGyTNvrunEjeuFa4rJfR8Z5WoqEqlmzNKnDTLpib58DcP1DWT64fkiH2KS8TCa/k3E7JwvEkIVRVVIs/7FQoFp7iSzHOtjkYjtNtttx64VjVRC79DNA6OY6tjocTx5caxInAAQgxcQEBAQMALwjxiNe+cOBzk2hhHHn3SFqeIzetPnPvbPBykEPoKXyKRQKlUwsLCAnK5nHM5Y9p+7swz7T9d1zQ5gxpAmj5e70sDutfruR1upq5XQqXJKkiwSBby+bxrm1kQNXMhs0jS4KfrohJEqi8kClTrCBrJvA9JIxVJGsxs//7778dtt92Gcrk8E7vjbxr4SgpVExqlmjVzHnGL+/HXmL+2/DXhE7V5GwKqzqlLp2b301gkddMjAdDnKBQKuPfee3Hx4kVsbW3hoYcewjPPPINWqzVTYJ3rS10e6TJprUWz2cTW1hYGgwHy+bwjdVRcGQ9GRTCXy80UMleVTcmbuvQZE8Vjqgqm86okg+SQyo8mIFHVT1P/c+z0mLZLJYqulXTtY79IRpTk8Lx5iT248aCumrppQTVNS14ooWIf9T3R51e1mOuIY6Eunf4xjcPTmEFVBHmMBF1JJzdWisWiW2t0w+71eu6ZjdlPXsPzmNyIKj2/+/z35rD/B15KHCsCZ4IPZUBAQEDAc4Ami5iHOHKjn+t5NLYOU9/i7nHQOUrofHLH++lnShJ9whjnukdjRBWmpaUlrKysOIPTGOOMZ41DKhQKKJVKrmRAJpNBu912af8BOHclGlxsL5FIoNPpzOyo08VJ49qYaIIkjMY4s/MB+7vmw+HQGc4kc4PBANlsFhcvXnRqW6/XQ6vVQr/fdwlRWNSZhE6z61GdoFpBA5GqyGg0woULF3Dffffh4sWLKBQKNxAgnSeNXfJVTZ+oHfav/7uux3nrcJ6CrMSMn6vCpuSN4HFex3IHGg/GvzVujmotx3R1dRXvf//70W638YlPfAKf//zn0Wg0ZhKNAHAuhqlUVMOt3W6j0Wi4BBPMWEpSXiqVkMlk0O12AQC1Ws25UPJH3RL1uYH9hCIk67qBwedWlz4dM15L4k8FGNhXtEgm4xRVvncknSRVJCwcb2Df3RLATAwon43PomSI61o3C4B9V0QAbm2yXZJSJW8kfnxeHRuNsdNn0+8o/svzVJXm+OraYtt0h6WKyu8LziNdrvlOU72lYs9xomrJYvadTsd9J6j6rHGFIQbuRYIxgb8FBAQEBDw/+DuqR1XZ/PN9ohd3H78N//y4tud9poaEEjH/Xn7/5ql7+XweZ86ccRki9/b2nPqxu7vrjCZjjMtG2e12Ya11ihXj0dTFii5H4/HYxadoZjy6wOkuf6FQcPEqw+HQESnWg6MLGePc2PZkMkG73XbuVUBUY45ZJY0xLvlFpVJxxqwxxmU5BOBcNunWxt91/Bj795a3vAV33HGH61ecIqoKD4mfH8c2j6ApQfCvYT/mxcHFrSO/X3E/akDH/fA8Gte8hmoln5UufzS8aWAzi6QqIFxXX/3VX42v+qqvwuc+9zl8+tOfRrPZdGuC66rf76PZbKLT6cBa69x8mZlS45V6vZ5TSKnGKGFS5U3HiiSehru6Wqq7qBbHViWN88ByGSQ+mpCF48KxVBWK65djpnFdHG+SQm4KaB04fd/5nnCThiSN56jLpcaR+qTM3zjQ9ajPzmO6zvlc/nPqmtR3i8qd3zddt7lcztWHVBWerpFcq0ry9Idjw7Ie7Xbb1QdkP5LJJBYWFpBOp9Fqtdxm0s3C8SJwOFrGr4CAgICA39/wyYtvbM3bWVWD2Fcw4tQu33ieR8T8e8SRxzhlzydi85Q8NYzm/T+ZSCRQq9Vw7tw5ZLNZl6pdE3fQeE6lUq6wM40mZotjXAnvx4yP3F3P5XIzShqNbWBWkaC6oqn8y+UyKpWKS9/NflGhKBQK2N3dRbPZdKRyeXkZiUSU+bLT6SCXy80QNBphGj9Ho52xNJr4gmPY7/eRy+XwVV/1Vbj//vuxsLAwN1GDqlOqtsWpZ6qQqIudfk5jWIkexyNu/v2++Iayqm+6Tnyi5hO4uBg4PReAUzRJwKl66LV0oyUJ4npZWFjA29/+dtx77734xCc+gccff9z1s9PpuFp9XBt0vyUx51qjyxzJN91148oUqGpEosQxoYpGQgPsF4Gnwa/KFYkK4y85d1yvqiD7tc5InLhpoC6LHEdgP4Okn8qfhId91iyu3DDxvw/YF865JmzRZ+c5iUTCtcv3SQkW16+q6SRjSthJjnlc4+E4JroOdX1xjjKZDEqlkruGz0pwM8fvIzEcDl385GAwcPUCeb9KpeI2Z/iddzNxvAhcUOACAgICAo6AeSQJuJHkzCM9vuvhYYqdXuOTvbj29TztQ5yCop/Pu89Bz8Pd5dXVVaTTaWcU6c7+ysoKgMgoI8GjSyWNURqGTAbQaDScukKDSGOa6ObGTHnWWpd9j8krmOa/Uqm4Its0iun+yF12JrGgK93p06dRrVaxvr7ujELWk9MkLEoiaTQzqQNj4mickzjdcccdePDBB92YzYtx42c+6VL1AsBMn1Sp0c/ZP7bjr53DNgd8cqmuasBsoWbei+fFGdBMQEMliuoTjX9fOSHRUaWIBjUVTlWneO+lpSW8973vxf33349PfvKTeOyxx9BqtbC3t4disejUYrrCMiZSU+przJhPTvUZOSckaUpaOIYkS3wekkOfwHF+SP64xjRmMy4Gj/PLtcex5rvHd0TdI+Pi4kiMlERpaQJV4zReTTcVOC9AlAyG5/PZqcqr8qZqoiZEUSKoY+OvLx4jAQRmN1t0/fIcJdW8Vr+fqLhSaWVf2b9Wq4VWq+U8BRhfyfvqd8Te3p5btzcLx4vAIdSBCwgICAg4HAeRLZ/8HOSOpr/HES2fpPntxpG3oxBBv7/z/o1TW/zj+XweCwsLKJfLM0SB8TTZbNYlhKAhSnWLu/nMiAdgRjlrtVpIpaLC30BUm4uGEQ0sGuyMA2JpABperK/GZCBM6627/tZaNBoNtNttDAYDLC4uYnV1Fd1uF08//fQNyk4+n3fEiO2QNFAVofHMZzMmijuqVCp43eteh9e+9rUusUrcWuA4xyUhUaWNJI0GNkkrjdJ5SUzmEfl5aisNau0v14AmmNBr+NwaG6Wfcz44NpzrQqGAVqs1c1810GkQU+XlGtL4JSpybD+VSuHUqVP4w3/4D+ORRx7B7/zO72BtbQ3FYtHNI101udYSiQSKxSKMMTMF4DX5SBxZU+WKa4wGuypm3DxQdVZJoB8TRzLAcdMC1xxXklC2OR6PnXrH9abuiKrGcbx4T1Vv1VVTVVuSb2NudLHk2veJJvusbpOaYTVuLAE41VP7p58rISPZ4tj47q0kfSRZTDpCwsp+K7R9quxMoNRsNmGtRbFYdK63+XzezftwOESr1ZrpTyBwLxKMMUGBCwgICAh43pjnFhOndPjkaB5543G/rTiipkTwKH2a16b+7u9ME8lkErVazbmaaQZB7kJT3bDWukQgJFc0+mjkMU6OiUEGgwGKxSKWlpbQ7XbRaDRm6m+RqCWTSVQqFbfDTYOdBKpSqTj3Rqp+rK3Fgt/MJmmMwate9SoYY7C5uYlWqzVDdBgPpQap1vJiDa18Po/FxUV3Ho3mCxcu4C1veQvOnj3r1I44IuWrbL5rpCpsWqtOFbe4GLc4qBGpazBOHfY3JQ6Drh39V8dEidloNMLGxga2t7dn4t9UmdM+qUHNUgEkciQco9FopgRFOp3Gvffei7Nnz+Izn/kMPvWpT7m1ydhKbjCUSiU3v+yzJlYhwQIws6bUBZLna5IbVX6pUKnboCYT4RySTAJw642fA/vuw0wOxHet3++7z0nw9TmYrEczP/r3pTpO5c0nXuwTk77we0AJLufMj7VUJYtETFVifq8As6UZ+I5zs4TkVVVN9pvPzXY4Z5r9lPfV2FoleryOiUqYRIffCdw84KaNbtyQFOp7oDF8NwPHi8DhYL/vgICAgIAAH3HqGHB4YhGeEwefhAGz9aRUgYtrY57Sx2NxhGzec/m7xDSclpaWUK1WnbGmabIzmQyKxSKKxaKrm8Q2qZoA+6n1GVemaflPnTqFer2OXq+HTqczoxLQIC8UCs4gpruTFv+mwazZJAG4uLxOp4NWq4XxeOyURAC4evUqBoOBc7/r9Xqu0DZdKDkfNDRJABYWFlz2zV6v5479gT/wB3DvvfeiUqk4BUmJPOdiXkwbjUD+kMCStMaVDdA14pMzf13FxUj6f89LFhGn4unzxBFDkgOfWNKIVuOZhjbVNlVXNKEFyRpJjGYuJckFImN7cXER733ve3Hu3Dl87GMfw/b2Nnq9nss06Rf8plpM914l3ySiJI/+PLK/xhinmvE94vVKypTQaqIetsvrOHZ8No1342ckjrrpoOqYltqgGs0fluXQcgBcB0o6uSnCta4ulqpGqguwEnD/O0nfDb2eY6gklPOsz8f54EaSEkdjogREjE/j2OZyuRsUVr0nP2M8YrPZdK61tVrNjQ/VNz8OjwST737ce/Ny4lgROIQYuICAgICAI0AJFBAfV+a7OsbBN67nqW4AYomU/jvPJU7vQ6hR7auBcc/J36kCLCwsuNTqmoBCjVwahzS2SN54f2anZAFujbE5c+YMyuUyGo0GGo0GMpmMU+4mk4lTGIAoOyATnTC7JN0leU8qejRSh8Mhut0u2u22i89LJpNoNpsuqUK5XEaxWHTtdLtdp5qRSDCZBBApOysrK6hUKo4ojsdjrKys4E1vehNuvfVWZyD72f2UCNDAVRc6XkPCxh8/cYca3/Pmfx7p4rxoXJffhhJ6XRdxxE//9deTqjHaFxq5/D2OoO3u7qJer6NWq7lMoRonp+cqoSERYXZB9u3OO+/EyZMn8dGPfhQf+9jHHLnR/rE/Gv9FZY4kRVU5VedIEOhGpwa9uuwxFowqFD/jBomSHrbLuDjG6ZHMkLjw2dkWAPfOsf9cu5x3PjPHS1VO9lvLVyj51FIPVOL4/aDz6quXJEi8v64bVV7VdZVrUTcVdCNJvy9V3WSf+bkSNCZGItQlnG1rTKkSaGDfVVZjGEkm9R3n/AQXyhcJBggMLiAgICDgOWMe8ZpnUMf9x60kKs5NLS4m4yg7uHHG9GHEUq/lPdLpNGq1mku1zgLYdE+yNiqqDMARDHVlo9HEezKjH0nT7u4uTp06hdXVVVhrsbGx4bK1lctlNJtNAHCG6nA4RKfTcQZ8LpdzfaOiAMApDFQc+v0+dnZ2XMmCpaUlJJNJNBoNdDodZLNZl+57b28PrVbLnTuZTNwzKvnIZDI4e/Ys8vm8c68yxuC2227D2972NtRqtZkU6jp3ca6SNPyYgMXaqNA0M9xpfJcawvPWR5wK658zj7zNU3nj2o1rO06Z9ttV49Y/rooNFYyNjQ2XiZRkiutZSR9dTLXmH2t6MSmFMVGGwHe/+904c+YMPvaxj2Fra+uG8VPiqsk+gNlskfwb2C8IbYxx2Sb1+dh/9kUztvJ6JQ0keHQHpssi47h4LVUgKn4cI413Y19V2VPCyc0GLaVBV1ASbSUxmnxG4+ustS6jI4mSuijq+JLMcg6V5CiJU7Wf7wqP6frjs+TzebfRoe8Zx0YzgFKZ4z051jyPhJ2u45NJlEiJmwUk8qq86v8DunkTygi8SDDGwAYGFxAQEBDwPHAQmYojeHGKxTwlTM/RduIM8XkGt55/0P3irtdEJVS/uFPN3Xe6aVGN0BgfGnvcoWc2yW63i8FggFKphNOnT2NpaQmDwQCbm5szu9+9Xs/dM5FIuDpKNKZKpdJMvBKwr/KNx2PUajUsLCxge3sbW1tbzgUzl8u5uk10vatWq0gmkxgMBmi1Wi6ZBQ1KVRtoxJ8+fRrJZHLGSH/ggQdw3333oVqtxroeKuHw3SVJPljDrtfrOTdRGtRqjPpzFrdBoITooPP0fP8c//q4tXIQWYwjcnHX8FxV69gX/t1oNGZimJRc6Ljwd8aBaUIRna9UKoVXv/rVWFhYwO/+7u/i2WefnYnz4rpSUkSSo6oKsE/0SfYZ88ZjbEezhpIU8jnZlrrb8V4kb8YYpxJrOnzGyjG2TUsecP1qJkw/vk9r07ENkhP2Sa/hc2mcF4maqqO8v6ppuga0SDk/41jwd/1XCZGqaWxX76muwrwX54AJbEql0kxCJRLAyWTiypGMx2OX2ZOEkeqsxtixb2yDpE7VvxAD9yIhZKEMCAgICHg+OIh4+UbyUQiWfz6P67l6je+a5rer/x52jh5LJpOOHPGH8TdqTKpLFNU57lCPRiN0Oh2kUilX62x7e9sZtbVazaXS39jYcIaSGshMmz4YDByJYSKUXC6HYrE4E1vS6/VmjKdCoeCSD1AhK5fL2Nvbc0SAbqGJRMJlwOx0Ouj3+8hmsy77JVVHZq0jkaWhWygU8KY3vQn33HOPUxn9uVeCoclGVDWiikniRpfJeTFuOn/zXCj5r69sHabC+esv7ph/D/08Dgcpez7YTyU/SnhJduOIHJ+Trn5UrOhGyPUERO/qqVOn8LVf+7X4+Mc/ji9+8YtuXXMtakITKmhKGpk8J5/POwWLY6DqCwkSCQefw0/IwX6qykd1mwSx2+06l1HGX/H9UtdSJYhUy9gnJWhcayR6TLRCNY3EVuNSNS4N2E/qokla4pKX+Cn8tdSGjpGfgETXL8kU+6UKGL8rVPHSuFJVNH03VpIwjZ9lrTiON9ejX/pBnylOfeNc3CwcLwJnAoELCAgICDgccQToMDezecTJ33HW//h5nV6vhDDOdW6eYRxHBNWg1+eg4VUul10yEHXJorHiG7HpdBrFYhGVSsWlcmdNNZYZUJesEydOoFQqOdWNiUNIvqyN3CdTqZQjUyR3hUJhhlACmDHEqCSMRiNcv34d43GUTp2ZKweDAfr9PpLJJFZWVhyh63Q6Tpmh4clCz8ws2W63naFcKBRQLpedu+O73vUu3H777S6OKm4dqPJGQ5IEg/0ncaPxSEOX185bezrPcapt3JrQNaNKhb/WDnoeX2X0r4m73t94iFuj/r302blGdCypOKki4rtZMtmExshpna9isYi3vOUtKJVKeOihh1wbqnxys4DrH8CMqyawXwJCYxS1Lf7N89S9UTcwOB8kjxqL56fS50aCkrc4ss73SEmWtXYmk6tmU+T6ZMyduiRS0eb7xvGh8qTjxbbUjZGKtq43jYXjufxu4LPp95W/XnQ9+fGDqkBq1ksdS24YNRoNVzOQ5UNI5qj+xr3bHA8SVxJRfb9uJok7XgQOwYUyICAgIODo8MkP8NwUNj+JQxwh0zZpIPjHtI24z/y+6XH/h4H8i4uLM7vnNLSoMNANkioXywaQuFA9okGsZISJQ4rFIjqdjouD04QF+Xze1egieRsOh0in0yiVSiiXyzMKAJU7YwwKhQKMMWi3204t0Ux93W4X4/EY9Xodq6urmEwm6Ha7rvYY3T6ZhY/ZJbnzzpg2Eri9vT1Uq1W8853vxK233jpjuPrz4itvqiBRYeSzkrCSvPnk/igKVhzB89eFQmPI1P3tMAVO4W8M6OfzrvWN4Lj3yW9PsxWqiklVheuX5E0JH49rseXBYODWSy6XwwMPPIBqtYrf+Z3fwdbWljO4lXiTaFH5U6VlPB7PuGmq0sZ3jeuAmyJUrjQ+ioRsMtmv5UYiQ6LFd4vujkpeAcwoSpwHrm9Vofiea7FwuisD+26svB/bpNs03xutDacEynfb1PnzCZe6TioJ5JjwHYxLrMMfdbfUZ9DvNiZJ0nXG752dnR2nzFlr3XeHT6414YuvnMZ9Z8d9l7+cOF4ELihwAQEBAQFHQJxydlR3MMJXzQ5TzvS+84z4g4zeOPXD/zuTyaBSqWB5ednVkaJhS6OsVCo5g0tLBQCYcWMktEZZt9tFOp3G4uIiAGBzcxO9Xs+5hrEPmoxkMBi4JCKs60bVhDvbrNtFtYCFwFUhoNLX6/WQy+VQrVaxuLjoyNvW1hYSiQTy+byLL0qlUqhUKigWi069K5VKAIByuYx8Pu/UuHe/+904d+7coeTNj3djYgQSXCYqiXOZPGgt+fecR6L8NeWvK/963WTQn7jnm9cHvf6o63ze++RvTihBUWVHyQCNdSV4PDYejx1Z8ZPQJJNJ3HHHHQCA3/qt38LOzg6A2dgqjTmjMkM1S2PQVHkC9gt5M8ZOvwNIBjR7IkklCRP7YYxxyi0AFItFl9CEZE2zn1Ld1sLcmpBFC6IDcBsjiURiJjunEhCSUv5NMqvZL6nQK+nxVbE4ZZkKGe+rn+vY+N9n/saDtk3CpW1rkiG6LDcaDVdfUN9rdZ3kfPEzqricyzhlmtdpn15uHCsCB4QklAEBAQEBh0P/k+bfcUrCQdf7fyspjFPQ5qko89r2+3SY8lIoFFCv17G0tORICoAZ96hareZijUqlEqrVqqu9RbWG6Pf7sNaiWCw61W1hYQHJZBKdTscl5qCCkMvlUCgUUKvVkEgk0Ol0nKJAYlWr1ZxxCsC1oSnTeR1VQwA4efKkI0XZbBZLS0suyyRdKVkzju6K2WzW1bkjkaXCyFi5TqeDSqWCt7/97bjllltm3KkOU960npsWE+/1ejO1x3wjz587GqBck/PWg4+4TYh5a0bnVt3x/EyCcfAJXVwffONW178eVzLpt6VudSQEVHpGoxFOnz6NVCqFRqMxE//E56ESVygUHIkDImJ45513Ip/P49//+3+PnZ2dG+I9qbSpEsX5U4WI48U1SkWNmQ91vJVc0C2TGx0kICT9miBIiROvJbnlBomqhewHCRrjNrku/WyyWrReXRrVRXBvb8+p7ySwrLOmbsl8Zr4bSub8RC469ySCviLNNabqI9epKmZ8Xt1s4hyxxAhLj9ATgO8s21J1T11VOYfqWq5xiLzXc93we7FxrAhctJBudi8CAgICAl4JOIorY9zxwxS1OIP7IMJ20HVH6VsiEaXEXlxcdIpaJpNxhiGN0lQqhX6/P5Mum2Rjd3fXJSzJZrPo9/sA4FQvGsaDwcAZryziTcOxWq26ZCNUoeiKxFg8YF+5GA6HaLfbrj8A0Gg0XLt0yVxcXHRJSWq1mlNLqDrQ5YxGL43TWq0GIDLoSA7VlbLVaqFer+Ptb387zp49O0PedG595Y3ukFQmSdz6/b4bT1WSdJ7iyNxB68J3KdPrjgKe5xNDn1BpPFKc4hB37UHE77Br50H7A8zGJF27dg2VSsURGYJjxKQf+Xwe+XzeqTBUWM6ePYv3v//9+OAHP4jr16+7jKjj8RjtdntGmdHEG/qOU5WjYW+MmXGhpEpGssZYLBIlvyi0Jt6gCsTzGFOnBFwzLFIVJ1kigSV5o+unTx6ZKITt8B3VDJW6qeCrZboZoC6XfuIQ/VtdZTlnGlOnRJDrhGNLEs21yfvp3PN7iN8tfAbWBOT1/pwQ/D5imzyHfeA9NEHLUdbzS4njReAABA0uICAgIOAomEeYDvvP+TDSFkfWdGf3IBc0/3NVKuKMcLpMMosjsO8GRgNQU4szKyUJEoCZGkrcoaebZbPZdDvTVAtoLDI9P5OAZDIZR2TowsZEJdls9oZYMRqumUwGvV4P3W7XFfcejUZYWFjA3t4eNjc3MZlMcOLECWSzWacYMs5MDTsgUiKz2Sy63S5SqZQjfLVabcYNs1wu4+1vf/uM22TcnCmBo2FN4sa2+NzqMumvJX6mLoNxOIqLItvkz3MxKOPO8d3Y5hG+o/bTj2k66No4NU6Jrs4DyRHVGHVT1PNYa9AY49Z5KpXC+fPn8Uf+yB/Bb/zGb2B7e9sRfp1/KkTq/kjDnZsSVLO0ELzWVPMJBxOO8B1U1ZtZUJWoUfUjgSAZUhKpZQeoJE4mk5mSByRv2jclTCSUWjDcz3ypa4zfIxpj6T+zupOqO2zcfTlGGpOoypc+M7Dv6qnqHuee48ySKVT3OQf+BpwmhyFhV1Wa/WJ/VfHVBEk3C8eLwIUYuICAgICAI4AGBnC4y6RvYMa5S/qfabv+PQ67X9w5ccSOZQHoOqgxHOPx2CUCIdFjNkiSJybvYMwalSP+3uv1XAHdbreLUqnk3Mt2d3ddzBEzOzLmi8YX1UB1lyLxojFrrUWj0XCFdGlI1et1F8PCEgGMbWPfut2uaweAU19yuRxarZYbA5LcXC7njLpUKoUHH3wQ586du0F503H31TeqGHTb7Ha7M4okDb04lTZuLfjrYJ5Cp+RKDc24NXRURS8ONFhVYYozUuOe6TAlOu6cg9RujXdTcsZjJFEkKJpExFrriDzXJo3+U6dO4T3veQ9+8zd/ExsbG47osW9KToDZ2DyOO8kCn8GfH00cBETuy+wL493o9qnqnM4r49aUpKqrJxVCkjSuS5I6fS/0fBIWzrWqX6rE+t9vhK47JTyqjPqZPkkKtT1rrXMD1Zg836VYx1bfD72G311K+lR14+f+pgmv13EmYY4rGaHlLbiZcLNw/Ajcze5EQEBAQMBXPOKCz9Vw4e+HJZ9Q+OfFGe2HKSu+MhHXPxKSUqnkAvm5i091gkoVs9lVKhWnGgFAtVrFcDh0MWk7OzvIZDKo1+uOmBhj0Ov1nIpFNYNjQkWLagITOuTzeefqxZ11ADMxc8xOubGxgcFg4Gq0JZNJlMtldLtdNBoN5HI51Go1pFIptNttdz0JGhU7KhmlUsn1uVwuo1aruUQnzMSXzWbx+te/HhcvXnRudHHzQWNSY9405q7b7aLdbrt2VXnz2/PnVV2z/Ln35137p8epRPAzTfrgq2mqvhy2LtWQ5rV+Qol5ZC2OlPrtzlOa5/2txj/bOUzN5H24rowxTvE1xuDcuXP4mq/5GnzgAx9Ap9O5wS1QVRrNfMhNABJLkgRVsjQWU9U6Y8yM26OST/7NeWV7mlyD64uulOl02pXgoBsvAPf+cbOB64Tt6/NwrLQGH/ug7owE1XNV05QssZ+q5Ol8kECSpKnapySZfaZbKNetzjOJOt1FWQKF48HjbDORSDgFkYSPz8cxTSaTLqGSqugkcFQhORZHUbxfKhwvAof5BScDAgICAgIOgq9OHJRhLM4oj1Mc4jDP8NU25l1bKpWwsrLiXMiYLp/GCHf+WbuNyUqYpj+RSKBUKmE4HLqEJFtbWwAidysW0CZZy+fzLvaN6bdTqRTq9TqSyaRL80/jigWQk8mkK1Gwu7uLbrfrjKxMJoPhcIhms+lcnnifRCLhajYtLi7OFBKnyybd3WiMjcdjlMtl5HI5p2zk83mcOHEC9XrdxeQxkcltt92GV7/61TcU6fbnRFU3Ki6aaZLKG0ntQetF5z5OgZtHjNgPYNbgJvx4sDhCd5DqFaccx907zrUvrq/a/mGbEc8FvkuqkkEALvZLMRqNnIrM94RKXSqVwpkzZ/DmN78Zv/3bvz1j7Os7SCJF454ZDZVQkhAxTpQqt7rZMZOjuhQqUdT3lkl9NHYN2I/z4jtAUsi1zX5SjdNadFTNeB6JH4kJoWsf2K+nRkWQSrOftIXjRVKmsXZ6nr85wvEjgVMVUsmajgG/W6g4cjz57H7WV1+5ZftauFz7qTFznKfJZDJTT88fp5uBQwmcMeanAXwdgHVr7T3Tz34QwJ8FsDE97W9Ya39jeuz7AfwZAGMA322t/a2XoN9z+hoUuICAgICAwxGndviGtZ7n/z3P8D1IafM/P0y10D7m83ksLy+jXq8jnU677GrA/m7z8vKyMwKttc6FkWoRic5wOES5XHaJQWic0y2SKl2xWHQFuNvtNiaTiUtGYu1+bSnu7heLRRQKBWc8Mlul1l0iQaPqsbKyglqt5pKjdDodZDIZnDhxAslk0iUGIXkC9os6UzUol8vu793dXZTLZZw4ccJlI6Q6mEgkUK1W8frXvx6VSuVAEuHH91DN6Pf7aLfbLuaN7mxxaoXOqa8g+fMbtz4UcTFpcWtPDUpfhVPF6CA1LQ5KbmgAxymXvoKtffXJa9xYHTYnPM93H2X/qI7wMyBKbsJNAsaHkQTdfffdGA6H+MhHPoJerzejqHGMSGC0NhjHmsQvl8u5uFGt5eaX5eBYkKik02mnAmsCHpIukgUq7ZxHZnLt9XpuY6RcLrs4PRJPdeXUkgTaNueTBE83APxkIXx+YF+l00yTqlrzWdUVVxOCkFTRLZR9oZsilUue4yvK3DzRupa8t2Yn9UkWSSznkXPJdaFuknz2VCqFWq2GdDqN9fV1l/TpZopGR1HgfgbAPwfwc97n/8Ra+4/0A2PMqwF8E4C7AawC+G/GmDuttWO8DDAIMXABAQEBAYfDd0vjv4e5gPHfg5SHg9SGOEIYp7rpeeVyeYa80VWKBhndtrgrTqI2Ho+xtbXldpDT6TQqlQoAoNVqOTWCLlH8nUoYY99oDNbrdVQqFZfdD4ArpKxGKGuwMT4MiBKLTCYTtFotRxQ1Ox8/L5VKLtMgU/LTUKbR2el0kE6nsbS0NKMOApFr6MmTJ2GtRbvddq6NJJCve93rsLi4OGO8+XOhhh8NUK1n1+12nfGou/1KVPzEDf495qlU8whMXAIKXuO3p59rf+gGqiSOButRFGC2xznTeCPtv953nlJ30PtzGHQsfHLkt8Hj/X7fxcRRtWHc6D333IPr16/jS1/6EgC4eVUXOSpZ2i5d6vjuMfU+EK13nqcxbBw3KtFUe3hPZmSlAk7iwvkikdNEQKlUCoVCAclk0tVOJDkkoeQ7qTGBfDaNHeQzMzYvLv2/kiqSUS18TmjsoH7f+uuGRFBJG8eHZJrvL9U3rYdHl1GdK34Pso98p/l8qvJpshYSN44hP89ms8jn8yiXy+j3++776Cs6iYm19sPGmPNHbO/rAfyStXYI4CljzOMA3gDgY8+/i88BxgQFLiAgICDgyIgjTXEqxrydVt8Q1/PiCN088qZt8Hfuqp84ccIpRuPxGMVi0V3LDJAsJk3jiKoXEyUsLi6iVqthb28PGxsb7vrBYODctHq93kwRYRopuVwOlUrFkUcmGkmn0ygUCi7uhK6EqVTKFc1muYJut+uITzKZdESy3W6j0WggkYhKIVDBa7VaLqsjs2QWi0X0ej0YY7C4uIhCoeDaNMbgzJkzWFlZQbvddjFyLJ1grcX999+PCxcuxGaP07lQt0mqAyRudJtkDI26U7Edfqbkzd8ciNsMiFOAfXLku1PGKVHzyBehsT80kNWYjVuL2h/+rQrMPGL5UsBXVvznn3dfKnEsk8F3rFgs4s1vfjPa7TaeeOIJAJEr4nA4nDHUmQiFpIXKjNZt45oH9pNs0A2Ra4rvLUke1ScmHqGKTjWMfdbYKyqJrPvGdtS9ke6RbJ9Jg0gidczo9si1wGfV70KSLrZDEqQxe3xudUHkj5Yd8RVgkrdcLudcFakIxsXJFQoFVCoVNJvNGfdZEkF1K9f3gaRS++ZnHNV54/Ucc5JvjvnNxAuJgfuLxphvBfAQgL9qrd0BcBrAx+Wcy9PPboAx5jsBfCcAnDt37gV0Q9rE/KxeAQEBAQEBPg5TBw4yCOPaimsnzlVMf+IM7mKxiGq16hJx0Fiiwch6UUxlzsQdmnSCZGxpaQnWWmxvbztDqdPpIJfLYWlpCa1WC61Wy+38sy0aKrlczrksUcljbB2zVNL9i+oMAJdIgVkmqWKwPECv1wMApyAwQUS73Uan03EqCPtBNZDkb3Nz0x0/ffo0lpeXnUsZjS/ulp89exb33nuvUwrnEQw14NQApisnDWtV9nSO1X1M1wTVmrh7zlPR4o7p56o4qUHMZyfxiFN9+S/b57MqkfON/Lj+qdKoLpo6Ji82tF0SDK45Vf588suNB8bE0ZUunU6jXq/jwQcfxPr6utsQYBINP7GHtftxUsB+HCJJls4JoSqVki72W90FScSYYbJQKMxkf9UC4nTjY/tU6DRhEV2XdS1RVWb8G+effed65ZxqghG2q9A1Hxc/pz98bh0/JXbso2b6ZHkTjiHLk5Dgaeycv8nBd9qfD1XeGFPsb65w/TAOV11f+d7cLDxfAvcvAfwQopCzHwLwYwD+NFiKbRax//NZa38SwE8CwAMPPPCisK6X6LsiICAgIOCY4iB1zD82j6Ap/HN8sqAGQty9mQmyWCzOGGh0r6LRMBwOnUFBA02NQRo41WoVzWbTxczROFxYWEClUplJPU6XMmPMTDZJkhU1ahkP0ul0nPJHQ5JGzWAwcEoY215cXEQ6nUaz2cR4PEa9XnflDFqtliNJo9HIZdlkXE8ikcDy8jJSqRR2dnZgrcXCwgJOnjyJdDqNRqPhDM29vb0ZF8rXvva1WFxcnFsygOPKf2k80m2SGTQ5fkreCKp1AJzB7SdT4FzHrTXe2ydKGo+j8I1HbdNPZqIqmR7z+0Y3MwDOeFdSFrd2eR37zzF+sYlc3L1pnHOd+MdZG40gIcjn824OGVN29uxZvPWtb8VHPvIRV9ZCN1m4LtLpNJaXl90z53I5nD59Gnt7e7h8+fJMHURuAJBc5fN5Vy6D55C8UQGjas4kRHy3qbpRFeczM7093Ti55plZkWSIY0N1XV0mOd98RgAzJJ5rhv2m8svjzHCpiizHlePuJ2/hvGn5E3oEUBXz4+14bxIqXa+6ppU8qhsn/9Ysn2yPY+O7FZMYWjtb2kHbuRl4XgTOWnudvxtj/g8A/3n652UAZ+XUMwCuPu/ePUeEGLiAgICAgKPgINUtjrgdpML5rkD+zv8849d3n6vX6y6bosaA0HBYXFwEAJcpkmnRuZPMGJFisYiTJ08CADY2olxj5XLZZYxcWVlBoVDA5uamU+Vo6NJ4YbFv7srToFGXyWaz6frAGnDc/ScZo8HLvjF+jSQQgMu8R0M3m826EgWtVgvdbtcliWBSFSZAOXHihGsDiEgU3TJpSL/hDW/A7bff7oxhf27VFU/dJ2nk9vt91z8asL7rJEkjjV9Vv9TQjZt7/q1ETo3R56oAq6ulv0a5XrRWlq+2aeIWjXU7qHCxqhc04v0MhM8XOh76t6+Q+GPgv396LstJqKqcTqfxqle9CtevX8ejjz7qymOkUilUq1UMBgM0Gg2XyKNcLrt3g7GalUoFJ06cQK/Xw7Vr15wbJtU0khWSJ81syJg3jSudTCZu7bGf3LDREgEkm5pYiO8c55Jz46fQVwVV1TOOiV7Pda/xb3EukXzXOP70GKCyp+uQCh/dNtX1m+6pvB/XIGtA+qqz/52qZIvfo+w/iS1/9zcq+KMbGX683Fd0DFwcjDGnrLXXpn/+UQC/N/391wH8gjHmHyNKYnIHgE++4F4evV+wIQouICAgIOAImGdYqhE4z3iep6L5P6qezFNdUqmUS3lPcAcegEsp7hvmy8vLAODi4sbjMSqVClZWVtDr9Vxs2Wg0QrvdRiqVQi6Xw3A4xNbWFrrdLtLpNIbDoSNILIStrpi8J+OFqErRBY2GHGPdOp2OU95IDBlXw2cql8uw1rpYORIlFjwejUbOnY3GKN0hAWBlZQUrKyszu+Ddbte5g9JYrFareNvb3oZyuTzjnuUrT0o+qGqwYDgNaHWd9IkfjU5VoPx1pKTMXwv+73Hn+/0+iBTNW8M0WEnMVZHz4+CUgKr6QdUizmjmvThGfjr45wKfuM17PoLzoa53/oYKjW8m8chkMk7xpcvvG97wBly9ehWbm5tIJBJunTETIQkU1yrvbYxxZQTuuusu3H333fjwhz+Mzc1N57rLdUJ1iuoP1xXf9Ww2i/F4tvxFPp9386nkLZPJuDY4r5w7XaOa/IMJVMbj8cx7ReJGsmmtnXFJppLmEx0dZ2DfNVTVX/0u5PcelS0lkarm63hp0WxmptX4Qs1AyjlRrwVNxuKrcfqdrS6XfrIjfh8mk0mUSqXnspxfdByljMAvAngHgCVjzGUAfwfAO4wx9yFyj3wawP8KANbah40xvwLgEQAjAH/BvkwZKIGgwAUEBAQEHA1xxAuId53k53HH9VgcgfMJg99uIpHAwsICqtUqADjDaWFhwblnJZNJtFottxutrlVMhADsx7qsr687I4OxacwCSXWKCVKGwyFKpdJMohLuUtOYIXGbTCbodDqOcJHQMPkClTeSMgDOcCWZYswck5rQUGKNOmOMy0jJZxiNRtjZ2UEikUCtVnMukzTSeXxnZ8cZwjz2hje8Aaurq7Guk/4cqvpG90lmm6TBrG6RvjpGhSCOpM27txrYSjT8tXUQYYtTdtm2GqU8xz/fz+SoioOqljo+JDC+yqbrXjMAHjb+cZhHcuPeJyUrPIeGuv6tY8w6h1xjdENcXl7G6173OnzgAx9wCXWoTpFgkdgwFq5QKDgVaW9vD81mE69+9avxjd/4jfjgBz+I69evuzWpKho3CugGyRICXH8kjvl8/gbixphVummyfVXS5n3/qHJHNZ+Emyn5ATiFkuuACruqbDrmGvPGNaMqIM9Tgskfdb2kmsjPqfpzrapiTVVRlTFdE5pkhetakxBxY4Lrmn3XmGK2RwJLAs5SLjcDR8lC+c0xH//UAef/MIAffiGder4wJhC4gICAgICjIU4R83eW+bv+q9fEqQSqavhGvhqSuVwOCwsLLgaGoFtgIhHVLdvc3ASwnyigWq1id3fXkbd+vz+jKqjSxHaZPbLX6yGbzaJSqczUUdNMkqq+aYkAKlEAnGrB0gM7OzsYDoeOlDE7JpOKcHxIzpgMhLEttVoNyWRUGJyZ/JhlkkpevV7H6uqqu2e/30ej0XDGKw3eRCIqVn7x4kU8+OCDLsV6HPH2lTdV3/r9viNwVC/8JCeEup/6a8y/r66LuHUXh7i1FKcmxqlhCu2z35Ya1Rrrw+fyyZxP5FSR03ZJqrWG2HPBUdVGnRONi+K/aozzX9ZQo7skY04vXryIxx9/HI888ghqtRoqlYorVcFnyOfzjrAwKQo3PPr9Ph599FG87nWvw/ve9z78m3/zb1wGVroBckMA2FfcjTFO9eX7x7qLdAnmfJC8MTMq+0bCxe8VJT0AZu5PMkZ3bW5AcK1zo8aY/SQtJJwkMRr3qoqYzg/vzf5xrqi08ZlUGeN3DQA3tiSZVAkZD0xXbr0niRs3XfhucqNFYyB5f3UZ9ssWKHZ3d10NupuFF5KF8isOBsGFMiAgICDgcPiKW5yKEbdzTcS5x+n1/n3070QigcXFRZRKJZeoJJVKYWFhwSUzYFxZt9tFJpNxpQNGoxG63a47TgOKyslkMnEJGIwxzhCiUcSYG7omFotFV16ARjuNHWaGJFnSlPo0cHq9Hra3t12f9/b2cOLECSwsLDgDkQSKWSTp1gTAlRQoFosupk4VPaoPp0+fRqlUcupGq9Vy2fnoTsX4oXPnzuF1r3sdLly44OL9qE5w7nReVVFjnzUuj2Oj59FAVbLrExjfoFTEJSvxjym580mRrlF/XfprM0799WPk/D7xb36mhq26UKrKweQTcYo2SaG6mPpQguX313/GuM0X9pnwa6hpTJYSPW500FBnEqAHH3wQ7XYbxWLRJeDhBgdVND4vXRxTqZTbnGi1Wnjqqafwxje+Ea9//evxqU99yo2hkjeqbsbs107U90/Xn9Z6JJGiIqTKEWvT8RmV/JCYcFNH+67KKeeV55D4sV2uAxJJzSbJd0ndETm/7KfG0dEVVWPzmP1W3RpJpIrFIgqFAjqdjiPhvI7PoeezDSWzOi6+6qakju3ou8jYxOfrHvxi4FgROAQFLiAgICDgiIhTxvRz303uMDe2gwxNGjBM3U/1jHFnTOjRarWcQdbtdh3BSyaT2NnZwWg0colOSqWS26lnljomHmBRYRI8YN/FkkZcuVyeyUxJFSadTrskJq1WyyVQYDwOY2eazaaLpWP2zDvuuAPAfuHjc+fOodfrodlswlqLpaUlDIdD95zMhrm9ve2IJxDFuPAZl5aWUCwW0e12nSvlvffei263iy984QuuBMKrXvUqvOENb0ClUnGFm8vlsttZj3PD8wkOlRjGBamRrOqNP7c+yToouYG6lynmuQYepqT5UFJ51GsINUiVCNIAVoNelTlV7jSLoK8QqivbYf07iND5c+kfU+Kpirgfq0XywY0NbjBkMhmsrKzg3nvvxeXLl2fcJ0nc+Ny9Xs8VrGeMJzc7rl69il6vh/vvvx+PP/64K4+hhCGTybh4t26365II5XI5pwSPx2MXc6WqmDH7KfA5H5lMxhE9bt5wPDTGjIobr1EiphsUVPGouGez2ZkkJeqyqUqs1qVj+7rRwTVBEkjySLWPqqZuiJD868YUXVqVrOszsH2+tzr+PKYqI9edulRyg4J9VvXzZuF4EbiAgICAgIAjwjfkfDUNiHdTi2vDj7Hxz8lms6jX61haWnJGBpU1JgZhOn8aUbqjz2LWlUoF5XIZAFzsi2Z75C6+qnAkgGpcUlUgOaPBn8/nXTFtKmIAXJY9xvrs7Ow4JYzkaWFhAf1+H+12G+VyGdlsFjs7O9je3nbtr6+vA4iIEpWK7e1tbG9vO8LJ3f5SqYR6vY69vT0888wzyGQyuPXWWzEajfCpT33KKRV33XUX7rzzTpw5cwaNRgOf+cxnsLq66uIIGUuj8+W7T1I9JPH1673NI2/z1pHCV8/i1FsldRqHw88OQ5wKFXfdvPVL0GhV49dXp1W90sQmNN5p/JIc+Eokx/OgrJZHRZw6qWSAz0QFUdPma5IWTU/PuM7RaITz58+7uoQAXJwax4hujXxP6NLX7XZdH9bX113yEz9ZiG6+UEliqQEmC+JY8TmYqITjq7XJfFVM67lxPDRLpRIoEnSSJs6pzrXGFHKzh2NIMsl3iWOs17BNfuf4bpPcgNLvJH3ntM4dN4mYIMlXV1Xt080EfxOBz6guw3Q316LoJMncAKM76c3CsSJwBggOlAEBAQEBh2KeyyMQH+sWd42SNjVufaO0WCxiaWnJufNlMhm0221nLLAmmsarWWtdTAxj3Or1ussiaW0UE0MlK5fLuWyTmUwGlUplph4X76UFg7VgsbpssWg1jTaqbjSUtra2sLa2BgA4c+YM7rrrLhe/1mq13L03NzfRbDYdcaRCyAQC+XzekVYd10KhgEqlgmq1ikajgV6vhwsXLiCdTuNLX/oSms0mstksbrvtNrzmNa9BvV7HxsYGPv7xj+Pq1avIZDJ48MEHXTzTPCKjCRRoGPsJWtTFSpUMYDbDoa6HuLXmq7px8JW5w8hNnFvlPPIYd8+4DQv//nFkk+f4qgazJVKB0/p/qthwDLRwuI7pPAKq99d24p5f3fT4uSaq4H04Z3qeZmnkpsva2ppTxVR1ohseyQVBJW8ymeDSpUsueZCOCYCZum3FYtGpcVrzTUsP6DvsK5x8Fq5lfk8w9pBum+y/jiHVU008o6qzqqqEKnD6PaPqlRY3VzLH+Db+zfEnMVLXVlXhdC0kEvtJnEgY2X8lcrreSYKVoJKkURkkSWOMHO9H4gvAEe15HhkvB44XgTOAvXlF0QMCAgICXiHwDR8gPh26wjcg1WiZd26xWMSZM2dQLpexuLiIhYUF7OzszCh+LF7NHfFSqYRareYSh5TL5ZlEBkwg0mw2naHJtorFIk6dOoV8Po9Op4N2u+1iTFjDjUH/NHDopgnAxbNxZz2RSKBSqWAymaDRaGB9fd3Vcrv99tuxurrq1DoAWFhYwO7uLq5diyoNMY6F6l6j0cBkMsHi4iJGo5FTGACgWq06RXI8HrvMfdlsFpcuXcLW1haMMThx4gTuu+8+XLhwAVtbW/j0pz+NK1euOCXy7rvvxsmTJ29IAR7nEsvf1ehV9U0TNMwjXgCcsR3n2ncYeZtHMg9S3pRA+c/o91U/8w1ObUP77Pch7h3xx5VtkczRONYYOa1tqOSYmw0HPXNc3+Oe1e8ryYSm2PezDqoSa611iXS4UfDkk0/OjBcVO2A/xozqHDc6qH41m03s7Oy4TRolLSQTrP1orXXX0vWQ52r8of/9pc86HA5vIG+aRIaqG9vlj8aqaWZSVal8ssj7ajkAkih1sfXXKImeFtT2E+FozKXGsOp3LpO3aH+0JqCqciSp/ntAJZH94TNSDfTHlXGJjEO+WTheBA4GFoHBBQQEBAQcDN+g8N1v9Lw4Bc5X3vRaGjTVatXFeJ0+fRrlchmbm5uuJlulUplJl29tlO6fmSk7nQ7q9Tqy2Sw6nc5MP6hssUD3aDRCtVpFpVJBrVZzxa5pnFQqFeTzeRfbxZ34YrHoUmEzAyQVOiZC6Ha7WFtbc9kwl5eXccsttyCbzaLZbGI0GqFSqWA8HmNrawtbW1solUpIJpNoNBqw1jplge6cqnKxDzTwmanSGIPBYIBOp+MUyDvvvBMXL17EcDjE5z73OVy6dMmRwslkgmw2i1e/+tUuhk/nl1AipwYsk5eo+qbgmBE6b6rq8B66hlTNOAhxBEQJlvadx/zn1HO0T3FGv97Xv7/2lwa9blbMI3ccJyU6VFaYaEbJLgkQyd1R4Y/xPPKqxFLdKX0VjmNJFYt9KpfLOH/+PK5evQpj9t0Es9ks+v2+Gx+6VjK7bKvVQqlUQqFQwPXr12fcB7XouxbmVtdALcRN9UvdAqkK8RmpmLNPqvKRYGpdNPZBi3/7Kpu6OJJEKdGaTCZOefVdfzm3fjkKv+8sXO4nmtF1rsRb1Ty2z7hfzRbJtujWSsLujy3XD4m3JuzheJCMMsaT5yrRfblxvAhcSGISEBAQEHAExO0GzzMeDyJxapTQ5adUKjkytbi4iDNnziCdTmNtbc3tGOdyOfR6PeeqmM/nUS6XZ4zHxcVF7O7uuoLW3AXf3d1FqVRyRI5k8OTJkzDGoN1uo91uO0OwXq8jmUzOkDe6HzEVd7vdxnA4dEYmC23v7OzgypUr2NjYQDKZxF133YV6vY5Go4FWq+VURSY0WVtbgzHG3YdqHsngeDx2ac9J6FjGoNvtYn193REAjlUikcBtt92Gixcvolgs4pFHHsGVK1ec4am75qVSCbfddpvbOSd890Q1NEk0/GLdJF3c1Y/buffXkqoS2v5B8ImXQt0JlQiqauQbx/qMamDGKXBHgf8s/prX9v3nYh80SyVdFJUskAg8l7i4w0gb29V3VvviZ6lUtY4qHEnl6urqjLsyiVi5XHYJh9SFku51tVrNxbhqlkfOo9Ylo5pD5UddS/1r1cVPFSJCVbS48g5KZlWBY9tKWoD9siEkOqpWaeyY73aoSWRI5Di2Pnnjs5J4qvqtmxR+Jlt+75LM+a6/VM6MmU3aoslXdIxJLJXscc2oYuhf/3Lj+BG4m92JgICAgICveMxTH/xjhKptfjs0UPL5vCsyXSgUUCqV3N908WNds0ql4twWq9XqjHtjIhEVrKa6RaNSM9Sxj1TsqtWqi4Fjcg9mcQTgdov39vaQz+ddLE+323XHuOPMtPtra2vY2NjAaDTCwsICLl68iHQ6jWvXrqHf7+PEiRMoFArY2Nhw5JQZ4UhMOW4kq4zjoeFaq9VQLpexsbHh3CmpGDDO5O6770a1WsWlS5ewvr7uYgR9I9JaiwsXLqBarcbWfeM8+vPMcaH7pNaOUle/OHIW97e/Po6qvM3rH3/3lZO4uLK4dc12/T7HbUzwuBrBej6wTxDVbW7eu8G2td90D9SMjsB+/NJR68Xp86krpK8u8lyuF26ScB1SndN2eA77yFpwVNBLpRJSqRSKxaIjUNyQ4FjQLbLT6TilXdVvKpL9fn/muf01o+6LSjQ5B1SO9/b2XD05jrO6L2p5ANZgVKWW5IVkjGRI4wN9kqbZRPV91PePCqOqZhrPp+qnKtXsF+eFCiOh7yfHiH3k3+qOyu9CEmEllfosSuT5PcWNhcFg4DbHXowkPC8Ex4vAYX7NnoCAgICAAB9HMT4Pcj0Doh3jlZUVLC0tuZ191jcbj8e4evUq1tbWnKHI2mY0Vph1jjv+pVJpRnUjuSgWiyiVSjOpuRcWFpBIJLC1teUUNmZwLBaLrkYaDRPG9QBRyYJ+v+/idgC4xCJ0TUwkElhaWsK5c+fQ7/dx+fJlFAoFVKtV9Pt9NJtNR6gKhYJLwc8MbnwuKgYsDJ7NZlGtVtHpdHDlypWZZA7GGEdo8/k8dnZ28OSTT7oU7P4cAXBG3J133uliAg+ac513KoV0n/LrQ/F331jz1ai4NaLGaBw5U/Uurg39XJNmqEqifdW+zFMD+bmSFb2PT4Z86LjFuan6KrU/T3wOrnduKPBZ6Kr3XGps+WTR/5z3Zp+p1nA8/LlV0smi0SdPnkSz2XSxqePxGAsLCzDGOEWcpC+ZTLqYTG5eUHVW0qAukySyVNJIfHQDwX8+HS+STT+5iK5jjj37wj6Q9GjSGc4xgNi1FucSqco6lUQ+F9vTRDL8TDcitD9KqLSEhZJIuk6Xy2V0Oh30+31Hrlnv0q+pp+8Gx4rkOZvNOqLPsWXNSc4X55/fpTcDx4vABQUuICAgIOAIiFMhCN9o9cmcGsBU2VjPDYDb9d7Z2XH/0VORoltlPp9Ht9t18W4kOcPhENvb2ygUClheXnap/KlUtVotZ1zV63WMRiNsbm66orLFYtGVGWi32y6zIkkd70E1jG6NQJQtc2dnB9evX0e328Xu7i5WV1exurqK9fV19Ho9Z6ju7Ow4tZDgM47HYywvL8PaKNMljTkmNCmXy6jX67h27ZpT+EhMSDBp5HY6HWxubs4QKRrBfvzJ0tISTpw4MbP77ytL+kODXmPffPXNJwAH7bj7JOww5S2OpPlqmt9PYN+w5z38cVDCqTFeuo59ZeWwNa8GexyZiIt/8tvxx4jur1yjNJLVnTJOSZ337sapbv6/XD/6o4RV54OEjOSqXq+7TZFyuYzhcIhms+k2Y7jxsLu767KrJhIJR+CAfZVHs1dyvauaRNdCAM61l/3lmJDUAHBtcM7VJVHXCJ+f4JpS5YrEmaqhJkJRqFJnjHFxrQSfg23x+bmRpPGZ7CfHXskb+6WKl65/ulAyXlHXlbZDldJPbqRqNs/ldxmTwfA7nc/rq9I3A8eKwAEhBi4gICAg4HCoARinsPnuYr7hnslksLi4iEqlAmCWHPA//729PVdMejAYoFAoYHV1FdVqFbu7u6jX60in09je3kar1XIFhNPpNBYXF9Hv99FoNLCwsIDl5WWsr6+7mlJAlDFyY2PD7TYXi0VUq1UXA8dnymQyzjimiyVdPql4JZNJrK2todvtOiVvaWkJlUrFEbpUKuXch2isMRZIEwNwp7vb7QKAUw5TqRTq9TrG4zG+9KUvOaOWRiKJHjMX0hCm6xefZ5673KlTp1Cr1eYa/b6xTzVCf/zYN/+eCjWSde34CtA8lU3VMEJj3viv1q1SNy8a5kr0FPq3byzzMz1X44fUOPXfFf93n8jpePBYnBrIsRiNRm7DoFAoIJ/PI5FIuFgkVXDixtV/j+e5UHKMlPyQsOgxX81jBsdsNouFhQVsbW05xTmfz8/EsFG1YVbZQqGAZrPpXCZJoDT7JK/X+Col2BwjJVtxGwwAZtaDKov++uA8a4p/ADfEeOm1GmuqKp/WqAPg3GPpjUASxGe11s5klyThjNso03ed342cE82cSVUMgFPQuKmldef8d1pdQkmeOa9bW1uOxHIMVKGc56b9cuFYEThjTFDgAgICAgKeEw4yLuOMwVwuh5WVFZd1LpFIuOQMVKUYx0byls/nXUKDTqfjYmdY6JrxK6PRCIuLi9jb28P6+rpz0VlbW3NFswG4XX0mVCgWi66QNl0NrbVOkTPGoNVqodfrIZlMIpvNuvpu1lqsra3NFBReWFhAsVh0rpya2KNQKMzsgFcqFVebanNz08WdMNavXq+jVquhVqvh6tWruHLlyozBmsvlXNIXjUej0UXDmgZoKpWaUf+4Q766uuqSR8Qpbz5olNGt6iD1jetEQYPOV9x8FSeOPMb1y1fdNB7IJ0v+j65XJYyqMvj30hhFkhp1i6QBrQa+nh/348fHHaRy8zNuIpDcMEkPk0dwzn3CFqew6b/+eUpgOM9K2H2Sri59JB+1Ws0RTI0pKxaLM4lGGN9FdZyKk2YupKKk8WTsrybw8V142V91IWRMn79GfDdZ9lfXA4lYnMLG4+q+y7kgweO7nkgknBsn2+MGTK1WczUmSZypnGk8oiqkfDb2m9+zeo1utJFUWxuVYiDB4liQdPFe/M6iOqgklO1sbGy478TxeOzc3fnu30wcLwIHBAkuICAgIODIiHO1A+KN60Qi4Qr70ghIp9MYDAauSDUTmQCRQsaab0wnTiWLRkaj0XBxM9x573Q6yGQyOHnyJDqdDra3t51rIXeEjTEu9T6Nys3NTadaJJNJlEollEolTCYTV9+NhW+ByEgZjUZotVqurhyvnUwm2NnZccW+GQvEODfuiDOwn0ZQq9Vyu+0saXDbbbchmUzi0UcfdbXdRqORy0DJnfp2u+3ihjjeSgoIEg81ltPpNFZXVw9NLKAkSdUQ/VFXLr3OXyM0jlW9UqM+bnd+HmnT31URAPbJC0mXHotrb55rl69yxD0TEF8+QJU/VUfYrhr7fAYe478+qea57BfHjhshmuiH48B7qOHuk5Q40hw31iQlzLyq60L7xnskk0kUCgX3DrAvGkNKFYhJOvhO7e3tOXdq37WQMVyZTMZtXqj6xrZ9Iqz13TjOfHe1bhrHVdvUtnTN6TunGSR1zrUcgcb1USEzxrjPWTeNrtrMPukrvVSXfRKp88xr2T9NVuK7Uqrqpq7H7B/nezKZOELOcaD7K8eDc8l1TDIeCNyLCBNi4AICAgICniN8o1Y/4+epVMq5MtLgYx03Girj8diRt0ajgeFwiGw2OxOfwkLXJGaMF6ObYaPRcBksmYWSAfhU3HK5nCNQzKy2sbGBWq2GlZUVXL9+3ZEokkTuTtNlibXiaMh0Oh3k8/kZgkCDtdPpoFKpoFQqOffQer2OXq/nEgacPn3a/U7Db2VlBRcuXMBgMMDDDz+MRqPhlDfWpltcXESj0XDZ+Gg8AbjBmPMNbM4NEBn3JNY6bwfNrZI3vxwBz1MFbB6UyOm94/quipRPwtQ1jKSIBCKOsGlf/YQSwGzSDh07qhccA981k+0pUfINfDXAeU9fjfOfPw58blVTgUjVaTabGA6HbhMC2E/1ruN80N9xJI5GvZIGVXr8NcZr6N5br9dx9epVANGGBY16kk0+z3gclczo9Xpot9suHpRuvtz0YLvqGqlJPaiO8nMeU+WK99U4Tn02fT4lvVrvjs/K947948YS1wjVSM0Iyc0sbmj1ej3ndsoYX3736Dugbpi8v65XVeZIhHkdr+E8TiYTdDodl6CGGTp5jo4dn5P397Oh0o1c3xUATvlnnw7aLHqpcbwIHIIAFxAQEBBwdKiBH2fwG2Oce2K5XHZxWtVqFQBc7bTJZOLizzKZjMuARpXs9OnTjoRNJhOnei0tLaFWq6FarWJtbc2VBWByj1wuh93dXTQaDRdTQ4Mjl8uh2+0ikYgyRbJQd7PZxMrKijMg6TpEw46FwVOplEtaQiNQFYl0Oo1ms+meu9FoAIBzhaI7VKVSQbPZdOnQc7kcTp48iaWlJTz77LO4du2ay8LHHe96ve7KIZBE0W3MJ0NqTMcRKmMMqtUqyuXyDQbVPDWGBq2SuLg4mbj14pNH9tcnV/PIhH7G62jc+sc0Fs7vE414GviqujDd+WAwmFFweG5cbJFm3qPiS/VEVUWNj6KhrIkhVL2ikcxz1YD3x9CfVxrSe3t7LjEPMJtW3yeQcfM2T4mb50bpn8dxpuJcq9XwzDPPODdoPhvHn3Udu90udnZ23EYMFXrG9wFw48z1T8VNFV2/Hhr7qG6l+izqBktwI0CP+Uquv8ZUFfVdhUmEqMpzjTAhDY+RmHKDSxVFkkzey++zulFqrJuqwuyzxqZZu+9CyTqX/J2klvORSCRmahSm02lXToT3IIHVOpxBgXuRYYyBDRpcQEBAQMAR4Bsr/k5+MplEvV53haYTiYSLzWHcFFWxU6dOodlsAohcdbrdrtu1v+2225DP5x3ZazQaLmarUqmgXC47Q+/ixYsuQcje3p4zQAaDwUwR5GQyiWaziWq1inw+7/rOZCBUygqFAsbjsbsnsB/kv7a2hs3NTZeARLPO0Uip1WoYDoeO5CWTSac60LDqdDpuDMvlMk6fPg0AePLJJ9Fqtdyu+WQSZZlcXl4GAGec83lVIVCyM48M6ecakxg3t3HzrGqMXzpgHoHz3QCBWZfDOPXG76uvkLH2nO8Sxn8nk4kr1UClhEliSOBJzBifQxc4YN/lVOHHGDHdOvtJdZVrTZ+XGwjZbHam6LQSD3U9VBWJ18eR0TgljfPTbDYxHo+dGq1Fs+Pmed5c6ZzQkOfmhhJDH0rgSqWSi1elGkVXO753fE96vZ4rG0LCwIyzSo7VPVDLDGjdOI19I2lRdU4JNueYn/nzopsDdGHmWlCCpq6GHBdV5vjdMR6P0e12HfkncfMJpu9Ky+eii7avguo7yfHTTQCtO0eilc1m3XetKoskeewD1zZdwnmtjou6z+rYce0cpMy/1DheBA5BgQsICAgIeG7w3euMieLLVlZWUC6XnTGcz+cdGeEOLZOEkLzt7u5ifX0diUQC586dw8WLF2GtxaVLl5xiZa3FyZMnsby87LJQjsdjPPDAAzDG4Nlnn3VK39bWFprNpjP0WD+LbQFRuQAW855MJhgOh7hy5QqKxaKLqSFpq1QqGAwGuHr1qitJwKyPNLCbzSZOnDiBXC6HTqfjarvR6OG/k0mUwITuaMzMaa3F1atXXcyPJgaoVCpIpVIuMQAJnBp4nBMab/OMJN2xX1xcnEkZ7huJPjkA9l0oNeZMlSB14fQVIk0oweNxaq6v6KpRqsSVxYaV9FBBpeupGsBMHMG+8BjXJ5/PJ5T6DDymhiiNVW1PE5Lw/ixFkUgknBocR+j0fjru6hbnq4JxZH0ymbiyGCRy80icT9x85VMJtKquPoHXdcTjXGOFQgGNRsO9p76aNxgMcP36dQBw40KlN51Oo1gsuo0SJVMcH1WcVXHTNaoxbereSjVW14evOvKHxIfXq9rHBEf+D69Rha3T6bhMu3R51bWvbp1aZ05LEMybD7bBc/1NDq5Lqpoke6wHqRsadAHlZ9y4YqwvlTuOG++lLp7aXtwafLlwvAicCQQuICAgIODo8I1FJv9YWlpyqpu11hXGZvwajZ9EIoFr1665+k+9Xg/ZbBbnz5/Hfffdh93dXTzxxBN48sknYYxBrVbD4uIiTp48CWst1tfXkUqlcPHiRXQ6HVy9etWl52c8B121aKhzd7ler6PZbDqDmzvg/X4f5XJ5Zqd8OBw6BYGukCwtQAVoPB4jk8lgdXUVmUzGxb7xnt1u18X6UOmhKybHp9vtYmNjwyV5oNHExAJUA2koqusicGPqe37GOVJjlJhMotpy2WzWlUbgLn2cmqJESkmcb6jGrRW9p9+mQo+rEWlt5N7FouEAnLG5u7uLtbU1t4HQ7/dden3fxZf9B+AURK3px3/nkVcdXyUMwL5RzfN5nGNPd0Ea5Ew6QsOe64HqlKo/ek9VS+PIm7ox85p+v+/GkSTI33w5aM51DNQYn+c+q30jgWP8K0sF8DiwT7IajYZLRkRyQZLOtcoNDJ0vvsu9Xm9GOdM588kN1wFJMdezrkVVM9lPHX+SUH0O/33ge0zXWj4r69TlcrkZt1JV/7R8gCppvD9rtum1Gu9GcqkbDBorSvC5+L3C7ymSV56TSqVcyRT2gd+rJH78HmHhb46J3s//Hng5cawIHBDKCAQEBAQEHA7fIAbg6jwtLCw4V5pMJoNKpYLTp09jbW3NqWHcGR8Oh8jn867oNgBcvHgRr3nNa9DtdvHYY4/hkUceweLiIjKZjEuE0uv10Gg0UC6XceLECWxvb+PKlStO8djc3MRoNEKtVnPqGzO7Ma6OxthgMECz2US323UGrdZA6na7GI/HaLVaTh1kIWKWNdja2nIJFgCg0+lgaWkJqVQKGxsbruQADbRMJuN23DkWLLqtWe/opqQ72MB+6nOSGD++xU/iwGt0/lS98Y0uvZeqKb5ipklb1IBVwsy/50HvE0cAVHHb2dnB7u6uU0c16US73XakiNkLdUz4N2OjaBBrIhYdG8b70OjUa7k2+BmNbQBOJdY4H1U2VZVgWzR0Sf56vR6KxaJT5hh/pIRE1SWfdPlkWRVMxlJSAfZV14NIoM6TEjYlcepKyWNUkRKJKOPp8vIydnZ23LrjeqEb3rVr1xyB4Ppi0qFEIiruraU5NOkIiYu67un6JynSseFzah8JKszArIpHhUnj7dg2309gP85RC4yrazcz8DI+l+RJ3yeqsv5cadZcfS72TzNh8jnYP30+upuznINmbuW8qArJrL8sq6KKP8eFZVU0dliVQN08uBk4VgQuUuAChQsICAgIOBi+S1mhUHAJRfQ/aWststkstra2XLHtXC7nlB4aDN1uF9VqFbfddhvOnz+PZrOJy5cvo9VqAQAqlQqWlpZQKpWwsbGBzc1NnD9/HgsLC7h+/To2NjZgTFRuYG1tDe1227kbMsHBZBKlG2fmSRqmVOqY8IQ7xgzGZ6FkZoY7e/Yscrmcq/3W7XZx4sQJAMDOzg6q1SpOnjyJySQqP8DkJL7iUygUnCHT6/VcCQH+P8y6bqpWAvsGpa8gqKE+jzjR0KIhCuzH4tCAjXOhVNWFUIPOd6H0FaK4vmgbvsKjcUt7e3totVput388HuPSpUvOeFTlQdUFVSdVIQT2CS9VVvZF43Q0S6C6ZnJ8eVyNYa4pJXZq3LMNVSE0GQXPTyQSM5sK5XIZhULBETmfIGt7vD/nzSdmfO52u+3eGX1fdc7mqXFsP27uOUb+fCuRY8xXpVJx645FvRuNBlqt1kxiF5IKKuVsSwtZK5nTgvbj8XgmcQzHiu85/+Z86rgpgWG/OYdajFpVPKrD6u7Id0wTgWg5ENar5EaCbpCwHSXKGn/ob9BwPHgf9otrTTcKdNyoXKraqyqdrh2+l0oo9TjXBjdHlMBzjOlRcLNwvAjcze5AQEBAQMArBnQdYpZJ7lqXy2W02220220AUarwM2fOuCLR1WrVpRMfjUa4cuUKarUa7rvvPmQyGayvrzvjst/vY3l5GdVqFYVCAdvb23j66adx7tw5JJNJXLt2DVtbW47sXL9+Hbu7u1haWgIAV0QbiOLt6N5IwjQajbCysgJjjEsukslksLW15dwv9/b20Ol0sLu7i7Nnz6JUKjljbmdnx8XJDQYDrKys4O6773ZqGlWifD7vjDSqarpT3W63nZEIAAsLCzOqEN2k1GAGcIPxFveZEkAa1jSmdMdcz2U7Snh8qAoY5woV5ybpKzlxah8N1Mlk4hK19Pt9JBIJ7OzsoNPpuGQPNOpJ0HxFUD/34wOV8PrupvPG01e2/HHxyYsma9BkF+oap8oVjWIlFTS6u90u8vm8y2rKvilR9HEQARsOh0715kaKPq9/rf9s8xQ4Jbs6VhxnPrsm0ADg3JQnkwkuX76MRCKBarXqkuuQNCix5lhxLepc+iRHlTD2SdVZnqftKwHS9vXd1eyldIclaeMaZWxjIpGYyZbJmmi8l7/ZoeokN0uYil8JdJxSyvE5aA4BzMRdKkFlbC3JoLpy8jqSYJ1jfW91Q4Pvga7V4EL5IsGEGLiAgICAgCPAmCjOiG5e/E99OByi3W4746Tf77t0/ZlMxpUDKBQKLjX++fPncccddzgDnWnZr1696uLpCoUCNjY20Gw23a79tWvXAMDVk9vY2HAqmbpEkTDV63VndDDerVQquWQXNOB2dnZgrUWtVkO73cbm5iaMMbjnnntcXTfWOaLB0mg0nCL49NNPuzinXq8Ha6N4IypuNJQYX6LufkBE8FQ1pKGomR7ZV026AewrS8C+GqXExXeN4zW6k0/47c4jYOpm6LsczoOvvKmauLu7i+3tbXS7XQwGA9RqNbRaLbRaLbc2qLrRMCQhUfdTNR5VgeDYqGrAcaXBry6WOlaET4rV5YwGtxrhOp5sm32nyx6v9dVItk/ywo0FJiKhka/EySd1cSoojfRWq+VUdD9jZty8+X8rkdO+87ga+Epeua5LpZJ7Pmutcx+lCx5d77gOue45jyR2SgbZJ4717u6uWze6lrXuIvutRI7nKbkiSN64scKxULV8NBq5JCwAZlQrPhcVLbava5vvJseV5/IcJmXShCl+zKSueSWL/IxjyHnhRhLfKxJQji29KOgCSgKpShzXqr8ZoeOsrqk3A8eLwCGUEQgICAgIOBylUsnFz2g6b9Y0olHBXWcgSvpRrVZdTbRkMolz585haWkJu7u76Ha7LmZsbW0NCwsLqNVqsNbiypUrzgVzNBphfX0dmUwGtVrNFcDO5XLOPYgJEpaXl7G4uIh2u+2MRCo46XTa7RSzflGv10OtVkM+n8fm5iZ6vR4WFxfx6le/Gs1mE88++6wjCiwVwCLi1toZ1bHVarl4LcbvJJNJR2p3d3exubnp3K4mk4lL807iybTqNA4TiQROnjyJwWCAnZ0dADfWReNnviuknqekwk+6oefwGpZ+8NtTo1UJSJyyFudSF9fW448/jo2NDTdfm5ubKBQKTg3Va7WEge7y+/f1+0XXOxrwvgKnGwB6P3VL0/4zcY7eR7MMkgQAsxn5tE/sgxJq392PmUkHgwG63a7L4sp7q+upr4L5c88+UIkjqdANED3PXxOqZCoJ9ueZ5/okKZPJoN1uo1gsAtjfiLly5Qq2trZw5swZDIdDbG1toVarzbgOkjAxhb0xxqW8J6FTcqvPrWU51P1T1wzJipInfWbd/ADgiD8Tz7ANLWfAdUYFlWtQwXljwg9NqqPn6kYFCRc3Afz1w2t1XlXVUyWUY+o/J8dFiZquZf/9UGLPzQTeg+SQmYhvFo4XgQsKXEBAQEDAEbCwsOCM01Kp5BS5VCqFZrM5E/NBF6iVlRXs7u6i2WyiXq9jdXXVnU8DhLFNtVoNCwsL2Nvbw9WrV13myk6ng2w261S47e1tlwKfO+E0qrjb3u12XdIAukkCcHE2jMEbjUa4cOECJpMJrl275tRBEsC1tTV0Oh1XG06VBLpIjkYjNJtNV9uNqkYikXAqwNLSElqtFjY3N91uNfurhXM1wx6NJyZJabVasQlHFHEGODDrnuWrJnHX0CCMM+h8EnYYlLSo6sbPB4MBGo2GMwy5jnQ8OCbqXqjQ56NxynuRkHGd+ApAHAlRguUnRNHjuiY4r7yPJi7xVVG24StmSsB8IsHnpwJEUqDP7hNDnQOewzUwHA7R6XScOkQCETd/+vwaM3jQ/PtrjYRrMBg4pZ7Kc6/Xw+rqKra3t1Gv15FIJNyaUNVJMyVSXVO3SN6DsWqaZVQJnMa+aTyYEijd8PDJvTHG3Z/eCMYYl22WcbXsJ6/JZrMuKyiVObpeMnmLbk5wbVGlViUubp5VeebfuiHDtaiZbjOZjPMuYD+5KaIZQzku2Wx2hgRz7egY+uSez3vYmnmpcfwI3M3uREBAQEDAVzyYIASIDIdSqeRULBoNTJnP2kaNRgOTyQS33347VldX0el0nOqWTqfxpS99CQBw4sQJ577IeLhut4tSqYSVlRWk02lX4HppaQmJRALb29vOYKHhlM/nXZIAY4yLeaPax91yuk+eOXPG1Q1LJpO4++67AQDXrl1ziQlobNLYzWQyOHXqFIrFIra3tx0ZZSwPjSsmqlheXsb29jauXr3qyAeNHpYkAPaz3QGzbnT9fn+mrhkNfUITbaiB7rvx6S48/1aCEAdNWEAogfQVJb2f/u0bdzyHiiRVMQA3qEHqsqbucZoRUo1e//5sS5NP0Ej1x1Gflef5LmA8V6FxRHwOtj8ajWay/FGx4GaDknU1lJWMkTSpCrO3t4d6vT4TU6V99/vpExIATsnW9TZvTehc+3Ppk3x//fE43yUSlVqthu3tbQDA+9//fnz2s5/F7/3e76Fer7vvD8YRdjodjMdj9w6TGGkJAFWF/Pkg2fbPU1dbJc8cM44JyTM3N+iFQILFzRjGb2azWVcTkyVCksmkq6FmrZ1xD+a60HhOTabCe/M7T7Nh6veCn0yKZJ3viq/I0ZOC53DOdA1xDLVIvRJ53bDQ7xvdaOE8cixuBo4XgUN8/Y+AgICAgAAFd8+ZTIIuMYzbokJ38uRJAMDW1par77a4uIjr16+j2+0CiIx0kqRbb70V9Xod7XYbV65cQafTQa/XQz6fx6lTp9Dv97G1tYVUKoWTJ0+iVqthZ2fHGdjccV9eXnY7xiwTQOI1Ho+da2a73UY+n0cikcBTTz2FbreL8+fP4+LFi2g2m7h27Rq2t7cdaeDzpdNpLCwsuEQsTz/99IwxQuWIhgxj+RqNhqtVR7crEk2Ni6NhrgYwEySooUwjVJMLzFPT1FDTHXG6IfrKkw+Nx/HPiyOA+rcqMGrw8xiNObryqdEMYCYmR8mbkjYlbzTYNe5HlTJCn0NJM8dUz6H7F8dC2yP58l0MNS28JuJQd0pty59XPabKD4mCuhMCUQIh1l9kn/y4tri543NwM4NJUlTB8c/X/sYpwb67nW9f5nI5179qtYp0Oo2nnnoKTz75JHK5HN72trdhMpng937v97CwsIDFxUVXZsOPrVJipcREFTWuO651gmqXZqvUMWffuT54vRZcVwKlSVnoyl2tVh1p4Ts0GAxcohCNWwP2Nyp0Q4bZHfVcvTfXi99fvgesP8eESUoA+e4Mh0MX40b3VN0M4md+dkqqkJpURTcpOJ7qnnnQd83LgWNF4BAUuICAgICAI4DkK5fLodfrufiTYrHoEpusrKyg2WxiMpngwoULOHHiBPr9Pi5dugRjDAaDAVqtFtrtNur1Ou6//35YGxXnfvrpp7G1teXuZ4zB2toa+v0+KpUK6vU6MpkMrl69imaz6eI/crmcM/Z2d3dd+QKtAZfL5ZwLYrFYxM7ODgaDAfL5PE6cOIFMJoOnnnoKW1tbLhsm495I3s6fP49qtYpms+mSq7CmWyqVckWSx+MxKpUKyuUyNjY2XH0rGt26a8/ddz/7ZBzxUGPcV4DmZXhTN0j+qEuWT8J8w1uNNN8w90mZXqd/q0ujEtPBYODq5Wm7fgyQr/rwHr4CoAWg4zJ30rj0x4rrmOOihHU8HjuFwk/qQiOc52tffOWLilkqlXLPS1UOwIx6wXb4OQ1tVem0D+pS6ZMRJTYKHe/RaOSKy/uxYwoa4P56Yp9VXWTb/r3pGjkajVzioE996lPo9XrY2NjA2bNn8c53vhPFYhGf/OQnUa/XcfLkSaytrbkkGiT2GtfGMdfMijrHuo6U/ACYUW/9BDA6H0pOVPEkSaOSTkJNwsaYWe0PFURdG/odwWf0x1ZVYk3OogRRFTEqnXw/UqkUBoOBew/Yb7qEk2APBgNH6qnOAZFirhk+/cQp3OwgceTmmSqhWm/v5caxInAGCAwuICAgIOBQnD17FltbW9jY2HC7w6urq05RSqVSWFtbQ6FQwO23345qtYrt7W1sb2+7uBCm5r/llltw9uxZDIdDPPPMM46ocYe5XC67wr31eh3VahXD4RDb29tOgeAud7FYdKof49hoXJfLZeduyV3/7e1ttNttrKys4NZbb0U+n8fa2ho2Njacu6WvKlSrVQCRqthoNFz6c5LIEydOzLiRsg4e68aRVGg2N7atafBVKdAda59Q0ZjUpAC+SqZkSMHPaezpc/rn0UBUg1XJSZy7nLZFo1SJB13MNjc3sbW15RRIVR9VSfHBtki2yuWyI9x7e3vO+FQ3O/ZbyRnnjnFMNI5zuZyL8SyVSq4PLO5O8stsjjS2/WycPtnh30oSVDnU69hnnxyz/3FusJPJ5IZyA/460nZ1Hpk9lcRDXRD9cde++8RQ++qvRSAicDs7O9jY2HDr4PHHHwcAfOhDH8JXf/VX48yZM3jjG98IAPj4xz+OpaUlnD59eqbQt2aipCKlGSd1bJT8K+HWsVDSHEd4qa5zLetaAeCUPLpNMnER1zVr+3E+dF797xuuLSXA4/F+UWyf0PnzS/LGd43gGvWT/vB7hP3XTQOSNcb06drgRhTHX5VEvjulUsl99/G7jmN2M3C8CJwxgb8FBAQEBByKp556Cs1m09WAW1pacpkWh8Mhut0uzpw5g1OnTsFai2eeeQb9fh/5fN7VThuPx7j77ruRz+fRaDSwubnpkokkk0msrKwglUqh0+m4Gm7j8Rjr6+vodDrOCKpUKqhUKlhYWHCK2qVLl9yON3e92S+qE1tbWxiPx7h48SLq9TqstVhbW8OVK1dmEogwAYG6rV25csXtKgNAtVrFysoKksmkKx1QqVRcFsX19XW380xCSddN7uhrYL8a8ZpIQY1fJSKMB6KR6huCPrHy47t6vd6MK55C3S01Hkev9410va/fDp9lMpnMkDe6walbpKpHJBGpVMoRNM4NsycypogoFAoucynbZjHldDqNSqWCXC6HWq2GxcVFV5Cdhre1Fv1+f4bgqbsZ22m328hms2g0Guj1erh+/ToGg4FTcelKp+qDqos0aHWM/eyg/FF3TJ1Pji3VYroKax01XTucEyXUHCOW42CfNRZRlVYlb7o249YZwc84jlSFLl++jOvXr2NlZQWf+9znAADvfOc7HYlLJBL46Ec/isXFRZw5cwbr6+szsaDqwkgCp+uPhFsThqhbJVU7khOtB8e5oFLKDRpVRwE4ZZWbPBwfKtd0QdQEPBxX3ldLBOi7r67P3LAgWeXzqJuxEiqdJ5I5nW9tn99xJIZMVsU2mWWY65ZrzXdr5ZywFqYxUaIrddv0vQdeThwvAoejZZEKCAgICPj9jfF4jEKhgMXFRSwuLrq6VHSFuv3223Hy5Em0Wi2neNXrdVy/fh2TyQS1Wg0rKysYj8cu/q3b7aLT6WA4HOLkyZNOCeAubbvdRqfTcXE6u7u7WFxcxPLyMsrlMtLpNNbX13HlyhUA+/WUCoUCut0uJpMoNq/X66HRaKBQKKBcLsNai0ajga2tLReXQqOLBhljSIAo2QMNHN6jUqkgm826pCwkjNZaRxSVcDAtvxrQagiT1PkqnK9qKXFifwk/c2EciQMig7vZbN5Qj0rBOCMlCqrM+Oob78F/tR88p9PpYH19HVtbW8510U9CoaQhkUjgwoULuH79uiPJSmDp2kXDU93MNKtlvV7HhQsXUC6XXW3A4XCIfr+P69evO8OdMZ4kMzQ82TeOSbFYRDKZRKFQcJsFDzzwAEqlEprNJhqNBlqtFq5du4ZnnnkGg8HAEUItyqzPSqVFSQkNf51XbirwXCWFmsSCa9efH18NVHfMXq83k9QjztiOc53Vz+JIvd6bRa8TiQS+/OUvz7g5PvLIIwCAd73rXThz5gweeOAB7O3t4aMf/ShuueUWnDlzBs8888wN8Vg+GfLXlZIHf7OE46HPrVBCRNJDcsvYskqlcgMJUpdCHSvN7Khq6ng8ntmE4XpWJdZfN9yA4fcK+6XEn33SeVDlkWQNmC2NQdLHdUYFMJ/PYzgcuthcnqNjSdUxkUi4wuZ0wY+LsXy5cLwIXIiBCwgICAg4ArLZrIt3o/K1sbGBlZUVnD59GuPxGJcuXUI6ncbi4qJLmz+ZTHDLLbegWCzi8ccfR6PRwOnTpwEAa2tr2N3dxdLSkjNUK5XKTKwcjQDelwpLp9NBq9VyBiGNodFo5AhkpVJBv99Ht9tFrVbDaDTC9evXZ3bE1WCjkqEEgfXbMpmMKxGgRgl33nu9HlKpFC5fvjwTp8Pr1E1SDTKNGaKSFEfAgH2XSxqjGjsTZzjrLrvvAre2tjaTec6/jv1U9URJEqGGsN93VXkY97SxseEyCfpFkdUwp6Jy9epVtFotAHAkiCnPNQaHpI1qDDOYnj59GsZEyW46nQ4ee+wxdDodV0xd+8o2uZZ8AsrnZubMbDaLxcVFl4WUbrIXLlzAeDzGPffc42JAL126hM3NTVfWQrNV0pim8atKlk+W5n0OwGU3HI1GqNfrNyhxShjjXAXpgsoNFL/OnY6Brk9fgdPj/s/e3h5KpRIA4Nlnn3VEezweo9/v43Of+xz6/T7e+9734pZbbsEb3/hGjMdjPPTQQzh79izOnDmDS5cuzaw9vm+j0ci9a3yXNJU/x0Cv0Wfi+o5bvyTPSqbz+fyMOyffEboccsOHc6rjyfO5zlQxjtsAUWWT1+pzaoZgVRaVXPtEkNfwHvp9pASYz86NKI5ptVp1tSv5XcLvY36H8DrGAeo9X24cLwKHUAcuICAgIOBwUHG75ZZbkE6n0Ww2ccstt6BWq2EwGLhYt1KphHa7jevXryOfz+Oee+7B3t4eHn/8cTSbTSwtLbkaa4wxIhFKJBIzmS2BKKZseXnZZbns9XouUyXPYSwM4+aojvAYSRYNK63nBOy7tOnfjIUiMavX61hcXEQ+n3fEkgrMYDBAsVh0sXwAXJ27QqEwYyjPM9Z1ZxzYj0FTBY3GGHfKOT7cLfcVOzUC1Q3PGIOrV6+6OB22r8Y3+6lufarw8B4au6bQv621aLVa2NjYcMYf50HdC/3ECIwHUkOd48KxUcUqmUzi/PnzTmkbjUZ49tln0W63ZzLs6bPoGPOZfOXJV6qI8Xjs3EG3t7dRqVRQKpVQKBRw5513ujiv1772tbjrrruwvb2NZ555Bl/60pfc2PPZ+Jzsgx7j3NAFUA167Q9J/WAwcGvUz3rJ8/x1x+fRgthUHHUe/RgurpWDoGsQiN7Dp59+Gk8//fRMHBlJ/Ze//GVks1m8613vwtmzZ/GmN73JkbuLFy/izJkzbqOEz0CXQrrvcfNE32u/HxoTqcSNpEv7z3aYyIPfV1Tn6WpIMkZFnW3rvZmRVmPHOO+qYlEho7LGNaGkkf3lPXzVkWPL9jj3+h5TvWMpFD2Xz8/n6nQ6bkMkn8+jXC6jVquh0+lgb28PW1tbM3MyGo3Q7/dhrZ1R+24GjheBMwY2aHABAQEBAYdgdXUVKysrLoX/uXPnkM1mcf36dezu7qJQKDhjdjQa4cSJE1hcXMSzzz6LnZ0dR4SuXLmCXq/nlJHr16+7GDUqI+12G5VKBSdPnsTS0hLq9TqMMe4YSQwzRgJwqf/z+TxWVlYARC571kalA5hYANjPOAjAxUd1u13njnjq1CkUCgWn5BWLRdRqNeTzeZdshTvKu7u7yOVy2NrawubmpmuDRh6JAzBboJvw45uA+GyQSlyA/QLVNLjVpYrw21XFaWdnB5ubm1hdXZ0hBXou+8YfrWfmtxdHUmlM0lWWREhjtrjrT2OWz0r3SBI5tun3gy5uxWIRy8vLLibziSeecGNPg5PQDJAkqVwTOsZ+3Nk8kMT3+32sr68jlUrhySefRCKRQK1Wwz333IPd3V3U63WcPn0at912m0ufz0QoqvjpeNLQZl/4typEhBreNLSZrv+gdaWGvboQkzTMU9XYhhJPH3oeiXu328WnPvUpNBoNnDlzZqYPxkRJNT7/+c+j3W7jPe95D26//Xa84x3vQL/fxxNPPIG77roL586dc0qckhh1J/TVNFXcuK6YqZbKHdesFqdmWyRddCckEVNXSJIjvpOMm/T7QiLH86hUcQz4PcL7kbCRJJK8MbskCTfdYEngNMmOkkolscxAybHJ5XLOtVw3b/iuss2trS1MJhNXh9Na61zJ6TacTCYxHA5dTbp2uz33PXqpcbwIHIICFxAQEBBwOFZWVnDt2jUkk0mcOnUKrVYLrVYLS0tLyOVyrmh3JpPBrbfeivF4jMcee2ym5MDOzg6MMTh79iwajQastahWqzDGuJ3svb09VCoVRxiZSbLVarkiwO12G6PRCOVyGYPBAFeuXHFGEADXNotxA7M1zbLZrHMVS6fT2Nrawu7uLtLpNOr1ursfDWQWD2cSFwCOyLGswsbGBoB9YlWr1bC0tIQrV67MGEz8XQmBT7zUMFclTtUYGs58Rj6f36b+qCvlaDTC1atXcdddd83cW8kBDT66lCYSiRmD0X8OdbVjP/f29rCzszOT4p0ukLyPKly8XlU6nkPDlAayMcYlJKlWq9jZ2UGj0ZghdgBmDFr+rfFESjx8MsLxUGWDfSdIrJQs081te3sbDz30EOr1OsrlMk6cOIHz58/j1KlTuOOOO/DEE0/g0UcfdRsISnx1HfAeOmZxrpEkGgBcLF+pVJpRXFR989ccVThfaVXC6JM3X8HUNnWMGo2Ge7ann356Jl5N3foYC/rEE0+4sb948SLe9ra3odPp4Mtf/jJe+9rX4vTp03j22Wdn3BJ9BUo/V6I3HA4dQSG5UXdOVaD5Gdc/sB8Xq7GCSrRJzHTtKMnT8zWujq6X89wcVYnW952EkJshSrT4LKr+8765XM59D5JQ0rPAX3fqQsrvnclkglKpNFPzThVMuhUzERG/J28GjhWBgwkELiAgICDgcFy5cgXFYhH1et0Zmyy03Ww2XczZuXPn0Gw2sb6+jvF4jFKphO3tbYzHY5w9exbJZBI7OzuOMPHabrcLa6OU/LVaDcvLy44csfxAt9tFq9VyRnun08HGxobL+Mf4i0Kh4IwZVW+KxaJLJlIsFrG3t4dms+lSqDODZLlcBhBlNDx16pQzABm7Q5UikYjqWl2+fNnFfwBREe+TJ0+i0WgAwA1GuW84q3uVkiVC/6ZRqqoJXUC5m67Fd9XgVpVpMpngySefxJve9CaXlEPJIa/nc1L5YvZHVYt8qGrTbDZx/fp1R8jiXD3Zd40j2tvbm1HhaDwriSuVSi72jFkt8/m8a4998Gt/+UaxEps4N0W66qlCqC6MviGtiqm1UVbLwWCAtbU1XL58GbfffjsWFxdxyy234NSpU7jzzjvxyCOP4PHHH3ebFCQRvisf/+U91D2P64JG/t7enksAVCgUXJ/VPU7dKdkGCRyfK87NT4m3P4Zx5HAymbgMrq1WC1/+8pddLCSfkUWfdYPgqaeewkc+8hGUSiVcuHAB73//+/Grv/qr+MIXvoD7778fvV4Pm5ubrnwEXXS51vk9oPUXqS6RONLVlS5+vgtkt9uFMftlJTTNP8efyYpIxrTeH106ubY4jixhwc/ZV7ah0DXtJ6wh6R6Pxy7ukWPJsdfvmEwmg2w2i0Kh4BQ9/Q7R94Zt6jut65LfsRxPtkulncmHRqMRWq2W27y5GThWBM7g5lZFDwgICAh4ZYBujteuXcPCwgLOnj2LdruNZrMJY8xMoe1Wq+UMpmaziUwmg1OnTqHb7WJzc9MZpywgTDej5eVlLC4uOiOEhhljL/r9PhYXF5FIJNBut3Ht2jVnQJP80dWSBiBJEY3QXC6Hvb09NBoNV+ZgeXnZlSBgDbCFhQWcPHlyxhXN2ijRSKlUgrUWvV4P6+vrTvGgQU3lpdfrAZh1nYxzk1PlhsZZ3LkkGJrO23eho+sVU39zVz+OcF2+fNnFJfrkgP3yFb9MJhMby+KrfAAcaWFbJCbqlqWxO5p8gX3nWDB7H2tV5fN5WGud0UzDk39zrNg3za6nz+Mra+oSSDAjpSoovpHLa7nm/FTu/Gm1Wvj85z+PQqGAe+65B+fPn8e5c+dQqVSwvLyML33pS9jY2HAGPedVsxL691NljuSN8WDGGKeC63jqdbouVOUhwVFSquth3k/cugDgXJ4ff/xxdLtdLC4uzpBKY4wjR+rieuXKFXzoQx9CNpvFmTNn8O53vxu/9mu/hi9+8Yt49atf7TZiVGEF4DZvCCVffGd5LhUlXU+8RjcONEusuikqaSdIBDkG6t7J9ZjNZmc2K9RlVt9BbYfxatlsFqPRyCWvYT81e6T/HmcyGRSLRVe7k+PEdwfYr+XGdW+tdSVLVMnk2uQ61cQt+XzeZXul58Xu7i7y+TxuFg4lcMaYnwbwdQDWrbX3TD/73wG8D8AugCcAfIe1tmGMOQ/giwAenV7+cWvtd70UHY/vaygjEBAQEBBwOAaDAYyJ3B9Z/PratWsolUo4d+4cOp2OU9qWlpawtraG7e1tnDhxAidOnMDTTz/t/qPvdDrO2GDZgFqthvPnzyOfz6PT6WBra8sZIqyrtbq6im63i263i16v5+Kd6HZJY5UGLo0PZkEzxqDRaKDdbmM8HuPEiRM4efKkyypYqVSQTCaxurrqYuCASImjgaVZJ9vttouvIwHkczH+Tt0j1Zj1/1XDT1UydVGj8a7X8jgzZU4mUckGGsRMCkNFRhWYK1euYH19HefOnbshZoj9UAKcTCbdDrsa//psSv7W19ddkWDfjYzPo9dpEgr2RRUVGq0kkWqUagp1jdPTe8YRDT8rnioQ+mxKBn1jXUmOxo7FkSSSy+FwiE9/+tN47LHHcPbsWVy4cAH33HMPzp49i4997GO4evWqq2ensXxsi8a1zpc+KxNrMJtqv9+f2cjw157OHTDrRqiE1yfAcaTNB8nL+vo6jDH4whe+MOPiqiB51L62Wi1XYuDrvu7rcOutt+Ld7343PvCBD+DJJ5/E7bffji9+8YvuHeVGAZ/JjwXzk5eo6q3kjapasVicyXSp46xrSNeEKmW6rvVaxp5Za9Htdt3a1tT/JI28r2aB5PcO1T0AMwmg9D0mqWIdRH1uJf66dpTUc0MIgLu3MZHrO78nuT75bvLe3MQrFApf8VkofwbAPwfwc/LZfwXw/dbakTHmRwF8P4C/Pj32hLX2vhezk0eFQSgjEBAQEBBwOLLZLJaWlgBEBlWz2XRZGVkOgPFRzBB34cIFjEYjPPXUU055abfbM26N6XQaCwsLuOWWW1wilFarhW63O2N8ZjIZbG5uOjcsAC6FNpMK0JWSBhMz8WUyGfT7ffT7fWeEnDlzBtVq1WVNK5VKSKfTuO222zCZTLC2tubiQ6jU0W2TpGRzcxO5XG7mPnSf4vPFqWiE/u67tfnkDdg3CvV6dX9izFiv18PS0hIKhYJTwfQ6GmqdTgfXr193Cp2qKwTdKGns0kWVu/XzyGm73cbW1tYM0aAhSpLL5+az0fikMkHDkcSN7puqlqmh78ev6fj5Y+mTGfZbjXv9XJUiEh7flZHXKFHTNrgmVGUdDAZ44oknMBgMcPvtt2NlZQVvectbXLbKVqs1o4opuedz+IqNJpwguWcSIcY3qQqnChs/53zFJeDg8/pZFP2x1DVB9+TxeIyrV6/OxFL640QlmXNNAvjII48gn8/ja77ma3D33Xdja2sLn/jEJ7CwsICLFy/ikUcecefy2fXZSFbiMjWqwsn+knxxzjRlP0liNptFLpdzMWeqQOu4cWNBN1LG47HbcKKyzOy53JjiXGpMHMeE3zO+KyXXgLoDM4sw31tV9LhWqN5T6eZ5dDvl9wQVQL6XdDHt9/vue5T1PVkPju1+RRM4a+2Hp8qafvZf5M+PA/hjL3K/nhdMiIELCAgICDgC8vk8tra2UCqVkEhE2fVI5PgfN9OX1+t1rKysYG1tDZ1Ox2U46/f7zgiYTCYoFAo4c+YMKpUK9vb28PTTT6PX6zlDn2SPO800GprNpjNcisWiM6h0p73f7zs3tm636ww0uqrt7u66pCQ0LBYWFtBoNJyb5GQSlThYXl5GtVrF+vo6MpkMFhcX8dnPftbt6DOWpVQqOQNtHnmjcewb4vo7oX/TSFNjVImetpNIJLC6uurI0mg0wuXLl11f6Co2mUzw5S9/GW95y1vcOOquO+9DQ5cJCcrlMorF4oyrqhKa4XDoiquzb3x2ukL6hIp9IhmhykBSTANXjUA1jNW9UcfKj1vjs8WpZ6oo+Yqikh59ZlVa2AaNXt5L3fX47ErYJ5MJnn32WXS7XZw7dw4nT55EoVBAqVTCF7/4Rezs7DhirmOpsUi+WyufgSSMWQFVrdQx9BVh3+XVV041McxBKhz7uru7i83NTRhjXDkJJVC61knCeC8e39vbw2c+8xlkMhm85z3vwTvf+U6nZD744IO48847cfnyZZfSXudLE6YAEQnT9UbCraSJsZ783uI6IHmlMqsumeoirGuA6riuSyqxXBucH2687OzsOIKlcYHchFLVV78TOKYke+l0Gvl83sX78Tl0zrkG+F1Kt3aOO5+N16o7M5VDbsAwppDf5Uz8Qpfcm4UXgzr+aQC/LH/faoz5LIAWgB+w1v5u3EXGmO8E8J0AcO7cuRehG1EMXCgjEBAQEBBwGDY3N12a9suXLzsXx2KxiGw2i0ajgdFohOXlZSQSCTz99NPO4OdOMQtjJxJRDbWzZ89iYWEB7XbblRro9XpIJKIskFqMl7FpVMxoNKiSw/sw9oyKDQPsM5mMU8yYoGQ4HKJarWI8HruEKgsLC64w7dmzZ7G3t4ennnoKpVIJ9XrdxfklElEdqHQ6jXPnzrmECkSccezH5AA3kjffnVKfUQmVnqPKyXg8xvr6Osrl8oyroBrFNEIff/xx7OzsoF6vz7ghats0SvmTz+dd5jm2qc/MVOZaTBjATKpyEhFNb87nZFIVEnYlHXGqpBI2JVw8zr99F8C4Nvg3DWcleDzG89lvkgNfTeK1GkukbnZ+jGGz2cQTTzyBcrmMfD6P06dPI5fL4eGHH8bGxsaMykJjWudUXQaViNJw3t3dda6UOgZKVNk/zrsa3ToGGselBMhfC/yXmz3pdBrdbhe1Wu2GuWHbJI6aTIXPMhgM8NBDD2FpaQkPPvgg3vrWt+LatWv43Oc+h7e85S2YTCa4evXqTAZGXW+8n5JPVfn02TSRjCbzIblTQuVvqLD//K7ju5BOp28gWjpOw+HQkdt8Pj9DnthHrjtdv3w+kj2SMXVb5PrT0iNsW9cy30POAwCX2KnX6zlFb2lpCc1m05WG6PV6yOfzM4qiEk8Sw5uFF0TgjDF/E8AIwM9PP7oG4Jy1dssY8zoA/8EYc7e1tuVfa639SQA/CQAPPPDAi8K6ggIXEBAQEHAUlMtlJJNJPPHEE7h06ZIzDkhKqtUqcrkcrly54mLSUqmUq9vG+KlcLoelpSWcPHkSuVwOrVYL29vbrqbQ7u6u+08+m82iWCwil8uh0+mg2+26eC666tC9h9fSlVOTA5D09Ho9ZLNZ3H777S62ZGlpCb1eD4PBANVqFdls1pGycrmM9fV1l5Rld3cXDz/8MK5cuYJarYbt7W1n3DNpibpOcuefiROAG8kajUdVioBZd0nd+fZjz9Rw5+dM16718zSRCZVKuqU++uijOHXq/2Xvz4LkTLPrQPC4e/i+u8e+IxYE1kQulZlIFplZLJbEUomLTMaWqZ76QaY2mY1pXvTQPU8tk1mb+mme5qnNZjgjk6lHzVaRFMtYrEqxKqsqKzORQAKJNYCIQCD2xfd9X+Yh8lxc//AHMkWRCRLzXzNYRLj/y7f9P+75zrn3Tkg8jnltLefkzjvri2n5JXAi/SKINQGqyZJph5lOK2WrXC90SBmvw/5bgTY9lhoQaOChr6M/12NOcKtlinS82X6TxdNjBmAgjTwAYXN0XJmWYvK6tVoNn332GUZHR7G0tISxsTFx/Cl31cBYZ3FkW0yGkE47mThuovA4Kympyazycz0eZuIYzqc+ltfKZrMiiya4MMdMj6WWcepxIqP+y1/+EpFIBFeuXMFv//Zv4z/9p/+E1dVVvPnmmyiXyyKX1mPODR+2QSdp4e8EPPxer30CEj3eGsxzvBi3yLHhOLEWml6jJuMFPI03JghiUhomWuFxJpPN9cvnhe01N1B0/Tq221w3JgPN8eN71uVyIRwOo9lsymYdQS5Lv7jdblEmsE6iqTL4Ou2vDOAcDsd/j5PkJr/V/2Jl9/v9JoDmF79/5nA4HgM4C+DGX0Nbv0Kb7Bg422yzzTbbvtyYpIQ11piO3+l0YnR0FL1eT1iCRCIhsR0sF0BAMTw8jJGRETmejh3/c9cxIZOTk1I7iDEYwEma/lgsBgBSOLzX60ksit/vF4BAlsfv9yORSEgNuEQigXA4jGKxiEqlglgsBo/Hg1wuJ79ns1k0Gg2RNOVyOaTTaUxPT0uilkAgAJ/PN1AIXAMXLXcyjY7p82SU/FybldNtfk+wSweMEi86aQTBhUIBt2/fxuuvvy6Ol3bcAAwwBnRKI5GI1OHT7AZjXzSg1Awe2wA8ZXt8Pp8wbTrBAp1fXc9Nsz26nVrWxr+tWKnnxeFoh5r34lgTNGqJoWagNNjmemc/THmgBoK6H3Sme72Tmmm7u7sYHR3FyMiIxASyjpauk2cm7dFA34x9bLVaIqc015HJxGm5JsdCS/2006/nVa8zrrXDw0O0Wi2k0+mBcbNaF5w/zRhpdrjb7SKfz+PDDz9EPB7HwsIC3n33XfzFX/wF1tbWsLy8LOVBCFy5trhBpKWhfD9QTu1wOGRcNWOq2VYreS3ng2CMsmRei8yeniMd06lZPr2mgadMq87AqpO1DA0NySaT2+1GNBqV9w/BFe/b7/cFxHFsuH5ardbAmuDvzHaZz+elL6FQCJubmwiHwxLPR6k7n2P93OpNjxdhfyUA53A4vouTpCXv9fv9mvp8BECu3+93HQ7HAoBlAJt/LS39ai2zGTjbbLPNNtu+1IrFIoCTAtVer1eci0QigWKxKJnGnE6nxKDQOWeiktHRUYlhc7lcSKfT4vA3m00BA4lEAn6/H6lUShIw0DweD8LhsGR1o8NCB4YxX5QJUd44MjIiYM/r9aLb7eLo6Aj9fh/BYFCyRiaTSZEgDg0NIRqNDjBtzWYTr7zyCn74wx9KTJ2OE9FOuWZBTtt51s6x/l2DOX2uCT4IrjSwADCQLMGMd9HHOZ1OPHnyBAcHBxgZGREn0sqZpwM9NDSEUCgkMYPse6fTQS6XE6eb99EyOxoTwTDLH+PcNGNBJ1cDJy1jA57NLEnGwZSomUBKAxLdRxMIcjw4lyYoM5lV7XybzCqvz/XAz83SCt1uF/V6HZlMBuVyGefPn0c8HsfS0hJ6vZ5kTeUmhZaj8qcGvbqtBBhmQgtTmqrXpwngKWnV5+j1YT4DLL5NYGomojE3DDjvlPbpNnJcO50Otra28P777+N3f/d3cenSJRwcHOD27dsYGRnB2bNn8fnnnw+wxpRgkn0iAAqFQpLchdfW0kqySVpaqtcMx5HPnM/nk+tp+S03CCjP1slUmLlRbyJoabEuD8JjKTHn+nG5XNIXglEdf0aFABOykFVjnTduvBBYkqnXGwuMbzs6OpLrv/fee8jlclhfX5f3MY+l3JegTzP8X7d9lTIC/zuAbwEYdjgcewD+Z5xknfQCeP+LiWS5gHcB/BuHw9EB0AXwL/r9fu5vqO0WbQVsDs4222yzzbYvM7JbzDhGByGXy4lD2Ov1UC6XxYHx+/3weDxIJBKIxWJoNpvI5XIibSyXy7KzSyeRMXWlUkmAm3ammSik2WzKLjJBItPbl8tlaXcymYTP58Pe3h7C4TBGR0fRbDZRKBQEiPb7fYRCIQGVrVYLkUgEwAnD5/f70Wq1sLm5iZmZGVy7dg3tdluSebAIuXbmNbNG9ss0KyZNf6ZBnAnyaAQcdDr18Rw7zZCYcj+fz4eDgwNhLigzMx0tDYrIkA4PDyOdTss8kUnVAEVnsaRzqjMi+v1+SbBAsMQ+6faa8VImq8Zj6IDyWA0QNCNgOugEZ/peus+mtPU0RpHXJCOjmTxT8kkjYGRbCV44lqlUCqOjo1Kvj0k1zIQZZFw1+2iuRcZmtVqtZ8otmKaBGP8xYY8GcKY8Vm8W9Ho9lEol7O7uSgFtPmvm3Jq/a5mrlrPqdbi2toYPPvgA3/ve9/DOO+9ge3sbn376KX77t38bU1NT2N3dlbVJ4ERGjO8blhghaNL91P0yM8CSXe/3+1LqgewkjyfA4zhRSqjXOr8nGCdoAiAqAs4rwaSOJeOxbDPVEf3+Sf22YDAobWE79fPCturSE3w3ACebLcz+y3VcrVZxfHyMubk5JBIJdLtdzMzMSLFu/b7STOPfagllv9//vsXH/89Tjv1PAP7Tf2uj/qrmgB0DZ5ttttlm25dbvV5HpVJBMBjExMQEarUa0uk0ut2uOHS5XE7YFGY+Gx0dlXpttVoN9XpdYrK4m8tkKKx7RZkVd4at6jHRKYhGoxK/4vF4xDEbHx9HKBRCNptFqVRCNBpFJBKRGnAEaJ1OB/F4HJ1ORxKzxOPxge+Yir/f72N/f1+cX0oVKZ3SQEk7vdpMtsHKoTntMxN8aXZAy+i0/ExLDLUTynH1+/0oFou4ceMGrl69KvOgwYbJwBE0RaNRjIyMIJPJyA6/lptpRovXYb08xsaQzeE5ZLj0Nfg778u2WEkmT5PjaUf8efI9Lf0k+DFBtmZi9HU1w2Dek+3jWtVrRLNx/EeQUqvVcHR0hKGhIcRiMUSjUUxOTuLo6AjNZnMAXPJ5MU0n2ACeSikJUEw2Uo+TuV4Zx6plcebYafa50+ng4OBASo3oudTn6Uye+rnRx+h5INsIAHfv3sXMzAyuXr2Kb33rW/jBD36Amzdv4s0330ShUECpVEK/35f3AwFUPB4XkMI2a/ZNbypQishrWGWb1RJJzYpxXfDdRYCjgR3XlU7nz/hZslccA96b7xyPxyM15bRkk+uQsXPBYBCRSASVSgUOh0OSPvGnyc7rzK/pdBr9fl+YzFarhXK5jP39fWkHN9h4P84lx8WUZ37d9uIKGPwNmMOOgbPNNttss+0rWKfTQTKZRCwWQyqVkv+k+R91s9kU9iYcDmNoaAijo6NIJpMSP9ZoNCTmTO8sU4aod8H17m0sFoPT6US5XJb4lWg0KjEfjUYDXq8XlUoFLpcL58+fh8fjwd7eHvr9vmRupnQzHA6j1+uhXq9Luv1cLgefz4fZ2dmBjGqtVgv5fF5KEdBpTiQSwh5SyqRNgw3tPGuAYDqlz9ud1k62yXKYSVLMe2hZmDmnTD6zubmJR48eIZlMSvIQE3zq5B9OpxN+vx/Dw8OIRCIih9U77xqIOJ3OAVkt2TfN5PB3PW4EpwRsmkkz5ZNWQEuDNYIEDQw1e0ZnWssdzVgxM7W+Zof1nPOaetwJIszPOPfcwNAxSw7HSa24TCYjTvrIyIg8U2wPJZNWBb4JDPQ6Y6kMK9Njqh17xnVxfZjrSa9JgphGo4HV1VWR7BGkm/3n+OqNAt0ePf6mdLNWq+H69euYnJzE4uIi3njjDdy6dQtzc3O4cuUKPvzwQ3i9XtlEovQ7EAjIetKgh4BLjxnXPseb8b1kWTUrqSWpOsGJKUXlHBPYasDM47VklNciqGNbfT4f/H6/gC1KRAEM1KRkLUW9aVKr1dBqtQbmm+9gboQFg0E8ePAAe3t70ieC2HK5DIfDIfJ5Akr9jHi9XsRiMRwfH6Ner1uuua/DXi4AB8czL2jbbLPNNttsM210dBS1Wg27u7vigOodasag+Xw+hMNhJBIJyT6WzWZRKBSQz+dFvtVutyU+o9lsYmJiAr1eD8ViURx/vRNN6Q+zFHY6HVQqFQwNDSESiaBWqyESiWBlZQWFQgHHx8cIBAKIx+Mi7aPsk7Eefr9fwFksFkM4HEYmk0Gj0UC//zQdPoEfgAFnGXgKurTDwqxxGpQCgwWhzfNp2gE0jzHjhvR3dL6s2BBeVzviwIlzxzIO2WwWN27cwPnz5yXjqCn506weHdB4PI6xsTGJV9TOKUGQZka1bFLLyHT8D9urnV0tDdTso2YY9dzoMTavwe/pEJv9tALb7L9mAHm+Cdr0fGh5K+fUPE//1FJOAOKMl8tlHBwcYHx8HOFwGJFIRGSBvBezBDKGymQDtXNPBpz14wjyrGSNHBNmhSVQoZljRwDc6/Uky+nQ0BByuZwkAuH5el3qsdbX1ODOnBf+3N3dxS9+8Qv8g3/wD/Dmm29ib28P169fx/e+9z0sLy/j0aNHUrcwHo9LUhiv1ysSZw1MKVFlfzQTTcaJGyeUAOvng5JBnYqfc6QT9ZAJ57zp8SCoZ1FtJnrSGxOMidOgWK8nXZ9Oz40eQ53khaCMLF8wGMTk5CS63e6A4kK/A9hfgj8CUq4pgjYt+X0R9nIBOJuBs80222yz7SsYY93oKHAHl3EkrVYL4XAY4+PjmJiYgNPpxNHREVKplCQ5YbISSvd4rs/nQ6FQQKFQQCAQkHg53oeO6fDwMICTNPn1el3AYq1WQzwex5kzZ4QdHB0dhcvlkiLIwWBQzo3FYvKd03lS9NrhOMnwxxTkAEQOxKx99XpdHLRSqTTgtGvmy8x4R4BixrNZydRMQKf/Nh1Jk23T4JF/a0fXlKPR0QoGg8hms7h//z7W1tYwMjJiWROO7dFAyufzYWJiAo8fPx5IIMJx4HWY6Y/lJTTbxrbqLHxWAE2DIN5LM1Vck7rvJkDUEkWTRdOSL0rMNLunWWE9llYsoAbhlDZqeaHut14TBGNsM518yk/r9TrC4TCSySRqtZrIkXnPWq02EMeowS7XAQFFs9mU51CDW3M89HPOzIom6NVrlH1k/cStrS0AkAQfeg3q50ff21yvplxVjx0B6erqKoaHh/Gbv/mbePPNN/Gnf/qnuHXrFn79138dmUxGYjc1mCGjTzDEjSPOv157BMV8Jll2Q69Zyh211JHzaMpqdaZSzgElthp4aXZPr2ky1C6Xa2DzRL8j9Pxr0A5AYo/5POnnkTUDU6kU+v0+isWilHPRxc657tgfMnPsC9/5+XxeGO0XZS8XgIMdA2ebbbbZZtuXW6PRQDKZRLvdfiYrpMvlwsTEBCYmJiRJyPb2NlKpFNLpNNrttgTCUwbW6XSkkDalYNzdr1arAzXJisUihoaGUK1WJf6MqbRbrRbGx8fh9/slA+LY2Bh6vZ7EvhAQAsDIyAjK5TLa7TZisZj8zZIBdGqj0Sjq9Tr29vYAPHVMfT4fIpGI7IbTedFsziuvvAKv14vt7W0pgaCZFjpN2kHVphkdmnamtfOr2TGeo8/VDp2V5XI5JBIJHB4eIpfL4dq1a1hZWRlgI0y5nGbhXK6TwudLS0vY29tDJpMRpoFOJsEca/dpwKDjxkzWxUzGoftk1RY9LjxOS041g2aymRo4aDaV86ZZEi0306war6fTz5tsjt/vl+N0LJ/eDDDnWjOmTL4TDAYxOjoqEjmCOD4XvI4GgOYa0OntrcZTg16v14tIJCKMnZ4Dk6HlGq9Wq7hz5w5KpZLIFXUGSlOaynk32VNT/snPzbFqNpu4fv06pqamsLi4iAsXLmBtbQ0rKys4f/68gDXKHs1x0/fVLCvHiuPFdUsJN9eGx+ORuaTMkYCMsaAcaw0cdRZLvY7I9jFzJseL2Vq57tgOHWPGNavXMNdgu92WhE9URBDM1ut1kaQzwdHW1tYAo66VBRx/JpWy2rCizFOD8hdhLxeAe85L3TbbbLPNNttozDSmHQmfz4dYLIbR0VHMzMzA6TzJSnl8fIy9vT0UCgUJ2q/X65J9DoDIF7nLzd1v7jgTJNLh425uIpEQadHCwgICgQAqlQo6nQ5isRh8Pp9INVkL6fj4WIBXqVSC0+nE2NgYPB4PDg8PxWnp9/sIh8MIh8PiLFNG2Ww2JX4EeFqXSTtaADA5OYnp6Wlx2guFgoBHM+7KNP5/rFk0nqd367WjRsChgYTJ7Jn/z2uQk81mkUwm4fF40Gg0cPPmTbz11ltSqNuKadGyQ66D+fl5LC8vo1arSZygZiIIVDTzpsGaFZOld/m16aQnJlulgYsJePXfeu44jhqw0EHlcdopNcdYx2WZ92K7CFR5LRP0EPRxrVvFOna7XRlfLaEzSzZQJmmylhoQkx1igiCTVdMg0Ol0IhKJCHtqBejNvtTrdaytreHGjRsiI9VtMMdBX0eb3ozQrLUJwjlfxWIRv/zlLxGPx3H16lXs7e3hxo0b+J3f+R3s7Owgk8kIC8f5JfDSLCjHRNfa00lYOKYEJmS2mKyjWq0+UxKD7aYknKBOM2k6BpIgUK83zb4BeKZdel3xe64njhFLs5jKASaVYjwz+6Hr8GmWlu3RIJPPLNfg88D4120vLn3K35DZ8M0222yzzbYvs0KhgEwmI4kqfD4fxsbGMD09jampKclKubW1hUePHuHo6Ai1Wg3VahW9Xg+RSATxeFxioLRciLvzwImDp4tBd7tdkV1yVzkUCmFlZQUej0ccEdaYazabUneu3+8jn88LsCsWi4hEIhgfH0ev15M2MgkJnSkyhaVSSeJYyHTouC1gMOaHzguzWZKxO61wtHZ8gcFU+WT3+DdBgS7IbUrLnseMaNPHMXskgWm1WsUvfvELHBwcPJOdTjvumqlxOk8yUq6srGBmZkakk3qsmECBGUoJ5ghK9T8NEjSQM4GQlpOZWQM1a6fnhv3QpmPUtOPLvmpwZbKjJstnzhvHSsdB8TMtm9Nghv3R/ed9mC2VGT/1mPJ8sp/m+jHHlgy2uR712nE4TmSyrM2o5X56Hem+awBHxpCgXgM4PQ8mk6r7bq5dmo4t5X273S62t7fx05/+FJFIBN/4xjewt7eHe/fu4eLFiwNjQwDMjRmOCceIz73O6Mh/ZLMAIBAIIBQKCeAju0aQyY0GLS3lWqBcU8uN9fX1M8d7c83qWDx+r4GiXrvAyaYZWXAqCJgtmPcms0jQTXaxXq9LwhMtJW2326hUKqKOaDabkgRK16HkO+BFkkYvGQMHG8HZZpttttn2pUbg4Ha7kUwm5d/Q0BCOj4+Ry+WQSqWQy+UG/pOnfIY115i2nrI6OifM+MgscfzPvtPpiFPh9XoxMzODSCSCQqGAVquFeDwu57ZaLUSjUfj9fnFyp6enkc1mUS6XBVxUKhVxXsj0kfXrdrtYXl6W+BACSIIxp9OJer3+zG4ynbB2u418Pi8soJXRQdNO8mmmZWY81kpaqGPPAOs08NpJ1vPqdrsRCoWkKPfdu3fx2WefDRT21rvvvJYGnkNDQ5iensbly5cFuNORJODXQEOzElYsm74XgTNNMw1WzKMp/zPHwcpMEEenUzOtvJ/JpJr342cmkNPMpdV88p+W23KsNSDj2EajUUnCQbBA5kOXljCZTs2UsTaalbFtsVhM2Dfdfj3WbCed+r29Pdy8eVPYZD4zGtSa0lmTrbFql7neNcjRSTT29/dxdHSECxcu4OHDh7hx4wYuXLiA2dlZbGxsSFwigRNZdI6nZigdDoe8vzR7qN9PZPXIkGowxfVF48aFngOtMiDo0yAfeCqXJEDm+5Tfa5DIedWSYY43M4GSnavX67IRRDAHPM1gyU0Gqgo4diwJwuuZcb16vfC6p70Tvw57uQAcHDZ+s80222yz7UuN/1HPzMxgZGRE4sAajYYU6i2VSuL0MJOh2+2WrGZ0BJhKnTvfgUAA6XQazWYT4XB4oKDsyMiIJCWZnZ1FpVJBPp+Hw+FAMpmE2+1GsVgEcBLfFo1G8eTJE/h8PkxNTSGXywEA5ufn0ev1BoAFC34nk0mUy2UEAgHMzs4inU5jY2NDAByd+W63K+BPO590WlqtFkqlEoCnmTOBpzvj2iGnaWBxmtMK4BlHVc+L/k5LrkzTbdWOZaFQQDgclnmpVCr4+c9/jpWVFckWqa9t9oHtCAQCOHPmDPL5PDY2NoQ5dbmeplnXWSJNBses68br0qEkwNKOIo/RY6cZTI69mfqf46idcTP2TcsygadyNJ3lUYMuK3DDMdZMIo/XSSbYVv6tZZmU1WmgSLZZO8z8jtflutEMoWYs+RmfST2XvF8oFMLIyIiwb6eBYPan0+mgWq3i/v372NzcRCAQEDZJ30OvaXON8ju9zszPzd/1+icL/pd/+Zf4vd/7PVy9ehV/9md/huvXr+Ott96SpCpWG0VkC/X8cu51ciANvBlXRyDNDJd67WgArtctWTu+lxiPFgwG4ff7hcnXIJlMF4GgLh/AxDuaddWbO3wmh4aGUKvVhCnjs8lnXK8BvsfZR74Lq9WqxFAyOQ2P1TJTvjd1eYMXYS8XgHNYa45ts80222yzTVskEsHw8DDm5uYwNDQk8Wu5XA7ZbFayk3k8HsRiMXF+dUa3qakpuFwn2R9rtRpCoRD6/b7EqA0NDYnkqtfrYWxsDJFIBLFYDMFgEMfHxyiVSiLp6vVOsu653W5EIhEUi0WkUilMTEwgHA4jlUpJynUW8A6Hw3A4HKhUKpicnByQ3pF9yufz4hzrQHyPxyNMgo7x0CCk0WjILjNZEB03aJp2iJ8H3szEALyfCQbN+CSre2kw0e12cXh4iLfffhulUgnb29twOp3Y2dnBz372MyQSiYG04Zo1M9vrdDoRi8Vw7tw5tNttbG5uotfrDWTR0+Nl/m2yfFqqqvtrnqcBj47d0oCV35lt5nfaQeeYmrXzyDRybXNuCD7ZZt1eytI0WDIz/mmwwOdFt5lrVPddPz8ABHhoMGr20QSc/NdqtUTGrBk1t9uN0dFRxGKxAdaT19Tgk+xXu91GJpPBjRs3UK1WMTw8LKCEca56fjVAs3o+9Lo9zTQQ5t+tVgsbGxu4ceMGfuu3fgtLS0u4d+8eLly4gAsXLuDOnTsIh8MATtLzM+ZLt4ObB6Z81nyWydjxeAIYE2ByPemYVraXmW51nzwej6wZnk9JI5MM6TWo3zVkxQisTCm0z+dDqVSS9yfXtWbVyJYT9PE6XK/hcBiNRkNAIEsaUHGhNywI/l6kvVwADraC0jbbbLPNti+3xcVFTE5Owuk8KQ/Q7/eRTqeRSqUGUksPDQ2h0WgIQ1er1dDpdBAIBHB4eCgOLQtvNxoNYd1arZY4edz9n56eRiqVkpisUCiEUCgkziKL2GazWbRaLczPz6PdbmNrawuJRAJutxuFQmHAQS4Wi3A6nSIzisVi6PV6yGaz8Pl84kRrZygQCCAQCKBarQ6ABO0oayeHDpfJGGjn0AoAnSYb00BNJ3CgaXbGjNHSjBOvx3Y4HA5xwmZmZqQgd6fTwWeffYalpSXE4/GBmCwtjTLjplwuF0ZGRnD27FlUKhWk0+mBJBkmwOQ5moEyWSy2neBEAziT1QCeTYOvr0mgZsUgahCoz+WY6/nWsjYrUHgaU6TZOlNCqFk/q/6wnbpNmnHT7KgeI65XXpfnmUycOfbJZBKjo6MDGUlN4EwAx+exXC7j3r17ePTokYAHJgJ6HnA3wZvJvJnzpD/XMlo9rs1mE7du3cKZM2fw6quvYm1tDR999BG+973v4cmTJwKo+v3+QLKSQCAwIGHU99BxbZp543hqybEG7rwG1wLHXRcDJ4CkLLLfP6kxR2ZTx8uxNhwlq2wL29xqteB2uyVrL/BUxskNMp/Ph0ajIffW0km2W28GaEaR7J/X65X3LxULZOEI9Hhfq+fu67SXC8A57DICttlmm222fbnNz8+jWCwik8mg2WwinU5LfTfu6OqsgNVqFZVKBcFgEPF4XHapfT6fBMUPDQ0hGAyiXq8jEAgM7BZPTExgamoKBwcHyGQyACCSyUajgaGhISlDkMlkEAqFMDw8LCmvx8fHRSJEJyefz4tsikzf0tISstmsFEkuFArPsFx00inHNKVqppNGh9A0nTXPlPtpdsiUA9LoeGvwxfZo1kg7WtoJPQ0kOJ1OrK2t4d1338XY2Biq1SqcTicymQx+/OMfY3Z2Fh6PB5FIRJxtncyB9+E9fD4fpqen0Wg08PDhQ3HgdX+0066TM1ixa3onX4+xvp7+WwM+9lezWaZpp1TfU4+hOQdaFmnK+zRI4z+rcdJzd1p8IY/VbSLYqtVq8Pv9A5ko9drjOqBjz2vppC+aUdHjHgqFMDU1dWpRd5N94wbMzs4Ofv7zn6Ner8tzT4mejgvTjKIVa6nHSJvVBocJ4rVkMJfL4datW/je976Hy5cv4+bNmygUCrhw4QI++eQTYZfZFyZbIful5ahutxvBYFDGt9FoSAIkHbemQY/eOGA79drUiYII2ILBoIwD26HBmX5eOH+cB36mN6B4jW63i1AoJJtXQ0NDUlRcA1HW3eRmlS5/wL46nU7ZQKNcXDOFBIHc8NH14V6UvWQAzoG+zcHZZpttttn2Jba/vy/FuIvFItLpNKrVKgKBALxeLwKBgKSgphMUDoclxoRyHmbPo1PAItssfB2LxcT539zcRL1el+sTGPr9foyOjkp7GMN2584dxGIxRKNRiT9jAoVOp4N4PA6Hw4FCoYDx8XG43W48fvwYjUYDFy9eRLlcRiaTkR1sOkZkkMwYDr1LrUGYlk9pMGZK2IDnO6T83WSCrOLQ6IQSVFkBPw04TRasUqmgVqthfn4eu7u7wqg+efIEH3zwgdQAY5/oSOq+62t7vV7Mzs6i1+thc3NTHF0rBg4YBLf6HrrtpgyQY2+yJHrcNTDSoFE7kybTx+N0cWQ9jprp0QDRCljqOWS8EJ1tAjuuLd0PMk00Ovx6ngkAtGNPdop9MOee1yYI4ThoCanb7cbk5CQSiYRl0W4TvJF5KZfL+Oyzz/Dw4UPJ9sh4Mp0l0xx3K3ueo2/1nZY36rnq9Xp4/Pgx1tfXcf78eTx69AgPHjzA7/7u7+L27dsD5QR4Ht9fDodDxsSMhSVgoZnjpEGauRmjNwE0W6qN8aiMVyNbp+WOGixxXDif3ChjnTeuJ7J8TFyiY1L5POmEQeY6dzgcA2VMCMy4ccQ28VydeVKzcS/CXqoyAnYhb9tss802276KlctlNJtNFAoFHB0dodFoSGYxZnNkkW/+x01pjsvlkniJoaEhcU7oCDAGZHx8HEtLSyiVSlKfzefzIRAIiCOSSCSQTCaxv7+PQqGASCSC4+NjVCoVrKysYGRkRLJJ6p3rcDiMfr+Per2O6elphEIhHBwcwOFw4Ny5c0in09jZ2UGxWJSdayY2CIfDEhOng/PpsJsMAJ0UOu2mVI6Ok3byn+ew0jHS99TnaOBEJ928nnairI7p9/t4/PixxDlq5uAXv/gFfvnLXyKdTovki+Oq2RyzTeFwGGfOnMHi4uJAFkN+rxkszQxppkYDPDrQ+nxTdmmalvjR2WQckWaPTCe11+uhUCgglUpJP53OwYQqWq6nQZkp5WM/tTPLz7QjrAGDdoh1n00Wi5/pOms6WQxwAi4YE6XXEVkjLQMlez01NfVM2QC91jR4YybDx48f4+c//zlqtRoCgcBACn6zRpkeJ20mM6nX7fPkd2yPHlN+ViqV8Mknn8DpdOLs2bPY398HAFy9elXki7w32aJ6vS5/c9757GrQ5PV6pYQAjyMrpdui68wBkLHh+5DnapkhEwppWSJjSSmb1HFvmrXjdbmZRHDH97huU71eR6VSQavVkmu53W5RRbBMQjAYFFkoS73oLKYsBE5wy/cvi3zX6/WBshVft71UDBwcdgycbbbZZpttX27lchnpdFriyZjYoF6vi3OjpZAsCRCPx2W3NxqNyq4w4zDo2J49exbBYBDb29vIZrPw+/2Ix+Mit3S5TtKZt1otHB4eIpFIwOVyYX19HaOjo1heXh4AdXQkwuEwRkdHcXx8DLfbjeXlZezs7ODg4AAjIyMIhUJIpVIiKdKSMpfLNZANjsVqNWgDBmVf+m/txANPd/GtduUBDEjttLNn5Zia0jN9b5OponPHe1hJ1xwOB1KpFPx+vzi5lUoFwEna+r/8y7+UMgzDw8NyPp1E9s/sezAYxPT0NBwOB3Z2dlCv16V/BAb6HN0+4FnZqQawNO28W82DHlMN0LR0jd/rLJ7BYFCcXT2uWh6p2VbNtOn7mOwemQg9BnSM2VctlzTXmJUMVLOyOjuiGYep72mWBXC5XEgkEpienkYwGLSMSTTHnIA4lUrhV7/6FXZ2diSGjI47r63vzTG2mi8tE+Xnp5l5Df1s6H6nUincu3cPS0tLuHXrFq5fv463334bd+7cQalUGngmTSaKQJfATQN1zWARKPt8voHSDpptAzCwHnmero3Idx5BjwZkAGQDgnPNDJGcc71G9XNK9qzX60ldRoIw4Ckb6/f7B2LsnM6TDLMEZnzfs30m88bz2Ga+830+3zOZSL9Oe8kYOBvB2WabbbbZ9uWWyWSQzWYRDAYxPDwsO9tOpxPVahX1eh3BYBCBQEAcCDoI0WgUY2Nj4rh4PB74/X74/X6MjIzgypUr6Ha72NzcFBllNBpFo9FAs9nE8PAwRkdHkclk0Ov1sLi4iGaziePjY1y6dAkXLlzAxsYGSqUSIpGIgC2/349ms4mNjQ243W5MTEzg4cOHqNfrePXVV+F2u+XvYDCIVCo1sGPt8/nEGeNOs3b6TSbMNM3MaaZGO6Ta+TcdIGBQdqV/Ata13nRbTKma6RwTPPO4VquF+/fvY2VlBcPDwwNA4fj4GD/4wQ+wurqKUqkkzrnOuGnFqLhcLkSjUczOzmJ+fh6RSGSAfdKOMM83Y/hoGvySgTAlrKdJWnWGSRMYcYx4PTIRHo9H4pEIzMg8Eujz2nS+zbpx/MkYI5MlNUGhXmN07k2ZqE4oYzJp+roaYJhsJR1/PcfxeBxnzpxBLBZ7Zi41mNLsG3AC8G/duoUPP/wQDocDkUhE1nK32xXwoOfbCqDqNc17muDeNHOTBHgKLvk93wf37t1DPp/H7OwsfvGLX8Dn82FpaWng2WSWUJ24RbOavDYTMZlAUWd/JOtlrgk+F1w3HAsCLY4ppZw6eyWVCEwQxXvq9eh0OlGr1QSYch58Ph+CwaDcn+whN6k4RwR1HAcAA7GBvV5PioLrMSEzyNIyhUIB1WoVjUZj4Bl6UfZyATgH7Bg422yzzTbbvtSKxSLGxsYQi8UGkj3U63Vxkinl0lKkqakpiT0juKLjMTc3h4mJCRwcHGBvbw+9Xk/qkVWrVbTbbbnfwcEBotEogsEgHj16hG63i7fffhvBYBCff/65OFPMejg5OSkyuLm5OTidTty8eRMAMDo6ivX1dRwcHAgY3d3dFaaQ0h861cVicUAKqR1q7bxpxxsYdHppJmPA8zR7ZMW2aQaD31kxFfqz04AlHTUzK1y/38f29jYajQYmJiYGzun3+9jc3MRPfvIT7O7uyvwQyJFFMmWSdIDD4TCmpqYwMzODUCj0jHNujqtuq5Y7mn3WGfJMgGqyZnr+9PEaGOq2m8W9NZvGz+k0kzlpNBrCmGgZnQaRPJfzqwGRyZySxTGBnx4frhn+rcGXZpL0nLDNXFexWAxzc3PyvJmySV7LlE4y4+tf/uVfIpVKiVNP5k2PoSmL5fibEmT9nZ5Tvcb5u5nAg59zTCgzbLVaSKfT2NrawiuvvIJer4fr16/jnXfekfZR/siyF3qjo9/vy/cEpMBTNowgj5ksvV7vQLwjP6dU1u12S8ISgqBWqyWbVrwfyxswjldLZYGTEghazsz6bpTg8noa4IVCIXmH600ILeEsl8tSZkBvloRCIXmfcw1wvD0ejyRJYVvZF87/iwRwL5WE0o6Bs80222yz7avYxMSEsDWVSkUkZmTZCOL8fj8qlQo8Hg8WFxdRq9UkDq5QKKDVaiEej2NlZQXtdhuHh4eSnZKxZrVaDR6PB9FoFLVaDYVCAaFQCOVyGUdHR1hZWcH4+DjW19dRrVaxsrKCfD6P/f19jI2NIRqNIpfLodFoIB6P49GjR+j3+5ienkatVsPDhw+lQHGxWJQsbKZDyf5qaRxNH6fNyrnm8SZ4M3fv+ZmVU04nyUxmwXZoUMc4MvaJn5v31lka+X2hUMDW1hbOnj2L1dVVFAoFaUOn08Gnn36KSCSC733ve1hYWEAwGBSnXDu3VtI9xsENDQ3h8PAQxWLxGZBrpojXYIfOqzkupizSlDWyPeyvZg14vh5XmslgsS1kVLrdLhqNhsQ8kW10OBwIBoPi3BLE0NnntXkvM1GGFetEaSf/Pi3TqF5vOjGKeV+u5W63i3g8jnPnzlmWDNDXM8Fbs9nE7u4ufvKTn+DOnTvw+XwYHh4WZp7916n1tZ32fFgxy/q405g5c/7MZ6vb7WJjYwOvvfYaZmdn8dFHH+Hy5cs4d+4cbty4IeuTTCrHnDGfLFnCexCk8hwN9HXmRQ2w9CYMn1POX7PZRKVSgcvlgt/vl80QxptxjWoAyXWtSwDoJCy8Fz/jWiabx+sxSRSvUy6XRTLO45lEZXp6Gu12G7u7u3KMlo82Gg2JqdPg1Zyfr9teLgBnKyhts80222z7Csb/pAuFAsrlMgKBAKLRKKrVKgBgeHhYsrOFw2GMj4+LE8cyAC6XC4uLi5ienpZMlr3eSR02JjYBgEQiAafTiVwuh0AggJmZGWxtbcHj8eD1119HoVDAzZs3EQgEMDc3hydPniCTyWBqagoejweZTEYcqP39fUQiEUxOTuLJkycoFAqYmJjA0NAQMpkM+v2+MH5axsgEDnTStJNMho5m7tQDz7JvVo6LFXjT0kk6p9pp5X01iNG/W93TBCU6fsY8r9/v49GjR/gn/+Sf4Pz58/j0008H2Mdut4sPP/xQZFeaqaPESsfq6La4XC6p7efxeCSzKdvD/msgbcXO6c/MjJzaSSVQcblckkpds3HawTWZKt5H1wrTY6jXAjCY1bLT6UgKdt13GkGqyeixj8wAasomeS06xkwBT6BgGmtx8Z66vQQO8XgcZ8+excTEhKx5cwx4ngZvrVYL+Xwe165dwyeffIJ+v4+JiQlhu3Q/2H+TUWPbTeP3XA/m3Ov5MAGvCfDMTZJyuYyHDx9iamoKm5ub2NzcxKuvvorPP/9cNprIfgGQz/hu07GKug0EfIztpWRWZ2Qk88nnQ4N7AnydQVavVcYac31pSTDXoy5p0Gw2hU3kO9qUlvJYykE5ZpS3M4GPjt1l+ZXR0VGMj4+j1WqhXC7LmOvnQD8zBIDmM/Z12ssF4PCsdtg222yzzTbbTPP5fMjlchKjFggEUKvV4PV6kUwm0el0pKgrAKTTaUktzh3ehYUFDA0N4fj4GMViEW63W5KRkMlIJpPI5/NoNBq4cOEC3G43VldXRX6Xz+dRKBRw+fJl+Hw+3L59GwcHBzhz5gzK5TJ6vR6SySSOjo7Q7XZx5swZOJ1ObG9vAwCmpqakNpwu2Eupj46Z4t86y5s27WCabIE+1nTWrY7VzJNmU7RkTEsttaOnGTjeT8eHndYuAgPT+d/d3cWDBw9w4cIFrK+vI51Oy3WBk/ic//Jf/gu8Xi9+4zd+AzMzMwNOrc/nEyaHTqm+ZyAQwOTkJDweDw4PD2VdWTEuus2UYJnMFNtmfq5lW9phNcdLj7MG4lrCyPkzk0T4/f6BdaLBhdV6IZjR86eBDBmV09YCAAEAGhQRrGmwwr7oFPj62vF4HAsLCxgbGxPwptuvgbQJ3orFIq5fv44/+ZM/wcHBAWZmZjA+Po7Hjx8DwDNyUl5PJ04xZa1WzKped6f5q1Yss5nCX8/fkydPMD09jWg0ivfffx//6l/9K8zPz2NjYwPhcFieaz4XmsXVrCYlh2S3fD7fACvLDSwyvpp94zW0ZFvHnPGdwHHXyUfMZEgalJHt9Hg8krXS6/U+U5tNs8tsG5nHVquFQCCASCQiiYx4rUKhgI2NDaRSqQGwyuvxmWCcINk3buy8yCQmLxeAsxk422yzzTbbvoIdHR2h1+thcnIS7XZbso8xUQgZjkKhIDvBXq8XPp8P0WgUU1NT6Pf7SKVSkpHS6/WKUxGPx9Hv97G/vw+Hw4Hp6WkcHR2hUCgI8Nvc3EQoFJJi0zdv3kS5XEY4HMbx8bHc6/Hjx/D5fDh37hwqlQq2t7cRCoXQ6XSQzWYRi8XEGfX5fDg4OBBHSTM2Xq8X9XpdnB7N4ACDqeOtnHYNKMzfTbBiSr90YgMNLHgP7dibkje32z1QG8pkkPQ9rTIa9no93LhxA7/7u7+LsbExYSp1myuVCn784x+j1+vht37rtzAxMTHQP8YRUb6lGSCHwyHZLOlgplIpiadkG3Q7NTPJ65hsgnb6zXHV8/M8cM1ramBkSlT5HdeMdqL1fOnrsP+6zRos6jg6MljPy9SoAZ6OndOSPF2vS9+PMW+zs7MYGRkZkOuZsWQm89Zut1GpVPDgwQP8+Z//OXZ3d+H3+3HhwgWUy+UB0MPNEDOeTjPV+j66r1ZrVj+DJtA0zVwv+vPj42Pcv38f8Xgc29vbePLkCV599VU8ePBAAJpOZKOfEQ2AuPFjAjKybz6fDwAkc6NZw40gkyBPX5fyRr6TdAwlQR7nXZc40fciE6xr3XGtM1Mwx05LIFlGgeyc3sTghk+hUJCEVZp5Zr+DwaCoKhqNxjPA9UXYywXgYMfA2WabbbbZ9uUWiUQQCASE5XK5XFKnjTIdSmTGxsYAnPyHzsQjhUJBHKLh4WEAJ4lRotEokskkisUijo+PEQgE4PF4sLW1BZ/Ph/PnzyOXy+Hx48fodrvCNNTrdakJl8/nJbX9/v4+ZmZmsLCwgPv376NWqyEcDotEMplMitPBukgHBwcAnsYi0VFk4gDtMFrt6gN4BgDoulH8Xttp4I1sDD/j/bjjbgI3K+BIh868h2ayOId0HE2AkUql8OjRI7z22ms4Pj4WFk7fJ5fL4Uc/+hEA4N1338Xs7Kx8RyaOwEDXjtNMUjKZhNfrRTAYxOHhoYAAzUppOZ05XhowaemdBg0meDPnU7N3VsCB7deOPEEoHXg6zzru0GRINXtHcKvnlAxYIBAYGEdtZtvZTxPUkPnQMsJutwu/349kMinJhciQWW1CaPDG+SsWi1hdXcUf/dEf4c6dO3C5XLh06RKGh4extbU1sAYJSDRwNDcqOJanPQ96HWvpqzY9h+ZYARAQwv60Wi1sbm5icXERTqcT169fxz/+x/8YoVBoYP50enzNXhJk9ft9YZp1rFutVpNNIJYgYVITzomuh2aWHuAxBMOBQEA2CkwZd7//NH6Tx1ANEQgEJFaR706Oea1WG0heop9JMnb9fn+gX1zzlHGXy2Vh+4CngLLRaMh9AoHAwPp7kYW8XyoAB4tdC9tss80222wzzePxiNTN4/EIiwZA4jOSySR8Ph8qlYqAJYfDIVknA4GAOKeVSgXBYBAzMzPIZDJIp9MYHR1FoVBAsVjE8vIyEokEtra2kMvlEA6Hsb+/L3Emy8vLKJVKyOfzSCaTqFar6HQ6WFpaQiAQwN27d6XwdyaTEaem0+kgkUigXC5L3atHjx6JE8a+alCjgZIZt2YFLkzZnmnaQdYAEMAzoEWzIFZsAn+asWAmA2QyNfxMS9q01LHb7WJ1dRVnz57FlStX8Ktf/UpquFHe5XA4UK1W8f777wMAfvM3fxMTExMIBoPiMJPdoQNvJalk5kKPx4N0Oi0JaExm0QRf5thp59pkkqxkdhq00TSI0xn2TIaIji0ZB7J1wAl44fjq4/U92EYTrGowpdupQbyeY30MY7RodMx5vM/nw/j4OCYnJxGJRAYSb5jgjRsHnGtudjx8+BB/+qd/ilu3bqHT6eDMmTN45ZVXkMlkUC6XBVAwDb3OoMk+63g+PU8mu2rOvQnszN/1BoU5v/p5Bk7eWfV6HV6vFzs7OygUCrhy5QoePXokYE1LFbnedZIencyG61r3iVJEjgXHhvUzzYyl+vkEILJKjiHfYV6vF6VSaUBuy80nXWCc606Pi96E0oBKv7/4OZm6QCAgwFdvCJjF4zkWOq7PfA+a78+v014qAMchtdrRsM0222yzzTZaJpOBw+GQWBn+pw6cJDAJBoMolUpSKy6RSEj8hN/vF4kl5ZXxeByhUAirq6vo9XoIBoM4OjpCOBzG5cuXUavV8NFHH0nducPDQwwNDWF8fBzRaBSHh4fo9XqIRCIolUoIBoPiSG5sbMDv9yMQCCCXy0lcHtOAM0vm8PAwVldXAZw4zo1GQ+olcSeegEAH5wPPAiwr5saUV+rYGTrGz/v/l3IuOk3mtTWDQ+eQbTOBnD5OgzgrZ5VtzWQyuHbtGn7jN34Dh4eHePDgwYDEEDhx2AqFAn74wx+iVqvhW9/6Fubn5xEOh8VZ9Pv9IpVkYhjTsSTzGgqFEA6HkclkJMGJyZZZMW56vNlvKyffBAXsj1mGgO3SAITnNxoNcczJwOgMkjpRg5k6XrM3en4040KGTico4dzqzQSCBTMRCI/VICgWi2Fqagqjo6NSpNsqvk6zlIxvIvN27949/NEf/RFu3bqFdruNSCSCd955B5FIBLdu3RLJZqvVkudIxyHqvuuNBXOezA0OPZfsswnk9dzT2D+91jgu3W4X+XweExMT2Nvbw/vvv4833nhDMtZaxRMSkHBOrGJjGQunn3XGsAGQzS8N9vi33pDhOeVyGcViEfF4XOY1FAqh3++jVCoNMPzcBNFxvSz1Qekj70uJpskwUvYKnIBBMocsF8JjGdfHe/B8HqOTtXCjiHF2L8peKgBnm2222WabbV/FmNWs1WohGAzKz5mZGXS7XRwfH6PT6UhcU6FQQK/Xk2B6p9MpksvZ2VkcHh5ifX0ds7OzaLVaePLkCebm5rCwsIC1tTVJZc/Ml+FwGGfOnEE+n0c2m0U4HEa5XEahUMDU1BTGxsawvb0tWTDJyAWDQZFRdjod5HI5KSb95MkT7O/viyNC51vveGsnkuyBGc9lxcqZgIGf+f1+LC8vY2RkBNeuXZMMcdro/OmfGrDR9Gc6UYQJHE1GR7eREioz7T/7+vjxY6ysrODixYvY2dkZKA6sgVO1WsXPfvYz1Go1fPe738Xs7CxisZjs9vv9fnEGCRyZmIHmdrsRj8fh8/kQCoWEjSPTRQeW42/G72kwoNPu08nWIJemjzElmnrO9RwydlPHGtH0GGumQmeEJDDk/bWEzel0SpIdOr3asdf95pwR6Ovshmy30+lEIpHA2NgYEomEAE4tveQ5+lzN0JTLZaytreGHP/whbty4IVLolZUVTE9PY39/XzLK6tg7M22+Xnvsj8mucgz1eJuSZf29yaDyngRbOpZUs9AA5NlzOBx48OABXn/9dQAn0u5wODzAompAy7XFOTA3BCgb5PdMIKLnnmCKska+a5hEhNfUpQXC4TB6vR729vZE1qjBO+efzxfHjG2mtFHPByWWZNr0BgTHl+uMJRX6/ac18Qg+qczQAJKAjawy196LspcKwHHN9/u2mtI222yzzbbTrd8/Ke6aSCTQ7/cxOjqKRCIh5QACgQCmp6fRarVQq9XQ7Z7Ul/J6vajVaqjVakgmk5KpzuVy4Z133sHBwQF2dnZw8eJFjI+P4/bt26hWq1haWpLd50gkgnA4jI2NDQwNDSEWiyGXywEAFhYW4PP5sLa2hmAwCJ/PJ2UOyBKyTIDf70csFkOpVEKlUhFHw+/3S2yfzp6oHWHtdHE86GSZkkmCPC01pCPJxAJjY2MD8VtWjo3psJtA0cq51zI0zbKZDIUGNNxh14CMxzQaDdy4cQO/9mu/hsXFRdy/f19YVNMqlQo+/PBDVCoV/L2/9/dw/vx5xGIxAE/BhtfrHUjYoNk4tpn1BYPBoNT0KxaLArI5JnSsmeSBaeu106/HXrORelwADMQH8XwtZ9TtI0gwWVQ6rVom6HK5EAwGB1goPd8agLD9jENi7JSWTmoAQpaFgFIDfWZ+HRkZQTKZRDgcHojxpGkQp+PECCQKhQLW1tbwgx/8AJ988omwK4lEAouLi2i329jZ2UG9XpcxaTQashFi3ov3Mde7BkF6/Zogz/xdzwvHW19H30uPe7/fR6vVQrVaxcTEBA4ODvDo0SMsLS3h+vXrkoSH/Wi32wKsOY8cJ/0e4D9maKxUKsLsa5kkgV+9Xh8ASd1uVySXVAI0m03JbEl5t87w2Gw2RWXAfutnzOE4qSXXbrfRaDQkc6pOjkIQyWM4roxr9vl88lmj0UC9XheATAkpNzd0plO9GaaB74uwlwvAfSGitPOY2GabbbbZ9jzzeDxIJBIIBAIYHR1FJBJBLpdDvV7HyMgIIpGIALehoSEkk0m4XC4p6Do3N4ehoSFsbGxgeHgYgUAAN27cQLfbxTe+8Q1UKhV88MEHIr/c39+Hy+VCLBZDuVzG/v4+gsEgQqEQisUiQqEQhoeHUSwWkclkMD09LYwca9IRWOpsckdHR8JKMGPm7/zO7+BP/uRP4PP5pJivmTSADpcZ72YyB1rSpp16/t3pdLCxsYHNzc1nWDGTNaNpYGCCLH1tfk5QoHfa9bW1I0Vp3/MA5P7+Pu7du4eZmRkcHx9LRlK2Tfex0+ng9u3bqFQq6HQ6uHz5MmKxmDA5nU5H4uLoZFKmR+aHbQ+Hw5LRLhQKIZvNolqtyliYTrsZ80UzY39M9slqHvV4m/Op+2uynWyPyRCZTJGWAeo2NhoNkRoSOGh5q2YHAUiSDEqU6bQnk0mMjo5KtldTCsq5408z3o3gjdkmP/nkEwH5Ho8HY2NjiMfjyGazwmKzvYwL1GtKM5l63bDN5hhatfU0ts6UWppSSn0Nk3GsVquIx+NwOBzY2trCt7/9bXz00UfCSnHjRifh0WtUP+NmHBjBVa1WE+lkuVweGA8+i5rFJVPN99b4+LiALgKqcDiMYDCIbDYrGyo8nrG+ZL0I3nu9nkjPCUzJwLMfOhGPuWFEKXytVkO9Xh/YUOGYciOBz2I4HJZ3bb1eH6if+XXbywXghIHr42lEnG222WabbbYNGmPRJiYm0Gq1sLOzg6GhIZG8lUolAJAC341GA9VqFdFoVApxl8tlzM7OolQqYXt7G2NjY0gmk9jb2xMQ1mg0sLm5iVgshkQigaOjIwDA4uIiGo0GyuUyJiYm4Ha7sb6+DrfbjWAwKIAvHA6jWCwKMOj1ekgkEqjX6yiVSpK8odFoSFKWhw8fCvuh04ezhACdGatEFKeBBR6jWQTtrPN7/bdmjgAMgCx9b83w8Dz+NFPP8/ehoaGBOlD8jrvm/N4EqcBJLMz6+jr8fj8WFxdRq9UkiQLbzz4S7Dx+/Bh//Md/jFgshkgkIvfR5RvoINORpPOopYYejwfxeByBQACxWAzFYhG5XE4YU9PJ5Hhpdo1jomv7AU+z5mmWVcc0EdBoIELnVs89r6/n1JwDc+7o/Ju1xvx+v3zudDqRzWbh9/sljkjPm24jAMk8SHDFOod6LVqtGY4B5X7NZhPZbBZ3797Ff/7P/xm3b98ecMxDoRCWlpbg9Xrx+eefy/PmcDxNWMTNg+cxLs8DZOYYWj1v/N2UOZrSY6u+E6zk83lZBzs7O+j3+5iZmZGELMxEy7VNBtIsB6AZP753Wq2WJCLx+XxoNBpot9vC9nKzh2uOMsRgMCiJTij37vV6MrZerxcOh0M207gxYrKSnFOHw4FEIiGSR4JRt9s9kEGS7ddlBzQD3Ov1pHZns9lEuVwWtpX3c7vdiEajcDqdSKVSwj4yxrXZbJ66Hv6m7eUCcF/8tBk422yzzTbbnmcLCwuIx+NIpVIoFAqIxWKIRqNot9vi7MRiMYRCIRQKBbRaLczOziIQCOD27dvwer0YHx/H4eEhAODKlSsIBoO4desWhoaGcOXKFaytraFYLEqikkwmg0gkApfLJY7s+fPn0Wg0sLGxIdLKdDqNSCQizgfjMJxOp8ijms0mRkZGAADZbBbRaBT1eh0ejwf7+/vodDoDdY0ofdRAwJRKAs8myzAdTv2ZFTugnT/eS+/ka0fYTKyggQ4ld7odWu6nAWC/3xfnjU4ed+TpzGrZnsNxkuFwd3cXZ8+exczMDJ48eSI1pug0mw52sVjEBx98gL29PczPz2NychLRaFTuyUQXdIgJosjiaHkc5WPBYBCRSESylZLh1UBbJ2PQbKkGzFYsqmZyOLacCw1W6axqcGQCEDLR5vU1s8fxZnxUs9lEKBQCACl74ff7JWkK15+WbfI68Xgcw8PD8gySVTHBC+dfAw7NGNXrdaRSKdy6dQt//ud/jrt37wqYZKHpyclJLCws4ODgAPv7+3LdXu+keDc3BKyYML2hwf5Yscnms2LFznHDQn/Odug51s8s7885ZE1LPj9ra2uYmpqSepR6bPSYMa6Rz5ZuH9cv2TImvCFwMp8VndHSTJqkGVHghAVj4qBWqyVzrYEYx1Rv2lSrVRQKhYFC31pmyY0TrkeCYgIuDTo57rrWW6VSEVk6N9VKpRJqtRr29vYExJ7Gjn4d9nIBOBUDZ5ttttlmm22nWSgUQiqVQqfTwfj4OAKBAGq1msRmxONxAJCi2RcuXEAmk8Hm5iYmJiYE6MViMSwvL+Po6Aj37t3D1NQUotEoHjx4gGKxiLGxMbRaLRwfHyMWi0nh4PHxcUQiEWQyGWQyGSSTSdTrdVQqFZHoaVDi9/sxPDyM/f19tNttjI+Pi9Pj8/mQSqVwfHwMt9uNUqk0UHCYjh1NgyYrRk2bdvL0OaeBNy2P4zl08ngdfS3NBunU5L1eT5LLkCViWzXQMI3HMVZRt1ef0+/3kc1msbe3h+npaXS7XWxsbMh3pryz3+8jnU7j8ePHsiZ+7dd+DefOnZNMiHRMKc2i80cJK7MZ8npOp1OAXDgcRjKZRKlUQqlUkhg5tplOso5XM4E422vFvJkSSa4NDRL1nOqMoQAkiySt2+2KlFE77v1+XxiUUCgkgMDv90ubWCNMM0t0vMPhsAC3QCAgoOJ565NjwX8EECx6//HHH+P999/H3t6ejBOzCsZiMZw5cwaNRgPr6+sDjFulUnkGWJoyV83wmutat/l54M1cl18VFJhrmm0g0HI4HLh+/Tree+89pFIpkVPzXK/XK4lA9KYH1x3nhwwc78Nz+LcGg2yHljEy5g14uoHQ6/UEAHFzoVarSTIpxlkyrpTvAa6VWq0mY8yEQp1OR+aPUlzGyukSE3zHu91uebd0u13J9EtJZzabFfaY6gYtrWYylhdlLxmAYwycjeBss80222w73fb39xEIBDA3N4dms4lisYh2u41QKISpqSkUi0VsbW1hfn4eExMTSKVSKBaLuHz5MvL5PCqVCs6cOYNoNIrV1VUUCgW8+uqrKJfL+Pjjj+H3+zEyMiIORTweR6lUQrVaxeTkJKrVKg4PD+F0OjE8PIxOp4NwOIxut4tKpYJAICASrpGREbhcLuRyOalVVygUkEgkUK1WkUqlxEGm00MnhM6sdrS10ws8ZWG082h+ZiXZIjDgdbVsiaaZAxMUafZGx94QVDB+iv0Bnsa46cLB2gElOxEMBgVIWBnPyeVyiMVimJiYQKFQQCaTkWub49PtdrG+vo5gMAiHw4FUKoXXXnsNV69exczMjGSpZH0rlhsgYNAJEkwgxzihYDCIeDyOcrksSW/q9bqAcA0MrCR5pvOvmRD9UwM8Ovt0ynu9niSe4PdsuxW41XF1BGFkjsmO6PGkpJfn+nw+hMNhxONxRCIRAW4aaNJMSaJmUQg0ms0mCoUCNjc38dOf/hS/+MUvkM1mB9YP5a7T09OIx+PY3d1FJpOR+3Q6HUlkojdDNKumNx/0c2MFNq3+NudL/65BoQa6eu50GzQrpyXJXDs+nw/ValUy77KPvL5m2FgbjjJIAnMCHuBpfCal3Xz2uPbJ0rGtGrBzDsiQcVOC65vSV0or+Y/zq8tXMLumfleR7WOfzLHiGmk0GrLZw+cxFAohFAoNJH3J5XIDIJ4bVaclP/q67KUCcDSbgbPNNttss+15xlpv5XIZpVIJbrcbc3NzSCaT2N3dRT6fx8rKChwOB27fvo35+Xmpq+RyufDGG2+gUqngo48+gs/nw5UrV/D48WM8efIEo6OjAE5qzc3OzsLn82FnZwculwuLi4sil9MOPyU6rVYL4+Pj2N7eRrfbxcjICDKZDPr9/kAilZmZGRwcHKDb7WJiYmJAIsXd5KGhIQnM1yDKjDnSQEx/bpp2kDQb8VVMgzot97PKsqcZIZ2YgAwdJV3aqaKzqaWTzHpnOrfams0mMpkMlpeXsbKygl6vh2w2K84iz9Fgs1qtSgKZ999/H48fP8Y777yDS5cuSUIcOo8+n0/AmQbXVowcnUOPx4NIJIJms4lqtSoxepRX6uyhmhHSY8j51ONhAgQNIEyWjgwI76XjiHg/zfppNgaAlNvgdencM+6MAJeyYTrNuhD7aaDHZN3YNmZWPDw8xO3bt/HTn/4Ud+/eHWCUuGacTifGx8fx1ltvoVar4eDgQIANWSjNgnMcTTPBg8mumc+T7psGA/oYvU7ZVvMzAh/zunyf8HiHw4FSqYRoNIrt7e2B9a+lzmyrCXr03DIzqn7+eA8+l1wTtVptINstn+FAIACXyyVqB65DU1rN8QeeAk39HmN8HceO4I+MHdcEY9r088e1yGvyHelwONBqtQY2jvR7JRKJwOfzoVarCQC0ek9+XfZSAbgXKEW1zTbbbLPt75AxPX+9XpdaZj6fD3fv3kWr1cL8/DxSqRRKpRJee+019Pt9fPLJJ5iZmcH4+Dg+//xz7O3t4bXXXkMsFsOvfvUrlMtlLC4uotvtIpfLYW5uDv3+STKBRCIBj8eDvb09SaBSq9WEaUulUuJA3L17F8FgEOPj4wIWZmZmJGvc8PAw8vn8AKuimSv2T7MtOjOclYRLAzma6cTpOB0rWeJp1wYGpZJWx9K5orOnGTnGXwEQUMp4sH6/L0lmeE86t6FQCLVaTZxNAicNRIATSdjh4SGmpqYwOTkpBYdNEKf7pcsqrK6u4vDwEBsbG3jrrbewtLSERCIxIKv0er0DdeM0sGL9OB0DSCAXCoXQarUwPDyMSqWCarUq/ygtY5/q9ToASAp2zTpollPPp5bPmrGFZM/0mGpGzGRnOV9cd1yvVOEiPQABAABJREFUvAZrc4VCIUQiESmToWu5metGm9580MDN6XSi0WigUChge3sbH374IX7+85/j8PBQgKsGTcAJwFxYWECtVsPu7q7UWeT9q9XqgGSVn2vG2ARv5to+jTk0mTNtpzGpZhyc3vjg2GlZY71el+d0fX0dCwsLUqKB7Cc3D5jsRzNhTMyjx4ztI3umN0UIxriG+DsZTJfLJWCYQDkcDgtopLSSa02zg2wXN2X4twbaWlpNEEupJ8edYFHHALLt+h1JqSTHSvepWq2KLJNS4BdlLxeAYxkBm4GzzTbbbLPtOUY2Y3JyEjMzM8hkMlhfX4fP58P4+Dh2d3cRi8Vw5coVPHnyBOVyGefOnUO1WsUHH3yAQCCA9957D+l0Gj/60Y8QCAQwOzuLfD6PSCSChYUFHB0dod1uY2lpCdlsFltbW5iengYAkT1Wq1Wpe1QsFtFoNDAxMYFOp4Pd3V1MT09jZmZGEkJUKhXs7u6KFCocDqPVaolETMe7aeedTpfpCNK0E86/rdgFkxk5zdmmk2p1H/25Pt+Ui3k8HokRY5Fpl8uFTCYjgKLXO8lmR3aO1yNo0w6jBjEmE1GpVJBOpxGLxTA2NiZOntl+/Tfv73Q6kc/n8atf/QqPHj3Cm2++iStXrmB+fh6xWExi+ZgQgwWCtXNLh1ozXnSACf54He7+MzNqo9GQMSgUCgOMDtlSYFBmx7+tgDWBigYruji3CTCs5pgOL9lEsmx+v1/kaZrFtfqp15+WSmpGkOtgf38fN27cwM9//nPcvXt3IP5RX5NtOnfuHMbHx6WUQ6lUkmsRGGj5pGbvzLZajQk/078TEHLMdP/M65obKvp7PS9ajsr7UGIcDAbR6/VQLpeFRWy1WpIgSddHI3ghgNKbFLoNpvSXEm2ua8otNajs959mhm00GvI8csz4DJjvGc0oEwBqQEmgxXaZzKHeGDA3pnRyFP7jppCOdeO9mPSEyVucTicCgcCAlPvrtpcLwDGJiR0DZ5ttttlm23Os1+vh3LlziEaj2NzcRLlcxsLCAnK5HLa2tvDqq6/C4/Hgs88+w8TEBM6dO4e1tTU8efIEFy5cwOLiIh49eoRbt25hfHxcimtPT0/D7XZjc3MT0WgUi4uLePLkCTKZDM6cOYNms4mDgwOJjwsEAkgmk9jf34fP58PCwoJkO7t06RIikQiOj48xMTGBarWK/f19OJ0n5QFcLhfK5TLm5+ext7eHbDY7wOToLIhkZ7RzCHy1pAmmFMxk1kxn32TytGnZFq/Fc7mrHggExOGjtI675ywUrKVXdFQJXNm/oaEh+P1+KdLLz+jA6fYw9tDj8WB2dlYcTX3saaYd3sPDQ/zFX/wFHj58iG984xt45ZVXMDExgVgsJpJOMhEEMhrI6SLEdDI1g0RHnNn7KKkkG0c2ko5ms9k8Ndsn51Ybyx/osdGyRT2PdKw513TiOV+UnDHlunaoNUAwQZveTNAONseFc12v11EoFHBwcIBf/vKX+OUvfyl1wUzgpqWTMzMzmJmZEUZT1x7zeDwoFAqyttk/q/WsNyJMBtyKmdNr3mpDxAQu7P9pzyjnUa8RrgnWXXM4HMKoeb1eFAoFRKNROcfj8QjTTLCvGXbdDwJbAhhuOHBuuX50W8moA5DEI7oEgSnf1EmQOGdMCuRyuQZAJ/tLYKUluizUreWnmr2k2oHySvZLM5F8l7pcLtlI8ng8UhoDeJqU5UXYywXgvvhpM3C22WabbbY9zy5cuIB6vY5bt24hFothZWUFh4eHaDabeOedd7C1tSXySQD46KOP4HK58Oabb6LRaOD9999Ho9HAhQsXcHBwgH7/pN5SOp2W2m7hcBh3796VtN53795FKBRCNBpFsVjE0tISXC4Xdnd3MTIyguHhYRQKBYRCIZw/fx47OzvIZrNSp45OUzKZRLvdRiKRwNTUFDY3N5HL5QA8LWpNB4mMAwCJU9FSK9N51A6oltnxWKvdcWBQIqlBmWnaeaXTS5YDgMTJsGBvLBaD2+1GtVqFx+NBKpUaAIwEHJol0E4k67OxRACTNOj6bDyv2+2iVCrB6XRiZGQE9XpdMtFZSSlNQMPvW60WNjY2sLe3h9u3b+Ptt9/G+fPnMTY2hmg0ikAggF6vJ+uCwEeDBTr7BHEELrq97KspKyQrQmDXbrflp06tzmQRVvJNmq4Pxu8INgkmKQ1lPxivqFO867Wmx1GzWpphokOvpZI6zo1yydu3b+OTTz7Bzs7OgIzWNAKT5eVlXLp0CcCJzJDsG48Jh8MoFAriyBNgm0yOZsQ4/2afNOg1GSaew7G1WktfxvBpkME1z88I4shAb25uyvulWq0OZHwlyOO7w+12S0ZIghaWJSBAItNGeSzlsubmDZ8/rj8CK46rjjukHFjHqYXD4YF4XgAib+V9CFQ5JhwvboZocMZ+c2zY5k6ng2q1Km02md9Go4F4PI5QKCSbYi8yAyXwsgE4YeBss80222yz7XRjUdb5+XkAkDiRQCCAGzduIBwO49KlS9jb28P6+jpmZmYwNjaGhw8f4uDgAKOjoxgbG8Pm5iZmZ2cxOTmJnZ0dtNttnD9/HtlsFo8ePZLMgpVKBfF4HL3eSUa4ixcvYn9/H+l0GhMTE3A4HNjY2MDExARGRkZwcHCAcDgsbAozsk1NTQnTNzY2htXV1YHMicBTB7BSqYj8DXga6G+CNH0OTTvT/N5k4cxzaDq5Ao1sjXktghAAUlvJ7/eL40Y2J5FIAHia3l47cDqujUwDJU9MjLG7uysJGBgjpsEOGQQCBM4JE4mYAIpmJvIwnb7V1VUcHBzg3r17eP3113HhwgVcuXIF/X4ftVpNWDI6lDphhgZyZsIOzSjw3jze6/UOsCf6eJPVIqAnG2bOre6brrNl9VMDHM2m6WtqcGImwrHqowZu1WoV+Xwee3t7ePDgAa5fv46NjQ0prmyuXb0eHQ4HZmdn8d3vfheZTEayzmYyGclGSDDK54ZgVWeh1Ne3Yib5uQZxVu0yAZspn7Qy/bn5DJubMgRVbH+xWJRniO8TLYdkf/lM6FT7wAl71uv1JLukZrB1+ynFpMQwGAwOxLBxPXKdUIbI51WvWa7jWq0mEnCd5ITvDV6LzLTewNHvCD12BHhkBL1er8icdXwcC5Dz3RSLxeD3+yXRETcnXoR9KYBzOBz/LwC/AyDV7/cvffFZAsB/BDAPYAvAP+n3+/kvvvu/AfhnALoA/q/9fv/HfyMtt2orrP8jss0222yzzTZtfr8fY2NjyGQyqNfruHz5MlKpFO7du4elpSX4fD58/vnnqNVqWFxcRLvdxoMHD+DxePCNb3wDBwcHyGQyeOWVVxAKhfDgwQNEo1GcO3cO29vbKBaLSCaTSKVSksSiWq1idHQUXq8Xt2/fFmlOJpOBx+PBq6++ilarhe3tbczMzGBvbw/lcll2sf1+PyqVCs6fP49er4fr168jFAphdnYWjx49AvA0qYF2ytxutwTqa0ddm+nw8FqmY6mZBSumg46aGf9mJkLQjj/wdKc+EokI6OX3dNQSicQzTjCdPc3k0OljchCfz4dkMonj42Nx/ni/druNRqMhwIkyzVwuh0gkgqmpKcnex/5rNs4cL23c9S8Wi/j888+xtbWFVCqFiYkJ7O3twePxIB6PIxgMCuikpIuMlgZNnEsNyvRPEyCxTQQwplyPfQCereVltTbMn+bvVufosbGSImpwqZk2siKtVguVSkWkzffu3cPt27exvb09IKcz70XjmohGo7h48aKUZ+h2uzg+PpYMrw6HAysrK0in0yIL1KwW+6SlmBqwm+sdeConNDdK9Ln6fN7jNOBntXHyvDnhGPIzJgvhRg5ZM7a11+sNMNV8lgl+CLKs7ktwZZb7AE7An94Q0vG4umQHj2m32wgEAsKcZ7NZSfbE+/M54XU0+8t2sn9+v18yX+pacsDJe8nv90sB8WKxKExcv9+XzRXOiY67pAT3RdlXYeD+3wD+HwD+nfrsfwLwl/1+/391OBz/0xd//48Oh+MCgH8K4CKASQD/xeFwnO33+88XkP81mc3A2WabbbbZ9lUsGAyKM91sNnH9+nV4PB5cuXIFpVIJ169fx8zMDJaWlnB4eIhUKoVoNIozZ85gf38fbrcbb731FtLpNFZXV3Hx4kUkEglcu3YNACQpSSwWk3pSMzMzqFarePz4McbHx+H3+/HgwQO0222cOXMGn376KWKxGBKJBG7fvo1+v49AIIBIJCLxGleuXMHe3h4eP36M+fl5RCIRYf606Z1uyp3MHXzT6dMMGz/Tx1mBO50GnUZn1spZJ0jijjadI2Yl1Cnm+19IPvv9PoLBIPx+v8jkCL6008wdczqqGmhNTEygXC4Lm0Z5GPCUdeO9tZRyamoK5XIZ6XRaACGvqfunpaRmchBd4Pr69euyy+90OrGysoKZmRkkk0lJ8sEEH2TlNJjjvPB3zoUJgrSkz4rtMef0eczPl32nfzf/aXmkBiyaWTOZQTIhpVIJmUwGW1tbePDgAe7du4ednR2R0un7W7WR4D8ej+PNN99ELBYTqXG5XB5IhjMyMoILFy7g3//7fy+Al+wVr6XZLh37ac6/uZmg2WL9twYkenNAM3iU6xGI6z7ra+nfdfv4rLVaLRSLRZEjcy2TsSagczqdwvZzjpiun0wZJZQcG10Mm2uWZQJ04iQt1yRDTQZMrxECLr4vKFfU8ZyUQhOY6blnoh+9gaNLkHC+CFr1MxuNRjE0NIRqtSrvPma+dDgcAgKpKLBi5b8u+1IA1+/3f+FwOOaNj38fwLe++P3/A+ADAP/jF5//f/v9fhPAE4fDsQHgLQAf/zW19yuZTcDZZpttttn2PKtWq1hZWcHOzg729/exvLyM4eFhrK+vI5VK4fLly3C73UilUsjlchgdHUUwGMTGxgbGxsbg8Xhw69YthMNhXL16FalUCp988gmSySQcDgcODw8RDofRbDYRiUQQiURwdHSETqeD9957D41GA3fu3MH8/DxGR0extbWFkZER9Ho9bG1tIRAIwO/3Y3R0FPv7+5iZmcHExATW19eRzWaxsLCATqeDra0ticGjY8fdaeBk15wAkkzVaZIvmgZuVgyL/lzv8ANPpZIaQOjdbv2Tx46OjiIQCIjsivEwunDv8PDwgHRLJyxhnyndItvA3fVCoYBIJIKZmRmsr6+j0+mg2WyKk86/Wf+J5QYKhQJ8Pp/MC5NdaOec/aCZAE/L7Lhbn8/nkUqlkM1m8dlnn2FmZgbnzp3D3NwcxsfHEY/HhYHQ2So1oNNxgwTSBH1aimb+M5O3PI9N1ceZMY4mA6OBmhXLZ2aO1PF6/L3VaqFWqyGTyeD4+Bhra2u4f/8+NjY2UCwWpV6Xvu9p7eeYjIyM4Jvf/CYikYg4+qwVx2yDbrcb7733HoLBILLZ7EDdQTMm0GSlOS6cb5M9M8fOXCfmOrIaQ/1sWY29eT0TMLP9XN8cf8aAAU8lhlxHnBNmfgQg2S65LpvNJur1uswhgV+9Xpex1cWyeR/Oe7/fFxDGtR0KhQBAsvPyvsy0CkA2OBi3RyCm1xXHgsl+dLyn3sRwOBzyrqF0mTFwZhIjxgZSSur1el9oHNxfNQZurN/vHwJAv98/dDgco198PgXgE3Xc3hefPWMOh+N/APA/AMDs7OxfsRnPXPPkFxvA2WabbbbZ9hxLJpO4c+cOer0e3nzzTTidTty4cQMOhwNXrlzB8fExUqkUkskkLl26hFwuh1QqhYWFBdTrdezu7uKVV16Bx+PB3bt3USgUEA6HcXR0hHK5DJfLhXq9jnPnzmFoaAhHR0cYHx/HxMSExNGxUHixWJQ6X06nE8PDw4hGoxgZGcH29jauXLkCr9eLzz77DE6nE/F4HPv7+6jX6wO71zQ6R91uF+VyecCB1GyZdmSsQJx2lq0cZR1fouVdZDXMGC3NTNBJYvvpvPX7Jyn9uYPebrcl8Uc2mxWHVLN5ms1g7IxmHXq9HtLpNC5evIhsNoujoyMAkDgfsm5aLkVGotPpIBKJSGkByqoI/rxer9SaM83cnXc6nahUKvjVr34Fn88HAJKQ49GjRxgeHsbCwgKWlpYwOzuLkZERLCwsoNvtDoBLHZtFsEHH2xxv/s75Ntk4q9+t/rYCSKZpds38aX5G9qfVaqFerwvLubu7i3v37uHx48fY398XSZ/Zr9P6otfYzMwMvvvd72JoaAiZTEbuf3R0hEKhIIB/fn4e//Sf/lP823/7b4Vp4XiawFSDNn1/DXz02GiAZMb88XsTrPE6/KdBsgbj5rOr2UET3GkGjX+zH7VaTZKR8B7NZlPWE58LzlksFkM0GsXOzo6wpbFYDKFQCOVyGc1mU+SYlCsTMPI5IzAOh8MDGxFsF9l4gnoWs+d6Z1IjndGVY8h1qOdQJ3cy2VECRdZ1Yxwp+8tNFCu29GWqA2e1hWMJp/r9/v8G4H8DgG984xt/LZBLslDaCM4222yzzbbn2K1btzA1NSXJRB48eIB4PI7JyUns7+8LeEsmk9jZ2cHw8DAuXryI9fV1uFwuvP7668jlclhfX5cd4OPjY5EVhUIhzM/PI5PJoFAo4OLFi3A4HPjoo4/g9/vx+uuv4+DgAJVKBeFwGLVaDdFoVHaNh4aGsLe3h5mZGRwcHODw8FCKOh8dHaHb7SKRSKDZbEoWPWAw9oR/a6kW8BRYkGminRZjo+VZWpplxsOYbIFOEU6pFFlAj8eDRCKBaDQKv98Pp/MkI93x8bEkG+H1mIEul8sN1Jki09bv9xEOh4XxpISKAI/xMIVCAa+99hp+9rOfibyr0WjI/bvdrmToYwIFACKvjMfj6Pf7kgAjHA5jeXl5oO7YV5FU9Xo9KbRMlqfX6yGVSiGVSuHOnTuYnp7GhQsXsLCwgMPDQ1QqFfh8vmfi5XScoJap6aQiOmbL/Kfn2TQr2aR2kPmPfxO8a5BmSjuZEbPRaKBYLCKbzeLw8BA7OztYW1vDzs6OjK/JKp3WLpOVIyj7/d//fTgcDuzt7ck1WDePQCcYDOJf/st/iVarhUePHslxVokwrGSMbKOZuEc/R6aEUpu5UaKfVZPJPG2TRQN13WZdcJuAhMy1KaFkbByfKf7UclUAUpZDP9uBQABDQ0OoVCoiTWRsm9/vh9/vlxg2fk4Q12q1JFER55zxqbqkAdc2n+1+vy/soE6EomP7HA4HGo3GgFSSjDvnhKUL+G7SzD43mrR8kxk5ucZPY66/DvurArhjh8Mx8QX7NgEg9cXnewBm1HHTAA7+Wxr4X2NCwNn4zTbbbLPNtufYlStXMDo6is8//xz1eh2Li4toNBq4du0aXC6XZKQ8ODjAuXPn0Gw2cffuXczPz+PcuXP41a9+Jan8NzY2MDQ0hGg0inq9jvHxcSSTSWxvb8Pr9eLixYs4OjpCKpXC/Pw8hoeHsba2JhKlfr+PaDQq0qRCoQCv14tEIoHV1VUMDQ0hFouhUqmgXC6LtLJWq4nczjRTvghA7sXv6Khp4KYdTCtJl+lcatPOo5ZJ8rNerwe/3494PC4755RMamexUCiIPIpOZ61Ww/HxscTe6Ngat9uNUqkkzBiBMMEDneuDgwMsLS3h0qVLuHXrlsiqyGSyzYw3JBPCtlDKSSatUqng5s2b4iTrflqZjk3SnzEekPdhX4PBID799FPcvn1bGN7JyUmMjo4iFosNyCzN7JUEbKexSJqpOm0+TZkl22uCNvN3DeTIsrHoOEHb0dERNjc3cXBwgP39fZlzfQ2zfVyPVsyb7u/rr7+Ot956C+VyGfl8Xj5vtVool8tSF9DtduM73/kO3njjDfz0pz9FJpMR8GaOo8lwAU/ZbP5tzq0VY20lu9V9suqjCQat4k71WLCdGnxxjRIUlUolAVeaOez3+/Jc6BhAAMJENZtNSRLE56ZSqci1CYICgYCArFarJWuO0kO+J8iO6feGLoESCARks0WzXjqrLpk91mijJJrX1LGljL9jbF2v1xNAy/HVG2Fk4nXcLoHf38U6cP8ZwH8P4H/94uefqs//g8Ph+L/jJInJMoBP/1sb+VXtKQNnm2222Wabbc+3n/70p0gmk1hYWMDGxgaOj48xNjaGhYUFHB8fo9fr4fXXX8f29jYymQzee+89+P1+fPzxx2g0GggEAtje3obf75c6STMzM2i32zg6OsLExAQikQhWV1fR7/fx2muvod1u4/bt2wJc4vG4OB0ulwvZbBaJRAK1Wg1bW1siMWJx73g8jlgshkKhgNnZ2QGJmZZF0fGkA8b4FJ3s5Hm7x6aDDzzrkPJvqxgfOpN0zOjoUDKpywSwaHaj0UC5XBbZFB07smm5XE76oJ1aOoFk0fL5vMTT+f1+iT1rNBq4f/8+3n77baTTackuSRBHIESHjX3ViUFcLpfMHVkHjpcej+eBOJqOR6tUKgJcKNsCgA8++ABbW1tIp9MiD43H41LGYnh4WBLfBAIBic1hsglTCvhlTJyVafDAPpiATscZkSWpVqsol8vI5XLI5XLY39/H3t4ejo+PUS6XUalUBLRqwEKgo+PLOMZW7SLQ8nq9eO211/DGG2+IfJbfkV1Np9OoVCoYGhrC6Ogo/tk/+2fw+Xy4c+fOQJF4XTpAt8VqrvkZ16DJCPJYqw0R83o6RstqHngfq+95fzJOvI/OCss11+v1EAwGhYXiT4IUjhlBkq6NxjEPhUIC6LRUVKf8ByAsN9vE33kdjgHfEYyrCwQCz4y9Xg96rTC5EWsrclNBZ3TlGJjSVJ7PNrBwuH4eCfTYHm461ev1Z+bh67KvUkbgf8dJwpJhh8OxB+B/xglw+z8cDsc/A7AD4L8DgH6/f9/hcPwfAB4A6AD4v/S/pgyUX7QVX7Tj67qlbbbZZpttfwft5s2bmJ2dRTwex927d1GtViWmbX19HcvLywiHw7h58ybC4TDefPNNZDIZ3Lt3TyQ7pVJJ4rZ6vR6mp6dRr9fRaDSwsrICt9uNBw8eIBAIYGlpCXt7eygUCuKQjI2NidPIXe14PI6joyM0Gg2EQiHU63UBLBcuXJC6cKwHFw6HB0CZ0+lELBYTAEIGKhwOw+v1olgsPiPJsgIdVk7kaX9rVoKmU7FzB9zv9yMYDCISiUgttmq1Kpnd8vm8yOfMWJ9sNotCoSDOvmYGmJzCZCUYN8Y2AsDu7i5WVlbw67/+60in01IUmDv8THSggTBNJ1Xhdy6XS2R5HBOTrfwy06nagRNAmsvl8PHHHw9IuFhsOJPJYH19XZzhUCiE4eFhJJNJAXShUAiRSERYOkouGTdk1nB7HpAzZZNaDqkTwFQqFZRKJeRyORQKBaRSKWQyGeRyORSLxYFYQQ0C9biZ7BPH+TRGigDN5/PhnXfewfz8PIrFopQYIJhoNBo4Pj5GLpeTfv/zf/7PMTc3h3K5jPX1dYmrJHgzywiYa9zK19TA6bQ281p6k0ADPH7/PImyfna1aZZQg0I+g5q1oiS7VqsNsI0cMwI6ygY5/+12G8FgUNYCx4yJQBhvR+abY2gWq9cp+XlOv98Xxr1eryMcDqNSqTwje6UMEoAwqg6HA8FgEP3+SXKUSCQibdRzwrqPlGaT9SbY49gRoPHZ0YCN/TCz/36d9lWyUH7/lK9+65Tj/xcA/8t/S6P+qiYSyhdxc9tss8022/7O2KVLl5DP53Hv3j04nU68+eabkrb8jTfewOHhIT7//HO89tpr8Hg8+Oyzz1AsFrGwsID9/X10Oh0MDw+j1WohmUyi1+vh8PAQXq8Xi4uL2NrawtHREeLxOEKhEB4+fCgSJI/Hg+HhYVSrVQSDQeRyOXG0Dw4O4PV6MTo6imw2i2azidHRUZw/fx6pVEriMihZ2traElCoY4+4Q0wHye/3IxqNwuPxSByKdv50LI/e4dcgynQW6VBpx5b3JpulWR8mG6CsinFp9XodzWZTABpBFO/HpAKaSaBjpgEId8f7/b5kwdM7/fz82rVr+L3f+z288cYb+PjjjwcAI0EJY7V0MXHel23S7AETJOgMeKeZ6dibplkSOqrased3/X5f6podHR1JNj9dED0YDCIUCiEUCkkhYta84hxxXfL6JvNFp73Vagm71mg0JPkIgVs+nxemmEycCU7NmK3T4tn4uxk7phkqsouRSARXrlzB+Pi4tFOPLQt2Hx8fy2dvvfUWvvWtb8HhcCCVSkkdRQ00+LfJlvEn17rul16Dug96U0DHnmqGzDxPm0lQmLJn/XySHTbHkuPF56bf74tyQG86aAllIBCQTSOucTLPLMXRaDTQaDRkYwCAJCxh2wkE+W7hBgBljl6vVwASN0MCgQBqtRqq1aoAJW4KUQ6uSxXo9Q9AQBoTq3AuCDjZVtadDAaDwl5ynZOd1FlfGb9Htu5F2V93EpMXaiKhtBGcbbbZZpttz7H19XXk83mcOXMGk5OTePToESYnJ/H2229jdXUV7XYbV69eRSaTwd7eHtxuN3w+H27fvo1EIiF1ycbGxlCtVlEqlbCwsACn04mPPvoIbrcb8/PzODg4EKcnl8uJ1I1JMPL5PIaHh1Gv11EsFhGPx+HxeJDP59FsNiWe7tGjRwIoYrGY7BonEgkATx1Bh+MkjTdlftxRD4VC4tBoVsFkiXRGSQAD0iFtZgC/Bja8frvdhtvtRiwWE5DAWBSCAbJLLK7MHX0dk1KpVPD48eOBBCg62QDjyDgGui8cG+Bp4oZMJoPPPvsM77zzDtLpNB4+fPgMe0fQohMr0MkmkCPzo51C1pmzkgBa2WlyOZ532rkaPGqGjM5luVwekNzRdPZKl8uFRCIh2fcIes228bqMG6Lskf00Y+Ks+mjVZ6vPNSAhoNH/2HeC+vHxcbz66qtIJpMDDB/XUbPZRD6fx+Hhoawfn8+H7373u0gmkwBO3gUHBwfPyEx1og5TcmrVT/2dFRjjM/M8UM57m6yROUYmCDbHjDFnpkyQbFqtVkOxWJTkImTQ+EwykUgoFJLkQZFIRJ5dZtrV96Z8kv3hsxMIBGRThvfhc8RNJq5zvgcikYhskjDJEJl3xq4BkOev1WrJxkuv1xNgyWe0UqkMvBc5RmwTN2rI1lJSTaDIOWXBcM7h38UYuL+dxoVqc3C22WabbbY9xzqdjsSkPXr0CMvLy3A6nfjss88wNDSEubk5HB0dYX9/H16vVxyWixcvotvtIh6Po91u48mTJwCAc+fOodFoYHV1FaFQCFNTU8hkMggGg+L0Li4uol6vIx6Po9PpoFwuY3x8HKVSCb1eD7FYTOJ0er0ezp49C+CkbhgTlUQiEeRyOQnu7/V6sntNM3fayVJo1giwBhamlFLLuOhg6nT1dNx5rpZLcbfc4TiJeSMjB0CkW0zMwjg1OrmBQADNZlMcMo6RdgDZ1n6/LzvsmunQkikTeN2+fRtLS0t44403kMlkJMaMzjIdTjqZZLM0O6NBHM3hcEhsF6+lk06YDIr+zLTT4qBOmztzzqzOIxCjc8807yy8rIHSadfg7+bfX8VMUPO883RiDTJI3JCIx+N45513EI1GBZzo8yhRZCITXcz+4sWLeP3114XFffjwIYCnhb/5TwM24Cko1M8CzzOZMKuxMedbH2eCLRMM6s9NKacJFs3zKfvl+ua4EuDw/syyyMQmlA3GYjFpW6VSgdfrFeZJb+SwbTopiI6Dc7lcUrJAyw/JxmtGnTGxHG9KGmu1mrRNjwlj9HStNr4Tycyxdh3vR8kn402pBND18thX/R7k+43XeFH2UgE4edXZ+M0222yzzbbn2FtvvYVbt24hEonglVdeweHhIUqlEmZmZpBMJnH37l3JYJfL5RCPxyWmYnZ2Fk+ePMH9+/cxOzuL8+fPY3V1FcViEWfOnEG/30epVBIZZL/fx/j4uJQKoOwtHo8jnU6LM1Sv1yVLYzgcRrlcRqfTQSgUEoDHa1SrVSQSCUxOTuKnP/3pM0yFBmKUBwEQEGUFJIBBiZpp2pHUUkt+TgebEj6v1ysOEHezGetWrVYFxNFhIuhh/Tdet9VqIZ/Pw+fzSZwMJV407TCzD7ofpjSz2Wzihz/8If7hP/yHeOedd/Czn/0MhUJhYEy0E0hnLRQKyS6+HpdAIDAA7jSIM+fDdO5PY3VOA3m6b88DQHoOraR2/f5JcXGCZ47dl9l/LVgz2/C89upjOAcauIRCIUxOTuL8+fMSc1qtVmWtaMlmvV4XSSdjnWKxGN555x2Zn1KphLW1NdmY4JrSrJi5YaHHXcea6XHVIMucBxOonXZt81wNyPT9zOP4t2YP+RmfA4fDIYw+8JSd5nPLum9Mz0/5JBl5Ah8tt9RMLEEVgVggEBCZtwaOXG+6NAGTFvGdoJPDaPbSLPXAudMbL2Tz2+22tDeXy6Fer6Pf7yORSMhmU6fTQalUGgC1zDhJwElmnu37W53E5O+Scf3a+M0222yzzbbn2c2bNzE8PIxQKIR79+7B7/fj3LlzKBQK+Pjjj2U31ufz4cyZM5L8IxAI4NatWzg6OsLc3Bzm5+dx8+ZN9Ho9jI+P4/DwUMoLZLNZJJNJFItF1Ot1iXcLh8MIhUKSqIROp8fjQSwWg9PpRDabRTgclviMYrGIVquFcDiMVquFhYUFOBwO3LhxQ5wRLTOi0+F0OhEOhxGPx1Gr1UQyRcfJ6/VKzJDJFJhmxoFpJ4zSKe6g0wljvAolTaVSCfV6XWJoWLeN52kZHqVSdMx0jTE6gybLYDqRBATaCeP1j4+Pce3aNfz9v//3UalU8Itf/ELYKc100RGkPJKgmn0muNAJGvr9vgBwDdyswNfzQM1pIMg83woU0qxkds+7r9U9eR39txXLZAJnnmeV3MOUJ2rgrY0xlYlEAjMzM5iamkIoFEImkwEwuLHAcxuNhsRPlctlkfMypjWVSmFkZARHR0e4ffu2tEeXj7ACQSbAtBoLK4B22qaIebxmek4DbCZY1NfRc6yBpzlOwFOJMWPgKEdk4W4CGKfTKdlumRmSCX/4POnnnxlvGdPmdDrRaDRElsnEN2TC9PNhyqE1C8r54bNM1o3vCT5rLMmhx6XT6cg7nEweASbfgewT4wf1+023kbGdZO5elL1cAA5c0C+4IbbZZptttv2ttomJCeTzeRwfH2N2dhaRSASPHj1CoVAQx4I1t3Z3dzE2NoZ+v487d+7A4/Hg13/911Gr1XD79m2MjIwgFAohlUpJEW6v14tkMolUKoWxsTH0ej3k83kkk0kUCgW43W5h9JgVLRqNolKpwOPxIBwOw+E4yTK4u7srqbGDwSBee+017OzsYG9vD5OTkwJm6Jh1Oh3JEhcMBjE7OyuZKYPB4DNSJ+B0NgB4Ko3USUSAp44nHS46vzpZC5OWlEolSVzAjHN00HR9Oqv6Vozn0eDNbKs+TrNu/J7n6kQv7XYb9+7dw/LyMt5++23U63Vcv35d5Hg6iQcAiddrt9toNpuIRqMDbJzDcRKfx/TsDodDNgIY6/M8R9407ZCfBqqsvj/td/ZFz58ViDsNWH4Zg6a/Pw3kaGByGgDlMQQEkUgE8/PzmJubQywWE9Cv55rzSYaHZQwKhQKazSa8Xq/Ejq6trclmzJMnTwbqhekYUV6bzBDbptvI9mvWxooN0/JdttcEYSZI0yyfvpZ5bXMO+IzyeWW87fDwMLLZrDBwrJ3G55TnUR7IfrOt0WhUMkQCkM0Ong9Ani9uyjBjJMs46LjCdrstWXiZfITySf5OIMbYs0qlIvXtOC4sQwJA2s73Eb9nNl8yqtFoVFhExnbqEgrcDOKzzT5zXTgcDsmM+aLs5QJwwsDZCM4222yzzbbTbW9vD81mE6+99hoA4MGDB+IEVCoVnD9/HkNDQ9ja2sLi4iLS6TQODg4wOzuLsbExPHz4UIp2t1otpFIpCYKfnJwEABweHmJsbAzlchlO50l6/3q9jmg0ilAoNMDqRaNRHBwcYGJiQo6p1WoC+orFogDKDz74AO12GyMjI7h3755kiKPpjGkOhwOlUkl+Nx1wMkY6ho7HatOZEc3PKKckwOROO5OmcMdc11PTvwOns0j8nDv9mj0k02XG6fH63Hnnrrv+R+t0Ovjwww8xOzuLq1evotls4vr168+Mkz7H6XQKgxgKhRAOh8XxAyAFjinfyufzKBQKA7v4VgyZ1bhzzHWcFa+hx0r/PA0gmsedNt5WoMsKzJkg2mTfzGuY7bC6lmY0Wcz+/PnzGB0dRbfbFYmbjuckEOl0OuKMNxoNpNNp1Ot1DA0NIZlMotVqYXNzE4VCAcPDw7h27RoODg5kfRJEkIHTMW5644DgiEyNFRDjeTqRjgn+rNg987jTTLfJjEGlaXDbaDRwdHQ0IHsmWGNtRkoJdT8IltjXoaEhRCKRAdkt54LPHZOlaIkjE+RQ1cB3jn5eh4aGpAwAN3v0WuG7iu2vVCoDmytmUXCCSQ3QvF6vyMk570zsUq/XEYlEMDQ0hHq9Lu8xljrh+ibQoyzzRdnLBeC++GkzcLbZZptttj3PKDvc2NiQnVRKgiilLJfLWFhYwKNHj+D3+/Hqq6+i1Wrh1q1bGB0dxeXLl3H//n1htgBgcXFRsuFxx5t148iuAZCkGfPz8xIXNjY2hlKphLGxMYm/Gx8fx+7uLi5cuIBarYZPP/1UEnlcv34dU1NT8Hq94mgBEAeWzg2zZuZyuQGgAWDA+dN/a9OfmTI8OqFMFEDTwJDgku3iTriWS2ogxuvy3vynPzOdVd02DQ51ZjoN3vR1Nzc38eMf/xh/8Ad/gHfffRflchlra2sC6Gk8V/etVquhVCohGAwiGo2KM0xJmtfrlQQsbKPuA4EKgAF20GRlNECykuvpudD3Oc2eByKtfpqsmdU1dHs10H4ek8jx1MCFsuGpqSksLCzA7/fL3JksXq/XQ71el1hKsjG5XE5kbmNjY+h0Ojg6OpKaeffv30cikZAafnTkdfkAq7ZrVs7siy6gbc6RKV/kMVafW/3NcTGTZjwvYY1+Ntkn/Twyoy3bzHgvMlNkm3lfXc6D2WTJYDGGrt1uw+fzSYIlyjEpU+SGEll4jr0JmnT9S2YTJTPHenZkDwOBgGTHZPkMyp05XgTSbrdbACYzrxJshsNhRCIReXY1SKZck1JSZty0Gbi/JnvKwNlmm2222Wbb6baysoKdnR1xEKrVKgKBABKJBHZ3d8VBuXfvHs6ePYu5uTmsr68jk8ng4sWLSCaTuH//PoCTVNZ0OI+PjxGPxyXWKxqNShyI3+9HNptFuVyGz+fD+fPnpUZRKBSCw+HA6OgoNjc3MTIyAofDgaOjI6ysrOD4+Bjb29tYWlrC/v4+qtUqXn/9deRyuQHwRmeRziF3jCltpGnHw3RCCCwIJnStK1MGpssGcDefjh7rPjHxiHayTeBIcGSybGbJAO0MUyLG39kmDZbobGkJI4/Tv1+/fh0LCwt4/fXX8e6776LdbmN9ff1UQKv7ziQJ1WoVoVBoIFslk2yYbCONu/kEv61Wa6DulQlYTHseI2ceZ8WEPY/lsbqnFZCzuv5pv/Ma5u8Oh0PWTTwex+zsLCYnJwdYVR7HzwigyXCyJhilfaFQCLFYDH6/H59++ilcLheKxSLW19cxPz8vRdibzaY875o9AzAg67ViQa02ErTxe3N8rEDeaWNE0+DNfH4006efEx1XquPNAGB8fFxYc16DwLRSqUhyHr6/XC6XrHVeh6CM5zFbLt8VBEqUh3Ntk+Wk3JoMX6VSQb/fl8QpLCCua1pyA4vvjEAgIEw/S7SQ3dPvQCZUYrISgrBUKiVF7wkiKZfmfdlGjqXf73+mxuHXbS8XgMPgzoVtttlmm222WRkLZrOe2sTEBBwOhzBhlUoF3W4X3/zmN9HpdPDpp58iEAjgzTffRKPRwM2bN6U49tjYGJxOJ9LpNCKRCHZ3dyVtf6FQQDgcRrvdxsOHD9Hv9zE6OoqFhQXs7e0hGo0K+BkaGsLe3h4WFxdxdHSEQCCAV199FY8ePcLe3h7C4TDu37+PcDiMxcVFPH78eEDKdJrzfOHCBUSjUWQyGXH4dGp7mgZtdJLpAAHP1qky4360o8QYEUqjisUiyuWyfKbbaKbY1w67WTeKx2m2jb+ToSEboB0/HkfHUveT2e7++I//GJFIBEtLS/jOd76Der2Ovb29ZxhI9pkOJQCR3zHDKMsOkOExz2c/mR2RbAYzANJJNuWVJqA7jUXT97KS+T3PngcUrT63kv2ddj/N0NHoqEciEUQiEUxOTgoTwvXD9cZ5rtVqSKVSyGazKJVKwiyRdYvH44jH41hYWMCf/umfIhaL4ezZs0ilUiiXy8hkMvB4PMjlcsI+aVbMfAY0i6VliFxTBDDPk0VazY35jJms3JcBbs1y6o0Wss9k0zR7x/a2222J4aTEUEsXyZDp2mfcuKDksFKpyCaELq/BJCVer1fAT6FQkGyT7LeWr/LeZMai0agAaP1cE2zzfkyW0uv1UC6XZay5ccPNK44JVQCccyZAoSqDY8rzmWwJOHnOmciF13pR9lIBOGoobfxmm2222Wbb8ywQCAgbNDc3h0KhIAVkmd3urbfewt7eHjY2NrC8vIyFhQVsbm6iWCwiEomg0+lgcXER2WwWHo8Ho6OjODg4QDKZlJpHY2NjaDQa2N/fR6/Xw/T0NHw+H7a3txGPx6WYOCVfMzMzePDgAc6dOwePx4ObN29KrMfx8TGWlpbgcrnw8OFD9Ho9jI2NYXNzcyBGjJkf6VxQlsnPtZmMmt5l1lJL4CnoM+WWdEDpDGlg1+v1JF6MAM8quQidTg2K6CRrh8w0fq6vRSBnShK1c0aHmePW7XZRLBbxf/6f/yf+xb/4FxgZGcG3vvUt/OQnP0EqlTo18Qfb5PF4MDIygn7/pIREo9FAPp+X5Ac6IYRmcZjwgSUVdN0r3U7zdyuAZCVBtTr3yz63AglW0j4rJop9ex5w47UILgh2Q6EQRkdHpTi9TppDgFSv15FOp3F0dIRcLicyOwACWByOk+Q/8/Pz+PnPfy7Pa6FQEMkd2eJ0Oi0AwszaaIJR3oNt133VY2SOibnm9LNlxcjpDYovY0m16WeQz5FeE36/H5VKRd4RmUwGc3NzAxlrmWhEJxMhy+x2u0UOSWDFuWESEw1qOK5OpxOlUmmAPeM9CCx5X44j5daUFzPxCgE842spwdRAjGPOOm7MNklJKBk0rVxgfblmsymMJAubE1gCkPc6gWEoFPpKc/M3YS8VgPtqS9w222yzzbb/fzcW6I7H49jf38fIyIiwcVNTU5icnMTDhw+RzWZx9uxZRCIRXLt2TerBAcDZs2exubmJ8fFx1Ot17O/vS2HubreL5eVl7O/v48mTJ3C5XDh79qw4KlNTU3A6nZiensb9+/cxPj4OALh16xYuXbqEg4MDAYbMore0tIRcLodMJiO7x/l8fqBf/X5fUnYTrAWDQdlF18k1gEG5JDAoQQQgTq1mukxZoXbKKZmko1uv1wWc0NHVSU+s5JvakWX/ueNtdY4u0qxj3+hgatCo+8JraUC5t7eHP/zDP8T3v/99zM/P47d/+7fxF3/xFzg+Ph7orzZm2Esmk5J8ho6sZnTIUtRqtWcklXTWdXFjfsd5ICOlP9fzfhq40vfQx5v90e3Qf5ttsQJn5ndW4IdGBicWiwlzGQwGpawH50wzXARuqVQKmUxmACRwjLlWZmZmcP78efz85z9HOp0GAGQyGRwfH8Pv90ucVDgcRqlUGihTwfvqdmvm2WR+aSZrpoGUHicNEk0m2mRTreaC97KS9uoU+Dyn3z8pcq9jLQmgKNedmpoSoBIKhZDP55HP5xGLxQSYEbzxmSLDFolE5J3DgtcazJJhJrvMZ4LvJr2BowE+4+n4t5a3sq/mvQhAeS2v14tAICDxdwRvjFPt9XpyXYI0sv2M7SOwYxu4QdTr9URp8KLs5QJw8pJ5wQ2xzTbbbLPtb7VduHAB1WoVR0dHSCQSkiWQSRPu3buHSqWCS5cuod1u4+joCG+99RbS6bQ4idzBzufzyGQymJqaQqFQgNPpxOjoKNbW1nB4eAi3243h4WGJkWK2t0qlgocPH2JlZQXb29uo1+uYnZ3FjRs3MDIygomJCWxvbyMajWJ8fBxHR0fI5/OIx+OoVCpS1y0cDqNYLErftNPIYH+fzzeQLtx0UM3fTUcTeMqImQCPQIhMEkEhswMyvTvwNDaGziWP04yUvq6WbFq11WTXNCui2RLG3elztFRT2+PHj/Ef/+N/xPe//33Mzs7i29/+Nn72s5/h8PBQxkEbgdfx8bFIrsrlsiRIcLlcCIfDSCaTODo6eoalJEDV19M/OR5utxu1Wm3AaTVZLStw9WX2PJbPBBj6bxMUmtJIsw0EMD6fD6FQSIqih0IhRKPRZ+roUcLGDLCZTEZkdBwTDZwikQiGh4cRj8fx0UcfIZ/PDxR+5zrqdDool8sAIPFvrFmo26vHmRsPZuwZnX2yVPxMb4RoUEL5pTk3VoybFft22qYH20iWmwyRObd8pvSmB2M0mQyJAIugRhe6ZhwrAEkoUq1W5dkn8OL5BEClUknaQhkix4TX5dzzHcL3hmZqCeZ5LcrgdfmIdrsta4oMH98FZPDIBhLwctOgVqvJBozJkpIRZltYBuFF2csF4L74aZcRsM0222yz7XlWLBaRTqcRDodxcHCAeDyOxcVFtFotrK6uIhqN4uzZs8hkMgiFQnj33XdxfHyMmZkZYXcmJiawtbUlxbl3d3eRTCbh8/mwtrYmbB7jPnw+HxqNBoaGhrC2toaxsTEsLy/j0aNHmJiYQL/fx8OHDzE/P49er4f19XVcuXIFTqcTDx8+lDiV4+Nj1Go1BINBxGIxhEIhieXRTBRTaxcKBQQCAfnn8/nEsTKBDEEaMOjMn5alUgMrnbBEx59pQKLvpYGm6azS4daAkP3SpgGZbp++FlkADdx4rAn82JbV1VX8u3/37/D7v//7WFhYgNvtxk9+8hMcHh4+A6B4LWa+A57WpiJTEYvFUKvVBjJbDg8Pw+12S3p3zUpqGR2AZ5JHmGbl+JvgygqsWo29Oe9WII7f6eNNsMG/ybKRxaFcMplMYmRkZICBIdhqNps4Pj5GNptFKpUS9kT3jcwPx63ZbKJSqWB9fX2gVpgGuYzJ6nQ62NnZAQBJpOH1egc2G/S5ppyYgI791FJOKzaUQETHNeqfmkWyMitQZwJFMz6V99LtJ5vEe+vnhVJtbjKxT5RAVioVAT9ksSjJBCASYCaH4RiUy2WJ1eVYsy9DQ0OSRbJer6PT6SAUCskmiN/vF1CnJZQE25yDSqUi7B5ZVAKxTqcjMaZ8RjkfbJd+T3HjSbPnACQbZjAYFHnli7SXC8DZMXC22WabbbZ9BatWq3A6nSgUCrhw4QLm5+fx+PFjpFIpLC0tYWZmBltbWzhz5gySySQymQxmZmbQ6/VQKpXQbDaxt7eHRqOBUCiEarWK+fl5eDwerK6uotlsYnFxEQcHBwiFQiLvYb23M2fOoNc7SWFPNu/JkyeIxWLCNLzxxhuoVCoSLwcAW1tbcLlciMfjCAaDODg4kHpyNO5s00Hb39+X1N7BYFDkS6YDR9MggeBJ/63j5sgo0Enlrr1OVGAyY7w376XBgXY8AUihXyZaME23VQMgHf+m2QY6wJqN0+2h9ft9rK+v4z/8h/+A9957DxcuXMB7772HTz75BFtbW9I3fU06fmamTc4bEykw3uqVV17B7u6uAG2CF46jPl+PnWkaDJhzafW3aVbH62tZAQ6r4/hTxzcx8x9/5wYC/7HgM3DCFpdKJaTTaeRyORSLxWc2ATjnGrTT0abjT9BM9llL3VgzcXR0VORyLpdLsgqaDK8JdEwjuDhtrDSI4vFsszn2Voyb1f3IWptt4rhwPVEqrTPFcmOn0+nIenQ6nQPghzFm4XAYLpdLpIQccz0n3LBxu93w+XwDST/I2jHBiE5W0mg0EAgEZMODddX47LrdboTD4YH6czyPphOz8Dy/3y8gkRkvmQ0XwEBCHL6zeA3KRSkvJUuoZZnBYFA2ANiGF2UvJ4B7sc2wzTbbbLPt74B5vV5cvXoVTqcT9+7dQyAQwLe//W1Uq1WkUimsrKxIWuozZ87ITnIul4PL5UIikUAgEEA6nUYsFhsoETA+Po7t7W0Bd3SaUqkUFhYWUCgUROrz+eefo91uI5FIoFarYXJyEuPj43j48CFarRYWFhZQLBaxs7MDr9crRY339/cRDAYxPj6OXC4HYJARorOXzWbhdrslWQSdDu0samBmgiLzWF5fG50u7pR7vd5nimZrwGSCO/29lkTWajXJeKeZGm3aqQQg8Twm06bZLRMc6TZqYHB4eIg/+7M/w/379/HNb34T3/72t3Hjxg0B6eZ4E7xxzNheDSwIcMrlMg4PD9HtdjE8PAyfz4fDw0MBFZqV0+3kNemonwYKNLjW4ML8p9uqzVwfpmlmhwyb1+uVeEtmJ2Q8po7L1HUDq9UqCoWCxLdpiZwVO2qOg8PhkLVH1ogOvVnbjeuy1Wohm81K1k8yMlYsr7nW2G+9pnTsJtttxd5pwK83E05j3qzMjPvSMXr8jOCKf2sJM+9NSSJlkb1eT9gwh8MhAE8zcYwbI9vOa/Edx38Eb/1+X+ZAj4/OiFmv11Eul9HtdgVE8d1FINpoNAZqsGl5NPtJOTnBO98DvB4VEFx/5k/ep9vtIhwOD8g5yTxyLJmc6L9m3v667eUCcHYZAdtss802276CDQ8PY3FxEYeHh6hUKjhz5gwuXLiAdDoNv9+PM2fOSM2gbreLdDoNj8eDYrGIaDSKRqOBTCaD9fV1jI6OIp/Po9FowOVyIRAI4Nq1a0gkElKLKpvNwuk8qau0traG4eFhdDod3Lp1S5zZo6MjvPLKKwIoXS6X1H3b2tpCOBzGwsICer0etra2EI/HceHCBdy9e3eAETNjuxjvw8LSrDlnBVxMEMcdeivTyUjoNDmdThk3fT0Asruvi2nzHjohgc4qSdmZPo/yKZoGI1agR9/HCrhYmWY5WNi7UCjg8uXLuHTpEoLBIG7evClgg2PGfmsm0QSdbOOPfvQjSfHu8/kwPDyM7e1tub+WuJ42/uFweIAFMGWoGjDoz8k8WDn25nWspIROp1NikxhLRIBGUERQR8eXPwk+W60WMpkM9vb2UCgUBuLbOJe6/RqAmtJIgmQyUAT1zDip14JmORnfRemf3nAw15geDz1GJuvGY0y20pxHKybT6n6mfNJMOmSCIw3wzEyUev7IGDOxi44N6/V6KBQKck+/3z/QPkqECfS63a6UFIjFYigWi2g2mwgEAs/IN7km+DvXIcdfyzwpraTUUcfmFotFuX8ymZR2cCzIxOlyA/3+Sa06gkFdt46bLMlkEgBE8kwwSfDHTKYmI/h128sF4GwGzjbbbLPNtq9gc3NzWF1dRTwex1tvvQWn04n19XWcPXsWw8PD4hwUi0U0Gg1MTU0hl8thcnISe3t7SKfT+Oyzz+B2u5HNZjE7O4uZmRlUq1U8fvwYo6OjmJycRDAYxOHhoTiejUYD8XhcklmMj48jk8kgEAjgtddew/HxsdSRGx8fx82bN5HNZjEzM4OFhQW0223k83kkEgkEg0Hcvn0bd+/elfTcwNNge83+5PN5SWSinTEd22bKxUx5oQlGzMyU/JzZ3Hi8jg/SDqgGjfpvDSr0Tr0GSXQydTutWDeT9eO1TPmkFfukpaG1Wg3pdBoffvghdnZ28Prrr+Ob3/wmbt68KfGHAAbKAGgQq4EHs/GRCWq1Wrhz5444z5phM2MP9XjrzIFkTXRKeG3shznPBMYmW2oCNf7TzAjjivg7U8brmEX2Q48l64vt7+8jnU6LE2zFDlpJDHk/ZgNkv/UGAH8nI6PbziyuZI44jqeBeW4kmOuO3+n+mWtIPz8agOlxtgLoVv3WbC/PZX853lq6bK5rLStmjFggEECtVoPb7Zbae2ScuCHF7IuMR2NSEMqbtbSy2WxKIhCudY41E6Vw7VFGSfDIPmlGT7PunD++0zj2HEOv14tCoQAACIVCwqg1Go0BoMj4NgI8trvb7SKZTAqrx89GRkbQbrclbpgbSIxDflH2UgE4mk3A2WabbbbZ9jy7f/8+xsbG8Oqrr6JarUoik36/j7W1NTx8+BDj4+Pw+/3ijDSbTezs7CCXy4mcsdFoYHFxEY1GA6urq/B6vRgZGcHk5KQUG47FYmg0GhJTksvlMDIyAo/Hg0wmg8XFRYyOjmJ9fR3FYhEjIyMoFAr42c9+JrXmAoEAPvvsMzgcDiwvL8Pv9+PGjRuyg05Zp3Z0NKiqVquIx+PPZGfToEc7hPxbm3ao9Tn6ewILOszAU+ZNy+IocdN/A4Mp/mlkTE5jAq1Amm4Pfzc/05+bf5sMiM44t729jWw2i5WVFSwvL2N1dVWAJp1djqNOPuJwnCQzIZDXIIcMAMEu2U0CQjqymv3p909qzjHOh84xmTGuB53OXs+LBod0wDVw0OdrBs38neyVZsM4hxyXVquFSqWCer2OUqk0AJw0qDSZLg1edFv0+tagRK8xl8uFWCwmLA2ZOLZBg1OCH5263lwXfD54rD5GP2v6HL1xYQI6k5X7KmBOX9eM1yOrxu88Hs8z8kxzA4XX4NiQaWJCEl6TTBSlqjqNv+6nTjbT75/IM5n5lmuZEkgCb4IpALKRwLnguiVLWiqVBpKHUBre7XZFRs7YSoJE9sGMfWNZD/aBbWC8HyXuZIs5b+x7Mpl8rtz2b9peKgD3dJHbCM4222yzzbbTbXZ2FuFwGD/60Y/Q6/XwyiuvwOv14v79+6jVanj8+DHGxsZwcHCA3d1dOJ1OVCoV2VWuVqvI5/PweDz4/PPPMT8/j3fffRd7e3sAgOPjYzidTkSjUVSrVUxPT6PdbiOXyyEej8PhOEkfv7y8DLfbja2tLQDAuXPnJD5uYWEBkUgEuVwOe3t7GB0dxfj4OA4PD3F4eIhIJIJyuSwlBOicMN4jFArJtQqFAkZGRhAIBBCPxwfiYrRD97yYDlNWZ8Vc8TtdlJcOnpnpTYMGUzJn5chqh1On+TaZNM0MakBmsmH8nH0zjzX7rh3HUqmEW7duIRKJSLIDfa7P50Ov15PMfc1mE3/wB3+AQCCAH/7whwNggPFCOsukZoTI+mjGQY+JLnKsY3o08OG8mD85V2QWyJbQ2eZPjjnnlbXFCBT4PddUrVaTjH/NZlMYFjI+dM5NkGMCVL2mKL1jLBPbotcN16Xb7cb09DSi0Sii0Sj8fr84+v1+H7u7u1LMuV6vS3ILjh9Bml67bJf+p2Pd9Fo5jc077TuuWyuQx/6bYEnPJZ8NziXlh2YyHZ3chONNsM+kL/1+Xwpl8z3lcDhQq9UEDLN2H+eW99ESWb3JQ9ZKy6c14CRA5PEaGDEJDVlrMrbMZtrvn8TRMYkJpZxcMwSMvBdj+wjSHA4HAoEA6vW6SEOdTicSiQR8Pp+Mud/vH5B5Dg0NDZRv+brt5QJwX/y0GTjbbLPNNtueZ61WC2tra/Kf9q1btxAOh9FoNNBut1GtVvHkyRORHx4fH0smx1wuh1KpBIfDgXq9jkuXLuHcuXPY3t5GrVZDvV7H2NiY7PpevnwZjx8/lhpulPScOXMG1WoVjx49QiQSgcfjwc7ODtrttsR0ZDIZVCoVzM3NYXl5Gffv30cmk8Hw8DBSqRTq9Tr8fj/y+fyAo53P58XZKBQK2N3dxcrKimSX8/l8aDabA/FyZuybdqJNSZcGORqMAE/TxrdaLUmUwB1s7WxbOax0rDQbyDbSIWV7zFg3KwB42vf/Nab7rgv9cqzJlOn70QmkIzw0NIT19XUpxK7j+LjDr9kRAAKUdHZNjsNpc8Sxs3L2rc7RoF//owOsr6fBAgG0/t5KFstzWAsxGo1ifX1d2mtuGGiAowGlTpDS651kgmV/+I/n+Xw+TExMIJFISI03Sud8Pp88d06nU2SAVgzvaaBMr1+CDSsZJa+rv7OSRloxbyboPs1MJlwDWCb+IdPE9nJtkoUiI0zpcyAQGCjQzfXNTJVkfNluMu4cEwCSup/Fw022jkCT99PncONAF7XnmnK5XIhEIgPPhI6ha7VaA6CNzKsGmPxHMBkMBuU8bkgEAgF5h/EZ9/l88rNcLqNcLltuNH1d9nIBODsGzjbbbLPNtq9g7XZbpI0s7Ht4eIhkMgmH4ySL4sHBAcrlMvL5vMQr7e/vi2MRi8Vw4cIFJBIJ7OzsYGZmBsViUZybfv8kYP769evwer2IRqMolUqYnJxEKBTC8fExCoUC4vE4yuWyOPajo6NoNBpSiPjs2bOIRCK4du0a6vU6wuEwdnZ2EAqFMDExIXEfBER0fNnOdruNzc1NdDod+Hw+xGIxRKPRZ8oP+P1+cdi0w2kyaZp9AJ5Nf07nyufzwe/3DzA2dLroxJE9Mh0hE4ABQDgcBgBpIx1jK+BgfvY80PY85g0YjIcjGGV7WDPLbD8dWi3T29vbQ6fTQTgcHkikodkHUwrI+2npKsdOA1VTvggMShBPk+1pxs9kmawAhx4fq7HSxzAbIQFnoVCQxBhmnB7/ZpHn6elpnD9/Ho1GQ1hmJhJiGQc9t2wvayMCEMaIjjxrl7ndbpw/fx5DQ0P49NNPpfaYlvlq9s0EYnoMzbE0AbNOoKHZPT22mkE1mWE9rs/bUDFl0Dp2lGCcsWt6s8HlcqFer0vdPGaB5OYU3ycEcdVqVcChzqRLQESgp5PZMA6NYIrrl88G207QRtBHhp6Jglqt1sB3jE0li8x2M3kN708mWEu6CWTZdr4ve70eIpEIIpGISCl5DkGeZo/tMgJ/TfY0C+ULbohtttlmm21/q43/+V+9ehXHx8fY3t4ecAj4M5PJoFQqyX/UdKYnJyexsrIiKfrHx8exubmJRCKB5eVlPHnyBOl0Gnfu3MHIyAjC4TDq9TrOnDkDp9Mp7BlwIrfs9/sIh8NIJpMoFAoSMD89PY1Op4OPP/5YAMPjx48RjUYRj8fh9/tRKBQGQIrDcVK7iOACOKlDxppYzI5pyuuY6Y1msgDaaTTjyPS1NBPCIH+2iawf40jMGDptWjIJQCSrPE4nZTClkbyeBqFWTrFu7/NAnglYKSFjfI/VmFgBDJ2ohLJJOtxkBLRDznvrtmqAbTUHbA+PO03OZ46ROS7PO8e8v9l/Ss7YV/aJfdSZH5lcJxqNIhQKIRQKYWRkBN1uF9/+9rcRjUbxh3/4hwgGg1hdXT2V9QgGg3C5XCiXy3J9gm19DsFYuVyW+o86m6BOBMJ+mgDblDGagJdgToNxPXb6byuWzTzP6nPzWhpganaU4JHrj+CJckmH46S+Wa1WQ7PZRDgclg2XarUKv98v9yFbRTBG4M976rVHhlPLJs229/sn8kc+B3q9aOkjM4YCTxMFMdEJwR3XExPqMEtkv9+XUiR6/CiJZNt0sh5tgUBA1i7/X+B7iG16EfZyAThh4GwEZ5ttttlm2+nm8XgwPj6OBw8eYHx8HG+//TaePHmCO3fuoFKpSBxFs9lEtVpFIpGQDI5zc3OYnJzE/v6+1B7a3d3FpUuX4Pf78emnnw5I7ejcLC8vI5/P4/DwUHaoGeTv9XoRDAaRzWZRqVQwPDyMQCCA4+NjVCoVnD9/Hjs7O9je3kY4HIbf70er1cL6+joODw8FEGnpUbPZFOC5s7ODer0uMtBkMjkQ0G+CM83e0LTTZUrFTIZnZGQEtVpNYkTIcuqYJX1/7eRbMRkAZAdeS9d4XysWjm3W7bViOE7ri/5bMyRMlc4EBxrommNj9odOtI5X0lnvuLtvxUrSESXwM2V7en7oSOu2aOfVany/CnAzx8gKNA8NDSEcDiMYDCISiYgsLR6PS8IgAEgkEkgkEnC73ZK5MJvNolAoYGtrCxMTE7h79y7u3r2L73//+1heXsa//tf/Wgp8c65ZToGsCiXQrVYL09PTsl56vZ7EOBF8aDaazr9ei6YcleyRHm8AAyBJg2gTyOnvT2PbaF9ljvT1NBNlzk04HEahUJCx4KYBgVG73ZYkS+VyGcFgUBjZUqkEr9crgI4FuF0ul8Sg6efO6/WiUqnIhhDfS7oMCGWYut4hy2lQlsn4Scqv+czzudCgFHjK/Hs8HmEPHQ6HJPhptVqScVOXiCFjyJg3JnGhYkEnN+F9AUhWzhdlLxeA++KnzcDZZpttttn2PGs2m2g0Grhy5QqCwSAymYyAJ+625vN5KcztdrsRDAaxtLQkNeCYhfLg4AAXLlzA0dERUqkUXnvtNTQaDTx+/BitVgvBYBCLi4t48OABisUiksmkOOxerxeRSERi1VwuF+bm5kT26PV6EY/HhdEbHh6G1+tFLpfDwcEBer0eYrEYMpkM2u32gDyqWq1KooFms4m7d+/i6tWr8Pl8SCQSEoNimpmi34pt0eBLx/DQieLuOHfA6QxyV910+mgmaORnwIlDq5NnWF3DZK9MM+OY+NmXgRfNLobDYcRisYE4IKvjeU3N2JjAQEsf6YDrMgyatdAZ86yAkx4/DeJO6/Np/fyyY6zAsB6fSCQiDPHMzAxarRZ+7dd+DUtLS6jX69ja2kIulxNnvFwuY39/H71eTzYnmATl008/RaVSQTKZxNLSEv7RP/pH2N7eHkgSRNkfJXD6Z7vdxujoKEZGRoSN01lRS6USEomEgBsrSZwGYWR59KYHQaQ5Rhpc8DMrqawJ8E2gbc71aWZuwujr8jlk+4eHh6X8BTM1cv15PB6JMRwaGkK9Xke9XpcNlF6vJyUk+A6rVCpotVpSH00/k/xJcMzNrW63i3K5DKfzpD6m3++Hx+ORMhPA01hSxtUyS6XP50O73Ra2DXha5433pJQcgLw3mBCl2WwOyD0pzyZwJBNnbiZx/Lh5Y9bH+zrt5QJwZOBsAGebbbbZZttzLBqNotVqIZfL4e7du7hx4wbK5bLUl2KSkomJCfmPen5+XmLWSqWSxEoUi0VsbGwgEongG9/4BtbW1rCzs4Nut4vJyUnMzMzg3r176PV6mJiYGIgtIcCigxWNRlEoFNBsNjEyMoJGo4H19XV0u10sLS3B4/Hg7t27UsPJ5XJhb28PmUxGYn8IDsjS0PH56KOP8NZbb8Hv92N8fHwgKYg+z5Rj6p80HXNjAphOpyNlDZigQO/A6/Pp/BPgWQEwAhf2icdpWZ4+zwQ+p4EdbV8G4ujAs+B2MBgUh1T3xwRAeoeejr4JWs17cKyZkp3lAehc6nvqIs6ngTgTwD2vr6cxPBqkncbEASdys2g0KrFL+XwesVgMFy9exKVLlyRjp54/Zn1dXV3F0dER1tbWkMlkkMlk5HzGlr722mu4fPkyfD4fxsfHUSwWsbu7i0ajAYfDgVAoBL/fj2q1il7vJNlJo9FAoVCQjJQEVfx8ampKnvtGoyGbILomn54T9t2cOz0+7KMGABpQa4bVSoJpjruVzNfcJNDAXsuYmcQDeCqrJZObzWaFLSW4ajQa8Pv9aLfbko6/VqsNJIQZGhpCKBQaSNnPjRoztT7bxlhEh+NpAW8+UwRwlUpFWDfKFfk92XsCK12+gs+Ilkzy+aRUnQCO93U6nZIQhcwcr802m6VZyC5zjE8r/P512EsF4MjB2RJK22yzzTbbnmftdht7e3t48OAB0uk0XC4XJicnkU6nUa1WMTs7K8lEyJA5nU7Mz8/j+PhYpFTNZhPRaBSHh4colUr48MMPUSgUMDw8jIsXL8Lv9+POnTvi+GcyGfT7ffj9/mcSJ7CAOFm5bDaLvb09DA0N4ezZs8jlcnj48CE6nQ5mZmbQ7Xaxu7srbaOMUsdZ6V3zg4MDVCoVidnz+XyoVqviXNFJ0UADsHbYtYNK0848gRUzy3EnXaea18daMW/AU6aCvwNPHWFTQmkyU6cxF+YxXwXQ9PsnCQvi8bhkDCWLwLWgHXarvujEJqe1icfQWU0kEnjzzTexurqKzc3NZ2L9ntdX09k/DYB9VabNNBOEk7WIRCKSubVQKGB0dBR3795FLBbD2NiYOP4cv6OjIzx58gT37t3D48ePcXBwgFKpJMl5er0erl+/jvPnz+OXv/wlms0m5ubmMDExAYfDIbXwmNwmEAggFosJiOt0OigWi3JNxi9RslqpVHD27FkcHR0JQ2xmVdRxUWSgOIanjZEVADOfLX0N8/MvMxPw6fkiKGSCFMoICXAeP36MTqcjSUEKhYKwWWThmN3W6XQiFApJLT+/3y/vqXg8joODgwFWk+8T/X6gLLLbfVrMm4CObF6325X5IMtGdo4lDsgIxmIxkbjz/cL3KktMAJDYN2bbbDabCIVCUudOj2Oj0ZCYXSZ16fV6iEajEncXjUaF4SV4fVH2UgE4m4GzzTbbbLPtq9iNGzeQz+cRiUQwMTGBYrGIvb09JBIJvPrqqyINHB4eRq1Ww8zMDOr1Ovb29tBqteDz+RCJRJBKpbCzs4OzZ8+iVCrh8PAQ09PTeOedd7CxsYFr165hcnJSEjC43W6MjY0hFoshnU7L7rHX60U+nxfAks/nUSwWEY1GMTo6ioODA+zv70uWyk6ng1QqJTvSsVhMHCRmWSPoACDZ2NbW1nD+/HnEYjEkk0lks9lnEjboDJaANaNlxqGYIEwzLHSGzKyTJkA0pWQ833SSdBydVdybac8DOVYMo9UxdN7i8ThisRimpqYkPlEzKibjxjHRyRKAZ9PDa/DM42OxGL7zne/A7/fj5s2bz+z2mwyPVdvZBs6v1bEmmGWfTdbyNLDC75hm/cmTJyKjY5zVD37wA2xubmJpaQmzs7PCFq+treH69et4/PixxEtyEwU4yfSaSCSwt7eHf/Nv/g3q9brITNPpNJaWlvDuu+/i+vXr2NzcHJDAEYSQIWJyIjI7HBcm0bhw4QI+//xzcezNOdXSV/OZMcdIzynXPa+p6y+eNm+mdFL/rdcKN0UADJSXMJm/brcrmzdk2hgHxv5wzoLBoEh4WfakVCrJWmebUqkUPB4PZmZmkMvlkE6nBUjpdvOnfi9pAEWGTwNYZrDVmzTBYFD6AGBA8sr3Ht8VHPdUKgWn0yllBFiHUMvEuW673a6Ul2BdOB5XrVYlVpAgl++1F2UvF4B70Q2wzTbbbLPt74TVajUsLy/LLnMoFMLrr78uO83Dw8Mi0yHDxp3dUCiE2dlZrK+vo1wuY25uDnt7e2g0Grh06RJmZ2fx0UcfIZvN4sqVK6hWq9je3obH48GVK1eQz+extbUFl8uFkZERlMtllEoljI6OwuVyifxyenoaoVAI6+vryOfzmJ2dRTQaRSqVQiqVEgciFApJzScyXqxpVKlUJEaoUqngyZMnWFlZkVpZ6+vrAxIh7oybZpUVj0lauLNPB5CFf00pFf9+XsyYvod2mLWZ7dNA8DRwoR1KDaxOY5dM8/v9kr2TDrAZa6bbqseTfTdj0vTfJsgMh8M4c+YMDg8P8fDhQ+zs7Ayca5o5RiYbcxpI08dajZfZLqvvgBMnOBqNSuyaBhmtVgsHBwfIZrO4fv26PFuUyfl8PhSLRTgcDuzt7YmsMZFIYGpqCo1GA8ViUcAKmeVUKoVer4e5uTl84xvfQCKRwP3794XB4TphshgNbHSiGKfTidu3b+M3fuM38Oabb+LWrVsABlP/6/k6bVzM40w5JI33Z1v4vclMa/mr3vwgM6jXEe9pVXPOnDOyjH6/X0AK5YH9fn8gaQl/UsZIIORwnJQZSKfTqFQqACDz3uv1pLQGE8NUKhVh3sjCsYQG8LSMBZk3yhTL5TIASKIbxpwRoJGFY//Y5nA4jFKpJMx/r9eTsjEE+cykyfc854DrhffiGDUaDUmyUq1WZdxelL1cAE4elhfcENtss8022/5W27lz59But5FKpSSehqzT3NwcCoWCxKel02lEo1EAkHpuDx48EDldsVhEMBjE5cuX0Wg0cOPGDQwPD4szuL+/j1gshkuXLuHBgwcS7B+Px3F8fAwAmJycRLFYxPHxsUjNKpUK7t69i3a7jTNnzsDhcGB/fx9HR0fw+/0SF0InhWn6Gefh9XpFMgScgNbNzU00Gg0EAgEsLy/jo48+OjXdvMm6WMWm+f1+BINBibFxu91SKsA0zaoBg4DH/KlZOfN83R46tlZMhf7b/J12GojTn1M6GY1GJVZqf39/wOGm86vbznTtdMQ1sNXgz2QeybLmcjmsr6+Lg3xae58HQrXU1XQ2T2OOnnd9K2aF7OTIyAjy+TwqlYr0A3ha+JtyR8aaVioVeDweTE5Owufz4e7du3C73bh69SpisRgqlYrEUnq9XiSTSbjdbjx58gRDQ0OSzKdcLsuzMDw8LMlzyEjrOnp6TDT4drlc+Oijj/Cd73wHly9fxoMHDwA8LTmgGWf2iUypCZh0PKQVQ0c2ysr0MWZ842ngHRiMo2M79byxH2yXztLI83QmW57L7JwAJEasWq3KeZxvp9MpyX20MoDtDoVCAzF1Pp9PxoCZQ3u9HuLxuMwt61SSIdMFtzXrznHheToJC7NpBoPBAVkn2TgAAyBOv5OYkTMSiQB4WiMvnU7LmNtlBP6aTLJQ2jFwttlmm222PceGhoZQLBYxOjoqcsZ4PA6Hw4F0Og2fz4dsNot+/yQtNeWOjUYDR0dHuHr1KgDg/v37mJ6ehsfjwfb2NprNJi5evIh2u42f/exnqNVqGBkZQSAQwLVr1+ByuURCmc1mEQgEMDY2hlKphOPjY4yMjCCRSODo6Ai5XA4jIyOIRqPo9XrY2NhAKpWSBBp+vx9erxfZbBb7+/vIZrMii9JxIXR43G43Njc3BZzOzc2JU0RnhA4tHSo6SNopBSAFlwliWHeJzunzYkPMmLbTpHl0jul4acaBn/G+ehfeBH/m5yYzchp44XeRSASxWEzGUSdccThOslKOjIyIo9lsNoVRYGwQ5VkEN5qN1AyK0+lEMBhEOp3G0dHRMxJNqz7o9pr9MH9aMalWY29eT39mMp28ZrPZFNaKbaWU0ePxIBAIoFwuw+v1CpN97tw5PHnyBPfv38fS0hIWFxcF5Gn2st1uI5FI4PXXX5eMlRy3arWKTCYj7C8/Z6IOxn1pBtEEVxzfH//4x/j2t7+Nq1ev4sMPPxwAC+wnj3U4HANlB0xwre9lzps2gi+TVeMa0aUqTCCu5bl6rrmxwUQfut1kMFknkgCKLBTfA/l8HsFgEENDQ6hUKgiHwwMgjG3TGzPtdhsTExPIZrMDGxW6RAOzgxLUky0NBAIS98bnJBQKySYVn3e99jk2rPvHIuMul0sKcTMhC98bHo8HnU4HrVZL3q1k/ur1usTjEZj+/9j7syBJzjQ7FDse+75HRu6ZlVmVtQIFFLq6sTQGaAwa02qbmTYaOaI4RmlI0USRZjS+6EFXepAZdflwTUaZHvhAE2Vc9NLiHXI4PUvPDBrT6AbQDaBQAAqoQu25b7Hv++p6yD5f/eHlkVU9vRSJ659ZWWZGeLj//ruH13f+c77zAUfPt0qlgmKxKKoDtT/ek4gvF4CzauCssMIKK6x4jOj1elhbW0O73Ua9XpcaNrXIXTUZSaVSSKfTiMVimJqawvb2NgqFApaXlzEYDFAoFKBpGp555hncu3dPer1NT09jZmYGe3t7SCaTSCaTcLlcKBaLiMfjAB402U6lUnA6nchmsxgMBpidnUUkEkG5XJZG41NTU+j1eggGg4hGoxiNRtje3kYmkxGJJwEDpUCNRkNAX6PRwO7uLlKpFEKhEJaWlqT2iK6YlECx/YAaTBJDoZBITcm4sZZFbexrNN0AzCWURoZvEmNklGFS1mRWj2KWUKufNWMcjduz1nFpaQndbhftdnvsWDMzM/jqV7+K5eVlkVdy7p1OJ2w2G+r1OnZ3d/H555+L1FUFjg6HA6lUSvqjNRoNZLNZYTqM4zdei0lSPWOYMXHHMZSTmD2zY/T7fSSTSSwtLeGDDz6QpFyVKRJMaZom7PWHH36IbDYrEshOpyOf4z3Efdy6dQuZTEbqktQ6u1AoBLvdjnK5LCBOrX0zk+MaAS/P/6233sKLL76I5eVl7O/vPzR/Kvij0yvZVt6f6vU1gmg1VJmk+reR4VSZNW5nBIccH8dFgxLOk5FJ5PeGc9Nut+H1eqHrOsrlsiwGDQYDBINBkTNGIhHU63UMh0O02205Dq9dKBQaM/igqyQt/Hm/tNttDIdDBINBBAIBYcBarRY6nY64Z6r96ijnrNVqYkbDZxxBWygUEjUFzU+8Xi9GowftD2h2w4Ufv9+PZrM5ZnZCUx7WBA+HQ0SjUbjdbgG7TzK+nADuyQ7DCiussMKK/8bjqaeeQjAYxJ07d7C6uoq9vT3EYjEMBgOp1xgMBohGo9B1Hdvb21hZWYHT6cTu7i6cTideeuklkSVOT08jHA5L/UwoFJKV5Nu3b2N6ehqLi4tIp9Mol8uYnp7GaHTkDOlyuZBMJlGtVkUeGYvFRI60u7sLl8uFSCQCj8cjSVuj0cDVq1dRKBRgs9mkoF8FKGTDwuEwNE1Dr9fDrVu3cP78ebhcLiwuLuL27duSINGFTXWnpLSKzIbX65XV+E6nI3IsNpieZCYySa7IUAEfw1gXZPzJ1XOjg9+kpFllS4zvG7elOUwwGJR5Z88sTTsynzl79iyeeuop6c/HWiJKuWh2wFqubDYrbADHQMkfmwqXSiUx8XhcmaPZXJudt7qv45ihSdfKDCTyGrRaLSwvL2NpaQn5fF6kcn6/Hy6XC81mEysrK4jFYigWi9jd3UWhUMCpU6eQTCbH5KRcBFAZFzZZVoEd7w+2CKB8mLVaKit83NypksrRaISPPvoIJ06cQDKZlO8Xz12VVaoMmDo/6v6M95jKsgHj97gKsPlZVerJbYyN3NV9qkBVvcfUzzscDqlXZAsBgl6CJ7WeVdd1qQkjYCMrp8oYR6OR1NAFAoGxtgL1el2uHYEVHXdpsnR4eDgG8ljLq8pxa7WaAGYAIpUdDofweDwolUrCzBMgElyzZo5Ajccg083vIeWfdL0EIPXRZOPL5bLFwP2yQsPDD2QrrLDCCiusMEY0GsXm5iZarRZu3ryJixcv4vbt22IsoiYdzWYTZ86cQbvdxt7eHmZnZ+F2u3Ht2jUMh0Osra1hMBjg008/ldo01SVxeXkZDocDX3zxBQKBAJaXl9FqtVAul4WR63Q6aLVaCAaDY2YmlUpFAMT09DSAoyRtZ2cH6+vrkijZbEc9jUqlkrBSTFaYjJFN3NzcRLlcxszMDFZXV+F2u1Gv16UHFuv96PLGhJXyPvZYItNB5kPt0WZku7g/hgqkzEDacQ59KstBaeIk+aCRqTAm1Ub2Sh07pZNutxuHh4fCIhE8qCybypBQXsXmwDRtoDxMDToqNptN1Gq1sRqyXySM56L+TTbmuGM8SlJpBMGtVgs7OzuYn5/HuXPnsL+/j3q9Ludit9sRj8eFPQkGg9jf38f8/DzC4bCwO2TNHA4HEokElpeXcefOHVlgYA0WQUC/30er1cLe3h4ajQZqtZosPnCuKdkEHjiY0uCEjCnvDV3XhaHZ2trCiRMnxsanXj9edxrUEJhzboz1jcZ7kOMxMoN8TZ1ftU6V97/q0GiUaxKwqPJJjo1MOV8n28bvutPplNYjbFrOz3k8HlQqFXQ6HYTDYej6kdGIOmZa+3e7Xfj9fmjaUc1dq9WS9ylVJJBqtVqo1+tjvSu5IEWmkAtiPp9PJOSUQo5GI+k/qF4jLsBxjuggzOchZb28Bnxujkajh0xXKDNln9B+vy8LXk8ivlQADhYDZ4UVVlhhxWPE22+/Lc6QX//617G9vY1IJCIr+bFYDIVCAaVSCaurq7hx4wYGg4GAr/X1dQSDQSwsLGB/fx87OzuYnp7GysqKJCe5XA6xWAy1Wg21Wg0nTpzAcDjEwcEBOp0OYrGY2KH3+33E43H4/X60Wi0cHh5iNDqy9Lbb7QgGgyJDyuVyItm02Y56NEUiEayvr0vxfiAQGEv4KK+02+2oVCrY2tpCPB7HzMwMIpGIOLbRYIVW4uwVxSRmMBiI1Gg0GglbxGSQibFxVd4sVNZAZQyMcko1kTVKMfmaWnel7o8r6arRCfelJtTGJJsmMzQuUOWbXJnv9/u4e/cuIpEIlpaWpJ6SDcxZE9fv91EqlXB4eChJrHr8Xq8n9wjrdoznbjZvxnHztUnB++FxWINJgNgo2eN2lBHfvn0bU1NTOHnyJC5evIg/+ZM/wc7ODjqdDoLBIIbDIZLJJO7fvw/ggRSXtYMEwJQC53I5eY2MHJsvV6tVkWXS0ZL1XATGTqcTq6ureO2113BwcIAPPvhAtmOtonH+2B+RIG5+fh6JRAKVSmUMIBDEUz6szpd6HYxgGjA38AHG23JwO/U9Fdip10Kt96RUUL3W/G6QZer1etLvjVJE1ZmTNWe8FjREooEHjZE4X5QYkgEkK876WkoXe72eAHCPxyNAkewcWT6CdS7QUALJ9zkXHHcwGBxzhWw0GlLfxvsBgPSU499sX6AyelxA4LUmSON3uVaridy81WqZf4F+DfGlAnBiYmIhOCussMIKK46JdDoNXddx8eJF2O12rK2toVqtIpVKYW5uDvv7+7h37x6GwyHu37+PYDCItbU1bG5uolQqYWVlBW63G5ubm8hkMjh16hTOnz+P3d1deL1eZDIZzM3NIZ/Pi7EJ2ZXhcIjFxUVhKOx2uxioFAoF1Go1aJoGn88n8iKucO/v76NYLIq5QLlcRrFYxOHhISqVigACJrJcia/X60gkEggGg8jn87h9+zbOnj0Lv9+PxcVF7O7ujiWxlAGqZiRcGaexAF0veQyVGTBjIhjc/jhJpfEzDBU8qP/U1gJ2u11W45mMVSoVAZWTJHQMNqNmXQ4TOdVMgueWTqfx9ttvY25uDhcvXsTp06eRSqVk7I1GA4eHh7h58ybu378v14RSSwDSZJqgYVKYyR3NmEPjZ8zkkWa/q3+bgdpJ+yNo6Pf7uHHjBmw2G65cuYLvf//7KJfLaLfbmJ6eFofIa9euodfrIR6Py33A86YDZ7vdRrvdFiMO1izREZBW8GSYAYjMle+TxanVanjvvfdQLpdRq9WEhTM7X13XZbGD4ODw8FAksqqjpcq+UXZnrG9U51WVrgIP3+Nq/RsNP3gctRYQwBizZgbkVfdTFcQRRNFhl7JfAiqymjw3giK1Xm04HEp9sNE8yLiAw22q1epYI2+HwwGfzycqAfW7RQaUQIkgjiCQAJPXls88Pid5r1SrVXmO8f7QdV36uHGhjfcdnxcq++j1emV+7Ha71N6RcbVcKH9J8eALYyE4K6ywwgorJgclXV988YXUTszNzQE4avJ9//59dDodVCoVPP300wiFQvjss8/gdrtx7tw51Go17O3tIR6P4+LFixiNRrh+/TpqtZok/7du3UIsFsPa2pqwZn6/H7Ozszg4OEA+n0ckEpHG3PV6HfV6HR6PR+rRKBXqdrtYX18XJsPlciEWi8HtdmNjYwPD4RCxWAytVgvdbhetVksSJK6AT09Pw+12o91u4+7duygUCvB4PFhZWcEHH3wgSZpqQME6LsqUuDLeaDSkdYCRMTLKH1WZmLrSr75vFmqCa8bKGYEgE1mn04lgMAiv14t8Po9qtfpQbZ26HyMLR0ZTTaKZkJpJOyuVCsrlMvb29rCzs4Ovfe1rSCQS2NnZQbPZlIbuxWIRAMaALt3uWq3WQ/3tjmPXzECbGcNo/N24r+PYOOP+1d9V9lOdQ+CodqlSqYgFvaZp6Pf70gtuMBhgdXVVmCuynMBRLdtrr72GH/7wh7J4QKBLsBEOh8VwiLV3NJah4QQBMpP/arUqjDIAMfoxmwOCfp7PYDDA3bt3cerUKWGmgAfW/MYm7UYAp7LEapgBObW2jvNj/A7RWZLBnoT8na0uVFDEMbGmiwCKC0U0D/H7/ajX68LE8zvOaxGJRITFI5gulUrC4vE74nQ6pV5UvRfITJOdpiETTVEIjDgm9l9j8Dg0IOGx2HB8MBiIsy6l7Dwex0A2kc82zk2/35c6S7KTVCAQNHo8Hnkeqs+xJxF/YwCnadppAP+z8tIKgP8bgAiA/wOA/M9e/7/quv4Xf9Pj/Fxj+tlPi4GzwgorrLDiuLh37x7q9fpYQ9eNjQ35D7xer8Pr9WJpaQm1Wg07OztYWFhAJBIRCWQymUQ0GkU6nUatVkMul8OlS5cAAOvr64hEIlheXsbm5iYajQaWl5cxGo2EiUkkEjh58iRKpRKy2azUs3HlV9M0STwoU+T7brcbmUwG165dQ6PRQCgUQq1WQ6fTEROCfr8vkiPgiA2ivGo0GmF/fx/xeBzz8/OIRCLIZrOoVCpSA0jwR8kRE55Go/FQs2SVOTIDHGYGI2ahAgsmsZNYH76ugjMyQQSiZFzMxmE8HuufIpGIGDuo50VQS6bFKP2s1Wq4cuWK1E7RbXRnZ0fYUfXcu92uWOazftA4tuPYMrPxTwJ03MbIQpLdmSQlNbuGBBbHJa9kLYCjeyObzSKTyQAALl++LICGwIv1gp1OB++++64AEU3ThPH1+XxIJpPodDpSU1ipVASoEcgw+VddEHktWdOlnrN6vjw/dT4IbnZ3dzE/P492uz3GppH9MWMsVZCmzr8692R7uD+CFG6jtglgXZh6bBXgMVwulxyPr9PMg/skgxQMBlEul+W7w0UaXm8awthsR60FIpGIyFhpUMOefqznpAkPn0e8vpQqUiHg9/tFvk3wxZ5+BOeUibMVBfAAUHo8Hlng4t9kSXlNXC6XGJHoui7ATwWGwBE4peST/eMo7eX/E1wQ4H3y3yWA03X9LoBnAEDTNDuAAwB/DOAfAvh/6br+r34ZA/x5gvNo4TcrrLDCCiuOCzqVkemKxWKw2+3I5/NiLjIzMyNg6cKFC7Db7dje3sZgMEAikcBoNMLm5qYkHq+88goymQw2NzeRSqXQ6XRw//59Yd36/T7S6TQGgwGSySQWFxdRKpWwubmJcDgsTWxVI4dSqYR8Po9cLodwOIypqSnE43HcuHEDN27cgN/vRyqVwt7enrAMXCFWa3xGoxEqlYqYnVSrVdy7dw+rq6twOBxIJpPIZrOo1+sCEgmCmBjbbEeW+LTSN6vhOa72zYwVMgN2lF4ZDT9UsxAm2MaEGDhK7g4ODoShU99jMAFWE3Um/+FwWGrcVEkctye7obZLYAwGAxweHuLg4OCheeBYmLR3u12Zz+Pq3ibJGY0xCcSZgTFjqPOqzq/6vvHzx8lf1fd5/OFwiPn5eUmiOTc+nw/f+MY3UK1W8emnn0rNExca2CyefQ/J6lBGaLPZxpoxE2SrFvTAEYO3srKCdDot35VeryeJORN/3lcq66tpGqrVKhKJxEPOkur5qcYlk8C06ohJ8MnPclsujJg5UVICyHpJdZ4J3PgawSBr3hqNhizqeDweYevUHpAEwDwGjXo4l5VKBY1GQ5gtzvtoNHrIkZa1bTT2AY7qzqgy4AILj6/KJPkMoLyT80AlA9sDqM3BaS7C73IgEJB7je1hfD6fSGw5r2SBVfMn/s2eebxHeH29Xu/Ehuy/jvhlHfk3AWzour7zJNHoAxfKJzYEK6ywwgor/jsI/ufLZJzmH+12GzMzM5iamoLL5UIqlRJb9Hq9Dp/Ph4WFBTSbTWG6Zmdn4XQ6cePGDXS7XZw6dQqdTkcc2LxeL1qtFkqlEobDIWZnZ5FIJLCxsYFGo4FIJIJIJCJ9xDRNE3bw4OAArVYLc3NzmJmZQTQaxY9//GPs7e3hxIkTiEajWF9fR6VSAfDA6pq9l9jUezAYSHLFJC+TyeDg4ADT09OYnZ3FrVu3ZMXcmAATzDHJU9knYy2PEZgZQ01mjSwWQ3W/U4Ovcz/qsYzgQwV5xoQbGDd24L4DgYAAB47PCBSBhx01KaVTWTsV9Bit4pngUrZ6HDBTz9V4DkZgZdzPowCfyqYZGSn12MZjGreZdCzOBxPsWCwmlu2sVVxdXcX6+jpKpZIABybzBNSJRAKxWExYld3dXfR6PYRCIZEM05UQgIAFtYaOjZrVvoVMwHlMzoXq+qiCunq9jlQqJYyOkdFUDU5U8MyfRnDL+5nnRdmukS0lQ8d54e8cF7dVz0f9Sdbp8PBQesDx2GqvM9a52u12eQaRESNwJFAjeFPdJ6PRqDhKUtrK56xqnGKz2YTJUvdP8yXWp7H+js256XBJQyfggRSZ7R54DuxlyfGpck21DtXr9cr3k58lWOt2uwLaa7Wa3CNc5DJjzn9d8csCcP8bAP8/5e9/pmna/w7AxwD+T7qul40f0DTtHwP4xwCwuLj4SxmEMHAWgrPCCiussOKYYAJ9/vx5kSiSIXA6nXA6nVhbW0MwGMTW1pawVD6fD+VyGZVKRerQRqMRMpkMwuEwbDYbdnd3MRgMMDMzA5vNJmyMx+PB2bNnoWkaNjY2oGma1L+RYWi1WsjlcmJw4nQ68dRTT8Hj8WBvbw/vvfceWq0Wzp49C5/Ph88++wzb29twOByIx+MiR9J1XQBnKBSS4v5arYZYLCar1devX0c8HseZM2fwySefIJPJoFqtiuulWjdEBo71H8DD/cWMpgyq1NCMRTrOqETdlvvgWMwYDjPGSD2m8RjGXMHj8YhEy7gv4ziZAKrOdXzdKP1kAq7OGfsNEkw8DsM2aY5UsMoxGcGD2WeNDJlxnz9vGK+bamwDHFm6q4m82+3GwsICzp49iw8++EDka3T/9Hq9iEajCAaDSKVSSKVScLvdKJVK8Pv98Pv90n6DYIEyO9UdUL2HdnZ2BNSpjcMBjBmUEGASHPH80uk0pqam5JoaWWL1evB3s3uV+1YBBoAxQMAFAYI3LizQol8111H3oYJILoLYbDZMTU3h+vXrIs8meGs2mwgEAvD5fLKtseaN/eA4DtbSjkYj6QVHeWe325XnBu91LlTY7Xb4/X6Rc6uGIQSN7XZbwJW6OEKgxzpjPg+4f86p1+sVto0OurquIxgMyiIWFxSi0ajMuQqe+X1lPXOhUJBj+Xw+cT811jX+OuMXBnCaprkA/C6A/8vPXvo3AP5HHCkZ/0cA/08A/3vj53Rd/7cA/i0AfOUrX/mlIC7LwsQKK6ywworHieXlZbz22msYDAZ45513MBwOMTU1JSu3Tz31FLrdLjY2NhCLxRCLxaBpmqwu0+gCOEq0lpaWkE6n0Ww24XK5sLKyAgDY3t6G1+uFx+NBIpFAJpNBoVCQGh6HwyE/C4UC8vm8OKvNzs4ilUqh3+9jY2MDu7u7CAQCeOqpp6DrOq5duzYm6zo8PMRgMJC+Sc1mE+12G36/XwAQJUB+v1/aCVy4cAGLi4tYXV1FLpeTPnKqHJMF/pQUAeMyRuBhAxOGkelSk1kje6cmvmoNldEwwMiymal/jEm02bYqiKGkTDWRUM9rUi0dE2wjC6mycSpDx2bJdFlUx2Gcn+PCDIAZJaWPAwgfB6yZsX/H7Y+sm8o0Xbx4EZlMRpLnQCAgrRhUswmPx4NUKoXl5WUEAgFJtGdmZqQHWLvdRi6XA3AkjYxEIhiNRohGo3Jv7+7uAnjQ+40SYn7nvF6vsEAq46YuOqjmO5zfWq025nhJ8MT3jd8Blcnj/FC2yGukfkYFjEZQzlBdJo0MtvpTZRpv3bolzwdd14V9UqXQbDnidrtFSknwRqDD43IMVBuQsSKDHwwGxUhEZWHJnlEOq+u6AFLVPEQNSjjZhJvN2m22o95wlD3SvIjn4HQ6x8xZOC8ejweRSOQhWSR7vxHUqn3vWq2WSNx5jsZx/jrjl8HA/a8AfKrrehYA+BMANE37/wD481/CMR4vhIH7tR3RCiussMKK/w7jO9/5Dvb393HlyhVomoZnnnlGgNnp06exu7uLdruNEydOYGpqCqVSSVatZ2dn4ff7USgURH50584dtNttxONxxONxVKvVsfo3ANja2hIXPUoVR6MRIpEICoUCNjY2pP4jHA5jYWEBNpsNW1tbyOVyOH/+PBYWFnD//n3cunUL/X4fp0+fRr1ex71794S9qFQqwsK1Wi1ZKaZFeLVaxczMDEqlEmq1Gq5evSq9zD755JOxZIVufXRLZPKpAjc1yZ3ErhlB03F2+Qwj62U0SjFjjIxMkpp8G5kndT82m22sca/D4ZC6HrWmST3v42SiRtZFHU+/30ej0RirfZvEkhn3aSZfVAGCkXWbxMQdB9rMtntcgGkG3mw2G+LxOKanp7GwsIDd3V2pdSoWi1LLRTCRSCTw6quvYnV1FcFgUIAvpYPFYhHValUAt8/nQywWw+LiIl566SVkMhl8/vnnUn/VaDSE3XO5XHC73Wg0Gsjn82KuQVMe9RqrgFgFWtlsFk8//TRqtdqYbNMYKjtLJkkNMn681/hdMwJJFSDabDZhgljjqS52AA/AqHp89n8EIH0c1XGyvQBBLgBZzGCtIIPHJmPHnnxsV0KZIxfDAMiilHpONGvq9XrivsvFrEajIfJJj8cjzxyyX2zoXavVEA6H5Zh8ftJkhUCZzJvajqJQKMhn1GvdbrcRDAbh8XjGmE31GUqp5X/vjbz/HhT5pKZpM7qup3/2598C8MUv4RiPFVIDZ3FwVlhhhRVWHBOffvopOp0Onn32WZGyzczMYG5uDvfv30ckEsHs7Cw8Hg8ODw9FmkUnt3Q6LcwWHdympqbgdDqRz+dhs9mQSCSwtraGRqOBW7duIZlMwuPxoFQqiVHGzMwM1tfXkclkkEqlMBwOkUqlEIvFUKlUcOPGDdTrdZw5cwanTp0SyWQikcD09LT0f2M9SqFQEOc2riSz3xMA6WMUjUYRDofRbDaxsbGBM2fOSK3R/v4+er2euLsxsaR0UpU0MlSApCZp/JvbAHgouTSGmWQReLitgApS1M8aYxILpe6DdT/cP534uNLP/RjBi1EyahyDyuQQOHQ6HTSbTWE0jOwMXzOe0yQ5pMrQTGIjjRJNI6Pz84QZmFMZKuP7o9EIX/nKV7C7u4t/+k//KQ4PD/Hd735XWBo6SJJpi0QiWFtbQyKRMD2XWCyGeDyOQqEg8r25uTm89tpruHjxIur1OqLRqEiECVxoSsMaKABybfn9UZ0JjYwaz4sMHGtgjYY76phVsK+acvA1ygS54GIE6fydsk8A0udRvd78R2BhvN7D4RDFYlGO3+v1hLXkPlqtljChlCWyfpbH5j1L+SdZtXK5jHK5LMDNbrdLfSIZLxWw0miEDL/L5UI4HBYwFQgERD0APDA+oRoAgBjZsIaQcxMMBuU68t4iK8e2LJ1OB41GQ1hg9nzktWXDb9XYhdeQ8xsIBB5ysvx1xi8E4DRN8wH4JoD/o/Ly/0PTtGdwpGTcNrz3Kw35zlj4zQorrLDCimMiGAzi6aefxv7+PjweD9bW1mC323H9+nUkk0mRJVarVflPnzbZ/X4f0WgU7XYb9Xoduq5jbm5OCukp31lcXMTe3h729vYAADs7O/D5fFhaWsLc3Bzq9To+++wz1Ot1qemYm5vD6uoqbt++jatXr8Jut+OVV16Bz+fDlStX0Gq1cO7cOXg8Hmxubo6NL51OSx0Qa/w6nY4kfEzems0mMpkMpqamMBqN0Gg0cPPmTVy+fBnJZBLpdFrkSmRTgHEGTGUdVIZKTXgnMVTGlXh1O7rxGc1NjKBOBYyTkl7+PWkcKvhQXfiYxJKVADDmZmhM1o8DnPw5Go2QTCZF2kpre6O8zjhP6jHU7Y2Mo1G2pzKPxjkxGm0cBxyM56n+zjGrbJUZY8fjsfbqhRdewNtvv439/X1ZXGCtFRvFs0eZWfj9fgSDQWGYKWHd29tDKBRCMpnE6uoqvvnNb6JWq6FQKAgg17QjN0lN0zA/P49Go4FKpYJWqzXWP46MD9k/43Uli0X2jPvvdDoPsZ9ksrgv3itqjZ2RRVUBNmvF1DkmE879GBcxWBdnt9vH6i0pG52enhbw5PF4hK1kfZqmaWNSRrX2lMfiubJtAGuHA4EAAoGAAKThcCgMmHp/UrJJNg940B5ArS9jyxVa+LtcLrnurKUkKKWjKOeKjFun05Hvbzabhc/nk7lh7XI6nRZzK7pV8lpRegocMZg2mw2FQuFYFv5XHb8QgNN1vQUgbnjtf/sLjcgKK6ywwgorfsUxMzODa9euIRwOY35+Xuz9T506hVAohHq9jmazKcklkx06uNVqNQyHQySTSZHEMSkJBAJwu924c+eO1KHRgS8cDuOpp55Co9FAsViEph3ZXft8Ppw6dQo+nw/vvvsutre3sbi4iKeeegrb29u4du0aNE3DyZMn4XQ6kcvl4HA4EI1GoWka0um0JHnsU8XEjqwbE7JOpyN1eARS29vbOHPmDE6ePIn19XW02+2HGnWbsUPAw06Sx7FATFaNySz3rwIRSsQeJ4xjU/82gjjj+FRDktFohOnpafy9v/f3kMvl8M477wDAWPNeozRUBTJM1NXaNybkmUwG5XJZDHOMn+dY1ETdKJVUz41BYGJkOM2YSTMGz8jWGGWXZsye+roKKtRjcU59Ph8ikQjcbre00FhbW8PW1pbc+8FgUExJKHWbFB6PB6dOncLt27fRarXEEr7X62F9fR1nz55FMpmUmiq/3y/94/L5vLiNTk1NjTE1NptN2BsyRGZsI5tQ00iF5+p0OqW+jEwR7xfjfa0ek7JItZaSxyWI4QIM8LBhjnr9+D7BDBmjcrksfR05Zi5UqD3sWF/Ia0Abfs4TgSpNQzqdjhix+P1+Ab8E5mobAZqT8NwI1oLBoDg/UjXA82abF+5T0zSpoeM5sg8fx8bXWq2WuE72ej3EYjFUq1UBfASsBPXhcFjuZy7W8X7g3PM6kX0Nh8MT79NfdTy5Bga/grAIOCussMIKKx4nvvjiCywuLiIej2N3d1dq25xOpzTEDgQCSCaTUnfDxOPg4EAazqrtAQaDAeLxOEajEXK5HHRdF9DWaDQwOzuLs2fPIp1OY3NzUyRKkUgEi4uLqNVq+Ku/+itomoavfe1rcLlc+PDDD9Hr9cTUoVarYX19XRJj9h2jMQlBJpOMXq+HWq0mBfk0AGg0Gtje3pbkifu9ePEikskkNjc3pf+TWqxvxuYQQDBZVRNMYFxGNolVmRQqUFD3NSm4rbq9EZAYg8k3V+z9fj/i8bgwpz6fTyzJ2Z5BnQMm6JwDdR7U5J1sEGsfeX5knpg4ulwuVKvVh+aRCa56DZj0T2LH1HlUQ2V9OG/GOT8uVNZNnXt+Xq3dWl1dxdzcHCKRCJ566ikkEgmkUik5r0uXLmFxcRHlclmkfDs7Ozh//rypKQ4leQCk2fNoNMLOzg56vR5u3ryJpaUlbG9v44svvhBJHhc47HY7nE4n9vf34fP54PV6ZeyqSY96PPU+7Ha7wpgTzBH8sx7L4/Gg1WoJE05pIOeMQMDIRqv3rdpjTG2roc67EcBx7vlZsoWdTkekgxw/5ZHs0caaTLYCUGvYyNIBkB5w6oIGmTDOpa7rKBaLco2cTqfMDVsEsJUB3R85ZkosWWNGCagqZaXREueLoI3f03a7LTJMm80mhiVqKwQuzLXbbYRCITkmFwN8Pp/U/fI5Sukoay+zWbH9+LXHlwvAyYPoCQ/ECiussMKK/6bjzJkzsNmOGgIHg0HMzc3Jf9C9Xg9+vx8zMzOoVqtiIc0EKZFIwOv1olarSe8qMgjdblds/dkzrt1uY21tDfF4HJ9//jm2traE0ZmamsLJkydRKpVw+/ZtTE1N4dy5c+h2u7hx4wYcDgcWFxcxMzODdDqNUqmEaDQqtXc0XiFjyAJ7Ag2u6DPpcrvdY4xUOByWc75z5w4WFxcxNzeH7e3th5iDScm+0S7euL1ZEk6QobJVKsh4FIAwY6Ymva/uzwyoGA0gbt++jX/zb/4NarUa7HY7gsEgXC7XWI8s1gUa2TiyKSpo5b9GoyFJvToeVUoWi8VEXslQTRbUc6BETr0u6n6NkjV1nMbEX+25ZyafVOfRjHVjqA6F/ByBE50NyW4Fg0G43W48//zzWFtbQzabRTabRalUQi6Xw8rKiqlJBI/barWEkRmNRtjf3wcA5HI53L9/H6VSSZgrjpl/00VQBQE2m032qZ678R7lPUMjIjoq8vvGfRIwJBIJ2O12lEolAYC814AHLJtRGqsCeKNkmaBJvY4EgbyXOE/l8lEnLwIjNvOmiQjvR9YT9vt9xGIxAYK1Wk0ki2SjWC9H+bamaWKuEggEUKlUxgxKeJ14H5DZo+QxGAyiUqnIYobNZpPFM95rrVZLpJkq+PN6vXJP1Wo1DAYDxGIxNJtN+W7xGnLu6FBJ0Kb2qBsOh3C73Wi1WvI94n1BmS0Z9Uc9p36V8SUDcEc/LRMTK6ywwgorjgu73Y5isSjudVtbWzg4OEAoFEI0GpUG2aVSSSQ3sVgMwFGilM/nJXFisX42mxVZJG3Ku90uVldX0Wq18P3vfx+ZTAbdbhd2ux3PPvssFhYWsLm5ie3tbczNzeH06dMoFotYX19HPB7H0tISOp0ONjY20Ol0ZAytVktqNwg81Ro3JleslSHQIws3HA7R7XZRqVSQSCRklf7WrVtYW1tDKpVCLpcbAzdmzM5xUjejNM/YnNvI4PA1hvqeWc2csdbIyEIZXzcexyg9U6VdGxsbwmSSlaNEjvIq1tWwVtAMZPH4NC5RwZk6NjIydDblvuhySrt7fo5jM87ZpLlUWSTjHJm9b/y8kdFU/6nMjxG8adpRI/tIJCLg7fPPP0etVsPFixfR7Xbh8/kQjUYxOzuLXC6Hd999F/v7+0in00ilUmMN7tnL8LPPPsPh4aHI7QhKAKBUKslihtqUmXNMGfSzzz4rTqztdluMVIxg11jbR7a02WwiHo8jFAoJm0ZGi9/JSCQCp9OJTqcjlvpq6wj1GtDkRGV0VRZXve85BoI1VTZLlolulARw9XpdnBRLpRL6/b4YJrFmTmXdRqMHzbXpTOt0OsU0iXWj7EvHvpXFYhGj0UhAGdk6XdcRjUYFSIZCIdhsNumz1u/3xYwkEAiMgW3WGnMuyPpzX7T7r9Vq8Pl8UvfIsXPRRQVp5XJZmFnOb71eRzx+VBlGgM5nl67r8lmCTY73ScSXC8D97KfFwFlhhRVWWHFc1Ot1LC4uwuVy4datW8jn89IsuFAoYHt7WxgO4IELWSAQwM7Ojqz8hsNh1Go1kRvS7IS1PezjdufOHWQyGXQ6HUSjUbz88svQNA1ffPGFyCtPnTqFg4MDZLNZTE1NYXFxEaVSCel0Gna7HdPT0yILGo1GsgquaUeOaOVyWRzamMARWNAAwOfzCSPS7/dRLpfh9XplFXt/fx/z8/NIJBLI5XICOLiPnyeMAIBJJoCH2CuG0dSEn1VZEMYkmaAZoDG+p4IV1RlQlSRy/tgcnf38PB4P/H4/3G63gHGCOaOFPpN6StfU4xvPkUyEzXbUMJ3JNN3++Dmj3M5sX6qU0sisqe8ZJZdGBs8MbKugYxJoUwGirus4ODjAaDTCjRs3sLW1hampKSwvL+POnTsCdtxuN2KxGObm5rCzs4OtrS1kMhkkEgkxNRkMBtjb28P169dRLBbRbrelTYB63dTztNlskqQDR0zU2toann32WRwcHMBms+GTTz4BAAFyPDczVpLGF7lcThZL2NybDBeZKDJH7Xb7IaA/ieHmT1Xmqso0VXkln0+UGxIgcg7q9Trq9bpcO0oEySapCgLKINXFA4IlmsZQSk6ABUDqgePxOOr1usjCCaxoJGKz2YSd9Pl84jI5Go2kbpeLTgSLZNXIQtJMhKCx3++L8QqNZTj3oVAILpcLXq9XGDT12cfrS2DXbrelhYF6z5PV5GIATXAIBp9UfLkAnDBwVlhhhRVWWDE5UqkUisWimBosLS0hEomgUqlIIqBpmqwyMzG8efOmyKISiQTu3r0L4MgpjTVtbPxNieaNGzfQ7XYxNTWFWCyGr371q8jlcvjiiy/g9/uxuroKp9OJW7duwW63Y2VlBaFQCMViEd1uF/Pz88LKtFotuFwuRCIRaQbNJIi22m63G51OR6R8TPbq9Tr8fr/0wiIzxJYIdNG7ffs2Tp48KdJMJpHGmp1H1aMZQZJx+0lgDRg3TnmURNKMWTJuYyb3M+5L13VEIhH0ej2pfeF7NFEIBAKIRqN46aWXkM1msb29jXa7LU58KsPCc2BNTr/ffwggqees67okhzSooQED96eyMyrwNCb/xrkwC3VOzH7yH4+r7lsdg9mx1GswOzsLTTtyiaxWqwiFQlhcXMTS0hLS6bSwL6wNjMVi2NjYwL179zA9PS1tOsgCFYtFpNNpYTQJbsjYqD382Kyaze0BIJFI4Pd///dx+fJlvPnmm7h16xZ8Ph+q1eoYyDLOk3r+8/PzuHXrlhgUEcxxO8pDVabM7N4wgjh17tQwu66qQU4gEIDL5UKtVhPmDoDUXFIVQIk18KCmMp/P4/DwELFYDIlEQmrZ+PwgA12r1cTUCYCYOZHJo5kJALHsB44UCrxnOp0OQqEQBoMBvF6vyDEpiXQ4HGPGT6wL5XeCEmaC2lgshlKphGq1Ku+Hw2E5Nlk5v98vfQYJAlnPxmsQCoXEwIbzR7adbSMqlYrUqWqahkKhYPbV+rXElwrAkYN7kppUK6ywwgor/tuPVquFSqWCwWAgLnnFYlH+ZtLKZq6dTgelUgkejwcrKyvQNE3Yg3A4LKu7kUgEU1NTaLVa2N3dlZ5sMzMzWFxcRCAQwJUrV7C5uYlEIoELFy7g4OBA6t2Wl5eRSqVw9+5dSX7j8bjIwlKpFNrtNvb392G327G8vIwvvvgCNttRE+/BYCASJsqi1AScfY7UlWM26iVIKxaLWFxcRCKRkNVorkI/Dngzk+WZycNUpkH9nBrHgUAmr9ynMdE2SgTNGCj+zYjH49Jkmwm/OrZ2u42lpSW8/vrrWF9fx9bWFsLh8JgNOntPcW5pfmIEBmZBMBKJRKQ2h3OkJv8qg6bOpVpPxTmbJCE1zpHxOpgxd2agcRITyPFQkmazHbXlOHv2LJxOJ6ampjAzM4NMJoNMJiPnT4anVqshn88DOGKOut0uSqUS6vU6yuUySqWSuCuqxhNkzpmUz8zMiKGGz+fDq6++ilAohBs3bmB3d1fAOhdpzBYV1HuZQIjbkYFS71MyPur1IFvOz6lsL4+tgivOs8pakwkyGxuPSdaxVquJfJJAjGOh1JP3KnsUtlothEIhRCIRaYrNY/B6lctlVCoVkWnPzs6OSUTV8yPIIxPH60QTGrpbOp1OqWXk3LJ/G89HddFsNBrw+/2oVCpSs+xwOJBIJABApO90i+TxyXI3m034/X5h4gjwWevMeeI1ZdN5AmHVbfNJxZcKwFkMnBVWWGGFFY8TmUwGo9FI6jD29vYkcaxWq/B6vWPMFnBk+DE1NYV0Oo1qtSruakyu4/E4PB4P7t27h3q9LgnZ8vIy5ufnUa1W8eGHHwIALly4gNOnT+PatWu4efMmkskkTp48CY/Hgw8++AAulwtLS0uo1+vCEiaTSRSLRezs7CAQCGB5eRm7u7vipKeaDQAPEj41QWdvJrfbLXIjJk9k5jqdDjY3N7GwsIBsNisSLCPgUoPvqwklgwkY8ACEURJpVtNmfF0NAgjVVMYo1zMCN+OYjWwct6H1eLvdHqtTUh04h8Mhrly5Aq/Xi9u3byOTyeCf//N/jo8//hi5XE5kXkyMKfNSjUu4L6PUkb97vV7EYjHs7u6OnQdZWDOWjGFmCHNcPA7bYzTLULeZxJCqYEZdKKF5hs1mQ7/fRzKZxEcffYSf/OQnWFtbQyAQQKvVkvuOnwMgphOFQkHkk7SOp5X8YDBAr9cbS6xjsZgsUMzPzwMA/uzP/kzAG6XIxvk0zg3n4tKlS9ja2pIEXpU6EmhQ5kwwadyOcwA8fG8CD4C4Kl0FHjScV4N1YDTi4DkUi0VhwniNvF6v9Nnjfmw2G7rdrtTrDQYDFAoFcaokaOFCFg1IKpWKmIW0222RqVJOrgJZgjHKSwlCG42GHJfPL4Jksl7cn9vtFqddPqc1TUMymUQ8HhfToeFwKPXHBPTNZhOapkk9os1mkzGHw2Fhc0ejkbj7sqbP6/Uin89jMBhIO4xqtYpKpYJUKvXQvf/rii8XgOMvFoKzwgorrLDimHA6nVhcXEQ+n0cul8PU1JSwTzSrYP1IMBiU9gB37tyRZJDmJUxOKpUKdnZ2pEaKDEA0GkU+n8f9+/fh9/sRjUYxGo3w1ltvIZPJIJlM4vTp02i327h//z6SySRCoRDa7TYAYGpqCj6fD/fv30e73cazzz4rAIKr21xNd7lccDqd4nbIYGLIxITb0dSASQ+d3crlMqLRKCKRiJwjV6uBh0Eck1K1/sssVFZikoTSjGkzxqRxGONxFTlMtlkTZWSdAIikrFgs4rvf/S6AB8xBuVyWGkeCOFrIk1kwnosZE+jz+ZBMJpHNZoV9M36GnyMgMKtNU8Gheiw1zECZ8d8kgGZ2DkZQNxod2epTstbpdBAMBhEMBlGtVnH79m3pD3b37l3U63UsLS0hm81K4k+XRzaXZsPtarWKTqcDv9+Py5cv47PPPgNwxJDSMMPv9+Opp55CJBJBrVaDw+FALBZDoVCQJuLtdnuM1VLHzr95nXmtA4GAGPyoNvrAOONJSSeBv/q+GSPH+9A4Fr5uZFspo6QUmgCKfdu48MTvNBdGaH5EMKjWybIvWrfbRbFYRCAQAPCAAaXUlfvhvHKBgiYf/L4MBgMxEymXy9ILsFqtirGIWtNL2SmfZwBkscnv94s5CeWqPHalUhGJssqOcrFHvUacO/a5YxsYMnGUcbrdbrhcLpFVTk9PS41cq9VCLBYTJvFJxJcLwPGmthCcFVZYYYUVx8TTTz+Njz76CKVSCadOnUKv10M6nYbH45F+RaPRCLOzs+Kidu/ePUlIQqEQhsOhALSdnR1ZobXb7QiHw1KPtrOzg1qthlgshng8jm63i93dXfT7fVy+fBnLy8s4PDxEuVzG9PQ0gAe9k1irxmT3woULyOVyuH37NsLhMFKplNRlEGxRCsrk0JjMs5aFSRGj0WggGo3C7Xaj3+9jZ2cHy8vLUqPEhAswlzOaHYvvqdbmDFVqpTINkwADwZ/atoD7fBRw5OfNAI36U22YTGkepVu9Xk/qtNTz/Jf/8l+KyyHlqqx3YkNndXxGoEN2ze/3i4kOHQO9Xi/q9bqMyShPnTRfk4CXUfY4CXyZ1bNN2pfxOLwXNE1DvV4XNjESiWBubg66riObzeKTTz5BJBJBJpMRQ5iDgwMEg0ExnuB3z+PxiAySroIejweXLl3C008/jc8++0waV2vakfPl2bNn8U/+yT/B9vY2isWigA9eQ/U+4gIFQZV6jxjdGfv9vkijj6vVNDbxJjBTXzOyzgxKCAkQVFdK47VXP0tQyobxZPrU86jX6/B6vUgkEmP3LQABVgSrAISRJoMGQBZ++P0gQ8f7loYqrEcj6CNgI4gcDofi9EgJJLdvtVoib9c0TUyY6KjL60jXSbU/HVlGgjoCPdbd2e12eV4y+D0vFAqw2+3SB67ZbCISicj5NZtNMUh51ALSrzK+XADuZz+tEjgrrLDCCiuOi7feegv9fh8rKyuoVCoi14pEIpI40l672WwinU6LpTaTPTqd7e7uIpfLYWZmBgDg9/vFBGVzcxMulwvnzp2D3W5HtVrF7u4uQqEQ1tbW4HK58Pnnn6PZbGJtbU3kXCqTls1mEY/HEY1Gkc1mcXh4iEQigVgshkwmg1KpJDKger0u9VeTnB4ppWSDaiYidEv0+XwiSyuVSmPOl4+bsKjJrJlRA8NYf6UmzSqQMDIiZPsYTKaNNXDqeCaN3ciAMEFm8hyNRuHz+YRpazQaY0kzZWE8ppGBeBR4czqd0oswn8+LFIwLAXS4fFQNn5ksdFIYP2sEtGavq589TkJJQA4cXZf5+XncuXMH8Xgcly5dQrlcxs7ODu7evSsJN2V2quRuZmZG+hny+8beYQQPly9fFtmp3+9Hq9VCJBLB4uIi/sE/+Ad47rnnsL29jXA4LJJWSiz5s1KpjDm4qqyrOkc0FJqensadO3eEnVKD949a56my30Ygbjye8boYFwvUbdWehCqY5H2qSjXpzEiJ42AwQK1WQzAYFCaKbqB8n86f/AwZPYIin88nagWOz263Sy9DLhBVq1UBxvzJ3nGHh4cAjoxlKD3m8dxuN5LJpLhl+nw+VCoVUTCwITnBIb+vBGJ8xnG+yQKzJo7nwXE7nU5RPdAlk2CQ500WkaDVaiPwSwq77WcrGSMLwVlhhRVWWDE5wuEwPB6PNGONRCIi4wmHwwgGgwCAYrEoDEgwGESr1YLf75cVWbJybPx68uRJYbC2trYkmdR1HblcDvl8Hmtra3C73dja2pJeV9/4xjeQTqdRq9UQjUalGa7NZsOJEycAHNXt9Xo9LC0tIR6P4/79+6jVakilUiiXy9jf35daEdpyTwqCPafTKbbifJ2STNbRxGIxqb8ysmVqGMGTEWgY2TejXI3Bz006jno84IHByqRjHycjVMdiHBdX9L1eL06cOIGFhQVsb2/jgw8+QKPRkLERqKlBdsdYh2g8T5p8XLx4EVtbWygUCmPgNZfLPXQ+RmCgGrgY58ZsXvm72XaTXlffM3tNHZ9aD8nFghdffBHhcBjxeFy24z2ofj4QCIhtvSo/pTSVLBiNY86ePYvvf//7cDqdWFhYgK7ryGQyOHPmDJ577jmpGe31etJUutPpSL1joVBAtVoF8GBRgEwV2TyCFOAIHGxvb4trojHMDHWMixeapknzb4Jz9fMMtUG2ui/1PtB1fQxE9Ho9VCoVqd/i9VDr3Lxer9QT0kKf323ug1LOdrst4E6VdnLRgTXAdFmlwyTbqNABs9friXzS7XZjNDrqueZyucRMhEwZa+doTEJDkna7jVgsBl0/ak7O3m8Eaf1+X45brVZFNqppmjQAJ9BttVoCXrlYwwUqtkigqzD3T+MW1uzxmE8qvpQAbmRRcFZYYYUVVhwTo9EI1WpV+h8xGQoGg/KfebVaRbVahd/vFzlcJBJBMBhEqVSSOphwOCytA+hWRsaBTbJ3d3fR7XaxsrKCSCSCzz77DL1eD1NTU5idncUnn3yCbreLubk5uFwuqYE6deqUNHgm0NR1HdeuXYPT6UQqlZIE0ePxYHZ2Fna7HTdv3kS5XH5IXqgm6Gr9HC22gSPJVDQaFUkZV7LVflLGJtJqzYlRVvY4EjyzejgjYDCTX3I7I5AwAprjxmE0euF5kJE8PDyE3+/H888/P2ZXzp5WlJqp42QyOEnaSRlXNBrF2toaDg4OsLOzM3Yu6tiNjOSjANZxDJxxbsziuPniPtRjTJrrwWCAw8ND/MEf/AF6vR5yuZy4HtLFkNuz9xedVFl3SqdC1hQSWK2srCAej6PZbGJxcRGnT58G8KDdQrPZxPr6Ovb29qQujPVMZJfpIEnnWUqXKa0jE0S26amnnsLVq1dl0cN4XdQwmpvwHqcFPRly1bRHlVQCD6STRmZONQFS60G73a60XSAbzPuU5+P3+2WBirJA1rfxmhCU+Xw+kWIS2JGRUgEf5eQ8Hp8XvG6sJ+v1enA4HKhWq8Ka2e12UT3oui6AutVqoVarSXsEGpOwlyafSw6HA+VyWY5NSTnH7PV6RdXAZ304HEa9XheTE7KPatuHUCgkC1d0ko1Go1IPyWfBk4ovFYBz/AzADSwGzgorrLDCimOi0WggmUwiEonISjDrKVj/xRoOurvNzMzA4/Hg8PAQtVpNnNwCgQDC4TBGoxF2d3dRqVRw7tw5BINB5PN57OzsIBaLYWlpCb1eDx9//DGCwSDm5+dRKpVw9epVLC4uIpVKodVqYXNzE6lUCi+88AIGgwHu3LkD4MjMZDAYIJ/PIxAIIJVKyQo7V/KLxaLUlRiZGmA80e71eqhWq+I+SfCiSkir1Sra7bYkoXS8U0OVP04yHzkOzKlMEhNPtT2AUV6pbqvKOo2sm5FNUv9WgdBoNJLE0rhfAt0bN26gUCgImxCJRPDyyy9jfX0dN27cGJNQMgHkTyPY4TzG43GEQiF8/vnnwg6YzZkaKgMziT0zu9aT5sH4efU1FVRMum68VpPmV9OO2m24XC7Mz8/j448/loUSJtTBYFCkpky2CQa4b7pMNptNeL1euN1uXLx4EcViEV6vF2fOnMHLL7+MRCIhvcZYZ1er1dBsNgXAsZdctVoVyaDH4xHGhYwXX3c6nXC5XFhYWEClUpEaLqPZiNm1M9a1ERCozqT83qjXW/0+MsiUqa6S6v6Hw6H0DeQCBGvZWMNHZo5MFQAEg0GRkLL/G5km1vqpTBWl5pw7snGj0UhMQPL5vDjb8tna7XaRSCSkZQS/YwTLdCzluReLRUxPT0tTe0rXydjRzZISTY/Hg2q1KnJJPttVMxkA0jIgFApJ/ZymaXI9aWpDKS/rBFmfR1aZ8/mk4ksF4CwJpRVWWGGFFY8T58+fh8vlQqVSkaSKMpt0Oi1sWqPRgMPhwNLSEkajEdLptJgoBAKBsVoOrsiurq5KO4F+v49Tp07B5/OhXC6jWq2OSSTtdjuee+459Pt9pNNptNttXLp0CQsLCzg8PMT9+/elpQABocvlQiKRECmQ3W7Hzs4OcrkcstmsgAeCCaOkS02uW62WmAUwoaPtdiqVGpNH0cmNiedxDM2kZJ6hAjP1d0rX1P2oTn7GxNUM5BzHPpltwxV2Jp9q4kwANhqNcHBwIM6dTKbJSjDJfRT7xs+ePHkS8/Pz+Oyzz8ZaP0wCYcbzfBTQU7cxzr/RCGMSq2cm3TSOx+y46jbD4RCFQgG5XA7Ly8tYXl4W4xLK0HRdF7MLh8OBSCQiiTEZI1rJ0xXQZrPhzJkzqNfrCIfD+OpXv4rp6Wl8//vfx3A4RKvVwk9+8hPcvXsXjUYDnU5H+vtVKhWxhadDosomUU6oMjaBQADPPPMM3n777YdaAKggivcyAYBR1qta6Kv1cry3jQycul+VheN3kccmU86+b/wMgY3KXqqMHx0+2VfN4/FInVe324Xb7Uaz2cRoNJLaNioCHA4HAoEAIpGIfGebzaaYzpBtbLVa0quNsnAuMtFMiSBPdZUEHpiq8D2XyyVsIXCkFuD9YWz/QVZXvY7BYBD1el2Yv2azKQs39Xpd5O+UnA6HQ/R6PZHca5omDCE/86TiSwXgHLT6HVoAzgorrLDCiskRi8WQTqeRz+dF6nhwcIB0Oi2MAAv/6QxZKpXQ7XahaRoikQjC4TAAyGrz1NQUlpeX0el0cOfOHTSbTZw5cwbRaBS5XE6afjM5CoVCcLvd8nmv1yuNcn/yk59gNBphYWEB8/PzIpu02+1YWVmRFelUKoU///M/x87OjhT/s8cRmR5VImhk44bDobBwTJAIaHZ3d3HmzBmRMnF7I8gykz8y1MRfBRKT2B+VdVP3q/Y3o3xMlZzxPZ6XGQt33PEpl2TdjXp+xjHw3vjBD34gAE6VjfJvY+0bXSXX1tbw0ksv4fr16yiXyyKDU0G28XweJVlUQ2Uyjfvh+2aSR7P54/tG5m8SgDS+R3b4+vXrCAQCmJqakrYY4XBYzDZsNpu8D0DYIC6QsAbV7XZjc3MTFy5cwPz8PH74wx/C4/FgeXkZtVpNEv9arYaDgwM0m01Uq1U0Gg3UajXU63W0Wi0BF5RM85qSUaTkj9ft9OnT2Nvbw+7urjQmN845z1c1cVEZSu6LAIxsDvtFqtfMuMCh3h8EmCqAc7lc2N7eFoMdtT6PoJELFMCD/muHh4fSvJv2/jRHIePpcDikSTdNZ7h/stds2E3ZpaZp8Pv9woAReHOfXDDx+XwinWT7knq9Lv05HQ6HGCuROSOIVL//PA6P3e12x0A6GbZarSaAna0pOB98pvLc2MszFovJAlKz2RQ301arZfWB+2WF3W4xcFZYYYUVVjw6PvjgA3Q6HTz33HNwu924f/8+SqWSNJDlSqzP50M2m4WmaSiXy4hEIiK9aTab2NvbAwCcOHECiURC+sqRWYvH4/jss8+wt7eHixcviskAHS4LhQLcbrcktc1mE59//jlCoRAuXLgAh8OBg4MDNBoNzM7OYm5uDl6vVxizDz74AJqmiRsbpUdq02eu7k+SwZGdYHsEAGJu0Ol0cOrUKdy8eVNqkVTJIvdxHIhTQwVqx23DMNbUqQkuz5FJs9F104wB4e/GbbhaTyDBflYEbayPMmNGVLbTyL6pUrpQKISVlRVcvnwZV65cwY0bN0zBlTpeVV5nNnaza2qcAzOwN2k+1G2MjNskhs64D+N27XYbH330EUKhEJ577jmxko/FYmK44XK5RL7M5D0ajSIYDGJ3dxeBQACnT58WcPIbv/Eb4ow4Nzcnv7PBNx0ta7UaGo0Gcrkc2u02ut2ugAUyTgDEJIUsH9lBLoq0Wi3s7u6OgSaG0czECNrUv3mfELyp2xjn0MhyEoTwuvCej0QiKJfLqNVqsvBAds0IHil1HA6HqFQqqNVqCIVCIhNUgSJBFr8LlJfyGhD00fGR0muy1Gy0zmbYdMccjUYy9+yr5vf7UavVkM1mEQ6HxWhF13V5LpGVJRjkuMgQDodDab1AIxXWq7LtAUF5q9USx0kAcm5coOO1IFgn+Gu1WmLuMjU1NdaG5dcdXyoAZ9XAWWGFFVZY8TjR6XTw9NNPQ9d1fPzxx7LSzEbbwWAQ4XAYxWJRWILp6Wmpe9va2kK1WkU4HMbq6irsdjs2NjYwGo0Qj8cxPT2NwWCAv/iLv0C73cb8/Dw2NzehaRpSqRTsdvtYPyZaXNOlcnFxEeVyGdlsVhocnz17FsPhUBws33zzTal7AYBkMolGowG32y2Jvyp7NAsmK7VaTWp9aDeu6zrS6TTeeOMNBAIBXLt2DbVaDcADqaOaxE8CcWbyv0mmJcdJM80YKDXJVfdrxhBNAkXcN2tbAIjDntp3jmObdI78qTJyTPiZSJZKJfzX//pfhSky1o8Zf1fn61HgzYy9U7dVwapxf2bnY2RPj2MEjcdXr2Oz2US5XMann36KwWCA5eVlNJtNaJqGubk5YbbL5TLi8biwvGfOnBFgcfHiRSwuLuLKlSv45je/KfVo+XweU1NTuHv3Lr73ve+hUqlgMBhIO4JCoYBSqSQGPJxLMkwEGmRj3G63sNi8Ph6PB8PhEDs7O2PMkLpooJqJqOyQurjBn/yceg3N7lmOk4swdrtdJL5q4/BYLIZr166h0+kIwOP4eJ58nS6zdNadmZmRZx/D4/Gg1WqJRJySSzp50im02WwKCCeQo8Mnz5fsHNsWELwCkHpegqd+v4/Z2Vl4vV6Rs9MFlmYzfN7RYIQNt+12O7rdrswxXTb5vW632wiFQjL3nDtKMFutloA3h8MhAJILWbxH+/0+2u02ZmZmZNHsScWXCsA9qIF7co31rLDCCius+G8/vvKVr2B9fR3pdFr+015cXBRZTzAYFNt/yqncbjfK5TJyuRycTidWVlYwNTWFVquFO3fuIBgMitHJwcEBPv30UwQCASwsLGAwGCAYDCISiYgsKBQKSa1drVbD/v4+otEoXC4XSqUSDg8PoWkazp8/j1QqJfKfTCaDDz/8UOo5pqenkUwmce/ePUku6ejHhtLHyQeBBwYINB0goKxWq7h79y5eeOEFZDIZaU+g1qsAD5s2qCBH7dlmlvg/Ksy2N2PajGwFt1MBjJHVmATihsOhSPbIwpi1CzDuw8iUqbLWVqs15uRpHJfZOZqBOfX3SbLGSQynCqyMIO248zI7N+M4Jr2m67qYlHz++efCUGuaJrJhh8OBbrcrUrann34aTz/9tLTWmJ6eFuOe9fV1TE9P4/PPPxeDknfffRf3798XAF4oFKS/I3sYqvJFfp9Z/6XruoA3ziPB93PPPYef/vSnY06GgHnzbXUBgd8HTdPGWhSocmB18UM1COJn1OtEkEVgxm0/+eQTlEqlsToxhlojB0As8m02GxKJhEit2+22mDaREeW9zn3QqdblcolUslqtigur2+0WYOjxeNBoNGTxKJPJCHgiuByNRmMSSrYUoLEI+61VKhUxO2HPOsoYVUMTXlPeb2zczTo4fgfV9gLxeFxAJ88/Ho8L2xYIBKSukIsJi4uLCAQCKBaLFgP3ywqLgbPCCiussOJx4urVq8KAOZ1OzMzMwOv1IhQKCWgBgPn5eUk49vf3xcJ6dnZW2gncvn0bCwsLWFpaQq1Ww+3bt5HJZHDu3Dn4fD7s7+8jkUgIQ0ZzgEQiAV3Xsb29Lf3cOp2O1HlMT0/jxIkTImdiD63PPvsMxWIRlUoFZ86cQTAYxOHhIUKhEObm5kQ6VKlUZCWfAGSSq6Cu62i32+L4xlX7fr+Pu3fvIpFI4Omnn0ar1RIXOa5Oq2yCmpAC5kDCjLVTgZcZ2JvkiKh+Tv1HoGJ0sXycIIjrdrvwer1iYMA6OVUiqQJBVT6pnqsqa+OYVFbtUUzYo8KMmXscaePPcwwzJs7s/UmvZTIZnD9/HpqmYX9/H6FQSBiSaDSKdruNZDKJ0ejIiXJ6ehrhcFiSd9r+b21tIZlM4v79+/j000/R7Xaxvr6Ow8NDFAoF1Go1+ddsNkUS6fF4BDyxjUGz2USpVBqTTfK+pbHFpUuXUKlUkE6nEY/HpZ5qEqvN+4/MGc9fNeAhMOS9rmmasIGcE3UBguOx2+1SP0swWSqVsLe3Jy6dZAsBCCDlAg7lipSIsw8kgQmfT16vV4AqWTQePxKJCOvVarXgdruFlaOTKs2hyCASHOn6A/dRoyRT0zSpSTw8PJR2ANVqFZqmwefzjbWZoNKAn+e5suZS046MZ1h3R5DK9waDgbC93W4XgUBAAB8BqdPpRLFYFEfP4XCI5eVlAcE0cHlS8aUCcJYLpRVWWGGFFY8T3W4Xfr8fuq4jkUggGAxidnYWuVxObLIdDgfcbjcAIJ1OYzAYYGlpCTMzMxgOh9jf30exWMTMzAwWFxextbWFnZ0dDAYDzM3NAQA2NzcxNzeHYDCIdDoN4KgdAK22Dw8PEY1GBZwxIYpEIpienhZXvJWVFZRKJVy5cgXr6+vo9/u4dOkSyuUyKpUKZmdnUalUpAifCSubBbN31iQGB3ggKWLCy15R7XYbH3/8Md544w0BcZQAUjplZLrUMHObNNYJMSbJAI1AUAWO3NbMaMPIdqn7nVT7xdfZF4vJGhNfskWqgYlqWqL+0zRtzMzEZrPB6/XCbrcjmUxie3v7ofNWE191XsyumTEmAXT1HB/Fghrn6VHHN7KaZsejA6vH40GhUBATjUgkInWnuq5L3Wm/30e1WkU6nRbb/729PWFDPv/8c6k/rdfrqFarqFQqqFQq6HQ6aDab0PUHTa7VZtd0OaTNPlkr3o98LRQKIZVK4Y/+6I+kRo9MmArCVWBmvIeM82RkptV/lOOpdZU8B9aDUeYHHIG6YrGIWq0mUkmeE10WCVZUN026zRLMDgYD6asWj8ehaZoYlQyHQ3i9XpkXMplk61utFpLJpPStTCQS0srE5/NJ/0wCVC4KcT7V/mt+vx/ZbFYcKXlN+v0+Go0GQqEQRqORNOkGjp7jbOHC/bG+kaYmBHWdTkeUBWTZ2u22nB+BLp15a7Wa3BNqnTJr58jCPan4UgE4caG0AJwVVlhhhRXHBFd7A4EA4vE4Go0GfvKTn0DXj9oJsNltt9tFsViErutYXV3F/Pw8Go2GtAhYXFxEKBTCjRs3cHBwgPn5eXFss9lsOHv2LEqlEjY3N+H1ejE7OwtN05DJZNDpdJBIJOD3+8dqpQgaWR9y/vx5lEolvPvuu9jb24PX68XJkyexv7+PqakprK6uolgswuPx4PTp07h169ZDEkcmmkYWRf3JBJHNc2l6YLMdtRX4yU9+gtdffx2XLl3CJ598Ij2XdF0XxsHIdqkNh1XwxlBrgvg5owMlGY1JBiLG8zQyepOkgJNklMbxUWJFMwYaG6jGJpwHlZ1Tx69K6pxOJ77+9a9jY2PjIRDKHmevvPIKfvrTnyKfz5uO3YxZM8ohjUDLTI55HANovE+MzKIZiJsU/X4fu7u7eO6559BqtRAOhzEcDpFMJnHixAnk83npRVYqlXBwcACv14tbt26hVqvh6tWrAt4ODw+xubmJXC6H6elpZDIZbG1toVgsSh0UZXy8bwgOVav5+fl5AJCm0mSBNO2oFu7555/HW2+9hWaziXg8LiCIEjyVZSZQ5zbHAV4ygbwfvF6vgAJub6xR7Pf7UsfGv/P5PPL5vNR8sb0Jz1utneNCi91uF9khrfyTyaTUs5GJVxlLgkfuj3OlaUfmScViUUxDeA01TZN2D+rCB8fDxug8DsEoTWUajQYCgYA8k3hdCBy5PxoZkTlzu92ijCDYIjBOJpOoVqtwu90oFovodDoIBoMyF5S2NxoNqdHU9aOecslkUuoBKeNU5aNPIr5cAO5nLpSDoVUDZ4UVVlhhxeRgM1un04lbt26h0WggkUiIO2QkEpHeSj6fD4uLi5iensbBwQFu3bolzYOHwyHu3buHWq2G8+fPS6+jaDSKUCiEQqEg8sdYLAaHw4F79+4hHA4jkUjIKjPZt9FoJAnQwsIC4vE47t69i1u3bmF7e1sSnO3tbZw8eRKhUEj6yUUiEdRqNcRiMWEhmPyYOaypQEet2+l2uyKBstlsMheZTAZXr17FN7/5TQwGA3zyySciU2M9jgq0VNZJlRwak1l1GzWMIO44OaSa8BoT60kgTgVwxqTbCFhoVtHr9aROy2gXT9BmBFDqeS8tLQlALxaLD0ntBoMBFhYWsLCwYGps8TihHpPg2giejaDVCDaP23YSQDwOxOn6kSEO3SXr9bqAnsuXL6NSqeD9999HpVLBzs4O6vW6tAGgAQaNLA4ODgSs1et1sZ5XXVJZTzUajdBsNtFoNIQl5cLEwsICDg4OpNaMAKPX6+H111/H/fv3sb+/D5/Ph0AgIFK8fr8v56qyyCobB4ybmZAd4/i4YMN9qg6QqgEO/ybrx2g2m0in09B1HdFoFJ1OR0AIWTX2siP7rtZw8pp7PJ4xd0YuVLBHmyor5We73S5GoxHC4bD0RKNBjwrKCBg5frYhUEGa3+/HcDhEPp+X5wxBOJUDbM7ORuuca6/XKy0Fer2eMIx01ux0OsLw8XWv1yv7IjtHiSiZ2Xa7LfJMu92OeDwOr9crQM/r9UpPQdX85dcdXyoAZ9esGjgrrLDCCiseHQRT6+vraLVaiMViCAaDYy0CarWaSBkdDgdu3LiBfD6PaDSKubk5dDodFAoF6LqOEydOiJV2KpWCruvIZrPodrsIBoNS57O3tyf20y6XC81mE3a7XUBXq9XC9PQ0FhcXcXh4iLfeegu3b99Gu93G8vKyMBOXLl2SRHp5eRntdnssmapWqxgMBpKIGA0U1FosldkimKCRAfvDMYHc2NhAMpnE888/j3a7jZs3b6LZbIrr23H1WEZJpGqwoCanZszYpP2oUkqV9TuOVVNjkvTP7HMqSGNSbHSRVKVv6rh1Xcf8/Dxef/11rK2t4S//8i/F0VOVXLKJcD6fR7fbfWgeft44TgZpBrgmsZXqvh4XxBm3q1Qq+PTTT/Hiiy8ilUrJd6BYLGJtbU3kwARllKeRbQGOgEs+n0elUoHH4xGGhVJDgjGyTr1eT9wDCWjcbjf8fj92d3elHo6M0XA4xCuvvIKNjQ1cuXIFdrtdXBcBjMmSgfEaNeN5qwBcrZfjd4lSv1qtNnbPc874vWOdGgABONlsVnq2sR6MY6Shh+pYabPZ4PP5MDc3J0CEzxyauRDIcGwejwd+v3/sXueCzezsLDKZDHT9yHyk3+8LyCXjyXq4ZrOJZrMpknUen+/V63Xpvak6RNpsNmG6OCYasESj0bHvGq9TuVyW2jeaqHBRLZlMSpN3yphZ68rnCGvkdF0X0ymCNwDS247zyWfuk4gvFYCz2TTYNKsGzgorrLDCiuPD7XZjf38fDocD0WgUS0tLCIVC0HUd6+vrcLvdmJ2dxcrKCtLpNO7cuYN2u40LFy7A5XIhl8uh3+/D6XQiEAhgb29P+huxmJ+1bP1+H9vb2+j1elhcXJSalnw+D4/HgxMnTiCbzSKbzeLkyZOYmppCs9nE1atXcfv2bcRiMaRSKezt7WFxcRGnT5/G3bt3EQgEsLq6KsDJ7XbD6/Uim82Ky1y5XIau6yI1UlfggfEG2cCDhH00GomU0mazIRwOS1L88ccfI5FI4Gtf+xqazSbu378/toqt9sUyNrNmGJkLI0OkJv/q+8dJKVW5nAquJoFKs2MZt+HnzVgpMjrHSQfVz7BHYDgcRjQaFUCtzrndbsfMzMyYG6IKtiYxcsbX1XN8FFM2CcQar9ujpIHGcRhfHwwGWF9fx/nz5/H666/j/Pnz2N3dxdbWFoLBIBKJBM6ePYtoNIrNzU2sr68LOGAD6VKpJIBFBSa8Pwiu2UqA14f9zAhshsMhQqGQjGFjYwOtVgu/8zu/g9FohKtXr6Lf7yMcDkvNGHDkxEhAYzxnyg1VMK+yaPxesE7N7/ebSif5j46Kaj3aaHTU55Gybr5HYyReE5X5IrCjAclwOMTU1JQw9wRArCWjlJRuk8CR5JxAOB6Po1KpiLSyXq/D4/EglUqhXq/LwgMdXFVAGQ6HkU6nRZpdKpWQTCbh8XgEsHOuKGnk+FjnRwMayio17chNslwuw+PxoFqtClvn8/lQKpWkJo61zzQq0jRNQCHBq81mg9/vRyQSgd/vl9e4CEGnzHQ6LWz6k4gvFYADjurgLAbOCiussMKK4+KLL77AcDjE0tISIpEIbDYb9vb2pMn2qVOnMD09jdu3b2Nvbw82mw0vvPACut0u0uk0ut0uZmdn0W63USgUEI/H4fP5kMvlcPv2bQQCAZw8eRLlclnqMU6ePCmMV71eRyKRQCgUwt7eHmq1Gp5//nnYbDbU63XcunULh4eHmJubE7OLixcvwuVy4f3338fi4iJWV1elqa3H40Gz2cTu7i7i8Timpqawvr6O0WiEUCgkTX7pAKc6UhrlgsCDhFt1k+M8tdttvP3223jjjTfw8ssvo9frYWdn56GeSCrQMpNIAuMgwQzIGT+nSimNjJxRbmmUMKr7OI5pUrfjT7OxqwDJ7HPG/TcaDfzxH//xWH2SMYbDId577z0xtTA6ck6SghpB23Hnapy3SWyaGQNpPGczcDjpGEz2P/74Y/ztv/23sbKyAqfTiR/96Ee4e/cuzpw5g8XFRdTrdYTDYTz99NPo9XrY3d2VptOsYVMNOngvU36sXisultDBkaDi7Nmz+P3f/300m038q3/1r+B2u/Hqq6/C4XDgT/7kT8Tcgv0A+R3w+XzynQDG5bqqq6hx8UBt3E1mSmVcjQY4HDMbj5OdKpfLyGQyYm7Efeu6LsCJkUwmRXIYi8VkoScYDMo5cA7pXjkYDOD3+6VxNlmwXC6H0WiEaDQ6ZsufyWQEmBHskb0jO0rwTFdHTdPQarXQ7/cRi8WkGTe/txwTZZHhcHiMtaMMlvNut9uxs7Mj15b2/i6XS2SaNttRC4FoNCqfZ/N3Ho9OlHSXJIAEjvpCUinAumiyjk8qvnQAzm7TLAbOCiussMKKY4MOeKlUCtFoFLu7u6jVapidnRUW4Pr169jZ2cHy8jKWlpZQLpeRz+dRr9exsLCARqOBUqmEeDyOUCgkrNzS0hJ6vR7u3r0Ll8uFUCiE5eVldLtdVKtVBINBrK6uYjgc4v79+/B4PPjGN76BSqWCjY0NlMtlFAoFJBIJRKNR9Ho9PPvss2LC8Prrr4sEjCvKAFAul3Hy5EkMh0Ps7u6OtUVgAssifOCBTMnYVFhNyFlHwhVxJkC1Wg0/+MEP8Hf+zt/BK6+8gjfffFPaC/AYqkRTrUVTE2wmvWQIVXCmggAV7KggDni45xyPbQQ1k6SZ6jjMwI7RYdNMHvmo4LZGiaXZcdrt9hiwNmPPzFg5o8mIcftJYFb9fdI8Gfc7CdyZbWvc7u7du/jX//pfY2lpCSsrK0ilUrh+/To6nQ5Onz6NCxcuSB8xyoppbKK2B+B+KS8kMFLbNfC+JXOzvLwMm82Gb33rWwCAf/fv/h1KpRL+4A/+AJlMBn/0R3+EWq0mZhh0nuS9TFBjXEBQgRzBhXptjKYl4XAYpVIJwAP3Q27L86Ccj2x+o9EQV051gYL7J4OkjgE4YsLImLFVQL/fh9/vF8dNsmsejwfRaFRqx6amplAqldDv92UhiOxgpVKRHpntdhvtdltMVNR2KGzSTRkir1s4HJbvNq8hz5dz4nQ6pd0BAJG8qsC3Xq+LDJS94WhUQtmspmnShJ1mJ/V6XVhcLi4Eg0HE43E5XrvdFmDHBQIqHJxOpzihPon40gE4h03DYGgBOCussMIKKybHiRMnEI1GEQwGsbW1heFwiGeeeQazs7Podrt4//33sbu7i2eeeQbLy8u4f/++WFwvLCxA14+s0Wm1v7+/D6fTienpaWmATXnO7Ows/H4/yuWy9JwrlUq4fv06Tp48iRdffBHXrl3DW2+9BZfLheXlZayurqLT6SASiUDXdezu7iIQCGBlZQV2ux3Xr1+H3W7H7OwsAAhroTZDDoVCktww+WQtEFedjcDIjMFptVoCsFivx+O8+eab+Pa3v4033ngDb7/9Nvb398dqStRaNxWYGY+rAoxJbJ0aqlMlEzC1xo8yMpURmdRS4G/CWJmBMHUbs+MYf5oBSRXoGYGUCiRVAGc0jVHHaLbvSUydWUwCc5POyxhm8zQcDvHOO+/gX/yLf4G///f/Pp577jkxG9nb24PT6ZQG9/fv35d7lQm0KhPsdruSbNvtdkxPT4sRBcdEEBcOhxEKhbC/v4/vfve72NvbQzQaxT/7Z/8MH330EX784x9LUu/3+xEIBARQqDb9KmADMLZQwXvOOB/qWGh3ry5mqDJByjTpZksmK5vNCpPObdkKwMzwZDAYCAj1eDyo1WrS+5JAlwALgNT68RiRSASZTAb1eh3D4RDZbBYARKbN4/T7fZFyshaW80PTEhqI0BjF7XbLeTWbTXQ6HYRCITEkYQsCSi91XReGTTVVaTabCAQCYthEWTt/ct5ZK0jpbL1eFwMTzj1bp/CeHY1GIpEsl8sy11Qi8LyfVHzpAJzdrmH4iAe/FVZYYYUV/8uO6elplEol7O/vYzAYYHFxEbFYDI1GQ+pLXn75ZaRSKWxsbGB/f19Wp3u9Hur1OqLRKPr9Pg4PD+H3+6WmpdvtikkKEweCv/Pnz0vz4XPnzuHChQv44IMP8Mknn8But+P8+fOYmprCaDRCPB5Hp9PB+vo6kskkFhYW0O/3pYZkampKrPwpt+v1etICwO/3IxqNQtM0cf1TE73jGBZgXJrIwv1SqSQtGDqdDg4ODvDDH/4Q3/nOd/DGG2/gz//8z4WJVCVjTJJUJsIojeS41CSNoMXI5qkJtBo8R25HJsJMrmjGbKm/mzGSZvMzSUL4qPk1O7bZ3+rrxs+r15HAT5XvTTqnSSBVBYaT3jees1moINPsnLvdLn7wgx9gNBrh29/+Ni5duoTd3V1MTU2h0+ng6tWrqNVqKJVKyOVyODw8FCaYrBjrvNT+ayrA4TYEeKVSCdvb22K3/+qrr+Ly5ct488038dFHH4ntvc/nQyQSkTo7ddGBAEllehm8R43upyqIiEQiaLVakvir25LV6XQ60k6kWq2i0+mgWCwKY6fKMdXvja7rYtJClqxUKqFarSIcDssYKStkLZ6u6wiHw/D7/SJxDIVCuHfvnoyb/dU4XjpJElT7/X5omiZOt2rjcYfDgZWVFXS7XWHnstms1KlFIhGUy2UB6TQhIVtJObGxLyJlrrVaTZp8ezwetFqtMeaUbpmNRgPhcBj5fF4W19gEnAtTrLmk9NNut4+1XHC73eKi+uqrr2JpaenY78GvMr50AM5h06waOCussMIKK46Nu3fvolKpYGFhAYuLiwCO+ktRtrS8vAwA+Oyzz5DL5TA/P4/BYIB6vS5Olfl8Hg6HA3Nzc4hEIpJg+Xw+hEIhSQS8Xi+SySTC4TDK5TIODg5w4cIFLC4u4r333sM777wDp9OJ1157bawnXKlUQj6fx6lTpxCJRLC/v49ms4loNAq73Y58Po9+v49EIiFF9bOzsygUCpJkkH1jQqeyVMeZg6hMDwBpqWC321EoFABA6mb29/fx1ltv4Y033sBv//Zv491338XW1pYkc6xPUp0wVRCnStK42s4xAObNqVXWTWWrjIYmanLMffFzZmDlOJZKfV/9W33tOGAzCQhO2q/xc496TQVnk0CgMcxYOrOfZmOeBDLV34/7fKPRwDvvvAOHw4FyuYzV1VWk02kkEgl8/etfxzvvvIM7d+4gl8uhWq0+VA9I2SAlcgQwNDLhQkC32xXQZLfbsbCwgL/7d/8ubt++jX//7/89dnZ25F7h4gSBgyrDVI9PeR+NbFQ7eVXeyfuPLontdlsawKsSS7UujscsFovo9XqoVqsoFArCtJFh4neH3zFVLupyuVCpVKDrOkKhkDgvdjodATdsjM0WAmyE7vF4sLu7K822Ca44TuABA97pdOByueDxeIS9BB4YupAV5bOx3++j2Wyi3W5LP7VOpyOtUwCg1WoBgIAxPrdKpRI8Ho9IPoPBIPL5PEqlEoLBoLhc0g2TYB+ANCuvVquoVqtjxjSUy5Jh47Vlo/J6vS61cWT7KFOfmpp66Dvw64ovHYCzauCssMIKK6x4VORyOaytreH8+fMYDof46KOP0Gq1sLCwIMYilUoFwWBQ6kZarZaYhZTLZbjdbpw8eRI+nw+Hh4fidhaJRAQoxGIxzM3NodlsolAoYDAY4PLlywgGg/jjP/5jXLlyBefOncOLL74Iu92OVquFWq2Gw8NDuFwurK2tYTAY4LPPPhNDk16vh3a7Ldbb1WoVKysriMVi2NnZgc/nk/5vfr9fkly32y1GByrgYAJIlgwwl8j1+32pgaHLpdvtRq/Xw71792Cz2fCd73wHv/mbv4kf/OAH2N/fF9MJYx2ZemwjO8bxqMfn70ZmDjA3SOG2anNlBsHkJJZMZU/UueCxzJgts5gkk5wUxzFvx712nBxT3eZxXpu0jXF7dY4mgc9Hnbuu6yiVSvjBD34g8jeXy4V79+7B7XZjbm4O8XgcP/3pT8cYZvXedDgcWFpagsvlQiwWQywWw4cffohsNiuMTTgcFinzd77zHcTjcfzn//yfpUm4ui/2b+T9owIklR1WWWLjfa3ejwRjBE+s7VJloASOZNL8fr+AnHq9jsPDw7G6N1UiqUo6uc/RaIRqtSr1bQR+XJwiuCHAIbtkt9vRbreRy+UAHIGwSqWCQCAg0kKv1yvmHmQr2TB7MBjA6/XC6/WKxDASiaBSqYjxCduuDIdD6fuWz+dlP8CD/nmNRgOhUAhOp1N6s7ENQCgUQqlUkutKcxMGmT3K2VlTSbdOPhc8Hg/C4bDMCRcAuKhAMGmzHblUptNpBAIBzM3NIZvN4nvf+57UU/6640sH4CwXSiussMIKKx4VFy5cwNmzZ5HNZpHL5aDrOi5cuDDWzHdxcREulwuHh4ew2WwC5IbDIebn5xGNRsUavdPpYGZmRiyubTYbPB4P4vE4crkc8vk8wuEwzpw5g9FohP/yX/4Lbt68id/4jd/A+fPnoWka8vm8rBAnk0mkUimRX0ajUSnUB44SFEqSVlZWUKvVcPfuXQDA3NycgL1bt24J+8DVZSaVAGQl38g8MYyAgkYsTODZ5HYwGODevXt488038frrr+ONN97Aj370I2xsbACAJG1qssmE1Qgazeq/jmOvjGDPKK80OgQaE95J567GJMA0CQSajZOvHSe5nLSvRwGwR4HD44496f1JYXZc4+8/zz6r1Sreeust6LqO3/zN34Smabh16xbK5TK8Xi9isRiee+45bGxsIJPJoNVqCXDx+/0Ih8NwuVyycOJ0OpFKpSSh/9rXvgaPx4NAIIBbt27h2rVrODg4eKheMhQKIRQKjTXNNjJOqjnIJNbV7H5kvakRCAIP+r1R0sjva7PZRDabRbPZHAN8rBGjtI/3MkEgTYs4VrVGkG6Q/A40m00BxmTH5ubmMBwOUa1WxSmXjCY/2+l0RCbebDYBQJQJBIzAEavX6/UQCARQr9fRbDbhdruljowAmvsGMMZUAkfSVz4r2LaF6ge246DZCOedDcop/abBiXrN2KTb4/GIpJKmUGwmzjo4r9eLSqUCh8OBQCAgi3GUkj6J+NIBOIuBs8IKK6yw4lFx4sQJbGxsoN1uQ9d1nD17Vmoput2uSGOKxaLIc3K5HBwOB2KxGPx+P0qlElqtFjqdDgKBAHq9HsrlMnw+H/x+P5LJJLLZLEajERYWFjA7O4t79+7hL/7iL+BwOPC3/tbfEovrzc1NWfm+dOkSQqEQ8vk8isUiZmdn0Wq1kMvlJIGh1ff09DT29/fx/vvvY21tDc899xyazSYGgwGKxSIWFxdRqVQk4eXqtq7rwgYAGLPlZqgNsdVaKzpTcn9Mvnq9Hj777DP0ej1861vfwssvv4zRaITd3V20220Biyo7oR6TSRrjOIZsknRSBRcqkFNBnPGYx0kmJ4WaCBpbHxwH8Izv/TzHfBxAeNxYzfYzib07jgk87j0zMKm+N2ms7XYbf/Znf4aDgwP8w3/4D/HCCy/g5s2buH37Nm7evCmA55lnnsHW1pbUgf7Gb/wGXnzxRWxvb2NjYwOFQkHkjHNzc1Lrtbu7i08++QSFQkGs4VUwz6bNvJ/5j/viQoPKcqkSXWNNKZk71pjREp+v83cyPwQntPJXG5ar310eo9lsyr7pHkmGnSwZe7nxPFjTBUAAVafTQTKZxMHBAYrFIiKRCKampmS8bD8wGAxQq9VEdunxeERCqus6fD4fZmZmUK/XxUSpVCpJI+x6vY52uy0AmbLJ0WiEcDg8JpekwQhZMwDiZKkaMwWDQXGI5PXs9XrCuJKtLRaLMh+cS5fLhUQiIVJJPp+oamD7Bl4fGlb5fD5hR4PBoIzvScSXDsBZNXBWWGGFFVY8Kr744gsMBgM4HA7MzMwgk8lIk+VkMik1G0yI9vf3EQqFkEqlcHBwgHq9Lrb+CwsLyOVysm0oFILf78f6+jp0Xcfq6ioWFhbw13/917hy5Qqmp6dx7tw5WSFmQX80GsW5c+fg8/mwvb2NWq2G1dVVdLtd9Ho9JJNJASqUFu3v76Ner+O1117D/Pw8bt26BQAi32StidfrFTdJulEysWMST8mh0YTByCjoui4SKiavyWQSDocDvV4Pd+7cgcPhwKuvvopvf/vbeO+993Dz5k0AkATKKJtkYmpmbmIEYgyVweD4zVoQGH/y2EZQZzae4xirSazdJEB0nDTxceSVk7Y9Dljx/UlSyOM+Zwx1Xiexfo8zhuPO99q1a7h//z6Wlpbwne98B//oH/0j/PjHP0Y6nYau67h8+TIcDocAMbYfeP7553Hjxg1h7ChZPjw8xP7+PqrVqiTl6hhtNpuY/bBelEG2id8VdcxqzaYKrtT7z3ivEQyq9zRNM7h/9kSjaYlqCsL9EzQZTYJarZY0yFbr9si8qc27CdaKxaIwaPF4HMFgUNhKGpR0u10BOPzeJxIJYQr5HKlUKgK+arWauHjW63UAkNo7yjqDwaDU4GnakQFKPp/HzMyMyDcJgt1ut/SWC4fDYi5C8xIAwgoSBAMQtQDrIjn+6elpAWfNZlMYWJvtqM0AQabX6xWnS9a/sQ6a9YJPKr50AO6IgbNcKK2wwgorrJgcg8EAq6ursNvt2NvbQ6FQQCwWg8/nw+bmJgKBgBTnt1otTE1NYX5+XoCez+dDKpVCJBLB9vY2+v0+Tp8+Lb2N7ty5g2AwiLNnz8Jms+EP//APsb29jeeee07ATr/fR6VSwXA4RDwex9LSEprNJn7605/C6XRibW1NannC4bAwZuFwGPV6HcViEbFYDKdPn4amafjhD3+IXq+HtbU1kX5qmibn6XA4xGFTTTwJ2piUqyyVangCjCfirVZrDPzFYjHp0XTr1i0MBgP8zu/8Dt544w3YbLYxOacZ2wZAJGEqaDSTF/J1JmpmSbMRFBKgqsk4WRQ1zICNCjqMgFZ97zg55eOAwkfFcdsbWcRJIFY9p583jmMT1TEYfzfGcZLQRqOBmzdv4tatW0ilUnjqqaewvLyMdruNzz//HA6HA88//zyKxSI8Hg9sNhs++eQTNJtNHBwcIJPJyKIHa+eM14pAIhAICANEYKUyb6ockJ9XFwpUWa6u62MsnXr/qcwbJZqU7bH2azQaoVgsIp/PI5fLiXTS7XYLAFRBIj9LCSRBEK37OV673S7unpFIBMARg5fL5aTuFoDU+xLo0BFT046kql6vV2rmCKBZL0gbfzJ+BESZTEbmgzV5bA/gcrkEPLKWlj3cKE/k95afBR6AXjpIttttkTrScMXlcgnDyGvAe2B2dlbMbXq9njQar9VqiEQioibg+JxOJ6LRqNRpUuJJY5onFV9KAGf1gbPCCiussOK4OHPmDNrtNjY3N9Hr9TAzMyM1GV6vF7Ozs6jVaiKZDIfD2NvbQ7PZRCwWkwJ8Nq+emZmR/k7ZbBazs7M4d+4cDg4O8Nd//ddot9t4+eWXRXbExMbn80mLgC+++ALNZhOhUEgSKXXVvlKpIBaLCQO2uLgo7peZTAbxeBwLCwsYjUbC/vFcer0e0um0mBUQ/KimJkxACYJUGaIZo6BpmkhQ+X4qlZIEiHLR119/Hd/4xjfg8/nw+eefS2JlTO7VejizUAGnWhNkZAnNWgeo+zUCMPVvYz2g8fjqe49ioB6nFswMPBqB0XGg8Lh9qdscB9aO28/jgLDjjmOcs+P2w/tN/ZnNZpHJZMakjbTYp9Mhr4Xa00yV1annod43fr8fsVhsrF+YKp9Um9Gr56kuPKigXm3gzc+pMk31PbLV/Ey320WlUkGhUBDwprqpqlJOtScjASaBhM/nkzpeyhz9fj9arRYCgYC4XTabTbHgJ0ALBoNwOBzS9401X7T7Z+NvjocGSYPBQPqlqedHAErwRdCkaZo4PPK60iAqHo8LW8pFJ9Yk67ouzKCmHdW5cTuCKj4zKXfnNSDoW1xcFCMqFbyxho6v+Xw+ZLNZDIdDWTBji4NarYZ4PD5W//ck4ksH4Jx2m1UDZ4UVVlhhxbHR7XZRKBSkFqJSqSCXy4mcand3F06nE8FgEO12G3fu3JF+cWtra6jVaigUCggEAlhaWhLXtHw+j5WVFczNzeHq1atYX19HOBzG888/L+CJfZ6Y/Pn9fty/fx+lUgnRaFRWoSmnYlIWi8UkUaGkh72ynE4nZmdnUSqVcP/+fUQiEUmaYrEYisWitBZgDQdX7QHzBF9NQo2JK4ONhtUEna5wvV4PN2/eRLPZxG/91m/h61//OkKhEK5evYpcLier42aAxQyYqWFkx8ycKNVWAtwnE3Ozfao1TcaE/zgppBHkmG378wCoxwFvxrkwAyrqcSeN2QxcmZ2P2fwbmTYCYHUbs+OpYbTcZxjrGykvpNW72b1jDLN5JQMWDAYRjUbHGCOVgZsErNXgGFXGjtuq7qcEjLz/NE0ThosgjM+OXC6HRqMhUmPjd0/X9bEG1wREAMaeCayJ4zOADpMEMrVaDd1uV4DJ7Owspqen0el00G630Wg0pL0AgZTX60W73RbwRqkia8tYz8vxExjT7ZHyRAImsp4AhL3b3d2Fw+HA9PQ0dF2XGjOb7agNCkEf5ZQAEI1G0el0BHCzh5tqDkO3SvahA46eu6oskw6XNCmpVquYnp6WhS72+eR1YB3fk4pfCMBpmrYNoA5gCGCg6/pXNE2LAfifASwD2Abwv9Z1vfyLDfPxw27VwFlhhRVWWPGI2NjYQDweRzwex507d9Dv9xGLxRAKhXB4eAifz4doNIpmsymW/mfOnMH09DTu3r2LdDqNmZkZLC4uYjQaYWdnB4PBAE8//TTcbjd+9KMfYTAY4OTJk7Kizh5vTEKmp6eRyWSwv78PTdNw5swZVCoVaUjLhGw0GklxfavVgt/vh8/nQ7VaRa/Xw9TUlIw7m80iGAzKqnckEkE2mxX5FPsXEUQyCGpo+c9kExg3MAHGpYlMMFut1lhdUDKZFBOC+/fvo9/v4zd/8zdx+fJlhMNhvPPOOzg4OBBrdQAPgTYew4zxYDDJNQMOZHKMLQNUwGd0GTQ7hhHsqPufxMJNes94Hsb9mW3z88RxgNwIes22M4LBSdswMee1A8z79Zn9fdy4HjcexeqZSTnJ/IRCIWGb1Hkwsm9m52wM1U2SQVMSlTGk+yMBGBtdA0fNx/P5PPL5/JhbIsGeyr7pui5giD3Y2HqAdWgEd36/H51OR+q+YrGYfG4wGKBUKiEWi2FhYQHBYBDlchn9fh+9Xg9er3fMFZKsHaWNBNGapo0xcASMbJLt8Xik1q3T6YjDYzgclho7OmBubW3Js21hYQH1eh3lchkOhwOzs7Mol8tSA9jv97GwsIBarYZGo4FyuSzzq8pTgaNnWzKZlPYq7JXH98hMZrNZeL1e5HI5tFotJBIJMU9hawdN0+Dz+VCpVMacM59E/DIYuG/oul5Q/v4fAPxQ1/X/SdO0/+Fnf/+ffwnHeaxwWC6UVlhhhRVWPCII3n74wx+iUCjgxRdfRCqVwv3790UqU6/XUSqV4PP5cObMGQyHQ7z//vsoFAo4c+YMFhYWkM/ncXh4iJmZGZw+fRr5fB5Xr17F8vIyZmdnkcvlEAgEUK1WEQwGkclk0O/3MT8/j3K5jEwmg6WlJfj9fvT7fTES0DRNeic5nU6plSOzxpqTRCIBAEin0wL++BmXy4WtrS3ouo7p6WkBj6oEjYkiEzKV/VKlW0ZAQrZFBSuspWGClUqlhDHc3d3Fn/7pn+Jb3/oWzp07h1AohB//+MfY2NiQ1gyqKYPKwBjDaGqiJrkqY6EybyrrpsrZ1J/q/tTzMrJsRsD1uEyZGo8CLY8CQmahvq+CURXAmO3jOKB23HEetb0ZO/mofZnNs9k+HyfUfdOFkU26ybyZjV+9D7lIoQI8Wuqb3Q+8D2mIQvaLf6sNsXVdl75r6XQajUZD6rn4WY6TTA+NQHq9noAmn88Hp9Mp4yLzVK1WhbliPVkmkxH3RV3XMTs7i8XFRWxtbaFQKEDTNAQCAfn+u91uxGIxdLtdaZ4NQJwpgSMmiwtNNDWx2+0Ih8PSiy2Xy0m7EUoUaYzS6/VQLBYBHLUimJqagtvtht/vx/7+PqLRKMrlIx6IfeUikQja7TY6nY7IL9leYjAYIBKJwOPxoFaryZgrlQq8Xq9cY9YQ6rou4yPwZN87qh0ajQZsNptIPHVdl3l5UvGrkFB+B8CrP/v9/wvgx/g1ArgjBs4yMbHCCiussGJyeL1e/OAHP0Cr1cJLL72ESCSCW7duwe12Ix6PI51Ow+PxYHZ2FjMzMyiVSigWixiNRrh06RKCwSCy2SxarRZOnjyJUCiE7e1t7O7u4ty5c5I8BAIBSd52dnbgcrmQTCaRz+eRzWaxuroqRgTxeFykmHa7HbOzs9B1HZubm7Db7UilUrL6TetzynhKpRJqtZo0Eq/X6/jLv/xL2O12XLx4Ee12Gz6fbyypolkAZVhk3QiA6GJnBiSMkj0GmThGKpWC3++XJO0v//Iv0Ww28ZWvfAW/9Vu/hXfeeQd3794VZ0w1wQUwNg4jqJvEfgHjLRDMQJymaQJQB4PBQ7V3qnTzUUDtF2HOjPP3OOzdpH2onzEadxjljCqLahzzJMBlHKeRpTKeg9m+HsXI/Txs3HHgUL0PKP/z+XwirVPlmQQcKnM2aUwqw2NsEE/QRbt+SqbJkhmZ5E6ng0wmg3Q6LbJm4z3O+58mH5RWqrVnfCaorQLoujg9PS2MXK1WQy6XQ61WQ7FYxNzcHILBIHK5nMiwHQ4HfD4fOp2OyAbJyvt8vrG6PRqYsE5NdYT0+/0Ajgxp2IuN9Xp8NrJVwHA4lGdTIBDAcDjE+vo6pqenMTMzg3w+D6fTiXA4LPJQTdNQLBalhUKhUBA3yWQyiWAwiFKpBJfLJQ68Xq8Xuq7L+fHaZDIZuFwueZaqjcgJZjVNk7FSEUGG70nFLwrgdAA/0DRNB/D/1nX93wJI6bqeBgBd19Oapk2ZfVDTtH8M4B8DwOLi4i84jAfhsGvo9i0AZ4UVVlhhxeT4T//pP0HTNFy4cAG1Wg37+/tIJBIYDofY3t5GNBrFiRMn4PP5UC6XpSj+mWeeQavVQrlchs1mw8mTJ8XWfDAY4OzZs2O1FD6fD8ViEeVyGaurq+j1etjd3cVgMMDFixdRrVZRLBaRSqVgs9lQLpcRCASkF9P169fhcrmwuLgoK8EqIOn3+8hms6hWqwiFQrJCXS6XceHCBdlXuVxGr9fDaDQSk4JarSZyKrvdLqv4wAMWjM6XKnMFmFvlM2hsQoYvlUohHA6j0+mgWCzir/7qr1CpVPDiiy/i29/+NmZnZ/HRRx+hUCig2+2OuWIamQ61pk1Nws36x6lSSVVOyW3UNgQq68JjqIDPCGTV4xjnQT3+o4CYEYA8jvxwEog0e3+S/NPseGb7Og60GmsOHwV2j2PWJo3FuP0k0GacJ8rbmMDTrEKtVyMQUR0iCfwngTgjG6eGy+US+TKBBoEh7ynWY7HNQTqdRqvVEvZaPRcex9gHjiCJckU6MBKAEWgkEglEo1EAgMfjEeaoUqkgkUiICUg+n5fWJGzB0O/3kUgk4HK5RIXAsRHAsI9bMBhEpVIZY8MpFe33+2P3Cs1L+GwhOAwGg2MSz3a7jVarhWw2K6zd3t4ewuHwmNyT4MxmO2oHEY/H4XQ6kU6npZ642WyKQRVlpWQg6fJLwEf3Tvaa42dpfNJutxGJREROOj09bXrP/jriFwVwL+m6fvgzkPaWpml3HveDPwN7/xYAvvKVr/zSNI92mw2DkfmqkBVWWGGFFVYAR4287XY7Go0Gms2mODUOBgOcPn0asVgMwFFvoUKhgIWFBczNzSGTyWB7exvz8/NYWFiArutizR+JRNBqtaTvWrfbxRdffAG/34/FxUXs7+/jk08+wcrKirQXcLlcSKVSImGcmpqC1+tFoVDA1taWrKBrmib1LWwmCxw1Gm+324jFYtLjbTQaIRqNSpNcl8uFQCAgTYHJ0tntdml8rNqlDwYDMYwAHiSSaiI2CaQw0WXPLeCoziQWi+HkyZMoFovIZDJ4//33USwW8frrr+Py5cvw+Xz4+OOPsb+/L7UmPL4Z08PjqrVsqoPko7Y3vgY8YN04DzxfdZ8qQ2JWZ8XfJ73GeJS00Djux2HkjmMkJ71vHIvxfIwy0l/k+I8bZiDTDPwZX1cli06nU2pJyUCpoMvoCqm6Tj7O+NXXeTy/3w9dPzLeCIVCeOqpp9Dv9/HZZ5/JeLvdrjxTWGtFYwzj/nn/qeY7rDtkHZfaRoPHIOM/Go3GarQoqVRbArTbbXS7Xfh8PpE4ErSEQiEAQCwWEwlhOBwWUMl+aQCkpo+LId1uF263W0AnZd10edR1HaVSSZjEUCg0Blzj8bgAKpvNhkwmI8YspVJJFp1ocuJ0OqUFwMHBAUKhEEKhEJrNpgBVp9MpAJFy8uFwCL/fLwtgwWAQ6XQadrsd3W5X+tSxhQCl6JST/jxM+S87fiEAp+v64c9+5jRN+2MAXwWQ1TRt5mfs2wyA3C9hnI8dVg2cFVZYYYUVjwomF6FQCOFwWGrVVldXpdCe/1ZXV5FIJHDr1i3s7+/jzJkzWFlZwXA4RD6fh67rImfsdDpoNBooFAo4ODjA/Pw8PB4P3nvvPRSLRXzta19DKpUS58apqSm0Wi2RQrVaLRQKBbRaLaytrWFjYwO9Xg/PPPOMrB5vbW0hEonI6nY4HBY5D13mAMiK9sbGBur1ujTxJau4vb2NZrM51peKFv1mfdjMZIVm4I3vd7td6ct07949rK6u4qWXXsKbb76JnZ0dXL9+HcViEa+88gouXryIubk5/OQnP8Hdu3fFSly1UldZCLVWjcc0gjOGEeSp+1NBHJNPtVecOifqfs3Of1L8TYHN44K8nyfMQKcZyDNKAx+1T+O2k8Dtce9NAm6Tjq+CMDJdKngjgFMNQ1TWjYCDzJh6DscBNwI+yhv5e61Wg8121OT693//9xGPx/Gnf/qnAr663a70X8vn88LoTJoH1aGTzBvHTOAUDofldzo81ut1xONxYZ96vZ64zobDYZGStlotqT2jvLBer2NxcRGdTgeHh4dj7pFut1ueL/1+X6TflUpFDErYADsYDIoagK0H+MwbDAZS08uFL0oYdf2ojjCfz0PTHhiG8Lrl83kBXaVSSZ7jgUAAdrsd+XwePp9PapjVRuk8hs/nw+HhIcLhMBYWFpDJZAT8VavVMYktQfJgMMDU1BRcLpfUy7GH6JOKvzGA0zTND8Cm63r9Z7+/AeD/DuBPAfwBgP/pZz//5Jcx0McNy4XSCiussMKKR4XNZsPMzAzsdjsqlQqCwaD0CKK9dr/fx/LyMhwOB65evYpqtYrnnnsOU1NTKBQKwnbZbDbplaRpmlhtnzp1CgBw584d2Gw2fPOb34SmaahWq4hEIgiFQmLXrWka0uk0AoEAPB4PQqEQPB4P5ufn4XK5EIvFkM1m8cUXX2BhYUEYOAI5ypmYaAWDQQFAwBFgnZ+fFwklV5npNseVeKMDJGDe+8oIZCYl34PBALVaDbquS02ex+OR5PLw8BDf//730Wg08Pzzz+Ob3/wmotEorl69imKxKMmTaqyiyh+NtV7GUJNhhtF9kgm7+jpfY5KpJtKPkjWa/a6CETM2blKYSRKPY8PU8TyO3HDSMY8Dbcb3jdua/W3Glk36/XFZDS46qHVslE2SdVMXJ4xSSZVxVvenjoF1bur1U1k8gip+PyhnrNfruH79OjY3N2GzHfU/azQaSKfTKJVKwrwZQSp/V/+p/e4I1iiR5P1LmaHX60UsFsPi4qLU2ZK5Zz2q0+lEJpORfmZkpzRNE9l4rVYb++6yJQEXh8imkRWkuQrt/NkChdvScMTr9aLRaAj7R8MmfoYmIbw+ZOHIgnGeWq2W1LKx3i6bzcLpdCIQCIjzJvvEAUcsYTgcRrlcFhawVquJtLbVaskc85nDNg88P0rpXS6XLDI9qfhFGLgUgD/+2WQ6AHxX1/W/0jTtKoA/1DTtHwHYBfB7v/gwHz+OGDirBs4KK6ywworJMTc3B7fbjUKhgFgshvn5eQwGAyne93g8WF1dRbvdxu3bt+H1enH+/Hk4HA7s7e2NSRlpM12v11Gr1RCNRpFIJFAsFpHP55FKpUSiqes6QqEQbDYbCoUCQqGQgBTKJfP5PHq9npgIBAIBXLlyBfv7+5idnZWkIR6PiyRIrbsDjhIcTdPgdDqFiWOfpu3tbczMzCAUCglLxuSIq/4ul0vqWMxAmhFMkMUyk9yx3m5rawt/+Id/KE6bBJnlchlvvvkmDg4O8Oqrr+KVV15BKpXC+++/j93dXZE6qUkyx6CakwAPtyIwG7vKbKisncrM8TMq8FNZGuM8GP82vm4G9I57bxIoepSc8lHvHQd2zY5lxpwZAZlxf2rdohH8Go9jxnYZXzc7lgqmCN4I2tRaN9WchtedbAzZVhUYqcyrGqopDsPtdgtYcLvd4r56eHiI7373u3C73dJcvFar4fDwEMViEa1Wa0xiPOl4HA/3TcaL/ctYP2az2eDz+UTimEgkUCqVpKccDZG4TxqLcDGJMuuVlRXE43Hs7u6iXq+LqyVBFtk9Pr9KpRKSySTa7bY4YrbbbVmcYd84tk3hXBEIUoKo6zr6/b64TdKYZG9vT+qIy+UyNE2D2+2WPm+qCUqj0ZC2KTSPUmXf3W5XWhPYbDakUikUi0XYbDZMTU0JI8rm571eD06nc+y5WK1W0el0EAgExlrNPKn4GwM4Xdc3AVw0eb0I4Dd/kUH9ImExcFZYYYUVVjwqRqMRqtUqkskkEokECoWCJA5qc+9CoYDZ2Vlxbmw2mwgGgwiFQqjX6yJ/LBQKsNlsiEQicLvdqFaraDabWF5eFkc6l8slrm60uu52u1LDRpe1QqGAeDwu8qhbt26h1WphaWkJbrdbwCcZLBbzz8zMIJ1OY2pqShIVlZVjQre0tCTObel0GgcHB7KSzvYCqiMkMLkOTn1/EgvF+aYpQavVQiQSQTQaRSwWg6Zp6Ha7uHbtGkqlEl577TWcO3cO09PT+OlPf4ovvvhC6veYtKpAhCvmZuMwhuocaAbIjHJLNaGfJDfk78eBq0fJDI2vTwozpvNRYbbNo8Y5CeCZyRqNc6OCXmM9odreQd3OyDAaQbQRfBIkkmUjcCNo43sM1bBGZXMnnY/Z2NTzpGEJ5XlOp3NsgYES4uFwiHq9jr29PVQqFZE0Gu8H9dzUOaP8MhAIjNW+EQD2+31hz9geYGtrC5qmiW1+LBaDrutivDEYDODz+RAMBuV5duLECXi9Xni9Xly8eBG3bt3C7u7uWG2p0+mU2t5EIiEtSQjwKIEcDAYIBoNwu92iDiCLx4UYTdNEtcB+cWTs7Ha7sIPhcBilUgl+v1960bFlgd1uFxmqx+NBJBJBtVqV50mv10M0GkW/30cymRxz1qxWq9JrkwtiHIumacLqcdz9fl96ebKGzmazSVuCJxG/ijYCTzSsGjgrrLDCCiseFYPBAPPz88KE2Ww2BAIBkRQVCkftTaPRKLxer6wMMwmhexyTOzbm5mq70+nEiRMnMBwOpQcc7baBo1q1RqMhQM7n8yGTySCfz2NmZgbRaBStVgvVahW1Wk1cKqenpxEIBHBwcCCr+dPT04hEIkin09jc3MRgMJDEjXVArIGhYxxlmul0GrFYTFbcCSgZZmyKyroBD1v3GxNjNfkmm0bTlk6nI9KudruNzc1N5PN5vPDCC/jqV7+K3/3d38WpU6fw3nvvYWtrS8ZFMKDWtamMhtGYRP2cem7HtSmgtMt4vupccDvj70Ygqf5tBpKM+zDGoySTf5NQxzkJ+B7HtBlBm7oPVY6ofkcIBsxcQ/k59TjG8yPbpta6qQYlKpOmfobbMEknuzRJGnwccKQEuNPpAIDU2Q0GA7hcLpEDsln2wcEByuWy9ClTz0udc46T7S14/5Ft0zRNWgYY54v90yqVChqNhrB2NPOoVqsAjpqGu91ueL1eYaZcLhdmZmbw4x//GM8++yyeffZZqfHlmPmsI1hqtVqIRqMCljgXZAi73S5yuSMLDD6DWq2WgDQCI5qp0CHS6XQin8/D4XBgenoajUYD4XAY/X4f9XodHo9HJKFkHHn/VKtVuFwuUVIQhE1NTaFWq6FeryMcDotsnUwlWwywXo7XklLPaDQq7ByvLetk/3uVUP43GXabDYOhBeCssMIKK6yYHIuLi3A4HMjlcsKczc/PY3t7G7quS2LQ7XbHbOaZ6JPRGg6HiEajWF1dFfBGl8der4darSYsU6PREKc3urgxcaDkiBJJgiwygFxdHw6H2NjYQDabRafTwdzcnDQBz2azmJmZQSwWg8/ng8/nE6YwHo8jEAigVqthaWkJkUgEH374oSRRAGQFXU1KmCCS+QImS76YmJsxGmqwdoYSNq7os7dSq9XCu+++i62tLXz729/GM888g2QyiZ/85Ce4ceOGGCCo1v7qMVSgYEzS1cTZKLOcFNyXEcSpwE79/TiZJONRx3wUoDPu57j9m8kgjceYNAbj3+pnjX/zJ8GUKnPkcYwgTp2/Sfvj5whwWHdGQw8ez8xlkmwcHQhZw8VQgb+RQTQuCGiahnA4DLfbLYYlZMtUu/zRaIR2uy3grdFoCBA67lqSbVNZRBqIEKgC466sdGYMh8O4f/++jKfdbuPEiRMYDAZot9uoVqviqBiPx9Hr9ZDP5zE7O4tGo4F3330Xm5ub2NvbQ61WwyuvvAIA2NzcFHdeNrWmZDGRSMg1IQjj3zs7O+KC2+/3US6XRWoaDAbFrt/hcEgPOko67Xa7LDQFg0HUajVhzrjo5fF4REbJ+5jqCUooKalst9vI5/OYmpoScLewsCBNwMPhsLCZBGkEmKy9433H9gJUK1gA7pcYFgNnhRVWWGHFo6JaraLVaiEYDMLn82Fqagr37t2Dz+cTkxDWO5DhodX1YDDA1tYWSqUSFhcXMTMzg0qlgkwmg0QigUQigX6/j1qthqmpKXQ6HdRqNczOzoqkqFqtPmQMAECSII/Hg/v370vdR61WAwA0m02xA19bW5Nks91uI5FIiJsc7cNbrZasRA+HQ6RSKVQqFbz55ptwOBxSw1EoFMTJkoYJTEiZMKo1REagwqTHmPxOCjKTnI9er4dYLCasYbfbxcbGBv7jf/yPeOGFF/Dyyy/j937v93D69Gl88MEH2NraEkmYKvMCxlk2laUDHmZ7jHV1xjHynxHsTWLkHkdCOel9I9PJ8R4XP8/7RsbN+L4ZK2S2vdnv6vbqPyMTB0yuUzQ7DkGSWutGdopgQd1WBXB8z+VyiYyZoRqbqMc1NnTnPl0uF06dOgW73Y719XWpl6TJBZlnmndks1mUSiU0Gg2pUTWbW/5UwRvBJt8j6KnX6wIYaNTC5trb29viRjscDjE/Pw+Hw4F2u41KpSJSy3g8LuYgZNb6/T4KhYL0R9vZ2UE2m0Umk0G73ZbFJgI5XddlkQgAAoEACoWC9KLLZDLyOpn2bDaLSCSChYUFWUjS9aNm5vzul0ol2O12cZjkOTcaDZGwsxbQ5XIBgDznCOYIGtlKha7Ac3Nz0m9veXlZHISdTifcbre0SaAqgLJcnnMoFEImkxGgyPq+X4QB/0XjSwfg7HarBs4KK6ywworjg8nA1NQUHA4Hdnd3MRqNsLi4KFIrNuJlQl0qlbC7u4tyuYzRaIQTJ04gGo0im82K/TZlPx6PB+fOnQNwZH0dj8fFda7X6yESiUjS1+/3hYliEf3Ozg7q9Trm5+fh8/kEtAHA6uoqUqkU9vf3xSJc13XE43FplAtA6lDY24myKTbYdTqdOHPmDMrlMtbX10VmxeSIEisVmDGhNza55u/qNvzdbBvukwnicDhEr9dDp9MZazJcqVTw1ltv4eDgAN/61rdw/vx5LC8v4+OPP8ZHH32Ew8PDsZ51ahB4Aw83+zaGEcwREKrMI8MIxlTAZZSOmrGV6jyofxvBktlcqvtXx2LcTmUmzPZrNhbjvo3vT2LJ+DkVrHFOjbVkbPJMYG00vjFur7JcBHIAHmKp1DGrcknawKvgDRh3IjWCN+P5ejweLCwsoN1u4+DgQLbludABVtd1lMtl5PN5VKtVAW+TrpF6HOP1stvtYww9zTT40+PxYGpqCgDEOImLKKlUCh6PB8ViEaVSSXqv0QHS6MpYrVZRqVRkMWdqagp7e3vChqkMFBuUsxXAzMwMCoWCqBJowOT3+zEcDqXub3p6GlNTU6IqcDgc0oCbxiOsK8zn8+Lk2Wq1EAqFxP2RRi5mCyY0NalWq5idncVwOEShUMDMzIwoIGZnZ+Hz+bC3twev1ysSep/Ph0ajMXZPs8YumUxKewEVNPP58KTiSwfgnJYLpRVWWGGFFY+I0WiE5eVldDodlEolaJqG2dlZ7O7uimQJOLKm7vf7aLfbqNfrqNfriMViYrdNMHbp0iW4XC5ks1lxW6tWqygUCrh9+7YklCdPnhxLtnq9Hux2u4BCl8uFK1euwOVy4eTJkwgEAmg0GvD7/WNuiTdv3gRwtMrtcrmkHQBw1ETb6/Wi0+mgXq8jGAwiFouJs2W9XsfJkydht9sRj8eRTCYBQPpC0aWu2+2OOfYBD6SURmDwKNCiSueA8RolXdfFzZOsQDQaRTQahd/vR6/Xw82bN7G3t4dLly7h5Zdfxre//W089dRTePfdd/H5558Ly0BgaKw14jGNbQOOuz/U/m9mjJuZBNHITqryQcZxgMo4L0ZApe7PCORUOaDKRBmPNekamYE343iNLKEZy2b8m59Xx2R2nurxAIhkUG1MbSaVNDJw7CtWr9cfAm5GkGZ2rtyOrLvf78fBwYGwvcbr5PP50O/3sb29LawVzUqMYFc9Lu9FLjRw/GTA3W63yD75OYJSmqc0Gg2RHg8GA8RiMXg8HuRyOdnnzMyM9GOkHHxhYQGhUAiFQgFbW1si0Tx79iyCwSByuRwGgwHcbjfi8TgODg6g67pIKCuVCuLxuDTSjkQi2Nvbk4UhMm9016XTZblcHqshc7vdcu9GIhFh3hwOByqVCkKhkIAlj8cjCgW2WSGDDxzVAbbbbcTjcXi9Xuzv78szJJ1OIxKJwGazYWdnB8DRs7NSqYibMJtzezweWeCbnp6WBbJAIAC32y1spNHo6dcdXzoAZ7fZLAbOCiussMKKY2NxcRHFYhE7Ozvyn3y5XBYgYbfbsb29jXa7jWg0CpfLhUAggFQqhWQyKSyUz+fD6uoqer0ePv74YwQCAWSzWWjakSvb559/DqfTiUgkgtOnTyMcDiObzcLn84n1uSpxunnzJgKBABYXF6Vejn3iyJzRTY39oWgmQPMSn8831lCXrm66ftT3KBwOy+oym/DSIIU1aEw+ycaRISM7YNbcmr+rCbkqkzPKGFXGhQkRkyKyhqzd44r/22+/jdu3b+Nb3/oWvvrVr+L3fu/3cPbsWbz33nvY2NiQWiPVVEM9rrHtAEMdJxlBtc7ObMXfDNyZsXPq3Ki/H8d2Gf+eJGOcJLU0A0Tq30bJptlnVJCqAhbj+NVxqdLE44CdelzjvlVmzWY7cvpzOBzCHpkxfKxJWlpags1mE3Z60ryrhjXG43OclNDx+8GFDJWtvXTpEgqFAn7605+Ky6tqVmI238fNIY/Be5Wfpdza5XJJrVehUEA0GoXNZkO9Xkc0GpVaNf5MpVIAjhp+U5odDocRDAbRaDRQLBaF0bt48SJee+01dLtdXL16VVi1ZrMpTGi73Ua5XIbP50O325U6252dHQFk7XZbFg5SqZQ4PbJ1ARtxq8xiKBQSMxFd1wUg0i2Y5+Z0OkW6qQKoYDAojB5bENBsJp1Ow2aziVpiOByKZBM4UmP0+30Bv6yxjUQiAI6eTTabTSSh3W5XVA6Pkkb/KuNLB+AcdqsGzgorrLDCiuPjxo0baDQauHDhAqLRqCSp4XAYxWJRGl0vLy9Lk2s2+qa7G6VVW1tb+PDDD4UtS6VSmJ+fx49//GO43W6pF5mbm8O9e/egaZpYUnPll8YHJ06cQDKZHGsqy/oY1qsMh0NJwrii3u12pT8TDQLi8ThqtRoqlYq0LKDpAevyaOXtdrvFGrxcLsuqPpmoZrMpSaVZGwGVkVFZF26vfob7IVOmAiq6Zar/gsEgEomEsHGHh4f4D//hP+Djjz/G66+/jmeeeQYnT57EjRs3cOXKlTEgpwLJSYYmBAsEbQTnZiYnTEBVtnESeDMex/i3GTumzqeReTvuGI86vlHGZ5QqPiqMDJwRfKqAy8iKGT+jMqEMMl7qNvwME3XVYVL953A4pCdbNptFs9kcG68K5tXxqsdTx6Fpmphq8L7hYgslxZFIBBcuXMAHH3yA69evo9FoiGTSTHJr/K6YjYnNoimd5DY8NmvG6FBLKWO9XkcymUQsFpO2BXSLpJogGAwK+GGN3fb2ttSBPf3002LiVC6X0W63hTUja1mv19Hv98WtsVwuIx6P49SpUyKd5Db9fh+RSESUAJRRsl8bZa1utxuRSAT5fF7Aejqdht/vR6VSgc1mkx6a3W5XDESoBGg0GpiamhKDKIfDIRJNSs8dDofIMAeDgTxfuVA3Go2QSCTgdrtRLBbFwXI4HMrzkc9auvTy9enp6Ud+d35V8aUDcFYfOCussMIKKx4V7XYbly9fRjQaRaVSkdVmFvLTFbHRaKBcLuPUqVNix81V7EAggM3NTayvr2N2dhaVSgUXLlzAiRMncO3aNRSLRZEvPvfcc9JqgE5qrE3pdrvodrs4d+4cgsEgMpmMrIqriRvBGtkyr9cr27KRL5MPyqhYU5bP5+Hz+RAOh2Wlms1ue70eTp48iUajMVYLQxkla2BsNttYTRwTXFVSCTxIWJmoqe8RuBEIGWvHAIgBDGVhTN6i0SgikQicTifa7TauXbuGra0tfPWrX8Wrrx41AD979iw+++wzfPjhh9jY2DhWSsnzYMJN63fjuIw/J4E3M7bMeGxjIm8mrVPDuP2k9yYd9zjW0DjeSftXQY6RreL7ZvVvZgwdwyhFNLJuKnghEJmbm0OxWITX60Wz2RQ2qt1uYzQaIZ/Pm4LFSWyhOn7+o3kFAAEfnKN2u43hcCi1pH/6p3+Kvb09tFot1Ot10/5uxwF0BgEovxNkuwGIZJHsO5m1aDSKfD4vBh2xWAz9fh+VSgWVSkWOEQqFpFUGXWwBYH9/X5QAyWQSJ06cQLPZRKvVQj6fF2A4MzODVCqFzc1NAUutVkukjNlsFvF4XJph8xkUj8cRiUSkR2UkEpGWCKzvs9lswpwRlO3v78PpdKJarWIwGGB2dla+76oSgc+dZDIpygOqG/jcJDglq8a+cDRGIRvPesp0Oi098tjMmwYm8Xhcmn3zmUYjmScVXzoAZ7lQWmGFFVZY8ah45pln4HQ68f777wMA1tbWUC6XoWmaJIQ0FllbW5OWAx6PB4lEAvV6HTdu3BBGbHNzE88++yz8fj++//3vY3NzEydPnsTa2hpmZ2ehaZrUkWiaBq/Xi+FwKInQhQsXoGkaMpkMarUaksmk1HjQiIGJi8/nw3A4xPXr16XfG/srsc6jXC5LInP9+nWcOXNGGu6ORiOpvQuFQlKzl8/nEY1GMT09LWYnlG81m000Gg1hBSlNNNZjqQmy0QCETMJoNJJ6NWPCqxqJcJXc5/PJij3ZBlVW9/bbb+PatWt46aWX8Pzzz+ONN97A5cuXcfXqVXz44YciheWxzGrfjFJP9dzUnypzdJw80uyn2e9mdXVqPA6oMu7LCBzMxmtWR2fGFJrtywwoGqWTKoOmbqs21zaCNuM2Rokkk2fK18j0sJ7KyKjypxmbqQI8AhuCRfZQY20V72UC+1wuh4ODA+lr1mq1HqoLNV4Xs3uADDXdMvmeseWBWgvo9/sxPT0tzCSVAIVCQZghShRjsRharRYCgYDMV6fTwf3798dqxVZWVuByucRyv1gsSs+10WiE7e1tkVfncjnZTzAYhM1mw+HhIdxut7jKzs3NiSSSbVbq9brMAz/LBTNKs5vNprD9gUAAsVhMFpA4V6qKwOfzia0/e1pS6l4sFgEc1cVls1n0ej0kk0nUajVpF1AoFBAIBGC325HNZuFwOMQ0pl6vy2JTIpEQZpeOoi6XC7FYTBw3n0R86QCc/WcAbtKqhxVWWGGFFVZ0u13cvXsX4XAYc3NzIour1+sAHiSH09PT6Ha70sjV4/Egm82i1WrJf/gHBwd46qmn4Pf78aMf/Qherxe//du/Lavf9XodhUJBGB/WknB1+tSpU+h2u9Jglg3GKTGiXTUTuEAggFarhVQqJQ1uA4EAwuEwarUaNO2opuTKlStotVq4dOmS9KKjK16n05F+S3fu3MGdO3eQTCbh8/mQSCSwt7c3VktH5o8GC8YaH/Uf3zcmzSojBzzsoGgGrHh+dLYjkAuFQiJ7arVaKBQK+LM/+zN8+umneOmll/Diiy/i29/+Np577jm8++67uHr1Kg4PD8WG3az9AMfCMDJsj1Pzps6HcX/GmAS41H0Yx2YGsszklfzspPeM+zgOdBiPa5RfGlkzIyBTAZMK4NTXVXMRFYwBD/qe0TCDfxMAGvdpNkaz4IICQRQXbbjAoTqRkhXL5/MolUrSQ0xl3SYxbkamU2UpuTjDBt6UEaqvcRGFhiqtVguNRkOeL2SOyA6SjSd75HK55HufTqfF2MjlcmF6ehp2ux2NRkPam3i9XrjdbumbxmcXLf4LhYK4MQJHbJ7dbofX6xVQqDrAUt6o67oAI54HG2dTUl6r1WC32wVYNRoNOJ1OkZtTWhoMBmVxJxAI4ODgQO6dYrEoMvd2uy2qBC5CpVIplMtlMW6hWUu/30cgEEC73Zb7Ix6PS2sB1gJSQlsqlawauF9mOGxHX4zhSIfDbgE4K6ywwgorHo5CoYDFxUXMz89LnVgwGJTaMK5G1+t1hMNhRCKRsVX5mZkZWYm+fPkyvF4v1tfX8fTTT2Nubk6c6IAjKSL3B0Bkk8lkUhwoc7kcXC4XwuEwut2usFcEGV6vV3oPqawYeyglk0mUSiWx5P7e976HlZUVPPPMM9B1HTdu3MBgMEA8HofP50M8HsdgMEA+n0coFMLZs2dFUlStVrGwsAAA2NraQr1eh8vlGqsBURNvVXJIEKbKJJnQmzUDV1k3NQE2snFqbZzX60Wv10Oz2UQwGEQ4HJZEeG9vD9/73vfw4x//GN/85jdx6dIl/J2/83fwyiuv4MMPP8SVK1ewu7srbCLHTWDJRF7TNEnOJ4E1IxtnBB6Pu4jMczZ+3my7Sfs1AgdjjZkRVD6K+VMZNOPx1dfVNg1cnODfKsvFe2WSYYgK4FSAYxbcVpXqqud7HHjmGMhykfEiC8TFDeBBb8PBYIBSqYRCoYBWqyXfAaN0WJ0bs0UKI/NG0MDvuN1uh8/ng67rAsYGgwESiQR8Pp8wTmxkzeeLsXF9MBgUgyWfz4dOpwOPx4O7d++K8YnL5cLq6ioSiQSAIyOPTCaD4XCImZkZnDlzBt1uF9vb28J49no9kXrSxGQ0GgmwOnXqlNQLs/aOiz+092dzbEoaQ6EQSqUSXC6XyGJ53vyuc8ELOFrQCQaD8ncymcTm5iY8Hg/i8bgYQiUSCZTLZTQaDUSjUYxGI9RqNaRSKdRqNTFIKpVKYhDDGmAA0vDc6XRKjzi3243hcCj9NskePqn40gE4+8++8IORDof9ERtbYYUVVljxv8hYWFiAz+fD1tYWKpUKFhYWUCgUUK1Wsba2hkajgWq1ilgsJgYA9XodDodDpD2NRgOxWAwOhwPFYlEcE5vNJvL5PDqdjkh6yBKxIH5paQnlclma19LshLJJJmd0aVMbATNRC4VCmJ6eRjAYxGg0QrlcxgcffACbzYbnn39eZE806KDN+dzcHBKJhDB8TPpGoxGy2SxmZmbg8/mQzWbHkh82wgUeMCVqAntcLRyTYSa3xmbOBGzHSQNp0MDEiU2LCXADgYDUSxUKBXz3u9/Fe++9h69//et44YUX8Lu/+7u4fPkyrly5gqtXr2Jzc1OAG5k91VCF5zepjsxMlmd83SzMgIYKWozJvhpmf6tsncq8mbGJRvBmPL7xtUlSSxWcEbgZ2TDVMZI1lGbHMjpLTgLBRlZNvQfN5kT9jMoA0jBF3R+/t6qElnVg5XIZ1WpVgBvlv8ZzUefX7H31PFwulyxocHHE7/eLJNTlcokTYjAYRCQSwebmJjRNEzMVNWhc5PV6oWkaVlZWUK1WhfHK5/PY29sTw6ZTp04hkUgIQGk0GsKCnT59GrOzs7hx4wY0TZNa2W63KyAMOFqYIrAJh8MYDocIBoPCVHEhimCToJROv263WxauBoMB7HY7EomEPP98Ph88Ho+oHUajEfx+v1zP6elpZDIZYR15/WKxmJwPnwetVgszMzNyDtFoVN7n80/tFxgIBMQERZVw6vpRv81msylGN08qvnQAjgycZWRihRVWWGHFpPB4PEj//9t79xjJ0vO87/mquqq67veu6nv3zOxwd3a55IqLtaQFRUqQJUaWwihIDBKwIiMXWYkFWE4AJxICREkQQHBsxzZgOKFtAZTJWBEgEZZkwRJvlkiKIpe7s7uzt5np2e6Zvnd1Vdf9XnXyR/Xz7tdnq3r23j297w8YdF1OnfrqnKoz3/O97/u8u7vyn/n6+jpSqRSefPJJVKtVHB4eIpFIIJlMSr0EI1+MzFy5ckXqYJheyQksbbJ9Ph+GwyHK5TKCwSCmp6exurqKbreLYrEoE72FhQWp6apWqwAgKUoUOZyMURTSWXJjY0PcFz/96U/j0UcfPRHx6na7yOVyWFxcRL1ex3PPPYfr16/jU5/6lET2+v2+TFRjsRiy2axMLpmmyEmWHVHj5Ns2C3FP+t3plHa/MncEa5JYsu+z5QBX+1utFoLBoEQ1Y7GYTLq2trbwpS99CV/72tfw4z/+43jiiSfwcz/3c/jUpz6F69ev4/vf/z5u3bolbqAcr90Hzp0ix3GME2yTJnRuAeR+3BZDvG2fe7f4Oi2CNi6ti9Fct7Bwn4dx588tluw0RY6XAs1+zt6nXddmv88kU5RxIoy3bXt9+zV2uiijem6RyV6JFDy22ynPOR1faQjS6XROtO5wj9U+jqelwtrHilE2pnAy7ZDbMRKVTqeRyWSwvr4u9VmM2vOYMnLMa0Mmk5HvcqVSQbfblZRoYwx+5Ed+RIRgsViUHneLi4uYnZ1FoVAQocprHQUtr3NcjOL7M0oWi8WQTCalpUIwGESxWEQoFJL+l61WSwQzMFqk4tjZuoEtABqNhlzDstmsZEDkcjns7e2h3W4jkUigWCyKMRNTrpnuTUfNTqeD7e1tpNNpyWBwHEfGwobsPO6MEvI8eTweua6Xy2X4/X4RlGfBhRNwXqZQDlTAKYqiKOO5d++erKbu7+9jaWkJly5dwt27d3Hz5k2xt37sscfw/PPPYzAYiANbLBZDMBhEqVSSFMtkMikNbFutlhTcd7tdlMtlOI4jdv3VahXr6+tiY82JFVMiWV/COjz2cGJDX9btdTodfOUrX8E3v/lNrK6u4vOf/zwymYykVLVaLXF4S6VS0tz36tWrsi+mb3U6Hfh8PjzyyCNoNBqSAspVb7tpr90agJ+R2AJhnKhwRyjG1ZaNm5zb21FIMBLXarUketHv97G6uorHH38cP/3TP41vfOMb+Na3voXt7W188YtfxNe//nU89dRT+NEf/VH8xE/8BJ566im89NJL+M53voPvfve72N/fHzsOOxI3LoLljoS5n3dHr+zjYdeQ2aKIn9V9bE+Lyo0TnPcTSuPE6LjoIMdjP2abcDC10Y6ocR/jGmjboss9PvvzM73QFoJu4e8+RrZY421GnfnPbVxDg5RyuSwuqFwkmNSweVxaqft5Chx7QQN4IyrJqLtt8gOMDDhisRi2trbEUITXlUgkIgZIXNAJBoPI5XKoVCoIhUJotVrY3t6WtiDRaBQPP/wwHn/8cdy5cwfFYhGVSgX7+/uYm5tDNptFq9WSxSqmJvPYUPSVy+UTdWNTU1M4OjpCMBjE4uIiFhYWsLu7i+npaUk/pNsvI3rlcln2bZ8vHgPum2mWiURCFpHm5uZwdHQEj8eDUCiEw8NDuU6xns7+7sTjcYTDYen5GY/HcXBwgKmpKTFEqVQqaLfbmJmZkSggTVg4lmAwiFgshqOjI/nOuCOhHyQXTsCx7q0/phhaURRFUYBRhMxxRo2tL1++jIWFBdy4cQO3bt1CMBjED//wD2N5eRlra2sYDDvrVC4AAEdDSURBVAbI5/Po9/uYnZ1Ft9vFc889h2w2i3w+j1gsBmDUmqBQKMiElmKNK8uM8hweHspEmIYEbNJLd0VOeCORiKQssUYumUzixRdfxHe+8x1UKhV89rOfxcMPPywRO9ax2XUwjFp5vV7MzMwAGE0gWVMXCoVElDENa2FhAfv7++j3+0gmk2i32ygWi5LmVavVpMaN8HPZ6ZC8zQmVO7pE7idQ3NEO7oNGBXThY4+sl156CVeuXMHa2pqkk21vb+MrX/kKvvrVr+JjH/sYnn76aTz66KN4/PHHkcvl8OUvf1mMFE4TRuPG5749zkjDLYzs6JBdQzbu87ojU5PG4H5s3HOTsKNF49IAxxmS2NG1cVFGd4rkpGNib89x0/yGk31bdI2rGaSxEM+fz+eTiAoNOezP0u/3pTEz22h0Oh2pb7XdUt0LE27x6z6O3MZOH+X4eU1gXZXP5xNTDWDUeDuVSsn1BAB8Pp8Yf9gmJcFgEIeHh/jYxz6GRx55BC+99BLW1tZQq9WkTpSRsbm5OSwuLqJcLmNzcxP7+/vIZDJIp9PY2NgQgxHbIp9phX6/X1IKKWq4aMUshLt372JlZQWXLl3CvXv3EAqFEI1GUalUUKlUkE6npZbOcRyJhDKVcWpqSgxMuHjFdgSDwQDz8/Mi5Hw+n6Sgx+NxiThyXLwOMB18enpaaoUdx0E4HEYymUS9Xkc8Hkc8Hkcul4PX68Xh4aEYyfB3SrdfRjVTqRSOjo7G/Yw+EC6cgPNaJiaKoiiKMo5SqYR+v4/l5WVks1k8++yzeOWVV7CysoKVlRVJLaKd/2AwwOrqKu7evYsbN25gbm5O7LdbrRY2NzcBQFZpK5UKyuUystksGo0GSqWSmH+wdoJF+lz1X1paEnMFrkQDkO1Zi/L9738fGxsb0psul8uJGAMgk1Cmf1arVanZazQa+MhHPiI1KnwvpoYxAsjx0ekSgPSDKxQKMnFhyhMnX47jSGrl1NSURPqMeaMBtl3PZ+MWKJOEx7iUQbp90h2wXC7j2WefRTKZlN5e0WgUoVBIJupf//rX8a1vfQuXL1/Gk08+ieXlZTE7KRaLMl47fdAe1zhBdZrIGheJcws4t1gCcEL0uvfH8VAcu4/dOGfPt8I4MTYu+manKtqv5ZjdKZXjjgv35Y4E2vt2u4W6vxusI6WwZHsMj8eDer2OjY0N2Q6AtAipVqvSF4yCza6vPE0su41i+JxbvNqGPvz900iFER42qGbPtmw2i1qtJgYr/C2Vy2URVLOzs2Low9TumZkZ9Ho9HBwcoFaryfu1223pA7mzs4Pd3V3cunVL0gm3t7dFNLK/HgARSv1+H5VKRdII6QrL3/fMzAyGwyHu3bsHYwyuXLlyQtz0ej0sLy+j1WqJY2an00EqlToRRfX7/dJ/zefzIRKJoNfrybbNZlNSptnLjceOaZS2KA6FQiiVSvB4Rg3BeV2meOMCVr/fRz6fRyKRwMsvvyz1ffy+xONxOI6DnZ0daXPAz3BWXDgBpzVwiqIoyv3gyqwxBt/+9rdRKBRw6dIlTE9PY319HXNzc8hkMtJTKZFI4Hvf+x7W19exvLyMy5cvY2pqCrVaTVKcQqEQwuEwCoUC1tbWxCiADWwdx5GC/VarJW5qbHSbSCQAQOot7NQ0plDt7e3B5/Phox/9qKT/eDweMQ4gqVRKLL+5z1gshrm5Ofj9ftTrddk3XeKYMsk0zXw+j5s3b2J+fh6FQgF+vx+lUgmVSkVSnlgnRzMQRvk4KaKg4X7fiUAb99y4KAjfs1arSW0iU7uCwaBM6NjonFG7F154AS+++CLC4TAef/xxPPXUU9jb28O9e/dweHgoE2YAbxISNm7xMSnCZAuTcYYa7rRCt1nMuPe1xZIdxXw3As5OXbQft8WnW9DxfSe1C+B+3Y8Tvh/7stnClP/syByjc7FYTCb8bH1RKBRORLy433q9jlqtJlFZ1rbZtXDj0nrHRUTdCwn2d9xOh+WYuRhjjJF2GPwtMQofi8XEJRUYLZzwO80oPaNF1WpV7rfbbdTrddy4cUP6QIZCIfj9fjz88MPw+/24c+cOpqam8OqrryKZTMpCTi6XQyKRkO8k7fVZv1atVqU+EHjDLAWACDpeyxqNBvb397G6uoq1tTW0222kUins7++f6FPH651dC2hHv2mMYoxBJpORPoBc9GJ7AIp0Y95wx+Qx5bhnZ2el2Xs4HMbCwsIJl1s2I799+7akd05PT0vdXywWw61bt0TYxWIxHBwcSJruWXDhBBxdKDUCpyiKokyCheuvv/46hsMhnnjiCZTLZdRqNSwvL4vT29zcHFqtFp577jk4joOnnnoKi4uLGA6HaLfbuHfvnpiV9Ho97Ozs4MUXX8QjjzwiaUTD4RCRSESK8judDmZmZiTaRXOCeDwu6T+cvHGFmXbd/X4fkUgEkUgEfr9fJoa0C3ccR1IkAUi/JGOM9Hfa29uT4n029DbGiEgslUpIJpO4c+cO8vk8MpkMpqenUSgU0Ol0pIVCpVKRySknnIFAAP1+X94TeHPEYlwUzi123FEuYhudTBJJtpCjhToNZJrNJiqVikTjaHpA85hvfOMbMMZgZWUFs7OzuHTpkjiV0hzBNsu4Xw2UOzpnm5SMa2R9WlqhfWxsoXDa+9qi57TI4Lj00HGpsXY0zo7ejhOdk8ZmR9smRauYomcLKW7LNMmpqSnMzMwglUohkUiI6cjBwQHa7bYIPGOMfB94HmnHT7t6puiNE+fjFgvs42ozLoroFpH8x35t0WhUjiMjUHydMaO6s0KhIAsmdLs1ZtTM2+/34/DwELFYDF/60pfkNvd/5coVFAoFiZ4VCgURa/V6HcvLy8hkMnIsPB6PpClSnDHFmiKNUTkuhNjC6+joCOFw+MTi1e7urvReowByHEciWMYYHB0dyfUjmUzKOclkMlJ/m06nJfKVTCYBQER4OByW60ooFDrRqqDf72N/f1/MVObm5rC2tiZmR3Nzc9jY2ECxWJRFLUYts9ksdnZ2UC6XJZLH45NOp9/0ffmguHACTiNwiqIoyv04ODgQ638Wxft8Pmnqzbq3w8NDbG5uYm5uDvPz8yds/g8ODqT+jVb5e3t7uHbtGubn57G+vi41JrFYDIVCQSaJjUZDoi+9Xk9WkplWxVQgTui63a7Y/nPlnNbcdvokm11zv5xMhcNh1Ot1HB0diYkCG4dzFXk4HMLn82FxcRGtVktaLQyHQ8zMzIiDXL/fR7ValTqTSqUiopPpT8DJyaw90bWd/MZF0+znTjPsGPcaNzQ2aTabCAQCImLb7baIumAwKM59jUYDzWYTGxsbUqOTTqexsLCAg4MDEQDsgTVO+Lg/tzsFkcLHjsLZ+7DF3Lj9TBJ549Isybh0P/t1dqTO3WfNfi97rG5jETvqNu493MLGLVrt93Rb9du1bVwMoX19s9nEa6+9hmq1KimI/E7TjIfRNtaQcZGBqZKTcI9t3PNuQc3Pa38eOwWXxiV0n6QIYgqyx+NBq9USV1rHcSTdjzWwoVBIzEna7bZE0lqtFnK5nBiBzM3N4dVXX8WVK1ewuLiItbU1Melot9t4+umnZcGDKYqMVHHhiL8VukdSqNFhstlsIhwOS+QrFAqh3+/j5s2b+PjHP47r16+LaUi320U8HpfvG5txUxwBOJGayWbcNCNh2wNG7EqlkrhdMh2SKew0WqHRidfrRTQaxdLSEjY3N8Xt9+rVq9jf38fW1hYcxxHRCUAif8ViEd1uFwsLC9IXkC1lzoqLJ+C8rIFTExNFURRlPLVaDaurqyJCmGbHycH8/LxEvTKZDBYXF6WR9dHRETqdDmKxmPQoojvc448/Dq/Xi3K5jHq9jpmZGSSTSdRqNYTDYdmO5ga0ro7H45JaSaHBui6mJoZCIbH8tyeddgNcRuE4yeBEd3d3V1zVgsGgpKDxWHi9XrTbbRhjZCwejweJROJEDQ5Tl+bm5nBwcCCGAPxcxhiJFHAyylTKcQ27iS3EJgkNN291e6ZwcuyBQEAmzRTJdgosJ7LVahWtVgt3794FACQSCYRCISQSCakJoiA4TSBxDHbUym7HALzZuZGc5h45zgzGFkl2ithp4s79PrbosLHNSuxx329/41Ik+Z3hueF2jJjx8zEVLpfLIZfLYXp6GqlUCltbW9je3sbdu3dlW46biwzsb1av1+UxCjeeM/f4Ji0YjEujdC8wuKOT9rGwzwvdFhlJ7/V6Uq/Hdhhc5KnVaiImEokEFhYW4PF4UCqVpH6M15vBYIBYLCa/cUbblpeXkc/nRRQ6zsjB9ZOf/CQeffRR3L17V5qU050zGAye6LFIQw9GpegqCYyi/DwOqVQKHo8HR0dHyGQyUjPGdgQUltwXf5dcEKC5VL/fl3pVijL2cAMgGQfASPAxqp/L5cTtkotKTCMPBAKYnZ1FsViU783Vq1fRbrellQIX0bxeL9LpNEKhEO7cuYOjoyMkk0kEg0Fsbm7C4/GcyHQ4Cy6egNMInKIoinIflpeXZUUYeMORkTUoAKR2IxKJSPoQC+IjkYik2zBVa35+Hu12WyZDjBSwaS1TuWZmZk444OVyOWkkG4lEEI1GpYaLqZnhcFhqP+hCx/0FAgFpNM6JbLfbxezsLKrVKra3t9HtdlEqlSSVknV2jKbFYjH4/X7s7e0hl8thbm5OJl2MFLDuhiKTjW+Pjo7EWZMTW07O+Xo7KmfjngDb6X7vlHGpgnYaJ3t6MSrHWkLWGNGFb3Z2VlwtfT6fOHBy3zxXdr89TkrddVT8jnFy7zb4sP/ax8P+637O3YNv3Da2EDutjs6NW4DZ6Z922qdtWDIuWugevzuSZ6eRUsAxapLNZjE3Nyff/d3dXdy5cwevvPKKRHop3vj77Ha7Itrs3m2ThNuk79+4tEn7Ne7749Jq7ePFBRv+9nhdoTBiH7V6vX4iis3jEwgEsLCwgGq1il6vh8XFRfj9fvR6Pezv7yMQCIixRi6XQ6lUwsHBAVZXVzE/P49yuSxR+uFwiKtXryISiWB3d/fEWFnXa5vCVCoVST/mOT84OECn04Hf70e73cZgMJAUcFr6VyoVFItFWRDiAhYdeXu9HqLRqJyfUCgk1zs2HGd7E4pOHt9qtXri90SHYLZ8oPiv1+vSdmF2dha1Wg3r6+toNpu4dOkSBoOBpNFTuDG6mMlkcHh4iGq1ikgkgmQyiUKhgF6vh3Q6jWg0itu3b7+l39P7wYUTcKyB62sfOEVRFGUCnNAFAgGxoWcj7l6vh3q9Lv3PaHhA+2xODFnHEo1GEQgEUCwWpY/S3NwcUqmUpOnw/Vi7QivqRCKBXC4n7xeNRrG7uyuTINaLMGJkG450Oh2x326325J+CUD6RG1ubiIejyMQCGBra0v61fHzttttZLNZiUQyPZPCwOfzodPpoFgsymo8J4j5fB6O44ghC9NC+Xk5GWJKKEWNW6TZ0Sl3WuI7EXLuybUbvnen0xEhxygchdz09DT8fj+i0Sg+8pGP4HOf+xyeeeYZXL9+HXfu3EGv15PoKEU/zxOd7+yaolwuJ1GhRqOBdrt9Iho1KQWTTIqgUSDzNqEBiX3fjhDZUTvbaMMtSOxtbFMO+xi7U0AnpYLan8muB2MPs2QyiXQ6jdnZWUxPT0tN240bN1AqlSRdmBFpACIY+HtiCizNSHgO3AsI7uNrf3475XGcWHNjizT7vp02yXYGfr8fiURC6t7oNMmeaayt4njD4TAikYi0QWg0Grh27Rq8Xi+63S5qtZpcgxjB2tvbQ6/Xw0MPPYRkMikNq/kvl8shHA4jHo/D7/djf38fxoxMVRgtZ/oka96A0W86Go2iVqsBGEW0yuUyvF6vRKVpLMJMBRqBLC8vYzgcolqtynj4HfD5fFKry2vpzs6OZEX4/X7p7RYIBMSwhN/9Wq0mbU54bWYkkuY0vJayjjedTsPn8+Hu3btoNBpifsL023w+j2KxiI2NDXS7XaysrGA4HKJeryORSCAej+Pu3bvaRuC9RCNwiqIoyv2o1+tIJpNSX2avuLPmKxAIYH9/XyYTnLBQhLHPmuM42NjYwNTUFA4PD5FOp2UCUKlUJLpFcchIWzAYRCQSEQe6UCgkxfJ2KhRXuRltY3PhWCwGY4ykINnOfVxtX1pakkheNpsF8EY/KU6A2KcpHA5jZmZGVvaZzsXUK6YNtlotJBIJbG1twePxiMMbjQ04EaIJgS1U7ImxOy1tXE3Z/UTcaZPqSY+5t+eEmSKYtu521OG3f/u3kclkEI1Gsbi4KK0ZGNVhOhnrm5LJJB577DH4/X6srq7i6aefljSwjY0NbGxsYHNzE2tra5KSy0n7uIjaWxF59uezxdu4++NMRsYJsEkpnuPq3cZt447W8XtO85FIJIL5+XmxwT86OsKdO3ck9Y7HgueZE3Qaj1CAM6JD0cb6Nv6eJ0Vk3d8J93Vg3GvGiTp+z93tEyhwmTZI8xyfz4ednR35jjFqGAqFTtR/MW26WCwiGAzi6tWrsgCztbUlmQT8zXU6HQSDQSwtLaHf72NnZ0fGwhq6RCKBSCSCbDYrAocCiYZLjFQzu4DijVH8WCwmGQjT09MimCORiFyrZmZmZDypVArb29ty/GyDGS4kNRoN5PN5yRJot9uSYspty+WyXGscx0Gz2cT8/Ly0TrDFJBdo5ufnkU6nUSwWJQWUQpTZCvZ7zM3NodPpyELN0tISQqEQXnnlFWnF0Ov1pGburLhwAi7oH12kmp3xKQWKoiiKQhMQRl34HzFTt8LhMLa2trC7uys1Y5wAOY6DcrksTWkPDw8lnefq1auIxWLY39/H4eHhid5UtMBmw22mE4XDYQCQYnym8thOcewLx95tdHhrtVonhBLThthfynEcEYhsZUCjh0ajIf2bEomE1JJwAkr7chomvPrqqxJlYkpUrVZDr9fDI488gmazic3NTYkMsKUAAHlPuxmzO1IzLjpyvwmS+3l3dM8WeO50Ofdrh8OhiINmsykT72q1ijt37iAcDsuxpOW7ff7a7bakUe7s7ODu3bvweDzI5/O4fv06PvrRj2JhYQGXL1/GJz/5Sfh8Prz++us4OjrC5uYmdnd3xVyHTokU63Z0zH187ObWthjmX/sc8LPbAmNcxA14c583O9Jmj8Gu5+P7MYLJCW8ikUAymZReY0zVOzg4wO3bt6XvIlOa7SjbcDjEYDAQ4w37H7/7rAu13STHnffTvkPjvivuyJr9GneE0V5A4bgZ1ff7/YhEIhK539rakt8ro7WMwgGQqNtgMEChUEA8HsfS0pIIm2KxKPVmjuMgnU5je3sbg8EAqVRKzlWlUpHjx+3povjVr35VekXaDpz8vrE9CKPptVpNRA5dICmU2FScpjBcwOH+6ULJ3pZ2pK/X60l7gb29PcRiMTl29rljBgQFV7vdRjwex9TUFI6OjjAYDDAzM4P9/X0RektLS8jlctjf35eMCy5YMRLOa26v10M+n0csFsPLL78MYwyy2Syi0Si2t7dl4cHn82F7exudTgfxePzU79b7yYUTcInQyHmo0uqd8UgURVGU84o94WQ9WCQSwdzcHAKBADY2NnB4eIhsNotSqSS9poCRi+Lc3JxMTJhCmM1m4fV6sb29LRMSRh04WeNk2BgjxiPGGJRKJQQCAQCQRr7dbhf7+/viWMfGvOFwGMPh8ERND0UFJzyMotk95YLBoLyGE+S9vT2srq4iEAigVqvJZIYihilNi4uLJxwzg8Egrl27hmeeeUaMFsrlMkKhEG7fvo12uy0TQE7+Obl2iwZjzJtE3f3SKCdNrN37mDR5P21S7zjOCUFAoxqmWvJY87zyXPJ8UlCwNq5areK5557Diy++KNG5VCqFTCaD1dVVrK6uIp/PY2lpCZFIRNJSmUJYrVZRKpVQrValJocptHaEiQKCESG77s/+6xZgwEl3Sf4+KEbsOjVO4Pkau3cZaz4TiQRSqZREnSgy6vU69vb2cOPGDTQaDTQaDVmAYOSMvy9blPG7yMiOLdpYe8h6uHHndlw01/6OnBatnXTf/q7w8/H48HvHdDyPxyMpfBQb3H53d1dus/n09PS0RIi63S7m5uaQTqfF6Zb1YrTRj8fjEh3KZrPweDzyvaUxCqNqiURCFgns1GdGK/k9ByCpk1woAiBNsgFICw5e1/idjMfj4vDb7/extrYmdY1slcDzxfYOg8EAiUQCfr9fFk94/nmt4jkIhUJoNpuIxWIIBAI4PDyUrIBCoSALarOzs4hEItjf30e9XsfU1BTS6TQajYbsiwKbC2a5XA537tyRHn3pdFrcZ7PZrBhXMX190vfig+DCCbh4cCTgyirgFEVRlAkwLZEF6/F4HJlMBo7j4N69e7h79y6Wl5dRKBTEYptpWjT4ODg4wPr6Oubn53H58mXUajXcvHlT0rc4mYvFYjIZ4uQuHA5LCmepVDoRmUqlUmi1WmJOwCJ9igcAUs/h9XoRi8VkbADEQp01cVxNTyaTaDabaLVaYprQ6XSwtLSEbrcrQrHdbksdGBsPh0IhrK6uYmNjAwAwOzsrRgCvvvoqotGorMCvrKyIDT8n2ez3xEmoXR/kTqW0UywnMUm8vR3cdV/uCIv9j72nOAmneyWFHGvd+I/PjXOXPDo6QqlUwu3bt/GXf/mXCAQCUpOUy+WkFiwajSIej2Nubg6RSEQiqkwbrFQqUjdlRw6bzaZY5jOiRYFHZ0HbxZRCjCKNdUk+n09cAylO6dRJ+3vWDvJzNhoN6al39+5dlMtlSV2joQjTDDkOO8LG3w7TI+0aNrews91Yx53Dced4UrRt3PfI/b2090nsqKPbxIePMcrPSA5rstj2wBbLPAdcALpy5Yr8rvgbDwaDSKfT8Pv9aLVaePnllyUCxgUbRqBYVzsYDJDNZiXd1xiDXC4nUUEeW4pkpmMyEs/vOaNrfr9fonvMLqCpyeHhobRb2d/flxozANJo3e/3y/s1m02k02lMT09LlgNrGlknR9dJjoc1bMViUcQfFzj6/T4WFhaQy+VQLBblN7K0tCS/DV4reWyj0SjS6bSksAcCAbnm01Ezk8nA5/Ph8PBQUi7phHkWXFgBpxE4RVEUZRKcIDFViXUThUIB1WpV7KbZd+3u3bsIhUJYWFiQCerh4SGWl5dx7do1cccLBAJIp9Nih03rc042PR6P1Fix7oOujmy8y4k467AAyF87fajZbCKfz8tqNpuAc6I1GAxQq9VEBDIaYoxBJpOBMQabm5tiNc42Cqw9chznRE2O3+/HtWvX0Gw2pQ9SNBrFysoKBoMBDg4OkM/n4ff7Je2TIoN1WIwW2fVuhJPqSZb87km4zf0EnTvi4t7PpLRNd0SQgpgtJhhlsVMqGQGxo1Z83D4HHMtgMEClUsHR0RHu3bsHj2fUmJ0igOc/m81iZmYG0WgUyWQSkUgEsVgMqVRKxBbFO8fK80gRyogWn+O47bQ/+/UUd5ycU5SzNpLRnKOjI9RqNYmIUYBxf1yEsNMbOQ7WEtqCjcKO4o4CjwsCkwSbW6CNS4l03x8n7iZ9l+z3tCNvdgTTFvlswzEcDrG/vy+tKxgF54IM2yXYY7t8+bKkLHMRhM6ndgRvamoKS0tLiMVi0qMykUigXq9LT7eZmRlZBKLwTiQSEqUDIDWgPMccVyKREBMnRrDYB5I1fDweR0dHCIVCmJ6extHREebn57G3tydmSLlcThYbWI8Wj8elDi4cDks7E6ZLJhIJEcL8TtIF2O/3I5vNYmtrC+12W65r7OnI3nAzMzPodrty3eexpEkUG8EXCgWJ1IVCIdy6dUtaVyQSCWxvb6NarcJxHIkwnxUXTsAFfV74vR6UmyrgFEVRlPFwVZymALu7uxIl8vv9KJVKUoPywgsvIJFISMNvrjxfunQJly5dwjPPPIPbt29jZmYGuVxOUhAZiWHaEJ0fWejPGoxYLCbRONqIc8LCyAaFFVOyWG9XrVbFBKHRaCAWi8nEkhMtRvToYlcqlSRNizV6rGfjhInua5zgx+Nx6U3HSVSlUpG6EaYosV7nscceQ6vVwve+9z1pz8A0OU7eJ6VJ8vPZ9V0Ufe50uLcaibP3f9pr7lcnx8e4gu+OzHEizjpGCiA7dZaPUfgR203SnhQzSlMsFvHaa6+N7etGsc/eYkyb43fIFhiMWtkW7RRWdqTLjpiVy+UTkS++P5+3j40dKeM2FI62QKNgo5jh+eb2dsQQeMPkZpxoOy2NdtK5HHfOJ+3PjR15s88ba1WZVsrjwdq2cDgsx8aOeNpReqbZBgIBxGIxWQCJx+Py/Wq321hbW5O+hLFYDO12WyJvMzMzcBwHhUIBqVRK0pyvXLmC1dVVlEol7O3tSXokF2T4u6Og4rXMmFF/SAovNtKmIyUANJtNGePm5ib8fr8YhTSbTRFBh4eHGA6HSKfTItJo0sIoWygUEvHF9+Pxo8srF5gODg4kWsf6W8dxsLq6CgCSFspaQzYc73a78Hq9mJ+fl/rT6elpJBIJJBIJvPLKK1JHR1Oq/f19uQ6dZfokcAEFnDEGsaBPI3CKoijKRKLRKPL5PKampvDqq6/i8PBQIhl0catUKrh+/Try+TwWFhawt7cn6Uf5fB75fB4vvfQSXnjhBaysrEiT3cPDQzHAqFQqSKVSCIVCJ4wMGP3jxI2pOlx5to0hWFtC9zqOcXt7G41GA9FoVGpouE9GKjj5cbsrsibu4YcfxvT0tLjL0QTFrv3I5/MyuaxWqwiFQjIBS6fTeP7552UyxYnn9PQ01tbWxOWSE3WmbXLiSuFwv1o3t+29nYLnjp69nbo5e7I+SbyNM7dw7xfACYHDxQCPx/MmMWfXlbn/cnsKdcJolDt6x+NAxz1OqI15oyk2cLLhNiefdjTUTqm0P6ftGjqutQBFFj8/RSAjahS7rAm0RZn7Hx/nPsadD/tcjzvv484Lx39a3eRpIm7SRN0+vjwv/K3xN81zlkgkJD2R7UB4TpLJJBYXF0Xc8joUj8clijQ9PS3tQxihp5uix+ORfoysUd3d3UW73UY6nQbwhsCPRqOIRCIijjqdjqQBMiIbDAaljozHju01bGMWijlCg4+DgwNZQOD3mamct27dQj6fF/Mktk1gLTA/NxcwWBfM69n8/LykMMbjcZRKJezs7CAcDovoBN5YNAiHw1hfX3+TeQrTMufm5lAul6UGmRHBra0tNJtNLCwsiJvm5uampJB6PB7JkjgrLpyAA4B4cApVFXCKoijKBObm5tBut3H9+nUUCgVcunRJolFerxd/8Rd/gcFggEceeUTSdbg6TLOJl156Cbu7u8jn82Jg4vV6JU2IdR2hUEgiLbSbZwTQ6/Xi4OBAUqs4yeSEkBPyaDQqqVTGGBwcHIjJCh3U2PqArnE0DaCBAlMYmWpJww2aYrD2hhEjTgw5AWcEkIKkXq/j4OAAsVgMW1tb6HQ6SCQS0sfJ6/XioYceQqfTEXMBRn3YcsCOCBF7sm5HXex/AN4kaNyT7nGT9dNqpMYJtdNW2cdN8Ck27YgSU8JYz2NH6+y6Ofc/+7Nye74f71NE2IKOr2Eap/353DV5boMT9+ewPyMn0dyWQo1ii98tW6DZx4H37Sibna7nPofudNdxonpSKqWdZjnpXNmfddy5HRfldde82dFQ9mRkLRdfw7RAO02U4igYDErjeF6HgNH1iemPXMRhyxO6fDJSVywWJVpOB1z2dLQFV7FYxPr6urjdsnUBU7xtt0mmWdZqNYka8nfKrAJGvZjuG41GcefOHQCQvocAkEgkJKXSNmC5ffs2PB6PWPzbLQxobMIU7m63i3w+j/39fQCj2jWfz4dCoSDRR2AUVY5GowBwwhGXNb5Mxc1ms1hdXUWr1cLe3p4I11Qqhd3dXRSLRSwtLSGbzaLRaGB7e1vSTXmNtX+TZ8GFFHCJkB/lVvesh6EoiqKcU/b29mR1++rVq1KI7ziONL9mT7RCoSCToEwmg0AggN3dXXi9XqysrIjJSSQSERdARrtshzbWhdFsoNlsYm9vDwDEop5pSwDEIZP74ASOzn1sut3tdlGpVBCPx2XiadcV0eaeERF+Vttshe6ZdKFkg2FSqVQQCoWkTq9YLKLT6WBlZUUiCsPhEKVSCY1GA5lM5oSLXTqdxu3btyUCwbQ54M1iAXgjZdJ2qrSNT5jG5/V6TzgucttJYm7cfY5hkrhzM0nUud/D/su6OGJHsyjCbOMLW8TZoswt7OznKOzIOAMVPs6Jpy2ibHMR9+eyzUZsEeZOn3QLNfdrbVHHhYpxYnmcOHOnwdqfe5Iwu1+UblJapXt7e4x2qwA+z987jz/PG6Ph/X4fPp8PrVbrxPllfWG9XsfKygqMGfVAowkNzTuMMeh2u5iZmRFhzrRrjmF6ehq1Wg3tdhuJREJMYa5duyZmMpubmzg6OsLly5dFxNH90uPxSH/DSCSCQqFwwvEWeMOEiC1C+Jkdx5HWCIlEQloO8PU0Jcnn8+IyyRpamrmEQiHU63W5PkQiEblOJRIJcY+k6dStW7ckBZguuDTaMcbIYpn9nWdLmJWVFXi9XjFbMmaUxlooFLC1tYXZ2VmkUqkTRkFcDKN4dbc5+KC5kAIuHvThoHZ2zjCKoijK+ebo6AitVktst9lbqdvtShpiq9VCpVIBMFp1zmQyaLfb2NvbO5FSyMbdTK+kCKIlfKFQOBG1cBxH+hCxDo3RMZqfDAajPm6cENM1sl6vIxAISMpRr9c7YXLASQVbBjB1qtvtnphkMnLCOj0AWF5eRqvVkpQtpmfdunUL165dk9YEdM2MRqNot9totVpYWVkRswJOeuy6p2AwiNnZWUxNTWFzcxPVavWECOHnt6NxdhTEFjw0g2H0zh2dGSfO7H3yr1s0nhaxGycYbCHCx+3IoTti6Bas9mv4ubkAQAFgCzlb4HG/tpHGaVEpOyXSjT0u+7Yd6eRf+zO7I2w8N7ZRifv4uPftTtUcd57c52ZSOqT7cX7WtxJNtTntvceJYtsYhL9Xn8+HdDqNZrMp0Uua3tginQY3vGbwOtLr9U64U7L5dqPRkEWgwWAgLS6A0SJLMBhEMplEu92WRZd4PC6/R2NGTqE3btxAIpGA4zgnHERp/sFFGDpa0piENbo8LrwGMBUyl8uhVCoBgNTPMeKfyWTEGTUcDuPatWvSUoI96kqlEjweD1KplFzfeB1i9H52dhavv/46KpWKZBqwno/OuYyW8RrI4wsACwsL8Hq9eP755yVCOTc3h729PWxubmJlZQXpdBr1eh2bm5sIBoNwHEfMfrhgZbu8ngUXVsDd2q/df0NFURTlQ4nH4xHHsm63i9dff13c3KanpyVlkvbuyWRS6i1Y2xEIBDA7O4tcLif1EJzAJpNJiWqxvs4YcyIlKBwOS3SMogR4Y8LIyQFNJLgCzFQ8pigZY6TOJBQKnejplEwm5XmuTLdaLZlkcsJJl8FAIACfzyd1a9FoFMvLy7LyXCwWUa1WxRY9FAohGAyi0+lgYWEBtVpN7Lj9fj+q1Sr29/fFLa7T6SCTyUgkkZNiTi4nReNswWA7Jtoi4bTImC263Pud9Bp7m9Mm/5OiOrYA4ITdtr3nc25TElvQuY+DLdzGReHcETp7H+MiVbbAGveYHU2z0xLtVMr7HUP3sRr3+Lionz1Wd6RuUgTV3mZcGuVp55zb8P04rnHHlu9H8UUzDv7u8vm8mP2MWyzo9XpiYU9nSfaZpBmH44z6AdKY5ujoCABE0BSLRUl/ZAp2NpvF2toaDg4OpJ/kxsYGyuWyLA4QpoT3+33pOUhnSKZjF4tFRCKRN4kiRs/YUJ3ZCTRIYuTQrmWjGQuFEH//qVQKfr8fe3t76Pf7cn1oNBrIZrNi1+/xeDA7O4uDgwOpWfP7/WJiQhHNhSOmgrIxOI9POBzG888/L6ZSs7OzqFarKBQKyOfzSKVSiMVi2NnZkUW0Xq8nxioUpRSMZ8WFFXBqYqIoiqJMggKFYiaTyWB+fh7GGOklxEkVV9LpTEnL9lAohEwmg1arJTbZnU5HCvRv3Lgh1tbBYFBW3zudDoLBoNjt2xElRlmYQkTx5vF4kEwmT4gRplcGAgE0Go0TE0b2emM0hBE71rkAkNVppi9R4GWzWZnEU/jRKW5ra0seY90JDVI4lnq9jhdffFGOneOMzBJ2dnZOiOZarSaf306ps48FX0shYTv+jYvu8LY9UR0nnk6LyrifcwsJ9zb2ZN8WGpy0TxIDbrFqR/UmCUY70uWOELk/w7hom3087P3ZrpL24/b72p/97aQmjhPO9t9xjBOg4/Zt37eP3f0ikePG6I7i8vtvHyM74snFDkbAST6fF7v6drstqaOshW00GojH45IBsLq6imw2i2g0ikqlIi63juNIyjadG+kEyzq2qakp1Go1NBoN/MzP/Az29/dRLpcxNTWF1dVVeL1e7O3tSaR+MBjIPoBRSuTW1haKxSJ6vR4WFhaQyWQwPT2Nvb09EXhshcDfIOvraOoxNzcn5k18n0qlItfJSqWCRCKB4XCIWCyGUqmEo6MjPPbYY1hfX5eaN0b9aMDCY0ehV6/XxXApGAzi4OAAzWZTnCP9fr+4+/Lz1et1cdINhUJ45ZVXUKvVpOdir9fDvXv3EI/Hkc1mkc1msbm5iX6/L9dWpp3zuLHBeiKRmPgdfr8Z/+t+wIkHfai1+xgMzy43VVEURTm/sG6M9R+pVArAKLWSKUNsWFyv17GzsyPGAbFYTFITm80mHGdk2b+1tYV0Oo1ut4s/+7M/w/r6ukxwmL7DFgFczQUgETBOnh3HkXq2crksTbhtJ0Ouyvf7fdRqNSQSCSSTSTEhsR0oOclg7YotImyXPLpc2sYYwWAQ/X4f+/v7qFarqFQq8rgtuuzaGI/Hgx/6oR/C/Pw8NjY2pK8cxxwOh5HP5xGPxxGNRk/U+THFk05vHJ+72TQn2u6UQrepAJ8fJ97cAnBcpGqSeHALAfd+OG5+Bvv93UKI29s1ZeP2bY/HTm+0hZw7DdL9mPt4udMk7fdxR5vsVEn3dvc7bu7xj4v8ubex9znuuN/vtfb9cdFH93P2+WB0zb2N/dzU1JQ0qGa0PJvNyoIOG2+zETbbCszMzKDdbiMSiWBhYQHz8/NSA0uxYEfmms2mRIvi8bjUxnJsGxsbSCQS6HQ6kt7MCCBNPygyw+Ewer2enMfDw0M0m00xREkkEjDGnEhP5O+bnz2TyYiYCwaDWFlZQbValQyBWq2Go6MjVKtVibSFw2EEAgGJJLJ/HVtKAEA6nRbjFqaAs46NtXM0aKEpCsVwJpNBKBRCs9mUBTh+5unpaSwuLiKTyeDOnTsoFArSS7HX6+HOnTuYnp7GzMwMlpaWRASzV6cxRq79FLNcTOM1/Cy4sBE4AKi2ekiG/Wc8GkVRFOW8sbW1dcKWn6vahUJBVmY5yWSqosfjQT6fl3oMRpJYE3HlyhVMT09je3tbattyuZzUq1DM8XWEDZL5HrFYDI1GA+VyGalUStKzWO9CB7ZyuSy9lwCIo5wtHmxnyXa7LXVysVhMJvNM+wJGE3yaLkQiEQwGA3Go5KSo0WiI+xtNAezohzEGV65cwcbGBlZWVmQiy1QvrtLncrkTkSgAkjpG4WNH4mwRMS7F0U4R433bPGRSnZVb5HF/44SffZ5sMeOODtqpc/ZxAXBi/Lxv72dcxMp+v0mRukmiyf489nbjoomsReRr3AJx3G37fe4nytznza4VtJ+3X8Nt3C0j3PudFFl1H08b+xi4Fwb43m7By2gz3V2ZUjgzM4NyuYx4PC6NzgFIxLrZbIqjbSKRwMrKCvL5vCzY7O3tScSODra2gRLrciORiKRsP//882I6sr+/j5s3b4qDZalUQiKRQDgcRrPZFAHp8Yys/YvFoqQ49no9pNNpeDwe1Go1OWb1el3GbowR914uDrHmjduxLQENWCj+fD4fjDFoNptotVqYm5uDMQbb29tyreH1YXZ2ViJ+Pp9PInalUkmuoY1GQ3rLsRE4zWDs9NZAIIB0Oo1wOIx79+5hb28P8Xgcs7Oz8Pl8uHPnDhKJBOLxOC5duoSdnR3s7u6Ksy+AE/XOjuNIGjsAaRdyFrxjAWeMWQTw2wDyAIYAvuA4zj8xxvwGgP8GQOF40193HOeP3+1A3w7J8EjAHTW7KuAURVGUN+Hz+cTynhSLReRyOczPz0tKYrvdlpovmnCwzxFXxlOpFPL5PLrdLg4ODiRNiP+4Cu/3+2ViF41G5XFO0BiJOjw8lMJ+TiJopsJJVqvVwr179zA3NyfOj1euXIExo8J/v9+PcrmMvb09qb/j5wBwQuRxssbJO8fPCS0nUZzYcyLKqB33x3SmxcVFeL1eLCwsIBKJYH19XSILMzMz0t4AeKOex+fzSbNjtlOgkKzX62NrsTj5dtd92Xb7NI2xRSbhPmxhY6dx2nWJwJuNQOzX2gKL4o2CwxZF49I+3dGlcSmcdhqf+3OclhbojvJxLPy+ATjRSNvej1v0uMWSWxi5BR5f4xa/4z7juLHb4zjtudP2aW/nHj+/N+6ooh3FtQ12GIlhtHh6elocFDOZjPy+6vW6RI7sFORUKoVSqYRIJIInnngC8Xj8RKSKDaYpDmu1GmKxmAi0Wq2GYDAo9bBra2tYX1/H3Nwc1tfX8YlPfAL5fB69Xk8WcygCo9Go/Mb9fj+Ojo5O9OkLh8Nix886uFqthkgkIv3r6IBJ0ZdOp3Hv3j1JNx8MBiiXy9JOhFE0j8cjPdrq9TpmZmYwNTUlZifz8/OoVquoVqvIZrMAINffXC6HSqUikUSKyUajgUgkIgtctVpNaviAkasvawDj8Thef/11HB0dIRwOY3Z2FqFQCDdv3gQAxONx5PN5lEolbG9vSyYBADFuorkLAEQiEan75eLeWfBuInB9AP+D4zjPGWOiAJ41xnz1+Ln/y3Gcf/Duh/fOSIdH/0Ed1ru4lD2rUSiKoijnlWw2KwXvXPlNpVKYmZlBqVR6k4kAJyT1eh3GGOzv74tIicViKJfLUtzOKBprORh9o7U/U4fcFuBerxeVSgXlchmZTAb1el1sxo0xWF5ehjEG6+vr2NnZEdfIfr+P5eVldDodcZvc2dnB1tYW5ubmMDU1hf39fUxPTyOVSol4GgwGUgto1zixXo5RN0a2stmsrNozJWowGEgtH+29HceRfkxMN+IkPh6PY2dnR8QzX88Gvh6PR1I1mQZKEeROQ7QFCrFru+z6mXHRHlto2eLMjgiO2z/f2y38eJvvbTsWUuDZkaJJwov7sfdtR8Ts5+3tx4kcvjefZy0PBUMymZQIqVsAc3/jzEDsx93v6T5m9medNMZJotb+bJOieOOOw6RopH1Mxp0TRqJ5m+d4ampKDCsCgQDC4bDUSAWDQZRKJcTjcVnw4XYUdn6/H4eHh0gkEnjkkUeQzWbx8MMP4/nnn4fjjJxqHceR2q+DgwNpE8LoHGvX+v0+1tfX8dprryGTySAcDqNer+P69etIpVI4OjpCNpsVAcWFIP5+9vf3RaD0+30kk0mEw2EcHR2JwUihUJAIPNsXDIdDic4tLCxIWjWNQdbW1uDxjPq6eb1e6TVJwTgYDDA3NyfZAzQB6XQ6CAQCiMViaDabMjbWF9NQiteLUqmEaDSKdDqNWCyGarUqn4/XCaaRhkIh3L59WxbKmGp58+ZNtFotLC0tySLY3t7em6L7vKaz/pAGKx6PR1rBnBXvWMA5jrMLYPf4ds0Y8yqA+fdqYO+GTIQC7uxCm4qiKMr5hSKK6XO5XE5WxJkWaacy0Xq/2+1iY2MDqVQKs7Oz0p+INWzBYFAmehRCnCDT8KDdbktEyhgj9WSlUgm1Wk0iVDRK8Pv9MmHc3d0Vx0emHkWjUVm9j0ajODw8RLvdlmgXHemYCmmMEcMSewWZ9zlRvHv3rjTcpvji+25tbeHy5cvyeTjh5Yp+KBSSSU86nZYxMrrHdgdc8bbTqwqFAowZmcnYk2xGxwCcmHi7oQDjmDhxtaNpdvTMFhiT3BDtNEZbvAEnDUX4GrexiZ2CZ+93nHCxtx33Od2iblw6pftzcl/8zjNKy+81P5d7AstUNMeZ3HDbzbjP6D4+4+6P2+9bEWPuiNy4CBwXASheWSc6bl+MVNrnOxwOS3oye6yx5suOoHGBh6YZrF2jS+Kjjz4qKdrlclnMhjh2pktzMQMADg4O5JpSrVZRKpWwsbGBfD4v9a1MfbRFCQWXxzOy5a/VaigWiwBG179qtSrijW09KFiCwaBEs5iRwDRKLnKxbYDf7xd3Xjr0ApBoP1NJl5aW5DPU63VEIhF0Oh3s7e3hE5/4BG7fvo1yuYzhcIjLly+j1+uhUqmI0RSzGWwHXEbu2F6Bz8/Pz8Pn80mzcLZ1CIVCuHfvnvSky+VyaDQa2N3dld8te2Mym4GLG/F4XEQ7o28PfBsBY8wKgCcAfA/A0wB+xRjzXwD4AUZRuqMxr/klAL8EvHFS3yuyURVwiqIoymR++Zd/+a01hTpnXL169QN7r0uXLo19/BOf+MQHNgZFURTlzbxrF0pjTATA7wH4VcdxqgD+OYDLAD6OUYTuH457neM4X3Ac50nHcZ5kzut7RSrsh8cAhZoKOEVRFEVRFEVRLg7vSsAZY3wYibcvO47z+wDgOM6+4zgDx3GGAP4FgKfe/TDfHl6PQSrs1wicoiiKoiiKoigXincs4MwoyfhfAXjVcZx/ZD0+a2328wBeeufDe+dkIgEUameXm6ooiqIoiqIoivJe825q4J4G8AsAbhhjnj9+7NcBfN4Y83EADoANAH/rXbzHOyYbDaCgEThFURRFURRFUS4Q78aF8tsAxhWBf6A93yaRiQTweqFx1sNQFEVRFEVRFEV5z3jXJibnlUxkVAPn7hGiKIqiKIqiKIryoHJhBVwuNo1Of4hys3fWQ1EURVEURVEURXlPuLAC7iP5KADg1d3qGY9EURRFURRFURTlveHCCrhrszEAwCsq4BRFURRFURRFuSBcWAGXjgSQj03j5R0VcIqiKIqiKIqiXAwurIADgGtzMbyiAk5RFEVRFEVRlAvChRZwj87FsFaoo90bnPVQFEVRFEVRFEVR3jUXWsBdm41hMHRwa7921kNRFEVRFEVRFEV511xoAffoXBwAtA5OURRFURRFUZQLwYUWcAvJIKKBKa2DUxRFURRFURTlQnChBZzHY/DIXAwv71TOeiiKoiiKoiiKoijvmgst4ADgiaUEbmxXUG33znooiqIoiqIoiqIo74oLL+B+6loevYGDb752cNZDURRFURRFURRFeVdceAH3xGICM9EA/v1Le2c9FEVRFEVRFEVRlHfFhRdwHo/BTz2aw3+4WUCrq/3gFEVRFEVRFEV5cLnwAg4APvPoLFq9Af78duGsh6IoiqIoiqIoivKO+VAIuL9yKYV40Id//d276PQ1CqcoiqIoiqIoyoPJh0LA+bwe/N2ffAjfXjvE//5Hr5z1cBRFURRFURRFUd4RHwoBBwB/8+lV/PwT8/jDF3bRGwzPejiKoiiKoiiKoihvmw+NgAOAn/noLCqtHr57p3jWQ1EURVEURVEURXnbfKgE3CcfyiA6PYX/49+9ikKtc9bDURRFURRFURRFeVt8qATctM+L//tvfAJ3Sw382u/fOOvhKIqiKIqiKIqivC0+VAIOAJ6+ksGv/uRVfO3VfXztlf2zHo6iKIqiKIqiKMpb5kMn4ADgv3x6FQ/NRPAbf/iyNvdWFEVRFEVRFOWB4UMp4PxTHvxvn30MW0ct/LNvrp31cBRFURRFURRFUd4SH0oBBwA/cjmNn39iHv/Pn9/BH9/YheM4Zz0kRVEURVEURVGUU/nQCjgA+J//2iN4OB/Df/fl5/CZf/wt/OXr2l5AURRFURRFUZTzy4dawKUjAfzef/uj+Pv/2eNodPv43Bf+Ev/1F59BvdM/66EpiqIoiqIoiqK8iQ+1gANG9XB//clF/Onf/TH8vc98BN+8WcDP/tNv4f975h6GQ02rVBRFURRFURTl/GDOQ+3Xk08+6fzgBz8462EAAP7sVgH/8E9v4sWtCqZ9Hnx0Po5Pf2QGC8kgPv2RGcSDvrMeoqIoijIGY8yzjuM8edbjUBRFUZT3k6mzHsB541NXs/ixhzL4dzd28ezdI3zv9RL+zz+5CQAITHmwkg7jxx+ewaNzMfzUozkEprxnPGJFURRFURRFUT4sqIAbgzEGP/v4HH728TkAwFGji41iA3/4wi5e3a3iC39+B0MHCPm9uJQN43I2Iv9ysQAuZyNIhHwwxpzxJ1EURVEURVEU5SKhAu4tkAz7kQz78cRSEgDQGwzxF3eK+OZrB7hTqOMHG0f4t8/vnHiN3+tBPORDMuRDIuhHOuLHfCKIhWQQqUgAQZ8XQZ8X0ekpxIM+RKenEJ32wT/1oS9LVBRFURRFURRlAirg3gE+rwefuprFp65m5bFmt4+Nwyb2a22s7ddRbHRRaXVx1Oih3Ori1n4N37x5gHZveOq+/VMexI7FXCQwdSzsphAJ+BAJeBGxbocDU6N//imEAt7RX78XIf/oucCUR6OAiqIoiqIoinKBUAH3HhHyT+HaXAzXEMOPf2Rm7DaO46DY6KLc7KHdG6DZHaDa6qHS6qHe6aPW7qHW7qPW6Y/+Ht8/PGyg0Rmg1u6h0R1g8BbdMT0GJ8VdwIuQfwphvxehwPFf/xTCrsdDfi8CU15M+zyY9nkxbd0O+DzynN+rAlFRFEVRFEVRPkhUwH2AGGOQiQSQiQTe8T4cx0GnP0St3Uej00ej20ezOxKDzU4fje4AzW4fjY7rrzzfR7HRxb1SE83uAI3O6PX9d9AywRhgesqLoH+UDjrt8yDop+Ab3Q9YAtA/NfoXmPIiMOVB4Pi+3+uBz+vBlNeM/noMfFMe+Dx8zGDq+Lbf68EUt+FrPB74pkbb+LxGRaWiKIqiKIpyYXnfBJwx5jMA/gkAL4B/6TjOb75f7/VhwhhzLI68yEbfuRB00+0PTwi9dm+Idn+ATm+Idm+Adn8weqw3QLs3QKc/ut3qjp5rdYfHUcU+Osf7KjWG6By/rtMfvabTH6LbPz2N9N3i9RgReD6vwZTXA59n9JeCb+r48anjbae8Bl7PaDvv8f0pj+fEc1Py+PG2XiPvxX157X/Gdf/4Mc/xa/jX/Zj9unGPuffF28YAHmPgMaNjoEJWURRFURTl4vG+CDhjjBfAPwPwVwFsAXjGGPMHjuO88n68n/LuGUXH/EiE3v/3chwH3cFIyFHQ9QZD9AYO+sMh+oPR8/2Bg/5giN7w+O/AQW8wRH94vO3x9vK4ax9v3v7kvgbDN7Zt94boDwcYHN/vD0fP9wbD4+1Gr+PjfO/z3uvdFnMeg5HoOxZ7Xg9vvyH63vzcydd4joWkx4wWE07cNgYeD2SfXmPd9lBcjkSnx1j3DWTf5nhfBjjxnjhx/3gbAxi4Xg8cf577bwvXe4x/79Hr+NzJsb55W+CN48Ftx30ejtN+73GvnzTOse8l47zPe3F/HtznOPO10MUARVEURTlHvF8RuKcArDmO8zoAGGN+B8BnAaiAU2CMOU6j9CJ61oN5lwyHltgbDjEYOBg4o/sn/jnOiW3djw2P7/O2/di4fdn3h46DoYPR36F128Hx/UnPO+O3s24PHAeO42A4xMntj8fgWLdHgvf4czkjoT56zr5tvcbar+MADvi60fYO3nhuONpgdN96/OTrnHMvqB9kThWLOBaALvFov8bLxQJLzHO7X/jhZfzij66c9UdUFEVRlAeC90vAzQPYtO5vAfgr9gbGmF8C8EsAsLS09D4NQ1HeXzweA/8oHIIgtKn7ecCxRN99xd7Y7d4sHie9/u1sC0ugnvpex59hOMR9x4UT99/47I77vdzHxRkvnGWfw/sdk9HrHMc+FifHZG9rLwpQzA+tMaTC/g/wG6IoiqIoDzbvl4Abl29zYm3ccZwvAPgCADz55JO6bq4oynuCpAuOvQwpiqIoiqI82LxfXaO3ACxa9xcA7EzYVlEURVEURVEURXkLvF8C7hkADxljVo0xfgCfA/AH79N7KYqiKIqiKIqifCh4X1IoHcfpG2N+BcCfYNRG4Lccx3n5/XgvRVEURVEURVGUDwvvWx84x3H+GMAfv1/7VxRFURRFURRF+bDxfqVQKoqiKIqiKIqiKO8xKuAURVEURVEURVEeEFTAKYqiKIqiKIqiPCCogFMURVEURVEURXlAUAGnKIqiKIqiKIrygKACTlEURVEURVEU5QFBBZyiKIqiKIqiKMoDggo4RVEURVEURVGUBwQVcIqiKIqiKIqiKA8IKuAURVEURVEURVEeEFTAKYqiKIqiKIqiPCCogFMURVEURVEURXlAMI7jnPUYYIwpALj7Hu0uA+DwPdrXB8mDOO4HccyAjvuDRsf9wfJhHvey4zjZ92IwiqIoinJeORcC7r3EGPMDx3GePOtxvF0exHE/iGMGdNwfNDruDxYdt6IoiqJcbDSFUlEURVEURVEU5QFBBZyiKIqiKIqiKMoDwkUUcF846wG8Qx7EcT+IYwZ03B80Ou4PFh23oiiKolxgLlwNnKIoiqIoiqIoykXlIkbgFEVRFEVRFEVRLiQq4BRFURRFURRFUR4QLoyAM8Z8xhhz0xizZoz5n856PKdhjNkwxtwwxjxvjPnB8WMpY8xXjTG3j/8mz8E4f8sYc2CMecl6bOI4jTG/dnz8bxpjfvpsRj1x3L9hjNk+PubPG2N+xnruzMdtjFk0xnzTGPOqMeZlY8zfOX78XB/vU8Z93o/3tDHm+8aYF47H/b8eP37ej/ekcZ/r422NxWuMuW6M+aPj++f6eCuKoijKeeRC1MAZY7wAbgH4qwC2ADwD4POO47xypgObgDFmA8CTjuMcWo/9fQAlx3F+81iAJh3H+R/PaozHY/oxAHUAv+04zmOnjdMYcw3AvwHwFIA5AF8DcNVxnME5GfdvAKg7jvMPXNuei3EbY2YBzDqO85wxJgrgWQD/CYC/iXN8vE8Z91/H+T7eBkDYcZy6McYH4NsA/g6A/xTn+3hPGvdncI6PtzWe/x7AkwBijuP87INwPVEURVGU88ZFicA9BWDNcZzXHcfpAvgdAJ894zG9XT4L4IvHt7+I0ST4THEc588BlFwPTxrnZwH8juM4Hcdx1gGsYXRePnAmjHsS52LcjuPsOo7z3PHtGoBXAczjnB/vU8Y9ifMybsdxnPrxXd/xPwfn/3hPGvckzsW4AcAYswDgrwH4l67xndvjrSiKoijnkYsi4OYBbFr3t3D6JPKscQD8qTHmWWPMLx0/lnMcZxcYTYoBzJzZ6E5n0jgfhHPwK8aYF49TLJmqde7GbYxZAfAEgO/hATrernED5/x4H6fzPQ/gAMBXHcd5II73hHED5/x4A/jHAP4egKH12Lk/3oqiKIpy3rgoAs6Meew854Y+7TjODwH4jwD87eOUvwed834O/jmAywA+DmAXwD88fvxcjdsYEwHwewB+1XGc6mmbjnnsPI373B9vx3EGjuN8HMACgKeMMY+dsvl5H/e5Pt7GmJ8FcOA4zrNv9SVjHjtP1xNFURRFOTMuioDbArBo3V8AsHNGY7kvjuPsHP89APAVjFKD9o/riVhXdHB2IzyVSeM81+fAcZz944nvEMC/wBvpWOdm3Mc1Tb8H4MuO4/z+8cPn/niPG/eDcLyJ4zhlAP8Bozqyc3+8iT3uB+B4Pw3gPz6u//0dAD9hjPkSHqDjrSiKoijnhYsi4J4B8JAxZtUY4wfwOQB/cMZjGosxJnxs9gBjTBjATwF4CaPx/uLxZr8I4N+ezQjvy6Rx/gGAzxljAsaYVQAPAfj+GYxvLJwkHvPzGB1z4JyM+9ic4l8BeNVxnH9kPXWuj/ekcT8AxztrjEkc3w4C+EkAr+H8H++x4z7vx9txnF9zHGfBcZwVjK7P33Ac52/gnB9vRVEURTmPTJ31AN4LHMfpG2N+BcCfAPAC+C3HcV4+42FNIgfgK6N5L6YA/L+O4/x7Y8wzAH7XGPNfAbgH4D8/wzECAIwx/wbApwFkjDFbAP4XAL+JMeN0HOdlY8zvAngFQB/A3z5Dp7tx4/60MebjGKVhbQD4W8C5GvfTAH4BwI3j+iYA+HWc/+M9adyfP+fHexbAF48dbD0AftdxnD8yxnwX5/t4Txr3vz7nx3sS5/37rSiKoijnjgvRRkBRFEVRFEVRFOXDwEVJoVQURVEURVEURbnwqIBTFEVRFEVRFEV5QFABpyiKoiiKoiiK8oCgAk5RFEVRFEVRFOUBQQWcoiiKoiiKoijKA4IKOEVRFEVRFEVRlAcEFXCKoiiKoiiKoigPCP8/nzkAfysiuOoAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -3164,7 +3164,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAGoCAYAAAAHGAe8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d5hl2X0VDK99cw6Vurs6TE9PaE2SZqyRkMbKloTBtsBgjA2vjTHgl2BMsAkG/NqAzYcBw/cabMA8NsavI68D2MgBMLJlfQrWSEZhRjPS5OlQXfHmUHXv3d8f565d6+4+t6p6UmvKez1PPV117zn77LP3Pqd/a69fMNZaBAQEBAQEBAQEBAQEBHzxI3GzOxAQEBAQEBAQEBAQEBBwNAQCFxAQEBAQEBAQEBAQ8CpBIHABAQEBAQEBAQEBAQGvEgQCFxAQEBAQEBAQEBAQ8CpBIHABAQEBAQEBAQEBAQGvEqRudgcAYGlpyZ4/f/5mdyMgICAg4FWMT3ziE5vW2uWb3Y+AgICAgICXE18UBO78+fN4+OGHb3Y3AgICAgJexTDGPHuz+xAQEBAQEPByI7hQBgQEBAQEBAQEBAQEvEoQCFxAQEBAQEBAQEBAQMCrBIHABQQEBAQEBAQEBAQEvEoQCFxAQEBAQEBAQEBAQMCrBIHABQQEBAQEBAQEBAQEvEoQCFxAQEBAQEBAQEBAQMCrBIHABQQEBAQEBAQEBAQEvEoQCFxAQEBAQEBAQEBAQMCrBIHABQQEBAQEBAQEBAQEvEoQCFxAQEBAQEBAQEBAQMCrBIHABQQEBAQEBAQEBAQEvEpwKIEzxpw1xnzAGPM5Y8wjxpi/Nv18wRjzP4wxX5j+W5dzvtMY84Qx5nFjzB98OW8gICAgICAgICAgICDg9wuOosCNAHy7tfYuAG8C8FeMMXcD+LsAftNaeweA35z+jel3XwfgHgBfDuCHjTHJl6PzAQEBAQEBAQEBAQEBv59wKIGz1l611n5y+nsbwOcAnAbwRwD8p+lh/wnAH53+/kcA/Ky1dmitfRrAEwDe+BL3OyAgICAgICAgICAg4PcdbigGzhhzHsADAD4G4IS19ioQkTwAK9PDTgN4Xk67NP3Mb+tbjDEPG2Me3tjYeAFdDwgICAgICAgICAgI+P2FIxM4Y0wJwC8A+OvW2tZBh8Z8Zq/7wNofsdY+aK19cHl5+ajdmIvWYA8/9IEn8LmrB3UtICAgICAgICAgICDg1YsjEThjTBoRefspa+0vTj++Zow5Nf3+FID16eeXAJyV088AuPLSdHc+Wv09/PPfeByfudR8uS8VEBAQEBAQEBAQEBBwU3CULJQGwI8C+Jy19l/KV78M4M9Mf/8zAP6rfP51xpisMeZWAHcA+N2Xrstz+wkAsNeLfQEBAQEBAQEBAQEBAccCqSMc86UAvgHAZ4wx/3v62d8D8E8B/GdjzJ8D8ByAPwEA1tpHjDH/GcCjiDJY/hVr7fil7rgP+m3awN8CAgICAgICAgICAo4pDiVw1toPIT6uDQC+bM453wfg+15Ev24YUwEu6G8BAQEBAQEBAQEBAccWN5SF8osZZsoxgwIXEBAQEBAQEBAQEHBccXwInFPgAoMLCAgICAgICAgICDieOD4EbvpvUOACAgICAgICAgICAo4rjg2BQ4iBCwgICAgICAgICAg45jg2BM44BhcoXEBAQEBAQEBAQEDA8cTxIXBBgQsICAgICAgICAgIOOY4PgRu+m8Q4AICAgICAgICAgICjiuOD4EzLCMQGFxAQEBAQEBAQEBAwPHE8SFw038DfQsICAgICAgICAgIOK44PgQu5DAJCAgICAgICAgICDjmOD4EbqrBBf4WEBAQEBAQEBAQEHBccWwI3H4VgUDhAgICAgICAgICAgKOJ44NgaMLZUBAQEBAQEBAQEBAwHHF8SFw03+DABcQEBAQEBAQEBAQcFxxfAgcywiEKLiAgICAgICAgICAgGOK40Pgpv8GBS4gICAgICAgICAg4Lji+BA4JjG5ud0ICAgICAgICAgICAh42XB8CBzLCAQGFxAQEBAQEBAQEBBwTHF8CJxT4AKDCwgICAgICAgICAg4njg2BI4IClxAQEBAQEBAQEBAwHHFsSFwoQ5cQEBAQEBAQEBAQMBxx/EhcC4GLkhwAQEBAQEBAQEBAQHHE8eHwDEGLvC3gICAgICAgICAgIBjiuND4Kb/Bv4WEBAQEBAQEBAQEHBccXwInAllBAICAgICAgICAgICjjeOD4Gb/hvKCAQEBAQEBAQEBAQEHFccHwIXslAGBAQEBAR80cAY8++MMd91s/sRB2PMW40xj9/sfgQEBAS8EBwbAkcEF8qAgICAgBuBMebPGGOsMebPy2ffZIwZG2M68vMO+X7BGPNLxpiuMeZZY8yfuhl9/2KGtfYvWmv/8c3uBwBM5/d2/m2t/R1r7cWX+BrvNMZ8wBjTNMY8E/P9/caY35l+f8kY83/Jd3/PW2t9Y8zEGLN0wPX+mjHm6eka/Jwx5s7p58YY8/eNMc8ZY1rGmJ81xlTkvL9ljNk0xnzWGHOvfP6lxpj/coP3/FvGmMG0z5vGmF80xpy6kTZeTsx5jjvGmNWb3bc4GGP+vDHmiWkff/2gfhpj7jLG/K/penrCGPPV8t2f9u63N30GXj/9/m9N5789XUN/y2v7/HQt94wxjxlj3i3ffYUx5kPGmIYxZs0Y8x+MMWX5fsEY83PT9bBpjPkprr/pxok/F9YY88en399rjPmN6XnXWfQHvXcPu+fpMV9ijPng9Ptrxpi/dqNzNG3nbmPMw8aYnenP/zTG3C3fG2PM9xtjtqY//8yYSGoyxqSmz2TDGPNr3tj9fWPM3zhKH44NgTOMgbvJ/QgICAgIeHkwGo1e8jaNMXUA3wngkZivP2KtLcnPb8l3PwRgF8AJAH8awL81xtzzknfwFYIxJnWz+/BC8UXU9y6AHwPwt+Z8/9MAPghgAcDbAfwlY8z7AMBa+090rQH4fgC/Za3djGvIRJsNfw7AVwAoAfhKADz2GwF8A4AvBbAKIA/gX0/POzU97wKAfwfgn04/TwH4AQB//QXc97dO+3z7tC//4gW08XLCf45L1tor/kFx6+hG19aLWYvGmLcD+CcA/giiNfI0gJ854Dr/FcB/mx77LQB+0kxJvLX2p7z19JcBPAXgk2wC0TqpA/hyAN9qjPk6ucTPAPg9AIsA/j6AnzfGLE+/qwL4XkRr6y4AZwD8czn3e6ftXgBwG6J35PdM+/U7Xr++EkAHwK9Pz90D8J8RrdE4zH3vHnbPJtoM+XUA/356X7cD+O9zrnMYrgD4GkRjvwTglwH8rHz/LQD+KIDXAXjt9D7/z+l3fwwRXVkC0OLnxphbAXwVps/qYTg2BM4hSHABAQEBxwbnz5/H93//9+O1r30tisXiy0Hi/j8AfhD7xu+hMMYUAfxxAN9lre1Yaz+E6D/wbzji+XljzA9Md5Cb093s/PS79xljHpnuzv6WMeYuOe+Z6c75p6c70D9qjDkx3cVtT3eB69Njz093n7/FGHPFGHPVGPPt0tb3GGN+3hjzk8aYFoBvMsZUp21eNcZcNsZ8rzEmOT3+dmPMb0/7u2mM+bnp58YY86+MMevT7z5tpqqOMebHjTHfK9f8CyZSCraNMb9sRF2Y9vUvGmO+MN3R/iHuWMeMX1zf32iM+ch03K4aY/6NMSYzPf6D01M/ZaKd9z9pjHmHMeaStHnXdLwb0/F/31HmUmGt/V1r7f+DyGiMw3kAP2WtHVtrnwTwIQDXkf7pfX8DgP805/4TAL4bwN+w1j5qIzxprd2eHvJVAH7UWvu8tbaDiAz+SWNMAcA5AL9nrW0B+J+IjGwgIm6/bK195kbvm7DWNgD8FwD3S19fY4z5H9M5f9wY87Xy3Yt5Dr5jutaaJlJ7ci+kz9O2/o4x5tMAutN1bo0xf84Y8xyA/2WMSRhj/sG0n+vGmJ8wxlSn55/3j38h/ZjiqwD8v9baR6y1uwD+MYC3GWNuizn2NYgI1L+arqf/BeD/h/nvoD8D4CfstFiytfafWWs/aa0dWWsfR0QGv3R6T3cC+BIA322t7VtrfwHAZxC982Ct/Wlr7a9ba3vW2h0A/4HnTnErgP9irW1Za5sAfgkx61z69fPW2u607cettT+KmA01c+Pv3Zl7BvA3AfzGlOgNrbVta+3npP25a9WHtbZhrX1m2rYBMEZECPXaP2CtvWStvYxoc+SbZHx+y1o7AvAB7D+DPwjgO6afH4pjReCMCQpcQEBAwHHDz/zMz+D9738/Go0GUqnrN7hf+9rXolarAcD9U4NPf354XrvGmDcCeBCREhGHB6Zk5fPGmO8y+7vrdwIYW2s/L8d+CvONFB//AsDrATyEaAf3bwOYTA2nn0FkTC8D+FUAv0IiMsUfB/CeaR++CsCvAfh7iHZzEwC+zbvWOwHcAeC9AP6uEVcoRDv9Pw+gBuCnEBGGESJD5IHpOXQr/ceIdqvriHbcuUv8XgBvm/anBuBPAtjyb9gY8y5EZPlrAZwC8Cxmd6yBaJf6DYh2rb8WwB/02zmg72MAf2M6Dm8G8GWIduBhrX3b9JzXTXfnf87rWxrAr0zvbwXAXwXwU8aYi9Pv/27MunI/B/TRx/8XwDcaY9LTtt+MiET5eCsiheEX5rRzZvpzrzHmeRO5wP3DKbEDIoNSya8BkEW0Dp4AcJ8xpgbg3QAeMcacBfB1eJHKmTFmEZG68MT07yKA/4FIeVwB8PUAftjsK9Uv5jn4WkTK0a2IFI5vehFd/3pESmYN0foHIoX0LkRr8JumP+9EZGyXAPwbrw09fgbGmHMHrR+z7wYYN28AcC+uR9zmhok71hhzC6Jn9CdizuGGwVuxT5ruAfCUtbYthx30fnsbZgnXDwH4SmNM3UQbSn8c0XvKv24BkYoVu1ERgyO/d+fc85sAbBtjPjwl4r9ijDk3Pf6wtRqL6fM/QPQ+/Cfy1T3TvsX187MA3jVdz+9E9Ax+NYDNKSk9Eo4XgUMQ4AICAgKOG77t274NZ8+eRT6fj/3+05/+NBqNBgD8b2ttzfv5y3HnmEhZ+mEAf9VaO4k55IOIjKEVRAbI12PfNa4EoOkd3wRQxiGYGtnfDOCvWWsvT3fPP2ytHSIiP++31v4Pa+0eIgM3j8jAJf61tfbadFf3dwB8zFr7e9PzfwkR8VL8Q2tt11r7GQD/cXofxEestf9lev8VAH8IwF+fHr8O4F8hMuyByLXpFgCr1tqBGBp70/t+DQBjrf2ctfZqzK3/aQA/Nt31HyJyW32zMea8HPNPpzvbzyHamb7/gKF0fZ+qBJ+w1n50qig8g8hN6u0HnK94E6I5/afW2t2pmvHfMB0ra+0/jVlX7ueI18C0za8B0AfwGCKV7OMxx1GV6Mxp58z03/cCuA+REfj12Hc7+zUAf36qDlUB/J3p5wVr7RaA70OkFH0FgO8A8H9Pj/lqE6ms/9UYw2scBT9ojGkiUrGXEBFgICLkz1hr/+N0Xj6JiJR+zUvwHPygtfbKVHX8FRy8Vt7kEaYn/f5P1cq+fPY90+egj2jt/ktr7VPTOflOAF9nZt0l9fgZWGufO2j9WGt/enrorwL4WmPMa6dK5P+FSJcoxNzTYwDWAfyt6YbAexGt97hjvxHA71hrn54zPt+DiA/8x+nfR36/GWPeg2i9/l/y8ScBZBBt5Gwh2lyJ20j744jWzG/P6ZePG3nvxt3zmWlf/xoiJVpdVOeu1YM6NH3+qwC+FZHL6by+NgGUpmT5V6fXfnj6+c8iUtT/jjHm+0wUo/fD3obFdTheBM6YUEYgICAg4Jjh7NmzL0ezfxnAp621H4n7cmqsPT0lCJ8B8I+w/595BxHhUVQAtHE4lgDkAPhGJBC5RD0rfZgAeB7AaTnmmvzej/m75LX5vPz+7PQacd/dAiAN4KooS/8eEYEFInXEAPhdE7m2ffO0j/8LkRrxQwCuGWN+xEjCjAPurYPIuNN7W5PfezH3Mu++YIy50xjz30yUVKGFaDd8bgKQmL497xH5Z72+vSgYYxYQxd/8I0TzfxbAHzTG/GXvuDyAP4GDVQmShH9GVy5Ec/WHp5//GCLD9LcQKSMfmH5+CQCstT9jrf0Sa+0fQrRJMURkfP4LTN34cGNq3LdZa6uIlDAqtEC0pv6Ap1b+aQAn8eKfgxtZKx/1CJPvkvh8zDn62Ux/pr+nEKmkB7VxQ7DW/iYiQ/4Xptd4BtE75VLMsXuIYqy+AtFYfDui2LHrjkVEZua5437r9PuvmJJn4IjvN2PMmxApVl/jqWL/L4DPIyJWFURz/JMxl/ddHA/Djbx34+65D+CXrLUft9YOAPxDAA9NNznmrtWpguqSo/gXspH7578D8BPGGL4v/b5WAHTsPv6utfa11tpvAfB3p+c/OP15OyIC/M0HDcbxInAIClxAQEDAcYM5pE7MPffcg1KpBEQuj36Gs3nukV+GSHFYM8asIdrd/wFjjO8aRTDWAYiMk5Qx5g75/nWIT4TiYxORy01cXMsVRIYEAOfadBbA5SO0Ow/Kfs9Nr0Ho/5jPIzLkl8TQrVhrmSBgzVr7F6y1q4iC7n/YTLM6Wmt/0Fr7ekQuQnciPomHf29FRIkEXui9+f/b/1tEqsQd1toKIrfSoxYYugLgrLggAtFYXZ721c8Q2TnIoJuDC4jcv35iusN/CdHO+x/2jvtjALYRka95eBxRIodYi2e66fDd1trz1toziNblZXhjPSWL/wSR8X8HIhLbAvBxRGTshjDd6PheAIxffB7Ab3vkqWSt/Ut45Z+DA7t+yGcz/UG0NkaY3TyZa336BCDm50+7Rqz9IWvtHdbaFURELoXI5e76Dlr7aWvt2621i9baP4hojf2ud20msvn5mH59MyLy8GXT9Ug8AuCCkeyI8N5vxpgHEMWfffOUeMI79t9PFckOInIys85N5Lb7Dsxx65yDI713D7jnT2N2nvj7gWt1qqBqcpQ4JBCpn9xkeGTat7n9nPb1XkT/9/wIIjX9E1NCe+gzeLwIXIiBCwgICPh9h0ceeQSdTgeIkjP42eb+4pzTvglRzMr905+HEe3I/n0AMMb8IWPMienvrwHwXYgC/bnj+osA/pExpjg1GP4IgP+HjZsoscE7/ItO1YQfA/AvjTGrxpikMebNxpgsoh30rzDGfJmJ4rK+HRGp+vALHhzgu4wxhWksx58F8HNxB9nI7fG/IyKxFRMlbrjNRJnxYIz5E+JWt4Pov9uxMeYNxpg/MO1vF5FRPo65xE8D+LMmSqWfRUQcPmZfRNIMD2VEGd060/n6S97317CfLMDHxxD1/W9P3dHegUiJ+lng+gyR/g8bmY5ZDpGSaYwxOXGD+vz0sz81Pe4kIldBjZMBjqBKWGt7iObxbxtjytN5+QuIXDRholTrt5kIdwP4lwD+kb3eVfgfAPhxG2VkfA7AxemafyemiVjMfpKO8/P64+E/IVJt3zftz53GmG+Yjmt6ul7uugnPwYvBzwD4G8aYW40xJURr9+fsEZNN+AQg5uenAGC6Xu6dzts5REb9/22jRCHXwUSulrnp8/0diGJLf9w77M8A+AU7G8+GKWn8JwDeY62dSbozVdP+N4Dvnrb/1YjIxC9Mz70XkZr8V621vxLTtY8jcuHNTzcJvgXXr/NvAPBhGyXz0X6Z6TPEBES56Zo40nv3oHtG5CL61dN3UBrRO/1DNkq+M3etxtwfjDHvMcY8MF23FUTP2A4AJkX5CQB/0xhz2kTJmr4d3txMNyZ+CJEb8QSRW+Vbpu+Mt2N+MiQAx43AwQQFLiAgICDgUExdz9b4g0jRYNY0IFLoPm2M6SKKWfhFzAap/2VEcTnriAy8v2StfQQApgZ1B1Hmtjh8x/S7jyNSW74fQMJG2eD+D0QB8ZuISMRX2Sgj3QvFbyNKKvGbAP6FtfagtNnfiMhwehSRMfLziIxCIEou8jETKU6/jMjoeBqRa9B/mB7/LCK3yOvc76a79N+FyAi8ikh5+Tr/uBeB7wDwpxC5U/0HXE9UvwfAfzKRe9RMdrnp+L4PUQzgJqJ4nW+01j52g314GyI3rV9FpNL0MU1TPlW2/hiiRCs7iAzkzyKKRwMAGGNOA3gXYlQJExVFVzX5WxGtsSsAPoKIIP/Y9LulaR+6iOLhfsxa+yNeexcRxdD962n/riIqKfAIokQ43zk99CyieT2S+jUdyx9ElCmwPb3G1037uYZorWenh79Sz8GbzfWq1xtu4PwfQ0QSPojIyB5gP87vpUQO0Tx2EClpH0H0zABwSrAmA/kGRM/SOqL31XvsvhskpkToaxHvPvm9iBTwj5t4b4WvQ+TOt4NoXXyNtXZj+t23I0ou86NyrqpL34wo4+olROvmAq5PMjPPrfMWRM8N2+sjUpyJue/dw+7ZRu7efw/A+6fn347onYEjrFUften1m4hcRG8H8OU2cs0EIpfmX0G0vj87vea/99r4swA+a619ePr3L06vvYFobvzjZ2AO2OSJDjDmxxAF961ba5ka+OcAsABmDUDDWnv/dIfmc9gf7I8esPvp8OCDD9qHH374sMMOxZ3/4NfwZ7/0PL7zD8US5oCAgICAYwxjzCestQ9+EfTj/wBwj7X2Ow89+OXrw3lExmb6qEpBQIAPY8w/ALBhrT3QmAwICHhlcZSCgz+OKEDZ7QhZa/8kfzfG/ABmM608aa29/yXq3w3BAMGHMiAgICDgpsJaGxewHxDwqoO19nsPPyogIOCVxqEEzlr7wXm+z1P/za9FJPnfdIQYuICAgICAgICAgICA44wXGwP3VgDXrLVfkM9uNcb8nolqibx13onGmG8xxjxsjHl4Y2Nj3mE3hCgGLlC4gICAgIDf37DWPmOtNcF9MiAgIOD44cUSuK/HfhE8IAqmPGetfQDA3wTw0ya+HgystT9irX3QWvvg8vLyi+xGBGNCGYGAgICAgICAgICAgOOLo8TAxcJEFej/GIDX87Np9pvh9PdPmKja/Z2I0jO/7DAILpQBAQEBAYejWq26/y6MMa7WnO/Fwe/4k0gkjnQ8kUgkYj1DrLVIJBLXXUO/578mpg6ens9j/GOttTOfzWuLfdDrsr247/1r+X33rxHXjt/HQqGASqWCTCaDZDKJRCKBRCKBXC6HdDoNYwwGgwEGgwHS6TSSySTS6TSKxSIymQyy2ShZHOcnk8m4fo3HY/f5aDTCYDDAcDhELpdDuVx2nw+HQwwGAySTSRhjMJlMMJlMMB6PYYxBPp9HNpt19z+ZTGCMQS6XQy6Xw3A4RKvVwmAwwGQywe7uLiaTCVKpFBKJhLu2tdbdJ+8JgLvP8XjsjgWAVCqFdDqNhYUFLC8vu/YKhQLG47G7Duckl8u58RoOh6690WiE3d1dGGOQTqeRTqeRSCSQTqdhrUWv18NoNHJjxXEej/erQiQSCaRSKXd/7DfHY29vD3t7ezPHc67ikE6n3ViMx2Ps7e25a3Ms2F4mk0EikUCv18NwOIS1Ful02o1/JpNBJhNVbRiPx65Pu7u7rh8cJx6n48/2rbVuLQBAoVBAoVBAIpHAeDzGeDzGZDJxzx/7mEwmkc1mkUqlMBqN3DE8bjKZuDmw1rp55b1aa7G3t+fmhG3zvaPgHOka5TylUqmZZ5LHjcfjmbnguuC60eOTySRSqZT74ffJZHLmXPaP98JnaXd3133nP/vJZNI94/qsc12nUilks1mk02lMJhMMBgM3ZtbamWsmEgk3rtpeMplEJpNxa9J/ljnGvDb7pD9cP/qu4hhwfBKJBN7xjncctd7kS4oXTOAAvBvAY1aK/xljlgFsW2vHxpgLiApDHljH4KVE9AC8UlcLCAgICDgO8MkIP1McRrD849XgogHlH+cTm3nf8Vw91u/3PJIU12c9N67v8zCPvMVdSxFHLtleMplEpVJBvV53xhiwP36j0cgZciStJGiFQgGlUgmlUskZsIVCAdls1hngNO5o7O/t7WE4HDrjbTAYuHMTiQSy2awz+jkuyWRyhkgmk0lHNGjQtttt1xaNRWCf3IxGI/T7fYxGI+zt7bn7UkLE69MwJpLJJE6ePInFxUXXJu9xb2/PGZo0fHkN3peOvRIjAK4djjnngGRGx4aEbm9vzxFBEi8SSbbDcSEZBiJiAeyvZzWclYSQ7LIvnHMSHJIjkjYeN5lM3Jjw2rx/ts2+DAYD1w7Hhdfl59lsFrlczhEyJSXZbBaJRAK7u7uOICqh4H2R6PBvklOuE4X2m+PEY/isKBnkd0oolVRy3DjXvEcSIY65kn/eMwkMn1+ep2s8lUq5vsZt6Cg5I7HTdcY2eS/6OUkxv+d19Nng+4D9J9ge2yQB1c+UgBOcm0wmg1Qq5da0PtO8jm6+3SwcSuCMMT+DqFr6kjHmEoDvttb+KKJaCT/jHf42RAX2RogKef5Fa+32S9vlA/oKwAYNLiAgICDgEMSpVfPIiP+fdJwa5X8fR4p8IqbnzyNR84iP/n7Qudpfn+zFqXy+Yhh3zrzxmId5/ctms1hYWEAul3NGnt8md+D5dz6fR7lcnjE0aXRTKdnd3Z0x/kgslACS2HU6HVhrUSwWHZnp9/vuPjOZDPL5/IwxqgblZDJBs9mcMQhJAlOplFPHaJCqKsfzATgSwzkg8SsWi8jn8ygWixiPx444dDodd99UG1KplDOwSeDY78lk4ojD3t4eUqmUUyj8dUySR8OdpMUYg+Fw6AxxnSNVzriGfDLBcSPp4jVVXfHVKo7TeDyeIV2qtrEvNO51LpRwZjIZ5HI5jMdjN8dU/0jQqNbkcjnk83lH+kkcqUhRpSMRp6rFeyRx4thxbKkU6waBkpR5zwDvhX/rhpB+75MTVav89xJJGtVMqko8D9hX87huqOhyHNh/blLw2VJVTfuhZJDkWvui/VaSS0Kla1UJFdtTcLy41vgvx0kVSN1UyGQySKfT2N3dnVlT2qaS4JuFo2Sh/Po5n39TzGe/gGml9puCEAMXEBAQEHADOMxl8KBzfBXL/12PPewa88jgUfru/x7Xpt+3OBJ30HXiSCDbPMpY6TGJRALlchlLS0vI5XLo9XrOePKNf14nlUqhUCigVqvBWotcLucMqNFo5JSSXq8348pH4zOdTuP8+fNoNpsYj8eOqKXTadRqNaemUI1S1zxg1sBk3/r9PrrdLgDMqBbJZBK9Xm+GTPEnlUq5vgJwZIh9VHewpaUllEold/+5XA6j0Qi9Xs+RDaogdAFVZcUYM6MUah/oCqouaCSsvAfOWTabdeqLtdYRGM6Ptda5DtKQ9hVoJSmqTqlhr2qRjrkSBJIukjcSRgDOoNdNDRI+dWNl/9gPHbtkMulcZVV545rzPyPB4Tzyb15bCZzen26UcB4AuI0H/ZzzR3LE8zn+vCbXFD8ngee5+ozzfKq+Ssi4FkhWqEJx/FV50/nlGHAcdJNCN6988qWqoM6zrmP9juewPV9d1b7pWlL3d6rqJKWcK107SkbpIsrnhUTfV/FeSbwYF8ovOtw8ITMgICAg4NWGOIXqKErcvON8UhOnjvmEMY7sxSlcPmmMU8L8Y/X4uOP0mnEEMq4fPpE7DP5xqVQK1WoVKysryGQy2N3ddaoIVSglc1R1arUaCoWCa4fKSDqdRj6fB7Bv1LXbbezt7SGfz6Pf72Nvbw+nT592yhIQGan5fB7VahXG7MeL0XVO4914PLBPKvr9PlqtljOc1RWv3++765IcjMdj5PN51Ot1pzpRJbPWOvdEKjrlctkZotlsFplMxh1Po5OGea/XmxlrGpVUHlOplOuDuuEpiVL3P3U14zirSx6vRSNb3dS4fny1mYSJx6jRre5xSh79Nkim2Z4qX+pyy+dqd3fXuZsyppBEmXPGOSJ5pfpCd0wqphoPqC6T1u7HrWmMHdvm/XAMlTRzDvT+9V54/7yO/1z7ZIN/kyT6xM0nG1Qy1X2U96tqnq5TkjeflHO+NDZM3RtVefNj53Qu5rmJsn3dIFBFkmvYJ8kcK415811GdUx9VY7X0HXK8dRYz5uB40XgbnD3MiAgICAggPDJDHC9SkYj5DDVaR5xY5u+MXZQTEUcafP7pe3qTv1hZDDuOj7ilMJ5fZ0HuiZVq1WUy2WXZITGMrBviHGM0+k0SqUSlpaWnCskjTqSMRr1NATpGscEH8lkEufOnUM6ncbOzg5arRastajVas4tkYoWECWsyOfzMzFg3G1PpVLY29tzyT54DF30kskkWq2WU3OA/WQPVHb4txr0JBSJRJSYpFwuO4JDZY8kjX0pl8uw1qLT6cyoFDSgaYRyXJVAcd5IAovFolt/6hao7Sj59deXGuNcy3TvpOHLsSL4HcdIYxvj3ObUFY/qCcdMY8uoFNJlUpOjKNlQN1uqm9lsdsadkmqsuj0qmeN9aKyZvzHCfqtyy/eDupHyuVJSQvjxbAe57akLqSqSOvccUxJWJWraVz/2S5U2VQfZvrZHAuQTOLapcYGcZz4XnFf2heOhpNUfax1Hknfeh65nzgefP7oSc37Zb16TSV/S6bTb5KGqq8/YzcAxI3AhC2VAQEBAwI3B/084jiyp4cvP9Hc1quLULL9tv415x+r3h6lu/nWPSrzi2j0KOTtIrVOkUimXbERVExpa7LuqF4VCAfV6HcvLy7DWotFoOEVCjdTRaORc/Hq9HhKJBIrFIlqtlktykk6n0Wq1nPtkqVRy5ITGfiqVQj6fd4QJ2M8uCMDFj3W7XacUqJJGgtnr9WZUDRI3ElUmMtFEDCQFJLdK7GgoahxXoVBwyg+PUWWHxvFgMHDEmUYvjdV+v++MVzXsqSZRldSNBc0kqa6DVI6UjKuqRSNdXdvYV3VbUxVHVSr2eTgcOpKgRIfXIXEgEdvb20O/33dEVbNzkujn83mX+MZa61Q33hMJ5XA4dBsGqrSRGKnrI8eHhJLH+YqQ9l9Ve443r6HKlcYfqkuguiSyHV85U3KiiqsmT+ExSk589VSfVc4715KvFsa9O3l9nWdVLdXlVfvEsVDXRZJe3QzQLJL8nm3zukpE9XnnNdTlkoQ9kUi4eFyu/RvZxHqpcbwIHEIMXEBAQEDA0TGPuMQZHXHn+C5KPonyyZFv2MzbTT+MbMWpbv4xmuhA7+egc+bBNzAP6g9BRWlxcdEZz6qacSdbDS0SjpWVFRQKBeeKyLgtZpDc29tzJQCYEZFEpdfr4ZZbbkEikXDndzod5x5JIqaZJ5W8adwad/F3d3fR7Xad+sb+qgtiKpVCuVwGABdXVCgU3K4926QbH8dIs3BS2SMB0wQa5XLZGZGapVHdF1VJA/bdJEkoaKQycQyJpBrtNG5Jcv2sfyThmqyCagtJBueRZIr3yvVOEq4GNrCfyl/d7BjHR4LAvnDs9b7U4NaMlFTs6N7KpDck+HR1VdVNMxEC+6RV3WW5hjXOSxU6VT/VdZVj4BM7joWSCY6r7xrIfqjax3Wgc8GxIpH11VVNXqL3o+RGr6vPLedfE7fou4BjyM+5WaHqnSp9VLJVdeVY8XnVuEfOh65frgn2jf3jho3GT3KujDGOpHMs+ezoemX7/pjcDBwvAmdMyEIZEBAQEHAkHFV1ijvuKOf6CtU89cw/1j8vjjT5v+vuOLDvcuR/5xNDn9wpITtMqfP7ocZMKpVCrVZzdcuoHJA4aDp4VRPK5bIjfCRZCwsL7ni2nc1mnfpF47zdbiOVSmF5edkZq+1225E4YD99vGZiLBQKMwYs48XoNtjpdJxio2oTyVUul3PxebwO3TDV7YrEj+56AFAqlVCv191YKAGjWxn7opkSOReZTGbGYFUXL6ohTLdPtZMxdbxfrZNGAzqXyznDmASK8wTsu5vRsFVFkySG11XFinOvtd24XkneqIDxXtmWEj0lOEzlT8JXKpWcuyoJuhJmZqNkbTcSPZ+8kUjpRghJlxJJguRIXQgVHD8lXEpqlazxeCVh/jskLr5M1Sp1F6RqrMqptXamDp3/jCl8cqjjwHnhRgqJm79BxT4peWNb+i7Qd5CSJR0ntqGuvCRc/E5VNI45CTk3XNS1l2veJ6AcFz6/SqT9cXolcbwIHIICFxAQEBBwOHTXW3GQq6F+5itP89rQa80jiP7x80iS3w816pS8HXZ83P3EHe9/H6fCxR2XzWZx4sQJLCwsAIBLDpLP52dUHwDOCEylUqhUKi7erdvtotvtutgTAC4mLJPJONe4dDrt4sOKxaIjfpqpkYYesyjSqC+Xy04ZJGFQ9Wg0Grn6buVyGefOnUOz2cT29jaazSb29vZQLBZdHTqSFxqOw+EQnU5npnQA3StzuRyKxeIMuaURzuNJKJiEhO1TGaS6QSNVDX0ayupOyM+18DfngOezfxxvjT3S6/B7GuUkQBo3RPKmqp66pZKwqOrGdljDT5Nc8G/es5I39lM3BhKJhFN7Seiz2awrxUCXViWTvHclUUqk1DWSxjwJtO/WqWPku+357x+ddx0bTbKiZEFdODXzpRIa/ZvzocSJShz7pWtE15O6JHKsuM7Zno6XH9fqK3XaL9+FkmNDUqfPE8/jM8r555pTYu2PcVx8opahoLcAv+fzp66d+tzxnEDgXiKYEAMXEBAQEHADmKeuKTGZR+gOIk1Kruapb0qo5rlEHuQyOe9cv1/+9/xMFbO4+/DHQM+dNx4sD1CtVp1KxgyMahSSxKXTaRSLRSwvL8+4sjHWjEYnSdV4HNXwAuAMvUql4gypbrfr4tpo2CnpoLpEhYxGOFUYGq8sEWCMQa1WQ6lUAjBbl45EYDAYoNfrzaQWZy04JQckNqVSCcVi0fWLfSfBpEFMA5NEFoDLrMjjNDOiJlWhsUziks/nHQnh/fIeSNSUcFEZUYOYUHdF3gMNcpIkTSFPw58Ej3NHEkFSSnLX7/dhjHGEn+SN90ZjnUY+r6vqKUtAqKIHYCZRSb/fR6/Xc/GPjINTguArQFQefYVIlRm9H71XRRyx09jHuGeM19S4zDiVic8ir09iqu8Fnqcuk0pO/SQ4XNvAvgLOPum9qVuxrgm/gLwqlD4ZZJuqBmrsrM6FXkPb4TuDY8Mx53zwbyq86pqp6q8mNtENi5vpOkkcKwIHmKDABQQEBATcMHySdBSlSgnNPAIW14bv+qPtaZs+QfOvqd+rUekfH2fcHdRPfwx88hY3NqlUCgsLC6jX6zNkw1rr0vyTIClZKJfLWFhYcOMxHA7RbrcxmUxcHBxdBnu9niNfvV4PtVrNEUNrLTY3N9Htdh0xoAsjDeVCoeAKc/P+mIWSu/2j0cjVkiNBY3Hwq1evOkWNBne/33fGpNYGI+GgUc726O6pBEyVGbarRKpUKjnCwX7ncjmUy2VHUpeWlrCwsIBarYZKpeKKndPw1YQXuo40fmh3dxf9fh+dTgeNRgOtVgs7Ozvodrsz/WNyEzViSQh8tzQSXsaRaTwcjXqNvRuPx87Fk30jSDJIiDgOqrpx3nlPvB5JANchSbdm+lT1VUkMlSrOr6qKfq0z/s77pRql7rF6HLBf+oAEROPmdK34hIVtqIql8WZUIDn3XIs8l4TajyvjGtT+kjjr+uV9cS3pdXgtVd40Zk/PZZ80/o8EkO1wM0MVQ82mqXGFvlqpcZokbIS6NVN117hTdaHlWLEv3Gy4WThWBC56LwUGFxAQEBBwOOaRGN8g0eOBfRcpX5Hi74epen578/rG66gCdhAx9AngvHuMU/fm9TmuHV+ty2QyWF1dRa1Wm0mKobvoNLRoXNFlUmOtmLo9k8mgXC67bItUjmq1GoDI6FpYWEC5XMZwOESj0XDKBNUma/cLT9MALxaL12W1U/LA+LFEIoF8Po/V1VVHnEjsGNOmxbl9sgbsJ12gwsaYKxIFGp08n/evyRPUwC8UCjh16hSWl5exvLyMEydOOKKmZQ/8uSXi/j5oDer8MwlMo9FwLqTr6+tYX19Hp9OZSZjCuWViER0jJVNKAjTRhWYJVINfDXWOMxU6EkzWfONYKhlkm1R2qVKSkHDsWSCeSh7Hgf0E9t8LWtqA8LNyKslVpZL3zH7oM+O7XHMOlBTpHCp5JOlgAhkSKlWOSGQ0Y2Nc/J3fJ23TJ29xn3EufZVOCRzbVrUsTtnUZ4v378e68Tx+poqbnsN15nsy0G2ScbLaZ3VzpqpLBfdm4XgROIQYuICAgICAw6HqUtxncT96nG+QxBnLNLa0Dd119tUyn0z5aon/vSpvetxhhFJxELk7aHyIUqmE5eVlpwapAUq3OSYKUfWFNdgY68Sd7Gw265KKUB3LZDKOHObzeVQqFXQ6Hayvr2N3dxc7Oztul16LNpO8aZp43d2nmgLsJw2h0VksFh2h7HQ6GAwGTklSxQeA6y+JHQ1u7uwXi0VUKhVHIuj6xj5Q0aMxnUwmUa/XUa/Xceutt+K2225DpVJxihoJkp/FM26u4v4+iLQpKeC/TEjDIuRURjgOzWYTly5dwrPPPotut4vd3V1HdDVeTckL2+FaobpD8kRiw00MTchBg50qF8dZz+V64JrY29tDt9t16i5rEXKuGJfIa/hknCqSuj7qe4BjAuA6F0jer7oP8nOuPxI/VfeoTpJwKgHT9w8Ji1/bjOdzzHkvqhRrgfJ5a4IqrsaM6fdKnnS+OX6qMCpx49rVjSp/84x/k5hq+QH+qwQt7r3Kv5V480dVb/5OpZOKsm4kAHDvhG636+LmbgaOF4EzgcAFBAQEBNw4fCPYJ3P+sfw3jkD5pC/OoPBBI2ie6qV99M/3/1bDMk51mXdfvtJ3EPEDIvK2uLjoYpNoEGk2u0Kh4MibukPRdYkkbzweu+yTNMSHw6FTzXZ3d1EsFjGZTJxbH90ZAbiYMu6e08hmeQB1u9KMfKwJlk6nUS6X0el0UK1Wkcvl3HUGg8GMK6TGhem90TWLrqEko1QtNDkKM/YNh0P0+33UajXceuutOHnyJM6dO4czZ844hclXYUk6DptHVSxUCTpoDfmqDtelfsf2SIAqlQrOnj2LN73pTdjb28O1a9dw5coVrK+v48qVK1hbW5sZc+2jxghyHfF7kjiOK11vOW5UNzm+Sqy1vttoNEKn00Gn03Fqpl8bj261NN6VbOhYasIQQl39SMj4DKm7HlVJn1Sp8qtESt0mtawBv1P1jmNGl0mudWA/IyrHh2om1W+SUq5dfpZMJl38nLoo8pp0gVUXS3X55NhxjPgMsq/83B83rjEdB1Xydf1wfarbKfupJRB084BKrcZNkvTzXv3MqZy7yWTi3j1MhHSzcLwIHEIZgYCAgICAw+EbsXFqW5zhDGDGOIkjb7r7PI9AxfVDyZNP+vw2DlLefLI4L+B+nto3j7ipclCr1ZxiQfUEgMv+SMNa06rTuOOu9XA4RKlUmlFL0um0c1lMJpMu7iuXy6HdbjuXRlUbqtWqi0dj39Pp9ExyE7rV0VAD4FzvqCwMBgPUajUkk0lsb2/PJCdhOzTsaKwyxouEkUoVd/g5blTe/MQbd911F+666y6cO3fOkT6uoXnz7K9VTWQRt3Z1fufNv79u9G/233d90zVKAzqbzeLs2bM4c+aMG/Pt7W08++yzePzxx7Gzs+MMcpIWEhX/2qpQqZtcv993yVyY2IaEfzKZOHdVqqJU3pLJJKrVqjPcgSh1vKqZJKfaP96fH1dFl0M/KyjXH9cK54EEgGuDf7MvuqnBaxpjrsve6rtl8pkkoaL6yXNJVkhqVG1UF2L9m6SFxJoEiHPgu+uqGsYx0fek725MYqsqJ3/33Zw5FnoNjqe/VlWRU5dkfRaU5LHWoibmYYIWrlNde9zQyeVyqNVqgcC9VAgKXEBAQEDAC8E88hZn1M4jYvovf4879qBzfdfFeSRuHnmL60PctQ6C35b+XSgUsLKy4oxFYN8gojFZLpfdLjaNSxqMlUoFiUTC1WxjYg8aSLoTzmQZVA8Yn6KGFkmfxlkxA6GmhKcyRzWPCSxozGezWZRKJVhrsbW15YgiM07SiKVio/fLMSsUClhYWHCfUT2hatRut5FOp3H+/HncfvvtuP3227GysnId4Y9bY+oypqRN58wnVOpm589rnOI87+84lU8JnZJSVX7pilqtVnHbbbfhrW99K65cuYKnn34aX/jCF3D58mWnRnIdkdRoIWYSIWYF5BzkcjlnhFMZKhQKbq11Oh0Xt8hMk1TZUqkUSqWSI3lKELSWHsnJvHTxvjssj1V1StVfEj1gPxMlv+c4M309NzW0fSW2qpLSvZLkiSqkZp/UQui8vpIZ9o/3pDX6/DWo86/vLF13uj60Tp8xxsUscj2TyOp7g5/xWJJPTeDixwXyfcNz6aLNdwWfL60dqISSYwHsx71xfasra7lcRqlUmrs59krgeBE4hBQmAQEBAQFHg0904ozVoxCeeW0qjuL2qGTMd6dSQukfG3cfcUqaTzLnKYhxxycSCdTrdSwuLs64u6mRM5lMUK1WZ1QLxiAxdT6NINbjohFLw09T3VNBGwwGLraKCgaLMNMQA+CUBU0/T6OfxJCqGtvK5/OoVqswxjgXO2uti3ejcqZp99kusJ+QI5vNurpuwL7xR8M6k8nggQcewAMPPIDFxUXXf3/+fSVBFQRdOzReNabPV8V8UheHeWudhrXGDalxze/YR8YY0i1RM/gNh0PXzqlTp7C6uor7778f29vbePTRR/HII4+4hBBsj+1rKYVut4tEIuHmV7OBcvxJwFjAHYhcCEncR6ORc69kDT6NYyPR12dL3ZtJkrgOGXtGYsW+81+SF1V29Pn1E2XQxZfunwBmFDm2q2SRc8LxjtsUUZdXJdz6DmCsm27OqGuibhr45EkJFz/X9alrKu4dqTFvOrb8nf1XVVvdP9Vdkufmcjm3QcBjNOssS0iUy2V3DVVWSe64mUOSn81mXWbdebGDrwSOF4EzoYxAQEBAQMDhOEjh0u+JOIXLJ0px6ttR2uHn2k6cejLP5W2ea91BOMoxvF4mk3Ep6mmoc/da3cwqlQqKxeJMAhG9T2YrBCKjmgoAFZF0Oo1ut+tUNRIuZg5kX6gqcHc9kUi4ZCGa/VDJIBApYmzLWuvuaTweo9vtzrhU0QgHZsmYqiA0yql0aE0zGpEnT57Ea17zGtx7773OPTNunZC0k8Cooe4TW5+s+UkW4sjBjcBXBP3ftWTAPGKn6fOpCKl7Xi6Xw+rqKk6dOoU3v/nNePLJJ/HII4/gueeeQ6/Xc0qLkmkmw7HWotPpuPXDkgok4Y1GA71eD9lsFpVKBQBc4XfGZHI9Uu0l0Veo0sP7573Q4CcxUFdhVab0OdBEJ0p4SKq4qcCU9vq9n3SDpNl391TixrXCdaWEns+sEhVVqXRzRomTZtnUJB/+5oG6ZnL9kByxT3GJWHgu/2ZCFo43CaGqokrkeb1CoeAUV5J5rtXRaIR2u+3WA9eqJmrhO0Tj4Di2OhZKHF9pHCsCByDEwAUEBAQEvCjMI1bzjonDQa6NceTRJ21xiti8/sS5v83DQQqhr/AlEgmUSiUsLCwgl8s5lzOm7efOPNP+03VNkzOoAaTp4/W6NKB7vZ7b4WbqeiVUmqyCBItkIZ/Pu7aZBVEzFzKLJA1+ui4qQaT6QqJAtY6gkczrkDRSkaTBzPYfeOAB3HbbbSiXyzOxO/6mga+kUDWhUapZM+cRt7gff435a8tfEz5Rm7choOqcunRqdj+NRVI3PRIAvY9CoYD77rsPFy9exNbWFh5++GE8++yzaLVaMwXWub7U5ZEuk9ZaNJtNbG1tYTAYIJ/PO1JHxZXxYFQEc7ncTCFzVdmUvKlLnzFRPKaqYDqvSjJIDqn8aAISVf009T/HTr/TdqlE0bWSrn3sF8mIkhweNy+xBzce1FVTNy2opmnJCyVU7KM+J3r/qhZzHXEs1KXT/07j8DRmUBVBfkeCrqSTGyvFYtGtNbph93o9d8/G7Cev4XFMbkSVnu8+/7k57P+BlxPHisCZ4EMZEBAQEHAD0GQR8xBHbvRzPY7G1mHqW9w1DjpGCZ1P7ng9/UxJok8Y41z3aIyowrS0tISVlRVncBpjnPGscUiFQgGlUsmVDMhkMmi32y7tPwDnrkSDi+0lEgl0Op2ZHXW6OGlcGxNNkITRGGd2PmB/13w4HDrDmWRuMBggm83i4sWLTm3r9XpotVro9/suIQqLOpPQaXY9qhNUK2ggUhUZjUa4cOEC7r//fly8eBGFQuE6AqTzpLFLvqrpE7XD/vV/1/U4bx3OU5CVmPFzVdiUvBH8nuex3IHGg/FvjZujWssxXV1dxfve9z6022187GMfw6c//Wk0Go2ZRCMAnIthKhXVcGu322g0Gi7BBDOWkpSXSiVkMhl0u10AQK1Wcy6U/FG3RL1vYD+hCMm6bmDwvtWlT8eM55L4UwEG9hUtksk4RZXPHUknSRUJC8cb2He3BDATA8p7470oGeK61s0CYN8VEYBbm2yXpFTJG4kf71fHRmPs9N70HcV/eZyq0hxfXVtsm+6wVFH5vuA80uWazzTVWyr2HCeqlixm3+l03DtB1WeNKwwxcC8RjAn8LSAgICDghcHfUT2qyuYf7xO9uOv4bfjHx7U97zM1JJSI+dfy+zdP3cvn8zhz5ozLELm3t+fUj93dXWc0GWNcNsputwtrrVOsGI+mLlZ0ORqPxy4+RTPj0QVOd/kLhYKLVxkOh45IsR4cXcgY58a2J5MJ2u22c68CohpzzCppjHHJLyqVijNmjTEuyyEA57JJtzb+ruPH2L+3vOUtuOOOO1y/4hRRVXhI/Pw4tnkETQmCfw77MS8OLm4d+f2K+1EDOu6Hx9G45jlUK3mvdPmj4U0Dm1kkVQHhuvqyL/syfMmXfAk+9alP4ROf+ASazaZbE1xX/X4fzWYTnU4H1lrn5svMlBqv1Ov1nEJKNUYJkypvOlYk8TTc1dVS3UW1OLYqaZwHlssg8dGELBwXjqWqUFy/HDON6+J4kxRyU0DrwOnzzueEmzQkaTxGXS41jtQnZf7Gga5HvXd+p+uc9+Xfp65Jfbao3Pl903Wby+VcfUhV4ekaybWqJE9/ODYs69Fut119QPYjmUxiYWEB6XQarVbLbSbdLBwvAoejZfwKCAgICPj9DZ+8+MbWvJ1VNYh9BSNO7fKN53lEzL9GHHmMU/Z8IjZPyVPDaN7/k4lEArVaDefOnUM2m3Wp2jVxB43nVCrlCjvTaGK2OMaV8HrM+Mjd9VwuN6Ok0dgGZhUJqiuayr9cLqNSqbj03ewXFYpCoYDd3V00m01HKpeXl5FIRJkvO50OcrncDEGjEabxczTaGUujiS84hv1+H7lcDl/yJV+CBx54AAsLC3MTNag6pWpbnHqmCom62OnnNIaV6HE84ubf74tvKKv6puvEJ2o+gYuLgdNjAThFkwScqoeeSzdakiCul4WFBbz97W/Hfffdh4997GN44oknXD87nY6r1ce1QfdbEnOuNbrMkXzTXTeuTIGqRiRKHBOqaCQ0wH4ReBr8qlyRqDD+knPH9aoKsl/rjMSJmwbqsshxBPYzSPqp/El42GfN4soNE/99wL5wzjVhi947j0kkEq5dPk9KsLh+VU0nGVPCTnLM7zUejmOi61DXF+cok8mgVCq5c3ivBDdz/D4Sw+HQxU8OBgNXL5DXq1QqbnOG77ybieNF4IICFxAQEBBwBMwjScD1JGce6fFdDw9T7PQcn+zFta/HaR/iFBT9fN51Drof7i6vrq4inU47o0h39ldWVgBERhkJHl0qaYzSMGQygEaj4dQVGkQa00Q3N2bKs9a67HtMXsE0/5VKxRXZplFM90fusjOJBV3pTp8+jWq1ivX1dWcUsp6cJmFREkmjmUkdGBNH45zE6Y477sBDDz3kxmxejBs/80mXqhcAZvqkSo1+zv6xHX/tHLY54JNLdVUDZgs181o8Ls6AZgIaKlFUn2j8+8oJiY4qRTSoqXCqOsVrLy0t4b3vfS8eeOAB/O7v/i6+8IUvoNVqYW9vD8Vi0anFdIVlTKSm1NeYMZ+c6j1yTkjSlLRwDEmWeD8khz6B4/yQ/HGNacxmXAwe55drj2PNZ4/PiLpHxsXFkRgpidLSBKrGabyabipwXoAoGQyP571TlVflTdVETYiiRFDHxl9f/I4EEJjdbNH1y2OUVPNcfT9RcaXSyr6yf61WC61Wy3kKML6S19V3xN7enlu3NwvHi8Ah1IELCAgICDgcB5Etn/wc5I6mv8cRLZ+k+e3GkbejEEG/v/P+jVNb/O/z+TwWFhZQLpdniALjabLZrEsIQUOU6hZ385kRD8CMctZqtZBKRYW/gag2Fw0jGlg02BkHxNIANLxYX43JQJjWW3f9rbVoNBpot9sYDAZYXFzE6uoqut0unnnmmeuUnXw+74gR2yFpoCpC45n3ZkwUd1SpVPD6178er3vd61xilbi1wHGOS0KiShtJGg1sklYapfOSmMwj8vPUVhrU2l+uAU0woefwvjU2Sj/nfHBsONeFQgGtVmvmumqg0yCmyss1pPFLVOTYfiqVwqlTp/CH//AfxqOPPorf/u3fxtraGorFoptHumpyrSUSCRSLRRhjZgrAa/KROLKmyhXXGA12Vcy4eaDqrJJAPyaOZIDjpgWuOa4koWxzPB479Y7rTd0RVY3jePGaqt6qq6aqtiTfxlzvYsm17xNN9lndJjXDatxYAnCqp/ZPP1dCRrLFsfHdW0n6SLKYdISElf1WaPtU2ZlAqdlswlqLYrHoXG/z+byb9+FwiFarNdOfQOBeIhhjggIXEBAQEPCCMc8tJk7p8MnRPPLG7/224oiaEsGj9Glem/q7vzNNJJNJ1Go152qmGQS5C011w1rrEoGQXNHoo5HHODkmBhkMBigWi1haWkK320Wj0Zipv0WilkwmUalU3A43DXYSqEql4twbqfqxthYLfjObpDEGr3nNa2CMwebmJlqt1gzRYTyUGqRay4s1tPL5PBYXF91xNJovXLiAt7zlLTh79qxTO+KIlK+y+a6RqrBprTpV3OJi3OKgRqSuwTh12N+UOAy6dvRfHRMlZqPRCBsbG9je3p6Jf1NlTvukBjVLBZDIkXCMRqOZEhTpdBr33Xcfzp49i09+8pP4+Mc/7tYmYyu5wVAqldz8ss+aWIUEC8DMmlIXSB6vSW5U+aVCpW6DmkyEc0gyCcCtN34O7LsPMzkQn7V+v+8+J8HX+2CyHs386F+X6jiVN594sU9M+sL3gBJczpkfa6lKFomYqsR8rwCzpRn4jHOzhORVVU32m/fNdjhnmv2U19XYWiV6PI+JSphEh+8Ebh5w00Y3bkgK9TnQGL6bgeNF4HCw33dAQEBAQICPOHUMODyxCI+Jg0/CgNl6UqrAxbUxT+njd3GEbN59+bvENJyWlpZQrVadsaZpsjOZDIrFIorFoqubxDapmgD7qfUZV6Zp+U+dOoV6vY5er4dOpzOjEtAgLxQKziCmu5MW/6bBrNkkAbi4vE6ng1arhfF47JREALhy5QoGg4Fzv+v1eq7QNl0oOR80NEkAFhYWXPbNXq/nvvsDf+AP4L777kOlUnEKkhJ5zsW8mDYagfwhgSVpjSsboGvEJ2f+uoqLkfT/npcsIk7F0/uJI4YkBz6xpBGtxjMNbaptqq5oQguSNZIYzVxKkgtExvbi4iLe+9734ty5c/jIRz6C7e1t9Ho9l2nSL/hNtZjuvUq+SURJHv15ZH+NMU4143PE85WUKaHVRD1sl+dx7HhvGu/Gz0gcddNB1TEttUE1mj8sy6HlALgOlHRyU4RrXV0sVY1UF2Al4P47SZ8NPZ9jqCSU86z3x/ngRpISR2OiBESMT+PY5nK56xRWvSY/Yzxis9l0rrW1Ws2ND9U3Pw6PBJPPftxz80riWBE4hBi4gICAgIAjQAkUEB9X5rs6xsE3ruepbgBiiZT+O88lTq9DqFHtq4Fx98nfqQIsLCy41OqagEKNXBqHNLZI3nh9ZqdkAW6NsTlz5gzK5TIajQYajQYymYxT7iaTiVMYgCg7IBOdMLsk3SV5TSp6NFKHwyG63S7a7baLz0smk2g2my6pQrlcRrFYdO10u12nmpFIMJkEECk7KysrqFQqjiiOx2OsrKzgzW9+M2699VZnIPvZ/ZQI0MBVFzqeQ8LGHz9xhxrf8+Z/HunivGhcl9+GEnpdF3HET//115OqMdoXGrn8PY6g7e7uol6vo1aruUyhGienxyqhIRFhdkH27c4778TJkyfx4Q9/GB/5yEccudH+sT8a/0VljiRFVTlV50gQ6EanBr267DEWjCoUP+MGiZIetsu4OMbpkcyQuPDe2RYA98yx/1y7nHfeM8dLVU72W8tXKPnUUg9U4vh+0Hn11UsSJF5f140qr+q6yrWomwq6kaTvS1U32Wd+rgSNiZEIdQln2xpTqgQa2HeV1RhGkkl9xjk/wYXyJYIBAoMLCAgICLhhzCNe8wzquP+4lUTFuanFxWQcZQc3zpg+jFjqubxGOp1GrVZzqdZZAJvuSdZGRZUBOIKhrmw0mnhNZvQjadrd3cWpU6ewuroKay02NjZctrZyuYxmswkAzlAdDofodDrOgM/lcq5vVBQAOIWBikO/38fOzo4rWbC0tIRkMolGo4FOp4NsNuvSfe/t7aHVarljJ5OJu0clH5lMBmfPnkU+n3fuVcYY3HbbbXjb296GWq02k0Jd5y7OVZKGHxOwWBsVmmaGO43vUkN43vqIU2H9Y+aRt3kqb1y7cW3HKdN+u2rc+t+rYkMFY2Njw2UiJZnielbSRxdTrfnHml5MSmFMlCHw3e9+N86cOYOPfOQj2Nraum78lLhqsg9gNlsk/wb2C0IbY1y2Sb0/9p990YytPF9JAwke3YHpssg4Lp5LFYiKH8dI493YV1X2lHBys0FLadAVlERbSYwmn9H4Omuty+hIoqQuijq+JLOcQyU5SuJU7eezwu90/fFe8vm82+jQ54xjoxlAqczxmhxrHkfCTtfxySRKpMTNAhJ5VV71/wHdvAllBF4iGGNgA4MLCAgICHgBOIhMxRG8OMVinhKmx2g7cYb4PINbjz/oenHna6ISql/cqebuO920qEZojA+NPe7QM5tkt9vFYDBAqVTC6dOnsbS0hMFggM3NzZnd716v566ZSCRcHSUaU6VSaSZeCdhX+cbjMWq1GhYWFrC9vY2trS3ngpnL5VzdJrreVatVJJNJDAYDtFotl8yCBqWqDTTiT58+jWQyOWOkP/jgg7j//vtRrVZjXQ+VcPjukiQfrGHX6/WcmygNajVG/TmL2yBQQnTQcXq8f4x/ftxaOYgsxhG5uHN4rKp17Av/bjQaMzFMSi50XPg748A0oYjOVyqVwt13342FhQX8zu/8Dp5//vmZOC+uKyVFJDmqqgD7RJ9knzFv/I7taNZQkkLeJ9tSdztei+TNGONUYk2Hz1g5xrZpyQOuX82E6cf3aW06tkFywj7pObwvjfMiUVN1lNdXNU3XgBYp52ccC/6u/yohUjWN7eo11VWY1+IcMIFNqVSaSahEAjiZTFw5kvF47DJ7kjBSndUYO/aNbZDUqfoXYuBeIoQslAEBAQEBLwQHES/fSD4KwfKP5/d6rJ7ju6b57eq/hx2j3yWTSUeO+MP4GzUm1SWK6hx3qEejETqdDlKplKt1tr297YzaWq3mUulvbGw4Q0kNZKZNHwwGjsQwEUoul0OxWJyJLen1ejPGU6FQcMkHqJCVy2Xs7e05IkC30EQi4TJgdjod9Pt9ZLNZl/2SqiOz1pHI0tAtFAp485vfjHvvvdepjP7cK8HQZCOqGlHFJHGjy+S8GDedv3kulPzXV7YOU+H89Rf3nX8N/TwOByl7PthPJT9KeEl244gc75OuflSs6EbI9QREz+qpU6fwFV/xFfjoRz+Kz33uc25dcy1qQhMqaEoamTwnn887BYtjoOoLCRIJB+/DT8jBfqrKR3WbBLHb7TqXUcZf8flS11IliFTL2CclaFxrJHpMtEI1jcRW41I1Lg3YT+qiSVrikpf4Kfy11IaOkZ+ARNcvyRT7pQoY3xWqeGlcqSqavhsrSZjGz7JWHMeb69Ev/aD3FKe+cS5uFo4XgTOBwAUEBAQEHI44AnSYm9k84uTvOOt//DxPz1dCGOc6N88wjiOCatDrfdDwKpfLLhmIumTRWPGN2HQ6jWKxiEql4lK5s6YaywyoS9aJEydQKpWc6sbEISRf1kbuk6lUypEpkrtCoTBDKAHMGGJUEkajEa5du4bxOEqnzsyVg8EA/X4fyWQSKysrjtB1Oh2nzNDwZKFnZpZst9vOUC4UCiiXy87d8V3vehduv/12F0cVtw5UeaMhSYLB/pO40Xikoctz5609nec41TZuTeiaUaXCX2sH3Y+vMvrnxJ3vbzzErVH/WnrvXCM6llScVBHx3SyZbEJj5LTOV7FYxFve8haUSiU8/PDDrg1VPrlZwPUPYMZVE9gvAaExitoW/+Zx6t6oGxicD5JHjcXzU+lzI0HJWxxZ53OkJMtaO5PJVbMpcn0y5k5dEqlo83nj+FB50vFiW+rGSEVb15vGwvFYvht4b/q+8teLric/flAVSM16qWPJDaNGo+FqBrJ8CMkc1d+4Z5vjQeJKIqrP180kcceLwCG4UAYEBAQEHB0++QFuTGHzkzjEETJtkwaC/522EfeZ3zf93v9hIP/i4uLM7jkNLSoMdIOkysWyASQuVI9oECsZYeKQYrGITqfj4uA0YUE+n3c1ukjehsMh0uk0SqUSyuXyjAJA5c4Yg0KhAGMM2u22U0s0U1+328V4PEa9Xsfq6iomkwm63a6rPUa3T2bhY3ZJ7rwzpo0Ebm9vD9VqFe985ztx6623zhiu/rz4ypsqSFQYea8krCRvPrk/ioIVR/D8daHQGDJ1fztMgVP4GwP6+bxzfSM47nny29NshapiUlXh+iV5U8LH77XY8mAwcOsll8vhwQcfRLVaxW//9m9ja2vLGdxKvEm0qPyp0jIej2fcNFVp47PGdcBNESpXGh9FQjaZ7NdyI5Eh0eKzRXdHJa8AZhQlzgPXt6pQfM61WDjdlYF9N1Zej23SbZrPjdaGUwLlu23q/PmES10nlQRyTPgMxiXW4Y+6W+o96LuNSZJ0nfG9s7Oz45Q5a617d/jkWhO++Mpp3Ds77l3+SuJ4EbigwAUEBAQEHAFxytlR3cEIXzU7TDnT684z4g8yeuPUD//vTCaDSqWC5eVlV0eKhi2NslKp5AwuLRUAYMaNkdAaZd1uF+l0GouLiwCAzc1N9Ho95xrGPmgyksFg4JKIsK4bVRPubLNuF9UCFgJXhYBKX6/XQy6XQ7VaxeLioiNvW1tbSCQSyOfzLr4olUqhUqmgWCw69a5UKgEAyuUy8vm8U+Pe/e5349y5c4eSNz/ejYkRSHCZqCTOZfKgteRfcx6J8teUv67883WTQX/i7m9eH/T8o67zec+TvzmhBEWVHSUDNNaV4PG78XjsyIqfhCaZTOKOO+4AAPzGb/wGdnZ2AMzGVmnMGZUZqlkag6bKE7BfyJsxdvoOIBnQ7IkklSRM7Icxxim3AFAsFl1CE5I1zX5KdVsLc2tCFi2IDsBtjCQSiZnsnEpASEr5N8msZr+kQq+kx1fF4pRlKmS8rn6uY+O/z/yNB22bhEvb1iRDdFluNBquvqA+1+o6yfniZ1RxOZdxyjTP0z690jhWBA4ISSgDAgICAg6H/ifNv+OUhIPO9/9WUhinoM1TUea17ffpMOWlUCigXq9jaWnJkRQAM+5RtVrNxRqVSiVUq1VXe4tqDdHv92GtRbFYdKrbwsICkskkOp2OS8xBBSGXy6FQKKBWqyGRSKDT6ThFgcSqVqs54xSAa0NTpvM8qoYAcPLkSUeKstkslpaWXJZJulKyZhzdFbPZrKtzRyJLhZGxcp1OB5VKBW9/+9txyy23zLhTHaa8aT03LSbe6/Vmao/5Rp4/dzRAuSbnrQcfcZsQ89aMzq264/mZBOPgE7q4PvjGra5//V7JpN+WutWREFDpGY1GOH36NFKpFBqNxkz8E++HSlyhUHAkDoiI4Z133ol8Po9f+qVfws7OznXxnlTaVIni/KlCxPHiGqWixsyHOt5KLuiWyY0OEhCSfk0QpMSJ55LccoNE1UL2gwSNcZtcl342WS1ary6N6iK4t7fn1HcSWNZZU7dk3jOfDSVzfiIXnXsSQV+R5hpT9ZHrVBUz3q9uNnGOWGKEpUfoCcBnlm2puqeuqpxDdS3XOERe60Y3/F5qHCsCFy2km92LgICAgIBXA47iyhj3/WGKWpzBfRBhO+i8o/QtkYhSYi8uLjpFLZPJOMOQRmkqlUK/359Jl02ysbu76xKWZLNZ9Pt9AHCqFw3jwWDgjFcW8abhWK1WXbIRqlB0RWIsHrCvXAyHQ7TbbdcfAGg0Gq5dumQuLi66pCS1Ws2pJVQd6HJGo5fGaa1WAxAZdCSH6krZarVQr9fx9re/HWfPnp0hbzq3vvJGd0gqkyRu/X7fjacqSTpPcWTuoHXhu5TpeUcBj/OJoU+oNB4pTnGIO/cg4nfYufOg/QFmY5KuXr2KSqXiiAzBMWLSj3w+j3w+71QYKixnz57F+973Pvzar/0arl275jKijsdjtNvtGWVGE2/oM05Vjoa9MWbGhZIqGckaY7FIlPyi0Jp4gyoQj2NMnRJwzbBIVZxkiQSW5I2unz55ZKIQtsNnVDNU6qaCr5bpZoC6XPqJQ/RvdZXlnGlMnRJBrhOOLUk01yavp3PP9xDfLbwH1gTk+f6cEHwfsU0ewz7wGpqg5Sjr+eXE8SJwAIIGFxAQEBBwFMwjTIf953wYaYsja7qze5ALmv+5KhVxRjhdJpnFEdh3A6MBqKnFmZWSBAnATA0l7tDTzbLZbLqdaaoFNBaZnp9JQDKZjCMydGFjopJsNntdrBgN10wmg16vh26364p7j0YjLCwsYG9vD5ubm5hMJjhx4gSy2axTDBlnpoYdECmR2WwW3W4XqVTKEb5arTbjhlkul/H2t799xm0ybs6UwNGwJnFjW7xvdZn01xI/U5fBOBzFRZFt8udGDMq4Y3w3tnmE76j99GOaDjo3To1ToqvzQHJENUbdFPU41ho0xrh1nkqlcP78efzRP/pH8au/+qvY3t52hF/nnwqRuj/ScOemBNUsLQSvNdV8wsGEI3wGVfVmFlQlalT9SCBIhpREatkBKomTyWSm5AHJm/ZNCRMJpRYM9zNf6hrje0RjLP17VndSdYeNuy7HSGMSVfnSewb2XT1V3ePcc5xZMoXqPufA34DT5DAk7KpKs1/sryq+miDpZuF4EbgQAxcQEBAQcATQwAAOd5n0Dcw4d0n/M23Xv8Zh14s7Jo7YsSwAXQc1hmM8HrtEICR6zAZJ8sTkHYxZo3LE33u9niug2+12USqVnHvZ7u6uizliZkfGfNH4ohqo7lIkXjRmrbVoNBqukC4NqXq97mJYWCKAsW3sW7fbde0AcOpLLpdDq9VyY0CSm8vlnFGXSqXw0EMP4dy5c9cpbzruvvpGFYNum91ud0aRpKEXp9LGrQV/HcxT6JRcqaEZt4aOqujFgQarKkxxRmrcPR2mRMcdc5DarfFuSs74HUkUCYomEbHWOiLPtUmj/9SpU3jPe96DX//1X8fGxoYjeuybkhNgNjaP406ywHvw50cTBwGR+zL7wng3un2qOqfzyrg1Janq6kmFkCSN65KkTp8LPZ6EhXOt6pcqsf77jdB1p4RHlVE/0ydJobZnrXVuoBqT57sU69jq86Hn8N2lpE9VN37ub5rwfB1nEua4khFa3oKbCTcLx4/A3exOBAQEBAR80SMu+FwNF/5+WPIJhX9cnNF+mLLiKxNx/SMhKZVKLpCfu/hUJ6hUMZtdpVJxqhEAVKtVDIdDF5O2s7ODTCaDer3uiIkxBr1ez6lYVDM4JlS0qCYwoUM+n3euXtxZBzATM8fslBsbGxgMBq5GWzKZRLlcRrfbRaPRQC6XQ61WQyqVQrvddueToFGxo5JRKpVcn8vlMmq1mkt0wkx82WwWb3jDG3Dx4kXnRhc3HzQmNeZNY+663S7a7bZrV5U3vz1/XtU1y597f961f/o9lQh+pkkffDVN1ZfD1qUa0jzXTygxj6zFkVK/3XlK87y/1fhnO4epmbwO15Uxxim+xhicO3cOX/7lX473v//96HQ617kFqkqjmQ+5CUBiSZKgSpbGYqpaZ4yZcXtU8sm/Oa9sT5NrcH3RlTKdTrsSHHTjBeCeP242cJ2wfb0fjpXW4GMf1J2RoHquapqSJfZTlTydDxJIkjRV+5Qks890C+W61XkmUae7KEugcDz4PdtMJBJOQSTh4/1xTJPJpEuopCo6CRxVSI7FURTvlwvHi8BhfsHJgICAgICAg+CrEwdlGIszyuMUhzjMM3y1jXnnlkolrKysOBcypsunMcKdf9ZuY7ISpulPJBIolUoYDocuIcnW1haAyN2KBbRJ1vL5vIt9Y/rtVCqFer2OZDLp0vzTuGIB5GQy6UoU7O7uotvtOiMrk8lgOByi2Ww6lydeJ5FIuJpNi4uLM4XE6bJJdzcaY+PxGOVyGblczikb+XweJ06cQL1edzF5TGRy22234e67776uSLc/J6q6UXHRTJNU3khqD1ovOvdxCtw8YsR+ALMGN+HHg8URuoNUrzjlOO7aca59cX3V9g/bjLgR+C6pSgYBuNgvxWg0cioynxMqdalUCmfOnMGXfumX4jd/8zdnjH19BkmkaNwzo6ESShIixolS5VY3O2ZyVJdCJYr63DKpj8auAftxXnwGSAq5ttlPqnFai46qGY8j8SMxIXTtA/v11KgIUmn2k7ZwvEjKNNZOj/M3Rzh+JHCqQipZ0zHgu4WKI8eT9+5nffWVW7avhcu1nxozx3maTCYz9fT8cboZOJTAGWN+DMBXAli31t47/ex7APwFABvTw/6etfZXp999J4A/B2AM4Nustb/xMvR7Tl+DAhcQEBAQcDji1A7fsNbj/L/nGb4HKW3+54epFtrHfD6P5eVl1Ot1pNNpl10N2N9tXl5edkagtda5MFItItEZDocol8suMQiNc7pFUqUrFouuAHe73cZkMnHJSKzdry3F3f1isYhCoeCMR2ar1LpLJGhUPVZWVlCr1VxylE6ng0wmgxMnTiCZTLrEICRPwH5RZ6oG5XLZ/b27u4tyuYwTJ064bIRUBxOJBKrVKt7whjegUqkcSCL8+B6qGf1+H+1228W80Z0tTq3QOfUVJH9+49aHIi4mLW7tqUHpq3CqGB2kpsVByQ0N4Djl0lewta8+eY0bq8PmhMf57qPsH9URfgZEyU24ScD4MJKge+65B8PhEB/60IfQ6/VmFDWOEQmM1gbjWJP45XI5Fzeqtdz8shwcCxKVdDrtVGBNwEPSRbJApZ3zyEyuvV7PbYyUy2UXp0fiqa6cWpJA2+Z8kuDpBoCfLIT3D+yrdJppUlVr3qu64mpCEJIquoWyL3RTpHLJY3xFmZsnWteS19bspD7JIonlPHIuuS7UTZL3nkqlUKvVkE6nsb6+7pI+3UzR6CgK3I8D+DcAfsL7/F9Za/+FfmCMuRvA1wG4B8AqgP9pjLnTWjvGKwCDEAMXEBAQEHA4fLc0/nuYCxj/PUh5OEhtiCOEcaqbHlcul2fIG12laJDRbYu74iRq4/EYW1tbbgc5nU6jUqkAAFqtllMj6BLF36mEMfaNxmC9XkelUnHZ/QC4QspqhLIGG+PDgCixyGQyQavVckRRs/Px81Kp5DINMiU/DWUanZ1OB+l0GktLSzPqIBC5hp48eRLWWrTbbefaSAL5+te/HouLizPGmz8XavjRANV6dt1u1xmPutuvRMVP3OBfY55KNY/AxCWg4Dl+e/q59oduoEriaLAeRQFme5wzjTfS/ut15yl1Bz0/h0HHwidHfhv8vt/vu5g4qjaMG7333ntx7do1PPbYYwDg5lVd5Khkabt0qeOzx9T7QLTeeZzGsHHcqERT7eE1mZGVCjiJC+eLRE4TAaVSKRQKBSSTSVc7keSQhJLPpMYE8t40dpD3zNi8uPT/SqpIRrXwOaGxg/q+9dcNiaCSNo4PyTSfX6pvWg+PLqM6V3wPso98pnl/qvJpshYSN44hP89ms8jn8yiXy+j3++599EWdxMRa+0FjzPkjtvdHAPystXYI4GljzBMA3gjgIy+8izcAY4ICFxAQEBBwZMSRpjgVY95Oq2+I63FxhG4eedM2+Dt31U+cOOEUo/F4jGKx6M5lBkgWk6ZxRNWLiRIWFxdRq9Wwt7eHjY0Nd/5gMHBuWr1eb6aIMI2UXC6HSqXiyCMTjaTTaRQKBRd3QlfCVCrlimazXEG323XEJ5lMOiLZbrfRaDSQSESlEKjgtVotl9WRWTKLxSJ6vR6MMVhcXEShUHBtGmNw5swZrKysoN1uuxg5lk6w1uKBBx7AhQsXYrPH6Vyo2yTVARI3uk0yhkbdqdgOP1Py5m8OxG0GxCnAPjny3SnjlKh55IvQ2B8ayGrMxq1F7Q//VgVmHrF8OeArK/79z7sulTiWyeAzViwW8aVf+qVot9t48sknAUSuiMPhcMZQZyIUkhYqM1q3jWse2E+yQTdErik+tyR5VJ+YeIQqOtUw9lljr6gksu4b21H3RrpHsn0mDSKJ1DGj2yPXAu9V34UkXWyHJEhj9njf6oLIHy074ivAJG+5XM65KlIRjIuTKxQKqFQqaDabM+6zJILqVq7PA0ml9s3POKrzxvM55iTfHPObiRcTA/etxphvBPAwgG+31u4AOA3go3LMpeln18EY8y0AvgUAzp079yK6IW1iflavgICAgIAAH4epAwcZhHFtxbUT5yqmP3EGd7FYRLVadYk4aCzRYGS9KKYyZ+IOTTpBMra0tARrLba3t52h1Ol0kMvlsLS0hFarhVar5Xb+2RYNlVwu51yWqOQxto5ZKun+RXUGgEukwCyTVDFYHqDX6wGAUxCYIKLdbqPT6TgVhP2gGkjyt7m56b4/ffo0lpeXnUsZjS/ulp89exb33XefUwrnEQw14NQApisnDWtV9nSO1X1M1wTVmrhrzlPR4r7Tz1VxUoOY907iEaf68l+2z3tVIucb+XH9U6VRXTR1TF5qaLskGFxzqvz55JcbD4yJoytdOp1GvV7HQw89hPX1dbchwCQafmIPa/fjpID9OESSLJ0TQlUqJV3st7oLkogxw2ShUJjJ/qoFxOnGx/ap0GnCIrou61qiqsz4N84/+871yjnVBCNsV6FrPi5+Tn943zp+SuzYR830yfImHEOWJyHB09g5f5ODz7Q/H6q8MabY31zh+mEcrrq+8rm5WXihBO7fAvjHiELO/jGAHwDwzWAptlnE/s9nrf0RAD8CAA8++OBLwrpepndFQEBAQMAxxUHqmP/dPIKm8I/xyYIaCHHXZibIYrE4Y6DRvYpGw3A4dAYFDTQ1BmngVKtVNJtNFzNH43BhYQGVSmUm9ThdyowxM9kkSVbUqGU8SKfTccofDUkaNYPBwClhbHtxcRHpdBrNZhPj8Rj1et2VM2i1Wo4kjUYjl2WTcT2JRALLy8tIpVLY2dmBtRYLCws4efIk0uk0Go2GMzT39vZmXChf97rXYXFxcW7JAI4r/6XxSLdJZtDk+Cl5I6jWAXAGt59MgXMdt9Z4bZ8oaTyOwjcetU0/mYmqZPqd3ze6mQFwxruSsri1y/PYf47xS03k4q5N45zrxP+etdEIEoJ8Pu/mkDFlZ8+exVvf+lZ86EMfcmUtdJOF6yKdTmN5edndcy6Xw+nTp7G3t4dLly7N1EHkBgDJVT6fd+UyeAzJGxUwquZMQsRnm6obVXHeM9Pb042Ta56ZFUmGODZU19VlkvPNewQwQ+K5ZthvKr/8nhkuVZHluHLc/eQtnDctf0KPAKpifrwdr01CpetV17SSR3Xj5N+a5ZPtcWx8t2ISQ2tnSztoOzcDL4jAWWuv8XdjzH8A8N+mf14CcFYOPQPgygvu3Q0ixMAFBAQEBBwFB6luccTtIBXOdwXyd/7nGb+++1y9XnfZFDUGhIbD4uIiALhMkUyLzp1kxogUi0WcPHkSALCxEeUaK5fLLmPkysoKCoUCNjc3nSpHQ5fGC4t9c1eeBo26TDabTdcH1oDj7j/JGA1e9o3xaySBAFzmPRq62WzWlShotVrodrsuSQSTqjAByokTJ1wbQESi6JZJQ/qNb3wjbr/9dmcM+3OrrnjqPkkjt9/vu/7RgPVdJ0kaafyq+qWGbtzc828lcmqM3qgCrK6W/hrletFaWb7apolbNNbtoMLFql7QiPczEL5Q6Hjo375C4o+B//zpsSwnoapyOp3Ga17zGly7dg2PP/64K4+RSqVQrVYxGAzQaDRcIo9yueyeDcZqVioVnDhxAr1eD1evXnVumFTTSFZInjSzIWPeNK50Mpm4tcd+csNGSwSQbGpiIT5znEvOjZ9CXxVUVc84Jno+173Gv8W5RPJZ4/jTY4DKnq5DKnx021TXb7qn8npcg6wB6avO/jtVyRbfo+w/iS1/9zcq+KMbGX683Bd1DFwcjDGnrLVXp39+NYDPTn//ZQA/bYz5l4iSmNwB4HdfdC+P3i/YEAUXEBAQEHAEzDMs1QicZzzPU9H8H1VP5qkuqVTKpbwnuAMPwKUU9w3z5eVlAHBxcePxGJVKBSsrK+j1ei62bDQaod1uI5VKIZfLYTgcYmtrC91uF+l0GsPh0BEkFsJWV0xek/FCVKXogkZDjrFunU7HKW8khoyr4T2Vy2VYa12sHIkSCx6PRiPnzkZjlO6QALCysoKVlZWZXfBut+vcQWksVqtVvO1tb0O5XJ5xz/KVJyUfVDVYMJwGtLpO+sSPRqcqUP46UlLmrwX/97jj/X4fRIrmrWEarCTmqsj5cXBKQFX9oGoRZzTzWhwjPx38jcAnbvPuj+B8qOudv6FC45tJPDKZjFN86fL7xje+EVeuXMHm5iYSiYRbZ8xESALFtcprG2NcGYG77roL99xzDz74wQ9ic3PTue5ynVCdovrDdcVnPZvNYjyeLX+Rz+fdfCp5y2Qyrg3OK+dO16gm/2AClfF4PPNckbiRbFprZ1ySqaT5REfHGdh3DVX1V9+FfO9R2VISqWq+jpcWzWZmWo0v1AyknBP1WtBkLL4ap+9sdbn0kx3xfZhMJlEqlW5kOb/kOEoZgZ8B8A4AS8aYSwC+G8A7jDH3I3KPfAbA/wkA1tpHjDH/GcCjAEYA/op9hTJQAkGBCwgICAg4GuKIFxDvOsnP477X7+IInE8Y/HYTiQQWFhZQrVYBwBlOCwsLzj0rmUyi1Wq53Wh1rWIiBGA/1mV9fd0ZGYxNYxZIqlNMkDIcDlEqlWYSlXCXmsYMidtkMkGn03GEi4SGyReovJGUAXCGK8kUY+aY1ISGEmvUGWNcRkrew2g0ws7ODhKJBGq1mnOZpJHO73d2dpwhzO/e+MY3YnV1NdZ10p9DVd/oPslskzSY1S3SV8eoEMSRtHnXVgNbiYa/tg4ibHHKLttWo5TH+Mf7mRxVcVDVUseHBMZX2XTdawbAw8Y/DvNIbtzzpGSFx9BQ1791jFnnkGuMbojLy8t4/etfj/e///0uoQ7VKRIsEhvGwhUKBaci7e3todls4u6778bXfu3X4td+7ddw7do1tyZVReNGAd0gWUKA64/EMZ/PX0fcGLNKN022r0ravPePKndU80m4mZIfgFMouQ6osKvKpmOuMW9cM6oC8jglmPxR10uqifycqj/XqirWVBVVGdM1oUlWuK41CRE3Jriu2XeNKWZ7JLAk4CzlcjNwlCyUXx/z8Y8ecPz3Afi+F9OpFwpjAoELCAgICDga4hQxf2eZv+u/ek6cSqCqhm/kqyGZy+WwsLDgYmAIugUmElHdss3NTQD7iQKq1Sp2d3cdeev3+zOqgipNbJfZI3u9HrLZLCqVykwdNc0kqeqblgigEgXAqRYsPbCzs4PhcOhIGbNjMqkIx4fkjMlAGNtSq9WQTEaFwZnJj1kmqeTV63Wsrq66a/b7fTQaDWe80uBNJKJi5RcvXsRDDz3kUqzHEW9feVP1rd/vOwJH9cJPckKo+6m/xvzr6rqIW3dxiFtLcWpinBqm0D77balRrbE+vC+fzPlEThU5bZekWmuI3QiOqjbqnGhcFP9VY5z/soYa3SUZc3rx4kU88cQTePTRR1Gr1VCpVFypCt5DPp93hIVJUbjh0e/38fjjj+P1r389vuqrvgo/+ZM/6TKw0g2QGwLAvuJujHGqL58/1l2kSzDng+SNmVHZNxIuvleU9ACYuT7JGN21uQHBtc6NGmP2k7SQcJLEaNyrKmI6P7w2+8e5otLGe1JljO8aAG5sSTKpEjIemK7cek0SN2668NnkRovGQPL66jLsly1Q7O7uuhp0NwsvJgvlFx0MggtlQEBAQMDh8BW3OBUjbueaiHOP0/P96+jfiUQCi4uLKJVKLlFJKpXCwsKCS2bAuLJut4tMJuNKB4xGI3S7Xfc9DSgqJ5PJxCVgMMY4Q4hGEWNu6JpYLBZdeQEa7TR2mBmSZElT6tPA6fV62N7edn3e29vDiRMnsLCw4AxEEihmkaRbEwBXUqBYLLqYOlX0qD6cPn0apVLJqRutVstl56M7FeOHzp07h9e//vW4cOGCi/ejOsG503lVRY191rg8jo0eRwNVya5PYHyDUhGXrMT/TsmdT4p0jfrr0l+bceqvHyPn94l/8zM1bNWFUlUOJp+IU7RJCtXF1IcSLL+//j3Gbb6wz4RfQ01jspTocaODhjqTAD300ENot9soFosuAQ83OKii8X7p4phKpdzmRKvVwtNPP403velNeMMb3oCPf/zjbgyVvFF1M2a/dqI+f7r+tNYjiRQVIVWOWJuO96jkh8SEmzrad1VOOa88hsSP7XIdkEhqNkk+S+qOyPllPzWOjq6oGpvH7Lfq1kgiVSwWUSgU0Ol0HAnnebwPPZ5tKJnVcfFVNyV1bEefRcYmvlD34JcCx4rAIShwAQEBAQFHRJwypp/7bnKHubEdZGjSgGHqfqpnjDtjQo9Wq+UMsm636wheMpnEzs4ORqORS3RSKpXcTj2z1DHxAIsKk+AB+y6WNOLK5fJMZkqqMOl02iUxabVaLoEC43EYO9NsNl0sHbNn3nHHHQD2Cx+fO3cOvV4PzWYT1losLS1hOBy6+2Q2zO3tbUc8gSjGhfe4tLSEYrGIbrfrXCnvu+8+dLtdfOYzn3ElEF7zmtfgjW98IyqViivcXC6X3c56nBueT3CoxDAuSI1kVW/8ufVJ1kHJDdS9TDHPNfAwJc2HksqjnkOoQapEkAawGvSqzKlyp1kEfYVQXdkO699BhM6fS/87JZ6qiPuxWiQf3NjgBkMmk8HKygruu+8+XLp0acZ9ksSN993r9VzBesZ4crPjypUr6PV6eOCBB/DEE0+48hhKGDKZjIt363a7LolQLpdzSvB4PHYxV6qKGbOfAp/zkclkHNHj5g3HQ2PMqLjxHCViukFBFY+KezabnUlSoi6bqsRqXTq2rxsdXBMkgSSPVPuoauqGCMm/bkzRpVXJut4D2+dzq+PP71Rl5LpTl0puULDPqn7eLBwvAhcQEBAQEHBE+Iacr6YB8W5qcW34MTb+MdlsFvV6HUtLS87IoLLGxCBM508jSnf0Wcy6UqmgXC4DgIt90WyP3MVXFY4EUI1LqgokZzT48/m8K6ZNRQyAy7LHWJ+dnR2nhJE8LSwsoN/vo91uo1wuI5vNYmdnB9vb26799fV1ABFRolKxvb2N7e1tRzi5218qlVCv17G3t4dnn30WmUwGt956K0ajET7+8Y87peKuu+7CnXfeiTNnzqDRaOCTn/wkVldXXRwhY2l0vnz3SaqHJL5+vbd55G3eOlL46lmcequkTuNw+NlhiFOh4s6bt34JGq1q/PrqtKpXmtiExjuNX5IDX4nkeB6U1fKoiFMnlQzwnqggatp8TdKi6ekZ1zkajXD+/HlXlxCAi1PjGNGtkc8JXfq63a7rw/r6ukt+4icL0c0XKkksNcBkQRwr3gcTlXB8tTaZr4ppPTeOh2apVAJFgk7SxDnVudaYQm72cAxJJvkscYz1HLbJd47vNskNKH0n6TOnde64ScQESb66qmqfbib4mwi8R3UZpru5FkUnSeYGGN1JbxaOFYEzQHCgDAgICAg4FPNcHoH4WLe4c5S0qXHrG6XFYhFLS0vOnS+TyaDdbjtjgTXRNF7NWutiYhjjVq/XXRZJa6OYGCpZuVzOZZvMZDKoVCoz9bh4LS0YrAWL1WWLRatptFF1o6G0tbWFtbU1AMCZM2dw1113ufi1Vqvlrr25uYlms+mIIxVCJhDI5/OOtOq4FgoFVCoVVKtVNBoN9Ho9XLhwAel0Go899hiazSay2Sxuu+02vPa1r0W9XsfGxgY++tGP4sqVK8hkMnjooYdcPNM8IqMJFGgY+wla1MVKlQxgNsOhroe4tearunHwlbnDyE2cW+U88hh3zbgNC//6cWSTx/iqBrMlUoHT+n+q2HAMtHC4juk8AqrX13bi7l/d9Pi5JqrgdThnepxmaeSmy9ramlPFVHWiGx7JBUElbzKZ4LnnnnPJg3RMAMzUbSsWi06N05pvWnpAn2Ff4eS9cC3zPcHYQ7ptsv86hlRPNfGMqs6qqhKqwOl7RtUrLW6uZI7xbfyb409ipK6tqsLpWkgk9pM4kTCy/0rkdL2TBCtBJUmjMkiSxhg5Xo/EF4Aj2vM8Ml4JHC8CZwB784qiBwQEBAS8SuAbPkB8OnSFb0Cq0TLv2GKxiDNnzqBcLmNxcRELCwvY2dmZUfxYvJo74qVSCbVazSUOKZfLM4kMmECk2Ww6Q5NtFYtFnDp1Cvl8Hp1OB+1228WYsIYbg/5p4NBNE4CLZ+POeiKRQKVSwWQyQaPRwPr6uqvldvvtt2N1ddWpdQCwsLCA3d1dXL0aVRpiHAvVvUajgclkgsXFRYxGI6cwAEC1WnWK5Hg8dpn7stksnnvuOWxtbcEYgxMnTuD+++/HhQsXsLW1hU984hO4fPmyUyLvuecenDx58roU4HEusfxdjV5V3zRBwzziBcAZ23GufYeRt3kk8yDlTQmUf49+X/Uz3+DUNrTPfh/inhF/XNkWyRyNY42R09qGSo652XDQPcf1Pe5e/b6STGiKfT/roCqx1lqXSIcbBU899dTMeFGxA/ZjzKjOcaOD6lez2cTOzo7bpFHSQjLB2o/WWncuXQ95rMYf+u8vvdfhcHgdedMkMlTd2C5/NFZNM5OqSuWTRV5XywGQRKmLrb9GSfS0oLafCEdjLjWGVd+5TN6i/dGagKrKkaT6zwGVRPaH90g10B9XxiUyDvlm4XgROBhYBAYXEBAQEHAwfIPCd7/R4+IUOF9503Np0FSrVRfjdfr0aZTLZWxubrqabJVKZSZdvrVRun9mpux0OqjX68hms+h0OjP9oLLFAt2j0QjVahWVSgW1Ws0Vu6ZxUqlUkM/nXWwXd+KLxaJLhc0MkFTomAih2+1ibW3NZcNcXl7GLbfcgmw2i2azidFohEqlgvF4jK2tLWxtbaFUKiGZTKLRaMBa65QFunOqysU+0MBnpkpjDAaDATqdjlMg77zzTly8eBHD4RCf+tSn8NxzzzlSOJlMkM1mcffdd7sYPp1fQomcGrBMXqLqm4JjRui8qarDa+gaUjXjIMQRECVY2nd+59+nHqN9ijP69br+9bW/NOh1s2IeueM4KdGhssJEM0p2SYBI7o4Kf4znkVcllupO6atwHEuqWOxTuVzG+fPnceXKFRiz7yaYzWbR7/fd+NC1ktllW60WSqUSCoUCrl27NuM+qEXftTC3ugZqIW6qX+oWSFWI90jFnH1SlY8EU+uisQ9a/NtX2dTFkSRKidZkMnHKq+/6y7n1y1H4fWfhcj/RjK5zJd6q5rF9xv1qtki2RbdWEnZ/bLl+SLw1YQ/Hg2SUMZ48VonuK43jReBCEpOAgICAgCMgbjd4nvF4EIlTo4QuP6VSyZGpxcVFnDlzBul0Gmtra27HOJfLodfrOVfFfD6Pcrk8YzwuLi5id3fXFbTmLvju7i5KpZIjciSDJ0+ehDEG7XYb7XbbGYL1eh3JZHKGvNH9iKm42+02hsOhMzJZaHtnZweXL1/GxsYGkskk7rrrLtTrdTQaDbRaLacqMqHJ2toajDHuOlTzSAbH47FLe05CxzIG3W4X6+vrjgBwrBKJBG677TZcvHgRxWIRjz76KC5fvuwMT901L5VKuO2229zOOeG7J6qhSaLhF+sm6eKuftzOvb+WVJXQ9g+CT7wU6k6oRFBVI9841ntUAzNOgTsK/Hvx17y2798X+6BZKumiqGSBROBG4uIOI21sV59Z7YufpVLVOqpwJJWrq6sz7sokYuVy2SUcUhdKutfVajUX46pZHjmPWpeMag6VH3Ut9c9VFz9ViAhV0eLKOyiZVQWObStpAfbLhpDoqFqlsWO+26EmkSGR49j65I33SuKp6rduUviZbPneJZnzXX+pnBkzm7RFk6/oGJNYKtnjmlHF0D//lcbxI3A3uxMBAQEBAV/0mKc++N8Rqrb57dBAyefzrsh0oVBAqVRyf9PFj3XNKpWKc1usVqsz7o2JRFSwmuoWjUrNUMc+UrGrVqsuBo7JPZjFEYDbLd7b20M+n3exPN1u133HHWem3V9bW8PGxgZGoxEWFhZw8eJFpNNpXL16Ff1+HydOnEChUMDGxoYjp8wIR2LKcSNZZRwPDddarYZyuYyNjQ3nTknFgHEm99xzD6rVKp577jmsr6+7GEHfiLTW4sKFC6hWq7F13ziP/jxzXOg+qbWj1NUvjpzF/e2vj6Mqb/P6x9995SQurixuXbNdv89xGxP8Xo1gPR7YJ4jqNjfv2WDb2m+6B2pGR2A/fumo9eL0/tQV0lcXeSzXCzdJuA6pzmk7PIZ9ZC04KuilUgmpVArFYtERKG5IcCzoFtnpdJzSruo3Fcl+vz9z3/6aUfdFJZqcAyrHe3t7rp4cx1ndF7U8AGswqlJL8kIyRjKk8YE+SdNsovo86vNHhVFVM43nU/VTlWr2i/NChZHQ55NjxD7yb3VH5buQRFhJpd6LEnm+p7ixMBgM3ObYS5GE58XgeBE4zK/ZExAQEBAQ4OMoxudBrmdAtGO8srKCpaUlt7PP+mbj8RhXrlzB2tqaMxRZ24zGCrPOcce/VCrNqG4kF8ViEaVSaSY198LCAhKJBLa2tpzCxgyOxWLR1UijYcK4HiAqWdDv913cDgCXWISuiYlEAktLSzh37hz6/T4uXbqEQqGAarWKfr+PZrPpCFWhUHAp+JnBjfdFxYCFwbPZLKrVKjqdDi5fvjyTzMEY4whtPp/Hzs4OnnrqKZeC3Z8jAM6Iu/POO11M4EFzrvNOpZDuU359KP7uG2u+GhW3RtQYjSNnqt7FtaGfa9IMVUm0r9qXeWogP1eyotfxyZAPHbc4N1VfpfbniffB9c4NBd4LXfVupMaWTxb9z3lt9plqDcfDn1slnSwaffLkSTSbTRebOh6PsbCwAGOMU8RJ+pLJpIvJ5OYFVWclDeoySSJLJY3ERzcQ/PvT8SLZ9JOL6Drm2LMv7ANJjyad4RwDiF1rcS6RqqxTSeR9sT1NJMPPdCNC+6OESktYKImk63S5XEan00G/33fkmvUu/Zp6+mxwrEies9msI/ocW9ac5Hxx/vkuvRk4XgQuKHABAQEBAUdAnApB+EarT+bUAKbKxnpuANyu987OjvuPnooU3Srz+Ty63a6LdyPJGQ6H2N7eRqFQwPLyskvlT6Wq1Wo546per2M0GmFzc9MVlS0Wi67MQLvddpkVSep4DaphdGsEomyZOzs7uHbtGrrdLnZ3d7G6uorV1VWsr6+j1+s5Q3VnZ8ephQTvcTweY3l5GdZGmS5pzDGhSblcRr1ex9WrV53CR2JCgkkjt9PpYHNzc4ZI0Qj240+WlpZw4sSJmd1/X1nSHxr0Gvvmq28+AThox90nYYcpb3EkzVfT/H4C+4Y9r+GPgxJOjfHSdewrK4eteTXY48hEXPyT344/RnR/5RqlkazulHFK6rxnN0518//l+tEfJaw6HyRkJFf1et1tipTLZQyHQzSbTbcZw42H3d1dl101kUg4AgfsqzyavZLrXdUkuhYCcK697C/HhKQGgGuDc64uibpGeP8E15QqVyTOVA01EYpClTpjjItrJXgfbIv3z40kjc9kPzn2St7YL1W8dP3ThZLxirqutB2qlH5yI1WzeSzfZUwGw3c679dXpW8GjhWBA0IMXEBAQEDA4VADME5h893FfMM9k8lgcXERlUoFwCw54H/+e3t7rpj0YDBAoVDA6uoqqtUqdnd3Ua/XkU6nsb29jVar5QoIp9NpLC4uot/vo9FoYGFhAcvLy1hfX3c1pYAoY+TGxobbbS4Wi6hWqy4GjveUyWSccUwXS7p8UvFKJpNYW1tDt9t1St7S0hIqlYojdKlUyrkP0VhjLJAmBuBOd7fbBQCnHKZSKdTrdYzHYzz22GPOqKWRSKLHzIU0hOn6xfuZ5y536tQp1Gq1uUa/b+xTjdAfP/bNv6ZCjWRdO74CNE9lUzWM0Jg3/qt1q9TNi4a5Ej2F/u0by/xMj9X4ITVO/WfF/90ncjoe/C5ODeRYjEYjt2FQKBSQz+eRSCRcLJIqOHHj6j/H81woOUZKfkhY9DtfzWMGx2w2i4WFBWxtbTnFOZ/Pz8SwUbVhVtlCoYBms+lcJkmgNPskz9f4KiXYHCMlW3EbDABm1oMqi/764Dxrin8A18V46bkaa6oqn9aoA+DcY+mNQBLEe7XWzmSXJOGM2yjTZ53vRs6JZs6kKgbAKWjc1NK6c/4zrS6hJM+c162tLUdiOQaqUM5z036lcKwInDEmKHABAQEBATeEg4zLOGMwl8thZWXFZZ1LJBIuOQNVKcaxkbzl83mX0KDT6bjYGRa6ZvzKaDTC4uIi9vb2sL6+7lx01tbWXNFsAG5XnwkVisWiK6RNV0NrrVPkjDFotVro9XpIJpPIZrOuvpu1FmtrazMFhRcWFlAsFp0rpyb2KBQKMzvglUrF1aba3Nx0cSeM9avX66jVaqjVarhy5QouX748Y7DmcjmX9EXj0Wh00bCmAZpKpWbUP+6Qr66uuuQRccqbDxpldKs6SH3jOlHQoPMVN1/FiSOPcf3yVTeNB/LJkv+j61UJo6oM/rU0RpGkRt0iaUCrga/Hx/348XEHqdz8jJsIJDdM0sPkEZxzn7DFKWz6r3+cEhjOsxJ2n6SrSx/JR61WcwRTY8qKxeJMohHGd1Edp+KkmQupKGk8GfurCXx8F172V10IGdPnrxHfTZb91fVAIhansPF7dd/lXJDg8VlPJBLOjZPtcQOmVqu5GpMkzlTONB5RFVLeG/vN96yeoxttJNXWRqUYSLA4FiRdvBbfWVQHlYSynY2NDfdOHI/Hzt2dz/7NxPEicECQ4AICAgICjow4Vzsg3rhOJBKusC+NgHQ6jcFg4IpUM5EJEClkrPnGdOJUsmhkNBoNFzfDnfdOp4NMJoOTJ0+i0+lge3vbuRZyR9gY41Lv06jc3Nx0qkUymUSpVEKpVMJkMnH13Vj4FoiMlNFohFar5erK8dzJZIKdnR1X7JuxQIxz4444A/tpBLVaLbfbzpIGt912G5LJJB5//HFX2200GrkMlNypb7fbLm6I462kgCDxUGM5nU5jdXX10MQCSpJUDdEfdeXS8/w1QuNY1Ss16uN25+eRNv1dFQFgn7yQdOl3ce3Nc+3yVY64ewLiyweo8qfqCNtVY5/3wO/4r0+qeSz7xbHjRogm+uE48BpquPskJY40x401SQkzr+q60L7xGslkEoVCwT0D7IvGkFIFYpIOPlN7e3vOndp3LWQMVyaTcZsXqr6xbZ8Ia303jjOfXa2bxnHVNrUtXXP6zGkGSZ1zLUegcX1UyIwx7nPWTaOrNrNP+kov1WWfROo881z2T5OV+K6Uqrqp6zH7x/meTCaOkHMc6P7K8eBcch2TjAcC9xLChBi4gICAgIAbhG/U6mf8PJVKOVdGGnys40ZDZTweO/LWaDQwHA6RzWZn4lNY6JrEjPFidDNsNBougyWzUDIAn4pbLpdzBIqZ1TY2NlCr1bCysoJr1645EkWSyN1puiyxVhwNmU6ng3w+P0MQaLB2Oh1UKhWUSiXnHlqv19Hr9VzCgNOnT7vfafitrKzgwoULGAwGeOSRR9BoNJzyxtp0i4uLaDQaLhsfjScA1xlzvoHNuQEi457EWuftoLlV8uaXI+BxqoDNgxI5vXZc31WR8kmYuoaRFJFAxBE27aufUAKYTdqhY0f1gmPgu2ayPSVKvoGvBjiv6atx/v3HgfetaioQqTrNZhPD4dBtQgD7qd51nA/6O47E0ahX0qBKj7/GeA7de+v1Oq5cuQIg2rCgUU+yyfsZj6OSGb1eD+1228WD0s2Xmx5sV10jNakH1VF+zu9UueJ1NY5T703vT0mv1rvjvfK5Y/+4scQ1QjVSM0JyM4sbWr1ez7mdMsaX7x59BtQNk9fX9arKHIkwz+M5nMfJZIJOp+MS1DBDJ4/RseN98vp+NlS6keuzAsAp/+zTQZtFLzeOF4FDEOACAgICAo4ONfDjDH5jjHNPLJfLLk6rWq0CgKudNplMXPxZJpNxGdCokp0+fdqRsMlk4lSvpaUl1Go1VKtVrK2tubIATO6Ry+Wwu7uLRqPhYmpocORyOXS7XSQSUaZIFupuNptYWVlxBiRdh2jYsTB4KpVySUtoBKoikU6n0Ww23X03Gg0AcK5QdIeqVCpoNpsuHXoul8PJkyextLSE559/HlevXnVZ+LjjXa/XXTkEkii6jflkSI3pOEJljEG1WkW5XL7OoJqnxtCgVRIXFycTt1588sj++uRqHpnQz3gejVv/O42F8/tEI54GvqouTHc+GAxmFBweGxdbpJn3qPhSPVFVUeOjaChrYghVr2gk81g14P0x9OeVhvTe3p5LzAPMptX3CWTcvM1T4ua5UfrHcZypONdqNTz77LPODZr3xvFnXcdut4udnR23EUOFnvF9ANw4c/1TcVNF16+Hxj6qW6nei7rBEtwI0O98JddfY6qK+q7CJEJU5blGmJCG35GYcoNLFUWSTF7L77O6UWqsm6rC7LPGplm770LJOpf8naSW85FIJGZqFKbTaVdOhNcggdU6nEGBe4lhjIENGlxAQEBAwBHgGyv+Tn4ymUS9XneFphOJhIvNYdwUVbFTp06h2WwCiFx1ut2u27W/7bbbkM/nHdlrNBouZqtSqaBcLjtD7+LFiy5ByN7enjNABoPBTBHkZDKJZrOJarWKfD7v+s5kIFTKCoUCxuOxuyawH+S/traGzc1Nl4BEs87RSKnVahgOh47kJZNJpzrQsOp0Om4My+UyTp8+DQB46qmn0Gq13K75ZBJlmVxeXgYAZ5zzflUhULIzjwzp5xqTGDe3cfOsaoxfOmAegfPdAIFZl8M49cbvq6+Qsfac7xLGfyeTiSvVQKWESWJI4EnMGJ9DFzhg3+VU4ccYMd06+0l1lWtN75cbCNlsdqbotBIPdT1UFYnnx5HROCWN89NsNjEej50arUWz4+Z53lzpnNCQ5+aGEkMfSuBKpZKLV6UaRVc7Pnd8Tnq9nisbQsLAjLNKjtU9UMsMaN04jX0jaVF1Tgk255if+fOimwN0YeZaUIKmroYcF1Xm+O4Yj8fodruO/JO4+QTTd6XlfdFF21dB9Znk+OkmgNadI9HKZrPuXavKIkke+8C1TZdwnqvjou6zOnZcOwcp8y83jheBQ1DgAgICAgJuDL57nTFRfNnKygrK5bIzhvP5vCMj3KFlkhCSt93dXayvryORSODcuXO4ePEirLV47rnnnGJlrcXJkyexvLzsslCOx2M8+OCDMMbg+eefd0rf1tYWms2mM/RYP4ttAVG5ABbznkwmGA6HuHz5MorFooupIWmrVCoYDAa4cuWKK0nArI80sJvNJk6cOIFcLodOp+Nqu9Ho4b+TSZTAhO5ozMxprcWVK1dczI8mBqhUKkilUi4xAAmcGnicExpv84wk3bFfXFycSRnuG4k+OQD2XSg15kyVIHXh9BUiTSjB7+PUXF/RVaNUiSuLDSvpoYJK11M1gJk4gn3hd1yfvD+fUOo98Ds1RGmsanuakITXZymKRCLh1OA4QqfX03FXtzhfFYwj65PJxJXFIJGbR+J84uYrn0qgVXX1CbyuI37PNVYoFNBoNNxz6qt5g8EA165dAwA3LlR60+k0isWi2yhRMsXxUcVZFTddoxrTpu6tVGN1ffiqI39IfHi+qn1McOT/8BxV2Dqdjsu0S5dXXfvq1ql15rQEwbz5YBs81t/k4Lqkqkmyx3qQuqFBF1B+xo0rxvpSueO48Vrq4qntxa3BVwrHi8CZQOACAgICAo4O31hk8o+lpSWnullrXWFsxq/R+EkkErh69aqr/9Tr9ZDNZnH+/Hncf//92N3dxZNPPomnnnoKxhjUajUsLi7i5MmTsNZifX0dqVQKFy9eRKfTwZUrV1x6fsZz0FWLhjp3l+v1OprNpjO4uQPe7/dRLpdndsqHw6FTEOgKydICVIDG4zEymQxWV1eRyWRc7Buv2e12XawPlR66YnJ8ut0uNjY2XJIHGk1MLEA1kIaiui4C16e+52ecIzVGickkqi2XzWZdaQTu0sepKUqklMT5hmrcWtFr+m0q9Hs1Iq2N3LtYNByAMzZ3d3extrbmNhD6/b5Lr++7+LL/AJyCqDX9+O888qrjq4QB2DeqeTy/59jTXZAGOZOO0LDneqA6peqPXlPV0jjypm7MPKff77txJAnyN18OmnMdAzXG57nPat9I4Bj/ylIB/B7YJ1mNRsMlIyK5IEnnWuUGhs4Xn+VerzejnOmc+eSG64CkmOtZ16Kqmeynjj9JqN6H/zzwOaZrLe+VdepyudyMW6mqf1o+QJU0Xp812/RcjXcjudQNBo0VJXhffK/wPUXyymNSqZQrmcI+8L1K4sf3CAt/c0z0ev574JXEsSJwQCgjEBAQEBBwOHyDGICr87SwsOBcaTKZDCqVCk6fPo21tTWnhnFnfDgcIp/Pu6LbAHDx4kW89rWvRbfbxRe+8AU8+uijWFxcRCaTcYlQer0eGo0GyuUyTpw4ge3tbVy+fNkpHpubmxiNRqjVak59Y2Y3xtXRGBsMBmg2m+h2u86g1RpI3W4X4/EYrVbLqYMsRMyyBltbWy7BAgB0Oh0sLS0hlUphY2PDlRyggZbJZNyOO8eCRbc16x3dlHQHG9hPfU4S48e3+EkceI7On6o3vtGl11I1xVfMNGmLGrBKmPn3POh14giAKm47OzvY3d116qgmnWi3244UMXuhjgn/ZmwUDWJNxKJjw3gfGp16LtcGP6OxDcCpxBrno8qmqhJsi4YuyV+v10OxWHTKHOOPlJCouuSTLp8sq4LJWEoqwL7qehAJ1HlSwqYkTl0p+R1VpEQiyni6vLyMnZ0dt+64XuiGd/XqVUcguL6YdCiRiIp7a2kOTTpC4qKue7r+SYp0bHif2keCCjMwq+JRYdJ4O7bN5xPYj3PUAuPq2s0MvIzPJXnS54mqrD9XmjVX74v900yYvA/2T++P7uYs56CZWzkvqkIy6y/Lqqjiz3FhWRWNHVYlUDcPbgaOFYGLFLhA4QICAgICDobvUlYoFFxCEf1P2lqLbDaLra0tV2w7l8s5pYcGQ7fbRbVaxW233Ybz58+j2Wzi0qVLaLVaAIBKpYKlpSWUSiVsbGxgc3MT58+fx8LCAq5du4aNjQ0YE5UbWFtbQ7vddu6GTHAwmUTpxpl5koYplTomPOGOMYPxWSiZmeHOnj2LXC7nar91u12cOHECALCzs4NqtYqTJ09iMonKDzA5ia/4FAoFZ8j0ej1XQoD/D7Oum6qVwL5B6SsIaqjPI040tGiIAvuxODRg41woVXUh1KDzXSh9hSiuL9qGr/Bo3NLe3h5arZbb7R+Px3juueec8ajKg6oLqk6qQgjsE16qrOyLxulolkB1zeT48ns1hrmmlNipcc82VIXQZBQ8PpFIzGwqlMtlFAoFR+R8gqzt8fqcN5+Y8b7b7bZ7ZvR51Tmbp8ax/bi55xj5861EjjFflUrFrTsW9W40Gmi1WjOJXUgqqJSzLS1krWROC9qPx+OZxDEcKz7n/JvzqeOmBIb95hxqMWpV8agOq7sjnzFNBKLlQFivkhsJukHCdpQoa/yhv0HD8eB12C+uNd0o0HGjcqlqr6p0unb4XCqh1O+5Nrg5ogSeY0yPgpuF40XgbnYHAgICAgJeNaDrELNMcte6XC6j3W6j3W4DiFKFnzlzxhWJrlarLp34aDTC5cuXUavVcP/99yOTyWB9fd0Zl/1+H8vLy6hWqygUCtje3sYzzzyDc+fOIZlM4urVq9ja2nJk59q1a9jd3cXS0hIAuCLaQBRvR/dGEqbRaISVlRUYY1xykUwmg62tLed+ube3h06ng93dXZw9exalUskZczs7Oy5ObjAYYGVlBffcc49T06gS5fN5Z6RRVdOd6na77YxEAFhYWJhRhegmpQYzgOuMt7jPlADSsKYxpTvmeizbUcLjQ1XAOFeoODdJX8mJU/tooE4mE5eopd/vI5FIYGdnB51OxyV7oFFPguYrgvq5Hx+ohNd3N503nr6y5Y+LT140WYMmu1DXOFWuaBQrqaDR3e12kc/nXVZT9k2Joo+DCNhwOHSqNzdS9H79c/17m6fAKdnVseI48941gQYA56Y8mUxw6dIlJBIJVKtVl1yHpEGJNceKa1Hn0ic5qoSxT6rO8jhtXwmQtq/PrmYvpTssSRvXKGMbE4nETLZM1kTjtfzNDlUnuVnCVPxKoOOUUo7PQXMIYCbuUgkqY2tJBtWVk+eRBOsc63OrGxp8DnStBhfKlwgmxMAFBAQEBBwBxkRxRnTz4n/qw+EQ7XbbGSf9ft+l689kMq4cQKFQcKnxz58/jzvuuMMZ6EzLfuXKFRdPVygUsLGxgWaz6Xbtr169CgCuntzGxoZTydQlioSpXq87o4PxbqVSySW7oAG3s7MDay1qtRra7TY2NzdhjMG9997r6rqxzhENlkaj4RTBZ555xsU59Xo9WBvFG1Fxo6HE+BJ19wMigqeqIQ1FzfTIvmrSDWBfWQL21SglLr5rHM/RnXzCb3ceAVM3Q9/lcB585U3VxN3dXWxvb6Pb7WIwGKBWq6HVaqHVarm1QdWNhiEJibqfqvGoCgTHRlUDjisNfnWx1LEifFKsLmc0uNUI1/Fk2+w7XfZ4rq9Gsn2SF24sMBEJjXwlTj6pi1NBaaS3Wi2novsZM+Pmzf9biZz2nd+rga/kleu6VCq5+7PWOvdRuuDR9Y7rkOue80hip2SQfeJY7+7uunWja1nrLrLfSuR4nJIrguSNGyscC1XLR6ORS8ICYEa14n1R0WL7urb5bHJceSyPYVImTZjix0zqmleyyM84hpwXbiTxuSIB5djSi4IuoCSQqsRxrfqbETrO6pp6M3C8CBxCGYGAgICAgMNRKpVc/Iym82ZNIxoV3HUGoqQf1WrV1URLJpM4d+4clpaWsLu7i26362LG1tbWsLCwgFqtBmstLl++7FwwR6MR1tfXkclkUKvVXAHsXC7n3IOYIGF5eRmLi4tot9vOSKSCk06n3U4x6xf1ej3UajXk83lsbm6i1+thcXERd999N5rNJp5//nlHFFgqgEXErbUzqmOr1XLxWozfSSaTjtTu7u5ic3PTuV1NJhOX5p3Ek2nVaRwmEgmcPHkSg8EAOzs7AK6vi8bPfFdIPU5JhZ90Q4/hOSz94LenRqsSkDhlLc6lLq6tJ554AhsbG26+Njc3USgUnBqq52oJA93l96/r94uudzTgfQVONwD0euqWpv1n4hy9jmYZJAkAZjPyaZ/YByXUvrsfM5MOBgN0u12XxZXXVtdTXwXz5559oBJHUqEbIHqcvyZUyVQS7M8zj/VJUiaTQbvdRrFYBLC/EXP58mVsbW3hzJkzGA6H2NraQq1Wm3EdJGFiCntjjEt5T0Kn5FbvW8tyqPunrhmSFSVPes+6+QHAEX8mnmEbWs6A64wKKteggvPGhB+aVEeP1Y0KEi5uAvjrh+fqvKqqp0oox9S/T46LEjVdy/7zocSemwm8BskhMxHfLBwvAhcUuICAgICAI2BhYcEZp6VSySlyqVQKzWZzJuaDLlArKyvY3d1Fs9lEvV7H6uqqO54GCGObarUaFhYWsLe3hytXrrjMlZ1OB9ls1qlw29vbLgU+d8JpVHG3vdvtuqQBdJME4OJsGIM3Go1w4cIFTCYTXL161amDJIBra2vodDquNpwqCXSRHI1GaDabrrYbVY1EIuFUgKWlJbRaLWxubrrdavZXC+dqhj0aT0yS0mq1YhOOKOIMcGDWPctXTeLOoUEYZ9D5JOwwKGlR1Y2fDwYDNBoNZxhyHel4cEzUvVCh90fjlNciIeM68RWAOBKiBMtPiKLf65rgvPI6mrjEV0XZhq+YKQHziQTvnwoQSYHeu08MdQ54DNfAcDhEp9Nx6hAJRNz86f1rzOBB8++vNRKuwWDglHoqz71eD6urq9je3ka9XkcikXBrQlUnzZRIdU3dInkNxqppllElcBr7pvFgSqB0w8Mn98YYd316IxhjXLZZxtWynzwnm826rKBU5uh6yeQtujnBtUWVWpW4uHlW5Zl/64YM16Jmus1kMs67gP3kpohmDOW4ZLPZGRLMtaNj6JN73u9ha+blxvEjcDe7EwEBAQEBX/RgghAgMhxKpZJTsWg0MGU+axs1Gg1MJhPcfvvtWF1dRafTcapbOp3GY489BgA4ceKEc19kPFy320WpVMLKygrS6bQrcL20tIREIoHt7W1nsNBwyufzLkmAMcbFvFHt42453SfPnDnj6oYlk0ncc889AICrV6+6xAQ0NmnsZjIZnDp1CsViEdvb246MMpaHxhUTVSwvL2N7extXrlxx5INGD0sSAPvZ7oBZN7p+vz9T14yGPqGJNtRA9934dBeefytBiIMmLCCUQPqKkl5P//aNOx5DRZKqGIDr1CB1WVP3OM0IqUavf322pcknaKT646j3yuN8FzAeq9A4It4H2x+NRjNZ/qhYcLNByboaykrGSJpUhdnb20O9Xp+JqdK++/30CQkAp2Trepu3JnSu/bn0Sb6//vg9nyUSlVqthu3tbQDA+973Pvze7/0ePvvZz6Jer7v3B+MIO50OxuOxe4ZJjLQEgKpC/nyQbPvHqautkmeOGceE5JmbG/RCIMHiZgzjN7PZrKuJyRIhyWTS1VCz1s64B3NdaDynJlPhtfnO02yY+l7wk0mRrPNZ8RU5elLwGM6ZriGOoRapVyKvGxb6vtGNFs4jx+Jm4HgROMTX/wgICAgICFBw95zJJOgSw7gtKnQnT54EAGxtbbn6bouLi7h27Rq63S6AyEgnSbr11ltRr9fRbrdx+fJldDod9Ho95PN5nDp1Cv1+H1tbW0ilUjh58iRqtRp2dnacgc0d9+XlZbdjzDIBJF7j8di5ZrbbbeTzeSQSCTz99NPodrs4f/48Ll68iGaziatXr2J7e9uRBt5fOp3GwsKCS8TyzDPPzBgjVI5oyDCWr9FouFp1dLsi0dS4OBrmagAzQYIayjRCNbnAPDVNDTXdEacboq88+dB4HP+4OAKof6sCowY/v6MxR1c+NZoBzMTkKHlT0qbkjQa7xv2oUkbofShp5pjqMXT/4lhoeyRfvouhpoXXRBzqTqlt+fOq36nyQ6Kg7oRAlECI9RfZJz+uLW7ueB/czGCSFFVw/OO1v3FKsO9u59uXuVzO9a9arSKdTuPpp5/GU089hVwuh7e97W2YTCb47Gc/i4WFBSwuLroyG35slRIrJSaqqHHdca0TVLs0W6WOOfvO9cHzteC6EihNykJX7mq16kgLn6HBYOAShWjcGrC/UaEbMszuqMfqtble/P7yOWD9OSZMUgLIZ2c4HLoYN7qn6mYQP/OzU1KF1KQquknB8VT3zIPeNa8EjhWBQ1DgAgICAgKOAJKvXC6HXq/n4k+KxaJLbLKysoJms4nJZIILFy7gxIkT6Pf7eO6552CMwWAwQKvVQrvdRr1exwMPPABro+LczzzzDLa2ttz1jDFYW1tDv99HpVJBvV5HJpPBlStX0Gw2XfxHLpdzxt7u7q4rX6A14HK5nHNBLBaL2NnZwWAwQD6fx4kTJ5DJZPD0009ja2vLZcNk3BvJ2/nz51GtVtFsNl1yFdZ0S6VSrkjyeDxGpVJBuVzGxsaGq29Fo1t37bn77mefjCMeaoz7CtC8DG/qBskfdcnySZhveKuR5hvmPinT8/RvdWlUYjoYDFy9PG3XjwHyVR9ew1cAtAB0XOZOGpf+WHEdc1yUsI7HY6dQ+EldaITzeO2Lr3xRMUulUu5+qcoBmFEv2A4/p6GtKp32QV0qfTKixEah4z0ajVxxeT92TEED3F9P7LOqi2zbvzZdI0ejkUsc9PGPfxy9Xg8bGxs4e/Ys3vnOd6JYLOJ3f/d3Ua/XcfLkSaytrbkkGiT2GtfGMdfMijrHuo6U/ACYUW/9BDA6H0pOVPEkSaOSTkJNwsaYWe0PFURdG/qO4D36Y6sqsSZnUYKoihiVTj4fqVQKg8HAPQfsN13CSbAHg4Ej9VTngEgx1wyffuIUbnaQOHLzTJVQrbf3SuNYETgDBAYXEBAQEHAozp49i62tLWxsbLjd4dXVVacopVIprK2toVAo4Pbbb0e1WsX29ja2t7ddXAhT899yyy04e/YshsMhnn32WUfUuMNcLpdd4d56vY5qtYrhcIjt7W2nQHCXu1gsOtWPcWw0rsvlsnO35K7/9vY22u02VlZWcOuttyKfz2NtbQ0bGxvO3dJXFarVKoBIVWw0Gi79OUnkiRMnZtxIWQePdeNIKjSbG9vWNPiqFOiOtU+oaExqUgBfJVMypODnNPb0Pv3jaCCqwarkJM5dTtuiUarEgy5mm5ub2Nracgqkqo+qpPhgWyRb5XLZEe69vT1nfKqbHfut5IxzxzgmGse5XM7FeJZKJdcHFncn+WU2RxrbfjZOn+zwbyUJqhzqeeyzT47Z/zg32Mlkcl25AX8dabs6j8yeSuKhLoj+uGvffWKoffXXIhARuJ2dHWxsbLh18MQTTwAAPvCBD+DLvuzLcObMGbzpTW8CAHz0ox/F0tISTp8+PVPoWzNRUpHSjJM6Nkr+lXDrWChpjiO8VNe5lnWtAHBKHt0mmbiI65q1/TgfOq/++4ZrSwnweLxfFNsndP78krzxWSO4Rv2kP3yPsP+6aUCyxpg+XRvciOL4q5LIZ6dUKrl3H991HLObgeNF4IwJ/C0gICAg4FA8/fTTaDabrgbc0tKSy7Q4HA7R7XZx5swZnDp1CtZaPPvss+j3+8jn86522ng8xj333IN8Po9Go4HNzU2XTCSZTGJlZQWpVAqdTsfVcBuPx1hfX0en03FGUKVSQaVSwcLCglPUnnvuObfjzV1v9ovqxNbWFsbjMS5evIh6vQ5rLdbW1nD58uWZBCJMQKBua5cvX3a7ygBQrVaxsrKCZDLpSgdUKhWXRXF9fd3tPJNQ0nWTO/oa2K9GvCZSUONXiQjjgWik+oagT6z8+K5erzfjiqdQd0uNx9HzfSNdr+u3w3uZTCYz5I1ucOoWqeoRSUQqlXIEjXPD7ImMKSIKhYLLXMq2WUw5nU6jUqkgl8uhVqthcXHRFWSn4W2tRb/fnyF46m7GdtrtNrLZLBqNBnq9Hq5du4bBYOBUXLrSqfqg6iINWh1jPzsof9QdU+eTY0u1mK7CWkdN1w7nRAk1x4jlONhnjUVUpVXJm67NuHVG8DOOI1WhS5cu4dq1a1hZWcGnPvUpAMA73/lOR+ISiQQ+/OEPY3FxEWfOnMH6+vpMLKi6MJLA6foj4daEIepWSdWO5ETrwXEuqJRyg0bVUQBOWeUmD8eHyjVdEDUBD8eV19USAfrsq+szNyxIVnk/6mashErniWRO51vb5zuOxJDJqtgmswxz3XKt+W6tnBPWwjQmSnSlbpu+98ArieNF4HC0LFIBAQEBAb+/MR6PUSgUsLi4iMXFRVeXiq5Qt99+O06ePIlWq+UUr3q9jmvXrmEymaBWq2FlZQXj8djFv3W7XXQ6HQyHQ5w8edIpAdylbbfb6HQ6Lk5nd3cXi4uLWF5eRrlcRjqdxvr6Oi5fvgxgv55SoVBAt9vFZBLF5vV6PTQaDRQKBZTLZVhr0Wg0sLW15eJSaHTRIGMMCRAle6CBw2tUKhVks1mXlIWE0VrriKISDqblVwNaDWGSOl+F81UtJU7sL+FnLowjcUBkcDebzevqUSkYZ6REQZUZX33jNfiv9oPHdDodrK+vY2try7ku+kkolDQkEglcuHAB165dcyRZCSxdu2h4qpuZZrWs1+u4cOECyuWyqw04HA7R7/dx7do1Z7gzxpNkhoYn+8YxKRaLSCaTKBQKbrPgwQcfRKlUQrPZRKPRQKvVwtWrV/Hss89iMBg4QqhFmfVeqbQoKaHhr/PKTQUeq6RQk1hw7frz46uB6o7Z6/VmknrEGdtxrrP6WRyp12uz6HUikcDnP//5GTfHRx99FADwrne9C2fOnMGDDz6Ivb09fPjDH8Ytt9yCM2fO4Nlnn70uHssnQ/66UvLgb5ZwPPS+FUqISHpIbhlbVqlUriNB6lKoY6WZHVVNHY/HM5swXM+qxPrrhhswfK+wX0r82SedB1UeSdaA2dIYJH1cZ1QA8/k8hsOhi83lMTqWVB0TiYQrbE4X/LgYy1cKx4vAhRi4gICAgIAjIJvNung3Kl8bGxtYWVnB6dOnMR6P8dxzzyGdTmNxcdGlzZ9MJrjllltQLBbxxBNPoNFo4PTp0wCAtbU17O7uYmlpyRmqlUplJlaORgCvS4Wl0+mg1Wo5g5DG0Gg0cgSyUqmg3++j2+2iVqthNBrh2rVrMzviarBRyVCCwPptmUzGlQhQo4Q7771eD6lUCpcuXZqJ0+F56iapBpnGDFFJiiNgwL7LJY1RjZ2JM5x1l913gVtbW5vJPOefx36qeqIkiVBD2O+7qjyMe9rY2HCZBP2iyGqYU1G5cuUKWq0WADgSxJTnGoND0kY1hhlMT58+DWOiZDedTgdf+MIX0Ol0XDF17Svb5FryCSjvm5kzs9ksFhcXXRZSusleuHAB4/EY9957r4sBfe6557C5uenKWmi2ShrTNH5VyfLJ0rzPAbjshqPRCPV6/TolTgljnKsgXVC5geLXudMx0PXpK3D6vf+zt7eHUqkEAHj++ecd0R6Px+j3+/jUpz6Ffr+P9773vbjlllvwpje9CePxGA8//DDOnj2LM2fO4LnnnptZe3zeRqORe9b4LGkqf46BnqP3xPUdt35JnpVM5/P5GXdOPiN0OeSGD+dUx5PHc52pYhy3AaLKJs/V+9QMwaosKrn2iSDP4TX0faQEmPfOjSiOabVadbUr+S7h+5jvEJ7HOEC95iuN40XgEOrABQQEBAQcDiput9xyC9LpNJrNJm655RbUajUMBgMX61YqldBut3Ht2jXk83nce++92NvbwxNPPIFms4mlpSVXY40xRiRCiURiJrMlEMWULS8vuyyXvV7PZarkMYyFYdwc1RF+R5JFw0rrOQH7Lm36N2OhSMzq9ToWFxeRz+cdsaQCMxgMUCwWXSwfAFfnrlAozBjK84x13RkH9mPQVEGjMcadco4Pd8t9xU6NQHXDM8bgypUrLk6H7avxzX6qW58qPLyGxq4p9G9rLVqtFjY2Npzxx3lQ90I/MQLjgdRQ57hwbFSxSiaTOH/+vFPaRqMRnn/+ebTb7ZkMe3ovOsa8J1958pUqYjweO3fQ7e1tVCoVlEolFAoF3HnnnS7O63Wvex3uuusubG9v49lnn8Vjjz3mxp73xvtkH/Q7zg1dANWg1/6Q1A8GA7dG/ayXPM5fd7wfLYhNxVHn0Y/h4lo5CLoGgeg5fOaZZ/DMM8/MxJGR1H/+859HNpvFu971Lpw9exZvfvObHbm7ePEizpw54zZKeA90KaT7HjdP9Ln2+6ExkUrcSLq0/2yHiTz4vqI6T1dDkjEq6mxbr82MtBo7xnlXFYsKGZU1rgkljewvr+Grjhxbtse51+eY6h1LoeixvH/eV6fTcRsi+Xwe5XIZtVoNnU4He3t72NrampmT0WiEfr8Pa+2M2nczcLwInDGwQYMLCAgICDgEq6urWFlZcSn8z507h2w2i2vXrmF3dxeFQsEZs6PRCCdOnMDi4iKef/557OzsOCJ0+fJl9Ho9p4xcu3bNxahRGWm326hUKjh58iSWlpZQr9dhjHHfkcQwYyQAl/o/n89jZWUFQOSyZ21UOoCJBYD9jIMAXHxUt9t17oinTp1CoVBwSl6xWEStVkM+n3fJVrijvLu7i1wuh62tLWxubro2aOSROACzBboJP74JiM8GqcQF2C9QTYNbXaoIv11VnHZ2drC5uYnV1dUZUqDHsm/80XpmfntxJJXGJF1lSYQ0Zou7/jRmea90jySRY5t+P+jiViwWsby87GIyn3zySTf2NDgJzQBJkso1oWPsx53NA0l8v9/H+vo6UqkUnnrqKSQSCdRqNdx7773Y3d1FvV7H6dOncdttt7n0+UyEooqfjicNbfaFf6tCRKjhTUOb6foPWldq2KsLMUnDPFWNbSjx9KHHkbh3u118/OMfR6PRwJkzZ2b6YEyUVOPTn/402u023vOe9+D222/HO97xDvT7fTz55JO46667cO7cOafEKYlRd0JfTVPFjeuKmWqp3HHNanFqtkXSRXdCEjF1hSQ54jPJuEm/LyRyPI5KFceA7xFej4SNJJHkjdklSbjpBksCp0l2lFQqiWUGSo5NLpdzruW6ecNnlW1ubW1hMpm4OpzWWudKTrfhZDKJ4XDoatK12+25z9HLjeNF4BAUuICAgICAw7GysoKrV68imUzi1KlTaLVaaLVaWFpaQi6Xc0W7M5kMbr31VozHY3zhC1+YKTmws7MDYwzOnj2LRqMBay2q1SqMMW4ne29vD5VKxRFGZpJstVquCHC73cZoNEK5XMZgMMDly5edEQTAtc1i3MBsTbNsNutcxdLpNLa2trC7u4t0Oo16ve6uRwOZxcOZxAWAI3Isq7CxsQFgn1jVajUsLS3h8uXLMwYTf1dC4BMvNcxViVM1hoYz75H357epP+pKORqNcOXKFdx1110z11ZyQIOPLqWJRGLGYPTvQ13t2M+9vT3s7OzMpHinCySvowoXz1eVjsfQMKWBbIxxCUmq1Sp2dnbQaDRmiB2AGYOWf2s8kRIPn4xwPFTZYN8JEisly3Rz297exsMPP4x6vY5yuYwTJ07g/PnzOHXqFO644w48+eSTePzxx90GghJfXQe8ho5ZnGskiQYAF8tXKpVmFBdV3/w1RxXOV1qVMPrkzVcwtU0do0aj4e7tmWeemYlXU7c+xoI++eSTbuwvXryIt73tbeh0Ovj85z+P173udTh9+jSef/75GbdEX4HSz5XoDYdDR1BIbtSdUxVofsb1D+zHxWqsoBJtEjNdO0ry9HiNq6Pr5Tw3R1Wi9XknIeRmiBIt3ouq/7xuLpdz70ESSnoW+OtOXUj53plMJiiVSjM171TBpFsxExHxPXkzcKwIHEwgcAEBAQEBh+Py5csoFouo1+vO2GSh7Waz6WLOzp07h2azifX1dYzHY5RKJWxvb2M8HuPs2bNIJpPY2dlxhInndrtdWBul5K/ValheXnbkiOUHut0uWq2WM9o7nQ42NjZcxj/GXxQKBWfMqHpTLBZdMpFisYi9vT00m02XQp0ZJMvlMoAoo+GpU6ecAcjYHaoUiURU1+rSpUsu/gOIinifPHkSjUYDAK4zyn3DWd2rlCwR+jeNUlVN6ALK3XQtvqsGt6pMk8kETz31FN785je7pBxKDnk+75PKF7M/qlrkQ1WbZrOJa9euOUIW5+rJvmsc0d7e3owKR+NZSVypVHKxZ8xqmc/nXXvsg1/7yzeKldjEuSnSVU8VQnVh9A1pVUytjbJaDgYDrK2t4dKlS7j99tuxuLiIW265BadOncKdd96JRx99FE888YTbpCCJ8F35+C+voe55XBc08vf29lwCoEKh4Pqs7nHqTsk2SOB4X3Fufkq8/TGMI4eTycRlcG21Wvj85z/vYiF5jyz6rBsETz/9ND70oQ+hVCrhwoULeN/73oef//mfx2c+8xk88MAD6PV62NzcdOUj6KLLtc73gNZfpLpE4khXV7r4+S6Q3W4XxuyXldA0/xx/JisiGdN6f3Tp5NriOLKEBT9nX9mGQte0n7CGpHs8Hru4R44lx17fMZlMBtlsFoVCwSl6+g7R54Zt6jOt65LvWI4n26XSzuRDo9EIrVbLbd7cDBwrAmdwc6uiBwQEBAS8OkA3x6tXr2JhYQFnz55Fu91Gs9mEMWam0Har1XIGU7PZRCaTwalTp9DtdrG5uemMUxYQppvR8vIyFhcXnRFCw4yxF/1+H4uLi0gkEmi327h69aozoEn+6GpJA5CkiEZoLpfD3t4eGo2GK3OwvLzsShCwBtjCwgJOnjw544pmbZRopFQqwVqLXq+H9fV1p3jQoKby0uv1AMy6Tsa5yalyQ+Ms7lgSDE3n7bvQ0fWKqb+5qx9HuC5duuTiEn1ywH75il8mk4mNZfFVPgCOtLAtEhN1y9LYHU2+wL5zLJi9j7Wq8vk8rLXOaKbhyb85VuybZtfT+/GVNXUJJJiRUhUU38jluVxzfip3/rRaLXz6059GoVDAvffei/Pnz+PcuXOoVCpYXl7GY489ho2NDWfQc141K6F/PVXmSN4YD2aMcSq4jqeep+tCVR4SHCWluh7m/cStCwDO5fmJJ55At9vF4uLiDKk0xjhypC6uly9fxgc+8AFks1mcOXMG7373u/GLv/iL+NznPoe7777bbcSowgrAbd4QSr74zPJYKkq6nniObhxollh1U1TSTpAIcgzUvZPrMZvNzmxWqMusPoPaDuPVstksRqORS17Dfmr2SP85zmQyKBaLrnYnx4nPDrBfy43r3lrrSpaoksm1yXWqiVvy+bzL9krPi93dXeTzedwsHErgjDE/BuArAaxba++dfvbPAXwVgF0ATwL4s9bahjHmPIDPAXh8evpHrbV/8eXoeHxfQxmBgICAgIDDMRgMYEzk/sji11evXkWpVMK5c+fQ6XSc0ra0tIS1tTVsb2/jxIkTOHHiBJ555hn3H32n03HGBssG1Go1nD9/Hvl8Hp1OB1tbW84QYV2t1dVVdLtddLtd9Ho9F+9Et0saqzRwaXwwC5oxBo1GA+12G+PxGCdOnMDJkyddVsFKpYJkMonV1VUXAwdEShwNLM062W63XXwdCSDvi/F36h6pxqz/rxp+qpKpixqNdz2X3zNT5mQSlWygQcykMFRkVIG5fPky1tfXce7cuetihtgPJcDJZNLtsKvxr/em5G99fd0VCfbdyHg/ep4moWBfVFGh0UoSqUapplDXOD29ZhzR8LPiqQKh96Zk0DfWleRo7FgcSSK5HA6H+MQnPoEvfOELOHv2LC5cuIB7770XZ8+exUc+8hFcuXLF1bPTWD62ReNa50vvlYk1mE213+/PbGT4a0/nDph1I1TC6xPgONLmg+RlfX0dxhh85jOfmXFxVZA8al9brZYrMfCVX/mVuPXWW/Hud78b73//+/HUU0/h9ttvx+c+9zn3jHKjgPfkx4L5yUtU9VbyRlWtWCzOZLrUcdY1pGtClTJd13ouY8+steh2u25ta+p/kkZeV7NA8r1DdQ/ATAIofY5JqlgHUe9bib+uHSX13BAC4K5tTOT6zvck1yefTV6bm3iFQuGLPgvljwP4NwB+Qj77HwC+01o7MsZ8P4DvBPB3pt89aa29/6Xs5FFhEMoIBAQEBAQcjmw2i6WlJQCRQdVsNl1WRpYDYHwUM8RduHABo9EITz/9tFNe2u32jFtjOp3GwsICbrnlFpcIpdVqodvtzhifmUwGm5ubzg0LgEuhzaQCdKWkwcRMfJlMBv1+H/1+3xkhZ86cQbVadVnTSqUS0uk0brvtNkwmE6ytrbn4ECp1dNskKdnc3EQul5u5Dt2neH9xKhqhv/tubT55A/aNQj1f3Z8YM9br9bC0tIRCoeBUMD2Phlqn08G1a9ecQqfqCkE3Shq7dFHlbv08ctput7G1tTVDNGiIkuTyvnlvND6pTNBwJHGj+6aqZWro+/FrOn7+WPpkhv1W414/V6WIhMd3ZeQ5StS0Da4JVVkHgwGefPJJDAYD3H777VhZWcFb3vIWl62y1WrNqGJK7nkfvmKjCSdI7plEiPFNqsKpwsbPOV9xCTh4v34WRX8sdU3QPXk8HuPKlSszsZT+OFFJ5lyTAD766KPI5/P48i//ctxzzz3Y2trCxz72MSwsLODixYt49NFH3bG8d703kpW4TI2qcLK/JF+cM03ZT5KYzWaRy+VczJkq0Dpu3FjQjZTxeOw2nKgsM3suN6Y4lxoTxzHhe8Z3peQaUHdgZhHmc6uKHtcK1Xsq3TyObqd8T1AB5HNJF9N+v+/eo6zvyXpwbPeLmsBZaz84Vdb0s/8uf34UwNe8xP16QTAhBi4gICAg4AjI5/PY2tpCqVRCIhFl1yOR43/cTF9er9exsrKCtbU1dDodl+Gs3+87I2AymaBQKODMmTOoVCrY29vDM888g16v5wx9kj3uNNNoaDabznApFovOoNKd9n6/79zYut2uM9Doqra7u+uSktCwWFhYQKPRcG6Sk0lU4mB5eRnVahXr6+vIZDJYXFzE7/3e77kdfcaylEolZ6DNI280jn1DXH8n9G8aaWqMKtHTdhKJBFZXVx1ZGo1GuHTpkusLXcUmkwk+//nP4y1veYsbR91153Vo6DIhQblcRrFYnHFVVUIzHA5dcXX2jfdOV0ifULFPJCNUGUiKaeCqEaiGsbo36lj5cWu8tzj1TBUlX1FU0qP3rEoL26DRy2upux7vXQn7ZDLB888/j263i3PnzuHkyZMoFAoolUr43Oc+h52dHUfMdSw1Fsl3a+U9kIQxK6CqlTqGviLsu7z6yqkmhjlIhWNfd3d3sbm5CWOMKyehBErXOkkYr8Xv9/b28MlPfhKZTAbvec978M53vtMpmQ899BDuvPNOXLp0yaW01/nShClARMJ0vZFwK2lirCffW1wHJK9UZtUlU12EdQ1QHdd1SSWWa4Pzw42XnZ0dR7A0LpCbUKr66juBY0qyl06nkc/nXbwf70PnnGuA71K6tXPceW88V92ZqRxyA4YxhXyXM/ELXXJvFl4K6vjNAH5O/r7VGPN7AFoA/oG19nfiTjLGfAuAbwGAc+fOvQTdiGLgQhmBgICAgIDDsLm56dK0X7p0ybk4FotFZLNZNBoNjEYjLC8vI5FI4JlnnnEGP3eKWRg7kYhqqJ09exYLCwtot9uu1ECv10MiEWWB1GK8jE2jYkajQZUcXoexZ1RsGGCfyWScYsYEJcPhENVqFePx2CVUWVhYcIVpz549i729PTz99NMolUqo1+suzi+RiOpApdNpnDt3ziVUIOKMYz8mB7ievPnulHqPSqj0GFVOxuMx1tfXUS6XZ1wF1SimEfrEE09gZ2cH9Xp9xg1R26ZRyp98Pu8yz7FNvWemMtdiwgBmUpWTiGh6c94nk6qQsCvpiFMllbAp4eL3/Nt3AYxrg3/TcFaCx+94PPtNcuCrSTxXY4nUzc6PMWw2m3jyySdRLpeRz+dx+vRp5HI5PPLII9jY2JhRWWhM65yqy6ASURrOu7u7zpVSx0CJKvvHeVejW8dA47iUAPlrgf9ysyedTqPb7aJWq103N2ybxFGTqfBeBoMBHn74YSwtLeGhhx7CW9/6Vly9ehWf+tSn8Ja3vAWTyQRXrlyZycCo643XU/KpKp/emyaS0WQ+JHdKqPwNFfaf7zo+C+l0+jqipeM0HA4duc3n8zPkiX3kutP1y/sj2SMZU7dFrj8tPcK2dS3zOeQ8AHCJnXq9nlP0lpaW0Gw2XWmIXq+HfD4/oygq8SQxvFl4UQTOGPP3AYwA/NT0o6sAzllrt4wxrwfwX4wx91hrW/651tofAfAjAPDggw++JKwrKHABAQEBAUdBuVxGMpnEk08+ieeee84ZByQl1WoVuVwOly9fdjFpqdT/n70/CbIzza4DwfPe8zfPg88jfIBjDMSQMTHJiGQyJaZSHGQylkxc1UKmMpm1qTdaVPWqZDIrU6161asy62a3TKZqFUtJUkxjkhliZmRmZGQggAACowPugMPn4c3zPPTC41zc9+F3RIgiAyT6v2Ywd3/vH77p/3HPd869d0TqtjF+yufzIZVKYWJiAj6fD+VyGfl8XmoKtdtt+U/e6/UiGAzC5/OhWq2iVqtJPBelOpT38FxKOXVyAIKeer0Or9eL5eVliS1JpVKo1+toNpuIRqPwer0CysLhMNLptCRlabfbuHfvHvb39xGLxZDP58W5Z9ISLZ3kzj8TJwDPgjU6j5opAoblknrn24w90447P2e6dl0/TycyIVNJWerDhw8xOTkp8TjmtbWckzvvrC+m5ZfAifSLINYEqCZLph1mOq2UrXK90CFlvA77bwXa9FhqQKCBh76O/lyPOcGtlinS8Wb7TRZPjxmAoTTyAITN0XFlWorJ69brdXz22WcYGxvD8vIyxsfHxfGn3FUDY53FkW0xGUI67WTiuInC46ykpCazys/1eJiJYzif+lheK5fLiSya4MIcMz2WWsapx4mM+s9//nNEIhFcuXIFv/mbv4n/9J/+E9bW1vDmm2+iUqmIXFqPOTd82AadpIW/E/Dwe732CUj0eGswz/Fi3CLHhuPEWmh6jZqMF/A03pggiElpmGiFx5lMNtcvnxe219xA0fXr2G5z3ZgMNMeP71mXy4VwOIxWqyWbdQS5LP3idrtFmcA6iabK4Ou0vzKAczgc/z1Okpv8xuCLlT0YDFoAWl/8/pnD4XgM4CyA638Nbf0KbbJj4GyzzTbbbPtyY5IS1lhjOn6n04mxsTH0+31hCRKJhMR2sFwAAUUqlcLo6KgcT8eO/7nrmJCpqSmpHcQYDOAkTX8sFgMAKRze7/clFsXv9wtAIMvj9/uRSCSkBlwikUA4HEapVEK1WkUsFoPH40E+n5ffc7kcms2mSJry+TwymQxmZmYkUUsgEIDP5xsqBK6Bi5Y7mUbH9HkySn6uzcrpNr8n2KUDRokXnTSC4GKxiFu3buH1118Xx0s7bgCGGAM6pZFIROrwaXaDsS8aUGoGj20AnrI9Pp9PmDadYIHOr67nptke3U4ta+PfVqzU8+JwtEPNe3GsCRq1xFAzUBpsc72zH6Y8UANB3Q860/3+Sc203d1djI2NYXR0VGICWUdL18kzk/ZooG/GPrbbbZFTmuvIZOK0XJNjoaV+2unX86rXGdfa4eEh2u02MpnM0LhZrQvOn2aMNDvc6/VQKBTw0UcfIR6PY3FxEe+99x7+/M//HOvr61hZWZHyIASuXFvcINLSUL4fKKd2OBwyrpox1WyrlbyW80EwRlkyr0VmT8+RjunULJ9e08BTplVnYNXJWkZGRmSTye12IxqNyvuH4Ir3HQwGAuI4Nlw/7XZ7aE3wd2a7LBQK0pdQKITNzU2Ew2GJ56PUnc+xfm71pseLsL8SgHM4HN/FSdKS9weDQV19PgogPxgMeg6HYxHACoDNv5aWfrWW2QycbbbZZpttX2qlUgnASYFqr9crzkUikUCpVJJMY06nU2JQ6JwzUcnY2JjEsLlcLmQyGXH4W62WgIFEIgG/3490Oi0JGGgejwfhcFiyutFhoQPDmC/KhChvHB0dFbDn9XrR6/VwdHSEwWCAYDAoWSOTyaRIEEdGRhCNRoeYtlarhVdeeQU/+MEPJKZOx4lop1yzIKftPGvnWP+uwZw+1wQfBFcaWAAYSpZgxrvo45xOJ548eYKDgwOMjo6KE2nlzNOBHhkZQSgUkphB9r3b7SKfz4vTzftomR2NiWCY5Y9xbpqxoJOrgZOWsQHPZpYk42BK1EwgpQGJ7qMJBDkenEsTlJnMqna+TWaV1+d64OdmaYVer4dGo4FsNotKpYLz588jHo9jeXkZ/X5fsqZyk0LLUflTg17dVgIMM6GFKU3V69ME8JS06nP0+jCfARbfJjA1E9GYGwacd0r7dBs5rt1uF1tbW/jggw/w27/927h06RIODg5w69YtjI6O4uzZs/j888+HWGNKMMk+EQCFQiFJ7sJra2kl2SQtLdVrhuPIZ87n88n1tPyWGwSUZ+tkKszcqDcRtLRYlwfhsZSYc/24XC7pC8Gojj+jQoAJWciqsc4bN14ILMnU640FxrcdHR3J9d9//33k83lsbGzI+5jHUu5L0KcZ/q/bvkoZgf8dwLcApBwOxx6A/xknWSe9AD74YiJZLuA9AP/G4XB0AfQA/IvBYJD/G2q7RVsBm4OzzTbbbLPty4zsFjOO0UHI5/PiEPb7fVQqFXFg/H4/PB4PEokEYrEYWq0W8vm8SBsrlYrs7NJJZExduVwW4KadaSYKabVasotMkMj09pVKRdqdTCbh8/mwt7eHcDiMsbExtFotFItFAaKDwQChUEhAZbvdRiQSAXDC8Pn9frTbbWxubmJ2dhZXr15Fp9ORZB4sQq6dec2skf0yzYpJ059pEGeCPBoBB51OfTzHTjMkptzP5/Ph4OBAmAvKzExHS4MiMqSpVAqZTEbmiUyqBig6iyWdU50R0e/3S4IFgiX2SbfXjJcyWTUeQweUx2qAoBkB00EnONP30n02pa2nMYq8JhkZzeSZkk8aASPbSvDCsUyn0xgbG5N6fUyqYSbMIOOq2UdzLTI2q91uP1NuwTQNxPiPCXs0gDPlsXqzoN/vo1wuY3d3Vwpo81kz59b8XctctZxVr8P19XV8+OGH+N73vod3330X29vb+PTTT/Gbv/mbmJ6exu7urqxNAicyYnzfsMQIQZPup+6XmQGW7PpgMJBSD2QneTwBHseJUkK91vk9wThBEwBREXBeCSZ1LBmPZZupjhgMTuq3BYNBaQvbqZ8XtlWXnuC7ATjZbGH2X67jWq2G4+NjzM/PI5FIoNfrYXZ2Vop16/eVZhr/VksoB4PB71t8/P885dj/BOA//bc26q9qDtgxcLbZZptttn25NRoNVKtVBINBTE5Ool6vI5PJoNfriUOXz+eFTWHms7GxManXVq/X0Wg0JCaLu7lMhsK6V5RZcWfYqh4TnYJoNCrxKx6PRxyziYkJhEIh5HI5lMtlRKNRRCIRqQFHgNbtdhGPx9HtdiUxSzweH/qOqfgHgwH29/fF+aVUkdIpDZS006vNZBusHJrTPjPBl2YHtIxOy8+0xFA7oRxXv9+PUqmE69ev45133pF50GDDZOAImqLRKEZHR5HNZmWHX8vNNKPF67BeHmNjyObwHDJc+hr8nfdlW6wkk6fJ8bQj/jz5npZ+EvyYIFszMfq6mmEw78n2ca3qNaLZOP4jSKnX6zg6OsLIyAhisRii0SimpqZwdHSEVqs1BC75vJimE2wAT6WUBCgmG6nHyVyvjGPVsjhz7DT73O12cXBwIKVG9Fzq83QmT/3c6GP0PJBtBIA7d+5gdnYW77zzDr71rW/h+9//Pm7cuIE333wTxWIR5XIZg8FA3g8EUPF4XEAK26zZN72pQCkir2GVbVZLJDUrxnXBdxcBjgZ2XFc6nT/jZ8lecQx4b75zPB6P1JTTkk2uQ8bOBYNBRCIRVKtVOBwOSfrEnyY7rzO/ZjIZDAYDYTLb7TYqlQr29/elHdxg4/04lxwXU575dduLK2DwN2AOOwbONttss822r2DdbhfJZBKxWAzpdFr+k+Z/1K1WS9ibcDiMkZERjI2NIZlMSvxYs9mUmDO9s0wZot4F17u3sVgMTqcTlUpF4lei0ajEfDSbTXi9XlSrVbhcLpw/fx4ejwd7e3sYDAaSuZnSzXA4jH6/j0ajIen28/k8fD4f5ubmhjKqtdttFAoFKUVApzmRSAh7SCmTNg02tPOsAYLplD5vd1o72SbLYSZJMe+hZWHmnDL5zObmJh4+fIhkMinJQ0zwqZN/OJ1O+P1+pFIpRCIRkcPqnXcNRJxO55CsluybZnL4ux43glMCNs2kmfJJK6ClwRpBggaGmj2jM63ljmasmJlaX7PDes55TT3uBBHmZ5x7bmDomCWH46RWXDabFSd9dHRUnim2h5JJqwLfBAZ6nbFUhpXpMdWOPeO6uD7M9aTXJEFMs9nE2tqaSPYI0s3+c3z1RoFujx5/U7pZr9dx7do1TE1NYWlpCW+88QZu3ryJ+fl5XLlyBR999BG8Xq9sIlH6HQgEZD1p0EPApceMa5/jzfhesqyaldSSVJ3gxJSico4JbDVg5vFaMsprEdSxrT6fD36/X8AWJaIAhmpSspai3jSp1+tot9tD8813MDfCgsEg7t+/j729PekTQWylUoHD4RD5PAGlfka8Xi9isRiOj4/RaDQs19zXYS8XgIPjmRe0bbbZZptttpk2NjaGer2O3d1dcUD1DjVj0Hw+H8LhMBKJhGQfy+VyKBaLKBQKIt/qdDoSn9FqtTA5OYl+v49SqSSOv96JpvSHWQq73S6q1SpGRkYQiURQr9cRiUSwurqKYrGI4+NjBAIBxONxkfZR9slYD7/fL+AsFoshHA4jm82i2WxiMHiaDp/AD8CQsww8BV3aYWHWOA1KgeGC0Ob5NO0AmseYcUP6OzpfVmwIr6sdceDEuWMZh1wuh+vXr+P8+fOScdSU/GlWjw5oPB7H+Pi4xCtq55QgSDOjWjapZWQ6/oft1c6ulgZq9lEzjHpu9Bib1+D3dIjNflqBbfZfM4A83wRtej60vJVzap6nf2opJwBxxiuVCg4ODjAxMYFwOIxIJCKyQN6LWQIZQ2Wygdq5JwPO+nEEeVayRo4Js8ISqNDMsSMA7vf7kuV0ZGQE+XxeEoHwfL0u9Vjra2pwZ84Lf+7u7uJnP/sZ/sE/+Ad48803sbe3h2vXruF73/seVlZW8PDhQ6lbGI/HJSmM1+sVibMGppSosj+aiSbjxI0TSoD180HJoE7FzznSiXrIhHPe9HgQ1LOoNhM96Y0JxsRpUKzXk65Pp+dGj6FO8kJQRpYvGAxiamoKvV5vSHGh3wHsL8EfASnXFEGblvy+CHu5AJzNwNlmm2222fYVjLFudBS4g8s4kna7jXA4jImJCUxOTsLpdOLo6AjpdFqSnDBZCaV7PNfn86FYLKJYLCIQCEi8HO9DxzSVSgE4SZPfaDQELNbrdcTjcZw5c0bYwbGxMbhcLimCHAwG5dxYLCbfOZ0nRa8djpMMf0xBDkDkQMza12g0xEErl8tDTrtmvsyMdwQoZjyblUzNBHT6b9ORNNk2DR75t3Z0TTkaHa1gMIhcLod79+5hfX0do6OjljXh2B4NpHw+HyYnJ/H48eOhBCIcB16Hmf5YXkKzbWyrzsJnBdA0COK9NFPFNan7bgJELVE0WTQt+aLETLN7mhXWY2nFAmoQTmmjlhfqfus1QTDGNtPJp/y00WggHA4jmUyiXq+LHJn3rNfrQ3GMGuxyHRBQtFoteQ41uDXHQz/nzKxogl69RtlH1k/c2toCAEnwodegfn70vc31aspV9dgRkK6trSGVSuHXf/3X8eabb+JP/uRPcPPmTfzqr/4qstmsxG5qMENGn2CIG0ecf732CIr5TLLshl6zlDtqqSPn0ZTV6kylnANKbDXw0uyeXtNkqF0u19DmiX5H6PnXoB2AxB7zedLPI2sGptNpDAYDlEolKeeii51z3bE/ZObYF77zC4WCMNovyl4uAAc7Bs4222yzzbYvt2aziWQyiU6n80xWSJfLhcnJSUxOTkqSkO3tbaTTaWQyGXQ6HQmEpwys2+1KIW1Kwbi7X6vVhmqSlUoljIyMoFarSfwZU2m3221MTEzA7/dLBsTx8XH0+32JfSEgBIDR0VFUKhV0Oh3EYjH5myUD6NRGo1E0Gg3s7e0BeOqY+nw+RCIR2Q2n86LZnFdeeQVerxfb29tSAkEzLXSatIOqTTM6NO1Ma+dXs2M8R5+rHTory+fzSCQSODw8RD6fx9WrV7G6ujrERphyOc3CuVwnhc+Xl5ext7eHbDYrTAOdTII51u7TgEHHjZmsi5mMQ/fJqi16XHiclpxqBs1kMzVw0Gwq502zJFpuplk1Xk+nnzfZHL/fL8fpWD69GWDOtWZMmXwnGAxibGxMJHIEcXwueB0NAM01oNPbW42nBr1erxeRSEQYOz0HJkPLNV6r1XD79m2Uy2WRK+oMlKY0lfNusqem/JOfm2PVarVw7do1TE9PY2lpCRcuXMD6+jpWV1dx/vx5AWuUPZrjpu+rWVaOFceL65YSbq4Nj8cjc0mZIwEZY0E51ho46iyWeh2R7WPmTI4Xs7Vy3bEdOsaMa1avYa7BTqcjCZ+oiCCYbTQaIklngqOtra0hRl0rCzj+TCpltWFFmacG5S/CXi4A95yXum222WabbbbRmGlMOxI+nw+xWAxjY2OYnZ2F03mSlfL4+Bh7e3soFosStN9oNCT7HACRL3KXm7vf3HEmSKTDx93cRCIh0qLFxUUEAgFUq1V0u13EYjH4fD6RarIW0vHxsQCvcrkMp9OJ8fFxeDweHB4eitMyGAwQDocRDofFWaaMstVqSfwI8LQuk3a0AGBqagozMzPitBeLRQGPZtyVafz/WLNoPE/v1mtHjYBDAwmT2TP/n9cgJ5fLIZlMwuPxoNls4saNG3jrrbekULcV06Jlh1wHCwsLWFlZQb1elzhBzUQQqGjmTYM1KyZL7/Jr00lPTLZKAxcT8Oq/9dxxHDVgoYPK47RTao6xjssy78V2EajyWiboIejjWreKdez1ejK+WkJnlmygTNJkLTUgJjvEBEEmq6ZBoNPpRCQSEfbUCtCbfWk0GlhfX8f169dFRqrbYI6Dvo42vRmhWWsThHO+SqUSfv7znyMej+Odd97B3t4erl+/jt/6rd/Czs4OstmssHCcXwIvzYJyTHStPZ2EhWNKYEJmi8k6arXaMyUx2G5KwgnqNJOmYyAJAvV60+wbgGfapdcVv+d64hixNIupHGBSKcYzsx+6Dp9madkeDTL5zHINPg+Mf9324tKn/A2ZDd9ss80222z7MisWi8hms5KowufzYXx8HDMzM5ienpaslFtbW3j48CGOjo5Qr9dRq9XQ7/cRiUQQj8clBkrLhbg7D5w4eLoYdK/XE9kld5VDoRBWV1fh8XjEEWGNuVarJXXnBoMBCoWCALtSqYRIJIKJiQn0+31pI5OQ0JkiU1gulyWOhUyHjtsChmN+6LwwmyUZu9MKR2vHFxhOlU92j38TFOiC3Ka07HnMiDZ9HLNHEpjWajX87Gc/w8HBwTPZ6bTjrpkap/MkI+Xq6ipmZ2dFOqnHigkUmKGUYI6gVP/TIEEDORMIaTmZmTVQs3Z6btgPbTpGTTu+7KsGVyY7arJ85rxxrHQcFD/TsjkNZtgf3X/eh9lSmfFTjynPJ/tprh9zbMlgm+tRrx2H40Qmy9qMWu6n15HuuwZwZAwJ6jWA0/NgMqm67+bapenYUt631+the3sbP/7xjxGJRPCNb3wDe3t7uHv3Li5evDg0NgTA3JjhmHCM+NzrjI78RzYLAAKBAEKhkAA+smsEmdxo0NJSrgXKNbXcWF9fP3O8N9esjsXj9xoo6rULnGyakQWngoDZgnlvMosE3WQXG42GJDzRUtJOp4NqtSrqiFarJUmgdB1KvgNeJGn0kjFwsBGcbbbZZpttX2oEDm63G8lkUv6NjIzg+PgY+Xwe6XQa+Xx+6D95ymdYc41p6ymro3PCjI/MEsf/7LvdrjgVXq8Xs7OziEQiKBaLaLfbiMfjcm673UY0GoXf7xcnd2ZmBrlcDpVKRcBFtVoV54VMH1m/Xq+HlZUViQ8hgCQYczqdaDQaz+wm0wnrdDooFArCAloZHTTtJJ9mWmbGY62khTr2DLBOA6+dZD2vbrcboVBIinLfuXMHn3322VBhb737zmtp4DkyMoKZmRlcvnxZgDsdSQJ+DTQ0K2HFsul7ETjTNNNgxTya8j9zHKzMBHF0OjXTyvuZTKp5P35mAjnNXFrNJ/9puS3HWgMyjm00GpUkHAQLZD50aQmT6dRMGWujWRnbFovFhH3T7ddjzXbSqd/b28ONGzeETeYzo0GtKZ012RqrdpnrXYMcnURjf38fR0dHuHDhAh48eIDr16/jwoULmJubw6NHjyQukcCJLDrHUzOUDodD3l+aPdTvJ7J6ZEg1mOL6onHjQs+BVhkQ9GmQDzyVSxIg833K7zVI5LxqyTDHm5lAyc41Gg3ZCCKYA55msOQmA1UFHDuWBOH1zLhevV543dPeiV+HvVwADg4bv9lmm2222falxv+oZ2dnMTo6KnFgzWZTCvWWy2VxepjJ0O12S1YzOgJMpc6d70AggEwmg1arhXA4PFRQdnR0VJKSzM3NoVqtolAowOFwIJlMwu12o1QqATiJb4tGo3jy5Al8Ph+mp6eRz+cBAAsLC+j3+0PAggW/k8kkKpUKAoEA5ubmkMlk8OjRIwFwdOZ7vZ6AP+180mlpt9sol8sAnmbOBJ7ujGuHnKaBxWlOK4BnHFU9L/o7LbkyTbdVO5bFYhHhcFjmpVqt4qc//SlWV1clW6S+ttkHtiMQCODMmTMoFAp49OiRMKcu19M06zpLpMngmHXdeF06lARY2lHkMXrsNIPJsTdT/3MctTNuxr5pWSbwVI6mszxq0GUFbjjGmknk8TrJBNvKv7Usk7I6DRTJNmuHmd/xulw3miHUjCU/4zOp55L3C4VCGB0dFfbtNBDM/nS7XdRqNdy7dw+bm5sIBALCJul76DVtrlF+p9eZ+bn5u17/ZMH/8i//Er/zO7+Dd955B3/6p3+Ka9eu4a233pKkKlYbRWQL9fxy7nVyIA28GVdHIM0Ml3rtaACu1y1ZO76XGI8WDAbh9/uFydcgmUwXgaAuH8DEO5p11Zs7fCZHRkZQr9eFKeOzyWdcrwG+x9lHvgtrtZrEUDI5DY/VMlO+N3V5gxdhLxeAc1hrjm2zzTbbbLNNWyQSQSqVwvz8PEZGRiR+LZ/PI5fLSXYyj8eDWCwmzq/O6DY9PQ2X6yT7Y71eRygUwmAwkBi1kZERkVz1+32Mj48jEokgFoshGAzi+PgY5XJZJF39/knWPbfbjUgkglKphHQ6jcnJSYTDYaTTaUm5zgLe4XAYDocD1WoVU1NTQ9I7sk+FQkGcYx2I7/F4hEnQMR4ahDSbTdllJgui4wZN0w7x88CbmRiA9zPBoBmfZHUvDSZ6vR4ODw/x9ttvo1wuY3t7G06nEzs7O/jJT36CRCIxlDZcs2Zme51OJ2KxGM6dO4dOp4PNzU30+/2hLHp6vMy/TZZPS1V1f83zNODRsVsasPI7s838TjvoHFOzdh6ZRq5tzg3BJ9us20tZmgZLZsY/DRb4vOg2c43qvuvnB4AADw1GzT6agJP/2u22yJg1o+Z2uzE2NoZYLDbEevKaGnyS/ep0Oshms7h+/TpqtRpSqZSAEsa56vnVAM3q+dDr9jTTQJh/t9ttPHr0CNevX8dv/MZvYHl5GXfv3sWFCxdw4cIF3L59G+FwGMBJen7GfOl2cPPAlM+azzIZOx5PAGMCTK4nHdPK9jLTre6Tx+ORNcPzKWlkkiG9BvW7hqwYgZUphfb5fCiXy/L+5LrWrBrZcoI+XofrNRwOo9lsCghkSQMqLvSGBcHfi7SXC8DBVlDaZpttttn25ba0tISpqSk4nSflAQaDATKZDNLp9FBq6ZGRETSbTWHo6vU6ut0uAoEADg8PxaFl4e1msymsW7vdFiePu/8zMzNIp9MSkxUKhRAKhcRZZBHbXC6HdruNhYUFdDodbG1tIZFIwO12o1gsDjnIpVIJTqdTZEaxWAz9fh+5XA4+n0+caO0MBQIBBAIB1Gq1IZCgHWXt5NDhMhkD7RxaAaDTZGMaqOkEDjTNzpgxWppx4vXYDofDIU7Y7OysFOTudrv47LPPsLy8jHg8PhSTpaVRZtyUy+XC6Ogozp49i2q1ikwmM5QkwwSYPEczUCaLxbYTnGgAZ7IawLNp8PU1CdSsGEQNAvW5HHM931rWZgUKT2OKNFtnSgg162fVH7ZTt0kzbpod1WPE9crr8jyTiTPHPplMYmxsbCgjqQmcCeD4PFYqFdy9excPHz4U8MBEQM8D7iZ4M5k3c57051pGq8e11Wrh5s2bOHPmDF599VWsr6/j448/xve+9z08efJEANVgMBhKVhIIBIYkjPoeOq5NM28cTy051sCd1+Ba4LjrYuAEkJRFDgYnNebIbOp4OdaGo2SVbWGb2+023G63ZO0Fnso4uUHm8/nQbDbl3lo6yXbrzQDNKJL983q98v6lYoEsHIEe72v13H2d9nIBOIddRsA222yzzbYvt4WFBZRKJWSzWbRaLWQyGanvxh1dnRWwVquhWq0iGAwiHo/LLrXP55Og+JGREQSDQTQaDQQCgaHd4snJSUxPT+Pg4ADZbBYARDLZbDYxMjIiZQiy2SxCoRBSqZSkvJ6YmBCJEJ2cQqEgsikyfcvLy8jlclIkuVgsPsNy0UmnHNOUqplOGh1C03TWPFPup9khUw5Io+OtwRfbo1kj7WhpJ/Q0kOB0OrG+vo733nsP4+PjqNVqcDqdyGaz+Iu/+AvMzc3B4/EgEomIs62TOfA+vIfP58PMzAyazSYePHggDrzuj3badXIGK3ZN7+TrMdbX039rwMf+ajbLNO2U6nvqMTTnQMsiTXmfBmn8ZzVOeu5Oiy/ksbpNBFv1eh1+v38oE6Vee1wHdOx5LZ30RTMqetxDoRCmp6dPLepusm/cgNnZ2cFPf/pTNBoNee4p0dNxYZpRtGIt9Rhps9rgMEG8lgzm83ncvHkT3/ve93D58mXcuHEDxWIRFy5cwCeffCLsMvvCZCtkv7Qc1e12IxgMyvg2m01JgKTj1jTo0RsHbKdemzpREAFbMBiUcWA7NDjTzwvnj/PAz/QGFK/R6/UQCoVk82pkZESKimsgyrqb3KzS5Q/YV6fTKRtolItrppAgkBs+uj7ci7KXDMA5MLA5ONtss802277E9vf3pRh3qVRCJpNBrVZDIBCA1+tFIBCQFNR0gsLhsMSYUM7D7Hl0Clhkm4WvY7GYOP+bm5toNBpyfQJDv9+PsbExaQ9j2G7fvo1YLIZoNCrxZ0yg0O12EY/H4XA4UCwWMTExAbfbjcePH6PZbOLixYuoVCrIZrOyg03HiAySGcOhd6k1CNPyKQ3GTAkb8HyHlL+bTJBVHBqdUIIqK+CnAafJglWrVdTrdSwsLGB3d1cY1SdPnuDDDz+UGmDsEx1J3Xd9ba/Xi7m5OfT7fWxuboqja8XAAcPgVt9Dt92UAXLsTZZEj7sGRho0amfSZPp4nC6OrMdRMz0aIFoBSz2HjBeis01gx7Wl+0GmiUaHX88zAYB27MlOsQ/m3PPaBCEcBy0hdbvdmJqaQiKRsCzabYI3Mi+VSgWfffYZHjx4INkeGU+ms2Sa425lz3P0rb7T8kY9V/1+H48fP8bGxgbOnz+Phw8f4v79+/jt3/5t3Lp1a6icAM/j+8vhcMiYmLGwBCw0c5w0SDM3Y/QmgGZLtTEelfFqZOu03FGDJY4L55MbZazzxvVElo+JS3RMKp8nnTDIXOcOh2OojAmBGTeO2CaeqzNPajbuRdhLVUbALuRtm2222WbbV7FKpYJWq4VisYijoyM0m03JLMZsjizyzf+4Kc1xuVwSLzEyMiLOCR0BxoBMTExgeXkZ5XJZ6rP5fD4EAgFxRBKJBJLJJPb391EsFhGJRHB8fIxqtYrV1VWMjo5KNkm9cx0OhzEYDNBoNDAzM4NQKISDgwM4HA6cO3cOmUwGOzs7KJVKsnPNxAbhcFhi4nRwPh12kwGgk0Kn3ZTK0XHSTv7zHFY6Rvqe+hwNnOikm9fTTpTVMYPBAI8fP5Y4R80c/OxnP8PPf/5zZDIZkXxxXDWbY7YpHA7jzJkzWFpaGspiyO81g6WZIc3UaIBHB1qfb8ouTdMSPzqbjCPS7JHppPb7fRSLRaTTaemn0zmcUEXL9TQoM6V87Kd2ZvmZdoQ1YNAOse6zyWLxM11nTSeLAU7ABWOi9Doia6RloGSvp6ennykboNeaBm/MZPj48WP89Kc/Rb1eRyAQGErBb9Yo0+OkzWQm9bp9nvyO7dFjys/K5TI++eQTOJ1OnD17Fvv7+wCAd955R+SLvDfZokajIX9z3vnsatDk9XqlhACPIyul26LrzAGQseH7kOdqmSETCmlZImNJKZvUcW+ateN1uZlEcMf3uG5To9FAtVpFu92Wa7ndblFFsExCMBgUWShLvegspiwETnDL9y+LfDcajaGyFV+3vVQMHBx2DJxtttlmm21fbpVKBZlMRuLJmNig0WiIc6OlkCwJEI/HZbc3Go3KrjDjMOjYnj17FsFgENvb28jlcvD7/YjH4yK3dLlO0pm3220cHh4ikUjA5XJhY2MDY2NjWFlZGQJ1dCTC4TDGxsZwfHwMt9uNlZUV7Ozs4ODgAKOjowiFQkin0yIp0pIyl8s1lA2OxWo1aAOGZV/6b+3EA0938a125QEMSe20s2flmJrSM31vk6mic8d7WEnXHA4H0uk0/H6/OLnVahXASdr6v/zLv5QyDKlUSs6nk8j+mX0PBoOYmZmBw+HAzs4OGo2G9I/AQJ+j2wc8KzvVAJamnXeredBjqgGalq7xe53FMxgMirOrx1XLIzXbqpk2fR+T3SMToceAjjH7quWS5hqzkoFqVlZnRzTjMPU9zbIALpcLiUQCMzMzCAaDljGJ5pgTEKfTafziF7/Azs6OxJDRcee19b05xlbzpWWi/Pw0M6+hnw3d73Q6jbt372J5eRk3b97EtWvX8Pbbb+P27dsol8tDz6TJRBHoErhpoK4ZLAJln883VNpBs20AhtYjz9O1EfnOI+jRgAyAbEBwrpkhknOu16h+Tsme9ft9qctIEAY8ZWP9fv9QjJ3TeZJhlsCM73u2z2TeeB7bzHe+z+d7JhPp12kvGQNnIzjbbLPNNtu+3LLZLHK5HILBIFKplOxsO51O1Go1NBoNBINBBAIBcSDoIESjUYyPj4vj4vF44Pf74ff7MTo6iitXrqDX62Fzc1NklNFoFM1mE61WC6lUCmNjY8hms+j3+1haWkKr1cLx8TEuXbqECxcu4NGjRyiXy4hEIgK2/H4/Wq0WHj16BLfbjcnJSTx48ACNRgOvvvoq3G63/B0MBpFOp4d2rH0+nzhj3GnWTr/JhJmmmTnN1GiHVDv/pgMEDMuu9E/AutabbospVTOdY4JnHtdut3Hv3j2srq4ilUoNAYXj42N8//vfx9raGsrlsjjnOuOmFaPicrkQjUYxNzeHhYUFRCKRIfZJO8I834zho2nwSwbClLCeJmnVGSZNYMQx4vXIRHg8HolHIjAj80igz2vT+TbrxvEnY4xMltQEhXqN0bk3ZaI6oYzJpOnraoBhspV0/PUcx+NxnDlzBrFY7Jm51GBKs2/ACcC/efMmPvroIzgcDkQiEVnLvV5PwIOebyuAqtc072mCe9PMTRLgKbjk93wf3L17F4VCAXNzc/jZz34Gn8+H5eXloWeTWUJ14hbNavLaTMRkAkWd/ZGsl7km+Fxw3XAsCLQ4ppRy6uyVVCIwQRTvqdej0+lEvV4XYMp58Pl8CAaDcn+yh9yk4hwR1HEcAAzFBvb7fSkKrseEzCBLyxSLRdRqNTSbzaFn6EXZywXgHLBj4GyzzTbbbPtSK5VKGB8fRywWG0r20Gg0xEmmlEtLkaanpyX2jOCKjsf8/DwmJydxcHCAvb099Pt9qUdWq9XQ6XTkfgcHB4hGowgGg3j48CF6vR7efvttBINBfP755+JMMevh1NSUyODm5+fhdDpx48YNAMDY2Bg2NjZwcHAgYHR3d1eYQkp/6FSXSqUhKaR2qLXzph1vYNjppZmMAc/T7JEV26YZDH5nxVToz04DlnTUzKxwg8EA29vbaDabmJycHDpnMBhgc3MTP/rRj7C7uyvzQyBHFsmUSdIBDofDmJ6exuzsLEKh0DPOuTmuuq1a7mj2WWfIMwGqyZrp+dPHa2Co224W99ZsGj+n00zmpNlsCmOiZXQaRPJczq8GRCZzShbHBH56fLhm+LcGX5pJ0nPCNnNdxWIxzM/Py/NmyiZ5LVM6yYyvf/mXf4l0Oi1OPZk3PYamLJbjb0qQ9Xd6TvUa5+9mAg9+zjGhzLDdbiOTyWBrawuvvPIK+v0+rl27hnfffVfaR/kjy17ojY7BYCDfE5ACT9kwgjxmsvR6vUPxjvycUlm32y0JSwiC2u22bFrxfixvwDheLZUFTkogaDkz67tRgsvraYAXCoXkHa43IbSEs1KpSJkBvVkSCoXkfc41wPH2eDySJIVtZV84/y8SwL1UEko7Bs4222yzzbavYpOTk8LWVKtVkZiRZSOI8/v9qFar8Hg8WFpaQr1elzi4YrGIdruNeDyO1dVVdDodHB4eSnZKxprV63V4PB5Eo1HU63UUi0WEQiFUKhUcHR1hdXUVExMT2NjYQK1Ww+rqKgqFAvb39zE+Po5oNIp8Po9ms4l4PI6HDx9iMBhgZmYG9XodDx48kALFpVJJsrCZDiX7q6VxNH2cNivnmseb4M3cvednVk45nSQzmQXboUEd48jYJ35u3ltnaeT3xWIRW1tbOHv2LNbW1lAsFqUN3W4Xn376KSKRCL73ve9hcXERwWBQnHLt3FpJ9xgHNzIygsPDQ5RKpWdArpkiXoMdOq/muJiySFPWyPawv5o14Pl6XGkmg8W2kFHp9XpoNpsS80S20eFwIBgMinNLEENnn9fmvcxEGVasE6Wd/Pu0TKN6venEKOZ9uZZ7vR7i8TjOnTtnWTJAX88Eb61WC7u7u/jRj36E27dvw+fzIZVKCTPP/uvU+tpOez6smGV93GnMnDl/5rPV6/Xw6NEjvPbaa5ibm8PHH3+My5cv49y5c7h+/bqsTzKpHHPGfLJkCe9BkMpzNNDXmRc1wNKbMHxOOX+tVgvVahUulwt+v182QxhvxjWqASTXtS4BoJOw8F78jGuZbB6vxyRRvE6lUhHJOI9nEpWZmRl0Oh3s7u7KMVo+2mw2JaZOg1dzfr5ue7kAnK2gtM0222yz7SsY/5MuFouoVCoIBAKIRqOo1WoAgFQqJdnZwuEwJiYmxIljGQCXy4WlpSXMzMxIJst+/6QOGxObAEAikYDT6UQ+n0cgEMDs7Cy2trbg8Xjw+uuvo1gs4saNGwgEApifn8eTJ0+QzWYxPT0Nj8eDbDYrDtT+/j4ikQimpqbw5MkTFItFTE5OYmRkBNlsFoPBQBg/LWNkAgc6adpJJkNHM3fqgWfZNyvHxQq8aekknVPttPK+GsTo363uaYISHT9jnjcYDPDw4UP8k3/yT3D+/Hl8+umnQ+xjr9fDRx99JLIrzdRRYqVjdXRbXC6X1PbzeDyS2ZTtYf81kLZi5/RnZkZO7aQSqLhcLkmlrtk47eCaTBXvo2uF6THUawEYzmrZ7XYlBbvuO40g1WT02EdmADVlk7wWHWOmgCdQMI21uHhP3V4Ch3g8jrNnz2JyclLWvDkGPE+Dt3a7jUKhgKtXr+KTTz7BYDDA5OSksF26H+y/yaix7abxe64Hc+71fJiA1wR45iZJpVLBgwcPMD09jc3NTWxubuLVV1/F559/LhtNZL8AyGd8t+lYRd0GAj7G9lIyqzMykvnk86HBPQG+ziCr1ypjjbm+tCSY61GXNGi1WsIm8h1tSkt5LOWgHDPK25nAR8fusvzK2NgYJiYm0G63UalUZMz1c6CfGQJA8xn7Ou3lAnB4Vjtsm2222Wabbab5fD7k83mJUQsEAqjX6/B6vUgmk+h2u1LUFQAymYykFucO7+LiIkZGRnB8fIxSqQS32y3JSMhkJJNJFAoFNJtNXLhwAW63G2trayK/KxQKKBaLuHz5Mnw+H27duoWDgwOcOXMGlUoF/X4fyWQSR0dH6PV6OHPmDJxOJ7a3twEA09PTUhtOF+yl1EfHTPFvneVNm3YwTbZAH2s661bHauZJsylaMqalltrR0wwc76fjw05rF4GB6fzv7u7i/v37uHDhAjY2NpDJZOS6wEl8zn/5L/8FXq8Xv/Zrv4bZ2dkhp9bn8wmTQ6dU3zMQCGBqagoejweHh4eyrqwYF91mSrBMZoptMz/Xsi3tsJrjpcdZA3EtYeT8mUki/H7/0DrR4MJqvRDM6PnTQIaMymlrAYAAAA2KCNY0WGFfdAp8fe14PI7FxUWMj48LeNPt10DaBG+lUgnXrl3DH//xH+Pg4ACzs7OYmJjA48ePAeAZOSmvpxOnmLJWK2ZVr7vT/FUrltlM4a/n78mTJ5iZmUE0GsUHH3yAf/Wv/hUWFhbw6NEjhMNhea75XGgWV7OalByS3fL5fEOsLDewyPhq9o3X0JJtHXPGdwLHXScfMZMhaVBGttPj8UjWSq/X+0xtNs0us21kHtvtNgKBACKRiCQy4rWKxSIePXqEdDo9BFZ5PT4TjBMk+8aNnReZxOTlAnA2A2ebbbbZZttXsKOjI/T7fUxNTaHT6Uj2MSYKIcNRLBZlJ9jr9cLn8yEajWJ6ehqDwQDpdFoyUnq9XnEq4vE4BoMB9vf34XA4MDMzg6OjIxSLRQF+m5ubCIVCUmz6xo0bqFQqCIfDOD4+lns9fvwYPp8P586dQ7Vaxfb2NkKhELrdLnK5HGKxmDijPp8PBwcH4ihpxsbr9aLRaIjToxkcYDh1vJXTrgGF+bsJVkzpl05soIEF76Ede1Py5na7h2pDmQySvqdVRsN+v4/r16/jt3/7tzE+Pi5MpW5ztVrFX/zFX6Df7+M3fuM3MDk5OdQ/xhFRvqUZIIfDIdks6WCm02mJp2QbdDs1M8nrmGyCdvrNcdXz8zxwzWtqYGRKVPkd14x2ovV86euw/7rNGizqODoyWM/L1KgBno6d05I8Xa9L348xb3NzcxgdHR2S65mxZCbz1ul0UK1Wcf/+ffzZn/0Zdnd34ff7ceHCBVQqlSHQw80QM55OM9X6PrqvVmtWP4Mm0DTNXC/68+PjY9y7dw/xeBzb29t48uQJXn31Vdy/f18Amk5ko58RDYC48WMCMrJvPp8PACRzo1nDjSCTIE9fl/JGvpN0DCVBHuddlzjR9yITrGvdca0zUzDHTksgWUaB7JzexOCGT7FYlIRVmnlmv4PBoKgqms3mM8D1RdjLBeBgx8DZZpttttn25RaJRBAIBITlcrlcUqeNMh1KZMbHxwGc/IfOxCPFYlEcolQqBeAkMUo0GkUymUSpVMLx8TECgQA8Hg+2trbg8/lw/vx55PN5PH78GL1eT5iGRqMhNeEKhYKktt/f38fs7CwWFxdx79491Ot1hMNhkUgmk0lxOlgX6eDgAMDTWCQ6ikwcoB1Gq119AM8AAF03it9rOw28kY3hZ7wfd9xN4GYFHOnQmffQTBbnkI6jCTDS6TQePnyI1157DcfHx8LC6fvk83n88Ic/BAC89957mJubk+/IxBEY6NpxmklKJpPwer0IBoM4PDwUEKBZKS2nM8dLAyYtvdOgwQRv5nxq9s4KOLD92pEnCKUDT+dZxx2aDKlm7whu9ZySAQsEAkPjqM1sO/tpghoyH1pG2Ov14Pf7kUwmJbkQGTKrTQgN3jh/pVIJa2tr+MM//EPcvn0bLpcLly5dQiqVwtbW1tAaJCDRwNHcqOBYnvY86HWspa/a9ByaYwVAQAj70263sbm5iaWlJTidTly7dg3/+B//Y4RCoaH50+nxNXtJkDUYDIRp1rFu9XpdNoFYgoRJTTgnuh6aWXqAxxAMBwIB2SgwZdyDwdP4TR5DNUQgEJBYRb47Oeb1en0oeYl+JsnYDQaDoX5xzVPGXalUhO0DngLKZrMp9wkEAkPr70UW8n6pABwsdi1ss80222yzzTSPxyNSN4/HIywaAInPSCaT8Pl8qFarApYcDodknQwEAuKcVqtVBINBzM7OIpvNIpPJYGxsDMViEaVSCSsrK0gkEtja2kI+n0c4HMb+/r7EmaysrKBcLqNQKCCZTKJWq6Hb7WJ5eRmBQAB37tyRwt/ZbFacmm63i0QigUqlInWvHj58KE4Y+6pBjQZKZtyaFbgwZXumaQdZA0AAz4AWzYJYsQn8acaCmQyQydTwMy1p01LHXq+HtbU1nD17FleuXMEvfvELqeFGeZfD4UCtVsMHH3wAAPj1X/91TE5OIhgMisNMdocOvJWkkpkLPR4PMpmMJKAxmUUTfJljp51rk0myktlp0EbTIE5n2DMZIjq2ZBzI1gEn4IXjq4/X92AbTbCqwZRupwbxeo71MYzRotEx5/E+nw8TExOYmppCJBIZSrxhgjduHHCuudnx4MED/Mmf/Alu3ryJbreLM2fO4JVXXkE2m0WlUhFAwTT0OoMm+6zj+fQ8meyqOfcmsDN/1xsU5vzq5xk4eWc1Gg14vV7s7OygWCziypUrePjwoYA1LVXketdJenQyG65r3SdKETkWHBvWzzQzlurnE4DIKjmGfId5vV6Uy+UhuS03n3SBca47PS56E0oDKv3+4udk6gKBgABfvSFgFo/nWOi4PvM9aL4/v057qQAch9RqR8M222yzzTbbaNlsFg6HQ2Jl+J86cJLAJBgMolwuS624RCIh8RN+v18klpRXxuNxhEIhrK2tod/vIxgM4ujoCOFwGJcvX0a9XsfHH38sdecODw8xMjKCiYkJRKNRHB4eot/vIxKJoFwuIxgMiiP56NEj+P1+BAIB5PN5ictjGnBmyUylUlhbWwNw4jg3m02pl8SdeAICHZwPPAuwrJgbU16pY2foGD/v/1/Kueg0mdfWDA6dQ7bNBHL6OA3irJxVtjWbzeLq1av4tV/7NRweHuL+/ftDEkPgxGErFov4wQ9+gHq9jm9961tYWFhAOBwWZ9Hv94tUkolhTMeSzGsoFEI4HEY2m5UEJyZbZsW46fFmv62cfBMUsD9mGQK2SwMQnt9sNsUxJwOjM0jqRA1m6njN3uj50YwLGTqdoIRzqzcTCBbMRCA8VoOgWCyG6elpjI2NSZFuq/g6zVIyvonM2927d/GHf/iHuHnzJjqdDiKRCN59911EIhHcvHlTJJvtdlueIx2HqPuuNxbMeTI3OPRcss8mkNdzT2P/9FrjuPR6PRQKBUxOTmJvbw8ffPAB3njjDclYaxVPSEDCObGKjWUsnH7WGcMGQDa/NNjj33pDhudUKhWUSiXE43GZ11AohMFggHK5PMTwcxNEx/Wy1Aelj7wvJZomw0jZK3ACBskcslwIj2VcH+/B83mMTtbCjSLG2b0oe6kAnG222WabbbZ9FWNWs3a7jWAwKD9nZ2fR6/VwfHyMbrcrcU3FYhH9fl+C6Z1Op0gu5+bmcHh4iI2NDczNzaHdbuPJkyeYn5/H4uIi1tfXJZU9M1+Gw2GcOXMGhUIBuVwO4XAYlUoFxWIR09PTGB8fx/b2tmTBJCMXDAZFRtntdpHP56WY9JMnT7C/vy+OCJ1vveOtnUiyB2Y8lxUrZwIGfub3+7GysoLR0VFcvXpVMsRpo/Onf2rARtOf6UQRJnA0GR3dRkqozLT/7Ovjx4+xurqKixcvYmdnZ6g4sAZOtVoNP/nJT1Cv1/Hd734Xc3NziMVistvv9/vFGSRwZGIGmtvtRjweh8/nQygUEjaOTBcdWI6/Gb+nwYBOu08nW4Ncmj7GlGjqOddzyNhNHWtE02OsmQqdEZLAkPfXEjan0ylJduj0asde95tzRqCvsxuy3U6nE4lEAuPj40gkEgI4tfSS5+hzNUNTqVSwvr6OH/zgB7h+/bpIoVdXVzEzM4P9/X3JKKtj78y0+XrtsT8mu8ox1ONtSpb19yaDynsSbOlYUs1CA5Bnz+Fw4P79+3j99dcBnEi7w+HwEIuqAS3XFufA3BCgbJDfM4GInnuCKcoa+a5hEhFeU5cWCIfD6Pf72NvbE1mjBu+cfz5fHDO2mdJGPR+UWJJp0xsQHF+uM5ZUGAye1sQj+KQyQwNIAjayylx7L8peKgDHNT8Y2GpK22yzzTbbTrfB4KS4ayKRwGAwwNjYGBKJhJQDCAQCmJmZQbvdRr1eR693Ul/K6/WiXq+jXq8jmUxKpjqXy4V3330XBwcH2NnZwcWLFzExMYFbt26hVqtheXlZdp8jkQjC4TAePXqEkZERxGIx5PN5AMDi4iJ8Ph/W19cRDAbh8/mkzAFZQpYJ8Pv9iMViKJfLqFar4mj4/X6J7dPZE7UjrJ0ujgedLFMySZCnpYZ0JJlYYHx8fCh+y8qxMR12EyhaOfdahqZZNpOh0ICGO+wakPGYZrOJ69ev41d+5VewtLSEe/fuCYtqWrVaxUcffYRqtYq/9/f+Hs6fP49YLAbgKdjwer1DCRs0G8c2s75gMBiUmn6lUklANseEjjWTPDBtvXb69dhrNlKPC4Ch+CCer+WMun0ECSaLSqdVywRdLheCweAQC6XnWwMQtp9xSIyd0tJJDUDIshBQaqDPzK+jo6NIJpMIh8NDMZ40DeJ0nBiBRLFYxPr6Or7//e/jk08+EXYlkUhgaWkJnU4HOzs7aDQaMibNZlM2Qsx78T7metcgSK9fE+SZv+t54Xjr6+h76XEfDAZot9uo1WqYnJzEwcEBHj58iOXlZVy7dk2S8LAfnU5HgDXnkeOk3wP8xwyN1WpVmH0tkyTwazQaQyCp1+uJ5JJKgFarJZktKe/WGR5brZaoDNhv/Yw5HCe15DqdDprNpmRO1clRCCJ5DMeVcc0+n08+azabaDQaApApIeXmhs50qjfDNPB9EfZyAbgvRJR2HhPbbLPNNtueZx6PB4lEAoFAAGNjY4hEIsjn82g0GhgdHUUkEhHgNjIygmQyCZfLJQVd5+fnMTIygkePHiGVSiEQCOD69evo9Xr4xje+gWq1ig8//FDkl/v7+3C5XIjFYqhUKtjf30cwGEQoFEKpVEIoFEIqlUKpVEI2m8XMzIwwcqxJR2Cps8kdHR0JK8GMmb/1W7+FP/7jP4bP55NivmbSADpcZrybyRxoSZt26vl3t9vFo0ePsLm5+QwrZrJmNA0MTJClr83PCQr0Tru+tnakKO17HoDc39/H3bt3MTs7i+PjY8lIyrbpPna7Xdy6dQvVahXdbheXL19GLBYTJqfb7UpcHJ1MyvTI/LDt4XBYMtqFQiHkcjnUajUZC9NpN2O+aGbsj8k+Wc2jHm9zPnV/TbaT7TEZIpMp0jJA3cZmsylSQwIHLW/V7CAASZJBiTKd9mQyibGxMcn2akpBOXf8aca7Ebwx2+Qnn3wiIN/j8WB8fBzxeBy5XE5YbLaXcYF6TWkmU68bttkcQ6u2nsbWmVJLU0qpr2EyjrVaDfF4HA6HA1tbW/j2t7+Njz/+WFgpbtzoJDx6jepn3IwDI7iq1+sinaxUKkPjwWdRs7hkqvnempiYENBFQBUOhxEMBpHL5WRDhccz1pesF8F7v98X6TmBKRl49kMn4jE3jCiFr9fraDQaQxsqHFNuJPBZDIfD8q5tNBpD9TO/bnu5AJwwcAM8jYizzTbbbLPNtmFjLNrk5CTa7TZ2dnYwMjIikrdyuQwAUuC72WyiVqshGo1KIe5KpYK5uTmUy2Vsb29jfHwcyWQSe3t7AsKazSY2NzcRi8WQSCRwdHQEAFhaWkKz2USlUsHk5CTcbjc2NjbgdrsRDAYF8IXDYZRKJQEG/X4fiUQCjUYD5XJZkjc0m01JyvLgwQNhP3T6cJYQoDNjlYjiNLDAYzSLoJ11fq//1swRgCGQpe+tGR6ex59m6nn+PjIyMlQHit9x15zfmyAVOImF2djYgN/vx9LSEur1uiRRYPvZR4Kdx48f44/+6I8Qi8UQiUTkPrp8Ax1kOpJ0HrXU0OPxIB6PIxAIIBaLoVQqIZ/PC2NqOpkcL82ucUx0bT/gadY8zbLqmCYCGg1E6Nzquef19Zyac2DOHZ1/s9aY3++Xz51OJ3K5HPx+v8QR6XnTbQQgmQcJrljnUK9FqzXDMaDcr9VqIZfL4c6dO/jP//k/49atW0OOeSgUwvLyMrxeLz7//HN53hyOpwmLuHnwPMbleYDMHEOr542/mzJHU3ps1XeClUKhIOtgZ2cHg8EAs7OzkpCFmWi5tslAmuUANOPH90673ZZEJD6fD81mE51OR9hebvZwzVGGGAwGJdEJ5d79fl/G1uv1wuFwyGYaN0ZMVpJz6nA4kEgkRPJIMOp2u4cySLL9uuyAZoD7/b7U7my1WqhUKsK28n5utxvRaBROpxPpdFrYR8a4tlqtU9fD37S9XADui582A2ebbbbZZtvzbHFxEfF4HOl0GsViEbFYDNFoFJ1OR5ydWCyGUCiEYrGIdruNubk5BAIB3Lp1C16vFxMTEzg8PAQAXLlyBcFgEDdv3sTIyAiuXLmC9fV1lEolSVSSzWYRiUTgcrnEkT1//jyazSYePXok0spMJoNIJCLOB+MwnE6nyKNarRZGR0cBALlcDtFoFI1GAx6PB/v7++h2u0N1jSh91EDAlEoCzybLMB1O/ZkVO6CdP95L7+RrR9hMrKCBDiV3uh1a7qcB4GAwEOeNTh535OnMatmew3GS4XB3dxdnz57F7Owsnjx5IjWm6DSbDnapVMKHH36Ivb09LCwsYGpqCtFoVO7JRBd0iAmiyOJoeRzlY8FgEJFIRLKVkuHVQFsnY9BsqQbMViyqZnI4tpwLDVbprGpwZAIQMtHm9TWzx/FmfFSr1UIoFAIAKXvh9/slaQrXn5Zt8jrxeBypVEqeQbIqJnjh/GvAoRmjRqOBdDqNmzdv4s/+7M9w584dAZMsND01NYXFxUUcHBxgf39frtvvnxTv5oaAFROmNzTYHys22XxWrNg5bljoz9kOPcf6meX9OYesacnnZ319HdPT01KPUo+NHjPGNfLZ0u3j+iVbxoQ3BE7ms6IzWppJkzQjCpywYEwc1G63Za41EOOY6k2bWq2GYrE4VOhbyyy5ccL1SFBMwKVBJ8dd13qrVqsiS+emWrlcRr1ex97enoDY09jRr8NeLgCnYuBss80222yz7TQLhUJIp9PodruYmJhAIBBAvV6X2Ix4PA4AUjT7woULyGaz2NzcxOTkpAC9WCyGlZUVHB0d4e7du5ienkY0GsX9+/dRKpUwPj6OdruN4+NjxGIxKRw8MTGBSCSCbDaLbDaLZDKJRqOBarUqEj0NSvx+P1KpFPb399HpdDAxMSFOj8/nQzqdxvHxMdxuN8rl8lDBYTp2NA2arBg1bdrJ0+ecBt60PI7n0MnjdfS1NBukU5P3+31JLkOWiG3VQMM0HsdYRd1efc5gMEAul8Pe3h5mZmbQ6/Xw6NEj+c6Udw4GA2QyGTx+/FjWxK/8yq/g3LlzkgmRjimlWXT+KGFlNkNez+l0CpALh8NIJpMol8sol8sSI8c200nW8WomEGd7rZg3UyLJtaFBop5TnTEUgGSRpPV6PZEyasd9MBgIgxIKhQQQ+P1+aRNrhGlmiY53OBwW4BYIBARUPG99ciz4jwCCRe9/+ctf4oMPPsDe3p6ME7MKxmIxnDlzBs1mExsbG0OMW7VafQZYmjJXzfCa61q3+XngzVyXXxUUmGuabSDQcjgcuHbtGt5//32k02mRU/Ncr9criUD0pgfXHeeHDBzvw3P4twaDbIeWMTLmDXi6gdDv9wUAcXOhXq9LMinGWTKulO8BrpV6vS5jzIRC3W5X5o9SXMbK6RITfMe73W55t/R6Pcn0S0lnLpcT9pjqBi2tZjKWF2UvGYBjDJyN4GyzzTbbbDvd9vf3EQgEMD8/j1arhVKphE6ng1AohOnpaZRKJWxtbWFhYQGTk5NIp9MolUq4fPkyCoUCqtUqzpw5g2g0irW1NRSLRbz66quoVCr45S9/Cb/fj9HRUXEo4vE4yuUyarUapqamUKvVcHh4CKfTiVQqhW63i3A4jF6vh2q1ikAgIBKu0dFRuFwu5PN5qVVXLBaRSCRQq9WQTqfFQabTQyeEzqx2tLXTCzxlYbTzaH5mJdkiMOB1tWyJppkDExRp9kbH3hBUMH6K/QGexrjpwsHaASU7EQwGBUhYGc/J5/OIxWKYnJxEsVhENpuVa5vj0+v1sLGxgWAwCIfDgXQ6jddeew3vvPMOZmdnJUsl61ux3AABg06QYAI5xgkFg0HE43FUKhVJetNoNASEa2BgJckznX/NhOifGuDR2adT3u/3JfEEv2fbrcCtjqsjCCNzTHZEjyclvTzX5/MhHA4jHo8jEokIcNNAk2ZKEjWLQqDRarVQLBaxubmJH//4x/jZz36GXC43tH4od52ZmUE8Hsfu7i6y2azcp9vtSiITvRmiWTW9+aCfGyuwafW3OV/6dw0KNdDVc6fboFk5LUnm2vH5fKjVapJ5l33k9TXDxtpwlEESmBPwAE/jMynt5rPHtU+Wjm3VgJ1zQIaMmxJc35S+UlrJf5xfXb6C2TX1u4psH/tkjhXXSLPZlM0ePo+hUAihUGgo6Us+nx8C8dyoOi350ddlLxWAo9kMnG222Wabbc8z1nqrVCool8twu92Yn59HMpnE7u4uCoUCVldX4XA4cOvWLSwsLEhdJZfLhTfeeAPVahUff/wxfD4frly5gsePH+PJkycYGxsDcFJrbm5uDj6fDzs7O3C5XFhaWhK5nHb4KdFpt9uYmJjA9vY2er0eRkdHkc1mMRgMhhKpzM7O4uDgAL1eD5OTk0MSKe4mj4yMSGC+BlFmzJEGYvpz07SDpNmIr2Ia1Gm5n1WWPc0I6cQEZOgo6dJOFZ1NLZ1k1jvTudXWarWQzWaxsrKC1dVV9Pt95HI5cRZ5jgabtVpNEsh88MEHePz4Md59911cunRJEuLQefT5fALONLi2YuToHHo8HkQiEbRaLdRqNYnRo7xSZw/VjJAeQ86nHg8TIGgAYbJ0ZEB4Lx1HxPtp1k+zMQCk3AavS+eecWcEuJQN02nWhdhPAz0m68a2MbPi4eEhbt26hR//+Me4c+fOEKPENeN0OjExMYG33noL9XodBwcHAmzIQmkWnONomgkeTHbNfJ503zQY0Mfodcq2mp8R+JjX5fuExzscDpTLZUSjUWxvbw+tfy11ZltN0KPnlplR9fPHe/C55Jqo1+tD2W75DAcCAbhcLlE7cB2a0mqOP/AUaOr3GOPrOHYEf2TsuCYY06afP65FXpPvSIfDgXa7PbRxpN8rkUgEPp8P9XpdAKDVe/LrspcKwL1AKaptttlmm21/h4zp+RuNhtQy8/l8uHPnDtrtNhYWFpBOp1Eul/Haa69hMBjgk08+wezsLCYmJvD5559jb28Pr732GmKxGH7xi1+gUqlgaWkJvV4P+Xwe8/PzGAxOkgkkEgl4PB7s7e1JApV6vS5MWzqdFgfizp07CAaDmJiYELAwOzsrCNyoKAABAABJREFUWeNSqRQKhcIQq6KZK/ZPsy06M5yVhEsDOZrpxOk4HStZ4mnXBoalklbH0rmis6cZOcZfARBQyniwwWAgSWZ4Tzq3oVAI9XpdnE0CJw1EgBNJ2OHhIaanpzE1NSUFh00Qp/ulyyqsra3h8PAQjx49wltvvYXl5WUkEokhWaXX6x2qG6eBFevH6RhAArlQKIR2u41UKoVqtYparSb/KC1jnxqNBgBICnbNOmiWU8+nls+asYVkz/SYakbMZGc5X1x3XK+8BmtzhUIhRCIRKZOha7mZ60ab3nzQwM3pdKLZbKJYLGJ7exsfffQRfvrTn+Lw8FCAqwZNwAnAXFxcRL1ex+7urtRZ5P1rtdqQZJWfa8bYBG/m2j6NOTSZM22nMalmHJze+ODYaVljo9GQ53RjYwOLi4tSooHsJzcPmOxHM2FMzKPHjO0je6Y3RQjGuIb4OxlMl8slYJhAORwOC2iktJJrTbODbBc3Zfi3BtpaWk0QS6knx51gUccAsu36HUmpJMdK96lWq4ksk1LgF2UvF4BjGQGbgbPNNttss+05RjZjamoKs7OzyGaz2NjYgM/nw8TEBHZ3dxGLxXDlyhU8efIElUoF586dQ61Ww4cffohAIID3338fmUwGP/zhDxEIBDA3N4dCoYBIJILFxUUcHR2h0+lgeXkZuVwOW1tbmJmZAQCRPdZqNal7VCqV0Gw2MTk5iW63i93dXczMzGB2dlYSQlSrVezu7ooUKhwOo91ui0RMx7tp551Ol+kI0rQTzr+t2AWTGTnN2aaTanUf/bk+35SLeTweiRFjkWmXy4VsNiuAot8/yWZHdo7XI2jTDqMGMSYTUa1WkclkEIvFMD4+Lk6e2X79N+/vdDpRKBTwi1/8Ag8fPsSbb76JK1euYGFhAbFYTGL5mBCDBYK1c0uHWjNedIAJ/ngd7v4zM2qz2ZQxKBaLQ4wO2VJgWGbHv62ANYGKBiu6OLcJMKzmmA4v2USybH6/X+RpmsW1+qnXn5ZKakaQ62B/fx/Xr1/HT3/6U9y5c2co/lFfk206d+4cJiYmpJRDuVyWaxEYaPmkZu/MtlqNCT/TvxMQcsx0/8zrmhsq+ns9L1qOyvtQYhwMBtHv91GpVIRFbLfbkiBJ10cjeCGA0psUug2m9JcSba5ryi01qBwMnmaGbTab8jxyzPgMmO8ZzSgTAGpASaDFdpnMod4YMDemdHIU/uOmkI51472Y9ITJW5xOJwKBwJCU++u2lwvAMYmJHQNnm2222Wbbc6zf7+PcuXOIRqPY3NxEpVLB4uIi8vk8tra28Oqrr8Lj8eCzzz7D5OQkzp07h/X1dTx58gQXLlzA0tISHj58iJs3b2JiYkKKa8/MzMDtdmNzcxPRaBRLS0t48uQJstkszpw5g1arhYODA4mPCwQCSCaT2N/fh8/nw+LiomQ7u3TpEiKRCI6PjzE5OYlarYb9/X04nSflAVwuFyqVChYWFrC3t4dcLjfE5OgsiGRntHMIfLWkCaYUzGTWTGffZPK0adkWr8VzuaseCATE4aO0jrvnLBSspVd0VAlc2b+RkRH4/X4p0svP6MDp9jD20OPxYG5uThxNfexpph3ew8ND/Pmf/zkePHiAb3zjG3jllVcwOTmJWCwmkk4yEQQyGsjpIsR0MjWDREec2fsoqSQbRzaSjmar1To12yfnVhvLH+ix0bJFPY90rDnXdOI5X5ScMeW6dqg1QDBBm95M0A42x4Vz3Wg0UCwWcXBwgJ///Of4+c9/LnXBTOCmpZOzs7OYnZ0VRlPXHvN4PCgWi7K22T+r9aw3IkwG3IqZ02veakPEBC7s/2nPKOdRrxGuCdZdczgcwqh5vV4Ui0VEo1E5x+PxCNNMsK8Zdt0PAlsCGG44cG65fnRbyagDkMQjugSBKd/USZA4Z0wK5HK5hkAn+0tgpSW6LNSt5aeavaTagfJK9kszkXyXulwu2UjyeDxSGgN4mpTlRdjLBeC++GkzcLbZZptttj3PLly4gEajgZs3byIWi2F1dRWHh4dotVp49913sbW1JfJJAPj444/hcrnw5ptvotls4oMPPkCz2cSFCxdwcHCAweCk3lImk5HabuFwGHfu3JG03nfu3EEoFEI0GkWpVMLy8jJcLhd2d3cxOjqKVCqFYrGIUCiE8+fPY2dnB7lcTurU0WlKJpPodDpIJBKYnp7G5uYm8vk8gKdFrekgkXEAIHEqWmplOo/aAdUyOx5rtTsODEskNSgzTTuvdHrJcgCQOBkW7I3FYnC73ajVavB4PEin00OAkYBDswTaiWR9NpYIYJIGXZ+N5/V6PZTLZTidToyOjqLRaEgmOisppQlo+H273cajR4+wt7eHW7du4e2338b58+cxPj6OaDSKQCCAfr8v64LAR4MFOvsEcQQuur3sqykrJCtCYNfpdOSnTq3OZBFW8k2arg/G7wg2CSYpDWU/GK+oU7zrtabHUbNammGiQ6+lkjrOjXLJW7du4ZNPPsHOzs6QjNY0ApOVlRVcunQJwInMkOwbjwmHwygWi+LIE2CbTI5mxDj/Zp806DUZJp7DsbVaS1/G8GmQwTXPzwjiyEBvbm7K+6VWqw1lfCXI47vD7XZLRkiCFpYlIEAi00Z5LOWy5uYNnz+uPwIrjquOO6QcWMephcPhoXheACJv5X0IVDkmHC9uhmhwxn5zbNjmbreLWq0mbTaZ32aziXg8jlAoJJtiLzIDJfCyAThh4GyzzTbbbLPtdGNR1oWFBQCQOJFAIIDr168jHA7j0qVL2Nvbw8bGBmZnZzE+Po4HDx7g4OAAY2NjGB8fx+bmJubm5jA1NYWdnR10Oh2cP38euVwODx8+lMyC1WoV8Xgc/f5JRriLFy9if38fmUwGk5OTcDgcePToESYnJzE6OoqDgwOEw2FhU5iRbXp6Wpi+8fFxrK2tDWVOBJ46gNVqVeRvwNNAfxOk6XNo2pnm9yYLZ55D08kVaGRrzGsRhACQ2kp+v18cN7I5iUQCwNP09tqB03FtZBooeWJijN3dXUnAwBgxDXbIIBAgcE6YSMQEUDQzkYfp9K2treHg4AB3797F66+/jgsXLuDKlSsYDAao1+vCktGh1AkzNJAzE3ZoRoH35vFer3eIPdHHm6wWAT3ZMHNudd90nS2rnxrgaDZNX1ODEzMRjlUfNXCr1WooFArY29vD/fv3ce3aNTx69EiKK5trV69Hh8OBubk5fPe730U2m5Wss9lsVrIREozyuSFY1Vko9fWtmEl+rkGcVbtMwGbKJ61Mf24+w+amDEEV218qleQZ4vtEyyHZXz4TOtU+cMKe9ft9yS6pGWzdfkoxKTEMBoNDMWxcj1wnlCHyedVrluu4Xq+LBFwnOeF7g9ciM603cPQ7Qo8dAR4ZQa/XKzJnHR/HAuR8N8ViMfj9fkl0xM2JF2FfCuAcDsf/C8BvAUgPBoNLX3yWAPAfASwA2ALwTwaDQeGL7/5vAP4ZgB6A/+tgMPiLv5GWW7UV1v8R2WabbbbZZps2v9+P8fFxZLNZNBoNXL58Gel0Gnfv3sXy8jJ8Ph8+//xz1Ot1LC0todPp4P79+/B4PPjGN76Bg4MDZLNZvPLKKwiFQrh//z6i0SjOnTuH7e1tlEolJJNJpNNpSWJRq9UwNjYGr9eLW7duiTQnm83C4/Hg1VdfRbvdxvb2NmZnZ7G3t4dKpSK72H6/H9VqFefPn0e/38e1a9cQCoUwNzeHhw8fAnia1EA7ZW63WwL1taOuzXR4eC3TsdTMghXTQUfNjH8zEyFoxx94ulMfiUQE9PJ7OmqJROIZJ5jOnmZy6PQxOYjP50MymcTx8bE4f7xfp9NBs9kU4ESZZj6fRyQSwfT0tGTvY/81G2eOlzbu+pdKJXz++efY2tpCOp3G5OQk9vb24PF4EI/HEQwGBXRS0kVGS4MmzqUGZfqnCZDYJgIYU67HPgDP1vKyWhvmT/N3q3P02FhJETW41EwbWZF2u41qtSrS5rt37+LWrVvY3t4ektOZ96JxTUSjUVy8eFHKM/R6PRwfH0uGV4fDgdXVVWQyGZEFalaLfdJSTA3YzfUOPJUTmhsl+lx9Pu9xGvCz2jh53pxwDPkZk4VwI4esGdva7/eHmGo+ywQ/BFlW9yW4Mst9ACfgT28I6XhcXbKDx3Q6HQQCAWHOc7mcJHvi/fmc8Dqa/WU72T+/3y+ZL3UtOeDkveT3+6WAeKlUEiZuMBjI5grnRMddUoL7ouyrMHD/bwD/DwD/Tn32PwH4y8Fg8L86HI7/6Yu//0eHw3EBwD8FcBHAFID/4nA4zg4Gg+cLyP+azGbgbLPNNtts+yoWDAbFmW61Wrh27Ro8Hg+uXLmCcrmMa9euYXZ2FsvLyzg8PEQ6nUY0GsWZM2ewv78Pt9uNt956C5lMBmtra7h48SISiQSuXr0KAJKUJBaLST2p2dlZ1Go1PH78GBMTE/D7/bh//z46nQ7OnDmDTz/9FLFYDIlEArdu3cJgMEAgEEAkEpF4jStXrmBvbw+PHz/GwsICIpGIMH/a9E435U7mDr7p9GmGjZ/p46zAnU6DTqMza+WsEyRxR5vOEbMS6hTzgy8kn4PBAMFgEH6/X2RyBF/aaeaOOR1VDbQmJydRqVSETaM8DHjKuvHeWko5PT2NSqWCTCYjgJDX1P3TUlIzOYgucH3t2jXZ5Xc6nVhdXcXs7CySyaQk+WCCD7JyGsxxXvg758IEQVrSZ8X2mHP6PObny77Tv5v/tDxSAxbNrJnMIJmQcrmMbDaLra0t3L9/H3fv3sXOzo5I6fT9rdpI8B+Px/Hmm28iFouJ1LhSqQwlwxkdHcWFCxfw7//9vxfAS/aK19Jsl479NOff3EzQbLH+WwMSvTmgGTzK9QjEdZ/1tfTvun181trtNkqlksiRuZbJWBPQOZ1OYfs5R0zXT6aMEkqOjS6GzTXLMgE6cZKWa5KhJgOm1wgBF98XlCvqeE5KoQnM9Nwz0Y/ewNElSDhfBK36mY1GoxgZGUGtVpN3HzNfOhwOAYFUFFix8l+XfSmAGwwGP3M4HAvGx78L4Ftf/P7/AfAhgP/xi8//v4PBoAXgicPheATgLQC//Gtq71cym4CzzTbbbLPteVar1bC6uoqdnR3s7+9jZWUFqVQKGxsbSKfTuHz5MtxuN9LpNPL5PMbGxhAMBvHo0SOMj4/D4/Hg5s2bCIfDeOedd5BOp/HJJ58gmUzC4XDg8PAQ4XAYrVYLkUgEkUgER0dH6Ha7eP/999FsNnH79m0sLCxgbGwMW1tbGB0dRb/fx9bWFgKBAPx+P8bGxrC/v4/Z2VlMTk5iY2MDuVwOi4uL6Ha72Nrakhg8OnbcnQZOds0JIMlUnSb5omngZsWw6M/1Dj/wVCqpAYTe7dY/eezY2BgCgYDIrhgPowv3plKpIemWTljCPlO6RbaBu+vFYhGRSASzs7PY2NhAt9tFq9USJ51/s/4Tyw0Ui0X4fD6ZFya70M45+0EzAZ6W2XG3vlAoIJ1OI5fL4bPPPsPs7CzOnTuH+fl5TExMIB6PCwOhs1VqQKfjBgmkCfq0FM38ZyZveR6bqo8zYxxNBkYDNSuWz8wcqeP1+Hu73Ua9Xkc2m8Xx8THW19dx7949PHr0CKVSSep16fue1n6OyejoKL75zW8iEomIo89accw26Ha78f777yMYDCKXyw3VHTRjAk1WmuPC+TbZM3PszHViriOrMdTPltXYm9czATPbz/XN8WcMGPBUYsh1xDlh5kcAku2S67LVaqHRaMgcEvg1Gg0ZW10sm/fhvA8GAwFhXNuhUAgAJDsv78tMqwBkg4NxewRiel1xLJjsR8d76k0Mh8Mh7xpKlxkDZyYxYmwgpaRer/eFxsH9VWPgxgeDwSEADAaDQ4fDMfbF59MAPlHH7X3x2TPmcDj+BwD/AwDMzc39FZvxzDVPfrEBnG222Wabbc+xZDKJ27dvo9/v480334TT6cT169fhcDhw5coVHB8fI51OI5lM4tKlS8jn80in01hcXESj0cDu7i5eeeUVeDwe3LlzB8ViEeFwGEdHR6hUKnC5XGg0Gjh37hxGRkZwdHSEiYkJTE5OShwdC4WXSiWp8+V0OpFKpRCNRjE6Oort7W1cuXIFXq8Xn332GZxOJ+LxOPb399FoNIZ2r2l0jnq9HiqVypADqdky7chYgTjtLFs5yjq+RMu7yGqYMVqamaCTxPbTeRsMTlL6cwe90+lI4o9cLicOqWbzNJvB2BnNOvT7fWQyGVy8eBG5XA5HR0cAIHE+ZN20XIqMRLfbRSQSkdIClFUR/Hm9Xqk1Z5q5O+90OlGtVvGLX/wCPp8PACQhx8OHD5FKpbC4uIjl5WXMzc1hdHQUi4uL6PV6Q+BSx2YRbNDxNsebv3O+TTbO6nerv60AkmmaXTN/mp+R/Wm322g0GsJy7u7u4u7du3j8+DH29/dF0mf267S+6DU2OzuL7373uxgZGUE2m5X7Hx0doVgsCuBfWFjAP/2n/xT/9t/+W2FaOJ4mMNWgTd9fAx89NhogmTF//N4Ea7wO/2mQrMG4+exqdtAEd5pB49/sR71el2QkvEer1ZL1xOeCcxaLxRCNRrGzsyNsaSwWQygUQqVSQavVEjkm5coEjHzOCIzD4fDQRgTbRTaeoJ7F7LnemdRIZ3TlGHId6jnUyZ1MdpRAkXXdGEfK/nITxYotfZnqwFlt4VjCqcFg8L8B+N8A4Bvf+MZfC+SSLJQ2grPNNttss+05dvPmTUxPT0sykfv37yMej2Nqagr7+/sC3pLJJHZ2dpBKpXDx4kVsbGzA5XLh9ddfRz6fx8bGhuwAHx8fi6woFAphYWEB2WwWxWIRFy9ehMPhwMcffwy/34/XX38dBwcHqFarCIfDqNfriEajsms8MjKCvb09zM7O4uDgAIeHh1LU+ejoCL1eD4lEAq1WS7LoAcOxJ/xbS7WAp8CCTBPttBgbLc/S0iwzHsZkC3SKcEqlyAJ6PB4kEglEo1H4/X44nScZ6Y6PjyXZCK/HDHT5fH6ozhSZtsFggHA4LIwnJVQEeIyHKRaLeO211/CTn/xE5F3NZlPu3+v1JEMfEygAEHllPB7HYDCQBBjhcBgrKytDdce+iqSq3+9LoWWyPP1+H+l0Gul0Grdv38bMzAwuXLiAxcVFHB4eolqtwufzPRMvp+MEtUxNJxXRMVvmPz3PplnJJrWDzH/8m+BdgzRT2smMmM1mE6VSCblcDoeHh9jZ2cH6+jp2dnZkfE1W6bR2mawcQdnv/u7vwuFwYG9vT67BunkEOsFgEP/yX/5LtNttPHz4UI6zSoRhJWNkG83EPfo5MiWU2syNEv2smkzmaZssGqjrNuuC2wQkZK5NCSVj4/hM8aeWqwKQshz62Q4EAhgZGUG1WhVpImPb/H4//H6/xLDxc4K4drstiYo454xP1SUNuLb5bA8GA2EHdSIUHdvncDjQbDaHpJJk3DknLF3Ad5Nm9rnRpOWbzMjJNX4ac/112F8VwB07HI7JL9i3SQDpLz7fAzCrjpsBcPDf0sD/GhMCzsZvttlmm222PceuXLmCsbExfP7552g0GlhaWkKz2cTVq1fhcrkkI+XBwQHOnTuHVquFO3fuYGFhAefOncMvfvELSeX/6NEjjIyMIBqNotFoYGJiAslkEtvb2/B6vbh48SKOjo6QTqexsLCAVCqF9fV1kSgNBgNEo1GRJhWLRXi9XiQSCaytrWFkZASxWAzVahWVSkWklfV6XeR2ppnyRQByL35HR00DN+1gWkm6TOdSm3YetUySn/X7ffj9fsTjcdk5p2RSO4vFYlHkUXQ66/U6jo+PJfZGx9a43W6Uy2VhxgiECR7oXB8cHGB5eRmXLl3CzZs3RVZFJpNtZrwhmRC2hVJOMmnVahU3btwQJ1n308p0bJL+jPGAvA/7GgwG8emnn+LWrVvC8E5NTWFsbAyxWGxIZmlmryRgO41F0kzVafNpyizZXhO0mb9rIEeWjUXHCdqOjo6wubmJg4MD7O/vy5zra5jt43q0Yt50f19//XW89dZbqFQqKBQK8nm73UalUpG6gG63G9/5znfwxhtv4Mc//jGy2ayAN3McTYYLeMpm829zbq0YayvZre6TVR9NMGgVd6rHgu3U4ItrlKCoXC4LuNLM4WAwkOdCxwACECaq1WpJkiA+N9VqVa5NEBQIBARktdttWXOUHvI9QXZMvzd0CZRAICCbLZr10ll1yeyxRhsl0bymji1l/B1j6/r9vgBajq/eCCMTr+N2Cfz+LtaB+88A/nsA/+sXP/9Eff4fHA7H/x0nSUxWAHz639rIr2pPGTjbbLPNNttse779+Mc/RjKZxOLiIh49eoTj42OMj49jcXERx8fH6Pf7eP3117G9vY1sNov3338ffr8fv/zlL9FsNhEIBLC9vQ2/3y91kmZnZ9HpdHB0dITJyUlEIhGsra1hMBjgtddeQ6fTwa1btwS4xONxcTpcLhdyuRwSiQTq9Tq2trZEYsTi3vF4HLFYDMViEXNzc0MSMy2LouNJB4zxKTrZyfN2j00HH3jWIeXfVjE+dCbpmNHRoWRSlwlg0exms4lKpSKyKTp2ZNPy+bz0QTu1dALJohUKBYmn8/v9EnvWbDZx7949vP3228hkMpJdkiCOQIgOG/uqE4O4XC6ZO7IOHC89Hs8DcTQdj1atVgW4ULYFAB9++CG2traQyWREHhqPx6WMRSqVksQ3gUBAYnOYbMKUAn4ZE2dlGjywDyag03FGZElqtRoqlQry+Tzy+Tz29/ext7eH4+NjVCoVVKtVAa0asBDo6PgyjrFVuwi0vF4vXnvtNbzxxhsin+V3ZFczmQyq1SpGRkYwNjaGf/bP/hl8Ph9u3749VCRelw7QbbGaa37GNWgygjzWakPEvJ6O0bKaB97H6nven4wT76OzwnLN9ft9BINBYaH4kyCFY0aQpGujccxDoZAAOi0V1Sn/AQjLzTbxd16HY8B3BOPqAoHAM2Ov14NeK0xuxNqK3FTQGV05BqY0leezDSwcrp9HAj22h5tOjUbjmXn4uuyrlBH433GSsCTlcDj2APzPOAFu/4fD4fhnAHYA/HcAMBgM7jkcjv8DwH0AXQD/l8HXlIHyi7bii3Z8Xbe0zTbbbLPt76DduHEDc3NziMfjuHPnDmq1msS0bWxsYGVlBeFwGDdu3EA4HMabb76JbDaLu3fvimSnXC5L3Fa/38fMzAwajQaazSZWV1fhdrtx//59BAIBLC8vY29vD8ViURyS8fFxcRq5qx2Px3F0dIRms4lQKIRGoyGA5cKFC1IXjvXgwuHwEChzOp2IxWICQMhAhcNheL1elEqlZyRZVqDDyok87W/NStB0KnbugPv9fgSDQUQiEanFVqvVJLNboVAQ+ZwZ65PL5VAsFsXZ18wAk1OYrATjxthGANjd3cXq6ip+9Vd/FZlMRooCc4efiQ40EKbppCr8zuVyiSyPY2KylV9mOlU7cAJI8/k8fvnLXw5JuFhsOJvNYmNjQ5zhUCiEVCqFZDIpgC4UCiESiQhLR8kl44bMGm7PA3KmbFLLIXUCmGq1inK5jHw+j2KxiHQ6jWw2i3w+j1KpNBQrqEGgHjeTfeI4n8ZIEaD5fD68++67WFhYQKlUkhIDBBPNZhPHx8fI5/PS73/+z/855ufnUalUsLGxIXGVBG9mGQFzjVv5mho4ndZmXktvEmiAx++fJ1HWz642zRJqUMhnULNWlGTX6/UhtpFjRkBH2SDnv9PpIBgMylrgmDERCOPtyHxzDM1i9TolP88ZDAbCuDcaDYTDYVSr1Wdkr5RBAhBG1eFwIBgMYjA4SY4SiUSkjXpOWPeR0myy3gR7HDsCND47GrCxH2b236/TvkoWyt8/5avfOOX4/wXA//Lf0qi/qomE8kXc3DbbbLPNtr8zdunSJRQKBdy9exdOpxNvvvmmpC1/4403cHh4iM8//xyvvfYaPB4PPvvsM5RKJSwuLmJ/fx/dbhepVArtdhvJZBL9fh+Hh4fwer1YWlrC1tYWjo6OEI/HEQqF8ODBA5EgeTwepFIp1Go1BINB5PN5cbQPDg7g9XoxNjaGXC6HVquFsbExnD9/Hul0WuIyKFna2toSUKhjj7hDTAfJ7/cjGo3C4/FIHIp2/nQsj97h1yDKdBbpUGnHlvcmm6VZHyYboKyKcWmNRgOtVksAGkEU78ekAppJoGOmAQh3xweDgWTB0zv9/Pzq1av4nd/5Hbzxxhv45S9/OQQYCUoYq6WLifO+bJNmD5ggQWfAO81Mx940zZLQUdWOPb8bDAZS1+zo6Eiy+emC6MFgEKFQCKFQSAoRs+YV54jrktc3mS867e12W9i1ZrMpyUcI3AqFgjDFZOJMcGrGbJ0Wz8bfzdgxzVCRXYxEIrhy5QomJiaknXpsWbD7+PhYPnvrrbfwrW99Cw6HA+l0WuooaqDBv022jD+51nW/9BrUfdCbAjr2VDNk5nnaTILClD3r55PssDmWHC8+N4PBQJQDetNBSygDgYBsGnGNk3lmKY5ms4lmsykbAwAkYQnbTiDIdws3AChz9Hq9ApC4GRIIBFCv11Gr1QQocVOIcnBdqkCvfwAC0phYhXNBwMm2su5kMBgU9pLrnOykzvrK+D2ydS/K/rqTmLxQEwmljeBss80222x7jm1sbKBQKODMmTOYmprCw4cPMTU1hbfffhtra2vodDp45513kM1msbe3B7fbDZ/Ph1u3biGRSEhdsvHxcdRqNZTLZSwuLsLpdOLjjz+G2+3GwsICDg4OxOnJ5/MidWMSjEKhgFQqhUajgVKphHg8Do/Hg0KhgFarJfF0Dx8+FEARi8Vk1ziRSAB46gg6HCdpvCnz4456KBQSh0azCiZLpDNKAhiSDmkzA/g1sOH1O50O3G43YrGYgATGohAMkF1icWXu6OuYlGq1isePHw8lQNHJBhhHxjHQfeHYAE8TN2SzWXz22Wd49913kclk8ODBg2fYO4IWnViBTjaBHJkf7RSyzpyVBNDKTpPL8bzTztXgUTNkdC4rlcqQ5I6ms1e6XC4kEgnJvkfQa7aN12XcEGWP7KcZE2fVR6s+W32uAQkBjf7HvhPUT0xM4NVXX0UymRxi+LiOWq0WCoUCDg8PZf34fD5897vfRTKZBHDyLjg4OHhGZqoTdZiSU6t+6u+swBifmeeBct7bZI3MMTJBsDlmjDkzZYJk0+r1OkqlkiQXIYPGZ5KJREKhkCQPikQi8uwy066+N+WT7A+fnUAgIJsyvA+fI24ycZ3zPRCJRGSThEmGyLwzdg2APH/tdls2Xvr9vgBLPqPVanXovcgxYpu4UUO2lpJqAkXOKQuGcw7/LsbA/e00LlSbg7PNNttss+051u12JSbt4cOHWFlZgdPpxGeffYaRkRHMz8/j6OgI+/v78Hq94rBcvHgRvV4P8XgcnU4HT548AQCcO3cOzWYTa2trCIVCmJ6eRjabRTAYFKd3aWkJjUYD8Xgc3W4XlUoFExMTKJfL6Pf7iMViEqfT7/dx9uxZACd1w5ioJBKJIJ/PS3B/v9+X3WuaudNOlkKzRoA1sDCllFrGRQdTp6un485ztVyKu+UOx0nMGxk5ACLdYmIWxqnRyQ0EAmi1WuKQcYy0A8i2DgYD2WHXTIeWTJnA69atW1heXsYbb7yBbDYrMWZ0lulw0skkm6XZGQ3iaA6HQ2K7eC2ddMJkUPRnpp0WB3Xa3JlzZnUegRide6Z5Z+FlDZROuwZ/N//+KmaCmuedpxNrkEHihkQ8Hse7776LaDQq4ESfR4kiE5noYvYXL17E66+/LizugwcPADwt/M1/GrABT0GhfhZ4nsmEWY2NOd/6OBNsmWBQf25KOU2waJ5P2S/XN8eVAIf3Z5ZFJjahbDAWi0nbqtUqvF6vME96I4dt00lBdBycy+WSkgVafkg2XjPqjInleFPSWK/XpW16TBijp2u18Z1IZo6163g/Sj4Zb0olgK6Xx77q9yDfb7zGi7KXCsDJq87Gb7bZZptttj3H3nrrLdy8eRORSASvvPIKDg8PUS6XMTs7i2QyiTt37kgGu3w+j3g8LjEVc3NzePLkCe7du4e5uTmcP38ea2trKJVKOHPmDAaDAcrlssggB4MBJiYmpFQAZW/xeByZTEacoUajIVkaw+EwKpUKut0uQqGQADxeo1arIZFIYGpqCj/+8Y+fYSo0EKM8CICAKCsgAQxL1EzTjqSWWvJzOtiU8Hm9XnGAuJvNWLdarSYgjg4TQQ/rv/G67XYbhUIBPp9P4mQo8aJph5l90P0wpZmtVgs/+MEP8A//4T/Eu+++i5/85CcoFotDY6KdQDproVBIdvH1uAQCgSFwp0GcOR+mc38aq3MayNN9ex4A0nNoJbUbDE6KixM8c+y+zP5rwZrZhue1Vx/DOdDAJRQKYWpqCufPn5eY01qtJmtFSzYbjYZIOhnrFIvF8O6778r8lMtlrK+vy8YE15RmxcwNCz3uOtZMj6sGWeY8mEDttGub52pApu9nHse/NXvIz/gcOBwOYfSBp+w0n1vWfWN6fsonycgT+Gi5pWZiCaoIxAKBgMi8NXDketOlCZi0iO8EnRxGs5dmqQfOnd54IZvf6XSkvfl8Ho1GA4PBAIlEQjabut0uyuXyEKhlxkkCTjLzbN/f6iQmf5eM69fGb7bZZptttj3Pbty4gVQqhVAohLt378Lv9+PcuXMoFov45S9/KbuxPp8PZ86ckeQfgUAAN2/exNHREebn57GwsIAbN26g3+9jYmICh4eHUl4gl8shmUyiVCqh0WhIvFs4HEYoFJJEJXQ6PR4PYrEYnE4ncrkcwuGwxGeUSiW0222Ew2G0220sLi7C4XDg+vXr4oxomRGdDqfTiXA4jHg8jnq9LpIpOk5er1dihkymwDQzDkw7YZROcQedThjjVShpKpfLaDQaEkPDum08T8vwKJWiY6ZrjNEZNFkG04kkINBOGK9/fHyMq1ev4u///b+ParWKn/3sZ8JOaaaLjiDlkQTV7DPBhU7QMBgMBIBr4GYFvp4Hak4DQeb5VqCQZiWze959re7J6+i/rVgmEzjzPKvkHqY8UQNvbYypTCQSmJ2dxfT0NEKhELLZLIDhjQWe22w2JX6qUqmInJcxrel0GqOjozg6OsKtW7ekPbp8hBUIMgGm1VhYAbTTNkXM4zXTcxpgM8Givo6eYw08zXECnkqMGQNHOSILdxPAOJ1OyXbLzJBM+MPnST//zHjLmDan04lmsymyTCa+IROmnw9TDq1ZUM4Pn2WybnxP8FljSQ49Lt1uV97hZPIIMPkOZJ8YP6jfb7qNjO0kc/ei7OUCcOCCfsENsc0222yz7W+1TU5OolAo4Pj4GHNzc4hEInj48CGKxaI4Fqy5tbu7i/HxcQwGA9y+fRsejwe/+qu/inq9jlu3bmF0dBShUAjpdFqKcHu9XiSTSaTTaYyPj6Pf76NQKCCZTKJYLMLtdgujx6xo0WgU1WoVHo8H4XAYDsdJlsHd3V1JjR0MBvHaa69hZ2cHe3t7mJqaEjBDx6zb7UqWuGAwiLm5OclMGQwGn5E6AaezAcBTaaROIgI8dTzpcNH51clamLSkXC5L4gJmnKODpuvTWdW3YjyPBm9mW/VxmnXj9zxXJ3rpdDq4e/cuVlZW8Pbbb6PRaODatWsix9NJPABIvF6n00Gr1UI0Gh1i4xyOk/g8pmd3OByyEcBYn+c58qZph/w0UGX1/Wm/sy96/qxA3GnA8ssYNP39aSBHA5PTACiPISCIRCJYWFjA/Pw8YrGYgH4915xPMjwsY1AsFtFqteD1eiV2dH19XTZjnjx5MlQvTMeI8tpkhtg23Ua2X7M2VmyYlu+yvSYIM0GaZvn0tcxrm3PAZ5TPK+NtU6kUcrmcMHCsncbnlOdRHsh+s63RaFQyRAKQzQ6eD0CeL27KMGMkyzjouMJOpyNZeJl8hPJJ/k4gxtizarUq9e04LixDAkDazvcRv2c2XzKq0WhUWETGduoSCtwM4rPNPnNdOBwOyYz5ouzlAnDCwNkIzjbbbLPNttNtb28PrVYLr732GgDg/v374gRUq1WcP38eIyMj2NrawtLSEjKZDA4ODjA3N4fx8XE8ePBAina3222k02kJgp+amgIAHB4eYnx8HJVKBU7nSXr/RqOBaDSKUCg0xOpFo1EcHBxgcnJSjqnX6wL6SqWSAMoPP/wQnU4Ho6OjuHv3rmSIo+mMaQ6HA+VyWX43HXAyRjqGjsdq05kRzc8opyTA5E47k6Zwx1zXU9O/A6ezSPycO/2aPSTTZcbp8frceeeuu/5H63a7+OijjzA3N4d33nkHrVYL165de2ac9DlOp1MYxFAohHA4LI4fAClwTPlWoVBAsVgc2sW3Ysisxp1jruOseA09VvrnaQDRPO608bYCXVZgzgTRJvtmXsNsh9W1NKPJYvbnz5/H2NgYer2eSNx0PCeBSLfbFWe82Wwik8mg0WhgZGQEyWQS7XYbm5ubKBaLSKVSuHr1Kg4ODmR9EkSQgdMxbnrjgOCITI0VEON5OpGOCf6s2D3zuNNMt8mMQaVpcNtsNnF0dDQkeyZYY21GSgl1PwiW2NeRkRFEIpEh2S3ngs8dk6VoiSMT5FDVwHeOfl5HRkakDAA3e/Ra4buK7a9Wq0ObK2ZRcIJJDdC8Xq/IyTnvTOzSaDQQiUQwMjKCRqMh7zGWOuH6JtCjLPNF2csF4L74aTNwttlmm222Pc8oO3z06JHspFISRCllpVLB4uIiHj58CL/fj1dffRXtdhs3b97E2NgYLl++jHv37gmzBQBLS0uSDY873qwbR3YNgCTNWFhYkLiw8fFxlMtljI+PS/zdxMQEdnd3ceHCBdTrdXz66aeSyOPatWuYnp6G1+sVRwuAOLB0bpg1M5/PDwENAEPOn/5bm/7MlOHRCWWiAJoGhgSXbBd3wrVcUgMxXpf35j/9mems6rZpcKgz02nwpq+7ubmJv/iLv8Dv/d7v4b333kOlUsH6+roAehrP1X2r1+sol8sIBoOIRqPiDFOS5vV6JQEL26j7QKACYIgdNFkZDZCs5Hp6LvR9TrPngUirnyZrZnUN3V4NtJ/HJHI8NXChbHh6ehqLi4vw+/0ydyaL1+/30Wg0JJaSbEw+nxeZ2/j4OLrdLo6OjqRm3r1795BIJKSGHx15XT7Aqu2alTP7ogtom3Nkyhd5jNXnVn9zXMykGc9LWKOfTfZJP4/MaMs2M96LzBTZZt5Xl/NgNlkyWIyh63Q68Pl8kmCJckzKFLmhRBaeY2+CJl3/ktlEycyxnh3Zw0AgINkxWT6DcmeOF4G02+0WgMnMqwSb4XAYkUhEnl0NkinXpJSUGTdtBu6vyZ4ycLbZZpttttl2uq2urmJnZ0cchFqthkAggEQigd3dXXFQ7t69i7Nnz2J+fh4bGxvIZrO4ePEikskk7t27B+AklTUdzuPjY8TjcYn1ikajEgfi9/uRy+VQqVTg8/lw/vx5qVEUCoXgcDgwNjaGzc1NjI6OwuFw4OjoCKurqzg+Psb29jaWl5exv7+PWq2G119/Hfl8fgi80Vmkc8gdY0obadrxMJ0QAguCCV3rypSB6bIB3M2no8e6T0w8op1sEzgSHJksm1kyQDvDlIjxd7ZJgyU6W1rCyOP079euXcPi4iJef/11vPfee+h0OtjY2DgV0Oq+M0lCrVZDKBQaylbJJBsm20jjbj7Bb7vdHqp7ZQIW057HyJnHWTFhz2N5rO5pBeSsrn/a77yG+bvD4ZB1E4/HMTc3h6mpqSFWlcfxMwJoMpysCUZpXygUQiwWg9/vx6effgqXy4VSqYSNjQ0sLCxIEfZWqyXPu2bPAAzJeq1YUKuNBG383hwfK5B32hjRNHgznx/N9OnnRMeV6ngzAJiYmBDWnNcgMK1Wq5Kch+8vl8sla53XISjjecyWy3cFgRLl4VzbZDkptybDV61WMRgMJHEKC4jrmpbcwOI7IxAICNPPEi1k9/Q7kAmVmKyEICydTkvRe4JIyqV5X7aRY+n3+5+pcfh128sF4DC8c2GbbbbZZpttVsaC2aynNjk5CYfDIUxYtVpFr9fDN7/5TXS7XXz66acIBAJ488030Ww2cePGDSmOPT4+DqfTiUwmg0gkgt3dXUnbXywWEQ6H0el08ODBAwwGA4yNjWFxcRF7e3uIRqMCfkZGRrC3t4elpSUcHR0hEAjg1VdfxcOHD7G3t4dwOIx79+4hHA5jaWkJjx8/HpIyneY8X7hwAdFoFNlsVhw+ndqepkEbnWQ6QMCzdarMuB/tKDFGhNKoUqmESqUin+k2min2tcNu1o3icZpt4+9kaMgGaMePx9Gx1P1ktrs/+qM/QiQSwfLyMr7zne+g0Whgb2/vGQaSfaZDCUDkd8wwyrIDZHjM89lPZkckm8EMgHSSTXmlCehOY9H0vaxkfs+z5wFFq8+tZH+n3U8zdDQ66pFIBJFIBFNTU8KEcP1wvXGe6/U60uk0crkcyuWyMEtk3eLxOOLxOBYXF/Enf/IniMViOHv2LNLpNCqVCrLZLDweD/L5vLBPmhUznwHNYmkZItcUAczzZJFWc2M+YyYr92WAW7OceqOF7DPZNM3esb2dTkdiOCkx1NJFMmS69hk3Lig5rFarsgmhy2swSYnX6xXwUywWJdsk+63lq7w3mbFoNCoAWj/XBNu8H5Ol9Pt9VCoVGWtu3HDzimNCFQDnnAlQqMrgmPJ8JlsCTp5zJnLhtV6UvVQAjhpKG7/ZZpttttn2PAsEAsIGzc/Po1gsSgFZZrd76623sLe3h0ePHmFlZQWLi4vY3NxEqVRCJBJBt9vF0tIScrkcPB4PxsbGcHBwgGQyKTWPxsfH0Ww2sb+/j36/j5mZGfh8PmxvbyMej0sxcUq+Zmdncf/+fZw7dw4ejwc3btyQWI/j42MsLy/D5XLhwYMH6Pf7GB8fx+bm5lCMGDM/0rmgLJOfazMZNb3LrKWWwFPQZ8ot6YDSGdLArt/vS7wYAZ5VchE6nRoU0UnWDplp/Fxfi0DOlCRq54wOM8et1+uhVCrh//w//0/8i3/xLzA6Oopvfetb+NGPfoR0On1q4g+2yePxYHR0FIPBSQmJZrOJQqEgyQ90QgjN4jDhA0sq6LpXup3m71YAyUqCanXul31uBRKspH1WTBT79jzgxmsRXBDshkIhjI2NSXF6nTSHAKnRaCCTyeDo6Aj5fF5kdgAEsDgcJ8l/FhYW8NOf/lSe12KxKJI7ssWZTEYAhJm10QSjvAfbrvuqx8gcE3PN6WfLipHTGxRfxpJq088gnyO9Jvx+P6rVqrwjstks5ufnhzLWMtGITiZCltntdoscksCKc8MkJhrUcFydTifK5fIQe8Z7EFjyvhxHyq0pL2biFQJ4xtdSgqmBGMecddyYbZKSUDJoWrnA+nKtVksYSRY2J7AEIO91AsNQKPSV5uZvwl4qAPfVlrhtttlmm23//24s0B2Px7G/v4/R0VFh46anpzE1NYUHDx4gl8vh7NmziEQiuHr1qtSDA4CzZ89ic3MTExMTaDQa2N/fl8LcvV4PKysr2N/fx5MnT+ByuXD27FlxVKanp+F0OjEzM4N79+5hYmICAHDz5k1cunQJBwcHAgyZRW95eRn5fB7ZbFZ2jwuFwlC/BoOBpOwmWAsGg7KLrpNrAMNySWBYgghAnFrNdJmyQu2UUzJJR7fRaAg4oaOrk55YyTe1I8v+c8fb6hxdpFnHvtHB1KBR94XX0oByb28Pf/AHf4Df//3fx8LCAn7zN38Tf/7nf47j4+Oh/mpjhr1kMinJZ+jIakaHLEW9Xn9GUklnXRc35necBzJS+nM976eBK30PfbzZH90O/bfZFitwZn5nBX5oZHBisZgwl8FgUMp6cM40w0Xglk6nkc1mh0ACx5hrZXZ2FufPn8dPf/pTZDIZAEA2m8Xx8TH8fr/ESYXDYZTL5aEyFbyvbrdmnk3ml2ayZhpI6XHSINFkok021WoueC8raa9Ogc9zBoOTIvc61pIAinLd6elpASqhUAiFQgGFQgGxWEyAGcEbnykybJFIRN45LHitwSwZZrLLfCb4btIbOBrgM56Of2t5K/tq3osAlNfyer0IBAISf0fwxjjVfr8v1yVII9vP2D4CO7aBG0T9fl+UBi/KXi4AJy+ZF9wQ22yzzTbb/lbbhQsXUKvVcHR0hEQiIVkCmTTh7t27qFaruHTpEjqdDo6OjvDWW28hk8mIk8gd7EKhgGw2i+npaRSLRTidToyNjWF9fR2Hh4dwu91IpVISI8Vsb9VqFQ8ePMDq6iq2t7fRaDQwNzeH69evY3R0FJOTk9je3kY0GsXExASOjo5QKBQQj8dRrValrls4HEapVJK+aaeRwf4+n28oXbjpoJq/m44m8JQRMwEegRCZJIJCZgdkenfgaWwMnUsepxkpfV0t2bRqq8muaVZEsyWMu9PnaKmmtsePH+M//sf/iN///d/H3Nwcvv3tb+MnP/kJDg8PZRy0EXgdHx+L5KpSqUiCBJfLhXA4jGQyiaOjo2dYSgJUfT39k+PhdrtRr9eHnFaT1bICV19mz2P5TICh/zZBoSmNNNtAAOPz+RAKhaQoeigUQjQafaaOHiVszACbzWZFRscx0cApEokglUohHo/j448/RqFQGCr8znXU7XZRqVQAQOLfWLNQt1ePMzcezNgzOvtkqfiZ3gjRoITyS3NurBg3K/bttE0PtpEsNxkic275TOlND8ZoMhkSARZBjS50zThWAJJQpFarybNP4MXzCYDK5bK0hTJEjgmvy7nnO4TvDc3UEszzWpTB6/IRnU5H1hQZPr4LyOCRDSTg5aZBvV6XDRiTJSUjzLawDMKLspcLwH3x0y4jYJttttlm2/OsVCohk8kgHA7j4OAA8XgcS0tLaLfbWFtbQzQaxdmzZ5HNZhEKhfDee+/h+PgYs7Ozwu5MTk5ia2tLinPv7u4imUzC5/NhfX1d2DzGffh8PjSbTYyMjGB9fR3j4+NYWVnBw4cPMTk5icFggAcPHmBhYQH9fh8bGxu4cuUKnE4nHjx4IHEqx8fHqNfrCAaDiMViCIVCEsujmSim1i4WiwgEAvLP5/OJY2UCGYI0YNiZPy1LpQZWOmGJjj/TgETfSwNN01mlw60BIfulTQMy3T59LbIAGrjxWBP4sS1ra2v4d//u3+F3f/d3sbi4CLfbjR/96Ec4PDx8BkDxWsx8BzytTUWmIhaLoV6vD2W2TKVScLvdkt5ds5JaRgfgmeQRplk5/ia4sgKrVmNvzrsViON3+ngTbPBvsmxkcSiXTCaTGB0dHWJgCLZarRaOj4+Ry+WQTqeFPdF9I/PDcWu1WqhWq9jY2BiqFaZBLmOyut0udnZ2AEASaXi93qHNBn2uKScmoGM/tZTTig0lENFxjfqnZpGszArUmUDRjE/lvXT7ySbx3vp5oVSbm0zsEyWQ1WpVwA9ZLEoyAYgEmMlhOAaVSkVidTnW7MvIyIhkkWw0Guh2uwiFQrIJ4vf7BdRpCSXBNuegWq0Ku0cWlUCs2+1KjCmfUc4H26XfU9x40uw5AMmGGQwGRV75Iu3lAnB2DJxtttlmm21fwWq1GpxOJ4rFIi5cuICFhQU8fvwY6XQay8vLmJ2dxdbWFs6cOYNkMolsNovZ2Vn0+32Uy2W0Wi3s7e2h2WwiFAqhVqthYWEBHo8Ha2traLVaWFpawsHBAUKhkMh7WO/tzJkz6PdPUtiTzXvy5AlisZgwDW+88Qaq1arEywHA1tYWXC4X4vE4gsEgDg4OpJ4cjTvbdND29/cltXcwGBT5kunA0TRIIHjSf+u4OTIKdFK5a68TFZjMGO/Ne2lwoB1PAFLol4kWTNNt1QBIx79ptoEOsGbjdHtog8EAGxsb+A//4T/g/fffx4ULF/D+++/jk08+wdbWlvRNX5OOn5lpk/PGRAqMt3rllVewu7srQJvgheOoz9djZ5oGA+ZcWv1tmtXx+lpWgMPqOP7U8U3M/MffuYHAfyz4DJywxeVyGZlMBvl8HqVS6ZlNAM65Bu10tOn4EzSTfdZSN9ZMHBsbE7mcy+WSrIImw2sCHdMILk4bKw2ieDzbbI69FeNmdT+y1mabOC5cT5RK60yx3NjpdruyHp1O5xD4YYxZOByGy+USKSHHXM8JN2zcbjd8Pt9Q0g+ydkwwopOVNJtNBAIB2fBgXTU+u263G+FweKj+HM+j6cQsPM/v9wtIZMZLZsMFMJQQh+8sXoNyUcpLyRJqWWYwGJQNALbhRdnLCeBebDNss80222z7O2BerxfvvPMOnE4n7t69i0AggG9/+9uo1WpIp9NYXV2VtNRnzpyRneR8Pg+Xy4VEIoFAIIBMJoNYLDZUImBiYgLb29sC7ug0pdNpLC4uolgsitTn888/R6fTQSKRQL1ex9TUFCYmJvDgwQO0220sLi6iVCphZ2cHXq9Xihrv7+8jGAxiYmIC+XwewDAjRGcvl8vB7XZLsgg6HdpZ1MDMBEXmsby+Njpd3Cn3er3PFM3WgMkEd/p7LYms1+uS8U4zNdq0UwlA4nlMpk2zWyY40m3UwODw8BB/+qd/inv37uGb3/wmvv3tb+P69esC0s3xJnjjmLG9GlgQ4FQqFRweHqLX6yGVSsHn8+Hw8FBAhWbldDt5TTrqp4ECDa41uDD/6bZqM9eHaZrZIcPm9Xol3pLZCRmPqeMydd3AWq2GYrEo8W1aImfFjprj4HA4ZO2RNaJDb9Z247pst9vI5XKS9ZOMjBXLa6419luvKR27yXZbsXca8OvNhNOYNysz4750jB4/I7ji31rCzHtTkkhZZL/fFzbM4XAIwNNMHOPGyLbzWnzH8R/B22AwkDnQ46MzYjYaDVQqFfR6PQFRfHcRiDabzaEabFoezX5STk7wzvcAr0cFBNef+ZP36fV6CIfDQ3JOMo8cSyYn+q+Zt79ue7kAnF1GwDbbbLPNtq9gqVQKS0tLODw8RLVaxZkzZ3DhwgVkMhn4/X6cOXNGagb1ej1kMhl4PB6USiVEo1E0m01ks1lsbGxgbGwMhUIBzWYTLpcLgUAAV69eRSKRkFpUuVwOTudJXaX19XWkUil0u13cvHlTnNmjoyO88sorAihdLpfUfdva2kI4HMbi4iL6/T62trYQj8dx4cIF3LlzZ4gRM2O7GO/DwtKsOWcFXEwQxx16K9PJSOg0OZ1OGTd9PQCyu6+LafMeOiGBzipJ2Zk+j/IpmgYjVqBH38cKuFiZZjlY2LtYLOLy5cu4dOkSgsEgbty4IWCDY8Z+aybRBJ1s4w9/+ENJ8e7z+ZBKpbC9vS331xLX08Y/HA4PsQCmDFUDBv05mQcrx968jpWU0Ol0SmwSY4kI0AiKCOro+PInwWe73UY2m8Xe3h6KxeJQfBvnUrdfA1BTGkmQTAaKoJ4ZJ/Va0Cwn47so/dMbDuYa0+Ohx8hk3XiMyVaa82jFZFrdz5RPmkmHTHCkAZ6ZiVLPHxljJnbRsWH9fh/FYlHu6ff7h9pHiTCBXq/Xk5ICsVgMpVIJrVYLgUDgGfkm1wR/5zrk+GuZJ6WVlDrq2NxSqST3TyaT0g6OBZk4XW5gMDipVUcwqOvWcZMlmUwCgEieCSYJ/pjJ1GQEv257uQCczcDZZpttttn2FWx+fh5ra2uIx+N466234HQ6sbGxgbNnzyKVSolzUCqV0Gw2MT09jXw+j6mpKezt7SGTyeCzzz6D2+1GLpfD3NwcZmdnUavV8PjxY4yNjWFqagrBYBCHh4fieDabTcTjcUlmMTExgWw2i0AggNdeew3Hx8dSR25iYgI3btxALpfD7OwsFhcX0el0UCgUkEgkEAwGcevWLdy5c0fScwNPg+01+1MoFCSRiXbGdGybKRcz5YUmGDEzU/JzZnPj8To+SDugGjTqvzWo0Dv1GiTRydTttGLdTNaP1zLlk1bsk5aG1ut1ZDIZfPTRR9jZ2cHrr7+Ob37zm7hx44bEHwIYKgOgQawGHszGRyao3W7j9u3b4jxrhs2MPdTjrTMHkjXRKeG1sR/mPBMYm2ypCdT4TzMjjCvi70wZr2MW2Q89lqwvtr+/j0wmI06wFTtoJTHk/ZgNkP3WGwD8nYyMbjuzuJI54jieBua5kWCuO36n+2euIf38aACmx9kKoFv1W7O9PJf95Xhr6bK5rrWsmDFigUAA9Xodbrdbau+RceKGFLMvMh6NSUEob9bSylarJYlAuNY51kyUwrVHGSXBI/ukGT3NunP++E7j2HMMvV4visUiACAUCgmj1mw2h4Ai49sI8NjuXq+HZDIprB4/Gx0dRafTkbhhbiAxDvlF2UsF4Gg2AWebbbbZZtvz7N69exgfH8err76KWq0miUwGgwHW19fx4MEDTExMwO/3izPSarWws7ODfD4vcsZms4mlpSU0m02sra3B6/VidHQUU1NTUmw4Fouh2WxKTEk+n8fo6Cg8Hg+y2SyWlpYwNjaGjY0NlEoljI6Oolgs4ic/+YnUmgsEAvjss8/gcDiwsrICv9+P69evyw46ZZ3a0dGgqlarIR6PP5OdTYMe7RDyb23aodbn6O8JLOgwA0+ZNy2Lo8RN/w0Mp/inkTE5jQm0Amm6Pfzd/Ex/bv5tMiA649z29jZyuRxWV1exsrKCtbU1AZp0djmOOvmIw3GSzIRAXoMcMgAEu2Q3CQjpyGr2ZzA4qTnHOB86x2TGuB50Ons9Lxoc0gHXwEGfrxk083eyV5oN4xxyXNrtNqrVKhqNBsrl8hBw0qDSZLo0eNFt0etbgxK9xlwuF2KxmLA0ZOLYBg1OCX506npzXfD54LH6GP2s6XP0xoUJ6ExW7quAOX1dM16PrBq/83g8z8gzzQ0UXoNjQ6aJCUl4TTJRlKrqNP66nzrZzGBwIs9k5luuZUogCbwJpgDIRgLnguuWLGm5XB5KHkJpeK/XExk5YysJEtkHM/aNZT3YB7aB8X6UuJMt5ryx78lk8rly279pe6kA3NNFbiM422yzzTbbTre5uTmEw2H88Ic/RL/fxyuvvAKv14t79+6hXq/j8ePHGB8fx8HBAXZ3d+F0OlGtVmVXuVaroVAowOPx4PPPP8fCwgLee+897O3tAQCOj4/hdDoRjUZRq9UwMzODTqeDfD6PeDwOh+MkffzKygrcbje2trYAAOfOnZP4uMXFRUQiEeTzeezt7WFsbAwTExM4PDzE4eEhIpEIKpWKlBCgc8J4j1AoJNcqFosYHR1FIBBAPB4fiovRDt3zYjpMWZ0Vc8XvdFFeOnhmpjcNGkzJnJUjqx1OnebbZNI0M6gBmcmG8XP2zTzW7Lt2HMvlMm7evIlIJCLJDvS5Pp8P/X5fMve1Wi383u/9HgKBAH7wgx8MgQHGC+ksk5oRIuujGQc9JrrIsY7p0cCH82L+5FyRWSBbQmebPznmnFfWFiNQ4PdcU/V6XTL+tVotYVjI+NA5N0GOCVD1mqL0jrFMbIteN1yXbrcbMzMziEajiEaj8Pv94ugPBgPs7u5KMedGoyHJLTh+BGl67bJd+p+OddNr5TQ277TvuG6tQB77b4IlPZd8NjiXlB+ayXR0chOON8E+k74MBgMplM33lMPhQL1eFzDM2n2cW95HS2T1Jg9ZKy2f1oCTAJHHa2DEJDRkrcnYMpvpYHASR8ckJpRycs0QMPJejO0jSHM4HAgEAmg0GiINdTqdSCQS8Pl8MuZ+v39I5jkyMjJUvuXrtpcLwH3x02bgbLPNNttse561222sr6/Lf9o3b95EOBxGs9lEp9NBrVbDkydPRH54fHwsmRzz+TzK5TIcDgcajQYuXbqEc+fOYXt7G/V6HY1GA+Pj47Lre/nyZTx+/FhquFHSc+bMGdRqNTx8+BCRSAQejwc7OzvodDoS05HNZlGtVjE/P4+VlRXcu3cP2WwWqVQK6XQajUYDfr8fhUJhyNEuFAribBSLRezu7mJ1dVWyy/l8PrRaraF4OTP2TTvRpqRLgxwNRoCnaePb7bYkSuAOtna2rRxWOlaaDWQb6ZCyPWasmxUAPO37/xrTfdeFfjnWZMr0/egE0hEeGRnBxsaGFGLXcXzc4dfsCAABSjq7JsfhtDni2Fk5+1bnaNCv/9EB1tfTYIEAWn9vJYvlOayFGI1GsbGxIe01Nww0wNGAUidI6fdPMsGyP/zH83w+HyYnJ5FIJKTGG6VzPp9Pnjun0ykyQCuG9zRQptcvwYaVjJLX1d9ZSSOtmDcTdJ9mJhOuASwT/5BpYnu5NslCkRGm9DkQCAwV6Ob6ZqZKMr5sNxl3jgkASd3P4uEmW0egyfvpc7hxoIvac025XC5EIpGhZ0LH0LXb7SHQRuZVA0z+I5gMBoNyHjckAoGAvMP4jPt8PvlZqVRQqVQsN5q+Lnu5AJwdA2ebbbbZZttXsE6nI9JGFvY9PDxEMpmEw3GSRfHg4ACVSgWFQkHilfb398WxiMViuHDhAhKJBHZ2djA7O4tSqSTOzWBwEjB/7do1eL1eRKNRlMtlTE1NIRQK4fj4GMViEfF4HJVKRRz7sbExNJtNKUR89uxZRCIRXL16FY1GA+FwGDs7OwiFQpicnJS4DwIiOr5sZ6fTwebmJrrdLnw+H2KxGKLR6DPlB/x+vzhs2uE0mTTNPgDPpj+nc+Xz+eD3+4cYGzpddOLIHpmOkAnAACAcDgOAtJGOsRVwMD97Hmh7HvMGDMfDEYyyPayZZbafDq2W6e3t7aHb7SIcDg8l0tDsgykF5P20dJVjp4GqKV8EhiWIp8n2NONnskxWgEOPj9VY6WOYjZCAs1gsSmIMM06Pf7PI88zMDM6fP49msyksMxMJsYyDnlu2l7URAQhjREeetcvcbjfOnz+PkZERfPrpp1J7TMt8NftmAjE9huZYmoBZJ9DQ7J4eW82gmsywHtfnbaiYMmgdO0owztg1vdngcrnQaDSkbh6zQHJziu8TgrharSbgUGfSJSAi0NPJbBiHRjDF9ctng20naCPoI0PPREHtdnvoO8amkkVmu5m8hvcnE6wl3QSybDvfl/1+H5FIBJFIRKSUPIcgT7PHdhmBvyZ7moXyBTfENttss822v9XG//zfeecdHB8fY3t7e8gh4M9sNotyuSz/UdOZnpqawurqqqTon5iYwObmJhKJBFZWVvDkyRNkMhncvn0bo6OjCIfDaDQaOHPmDJxOp7BnwInccjAYIBwOI5lMolgsSsD8zMwMut0ufvnLXwpgePz4MaLRKOLxOPx+P4rF4hBIcThOahcRXAAndchYE4vZMU15HTO90UwWQDuNZhyZvpZmQhjkzzaR9WMciRlDp01LJgGIZJXH6aQMpjSS19Mg1Mop1u19HsgzASslZIzvsRoTK4ChE5VQNkmHm4yAdsh5b91WDbCt5oDt4XGnyfnMMTLH5XnnmPc3+0/JGfvKPrGPOvMjk+tEo1GEQiGEQiGMjo6i1+vh29/+NqLRKP7gD/4AwWAQa2trp7IewWAQLpcLlUpFrk+wrc8hGKtUKlL/UWcT1IlA2E8TYJsyRhPwEsxpMK7HTv9txbKZ51l9bl5LA0zNjhI8cv0RPFEu6XCc1Der1+totVoIh8Oy4VKr1eD3++U+ZKsIxgj8eU+99shwatmk2fbB4ET+yOdArxctfWTGUOBpoiAmOiG443piQh1miRwMBlKKRI8fJZFsm07Woy0QCMja5f8LfA+xTS/CXi4AJwycjeBss80222w73TweDyYmJnD//n1MTEzg7bffxpMnT3D79m1Uq1WJo2i1WqjVakgkEpLBcX5+HlNTU9jf35faQ7u7u7h06RL8fj8+/fTTIakdnZuVlRUUCgUcHh7KDjWD/L1eL4LBIHK5HKrVKlKpFAKBAI6Pj1GtVnH+/Hns7Oxge3sb4XAYfr8f7XYbGxsbODw8FECkpUetVkuA587ODhqNhshAk8nkUEC/Cc40e0PTTpcpFTMZntHRUdTrdYkRIcupY5b0/bWTb8VkAJAdeC1d432tWDi2WbfXiuE4rS/6b82QMFU6ExxooGuOjdkfOtE6XklnvePuvhUrSUeUwM+U7en5oSOt26KdV6vx/SrAzRwjK9A8MjKCcDiMYDCISCQisrR4PC4JgwAgkUggkUjA7XZL5sJcLodisYitrS1MTk7izp07uHPnDn7/938fKysr+Nf/+l9LgW/ONcspkFWhBLrdbmNmZkbWS7/flxgngg/NRtP512vRlKOSPdLjDWAIJGkQbQI5/f1pbBvtq8yRvp5mosy5CYfDKBaLMhbcNCAw6nQ6kmSpUqkgGAwKI1sul+H1egXQsQC3y+WSGDT93Hm9XlSrVdkQ4ntJlwGhDFPXO2Q5DcoyGT9J+TWfeT4XGpQCT5l/j8cj7KHD4ZAEP+12WzJu6hIxZAwZ88YkLlQs6OQmvC8Aycr5ouzlAnBf/LQZONtss802255nrVYLzWYTV65cQTAYRDabFfDE3dZCoSCFud1uN4LBIJaXl6UGHLNQHhwc4MKFCzg6OkI6ncZrr72GZrOJx48fo91uIxgMYmlpCffv30epVEIymRSH3ev1IhKJSKyay+XC/Py8yB69Xi/i8bgweqlUCl6vF/l8HgcHB+j3+4jFYshms+h0OkPyqFqtJokGWq0W7ty5g3feeQc+nw+JREJiUEwzU/RbsS0afOkYHjpR3B3nDjidQe6qm04fzQSN/Aw4cWh18gyra5jslWlmHBM/+zLwotnFcDiMWCw2FAdkdTyvqRkbExho6SMdcF2GQbMWOmOeFXDS46dB3Gl9Pq2fX3aMFRjW4xOJRIQhnp2dRbvdxq/8yq9geXkZjUYDW1tbyOfz4oxXKhXs7++j3+/L5gSToHz66aeoVqtIJpNYXl7GP/pH/wjb29tDSYIo+6METv/sdDoYGxvD6OiosHE6K2q5XEYikRBwYyWJ0yCMLI/e9CCINMdIgwt+ZiWVNQG+CbTNuT7NzE0YfV0+h2x/KpWS8hfM1Mj15/F4JMZwZGQEjUYDjUZDNlD6/b6UkOA7rFqtot1uS300/UzyJ8ExN7d6vR4qlQqczpP6mH6/Hx6PR8pMAE9jSRlXyyyVPp8PnU5H2DbgaZ033pNScgDy3mBClFarNST3pDybwJFMnLmZxPHj5o1ZH+/rtJcLwJGBswGcbbbZZpttz7FoNIp2u418Po87d+7g+vXrqFQqUl+KSUomJyflP+qFhQWJWSuXyxIrUSqV8OjRI0QiEXzjG9/A+vo6dnZ20Ov1MDU1hdnZWdy9exf9fh+Tk5NDsSUEWHSwotEoisUiWq0WRkdH0Ww2sbGxgV6vh+XlZXg8Hty5c0dqOLlcLuzt7SGbzUrsD8EBWRo6Ph9//DHeeust+P1+TExMDCUF0eeZckz9k6ZjbkwA0+12pawBExToHXh9Pp1/AjwrAEbgwj7xOC3L0+eZwOc0sKPty0AcHXgW3A4Gg+KQ6v6YAEjv0NPRN0GreQ+ONVOyszwAnUt9T13E+TQQZwK45/X1NIZHg7TTmDjgRG4WjUYldqlQKCAWi+HixYu4dOmSZOzU88esr2trazg6OsL6+jqy2Syy2aycz9jS1157DZcvX4bP58PExARKpRJ2d3fRbDbhcDgQCoXg9/tRq9XQ758kO2k2mygWi5KRkqCKn09PT8tz32w2ZRNE1+TTc8K+m3Onx4d91ABAA2rNsFpJMM1xt5L5mpsEGthrGTOTeABPZbVkcnO5nLClBFfNZhN+vx+dTkfS8dfr9aGEMCMjIwiFQkMp+7lRY6bWZ9sYi+hwPC3gzWeKAK5arQrrRrkivyd7T2Cly1fwGdGSST6flKoTwPG+TqdTEqKQmeO12WazNAvZZY7xaYXfvw57qQAcOThbQmmbbbbZZtvzrNPpYG9vD/fv30cmk4HL5cLU1BQymQxqtRrm5uYkmQgZMqfTiYWFBRwfH4uUqtVqIRqN4vDwEOVyGR999BGKxSJSqRQuXrwIv9+P27dvi+OfzWYxGAzg9/ufSZzAAuJk5XK5HPb29jAyMoKzZ88in8/jwYMH6Ha7mJ2dRa/Xw+7urrSNMkodZ6V3zQ8ODlCtViVmz+fzoVariXNFJ0UDDcDaYdcOKk078wRWzCzHnXSdal4fa8W8AU+ZCv4OPHWETQmlyUydxlyYx3wVQDMYnCQsiMfjkjGULALXgnbYrfqiE5uc1iYeQ2c1kUjgzTffxNraGjY3N5+J9XteX01n/zQA9lWZNtNMEE7WIhKJSObWYrGIsbEx3LlzB7FYDOPj4+L4c/yOjo7w5MkT3L17F48fP8bBwQHK5bIk5+n3+7h27RrOnz+Pn//852i1Wpifn8fk5CQcDofUwmNym0AggFgsJiCu2+2iVCrJNRm/RMlqtVrF2bNncXR0JAyxmVVRx0WRgeIYnjZGVgDMfLb0NczPv8xMwKfni6CQCVIoIyTAefz4MbrdriQFKRaLwmaRhWN2W6fTiVAoJLX8/H6/vKfi8TgODg6GWE2+T/T7gbLIXu9pMW8COrJ5vV5P5oMsG9k5ljggIxiLxUTizvcL36ssMQFAYt+YbbPVaiEUCkmdOz2OzWZTYnaZ1KXf7yMajUrcXTQaFYaX4PVF2UsF4GwGzjbbbLPNtq9i169fR6FQQCQSweTkJEqlEvb29pBIJPDqq6+KNDCVSqFer2N2dhaNRgN7e3tot9vw+XyIRCJIp9PY2dnB2bNnUS6XcXh4iJmZGbz77rt49OgRrl69iqmpKUnA4Ha7MT4+jlgshkwmI7vHXq8XhUJBAEuhUECpVEI0GsXY2BgODg6wv78vWSq73S7S6bTsSMdiMXGQmGWNoAOAZGNbX1/H+fPnEYvFkEwmkcvlnknYoDNYAtaMlhmHYoIwzbDQGTKzTpoA0ZSS8XzTSdJxdFZxb6Y9D+RYMYxWx9B5i8fjiMVimJ6elvhEzaiYjBvHRCdLAJ5ND6/BM4+PxWL4zne+A7/fjxs3bjyz228yPFZtZxs4v1bHmmCWfTZZy9PACr9jmvUnT56IjI5xVt///vexubmJ5eVlzM3NCVu8vr6Oa9eu4fHjxxIvyU0U4CTTayKRwN7eHv7Nv/k3aDQaIjPNZDJYXl7Ge++9h2vXrmFzc3NIAkcQQoaIyYnI7HBcmETjwoUL+Pzzz8WxN+dUS1/NZ8YcIz2nXPe8pq6/eNq8mdJJ/bdeK9wUATBUXsJk/nq9nmzekGljHBj7wzkLBoMi4WXZk3K5LGudbUqn0/B4PJidnUU+n0cmkxEgpdvNn/q9pAEUGT4NYJnBVm/SBINB6QOAIckr33t8V3Dc0+k0nE6nlBFgHUItE+e67fV6Ul6CdeF4XK1Wk1hBgly+116UvVwA7kU3wDbbbLPNtr8TVq/XsbKyIrvMoVAIr7/+uuw0p1IpkemQYePObigUwtzcHDY2NlCpVDA/P4+9vT00m01cunQJc3Nz+Pjjj5HL5XDlyhXUajVsb2/D4/HgypUrKBQK2NragsvlwujoKCqVCsrlMsbGxuByuUR+OTMzg1AohI2NDRQKBczNzSEajSKdTiOdTosDEQqFpOYTGS/WNKpWqxIjVK1W8eTJE6yurkqtrI2NjSGJEHfGTbPKisckLdzZpwPIwr+mlIp/Py9mTN9DO8zazPZpIHgauNAOpQZWp7FLpvn9fsneSQfYjDXTbdXjyb6bMWn6bxNkhsNhnDlzBoeHh3jw4AF2dnaGzjXNHCOTjTkNpOljrcbLbJfVd8CJExyNRiV2TYOMdruNg4MD5HI5XLt2TZ4tyuR8Ph9KpRIcDgf29vZE1phIJDA9PY1ms4lSqSRghcxyOp1Gv9/H/Pw8vvGNbyCRSODevXvC4HCdMFmMBjY6UYzT6cStW7fwa7/2a3jzzTdx8+ZNAMOp//V8nTYu5nGmHJLG+7Mt/N5kprX8VW9+kBnU64j3tKo5Z84ZWUa/3y8ghfLAwWAwlLSEPyljJBByOE7KDGQyGVSrVQCQee/3+1Jag4lhqtWqMG9k4VhCA3haxoLMG2WKlUoFACTRDWPOCNDIwrF/bHM4HEa5XBbmv9/vS9kYgnxm0uR7nnPA9cJ7cYyazaYkWanVajJuL8peLgAnD8sLbohtttlmm21/q+3cuXPodDpIp9MST0PWaX5+HsViUeLTMpkMotEoAEg9t/v374ucrlQqIRgM4vLly2g2m7h+/TpSqZQ4g/v7+4jFYrh06RLu378vwf7xeBzHx8cAgKmpKZRKJRwfH4vUrFqt4s6dO+h0Ojhz5gwcDgf29/dxdHQEv98vcSF0Upimn3EeXq9XJEPACWjd3NxEs9lEIBDAysoKPv7441PTzZusi1Vsmt/vRzAYlBgbt9stpQJM06waMAx4zJ+alTPP1+2hY2vFVOi/zd9pp4E4/Tmlk9FoVGKl9vf3hxxuOr+67UzXTkdcA1sN/kzmkSxrPp/HxsaGOMintfd5IFRLXU1n8zTm6HnXt2JWyE6Ojo6iUCigWq1KP4Cnhb8pd2SsabVahcfjwdTUFHw+H+7cuQO324133nkHsVgM1WpVYim9Xi+SySTcbjeePHmCkZERSeZTqVTkWUilUpI8h4y0rqOnx0SDb5fLhY8//hjf+c53cPnyZdy/fx/A05IDmnFmn8iUmoBJx0NaMXRko6xMH2PGN54G3oHhODq2U88b+8F26SyNPE9nsuW5zM4JQGLEarWanMf5djqdktxHKwPY7lAoNBRT5/P5ZAyYObTf7yMej8vcsk4lGTJdcFuz7hwXnqeTsDCbZjAYHJJ1ko0DMATi9DuJGTkjkQiApzXyMpmMjLldRuCvySQLpR0DZ5ttttlm23NsZGQEpVIJY2NjImeMx+NwOBzIZDLw+XzI5XIYDE7SUlPu2Gw2cXR0hHfeeQcAcO/ePczMzMDj8WB7exutVgsXL15Ep9PBT37yE9TrdYyOjiIQCODq1atwuVwioczlcggEAhgfH0e5XMbx8TFGR0eRSCRwdHSEfD6P0dFRRKNR9Pt9PHr0COl0WhJo+P1+eL1e5HI57O/vI5fLiSxKx4XQ4XG73djc3BRwOj8/L04RnRE6tHSo6CBppxSAFFwmiGHdJTqnz4sNMWPaTpPm0Tmm46UZB37G++pdeBP8mZ+bzMhp4IXfRSIRxGIxGUedcMXhOMlKOTo6Ko5mq9USRoGxQZRnEdxoNlIzKE6nE8FgEJlMBkdHR89INK36oNtr9sP8acWkWo29eT39mcl08pqtVktYK7aVUkaPx4NAIIBKpQKv1ytM9rlz5/DkyRPcu3cPy8vLWFpaEpCn2cv/H3t/FmTHmaYHY0+efd9PndqrUAUUVhIk2Ojm0hyy2WxOu2NmOhSasawJ2SNZYVmKUOjGF/7tC0fIvy7+cMjhC10oLIcW37T1jzSanqVnhs1pdnNpkiBIAgSIvVB71dn3fU1fVD8vvpPIU0BPLxjxzzcCUVXn5Mn88ss8iff5nud93n6/j1gshgsXLohjJeet2WyiUCgI+8vXadTBui+VQTSCK87vm2++iddeew3PP/883n///TGwwPPktpqmjbUdMIJr9VjG66YGwZeRVeM9oraqMAJxVZ6rXmsubNDoQx03GUz2iSSAIgvF50C5XIbf74fD4UCj0UAwGBwDYRybujDT7/cxMzODYrE4tlChtmigOyhBPdlSn88ndW/8ngQCAVmk4vddvfc5N+z7xybjdrtdGnHTkIXPDZfLhcFggF6vJ89WMn/tdlvq8QhMgcPnW6VSQbFYFNWB2h/vScSXC8BZNXBWWGGFFVY8RvR6PaytraHdbqNer0sNm1rkrpqMpFIppNNpxGIxTE1NYWtrC4VCAcvLyxgMBigUCtA0Dc888wzu3r0rvd6mp6cxMzOD3d1dJJNJJJNJuFwuFItFxONxAA+abKdSKTidTmSzWQwGA8zOziISiaBcLkuj8ampKfR6PQSDQUSjUYxGI2xtbSGTyYjEk4CBUqBGoyGgr9FoYGdnB6lUCqFQCEtLS1J7RFdMSqDYfkANJomhUEikpmTcWMuiNvY1mm4A5hJKI8M3iTEyyjApazKrRzFLqNXPmjGOxu1Z67i0tIRut4t2uz12rJmZGXz1q1/F8vKyyCs5906nEzabDfV6HTs7O/j8889F6qoCR4fDgVQqJf3RGo0GstmsMB3G8RuvxSSpnjHMmLijGMpJzJ7ZMfr9PpLJJJaWlvDhhx9KUq7KFAmmNE0T9vqjjz5CNpsVCWSn05HP8R7iPm7evIlMJiN1SWqdXSgUgt1uR7lcFhCn1r6ZyXGNgJfn/9Zbb+HFF1/E8vIy9vb2Hpo/FfzR6ZVsK+9P9foaQbQaqkxS/dvIcKrMGrczgkOOj+OiQQnnycgk8nvDuWm32/B6vdB1HeVyWRaDBoMBgsGgyBkjkQjq9TqGwyHa7bYch9cuFAqNGXzQVZIW/rxf2u02hsMhgsEgAoGAMGCtVgudTkfcM9V+dZRz1mo1MaPhM46gLRQKiZqC5iderxej0YP2BzS74cKP3+9Hs9kcMzuhKQ9rgofDIaLRKNxut4DdJxlfTgD3ZIdhhRVWWGHF3/J46qmnEAwGcfv2bayurmJ3dxexWAyDwUDqNQaDAaLRKHRdx9bWFlZWVuB0OrGzswOn04mXXnpJZInT09MIh8NSPxMKhWQl+datW5iensbi4iLS6TTK5TKmp6cxGh06Q7pcLiSTSVSrVZFHxmIxkSPt7OzA5XIhEonA4/FI0tZoNHD58mUUCgXYbDYp6FcBCtmwcDgMTdPQ6/Vw8+ZNnD17Fi6XC4uLi7h165YkSHRhU90pKa0is+H1emU1vtPpiByLDaYnmYlMkisyVMDHMNYFGX9y9dzo4DcpaVbZEuP7xm1pDhMMBmXe2TNL0w7NZ06fPo2nnnpK+vOxlohSLpodsJYrm80KG8AxUPLHpsKlUklMPB5X5mg212bnre7rKGZo0rUyA4m8Bq1WC8vLy1haWkI+nxepnN/vh8vlQrPZxMrKCmKxGIrFInZ2dlAoFHDixAkkk8kxOSkXAVTGhU2WVWDH+4MtAigfZq2WygofNXeqpHI0GuHjjz/GsWPHkEwm5fvFc1dllSoDps6Puj/jPaaybMD4Pa4CbH5WlXpyG2Mjd3WfKlBV7zH18w6HQ+oV2UKAoJfgSa1n1XVdasII2MjKqTLG0WgkNXSBQGCsrUC9XpdrR2BFx12aLB0cHIyBPNbyqnLcWq0mgBmASGWHwyE8Hg9KpZIw8wSIBNesmSNQ4zHIdPN7SPknXS8BSH002fhyuWwxcL+s0PDwA9kKK6ywwgorjBGNRrGxsYFWq4UbN27g/PnzuHXrlhiLqElHs9nEqVOn0G63sbu7i9nZWbjdbly5cgXD4RBra2sYDAb47LPPpDZNdUlcXl6Gw+HAF198gUAggOXlZbRaLZTLZWHkOp0OWq0WgsHgmJlJpVIRADE9PQ3gMEnb3t7G+vq6JEo222FPo1KpJKwUkxUmY2QTNzY2UC6XMTMzg9XVVbjdbtTrdemBxXo/urwxYaW8jz2WyHSQ+VB7tBnZLu6PoQIpM5B2lEOfynJQmjhJPmhkKoxJtZG9UsdO6aTb7cbBwYGwSAQPKsumMiSUV7E5ME0bKA9Tg46KzWYTtVptrIbsFwnjuah/k4056hiPklQaQXCr1cL29jbm5+dx5swZ7O3toV6vy7nY7XbE43FhT4LBIPb29jA/P49wOCzsDlkzh8OBRCKB5eVl3L59WxYYWINFENDv99FqtbC7u4tGo4FarSaLD5xrSjaBBw6mNDghY8p7Q9d1YWg2Nzdx7NixsfGp14/XnQY1BOacG2N9o/Ee5HiMzCBfU+dXrVPl/a86NBrlmgQsqnySYyNTztfJtvG77nQ6pfUIm5bzcx6PB5VKBZ1OB+FwGLp+aDSijpnW/t1uF36/H5p2WHPXarXkfUoVCaRarRbq9fpY70ouSJEp5IKYz+cTCTmlkKPRSPoPqteIC3CcIzoI83lIWS+vAZ+bo9HoIdMVykzZJ7Tf78uC15OILxWAg8XAWWGFFVZY8Rjx9ttvizPk17/+dWxtbSESichKfiwWQ6FQQKlUwurqKq5fv47BYCDga319HcFgEAsLC9jb28P29jamp6exsrIiyUkul0MsFkOtVkOtVsOxY8cwHA6xv7+PTqeDWCwmduj9fh/xeBx+vx+tVgsHBwcYjQ4tve12O4LBoMiQcrmcSDZttsMeTZFIBOvr61K8HwgExhI+yivtdjsqlQo2NzcRj8cxMzODSCQijm00WKGVOHtFMYkZDAYiNRqNRsIWMRlkYmxclTcLlTVQGQOjnFJNZI1STL6m1l2p++NKump0wn2pCbUxyabJDI0LVPkmV+b7/T7u3LmDSCSCpaUlqadkA3PWxPX7fZRKJRwcHEgSqx6/1+vJPcK6HeO5m82bcdx8bVLwfngc1mASIDZK9rgdZcS3bt3C1NQUjh8/jvPnz+NP/uRPsL29jU6ng2AwiOFwiGQyiXv37gF4IMVl7SABMKXAuVxOXiMjx+bL1WpVZJl0tGQ9F4Gx0+nE6uoqXnvtNezv7+PDDz+U7ViraJw/9kckiJufn0cikUClUhkDCATxlA+r86VeByOYBswNfIDxthzcTn1PBXbqtVDrPSkVVK81vxtkmXq9nvR7oxRRdeZkzRmvBQ2RaOBBYyTOFyWGZADJirO+ltLFXq8nANzj8QhQJDtHlo9gnQs0lEDyfc4Fxx0MBsdcIRuNhtS38X4AID3l+DfbF6iMHhcQeK0J0vhdrtVqIjdvtVrmX6BfQ3ypAJyYmFgIzgorrLDCiiMinU5D13WcP38edrsda2trqFarSKVSmJubw97eHu7evYvhcIh79+4hGAxibW0NGxsbKJVKWFlZgdvtxsbGBjKZDE6cOIGzZ89iZ2cHXq8XmUwGc3NzyOfzYmxCdmU4HGJxcVEYCrvdLgYqhUIBtVoNmqbB5/OJvIgr3Ht7eygWi2IuUC6XUSwWcXBwgEqlIoCAiSxX4uv1OhKJBILBIPL5PG7duoXTp0/D7/djcXEROzs7Y0ksZYCqGQlXxmksQNdLHkNlBsyYCAa3P0pSafwMQwUP6j+1tYDdbpfVeCZjlUpFQOUkCR2DzahZl8NETjWT4Lml02m8/fbbmJubw/nz53Hy5EmkUikZe6PRwMHBAW7cuIF79+7JNaHUEoA0mSZomBRmckcz5tD4GTN5pNnv6t9moHbS/gga+v0+rl+/DpvNhkuXLuEHP/gByuUy2u02pqenxSHyypUr6PV6iMfjch/wvOnA2W630W63xYiDNUt0BKQVPBlmACJz5ftkcWq1Gt577z2Uy2XUajVh4czOV9d1WewgODg4OBCJrOpoqbJvlN0Z6xvVeVWlq8DD97ha/0bDDx5HrQUEMMasmQF51f1UBXEEUXTYpeyXgIqsJs+NoEitVxsOh1IfbDQPMi7gcJtqtTrWyNvhcMDn84lKQP1ukQElUCKIIwgkwOS15TOPz0neK9VqVZ5jvD90XZc+blxo433H54XKPnq9Xpkfu90utXdkXC0Xyl9SPPjCWAjOCiussMKKyUFJ1xdffCG1E3NzcwAOm3zfu3cPnU4HlUoFTz/9NEKhEK5evQq3240zZ86gVqthd3cX8Xgc58+fx2g0wrVr11Cr1ST5v3nzJmKxGNbW1oQ18/v9mJ2dxf7+PvL5PCKRiDTmrtfrqNfr8Hg8Uo9GqVC328X6+rowGS6XC7FYDG63G/fv38dwOEQsFkOr1UK320Wr1ZIEiSvg09PTcLvdaLfbuHPnDgqFAjweD1ZWVvDhhx9KkqYaULCOizIlrow3Gg1pHWBkjIzyR1Umpq70q++bhZrgmrFyRiDIRNbpdCIYDMLr9SKfz6NarT5UW6fux8jCkdFUk2gmpGbSzkqlgnK5jN3dXWxvb+NrX/saEokEtre30Ww2paF7sVgEgDGgS7e7Vqv1UH+7o9g1M9BmxjAafzfu6yg2zrh/9XeV/VTnEDisXapUKmJBr2ka+v2+9IIbDAZYXV0V5oosJ3BYy/baa6/hRz/6kSweEOgSbITDYTEcYu0djWVoOEGAzOS/Wq0KowxAjH7M5oCgn+czGAxw584dnDhxQpgp4IE1v7FJuxHAqSyxGmZATq2t4/wYv0N0lmSwJyF/Z6sLFRRxTKzpIoDiQhHNQ/x+P+r1ujDx/I7zWkQiEWHxCKZLpZKwePyOOJ1OqRdV7wUy02SnachEUxQCI46J/dcYPA4NSHgsNhwfDAbirEspO4/HMZBN5LONc9Pv96XOkuwkFQgEjR6PR56H6nPsScTfGMBpmnYSwP+svLQC4P8GIALg/wAg/7PX/6+6rv/F3/Q4P9eYfvbTYuCssMIKK6w4Ku7evYt6vT7W0PX+/fvyH3i9XofX68XS0hJqtRq2t7exsLCASCQiEshkMoloNIp0Oo1arYZcLocLFy4AANbX1xGJRLC8vIyNjQ00Gg0sLy9jNBoJE5NIJHD8+HGUSiVks1mpZ+PKr6ZpknhQpsj33W43MpkMrly5gkajgVAohFqthk6nIyYE/X5fJEfAIRtEedVoNMLe3h7i8Tjm5+cRiUSQzWZRqVSkBpDgj5IjJjyNRuOhZskqc2QGOMwMRsxCBRZMYiexPnxdBWdkgghEybiYjcN4PNY/RSIRMXZQz4uglkyLUfpZq9Vw6dIlqZ2i2+j29rawo+q5d7tdscxn/aBxbEexZWbjnwTouI2RhSS7M0lKanYNCSyOSl7JWgCH90Y2m0UmkwEAXLx4UQANgRfrBTudDt59910BIpqmCePr8/mQTCbR6XSkprBSqQhQI5Bh8q+6IPJasqZLPWf1fHl+6nwQ3Ozs7GB+fh7tdnuMTSP7Y8ZYqiBNnX917sn2cH8EKdxGbRPAujD12CrAY7hcLjkeX6eZB/dJBikYDKJcLst3h4s0vN40hLHZDlsLRCIRkbHSoIY9/VjPSRMePo94fSlVpELA7/eLfJvgiz39CM4pE2crCuABoPR4PLLAxb/JkvKauFwuMSLRdV2AnwoMgUNwSskn+8dR2sv/J7ggwPvkv0sAp+v6HQDPAICmaXYA+wD+GMA/AvD/0nX9X/8yBvjzBOfRwm9WWGGFFVYcFXQqI9MVi8Vgt9uRz+fFXGRmZkbA0rlz52C327G1tYXBYIBEIoHRaISNjQ1JPF555RVkMhlsbGwglUqh0+ng3r17wrr1+32k02kMBgMkk0ksLi6iVCphY2MD4XBYmtiqRg6lUgn5fB65XA7hcBhTU1OIx+O4fv06rl+/Dr/fj1Qqhd3dXWEZuEKs1viMRiNUKhUxO6lWq7h79y5WV1fhcDiQTCaRzWZRr9cFJBIEMTG22Q4t8Wmlb1bDc1TtmxkrZAbsKL0yGn6oZiFMsI0JMXCY3O3v7wtDp77HYAKsJupM/sPhsNS4qZI4bk92Q22XwBgMBjg4OMD+/v5D88CxMGnvdrsyn0fVvU2SMxpjEogzA2PGUOdVnV/1fePnj5K/qu/z+MPhEPPz85JEc258Ph++8Y1voFqt4rPPPpOaJy40sFk8+x6S1aGM0GazjTVjJshWLeiBQwZvZWUF6XRaviu9Xk8Scyb+vK9U1lfTNFSrVSQSiYecJdXzU41LJoFp1RGT4JOf5bZcGDFzoqQEkPWS6jwTuPE1gkHWvDUaDVnU8Xg8wtapPSAJgHkMGvVwLiuVChqNhjBbnPfRaPSQIy1r22jsAxzWnVFlwAUWHl+VSfIZQHkn54FKBrYHUJuD01yE3+VAICD3GtvD+Hw+kdhyXskCq+ZP/Js983iP8Pp6vd6JDdl/HfHLOvI3AdzXdX37SaLRBy6UT2wIVlhhhRVW/HcQ/M+XyTjNP9rtNmZmZjA1NQWXy4VUKiW26PV6HT6fDwsLC2g2m8J0zc7Owul04vr16+h2uzhx4gQ6nY44sHm9XrRaLZRKJQyHQ8zOziKRSOD+/ftoNBqIRCKIRCLSR0zTNGEH9/f30Wq1MDc3h5mZGUSjUfzkJz/B7u4ujh07hmg0ivX1dVQqFQAPrK7Ze4lNvQeDgSRXTPIymQz29/cxPT2N2dlZ3Lx5U1bMjQkwwRyTPJV9MtbyGIGZMdRk1shiMVT3OzX4OvejHssIPlSQZ0y4gXFjB+47EAgIcOD4jEAReNhRk1I6lbVTQY/RKp4JLmWrRwEz9VyN52AEVsb9PArwqWyakZFSj208pnGbScfifDDBjsViYtnOWsXV1VWsr6+jVCoJcGAyT0CdSCQQi8WEVdnZ2UGv10MoFBLJMF0JAQhYUGvo2KhZ7VvIBJzH5Fyoro8qqKvX60ilUsLoGBlN1eBEBc/8aQS3vJ95XpTtGtlSMnScF/7OcXFb9XzUn2SdDg4OpAccj632OmOdq91ul2cQGTECRwI1gjfVfTIajYqjJKWtfM6qxik2m02YLHX/NF9ifRrr79icmw6XNHQCHkiR2e6B58BelhyfKtdU61C9Xq98P/lZgrVutyugvVaryT3CRS4z5vzXFb8sAPe/AfD/U/7+55qm/e8AfALg/6Tretn4AU3T/gmAfwIAi4uLv5RBCANnITgrrLDCCiuOCCbQZ8+eFYkiGQKn0wmn04m1tTUEg0Fsbm4KS+Xz+VAul1GpVKQObTQaIZPJIBwOw2azYWdnB4PBADMzM7DZbMLGeDwenD59Gpqm4f79+9A0TerfyDC0Wi3kcjkxOHE6nXjqqafg8Xiwu7uL9957D61WC6dPn4bP58PVq1extbUFh8OBeDwuciRd1wVwhkIhKe6v1WqIxWKyWn3t2jXE43GcOnUKn376KTKZDKrVqrheqnVDZOBY/wE83F/MaMqgSg3NWKSjjErUbbkPjsWM4TBjjNRjGo9hzBU8Ho9ItIz7Mo6TCaDqXMfXjdJPJuDqnLHfIMHE4zBsk+ZIBasckxE8mH3WyJAZ9/nzhvG6qcY2wKGlu5rIu91uLCws4PTp0/jwww9Fvkb3T6/Xi2g0imAwiFQqhVQqBbfbjVKpBL/fD7/fL+03CBYos1PdAdV7aHt7W0Cd2jgcwJhBCQEmwRHPL51OY2pqSq6pkSVWrwd/N7tXuW8VYAAYAwRcECB448ICLfpVcx11HyqI5CKIzWbD1NQUrl27JvJsgrdms4lAIACfzyfbGmve2A+O42At7Wg0kl5wlHd2u115bvBe50KF3W6H3+8XObdqGELQ2G63BVypiyMEeqwz5vOA++ecer1eYdvooKvrOoLBoCxicUEhGo3KnKvgmd9X1jMXCgU5ls/nE/dTY13jrzN+YQCnaZoLwO8A+L/87KV/C+B/xKGS8X8E8P8E8L83fk7X9X8H4N8BwFe+8pVfCuKyLEyssMIKK6x4nFheXsZrr72GwWCAd955B8PhEFNTU7Jy+9RTT6Hb7eL+/fuIxWKIxWLQNE1Wl2l0ARwmWktLS0in02g2m3C5XFhZWQEAbG1twev1wuPxIJFIIJPJoFAoSA2Pw+GQn4VCAfl8XpzVZmdnkUql0O/3cf/+fezs7CAQCOCpp56Cruu4cuXKmKzr4OAAg8FA+iY1m0202234/X4BQJQA+f1+aSdw7tw5LC4uYnV1FblcTvrIqXJMFvhTUgSMyxiBhw1MGEamS01mjeydmviqNVRGwwAjy2am/jEm0WbbqiCGkjLVREI9r0m1dEywjSykysapDB2bJdNlUR2HcX6OCjMAZpSUPg4gfBywZsb+HbU/sm4q03T+/HlkMhlJngOBgLRiUM0mPB4PUqkUlpeXEQgEJNGemZmRHmDtdhu5XA7AoTQyEolgNBohGo3Kvb2zswPgQe83Soj5nfN6vcICqYybuuigmu9wfmu12pjjJcET3zd+B1Qmj/ND2SKvkfoZFTAaQTlDdZk0MtjqT5VpvHnzpjwfdF0X9kmVQrPliNvtFiklwRuBDo/LMVBtQMaKDH4wGBQjEZWFJXtGOayu6wJIVfMQNSjhZBNuNmu32Q57w1H2SPMinoPT6RwzZ+G8eDweRCKRh2SR7P1GUKv2vWu1WiJx5zkax/nrjF8GA/e/AvCZrutZAOBPANA07f8D4M9/Ccd4vBAG7td2RCussMIKK/47jO9+97vY29vDpUuXoGkannnmGQFmJ0+exM7ODtrtNo4dO4apqSmUSiVZtZ6dnYXf70ehUBD50e3bt9FutxGPxxGPx1GtVsfq3wBgc3NTXPQoVRyNRohEIigUCrh//77Uf4TDYSwsLMBms2FzcxO5XA5nz57FwsIC7t27h5s3b6Lf7+PkyZOo1+u4e/eusBeVSkVYuFarJSvFtAivVquYmZlBqVRCrVbD5cuXpZfZp59+Opas0K2PbolMPlXgpia5k9g1I2g6yi6fYWS9jEYpZoyRkUlSk28j86Tux2azjTXudTgcUtej1jSp532UTNTIuqjj6ff7aDQaY7Vvk1gy4z7N5IsqQDCybpOYuKNAm9l2jwswzcCbzWZDPB7H9PQ0FhYWsLOzI7VOxWJRarkIJhKJBF599VWsrq4iGAwK8KV0sFgsolqtCuD2+XyIxWJYXFzESy+9hEwmg88//1zqrxqNhrB7LpcLbrcbjUYD+XxezDVoyqNeYxUQq0Arm83i6aefRq1WG5NtGkNlZ8kkqUHGj/cav2tGIKkCRJvNJkwQazzVxQ7gARhVj8/+jwCkj6M6TrYXIMgFIIsZrBVk8Nhk7NiTj+1KKHPkYhgAWZRSz4lmTb1eT9x3uZjVaDREPunxeOSZQ/aLDb1rtRrC4bAck89PmqwQKJN5U9tRFAoF+Yx6rdvtNoLBIDwezxizqT5DKbX8772R99+HIp/UNG1G1/X0z/78OwC++CUc47FCauAsDs4KK6ywwooj4rPPPkOn08Gzzz4rUraZmRnMzc3h3r17iEQimJ2dhcfjwcHBgUiz6OSWTqeF2aKD29TUFJxOJ/L5PGw2GxKJBNbW1tBoNHDz5k0kk0l4PB6USiUxypiZmcH6+joymQxSqRSGwyFSqRRisRgqlQquX7+Oer2OU6dO4cSJEyKZTCQSmJ6elv5vrEcpFAri3MaVZPZ7AiB9jKLRKMLhMJrNJu7fv49Tp05JrdHe3h56vZ64uzGxpHRSlTQyVICkJmn8m9sAeCi5NIaZZBF4uK2AClLUzxpjEgul7oN1P9w/nfi40s/9GMGLUTJqHIPK5BA4dDodNJtNYTSM7AxfM57TJDmkytBMYiONEk0jo/PzhBmYUxkq4/uj0Qhf+cpXsLOzg3/2z/4ZDg4O8L3vfU9YGjpIkmmLRCJYW1tDIpEwPZdYLIZ4PI5CoSDyvbm5Obz22ms4f/486vU6otGoSIQJXGhKwxooAHJt+f1RnQmNjBrPiwwca2CNhjvqmFWwr5py8DXKBLngYgTp/J2yTwDS51G93vxHYGG83sPhEMViUY7f6/WEteQ+Wq2WMKGUJbJ+lsfmPUv5J1m1crmMcrkswM1ut0t9IhkvFbDSaIQMv8vlQjgcFjAVCAREPQA8MD6hGgCAGNmwhpBzEwwG5Try3iIrx7YsnU4HjUZDWGD2fOS1ZcNv1diF15DzGwgEHnKy/HXGLwTgNE3zAfgWgP+j8vL/Q9O0Z3CoZNwyvPcrDfnOWPjNCiussMKKIyIYDOLpp5/G3t4ePB4P1tbWYLfbce3aNSSTSZElVqtV+U+fNtn9fh/RaBTtdhv1eh26rmNubk4K6SnfWVxcxO7uLnZ3dwEA29vb8Pl8WFpawtzcHOr1Oq5evYp6vS41HXNzc1hdXcWtW7dw+fJl2O12vPLKK/D5fLh06RJarRbOnDkDj8eDjY2NsfGl02mpA2KNX6fTkYSPyVuz2UQmk8HU1BRGoxEajQZu3LiBixcvIplMIp1Oi1yJbAowzoCprIPKUKkJ7ySGyrgSr25HNz6juYkR1KmAcVLSy78njUMFH6oLH5NYshIAxtwMjcn6UYCTP0ejEZLJpEhbaW1vlNcZ50k9hrq9kXE0yvZU5tE4J0ajjaOAg/E81d85ZpWtMmPseDzWXr3wwgt4++23sbe3J4sLrLVio3j2KDMLv9+PYDAoDDMlrLu7uwiFQkgmk1hdXcW3vvUt1Go1FAoFAeSadugmqWka5ufn0Wg0UKlU0Gq1xvrHkfEh+2e8rmSxyJ5x/51O5yH2k0wW98V7Ra2xM7KoKsBmrZg6x2TCuR/jIgbr4ux2+1i9JWWj09PTAp48Ho+wlaxP0zRtTMqo1p7yWDxXtg1g7XAgEEAgEBCANBwOhQFT709KNsnmAQ/aA6j1ZWy5Qgt/l8sl1521lASldBTlXJFx63Q68v3NZrPw+XwyN6xdTqfTYm5Ft0peK0pPgUMG02azoVAoHMnC/6rjFwJwuq63AMQNr/1vf6ERWWGFFVZYYcWvOGZmZnDlyhWEw2HMz8+Lvf+JEycQCoVQr9fRbDYluWSyQwe3Wq2G4XCIZDIpkjgmJYFAAG63G7dv35Y6NDrwhcNhPPXUU2g0GigWi9C0Q7trn8+HEydOwOfz4d1338XW1hYWFxfx1FNPYWtrC1euXIGmaTh+/DicTidyuRwcDgei0Sg0TUM6nZYkj32qmNiRdWNC1ul0pA6PQGprawunTp3C8ePHsb6+jna7/VCjbjN2CHjYSfIoFojJqjGZ5f5VIEKJ2OOEcWzq30YQZxyfakgyGo0wPT2Nv//3/z5yuRzeeecdABhr3muUhqpAhom6WvvGhDyTyaBcLothjvHzHIuaqBulkuq5MQhMjAynGTNpxuAZ2Rqj7NKM2VNfV0GFeizOqc/nQyQSgdvtlhYaa2tr2NzclHs/GAyKKQmlbpPC4/HgxIkTuHXrFlqtlljC93o9rK+v4/Tp00gmk1JT5ff7pX9cPp8Xt9GpqakxpsZmswl7Q4bIjG1kE2oaqfBcnU6n1JeRKeL9Yryv1WNSFqnWUvK4BDFcgAEeNsxRrx/fJ5ghY1Qul6WvI8fMhQq1hx3rC3kNaMPPeSJQpWlIp9MRIxa/3y/gl8BcbSNAcxKeG8FaMBgU50eqBnjebPPCfWqaJjV0PEf24ePY+Fqr1RLXyV6vh1gshmq1KoCPgJWgPhwOy/3MxTreD5x7Xieyr+FweOJ9+quOJ9fA4FcQFgFnhRVWWGHF48QXX3yBxcVFxONx7OzsSG2b0+mUhtiBQADJZFLqbph47O/vS8NZtT3AYDBAPB7HaDRCLpeDrusC2hqNBmZnZ3H69Gmk02lsbGyIRCkSiWBxcRG1Wg1/9Vd/BU3T8LWvfQ0ulwsfffQRer2emDrUajWsr69LYsy+YzQmIchkktHr9VCr1aQgnwYAjUYDW1tbkjxxv+fPn0cymcTGxob0f1KL9c3YHAIIJqtqggmMy8gmsSqTQgUK6r4mBbdVtzcCEmMw+eaKvd/vRzweF+bU5/OJJTnbM6hzwASdc6DOg5q8kw1i7SPPj8wTE0eXy4VqtfrQPDLBVa8Bk/5J7Jg6j2qorA/nzTjnR4XKuqlzz8+rtVurq6uYm5tDJBLBU089hUQigVQqJed14cIFLC4uolwui5Rve3sbZ8+eNTXFoSQPgDR7Ho1G2N7eRq/Xw40bN7C0tIStrS188cUXIsnjAofdbofT6cTe3h58Ph+8Xq+MXTXpUY+n3ofdblcYc4I5gn/WY3k8HrRaLWHCKQ3knBEIGNlo9b5Ve4ypbTXUeTcCOM49P0u2sNPpiHSQ46c8kj3aWJPJVgBqDRtZOgDSA05d0CATxrnUdR3FYlGukdPplLlhiwC2MqD7I8dMiSVrzCgBVaWsNFrifBG08XvabrdFhmmz2cSwRG2FwIW5druNUCgkx+RigM/nk7pfPkcpHWXtZTYrth+/9vhyATh5ED3hgVhhhRVWWPG3Ok6dOgWb7bAhcDAYxNzcnPwH3ev14Pf7MTMzg2q1KhbSTJASiQS8Xi9qtZr0riKD0O12xdafPePa7TbW1tYQj8fx+eefY3NzUxidqakpHD9+HKVSCbdu3cLU1BTOnDmDbreL69evw+FwYHFxETMzM0in0yiVSohGo1J7R+MVMoYssCfQ4Io+ky632z3GSIXDYTnn27dvY3FxEXNzc9ja2nqIOZiU7Bvt4o3bmyXhBBkqW6WCjEcBCDNmatL76v7MgIrRAOLWrVv4t//236JWq8FutyMYDMLlco31yGJdoJGNI5uiglb+azQaktSr41GlZLFYTOSVDNVkQT0HSuTU66Lu1yhZU8dpTPzVnntm8kl1Hs1YN4bqUMjPETjR2ZDsVjAYhNvtxvPPP4+1tTVks1lks1mUSiXkcjmsrKyYmkTwuK1WSxiZ0WiEvb09AEAul8O9e/dQKpWEueKY+TddBFUQYLPZZJ/quRvvUd4zNCKioyK/b9wnAUMikYDdbkepVBIAyHsNeMCyGaWxKoA3SpYJmtTrSBDIe4nzVC4fdvIiMGIzb5qI8H5kPWG/30csFhMgWKvVRLJINor1cpRva5om5iqBQACVSmXMoITXifcBmT1KHoPBICqViixm2Gw2WTzjvdZqtUSaqYI/r9cr91StVsNgMEAsFkOz2ZTvFq8h544OlQRtao+64XAIt9uNVqsl3yPeF5TZklF/1HPqVxlfMgB3+NMyMbHCCiussOKosNvtKBaL4l63ubmJ/f19hEIhRKNRaZBdKpVEchOLxQAcJkr5fF4SJxbrZ7NZkUXSprzb7WJ1dRWtVgs/+MEPkMlk0O12Ybfb8eyzz2JhYQEbGxvY2trC3NwcTp48iWKxiPX1dcTjcSwtLaHT6eD+/fvodDoyhlarJbUbBJ5qjRuTK9bKEOiRhRsOh+h2u6hUKkgkErJKf/PmTaytrSGVSiGXy42BGzNm5yipm1GaZ2zObWRw+BpDfc+sZs5Ya2RkoYyvG49jlJ6p0q779+8Lk0lWjhI5yqtYV8NaQTOQxePTuEQFZ+rYyMjQ2ZT7ossp7e75OY7NOGeT5lJlkYxzZPa+8fNGRlP9pzI/RvCmaYeN7CORiIC3zz//HLVaDefPn0e324XP50M0GsXs7CxyuRzeffdd7O3tIZ1OI5VKjTW4Zy/Dq1ev4uDgQOR2BCUAUCqVZDFDbcrMOaYM+tlnnxUn1na7LUYqRrBrrO0jW9psNhGPxxEKhYRNI6PF72QkEoHT6USn0xFLfbV1hHoNaHKiMroqi6ve9xwDwZoqmyXLRDdKArh6vS5OiqVSCf1+XwyTWDOnsm6j0YPm2nSmdTqdYprEulH2pWPfymKxiNFoJKCMbJ2u64hGowIkQ6EQbDab9Fnr9/tiRhIIBMbANmuNORdk/bkv2v3XajX4fD6pe+TYueiigrRyuSzMLOe3Xq8jHj+sDCNA57NL13X5LMEmx/sk4ssF4H7202LgrLDCCiusOCrq9ToWFxfhcrlw8+ZN5PN5aRZcKBSwtbUlDAfwwIUsEAhge3tbVn7D4TBqtZrIDWl2wtoe9nG7ffs2MpkMOp0OotEoXn75ZWiahi+++ELklSdOnMD+/j6y2SympqawuLiIUqmEdDoNu92O6elpkQWNRiNZBde0Q0e0crksDm1M4AgsaADg8/mEEen3+yiXy/B6vbKKvbe3h/n5eSQSCeRyOQEc3MfPE0YAwCQTwEPsFcNoasLPqiwIY5JM0AzQGN9TwYrqDKhKEjl/bI7Ofn4ejwd+vx9ut1vAOMGc0UKfST2la+rxjedIJsJmO2yYzmSabn/8nFFuZ7YvVUppZNbU94ySSyODZwa2VdAxCbSpAFHXdezv72M0GuH69evY3NzE1NQUlpeXcfv2bQE7brcbsVgMc3Nz2N7exubmJjKZDBKJhJiaDAYD7O7u4tq1aygWi2i329ImQL1u6nnabDZJ0oFDJmptbQ3PPvss9vf3YbPZ8OmnnwKAADmemxkrSeOLXC4niyVs7k2Gi0wUmaN2u/0Q0J/EcPOnKnNVZZqqvJLPJ8oNCRA5B/V6HfV6Xa4dJYJkk1QFAWWQ6uIBwRJNYyglJ8ACIPXA8Xgc9XpdZOEEVjQSsdlswk76fD5xmRyNRlK3y0UngkWyamQhaSZC0Njv98V4hcYynPtQKASXywWv1ysMmvrs4/UlsGu329LCQL3nyWpyMYAmOASDTyq+XABOGDgrrLDCCiusmBypVArFYlFMDZaWlhCJRFCpVCQR0DRNVpmZGN64cUNkUYlEAnfu3AFw6JTGmjY2/qZE8/r16+h2u5iamkIsFsNXv/pV5HI5fPHFF/D7/VhdXYXT6cTNmzdht9uxsrKCUCiEYrGIbreL+fl5YWVarRZcLhcikYg0g2YSRFttt9uNTqcjUj4me/V6HX6/X3phkRliSwS66N26dQvHjx8XaSaTSGPNzqPq0Ywgybj9JLAGjBunPEoiacYsGbcxk/sZ96XrOiKRCHq9ntS+8D2aKAQCAUSjUbz00kvIZrPY2tpCu90WJz6VYeE5sCan3+8/BJDUc9Z1XZJDGtTQgIH7U9kZFXgak3/jXJiFOidmP/mPx1X3rY7B7FjqNZidnYWmHbpEVqtVhEIhLC4uYmlpCel0WtgX1gbGYjHcv38fd+/exfT0tLTpIAtULBaRTqeF0SS4IWOj9vBjs2o2tweARCKB3//938fFixfx5ptv4ubNm/D5fKhWq2MgyzhP6vnPz8/j5s2bYlBEMMftKA9VmTKze8MI4tS5U8PsuqoGOYFAAC6XC7VaTZg7AFJzSVUAJdbAg5rKfD6Pg4MDxGIxJBIJqWXj84MMdK1WE1MnAGLmRCaPZiYAxLIfOFQo8J7pdDoIhUIYDAbwer0ix6Qk0uFwjBk/sS6U3wlKmAlqY7EYSqUSqtWqvB8Oh+XYZOX8fr/0GSQIZD0br0EoFBIDG84f2Xa2jahUKlKnqmkaCoWC2Vfr1xJfKgBHDu5JalKtsMIKK6z42x+tVguVSgWDwUBc8orFovzNpJXNXDudDkqlEjweD1ZWVqBpmrAH4XBYVncjkQimpqbQarWws7MjPdlmZmawuLiIQCCAS5cuYWNjA4lEAufOncP+/r7Uuy0vLyOVSuHOnTuS/MbjcZGFpVIptNtt7O3twW63Y3l5GV988QVstsMm3oPBQCRMlEWpCTj7HKkrx2zUS5BWLBaxuLiIRCIhq9FchX4c8GYmyzOTh6lMg/o5NY4CgUxeuU9jom2UCJoxUPybEY/Hpck2E351bO12G0tLS3j99dexvr6Ozc1NhMPhMRt09p7i3NL8xAgMzIJgJBKJSG0O50hN/lUGTZ1LtZ6KczZJQmqcI+N1MGPuzEDjJCaQ46EkzWY7bMtx+vRpOJ1OTE1NYWZmBplMBplMRs6fDE+tVkM+nwdwyBx1u12USiXU63WUy2WUSiVxV1SNJ8icMymfmZkRQw2fz4dXX30VoVAI169fx87OjoB1LtKYLSqo9zKBELcjA6Xep2R81OtBtpyfU9leHlsFV5xnlbUmE2Q2Nh6TrGOtVhP5JIEYx0KpJ+9V9ihstVoIhUKIRCLSFJvH4PUql8uoVCoi056dnR2TiKrnR5BHJo7XiSY0dLd0Op1Sy8i5Zf82no/qotloNOD3+1GpVKRm2eFwIJFIAIBI3+kWyeOT5W42m/D7/cLEEeCz1pnzxGvKpvMEwqrb5pOKLxWAsxg4K6ywwgorHicymQxGo5HUYezu7kriWK1W4fV6x5gt4NDwY2pqCul0GtVqVdzVmFzH43F4PB7cvXsX9XpdErLl5WXMz8+jWq3io48+AgCcO3cOJ0+exJUrV3Djxg0kk0kcP34cHo8HH374IVwuF5aWllCv14UlTCaTKBaL2N7eRiAQwPLyMnZ2dsRJTzUbAB4kfGqCzt5Mbrdb5EZMnsjMdTodbGxsYGFhAdlsViRYRsClBt9XE0oGEzDgAQijJNKsps34uhoEEKqpjFGuZwRuxjEb2ThuQ+vxdrs9VqekOnAOh0NcunQJXq8Xt27dQiaTwb/4F/8Cn3zyCXK5nMi8mBhT5qUal3BfRqkjf/d6vYjFYtjZ2Rk7D7KwZiwZw8wQ5qh4HLbHaJahbjOJIVXBjLpQQvMMm82Gfr+PZDKJjz/+GO+//z7W1tYQCATQarXkvuPnAIjpRKFQEPkkreNpJT8YDNDr9cYS61gsJgsU8/PzAIA/+7M/E/BGKbJxPo1zw7m4cOECNjc3JYFXpY4EGpQ5E0wat+McAA/fm8ADIK5KV4EHDefVYB0YjTh4DsViUZgwXiOv1yt99rgfm82Gbrcr9XqDwQCFQkGcKglauJBFA5JKpSJmIe12W2SqlJOrQJZgjPJSgtBGoyHH5fOLIJmsF/fndrvFaZfPaU3TkEwmEY/HxXRoOBxK/TEBfbPZhKZpUo9os9lkzOFwWNjc0Wgk7r6s6fN6vcjn8xgMBtIOo1qtolKpIJVKPXTv/7riywXg+IuF4KywwgorrDginE4nFhcXkc/nkcvlMDU1JewTzSpYPxIMBqU9wO3btyUZpHkJk5NKpYLt7W2pkSIDEI1Gkc/nce/ePfj9fkSjUYxGI7z11lvIZDJIJpM4efIk2u027t27h2QyiVAohHa7DQCYmpqCz+fDvXv30G638eyzzwqA4Oo2V9NdLhecTqe4HTKYGDIx4XY0NWDSQ2e3crmMaDSKSCQi58jVauBhEMekVK3/MguVlZgkoTRj2owxaRzGeFxFDpNt1kQZWScAIikrFov43ve+B+ABc1Aul6XGkSCOFvJkFoznYsYE+nw+JJNJZLNZYd+Mn+HnCAjMatNUcKgeSw0zUGb8NwmgmZ2DEdSNRoe2+pSsdTodBINBBINBVKtV3Lp1S/qD3blzB/V6HUtLS8hms5L40+WRzaXZcLtaraLT6cDv9+PixYu4evUqgEOGlIYZfr8fTz31FCKRCGq1GhwOB2KxGAqFgjQRb7fbY6yWOnb+zevMax0IBMTgR7XRB8YZT0o6CfzV980YOd6HxrHwdSPbShklpdAEUOzbxoUnfqe5MELzI4JBtU6WfdG63S6KxSICgQCABwwopa7cD+eVCxQ0+eD3ZTAYiJlIuVyWXoDValWMRdSaXspO+TwDIItNfr9fzEkoV+WxK5WKSJRVdpSLPeo14tyxzx3bwJCJo4zT7XbD5XKJrHJ6elpq5FqtFmKxmDCJTyK+XACON7WF4KywwgorrDginn76aXz88ccolUo4ceIEer0e0uk0PB6P9CsajUaYnZ0VF7W7d+9KQhIKhTAcDgWgbW9vywqt3W5HOByWerTt7W3UajXEYjHE43F0u13s7Oyg3+/j4sWLWF5exsHBAcrlMqanpwE86J3EWjUmu+fOnUMul8OtW7cQDoeRSqWkLoNgi1JQJofGZJ61LEyKGI1GA9FoFG63G/1+H9vb21heXpYaJSZcgLmc0exYfE+1NmeoUiuVaZgEGAj+1LYF3OejgCM/bwZo1J9qw2RK8yjd6vV6Uqelnue/+lf/SlwOKVdlvRMbOqvjMwIdsmt+v19MdOgY6PV6Ua/XZUxGeeqk+ZoEvIyyx0ngy6yebdK+jMfhvaBpGur1urCJkUgEc3Nz0HUd2WwWn376KSKRCDKZjBjC7O/vIxgMivEEv3sej0dkkHQV9Hg8uHDhAp5++mlcvXpVGldr2qHz5enTp/FP/+k/xdbWForFooAPXkP1PuICBUGVeo8Y3Rn7/b5Io4+q1TQ28SYwU18zss4MSggJEFRXSuO1Vz9LUMqG8WT61POo1+vwer1IJBJj9y0AAVYEqwCEkSaDBkAWfvj9IEPH+5aGKqxHI+gjYCOIHA6H4vRICSS3b7VaIm/XNE1MmOioy+tI10m1Px1ZRoI6Aj3W3dntdnleMvg9LxQKsNvt0geu2WwiEonI+TWbTTFIedQC0q8yvlwA7mc/rRI4K6ywwgorjoq33noL/X4fKysrqFQqIteKRCKSONJeu9lsIp1Oi6U2kz06ne3s7CCXy2FmZgYA4Pf7xQRlY2MDLpcLZ86cgd1uR7Vaxc7ODkKhENbW1uByufD555+j2WxibW1N5Fwqk5bNZhGPxxGNRpHNZnFwcIBEIoFYLIZMJoNSqSQyoHq9LvVXk5weKaVkg2omInRL9Pl8IksrlUpjzpePm7CoyayZUQPDWH+lJs0qkDAyImT7GEymjTVw6ngmjd3IgDBBZvIcjUbh8/mEaWs0GmNJM2VhPKaRgXgUeHM6ndKLMJ/PixSMCwF0uHxUDZ+ZLHRSGD9rBLRmr6ufPUpCSUAOHF6X+fl53L59G/F4HBcuXEC5XMb29jbu3LkjCTdldqrkbmZmRvoZ8vvG3mEEDxcvXhTZqd/vR6vVQiQSweLiIv7hP/yHeO6557C1tYVwOCySVkos+bNSqYw5uKqsqzpHNBSanp7G7du3hZ1Sg/ePWuepst9GIG48nvG6GBcL1G3VnoQqmOR9qko16cxIieNgMECtVkMwGBQmim6gfJ/On/wMGT2CIp/PJ2oFjs9ut0svQy4QVatVAcb8yd5xBwcHAA6NZSg95vHcbjeSyaS4Zfp8PlQqFVEwsCE5wSG/rwRifMZxvskCsyaO58FxO51OUT3QJZNgkOdNFpGg1Woj8EsKu+1nKxkjC8FZYYUVVlgxOcLhMDwejzRjjUQiIuMJh8MIBoMAgGKxKAxIMBhEq9WC3++XFVmycmz8evz4cWGwNjc3JZnUdR25XA75fB5ra2twu93Y3NyUXlff+MY3kE6nUavVEI1GpRmuzWbDsWPHABzW7fV6PSwtLSEej+PevXuo1WpIpVIol8vY29uTWhHack8Kgj2n0ym24nydkkzW0cRiMam/MrJlahjBkxFoGNk3o1yNwc9NOo56POCBwcqkYx8lI1THYhwXV/S9Xi+OHTuGhYUFbG1t4cMPP0Sj0ZCxEaipQXbHWIdoPE+afJw/fx6bm5soFApj4DWXyz10PkZgoBq4GOfGbF75u9l2k15X3zN7TR2fWg/JxYIXX3wR4XAY8XhctuM9qH4+EAiIbb0qP6U0lSwYjWNOnz6NH/zgB3A6nVhYWICu68hkMjh16hSee+45qRnt9XrSVLrT6Ui9Y6FQQLVaBfBgUYBMFdk8ghTgEBxsbW2Ja6IxzAx1jIsXmqZJ82+Cc/XzDLVBtrov9T7QdX0MRPR6PVQqFanf4vVQ69y8Xq/UE9JCn99t7oNSzna7LeBOlXZy0YE1wHRZpcMk26jQAbPX64l80u12YzQ67LnmcrnETIRMGWvnaExCQ5J2u41YLAZdP2xOzt5vBGn9fl+OW61WRTaqaZo0ACfQbbVaAl65WMMFKrZIoKsw90/jFtbs8ZhPKr6UAG5kUXBWWGGFFVYcEaPRCNVqVfofMRkKBoPyn3m1WkW1WoXf7xc5XCQSQTAYRKlUkjqYcDgsrQPoVkbGgU2yd3Z20O12sbKygkgkgqtXr6LX62Fqagqzs7P49NNP0e12MTc3B5fLJTVQJ06ckAbPBJq6ruPKlStwOp1IpVKSIHo8HszOzsJut+PGjRsol8sPyQvVBF2tn6PFNnAomYpGoyIp40q22k/K2ERarTkxysoeR4JnVg9nBAxm8ktuZwQSRkBz1DiMRi88DzKSBwcH8Pv9eP7558fsytnTilIzdZxMBidJOynjikajWFtbw/7+Pra3t8fORR27kZF8FMA6ioEzzo1ZHDVf3Id6jElzPRgMcHBwgD/4gz9Ar9dDLpcT10O6GHJ79v6ikyrrTulUyJpCAquVlRXE43E0m00sLi7i5MmTAB60W2g2m1hfX8fu7q7UhbGeiewyHSTpPEvpMqV1ZILINj311FO4fPmyLHoYr4saRnMT3uO0oCdDrpr2qJJK4IF00sjMqSZAaj1ot9uVtgtkg3mf8nz8fr8sUFEWyPo2XhOCMp/PJ1JMAjsyUirgo5ycx+PzgteN9WS9Xg8OhwPValVYM7vdLqoHXdcFULdaLdRqNWmPQGMS9tLkc8nhcKBcLsuxKSnnmL1er6ga+KwPh8Oo1+tickL2UW37EAqFZOGKTrLRaFTqIfkseFLxpQJwjp8BuIHFwFlhhRVWWHFENBoNJJNJRCIRWQlmPQXrv1jDQXe3mZkZeDweHBwcoFariZNbIBBAOBzGaDTCzs4OKpUKzpw5g2AwiHw+j+3tbcRiMSwtLaHX6+GTTz5BMBjE/Pw8SqUSLl++jMXFRaRSKbRaLWxsbCCVSuGFF17AYDDA7du3ARyamQwGA+TzeQQCAaRSKVlh50p+sViUuhIjUwOMJ9q9Xg/ValXcJwleVAlptVpFu92WJJSOd2qo8sdJ5iNHgTmVSWLiqbYHMMor1W1VWaeRdTOySerfKhAajUaSWBr3S6B7/fp1FAoFYRMikQhefvllrK+v4/r162MSSiaA/GkEO5zHeDyOUCiEzz//XNgBszlTQ2VgJrFnZtd60jwYP6++poKKSdeN12rS/GraYbsNl8uF+fl5fPLJJ7JQwoQ6GAyK1JTJNsEA902XyWazCa/XC7fbjfPnz6NYLMLr9eLUqVN4+eWXkUgkpNcY6+xqtRqazaYAOPaSq1arIhn0eDzCuJDx4utOpxMulwsLCwuoVCpSw2U0GzG7dsa6NgIC1ZmU3xv1eqvfRwaZMtVVUt3/cDiUvoFcgGAtG2v4yMyRqQKAYDAoElL2fyPTxFo/lami1JxzRzZuNBqJCUg+nxdnWz5bu90uEomEtIzgd4xgmY6lPPdisYjp6Wlpak/pOhk7ullSounxeFCtVkUuyWe7aiYDQFoGhEIhqZ/TNE2uJ01tKOVlnSDr88gqcz6fVHypAJwlobTCCiussOJx4uzZs3C5XKhUKpJUUWaTTqeFTWs0GnA4HFhaWsJoNEI6nRYThUAgMFbLwRXZ1dVVaSfQ7/dx4sQJ+Hw+lMtlVKvVMYmk3W7Hc889h36/j3Q6jXa7jQsXLmBhYQEHBwe4d++etBQgIHS5XEgkEiIFstvt2N7eRi6XQzabFfBAMGGUdKnJdavVErMAJnS03U6lUmPyKDq5MfE8iqGZlMwzVGCm/k7pmrof1cnPmLiagZyj2CezbbjCzuRTTZwJwEajEfb398W5k8k0WQkmuY9i3/jZ48ePY35+HlevXh1r/TAJhBnP81FAT93GOP9GI4xJrJ6ZdNM4HrPjqtsMh0MUCgXkcjksLy9jeXlZjEsoQ9N1XcwuHA4HIpGIJMZkjGglT1dAm82GU6dOoV6vIxwO46tf/Sqmp6fxgx/8AMPhEK1WC++//z7u3LmDRqOBTqcj/f0qlYrYwtMhUWWTKCdUGZtAIIBnnnkGb7/99kMtAFQQxXuZAMAo61Ut9NV6Od7bRgZO3a/KwvG7yGOTKWffN36GwEZlL1XGjw6f7Kvm8Xikzqvb7cLtdqPZbGI0GkltGxUBDocDgUAAkUhEvrPNZlNMZ8g2tlot6dVGWTgXmWimRJCnukoCD0xV+J7L5RK2EDhUC/D+MLb/IKurXsdgMIh6vS7MX7PZlIWber0u8ndKTofDIXq9nkjuNU0ThpCfeVLxpQJwDlr9Di0AZ4UVVlhhxeSIxWJIp9PI5/Middzf30c6nRZGgIX/dIYslUrodrvQNA2RSAThcBgAZLV5amoKy8vL6HQ6uH37NprNJk6dOoVoNIpcLidNv5kchUIhuN1u+bzX65VGue+//z5GoxEWFhYwPz8vskm73Y6VlRVZkU6lUvjzP/9zbG9vS/E/exyR6VElgkY2bjgcCgvHBImAZmdnB6dOnRIpE7c3giwz+SNDTfxVIDGJ/VFZN3W/an8zysdUyRnf43mZsXBHHZ9ySdbdqOdnHAPvjR/+8IcC4FTZKP821r7RVXJtbQ0vvfQSrl27hnK5LDI4FWQbz+dRkkU1VCbTuB++byZ5NJs/vm9k/iYBSON7ZIevXbuGQCCAqakpaYsRDofFbMNms8n7AIQN4gIJa1Ddbjc2NjZw7tw5zM/P40c/+hE8Hg+Wl5dRq9Uk8a/Vatjf30ez2US1WkWj0UCtVkO9Xker1RJwQck0rykZRUr+eN1OnjyJ3d1d7OzsSGNy45zzfFUTF5Wh5L4IwMjmsF+kes2MCxzq/UGAqQI4l8uFra0tMdhR6/MIGrlAATzov3ZwcCDNu2nvT3MUMp4Oh0OadNN0hvsne82G3ZRdapoGv98vDBiBN/fJBROfzyfSSbYvqdfr0p/T4XCIsRKZM4JI9fvP4/DY3W53DKSTYavVagLY2ZqC88FnKs+NvTxjsZgsIDWbTXEzbbVaVh+4X1bY7RYDZ4UVVlhhxaPjww8/RKfTwXPPPQe324179+6hVCpJA1muxPp8PmSzWWiahnK5jEgkItKbZrOJ3d1dAMCxY8eQSCSkrxyZtXg8jqtXr2J3dxfnz58XkwE6XBYKBbjdbklqm80mPv/8c4RCIZw7dw4OhwP7+/toNBqYnZ3F3NwcvF6vMGYffvghNE0TNzZKj9Smz1zdnySDIzvB9ggAxNyg0+ngxIkTuHHjhtQiqZJF7uMoEKeGCtSO2oZhrKlTE1yeI5Nmo+umGQPC343bcLWeQIL9rAjaWB9lxoyobKeRfVOldKFQCCsrK7h48SIuXbqE69evm4IrdbyqvM5s7GbX1DgHZmBv0nyo2xgZt0kMnXEfxu3a7TY+/vhjhEIhPPfcc2IlH4vFxHDD5XKJfJnJezQaRTAYxM7ODgKBAE6ePCng5Dd+4zfEGXFubk5+Z4NvOlrWajU0Gg3kcjm02210u10BC2ScAIhJClk+soNcFGm1WtjZ2RkDTQyjmYkRtKl/8z4heFO3Mc6hkeUkCOF14T0fiURQLpdRq9Vk4YHsmhE8Uuo4HA5RqVRQq9UQCoVEJqgCRYIsfhcoL+U1IOij4yOl12Sp2WidzbDpjjkajWTu2VfN7/ejVqshm80iHA6L0Yqu6/JcIitLMMhxkSEcDofSeoFGKqxXZdsDgvJWqyWOkwDk3LhAx2tBsE7w12q1xNxlampqrA3Lrzu+VADOqoGzwgorrLDicaLT6eDpp5+Gruv45JNPZKWZjbaDwSDC4TCKxaKwBNPT01L3trm5iWq1inA4jNXVVdjtdty/fx+j0QjxeBzT09MYDAb4i7/4C7TbbczPz2NjYwOapiGVSsFut4/1Y6LFNV0qFxcXUS6Xkc1mpcHx6dOnMRwOxcHyzTfflLoXAEgmk2g0GnC73ZL4q7JHs2CyUqvVpNaHduO6riOdTuONN95AIBDAlStXUKvVADyQOqpJ/CQQZyb/m2RacpQ004yBUpNcdb9mDNEkUMR9s7YFgDjsqX3nOLZJ58ifKiPHhJ+JZKlUwn/7b/9NmCJj/Zjxd3W+HgXezNg7dVsVrBr3Z3Y+Rvb0KEbQeHz1OjabTZTLZXz22WcYDAZYXl5Gs9mEpmmYm5sTZrtcLiMejwvLe+rUKQEW58+fx+LiIi5duoRvfetbUo+Wz+cxNTWFO3fu4Pvf/z4qlQoGg4G0IygUCiiVSmLAw7kkw0SgQTbG7XYLi83r4/F4MBwOsb29PcYMqYsGqpmIyg6pixv8yc+p19DsnuU4uQhjt9tF4qs2Do/FYrhy5Qo6nY4API6P58nX6TJLZ92ZmRl59jE8Hg9arZZIxCm5pJMnnUKbzaaAcAI5OnzyfMnOsW0BwSsAqecleOr3+5idnYXX6xU5O11gaTbD5x0NRthw2263o9vtyhzTZZPf63a7jVAoJHPPuaMEs9VqCXhzOBwCILmQxXu03++j3W5jZmZGFs2eVHypANyDGrgn11jPCiussMKKv/3xla98Bevr60in0/Kf9uLiosh6gsGg2P5TTuV2u1Eul5HL5eB0OrGysoKpqSm0Wi3cvn0bwWBQjE729/fx2WefIRAIYGFhAYPBAMFgEJFIRGRBoVBIau1qtRr29vYQjUbhcrlQKpVwcHAATdNw9uxZpFIpkf9kMhl89NFHUs8xPT2NZDKJu3fvSnJJRz82lD5KPgg8MECg6QABZbVaxZ07d/DCCy8gk8lIewK1XgV42LRBBTlqzzazxP9RYba9GdNmZCu4nQpgjKzGJBA3HA5FskcWxqxdgHEfRqZMlbW2Wq0xJ0/juMzO0QzMqb9PkjVOYjhVYGUEaUedl9m5Gccx6TVd18Wk5PPPPxeGWtM0kQ07HA50u12Rsj399NN4+umnpbXG9PS0GPesr69jenoan3/+uRiUvPvuu7h3754A8EKhIP0d2cNQlS/y+8z6L13XBbxxHgm+n3vuOfz0pz8dczIEzJtvqwsI/D5omjbWokCVA6uLH6pBED+jXieCLAIzbvvpp5+iVCqN1Ykx1Bo5AGKRb7PZkEgkRGrdbrfFtImMKO917oNOtS6XS6SS1WpVXFjdbrcAQ4/Hg0ajIYtHmUxGwBPB5Wg0GpNQsqUAjUXYb61SqYjZCXvWUcaoGprwmvJ+Y+Nu1sHxO6i2F4jH4wI6ef7xeFzYtkAgIHWFXExYXFxEIBBAsVi0GLhfVlgMnBVWWGGFFY8Tly9fFgbM6XRiZmYGXq8XoVBIQAsAzM/PS8Kxt7cnFtazs7PSTuDWrVtYWFjA0tISarUabt26hUwmgzNnzsDn82Fvbw+JREIYMpoDJBIJ6LqOra0t6efW6XSkzmN6ehrHjh0TORN7aF29ehXFYhGVSgWnTp1CMBjEwcEBQqEQ5ubmRDpUqVRkJZ8AZJKroK7raLfb4vjGVft+v487d+4gkUjg6aefRqvVEhc5rk6rbIKakALmQMKMtVOBlxnYm+SIqH5O/UegYnSxfJwgiOt2u/B6vWJgwDo5VSKpAkFVPqmeqypr45hUVu1RTNijwoyZexxp489zDDMmzuz9Sa9lMhmcPXsWmqZhb28PoVBIGJJoNIp2u41kMonR6NCJcnp6GuFwWJJ32v5vbm4imUzi3r17+Oyzz9DtdrG+vo6DgwMUCgXUajX512w2RRLp8XgEPLGNQbPZRKlUGpNN8r6lscWFCxdQqVSQTqcRj8elnmoSq837j8wZz1814CEw5L2uaZqwgZwTdQGC47Hb7VI/SzBZKpWwu7srLp1kCwEIIOUCDuWKlIizDySBCZ9PXq9XgCpZNB4/EokI69VqteB2u4WVo5MqzaHIIBIc6foD91GjJFPTNKlJPDg4kHYA1WoVmqbB5/ONtZmg0oCf57my5lLTDo1nWHdHkMr3BoOBsL3dbheBQEAAHwGp0+lEsVgUR8/hcIjl5WUBwTRweVLxpQJwlgulFVZYYYUVjxPdbhd+vx+6riORSCAYDGJ2dha5XE5ssh0OB9xuNwAgnU5jMBhgaWkJMzMzGA6H2NvbQ7FYxMzMDBYXF7G5uYnt7W0MBgPMzc0BADY2NjA3N4dgMIh0Og3gsB0ArbYPDg4QjUYFnDEhikQimJ6eFle8lZUVlEolXLp0Cevr6+j3+7hw4QLK5TIqlQpmZ2dRqVSkCJ8JK5sFs3fWJAYHeCApYsLLXlHtdhuffPIJ3njjDQFxlABSOmVkutQwc5s01gkxJskAjUBQBY7c1sxow8h2qfudVPvF19kXi8kaE1+yRaqBiWpaov7TNG3MzMRms8Hr9cJutyOZTGJra+uh81YTX3VezK6ZMSYBdPUcH8WCGufpUcc3sppmx6MDq8fjQaFQEBONSCQidae6rkvdab/fR7VaRTqdFtv/3d1dYUM+//xzqT+t1+uoVquoVCqoVCrodDpoNpvQ9QdNrtVm13Q5pM0+WSvej3wtFAohlUrhj/7oj6RGj0yYCsJVYGa8h4zzZGSm1X+U46l1lTwH1oNR5gccgrpisYharSZSSZ4TXRYJVlQ3TbrNEswOBgPpqxaPx6FpmhiVDIdDeL1emRcymWTrW60Wksmk9K1MJBLSysTn80n/TAJULgpxPtX+a36/H9lsVhwpeU36/T4ajQZCoRBGo5E06QYOn+Ns4cL9sb6RpiYEdZ1OR5QFZNna7bacH4EunXlrtZrcE2qdMmvnyMI9qfhSAThxobQAnBVWWGGFFUcEV3sDgQDi8TgajQbef/996PphOwE2u+12uygWi9B1Haurq5ifn0ej0ZAWAYuLiwiFQrh+/Tr29/cxPz8vjm02mw2nT59GqVTCxsYGvF4vZmdnoWkaMpkMOp0OEokE/H7/WK0UQSPrQ86ePYtSqYR3330Xu7u78Hq9OH78OPb29jA1NYXV1VUUi0V4PB6cPHkSN2/efEjiyETTyKKoP5kgsnkuTQ9stsO2Au+//z5ef/11XLhwAZ9++qn0XNJ1XRgHI9ulNhxWwRtDrQni54wOlGQ0JhmIGM/TyOhNkgJOklEax0eJFc0YaGygGptwHlR2Th2/KqlzOp34+te/jvv37z8EQtnj7JVXXsFPf/pT5PN507GbMWtGOaQRaJnJMY9iAI33iZFZNANxk6Lf72NnZwfPPfccWq0WwuEwhsMhkskkjh07hnw+L73ISqUS9vf34fV6cfPmTdRqNVy+fFnA28HBATY2NpDL5TA9PY1MJoPNzU0Ui0Wpg6KMj/cNwaFqNT8/Pw8A0lSaLJCmHdbCPf/883jrrbfQbDYRj8cFBFGCp7LMBOrc5ijASyaQ94PX6xVQwO2NNYr9fl/q2Ph3Pp9HPp+Xmi+2N+F5q7VzXGix2+0iO6SVfzKZlHo2MvEqY0nwyP1xrjTt0DypWCyKaQivoaZp0u5BXfjgeNgYncchGKWpTKPRQCAQkGcSrwuBI/dHIyMyZ263W5QRBFsExslkEtVqFW63G8ViEZ1OB8FgUOaC0vZGoyE1mrp+2FMumUxKPSBlnKp89EnElwvA/cyFcjC0auCssMIKK6yYHGxm63Q6cfPmTTQaDSQSCXGHjEQi0lvJ5/NhcXER09PT2N/fx82bN6V58HA4xN27d1Gr1XD27FnpdRSNRhEKhVAoFET+GIvF4HA4cPfuXYTDYSQSCVllJvs2Go0kAVpYWEA8HsedO3dw8+ZNbG1tSYKztbWF48ePIxQKST+5SCSCWq2GWCwmLASTHzOHNRXoqHU73W5XJFA2m03mIpPJ4PLly/jWt76FwWCATz/9VGRqrMdRgZbKOqmSQ2Myq26jhhHEHSWHVBNeY2I9CcSpAM6YdBsBC80qer2e1GkZ7eIJ2owASj3vpaUlAejFYvEhqd1gMMDCwgIWFhZMjS0eJ9RjElwbwbMRtBrB5lHbTgKIR4E4XT80xKG7ZL1eF9Bz8eJFVCoVfPDBB6hUKtje3ka9Xpc2ADTAoJHF/v6+gLV6vS7W86pLKuupRqMRms0mGo2GsKRcmFhYWMD+/r7UmhFg9Ho9vP7667h37x729vbg8/kQCAREitfv9+VcVRZZZeOAcTMTsmMcHxdsuE/VAVI1wOHfZP0YzWYT6XQauq4jGo2i0+kICCGrxl52ZN/VGk5ec4/HM+bOyIUK9mhTZaX8bLfbxWg0Qjgclp5oNOhRQRkBI8fPNgQqSPP7/RgOh8jn8/KcIQincoDN2dlonXPt9XqlpUCv1xOGkc6anU5HGD6+7vV6ZV9k5ygRJTPbbrdFnmm32xGPx+H1egXoeb1e6Smomr/8uuNLBeDsmlUDZ4UVVlhhxaODYGp9fR2tVguxWAzBYHCsRUCtVhMpo8PhwPXr15HP5xGNRjE3N4dOp4NCoQBd13Hs2DGx0k6lUtB1HdlsFt1uF8FgUOp8dnd3xX7a5XKh2WzCbrcL6Gq1Wpiensbi4iIODg7w1ltv4datW2i321heXhZm4sKFC5JILy8vo91ujyVT1WoVg8FAEhGjgYJai6UyWwQTNDJgfzgmkPfv30cymcTzzz+PdruNGzduoNlsiuvbUfVYRkmkarCgJqdmzNik/ahSSpX1O4pVU2OS9M/scypIY1JsdJFUpW/quHVdx/z8PF5//XWsra3hL//yL8XRU5VcsolwPp9Ht9t9aB5+3jhKBmkGuCaxleq+HhfEGberVCr47LPP8OKLLyKVSsl3oFgsYm1tTeTABGWUp5FtAQ6BSz6fR6VSgcfjEYaFUkOCMbJOvV5P3AMJaNxuN/x+P3Z2dqQejozRcDjEK6+8gvv37+PSpUuw2+3iughgTJYMjNeoGc9bBeBqvRy/S5T61Wq1sXuec8bvHevUAAjAyWaz0rON9WAcIw09VMdKm80Gn8+Hubk5ASJ85tDMhUCGY/N4PPD7/WP3OhdsZmdnkclkoOuH5iP9fl9ALhlP1sM1m000m02RrPP4fK9er0vvTdUh0mazCdPFMdGAJRqNjn3XeJ3K5bLUvtFEhYtqyWRSmrxTxsxaVz5HWCOn67qYThG8AZDedpxPPnOfRHypAJzNpsGmWTVwVlhhhRVWHB1utxt7e3twOByIRqNYWlpCKBSCrutYX1+H2+3G7OwsVlZWkE6ncfv2bbTbbZw7dw4ulwu5XA79fh9OpxOBQAC7u7vS34jF/Kxl6/f72NraQq/Xw+LiotS05PN5eDweHDt2DNlsFtlsFsePH8fU1BSazSYuX76MW7duIRaLIZVKYXd3F4uLizh58iTu3LmDQCCA1dVVAU5utxterxfZbFZc5srlMnRdF6mRugIPjDfIBh4k7KPRSKSUNpsN4XBYkuJPPvkEiUQCX/va19BsNnHv3r2xVWy1L5axmTXDyFwYGSI1+VffP0pKqcrlVHA1CVSaHcu4DT9vxkqR0TlKOqh+hj0Cw+EwotGoAGp1zu12O2ZmZsbcEFWwNYmRM76unuOjmLJJINZ43R4lDTSOw/j6YDDA+vo6zp49i9dffx1nz57Fzs4ONjc3EQwGkUgkcPr0aUSjUWxsbGB9fV3AARtIl0olASwqMOH9QXDNVgK8PuxnRmAzHA4RCoVkDPfv30er1cJv//ZvYzQa4fLly+j3+wiHw1IzBhw6MRLQGM+ZckMVzKssGr8XrFPz+/2m0kn+o6OiWo82Gh32eaSsm+/RGInXRGW+COxoQDIcDjE1NSXMPQEQa8koJaXbJHAoOScQjsfjqFQqIq2s1+vweDxIpVKo1+uy8EAHVxVQhsNhpNNpkWaXSiUkk0l4PB4B7JwrSho5Ptb50YCGskpNO3STLJfL8Hg8qFarwtb5fD6USiWpiWPtM42KNE0TUEjwarPZ4Pf7EYlE4Pf75TUuQtApM51OC5v+JOJLBeCAwzo4i4GzwgorrLDiqPjiiy8wHA6xtLSESCQCm82G3d1dabJ94sQJTE9P49atW9jd3YXNZsMLL7yAbreLdDqNbreL2dlZtNttFAoFxONx+Hw+5HI53Lp1C4FAAMePH0e5XJZ6jOPHjwvjVa/XkUgkEAqFsLu7i1qthueffx42mw31eh03b97EwcEB5ubmxOzi/PnzcLlc+OCDD7C4uIjV1VVpauvxeNBsNrGzs4N4PI6pqSmsr69jNBohFApJk186wKmOlEa5IPAg4Vbd5DhP7XYbb7/9Nt544w28/PLL6PV62N7efqgnkgq0zCSSwDhIMANyxs+pUkojI2eUWxoljOo+jmKa1O3402zsKkAy+5xx/41GA3/8x388Vp9kjOFwiPfee09MLYyOnJOkoEbQdtS5GudtEptmxkAaz9kMHE46BpP9Tz75BH/37/5drKyswOl04sc//jHu3LmDU6dOYXFxEfV6HeFwGE8//TR6vR52dnak6TRr2FSDDt7LlB+r14qLJXRwJKg4ffo0fv/3fx/NZhP/+l//a7jdbrz66qtwOBz4kz/5EzG3YD9Afgd8Pp98J4Bxua7qKmpcPFAbd5OZUhlXowEOx8zG42SnyuUyMpmMmBtx37quC3BiJJNJkRzGYjFZ6AkGg3IOnEO6Vw4GA/j9fmmcTRYsl8thNBohGo2O2fJnMhkBZgR7ZO/IjhI809VR0zS0Wi30+33EYjFpxs3vLcdEWWQ4HB5j7SiD5bzb7XZsb2/LtaW9v8vlEpmmzXbYQiAajcrn2fydx6MTJd0lCSCBw76QVAqwLpqs45OKLx2As9s0i4GzwgorrLDiyKADXiqVQjQaxc7ODmq1GmZnZ4UFuHbtGra3t7G8vIylpSWUy2Xk83nU63UsLCyg0WigVCohHo8jFAoJK7e0tIRer4c7d+7A5XIhFApheXkZ3W4X1WoVwWAQq6urGA6HuHfvHjweD77xjW+gUqng/v37KJfLKBQKSCQSiEaj6PV6ePbZZ8WE4fXXXxcJGFeUAaBcLuP48eMYDofY2dkZa4vABJZF+MADmZKxqbCakLOOhCviTIBqtRp++MMf4nd/93fxyiuv4M0335T2AjyGKtFUa9HUBJtJLxlCFZypIEAFOyqIAx7uOcdjG0HNJGmmOg4zsGN02DSTRz4quK1RYml2nHa7PQaszdgzM1bOaDJi3H4SmFV/nzRPxv1OAndm2xq3u3PnDv7Nv/k3WFpawsrKClKpFK5du4ZOp4OTJ0/i3Llz0keMsmIam6jtAbhfygsJjNR2DbxvydwsLy/DZrPh29/+NgDg3//7f49SqYQ/+IM/QCaTwR/90R+hVquJGQadJ3kvE9QYFxBUIEdwoV4bo2lJOBxGqVQC8MD9kNvyPCjnI5vfaDTElVNdoOD+ySCpYwAOmTAyZmwV0O/34ff7xXGT7JrH40E0GpXasampKZRKJfT7fVkIIjtYqVSkR2a73Ua73RYTFbUdCpt0U4bI6xYOh+W7zWvI8+WcOJ1OaXcAQCSvKvCt1+siA2VvOBqVUDaraZo0YafZSb1eFxaXiwvBYBDxeFyO1263BdhxgYAKB6fTKU6oTyK+dADOYdMwGFoAzgorrLDCislx7NgxRKNRBINBbG5uYjgc4plnnsHs7Cy63S4++OAD7Ozs4JlnnsHy8jLu3bsnFtcLCwvQ9UNrdFrt7+3twel0Ynp6WhpgU54zOzsLv9+PcrksPedKpRKuXbuG48eP48UXX8SVK1fw1ltvweVyYXl5Gaurq+h0OohEItB1HTs7OwgEAlhZWYHdbse1a9dgt9sxOzsLAMJaqM2QQ6GQJDdMPlkLxFVnIzAyY3BarZYALNbr8ThvvvkmvvOd7+CNN97A22+/jb29vbGaErXWTQVmxuOqAGMSW6eG6lTJBEyt8aOMTGVEJrUU+JswVmYgTN3G7DjGn2ZAUgV6RiClAkkVwBlNY9Qxmu17ElNnFpPA3KTzMobZPA2HQ7zzzjv4l//yX+If/IN/gOeee07MRnZ3d+F0OqXB/b179+ReZQKtygS73a4k23a7HdPT02JEwTERxIXDYYRCIezt7eF73/sednd3EY1G8c//+T/Hxx9/jJ/85CeS1Pv9fgQCAQEUqk2/CtgAjC1U8J4zzoc6Ftrdq4sZqkyQMk262ZLJymazwqRzW7YCMDM8GQwGAkI9Hg9qtZr0viTQJcACILV+PEYkEkEmk0G9XsdwOEQ2mwUAkWnzOP1+X6ScrIXl/NC0hAYiNEZxu91yXs1mE51OB6FQSAxJ2IKA0ktd14VhU01Vms0mAoGAGDZR1s6fnHfWClI6W6/XxcCEc8/WKbxnR6ORSCTL5bLMNZUIPO8nFV86AGe3axg+4sFvhRVWWGHF/7JjenoapVIJe3t7GAwGWFxcRCwWQ6PRkPqSl19+GalUCvfv38fe3p6sTvd6PdTrdUSjUfT7fRwcHMDv90tNS7fbFZMUJg4Ef2fPnpXmw2fOnMG5c+fw4Ycf4tNPP4XdbsfZs2cxNTWF0WiEeDyOTqeD9fV1JJNJLCwsoN/vSw3J1NSUWPlTbtfr9aQFgN/vRzQahaZp4vqnJnpHMSzAuDSRhfulUklaMHQ6Hezv7+NHP/oRvvvd7+KNN97An//5nwsTqUrGmCSpTIRRGslxqUkaQYuRzVMTaDV4jtyOTISZXNGM2VJ/N2MkzeZnkoTwUfNrdmyzv9XXjZ9XryOBnyrfm3ROk0CqCgwnvW88Z7NQQabZOXe7Xfzwhz/EaDTCd77zHVy4cAE7OzuYmppCp9PB5cuXUavVUCqVkMvlcHBwIEwwWTHWean911SAw20I8EqlEra2tsRu/9VXX8XFixfx5ptv4uOPPxbbe5/Ph0gkInV26qIDAZLK9DJ4jxrdT1UQEYlE0Gq1JPFXtyWr0+l0pJ1ItVpFp9NBsVgUxk6VY6rfG13XxaSFLFmpVEK1WkU4HJYxUlbIWjxd1xEOh+H3+0XiGAqFcPfuXRk3+6txvHSSJKj2+/3QNE2cbtXG4w6HAysrK+h2u8LOZbNZqVOLRCIol8sC0mlCQraScmJjX0TKXGu1mjT59ng8aLVaY8wp3TIbjQbC4TDy+bwsrrEJOBemWHNJ6afdbh9rueB2u8VF9dVXX8XS0tKR34NfZXzpAJzDplk1cFZYYYUVVhwZd+7cQaVSwcLCAhYXFwEc9peibGl5eRkAcPXqVeRyOczPz2MwGKBer4tTZT6fh8PhwNzcHCKRiCRYPp8PoVBIEgGv14tkMolwOIxyuYz9/X2cO3cOi4uLeO+99/DOO+/A6XTitddeG+sJVyqVkM/nceLECUQiEezt7aHZbCIajcJutyOfz6Pf7yORSEhR/ezsLAqFgiQZZN+Y0Kks1VHmICrTA0BaKtjtdhQKBQCQupm9vT289dZbeOONN/Bbv/VbePfdd7G5uSnJHOuTVCdMFcSpkjSutnMMgHlzapV1U9kqo6GJmhxzX/ycGVg5iqVS31f/Vl87CthMAoKT9mv83KNeU8HZJBBoDDOWzuyn2ZgngUz196M+32g08M4778DhcKBcLmN1dRXpdBqJRAJf//rX8c477+D27dvI5XKoVqsP1QNSNkiJHAEMjUy4ENDtdgU02e12LCws4O/9vb+HW7du4T/8h/+A7e1tuVe4OEHgoMow1eNT3kcjG9VOXpV38v6jS2K73ZYG8KrEUq2L4zGLxSJ6vR6q1SoKhYIwbWSY+N3hd0yVi7pcLlQqFei6jlAoJM6LnU5HwA0bY7OFABuhezwe7OzsSLNtgiuOE3jAgHc6HbhcLng8HmEvgQeGLmRF+Wzs9/toNptot9vST63T6UjrFABotVoAIGCMz61SqQSPxyOSz2AwiHw+j1KphGAwKC6XdMMk2Acgzcqr1Sqq1eqYMQ3lsmTYeG3ZqLxer0ttHNk+ytSnpqYe+g78uuJLB+CsGjgrrLDCCiseFblcDmtrazh79iyGwyE+/vhjtFotLCwsiLFIpVJBMBiUupFWqyVmIeVyGW63G8ePH4fP58PBwYG4nUUiEQEKsVgMc3NzaDabKBQKGAwGuHjxIoLBIP74j/8Yly5dwpkzZ/Diiy/Cbrej1WqhVqvh4OAALpcLa2trGAwGuHr1qhia9Ho9tNttsd6uVqtYWVlBLBbD9vY2fD6f9H/z+/2S5LrdbjE6UAEHE0CyZIC5RK7f70sNDF0u3W43er0e7t69C5vNhu9+97v45je/iR/+8IfY29sT0wljHZl6bCM7xvGox+fvRmYOMDdI4bZqc2UGweQklkxlT9S54LHMmC2zmCSTnBRHMW9HvXaUHFPd5nFem7SNcXt1jiaBz0edu67rKJVK+OEPfyjyN5fLhbt378LtdmNubg7xeBw//elPxxhm9d50OBxYWlqCy+VCLBZDLBbDRx99hGw2K4xNOBwWKfN3v/tdxONx/Jf/8l+kSbi6L/Zv5P2jAiSVHVZZYuN9rd6PBGMET6ztUmWgBI5k0vx+v4Ccer2Og4ODsbo3VSKpSjq5z9FohGq1KvVtBH5cnCK4IcAhu2S329Fut5HL5QAcgrBKpYJAICDSQq/XK+YeZCvZMHswGMDr9cLr9YrEMBKJoFKpiPEJ264Mh0Pp+5bP52U/wIP+eY1GA6FQCE6nU3qzsQ1AKBRCqVSS60pzEwaZPcrZWVNJt04+FzweD8LhsMwJFwC4qEAwabMdulSm02kEAgHMzc0hm83i+9//vtRT/rrjSwfgLBdKK6ywwgorHhXnzp3D6dOnkc1mkcvloOs6zp07N9bMd3FxES6XCwcHB7DZbALkhsMh5ufnEY1GxRq90+lgZmZGLK5tNhs8Hg/i8ThyuRzy+TzC4TBOnTqF0WiE//pf/ytu3LiB3/iN38DZs2ehaRry+bysECeTSaRSKZFfRqNRKdQHDhMUSpJWVlZQq9Vw584dAMDc3JyAvZs3bwr7wNVlJpUAZCXfyDwxjICCRixM4NnkdjAY4O7du3jzzTfx+uuv44033sCPf/xj3L9/HwAkaVOTTSasRtBoVv91FHtlBHtGeaXRIdCY8E46dzUmAaZJINBsnHztKMnlpH09CoA9ChwedexJ708Ks+Maf/959lmtVvHWW29B13V885vfhKZpuHnzJsrlMrxeL2KxGJ577jncv38fmUwGrVZLgIvf70c4HIbL5ZKFE6fTiVQqJQn91772NXg8HgQCAdy8eRNXrlzB/v7+Q/WSoVAIoVBorGm2kXFSzUEmsa5m9yPrTY1AEHjQ742SRn5fm80mstksms3mGOBjjRilfbyXCQJpWsSxqjWCdIPkd6DZbAowJjs2NzeH4XCIarUqTrlkNPnZTqcjMvFmswkAokwgYAQOWb1er4dAIIB6vY5mswm32y11ZATQ3DeAMaYSOJS+8lnBti1UP7AdB81GOO9sUE7pNw1O1GvGJt0ej0cklTSFYjNx1sF5vV5UKhU4HA4EAgFZjKOU9EnElw7AWQycFVZYYYUVj4pjx47h/v37aLfb0HUdp0+fllqKbrcr0phisSjynFwuB4fDgVgsBr/fj1KphFarhU6ng0AggF6vh3K5DJ/PB7/fj2QyiWw2i9FohIWFBczOzuLu3bv4i7/4CzgcDvydv/N3xOJ6Y2NDVr4vXLiAUCiEfD6PYrGI2dlZtFot5HI5SWBo9T09PY29vT188MEHWFtbw3PPPYdms4nBYIBisYjFxUVUKhVJeLm6reu6sAEAxmy5GWpDbLXWis6U3B+Tr16vh6tXr6LX6+Hb3/42Xn75ZYxGI+zs7KDdbgtYVNkJ9ZhM0hhHMWSTpJMquFCBnArijMc8SjI5KdRE0Nj64CiAZ3zv5znm4wDCo8Zqtp9J7N1RTOBR75mBSfW9SWNtt9v4sz/7M+zv7+Mf/aN/hBdeeAE3btzArVu3cOPGDQE8zzzzDDY3N6UO9Dd+4zfw4osvYmtrC/fv30ehUBA549zcnNR67ezs4NNPP0WhUBBreBXMs2kz72f+47640KCyXKpE11hTSuaONWa0xOfr/J3MD8EJrfzVhuXqd5fHaDabsm+6R5JhJ0vGXm48D9Z0ARBA1el0kEwmsb+/j2KxiEgkgqmpKRkv2w8MBgPUajWRXXo8HpGQ6roOn8+HmZkZ1Ot1MVEqlUrSCLter6PdbgtApmxyNBohHA6PySVpMELWDIA4WarGTMFgUBwieT17vZ4wrmRri8WizAfn0uVyIZFIiFSSzyeqGti+gdeHhlU+n0/Y0WAwKON7EvGlA3BWDZwVVlhhhRWPii+++AKDwQAOhwMzMzPIZDLSZDmZTErNBhOivb09hEIhpFIp7O/vo16vi63/wsICcrmcbBsKheD3+7G+vg5d17G6uoqFhQX89V//NS5duoTp6WmcOXNGVohZ0B+NRnHmzBn4fD5sbW2hVqthdXUV3W4XvV4PyWRSgAqlRXt7e6jX63jttdcwPz+PmzdvAoDIN1lr4vV6xU2SbpRM7JjEU3JoNGEwMgq6rouEislrMpmEw+FAr9fD7du34XA48Oqrr+I73/kO3nvvPdy4cQMAJIEyyiaZmJqZmxiBGENlMDh+sxYExp88thHUmY3nKMZqEms3CRAdJU18HHnlpG2PAlZ8f5IU8qjPGUOd10ms3+OM4ajzvXLlCu7du4elpSV897vfxT/+x/8YP/nJT5BOp6HrOi5evAiHwyFAjO0Hnn/+eVy/fl0YO0qWDw4OsLe3h2q1Kkm5OkabzSZmP6wXZZBt4ndFHbNas6mCK/X+M95rBIPqPU3TDO6fPdFoWqKagnD/BE1Gk6BWqyUNstW6PTJvavNugrVisSgMWjweRzAYFLaSBiXdblcADr/3iURCmEI+RyqVioCvWq0mLp71eh0ApPaOss5gMCg1eJp2aICSz+cxMzMj8k2CYLfbLb3lwuGwmIvQvASAsIIEwQBELcC6SI5/enpawFmz2RQG1mY7bDNAkOn1esXpkvVvrINmveCTii8dgDtk4CwXSiussMIKKybHYDDA6uoq7HY7dnd3USgUEIvF4PP5sLGxgUAgIMX5rVYLU1NTmJ+fF6Dn8/mQSqUQiUSwtbWFfr+PkydPSm+j27dvIxgM4vTp07DZbPjDP/xDbG1t4bnnnhOw0+/3UalUMBwOEY/HsbS0hGaziZ/+9KdwOp1YW1uTWp5wOCyMWTgcRr1eR7FYRCwWw8mTJ6FpGn70ox+h1+thbW1NpJ+apsl5OhwOcdhUE0+CNiblKkulGp4A44l4q9UaA3+xWEx6NN28eRODwQC//du/jTfeeAM2m21MzmnGtgEQSZgKGs3khXydiZpZ0mwEhQSoajJOFkUNM2Cjgg4joFXfO0pO+Tig8FFx1PZGFnESiFXP6eeNo9hEdQzG341xlCS00Wjgxo0buHnzJlKpFJ566iksLy+j3W7j888/h8PhwPPPP49isQiPxwObzYZPP/0UzWYT+/v7yGQysujB2jnjtSKQCAQCwgARWKnMmyoH5OfVhQJVlqvr+hhLp95/KvNGiSZle6z9Go1GKBaLyOfzyOVyIp10u90CAFWQyM9SAkkQROt+jtdut4u7ZyQSAXDI4OVyOam7BSD1vgQ6dMTUtEOpqtfrlZo5AmjWC9LGn4wfAVEmk5H5YE0e2wO4XC4Bj6ylZQ83yhP5veVngQeglw6S7XZbpI40XHG5XMIw8hrwHpidnRVzm16vJ43Ga7UaIpGIqAk4PqfTiWg0KnWalHjSmOZJxZcSwFl94KywwgorrDgqTp06hXa7jY2NDfR6PczMzEhNhtfrxezsLGq1mkgmw+Ewdnd30Ww2EYvFpACfzatnZmakv1M2m8Xs7CzOnDmD/f19/PVf/zXa7TZefvllkR0xsfH5fNIi4IsvvkCz2UQoFJJESl21r1QqiMViwoAtLi6K+2Umk0E8HsfCwgJGo5GwfzyXXq+HdDotZgUEP6qpCRNQgiBVhmjGKGiaJhJUvp9KpSQBolz09ddfxze+8Q34fD58/vnnklgZk3u1Hs4sVMCp1gQZWUKz1gHqfo0ATP3bWA9oPL763qMYqMepBTMDj0ZgdBQoPGpf6jZHgbWj9vM4IOyo4xjn7Kj98H5Tf2azWWQymTFpIy326XTIa6H2NFNldep5qPeN3+9HLBYb6xemyifVZvTqeaoLDyqoVxt483OqTFN9j2w1P9PtdlGpVFAoFAS8qW6qqpRT7clIgEkg4fP5pI6XMke/349Wq4VAICBul81mUyz4CdCCwSAcDof0fWPNF+3+2fib46FB0mAwkH5p6vkRgBJ8ETRpmiYOj7yuNIiKx+PClnLRiTXJuq4LM6hph3Vu3I6gis9Myt15DQj6FhcXxYhKBW+soeNrPp8P2WwWw+FQFszY4qBWqyEej4/V/z2J+NIBOKfdZtXAWWGFFVZYcWR0u10UCgWphahUKsjlciKn2tnZgdPpRDAYRLvdxu3bt6Vf3NraGmq1GgqFAgKBAJaWlsQ1LZ/PY2VlBXNzc7h8+TLW19cRDofx/PPPC3hinycmf36/H/fu3UOpVEI0GpVVaMqpmJTFYjFJVCjpYa8sp9OJ2dlZlEol3Lt3D5FIRJKmWCyGYrEorQVYw8FVe8A8wVeTUGPiymCjYTVBpytcr9fDjRs30Gw28Zu/+Zv4+te/jlAohMuXLyOXy8nquBlgMQNmahjZMTMnSrWVAPfJxNxsn2pNkzHhP0oKaQQ5Ztv+PADqccCbcS7MgIp63EljNgNXZudjNv9Gpo0AWN3G7HhqGC33Gcb6RsoLafVudu8Yw2xeyYAFg0FEo9Exxkhl4CYBazU4RpWx47aq+ykBI+8/TdOE4SII47Mjl8uh0WiI1Nj43dN1fazBNQERgLFnAmvi+AygwySBTK1WQ7fbFWAyOzuL6elpdDodtNttNBoNaS9AIOX1etFutwW8UarI2jLW83L8BMZ0e6Q8kYCJrCcAYe92dnbgcDgwPT0NXdelxsxmO2yDQtBHOSUARKNRdDodAdzs4aaaw9Ctkn3ogMPnrirLpMMlTUqq1Sqmp6dloYt9PnkdWMf3pOIXAnCapm0BqAMYAhjouv4VTdNiAP5nAMsAtgD8r3VdL/9iw3z8sFs1cFZYYYUVVjwi7t+/j3g8jng8jtu3b6Pf7yMWiyEUCuHg4AA+nw/RaBTNZlMs/U+dOoXp6WncuXMH6XQaMzMzWFxcxGg0wvb2NgaDAZ5++mm43W78+Mc/xmAwwPHjx2VFnT3emIRMT08jk8lgb28Pmqbh1KlTqFQq0pCWCdloNJLi+larBb/fD5/Ph2q1il6vh6mpKRl3NptFMBiUVe9IJIJsNivyKfYvIohkENTQ8p/JJjBuYAKMSxOZYLZarbG6oGQyKSYE9+7dQ7/fxze/+U1cvHgR4XAY77zzDvb398VaHcBDoI3HMGM8GExyzYADmRxjywAV8BldBs2OYQQ76v4nsXCT3jOeh3F/Ztv8PHEUIDeCXrPtjGBw0jZMzHntAPN+fWZ/HzWux41HsXpmUk4yP6FQSNgmdR6M7JvZORtDdZNk0JREZQzp/kgAxkbXwGHz8Xw+j3w+P+aWSLCnsm+6rgsYYg82th5gHRrBnd/vR6fTkbqvWCwmnxsMBiiVSojFYlhYWEAwGES5XEa/30ev14PX6x1zhSRrR2kjQbSmaWMMHAEjm2R7PB6pdet0OuLwGA6HpcaODpibm5vybFtYWEC9Xke5XIbD4cDs7CzK5bLUAPb7fSwsLKBWq6HRaKBcLsv8qvJU4PDZlkwmpb0Ke+XxPTKT2WwWXq8XuVwOrVYLiURCzFPY2kHTNPh8PlQqlTHnzCcRvwwG7hu6rheUv/8HAD/Sdf1/0jTtf/jZ3//nX8JxHisclgulFVZYYYUVjwiCtx/96EcoFAp48cUXkUqlcO/ePZHK1Ot1lEol+Hw+nDp1CsPhEB988AEKhQJOnTqFhYUF5PN5HBwcYGZmBidPnkQ+n8fly5exvLyM2dlZ5HI5BAIBVKtVBINBZDIZ9Pt9zM/Po1wuI5PJYGlpCX6/H/1+X4wENE2T3klOp1Nq5cisseYkkUgAANLptIA/fsblcmFzcxO6rmN6elrAoypBY6LIhExlv1TplhGQkG1RwQpraZhgpVIpYQx3dnbwp3/6p/j2t7+NM2fOIBQK4Sc/+Qnu378vrRlUUwaVgTGG0dRETXJVxkJl3lTWTZWzqT/V/annZWTZjIDrcZkyNR4FWh4FhMxCfV8FoyqAMdvHUUDtqOM8anszdvJR+zKbZ7N9Pk6o+6YLI5t0k3kzG796H3KRQgV4tNQ3ux94H9IQhewX/1YbYuu6Ln3X0uk0Go2G1HPxsxwnmR4agfR6PQFNPp8PTqdTxkXmqVqtCnPFerJMJiPui7quY3Z2FouLi9jc3EShUICmaQgEAvL9d7vdiMVi6Ha70jwbgDhTAodMFheaaGpit9sRDoelF1sul5N2I5Qo0hil1+uhWCwCOGxFMDU1BbfbDb/fj729PUSjUZTLhzwQ+8pFIhG02210Oh2RX7K9xGAwQCQSgcfjQa1WkzFXKhV4vV65xqwh1HVdxkfgyb53VDs0Gg3YbDaReOq6LvPypOJXIaH8LoBXf/b7/xfAT/BrBHCHDJxlYmKFFVZYYcXk8Hq9+OEPf4hWq4WXXnoJkUgEN2/ehNvtRjweRzqdhsfjwezsLGZmZlAqlVAsFjEajXDhwgUEg0Fks1m0Wi0cP34coVAIW1tb2NnZwZkzZyR5CAQCkrxtb2/D5XIhmUwin88jm81idXVVjAji8bhIMe12O2ZnZ6HrOjY2NmC325FKpWT1m9bnlPGUSiXUajVpJF6v1/GXf/mXsNvtOH/+PNrtNnw+31hSRbMAyrDIuhEA0cXODEgYJXsMMnGMVCoFv98vSdpf/uVfotls4itf+Qp+8zd/E++88w7u3LkjzphqggtgbBxGUDeJ/QLGWyCYgThN0wSgDgaDh2rvVOnmo4DaL8KcGefvcdi7SftQP2M07jDKGVUW1TjmSYDLOE4jS2U8B7N9PYqR+3nYuKPAoXofUP7n8/lEWqfKMwk4VOZs0phUhsfYIJ6gi3b9lEyTJTMyyZ1OB5lMBul0WmTNxnuc9z9NPiitVGvP+ExQWwXQdXF6eloYuVqthlwuh1qthmKxiLm5OQSDQeRyOZFhOxwO+Hw+dDodkQ2Slff5fGN1ezQwYZ2a6gjp9/sBHBrSsBcb6/X4bGSrgOFwKM+mQCCA4XCI9fV1TE9PY2ZmBvl8Hk6nE+FwWOShmqahWCxKC4VCoSBukslkEsFgEKVSCS6XSxx4vV4vdF2X8+O1yWQycLlc8ixVG5ETzGqaJmOlIoIM35OKXxTA6QB+qGmaDuD/rev6vwOQ0nU9DQC6rqc1TZsy+6Cmaf8EwD8BgMXFxV9wGA/CYdfQ7VsAzgorrLDCisnxn//zf4amaTh37hxqtRr29vaQSCQwHA6xtbWFaDSKY8eOwefzoVwuS1H8M888g1arhXK5DJvNhuPHj4ut+WAwwOnTp8dqKXw+H4rFIsrlMlZXV9Hr9bCzs4PBYIDz58+jWq2iWCwilUrBZrOhXC4jEAhIL6Zr167B5XJhcXFRVoJVQNLv95HNZlGtVhEKhWSFulwu49y5c7KvcrmMXq+H0WgkJgW1Wk3kVHa7XVbxgQcsGJ0vVeYKMLfKZ9DYhAxfKpVCOBxGp9NBsVjEX/3VX6FSqeDFF1/Ed77zHczOzuLjjz9GoVBAt9sdc8U0Mh1qTZuahJv1j1OlkqqcktuobQhU1oXHUAGfEciqxzHOg3r8RwExIwB5HPnhJBBp9v4k+afZ8cz2dRRoNdYcPgrsHsWsTRqLcftJoM04T5S3MYGnWYVar0YgojpEEvhPAnFGNk4Nl8sl8mUCDQJD3lOsx2Kbg3Q6jVarJey1ei48jrEPHEES5Yp0YCQAI9BIJBKIRqMAAI/HI8xRpVJBIpEQE5B8Pi+tSdiCod/vI5FIwOVyiQqBYyOAYR+3YDCISqUyxoZTKtrv98fuFZqX8NlCcBgMBscknu12G61WC9lsVli73d1dhMPhMbknwZnNdtgOIh6Pw+l0Ip1OSz1xs9kUgyrKSslA0uWXgI/unew1x8/S+KTdbiMSiYicdHp62vSe/XXELwrgXtJ1/eBnIO0tTdNuP+4Hfwb2/h0AfOUrX/mlaR7tNhsGI/NVISussMIKK6wADht52+12NBoNNJtNcWocDAY4efIkYrEYgMPeQoVCAQsLC5ibm0Mmk8HW1hbm5+exsLAAXdfFmj8SiaDVaknftW63iy+++AJ+vx+Li4vY29vDp59+ipWVFWkv4HK5kEqlRMI4NTUFr9eLQqGAzc1NWUHXNE3qW9hMFjhsNN5utxGLxaTH22g0QjQalSa5LpcLgUBAmgKTpbPb7dL4WLVLHwwGYhgBPEgk1URsEkhhosueW8BhnUksFsPx48dRLBaRyWTwwQcfoFgs4vXXX8fFixfh8/nwySefYG9vT2pNeHwzpofHVWvZVAfJR21vfA14wLpxHni+6j5VhsSszoq/T3qN8ShpoXHcj8PIHcVITnrfOBbj+RhlpL/I8R83zECmGfgzvq5KFp1Op9SSkoFSQZfRFVJ1nXyc8auv83h+vx+6fmi8EQqF8NRTT6Hf7+Pq1asy3m63K88U1lrRGMO4f95/qvkO6w5Zx6W20eAxyPiPRqOxGi1KKtWWAO12G91uFz6fTySOBC2hUAgAEIvFREIYDocFVLJfGgCp6eNiSLfbhdvtFtBJWTddHnVdR6lUEiYxFAqNAdd4PC6AymazIZPJiDFLqVSSRSeanDidTmkBsL+/j1AohFAohGazKUDV6XQKQKScfDgcwu/3ywJYMBhEOp2G3W5Ht9uVPnVsIUApOuWkPw9T/suOXwjA6bp+8LOfOU3T/hjAVwFkNU2b+Rn7NgMg90sY52OHVQNnhRVWWGHFo4LJRSgUQjgcllq11dVVKbTnv9XVVSQSCdy8eRN7e3s4deoUVlZWMBwOkc/noeu6yBk7nQ4ajQYKhQL29/cxPz8Pj8eD9957D8ViEV/72teQSqXEuXFqagqtVkukUK1WC4VCAa1WC2tra7h//z56vR6eeeYZWT3e3NxEJBKR1e1wOCxyHrrMAZAV7fv376Ner0sTX7KKW1tbaDabY32paNFv1ofNTFZoBt74frfblb5Md+/exerqKl566SW8+eab2N7exrVr11AsFvHKK6/g/PnzmJubw/vvv487d+6Ilbhqpa6yEGqtGo9pBGcMI8hT96eCOCafaq84dU7U/Zqd/6T4mwKbxwV5P0+YgU4zkGeUBj5qn8ZtJ4Hbo96bBNwmHV8FYWS6VPBGAKcahqisGwEHmTH1HI4CbgR8lDfy91qtBpvtsMn17//+7yMej+NP//RPBXx1u13pv5bP54XRmTQPqkMnmTeOmcApHA7L73R4rNfriMfjwj71ej1xnQ2HwyIlbbVaUntGeWG9Xsfi4iI6nQ4ODg7G3CPdbrc8X/r9vki/K5WKGJSwAXYwGBQ1AFsP8Jk3GAykppcLX5Qw6vphHWE+n4emPTAM4XXL5/MCukqlkjzHA4EA7HY78vk8fD6f1DCrjdJ5DJ/Ph4ODA4TDYSwsLCCTyQj4q1arYxJbguTBYICpqSm4XC6pl2MP0ScVf2MAp2maH4BN1/X6z35/A8D/HcCfAvgDAP/Tz37+yS9joI8blgulFVZYYYUVjwqbzYaZmRnY7XZUKhUEg0HpEUR77X6/j+XlZTgcDly+fBnVahXPPfccpqamUCgUhO2y2WzSK0nTNLHaPnHiBADg9u3bsNls+Na3vgVN01CtVhGJRBAKhcSuW9M0pNNpBAIBeDwehEIheDwezM/Pw+VyIRaLIZvN4osvvsDCwoIwcARylDMx0QoGgwKAgEPAOj8/LxJKrjLTbY4r8UYHSMC895URyExKvgeDAWq1GnRdl5o8j8cjyeXBwQF+8IMfoNFo4Pnnn8e3vvUtRKNRXL58GcViUZIn1VhFlT8aa72MoSbDDKP7JBN29XW+xiRTTaQfJWs0+10FI2Zs3KQwkyQexYap43kcueGkYx4F2ozvG7c1+9uMLZv0++OyGlx0UOvYKJsk66YuThilkirjrO5PHQPr3NTrp7J4BFX8flDOWK/Xce3aNWxsbMBmO+x/1mg0kE6nUSqVhHkzglT+rv5T+90RrFEiyfuXMkOv14tYLIbFxUWpsyVzz3pUp9OJTCYj/czITmmaJrLxWq029t1lSwIuDpFNIytIcxXa+bMFCrel4YjX60Wj0RD2j4ZN/AxNQnh9yMKRBeM8tVotqWVjvV02m4XT6UQgEBDnTfaJAw5ZwnA4jHK5LCxgrVYTaW2r1ZI55jOHbR54fpTSu1wuWWR6UvGLMHApAH/8s8l0APierut/pWnaZQB/qGnaPwawA+D3fvFhPn4cMnBWDZwVVlhhhRWTY25uDm63G4VCAbFYDPPz8xgMBlK87/F4sLq6ina7jVu3bsHr9eLs2bNwOBzY3d0dkzLSZrper6NWqyEajSKRSKBYLCKfzyOVSolEU9d1hEIh2Gw2FAoFhEIhASmUS+bzefR6PTERCAQCuHTpEvb29jA7OytJQzweF0mQWncHHCY4mqbB6XQKE8c+TVtbW5iZmUEoFBKWjMkRV/1dLpfUsZiBNCOYIItlJrljvd3m5ib+8A//UJw2CTLL5TLefPNN7O/v49VXX8Urr7yCVCqFDz74ADs7OyJ1UpNkjkE1JwEebkVgNnaV2VBZO5WZ42dU4KeyNMZ5MP5tfN0M6B313iRQ9Cg55aPeOwrsmh3LjDkzAjLj/tS6RSP4NR7HjO0yvm52LBVMEbwRtKm1bqo5Da872RiyrSowUplXNVRTHIbb7Raw4Ha7xX314OAA3/ve9+B2u6W5eK1Ww8HBAYrFIlqt1pjEeNLxOB7um4wX+5exfsxms8Hn84nEMZFIoFQqSU85GiJxnzQW4WISZdYrKyuIx+PY2dlBvV4XV0uCLLJ7fH6VSiUkk0m0221xxGy327I4w75xbJvCuSIQpARR13X0+31xm6Qxye7urtQRl8tlaJoGt9stfd5UE5RGoyFtU2gepcq+u92utCaw2WxIpVIoFouw2WyYmpoSRpTNz3u9HpxO59hzsVqtotPpIBAIjLWaeVLxNwZwuq5vADhv8noRwDd/kUH9ImExcFZYYYUVVjwqRqMRqtUqkskkEokECoWCJA5qc+9CoYDZ2Vlxbmw2mwgGgwiFQqjX6yJ/LBQKsNlsiEQicLvdqFaraDabWF5eFkc6l8slrm60uu52u1LDRpe1QqGAeDwu8qibN2+i1WphaWkJbrdbwCcZLBbzz8zMIJ1OY2pqShIVlZVjQre0tCTObel0Gvv7+7KSzvYCqiMkMLkOTn1/EgvF+aYpQavVQiQSQTQaRSwWg6Zp6Ha7uHLlCkqlEl577TWcOXMG09PT+OlPf4ovvvhC6veYtKpAhCvmZuMwhuocaAbIjHJLNaGfJDfk70eBq0fJDI2vTwozpvNRYbbNo8Y5CeCZyRqNc6OCXmM9odreQd3OyDAaQbQRfBIkkmUjcCNo43sM1bBGZXMnnY/Z2NTzpGEJ5XlOp3NsgYES4uFwiHq9jt3dXVQqFZE0Gu8H9dzUOaP8MhAIjNW+EQD2+31hz9geYHNzE5qmiW1+LBaDrutivDEYDODz+RAMBuV5duzYMXi9Xni9Xpw/fx43b97Ezs7OWG2p0+mU2t5EIiEtSQjwKIEcDAYIBoNwu92iDiCLx4UYTdNEtcB+cWTs7Ha7sIPhcBilUgl+v1960bFlgd1uFxmqx+NBJBJBtVqV50mv10M0GkW/30cymRxz1qxWq9JrkwtiHIumacLqcdz9fl96ebKGzmazSVuCJxG/ijYCTzSsGjgrrLDCCiseFYPBAPPz88KE2Ww2BAIBkRQVCoftTaPRKLxer6wMMwmhexyTOzbm5mq70+nEsWPHMBwOpQcc7baBw1q1RqMhQM7n8yGTySCfz2NmZgbRaBStVgvVahW1Wk1cKqenpxEIBLC/vy+r+dPT04hEIkin09jY2MBgMJDEjXVArIGhYxxlmul0GrFYTFbcCSgZZmyKyroBD1v3GxNjNfkmm0bTlk6nI9KudruNjY0N5PN5vPDCC/jqV7+K3/md38GJEyfw3nvvYXNzU8ZFMKDWtamMhtGYRP2cem5HtSmgtMt4vupccDvj70Ygqf5tBpKM+zDGoySTf5NQxzkJ+B7FtBlBm7oPVY6ofkcIBsxcQ/k59TjG8yPbpta6qQYlKpOmfobbMEknuzRJGnwUcKQEuNPpAIDU2Q0GA7hcLpEDsln2/v4+yuWy9ClTz0udc46T7S14/5Ft0zRNWgYY54v90yqVChqNhrB2NPOoVqsADpuGu91ueL1eYaZcLhdmZmbwk5/8BM8++yyeffZZqfHlmPmsI1hqtVqIRqMCljgXZAi73S5yuUMLDD6DWq2WgDQCI5qp0CHS6XQin8/D4XBgenoajUYD4XAY/X4f9XodHo9HJKFkHHn/VKtVuFwuUVIQhE1NTaFWq6FeryMcDotsnUwlWwywXo7XklLPaDQq7ByvLetk/3uVUP6tDLvNhsHQAnBWWGGFFVZMjsXFRTgcDuRyOWHO5ufnsbW1BV3XJTHodrtjNvNM9MloDYdDRKNRrK6uCnijy2Ov10OtVhOWqdFoiNMbXdyYOFByRIkkQRYZQK6uD4dD3L9/H9lsFp1OB3Nzc9IEPJvNYmZmBrFYDD6fDz6fT5jCeDyOQCCAWq2GpaUlRCIRfPTRR5JEAZAVdDUpYYJI5guYLPliYm7GaKjB2hlK2Liiz95KrVYL7777LjY3N/Gd73wHzzzzDJLJJN5//31cv35dDBBUa3/1GCpQMCbpauJslFlOCu7LCOJUYKf+fpRMkvGoYz4K0Bn3c9T+zWSQxmNMGoPxb/Wzxr/5k2BKlTnyOEYQp87fpP3xcwQ4rDujoQePZ+YySTaODoSs4WKowN/IIBoXBDRNQzgchtvtFsMSsmWqXf5oNEK73Rbw1mg0BAgddS3JtqksIg1ECFSBcVdWOjOGw2Hcu3dPxtNut3Hs2DEMBgO0221Uq1VxVIzH4+j1esjn85idnUWj0cC7776LjY0N7O7uolar4ZVXXgEAbGxsiDsvm1pTsphIJOSaEITx7+3tbXHB7ff7KJfLIjUNBoNi1+9wOKQHHSWddrtdFpqCwSBqtZowZ1z08ng8IqPkfUz1BCWUlFS2223k83lMTU0JuFtYWJAm4OFwWNhMgjQCTNbe8b5jewGqFSwA90sMi4GzwgorrLDiUVGtVtFqtRAMBuHz+TA1NYW7d+/C5/OJSQjrHcjw0Op6MBhgc3MTpVIJi4uLmJmZQaVSQSaTQSKRQCKRQL/fR61Ww9TUFDqdDmq1GmZnZ0VSVK1WHzIGACBJkMfjwb1796Tuo1arAQCazabYga+trUmy2W63kUgkxE2O9uGtVktWoofDIVKpFCqVCt588004HA6p4SgUCuJkScMEJqRMGNUaIiNQYdJjTH4nBZlJzkev10MsFhPWsNvt4v79+/hP/+k/4YUXXsDLL7+M3/u938PJkyfx4YcfYnNzUyRhqswLGGfZVJYOeJjtMdbVGcfIf0awN4mRexwJ5aT3jUwnx3tU/DzvGxk34/tmrJDZ9ma/q9ur/4xMHDC5TtHsOARJaq0b2SmCBXVbFcDxPZfLJTJmhmpsoh7X2NCd+3S5XDhx4gTsdjvW19elXpImF2Sead6RzWZRKpXQaDSkRtVsbvlTBW8Em3yPoKderwtgoFELm2tvbW2JG+1wOMT8/DwcDgfa7TYqlYpILePxuJiDkFnr9/soFArSH217exvZbBaZTAbtdlsWmwjkdF2XRSIACAQCKBQK0osuk8nI62Tas9ksIpEIFhYWZCFJ1w+bmfO7XyqVYLfbxWGS59xoNETCzlpAl8sFAPKcI5gjaGQrFboCz83NSb+95eVlcRB2Op1wu93SJoGqAMpyec6hUAiZTEaAIuv7fhEG/BeNLx2As9utGjgrrLDCCiuODiYDU1NTcDgc2NnZwWg0wuLiokit2IiXCXWpVMLOzg7K5TJGoxGOHTuGaDSKbDYr9tuU/Xg8Hpw5cwbAofV1PB4X17ler4dIJCJJX7/fFyaKRfTb29uo1+uYn5+Hz+cT0AYAq6urSKVS2NvbE4twXdcRj8elUS4AqUNhbyfKpthg1+l04tSpUyiXy1hfXxeZFZMjSqxUYMaE3tjkmr+r2/B3s224TyaIw+EQvV4PnU5nrMlwpVLBW2+9hf39fXz729/G2bNnsby8jE8++QQff/wxDg4OxnrWqUHgDTzc7NsYRjBHQKgyjwwjGFMBl1E6asZWqvOg/m0ES2Zzqe5fHYtxO5WZMNuv2ViM+za+P4kl4+dUsMY5NdaSsckzgbXR+Ma4vcpyEcgBeIilUsesyiVpA6+CN2DcidQI3ozn6/F4sLCwgHa7jf39fdmW50IHWF3XUS6Xkc/nUa1WBbxNukbqcYzXy263jzH0NNPgT4/Hg6mpKQAQ4yQuoqRSKXg8HhSLRZRKJem9RgdIoytjtVpFpVKRxZypqSns7u4KG6YyUGxQzlYAMzMzKBQKokqgAZPf78dwOJS6v+npaUxNTYmqwOFwSANuGo+wrjCfz4uTZ6vVQigUEvdHGrmYLZjQ1KRarWJ2dhbD4RCFQgEzMzOigJidnYXP58Pu7i68Xq9I6H0+HxqNxtg9zRq7ZDIp7QVU0Mznw5OKLx2Ac1oulFZYYYUVVjwiRqMRlpeX0el0UCqVoGkaZmdnsbOzI5Il4NCaut/vo91uo16vo16vIxaLid02wdiFCxfgcrmQzWbFba1araJQKODWrVuSUB4/fnws2er1erDb7QIKXS4XLl26BJfLhePHjyMQCKDRaMDv94+5Jd64cQPA4Sq3y+WSdgDAYRNtr9eLTqeDer2OYDCIWCwmzpb1eh3Hjx+H3W5HPB5HMpkEAOkLRZe6brc75tgHPJBSGoHBo0CLKp0DxmuUdF0XN0+yAtFoFNFoFH6/H71eDzdu3MDu7i4uXLiAl19+Gd/5znfw1FNP4d1338Xnn38uLAOBobHWiMc0tg046v5Q+7+ZMW5mEkQjO6nKBxlHASrjvBgBlbo/I5BT5YAqE2U81qRrZAbejOM1soRmLJvxb35eHZPZearHAyCSQbUxtZlU0sjAsa9YvV5/CLgZQZrZuXI7su5+vx/7+/vC9hqvk8/nQ7/fx9bWlrBWNCsxgl31uLwXudDA8ZMBd7vdIvvk5whKaZ7SaDREejwYDBCLxeDxeJDL5WSfMzMz0o+RcvCFhQWEQiEUCgVsbm6KRPP06dMIBoPI5XIYDAZwu92Ix+PY39+HrusioaxUKojH49JIOxKJYHd3VxaGyLzRXZdOl+VyeayGzO12y70biUSEeXM4HKhUKgiFQgKWPB6PKBTYZoUMPnBYB9hutxGPx+H1erG3tyfPkHQ6jUgkApvNhu3tbQCHz85KpSJuwmzO7fF4ZIFvenpaFsgCgQDcbrewkUajp193fOkAnN1msxg4K6ywwgorjozFxUUUi0Vsb2/Lf/LlclmAhN1ux9bWFtrtNqLRKFwuFwKBAFKpFJLJpLBQPp8Pq6ur6PV6+OSTTxAIBJDNZqFph65sn3/+OZxOJyKRCE6ePIlwOIxsNgufzyfW56rE6caNGwgEAlhcXJR6OfaJI3NGNzX2h6KZAM1LfD7fWENdurrp+mHfo3A4LKvLbMJLgxTWoDH5JBtHhozsgFlza/6uJuSqTM4oY1QZFyZETIrIGrJ2jyv+b7/9Nm7duoVvf/vb+OpXv4rf+73fw+nTp/Hee+/h/v37UmukmmqoxzW2HWCo4yQjqNbZma34m4E7M3ZOnRv196PYLuPfk2SMk6SWZoBI/dso2TT7jApSVcBiHL86LlWaeBSwU49r3LfKrNlsh05/DodD2CMzho81SUtLS7DZbMJOT5p31bDGeHyOkxI6fj+4kKGytRcuXEChUMBPf/pTcXlVzUrM5vuoOeQxeK/ys5Rbu1wuqfUqFAqIRqOw2Wyo1+uIRqNSq8afqVQKwGHDb0qzw+EwgsEgGo0GisWiMHrnz5/Ha6+9hm63i8uXLwur1mw2hQltt9sol8vw+XzodrtSZ7u9vS2ArN1uy8JBKpUSp0e2LmAjbpVZDIVCYiai67oARLoF89ycTqdIN1UAFQwGhdFjCwKazaTTadhsNlFLDIdDkWwCh2qMfr8v4Jc1tpFIBMDhs8lms4kktNvtisrhUdLoX2V86QCcw27VwFlhhRVWWHF0XL9+HY1GA+fOnUM0GpUkNRwOo1gsSqPr5eVlaXLNRt90d6O0anNzEx999JGwZalUCvPz8/jJT34Ct9st9SJzc3O4e/cuNE0TS2qu/NL44NixY0gmk2NNZVkfw3qV4XAoSRhX1LvdrvRnokFAPB5HrVZDpVKRlgU0PWBdHq283W63WIOXy2VZ1ScT1Ww2Jak0ayOgMjIq68Lt1c9wP2TKVEBFt0z1XzAYRCKREDbu4OAA//E//kd88skneP311/HMM8/g+PHjuH79Oi5dujQG5FQgOcnQhGCBoI3g3MzkhAmoyjZOAm/G4xj/NmPH1Pk0Mm9HHeNRxzfK+IxSxUeFkYEzgk8VcBlZMeNnVCaUQcZL3YafYaKuOkyq/xwOh/Rky2azaDabY+NVwbw6XvV46jg0TRNTDd43XGyhpDgSieDcuXP48MMPce3aNTQaDZFMmklujd8VszGxWTSlk9yGx2bNGB1qKWWs1+tIJpOIxWLStoBukVQTBINBAT+ssdva2pI6sKefflpMnMrlMtrttrBmZC3r9Tr6/b64NZbLZcTjcZw4cUKkk9ym3+8jEomIEoAySvZro6zV7XYjEokgn88LWE+n0/D7/ahUKrDZbNJDs9vtioEIlQCNRgNTU1NiEOVwOESiSem5w+EQGeZgMJDnKxfqRqMREokE3G43isWiOFgOh0N5PvJZS5devj49Pf3I786vKr50AM7qA2eFFVZYYcWjot1u4+LFi4hGo6hUKrLazEJ+uiI2Gg2Uy2WcOHFC7Li5ih0IBLCxsYH19XXMzs6iUqng3LlzOHbsGK5cuYJisSjyxeeee05aDdBJjbUp3W4X3W4XZ86cQTAYRCaTkVVxNXEjWCNb5vV6ZVs28mXyQRkVa8ry+Tx8Ph/C4bCsVLPZba/Xw/Hjx9FoNMZqYSijZA2MzWYbq4ljgqtKKoEHCSsTNfU9AjcCIWPtGAAxgKEsjMlbNBpFJBKB0+lEu93GlStXsLm5ia9+9at49dXDBuCnT5/G1atX8dFHH+H+/ftHSil5Hky4af1uHJfx5yTwZsaWGY9tTOTNpHVqGLef9N6k4x7FGhrHO2n/KsgxslV836z+zYyhYxiliEbWTQUvBCJzc3MoFovwer1oNpvCRrXbbYxGI+TzeVOwOIktVMfPfzSvACDgg3PUbrcxHA6llvRP//RPsbu7i1arhXq9btrf7SiAziAA5XeCbDcAkSySfSezFo1Gkc/nxaAjFouh3++jUqmgUqnIMUKhkLTKoIstAOzt7YkSIJlM4tixY2g2m2i1Wsjn8wIMZ2ZmkEqlsLGxIWCp1WqJlDGbzSIej0szbD6D4vE4IpGI9KiMRCLSEoH1fTabTZgzgrK9vT04nU5Uq1UMBgPMzs7K911VIvC5k0wmRXlAdQOfmwSnZNXYF47GKGTjWU+ZTqelRx6bedPAJB6PS7NvPtNoJPOk4ksH4CwXSiussMIKKx4VzzzzDJxOJz744AMAwNraGsrlMjRNk4SQxiJra2vScsDj8SCRSKBer+P69evCiG1sbODZZ5+F3+/HD37wA2xsbOD48eNYW1vD7OwsNE2TOhJN0+D1ejEcDiUROnfuHDRNQyaTQa1WQzKZlBoPGjEwcfH5fBgOh7h27Zr0e2N/JdZ5lMtlSWSuXbuGU6dOScPd0WgktXehUEhq9vL5PKLRKKanp8XshPKtZrOJRqMhrCClicZ6LDVBNhqAkEkYjUZSr2ZMeFUjEa6S+3w+WbEn26DK6t5++21cuXIFL730Ep5//nm88cYbuHjxIi5fvoyPPvpIpLA8llntm1HqqZ6b+lNljo6SR5r9NPvdrK5OjccBVcZ9GYGD2XjN6ujMmEKzfZkBRaN0UmXQ1G3V5tpG0GbcxiiRZPJM+RqZHtZTGRlV/jRjM1WAR2BDsMgeaqyt4r1MYJ/L5bC/vy99zVqt1kN1ocbrYnYPkKGmWybfM7Y8UGsB/X4/pqenhZmkEqBQKAgzRIliLBZDq9VCIBCQ+ep0Orh3795YrdjKygpcLpdY7heLRem5NhqNsLW1JfLqXC4n+wkGg7DZbDg4OIDb7RZX2bm5OZFEss1KvV6XeeBnuWBGaXaz2RS2PxAIIBaLyQIS50pVEfh8PrH1Z09LSt2LxSKAw7q4bDaLXq+HZDKJWq0m7QIKhQICgQDsdjuy2SwcDoeYxtTrdVlsSiQSwuzSUdTlciEWi4nj5pOILx2As/8MwE1a9bDCCiussMKKbreLO3fuIBwOY25uTmRx9XodwIPkcHp6Gt1uVxq5ejweZLNZtFot+Q9/f38fTz31FPx+P3784x/D6/Xit37rt2T1u16vo1AoCOPDWhKuTp84cQLdblcazLLBOCVGtKtmAhcIBNBqtZBKpaTBbSAQQDgcRq1Wg6Yd1pRcunQJrVYLFy5ckF50dMXrdDrSb+n27du4ffs2kskkfD4fEokEdnd3x2rpyPzRYMFY46P+4/vGpFll5ICHHRTNgBXPj852BHKhUEhkT61WC4VCAX/2Z3+Gzz77DC+99BJefPFFfOc738Fzzz2Hd999F5cvX8bBwYHYsJu1H+BYGEaG7XFq3tT5MO7PGJMAl7oP49jMQJaZvJKfnfSecR9HgQ7jcY3ySyNrZgRkKmBSAZz6umouooIx4EHfMxpm8G8CQOM+zcZoFlxQIIjiog0XOFQnUrJi+XwepVJJeoiprNskxs3IdKosJRdn2MCbMkL1NS6i0FCl1Wqh0WjI84XMEdlBsvFkj1wul3zv0+m0GBu5XC5MT0/Dbrej0WhIexOv1wu32y190/jsosV/oVAQN0bgkM2z2+3wer0CClUHWMobdV0XYMTzYONsSsprtRrsdrsAq0ajAafTKXJzSkuDwaAs7gQCAezv78u9UywWRebebrdFlcBFqFQqhXK5LMYtNGvp9/sIBAJot9tyf8TjcWktwFpASmhLpZJVA/fLDIft8IsxHOlw2C0AZ4UVVlhhxcNRKBSwuLiI+fl5qRMLBoNSG8bV6Hq9jnA4jEgkMrYqPzMzIyvRFy9ehNfrxfr6Op5++mnMzc2JEx1wKEXk/gCIbDKZTIoDZS6Xg8vlQjgcRrfbFfaKIMPr9UrvIZUVYw+lZDKJUqkkltzf//73sbKygmeeeQa6ruP69esYDAaIx+Pw+XyIx+MYDAbI5/MIhUI4ffq0SIqq1SoWFhYAAJubm6jX63C5XGM1IGrirUoOCcJUmSQTerNm4CrrpibARjZOrY3zer3o9XpoNpsIBoMIh8OSCO/u7uL73/8+fvKTn+Bb3/oWLly4gN/93d/FK6+8go8++giXLl3Czs6OsIkcN4ElE3lN0yQ5nwTWjGycEXg87iIyz9n4ebPtJu3XCByMNWZGUPko5k9l0IzHV19X2zRwcYJ/qywX75VJhiEqgFMBjllwW1Wqq57vUeCZYyDLRcaLLBAXN4AHvQ0HgwFKpRIKhQJarZZ8B4zSYXVuzBYpjMwbQQO/43a7HT6fD7quCxgbDAZIJBLw+XzCOLGRNZ8vxsb1wWBQDJZ8Ph86nQ48Hg/u3Lkjxiculwurq6tIJBIADo08MpkMhsMhZmZmcOrUKXS7XWxtbQnj2ev1ROpJE5PRaCTA6sSJE1IvzNo7Lv7Q3p/NsSlpDIVCKJVKcLlcIovlefO7zgUv4HBBJxgMyt/JZBIbGxvweDyIx+NiCJVIJFAul9FoNBCNRjEajVCr1ZBKpVCr1cQgqVQqiUEMa4ABSMNzp9MpPeLcbjeGw6H02yR7+KTiSwfg7D/7wg9GOhz2R2xshRVWWGHF/yJjYWEBPp8Pm5ubqFQqWFhYQKFQQLVaxdraGhqNBqrVKmKxmBgA1Ot1OBwOkfY0Gg3EYjE4HA4Ui0VxTGw2m8jn8+h0OiLpIUvEgvilpSWUy2VpXkuzE8ommZzRpU1tBMxELRQKYXp6GsFgEKPRCOVyGR9++CFsNhuef/55kT3RoIM253Nzc0gkEsLwMekbjUbIZrOYmZmBz+dDNpsdS37YCBd4wJSoCexRtXBMhpncGps5E7AdJQ2kQQMTJzYtJsANBAJSL1UoFPC9730P7733Hr7+9a/jhRdewO/8zu/g4sWLuHTpEi5fvoyNjQ0BbmT2VEMVnt+kOjIzWZ7xdbMwAxoqaDEm+2qY/a2ydSrzZsYmGsGb8fjG1yZJLVVwRuBmZMNUx0jWUJody+gsOQkEG1k19R40mxP1MyoDSMMUdX/83qoSWtaBlctlVKtVAW6U/xrPRZ1fs/fV83C5XLKgwcURv98vklCXyyVOiMFgEJFIBBsbG9A0TcxU1KBxkdfrhaZpWFlZQbVaFcYrn8///9t79xjH0vS87/nIIlm834ssVnVdunt6ZnpmRzvawVjSYLUrQZY2spSNgsRYAVZk5CIrsQDLCeBEQoAoCQIIju3YBgwna1vAyruxIkBaWJIFS3uztKvL7uxOz07PZbu7eqq6614ssni/kyd/sJ53vjpDVs+9qmveH9AoXg4PP55Dnv6e733f58Xm5qYYNj3yyCPIZDIiUBqNhkTBHn30URQKBdy8eRPGGKmV7Xa7IsKA8cIUhU08HsdwOEQ0GpVIFReiKDYpSun0GwgEZOFqMBjA6/Uik8nI9S8UCmF2dlayHUajEcLhsJzPfD6Pvb09iTry/KVSKfk8vB60Wi3Mz8/LZ0gmk/I8r392v8BIJCImKHYKp+OM+202m00xujkrLpyAYwROjUwURVGUaczOzmJ3d1f+M19fX0cqlcIzzzyDWq2Gw8NDJBIJJJNJqZdg5IuRmatXr0odDNMrOYGlTbbP58NoNEKlUkEwGMTs7CxWV1fR6/VQKpVkore4uCg1XbVaDQAkRYkih5MxikI6S25sbIj74ic/+Uk88cQTJyJevV4PuVwOly5dQqPRwAsvvIAbN27gE5/4hET2BoOBTFRjsRiy2axMLpmmyEmWHVHj5Ns2C3FP+t3plHa/MncEa5pYsu+z5QBX+9vtNoLBoEQ1Y7GYTLq2trbw+c9/Hl/+8pfxIz/yI3j66afx0z/90/jEJz6BGzdu4Fvf+hZu374tbqAcr90Hzp0ix3FMEmzTJnRuAeR+3BZDvG2fe7f4Oi2CNimti9Fct7Bwn4dJ588tluw0RY6XAs1+zt6nXddmv880U5RJIoy3bXt9+zV2uiijem6RyV6JFDy22ynPOR1faQjS7XZPtO5wj9U+jqelwtrHilE2pnAy7ZDbMRKVTqeRyWSwvr4u9VmM2vOYMnLMa0Mmk5HvcrVaRa/Xk5RoYwx+8Ad/UIRgqVSSHneXLl3C/Pw8isWiCFVe6yhoeZ3jYhTfn1GyWCyGZDIpLRWCwSBKpRJCoZD0v2y32yKYgfEiFcfO1g1sAdBsNuUals1mJQMil8thb28PnU4HiUQCpVJJjJmYcs10bzpqdrtdbG9vI51OSwaD4zgyFjZk53FnlJDnyePxyHW9UqnA7/eLoDwLLpyA8zKFcqgCTlEURZnM/fv3ZTV1f38fS0tLuHz5Mu7du4dbt26JvfWTTz6JF198EcPhUBzYYrEYgsEgyuWypFgmk0lpYNtut6XgvtfroVKpwHEcseuv1WpYX18XG2tOrJgSyfoS1uGxhxMb+rJur9vt4otf/CK+9rWvYXV1FT/7sz+LTCYjKVXtdlsc3lKplDT3vXbtmuyL6Vvdbhc+nw+PP/44ms2mpIBy1dtu2mu3BuBnJLZAmCQq3BGKSbVlkybn9nYUEozEtdttiV4MBgOsrq7iqaeewk/8xE/gq1/9Kr7+9a9je3sbn/vc5/CVr3wFzz77LH7oh34IP/qjP4pnn30WL7/8Mv7sz/4Mf/EXf4H9/f2J47AjcZMiWO5ImPt5d/TKPh52DZktivhZ3cf2tKjcJMH5IKE0SYxOig5yPPZjtgkHUxvtiBr3MamBti263OOzPz/TC20h6Bb+7mNkizXeZtSZ/9zGNTRIqVQq4oLKRYJpDZsnpZW6n6fAsRc0gDeikoy62yY/wNiAIxaLYWtrSwxFeF2JRCJigMQFnWAwiFwuh2q1ilAohHa7je3tbWkLEo1G8dhjj+Gpp57C3bt3USqVUK1Wsb+/j0KhgOkYpnEAAEgGSURBVGw2i3a7LYtVTE3msaHoq1QqJ+rGZmZmcHR0hGAwiEuXLmFxcRG7u7uYnZ2V9EO6/TKiV6lUZN/2+eIx4L6ZZplIJGQRqVAo4OjoCB6PB6FQCIeHh3KdYj2d/d2Jx+MIh8PS8zMej+Pg4AAzMzNiiFKtVtHpdDA3NydRQJqwcCzBYBCxWAxHR0fynXFHQj9ILpyAY93bYEIxtKIoiqIA4wiZ44wbW1+5cgWLi4u4efMmbt++jWAwiB/4gR/A8vIy1tbWMBwOkc/nMRgMMD8/j16vhxdeeAHZbBb5fB6xWAzAuDVBsViUCS3FGleWGeU5PDyUiTANCdikl+6KnPBGIhFJWWKNXDKZxEsvvYQ/+7M/Q7Vaxac//Wk89thjErFjHZtdB8OoldfrxdzcHIDxBJI1daFQSEQZ07AWFxexv7+PwWCAZDKJTqeDUqkkaV71el1q3Ag/l50OyducULmjS+RBAsUd7eA+aFRAFz72yHr55Zdx9epVrK2tSTrZ9vY2vvjFL+JLX/oSvu/7vg/PPfccnnjiCTz11FPI5XL4whe+IEYKpwmjSeNz355kpOEWRnZ0yK4hm/R53ZGpaWNwPzbpuWnY0aJJaYCTDEns6NqkKKM7RXLaMbG357hpfsPJvi26JtUM0liI58/n80lEhYYc9mcZDAbSmJltNLrdrtS32m6p7oUJt/h1H0duY6ePcvy8JrCuyufziakGMG68nUql5HoCAD6fT4w/bJOSYDCIw8NDfN/3fR8ef/xxvPzyy1hbW0O9Xpc6UUbGCoUCLl26hEqlgs3NTezv7yOTySCdTmNjY0MMRmyLfKYV+v1+SSmkqOGiFbMQ7t27h5WVFVy+fBn3799HKBRCNBpFtVpFtVpFOp2WWjrHcSQSylTGmZkZMTDh4hXbEQyHQywsLIiQ8/l8koIej8cl4shx8TrAdPDZ2VmpFXYcB+FwGMlkEo1GA/F4HPF4HLlcDl6vF4eHh2Ikw98p3X4Z1UylUjg6Opr0M/pAuHACzmuZmCiKoijKJMrlMgaDAZaXl5HNZvGd73wHr776KlZWVrCysiKpRbTzHw6HWF1dxb1793Dz5k0UCgWx326329jc3AQAWaWtVquoVCrIZrNoNpsol8ti/sHaCRbpc9V/aWlJzBW4Eg1Atmctyre+9S1sbGxIb7pcLidiDIBMQpn+WavVpGav2Wzi0UcflRoVvhdTwxgB5PjodAlA+sEVi0WZuDDliZMvx3EktXJmZkYifca80QDbruezcQuUacJjUsog3T7pDlipVPCd73wHyWRSentFo1GEQiGZqH/lK1/B17/+dVy5cgXPPPMMlpeXxeykVCrJeO30QXtckwTVaSJrUiTOLeDcYgnACdHr3h/HQ3HsPnaTnD3fCpPE2KTom52qaL+WY3anVE46LtyXOxJo79vtFur+brCOlMKS7TE8Hg8ajQY2NjZkOwDSIqRWq0lfMAo2u77yNLHsNorhc27xahv68PdPIxVGeNigmj3bstks6vW6GKzwt1SpVERQzc/Pi6EPU7vn5ubQ7/dxcHCAer0u79fpdKQP5M7ODnZ3d3H79m1JJ9ze3hbRyP56AEQoDQYDVKtVSSOkKyx/33NzcxiNRrh//z6MMbh69eoJcdPv97G8vIx2uy2Omd1uF6lU6kQU1e/3S/81n8+HSCSCfr8v27ZaLUmZZi83HjumUdqiOBQKoVwuw+MZNwTndZnijQtYg8EA+XweiUQCr7zyitT38fsSj8fhOA52dnakzQE/w1lx4QSc1sApiqIoD4Irs8YYfOMb30CxWMTly5cxOzuL9fV1FAoFZDIZ6amUSCTwzW9+E+vr61heXsaVK1cwMzODer0uKU6hUAjhcBjFYhFra2tiFMAGto7jSMF+u90WNzU2uk0kEgAg9RZ2ahpTqPb29uDz+fCRj3xE0n88Ho8YB5BUKiWW39xnLBZDoVCA3+9Ho9GQfdMljimTTNPM5/O4desWFhYWUCwW4ff7US6XUa1WJeWJdXI0A2GUj5MiChru950ItEnPTYqC8D3r9brUJjK1KxgMyoSOjc4Ztfvud7+Ll156CeFwGE899RSeffZZ7O3t4f79+zg8PJQJM4A3CQkbt/iYFmGyhckkQw13WqHbLGbS+9piyY5ivhsBZ6cu2o/b4tMt6Pi+09oFcL/uxwnfj33ZbGHKf3ZkjtG5WCwmE362vigWiyciXtxvo9FAvV6XqCxr2+xauElpvZMiou6FBPs7bqfDcsxcjDHGSDsM/pYYhY/FYuKSCowXTvidZpSe0aJarSb3O50OGo0Gbt68KX0gQ6EQ/H4/HnvsMfj9fty9exczMzN47bXXkEwmZSEnl8shkUjId5L2+qxfq9VqUh8IvGGWAkAEHa9lzWYT+/v7WF1dxdraGjqdDlKpFPb390/0qeP1zq4FtKPfNEYxxiCTyUgfQC56sT0ARboxb7hj8phy3PPz89LsPRwOY3Fx8YTLLZuR37lzR9I7Z2dnpe4vFovh9u3bIuxisRgODg4kTfcsuHACji6UGoFTFEVRpsHC9ddffx2j0QhPP/00KpUK6vU6lpeXxemtUCig3W7jhRdegOM4ePbZZ3Hp0iWMRiN0Oh3cv39fzEr6/T52dnbw0ksv4fHHH5c0otFohEgkIkX53W4Xc3NzEu2iOUE8Hpf0H07euMJMu+7BYIBIJIJIJAK/3y8TQ9qFO44jKZIApF+SMUb6O+3t7UnxPht6G2NEJJbLZSSTSdy9exf5fB6ZTAazs7MoFovodrvSQqFarcrklBPOQCCAwWAg7wm8OWIxKQrnFjvuKBexjU6miSRbyNFCnQYyrVYL1WpVonE0PaB5zFe/+lUYY7CysoL5+XlcvnxZnEppjmCbZTyoBsodnbNNSiY1sj4trdA+NrZQOO19bdFzWmRwUnropNRYOxpnR28nic5pY7OjbdOiVUzRs4UUt2Wa5MzMDObm5pBKpZBIJMR05ODgAJ1ORwSeMUa+DzyPtOOnXT1T9CaJ80mLBfZxtZkURXSLSP5jv7ZoNCrHkREovs6Ycd1ZsViUBRO63Rozbubt9/txeHiIWCyGz3/+83Kb+7969SqKxaJEz4rFooi1RqOB5eVlZDIZORYej0fSFCnOmGJNkcaoHBdCbOF1dHSEcDh8YvFqd3dXeq9RADmOIxEsYwyOjo7k+pFMJuWcZDIZqb9Np9MS+UomkwAgIjwcDst1JRQKnWhVMBgMsL+/L2YqhUIBa2trYnZUKBSwsbGBUqkki1qMWmazWezs7KBSqUgkj8cnnU6/6fvyQXHhBJxG4BRFUZQHcXBwINb/LIr3+XzS1Jt1b4eHh9jc3EShUMDCwsIJm/+DgwOpf6NV/t7eHq5fv46FhQWsr69LjUksFkOxWJRJYrPZlOhLv9+XlWSmVTEViBO6Xq8ntv9cOac1t50+yWbX3C8nU+FwGI1GA0dHR2KiwMbhXEUejUbw+Xy4dOkS2u22tFoYjUaYm5sTB7nBYIBarSZ1JtVqVUQn05+Ak5NZe6JrO/lNiqbZz51m2DHpNW5obNJqtRAIBETEdjodEXXBYFCc+5rNJlqtFjY2NqRGJ51OY3FxEQcHByIA2ANrkvBxf253CiKFjx2Fs/dhi7lJ+5km8ialWZJJ6X726+xInbvPmv1e9ljdxiJ21G3Se7iFjVu02u/ptuq3a9u4GEL7+larhe9973uo1WqSgsjvNM14GG1jDRkXGZgqOQ332CY97xbU/Lz257FTcGlcQvdJiiCmIHs8HrTbbXGldRxH0v1YAxsKhcScpNPpSCSt3W4jl8uJEUihUMBrr72Gq1ev4tKlS1hbWxOTjk6ng+eee04WPJiiyEgVF474W6F7JIUaHSZbrRbC4bBEvkKhEAaDAW7duoWPfvSjuHHjhpiG9Ho9xONx+b6xGTfFEYATqZlsxk0zErY9YMSuXC6L2yXTIZnCTqMVGp14vV5Eo1EsLS1hc3NT3H6vXbuG/f19bG1twXEcEZ0AJPJXKpXQ6/WwuLgofQHZUuasuHgCzssaODUxURRFUSZTr9exuroqIoRpdpwcLCwsSNQrk8ng0qVL0sj66OgI3W4XsVhMehTRHe6pp56C1+tFpVJBo9HA3Nwckskk6vU6wuGwbEdzA1pXx+NxSa2k0GBdF1MTQ6GQWP7bk067AS6jcJxkcKK7u7srrmrBYFBS0HgsvF4vOp0OjDEyFo/Hg0QicaIGh6lLhUIBBwcHYgjAz2WMkUgBJ6NMpZzUsJvYQmya0HDzVrdnCifHHggEZNJMkWynwHIiW6vV0G63ce/ePQBAIpFAKBRCIpGQmiAKgtMEEsdgR63sdgzAm50byWnukZPMYGyRZKeInSbu3O9jiw4b26zEHveD9jcpRZLfGZ4bbseIGT8fU+FyuRxyuRxmZ2eRSqWwtbWF7e1t3Lt3T7bluLnIwP5mjUZDHqNw4zlzj2/agsGkNEr3AoM7OmkfC/u80G2RkfR+vy/1emyHwUWeer0uYiKRSGBxcREejwflclnqx3i9GQ6HiMVi8htntG15eRn5fF5EoeOMHVw//vGP44knnsC9e/ekSTndOYPB4IkeizT0YFSKrpLAOMrP45BKpeDxeHB0dIRMJiM1Y2xHQGHJffF3yQUBmksNBgOpV6UoYw83AJJxAIwFH6P6uVxO3C65qMQ08kAggPn5eZRKJfneXLt2DZ1OR1opcBHN6/UinU4jFArh7t27ODo6QjKZRDAYxObmJjwez4lMh7Pg4gk4jcApiqIoD2B5eVlWhIE3HBlZgwJAajcikYikD7EgPhKJSLoNU7UWFhbQ6XRkMsRIAZvWMpVrbm7uhANeLpeTRrKRSATRaFRquJiaGQ6HpfaDLnTcXyAQkEbjnMj2ej3Mz8+jVqthe3sbvV4P5XJZUilZZ8doWiwWg9/vx97eHnK5HAqFgky6GClg3Q1FJhvfHh0dibMmJ7acnPP1dlTOxj0BttP93imTUgXtNE729GJUjrWErDGiC9/8/Ly4Wvp8PnHg5L55rux+e5yUuuuo+B3j5N5t8GH/tY+H/df9nLsH36RtbCF2Wh2dG7cAs9M/7bRP27BkUrTQPX53JM9OI6WAY9Qkm82iUCjId393dxd3797Fq6++KpFeijf+Pnu9nog2u3fbNOE27fs3KW3Sfo37/qS0Wvt4ccGGvz1eVyiM2Eet0WiciGLz+AQCASwuLqJWq6Hf7+PSpUvw+/3o9/vY399HIBAQY41cLodyuYyDgwOsrq5iYWEBlUpFovSj0QjXrl1DJBLB7u7uibGyrtc2halWq5J+zHN+cHCAbrcLv9+PTqeD4XAoKeC09K9WqyiVSrIgxAUsOvL2+31Eo1E5P6FQSK53bDjO9iYUnTy+tVrtxO+JDsFs+UDx32g0pO3C/Pw86vU61tfX0Wq1cPnyZQyHQ0mjp3BjdDGTyeDw8BC1Wg2RSATJZBLFYhH9fh/pdBrRaBR37tx5S7+n94MLJ+BYAzfQPnCKoijKFDihCwQCYkPPRtz9fh+NRkP6n9HwgPbZnBiyjiUajSIQCKBUKkkfpUKhgFQqJWk6fD/WrtCKOpFIIJfLyftFo1Hs7u7KJIj1IowY2YYj3W5X7Lc7nY6kXwKQPlGbm5uIx+MIBALY2tqSfnX8vJ1OB9lsViKRTM+kMPD5fOh2uyiVSrIazwliPp+H4zhiyMK0UH5eToaYEkpR4xZpdnTKnZb4ToSce3Lthu/d7XZFyDEKRyE3OzsLv9+PaDSKRx99FJ/5zGfw/PPP48aNG7h79y76/b5ERyn6eZ7ofGfXFOVyOYkKNZtNdDqdE9GoaSmYZFoEjQKZtwkNSOz7doTIjtrZRhtuQWJvY5ty2MfYnQI6LRXU/kx2PRh7mCWTSaTTaczPz2N2dlZq2m7evIlyuSzpwoxIAxDBwN8TU2BpRsJz4F5AcB9f+/PbKY+TxJobW6TZ9+20SbYz8Pv9SCQSUvdGp0n2TGNtFccbDocRiUSkDUKz2cT169fh9XrR6/VQr9flGsQI1t7eHvr9Ph555BEkk0lpWM1/uVwO4XAY8Xgcfr8f+/v7MGZsqsJoOdMnWfMGjH/T0WgU9XodwDiiValU4PV6JSpNYxFmKtAIZHl5GaPRCLVaTcbD74DP55NaXV5Ld3Z2JCvC7/dLb7dAICCGJfzu1+t1aXPCazMjkTSn4bWUdbzpdBo+nw/37t1Ds9kU8xOm3+bzeZRKJWxsbKDX62FlZQWj0QiNRgOJRALxeBz37t3TNgLvJRqBUxRFUR5Eo9FAMpmU+jJ7xZ01X4FAAPv7+zKZ4ISFIox91hzHwcbGBmZmZnB4eIh0Oi0TgGq1KtEtikNG2oLBICKRiDjQhUIhKZa3U6G4ys1oG5sLx2IxGGMkBcl27uNq+9LSkkTystksgDf6SXECxD5N4XAYc3NzsrLPdC6mXjFtsN1uI5FIYGtrCx6PRxzeaGzAiRBNCGyhYk+M3Wlpk2rKHiTiTptUT3vMvT0nzBTBtHW3ow6/+Zu/iUwmg2g0ikuXLklrBkZ1mE7G+qZkMoknn3wSfr8fq6ureO655yQNbGNjAxsbG9jc3MTa2pqk5HLSPimi9lZEnv35bPE26f4kk5FJAmxaiuekerdJ27ijdfye03wkEolgYWFBbPCPjo5w9+5dSb3jseB55gSdxiMU4IzoULSxvo2/52kRWfd3wn0dmPSaSaKO33N3+wQKXKYN0jzH5/NhZ2dHvmOMGoZCoRP1X0ybLpVKCAaDuHbtmizAbG1tSSYBf3PdbhfBYBBLS0sYDAbY2dmRsbCGLpFIIBKJIJvNisChQKLhEiPVzC6geGMUPxaLSQbC7OysCOZIJCLXqrm5ORlPKpXC9va2HD/bYIYLSc1mE/l8XrIEOp2OpJhy20qlItcax3HQarWwsLAgrRNsMckFmoWFBaTTaZRKJUkBpRBltoL9HoVCAd1uVxZqlpaWEAqF8Oqrr0orhn6/LzVzZ8WFE3BB//gi1epOTilQFEVRFJqAMOrC/4iZuhUOh7G1tYXd3V2pGeMEyHEcVCoVaUp7eHgo6TzXrl1DLBbD/v4+Dg8PT/SmogU2G24znSgcDgOAFOMzlcd2imNfOPZuo8Nbu90+IZSYNsT+Uo7jiEBkKwMaPTSbTenflEgkpJaEE1Dal9Mw4bXXXpMoE1Oi6vU6+v0+Hn/8cbRaLWxubkpkgC0FAMh72s2Y3ZGaSdGRB02Q3M+7o3u2wHOny7lfOxqNRBy0Wi2ZeNdqNdy9exfhcFiOJS3f7fPX6XQkjXJnZwf37t2Dx+NBPp/HjRs38JGPfASLi4u4cuUKPv7xj8Pn8+H111/H0dERNjc3sbu7K+Y6dEqkWLejY+7jYze3tsUw/9rngJ/dFhiTIm7Am/u82ZE2ewx2PR/fjxFMTngTiQSSyaT0GmOq3sHBAe7cuSN9F5nSbEfZRqMRhsOhGG/Y//jdZ12o7SY56byf9h2a9F1xR9bs17gjjPYCCsfNqL7f70ckEpHI/dbWlvxeGa1lFA6ARN2GwyGKxSLi8TiWlpZE2JRKJak3cxwH6XQa29vbGA6HSKVScq6q1aocP25PF8UvfelL0ivSduDk943tQRhNr9frInLoAkmhxKbiNIXhAg73TxdK9ra0I339fl/aC+zt7SEWi8mxs88dMyAouDqdDuLxOGZmZnB0dIThcIi5uTns7++L0FtaWkIul8P+/r5kXHDBipFwXnP7/T7y+TxisRheeeUVGGOQzWYRjUaxvb0tCw8+nw/b29vodruIx+OnfrfeTy6cgEuExs5D1Xb/jEeiKIqinFfsCSfrwSKRCAqFAgKBADY2NnB4eIhsNotyuSy9poCxi2KhUJCJCVMIs9ksvF4vtre3ZULCqAMna5wMG2PEeMQYg3K5jEAgAADSyLfX62F/f18c69iYNxwOYzQanajpoajghIdRNLunXDAYlNdwgry3t4fV1VUEAgHU63WZzFDEMKXp0qVLJxwzg8Egrl+/jueff16MFiqVCkKhEO7cuYNOpyMTQE7+Obl2iwZjzJtE3YPSKKdNrN37mDZ5P21S7zjOCUFAoxqmWvJY87zyXPJ8UlCwNq5Wq+GFF17ASy+9JNG5VCqFTCaD1dVVrK6uIp/PY2lpCZFIRNJSmUJYq9VQLpdRq9WkJocptHaEiQKCESG77s/+6xZgwEl3Sf4+KEbsOjVO4Pkau3cZaz4TiQRSqZREnSgyGo0G9vb2cPPmTTSbTTSbTVmAYOSMvy9blPG7yMiOLdpYe8h6uEnndlI01/6OnBatnXbf/q7w8/H48HvHdDyPxyMpfBQb3H53d1dus/n07OysRIh6vR4KhQLS6bQ43bJejDb68XhcokPZbBYej0e+tzRGYVQtkUjIIoGd+sxoJb/nACR1kgtFAKRJNgBpwcHrGr+T8XhcHH4HgwHW1takrpGtEni+2N5hOBwikUjA7/fL4gnPP69VPAehUAitVguxWAyBQACHh4eSFVAsFmVBbX5+HpFIBPv7+2g0GpiZmUE6nUaz2ZR9UWBzwSyXy+Hu3bvSoy+dTov7bDabFeMqpq9P+158EFw4ARcPjgVcRQWcoiiKMgWmJbJgPR6PI5PJwHEc3L9/H/fu3cPy8jKKxaJYbDNNiwYfBwcHWF9fx8LCAq5cuYJ6vY5bt25J+hYnc7FYTCZDnNyFw2FJ4SyXyyciU6lUCu12W8wJWKRP8QBA6jm8Xi9isZiMDYBYqLMmjqvpyWQSrVYL7XZbTBO63S6WlpbQ6/VEKHY6HakDY+PhUCiE1dVVbGxsAADm5+fFCOC1115DNBqVFfiVlRWx4eckm/2eOAm164PcqZR2iuU0pom3t4O77ssdYbH/sfcUJ+F0r6SQY60b//G5Se6SR0dHKJfLuHPnDv7yL/8SgUBAapJyuZzUgkWjUcTjcRQKBUQiEYmoMm2wWq1K3ZQdOWy1WmKZz4gWBR6dBW0XUwoxijTWJfl8PnENpDilUyft71k7yM/ZbDalp969e/dQqVQkdY2GIkwz5DjsCBt/O0yPtGvY3MLOdmOddA4nneNp0bZJ3yP399LeJ7Gjjm4THz7GKD8jOazJYtsDWyzzHHAB6OrVq/K74m88GAwinU7D7/ej3W7jlVdekQgYF2wYgWJd7XA4RDablXRfYwxyuZxEBXlsKZKZjslIPL/njK75/X6J7jG7gKYmh4eH0m5lf39faswASKN1v98v79dqtZBOpzE7OytZDqxpZJ0cXSc5HtawlUolEX9c4BgMBlhcXEQul0OpVJLfyNLSkvw2eK3ksY1Go0in05LCHggE5JpPR81MJgOfz4fDw0NJuaQT5llwYQWcRuAURVGUaXCCxFQl1k0Ui0XUajWxm2bftXv37iEUCmFxcVEmqIeHh1heXsb169fFHS8QCCCdTosdNq3POdn0eDxSY8W6D7o6svEuJ+KswwIgf+30oVarhXw+L6vZbALOidZwOES9XhcRyGiIMQaZTAbGGGxuborVONsosPbIcZwTNTl+vx/Xr19Hq9WSPkjRaBQrKysYDoc4ODhAPp+H3++XtE+KDNZhMVpk17sRTqqnWfK7J+E2DxJ07oiLez/T0jbdEUEKYraYYJTFTqlkBMSOWvFx+xxwLMPhENVqFUdHR7h//z48nnFjdooAnv9sNou5uTlEo1Ekk0lEIhHEYjGkUikRWxTvHCvPI0UoI1p8juO20/7s11PccXJOUc7aSEZzjo6OUK/XJSJGAcb9cRHCTm/kOFhLaAs2CjuKOwo8LghME2xugTYpJdJ9f5K4m/Zdst/TjrzZEUxb5LMNx2g0wv7+vrSuYBScCzJsl2CP7cqVK5KyzEUQOp/aEbyZmRksLS0hFotJj8pEIoFGoyE93ebm5mQRiMI7kUhIlA6A1IDyHHNciURCTJwYwWIfSNbw8XgcHR0hFAphdnYWR0dHWFhYwN7enpgh5XI5WWxgPVo8Hpc6uHA4LO1MmC6ZSCRECPM7SRdgv9+PbDaLra0tdDodua6xpyN7w83NzaHX68l1n8eSJlFsBF8sFiVSFwqFcPv2bWldkUgksL29jVqtBsdxJMJ8Vlw4ARf0eeH3elBpqYBTFEVRJsNVcZoC7O7uSpTI7/ejXC5LDcp3v/tdJBIJafjNlefLly/j8uXLeP7553Hnzh3Mzc0hl8tJCiIjMUwbovMjC/1ZgxGLxSQaRxtxTlgY2aCwYkoW6+1qtZqYIDSbTcRiMZlYcqLFiB5d7MrlsqRpsUaP9WycMNF9jRP8eDwuvek4iapWq1I3whQl1us8+eSTaLfb+OY3vyntGZgmx8n7tDRJfj67vouiz50O91Yjcfb+T3vNg+rk+BhX8N2ROU7EWcdIAWSnzvIxCj9iu0nak2JGaUqlEr73ve9N7OtGsc/eYkyb43fIFhiMWtkW7RRWdqTLjphVKpUTkS++P5+3j40dKeM2FI62QKNgo5jh+eb2dsQQeMPkZpJoOy2Ndtq5nHTOp+3PjR15s88ba1WZVsrjwdq2cDgsx8aOeNpReqbZBgIBxGIxWQCJx+Py/ep0OlhbW5O+hLFYDJ1ORyJvc3NzcBwHxWIRqVRK0pyvXr2K1dVVlMtl7O3tSXokF2T4u6Og4rXMmHF/SAovNtKmIyUAtFotGePm5ib8fr8YhbRaLRFBh4eHGI1GSKfTItJo0sIoWygUEvHF9+Pxo8srF5gODg4kWsf6W8dxsLq6CgCSFspaQzYc7/V68Hq9WFhYkPrT2dlZJBIJJBIJvPrqq1JHR1Oq/f19uQ6dZfokcAEFnDEGsaBPI3CKoijKVKLRKPL5PGZmZvDaa6/h8PBQIhl0catWq7hx4wby+TwWFxext7cn6Uf5fB75fB4vv/wyvvvd72JlZUWa7B4eHooBRrVaRSqVQigUOmFkwOgfJ25M1eHKs20MwdoSutdxjNvb22g2m4hGo1JDw30yUsHJj9tdkTVxjz32GGZnZ8VdjiYodu1HPp+XyWWtVkMoFJIJWDqdxosvviiTKU48Z2dnsba2Ji6XnKgzbZMTVwqHB9W6uW3v7RQ8d/Ts7dTN2ZP1aeJtkrmFe78ATggcLgZ4PJ43iTm7rsz9l9tTqBNGo9zROx4HOu5xQm3MG02xgZMNtzn5tKOhdkql/Tlt19BJrQUosvj5KQIZUaPYZU2gLcrc//g49zHpfNjnetJ5n3ReOP7T6iZPE3HTJur28eV54W+Nv2mes0QiIemJbAfCc5JMJnHp0iURt7wOxeNxiSLNzs5K+xBG6Omm6PF4pB8ja1R3d3fR6XSQTqcBvCHwo9EoIpGIiKNutytpgIzIBoNBqSPjsWN7DduYhWKO0ODj4OBAFhD4fWYq5+3bt5HP58U8iW0TWAvMz80FDNYF83q2sLAgKYzxeBzlchk7OzsIh8MiOoE3Fg3C4TDW19ffZJ7CtMxCoYBKpSI1yIwIbm1todVqYXFxUdw0Nzc3JYXU4/FIlsRZceEEHADEgzOoqYBTFEVRplAoFNDpdHDjxg0Ui0VcvnxZolFerxd//ud/juFwiMcff1zSdbg6TLOJl19+Gbu7u8jn82Jg4vV6JU2IdR2hUEgiLbSbZwTQ6/Xi4OBAUqs4yeSEkBPyaDQqqVTGGBwcHIjJCh3U2PqArnE0DaCBAlMYmWpJww2aYrD2hhEjTgw5AWcEkIKk0Wjg4OAAsVgMW1tb6Ha7SCQS0sfJ6/XikUceQbfbFXMBRn3YcsCOCBF7sm5HXex/AN4kaNyT7kmT9dNqpCYJtdNW2SdN8Ck27YgSU8JYz2NH6+y6Ofc/+7Nye74f71NE2IKOr2Eap/353DV5boMT9+ewPyMn0dyWQo1ii98tW6DZx4H37Sibna7nPofudNdJonpaKqWdZjntXNmfddK5nRTldde82dFQ9mRkLRdfw7RAO02U4igYDErjeF6HgPH1iemPXMRhyxO6fDJSVyqVJFpOB1z2dLQFV6lUwvr6urjdsnUBU7xtt0mmWdbrdYka8nfKrAJGvZjuG41GcffuXQCQvocAkEgkJKXSNmC5c+cOPB6PWPzbLQxobMIU7l6vh3w+j/39fQDj2jWfz4disSjRR2AcVY5GowBwwhGXNb5Mxc1ms1hdXUW73cbe3p4I11Qqhd3dXZRKJSwtLSGbzaLZbGJ7e1vSTXmNtX+TZ8GFFHCJkB+Vdu+sh6EoiqKcU/b29mR1+9q1a1KI7ziONL9mT7RisSiToEwmg0AggN3dXXi9XqysrIjJSSQSERdARrtshzbWhdFsoNVqYW9vDwDEop5pSwDEIZP74ASOzn1sut3r9VCtVhGPx2XiadcV0eaeERF+Vttshe6ZdKFkg2FSrVYRCoWkTq9UKqHb7WJlZUUiCqPRCOVyGc1mE5lM5oSLXTqdxp07dyQCwbQ54M1iAXgjZdJ2qrSNT5jG5/V6TzgucttpYm7SfY5hmrhzM03Uud/D/su6OGJHsyjCbOMLW8TZoswt7OznKOzIJAMVPs6Jpy2ibHMR9+eyzUZsEeZOn3QLNfdrbVHHhYpJYnmSOHOnwdqfe5owe1CUblpapXt7e4x2qwA+z987jz/PG6Phg8EAPp8P7Xb7xPllfWGj0cDKygqMGfdAowkNzTuMMej1epibmxNhzrRrjmF2dhb1eh2dTgeJREJMYa5fvy5mMpubmzg6OsKVK1dExNH90uPxSH/DSCSCYrF4wvEWeMOEiC1C+Jkdx5HWCIlEQloO8PU0Jcnn8+IyyRpamrmEQiE0Gg25PkQiEblOJRIJcY+k6dTt27clBZguuDTaMcbIYpn9nWdLmJWVFXi9XjFbMmacxlosFrG1tYX5+XmkUqkTRkFcDKN4dbc5+KC5kAIuHvThoH52zjCKoijK+ebo6Ajtdltst9lbqdfrSRpiu91GtVoFMF51zmQy6HQ62NvbO5FSyMbdTK+kCKIlfLFYPBG1cBxH+hCxDo3RMZqfDIfjPm6cENM1stFoIBAISMpRv98/YXLASQVbBjB1qtfrnZhkMnLCOj0AWF5eRrvdlpQtpmfdvn0b169fl9YEdM2MRqPodDpot9tYWVkRswJOeuy6p2AwiPn5eczMzGBzcxO1Wu2ECOHnt6NxdhTEFjw0g2H0zh2dmSTO7H3yr1s0nhaxmyQYbCHCx+3IoTti6Bas9mv4ubkAQAFgCzlb4HG/tpHGaVEpOyXSjT0u+7Yd6eRf+zO7I2w8N7ZRifv4uPftTtWcdJ7c52ZaOqT7cX7WtxJNtTntvSeJYtsYhL9Xn8+HdDqNVqsl0Uua3tginQY3vGbwOtLv90+4U7L5drPZlEWg4XAoLS6A8SJLMBhEMplEp9ORRZd4PC6/R2PGTqE3b95EIpGA4zgnHERp/sFFGDpa0piENbo8LrwGMBUyl8uhXC4DgNTPMeKfyWTEGTUcDuP69evSUoI96srlMjweD1KplFzfeB1i9H5+fh6vv/46qtWqZBqwno/OuYyW8RrI4wsAi4uL8Hq9ePHFFyVCWSgUsLe3h83NTaysrCCdTqPRaGBzcxPBYBCO44jZDxesbJfXs+DCCrjb+/UHb6goiqJ8KPF4POJY1uv18Prrr4ub2+zsrKRM0t49mUxKvQVrOwKBAObn55HL5aQeghPYZDIpUS3W1xljTqQEhcNhiY5RlABvTBg5OaCJBFeAmYrHFCVjjNSZhEKhEz2dksmkPM+V6Xa7LZNMTjjpMhgIBODz+aRuLRqNYnl5WVaeS6USarWa2KKHQiEEg0F0u10sLi6iXq+LHbff70etVsP+/r64xXW7XWQyGYkkclLMyeW0aJwtGGzHRFsknBYZs0WXe7/TXmNvc9rkf1pUxxYAnLDbtvd8zm1KYgs693GwhdukKJw7QmfvY1KkyhZYkx6zo2l2WqKdSvmgY+g+VpMenxT1s8fqjtRNi6Da20xKozztnHMbvh/HNenY8v0ovmjGwd9dPp8Xs59JiwX9fl8s7OksyT6TNONwnHE/QBrTHB0dAYAImlKpJOmPTMHOZrNYW1vDwcGB9JPc2NhApVKRxQHClPDBYCA9B+kMyXTsUqmESCTyJlHE6BkbqjM7gQZJjBzatWw0Y6EQ4u8/lUrB7/djb28Pg8FArg/NZhPZbFbs+j0eD+bn53FwcCA1a36/X0xMKKK5cMRUUDYG5/EJh8N48cUXxVRqfn4etVoNxWIR+XweqVQKsVgMOzs7sojW7/fFWIWilILxrLiwAk5NTBRFUZRpUKBQzGQyGSwsLMAYI72EOKniSjqdKWnZHgqFkMlk0G63xSa72+1Kgf7NmzfF2joYDMrqe7fbRTAYFLt9O6LEKAtTiCjePB4PksnkCTHC9MpAIIBms3liwsheb4yGMGLHOhcAsjrN9CUKvGw2K5N4Cj86xW1tbcljrDuhQQrH0mg08NJLL8mxc5yxWcLOzs4J0Vyv1+Xz2yl19rHgaykkbMe/SdEd3rYnqpPE02lRGfdzbiHh3sae7NtCg5P2aWLALVbtqN40wWhHutwRIvdnmBRts4+HvT/bVdJ+3H5f+7O/ndTEScLZ/juJSQJ00r7t+/axe1AkctIY3VFcfv/tY2RHPLnYwQg4yefzYlff6XQkdZS1sM1mE/F4XDIAVldXkc1mEY1GUa1WxeXWcRxJ2aZzI51gWcc2MzODer2OZrOJn/zJn8T+/j4qlQpmZmawuroKr9eLvb09idQPh0PZBzBOidza2kKpVEK/38fi4iIymQxmZ2ext7cnAo+tEPgbZH0dTT0KhYKYN/F9qtWqXCer1SoSiQRGoxFisRjK5TKOjo7w5JNPYn19XWreGPWjAQuPHYVeo9EQw6VgMIiDgwO0Wi1xjvT7/eLuy8/XaDTESTcUCuHVV19FvV6Xnov9fh/3799HPB5HNptFNpvF5uYmBoOBXFuZds7jxgbriURi6nf4/Wbyr/shJx70od4ZYDg6u9xURVEU5fzCujHWf6RSKQDj1EqmDLFhcaPRwM7OjhgHxGIxSU1stVpwnLFl/9bWFtLpNHq9Hv7kT/4E6+vrMsFh+g5bBHA1F4BEwDh5dhxH6tkqlYo04badDLkqPxgMUK/XkUgkkEwmxYTEdqDkJIO1K7aIsF3y6HJpG2MEg0EMBgPs7++jVquhWq3K47bosmtjPB4Pvv/7vx8LCwvY2NiQvnIcczgcRj6fRzweRzQaPVHnxxRPOr1xfO5m05xou1MK3aYCfH6SeHMLwEmRqmniwS0E3PvhuPkZ7Pd3CyFub9eUTdq3PR47vdEWcu40SPdj7uPlTpO038cdbbJTJd3bPei4ucc/KfLn3sbe56Tj/qDX2vcnRR/dz9nng9E19zb2czMzM9KgmtHybDYrCzpsvM1G2GwrMDc3h06ng0gkgsXFRSwsLEgNLMWCHZlrtVoSLYrH41Iby7FtbGwgkUig2+1KejMjgDT9oMgMh8Po9/tyHg8PD9FqtcQQJZFIwBhzIj2Rv29+9kwmI2IuGAxiZWUFtVpNMgTq9TqOjo5Qq9Uk0hYOhxEIBCSSyP51bCkBAOl0WoxbmALOOjbWztGghaYoFMOZTAahUAitVksW4PiZZ2dncenSJWQyGdy9exfFYlF6Kfb7fdy9exezs7OYm5vD0tKSiGD26jTGyLWfYpaLabyGnwUXNgIHALV2H8mw/4xHoyiKopw3tra2Ttjyc1W7WCzKyiwnmUxV9Hg8yOfzUo/BSBJrIq5evYrZ2Vlsb29LbVsul5N6FYo5vo6wQTLfIxaLodlsolKpIJVKSXoW613owFapVKT3EgBxlLPFg+0s2el0pE4uFovJZJ5pX8B4gk/ThUgkguFwKA6VnBQ1m01xf6MpgB39MMbg6tWr2NjYwMrKikxkmerFVfpcLnciEgVAUscofOxInC0iJqU42ilivG+bh0yrs3KLPO5vkvCzz5MtZtzRQTt1zj4uAE6Mn/ft/UyKWNnvNy1SN0002Z/H3m5SNJG1iHyNWyBOum2/z4NEmfu82bWC9vP2a7iNu2WEe7/TIqvu42ljHwP3wgDf2y14GW2muytTCufm5lCpVBCPx6XROQCJWLdaLXG0TSQSWFlZQT6flwWbvb09idjRwdY2UGJdbiQSkZTtF198UUxH9vf3cevWLXGwLJfLSCQSCIfDaLVaIiA9nrG1f6lUkhTHfr+PdDoNj8eDer0ux6zRaMjYjTHi3svFIda8cTu2JaABC8Wfz+eDMQatVgvtdhuFQgHGGGxvb8u1hteH+fl5ifj5fD6J2JXLZbmGNptN6S3HRuA0g7HTWwOBANLpNMLhMO7fv4+9vT3E43HMz8/D5/Ph7t27SCQSiMfjuHz5MnZ2drC7uyvOvgBO1Ds7jiNp7ACkXchZ8I4FnDHmEoDfBJAHMALwWcdx/okx5tcA/DcAiseb/qrjOH/4bgf6dkiGxwLuqNVTAacoiqK8CZ/PJ5b3pFQqIZfLYWFhQVISO52O1HzRhIN9jrgynkqlkM/n0ev1cHBwIGlC/MdVeL/fLxO7aDQqj3OCxkjU4eGhFPZzEkEzFU6y2u027t+/j0KhIM6PV69ehTHjwn+/349KpYK9vT2pv+PnAHBC5HGyxsk7x88JLSdRnNhzIsqoHffHdKZLly7B6/VicXERkUgE6+vrElmYm5uT9gbAG/U8Pp9Pmh2znQKFZKPRmFiLxcm3u+7LttunaYwtMgn3YQsbO43TrksE3mwEYr/WFlgUbxQctiialPbpji5NSuG00/jcn+O0tEB3lI9j4fcNwIlG2vZ+3KLHLZbcwsgt8Pgat/id9Bknjd0ex2nPnbZPezv3+Pm9cUcV7SiubbDDSAyjxbOzs+KgmMlk5PfVaDQkcmSnIKdSKZTLZUQiETz99NOIx+MnIlVsME1xWK/XEYvFRKDV63UEg0Gph11bW8P6+joKhQLW19fxsY99DPl8Hv1+XxZzKAKj0aj8xv1+P46Ojk706QuHw2LHzzq4er2OSCQi/evogEnRl06ncf/+fUk3Hw6HqFQq0k6EUTSPxyM92hqNBubm5jAzMyNmJwsLC6jVaqjVashmswAg199cLodqtSqRRIrJZrOJSCQiC1z1el1q+ICxqy9rAOPxOF5//XUcHR0hHA5jfn4eoVAIt27dAgDE43Hk83mUy2Vsb29LJgEAMW6iuQsARCIRqfvl4t5Z8G4icAMA/4PjOC8YY6IAvmOM+dLxc/+X4zj/4N0P752RDo//gzps9HA5e1ajUBRFUc4r2WxWCt658ptKpTA3N4dyufwmEwFOSBqNBowx2N/fF5ESi8VQqVSkuJ1RNNZyMPpGa3+mDrktwL1eL6rVKiqVCjKZDBqNhtiMG2OwvLwMYwzW19exs7MjrpGDwQDLy8vodrviNrmzs4OtrS0UCgXMzMxgf38fs7OzSKVSIp6Gw6HUAto1TqyXY9SNka1sNiur9kyJGg6HUstHe2/HcaQfE9ONOImPx+PY2dkR8czXs4Gvx+ORVE2mgVIEudMQbYFC7Nouu35mUrTHFlq2OLMjgpP2z/d2Cz/e5nvbjoUUeHakaJrw4n7sfdsRMft5e/tJIofvzedZy0PBkEwmJULqFsDc3yQzEPtx93u6j5n9WaeNcZqotT/btCjepOMwLRppH5NJ54SRaN7mOZ6ZmRHDikAggHA4LDVSwWAQ5XIZ8XhcFny4HYWd3+/H4eEhEokEHn/8cWSzWTz22GN48cUX4Thjp1rHcaT26+DgQNqEMDrH2rXBYID19XV873vfQyaTQTgcRqPRwI0bN5BKpXB0dIRsNisCigtB/P3s7++LQBkMBkgmkwiHwzg6OhKDkWKxKBF4ti8YjUYSnVtcXJS0ahqDrK2tweMZ93Xzer3Sa5KCcTgcolAoSPYATUC63S4CgQBisRharZaMjfXFNJTi9aJcLiMajSKdTiMWi6FWq8nn43WCaaShUAh37tyRhTKmWt66dQvtdhtLS0uyCLa3t/em6D6v6aw/pMGKx+ORVjBnxTsWcI7j7ALYPb5dN8a8BmDhvRrYuyEToYA7u9CmoiiKcn6hiGL6XC6XkxVxpkXaqUy03u/1etjY2EAqlcL8/Lz0J2INWzAYlIkehRAnyDQ86HQ6EpEyxkg9WblcRr1elwgVjRL8fr9MGHd3d8XxkalH0WhUVu+j0SgODw/R6XQk2kVHOqZCGmPEsMReQeZ9ThTv3bsnDbcpvvi+W1tbuHLlinweTni5oh8KhWTSk06nZYyM7rHdAVe87fSqYrEIY8ZmMvYkm9ExACcm3m4owDgmTlztaJodPbMFxjQ3RDuN0RZvwElDEb7GbWxip+DZ+50kXOxtJ31Ot6iblE7p/pzcF7/zjNLye83P5Z7AMhXNcaY33HYz6TO6j8+k+5P2+1bEmDsiNykCx0UAilfWiU7aFyOV9vkOh8OSnswea6z5siNoXOChaQZr1+iS+MQTT0iKdqVSEbMhjp3p0lzMAICDgwO5ptRqNZTLZWxsbCCfz0t9K1MfbVFCweXxjG356/U6SqUSgPH1r1ariXhjWw8KlmAwKNEsZiQwjZKLXGwb4Pf7xZ2XDr0AJNrPVNKlpSX5DI1GA5FIBN1uF3t7e/jYxz6GO3fuoFKpYDQa4cqVK+j3+6hWq2I0xWwG2wGXkTu2V+DzCwsL8Pl80iycbR1CoRDu378vPelyuRyazSZ2d3fld8vemMxm4OJGPB4X0c7o20PfRsAYswLgaQDfBPAcgF8yxvwXAL6NcZTuaMJrfgHALwBvnNT3imxUBZyiKIoynV/8xV98a02hzhnXrl37wN7r8uXLEx//2Mc+9oGNQVEURXkz79qF0hgTAfA7AH7ZcZwagH8O4AqAj2IcofuHk17nOM5nHcd5xnGcZ5jz+l6RCvvhMUCxrgJOURRFURRFUZSLw7sScMYYH8bi7QuO4/wuADiOs+84ztBxnBGAfwHg2Xc/zLeH12OQCvs1AqcoiqIoiqIoyoXiHQs4M04y/lcAXnMc5x9Zj89bm/0MgJff+fDeOZlIAMX62eWmKoqiKIqiKIqivNe8mxq45wD8HICbxpgXjx/7VQA/a4z5KAAHwAaAv/Uu3uMdk40GUNQInKIoiqIoiqIoF4h340L5DQCTisA/0J5v08hEAni92DzrYSiKoiiKoiiKorxnvGsTk/NKJjKugXP3CFEURVEURVEURXlYubACLhebRXcwQqXVP+uhKIqiKIqiKIqivCdcWAH3aD4KAHhtt3bGI1EURVEURVEURXlvuLAC7vp8DADwqgo4RVEURVEURVEuCBdWwKUjAeRjs3hlRwWcoiiKoiiKoigXgwsr4ADgeiGGV1XAKYqiKIqiKIpyQbjQAu6JQgxrxQY6/eFZD0VRFEVRFEVRFOVdc6EF3PX5GIYjB7f362c9FEVRFEVRFEVRlHfNhRZwTxTiAKB1cIqiKIqiKIqiXAgutIBbTAYRDcxoHZyiKIqiKIqiKBeCCy3gPB6DxwsxvLJTPeuhKIqiKIqiKIqivGsutIADgKeXEri5XUWt0z/roSiKoiiKoiiKorwrLryA+/HrefSHDr72vYOzHoqiKIqiKIqiKMq74sILuKcvJTAXDeDfv7x31kNRFEVRFEVRFEV5V1x4AefxGPz4Ezn8h1tFtHvaD05RFEVRFEVRlIeXCy/gAOBTT8yj3R/iT+8Uz3ooiqIoiqIoiqIo75gPhYD7K5dTiAd9+Nd/cQ/dgUbhFEVRFEVRFEV5OPlQCDif14O/+2OP4Btrh/jf/+DVsx6OoiiKoiiKoijKO+JDIeAA4G8+t4qfeXoBv//dXfSHo7MejqIoiqIoiqIoytvmQyPgAOAnPzKParuPv7hbOuuhKIqiKIqiKIqivG0+VALu449kEJ2dwf/x715Dsd496+EoiqIoiqIoiqK8LT5UAm7W58X//Tc+hnvlJn7ld2+e9XAURVEURVEURVHeFh8qAQcAz13N4Jd/7Bq+/No+vvzq/lkPR1EURVEURVEU5S3zoRNwAPBfPreKR+Yi+LXff0WbeyuKoiiKoiiK8tDwoRRw/hkP/rdPP4mtozb+2dfWzno4iqIoiqIoiqIob4kPpYADgB+8ksbPPL2A/+dP7+IPb+7CcZyzHpKiKIqiKIqiKMqpfGgFHAD8z3/tcTyWj+G/+8IL+NQ//jr+8nVtL6AoiqIoiqIoyvnlQy3g0pEAfue//SH8/f/sKTR7A3zms3+J//pzz6PRHZz10BRFURRFURRFUd7Eh1rAAeN6uL/+zCX88d/9Yfy9Tz2Kr90q4qf+6dfx/z1/H6ORplUqiqIoiqIoinJ+MOeh9uuZZ55xvv3tb5/1MAAAf3K7iH/4x7fw0lYVsz4PPrIQxycfncNiMohPPjqHeNB31kNUFEVRJmCM+Y7jOM+c9TgURVEU5f1k5qwHcN74xLUsfviRDP7dzV18594Rvvl6Gf/nH90CAARmPFhJh/Ejj83hiUIMP/5EDoEZ7xmPWFEURVEURVGUDwsq4CZgjMFPPVXATz1VAAAcNXvYKDXx+9/dxWu7NXz2T+9i5AAhvxeXs2FcyUbkXy4WwJVsBImQD8aYM/4kiqIoiqIoiqJcJFTAvQWSYT+SYT+eXkoCAPrDEf78bglf+94B7hYb+PbGEf7tizsnXuP3ehAP+ZAM+ZAI+pGO+LGQCGIxGUQqEkDQ50XQ50V0dgbxoA/R2RlEZ33wz3zoyxIVRVEURVEURZmCCrh3gM/rwSeuZfGJa1l5rNUbYOOwhf16B2v7DZSaPVTbPRw1+6i0e7i9X8fXbh2g0x+dum//jAexYzEXCcwcC7sZRAI+RAJeRKzb4cDM+J9/BqGAd/zX70XIP34uMOPRKKCiKIqiKIqiXCBUwL1HhPwzuF6I4Tpi+JFH5yZu4zgOSs0eKq0+Ov0hWr0hau0+qu0+Gt0B6p0+6p0B6t3B+O/x/cPDJprdIeqdPpq9IYZv0R3TY3BS3AW8CPlnEPZ7EQoc//XPIOx6POT3IjDjxazPg1mfF7PW7YDPI8/5vSoQFUVRFEVRFOWDRAXcB4gxBplIAJlI4B3vw3EcdAcj1DsDNLsDNHsDtHpjMdjqDtDsDdHqDdDsuv7K8wOUmj3cL7fQ6g3R7I5fP3gHLROMAWZnvAj6x+mgsz4Pgn4KvvH9gCUA/TPjf4EZLwIzHgSO7/u9Hvi8Hsx4zfivx8A344HPw8cMZo5v+70ezHAbvsbjgW9mvI3Pa1RUKoqiKIqiKBeW903AGWM+BeCfAPAC+JeO4/z6+/VeHyaMMcfiyIts9J0LQTe9weiE0Ov0R+gMhuj2R+j0h+gMhuPH+kN0+kN0B+Pb7d74uXZvdBxVHKB7vK9yc4Tu8eu6g/FruoMReoPT00jfLV6PEYHn8xrMeD3wecZ/Kfhmjh+fOd52xmvg9Yy38x7fn/F4Tjw3I48fb+s18l7cl9f+Z1z3jx/zHL+Gf92P2a+b9Jh7X7xtDOAxBh4zPgYqZBVFURRFUS4e74uAM8Z4AfwzAH8VwBaA540xv+c4zqvvx/sp755xdMyPROj9fy/HcdAbjoUcBV1/OEJ/6GAwGmEwHD8/GDoYDEfoj47/Dh30hyMMRsfbHm8vj7v28ebtT+5rOHpj205/hMFoiOHx/cFo/Hx/ODrebvw6Ps73Pu+93m0x5zEYi75jsef18PYbou/Nz518jedYSHrMeDHhxG1j4PFA9uk11m0PxeVYdHqMdd9A9m2O92WAE++JE/ePtzGAgev1wPHnefC2cL3H5Pcev47PnRzrm7cF3jge3HbS5+E47fee9Ppp45z4XjLOB7wX9+fBA44zXwtdDFAURVGUc8T7FYF7FsCa4zivA4Ax5rcAfBqACjgFxpjjNEovomc9mHfJaGSJvdEIw6GDoTO+f+Kf45zY1v3Y6Pg+b9uPTdqXfX/kOBg5GP8dWbcdHN+f9rwzeTvr9tBx4DgORiOc3P54DI51eyx4jz+XMxbq4+fs29ZrrP06DuCArxtv7+CN50bjDcb3rcdPvs4594L6YeZUsYhjAegSj/ZrvFwssMQ8t/u5H1jGz//Qyll/REVRFEV5KHi/BNwCgE3r/haAv2JvYIz5BQC/AABLS0vv0zAU5f3F4zHwj8MhCEKbup8HHEv0PVDsTdzuzeJx2uvfzrawBOqp73X8GUYjPHBcOHH/jc/uuN/LfVycycJZ9jl60DEZv85x7GNxckz2tvaiAMX8yBpDKuz/AL8hiqIoivJw834JuEn5NifWxh3H+SyAzwLAM888o+vmiqK8J0i64MTLkKIoiqIoysPN+9U1egvAJev+IoCdKdsqiqIoiqIoiqIob4H3S8A9D+ARY8yqMcYP4DMAfu99ei9FURRFURRFUZQPBe9LCqXjOANjzC8B+COM2wj8huM4r7wf76UoiqIoiqIoivJh4X3rA+c4zh8C+MP3a/+KoiiKoiiKoigfNt6vFEpFURRFURRFURTlPUYFnKIoiqIoiqIoykOCCjhFURRFURRFUZSHBBVwiqIoiqIoiqIoDwkq4BRFURRFURRFUR4SVMApiqIoiqIoiqI8JKiAUxRFURRFURRFeUhQAacoiqIoiqIoivKQoAJOURRFURRFURTlIUEFnKIoiqIoiqIoykOCCjhFURRFURRFUZSHBBVwiqIoiqIoiqIoDwnGcZyzHgOMMUUA996j3WUAHL5H+/ogeRjH/TCOGdBxf9DouD9YPszjXnYcJ/teDEZRFEVRzivnQsC9lxhjvu04zjNnPY63y8M47odxzICO+4NGx/3BouNWFEVRlIuNplAqiqIoiqIoiqI8JKiAUxRFURRFURRFeUi4iALus2c9gHfIwzjuh3HMgI77g0bH/cGi41YURVGUC8yFq4FTFEVRFEVRFEW5qFzECJyiKIqiKIqiKMqFRAWcoiiKoiiKoijKQ8KFEXDGmE8ZY24ZY9aMMf/TWY/nNIwxG8aYm8aYF40x3z5+LGWM+ZIx5s7x3+Q5GOdvGGMOjDEvW49NHacx5leOj/8tY8xPnM2op47714wx28fH/EVjzE9az535uI0xl4wxXzPGvGaMecUY83eOHz/Xx/uUcZ/34z1rjPmWMea7x+P+X48fP+/He9q4z/XxtsbiNcbcMMb8wfH9c328FUVRFOU8ciFq4IwxXgC3AfxVAFsAngfws47jvHqmA5uCMWYDwDOO4xxaj/19AGXHcX79WIAmHcf5H89qjMdj+mEADQC/6TjOk6eN0xhzHcC/AfAsgAKALwO45jjO8JyM+9cANBzH+Qeubc/FuI0x8wDmHcd5wRgTBfAdAP8JgL+Jc3y8Txn3X8f5Pt4GQNhxnIYxxgfgGwD+DoD/FOf7eE8b96dwjo+3NZ7/HsAzAGKO4/zUw3A9URRFUZTzxkWJwD0LYM1xnNcdx+kB+C0Anz7jMb1dPg3gc8e3P4fxJPhMcRznTwGUXQ9PG+enAfyW4zhdx3HWAaxhfF4+cKaMexrnYtyO4+w6jvPC8e06gNcALOCcH+9Txj2N8zJux3GcxvFd3/E/B+f/eE8b9zTOxbgBwBizCOCvAfiXrvGd2+OtKIqiKOeRiyLgFgBsWve3cPok8qxxAPyxMeY7xphfOH4s5zjOLjCeFAOYO7PRnc60cT4M5+CXjDEvHadYMlXr3I3bGLMC4GkA38RDdLxd4wbO+fE+Tud7EcABgC85jvNQHO8p4wbO+fEG8I8B/D0AI+uxc3+8FUVRFOW8cVEEnJnw2HnODX3OcZzvB/AfAfjbxyl/Dzvn/Rz8cwBXAHwUwC6Af3j8+LkatzEmAuB3APyy4zi10zad8Nh5Gve5P96O4wwdx/kogEUAzxpjnjxl8/M+7nN9vI0xPwXgwHGc77zVl0x47DxdTxRFURTlzLgoAm4LwCXr/iKAnTMaywNxHGfn+O8BgC9inBq0f1xPxLqig7Mb4alMG+e5PgeO4+wfT3xHAP4F3kjHOjfjPq5p+h0AX3Ac53ePHz73x3vSuB+G400cx6kA+A8Y15Gd++NN7HE/BMf7OQD/8XH9728B+FFjzOfxEB1vRVEURTkvXBQB9zyAR4wxq8YYP4DPAPi9Mx7TRIwx4WOzBxhjwgB+HMDLGI/35483+3kA//ZsRvhApo3z9wB8xhgTMMasAngEwLfOYHwT4STxmJ/B+JgD52Tcx+YU/wrAa47j/CPrqXN9vKeN+yE43lljTOL4dhDAjwH4Hs7/8Z447vN+vB3H+RXHcRYdx1nB+Pr8Vcdx/gbO+fFWFEVRlPPIzFkP4L3AcZyBMeaXAPwRAC+A33Ac55UzHtY0cgC+OJ73YgbA/+s4zr83xjwP4LeNMf8VgPsA/vMzHCMAwBjzbwB8EkDGGLMF4H8B8OuYME7HcV4xxvw2gFcBDAD87TN0ups07k8aYz6KcRrWBoC/BZyrcT8H4OcA3DyubwKAX8X5P97Txv2z5/x4zwP43LGDrQfAbzuO8wfGmL/A+T7e08b9r8/58Z7Gef9+K4qiKMq540K0EVAURVEURVEURfkwcFFSKBVFURRFURRFUS48KuAURVEURVEURVEeElTAKYqiKIqiKIqiPCSogFMURVEURVEURXlIUAGnKIqiKIqiKIrykKACTlEURVEURVEU5SFBBZyiKIqiKIqiKMpDwv8PbO4x1Ae9K+MAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAGoCAYAAAAHGAe8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eZhlyX0Viq448zzkVFVZQ1dXD6WepG53S0itecTGlgzciwcMHgD7mhke3IsN+GEw5l0DBh6DAfPka/vaCBvbgEEWBnxlyboaW/LV0C211HPXkJXjmYfMc068P/ZZketE7ZOZPZY6Hev78qvMs/eOHTsi9qnfivUbjLUWAQEBAQEBAQEBAQEBAV//SNzoDgQEBAQEBAQEBAQEBAQcDYHABQQEBAQEBAQEBAQEvEIQCFxAQEBAQEBAQEBAQMArBIHABQQEBAQEBAQEBAQEvEIQCFxAQEBAQEBAQEBAQMArBKkb3QEAWFpasufPn7/R3QgICAgIeAXjs5/97Ka1dvlG9yMgICAgIOClxNcFgTt//jweeuihG92NgICAgIBXMIwxT9/oPgQEBAQEBLzUCC6UAQEBAQEBAQEBAQEBrxAEAhcQEBAQEBAQEBAQEPAKQSBwAQEBAQEBAQEBAQEBrxAEAhcQEBAQEBAQEBAQEPAKQSBwAQEBAQEBAQEBAQEBrxAEAhcQEBAQEBAQEBAQEPAKQSBwAQEBAQEBAQEBAQEBrxAEAhcQEBAQEBAQEBAQEPAKQSBwAQEBAQEBAQEBAQEBrxAEAhcQEBAQEBAQEBAQEPAKQSBwAQEBAQEBAQEBAQEBrxAcSuCMMWeNMR82xnzZGPOwMeYvTj9fMMb8d2PM16b/1uWaHzbGPGaMedQY8/tfygcICAgICAgICAgICAj4vYKjKHAjAH/FWnsHgNcD+LPGmDsB/BCA37LW3gbgt6Z/Y3rsOwDcBeAbAfyUMSb5UnQ+ICAgICAgICAgICDg9xIOJXDW2qvW2s9Nf28D+DKA0wC+FcDPTU/7OQB/cPr7twL4d9baobX2SQCPAXjdi9zvgICAgICAgICAgICA33N4TjFwxpjzAO4D8CkAJ6y1V4GI5AFYmZ52GsCzctml6Wd+Wz9gjHnIGPPQxsbG8+h6QEBAQEBAQEBAQEDA7y0cmcAZY0oAfhXAX7LWtg46NeYze90H1v60tfYBa+0Dy8vLR+3GXLQGe/gXH34MX756UNcCAgICAgICAgICAgJeuTgSgTPGpBGRt1+01v7a9ONrxphT0+OnAKxPP78E4KxcfgbAlRenu/PR6u/hH/zmo/jipeZLfauAgICAgICAgICAgIAbgqNkoTQA3g/gy9bafySHfh3A90x//x4A/0k+/w5jTNYYczOA2wB8+sXr8tx+AgDs9WJfQEBAQEBAQEBAQEDAsUDqCOe8EcAfB/BFY8z/M/3srwP43wH8sjHmTwJ4BsAfAQBr7cPGmF8G8AiiDJZ/1lo7frE77oN+mzbwt4CAgICAgICAgICAY4pDCZy19mOIj2sDgHfOuebHAfz4C+jXc8ZUgAv6W0BAQEBAQEBAQEDAscVzykL59Qwz5ZhBgQsICAgICAgICAgIOK44PgTOKXCBwQUEBAQEBAQEBAQEHE8cHwI3/TcocAEBAQEBAQEBAQEBxxXHhsAhxMAFBAQEBAQEBAQEBBxzHBsCZxyDCxQuICAgICAgICAgIOB44vgQuKDABQQEBAQEBAQEBAQccxwfAjf9NwhwAQEBAQEBAQEBAQHHFceHwBmWEQgMLiAgICAgICAgICDgeOL4ELjpv4G+BQQEBAQEBAQEBAQcVxwfAhdymAQEBAQEBAQEBAQEHHMcHwI31eACfwsICAgICAgICAgIOK44NgRuv4pAoHABAQEBAQEBAQEBAccTx4bA0YUyICAgICAgICAgICDguOL4ELjpv0GACwgICAgICAgICAg4rjg+BI5lBEIUXEBAQEBAQEBAQEDAMcXxIXDTf4MCFxAQEBAQEBAQEBBwXHF8CByTmNzYbgQEBAQEBAQEBAQEBLxkOD4EjmUEAoMLCAgICAgICAgICDimOD4EzilwgcEFBAQEBAQEBAQEBBxPHBsCRwQFLiAgICAgICAgICDguOLYELhQBy4gICAgICAgICAg4Ljj+BA4FwMXJLiAgICAgICAgICAgOOJ40PgGAMX+FtAQEBAQEBAQEBAwDHF8SFw038DfwsICAgICAgICAgIOK44PgTOhDICAQEBAQEBAQEBAQHHG8eHwE3/DWUEAgICAgICAgICAgKOK44PgQtZKAMCAgICAr5uYIz5V8aYH7nR/YiDMebNxphHb3Q/AgICAp4Pjg2BI4ILZUBAQEDAc4Ex5nuMMdYY86fks+81xoyNMR35eZscXzDG/AdjTNcY87Qx5o/eiL5/PcNa+4PW2h+70f0AgOn83sq/rbW/Y629+CLf4+3GmA8bY5rGmKdijt9rjPmd6fFLxpj/txz7695a6xtjJsaYpQPu9xeNMU9O1+CXjTG3Tz83xpi/YYx5xhjTMsb8O2NMRa77X40xm8aYLxlj7pbP32iM+Y/P8Zl/2xgzmPZ50xjza8aYU8+ljZcSc97jjjFm9Ub3zYcxJmOM+RVjzFPT9fq2Q86f+x10WFvGmA9547FrjPmiHJ+7VqfH/+j0nl1jzH80xizIsYe9tkfGmP88PbZkjPm/jTFbxpiGMeYTxpg3yrV3G2N+c7qWYi16Y8x3TNd71xjzuDHmzUd85h81xux5fbtw0BjPgzHm9caY/26M2TbGbBhj/r2ue2NMzRjzc8aY9enPj8qx1PSdbEznoSzH/oYx5i8fpQ/HhsAZxsDd4H4EBAQEBLw0GI1GL3qbxpg6gB8G8HDM4U9Ya0vy89ty7F8A2AVwAsB3AfiXxpi7XvQOvkwwxqRudB+eL76O+t4F8DMA/tc5x/8tgI8CWADwVgB/2hjzPgCw1v49XWsAfgLAb1trN+MaMtFmw58E8M0ASgC+BQDP/W4AfxzAGwGsAsgD+GfT605Nr7sA4F8B+N+nn6cA/CSAv/Q8nvvPTft867Qv//B5tPFSwn+PS9baK/5Jcevoua6tF2EtfgzAHwOwdoRzD/sOmtuWtfabvPX2cQD/Xk6Zu1an9/jXiNbYCQA9AD8lbd8l7ZYBPCNtdwD8CQDLAOqI1vl/lnHbA/DLiNbodTDGvHt6zfdN234LgCeO8sxT/JK3Dp6Yc95hqAP4aQDnAdwEoA3g/5Dj/xhAYXr8dQD+uDHm+6bH/jAiurIEoAXgf5k+280A3ovpu3oYjg2BcwgSXEBAQMCxwfnz5/ETP/ETePWrX41isfhSkLj/D4B/in3j91AYY4oA/icAP2Kt7VhrPwbg1xEZNEe5Pm+M+cnpDnbTGPMxY0x+eux90x3shonUjTvkuqdMpJ58Ybr7/H5jzInpLm7bGPM/poQUxpjz013oHzDGXDHGXDXG/BVp60enu9W/YIxpAfheY0x12uZVY8xlY8zfNcYkp+ffaoz5yLS/m8aYX5p+bowx/3i6y9yc9u3u6bGfNcb8Xbnn9xtjHpvuWv+6ERVk2tcfNMZ8zRizY4z5F8bEB0fM6fvrTLSb35j2/58bYzLT8z86vfTz0133bzfGvM0Yc0navGM63o3p+L/vKHOpsNZ+2lr7f2LWoFScB/CL1tqxtfZxRMbmdaR/+tx/HMDPzXn+BIC/BeAvW2sfsREet9ZuT095L4D3W2uftdZ2EBm8326MKQA4B+B3rbUtAP8DEZEDIuL269bap57rcxPW2gaA/wjgXunrq8y+UvGoMebb5NgLeQ/+6nStNY0xv2SMyT2fPk/b+mvGmC8A6E7XuTXG/EljzDMA/i9jTMIY8zen/Vw3xvy8MaY6vf68f/7z6QcAWGt3rbX/ZPp9Mj6k3wd+Bz3Hts4DeDOA/1M+Po/5a/W7APxna+1Hp+vrRwD8YSNKkuAtAFYA/Oq0XwNr7aPW2gmi9BVjRGRoYXr8UWvt+xG/oQYAfxvA37HWftJaO7HWXrbWXn6uzzxnHOauVR/W2g9Za/+9tbZlre0B+OeINkyI9wL4+9ba3vSdej8i4goANyPanBkB+DD238F/CuCvTj8/FMeKwBkTFLiAgICA44YPfOAD+OAHP4hGo4FU6voN7le/+tWo1WoAcO/U4NOfn7rugimMMa8D8AAiJSIO903JyleNMT9i9neJbwcwttZ+Vc79PGKM8Tn4hwDuB/AgIsPlfwMwMZEL3AcQGdPLAH4D0e50Rq79nwC8e9qH9wL4EIC/jmg3NwHgL3j3ejuA2wC8B8APGWPeJce+FcCvAKgB+EVEhGGESEm5b3oN3Up/DMB/Q2RsncH+LvF7EBlpt0/b+XYAW/4DG2PegYgsfxuAUwCeBvDvvNO+BcBrAbxmet7v99s5oO9jAH95Og5vAPBOAH8GAKy1b5le85rprvsveX1LA/jP0+dbAfDnAfyiMebi9PgPxawr93NAH338EwDfbYxJT9t+AyIS5ePNiJSNX53Tzpnpz93GmGdN5Eb5t6fEDogMYyW/BkAW0Tp4DMA9xpgagHcBeNgYcxbAd+AFKmfGmEVE6sJj07+LAP47IjVnBcB3Avgps68SvZD34NsAfCMiY/jVAL73BXT9OxEpmTVE6x+IVKc7EK3B753+vB2RsV1CZLAr9PwZGGPOHbR+zPNzv36h30GK7wbwO9baJ+Wzf4L5a/Wu6b0AAFOCtzvtk4/vAfAr1tqufjglzANEpPP/Z61dP6yTJtpMegDAsok2gi5NN2ryR3xOAHjvlKA9bIz509L2YWv1MLwF15NO/x2ku/KXALxjup7fjugd/EMANqfk82iw1t7wn/vvv9++GLj5h/6L/Qf/9SsvSlsBAQEBATceN910k33/+99/pHMBPGSP+P8OgCSAhwC8Yfr3bwP4U3L8AiLjMAHgHgCPAPjh6bE3A1jz2vt+RLuqh903AaCPiEz4x34EwC97514G8Lbp308B+C45/qsA/qX8/ecB/Mfp7+cR7Wm+So7/fUTKDAD8KICPyrETAIYA8vLZdwL48PT3n0fkMnTG6/M7AHwVwOsBJLxjPwvg705/fz+iHWkeKyFylzo//dsCeJMc/2UAPzRnDGf6PuecvwTgP8jfFsCt8vfbAFzS+dT+IyIQP3rU9eTd+10Anor5/EFE5GY07c/fnnP9+wH87AHtPzi9/oOISMf56Rx8//T4n5r+fR5AFZGRbLG/1r8TwOcQkf+bAPwaIsL77QA+AuA/+fN8QF9+G5ELXXN6j/8HwLnpsW9HRAz0/H+NSD18oe/BH/PW9b+a07/vnY53Q34el+NPAfgT8vf56XNckM9+C8Cfkb8vIlq7qbjzX4wfAJf4vHOOH/k76AhtPQbge4+6Vqfj8YPe+Zf9eyByIWzNuzeA3HQtfk/MsVsBWO+z1WlfHkK0CbQE4P8G8ONHeWYAd07bSE6f7yqA7zxsrR5hrl4NYBvAm+WzX0D0XpWnz/I4gOH0mEHkuvwFRN+pi4jemxUAP47IdfWnAGQOuu8xU+BMKCMQEBAQcMxw9uzZl6LZPwPgC9baT8QdtNY+Ya190kZuOl8E8HcA/M/Twx0AFe+SCqI4iMOwhMhweTzm2CoiZYp9mAB4FsBpOeea/N6P+bvktfms/P709B5xx24CkAZwVZSlf43IqAAidcQA+PR09/pPTPv4fyFSI/4FgGvGmJ82kjDjgGfrIFLq9Nk0bqUX8yzzngvGmNuNMf/FGLNmIrfKv4dorI+CVQDPTsebeNrr2wuCiZI8/FdE6ygH4CyA32+M+TPeeXkAfwRz3Cen6E///fvW2oaNXLT+NYA/MP38ZxAR0N9GpAp8ePr5JQCw1n7AWvsN1tpvQqQKDAH8LiJF7L2I4pWeixr3F6y1VUSGLBVaIFpTv89TK78LwEm88PfguayVT1pra/Jzi3f82Zhr9LOZ/kx/TyHa9DiojZcSL+Q7yMEY8yZE8/Er8tlha/Wo9/7DiIjNR+LubSN3yg8g8gx4zRG6y3X/z6y1V20UH/qPsL/uD4SN3I2v2Mgt9OMA/r/Y/06fu1anCqpLfKJtmigx0ocA/EVr7e/Iob8w7e/XEG2IfAD775+11v6QtfbV1tofAPBDiLxAHpj+vBVABvsul7E4XgQOIQQuICAg4LjBHFIn5q677kKpVAIil0c/29w898h3AvhDU4N/DdGO7E8aY3zXKMJi3yXmqwBSxpjb5PhrMD9uQ7GJyHXINyIB4AoiQwKAi4U6i2h3+/lC2e+56T0I/R/zWUSG/JIYuhVr7V0AYK1ds9Z+v7V2FVHQ/U9NjRdYa/+ptfZ+RK5VtyM+iYf/bEVEO8/P99n8/+3/JYCvALjNWltB5FZ61AJDVwCcFRdEIBqry9O++hkiO/MMugNwAZHL289ba0fW2kuIXEh945NG728f0NajiFzWYi2e6abD37LWnrfWnkG0Li/DG+spWfx7AP4KIvfKZ20UG/cZRGTsOWG60fF3ATB+8VkAH/HIU8la+6fx8r8HB3b9kM9m+oNobYwwu3ky1/r0CUDMz3c9jz6/kO8gxfcA+LXphgpx2Fp9eHovAICJMjlmp33y2/55aw+1zNPYjwObC2vtDiIS9GJZ+vqdPnetWmufsbMJXwAAxpibELmV/piNYl+1r9vW2u+y1p6cfocmAHza74CJ4oUfRKTE3QPgs9PxOvQdPF4ELsTABQQEBPyew8MPP4xOpwNEyRn8bHM/OOey70UUs3Lv9OchRAHyfwMAjDHfZIw5Mf39VYjcuv4TANgonuPXAPwdY0zRRGmwvxWSBMDMSQM+VRN+BsA/MsasGmOSxpg3GGOyiNwGv9kY804TxWX9FUSk6uPPe3CAHzHGFKaxHN8H4JfiTrLWXkUUA/aTxpiKiRI33GKMeev0ef6IMYbKyg6i/27HxpjXGmN+37S/XURGeVwCgX8L4PtMlJ48i4g4fMq+gKQZHsqI3LU60/n6097xa5hvJH4KUd//t2nMz9sQKVH/Drg+Q6T/w0amY5ZDZJAaY0zO7MdtfXX62R+dnncSkdvW5zGLQ41eGyVN+KVpf8vTefl+AP9l2o+F6dwZY8ydiFSKv+MpjADwNxG5al5BlCnw4nTNvx3TRCxmP0nH+Xn98fBziFTb9037c7sx5o9PxzU9XS933ID34IXgAwD+sjHmZmNMCdHa/SV7xGQTPgGI+flFnmuMyZr9hCyZ6Rq6biPiiN9BB7Zl9tXen/WaP2yt/iKiWLI3Tzdi/g4iEugUuOmafDs8JdlE6fffZKKU/3ljzF9DpGR+anrcTPvMBES56Zog/g8Af94Ys2KihE1/CdN1f9gzG2O+1RhTn97jdYhUsv80PXfuWvXHftrWaUQJa/6Ftfa6TcLp+7c4XdffBOAHEG1u6DkGkefCX5y+D08CeNP0O+OtmJ8MCcBxI3AwQYELCAgICDgUU9ezNf4gUjRa1trm9JR3AviCMaaLKInCryEy3Ig/gyg9+zoiA+9PW2sfBpzx0gHwRcTjr06PfQaR2vITiOKvHkWUAvufIVIo3gvgvdba3RfwqB9BFMvyWwD+obX2vx1w7ncjMpweQUTSfgVRrAkQJRf5lIkUp19HZHQ8ich16t9Mz38akVvkde531trfQkSCfxVR7MktiBJnvFj4qwD+KCI3rn+D64nqjwL4ORO5R81kl5uO7/sAfBOicf8pAN9trf3Kc+zDWxC5Tf0GIpWmj4gUY6ps/WFEiVZ2EMW8fAlRzAsAZxS+A1G84QxMVBRdDcU/h2iNXQHwCUQE+Wemx5amfegicu/6GWvtT3vtXUSUgOafTft3FVFczsOIDNsfnp56FtG8Hkn9mo7lP0WUHbE9vcd3TPu5hmit0yB/ud6DN5jrVa/XPofrfwYRMfooIiN7gCje9KXAo4jWzWkAvzn9/SbAKcEfknPnfgcd1tYUfxBR7OKH5bND1+r0Hj+IiMitI9o8mXEFRpQN8xM2SnCiyCIiLVuI1tQfAPDNdr+sw03TfvI5+tPnIH4M0Xr5KoAvI3L9/XE5ftAzfwei78I2onfsJ6y1Pzd9psPWqo8/hWhD6G+ZeDX+fkRru40oedN3eXMDRBtqX7LWPjT9+9em995A5J3wr+fcGwBgDlM2jTE/gygz1Lq1lqmBfwlRECcQBdA2rLX3Tndovoz9wf7kAbufDg888IB96KGHDjvtUNz+Nz+E73vjefzwN8US5oCAgICAYwxjzGettQ98HfTjjwG4y1r7w4ee/NL14TwiYzN9VKUgIMCHMeZvAtiw1h5oTAYEBLy8OErBwZ9FFKDsdoSstd/O340xP4mIwROPW2vvfZH695xggOBDGRAQEBBwQ2Gt/YUb3YeAgBcD1tq/e/hZAQEBLzcOJXDW2o/O832e+m9+GyLJ/4YjxMAFBAQEBAQEBAQEBBxnvNAYuDcDuGat/Zp8drMx5neNMR8xxrx53oXGmB8wxjxkjHloY2PjBXZj2iYMDnMJDQgICAgIOO6w1j5lrTXBfTIgICDg+OGFErjvRBQ4SVxFVMDxPgD/LwD/1sTXg4G19qettQ9Yax9YXl5+gd2IYEwoIxAQEBAQEBAQEBAQcHxxlBi4WBhjUoiy1NzPz6y1Q0SpXmGt/awx5nFENWFeeIaSo/QJwYUyICAgIOBwVKtV99+FMcbVmvO9OHiMP4lE4kjnE4lEItYzxFqLRCJx3T30OP+NySI+cz3P8c+11s58Nq8t9kHvy/bijvv38vvu3yOuHb+PhUIBlUoFmUwGyWQSiUQCiUQCuVwO6XQaxhgMBgMMBgOk02kkk0mk02kUi0VkMhlks1GyOM5PJpNx/RqPx+7z0WiEwWCA4XCIXC6HcrnsPh8OhxgMBkgmkzDGYDKZYDKZYDwewxiDfD6PbDbrnn8ymcAYg1wuh1wuh+FwiFarhcFggMlkgt3dXUwmE6RSKSQSCXdva617Tj4TAPec4/HYnQsAqVQK6XQaCwsLWF5edu0VCgWMx2N3H85JLpdz4zUcDl17o9EIu7u7MMYgnU4jnU4jkUggnU7DWoter4fRaOTGiuM8Hu9XhUgkEkilUu752G+Ox97eHvb29mbO51zFIZ1Ou7EYj8fY29tz9+ZYsL1MJoNEIoFer4fhcAhrLdLptBv/TCaDTCaq2jAej12fdnd3XT84TjxPx5/tW2vdWgCAQqGAQqGARCKB8XiM8XiMyWTi3j/2MZlMIpvNIpVKYTQauXN43mQycXNgrXXzyme11mJvb8/NCdvm946Cc6RrlPOUSqVm3kmeNx6PZ+aC64LrRs9PJpNIpVLuh8eTyeTMtewfn4Xv0u7urjvmv/vJZNK94/quc12nUilks1mk02lMJhMMBgM3ZtbamXsmEgk3rtpeMplEJpNxa9J/lznGvDf7pD9cP/pdxTHg+CQSCbztbW87ar3JFxXPm8ABeBeAr9iowB8AwBizDGDbWjs2UWG/23BIHYMXE9EL8HLdLSAgICDgOMAnI/xMcRjB8s9Xg4sGlH+eT2zmHeO1eq7f73kkKa7Pem1c3+dhHnmLu5cijlyyvWQyiUqlgnq97owxYH/8RqORM+RIWknQCoUCSqUSSqWSM2ALhQKy2awzwGnc0djf29vDcDh0xttgMHDXJhIJZLNZZ/RzXJLJ5AyRTCaTjmjQoG23264tGovAPrkZjUbo9/sYjUbY29tzz6WEiPenYUwkk0mcPHkSi4uLrk0+497enjM0afjyHnwuHXslRgBcOxxzzgHJjI4NCd3e3p4jgiReJJJsh+NCMgxExALYX89qOCsJIdllXzjnJDgkRyRtPG8ymbgx4b35/GybfRkMBq4djgvvy8+z2SxyuZwjZEpKstksEokEdnd3HUFUQsHnItHh3ySnXCcK7TfHiefwXVEyyGNKKJVUctw413xGEiGOuZJ/PjMJDN9fXqdrPJVKub7GbegoOSOx03XGNvks+jlJMY/zPvpu8PuA/SfYHtskAdXPlIATnJtMJoNUKuXWtL7TvI9uvt0oHErgjDEfAPA2AEvGmEsA/pa19v2IaiV8wDv9LYiKCo4QFfL8QWvt9ovb5QP6CsAGDS4gICAg4BDEqVXzyIj/n3ScGuUfjyNFPhHT6+eRqHnER38/6Frtr0/24lQ+XzGMu2beeMzDvP5ls1ksLCwgl8s5I89vkzvw/Dufz6NcLs8YmjS6qZTs7u7OGH8kFkoASew6nQ6stSgWi47M9Pt995yZTAb5fH7GGFWDcjKZoNlszhiEJIGpVMqpYzRIVZXj9QAcieEckPgVi0Xk83kUi0WMx2NHHDqdjntuqg2pVMoZ2CRw7PdkMnHEYW9vD6lUyikU/jomyaPhTtJijMFwOHSGuM6RKmdcQz6Z4LiRdPGeqq74ahXHaTwez5AuVdvYFxr3OhdKODOZDHK5HMbjsZtjqn8kaFRrcrkc8vm8I/0kjlSkqNKRiFPV4jOSOHHsOLZUinWDQEnKvHeAz8K/dUNIj/vkRNUq/3uJJI1qJlUlXgfsq3lcN1R0OQ7sPzcp+G6pqqb9UDJIcq190X4rySWh0rWqhIrtKTheXGv8l+OkCqRuKmQyGaTTaezu7s6sKW1TSfCNwlGyUH7nnM+/N+azX0VUpPPGIMTABQQEBAQ8BxzmMnjQNb6K5f+u5x52j3lk8Ch993+Pa9PvWxyJO+g+cSSQbR5lrPScRCKBcrmMpaUl5HI59Ho9Zzz5xj/vk0qlUCgUUKvVYK1FLpdzBtRoNHJKSa/Xm3Hlo/GZTqdx/vx5NJtNjMdjR9TS6TRqtZpTU6hGqWseMGtgsm/9fh/dbhcAZlSLZDKJXq83Q6b4k0qlXF8BODLEPqo72NLSEkqlknv+XC6H0WiEXq/nyAZVELqAqrJijJlRCrUPdAVVFzQSVj4D5yybzTr1xVrrCAznx1rrXAdpSPsKtJIUVafUsFe1SMdcCQJJF8kbCSMAZ9DrpgYJn7qxsn/sh45dMpl0rrKqvHHN+Z+R4HAe+TfvrQROn083SjgPANzGg37O+SM54vUcf96Ta4qfk8DzWn3HeT1VXyVkXAskK1ShOP6qvOn8cgw4DrpJoZtXPvlSVVDnWdexHuM1bM9XV7VvupbU/Z2qOkkp50rXjpJRuojyfSHR91W8lxMvxIXy6w43TsgMCAgICHilIU6hOooSN+88n9TEqWM+YYwje3EKl08a45Qw/1w9P+48vWccgYzrh0/kDoN/XiqVQrVaxcrKCjKZDHZ3d50qQhVKyRxVnVqthkKh4NqhMpJOp5HP5wHsG3Xtdht7e3vI5/Po9/vY29vD6dOnnbIEREZqPp9HtVqFMfvxYnSd03g3ng/sk4p+v49Wq+UMZ3XF6/f77r4kB+PxGPl8HvV63alOVMmstc49kYpOuVx2hmg2m0Umk3Hn0+ikYd7r9WbGmkYllcdUKuX6oG54SqLU/U9dzTjO6pLHe9HIVjc1rh9fbSZh4jlqdKt7nJJHvw2Sabanype63PK92t3dde6mjCkkUeaccY5IXqm+0B2TiqnGA6rLpLX7cWsaY8e2+TwcQyXNnAN9fn0WPj/v47/XPtng3ySJPnHzyQaVTHUf5fOqmqfrlOTNJ+WcL40NU/dGVd782Dmdi3luomxfNwhUkeQa9kkyx0pj3nyXUR1TX5XjPXSdcjw11vNG4HgRuOe4exkQEBAQEED4ZAa4XiWjEXKY6jSPuLFN3xg7KKYijrT5/dJ2daf+MDIYdx8fcUrhvL7OA12TqtUqyuWySzJCYxnYN8Q4xul0GqVSCUtLS84VkkYdyRiNehqCdI1jgo9kMolz584hnU5jZ2cHrVYL1lrUajXnlkhFC4gSVuTz+ZkYMO62p1Ip7O3tuWQfPIcueslkEq1Wy6k5wH6yByo7/FsNehKKRCJKTFIulx3BobJHksa+lMtlWGvR6XRmVAoa0DRCOa5KoDhvJIHFYtGtP3UL1HaU/PrrS41xrmW6d9Lw5VgRPMYx0tjGOLc5dcWjesIx09gyKoV0mdTkKEo21M2W6mY2m51xp6Qaq26PSub4HBpr5m+MsN+q3PL7Qd1I+V4pKSH8eLaD3PbUhVQVSZ17jikJqxI17asf+6VKm6qDbF/bIwHyCRzb1LhAzjPfC84r+8LxUNLqj7WOI8k7n0PXM+eD7x9diTm/7DfvyaQv6XTabfJQ1dV37EbgmBG4kIUyICAgIOC5wf9POI4sqeHLz/R3Nari1Cy/bb+Neefq8cNUN/++RyVece0ehZwdpNYpUqmUSzaiqgkNLfZd1YtCoYB6vY7l5WVYa9FoNJwioUbqaDRyLn69Xg+JRALFYhGtVsslOUmn02i1Ws59slQqOXJCYz+VSiGfzzvCBOxnFwTg4se63a5TClRJI8Hs9XozqgaJG4kqE5loIgaSApJbJXY0FDWOq1AoOOWH56iyQ+N4MBg44kyjl8Zqv993xqsa9lSTqErqxoJmklTXQSpHSsZV1aKRrq5t7Ku6ramKoyoV+zwcDh1JUKLD+5A4kIjt7e2h3+87oqrZOUn08/m8S3xjrXWqG5+JhHI4HLoNA1XaSIzU9ZHjQ0LJ83xFSPuvqj3Hm/dQ5UrjD9UlUF0S2Y6vnCk5UcVVk6fwHCUnvnqq7yrnnWvJVwvjvjt5f51nVS3V5VX7xLFQ10WSXt0M0CySPM62eV8lovq+8x7qcknCnkgkXDwu1/5z2cR6sXG8CBxCDFxAQEBAwNExj7jEGR1x1/guSj6J8smRb9jM200/jGzFqW7+OZroQJ/noGvmwTcwD+oPQUVpcXHRGc+qmnEnWw0tEo6VlRUUCgXnisi4LWaQ3NvbcyUAmBGRRKXX6+Gmm25CIpFw13c6HeceSSKmmSeVvGncGnfxd3d30e12nfrG/qoLYiqVQrlcBgAXV1QoFNyuPdukGx/HSLNwUtkjAdMEGuVy2RmRmqVR3RdVSQP23SRJKGikMnEMiaQa7TRuSXL9rH8k4ZqsgmoLSQbnkWSKz8r1ThKuBjawn8pf3ewYx0eCwL5w7PW51ODWjJRU7OjeyqQ3JPh0dVXVTTMRAvukVd1luYY1zksVOlU/1XWVY+ATO46FkgmOq+8ayH6o2sd1oHPBsSKR9dVVTV6iz6PkRu+r7y3nXxO36HcBx5Cfc7NC1TtV+qhkq+rKseL7qnGPnA9dv1wT7Bv7xw0bjZ/kXBljHEnnWPLd0fXK9v0xuRE4XgTOmJCFMiAgICDgSDiq6hR33lGu9RWqeeqZf65/XRxp8n/X3XFg3+XIP+YTQ5/cKSE7TKnz+6HGTCqVQq1Wc3XLqByQOGg6eFUTyuWyI3wkWQsLC+58tp3NZp36ReO83W4jlUpheXnZGavtdtuROGA/fbxmYiwUCjMGLOPF6DbY6XScYqNqE8lVLpdz8Xm8D90w1e2KxI/uegBQKpVQr9fdWCgBo1sZ+6KZEjkXmUxmxmBVFy+qIUy3T7WTMXV8Xq2TRgM6l8s5w5gEivME7Lub0bBVRZMkhvdVxYpzr7XduF5J3qiA8VnZlhI9JThM5U/CVyqVnLsqCboSZmajZG03Ej2fvJFI6UYISZcSSYLkSF0IFRw/JVxKapWs8XwlYf53SFx8mapV6i5I1ViVU2vtTB06/x1T+ORQx4Hzwo0UEjd/g4p9UvLGtvS7QL+DlCzpOLENdeUl4eIxVdE45iTk3HBR116ueZ+Aclz4/iqR9sfp5cTxInAIClxAQEBAwOHQXW/FQa6G+pmvPM1rQ+81jyD6588jSX4/1KhT8nbY+XHPE3e+fzxOhYs7L5vN4sSJE1hYWAAAlxwkn8/PqD4AnBGYSqVQqVRcvFu320W323WxJwBcTFgmk3Gucel02sWHFYtFR/w0UyMNPWZRpFFfLpedMkjCoOrRaDRy9d3K5TLOnTuHZrOJ7e1tNJtN7O3toVgsujp0JC80HIfDITqdzkzpALpX5nI5FIvFGXJLI5znk1AwCQnbpzJIdYNGqhr6NJTVnZCfa+FvzgGvZ/843hp7pPfhcRrlJEAaN0TypqqeuqWSsKjqxnZYw0+TXPBvPrOSN/ZTNwYSiYRTe0nos9msK8VAl1Ylk3x2JVFKpNQ1ksY8CbTv1qlj5Lvt+d8/Ou86NppkRcmCunBq5kslNPo350OJE5U49kvXiK4ndUnkWHGdsz0dLz+u1VfqtF++CyXHhqRO3ydex3eU8881p8TaH+O4+EQtQ0FvAR7n+6eunfre8ZpA4F4kmBADFxAQEBDwHDBPXVNiMo/QHUSalFzNU9+UUM1ziTzIZXLetX6//OP8TBWzuOfwx0CvnTceLA9QrVadSsYMjGoUksSl02kUi0UsLy/PuLIx1oxGJ0nVeBzV8ALgDL1KpeIMqW636+LaaNgp6aC6RIWMRjhVGBqvLBFgjEGtVkOpVAIwW5eORGAwGKDX682kFmctOCUHJDalUgnFYtH1i30nwaRBTAOTRBaAy6zI8zQzoiZVobFM4pLP5x0J4fPyGUjUlHBRGVGDmFB3RT4DDXKSJE0hT8OfBI9zRxJBUkpy1+/3YYxxhJ/kjc9GY51GPu+r6ilLQKiiB2AmUUm/30ev13Pxj4yDU4LgK0BUHn2FSJUZfR59VkUcsdPYx7h3jPfUuMw4lYnvIu9PYqrfC7xOXSaVnPpJcLi2gX0FnH3SZ1O3Yl0TfgF5VSh9Msg2VQ3U2FmdC72HtsPvDI4Nx5zzwb+p8Kprpqq/mthENyxupOskcawIHGCCAhcQEBAQ8Jzhk6SjKFVKaOYRsLg2fNcfbU/b9Amaf089rkalf36ccXdQP/0x8Mlb3NikUiksLCygXq/PkA1rrUvzT4KkZKFcLmNhYcGNx3A4RLvdxmQycXFwdBns9XqOfPV6PdRqNUcMrbXY3NxEt9t1xIAujDSUC4WCK8zN52MWSu72j0YjV0uOBI3Fwa9eveoUNRrc/X7fGZNaG4yEg0Y526O7pxIwVWbYrhKpUqnkCAf7ncvlUC6XHUldWlrCwsICarUaKpWKK3ZOw1cTXug60vih3d1d9Pt9dDodNBoNtFot7OzsoNvtzvSPyU3UiCUh8N3SSHgZR6bxcDTqNfZuPB47F0/2jSDJICHiOKjqxnnnM/F+JAFchyTdmulT1VclMVSqOL+qKvq1zvg7n5dqlLrH6nnAfukDEhCNm9O14hMWtqEqlsabUYHk3HMt8loSaj+ujGtQ+0virOuXz8W1pPfhvVR505g9vZZ90vg/EkC2w80MVQw1m6bGFfpqpcZpkrAR6tZM1V3jTtWFlmPFvnCz4UbhWBG46HspMLiAgICAgMMxj8T4BomeD+y7SPmKFH8/TNXz25vXN95HFbCDiKFPAOc9Y5y6N6/Pce34al0mk8Hq6ipqtdpMUgzdRaehReOKLpMaa8XU7ZlMBuVy2WVbpHJUq9UAREbXwsICyuUyhsMhGo2GUyaoNlm7X3iaBnixWLwuq52SB8aPJRIJ5PN5rK6uOuJEYseYNi3O7ZM1YD/pAhU2xlyRKNDo5PV8fk2eoAZ+oVDAqVOnsLy8jOXlZZw4ccIRNS174M8tEff3QWtQ559JYBqNhnMhXV9fx/r6OjqdzkzCFM4tE4voGCmZUhKgiS40S6Aa/Gqoc5yp0JFgsuYbx1LJINukskuVkoSEY88C8VTyOA7sJ7D/vaClDQg/K6eSXFUq+czsh74zvss150BJkc6hkkeSDiaQIaFS5YhERjM2xsXf+X3SNn3yFvcZ59JX6ZTAsW1Vy+KUTX23+Px+rBuv42equOk1XGe+JwPdJhknq31WN2equlRwbxSOF4FDiIELCAgICDgcqi7FfRb3o+f5BkmcsUxjS9vQXWdfLfPJlK+W+MdVedPzDiOUioPI3UHjQ5RKJSwvLzs1SA1Qus0xUYiqL6zBxlgn7mRns1mXVITqWCaTceQwn8+jUqmg0+lgfX0du7u72NnZcbv0WrSZ5E3TxOvuPtUUYD9pCI3OYrHoCGWn08FgMHBKkio+AFx/SexocHNnv1gsolKpOBJB1zf2gYoejelkMol6vY56vY6bb74Zt9xyCyqVilPUSJD8LJ5xcxX390GkTUkB/2VCGhYhpzLCcWg2m7h06RKefvppdLtd7O7uOqKr8WpKXtgO1wrVHZInEhtuYmhCDhrsVLk4znot1wPXxN7eHrrdrlN3WYuQc8W4RN7DJ+NUkdT1Ub8HOCYArnOB5POq+yA/5/oj8VN1j+okCacSMP3+IWHxa5vxeo45n0WVYi1QPm9NUMXVmDE9ruRJ55vjpwqjEjeuXd2o8jfP+DeJqZYf4L9K0OK+V/m3Em/+qOrN36l0UlHWjQQA7juh2+26uLkbgeNF4EwgcAEBAQEBzx2+EeyTOf9c/htHoHzSF2dQ+KARNE/10j761/t/q2EZp7rMey5f6TuI+AEReVtcXHSxSTSINJtdoVBw5E3doei6RJI3Ho9d9kka4sPh0Klmu7u7KBaLmEwmzq2P7owAXEwZd89pZLM8gLpdaUY+1gRLp9Mol8vodDqoVqvI5XLuPoPBYMYVUuPC9NnomkXXUJJRqhaaHIUZ+4bDIfr9Pmq1Gm6++WacPHkS586dw5kzZ5zC5KuwJB2HzaMqFqoEHbSGfFWH61KPsT0SoEqlgrNnz+L1r3899vb2cO3aNVy5cgXr6+u4cuUK1tbWZsZc+6gxglxHPE4Sx3Gl6y3Hjeomx1eJtdZ3G41G6HQ66HQ6Ts30a+PRrZbGu5INHUtNGEKoqx8JGd8hddejKumTKlV+lUip26SWNeAxVe84ZnSZ5FoH9jOicnyoZlL9Jinl2uVnyWTSxc+piyLvSRdYdbFUl0+OHceI7yD7ys/9ceMa03FQJV/XD9enup2yn1oCQTcPqNRq3CRJP5/Vz5zKuZtMJu67h4mQbhSOF4FDKCMQEBAQEHA4fCM2Tm2LM5wBzBgnceRNd5/nEai4fih58kmf38ZByptPFucF3M9T++YRN1UOarWaUyyongBw2R9pWGtadRp33LUeDocolUozakk6nXYui8lk0sV95XI5tNtt59KoakO1WnXxaOx7Op2eSW5CtzoaagCc6x2VhcFggFqthmQyie3t7ZnkJGyHhh2NVcZ4kTBSqeIOP8eNypufeOOOO+7AHXfcgXPnzjnSxzU0b579taqJLOLWrs7vvPn3143+zf77rm+6RmlAZ7NZnD17FmfOnHFjvr29jaeffhqPPvoodnZ2nEFO0kKi4t9bFSp1k+v3+y6ZCxPbkPBPJhPnrkpVlMpbMplEtVp1hjsQpY5XNZPkVPvH5/Pjquhy6GcF5frjWuE8kABwbfBv9kU3NXhPY8x12Vt9t0y+kyRUVD95LckKSY2qjepCrH+TtJBYkwBxDnx3XVXDOCb6Pem7G5PYqsrJ3303Z46F3oPj6a9VVeTUJVnfBSV5rLWoiXmYoIXrVNceN3RyuRxqtVogcC8WggIXEBAQEPB8MI+8xRm184iY/svf48496FrfdXEeiZtH3uL6EHevg+C3pX8XCgWsrKw4YxHYN4hoTJbLZbeLTeOSBmOlUkEikXA125jYgwaS7oQzWQbVA8anqKFF0qdxVsxAqCnhqcxRzWMCCxrz2WwWpVIJ1lpsbW05osiMkzRiqdjo83LMCoUCFhYW3GdUT6gatdttpNNpnD9/HrfeeituvfVWrKysXEf449aYuowpadM58wmVutn58xqnOM/7O07lU0KnpFSVX7qiVqtV3HLLLXjzm9+MK1eu4Mknn8TXvvY1XL582amRXEckNVqImUSIWQE5B7lczhnhVIYKhYJba51Ox8UtMtMkVbZUKoVSqeRInhIEraVHcjIvXbzvDstzVZ1S9ZdED9jPRMnjHGemr+emhravxFZVUrpXkjxRhdTsk1oInfdXMsP+8Zm0Rp+/BnX+9TtL152uD63TZ4xxMYtczySy+r3Bz3guyacmcPHjAvl9w2vpos3vCr5fWjtQCSXHAtiPe+P6VlfWcrmMUqk0d3Ps5cDxInAIKUwCAgICAo4Gn+jEGatHITzz2lQcxe1RyZjvTqWE0j837jnilDSfZM5TEOPOTyQSqNfrWFxcnHF3UyNnMpmgWq3OqBaMQWLqfBpBrMdFI5aGn6a6p4I2GAxcbBUVDBZhpiEGwCkLmn6eRj+JIVU1tpXP51GtVmGMcS521loX70blTNPus11gPyFHNpt1dd2AfeOPhnUmk8F9992H++67D4uLi67//vz7SoIqCLp2aLxqTJ+vivmkLg7z1joNa40bUuOax9hHxhjSLVEz+A2HQ9fOqVOnsLq6invvvRfb29t45JFH8PDDD7uEEGyP7WsphW63i0Qi4eZXs4Fy/EnAWMAdiFwISdxHo5Fzr2QNPo1jI9HXd0vdm0mSuA4Ze0Zixb7zX5IXVXb0/fUTZdDFl+6fAGYUObarZJFzwvGO2xRRl1cl3PodwFg33ZxR10TdNPDJkxIufq7rU9dU3Hekxrzp2PJ39l9VbXX/VHdJXpvL5dwGAc/RrLMsIVEul909VFklueNmDkl+Npt1mXXnxQ6+HDheBM6EMgIBAQEBAYfjIIVLjxNxCpdPlOLUt6O0w8+1nTj1ZJ7L2zzXuoNwlHN4v0wm41LU01Dn7rW6mVUqFRSLxZkEIvqczFYIREY1FQAqIul0Gt1u16lqJFzMHMi+UFXg7noikXDJQjT7oZJBIFLE2Ja11j3TeDxGt9udcamiEQ7MkjFVQWiUU+nQmmY0Ik+ePIlXvepVuPvuu517Ztw6IWkngVFD3Se2PlnzkyzEkYPnAl8R9H/XkgHziJ2mz6cipO55uVwOq6urOHXqFN7whjfg8ccfx8MPP4xnnnkGvV7PKS1KppkMx1qLTqfj1g9LKpCENxoN9Ho9ZLNZVCoVAHCF3xmTyfVItZdEX6FKD5+fz0KDn8RAXYVVmdL3QBOdKOEhqeKmAlPa63E/6QZJs+/uqcSNa4XrSgk931klKqpS6eaMEifNsqlJPvzNA3XN5PohOWKf4hKx8Fr+zYQsHG8SQlVFlcjzfoVCwSmuJPNcq6PRCO12260HrlVN1MLvEI2D49jqWChxfLlxrAgcgBADFxAQEBDwgjCPWM07Jw4HuTbGkUeftMUpYvP6E+f+Ng8HKYS+wpdIJFAqlbCwsIBcLudczpi2nzvzTPtP1zVNzqAGkKaP1/vSgO71em6Hm6nrlVBpsgoSLJKFfD7v2mYWRM1cyCySNPjpuqgEkeoLiQLVOoJGMu9D0khFkgYz27/vvvtwyy23oFwuz8Tu+JsGvpJC1YRGqWbNnEfc4n78NeavLX9N+ERt3oaAqnPq0qnZ/TQWSd30SAD0OQqFAu655x5cvHgRW1tbeOihh/D000+j1WrNFFjn+lKXR7pMWmvRbDaxtbWFwWCAfD7vSB0VV8aDURHM5XIzhcxVZVPypi59xkTxmKqC6bwqySA5pPKjCUhU9dPU/xw7PabtUomiayVd+9gvkhElOTxvXmIPbjyoq6ZuWlBN05IXSqjYR31P9PlVLeY64lioS6d/TOPwNGZQFUEeI0FX0smNlWKx6NYa3bB7vZ57ZmP2k9fwPCY3okrP7z7/vTns/4GXEseKwJngQxkQEBAQ8BygySLmIY7c6Od6Ho2tw9S3uHscdI4SOp/c8X76mZJEnzDGue7RGFGFaWlpCSsrK87gNMY441njkAqFAkqlkisZkMlk0G63Xdp/AM5diQYX20skEuh0OjM76nRx0rg2JpogCaMxzux8wP6u+XA4dIYzydxgMEA2m8XFixed2tbr9dBqtdDv911CFBZ1JqHT7HpUJ6hW0ECkKjIajXDhwgXce++9uHjxIgqFwnUESOdJY5d8VdMnaof96/+u63HeOpynICsx4+eqsCl5I3ic17HcgcaD8W+Nm6NayzFdXV3F+973PrTbbXzqU5/CF77wBTQajZlEIwCci2EqFdVwa7fbaDQaLsEEM5aSlJdKJWQyGXS7XQBArVZzLpT8UbdEfW5gP6EIybpuYPC51aVPx4zXkvhTAQb2FS2SyThFle8dSSdJFQkLxxvYd7cEMBMDymfjsygZ4rrWzQJg3xURgFubbJekVMkbiR+fV8dGY+z02fQ7iv/yPFWlOb66ttg23WGpovL7gvNIl2u+01RvqdhznKhasph9p9Nx3wmqPmtcYYiBe5FgTOBvAQEBAQHPD/6O6lFVNv98n+jF3cdvwz8/ru15n6khoUTMv5ffv3nqXj6fx5kzZ1yGyL29Pad+7O7uOqPJGOOyUXa7XVhrnWLFeDR1saLL0Xg8dvEpmhmPLnC6y18oFFy8ynA4dESK9eDoQsY4N7Y9mUzQbredexUQ1ZhjVkljjEt+UalUnDFrjHFZDgE4l026tfF3HT/G/r3pTW/Cbbfd5voVp4iqwkPi58exzSNoShD8a9iPeXFwcevI71fcjxrQcT88j8Y1r6FayWelyx8NbxrYzCKpCgjX1Tvf+U58wzd8Az7/+c/js5/9LJrNplsTXFf9fh/NZhOdTgfWWufmy8yUGq/U6/WcQko1RgmTKm86ViTxNNzV1VLdRbU4tippnAeWyyDx0YQsHBeOpapQXL8cM43r4niTFHJTQOvA6fvO94SbNCRpPEddLjWO1Cdl/saBrkd9dh7Tdc7n8p9T16S+W1Tu/L7pus3lcq4+pKrwdI3kWlWSpz8cG5b1aLfbrj4g+5FMJrGwsIB0Oo1Wq+U2k24UjheBw9EyfgUEBAQE/N6GT158Y2vezqoaxL6CEad2+cbzPCLm3yOOPMYpez4Rm6fkqWE07//JRCKBWq2Gc+fOIZvNulTtmriDxnMqlXKFnWk0MVsc40p4P2Z85O56LpebUdJobAOzigTVFU3lXy6XUalUXPpu9osKRaFQwO7uLprNpiOVy8vLSCSizJedTge5XG6GoNEI0/g5Gu2MpdHEFxzDfr+PXC6Hb/iGb8B9992HhYWFuYkaVJ1StS1OPVOFRF3s9HMaw0r0OB5x8+/3xTeUVX3TdeITNZ/AxcXA6bkAnKJJAk7VQ6+lGy1JENfLwsIC3vrWt+Kee+7Bpz71KTz22GOun51Ox9Xq49qg+y2JOdcaXeZIvumuG1emQFUjEiWOCVU0Ehpgvwg8DX5VrkhUGH/JueN6VQXZr3VG4sRNA3VZ5DgC+xkk/VT+JDzss2Zx5YaJ/33AvnDONWGLPjvPSSQSrl2+T0qwuH5VTScZU8JOcszjGg/HMdF1qOuLc5TJZFAqldw1fFaCmzl+H4nhcOjiJweDgasXyPtVKhW3OcPvvBuJ40XgggIXEBAQEHAEzCNJwPUkZx7p8V0PD1Ps9Bqf7MW1r+dpH+IUFP183n0Oeh7uLq+uriKdTjujSHf2V1ZWAERGGQkeXSppjNIwZDKARqPh1BUaRBrTRDc3Zsqz1rrse0xewTT/lUrFFdmmUUz3R+6yM4kFXelOnz6NarWK9fV1ZxSynpwmYVESSaOZSR0YE0fjnMTptttuw4MPPujGbF6MGz/zSZeqFwBm+qRKjX7O/rEdf+0ctjngk0t1VQNmCzXzXjwvzoBmAhoqUVSfaPz7ygmJjipFNKipcKo6xXsvLS3hPe95D+677z58+tOfxte+9jW0Wi3s7e2hWCw6tZiusIyJ1JT6GjPmk1N9Rs4JSZqSFo4hyRKfh+TQJ3CcH5I/rjGN2YyLweP8cu1xrPnu8R1R98i4uDgSIyVRWppA1TiNV9NNBc4LECWD4fl8dqryqrypmqgJUZQI6tj464vHSACB2c0WXb88R0k1r9XvJyquVFrZV/av1Wqh1Wo5TwHGV/K++h2xt7fn1u2NwvEicAh14AICAgICDsdBZMsnPwe5o+nvcUTLJ2l+u3Hk7ShE0O/vvH/j1Bb/eD6fx8LCAsrl8gxRYDxNNpt1CSFoiFLd4m4+M+IBmFHOWq0WUqmo8DcQ1eaiYUQDiwY744BYGoCGF+urMRkI03rrrr+1Fo1GA+12G4PBAIuLi1hdXUW328VTTz11nbKTz+cdMWI7JA1URWg889mMieKOKpUK7r//frzmNa9xiVXi1gLHOS4JiSptJGk0sElaaZTOS2Iyj8jPU1tpUGt/uQY0wYRew+fW2Cj9nPPBseFcFwoFtFqtmfuqgU6DmCov15DGL1GRY/upVAqnTp3CH/gDfwCPPPIIPvKRj2BtbQ3FYtHNI101udYSiQSKxSKMMTMF4DX5SBxZU+WKa4wGuypm3DxQdVZJoB8TRzLAcdMC1xxXklC2OR6PnXrH9abuiKrGcbx4T1Vv1VVTVVuSb2Oud7Hk2veJJvusbpOaYTVuLAE41VP7p58rISPZ4tj47q0kfSRZTDpCwsp+K7R9quxMoNRsNmGtRbFYdK63+XzezftwOESr1ZrpTyBwLxKMMUGBCwgICAh43pjnFhOndPjkaB5543G/rTiipkTwKH2a16b+7u9ME8lkErVazbmaaQZB7kJT3bDWukQgJFc0+mjkMU6OiUEGgwGKxSKWlpbQ7XbRaDRm6m+RqCWTSVQqFbfDTYOdBKpSqTj3Rqp+rK3Fgt/MJmmMwate9SoYY7C5uYlWqzVDdBgPpQap1vJiDa18Po/FxUV3Ho3mCxcu4E1vehPOnj3r1I44IuWrbL5rpCpsWqtOFbe4GLc4qBGpazBOHfY3JQ6Drh39V8dEidloNMLGxga2t7dn4t9UmdM+qUHNUgEkciQco9FopgRFOp3GPffcg7Nnz+Jzn/scPvOZz7i1ydhKbjCUSiU3v+yzJlYhwQIws6bUBZLna5IbVX6pUKnboCYT4RySTAJw642fA/vuw0wOxHet3++7z0nw9TmYrEczP/r3pTpO5c0nXuwTk77we0AJLufMj7VUJYtETFVifq8As6UZ+I5zs4TkVVVN9pvPzXY4Z5r9lPfV2FoleryOiUqYRIffCdw84KaNbtyQFOp7oDF8NwLHi8DhYL/vgICAgIAAH3HqGHB4YhGeEwefhAGz9aRUgYtrY57Sx2NxhGzec/m7xDSclpaWUK1WnbGmabIzmQyKxSKKxaKrm8Q2qZoA+6n1GVemaflPnTqFer2OXq+HTqczoxLQIC8UCs4gpruTFv+mwazZJAG4uLxOp4NWq4XxeOyURAC4cuUKBoOBc7/r9Xqu0DZdKDkfNDRJABYWFlz2zV6v5479vt/3+3DPPfegUqk4BUmJPOdiXkwbjUD+kMCStMaVDdA14pMzf13FxUj6f89LFhGn4unzxBFDkgOfWNKIVuOZhjbVNlVXNKEFyRpJjGYuJckFImN7cXER73nPe3Du3Dl84hOfwPb2Nnq9nss06Rf8plpM914l3ySiJI/+PLK/xhinmvE94vVKypTQaqIetsvrOHZ8No1342ckjrrpoOqYltqgGs0fluXQcgBcB0o6uSnCta4ulqpGqguwEnD/O0nfDb2eY6gklPOsz8f54EaSEkdjogREjE/j2OZyuesUVr0nP2M8YrPZdK61tVrNjQ/VNz8OjwST737ce/Ny4lgROIQYuICAgICAI0AJFBAfV+a7OsbBN67nqW4AYomU/jvPJU7vQ6hR7auBcc/J36kCLCwsuNTqmoBCjVwahzS2SN54f2anZAFujbE5c+YMyuUyGo0GGo0GMpmMU+4mk4lTGIAoOyATnTC7JN0leU8qejRSh8Mhut0u2u22i89LJpNoNpsuqUK5XEaxWHTtdLtdp5qRSDCZBBApOysrK6hUKo4ojsdjrKys4A1veANuvvlmZyD72f2UCNDAVRc6XkPCxh8/cYca3/Pmfx7p4rxoXJffhhJ6XRdxxE//9deTqjHaFxq5/D2OoO3u7qJer6NWq7lMoRonp+cqoSERYXZB9u3222/HyZMn8fGPfxyf+MQnHLnR/rE/Gv9FZY4kRVU5VedIEOhGpwa9uuwxFowqFD/jBomSHrbLuDjG6ZHMkLjw2dkWAPfOsf9cu5x3PjPHS1VO9lvLVyj51FIPVOL4/aDz6quXJEi8v64bVV7VdZVrUTcVdCNJvy9V3WSf+bkSNCZGItQlnG1rTKkSaGDfVVZjGEkm9R3n/AQXyhcJBggMLiAgICDgOWMe8ZpnUMf9x60kKs5NLS4m4yg7uHHG9GHEUq/lPdLpNGq1mku1zgLYdE+yNiqqDMARDHVlo9HEezKjH0nT7u4uTp06hdXVVVhrsbGx4bK1lctlNJtNAHCG6nA4RKfTcQZ8LpdzfaOiAMApDFQc+v0+dnZ2XMmCpaUlJJNJNBoNdDodZLNZl+57b28PrVbLnTuZTNwzKvnIZDI4e/Ys8vm8c68yxuCWW27BW97yFtRqtZkU6jp3ca6SNPyYgMXaqNA0M9xpfJcawvPWR5wK658zj7zNU3nj2o1rO06Z9ttV49Y/rooNFYyNjQ2XiZRkiutZSR9dTLXmH2t6MSmFMVGGwHe96104c+YMPvGJT2Bra+u68VPiqsk+gNlskfwb2C8IbYxx2Sb1+dh/9kUztvJ6JQ0keHQHpssi47h4LVUgKn4cI413Y19V2VPCyc0GLaVBV1ASbSUxmnxG4+ustS6jI4mSuijq+JLMcg6V5CiJU7Wf7wqP6frjs+TzebfRoe8Zx0YzgFKZ4z051jyPhJ2u45NJlEiJmwUk8qq86v8DunkTygi8SDDGwAYGFxAQEBDwPHAQmYojeHGKxTwlTM/RduIM8XkGt55/0P3irtdEJVS/uFPN3Xe6aVGN0BgfGnvcoWc2yW63i8FggFKphNOnT2NpaQmDwQCbm5szu9+9Xs/dM5FIuDpKNKZKpdJMvBKwr/KNx2PUajUsLCxge3sbW1tbzgUzl8u5uk10vatWq0gmkxgMBmi1Wi6ZBQ1KVRtoxJ8+fRrJZHLGSH/ggQdw7733olqtxroeKuHw3SVJPljDrtfrOTdRGtRqjPpzFrdBoITooPP0fP8c//q4tXIQWYwjcnHX8FxV69gX/t1oNGZimJRc6Ljwd8aBaUIRna9UKoU777wTCwsL+J3f+R08++yzM3FeXFdKikhyVFUB9ok+yT5j3niM7WjWUJJCPifbUnc73ovkzRjjVGJNh89YOca2ackDrl/NhOnH92ltOrZBcsI+6TV8Lo3zIlFTdZT3VzVN14AWKednHAv+rv8qIVI1je3qPdVVmPfiHDCBTalUmkmoRAI4mUxcOZLxeOwye5IwUp3VGDv2jW2Q1Kn6F2LgXiSELJQBAQEBAc8HBxEv30g+CsHyz+dxPVev8V3T/Hb138PO0WPJZNKRI/4w/kaNSXWJojrHHerRaIROp4NUKuVqnW1vbzujtlaruVT6GxsbzlBSA5lp0weDgSMxTISSy+VQLBZnYkt6vd6M8VQoFFzyASpk5XIZe3t7jgjQLTSRSLgMmJ1OB/1+H9ls1mW/pOrIrHUksjR0C4UC3vCGN+Duu+92KqM/90owNNmIqkZUMUnc6DI5L8ZN52+eCyX/9ZWtw1Q4f/3FHfPvoZ/H4SBlzwf7qeRHCS/JbhyR43PS1Y+KFd0IuZ6A6F09deoUvvmbvxmf/OQn8eUvf9mta65FTWhCBU1JI5Pn5PN5p2BxDFR9IUEi4eBz+Ak52E9V+ahukyB2u13nMsr4K75f6lqqBJFqGfukBI1rjUSPiVaoppHYalyqxqUB+0ldNElLXPISP4W/ltrQMfITkOj6JZliv1QB43eFKl4aV6qKpu/GShKm8bOsFcfx5nr0Sz/oM8Wpb5yLG4XjReBMIHABAQEBAYcjjgAd5mY2jzj5O876Hz+v0+uVEMa5zs0zjOOIoBr0+hw0vMrlsksGoi5ZNFZ8IzadTqNYLKJSqbhU7qypxjID6pJ14sQJlEolp7oxcQjJl7WR+2QqlXJkiuSuUCjMEEoAM4YYlYTRaIRr165hPI7SqTNz5WAwQL/fRzKZxMrKiiN0nU7HKTM0PFnomZkl2+22M5QLhQLK5bJzd3zHO96BW2+91cVRxa0DVd5oSJJgsP8kbjQeaejy2nlrT+c5TrWNWxO6ZlSp8NfaQc/jq4z+NXHX+xsPcWvUv5c+O9eIjiUVJ1VEfDdLJpvQGDmt81UsFvGmN70JpVIJDz30kGtDlU9uFnD9A5hx1QT2S0BojKK2xb95nro36gYG54PkUWPx/FT63EhQ8hZH1vkeKcmy1s5kctVsilyfjLlTl0Qq2nzfOD5UnnS82Ja6MVLR1vWmsXA8l98NfDb9vvLXi64nP35QFUjNeqljyQ2jRqPhagayfAjJHNXfuHeb40HiSiKq79eNJHHHi8AhuFAGBAQEBBwdPvkBnpvC5idxiCNk2iYNBP+YthH3md83Pe7/MJB/cXFxZvechhYVBrpBUuVi2QASF6pHNIiVjDBxSLFYRKfTcXFwmrAgn8+7Gl0kb8PhEOl0GqVSCeVyeUYBoHJnjEGhUIAxBu1226klmqmv2+1iPB6jXq9jdXUVk8kE3W7X1R6j2yez8DG7JHfeGdNGAre3t4dqtYq3v/3tuPnmm2cMV39efOVNFSQqjHxWElaSN5/cH0XBiiN4/rpQaAyZur8dpsAp/I0B/Xzetb4RHPc++e1ptkJVMamqcP2SvCnh43EttjwYDNx6yeVyeOCBB1CtVvGRj3wEW1tbzuBW4k2iReVPlZbxeDzjpqlKG981rgNuilC50vgoErLJZL+WG4kMiRbfLbo7KnkFMKMocR64vlWF4nuuxcLprgzsu7HyfmyTbtN8b7Q2nBIo321T588nXOo6qSSQY8J3MC6xDn/U3VKfQb/bmCRJ1xm/d3Z2dpwyZ6113x0+udaEL75yGvedHfdd/nLieBG4oMAFBAQEBBwBccrZUd3BCF81O0w50/vOM+IPMnrj1A//70wmg0qlguXlZVdHioYtjbJSqeQMLi0VAGDGjZHQGmXdbhfpdBqLi4sAgM3NTfR6Pecaxj5oMpLBYOCSiLCuG1UT7myzbhfVAhYCV4WASl+v10Mul0O1WsXi4qIjb1tbW0gkEsjn8y6+KJVKoVKpoFgsOvWuVCoBAMrlMvL5vFPj3vWud+HcuXOHkjc/3o2JEUhwmagkzmXyoLXk33MeifLXlL+u/Ot1k0F/4p5vXh/0+qOu83nvk785oQRFlR0lAzTWleDx2Hg8dmTFT0KTTCZx2223AQB+8zd/Ezs7OwBmY6s05ozKDNUsjUFT5QnYL+TNGDv9DiAZ0OyJJJUkTOyHMcYptwBQLBZdQhOSNc1+SnVbC3NrQhYtiA7AbYwkEomZ7JxKQEhK+TfJrGa/pEKvpMdXxeKUZSpkvK9+rmPjf5/5Gw/aNgmXtq1Jhuiy3Gg0XH1Bfa/VdZLzxc+o4nIu45RpXqd9erlxrAgcEJJQBgQEBAQcDv1Pmn/HKQkHXe//raQwTkGbp6LMa9vv02HKS6FQQL1ex9LSkiMpAGbco2q1mos1KpVKqFarrvYW1Rqi3+/DWotisehUt4WFBSSTSXQ6HZeYgwpCLpdDoVBArVZDIpFAp9NxigKJVa1Wc8YpANeGpkzndVQNAeDkyZOOFGWzWSwtLbksk3SlZM04uitms1lX545ElgojY+U6nQ4qlQre+ta34qabbppxpzpMedN6blpMvNfrzdQe8408f+5ogHJNzlsPPuI2IeatGZ1bdcfzMwnGwSd0cX3wjVtd/3pcyaTflrrVkRBQ6RmNRjh9+jRSqRQajcZM/BOfh0pcoVBwJA6IiOHtt9+OfD6P//Af/gN2dnaui/ek0qZKFOdPFSKOF9coFTVmPtTxVnJBt0xudJCAkPRrgiAlTryW5JYbJKoWsh8kaIzb5Lr0s8lq0Xp1aVQXwb29Pae+k8Cyzpq6JfOZ+W4omfMTuejckwj6ijTXmKqPXKeqmPF5dbOJc8QSIyw9Qk8AvrNsS9U9dVXlHKprucYh8l7PdcPvxcaxInDRQrrRvQgICAgIeCXgKK6McccPU9TiDO6DCNtB1x2lb4lElBJ7cXHRKWqZTMYZhjRKU6kU+v3+TLpsko3d3V2XsCSbzaLf7wOAU71oGA8GA2e8sog3DcdqteqSjVCFoisSY/GAfeViOByi3W67/gBAo9Fw7dIlc3Fx0SUlqdVqTi2h6kCXMxq9NE5rtRqAyKAjOVRXylarhXq9jre+9a04e/bsDHnTufWVN7pDUpkkcev3+248VUnSeYojcwetC9+lTK87CnieTwx9QqXxSHGKQ9y1BxG/w66dB+0PMBuTdPXqVVQqFUdkCI4Rk37k83nk83mnwlBhOXv2LN73vvfhQx/6EK5du+Yyoo7HY7Tb7RllRhNv6DtOVY6GvTFmxoWSKhnJGmOxSJT8otCaeIMqEM9jTJ0ScM2wSFWcZIkEluSNrp8+eWSiELbDd1QzVOqmgq+W6WaAulz6iUP0b3WV5ZxpTJ0SQa4Tji1JNNcm76dzz+8hfrfwGVgTkNf7c0Lw+4ht8hz2gffQBC1HWc8vJY4XgQMQNLiAgICAgKNgHmE67D/nw0hbHFnTnd2DXND8z1WpiDPC6TLJLI7AvhsYDUBNLc6slCRIAGZqKHGHnm6WzWbT7UxTLaCxyPT8TAKSyWQckaELGxOVZLPZ62LFaLhmMhn0ej10u11X3Hs0GmFhYQF7e3vY3NzEZDLBiRMnkM1mnWLIODM17IBIicxms+h2u0ilUo7w1Wq1GTfMcrmMt771rTNuk3FzpgSOhjWJG9vic6vLpL+W+Jm6DMbhKC6KbJM/z8WgjDvHd2ObR/iO2k8/pumga+PUOCW6Og8kR1Rj1E1Rz2OtQWOMW+epVArnz5/HH/yDfxC/8Ru/ge3tbUf4df6pEKn7Iw13bkpQzdJC8FpTzSccTDjCd1BVb2ZBVaJG1Y8EgmRISaSWHaCSOJlMZkoekLxp35QwkVBqwXA/86WuMX6PaIyl/8zqTqrusHH35RhpTKIqX/rMwL6rp6p7nHuOM0umUN3nHPgbcJochoRdVWn2i/1VxVcTJN0oHC8CF2LgAgICAgKOABoYwOEuk76BGecu6X+m7fr3OOx+cefEETuWBaDroMZwjMdjlwiERI/ZIEmemLyDMWtUjvh7r9dzBXS73S5KpZJzL9vd3XUxR8zsyJgvGl9UA9VdisSLxqy1Fo1GwxXSpSFVr9ddDAtLBDC2jX3rdruuHQBOfcnlcmi1Wm4MSHJzuZwz6lKpFB588EGcO3fuOuVNx91X36hi0G2z2+3OKJI09OJU2ri14K+DeQqdkis1NOPW0FEVvTjQYFWFKc5IjXumw5TouHMOUrs13k3JGY+RRJGgaBIRa60j8lybNPpPnTqFd7/73fiv//W/YmNjwxE99k3JCTAbm8dxJ1ngM/jzo4mDgMh9mX1hvBvdPlWd03ll3JqSVHX1pEJIksZ1SVKn74WeT8LCuVb1S5VY//uN0HWnhEeVUT/TJ0mhtmetdW6gGpPnuxTr2Or7odfwu0tJn6pu/NzfNOH1Os4kzHElI7S8BTcTbhSOH4G70Z0ICAgICPi6R1zwuRou/P2w5BMK/7w4o/0wZcVXJuL6R0JSKpVcID938alOUKliNrtKpeJUIwCoVqsYDocuJm1nZweZTAb1et0RE2MMer2eU7GoZnBMqGhRTWBCh3w+71y9uLMOYCZmjtkpNzY2MBgMXI22ZDKJcrmMbreLRqOBXC6HWq2GVCqFdrvtridBo2JHJaNUKrk+l8tl1Go1l+iEmfiy2Sxe+9rX4uLFi86NLm4+aExqzJvG3HW7XbTbbdeuKm9+e/68qmuWP/f+vGv/9DiVCH6mSR98NU3Vl8PWpRrSvNZPKDGPrMWRUr/deUrzvL/V+Gc7h6mZvA/XlTHGKb7GGJw7dw7f+I3fiA9+8IPodDrXuQWqSqOZD7kJQGJJkqBKlsZiqlpnjJlxe1Tyyb85r2xPk2twfdGVMp1OuxIcdOMF4N4/bjZwnbB9fR6OldbgYx/UnZGgeq5qmpIl9lOVPJ0PEkiSNFX7lCSzz3QL5brVeSZRp7soS6BwPHicbSYSCacgkvDx+TimyWTSJVRSFZ0Ejiokx+IoivdLheNF4DC/4GRAQEBAQMBB8NWJgzKMxRnlcYpDHOYZvtrGvGtLpRJWVlacCxnT5dMY4c4/a7cxWQnT9CcSCZRKJQyHQ5eQZGtrC0DkbsUC2iRr+Xzexb4x/XYqlUK9XkcymXRp/mlcsQByMpl0JQp2d3fR7XadkZXJZDAcDtFsNp3LE++TSCRczabFxcWZQuJ02aS7G42x8XiMcrmMXC7nlI18Po8TJ06gXq+7mDwmMrnllltw5513Xlek258TVd2ouGimSSpvJLUHrRed+zgFbh4xYj+AWYOb8OPB4gjdQapXnHIcd+841764vmr7h21GPBf4LqlKBgG42C/FaDRyKjLfEyp1qVQKZ86cwRvf+Eb81m/91oyxr+8giRSNe2Y0VEJJQsQ4Uarc6mbHTI7qUqhEUd9bJvXR2DVgP86L7wBJIdc2+0k1TmvRUTXjeSR+JCaErn1gv54aFUEqzX7SFo4XSZnG2ul5/uYIx48ETlVIJWs6BvxuoeLI8eSz+1lffeWW7Wvhcu2nxsxxniaTyUw9PX+cbgQOJXDGmJ8B8C0A1q21d08/+1EA3w9gY3raX7fW/sb02A8D+JMAxgD+grX2N1+Cfs/pa1DgAgICAgIOR5za4RvWep7/9zzD9yClzf/8MNVC+5jP57G8vIx6vY50Ou2yqwH7u83Ly8vOCLTWOhdGqkUkOsPhEOVy2SUGoXFOt0iqdMVi0RXgbrfbmEwmLhmJtfu1pbi7XywWUSgUnPHIbJVad4kEjarHysoKarWaS47S6XSQyWRw4sQJJJNJlxiE5AnYL+pM1aBcLru/d3d3US6XceLECZeNkOpgIpFAtVrFa1/7WlQqlQNJhB/fQzWj3++j3W67mDe6s8WpFTqnvoLkz2/c+lDExaTFrT01KH0VThWjg9S0OCi5oQEcp1z6Crb21SevcWN12JzwPN99lP2jOsLPgCi5CTcJGB9GEnTXXXdhOBziYx/7GHq93oyixjEigdHaYBxrEr9cLufiRrWWm1+Wg2NBopJOp50KrAl4SLpIFqi0cx6ZybXX67mNkXK57OL0SDzVlVNLEmjbnE8SPN0A8JOF8PmBfZVOM02qas1nVVdcTQhCUkW3UPaFbopULnmOryhz80TrWvLemp3UJ1kksZxHziXXhbpJ8tlTqRRqtRrS6TTW19dd0qcbKRodRYH7WQD/HMDPe5//Y2vtP9QPjDF3AvgOAHcBWAXwP4wxt1trx3gZYBBi4AICAgICDofvlsZ/D3MB478HKQ8HqQ1xhDBOddPzyuXyDHmjqxQNMrptcVecRG08HmNra8vtIKfTaVQqFQBAq9VyagRdovg7lTDGvtEYrNfrqFQqLrsfAFdIWY1Q1mBjfBgQJRaZTCZotVqOKGp2Pn5eKpVcpkGm5KehTKOz0+kgnU5jaWlpRh0EItfQkydPwlqLdrvtXBtJIO+//34sLi7OGG/+XKjhRwNU69l1u11nPOpuvxIVP3GDf495KtU8AhOXgILX+O3p59ofuoEqiaPBehQFmO1xzjTeSPuv952n1B30/hwGHQufHPlt8Hi/33cxcVRtGDd6991349q1a/jKV74CAG5e1UWOSpa2S5c6vntMvQ9E653naQwbx41KNNUe3pMZWamAk7hwvkjkNBFQKpVCoVBAMpl0tRNJDkko+U5qTCCfTWMH+cyMzYtL/6+kimRUC58TGjuo37f+uiERVNLG8SGZ5vtL9U3r4dFlVOeK34PsI99pPp+qfJqshcSNY8jPs9ks8vk8yuUy+v2++z76uk5iYq39qDHm/BHb+1YA/85aOwTwpDHmMQCvA/CJ59/F5wBjggIXEBAQEHBkxJGmOBVj3k6rb4jreXGEbh550zb4O3fVT5w44RSj8XiMYrHormUGSBaTpnFE1YuJEhYXF1Gr1bC3t4eNjQ13/WAwcG5avV5vpogwjZRcLodKpeLIIxONpNNpFAoFF3dCV8JUKuWKZrNcQbfbdcQnmUw6Itlut9FoNJBIRKUQqOC1Wi2X1ZFZMovFInq9HowxWFxcRKFQcG0aY3DmzBmsrKyg3W67GDmWTrDW4r777sOFCxdis8fpXKjbJNUBEje6TTKGRt2p2A4/U/Lmbw7EbQbEKcA+OfLdKeOUqHnki9DYHxrIaszGrUXtD/9WBWYesXwp4Csr/vPPuy+VOJbJ4DtWLBbxxje+Ee12G48//jiAyBVxOBzOGOpMhELSQmVG67ZxzQP7STbohsg1xfeWJI/qExOPUEWnGsY+a+wVlUTWfWM76t5I90i2z6RBJJE6ZnR75Frgs+p3IUkX2yEJ0pg9Pre6IPJHy474CjDJWy6Xc66KVATj4uQKhQIqlQqazeaM+yyJoLqV6/tAUql98zOO6rzxeo45yTfH/EbihcTA/TljzHcDeAjAX7HW7gA4DeCTcs6l6WfXwRjzAwB+AADOnTv3ArohbWJ+Vq+AgICAgAAfh6kDBxmEcW3FtRPnKqY/cQZ3sVhEtVp1iThoLNFgZL0opjJn4g5NOkEytrS0BGsttre3naHU6XSQy+WwtLSEVquFVqvldv7ZFg2VXC7nXJao5DG2jlkq6f5FdQaAS6TALJNUMVgeoNfrAYBTEJggot1uo9PpOBWE/aAaSPK3ubnpjp8+fRrLy8vOpYzGF3fLz549i3vuuccphfMIhhpwagDTlZOGtSp7OsfqPqZrgmpN3D3nqWhxx/RzVZzUIOazk3jEqb78l+3zWZXI+UZ+XP9UaVQXTR2TFxvaLgkG15wqfz755cYDY+LoSpdOp1Gv1/Hggw9ifX3dbQgwiYaf2MPa/TgpYD8OkSRL54RQlUpJF/ut7oIkYswwWSgUZrK/agFxuvGxfSp0mrCIrsu6lqgqM/6N88++c71yTjXBCNtV6JqPi5/THz63jp8SO/ZRM32yvAnHkOVJSPA0ds7f5OA77c+HKm+MKfY3V7h+GIerrq98b24Uni+B+5cAfgxRyNmPAfhJAH8CLMU2i9j/+ay1Pw3gpwHggQceeFFY10v0XREQEBAQcExxkDrmH5tH0BT+OT5ZUAMh7t7MBFksFmcMNLpX0WgYDofOoKCBpsYgDZxqtYpms+li5mgcLiwsoFKpzKQep0uZMWYmmyTJihq1jAfpdDpO+aMhSaNmMBg4JYxtLy4uIp1Oo9lsYjweo16vu3IGrVbLkaTRaOSybDKuJ5FIYHl5GalUCjs7O7DWYmFhASdPnkQ6nUaj0XCG5t7e3owL5Wte8xosLi7OLRnAceW/NB7pNskMmhw/JW8E1ToAzuD2kylwruPWGu/tEyWNx1H4xqO26SczUZVMj/l9o5sZAGe8KymLW7u8jv3nGL/YRC7u3jTOuU7846yNRpAQ5PN5N4eMKTt79ize/OY342Mf+5gra6GbLFwX6XQay8vL7plzuRxOnz6Nvb09XLp0aaYOIjcASK7y+bwrl8FzSN6ogFE1ZxIivttU3aiK85mZ3p5unFzzzKxIMsSxobquLpOcbz4jgBkSzzXDflP55XFmuFRFluPKcfeTt3DetPwJPQKoivnxdrw3CZWuV13TSh7VjZN/a5ZPtsex8d2KSQytnS3toO3cCDwvAmetvcbfjTH/BsB/mf55CcBZOfUMgCvPu3fPESEGLiAgICDgKDhIdYsjbgepcL4rkL/zP8/49d3n6vW6y6aoMSA0HBYXFwHAZYpkWnTuJDNGpFgs4uTJkwCAjY0o11i5XHYZI1dWVlAoFLC5uelUORq6NF5Y7Ju78jRo1GWy2Wy6PrAGHHf/ScZo8LJvjF8jCQTgMu/R0M1ms65EQavVQrfbdUkimFSFCVBOnDjh2gAiEkW3TBrSr3vd63Drrbc6Y9ifW3XFU/dJGrn9ft/1jwas7zpJ0kjjV9UvNXTj5p5/K5FTY/S5KsDqaumvUa4XrZXlq22auEVj3Q4qXKzqBY14PwPh84WOh/7tKyT+GPjvn57LchKqKqfTabzqVa/CtWvX8Oijj7ryGKlUCtVqFYPBAI1GwyXyKJfL7t1grGalUsGJEyfQ6/Vw9epV54ZJNY1kheRJMxsy5k3jSieTiVt77Cc3bLREAMmmJhbiO8e55Nz4KfRVQVX1jGOi13Pda/xbnEsk3zWOPz0GqOzpOqTCR7dNdf2meyrvxzXIGpC+6ux/pyrZ4vco+09iy9/9jQr+6EaGHy/3dR0DFwdjzClr7dXpn38IwJemv/86gH9rjPlHiJKY3Abg0y+4l0fvF2yIggsICAgIOALmGZZqBM4znuepaP6PqifzVJdUKuVS3hPcgQfgUor7hvny8jIAuLi48XiMSqWClZUV9Ho9F1s2Go3QbreRSqWQy+UwHA6xtbWFbreLdDqN4XDoCBILYasrJu/JeCGqUnRBoyHHWLdOp+OUNxJDxtXwmcrlMqy1LlaORIkFj0ejkXNnozFKd0gAWFlZwcrKyswueLfbde6gNBar1Sre8pa3oFwuz7hn+cqTkg+qGiwYTgNaXSd94kejUxUofx0pKfPXgv973Pl+vw8iRfPWMA1WEnNV5Pw4OCWgqn5QtYgzmnkvjpGfDv65wCdu856P4Hyo652/oULjm0k8MpmMU3zp8vu6170OV65cwebmJhKJhFtnzERIAsW1ynsbY1wZgTvuuAN33XUXPvrRj2Jzc9O57nKdUJ2i+sN1xXc9m81iPJ4tf5HP5918KnnLZDKuDc4r507XqCb/YAKV8Xg8816RuJFsWmtnXJKppPlER8cZ2HcNVfVXvwv5vUdlS0mkqvk6Xlo0m5lpNb5QM5ByTtRrQZOx+Gqcfmery6Wf7Ijfh8lkEqVS6bks5xcdRykj8AEAbwOwZIy5BOBvAXibMeZeRO6RTwH4XwDAWvuwMeaXATwCYATgz9qXKQMlEBS4gICAgICjIY54AfGuk/w87rgeiyNwPmHw200kElhYWEC1WgUAZzgtLCw496xkMolWq+V2o9W1iokQgP1Yl/X1dWdkMDaNWSCpTjFBynA4RKlUmklUwl1qGjMkbpPJBJ1OxxEuEhomX6DyRlIGwBmuJFOMmWNSExpKrFFnjHEZKfkMo9EIOzs7SCQSqNVqzmWSRjqP7+zsOEOYx173utdhdXU11nXSn0NV3+g+yWyTNJjVLdJXx6gQxJG0efdWA1uJhr+2DiJsccou21ajlOf45/uZHFVxUNVSx4cExlfZdN1rBsDDxj8O80hu3PukZIXn0FDXv3WMWeeQa4xuiMvLy7j//vvxwQ9+0CXUoTpFgkViw1i4QqHgVKS9vT00m03ceeed+LZv+zZ86EMfwrVr19yaVBWNGwV0g2QJAa4/Esd8Pn8dcWPMKt002b4qafO+f1S5o5pPws2U/ACcQsl1QIVdVTYdc41545pRFZDnKcHkj7peUk3k51T9uVZVsaaqqMqYrglNssJ1rUmIuDHBdc2+a0wx2yOBJQFnKZcbgaNkofzOmI/ff8D5Pw7gx19Ip54vjAkELiAgICDgaIhTxPydZf6u/+o1cSqBqhq+ka+GZC6Xw8LCgouBIegWmEhEdcs2NzcB7CcKqFar2N3ddeSt3+/PqAqqNLFdZo/s9XrIZrOoVCozddQ0k6Sqb1oigEoUAKdasPTAzs4OhsOhI2XMjsmkIhwfkjMmA2FsS61WQzIZFQZnJj9mmaSSV6/Xsbq66u7Z7/fRaDSc8UqDN5GIipVfvHgRDz74oEuxHke8feVN1bd+v+8IHNULP8kJoe6n/hrz76vrIm7dxSFuLcWpiXFqmEL77LelRrXG+vC5fDLnEzlV5LRdkmqtIfZccFS1UedE46L4rxrj/Jc11OguyZjTixcv4rHHHsMjjzyCWq2GSqXiSlXwGfL5vCMsTIrCDY9+v49HH30U999/P9773vfiF37hF1wGVroBckMA2FfcjTFO9eX7x7qLdAnmfJC8MTMq+0bCxe8VJT0AZu5PMkZ3bW5AcK1zo8aY/SQtJJwkMRr3qoqYzg/vzf5xrqi08ZlUGeN3DQA3tiSZVAkZD0xXbr0niRs3XfhucqNFYyB5f3UZ9ssWKHZ3d10NuhuFF5KF8usOBsGFMiAgICDgcPiKW5yKEbdzTcS5x+n1/n3070QigcXFRZRKJZeoJJVKYWFhwSUzYFxZt9tFJpNxpQNGoxG63a47TgOKyslkMnEJGIwxzhCiUcSYG7omFotFV16ARjuNHWaGJFnSlPo0cHq9Hra3t12f9/b2cOLECSwsLDgDkQSKWSTp1gTAlRQoFosupk4VPaoPp0+fRqlUcupGq9Vy2fnoTsX4oXPnzuH+++/HhQsXXLwf1QnOnc6rKmrss8blcWz0PBqoSnZ9AuMblIq4ZCX+MSV3PinSNeqvS39txqm/foyc3yf+zc/UsFUXSlU5mHwiTtEmKVQXUx9KsPz++s8Yt/nCPhN+DTWNyVKix40OGupMAvTggw+i3W6jWCy6BDzc4KCKxueli2MqlXKbE61WC08++SRe//rX47WvfS0+85nPuDFU8kbVzZj92on6/un601qPJFJUhFQ5Ym06PqOSHxITbupo31U55bzyHBI/tst1QCKp2ST5Lqk7IueX/dQ4Orqiamwes9+qWyOJVLFYRKFQQKfTcSSc1/E59Hy2oWRWx8VX3ZTUsR19Fxmb+Hzdg18MHCsCh6DABQQEBAQcEXHKmH7uu8kd5sZ2kKFJA4ap+6meMe6MCT1arZYzyLrdriN4yWQSOzs7GI1GLtFJqVRyO/XMUsfEAywqTIIH7LtY0ogrl8szmSmpwqTTaZfEpNVquQQKjMdh7Eyz2XSxdMyeedtttwHYL3x87tw59Ho9NJtNWGuxtLSE4XDonpPZMLe3tx3xBKIYFz7j0tISisUiut2uc6W855570O128cUvftGVQHjVq16F173udahUKq5wc7lcdjvrcW54PsGhEsO4IDWSVb3x59YnWQclN1D3MsU818DDlDQfSiqPeg2hBqkSQRrAatCrMqfKnWYR9BVCdWU7rH8HETp/Lv1jSjxVEfdjtUg+uLHBDYZMJoOVlRXcc889uHTp0oz7JIkbn7vX67mC9Yzx5GbHlStX0Ov1cN999+Gxxx5z5TGUMGQyGRfv1u12XRKhXC7nlODxeOxirlQVM2Y/BT7nI5PJOKLHzRuOh8aYUXHjNUrEdIOCKh4V92w2O5OkRF02VYnVunRsXzc6uCZIAkkeqfZR1dQNEZJ/3ZiiS6uSdX0Gts/3Vsefx1Rl5LpTl0puULDPqn7eKBwvAhcQEBAQEHBE+Iacr6YB8W5qcW34MTb+OdlsFvV6HUtLS87IoLLGxCBM508jSnf0Wcy6UqmgXC4DgIt90WyP3MVXFY4EUI1LqgokZzT48/m8K6ZNRQyAy7LHWJ+dnR2nhJE8LSwsoN/vo91uo1wuI5vNYmdnB9vb26799fV1ABFRolKxvb2N7e1tRzi5218qlVCv17G3t4enn34amUwGN998M0ajET7zmc84peKOO+7A7bffjjNnzqDRaOBzn/scVldXXRwhY2l0vnz3SaqHJL5+vbd55G3eOlL46lmcequkTuNw+NlhiFOh4q6bt34JGq1q/PrqtKpXmtiExjuNX5IDX4nkeB6U1fKoiFMnlQzwmaggatp8TdKi6ekZ1zkajXD+/HlXlxCAi1PjGNGtke8JXfq63a7rw/r6ukt+4icL0c0XKkksNcBkQRwrPgcTlXB8tTaZr4ppPTeOh2apVAJFgk7SxDnVudaYQm72cAxJJvkucYz1GrbJ7xzfbZIbUPqdpO+c1rnjJhETJPnqqqp9upngbyLwGdVlmO7mWhSdJJkbYHQnvVE4VgTOAMGBMiAgICDgUMxzeQTiY93irlHSpsatb5QWi0UsLS05d75MJoN2u+2MBdZE03g1a62LiWGMW71ed1kkrY1iYqhk5XI5l20yk8mgUqnM1OPivbRgsBYsVpctFq2m0UbVjYbS1tYW1tbWAABnzpzBHXfc4eLXWq2Wu/fm5iaazaYjjlQImUAgn8870qrjWigUUKlUUK1W0Wg00Ov1cOHCBaTTaXzlK19Bs9lENpvFLbfcgle/+tWo1+vY2NjAJz/5SVy5cgWZTAYPPvigi2eaR2Q0gQINYz9Bi7pYqZIBzGY41PUQt9Z8VTcOvjJ3GLmJc6ucRx7j7hm3YeHfP45s8hxf1WC2RCpwWv9PFRuOgRYO1zGdR0D1/tpO3POrmx4/10QVvA/nTM/TLI3cdFlbW3OqmKpOdMMjuSCo5E0mEzzzzDMueZCOCYCZum3FYtGpcVrzTUsP6DvsK5x8Fq5lfk8w9pBum+y/jiHVU008o6qzqqqEKnD6PaPqlRY3VzLH+Db+zfEnMVLXVlXhdC0kEvtJnEgY2X8lcrreSYKVoJKkURkkSWOMHO9H4gvAEe15HhkvB44XgTOAvXFF0QMCAgICXiHwDR8gPh26wjcg1WiZd26xWMSZM2dQLpexuLiIhYUF7OzszCh+LF7NHfFSqYRareYSh5TL5ZlEBkwg0mw2naHJtorFIk6dOoV8Po9Op4N2u+1iTFjDjUH/NHDopgnAxbNxZz2RSKBSqWAymaDRaGB9fd3Vcrv11luxurrq1DoAWFhYwO7uLq5ejSoNMY6F6l6j0cBkMsHi4iJGo5FTGACgWq06RXI8HrvMfdlsFs888wy2trZgjMGJEydw77334sKFC9ja2sJnP/tZXL582SmRd911F06ePHldCvA4l1j+rkavqm+aoGEe8QLgjO04177DyNs8knmQ8qYEyn9Gv6/6mW9wahvaZ78Pce+IP65si2SOxrHGyGltQyXH3Gw46Jnj+h73rH5fSSY0xb6fdVCVWGutS6TDjYInnnhiZryo2AH7MWZU57jRQfWr2WxiZ2fHbdIoaSGZYO1Ha627lq6HPFfjD/3vL33W4XB4HXnTJDJU3dgufzRWTTOTqkrlk0XeV8sBkESpi62/Rkn0tKC2nwhHYy41hlW/c5m8RfujNQFVlSNJ9d8DKonsD5+RaqA/roxLZBzyjcLxInAwsAgMLiAgICDgYPgGhe9+o+fFKXC+8qbX0qCpVqsuxuv06dMol8vY3Nx0NdkqlcpMunxro3T/zEzZ6XRQr9eRzWbR6XRm+kFliwW6R6MRqtUqKpUKarWaK3ZN46RSqSCfz7vYLu7EF4tFlwqbGSCp0DERQrfbxdramsuGuby8jJtuugnZbBbNZhOj0QiVSgXj8RhbW1vY2tpCqVRCMplEo9GAtdYpC3TnVJWLfaCBz0yVxhgMBgN0Oh2nQN5+++24ePEihsMhPv/5z+OZZ55xpHAymSCbzeLOO+90MXw6v4QSOTVgmbxE1TcFx4zQeVNVh/fQNaRqxkGIIyBKsLTvPOY/p56jfYoz+vW+/v21vzTodbNiHrnjOCnRobLCRDNKdkmASO6OCn+M55FXJZbqTumrcBxLqljsU7lcxvnz53HlyhUYs+8mmM1m0e/33fjQtZLZZVutFkqlEgqFAq5duzbjPqhF37Uwt7oGaiFuql/qFkhViM9IxZx9UpWPBFProrEPWvzbV9nUxZEkSonWZDJxyqvv+su59ctR+H1n4XI/0YyucyXequaxfcb9arZItkW3VhJ2f2y5fki8NWEPx4NklDGePFeJ7suN40XgQhKTgICAgIAjIG43eJ7xeBCJU6OELj+lUsmRqcXFRZw5cwbpdBpra2tuxziXy6HX6zlXxXw+j3K5PGM8Li4uYnd31xW05i747u4uSqWSI3IkgydPnoQxBu12G+122xmC9XodyWRyhrzR/YipuNvtNobDoTMyWWh7Z2cHly9fxsbGBpLJJO644w7U63U0Gg20Wi2nKjKhydraGowx7j5U80gGx+OxS3tOQscyBt1uF+vr644AcKwSiQRuueUWXLx4EcViEY888gguX77sDE/dNS+VSrjlllvczjnhuyeqoUmi4RfrJunirn7czr2/llSV0PYPgk+8FOpOqERQVSPfONZnVAMzToE7Cvxn8de8tu8/F/ugWSrpoqhkgUTgucTFHUba2K6+s9oXP0ulqnVU4UgqV1dXZ9yVScTK5bJLOKQulHSvq9VqLsZVszxyHrUuGdUcKj/qWupfqy5+qhARqqLFlXdQMqsKHNtW0gLslw0h0VG1SmPHfLdDTSJDIsex9ckbn5XEU9Vv3aTwM9nye5dkznf9pXJmzGzSFk2+omNMYqlkj2tGFUP/+pcbx4/A3ehOBAQEBAR83WOe+uAfI1Rt89uhgZLP512R6UKhgFKp5P6mix/rmlUqFee2WK1WZ9wbE4moYDXVLRqVmqGOfaRiV61WXQwck3swiyMAt1u8t7eHfD7vYnm63a47xh1npt1fW1vDxsYGRqMRFhYWcPHiRaTTaVy9ehX9fh8nTpxAoVDAxsaGI6fMCEdiynEjWWUcDw3XWq2GcrmMjY0N505JxYBxJnfddReq1SqeeeYZrK+vuxhB34i01uLChQuoVquxdd84j/48c1zoPqm1o9TVL46cxf3tr4+jKm/z+sfffeUkLq4sbl2zXb/PcRsTPK5GsJ4P7BNEdZub926wbe033QM1oyOwH7901Hpx+nzqCumrizyX64WbJFyHVOe0HZ7DPrIWHBX0UqmEVCqFYrHoCBQ3JDgWdIvsdDpOaVf1m4pkv9+feW5/zaj7ohJNzgGV4729PVdPjuOs7otaHoA1GFWpJXkhGSMZ0vhAn6RpNlF9H/X9o8KoqpnG86n6qUo1+8V5ocJI6PvJMWIf+be6o/K7kERYSaU+ixJ5fk9xY2EwGLjNsRcjCc8LwfEicJhfsycgICAgIMDHUYzPg1zPgGjHeGVlBUtLS25nn/XNxuMxrly5grW1NWcosrYZjRVmneOOf6lUmlHdSC6KxSJKpdJMau6FhQUkEglsbW05hY0ZHIvFoquRRsOEcT1AVLKg3++7uB0ALrEIXRMTiQSWlpZw7tw59Pt9XLp0CYVCAdVqFf1+H81m0xGqQqHgUvAzgxufi4oBC4Nns1lUq1V0Oh1cvnx5JpmDMcYR2nw+j52dHTzxxBMuBbs/RwCcEXf77be7mMCD5lznnUoh3af8+lD83TfWfDUqbo2oMRpHzlS9i2tDP9ekGaqSaF+1L/PUQH6uZEXv45MhHzpucW6qvkrtzxOfg+udGwp8FrrqPZcaWz5Z9D/nvdlnqjUcD39ulXSyaPTJkyfRbDZdbOp4PMbCwgKMMU4RJ+lLJpMuJpObF1SdlTSoyySJLJU0Eh/dQPCfT8eLZNNPLqLrmGPPvrAPJD2adIZzDCB2rcW5RKqyTiWRz8X2NJEMP9ONCO2PEiotYaEkkq7T5XIZnU4H/X7fkWvWu/Rr6um7wbEiec5ms47oc2xZc5Lzxfnnd+mNwPEicEGBCwgICAg4AuJUCMI3Wn0ypwYwVTbWcwPgdr13dnbcf/RUpOhWmc/n0e12XbwbSc5wOMT29jYKhQKWl5ddKn8qVa1WyxlX9Xodo9EIm5ubrqhssVh0ZQba7bbLrEhSx3tQDaNbIxBly9zZ2cG1a9fQ7Xaxu7uL1dVVrK6uYn19Hb1ezxmqOzs7Ti0k+Izj8RjLy8uwNsp0SWOOCU3K5TLq9TquXr3qFD4SExJMGrmdTgebm5szRIpGsB9/srS0hBMnTszs/vvKkv7QoNfYN1998wnAQTvuPgk7THmLI2m+mub3E9g37HkPfxyUcGqMl65jX1k5bM2rwR5HJuLin/x2/DGi+yvXKI1kdaeMU1Lnvbtxqpv/L9eP/ihh1fkgISO5qtfrblOkXC5jOByi2Wy6zRhuPOzu7rrsqolEwhE4YF/l0eyVXO+qJtG1EIBz7WV/OSYkNQBcG5xzdUnUNcLnJ7imVLkicaZqqIlQFKrUGWNcXCvB52BbfH5uJGl8JvvJsVfyxn6p4qXrny6UjFfUdaXtUKX0kxupms1z+V3GZDD8Tufz+qr0jcCxInBAiIELCAgICDgcagDGKWy+u5hvuGcyGSwuLqJSqQCYJQf8z39vb88Vkx4MBigUClhdXUW1WsXu7i7q9TrS6TS2t7fRarVcAeF0Oo3FxUX0+300Gg0sLCxgeXkZ6+vrrqYUEGWM3NjYcLvNxWIR1WrVxcDxmTKZjDOO6WJJl08qXslkEmtra+h2u07JW1paQqVScYQulUo59yEaa4wF0sQA3OnudrsA4JTDVCqFer2O8XiMr3zlK86opZFIosfMhTSE6frF55nnLnfq1CnUarW5Rr9v7FON0B8/9s2/p0KNZF07vgI0T2VTNYzQmDf+q3Wr1M2LhrkSPYX+7RvL/EzP1fghNU79d8X/3SdyOh48FqcGcixGo5HbMCgUCsjn80gkEi4WSRWcuHH13+N5LpQcIyU/JCx6zFfzmMExm81iYWEBW1tbTnHO5/MzMWxUbZhVtlAooNlsOpdJEijNPsnrNb5KCTbHSMlW3AYDgJn1oMqivz44z5riH8B1MV56rcaaqsqnNeoAOPdYeiOQBPFZrbUz2SVJOOM2yvRd53cj50QzZ1IVA+AUNG5qad05/51Wl1CSZ87r1taWI7EcA1Uo57lpv1w4VgTOGBMUuICAgICA54SDjMs4YzCXy2FlZcVlnUskEi45A1UpxrGRvOXzeZfQoNPpuNgZFrpm/MpoNMLi4iL29vawvr7uXHTW1tZc0WwAblefCRWKxaIrpE1XQ2utU+SMMWi1Wuj1ekgmk8hms66+m7UWa2trMwWFFxYWUCwWnSunJvYoFAozO+CVSsXVptrc3HRxJ4z1q9frqNVqqNVquHLlCi5fvjxjsOZyOZf0RePRaHTRsKYBmkqlZtQ/7pCvrq665BFxypsPGmV0qzpIfeM6UdCg8xU3X8WJI49x/fJVN40H8smS/6PrVQmjqgz+vTRGkaRG3SJpQKuBr+fH/fjxcQep3PyMmwgkN0zSw+QRnHOfsMUpbPqvf54SGM6zEnafpKtLH8lHrVZzBFNjyorF4kyiEcZ3UR2n4qSZC6koaTwZ+6sJfHwXXvZXXQgZ0+evEd9Nlv3V9UAiFqew8bi673IuSPD4ricSCefGyfa4AVOr1VyNSRJnKmcaj6gKKZ+N/eb3rF6jG20k1dZGpRhIsDgWJF28F7+zqA4qCWU7Gxsb7jtxPB47d3e++zcSx4vAAUGCCwgICAg4MuJc7YB44zqRSLjCvjQC0uk0BoOBK1LNRCZApJCx5hvTiVPJopHRaDRc3Ax33judDjKZDE6ePIlOp4Pt7W3nWsgdYWOMS71Po3Jzc9OpFslkEqVSCaVSCZPJxNV3Y+FbIDJSRqMRWq2WqyvHayeTCXZ2dlyxb8YCMc6NO+IM7KcR1Gq13G47SxrccsstSCaTePTRR11tt9Fo5DJQcqe+3W67uCGOt5ICgsRDjeV0Oo3V1dVDEwsoSVI1RH/UlUuv89cIjWNVr9Soj9udn0fa9HdVBIB98kLSpcfi2pvn2uWrHHHPBMSXD1DlT9URtqvGPp+Bx/ivT6p5LvvFseNGiCb64TjwHmq4+yQljjTHjTVJCTOv6rrQvvEeyWQShULBvQPsi8aQUgVikg6+U3t7e86d2nctZAxXJpNxmxeqvrFtnwhrfTeOM99drZvGcdU2tS1dc/rOaQZJnXMtR6BxfVTIjDHuc9ZNo6s2s0/6Si/VZZ9E6jzzWvZPk5X4rpSquqnrMfvH+Z5MJo6Qcxzo/srx4FxyHZOMBwL3IsKEGLiAgICAgOcI36jVz/h5KpVyrow0+FjHjYbKeDx25K3RaGA4HCKbzc7Ep7DQNYkZ48XoZthoNFwGS2ahZAA+FbdcLucIFDOrbWxsoFarYWVlBdeuXXMkiiSRu9N0WWKtOBoynU4H+Xx+hiDQYO10OqhUKiiVSs49tF6vo9fruYQBp0+fdr/T8FtZWcGFCxcwGAzw8MMPo9FoOOWNtekWFxfRaDRcNj4aTwCuM+Z8A5tzA0TGPYm1zttBc6vkzS9HwPNUAZsHJXJ677i+qyLlkzB1DSMpIoGII2zaVz+hBDCbtEPHjuoFx8B3zWR7SpR8A18NcN7TV+P8548Dn1vVVCBSdZrNJobDoduEAPZTves4H/R3HImjUa+kQZUef43xGrr31ut1XLlyBUC0YUGjnmSTzzMeRyUzer0e2u22iwelmy83PdiuukZqUg+qo/ycx1S54n01jlOfTZ9PSa/Wu+Oz8r1j/7ixxDVCNVIzQnIzixtavV7PuZ0yxpffPfoOqBsm76/rVZU5EmFex2s4j5PJBJ1OxyWoYYZOnqNjx+fk/f1sqHQj13cFgFP+2aeDNoteahwvAocgwAUEBAQEHB1q4McZ/MYY555YLpddnFa1WgUAVzttMpm4+LNMJuMyoFElO336tCNhk8nEqV5LS0uo1WqoVqtYW1tzZQGY3COXy2F3dxeNRsPF1NDgyOVy6Ha7SCSiTJEs1N1sNrGysuIMSLoO0bBjYfBUKuWSltAIVEUinU6j2Wy65240GgDgXKHoDlWpVNBsNl069Fwuh5MnT2JpaQnPPvssrl696rLwcce7Xq+7cggkUXQb88mQGtNxhMoYg2q1inK5fJ1BNU+NoUGrJC4uTiZuvfjkkf31ydU8MqGf8Toat/4xjYXz+0Qjnga+qi5Mdz4YDGYUHJ4bF1ukmfeo+FI9UVVR46NoKGtiCFWvaCTzXDXg/TH055WG9N7enkvMA8ym1fcJZNy8zVPi5rlR+udxnKk412o1PP30084Nms/G8Wddx263i52dHbcRQ4We8X0A3Dhz/VNxU0XXr4fGPqpbqT6LusES3AjQY76S668xVUV9V2ESIaryXCNMSMNjJKbc4FJFkSST9/L7rG6UGuumqjD7rLFp1u67ULLOJX8nqeV8JBKJmRqF6XTalRPhPUhgtQ5nUOBeZBhjYIMGFxAQEBBwBPjGir+Tn0wmUa/XXaHpRCLhYnMYN0VV7NSpU2g2mwAiV51ut+t27W+55Rbk83lH9hqNhovZqlQqKJfLztC7ePGiSxCyt7fnDJDBYDBTBDmZTKLZbKJarSKfz7u+MxkIlbJCoYDxeOzuCewH+a+trWFzc9MlINGsczRSarUahsOhI3nJZNKpDjSsOp2OG8NyuYzTp08DAJ544gm0Wi23az6ZRFkml5eXAcAZ53xeVQiU7MwjQ/q5xiTGzW3cPKsa45cOmEfgfDdAYNblME698fvqK2SsPee7hPHfyWTiSjVQKWGSGBJ4EjPG59AFDth3OVX4MUZMt85+Ul3lWtPn5QZCNpudKTqtxENdD1VF4vVxZDROSeP8NJtNjMdjp0Zr0ey4eZ43VzonNOS5uaHE0IcSuFKp5OJVqUbR1Y7vHd+TXq/nyoaQMDDjrJJjdQ/UMgNaN05j30haVJ1Tgs055mf+vOjmAF2YuRaUoKmrIcdFlTl+d4zHY3S7XUf+Sdx8gum70vK56KLtq6D6TnL8dBNA686RaGWzWfddq8oiSR77wLVNl3Beq+Oi7rM6dlw7BynzLzWOF4FDUOACAgICAp4bfPc6Y6L4spWVFZTLZWcM5/N5R0a4Q8skISRvu7u7WF9fRyKRwLlz53Dx4kVYa/HMM884xcpai5MnT2J5edlloRyPx3jggQdgjMGzzz7rlL6trS00m01n6LF+FtsConIBLOY9mUwwHA5x+fJlFItFF1ND0lapVDAYDHDlyhVXkoBZH2lgN5tNnDhxArlcDp1Ox9V2o9HDfyeTKIEJ3dGYmdNaiytXrriYH00MUKlUkEqlXGIAEjg18DgnNN7mGUm6Y7+4uDiTMtw3En1yAOy7UGrMmSpB6sLpK0SaUILH49RcX9FVo1SJK4sNK+mhgkrXUzWAmTiCfeExrk8+n08o9Rl4TA1RGqvaniYk4f1ZiiKRSDg1OI7Q6f103NUtzlcF48j6ZDJxZTFI5OaROJ+4+cqnEmhVXX0Cr+uIx7nGCoUCGo2Ge099NW8wGODatWsA4MaFSm86nUaxWHQbJUqmOD6qOKvipmtUY9rUvZVqrK4PX3XkD4kPr1e1jwmO/B9eowpbp9NxmXbp8qprX906tc6cliCYNx9sg+f6mxxcl1Q1SfZYD1I3NOgCys+4ccVYXyp3HDfeS108tb24Nfhy4XgROBMIXEBAQEDA0eEbi0z+sbS05FQ3a60rjM34NRo/iUQCV69edfWfer0estkszp8/j3vvvRe7u7t4/PHH8cQTT8AYg1qthsXFRZw8eRLWWqyvryOVSuHixYvodDq4cuWKS8/PeA66atFQ5+5yvV5Hs9l0Bjd3wPv9Psrl8sxO+XA4dAoCXSFZWoAK0Hg8RiaTwerqKjKZjIt94z273a6L9aHSQ1dMjk+328XGxoZL8kCjiYkFqAbSUFTXReD61Pf8jHOkxigxmUS15bLZrCuNwF36ODVFiZSSON9QjVsrek+/TYUeVyPS2si9i0XDAThjc3d3F2tra24Dod/vu/T6vosv+w/AKYha04//ziOvOr5KGIB9o5rn8zjHnu6CNMiZdISGPdcD1SlVf/SeqpbGkTd1Y+Y1/X7fjSNJkL/5ctCc6xioMT7PfVb7RgLH+FeWCuBxYJ9kNRoNl4yI5IIknWuVGxg6X3yXe73ejHKmc+aTG64DkmKuZ12Lqmaynzr+JKH6HP77wPeYrrV8Vtapy+VyM26lqv5p+QBV0nh/1mzTazXejeRSNxg0VpTgc/F7hd9TJK88J5VKuZIp7AO/V0n8+D3Cwt8cE72f/z3wcuJYETgglBEICAgICDgcvkEMwNV5WlhYcK40mUwGlUoFp0+fxtramlPDuDM+HA6Rz+dd0W0AuHjxIl796lej2+3ia1/7Gh555BEsLi4ik8m4RCi9Xg+NRgPlchknTpzA9vY2Ll++7BSPzc1NjEYj1Go1p74xsxvj6miMDQYDNJtNdLtdZ9BqDaRut4vxeIxWq+XUQRYiZlmDra0tl2ABADqdDpaWlpBKpbCxseFKDtBAy2QybsedY8Gi25r1jm5KuoMN7Kc+J4nx41v8JA68RudP1Rvf6NJ7qZriK2aatEUNWCXM/Hse9D5xBEAVt52dHezu7jp1VJNOtNttR4qYvVDHhH8zNooGsSZi0bFhvA+NTr2Wa4Of0dgG4FRijfNRZVNVCbZFQ5fkr9froVgsOmWO8UdKSFRd8kmXT5ZVwWQsJRVgX3U9iATqPClhUxKnrpQ8RhUpkYgyni4vL2NnZ8etO64XuuFdvXrVEQiuLyYdSiSi4t5amkOTjpC4qOuern+SIh0bPqf2kaDCDMyqeFSYNN6ObfP9BPbjHLXAuLp2MwMv43NJnvR9oirrz5VmzdXnYv80Eyafg/3T56O7Ocs5aOZWzouqkMz6y7IqqvhzXFhWRWOHVQnUzYMbgWNF4CIFLlC4gICAgICD4buUFQoFl1BE/5O21iKbzWJra8sV287lck7pocHQ7XZRrVZxyy234Pz582g2m7h06RJarRYAoFKpYGlpCaVSCRsbG9jc3MT58+exsLCAa9euYWNjA8ZE5QbW1tbQbreduyETHEwmUbpxZp6kYUqljglPuGPMYHwWSmZmuLNnzyKXy7nab91uFydOnAAA7OzsoFqt4uTJk5hMovIDTE7iKz6FQsEZMr1ez5UQ4P/DrOumaiWwb1D6CoIa6vOIEw0tGqLAfiwODdg4F0pVXQg16HwXSl8hiuuLtuErPBq3tLe3h1ar5Xb7x+MxnnnmGWc8qvKg6oKqk6oQAvuElyor+6JxOpolUF0zOb48rsYw15QSOzXu2YaqEJqMgucnEomZTYVyuYxCoeCInE+QtT3en/PmEzM+d7vddu+Mvq86Z/PUOLYfN/ccI3++lcgx5qtSqbh1x6LejUYDrVZrJrELSQWVcralhayVzGlB+/F4PJM4hmPF95x/cz513JTAsN+cQy1GrSoe1WF1d+Q7polAtBwI61VyI0E3SNiOEmWNP/Q3aDgevA/7xbWmGwU6blQuVe1VlU7XDt9LJZR6nGuDmyNK4DnG9Ci4UTheBO5GdyAgICAg4BUDug4xyyR3rcvlMtrtNtrtNoAoVfiZM2dckehqterSiY9GI1y+fBm1Wg333nsvMpkM1tfXnXHZ7/exvLyMarWKQqGA7e1tPPXUUzh37hySySSuXr2Kra0tR3auXbuG3d1dLC0tAYArog1E8XZ0byRhGo1GWFlZgTHGJRfJZDLY2tpy7pd7e3vodDrY3d3F2bNnUSqVnDG3s7Pj4uQGgwFWVlZw1113OTWNKlE+n3dGGlU13alut9vOSASAhYWFGVWIblJqMAO4zniL+0wJIA1rGlO6Y67nsh0lPD5UBYxzhYpzk/SVnDi1jwbqZDJxiVr6/T4SiQR2dnbQ6XRcsgca9SRoviKon/vxgUp4fXfTeePpK1v+uPjkRZM1aLILdY1T5YpGsZIKGt3dbhf5fN5lNWXflCj6OIiADYdDp3pzI0Wf17/Wf7Z5CpySXR0rjjOfXRNoAHBuypPJBJcuXUIikUC1WnXJdUgalFhzrLgWdS59kqNKGPuk6izP0/aVAGn7+u5q9lK6w5K0cY0ytjGRSMxky2RNNN7L3+xQdZKbJUzFrwQ6Tinl+Bw0hwBm4i6VoDK2lmRQXTl5HUmwzrG+t7qhwfdA12pwoXyRYEIMXEBAQEDAEWBMFGdENy/+pz4cDtFut51x0u/3Xbr+TCbjygEUCgWXGv/8+fO47bbbnIHOtOxXrlxx8XSFQgEbGxtoNptu1/7q1asA4OrJbWxsOJVMXaJImOr1ujM6GO9WKpVcsgsacDs7O7DWolarod1uY3NzE8YY3H333a6uG+sc0WBpNBpOEXzqqadcnFOv14O1UbwRFTcaSowvUXc/ICJ4qhrSUNRMj+yrJt0A9pUlYF+NUuLiu8bxGt3JJ/x25xEwdTP0XQ7nwVfeVE3c3d3F9vY2ut0uBoMBarUaWq0WWq2WWxtU3WgYkpCo+6kaj6pAcGxUNeC40uBXF0sdK8InxepyRoNbjXAdT7bNvtNlj9f6aiTbJ3nhxgITkdDIV+Lkk7o4FZRGeqvVciq6nzEzbt78v5XIad95XA18Ja9c16VSyT2ftda5j9IFj653XIdc95xHEjslg+wTx3p3d9etG13LWneR/VYix/OUXBEkb9xY4VioWj4ajVwSFgAzqhWfi4oW29e1zXeT48pzeQ6TMmnCFD9mUte8kkV+xjHkvHAjie8VCSjHll4UdAElgVQljmvV34zQcVbX1BuB40XgEMoIBAQEBAQcjlKp5OJnNJ03axrRqOCuMxAl/ahWq64mWjKZxLlz57C0tITd3V10u10XM7a2toaFhQXUajVYa3H58mXngjkajbC+vo5MJoNareYKYOdyOecexAQJy8vLWFxcRLvddkYiFZx0Ou12ilm/qNfroVarIZ/PY3NzE71eD4uLi7jzzjvRbDbx7LPPOqLAUgEsIm6tnVEdW62Wi9di/E4ymXSkdnd3F5ubm87tajKZuDTvJJ5Mq07jMJFI4OTJkxgMBtjZ2QFwfV00fua7Qup5Sir8pBt6Dq9h6Qe/PTValYDEKWtxLnVxbT322GPY2Nhw87W5uYlCoeDUUL1WSxjoLr9/X79fdL2jAe8rcLoBoPdTtzTtPxPn6H00yyBJADCbkU/7xD4oofbd/ZiZdDAYoNvtuiyuvLe6nvoqmD/37AOVOJIK3QDR8/w1oUqmkmB/nnmuT5IymQza7TaKxSKA/Y2Yy5cvY2trC2fOnMFwOMTW1hZqtdqM6yAJE1PYG2NcynsSOiW3+txalkPdP3XNkKwoedJn1s0PAI74M/EM29ByBlxnVFC5BhWcNyb80KQ6eq5uVJBwcRPAXz+8VudVVT1VQjmm/nNyXJSo6Vr23w8l9txM4D1IDpmJ+EbheBG4oMAFBAQEBBwBCwsLzjgtlUpOkUulUmg2mzMxH3SBWllZwe7uLprNJur1OlZXV935NEAY21Sr1bCwsIC9vT1cuXLFZa7sdDrIZrNOhdve3nYp8LkTTqOKu+3dbtclDaCbJAAXZ8MYvNFohAsXLmAymeDq1atOHSQBXFtbQ6fTcbXhVEmgi+RoNEKz2XS13ahqJBIJpwIsLS2h1Wphc3PT7Vazv1o4VzPs0XhikpRWqxWbcEQRZ4ADs+5ZvmoSdw0NwjiDzidhh0FJi6pu/HwwGKDRaDjDkOtIx4Njou6FCn0+Gqe8FwkZ14mvAMSRECVYfkIUPa5rgvPK+2jiEl8VZRu+YqYEzCcSfH4qQCQF+uw+MdQ54DlcA8PhEJ1Ox6lDJBBx86fPrzGDB82/v9ZIuAaDgVPqqTz3ej2srq5ie3sb9XodiUTCrQlVnTRTItU1dYvkPRirpllGlcBp7JvGgymB0g0Pn9wbY9z96Y1gjHHZZhlXy37ymmw267KCUpmj6yWTt+jmBNcWVWpV4uLmWZVn/q0bMlyLmuk2k8k47wL2k5simjGU45LNZmdIMNeOjqFP7vm8h62ZlxrHj8Dd6E4EBAQEBHzdgwlCgMhwKJVKTsWi0cCU+axt1Gg0MJlMcOutt2J1dRWdTsepbul0Gl/5ylcAACdOnHDui4yH63a7KJVKWFlZQTqddgWul5aWkEgksL297QwWGk75fN4lCTDGuJg3qn3cLaf75JkzZ1zdsGQyibvuugsAcPXqVZeYgMYmjd1MJoNTp06hWCxie3vbkVHG8tC4YqKK5eVlbG9v48qVK4580OhhSQJgP9sdMOtG1+/3Z+qa0dAnNNGGGui+G5/uwvNvJQhx0IQFhBJIX1HS++nfvnHHc6hIUhUDcJ0apC5r6h6nGSHV6PXvz7Y0+QSNVH8c9Vl5nu8CxnMVGkfE52D7o9FoJssfFQtuNihZV0NZyRhJk6owe3t7qNfrMzFV2ne/nz4hAeCUbF1v89aEzrU/lz7J99cfj/NdIlGp1WrY3t4GALzvfe/D7/7u7+JLX/oS6vW6+/5gHGGn08F4PHbvMImRlgBQVcifD5Jt/zx1tVXyzDHjmJA8c3ODXggkWNyMYfxmNpt1NTFZIiSZTLoaatbaGfdgrguN59RkKrw3v/M0G6Z+L/jJpEjW+a74ihw9KXgO50zXEMdQi9QrkdcNC/2+0Y0WziPH4kbgeBE4xNf/CAgICAgIUHD3nMkk6BLDuC0qdCdPngQAbG1tufpui4uLuHbtGrrdLoDISCdJuvnmm1Gv19Fut3H58mV0Oh30ej3k83mcOnUK/X4fW1tbSKVSOHnyJGq1GnZ2dpyBzR335eVlt2PMMgEkXuPx2Llmtttt5PN5JBIJPPnkk+h2uzh//jwuXryIZrOJq1evYnt725EGPl86ncbCwoJLxPLUU0/NGCNUjmjIMJav0Wi4WnV0uyLR1Lg4GuZqADNBghrKNEI1ucA8NU0NNd0Rpxuirzz50Hgc/7w4Aqh/qwKjBj+P0ZijK58azQBmYnKUvClpU/JGg13jflQpI/Q5lDRzTPUcun9xLLQ9ki/fxVDTwmsiDnWn1Lb8edVjqvyQKKg7IRAlEGL9RfbJj2uLmzs+BzczmCRFFRz/fO1vnBLsu9v59mUul3P9q1arSKfTePLJJ/HEE08gl8vhLW95CyaTCb70pS9hYWEBi4uLrsyGH1ulxEqJiSpqXHdc6wTVLs1WqWPOvnN98HotuK4ESpOy0JW7Wq060sJ3aDAYuEQhGrcG7G9U6IYMszvquXpvrhe/v3wPWH+OCZOUAPLdGQ6HLsaN7qm6GcTP/OyUVCE1qYpuUnA81T3zoO+alwPHisAhKHABAQEBAUcAyVcul0Ov13PxJ8Vi0SU2WVlZQbPZxGQywYULF3DixAn0+30888wzMMZgMBig1Wqh3W6jXq/jvvvug7VRce6nnnoKW1tb7n7GGKytraHf76NSqaBeryOTyeDKlStoNpsu/iOXyzljb3d315Uv0BpwuVzOuSAWi0Xs7OxgMBggn8/jxIkTyGQyePLJJ7G1teWyYTLujeTt/PnzqFaraDabLrkKa7qlUilXJHk8HqNSqaBcLmNjY8PVt6LRrbv23H33s0/GEQ81xn0FaF6GN3WD5I+6ZPkkzDe81UjzDXOflOl1+re6NCoxHQwGrl6etuvHAPmqD+/hKwBaADoucyeNS3+suI45LkpYx+OxUyj8pC40wnm+9sVXvqiYpVIp97xU5QDMqBdsh5/T0FaVTvugLpU+GVFio9DxHo1Grri8HzumoAHuryf2WdVFtu3fm66Ro9HIJQ76zGc+g16vh42NDZw9exZvf/vbUSwW8elPfxr1eh0nT57E2tqaS6JBYq9xbRxzzayoc6zrSMkPgBn11k8Ao/Oh5EQVT5I0Kukk1CRsjJnV/lBB1LWh3xF8Rn9sVSXW5CxKEFURo9LJ9yOVSmEwGLj3gP2mSzgJ9mAwcKSe6hwQKeaa4dNPnMLNDhJHbp6pEqr19l5uHCsCZ4DA4AICAgICDsXZs2extbWFjY0Ntzu8urrqFKVUKoW1tTUUCgXceuutqFar2N7exvb2tosLYWr+m266CWfPnsVwOMTTTz/tiBp3mMvlsivcW6/XUa1WMRwOsb297RQI7nIXi0Wn+jGOjcZ1uVx27pbc9d/e3ka73cbKygpuvvlm5PN5rK2tYWNjw7lb+qpCtVoFEKmKjUbDpT8niTxx4sSMGynr4LFuHEmFZnNj25oGX5UC3bH2CRWNSU0K4KtkSoYU/JzGnj6nfx4NRDVYlZzEuctpWzRKlXjQxWxzcxNbW1tOgVT1UZUUH2yLZKtcLjvCvbe354xPdbNjv5Wcce4Yx0TjOJfLuRjPUqnk+sDi7iS/zOZIY9vPxumTHf6tJEGVQ72OffbJMfsf5wY7mUyuKzfgryNtV+eR2VNJPNQF0R937btPDLWv/loEIgK3s7ODjY0Ntw4ee+wxAMCHP/xhvPOd78SZM2fw+te/HgDwyU9+EktLSzh9+vRMoW/NRElFSjNO6tgo+VfCrWOhpDmO8FJd51rWtQLAKXl0m2TiIq5r1vbjfOi8+t83XFtKgMfj/aLYPqHz55fkje8awTXqJ/3h9wj7r5sGJGuM6dO1wY0ojr8qiXx3SqWS++7jdx3H7EbgeBE4YwJ/CwgICAg4FE8++SSazaarAbe0tOQyLQ6HQ3S7XZw5cwanTp2CtRZPP/00+v0+8vm8q502Ho9x1113IZ/Po9FoYHNz0yUTSSaTWFlZQSqVQqfTcTXcxuMx1tfX0el0nBFUqVRQqVSwsLDgFLVnnnnG7Xhz15v9ojqxtbWF8XiMixcvol6vw1qLtbU1XL58eSaBCBMQqNva5cuX3a4yAFSrVaysrCCZTLrSAZVKxWVRXF9fdzvPJJR03eSOvgb2qxGviRTU+FUiwnggGqm+IegTKz++q9frzbjiKdTdUuNx9HrfSNf7+u3wWSaTyQx5oxucukWqekQSkUqlHEHj3DB7ImOKiEKh4DKXsm0WU06n06hUKsjlcqjValhcXHQF2Wl4W2vR7/dnCJ66m7GddruNbDaLRqOBXq+Ha9euYTAYOBWXrnSqPqi6SINWx9jPDsofdcfU+eTYUi2mq7DWUdO1wzlRQs0xYjkO9lljEVVpVfKmazNunRH8jONIVejSpUu4du0aVlZW8PnPfx4A8Pa3v92RuEQigY9//ONYXFzEmTNnsL6+PhMLqi6MJHC6/ki4NWGIulVStSM50XpwnAsqpdygUXUUgFNWucnD8aFyTRdETcDDceV9tUSAvvvq+swNC5JVPo+6GSuh0nkimdP51vb5HUdiyGRVbJNZhrluudZ8t1bOCWthGhMlulK3Td974OXE8SJwOFoWqYCAgICA39sYj8coFApYXFzE4uKiq0tFV6hbb70VJ0+eRKvVcopXvV7HtWvXMJlMUKvVsLKygvF47OLfut0uOp0OhsMhTp486ZQA7tK22210Oh0Xp7O7u4vFxUUsLy+jXC4jnU5jfX0dly9fBrBfT6lQKKDb7WIyiWLzer0eGo0GCoUCyuUyrLVoNBrY2tpycSk0umiQMYYEiJI90MDhPSqVCrLZrEvKQsJorXVEUQkH0/KrAa2GMEmdr8L5qpYSJ/aX8DMXxpE4IDK4m83mdfWoFIwzUqKgyoyvvvEe/Ff7wXM6nQ7W19extbXlXBf9JBRKGhKJBC5cuIBr1645kqwElq5dNDzVzUyzWtbrdVy4cAHlctnVBhwOh+j3+7h27Zoz3BnjSTJDw5N945gUi0Ukk0kUCgW3WfDAAw+gVCqh2Wyi0Wig1Wrh6tWrePrppzEYDBwh1KLM+qxUWpSU0PDXeeWmAs9VUqhJLLh2/fnx1UB1x+z1ejNJPeKM7TjXWf0sjtTrvVn0OpFI4Ktf/eqMm+MjjzwCAHjHO96BM2fO4IEHHsDe3h4+/vGP46abbsKZM2fw9NNPXxeP5ZMhf10pefA3Szge+twKJUQkPSS3jC2rVCrXkSB1KdSx0syOqqaOx+OZTRiuZ1Vi/XXDDRh+r7BfSvzZJ50HVR5J1oDZ0hgkfVxnVADz+TyGw6GLzeU5OpZUHROJhCtsThf8uBjLlwvHi8CFGLiAgICAgCMgm826eDcqXxsbG1hZWcHp06cxHo/xzDPPIJ1OY3Fx0aXNn0wmuOmmm1AsFvHYY4+h0Wjg9OnTAIC1tTXs7u5iaWnJGaqVSmUmVo5GAO9LhaXT6aDVajmDkMbQaDRyBLJSqaDf76Pb7aJWq2E0GuHatWszO+JqsFHJUILA+m2ZTMaVCFCjhDvvvV4PqVQKly5dmonT4XXqJqkGmcYMUUmKI2DAvssljVGNnYkznHWX3XeBW1tbm8k851/Hfqp6oiSJUEPY77uqPIx72tjYcJkE/aLIaphTUbly5QparRYAOBLElOcag0PSRjWGGUxPnz4NY6JkN51OB1/72tfQ6XRcMXXtK9vkWvIJKJ+bmTOz2SwWFxddFlK6yV64cAHj8Rh33323iwF95plnsLm56cpaaLZKGtM0flXJ8snSvM8BuOyGo9EI9Xr9OiVOCWOcqyBdULmB4te50zHQ9ekrcHrc/9nb20OpVAIAPPvss45oj8dj9Pt9fP7zn0e/38d73vMe3HTTTXj961+P8XiMhx56CGfPnsWZM2fwzDPPzKw9vm+j0ci9a3yXNJU/x0Cv0Wfi+o5bvyTPSqbz+fyMOyffEboccsOHc6rjyfO5zlQxjtsAUWWT1+pzaoZgVRaVXPtEkNfwHvp9pASYz86NKI5ptVp1tSv5XcLvY36H8DrGAeo9X24cLwKHUAcuICAgIOBwUHG76aabkE6n0Ww2cdNNN6FWq2EwGLhYt1KphHa7jWvXriGfz+Puu+/G3t4eHnvsMTSbTSwtLbkaa4wxIhFKJBIzmS2BKKZseXnZZbns9XouUyXPYSwM4+aojvAYSRYNK63nBOy7tOnfjIUiMavX61hcXEQ+n3fEkgrMYDBAsVh0sXwAXJ27QqEwYyjPM9Z1ZxzYj0FTBY3GGHfKOT7cLfcVOzUC1Q3PGIMrV664OB22r8Y3+6lufarw8B4au6bQv621aLVa2NjYcMYf50HdC/3ECIwHUkOd48KxUcUqmUzi/PnzTmkbjUZ49tln0W63ZzLs6bPoGPOZfOXJV6qI8Xjs3EG3t7dRqVRQKpVQKBRw++23uziv17zmNbjjjjuwvb2Np59+Gl/5ylfc2PPZ+Jzsgx7j3NAFUA167Q9J/WAwcGvUz3rJ8/x1x+fRgthUHHUe/RgurpWDoGsQiN7Dp556Ck899dRMHBlJ/Ve/+lVks1m84x3vwNmzZ/GGN7zBkbuLFy/izJkzbqOEz0CXQrrvcfNE32u/HxoTqcSNpEv7z3aYyIPfV1Tn6WpIMkZFnW3rvZmRVmPHOO+qYlEho7LGNaGkkf3lPXzVkWPL9jj3+h5TvWMpFD2Xz8/n6nQ6bkMkn8+jXC6jVquh0+lgb28PW1tbM3MyGo3Q7/dhrZ1R+24EjheBMwY2aHABAQEBAYdgdXUVKysrLoX/uXPnkM1mce3aNezu7qJQKDhjdjQa4cSJE1hcXMSzzz6LnZ0dR4QuX76MXq/nlJFr1665GDUqI+12G5VKBSdPnsTS0hLq9TqMMe4YSQwzRgJwqf/z+TxWVlYARC571kalA5hYANjPOAjAxUd1u13njnjq1CkUCgWn5BWLRdRqNeTzeZdshTvKu7u7yOVy2NrawubmpmuDRh6JAzBboJvw45uA+GyQSlyA/QLVNLjVpYrw21XFaWdnB5ubm1hdXZ0hBXou+8YfrWfmtxdHUmlM0lWWREhjtrjrT2OWz0r3SBI5tun3gy5uxWIRy8vLLibz8ccfd2NPg5PQDJAkqVwTOsZ+3Nk8kMT3+32sr68jlUrhiSeeQCKRQK1Ww913343d3V3U63WcPn0at9xyi0ufz0QoqvjpeNLQZl/4typEhBreNLSZrv+gdaWGvboQkzTMU9XYhhJPH3oeiXu328VnPvMZNBoNnDlzZqYPxkRJNb7whS+g3W7j3e9+N2699Va87W1vQ7/fx+OPP4477rgD586dc0qckhh1J/TVNFXcuK6YqZbKHdesFqdmWyRddCckEVNXSJIjvpOMm/T7QiLH86hUcQz4PcL7kbCRJJK8MbskCTfdYEngNMmOkkolscxAybHJ5XLOtVw3b/iuss2trS1MJhNXh9Na61zJ6TacTCYxHA5dTbp2uz33PXqpcbwIHIICFxAQEBBwOFZWVnD16lUkk0mcOnUKrVYLrVYLS0tLyOVyrmh3JpPBzTffjPF4jK997WszJQd2dnZgjMHZs2fRaDRgrUW1WoUxxu1k7+3toVKpOMLITJKtVssVAW632xiNRiiXyxgMBrh8+bIzggC4tlmMG5itaZbNZp2rWDqdxtbWFnZ3d5FOp1Gv1939aCCzeDiTuABwRI5lFTY2NgDsE6tarYalpSVcvnx5xmDi70oIfOKlhrkqcarG0HDmM/L5/Db1R10pR6MRrly5gjvuuGPm3koOaPDRpTSRSMwYjP5zqKsd+7m3t4ednZ2ZFO90geR9VOHi9arS8RwapjSQjTEuIUm1WsXOzg4ajcYMsQMwY9Dyb40nUuLhkxGOhyob7DtBYqVkmW5u29vbeOihh1Cv11Eul3HixAmcP38ep06dwm233YbHH38cjz76qNtAUOKr64D30DGLc40k0QDgYvlKpdKM4qLqm7/mqML5SqsSRp+8+Qqmtqlj1Gg03LM99dRTM/Fq6tbHWNDHH3/cjf3Fixfxlre8BZ1OB1/96lfxmte8BqdPn8azzz4745boK1D6uRK94XDoCArJjbpzqgLNz7j+gf24WI0VVKJNYqZrR0menq9xdXS9nOfmqEq0vu8khNwMUaLFZ1H1n/fN5XLue5CEkp4F/rpTF1J+70wmE5RKpZmad6pg0q2YiYj4PXkjcKwIHEwgcAEBAQEBh+Py5csoFouo1+vO2GSh7Waz6WLOzp07h2azifX1dYzHY5RKJWxvb2M8HuPs2bNIJpPY2dlxhInXdrtdWBul5K/ValheXnbkiOUHut0uWq2WM9o7nQ42NjZcxj/GXxQKBWfMqHpTLBZdMpFisYi9vT00m02XQp0ZJMvlMoAoo+GpU6ecAcjYHaoUiURU1+rSpUsu/gOIinifPHkSjUYDAK4zyn3DWd2rlCwR+jeNUlVN6ALK3XQtvqsGt6pMk8kETzzxBN7whje4pBxKDnk9n5PKF7M/qlrkQ1WbZrOJa9euOUIW5+rJvmsc0d7e3owKR+NZSVypVHKxZ8xqmc/nXXvsg1/7yzeKldjEuSnSVU8VQnVh9A1pVUytjbJaDgYDrK2t4dKlS7j11luxuLiIm266CadOncLtt9+ORx55BI899pjbpCCJ8F35+C/voe55XBc08vf29lwCoEKh4Pqs7nHqTsk2SOD4XHFufkq8/TGMI4eTycRlcG21WvjqV7/qYiH5jCz6rBsETz75JD72sY+hVCrhwoULeN/73odf+ZVfwRe/+EXcd9996PV62NzcdOUj6KLLtc7vAa2/SHWJxJGurnTx810gu90ujNkvK6Fp/jn+TFZEMqb1/ujSybXFcWQJC37OvrINha5pP2ENSfd4PHZxjxxLjr1+x2QyGWSzWRQKBafo6XeIvjdsU99pXZf8juV4sl0q7Uw+NBqN0Gq13ObNjcCxInAGN7YqekBAQEDAKwN0c7x69SoWFhZw9uxZtNttNJtNGGNmCm23Wi1nMDWbTWQyGZw6dQrdbhebm5vOOGUBYboZLS8vY3Fx0RkhNMwYe9Hv97G4uIhEIoF2u42rV686A5rkj66WNABJimiE5nI57O3todFouDIHy8vLrgQBa4AtLCzg5MmTM65o1kaJRkqlEqy16PV6WF9fd4oHDWoqL71eD8Cs62Scm5wqNzTO4s4lwdB03r4LHV2vmPqbu/pxhOvSpUsuLtEnB+yXr/hlMpnYWBZf5QPgSAvbIjFRtyyN3dHkC+w7x4LZ+1irKp/Pw1rrjGYanvybY8W+aXY9fR5fWVOXQIIZKVVB8Y1cXss156dy50+r1cIXvvAFFAoF3H333Th//jzOnTuHSqWC5eVlfOUrX8HGxoYz6DmvmpXQv58qcyRvjAczxjgVXMdTr9N1oSoPCY6SUl0P837i1gUA5/L82GOPodvtYnFxcYZUGmMcOVIX18uXL+PDH/4wstkszpw5g3e96134tV/7NXz5y1/GnXfe6TZiVGEF4DZvCCVffGd5LhUlXU+8RjcONEusuikqaSdIBDkG6t7J9ZjNZmc2K9RlVt9BbYfxatlsFqPRyCWvYT81e6T/HmcyGRSLRVe7k+PEdwfYr+XGdW+tdSVLVMnk2uQ61cQt+XzeZXul58Xu7i7y+TxuFA4lcMaYnwHwLQDWrbV3Tz/7BwDeC2AXwOMAvs9a2zDGnAfwZQCPTi//pLX2B1+Kjsf3NZQRCAgICAg4HIPBAMZE7o8sfn316lWUSiWcO3cOnU7HKW1LS0tYW1vD9vY2Tpw4gRMnTuCpp55y/9F3Oh1nbLBsQK1Ww/nz55HP59HpdLC1teUMEdbVWl1dRbfbRbfbRa/Xc/FOdLuksUoDl8YHs6AZY9BoNNButzEej3HixAmcPHnSZRWsVCpIJpNYXV11MXBApMTRwNKsk+1228XXkQDyuRh/p+6Rasz6/6rhpyqZuqjReNdreZyZMieTqGQDDWImhaEiowrM5cuXsb6+jnPnzl0XM8R+KAFOJpNuh12Nf302JX/r6+uuSLDvRsbn0es0CQX7oooKjVaSSDVKNYW6xunpPeOIhp8VTxUIfTYlg76xriRHY8fiSBLJ5XA4xGc/+1l87Wtfw9mzZ3HhwgXcfffdOHv2LD7xiU/gypUrrp6dxvKxLRrXOl/6rEyswWyq/X5/ZiPDX3s6d8CsG6ESXp8Ax5E2HyQv6+vrMMbgi1/84oyLq4LkUfvaarVciYFv+ZZvwc0334x3vetd+OAHP4gnnngCt956K7785S+7d5QbBXwmPxbMT16iqreSN6pqxWJxJtOljrOuIV0TqpTputZrGXtmrUW323VrW1P/kzTyvpoFkt87VPcAzCSA0veYpIp1EPW5lfjr2lFSzw0hAO7exkSu7/ye5Prku8l7cxOvUCh83Weh/FkA/xzAz8tn/x3AD1trR8aYnwDwwwD+2vTY49bae1/MTh4VBqGMQEBAQEDA4chms1haWgIQGVTNZtNlZWQ5AMZHMUPchQsXMBqN8OSTTzrlpd1uz7g1ptNpLCws4KabbnKJUFqtFrrd7ozxmclksLm56dywALgU2kwqQFdKGkzMxJfJZNDv99Hv950RcubMGVSrVZc1rVQqIZ1O45ZbbsFkMsHa2pqLD6FSR7dNkpLNzU3kcrmZ+9B9is8Xp6IR+rvv1uaTN2DfKNTr1f2JMWO9Xg9LS0soFApOBdPraKh1Oh1cu3bNKXSqrhB0o6SxSxdV7tbPI6ftdhtbW1szRIOGKEkun5vPRuOTygQNRxI3um+qWqaGvh+/puPnj6VPZthvNe71c1WKSHh8V0Zeo0RN2+CaUJV1MBjg8ccfx2AwwK233oqVlRW86U1vctkqW63WjCqm5J7P4Ss2mnCC5J5JhBjfpCqcKmz8nPMVl4CDz+tnUfTHUtcE3ZPH4zGuXLkyE0vpjxOVZM41CeAjjzyCfD6Pb/zGb8Rdd92Fra0tfOpTn8LCwgIuXryIRx55xJ3LZ9dnI1mJy9SoCif7S/LFOdOU/SSJ2WwWuVzOxZypAq3jxo0F3UgZj8duw4nKMrPncmOKc6kxcRwTfs/4rpRcA+oOzCzCfG9V0eNaoXpPpZvn0e2U3xNUAPle0sW03++771HW92Q9OLb7dU3grLUfnSpr+tl/kz8/CeB/fpH79bxgQgxcQEBAQMARkM/nsbW1hVKphEQiyq5HIsf/uJm+vF6vY2VlBWtra+h0Oi7DWb/fd0bAZDJBoVDAmTNnUKlUsLe3h6eeegq9Xs8Z+iR73Gmm0dBsNp3hUiwWnUGlO+39ft+5sXW7XWeg0VVtd3fXJSWhYbGwsIBGo+HcJCeTqMTB8vIyqtUq1tfXkclksLi4iN/93d91O/qMZSmVSs5Am0feaBz7hrj+TujfNNLUGFWip+0kEgmsrq46sjQajXDp0iXXF7qKTSYTfPWrX8Wb3vQmN46668770NBlQoJyuYxisTjjqqqEZjgcuuLq7Bufna6QPqFin0hGqDKQFNPAVSNQDWN1b9Sx8uPW+Gxx6pkqSr6iqKRHn1mVFrZBo5f3Unc9PrsS9slkgmeffRbdbhfnzp3DyZMnUSgUUCqV8OUvfxk7OzuOmOtYaiyS79bKZyAJY1ZAVSt1DH1F2Hd59ZVTTQxzkArHvu7u7mJzcxPGGFdOQgmUrnWSMN6Lx/f29vC5z30OmUwG7373u/H2t7/dKZkPPvggbr/9dly6dMmltNf50oQpQETCdL2RcCtpYqwnv7e4DkheqcyqS6a6COsaoDqu65JKLNcG54cbLzs7O45gaVwgN6FU9dXvBI4pyV46nUY+n3fxfnwOnXOuAX6X0q2d485n47XqzkzlkBswjCnkdzkTv9Al90bhxaCOfwLAL8nfNxtjfhdAC8DftNb+TtxFxpgfAPADAHDu3LkXoRtRDFwoIxAQEBAQcBg2NzddmvZLly45F8disYhsNotGo4HRaITl5WUkEgk89dRTzuDnTjELYycSUQ21s2fPYmFhAe1225Ua6PV6SCSiLJBajJexaVTMaDSoksP7MPaMig0D7DOZjFPMmKBkOByiWq1iPB67hCoLCwuuMO3Zs2ext7eHJ598EqVSCfV63cX5JRJRHah0Oo1z5865hApEnHHsx+QA15M3351Sn1EJlZ6jysl4PMb6+jrK5fKMq6AaxTRCH3vsMezs7KBer8+4IWrbNEr5k8/nXeY5tqnPzFTmWkwYwEyqchIRTW/O52RSFRJ2JR1xqqQSNiVcPM6/fRfAuDb4Nw1nJXg8xvPZb5IDX03itRpLpG52foxhs9nE448/jnK5jHw+j9OnTyOXy+Hhhx/GxsbGjMpCY1rnVF0GlYjScN7d3XWulDoGSlTZP867Gt06BhrHpQTIXwv8l5s96XQa3W4XtVrturlh2ySOmkyFzzIYDPDQQw9haWkJDz74IN785jfj6tWr+PznP483velNmEwmuHLlykwGRl1vvJ+ST1X59Nk0kYwm8yG5U0Llb6iw//yu47uQTqevI1o6TsPh0JHbfD4/Q57YR647Xb98PpI9kjF1W+T609IjbFvXMt9DzgMAl9ip1+s5RW9paQnNZtOVhuj1esjn8zOKohJPEsMbhRdE4IwxfwPACMAvTj+6CuCctXbLGHM/gP9ojLnLWtvyr7XW/jSAnwaABx544EVhXUGBCwgICAg4CsrlMpLJJB5//HE888wzzjggKalWq8jlcrh8+bKLSUulUq5uG+OncrkclpaWcPLkSeRyObRaLWxvb7uaQru7u+4/+Ww2i2KxiFwuh06ng2636+K56KpD9x5eS1dOTQ5A0tPr9ZDNZnHrrbe62JKlpSX0ej0MBgNUq1Vks1lHysrlMtbX111Slt3dXTz88MO4fPkyarUatre3nXHPpCXqOsmdfyZOAK4nazQeVSkCZt0ldefbjz1Tw52fM1271s/TRCZUKumW+uijj+LUqVMuHsdvW905ufPO+mLqfglErl8ksT5B9VUyNZhptNJtleuFBinjdfj8caRNx1IJgRKP/z97fxYkZ5pdB4LH3cP33T32HbEgsCZyqcxEssjMYrEklkpcZDK2TPXUDzK1yWxM86KH7nlqmcza1E/zNE9tNsMZmUw9araKpFjGYlWKVVlVWZmJBBJIrAFEBAKxL77v+zIPkefi+oc/kCmKTJCY/5rBIsL9X77t/3HPd869V19Hf67HnOBWyxTpeLP9JounxwzAQBp5AMLm6LgyLcXkdWu1Gj777DOMjo5iaWkJY2Nj4vhT7qqBsc7iyLaYDCGddjJx3EThcVZSUpNZ5ed6PMzEMZxPfSyvlc1mRRZNcGGOmR5LLePU40RG/Ze//CUikQiuXLmC3/7t38Z/+k//Caurq3jzzTdRLpdFLq3HnBs+bINO0sLfCXj4vV77BCR6vDWY53gxbpFjw3FiLTS9Rk3GC3gab0wQxKQ0TLTC40wmm+uXzwvba26g6Pp1bLe5bkwGmuPH96zL5UI4HEaz2ZTNOoJcln5xu92iTGCdRFNl8HXaXxnAORyO/x4nyU1+q//Fyu73+00AzS9+/8zhcDwGcBbAjb+Gtn6FNtkxcLbZZptttn25MUkJa6wxHb/T6cTo6Ch6vZ6wBIlEQmI7WC6AgGJ4eBgjIyNyPB07/ueuY0ImJyeldhBjMICTNP2xWAwApHB4r9eTWBS/3y8AgSyP3+9HIpGQGnCJRALhcBjFYhGVSgWxWAwejwe5XE5+z2azaDQaImnK5XJIp9OYnp6WRC2BQAA+n2+gELgGLlruZBod0+fJKPm5Niun2/yeYJcOGCVedNIIgguFAm7fvo3XX39dHC/tuAEYYAzolEYiEanDp9kNxr5oQKkZPLYBeMr2+Hw+Ydp0ggU6v7qem2Z7dDu1rI1/W7FSz4vD0Q4178WxJmjUEkPNQGmwzfXOfpjyQA0EdT/oTPd6JzXTdnd3MTo6ipGREYkJZB0tXSfPTNqjgb4Z+9hqtUROaa4jk4nTck2OhZb6aadfz6teZ1xrh4eHaLVaSKfTA+NmtS44f5ox0uxwt9tFPp/Hhx9+iHg8joWFBbz77rv4i7/4C6ytrWF5eVnKgxC4cm1xg0hLQ/l+oJza4XDIuGrGVLOtVvJazgfBGGXJvBaZPT1HOqZTs3x6TQNPmVadgVUnaxkaGpJNJrfbjWg0Ku8fgivet9/vC4jj2HD9tFqtgTXB35ntMp/PS19CoRA2NzcRDoclno9Sdz7H+rnVmx4vwv5KAM7hcHwXJ0lL3uv3+zX1+QiAXL/f7zocjgUAywA2/1pa+tVaZjNwttlmm222fakVi0UAJwWqvV6vOBeJRALFYlEyjTmdTolBoXPORCWjo6MSw+ZyuZBOp8XhbzabAgYSiQT8fj9SqZQkYKB5PB6Ew2HJ6kaHhQ4MY74oE6K8cWRkRMCe1+tFt9vF0dER+v0+gsGgZI1MJpMiQRwaGkI0Gh1g2prNJl555RX88Ic/lJg6HSeinXLNgpy286ydY/27BnP6XBN8EFxpYAFgIFmCGe+ij3M6nXjy5AkODg4wMjIiTqSVM08HemhoCKFQSGIG2fdOp4NcLidON++jZXY0JoJhlj/GuWnGgk6uBk5axgY8m1mSjIMpUTOBlAYkuo8mEOR4cC5NUGYyq9r5NplVXp/rgZ+bpRW63S7q9ToymQzK5TLOnz+PeDyOpaUl9Ho9yZrKTQotR+VPDXp1WwkwzIQWpjRVr08TwFPSqs/R68N8Blh8m8DUTERjbhhw3int023kuHY6HWxtbeH999/H7/7u7+LSpUs4ODjA7du3MTIygrNnz+Lzzz8fYI0pwST7RAAUCoUkuQuvraWVZJO0tFSvGY4jnzmfzyfX0/JbbhBQnq2TqTBzo95E0NJiXR6Ex1JizvXjcrmkLwSjOv6MCgEmZCGrxjpv3HghsCRTrzcWGN92dHQk13/vvfeQy+Wwvr4u72MeS7kvQZ9m+L9u+yplBP53AN8CMOxwOPYA/M84yTrpBfD+FxPJcgHvAvg3DoejA6AL4F/0+/3c31DbLdoK2BycbbbZZpttX2Zkt5hxjA5CLpcTh7DX66FcLosD4/f74fF4kEgkEIvF0Gw2kcvlRNpYLpdlZ5dOImPqSqWSADftTDNRSLPZlF1kgkSmty+Xy9LuZDIJn8+Hvb09hMNhjI6OotlsolAoCBDt9/sIhUICKlutFiKRCIAThs/v96PVamFzcxMzMzO4du0a2u22JPNgEXLtzGtmjeyXaVZMmv5MgzgT5NEIOOh06uM5dpohMeV+Pp8PBwcHwlxQZmY6WhoUkSEdHh5GOp2WeSKTqgGKzmJJ51RnRPT7/ZJggWCJfdLtNeOlTFaNx9AB5bEaIGhGwHTQCc70vXSfTWnraYwir0lGRjN5puSTRsDIthK8cCxTqRRGR0elXh+TapgJM8i4avbRXIuMzWq1Ws+UWzBNAzH+Y8IeDeBMeazeLOj1eiiVStjd3ZUC2nzWzLk1f9cyVy1n1etwbW0NH3zwAb73ve/hnXfewfb2Nj799FP89m//NqamprC7uytrk8CJjBjfNywxQtCk+6n7ZWaAJbve7/el1APZSR5PgMdxopRQr3V+TzBO0ARAVAScV4JJHUvGY9lmqiP6/ZP6bcFgUNrCdurnhW3VpSf4bgBONluY/ZfruFqt4vj4GHNzc0gkEuh2u5iZmZFi3fp9pZnGv9USyn6//32Lj/+fpxz7nwD8p//WRv1VzQE7Bs4222yzzbYvt3q9jkqlgmAwiImJCdRqNaTTaXS7XXHocrmcsCnMfDY6Oir12mq1Gur1usRkcTeXyVBY94oyK+4MW9VjolMQjUYlfsXj8YhjNj4+jlAohGw2i1KphGg0ikgkIjXgCNA6nQ7i8Tg6nY4kZonH4wPfMRV/v9/H/v6+OL+UKlI6pYGSdnq1mWyDlUNz2mcm+NLsgJbRafmZlhhqJ5Tj6vf7USwWcePGDVy9elXmQYMNk4EjaIpGoxgZGUEmk5Edfi0304wWr8N6eYyNIZvDc8hw6Wvwd96XbbGSTJ4mx9OO+PPke1r6SfBjgmzNxOjraobBvCfbx7Wq14hm4/iPIKVWq+Ho6AhDQ0OIxWKIRqOYnJzE0dERms3mALjk82KaTrABPJVSEqCYbKQeJ3O9Mo5Vy+LMsdPsc6fTwcHBgZQa0XOpz9OZPPVzo4/R80C2EQDu3r2LmZkZXL16Fd/61rfwgx/8ADdv3sSbb76JQqGAUqmEfr8v7wcCqHg8LiCFbdbsm95UoBSR17DKNqslkpoV47rgu4sARwM7riudzp/xs2SvOAa8N985Ho9HasppySbXIWPngsEgIpEIKpUKHA6HJH3iT5Od15lf0+k0+v2+MJmtVgvlchn7+/vSDm6w8X6cS46LKc/8uu3FFTD4GzCHHQNnm2222WbbV7BOp4NkMolYLIZUKiX/SfM/6mazKexNOBzG0NAQRkdHkUwmJX6s0WhIzJneWaYMUe+C693bWCwGp9OJcrks8SvRaFRiPhqNBrxeLyqVClwuF86fPw+Px4O9vT30+33J3EzpZjgcRq/XQ71el3T7uVwOPp8Ps7OzAxnVWq0W8vm8lCKg05xIJIQ9pJRJmwYb2nnWAMF0Sp+3O62dbJPlMJOkmPfQsjBzTpl8ZnNzE48ePUIymZTkISb41Mk/nE4n/H4/hoeHEYlERA6rd941EHE6nQOyWrJvmsnh73rcCE4J2DSTZsonrYCWBmsECRoYavaMzrSWO5qxYmZqfc0O6znnNfW4E0SYn3HuuYGhY5YcjpNacZlMRpz0kZEReabYHkomrQp8ExjodcZSGVamx1Q79ozr4vow15NekwQxjUYDq6urItkjSDf7z/HVGwW6PXr8TelmrVbD9evXMTk5icXFRbzxxhu4desW5ubmcOXKFXz44Yfwer2yiUTpdyAQkPWkQQ8Blx4zrn2ON+N7ybJqVlJLUnWCE1OKyjkmsNWAmcdrySivRVDHtvp8Pvj9fgFblIgCGKhJyVqKetOkVquh1WoNzDffwdwICwaDePDgAfb29qRPBLHlchkOh0Pk8wSU+hnxer2IxWI4Pj5GvV63XHNfh71cAA6OZ17Qttlmm2222Wba6OgoarUadnd3xQHVO9SMQfP5fAiHw0gkEpJ9LJvNolAoIJ/Pi3yr3W5LfEaz2cTExAR6vR6KxaI4/nonmtIfZinsdDqoVCoYGhpCJBJBrVZDJBLBysoKCoUCjo+PEQgEEI/HRdpH2SdjPfx+v4CzWCyGcDiMTCaDRqOBfv9pOnwCPwADzjLwFHRph4VZ4zQoBQYLQpvn07QDaB5jxg3p7+h8WbEhvK52xIET545lHLLZLG7cuIHz589LxlFT8qdZPTqg8XgcY2NjEq+onVOCIM2MatmklpHp+B+2Vzu7Whqo2UfNMOq50WNsXoPf0yE2+2kFttl/zQDyfBO06fnQ8lbOqXme/qmlnADEGS+Xyzg4OMD4+DjC4TAikYjIAnkvZglkDJXJBmrnngw468cR5FnJGjkmzApLoEIzx44AuNfrSZbToaEh5HI5SQTC8/W61GOtr6nBnTkv/Lm7u4tf/OIX+Af/4B/gzTffxN7eHq5fv47vfe97WF5exqNHj6RuYTwel6QwXq9XJM4amFKiyv5oJpqMEzdOKAHWzwclgzoVP+dIJ+ohE8550+NBUM+i2kz0pDcmGBOnQbFeT7o+nZ4bPYY6yQtBGVm+YDCIyclJdLvdAcWFfgewvwR/BKRcUwRtWvL7IuzlAnA2A2ebbbbZZttXMMa60VHgDi7jSFqtFsLhMMbHxzExMQGn04mjoyOkUilJcsJkJZTu8Vyfz4dCoYBCoYBAICDxcrwPHdPh4WEAJ2ny6/W6gMVarYZ4PI4zZ84IOzg6OgqXyyVFkIPBoJwbi8XkO6fzpOi1w3GS4Y8pyAGIHIhZ++r1ujhopVJpwGnXzJeZ8Y4AxYxns5KpmYBO/206kibbpsEj/9aOrilHo6MVDAaRzWZx//59rK2tYWRkxLImHNujgZTP58PExAQeP348kECE48DrMNMfy0toto1t1Vn4rACaBkG8l2aquCZ1302AqCWKJoumJV+UmGl2T7PCeiytWEANwilt1PJC3W+9JgjG2GY6+ZSf1ut1hMNhJJNJ1Go1kSPznrVabSCOUYNdrgMCimazKc+hBrfmeOjnnJkVTdCr1yj7yPqJW1tbACAJPvQa1M+Pvre5Xk25qh47AtLV1VUMDw/jN3/zN/Hmm2/iT//0T3Hr1i38+q//OjKZjMRuajBDRp9giBtHnH+99giK+Uyy7IZes5Q7aqkj59GU1epMpZwDSmw18NLsnl7TZKhdLtfA5ol+R+j516AdgMQe83nSzyNrBqZSKfT7fRSLRSnnooudc92xP2Tm2Be+8/P5vDDaL8peLgAHOwbONttss822L7dGo4FkMol2u/1MVkiXy4WJiQlMTExIkpDt7W2kUimk02m0220JhKcMrNPpSCFtSsG4u1+tVgdqkhWLRQwNDaFarUr8GVNpt1otjI+Pw+/3SwbEsbEx9Ho9iX0hIASAkZERlMtltNttxGIx+ZslA+jURqNR1Ot17O3tAXjqmPp8PkQiEdkNp/Oi2ZxXXnkFXq8X29vbUgJBMy10mrSDqk0zOjTtTGvnV7NjPEefqx06K8vlckgkEjg8PEQul8O1a9ewsrIywEaYcjnNwrlcJ4XPl5aWsLe3h0wmI0wDnUyCOdbu04BBx42ZrIuZjEP3yaotelx4nJacagbNZDM1cNBsKudNsyRabqZZNV5Pp5832Ry/3y/H6Vg+vRlgzrVmTJl8JxgMYnR0VCRyBHF8LngdDQDNNaDT21uNpwa9Xq8XkUhEGDs9ByZDyzVerVZx584dlEolkSvqDJSmNJXzbrKnpvyTn5tj1Ww2cf36dUxNTWFxcREXLlzA2toaVlZWcP78eQFrlD2a46bvq1lWjhXHi+uWEm6uDY/HI3NJmSMBGWNBOdYaOOoslnodke1j5kyOF7O1ct2xHTrGjGtWr2GuwXa7LQmfqIggmK3X6yJJZ4Kjra2tAUZdKws4/kwqZbVhRZmnBuUvwl4uAPecl7ptttlmm2220ZhpTDsSPp8PsVgMo6OjmJmZgdN5kpXy+PgYe3t7KBQKErRfr9cl+xwAkS9yl5u739xxJkikw8fd3EQiIdKihYUFBAIBVCoVdDodxGIx+Hw+kWqyFtLx8bEAr1KpBKfTibGxMXg8HhweHorT0u/3EQ6HEQ6HxVmmjLLZbEr8CPC0LpN2tABgcnIS09PT4rQXCgUBj2bclWn8/1izaDxP79ZrR42AQwMJk9kz/5/XICebzSKZTMLj8aDRaODmzZt46623pFC3FdOiZYdcB/Pz81heXkatVpM4Qc1EEKho5k2DNSsmS+/ya9NJT0y2SgMXE/Dqv/XccRw1YKGDyuO0U2qOsY7LMu/FdhGo8lom6CHo41q3inXsdrsyvlpCZ5ZsoEzSZC01ICY7xARBJqumQaDT6UQkEhH21ArQm32p1+tYW1vDjRs3REaq22COg76ONr0ZoVlrE4RzvorFIn75y18iHo/j6tWr2Nvbw40bN/A7v/M72NnZQSaTERaO80vgpVlQjomutaeTsHBMCUzIbDFZR7VafaYkBttNSThBnWbSdAwkQaBeb5p9A/BMu/S64vdcTxwjlmYxlQNMKsV4ZvZD1+HTLC3bo0Emn1muweeB8a/bXlz6lL8hs+GbbbbZZpttX2aFQgGZTEYSVfh8PoyNjWF6ehpTU1OSlXJrawuPHj3C0dERarUaqtUqer0eIpEI4vG4xEBpuRB354ETB08Xg+52uyK75K5yKBTCysoKPB6POCKsMddsNqXuXL/fRz6fF2BXLBYRiUQwPj6OXq8nbWQSEjpTZApLpZLEsZDp0HFbwGDMD50XZrMkY3da4Wjt+AKDqfLJ7vFvggJdkNuUlj2PGdGmj2P2SALTarWKX/ziFzg4OHgmO5123DVT43SeZKRcWVnBzMyMSCf1WDGBAjOUEswRlOp/GiRoIGcCIS0nM7MGatZOzw37oU3HqGnHl33V4MpkR02Wz5w3jpWOg+JnWjanwQz7o/vP+zBbKjN+6jHl+WQ/zfVjji0ZbHM96rXjcJzIZFmbUcv99DrSfdcAjowhQb0GcHoeTCZV991cuzQdW8r7drtdbG9v46c//SkikQi+8Y1vYG9vD/fu3cPFixcHxoYAmBszHBOOEZ97ndGR/8hmAUAgEEAoFBLAR3aNIJMbDVpayrVAuaaWG+vr62eO9+aa1bF4/F4DRb12gZNNM7LgVBAwWzDvTWaRoJvsYr1el4QnWkrabrdRqVREHdFsNiUJlK5DyXfAiySNXjIGDjaCs80222yz7UuNwMHtdiOZTMq/oaEhHB8fI5fLIZVKIZfLDfwnT/kMa64xbT1ldXROmPGRWeL4n32n0xGnwuv1YmZmBpFIBIVCAa1WC/F4XM5ttVqIRqPw+/3i5E5PTyObzaJcLgu4qFQq4ryQ6SPr1+12sby8LPEhBJAEY06nE/V6/ZndZDph7XYb+XxeWEAro4OmneTTTMvMeKyVtFDHngHWaeC1k6zn1e12IxQKSVHuu3fv4rPPPhso7K1333ktDTyHhoYwPT2Ny5cvC3CnI0nAr4GGZiWsWDZ9LwJnmmYarJhHU/5njoOVmSCOTqdmWnk/k0k178fPTCCnmUur+eQ/LbflWGtAxrGNRqOShINggcyHLi1hMp2aKWNtNCtj22KxmLBvuv16rNlOOvV7e3u4efOmsMl8ZjSoNaWzJltj1S5zvWuQo5No7O/v4+joCBcuXMDDhw9x48YNXLhwAbOzs9jY2JC4RAInsugcT81QOhwOeX9p9lC/n8jqkSHVYIrri8aNCz0HWmVA0KdBPvBULkmAzPcpv9cgkfOqJcMcb2YCJTtXr9dlI4hgDniawZKbDFQVcOxYEoTXM+N69XrhdU97J34d9nIBODhs/GabbbbZZtuXGv+jnpmZwcjIiMSBNRoNKdRbKpXE6WEmQ7fbLVnN6AgwlTp3vgOBANLpNJrNJsLh8EBB2ZGREUlKMjs7i0qlgnw+D4fDgWQyCbfbjWKxCOAkvi0ajeLJkyfw+XyYmppCLpcDAMzPz6PX6w0ACxb8TiaTKJfLCAQCmJ2dRTqdxsbGhgA4OvPdblfAn3Y+6bS0Wi2USiUATzNnAk93xrVDTtPA4jSnFcAzjqqeF/2dllyZptuqHctCoYBwOCzzUqlU8POf/xwrKyuSLVJf2+wD2xEIBHDmzBnk83lsbGwIc+pyPU2zrrNEmgyOWdeN16VDSYClHUUeo8dOM5gcezP1P8dRO+Nm7JuWZQJP5Wg6y6MGXVbghmOsmUQer5NMsK38W8syKavTQJFss3aY+R2vy3WjGULNWPIzPpN6Lnm/UCiEkZERYd9OA8HsT6fTQbVaxf3797G5uYlAICBskr6HXtPmGuV3ep2Zn5u/6/VPFvwv//Iv8Xu/93u4evUq/uzP/gzXr1/HW2+9JUlVrDaKyBbq+eXc6+RAGngzro5Amhku9drRAFyvW7J2fC8xHi0YDMLv9wuTr0EymS4CQV0+gIl3NOuqN3f4TA4NDaFWqwlTxmeTz7heA3yPs498F1arVYmhZHIaHqtlpnxv6vIGL8JeLgDnsNYc22abbbbZZpu2SCSC4eFhzM3NYWhoSOLXcrkcstmsZCfzeDyIxWLi/OqMblNTU3C5TrI/1mo1hEIh9Pt9iVEbGhoSyVWv18PY2BgikQhisRiCwSCOj49RKpVE0tXrnWTdc7vdiEQiKBaLSKVSmJiYQDgcRiqVkpTrLOAdDofhcDhQqVQwOTk5IL0j+5TP58U51oH4Ho9HmAQd46FBSKPRkF1msiA6btA07RA/D7yZiQF4PxMMmvFJVvfSYKLb7eLw8BBvv/02SqUStre34XQ6sbOzg5/97GdIJBIDacM1a2a21+l0IhaL4dy5c2i329jc3ESv1xvIoqfHy/zbZPm0VFX31zxPAx4du6UBK78z28zvtIPOMTVr55Fp5Nrm3BB8ss26vZSlabBkZvzTYIHPi24z16juu35+AAjw0GDU7KMJOPmv1WqJjFkzam63G6Ojo4jFYgOsJ6+pwSfZr3a7jUwmgxs3bqBarWJ4eFhACeNc9fxqgGb1fOh1e5ppIMy/W60WNjY2cOPGDfzWb/0WlpaWcO/ePVy4cAEXLlzAnTt3EA6HAZyk52fMl24HNw9M+az5LJOx4/EEMCbA5HrSMa1sLzPd6j55PB5ZMzyfkkYmGdJrUL9ryIoRWJlSaJ/Ph1KpJO9PrmvNqpEtJ+jjdbhew+EwGo2GgECWNKDiQm9YEPy9SHu5ABxsBaVtttlmm21fbouLi5icnITTeVIeoN/vI51OI5VKDaSWHhoaQqPREIauVquh0+kgEAjg8PBQHFoW3m40GsK6tVotcfK4+z89PY1UKiUxWaFQCKFQSJxFFrHNZrNotVqYn59Hu93G1tYWEokE3G43CoXCgINcLBbhdDpFZhSLxdDr9ZDNZuHz+cSJ1s5QIBBAIBBAtVodAAnaUdZODh0ukzHQzqEVADpNNqaBmk7gQNPsjBmjpRknXo/tcDgc4oTNzMxIQe5Op4PPPvsMS0tLiMfjAzFZWhplxk25XC6MjIzg7NmzqFQqSKfTA0kyTIDJczQDZbJYbDvBiQZwJqsBPJsGX1+TQM2KQdQgUJ/LMdfzrWVtVqDwNKZIs3WmhFCzflb9YTt1mzTjptlRPUZcr7wuzzOZOHPsk8kkRkdHBzKSmsCZAI7PY7lcxr179/Do0SMBD0wE9DzgboI3k3kz50l/rmW0elybzSZu3bqFM2fO4NVXX8Xa2ho++ugjfO9738OTJ08EUPX7/YFkJYFAYEDCqO+h49o088bx1JJjDdx5Da4FjrsuBk4ASVlkv39SY47Mpo6XY204SlbZFra51WrB7XZL1l7gqYyTG2Q+nw+NRkPuraWTbLfeDNCMItk/r9cr718qFsjCEejxvlbP3ddpLxeAc9hlBGyzzTbbbPtym5+fR7FYRCaTQbPZRDqdlvpu3NHVWQGr1SoqlQqCwSDi8bjsUvt8PgmKHxoaQjAYRL1eRyAQGNgtnpiYwNTUFA4ODpDJZABAJJONRgNDQ0NShiCTySAUCmF4eFhSXo+Pj4tEiE5OPp8X2RSZvqWlJWSzWSmSXCgUnmG56KRTjmlK1UwnjQ6haTprnin30+yQKQek0fHW4Ivt0ayRdrS0E3oaSHA6nVhbW8O7776LsbExVKtVOJ1OZDIZ/PjHP8bs7Cw8Hg8ikYg42zqZA+/De/h8PkxPT6PRaODhw4fiwOv+aKddJ2ewYtf0Tr4eY309/bcGfOyvZrNM006pvqceQ3MOtCzSlPdpkMZ/VuOk5+60+EIeq9tEsFWr1eD3+wcyUeq1x3VAx57X0klfNKOixz0UCmFqaurUou4m+8YNmJ2dHfz85z9HvV6X554SPR0XphlFK9ZSj5E2qw0OE8RryWAul8OtW7fwve99D5cvX8bNmzdRKBRw4cIFfPLJJ8Iusy9MtkL2S8tR3W43gsGgjG+j0ZAESDpuTYMevXHAduq1qRMFEbAFg0EZB7ZDgzP9vHD+OA/8TG9A8RrdbhehUEg2r4aGhqSouAairLvJzSpd/oB9dTqdsoFGubhmCgkCueGj68O9KHvJAJwDfZuDs80222yz7Utsf39finEXi0Wk02lUq1UEAgF4vV4EAgFJQU0nKBwOS4wJ5TzMnkengEW2Wfg6FouJ87+5uYl6vS7XJzD0+/0YHR2V9jCG7c6dO4jFYohGoxJ/xgQKnU4H8XgcDocDhUIB4+PjcLvdePz4MRqNBi5evIhyuYxMJiM72HSMyCCZMRx6l1qDMC2f0mDMlLABz3dI+bvJBFnFodEJJaiyAn4acJosWKVSQa1Ww/z8PHZ3d4VRffLkCT744AOpAcY+0ZHUfdfX9nq9mJ2dRa/Xw+bmpji6VgwcMAhu9T10200ZIMfeZEn0uGtgpEGjdiZNpo/H6eLIehw106MBohWw1HPIeCE62wR2XFu6H2SaaHT49TwTAGjHnuwU+2DOPa9NEMJx0BJSt9uNyclJJBIJy6LdJngj81Iul/HZZ5/h4cOHku2R8WQ6S6Y57lb2PEff6jstb9Rz1ev18PjxY6yvr+P8+fN49OgRHjx4gN/93d/F7du3B8oJ8Dy+vxwOh4yJGQtLwEIzx0mDNHMzRm8CaLZUG+NRGa9Gtk7LHTVY4rhwPrlRxjpvXE9k+Zi4RMek8nnSCYPMde5wOAbKmBCYceOIbeK5OvOkZuNehL1UZQTsQt622WabbbZ9FSuXy2g2mygUCjg6OkKj0ZDMYszmyCLf/I+b0hyXyyXxEkNDQ+Kc0BFgDMj4+DiWlpZQKpWkPpvP50MgEBBHJJFIIJlMYn9/H4VCAZFIBMfHx6hUKlhZWcHIyIhkk9Q71+FwGP1+H/V6HdPT0wiFQjg4OIDD4cC5c+eQTqexs7ODYrEoO9dMbBAOhyUmTgfn02E3GQA6KXTaTakcHSft5D/PYaVjpO+pz9HAiU66eT3tRFkd0+/38fjxY4lz1MzBL37xC/zyl79EOp0WyRfHVbM5ZpvC4TDOnDmDxcXFgSyG/F4zWJoZ0kyNBnh0oPX5puzSNC3xo7PJOCLNHplOaq/XQ6FQQCqVkn46nYMJVbRcT4MyU8rHfmpnlp9pR1gDBu0Q6z6bLBY/03XWdLIY4ARcMCZKryOyRloGSvZ6amrqmbIBeq1p8MZMho8fP8bPf/5z1Go1BAKBgRT8Zo0yPU7aTGZSr9vnye/YHj2m/KxUKuGTTz6B0+nE2bNnsb+/DwC4evWqyBd5b7JF9Xpd/ua889nVoMnr9UoJAR5HVkq3RdeZAyBjw/chz9UyQyYU0rJExpJSNqnj3jRrx+tyM4ngju9x3aZ6vY5KpYJWqyXXcrvdoopgmYRgMCiyUJZ60VlMWQic4JbvXxb5rtfrA2Urvm57qRg4OOwYONtss802277cyuUy0um0xJMxsUG9XhfnRkshWRIgHo/Lbm80GpVdYcZh0LE9e/YsgsEgtre3kc1m4ff7EY/HRW7pcp2kM2+1Wjg8PEQikYDL5cL6+jpGR0exvLw8AOroSITDYYyOjuL4+BhutxvLy8vY2dnBwcEBRkZGEAqFkEqlRFKkJWUul2sgGxyL1WrQBgzKvvTf2okHnu7iW+3KAxiQ2mlnz8oxNaVn+t4mU0Xnjvewkq45HA6kUin4/X5xciuVCoCTtPV/+Zd/KWUYhoeH5Xw6ieyf2fdgMIjp6Wk4HA7s7OygXq9L/wgM9Dm6fcCzslMNYGnaebeaBz2mGqBp6Rq/11k8g8GgOLt6XLU8UrOtmmnT9zHZPTIRegzoGLOvWi5prjErGahmZXV2RDMOU9/TLAvgcrmQSCQwPT2NYDBoGZNojjkBcSqVwq9+9Svs7OxIDBkdd15b35tjbDVfWibKz08z8xr62dD9TqVSuHfvHpaWlnDr1i1cv34db7/9Nu7cuYNSqTTwTJpMFIEugZsG6prBIlD2+XwDpR002wZgYD3yPF0bke88gh4NyADIBgTnmhkiOed6jernlOxZr9eTuowEYcBTNtbv9w/E2DmdJxlmCcz4vmf7TOaN57HNfOf7fL5nMpF+nfaSMXA2grPNNttss+3LLZPJIJvNIhgMYnh4WHa2nU4nqtUq6vU6gsEgAoGAOBB0EKLRKMbGxsRx8Xg88Pv98Pv9GBkZwZUrV9DtdrG5uSkyymg0ikajgWazieHhYYyOjiKTyaDX62FxcRHNZhPHx8e4dOkSLly4gI2NDZRKJUQiEQFbfr8fzWYTGxsbcLvdmJiYwMOHD1Gv1/Hqq6/C7XbL38FgEKlUamDH2ufziTPGnWbt9JtMmGmamdNMjXZItfNvOkDAoOxK/wSsa73ptphSNdM5Jnjmca1WC/fv38fKygqGh4cHgMLx8TF+8IMfYHV1FaVSSZxznXHTilFxuVyIRqOYnZ3F/Pw8IpHIAPukHWGeb8bw0TT4JQNhSlhPk7TqDJMmMOIY8XpkIjwej8QjEZiReSTQ57XpfJt14/iTMUYmS2qCQr3G6NybMlGdUMZk0vR1NcAw2Uo6/nqO4/E4zpw5g1gs9sxcajCl2TfgBODfunULH374IRwOByKRiKzlbrcr4EHPtxVA1Wua9zTBvWnmJgnwFFzye74P7t27h3w+j9nZWfziF7+Az+fD0tLSwLPJLKE6cYtmNXltJmIygaLO/kjWy1wTfC64bjgWBFocU0o5dfZKKhGYIIr31OvR6XSiVqsJMOU8+Hw+BINBuT/ZQ25ScY4I6jgOAAZiA3u9nhQF12NCZpClZQqFAqrVKhqNxsAz9KLs5QJwDtgxcLbZZptttn2pFYtFjI2NIRaLDSR7qNfr4iRTyqWlSFNTUxJ7RnBFx2Nubg4TExM4ODjA3t4eer2e1COrVqtot9tyv4ODA0SjUQSDQTx69Ajdbhdvv/02gsEgPv/8c3GmmPVwcnJSZHBzc3NwOp24efMmAGB0dBTr6+s4ODgQMLq7uytMIaU/dKqLxeKAFFI71Np50443MOj00kzGgOdp9siKbdMMBr+zYir0Z6cBSzpqZla4fr+P7e1tNBoNTExMDJzT7/exubmJn/zkJ9jd3ZX5IZAji2TKJOkAh8NhTE1NYWZmBqFQ6Bnn3BxX3VYtdzT7rDPkmQDVZM30/OnjNTDUbTeLe2s2jZ/TaSZz0mg0hDHRMjoNInku51cDIpM5JYtjAj89Plwz/FuDL80k6Tlhm7muYrEY5ubm5HkzZZO8limdZMbXv/zLv0QqlRKnnsybHkNTFsvxNyXI+js9p3qN83czgQc/55hQZthqtZBOp7G1tYVXXnkFvV4P169fxzvvvCPto/yRZS/0Rke/35fvCUiBp2wYQR4zWXq93oF4R35Oqazb7ZaEJQRBrVZLNq14P5Y3YByvlsoCJyUQtJyZ9d0oweX1NMALhULyDtebEFrCWS6XpcyA3iwJhULyPuca4Hh7PB5JksK2si+c/xcJ4F4qCaUdA2ebbbbZZttXsYmJCWFrKpWKSMzIshHE+f1+VCoVeDweLC4uolarSRxcoVBAq9VCPB7HysoK2u02Dg8PJTslY81qtRo8Hg+i0ShqtRoKhQJCoRDK5TKOjo6wsrKC8fFxrK+vo1qtYmVlBfl8Hvv7+xgbG0M0GkUul0Oj0UA8HsejR4/Q7/cxPT2NWq2Ghw8fSoHiYrEoWdhMh5L91dI4mj5Om5VzzeNN8Gbu3vMzK6ecTpKZzILt0KCOcWTsEz83762zNPL7QqGAra0tnD17FqurqygUCtKGTqeDTz/9FJFIBN/73vewsLCAYDAoTrl2bq2ke4yDGxoawuHhIYrF4jMg10wRr8EOnVdzXExZpClrZHvYX80a8Hw9rjSTwWJbyKh0u100Gg2JeSLb6HA4EAwGxbkliKGzz2vzXmaiDCvWidJO/n1aplG93nRiFPO+XMvdbhfxeBznzp2zLBmgr2eCt2azid3dXfzkJz/BnTt34PP5MDw8LMw8+69T62s77fmwYpb1cacxc+b8mc9Wt9vFxsYGXnvtNczOzuKjjz7C5cuXce7cOdy4cUPWJ5lUjjljPlmyhPcgSOU5GujrzIsaYOlNGD6nnL9ms4lKpQKXywW/3y+bIYw34xrVAJLrWpcA0ElYeC9+xrVMNo/XY5IoXqdcLotknMczicr09DTa7TZ2d3flGC0fbTQaElOnwas5P1+3vVwAzlZQ2mabbbbZ9hWM/0kXCgWUy2UEAgFEo1FUq1UAwPDwsGRnC4fDGB8fFyeOZQBcLhcWFxcxPT0tmSx7vZM6bExsAgCJRAJOpxO5XA6BQAAzMzPY2tqCx+PB66+/jkKhgJs3byIQCGBubg5PnjxBJpPB1NQUPB4PMpmMOFD7+/uIRCKYnJzEkydPUCgUMDExgaGhIWQyGfT7fWH8tIyRCRzopGknmQwdzdypB55l36wcFyvwpqWTdE6108r7ahCjf7e6pwlKdPyMeV6/38ejR4/wT/7JP8H58+fx6aefDrCP3W4XH374ociuNFNHiZWO1dFtcblcUtvP4/FIZlO2h/3XQNqKndOfmRk5tZNKoOJyuSSVumbjtINrMlW8j64VpsdQrwVgMKtlp9ORFOy67zSCVJPRYx+ZAdSUTfJadIyZAp5AwTTW4uI9dXsJHOLxOM6ePYuJiQlZ8+YY8DwN3lqtFvL5PK5du4ZPPvkE/X4fExMTwnbpfrD/JqPGtpvG77kezLnX82ECXhPgmZsk5XIZDx8+xNTUFDY3N7G5uYlXX30Vn3/+uWw0kf0CIJ/x3aZjFXUbCPgY20vJrM7ISOaTz4cG9wT4OoOsXquMNeb60pJgrkdd0qDZbAqbyHe0KS3lsZSDcswob2cCHx27y/Iro6OjGB8fR6vVQrlcljHXz4F+ZggAzWfs67SXC8DhWe2wbbbZZptttpnm8/mQy+UkRi0QCKBWq8Hr9SKZTKLT6UhRVwBIp9OSWpw7vAsLCxgaGsLx8TGKxSLcbrckIyGTkUwmkc/n0Wg0cOHCBbjdbqyuror8Lp/Po1Ao4PLly/D5fLh9+zYODg5w5swZlMtl9Ho9JJNJHB0dodvt4syZM3A6ndje3gYATE1NSW04XbCXUh8dM8W/dZY3bdrBNNkCfazprFsdq5knzaZoyZiWWmpHTzNwvJ+ODzutXQQGpvO/u7uLBw8e4MKFC1hfX0c6nZbrAifxOf/lv/wXeL1e/MZv/AZmZmYGnFqfzydMDp1Sfc9AIIDJyUl4PB4cHh7KurJiXHSbKcEymSm2zfxcy7a0w2qOlx5nDcS1hJHzZyaJ8Pv9A+tEgwur9UIwo+dPAxkyKqetBQACADQoIljTYIV90Snw9bXj8TgWFhYwNjYm4E23XwNpE7wVi0Vcv34df/Inf4KDgwPMzMxgfHwcjx8/BoBn5KS8nk6cYsparZhVve5O81etWGYzhb+evydPnmB6ehrRaBTvv/8+/tW/+leYn5/HxsYGwuGwPNd8LjSLq1lNSg7Jbvl8vgFWlhtYZHw1+8ZraMm2jjnjO4HjrpOPmMmQNCgj2+nxeCRrpdfrfaY2m2aX2TYyj61WC4FAAJFIRBIZ8VqFQgEbGxtIpVIDYJXX4zPBOEGyb9zYeZFJTF4uAGczcLbZZptttn0FOzo6Qq/Xw+TkJNrttmQfY6IQMhyFQkF2gr1eL3w+H6LRKKamptDv95FKpSQjpdfrFaciHo+j3+9jf38fDocD09PTODo6QqFQEOC3ubmJUCgkxaZv3ryJcrmMcDiM4+Njudfjx4/h8/lw7tw5VCoVbG9vIxQKodPpIJvNIhaLiTPq8/lwcHAgjpJmbLxeL+r1ujg9msEBBlPHWzntGlCYv5tgxZR+6cQGGljwHtqxNyVvbrd7oDaUySDpe1plNOz1erhx4wZ+93d/F2NjY8JU6jZXKhX8+Mc/Rq/Xw2/91m9hYmJioH+MI6J8SzNADodDslnSwUylUhJPyTbodmpmktcx2QTt9JvjqufneeCa19TAyJSo8juuGe1E6/nS12H/dZs1WNRxdGSwnpepUQM8HTunJXm6Xpe+H2PeZmdnMTIyMiDXM2PJTOat3W6jUqngwYMH+PM//3Ps7u7C7/fjwoULKJfLA6CHmyFmPJ1mqvV9dF+t1qx+Bk2gaZq5XvTnx8fHuH//PuLxOLa3t/HkyRO8+uqrePDggQA0nchGPyMaAHHjxwRkZN98Ph8ASOZGs4YbQSZBnr4u5Y18J+kYSoI8zrsucaLvRSZY17rjWmemYI6dlkCyjALZOb2JwQ2fQqEgCas088x+B4NBUVU0Go1ngOuLsJcLwMGOgbPNNttss+3LLRKJIBAICMvlcrmkThtlOpTIjI2NATj5D52JRwqFgjhEw8PDAE4So0SjUSSTSRSLRRwfHyMQCMDj8WBraws+nw/nz59HLpfD48eP0e12hWmo1+tSEy6fz0tq+/39fczMzGBhYQH3799HrVZDOBwWiWQymRSng3WRDg4OADyNRaKjyMQB2mG02tUH8AwA0HWj+L2208Ab2Rh+xvtxx90EblbAkQ6deQ/NZHEO6TiaACOVSuHRo0d47bXXcHx8LCycvk8ul8OPfvQjAMC7776L2dlZ+Y5MHIGBrh2nmaRkMgmv14tgMIjDw0MBAZqV0nI6c7w0YNLSOw0aTPBmzqdm76yAA9uvHXmCUDrwdJ513KHJkGr2juBWzykZsEAgMDCO2sy2s58mqCHzoWWE3W4Xfr8fyWRSkguRIbPahNDgjfNXLBaxurqKP/qjP8KdO3fgcrlw6dIlDA8PY2tra2ANEpBo4GhuVHAsT3se9DrW0ldteg7NsQIgIIT9abVa2NzcxOLiIpxOJ65fv45//I//MUKh0MD86fT4mr0kyOr3+8I061i3Wq0mm0AsQcKkJpwTXQ/NLD3AYwiGA4GAbBSYMu5+/2n8Jo+hGiIQCEisIt+dHPNarTaQvEQ/k2Ts+v3+QL+45injLpfLwvYBTwFlo9GQ+wQCgYH19yILeb9UAA4Wuxa22WabbbbZZprH4xGpm8fjERYNgMRnJJNJ+Hw+VCoVAUsOh0OyTgYCAXFOK5UKgsEgZmZmkMlkkE6nMTo6ikKhgGKxiOXlZSQSCWxtbSGXyyEcDmN/f1/iTJaXl1EqlZDP55FMJlGtVtHpdLC0tIRAIIC7d+9K4e9MJiNOTafTQSKRQLlclrpXjx49EieMfdWgRgMlM27NClyYsj3TtIOsASCAZ0CLZkGs2AT+NGPBTAbIZGr4mZa0aaljt9vF6uoqzp49iytXruBXv/qV1HCjvMvhcKBareL9998HAPzmb/4mJiYmEAwGxWEmu0MH3kpSycyFHo8H6XRaEtCYzKIJvsyx0861ySRZyew0aKNpEKcz7JkMER1bMg5k64AT8MLx1cfre7CNJljVYEq3U4N4Pcf6GMZo0eiY83ifz4fx8XFMTk4iEokMJN4wwRs3DjjX3Ox4+PAh/vRP/xS3bt1Cp9PBmTNn8MorryCTyaBcLgugYBp6nUGTfdbxfHqeTHbVnHsT2Jm/6w0Kc3718wycvLPq9Tq8Xi92dnZQKBRw5coVPHr0SMCalipyveskPTqZDde17hOliBwLjg3rZ5oZS/XzCUBklRxDvsO8Xi9KpdKA3JabT7rAONedHhe9CaUBlX5/8XMydYFAQICv3hAwi8dzLHRcn/keNN+fX6e9VACOQ2q1o2GbbbbZZptttEwmA4fDIbEy/E8dOElgEgwGUSqVpFZcIpGQ+Am/3y8SS8or4/E4QqEQVldX0ev1EAwGcXR0hHA4jMuXL6NWq+Gjjz6SunOHh4cYGhrC+Pg4otEoDg8P0ev1EIlEUCqVEAwGxZHc2NiA3+9HIBBALpeTuDymAWeWzOHhYayurgI4cZwbjYbUS+JOPAGBDs4HngVYVsyNKa/UsTN0jJ/3/y/lXHSazGtrBofOIdtmAjl9nAZxVs4q25rJZHDt2jX8xm/8Bg4PD/HgwYMBiSFw4rAVCgX88Ic/RK1Ww7e+9S3Mz88jHA6Ls+j3+0UqycQwpmNJ5jUUCiEcDiOTyUiCE5Mts2Lc9Hiz31ZOvgkK2B+zDAHbpQEIz280GuKYk4HRGSR1ogYzdbxmb/T8aMaFDJ1OUMK51ZsJBAtmIhAeq0FQLBbD1NQURkdHpUi3VXydZikZ30Tm7d69e/ijP/oj3Lp1C+12G5FIBO+88w4ikQhu3bolks1WqyXPkY5D1H3XGwvmPJkbHHou2WcTyOu5p7F/eq1xXLrdLvL5PCYmJrC3t4f3338fb7zxhmSstYonJCDhnFjFxjIWTj/rjGEDIJtfGuzxb70hw3PK5TKKxSLi8bjMaygUQr/fR6lUGmD4uQmi43pZ6oPSR96XEk2TYaTsFTgBg2QOWS6ExzKuj/fg+TxGJ2vhRhHj7F6UvVQAzjbbbLPNNtu+ijGrWavVQjAYlJ8zMzPodrs4Pj5Gp9ORuKZCoYBeryfB9E6nUySXs7OzODw8xPr6OmZnZ9FqtfDkyRPMzc1hYWEBa2trksqemS/D4TDOnDmDfD6PbDaLcDiMcrmMQqGAqakpjI2NYXt7W7JgkpELBoMio+x0OsjlclJM+smTJ9jf3xdHhM633vHWTiTZAzOey4qVMwEDP/P7/VheXsbIyAiuXbsmGeK00fnTPzVgo+nPdKIIEziajI5uIyVUZtp/9vXx48dYWVnBxYsXsbOzM1AcWAOnarWKn/3sZ6jVavjud7+L2dlZxGIx2e33+/3iDBI4MjEDze12Ix6Pw+fzIRQKCRtHposOLMffjN/TYECn3aeTrUEuTR9jSjT1nOs5ZOymjjWi6THWTIXOCElgyPtrCZvT6ZQkO3R6tWOv+805I9DX2Q3ZbqfTiUQigbGxMSQSCQGcWnrJc/S5mqEpl8tYW1vDD3/4Q9y4cUOk0CsrK5iensb+/r5klNWxd2bafL322B+TXeUY6vE2Jcv6e5NB5T0JtnQsqWahAciz53A48ODBA7z++usATqTd4XB4gEXVgJZri3NgbghQNsjvmUBEzz3BFGWNfNcwiQivqUsLhMNh9Ho97O3tiaxRg3fOP58vjhnbTGmjng9KLMm06Q0Iji/XGUsq9PtPa+IRfFKZoQEkARtZZa69F2UvFYDjmu/3bTWlbbbZZpttp1u/f1LcNZFIoN/vY3R0FIlEQsoBBAIBTE9Po9VqoVarods9qS/l9XpRq9VQq9WQTCYlU53L5cI777yDg4MD7Ozs4OLFixgfH8ft27dRrVaxtLQku8+RSAThcBgbGxsYGhpCLBZDLpcDACwsLMDn82FtbQ3BYBA+n0/KHJAlZJkAv9+PWCyGUqmESqUijobf75fYPp09UTvC2unieNDJMiWTBHlaakhHkokFxsbGBuK3rBwb02E3gaKVc69laJplMxkKDWi4w64BGY9pNBq4ceMGfu3Xfg2Li4u4f/++sKimVSoVfPjhh6hUKvh7f+/v4fz584jFYgCegg2v1zuQsEGzcWwz6wsGg0Gp6VcsFgVkc0zoWDPJA9PWa6dfj71mI/W4ABiID+L5Ws6o20eQYLKodFq1TNDlciEYDA6wUHq+NQBh+xmHxNgpLZ3UAIQsCwGlBvrM/DoyMoJkMolwODwQ40nTIE7HiRFIFAoFrK2t4Qc/+AE++eQTYVcSiQQWFxfRbrexs7ODer0uY9JoNGQjxLwX72Oudw2C9Po1QZ75u54Xjre+jr6XHvd+v49Wq4VqtYqJiQkcHBzg0aNHWFpawvXr1yUJD/vRbrcFWHMeOU76PcB/zNBYqVSE2dcySQK/er0+AJK63a5ILqkEaDabktmS8m6d4bHZbIrKgP3Wz5jDcVJLrt1uo9FoSOZUnRyFIJLHcFwZ1+zz+eSzRqOBer0uAJkSUm5u6EynejNMA98XYS8XgPtCRGnnMbHNNttss+155vF4kEgkEAgEMDo6ikgkglwuh3q9jpGREUQiEQFuQ0NDSCaTcLlcUtB1bm4OQ0ND2NjYwPDwMAKBAG7cuIFut4tvfOMbqFQq+OCDD0R+ub+/D5fLhVgshnK5jP39fQSDQYRCIRSLRYRCIQwPD6NYLCKTyWB6eloYOdakI7DU2eSOjo6ElWDGzN/5nd/Bn/zJn8Dn80kxXzNpAB0uM97NZA60pE079fy70+lgY2MDm5ubz7BiJmtG08DABFn62vycoEDvtOtra0eK0r7nAcj9/X3cu3cPMzMzOD4+loykbJvuY6fTwe3bt1GpVNDpdHD58mXEYjFhcjqdjsTF0cmkTI/MD9seDoclo10oFEI2m0W1WpWxMJ12M+aLZsb+mOyT1Tzq8TbnU/fXZDvZHpMhMpkiLQPUbWw0GiI1JHDQ8lbNDgKQJBmUKNNpTyaTGB0dlWyvphSUc8efZrwbwRuzTX7yyScC8j0eD8bGxhCPx5HNZoXFZnsZF6jXlGYy9bphm80xtGrraWydKbU0pZT6GibjWK1WEY/H4XA4sLW1hW9/+9v46KOPhJXixo1OwqPXqH7GzTgwgqtarSbSyXK5PDAefBY1i0ummu+t8fFxAV0EVOFwGMFgENlsVjZUeDxjfcl6Ebz3ej2RnhOYkoFnP3QiHnPDiFL4Wq2Ger0+sKHCMeVGAp/FcDgs79p6vT5QP/PrtpcLwAkD18fTiDjbbLPNNttsGzTGok1MTKDVamFnZwdDQ0MieSuVSgAgBb4bjQaq1Sqi0agU4i6Xy5idnUWpVML29jbGxsaQTCaxt7cnIKzRaGBzcxOxWAyJRAJHR0cAgMXFRTQaDZTLZUxMTMDtdmN9fR1utxvBYFAAXzgcRrFYFGDQ6/WQSCRQr9dRKpUkeUOj0ZCkLA8fPhT2Q6cPZwkBOjNWiShOAws8RrMI2lnn9/pvzRwBGABZ+t6a4eF5/GmmnufvQ0NDA3Wg+B13zfm9CVKBk1iY9fV1+P1+LC4uolarSRIFtp99JNh5/Pgx/viP/xixWAyRSETuo8s30EGmI0nnUUsNPR4P4vE4AoEAYrEYisUicrmcMKamk8nx0uwax0TX9gOeZs3TLKuOaSKg0UCEzq2ee15fz6k5B+bc0fk3a435/X753Ol0IpvNwu/3SxyRnjfdRgCSeZDginUO9Vq0WjMcA8r9ms0mstks7t69i//8n/8zbt++PeCYh0IhLC0twev14vPPP5fnzeF4mrCImwfPY1yeB8jMMbR63vi7KXM0pcdWfSdYyefzsg52dnbQ7/cxMzMjCVmYiZZrmwykWQ5AM35877RaLUlE4vP50Gg00G63he3lZg/XHGWIwWBQEp1Q7t3r9WRsvV4vHA6HbKZxY8RkJTmnDocDiURCJI8Eo263eyCDJNuvyw5oBrjX60ntzmaziXK5LGwr7+d2uxGNRuF0OpFKpYR9ZIxrs9k8dT38TdvLBeC++GkzcLbZZptttj3PFhYWEI/HkUqlUCgUEIvFEI1G0W63xdmJxWIIhUIoFApotVqYnZ1FIBDA7du34fV6MT4+jsPDQwDAlStXEAwGcevWLQwNDeHKlStYW1tDsViURCWZTAaRSAQul0sc2fPnz6PRaGBjY0Oklel0GpFIRJwPxmE4nU6RRzWbTYyMjAAAstksotEo6vU6PB4P9vf30el0BuoaUfqogYAplQSeTZZhOpz6Myt2QDt/vJfeydeOsJlYQQMdSu50O7TcTwPAfr8vzhudPO7I05nVsj2H4yTD4e7uLs6ePYuZmRk8efJEakzRaTYd7GKxiA8++AB7e3uYn5/H5OQkotGo3JOJLugQE0SRxdHyOMrHgsEgIpGIZCslw6uBtk7GoNlSDZitWFTN5HBsORcarNJZ1eDIBCBkos3ra2aP4834qGaziVAoBABS9sLv90vSFK4/LdvkdeLxOIaHh+UZJKtighfOvwYcmjGq1+tIpVK4desW/vzP/xx3794VMMlC05OTk1hYWMDBwQH29/flur3eSfFubghYMWF6Q4P9sWKTzWfFip3jhoX+nO3Qc6yfWd6fc8ialnx+1tbWMDU1JfUo9djoMWNcI58t3T6uX7JlTHhD4GQ+KzqjpZk0STOiwAkLxsRBrVZL5loDMY6p3rSpVqsoFAoDhb61zJIbJ1yPBMUEXBp0ctx1rbdKpSKydG6qlUol1Go17O3tCYg9jR39OuzlAnAqBs4222yzzTbbTrNQKIRUKoVOp4Px8XEEAgHUajWJzYjH4wAgRbMvXLiATCaDzc1NTExMCNCLxWJYXl7G0dER7t27h6mpKUSjUTx48ADFYhFjY2NotVo4Pj5GLBaTwsHj4+OIRCLIZDLIZDJIJpOo1+uoVCoi0dOgxO/3Y3h4GPv7+2i32xgfHxenx+fzIZVK4fj4GG63G6VSaaDgMB07mgZNVoyaNu3k6XNOA29aHsdz6OTxOvpamg3Sqcl7vZ4klyFLxLZqoGEaj2Osom6vPqff7yObzWJvbw/T09PodrvY2NiQ70x5Z7/fRzqdxuPHj2VN/Nqv/RrOnTsnmRDpmFKaReePElZmM+T1nE6nALlwOIxkMolSqYRSqSQxcmwznWQdr2YCcbbXinkzJZJcGxok6jnVGUMBSBZJWrfbFSmjdtz7/b4wKKFQSACB3++XNrFGmGaW6HiHw2EBboFAQEDF89Ynx4L/CCBY9P7jjz/G+++/j729PRknZhWMxWI4c+YMGo0G1tfXBxi3SqXyDLA0Za6a4TXXtW7z88CbuS6/Kigw1zTbQKDlcDhw/fp1vPfee0ilUiKn5rler1cSgehND647zg8ZON6H5/BvDQbZDi1jZMwb8HQDodfrCQDi5kKtVpNkUoyzZFwp3wNcK7VaTcaYCYU6nY7MH6W4jJXTJSb4jne73fJu6Xa7kumXks5sNivsMdUNWlrNZCwvyl4yAMcYOBvB2WabbbbZdrrt7+8jEAhgbm4OzWYTxWIR7XYboVAIU1NTKBaL2Nrawvz8PCYmJpBKpVAsFnH58mXk83lUKhWcOXMG0WgUq6urKBQKePXVV1Eul/Hxxx/D7/djZGREHIp4PI5SqYRqtYrJyUlUq1UcHh7C6XRieHgYnU4H4XAY3W4XlUoFgUBAJFwjIyNwuVzI5XJSq65QKCCRSKBarSKVSomDTKeHTgidWe1oa6cXeMrCaOfR/MxKskVgwOtq2RJNMwcmKNLsjY69Iahg/BT7AzyNcdOFg7UDSnYiGAwKkLAynpPL5RCLxTAxMYFCoYBMJiPXNsen2+1ifX0dwWAQDocDqVQKr732Gq5evYqZmRnJUsn6Viw3QMCgEySYQI5xQsFgEPF4HOVyWZLe1Ot1AeEaGFhJ8kznXzMh+qcGeHT26ZT3ej1JPMHv2XYrcKvj6gjCyByTHdHjSUkvz/X5fAiHw4jH44hEIgLcNNCkmZJEzaIQaDSbTRQKBWxubuKnP/0pfvGLXyCbzQ6sH8pdp6enEY/Hsbu7i0wmI/fpdDqSyERvhmhWTW8+6OfGCmxa/W3Ol/5dg0INdPXc6TZoVk5Lkrl2fD4fqtWqZN5lH3l9zbCxNhxlkATmBDzA0/hMSrv57HHtk6VjWzVg5xyQIeOmBNc3pa+UVvIf51eXr2B2Tf2uItvHPpljxTXSaDRks4fPYygUQigUGkj6ksvlBkA8N6pOS370ddlLBeBoNgNnm2222Wbb84y13srlMkqlEtxuN+bm5pBMJrG7u4t8Po+VlRU4HA7cvn0b8/PzUlfJ5XLhjTfeQKVSwUcffQSfz4crV67g8ePHePLkCUZHRwGc1JqbnZ2Fz+fDzs4OXC4XFhcXRS6nHX5KdFqtFsbHx7G9vY1ut4uRkRFkMhn0+/2BRCozMzM4ODhAt9vFxMTEgESKu8lDQ0MSmK9BlBlzpIGY/tw07SBpNuKrmAZ1Wu5nlWVPM0I6MQEZOkq6tFNFZ1NLJ5n1znRutTWbTWQyGSwvL2NlZQW9Xg/ZbFacRZ6jwWa1WpUEMu+//z4eP36Md955B5cuXZKEOHQefT6fgDMNrq0YOTqHHo8HkUgEzWYT1WpVYvQor9TZQzUjpMeQ86nHwwQIGkCYLB0ZEN5LxxHxfpr102wMACm3wevSuWfcGQEuZcN0mnUh9tNAj8m6sW3MrHh4eIjbt2/jpz/9Ke7evTvAKHHNOJ1OjI+P46233kKtVsPBwYEAG7JQmgXnOJpmggeTXTOfJ903DQb0MXqdsq3mZwQ+5nX5PuHxDocDpVIJ0WgU29vbA+tfS53ZVhP06LllZlT9/PEefC65Jmq12kC2Wz7DgUAALpdL1A5ch6a0muMPPAWa+j3G+DqOHcEfGTuuCca06eePa5HX5DvS4XCg1WoNbBzp90okEoHP50OtVhMAaPWe/LrspQJwL1CKapttttlm298hY3r+er0utcx8Ph/u3r2LVquF+fl5pFIplEolvPbaa+j3+/jkk08wMzOD8fFxfP7559jb28Nrr72GWCyGX/3qVyiXy1hcXES320Uul8Pc3Bz6/ZNkAolEAh6PB3t7e5JApVarCdOWSqXEgbh79y6CwSDGx8cFLMzMzEjWuOHhYeTz+QFWRTNX7J9mW3RmOCsJlwZyNNOJ03E6VrLE064NDEolrY6lc0VnTzNyjL8CIKCU8WD9fl+SzPCedG5DoRBqtZo4mwROGogAJ5Kww8NDTE1NYXJyUgoOmyBO90uXVVhdXcXh4SE2Njbw1ltvYWlpCYlEYkBW6fV6B+rGaWDF+nE6BpBALhQKodVqYXh4GJVKBdVqVf5RWsY+1et1AJAU7Jp10Cynnk8tnzVjC8me6THVjJjJznK+uO64XnkN1uYKhUKIRCJSJkPXcjPXjTa9+aCBm9PpRKPRQKFQwPb2Nj788EP8/Oc/x+HhoQBXDZqAE4C5sLCAWq2G3d1dqbPI+1er1QHJKj/X6ZNAmQABAABJREFUjLEJ3sy1fRpzaDJn2k5jUs04OL3xwbHTssZ6vS7P6fr6OhYWFqREA9lPbh4w2Y9mwpiYR48Z20f2TG+KEIxxDfF3Mpgul0vAMIFyOBwW0EhpJdeaZgfZLm7K8G8NtLW0miCWUk+OO8GijgFk2/U7klJJjpXuU7VaFVkmpcAvyl4uAMcyAjYDZ5ttttlm23OMbMbk5CRmZmaQyWSwvr4On8+H8fFx7O7uIhaL4cqVK3jy5AnK5TLOnTuHarWKDz74AIFAAO+99x7S6TR+9KMfIRAIYHZ2Fvl8HpFIBAsLCzg6OkK73cbS0hKy2Sy2trYwPT0NACJ7rFarUveoWCyi0WhgYmICnU4Hu7u7mJ6exszMjCSEqFQq2N3dFSlUOBxGq9USiZiOd9POO50u0xGkaSecf1uxCyYzcpqzTSfV6j76c32+KRfzeDwSI8Yi0y6XC5lMRgBFr3eSzY7sHK9H0KYdRg1iTCaiUqkgnU4jFothbGxMnDyz/fpv3t/pdCKfz+NXv/oVHj16hDfffBNXrlzB/Pw8YrGYxPIxIQYLBGvnlg61ZrzoABP88Trc/Wdm1EajIWNQKBQGGB2ypcCgzI5/WwFrAhUNVnRxbhNgWM0xHV6yiWTZ/H6/yNM0i2v1U68/LZXUjCDXwf7+Pm7cuIGf//znuHv37kD8o74m23Tu3DmMj49LKYdSqSTXIjDQ8knN3plttRoTfqZ/JyDkmOn+mdc1N1T093petByV96HEOBgMotfroVwuC4vYarUkQZKuj0bwQgClNyl0G0zpLyXaXNeUW2pQ2e8/zQzbaDTkeeSY8Rkw3zOaUSYA1ICSQIvtMplDvTFgbkzp5Cj8x00hHevGezHpCZO3OJ1OBAKBASn3120vF4BjEhM7Bs4222yzzbbnWK/Xw7lz5xCNRrG5uYlyuYyFhQXkcjlsbW3h1VdfhcfjwWeffYaJiQmcO3cOa2trePLkCS5cuIDFxUU8evQIt27dwvj4uBTXnp6ehtvtxubmJqLRKBYXF/HkyRNkMhmcOXMGzWYTBwcHEh8XCASQTCaxv78Pn8+HhYUFyXZ26dIlRCIRHB8fY2JiAtVqFfv7+3A6T8oDuFwulMtlzM/PY29vD9lsdoDJ0VkQyc5o5xD4akkTTCmYyayZzr7J5GnTsi1ei+dyVz0QCIjDR2kdd89ZKFhLr+ioEriyf0NDQ/D7/VKkl5/RgdPtYeyhx+PB7OysOJr62NNMO7yHh4f4i7/4Czx8+BDf+MY38Morr2BiYgKxWEwknWQiCGQ0kNNFiOlkagaJjjiz91FSSTaObCQdzWazeWq2T86tNpY/0GOjZYt6HulYc67pxHO+KDljynXtUGuAYII2vZmgHWyOC+e6Xq+jUCjg4OAAv/zlL/HLX/5S6oKZwE1LJ2dmZjAzMyOMpq495vF4UCgUZG2zf1brWW9EmAy4FTOn17zVhogJXNj/055RzqNeI1wTrLvmcDiEUfN6vSgUCohGo3KOx+MRpplgXzPsuh8EtgQw3HDg3HL96LaSUQcgiUd0CQJTvqmTIHHOmBTI5XINgE72l8BKS3RZqFvLTzV7SbUD5ZXsl2Yi+S51uVyykeTxeKQ0BvA0KcuLsJcLwH3x02bgbLPNNttse55duHAB9Xodt27dQiwWw8rKCg4PD9FsNvHOO+9ga2tL5JMA8NFHH8HlcuHNN99Eo9HA+++/j0ajgQsXLuDg4AD9/km9pXQ6LbXdwuEw7t69K2m97969i1AohGg0imKxiKWlJbhcLuzu7mJkZATDw8MoFAoIhUI4f/48dnZ2kM1mpU4dnaZkMol2u41EIoGpqSlsbm4il8sBeFrUmg4SGQcAEqeipVam86gdUC2z47FWu+PAoERSgzLTtPNKp5csBwCJk2HB3lgsBrfbjWq1Co/Hg1QqNQAYCTg0S6CdSNZnY4kAJmnQ9dl4XrfbRalUgtPpxMjICOr1umSis5JSmoCG37daLWxsbGBvbw+3b9/G22+/jfPnz2NsbAzRaBSBQAC9Xk/WBYGPBgt09gniCFx0e9lXU1ZIVoTArt1uy0+dWp3JIqzkmzRdH4zfEWwSTFIayn4wXlGneNdrTY+jZrU0w0SHXksldZwb5ZK3b9/GJ598gp2dnQEZrWkEJsvLy7h06RKAE5kh2TceEw6HUSgUxJEnwDaZHM2Icf7NPmnQazJMPIdja7WWvozh0yCDa56fEcSRgd7c3JT3S7VaHcj4SpDHd4fb7ZaMkAQtLEtAgESmjfJYymXNzRs+f1x/BFYcVx13SDmwjlMLh8MD8bwARN7K+xCockw4XtwM0eCM/ebYsM2dTgfValXabDK/jUYD8XgcoVBINsVeZAZK4GUDcMLA2WabbbbZZtvpxqKs8/PzACBxIoFAADdu3EA4HMalS5ewt7eH9fV1zMzMYGxsDA8fPsTBwQFGR0cxNjaGzc1NzM7OYnJyEjs7O2i32zh//jyy2SwePXokmQUrlQri8Th6vZOMcBcvXsT+/j7S6TQmJibgcDiwsbGBiYkJjIyM4ODgAOFwWNgUZmSbmpoSpm9sbAyrq6sDmROBpw5gpVIR+RvwNNDfBGn6HJp2pvm9ycKZ59B0cgUa2RrzWgQhAKS2kt/vF8eNbE4ikQDwNL29duB0XBuZBkqemBhjd3dXEjAwRkyDHTIIBAicEyYSMQEUzUzkYTp9q6urODg4wL179/D666/jwoULuHLlCvr9Pmq1mrBkdCh1wgwN5MyEHZpR4L15vNfrHWBP9PEmq0VATzbMnFvdN11ny+qnBjiaTdPX1ODETIRj1UcN3KrVKvL5PPb29vDgwQNcv34dGxsbUlzZXLt6PTocDszOzuK73/0uMpmMZJ3NZDKSjZBglM8NwarOQqmvb8VM8nMN4qzaZQI2Uz5pZfpz8xk2N2UIqtj+YrEozxDfJ1oOyf7ymdCp9oET9qzX60l2Sc1g6/ZTikmJYTAYHIhh43rkOqEMkc+rXrNcx7VaTSTgOskJ3xu8FplpvYGj3xF67AjwyAh6vV6ROev4OBYg57spFovB7/dLoiNuTrwI+1IA53A4/l8AfgdAqt/vX/riswSA/whgHsAWgH/S7/fzX3z3fwPwzwB0Afxf+/3+j/9GWm7VVlj/R2SbbbbZZptt2vx+P8bGxpDJZFCv13H58mWkUincu3cPS0tL8Pl8+Pzzz1Gr1bC4uIh2u40HDx7A4/HgG9/4Bg4ODpDJZPDKK68gFArhwYMHiEajOHfuHLa3t1EsFpFMJpFKpSSJRbVaxejoKLxeL27fvi3SnEwmA4/Hg1dffRWtVgvb29uYmZnB3t4eyuWy7GL7/X5UKhWcP38evV4P169fRygUwuzsLB49egTgaVID7ZS53W4J1NeOujbT4eG1TMdSMwtWTAcdNTP+zUyEoB1/4OlOfSQSEdDL7+moJRKJZ5xgOnuayaHTx+QgPp8PyWQSx8fH4vzxfu12G41GQ4ATZZq5XA6RSARTU1OSvY/912ycOV7auOtfLBbx+eefY2trC6lUChMTE9jb24PH40E8HkcwGBTQSUkXGS0NmjiXGpTpnyZAYpsIYEy5HvsAPFvLy2ptmD/N363O0WNjJUXU4FIzbWRFWq0WKpWKSJvv3buH27dvY3t7e0BOZ96LxjURjUZx8eJFKc/Q7XZxfHwsGV4dDgdWVlaQTqdFFqhZLfZJSzE1YDfXO/BUTmhulOhz9fm8x2nAz2rj5HlzwjHkZ0wWwo0csmZsa6/XG2Cq+SwT/BBkWd2X4Mos9wGcgD+9IaTjcXXJDh7TbrcRCASEOc9ms5Lsiffnc8LraPaX7WT//H6/ZL7UteSAk/eS3++XAuLFYlGYuH6/L5srnBMdd0kJ7ouyr8LA/b8B/D8A/Dv12f8E4C/7/f7/6nA4/qcv/v4fHQ7HBQD/FMBFAJMA/ovD4Tjb7/efLyD/azKbgbPNNttss+2rWDAYFGe62Wzi+vXr8Hg8uHLlCkqlEq5fv46ZmRksLS3h8PAQqVQK0WgUZ86cwf7+PtxuN9566y2k02msrq7i4sWLSCQSuHbtGgBIUpJYLCb1pGZmZlCtVvH48WOMj4/D7/fjwYMHaLfbOHPmDD799FPEYjEkEgncvn0b/X4fgUAAkUhE4jWuXLmCvb09PH78GPPz84hEIsL8adM73ZQ7mTv4ptOnGTZ+po+zAnc6DTqNzqyVs06QxB1tOkfMSqhTzPe/kHz2+30Eg0H4/X6RyRF8aaeZO+Z0VDXQmpiYQLlcFjaN8jDgKevGe2sp5dTUFMrlMtLptABCXlP3T0tJzeQgusD19evXZZff6XRiZWUFMzMzSCaTkuSDCT7Iymkwx3nh75wLEwRpSZ8V22PO6fOYny/7Tv9u/tPySA1YNLNmMoNkQkqlEjKZDLa2tvDgwQPcu3cPOzs7IqXT97dqI8F/PB7Hm2++iVgsJlLjcrk8kAxnZGQEFy5cwL//9/9eAC/ZK15Ls1069tOcf3MzQbPF+m8NSPTmgGbwKNcjENd91tfSv+v28VlrtVooFosiR+ZaJmNNQOd0OoXt5xwxXT+ZMkooOTa6GDbXLMsE6MRJWq5JhpoMmF4jBFx8X1CuqOM5KYUmMNNzz0Q/egNHlyDhfBG06mc2Go1iaGgI1WpV3n3MfOlwOAQEUlFgxcp/XfalAK7f7//C4XDMGx//PoBvffH7/wfABwD+xy8+///2+/0mgCcOh2MDwFsAPv5rau9XMpuAs80222yz7XlWrVaxsrKCnZ0d7O/vY3l5GcPDw1hfX0cqlcLly5fhdruRSqWQy+UwOjqKYDCIjY0NjI2NwePx4NatWwiHw7h69SpSqRQ++eQTJJNJOBwOHB4eIhwOo9lsIhKJIBKJ4OjoCJ1OB++99x4ajQbu3LmD+fl5jI6OYmtrCyMjI+j1etja2kIgEIDf78fo6Cj29/cxMzODiYkJrK+vI5vNYmFhAZ1OB1tbWxKDR8eOu9PAya45ASSZqtMkXzQN3KwYFv253uEHnkolNYDQu936J48dHR1FIBAQ2RXjYXTh3uHh4QHplk5Ywj5TukW2gbvrhUIBkUgEMzMzWF9fR6fTQbPZFCedf7P+E8sNFAoF+Hw+mRcmu9DOOftBMwGeltlxtz6fzyOVSiGbzeKzzz7DzMwMzp07h7m5OYyPjyMejwsDobNVakCn4wYJpAn6tBTN/Gcmb3kem6qPM2McTQZGAzUrls/MHKnj9fh7q9VCrVZDJpPB8fEx1tbWcP/+fWxsbKBYLEq9Ln3f09rPMRkZGcE3v/lNRCIRcfRZK47ZBt1uN9577z0Eg0Fks9mBuoNmTKDJSnNcON8me2aOnblOzHVkNYb62bIae/N6JmBm+7m+Of6MAQOeSgy5jjgnzPwIQLJdcl02m03U63WZQwK/er0uY6uLZfM+nPd+vy8gjGs7FAoBgGTn5X2ZaRWAbHAwbo9ATK8rjgWT/eh4T72J4XA45F1D6TJj4MwkRowNpJTU6/W+0Di4v2oM3Fi/3z8EgH6/f+hwOEa/+HwKwCfquL0vPnvGHA7H/wDgfwCA2dnZv2IznrnmyS82gLPNNttss+05lkwmcefOHfR6Pbz55ptwOp24ceMGHA4Hrly5guPjY6RSKSSTSVy6dAm5XA6pVAoLCwuo1+vY3d3FK6+8Ao/Hg7t376JQKCAcDuPo6Ajlchkulwv1eh3nzp3D0NAQjo6OMD4+jomJCYmjY6HwYrEodb6cTieGh4cRjUYxMjKC7e1tXLlyBV6vF5999hmcTifi8Tj29/dRr9cHdq9pdI663S7K5fKAA6nZMu3IWIE47SxbOco6vkTLu8hqmDFampmgk8T203nr909S+nMHvd1uS+KPbDYrDqlm8zSbwdgZzTr0ej2k02lcvHgR2WwWR0dHACBxPmTdtFyKjESn00EkEpHSApRVEfx5vV6pNWeauTvvdDpRqVTwq1/9Cj6fDwAkIcejR48wPDyMhYUFLC0tYXZ2FiMjI1hYWEC32x0Alzo2i2CDjrc53vyd822ycVa/W/1tBZBM0+ya+dP8jOxPq9VCvV4XlnN3dxf37t3D48ePsb+/L5I+s1+n9UWvsZmZGXz3u9/F0NAQMpmM3P/o6AiFQkEA//z8PP7pP/2n+Lf/9t8K08LxNIGpBm36/hr46LHRAMmM+eP3JljjdfhPg2QNxs1nV7ODJrjTDBr/Zj9qtZokI+E9ms2mrCc+F5yzWCyGaDSKnZ0dYUtjsRhCoRDK5TKazabIMSlXJmDkc0ZgHA6HBzYi2C6y8QT1LGbP9c6kRjqjK8eQ61DPoU7uZLKjBIqs68Y4UvaXmyhWbOnLVAfOagvHEk71+/3/DcD/BgDf+MY3/logl2ShtBGcbbbZZpttz7Fbt25hampKkok8ePAA8Xgck5OT2N/fF/CWTCaxs7OD4eFhXLx4Eevr63C5XHj99deRy+Wwvr4uO8DHx8ciKwqFQpifn0cmk0GhUMDFixfhcDjw0Ucfwe/34/XXX8fBwQEqlQrC4TBqtRqi0ajsGg8NDWFvbw8zMzM4ODjA4eGhFHU+OjpCt9tFIpFAs9mULHrAYOwJ/9ZSLeApsCDTRDstxkbLs7Q0y4yHMdkCnSKcUimygB6PB4lEAtFoFH6/H07nSUa64+NjSTbC6zEDXS6XG6gzRaat3+8jHA4L40kJFQEe42EKhQJee+01/OxnPxN5V6PRkPt3u13J0McECgBEXhmPx9Hv9yUBRjgcxvLy8kDdsa8iqer1elJomSxPr9dDKpVCKpXCnTt3MD09jQsXLmBhYQGHh4eoVCrw+XzPxMvpOEEtU9NJRXTMlvlPz7NpVrJJ7SDzH/8meNcgzZR2MiNmo9FAsVhENpvF4eEhdnZ2sLa2hp2dHRlfk1U6rV0mK0dQ9vu///twOBzY29uTa7BuHoFOMBjEv/yX/xKtVguPHj2S46wSYVjJGNlGM3GPfo5MCaU2c6NEP6smk3naJosG6rrNuuA2AQmZa1NCydg4PlP8qeWqAKQsh362A4EAhoaGUKlURJrI2Da/3w+/3y8xbPycIK7VakmiIs4541N1SQOubT7b/X5f2EGdCEXH9jkcDjQajQGpJBl3zglLF/DdpJl9bjRp+SYzcnKNn8Zcfx32VwVwxw6HY+IL9m0CQOqLz/cAzKjjpgEc/Lc08L/GhICz8Zttttlmm23PsStXrmB0dBSff/456vU6FhcX0Wg0cO3aNbhcLslIeXBwgHPnzqHZbOLu3buYn5/HuXPn8Ktf/UpS+W9sbGBoaAjRaBT1eh3j4+NIJpPY3t6G1+vFxYsXcXR0hFQqhfn5eQwPD2NtbU0kSv1+H9FoVKRJhUIBXq8XiUQCq6urGBoaQiwWQ6VSQblcFmllrVYTuZ1ppnwRgNyL39FR08BNO5hWki7TudSmnUctk+RnvV4Pfr8f8Xhcds4pmdTOYqFQEHkUnc5arYbj42OJvdGxNW63G6VSSZgxAmGCBzrXBwcHWFpawqVLl3Dr1i2RVZHJZJsZb0gmhG2hlJNMWqVSwc2bN8VJ1v20Mh2bpD9jPCDvw74Gg0F8+umnuH37tjC8k5OTGB0dRSwWG5BZmtkrCdhOY5E0U3XafJoyS7bXBG3m7xrIkWVj0XGCtqOjI2xubuLg4AD7+/sy5/oaZvu4Hq2YN93f119/HW+99RbK5TLy+bx83mq1UC6XpS6g2+3Gd77zHbzxxhv46U9/ikwmI+DNHEeT4QKestn825xbK8baSnar+2TVRxMMWsWd6rFgOzX44holKCqVSgKuNHPY7/fludAxgACEiWo2m5IkiM9NpVKRaxMEBQIBAVmtVkvWHKWHfE+QHdPvDV0CJRAIyGaLZr10Vl0ye6zRRkk0r6ljSxl/x9i6Xq8ngJbjqzfCyMTruF0Cv7+LdeD+M4D/HsD/+sXPP1Wf/weHw/F/x0kSk2UAn/63NvKr2lMGzjbbbLPNNtuebz/96U+RTCaxsLCAjY0NHB8fY2xsDAsLCzg+Pkav18Prr7+O7e1tZDIZvPfee/D7/fj444/RaDQQCASwvb0Nv98vdZJmZmbQbrdxdHSEiYkJRCIRrK6uot/v47XXXkO73cbt27cFuMTjcXE6XC4XstksEokEarUatra2RGLE4t7xeByxWAyFQgGzs7MDEjMti6LjSQeM8Sk62cnzdo9NBx941iHl31YxPnQm6ZjR0aFkUpcJYNHsRqOBcrkssik6dmTTcrmc9EE7tXQCyaLl83mJp/P7/RJ71mg0cP/+fbz99ttIp9OSXZIgjkCIDhv7qhODuFwumTuyDhwvPR7PA3E0HY9WqVQEuFC2BQAffPABtra2kE6nRR4aj8eljMXw8LAkvgkEAhKbw2QTphTwy5g4K9PggX0wAZ2OMyJLUq1WUS6XkcvlkMvlsL+/j729PRwfH6NcLqNSqQho1YCFQEfHl3GMrdpFoOX1evHaa6/hjTfeEPksvyO7mk6nUalUMDQ0hNHRUfyzf/bP4PP5cOfOnYEi8bp0gG6L1VzzM65BkxHksVYbIub1dIyW1TzwPlbf8/5knHgfnRWWa67X6yEYDAoLxZ8EKRwzgiRdG41jHgqFBNBpqahO+Q9AWG62ib/zOhwDviMYVxcIBJ4Ze70e9FphciPWVuSmgs7oyjEwpak8n21g4XD9PBLosT3cdKrX68/Mw9dlX6WMwP+Ok4Qlww6HYw/A/4wT4PZ/OByOfwZgB8B/BwD9fv++w+H4PwA8ANAB8H/pf00ZKL9oK75ox9d1S9tss8022/4O2s2bNzE7O4t4PI67d++iWq1KTNv6+jqWl5cRDodx8+ZNhMNhvPnmm8hkMrh3755IdkqlksRt9Xo9TE9Po16vo9FoYGVlBW63Gw8ePEAgEMDS0hL29vZQKBTEIRkbGxOnkbva8XgcR0dHaDQaCIVCqNfrAlguXLggdeFYDy4cDg+AMqfTiVgsJgCEDFQ4HIbX60WxWHxGkmUFOqycyNP+1qwETadi5w643+9HMBhEJBKRWmzValUyu+XzeZHPmbE+2WwWhUJBnH3NDDA5hclKMG6MbQSA3d1drKys4Nd//deRTqelKDB3+JnoQANhmk6qwu9cLpfI8jgmJlv5ZaZTtQMngDSXy+Hjjz8ekHCx2HAmk8H6+ro4w6FQCMPDw0gmkwLoQqEQIpGIsHSUXDJuyKzh9jwgZ8omtRxSJ4CpVCoolUrI5XIoFApIpVLIZDLI5XIoFosDsYIaBOpxM9knjvNpjBQBms/nwzvvvIP5+XkUi0UpMUAw0Wg0cHx8jFwuJ/3+5//8n2Nubg7lchnr6+sSV0nwZpYRMNe4la+pgdNpbea19CaBBnj8/nkSZf3satMsoQaFfAY1a0VJdq1WG2AbOWYEdJQNcv7b7TaCwaCsBY4ZE4Ew3o7MN8fQLFavU/LznH6/L4x7vV5HOBxGpVJ5RvZKGSQAYVQdDgeCwSD6/ZPkKJFIRNqo54R1HynNJutNsMexI0Djs6MBG/thZv/9Ou2rZKH8/ilf/dYpx/8vAP6X/5ZG/VVNJJQv4ua22Wabbbb9nbFLly4hn8/j3r17cDqdePPNNyVt+RtvvIHDw0N8/vnneO211+DxePDZZ5+hWCxiYWEB+/v76HQ6GB4eRqvVQjKZRK/Xw+HhIbxeLxYXF7G1tYWjoyPE43GEQiE8fPhQJEgejwfDw8OoVqsIBoPI5XLiaB8cHMDr9WJ0dBTZbBbNZhOjo6M4f/48UqmUxGVQsrS1tSWgUMcecYeYDpLf70c0GoXH45E4FO386VgevcOvQZTpLNKh0o4t7002S7M+TDZAWRXj0ur1OprNpgA0gijej0kFNJNAx0wDEO6O9/t9yYKnd/r5+bVr1/B7v/d7eOONN/Dxxx8PAEaCEsZq6WLivC/bpNkDJkjQGfBOM9OxN02zJHRUtWPP7/r9vtQ1Ozo6kmx+uiB6MBhEKBRCKBSSQsSsecU54rrk9U3mi057q9USdq3RaEjyEQK3fD4vTDGZOBOcmjFbp8Wz8XczdkwzVGQXI5EIrly5gvHxcWmnHlsW7D4+PpbP3nrrLXzrW9+Cw+FAKpWSOooaaPBvky3jT6513S+9BnUf9KaAjj3VDJl5njaToDBlz/r5JDtsjiXHi89Nv98X5YDedNASykAgIJtGXONknlmKo9FooNFoyMYAAElYwrYTCPLdwg0Ayhy9Xq8AJG6GBAIB1Go1VKtVAUrcFKIcXJcq0OsfgIA0JlbhXBBwsq2sOxkMBoW95DonO6mzvjJ+j2zdi7K/7iQmL9REQmkjONtss802255j6+vryOfzOHPmDCYnJ/Ho0SNMTk7i7bffxurqKtrtNq5evYpMJoO9vT243W74fD7cvn0biURC6pKNjY2hWq2iVCphYWEBTqcTH330EdxuN+bn53FwcCBOTy6XE6kbk2Dk83kMDw+jXq+jWCwiHo/D4/Egn8+j2WxKPN2jR48EUMRiMdk1TiQSAJ46gg7HSRpvyvy4ox4KhcSh0ayCyRLpjJIABqRD2swAfg1seP12uw23241YLCYggbEoBANkl1hcmTv6OialUqng8ePHAwlQdLIBxpFxDHRfODbA08QNmUwGn332Gd555x2k02k8fPjwGfaOoEUnVqCTTSBH5kc7hawzZyUBtLLT5HI877RzNXjUDBmdy3K5PCC5o+nslS6XC4lEQrLvEfSabeN1GTdE2SP7acbEWfXRqs9Wn2tAQkCj/7HvBPXj4+N49dVXkUwmBxg+rqNms4l8Po/Dw0NZPz6fD9/97neRTCYBnLwLDg4OnpGZ6kQdpuTUqp/6OyswxmfmeaCc9zZZI3OMTBBsjhljzkyZINm0Wq2GYrEoyUXIoPGZZCKRUCgkyYMikYg8u8y0q+9N+ST7w2cnEAjIpgzvw+eIm0xc53wPRCIR2SRhkiEy74xdAyDPX6vVko2XXq8nwJLPaKVSGXgvcozYJm7UkK2lpJpAkXPKguGcw7+LMXB/O40L1ebgbLPNNttse451Oh2JSXv06BGWl5fhdDrx2WefYWhoCHNzczg6OsL+/j68Xq84LBcvXkS320U8Hke73caTJ08AAOfOnUOj0cDq6ipCoRCmpqaQyWQQDAbF6V1cXES9Xkc8Hken00G5XMb4+DhKpRJ6vR5isZjE6fR6PZw9exbASd0wJiqJRCLI5XIS3N/r9WT3mmbutJOl0KwRYA0sTCmllnHRwdTp6um481wtl+JuucNxEvNGRg6ASLeYmIVxanRyA4EAms2mOGQcI+0Asq39fl922DXToSVTJvC6ffs2lpaW8MYbbyCTyUiMGZ1lOpx0MslmaXZGgziaw+GQ2C5eSyedMBkU/Zlpp8VBnTZ35pxZnUcgRueead5ZeFkDpdOuwd/Nv7+KmaDmeefpxBpkkLghEY/H8c477yAajQo40edRoshEJrqY/cWLF/H6668Li/vw4UMATwt/858GbMBTUKifBZ5nMmFWY2POtz7OBFsmGNSfm1JOEyya51P2y/XNcSXA4f2ZZZGJTSgbjMVi0rZKpQKv1yvMk97IYdt0UhAdB+dyuaRkgZYfko3XjDpjYjnelDTWajVpmx4TxujpWm18J5KZY+063o+ST8abUgmg6+Wxr/o9yPcbr/Gi7KUCcPKqs/GbbbbZZpttz7G33noLt27dQiQSwSuvvILDw0OUSiXMzMwgmUzi7t27ksEul8shHo9LTMXs7CyePHmC+/fvY3Z2FufPn8fq6iqKxSLOnDmDfr+PUqkkMsh+v4/x8XEpFUDZWzweRzqdFmeoXq9LlsZwOIxyuYxOp4NQKCQAj9eoVqtIJBKYnJzET3/602eYCg3EKA8CICDKCkgAgxI107QjqaWW/JwONiV8Xq9XHCDuZjPWrVqtCoijw0TQw/pvvG6r1UI+n4fP55M4GUq8aNphZh90P0xpZrPZxA9/+EP8w3/4D/HOO+/gZz/7GQqFwsCYaCeQzlooFJJdfD0ugUBgANxpEGfOh+ncn8bqnAbydN+eB4D0HFpJ7fr9k+LiBM8cuy+z/1qwZrbhee3Vx3AONHAJhUKYnJzE+fPnJea0Wq3KWtGSzXq9LpJOxjrFYjG88847Mj+lUglra2uyMcE1pVkxc8NCj7uONdPjqkGWOQ8mUDvt2ua5GpDp+5nH8W/NHvIzPgcOh0MYfeApO83nlnXfmJ6f8kky8gQ+Wm6pmViCKgKxQCAgMm8NHLnedGkCJi3iO0Enh9HspVnqgXOnN17I5rfbbWlvLpdDvV5Hv99HIpGQzaZOp4NSqTQAaplxkoCTzDzb97c6icnfJeP6tfGbbbbZZpttz7ObN29ieHgYoVAI9+7dg9/vx7lz51AoFPDxxx/LbqzP58OZM2ck+UcgEMCtW7dwdHSEubk5zM/P4+bNm+j1ehgfH8fh4aGUF8hms0gmkygWi6jX6xLvFg6HEQqFJFEJnU6Px4NYLAan04lsNotwOCzxGcViEa1WC+FwGK1WCwsLC3A4HLhx44Y4I1pmRKfD6XQiHA4jHo+jVquJZIqOk9frlZghkykwzYwD004YpVPcQacTxngVSppKpRLq9brE0LBuG8/TMjxKpeiY6RpjdAZNlsF0IgkItBPG6x8fH+PatWv4+3//76NSqeAXv/iFsFOa6aIjSHkkQTX7THChEzT0+30B4Bq4WYGv54Ga00CQeb4VKKRZyeyed1+re/I6+m8rlskEzjzPKrmHKU/UwFsbYyoTiQRmZmYwNTWFUCiETCYDYHBjgec2Gg2JnyqXyyLnZUxrKpXCyMgIjo6OcPv2bWmPLh9hBYJMgGk1FlYA7bRNEfN4zfScBthMsKivo+dYA09znICnEmPGwFGOyMLdBDBOp1Oy3TIzJBP+8HnSzz8z3jKmzel0otFoiCyTiW/IhOnnw5RDaxaU88Nnmawb3xN81liSQ49Lp9ORdziZPAJMvgPZJ8YP6vebbiNjO8ncvSh7uQAcuKBfcENss80222z7W20TExPI5/M4Pj7G7OwsIpEIHj16hEKhII4Fa27t7u5ibGwM/X4fd+7cgcfjwa//+q+jVqvh9u3bGBkZQSgUQiqVkiLcXq8XyWQSqVQKY2Nj6PV6yOfzSCaTKBQKcLvdwugxK1o0GkWlUoHH40E4HIbDcZJlcHd3V1JjB4NBvPbaa9jZ2cHe3h4mJycFzNAx63Q6kiUuGAxidnZWMlMGg8FnpE7A6WwA8FQaqZOIAE8dTzpcdH51shYmLSmVSpK4gBnn6KDp+nRW9a0Yz6PBm9lWfZxm3fg9z9WJXtrtNu7du4fl5WW8/fbbqNfruH79usjxdBIPABKv12630Ww2EY1GB9g4h+MkPo/p2R0Oh2wEMNbneY68adohPw1UWX1/2u/si54/KxB3GrD8MgZNf38ayNHA5DQAymMICCKRCObn5zE3N4dYLCagX88155MMD8sYFAoFNJtNeL1eiR1dW1uTzZgnT54M1AvTMaK8Npkhtk23ke3XrI0VG6blu2yvCcJMkKZZPn0t89rmHPAZ5fPKeNvh4WFks1lh4Fg7jc8pz6M8kP1mW6PRqGSIBCCbHTwfgDxf3JRhxkiWcdBxhe12W7LwMvkI5ZP8nUCMsWeVSkXq23FcWIYEgLSd7yN+z2y+ZFSj0aiwiIzt1CUUuBnEZ5t95rpwOBySGfNF2csF4ISBsxGcbbbZZpttp9ve3h6azSZee+01AMCDBw/ECahUKjh//jyGhoawtbWFxcVFpNNpHBwcYHZ2FmNjY3j48KEU7W61WkilUhIEPzk5CQA4PDzE2NgYyuUynM6T9P71eh3RaBShUGiA1YtGozg4OMDExIQcU6vVBPQVi0UBlB988AHa7TZGRkZw7949yRBH0xnTHA4HSqWS/G464GSMdAwdj9WmMyOan1FOSYDJnXYmTeGOua6npn8HTmeR+Dl3+jV7SKbLjNPj9bnzzl13/Y/W6XTw4YcfYnZ2FlevXkWz2cT169efGSd9jtPpFAYxFAohHA6L4wdAChxTvpXP51EoFAZ28a0YMqtx55jrOCteQ4+V/nkaQDSPO228rUCXFZgzQbTJvpnXMNthdS3NaLKY/fnz5zE6OoputysSNx3PSSDS6XTEGW80Gkin06jX6xgaGkIymUSr1cLm5iYKhQKGh4dx7do1HBwcyPokiCADp2Pc9MYBwRGZGisgxvN0Ih0T/Fmxe+Zxp5lukxmDStPgttFo4OjoaED2TLDG2oyUEup+ECyxr0NDQ4hEIgOyW84FnzsmS9ESRybIoaqB7xz9vA4NDUkZAG726LXCdxXbX6lUBjZXzKLgBJMaoHm9XpGTc96Z2KVeryMSiWBoaAj1el3eYyx1wvVNoEdZ5ouylwvAffHTZuBss80222x7nlF2uLGxITuplARRSlkul7GwsIBHjx7B7/fj1VdfRavVwq1btzA6OorLly/j/v37wmwBwOLiomTD444368aRXQMgSTPm5+clLmxsbAylUgljY2MSfzc+Po7d3V1cuHABtVoNn376qSTyuH79OqampuD1esXRAiAOLJ0bZs3M5XIDQAPAgPOn/9amPzNleHRCmSiApoEhwSXbxZ1wLZfUQIzX5b35T39mOqu6bRoc6sx0Grzp625ubuLHP/4x/uAP/gDvvvsuyuUy1tbWBNDTeK7uW61WQ6lUQjAYRDQaFWeYkjSv1ysJWNhG3QcCFQAD7KDJymiAZCXX03Oh73OaPQ9EWv00WTOra+j2aqD9PCaR46mBC2XDU1NTWFhYgN/vl7kzWbxer4d6vS6xlGRjcrmcyNzGxsbQ6XRwdHQkNfPu37+PRCIhNfzoyOvyAVZt16yc2RddQNucI1O+yGOsPrf6m+NiJs14XsIa/WyyT/p5ZEZbtpnxXmSmyDbzvrqcB7PJksFiDF273YbP55MES5RjUqbIDSWy8Bx7EzTp+pfMJkpmjvXsyB4GAgHJjsnyGZQ7c7wIpN1utwBMZl4l2AyHw4hEIvLsapBMuSalpMy4aTNwf032lIGzzTbbbLPNttNtZWUFOzs74iBUq1UEAgEkEgns7u6Kg3Lv3j2cPXsWc3NzWF9fRyaTwcWLF5FMJnH//n0AJ6ms6XAeHx8jHo9LrFc0GpU4EL/fj2w2i3K5DJ/Ph/Pnz0uNolAoBIfDgdHRUWxubmJkZAQOhwNHR0dYWVnB8fExtre3sbS0hP39fVSrVbz++uvI5XID4I3OIp1D7hhT2kjTjofphBBYEEzoWlemDEyXDeBuPh091n1i4hHtZJvAkeDIZNnMkgHaGaZEjL+zTRos0dnSEkYep3+/fv06FhYW8Prrr+Pdd99Fu93G+vr6qYBW951JEqrVKkKh0EC2SibZMNlGGnfzCX5brdZA3SsTsJj2PEbOPM6KCXsey2N1TysgZ3X9037nNczfHQ6HrJt4PI7Z2VlMTk4OsKo8jp8RQJPhZE0wSvtCoRBisRj8fj8+/fRTuFwuFItFrK+vY35+XoqwN5tNed41ewZgQNZrxYJabSRo4/fm+FiBvNPGiKbBm/n8aKZPPyc6rlTHmwHA+Pi4sOa8BoFppVKR5Dx8f7lcLlnrvA5BGc9jtly+KwiUKA/n2ibLSbk1Gb5KpYJ+vy+JU1hAXNe05AYW3xmBQECYfpZoIbun34FMqMRkJQRhqVRKit4TRFIuzfuyjRxLv9//TI3Dr9teLgCHwZ0L22yzzTbbbLMyFsxmPbWJiQk4HA5hwiqVCrrdLr75zW+i0+ng008/RSAQwJtvvolGo4GbN29KceyxsTE4nU6k02lEIhHs7u5K2v5CoYBwOIx2u42HDx+i3+9jdHQUCwsL2NvbQzQaFfAzNDSEvb09LC4u4ujoCIFAAK+++ioePXqEvb09hMNh3L9/H+FwGIuLi3j8+PGAlOk05/nChQuIRqPIZDLi8OnU9jQN2ugk0wECnq1TZcb9aEeJMSKURhWLRZTLZflMt9FMsa8ddrNuFI/TbBt/J0NDNkA7fjyOjqXuJ7Pd/fEf/zEikQiWlpbwne98B/V6HXt7e88wkOwzHUoAIr9jhlGWHSDDY57PfjI7ItkMZgCkk2zKK01AdxqLpu9lJfN7nj0PKFp9biX7O+1+mqGj0VGPRCKIRCKYnJwUJoTrh+uN81yr1ZBKpZDNZlEqlYRZIusWj8cRj8exsLCAP/3TP0UsFsPZs2eRSqVQLpeRyWTg8XiQy+WEfdKsmPkMaBZLyxC5pghgnieLtJob8xkzWbkvA9ya5dQbLWSfyaZp9o7tbbfbEsNJiaGWLpIh07XPuHFByWGlUpFNCF1eg0lKvF6vgJ9CoSDZJtlvLV/lvcmMRaNRAdD6uSbY5v2YLKXX66FcLstYc+OGm1ccE6oAOOdMgEJVBseU5zPZEnDynDORC6/1ouylAnDUUNr4zTbbbLPNtudZIBAQNmhubg6FQkEKyDK73VtvvYW9vT1sbGxgeXkZCwsL2NzcRLFYRCQSQafTweLiIrLZLDweD0ZHR3FwcIBkMik1j8bGxtBoNLC/v49er4fp6Wn4fD5sb28jHo9LMXFKvmZmZvDgwQOcO3cOHo8HN2/elFiP4+NjLC0tweVy4eHDh+j1ehgbG8Pm5uZAjBgzP9K5oCyTn2szGTW9y6yllsBT0GfKLemA0hnSwK7X60m8GAGeVXIROp0aFNFJ1g6ZafxcX4tAzpQkaueMDjPHrdvtolgs4v/8P/9P/It/8S8wMjKCb33rW/jJT36CVCp1auIPtsnj8WBkZAT9/kkJiUajgXw+L8kPdEIIzeIw4QNLKui6V7qd5u9WAMlKgmp17pd9bgUSrKR9VkwU+/Y84MZrEVwQ7IZCIYyOjkpxep00hwCpXq8jnU7j6OgIuVxOZHYABLA4HCfJf+bn5/Hzn/9cntdCoSCSO7LF6XRaAISZtdEEo7wH2677qsfIHBNzzelny4qR0xsUX8aSatPPIJ8jvSb8fj8qlYq8IzKZDObm5gYy1jLRiE4mQpbZ7XaLHJLAinPDJCYa1HBcnU4nSqXSAHvGexBY8r4cR8qtKS9m4hUCeMbXUoKpgRjHnHXcmG2SklAyaFq5wPpyzWZTGEkWNiewBCDvdQLDUCj0lebmb8JeKgD31Za4bbbZZptt//9uLNAdj8exv7+PkZERYeOmpqYwOTmJhw8fIpvN4uzZs4hEIrh27ZrUgwOAs2fPYnNzE+Pj46jX69jf35fC3N1uF8vLy9jf38eTJ0/gcrlw9uxZcVSmpqbgdDoxPT2N+/fvY3x8HABw69YtXLp0CQcHBwIMmUVvaWkJuVwOmUxGdo/z+fxAv/r9vqTsJlgLBoOyi66TawCDcklgUIIIQJxazXSZskLtlFMySUe3Xq8LOKGjq5OeWMk3tSPL/nPH2+ocXaRZx77RwdSgUfeF19KAcm9vD3/4h3+I73//+5ifn8dv//Zv4y/+4i9wfHw80F9tzLCXTCYl+QwdWc3okKWo1WrPSCrprOvixvyO80BGSn+u5/00cKXvoY83+6Pbof8222IFzszvrMAPjQxOLBYT5jIYDEpZD86ZZrgI3FKpFDKZzABI4BhzrczMzOD8+fP4+c9/jnQ6DQDIZDI4Pj6G3++XOKlwOIxSqTRQpoL31e3WzLPJ/NJM1kwDKT1OGiSaTLTJplrNBe9lJe3VKfB5Tr9/UuRex1oSQFGuOzU1JUAlFAohn88jn88jFosJMCN44zNFhi0Sicg7hwWvNZglw0x2mc8E3016A0cDfMbT8W8tb2VfzXsRgPJaXq8XgUBA4u8I3hin2uv15LoEaWT7GdtHYMc2cIOo1+uJ0uBF2csF4OQl84IbYpttttlm299qu3DhAqrVKo6OjpBIJCRLIJMm3Lt3D5VKBZcuXUK73cbR0RHeeustpNNpcRK5g53P55HJZDA1NYVCoQCn04nR0VGsra3h8PAQbrcbw8PDEiPFbG+VSgUPHz7EysoKtre3Ua/XMTs7ixs3bmBkZAQTExPY3t5GNBrF+Pg4jo6OkM/nEY/HUalUpK5bOBxGsViUvmmnkcH+Pp9vIF246aCav5uOJvCUETMBHoEQmSSCQmYHZHp34GlsDJ1LHqcZKX1dLdm0aqvJrmlWRLMljLvT52ipprbHjx/jP/7H/4jvf//7mJ2dxbe//W387Gc/w+HhoYyDNgKv4+NjkVyVy2VJkOByuRAOh5FMJnF0dPQMS0mAqq+nf3I83G43arXagNNqslpW4OrL7Hksnwkw9N8mKDSlkWYbCGB8Ph9CoZAURQ+FQohGo8/U0aOEjRlgM5mMyOg4Jho4RSIRDA8PIx6P46OPPkI+nx8o/M511Ol0UC6XAUDi31izULdXjzM3HszYMzr7ZKn4md4I0aCE8ktzbqwYNyv27bRND7aRLDcZInNu+UzpTQ/GaDIZEgEWQY0udM04VgCSUKRarcqzT+DF8wmASqWStIUyRI4Jr8u55zuE7w3N1BLM81qUwevyEe12W9YUGT6+C8jgkQ0k4OWmQa1Wkw0YkyUlI8y2sAzCi7KXC8B98dMuI2CbbbbZZtvzrFgsIp1OIxwO4+DgAPF4HIuLi2i1WlhdXUU0GsXZs2eRyWQQCoXw7rvv4vj4GDMzM8LuTExMYGtrS4pz7+7uIplMwufzYW1tTdg8xn34fD40Gg0MDQ1hbW0NY2NjWF5exqNHjzAxMYF+v4+HDx9ifn4evV4P6+vruHLlCpxOJx4+fChxKsfHx6jVaggGg4jFYgiFQhLLo5koptYuFAoIBALyz+fziWNlAhmCNGDQmT8tS6UGVjphiY4/04BE30sDTdNZpcOtASH7pU0DMt0+fS2yABq48VgT+LEtq6ur+Hf/7t/h93//97GwsAC3242f/OQnODw8fAZA8VrMfAc8rU1FpiIWi6FWqw1kthweHobb7Zb07pqV1DI6AM8kjzDNyvE3wZUVWLUae3PerUAcv9PHm2CDf5NlI4tDuWQymcTIyMgAA0Ow1Ww2cXx8jGw2i1QqJeyJ7huZH45bs9lEpVLB+vr6QK0wDXIZk9XpdLCzswMAkkjD6/UObDboc005MQEd+6mlnFZsKIGIjmvUPzWLZGVWoM4EimZ8Ku+l2082iffWzwul2txkYp8ogaxUKgJ+yGJRkglAJMBMDsMxKJfLEqvLsWZfhoaGJItkvV5Hp9NBKBSSTRC/3y+gTksoCbY5B5VKRdg9sqgEYp1OR2JM+YxyPtgu/Z7ixpNmzwFINsxgMCjyyhdpLxeAs2PgbLPNNtts+wpWrVbhdDpRKBRw4cIFzM/P4/Hjx0ilUlhaWsLMzAy2trZw5swZJJNJZDIZzMzMoNfroVQqodlsYm9vD41GA6FQCNVqFfPz8/B4PFhdXUWz2cTi4iIODg4QCoVE3sN6b2fOnEGvd5LCnmzekydPEIvFhGl44403UKlUJF4OALa2tuByuRCPxxEMBnFwcCD15Gjc2aaDtr+/L6m9g8GgyJdMB46mQQLBk/5bx82RUaCTyl17najAZMZ4b95LgwPteAKQQr9MtGCabqsGQDr+TbMNdIA1G6fbQ+v3+1hfX8d/+A//Ae+99x4uXLiA9957D5988gm2trakb/qadPzMTJucNyZSYLzVK6+8gt3dXQHaBC8cR32+HjvTNBgw59Lqb9OsjtfXsgIcVsfxp45vYuY//s4NBP5jwWfghC0ulUpIp9PI5XIoFovPbAJwzjVop6NNx5+gmeyzlrqxZuLo6KjI5Vwul2QVNBleE+iYRnBx2lhpEMXj2WZz7K0YN6v7kbU228Rx4XqiVFpniuXGTqfTkfXodDoHwA9jzMLhMFwul0gJOeZ6Trhh43a74fP5BpJ+kLVjghGdrKTRaCAQCMiGB+uq8dl1u90Ih8MD9ed4Hk0nZuF5fr9fQCIzXjIbLoCBhDh8Z/EalItSXkqWUMsyg8GgbACwDS/KXk4A92KbYZttttlm298B83q9uHr1KpxOJ+7du4dAIIBvf/vbqFarSKVSWFlZkbTUZ86ckZ3kXC4Hl8uFRCKBQCCAdDqNWCw2UCJgfHwc29vbAu7oNKVSKSwsLKBQKIjU5/PPP0e73UYikUCtVsPk5CTGx8fx8OFDtFotLCwsoFgsYmdnB16vV4oa7+/vIxgMYnx8HLlcDsAgI0RnL5vNwu12S7IIOh3aWdTAzARF5rG8vjY6Xdwp93q9zxTN1oDJBHf6ey2JrNVqkvFOMzXatFMJQOJ5TKZNs1smONJt1MDg8PAQf/Znf4b79+/jm9/8Jr797W/jxo0bAtLN8SZ445ixvRpYEOCUy2UcHh6i2+1ieHgYPp8Ph4eHAio0K6fbyWvSUT8NFGhwrcGF+U+3VZu5PkzTzA4ZNq/XK/GWzE7IeEwdl6nrBlarVRQKBYlv0xI5K3bUHAeHwyFrj6wRHXqzthvXZavVQjablayfZGSsWF5zrbHfek3p2E2224q904BfbyacxrxZmRn3pWP0+BnBFf/WEmbem5JEyiJ7vZ6wYQ6HQwCeZuIYN0a2ndfiO47/CN76/b7MgR4fnRGzXq+jXC6j2+0KiOK7i0C00WgM1GDT8mj2k3Jygne+B3g9KiC4/syfvE+320U4HB6Qc5J55FgyOdF/zbz9ddvLBeDsMgK22WabbbZ9BRseHsbi4iIODw9RqVRw5swZXLhwAel0Gn6/H2fOnJGaQd1uF+l0Gh6PB8ViEdFoFI1GA5lMBuvr6xgdHUU+n0ej0YDL5UIgEMC1a9eQSCSkFlU2m4XTeVJXaW1tDcPDw+h0Orh165Y4s0dHR3jllVcEULpcLqn7trW1hXA4jIWFBfR6PWxtbSEej+PChQu4e/fuACNmxnYx3oeFpVlzzgq4mCCOO/RWppOR0GlyOp0ybvp6AGR3XxfT5j10QgKdVZKyM30e5VM0DUasQI++jxVwsTLNcrCwd6FQwOXLl3Hp0iUEg0HcvHlTwAbHjP3WTKIJOtnGH/3oR5Li3efzYXh4GNvb23J/LXE9bfzD4fAAC2DKUDVg0J+TebBy7M3rWEkJnU6nxCYxlogAjaCIoI6OL38SfLZaLWQyGezt7aFQKAzEt3Eudfs1ADWlkQTJZKAI6plxUq8FzXIyvovSP73hYK4xPR56jEzWjceYbKU5j1ZMptX9TPmkmXTIBEca4JmZKPX8kTFmYhcdG9br9VAoFOSefr9/oH2UCBPodbtdKSkQi8VQLBbRbDYRCASekW9yTfB3rkOOv5Z5UlpJqaOOzS0Wi3L/ZDIp7eBYkInT5Qb6/ZNadQSDum4dN1mSySQAiOSZYJLgj5lMTUbw67aXC8DZDJxtttlmm21fwebm5rC6uop4PI633noLTqcT6+vrOHv2LIaHh8U5KBaLaDQamJqaQi6Xw+TkJPb29pBOp/HZZ5/B7XYjm81idnYWMzMzqFarePz4MUZHRzE5OYlgMIjDw0NxPBuNBuLxuCSzGB8fRyaTQSAQwGuvvYbj42OpIzc+Po6bN28im81iZmYGCwsLaLfbyOfzSCQSCAaDuH37Nu7evSvpuYGnwfaa/cnn85LIRDtjOrbNlIuZ8kITjJiZKfk5s7nxeB0fpB1QDRr13xpU6J16DZLoZOp2WrFuJuvHa5nySSv2SUtDa7Ua0uk0PvzwQ+zs7OD111/HN7/5Tdy8eVPiDwEMlAHQIFYDD2bjIxPUarVw584dcZ41w2bGHurx1pkDyZrolPDa2A9zngmMTbbUBGr8p5kRxhXxd6aM1zGL7IceS9YX29/fRzqdFifYih20khjyfswGyH7rDQD+TkZGt51ZXMkccRxPA/PcSDDXHb/T/TPXkH5+NADT42wF0K36rdlensv+cry1dNlc11pWzBixQCCAWq0Gt9sttffIOHFDitkXGY/GpCCUN2tpZbPZlEQgXOscayZK4dqjjJLgkX3SjJ5m3Tl/fKdx7DmGXq8XhUIBABAKhYRRazQaA0CR8W0EeGx3t9tFMpkUVo+fjYyMoN1uS9wwN5AYh/yi7KUCcDSbgLPNNttss+15dv/+fYyNjeHVV19FtVqVRCb9fh9ra2t4+PAhxsfH4ff7xRlpNpvY2dlBLpcTOWOj0cDi4iIajQZWV1fh9XoxMjKCyclJKTYci8XQaDQkpiSXy2FkZAQejweZTAaLi4sYHR3F+vo6isUiRkZGUCgU8LOf/UxqzQUCAXz22WdwOBxYXl6G3+/HjRs3ZAedsk7t6GhQVa1WEY/Hn8nOpkGPdgj5tzbtUOtz9PcEFnSYgafMm5bFUeKm/wYGU/zTyJicxgRagTTdHv5ufqY/N/82GRCdcW57exvZbBYrKytYXl7G6uqqAE06uxxHnXzE4ThJZkIgr0EOGQCCXbKbBIR0ZDX70++f1JxjnA+dYzJjXA86nb2eFw0O6YBr4KDP1wya+TvZK82GcQ45Lq1WC5VKBfV6HaVSaQA4aVBpMl0avOi26PWtQYleYy6XC7FYTFgaMnFsgwanBD86db25Lvh88Fh9jH7W9Dl648IEdCYr91XAnL6uGa9HVo3feTyeZ+SZ5gYKr8GxIdPEhCS8JpkoSlV1Gn/dT51spt8/kWcy8y3XMiWQBN4EUwBkI4FzwXVLlrRUKg0kD6E0vNvtioycsZUEieyDGfvGsh7sA9vAeD9K3MkWc97Y92Qy+Vy57d+0vVQA7ukitxGcbbbZZpttp9vs7CzC4TB+9KMfodfr4ZVXXoHX68X9+/dRq9Xw+PFjjI2N4eDgALu7u3A6nahUKrKrXK1Wkc/n4fF48Pnnn2N+fh7vvvsu9vb2AADHx8dwOp2IRqOoVquYnp5Gu91GLpdDPB6Hw3GSPn55eRlutxtbW1sAgHPnzkl83MLCAiKRCHK5HPb29jA6Oorx8XEcHh7i8PAQkUgE5XJZSgjQOWG8RygUkmsVCgWMjIwgEAggHo8PxMVoh+55MR2mrM6KueJ3uigvHTwz05sGDaZkzsqR1Q6nTvNtMmmaGdSAzGTD+Dn7Zh5r9l07jqVSCbdu3UIkEpFkB/pcn8+HXq8nmfuazSb+4A/+AIFAAD/84Q8HwADjhXSWSc0IkfXRjIMeE13kWMf0aODDeTF/cq7ILJAtobPNnxxzzitrixEo8HuuqVqtJhn/ms2mMCxkfOicmyDHBKh6TVF6x1gmtkWvG65Lt9uN6elpRKNRRKNR+P1+cfT7/T52d3elmHO9XpfkFhw/gjS9dtku/U/Huum1chqbd9p3XLdWII/9N8GSnks+G5xLyg/NZDo6uQnHm2CfSV/6/b4UyuZ7yuFwoFarCRhm7T7OLe+jJbJ6k4eslZZPa8BJgMjjNTBiEhqy1mRsmc203z+Jo2MSE0o5uWYIGHkvxvYRpDkcDgQCAdTrdZGGOp1OJBIJ+Hw+GXO/3z8g8xwaGhoo3/J128sF4L74aTNwttlmm222Pc9arRbW1tbkP+1bt24hHA6j0Wig3W6jWq3iyZMnIj88Pj6WTI65XA6lUgkOhwP1eh2XLl3CuXPnsL29jVqthnq9jrGxMdn1vXz5Mh4/fiw13CjpOXPmDKrVKh49eoRIJAKPx4OdnR20222J6chkMqhUKpibm8Py8jLu37+PTCaD4eFhpFIp1Ot1+P1+5PP5AUc7n8+Ls1EoFLC7u4uVlRXJLufz+dBsNgfi5czYN+1Em5IuDXI0GAGepo1vtVqSKIE72NrZtnJY6VhpNpBtpEPK9pixblYA8LTv/2tM910X+uVYkynT96MTSEd4aGgI6+vrUohdx/Fxh1+zIwAEKOnsmhyH0+aIY2fl7Fudo0G//kcHWF9PgwUCaP29lSyW57AWYjQaxfr6urTX3DDQAEcDSp0gpdc7yQTL/vAfz/P5fJiYmEAikZAab5TO+Xw+ee6cTqfIAK0Y3tNAmV6/BBtWMkpeV39nJY20Yt5M0H2amUy4BrBM/EOmie3l2iQLRUaY0udAIDBQoJvrm5kqyfiy3WTcOSYAJHU/i4ebbB2BJu+nz+HGgS5qzzXlcrkQiUQGngkdQ9dqtQZAG5lXDTD5j2AyGAzKedyQCAQC8g7jM+7z+eRnuVxGuVy23Gj6uuzlAnB2DJxtttlmm21fwdrttkgbWdj38PAQyWQSDsdJFsWDgwOUy2Xk83mJV9rf3xfHIhaL4cKFC0gkEtjZ2cHMzAyKxaI4N/3+ScD89evX4fV6EY1GUSqVMDk5iVAohOPjYxQKBcTjcZTLZXHsR0dH0Wg0pBDx2bNnEYlEcO3aNdTrdYTDYezs7CAUCmFiYkLiPgiI6Piyne12G5ubm+h0OvD5fIjFYohGo8+UH/D7/eKwaYfTZNI0+wA8m/6czpXP54Pf7x9gbOh00Ykje2Q6QiYAA4BwOAwA0kY6xlbAwfzseaDtecwbMBgPRzDK9rBmltl+OrRapre3t4dOp4NwODyQSEOzD6YUkPfT0lWOnQaqpnwRGJQgnibb04yfyTJZAQ49PlZjpY9hNkICzkKhIIkxzDg9/s0iz9PT0zh//jwajYawzEwkxDIOem7ZXtZGBCCMER151i5zu904f/48hoaG8Omnn0rtMS3z1eybCcT0GJpjaQJmnUBDs3t6bDWDajLDelyft6FiyqB17CjBOGPX9GaDy+VCvV6XunnMAsnNKb5PCOKq1aqAQ51Jl4CIQE8ns2EcGsEU1y+fDbadoI2gjww9EwW1Wq2B7xibShaZ7WbyGt6fTLCWdBPIsu18X/Z6PUQiEUQiEZFS8hyCPM0e22UE/prsaRbKF9wQ22yzzTbb/lYb//O/evUqjo+Psb29PeAQ8Gcmk0GpVJL/qOlMT05OYmVlRVL0j4+PY3NzE4lEAsvLy3jy5AnS6TTu3LmDkZERhMNh1Ot1nDlzBk6nU9gz4ERu2e/3EQ6HkUwmUSgUJGB+enoanU4HH3/8sQCGx48fIxqNIh6Pw+/3o1AoDIAUh+OkdhHBBXBSh4w1sZgd05TXMdMbzWQBtNNoxpHpa2kmhEH+bBNZP8aRmDF02rRkEoBIVnmcTspgSiN5PQ1CrZxi3d7ngTwTsFJCxvgeqzGxAhg6UQllk3S4yQhoh5z31m3VANtqDtgeHneanM8cI3NcnneOeX+z/5Scsa/sE/uoMz8yuU40GkUoFEIoFMLIyAi63S6+/e1vIxqN4g//8A8RDAaxurp6KusRDAbhcrlQLpfl+gTb+hyCsXK5LPUfdTZBnQiE/TQBtiljNAEvwZwG43rs9N9WLJt5ntXn5rU0wNTsKMEj1x/BE+WSDsdJfbNarYZms4lwOCwbLtVqFX6/X+5DtopgjMCf99Rrjwynlk2abe/3T+SPfA70etHSR2YMBZ4mCmKiE4I7ricm1GGWyH6/L6VI9PhREsm26WQ92gKBgKxd/r/A9xDb9CLs5QJwwsDZCM4222yzzbbTzePxYHx8HA8ePMD4+DjefvttPHnyBHfu3EGlUpE4imaziWq1ikQiIRkc5+bmMDk5if39fak9tLu7i0uXLsHv9+PTTz8dkNrRuVleXkY+n8fh4aHsUDPI3+v1IhgMIpvNolKpYHh4GIFAAMfHx6hUKjh//jx2dnawvb2NcDgMv9+PVquF9fV1HB4eCiDS0qNmsynAc2dnB/V6XWSgyWRyIKDfBGeavaFpp8uUipkMz8jICGq1msSIkOXUMUv6/trJt2IyAMgOvJau8b5WLBzbrNtrxXCc1hf9t2ZImCqdCQ400DXHxuwPnWgdr6Sz3nF334qVpCNK4GfK9vT80JHWbdHOq9X4fhXgZo6RFWgeGhpCOBxGMBhEJBIRWVo8HpeEQQCQSCSQSCTgdrslc2E2m0WhUMDW1hYmJiZw9+5d3L17F9///vexvLyMf/2v/7UU+OZcs5wCWRVKoFutFqanp2W99Ho9iXEi+NBsNJ1/vRZNOSrZIz3eAAZAkgbRJpDT35/GttG+yhzp62kmypybcDiMQqEgY8FNAwKjdrstSZbK5TKCwaAwsqVSCV6vVwAdC3C7XC6JQdPPndfrRaVSkQ0hvpd0GRDKMHW9Q5bToCyT8ZOUX/OZ53OhQSnwlPn3eDzCHjocDknw02q1JOOmLhFDxpAxb0ziQsWCTm7C+wKQrJwvyl4uAPfFT5uBs80222yz7XnWbDbRaDRw5coVBINBZDIZAU/cbc3n81KY2+12IxgMYmlpSWrAMQvlwcEBLly4gKOjI6RSKbz22mtoNBp4/PgxWq0WgsEgFhcX8eDBAxSLRSSTSXHYvV4vIpGIxKq5XC7Mzc2J7NHr9SIejwujNzw8DK/Xi1wuh4ODA/R6PcRiMWQyGbTb7QF5VLValUQDzWYTd+/exdWrV+Hz+ZBIJCQGxTQzRb8V26LBl47hoRPF3XHugNMZ5K666fTRTNDIz4ATh1Ynz7C6hslemWbGMfGzLwMvml0Mh8OIxWIDcUBWx/OamrExgYGWPtIB12UYNGuhM+ZZASc9fhrEndbn0/r5ZcdYgWE9PpFIRBjimZkZtFot/Nqv/RqWlpZQr9extbWFXC4nzni5XMb+/j56vZ5sTjAJyqeffopKpYJkMomlpSX8o3/0j7C9vT2QJIiyP0rg9M92u43R0VGMjIwIG6ezopZKJSQSCQE3VpI4DcLI8uhND4JIc4w0uOBnVlJZE+CbQNuc69PM3ITR1+VzyPYPDw9L+QtmauT683g8EmM4NDSEer2Oer0uGyi9Xk9KSPAdVqlU0Gq1pD6afib5k+CYm1vdbhflchlO50l9TL/fD4/HI2UmgKexpIyrZZZKn8+HdrstbBvwtM4b70kpOQB5bzAhSrPZHJB7Up5N4EgmztxM4vhx88asj/d12ssF4MjA2QDONttss82251g0GkWr1UIul8Pdu3dx48YNlMtlqS/FJCUTExPyH/X8/LzErJVKJYmVKBaL2NjYQCQSwTe+8Q2sra1hZ2cH3W4Xk5OTmJmZwb1799Dr9TAxMTEQW0KARQcrGo2iUCig2WxiZGQEjUYD6+vr6Ha7WFpagsfjwd27d6WGk8vlwt7eHjKZjMT+EByQpaHj89FHH+Gtt96C3+/H+Pj4QFIQfZ4px9Q/aTrmxgQwnU5HyhowQYHegdfn0/knwLMCYAQu7BOP07I8fZ4JfE4DO9q+DMTRgWfB7WAwKA6p7o8JgPQOPR19E7Sa9+BYMyU7ywPQudT31EWcTwNxJoB7Xl9PY3g0SDuNiQNO5GbRaFRil/L5PGKxGC5evIhLly5Jxk49f8z6urq6iqOjI6ytrSGTySCTycj5jC197bXXcPnyZfh8PoyPj6NYLGJ3dxeNRgMOhwOhUAh+vx/VahW93kmyk0ajgUKhIBkpCar4+dTUlDz3jUZDNkF0TT49J+y7OXd6fNhHDQA0oNYMq5UE0xx3K5mvuUmggb2WMTOJB/BUVksmN5vNCltKcNVoNOD3+9FutyUdf61WG0gIMzQ0hFAoNJCynxs1Zmp9to2xiA7H0wLefKYI4CqVirBulCvye7L3BFa6fAWfES2Z5PNJqToBHO/rdDolIQqZOV6bbTZLs5Bd5hifVvj967CXCsCRg7MllLbZZptttj3P2u029vb28ODBA6TTabhcLkxOTiKdTqNarWJ2dlaSiZAhczqdmJ+fx/HxsUipms0motEoDg8PUSqV8OGHH6JQKGB4eBgXL16E3+/HnTt3xPHPZDLo9/vw+/3PJE5gAXGyctlsFnt7exgaGsLZs2eRy+Xw8OFDdDodzMzMoNvtYnd3V9pGGaWOs9K75gcHB6hUKhKz5/P5UK1Wxbmik6KBBmDtsGsHlaadeQIrZpbjTrpONa+PtWLegKdMBX8HnjrCpoTSZKZOYy7MY74KoOn3TxIWxONxyRhKFoFrQTvsVn3RiU1OaxOPobOaSCTw5ptvYnV1FZubm8/E+j2vr6azfxoA+6pMm2kmCCdrEYlEJHNroVDA6Ogo7t69i1gshrGxMXH8OX5HR0d48uQJ7t27h8ePH+Pg4AClUkmS8/R6PVy/fh3nz5/HL3/5SzSbTczNzWFiYgIOh0Nq4TG5TSAQQCwWExDX6XRQLBblmoxfomS1Uqng7NmzODo6EobYzKqo46LIQHEMTxsjKwBmPlv6GubnX2Ym4NPzRVDIBCmUERLgPH78GJ1OR5KCFAoFYbPIwjG7rdPpRCgUklp+fr9f3lPxeBwHBwcDrCbfJ/r9QFlkt/u0mDcBHdm8brcr80GWjewcSxyQEYzFYiJx5/uF71WWmAAgsW/MttlsNhEKhaTOnR7HRqMhMbtM6tLr9RCNRiXuLhqNCsNL8Pqi7KUCcDYDZ5ttttlm21exGzduIJ/PIxKJYGJiAsViEXt7e0gkEnj11VdFGjg8PIxarYaZmRnU63Xs7e2h1WrB5/MhEokglUphZ2cHZ8+eRalUwuHhIaanp/HOO+9gY2MD165dw+TkpCRgcLvdGBsbQywWQzqdlt1jr9eLfD4vgCWfz6NYLCIajWJ0dBQHBwfY39+XLJWdTgepVEp2pGOxmDhIzLJG0AFAsrGtra3h/PnziMViSCaTyGazzyRs0BksAWtGy4xDMUGYZljoDJlZJ02AaErJeL7pJOk4Oqu4N9OeB3KsGEarY+i8xeNxxGIxTE1NSXyiZlRMxo1jopMlAM+mh9fgmcfHYjF85zvfgd/vx82bN5/Z7TcZHqu2sw2cX6tjTTDLPpus5Wlghd8xzfqTJ09ERsc4qx/84AfY3NzE0tISZmdnhS1eW1vD9evX8fjxY4mX5CYKcJLpNZFIYG9vD//m3/wb1Ot1kZmm02ksLS3h3XffxfXr17G5uTkggSMIIUPE5ERkdjguTKJx4cIFfP755+LYm3Oqpa/mM2OOkZ5TrnteU9dfPG3eTOmk/luvFW6KABgoL2Eyf91uVzZvyLQxDoz94ZwFg0GR8LLsSalUkrXONqVSKXg8HszMzCCXyyGdTguQ0u3mT/1e0gCKDJ8GsMxgqzdpgsGg9AHAgOSV7z2+KzjuqVQKTqdTygiwDqGWiXPddrtdKS/BunA8rlqtSqwgQS7fay/KXi4A96IbYJttttlm298Jq9VqWF5ell3mUCiE119/XXaah4eHRaZDho07u6FQCLOzs1hfX0e5XMbc3Bz29vbQaDRw6dIlzM7O4qOPPkI2m8WVK1dQrVaxvb0Nj8eDK1euIJ/PY2trCy6XCyMjIyiXyyiVShgdHYXL5RL55fT0NEKhENbX15HP5zE7O4toNIpUKoVUKiUORCgUkppPZLxY06hSqUiMUKVSwZMnT7CysiK1stbX1wckQtwZN80qKx6TtHBnnw4gC/+aUir+/byYMX0P7TBrM9ungeBp4EI7lBpYncYumeb3+yV7Jx1gM9ZMt1WPJ/tuxqTpv02QGQ6HcebMGRweHuLhw4fY2dkZONc0c4xMNuY0kKaPtRovs11W3wEnTnA0GpXYNQ0yWq0WDg4OkM1mcf36dXm2KJPz+XwoFotwOBzY29sTWWMikcDU1BQajQaKxaKAFTLLqVQKvV4Pc3Nz+MY3voFEIoH79+8Lg8N1wmQxGtjoRDFOpxO3b9/Gb/zGb+DNN9/ErVu3AAym/tfzddq4mMeZckga78+28HuTmdbyV735QWZQryPe06rmnDlnZBn9fr+AFMoD+/3+QNIS/qSMkUDI4TgpM5BOp1GpVABA5r3X60lpDSaGqVQqwryRhWMJDeBpGQsyb5QplstlAJBEN4w5I0AjC8f+sc3hcBilUkmY/16vJ2VjCPKZSZPvec4B1wvvxTFqNBqSZKVarcq4vSh7uQCcPCwvuCG22Wabbbb9rbZz586h3W4jlUpJPA1Zp7m5ORQKBYlPS6fTiEajACD13B48eCByumKxiGAwiMuXL6PRaODGjRsYHh4WZ3B/fx+xWAyXLl3CgwcPJNg/Ho/j+PgYADA5OYlisYjj42ORmlUqFdy9exftdhtnzpyBw+HA/v4+jo6O4Pf7JS6ETgrT9DPOw+v1imQIOAGtm5ubaDQaCAQCWF5exkcffXRqunmTdbGKTfP7/QgGgxJj43a7pVSAaZpVAwYBj/lTs3Lm+bo9dGytmAr9t/k77TQQpz+ndDIajUqs1P7+/oDDTedXt53p2umIa2CrwZ/JPJJlzeVyWF9fFwf5tPY+D4RqqavpbJ7GHD3v+lbMCtnJkZER5PN5VCoV6QfwtPA35Y6MNa1UKvB4PJicnITP58Pdu3fhdrtx9epVxGIxVCoViaX0er1IJpNwu9148uQJhoaGJJlPuVyWZ2F4eFiS55CR1nX09Jho8O1yufDRRx/hO9/5Di5fvowHDx4AeFpyQDPO7BOZUhMw6XhIK4aObJSV6WPM+MbTwDswGEfHdup5Yz/YLp2lkefpTLY8l9k5AUiMWLValfM4306nU5L7aGUA2x0KhQZi6nw+n4wBM4f2ej3E43GZW9apJEOmC25r1p3jwvN0EhZm0wwGgwOyTrJxAAZAnH4nMSNnJBIB8LRGXjqdljG3ywj8NZlkobRj4GyzzTbbbHuODQ0NoVgsYnR0VOSM8XgcDocD6XQaPp8P2WwW/f5JWmrKHRuNBo6OjnD16lUAwP379zE9PQ2Px4Pt7W00m01cvHgR7XYbP/vZz1Cr1TAyMoJAIIBr167B5XKJhDKbzSIQCGBsbAylUgnHx8cYGRlBIpHA0dERcrkcRkZGEI1G0ev1sLGxgVQqJQk0/H4/vF4vstks9vf3kc1mRRal40Lo8Ljdbmxubgo4nZubE6eIzggdWjpUdJC0UwpACi4TxLDuEp3T58WGmDFtp0nz6BzT8dKMAz/jffUuvAn+zM9NZuQ08MLvIpEIYrGYjKNOuOJwnGSlHBkZEUez2WwKo8DYIMqzCG40G6kZFKfTiWAwiHQ6jaOjo2ckmlZ90O01+2H+tGJSrcbevJ7+zGQ6ec1msymsFdtKKaPH40EgEEC5XIbX6xUm+9y5c3jy5Anu37+PpaUlLC4uCsjT7GW73UYikcDrr78uGSs5btVqFZlMRthffs5EHYz70gyiCa44vj/+8Y/x7W9/G1evXsWHH344ABbYTx7rcDgGyg6Y4Frfy5w3bQRfJqvGNaJLVZhAXMtz9VxzY4OJPnS7yWCyTiQBFFkovgfy+TyCwSCGhoZQqVQQDocHQBjbpjdm2u02JiYmkM1mBzYqdIkGZgclqCdbGggEJO6Nz0koFJJNKj7veu1zbFj3j0XGXS6XFOJmQha+NzweDzqdDlqtlrxbyfzV63WJxyMwBU7eb4VCAdlsVlQHuj7ei7CXC8DZMXC22WabbbZ9BWu1Wv8/9v4sSJIzzQ7Fjse+75GRe2ZlVmWtQAGFrm4sjQEag8a02mamjUaOKI5RGlI0UaQZjS960JUeZEZdPlyTUaYHPtBEGRe9tHiHHE7P0jODxjS6AXQDKBSAAqpQe+5b7Pu+uh6yz1d/eHlkVU8vReL6Z1aWmREe7r//7uH1nf+c73xYW1tDu91GvV6XGja1yF01GUmlUkin04jFYpiamsL29jYKhQKWl5cxGAxQKBSgaRqeeeYZ3Lt3T3q9TU9PY2ZmBnt7e0gmk0gmk3C5XCgWi4jH4wAeNNlOpVJwOp3IZrMYDAaYnZ1FJBJBuVyWRuNTU1Po9XoIBoOIRqMYjUbY3t5GJpMRiScBA6VAjUZDQF+j0cDu7i5SqRRCoRCWlpak9oiumJRAsf2AGkwSQ6GQSE3JuLGWRW3sazTdAMwllEaGbxJjZJRhUtZkVo9illCrnzVjHI3bs9ZxaWkJ3W4X7XZ77FgzMzP46le/iuXlZZFXcu6dTidsNhvq9Tp2d3fx+eefi9RVBY4OhwOpVEr6ozUaDWSzWWE6jOM3XotJUj1jmDFxxzGUk5g9s2P0+30kk0ksLS3hgw8+kKRclSkSTGmaJuz1hx9+iGw2KxLITqcjn+M9xH3cunULmUxG6pLUOrtQKAS73Y5yuSwgTq19M5PjGgEvz/+tt97Ciy++iOXlZezv7z80fyr4o9Mr2Vben+r1NYJoNVSZpPq3keFUmTVuZwSHHB/HRYMSzpORSeT3hnPTbrfh9Xqh6zrK5bIsBg0GAwSDQZEzRiIR1Ot1DIdDtNttOQ6vXSgUGjP4oKskLfx5v7TbbQyHQwSDQQQCAWHAWq0WOp2OuGeq/eoo56zVamJGw2ccQVsoFBI1Bc1PvF4vRqMH7Q9odsOFH7/fj2azOWZ2QlMe1gQPh0NEo1G43W4Bu08yvpwA7skOwworrLDCiv/G46mnnkIwGMSdO3ewurqKvb09xGIxDAYDqdcYDAaIRqPQdR3b29tYWVmB0+nE7u4unE4nXnrpJZElTk9PIxwOS/1MKBSSleTbt29jenoai4uLSKfTKJfLmJ6exmh05AzpcrmQTCZRrVZFHhmLxUSOtLu7C5fLhUgkAo/HI0lbo9HA1atXUSgUYLPZpKBfBShkw8LhMDRNQ6/Xw61bt3D+/Hm4XC4sLi7i9u3bkiDRhU11p6S0isyG1+uV1fhOpyNyLDaYnmQmMkmuyFABH8NYF2T8ydVzo4PfpKRZZUuM7xu3pTlMMBiUeWfPLE07Mp85e/YsnnrqKenPx1oiSrlodsBarmw2K2wAx0DJH5sKl0olMfF4XJmj2Vybnbe6r+OYoUnXygwk8hq0Wi0sLy9jaWkJ+XxepHJ+vx8ulwvNZhMrKyuIxWIoFovY3d1FoVDAqVOnkEwmx+SkXARQGRc2WVaBHe8PtgigfJi1WiorfNzcqZLK0WiEjz76CCdOnEAymZTvF89dlVWqDJg6P+r+jPeYyrIB4/e4CrD5WVXqyW2MjdzVfapAVb3H1M87HA6pV2QLAYJegie1nlXXdakJI2AjK6fKGEejkdTQBQKBsbYC9Xpdrh2BFR13abJ0eHg4BvJYy6vKcWu1mgBmACKVHQ6H8Hg8KJVKwswTIBJcs2aOQI3HINPN7yHln3S9BCD10WTjy+WyxcD9skLDww9kK6ywwgorrDBGNBrF5uYmWq0Wbt68iYsXL+L27dtiLKImHc1mE2fOnEG73cbe3h5mZ2fhdrtx7do1DIdDrK2tYTAY4NNPP5XaNNUlcXl5GQ6HA1988QUCgQCWl5fRarVQLpeFket0Omi1WggGg2NmJpVKRQDE9PQ0gKMkbWdnB+vr65Io2WxHPY1KpZKwUkxWmIyRTdzc3ES5XMbMzAxWV1fhdrtRr9elBxbr/ejyxoSV8j72WCLTQeZD7dFmZLu4P4YKpMxA2nEOfSrLQWniJPmgkakwJtVG9kodO6WTbrcbh4eHwiIRPKgsm8qQUF7F5sA0baA8TA06KjabTdRqtbEasl8kjOei/k025rhjPEpSaQTBrVYLOzs7mJ+fx7lz57C/v496vS7nYrfbEY/HhT0JBoPY39/H/Pw8wuGwsDtkzRwOBxKJBJaXl3Hnzh1ZYGANFkFAv99Hq9XC3t4eGo0GarWaLD5wrinZBB44mNLghIwp7w1d14Wh2drawokTJ8bGp14/Xnca1BCYc26M9Y3Ge5DjMTKDfE2dX7VOlfe/6tBolGsSsKjySY6NTDlfJ9vG77rT6ZTWI2xazs95PB5UKhV0Oh2Ew2Ho+pHRiDpmWvt3u134/X5o2lHNXavVkvcpVSSQarVaqNfrY70ruSBFppALYj6fTyTklEKORiPpP6heIy7AcY7oIMznIWW9vAZ8bo5Go4dMVygzZZ/Qfr8vC15PIr5UAA4WA2eFFVZYYcVjxNtvvy3OkF//+texvb2NSCQiK/mxWAyFQgGlUgmrq6u4ceMGBoOBgK/19XUEg0EsLCxgf38fOzs7mJ6exsrKiiQnuVwOsVgMtVoNtVoNJ06cwHA4xMHBATqdDmKxmNih9/t9xONx+P1+tFotHB4eYjQ6svS22+0IBoMiQ8rlciLZtNmOejRFIhGsr69L8X4gEBhL+CivtNvtqFQq2NraQjwex8zMDCKRiDi20WCFVuLsFcUkZjAYiNRoNBoJW8RkkImxcVXeLFTWQGUMjHJKNZE1SjH5mlp3pe6PK+mq0Qn3pSbUxiSbJjM0LlDlm1yZ7/f7uHv3LiKRCJaWlqSekg3MWRPX7/dRKpVweHgoSax6/F6vJ/cI63aM5242b8Zx87VJwfvhcViDSYDYKNnjdpQR3759G1NTUzh58iQuXryIP/mTP8HOzg46nQ6CwSCGwyGSySTu378P4IEUl7WDBMCUAudyOXmNjBybL1erVZFl0tGS9VwExk6nE6urq3jttddwcHCADz74QLZjraJx/tgfkSBufn4eiUQClUplDCAQxFM+rM6Xeh2MYBowN/ABxttycDv1PRXYqddCrfekVFC91vxukGXq9XrS741SRNWZkzVnvBY0RKKBB42ROF+UGJIBJCvO+lpKF3u9ngBwj8cjQJHsHFk+gnUu0FACyfc5Fxx3MBgcc4VsNBpS38b7AYD0lOPfbF+gMnpcQOC1Jkjjd7lWq4ncvNVqmX+Bfg3xpQJwYmJiITgrrLDCCiuOiXQ6DV3XcfHiRdjtdqytraFarSKVSmFubg77+/u4d+8ehsMh7t+/j2AwiLW1NWxubqJUKmFlZQVutxubm5vIZDI4deoUzp8/j93dXXi9XmQyGczNzSGfz4uxCdmV4XCIxcVFYSjsdrsYqBQKBdRqNWiaBp/PJ/IirnDv7++jWCyKuUC5XEaxWMTh4SEqlYoAAiayXImv1+tIJBIIBoPI5/O4ffs2zp49C7/fj8XFRezu7o4lsZQBqmYkXBmnsQBdL3kMlRkwYyIY3P44SaXxMwwVPKj/1NYCdrtdVuOZjFUqFQGVkyR0DDajZl0OEznVTILnlk6n8fbbb2Nubg4XL17E6dOnkUqlZOyNRgOHh4e4efMm7t+/L9eEUksA0mSaoGFSmMkdzZhD42fM5JFmv6t/m4HaSfsjaOj3+7hx4wZsNhuuXLmC73//+yiXy2i325ienhaHyGvXrqHX6yEej8t9wPOmA2e73Ua73RYjDtYs0RGQVvBkmAGIzJXvk8Wp1Wp47733UC6XUavVhIUzO19d12Wxg+Dg8PBQJLKqo6XKvlF2Z6xvVOdVla4CD9/jav0bDT94HLUWEMAYs2YG5FX3UxXEEUTRYZeyXwIqspo8N4IitV5tOBxKfbDRPMi4gMNtqtXqWCNvh8MBn88nKgH1u0UGlECJII4gkACT15bPPD4nea9Uq1V5jvH+0HVd+rhxoY33HZ8XKvvo9Xplfux2u9TekXG1XCh/SfHgC2MhOCussMIKKyYHJV1ffPGF1E7Mzc0BOGryff/+fXQ6HVQqFTz99NMIhUL47LPP4Ha7ce7cOdRqNezt7SEej+PixYsYjUa4fv06arWaJP+3bt1CLBbD2tqasGZ+vx+zs7M4ODhAPp9HJBKRxtz1eh31eh0ej0fq0SgV6na7WF9fFybD5XIhFovB7XZjY2MDw+EQsVgMrVYL3W4XrVZLEiSugE9PT8PtdqPdbuPu3bsoFArweDxYWVnBBx98IEmaakDBOi7KlLgy3mg0pHWAkTEyyh9VmZi60q++bxZqgmvGyhmBIBNZp9OJYDAIr9eLfD6ParX6UG2duh8jC0dGU02imZCaSTsrlQrK5TL29vaws7ODr33ta0gkEtjZ2UGz2ZSG7sViEQDGgC7d7lqt1kP97Y5j18xAmxnDaPzduK/j2Djj/tXfVfZTnUPgqHapUqmIBb2maej3+9ILbjAYYHV1VZgrspzAUS3ba6+9hh/+8IeyeECgS7ARDofFcIi1dzSWoeEEATKT/2q1KowyADH6MZsDgn6ez2AwwN27d3Hq1ClhpoAH1vzGJu1GAKeyxGqYATm1to7zY/wO0VmSwZ6E/J2tLlRQxDGxposAigtFNA/x+/2o1+vCxPM7zmsRiUSExSOYLpVKwuLxO+J0OqVeVL0XyEyTnaYhE01RCIw4JvZfY/A4NCDhsdhwfDAYiLMupew8HsdANpHPNs5Nv9+XOkuyk1QgEDR6PB55HqrPsScRf2MAp2naaQD/s/LSCoD/G4AIgP8DgPzPXv+/6rr+F3/T4/xcY/rZT4uBs8IKK6yw4ri4d+8e6vX6WEPXjY0N+Q+8Xq/D6/ViaWkJtVoNOzs7WFhYQCQSEQlkMplENBpFOp1GrVZDLpfDpUuXAADr6+uIRCJYXl7G5uYmGo0GlpeXMRqNhIlJJBI4efIkSqUSstms1LNx5VfTNEk8KFPk+263G5lMBteuXUOj0UAoFEKtVkOn0xETgn6/L5Ij4IgNorxqNBphf38f8Xgc8/PziEQiyGazqFQqUgNI8EfJEROeRqPxULNklTkyAxxmBiNmoQILJrGTWB++roIzMkEEomRczMZhPB7rnyKRiBg7qOdFUEumxSj9rNVquHLlitRO0W10Z2dH2FH13Lvdrljms37QOLbj2DKz8U8CdNzGyEKS3ZkkJTW7hgQWxyWvZC2Ao3sjm80ik8kAAC5fviyAhsCL9YKdTgfvvvuuABFN04Tx9fl8SCaT6HQ6UlNYqVQEqBHIMPlXXRB5LVnTpZ6zer48P3U+CG52d3cxPz+Pdrs9xqaR/TFjLFWQps6/Ovdke7g/ghRuo7YJYF2YemwV4DFcLpccj6/TzIP7JIMUDAZRLpflu8NFGl5vGsLYbEetBSKRiMhYaVDDnn6s56QJD59HvL6UKlIh4Pf7Rb5N8MWefgTnlImzFQXwAFB6PB5Z4OLfZEl5TVwulxiR6LouwE8FhsAROKXkk/3jKO3l/xNcEOB98t8lgNN1/S6AZwBA0zQ7gAMAfwzgHwL4f+m6/q9+GQP8eYLzaOE3K6ywwgorjgs6lZHpisVisNvtyOfzYi4yMzMjYOnChQuw2+3Y3t7GYDBAIpHAaDTC5uamJB6vvPIKMpkMNjc3kUql0Ol0cP/+fWHd+v0+0uk0BoMBkskkFhcXUSqVsLm5iXA4LE1sVSOHUqmEfD6PXC6HcDiMqakpxONx3LhxAzdu3IDf70cqlcLe3p6wDFwhVmt8RqMRKpWKmJ1Uq1Xcu3cPq6urcDgcSCaTyGazqNfrAhIJgpgY22xHlvi00jer4Tmu9s2MFTIDdpReGQ0/VLMQJtjGhBg4Su4ODg6EoVPfYzABVhN1Jv/hcFhq3FRJHLcnu6G2S2AMBgMcHh7i4ODgoXngWJi0d7tdmc/j6t4myRmNMQnEmYExY6jzqs6v+r7x88fJX9X3efzhcIj5+XlJojk3Pp8P3/jGN1CtVvHpp59KzRMXGtgsnn0PyepQRmiz2caaMRNkqxb0wBGDt7KygnQ6Ld+VXq8niTkTf95XKuuraRqq1SoSicRDzpLq+anGJZPAtOqISfDJz3JbLoyYOVFSAsh6SXWeCdz4GsEga94ajYYs6ng8HmHr1B6QBMA8Bo16OJeVSgWNRkOYLc77aDR6yJGWtW009gGO6s6oMuACC4+vyiT5DKC8k/NAJQPbA6jNwWkuwu9yIBCQe43tYXw+n0hsOa9kgVXzJ/7Nnnm8R3h9vV7vxIbsv474ZR35NwFs6Lq+8yTR6AMXyic2BCussMIKK/47CP7ny2Sc5h/tdhszMzOYmpqCy+VCKpUSW/R6vQ6fz4eFhQU0m01humZnZ+F0OnHjxg10u12cOnUKnU5HHNi8Xi9arRZKpRKGwyFmZ2eRSCSwsbGBRqOBSCSCSCQifcQ0TRN28ODgAK1WC3Nzc5iZmUE0GsWPf/xj7O3t4cSJE4hGo1hfX0elUgHwwOqavZfY1HswGEhyxSQvk8ng4OAA09PTmJ2dxa1bt2TF3JgAE8wxyVPZJ2MtjxGYGUNNZo0sFkN1v1ODr3M/6rGM4EMFecaEGxg3duC+A4GAAAeOzwgUgYcdNSmlU1k7FfQYreKZ4FK2ehwwU8/VeA5GYGXcz6MAn8qmGRkp9djGYxq3mXQszgcT7FgsJpbtrFVcXV3F+vo6SqWSAAcm8wTUiUQCsVhMWJXd3V30ej2EQiGRDNOVEICABbWGjo2a1b6FTMB5TM6F6vqogrp6vY5UKiWMjpHRVA1OVPDMn0Zwy/uZ50XZrpEtJUPHeeHvHBe3Vc9H/UnW6fDwUHrA8dhqrzPWudrtdnkGkREjcCRQI3hT3Sej0ag4SlLayuesapxis9mEyVL3T/Ml1qex/o7NuelwSUMn4IEUme0eeA7sZcnxqXJNtQ7V6/XK95OfJVjrdrsC2mu1mtwjXOQyY85/XfHLAnD/GwD/P+Xvf6Zp2v8OwMcA/k+6rpeNH9A07R8D+McAsLi4+EsZhDBwFoKzwgorrLDimGACff78eZEokiFwOp1wOp1YW1tDMBjE1taWsFQ+nw/lchmVSkXq0EajETKZDMLhMGw2G3Z3dzEYDDAzMwObzSZsjMfjwdmzZ6FpGjY2NqBpmtS/kWFotVrI5XJicOJ0OvHUU0/B4/Fgb28P7733HlqtFs6ePQufz4fPPvsM29vbcDgciMfjIkfSdV0AZygUkuL+Wq2GWCwmq9XXr19HPB7HmTNn8MknnyCTyaBarYrrpVo3RAaO9R/Aw/3FjKYMqtTQjEU6zqhE3Zb74FjMGA4zxkg9pvEYxlzB4/GIRMu4L+M4mQCqznV83Sj9ZAKuzhn7DRJMPA7DNmmOVLDKMRnBg9lnjQyZcZ8/bxivm2psAxxZuquJvNvtxsLCAs6ePYsPPvhA5Gt0//R6vYhGowgGg0ilUkilUnC73SiVSvD7/fD7/dJ+g2CBMjvVHVC9h3Z2dgTUqY3DAYwZlBBgEhzx/NLpNKampuSaGlli9Xrwd7N7lftWAQaAMUDABQGCNy4s0KJfNddR96GCSC6C2Gw2TE1N4fr16yLPJnhrNpsIBALw+XyyrbHmjf3gOA7W0o5GI+kFR3lnt9uV5wbvdS5U2O12+P1+kXOrhiEEje12W8CVujhCoMc6Yz4PuH/OqdfrFbaNDrq6riMYDMoiFhcUotGozLkKnvl9ZT1zoVCQY/l8PnE/NdY1/jrjFwZwmqa5APwugP/Lz176NwD+RxwpGf9HAP9PAP974+d0Xf+3AP4tAHzlK1/5pSAuy8LECiussMKKx4nl5WW89tprGAwGeOeddzAcDjE1NSUrt0899RS63S42NjYQi8UQi8WgaZqsLtPoAjhKtJaWlpBOp9FsNuFyubCysgIA2N7ehtfrhcfjQSKRQCaTQaFQkBoeh8MhPwuFAvL5vDirzc7OIpVKod/vY2NjA7u7uwgEAnjqqaeg6zquXbs2Jus6PDzEYDCQvknNZhPtdht+v18AECVAfr9f2glcuHABi4uLWF1dRS6Xkz5yqhyTBf6UFAHjMkbgYQMThpHpUpNZI3unJr5qDZXRMMDIspmpf4xJtNm2KoihpEw1kVDPa1ItHRNsIwupsnEqQ8dmyXRZVMdhnJ/jwgyAGSWljwMIHwesmbF/x+2PrJvKNF28eBGZTEaS50AgIK0YVLMJj8eDVCqF5eVlBAIBSbRnZmakB1i73UYulwNwJI2MRCIYjUaIRqNyb+/u7gJ40PuNEmJ+57xer7BAKuOmLjqo5juc31qtNuZ4SfDE943fAZXJ4/xQtshrpH5GBYxGUM5QXSaNDLb6U2Uab926Jc8HXdeFfVKl0Gw54na7RUpJ8Eagw+NyDFQbkLEigx8MBsVIRGVhyZ5RDqvrugBS1TxEDUo42YSbzdpttqPecJQ90ryI5+B0OsfMWTgvHo8HkUjkIVkke78R1Kp971qtlkjceY7Gcf4645fBwP2vAHyq63oWAPgTADRN+/8A+PNfwjEeL4SB+7Ud0QorrLDCiv8O4zvf+Q729/dx5coVaJqGZ555RoDZ6dOnsbu7i3a7jRMnTmBqagqlUklWrWdnZ+H3+1EoFER+dOfOHbTbbcTjccTjcVSr1bH6NwDY2toSFz1KFUejESKRCAqFAjY2NqT+IxwOY2FhATabDVtbW8jlcjh//jwWFhZw//593Lp1C/1+H6dPn0a9Xse9e/eEvahUKsLCtVotWSmmRXi1WsXMzAxKpRJqtRquXr0qvcw++eSTsWSFbn10S2TyqQI3NcmdxK4ZQdNxdvkMI+tlNEoxY4yMTJKafBuZJ3U/NpttrHGvw+GQuh61pkk97+NkokbWRR1Pv99Ho9EYq32bxJIZ92kmX1QBgpF1m8TEHQfazLZ7XIBpBt5sNhvi8Timp6exsLCA3d1dqXUqFotSy0UwkUgk8Oqrr2J1dRXBYFCAL6WDxWIR1WpVALfP50MsFsPi4iJeeuklZDIZfP7551J/1Wg0hN1zuVxwu91oNBrI5/NirkFTHvUaq4BYBVrZbBZPP/00arXamGzTGCo7SyZJDTJ+vNf4XTMCSRUg2mw2YYJY46kudgAPwKh6fPZ/BCB9HNVxsr0AQS4AWcxgrSCDxyZjx558bFdCmSMXwwDIopR6TjRr6vV64r7LxaxGoyHySY/HI88csl9s6F2r1RAOh+WYfH7SZIVAmcyb2o6iUCjIZ9Rr3W63EQwG4fF4xphN9RlKqeV/7428/x4U+aSmaTO6rqd/9uffAvDFL+EYjxVSA2dxcFZYYYUVVhwTn376KTqdDp599lmRss3MzGBubg73799HJBLB7OwsPB4PDg8PRZpFJ7d0Oi3MFh3cpqam4HQ6kc/nYbPZkEgksLa2hkajgVu3biGZTMLj8aBUKolRxszMDNbX15HJZJBKpTAcDpFKpRCLxVCpVHDjxg3U63WcOXMGp06dEslkIpHA9PS09H9jPUqhUBDnNq4ks98TAOljFI1GEQ6H0Ww2sbGxgTNnzkit0f7+Pnq9nri7MbGkdFKVNDJUgKQmafyb2wB4KLk0hplkEXi4rYAKUtTPGmMSC6Xug3U/3D+d+LjSz/0YwYtRMmocg8rkEDh0Oh00m01hNIzsDF8zntMkOaTK0ExiI40STSOj8/OEGZhTGSrj+6PRCF/5ylewu7uLf/pP/ykODw/x3e9+V1gaOkiSaYtEIlhbW0MikTA9l1gshng8jkKhIPK9ubk5vPbaa7h48SLq9Tqi0ahIhAlcaErDGigAcm35/VGdCY2MGs+LDBxrYI2GO+qYVbCvmnLwNcoEueBiBOn8nbJPANLnUb3e/EdgYbzew+EQxWJRjt/r9YS15D5arZYwoZQlsn6Wx+Y9S/knWbVyuYxyuSzAzW63S30iGS8VsNJohAy/y+VCOBwWMBUIBEQ9ADwwPqEaAIAY2bCGkHMTDAblOvLeIivHtiydTgeNRkNYYPZ85LVlw2/V2IXXkPMbCAQecrL8dcYvBOA0TfMB+CaA/6Py8v9D07RncKRk3Da89ysN+c5Y+M0KK6ywwopjIhgM4umnn8b+/j48Hg/W1tZgt9tx/fp1JJNJkSVWq1X5T5822f1+H9FoFO12G/V6HbquY25uTgrpKd9ZXFzE3t4e9vb2AAA7Ozvw+XxYWlrC3Nwc6vU6PvvsM9TrdanpmJubw+rqKm7fvo2rV6/CbrfjlVdegc/nw5UrV9BqtXDu3Dl4PB5sbm6OjS+dTksdEGv8Op2OJHxM3prNJjKZDKampjAajdBoNHDz5k1cvnwZyWQS6XRa5EpkU4BxBkxlHVSGSk14JzFUxpV4dTu68RnNTYygTgWMk5Je/j1pHCr4UF34mMSSlQAw5mZoTNaPA5z8ORqNkEwmRdpKa3ujvM44T+ox1O2NjKNRtqcyj8Y5MRptHAccjOep/s4xq2yVGWPH47H26oUXXsDbb7+N/f19WVxgrRUbxbNHmVn4/X4Eg0FhmClh3dvbQygUQjKZxOrqKr75zW+iVquhUCgIINe0IzdJTdMwPz+PRqOBSqWCVqs11j+OjA/ZP+N1JYtF9oz773Q6D7GfZLK4L94rao2dkUVVATZrxdQ5JhPO/RgXMVgXZ7fbx+otKRudnp4W8OTxeIStZH2apmljUka19pTH4rmybQBrhwOBAAKBgACk4XAoDJh6f1KySTYPeNAeQK0vY8sVWvi7XC657qylJCiloyjnioxbp9OR7282m4XP55O5Ye1yOp0Wcyu6VfJaUXoKHDGYNpsNhULhWBb+Vx2/EIDTdb0FIG547X/7C43ICiussMIKK37FMTMzg2vXriEcDmN+fl7s/U+dOoVQKIR6vY5msynJJZMdOrjVajUMh0Mkk0mRxDEpCQQCcLvduHPnjtSh0YEvHA7jqaeeQqPRQLFYhKYd2V37fD6cOnUKPp8P7777Lra3t7G4uIinnnoK29vbuHbtGjRNw8mTJ+F0OpHL5eBwOBCNRqFpGtLptCR57FPFxI6sGxOyTqcjdXgEUtvb2zhz5gxOnjyJ9fV1tNvthxp1m7FDwMNOksexQExWjcks968CEUrEHieMY1P/NoI44/hUQ5LRaITp6Wn8vb/395DL5fDOO+8AwFjzXqM0VAUyTNTV2jcm5JlMBuVyWQxzjJ/nWNRE3SiVVM+NQWBiZDjNmEkzBs/I1hhll2bMnvq6CirUY3FOfT4fIpEI3G63tNBYW1vD1taW3PvBYFBMSSh1mxQejwenTp3C7du30Wq1xBK+1+thfX0dZ8+eRTKZlJoqv98v/ePy+by4jU5NTY0xNTabTdgbMkRmbCObUNNIhefqdDqlvoxMEe8X432tHpOySLWWkscliOECDPCwYY56/fg+wQwZo3K5LH0dOWYuVKg97FhfyGtAG37OE4EqTUM6nY4Ysfj9fgG/BOZqGwGak/DcCNaCwaA4P1I1wPNmmxfuU9M0qaHjObIPH8fG11qtlrhO9no9xGIxVKtVAXwErAT14XBY7mcu1vF+4NzzOpF9DYfDE+/TX3U8uQYGv4KwCDgrrLDCCiseJ7744gssLi4iHo9jd3dXatucTqc0xA4EAkgmk1J3w8Tj4OBAGs6q7QEGgwHi8ThGoxFyuRx0XRfQ1mg0MDs7i7NnzyKdTmNzc1MkSpFIBIuLi6jVavirv/oraJqGr33ta3C5XPjwww/R6/XE1KFWq2F9fV0SY/YdozEJQSaTjF6vh1qtJgX5NABoNBrY3t6W5In7vXjxIpLJJDY3N6X/k1qsb8bmEEAwWVUTTGBcRjaJVZkUKlBQ9zUpuK26vRGQGIPJN1fs/X4/4vG4MKc+n08sydmeQZ0DJuicA3Ue1OSdbBBrH3l+ZJ6YOLpcLlSr1YfmkQmueg2Y9E9ix9R5VENlfThvxjk/LlTWTZ17fl6t3VpdXcXc3BwikQieeuopJBIJpFIpOa9Lly5hcXER5XJZpHw7Ozs4f/68qSkOJXkApNnzaDTCzs4Oer0ebt68iaWlJWxvb+OLL74QSR4XOOx2O5xOJ/b39+Hz+eD1emXsqkmPejz1Pux2u8KYE8wR/LMey+PxoNVqCRNOaSDnjEDAyEar963aY0xtq6HOuxHAce75WbKFnU5HpIMcP+WR7NHGmky2AlBr2MjSAZAecOqCBpkwzqWu6ygWi3KNnE6nzA1bBLCVAd0fOWZKLFljRgmoKmWl0RLni6CN39N2uy0yTJvNJoYlaisELsy1222EQiE5JhcDfD6f1P3yOUrpKGsvs1mx/fi1x5cLwMmD6AkPxAorrLDCiv+m48yZM7DZjhoCB4NBzM3NyX/QvV4Pfr8fMzMzqFarYiHNBCmRSMDr9aJWq0nvKjII3W5XbP3ZM67dbmNtbQ3xeByff/45tra2hNGZmprCyZMnUSqVcPv2bUxNTeHcuXPodru4ceMGHA4HFhcXMTMzg3Q6jVKphGg0KrV3NF4hY8gCewINrugz6XK73WOMVDgclnO+c+cOFhcXMTc3h+3t7YeYg0nJvtEu3ri9WRJOkKGyVSrIeBSAMGOmJr2v7s8MqBgNIG7fvo1/82/+DWq1Gux2O4LBIFwu11iPLNYFGtk4sikqaOW/RqMhSb06HlVKFovFRF7JUE0W1HOgRE69Lup+jZI1dZzGxF/tuWcmn1Tn0Yx1Y6gOhfwcgROdDcluBYNBuN1uPP/881hbW0M2m0U2m0WpVEIul8PKyoqpSQSP22q1hJEZjUbY398HAORyOdy/fx+lUkmYK46Zf9NFUAUBNptN9qmeu/Ee5T1DIyI6KvL7xn0SMCQSCdjtdpRKJQGAvNeAByybURqrAnijZJmgSb2OBIG8lzhP5fJRJy8CIzbzpokI70fWE/b7fcRiMQGCtVpNJItko1gvR/m2pmlirhIIBFCpVMYMSnideB+Q2aPkMRgMolKpyGKGzWaTxTPea61WS6SZKvjzer1yT9VqNQwGA8RiMTSbTflu8Rpy7uhQSdCm9qgbDodwu91otVryPeJ9QZktGfVHPad+lfElA3BHPy0TEyussMIKK44Lu92OYrEo7nVbW1s4ODhAKBRCNBqVBtmlUkkkN7FYDMBRopTP5yVxYrF+NpsVWSRtyrvdLlZXV9FqtfD9738fmUwG3W4Xdrsdzz77LBYWFrC5uYnt7W3Mzc3h9OnTKBaLWF9fRzwex9LSEjqdDjY2NtDpdGQMrVZLajcIPNUaNyZXrJUh0CMLNxwO0e12UalUkEgkZJX+1q1bWFtbQyqVQi6XGwM3ZszOcVI3ozTP2JzbyODwNYb6nlnNnLHWyMhCGV83HscoPVOlXRsbG8JkkpWjRI7yKtbVsFbQDGTx+DQuUcGZOjYyMnQ25b7ockq7e36OYzPO2aS5VFkk4xyZvW/8vJHRVP+pzI8RvGnaUSP7SCQi4O3zzz9HrVbDxYsX0e124fP5EI1GMTs7i1wuh3fffRf7+/tIp9NIpVJjDe7Zy/Czzz7D4eGhyO0ISgCgVCrJYobalJlzTBn0s88+K06s7XZbjFSMYNdY20e2tNlsIh6PIxQKCZtGRovfyUgkAqfTiU6nI5b6ausI9RrQ5ERldFUWV73vOQaCNVU2S5aJbpQEcPV6XZwUS6US+v2+GCaxZk5l3UajB8216UzrdDrFNIl1o+xLx76VxWIRo9FIQBnZOl3XEY1GBUiGQiHYbDbps9bv98WMJBAIjIFt1hpzLsj6c1+0+6/VavD5fFL3yLFz0UUFaeVyWZhZzm+9Xkc8flQZRoDOZ5eu6/JZgk2O90nElwvA/eynxcBZYYUVVlhxXNTrdSwuLsLlcuHWrVvI5/PSLLhQKGB7e1sYDuCBC1kgEMDOzo6s/IbDYdRqNZEb0uyEtT3s43bnzh1kMhl0Oh1Eo1G8/PLL0DQNX3zxhcgrT506hYODA2SzWUxNTWFxcRGlUgnpdBp2ux3T09MiCxqNRrIKrmlHjmjlclkc2pjAEVjQAMDn8wkj0u/3US6X4fV6ZRV7f38f8/PzSCQSyOVyAji4j58njACASSaAh9grhtHUhJ9VWRDGJJmgGaAxvqeCFdUZUJUkcv7YHJ39/DweD/x+P9xut4BxgjmjhT6TekrX1OMbz5FMhM121DCdyTTd/vg5o9zObF+qlNLIrKnvGSWXRgbPDGyroGMSaFMBoq7rODg4wGg0wo0bN7C1tYWpqSksLy/jzp07AnbcbjdisRjm5uaws7ODra0tZDIZJBIJMTUZDAbY29vD9evXUSwW0W63pU2Aet3U87TZbJKkA0dM1NraGp599lkcHBzAZrPhk08+AQABcjw3M1aSxhe5XE4WS9jcmwwXmSgyR+12+yGgP4nh5k9V5qrKNFV5JZ9PlBsSIHIO6vU66vW6XDtKBMkmqQoCyiDVxQOCJZrGUEpOgAVA6oHj8Tjq9brIwgmsaCRis9mEnfT5fOIyORqNpG6Xi04Ei2TVyELSTISgsd/vi/EKjWU496FQCC6XC16vVxg09dnH60tg1263pYWBes+T1eRiAE1wCAafVHy5AJwwcFZYYYUVVlgxOVKpFIrFopgaLC0tIRKJoFKpSCKgaZqsMjMxvHnzpsiiEokE7t69C+DIKY01bWz8TYnmjRs30O12MTU1hVgshq9+9avI5XL44osv4Pf7sbq6CqfTiVu3bsFut2NlZQWhUAjFYhHdbhfz8/PCyrRaLbhcLkQiEWkGzSSIttputxudTkekfEz26vU6/H6/9MIiM8SWCHTRu337Nk6ePCnSTCaRxpqdR9WjGUGScftJYA0YN055lETSjFkybmMm9zPuS9d1RCIR9Ho9qX3hezRRCAQCiEajeOmll5DNZrG9vY12uy1OfCrDwnNgTU6/338IIKnnrOu6JIc0qKEBA/ensjMq8DQm/8a5MAt1Tsx+8h+Pq+5bHYPZsdRrMDs7C007comsVqsIhUJYXFzE0tIS0um0sC+sDYzFYtjY2MC9e/cwPT0tbTrIAhWLRaTTaWE0CW7I2Kg9/Nisms3tASCRSOD3f//3cfnyZbz55pu4desWfD4fqtXqGMgyzpN6/vPz87h165YYFBHMcTvKQ1WmzOzeMII4de7UMLuuqkFOIBCAy+VCrVYT5g6A1FxSFUCJNfCgpjKfz+Pw8BCxWAyJREJq2fj8IANdq9XE1AmAmDmRyaOZCQCx7AeOFAq8ZzqdDkKhEAaDAbxer8gxKYl0OBxjxk+sC+V3ghJmgtpYLIZSqYRqtSrvh8NhOTZZOb/fL30GCQJZz8ZrEAqFxMCG80e2nW0jKpWK1KlqmoZCoWD21fq1xJcKwJGDe5KaVCussMIKK/7bj1arhUqlgsFgIC55xWJR/mbSymaunU4HpVIJHo8HKysr0DRN2INwOCyru5FIBFNTU2i1Wtjd3ZWebDMzM1hcXEQgEMCVK1ewubmJRCKBCxcu4ODgQOrdlpeXkUqlcPfuXUl+4/G4yMJSqRTa7Tb29/dht9uxvLyML774AjbbURPvwWAgEibKotQEnH2O1JVjNuolSCsWi1hcXEQikZDVaK5CPw54M5PlmcnDVKZB/Zwax4FAJq/cpzHRNkoEzRgo/s2Ix+PSZJsJvzq2druNpaUlvP7661hfX8fW1hbC4fCYDTp7T3FuaX5iBAZmQTASiUSkNodzpCb/KoOmzqVaT8U5myQhNc6R8TqYMXdmoHESE8jxUJJmsx215Th79iycTiempqYwMzODTCaDTCYj50+Gp1arIZ/PAzhijrrdLkqlEur1OsrlMkqlkrgrqsYTZM6ZlM/MzIihhs/nw6uvvopQKIQbN25gd3dXwDoXacwWFdR7mUCI25GBUu9TMj7q9SBbzs+pbC+PrYIrzrPKWpMJMhsbj0nWsVariXySQIxjodST9yp7FLZaLYRCIUQiEWmKzWPwepXLZVQqFZFpz87OjklE1fMjyCMTx+tEExq6WzqdTqll5NyyfxvPR3XRbDQa8Pv9qFQqUrPscDiQSCQAQKTvdIvk8clyN5tN+P1+YeII8FnrzHniNWXTeQJh1W3zScWXCsBZDJwVVlhhhRWPE5lMBqPRSOow9vb2JHGsVqvwer1jzBZwZPgxNTWFdDqNarUq7mpMruPxODweD+7du4d6vS4J2fLyMubn51GtVvHhhx8CAC5cuIDTp0/j2rVruHnzJpLJJE6ePAmPx4MPPvgALpcLS0tLqNfrwhImk0kUi0Xs7OwgEAhgeXkZu7u74qSnmg0ADxI+NUFnbya32y1yIyZPZOY6nQ42NzexsLCAbDYrEiwj4FKD76sJJYMJGPAAhFESaVbTZnxdDQII1VTGKNczAjfjmI1sHLeh9Xi73R6rU1IdOIfDIa5cuQKv14vbt28jk8ngn//zf46PP/4YuVxOZF5MjCnzUo1LuC+j1JG/e71exGIx7O7ujp0HWVgzloxhZghzXDwO22M0y1C3mcSQqmBGXSiheYbNZkO/30cymcRHH32En/zkJ1hbW0MgEECr1ZL7jp8DIKYThUJB5JO0jqeV/GAwQK/XG0usY7GYLFDMz88DAP7sz/5MwBulyMb5NM4N5+LSpUvY2tqSBF6VOhJoUOZMMGncjnMAPHxvAg+AuCpdBR40nFeDdWA04uA5FItFYcJ4jbxer/TZ435sNhu63a7U6w0GAxQKBXGqJGjhQhYNSCqVipiFtNttkalSTq4CWYIxyksJQhuNhhyXzy+CZLJe3J/b7RanXT6nNU1DMplEPB4X06HhcCj1xwT0zWYTmqZJPaLNZpMxh8NhYXNHo5G4+7Kmz+v1Ip/PYzAYSDuMarWKSqWCVCr10L3/64ovF4DjLxaCs8IKK6yw4phwOp1YXFxEPp9HLpfD1NSUsE80q2D9SDAYlPYAd+7ckWSQ5iVMTiqVCnZ2dqRGigxANBpFPp/H/fv34ff7EY1GMRqN8NZbbyGTySCZTOL06dNot9u4f/8+kskkQqEQ2u02AGBqago+nw/3799Hu93Gs88+KwCCq9tcTXe5XHA6neJ2yGBiyMSE29HUgEkPnd3K5TKi0SgikYicI1ergYdBHJNStf7LLFRWYpKE0oxpM8akcRjjcRU5TLZZE2VknQCIpKxYLOK73/0ugAfMQblclhpHgjhayJNZMJ6LGRPo8/mQTCaRzWaFfTN+hp8jIDCrTVPBoXosNcxAmfHfJIBmdg5GUDcaHdnqU7LW6XQQDAYRDAZRrVZx+/Zt6Q929+5d1Ot1LC0tIZvNSuJPl0c2l2bD7Wq1ik6nA7/fj8uXL+Ozzz4DcMSQ0jDD7/fjqaeeQiQSQa1Wg8PhQCwWQ6FQkCbi7XZ7jNVSx86/eZ15rQOBgBj8qDb6wDjjSUkngb/6vhkjx/vQOBa+bmRbKaOkFJoAin3buPDE7zQXRmh+RDCo1smyL1q320WxWEQgEADwgAGl1JX74bxygYImH/y+DAYDMRMpl8vSC7BarYqxiFrTS9kpn2cAZLHJ7/eLOQnlqjx2pVIRibLKjnKxR71GnDv2uWMbGDJxlHG63W64XC6RVU5PT0uNXKvVQiwWEybxScSXC8DxprYQnBVWWGGFFcfE008/jY8++gilUgmnTp1Cr9dDOp2Gx+ORfkWj0Qizs7Pionbv3j1JSEKhEIbDoQC0nZ0dWaG12+0Ih8NSj7azs4NarYZYLIZ4PI5ut4vd3V30+31cvnwZy8vLODw8RLlcxvT0NIAHvZNYq8Zk98KFC8jlcrh9+zbC4TBSqZTUZRBsUQrK5NCYzLOWhUkRo9FoIBqNwu12o9/vY2dnB8vLy1KjxIQLMJczmh2L76nW5gxVaqUyDZMAA8Gf2raA+3wUcOTnzQCN+lNtmExpHqVbvV5P6rTU8/yX//Jfissh5aqsd2JDZ3V8RqBDds3v94uJDh0DvV4v6vW6jMkoT500X5OAl1H2OAl8mdWzTdqX8Ti8FzRNQ71eFzYxEolgbm4Ouq4jm83ik08+QSQSQSaTEUOYg4MDBINBMZ7gd8/j8YgMkq6CHo8Hly5dwtNPP43PPvtMGldr2pHz5dmzZ/FP/sk/wfb2NorFooAPXkP1PuICBUGVeo8Y3Rn7/b5Io4+r1TQ28SYwU18zss4MSggJEFRXSuO1Vz9LUMqG8WT61POo1+vwer1IJBJj9y0AAVYEqwCEkSaDBkAWfvj9IEPH+5aGKqxHI+gjYCOIHA6H4vRICSS3b7VaIm/XNE1MmOioy+tI10m1Px1ZRoI6Aj3W3dntdnleMvg9LxQKsNvt0geu2WwiEonI+TWbTTFIedQC0q8yvlwA7mc/rRI4K6ywwgorjou33noL/X4fKysrqFQqIteKRCKSONJeu9lsIp1Oi6U2kz06ne3u7iKXy2FmZgYA4Pf7xQRlc3MTLpcL586dg91uR7Vaxe7uLkKhENbW1uByufD555+j2WxibW1N5Fwqk5bNZhGPxxGNRpHNZnF4eIhEIoFYLIZMJoNSqSQyoHq9LvVXk5weKaVkg2omInRL9Pl8IksrlUpjzpePm7CoyayZUQPDWH+lJs0qkDAyImT7GEymjTVw6ngmjd3IgDBBZvIcjUbh8/mEaWs0GmNJM2VhPKaRgXgUeHM6ndKLMJ/PixSMCwF0uHxUDZ+ZLHRSGD9rBLRmr6ufPU5CSUAOHF2X+fl53LlzB/F4HJcuXUK5XMbOzg7u3r0rCTdldqrkbmZmRvoZ8vvG3mEED5cvXxbZqd/vR6vVQiQSweLiIv7BP/gHeO6557C9vY1wOCySVkos+bNSqYw5uKqsqzpHNBSanp7GnTt3hJ1Sg/ePWuepst9GIG48nvG6GBcL1G3VnoQqmOR9qko16cxIieNgMECtVkMwGBQmim6gfJ/On/wMGT2CIp/PJ2oFjs9ut0svQy4QVatVAcb8yd5xh4eHAI6MZSg95vHcbjeSyaS4Zfp8PlQqFVEwsCE5wSG/rwRifMZxvskCsyaO58FxO51OUT3QJZNgkOdNFpGg1Woj8EsKu+1nKxkjC8FZYYUVVlgxOcLhMDwejzRjjUQiIuMJh8MIBoMAgGKxKAxIMBhEq9WC3++XFVmycmz8evLkSWGwtra2JJnUdR25XA75fB5ra2twu93Y2tqSXlff+MY3kE6nUavVEI1GpRmuzWbDiRMnABzV7fV6PSwtLSEej+P+/fuo1WpIpVIol8vY39+XWhHack8Kgj2n0ym24nydkkzW0cRiMam/MrJlahjBkxFoGNk3o1yNwc9NOo56POCBwcqkYx8nI1THYhwXV/S9Xi9OnDiBhYUFbG9v44MPPkCj0ZCxEaipQXbHWIdoPE+afFy8eBFbW1soFApj4DWXyz10PkZgoBq4GOfGbF75u9l2k15X3zN7TR2fWg/JxYIXX3wR4XAY8XhctuM9qH4+EAiIbb0qP6U0lSwYjWPOnj2L73//+3A6nVhYWICu68hkMjhz5gyee+45qRnt9XrSVLrT6Ui9Y6FQQLVaBfBgUYBMFdk8ghTgCBxsb2+La6IxzAx1jIsXmqZJ82+Cc/XzDLVBtrov9T7QdX0MRPR6PVQqFanf4vVQ69y8Xq/UE9JCn99t7oNSzna7LeBOlXZy0YE1wHRZpcMk26jQAbPX64l80u12YzQ66rnmcrnETIRMGWvnaExCQ5J2u41YLAZdP2pOzt5vBGn9fl+OW61WRTaqaZo0ACfQbbVaAl65WMMFKrZIoKsw90/jFtbs8ZhPKr6UAG5kUXBWWGGFFVYcE6PRCNVqVfofMRkKBoPyn3m1WkW1WoXf7xc5XCQSQTAYRKlUkjqYcDgsrQPoVkbGgU2yd3d30e12sbKygkgkgs8++wy9Xg9TU1OYnZ3FJ598gm63i7m5ObhcLqmBOnXqlDR4JtDUdR3Xrl2D0+lEKpWSBNHj8WB2dhZ2ux03b95EuVx+SF6oJuhq/RwttoEjyVQ0GhVJGVey1X5SxibSas2JUVb2OBI8s3o4I2Awk19yOyOQMAKa48ZhNHrheZCRPDw8hN/vx/PPPz9mV86eVpSaqeNkMjhJ2kkZVzQaxdraGg4ODrCzszN2LurYjYzkowDWcQyccW7M4rj54j7UY0ya68FggMPDQ/zBH/wBer0ecrmcuB7SxZDbs/cXnVRZd0qnQtYUElitrKwgHo+j2WxicXERp0+fBvCg3UKz2cT6+jr29vakLoz1TGSX6SBJ51lKlymtIxNEtumpp57C1atXZdHDeF3UMJqb8B6nBT0ZctW0R5VUAg+kk0ZmTjUBUutBu92utF0gG8z7lOfj9/tlgYqyQNa38ZoQlPl8PpFiEtiRkVIBH+XkPB6fF7xurCfr9XpwOByoVqvCmtntdlE96LougLrVaqFWq0l7BBqTsJcmn0sOhwPlclmOTUk5x+z1ekXVwGd9OBxGvV4XkxOyj2rbh1AoJAtXdJKNRqNSD8lnwZOKLxWAc/wMwA0sBs4KK6ywwopjotFoIJlMIhKJyEow6ylY/8UaDrq7zczMwOPx4PDwELVaTZzcAoEAwuEwRqMRdnd3UalUcO7cOQSDQeTzeezs7CAWi2FpaQm9Xg8ff/wxgsEg5ufnUSqVcPXqVSwuLiKVSqHVamFzcxOpVAovvPACBoMB7ty5A+DIzGQwGCCfzyMQCCCVSskKO1fyi8Wi1JUYmRpgPNHu9XqoVqviPknwokpIq9Uq2u22JKF0vFNDlT9OMh85DsypTBITT7U9gFFeqW6ryjqNrJuRTVL/VoHQaDSSxNK4XwLdGzduoFAoCJsQiUTw8ssvY319HTdu3BiTUDIB5E8j2OE8xuNxhEIhfP7558IOmM2ZGioDM4k9M7vWk+bB+Hn1NRVUTLpuvFaT5lfTjtptuFwuzM/P4+OPP5aFEibUwWBQpKZMtgkGuG+6TDabTXi9Xrjdbly8eBHFYhFerxdnzpzByy+/jEQiIb3GWGdXq9XQbDYFwLGXXLVaFcmgx+MRxoWMF193Op1wuVxYWFhApVKRGi6j2YjZtTPWtREQqM6k/N6o11v9PjLIlKmukur+h8Oh9A3kAgRr2VjDR2aOTBUABINBkZCy/xuZJtb6qUwVpeacO7Jxo9FITEDy+bw42/LZ2u12kUgkpGUEv2MEy3Qs5bkXi0VMT09LU3tK18nY0c2SEk2Px4NqtSpyST7bVTMZANIyIBQKSf2cpmlyPWlqQykv6wRZn0dWmfP5pOJLBeAsCaUVVlhhhRWPE+fPn4fL5UKlUpGkijKbdDotbFqj0YDD4cDS0hJGoxHS6bSYKAQCgbFaDq7Irq6uSjuBfr+PU6dOwefzoVwuo1qtjkkk7XY7nnvuOfT7faTTabTbbVy6dAkLCws4PDzE/fv3paUAAaHL5UIikRApkN1ux87ODnK5HLLZrIAHggmjpEtNrlutlpgFMKGj7XYqlRqTR9HJjYnncQzNpGSeoQIz9XdK19T9qE5+xsTVDOQcxz6ZbcMVdiafauJMADYajXBwcCDOnUymyUowyX0U+8bPnjx5EvPz8/jss8/GWj9MAmHG83wU0FO3Mc6/0QhjEqtnJt00jsfsuOo2w+EQhUIBuVwOy8vLWF5eFuMSytB0XRezC4fDgUgkIokxGSNaydMV0Gaz4cyZM6jX6wiHw/jqV7+K6elpfP/738dwOESr1cJPfvIT3L17F41GA51OR/r7VSoVsYWnQ6LKJlFOqDI2gUAAzzzzDN5+++2HWgCoIIr3MgGAUdarWuir9XK8t40MnLpflYXjd5HHJlPOvm/8DIGNyl6qjB8dPtlXzePxSJ1Xt9uF2+1Gs9nEaDSS2jYqAhwOBwKBACKRiHxnm82mmM6QbWy1WtKrjbJwLjLRTIkgT3WVBB6YqvA9l8slbCFwpBbg/WFs/0FWV72OwWAQ9XpdmL9msykLN/V6XeTvlJwOh0P0ej2R3GuaJgwhP/Ok4ksF4By0+h1aAM4KK6ywworJEYvFkE6nkc/nRep4cHCAdDotjAAL/+kMWSqV0O12oWkaIpEIwuEwAMhq89TUFJaXl9HpdHDnzh00m02cOXMG0WgUuVxOmn4zOQqFQnC73fJ5r9crjXJ/8pOfYDQaYWFhAfPz8yKbtNvtWFlZkRXpVCqFP//zP8fOzo4U/7PHEZkeVSJoZOOGw6GwcEyQCGh2d3dx5swZkTJxeyPIMpM/MtTEXwUSk9gflXVT96v2N6N8TJWc8T2elxkLd9zxKZdk3Y16fsYx8N74wQ9+IABOlY3yb2PtG10l19bW8NJLL+H69esol8sig1NBtvF8HiVZVENlMo374ftmkkez+eP7RuZvEoA0vkd2+Pr16wgEApiampK2GOFwWMw2bDabvA9A2CAukLAG1e12Y3NzExcuXMD8/Dx++MMfwuPxYHl5GbVaTRL/Wq2Gg4MDNJtNVKtVNBoN1Go11Ot1tFotAReUTPOaklGk5I/X7fTp09jb28Pu7q40JjfOOc9XNXFRGUruiwCMbA77RarXzLjAod4fBJgqgHO5XNje3haDHbU+j6CRCxTAg/5rh4eH0ryb9v40RyHj6XA4pEk3TWe4f7LXbNhN2aWmafD7/cKAEXhzn1ww8fl8Ip1k+5J6vS79OR0OhxgrkTkjiFS//zwOj93tdsdAOhm2Wq0mgJ2tKTgffKby3NjLMxaLyQJSs9kUN9NWq2X1gftlhd1uMXBWWGGFFVY8Oj744AN0Oh0899xzcLvduH//PkqlkjSQ5Uqsz+dDNpuFpmkol8uIRCIivWk2m9jb2wMAnDhxAolEQvrKkVmLx+P47LPPsLe3h4sXL4rJAB0uC4UC3G63JLXNZhOff/45QqEQLly4AIfDgYODAzQaDczOzmJubg5er1cYsw8++ACapokbG6VHatNnru5PksGRnWB7BABibtDpdHDq1CncvHlTapFUySL3cRyIU0MFasdtwzDW1KkJLs+RSbPRddOMAeHvxm24Wk8gwX5WBG2sjzJjRlS208i+qVK6UCiElZUVXL58GVeuXMGNGzdMwZU6XlVeZzZ2s2tqnAMzsDdpPtRtjIzbJIbOuA/jdu12Gx999BFCoRCee+45sZKPxWJiuOFyuUS+zOQ9Go0iGAxid3cXgUAAp0+fFnDyG7/xG+KMODc3J7+zwTcdLWu1GhqNBnK5HNrtNrrdroAFMk4AxCSFLB/ZQS6KtFot7O7ujoEmhtHMxAja1L95nxC8qdsY59DIchKE8Lrwno9EIiiXy6jVarLwQHbNCB4pdRwOh6hUKqjVagiFQiITVIEiQRa/C5SX8hoQ9NHxkdJrstRstM5m2HTHHI1GMvfsq+b3+1Gr1ZDNZhEOh8VoRdd1eS6RlSUY5LjIEA6HQ2m9QCMV1quy7QFBeavVEsdJAHJuXKDjtSBYJ/hrtVpi7jI1NTXWhuXXHV8qAGfVwFlhhRVWWPE40el08PTTT0PXdXz88cey0sxG28FgEOFwGMViUViC6elpqXvb2tpCtVpFOBzG6uoq7HY7NjY2MBqNEI/HMT09jcFggL/4i79Au93G/Pw8Njc3oWkaUqkU7Hb7WD8mWlzTpXJxcRHlchnZbFYaHJ89exbD4VAcLN98802pewGAZDKJRqMBt9stib8qezQLJiu1Wk1qfWg3rus60uk03njjDQQCAVy7dg21Wg3AA6mjmsRPAnFm8r9JpiXHSTPNGCg1yVX3a8YQTQJF3DdrWwCIw57ad45jm3SO/Kkyckz4mUiWSiX81//6X4UpMtaPGX9X5+tR4M2MvVO3VcGqcX9m52NkT49jBI3HV69js9lEuVzGp59+isFggOXlZTSbTWiahrm5OWG2y+Uy4vG4sLxnzpwRYHHx4kUsLi7iypUr+OY3vyn1aPl8HlNTU7h79y6+973voVKpYDAYSDuCQqGAUqkkBjycSzJMBBpkY9xut7DYvD4ejwfD4RA7OztjzJC6aKCaiajskLq4wZ/8nHoNze5ZjpOLMHa7XSS+auPwWCyGa9euodPpCMDj+HiefJ0us3TWnZmZkWcfw+PxoNVqiUSckks6edIptNlsCggnkKPDJ8+X7BzbFhC8ApB6XoKnfr+P2dlZeL1ekbPTBZZmM3ze0WCEDbftdju63a7MMV02+b1ut9sIhUIy95w7SjBbrZaAN4fDIQCSC1m8R/v9PtrtNmZmZmTR7EnFlwrAPaiBe3KN9aywwgorrPhvP77yla9gfX0d6XRa/tNeXFwUWU8wGBTbf8qp3G43yuUycrkcnE4nVlZWMDU1hVarhTt37iAYDIrRycHBAT799FMEAgEsLCxgMBggGAwiEomILCgUCkmtXa1Ww/7+PqLRKFwuF0qlEg4PD6FpGs6fP49UKiXyn0wmgw8//FDqOaanp5FMJnHv3j1JLunox4bSx8kHgQcGCDQdIKCsVqu4e/cuXnjhBWQyGWlPoNarAA+bNqggR+3ZZpb4PyrMtjdj2oxsBbdTAYyR1ZgE4obDoUj2yMKYtQsw7sPIlKmy1larNebkaRyX2TmagTn190myxkkMpwqsjCDtuPMyOzfjOCa9puu6mJR8/vnnwlBrmiayYYfDgW63K1K2p59+Gk8//bS01pienhbjnvX1dUxPT+Pzzz8Xg5J3330X9+/fFwBeKBSkvyN7GKryRX6fWf+l67qAN84jwfdzzz2Hn/70p2NOhoB58211AYHfB03TxloUqHJgdfFDNQjiZ9TrRJBFYMZtP/nkE5RKpbE6MYZaIwdALPJtNhsSiYRIrdvttpg2kRHlvc590KnW5XKJVLJarYoLq9vtFmDo8XjQaDRk8SiTyQh4IrgcjUZjEkq2FKCxCPutVSoVMTthzzrKGFVDE15T3m9s3M06OH4H1fYC8XhcQCfPPx6PC9sWCASkrpCLCYuLiwgEAigWixYD98sKi4GzwgorrLDiceLq1avCgDmdTszMzMDr9SIUCgloAYD5+XlJOPb398XCenZ2VtoJ3L59GwsLC1haWkKtVsPt27eRyWRw7tw5+Hw+7O/vI5FICENGc4BEIgFd17G9vS393DqdjtR5TE9P48SJEyJnYg+tzz77DMViEZVKBWfOnEEwGMTh4SFCoRDm5uZEOlSpVGQlnwBkkqugrutot9vi+MZV+36/j7t37yKRSODpp59Gq9USFzmuTqtsgpqQAuZAwoy1U4GXGdib5Iiofk79R6BidLF8nCCI63a78Hq9YmDAOjlVIqkCQVU+qZ6rKmvjmFRW7VFM2KPCjJl7HGnjz3MMMybO7P1Jr2UyGZw/fx6apmF/fx+hUEgYkmg0ina7jWQyidHoyIlyenoa4XBYknfa/m9tbSGZTOL+/fv49NNP0e12sb6+jsPDQxQKBdRqNfnXbDZFEunxeAQ8sY1Bs9lEqVQak03yvqWxxaVLl1CpVJBOpxGPx6WeahKrzfuPzBnPXzXgITDkva5pmrCBnBN1AYLjsdvtUj9LMFkqlbC3tycunWQLAQgg5QIO5YqUiLMPJIEJn09er1eAKlk0Hj8SiQjr1Wq14Ha7hZWjkyrNocggEhzp+gP3UaMkU9M0qUk8PDyUdgDVahWapsHn8421maDSgJ/nubLmUtOOjGdYd0eQyvcGg4Gwvd1uF4FAQAAfAanT6USxWBRHz+FwiOXlZQHBNHB5UvGlAnCWC6UVVlhhhRWPE91uF36/H7quI5FIIBgMYnZ2FrlcTmyyHQ4H3G43ACCdTmMwGGBpaQkzMzMYDofY399HsVjEzMwMFhcXsbW1hZ2dHQwGA8zNzQEANjc3MTc3h2AwiHQ6DeCoHQCttg8PDxGNRgWcMSGKRCKYnp4WV7yVlRWUSiVcuXIF6+vr6Pf7uHTpEsrlMiqVCmZnZ1GpVKQInwkrmwWzd9YkBgd4ICliwsteUe12Gx9//DHeeOMNAXGUAFI6ZWS61DBzmzTWCTEmyQCNQFAFjtzWzGjDyHap+51U+8XX2ReLyRoTX7JFqoGJalqi/tM0bczMxGazwev1wm63I5lMYnt7+6HzVhNfdV7MrpkxJgF09RwfxYIa5+lRxzeymmbHowOrx+NBoVAQE41IJCJ1p7quS91pv99HtVpFOp0W2/+9vT1hQz7//HOpP63X66hWq6hUKqhUKuh0Omg2m9D1B02u1WbXdDmkzT5ZK96PfC0UCiGVSuGP/uiPpEaPTJgKwlVgZryHjPNkZKbVf5TjqXWVPAfWg1HmBxyBumKxiFqtJlJJnhNdFglWVDdNus0SzA4GA+mrFo/HoWmaGJUMh0N4vV6ZFzKZZOtbrRaSyaT0rUwkEtLKxOfzSf9MAlQuCnE+1f5rfr8f2WxWHCl5Tfr9PhqNBkKhEEajkTTpBo6e42zhwv2xvpGmJgR1nU5HlAVk2drttpwfgS6deWu1mtwTap0ya+fIwj2p+FIBOHGhtACcFVZYYYUVxwRXewOBAOLxOBqNBn7yk59A14/aCbDZbbfbRbFYhK7rWF1dxfz8PBqNhrQIWFxcRCgUwo0bN3BwcID5+XlxbLPZbDh79ixKpRI2Nzfh9XoxOzsLTdOQyWTQ6XSQSCTg9/vHaqUIGlkfcv78eZRKJbz77rvY29uD1+vFyZMnsb+/j6mpKayurqJYLMLj8eD06dO4devWQxJHJppGFkX9yQSRzXNpemCzHbUV+MlPfoLXX38dly5dwieffCI9l3RdF8bByHapDYdV8MZQa4L4OaMDJRmNSQYixvM0MnqTpICTZJTG8VFiRTMGGhuoxiacB5WdU8evSuqcTie+/vWvY2Nj4yEQyh5nr7zyCn76058in8+bjt2MWTPKIY1Ay0yOeRwDaLxPjMyiGYibFP1+H7u7u3juuefQarUQDocxHA6RTCZx4sQJ5PN56UVWKpVwcHAAr9eLW7duoVar4erVqwLeDg8Psbm5iVwuh+npaWQyGWxtbaFYLEodFGV8vG8IDlWr+fn5eQCQptJkgTTtqBbu+eefx1tvvYVms4l4PC4giBI8lWUmUOc2xwFeMoG8H7xer4ACbm+sUez3+1LHxr/z+Tzy+bzUfLG9Cc9brZ3jQovdbhfZIa38k8mk1LORiVcZS4JH7o9zpWlH5knFYlFMQ3gNNU2Tdg/qwgfHw8boPA7BKE1lGo0GAoGAPJN4XQgcuT8aGZE5c7vdoowg2CIwTiaTqFarcLvdKBaL6HQ6CAaDMheUtjcaDanR1PWjnnLJZFLqASnjVOWjTyK+XADuZy6Ug6FVA2eFFVZYYcXkYDNbp9OJW7duodFoIJFIiDtkJBKR3ko+nw+Li4uYnp7GwcEBbt26Jc2Dh8Mh7t27h1qthvPnz0uvo2g0ilAohEKhIPLHWCwGh8OBe/fuIRwOI5FIyCoz2bfRaCQJ0MLCAuLxOO7evYtbt25he3tbEpzt7W2cPHkSoVBI+slFIhHUajXEYjFhIZj8mDmsqUBHrdvpdrsigbLZbDIXmUwGV69exTe/+U0MBgN88sknIlNjPY4KtFTWSZUcGpNZdRs1jCDuODmkmvAaE+tJIE4FcMak2whYaFbR6/WkTstoF0/QZgRQ6nkvLS0JQC8Wiw9J7QaDARYWFrCwsGBqbPE4oR6T4NoIno2g1Qg2j9t2EkA8DsTp+pEhDt0l6/W6gJ7Lly+jUqng/fffR6VSwc7ODur1urQBoAEGjSwODg4ErNXrdbGeV11SWU81Go3QbDbRaDSEJeXCxMLCAg4ODqTWjACj1+vh9ddfx/3797G/vw+fz4dAICBSvH6/L+eqssgqGweMm5mQHeP4uGDDfaoOkKoBDv8m68doNptIp9PQdR3RaBSdTkdACFk19rIj+67WcPKaezyeMXdGLlSwR5sqK+Vnu90uRqMRwuGw9ESjQY8KyggYOX62IVBBmt/vx3A4RD6fl+cMQTiVA2zOzkbrnGuv1ystBXq9njCMdNbsdDrC8PF1r9cr+yI7R4komdl2uy3yTLvdjng8Dq/XK0DP6/VKT0HV/OXXHV8qAGfXrBo4K6ywwgorHh0EU+vr62i1WojFYggGg2MtAmq1mkgZHQ4Hbty4gXw+j2g0irm5OXQ6HRQKBei6jhMnToiVdiqVgq7ryGaz6Ha7CAaDUuezt7cn9tMulwvNZhN2u11AV6vVwvT0NBYXF3F4eIi33noLt2/fRrvdxvLysjATly5dkkR6eXkZ7XZ7LJmqVqsYDAaSiBgNFNRaLJXZIpigkQH7wzGB3NjYQDKZxPPPP492u42bN2+i2WyK69tx9VhGSaRqsKAmp2bM2KT9qFJKlfU7jlVTY5L0z+xzKkhjUmx0kVSlb+q4dV3H/Pw8Xn/9daytreEv//IvxdFTlVyyiXA+n0e3231oHn7eOE4GaQa4JrGV6r4eF8QZt6tUKvj000/x4osvIpVKyXegWCxibW1N5MAEZZSnkW0BjoBLPp9HpVKBx+MRhoVSQ4Ixsk69Xk/cAwlo3G43/H4/dnd3pR6OjNFwOMQrr7yCjY0NXLlyBXa7XVwXAYzJkoHxGjXjeasAXK2X43eJUr9arTZ2z3PO+L1jnRoAATjZbFZ6trEejGOkoYfqWGmz2eDz+TA3NydAhM8cmrkQyHBsHo8Hfr9/7F7ngs3s7CwymQx0/ch8pN/vC8gl48l6uGaziWazKZJ1Hp/v1et16b2pOkTabDZhujgmGrBEo9Gx7xqvU7lclto3mqhwUS2ZTEqTd8qYWevK5whr5HRdF9MpgjcA0tuO88ln7pOILxWAs9k02DSrBs4KK6ywworjw+12Y39/Hw6HA9FoFEtLSwiFQtB1Hevr63C73ZidncXKygrS6TTu3LmDdruNCxcuwOVyIZfLod/vw+l0IhAIYG9vT/obsZiftWz9fh/b29vo9XpYXFyUmpZ8Pg+Px4MTJ04gm80im83i5MmTmJqaQrPZxNWrV3H79m3EYjGkUins7e1hcXERp0+fxt27dxEIBLC6uirAye12w+v1IpvNistcuVyGrusiNVJX4IHxBtnAg4R9NBqJlNJmsyEcDktS/PHHHyORSOBrX/sams0m7t+/P7aKrfbFMjazZhiZCyNDpCb/6vvHSSlVuZwKriaBSrNjGbfh581YKTI6x0kH1c+wR2A4HEY0GhVArc653W7HzMzMmBuiCrYmMXLG19VzfBRTNgnEGq/bo6SBxnEYXx8MBlhfX8f58+fx+uuv4/z589jd3cXW1haCwSASiQTOnj2LaDSKzc1NrK+vCzhgA+lSqSSARQUmvD8IrtlKgNeH/cwIbIbDIUKhkIxhY2MDrVYLv/M7v4PRaISrV6+i3+8jHA5LzRhw5MRIQGM8Z8oNVTCvsmj8XrBOze/3m0on+Y+Oimo92mh01OeRsm6+R2MkXhOV+SKwowHJcDjE1NSUMPcEQKwlo5SUbpPAkeScQDgej6NSqYi0sl6vw+PxIJVKoV6vy8IDHVxVQBkOh5FOp0WaXSqVkEwm4fF4BLBzrihp5PhY50cDGsoqNe3ITbJcLsPj8aBarQpb5/P5UCqVpCaOtc80KtI0TUAhwavNZoPf70ckEoHf75fXuAhBp8x0Oi1s+pOILxWAA47q4CwGzgorrLDCiuPiiy++wHA4xNLSEiKRCGw2G/b29qTJ9qlTpzA9PY3bt29jb28PNpsNL7zwArrdLtLpNLrdLmZnZ9Fut1EoFBCPx+Hz+ZDL5XD79m0EAgGcPHkS5XJZ6jFOnjwpjFe9XkcikUAoFMLe3h5qtRqef/552Gw21Ot13Lp1C4eHh5ibmxOzi4sXL8LlcuH999/H4uIiVldXpamtx+NBs9nE7u4u4vE4pqamsL6+jtFohFAoJE1+6QCnOlIa5YLAg4RbdZPjPLXbbbz99tt444038PLLL6PX62FnZ+ehnkgq0DKTSALjIMEMyBk/p0opjYycUW5plDCq+ziOaVK340+zsasAyexzxv03Gg388R//8Vh9kjGGwyHee+89MbUwOnJOkoIaQdtx52qct0lsmhkDaTxnM3A46RhM9j/++GP87b/9t7GysgKn04kf/ehHuHv3Ls6cOYPFxUXU63WEw2E8/fTT6PV62N3dlabTrGFTDTp4L1N+rF4rLpbQwZGg4uzZs/j93/99NJtN/Kt/9a/gdrvx6quvwuFw4E/+5E/E3IL9APkd8Pl88p0AxuW6qquocfFAbdxNZkplXI0GOBwzG4+TnSqXy8hkMmJuxH3rui7AiZFMJkVyGIvFZKEnGAzKOXAO6V45GAzg9/ulcTZZsFwuh9FohGg0OmbLn8lkBJgR7JG9IztK8ExXR03T0Gq10O/3EYvFpBk3v7ccE2WR4XB4jLWjDJbzbrfbsbOzI9eW9v4ul0tkmjbbUQuBaDQqn2fzdx6PTpR0lySABI76QlIpwLposo5PKr50AM5u0ywGzgorrLDCimODDnipVArRaBS7u7uo1WqYnZ0VFuD69evY2dnB8vIylpaWUC6Xkc/nUa/XsbCwgEajgVKphHg8jlAoJKzc0tISer0e7t69C5fLhVAohOXlZXS7XVSrVQSDQayurmI4HOL+/fvweDz4xje+gUqlgo2NDZTLZRQKBSQSCUSjUfR6PTz77LNiwvD666+LBIwrygBQLpdx8uRJDIdD7O7ujrVFYALLInzggUzJ2FRYTchZR8IVcSZAtVoNP/jBD/B3/s7fwSuvvII333xT2gvwGKpEU61FUxNsJr1kCFVwpoIAFeyoIA54uOccj20ENZOkmeo4zMCO0WHTTB75qOC2Roml2XHa7fYYsDZjz8xYOaPJiHH7SWBW/X3SPBn3OwncmW1r3O7u3bv41//6X2NpaQkrKytIpVK4fv06Op0OTp8+jQsXLkgfMcqKaWyitgfgfikvJDBS2zXwviVzs7y8DJvNhm9961sAgH/37/4dSqUS/uAP/gCZTAZ/9Ed/hFqtJmYYdJ7kvUxQY1xAUIEcwYV6bYymJeFwGKVSCcAD90Nuy/OgnI9sfqPREFdOdYGC+yeDpI4BOGLCyJixVUC/34ff7xfHTbJrHo8H0WhUasempqZQKpXQ7/dlIYjsYKVSkR6Z7XYb7XZbTFTUdihs0k0ZIq9bOByW7zavIc+Xc+J0OqXdAQCRvKrAt16viwyUveFoVELZrKZp0oSdZif1el1YXC4uBINBxONxOV673RZgxwUCKhycTqc4oT6J+NIBOIdNw2BoATgrrLDCCismx4kTJxCNRhEMBrG1tYXhcIhnnnkGs7Oz6Ha7eP/997G7u4tnnnkGy8vLuH//vlhcLywsQNePrNFptb+/vw+n04np6WlpgE15zuzsLPx+P8rlsvScK5VKuH79Ok6ePIkXX3wR165dw1tvvQWXy4Xl5WWsrq6i0+kgEolA13Xs7u4iEAhgZWUFdrsd169fh91ux+zsLAAIa6E2Qw6FQpLcMPlkLRBXnY3AyIzBabVaArBYr8fjvPnmm/j2t7+NN954A2+//Tb29/fHakrUWjcVmBmPqwKMSWydGqpTJRMwtcaPMjKVEZnUUuBvwliZgTB1G7PjGH+aAUkV6BmBlAokVQBnNI1Rx2i270lMnVlMAnOTzssYZvM0HA7xzjvv4F/8i3+Bv//3/z6ee+45MRvZ29uD0+mUBvf379+Xe5UJtCoT7Ha7kmzb7XZMT0+LEQXHRBAXDocRCoWwv7+P7373u9jb20M0GsU/+2f/DB999BF+/OMfS1Lv9/sRCAQEUKg2/SpgAzC2UMF7zjgf6lhod68uZqgyQco06WZLJiubzQqTzm3ZCsDM8GQwGAgI9Xg8qNVq0vuSQJcAC4DU+vEYkUgEmUwG9Xodw+EQ2WwWAESmzeP0+32RcrIWlvND0xIaiNAYxe12y3k1m010Oh2EQiExJGELAkovdV0Xhk01VWk2mwgEAmLYRFk7f3LeWStI6Wy9XhcDE849W6fwnh2NRiKRLJfLMtdUIvC8n1R86QCc3a5h+IgHvxVWWGGFFf/LjunpaZRKJezv72MwGGBxcRGxWAyNRkPqS15++WWkUilsbGxgf39fVqd7vR7q9Tqi0Sj6/T4ODw/h9/ulpqXb7YpJChMHgr/z589L8+Fz587hwoUL+OCDD/DJJ5/Abrfj/PnzmJqawmg0QjweR6fTwfr6OpLJJBYWFtDv96WGZGpqSqz8Kbfr9XrSAsDv9yMajULTNHH9UxO94xgWYFyayML9UqkkLRg6nQ4ODg7wwx/+EN/5znfwxhtv4M///M+FiVQlY0ySVCbCKI3kuNQkjaDFyOapCbQaPEduRybCTK5oxmypv5sxkmbzM0lC+Kj5NTu22d/q68bPq9eRwE+V7006p0kgVQWGk943nrNZqCDT7Jy73S5+8IMfYDQa4dvf/jYuXbqE3d1dTE1NodPp4OrVq6jVaiiVSsjlcjg8PBQmmKwY67zU/msqwOE2BHilUgnb29tit//qq6/i8uXLePPNN/HRRx+J7b3P50MkEpE6O3XRgQBJZXoZvEeN7qcqiIhEImi1WpL4q9uS1el0OtJOpFqtotPpoFgsCmOnyjHV742u62LSQpasVCqhWq0iHA7LGCkrZC2erusIh8Pw+/0icQyFQrh3756Mm/3VOF46SRJU+/1+aJomTrdq43GHw4GVlRV0u11h57LZrNSpRSIRlMtlAek0ISFbSTmxsS8iZa61Wk2afHs8HrRarTHmlG6ZjUYD4XAY+XxeFtfYBJwLU6y5pPTTbrePtVxwu93iovrqq69iaWnp2O/BrzK+dADOYdOsGjgrrLDCCiuOjbt376JSqWBhYQGLi4sAjvpLUba0vLwMAPjss8+Qy+UwPz+PwWCAer0uTpX5fB4OhwNzc3OIRCKSYPl8PoRCIUkEvF4vkskkwuEwyuUyDg4OcOHCBSwuLuK9997DO++8A6fTiddee22sJ1ypVEI+n8epU6cQiUSwv7+PZrOJaDQKu92OfD6Pfr+PRCIhRfWzs7MoFAqSZJB9Y0KnslTHmYOoTA8Aaalgt9tRKBQAQOpm9vf38dZbb+GNN97Ab//2b+Pdd9/F1taWJHOsT1KdMFUQp0rSuNrOMQDmzalV1k1lq4yGJmpyzH3xc2Zg5TiWSn1f/Vt97ThgMwkITtqv8XOPek0FZ5NAoDHMWDqzn2ZjngQy1d+P+3yj0cA777wDh8OBcrmM1dVVpNNpJBIJfP3rX8c777yDO3fuIJfLoVqtPlQPSNkgJXIEMDQy4UJAt9sV0GS327GwsIC/+3f/Lm7fvo1//+//PXZ2duRe4eIEgYMqw1SPT3kfjWxUO3lV3sn7jy6J7XZbGsCrEku1Lo7HLBaL6PV6qFarKBQKwrSRYeJ3h98xVS7qcrlQqVSg6zpCoZA4L3Y6HQE3bIzNFgJshO7xeLC7uyvNtgmuOE7gAQPe6XTgcrng8XiEvQQeGLqQFeWzsd/vo9lsot1uSz+1TqcjrVMAoNVqAYCAMT63SqUSPB6PSD6DwSDy+TxKpRKCwaC4XNINk2AfgDQrr1arqFarY8Y0lMuSYeO1ZaPyer0utXFk+yhTn5qaeug78OuKLx2As2rgrLDCCiuseFTkcjmsra3h/PnzGA6H+Oijj9BqtbCwsCDGIpVKBcFgUOpGWq2WmIWUy2W43W6cPHkSPp8Ph4eH4nYWiUQEKMRiMczNzaHZbKJQKGAwGODy5csIBoP44z/+Y1y5cgXnzp3Diy++CLvdjlarhVqthsPDQ7hcLqytrWEwGOCzzz4TQ5Ner4d2uy3W29VqFSsrK4jFYtjZ2YHP55P+b36/X5Jct9stRgcq4GACSJYMMJfI9ft9qYGhy6Xb7Uav18O9e/dgs9nwne98B7/5m7+JH/zgB9jf3xfTCWMdmXpsIzvG8ajH5+9GZg4wN0jhtmpzZQbB5CSWTGVP1LngscyYLbOYJJOcFMcxb8e9dpwcU93mcV6btI1xe3WOJoHPR527rusolUr4wQ9+IPI3l8uFe/fuwe12Y25uDvF4HD/96U/HGGb13nQ4HFhaWoLL5UIsFkMsFsOHH36IbDYrjE04HBYp83e+8x3E43H85//8n6VJuLov9m/k/aMCJJUdVlli432t3o8EYwRPrO1SZaAEjmTS/H6/gJx6vY7Dw8OxujdVIqlKOrnP0WiEarUq9W0EflycIrghwCG7ZLfb0W63kcvlAByBsEqlgkAgINJCr9cr5h5kK9kwezAYwOv1wuv1isQwEomgUqmI8QnbrgyHQ+n7ls/nZT/Ag/55jUYDoVAITqdTerOxDUAoFEKpVJLrSnMTBpk9ytlZU0m3Tj4XPB4PwuGwzAkXALioQDBpsx25VKbTaQQCAczNzSGbzeJ73/ue1FP+uuNLB+AsF0orrLDCCiseFRcuXMDZs2eRzWaRy+Wg6zouXLgw1sx3cXERLpcLh4eHsNlsAuSGwyHm5+cRjUbFGr3T6WBmZkYsrm02GzweD+LxOHK5HPL5PMLhMM6cOYPRaIT/8l/+C27evInf+I3fwPnz56FpGvL5vKwQJ5NJpFIpkV9Go1Ep1AeOEhRKklZWVlCr1XD37l0AwNzcnIC9W7duCfvA1WUmlQBkJd/IPDGMgIJGLEzg2eR2MBjg3r17ePPNN/H666/jjTfewI9+9CNsbGwAgCRtarLJhNUIGs3qv45jr4xgzyivNDoEGhPeSeeuxiTANAkEmo2Trx0nuZy0r0cBsEeBw+OOPen9SWF2XOPvP88+q9Uq3nrrLei6jt/8zd+Epmm4desWyuUyvF4vYrEYnnvuOWxsbCCTyaDVaglw8fv9CIfDcLlcsnDidDqRSqUkof/a174Gj8eDQCCAW7du4dq1azg4OHioXjIUCiEUCo01zTYyTqo5yCTW1ex+ZL2pEQgCD/q9UdLI72uz2UQ2m0Wz2RwDfKwRo7SP9zJBIE2LOFa1RpBukPwONJtNAcZkx+bm5jAcDlGtVsUpl4wmP9vpdEQm3mw2AUCUCQSMwBGr1+v1EAgEUK/X0Ww24Xa7pY6MAJr7BjDGVAJH0lc+K9i2heoHtuOg2QjnnQ3KKf2mwYl6zdik2+PxiKSSplBsJs46OK/Xi0qlAofDgUAgIItxlJI+ifjSATiLgbPCCiussOJRceLECWxsbKDdbkPXdZw9e1ZqKbrdrkhjisWiyHNyuRwcDgdisRj8fj9KpRJarRY6nQ4CgQB6vR7K5TJ8Ph/8fj+SySSy2SxGoxEWFhYwOzuLe/fu4S/+4i/gcDjwt/7W3xKL683NTVn5vnTpEkKhEPL5PIrFImZnZ9FqtZDL5SSBodX39PQ09vf38f7772NtbQ3PPfccms0mBoMBisUiFhcXUalUJOHl6rau68IGABiz5WaoDbHVWis6U3J/TL56vR4+++wz9Ho9fOtb38LLL7+M0WiE3d1dtNttAYsqO6Eek0ka4ziGbJJ0UgUXKpBTQZzxmMdJJieFmggaWx8cB/CM7/08x3wcQHjcWM32M4m9O44JPO49MzCpvjdprO12G3/2Z3+Gg4MD/MN/+A/xwgsv4ObNm7h9+zZu3rwpgOeZZ57B1taW1IH+xm/8Bl588UVsb29jY2MDhUJB5Ixzc3NS67W7u4tPPvkEhUJBrOFVMM+mzbyf+Y/74kKDynKpEl1jTSmZO9aY0RKfr/N3Mj8EJ7TyVxuWq99dHqPZbMq+6R5Jhp0sGXu58TxY0wVAAFWn00EymcTBwQGKxSIikQimpqZkvGw/MBgMUKvVRHbp8XhEQqrrOnw+H2ZmZlCv18VEqVQqSSPser2OdrstAJmyydFohHA4PCaXpMEIWTMA4mSpGjMFg0FxiOT17PV6wriSrS0WizIfnEuXy4VEIiFSST6fqGpg+wZeHxpW+Xw+YUeDwaCM70nElw7AWTVwVlhhhRVWPCq++OILDAYDOBwOzMzMIJPJSJPlZDIpNRtMiPb39xEKhZBKpXBwcIB6vS62/gsLC8jlcrJtKBSC3+/H+vo6dF3H6uoqFhYW8Nd//de4cuUKpqence7cOVkhZkF/NBrFuXPn4PP5sL29jVqthtXVVXS7XfR6PSSTSQEqlBbt7++jXq/jtddew/z8PG7dugUAIt9krYnX6xU3SbpRMrFjEk/JodGEwcgo6LouEiomr8lkEg6HA71eD3fu3IHD4cCrr76Kb3/723jvvfdw8+ZNAJAEyiibZGJqZm5iBGIMlcHg+M1aEBh/8thGUGc2nuMYq0ms3SRAdJw08XHklZO2PQ5Y8f1JUsjjPmcMdV4nsX6PM4bjzvfatWu4f/8+lpaW8J3vfAf/6B/9I/z4xz9GOp2Gruu4fPkyHA6HADG2H3j++edx48YNYewoWT48PMT+/j6q1aok5eoYbTabmP2wXpRBtonfFXXMas2mCq7U+894rxEMqvc0TTO4f/ZEo2mJagrC/RM0GU2CWq2WNMhW6/bIvKnNuwnWisWiMGjxeBzBYFDYShqUdLtdATj83icSCWEK+RypVCoCvmq1mrh41ut1AJDaO8o6g8Gg1OBp2pEBSj6fx8zMjMg3CYLdbrf0lguHw2IuQvMSAMIKEgQDELUA6yI5/unpaQFnzWZTGFib7ajNAEGm1+sVp0vWv7EOmvWCTyq+dADuiIGzXCitsMIKK6yYHIPBAKurq7Db7djb20OhUEAsFoPP58Pm5iYCgYAU57daLUxNTWF+fl6Ans/nQyqVQiQSwfb2Nvr9Pk6fPi29je7cuYNgMIizZ8/CZrPhD//wD7G9vY3nnntOwE6/30elUsFwOEQ8HsfS0hKazSZ++tOfwul0Ym1tTWp5wuGwMGbhcBj1eh3FYhGxWAynT5+Gpmn44Q9/iF6vh7W1NZF+apom5+lwOMRhU008CdqYlKsslWp4Aown4q1Wawz8xWIx6dF069YtDAYD/M7v/A7eeOMN2Gy2MTmnGdsGQCRhKmg0kxfydSZqZkmzERQSoKrJOFkUNcyAjQo6jIBWfe84OeXjgMJHxXHbG1nESSBWPaefN45jE9UxGH83xnGS0EajgZs3b+LWrVtIpVJ46qmnsLy8jHa7jc8//xwOhwPPP/88isUiPB4PbDYbPvnkEzSbTRwcHCCTyciiB2vnjNeKQCIQCAgDRGClMm+qHJCfVxcKVFmurutjLJ16/6nMGyWalO2x9ms0GqFYLCKfzyOXy4l00u12CwBUQSI/SwkkQRCt+zleu90u7p6RSATAEYOXy+Wk7haA1PsS6NARU9OOpKper1dq5gigWS9IG38yfgREmUxG5oM1eWwP4HK5BDyylpY93ChP5PeWnwUegF46SLbbbZE60nDF5XIJw8hrwHtgdnZWzG16vZ40Gq/VaohEIqIm4PicTiei0ajUaVLiSWOaJxVfSgBn9YGzwgorrLDiuDhz5gza7TY2NzfR6/UwMzMjNRlerxezs7Oo1WoimQyHw9jb20Oz2UQsFpMCfDavnpmZkf5O2WwWs7OzOHfuHA4ODvDXf/3XaLfbePnll0V2xMTG5/NJi4AvvvgCzWYToVBIEil11b5SqSAWiwkDtri4KO6XmUwG8XgcCwsLGI1Gwv7xXHq9HtLptJgVEPyopiZMQAmCVBmiGaOgaZpIUPl+KpWSBIhy0ddffx3f+MY34PP58Pnnn0tiZUzu1Xo4s1ABp1oTZGQJzVoHqPs1AjD1b2M9oPH46nuPYqAepxbMDDwagdFxoPC4fanbHAfWjtvP44Cw445jnLPj9sP7Tf2ZzWaRyWTGpI202KfTIa+F2tNMldWp56HeN36/H7FYbKxfmCqfVJvRq+epLjyooF5t4M3PqTJN9T2y1fxMt9tFpVJBoVAQ8Ka6qapSTrUnIwEmgYTP55M6Xsoc/X4/Wq0WAoGAuF02m02x4CdACwaDcDgc0veNNV+0+2fjb46HBkmDwUD6pannRwBK8EXQpGmaODzyutIgKh6PC1vKRSfWJOu6Lsygph3VuXE7gio+Myl35zUg6FtcXBQjKhW8sYaOr/l8PmSzWQyHQ1kwY4uDWq2GeDw+Vv/3JOJLB+CcdptVA2eFFVZYYcWx0e12USgUpBaiUqkgl8uJnGp3dxdOpxPBYBDtdht37tyRfnFra2uo1WooFAoIBAJYWloS17R8Po+VlRXMzc3h6tWrWF9fRzgcxvPPPy/giX2emPz5/X7cv38fpVIJ0WhUVqEpp2JSFovFJFGhpIe9spxOJ2ZnZ1EqlXD//n1EIhFJmmKxGIrForQWYA0HV+0B8wRfTUKNiSuDjYbVBJ2ucL1eDzdv3kSz2cRv/dZv4etf/zpCoRCuXr2KXC4nq+NmgMUMmKlhZMfMnCjVVgLcJxNzs32qNU3GhP84KaQR5Jht+/MAqMcBb8a5MAMq6nEnjdkMXJmdj9n8G5k2AmB1G7PjqWG03GcY6xspL6TVu9m9YwyzeSUDFgwGEY1GxxgjlYGbBKzV4BhVxo7bqu6nBIy8/zRNE4aLIIzPjlwuh0ajIVJj43dP1/WxBtcERADGngmsieMzgA6TBDK1Wg3dbleAyezsLKanp9HpdNBut9FoNKS9AIGU1+tFu90W8EapImvLWM/L8RMY0+2R8kQCJrKeAIS9293dhcPhwPT0NHRdlxozm+2oDQpBH+WUABCNRtHpdARws4ebag5Dt0r2oQOOnruqLJMOlzQpqVarmJ6eloUu9vnkdWAd35OKXwjAaZq2DaAOYAhgoOv6VzRNiwH4nwEsA9gG8L/Wdb38iw3z8cNu1cBZYYUVVljxiNjY2EA8Hkc8HsedO3fQ7/cRi8UQCoVweHgIn8+HaDSKZrMplv5nzpzB9PQ07t69i3Q6jZmZGSwuLmI0GmFnZweDwQBPP/003G43fvSjH2EwGODkyZOyos4eb0xCpqenkclksL+/D03TcObMGVQqFWlIy4RsNBpJcX2r1YLf74fP50O1WkWv18PU1JSMO5vNIhgMyqp3JBJBNpsV+RT7FxFEMghqaPnPZBMYNzABxqWJTDBbrdZYXVAymRQTgvv376Pf7+M3f/M3cfnyZYTDYbzzzjs4ODgQa3UAD4E2HsOM8WAwyTUDDmRyjC0DVMBndBk0O4YR7Kj7n8TCTXrPeB7G/Zlt8/PEcYDcCHrNtjOCwUnbMDHntQPM+/WZ/X3cuB43HsXqmUk5yfyEQiFhm9R5MLJvZudsDNVNkkFTEpUxpPsjARgbXQNHzcfz+Tzy+fyYWyLBnsq+6bouYIg92Nh6gHVoBHd+vx+dTkfqvmKxmHxuMBigVCohFothYWEBwWAQ5XIZ/X4fvV4PXq93zBWSrB2ljQTRmqaNMXAEjGyS7fF4pNat0+mIw2M4HJYaOzpgbm1tybNtYWEB9Xod5XIZDocDs7OzKJfLUgPY7/exsLCAWq2GRqOBcrks86vKU4GjZ1symZT2KuyVx/fITGazWXi9XuRyObRaLSQSCTFPYWsHTdPg8/lQqVTGnDOfRPwyGLhv6LpeUP7+HwD8UNf1/0nTtP/hZ3//n38Jx3mscFgulFZYYYUVVjwiCN5++MMfolAo4MUXX0QqlcL9+/dFKlOv11EqleDz+XDmzBkMh0O8//77KBQKOHPmDBYWFpDP53F4eIiZmRmcPn0a+XweV69exfLyMmZnZ5HL5RAIBFCtVhEMBpHJZNDv9zE/P49yuYxMJoOlpSX4/X70+30xEtA0TXonOZ1OqZUjs8aak0QiAQBIp9MC/vgZl8uFra0t6LqO6elpAY+qBI2JIhMylf1SpVtGQEK2RQUrrKVhgpVKpYQx3N3dxZ/+6Z/iW9/6Fs6dO4dQKIQf//jH2NjYkNYMqimDysAYw2hqoia5KmOhMm8q66bK2dSf6v7U8zKybEbA9bhMmRqPAi2PAkJmob6vglEVwJjt4zigdtxxHrW9GTv5qH2ZzbPZPh8n1H3ThZFNusm8mY1fvQ+5SKECPFrqm90PvA9piEL2i3+rDbF1XZe+a+l0Go1GQ+q5+FmOk0wPjUB6vZ6AJp/PB6fTKeMi81StVoW5Yj1ZJpMR90Vd1zE7O4vFxUVsbW2hUChA0zQEAgH5/rvdbsRiMXS7XWmeDUCcKYEjJosLTTQ1sdvtCIfD0ostl8tJuxFKFGmM0uv1UCwWARy1IpiamoLb7Ybf78f+/j6i0SjK5SMeiH3lIpEI2u02Op2OyC/ZXmIwGCASicDj8aBWq8mYK5UKvF6vXGPWEOq6LuMj8GTfO6odGo0GbDabSDx1XZd5eVLxq5BQfgfAqz/7/f8L4Mf4NQK4IwbOMjGxwgorrLBicni9XvzgBz9Aq9XCSy+9hEgkglu3bsHtdiMejyOdTsPj8WB2dhYzMzMolUooFosYjUa4dOkSgsEgstksWq0WTp48iVAohO3tbezu7uLcuXOSPAQCAUnednZ24HK5kEwmkc/nkc1msbq6KkYE8XhcpJh2ux2zs7PQdR2bm5uw2+1IpVKy+k3rc8p4SqUSarWaNBKv1+v4y7/8S9jtdly8eBHtdhs+n28sqaJZAGVYZN0IgOhiZwYkjJI9Bpk4RiqVgt/vlyTtL//yL9FsNvGVr3wFv/Vbv4V33nkHd+/eFWdMNcEFMDYOI6ibxH4B4y0QzECcpmkCUAeDwUO1d6p081FA7Rdhzozz9zjs3aR9qJ8xGncY5Ywqi2oc8yTAZRynkaUynoPZvh7FyP08bNxx4FC9Dyj/8/l8Iq1T5ZkEHCpzNmlMKsNjbBBP0EW7fkqmyZIZmeROp4NMJoN0Oi2yZuM9zvufJh+UVqq1Z3wmqK0C6Lo4PT0tjFytVkMul0OtVkOxWMTc3ByCwSByuZzIsB0OB3w+HzqdjsgGycr7fL6xuj0amLBOTXWE9Pv9AI4MadiLjfV6fDayVcBwOJRnUyAQwHA4xPr6OqanpzEzM4N8Pg+n04lwOCzyUE3TUCwWpYVCoVAQN8lkMolgMIhSqQSXyyUOvF6vF7quy/nx2mQyGbhcLnmWqo3ICWY1TZOxUhFBhu9JxS8K4HQAP9A0TQfw/9Z1/d8CSOm6ngYAXdfTmqZNmX1Q07R/DOAfA8Di4uIvOIwH4bBr6PYtAGeFFVZYYcXk+E//6T9B0zRcuHABtVoN+/v7SCQSGA6H2N7eRjQaxYkTJ+Dz+VAul6Uo/plnnkGr1UK5XIbNZsPJkyfF1nwwGODs2bNjtRQ+nw/FYhHlchmrq6vo9XrY3d3FYDDAxYsXUa1WUSwWkUqlYLPZUC6XEQgEpBfT9evX4XK5sLi4KCvBKiDp9/vIZrOoVqsIhUKyQl0ul3HhwgXZV7lcRq/Xw2g0EpOCWq0mciq73S6r+MADFozOlypzBZhb5TNobEKGL5VKIRwOo9PpoFgs4q/+6q9QqVTw4osv4tvf/jZmZ2fx0UcfoVAooNvtjrliGpkOtaZNTcLN+sepUklVTslt1DYEKuvCY6iAzwhk1eMY50E9/qOAmBGAPI78cBKINHt/kvzT7Hhm+zoOtBprDh8Fdo9j1iaNxbj9JNBmnCfK25jA06xCrVcjEFEdIgn8J4E4IxunhsvlEvkygQaBIe8p1mOxzUE6nUar1RL2Wj0XHsfYB44giXJFOjASgBFoJBIJRKNRAIDH4xHmqFKpIJFIiAlIPp+X1iRswdDv95FIJOByuUSFwLERwLCPWzAYRKVSGWPDKRXt9/tj9wrNS/hsITgMBoNjEs92u41Wq4VsNius3d7eHsLh8Jjck+DMZjtqBxGPx+F0OpFOp6WeuNlsikEVZaVkIOnyS8BH9072muNnaXzSbrcRiURETjo9PW16z/464hcFcC/pun74M5D2lqZpdx73gz8De/8WAL7yla/80jSPdpsNg5H5qpAVVlhhhRVWAEeNvO12OxqNBprNpjg1DgYDnD59GrFYDMBRb6FCoYCFhQXMzc0hk8lge3sb8/PzWFhYgK7rYs0fiUTQarWk71q328UXX3wBv9+PxcVF7O/v45NPPsHKyoq0F3C5XEilUiJhnJqagtfrRaFQwNbWlqyga5om9S1sJgscNRpvt9uIxWLS4200GiEajUqTXJfLhUAgIE2BydLZ7XZpfKzapQ8GAzGMAB4kkmoiNgmkMNFlzy3gqM4kFovh5MmTKBaLyGQyeP/991EsFvH666/j8uXL8Pl8+Pjjj7G/vy+1Jjy+GdPD46q1bKqD5KO2N74GPGDdOA88X3WfKkNiVmfF3ye9xniUtNA47sdh5I5jJCe9bxyL8XyMMtJf5PiPG2Yg0wz8GV9XJYtOp1NqSclAqaDL6Aqpuk4+zvjV13k8v98PXT8y3giFQnjqqafQ7/fx2WefyXi73a48U1hrRWMM4/55/6nmO6w7ZB2X2kaDxyDjPxqNxmq0KKlUWwK02210u134fD6ROBK0hEIhAEAsFhMJYTgcFlDJfmkApKaPiyHdbhdut1tAJ2XddHnUdR2lUkmYxFAoNAZc4/G4ACqbzYZMJiPGLKVSSRadaHLidDqlBcDBwQFCoRBCoRCazaYAVafTKQCRcvLhcAi/3y8LYMFgEOl0Gna7Hd1uV/rUsYUApeiUk/48TPkvO34hAKfr+uHPfuY0TftjAF8FkNU0beZn7NsMgNwvYZyPHVYNnBVWWGGFFY8KJhehUAjhcFhq1VZXV6XQnv9WV1eRSCRw69Yt7O/v48yZM1hZWcFwOEQ+n4eu6yJn7HQ6aDQaKBQKODg4wPz8PDweD9577z0Ui0V87WtfQyqVEufGqakptFotkUK1Wi0UCgW0Wi2sra1hY2MDvV4PzzzzjKweb21tIRKJyOp2OBwWOQ9d5gDIivbGxgbq9bo08SWruL29jWazOdaXihb9Zn3YzGSFZuCN73e7XenLdO/ePayuruKll17Cm2++iZ2dHVy/fh3FYhGvvPIKLl68iLm5OfzkJz/B3bt3xUpctVJXWQi1Vo3HNIIzhhHkqftTQRyTT7VXnDon6n7Nzn9S/E2BzeOCvJ8nzECnGcgzSgMftU/jtpPA7XHvTQJuk46vgjAyXSp4I4BTDUNU1o2Ag8yYeg7HATcCPsob+XutVoPNdtTk+vd///cRj8fxp3/6pwK+ut2u9F/L5/PC6EyaB9Whk8wbx0zgFA6H5Xc6PNbrdcTjcWGfer2euM6Gw2GRkrZaLak9o7ywXq9jcXERnU4Hh4eHY+6Rbrdbni/9fl+k35VKRQxK2AA7GAyKGoCtB/jMGwwGUtPLhS9KGHX9qI4wn89D0x4YhvC65fN5AV2lUkme44FAAHa7Hfl8Hj6fT2qY1UbpPIbP58Ph4SHC4TAWFhaQyWQE/FWr1TGJLUHyYDDA1NQUXC6X1Muxh+iTir8xgNM0zQ/Aput6/We/vwHg/w7gTwH8AYD/6Wc//+SXMdDHDcuF0gorrLDCikeFzWbDzMwM7HY7KpUKgsGg9AiivXa/38fy8jIcDgeuXr2KarWK5557DlNTUygUCsJ22Ww26ZWkaZpYbZ86dQoAcOfOHdhsNnzzm9+EpmmoVquIRCIIhUJi161pGtLpNAKBADweD0KhEDweD+bn5+FyuRCLxZDNZvHFF19gYWFBGDgCOcqZmGgFg0EBQMARYJ2fnxcJJVeZ6TbHlXijAyRg3vvKCGQmJd+DwQC1Wg26rktNnsfjkeTy8PAQ3//+99FoNPD888/jm9/8JqLRKK5evYpisSjJk2qsosofjbVexlCTYYbRfZIJu/o6X2OSqSbSj5I1mv2ughEzNm5SmEkSj2PD1PE8jtxw0jGPA23G943bmv1txpZN+v1xWQ0uOqh1bJRNknVTFyeMUkmVcVb3p46BdW7q9VNZPIIqfj8oZ6zX67h+/To2Nzdhsx31P2s0Gkin0yiVSsK8GUEqf1f/qf3uCNYokeT9S5mh1+tFLBbD4uKi1NmSuWc9qtPpRCaTkX5mZKc0TRPZeK1WG/vusiUBF4fIppEVpLkK7fzZAoXb0nDE6/Wi0WgI+0fDJn6GJiG8PmThyIJxnlqtltSysd4um83C6XQiEAiI8yb7xAFHLGE4HEa5XBYWsFaribS21WrJHPOZwzYPPD9K6V0ulywyPan4RRi4FIA//tlkOgB8V9f1v9I07SqAP9Q07R8B2AXwe7/4MB8/jhg4qwbOCiussMKKyTE3Nwe3241CoYBYLIb5+XkMBgMp3vd4PFhdXUW73cbt27fh9Xpx/vx5OBwO7O3tjUkZaTNdr9dRq9UQjUaRSCRQLBaRz+eRSqVEoqnrOkKhEGw2GwqFAkKhkIAUyiXz+Tx6vZ6YCAQCAVy5cgX7+/uYnZ2VpCEej4skSK27A44SHE3T4HQ6hYljn6bt7W3MzMwgFAoJS8bkiKv+LpdL6ljMQJoRTJDFMpPcsd5ua2sLf/iHfyhOmwSZ5XIZb775Jg4ODvDqq6/ilVdeQSqVwvvvv4/d3V2ROqlJMsegmpMAD7ciMBu7ymyorJ3KzPEzKvBTWRrjPBj/Nr5uBvSOe28SKHqUnPJR7x0Hds2OZcacGQGZcX9q3aIR/BqPY8Z2GV83O5YKpgjeCNrUWjfVnIbXnWwM2VYVGKnMqxqqKQ7D7XYLWHC73eK+enh4iO9+97twu93SXLxWq+Hw8BDFYhGtVmtMYjzpeBwP903Gi/3LWD9ms9ng8/lE4phIJFAqlaSnHA2RuE8ai3AxiTLrlZUVxONx7O7uol6vi6slQRbZPT6/SqUSkskk2u22OGK2221ZnGHfOLZN4VwRCFKCqOs6+v2+uE3SmGRvb0/qiMvlMjRNg9vtlj5vqglKo9GQtik0j1Jl391uV1oT2Gw2pFIpFItF2Gw2TE1NCSPK5ue9Xg9Op3PsuVitVtHpdBAIBMZazTyp+BsDOF3XNwFcNHm9COA3f5FB/SJhMXBWWGGFFVY8KkajEarVKpLJJBKJBAqFgiQOanPvQqGA2dlZcW5sNpsIBoMIhUKo1+sifywUCrDZbIhEInC73ahWq2g2m1heXhZHOpfLJa5utLrudrtSw0aXtUKhgHg8LvKoW7duodVqYWlpCW63W8AnGSwW88/MzCCdTmNqakoSFZWVY0K3tLQkzm3pdBoHBweyks72AqojJDC5Dk59fxILxfmmKUGr1UIkEkE0GkUsFoOmaeh2u7h27RpKpRJee+01nDt3DtPT0/jpT3+KL774Qur3mLSqQIQr5mbjMIbqHGgGyIxySzWhnyQ35O/HgatHyQyNr08KM6bzUWG2zaPGOQngmckajXOjgl5jPaHa3kHdzsgwGkG0EXwSJJJlI3AjaON7DNWwRmVzJ52P2djU86RhCeV5TqdzbIGBEuLhcIh6vY69vT1UKhWRNBrvB/Xc1Dmj/DIQCIzVvhEA9vt9Yc/YHmBrawuapoltfiwWg67rYrwxGAzg8/kQDAbleXbixAl4vV54vV5cvHgRt27dwu7u7lhtqdPplNreRCIhLUkI8CiBHAwGCAaDcLvdog4gi8eFGE3TRLXAfnFk7Ox2u7CD4XAYpVIJfr9fetGxZYHdbhcZqsfjQSQSQbValedJr9dDNBpFv99HMpkcc9asVqvSa5MLYhyLpmnC6nHc/X5fenmyhs5ms0lbgicRv4o2Ak80rBo4K6ywwgorHhWDwQDz8/PChNlsNgQCAZEUFQpH7U2j0Si8Xq+sDDMJoXsckzs25uZqu9PpxIkTJzAcDqUHHO22gaNatUajIUDO5/Mhk8kgn89jZmYG0WgUrVYL1WoVtVpNXCqnp6cRCARwcHAgq/nT09OIRCJIp9PY3NzEYDCQxI11QKyBoWMcZZrpdBqxWExW3AkoGWZsisq6AQ9b9xsTYzX5JptG05ZOpyPSrna7jc3NTeTzebzwwgv46le/it/93d/FqVOn8N5772Fra0vGRTCg1rWpjIbRmET9nHpux7UpoLTLeL7qXHA74+9GIKn+bQaSjPswxqMkk3+TUMc5Cfgex7QZQZu6D1WOqH5HCAbMXEP5OfU4xvMj26bWuqkGJSqTpn6G2zBJJ7s0SRp8HHCkBLjT6QCA1NkNBgO4XC6RA7JZ9sHBAcrlsvQpU89LnXOOk+0teP+RbdM0TVoGGOeL/dMqlQoajYawdjTzqFarAI6ahrvdbni9XmGmXC4XZmZm8OMf/xjPPvssnn32Wanx5Zj5rCNYarVaiEajApY4F2QIu90ucrkjCww+g1qtloA0AiOaqdAh0ul0Ip/Pw+FwYHp6Go1GA+FwGP1+H/V6HR6PRyShZBx5/1SrVbhcLlFSEIRNTU2hVquhXq8jHA6LbJ1MJVsMsF6O15JSz2g0Kuwcry3rZP97lVD+Nxl2mw2DoQXgrLDCCiusmByLi4twOBzI5XLCnM3Pz2N7exu6rkti0O12x2zmmeiT0RoOh4hGo1hdXRXwRpfHXq+HWq0mLFOj0RCnN7q4MXGg5IgSSYIsMoBcXR8Oh9jY2EA2m0Wn08Hc3Jw0Ac9ms5iZmUEsFoPP54PP5xOmMB6PIxAIoFarYWlpCZFIBB9++KEkUQBkBV1NSpggkvkCJku+mJibMRpqsHaGEjau6LO3UqvVwrvvvoutrS18+9vfxjPPPINkMomf/OQnuHHjhhggqNb+6jFUoGBM0tXE2SiznBTclxHEqcBO/f04mSTjUcd8FKAz7ue4/ZvJII3HmDQG49/qZ41/8yfBlCpz5HGMIE6dv0n74+cIcFh3RkMPHs/MZZJsHB0IWcPFUIG/kUE0LghomoZwOAy32y2GJWTLVLv80WiEdrst4K3RaAgQOu5akm1TWUQaiBCoAuOurHRmDIfDuH//voyn3W7jxIkTGAwGaLfbqFar4qgYj8fR6/WQz+cxOzuLRqOBd999F5ubm9jb20OtVsMrr7wCANjc3BR3Xja1pmQxkUjINSEI4987Ozvigtvv91Eul0VqGgwGxa7f4XBIDzpKOu12uyw0BYNB1Go1Yc646OXxeERGyfuY6glKKCmpbLfbyOfzmJqaEnC3sLAgTcDD4bCwmQRpBJisveN9x/YCVCtYAO6XGBYDZ4UVVlhhxaOiWq2i1WohGAzC5/NhamoK9+7dg8/nE5MQ1juQ4aHV9WAwwNbWFkqlEhYXFzEzM4NKpYJMJoNEIoFEIoF+v49arYapqSl0Oh3UajXMzs6KpKharT5kDABAkiCPx4P79+9L3UetVgMANJtNsQNfW1uTZLPdbiORSIibHO3DW62WrEQPh0OkUilUKhW8+eabcDgcUsNRKBTEyZKGCUxImTCqNURGoMKkx5j8Tgoyk5yPXq+HWCwmrGG328XGxgb+43/8j3jhhRfw8ssv4/d+7/dw+vRpfPDBB9ja2hJJmCrzAsZZNpWlAx5me4x1dcYx8p8R7E1i5B5HQjnpfSPTyfEeFz/P+0bGzfi+GStktr3Z7+r26j8jEwdMrlM0Ow5BklrrRnaKYEHdVgVwfM/lcomMmaEam6jHNTZ05z5dLhdOnToFu92O9fV1qZekyQWZZ5p3ZLNZlEolNBoNqVE1m1v+VMEbwSbfI+ip1+sCGGjUwuba29vb4kY7HA4xPz8Ph8OBdruNSqUiUst4PC7mIGTW+v0+CoWC9Efb2dlBNptFJpNBu92WxSYCOV3XZZEIAAKBAAqFgvSiy2Qy8jqZ9mw2i0gkgoWFBVlI0vWjZub87pdKJdjtdnGY5Dk3Gg2RsLMW0OVyAYA85wjmCBrZSoWuwHNzc9Jvb3l5WRyEnU4n3G63tEmgKoCyXJ5zKBRCJpMRoMj6vl+EAf9F40sH4Ox2qwbOCiussMKK44PJwNTUFBwOB3Z3dzEajbC4uChSKzbiZUJdKpWwu7uLcrmM0WiEEydOIBqNIpvNiv02ZT8ejwfnzp0DcGR9HY/HxXWu1+shEolI0tfv94WJYhH9zs4O6vU65ufn4fP5BLQBwOrqKlKpFPb398UiXNd1xONxaZQLQOpQ2NuJsik22HU6nThz5gzK5TLW19dFZsXkiBIrFZgxoTc2uebv6jb83Wwb7pMJ4nA4RK/XQ6fTGWsyXKlU8NZbb+Hg4ADf+ta3cP78eSwvL+Pjjz/GRx99hMPDw7GedWoQeAMPN/s2hhHMERCqzCPDCMZUwGWUjpqxleo8qH8bwZLZXKr7V8di3E5lJsz2azYW476N709iyfg5FaxxTo21ZGzyTGBtNL4xbq+yXARyAB5iqdQxq3JJ2sCr4A0YdyI1gjfj+Xo8HiwsLKDdbuPg4EC25bnQAVbXdZTLZeTzeVSrVQFvk66Rehzj9bLb7WMMPc00+NPj8WBqagoAxDiJiyipVAoejwfFYhGlUkl6r9EB0ujKWK1WUalUZDFnamoKe3t7woapDBQblLMVwMzMDAqFgqgSaMDk9/sxHA6l7m96ehpTU1OiKnA4HNKAm8YjrCvM5/Pi5NlqtRAKhcT9kUYuZgsmNDWpVquYnZ3FcDhEoVDAzMyMKCBmZ2fh8/mwt7cHr9crEnqfz4dGozF2T7PGLplMSnsBFTTz+fCk4ksH4JyWC6UVVlhhhRWPiNFohOXlZXQ6HZRKJWiahtnZWezu7opkCTiypu73+2i326jX66jX64jFYmK3TTB26dIluFwuZLNZcVurVqsoFAq4ffu2JJQnT54cS7Z6vR7sdruAQpfLhStXrsDlcuHkyZMIBAJoNBrw+/1jbok3b94EcLTK7XK5pB0AcNRE2+v1otPpoF6vIxgMIhaLibNlvV7HyZMnYbfbEY/HkUwmAUD6QtGlrtvtjjn2AQ+klEZg8CjQokrngPEaJV3Xxc2TrEA0GkU0GoXf70ev18PNmzext7eHS5cu4eWXX8a3v/1tPPXUU3j33Xfx+eefC8tAYGisNeIxjW0Djrs/1P5vZoybmQTRyE6q8kHGcYDKOC9GQKXuzwjkVDmgykQZjzXpGpmBN+N4jSyhGctm/JufV8dkdp7q8QCIZFBtTG0mlTQycOwrVq/XHwJuRpBmdq7cjqy73+/HwcGBsL3G6+Tz+dDv97G9vS2sFc1KjGBXPS7vRS40cPxkwN1ut8g++TmCUpqnNBoNkR4PBgPEYjF4PB7kcjnZ58zMjPRjpBx8YWEBoVAIhUIBW1tbItE8e/YsgsEgcrkcBoMB3G434vE4Dg4OoOu6SCgrlQri8bg00o5EItjb25OFITJvdNel02W5XB6rIXO73XLvRiIRYd4cDgcqlQpCoZCAJY/HIwoFtlkhgw8c1QG2223E43F4vV7s7+/LMySdTiMSicBms2FnZwfA0bOzUqmImzCbc3s8Hlngm56elgWyQCAAt9stbKTR6OnXHV86AGe32SwGzgorrLDCimNjcXERxWIROzs78p98uVwWIGG327G9vY12u41oNAqXy4VAIIBUKoVkMikslM/nw+rqKnq9Hj7++GMEAgFks1lo2pEr2+effw6n04lIJILTp08jHA4jm83C5/OJ9bkqcbp58yYCgQAWFxelXo594sic0U2N/aFoJkDzEp/PN9ZQl65uun7U9ygcDsvqMpvw0iCFNWhMPsnGkSEjO2DW3Jq/qwm5KpMzyhhVxoUJEZMisoas3eOK/9tvv43bt2/jW9/6Fr761a/i937v93D27Fm899572NjYkFoj1VRDPa6x7QBDHScZQbXOzmzF3wzcmbFz6tyovx/Hdhn/niRjnCS1NANE6t9GyabZZ1SQqgIW4/jVcanSxOOAnXpc475VZs1mO3L6czgcwh6ZMXysSVpaWoLNZhN2etK8q4Y1xuNznJTQ8fvBhQyVrb106RIKhQJ++tOfisuralZiNt/HzSGPwXuVn6Xc2uVySa1XoVBANBqFzWZDvV5HNBqVWjX+TKVSAI4aflOaHQ6HEQwG0Wg0UCwWhdG7ePEiXnvtNXS7XVy9elVYtWazKUxou91GuVyGz+dDt9uVOtudnR0BZO12WxYOUqmUOD2ydQEbcavMYigUEjMRXdcFINItmOfmdDpFuqkCqGAwKIweWxDQbCadTsNms4laYjgcimQTOFJj9Pt9Ab+ssY1EIgCOnk02m00kod1uV1QOj5JG/yrjSwfgHHarBs4KK6ywworj48aNG2g0Grhw4QKi0agkqeFwGMViURpdLy8vS5NrNvqmuxulVVtbW/jwww+FLUulUpifn8ePf/xjuN1uqReZm5vDvXv3oGmaWFJz5ZfGBydOnEAymRxrKsv6GNarDIdDScK4ot7tdqU/Ew0C4vE4arUaKpWKtCyg6QHr8mjl7Xa7xRq8XC7Lqj6ZqGazKUmlWRsBlZFRWRdur36G+yFTpgIqumWq/4LBIBKJhLBxh4eH+A//4T/g448/xuuvv45nnnkGJ0+exI0bN3DlypUxIKcCyUmGJgQLBG0E52YmJ0xAVbZxEngzHsf4txk7ps6nkXk77hiPOr5RxmeUKj4qjAycEXyqgMvIihk/ozKhDDJe6jb8DBN11WFS/edwOKQnWzabRbPZHBuvCubV8arHU8ehaZqYavC+4WILJcWRSAQXLlzABx98gOvXr6PRaIhk0kxya/yumI2JzaIpneQ2PDZrxuhQSyljvV5HMplELBaTtgV0i6SaIBgMCvhhjd329rbUgT399NNi4lQul9Fut4U1I2tZr9fR7/fFrbFcLiMej+PUqVMineQ2/X4fkUhElACUUbJfG2WtbrcbkUgE+XxewHo6nYbf70elUoHNZpMemt1uVwxEqARoNBqYmpoSgyiHwyESTUrPHQ6HyDAHg4E8X7lQNxqNkEgk4Ha7USwWxcFyOBzK85HPWrr08vXp6elHfnd+VfGlA3BWHzgrrLDCCiseFe12G5cvX0Y0GkWlUpHVZhby0xWx0WigXC7j1KlTYsfNVexAIIDNzU2sr69jdnYWlUoFFy5cwIkTJ3Dt2jUUi0WRLz733HPSaoBOaqxN6Xa76Ha7OHfuHILBIDKZjKyKq4kbwRrZMq/XK9uykS+TD8qoWFOWz+fh8/kQDodlpZrNbnu9Hk6ePIlGozFWC0MZJWtgbDbbWE0cE1xVUgk8SFiZqKnvEbgRCBlrxwCIAQxlYUzeotEoIpEInE4n2u02rl27hq2tLXz1q1/Fq68eNQA/e/YsPvvsM3z44YfY2Ng4VkrJ82DCTet347iMPyeBNzO2zHhsYyJvJq1Tw7j9pPcmHfc41tA43kn7V0GOka3i+2b1b2YMHcMoRTSybip4IRCZm5tDsViE1+tFs9kUNqrdbmM0GiGfz5uCxUlsoTp+/qN5BQABH5yjdruN4XAotaR/+qd/ir29PbRaLdTrddP+bscBdAYBKL8TZLsBiGSR7DuZtWg0inw+LwYdsVgM/X4flUoFlUpFjhEKhaRVBl1sAWB/f1+UAMlkEidOnECz2USr1UI+nxdgODMzg1Qqhc3NTQFLrVZLpIzZbBbxeFyaYfMZFI/HEYlEpEdlJBKRlgis77PZbMKcEZTt7+/D6XSiWq1iMBhgdnZWvu+qEoHPnWQyKcoDqhv43CQ4JavGvnA0RiEbz3rKdDotPfLYzJsGJvF4XJp985lGI5knFV86AGe5UFphhRVWWPGoeOaZZ+B0OvH+++8DANbW1lAul6FpmiSENBZZW1uTlgMejweJRAL1eh03btwQRmxzcxPPPvss/H4/vv/972NzcxMnT57E2toaZmdnoWma1JFomgav14vhcCiJ0IULF6BpGjKZDGq1GpLJpNR40IiBiYvP58NwOMT169el3xv7K7HOo1wuSyJz/fp1nDlzRhrujkYjqb0LhUJSs5fP5xGNRjE9PS1mJ5RvNZtNNBoNYQUpTTTWY6kJstEAhEzCaDSSejVjwqsaiXCV3OfzyYo92QZVVvf222/j2rVreOmll/D888/jjTfewOXLl3H16lV8+OGHIoXlscxq34xST/Xc1J8qc3ScPNLsp9nvZnV1ajwOqDLuywgczMZrVkdnxhSa7csMKBqlkyqDpm6rNtc2gjbjNkaJJJNnytfI9LCeysio8qcZm6kCPAIbgkX2UGNtFe9lAvtcLoeDgwPpa9ZqtR6qCzVeF7N7gAw13TL5nrHlgVoL6Pf7MT09LcwklQCFQkGYIUoUY7EYWq0WAoGAzFen08H9+/fHasVWVlbgcrnEcr9YLErPtdFohO3tbZFX53I52U8wGITNZsPh4SHcbre4ys7NzYkkkm1W6vW6zAM/ywUzSrObzaaw/YFAALFYTBaQOFeqisDn84mtP3taUupeLBYBHNXFZbNZ9Ho9JJNJ1Go1aRdQKBQQCARgt9uRzWbhcDjENKZer8tiUyKREGaXjqIulwuxWEwcN59EfOkAnP1nAG7SqocVVlhhhRVWdLtd3L17F+FwGHNzcyKLq9frAB4kh9PT0+h2u9LI1ePxIJvNotVqyX/4BwcHeOqpp+D3+/GjH/0IXq8Xv/3bvy2r3/V6HYVCQRgf1pJwdfrUqVPodrvSYJYNxikxol01E7hAIIBWq4VUKiUNbgOBAMLhMGq1GjTtqKbkypUraLVauHTpkvSioytep9ORfkt37tzBnTt3kEwm4fP5kEgksLe3N1ZLR+aPBgvGGh/1H983Js0qIwc87KBoBqx4fnS2I5ALhUIie2q1WigUCvizP/szfPrpp3jppZfw4osv4tvf/jaee+45vPvuu7h69SoODw/Fht2s/QDHwjAybI9T86bOh3F/xpgEuNR9GMdmBrLM5JX87KT3jPs4DnQYj2uUXxpZMyMgUwGTCuDU11VzERWMAQ/6ntEwg38TABr3aTZGs+CCAkEUF224wKE6kZIVy+fzKJVK0kNMZd0mMW5GplNlKbk4wwbelBGqr3ERhYYqrVYLjUZDni9kjsgOko0ne+RyueR7n06nxdjI5XJhenoadrsdjUZD2pt4vV643W7pm8ZnFy3+C4WCuDECR2ye3W6H1+sVUKg6wFLeqOu6ACOeBxtnU1Jeq9Vgt9sFWDUaDTidTpGbU1oaDAZlcScQCODg4EDunWKxKDL3drstqgQuQqVSKZTLZTFuoVlLv99HIBBAu92W+yMej0trAdYCUkJbKpWsGrhfZjhsR1+M4UiHw24BOCussMIKKx6OQqGAxcVFzM/PS51YMBiU2jCuRtfrdYTDYUQikbFV+ZmZGVmJvnz5MrxeL9bX1/H0009jbm5OnOiAIyki9wdAZJPJZFIcKHO5HFwuF8LhMLrdrrBXBBler1d6D6msGHsoJZNJlEolseT+3ve+h5WVFTzzzDPQdR03btzAYDBAPB6Hz+dDPB7HYDBAPp9HKBTC2bNnRVJUrVaxsLAAANja2kK9XofL5RqrAVETb1VySBCmyiSZ0Js1A1dZNzUBNrJxam2c1+tFr9dDs9lEMBhEOByWRHhvbw/f+9738OMf/xjf/OY3cenSJfydv/N38Morr+DDDz/ElStXsLu7K2wix01gyURe0zRJzieBNSMbZwQej7uIzHM2ft5su0n7NQIHY42ZEVQ+ivlTGTTj8dXX1TYNXJzg3yrLxXtlkmGICuBUgGMW3FaV6qrnexx45hjIcpHxIgvExQ3gQW/DwWCAUqmEQqGAVqsl3wGjdFidG7NFCiPzRtDA77jdbofP54Ou6wLGBoMBEokEfD6fME5sZM3ni7FxfTAYFIMln8+HTqcDj8eDu3fvivGJy+XC6uoqEokEgCMjj0wmg+FwiJmZGZw5cwbdbhfb29vCePZ6PZF60sRkNBoJsDp16pTUC7P2jos/tPdnc2xKGkOhEEqlElwul8hied78rnPBCzha0AkGg/J3MpnE5uYmPB4P4vG4GEIlEgmUy2U0Gg1Eo1GMRiPUajWkUinUajUxSCqVSmIQwxpgANLw3Ol0So84t9uN4XAo/TbJHj6p+NIBOPvPvvCDkQ6H/REbW2GFFVZY8b/IWFhYgM/nw9bWFiqVChYWFlAoFFCtVrG2toZGo4FqtYpYLCYGAPV6HQ6HQ6Q9jUYDsVgMDocDxWJRHBObzSby+Tw6nY5IesgSsSB+aWkJ5XJZmtfS7ISySSZndGlTGwEzUQuFQpienkYwGMRoNEK5XMYHH3wAm82G559/XmRPNOigzfnc3BwSiYQwfEz6RqMRstksZmZm4PP5kM1mx5IfNsIFHjAlagJ7XC0ck2Emt8ZmzgRsx0kDadDAxIlNiwlwA4GA1EsVCgV897vfxXvvvYevf/3reOGFF/C7v/u7uHz5Mq5cuYKrV69ic3NTgBuZPdVQhec3qY7MTJZnfN0szICGClqMyb4aZn+rbJ3KvJmxiUbwZjy+8bVJUksVnBG4Gdkw1TGSNZRmxzI6S04CwUZWTb0HzeZE/YzKANIwRd0fv7eqhJZ1YOVyGdVqVYAb5b/Gc1Hn1+x99TxcLpcsaHBxxO/3iyTU5XKJE2IwGEQkEsHm5iY0TRMzFTVoXOT1eqFpGlZWVlCtVoXxyufz2NvbE8OmU6dOIZFICEBpNBrCgp0+fRqzs7O4ceMGNE2TWtlutysgDDhamCKwCYfDGA6HCAaDwlRxIYpgk6CUTr9ut1sWrgaDAex2OxKJhDz/fD4fPB6PqB1GoxH8fr9cz+npaWQyGWEdef1isZicD58HrVYLMzMzcg7RaFTe5/NP7RcYCATEBEWVcOr6Ub/NZrMpRjdPKr50AI4MnGVkYoUVVlhhxaTweDxIp9Pyn/nW1hZisRi+8pWvoFaroVAoIPL/b+/dYyRLz/O+56vqquq637uq790zs8Pd2eWSKy7WkhYUKUGWGFkKoyAxSMCKjFxkJRZgOQGcSAgQJUEAwbEd24DhhLYFUCZjRYBEWJIFS7xZIimKXO7O7s7eZqZnu2f63tVVXfd71ckf1c+7X5+t6tl79/S+P2DQdTl16qtzqs58z/e+7/MmEkgmk1IvwcgXIzNXrlyROhimV3ICS5tsn8+H4XCIcrmMYDCI6elprK6uotvtolgsykRvYWFBarqq1SoASIoSRQ4nYxSFdJbc2NgQ98VPf/rTePTRR09EvLrdLnK5HBYXF1Gv1/Hcc8/h+vXr+NSnPiWRvX6/LxPVWCyGbDYrk0umKXKSZUfUOPm2zULck353OqXdr8wdwZokluz7bDnA1f5Wq4VgMChRzVgsJpOura0tfOlLX8LXvvY1/PiP/zieeOIJ/NzP/Rw+9alP4fr16/j+97+PW7duiRsox2v3gXOnyHEc4wTbpAmdWwC5H7fFEG/b594tvk6LoI1L62I01y0s3Odh3PlziyU7TZHjpUCzn7P3ade12e8zyRRlnAjjbdte336NnS7KqJ5bZLJXIgWP7XbKc07HVxqCdDqdE6073GO1j+NpqbD2sWKUjSmcTDvkdoxEpdNpZDIZrK+vS30Wo/Y8powc89qQyWTku1ypVNDtdiUl2hiDH/mRHxEhWCwWpcfd4uIiZmdnUSgURKjyWkdBy+scF6P4/oySxWIxJJNJaakQDAZRLBYRCoWk/2Wr1RLBDIwWqTh2tm5gC4BGoyHXsGw2KxkQuVwOe3t7aLfbSCQSKBaLYszElGume9NRs9PpYHt7G+l0WjIYHMeRsbAhO487o4Q8Tx6PR67r5XIZfr9fBOVZcOEEnJcplAMVcIqiKMp47t27J6up+/v7WFpawqVLl3D37l3cvHlT7K0fe+wxPP/88xgMBuLAFovFEAwGUSqVJMUymUxKA9tWqyUF991uF+VyGY7jiF1/tVrF+vq62FhzYsWUSNaXsA6PPZzY0Jd1e51OB1/5ylfwzW9+E6urq/j85z+PTCYjKVWtVksc3lKplDT3vXr1quyL6VudTgc+nw+PPPIIGo2GpIBy1dtu2mu3BuBnJLZAGCcq3BGKcbVl4ybn9nYUEozEtVotiV70+32srq7i8ccfx0//9E/jG9/4Br71rW9he3sbX/ziF/H1r38dTz31FH70R38UP/ETP4GnnnoKL730Er7zne/gu9/9Lvb398eOw47EjYtguSNh7ufd0Sv7eNg1ZLYo4md1H9vTonLjBOf9hNI4MTouOsjx2I/ZJhxMbbQjatzHuAbatuhyj8/+/EwvtIWgW/i7j5Et1nibUWf+cxvX0CClXC6LCyoXCSY1bB6XVup+ngLHXtAA3ohKMupum/wAIwOOWCyGra0tMRThdSUSiYgBEhd0gsEgcrkcKpUKQqEQWq0Wtre3pS1INBrFww8/jMcffxx37txBsVhEpVLB/v4+5ubmkM1m0Wq1ZLGKqck8NhR95XL5RN3Y1NQUjo6OEAwGsbi4iIWFBezu7mJ6elrSD+n2y4heuVyWfdvni8eA+2aaZSKRkEWkubk5HB0dwePxIBQK4fDwUK5TrKezvzvxeBzhcFh6fsbjcRwcHGBqakoMUSqVCtrtNmZmZiQKSBMWjiUYDCIWi+Ho6Ei+M+5I6AfJhRNwrHvrjymGVhRFURRgFCFznFFj68uXL2NhYQE3btzArVu3EAwG8cM//MNYXl7G2toaBoMB8vk8+v0+Zmdn0e128dxzzyGbzSKfzyMWiwEYtSYoFAoyoaVY48oyozyHh4cyEaYhAZv00l2RE95IJCIpS6yRSyaTePHFF/Gd73wHlVBP1GgAAEb2SURBVEoFn/3sZ/Hwww9LxI51bHYdDKNWXq8XMzMzAEYTSNbUhUIhEWVMw1pYWMD+/j76/T6SySTa7TaKxaKkedVqNalxI/xcdjokb3NC5Y4ukfsJFHe0g/ugUQFd+Ngj66WXXsKVK1ewtrYm6WTb29v4yle+gq9+9av42Mc+hqeffhqPPvooHn/8ceRyOXz5y18WI4XThNG48blvjzPScAsjOzpk15CN+7zuyNSkMbgfG/fcJOxo0bg0wHGGJHZ0bVyU0Z0iOemY2Ntz3DS/4WTfFl3jagZpLMTz5/P5JKJCQw77s/T7fWnMzDYanU5H6lttt1T3woRb/LqPI7ex00c5fl4TWFfl8/nEVAMYNd5OpVJyPQEAn88nxh+2SUkwGMTh4SE+9rGP4ZFHHsFLL72EtbU11Go1qRNlZGxubg6Li4sol8vY3NzE/v4+MpkM0uk0NjY2xGDEtshnWqHf75eUQooaLloxC+Hu3btYWVnBpUuXcO/ePYRCIUSjUVQqFVQqFaTTaamlcxxHIqFMZZyamhIDEy5esR3BYDDA/Py8CDmfzycp6PF4XCKOHBevA0wHn56ellphx3EQDoeRTCZRr9cRj8cRj8eRy+Xg9XpxeHgoRjL8ndLtl1HNVCqFo6OjcT+jD4QLJ+C8lomJoiiKooyjVCqh3+9jeXkZ2WwWzz77LF555RWsrKxgZWVFUoto5z8YDLC6uoq7d+/ixo0bmJubE/vtVquFzc1NAJBV2kqlgnK5jGw2i0ajgVKpJOYfrJ1gkT5X/ZeWlsRcgSvRAGR71qJ8//vfx8bGhvSmy+VyIsYAyCSU6Z/ValVq9hqNBj7ykY9IjQrfi6lhjAByfHS6BCD94AqFgkxcmPLEyZfjOJJaOTU1JZE+Y95ogG3X89m4Bcok4TEuZZBun3QHLJfLePbZZ5FMJqW3VzQaRSgUkon617/+dXzrW9/C5cuX8eSTT2J5eVnMTorFoozXTh+0xzVOUJ0mssZF4twCzi2WAJwQve79cTwUx+5jN87Z860wToyNi77ZqYr2azlmd0rluOPCfbkjgfa+3W6h7u8G60gpLNkew+PxoF6vY2NjQ7YDIC1CqtWq9AWjYLPrK08Ty26jGD7nFq+2oQ9//zRSYYSHDarZsy2bzaJWq4nBCn9L5XJZBNXs7KwY+jC1e2ZmBr1eDwcHB6jVavJ+7XZb+kDu7Oxgd3cXt27dknTC7e1tEY3srwdAhFK/30elUpE0QrrC8vc9MzOD4XCIe/fuwRiDK1eunBA3vV4Py8vLaLVa4pjZ6XSQSqVORFH9fr/0X/P5fIhEIuj1erJts9mUlGn2cuOxYxqlLYpDoRBKpRI8nlFDcF6XKd64gNXv95HP55FIJPDyyy9LfR+/L/F4HI7jYGdnR9oc8DOcFRdOwGkNnKIoinI/uDJrjMG3v/1tFAoFXLp0CdPT01hfX8fc3BwymYz0VEokEvje976H9fV1LC8v4/Lly5iamkKtVpMUp1AohHA4jEKhgLW1NTEKYANbx3GkYL/VaombGhvdJhIJAJB6Czs1jSlUe3t78Pl8+OhHPyrpPx6PR4wDSCqVEstv7jMWi2Fubg5+vx/1el32TZc4pkwyTTOfz+PmzZuYn59HoVCA3+9HqVRCpVKRlCfWydEMhFE+ToooaLjfdyLQxj03LgrC96zValKbyNSuYDAoEzo2OmfU7oUXXsCLL76IcDiMxx9/HE899RT29vZw7949HB4eyoQZwJuEhI1bfEyKMNnCZJyhhjut0G0WM+59bbFkRzHfjYCzUxftx23x6RZ0fN9J7QK4X/fjhO/Hvmy2MOU/OzLH6FwsFpMJP1tfFAqFExEv7rder6NWq0lUlrVtdi3cuLTecRFR90KC/R2302E5Zi7GGGOkHQZ/S4zCx2IxcUkFRgsn/E4zSs9oUbValfvtdhv1eh03btyQPpChUAh+vx8PP/ww/H4/7ty5g6mpKbz66qtIJpOykJPL5ZBIJOQ7SXt91q9Vq1WpDwTeMEsBIIKO17JGo4H9/X2srq5ibW0N7XYbqVQK+/v7J/rU8Xpn1wLa0W8aoxhjkMlkpA8gF73YHoAi3Zg33DF5TDnu2dlZafYeDoexsLBwwuWWzchv374t6Z3T09NS9xeLxXDr1i0RdrFYDAcHB5KmexZcOAFHF0qNwCmKoiiTYOH666+/juFwiCeeeALlchm1Wg3Ly8vi9DY3N4dWq4XnnnsOjuPgqaeewuLiIobDIdrtNu7duydmJb1eDzs7O3jxxRfxyCOPSBrRcDhEJBKRovxOp4OZmRmJdtGcIB6PS/oPJ29cYaZdd7/fRyQSQSQSgd/vl4kh7cIdx5EUSQDSL8kYI/2d9vb2pHifDb2NMSISS6USkskk7ty5g3w+j0wmg+npaRQKBXQ6HWmhUKlUZHLKCWcgEEC/35f3BN4csRgXhXOLHXeUi9hGJ5NEki3kaKFOA5lms4lKpSLROJoe0DzmG9/4BowxWFlZwezsLC5duiROpTRHsM0y7lcD5Y7O2SYl4xpZn5ZWaB8bWyic9r626DktMjguPXRcaqwdjbOjt+NE56Sx2dG2SdEqpujZQorbMk1yamoKMzMzSKVSSCQSYjpycHCAdrstAs8YI98Hnkfa8dOunil648T5uMUC+7jajIsiukUk/7FfWzQalePICBRfZ8yo7qxQKMiCCd1ujRk18/b7/Tg8PEQsFsOXvvQluc39X7lyBYVCQaJnhUJBxFq9Xsfy8jIymYwcC4/HI2mKFGdMsaZIY1SOCyG28Do6OkI4HD6xeLW7uyu91yiAHMeRCJYxBkdHR3L9SCaTck4ymYzU36bTaYl8JZNJABARHg6H5boSCoVOtCro9/vY398XM5W5uTmsra2J2dHc3Bw2NjZQLBZlUYtRy2w2i52dHZTLZYnk8fik0+k3fV8+KC6cgNMInKIoinI/Dg4OxPqfRfE+n0+aerPu7fDwEJubm5ibm8P8/PwJm/+DgwOpf6NV/t7eHq5du4b5+Xmsr69LjUksFkOhUJBJYqPRkOhLr9eTlWSmVTEViBO6brcrtv9cOac1t50+yWbX3C8nU+FwGPV6HUdHR2KiwMbhXEUeDofw+XxYXFxEq9WSVgvD4RAzMzPiINfv91GtVqXOpFKpiOhk+hNwcjJrT3RtJ79x0TT7udMMO8a9xg2NTZrNJgKBgIjYdrstoi4YDIpzX6PRQLPZxMbGhtTopNNpLCws4ODgQAQAe2CNEz7uz+1OQaTwsaNw9j5sMTduP5NE3rg0SzIu3c9+nR2pc/dZs9/LHqvbWMSOuo17D7ewcYtW+z3dVv12bRsXQ2hf32w28dprr6FarUoKIr/TNONhtI01ZFxkYKrkJNxjG/e8W1Dz89qfx07BpXEJ3ScpgpiC7PF40Gq1xJXWcRxJ92MNbCgUEnOSdrstkbRWq4VcLidGIHNzc3j11Vdx5coVLC4uYm1tTUw62u02nn76aVnwYIoiI1VcOOJvhe6RFGp0mGw2mwiHwxL5CoVC6Pf7uHnzJj7+8Y/j+vXrYhrS7XYRj8fl+8Zm3BRHAE6kZrIZN81I2PaAEbtSqSRul0yHZAo7jVZodOL1ehGNRrG0tITNzU1x+7169Sr29/extbUFx3FEdAKQyF+xWES328XCwoL0BWRLmbPi4gk4L2vg1MREURRFGU+tVsPq6qqIEKbZcXIwPz8vUa9MJoPFxUVpZH10dIROp4NYLCY9iugO9/jjj8Pr9aJcLqNer2NmZgbJZBK1Wg3hcFi2o7kBravj8bikVlJosK6LqYmhUEgs/+1Jp90Al1E4TjI40d3d3RVXtWAwKCloPBZerxftdhvGGBmLx+NBIpE4UYPD1KW5uTkcHByIIQA/lzFGIgWcjDKVclzDbmILsUlCw81b3Z4pnBx7IBCQSTNFsp0Cy4lstVpFq9XC3bt3AQCJRAKhUAiJREJqgigIThNIHIMdtbLbMQBvdm4kp7lHjjODsUWSnSJ2mrhzv48tOmxssxJ73Pfb37gUSX5neG64HSNm/HxMhcvlcsjlcpienkYqlcLW1ha2t7dx9+5d2Zbj5iID+5vV63V5jMKN58w9vkkLBuPSKN0LDO7opH0s7PNCt0VG0nu9ntTrsR0GF3lqtZqIiUQigYWFBXg8HpRKJakf4/VmMBggFovJb5zRtuXlZeTzeRGFjjNycP3kJz+JRx99FHfv3pUm5XTnDAaDJ3os0tCDUSm6SgKjKD+PQyqVgsfjwdHRETKZjNSMsR0BhSX3xd8lFwRoLtXv96VelaKMPdwASMYBMBJ8jOrncjlxu+SiEtPIA4EAZmdnUSwW5Xtz9epVtNttaaXARTSv14t0Oo1QKIQ7d+7g6OgIyWQSwWAQm5ub8Hg8JzIdzoKLJ+A0AqcoiqLch+XlZVkRBt5wZGQNCgCp3YhEIpI+xIL4SCQi6TZM1Zqfn0e73ZbJECMFbFrLVK6ZmZkTDni5XE4ayUYiEUSjUanhYmpmOByW2g+60HF/gUBAGo1zItvtdjE7O4tqtYrt7W10u12USiVJpWSdHaNpsVgMfr8fe3t7yOVymJubk0kXIwWsu6HIZOPbo6MjcdbkxJaTc77ejsrZuCfAdrrfO2VcqqCdxsmeXozKsZaQNUZ04ZudnRVXS5/PJw6c3DfPld1vj5NSdx0Vv2Oc3LsNPuy/9vGw/7qfc/fgG7eNLcROq6Nz4xZgdvqnnfZpG5aMixa6x++O5NlppBRwjJpks1nMzc3Jd393dxd37tzBK6+8IpFeijf+Prvdrog2u3fbJOE26fs3Lm3Sfo37/ri0Wvt4ccGGvz1eVyiM2EetXq+fiGLz+AQCASwsLKBaraLX62FxcRF+vx+9Xg/7+/sIBAJirJHL5VAqlXBwcIDV1VXMz8+jXC5LlH44HOLq1auIRCLY3d09MVbW9dqmMJVKRdKPec4PDg7Q6XTg9/vRbrcxGAwkBZyW/pVKBcViURaEuIBFR95er4doNCrnJxQKyfWODcfZ3oSik8e3Wq2e+D3RIZgtHyj+6/W6tF2YnZ1FrVbD+vo6ms0mLl26hMFgIGn0FG6MLmYyGRweHqJarSISiSCZTKJQKKDX6yGdTiMajeL27dtv6ff0fnDhBBxr4PraB05RFEWZACd0gUBAbOjZiLvX66Fer0v/Mxoe0D6bE0PWsUSjUQQCARSLRemjNDc3h1QqJWk6fD/WrtCKOpFIIJfLyftFo1Hs7u7KJIj1IowY2YYjnU5H7Lfb7bakXwKQPlGbm5uIx+MIBALY2tqSfnX8vO12G9lsViKRTM+kMPD5fOh0OigWi7IazwliPp+H4zhiyMK0UH5eToaYEkpR4xZpdnTKnZb4ToSce3Lthu/d6XREyDEKRyE3PT0Nv9+PaDSKj3zkI/jc5z6HZ555BtevX8edO3fQ6/UkOkrRz/NE5zu7piiXy0lUqNFooN1un4hGTUrBJJMiaBTIvE1oQGLftyNEdtTONtpwCxJ7G9uUwz7G7hTQSamg9mey68HYwyyZTCKdTmN2dhbT09NS03bjxg2USiVJF2ZEGoAIBv6emAJLMxKeA/cCgvv42p/fTnkcJ9bc2CLNvm+nTbKdgd/vRyKRkLo3Ok2yZxprqzjecDiMSCQibRAajQauXbsGr9eLbreLWq0m1yBGsPb29tDr9fDQQw8hmUxKw2r+y+VyCIfDiMfj8Pv92N/fhzEjUxVGy5k+yZo3YPSbjkajqNVqAEYRrXK5DK/XK1FpGoswU4FGIMvLyxgOh6hWqzIefgd8Pp/U6vJaurOzI1kRfr9fersFAgExLOF3v1arSZsTXpsZiaQ5Da+lrONNp9Pw+Xy4e/cuGo2GmJ8w/Tafz6NYLGJjYwPdbhcrKysYDoeo1+tIJBKIx+O4e/euthF4L9EInKIoinI/6vU6ksmk1JfZK+6s+QoEAtjf35fJBCcsFGHss+Y4DjY2NjA1NYXDw0Ok02mZAFQqFYluURwy0hYMBhGJRMSBLhQKSbG8nQrFVW5G29hcOBaLwRgjKUi2cx9X25eWliSSl81mAbzRT4oTIPZpCofDmJmZkZV9pnMx9Yppg61WC4lEAltbW/B4POLwRmMDToRoQmALFXti7E5LG1dTdj8Rd9qketJj7u05YaYIpq27HXX47d/+bWQyGUSjUSwuLkprBkZ1mE7G+qZkMonHHnsMfr8fq6urePrppyUNbGNjAxsbG9jc3MTa2pqk5HLSPi6i9lZEnv35bPE27v44k5FxAmxSiue4erdx27ijdfye03wkEolgfn5ebPCPjo5w584dSb3jseB55gSdxiMU4IzoULSxvo2/50kRWfd3wn0dGPeacaKO33N3+wQKXKYN0jzH5/NhZ2dHvmOMGoZCoRP1X0ybLhaLCAaDuHr1qizAbG1tSSYBf3OdTgfBYBBLS0vo9/vY2dmRsbCGLpFIIBKJIJvNisChQKLhEiPVzC6geGMUPxaLSQbC9PS0COZIJCLXqpmZGRlPKpXC9va2HD/bYIYLSY1GA/l8XrIE2u22pJhy23K5LNcax3HQbDYxPz8vrRNsMckFmvn5eaTTaRSLRUkBpRBltoL9HnNzc+h0OrJQs7S0hFAohFdeeUVaMfR6PamZOysunIAL+kcXqWZnfEqBoiiKotAEhFEX/kfM1K1wOIytrS3s7u5KzRgnQI7joFwuS1Paw8NDSee5evUqYrEY9vf3cXh4eKI3FS2w2XCb6UThcBgApBifqTy2Uxz7wrF3Gx3eWq3WCaHEtCH2l3IcRwQiWxnQ6KHRaEj/pkQiIbUknIDSvpyGCa+++qpEmZgSVavV0Ov18Mgjj6DZbGJzc1MiA2wpAEDe027G7I7UjIuO3G+C5H7eHd2zBZ47Xc792uFwKOKg2WzKxLtareLOnTsIh8NyLGn5bp+/drstaZQ7Ozu4e/cuPB4P8vk8rl+/jo9+9KNYWFjA5cuX8clPfhI+nw+vv/46jo6OsLm5id3dXTHXoVMixbodHXMfH7u5tS2G+dc+B/zstsAYF3ED3tznzY602WOw6/n4foxgcsKbSCSQTCal1xhT9Q4ODnD79m3pu8iUZjvKNhwOMRgMxHjD/sfvPutCbTfJcef9tO/QuO+KO7Jmv8YdYbQXUDhuRvX9fj8ikYhE7re2tuT3ymgto3AAJOo2GAxQKBQQj8extLQkwqZYLEq9meM4SKfT2N7exmAwQCqVknNVqVTk+HF7uih+9atflV6RtgMnv29sD8Joeq1WE5FDF0gKJTYVpykMF3C4f7pQsrelHenr9XrSXmBvbw+xWEyOnX3umAFBwdVutxGPxzE1NYWjoyMMBgPMzMxgf39fhN7S0hJyuRz29/cl44ILVoyE85rb6/WQz+cRi8Xw8ssvwxiDbDaLaDSK7e1tWXjw+XzY3t5Gp9NBPB4/9bv1fnLhBFwiNHIeqrR6ZzwSRVEU5bxiTzhZDxaJRDA3N4dAIICNjQ0cHh4im82iVCpJrylg5KI4NzcnExOmEGazWXi9Xmxvb8uEhFEHTtY4GTbGiPGIMQalUgmBQAAApJFvt9vF/v6+ONaxMW84HMZwODxR00NRwQkPo2h2T7lgMCiv4QR5b28Pq6urCAQCqNVqMpmhiGFK0+Li4gnHzGAwiGvXruGZZ54Ro4VyuYxQKITbt2+j3W7LBJCTf06u3aLBGPMmUXe/NMpJE2v3PiZN3k+b1DuOc0IQ0KiGqZY81jyvPJc8nxQUrI2rVqt47rnn8OKLL0p0LpVKIZPJYHV1Faurq8jn81haWkIkEpG0VKYQVqtVlEolVKtVqclhCq0dYaKAYETIrvuz/7oFGHDSXZK/D4oRu06NE3i+xu5dxprPRCKBVColUSeKjHq9jr29Pdy4cQONRgONRkMWIBg54+/LFmX8LjKyY4s21h6yHm7cuR0XzbW/I6dFayfdt78r/Hw8PvzeMR3P4/FICh/FBrff3d2V22w+PT09LRGibreLubk5pNNpcbplvRht9OPxuESHstksPB6PfG9pjMKoWiKRkEUCO/WZ0Up+zwFI6iQXigBIk2wA0oKD1zV+J+PxuDj89vt9rK2tSV0jWyXwfLG9w2AwQCKRgN/vl8UTnn9eq3gOQqEQms0mYrEYAoEADg8PJSugUCjIgtrs7CwikQj29/dRr9cxNTWFdDqNRqMh+6LA5oJZLpfDnTt3pEdfOp0W99lsNivGVUxfn/S9+CC4cAIuHhwJuLIKOEVRFGUCTEtkwXo8Hkcmk4HjOLh37x7u3r2L5eVlFAoFsdhmmhYNPg4ODrC+vo75+XlcvnwZtVoNN2/elPQtTuZisZhMhji5C4fDksJZKpVORKZSqRRarZaYE7BIn+IBgNRzeL1exGIxGRsAsVBnTRxX05PJJJrNJlqtlpgmdDodLC0todvtilBst9tSB8bGw6FQCKurq9jY2AAAzM7OihHAq6++img0KivwKysrYsPPSTb7PXESatcHuVMp7RTLSUwSb28Hd92XO8Ji/2PvKU7C6V5JIcdaN/7jc+PcJY+OjlAqlXD79m385V/+JQKBgNQk5XI5qQWLRqOIx+OYm5tDJBKRiCrTBiuVitRN2ZHDZrMplvmMaFHg0VnQdjGlEKNIY12Sz+cT10CKUzp10v6etYP8nI1GQ3rq3b17F+VyWVLXaCjCNEOOw46w8bfD9Ei7hs0t7Gw31nHncNw5nhRtG/c9cn8v7X0SO+roNvHhY4zyM5LDmiy2PbDFMs8BF4CuXLkivyv+xoPBINLpNPx+P1qtFl5++WWJgHHBhhEo1tUOBgNks1lJ9zXGIJfLSVSQx5YimemYjMTze87omt/vl+geswtoanJ4eCjtVvb396XGDIA0Wvf7/fJ+zWYT6XQa09PTkuXAmkbWydF1kuNhDVuxWBTxxwWOfr+PhYUF5HI5FItF+Y0sLS3Jb4PXSh7baDSKdDotKeyBQECu+XTUzGQy8Pl8ODw8lJRLOmGeBRdWwGkETlEURZkEJ0hMVWLdRKFQQLVaFbtp9l27e/cuQqEQFhYWZIJ6eHiI5eVlXLt2TdzxAoEA0um02GHT+pyTTY/HIzVWrPugqyMb73IizjosAPLXTh9qNpvI5/Oyms0m4JxoDQYD1Go1EYGMhhhjkMlkYIzB5uamWI2zjQJrjxzHOVGT4/f7ce3aNTSbTemDFI1GsbKygsFggIODA+Tzefj9fkn7pMhgHRajRXa9G+GkepIlv3sSbnM/QeeOuLj3Mylt0x0RpCBmiwlGWeyUSkZA7KgVH7fPAccyGAxQqVRwdHSEe/fuweMZNWanCOD5z2azmJmZQTQaRTKZRCQSQSwWQyqVErFF8c6x8jxShDKixec4bjvtz349xR0n5xTlrI1kNOfo6Ai1Wk0iYhRg3B8XIez0Ro6DtYS2YKOwo7ijwOOCwCTB5hZo41Ii3ffHibtJ3yX7Pe3Imx3BtEU+23AMh0Ps7+9L6wpGwbkgw3YJ9tguX74sKctcBKHzqR3Bm5qawtLSEmKxmPSoTCQSqNfr0tNtZmZGFoEovBOJhETpAEgNKM8xx5VIJMTEiREs9oFkDR+Px9HREUKhEKanp3F0dIT5+Xns7e2JGVIul5PFBtajxeNxqYMLh8PSzoTpkolEQoQwv5N0Afb7/chms9ja2kK73ZbrGns6sjfczMwMut2uXPd5LGkSxUbwhUJBInWhUAi3bt2S1hWJRALb29uoVqtwHEcizGfFhRNwQZ8Xfq8H5aYKOEVRFGU8XBWnKcDu7q5Eifx+P0qlktSgvPDCC0gkEtLwmyvPly5dwqVLl/DMM8/g9u3bmJmZQS6XkxRERmKYNkTnRxb6swYjFotJNI424pywMLJBYcWULNbbVatVMUFoNBqIxWIyseREixE9utiVSiVJ02KNHuvZOGGi+xon+PF4XHrTcRJVqVSkboQpSqzXeeyxx9BqtfC9731P2jMwTY6T90lpkvx8dn0XRZ87He6tRuLs/Z/2mvvVyfExruC7I3OciLOOkQLITp3lYxR+xHaTtCfFjNIUi0W89tprY/u6UeyztxjT5vgdsgUGo1a2RTuFlR3psiNm5XL5ROSL78/n7WNjR8q4DYWjLdAo2ChmeL65vR0xBN4wuRkn2k5Lo510Lsed80n7c2NH3uzzxlpVppXyeLC2LRwOy7GxI552lJ5ptoFAALFYTBZA4vG4fL/a7TbW1takL2EsFkO73ZbI28zMDBzHQaFQQCqVkjTnK1euYHV1FaVSCXt7e5IeyQUZ/u4oqHgtM2bUH5LCi4206UgJAM1mU8a4ubkJv98vRiHNZlNE0OHhIYbDIdLptIg0mrQwyhYKhUR88f14/OjyygWmg4MDidax/tZxHKyurgKApIWy1pANx7vdLrxeL+bn56X+dHp6GolEAolEAq+88orU0dGUan9/X65DZ5k+CVxAAWeMQSzo0wicoiiKMpFoNIp8Po+pqSm8+uqrODw8lEgGXdwqlQquX7+OfD6PhYUF7O3tSfpRPp9HPp/HSy+9hBdeeAErKyvSZPfw8FAMMCqVClKpFEKh0AkjA0b/OHFjqg5Xnm1jCNaW0L2OY9ze3kaj0UA0GpUaGu6TkQpOftzuiqyJe/jhhzE9PS3ucjRBsWs/8vm8TC6r1SpCoZBMwNLpNJ5//nmZTHHiOT09jbW1NXG55ESdaZucuFI43K/WzW17b6fguaNnb6duzp6sTxJv48wt3PsFcELgcDHA4/G8SczZdWXuv9yeQp0wGuWO3vE40HGPE2pj3miKDZxsuM3Jpx0NtVMq7c9pu4aOay1AkcXPTxHIiBrFLmsCbVHm/sfHuY9x58M+1+PO+7jzwvGfVjd5moibNFG3jy/PC39r/E3znCUSCUlPZDsQnpNkMonFxUURt7wOxeNxiSJNT09L+xBG6Omm6PF4pB8ja1R3d3fRbreRTqcBvCHwo9EoIpGIiKNOpyNpgIzIBoNBqSPjsWN7DduYhWKO0ODj4OBAFhD4fWYq561bt5DP58U8iW0TWAvMz80FDNYF83o2Pz8vKYzxeBylUgk7OzsIh8MiOoE3Fg3C4TDW19ffZJ7CtMy5uTmUy2WpQWZEcGtrC81mEwsLC+Kmubm5KSmkHo9HsiTOigsn4AAgHpxCVQWcoiiKMoG5uTm0221cv34dhUIBly5dkmiU1+vFX/zFX2AwGOCRRx6RdB2uDtNs4qWXXsLu7i7y+bwYmHi9XkkTYl1HKBSSSAvt5hkB9Hq9ODg4kNQqTjI5IeSEPBqNSiqVMQYHBwdiskIHNbY+oGscTQNooMAURqZa0nCDphisvWHEiBNDTsAZAaQgqdfrODg4QCwWw9bWFjqdDhKJhPRx8nq9eOihh9DpdMRcgFEfthywI0LEnqzbURf7H4A3CRr3pHvcZP20GqlxQu20VfZxE3yKTTuixJQw1vPY0Tq7bs79z/6s3J7vx/sUEbag42uYxml/PndNntvgxP057M/ISTS3pVCj2OJ3yxZo9nHgfTvKZqfruc+hO911nKielEppp1lOOlf2Zx13bsdFed01b3Y0lD0ZWcvF1zAt0E4TpTgKBoPSOJ7XIWB0fWL6Ixdx2PKELp+M1BWLRYmW0wGXPR1twVUsFrG+vi5ut2xdwBRv222SaZa1Wk2ihvydMquAUS+m+0ajUdy5cwcApO8hACQSCUmptA1Ybt++DY/HIxb/dgsDGpswhbvb7SKfz2N/fx/AqHbN5/OhUChI9BEYRZWj0SgAnHDEZY0vU3Gz2SxWV1fRarWwt7cnwjWVSmF3dxfFYhFLS0vIZrNoNBrY3t6WdFNeY+3f5FlwIQVcIuRHudU962EoiqIo55S9vT1Z3b569aoU4juOI82v2ROtUCjIJCiTySAQCGB3dxderxcrKytichKJRMQFkNEu26GNdWE0G2g2m9jb2wMAsahn2hIAccjkPjiBo3Mfm253u11UKhXE43GZeNp1RbS5Z0SEn9U2W6F7Jl0o2WCYVCoVhEIhqdMrFovodDpYWVmRiMJwOESpVEKj0UAmkznhYpdOp3H79m2JQDBtDnizWADeSJm0nSpt4xOm8Xm93hOOi9x2kpgbd59jmCTu3EwSde73sP+yLo7Y0SyKMNv4whZxtihzCzv7OQo7Ms5AhY9z4mmLKNtcxP25bLMRW4S50yfdQs39WlvUcaFinFgeJ87cabD2554kzO4XpZuUVune3h6j3SqAz/P3zuPP88ZoeL/fh8/nQ6vVOnF+WV9Yr9exsrICY0Y90GhCQ/MOYwy63S5mZmZEmDPtmmOYnp5GrVZDu91GIpEQU5hr166Jmczm5iaOjo5w+fJlEXF0v/R4PNLfMBKJoFAonHC8Bd4wIWKLEH5mx3GkNUIikZCWA3w9TUny+by4TLKGlmYuoVAI9Xpdrg+RSESuU4lEQtwjaTp169YtSQGmCy6Ndowxslhmf+fZEmZlZQVer1fMlowZpbEWCgVsbW1hdnYWqVTqhFEQF8MoXt1tDj5oLqSAiwd9OKidnTOMoiiKcr45OjpCq9US2232Vup2u5KG2Gq1UKlUAIxWnTOZDNrtNvb29k6kFLJxN9MrKYJoCV8oFE5ELRzHkT5ErENjdIzmJ4PBqI8bJ8R0jazX6wgEApJy1Ov1TpgccFLBlgFMnep2uycmmYycsE4PAJaXl9FqtSRli+lZt27dwrVr16Q1AV0zo9Eo2u02Wq0WVlZWxKyAkx677ikYDGJ2dhZTU1PY3NxEtVo9IUL4+e1onB0FsQUPzWAYvXNHZ8aJM3uf/OsWjadF7MYJBluI8HE7cuiOGLoFq/0afm4uAFAA2ELOFnjcr22kcVpUyk6JdGOPy75tRzr51/7M7ggbz41tVOI+Pu59u1M1x50n97mZlA7pfpyf9a1EU21Oe+9xotg2BuHv1efzIZ1Oo9lsSvSSpje2SKfBDa8ZvI70er0T7pRsvt1oNGQRaDAYSIsLYLTIEgwGkUwm0W63ZdElHo/L79GYkVPojRs3kEgk4DjOCQdRmn9wEYaOljQmYY0ujwuvAUyFzOVyKJVKACD1c4z4ZzIZcUYNh8O4du2atJRgj7pSqQSPx4NUKiXXN16HGL2fnZ3F66+/jkqlIpkGrOejcy6jZbwG8vgCwMLCArxeL55//nmJUM7NzWFvbw+bm5tYWVlBOp1GvV7H5uYmgsEgHMcRsx8uWNkur2fBhRVwt/Zr999QURRF+VDi8XjEsazb7eL1118XN7fp6WlJmaS9ezKZlHoL1nYEAgHMzs4il8tJPQQnsMlkUqJarK8zxpxICQqHwxIdoygB3pgwcnJAEwmuADMVjylKxhipMwmFQid6OiWTSXmeK9OtVksmmZxw0mUwEAjA5/NJ3Vo0GsXy8rKsPBeLRVSrVbFFD4VCCAaD6HQ6WFhYQK1WEztuv9+ParWK/f19cYvrdDrIZDISSeSkmJPLSdE4WzDYjom2SDgtMmaLLvd+J73G3ua0yf+kqI4tADhht23v+ZzblMQWdO7jYAu3cVE4d4TO3se4SJUtsMY9ZkfT7LREO5XyfsfQfazGPT4u6meP1R2pmxRBtbcZl0Z52jnnNnw/jmvcseX7UXzRjIO/u3w+L2Y/4xYLer2eWNjTWZJ9JmnG4TijfoA0pjk6OgIAETTFYlHSH5mCnc1msba2hoODA+knubGxgXK5LIsDhCnh/X5feg7SGZLp2MViEZFI5E2iiNEzNlRndgINkhg5tGvZaMZCIcTffyqVgt/vx97eHvr9vlwfGo0Gstms2PV7PB7Mzs7i4OBAatb8fr+YmFBEc+GIqaBsDM7jEw6H8fzzz4up1OzsLKrVKgqFAvL5PFKpFGKxGHZ2dmQRrdfribEKRSkF41lxYQWcmpgoiqIok6BAoZjJZDKYn5+HMUZ6CXFSxZV0OlPSsj0UCiGTyaDVaolNdqfTkQL9GzduiLV1MBiU1fdOp4NgMCh2+3ZEiVEWphBRvHk8HiSTyRNihOmVgUAAjUbjxISRvd4YDWHEjnUuAGR1mulLFHjZbFYm8RR+dIrb2tqSx1h3QoMUjqVer+PFF1+UY+c4I7OEnZ2dE6K5VqvJ57dT6uxjwddSSNiOf+OiO7xtT1THiafTojLu59xCwr2NPdm3hQYn7ZPEgFus2lG9SYLRjnS5I0TuzzAu2mYfD3t/tquk/bj9vvZnfzupieOEs/13HOME6Lh92/ftY3e/SOS4MbqjuPz+28fIjnhysYMRcJLP58Wuvt1uS+ooa2EbjQbi8bhkAKyuriKbzSIajaJSqYjLreM4krJN50Y6wbKObWpqCrVaDY1GAz/zMz+D/f19lMtlTE1NYXV1FV6vF3t7exKpHwwGsg9glBK5tbWFYrGIXq+HhYUFZDIZTE9PY29vTwQeWyHwN8j6Opp6zM3NiXkT36dSqch1slKpIJFIYDgcIhaLoVQq4ejoCI899hjW19el5o1RPxqw8NhR6NXrdTFcCgaDODg4QLPZFOdIv98v7r78fPV6XZx0Q6EQXnnlFdRqNem52Ov1cO/ePcTjcWSzWWSzWWxubqLf78u1lWnnPG5ssJ5IJCZ+h99vxv+6H3DiQR9q7T4Gw7PLTVUURVHOL6wbY/1HKpUCMEqtZMoQGxbX63Xs7OyIcUAsFpPUxGazCccZWfZvbW0hnU6j2+3iz/7sz7C+vi4THKbvsEUAV3MBSASMk2fHcaSerVwuSxNu28mQq/L9fh+1Wg2JRALJZFJMSGwHSk4yWLtiiwjbJY8ul7YxRjAYRL/fx/7+PqrVKiqVijxuiy67Nsbj8eCHfuiHMD8/j42NDekrxzGHw2Hk83nE43FEo9ETdX5M8aTTG8fnbjbNibY7pdBtKsDnx4k3twAcF6maJB7cQsC9H46bn8F+f7cQ4vZ2Tdm4fdvjsdMbbSHnToN0P+Y+Xu40Sft93NEmO1XSvd39jpt7/OMif+5t7H2OO+73e619f1z00f2cfT4YXXNvYz83NTUlDaoZLc9ms7Kgw8bbbITNtgIzMzNot9uIRCJYWFjA/Py81MBSLNiRuWazKdGieDwutbEc28bGBhKJBDqdjqQ3MwJI0w+KzHA4jF6vJ+fx8PAQzWZTDFESiQSMMSfSE/n75mfPZDIi5oLBIFZWVlCtViVDoFar4ejoCNVqVSJt4XAYgUBAIonsX8eWEgCQTqfFuIUp4KxjY+0cDVpoikIxnMlkEAqF0Gw2ZQGOn3l6ehqLi4vIZDK4c+cOCoWC9FLs9Xq4c+cOpqenMTMzg6WlJRHB7NVpjJFrP8UsF9N4DT8LLmwEDgCqrR6SYf8Zj0ZRFEU5b2xtbZ2w5eeqdqFQkJVZTjKZqujxeJDP56Ueg5Ek1kRcuXIF09PT2N7eltq2XC4n9SoUc3wdYYNkvkcsFkOj0UC5XEYqlZL0LNa70IGtXC5L7yUA4ihniwfbWbLdbkudXCwWk8k8076A0QSfpguRSASDwUAcKjkpajQa4v5GUwA7+mGMwZUrV7CxsYGVlRWZyDLVi6v0uVzuRCQKgKSOUfjYkThbRIxLcbRTxHjfNg+ZVGflFnnc3zjhZ58nW8y4o4N26px9XACcGD/v2/sZF7Gy329SpG6SaLI/j73duGgiaxH5GrdAHHfbfp/7iTL3ebNrBe3n7ddwG3fLCPd+J0VW3cfTxj4G7oUBvrdb8DLaTHdXphTOzMygXC4jHo9Lo3MAErFuNpviaJtIJLCysoJ8Pi8LNnt7exKxo4OtbaDEutxIJCIp288//7yYjuzv7+PmzZviYFkqlZBIJBAOh9FsNkVAejwja/9isSgpjr1eD+l0Gh6PB7VaTY5ZvV6XsRtjxL2Xi0OseeN2bEtAAxaKP5/PB2MMms0mWq0W5ubmYIzB9va2XGt4fZidnZWIn8/nk4hdqVSSa2ij0ZDecmwETjMYO701EAggnU4jHA7j3r172NvbQzwex+zsLHw+H+7cuYNEIoF4PI5Lly5hZ2cHu7u74uwL4ES9s+M4ksYOQNqFnAXvWMAZYxYB/DaAPIAhgC84jvNPjDG/AeC/AVA43vTXHcf543c70LdDMjwScEfNrgo4RVEU5U34fD6xvCfFYhG5XA7z8/OSkthut6XmiyYc7HPElfFUKoV8Po9ut4uDgwNJE+I/rsL7/X6Z2EWjUXmcEzRGog4PD6Wwn5MImqlwktVqtXDv3j3Mzc2J8+OVK1dgzKjw3+/3o1wuY29vT+rv+DkAnBB5nKxx8s7xc0LLSRQn9pyIMmrH/TGdaXFxEV6vFwsLC4hEIlhfX5fIwszMjLQ3AN6o5/H5fNLsmO0UKCTr9frYWixOvt11X7bdPk1jbJFJuA9b2NhpnHZdIvBmIxD7tbbAonij4LBF0bi0T3d0aVwKp53G5/4cp6UFuqN8HAu/bwBONNK29+MWPW6x5BZGboHH17jF77jPOG7s9jhOe+60fdrbucfP7407qmhHcW2DHUZiGC2enp4WB8VMJiO/r3q9LpEjOwU5lUqhVCohEongiSeeQDwePxGpYoNpisNarYZYLCYCrVarIRgMSj3s2toa1tfXMTc3h/X1dXziE59APp9Hr9eTxRyKwGg0Kr9xv9+Po6OjE336wuGw2PGzDq5WqyESiUj/OjpgUvSl02ncu3dP0s0HgwHK5bK0E2EUzePxSI+2er2OmZkZTE1NidnJ/Pw8qtUqqtUqstksAMj1N5fLoVKpSCSRYrLRaCASicgCV61Wkxo+YOTqyxrAeDyO119/HUdHRwiHw5idnUUoFMLNmzcBAPF4HPl8HqVSCdvb25JJAECMm2juAgCRSETqfrm4dxa8mwhcH8D/4DjOc8aYKIBnjTFfPX7u/3Ic5x+8++G9M9Lh0X9Qh/UuLmXPahSKoijKeSWbzUrBO1d+U6kUZmZmUCqV3mQiwAlJvV6HMQb7+/siUmKxGMrlshS3M4rGWg5G32jtz9QhtwW41+tFpVJBuVxGJpNBvV4Xm3FjDJaXl2GMwfr6OnZ2dsQ1st/vY3l5GZ1OR9wmd3Z2sLW1hbm5OUxNTWF/fx/T09NIpVIingaDgdQC2jVOrJdj1I2RrWw2K6v2TIkaDAZSy0d7b8dxpB8T0404iY/H49jZ2RHxzNezga/H45FUTaaBUgS50xBtgULs2i67fmZctMcWWrY4syOC4/bP93YLP97me9uOhRR4dqRokvDifux92xEx+3l7+3Eih+/N51nLQ8GQTCYlQuoWwNzfODMQ+3H3e7qPmf1ZJ41xkqi1P9ukKN644zApGmkfk3HnhJFo3uY5npqaEsOKQCCAcDgsNVLBYBClUgnxeFwWfLgdhZ3f78fh4SESiQQeeeQRZLNZPPzww3j++efhOCOnWsdxpPbr4OBA2oQwOsfatX6/j/X1dbz22mvIZDIIh8Oo1+u4fv06UqkUjo6OkM1mRUBxIYi/n/39fREo/X4fyWQS4XAYR0dHYjBSKBQkAs/2BcPhUKJzCwsLklZNY5C1tTV4PKO+bl6vV3pNUjAOBgPMzc1J9gBNQDqdDgKBAGKxGJrNpoyN9cU0lOL1olQqIRqNIp1OIxaLoVqtyufjdYJppKFQCLdv35aFMqZa3rx5E61WC0tLS7IItre396boPq/prD+kwYrH45FWMGfFOxZwjuPsAtg9vl0zxrwKYP69Gti7IROhgDu70KaiKIpyfqGIYvpcLpeTFXGmRdqpTLTe73a72NjYQCqVwuzsrPQnYg1bMBiUiR6FECfINDxot9sSkTLGSD1ZqVRCrVaTCBWNEvx+v0wYd3d3xfGRqUfRaFRW76PRKA4PD9FutyXaRUc6pkIaY8SwxF5B5n1OFO/evSsNtym++L5bW1u4fPmyfB5OeLmiHwqFZNKTTqdljIzusd0BV7zt9KpCoQBjRmYy9iSb0TEAJybebijAOCZOXO1omh09swXGJDdEO43RFm/ASUMRvsZtbGKn4Nn7HSdc7G3HfU63qBuXTun+nNwXv/OM0vJ7zc/lnsAyFc1xJjfcdjPuM7qPz7j74/b7VsSYOyI3LgLHRQCKV9aJjtsXI5X2+Q6Hw5KezB5rrPmyI2hc4KFpBmvX6JL46KOPSop2uVwWsyGOnenSXMwAgIODA7mmVKtVlEolbGxsIJ/PS30rUx9tUULB5fGMbPlrtRqKxSKA0fWvWq2KeGNbDwqWYDAo0SxmJDCNkotcbBvg9/vFnZcOvQAk2s9U0qWlJfkM9XodkUgEnU4He3t7+MQnPoHbt2+jXC5jOBzi8uXL6PV6qFQqYjTFbAbbAZeRO7ZX4PPz8/Pw+XzSLJxtHUKhEO7duyc96XK5HBqNBnZ3d+V3y96YzGbg4kY8HhfRzujbA99GwBizAuAJAN8D8DSAXzHG/BcAfoBRlO5ozGt+CcAvAW+c1PeKbFQFnKIoijKZX/7lX35rTaHOGVevXv3A3uvSpUtjH//EJz7xgY1BURRFeTPv2oXSGBMB8HsAftVxnCqAfw7gMoCPYxSh+4fjXuc4zhccx3nScZwnmfP6XpEK++ExQKGmAk5RFEVRFEVRlIvDuxJwxhgfRuLty47j/D4AOI6z7zjOwHGcIYB/AeCpdz/Mt4fXY5AK+zUCpyiKoiiKoijKheIdCzgzSjL+VwBedRznH1mPz1qb/TyAl9758N45mUgAhdrZ5aYqiqIoiqIoiqK817ybGrinAfwCgBvGmOePH/t1AJ83xnwcgANgA8Dfehfv8Y7JRgMoaAROURRFURRFUZQLxLtxofw2gHFF4B9oz7dJZCIBvF5onPUwFEVRFEVRFEVR3jPetYnJeSUTGdXAuXuEKIqiKIqiKIqiPKhcWAGXi02j0x+i3Oyd9VAURVEURVEURVHeEy6sgPtIPgoAeHW3esYjURRFURRFURRFeW+4sALu2mwMAPCKCjhFURRFURRFUS4IF1bApSMB5GPTeHlHBZyiKIqiKIqiKBeDCyvgAODaXAyvqIBTFEVRFEVRFOWCcKEF3KNzMawV6mj3Bmc9FEVRFEVRFEVRlHfNhRZw12ZjGAwd3NqvnfVQFEVRFEVRFEVR3jUXWsA9OhcHAK2DUxRFURRFURTlQnChBdxCMohoYErr4BRFURRFURRFuRBcaAHn8Rg8MhfDyzuVsx6KoiiKoiiKoijKu+ZCCzgAeGIpgRvbFVTbvbMeiqIoiqIoiqIoyrviwgu4n7qWR2/g4JuvHZz1UBRFURRFURRFUd4VF17APbGYwEw0gH//0t5ZD0VRFEVRFEVRFOVdceEFnMdj8FOP5vAfbhbQ6mo/OEVRFEVRFEVRHlwuvIADgM88OotWb4A/v10466EoiqIoiqIoiqK8Yz4UAu6vXEohHvThX3/3Ljp9jcIpiqIoiqIoivJg8qEQcD6vB3/3Jx/Ct9cO8b//0StnPRxFURRFURRFUZR3xIdCwAHA33x6FT//xDz+8IVd9AbDsx6OoiiKoiiKoijK2+ZDI+AA4Gc+OotKq4fv3ime9VAURVEURVEURVHeNh8qAffJhzKITk/h//h3r6JQ65z1cBRFURRFURRFUd4WHyoBN+3z4v/+G5/A3VIDv/b7N856OIqiKIqiKIqiKG+LD5WAA4Cnr2Twqz95FV97dR9fe2X/rIejKIqiKIqiKIrylvnQCTgA+C+fXsVDMxH8xh++rM29FUVRFEVRFEV5YPhQCjj/lAf/22cfw9ZRC//sm2tnPRxFURRFURRFUZS3xIdSwAHAj1xO4+efmMf/8+d38Mc3duE4zlkPSVEURVEURVEU5VQ+tAIOAP7nv/YIHs7H8N99+Tl85h9/C3/5urYXUBRFURRFURTl/PKhFnDpSAC/99/+KP7+f/Y4Gt0+PveFv8R//cVnUO/0z3poiqIoiqIoiqIob+JDLeCAUT3cX39yEX/6d38Mf+8zH8E3bxbws//0W/j/nrmH4VDTKhVFURRFURRFOT+Y81D79eSTTzo/+MEPznoYAIA/u1XAP/zTm3hxq4JpnwcfnY/j0x+ZwUIyiE9/ZAbxoO+sh6goiqKMwRjzrOM4T571OBRFURTl/WTqrAdw3vjU1Sx+7KEM/t2NXTx79wjfe72E//NPbgIAAlMerKTD+PGHZ/DoXAw/9WgOgSnvGY9YURRFURRFUZQPCyrgxmCMwc8+PoeffXwOAHDU6GKj2MAfvrCLV3er+MKf38HQAUJ+Ly5lw7icjci/XCyAy9kIEiEfjDFn/EkURVEURVEURblIqIB7CyTDfiTDfjyxlAQA9AZD/MWdIr752gHuFOr4wcYR/u3zOyde4/d6EA/5kAz5kAj6kY74MZ8IYiEZRCoSQNDnRdDnRXR6CvGgD9HpKUSnffBPfejLEhVFURRFURRFmYAKuHeAz+vBp65m8amrWXms2e1j47CJ/Voba/t1FBtdVFpdHDV6KLe6uLVfwzdvHqDdG566b/+UB7FjMRcJTB0LuylEAj5EAl5ErNvhwNTon38KoYB39NfvRcg/ei4w5dEooKIoiqIoiqJcIFTAvUeE/FO4NhfDNcTw4x+ZGbuN4zgoNrooN3to9wZodgeotnqotHqod/qotXuotfuodfqjv8f3Dw8baHQGqLV7aHQHGLxFd0yPwUlxF/Ai5J9C2O9FKHD81z+FsOvxkN+LwJQX0z4Ppn1eTFu3Az6PPOf3qkBUFEVRFEVRlA8SFXAfIMYYZCIBZCKBd7wPx3HQ6Q9Ra/fR6PTR6PbR7I7EYLPTR6M7QLPbR6Pj+ivP91FsdHGv1ESzO0CjM3p9/x20TDAGmJ7yIugfpYNO+zwI+in4RvcDlgD0T43+Baa8CEx5EDi+7/d64PN6MOU1o78eA9+UBz4PHzOYOr7t93owxW34Go8HvqnRNj6vUVGpKIqiKIqiXFjeNwFnjPkMgH8CwAvgXzqO85vv13t9mDDGHIsjL7LRdy4E3XT7wxNCr90bot0foNMbot0boN0fjB7rDdDuDdDpj263uqPnWt3hcVSxj87xvkqNITrHr+v0R6/p9Ifo9k9PI323eD1GBJ7PazDl9cDnGf2l4Js6fnzqeNspr4HXM9rOe3x/yuM58dyUPH68rdfIe3FfXvufcd0/fsxz/Br+dT9mv27cY+598bYxgMcYeMzoGKiQVRRFURRFuXi8LwLOGOMF8M8A/FUAWwCeMcb8geM4r7wf76e8e0bRMT8Soff/vRzHQXcwEnIUdL3BEL2Bg/5wiP5g9Hx/4KA/GKI3PP47cNAbDNEfHm97vL087trHm7c/ua/B8I1t270h+sMBBsf3+8PR873B8Hi70ev4ON/7vPd6t8Wcx2Ak+o7FntfD22+Ivjc/d/I1nmMh6TGjxYQTt42BxwPZp9dYtz0UlyPR6THWfQPZtznelwFOvCdO3D/exgAGrtcDx5/n/tvC9R7j33v0Oj53cqxv3hZ443hw23Gfh+O033vc6yeNc+x7yTjv817cnwf3Oc58LXQxQFEURVHOEe9XBO4pAGuO47wOAMaY3wHwWQAq4BQYY47TKL2InvVg3iXDoSX2hkMMBg4Gzuj+iX+Oc2Jb92PD4/u8bT82bl/2/aHjYOhg9Hdo3XZwfH/S88747azbA8eB4zgYDnFy++MxONbtkeA9/lzOSKiPnrNvW6+x9us4gAO+brS9gzeeG442GN23Hj/5OufcC+oHmVPFIo4FoEs82q/xcrHAEvPc7hd+eBm/+KMrZ/0RFUVRFOWB4P0ScPMANq37WwD+ir2BMeaXAPwSACwtLb1Pw1CU9xePx8A/CocgCG3qfh5wLNF3X7E3drs3i8dJr38728ISqKe+1/FnGA5x33HhxP03Prvjfi/3cXHGC2fZ5/B+x2T0Osexj8XJMdnb2osCFPNDawypsP8D/IYoiqIoyoPN+yXgxuXbnFgbdxznCwC+AABPPvmkrpsrivKeIOmCYy9DiqIoiqIoDzbvV9foLQCL1v0FADsTtlUURVEURVEURVHeAu+XgHsGwEPGmFVjjB/A5wD8wfv0XoqiKIqiKIqiKB8K3pcUSsdx+saYXwHwJxi1Efgtx3Fefj/eS1EURVEURVEU5cPC+9YHznGcPwbwx+/X/hVFURRFURRFUT5svF8plIqiKIqiKIqiKMp7jAo4RVEURVEURVGUBwQVcIqiKIqiKIqiKA8IKuAURVEURVEURVEeEFTAKYqiKIqiKIqiPCCogFMURVEURVEURXlAUAGnKIqiKIqiKIrygKACTlEURVEURVEU5QFBBZyiKIqiKIqiKMoDggo4RVEURVEURVGUBwQVcIqiKIqiKIqiKA8IKuAURVEURVEURVEeEIzjOGc9BhhjCgDuvke7ywA4fI/29UHyII77QRwzoOP+oNFxf7B8mMe97DhO9r0YjKIoiqKcV86FgHsvMcb8wHGcJ896HG+XB3HcD+KYAR33B42O+4NFx60oiqIoFxtNoVQURVEURVEURXlAUAGnKIqiKIqiKIrygHARBdwXznoA75AHcdwP4pgBHfcHjY77g0XHrSiKoigXmAtXA6coiqIoiqIoinJRuYgROEVRFEVRFEVRlAuJCjhFURRFURRFUZQHhAsj4IwxnzHG3DTGrBlj/qezHs9pGGM2jDE3jDHPG2N+cPxYyhjzVWPM7eO/yXMwzt8yxhwYY16yHps4TmPMrx0f/5vGmJ8+m1FPHPdvGGO2j4/588aYn7GeO/NxG2MWjTHfNMa8aox52Rjzd44fP9fH+5Rxn/fjPW2M+b4x5oXjcf+vx4+f9+M9adzn+nhbY/EaY64bY/7o+P65Pt6KoiiKch65EDVwxhgvgFsA/iqALQDPAPi84zivnOnAJmCM2QDwpOM4h9Zjfx9AyXGc3zwWoEnHcf7Hsxrj8Zh+DEAdwG87jvPYaeM0xlwD8G8APAVgDsDXAFx1HGdwTsb9GwDqjuP8A9e252LcxphZALOO4zxnjIkCeBbAfwLgb+IcH+9Txv3Xcb6PtwEQdhynbozxAfg2gL8D4D/F+T7ek8b9GZzj422N578H8CSAmOM4P/sgXE8URVEU5bxxUSJwTwFYcxzndcdxugB+B8Bnz3hMb5fPAvji8e0vYjQJPlMcx/lzACXXw5PG+VkAv+M4TsdxnHUAaxidlw+cCeOexLkYt+M4u47jPHd8uwbgVQDzOOfH+5RxT+K8jNtxHKd+fNd3/M/B+T/ek8Y9iXMxbgAwxiwA+GsA/qVrfOf2eCuKoijKeeSiCLh5AJvW/S2cPok8axwAf2qMedYY80vHj+Ucx9kFRpNiADNnNrrTmTTOB+Ec/Iox5sXjFEumap27cRtjVgA8AeB7eICOt2vcwDk/3sfpfM8DOADwVcdxHojjPWHcwDk/3gD+MYC/B2BoPXbuj7eiKIqinDcuioAzYx47z7mhTzuO80MA/iMAf/s45e9B57yfg38O4DKAjwPYBfAPjx8/V+M2xkQA/B6AX3Ucp3rapmMeO0/jPvfH23GcgeM4HwewAOApY8xjp2x+3sd9ro+3MeZnARw4jvPsW33JmMfO0/VEURRFUc6MiyLgtgAsWvcXAOyc0Vjui+M4O8d/DwB8BaPUoP3jeiLWFR2c3QhPZdI4z/U5cBxn/3jiOwTwL/BGOta5GfdxTdPvAfiy4zi/f/zwuT/e48b9IBxv4jhOGcB/wKiO7Nwfb2KP+wE43k8D+I+P639/B8BPGGO+hAfoeCuKoijKeeGiCLhnADxkjFk1xvgBfA7AH5zxmMZijAkfmz3AGBMG8FMAXsJovL94vNkvAvi3ZzPC+zJpnH8A4HPGmIAxZhXAQwC+fwbjGwsnicf8PEbHHDgn4z42p/hXAF51HOcfWU+d6+M9adwPwPHOGmMSx7eDAH4SwGs4/8d77LjP+/F2HOfXHMdZcBxnBaPr8zccx/kbOOfHW1EURVHOI1NnPYD3Asdx+saYXwHwJwC8AH7LcZyXz3hYk8gB+Mpo3ospAP+v4zj/3hjzDIDfNcb8VwDuAfjPz3CMAABjzL8B8GkAGWPMFoD/BcBvYsw4Hcd52RjzuwBeAdAH8LfP0Olu3Lg/bYz5OEZpWBsA/hZwrsb9NIBfAHDjuL4JAH4d5/94Txr358/58Z4F8MVjB1sPgN91HOePjDHfxfk+3pPG/a/P+fGexHn/fiuKoijKueNCtBFQFEVRFEVRFEX5MHBRUigVRVEURVEURVEuPCrgFEVRFEVRFEVRHhBUwCmKoiiKoiiKojwgqIBTFEVRFEVRFEV5QFABpyiKoiiKoiiK8oCgAk5RFEVRFEVRFOUBQQWcoiiKoiiKoijKA8L/D6FuNkSszriVAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -3176,7 +3176,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAGoCAYAAAAHGAe8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eZxlyV0diJ94+77kVlVZS1dXV3ep1d1SN2oJqbULScYGhLfBeLANxjbe8QK2wcYDMwYGbGP/hjFe8ICBYfWw2GCx2MYYIWtBLcmS6JZa6r1rycr17Uvmey9+f9x3Is+Lui8zq7dSJ3E+n/xU5nv3xo0bEffW98T5LsZai4CAgICAgICAgICAgIAvfiRudQcCAgICAgICAgICAgICjoZA4AICAgICAgICAgICAl4hCAQuICAgICAgICAgICDgFYJA4AICAgICAgICAgICAl4hCAQuICAgICAgICAgICDgFYLUre4AACwtLdnz58/f6m4EBAQEBLyC8fGPf3zTWrt8q/sREBAQEBDwUuKLgsCdP38eDz/88K3uRkBAQEDAKxjGmGdudR8CAgICAgJeagQXyoCAgICAgICAgICAgFcIAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIDiVwxpizxpjfMsZ81hjziDHmb0w/XzDG/BdjzBem/9blnG83xjxujHnMGPMHXsobCAgICAgICAgICAgI+P2CoyhwIwDfYq29G8AbAfxVY8yrAXwbgN+01t4J4Denf2P63dcCuAfAlwP4l8aY5EvR+YCAgICAgICAgICAgN9POJTAWWuvWWs/Mf29DeCzAE4D+GoAPz497McB/OHp718N4GettUNr7VMAHgfwhhe53wEBAQEBAQEBAQEBAb/vcFMxcMaY8wAeAPBRACestdeAiOQBWJkedhrAc3La5elnflvfZIx52Bjz8MbGxvPoekBAQEBAQEBAQEBAwO8vHJnAGWNKAH4BwN+01rYOOjTmM3vDB9b+sLX2QWvtg8vLy0ftxly0Bnv4od96HJ+9dlDXAgICAgICAgICAgICXrk4EoEzxqQRkbefstb+4vTj68aYU9PvTwFYn35+GcBZOf0MgKsvTnfno9Xfwz/5jcfwmcvNl/pSAQEBAQEBAQEBAQEBtwRHyUJpAPwIgM9aa/+ZfPXLAL5++vvXA/iP8vnXGmOyxpjbAdwJ4HdfvC7P7ScAwN4o9gUEBAQEBAQEBAQEBBwLpI5wzJsB/GkAnzHG/M/pZ38fwPcB+PfGmD8H4FkA/wsAWGsfMcb8ewCPIspg+VetteMXu+M+6LdpA38LCAgICAgICAgICDimOJTAWWs/iPi4NgD4sjnnfA+A73kB/bppTAW4oL8FBAQEBAQEBAQEBBxb3FQWyi9mmCnHDApcQEBAQEBAQEBAQMBxxfEhcE6BCwwuICAgICAgICAgIOB44vgQuOm/QYELCAgICAgICAgICDiuODYEDiEGLiAgICAgICAgICDgmOPYEDjjGFygcAEBAQEBAQEBAQEBxxPHh8AFBS4gICAgICAgICAg4Jjj+BC46b9BgAsICAgICAgICAgIOK44PgTOsIxAYHABAQEBAQEBAQEBAccTx4fATf8N9C0gICAgICAgICAg4Lji+BC4kMMkICAgICAgICAgIOCY4/gQuKkGF/hbQEBAQEBAQEBAQMBxxbEhcPtVBAKFCwgICAgICAgICAg4njg2BI4ulAEBAQEBAQEBAQEBAccVx4fATf8NAlxAQEBAQEBAQEBAwHHF8SFwLCMQouACAgICAgICAgICAo4pjg+Bm/4bFLiAgICAgICAgICAgOOK40PgmMTk1nYjICAgICAgICAgICDgJcPxIXAsIxAYXEBAQEBAQEBAQEDAMcXxIXBOgQsMLiAgICAgICAgICDgeOLYEDgiKHABAQEBAQEBAQEBAccVx4bAhTpwAQEBAQEBAQEBAQHHHceHwLkYuCDBBQQEBAQEBAQEBAQcTxwfAscYuMDfAgICAgICAgICAgKOKY4PgZv+G/hbQEBAQEBAQEBAQMBxxfEhcCaUEQgICAgICAgICAgION44PgRu+m8oIxAQEBAQEBAQEBAQcFxxfAhcyEIZEBAQEBDwRQNjzL82xvzDW92POBhj3mqMeexW9yMgICDg+eDYEDgiuFAGBAQEBBwFxhhrjOkaYzrTn//H+/5vGWPWjDFNY8yPGmOy8t2CMeaXpuc/Y4z5X1/+O/jihrX2L1lr/9Gt7gfg5voi/7bW/o619tKLfI2/Y4z5PWNM2xjzlDHm73jfnzfG/JYxpmeM+Zwx5t3e9399el7LGPOwMeYtB1zraWNMX9buf55z3L/z733az81pX++Vz99sjPkPN3nP/90YM5j2YdMY84vGmFM308ZLCWPMNxhjxjJO/Fm91X2LgzHmzxtjHp/28dcP6qcx5m5jzH+bvp8eN8b8Efnu67z77U3Xweum3z/vtWqM+QpjzAeNMY3p+/HfGmPK8v2CMebnputh0xjzU8aYyvS7t8bMhTXG/LHp9/caY35jet4NFv1B793D7nl6zJcYYz4w/f66MeZv3OwcTdt59fQZ3Zn+/FdjzKvle2OM+X5jzNb05x8bE0lNxpiUMeZnp+P3a97Y/QNjzN86Sh+ODYEzjIG7xf0ICAgICHhpMBqNXopmX2utLU1//jw/NMb8AQDfBuDLAJwHcAHA/y7n/RCAXQAnAHwdgH9ljLnnpejgywFjTOpW9+H54ouo7wbAnwFQB/DlAP6aMeZr5fufAfBJAIsA/gGAnzfGLAOAMeZLAXwfgD8OoArgRwD8kjEmecD1vkrW7ntv6ExEAO/wPjsF4M8hWs//enpNjuEPAPibN3nPAPDXrLUlABcBlAD80+fRxkuJD8s48eeqf1DcOrrZtfVC1qIx5u0AvhfAVwNYAPAUojUz7zr/EcB/mh77TQB+0hhzFwBYa39K7xfAXwHwJIBPsAk8z7WKaH1+N4BVAHcDOAPgn8i53z1t9wKi9XcCwHdN+/U7Xr++EkAHwK9Pz90D8O8RrdE4zH3vHnbPxpil6XX+zfS+LgKI3fg4Aq4ielYXACwB+GUAPyvffxOAPwzgtQBeM73Pvzj97o8ioitLAFr83BhzO4CvAvB/H6UDx4bAOQQJLiAgIODY4Pz58/j+7/9+vOY1r0GxWHypSFwcvh7Aj1hrH7HW7gD4RwC+AQCMMUUAfwzAP7TWdqy1H0T0H/ifPkrDxpi8MeYHpjvIzeludn763fuMMY9Md2f/uzHmbjnv6enO+aenO9A/Yow5Md3FbU93gevTY89Pd5+/yRhz1RhzzRjzLdLWdxljft4Y85PGmBaAbzDGVKdtXjPGXDHGfDcJhDHmojHmt6f93TTG/Nz0c2OM+efGmPXpd582U1XHGPNjxpjvlmv+BRMpBdvGmF82oi5M+/qXjDFfmO5o/xB3rGPGL67vbzDGfHg6bteMMf/CGJOZHv+B6amfMtHO+58wxrzDGHNZ2rx7Ot6N6fi/7yhzqbDW/mNr7SestSNr7WOIDOw3T9u/C8CXAPhOa23fWvsLAD6DaB0B0SbBI9baj9uooO1PIDLwVm62H9PrpRAZgn/N++ocgE9aa1sA/isiIxuIiNsvW2uffj7XAwBrbQPAfwBwv/TjVcaY/zKd88eMMV8j372Q5+Bbp2utaSK1J/d8+jxt6+8ZYz4NoDtd59YY8+eMMc8C+G/GmIQx5jum/Vw3xvyEMaY6Pf+8f/zz6ccUXwXg/5u+c3YRvXPeZoy5I+bYVyEiUP/cWju21v43AP8D899BXw/gJ6Zr6wWtVWvtT1trf91a25u+G/8tz53idgD/wVrbstY2AfwSgHmbW18P4Oettd1p249Za38EwCP+gebm37sz9wzgbwP4jSnRG1pr29baz0r7c9eqD2ttw1r79LRtA2CMiBDqtX/AWnvZWnsF0ebIN8j4/Hdr7QjAb2H/GfxBAN86/fxQHCsCZ0xQ4AICAgKOG37mZ34G73//+9FoNJBK3bjB/ZrXvAa1Wg0A7p8afPrzLw9p/gMmcgP6RWPMefn8HgCfkr8/BeCEMWYRwF0Axtbaz3vfH1WB+6cAXgfgIUQ7uH8XwGRqOP0MImN6GcCvAvgVEpEp/hiA90z78FUAfg3A30dk7CcAfLN3rXcCuBPAewF8m5l12/tqAD8PoAbgpwD8OIARIkPkgek5VCX/EaLd6jqiHXfuEr8XwNum/akB+BMAtvwbNsa8C8D/CeBrAJwC8Axmd6yBaJf69Yh2rb8GwB/w2zmg72MAf2s6Dm9CpJz+FQCw1r5teg7V1p/z+pYG8CvT+1sB8NcB/JQx5tL0+2+LWVfuJ65zU/L5VuwbovcAeNJa25bDdM38GoCkMeZLTUSavxHA/wSwdsAY/JQxZsMY85+NMa/1vvtbAD5grf209/njAO4zxtQAvBvAI8aYswC+Fi9QOZs+G390eg0a3P8FwE8jGtc/CeBfmn2l+oU8B1+DSDm6HZHC8Q0voOt/EsBXIFpLNJ7fjkhd+gPTtr8B0bN0AZHK+C+8NvT4GRhjzh20fsy+G6DBfk4+yO/34kbEbW6YuGONMbchekZ/Iuac57NWfbwNs4TrhwB8pTGmbqINpT+GaH371y0gUrF+fE67Po783p1zz28EsG2M+dCUiP+KMebc9PjD1mosps//ANH78Hvlq7j/P9jW7wF413Q9vxPRM/hHAGxOSemRcLwIHIIAFxAQEHDc8M3f/M04e/Ys8vl87Pef/vSn0Wg0AOB/Wmtr3s9fOaDptyNSPl6FyCXmP5l9F6gSgKYcy9/LMd/x+zIOgTEmgcg4/xvW2ivT3fMPWWuHiMjP+621/8Vau4fIwM0jMnCJ/9tae326q/s7AD5qrf3k9PxfQkS8FP+7tbZrrf0MgH+HyDAhPmyt/Q/W2gmACoA/COBvTo9fB/DPERn2QOTadBuAVWvtQAyNvel9vwqAsdZ+1lp7LebWvw7Aj053/YcAvh3AmzzS/H3Tne1nEe1M33/AULq+T1WCj1trPzJVFJ5G5Cb19gPOV7wR0Zx+n7V2d6pm/CdMx8pa+30x68r9zGnzuxDZWP9u+vdha6YN4BcAfBDAEMB3AvgmUQ98fB2itXsborH6jSkpw5SQ/UUA/5t/krV2C8D3IFKKvgLAtwL4vwD8PQB/xEQq6380xpyZc904/KAxpglgExGB/uvTz78SwNPW2n83nZdPTO/xj78Iz8EPWmuvWmu3EZHv+w/o3xs9wvSE339r7XPW2r589l3T56CPaKz/mbX2SWttB9Ha/Voz6y6px8/AWvvsQevHWvvT00N/FcDXGGNeM1Ui/zdEukQh5p4+B2AdwN8xxqSNMe9FtN7jjv0zAH7HWvvUnPH5LtzcWnUwxrwHkdqka+0TADKINnK2EG2uxG2k/TFEa+a35/TLx828d+Pu+cy0r38DkRKtLqpz1+pBHZo+/1VESvcnD+hrE0BpSpZ/dXrth6ef/yyi5/3vGWO+x0Qxev/S27C4AceLwBkTyggEBAQEHDOcPXv2JWnXWvuBqcHeQPSf+u2IdtGBKC6jIofz93bMd/y+jcOxBCAHwDcigcgl6hnp3wTAcwBOyzHX5fd+zN8lr83n5PdnpteI++42AGkA10RZ+jfYd+H7u4j2SX/XRK5t3zjt439DpEb8EIDrxpgfNtOEBYfcWweRcaf3pmpTL+Ze5t0XjDF3GWP+01RNbSHaDV864Hy/b89Nx5t4xuvbkWGM+WuIDMivmBIS4PA18+cREZp7EBm/fwrRhkJsEgtr7f+YEteetfb/BNBApKIAwP8PwP9hI/e1uHN/xlr7JdbaP4hIsRkiMj7/KaZufLg5Ne6brbVVREoYFVogWlNf6qmVXwfgJF74c3Aza+UjHmHyXRKfizlHP5vpz/T3FKI4rIPauClYa38TkSH/C9NrPI1ofVyOOXYPUYzVVyAai29BFDt2w7GI1mKsyvU81yrPfSMixeqPe6rY/wfg84iIVQXRHP9kzOV9F8fDcDPv3bh77gP4JWvtx6y1A0QxzQ9N3WHnrtWpguqSo/gXspH7578G8BPGGL4v4/7/6Nh9fJu19jXW2m9CFGv9rwE8OP15O6J3wDceNBjHi8AhKHABAQEBxw3mkDox99xzD0qlEgA8YG7McPavb+JSjGcAIpcgdUt7LYDrUwXj8wBSxpg7ve9viNuIwSYil5u4uJariAwJAM616SyAK0e9gRgo+z03vQah/2M+h8iQXxJDt2KtZYKANWvtX7DWriJSd/6lmWY2tNb+oLX2dYjIx10AZjLazbm3IqJEAs/33vz/7f8VIlXiTmttBZFb6VELDF0FcHaqChHn2DdjzN+PWVexBt2U2H4bgC+z1qox/QiAC0YyzmF2zbwWwK9Yaz8/VRV/HcA1zKpOB0HX7pcB+CdTMkui82HjZUqdqjzfi8j4vxMRiW0B+BgiMnZTsJHK+90AGL/4HIDf9shTyVr7l/HyPwcHdv2Qz2b6g2htjDC7eTLX+vQJQMzP17lGrP0ha+2d1toVREQuhcjl7sYOWvtpa+3brbWL1to/gMi983e9a78ZEQH9+Zh+Pd+1CmPMA4jiz75xSjzhHftvpopkBxE5+UPetc8CeAfmuHXOwZHeuwfc86cxO0/8/cC1OlVQNTlKHBKI1E9uMsT9/xEX13cvomf8hwHcB4AxsIc+g8eLwIUYuICAgIDfd3jkkUfQ6XSAKDmDn23uL8WdY4y5xxhzvzEmaYwpIQoyvwKAQe0/AeDPmShddB3AdwD4McDtuP4igP/DGFOcGgxfDeD/lfatMeYd/nWnasKPAvhnxpjV6fXfZKISBf8ewFcYY77MRHFZ34KIVH3oBQzPPzTGFKaxHH8WwM/FHWQjt8f/DOAHjDEVEyVuuMNEmfFgjPlfxK1uB9F/t2NjzOtNFLeVBtBFZJSPYy7x0wD+7HTMs4iIw0ftC0ia4aGMKKNbxxjzKgB/2fv+OvaTBfj4KKK+/92pO9o7EClRPwsA1trvjVlXNxh0U0P8ewG8x1r7pF5gqlD8TwDfaYzJmSjm5TWIjHQgMti+whhzwURgnOMNxvuUELzZGJOZtvV3ECla/2N6yF2IDMb7se9a+FWIXGwV3wHgx2yUkfFZAJeMMScQxeU8Ob0Wk3ScnzN2Pn4ckWr7PkRuqHcZY/70dFzT0/Vy9y14Dl4IfgbA3zLG3D59V3wvgJ+zR0w24ROAmJ+fAoDpXN47nf9ziIz6/8tGiUJugIlcLXPT5/tbEcWW/ph32NcD+AU7G8/2gtbqlHT8OoC/bq39lZiufQzAnzdRkpo8ooyMn/KO+dMAPmStnVFgp/eeQ6RAcUyy034d+t496J4RuYj+kek7KA3gHwL44NQDY+5ajbk/GGPeY4x5YLpuKwD+GaL3ov7/8beNMadNpKJ/C7y5mW5M/BAiN+IJIrfKt5jIdfLtmD6D83C8CBxMUOACAgICAo6CE4jITAvRf5TnAXzl1DUJUwXkHyOKL3pm+vOdcv5fQRSXs47IwPvL1tpHAGBKdDqIMrfF4Vun330MwDaA7weQsFE2uD+FKCB+E5HR/VU2ykj3fPHbiJJK/CaAf2qtPSht9p9BZDg9isgY+XlERiEQJRf5qIkUp19GZHQ8hcg16N9Oj38GkVvkDe530136f4jICLyGSHn5Wv+4F4BvBfC/InKn+re4kah+F4AfN5F71Ex2uen4vg9RDOAmonidP2Ot/dxN9uG7EamKHzPxCvDXInKR2sG0ZIC1dmP63U8gIoz/HdGa/EEAf5F9MFFRdLZVRqQ47iDadPhyAH9wqg7DWrs+VUzXrLVU4DatxGeZKEHLezFNRjMl8N+HSCX4ZkRxXkCkfD2DI6pf07H8QUSZAtvTa3wtIhVrDdFaZz3Fl+s5eJO5UfV6/U2c/6OISMIHEBnZA+zH+b2YyCHa6OggUtI+jOiZAeCUYE0G8qcRPUvriFTX99h9N0hMidDXIN598oWs1W9BlFzmR+RcVZe+EdH79DKidXMBNyaZmefWeRsiV0e21wfwmHw/97172D3byN377wN4//T8i4jeGTjCWvVRm16/ichF9CKAL7eRayYQuZ//CqL1/XvTa/4br40/C+D3rLUPT//+xem1NxDNjX/8DIw9hPEYY34UUXDfurWWqYF/DgALYNYANKy19093aD6L/cH+yLzdT8WDDz5oH3744cMOOxR3fcev4c+++Ty+/Q/GEuaAgICAgGMMY8zHrbUPfhH0408BuMda++2HHvzS9eE8ImMzfVSlICDAhzHmOwBsWGsPNCYDAgJeXhyl4OCPIQpQdn6q1to/wd+NMT+A2UwrT1hr73+R+ndTMEDwoQwICAgIuKWw1sYF7AcEvOJgrf3uw48KCAh4uXEogbPWfmCe7/PUf/NrALzrRe7X80KIgQsICAgICAgICAgIOM54oTFwb0WUlesL8tntxphPmqiWyFvnnWiM+SZjzMPGmIc3NjbmHXZTiGLgAoULCAgICPj9DWvt09ZaE9wnAwICAo4fXiiB+5PYL4IHRMGU56y1DwD42wB+2sTXg4G19oettQ9aax9cXl5+gd2IYEwoIxAQEBAQEBAQEBAQcHxxlBi4WJioAv0fBfA6fjbNfjOc/v5xE1W7vwtRtfGXHAbBhTIgICAg4HBUq1X334UxxtWa8704+B1/EonEkY4nEolErGeItRaJROKGa+j3/NfE1MHT83mMf6y1duazeW2xD3pdthf3vX8tv+/+NeLa8ftYKBRQqVSQyWSQTCaRSCSQSCSQy+WQTqdhjMFgMMBgMEA6nUYymUQ6nUaxWEQmk0E2GyWL4/xkMhnXr/F47D4fjUYYDAYYDofI5XIol8vu8+FwiMFggGQyCWMMJpMJJpMJxuMxjDHI5/PIZrPu/ieTCYwxyOVyyOVyGA6HaLVaGAwGmEwm2N3dxWQyQSqVQiKRcNe21rr75D0BcPc5Ho/dsQCQSqWQTqexsLCA5eVl116hUMB4PHbX4Zzkcjk3XsPh0LU3Go2wu7sLYwzS6TTS6TQSiQTS6TSstej1ehiNRm6sOM7j8X5ViEQigVQq5e6P/eZ47O3tYW9vb+Z4zlUc0um0G4vxeIy9vT13bY4F28tkMkgkEuj1ehgOh7DWIp1Ou/HPZDLIZDIAgPF47Pq0u7vr+sFx4nE6/mzfWuvWAgAUCgUUCgUkEgmMx2OMx2NMJhP3/LGPyWQS2WwWqVQKo9HIHcPjJpOJmwNrrZtX3qu1Fnt7e25O2DbfOwrOka5RzlMqlZp5JnnceDyemQuuC64bPT6ZTCKVSrkffp9MJmfOZf94L3yWdnd33Xf+s59MJt0zrs8613UqlUI2m0U6ncZkMsFgMHBjZq2duWYikXDjqu0lk0lkMhm3Jv1nmWPMa7NP+sP1o+8qjgHHJ5FI4B3veMdR602+qHjeBA7AuwF8zkrxP2PMMoBta+3YGHMBUWHIA+sYvJiIHoCX62oBAQEBAccBPhnhZ4rDCJZ/vBpcNKD843xiM+87nqvH+v2eR5Li+qznxvV9HuaRt7hrKeLIJdtLJpOoVCqo1+vOGAP2x280GjlDjqSVBK1QKKBUKqFUKjkDtlAoIJvNOgOcxh2N/b29PQyHQ2e8DQYDd24ikUA2m3VGP8clmUzOEMlkMumIBg3adrvt2qKxCOyTm9FohH6/j9FohL29PXdfSoh4fRrGRDKZxMmTJ7G4uOja5D3u7e05Q5OGL6/B+9KxV2IEwLXDMecckMzo2JDQ7e3tOSJI4kUiyXY4LiTDQEQsgP31rIazkhCSXfaFc06CQ3JE0sbjJpOJGxNem/fPttmXwWDg2uG48Lr8PJvNIpfLOUKmpCSbzSKRSGB3d9cRRCUUvC8SHf5Ncsp1otB+c5x4DJ8VJYP8TgmlkkqOG+ea90gixDFX8s97JoHh88vzdI2nUinX17gNHSVnJHa6ztgm70U/Jynm97yOPht8H7D/BNtjmySg+pkScIJzk8lkkEql3JrWZ5rX0c23W4VDCZwx5mcQVUtfMsZcBvCd1tofQVQr4We8w9+GqMDeCFEhz79krd1+cbt8QF8B2KDBBQQEBAQcgji1ah4Z8f+TjlOj/O/jSJFPxPT8eSRqHvHR3w86V/vrk704lc9XDOPOmTce8zCvf9lsFgsLC8jlcs7I89vkDjz/zufzKJfLM4YmjW4qJbu7uzPGH4mFEkASu06nA2stisWiIzP9ft/dZyaTQT6fnzFG1aCcTCZoNpszBiFJYCqVcuoYDVJV5Xg+AEdiOAckfsViEfl8HsViEePx2BGHTqfj7ptqQyqVcgY2CRz7PZlMHHHY29tDKpVyCoW/jknyaLiTtBhjMBwOnSGuc6TKGdeQTyY4biRdvKaqK75axXEaj8czpEvVNvaFxr3OhRLOTCaDXC6H8Xjs5pjqHwka1ZpcLod8Pu9IP4kjFSmqdCTiVLV4jyROHDuOLZVi3SBQkjLvGeC98G/dENLvfXKiapX/XiJJo5pJVYnnAftqHtcNFV2OA/vPTQo+W6qqaT+UDJJca1+030pySah0rSqhYnsKjhfXGv/lOKkCqZsKmUwG6XQau7u7M2tK21QSfKtwlCyUf3LO598Q89kvYFqp/ZYgxMAFBAQEBNwEDnMZPOgcX8Xyf9djD7vGPDJ4lL77v8e16fctjsQddJ04Esg2jzJWekwikUC5XMbS0hJyuRx6vZ4znnzjn9dJpVIoFAqo1Wqw1iKXyzkDajQaOaWk1+vNuPLR+Eyn0zh//jyazSbG47Ejaul0GrVazakpVKPUNQ+YNTDZt36/j263CwAzqkUymUSv15shU/xJpVKurwAcGWIf1R1saWkJpVLJ3X8ul8NoNEKv13NkgyoIXUBVWTHGzCiF2ge6gqoLGgkr74Fzls1mnfpirXUEhvNjrXWugzSkfQVaSYqqU2rYq1qkY64EgaSL5I2EEYAz6HVTg4RP3VjZP/ZDxy6ZTDpXWVXeuOb8z0hwOI/8m9dWAqf3pxslnAcAbuNBP+f8kRzxfI4/r8k1xc9J4HmuPuM8n6qvEjKuBZIVqlAcf1XedH45BhwH3aTQzSuffKkqqPOs61i/4zlsz1dXtW+6ltT9nao6SSnnSteOklG6iPJ5IdH3VbyXEy/EhfKLDrdOyAwICAgIeKUhTqE6ihI37zif1MSpYz5hjCN7cQqXTxrjlDD/WD0+7ji9ZhyBjOuHT+QOg39cKpVCtVrFysoKMpkMdnd3nSpCFUrJHFWdWq2GQqHg2qEykk6nkc/nAewbde12G3t7e8jn8+j3+9jb28Pp06edsgRERmo+n0e1WoUx+/FidJ3TeDceD+yTin6/j1ar5QxndcXr9/vuuiQH4/EY+Xwe9XrdqU5Uyay1zj2Rik65XHaGaDabRSaTccfT6KRh3uv1ZsaaRiWVx1Qq5fqgbnhKotT9T13NOM7qksdr0chWNzWuH19tJmHiMWp0q3uckke/DZJptqfKl7rc8rna3d117qaMKSRR5pxxjkheqb7QHZOKqcYDqsuktftxaxpjx7Z5PxxDJc2cA71/vRfeP6/jP9c+2eDfJIk+cfPJBpVMdR/l/aqap+uU5M0n5ZwvjQ1T90ZV3vzYOZ2LeW6ibF83CFSR5Br2STLHSmPefJdRHVNfleM1dJ1yPDXW81bgeBG4m9y9DAgICAgIIHwyA9yoktEIOUx1mkfc2KZvjB0UUxFH2vx+abu6U38YGYy7jo84pXBeX+eBrknVahXlctklGaGxDOwbYhzjdDqNUqmEpaUl5wpJo45kjEY9DUG6xjHBRzKZxLlz55BOp7Gzs4NWqwVrLWq1mnNLpKIFRAkr8vn8TAwYd9tTqRT29vZcsg8eQxe9ZDKJVqvl1BxgP9kDlR3+rQY9CUUiESUmKZfLjuBQ2SNJY1/K5TKsteh0OjMqBQ1oGqEcVyVQnDeSwGKx6NafugVqO0p+/fWlxjjXMt07afhyrAh+xzHS2MY4tzl1xaN6wjHT2DIqhXSZ1OQoSjbUzZbqZjabnXGnpBqrbo9K5ngfGmvmb4yw36rc8v2gbqR8rpSUEH4820Fue+pCqoqkzj3HlIRViZr21Y/9UqVN1UG2r+2RAPkEjm1qXCDnmc8F55V94XgoafXHWseR5J33oeuZ88Hnj67EnF/2m9dk0pd0Ou02eajq6jN2K3DMCFzIQhkQEBAQcHPw/xOOI0tq+PIz/V2Nqjg1y2/bb2Pesfr9Yaqbf92jEq+4do9Czg5S6xSpVMolG1HVhIYW+67qRaFQQL1ex/LyMqy1aDQaTpFQI3U0GjkXv16vh0QigWKxiFar5ZKcpNNptFot5z5ZKpUcOaGxn0qlkM/nHWEC9rMLAnDxY91u1ykFqqSRYPZ6vRlVg8SNRJWJTDQRA0kBya0SOxqKGsdVKBSc8sNjVNmhcTwYDBxxptFLY7Xf7zvjVQ17qklUJXVjQTNJqusglSMl46pq0UhX1zb2Vd3WVMVRlYp9Hg6HjiQo0eF1SBxIxPb29tDv9x1R1eycJPr5fN4lvrHWOtWN90RCORwO3YaBKm0kRur6yPEhoeRxviKk/VfVnuPNa6hypfGH6hKoLolsx1fOlJyo4qrJU3iMkhNfPdVnlfPOteSrhXHvTl5f51lVS3V51T5xLNR1kaRXNwM0iyS/Z9u8rhJRfd55DXW5JGFPJBIuHpdr/2Y2sV5sHC8ChxADFxAQEBBwdMwjLnFGR9w5vouST6J8cuQbNvN20w8jW3Gqm3+MJjrQ+znonHnwDcyD+kNQUVpcXHTGs6pm3MlWQ4uEY2VlBYVCwbkiMm6LGST39vZcCQBmRCRR6fV6uO2225BIJNz5nU7HuUeSiGnmSSVvGrfGXfzd3V10u12nvrG/6oKYSqVQLpcBwMUVFQoFt2vPNunGxzHSLJxU9kjANIFGuVx2RqRmaVT3RVXSgH03SRIKGqlMHEMiqUY7jVuSXD/rH0m4Jqug2kKSwXkkmeK9cr2ThKuBDeyn8lc3O8bxkSCwLxx7vS81uDUjJRU7urcy6Q0JPl1dVXXTTITAPmlVd1muYY3zUoVO1U91XeUY+MSOY6FkguPquwayH6r2cR3oXHCsSGR9dVWTl+j9KLnR6+pzy/nXxC36LuAY8nNuVqh6p0oflWxVXTlWfF417pHzoeuXa4J9Y/+4YaPxk5wrY4wj6RxLPju6Xtm+Pya3AseLwBkTslAGBAQEBBwJR1Wd4o47yrm+QjVPPfOP9c+LI03+77o7Duy7HPnf+cTQJ3dKyA5T6vx+qDGTSqVQq9Vc3TIqByQOmg5e1YRyuewIH0nWwsKCO55tZ7NZp37ROG+320ilUlheXnbGarvddiQO2E8fr5kYC4XCjAHLeDG6DXY6HafYqNpEcpXL5Vx8Hq9DN0x1uyLxo7seAJRKJdTrdTcWSsDoVsa+aKZEzkUmk5kxWNXFi2oI0+1T7WRMHe9X66TRgM7lcs4wJoHiPAH77mY0bFXRJInhdVWx4txrbTeuV5I3KmC8V7alRE8JDlP5k/CVSiXnrkqCroSZ2ShZ241EzydvJFK6EULSpUSSIDlSF0IFx08Jl5JaJWs8XkmY/w6Jiy9TtUrdBakaq3JqrZ2pQ+c/YwqfHOo4cF64kULi5m9QsU9K3tiWvgv0HaRkSceJbagrLwkXv1MVjWNOQs4NF3Xt5Zr3CSjHhc+vEml/nF5OHC8Ch6DABQQEBAQcDt31Vhzkaqif+crTvDb0WvMIon/8PJLk90ONOiVvhx0fdz9xx/vfx6lwccdls1mcOHECCwsLAOCSg+Tz+RnVB4AzAlOpFCqViot363a76Ha7LvYEgIsJy2QyzjUunU67+LBiseiIn2ZqpKHHLIo06svlslMGSRhUPRqNRq6+W7lcxrlz59BsNrG9vY1ms4m9vT0Ui0VXh47khYbjcDhEp9OZKR1A98pcLodisThDbmmE83gSCiYhYftUBqlu0EhVQ5+GsroT8nMt/M054PnsH8dbY4/0OvyeRjkJkMYNkbypqqduqSQsqrqxHdbw0yQX/Jv3rOSN/dSNgUQi4dReEvpsNutKMdClVckk711JlBIpdY2kMU8C7bt16hj5bnv++0fnXcdGk6woWVAXTs18qYRG/+Z8KHGiEsd+6RrR9aQuiRwrrnO2p+Plx7X6Sp32y3eh5NiQ1OnzxPP4jHL+ueaUWPtjHBefqGUo6C3A7/n8qWunPnc8JxC4FwkmxMAFBAQEBNwE5qlrSkzmEbqDSJOSq3nqmxKqeS6RB7lMzjvX75f/PT9TxSzuPvwx0HPnjQfLA1SrVaeSMQOjGoUkcel0GsViEcvLyzOubIw1o9FJUjUeRzW8ADhDr1KpOEOq2+26uDYadko6qC5RIaMRThWGxitLBBhjUKvVUCqVAMzWpSMRGAwG6PV6M6nFWQtOyQGJTalUQrFYdP1i30kwaRDTwCSRBeAyK/I4zYyoSVVoLJO45PN5R0J4v7wHEjUlXFRG1CAm1F2R90CDnCRJU8jT8CfB49yRRJCUktz1+30YYxzhJ3njvdFYp5HP66p6yhIQqugBmElU0u/30ev1XPwj4+CUIPgKEJVHXyFSZUbvR+9VEUfsNPYx7hnjNTUuM05l4rPI65OY6nuB56nLpJJTPwkO1zawr4CzT3pv6lasa8IvIK8KpU8G2aaqgRo7q3Oh19B2+M7g2HDMOR/8mwqvumaq+quJTXTD4la6ThLHisABJihwAQEBAQE3DZ8kHUWpUkIzj4DFteG7/mh72qZP0Pxr6vdqVPrHxxl3B/XTHwOfvMWNTSqVwsLCAur1+gzZsNa6NP8kSEoWyuUyFhYW3HgMh0O0221MJhMXB0eXwV6v58hXr9dDrVZzxNBai83NTXS7XUcM6MJIQ7lQKLjC3Lw/ZqHkbv9oNHK15EjQWBz82rVrTlGjwd3v950xqbXBSDholLM9unsqAVNlhu0qkSqVSo5wsN+5XA7lctmR1KWlJSwsLKBWq6FSqbhi5zR8NeGFriONH9rd3UW/30en00Gj0UCr1cLOzg663e5M/5jcRI1YEgLfLY2El3FkGg9Ho15j78bjsXPxZN8IkgwSIo6Dqm6cd94Tr0cSwHVI0q2ZPlV9VRJDpYrzq6qiX+uMv/N+qUape6weB+yXPiAB0bg5XSs+YWEbqmJpvBkVSM491yLPJaH248q4BrW/JM66fnlfXEt6HV5LlTeN2dNz2SeN/yMBZDvczFDFULNpalyhr1ZqnCYJG6FuzVTdNe5UXWg5VuwLNxtuFY4VgYveS4HBBQQEBAQcjnkkxjdI9Hhg30XKV6T4+2Gqnt/evL7xOqqAHUQMfQI47x7j1L15fY5rx1frMpkMVldXUavVZpJi6C46DS0aV3SZ1Fgrpm7PZDIol8su2yKVo1qtBiAyuhYWFlAulzEcDtFoNJwyQbXJ2v3C0zTAi8XiDVntlDwwfiyRSCCfz2N1ddURJxI7xrRpcW6frAH7SReosDHmikSBRifP5/1r8gQ18AuFAk6dOoXl5WUsLy/jxIkTjqhp2QN/bom4vw9agzr/TALTaDScC+n6+jrW19fR6XRmEqZwbplYRMdIyZSSAE10oVkC1eBXQ53jTIWOBJM13ziWSgbZJpVdqpQkJBx7FoinksdxYD+B/feCljYg/KycSnJVqeQ9sx/6zPgu15wDJUU6h0oeSTqYQIaESpUjEhnN2BgXf+f3Sdv0yVvcZ5xLX6VTAse2VS2LUzb12eL9+7FuPI+fqeKm53Cd+Z4MdJtknKz2Wd2cqepSwb1VOF4EDiEGLiAgICDgcKi6FPdZ3I8e5xskccYyjS1tQ3edfbXMJ1O+WuJ/r8qbHncYoVQcRO4OGh+iVCpheXnZqUFqgNJtjolCVH1hDTbGOnEnO5vNuqQiVMcymYwjh/l8HpVKBZ1OB+vr69jd3cXOzo7bpdeizSRvmiZed/eppgD7SUNodBaLRUcoO50OBoOBU5JU8QHg+ktiR4ObO/vFYhGVSsWRCLq+sQ9U9GhMJ5NJ1Ot11Ot13H777bjjjjtQqVScokaC5GfxjJuruL8PIm1KCvgvE9KwCDmVEY5Ds9nE5cuX8cwzz6Db7WJ3d9cRXY1XU/LCdrhWqO6QPJHYcBNDE3LQYKfKxXHWc7keuCb29vbQ7XadustahJwrxiXyGj4Zp4qkro/6HuCYALjBBZL3q+6D/Jzrj8RP1T2qkyScSsD0/UPC4tc24/kcc96LKsVaoHzemqCKqzFj+r2SJ51vjp8qjErcuHZ1o8rfPOPfJKZafoD/KkGLe6/ybyXe/FHVm79T6aSirBsJANw7odvturi5W4HjReBMIHABAQEBATcP3wj2yZx/LP+NI1A+6YszKHzQCJqnemkf/fP9v9WwjFNd5t2Xr/QdRPyAiLwtLi662CQaRJrNrlAoOPKm7lB0XSLJG4/HLvskDfHhcOhUs93dXRSLRUwmE+fWR3dGAC6mjLvnNLJZHkDdrjQjH2uCpdNplMtldDodVKtV5HI5d53BYDDjCqlxYXpvdM2iayjJKFULTY7CjH3D4RD9fh+1Wg233347Tp48iXPnzuHMmTNOYfJVWJKOw+ZRFQtVgg5aQ76qw3Wp37E9EqBKpYKzZ8/ijW98I/b29nD9+nVcvXoV6+vruHr1KtbW1mbGXPuoMYJcR/yeJI7jStdbjhvVTY6vEmut7zYajdDpdNDpdJya6dfGo1stjXclGzqWmjCEUFc/EjI+Q+quR1XSJ1Wq/CqRUrdJLWvA71S945jRZZJrHdjPiMrxoZpJ9ZuklGuXnyWTSRc/py6KvCZdYNXFUl0+OXYcIz6D7Cs/98eNa0zHQZV8XT9cn+p2yn5qCQTdPKBSq3GTJP28Vz9zKuduMpm4dw8TId0qHC8Ch1BGICAgICDgcPhGbJzaFmc4A5gxTuLIm+4+zyNQcf1Q8uSTPr+Ng5Q3nyzOC7ifp/bNI26qHNRqNadYUD0B4LI/0rDWtOo07rhrPRwOUSqVZtSSdDrtXBaTyaSL+8rlcmi3286lUdWGarXq4tHY93Q6PZPchG51NNQAONc7KguDwQC1Wg3JZBLb29szyUnYDg07GquM8SJhpFLFHX6OG5U3P/HG3Xffjbvvvhvnzp1zpI9raN48+2tVE1nErV2d33nz768b/Zv9913fdI3SgM5mszh79izOnDnjxnx7exvPPPMMHnvsMezs7DiDnKSFRMW/tipU6ibX7/ddMhcmtiHhn0wmzl2VqiiVt2QyiWq16gx3IEodr2omyan2j/fnx1XR5dDPCsr1x7XCeSAB4Nrg3+yLbmrwmsaYG7K3+m6ZfCZJqKh+8lySFZIaVRvVhVj/JmkhsSYB4hz47rqqhnFM9D3puxuT2KrKyd99N2eOhV6D4+mvVVXk1CVZnwUleay1qIl5mKCF61TXHjd0crkcarVaIHAvFoICFxAQEBDwfDCPvMUZtfOImP7L3+OOPehc33VxHombR97i+hB3rYPgt6V/FwoFrKysOGMR2DeIaEyWy2W3i03jkgZjpVJBIpFwNduY2IMGku6EM1kG1QPGp6ihRdKncVbMQKgp4anMUc1jAgsa89lsFqVSCdZabG1tOaLIjJM0YqnY6P1yzAqFAhYWFtxnVE+oGrXbbaTTaZw/fx4XL17ExYsXsbKycgPhj1tj6jKmpE3nzCdU6mbnz2uc4jzv7ziVTwmdklJVfumKWq1Wcccdd+Ctb30rrl69iqeeegpf+MIXcOXKFadGch2R1GghZhIhZgXkHORyOWeEUxkqFApurXU6HRe3yEyTVNlSqRRKpZIjeUoQtJYeycm8dPG+OyyPVXVK1V8SPWA/EyW/5zgzfT03NbR9JbaqktK9kuSJKqRmn9RC6Ly+khn2j/ekNfr8Najzr+8sXXe6PrROnzHGxSxyPZPI6nuDn/FYkk9N4OLHBfJ9w3Ppos13BZ8vrR2ohJJjAezHvXF9qytruVxGqVSauzn2cuB4ETiEFCYBAQEBAUeDT3TijNWjEJ55bSqO4vaoZMx3p1JC6R8bdx9xSppPMucpiHHHJxIJ1Ot1LC4uzri7qZEzmUxQrVZnVAvGIDF1Po0g1uOiEUvDT1PdU0EbDAYutooKBosw0xAD4JQFTT9Po5/EkKoa28rn86hWqzDGOBc7a62Ld6Nypmn32S6wn5Ajm826um7AvvFHwzqTyeCBBx7AAw88gMXFRdd/f/59JUEVBF07NF41ps9XxXxSF4d5a52GtcYNqXHN79hHxhjSLVEz+A2HQ9fOqVOnsLq6ivvvvx/b29t49NFH8cgjj7iEEGyP7WsphW63i0Qi4eZXs4Fy/EnAWMAdiFwISdxHo5Fzr2QNPo1jI9HXZ0vdm0mSuA4Ze0Zixb7zX5IXVXb0+fUTZdDFl+6fAGYUObarZJFzwvGO2xRRl1cl3PoOYKybbs6oa6JuGvjkSQkXP9f1qWsq7h2pMW86tvyd/VdVW90/1V2S5+ZyObdBwGM06yxLSJTLZXcNVVZJ7riZQ5KfzWZdZt15sYMvB44XgTOhjEBAQEBAwOE4SOHS74k4hcsnSnHq21Ha4efaTpx6Ms/lbZ5r3UE4yjG8XiaTcSnqaahz91rdzCqVCorF4kwCEb1PZisEIqOaCgAVkXQ6jW6361Q1Ei5mDmRfqCpwdz2RSLhkIZr9UMkgEClibMta6+5pPB6j2+3OuFTRCAdmyZiqIDTKqXRoTTMakSdPnsSrXvUq3Hvvvc49M26dkLSTwKih7hNbn6z5SRbiyMHNwFcE/d+1ZMA8Yqfp86kIqXteLpfD6uoqTp06hTe96U144okn8Mgjj+DZZ59Fr9dzSouSaSbDsdai0+m49cOSCiThjUYDvV4P2WwWlUoFAFzhd8Zkcj1S7SXRV6jSw/vnvdDgJzFQV2FVpvQ50EQnSnhIqripwJT2+r2fdIOk2Xf3VOLGtcJ1pYSez6wSFVWpdHNGiZNm2dQkH/7mgbpmcv2QHLFPcYlYeC7/ZkIWjjcJoaqiSuR5vUKh4BRXknmu1dFohHa77dYD16omauE7ROPgOLY6FkocX24cKwIHIMTABQQEBAS8IMwjVvOOicNBro1x5NEnbXGK2Lz+xLm/zcNBCqGv8CUSCZRKJSwsLCCXyzmXM6bt58480/7TdU2TM6gBpOnj9bo0oHu9ntvhZup6JVSarIIEi2Qhn8+7tpkFUTMXMoskDX66LipBpPpCokC1jqCRzOuQNFKRpMHM9h944AHccccdKJfLM7E7/qaBr6RQNaFRqlkz5xG3uB9/jflry18TPlGbtyGg6py6dGp2P41FUjc9EgC9j0KhgPvuuw+XLl3C1tYWHn74YTzzzDNotVozBda5vtTlkS6T1lo0m01sbW1hMBggn887UkfFlfFgVARzudxMIXNV2ZS8qUufMVE8pqpgOq9KMkgOqfxoAhJV/TT1P8dOv9N2qUTRtZKufewXyYiSHB43L7EHNx7UVVM3LaimackLJVTsoz4nev+qFnMdcSzUpdP/TuPwNGZQFUF+R4KupJMbK8Vi0a01umH3ej13z8bsJ6/hcUxuRJWe7z7/uTns/4GXEseKwJngQxkQEBAQcBPQZBHzEEdu9HM9jsbWYepb3DUOOkYJnU/ueD39TEmiTxjjXPdojKjCtLS0hJWVFWdwGmOc8axxSIVCAaVSyZUMyGQyaLfbLu0/AOeuRIOL7SUSCXQ6nZkddbo4aVwbE02QhNEYZ3Y+YH/XfDgcOsOZZG4wGCCbzeLSpUtObev1emi1Wuj3+y4hCos6k9Bpdj2qE1QraCBSFRmNRrhw4QLuv/9+XLp0CYVC4QYCpPOksUu+qukTtcP+9X/X9ThvHc5TkJWY8XNV2JS8Efye57HcgcaD8W+Nm6NayzFdXV3F+973PrTbbXz0ox/Fpz/9aTQajZlEIwCci2EqFdVwa7fbaDQaLsEEM5aSlJdKJWQyGXS7XQBArVZzLpT8UbdEvW9gP6EIybpuYPC+1aVPx4znkvhTAQb2FS2SyThFlc8dSSdJFQkLxxvYd7cEMBMDynvjvSgZ4rrWzQJg3xURgFubbJekVMkbiR/vV8dGY+z03vQdxX95nKrSHF9dW2yb7rBUUfm+4DzS5ZrPNNVbKvYcJ6qWLGbf6XTcO0HVZ40rDDFwLxKMCfwtICAgIOD5wd9RParK5h/vE7246/ht+MfHtT3vMzUklIj51/L7N0/dy+fzOHPmjMsQube359SP3d1dZzQZY1w2ym63C2utU6wYj6YuVnQ5Go/HLj5FM+PRBU53+QuFgotXGQ6HjkixHhxdyBjnxrYnkwna7bZzrwKiGnPMKmmMcckvKpWKM2aNMS7LIQDnskm3Nv6u48fYv7e85S248847Xb/iFFFVeEj8/Di2eQRNCYJ/DvsxLw4ubh35/Yr7UQM67ofH0bjmOVQrea90+aPhTQObWSRVAeG6+rIv+zJ8yZd8CT71qU/h4x//OJrNplsTXFf9fh/NZhOdTgfWWufmy8yUGq/U6/WcQko1RgmTKm86ViTxNNzV1VLdRbU4tippnAeWyyDx0YQsHBeOpapQXL8cM43r4niTFHJTQOvA6fPO54SbNCRpPEZdLjWO1Cdl/saBrke9d36n65z35d+nrkl9tqjc+X3TdZvL5Vx9SFXh6RrJtaokT384Nizr0W63XX1A9iOZTGJhYQHpdBqtVsttJt0qHC8Ch6Nl/AoICAgI+P0Nn7z4xta8nVU1iH0FI07t8o3neUTMv0YceYxT9nwiNk/JU8No3v+TiUQCtVoN586dQzabdanaNXEHjedUKuUKO9NoYrY4xpXwesz4yN31XC43o6TR2AZmFQmqK5rKv1wuo1KpuPTd7BcVikKhgN3dXTSbTUcql5eXkUhEmS87nQ5yudwMQaMRpvFzNNoZS6OJLziG/X4fuVwOX/IlX4IHHngACwsLcxM1qDqlaluceqYKibrY6ec0hpXocTzi5t/vi28oq/qm68Qnaj6Bi4uB02MBOEWTBJyqh55LN1qSIK6XhYUFvP3tb8d9992Hj370o3j88cddPzudjqvVx7VB91sSc641usyRfNNdN65MgapGJEocE6poJDTAfhF4GvyqXJGoMP6Sc8f1qgqyX+uMxImbBuqyyHEE9jNI+qn8SXjYZ83iyg0T/33AvnDONWGL3juPSSQSrl0+T0qwuH5VTScZU8JOcszvNR6OY6LrUNcX5yiTyaBUKrlzeK8EN3P8PhLD4dDFTw4GA1cvkNerVCpuc4bvvFuJ40XgggIXEBAQEHAEzCNJwI0kZx7p8V0PD1Ps9Byf7MW1r8dpH+IUFP183nUOuh/uLq+uriKdTjujSHf2V1ZWAERGGQkeXSppjNIwZDKARqPh1BUaRBrTRDc3Zsqz1rrse0xewTT/lUrFFdmmUUz3R+6yM4kFXelOnz6NarWK9fV1ZxSynpwmYVESSaOZSR0YE0fjnMTpzjvvxEMPPeTGbF6MGz/zSZeqFwBm+qRKjX7O/rEdf+0ctjngk0t1VQNmCzXzWjwuzoBmAhoqUVSfaPz7ygmJjipFNKipcKo6xWsvLS3hve99Lx544AH87u/+Lr7whS+g1Wphb28PxWLRqcV0hWVMpKbU15gxn5zqPXJOSNKUtHAMSZZ4PySHPoHj/JD8cY1pzGZcDB7nl2uPY81nj8+IukfGxcWRGCmJ0tIEqsZpvJpuKnBegCgZDI/nvVOVV+VN1URNiKJEUMfGX1/8jgQQmN1s0fXLY5RU81x9P1FxpdLKvrJ/rVYLrVbLeQowvpLX1XfE3t6eW7e3CseLwCHUgQsICAgIOBwHkS2f/Bzkjqa/xxEtn6T57caRt6MQQb+/8/6NU1v87/P5PBYWFlAul2eIAuNpstmsSwhBQ5TqFnfzmREPwIxy1mq1kEpFhb+BqDYXDSMaWDTYGQfE0gA0vFhfjclAmNZbd/2ttWg0Gmi32xgMBlhcXMTq6iq63S6efvrpG5SdfD7viBHbIWmgKkLjmfdmTBR3VKlU8LrXvQ6vfe1rXWKVuLXAcY5LQqJKG0kaDWySVhql85KYzCPy89RWGtTaX64BTTCh5/C+NTZKP+d8cGw414VCAa1Wa+a6aqDTIKbKyzWk8UtU5Nh+KpXCqVOn8If+0B/Co48+it/+7d/G2toaisWim0e6anKtJRIJFItFGGNmCsBr8pE4sqbKFdcYDXZVzLh5oOqskkA/Jo5kgOOmBa45riShbHM8Hjv1jutN3RFVjeN48Zqq3qqrpqq2JN/G3OhiybXvE032Wd0mNcNq3FgCcKqn9k8/V0JGssWx8d1bSfpIsph0hISV/VZo+1TZmUCp2WzCWotisehcb/P5vJv34XCIVqs1059A4F4kGGOCAhcQEBAQ8Lwxzy0mTunwydE88sbv/bbiiJoSwaP0aV6b+ru/M00kk0nUajXnaqYZBLkLTXXDWusSgZBc0eijkcc4OSYGGQwGKBaLWFpaQrfbRaPRmKm/RaKWTCZRqVTcDjcNdhKoSqXi3Bup+rG2Fgt+M5ukMQavetWrYIzB5uYmWq3WDNFhPJQapFrLizW08vk8FhcX3XE0mi9cuIC3vOUtOHv2rFM74oiUr7L5rpGqsGmtOlXc4mLc4qBGpK7BOHXY35Q4DLp29F8dEyVmo9EIGxsb2N7enol/U2VO+6QGNUsFkMiRcIxGo5kSFOl0Gvfddx/Onj2LT3ziE/jYxz7m1iZjK7nBUCqV3Pyyz5pYhQQLwMyaUhdIHq9JblT5pUKlboOaTIRzSDIJwK03fg7suw8zORCftX6/7z4nwdf7YLIezfzoX5fqOJU3n3ixT0z6wveAElzOmR9rqUoWiZiqxHyvALOlGfiMc7OE5FVVTfab9812OGea/ZTX1dhaJXo8j4lKmESH7wRuHnDTRjduSAr1OdAYvluB40XgcLDfd0BAQEBAgI84dQw4PLEIj4mDT8KA2XpSqsDFtTFP6eN3cYRs3n35u8Q0nJaWllCtVp2xpmmyM5kMisUiisWiq5vENqmaAPup9RlXpmn5T506hXq9jl6vh06nM6MS0CAvFArOIKa7kxb/psGs2SQBuLi8TqeDVquF8XjslEQAuHr1KgaDgXO/6/V6rtA2XSg5HzQ0SQAWFhZc9s1er+e++9Iv/VLcd999qFQqTkFSIs+5mBfTRiOQPySwJK1xZQN0jfjkzF9XcTGS/t/zkkXEqXh6P3HEkOTAJ5Y0otV4pqFNtU3VFU1oQbJGEqOZS0lygcjYXlxcxHvf+16cO3cOH/7wh7G9vY1er+cyTfoFv6kW071XyTeJKMmjP4/srzHGqWZ8jni+kjIltJqoh+3yPI4d703j3fgZiaNuOqg6pqU2qEbzh2U5tBwA14GSTm6KcK2ri6WqkeoCrATcfyfps6HncwyVhHKe9f44H9xIUuJoTJSAiPFpHNtcLneDwqrX5GeMR2w2m861tlarufGh+ubH4ZFg8tmPe25eThwrAocQAxcQEBAQcAQogQLi48p8V8c4+Mb1PNUNQCyR0n/nucTpdQg1qn01MO4++TtVgIWFBZdaXRNQqJFL45DGFskbr8/slCzArTE2Z86cQblcRqPRQKPRQCaTccrdZDJxCgMQZQdkohNml6S7JK9JRY9G6nA4RLfbRbvddvF5yWQSzWbTJVUol8soFouunW6361QzEgkmkwAiZWdlZQWVSsURxfF4jJWVFbzpTW/C7bff7gxkP7ufEgEauOpCx3NI2PjjJ+5Q43ve/M8jXZwXjevy21BCr+sijvjpv/56UjVG+0Ijl7/HEbTd3V3U63XUajWXKVTj5PRYJTQkIswuyL7dddddOHnyJD70oQ/hwx/+sCM32j/2R+O/qMyRpKgqp+ocCQLd6NSgV5c9xoJRheJn3CBR0sN2GRfHOD2SGRIX3jvbAuCeOfafa5fzznvmeKnKyX5r+Qoln1rqgUoc3w86r756SYLE6+u6UeVVXVe5FnVTQTeS9H2p6ib7zM+VoDExEqEu4WxbY0qVQAP7rrIaw0gyqc845ye4UL5IMEBgcAEBAQEBN415xGueQR33H7eSqDg3tbiYjKPs4MYZ04cRSz2X10in06jVai7VOgtg0z3J2qioMgBHMNSVjUYTr8mMfiRNu7u7OHXqFFZXV2GtxcbGhsvWVi6X0Ww2AcAZqsPhEJ1OxxnwuVzO9Y2KAgCnMFBx6Pf72NnZcSULlpaWkEwm0Wg00Ol0kM1mXbrvvb09tFotd+xkMnH3qOQjk8ng7NmzyOfzzr3KGIM77rgDb3vb21Cr1WZSqOvcxblK0vBjAhZro0LTzHCn8V1qCM9bH3EqrH/MPPI2T+WNazeu7Thl2m9XjVv/e1VsqGBsbGy4TKQkU1zPSvroYqo1/1jTi0kpjIkyBL773e/GmTNn8OEPfxhbW1s3jJ8SV032Acxmi+TfwH5BaGOMyzap98f+sy+asZXnK2kgwaM7MF0WGcfFc6kCUfHjGGm8G/uqyp4STm42aCkNuoKSaCuJ0eQzGl9nrXUZHUmU1EVRx5dklnOoJEdJnKr9fFb4na4/3ks+n3cbHfqccWw0AyiVOV6TY83jSNjpOj6ZRImUuFlAIq/Kq/4/oJs3oYzAiwRjDGxgcAEBAQEBzwMHkak4ghenWMxTwvQYbSfOEJ9ncOvxB10v7nxNVEL1izvV3H2nmxbVCI3xobHHHXpmk+x2uxgMBiiVSjh9+jSWlpYwGAywubk5s/vd6/XcNROJhKujRGOqVCrNxCsB+yrfeDxGrVbDwsICtre3sbW15Vwwc7mcq9tE17tqtYpkMonBYIBWq+WSWdCgVLWBRvzp06eRTCZnjPQHH3wQ999/P6rVaqzroRIO312S5IM17Hq9nnMTpUGtxqg/Z3EbBEqIDjpOj/eP8c+PWysHkcU4Ihd3Do9VtY594d+NRmMmhknJhY4Lf2ccmCYU0flKpVJ49atfjYWFBfzO7/wOnnvuuZk4L64rJUUkOaqqAPtEn2SfMW/8ju1o1lCSQt4n21J3O16L5M0Y41RiTYfPWDnGtmnJA65fzYTpx/dpbTq2QXLCPuk5vC+N8yJRU3WU11c1TdeAFinnZxwL/q7/KiFSNY3t6jXVVZjX4hwwgU2pVJpJqEQCOJlMXDmS8XjsMnuSMFKd1Rg79o1tkNSp+hdi4F4khCyUAQEBAQHPBwcRL99IPgrB8o/n93qsnuO7pvnt6r+HHaPfJZNJR474w/gbNSbVJYrqHHeoR6MROp0OUqmUq3W2vb3tjNpareZS6W9sbDhDSQ1kpk0fDAaOxDARSi6XQ7FYnIkt6fV6M8ZToVBwyQeokJXLZezt7TkiQLfQRCLhMmB2Oh30+31ks1mX/ZKqI7PWkcjS0C0UCnjTm96Ee++916mM/twrwdBkI6oaUcUkcaPL5LwYN52/eS6U/NdXtg5T4fz1F/edfw39PA4HKXs+2E8lP0p4SXbjiBzvk65+VKzoRsj1BETP6qlTp/AVX/EV+MhHPoLPfvazbl1zLWpCEypoShqZPCefzzsFi2Og6gsJEgkH78NPyMF+qspHdZsEsdvtOpdRxl/x+VLXUiWIVMvYJyVoXGskeky0QjWNxFbjUjUuDdhP6qJJWuKSl/gp/LXUho6Rn4BE1y/JFPulChjfFap4aVypKpq+GytJmMbPslYcx5vr0S/9oPcUp75xLm4VjheBM4HABQQEBAQcjjgCdJib2Tzi5O8463/8PE/PV0IY5zo3zzCOI4Jq0Ot90PAql8suGYi6ZNFY8Y3YdDqNYrGISqXiUrmzphrLDKhL1okTJ1AqlZzqxsQhJF/WRu6TqVTKkSmSu0KhMEMoAcwYYlQSRqMRrl+/jvE4SqfOzJWDwQD9fh/JZBIrKyuO0HU6HafM0PBkoWdmlmy3285QLhQKKJfLzt3xXe96Fy5evOjiqOLWgSpvNCRJMNh/EjcajzR0ee68tafzHKfaxq0JXTOqVPhr7aD78VVG/5y48/2Nh7g16l9L751rRMeSipMqIr6bJZNNaIyc1vkqFot4y1veglKphIcffti1oconNwu4/gHMuGoC+yUgNEZR2+LfPE7dG3UDg/NB8qixeH4qfW4kKHmLI+t8jpRkWWtnMrlqNkWuT8bcqUsiFW0+bxwfKk86XmxL3RipaOt601g4Hst3A+9N31f+etH15McPqgKpWS91LLlh1Gg0XM1Alg8hmaP6G/dsczxIXElE9fm6lSTueBE4BBfKgICAgICjwyc/wM0pbH4ShzhCpm3SQPC/0zbiPvP7pt/7PwzkX1xcnNk9p6FFhYFukFS5WDaAxIXqEQ1iJSNMHFIsFtHpdFwcnCYsyOfzrkYXydtwOEQ6nUapVEK5XJ5RAKjcGWNQKBRgjEG73XZqiWbq63a7GI/HqNfrWF1dxWQyQbfbdbXH6PbJLHzMLsmdd8a0kcDt7e2hWq3ine98J26//fYZw9WfF195UwWJCiPvlYSV5M0n90dRsOIInr8uFBpDpu5vhylwCn9jQD+fd65vBMc9T357mq1QVUyqKly/JG9K+Pi9FlseDAZuveRyOTz44IOoVqv47d/+bWxtbTmDW4k3iRaVP1VaxuPxjJumKm181rgOuClC5Urjo0jIJpP9Wm4kMiRafLbo7qjkFcCMosR54PpWFYrPuRYLp7sysO/GyuuxTbpN87nR2nBKoHy3TZ0/n3Cp66SSQI4Jn8G4xDr8UXdLvQd9tzFJkq4zvnd2dnacMmetde8On1xrwhdfOY17Z8e9y19OHC8CFxS4gICAgIAjIE45O6o7GOGrZocpZ3rdeUb8QUZvnPrh/53JZFCpVLC8vOzqSNGwpVFWKpWcwaWlAgDMuDESWqOs2+0inU5jcXERALC5uYler+dcw9gHTUYyGAxcEhHWdaNqwp1t1u2iWsBC4KoQUOnr9XrI5XKoVqtYXFx05G1rawuJRAL5fN7FF6VSKVQqFRSLRafelUolAEC5XEY+n3dq3Lvf/W6cO3fuUPLmx7sxMQIJLhOVxLlMHrSW/GvOI1H+mvLXlX++bjLoT9z9zeuDnn/UdT7vefI3J5SgqLKjZIDGuhI8fjcejx1Z8ZPQJJNJ3HnnnQCA3/iN38DOzg6A2dgqjTmjMkM1S2PQVHkC9gt5M8ZO3wEkA5o9kaSShIn9MMY45RYAisWiS2hCsqbZT6lua2FuTciiBdEBuI2RRCIxk51TCQhJKf8mmdXsl1TolfT4qlicskyFjNfVz3Vs/PeZv/GgbZNwaduaZIguy41Gw9UX1OdaXSc5X/yMKi7nMk6Z5nnap5cbx4rAASEJZUBAQEDA4dD/pPl3nJJw0Pn+30oK4xS0eSrKvLb9Ph2mvBQKBdTrdSwtLTmSAmDGPapWq7lYo1KphGq16mpvUa0h+v0+rLUoFotOdVtYWEAymUSn03GJOagg5HI5FAoF1Go1JBIJdDodpyiQWNVqNWecAnBtaMp0nkfVEABOnjzpSFE2m8XS0pLLMklXStaMo7tiNpt1de5IZKkwMlau0+mgUqng7W9/O2677bYZd6rDlDet56bFxHu93kztMd/I8+eOBijX5Lz14CNuE2LemtG5VXc8P5NgHHxCF9cH37jV9a/fK5n021K3OhICKj2j0QinT59GKpVCo9GYiX/i/VCJKxQKjsQBETG86667kM/n8Uu/9EvY2dm5Id6TSpsqUZw/VYg4XlyjVNSY+VDHW8kF3TK50UECQtKvCYKUOPFckltukKhayH6QoDFuk+vSzyarRevVpVFdBPf29pz6TgLLOmvqlsx75rOhZM5P5KJzTyLoK9JcY6o+cp2qYsb71c0mzhFLjLD0CD0B+MyyLVX31FWVc6iu5RqHyGvd7Ibfi41jReCihXSrexEQEBAQ8ErAUVwZ474/TFGLM7gPImwHnXeUviUSUUrsxcVFp6hlMhlnGNIoTaVS6Pf7M+mySTZ2d3ddwpJsNot+vw8ATvWiYTwYDJzxyiLeNByr1apLNkIViq5IjMUD9pWL4XCIdrvt+gMAjUbDtUuXzMXFRZeUpFarObWEqgNdzmj00jit1WoAIoOO5FBdKVutFur1Ot7+9rfj7NmzM+RN59ZX3ugOSWWSxK3f77vxVCVJ5ymOzB20LnyXMj3vKOBxPjH0CZXGI8UpDnHnHkT8Djt3HrQ/wGxM0rVr11CpVByRIThGTPqRz+eRz+edCkOF5ezZs3jf+96HX/u1X8P169ddRtTxeIx2uz2jzGjiDX3GqcrRsDfGzLhQUiUjWWMsFomSXxRaE29QBeJxjKlTAq4ZFqmKkyyRwJK80fXTJ49MFMJ2+IxqhkrdVPDVMt0MUJdLP3GI/q2uspwzjalTIsh1wrElieba5PV07vke4ruF98CagDzfnxOC7yO2yWPYB15DE7QcZT2/lDheBA5A0OACAgICAo6CeYTpsP+cDyNtcWRNd3YPckHzP1elIs4Ip8skszgC+25gNAA1tTizUpIgAZipocQderpZNptNtzNNtYDGItPzMwlIJpNxRIYubExUks1mb4gVo+GayWTQ6/XQ7XZdce/RaISFhQXs7e1hc3MTk8kEJ06cQDabdYoh48zUsAMiJTKbzaLb7SKVSjnCV6vVZtwwy+Uy3v72t8+4TcbNmRI4GtYkbmyL960uk/5a4mfqMhiHo7gosk3+3IxBGXeM78Y2j/AdtZ9+TNNB58apcUp0dR5IjqjGqJuiHsdag8YYt85TqRTOnz+PP/yH/zB+9Vd/Fdvb247w6/xTIVL3Rxru3JSgmqWF4LWmmk84mHCEz6Cq3syCqkSNqh8JBMmQkkgtO0AlcTKZzJQ8IHnTvilhIqHUguF+5ktdY3yPaIylf8/qTqrusHHX5RhpTKIqX3rPwL6rp6p7nHuOM0umUN3nHPgbcJochoRdVWn2i/1VxVcTJN0qHC8CF2LgAgICAgKOABoYwOEuk76BGecu6X+m7frXOOx6ccfEETuWBaDroMZwjMdjlwiERI/ZIEmemLyDMWtUjvh7r9dzBXS73S5KpZJzL9vd3XUxR8zsyJgvGl9UA9VdisSLxqy1Fo1GwxXSpSFVr9ddDAtLBDC2jX3rdruuHQBOfcnlcmi1Wm4MSHJzuZwz6lKpFB566CGcO3fuBuVNx91X36hi0G2z2+3OKJI09OJU2ri14K+DeQqdkis1NOPW0FEVvTjQYFWFKc5Ijbunw5TouGMOUrs13k3JGb8jiSJB0SQi1lpH5Lk2afSfOnUK73nPe/Drv/7r2NjYcESPfVNyAszG5nHcSRZ4D/78aOIgIHJfZl8Y70a3T1XndF4Zt6YkVV09qRCSpHFdktTpc6HHk7BwrlX9UiXWf78Ruu6U8Kgy6mf6JCnU9qy1zg1UY/J8l2IdW30+9By+u5T0qerGz/1NE56v40zCHFcyQstbcDPhVuH4Ebhb3YmAgICAgC96xAWfq+HC3w9LPqHwj4sz2g9TVnxlIq5/JCSlUskF8nMXn+oElSpms6tUKk41AoBqtYrhcOhi0nZ2dpDJZFCv1x0xMcag1+s5FYtqBseEihbVBCZ0yOfzztWLO+sAZmLmmJ1yY2MDg8HA1WhLJpMol8vodrtoNBrI5XKo1WpIpVJot9vufBI0KnZUMkqlkutzuVxGrVZziU6YiS+bzeL1r389Ll265Nzo4uaDxqTGvGnMXbfbRbvddu2q8ua358+rumb5c+/Pu/ZPv6cSwc806YOvpqn6cti6VEOa5/oJJeaRtThS6rc7T2me97ca/2znMDWT1+G6MsY4xdcYg3PnzuHLv/zL8f73vx+dTucGt0BVaTTzITcBSCxJElTJ0lhMVeuMMTNuj0o++Tfnle1pcg2uL7pSptNpV4KDbrwA3PPHzQauE7av98Ox0hp87IO6MxJUz1VNU7LEfqqSp/NBAkmSpmqfkmT2mW6hXLc6zyTqdBdlCRSOB79nm4lEwimIJHy8P45pMpl0CZVURSeBowrJsTiK4v1S4XgROMwvOBkQEBAQEHAQfHXioAxjcUZ5nOIQh3mGr7Yx79xSqYSVlRXnQsZ0+TRGuPPP2m1MVsI0/YlEAqVSCcPh0CUk2draAhC5W7GANslaPp93sW9Mv51KpVCv15FMJl2afxpXLICcTCZdiYLd3V10u11nZGUyGQyHQzSbTefyxOskEglXs2lxcXGmkDhdNunuRmNsPB6jXC4jl8s5ZSOfz+PEiROo1+suJo+JTO644w68+tWvvqFItz8nqrpRcdFMk1TeSGoPWi8693EK3DxixH4AswY34ceDxRG6g1SvOOU47tpxrn1xfdX2D9uMuBn4LqlKBgG42C/FaDRyKjKfEyp1qVQKZ86cwZvf/Gb85m/+5oyxr88giRSNe2Y0VEJJQsQ4Uarc6mbHTI7qUqhEUZ9bJvXR2DVgP86LzwBJIdc2+0k1TmvRUTXjcSR+JCaErn1gv54aFUEqzX7SFo4XSZnG2ulx/uYIx48ETlVIJWs6Bny3UHHkePLe/ayvvnLL9rVwufZTY+Y4T5PJZKaenj9OtwKHEjhjzI8C+EoA69bae6effReAvwBgY3rY37fW/ur0u28H8OcAjAF8s7X2N16Cfs/pa1DgAgICAgIOR5za4RvWepz/9zzD9yClzf/8MNVC+5jP57G8vIx6vY50Ou2yqwH7u83Ly8vOCLTWOhdGqkUkOsPhEOVy2SUGoXFOt0iqdMVi0RXgbrfbmEwmLhmJtfu1pbi7XywWUSgUnPHIbJVad4kEjarHysoKarWaS47S6XSQyWRw4sQJJJNJlxiE5AnYL+pM1aBcLru/d3d3US6XceLECZeNkOpgIpFAtVrF61//elQqlQNJhB/fQzWj3++j3W67mDe6s8WpFTqnvoLkz2/c+lDExaTFrT01KH0VThWjg9S0OCi5oQEcp1z6Crb21SevcWN12JzwON99lP2jOsLPgCi5CTcJGB9GEnTPPfdgOBzigx/8IHq93oyixjEigdHaYBxrEr9cLufiRrWWm1+Wg2NBopJOp50KrAl4SLpIFqi0cx6ZybXX67mNkXK57OL0SDzVlVNLEmjbnE8SPN0A8JOF8P6BfZVOM02qas17VVdcTQhCUkW3UPaFbopULnmMryhz80TrWvLamp3UJ1kksZxHziXXhbpJ8t5TqRRqtRrS6TTW19dd0qdbKRodRYH7MQD/AsBPeJ//c2vtP9UPjDGvBvC1AO4BsArgvxpj7rLWjvEywCDEwAUEBAQEHA7fLY3/HuYCxn8PUh4OUhviCGGc6qbHlcvlGfJGVykaZHTb4q44idp4PMbW1pbbQU6n06hUKgCAVqvl1Ai6RPF3KmGMfaMxWK/XUalUXHY/AK6QshqhrMHG+DAgSiwymUzQarUcUdTsfPy8VCq5TINMyU9DmUZnp9NBOp3G0tLSjDoIRK6hJ0+ehLUW7XbbuTaSQL7uda/D4uLijPHmz4UafjRAtZ5dt9t1xqPu9itR8RM3+NeYp1LNIzBxCSh4jt+efq79oRuokjgarEdRgNke50zjjbT/et15St1Bz89h0LHwyZHfBr/v9/suJo6qDeNG7733Xly/fh2f+9znAMDNq7rIUcnSdulSx2ePqfeBaL3zOI1h47hRiabaw2syIysVcBIXzheJnCYCSqVSKBQKSCaTrnYiySEJJZ9JjQnkvWnsIO+ZsXlx6f+VVJGMauFzQmMH9X3rrxsSQSVtHB+SaT6/VN+0Hh5dRnWu+B5kH/lM8/5U5dNkLSRuHEN+ns1mkc/nUS6X0e/33fvoizqJibX2A8aY80ds76sB/Ky1dgjgKWPM4wDeAODDz7+LNwFjggIXEBAQEHBkxJGmOBVj3k6rb4jrcXGEbh550zb4O3fVT5w44RSj8XiMYrHozmUGSBaTpnFE1YuJEhYXF1Gr1bC3t4eNjQ13/mAwcG5avV5vpogwjZRcLodKpeLIIxONpNNpFAoFF3dCV8JUKuWKZrNcQbfbdcQnmUw6Itlut9FoNJBIRKUQqOC1Wi2X1ZFZMovFInq9HowxWFxcRKFQcG0aY3DmzBmsrKyg3W67GDmWTrDW4oEHHsCFCxdis8fpXKjbJNUBEje6TTKGRt2p2A4/U/Lmbw7EbQbEKcA+OfLdKeOUqHnki9DYHxrIaszGrUXtD/9WBWYesXwp4Csr/v3Puy6VOJbJ4DNWLBbx5je/Ge12G0888QSAyBVxOBzOGOpMhELSQmVG67ZxzQP7STbohsg1xeeWJI/qExOPUEWnGsY+a+wVlUTWfWM76t5I90i2z6RBJJE6ZnR75Frgveq7kKSL7ZAEacwe71tdEPmjZUd8BZjkLZfLOVdFKoJxcXKFQgGVSgXNZnPGfZZEUN3K9XkgqdS++RlHdd54Psec5JtjfivxQmLg/pox5s8AeBjAt1hrdwCcBvAROeby9LMbYIz5JgDfBADnzp17Ad2QNjE/q1dAQEBAQICPw9SBgwzCuLbi2olzFdOfOIO7WCyiWq26RBw0lmgwsl4UU5kzcYcmnSAZW1pagrUW29vbzlDqdDrI5XJYWlpCq9VCq9VyO/9si4ZKLpdzLktU8hhbxyyVdP+iOgPAJVJglkmqGCwP0Ov1AMApCEwQ0W630el0nArCflANJPnb3Nx0358+fRrLy8vOpYzGF3fLz549i/vuu88phfMIhhpwagDTlZOGtSp7OsfqPqZrgmpN3DXnqWhx3+nnqjipQcx7J/GIU335L9vnvSqR8438uP6p0qgumjomLza0XRIMrjlV/nzyy40HxsTRlS6dTqNer+Ohhx7C+vq62xBgEg0/sYe1+3FSwH4cIkmWzgmhKpWSLvZb3QVJxJhhslAozGR/1QLidONj+1ToNGERXZd1LVFVZvwb559953rlnGqCEbar0DUfFz+nP7xvHT8lduyjZvpkeROOIcuTkOBp7Jy/ycFn2p8PVd4YU+xvrnD9MA5XXV/53NwqPF8C968A/CNEIWf/CMAPAPhGsBTbLGL/57PW/jCAHwaABx988EVhXS/RuyIgICAg4JjiIHXM/24eQVP4x/hkQQ2EuGszE2SxWJwx0OheRaNhOBw6g4IGmhqDNHCq1SqazaaLmaNxuLCwgEqlMpN6nC5lxpiZbJIkK2rUMh6k0+k45Y+GJI2awWDglDC2vbi4iHQ6jWazifF4jHq97soZtFotR5JGo5HLssm4nkQigeXlZaRSKezs7MBai4WFBZw8eRLpdBqNRsMZmnt7ezMulK997WuxuLg4t2QAx5X/0nik2yQzaHL8lLwRVOsAOIPbT6bAuY5ba7y2T5Q0HkfhG4/app/MRFUy/c7vG93MADjjXUlZ3Nrleew/x/jFJnJx16ZxznXif8/aaAQJQT6fd3PImLKzZ8/irW99Kz74wQ+6sha6ycJ1kU6nsby87O45l8vh9OnT2Nvbw+XLl2fqIHIDgOQqn8+7chk8huSNChhVcyYh4rNN1Y2qOO+Z6e3pxsk1z8yKJEMcG6rr6jLJ+eY9Apgh8Vwz7DeVX37PDJeqyHJcOe5+8hbOm5Y/oUcAVTE/3o7XJqHS9aprWsmjunHyb83yyfY4Nr5bMYmhtbOlHbSdW4HnReCstdf5uzHm3wL4T9M/LwM4K4eeAXD1effuJhFi4AICAgICjoKDVLc44naQCue7Avk7//OMX999rl6vu2yKGgNCw2FxcREAXKZIpkXnTjJjRIrFIk6ePAkA2NiIco2Vy2WXMXJlZQWFQgGbm5tOlaOhS+OFxb65K0+DRl0mm82m6wNrwHH3n2SMBi/7xvg1kkAALvMeDd1sNutKFLRaLXS7XZckgklVmADlxIkTrg0gIlF0y6Qh/YY3vAEXL150xrA/t+qKp+6TNHL7/b7rHw1Y33WSpJHGr6pfaujGzT3/ViKnxujNKsDqaumvUa4XrZXlq22auEVj3Q4qXKzqBY14PwPh84WOh/7tKyT+GPjPnx7LchKqKqfTabzqVa/C9evX8dhjj7nyGKlUCtVqFYPBAI1GwyXyKJfL7tlgrGalUsGJEyfQ6/Vw7do154ZJNY1kheRJMxsy5k3jSieTiVt77Cc3bLREAMmmJhbiM8e55Nz4KfRVQVX1jGOi53Pda/xbnEsknzWOPz0GqOzpOqTCR7dNdf2meyqvxzXIGpC+6uy/U5Vs8T3K/pPY8nd/o4I/upHhx8t9UcfAxcEYc8pae2365x8B8HvT338ZwE8bY/4ZoiQmdwL43Rfcy6P3CzZEwQUEBAQEHAHzDEs1AucZz/NUNP9H1ZN5qksqlXIp7wnuwANwKcV9w3x5eRkAXFzceDxGpVLBysoKer2eiy0bjUZot9tIpVLI5XIYDofY2tpCt9tFOp3GcDh0BImFsNUVk9dkvBBVKbqg0ZBjrFun03HKG4kh42p4T+VyGdZaFytHosSCx6PRyLmz0RilOyQArKysYGVlZWYXvNvtOndQGovVahVve9vbUC6XZ9yzfOVJyQdVDRYMpwGtrpM+8aPRqQqUv46UlPlrwf897ni/3weRonlrmAYribkqcn4cnBJQVT+oWsQZzbwWx8hPB38z8InbvPsjOB/qeudvqND4ZhKPTCbjFF+6/L7hDW/A1atXsbm5iUQi4dYZMxGSQHGt8trGGFdG4O6778Y999yDD3zgA9jc3HSuu1wnVKeo/nBd8VnPZrMYj2fLX+TzeTefSt4ymYxrg/PKudM1qsk/mEBlPB7PPFckbiSb1toZl2QqaT7R0XEG9l1DVf3VdyHfe1S2lESqmq/jpUWzmZlW4ws1AynnRL0WNBmLr8bpO1tdLv1kR3wfJpNJlEqlm1nOLzqOUkbgZwC8A8CSMeYygO8E8A5jzP2I3COfBvAXAcBa+4gx5t8DeBTACMBftS9TBkogKHABAQEBAUdDHPEC4l0n+Xnc9/pdHIHzCYPfbiKRwMLCAqrVKgA4w2lhYcG5ZyWTSbRaLbcbra5VTIQA7Me6rK+vOyODsWnMAkl1iglShsMhSqXSTKIS7lLTmCFxm0wm6HQ6jnCR0DD5ApU3kjIAznAlmWLMHJOa0FBijTpjjMtIyXsYjUbY2dlBIpFArVZzLpM00vn9zs6OM4T53Rve8Aasrq7Guk76c6jqG90nmW2SBrO6RfrqGBWCOJI279pqYCvR8NfWQYQtTtll22qU8hj/eD+ToyoOqlrq+JDA+CqbrnvNAHjY+MdhHsmNe56UrPAYGur6t44x6xxyjdENcXl5Ga973evw/ve/3yXUoTpFgkViw1i4QqHgVKS9vT00m028+tWvxtd8zdfg137t13D9+nW3JlVF40YB3SBZQoDrj8Qxn8/fQNwYs0o3TbavStq8948qd1TzSbiZkh+AUyi5Dqiwq8qmY64xb1wzqgLyOCWY/FHXS6qJ/JyqP9eqKtZUFVUZ0zWhSVa4rjUJETcmuK7Zd40pZnsksCTgLOVyK3CULJR/MubjHzng+O8B8D0vpFPPF8YEAhcQEBAQcDTEKWL+zjJ/13/1nDiVQFUN38hXQzKXy2FhYcHFwBB0C0wkorplm5ubAPYTBVSrVezu7jry1u/3Z1QFVZrYLrNH9no9ZLNZVCqVmTpqmklS1TctEUAlCoBTLVh6YGdnB8Ph0JEyZsdkUhGOD8kZk4EwtqVWqyGZjAqDM5Mfs0xSyavX61hdXXXX7Pf7aDQaznilwZtIRMXKL126hIceesilWI8j3r7ypupbv993BI7qhZ/khFD3U3+N+dfVdRG37uIQt5bi1MQ4NUyhffbbUqNaY314Xz6Z84mcKnLaLkm11hC7GRxVbdQ50bgo/qvGOP9lDTW6SzLm9NKlS3j88cfx6KOPolaroVKpuFIVvId8Pu8IC5OicMOj3+/jsccew+te9zp81Vd9FX7yJ3/SZWClGyA3BIB9xd0Y41RfPn+su0iXYM4HyRszo7JvJFx8ryjpATBzfZIxumtzA4JrnRs1xuwnaSHhJInRuFdVxHR+eG32j3NFpY33pMoY3zUA3NiSZFIlZDwwXbn1miRu3HThs8mNFo2B5PXVZdgvW6DY3d11NehuFV5IFsovOhgEF8qAgICAgMPhK25xKkbczjUR5x6n5/vX0b8TiQQWFxdRKpVcopJUKoWFhQWXzIBxZd1uF5lMxpUOGI1G6Ha77nsaUFROJpOJS8BgjHGGEI0ixtzQNbFYLLryAjTaaewwMyTJkqbUp4HT6/Wwvb3t+ry3t4cTJ05gYWHBGYgkUMwiSbcmAK6kQLFYdDF1quhRfTh9+jRKpZJTN1qtlsvOR3cqxg+dO3cOr3vd63DhwgUX70d1gnOn86qKGvuscXkcGz2OBqqSXZ/A+AalIi5Zif+dkjufFOka9delvzbj1F8/Rs7vE//mZ2rYqgulqhxMPhGnaJMUqoupDyVYfn/9e4zbfGGfCb+GmsZkKdHjRgcNdSYBeuihh9But1EsFl0CHm5wUEXj/dLFMZVKuc2JVquFp556Cm984xvx+te/Hh/72MfcGCp5o+pmzH7tRH3+dP1prUcSKSpCqhyxNh3vUckPiQk3dbTvqpxyXnkMiR/b5TogkdRsknyW1B2R88t+ahwdXVE1No/Zb9WtkUSqWCyiUCig0+k4Es7zeB96PNtQMqvj4qtuSurYjj6LjE18vu7BLwaOFYFDUOACAgICAo6IOGVMP/fd5A5zYzvI0KQBw9T9VM8Yd8aEHq1Wyxlk3W7XEbxkMomdnR2MRiOX6KRUKrmdemapY+IBFhUmwQP2XSxpxJXL5ZnMlFRh0um0S2LSarVcAgXG4zB2ptlsulg6Zs+88847AewXPj537hx6vR6azSastVhaWsJwOHT3yWyY29vbjngCUYwL73FpaQnFYhHdbte5Ut53333odrv4zGc+40ogvOpVr8Ib3vAGVCoVV7i5XC67nfU4Nzyf4FCJYVyQGsmq3vhz65Osg5IbqHuZYp5r4GFKmg8llUc9h1CDVIkgDWA16FWZU+VOswj6CqG6sh3Wv4MInT+X/ndKPFUR92O1SD64scENhkwmg5WVFdx33324fPnyjPskiRvvu9fruYL1jPHkZsfVq1fR6/XwwAMP4PHHH3flMZQwZDIZF+/W7XZdEqFcLueU4PF47GKuVBUzZj8FPucjk8k4osfNG46HxphRceM5SsR0g4IqHhX3bDY7k6REXTZVidW6dGxfNzq4JkgCSR6p9lHV1A0Rkn/dmKJLq5J1vQe2z+dWx5/fqcrIdaculdygYJ9V/bxVOF4ELiAgICAg4IjwDTlfTQPi3dTi2vBjbPxjstks6vU6lpaWnJFBZY2JQZjOn0aU7uizmHWlUkG5XAYAF/ui2R65i68qHAmgGpdUFUjOaPDn83lXTJuKGACXZY+xPjs7O04JI3laWFhAv99Hu91GuVxGNpvFzs4Otre3Xfvr6+sAIqJEpWJ7exvb29uOcHK3v1QqoV6vY29vD8888wwymQxuv/12jEYjfOxjH3NKxd1334277roLZ86cQaPRwCc+8Qmsrq66OELG0uh8+e6TVA9JfP16b/PI27x1pPDVszj1VkmdxuHws8MQp0LFnTdv/RI0WtX49dVpVa80sQmNdxq/JAe+EsnxPCir5VERp04qGeA9UUHUtPmapEXT0zOuczQa4fz5864uIQAXp8YxolsjnxO69HW7XdeH9fV1l/zETxaimy9UklhqgMmCOFa8DyYq4fhqbTJfFdN6bhwPzVKpBIoEnaSJc6pzrTGF3OzhGJJM8lniGOs5bJPvHN9tkhtQ+k7SZ07r3HGTiAmSfHVV1T7dTPA3EXiP6jJMd3Mtik6SzA0wupPeKhwrAmeA4EAZEBAQEHAo5rk8AvGxbnHnKGlT49Y3SovFIpaWlpw7XyaTQbvddsYCa6JpvJq11sXEMMatXq+7LJLWRjExVLJyuZzLNpnJZFCpVGbqcfFaWjBYCxaryxaLVtNoo+pGQ2lrawtra2sAgDNnzuDuu+928WutVstde3NzE81m0xFHKoRMIJDP5x1p1XEtFAqoVCqoVqtoNBro9Xq4cOEC0uk0Pve5z6HZbCKbzeKOO+7Aa17zGtTrdWxsbOAjH/kIrl69ikwmg4ceesjFM80jMppAgYaxn6BFXaxUyQBmMxzqeohba76qGwdfmTuM3MS5Vc4jj3HXjNuw8K8fRzZ5jK9qMFsiFTit/6eKDcdAC4frmM4joHp9bSfu/tVNj59rogpeh3Omx2mWRm66rK2tOVVMVSe64ZFcEFTyJpMJnn32WZc8SMcEwEzdtmKx6NQ4rfmmpQf0GfYVTt4L1zLfE4w9pNsm+69jSPVUE8+o6qyqKqEKnL5nVL3S4uZK5hjfxr85/iRG6tqqKpyuhURiP4kTCSP7r0RO1ztJsBJUkjQqgyRpjJHj9Uh8ATiiPc8j4+XA8SJwBrC3rih6QEBAQMArBL7hA8SnQ1f4BqQaLfOOLRaLOHPmDMrlMhYXF7GwsICdnZ0ZxY/Fq7kjXiqVUKvVXOKQcrk8k8iACUSazaYzNNlWsVjEqVOnkM/n0el00G63XYwJa7gx6J8GDt00Abh4Nu6sJxIJVCoVTCYTNBoNrK+vu1puFy9exOrqqlPrAGBhYQG7u7u4di2qNMQ4Fqp7jUYDk8kEi4uLGI1GTmEAgGq16hTJ8XjsMvdls1k8++yz2NragjEGJ06cwP33348LFy5ga2sLH//4x3HlyhWnRN5zzz04efLkDSnA41xi+bsavaq+aYKGecQLgDO241z7DiNv80jmQcqbEij/Hv2+6me+waltaJ/9PsQ9I/64si2SORrHGiOntQ2VHHOz4aB7jut73L36fSWZ0BT7ftZBVWKttS6RDjcKnnzyyZnxomIH7MeYUZ3jRgfVr2aziZ2dHbdJo6SFZIK1H6217ly6HvJYjT/03196r8Ph8AbypklkqLqxXf5orJpmJlWVyieLvK6WAyCJUhdbf42S6GlBbT8RjsZcagyrvnOZvEX7ozUBVZUjSfWfAyqJ7A/vkWqgP66MS2Qc8q3C8SJwMLAIDC4gICAg4GD4BoXvfqPHxSlwvvKm59KgqVarLsbr9OnTKJfL2NzcdDXZKpXKTLp8a6N0/8xM2el0UK/Xkc1m0el0ZvpBZYsFukejEarVKiqVCmq1mit2TeOkUqkgn8+72C7uxBeLRZcKmxkgqdAxEUK328Xa2prLhrm8vIzbbrsN2WwWzWYTo9EIlUoF4/EYW1tb2NraQqlUQjKZRKPRgLXWKQt051SVi32ggc9MlcYYDAYDdDodp0DedddduHTpEobDIT71qU/h2WefdaRwMpkgm83i1a9+tYvh0/kllMipAcvkJaq+KThmhM6bqjq8hq4hVTMOQhwBUYKlfed3/n3qMdqnOKNfr+tfX/tLg143K+aRO46TEh0qK0w0o2SXBIjk7qjwx3geeVViqe6UvgrHsaSKxT6Vy2WcP38eV69ehTH7boLZbBb9ft+ND10rmV221WqhVCqhUCjg+vXrM+6DWvRdC3Ora6AW4qb6pW6BVIV4j1TM2SdV+UgwtS4a+6DFv32VTV0cSaKUaE0mE6e8+q6/nFu/HIXfdxYu9xPN6DpX4q1qHttn3K9mi2RbdGslYffHluuHxFsT9nA8SEYZ48ljlei+3DheBC4kMQkICAgIOALidoPnGY8HkTg1SujyUyqVHJlaXFzEmTNnkE6nsba25naMc7kcer2ec1XM5/Mol8szxuPi4iJ2d3ddQWvugu/u7qJUKjkiRzJ48uRJGGPQbrfRbredIViv15FMJmfIG92PmIq73W5jOBw6I5OFtnd2dnDlyhVsbGwgmUzi7rvvRr1eR6PRQKvVcqoiE5qsra3BGOOuQzWPZHA8Hru05yR0LGPQ7Xaxvr7uCADHKpFI4I477sClS5dQLBbx6KOP4sqVK87w1F3zUqmEO+64w+2cE757ohqaJBp+sW6SLu7qx+3c+2tJVQlt/yD4xEuh7oRKBFU18o1jvUc1MOMUuKPAvxd/zWv7/n2xD5qlki6KShZIBG4mLu4w0sZ29ZnVvvhZKlWtowpHUrm6ujrjrkwiVi6XXcIhdaGke12tVnMxrprlkfOodcmo5lD5UddS/1x18VOFiFAVLa68g5JZVeDYtpIWYL9sCImOqlUaO+a7HWoSGRI5jq1P3nivJJ6qfusmhZ/Jlu9dkjnf9ZfKmTGzSVs0+YqOMYmlkj2uGVUM/fNfbhw/AnerOxEQEBAQ8EWPeeqD/x2hapvfDg2UfD7vikwXCgWUSiX3N138WNesUqk4t8VqtTrj3phIRAWrqW7RqNQMdewjFbtqtepi4Jjcg1kcAbjd4r29PeTzeRfL0+123XfccWba/bW1NWxsbGA0GmFhYQGXLl1COp3GtWvX0O/3ceLECRQKBWxsbDhyyoxwJKYcN5JVxvHQcK3VaiiXy9jY2HDulFQMGGdyzz33oFqt4tlnn8X6+rqLEfSNSGstLly4gGq1Glv3jfPozzPHhe6TWjtKXf3iyFnc3/76OKryNq9//N1XTuLiyuLWNdv1+xy3McHv1QjW44F9gqhuc/OeDbat/aZ7oGZ0BPbjl45aL07vT10hfXWRx3K9cJOE65DqnLbDY9hH1oKjgl4qlZBKpVAsFh2B4oYEx4JukZ1Oxyntqn5Tkez3+zP37a8ZdV9Uosk5oHK8t7fn6slxnNV9UcsDsAajKrUkLyRjJEMaH+iTNM0mqs+jPn9UGFU103g+VT9VqWa/OC9UGAl9PjlG7CP/VndUvgtJhJVU6r0oked7ihsLg8HAbY69GEl4XgiOF4HD/Jo9AQEBAQEBPo5ifB7kegZEO8YrKytYWlpyO/usbzYej3H16lWsra05Q5G1zWisMOscd/xLpdKM6kZyUSwWUSqVZlJzLywsIJFIYGtryylszOBYLBZdjTQaJozrAaKSBf1+38XtAHCJReiamEgksLS0hHPnzqHf7+Py5csoFAqoVqvo9/toNpuOUBUKBZeCnxnceF9UDFgYPJvNolqtotPp4MqVKzPJHIwxjtDm83ns7OzgySefdCnY/TkC4Iy4u+66y8UEHjTnOu9UCuk+5deH4u++searUXFrRI3ROHKm6l1cG/q5Js1QlUT7qn2ZpwbycyUreh2fDPnQcYtzU/VVan+eeB9c79xQ4L3QVe9mamz5ZNH/nNdmn6nWcDz8uVXSyaLRJ0+eRLPZdLGp4/EYCwsLMMY4RZykL5lMuphMbl5QdVbSoC6TJLJU0kh8dAPBvz8dL5JNP7mIrmOOPfvCPpD0aNIZzjGA2LUW5xKpyjqVRN4X29NEMvxMNyK0P0qotISFkki6TpfLZXQ6HfT7fUeuWe/Sr6mnzwbHiuQ5m806os+xZc1Jzhfnn+/SW4HjReCCAhcQEBAQcATEqRCEb7T6ZE4NYKpsrOcGwO167+zsuP/oqUjRrTKfz6Pb7bp4N5Kc4XCI7e1tFAoFLC8vu1T+VKparZYzrur1OkajETY3N11R2WKx6MoMtNttl1mRpI7XoBpGt0Ygypa5s7OD69evo9vtYnd3F6urq1hdXcX6+jp6vZ4zVHd2dpxaSPAex+MxlpeXYW2U6ZLGHBOalMtl1Ot1XLt2zSl8JCYkmDRyO50ONjc3Z4gUjWA//mRpaQknTpyY2f33lSX9oUGvsW+++uYTgIN23H0SdpjyFkfSfDXN7yewb9jzGv44KOHUGC9dx76yctiaV4M9jkzExT/57fhjRPdXrlEayepOGaekznt241Q3/1+uH/1RwqrzQUJGclWv192mSLlcxnA4RLPZdJsx3HjY3d112VUTiYQjcMC+yqPZK7neVU2iayEA59rL/nJMSGoAuDY45+qSqGuE909wTalyReJM1VAToShUqTPGuLhWgvfBtnj/3EjS+Ez2k2Ov5I39UsVL1z9dKBmvqOtK26FK6Sc3UjWbx/JdxmQwfKfzfn1V+lbgWBE4IMTABQQEBAQcDjUA4xQ2313MN9wzmQwWFxdRqVQAzJID/ue/t7fnikkPBgMUCgWsrq6iWq1id3cX9Xod6XQa29vbaLVaroBwOp3G4uIi+v0+Go0GFhYWsLy8jPX1dVdTCogyRm5sbLjd5mKxiGq16mLgeE+ZTMYZx3SxpMsnFa9kMom1tTV0u12n5C0tLaFSqThCl0qlnPsQjTXGAmliAO50d7tdAHDKYSqVQr1ex3g8xuc+9zln1NJIJNFj5kIawnT94v3Mc5c7deoUarXaXKPfN/apRuiPH/vmX1OhRrKuHV8BmqeyqRpGaMwb/9W6VermRcNciZ5C//aNZX6mx2r8kBqn/rPi/+4TOR0PfhenBnIsRqOR2zAoFArI5/NIJBIuFkkVnLhx9Z/jeS6UHCMlPyQs+p2v5jGDYzabxcLCAra2tpzinM/nZ2LYqNowq2yhUECz2XQukyRQmn2S52t8lRJsjpGSrbgNBgAz60GVRX99cJ41xT+AG2K89FyNNVWVT2vUAXDusfRGIAnivVprZ7JLknDGbZTps853I+dEM2dSFQPgFDRuamndOf+ZVpdQkmfO69bWliOxHANVKOe5ab9cOFYEzhgTFLiAgICAgJvCQcZlnDGYy+WwsrLiss4lEgmXnIGqFOPYSN7y+bxLaNDpdFzsDAtdM35lNBphcXERe3t7WF9fdy46a2trrmg2ALerz4QKxWLRFdKmq6G11ilyxhi0Wi30ej0kk0lks1lX381ai7W1tZmCwgsLCygWi86VUxN7FAqFmR3wSqXialNtbm66uBPG+tXrddRqNdRqNVy9ehVXrlyZMVhzuZxL+qLxaDS6aFjTAE2lUjPqH3fIV1dXXfKIOOXNB40yulUdpL5xnSho0PmKm6/ixJHHuH75qpvGA/lkyf/R9aqEUVUG/1oao0hSo26RNKDVwNfj4378+LiDVG5+xk0Ekhsm6WHyCM65T9jiFDb91z9OCQznWQm7T9LVpY/ko1arOYKpMWXFYnEm0Qjju6iOU3HSzIVUlDSejP3VBD6+Cy/7qy6EjOnz14jvJsv+6nogEYtT2Pi9uu9yLkjw+KwnEgnnxsn2uAFTq9VcjUkSZypnGo+oCinvjf3me1bP0Y02kmpro1IMJFgcC5IuXovvLKqDSkLZzsbGhnsnjsdj5+7OZ/9W4ngROCBIcAEBAQEBR0acqx0Qb1wnEglX2JdGQDqdxmAwcEWqmcgEiBQy1nxjOnEqWTQyGo2Gi5vhznun00Emk8HJkyfR6XSwvb3tXAu5I2yMcan3aVRubm461SKZTKJUKqFUKmEymbj6bix8C0RGymg0QqvVcnXleO5kMsHOzo4r9s1YIMa5cUecgf00glqtltttZ0mDO+64A8lkEo899pir7TYajVwGSu7Ut9ttFzfE8VZSQJB4qLGcTqexurp6aGIBJUmqhuiPunLpef4aoXGs6pUa9XG78/NIm/6uigCwT15IuvS7uPbmuXb5KkfcPQHx5QNU+VN1hO2qsc974Hf81yfVPJb94thxI0QT/XAceA013H2SEkea48aapISZV3VdaN94jWQyiUKh4J4B9kVjSKkCMUkHn6m9vT3nTu27FjKGK5PJuM0LVd/Ytk+Etb4bx5nPrtZN47hqm9qWrjl95jSDpM65liPQuD4qZMYY9znrptFVm9knfaWX6rJPInWeeS77p8lKfFdKVd3U9Zj943xPJhNHyDkOdH/leHAuuY5JxgOBexFhQgxcQEBAQMBNwjdq9TN+nkqlnCsjDT7WcaOhMh6PHXlrNBoYDofIZrMz8SksdE1ixngxuhk2Gg2XwZJZKBmAT8Utl8s5AsXMahsbG6jValhZWcH169cdiSJJ5O40XZZYK46GTKfTQT6fnyEINFg7nQ4qlQpKpZJzD63X6+j1ei5hwOnTp93vNPxWVlZw4cIFDAYDPPLII2g0Gk55Y226xcVFNBoNl42PxhOAG4w538Dm3ACRcU9irfN20NwqefPLEfA4VcDmQYmcXjuu76pI+SRMXcNIikgg4gib9tVPKAHMJu3QsaN6wTHwXTPZnhIl38BXA5zX9NU4//7jwPtWNRWIVJ1ms4nhcOg2IYD9VO86zgf9HUfiaNQraVClx19jPIfuvfV6HVevXgUQbVjQqCfZ5P2Mx1HJjF6vh3a77eJB6ebLTQ+2q66RmtSD6ig/53eqXPG6Gsep96b3p6RX693xXvncsX/cWOIaoRqpGSG5mcUNrV6v59xOGePLd48+A+qGyevrelVljkSY5/EczuNkMkGn03EJapihk8fo2PE+eX0/GyrdyPVZAeCUf/bpoM2ilxrHi8AhCHABAQEBAUeHGvhxBr8xxrknlstlF6dVrVYBwNVOm0wmLv4sk8m4DGhUyU6fPu1I2GQycarX0tISarUaqtUq1tbWXFkAJvfI5XLY3d1Fo9FwMTU0OHK5HLrdLhKJKFMkC3U3m02srKw4A5KuQzTsWBg8lUq5pCU0AlWRSKfTaDab7r4bjQYAOFcoukNVKhU0m02XDj2Xy+HkyZNYWlrCc889h2vXrrksfNzxrtfrrhwCSRTdxnwypMZ0HKEyxqBaraJcLt9gUM1TY2jQKomLi5OJWy8+eWR/fXI1j0zoZzyPxq3/ncbC+X2iEU8DX1UXpjsfDAYzCg6PjYst0sx7VHypnqiqqPFRNJQ1MYSqVzSSeawa8P4Y+vNKQ3pvb88l5gFm0+r7BDJu3uYpcfPcKP3jOM5UnGu1Gp555hnnBs174/izrmO328XOzo7biKFCz/g+AG6cuf6puKmi69dDYx/VrVTvRd1gCW4E6He+kuuvMVVFfVdhEiGq8lwjTEjD70hMucGliiJJJq/l91ndKDXWTVVh9llj06zdd6FknUv+TlLL+UgkEjM1CtPptCsnwmuQwGodzqDAvcgwxsAGDS4gICAg4AjwjRV/Jz+ZTKJer7tC04lEwsXmMG6KqtipU6fQbDYBRK463W7X7drfcccdyOfzjuw1Gg0Xs1WpVFAul52hd+nSJZcgZG9vzxkgg8FgpghyMplEs9lEtVpFPp93fWcyECplhUIB4/HYXRPYD/JfW1vD5uamS0CiWedopNRqNQyHQ0fyksmkUx1oWHU6HTeG5XIZp0+fBgA8+eSTaLVabtd8MomyTC4vLwOAM855v6oQKNmZR4b0c41JjJvbuHlWNcYvHTCPwPlugMCsy2GceuP31VfIWHvOdwnjv5PJxJVqoFLCJDEk8CRmjM+hCxyw73Kq8GOMmG6d/aS6yrWm98sNhGw2O1N0WomHuh6qisTz48honJLG+Wk2mxiPx06N1qLZcfM8b650TmjIc3NDiaEPJXClUsnFq1KNoqsdnzs+J71ez5UNIWFgxlklx+oeqGUGtG6cxr6RtKg6pwSbc8zP/HnRzQG6MHMtKEFTV0OOiypzfHeMx2N0u11H/kncfILpu9Lyvuii7aug+kxy/HQTQOvOkWhls1n3rlVlkSSPfeDapks4z9VxUfdZHTuunYOU+Zcax4vAIShwAQEBAQE3B9+9zpgovmxlZQXlctkZw/l83pER7tAySQjJ2+7uLtbX15FIJHDu3DlcunQJ1lo8++yzTrGy1uLkyZNYXl52WSjH4zEefPBBGGPw3HPPOaVva2sLzWbTGXqsn8W2gKhcAIt5TyYTDIdDXLlyBcVi0cXUkLRVKhUMBgNcvXrVlSRg1kca2M1mEydOnEAul0On03G13Wj08N/JJEpgQnc0Zua01uLq1asu5kcTA1QqFaRSKZcYgARODTzOCY23eUaS7tgvLi7OpAz3jUSfHAD7LpQac6ZKkLpw+gqRJpTg93Fqrq/oqlGqxJXFhpX0UEGl66kawEwcwb7wO65P3p9PKPUe+J0aojRWtT1NSMLrsxRFIpFwanAcodPr6birW5yvCsaR9clk4spikMjNI3E+cfOVTyXQqrr6BF7XEb/nGisUCmg0Gu459dW8wWCA69evA4AbFyq96XQaxWLRbZQomeL4qOKsipuuUY1pU/dWqrG6PnzVkT8kPjxf1T4mOPJ/eI4qbJ1Ox2Xapcurrn1169Q6c1qCYN58sA0e629ycF1S1STZYz1I3dCgCyg/48YVY32p3HHceC118dT24tbgy4XjReBMIHABAQEBAUeHbywy+cfS0pJT3ay1rjA249do/CQSCVy7ds3Vf+r1eshmszh//jzuv/9+7O7u4oknnsCTTz4JYwxqtRoWFxdx8uRJWGuxvr6OVCqFS5cuodPp4OrVqy49P+M56KpFQ527y/V6Hc1m0xnc3AHv9/sol8szO+XD4dApCHSFZGkBKkDj8RiZTAarq6vIZDIu9o3X7Ha7LtaHSg9dMTk+3W4XGxsbLskDjSYmFqAaSENRXReBG1Pf8zPOkRqjxGQS1ZbLZrOuNAJ36ePUFCVSSuJ8QzVureg1/TYV+r0akdZG7l0sGg7AGZu7u7tYW1tzGwj9ft+l1/ddfNl/AE5B1Jp+/HceedXxVcIA7BvVPJ7fc+zpLkiDnElHaNhzPVCdUvVHr6lqaRx5UzdmntPv9904kgT5my8HzbmOgRrj89xntW8kcIx/ZakAfg/sk6xGo+GSEZFckKRzrXIDQ+eLz3Kv15tRznTOfHLDdUBSzPWsa1HVTPZTx58kVO/Dfx74HNO1lvfKOnW5XG7GrVTVPy0foEoar8+abXquxruRXOoGg8aKErwvvlf4niJ55TGpVMqVTGEf+F4l8eN7hIW/OSZ6Pf898HLiWBE4IJQRCAgICAg4HL5BDMDVeVpYWHCuNJlMBpVKBadPn8ba2ppTw7gzPhwOkc/nXdFtALh06RJe85rXoNvt4gtf+AIeffRRLC4uIpPJuEQovV4PjUYD5XIZJ06cwPb2Nq5cueIUj83NTYxGI9RqNae+MbMb4+pojA0GAzSbTXS7XWfQag2kbreL8XiMVqvl1EEWImZZg62tLZdgAQA6nQ6WlpaQSqWwsbHhSg7QQMtkMm7HnWPBotua9Y5uSrqDDeynPieJ8eNb/CQOPEfnT9Ub3+jSa6ma4itmmrRFDVglzPx7HvQ6cQRAFbednR3s7u46dVSTTrTbbUeKmL1Qx4R/MzaKBrEmYtGxYbwPjU49l2uDn9HYBuBUYo3zUWVTVQm2RUOX5K/X66FYLDpljvFHSkhUXfJJl0+WVcFkLCUVYF91PYgE6jwpYVMSp66U/I4qUiIRZTxdXl7Gzs6OW3dcL3TDu3btmiMQXF9MOpRIRMW9tTSHJh0hcVHXPV3/JEU6NrxP7SNBhRmYVfGoMGm8Hdvm8wnsxzlqgXF17WYGXsbnkjzp80RV1p8rzZqr98X+aSZM3gf7p/dHd3OWc9DMrZwXVSGZ9ZdlVVTx57iwrIrGDqsSqJsHtwLHisBFClygcAEBAQEBB8N3KSsUCi6hiP4nba1FNpvF1taWK7ady+Wc0kODodvtolqt4o477sD58+fRbDZx+fJltFotAEClUsHS0hJKpRI2NjawubmJ8+fPY2FhAdevX8fGxgaMicoNrK2tod1uO3dDJjiYTKJ048w8ScOUSh0TnnDHmMH4LJTMzHBnz55FLpdztd+63S5OnDgBANjZ2UG1WsXJkycxmUTlB5icxFd8CoWCM2R6vZ4rIcD/h1nXTdVKYN+g9BUENdTnEScaWjREgf1YHBqwcS6UqroQatD5LpS+QhTXF23DV3g0bmlvbw+tVsvt9o/HYzz77LPOeFTlQdUFVSdVIQT2CS9VVvZF43Q0S6C6ZnJ8+b0aw1xTSuzUuGcbqkJoMgoen0gkZjYVyuUyCoWCI3I+Qdb2eH3Om0/MeN/tdts9M/q86pzNU+PYftzcc4z8+VYix5ivSqXi1h2LejcaDbRarZnELiQVVMrZlhayVjKnBe3H4/FM4hiOFZ9z/s351HFTAsN+cw61GLWqeFSH1d2Rz5gmAtFyIKxXyY0E3SBhO0qUNf7Q36DhePA67BfXmm4U6LhRuVS1V1U6XTt8LpVQ6vdcG9wcUQLPMaZHwa3C8SJwt7oDAQEBAQGvGNB1iFkmuWtdLpfRbrfRbrcBRKnCz5w544pEV6tVl058NBrhypUrqNVquP/++5HJZLC+vu6My36/j+XlZVSrVRQKBWxvb+Ppp5/GuXPnkEwmce3aNWxtbTmyc/36dezu7mJpaQkAXBFtIIq3o3sjCdNoNMLKygqMMS65SCaTwdbWlnO/3NvbQ6fTwe7uLs6ePYtSqeSMuZ2dHRcnNxgMsLKygnvuucepaVSJ8vm8M9KoqulOdbvddkYiACwsLMyoQnSTUoMZwA3GW9xnSgBpWNOY0h1zPZbtKOHxoSpgnCtUnJukr+TEqX00UCeTiUvU0u/3kUgksLOzg06n45I90KgnQfMVQf3cjw9Uwuu7m84bT1/Z8sfFJy+arEGTXahrnCpXNIqVVNDo7na7yOfzLqsp+6ZE0cdBBGw4HDrVmxsper/+uf69zVPglOzqWHGcee+aQAOAc1OeTCa4fPkyEokEqtWqS65D0qDEmmPFtahz6ZMcVcLYJ1VneZy2rwRI29dnV7OX0h2WpI1rlLGNiURiJlsma6LxWv5mh6qT3CxhKn4l0HFKKcfnoDkEMBN3qQSVsbUkg+rKyfNIgnWO9bnVDQ0+B7pWgwvliwQTYuACAgICAo4AY6I4I7p58T/14XCIdrvtjJN+v+/S9WcyGVcOoFAouNT458+fx5133ukMdKZlv3r1qounKxQK2NjYQLPZdLv2165dAwBXT25jY8OpZOoSRcJUr9ed0cF4t1Kp5JJd0IDb2dmBtRa1Wg3tdhubm5swxuDee+91dd1Y54gGS6PRcIrg008/7eKcer0erI3ijai40VBifIm6+wERwVPVkIaiZnpkXzXpBrCvLAH7apQSF981jufoTj7htzuPgKmboe9yOA++8qZq4u7uLra3t9HtdjEYDFCr1dBqtdBqtdzaoOpGw5CERN1P1XhUBYJjo6oBx5UGv7pY6lgRPilWlzMa3GqE63iybfadLns811cj2T7JCzcWmIiERr4SJ5/UxamgNNJbrZZT0f2MmXHz5v+tRE77zu/VwFfyynVdKpXc/VlrnfsoXfDoesd1yHXPeSSxUzLIPnGsd3d33brRtax1F9lvJXI8TskVQfLGjRWOharlo9HIJWEBMKNa8b6oaLF9Xdt8NjmuPJbHMCmTJkzxYyZ1zStZ5GccQ84LN5L4XJGAcmzpRUEXUBJIVeK4Vv3NCB1ndU29FTheBA6hjEBAQEBAwOEolUoufkbTebOmEY0K7joDUdKParXqaqIlk0mcO3cOS0tL2N3dRbfbdTFja2trWFhYQK1Wg7UWV65ccS6Yo9EI6+vryGQyqNVqrgB2Lpdz7kFMkLC8vIzFxUW0221nJFLBSafTbqeY9Yt6vR5qtRry+Tw2NzfR6/WwuLiIV7/61Wg2m3juueccUWCpABYRt9bOqI6tVsvFazF+J5lMOlK7u7uLzc1N53Y1mUxcmncST6ZVp3GYSCRw8uRJDAYD7OzsALixLho/810h9TglFX7SDT2G57D0g9+eGq1KQOKUtTiXuri2Hn/8cWxsbLj52tzcRKFQcGqonqslDHSX37+u3y+63tGA9xU43QDQ66lbmvafiXP0OpplkCQAmM3Ip31iH5RQ++5+zEw6GAzQ7XZdFldeW11PfRXMn3v2gUocSYVugOhx/ppQJVNJsD/PPNYnSZlMBu12G8ViEcD+RsyVK1ewtbWFM2fOYDgcYmtrC7VabcZ1kISJKeyNMS7lPQmdklu9by3Loe6fumZIVpQ86T3r5gcAR/yZeIZtaDkDrjMqqFyDCs4bE35oUh09VjcqSLi4CeCvH56r86qqniqhHFP/PjkuStR0LfvPhxJ7bibwGiSHzER8q3C8CFxQ4AICAgICjoCFhQVnnJZKJafIpVIpNJvNmZgPukCtrKxgd3cXzWYT9Xodq6ur7ngaIIxtqtVqWFhYwN7eHq5eveoyV3Y6HWSzWafCbW9vuxT43AmnUcXd9m6365IG0E0SgIuzYQzeaDTChQsXMJlMcO3aNacOkgCura2h0+m42nCqJNBFcjQaodlsutpuVDUSiYRTAZaWltBqtbC5uel2q9lfLZyrGfZoPDFJSqvVik04oogzwIFZ9yxfNYk7hwZhnEHnk7DDoKRFVTd+PhgM0Gg0nGHIdaTjwTFR90KF3h+NU16LhIzrxFcA4kiIEiw/IYp+r2uC88rraOISXxVlG75ipgTMJxK8fypAJAV67z4x1DngMVwDw+EQnU7HqUMkEHHzp/evMYMHzb+/1ki4BoOBU+qpPPd6PayurmJ7exv1eh2JRMKtCVWdNFMi1TV1i+Q1GKumWUaVwGnsm8aDKYHSDQ+f3Btj3PXpjWCMcdlmGVfLfvKcbDbrsoJSmaPrJZO36OYE1xZValXi4uZZlWf+rRsyXIua6TaTyTjvAvaTmyKaMZTjks1mZ0gw146OoU/ueb+HrZmXGsePwN3qTgQEBAQEfNGDCUKAyHAolUpOxaLRwJT5rG3UaDQwmUxw8eJFrK6uotPpONUtnU7jc5/7HADgxIkTzn2R8XDdbhelUgkrKytIp9OuwPXS0hISiQS2t7edwULDKZ/PuyQBxhgX80a1j7vldJ88c+aMqxuWTCZxzz33AACuXbvmEhPQ2KSxm8lkcOrUKRSLRWxvbzsyylgeGldMVLG8vIzt7W1cvXrVkQ8aPSxJAOxnuwNm3ej6/f5MXTMa+oQm2lAD3Xfj0114/q0EIQ6asIBQAukrSno9/ds37ngMFUmqYgBuUIPUZU3d4zQjpBq9/vXZliafoJHqj6PeK4/zXcB4rELjiHgfbH80Gs1k+aNiwc0GJetqKCsZI2lSFWZvbw/1en0mpkr77vfTJyQAnJKt623emtC59ufSJ/n++uP3fJZIVGq1Gra3twEA73vf+/DJT34Sv/d7v4d6ve7eH4wj7HQ6GI/H7hkmMdISAKoK+fNBsu0fp662Sp45ZhwTkmdubtALgQSLmzGM38xms64mJkuEJJNJV0PNWjvjHsx1ofGcmkyF1+Y7T7Nh6nvBTyZFss5nxVfk6EnBYzhnuoY4hlqkXom8bljo+0Y3WjiPHItbgeNF4BBf/yMgICAgIEDB3XMmk6BLDOO2qNCdPHkSALC1teXquy0uLuL69evodrsAIiOdJOn2229HvV5Hu93GlStX0Ol00Ov1kM/ncerUKfT7fWxtbSGVSuHkyZOo1WrY2dlxBjZ33JeXl92OMcsEkHiNx2Pnmtlut5HP55FIJPDUU0+h2+3i/PnzuHTpEprNJq5du4bt7W1HGnh/6XQaCwsLLhHL008/PWOMUDmiIcNYvkaj4WrV0e2KRFPj4miYqwHMBAlqKNMI1eQC89Q0NdR0R5xuiL7y5EPjcfzj4gig/q0KjBr8/I7GHF351GgGMBOTo+RNSZuSNxrsGvejShmh96GkmWOqx9D9i2Oh7ZF8+S6GmhZeE3GoO6W25c+rfqfKD4mCuhMCUQIh1l9kn/y4tri5431wM4NJUlTB8Y/X/sYpwb67nW9f5nI5179qtYp0Oo2nnnoKTz75JHK5HN72trdhMpng937v97CwsIDFxUVXZsOPrVJipcREFTWuO651gmqXZqvUMWffuT54vhZcVwKlSVnoyl2tVh1p4TM0GAxcohCNWwP2Nyp0Q4bZHfVYvTbXi99fPgesP8eESUoA+ewMh0MX40b3VN0M4md+dkqqkJpURTcpOJ7qnnnQu+blwLEicAgKXEBAQEDAEUDylcvl0Ov1XPxJsVh0iU1WVlbQbDYxmUxw4cIFnDhxAv1+H88++yyMMRgMBmi1Wmi326jX63jggQdgbVSc++mnn8bW1pa7njEGa2tr6Pf7qFQqqNfryGQyuHr1KprNpov/yOVyztjb3d115Qu0Blwul3MuiMViETs7OxgMBsjn8zhx4gQymQyeeuopbG1tuWyYjHsjeTt//jyq1SqazaZLrsKabqlUyhVJHo/HqFQqKJfL2NjYcPWtaHTrrj133/3sk3HEQ41xXwGal+FN3SD5oy5ZPgnzDW810nzD3Cdlep7+rS6NSkwHg4Grl6ft+jFAvurDa/gKgBaAjsvcSePSHyuuY46LEtbxeOwUCj+pC41wHq998ZUvKmapVMrdL1U5ADPqBdvh5zS0VaXTPqhLpU9GlNgodLxHo5ErLu/HjilogPvriX1WdZFt+9ema+RoNHKJgz72sY+h1+thY2MDZ8+exTvf+U4Ui0X87u/+Lur1Ok6ePIm1tTWXRIPEXuPaOOaaWVHnWNeRkh8AM+qtnwBG50PJiSqeJGlU0kmoSdgYM6v9oYKoa0PfEbxHf2xVJdbkLEoQVRGj0snnI5VKYTAYuOeA/aZLOAn2YDBwpJ7qHBAp5prh00+cws0OEkdunqkSqvX2Xm4cKwJngMDgAgICAgIOxdmzZ7G1tYWNjQ23O7y6uuoUpVQqhbW1NRQKBVy8eBHVahXb29vY3t52cSFMzX/bbbfh7NmzGA6HeOaZZxxR4w5zuVx2hXvr9Tqq1SqGwyG2t7edAsFd7mKx6FQ/xrHRuC6Xy87dkrv+29vbaLfbWFlZwe233458Po+1tTVsbGw4d0tfVahWqwAiVbHRaLj05ySRJ06cmHEjZR081o0jqdBsbmxb0+CrUqA71j6hojGpSQF8lUzJkIKf09jT+/SPo4GoBquSkzh3OW2LRqkSD7qYbW5uYmtryymQqj6qkuKDbZFslctlR7j39vac8aluduy3kjPOHeOYaBzncjkX41kqlVwfWNyd5JfZHGls+9k4fbLDv5UkqHKo57HPPjlm/+PcYCeTyQ3lBvx1pO3qPDJ7KomHuiD6465994mh9tVfi0BE4HZ2drCxseHWweOPPw4A+K3f+i182Zd9Gc6cOYM3vvGNAICPfOQjWFpawunTp2cKfWsmSipSmnFSx0bJvxJuHQslzXGEl+o617KuFQBOyaPbJBMXcV2zth/nQ+fVf99wbSkBHo/3i2L7hM6fX5I3PmsE16if9IfvEfZfNw1I1hjTp2uDG1Ecf1US+eyUSiX37uO7jmN2K3C8CJwxgb8FBAQEBByKp556Cs1m09WAW1pacpkWh8Mhut0uzpw5g1OnTsFai2eeeQb9fh/5fN7VThuPx7jnnnuQz+fRaDSwubnpkokkk0msrKwglUqh0+m4Gm7j8Rjr6+vodDrOCKpUKqhUKlhYWHCK2rPPPut2vLnrzX5Rndja2sJ4PMalS5dQr9dhrcXa2hquXLkyk0CECQjUbe3KlStuVxkAqtUqVlZWkEwmXemASqXisiiur6+7nWcSSrpuckdfA/vViNdECmr8KhFhPBCNVN8Q9ImVH9/V6/VmXPEU6m6p8Th6vm+k63X9dngvk8lkhrzRDU7dIlU9IolIpVKOoHFumD2RMUVEoVBwmUvZNospp9NpVCoV5HI51Go1LC4uuoLsNLyttej3+zMET93N2E673UY2m0Wj0UCv18P169cxGAyciktXOlUfVF2kQatj7GcH5Y+6Y+p8cmypFtNVWOuo6drhnCih5hixHAf7rLGIqrQqedO1GbfOCH7GcaQqdPnyZVy/fh0rKyv41Kc+BQB45zvf6UhcIpHAhz70ISwuLuLMmTNYX1+fiQVVF0YSOF1/JNyaMETdKqnakZxoPTjOBZVSbtCoOgrAKavc5OH4ULmmC6Im4OG48rpaIkCffXV95oYFySrvR92MlVDpPJHM6Xxr+3zHkRgyWRXbZJZhrluuNd+tlXPCWpjGRImu1G3T9x54OXG8CByOlkUqICAgIOD3N8bjMQqFAhYXF7G4uOjqUtEV6uLFizh58iRarZZTvOr1Oq5fv47JZIJarYaVlRWMx2MX/9btdtHpdDAcDnHy5EmnBHCXtt1uo9PpuDid3d1dLC4uYnl5GeVyGel0Guvr67hy5QqA/XpKhUIB3W4Xk0kUm9fr9dBoNFAoFFAul2GtRaPRwNbWlotLodFFg4wxJECU7IEGDq9RqVSQzWZdUhYSRmutI4pKOJiWXw1oNYRJ6nwVzle1lDixv4SfuTCOxAGRwd1sNm+oR6VgnJESBVVmfPWN1+C/2g8e0+l0sL6+jq2tLee66CehUNKQSCRw4cIFXL9+3ZFkJbB07aLhqW5mmtWyXq/jwoULKJfLrjbgcDhEv9/H9evXneHOGE+SGRqe7BvHpFgsIplMolAouM2CBx98EKVSCc1mE41GA61WC9euXcMzzzyDwWDgCKEWZdZ7pdKipISGv84rNxV4rJJCTWLBtevPj68Gqjtmr9ebSeoRZ2zHuc7qZ3GkXq/NoteJRAKf//znZ9wcH330UQDAu971Lpw5cwYPPvgg9vb28KEPfQi33XYbzpw5g2eeeeaGeCyfDPnrSsmDv1nC8dD7VighIukhuWVsWaVSuYEEqUuhjpVmdlQ1dTwez2zCcD2rEuuvG27A8L3CfinxZ590HlR5JFkDZktjkPRxnVEBzOfzGA6HLjaXx+hYUnVMJBKusDld8ONiLF8uHC8CF2LgAgICAgKOgGw26+LdqHxtbGxgZWUFp0+fxng8xrPPPot0Oo3FxUWXNn8ymeC2225DsVjE448/jkajgdOnTwMA1tbWsLu7i6WlJWeoViqVmVg5GgG8LhWWTqeDVqvlDEIaQ6PRyBHISqWCfr+PbreLWq2G0WiE69evz+yIq8FGJUMJAuu3ZTIZVyJAjRLuvPd6PaRSKVy+fHkmTofnqZukGmQaM0QlKY6AAfsulzRGNXYmznDWXXbfBW5tbW0m85x/Hvup6omSJEINYb/vqvIw7mljY8NlEvSLIqthTkXl6tWraLVaAOBIEFOeawwOSRvVGGYwPX36NIyJkt10Oh184QtfQKfTccXUta9sk2vJJ6C8b2bOzGazWFxcdFlI6SZ74cIFjMdj3HvvvS4G9Nlnn8Xm5qYra6HZKmlM0/hVJcsnS/M+B+CyG45GI9Tr9RuUOCWMca6CdEHlBopf507HQNenr8Dp9/7P3t4eSqUSAOC5555zRHs8HqPf7+NTn/oU+v0+3vve9+K2227DG9/4RozHYzz88MM4e/Yszpw5g2effXZm7fF5G41G7lnjs6Sp/DkGeo7eE9d33PoleVYync/nZ9w5+YzQ5ZAbPpxTHU8ez3WminHcBogqmzxX71MzBKuyqOTaJ4I8h9fQ95ESYN47N6I4ptVq1dWu5LuE72O+Q3ge4wD1mi83jheBQ6gDFxAQEBBwOKi43XbbbUin02g2m7jttttQq9UwGAxcrFupVEK73cb169eRz+dx7733Ym9vD48//jiazSaWlpZcjTXGGJEIJRKJmcyWQBRTtry87LJc9no9l6mSxzAWhnFzVEf4HUkWDSut5wTsu7Tp34yFIjGr1+tYXFxEPp93xJIKzGAwQLFYdLF8AFydu0KhMGMozzPWdWcc2I9BUwWNxhh3yjk+3C33FTs1AtUNzxiDq1evujgdtq/GN/upbn2q8PAaGrum0L+ttWi1WtjY2HDGH+dB3Qv9xAiMB1JDnePCsVHFKplM4vz5805pG41GeO6559But2cy7Om96BjznnzlyVeqiPF47NxBt7e3UalUUCqVUCgUcNddd7k4r9e+9rW4++67sb29jWeeeQaf+9zn3Njz3nif7IN+x7mhC6Aa9NofkvrBYODWqJ/1ksf56473owWxqTjqPPoxXFwrB0HXIBA9h08//TSefvrpmTgykvrPf/7zyGazeNe73oWzZ8/iTW96kyN3ly5dwpkzZ9xGCe+BLoV03+PmiT7Xfj80JlKJG0mX9p/tMJEH31dU5+lqSDJGRZ1t67WZkVZjxzjvqmJRIaOyxjWhpJH95TV81ZFjy/Y49/ocU71jKRQ9lvfP++p0Om5DJJ/Po1wuo1arodPpYG9vD1tbWzNzMhqN0O/3Ya2dUftuBY4XgTMGNmhwAQEBAQGHYHV1FSsrKy6F/7lz55DNZnH9+nXs7u6iUCg4Y3Y0GuHEiRNYXFzEc889h52dHUeErly5gl6v55SR69evuxg1KiPtdhuVSgUnT57E0tIS6vU6jDHuO5IYZowE4FL/5/N5rKysAIhc9qyNSgcwsQCwn3EQgIuP6na7zh3x1KlTKBQKTskrFouo1WrI5/Mu2Qp3lHd3d5HL5bC1tYXNzU3XBo08EgdgtkA34cc3AfHZIJW4APsFqmlwq0sV4beritPOzg42Nzexuro6Qwr0WPaNP1rPzG8vjqTSmKSrLImQxmxx15/GLO+V7pEkcmzT7wdd3IrFIpaXl11M5hNPPOHGngYnoRkgSVK5JnSM/bizeSCJ7/f7WF9fRyqVwpNPPolEIoFarYZ7770Xu7u7qNfrOH36NO644w6XPp+JUFTx0/Gkoc2+8G9ViAg1vGloM13/QetKDXt1ISZpmKeqsQ0lnj70OBL3breLj33sY2g0Gjhz5sxMH4yJkmp8+tOfRrvdxnve8x5cvHgR73jHO9Dv9/HEE0/g7rvvxrlz55wSpyRG3Ql9NU0VN64rZqqlcsc1q8Wp2RZJF90JScTUFZLkiM8k4yb9vpDI8TgqVRwDvkd4PRI2kkSSN2aXJOGmGywJnCbZUVKpJJYZKDk2uVzOuZbr5g2fVba5tbWFyWTi6nBaa50rOd2Gk8kkhsOhq0nXbrfnPkcvNY4XgUNQ4AICAgICDsfKygquXbuGZDKJU6dOodVqodVqYWlpCblczhXtzmQyuP322zEej/GFL3xhpuTAzs4OjDE4e/YsGo0GrLWoVqswxrid7L29PVQqFUcYmUmy1Wq5IsDtdhuj0QjlchmDwQBXrlxxRhAA1zaLcQOzNc2y2axzFUun09ja2sLu7i7S6TTq9bq7Hg1kFg9nEhcAjsixrMLGxgaAfWJVq9WwtLSEK1euzBhM/F0JgU+81DBXJU7VGBrOvEfen9+m/qgr5Wg0wtWrV3H33XfPXFvJAQ0+upQmEokZg9G/D3W1Yz/39vaws7Mzk+KdLpC8jipcPF9VOh5Dw5QGsjHGJSSpVqvY2dlBo9GYIXYAZgxa/q3xREo8fDLC8VBlg30nSKyULNPNbXt7Gw8//DDq9TrK5TJOnDiB8+fP49SpU7jzzjvxxBNP4LHHHnMbCEp8dR3wGjpmca6RJBoAXCxfqVSaUVxUffPXHFU4X2lVwuiTN1/B1DZ1jBqNhru3p59+eiZeTd36GAv6xBNPuLG/dOkS3va2t6HT6eDzn/88Xvva1+L06dN47rnnZtwSfQVKP1eiNxwOHUEhuVF3TlWg+RnXP7AfF6uxgkq0Scx07SjJ0+M1ro6ul/PcHFWJ1uedhJCbIUq0eC+q/vO6uVzOvQdJKOlZ4K87dSHle2cymaBUKs3UvFMFk27FTETE9+StwLEicDCBwAUEBAQEHI4rV66gWCyiXq87Y5OFtpvNpos5O3fuHJrNJtbX1zEej1EqlbC9vY3xeIyzZ88imUxiZ2fHESae2+12YW2Ukr9Wq2F5edmRI5Yf6Ha7aLVazmjvdDrY2NhwGf8Yf1EoFJwxo+pNsVh0yUSKxSL29vbQbDZdCnVmkCyXywCijIanTp1yBiBjd6hSJBJRXavLly+7+A8gKuJ98uRJNBoNALjBKPcNZ3WvUrJE6N80SlU1oQsod9O1+K4a3KoyTSYTPPnkk3jTm97kknIoOeT5vE8qX8z+qGqRD1Vtms0mrl+/7ghZnKsn+65xRHt7ezMqHI1nJXGlUsnFnjGrZT6fd+2xD37tL98oVmIT56ZIVz1VCNWF0TekVTG1NspqORgMsLa2hsuXL+PixYtYXFzEbbfdhlOnTuGuu+7Co48+iscff9xtUpBE+K58/JfXUPc8rgsa+Xt7ey4BUKFQcH1W9zh1p2QbJHC8rzg3PyXe/hjGkcPJZOIyuLZaLXz+8593sZC8RxZ91g2Cp556Ch/84AdRKpVw4cIFvO9978PP//zP4zOf+QweeOAB9Ho9bG5uuvIRdNHlWud7QOsvUl0icaSrK138fBfIbrcLY/bLSmiaf44/kxWRjGm9P7p0cm1xHFnCgp+zr2xDoWvaT1hD0j0ej13cI8eSY6/vmEwmg2w2i0Kh4BQ9fYfoc8M29ZnWdcl3LMeT7VJpZ/Kh0WiEVqvlNm9uBY4VgTO4tVXRAwICAgJeGaCb47Vr17CwsICzZ8+i3W6j2WzCGDNTaLvVajmDqdlsIpPJ4NSpU+h2u9jc3HTGKQsI081oeXkZi4uLzgihYcbYi36/j8XFRSQSCbTbbVy7ds0Z0CR/dLWkAUhSRCM0l8thb28PjUbDlTlYXl52JQhYA2xhYQEnT56ccUWzNko0UiqVYK1Fr9fD+vq6UzxoUFN56fV6AGZdJ+Pc5FS5oXEWdywJhqbz9l3o6HrF1N/c1Y8jXJcvX3ZxiT45YL98xS+TycTGsvgqHwBHWtgWiYm6ZWnsjiZfYN85Fszex1pV+Xwe1lpnNNPw5N8cK/ZNs+vp/fjKmroEEsxIqQqKb+TyXK45P5U7f1qtFj796U+jUCjg3nvvxfnz53Hu3DlUKhUsLy/jc5/7HDY2NpxBz3nVrIT+9VSZI3ljPJgxxqngOp56nq4LVXlIcJSU6nqY9xO3LgA4l+fHH38c3W4Xi4uLM6TSGOPIkbq4XrlyBb/1W7+FbDaLM2fO4N3vfjd+8Rd/EZ/97Gfx6le/2m3EqMIKwG3eEEq++MzyWCpKup54jm4caJZYdVNU0k6QCHIM1L2T6zGbzc5sVqjLrD6D2g7j1bLZLEajkUtew35q9kj/Oc5kMigWi652J8eJzw6wX8uN695a60qWqJLJtcl1qolb8vm8y/ZKz4vd3V3k83ncKhxK4IwxPwrgKwGsW2vvnX72TwB8FYBdAE8A+LPW2oYx5jyAzwJ4bHr6R6y1f+ml6Hh8X0MZgYCAgICAwzEYDGBM5P7I4tfXrl1DqVTCuXPn0Ol0nNK2tLSEtbU1bG9v48SJEzhx4gSefvpp9x99p9NxxgbLBtRqNZw/fx75fB6dTgdbW1vOEGFdrdXVVXS7XXS7XfR6PRfvRLdLGqs0cGl8MAuaMQaNRgPtdhvj8RgnTpzAyZMnXVbBSqWCZDKJ1dVVFwMHREocDSzNOtlut118HQkg74vxd+oeqcas/68afqqSqYsajXc9l98zU+ZkEpVsoEHMpDBUZFSBuXLlCtbX13Hu3LkbYobYDyXAyWTS7bCr8a/3puRvfX3dFQn23ch4P3qeJqFgX1RRodFKEqlGqaZQ1zg9vWYc0fCz4qkCofemZNA31pXkaOxYHEkiuRwOh/j4xz+OL3zhCzh79iwuXLiAe++9F2fPnsWHP/xhXL161dWz01g+tkXjWudL75WJNZhNtd/vz2xk+GtP5w6YdSNUwusT4DjS5oPkZX19HcYYfOYzn5lxcVWQPGpfW62WKzHwlV/5lbj99tvx7ne/G+9///vx5JNP4uLFi/jsZz/rnlFuFPCe/FgwP3mJqt5K3qiqFYvFmUyXOs66hnRNqFKm61rPZeyZtRbdbtetbU39T9LI62oWSL53qO4BmEkApc8xSRXrIOp9K/HXtaOknhtCANy1jYlc3/me5Prks8lrcxOvUCh80Weh/DEA/wLAT8hn/wXAt1trR8aY7wfw7QD+3vS7J6y197+YnTwqDEIZgYCAgICAw5HNZrG0tAQgMqiazabLyshyAIyPYoa4CxcuYDQa4amnnnLKS7vdnnFrTKfTWFhYwG233eYSobRaLXS73RnjM5PJYHNz07lhAXAptJlUgK6UNJiYiS+TyaDf76Pf7zsj5MyZM6hWqy5rWqlUQjqdxh133IHJZIK1tTUXH0Kljm6bJCWbm5vI5XIz16H7FO8vTkUj9Hffrc0nb8C+Uajnq/sTY8Z6vR6WlpZQKBScCqbn0VDrdDq4fv26U+hUXSHoRkljly6q3K2fR07b7Ta2trZmiAYNUZJc3jfvjcYnlQkajiRudN9UtUwNfT9+TcfPH0ufzLDfatzr56oUkfD4row8R4matsE1oSrrYDDAE088gcFggIsXL2JlZQVvectbXLbKVqs1o4opued9+IqNJpwguWcSIcY3qQqnChs/53zFJeDg/fpZFP2x1DVB9+TxeIyrV6/OxFL640QlmXNNAvjoo48in8/jy7/8y3HPPfdga2sLH/3oR7GwsIBLly7h0Ucfdcfy3vXeSFbiMjWqwsn+knxxzjRlP0liNptFLpdzMWeqQOu4cWNBN1LG47HbcKKyzOy53JjiXGpMHMeE7xnflZJrQN2BmUWYz60qelwrVO+pdPM4up3yPUEFkM8lXUz7/b57j7K+J+vBsd0vagJnrf3AVFnTz/6z/PkRAH/8Re7X84IJMXABAQEBAUdAPp/H1tYWSqUSEokoux6JHP/jZvryer2OlZUVrK2todPpuAxn/X7fGQGTyQSFQgFnzpxBpVLB3t4enn76afR6PWfok+xxp5lGQ7PZdIZLsVh0BpXutPf7fefG1u12nYFGV7Xd3V2XlISGxcLCAhqNhnOTnEyiEgfLy8uoVqtYX19HJpPB4uIiPvnJT7odfcaylEolZ6DNI280jn1DXH8n9G8aaWqMKtHTdhKJBFZXVx1ZGo1GuHz5susLXcUmkwk+//nP4y1veYsbR91153Vo6DIhQblcRrFYnHFVVUIzHA5dcXX2jfdOV0ifULFPJCNUGUiKaeCqEaiGsbo36lj5cWu8tzj1TBUlX1FU0qP3rEoL26DRy2upux7vXQn7ZDLBc889h263i3PnzuHkyZMoFAoolUr47Gc/i52dHUfMdSw1Fsl3a+U9kIQxK6CqlTqGviLsu7z6yqkmhjlIhWNfd3d3sbm5CWOMKyehBErXOkkYr8Xv9/b28IlPfAKZTAbvec978M53vtMpmQ899BDuuusuXL582aW01/nShClARMJ0vZFwK2lirCffW1wHJK9UZtUlU12EdQ1QHdd1SSWWa4Pzw42XnZ0dR7A0LpCbUKr66juBY0qyl06nkc/nXbwf70PnnGuA71K6tXPceW88V92ZqRxyA4YxhXyXM/ELXXJvFV4M6viNAH5O/r7dGPNJAC0A32Gt/Z24k4wx3wTgmwDg3LlzL0I3ohi4UEYgICAgIOAwbG5uujTtly9fdi6OxWIR2WwWjUYDo9EIy8vLSCQSePrpp53Bz51iFsZOJKIaamfPnsXCwgLa7bYrNdDr9ZBIRFkgtRgvY9OomNFoUCWH12HsGRUbBthnMhmnmDFByXA4RLVaxXg8dglVFhYWXGHas2fPYm9vD0899RRKpRLq9bqL80skojpQ6XQa586dcwkViDjj2I/JAW4kb747pd6jEio9RpWT8XiM9fV1lMvlGVdBNYpphD7++OPY2dlBvV6fcUPUtmmU8iefz7vMc2xT75mpzLWYMICZVOUkIprenPfJpCok7Eo64lRJJWxKuPg9//ZdAOPa4N80nJXg8Tsez36THPhqEs/VWCJ1s/NjDJvNJp544gmUy2Xk83mcPn0auVwOjzzyCDY2NmZUFhrTOqfqMqhElIbz7u6uc6XUMVCiyv5x3tXo1jHQOC4lQP5a4L/c7Emn0+h2u6jVajfMDdsmcdRkKryXwWCAhx9+GEtLS3jooYfw1re+FdeuXcOnPvUpvOUtb8FkMsHVq1dnMjDqeuP1lHyqyqf3polkNJkPyZ0SKn9Dhf3nu47PQjqdvoFo6TgNh0NHbvP5/Ax5Yh+57nT98v5I9kjG1G2R609Lj7BtXct8DjkPAFxip16v5xS9paUlNJtNVxqi1+shn8/PKIpKPEkMbxVeEIEzxvwDACMAPzX96BqAc9baLWPM6wD8B2PMPdbaln+utfaHAfwwADz44IMvCusKClxAQEBAwFFQLpeRTCbxxBNP4Nlnn3XGAUlJtVpFLpfDlStXXExaKpVyddsYP5XL5bC0tISTJ08il8uh1Wphe3vb1RTa3d11/8lns1kUi0Xkcjl0Oh10u10Xz0VXHbr38Fy6cmpyAJKeXq+HbDaLixcvutiSpaUl9Hr/f/b+LEjONLsOBI+7h++7e+w7YkFgTeRSmYlkkZnFYkkslbjIZGyZ6qkfZGqT2ZjmRQ/d89QymbWpn+ZpntpshjMymXrUbBVJsYzFqhSrsqqyMhMJJJBYA4gIBGJffN/3ZR4iz8X1D38gUxSZIDH/NYNFhPu/fNv/457vnHtvDY1GA9FoFF6vV0BZOBxGKpWSpCytVgv379/H/v4+YrEYcrmcOPdMWqKlk9z5Z+IE4FmwRudRM0XAoFxS73ybsWfacefnTNeu6+fpRCZkKilLffToESYmJiQex7y2lnNy5531xbT8EjiRfhHEmgDVZMm0w0ynlbJVrhc6pIzXYf+tQJseSw0INPDQ19Gf6zEnuNUyRTrebL/J4ukxAzCQRh6AsDk6rkxLMXndWq2Gzz77DKOjo1haWsLY2Jg4/pS7amCssziyLSZDSKedTBw3UXiclZTUZFb5uR4PM3EM51Mfy2tls1mRRRNcmGOmx1LLOPU4kVH/5S9/iUgkgitXruC3f/u38Z/+03/C6uoq3nzzTZTLZZFL6zHnhg/boJO08HcCHn6v1z4BiR5vDeY5Xoxb5NhwnFgLTa9Rk/ECnsYbEwQxKQ0TrfA4k8nm+uXzwvaaGyi6fh3bba4bk4Hm+PE963K5EA6H0Ww2ZbOOIJelX9xutygTWCfRVBl8nfZXBnAOh+O/x0lyk9/qf7Gy+/1+E0Dzi98/czgcjwGcBXDjr6GtX6FNdgycbbbZZpttX25MUsIaa0zH73Q6MTo6il6vJyxBIpGQ2A6WCyCgGB4exsjIiBxPx47/ueuYkMnJSakdxBgM4CRNfywWAwApHN7r9SQWxe/3C0Agy+P3+5FIJKQGXCKRQDgcRrFYRKVSQSwWg8fjQS6Xk9+z2SwajYZImnK5HNLpNKanpyVRSyAQgM/nGygEroGLljuZRsf0eTJKfq7Nyuk2vyfYpQNGiRedNILgQqGA27dv4/XXXxfHSztuAAYYAzqlkUhE6vBpdoOxLxpQagaPbQCesj0+n0+YNp1ggc6vruem2R7dTi1r499WrNTz4nC0Q817cawJGrXEUDNQGmxzvbMfpjxQA0HdDzrTvd5JzbTd3V2Mjo5iZGREYgJZR0vXyTOT9migb8Y+tlotkVOa68hk4rRck2OhpX7a6dfzqtcZ19rh4SFarRbS6fTAuFmtC86fZow0O9ztdpHP5/Hhhx8iHo9jYWEB7777Lv7iL/4Ca2trWF5elvIgBK5cW9wg0tJQvh8op3Y4HDKumjHVbKuVvJbzQTBGWTKvRWZPz5GO6dQsn17TwFOmVWdg1clahoaGZJPJ7XYjGo3K+4fgivft9/sC4jg2XD+tVmtgTfB3ZrvM5/PSl1AohM3NTYTDYYnno9Sdz7F+bvWmx4uwvxKAczgc38VJ0pL3+v1+TX0+AiDX7/e7DodjAcAygM2/lpZ+tZbZDJxtttlmm21fasViEcBJgWqv1yvORSKRQLFYlExjTqdTYlDonDNRyejoqMSwuVwupNNpcfibzaaAgUQiAb/fj1QqJQkYaB6PB+FwWLK60WGhA8OYL8qEKG8cGRkRsOf1etHtdnF0dIR+v49gMChZI5PJpEgQh4aGEI1GB5i2ZrOJV155BT/84Q8lpk7HiWinXLMgp+08a+dY/67BnD7XBB8EVxpYABhIlmDGu+jjnE4nnjx5goODA4yMjIgTaeXM04EeGhpCKBSSmEH2vdPpIJfLidPN+2iZHY2JYJjlj3FumrGgk6uBk5axAc9mliTjYErUTCClAYnuowkEOR6cSxOUmcyqdr5NZpXX53rg52ZphW63i3q9jkwmg3K5jPPnzyMej2NpaQm9Xk+ypnKTQstR+VODXt1WAgwzoYUpTdXr0wTwlLTqc/T6MJ8BFt8mMDUT0ZgbBpx3Svt0GzmunU4HW1tbeP/99/G7v/u7uHTpEg4ODnD79m2MjIzg7Nmz+PzzzwdYY0owyT4RAIVCIUnuwmtraSXZJC0t1WuG48hnzufzyfW0/JYbBJRn62QqzNyoNxG0tFiXB+GxlJhz/bhcLukLwaiOP6NCgAlZyKqxzhs3XggsydTrjQXGtx0dHcn133vvPeRyOayvr8v7mMdS7kvQpxn+r9u+ShmB/x3AtwAMOxyOPQD/M06yTnoBvP/FRLJcwLsA/o3D4egA6AL4F/1+P/c31HaLtgI2B2ebbbbZZtuXGdktZhyjg5DL5cQh7PV6KJfL4sD4/X54PB4kEgnEYjE0m03kcjmRNpbLZdnZpZPImLpSqSTATTvTTBTSbDZlF5kgkenty+WytDuZTMLn82Fvbw/hcBijo6NoNpsoFAoCRPv9PkKhkIDKVquFSCQC4ITh8/v9aLVa2NzcxMzMDK5du4Z2uy3JPFiEXDvzmlkj+2WaFZOmP9MgzgR5NAIOOp36eI6dZkhMuZ/P58PBwYEwF5SZmY6WBkVkSIeHh5FOp2WeyKRqgKKzWNI51RkR/X6/JFggWGKfdHvNeCmTVeMxdEB5rAYImhEwHXSCM30v3WdT2noao8hrkpHRTJ4p+aQRMLKtBC8cy1QqhdHRUanXx6QaZsIMMq6afTTXImOzWq3WM+UWTNNAjP+YsEcDOFMeqzcLer0eSqUSdnd3pYA2nzVzbs3ftcxVy1n1OlxbW8MHH3yA733ve3jnnXewvb2NTz/9FL/927+Nqakp7O7uytokcCIjxvcNS4wQNOl+6n6ZGWDJrvf7fSn1QHaSxxPgcZwoJdRrnd8TjBM0ARAVAeeVYFLHkvFYtpnqiH7/pH5bMBiUtrCd+nlhW3XpCb4bgJPNFmb/5TquVqs4Pj7G3NwcEokEut0uZmZmpFi3fl9ppvFvtYSy3+9/3+Lj/+cpx/4nAP/pv7VRf1VzwI6Bs80222yz7cutXq+jUqkgGAxiYmICtVoN6XQa3W5XHLpcLidsCjOfjY6OSr22Wq2Ger0uMVnczWUyFNa9osyKO8NW9ZjoFESjUYlf8Xg84piNj48jFAohm82iVCohGo0iEolIDTgCtE6ng3g8jk6nI4lZ4vH4wHdMxd/v97G/vy/OL6WKlE5poKSdXm0m22Dl0Jz2mQm+NDugZXRafqYlhtoJ5bj6/X4Ui0XcuHEDV69elXnQYMNk4AiaotEoRkZGkMlkZIdfy800o8XrsF4eY2PI5vAcMlz6Gvyd92VbrCSTp8nxtCP+PPmeln4S/JggWzMx+rqaYTDvyfZxreo1otk4/iNIqdVqODo6wtDQEGKxGKLRKCYnJ3F0dIRmszkALvm8mKYTbABPpZQEKCYbqcfJXK+MY9WyOHPsNPvc6XRwcHAgpUb0XOrzdCZP/dzoY/Q8kG0EgLt372JmZgZXr17Ft771LfzgBz/AzZs38eabb6JQKKBUKqHf78v7gQAqHo8LSGGbNfumNxUoReQ1rLLNaomkZsW4LvjuIsDRwI7rSqfzZ/ws2SuOAe/Nd47H45GaclqyyXXI2LlgMIhIJIJKpQKHwyFJn/jTZOd15td0Oo1+vy9MZqvVQrlcxv7+vrSDG2y8H+eS42LKM79ue3EFDP4GzGHHwNlmm2222fYVrNPpIJlMIhaLIZVKyX/S/I+62WwKexMOhzE0NITR0VEkk0mJH2s0GhJzpneWKUPUu+B69zYWi8HpdKJcLkv8SjQalZiPRqMBr9eLSqUCl8uF8+fPw+PxYG9vD/1+XzI3U7oZDofR6/VQr9cl3X4ul4PP58Ps7OxARrVWq4V8Pi+lCOg0JxIJYQ8pZdKmwYZ2njVAMJ3S5+1OayfbZDnMJCnmPbQszJxTJp/Z3NzEo0ePkEwmJXmICT518g+n0wm/34/h4WFEIhGRw+qddw1EnE7ngKyW7Jtmcvi7HjeCUwI2zaSZ8kkroKXBGkGCBoaaPaMzreWOZqyYmVpfs8N6znlNPe4EEeZnnHtuYOiYJYfjpFZcJpMRJ31kZESeKbaHkkmrAt8EBnqdsVSGlekx1Y4947q4Psz1pNckQUyj0cDq6qpI9gjSzf5zfPVGgW6PHn9Tulmr1XD9+nVMTk5icXERb7zxBm7duoW5uTlcuXIFH374Ibxer2wiUfodCARkPWnQQ8Clx4xrn+PN+F6yrJqV1JJUneDElKJyjglsNWDm8VoyymsR1LGtPp8Pfr9fwBYlogAGalKylqLeNKnVami1WgPzzXcwN8KCwSAePHiAvb096RNBbLlchsPhEPk8AaV+RrxeL2KxGI6Pj1Gv1y3X3NdhLxeAg+OZF7Rtttlmm222mTY6OoparYbd3V1xQPUONWPQfD4fwuEwEomEZB/LZrMoFArI5/Mi32q32xKf0Ww2MTExgV6vh2KxKI6/3omm9IdZCjudDiqVCoaGhhCJRFCr1RCJRLCysoJCoYDj42MEAgHE43GR9lH2yVgPv98v4CwWiyEcDiOTyaDRaKDff5oOn8APwICzDDwFXdphYdY4DUqBwYLQ5vk07QCax5hxQ/o7Ol9WbAivqx1x4MS5YxmHbDaLGzdu4Pz585Jx1JT8aVaPDmg8HsfY2JjEK2rnlCBIM6NaNqllZDr+h+3Vzq6WBmr2UTOMem70GJvX4Pd0iM1+WoFt9l8zgDzfBG16PrS8lXNqnqd/aiknAHHGy+UyDg4OMD4+jnA4jEgkIrJA3otZAhlDZbKB2rknA876cQR5VrJGjgmzwhKo0MyxIwDu9XqS5XRoaAi5XE4SgfB8vS71WOtranBnzgt/7u7u4he/+AX+wT/4B3jzzText7eH69ev43vf+x6Wl5fx6NEjqVsYj8clKYzX6xWJswamlKiyP5qJJuPEjRNKgPXzQcmgTsXPOdKJesiEc970eBDUs6g2Ez3pjQnGxGlQrNeTrk+n50aPoU7yQlBGli8YDGJychLdbndAcaHfAewvwR8BKdcUQZuW/L4Ie7kAnM3A2WabbbbZ9hWMsW50FLiDyziSVquFcDiM8fFxTExMwOl04ujoCKlUSpKcMFkJpXs81+fzoVAooFAoIBAISLwc70PHdHh4GMBJmvx6vS5gsVarIR6P48yZM8IOjo6OwuVySRHkYDAo58ZiMfnO6Twpeu1wnGT4YwpyACIHYta+er0uDlqpVBpw2jXzZWa8I0Ax49msZGomoNN/m46kybZp8Mi/taNrytHoaAWDQWSzWdy/fx9ra2sYGRmxrAnH9mgg5fP5MDExgcePHw8kEOE48DrM9MfyEpptY1t1Fj4rgKZBEO+lmSquSd13EyBqiaLJomnJFyVmmt3TrLAeSysWUINwShu1vFD3W68JgjG2mU4+5af1eh3hcBjJZBK1Wk3kyLxnrVYbiGPUYJfrgICi2WzKc6jBrTke+jlnZkUT9Oo1yj6yfuLW1hYASIIPvQb186Pvba5XU66qx46AdHV1FcPDw/jN3/xNvPnmm/jTP/1T3Lp1C7/+67+OTCYjsZsazJDRJxjixhHnX689gmI+kyy7odcs5Y5a6sh5NGW1OlMp54ASWw28NLun1zQZapfLNbB5ot8Rev41aAcgscd8nvTzyJqBqVQK/X4fxWJRyrnoYudcd+wPmTn2he/8fD4vjPaLspcLwMGOgbPNNttss+3LrdFoIJlMot1uP5MV0uVyYWJiAhMTE5IkZHt7G6lUCul0Gu12WwLhKQPrdDpSSJtSMO7uV6vVgZpkxWIRQ0NDqFarEn/GVNqtVgvj4+Pw+/2SAXFsbAy9Xk9iXwgIAWBkZATlchntdhuxWEz+ZskAOrXRaBT1eh17e3sAnjqmPp8PkUhEdsPpvGg255VXXoHX68X29raUQNBMC50m7aBq04wOTTvT2vnV7BjP0edqh87KcrkcEokEDg8PkcvlcO3aNaysrAywEaZcTrNwLtdJ4fOlpSXs7e0hk8kI00Ank2COtfs0YNBxYybrYibj0H2yaoseFx6nJaeaQTPZTA0cNJvKedMsiZabaVaN19Pp5002x+/3y3E6lk9vBphzrRlTJt8JBoMYHR0ViRxBHJ8LXkcDQHMN6PT2VuOpQa/X60UkEhHGTs+BydByjVerVdy5cwelUknkijoDpSlN5byb7Kkp/+Tn5lg1m01cv34dU1NTWFxcxIULF7C2toaVlRWcP39ewBplj+a46ftqlpVjxfHiuqWEm2vD4/HIXFLmSEDGWFCOtQaOOoulXkdk+5g5k+PFbK1cd2yHjjHjmtVrmGuw3W5LwicqIghm6/W6SNKZ4Ghra2uAUdfKAo4/k0pZbVhR5qlB+YuwlwvAPeelbpttttlmm200ZhrTjoTP50MsFsPo6ChmZmbgdJ5kpTw+Psbe3h4KhYIE7dfrdck+B0Dki9zl5u43d5wJEunwcTc3kUiItGhhYQGBQACVSgWdTgexWAw+n0+kmqyFdHx8LMCrVCrB6XRibGwMHo8Hh4eH4rT0+32Ew2GEw2FxlimjbDabEj8CPK3LpB0tAJicnMT09LQ47YVCQcCjGXdlGv8/1iwaz9O79dpRI+DQQMJk9sz/5zXIyWazSCaT8Hg8aDQauHnzJt566y0p1G3FtGjZIdfB/Pw8lpeXUavVJE5QMxEEKpp502DNisnSu/zadNITk63SwMUEvPpvPXccRw1Y6KDyOO2UmmOs47LMe7FdBKq8lgl6CPq41q1iHbvdroyvltCZJRsokzRZSw2IyQ4xQZDJqmkQ6HQ6EYlEhD21AvRmX+r1OtbW1nDjxg2Rkeo2mOOgr6NNb0Zo1toE4ZyvYrGIX/7yl4jH47h69Sr29vZw48YN/M7v/A52dnaQyWSEheP8EnhpFpRjomvt6SQsHFMCEzJbTNZRrVafKYnBdlMSTlCnmTQdA0kQqNebZt8APNMuva74PdcTx4ilWUzlAJNKMZ6Z/dB1+DRLy/ZokMlnlmvweWD867YXlz7lb8hs+GabbbbZZtuXWaFQQCaTkUQVPp8PY2NjmJ6extTUlGSl3NrawqNHj3B0dIRarYZqtYper4dIJIJ4PC4xUFouxN154MTB08Wgu92uyC65qxwKhbCysgKPxyOOCGvMNZtNqTvX7/eRz+cF2BWLRUQiEYyPj6PX60kbmYSEzhSZwlKpJHEsZDp03BYwGPND54XZLMnYnVY4Wju+wGCqfLJ7/JugQBfkNqVlz2NGtOnjmD2SwLRareIXv/gFDg4OnslOpx13zdQ4nScZKVdWVjAzMyPSST1WTKDADKUEcwSl+p8GCRrImUBIy8nMrIGatdNzw35o0zFq2vFlXzW4MtlRk+Uz541jpeOg+JmWzWkww/7o/vM+zJbKjJ96THk+2U9z/ZhjSwbbXI967TgcJzJZ1mbUcj+9jnTfNYAjY0hQrwGcngeTSdV9N9cuTceW8r7dbhfb29v46U9/ikgkgm984xvY29vDvXv3cPHixYGxIQDmxgzHhGPE515ndOQ/slkAEAgEEAqFBPCRXSPI5EaDlpZyLVCuqeXG+vr6meO9uWZ1LB6/10BRr13gZNOMLDgVBMwWzHuTWSToJrtYr9cl4YmWkrbbbVQqFVFHNJtNSQKl61DyHfAiSaOXjIGDjeBss80222z7UiNwcLvdSCaT8m9oaAjHx8fI5XJIpVLI5XID/8lTPsOaa0xbT1kdnRNmfGSWOP5n3+l0xKnwer2YmZlBJBJBoVBAq9VCPB6Xc1utFqLRKPx+vzi509PTyGazKJfLAi4qlYo4L2T6yPp1u10sLy9LfAgBJMGY0+lEvV5/ZjeZTli73UY+nxcW0MrooGkn+TTTMjMeayUt1LFngHUaeO0k63l1u90IhUJSlPvu3bv47LPPBgp76913XksDz6GhIUxPT+Py5csC3OlIEvBroKFZCSuWTd+LwJmmmQYr5tGU/5njYGUmiKPTqZlW3s9kUs378TMTyGnm0mo++U/LbTnWGpBxbKPRqCThIFgg86FLS5hMp2bKWBvNyti2WCwm7Jtuvx5rtpNO/d7eHm7evClsMp8ZDWpN6azJ1li1y1zvGuToJBr7+/s4OjrChQsX8PDhQ9y4cQMXLlzA7OwsNjY2JC6RwIksOsdTM5QOh0PeX5o91O8nsnpkSDWY4vqiceNCz4FWGRD0aZAPPJVLEiDzfcrvNUjkvGrJMMebmUDJztXrddkIIpgDnmaw5CYDVQUcO5YE4fXMuF69Xnjd096JX4e9XAAODhu/2WabbbbZ9qXG/6hnZmYwMjIicWCNRkMK9ZZKJXF6mMnQ7XZLVjM6Akylzp3vQCCAdDqNZrOJcDg8UFB2ZGREkpLMzs6iUqkgn8/D4XAgmUzC7XajWCwCOIlvi0ajePLkCXw+H6amppDL5QAA8/Pz6PV6A8CCBb+TySTK5TICgQBmZ2eRTqexsbEhAI7OfLfbFfCnnU86La1WC6VSCcDTzJnA051x7ZDTNLA4zWkF8IyjqudFf6clV6bptmrHslAoIBwOy7xUKhX8/Oc/x8rKimSL1Nc2+8B2BAIBnDlzBvl8HhsbG8KculxP06zrLJEmg2PWdeN16VASYGlHkcfosdMMJsfeTP3PcdTOuBn7pmWZwFM5ms7yqEGXFbjhGGsmkcfrJBNsK//WskzK6jRQJNusHWZ+x+ty3WiGUDOW/IzPpJ5L3i8UCmFkZETYt9NAMPvT6XRQrVZx//59bG5uIhAICJuk76HXtLlG+Z1eZ+bn5u96/ZMF/8u//Ev83u/9Hq5evYo/+7M/w/Xr1/HWW29JUhWrjSKyhXp+Ofc6OZAG3oyrI5Bmhku9djQA1+uWrB3fS4xHCwaD8Pv9wuRrkEymi0BQlw9g4h3NuurNHT6TQ0NDqNVqwpTx2eQzrtcA3+PsI9+F1WpVYiiZnIbHapkp35u6vMGLsJcLwDmsNce22WabbbbZpi0SiWB4eBhzc3MYGhqS+LVcLodsNivZyTweD2KxmDi/OqPb1NQUXK6T7I+1Wg2hUAj9fl9i1IaGhkRy1ev1MDY2hkgkglgshmAwiOPjY5RKJZF09XonWffcbjcikQiKxSJSqRQmJiYQDoeRSqUk5ToLeIfDYTgcDlQqFUxOTg5I78g+5fN5cY51IL7H4xEmQcd4aBDSaDRkl5ksiI4bNE07xM8Db2ZiAN7PBINmfJLVvTSY6Ha7ODw8xNtvv41SqYTt7W04nU7s7OzgZz/7GRKJxEDacM2ame11Op2IxWI4d+4c2u02Njc30ev1BrLo6fEy/zZZPi1V1f01z9OAR8duacDK78w28zvtoHNMzdp5ZBq5tjk3BJ9ss24vZWkaLJkZ/zRY4POi28w1qvuunx8AAjw0GDX7aAJO/mu1WiJj1oya2+3G6OgoYrHYAOvJa2rwSfar3W4jk8ngxo0bqFarGB4eFlDCOFc9vxqgWT0fet2eZhoI8+9Wq4WNjQ3cuHEDv/Vbv4WlpSXcu3cPFy5cwIULF3Dnzh2Ew2EAJ+n5GfOl28HNA1M+az7LZOx4PAGMCTC5nnRMK9vLTLe6Tx6PR9YMz6ekkUmG9BrU7xqyYgRWphTa5/OhVCrJ+5PrWrNqZMsJ+ngdrtdwOIxGoyEgkCUNqLjQGxYEfy/SXi4AB1tBaZttttlm25fb4uIiJicn4XSelAfo9/tIp9NIpVIDqaWHhobQaDSEoavVauh0OggEAjg8PBSHloW3G42GsG6tVkucPO7+T09PI5VKSUxWKBRCKBQSZ5FFbLPZLFqtFubn59Fut7G1tYVEIgG3241CoTDgIBeLRTidTpEZxWIx9Ho9ZLNZ+Hw+caK1MxQIBBAIBFCtVgdAgnaUtZNDh8tkDLRzaAWATpONaaCmEzjQNDtjxmhpxonXYzscDoc4YTMzM1KQu9Pp4LPPPsPS0hLi8fhATJaWRplxUy6XCyMjIzh79iwqlQrS6fRAkgwTYPIczUCZLBbbTnCiAZzJagDPpsHX1yRQs2IQNQjU53LM9XxrWZsVKDyNKdJsnSkh1KyfVX/YTt0mzbhpdlSPEdcrr8vzTCbOHPtkMonR0dGBjKQmcCaA4/NYLpdx7949PHr0SMADEwE9D7ib4M1k3sx50p9rGa0e12aziVu3buHMmTN49dVXsba2ho8++gjf+9738OTJEwFU/X5/IFlJIBAYkDDqe+i4Ns28cTy15FgDd16Da4HjrouBE0BSFtnvn9SYI7Op4+VYG46SVbaFbW61WnC73ZK1F3gq4+QGmc/nQ6PRkHtr6STbrTcDNKNI9s/r9cr7l4oFsnAEeryv1XP3ddrLBeAcdhkB22yzzTbbvtzm5+dRLBaRyWTQbDaRTqelvht3dHVWwGq1ikqlgmAwiHg8LrvUPp9PguKHhoYQDAZRr9cRCAQGdosnJiYwNTWFg4MDZDIZABDJZKPRwNDQkJQhyGQyCIVCGB4elpTX4+PjIhGik5PP50U2RaZvaWkJ2WxWiiQXCoVnWC466ZRjmlI100mjQ2iazppnyv00O2TKAWl0vDX4Yns0a6QdLe2EngYSnE4n1tbW8O6772JsbAzVahVOpxOZTAY//vGPMTs7C4/Hg0gkIs62TubA+/AePp8P09PTaDQaePjwoTjwuj/aadfJGazYNb2Tr8dYX0//rQEf+6vZLNO0U6rvqcfQnAMtizTlfRqk8Z/VOOm5Oy2+kMfqNhFs1Wo1+P3+gUyUeu1xHdCx57V00hfNqOhxD4VCmJqaOrWou8m+cQNmZ2cHP//5z1Gv1+W5p0RPx4VpRtGKtdRjpM1qg8ME8VoymMvlcOvWLXzve9/D5cuXcfPmTRQKBVy4cAGffPKJsMvsC5OtkP3SclS3241gMCjj22g0JAGSjlvToEdvHLCdem3qREEEbMFgUMaB7dDgTD8vnD/OAz/TG1C8RrfbRSgUks2roaEhKSqugSjrbnKzSpc/YF+dTqdsoFEurplCgkBu+Oj6cC/KXjIA50Df5uBss80222z7Etvf35di3MViEel0GtVqFYFAAF6vF4FAQFJQ0wkKh8MSY0I5D7Pn0SlgkW0Wvo7FYuL8b25uol6vy/UJDP1+P0ZHR6U9jGG7c+cOYrEYotGoxJ8xgUKn00E8HofD4UChUMD4+DjcbjceP36MRqOBixcvolwuI5PJyA42HSMySGYMh96l1iBMy6c0GDMlbMDzHVL+bjJBVnFodEIJqqyAnwacJgtWqVRQq9UwPz+P3d1dYVSfPHmCDz74QGqAsU90JHXf9bW9Xi9mZ2fR6/Wwubkpjq4VAwcMglt9D912UwbIsTdZEj3uGhhp0KidSZPp43G6OLIeR830aIBoBSz1HDJeiM42gR3Xlu4HmSYaHX49zwQA2rEnO8U+mHPPaxOEcBy0hNTtdmNychKJRMKyaLcJ3si8lMtlfPbZZ3j48KFke2Q8mc6SaY67lT3P0bf6Tssb9Vz1ej08fvwY6+vrOH/+PB49eoQHDx7gd3/3d3H79u2BcgI8j+8vh8MhY2LGwhKw0Mxx0iDN3IzRmwCaLdXGeFTGq5Gt03JHDZY4LpxPbpSxzhvXE1k+Ji7RMal8nnTCIHOdOxyOgTImBGbcOGKbeK7OPKnZuBdhL1UZAbuQt2222WabbV/FyuUyms0mCoUCjo6O0Gg0JLMYszmyyDf/46Y0x+VySbzE0NCQOCd0BBgDMj4+jqWlJZRKJanP5vP5EAgExBFJJBJIJpPY399HoVBAJBLB8fExKpUKVlZWMDIyItkk9c51OBxGv99HvV7H9PQ0QqEQDg4O4HA4cO7cOaTTaezs7KBYLMrONRMbhMNhiYnTwfl02E0GgE4KnXZTKkfHSTv5z3NY6Rjpe+pzNHCik25eTztRVsf0+308fvxY4hw1c/CLX/wCv/zlL5FOp0XyxXHVbI7ZpnA4jDNnzmBxcXEgiyG/1wyWZoY0U6MBHh1ofb4puzRNS/zobDKOSLNHppPa6/VQKBSQSqWkn07nYEIVLdfToMyU8rGf2pnlZ9oR1oBBO8S6zyaLxc90nTWdLAY4AReMidLriKyRloGSvZ6amnqmbIBeaxq8MZPh48eP8fOf/xy1Wg2BQGAgBb9Zo0yPkzaTmdTr9nnyO7ZHjyk/K5VK+OSTT+B0OnH27Fns7+8DAK5evSryRd6bbFG9Xpe/Oe98djVo8nq9UkKAx5GV0m3RdeYAyNjwfchztcyQCYW0LJGxpJRN6rg3zdrxutxMIrjje1y3qV6vo1KpoNVqybXcbreoIlgmIRgMiiyUpV50FlMWAie45fuXRb7r9fpA2Yqv214qBg4OOwbONttss822L7dyuYx0Oi3xZExsUK/XxbnRUkiWBIjH47LbG41GZVeYcRh0bM+ePYtgMIjt7W1ks1n4/X7E43GRW7pcJ+nMW60WDg8PkUgk4HK5sL6+jtHRUSwvLw+AOjoS4XAYo6OjOD4+htvtxvLyMnZ2dnBwcICRkRGEQiGkUimRFGlJmcvlGsgGx2K1GrQBg7Iv/bd24oGnu/hWu/IABqR22tmzckxN6Zm+t8lU0bnjPaykaw6HA6lUCn6/X5zcSqUC4CRt/V/+5V9KGYbh4WE5n04i+2f2PRgMYnp6Gg6HAzs7O6jX69I/AgN9jm4f8KzsVANYmnbereZBj6kGaFq6xu91Fs9gMCjOrh5XLY/UbKtm2vR9THaPTIQeAzrG7KuWS5przEoGqllZnR3RjMPU9zTLArhcLiQSCUxPTyMYDFrGJJpjTkCcSqXwq1/9Cjs7OxJDRsed19b35hhbzZeWifLz08y8hn42dL9TqRTu3buHpaUl3Lp1C9evX8fbb7+NO3fuoFQqDTyTJhNFoEvgpoG6ZrAIlH0+30BpB822ARhYjzxP10bkO4+gRwMyALIBwblmhkjOuV6j+jkle9br9aQuI0EY8JSN9fv9AzF2TudJhlkCM77v2T6TeeN5bDPf+T6f75lMpF+nvWQMnI3gbLPNNtts+3LLZDLIZrMIBoMYHh6WnW2n04lqtYp6vY5gMIhAICAOBB2EaDSKsbExcVw8Hg/8fj/8fj9GRkZw5coVdLtdbG5uiowyGo2i0Wig2WxieHgYo6OjyGQy6PV6WFxcRLPZxPHxMS5duoQLFy5gY2MDpVIJkUhEwJbf70ez2cTGxgbcbjcmJibw8OFD1Ot1vPrqq3C73fJ3MBhEKpUa2LH2+XzijHGnWTv9JhNmmmbmNFOjHVLt/JsOEDAou9I/Aetab7otplTNdI4Jnnlcq9XC/fv3sbKyguHh4QGgcHx8jB/84AdYXV1FqVQS51xn3LRiVFwuF6LRKGZnZzE/P49IJDLAPmlHmOebMXw0DX7JQJgS1tMkrTrDpAmMOEa8HpkIj8cj8UgEZmQeCfR5bTrfZt04/mSMkcmSmqBQrzE696ZMVCeUMZk0fV0NMEy2ko6/nuN4PI4zZ84gFos9M5caTGn2DTgB+Ldu3cKHH34Ih8OBSCQia7nb7Qp40PNtBVD1muY9TXBvmrlJAjwFl/ye74N79+4hn89jdnYWv/jFL+Dz+bC0tDTwbDJLqE7collNXpuJmEygqLM/kvUy1wSfC64bjgWBFseUUk6dvZJKBCaI4j31enQ6najVagJMOQ8+nw/BYFDuT/aQm1ScI4I6jgOAgdjAXq8nRcH1mJAZZGmZQqGAarWKRqMx8Ay9KHu5AJwDdgycbbbZZpttX2rFYhFjY2OIxWIDyR7q9bo4yZRyaSnS1NSUxJ4RXNHxmJubw8TEBA4ODrC3t4deryf1yKrVKtrtttzv4OAA0WgUwWAQjx49Qrfbxdtvv41gMIjPP/9cnClmPZycnBQZ3NzcHJxOJ27evAkAGB0dxfr6Og4ODgSM7u7uClNI6Q+d6mKxOCCF1A61dt604w0MOr00kzHgeZo9smLbNIPB76yYCv3ZacCSjpqZFa7f72N7exuNRgMTExMD5/T7fWxubuInP/kJdnd3ZX4I5MgimTJJOsDhcBhTU1OYmZlBKBR6xjk3x1W3VcsdzT7rDHkmQDVZMz1/+ngNDHXbzeLemk3j53SayZw0Gg1hTLSMToNInsv51YDIZE7J4pjAT48P1wz/1uBLM0l6TthmrqtYLIa5uTl53kzZJK9lSieZ8fUv//IvkUqlxKkn86bH0JTFcvxNCbL+Ts+pXuP83Uzgwc85JpQZtlotpNNpbG1t4ZVXXkGv18P169fxzjvvSPsof2TZC73R0e/35XsCUuApG0aQx0yWXq93IN6Rn1Mq63a7JWEJQVCr1ZJNK96P5Q0Yx6ulssBJCQQtZ2Z9N0pweT0N8EKhkLzD9SaElnCWy2UpM6A3S0KhkLzPuQY43h6PR5KksK3sC+f/RQK4l0pCacfA2WabbbbZ9lVsYmJC2JpKpSISM7JsBHF+vx+VSgUejweLi4uo1WoSB1coFNBqtRCPx7GysoJ2u43Dw0PJTslYs1qtBo/Hg2g0ilqthkKhgFAohHK5jKOjI6ysrGB8fBzr6+uoVqtYWVlBPp/H/v4+xsbGEI1Gkcvl0Gg0EI/H8ejRI/T7fUxPT6NWq+Hhw4dSoLhYLEoWNtOhZH+1NI6mj9Nm5VzzeBO8mbv3/MzKKaeTZCazYDs0qGMcGfvEz8176yyN/L5QKGBrawtnz57F6uoqCoWCtKHT6eDTTz9FJBLB9773PSwsLCAYDIpTrp1bK+ke4+CGhoZweHiIYrH4DMg1U8RrsEPn1RwXUxZpyhrZHvZXswY8X48rzWSw2BYyKt1uF41GQ2KeyDY6HA4Eg0Fxbgli6Ozz2ryXmSjDinWitJN/n5ZpVK83nRjFvC/XcrfbRTwex7lz5yxLBujrmeCt2Wxid3cXP/nJT3Dnzh34fD4MDw8LM8/+69T62k57PqyYZX3cacycOX/ms9XtdrGxsYHXXnsNs7Oz+Oijj3D58mWcO3cON27ckPVJJpVjzphPlizhPQhSeY4G+jrzogZYehOGzynnr9lsolKpwOVywe/3y2YI4824RjWA5LrWJQB0Ehbei59xLZPN4/WYJIrXKZfLIhnn8UyiMj09jXa7jd3dXTlGy0cbjYbE1Gnwas7P120vF4CzFZS22WabbbZ9BeN/0oVCAeVyGYFAANFoFNVqFQAwPDws2dnC4TDGx8fFiWMZAJfLhcXFRUxPT0smy17vpA4bE5sAQCKRgNPpRC6XQyAQwMzMDLa2tuDxePD666+jUCjg5s2bCAQCmJubw5MnT5DJZDA1NQWPx4NMJiMO1P7+PiKRCCYnJ/HkyRMUCgVMTExgaGgImUwG/X5fGD8tY2QCBzpp2kkmQ0czd+qBZ9k3K8fFCrxp6SSdU+208r4axOjfre5pghIdP2Oe1+/38ejRI/yTf/JPcP78eXz66acD7GO328WHH34osivN1FFipWN1dFtcLpfU9vN4PJLZlO1h/zWQtmLn9GdmRk7tpBKouFwuSaWu2Tjt4JpMFe+ja4XpMdRrARjMatnpdCQFu+47jSDVZPTYR2YANWWTvBYdY6aAJ1AwjbW4eE/dXgKHeDyOs2fPYmJiQta8OQY8T4O3VquFfD6Pa9eu4ZNPPkG/38fExISwXbof7L/JqLHtpvF7rgdz7vV8mIDXBHjmJkm5XMbDhw8xNTWFzc1NbG5u4tVXX8Xnn38uG01kvwDIZ3y36VhF3QYCPsb2UjKrMzKS+eTzocE9Ab7OIKvXKmONub60JJjrUZc0aDabwibyHW1KS3ks5aAcM8rbmcBHx+6y/Mro6CjGx8fRarVQLpdlzPVzoJ8ZAkDzGfs67eUCcHhWO2ybbbbZZpttpvl8PuRyOYlRCwQCqNVq8Hq9SCaT6HQ6UtQVANLptKQW5w7vwsIChoaGcHx8jGKxCLfbLclIyGQkk0nk83k0Gg1cuHABbrcbq6urIr/L5/MoFAq4fPkyfD4fbt++jYODA5w5cwblchm9Xg/JZBJHR0fodrs4c+YMnE4ntre3AQBTU1NSG04X7KXUR8dM8W+d5U2bdjBNtkAfazrrVsdq5kmzKVoypqWW2tHTDBzvp+PDTmsXgYHp/O/u7uLBgwe4cOEC1tfXkU6n5brASXzOf/kv/wVerxe/8Ru/gZmZmQGn1ufzCZNDp1TfMxAIYHJyEh6PB4eHh7KurBgX3WZKsExmim0zP9eyLe2wmuOlx1kDcS1h5PyZSSL8fv/AOtHgwmq9EMzo+dNAhozKaWsBgAAADYoI1jRYYV90Cnx97Xg8joWFBYyNjQl40+3XQNoEb8ViEdevX8ef/Mmf4ODgADMzMxgfH8fjx48B4Bk5Ka+nE6eYslYrZlWvu9P8VSuW2Uzhr+fvyZMnmJ6eRjQaxfvvv49/9a/+Febn57GxsYFwOCzPNZ8LzeJqVpOSQ7JbPp9vgJXlBhYZX82+8Rpasq1jzvhO4Ljr5CNmMiQNysh2ejweyVrp9Xqfqc2m2WW2jcxjq9VCIBBAJBKRREa8VqFQwMbGBlKp1ABY5fX4TDBOkOwbN3ZeZBKTlwvA2QycbbbZZpttX8GOjo7Q6/UwOTmJdrst2ceYKIQMR6FQkJ1gr9cLn8+HaDSKqakp9Pt9pFIpyUjp9XrFqYjH4+j3+9jf34fD4cD09DSOjo5QKBQE+G1ubiIUCkmx6Zs3b6JcLiMcDuP4+Fju9fjxY/h8Ppw7dw6VSgXb29sIhULodDrIZrOIxWLijPp8PhwcHIijpBkbr9eLer0uTo9mcIDB1PFWTrsGFObvJlgxpV86sYEGFryHduxNyZvb7R6oDWUySPqeVhkNe70ebty4gd/93d/F2NiYMJW6zZVKBT/+8Y/R6/XwW7/1W5iYmBjoH+OIKN/SDJDD4ZBslnQwU6mUxFOyDbqdmpnkdUw2QTv95rjq+XkeuOY1NTAyJar8jmtGO9F6vvR12H/dZg0WdRwdGaznZWrUAE/HzmlJnq7Xpe/HmLfZ2VmMjIwMyPXMWDKTeWu326hUKnjw4AH+/M//HLu7u/D7/bhw4QLK5fIA6OFmiBlPp5lqfR/dV6s1q59BE2iaZq4X/fnx8THu37+PeDyO7e1tPHnyBK+++ioePHggAE0nstHPiAZA3PgxARnZN5/PBwCSudGs4UaQSZCnr0t5I99JOoaSII/zrkuc6HuRCda17rjWmSmYY6clkCyjQHZOb2Jww6dQKEjCKs08s9/BYFBUFY1G4xng+iLs5QJwsGPgbLPNNtts+3KLRCIIBALCcrlcLqnTRpkOJTJjY2MATv5DZ+KRQqEgDtHw8DCAk8Qo0WgUyWQSxWIRx8fHCAQC8Hg82Nrags/nw/nz55HL5fD48WN0u11hGur1utSEy+fzktp+f38fMzMzWFhYwP3791Gr1RAOh0UimUwmxelgXaSDgwMAT2OR6CgycYB2GK129QE8AwB03Sh+r+008EY2hp/xftxxN4GbFXCkQ2feQzNZnEM6jibASKVSePToEV577TUcHx8LC6fvk8vl8KMf/QgA8O6772J2dla+IxNHYKBrx2kmKZlMwuv1IhgM4vDwUECAZqW0nM4cLw2YtPROgwYTvJnzqdk7K+DA9mtHniCUDjydZx13aDKkmr0juNVzSgYsEAgMjKM2s+3spwlqyHxoGWG324Xf70cymZTkQmTIrDYhNHjj/BWLRayuruKP/uiPcOfOHbhcLly6dAnDw8PY2toaWIMEJBo4mhsVHMvTnge9jrX0VZueQ3OsAAgIYX9arRY2NzexuLgIp9OJ69ev4x//43+MUCg0MH86Pb5mLwmy+v2+MM061q1Wq8kmEEuQMKkJ50TXQzNLD/AYguFAICAbBaaMu99/Gr/JY6iGCAQCEqvIdyfHvFarDSQv0c8kGbt+vz/QL655yrjL5bKwfcBTQNloNOQ+gUBgYP29yELeLxWAg8WuhW222WabbbaZ5vF4ROrm8XiERQMg8RnJZBI+nw+VSkXAksPhkKyTgUBAnNNKpYJgMIiZmRlkMhmk02mMjo6iUCigWCxieXkZiUQCW1tbyOVyCIfD2N/flziT5eVllEol5PN5JJNJVKtVdDodLC0tIRAI4O7du1L4O5PJiFPT6XSQSCRQLpel7tWjR4/ECWNfNajRQMmMW7MCF6ZszzTtIGsACOAZ0KJZECs2gT/NWDCTATKZGn6mJW1a6tjtdrG6uoqzZ8/iypUr+NWvfiU13CjvcjgcqFareP/99wEAv/mbv4mJiQkEg0FxmMnu0IG3klQyc6HH40E6nZYENCazaIIvc+y0c20ySVYyOw3aaBrE6Qx7JkNEx5aMA9k64AS8cHz18foebKMJVjWY0u3UIF7PsT6GMVo0OuY83ufzYXx8HJOTk4hEIgOJN0zwxo0DzjU3Ox4+fIg//dM/xa1bt9DpdHDmzBm88soryGQyKJfLAiiYhl5n0GSfdTyfnieTXTXn3gR25u96g8KcX/08AyfvrHq9Dq/Xi52dHRQKBVy5cgWPHj0SsKalilzvOkmPTmbDda37RCkix4Jjw/qZZsZS/XwCEFklx5DvMK/Xi1KpNCC35eaTLjDOdafHRW9CaUCl31/8nExdIBAQ4Ks3BMzi8RwLHddnvgfN9+fXaS8VgOOQWu1o2GabbbbZZhstk8nA4XBIrAz/UwdOEpgEg0GUSiWpFZdIJCR+wu/3i8SS8sp4PI5QKITV1VX0ej0Eg0EcHR0hHA7j8uXLqNVq+Oijj6Tu3OHhIYaGhjA+Po5oNIrDw0P0ej1EIhGUSiUEg0FxJDc2NuD3+xEIBJDL5SQuj2nAmSVzeHgYq6urAE4c50ajIfWSuBNPQKCD84FnAZYVc2PKK3XsDB3j5/3/SzkXnSbz2prBoXPItplATh+nQZyVs8q2ZjIZXLt2Db/xG7+Bw8NDPHjwYEBiCJw4bIVCAT/84Q9Rq9XwrW99C/Pz8wiHw+Is+v1+kUoyMYzpWJJ5DYVCCIfDyGQykuDEZMusGDc93uy3lZNvggL2xyxDwHZpAMLzG42GOOZkYHQGSZ2owUwdr9kbPT+acSFDpxOUcG71ZgLBgpkIhMdqEBSLxTA1NYXR0VEp0m0VX6dZSsY3kXm7d+8e/uiP/gi3bt1Cu91GJBLBO++8g0gkglu3bolks9VqyXOk4xB13/XGgjlP5gaHnkv22QTyeu5p7J9eaxyXbreLfD6PiYkJ7O3t4f3338cbb7whGWut4gkJSDgnVrGxjIXTzzpj2ADI5pcGe/xbb8jwnHK5jGKxiHg8LvMaCoXQ7/dRKpUGGH5ugui4Xpb6oPSR96VE02QYKXsFTsAgmUOWC+GxjOvjPXg+j9HJWrhRxDi7F2UvFYCzzTbbbLPNtq9izGrWarUQDAbl58zMDLrdLo6Pj9HpdCSuqVAooNfrSTC90+kUyeXs7CwODw+xvr6O2dlZtFotPHnyBHNzc1hYWMDa2pqksmfmy3A4jDNnziCfzyObzSIcDqNcLqNQKGBqagpjY2PY3t6WLJhk5ILBoMgoO50OcrmcFJN+8uQJ9vf3xRGh8613vLUTSfbAjOeyYuVMwMDP/H4/lpeXMTIygmvXrkmGOG10/vRPDdho+jOdKMIEjiajo9tICZWZ9p99ffz4MVZWVnDx4kXs7OwMFAfWwKlareJnP/sZarUavvvd72J2dhaxWEx2+/1+vziDBI5MzEBzu92Ix+Pw+XwIhULCxpHpogPL8Tfj9zQY0Gn36WRrkEvTx5gSTT3neg4Zu6ljjWh6jDVToTNCEhjy/lrC5nQ6JckOnV7t2Ot+c84I9HV2Q7bb6XQikUhgbGwMiURCAKeWXvIcfa5maMrlMtbW1vDDH/4QN27cECn0ysoKpqensb+/LxlldeydmTZfrz32x2RXOYZ6vE3Jsv7eZFB5T4ItHUuqWWgA8uw5HA48ePAAr7/+OoATaXc4HB5gUTWg5driHJgbApQN8nsmENFzTzBFWSPfNUwiwmvq0gLhcBi9Xg97e3sia9TgnfPP54tjxjZT2qjngxJLMm16A4Ljy3XGkgr9/tOaeASfVGZoAEnARlaZa+9F2UsF4Ljm+31bTWmbbbbZZtvp1u+fFHdNJBLo9/sYHR1FIpGQcgCBQADT09NotVqo1Wrodk/qS3m9XtRqNdRqNSSTSclU53K58M477+Dg4AA7Ozu4ePEixsfHcfv2bVSrVSwtLcnucyQSQTgcxsbGBoaGhhCLxZDL5QAACwsL8Pl8WFtbQzAYhM/nkzIHZAlZJsDv9yMWi6FUKqFSqYij4ff7JbZPZ0/UjrB2ujgedLJMySRBnpYa0pFkYoGxsbGB+C0rx8Z02E2gaOXcaxmaZtlMhkIDGu6wa0DGYxqNBm7cuIFf+7Vfw+LiIu7fvy8sqmmVSgUffvghKpUK/t7f+3s4f/48YrEYgKdgw+v1DiRs0Gwc28z6gsFgUGr6FYtFAdkcEzrWTPLAtPXa6ddjr9lIPS4ABuKDeL6WM+r2ESSYLCqdVi0TdLlcCAaDAyyUnm8NQNh+xiExdkpLJzUAIctCQKmBPjO/joyMIJlMIhwOD8R40jSI03FiBBKFQgFra2v4wQ9+gE8++UTYlUQigcXFRbTbbezs7KBer8uYNBoN2Qgx78X7mOtdgyC9fk2QZ/6u54Xjra+j76XHvd/vo9VqoVqtYmJiAgcHB3j06BGWlpZw/fp1ScLDfrTbbQHWnEeOk34P8B8zNFYqFWH2tUySwK9erw+ApG63K5JLKgGazaZktqS8W2d4bDabojJgv/Uz5nCc1JJrt9toNBqSOVUnRyGI5DEcV8Y1+3w++azRaKBerwtApoSUmxs606neDNPA90XYywXgvhBR2nlMbLPNNttse555PB4kEgkEAgGMjo4iEokgl8uhXq9jZGQEkUhEgNvQ0BCSySRcLpcUdJ2bm8PQ0BA2NjYwPDyMQCCAGzduoNvt4hvf+AYqlQo++OADkV/u7+/D5XIhFouhXC5jf38fwWAQoVAIxWIRoVAIw8PDKBaLyGQymJ6eFkaONekILHU2uaOjI2ElmDHzd37nd/Anf/In8Pl8UszXTBpAh8uMdzOZAy1p0049/+50OtjY2MDm5uYzrJjJmtE0MDBBlr42Pyco0Dvt+trakaK073kAcn9/H/fu3cPMzAyOj48lIynbpvvY6XRw+/ZtVCoVdDodXL58GbFYTJicTqcjcXF0MinTI/PDtofDYcloFwqFkM1mUa1WZSxMp92M+aKZsT8m+2Q1j3q8zfnU/TXZTrbHZIhMpkjLAHUbG42GSA0JHLS8VbODACRJBiXKdNqTySRGR0cl26spBeXc8acZ70bwxmyTn3zyiYB8j8eDsbExxONxZLNZYbHZXsYF6jWlmUy9bthmcwyt2noaW2dKLU0ppb6GyThWq1XE43E4HA5sbW3h29/+Nj766CNhpbhxo5Pw6DWqn3EzDozgqlariXSyXC4PjAefRc3ikqnme2t8fFxAFwFVOBxGMBhENpuVDRUez1hfsl4E771eT6TnBKZk4NkPnYjH3DCiFL5Wq6Ferw9sqHBMuZHAZzEcDsu7tl6vD9TP/Lrt5QJwwsD18TQizjbbbLPNNtsGjbFoExMTaLVa2NnZwdDQkEjeSqUSAEiB70ajgWq1img0KoW4y+UyZmdnUSqVsL29jbGxMSSTSezt7QkIazQa2NzcRCwWQyKRwNHREQBgcXERjUYD5XIZExMTcLvdWF9fh9vtRjAYFMAXDodRLBYFGPR6PSQSCdTrdZRKJUne0Gg0JCnLw4cPhf3Q6cNZQoDOjFUiitPAAo/RLIJ21vm9/lszRwAGQJa+t2Z4eB5/mqnn+fvQ0NBAHSh+x11zfm+CVOAkFmZ9fR1+vx+Li4uo1WqSRIHtZx8Jdh4/fow//uM/RiwWQyQSkfvo8g10kOlI0nnUUkOPx4N4PI5AIIBYLIZisYhcLieMqelkcrw0u8Yx0bX9gKdZ8zTLqmOaCGg0EKFzq+ee19dzas6BOXd0/s1aY36/Xz53Op3IZrPw+/0SR6TnTbcRgGQeJLhinUO9Fq3WDMeAcr9ms4lsNou7d+/iP//n/4zbt28POOahUAhLS0vwer34/PPP5XlzOJ4mLOLmwfMYl+cBMnMMrZ43/m7KHE3psVXfCVby+bysg52dHfT7fczMzEhCFmai5domA2mWA9CMH987rVZLEpH4fD40Gg20221he7nZwzVHGWIwGJREJ5R793o9GVuv1wuHwyGbadwYMVlJzqnD4UAikRDJI8Go2+0eyCDJ9uuyA5oB7vV6Uruz2WyiXC4L28r7ud1uRKNROJ1OpFIpYR8Z49psNk9dD3/T9nIBuC9+2gycbbbZZpttz7OFhQXE43GkUikUCgXEYjFEo1G0221xdmKxGEKhEAqFAlqtFmZnZxEIBHD79m14vV6Mj4/j8PAQAHDlyhUEg0HcunULQ0NDuHLlCtbW1lAsFiVRSSaTQSQSgcvlEkf2/PnzaDQa2NjYEGllOp1GJBIR54NxGE6nU+RRzWYTIyMjAIBsNotoNIp6vQ6Px4P9/X10Op2BukaUPmogYEolgWeTZZgOp/7Mih3Qzh/vpXfytSNsJlbQQIeSO90OLffTALDf74vzRiePO/J0ZrVsz+E4yXC4u7uLs2fPYmZmBk+ePJEaU3SaTQe7WCzigw8+wN7eHubn5zE5OYloNCr3ZKILOsQEUWRxtDyO8rFgMIhIJCLZSsnwaqCtkzFotlQDZisWVTM5HFvOhQardFY1ODIBCJlo8/qa2eN4Mz6q2WwiFAoBgJS98Pv9kjSF60/LNnmdeDyO4eFheQbJqpjghfOvAYdmjOr1OlKpFG7duoU///M/x927dwVMstD05OQkFhYWcHBwgP39fblur3dSvJsbAlZMmN7QYH+s2GTzWbFi57hhoT9nO/Qc62eW9+ccsqYln5+1tTVMTU1JPUo9NnrMGNfIZ0u3j+uXbBkT3hA4mc+KzmhpJk3SjChwwoIxcVCr1ZK51kCMY6o3barVKgqFwkChby2z5MYJ1yNBMQGXBp0cd13rrVKpiCydm2qlUgm1Wg17e3sCYk9jR78Oe7kAnIqBs80222yzzbbTLBQKIZVKodPpYHx8HIFAALVaTWIz4vE4AEjR7AsXLiCTyWBzcxMTExMC9GKxGJaXl3F0dIR79+5hamoK0WgUDx48QLFYxNjYGFqtFo6PjxGLxaRw8Pj4OCKRCDKZDDKZDJLJJOr1OiqVikj0NCjx+/0YHh7G/v4+2u02xsfHxenx+XxIpVI4Pj6G2+1GqVQaKDhMx46mQZMVo6ZNO3n6nNPAm5bH8Rw6ebyOvpZmg3Rq8l6vJ8llyBKxrRpomMbjGKuo26vP6ff7yGaz2Nvbw/T0NLrdLjY2NuQ7U97Z7/eRTqfx+PFjWRO/9mu/hnPnzkkmRDqmlGbR+aOEldkMeT2n0ylALhwOI5lMolQqoVQqSYwc20wnWcermUCc7bVi3kyJJNeGBol6TnXGUACSRZLW7XZFyqgd936/LwxKKBQSQOD3+6VNrBGmmSU63uFwWIBbIBAQUPG89cmx4D8CCBa9//jjj/H+++9jb29PxolZBWOxGM6cOYNGo4H19fUBxq1SqTwDLE2Zq2Z4zXWt2/w88Gauy68KCsw1zTYQaDkcDly/fh3vvfceUqmUyKl5rtfrlUQgetOD647zQwaO9+E5/FuDQbZDyxgZ8wY83UDo9XoCgLi5UKvVJJkU4ywZV8r3ANdKrVaTMWZCoU6nI/NHKS5j5XSJCb7j3W63vFu63a5k+qWkM5vNCntMdYOWVjMZy4uylwzAMQbORnC22Wabbbadbvv7+wgEApibm0Oz2USxWES73UYoFMLU1BSKxSK2trYwPz+PiYkJpFIpFItFXL58Gfl8HpVKBWfOnEE0GsXq6ioKhQJeffVVlMtlfPzxx/D7/RgZGRGHIh6Po1QqoVqtYnJyEtVqFYeHh3A6nRgeHkan00E4HEa320WlUkEgEBAJ18jICFwuF3K5nNSqKxQKSCQSqFarSKVS4iDT6aETQmdWO9ra6QWesjDaeTQ/s5JsERjwulq2RNPMgQmKNHujY28IKhg/xf4AT2PcdOFg7YCSnQgGgwIkrIzn5HI5xGIxTExMoFAoIJPJyLXN8el2u1hfX0cwGITD4UAqlcJrr72Gq1evYmZmRrJUsr4Vyw0QMOgECSaQY5xQMBhEPB5HuVyWpDf1el1AuAYGVpI80/nXTIj+qQEenX065b1eTxJP8Hu23Qrc6rg6gjAyx2RH9HhS0stzfT4fwuEw4vE4IpGIADcNNGmmJFGzKAQazWYThUIBm5ub+OlPf4pf/OIXyGazA+uHctfp6WnE43Hs7u4ik8nIfTqdjiQy0ZshmlXTmw/6ubECm1Z/m/Olf9egUANdPXe6DZqV05Jkrh2fz4dqtSqZd9lHXl8zbKwNRxkkgTkBD/A0PpPSbj57XPtk6dhWDdg5B2TIuCnB9U3pK6WV/Mf51eUrmF1Tv6vI9rFP5lhxjTQaDdns4fMYCoUQCoUGkr7kcrkBEM+NqtOSH31d9lIBOJrNwNlmm2222fY8Y623crmMUqkEt9uNubk5JJNJ7O7uIp/PY2VlBQ6HA7dv38b8/LzUVXK5XHjjjTdQqVTw0Ucfwefz4cqVK3j8+DGePHmC0dFRACe15mZnZ+Hz+bCzswOXy4XFxUWRy2mHnxKdVquF8fFxbG9vo9vtYmRkBJlMBv1+fyCRyszMDA4ODtDtdjExMTEgkeJu8tDQkATmaxBlxhxpIKY/N007SJqN+CqmQZ2W+1ll2dOMkE5MQIaOki7tVNHZ1NJJZr0znVttzWYTmUwGy8vLWFlZQa/XQzabFWeR52iwWa1WJYHM+++/j8ePH+Odd97BpUuXJCEOnUefzyfgTINrK0aOzqHH40EkEkGz2US1WpUYPcordfZQzQjpMeR86vEwAYIGECZLRwaE99JxRLyfZv00GwNAym3wunTuGXdGgEvZMJ1mXYj9NNBjsm5sGzMrHh4e4vbt2/jpT3+Ku3fvDjBKXDNOpxPj4+N46623UKvVcHBwIMCGLJRmwTmOppngwWTXzOdJ902DAX2MXqdsq/kZgY95Xb5PeLzD4UCpVEI0GsX29vbA+tdSZ7bVBD16bpkZVT9/vAefS66JWq02kO2Wz3AgEIDL5RK1A9ehKa3m+ANPgaZ+jzG+jmNH8EfGjmuCMW36+eNa5DX5jnQ4HGi1WgMbR/q9EolE4PP5UKvVBABavSe/LnupANwLlKLaZpttttn2d8iYnr9er0stM5/Ph7t376LVamF+fh6pVAqlUgmvvfYa+v0+PvnkE8zMzGB8fByff/459vb28NprryEWi+FXv/oVyuUyFhcX0e12kcvlMDc3h37/JJlAIpGAx+PB3t6eJFCp1WrCtKVSKXEg7t69i2AwiPHxcQELMzMzkjVueHgY+Xx+gFXRzBX7p9kWnRnOSsKlgRzNdOJ0nI6VLPG0awODUkmrY+lc0dnTjBzjrwAIKGU8WL/flyQzvCed21AohFqtJs4mgZMGIsCJJOzw8BBTU1OYnJyUgsMmiNP90mUVVldXcXh4iI2NDbz11ltYWlpCIpEYkFV6vd6BunEaWLF+PPkjaAABAABJREFUnI4BJJALhUJotVoYHh5GpVJBtVqVf5SWsU/1eh0AJAW7Zh00y6nnU8tnzdhCsmd6TDUjZrKznC+uO65XXoO1uUKhECKRiJTJ0LXczHWjTW8+aODmdDrRaDRQKBSwvb2NDz/8ED//+c9xeHgowFWDJuAEYC4sLKBWq2F3d1fqLPL+1Wp1QLLKzzVjbII3c22fxhyazJm205hUMw5Ob3xw7LSssV6vy3O6vr6OhYUFKdFA9pObB0z2o5kwJubRY8b2kT3TmyIEY1xD/J0MpsvlEjBMoBwOhwU0UlrJtabZQbaLmzL8WwNtLa0miKXUk+NOsKhjANl2/Y6kVJJjpftUrVZFlkkp8IuylwvAsYyAzcDZZpttttn2HCObMTk5iZmZGWQyGayvr8Pn82F8fBy7u7uIxWK4cuUKnjx5gnK5jHPnzqFareKDDz5AIBDAe++9h3Q6jR/96EcIBAKYnZ1FPp9HJBLBwsICjo6O0G63sbS0hGw2i62tLUxPTwOAyB6r1arUPSoWi2g0GpiYmECn08Hu7i6mp6cxMzMjCSEqlQp2d3dFChUOh9FqtUQipuPdtPNOp8t0BGnaCeffVuyCyYyc5mzTSbW6j/5cn2/KxTwej8SIsci0y+VCJpMRQNHrnWSzIzvH6xG0aYdRgxiTiahUKkin04jFYhgbGxMnz2y//pv3dzqdyOfz+NWvfoVHjx7hzTffxJUrVzA/P49YLCaxfEyIwQLB2rmlQ60ZLzrABH+8Dnf/mRm10WjIGBQKhQFGh2wpMCiz499WwJpARYMVXZzbBBhWc0yHl2wiWTa/3y/yNM3iWv3U609LJTUjyHWwv7+PGzdu4Oc//znu3r07EP+or8k2nTt3DuPj41LKoVQqybUIDLR8UrN3ZlutxoSf6d8JCDlmun/mdc0NFf29nhctR+V9KDEOBoPo9Xool8vCIrZaLUmQpOujEbwQQOlNCt0GU/pLiTbXNeWWGlT2+08zwzYaDXkeOWZ8Bsz3jGaUCQA1oCTQYrtM5lBvDJgbUzo5Cv9xU0jHuvFeTHrC5C1OpxOBQGBAyv1128sF4JjExI6Bs80222yz7TnW6/Vw7tw5RKNRbG5uolwuY2FhAblcDltbW3j11Vfh8Xjw2WefYWJiAufOncPa2hqePHmCCxcuYHFxEY8ePcKtW7cwPj4uxbWnp6fhdruxubmJaDSKxcVFPHnyBJlMBmfOnEGz2cTBwYHExwUCASSTSezv78Pn82FhYUGynV26dAmRSATHx8eYmJhAtVrF/v4+nM6T8gAulwvlchnz8/PY29tDNpsdYHJ0FkSyM9o5BL5a0gRTCmYya6azbzJ52rRsi9fiudxVDwQC4vBRWsfdcxYK1tIrOqoEruzf0NAQ/H6/FOnlZ3TgdHsYe+jxeDA7OyuOpj72NNMO7+HhIf7iL/4CDx8+xDe+8Q288sormJiYQCwWE0knmQgCGQ3kdBFiOpmaQaIjzux9lFSSjSMbSUez2Wyemu2Tc6uN5Q/02GjZop5HOtacazrxnC9KzphyXTvUGiCYoE1vJmgHm+PCua7X6ygUCjg4OMAvf/lL/PKXv5S6YCZw09LJmZkZzMzMCKOpa495PB4UCgVZ2+yf1XrWGxEmA27FzOk1b7UhYgIX9v+0Z5TzqNcI1wTrrjkcDmHUvF4vCoUCotGonOPxeIRpJtjXDLvuB4EtAQw3HDi3XD+6rWTUAUjiEV2CwJRv6iRInDMmBXK5XAOgk/0lsNISXRbq1vJTzV5S7UB5JfulmUi+S10ul2wkeTweKY0BPE3K8iLs5QJwX/y0GTjbbLPNNtueZxcuXEC9XsetW7cQi8WwsrKCw8NDNJtNvPPOO9ja2hL5JAB89NFHcLlcePPNN9FoNPD++++j0WjgwoULODg4QL9/Um8pnU5LbbdwOIy7d+9KWu+7d+8iFAohGo2iWCxiaWkJLpcLu7u7GBkZwfDwMAqFAkKhEM6fP4+dnR1ks1mpU0enKZlMot1uI5FIYGpqCpubm8jlcgCeFrWmg0TGAYDEqWiplek8agdUy+x4rNXuODAokdSgzDTtvNLpJcsBQOJkWLA3FovB7XajWq3C4/EglUoNAEYCDs0SaCeS9dlYIoBJGnR9Np7X7XZRKpXgdDoxMjKCer0umeispJQmoOH3rVYLGxsb2Nvbw+3bt/H222/j/PnzGBsbQzQaRSAQQK/Xk3VB4KPBAp19gjgCF91e9tWUFZIVIbBrt9vyU6dWZ7IIK/kmTdcH43cEmwSTlIayH4xX1Cne9VrT46hZLc0w0aHXUkkd50a55O3bt/HJJ59gZ2dnQEZrGoHJ8vIyLl26BOBEZkj2jceEw2EUCgVx5AmwTSZHM2Kcf7NPGvSaDBPP4dharaUvY/g0yOCa52cEcWSgNzc35f1SrVYHMr4S5PHd4Xa7JSMkQQvLEhAgkWmjPJZyWXPzhs8f1x+BFcdVxx1SDqzj1MLh8EA8LwCRt/I+BKocE44XN0M0OGO/OTZsc6fTQbValTabzG+j0UA8HkcoFJJNsReZgRJ42QCcMHC22WabbbbZdrqxKOv8/DwASJxIIBDAjRs3EA6HcenSJezt7WF9fR0zMzMYGxvDw4cPcXBwgNHRUYyNjWFzcxOzs7OYnJzEzs4O2u02zp8/j2w2i0ePHklmwUqlgng8jl7vJCPcxYsXsb+/j3Q6jYmJCTgcDmxsbGBiYgIjIyM4ODhAOBwWNoUZ2aampoTpGxsbw+rq6kDmROCpA1ipVET+BjwN9DdBmj6Hpp1pfm+ycOY5NJ1cgUa2xrwWQQgAqa3k9/vFcSObk0gkADxNb68dOB3XRqaBkicmxtjd3ZUEDIwR02CHDAIBAueEiURMAEUzE3mYTt/q6ioODg5w7949vP7667hw4QKuXLmCfr+PWq0mLBkdSp0wQwM5M2GHZhR4bx7v9XoH2BN9vMlqEdCTDTPnVvdN19my+qkBjmbT9DU1ODET4Vj1UQO3arWKfD6Pvb09PHjwANevX8fGxoYUVzbXrl6PDocDs7Oz+O53v4tMJiNZZzOZjGQjJBjlc0OwqrNQ6utbMZP8XIM4q3aZgM2UT1qZ/tx8hs1NGYIqtr9YLMozxPeJlkOyv3wmdKp94IQ96/V6kl1SM9i6/ZRiUmIYDAYHYti4HrlOKEPk86rXLNdxrVYTCbhOcsL3Bq9FZlpv4Oh3hB47Ajwygl6vV2TOOj6OBcj5borFYvD7/ZLoiJsTL8K+FMA5HI7/F4DfAZDq9/uXvvgsAeA/ApgHsAXgn/T7/fwX3/3fAPwzAF0A/9d+v//jv5GWW7UV1v8R2WabbbbZZps2v9+PsbExZDIZ1Ot1XL58GalUCvfu3cPS0hJ8Ph8+//xz1Go1LC4uot1u48GDB/B4PPjGN76Bg4MDZDIZvPLKKwiFQnjw4AGi0SjOnTuH7e1tFItFJJNJpFIpSWJRrVYxOjoKr9eL27dvizQnk8nA4/Hg1VdfRavVwvb2NmZmZrC3t4dyuSy72H6/H5VKBefPn0ev18P169cRCoUwOzuLR48eAXia1EA7ZW63WwL1taOuzXR4eC3TsdTMghXTQUfNjH8zEyFoxx94ulMfiUQE9PJ7OmqJROIZJ5jOnmZy6PQxOYjP50MymcTx8bE4f7xfu91Go9EQ4ESZZi6XQyQSwdTUlGTvY/81G2eOlzbu+heLRXz++efY2tpCKpXCxMQE9vb24PF4EI/HEQwGBXRS0kVGS4MmzqUGZfqnCZDYJgIYU67HPgDP1vKyWhvmT/N3q3P02FhJETW41EwbWZFWq4VKpSLS5nv37uH27dvY3t4ekNOZ96JxTUSjUVy8eFHKM3S7XRwfH0uGV4fDgZWVFaTTaZEFalaLfdJSTA3YzfUOPJUTmhsl+lx9Pu9xGvCz2jh53pxwDPkZk4VwI4esGdva6/UGmGo+ywQ/BFlW9yW4Mst9ACfgT28I6XhcXbKDx7TbbQQCAWHOs9msJHvi/fmc8Dqa/WU72T+/3y+ZL3UtOeDkveT3+6WAeLFYFCau3+/L5grnRMddUoL7ouyrMHD/bwD/DwD/Tn32PwH4y36//786HI7/6Yu//0eHw3EBwD8FcBHAJID/4nA4zvb7/ecLyP+azGbgbLPNNtts+yoWDAbFmW42m7h+/To8Hg+uXLmCUqmE69evY2ZmBktLSzg8PEQqlUI0GsWZM2ewv78Pt9uNt956C+l0Gqurq7h48SISiQSuXbsGAJKUJBaLST2pmZkZVKtVPH78GOPj4/D7/Xjw4AHa7TbOnDmDTz/9FLFYDIlEArdv30a/30cgEEAkEpF4jStXrmBvbw+PHz/G/Pw8IpGIMH/a9E435U7mDr7p9GmGjZ/p46zAnU6DTqMza+WsEyRxR5vOEbMS6hTz/S8kn/1+H8FgEH6/X2RyBF/aaeaOOR1VDbQmJiZQLpeFTaM8DHjKuvHeWko5NTWFcrmMdDotgJDX1P3TUlIzOYgucH39+nXZ5Xc6nVhZWcHMzAySyaQk+WCCD7JyGsxxXvg758IEQVrSZ8X2mHP6PObny77Tv5v/tDxSAxbNrJnMIJmQUqmETCaDra0tPHjwAPfu3cPOzo5I6fT9rdpI8B+Px/Hmm28iFouJ1LhcLg8kwxkZGcGFCxfw7//9vxfAS/aK19Jsl479NOff3EzQbLH+WwMSvTmgGTzK9QjEdZ/1tfTvun181lqtForFosiRuZbJWBPQOZ1OYfs5R0zXT6aMEkqOjS6GzTXLMgE6cZKWa5KhJgOm1wgBF98XlCvqeE5KoQnM9Nwz0Y/ewNElSDhfBK36mY1GoxgaGkK1WpV3HzNfOhwOAYFUFFix8l+XfSmA6/f7v3A4HPPGx78P4Ftf/P7/AfABgP/xi8//v/1+vwngicPh2ADwFoCP/5ra+5XMJuBss80222x7nlWrVaysrGBnZwf7+/tYXl7G8PAw1tfXkUqlcPnyZbjdbqRSKeRyOYyOjiIYDGJjYwNjY2PweDy4desWwuEwrl69ilQqhU8++QTJZBIOhwOHh4cIh8NoNpuIRCKIRCI4OjpCp9PBe++9h0ajgTt37mB+fh6jo6PY2trCyMgIer0etra2EAgE4Pf7MTo6iv39fczMzGBiYgLr6+vIZrNYWFhAp9PB1taWxODRsePuNHCya04ASabqNMkXTQM3K4ZFf653+IGnUkkNIPRut/7JY0dHRxEIBER2xXgYXbh3eHh4QLqlE5awz5RukW3g7nqhUEAkEsHMzAzW19fR6XTQbDbFSeffrP/EcgOFQgE+n0/mhckutHPOftBMgKdldtytz+fzSKVSyGaz+OyzzzAzM4Nz585hbm4O4+PjiMfjwkDobJUa0Om4QQJpgj4tRTP/mclbnsem6uPMGEeTgdFAzYrlMzNH6ng9/t5qtVCr1ZDJZHB8fIy1tTXcv38fGxsbKBaLUq9L3/e09nNMRkZG8M1vfhORSEQcfdaKY7ZBt9uN9957D8FgENlsdqDuoBkTaLLSHBfOt8memWNnrhNzHVmNoX62rMbevJ4JmNl+rm+OP2PAgKcSQ64jzgkzPwKQbJdcl81mE/V6XeaQwK9er8vY6mLZvA/nvd/vCwjj2g6FQgAg2Xl5X2ZaBSAbHIzbIxDT64pjwWQ/Ot5Tb2I4HA5511C6zBg4M4kRYwMpJfV6vS80Du6vGgM31u/3DwGg3+8fOhyO0S8+nwLwiTpu74vPnjGHw/E/APgfAGB2dvav2Ixnrnnyiw3gbLPNNttse44lk0ncuXMHvV4Pb775JpxOJ27cuAGHw4ErV67g+PgYqVQKyWQSly5dQi6XQyqVwsLCAur1OnZ3d/HKK6/A4/Hg7t27KBQKCIfDODo6QrlchsvlQr1ex7lz5zA0NISjoyOMj49jYmJC4uhYKLxYLEqdL6fTieHhYUSjUYyMjGB7extXrlyB1+vFZ599BqfTiXg8jv39fdTr9YHdaxqdo263i3K5POBAarZMOzJWIE47y1aOso4v0fIushpmjJZmJugksf103vr9k5T+3EFvt9uS+CObzYpDqtk8zWYwdkazDr1eD+l0GhcvXkQ2m8XR0REASJwPWTctlyIj0el0EIlEpLQAZVUEf16vV2rNmWbuzjudTlQqFfzqV7+Cz+cDAEnI8ejRIwwPD2NhYQFLS0uYnZ3FyMgIFhYW0O12B8Cljs0i2KDjbY43f+d8m2yc1e9Wf1sBJNM0u2b+ND8j+9NqtVCv14Xl3N3dxb179/D48WPs7++LpM/s12l90WtsZmYG3/3udzE0NIRMJiP3Pzo6QqFQEMA/Pz+Pf/pP/yn+7b/9t8K0cDxNYKpBm76/Bj56bDRAMmP++L0J1ngd/tMgWYNx89nV7KAJ7jSDxr/Zj1qtJslIeI9msynric8F5ywWiyEajWJnZ0fY0lgshlAohHK5jGazKXJMypUJGPmcERiHw+GBjQi2i2w8QT2L2XO9M6mRzujKMeQ61HOokzuZ7CiBIuu6MY6U/eUmihVb+jLVgbPawrGEU/1+/38D8L8BwDe+8Y2/FsglWShtBGebbbbZZttz7NatW5iampJkIg8ePEA8Hsfk5CT29/cFvCWTSezs7GB4eBgXL17E+vo6XC4XXn/9deRyOayvr8sO8PHxsciKQqEQ5ufnkclkUCgUcPHiRTgcDnz00Ufw+/14/fXXcXBwgEqlgnA4jFqthmg0KrvGQ0ND2Nvbw8zMDA4ODnB4eChFnY+OjtDtdpFIJNBsNiWLHjAYe8K/tVQLeAosyDTRToux0fIsLc0y42FMtkCnCKdUiiygx+NBIpFANBqF3++H03mSke74+FiSjfB6zECXy+UG6kyRaev3+wiHw8J4UkJFgMd4mEKhgNdeew0/+9nPRN7VaDTk/t1uVzL0MYECAJFXxuNx9Pt9SYARDoexvLw8UHfsq0iqer2eFFomy9Pr9ZBKpZBKpXDnzh1MT0/jwoULWFhYwOHhISqVCnw+3zPxcjpOUMvUdFIRHbNl/tPzbJqVbFI7yPzHvwneNUgzpZ3MiNloNFAsFpHNZnF4eIidnR2sra1hZ2dHxtdklU5rl8nKEZT9/u//PhwOB/b29uQarJtHoBMMBvEv/+W/RKvVwqNHj+Q4q0QYVjJGttFM3KOfI1NCqc3cKNHPqslknrbJooG6brMuuE1AQubalFAyNo7PFH9quSoAKcuhn+1AIIChoSFUKhWRJjK2ze/3w+/3SwwbPyeIa7VakqiIc874VF3SgGubz3a/3xd2UCdC0bF9DocDjUZjQCpJxp1zwtIFfDdpZp8bTVq+yYycXOOnMddfh/1VAdyxw+GY+IJ9mwCQ+uLzPQAz6rhpAAf/LQ38rzEh4Gz8Zpttttlm23PsypUrGB0dxeeff456vY7FxUU0Gg1cu3YNLpdLMlIeHBzg3LlzaDabuHv3Lubn53Hu3Dn86le/klT+GxsbGBoaQjQaRb1ex/j4OJLJJLa3t+H1enHx4kUcHR0hlUphfn4ew8PDWFtbE4lSv99HNBoVaVKhUIDX60UikcDq6iqGhoYQi8VQqVRQLpdFWlmr1URuZ5opXwQg9+J3dNQ0cNMOppWky3QutWnnUcsk+Vmv14Pf70c8Hpedc0omtbNYKBREHkWns1ar4fj4WGJvdGyN2+1GqVQSZoxAmOCBzvXBwQGWlpZw6dIl3Lp1S2RVZDLZZsYbkglhWyjlJJNWqVRw8+ZNcZJ1P61MxybpzxgPyPuwr8FgEJ9++ilu374tDO/k5CRGR0cRi8UGZJZm9koCttNYJM1UnTafpsyS7TVBm/m7BnJk2Vh0nKDt6OgIm5ubODg4wP7+vsy5vobZPq5HK+ZN9/f111/HW2+9hXK5jHw+L5+3Wi2Uy2WpC+h2u/Gd73wHb7zxBn76058ik8kIeDPH0WS4gKdsNv8259aKsbaS3eo+WfXRBINWcad6LNhODb64RgmKSqWSgCvNHPb7fXkudAwgAGGims2mJAnic1OpVOTaBEGBQEBAVqvVkjVH6SHfE2TH9HtDl0AJBAKy2aJZL51Vl8wea7RREs1r6thSxt8xtq7X6wmg5fjqjTAy8Tpul8Dv72IduP8M4L8H8L9+8fNP1ef/weFw/N9xksRkGcCn/62N/Kr2lIGzzTbbbLPNtufbT3/6UySTSSwsLGBjYwPHx8cYGxvDwsICjo+P0ev18Prrr2N7exuZTAbvvfce/H4/Pv74YzQaDQQCAWxvb8Pv90udpJmZGbTbbRwdHWFiYgKRSASrq6vo9/t47bXX0G63cfv2bQEu8XhcnA6Xy4VsNotEIoFarYatrS2RGLG4dzweRywWQ6FQwOzs7IDETMui6HjSAWN8ik528rzdY9PBB551SPm3VYwPnUk6ZnR0KJnUZQJYNLvRaKBcLotsio4d2bRcLid90E4tnUCyaPl8XuLp/H6/xJ41Gg3cv38fb7/9NtLptGSXJIgjEKLDxr7qxCAul0vmjqwDx0uPx/NAHE3Ho1UqFQEulG0BwAcffICtrS2k02mRh8bjcSljMTw8LIlvAoGAxOYw2YQpBfwyJs7KNHhgH0xAp+OMyJJUq1WUy2Xkcjnkcjns7+9jb28Px8fHKJfLqFQqAlo1YCHQ0fFlHGOrdhFoeb1evPbaa3jjjTdEPsvvyK6m02lUKhUMDQ1hdHQU/+yf/TP4fD7cuXNnoEi8Lh2g22I11/yMa9BkBHms1YaIeT0do2U1D7yP1fe8Pxkn3kdnheWa6/V6CAaDwkLxJ0EKx4wgSddG45iHQiEBdFoqqlP+AxCWm23i77wOx4DvCMbVBQKBZ8Zerwe9VpjciLUVuamgM7pyDExpKs9nG1g4XD+PBHpsDzed6vX6M/PwddlXKSPwv+MkYcmww+HYA/A/4wS4/R8Oh+OfAdgB8N8BQL/fv+9wOP4PAA8AdAD8X/pfUwbKL9qKL9rxdd3SNttss822v4N28+ZNzM7OIh6P4+7du6hWqxLTtr6+juXlZYTDYdy8eRPhcBhvvvkmMpkM7t27J5KdUqkkcVu9Xg/T09Oo1+toNBpYWVmB2+3GgwcPEAgEsLS0hL29PRQKBXFIxsbGxGnkrnY8HsfR0REajQZCoRDq9boAlgsXLkhdONaDC4fDA6DM6XQiFosJACEDFQ6H4fV6USwWn5FkWYEOKyfytL81K0HTqdi5A+73+xEMBhGJRKQWW7Valcxu+Xxe5HNmrE82m0WhUBBnXzMDTE5hshKMG2MbAWB3dxcrKyv49V//daTTaSkKzB1+JjrQQJimk6rwO5fLJbI8jonJVn6Z6VTtwAkgzeVy+PjjjwckXCw2nMlksL6+Ls5wKBTC8PAwksmkALpQKIRIJCIsHSWXjBsya7g9D8iZskkth9QJYCqVCkqlEnK5HAqFAlKpFDKZDHK5HIrF4kCsoAaBetxM9onjfBojRYDm8/nwzjvvYH5+HsViUUoMEEw0Gg0cHx8jl8tJv//5P//nmJubQ7lcxvr6usRVEryZZQTMNW7la2rgdFqbeS29SaABHr9/nkRZP7vaNEuoQSGfQc1aUZJdq9UG2EaOGQEdZYOc/3a7jWAwKGuBY8ZEIIy3I/PNMTSL1euU/Dyn3+8L416v1xEOh1GpVJ6RvVIGCUAYVYfDgWAwiH7/JDlKJBKRNuo5Yd1HSrPJehPscewI0PjsaMDGfpjZf79O+ypZKL9/yle/dcrx/wuA/+W/pVF/VRMJ5Yu4uW222WabbX9n7NKlS8jn87h37x6cTifefPNNSVv+xhtv4PDwEJ9//jlee+01eDwefPbZZygWi1hYWMD+/j46nQ6Gh4fRarWQTCbR6/VweHgIr9eLxcVFbG1t4ejoCPF4HKFQCA8fPhQJksfjwfDwMKrVKoLBIHK5nDjaBwcH8Hq9GB0dRTabRbPZxOjoKM6fP49UKiVxGZQsbW1tCSjUsUfcIaaD5Pf7EY1G4fF4JA5FO386lkfv8GsQZTqLdKi0Y8t7k83SrA+TDVBWxbi0er2OZrMpAI0givdjUgHNJNAx0wCEu+P9fl+y4Omdfn5+7do1/N7v/R7eeOMNfPzxxwOAkaCEsVq6mDjvyzZp9oAJEnQGvNPMdOxN0ywJHVXt2PO7fr8vdc2Ojo4km58uiB4MBhEKhRAKhaQQMWtecY64Lnl9k/mi095qtYRdazQaknyEwC2fzwtTTCbOBKdmzNZp8Wz83Ywd0wwV2cVIJIIrV65gfHxc2qnHlgW7j4+P5bO33noL3/rWt+BwOJBKpaSOogYa/Ntky/iTa133S69B3Qe9KaBjTzVDZp6nzSQoTNmzfj7JDptjyfHic9Pv90U5oDcdtIQyEAjIphHXOJlnluJoNBpoNBqyMQBAEpaw7QSCfLdwA4AyR6/XKwCJmyGBQAC1Wg3ValWAEjeFKAfXpQr0+gcgII2JVTgXBJxsK+tOBoNBYS+5zslO6qyvjN8jW/ei7K87ickLNZFQ2gjONttss82259j6+jry+TzOnDmDyclJPHr0CJOTk3j77bexurqKdruNq1evIpPJYG9vD263Gz6fD7dv30YikZC6ZGNjY6hWqyiVSlhYWIDT6cRHH30Et9uN+fl5HBwciNOTy+VE6sYkGPl8HsPDw6jX6ygWi4jH4/B4PMjn82g2mxJP9+jRIwEUsVhMdo0TiQSAp46gw3GSxpsyP+6oh0IhcWg0q2CyRDqjJIAB6ZA2M4BfAxtev91uw+12IxaLCUhgLArBANklFlfmjr6OSalUKnj8+PFAAhSdbIBxZBwD3ReODfA0cUMmk8Fnn32Gd955B+l0Gg8fPnyGvSNo0YkV6GQTyJH50U4h68xZSQCt7DS5HM877VwNHjVDRueyXC4PSO5oOnuly+VCIpGQ7HsEvWbbeF3GDVH2yH6aMXFWfbTqs9XnGpAQ0Oh/7DtB/fj4OF599VUkk8kBho/rqNlsIp/P4/DwUNaPz+fDd7/7XSSTSQAn74KDg4NnZKY6UYcpObXqp/7OCozxmXkeKOe9TdbIHCMTBJtjxpgzUyZINq1Wq6FYLEpyETJofCaZSCQUCknyoEgkIs8uM+3qe1M+yf7w2QkEArIpw/vwOeImE9c53wORSEQ2SZhkiMw7Y9cAyPPXarVk46XX6wmw5DNaqVQG3oscI7aJGzVkaympJlDknLJgOOfw72IM3N9O40K1OTjbbLPNNtueY51OR2LSHj16hOXlZTidTnz22WcYGhrC3Nwcjo6OsL+/D6/XKw7LxYsX0e12EY/H0W638eTJEwDAuXPn0Gg0sLq6ilAohKmpKWQyGQSDQXF6FxcXUa/XEY/H0el0UC6XMT4+jlKphF6vh1gsJnE6vV4PZ8+eBXBSN4yJSiKRCHK5nAT393o92b2mmTvtZCk0awRYAwtTSqllXHQwdbp6Ou48V8uluFvucJzEvJGRAyDSLSZmYZwandxAIIBmsykOGcdIO4Bsa7/flx12zXRoyZQJvG7fvo2lpSW88cYbyGQyEmNGZ5kOJ51MslmandEgjuZwOCS2i9fSSSdMBkV/ZtppcVCnzZ05Z1bnEYjRuWeadxZe1kDptGvwd/Pvr2ImqHneeTqxBhkkbkjE43G88847iEajAk70eZQoMpGJLmZ/8eJFvP7668LiPnz4EMDTwt/8pwEb8BQU6meB55lMmNXYmPOtjzPBlgkG9eemlNMEi+b5lP1yfXNcCXB4f2ZZZGITygZjsZi0rVKpwOv1CvOkN3LYNp0URMfBuVwuKVmg5Ydk4zWjzphYjjcljbVaTdqmx4QxerpWG9+JZOZYu473o+ST8aZUAuh6eeyrfg/y/cZrvCh7qQCcvOps/GabbbbZZttz7K233sKtW7cQiUTwyiuv4PDwEKVSCTMzM0gmk7h7965ksMvlcojH4xJTMTs7iydPnuD+/fuYnZ3F+fPnsbq6imKxiDNnzqDf76NUKokMst/vY3x8XEoFUPYWj8eRTqfFGarX65KlMRwOo1wuo9PpIBQKCcDjNarVKhKJBCYnJ/HTn/70GaZCAzHKgwAIiLICEsCgRM007UhqqSU/p4NNCZ/X6xUHiLvZjHWrVqsC4ugwEfSw/huv22q1kM/n4fP5JE6GEi+adpjZB90PU5rZbDbxwx/+EP/wH/5DvPPOO/jZz36GQqEwMCbaCaSzFgqFZBdfj0sgEBgAdxrEmfNhOvensTqngTzdt+cBID2HVlK7fv+kuDjBM8fuy+y/FqyZbXhee/UxnAMNXEKhECYnJ3H+/HmJOa1Wq7JWtGSzXq+LpJOxTrFYDO+8847MT6lUwtrammxMcE1pVszcsNDjrmPN9LhqkGXOgwnUTru2ea4GZPp+5nH8W7OH/IzPgcPhEEYfeMpO87ll3Tem56d8kow8gY+WW2omlqCKQCwQCIjMWwNHrjddmoBJi/hO0MlhNHtplnrg3OmNF7L57XZb2pvL5VCv19Hv95FIJGSzqdPpoFQqDYBaZpwk4CQzz/b9rU5i8nfJuH5t/GabbbbZZtvz7ObNmxgeHkYoFMK9e/fg9/tx7tw5FAoFfPzxx7Ib6/P5cObMGUn+EQgEcOvWLRwdHWFubg7z8/O4efMmer0exsfHcXh4KOUFstkskskkisUi6vW6xLuFw2GEQiFJVEKn0+PxIBaLwel0IpvNIhwOS3xGsVhEq9VCOBxGq9XCwsICHA4Hbty4Ic6IlhnR6XA6nQiHw4jH46jVaiKZouPk9XolZshkCkwz48C0E0bpFHfQ6YQxXoWSplKphHq9LjE0rNvG87QMj1IpOma6xhidQZNlMJ1IAgLthPH6x8fHuHbtGv7+3//7qFQq+MUvfiHslGa66AhSHklQzT4TXOgEDf1+XwC4Bm5W4Ot5oOY0EGSebwUKaVYyu+fd1+qevI7+24plMoEzz7NK7mHKEzXw1saYykQigZmZGUxNTSEUCiGTyQAY3FjguY1GQ+KnyuWyyHkZ05pKpTAyMoKjoyPcvn1b2qPLR1iBIBNgWo2FFUA7bVPEPF4zPacBNhMs6uvoOdbA0xwn4KnEmDFwlCOycDcBjNPplGy3zAzJhD98nvTzz4y3jGlzOp1oNBoiy2TiGzJh+vkw5dCaBeX88Fkm68b3BJ81luTQ49LpdOQdTiaPAJPvQPaJ8YP6/abbyNhOMncvyl4uAAcu6BfcENtss8022/5W28TEBPL5PI6PjzE7O4tIJIJHjx6hUCiIY8GaW7u7uxgbG0O/38edO3fg8Xjw67/+66jVarh9+zZGRkYQCoWQSqWkCLfX60UymUQqlcLY2Bh6vR7y+TySySQKhQLcbrcwesyKFo1GUalU4PF4EA6H4XCcZBnc3d2V1NjBYBCvvfYadnZ2sLe3h8nJSQEzdMw6nY5kiQsGg5idnZXMlMFg8BmpE3A6GwA8lUbqJCLAU8eTDhedX52shUlLSqWSJC5gxjk6aLo+nVV9K8bzaPBmtlUfp1k3fs9zdaKXdruNe/fuYXl5GW+//Tbq9TquX78ucjydxAOAxOu12200m01Eo9EBNs7hOInPY3p2h8MhGwGM9XmeI2+adshPA1VW35/2O/ui588KxJ0GLL+MQdPfnwZyNDA5DYDyGAKCSCSC+fl5zM3NIRaLCejXc835JMPDMgaFQgHNZhNer1diR9fW1mQz5smTJwP1wnSMKK9NZoht021k+zVrY8WGafku22uCMBOkaZZPX8u8tjkHfEb5vDLednh4GNlsVhg41k7jc8rzKA9kv9nWaDQqGSIByGYHzwcgzxc3ZZgxkmUcdFxhu92WLLxMPkL5JH8nEGPsWaVSkfp2HBeWIQEgbef7iN8zmy8Z1Wg0KiwiYzt1CQVuBvHZZp+5LhwOh2TGfFH2cgE4YeBsBGebbbbZZtvptre3h2aziddeew0A8ODBA3ECKpUKzp8/j6GhIWxtbWFxcRHpdBoHBweYnZ3F2NgYHj58KEW7W60WUqmUBMFPTk4CAA4PDzE2NoZyuQyn8yS9f71eRzQaRSgUGmD1otEoDg4OMDExIcfUajUBfcViUQDlBx98gHa7jZGREdy7d08yxNF0xjSHw4FSqSS/mw44GSMdQ8djtenMiOZnlFMSYHKnnUlTuGOu66np34HTWSR+zp1+zR6S6TLj9Hh97rxz113/o3U6HXz44YeYnZ3F1atX0Ww2cf369WfGSZ/jdDqFQQyFQgiHw+L4AZACx5Rv5fN5FAqFgV18K4bMatw55jrOitfQY6V/ngYQzeNOG28r0GUF5kwQbbJv5jXMdlhdSzOaLGZ//vx5jI6OotvtisRNx3MSiHQ6HXHGG40G0uk06vU6hoaGkEwm0Wq1sLm5iUKhgOHhYVy7dg0HBweyPgkiyMDpGDe9cUBwRKbGCojxPJ1IxwR/VuyeedxppttkxqDSNLhtNBo4OjoakD0TrLE2I6WEuh8ES+zr0NAQIpHIgOyWc8HnjslStMSRCXKoauA7Rz+vQ0NDUgaAmz16rfBdxfZXKpWBzRWzKDjBpAZoXq9X5OScdyZ2qdfriEQiGBoaQr1el/cYS51wfRPoUZb5ouzlAnBf/LQZONtss802255nlB1ubGzITiolQZRSlstlLCws4NGjR/D7/Xj11VfRarVw69YtjI6O4vLly7h//74wWwCwuLgo2fC44826cWTXAEjSjPn5eYkLGxsbQ6lUwtjYmMTfjY+PY3d3FxcuXECtVsOnn34qiTyuX7+OqakpeL1ecbQAiANL54ZZM3O53ADQADDg/Om/tenPTBkenVAmCqBpYEhwyXZxJ1zLJTUQ43V5b/7Tn5nOqm6bBoc6M50Gb/q6m5ub+PGPf4w/+IM/wLvvvotyuYy1tTUB9DSeq/tWq9VQKpUQDAYRjUbFGaYkzev1SgIWtlH3gUAFwAA7aLIyGiBZyfX0XOj7nGbPA5FWP03WzOoaur0aaD+PSeR4auBC2fDU1BQWFhbg9/tl7kwWr9froV6vSywl2ZhcLicyt7GxMXQ6HRwdHUnNvPv37yORSEgNPzryunyAVds1K2f2RRfQNufIlC/yGKvPrf7muJhJM56XsEY/m+yTfh6Z0ZZtZrwXmSmyzbyvLufBbLJksBhD12634fP5JMES5ZiUKXJDiSw8x94ETbr+JbOJkpljPTuyh4FAQLJjsnwG5c4cLwJpt9stAJOZVwk2w+EwIpGIPLsaJFOuSSkpM27aDNxfkz1l4GyzzTbbbLPtdFtZWcHOzo44CNVqFYFAAIlEAru7u+Kg3Lt3D2fPnsXc3BzW19eRyWRw8eJFJJNJ3L9/H8BJKms6nMfHx4jH4xLrFY1GJQ7E7/cjm82iXC7D5/Ph/PnzUqMoFArB4XBgdHQUm5ubGBkZgcPhwNHREVZWVnB8fIzt7W0sLS1hf38f1WoVr7/+OnK53AB4o7NI55A7xpQ20rTjYTohBBYEE7rWlSkD02UDuJtPR491n5h4RDvZJnAkODJZNrNkgHaGKRHj72yTBkt0trSEkcfp369fv46FhQW8/vrrePfdd9Fut7G+vn4qoNV9Z5KEarWKUCg0kK2SSTZMtpHG3XyC31arNVD3ygQspj2PkTOPs2LCnsfyWN3TCshZXf+033kN83eHwyHrJh6PY3Z2FpOTkwOsKo/jZwTQZDhZE4zSvlAohFgsBr/fj08//RQulwvFYhHr6+uYn5+XIuzNZlOed82eARiQ9VqxoFYbCdr4vTk+ViDvtDGiafBmPj+a6dPPiY4r1fFmADA+Pi6sOa9BYFqpVCQ5D99fLpdL1jqvQ1DG85gtl+8KAiXKw7m2yXJSbk2Gr1KpoN/vS+IUFhDXNS25gcV3RiAQEKafJVrI7ul3IBMqMVkJQVgqlZKi9wSRlEvzvmwjx9Lv9z9T4/DrtpcLwGFw58I222yzzTbbrIwFs1lPbWJiAg6HQ5iwSqWCbreLb37zm+h0Ovj0008RCATw5ptvotFo4ObNm1Ice2xsDE6nE+l0GpFIBLu7u5K2v1AoIBwOo91u4+HDh+j3+xgdHcXCwgL29vYQjUYF/AwNDWFvbw+Li4s4OjpCIBDAq6++ikePHmFvbw/hcBj3799HOBzG4uIiHj9+PCBlOs15vnDhAqLRKDKZjDh8OrU9TYM2Osl0gIBn61SZcT/aUWKMCKVRxWIR5XJZPtNtNFPsa4fdrBvF4zTbxt/J0JAN0I4fj6NjqfvJbHd//Md/jEgkgqWlJXznO99BvV7H3t7eMwwk+0yHEoDI75hhlGUHyPCY57OfzI5INoMZAOkkm/JKE9CdxqLpe1nJ/J5nzwOKVp9byf5Ou59m6Gh01CORCCKRCCYnJ4UJ4frheuM812o1pFIpZLNZlEolYZbIusXjccTjcSwsLOBP//RPEYvFcPbsWaRSKZTLZWQyGXg8HuRyOWGfNCtmPgOaxdIyRK4pApjnySKt5sZ8xkxW7ssAt2Y59UYL2WeyaZq9Y3vb7bbEcFJiqKWLZMh07TNuXFByWKlUZBNCl9dgkhKv1yvgp1AoSLZJ9lvLV3lvMmPRaFQAtH6uCbZ5PyZL6fV6KJfLMtbcuOHmFceEKgDOOROgUJXBMeX5TLYEnDznTOTCa70oe6kAHDWUNn6zzTbbbLPteRYIBIQNmpubQ6FQkAKyzG731ltvYW9vDxsbG1heXsbCwgI2NzdRLBYRiUTQ6XSwuLiIbDYLj8eD0dFRHBwcIJlMSs2jsbExNBoN7O/vo9frYXp6Gj6fD9vb24jH41JMnJKvmZkZPHjwAOfOnYPH48HNmzcl1uP4+BhLS0twuVx4+PAher0exsbGsLm5ORAjxsyPdC4oy+Tn2kxGTe8ya6kl8BT0mXJLOqB0hjSw6/V6Ei9GgGeVXIROpwZFdJK1Q2YaP9fXIpAzJYnaOaPDzHHrdrsoFov4P//P/xP/4l/8C4yMjOBb3/oWfvKTnyCVSp2a+INt8ng8GBkZQb9/UkKi0Wggn89L8gOdEEKzOEz4wJIKuu6Vbqf5uxVAspKgWp37ZZ9bgQQraZ8VE8W+PQ+48VoEFwS7oVAIo6OjUpxeJ80hQKrX60in0zg6OkIulxOZHQABLA7HSfKf+fl5/PznP5fntVAoiOSObHE6nRYAYWZtNMEo78G2677qMTLHxFxz+tmyYuT0BsWXsaTa9DPI50ivCb/fj0qlIu+ITCaDubm5gYy1TDSik4mQZXa73SKHJLDi3DCJiQY1HFen04lSqTTAnvEeBJa8L8eRcmvKi5l4hQCe8bWUYGogxjFnHTdmm6QklAyaVi6wvlyz2RRGkoXNCSwByHudwDAUCn2lufmbsJcKwH21JW6bbbbZZtv/vxsLdMfjcezv72NkZETYuKmpKUxOTuLhw4fIZrM4e/YsIpEIrl27JvXgAODs2bPY3NzE+Pg46vU69vf3pTB3t9vF8vIy9vf38eTJE7hcLpw9e1YclampKTidTkxPT+P+/fsYHx8HANy6dQuXLl3CwcGBAENm0VtaWkIul0Mmk5Hd43w+P9Cvfr8vKbsJ1oLBoOyi6+QawKBcEhiUIAIQp1YzXaasUDvllEzS0a3X6wJO6OjqpCdW8k3tyLL/3PG2OkcXadaxb3QwNWjUfeG1NKDc29vDH/7hH+L73/8+5ufn8du//dv4i7/4CxwfHw/0Vxsz7CWTSUk+Q0dWMzpkKWq12jOSSjrrurgxv+M8kJHSn+t5Pw1c6Xvo483+6Hbov822WIEz8zsr8EMjgxOLxYS5DAaDUtaDc6YZLgK3VCqFTCYzABI4xlwrMzMzOH/+PH7+858jnU4DADKZDI6Pj+H3+yVOKhwOo1QqDZSp4H11uzXzbDK/NJM100BKj5MGiSYTbbKpVnPBe1lJe3UKfJ7T758UudexlgRQlOtOTU0JUAmFQsjn88jn84jFYgLMCN74TJFhi0Qi8s5hwWsNZskwk13mM8F3k97A0QCf8XT8W8tb2VfzXgSgvJbX60UgEJD4O4I3xqn2ej25LkEa2X7G9hHYsQ3cIOr1eqI0eFH2cgE4ecm84IbYZpttttn2t9ouXLiAarWKo6MjJBIJyRLIpAn37t1DpVLBpUuX0G63cXR0hLfeegvpdFqcRO5g5/N5ZDIZTE1NoVAowOl0YnR0FGtrazg8PITb7cbw8LDESDHbW6VSwcOHD7GysoLt7W3U63XMzs7ixo0bGBkZwcTEBLa3txGNRjE+Po6joyPk83nE43FUKhWp6xYOh1EsFqVv2mlksL/P5xtIF246qObvpqMJPGXETIBHIEQmiaCQ2QGZ3h14GhtD55LHaUZKX1dLNq3aarJrmhXRbAnj7vQ5Wqqp7fHjx/iP//E/4vvf/z5mZ2fx7W9/Gz/72c9weHgo46CNwOv4+FgkV+VyWRIkuFwuhMNhJJNJHB0dPcNSEqDq6+mfHA+3241arTbgtJqslhW4+jJ7HstnAgz9twkKTWmk2QYCGJ/Ph1AoJEXRQ6EQotHoM3X0KGFjBthMJiMyOo6JBk6RSATDw8OIx+P46KOPkM/nBwq/cx11Oh2Uy2UAkPg31izU7dXjzI0HM/aMzj5ZKn6mN0I0KKH80pwbK8bNin07bdODbSTLTYbInFs+U3rTgzGaTIZEgEVQowtdM44VgCQUqVar8uwTePF8AqBSqSRtoQyRY8Lrcu75DuF7QzO1BPO8FmXwunxEu92WNUWGj+8CMnhkAwl4uWlQq9VkA8ZkSckIsy0sg/Ci7OUCcF/8tMsI2GabbbbZ9jwrFotIp9MIh8M4ODhAPB7H4uIiWq0WVldXEY1GcfbsWWQyGYRCIbz77rs4Pj7GzMyMsDsTExPY2tqS4ty7u7tIJpPw+XxYW1sTNo9xHz6fD41GA0NDQ1hbW8PY2BiWl5fx6NEjTExMoN/v4+HDh5ifn0ev18P6+jquXLkCp9OJhw8fSpzK8fExarUagsEgYrEYQqGQxPJoJoqptQuFAgKBgPzz+XziWJlAhiANGHTmT8tSqYGVTlii4880INH30kDTdFbpcGtAyH5p04BMt09fiyyABm481gR+bMvq6ir+3b/7d/j93/99LCwswO124yc/+QkODw+fAVC8FjPfAU9rU5GpiMViqNVqA5kth4eH4Xa7Jb27ZiW1jA7AM8kjTLNy/E1wZQVWrcbenHcrEMfv9PEm2ODfZNnI4lAumUwmMTIyMsDAEGw1m00cHx8jm80ilUoJe6L7RuaH49ZsNlGpVLC+vj5QK0yDXMZkdTod7OzsAIAk0vB6vQObDfpcU05MQMd+aimnFRtKIKLjGvVPzSJZmRWoM4GiGZ/Ke+n2k03ivfXzQqk2N5nYJ0ogK5WKgB+yWJRkAhAJMJPDcAzK5bLE6nKs2ZehoSHJIlmv19HpdBAKhWQTxO/3C6jTEkqCbc5BpVIRdo8sKoFYp9ORGFM+o5wPtku/p7jxpNlzAJINMxgMirzyRdrLBeDsGDjbbLPNNtu+glWrVTidThQKBVy4cAHz8/N4/PgxUqkUlpaWMDMzg62tLZw5cwbJZBKZTAYzMzPo9XoolUpoNpvY29tDo9FAKBRCtVrF/Pw8PB4PVldX0Ww2sbi4iIODA4RCIZH3sN7bmTNn0OudpLAnm/fkyRPEYjFhGt544w1UKhWJlwOAra0tuFwuxONxBINBHBwcSD05Gne26aDt7+9Lau9gMCjyJdOBo2mQQPCk/9Zxc2QU6KRy114nKjCZMd6b99LgQDueAKTQLxMtmKbbqgGQjn/TbAMdYM3G6fbQ+v0+1tfX8R/+w3/Ae++9hwsXLuC9997DJ598gq2tLembviYdPzPTJueNiRQYb/XKK69gd3dXgDbBC8dRn6/HzjQNBsy5tPrbNKvj9bWsAIfVcfyp45uY+Y+/cwOB/1jwGThhi0ulEtLpNHK5HIrF4jObAJxzDdrpaNPxJ2gm+6ylbqyZODo6KnI5l8slWQVNhtcEOqYRXJw2VhpE8Xi22Rx7K8bN6n5krc02cVy4niiV1pliubHT6XRkPTqdzgHwwxizcDgMl8slUkKOuZ4Tbti43W74fL6BpB9k7ZhgRCcraTQaCAQCsuHBump8dt1uN8Lh8ED9OZ5H04lZeJ7f7xeQyIyXzIYLYCAhDt9ZvAblopSXkiXUssxgMCgbAGzDi7KXE8C92GbYZpttttn2d8C8Xi+uXr0Kp9OJe/fuIRAI4Nvf/jaq1SpSqRRWVlYkLfWZM2dkJzmXy8HlciGRSCAQCCCdTiMWiw2UCBgfH8f29raAOzpNqVQKCwsLKBQKIvX5/PPP0W63kUgkUKvVMDk5ifHxcTx8+BCtVgsLCwsoFovY2dmB1+uVosb7+/sIBoMYHx9HLpcDMMgI0dnLZrNwu92SLIJOh3YWNTAzQZF5LK+vjU4Xd8q9Xu8zRbM1YDLBnf5eSyJrtZpkvNNMjTbtVAKQeB6TadPslgmOdBs1MDg8PMSf/dmf4f79+/jmN7+Jb3/727hx44aAdHO8Cd44ZmyvBhYEOOVyGYeHh+h2uxgeHobP58Ph4aGACs3K6XbymnTUTwMFGlxrcGH+023VZq4P0zSzQ4bN6/VKvCWzEzIeU8dl6rqB1WoVhUJB4tu0RM6KHTXHweFwyNoja0SH3qztxnXZarWQzWYl6ycZGSuW11xr7LdeUzp2k+22Yu804NebCacxb1Zmxn3pGD1+RnDFv7WEmfemJJGyyF6vJ2yYw+EQgKeZOMaNkW3ntfiO4z+Ct36/L3Ogx0dnxKzX6yiXy+h2uwKi+O4iEG00GgM12LQ8mv2knJzgne8BXo8KCK4/8yfv0+12EQ6HB+ScZB45lkxO9F8zb3/d9nIBOLuMgG222WabbV/BhoeHsbi4iMPDQ1QqFZw5cwYXLlxAOp2G3+/HmTNnpGZQt9tFOp2Gx+NBsVhENBpFo9FAJpPB+vo6RkdHkc/n0Wg04HK5EAgEcO3aNSQSCalFlc1m4XSe1FVaW1vD8PAwOp0Obt26Jc7s0dERXnnlFQGULpdL6r5tbW0hHA5jYWEBvV4PW1tbiMfjuHDhAu7evTvAiJmxXYz3YWFp1pyzAi4miOMOvZXpZCR0mpxOp4ybvh4A2d3XxbR5D52QQGeVpOxMn0f5FE2DESvQo+9jBVysTLMcLOxdKBRw+fJlXLp0CcFgEDdv3hSwwTFjvzWTaIJOtvFHP/qRpHj3+XwYHh7G9va23F9LXE8b/3A4PMACmDJUDRj052QerBx78zpWUkKn0ymxSYwlIkAjKCKoo+PLnwSfrVYLmUwGe3t7KBQKA/FtnEvdfg1ATWkkQTIZKIJ6ZpzUa0GznIzvovRPbziYa0yPhx4jk3XjMSZbac6jFZNpdT9TPmkmHTLBkQZ4ZiZKPX9kjJnYRceG9Xo9FAoFuaff7x9oHyXCBHrdbldKCsRiMRSLRTSbTQQCgWfkm1wT/J3rkOOvZZ6UVlLqqGNzi8Wi3D+ZTEo7OBZk4nS5gX7/pFYdwaCuW8dNlmQyCQAieSaYJPhjJlOTEfy67eUCcDYDZ5ttttlm21ewubk5rK6uIh6P46233oLT6cT6+jrOnj2L4eFhcQ6KxSIajQampqaQy+UwOTmJvb09pNNpfPbZZ3C73chms5idncXMzAyq1SoeP36M0dFRTE5OIhgM4vDwUBzPRqOBeDwuySzGx8eRyWQQCATw2muv4fj4WOrIjY+P4+bNm8hms5iZmcHCwgLa7Tby+TwSiQSCwSBu376Nu3fvSnpu4GmwvWZ/8vm8JDLRzpiObTPlYqa80AQjZmZKfs5sbjxexwdpB1SDRv23BhV6p16DJDqZup1WrJvJ+vFapnzSin3S0tBarYZ0Oo0PP/wQOzs7eP311/HNb34TN2/elPhDAANlADSI1cCD2fjIBLVaLdy5c0ecZ82wmbGHerx15kCyJjolvDb2w5xnAmOTLTWBGv9pZoRxRfydKeN1zCL7oceS9cX29/eRTqfFCbZiB60khrwfswGy33oDgL+TkdFtZxZXMkccx9PAPDcSzHXH73T/zDWknx8NwPQ4WwF0q35rtpfnsr8cby1dNte1lhUzRiwQCKBWq8HtdkvtPTJO3JBi9kXGozEpCOXNWlrZbDYlEQjXOseaiVK49iijJHhknzSjp1l3zh/faRx7jqHX60WhUAAAhEIhYdQajcYAUGR8GwEe293tdpFMJoXV42cjIyNot9sSN8wNJMYhvyh7qQAczSbgbLPNNttse57dv38fY2NjePXVV1GtViWRSb/fx9raGh4+fIjx8XH4/X5xRprNJnZ2dpDL5UTO2Gg0sLi4iEajgdXVVXi9XoyMjGByclKKDcdiMTQaDYkpyeVyGBkZgcfjQSaTweLiIkZHR7G+vo5isYiRkREUCgX87Gc/k1pzgUAAn332GRwOB5aXl+H3+3Hjxg3ZQaesUzs6GlRVq1XE4/FnsrNp0KMdQv6tTTvU+hz9PYEFHWbgKfOmZXGUuOm/gcEU/zQyJqcxgVYgTbeHv5uf6c/Nv00GRGec297eRjabxcrKCpaXl7G6uipAk84ux1EnH3E4TpKZEMhrkEMGgGCX7CYBIR1Zzf70+yc15xjnQ+eYzBjXg05nr+dFg0M64Bo46PM1g2b+TvZKs2GcQ45Lq9VCpVJBvV5HqVQaAE4aVJpMlwYvui16fWtQoteYy+VCLBYTloZMHNugwSnBj05db64LPh88Vh+jnzV9jt64MAGdycp9FTCnr2vG65FV43cej+cZeaa5gcJrcGzINDEhCa9JJopSVZ3GX/dTJ5vp90/kmcx8y7VMCSSBN8EUANlI4Fxw3ZIlLZVKA8lDKA3vdrsiI2dsJUEi+2DGvrGsB/vANjDejxJ3ssWcN/Y9mUw+V277N20vFYB7ushtBGebbbbZZtvpNjs7i3A4jB/96Efo9Xp45ZVX4PV6cf/+fdRqNTx+/BhjY2M4ODjA7u4unE4nKpWK7CpXq1Xk83l4PB58/vnnmJ+fx7vvvou9vT0AwPHxMZxOJ6LRKKrVKqanp9Fut5HL5RCPx+FwnKSPX15ehtvtxtbWFgDg3LlzEh+3sLCASCSCXC6Hvb09jI6OYnx8HIeHhzg8PEQkEkG5XJYSAnROGO8RCoXkWoVCASMjIwgEAojH4wNxMdqhe15Mhymrs2Ku+J0uyksHz8z0pkGDKZmzcmS1w6nTfJtMmmYGNSAz2TB+zr6Zx5p9145jqVTCrVu3EIlEJNmBPtfn86HX60nmvmaziT/4gz9AIBDAD3/4wwEwwHghnWVSM0JkfTTjoMdEFznWMT0a+HBezJ+cKzILZEvobPMnx5zzytpiBAr8nmuqVqtJxr9msykMCxkfOucmyDEBql5TlN4xlolt0euG69LtdmN6ehrRaBTRaBR+v18c/X6/j93dXSnmXK/XJbkFx48gTa9dtkv/07Fueq2cxuad9h3XrRXIY/9NsKTnks8G55LyQzOZjk5uwvEm2GfSl36/L4Wy+Z5yOByo1WoChlm7j3PL+2iJrN7kIWul5dMacBIg8ngNjJiEhqw1GVtmM+33T+LomMSEUk6uGQJG3ouxfQRpDocDgUAA9XpdpKFOpxOJRAI+n0/G3O/3D8g8h4aGBsq3fN32cgG4L37aDJxtttlmm23Ps1arhbW1NflP+9atWwiHw2g0Gmi326hWq3jy5InID4+PjyWTYy6XQ6lUgsPhQL1ex6VLl3Du3Dlsb2+jVquhXq9jbGxMdn0vX76Mx48fSw03SnrOnDmDarWKR48eIRKJwOPxYGdnB+12W2I6MpkMKpUK5ubmsLy8jPv37yOTyWB4eBipVAr1eh1+vx/5fH7A0c7n8+JsFAoF7O7uYmVlRbLL+Xw+NJvNgXg5M/ZNO9GmpEuDHA1GgKdp41utliRK4A62dratHFY6VpoNZBvpkLI9ZqybFQA87fv/GtN914V+OdZkyvT96ATSER4aGsL6+roUYtdxfNzh1+wIAAFKOrsmx+G0OeLYWTn7Vudo0K//0QHW19NggQBaf28li+U5rIUYjUaxvr4u7TU3DDTA0YBSJ0jp9U4ywbI//MfzfD4fJiYmkEgkpMYbpXM+n0+eO6fTKTJAK4b3NFCm1y/BhpWMktfV31lJI62YNxN0n2YmE64BLBP/kGlie7k2yUKREab0ORAIDBTo5vpmpkoyvmw3GXeOCQBJ3c/i4SZbR6DJ++lzuHGgi9pzTblcLkQikYFnQsfQtVqtAdBG5lUDTP4jmAwGg3IeNyQCgYC8w/iM+3w++Vkul1Euly03mr4ue7kAnB0DZ5ttttlm21ewdrst0kYW9j08PEQymYTDcZJF8eDgAOVyGfl8XuKV9vf3xbGIxWK4cOECEokEdnZ2MDMzg2KxKM5Nv38SMH/9+nV4vV5Eo1GUSiVMTk4iFArh+PgYhUIB8Xgc5XJZHPvR0VE0Gg0pRHz27FlEIhFcu3YN9Xod4XAYOzs7CIVCmJiYkLgPAiI6vmxnu93G5uYmOp0OfD4fYrEYotHoM+UH/H6/OGza4TSZNM0+AM+mP6dz5fP54Pf7BxgbOl104sgemY6QCcAAIBwOA4C0kY6xFXAwP3seaHse8wYMxsMRjLI9rJlltp8OrZbp7e3todPpIBwODyTS0OyDKQXk/bR0lWOngaopXwQGJYinyfY042eyTFaAQ4+P1VjpY5iNkICzUChIYgwzTo9/s8jz9PQ0zp8/j0ajISwzEwmxjIOeW7aXtREBCGNER561y9xuN86fP4+hoSF8+umnUntMy3w1+2YCMT2G5liagFkn0NDsnh5bzaCazLAe1+dtqJgyaB07SjDO2DW92eByuVCv16VuHrNAcnOK7xOCuGq1KuBQZ9IlICLQ08lsGIdGMMX1y2eDbSdoI+gjQ89EQa1Wa+A7xqaSRWa7mbyG9ycTrCXdBLJsO9+XvV4PkUgEkUhEpJQ8hyBPs8d2GYG/JnuahfIFN8Q222yzzba/1cb//K9evYrj42Nsb28POAT8mclkUCqV5D9qOtOTk5NYWVmRFP3j4+PY3NxEIpHA8vIynjx5gnQ6jTt37mBkZAThcBj1eh1nzpyB0+kU9gw4kVv2+32Ew2Ekk0kUCgUJmJ+enkan08HHH38sgOHx48eIRqOIx+Pw+/0oFAoDIMXhOKldRHABnNQhY00sZsc05XXM9EYzWQDtNJpxZPpamglhkD/bRNaPcSRmDJ02LZkEIJJVHqeTMpjSSF5Pg1Arp1i393kgzwSslJAxvsdqTKwAhk5UQtkkHW4yAtoh5711WzXAtpoDtofHnSbnM8fIHJfnnWPe3+w/JWfsK/vEPurMj0yuE41GEQqFEAqFMDIygm63i29/+9uIRqP4wz/8QwSDQayurp7KegSDQbhcLpTLZbk+wbY+h2CsXC5L/UedTVAnAmE/TYBtyhhNwEswp8G4Hjv9txXLZp5n9bl5LQ0wNTtK8Mj1R/BEuaTDcVLfrFarodlsIhwOy4ZLtVqF3++X+5CtIhgj8Oc99dojw6llk2bb+/0T+SOfA71etPSRGUOBp4mCmOiE4I7riQl1mCWy3+9LKRI9fpREsm06WY+2QCAga5f/L/A9xDa9CHu5AJwwcDaCs80222yz7XTzeDwYHx/HgwcPMD4+jrfffhtPnjzBnTt3UKlUJI6i2WyiWq0ikUhIBse5uTlMTk5if39fag/t7u7i0qVL8Pv9+PTTTwekdnRulpeXkc/ncXh4KDvUDPL3er0IBoPIZrOoVCoYHh5GIBDA8fExKpUKzp8/j52dHWxvbyMcDsPv96PVamF9fR2Hh4cCiLT0qNlsCvDc2dlBvV4XGWgymRwI6DfBmWZvaNrpMqViJsMzMjKCWq0mMSJkOXXMkr6/dvKtmAwAsgOvpWu8rxULxzbr9loxHKf1Rf+tGRKmSmeCAw10zbEx+0MnWscr6ax33N23YiXpiBL4mbI9PT90pHVbtPNqNb5fBbiZY2QFmoeGhhAOhxEMBhGJRESWFo/HJWEQACQSCSQSCbjdbslcmM1mUSgUsLW1hYmJCdy9exd3797F97//fSwvL+Nf/+t/LQW+Odcsp0BWhRLoVquF6elpWS+9Xk9inAg+NBtN51+vRVOOSvZIjzeAAZCkQbQJ5PT3p7FttK8yR/p6moky5yYcDqNQKMhYcNOAwKjdbkuSpXK5jGAwKIxsqVSC1+sVQMcC3C6XS2LQ9HPn9XpRqVRkQ4jvJV0GhDJMXe+Q5TQoy2T8JOXXfOb5XGhQCjxl/j0ej7CHDodDEvy0Wi3JuKlLxJAxZMwbk7hQsaCTm/C+ACQr54uylwvAffHTZuBss80222x7njWbTTQaDVy5cgXBYBCZTEbAE3db8/m8FOZ2u90IBoNYWlqSGnDMQnlwcIALFy7g6OgIqVQKr732GhqNBh4/foxWq4VgMIjFxUU8ePAAxWIRyWRSHHav14tIJCKxai6XC3NzcyJ79Hq9iMfjwugNDw/D6/Uil8vh4OAAvV4PsVgMmUwG7XZ7QB5VrVYl0UCz2cTdu3dx9epV+Hw+JBIJiUExzUzRb8W2aPClY3joRHF3nDvgdAa5q246fTQTNPIz4MSh1ckzrK5hslemmXFM/OzLwItmF8PhMGKx2EAckNXxvKZmbExgoKWPdMB1GQbNWuiMeVbASY+fBnGn9fm0fn7ZMVZgWI9PJBIRhnhmZgatVgu/9mu/hqWlJdTrdWxtbSGXy4kzXi6Xsb+/j16vJ5sTTILy6aefolKpIJlMYmlpCf/oH/0jbG9vDyQJouyPEjj9s91uY3R0FCMjI8LG6ayopVIJiURCwI2VJE6DMLI8etODINIcIw0u+JmVVNYE+CbQNuf6NDM3YfR1+Ryy/cPDw1L+gpkauf48Ho/EGA4NDaFer6Ner8sGSq/XkxISfIdVKhW0Wi2pj6afSf4kOObmVrfbRblchtN5Uh/T7/fD4/FImQngaSwp42qZpdLn86HdbgvbBjyt88Z7UkoOQN4bTIjSbDYH5J6UZxM4kokzN5M4fty8MevjfZ32cgE4MnA2gLPNNttss+05Fo1G0Wq1kMvlcPfuXdy4cQPlclnqSzFJycTEhPxHPT8/LzFrpVJJYiWKxSI2NjYQiUTwjW98A2tra9jZ2UG328Xk5CRmZmZw79499Ho9TExMDMSWEGDRwYpGoygUCmg2mxgZGUGj0cD6+jq63S6Wlpbg8Xhw9+5dqeHkcrmwt7eHTCYjsT8EB2Rp6Ph89NFHeOutt+D3+zE+Pj6QFESfZ8ox9U+ajrkxAUyn05GyBkxQoHfg9fl0/gnwrAAYgQv7xOO0LE+fZwKf08COti8DcXTgWXA7GAyKQ6r7YwIgvUNPR98EreY9ONZMyc7yAHQu9T11EefTQJwJ4J7X19MYHg3STmPigBO5WTQaldilfD6PWCyGixcv4tKlS5KxU88fs76urq7i6OgIa2tryGQyyGQycj5jS1977TVcvnwZPp8P4+PjKBaL2N3dRaPRgMPhQCgUgt/vR7VaRa93kuyk0WigUChIRkqCKn4+NTUlz32j0ZBNEF2TT88J+27OnR4f9lEDAA2oNcNqJcE0x91K5mtuEmhgr2XMTOIBPJXVksnNZrPClhJcNRoN+P1+tNttScdfq9UGEsIMDQ0hFAoNpOznRo2ZWp9tYyyiw/G0gDefKQK4SqUirBvlivye7D2BlS5fwWdESyb5fFKqTgDH+zqdTkmIQmaO12abzdIsZJc5xqcVfv867KUCcOTgbAmlbbbZZpttz7N2u429vT08ePAA6XQaLpcLk5OTSKfTqFarmJ2dlWQiZMicTifm5+dxfHwsUqpms4loNIrDw0OUSiV8+OGHKBQKGB4exsWLF+H3+3Hnzh1x/DOZDPr9Pvx+/zOJE1hAnKxcNpvF3t4ehoaGcPbsWeRyOTx8+BCdTgczMzPodrvY3d2VtlFGqeOs9K75wcEBKpWKxOz5fD5Uq1VxruikaKABWDvs2kGlaWeewIqZ5biTrlPN62OtmDfgKVPB34GnjrApoTSZqdOYC/OYrwJo+v2ThAXxeFwyhpJF4FrQDrtVX3Rik9PaxGPorCYSCbz55ptYXV3F5ubmM7F+z+ur6eyfBsC+KtNmmgnCyVpEIhHJ3FooFDA6Ooq7d+8iFothbGxMHH+O39HREZ48eYJ79+7h8ePHODg4QKlUkuQ8vV4P169fx/nz5/HLX/4SzWYTc3NzmJiYgMPhkFp4TG4TCAQQi8UExHU6HRSLRbkm45coWa1UKjh79iyOjo6EITazKuq4KDJQHMPTxsgKgJnPlr6G+fmXmQn49HwRFDJBCmWEBDiPHz9Gp9ORpCCFQkHYLLJwzG7rdDoRCoWklp/f75f3VDwex8HBwQCryfeJfj9QFtntPi3mTUBHNq/b7cp8kGUjO8cSB2QEY7GYSNz5fuF7lSUmAEjsG7NtNptNhEIhqXOnx7HRaEjMLpO69Ho9RKNRibuLRqPC8BK8vih7qQCczcDZZpttttn2VezGjRvI5/OIRCKYmJhAsVjE3t4eEokEXn31VZEGDg8Po1arYWZmBvV6HXt7e2i1WvD5fIhEIkilUtjZ2cHZs2dRKpVweHiI6elpvPPOO9jY2MC1a9cwOTkpCRjcbjfGxsYQi8WQTqdl99jr9SKfzwtgyefzKBaLiEajGB0dxcHBAfb39yVLZafTQSqVkh3pWCwmDhKzrBF0AJBsbGtrazh//jxisRiSySSy2ewzCRt0BkvAmtEy41BMEKYZFjpDZtZJEyCaUjKebzpJOo7OKu7NtOeBHCuG0eoYOm/xeByxWAxTU1MSn6gZFZNx45joZAnAs+nhNXjm8bFYDN/5znfg9/tx8+bNZ3b7TYbHqu1sA+fX6lgTzLLPJmt5Gljhd0yz/uTJE5HRMc7qBz/4ATY3N7G0tITZ2Vlhi9fW1nD9+nU8fvxY4iW5iQKcZHpNJBLY29vDv/k3/wb1el1kpul0GktLS3j33Xdx/fp1bG5uDkjgCELIEDE5EZkdjguTaFy4cAGff/65OPbmnGrpq/nMmGOk55TrntfU9RdPmzdTOqn/1muFmyIABspLmMxft9uVzRsybYwDY384Z8FgUCS8LHtSKpVkrbNNqVQKHo8HMzMzyOVySKfTAqR0u/lTv5c0gCLDpwEsM9jqTZpgMCh9ADAgeeV7j+8KjnsqlYLT6ZQyAqxDqGXiXLfdblfKS7AuHI+rVqsSK0iQy/fai7KXC8C96AbYZpttttn2d8JqtRqWl5dllzkUCuH111+Xnebh4WGR6ZBh485uKBTC7Ows1tfXUS6XMTc3h729PTQaDVy6dAmzs7P46KOPkM1mceXKFVSrVWxvb8Pj8eDKlSvI5/PY2tqCy+XCyMgIyuUySqUSRkdH4XK5RH45PT2NUCiE9fV15PN5zM7OIhqNIpVKIZVKiQMRCoWk5hMZL9Y0qlQqEiNUqVTw5MkTrKysSK2s9fX1AYkQd8ZNs8qKxyQt3NmnA8jCv6aUin8/L2ZM30M7zNrM9mkgeBq40A6lBlansUum+f1+yd5JB9iMNdNt1ePJvpsxafpvE2SGw2GcOXMGh4eHePjwIXZ2dgbONc0cI5ONOQ2k6WOtxstsl9V3wIkTHI1GJXZNg4xWq4WDgwNks1lcv35dni3K5Hw+H4rFIhwOB/b29kTWmEgkMDU1hUajgWKxKGCFzHIqlUKv18Pc3By+8Y1vIJFI4P79+8LgcJ0wWYwGNjpRjNPpxO3bt/Ebv/EbePPNN3Hr1i0Ag6n/9XydNi7mcaYcksb7sy383mSmtfxVb36QGdTriPe0qjlnzhlZRr/fLyCF8sB+vz+QtIQ/KWMkEHI4TsoMpNNpVCoVAJB57/V6UlqDiWEqlYowb2ThWEIDeFrGgswbZYrlchkAJNENY84I0MjCsX9sczgcRqlUEua/1+tJ2RiCfGbS5Huec8D1wntxjBqNhiRZqVarMm4vyl4uACcPywtuiG222WabbX+r7dy5c2i320ilUhJPQ9Zpbm4OhUJB4tPS6TSi0SgASD23Bw8eiJyuWCwiGAzi8uXLaDQauHHjBoaHh8UZ3N/fRywWw6VLl/DgwQMJ9o/H4zg+PgYATE5Oolgs4vj4WKRmlUoFd+/eRbvdxpkzZ+BwOLC/v4+joyP4/X6JC6GTwjT9jPPwer0iGQJOQOvm5iYajQYCgQCWl5fx0UcfnZpu3mRdrGLT/H4/gsGgxNi43W4pFWCaZtWAQcBj/tSsnHm+bg8dWyumQv9t/k47DcTpzymdjEajEiu1v78/4HDT+dVtZ7p2OuIa2GrwZzKPZFlzuRzW19fFQT6tvc8DoVrqajqbpzFHz7u+FbNCdnJkZAT5fB6VSkX6ATwt/E25I2NNK5UKPB4PJicn4fP5cPfuXbjdbly9ehWxWAyVSkViKb1eL5LJJNxuN548eYKhoSFJ5lMul+VZGB4eluQ5ZKR1HT09Jhp8u1wufPTRR/jOd76Dy5cv48GDBwCelhzQjDP7RKbUBEw6HtKKoSMbZWX6GDO+8TTwDgzG0bGdet7YD7ZLZ2nkeTqTLc9ldk4AEiNWrVblPM630+mU5D5aGcB2h0KhgZg6n88nY8DMob1eD/F4XOaWdSrJkOmC25p157jwPJ2Ehdk0g8HggKyTbByAARCn30nMyBmJRAA8rZGXTqdlzO0yAn9NJlko7Rg422yzzTbbnmNDQ0MoFosYHR0VOWM8HofD4UA6nYbP50M2m0W/f5KWmnLHRqOBo6MjXL16FQBw//59TE9Pw+PxYHt7G81mExcvXkS73cbPfvYz1Go1jIyMIBAI4Nq1a3C5XCKhzGazCAQCGBsbQ6lUwvHxMUZGRpBIJHB0dIRcLoeRkRFEo1H0ej1sbGwglUpJAg2/3w+v14tsNov9/X1ks1mRRem4EDo8brcbm5ubAk7n5ubEKaIzQoeWDhUdJO2UApCCywQxrLtE5/R5sSFmTNtp0jw6x3S8NOPAz3hfvQtvgj/zc5MZOQ288LtIJIJYLCbjqBOuOBwnWSlHRkbE0Ww2m8IoMDaI8iyCG81GagbF6XQiGAwinU7j6OjoGYmmVR90e81+mD+tmFSrsTevpz8zmU5es9lsCmvFtlLK6PF4EAgEUC6X4fV6hck+d+4cnjx5gvv372NpaQmLi4sC8jR72W63kUgk8Prrr0vGSo5btVpFJpMR9pefM1EH4740g2iCK47vj3/8Y3z729/G1atX8eGHHw6ABfaTxzocjoGyAya41vcy500bwZfJqnGN6FIVJhDX8lw919zYYKIP3W4ymKwTSQBFForvgXw+j2Aw+P9j78+CJDnT7FDseOz7Hhm5Z1ZmVdYKFFDo6sbSGKAxaEyrbWbaaOSI4hilIUUTRZrR+KIHXelBZtTlwzUZZXrgA02UcdFLi3fI4fQsPTNoTKMbQDeAQgEooAq1577Fvu+r6yH7fPWHl0dW9fRSJK5/ZmWZGeHh/vvvHl7f+c/5zgeHw4FGo4FgMDgGwjg2dWGm3+9jZmYGxWJxbKFCbdFAd1CCerKlPp9P6t74PQkEArJIxe+7eu9zbtj3j03G7Xa7NOKmIQufGy6XC4PBAL1eT56tZP7a7bbU4xGYAkfPt0qlgmKxKKoDtT/ek4gvF4CzauCssMIKK6x4jOj1elhbW0O73Ua9XpcaNrXIXTUZSaVSSKfTiMVimJqawvb2NgqFApaXlzEYDFAoFKBpGp555hncu3dPer1NT09jZmYGe3t7SCaTSCaTcLlcKBaLiMfjAB402U6lUnA6nchmsxgMBpidnUUkEkG5XJZG41NTU+j1eggGg4hGoxiNRtje3kYmkxGJJwEDpUCNRkNAX6PRwO7uLlKpFEKhEJaWlqT2iK6YlECx/YAaTBJDoZBITcm4sZZFbexrNN0AzCWURoZvEmNklGFS1mRWj2KWUKufNWMcjduz1nFpaQndbhftdnvsWDMzM/jqV7+K5eVlkVdy7p1OJ2w2G+r1OnZ3d/H555+L1FUFjg6HA6lUSvqjNRoNZLNZYTqM4zdei0lSPWOYMXHHMZSTmD2zY/T7fSSTSSwtLeGDDz6QpFyVKRJMaZom7PWHH36IbDYrEshOpyOf4z3Efdy6dQuZTEbqktQ6u1AoBLvdjnK5LCBOrX0zk+MaAS/P/6233sKLL76I5eVl7O/vPzR/Kvij0yvZVt6f6vU1gmg1VJmk+reR4VSZNW5nBIccH8dFgxLOk5FJ5PeGc9Nut+H1eqHrOsrlsiwGDQYDBINBkTNGIhHU63UMh0O02205Dq9dKBQaM/igqyQt/Hm/tNttDIdDBINBBAIBYcBarRY6nY64Z6r96ijnrNVqYkbDZxxBWygUEjUFzU+8Xi9GowftD2h2w4Ufv9+PZrM5ZnZCUx7WBA+HQ0SjUbjdbgG7TzK+nADuyQ7DCiussMKK/8bjqaeeQjAYxJ07d7C6uoq9vT3EYjEMBgOp1xgMBohGo9B1Hdvb21hZWYHT6cTu7i6cTideeuklkSVOT08jHA5L/UwoFJKV5Nu3b2N6ehqLi4tIp9Mol8uYnp7GaHTkDOlyuZBMJlGtVkUeGYvFRI60u7sLl8uFSCQCj8cjSVuj0cDVq1dRKBRgs9mkoF8FKGTDwuEwNE1Dr9fDrVu3cP78ebhcLiwuLuL27duSINGFTXWnpLSKzIbX65XV+E6nI3IsNpieZCYySa7IUAEfw1gXZPzJ1XOjg9+kpFllS4zvG7elOUwwGJR5Z88sTTsynzl79iyeeuop6c/HWiJKuWh2wFqubDYrbADHQMkfmwqXSiUx8XhcmaPZXJudt7qv45ihSdfKDCTyGrRaLSwvL2NpaQn5fF6kcn6/Hy6XC81mEysrK4jFYigWi9jd3UWhUMCpU6eQTCbH5KRcBFAZFzZZVoEd7w+2CKB8mLVaKit83NypksrRaISPPvoIJ06cQDKZlO8Xz12VVaoMmDo/6v6M95jKsgHj97gKsPlZVerJbYyN3NV9qkBVvcfUzzscDqlXZAsBgl6CJ7WeVdd1qQkjYCMrp8oYR6OR1NAFAoGxtgL1el2uHYEVHXdpsnR4eDgG8ljLq8pxa7WaAGYAIpUdDofweDwolUrCzBMgElyzZo5Ajccg083vIeWfdL0EIPXRZOPL5bLFwP2yQsPDD2QrrLDCCiusMEY0GsXm5iZarRZu3ryJixcv4vbt22IsoiYdzWYTZ86cQbvdxt7eHmZnZ+F2u3Ht2jUMh0Osra1hMBjg008/ldo01SVxeXkZDocDX3zxBQKBAJaXl9FqtVAul4WR63Q6aLVaCAaDY2YmlUpFAMT09DSAoyRtZ2cH6+vrkijZbEc9jUqlkrBSTFaYjJFN3NzcRLlcxszMDFZXV+F2u1Gv16UHFuv96PLGhJXyPvZYItNB5kPt0WZku7g/hgqkzEDacQ59KstBaeIk+aCRqTAm1Ub2Sh07pZNutxuHh4fCIhE8qCybypBQXsXmwDRtoDxMDToqNptN1Gq1sRqyXySM56L+TTbmuGM8SlJpBMGtVgs7OzuYn5/HuXPnsL+/j3q9Ludit9sRj8eFPQkGg9jf38f8/DzC4bCwO2TNHA4HEokElpeXcefOHVlgYA0WQUC/30er1cLe3h4ajQZqtZosPnCuKdkEHjiY0uCEjCnvDV3XhaHZ2trCiRMnxsanXj9edxrUEJhzboz1jcZ7kOMxMoN8TZ1ftU6V97/q0GiUaxKwqPJJjo1MOV8n28bvutPplNYjbFrOz3k8HlQqFXQ6HYTDYej6kdGIOmZa+3e7Xfj9fmjaUc1dq9WS9ylVJJBqtVqo1+tjvSu5IEWmkAtiPp9PJOSUQo5GI+k/qF4jLsBxjuggzOchZb28Bnxujkajh0xXKDNln9B+vy8LXk8ivlQADhYDZ4UVVlhhxWPE22+/Lc6QX//617G9vY1IJCIr+bFYDIVCAaVSCaurq7hx4wYGg4GAr/X1dQSDQSwsLGB/fx87OzuYnp7GysqKJCe5XA6xWAy1Wg21Wg0nTpzAcDjEwcEBOp0OYrGY2KH3+33E43H4/X60Wi0cHh5iNDqy9Lbb7QgGgyJDyuVyItm02Y56NEUiEayvr0vxfiAQGEv4KK+02+2oVCrY2tpCPB7HzMwMIpGIOLbRYIVW4uwVxSRmMBiI1Gg0GglbxGSQibFxVd4sVNZAZQyMcko1kTVKMfmaWnel7o8r6arRCfelJtTGJJsmMzQuUOWbXJnv9/u4e/cuIpEIlpaWpJ6SDcxZE9fv91EqlXB4eChJrHr8Xq8n9wjrdoznbjZvxnHztUnB++FxWINJgNgo2eN2lBHfvn0bU1NTOHnyJC5evIg/+ZM/wc7ODjqdDoLBIIbDIZLJJO7fvw/ggRSXtYMEwJQC53I5eY2MHJsvV6tVkWXS0ZL1XATGTqcTq6ureO2113BwcIAPPvhAtmOtonH+2B+RIG5+fh6JRAKVSmUMIBDEUz6szpd6HYxgGjA38AHG23JwO/U9Fdip10Kt96RUUL3W/G6QZer1etLvjVJE1ZmTNWe8FjREooEHjZE4X5QYkgEkK876WkoXe72eAHCPxyNAkewcWT6CdS7QUALJ9zkXHHcwGBxzhWw0GlLfxvsBgPSU499sX6AyelxA4LUmSON3uVaridy81WqZf4F+DfGlAnBiYmIhOCussMIKK46JdDoNXddx8eJF2O12rK2toVqtIpVKYW5uDvv7+7h37x6GwyHu37+PYDCItbU1bG5uolQqYWVlBW63G5ubm8hkMjh16hTOnz+P3d1deL1eZDIZzM3NIZ/Pi7EJ2ZXhcIjFxUVhKOx2uxioFAoF1Go1aJoGn88n8iKucO/v76NYLIq5QLlcRrFYxOHhISqVigACJrJcia/X60gkEggGg8jn87h9+zbOnj0Lv9+PxcVF7O7ujiWxlAGqZiRcGaexAF0veQyVGTBjIhjc/jhJpfEzDBU8qP/U1gJ2u11W45mMVSoVAZWTJHQMNqNmXQ4TOdVMgueWTqfx9ttvY25uDhcvXsTp06eRSqVk7I1GA4eHh7h58ybu378v14RSSwDSZJqgYVKYyR3NmEPjZ8zkkWa/q3+bgdpJ+yNo6Pf7uHHjBmw2G65cuYLvf//7KJfLaLfbmJ6eFofIa9euodfrIR6Py33A86YDZ7vdRrvdFiMO1izREZBW8GSYAYjMle+TxanVanjvvfdQLpdRq9WEhTM7X13XZbGD4ODw8FAksqqjpcq+UXZnrG9U51WVrgIP3+Nq/RsNP3gctRYQwBizZgbkVfdTFcQRRNFhl7JfAiqymjw3giK1Xm04HEp9sNE8yLiAw22q1epYI2+HwwGfzycqAfW7RQaUQIkgjiCQAJPXls88Pid5r1SrVXmO8f7QdV36uHGhjfcdnxcq++j1emV+7Ha71N6RcbVcKH9J8eALYyE4K6ywwgorJgclXV988YXUTszNzQE4avJ9//59dDodVCoVPP300wiFQvjss8/gdrtx7tw51Go17O3tIR6P4+LFixiNRrh+/TpqtZok/7du3UIsFsPa2pqwZn6/H7Ozszg4OEA+n0ckEpHG3PV6HfV6HR6PR+rRKBXqdrtYX18XJsPlciEWi8HtdmNjYwPD4RCxWAytVgvdbhetVksSJK6AT09Pw+12o91u4+7duygUCvB4PFhZWcEHH3wgSZpqQME6LsqUuDLeaDSkdYCRMTLKH1WZmLrSr75vFmqCa8bKGYEgE1mn04lgMAiv14t8Po9qtfpQbZ26HyMLR0ZTTaKZkJpJOyuVCsrlMvb29rCzs4Ovfe1rSCQS2NnZQbPZlIbuxWIRAMaALt3uWq3WQ/3tjmPXzECbGcNo/N24r+PYOOP+1d9V9lOdQ+CodqlSqYgFvaZp6Pf70gtuMBhgdXVVmCuynMBRLdtrr72GH/7wh7J4QKBLsBEOh8VwiLV3NJah4QQBMpP/arUqjDIAMfoxmwOCfp7PYDDA3bt3cerUKWGmgAfW/MYm7UYAp7LEapgBObW2jvNj/A7RWZLBnoT8na0uVFDEMbGmiwCKC0U0D/H7/ajX68LE8zvOaxGJRITFI5gulUrC4vE74nQ6pV5UvRfITJOdpiETTVEIjDgm9l9j8Dg0IOGx2HB8MBiIsy6l7Dwex0A2kc82zk2/35c6S7KTVCAQNHo8Hnkeqs+xJxF/YwCnadppAP+z8tIKgP8bgAiA/wOA/M9e/7/quv4Xf9Pj/Fxj+tlPi4GzwgorrLDiuLh37x7q9fpYQ9eNjQ35D7xer8Pr9WJpaQm1Wg07OztYWFhAJBIRCWQymUQ0GkU6nUatVkMul8OlS5cAAOvr64hEIlheXsbm5iYajQaWl5cxGo2EiUkkEjh58iRKpRKy2azUs3HlV9M0STwoU+T7brcbmUwG165dQ6PRQCgUQq1WQ6fTEROCfr8vkiPgiA2ivGo0GmF/fx/xeBzz8/OIRCLIZrOoVCpSA0jwR8kRE55Go/FQs2SVOTIDHGYGI2ahAgsmsZNYH76ugjMyQQSiZFzMxmE8HuufIpGIGDuo50VQS6bFKP2s1Wq4cuWK1E7RbXRnZ0fYUfXcu92uWOazftA4tuPYMrPxTwJ03MbIQpLdmSQlNbuGBBbHJa9kLYCjeyObzSKTyQAALl++LICGwIv1gp1OB++++64AEU3ThPH1+XxIJpPodDpSU1ipVASoEcgw+VddEHktWdOlnrN6vjw/dT4IbnZ3dzE/P492uz3GppH9MWMsVZCmzr8692R7uD+CFG6jtglgXZh6bBXgMVwulxyPr9PMg/skgxQMBlEul+W7w0UaXm8awthsR60FIpGIyFhpUMOefqznpAkPn0e8vpQqUiHg9/tFvk3wxZ5+BOeUibMVBfAAUHo8Hlng4t9kSXlNXC6XGJHoui7ATwWGwBE4peST/eMo7eX/E1wQ4H3y3yWA03X9LoBnAEDTNDuAAwB/DOAfAvh/6br+r34ZA/x5gvNo4TcrrLDCCiuOCzqVkemKxWKw2+3I5/NiLjIzMyNg6cKFC7Db7dje3sZgMEAikcBoNMLm5qYkHq+88goymQw2NzeRSqXQ6XRw//59Yd36/T7S6TQGgwGSySQWFxdRKpWwubmJcDgsTWxVI4dSqYR8Po9cLodwOIypqSnE43HcuHEDN27cgN/vRyqVwt7enrAMXCFWa3xGoxEqlYqYnVSrVdy7dw+rq6twOBxIJpPIZrOo1+sCEgmCmBjbbEeW+LTSN6vhOa72zYwVMgN2lF4ZDT9UsxAm2MaEGDhK7g4ODoShU99jMAFWE3Um/+FwWGrcVEkctye7obZLYAwGAxweHuLg4OCheeBYmLR3u12Zz+Pq3ibJGY0xCcSZgTFjqPOqzq/6vvHzx8lf1fd5/OFwiPn5eUmiOTc+nw/f+MY3UK1W8emnn0rNExca2CyefQ/J6lBGaLPZxpoxE2SrFvTAEYO3srKCdDot35VeryeJORN/3lcq66tpGqrVKhKJxEPOkur5qcYlk8C06ohJ8MnPclsujJg5UVICyHpJdZ4J3PgawSBr3hqNhizqeDweYevUHpAEwDwGjXo4l5VKBY1GQ5gtzvtoNHrIkZa1bTT2AY7qzqgy4AILj6/KJPkMoLyT80AlA9sDqM3BaS7C73IgEJB7je1hfD6fSGw5r2SBVfMn/s2eebxHeH29Xu/Ehuy/jvhlHfk3AWzour7zJNHoAxfKJzYEK6ywwgor/jsI/ufLZJzmH+12GzMzM5iamoLL5UIqlRJb9Hq9Dp/Ph4WFBTSbTWG6Zmdn4XQ6cePGDXS7XZw6dQqdTkcc2LxeL1qtFkqlEobDIWZnZ5FIJLCxsYFGo4FIJIJIJCJ9xDRNE3bw4OAArVYLc3NzmJmZQTQaxY9//GPs7e3hxIkTiEajWF9fR6VSAfDA6pq9l9jUezAYSHLFJC+TyeDg4ADT09OYnZ3FrVu3ZMXcmAATzDHJU9knYy2PEZgZQ01mjSwWQ3W/U4Ovcz/qsYzgQwV5xoQbGDd24L4DgYAAB47PCBSBhx01KaVTWTsV9Bit4pngUrZ6HDBTz9V4DkZgZdzPowCfyqYZGSn12MZjGreZdCzOBxPsWCwmlu2sVVxdXcX6+jpKpZIABybzBNSJRAKxWExYld3dXfR6PYRCIZEM05UQgIAFtYaOjZrVvoVMwHlMzoXq+qiCunq9jlQqJYyOkdFUDU5U8MyfRnDL+5nnRdmukS0lQ8d54e8cF7dVz0f9Sdbp8PBQesDx2GqvM9a52u12eQaRESNwJFAjeFPdJ6PRqDhKUtrK56xqnGKz2YTJUvdP8yXWp7H+js256XBJQyfggRSZ7R54DuxlyfGpck21DtXr9cr3k58lWOt2uwLaa7Wa3CNc5DJjzn9d8csCcP8bAP8/5e9/pmna/w7AxwD+T7qul40f0DTtHwP4xwCwuLj4SxmEMHAWgrPCCiussOKYYAJ9/vx5kSiSIXA6nXA6nVhbW0MwGMTW1pawVD6fD+VyGZVKRerQRqMRMpkMwuEwbDYbdnd3MRgMMDMzA5vNJmyMx+PB2bNnoWkaNjY2oGma1L+RYWi1WsjlcmJw4nQ68dRTT8Hj8WBvbw/vvfceWq0Wzp49C5/Ph88++wzb29twOByIx+MiR9J1XQBnKBSS4v5arYZYLCar1devX0c8HseZM2fwySefIJPJoFqtiuulWjdEBo71H8DD/cWMpgyq1NCMRTrOqETdlvvgWMwYDjPGSD2m8RjGXMHj8YhEy7gv4ziZAKrOdXzdKP1kAq7OGfsNEkw8DsM2aY5UsMoxGcGD2WeNDJlxnz9vGK+bamwDHFm6q4m82+3GwsICzp49iw8++EDka3T/9Hq9iEajCAaDSKVSSKVScLvdKJVK8Pv98Pv90n6DYIEyO9UdUL2HdnZ2BNSpjcMBjBmUEGASHPH80uk0pqam5JoaWWL1evB3s3uV+1YBBoAxQMAFAYI3LizQol8111H3oYJILoLYbDZMTU3h+vXrIs8meGs2mwgEAvD5fLKtseaN/eA4DtbSjkYj6QVHeWe325XnBu91LlTY7Xb4/X6Rc6uGIQSN7XZbwJW6OEKgxzpjPg+4f86p1+sVto0OurquIxgMyiIWFxSi0ajMuQqe+X1lPXOhUJBj+Xw+cT811jX+OuMXBnCaprkA/C6A/8vPXvo3AP5HHCkZ/0cA/08A/3vj53Rd/7cA/i0AfOUrX/mlIC7LwsQKK6ywworHieXlZbz22msYDAZ45513MBwOMTU1JSu3Tz31FLrdLjY2NhCLxRCLxaBpmqwu0+gCOEq0lpaWkE6n0Ww24XK5sLKyAgDY3t6G1+uFx+NBIpFAJpNBoVCQGh6HwyE/C4UC8vm8OKvNzs4ilUqh3+9jY2MDu7u7CAQCeOqpp6DrOq5duzYm6zo8PMRgMJC+Sc1mE+12G36/XwAQJUB+v1/aCVy4cAGLi4tYXV1FLpeTPnKqHJMF/pQUAeMyRuBhAxOGkelSk1kje6cmvmoNldEwwMiymal/jEm02bYqiKGkTDWRUM9rUi0dE2wjC6mycSpDx2bJdFlUx2Gcn+PCDIAZJaWPAwgfB6yZsX/H7Y+sm8o0Xbx4EZlMRpLnQCAgrRhUswmPx4NUKoXl5WUEAgFJtGdmZqQHWLvdRi6XA3AkjYxEIhiNRohGo3Jv7+7uAnjQ+40SYn7nvF6vsEAq46YuOqjmO5zfWq025nhJ8MT3jd8Blcnj/FC2yGukfkYFjEZQzlBdJo0MtvpTZRpv3bolzwdd14V9UqXQbDnidrtFSknwRqDD43IMVBuQsSKDHwwGxUhEZWHJnlEOq+u6AFLVPEQNSjjZhJvN2m22o95wlD3SvIjn4HQ6x8xZOC8ejweRSOQhWSR7vxHUqn3vWq2WSNx5jsZx/jrjl8HA/a8AfKrrehYA+BMANE37/wD481/CMR4vhIH7tR3RCiussMKK/w7jO9/5Dvb393HlyhVomoZnnnlGgNnp06exu7uLdruNEydOYGpqCqVSSVatZ2dn4ff7USgURH50584dtNttxONxxONxVKvVsfo3ANja2hIXPUoVR6MRIpEICoUCNjY2pP4jHA5jYWEBNpsNW1tbyOVyOH/+PBYWFnD//n3cunUL/X4fp0+fRr1ex71794S9qFQqwsK1Wi1ZKaZFeLVaxczMDEqlEmq1Gq5evSq9zD755JOxZIVufXRLZPKpAjc1yZ3ErhlB03F2+Qwj62U0SjFjjIxMkpp8G5kndT82m22sca/D4ZC6HrWmST3v42SiRtZFHU+/30ej0RirfZvEkhn3aSZfVAGCkXWbxMQdB9rMtntcgGkG3mw2G+LxOKanp7GwsIDd3V2pdSoWi1LLRTCRSCTw6quvYnV1FcFgUIAvpYPFYhHValUAt8/nQywWw+LiIl566SVkMhl8/vnnUn/VaDSE3XO5XHC73Wg0Gsjn82KuQVMe9RqrgFgFWtlsFk8//TRqtdqYbNMYKjtLJkkNMn681/hdMwJJFSDabDZhgljjqS52AA/AqHp89n8EIH0c1XGyvQBBLgBZzGCtIIPHJmPHnnxsV0KZIxfDAMiilHpONGvq9XrivsvFrEajIfJJj8cjzxyyX2zoXavVEA6H5Zh8ftJkhUCZzJvajqJQKMhn1GvdbrcRDAbh8XjGmE31GUqp5X/vjbz/HhT5pKZpM7qup3/2598C8MUv4RiPFVIDZ3FwVlhhhRVWHBOffvopOp0Onn32WZGyzczMYG5uDvfv30ckEsHs7Cw8Hg8ODw9FmkUnt3Q6LcwWHdympqbgdDqRz+dhs9mQSCSwtraGRqOBW7duIZlMwuPxoFQqiVHGzMwM1tfXkclkkEqlMBwOkUqlEIvFUKlUcOPGDdTrdZw5cwanTp0SyWQikcD09LT0f2M9SqFQEOc2riSz3xMA6WMUjUYRDofRbDaxsbGBM2fOSK3R/v4+er2euLsxsaR0UpU0MlSApCZp/JvbAHgouTSGmWQReLitgApS1M8aYxILpe6DdT/cP534uNLP/RjBi1EyahyDyuQQOHQ6HTSbTWE0jOwMXzOe0yQ5pMrQTGIjjRJNI6Pz84QZmFMZKuP7o9EIX/nKV7C7u4t/+k//KQ4PD/Hd735XWBo6SJJpi0QiWFtbQyKRMD2XWCyGeDyOQqEg8r25uTm89tpruHjxIur1OqLRqEiECVxoSsMaKABybfn9UZ0JjYwaz4sMHGtgjYY76phVsK+acvA1ygS54GIE6fydsk8A0udRvd78R2BhvN7D4RDFYlGO3+v1hLXkPlqtljChlCWyfpbH5j1L+SdZtXK5jHK5LMDNbrdLfSIZLxWw0miEDL/L5UI4HBYwFQgERD0APDA+oRoAgBjZsIaQcxMMBuU68t4iK8e2LJ1OB41GQ1hg9nzktWXDb9XYhdeQ8xsIBB5ysvx1xi8E4DRN8wH4JoD/o/Ly/0PTtGdwpGTcNrz3Kw35zlj4zQorrLDCimMiGAzi6aefxv7+PjweD9bW1mC323H9+nUkk0mRJVarVflPnzbZ/X4f0WgU7XYb9Xoduq5jbm5OCukp31lcXMTe3h729vYAADs7O/D5fFhaWsLc3Bzq9To+++wz1Ot1qemYm5vD6uoqbt++jatXr8Jut+OVV16Bz+fDlStX0Gq1cO7cOXg8Hmxubo6NL51OSx0Qa/w6nY4kfEzems0mMpkMpqamMBqN0Gg0cPPmTVy+fBnJZBLpdFrkSmRTgHEGTGUdVIZKTXgnMVTGlXh1O7rxGc1NjKBOBYyTkl7+PWkcKvhQXfiYxJKVADDmZmhM1o8DnPw5Go2QTCZF2kpre6O8zjhP6jHU7Y2Mo1G2pzKPxjkxGm0cBxyM56n+zjGrbJUZY8fjsfbqhRdewNtvv439/X1ZXGCtFRvFs0eZWfj9fgSDQWGYKWHd29tDKBRCMpnE6uoqvvnNb6JWq6FQKAgg17QjN0lN0zA/P49Go4FKpYJWqzXWP46MD9k/43Uli0X2jPvvdDoPsZ9ksrgv3itqjZ2RRVUBNmvF1DkmE879GBcxWBdnt9vH6i0pG52enhbw5PF4hK1kfZqmaWNSRrX2lMfiubJtAGuHA4EAAoGAAKThcCgMmHp/UrJJNg940B5ArS9jyxVa+LtcLrnurKUkKKWjKOeKjFun05Hvbzabhc/nk7lh7XI6nRZzK7pV8lpRegocMZg2mw2FQuFYFv5XHb8QgNN1vQUgbnjtf/sLjcgKK6ywwgorfsUxMzODa9euIRwOY35+Xuz9T506hVAohHq9jmazKcklkx06uNVqNQyHQySTSZHEMSkJBAJwu924c+eO1KHRgS8cDuOpp55Co9FAsViEph3ZXft8Ppw6dQo+nw/vvvsutre3sbi4iKeeegrb29u4du0aNE3DyZMn4XQ6kcvl4HA4EI1GoWka0um0JHnsU8XEjqwbE7JOpyN1eARS29vbOHPmDE6ePIn19XW02+2HGnWbsUPAw06Sx7FATFaNySz3rwIRSsQeJ4xjU/82gjjj+FRDktFohOnpafy9v/f3kMvl8M477wDAWPNeozRUBTJM1NXaNybkmUwG5XJZDHOMn+dY1ETdKJVUz41BYGJkOM2YSTMGz8jWGGWXZsye+roKKtRjcU59Ph8ikQjcbre00FhbW8PW1pbc+8FgUExJKHWbFB6PB6dOncLt27fRarXEEr7X62F9fR1nz55FMpmUmiq/3y/94/L5vLiNTk1NjTE1NptN2BsyRGZsI5tQ00iF5+p0OqW+jEwR7xfjfa0ek7JItZaSxyWI4QIM8LBhjnr9+D7BDBmjcrksfR05Zi5UqD3sWF/Ia0Abfs4TgSpNQzqdjhix+P1+Ab8E5mobAZqT8NwI1oLBoDg/UjXA82abF+5T0zSpoeM5sg8fx8bXWq2WuE72ej3EYjFUq1UBfASsBPXhcFjuZy7W8X7g3PM6kX0Nh8MT79NfdTy5Bga/grAIOCussMIKKx4nvvjiCywuLiIej2N3d1dq25xOpzTEDgQCSCaTUnfDxOPg4EAazqrtAQaDAeLxOEajEXK5HHRdF9DWaDQwOzuLs2fPIp1OY3NzUyRKkUgEi4uLqNVq+Ku/+itomoavfe1rcLlc+PDDD9Hr9cTUoVarYX19XRJj9h2jMQlBJpOMXq+HWq0mBfk0AGg0Gtje3pbkifu9ePEikskkNjc3pf+TWqxvxuYQQDBZVRNMYFxGNolVmRQqUFD3NSm4rbq9EZAYg8k3V+z9fj/i8bgwpz6fTyzJ2Z5BnQMm6JwDdR7U5J1sEGsfeX5knpg4ulwuVKvVh+aRCa56DZj0T2LH1HlUQ2V9OG/GOT8uVNZNnXt+Xq3dWl1dxdzcHCKRCJ566ikkEgmkUik5r0uXLmFxcRHlclmkfDs7Ozh//rypKQ4leQCk2fNoNMLOzg56vR5u3ryJpaUlbG9v44svvhBJHhc47HY7nE4n9vf34fP54PV6ZeyqSY96PPU+7Ha7wpgTzBH8sx7L4/Gg1WoJE05pIOeMQMDIRqv3rdpjTG2roc67EcBx7vlZsoWdTkekgxw/5ZHs0caaTLYCUGvYyNIBkB5w6oIGmTDOpa7rKBaLco2cTqfMDVsEsJUB3R85ZkosWWNGCagqZaXREueLoI3f03a7LTJMm80mhiVqKwQuzLXbbYRCITkmFwN8Pp/U/fI5Sukoay+zWbH9+LXHlwvAyYPoCQ/ECiussMKK/6bjzJkzsNmOGgIHg0HMzc3Jf9C9Xg9+vx8zMzOoVqtiIc0EKZFIwOv1olarSe8qMgjdblds/dkzrt1uY21tDfF4HJ9//jm2traE0ZmamsLJkydRKpVw+/ZtTE1N4dy5c+h2u7hx4wYcDgcWFxcxMzODdDqNUqmEaDQqtXc0XiFjyAJ7Ag2u6DPpcrvdY4xUOByWc75z5w4WFxcxNzeH7e3th5iDScm+0S7euL1ZEk6QobJVKsh4FIAwY6Ymva/uzwyoGA0gbt++jX/zb/4NarUa7HY7gsEgXC7XWI8s1gUa2TiyKSpo5b9GoyFJvToeVUoWi8VEXslQTRbUc6BETr0u6n6NkjV1nMbEX+25ZyafVOfRjHVjqA6F/ByBE50NyW4Fg0G43W48//zzWFtbQzabRTabRalUQi6Xw8rKiqlJBI/barWEkRmNRtjf3wcA5HI53L9/H6VSSZgrjpl/00VQBQE2m032qZ678R7lPUMjIjoq8vvGfRIwJBIJ2O12lEolAYC814AHLJtRGqsCeKNkmaBJvY4EgbyXOE/l8lEnLwIjNvOmiQjvR9YT9vt9xGIxAYK1Wk0ki2SjWC9H+bamaWKuEggEUKlUxgxKeJ14H5DZo+QxGAyiUqnIYobNZpPFM95rrVZLpJkq+PN6vXJP1Wo1DAYDxGIxNJtN+W7xGnLu6FBJ0Kb2qBsOh3C73Wi1WvI94n1BmS0Z9Uc9p36V8SUDcEc/LRMTK6ywwgorjgu73Y5isSjudVtbWzg4OEAoFEI0GpUG2aVSSSQ3sVgMwFGilM/nJXFisX42mxVZJG3Ku90uVldX0Wq18P3vfx+ZTAbdbhd2ux3PPvssFhYWsLm5ie3tbczNzeH06dMoFotYX19HPB7H0tISOp0ONjY20Ol0ZAytVktqNwg81Ro3JleslSHQIws3HA7R7XZRqVSQSCRklf7WrVtYW1tDKpVCLpcbAzdmzM5xUjejNM/YnNvI4PA1hvqeWc2csdbIyEIZXzcexyg9U6VdGxsbwmSSlaNEjvIq1tWwVtAMZPH4NC5RwZk6NjIydDblvuhySrt7fo5jM87ZpLlUWSTjHJm9b/y8kdFU/6nMjxG8adpRI/tIJCLg7fPPP0etVsPFixfR7Xbh8/kQjUYxOzuLXC6Hd999F/v7+0in00ilUmMN7tnL8LPPPsPh4aHI7QhKAKBUKslihtqUmXNMGfSzzz4rTqztdluMVIxg11jbR7a02WwiHo8jFAoJm0ZGi9/JSCQCp9OJTqcjlvpq6wj1GtDkRGV0VRZXve85BoI1VTZLlolulARw9XpdnBRLpRL6/b4YJrFmTmXdRqMHzbXpTOt0OsU0iXWj7EvHvpXFYhGj0UhAGdk6XdcRjUYFSIZCIdhsNumz1u/3xYwkEAiMgW3WGnMuyPpzX7T7r9Vq8Pl8UvfIsXPRRQVp5XJZmFnOb71eRzx+VBlGgM5nl67r8lmCTY73ScSXC8D97KfFwFlhhRVWWHFc1Ot1LC4uwuVy4datW8jn89IsuFAoYHt7WxgO4IELWSAQwM7Ojqz8hsNh1Go1kRvS7IS1PezjdufOHWQyGXQ6HUSjUbz88svQNA1ffPGFyCtPnTqFg4MDZLNZTE1NYXFxEaVSCel0Gna7HdPT0yILGo1GsgquaUeOaOVyWRzamMARWNAAwOfzCSPS7/dRLpfh9XplFXt/fx/z8/NIJBLI5XICOLiPnyeMAIBJJoCH2CuG0dSEn1VZEMYkmaAZoDG+p4IV1RlQlSRy/tgcnf38PB4P/H4/3G63gHGCOaOFPpN6StfU4xvPkUyEzXbUMJ3JNN3++Dmj3M5sX6qU0sisqe8ZJZdGBs8MbKugYxJoUwGirus4ODjAaDTCjRs3sLW1hampKSwvL+POnTsCdtxuN2KxGObm5rCzs4OtrS1kMhkkEgkxNRkMBtjb28P169dRLBbRbrelTYB63dTztNlskqQDR0zU2toann32WRwcHMBms+GTTz4BAAFyPDczVpLGF7lcThZL2NybDBeZKDJH7Xb7IaA/ieHmT1Xmqso0VXkln0+UGxIgcg7q9Trq9bpcO0oEySapCgLKINXFA4IlmsZQSk6ABUDqgePxOOr1usjCCaxoJGKz2YSd9Pl84jI5Go2kbpeLTgSLZNXIQtJMhKCx3++L8QqNZTj3oVAILpcLXq9XGDT12cfrS2DXbrelhYF6z5PV5GIATXAIBp9UfLkAnDBwVlhhhRVWWDE5UqkUisWimBosLS0hEomgUqlIIqBpmqwyMzG8efOmyKISiQTu3r0L4MgpjTVtbPxNieaNGzfQ7XYxNTWFWCyGr371q8jlcvjiiy/g9/uxuroKp9OJW7duwW63Y2VlBaFQCMViEd1uF/Pz88LKtFotuFwuRCIRaQbNJIi22m63G51OR6R8TPbq9Tr8fr/0wiIzxJYIdNG7ffs2Tp48KdJMJpHGmp1H1aMZQZJx+0lgDRg3TnmURNKMWTJuYyb3M+5L13VEIhH0ej2pfeF7NFEIBAKIRqN46aWXkM1msb29jXa7LU58KsPCc2BNTr/ffwggqees67okhzSooQED96eyMyrwNCb/xrkwC3VOzH7yH4+r7lsdg9mx1GswOzsLTTtyiaxWqwiFQlhcXMTS0hLS6bSwL6wNjMVi2NjYwL179zA9PS1tOsgCFYtFpNNpYTQJbsjYqD382Kyaze0BIJFI4Pd///dx+fJlvPnmm7h16xZ8Ph+q1eoYyDLOk3r+8/PzuHXrlhgUEcxxO8pDVabM7N4wgjh17tQwu66qQU4gEIDL5UKtVhPmDoDUXFIVQIk18KCmMp/P4/DwELFYDIlEQmrZ+PwgA12r1cTUCYCYOZHJo5kJALHsB44UCrxnOp0OQqEQBoMBvF6vyDEpiXQ4HGPGT6wL5XeCEmaC2lgshlKphGq1Ku+Hw2E5Nlk5v98vfQYJAlnPxmsQCoXEwIbzR7adbSMqlYrUqWqahkKhYPbV+rXElwrAkYN7kppUK6ywwgor/tuPVquFSqWCwWAgLnnFYlH+ZtLKZq6dTgelUgkejwcrKyvQNE3Yg3A4LKu7kUgEU1NTaLVa2N3dlZ5sMzMzWFxcRCAQwJUrV7C5uYlEIoELFy7g4OBA6t2Wl5eRSqVw9+5dSX7j8bjIwlKpFNrtNvb392G327G8vIwvvvgCNttRE+/BYCASJsqi1AScfY7UlWM26iVIKxaLWFxcRCKRkNVorkI/Dngzk+WZycNUpkH9nBrHgUAmr9ynMdE2SgTNGCj+zYjH49Jkmwm/OrZ2u42lpSW8/vrrWF9fx9bWFsLh8JgNOntPcW5pfmIEBmZBMBKJRKQ2h3OkJv8qg6bOpVpPxTmbJCE1zpHxOpgxd2agcRITyPFQkmazHbXlOHv2LJxOJ6ampjAzM4NMJoNMJiPnT4anVqshn88DOGKOut0uSqUS6vU6yuUySqWSuCuqxhNkzpmUz8zMiKGGz+fDq6++ilAohBs3bmB3d1fAOhdpzBYV1HuZQIjbkYFS71MyPur1IFvOz6lsL4+tgivOs8pakwkyGxuPSdaxVquJfJJAjGOh1JP3KnsUtlothEIhRCIRaYrNY/B6lctlVCoVkWnPzs6OSUTV8yPIIxPH60QTGrpbOp1OqWXk3LJ/G89HddFsNBrw+/2oVCpSs+xwOJBIJABApO90i+TxyXI3m034/X5h4gjwWevMeeI1ZdN5AmHVbfNJxZcKwFkMnBVWWGGFFY8TmUwGo9FI6jD29vYkcaxWq/B6vWPMFnBk+DE1NYV0Oo1qtSruakyu4/E4PB4P7t27h3q9LgnZ8vIy5ufnUa1W8eGHHwIALly4gNOnT+PatWu4efMmkskkTp48CY/Hgw8++AAulwtLS0uo1+vCEiaTSRSLRezs7CAQCGB5eRm7u7vipKeaDQAPEj41QWdvJrfbLXIjJk9k5jqdDjY3N7GwsIBsNisSLCPgUoPvqwklgwkY8ACEURJpVtNmfF0NAgjVVMYo1zMCN+OYjWwct6H1eLvdHqtTUh04h8Mhrly5Aq/Xi9u3byOTyeCf//N/jo8//hi5XE5kXkyMKfNSjUu4L6PUkb97vV7EYjHs7u6OnQdZWDOWjGFmCHNcPA7bYzTLULeZxJCqYEZdKKF5hs1mQ7/fRzKZxEcffYSf/OQnWFtbQyAQQKvVkvuOnwMgphOFQkHkk7SOp5X8YDBAr9cbS6xjsZgsUMzPzwMA/uzP/kzAG6XIxvk0zg3n4tKlS9ja2pIEXpU6EmhQ5kwwadyOcwA8fG8CD4C4Kl0FHjScV4N1YDTi4DkUi0VhwniNvF6v9Nnjfmw2G7rdrtTrDQYDFAoFcaokaOFCFg1IKpWKmIW0222RqVJOrgJZgjHKSwlCG42GHJfPL4Jksl7cn9vtFqddPqc1TUMymUQ8HhfToeFwKPXHBPTNZhOapkk9os1mkzGHw2Fhc0ejkbj7sqbP6/Uin89jMBhIO4xqtYpKpYJUKvXQvf/rii8XgOMvFoKzwgorrLDimHA6nVhcXEQ+n0cul8PU1JSwTzSrYP1IMBiU9gB37tyRZJDmJUxOKpUKdnZ2pEaKDEA0GkU+n8f9+/fh9/sRjUYxGo3w1ltvIZPJIJlM4vTp02i327h//z6SySRCoRDa7TYAYGpqCj6fD/fv30e73cazzz4rAIKr21xNd7lccDqd4nbIYGLIxITb0dSASQ+d3crlMqLRKCKRiJwjV6uBh0Eck1K1/sssVFZikoTSjGkzxqRxGONxFTlMtlkTZWSdAIikrFgs4rvf/S6AB8xBuVyWGkeCOFrIk1kwnosZE+jz+ZBMJpHNZoV9M36GnyMgMKtNU8Gheiw1zECZ8d8kgGZ2DkZQNxod2epTstbpdBAMBhEMBlGtVnH79m3pD3b37l3U63UsLS0hm81K4k+XRzaXZsPtarWKTqcDv9+Py5cv47PPPgNwxJDSMMPv9+Opp55CJBJBrVaDw+FALBZDoVCQJuLtdnuM1VLHzr95nXmtA4GAGPyoNvrAOONJSSeBv/q+GSPH+9A4Fr5uZFspo6QUmgCKfdu48MTvNBdGaH5EMKjWybIvWrfbRbFYRCAQAPCAAaXUlfvhvHKBgiYf/L4MBgMxEymXy9ILsFqtirGIWtNL2SmfZwBkscnv94s5CeWqPHalUhGJssqOcrFHvUacO/a5YxsYMnGUcbrdbrhcLpFVTk9PS41cq9VCLBYTJvFJxJcLwPGmthCcFVZYYYUVx8TTTz+Njz76CKVSCadOnUKv10M6nYbH45F+RaPRCLOzs+Kidu/ePUlIQqEQhsOhALSdnR1ZobXb7QiHw1KPtrOzg1qthlgshng8jm63i93dXfT7fVy+fBnLy8s4PDxEuVzG9PQ0gAe9k1irxmT3woULyOVyuH37NsLhMFKplNRlEGxRCsrk0JjMs5aFSRGj0WggGo3C7Xaj3+9jZ2cHy8vLUqPEhAswlzOaHYvvqdbmDFVqpTINkwADwZ/atoD7fBRw5OfNAI36U22YTGkepVu9Xk/qtNTz/Jf/8l+KyyHlqqx3YkNndXxGoEN2ze/3i4kOHQO9Xi/q9bqMyShPnTRfk4CXUfY4CXyZ1bNN2pfxOLwXNE1DvV4XNjESiWBubg66riObzeKTTz5BJBJBJpMRQ5iDgwMEg0ExnuB3z+PxiAySroIejweXLl3C008/jc8++0waV2vakfPl2bNn8U/+yT/B9vY2isWigA9eQ/U+4gIFQZV6jxjdGfv9vkijj6vVNDbxJjBTXzOyzgxKCAkQVFdK47VXP0tQyobxZPrU86jX6/B6vUgkEmP3LQABVgSrAISRJoMGQBZ++P0gQ8f7loYqrEcj6CNgI4gcDofi9EgJJLdvtVoib9c0TUyY6KjL60jXSbU/HVlGgjoCPdbd2e12eV4y+D0vFAqw2+3SB67ZbCISicj5NZtNMUh51ALSrzK+XADuZz+tEjgrrLDCCiuOi7feegv9fh8rKyuoVCoi14pEIpI40l672WwinU6LpTaTPTqd7e7uIpfLYWZmBgDg9/vFBGVzcxMulwvnzp2D3W5HtVrF7u4uQqEQ1tbW4HK58Pnnn6PZbGJtbU3kXCqTls1mEY/HEY1Gkc1mcXh4iEQigVgshkwmg1KpJDKger0u9VeTnB4ppWSDaiYidEv0+XwiSyuVSmPOl4+bsKjJrJlRA8NYf6UmzSqQMDIiZPsYTKaNNXDqeCaN3ciAMEFm8hyNRuHz+YRpazQaY0kzZWE8ppGBeBR4czqd0oswn8+LFIwLAXS4fFQNn5ksdFIYP2sEtGavq589TkJJQA4cXZf5+XncuXMH8Xgcly5dQrlcxs7ODu7evSsJN2V2quRuZmZG+hny+8beYQQPly9fFtmp3+9Hq9VCJBLB4uIi/sE/+Ad47rnnsL29jXA4LJJWSiz5s1KpjDm4qqyrOkc0FJqensadO3eEnVKD949a56my30Ygbjye8boYFwvUbdWehCqY5H2qSjXpzEiJ42AwQK1WQzAYFCaKbqB8n86f/AwZPYIin88nagWOz263Sy9DLhBVq1UBxvzJ3nGHh4cAjoxlKD3m8dxuN5LJpLhl+nw+VCoVUTCwITnBIb+vBGJ8xnG+yQKzJo7nwXE7nU5RPdAlk2CQ500WkaDVaiPwSwq77WcrGSMLwVlhhRVWWDE5wuEwPB6PNGONRCIi4wmHwwgGgwCAYrEoDEgwGESr1YLf75cVWbJybPx68uRJYbC2trYkmdR1HblcDvl8Hmtra3C73dja2pJeV9/4xjeQTqdRq9UQjUalGa7NZsOJEycAHNXt9Xo9LC0tIR6P4/79+6jVakilUiiXy9jf35daEdpyTwqCPafTKbbifJ2STNbRxGIxqb8ysmVqGMGTEWgY2TejXI3Bz006jno84IHByqRjHycjVMdiHBdX9L1eL06cOIGFhQVsb2/jgw8+QKPRkLERqKlBdsdYh2g8T5p8XLx4EVtbWygUCmPgNZfLPXQ+RmCgGrgY58ZsXvm72XaTXlffM3tNHZ9aD8nFghdffBHhcBjxeFy24z2ofj4QCIhtvSo/pTSVLBiNY86ePYvvf//7cDqdWFhYgK7ryGQyOHPmDJ577jmpGe31etJUutPpSL1joVBAtVoF8GBRgEwV2TyCFOAIHGxvb4trojHMDHWMixeapknzb4Jz9fMMtUG2ui/1PtB1fQxE9Ho9VCoVqd/i9VDr3Lxer9QT0kKf323ug1LOdrst4E6VdnLRgTXAdFmlwyTbqNABs9friXzS7XZjNDrqueZyucRMhEwZa+doTEJDkna7jVgsBl0/ak7O3m8Eaf1+X45brVZFNqppmjQAJ9BttVoCXrlYwwUqtkigqzD3T+MW1uzxmE8qvpQAbmRRcFZYYYUVVhwTo9EI1WpV+h8xGQoGg/KfebVaRbVahd/vFzlcJBJBMBhEqVSSOphwOCytA+hWRsaBTbJ3d3fR7XaxsrKCSCSCzz77DL1eD1NTU5idncUnn3yCbreLubk5uFwuqYE6deqUNHgm0NR1HdeuXYPT6UQqlZIE0ePxYHZ2Fna7HTdv3kS5XH5IXqgm6Gr9HC22gSPJVDQaFUkZV7LVflLGJtJqzYlRVvY4EjyzejgjYDCTX3I7I5AwAprjxmE0euF5kJE8PDyE3+/H888/P2ZXzp5WlJqp42QyOEnaSRlXNBrF2toaDg4OsLOzM3Yu6tiNjOSjANZxDJxxbsziuPniPtRjTJrrwWCAw8ND/MEf/AF6vR5yuZy4HtLFkNuz9xedVFl3SqdC1hQSWK2srCAej6PZbGJxcRGnT58G8KDdQrPZxPr6Ovb29qQujPVMZJfpIEnnWUqXKa0jE0S26amnnsLVq1dl0cN4XdQwmpvwHqcFPRly1bRHlVQCD6STRmZONQFS60G73a60XSAbzPuU5+P3+2WBirJA1rfxmhCU+Xw+kWIS2JGRUgEf5eQ8Hp8XvG6sJ+v1enA4HKhWq8Ka2e12UT3oui6AutVqoVarSXsEGpOwlyafSw6HA+VyWY5NSTnH7PV6RdXAZ304HEa9XheTE7KPatuHUCgkC1d0ko1Go1IPyWfBk4ovFYBz/AzADSwGzgorrLDCimOi0WggmUwiEonISjDrKVj/xRoOurvNzMzA4/Hg8PAQtVpNnNwCgQDC4TBGoxF2d3dRqVRw7tw5BINB5PN57OzsIBaLYWlpCb1eDx9//DGCwSDm5+dRKpVw9epVLC4uIpVKodVqYXNzE6lUCi+88AIGgwHu3LkD4MjMZDAYIJ/PIxAIIJVKyQo7V/KLxaLUlRiZGmA80e71eqhWq+I+SfCiSkir1Sra7bYkoXS8U0OVP04yHzkOzKlMEhNPtT2AUV6pbqvKOo2sm5FNUv9WgdBoNJLE0rhfAt0bN26gUCgImxCJRPDyyy9jfX0dN27cGJNQMgHkTyPY4TzG43GEQiF8/vnnwg6YzZkaKgMziT0zu9aT5sH4efU1FVRMum68VpPmV9OO2m24XC7Mz8/j448/loUSJtTBYFCkpky2CQa4b7pMNptNeL1euN1uXLx4EcViEV6vF2fOnMHLL7+MRCIhvcZYZ1er1dBsNgXAsZdctVoVyaDH4xHGhYwXX3c6nXC5XFhYWEClUpEaLqPZiNm1M9a1ERCozqT83qjXW/0+MsiUqa6S6v6Hw6H0DeQCBGvZWMNHZo5MFQAEg0GRkLL/G5km1vqpTBWl5pw7snGj0UhMQPL5vDjb8tna7XaRSCSkZQS/YwTLdCzluReLRUxPT0tTe0rXydjRzZISTY/Hg2q1KnJJPttVMxkA0jIgFApJ/ZymaXI9aWpDKS/rBFmfR1aZ8/mk4ksF4CwJpRVWWGGFFY8T58+fh8vlQqVSkaSKMpt0Oi1sWqPRgMPhwNLSEkajEdLptJgoBAKBsVoOrsiurq5KO4F+v49Tp07B5/OhXC6jWq2OSSTtdjuee+459Pt9pNNptNttXLp0CQsLCzg8PMT9+/elpQABocvlQiKRECmQ3W7Hzs4OcrkcstmsgAeCCaOkS02uW62WmAUwoaPtdiqVGpNH0cmNiedxDM2kZJ6hAjP1d0rX1P2oTn7GxNUM5BzHPpltwxV2Jp9q4kwANhqNcHBwIM6dTKbJSjDJfRT7xs+ePHkS8/Pz+Oyzz8ZaP0wCYcbzfBTQU7cxzr/RCGMSq2cm3TSOx+y46jbD4RCFQgG5XA7Ly8tYXl4W4xLK0HRdF7MLh8OBSCQiiTEZI1rJ0xXQZrPhzJkzqNfrCIfD+OpXv4rp6Wl8//vfx3A4RKvVwk9+8hPcvXsXjUYDnU5H+vtVKhWxhadDosomUU6oMjaBQADPPPMM3n777YdaAKggivcyAYBR1qta6Kv1cry3jQycul+VheN3kccmU86+b/wMgY3KXqqMHx0+2VfN4/FInVe324Xb7Uaz2cRoNJLaNioCHA4HAoEAIpGIfGebzaaYzpBtbLVa0quNsnAuMtFMiSBPdZUEHpiq8D2XyyVsIXCkFuD9YWz/QVZXvY7BYBD1el2Yv2azKQs39Xpd5O+UnA6HQ/R6PZHca5omDCE/86TiSwXgHLT6HVoAzgorrLDCiskRi8WQTqeRz+dF6nhwcIB0Oi2MAAv/6QxZKpXQ7XahaRoikQjC4TAAyGrz1NQUlpeX0el0cOfOHTSbTZw5cwbRaBS5XE6afjM5CoVCcLvd8nmv1yuNcn/yk59gNBphYWEB8/PzIpu02+1YWVmRFelUKoU///M/x87OjhT/s8cRmR5VImhk44bDobBwTJAIaHZ3d3HmzBmRMnF7I8gykz8y1MRfBRKT2B+VdVP3q/Y3o3xMlZzxPZ6XGQt33PEpl2TdjXp+xjHw3vjBD34gAE6VjfJvY+0bXSXX1tbw0ksv4fr16yiXyyKDU0G28XweJVlUQ2Uyjfvh+2aSR7P54/tG5m8SgDS+R3b4+vXrCAQCmJqakrYY4XBYzDZsNpu8D0DYIC6QsAbV7XZjc3MTFy5cwPz8PH74wx/C4/FgeXkZtVpNEv9arYaDgwM0m01Uq1U0Gg3UajXU63W0Wi0BF5RM85qSUaTkj9ft9OnT2Nvbw+7urjQmN845z1c1cVEZSu6LAIxsDvtFqtfMuMCh3h8EmCqAc7lc2N7eFoMdtT6PoJELFMCD/muHh4fSvJv2/jRHIePpcDikSTdNZ7h/stds2E3ZpaZp8Pv9woAReHOfXDDx+XwinWT7knq9Lv05HQ6HGCuROSOIVL//PA6P3e12x0A6GbZarSaAna0pOB98pvLc2MszFovJAlKz2RQ301arZfWB+2WF3W4xcFZYYYUVVjw6PvjgA3Q6HTz33HNwu924f/8+SqWSNJDlSqzP50M2m4WmaSiXy4hEIiK9aTab2NvbAwCcOHECiURC+sqRWYvH4/jss8+wt7eHixcviskAHS4LhQLcbrcktc1mE59//jlCoRAuXLgAh8OBg4MDNBoNzM7OYm5uDl6vVxizDz74AJqmiRsbpUdq02eu7k+SwZGdYHsEAGJu0Ol0cOrUKdy8eVNqkVTJIvdxHIhTQwVqx23DMNbUqQkuz5FJs9F104wB4e/GbbhaTyDBflYEbayPMmNGVLbTyL6pUrpQKISVlRVcvnwZV65cwY0bN0zBlTpeVV5nNnaza2qcAzOwN2k+1G2MjNskhs64D+N27XYbH330EUKhEJ577jmxko/FYmK44XK5RL7M5D0ajSIYDGJ3dxeBQACnT58WcPIbv/Eb4ow4Nzcnv7PBNx0ta7UaGo0Gcrkc2u02ut2ugAUyTgDEJIUsH9lBLoq0Wi3s7u6OgSaG0czECNrUv3mfELyp2xjn0MhyEoTwuvCej0QiKJfLqNVqsvBAds0IHil1HA6HqFQqqNVqCIVCIhNUgSJBFr8LlJfyGhD00fGR0muy1Gy0zmbYdMccjUYy9+yr5vf7UavVkM1mEQ6HxWhF13V5LpGVJRjkuMgQDodDab1AIxXWq7LtAUF5q9USx0kAcm5coOO1IFgn+Gu1WmLuMjU1NdaG5dcdXyoAZ9XAWWGFFVZY8TjR6XTw9NNPQ9d1fPzxx7LSzEbbwWAQ4XAYxWJRWILp6Wmpe9va2kK1WkU4HMbq6irsdjs2NjYwGo0Qj8cxPT2NwWCAv/iLv0C73cb8/Dw2NzehaRpSqRTsdvtYPyZaXNOlcnFxEeVyGdlsVhocnz17FsPhUBws33zzTal7AYBkMolGowG32y2Jvyp7NAsmK7VaTWp9aDeu6zrS6TTeeOMNBAIBXLt2DbVaDcADqaOaxE8CcWbyv0mmJcdJM80YKDXJVfdrxhBNAkXcN2tbAIjDntp3jmObdI78qTJyTPiZSJZKJfzX//pfhSky1o8Zf1fn61HgzYy9U7dVwapxf2bnY2RPj2MEjcdXr2Oz2US5XMann36KwWCA5eVlNJtNaJqGubk5YbbL5TLi8biwvGfOnBFgcfHiRSwuLuLKlSv45je/KfVo+XweU1NTuHv3Lr73ve+hUqlgMBhIO4JCoYBSqSQGPJxLMkwEGmRj3G63sNi8Ph6PB8PhEDs7O2PMkLpooJqJqOyQurjBn/yceg3N7lmOk4swdrtdJL5q4/BYLIZr166h0+kIwOP4eJ58nS6zdNadmZmRZx/D4/Gg1WqJRJySSzp50im02WwKCCeQo8Mnz5fsHNsWELwCkHpegqd+v4/Z2Vl4vV6Rs9MFlmYzfN7RYIQNt+12O7rdrswxXTb5vW632wiFQjL3nDtKMFutloA3h8MhAJILWbxH+/0+2u02ZmZmZNHsScWXCsA9qIF7co31rLDCCius+G8/vvKVr2B9fR3pdFr+015cXBRZTzAYFNt/yqncbjfK5TJyuRycTidWVlYwNTWFVquFO3fuIBgMitHJwcEBPv30UwQCASwsLGAwGCAYDCISiYgsKBQKSa1drVbD/v4+otEoXC4XSqUSDg8PoWkazp8/j1QqJfKfTCaDDz/8UOo5pqenkUwmce/ePUku6ejHhtLHyQeBBwYINB0goKxWq7h79y5eeOEFZDIZaU+g1qsAD5s2qCBH7dlmlvg/Ksy2N2PajGwFt1MBjJHVmATihsOhSPbIwpi1CzDuw8iUqbLWVqs15uRpHJfZOZqBOfX3SbLGSQynCqyMIO248zI7N+M4Jr2m67qYlHz++efCUGuaJrJhh8OBbrcrUrann34aTz/9tLTWmJ6eFuOe9fV1TE9P4/PPPxeDknfffRf3798XAF4oFKS/I3sYqvJFfp9Z/6XruoA3ziPB93PPPYef/vSnY06GgHnzbXUBgd8HTdPGWhSocmB18UM1COJn1OtEkEVgxm0/+eQTlEqlsToxhlojB0As8m02GxKJhEit2+22mDaREeW9zn3QqdblcolUslqtigur2+0WYOjxeNBoNGTxKJPJCHgiuByNRmMSSrYUoLEI+61VKhUxO2HPOsoYVUMTXlPeb2zczTo4fgfV9gLxeFxAJ88/Ho8L2xYIBKSukIsJi4uLCAQCKBaLFgP3ywqLgbPCCiussOJx4urVq8KAOZ1OzMzMwOv1IhQKCWgBgPn5eUk49vf3xcJ6dnZW2gncvn0bCwsLWFpaQq1Ww+3bt5HJZHDu3Dn4fD7s7+8jkUgIQ0ZzgEQiAV3Xsb29Lf3cOp2O1HlMT0/jxIkTImdiD63PPvsMxWIRlUoFZ86cQTAYxOHhIUKhEObm5kQ6VKlUZCWfAGSSq6Cu62i32+L4xlX7fr+Pu3fvIpFI4Omnn0ar1RIXOa5Oq2yCmpAC5kDCjLVTgZcZ2JvkiKh+Tv1HoGJ0sXycIIjrdrvwer1iYMA6OVUiqQJBVT6pnqsqa+OYVFbtUUzYo8KMmXscaePPcwwzJs7s/UmvZTIZnD9/HpqmYX9/H6FQSBiSaDSKdruNZDKJ0ejIiXJ6ehrhcFiSd9r+b21tIZlM4v79+/j000/R7Xaxvr6Ow8NDFAoF1Go1+ddsNkUS6fF4BDyxjUGz2USpVBqTTfK+pbHFpUuXUKlUkE6nEY/HpZ5qEqvN+4/MGc9fNeAhMOS9rmmasIGcE3UBguOx2+1SP0swWSqVsLe3Jy6dZAsBCCDlAg7lipSIsw8kgQmfT16vV4AqWTQePxKJCOvVarXgdruFlaOTKs2hyCASHOn6A/dRoyRT0zSpSTw8PJR2ANVqFZqmwefzjbWZoNKAn+e5suZS046MZ1h3R5DK9waDgbC93W4XgUBAAB8BqdPpRLFYFEfP4XCI5eVlAcE0cHlS8aUCcJYLpRVWWGGFFY8T3W4Xfr8fuq4jkUggGAxidnYWuVxObLIdDgfcbjcAIJ1OYzAYYGlpCTMzMxgOh9jf30exWMTMzAwWFxextbWFnZ0dDAYDzM3NAQA2NzcxNzeHYDCIdDoN4KgdAK22Dw8PEY1GBZwxIYpEIpienhZXvJWVFZRKJVy5cgXr6+vo9/u4dOkSyuUyKpUKZmdnUalUpAifCSubBbN31iQGB3ggKWLCy15R7XYbH3/8Md544w0BcZQAUjplZLrUMHObNNYJMSbJAI1AUAWO3NbMaMPIdqn7nVT7xdfZF4vJGhNfskWqgYlqWqL+0zRtzMzEZrPB6/XCbrcjmUxie3v7ofNWE191XsyumTEmAXT1HB/Fghrn6VHHN7KaZsejA6vH40GhUBATjUgkInWnuq5L3Wm/30e1WkU6nRbb/729PWFDPv/8c6k/rdfrqFarqFQqqFQq6HQ6aDab0PUHTa7VZtd0OaTNPlkr3o98LRQKIZVK4Y/+6I+kRo9MmArCVWBmvIeM82RkptV/lOOpdZU8B9aDUeYHHIG6YrGIWq0mUkmeE10WCVZUN026zRLMDgYD6asWj8ehaZoYlQyHQ3i9XpkXMplk61utFpLJpPStTCQS0srE5/NJ/0wCVC4KcT7V/mt+vx/ZbFYcKXlN+v0+Go0GQqEQRqORNOkGjp7jbOHC/bG+kaYmBHWdTkeUBWTZ2u22nB+BLp15a7Wa3BNqnTJr58jCPan4UgE4caG0AJwVVlhhhRXHBFd7A4EA4vE4Go0GfvKTn0DXj9oJsNltt9tFsViErutYXV3F/Pw8Go2GtAhYXFxEKBTCjRs3cHBwgPn5eXFss9lsOHv2LEqlEjY3N+H1ejE7OwtN05DJZNDpdJBIJOD3+8dqpQgaWR9y/vx5lEolvPvuu9jb24PX68XJkyexv7+PqakprK6uolgswuPx4PTp07h169ZDEkcmmkYWRf3JBJHNc2l6YLMdtRX4yU9+gtdffx2XLl3CJ598Ij2XdF0XxsHIdqkNh1XwxlBrgvg5owMlGY1JBiLG8zQyepOkgJNklMbxUWJFMwYaG6jGJpwHlZ1Tx69K6pxOJ77+9a9jY2PjIRDKHmevvPIKfvrTnyKfz5uO3YxZM8ohjUDLTI55HANovE+MzKIZiJsU/X4fu7u7eO6559BqtRAOhzEcDpFMJnHixAnk83npRVYqlXBwcACv14tbt26hVqvh6tWrAt4ODw+xubmJXC6H6elpZDIZbG1toVgsSh0UZXy8bwgOVav5+fl5AJCm0mSBNO2oFu7555/HW2+9hWaziXg8LiCIEjyVZSZQ5zbHAV4ygbwfvF6vgAJub6xR7Pf7UsfGv/P5PPL5vNR8sb0Jz1utneNCi91uF9khrfyTyaTUs5GJVxlLgkfuj3OlaUfmScViUUxDeA01TZN2D+rCB8fDxug8DsEoTWUajQYCgYA8k3hdCBy5PxoZkTlzu92ijCDYIjBOJpOoVqtwu90oFovodDoIBoMyF5S2NxoNqdHU9aOecslkUuoBKeNU5aNPIr5cAO5nLpSDoVUDZ4UVVlhhxeRgM1un04lbt26h0WggkUiIO2QkEpHeSj6fD4uLi5iensbBwQFu3bolzYOHwyHu3buHWq2G8+fPS6+jaDSKUCiEQqEg8sdYLAaHw4F79+4hHA4jkUjIKjPZt9FoJAnQwsIC4vE47t69i1u3bmF7e1sSnO3tbZw8eRKhUEj6yUUiEdRqNcRiMWEhmPyYOaypQEet2+l2uyKBstlsMheZTAZXr17FN7/5TQwGA3zyySciU2M9jgq0VNZJlRwak1l1GzWMIO44OaSa8BoT60kgTgVwxqTbCFhoVtHr9aROy2gXT9BmBFDqeS8tLQlALxaLD0ntBoMBFhYWsLCwYGps8TihHpPg2giejaDVCDaP23YSQDwOxOn6kSEO3SXr9bqAnsuXL6NSqeD9999HpVLBzs4O6vW6tAGgAQaNLA4ODgSs1et1sZ5XXVJZTzUajdBsNtFoNIQl5cLEwsICDg4OpNaMAKPX6+H111/H/fv3sb+/D5/Ph0AgIFK8fr8v56qyyCobB4ybmZAd4/i4YMN9qg6QqgEO/ybrx2g2m0in09B1HdFoFJ1OR0AIWTX2siP7rtZw8pp7PJ4xd0YuVLBHmyor5We73S5GoxHC4bD0RKNBjwrKCBg5frYhUEGa3+/HcDhEPp+X5wxBOJUDbM7ORuuca6/XKy0Fer2eMIx01ux0OsLw8XWv1yv7IjtHiSiZ2Xa7LfJMu92OeDwOr9crQM/r9UpPQdX85dcdXyoAZ9esGjgrrLDCCiseHQRT6+vraLVaiMViCAaDYy0CarWaSBkdDgdu3LiBfD6PaDSKubk5dDodFAoF6LqOEydOiJV2KpWCruvIZrPodrsIBoNS57O3tyf20y6XC81mE3a7XUBXq9XC9PQ0FhcXcXh4iLfeegu3b99Gu93G8vKyMBOXLl2SRHp5eRntdnssmapWqxgMBpKIGA0U1FosldkimKCRAfvDMYHc2NhAMpnE888/j3a7jZs3b6LZbIrr23H1WEZJpGqwoCanZszYpP2oUkqV9TuOVVNjkvTP7HMqSGNSbHSRVKVv6rh1Xcf8/Dxef/11rK2t4S//8i/F0VOVXLKJcD6fR7fbfWgeft44TgZpBrgmsZXqvh4XxBm3q1Qq+PTTT/Hiiy8ilUrJd6BYLGJtbU3kwARllKeRbQGOgEs+n0elUoHH4xGGhVJDgjGyTr1eT9wDCWjcbjf8fj92d3elHo6M0XA4xCuvvIKNjQ1cuXIFdrtdXBcBjMmSgfEaNeN5qwBcrZfjd4lSv1qtNnbPc874vWOdGgABONlsVnq2sR6MY6Shh+pYabPZ4PP5MDc3J0CEzxyauRDIcGwejwd+v3/sXueCzezsLDKZDHT9yHyk3+8LyCXjyXq4ZrOJZrMpknUen+/V63Xpvak6RNpsNmG6OCYasESj0bHvGq9TuVyW2jeaqHBRLZlMSpN3yphZ68rnCGvkdF0X0ymCNwDS247zyWfuk4gvFYCz2TTYNKsGzgorrLDCiuPD7XZjf38fDocD0WgUS0tLCIVC0HUd6+vrcLvdmJ2dxcrKCtLpNO7cuYN2u40LFy7A5XIhl8uh3+/D6XQiEAhgb29P+huxmJ+1bP1+H9vb2+j1elhcXJSalnw+D4/HgxMnTiCbzSKbzeLkyZOYmppCs9nE1atXcfv2bcRiMaRSKezt7WFxcRGnT5/G3bt3EQgEsLq6KsDJ7XbD6/Uim82Ky1y5XIau6yI1UlfggfEG2cCDhH00GomU0mazIRwOS1L88ccfI5FI4Gtf+xqazSbu378/toqt9sUyNrNmGJkLI0OkJv/q+8dJKVW5nAquJoFKs2MZt+HnzVgpMjrHSQfVz7BHYDgcRjQaFUCtzrndbsfMzMyYG6IKtiYxcsbX1XN8FFM2CcQar9ujpIHGcRhfHwwGWF9fx/nz5/H666/j/Pnz2N3dxdbWFoLBIBKJBM6ePYtoNIrNzU2sr68LOGAD6VKpJIBFBSa8Pwiu2UqA14f9zAhshsMhQqGQjGFjYwOtVgu/8zu/g9FohKtXr6Lf7yMcDkvNGHDkxEhAYzxnyg1VMK+yaPxesE7N7/ebSif5j46Kaj3aaHTU55Gybr5HYyReE5X5IrCjAclwOMTU1JQw9wRArCWjlJRuk8CR5JxAOB6Po1KpiLSyXq/D4/EglUqhXq/LwgMdXFVAGQ6HkU6nRZpdKpWQTCbh8XgEsHOuKGnk+FjnRwMayio17chNslwuw+PxoFqtClvn8/lQKpWkJo61zzQq0jRNQCHBq81mg9/vRyQSgd/vl9e4CEGnzHQ6LWz6k4gvFYADjurgLAbOCiussMKK4+KLL77AcDjE0tISIpEIbDYb9vb2pMn2qVOnMD09jdu3b2Nvbw82mw0vvPACut0u0uk0ut0uZmdn0W63USgUEI/H4fP5kMvlcPv2bQQCAZw8eRLlclnqMU6ePCmMV71eRyKRQCgUwt7eHmq1Gp5//nnYbDbU63XcunULh4eHmJubE7OLixcvwuVy4f3338fi4iJWV1elqa3H40Gz2cTu7i7i8Timpqawvr6O0WiEUCgkTX7pAKc6UhrlgsCDhFt1k+M8tdttvP3223jjjTfw8ssvo9frYWdn56GeSCrQMpNIAuMgwQzIGT+nSimNjJxRbmmUMKr7OI5pUrfjT7OxqwDJ7HPG/TcaDfzxH//xWH2SMYbDId577z0xtTA6ck6SghpB23Hnapy3SWyaGQNpPGczcDjpGEz2P/74Y/ztv/23sbKyAqfTiR/96Ee4e/cuzpw5g8XFRdTrdYTDYTz99NPo9XrY3d2VptOsYVMNOngvU36sXisultDBkaDi7Nmz+P3f/300m038q3/1r+B2u/Hqq6/C4XDgT/7kT8Tcgv0A+R3w+XzynQDG5bqqq6hx8UBt3E1mSmVcjQY4HDMbj5OdKpfLyGQyYm7Efeu6LsCJkUwmRXIYi8VkoScYDMo5cA7pXjkYDOD3+6VxNlmwXC6H0WiEaDQ6ZsufyWQEmBHskb0jO0rwTFdHTdPQarXQ7/cRi8WkGTe/txwTZZHhcHiMtaMMlvNut9uxs7Mj15b2/i6XS2SaNttRC4FoNCqfZ/N3Ho9OlHSXJIAEjvpCUinAumiyjk8qvnQAzm7TLAbOCiussMKKY4MOeKlUCtFoFLu7u6jVapidnRUW4Pr169jZ2cHy8jKWlpZQLpeRz+dRr9exsLCARqOBUqmEeDyOUCgkrNzS0hJ6vR7u3r0Ll8uFUCiE5eVldLtdVKtVBINBrK6uYjgc4v79+/B4PPjGN76BSqWCjY0NlMtlFAoFJBIJRKNR9Ho9PPvss2LC8Prrr4sEjCvKAFAul3Hy5EkMh0Ps7u6OtUVgAssifOCBTMnYVFhNyFlHwhVxJkC1Wg0/+MEP8Hf+zt/BK6+8gjfffFPaC/AYqkRTrUVTE2wmvWQIVXCmggAV7KggDni45xyPbQQ1k6SZ6jjMwI7RYdNMHvmo4LZGiaXZcdrt9hiwNmPPzFg5o8mIcftJYFb9fdI8Gfc7CdyZbWvc7u7du/jX//pfY2lpCSsrK0ilUrh+/To6nQ5Onz6NCxcuSB8xyoppbKK2B+B+KS8kMFLbNfC+JXOzvLwMm82Gb33rWwCAf/fv/h1KpRL+4A/+AJlMBn/0R3+EWq0mZhh0nuS9TFBjXEBQgRzBhXptjKYl4XAYpVIJwAP3Q27L86Ccj2x+o9EQV051gYL7J4OkjgE4YsLImLFVQL/fh9/vF8dNsmsejwfRaFRqx6amplAqldDv92UhiOxgpVKRHpntdhvtdltMVNR2KGzSTRkir1s4HJbvNq8hz5dz4nQ6pd0BAJG8qsC3Xq+LDJS94WhUQtmspmnShJ1mJ/V6XVhcLi4Eg0HE43E5XrvdFmDHBQIqHJxOpzihPon40gE4h03DYGgBOCussMIKKybHiRMnEI1GEQwGsbW1heFwiGeeeQazs7Podrt4//33sbu7i2eeeQbLy8u4f/++WFwvLCxA14+s0Wm1v7+/D6fTienpaWmATXnO7Ows/H4/yuWy9JwrlUq4fv06Tp48iRdffBHXrl3DW2+9BZfLheXlZayurqLT6SASiUDXdezu7iIQCGBlZQV2ux3Xr1+H3W7H7OwsAAhroTZDDoVCktww+WQtEFedjcDIjMFptVoCsFivx+O8+eab+Pa3v4033ngDb7/9Nvb398dqStRaNxWYGY+rAoxJbJ0aqlMlEzC1xo8yMpURmdRS4G/CWJmBMHUbs+MYf5oBSRXoGYGUCiRVAGc0jVHHaLbvSUydWUwCc5POyxhm8zQcDvHOO+/gX/yLf4G///f/Pp577jkxG9nb24PT6ZQG9/fv35d7lQm0KhPsdruSbNvtdkxPT4sRBcdEEBcOhxEKhbC/v4/vfve72NvbQzQaxT/7Z/8MH330EX784x9LUu/3+xEIBARQqDb9KmADMLZQwXvOOB/qWGh3ry5mqDJByjTpZksmK5vNCpPObdkKwMzwZDAYCAj1eDyo1WrS+5JAlwALgNT68RiRSASZTAb1eh3D4RDZbBYARKbN4/T7fZFyshaW80PTEhqI0BjF7XbLeTWbTXQ6HYRCITEkYQsCSi91XReGTTVVaTabCAQCYthEWTt/ct5ZK0jpbL1eFwMTzj1bp/CeHY1GIpEsl8sy11Qi8LyfVHzpAJzdrmH4iAe/FVZYYYUV/8uO6elplEol7O/vYzAYYHFxEbFYDI1GQ+pLXn75ZaRSKWxsbGB/f19Wp3u9Hur1OqLRKPr9Pg4PD+H3+6WmpdvtikkKEweCv/Pnz0vz4XPnzuHChQv44IMP8Mknn8But+P8+fOYmprCaDRCPB5Hp9PB+vo6kskkFhYW0O/3pYZkampKrPwpt+v1etICwO/3IxqNQtM0cf1TE73jGBZgXJrIwv1SqSQtGDqdDg4ODvDDH/4Q3/nOd/DGG2/gz//8z4WJVCVjTJJUJsIojeS41CSNoMXI5qkJtBo8R25HJsJMrmjGbKm/mzGSZvMzSUL4qPk1O7bZ3+rrxs+r15HAT5XvTTqnSSBVBYaT3jees1moINPsnLvdLn7wgx9gNBrh29/+Ni5duoTd3V1MTU2h0+ng6tWrqNVqKJVKyOVyODw8FCaYrBjrvNT+ayrA4TYEeKVSCdvb22K3/+qrr+Ly5ct488038dFHH4ntvc/nQyQSkTo7ddGBAEllehm8R43upyqIiEQiaLVakvir25LV6XQ60k6kWq2i0+mgWCwKY6fKMdXvja7rYtJClqxUKqFarSIcDssYKStkLZ6u6wiHw/D7/SJxDIVCuHfvnoyb/dU4XjpJElT7/X5omiZOt2rjcYfDgZWVFXS7XWHnstms1KlFIhGUy2UB6TQhIVtJObGxLyJlrrVaTZp8ezwetFqtMeaUbpmNRgPhcBj5fF4W19gEnAtTrLmk9NNut4+1XHC73eKi+uqrr2JpaenY78GvMr50AM5h06waOCussMIKK46Nu3fvolKpYGFhAYuLiwCO+ktRtrS8vAwA+Oyzz5DL5TA/P4/BYIB6vS5Olfl8Hg6HA3Nzc4hEIpJg+Xw+hEIhSQS8Xi+SySTC4TDK5TIODg5w4cIFLC4u4r333sM777wDp9OJ1157bawnXKlUQj6fx6lTpxCJRLC/v49ms4loNAq73Y58Po9+v49EIiFF9bOzsygUCpJkkH1jQqeyVMeZg6hMDwBpqWC321EoFABA6mb29/fx1ltv4Y033sBv//Zv491338XW1pYkc6xPUp0wVRCnStK42s4xAObNqVXWTWWrjIYmanLMffFzZmDlOJZKfV/9W33tOGAzCQhO2q/xc496TQVnk0CgMcxYOrOfZmOeBDLV34/7fKPRwDvvvAOHw4FyuYzV1VWk02kkEgl8/etfxzvvvIM7d+4gl8uhWq0+VA9I2SAlcgQwNDLhQkC32xXQZLfbsbCwgL/7d/8ubt++jX//7/89dnZ25F7h4gSBgyrDVI9PeR+NbFQ7eVXeyfuPLontdlsawKsSS7UujscsFovo9XqoVqsoFArCtJFh4neH3zFVLupyuVCpVKDrOkKhkDgvdjodATdsjM0WAmyE7vF4sLu7K822Ca44TuABA97pdOByueDxeIS9BB4YupAV5bOx3++j2Wyi3W5LP7VOpyOtUwCg1WoBgIAxPrdKpRI8Ho9IPoPBIPL5PEqlEoLBoLhc0g2TYB+ANCuvVquoVqtjxjSUy5Jh47Vlo/J6vS61cWT7KFOfmpp66Dvw64ovHYCzauCssMIKK6x4VORyOaytreH8+fMYDof46KOP0Gq1sLCwIMYilUoFwWBQ6kZarZaYhZTLZbjdbpw8eRI+nw+Hh4fidhaJRAQoxGIxzM3NodlsolAoYDAY4PLlywgGg/jjP/5jXLlyBefOncOLL74Iu92OVquFWq2Gw8NDuFwurK2tYTAY4LPPPhNDk16vh3a7Ldbb1WoVKysriMVi2NnZgc/nk/5vfr9fkly32y1GByrgYAJIlgwwl8j1+32pgaHLpdvtRq/Xw71792Cz2fCd73wHv/mbv4kf/OAH2N/fF9MJYx2ZemwjO8bxqMfn70ZmDjA3SOG2anNlBsHkJJZMZU/UueCxzJgts5gkk5wUxzFvx712nBxT3eZxXpu0jXF7dY4mgc9Hnbuu6yiVSvjBD34g8jeXy4V79+7B7XZjbm4O8XgcP/3pT8cYZvXedDgcWFpagsvlQiwWQywWw4cffohsNiuMTTgcFinzd77zHcTjcfzn//yfpUm4ui/2b+T9owIklR1WWWLjfa3ejwRjBE+s7VJloASOZNL8fr+AnHq9jsPDw7G6N1UiqUo6uc/RaIRqtSr1bQR+XJwiuCHAIbtkt9vRbreRy+UAHIGwSqWCQCAg0kKv1yvmHmQr2TB7MBjA6/XC6/WKxDASiaBSqYjxCduuDIdD6fuWz+dlP8CD/nmNRgOhUAhOp1N6s7ENQCgUQqlUkutKcxMGmT3K2VlTSbdOPhc8Hg/C4bDMCRcAuKhAMGmzHblUptNpBAIBzM3NIZvN4nvf+57UU/6640sH4CwXSiussMIKKx4VFy5cwNmzZ5HNZpHL5aDrOi5cuDDWzHdxcREulwuHh4ew2WwC5IbDIebn5xGNRsUavdPpYGZmRiyubTYbPB4P4vE4crkc8vk8wuEwzpw5g9FohP/yX/4Lbt68id/4jd/A+fPnoWka8vm8rBAnk0mkUimRX0ajUSnUB44SFEqSVlZWUKvVcPfuXQDA3NycgL1bt24J+8DVZSaVAGQl38g8MYyAgkYsTODZ5HYwGODevXt488038frrr+ONN97Aj370I2xsbACAJG1qssmE1Qgazeq/jmOvjGDPKK80OgQaE95J567GJMA0CQSajZOvHSe5nLSvRwGwR4HD44496f1JYXZc4+8/zz6r1Sreeust6LqO3/zN34Smabh16xbK5TK8Xi9isRiee+45bGxsIJPJoNVqCXDx+/0Ih8NwuVyycOJ0OpFKpSSh/9rXvgaPx4NAIIBbt27h2rVrODg4eKheMhQKIRQKjTXNNjJOqjnIJNbV7H5kvakRCAIP+r1R0sjva7PZRDabRbPZHAN8rBGjtI/3MkEgTYs4VrVGkG6Q/A40m00BxmTH5ubmMBwOUa1WxSmXjCY/2+l0RCbebDYBQJQJBIzAEavX6/UQCARQr9fRbDbhdruljowAmvsGMMZUAkfSVz4r2LaF6ge246DZCOedDcop/abBiXrN2KTb4/GIpJKmUGwmzjo4r9eLSqUCh8OBQCAgi3GUkj6J+NIBOIuBs8IKK6yw4lFx4sQJbGxsoN1uQ9d1nD17Vmoput2uSGOKxaLIc3K5HBwOB2KxGPx+P0qlElqtFjqdDgKBAHq9HsrlMnw+H/x+P5LJJLLZLEajERYWFjA7O4t79+7hL/7iL+BwOPC3/tbfEovrzc1NWfm+dOkSQqEQ8vk8isUiZmdn0Wq1kMvlJIGh1ff09DT29/fx/vvvY21tDc899xyazSYGgwGKxSIWFxdRqVQk4eXqtq7rwgYAGLPlZqgNsdVaKzpTcn9Mvnq9Hj777DP0ej1861vfwssvv4zRaITd3V20220Biyo7oR6TSRrjOIZsknRSBRcqkFNBnPGYx0kmJ4WaCBpbHxwH8Izv/TzHfBxAeNxYzfYzib07jgk87j0zMKm+N2ms7XYbf/Znf4aDgwP8w3/4D/HCCy/g5s2buH37Nm7evCmA55lnnsHW1pbUgf7Gb/wGXnzxRWxvb2NjYwOFQkHkjHNzc1Lrtbu7i08++QSFQkGs4VUwz6bNvJ/5j/viQoPKcqkSXWNNKZk71pjREp+v83cyPwQntPJXG5ar310eo9lsyr7pHkmGnSwZe7nxPFjTBUAAVafTQTKZxMHBAYrFIiKRCKampmS8bD8wGAxQq9VEdunxeERCqus6fD4fZmZmUK/XxUSpVCpJI+x6vY52uy0AmbLJ0WiEcDg8JpekwQhZMwDiZKkaMwWDQXGI5PXs9XrCuJKtLRaLMh+cS5fLhUQiIVJJPp+oamD7Bl4fGlb5fD5hR4PBoIzvScSXDsBZNXBWWGGFFVY8Kr744gsMBgM4HA7MzMwgk8lIk+VkMik1G0yI9vf3EQqFkEqlcHBwgHq9Lrb+CwsLyOVysm0oFILf78f6+jp0Xcfq6ioWFhbw13/917hy5Qqmp6dx7tw5WSFmQX80GsW5c+fg8/mwvb2NWq2G1dVVdLtd9Ho9JJNJASqUFu3v76Ner+O1117D/Pw8bt26BQAi32StidfrFTdJulEysWMST8mh0YTByCjoui4SKiavyWQSDocDvV4Pd+7cgcPhwKuvvopvf/vbeO+993Dz5k0AkATKKJtkYmpmbmIEYgyVweD4zVoQGH/y2EZQZzae4xirSazdJEB0nDTxceSVk7Y9Dljx/UlSyOM+Zwx1Xiexfo8zhuPO99q1a7h//z6Wlpbwne98B//oH/0j/PjHP0Y6nYau67h8+TIcDocAMbYfeP7553Hjxg1h7ChZPjw8xP7+PqrVqiTl6hhtNpuY/bBelEG2id8VdcxqzaYKrtT7z3ivEQyq9zRNM7h/9kSjaYlqCsL9EzQZTYJarZY0yFbr9si8qc27CdaKxaIwaPF4HMFgUNhKGpR0u10BOPzeJxIJYQr5HKlUKgK+arWauHjW63UAkNo7yjqDwaDU4GnakQFKPp/HzMyMyDcJgt1ut/SWC4fDYi5C8xIAwgoSBAMQtQDrIjn+6elpAWfNZlMYWJvtqM0AQabX6xWnS9a/sQ6a9YJPKr50AO6IgbNcKK2wwgorrJgcg8EAq6ursNvt2NvbQ6FQQCwWg8/nw+bmJgKBgBTnt1otTE1NYX5+XoCez+dDKpVCJBLB9vY2+v0+Tp8+Lb2N7ty5g2AwiLNnz8Jms+EP//APsb29jeeee07ATr/fR6VSwXA4RDwex9LSEprNJn7605/C6XRibW1NannC4bAwZuFwGPV6HcViEbFYDKdPn4amafjhD3+IXq+HtbU1kX5qmibn6XA4xGFTTTwJ2piUqyyVangCjCfirVZrDPzFYjHp0XTr1i0MBgP8zu/8Dt544w3YbLYxOacZ2wZAJGEqaDSTF/J1JmpmSbMRFBKgqsk4WRQ1zICNCjqMgFZ97zg55eOAwkfFcdsbWcRJIFY9p583jmMT1TEYfzfGcZLQRqOBmzdv4tatW0ilUnjqqaewvLyMdruNzz//HA6HA88//zyKxSI8Hg9sNhs++eQTNJtNHBwcIJPJyKIHa+eM14pAIhAICANEYKUyb6ockJ9XFwpUWa6u62MsnXr/qcwbJZqU7bH2azQaoVgsIp/PI5fLiXTS7XYLAFRBIj9LCSRBEK37OV673S7unpFIBMARg5fL5aTuFoDU+xLo0BFT046kql6vV2rmCKBZL0gbfzJ+BESZTEbmgzV5bA/gcrkEPLKWlj3cKE/k95afBR6AXjpIttttkTrScMXlcgnDyGvAe2B2dlbMbXq9njQar9VqiEQioibg+JxOJ6LRqNRpUuJJY5onFV9KAGf1gbPCCiussOK4OHPmDNrtNjY3N9Hr9TAzMyM1GV6vF7Ozs6jVaiKZDIfD2NvbQ7PZRCwWkwJ8Nq+emZmR/k7ZbBazs7M4d+4cDg4O8Nd//ddot9t4+eWXRXbExMbn80mLgC+++ALNZhOhUEgSKXXVvlKpIBaLCQO2uLgo7peZTAbxeBwLCwsYjUbC/vFcer0e0um0mBUQ/KimJkxACYJUGaIZo6BpmkhQ+X4qlZIEiHLR119/Hd/4xjfg8/nw+eefS2JlTO7VejizUAGnWhNkZAnNWgeo+zUCMPVvYz2g8fjqe49ioB6nFswMPBqB0XGg8Lh9qdscB9aO28/jgLDjjmOcs+P2w/tN/ZnNZpHJZMakjbTYp9Mhr4Xa00yV1annod43fr8fsVhsrF+YKp9Um9Gr56kuPKigXm3gzc+pMk31PbLV/Ey320WlUkGhUBDwprqpqlJOtScjASaBhM/nkzpeyhz9fj9arRYCgYC4XTabTbHgJ0ALBoNwOBzS9401X7T7Z+NvjocGSYPBQPqlqedHAErwRdCkaZo4PPK60iAqHo8LW8pFJ9Yk67ouzKCmHdW5cTuCKj4zKXfnNSDoW1xcFCMqFbyxho6v+Xw+ZLNZDIdDWTBji4NarYZ4PD5W//ck4ksH4Jx2m1UDZ4UVVlhhxbHR7XZRKBSkFqJSqSCXy4mcand3F06nE8FgEO12G3fu3JF+cWtra6jVaigUCggEAlhaWhLXtHw+j5WVFczNzeHq1atYX19HOBzG888/L+CJfZ6Y/Pn9fty/fx+lUgnRaFRWoSmnYlIWi8UkUaGkh72ynE4nZmdnUSqVcP/+fUQiEUmaYrEYisWitBZgDQdX7QHzBF9NQo2JK4ONhtUEna5wvV4PN2/eRLPZxG/91m/h61//OkKhEK5evYpcLier42aAxQyYqWFkx8ycKNVWAtwnE3Ozfao1TcaE/zgppBHkmG378wCoxwFvxrkwAyrqcSeN2QxcmZ2P2fwbmTYCYHUbs+OpYbTcZxjrGykvpNW72b1jDLN5JQMWDAYRjUbHGCOVgZsErNXgGFXGjtuq7qcEjLz/NE0ThosgjM+OXC6HRqMhUmPjd0/X9bEG1wREAMaeCayJ4zOADpMEMrVaDd1uV4DJ7Owspqen0el00G630Wg0pL0AgZTX60W73RbwRqkia8tYz8vxExjT7ZHyRAImsp4AhL3b3d2Fw+HA9PQ0dF2XGjOb7agNCkEf5ZQAEI1G0el0BHCzh5tqDkO3SvahA46eu6oskw6XNCmpVquYnp6WhS72+eR1YB3fk4pfCMBpmrYNoA5gCGCg6/pXNE2LAfifASwD2Abwv9Z1vfyLDfPxw27VwFlhhRVWWPGI2NjYQDweRzwex507d9Dv9xGLxRAKhXB4eAifz4doNIpmsymW/mfOnMH09DTu3r2LdDqNmZkZLC4uYjQaYWdnB4PBAE8//TTcbjd+9KMfYTAY4OTJk7Kizh5vTEKmp6eRyWSwv78PTdNw5swZVCoVaUjLhGw0GklxfavVgt/vh8/nQ7VaRa/Xw9TUlIw7m80iGAzKqnckEkE2mxX5FPsXEUQyCGpo+c9kExg3MAHGpYlMMFut1lhdUDKZFBOC+/fvo9/v4zd/8zdx+fJlhMNhvPPOOzg4OBBrdQAPgTYew4zxYDDJNQMOZHKMLQNUwGd0GTQ7hhHsqPufxMJNes94Hsb9mW3z88RxgNwIes22M4LBSdswMee1A8z79Zn9fdy4HjcexeqZSTnJ/IRCIWGb1Hkwsm9m52wM1U2SQVMSlTGk+yMBGBtdA0fNx/P5PPL5/JhbIsGeyr7pui5giD3Y2HqAdWgEd36/H51OR+q+YrGYfG4wGKBUKiEWi2FhYQHBYBDlchn9fh+9Xg9er3fMFZKsHaWNBNGapo0xcASMbJLt8Xik1q3T6YjDYzgclho7OmBubW3Js21hYQH1eh3lchkOhwOzs7Mol8tSA9jv97GwsIBarYZGo4FyuSzzq8pTgaNnWzKZlPYq7JXH98hMZrNZeL1e5HI5tFotJBIJMU9hawdN0+Dz+VCpVMacM59E/DIYuG/oul5Q/v4fAPxQ1/X/SdO0/+Fnf/+ffwnHeaxwWC6UVlhhhRVWPCII3n74wx+iUCjgxRdfRCqVwv3790UqU6/XUSqV4PP5cObMGQyHQ7z//vsoFAo4c+YMFhYWkM/ncXh4iJmZGZw+fRr5fB5Xr17F8vIyZmdnkcvlEAgEUK1WEQwGkclk0O/3MT8/j3K5jEwmg6WlJfj9fvT7fTES0DRNeic5nU6plSOzxpqTRCIBAEin0wL++BmXy4WtrS3ouo7p6WkBj6oEjYkiEzKV/VKlW0ZAQrZFBSuspWGClUqlhDHc3d3Fn/7pn+Jb3/oWzp07h1AohB//+MfY2NiQ1gyqKYPKwBjDaGqiJrkqY6EybyrrpsrZ1J/q/tTzMrJsRsD1uEyZGo8CLY8CQmahvq+CURXAmO3jOKB23HEetb0ZO/mofZnNs9k+HyfUfdOFkU26ybyZjV+9D7lIoQI8Wuqb3Q+8D2mIQvaLf6sNsXVdl75r6XQajUZD6rn4WY6TTA+NQHq9noAmn88Hp9Mp4yLzVK1WhbliPVkmkxH3RV3XMTs7i8XFRWxtbaFQKEDTNAQCAfn+u91uxGIxdLtdaZ4NQJwpgSMmiwtNNDWx2+0Ih8PSiy2Xy0m7EUoUaYzS6/VQLBYBHLUimJqagtvtht/vx/7+PqLRKMrlIx6IfeUikQja7TY6nY7IL9leYjAYIBKJwOPxoFaryZgrlQq8Xq9cY9YQ6rou4yPwZN87qh0ajQZsNptIPHVdl3l5UvGrkFB+B8CrP/v9/wvgx/g1ArgjBs4yMbHCCiussGJyeL1e/OAHP0Cr1cJLL72ESCSCW7duwe12Ix6PI51Ow+PxYHZ2FjMzMyiVSigWixiNRrh06RKCwSCy2SxarRZOnjyJUCiE7e1t7O7u4ty5c5I8BAIBSd52dnbgcrmQTCaRz+eRzWaxuroqRgTxeFykmHa7HbOzs9B1HZubm7Db7UilUrL6TetzynhKpRJqtZo0Eq/X6/jLv/xL2O12XLx4Ee12Gz6fbyypolkAZVhk3QiA6GJnBiSMkj0GmThGKpWC3++XJO0v//Iv0Ww28ZWvfAW/9Vu/hXfeeQd3794VZ0w1wQUwNg4jqJvEfgHjLRDMQJymaQJQB4PBQ7V3qnTzUUDtF2HOjPP3OOzdpH2onzEadxjljCqLahzzJMBlHKeRpTKeg9m+HsXI/Txs3HHgUL0PKP/z+XwirVPlmQQcKnM2aUwqw2NsEE/QRbt+SqbJkhmZ5E6ng0wmg3Q6LbJm4z3O+58mH5RWqrVnfCaorQLoujg9PS2MXK1WQy6XQ61WQ7FYxNzcHILBIHK5nMiwHQ4HfD4fOp2OyAbJyvt8vrG6PRqYsE5NdYT0+/0Ajgxp2IuN9Xp8NrJVwHA4lGdTIBDAcDjE+vo6pqenMTMzg3w+D6fTiXA4LPJQTdNQLBalhUKhUBA3yWQyiWAwiFKpBJfLJQ68Xq8Xuq7L+fHaZDIZuFwueZaqjcgJZjVNk7FSEUGG70nFLwrgdAA/0DRNB/D/1nX93wJI6bqeBgBd19Oapk2ZfVDTtH8M4B8DwOLi4i84jAfhsGvo9i0AZ4UVVlhhxeT4T//pP0HTNFy4cAG1Wg37+/tIJBIYDofY3t5GNBrFiRMn4PP5UC6XpSj+mWeeQavVQrlchs1mw8mTJ8XWfDAY4OzZs2O1FD6fD8ViEeVyGaurq+j1etjd3cVgMMDFixdRrVZRLBaRSqVgs9lQLpcRCASkF9P169fhcrmwuLgoK8EqIOn3+8hms6hWqwiFQrJCXS6XceHCBdlXuVxGr9fDaDQSk4JarSZyKrvdLqv4wAMWjM6XKnMFmFvlM2hsQoYvlUohHA6j0+mgWCzir/7qr1CpVPDiiy/i29/+NmZnZ/HRRx+hUCig2+2OuWIamQ61pk1Nws36x6lSSVVOyW3UNgQq68JjqIDPCGTV4xjnQT3+o4CYEYA8jvxwEog0e3+S/NPseGb7Og60GmsOHwV2j2PWJo3FuP0k0GacJ8rbmMDTrEKtVyMQUR0iCfwngTgjG6eGy+US+TKBBoEh7ynWY7HNQTqdRqvVEvZaPRcex9gHjiCJckU6MBKAEWgkEglEo1EAgMfjEeaoUqkgkUiICUg+n5fWJGzB0O/3kUgk4HK5RIXAsRHAsI9bMBhEpVIZY8MpFe33+2P3Cs1L+GwhOAwGg2MSz3a7jVarhWw2K6zd3t4ewuHwmNyT4MxmO2oHEY/H4XQ6kU6npZ642WyKQRVlpWQg6fJLwEf3Tvaa42dpfNJutxGJREROOj09bXrP/jriFwVwL+m6fvgzkPaWpml3HveDPwN7/xYAvvKVr/zSNI92mw2DkfmqkBVWWGGFFVYAR4287XY7Go0Gms2mODUOBgOcPn0asVgMwFFvoUKhgIWFBczNzSGTyWB7exvz8/NYWFiArutizR+JRNBqtaTvWrfbxRdffAG/34/FxUXs7+/jk08+wcrKirQXcLlcSKVSImGcmpqC1+tFoVDA1taWrKBrmib1LWwmCxw1Gm+324jFYtLjbTQaIRqNSpNcl8uFQCAgTYHJ0tntdml8rNqlDwYDMYwAHiSSaiI2CaQw0WXPLeCoziQWi+HkyZMoFovIZDJ4//33USwW8frrr+Py5cvw+Xz4+OOPsb+/L7UmPL4Z08PjqrVsqoPko7Y3vgY8YN04DzxfdZ8qQ2JWZ8XfJ73GeJS00Djux2HkjmMkJ71vHIvxfIwy0l/k+I8bZiDTDPwZX1cli06nU2pJyUCpoMvoCqm6Tj7O+NXXeTy/3w9dPzLeCIVCeOqpp9Dv9/HZZ5/JeLvdrjxTWGtFYwzj/nn/qeY7rDtkHZfaRoPHIOM/Go3GarQoqVRbArTbbXS7Xfh8PpE4ErSEQiEAQCwWEwlhOBwWUMl+aQCkpo+LId1uF263W0AnZd10edR1HaVSSZjEUCg0Blzj8bgAKpvNhkwmI8YspVJJFp1ocuJ0OqUFwMHBAUKhEEKhEJrNpgBVp9MpAJFy8uFwCL/fLwtgwWAQ6XQadrsd3W5X+tSxhQCl6JST/jxM+S87fiEAp+v64c9+5jRN+2MAXwWQ1TRt5mfs2wyA3C9hnI8dVg2cFVZYYYUVjwomF6FQCOFwWGrVVldXpdCe/1ZXV5FIJHDr1i3s7+/jzJkzWFlZwXA4RD6fh67rImfsdDpoNBooFAo4ODjA/Pw8PB4P3nvvPRSLRXzta19DKpUS58apqSm0Wi2RQrVaLRQKBbRaLaytrWFjYwO9Xg/PPPOMrB5vbW0hEonI6nY4HBY5D13mAMiK9sbGBur1ujTxJau4vb2NZrM51peKFv1mfdjMZIVm4I3vd7td6ct07949rK6u4qWXXsKbb76JnZ0dXL9+HcViEa+88gouXryIubk5/OQnP8Hdu3fFSly1UldZCLVWjcc0gjOGEeSp+1NBHJNPtVecOifqfs3Of1L8TYHN44K8nyfMQKcZyDNKAx+1T+O2k8Dtce9NAm6Tjq+CMDJdKngjgFMNQ1TWjYCDzJh6DscBNwI+yhv5e61Wg8121OT693//9xGPx/Gnf/qnAr663a70X8vn88LoTJoH1aGTzBvHTOAUDofldzo81ut1xONxYZ96vZ64zobDYZGStlotqT2jvLBer2NxcRGdTgeHh4dj7pFut1ueL/1+X6TflUpFDErYADsYDIoagK0H+MwbDAZS08uFL0oYdf2ojjCfz0PTHhiG8Lrl83kBXaVSSZ7jgUAAdrsd+XwePp9PapjVRuk8hs/nw+HhIcLhMBYWFpDJZAT8VavVMYktQfJgMMDU1BRcLpfUy7GH6JOKvzGA0zTND8Cm63r9Z7+/AeD/DuBPAfwBgP/pZz//5Jcx0McNy4XSCiussMKKR4XNZsPMzAzsdjsqlQqCwaD0CKK9dr/fx/LyMhwOB65evYpqtYrnnnsOU1NTKBQKwnbZbDbplaRpmlhtnzp1CgBw584d2Gw2fPOb34SmaahWq4hEIgiFQmLXrWka0uk0AoEAPB4PQqEQPB4P5ufn4XK5EIvFkM1m8cUXX2BhYUEYOAI5ypmYaAWDQQFAwBFgnZ+fFwklV5npNseVeKMDJGDe+8oIZCYl34PBALVaDbquS02ex+OR5PLw8BDf//730Wg08Pzzz+Ob3/wmotEorl69imKxKMmTaqyiyh+NtV7GUJNhhtF9kgm7+jpfY5KpJtKPkjWa/a6CETM2blKYSRKPY8PU8TyO3HDSMY8Dbcb3jdua/W3Glk36/XFZDS46qHVslE2SdVMXJ4xSSZVxVvenjoF1bur1U1k8gip+PyhnrNfruH79OjY3N2GzHfU/azQaSKfTKJVKwrwZQSp/V/+p/e4I1iiR5P1LmaHX60UsFsPi4qLU2ZK5Zz2q0+lEJpORfmZkpzRNE9l4rVYb++6yJQEXh8imkRWkuQrt/NkChdvScMTr9aLRaAj7R8MmfoYmIbw+ZOHIgnGeWq2W1LKx3i6bzcLpdCIQCIjzJvvEAUcsYTgcRrlcFhawVquJtLbVaskc85nDNg88P0rpXS6XLDI9qfhFGLgUgD/+2WQ6AHxX1/W/0jTtKoA/1DTtHwHYBfB7v/gwHz+OGDirBs4KK6ywworJMTc3B7fbjUKhgFgshvn5eQwGAyne93g8WF1dRbvdxu3bt+H1enH+/Hk4HA7s7e2NSRlpM12v11Gr1RCNRpFIJFAsFpHP55FKpUSiqes6QqEQbDYbCoUCQqGQgBTKJfP5PHq9npgIBAIBXLlyBfv7+5idnZWkIR6PiyRIrbsDjhIcTdPgdDqFiWOfpu3tbczMzCAUCglLxuSIq/4ul0vqWMxAmhFMkMUyk9yx3m5rawt/+Id/KE6bBJnlchlvvvkmDg4O8Oqrr+KVV15BKpXC+++/j93dXZE6qUkyx6CakwAPtyIwG7vKbKisncrM8TMq8FNZGuM8GP82vm4G9I57bxIoepSc8lHvHQd2zY5lxpwZAZlxf2rdohH8Go9jxnYZXzc7lgqmCN4I2tRaN9WchtedbAzZVhUYqcyrGqopDsPtdgtYcLvd4r56eHiI7373u3C73dJcvFar4fDwEMViEa1Wa0xiPOl4HA/3TcaL/ctYP2az2eDz+UTimEgkUCqVpKccDZG4TxqLcDGJMuuVlRXE43Hs7u6iXq+LqyVBFtk9Pr9KpRKSySTa7bY4YrbbbVmcYd84tk3hXBEIUoKo6zr6/b64TdKYZG9vT+qIy+UyNE2D2+2WPm+qCUqj0ZC2KTSPUmXf3W5XWhPYbDakUikUi0XYbDZMTU0JI8rm571eD06nc+y5WK1W0el0EAgExlrNPKn4GwM4Xdc3AVw0eb0I4Dd/kUH9ImExcFZYYYUVVjwqRqMRqtUqkskkEokECoWCJA5qc+9CoYDZ2Vlxbmw2mwgGgwiFQqjX6yJ/LBQKsNlsiEQicLvdqFaraDabWF5eFkc6l8slrm60uu52u1LDRpe1QqGAeDwu8qhbt26h1WphaWkJbrdbwCcZLBbzz8zMIJ1OY2pqShIVlZVjQre0tCTObel0GgcHB7KSzvYCqiMkMLkOTn1/EgvF+aYpQavVQiQSQTQaRSwWg6Zp6Ha7uHbtGkqlEl577TWcO3cO09PT+OlPf4ovvvhC6veYtKpAhCvmZuMwhuocaAbIjHJLNaGfJDfk78eBq0fJDI2vTwozpvNRYbbNo8Y5CeCZyRqNc6OCXmM9odreQd3OyDAaQbQRfBIkkmUjcCNo43sM1bBGZXMnnY/Z2NTzpGEJ5XlOp3NsgYES4uFwiHq9jr29PVQqFZE0Gu8H9dzUOaP8MhAIjNW+EQD2+31hz9geYGtrC5qmiW1+LBaDrutivDEYDODz+RAMBuV5duLECXi9Xni9Xly8eBG3bt3C7u7uWG2p0+mU2t5EIiEtSQjwKIEcDAYIBoNwu92iDiCLx4UYTdNEtcB+cWTs7Ha7sIPhcBilUgl+v1960bFlgd1uFxmqx+NBJBJBtVqV50mv10M0GkW/30cymRxz1qxWq9JrkwtiHIumacLqcdz9fl96ebKGzmazSVuCJxG/ijYCTzSsGjgrrLDCCiseFYPBAPPz88KE2Ww2BAIBkRQVCkftTaPRKLxer6wMMwmhexyTOzbm5mq70+nEiRMnMBwOpQcc7baBo1q1RqMhQM7n8yGTySCfz2NmZgbRaBStVgvVahW1Wk1cKqenpxEIBHBwcCCr+dPT04hEIkin09jc3MRgMJDEjXVArIGhYxxlmul0GrFYTFbcCSgZZmyKyroBD1v3GxNjNfkmm0bTlk6nI9KudruNzc1N5PN5vPDCC/jqV7+K3/3d38WpU6fw3nvvYWtrS8ZFMKDWtamMhtGYRP2cem7HtSmgtMt4vupccDvj70Ygqf5tBpKM+zDGoySTf5NQxzkJ+B7HtBlBm7oPVY6ofkcIBsxcQ/k59TjG8yPbpta6qQYlKpOmfobbMEknuzRJGnwccKQEuNPpAIDU2Q0GA7hcLpEDsln2wcEByuWy9ClTz0udc46T7S14/5Ft0zRNWgYY54v90yqVChqNhrB2NPOoVqsAjpqGu91ueL1eYaZcLhdmZmbw4x//GM8++yyeffZZqfHlmPmsI1hqtVqIRqMCljgXZAi73S5yuSMLDD6DWq2WgDQCI5qp0CHS6XQin8/D4XBgenoajUYD4XAY/X4f9XodHo9HJKFkHHn/VKtVuFwuUVIQhE1NTaFWq6FeryMcDotsnUwlWwywXo7XklLPaDQq7ByvLetk/3uVUP43GXabDYOhBeCssMIKK6yYHIuLi3A4HMjlcsKczc/PY3t7G7quS2LQ7XbHbOaZ6JPRGg6HiEajWF1dFfBGl8der4darSYsU6PREKc3urgxcaDkiBJJgiwygFxdHw6H2NjYQDabRafTwdzcnDQBz2azmJmZQSwWg8/ng8/nE6YwHo8jEAigVqthaWkJkUgEH374oSRRAGQFXU1KmCCS+QImS76YmJsxGmqwdoYSNq7os7dSq9XCu+++i62tLXz729/GM888g2QyiZ/85Ce4ceOGGCCo1v7qMVSgYEzS1cTZKLOcFNyXEcSpwE79/TiZJONRx3wUoDPu57j9m8kgjceYNAbj3+pnjX/zJ8GUKnPkcYwgTp2/Sfvj5whwWHdGQw8ez8xlkmwcHQhZw8VQgb+RQTQuCGiahnA4DLfbLYYlZMtUu/zRaIR2uy3grdFoCBA67lqSbVNZRBqIEKgC466sdGYMh8O4f/++jKfdbuPEiRMYDAZot9uoVqviqBiPx9Hr9ZDP5zE7O4tGo4F3330Xm5ub2NvbQ61WwyuvvAIA2NzcFHdeNrWmZDGRSMg1IQjj3zs7O+KC2+/3US6XRWoaDAbFrt/hcEgPOko67Xa7LDQFg0HUajVhzrjo5fF4REbJ+5jqCUooKalst9vI5/OYmpoScLewsCBNwMPhsLCZBGkEmKy9433H9gJUK1gA7pcYFgNnhRVWWGHFo6JaraLVaiEYDMLn82Fqagr37t2Dz+cTkxDWO5DhodX1YDDA1tYWSqUSFhcXMTMzg0qlgkwmg0QigUQigX6/j1qthqmpKXQ6HdRqNczOzoqkqFqtPmQMAECSII/Hg/v370vdR61WAwA0m02xA19bW5Nks91uI5FIiJsc7cNbrZasRA+HQ6RSKVQqFbz55ptwOBxSw1EoFMTJkoYJTEiZMKo1REagwqTHmPxOCjKTnI9er4dYLCasYbfbxcbGBv7jf/yPeOGFF/Dyyy/j937v93D69Gl88MEH2NraEkmYKvMCxlk2laUDHmZ7jHV1xjHynxHsTWLkHkdCOel9I9PJ8R4XP8/7RsbN+L4ZK2S2vdnv6vbqPyMTB0yuUzQ7DkGSWutGdopgQd1WBXB8z+VyiYyZoRqbqMc1NnTnPl0uF06dOgW73Y719XWpl6TJBZlnmndks1mUSiU0Gg2pUTWbW/5UwRvBJt8j6KnX6wIYaNTC5trb29viRjscDjE/Pw+Hw4F2u41KpSJSy3g8LuYgZNb6/T4KhYL0R9vZ2UE2m0Umk0G73ZbFJgI5XddlkQgAAoEACoWC9KLLZDLyOpn2bDaLSCSChYUFWUjS9aNm5vzul0ol2O12cZjkOTcaDZGwsxbQ5XIBgDznCOYIGtlKha7Ac3Nz0m9veXlZHISdTifcbre0SaAqgLJcnnMoFEImkxGgyPq+X4QB/0XjSwfg7HarBs4KK6ywworjg8nA1NQUHA4Hdnd3MRqNsLi4KFIrNuJlQl0qlbC7u4tyuYzRaIQTJ04gGo0im82K/TZlPx6PB+fOnQNwZH0dj8fFda7X6yESiUjS1+/3hYliEf3Ozg7q9Trm5+fh8/kEtAHA6uoqUqkU9vf3xSJc13XE43FplAtA6lDY24myKTbYdTqdOHPmDMrlMtbX10VmxeSIEisVmDGhNza55u/qNvzdbBvukwnicDhEr9dDp9MZazJcqVTw1ltv4eDgAN/61rdw/vx5LC8v4+OPP8ZHH32Ew8PDsZ51ahB4Aw83+zaGEcwREKrMI8MIxlTAZZSOmrGV6jyofxvBktlcqvtXx2LcTmUmzPZrNhbjvo3vT2LJ+DkVrHFOjbVkbPJMYG00vjFur7JcBHIAHmKp1DGrcknawKvgDRh3IjWCN+P5ejweLCwsoN1u4+DgQLbludABVtd1lMtl5PN5VKtVAW+TrpF6HOP1stvtYww9zTT40+PxYGpqCgDEOImLKKlUCh6PB8ViEaVSSXqv0QHS6MpYrVZRqVRkMWdqagp7e3vChqkMFBuUsxXAzMwMCoWCqBJowOT3+zEcDqXub3p6GlNTU6IqcDgc0oCbxiOsK8zn8+Lk2Wq1EAqFxP2RRi5mCyY0NalWq5idncVwOEShUMDMzIwoIGZnZ+Hz+bC3twev1ysSep/Ph0ajMXZPs8YumUxKewEVNPP58KTiSwfgnJYLpRVWWGGFFY+I0WiE5eVldDodlEolaJqG2dlZ7O7uimQJOLKm7vf7aLfbqNfrqNfriMViYrdNMHbp0iW4XC5ks1lxW6tWqygUCrh9+7YklCdPnhxLtnq9Hux2u4BCl8uFK1euwOVy4eTJkwgEAmg0GvD7/WNuiTdv3gRwtMrtcrmkHQBw1ETb6/Wi0+mgXq8jGAwiFouJs2W9XsfJkydht9sRj8eRTCYBQPpC0aWu2+2OOfYBD6SURmDwKNCiSueA8RolXdfFzZOsQDQaRTQahd/vR6/Xw82bN7G3t4dLly7h5Zdfxre//W089dRTePfdd/H5558Ly0BgaKw14jGNbQOOuz/U/m9mjJuZBNHITqryQcZxgMo4L0ZApe7PCORUOaDKRBmPNekamYE343iNLKEZy2b8m59Xx2R2nurxAIhkUG1MbSaVNDJw7CtWr9cfAm5GkGZ2rtyOrLvf78fBwYGwvcbr5PP50O/3sb29LawVzUqMYFc9Lu9FLjRw/GTA3W63yD75OYJSmqc0Gg2RHg8GA8RiMXg8HuRyOdnnzMyM9GOkHHxhYQGhUAiFQgFbW1si0Tx79iyCwSByuRwGgwHcbjfi8TgODg6g67pIKCuVCuLxuDTSjkQi2Nvbk4UhMm9016XTZblcHqshc7vdcu9GIhFh3hwOByqVCkKhkIAlj8cjCgW2WSGDDxzVAbbbbcTjcXi9Xuzv78szJJ1OIxKJwGazYWdnB8DRs7NSqYibMJtzezweWeCbnp6WBbJAIAC32y1spNHo6dcdXzoAZ7fZLAbOCiussMKKY2NxcRHFYhE7Ozvyn3y5XBYgYbfbsb29jXa7jWg0CpfLhUAggFQqhWQyKSyUz+fD6uoqer0ePv74YwQCAWSzWWjakSvb559/DqfTiUgkgtOnTyMcDiObzcLn84n1uSpxunnzJgKBABYXF6Vejn3iyJzRTY39oWgmQPMSn8831lCXrm66ftT3KBwOy+oym/DSIIU1aEw+ycaRISM7YNbcmr+rCbkqkzPKGFXGhQkRkyKyhqzd44r/22+/jdu3b+Nb3/oWvvrVr+L3fu/3cPbsWbz33nvY2NiQWiPVVEM9rrHtAEMdJxlBtc7ObMXfDNyZsXPq3Ki/H8d2Gf+eJGOcJLU0A0Tq30bJptlnVJCqAhbj+NVxqdLE44CdelzjvlVmzWY7cvpzOBzCHpkxfKxJWlpags1mE3Z60ryrhjXG43OclNDx+8GFDJWtvXTpEgqFAn7605+Ky6tqVmI238fNIY/Be5Wfpdza5XJJrVehUEA0GoXNZkO9Xkc0GpVaNf5MpVIAjhp+U5odDocRDAbRaDRQLBaF0bt48SJee+01dLtdXL16VVi1ZrMpTGi73Ua5XIbP50O325U6252dHQFk7XZbFg5SqZQ4PbJ1ARtxq8xiKBQSMxFd1wUg0i2Y5+Z0OkW6qQKoYDAojB5bENBsJp1Ow2aziVpiOByKZBM4UmP0+30Bv6yxjUQiAI6eTTabTSSh3W5XVA6Pkkb/KuNLB+AcdqsGzgorrLDCiuPjxo0baDQauHDhAqLRqCSp4XAYxWJRGl0vLy9Lk2s2+qa7G6VVW1tb+PDDD4UtS6VSmJ+fx49//GO43W6pF5mbm8O9e/egaZpYUnPll8YHJ06cQDKZHGsqy/oY1qsMh0NJwrii3u12pT8TDQLi8ThqtRoqlYq0LKDpAevyaOXtdrvFGrxcLsuqPpmoZrMpSaVZGwGVkVFZF26vfob7IVOmAiq6Zar/gsEgEomEsHGHh4f4D//hP+Djjz/G66+/jmeeeQYnT57EjRs3cOXKlTEgpwLJSYYmBAsEbQTnZiYnTEBVtnESeDMex/i3GTumzqeReTvuGI86vlHGZ5QqPiqMDJwRfKqAy8iKGT+jMqEMMl7qNvwME3XVYVL953A4pCdbNptFs9kcG68K5tXxqsdTx6Fpmphq8L7hYgslxZFIBBcuXMAHH3yA69evo9FoiGTSTHJr/K6YjYnNoimd5DY8NmvG6FBLKWO9XkcymUQsFpO2BXSLpJogGAwK+GGN3fb2ttSBPf3002LiVC6X0W63hTUja1mv19Hv98WtsVwuIx6P49SpUyKd5Db9fh+RSESUAJRRsl8bZa1utxuRSAT5fF7Aejqdht/vR6VSgc1mkx6a3W5XDESoBGg0GpiamhKDKIfDIRJNSs8dDofIMAeDgTxfuVA3Go2QSCTgdrtRLBbFwXI4HMrzkc9auvTy9enp6Ud+d35V8aUDcFYfOCussMIKKx4V7XYbly9fRjQaRaVSkdVmFvLTFbHRaKBcLuPUqVNix81V7EAggM3NTayvr2N2dhaVSgUXLlzAiRMncO3aNRSLRZEvPvfcc9JqgE5qrE3pdrvodrs4d+4cgsEgMpmMrIqriRvBGtkyr9cr27KRL5MPyqhYU5bP5+Hz+RAOh2Wlms1ue70eTp48iUajMVYLQxkla2BsNttYTRwTXFVSCTxIWJmoqe8RuBEIGWvHAIgBDGVhTN6i0SgikQicTifa7TauXbuGra0tfPWrX8Wrrx41AD979iw+++wzfPjhh9jY2DhWSsnzYMJN63fjuIw/J4E3M7bMeGxjIm8mrVPDuP2k9yYd9zjW0DjeSftXQY6RreL7ZvVvZgwdwyhFNLJuKnghEJmbm0OxWITX60Wz2RQ2qt1uYzQaIZ/Pm4LFSWyhOn7+o3kFAAEfnKN2u43hcCi1pH/6p3+Kvb09tFot1Ot10/5uxwF0BgEovxNkuwGIZJHsO5m1aDSKfD4vBh2xWAz9fh+VSgWVSkWOEQqFpFUGXWwBYH9/X5QAyWQSJ06cQLPZRKvVQj6fF2A4MzODVCqFzc1NAUutVkukjNlsFvF4XJph8xkUj8cRiUSkR2UkEpGWCKzvs9lswpwRlO3v78PpdKJarWIwGGB2dla+76oSgc+dZDIpygOqG/jcJDglq8a+cDRGIRvPesp0Oi098tjMmwYm8Xhcmn3zmUYjmScVXzoAZ7lQWmGFFVZY8ah45pln4HQ68f777wMA1tbWUC6XoWmaJIQ0FllbW5OWAx6PB4lEAvV6HTdu3BBGbHNzE88++yz8fj++//3vY3NzEydPnsTa2hpmZ2ehaZrUkWiaBq/Xi+FwKInQhQsXoGkaMpkMarUaksmk1HjQiIGJi8/nw3A4xPXr16XfG/srsc6jXC5LInP9+nWcOXNGGu6ORiOpvQuFQlKzl8/nEY1GMT09LWYnlG81m000Gg1hBSlNNNZjqQmy0QCETMJoNJJ6NWPCqxqJcJXc5/PJij3ZBlVW9/bbb+PatWt46aWX8Pzzz+ONN97A5cuXcfXqVXz44YciheWxzGrfjFJP9dzUnypzdJw80uyn2e9mdXVqPA6oMu7LCBzMxmtWR2fGFJrtywwoGqWTKoOmbqs21zaCNuM2Rokkk2fK18j0sJ7KyKjypxmbqQI8AhuCRfZQY20V72UC+1wuh4ODA+lr1mq1HqoLNV4Xs3uADDXdMvmeseWBWgvo9/sxPT0tzCSVAIVCQZghShRjsRharRYCgYDMV6fTwf3798dqxVZWVuByucRyv1gsSs+10WiE7e1tkVfncjnZTzAYhM1mw+HhIdxut7jKzs3NiSSSbVbq9brMAz/LBTNKs5vNprD9gUAAsVhMFpA4V6qKwOfzia0/e1pS6l4sFgEc1cVls1n0ej0kk0nUajVpF1AoFBAIBGC325HNZuFwOMQ0pl6vy2JTIpEQZpeOoi6XC7FYTBw3n0R86QCc/WcAbtKqhxVWWGGFFVZ0u13cvXsX4XAYc3NzIour1+sAHiSH09PT6Ha70sjV4/Egm82i1WrJf/gHBwd46qmn4Pf78aMf/Qherxe//du/Lavf9XodhUJBGB/WknB1+tSpU+h2u9Jglg3GKTGiXTUTuEAggFarhVQqJQ1uA4EAwuEwarUaNO2opuTKlStotVq4dOmS9KKjK16n05F+S3fu3MGdO3eQTCbh8/mQSCSwt7c3VktH5o8GC8YaH/Uf3zcmzSojBzzsoGgGrHh+dLYjkAuFQiJ7arVaKBQK+LM/+zN8+umneOmll/Diiy/i29/+Np577jm8++67uHr1Kg4PD8WG3az9AMfCMDJsj1Pzps6HcX/GmAS41H0Yx2YGsszklfzspPeM+zgOdBiPa5RfGlkzIyBTAZMK4NTXVXMRFYwBD/qe0TCDfxMAGvdpNkaz4IICQRQXbbjAoTqRkhXL5/MolUrSQ0xl3SYxbkamU2UpuTjDBt6UEaqvcRGFhiqtVguNRkOeL2SOyA6SjSd75HK55HufTqfF2MjlcmF6ehp2ux2NRkPam3i9XrjdbumbxmcXLf4LhYK4MQJHbJ7dbofX6xVQqDrAUt6o67oAI54HG2dTUl6r1WC32wVYNRoNOJ1OkZtTWhoMBmVxJxAI4ODgQO6dYrEoMvd2uy2qBC5CpVIplMtlMW6hWUu/30cgEEC73Zb7Ix6PS2sB1gJSQlsqlawauF9mOGxHX4zhSIfDbgE4K6ywwgorHo5CoYDFxUXMz89LnVgwGJTaMK5G1+t1hMNhRCKRsVX5mZkZWYm+fPkyvF4v1tfX8fTTT2Nubk6c6IAjKSL3B0Bkk8lkUhwoc7kcXC4XwuEwut2usFcEGV6vV3oPqawYeyglk0mUSiWx5P7e976HlZUVPPPMM9B1HTdu3MBgMEA8HofP50M8HsdgMEA+n0coFMLZs2dFUlStVrGwsAAA2NraQr1eh8vlGqsBURNvVXJIEKbKJJnQmzUDV1k3NQE2snFqbZzX60Wv10Oz2UQwGEQ4HJZEeG9vD9/73vfw4x//GN/85jdx6dIl/J2/83fwyiuv4MMPP8SVK1ewu7srbCLHTWDJRF7TNEnOJ4E1IxtnBB6Pu4jMczZ+3my7Sfs1AgdjjZkRVD6K+VMZNOPx1dfVNg1cnODfKsvFe2WSYYgK4FSAYxbcVpXqqud7HHjmGMhykfEiC8TFDeBBb8PBYIBSqYRCoYBWqyXfAaN0WJ0bs0UKI/NG0MDvuN1uh8/ng67rAsYGgwESiQR8Pp8wTmxkzeeLsXF9MBgUgyWfz4dOpwOPx4O7d++K8YnL5cLq6ioSiQSAIyOPTCaD4XCImZkZnDlzBt1uF9vb28J49no9kXrSxGQ0GgmwOnXqlNQLs/aOiz+092dzbEoaQ6EQSqUSXC6XyGJ53vyuc8ELOFrQCQaD8ncymcTm5iY8Hg/i8bgYQiUSCZTLZTQaDUSjUYxGI9RqNaRSKdRqNTFIKpVKYhDDGmAA0vDc6XRKjzi3243hcCj9NskePqn40gE4+8++8IORDof9ERtbYYUVVljxv8hYWFiAz+fD1tYWKpUKFhYWUCgUUK1Wsba2hkajgWq1ilgsJgYA9XodDodDpD2NRgOxWAwOhwPFYlEcE5vNJvL5PDqdjkh6yBKxIH5paQnlclma19LshLJJJmd0aVMbATNRC4VCmJ6eRjAYxGg0QrlcxgcffACbzYbnn39eZE806KDN+dzcHBKJhDB8TPpGoxGy2SxmZmbg8/mQzWbHkh82wgUeMCVqAntcLRyTYSa3xmbOBGzHSQNp0MDEiU2LCXADgYDUSxUKBXz3u9/Fe++9h69//et44YUX8Lu/+7u4fPkyrly5gqtXr2Jzc1OAG5k91VCF5zepjsxMlmd83SzMgIYKWozJvhpmf6tsncq8mbGJRvBmPL7xtUlSSxWcEbgZ2TDVMZI1lGbHMjpLTgLBRlZNvQfN5kT9jMoA0jBF3R+/t6qElnVg5XIZ1WpVgBvlv8ZzUefX7H31PFwulyxocHHE7/eLJNTlcokTYjAYRCQSwebmJjRNEzMVNWhc5PV6oWkaVlZWUK1WhfHK5/PY29sTw6ZTp04hkUgIQGk0GsKCnT59GrOzs7hx4wY0TZNa2W63KyAMOFqYIrAJh8MYDocIBoPCVHEhimCToJROv263WxauBoMB7HY7EomEPP98vv9/e+8eI1l6nvc9X1VXVdf93lV9756ZHe7OLpdccbGWtKBICbLEyFIYBYlBAlZk5CIrsQDLCeBEQoAoCQIIju3YBgwntC2AMhkrAiTCkixY4s0SSVHkcnd2d/Y2Mz3bPdP3rq7qut+rTv6oft79+mxVz967p/f9AYOuy6lTX51TdeZ7vvd9nzeE6elpyXYYDocIh8NyPvP5PPb29iTqyPOXSqXk8/B60Gw2MTs7K58hmUzK87z+2f0CI5GImKDYKZyOM+q32Wg0xOjmrLhwAo4RODUyURRFUSYxPT2N3d1d+c98fX0dqVQKTz75JKrVKg4PD5FIJJBMJqVegpEvRmauXLkidTBMr+QEljbZPp8Pw+EQ5XIZwWAQ09PTWF1dRbfbRbFYlInewsKC1HRVq1UAkBQlihxOxigK6Sy5sbEh7ouf/vSn8eijj56IeHW7XeRyOSwuLqJer+O5557D9evX8alPfUoie/1+XyaqsVgM2WxWJpdMU+Qky46ocfJtm4W4J/3udEq7X5k7gjVJLNn32XKAq/2tVgvBYFCimrFYTCZdW1tb+NKXvoSvfe1r+PEf/3E88cQT+Lmf+zl86lOfwvXr1/H9738ft27dEjdQjtfuA+dOkeM4xgm2SRM6twByP26LId62z71bfJ0WQRuX1sVorltYuM/DuPPnFkt2miLHS4FmP2fv065rs99nkinKOBHG27a9vv0aO12UUT23yGSvRAoe2+2U55yOrzQE6XQ6J1p3uMdqH8fTUmHtY8UoG1M4mXbI7RiJSqfTyGQyWF9fl/osRu15TBk55rUhk8nId7lSqaDb7UpKtDEGP/IjPyJCsFgsSo+7xcVFzM7OolAoiFDltY6Cltc5Lkbx/Rkli8ViSCaT0lIhGAyiWCwiFApJ/8tWqyWCGRgtUnHsbN3AFgCNRkOuYdlsVjIgcrkc9vb20G63kUgkUCwWxZiJKddM96ajZqfTwfb2NtLptGQwOI4jY2FDdh53Rgl5njwej1zXy+Uy/H6/CMqz4MIJOC9TKAcq4BRFUZTx3Lt3T1ZT9/f3sbS0hEuXLuHu3bu4efOm2Fs/9thjeP755zEYDMSBLRaLIRgMolQqSYplMpmUBratVksK7rvdLsrlMhzHEbv+arWK9fV1sbHmxIopkawvYR0eezixoS/r9jqdDr7yla/gm9/8JlZXV/H5z38emUxGUqparZY4vKVSKWnue/XqVdkX07c6nQ58Ph8eeeQRNBoNSQHlqrfdtNduDcDPSGyBME5UuCMU42rLxk3O7e0oJBiJa7VaEr3o9/tYXV3F448/jp/+6Z/GN77xDXzrW9/C9vY2vvjFL+LrX/86nnrqKfzoj/4ofuInfgJPPfUUXnrpJXznO9/Bd7/7Xezv748dhx2JGxfBckfC3M+7o1f28bBryGxRxM/qPranReXGCc77CaVxYnRcdJDjsR+zTTiY2mhH1LiPcQ20bdHlHp/9+ZleaAtBt/B3HyNbrPE2o8785zauoUFKuVwWF1QuEkxq2DwurdT9PAWOvaABvBGVZNTdNvkBRgYcsVgMW1tbYijC60okEhEDJC7oBINB5HI5VCoVhEIhtFotbG9vS1uQaDSKhx9+GI8//jju3LmDYrGISqWC/f19zM3NIZvNotVqyWIVU5N5bCj6yuXyibqxqakpHB0dIRgMYnFxEQsLC9jd3cX09LSkH9LtlxG9crks+7bPF48B9800y0QiIYtIc3NzODo6gsfjQSgUwuHhoVynWE9nf3fi8TjC4bD0/IzH4zg4OMDU1JQYolQqFbTbbczMzEgUkCYsHEswGEQsFsPR0ZF8Z3uFZO0AAEd9SURBVNyR0A+SCyfgWPfWH1MMrSiKoijAKELmOKPG1pcvX8bCwgJu3LiBW7duIRgM4od/+IexvLyMtbU1DAYD5PN59Pt9zM7Ootvt4rnnnkM2m0U+n0csFgMwak1QKBRkQkuxxpVlRnkODw9lIkxDAjbppbsiJ7yRSERSllgjl0wm8eKLL+I73/kOKpUKPvvZz+Lhhx+WiB3r2Ow6GEatvF4vZmZmAIwmkKypC4VCIsqYhrWwsID9/X30+30kk0m0220Ui0VJ86rValLjRvi57HRI3uaEyh1dIvcTKO5oB/dBowK68LFH1ksvvYQrV65gbW1N0sm2t7fxla98BV/96lfxsY99DE8//TQeffRRPP7448jlcvjyl78sRgqnCaNx43PfHmek4RZGdnTIriEb93ndkalJY3A/Nu65SdjRonFpgOMMSezo2rgooztFctIxsbfnuGl+w8m+LbrG1QzSWIjnz+fzSUSFhhz2Z+n3+9KYmW00Op2O1LfabqnuhQm3+HUfR25jp49y/LwmsK7K5/OJqQYwarydSqXkegIAPp9PjD9sk5JgMIjDw0N87GMfwyOPPIKXXnoJa2trqNVqUifKyNjc3BwWFxdRLpexubmJ/f19ZDIZpNNpbGxsiMGIbZHPtEK/3y8phRQ1XLRiFsLdu3exsrKCS5cu4d69ewiFQohGo6hUKqhUKkin01JL5ziOREKZyjg1NSUGJly8YjuCwWCA+fl5EXI+n09S0OPxuEQcOS5eB5gOPj09LbXCjuMgHA4jmUyiXq8jHo8jHo8jl8vB6/Xi8PBQjGT4O6XbL6OaqVQKR0dH435GHwgXTsB5LRMTRVEURRlHqVRCv9/H8vIystksnn32WbzyyitYWVnBysqKpBbRzn8wGGB1dRV3797FjRs3MDc3J/bbrVYLm5ubACCrtJVKBeVyGdlsFo1GA6VSScw/WDvBIn2u+i8tLYm5AleiAcj2rEX5/ve/j42NDelNl8vlRIwBkEko0z+r1arU7DUaDXzkIx+RGhW+F1PDGAHk+Oh0CUD6wRUKBZm4MOWJky/HcSS1cmpqSiJ9xrzRANuu57NxC5RJwmNcyiDdPukOWC6X8eyzzyKZTEpvr2g0ilAoJBP1r3/96/jWt76Fy5cv48knn8Ty8rKYnRSLRRmvnT5oj2ucoDpNZI2LxLkFnFssATghet3743gojt3Hbpyz51thnBgbF32zUxXt13LM7pTKcceF+3JHAu19u91C3d8N1pFSWLI9hsfjQb1ex8bGhmwHQFqEVKtV6QtGwWbXV54mlt1GMXzOLV5tQx/+/mmkwggPG1SzZ1s2m0WtVhODFf6WyuWyCKrZ2Vkx9GFq98zMDHq9Hg4ODlCr1eT92u229IHc2dnB7u4ubt26JemE29vbIhrZXw+ACKV+v49KpSJphHSF5e97ZmYGw+EQ9+7dgzEGV65cOSFuer0elpeX0Wq1xDGz0+kglUqdiKL6/X7pv+bz+RCJRNDr9WTbZrMpKdPs5cZjxzRKWxSHQiGUSiV4PKOG4LwuU7xxAavf7yOfzyORSODll1+W+j5+X+LxOBzHwc7OjrQ54Gc4Ky6cgNMaOEVRFOV+cGXWGINvf/vbKBQKuHTpEqanp7G+vo65uTlkMhnpqZRIJPC9730P6+vrWF5exuXLlzE1NYVarSYpTqFQCOFwGIVCAWtra2IUwAa2juNIwX6r1RI3NTa6TSQSACD1FnZqGlOo9vb24PP58NGPflTSfzwejxgHkFQqJZbf3GcsFsPc3Bz8fj/q9brsmy5xTJlkmmY+n8fNmzcxPz+PQqEAv9+PUqmESqUiKU+sk6MZCKN8nBRR0HC/70SgjXtuXBSE71mr1aQ2kaldwWBQJnRsdM6o3QsvvIAXX3wR4XAYjz/+OJ566ins7e3h3r17ODw8lAkzgDcJCRu3+JgUYbKFyThDDXdaodssZtz72mLJjmK+GwFnpy7aj9vi0y3o+L6T2gVwv+7HCd+PfdlsYcp/dmSO0blYLCYTfra+KBQKJyJe3G+9XketVpOoLGvb7Fq4cWm94yKi7oUE+ztup8NyzFyMMcZIOwz+lhiFj8Vi4pIKjBZO+J1mlJ7Romq1Kvfb7Tbq9Tpu3LghfSBDoRD8fj8efvhh+P1+3LlzB1NTU3j11VeRTCZlISeXyyGRSMh3kvb6rF+rVqtSHwi8YZYCQAQdr2WNRgP7+/tYXV3F2toa2u02UqkU9vf3T/Sp4/XOrgW0o980RjHGIJPJSB9ALnqxPQBFujFvuGPymHLcs7Oz0uw9HA5jYWHhhMstm5Hfvn1b0junp6el7i8Wi+HWrVsi7GKxGA4ODiRN9yy4cAKOLpQagVMURVEmwcL1119/HcPhEE888QTK5TJqtRqWl5fF6W1ubg6tVgvPPfccHMfBU089hcXFRQyHQ7Tbbdy7d0/MSnq9HnZ2dvDiiy/ikUcekTSi4XCISCQiRfmdTgczMzMS7aI5QTwel/QfTt64wky77n6/j0gkgkgkAr/fLxND2oU7jiMpkgCkX5IxRvo77e3tSfE+G3obY0QklkolJJNJ3LlzB/l8HplMBtPT0ygUCuh0OtJCoVKpyOSUE85AIIB+vy/vCbw5YjEuCucWO+4oF7GNTiaJJFvI0UKdBjLNZhOVSkWicTQ9oHnMN77xDRhjsLKygtnZWVy6dEmcSmmOYJtl3K8Gyh2ds01KxjWyPi2t0D42tlA47X1t0XNaZHBceui41Fg7GmdHb8eJzkljs6Ntk6JVTNGzhRS3ZZrk1NQUZmZmkEqlkEgkxHTk4OAA7XZbBJ4xRr4PPI+046ddPVP0xonzcYsF9nG1GRdFdItI/mO/tmg0KseRESi+zphR3VmhUJAFE7rdGjNq5u33+3F4eIhYLIYvfelLcpv7v3LlCgqFgkTPCoWCiLV6vY7l5WVkMhk5Fh6PR9IUKc6YYk2RxqgcF0Js4XV0dIRwOHxi8Wp3d1d6r1EAOY4jESxjDI6OjuT6kUwm5ZxkMhmpv02n0xL5SiaTACAiPBwOy3UlFAqdaFXQ7/exv78vZipzc3NYW1sTs6O5uTlsbGygWCzKohajltlsFjs7OyiXyxLJ4/FJp9Nv+r58UFw4AacROEVRFOV+HBwciPU/i+J9Pp809Wbd2+HhITY3NzE3N4f5+fkTNv8HBwdS/0ar/L29PVy7dg3z8/NYX1+XGpNYLIZCoSCTxEajIdGXXq8nK8lMq2IqECd03W5XbP+5ck5rbjt9ks2uuV9OpsLhMOr1Oo6OjsREgY3DuYo8HA7h8/mwuLiIVqslrRaGwyFmZmbEQa7f76NarUqdSaVSEdHJ9Cfg5GTWnujaTn7jomn2c6cZdox7jRsamzSbTQQCARGx7XZbRF0wGBTnvkajgWaziY2NDanRSafTWFhYwMHBgQgA9sAaJ3zcn9udgkjhY0fh7H3YYm7cfiaJvHFplmRcup/9OjtS5+6zZr+XPVa3sYgddRv3Hm5h4xat9nu6rfrt2jYuhtC+vtls4rXXXkO1WpUURH6nacbDaBtryLjIwFTJSbjHNu55t6Dm57U/j52CS+MSuk9SBDEF2ePxoNVqiSut4ziS7sca2FAoJOYk7XZbImmtVgu5XE6MQObm5vDqq6/iypUrWFxcxNramph0tNttPP3007LgwRRFRqq4cMTfCt0jKdToMNlsNhEOhyXyFQqF0O/3cfPmTXz84x/H9evXxTSk2+0iHo/L943NuCmOAJxIzWQzbpqRsO0BI3alUkncLpkOyRR2Gq3Q6MTr9SIajWJpaQmbm5vi9nv16lXs7+9ja2sLjuOI6AQgkb9isYhut4uFhQXpC8iWMmfFxRNwXtbAqYmJoiiKMp5arYbV1VURIUyz4+Rgfn5eol6ZTAaLi4vSyPro6AidTgexWEx6FNEd7vHHH4fX60W5XEa9XsfMzAySySRqtRrC4bBsR3MDWlfH43FJraTQYF0XUxNDoZBY/tuTTrsBLqNwnGRworu7uyuuasFgUFLQeCy8Xi/a7TaMMTIWj8eDRCJxogaHqUtzc3M4ODgQQwB+LmOMRAo4GWUq5biG3cQWYpOEhpu3uj1TODn2QCAgk2aKZDsFlhPZarWKVquFu3fvAgASiQRCoRASiYTUBFEQnCaQOAY7amW3YwDe7NxITnOPHGcGY4skO0XsNHHnfh9bdNjYZiX2uO+3v3EpkvzO8NxwO0bM+PmYCpfL5ZDL5TA9PY1UKoWtrS1sb2/j7t27si3HzUUG9jer1+vyGIUbz5l7fJMWDMalUboXGNzRSftY2OeFbouMpPd6PanXYzsMLvLUajURE4lEAgsLC/B4PCiVSlI/xuvNYDBALBaT3zijbcvLy8jn8yIKHWfk4PrJT34Sjz76KO7evStNyunOGQwGT/RYpKEHo1J0lQRGUX4eh1QqBY/Hg6OjI2QyGakZYzsCCkvui79LLgjQXKrf70u9KkUZe7gBkIwDYCT4GNXP5XLidslFJaaRBwIBzM7Oolgsyvfm6tWraLfb0kqBi2herxfpdBqhUAh37tzB0dERkskkgsEgNjc34fF4TmQ6nAUXT8BpBE5RFEW5D8vLy7IiDLzhyMgaFABSuxGJRCR9iAXxkUhE0m2YqjU/P492uy2TIUYK2LSWqVwzMzMnHPByuZw0ko1EIohGo1LDxdTMcDgstR90oeP+AoGANBrnRLbb7WJ2dhbVahXb29vodrsolUqSSsk6O0bTYrEY/H4/9vb2kMvlMDc3J5MuRgpYd0ORyca3R0dH4qzJiS0n53y9HZWzcU+A7XS/d8q4VEE7jZM9vRiVYy0ha4zowjc7Oyuulj6fTxw4uW+eK7vfHiel7joqfsc4uXcbfNh/7eNh/3U/5+7BN24bW4idVkfnxi3A7PRPO+3TNiwZFy10j98dybPTSCngGDXJZrOYm5uT7/7u7i7u3LmDV155RSK9FG/8fXa7XRFtdu+2ScJt0vdvXNqk/Rr3/XFptfbx4oINf3u8rlAYsY9avV4/EcXm8QkEAlhYWEC1WkWv18Pi4iL8fj96vR729/cRCATEWCOXy6FUKuHg4ACrq6uYn59HuVyWKP1wOMTVq1cRiUSwu7t7Yqys67VNYSqViqQf85wfHByg0+nA7/ej3W5jMBhICjgt/SuVCorFoiwIcQGLjry9Xg/RaFTOTygUkusdG46zvQlFJ49vtVo98XuiQzBbPlD81+t1abswOzuLWq2G9fV1NJtNXLp0CYPBQNLoKdwYXcxkMjg8PES1WkUkEkEymUShUECv10M6nUY0GsXt27ff0u/p/eDCCTjWwPW1D5yiKIoyAU7oAoGA2NCzEXev10O9Xpf+ZzQ8oH02J4asY4lGowgEAigWi9JHaW5uDqlUStJ0+H6sXaEVdSKRQC6Xk/eLRqPY3d2VSRDrRRgxsg1HOp2O2G+3221JvwQgfaI2NzcRj8cRCASwtbUl/er4edvtNrLZrEQimZ5JYeDz+dDpdFAsFmU1nhPEfD4Px3HEkIVpofy8nAwxJZSixi3S7OiUOy3xnQg59+TaDd+70+mIkGMUjkJuenoafr8f0WgUH/nIR/C5z30OzzzzDK5fv447d+6g1+tJdJSin+eJznd2TVEul5OoUKPRQLvdPhGNmpSCSSZF0CiQeZvQgMS+b0eI7KidbbThFiT2NrYph32M3Smgk1JB7c9k14Oxh1kymUQ6ncbs7Cymp6elpu3GjRsolUqSLsyINAARDPw9MQWWZiQ8B+4FBPfxtT+/nfI4Tqy5sUWafd9Om2Q7A7/fj0QiIXVvdJpkzzTWVnG84XAYkUhE2iA0Gg1cu3YNXq8X3W4XtVpNrkGMYO3t7aHX6+Ghhx5CMpmUhtX8l8vlEA6HEY/H4ff7sb+/D2NGpiqMljN9kjVvwOg3HY1GUavVAIwiWuVyGV6vV6LSNBZhpgKNQJaXlzEcDlGtVmU8/A74fD6p1eW1dGdnR7Ii/H6/9HYLBAJiWMLvfq1WkzYnvDYzEklzGl5LWcebTqfh8/lw9+5dNBoNMT9h+m0+n0exWMTGxga63S5WVlYwHA5Rr9eRSCQQj8dx9+5dbSPwXqIROEVRFOV+1Ot1JJNJqS+zV9xZ8xUIBLC/vy+TCU5YKMLYZ81xHGxsbGBqagqHh4dIp9MyAahUKhLdojhkpC0YDCISiYgDXSgUkmJ5OxWKq9yMtrG5cCwWgzFGUpBs5z6uti8tLUkkL5vNAnijnxQnQOzTFA6HMTMzIyv7TOdi6hXTBlutFhKJBLa2tuDxeMThjcYGnAjRhMAWKvbE2J2WNq6m7H4i7rRJ9aTH3NtzwkwRTFt3O+rw27/928hkMohGo1hcXJTWDIzqMJ2M9U3JZBKPPfYY/H4/VldX8fTTT0sa2MbGBjY2NrC5uYm1tTVJyeWkfVxE7a2IPPvz2eJt3P1xJiPjBNikFM9x9W7jtnFH6/g9p/lIJBLB/Py82OAfHR3hzp07knrHY8HzzAk6jUcowBnRoWhjfRt/z5Misu7vhPs6MO4140Qdv+fu9gkUuEwbpHmOz+fDzs6OfMcYNQyFQifqv5g2XSwWEQwGcfXqVVmA2drakkwC/uY6nQ6CwSCWlpbQ7/exs7MjY2ENXSKRQCQSQTabFYFDgUTDJUaqmV1A8cYofiwWkwyE6elpEcyRSESuVTMzMzKeVCqF7e1tOX62wQwXkhqNBvL5vGQJtNttSTHltuVyWa41juOg2Wxifn5eWifYYpILNPPz80in0ygWi5ICSiHKbAX7Pebm5tDpdGShZmlpCaFQCK+88oq0Yuj1elIzd1ZcOAEX9I8uUs3O+JQCRVEURaEJCKMu/I+YqVvhcBhbW1vY3d2VmjFOgBzHQblclqa0h4eHks5z9epVxGIx7O/v4/Dw8ERvKlpgs+E204nC4TAASDE+U3lspzj2hWPvNjq8tVqtE0KJaUPsL+U4jghEtjKg0UOj0ZD+TYlEQmpJOAGlfTkNE1599VWJMjElqlarodfr4ZFHHkGz2cTm5qZEBthSAIC8p92M2R2pGRcdud8Eyf28O7pnCzx3upz7tcPhUMRBs9mUiXe1WsWdO3cQDoflWNLy3T5/7XZb0ih3dnZw9+5deDwe5PN5XL9+HR/96EexsLCAy5cv45Of/CR8Ph9ef/11HB0dYXNzE7u7u2KuQ6dEinU7OuY+PnZza1sM8699DvjZbYExLuIGvLnPmx1ps8dg1/Px/RjB5IQ3kUggmUxKrzGm6h0cHOD27dvSd5EpzXaUbTgcYjAYiPGG/Y/ffdaF2m6S4877ad+hcd8Vd2TNfo07wmgvoHDcjOr7/X5EIhGJ3G9tbcnvldFaRuEASNRtMBigUCggHo9jaWlJhE2xWJR6M8dxkE6nsb29jcFggFQqJeeqUqnI8eP2dFH86le/Kr0ibQdOft/YHoTR9FqtJiKHLpAUSmwqTlMYLuBw/3ShZG9LO9LX6/WkvcDe3h5isZgcO/vcMQOCgqvdbiMej2NqagpHR0cYDAaYmZnB/v6+CL2lpSXkcjns7+9LxgUXrBgJ5zW31+shn88jFovh5ZdfhjEG2WwW0WgU29vbsvDg8/mwvb2NTqeDeDx+6nfr/eTCCbhEaOQ8VGn1zngkiqIoynnFnnCyHiwSiWBubg6BQAAbGxs4PDxENptFqVSSXlPAyEVxbm5OJiZMIcxms/B6vdje3pYJCaMOnKxxMmyMEeMRYwxKpRICgQAASCPfbreL/f19caxjY95wOIzhcHiipoeighMeRtHsnnLBYFBewwny3t4eVldXEQgEUKvVZDJDEcOUpsXFxROOmcFgENeuXcMzzzwjRgvlchmhUAi3b99Gu92WCSAn/5xcu0WDMeZNou5+aZSTJtbufUyavJ82qXcc54QgoFENUy15rHleeS55PikoWBtXrVbx3HPP4cUXX5ToXCqVQiaTwerqKlZXV5HP57G0tIRIJCJpqUwhrFarKJVKqFarUpPDFFo7wkQBwYiQXfdn/3ULMOCkuyR/HxQjdp0aJ/B8jd27jDWfiUQCqVRKok4UGfV6HXt7e7hx4wYajQYajYYsQDByxt+XLcr4XWRkxxZtrD1kPdy4czsummt/R06L1k66b39X+Pl4fPi9Yzqex+ORFD6KDW6/u7srt9l8enp6WiJE3W4Xc3NzSKfT4nTLejHa6MfjcYkOZbNZeDwe+d7SGIVRtUQiIYsEduozo5X8ngOQ1EkuFAGQJtkApAUHr2v8TsbjcXH47ff7WFtbk7pGtkrg+WJ7h8FggEQiAb/fL4snPP+8VvEchEIhNJtNxGIxBAIBHB4eSlZAoVCQBbXZ2VlEIhHs7++jXq9jamoK6XQajUZD9kWBzQWzXC6HO3fuSI++dDot7rPZbFaMq5i+Pul78UFw4QRcPDgScGUVcIqiKMoEmJbIgvV4PI5MJgPHcXDv3j3cvXsXy8vLKBQKYrHNNC0afBwcHGB9fR3z8/O4fPkyarUabt68KelbnMzFYjGZDHFyFw6HJYWzVCqdiEylUim0Wi0xJ2CRPsUDAKnn8Hq9iMViMjYAYqHOmjiupieTSTSbTbRaLTFN6HQ6WFpaQrfbFaHYbrelDoyNh0OhEFZXV7GxsQEAmJ2dFSOAV199FdFoVFbgV1ZWxIafk2z2e+Ik1K4PcqdS2imWk5gk3t4O7rovd4TF/sfeU5yE072SQo61bvzH58a5Sx4dHaFUKuH27dv4y7/8SwQCAalJyuVyUgsWjUYRj8cxNzeHSCQiEVWmDVYqFambsiOHzWZTLPMZ0aLAo7Og7WJKIUaRxrokn88nroEUp3TqpP09awf5ORuNhvTUu3v3LsrlsqSu0VCEaYYchx1h42+H6ZF2DZtb2NlurOPO4bhzPCnaNu575P5e2vskdtTRbeLDxxjlZySHNVlse2CLZZ4DLgBduXJFflf8jQeDQaTTafj9frRaLbz88ssSAeOCDSNQrKsdDAbIZrOS7muMQS6Xk6ggjy1FMtMxGYnn95zRNb/fL9E9ZhfQ1OTw8FDarezv70uNGQBptO73++X9ms0m0uk0pqenJcuBNY2sk6PrJMfDGrZisSjijwsc/X4fCwsLyOVyKBaL8htZWlqS3wavlTy20WgU6XRaUtgDgYBc8+momclk4PP5cHh4KCmXdMI8Cy6sgNMInKIoijIJTpCYqsS6iUKhgGq1KnbT7Lt29+5dhEIhLCwsyAT18PAQy8vLuHbtmrjjBQIBpNNpscOm9Tknmx6PR2qsWPdBV0c23uVEnHVYAOSvnT7UbDaRz+dlNZtNwDnRGgwGqNVqIgIZDTHGIJPJwBiDzc1NsRpnGwXWHjmOc6Imx+/349q1a2g2m9IHKRqNYmVlBYPBAAcHB8jn8/D7/ZL2SZHBOixGi+x6N8JJ9SRLfvck3OZ+gs4dcXHvZ1LapjsiSEHMFhOMstgplYyA2FErPm6fA45lMBigUqng6OgI9+7dg8czasxOEcDzn81mMTMzg2g0imQyiUgkglgshlQqJWKL4p1j5XmkCGVEi89x3Hban/16ijtOzinKWRvJaM7R0RFqtZpExCjAuD8uQtjpjRwHawltwUZhR3FHgccFgUmCzS3QxqVEuu+PE3eTvkv2e9qRNzuCaYt8tuEYDofY39+X1hWMgnNBhu0S7LFdvnxZUpa5CELnUzuCNzU1haWlJcRiMelRmUgkUK/XpafbzMyMLAJReCcSCYnSAZAaUJ5jjiuRSIiJEyNY7APJGj4ej6OjI4RCIUxPT+Po6Ajz8/PY29sTM6RcLieLDaxHi8fjUgcXDoelnQnTJROJhAhhfifpAuz3+5HNZrG1tYV2uy3XNfZ0ZG+4mZkZdLtdue7zWNIkio3gC4WCROpCoRBu3bolrSsSiQS2t7dRrVbhOI5EmM+KCyfggj4v/F4Pyk0VcIqiKMp4uCpOU4Dd3V2JEvn9fpRKJalBeeGFF5BIJKThN1eeL126hEuXLuGZZ57B7du3MTMzg1wuJymIjMQwbYjOjyz0Zw1GLBaTaBxtxDlhYWSDwoopWay3q1arYoLQaDQQi8VkYsmJFiN6dLErlUqSpsUaPdazccJE9zVO8OPxuPSm4ySqUqlI3QhTlFiv89hjj6HVauF73/uetGdgmhwn75PSJPn57Pouij53OtxbjcTZ+z/tNferk+NjXMF3R+Y4EWcdIwWQnTrLxyj8iO0maU+KGaUpFot47bXXxvZ1o9hnbzGmzfE7ZAsMRq1si3YKKzvSZUfMyuXyicgX35/P28fGjpRxGwpHW6BRsFHM8HxzeztiCLxhcjNOtJ2WRjvpXI4755P258aOvNnnjbWqTCvl8WBtWzgclmNjRzztKD3TbAOBAGKxmCyAxONx+X61222sra1JX8JYLIZ2uy2Rt5mZGTiOg0KhgFQqJWnOV65cwerqKkqlEvb29iQ9kgsy/N1RUPFaZsyoPySFFxtp05ESAJrNpoxxc3MTfr9fjEKazaaIoMPDQwyHQ6TTaRFpNGlhlC0UCon44vvx+NHllQtMBwcHEq1j/a3jOFhdXQUASQtlrSEbjne7XXi9XszPz0v96fT0NBKJBBKJBF555RWpo6Mp1f7+vlyHzjJ9EriAAs4Yg1jQpxE4RVEUZSLRaBT5fB5TU1N49dVXcXh4KJEMurhVKhVcv34d+XweCwsL2Nvbk/SjfD6PfD6Pl156CS+88AJWVlakye7h4aEYYFQqFaRSKYRCoRNGBoz+ceLGVB2uPNvGEKwtoXsdx7i9vY1Go4FoNCo1NNwnIxWc/LjdFVkT9/DDD2N6elrc5WiCYtd+5PN5mVxWq1WEQiGZgKXTaTz//PMymeLEc3p6Gmtra+JyyYk60zY5caVwuF+tm9v23k7Bc0fP3k7dnD1ZnyTexplbuPcL4ITA4WKAx+N5k5iz68rcf7k9hTphNModveNxoOMeJ9TGvNEUGzjZcJuTTzsaaqdU2p/Tdg0d11qAIoufnyKQETWKXdYE2qLM/Y+Pcx/jzod9rsed93HnheM/rW7yNBE3aaJuH1+eF/7W+JvmOUskEpKeyHYgPCfJZBKLi4sibnkdisfjEkWanp6W9iGM0NNN0ePxSD9G1qju7u6i3W4jnU4DeEPgR6NRRCIREUedTkfSABmRDQaDUkfGY8f2GrYxC8UcocHHwcGBLCDw+8xUzlu3biGfz4t5EtsmsBaYn5sLGKwL5vVsfn5eUhjj8ThKpRJ2dnYQDodFdAJvLBqEw2Gsr6+/yTyFaZlzc3Mol8tSg8yI4NbWFprNJhYWFsRNc3NzU1JIPR6PZEmcFRdOwAFAPDiFqgo4RVEUZQJzc3Not9u4fv06CoUCLl26JNEor9eLv/iLv8BgMMAjjzwi6TpcHabZxEsvvYTd3V3k83kxMPF6vZImxLqOUCgkkRbazTMC6PV6cXBwIKlVnGRyQsgJeTQalVQqYwwODg7EZIUOamx9QNc4mgbQQIEpjEy1pOEGTTFYe8OIESeGnIAzAkhBUq/XcXBwgFgshq2tLXQ6HSQSCenj5PV68dBDD6HT6Yi5AKM+bDlgR4SIPVm3oy72PwBvEjTuSfe4yfppNVLjhNppq+zjJvgUm3ZEiSlhrOexo3V23Zz7n/1ZuT3fj/cpImxBx9cwjdP+fO6aPLfBiftz2J+Rk2huS6FGscXvli3Q7OPA+3aUzU7Xc59Dd7rrOFE9KZXSTrOcdK7szzru3I6L8rpr3uxoKHsyspaLr2FaoJ0mSnEUDAalcTyvQ8Do+sT0Ry7isOUJXT4ZqSsWixItpwMuezragqtYLGJ9fV3cbtm6gCnettsk0yxrtZpEDfk7ZVYBo15M941Go7hz5w4ASN9DAEgkEpJSaRuw3L59Gx6PRyz+7RYGNDZhCne320U+n8f+/j6AUe2az+dDoVCQ6CMwiipHo1EAOOGIyxpfpuJms1msrq6i1Wphb29PhGsqlcLu7i6KxSKWlpaQzWbRaDSwvb0t6aa8xtq/ybPgQgq4RMiPcqt71sNQFEVRzil7e3uyun316lUpxHccR5pfsydaoVCQSVAmk0EgEMDu7i68Xi9WVlbE5CQSiYgLIKNdtkMb68JoNtBsNrG3twcAYlHPtCUA4pDJfXACR+c+Nt3udruoVCqIx+My8bTrimhzz4gIP6tttkL3TLpQssEwqVQqCIVCUqdXLBbR6XSwsrIiEYXhcIhSqYRGo4FMJnPCxS6dTuP27dsSgWDaHPBmsQC8kTJpO1XaxidM4/N6vSccF7ntJDE37j7HMEncuZkk6tzvYf9lXRyxo1kUYbbxhS3ibFHmFnb2cxR2ZJyBCh/nxNMWUba5iPtz2WYjtghzp0+6hZr7tbao40LFOLE8Tpy502Dtzz1JmN0vSjcprdK9vT1Gu1UAn+fvncef543R8H6/D5/Ph1ardeL8sr6wXq9jZWUFxox6oNGEhuYdxhh0u13MzMyIMGfaNccwPT2NWq2GdruNRCIhpjDXrl0TM5nNzU0cHR3h8uXLIuLofunxeKS/YSQSQaFQOOF4C7xhQsQWIfzMjuNIa4REIiEtB/h6mpLk83lxmWQNLc1cQqEQ6vW6XB8ikYhcpxKJhLhH0nTq1q1bkgJMF1wa7RhjZLHM/s6zJczKygq8Xq+YLRkzSmMtFArY2trC7OwsUqnUCaMgLoZRvLrbHHzQXEgBFw/6cFA7O2cYRVEU5XxzdHSEVqslttvsrdTtdiUNsdVqoVKpABitOmcyGbTbbezt7Z1IKWTjbqZXUgTREr5QKJyIWjiOI32IWIfG6BjNTwaDUR83TojpGlmv1xEIBCTlqNfrnTA54KSCLQOYOtXtdk9MMhk5YZ0eACwvL6PVaknKFtOzbt26hWvXrklrArpmRqNRtNtttFotrKysiFkBJz123VMwGMTs7CympqawubmJarV6QoTw89vRODsKYgsemsEweueOzowTZ/Y++dctGk+L2I0TDLYQ4eN25NAdMXQLVvs1/NxcAKAAsIWcLfC4X9tI47SolJ0S6cYel33bjnTyr/2Z3RE2nhvbqMR9fNz7dqdqjjtP7nMzKR3S/Tg/61uJptqc9t7jRLFtDMLfq8/nQzqdRrPZlOglTW9skU6DG14zeB3p9Xon3CnZfLvRaMgi0GAwkBYXwGiRJRgMIplMot1uy6JLPB6X36MxI6fQGzduIJFIwHGcEw6iNP/gIgwdLWlMwhpdHhdeA5gKmcvlUCqVAEDq5xjxz2Qy4owaDodx7do1aSnBHnWlUgkejwepVEqub7wOMXo/OzuL119/HZVKRTINWM9H51xGy3gN5PEFgIWFBXi9Xjz//PMSoZybm8Pe3h42NzexsrKCdDqNer2Ozc1NBINBOI4jZj9csLJdXs+CCyvgbu3X7r+hoiiK8qHE4/GIY1m328Xrr78ubm7T09OSMkl792QyKfUWrO0IBAKYnZ1FLpeTeghOYJPJpES1WF9njDmREhQOhyU6RlECvDFh5OSAJhJcAWYqHlOUjDFSZxIKhU70dEomk/I8V6ZbrZZMMjnhpMtgIBCAz+eTurVoNIrl5WVZeS4Wi6hWq2KLHgqFEAwG0el0sLCwgFqtJnbcfr8f1WoV+/v74hbX6XSQyWQkkshJMSeXk6JxtmCwHRNtkXBaZMwWXe79TnqNvc1pk/9JUR1bAHDCbtve8zm3KYkt6NzHwRZu46Jw7gidvY9xkSpbYI17zI6m2WmJdirl/Y6h+1iNe3xc1M8eqztSNymCam8zLo3ytHPObfh+HNe4Y8v3o/iiGQd/d/l8Xsx+xi0W9Ho9sbCnsyT7TNKMw3FG/QBpTHN0dAQAImiKxaKkPzIFO5vNYm1tDQcHB9JPcmNjA+VyWRYHCFPC+/2+9BykMyTTsYvFIiKRyJtEEaNnbKjO7AQaJDFyaNey0YyFQoi//1QqBb/fj729PfT7fbk+NBoNZLNZsev3eDyYnZ3FwcGB1Kz5/X4xMaGI5sIRU0HZGJzHJxwO4/nnnxdTqdnZWVSrVRQKBeTzeaRSKcRiMezs7MgiWq/XE2MVilIKxrPiwgo4NTFRFEVRJkGBQjGTyWQwPz8PY4z0EuKkiivpdKakZXsoFEImk0Gr1RKb7E6nIwX6N27cEGvrYDAoq++dTgfBYFDs9u2IEqMsTCGiePN4PEgmkyfECNMrA4EAGo3GiQkje70xGsKIHetcAMjqNNOXKPCy2axM4in86BS3tbUlj7HuhAYpHEu9XseLL74ox85xRmYJOzs7J0RzrVaTz2+n1NnHgq+lkLAd/8ZFd3jbnqiOE0+nRWXcz7mFhHsbe7JvCw1O2ieJAbdYtaN6kwSjHelyR4jcn2FctM0+Hvb+bFdJ+3H7fe3P/nZSE8cJZ/vvOMYJ0HH7tu/bx+5+kchxY3RHcfn9t4+RHfHkYgcj4CSfz4tdfbvdltRR1sI2Gg3E43HJAFhdXUU2m0U0GkWlUhGXW8dxJGWbzo10gmUd29TUFGq1GhqNBn7mZ34G+/v7KJfLmJqawurqKrxeL/b29iRSPxgMZB/AKCVya2sLxWIRvV4PCwsLyGQymJ6ext7engg8tkLgb5D1dTT1mJubE/Mmvk+lUpHrZKVSQSKRwHA4RCwWQ6lUwtHRER577DGsr69LzRujfjRg4bGj0KvX62K4FAwGcXBwgGazKc6Rfr9f3H35+er1ujjphkIhvPLKK6jVatJzsdfr4d69e4jH48hms8hms9jc3ES/35drK9POedzYYD2RSEz8Dr/fjP91P+DEgz7U2n0MhmeXm6ooiqKcX1g3xvqPVCoFYJRayZQhNiyu1+vY2dkR44BYLCapic1mE44zsuzf2tpCOp1Gt9vFn/3Zn2F9fV0mOEzfYYsAruYCkAgYJ8+O40g9W7lclibctpMhV+X7/T5qtRoSiQSSyaSYkNgOlJxksHbFFhG2Sx5dLm1jjGAwiH6/j/39fVSrVVQqFXncFl12bYzH48EP/dAPYX5+HhsbG9JXjmMOh8PI5/OIx+OIRqMn6vyY4kmnN47P3WyaE213SqHbVIDPjxNvbgE4LlI1STy4hYB7Pxw3P4P9/m4hxO3tmrJx+7bHY6c32kLOnQbpfsx9vNxpkvb7uKNNdqqke7v7HTf3+MdF/tzb2Pscd9zv91r7/rjoo/s5+3wwuubexn5uampKGlQzWp7NZmVBh4232QibbQVmZmbQbrcRiUSwsLCA+fl5qYGlWLAjc81mU6JF8XhcamM5to2NDSQSCXQ6HUlvZgSQph8UmeFwGL1eT87j4eEhms2mGKIkEgkYY06kJ/L3zc+eyWREzAWDQaysrKBarUqGQK1Ww9HREarVqkTawuEwAoGARBLZv44tJQAgnU6LcQtTwFnHxto5GrTQFIViOJPJIBQKodlsygIcP/P09DQWFxeRyWRw584dFAoF6aXY6/Vw584dTE9PY2ZmBktLSyKC2avTGCPXfopZLqbxGn4WXNgIHABUWz0kw/4zHo2iKIpy3tja2jphy89V7UKhICuznGQyVdHj8SCfz0s9BiNJrIm4cuUKpqensb29LbVtuVxO6lUo5vg6wgbJfI9YLIZGo4FyuYxUKiXpWax3oQNbuVyW3ksAxFHOFg+2s2S73ZY6uVgsJpN5pn0Bowk+TRcikQgGg4E4VHJS1Gg0xP2NpgB29MMYgytXrmBjYwMrKysykWWqF1fpc7nciUgUAEkdo/CxI3G2iBiX4miniPG+bR4yqc7KLfK4v3HCzz5PtphxRwft1Dn7uAA4MX7et/czLmJlv9+kSN0k0WR/Hnu7cdFE1iLyNW6BOO62/T73E2Xu82bXCtrP26/hNu6WEe79Toqsuo+njX0M3AsDfG+34GW0me6uTCmcmZlBuVxGPB6XRucAJGLdbDbF0TaRSGBlZQX5fF4WbPb29iRiRwdb20CJdbmRSERStp9//nkxHdnf38fNmzfFwbJUKiGRSCAcDqPZbIqA9HhG1v7FYlFSHHu9HtLpNDweD2q1mhyzer0uYzfGiHsvF4dY88bt2JaABiwUfz6fD8YYNJtNtFotzM3NwRiD7e1tudbw+jA7OysRP5/PJxG7Uqkk19BGoyG95dgInGYwdnprIBBAOp1GOBzGvXv3sLe3h3g8jtnZWfh8Pty5cweJRALxeByXLl3Czs4Odnd3xdkXwIl6Z8dxJI0dgLQLOQvesYAzxiwC+G0AeQBDAF9wHOefGGN+A8B/A6BwvOmvO47zx+92oG+HZHgk4I6aXRVwiqIoypvw+XxieU+KxSJyuRzm5+clJbHdbkvNF0042OeIK+OpVAr5fB7dbhcHBweSJsR/XIX3+/0ysYtGo/I4J2iMRB0eHkphPycRNFPhJKvVauHevXuYm5sT58crV67AmFHhv9/vR7lcxt7entTf8XMAOCHyOFnj5J3j54SWkyhO7DkRZdSO+2M60+LiIrxeLxYWFhCJRLC+vi6RhZmZGWlvALxRz+Pz+aTZMdspUEjW6/WxtVicfLvrvmy7fZrG2CKTcB+2sLHTOO26RODNRiD2a22BRfFGwWGLonFpn+7o0rgUTjuNz/05TksLdEf5OBZ+3wCcaKRt78ctetxiyS2M3AKPr3GL33GfcdzY7XGc9txp+7S3c4+f3xt3VNGO4toGO4zEMFo8PT0tDoqZTEZ+X/V6XSJHdgpyKpVCqVRCJBLBE088gXg8fiJSxQbTFIe1Wg2xWEwEWq1WQzAYlHrYtbU1rK+vY25uDuvr6/jEJz6BfD6PXq8nizkUgdFoVH7jfr8fR0dHJ/r0hcNhseNnHVytVkMkEpH+dXTApOhLp9O4d++epJsPBgOUy2VpJ8IomsfjkR5t9XodMzMzmJqaErOT+fl5VKtVVKtVZLNZAJDrby6XQ6VSkUgixWSj0UAkEpEFrlqtJjV8wMjVlzWA8Xgcr7/+Oo6OjhAOhzE7O4tQKISbN28CAOLxOPL5PEqlEra3tyWTAIAYN9HcBQAikYjU/XJx7yx4NxG4PoD/wXGc54wxUQDPGmO+evzc/+U4zj9498N7Z6TDo/+gDutdXMqe1SgURVGU80o2m5WCd678plIpzMzMoFQqvclEgBOSer0OYwz29/dFpMRiMZTLZSluZxSNtRyMvtHan6lDbgtwr9eLSqWCcrmMTCaDer0uNuPGGCwvL8MYg/X1dezs7IhrZL/fx/LyMjqdjrhN7uzsYGtrC3Nzc5iamsL+/j6mp6eRSqVEPA0GA6kFtGucWC/HqBsjW9lsVlbtmRI1GAyklo/23o7jSD8mphtxEh+Px7GzsyPima9nA1+PxyOpmkwDpQhypyHaAoXYtV12/cy4aI8ttGxxZkcEx+2f7+0WfrzN97YdCynw7EjRJOHF/dj7tiNi9vP29uNEDt+bz7OWh4IhmUxKhNQtgLm/cWYg9uPu93QfM/uzThrjJFFrf7ZJUbxxx2FSNNI+JuPOCSPRvM1zPDU1JYYVgUAA4XBYaqSCwSBKpRLi8bgs+HA7Cju/34/Dw0MkEgk88sgjyGazePjhh/H888/DcUZOtY7jSO3XwcGBtAlhdI61a/1+H+vr63jttdeQyWQQDodRr9dx/fp1pFIpHB0dIZvNioDiQhB/P/v7+yJQ+v0+kskkwuEwjo6OxGCkUChIBJ7tC4bDoUTnFhYWJK2axiBra2vweEZ93bxer/SapGAcDAaYm5uT7AGagHQ6HQQCAcRiMTSbTRkb64tpKMXrRalUQjQaRTqdRiwWQ7Valc/H6wTTSEOhEG7fvi0LZUy1vHnzJlqtFpaWlmQRbG9v703RfV7TWX9IgxWPxyOtYM6KdyzgHMfZBbB7fLtmjHkVwPx7NbB3QyZCAXd2oU1FURTl/EIRxfS5XC4nK+JMi7RTmWi93+12sbGxgVQqhdnZWelPxBq2YDAoEz0KIU6QaXjQbrclImWMkXqyUqmEWq0mESoaJfj9fpkw7u7uiuMjU4+i0ais3kejURweHqLdbku0i450TIU0xohhib2CzPucKN69e1cablN88X23trZw+fJl+Tyc8HJFPxQKyaQnnU7LGBndY7sDrnjb6VWFQgHGjMxk7Ek2o2MATky83VCAcUycuNrRNDt6ZguMSW6IdhqjLd6Ak4YifI3b2MROwbP3O0642NuO+5xuUTcundL9ObkvfucZpeX3mp/LPYFlKprjTG647WbcZ3Qfn3H3x+33rYgxd0RuXASOiwAUr6wTHbcvRirt8x0OhyU9mT3WWPNlR9C4wEPTDNau0SXx0UcflRTtcrksZkMcO9OluZgBAAcHB3JNqVarKJVK2NjYQD6fl/pWpj7aooSCy+MZ2fLXajUUi0UAo+tftVoV8ca2HhQswWBQolnMSGAaJRe52DbA7/eLOy8degFItJ+ppEtLS/IZ6vU6IpEIOp0O9vb28IlPfAK3b99GuVzGcDjE5cuX0ev1UKlUxGiK2Qy2Ay4jd2yvwOfn5+fh8/mkWTjbOoRCIdy7d0960uVyOTQaDezu7srvlr0xmc3AxY14PC6indG3B76NgDFmBcATAL4H4GkAv2KM+S8A/ACjKN3RmNf8EoBfAt44qe8V2agKOEVRFGUyv/zLv/zWmkKdM65evfqBvdelS5fGPv6JT3ziAxuDoiiK8mbetQulMSYC4PcA/KrjOFUA/xzAZQAfxyhC9w/Hvc5xnC84jvOk4zhPMuf1vSIV9sNjgEJNBZyiKIqiKIqiKBeHdyXgjDE+jMTblx3H+X0AcBxn33GcgeM4QwD/AsBT736Ybw+vxyAV9msETlEURVEURVGUC8U7FnBmlGT8rwC86jjOP7Ien7U2+3kAL73z4b1zMpEACrWzy01VFEVRFEVRFEV5r3k3NXBPA/gFADeMMc8fP/brAD5vjPk4AAfABoC/9S7e4x2TjQZQ0AicoiiKoiiKoigXiHfjQvltAOOKwD/Qnm+TyEQCeL3QOOthKIqiKIqiKIqivGe8axOT80omMqqBc/cIURRFURRFURRFeVC5sAIuF5tGpz9Eudk766EoiqIoiqIoiqK8J1xYAfeRfBQA8Opu9YxHoiiKoiiKoiiK8t5wYQXctdkYAOAVFXCKoiiKoiiKolwQLqyAS0cCyMem8fKOCjhFURRFURRFUS4GF1bAAcC1uRheUQGnKIqiKIqiKMoF4UILuEfnYlgr1NHuDc56KIqiKIqiKIqiKO+aCy3grs3GMBg6uLVfO+uhKIqiKIqiKIqivGsutIB7dC4OAFoHpyiKoiiKoijKheBCC7iFZBDRwJTWwSmKoiiKoiiKciG40ALO4zF4ZC6Gl3cqZz0URVEURVEURVGUd82FFnAA8MRSAje2K6i2e2c9FEVRFEVRFEVRlHfFhRdwP3Utj97AwTdfOzjroSiKoiiKoiiKorwrLryAe2IxgZloAP/+pb2zHoqiKIqiKIqiKMq74sILOI/H4KcezeE/3Cyg1dV+cIqiKIqiKIqiPLhceAEHAJ95dBat3gB/frtw1kNRFEVRFEVRFEV5x3woBNxfuZRCPOjDv/7uXXT6GoVTFEVRFEVRFOXB5EMh4HxeD/7uTz6Eb68d4n//o1fOejiKoiiKoiiKoijviA+FgAOAv/n0Kn7+iXn84Qu76A2GZz0cRVEURVEURVGUt82HRsABwM98dBaVVg/fvVM866EoiqIoiqIoiqK8bT5UAu6TD2UQnZ7C//HvXkWh1jnr4SiKoiiKoiiKorwtPlQCbtrnxf/9Nz6Bu6UGfu33b5z1cBRFURRFURRFUd4WHyoBBwBPX8ngV3/yKr726j6+9sr+WQ9HURRFURRFURTlLfOhE3AA8F8+vYqHZiL4jT98WZt7K4qiKIqiKIrywPChFHD+KQ/+t88+hq2jFv7ZN9fOejiKoiiKoiiKoihviQ+lgAOAH7mcxs8/MY//58/v4I9v7MJxnLMekqIoiqIoiqIoyql8aAUcAPzPf+0RPJyP4b/78nP4zD/+Fv7ydW0voCiKoiiKoijK+eVDLeDSkQB+77/9Ufz9/+xxNLp9fO4Lf4n/+ovPoN7pn/XQFEVRFEVRFEVR3sSHWsABo3q4v/7kIv707/4Y/t5nPoJv3izgZ//pt/D/PXMPw6GmVSqKoiiKoiiKcn4w56H268knn3R+8IMfnPUwAAB/dquAf/inN/HiVgXTPg8+Oh/Hpz8yg4VkEJ/+yAziQd9ZD1FRFEUZgzHmWcdxnjzrcSiKoijK+8nUWQ/gvPGpq1n82EMZ/Lsbu3j27hG+93oJ/+ef3AQABKY8WEmH8eMPz+DRuRh+6tEcAlPeMx6xoiiKoiiKoigfFlTAjcEYg599fA4/+/gcAOCo0cVGsYE/fGEXr+5W8YU/v4OhA4T8XlzKhnE5G5F/uVgAl7MRJEI+GGPO+JMoiqIoiqIoinKRUAH3FkiG/UiG/XhiKQkA6A2G+Is7RXzztQPcKdTxg40j/Nvnd068xu/1IB7yIRnyIRH0Ix3xYz4RxEIyiFQkgKDPi6DPi+j0FOJBH6LTU4hO++Cf+tCXJSqKoiiKoiiKMgEVcO8An9eDT13N4lNXs/JYs9vHxmET+7U21vbrKDa6qLS6OGr0UG51cWu/hm/ePEC7Nzx13/4pD2LHYi4SmDoWdlOIBHyIBLyIWLfDganRP/8UQgHv6K/fi5B/9FxgyqNRQEVRFEVRFEW5QKiAe48I+adwbS6Ga4jhxz8yM3Ybx3FQbHRRbvbQ7g3Q7A5QbfVQafVQ7/RRa/dQa/dR6/RHf4/vHx420OgMUGv30OgOMHiL7pgeg5PiLuBFyD+FsN+LUOD4r38KYdfjIb8XgSkvpn0eTPu8mLZuB3weec7vVYGoKIqiKIqiKB8kKuA+QIwxyEQCyEQC73gfjuOg0x+i1u6j0emj0e2j2R2JwWanj0Z3gGa3j0bH9Vee76PY6OJeqYlmd4BGZ/T6/jtomWAMMD3lRdA/Sged9nkQ9FPwje4HLAHonxr9C0x5EZjyIHB83+/1wOf1YMprRn89Br4pD3wePmYwdXzb7/VgitvwNR4PfFOjbXxeo6JSURRFURRFubC8bwLOGPMZAP8EgBfAv3Qc5zffr/f6MGGMORZHXmSj71wIuun2hyeEXrs3RLs/QKc3RLs3QLs/GD3WG6DdG6DTH91udUfPtbrD46hiH53jfZUaQ3SOX9fpj17T6Q/R7Z+eRvpu8XqMCDyf12DK64HPM/pLwTd1/PjU8bZTXgOvZ7Sd9/j+lMdz4rkpefx4W6+R9+K+vPY/47p//Jjn+DX8637Mft24x9z74m1jAI8x8JjRMVAhqyiKoiiKcvF4XwScMcYL4J8B+KsAtgA8Y4z5A8dxXnk/3k9594yiY34kQu//ezmOg+5gJOQo6HqDIXoDB/3hEP3B6Pn+wEF/MERvePx34KA3GKI/PN72eHt53LWPN29/cl+D4RvbtntD9IcDDI7v94ej53uD4fF2o9fxcb73ee/1bos5j8FI9B2LPa+Ht98QfW9+7uRrPMdC0mNGiwknbhsDjweyT6+xbnsoLkei02Os+wayb3O8LwOceE+cuH+8jQEMXK8Hjj/P/beF6z3Gv/fodXzu5FjfvC3wxvHgtuM+D8dpv/e4108a59j3knHe5724Pw/uc5z5WuhigKIoiqKcI96vCNxTANYcx3kdAIwxvwPgswBUwCkwxhynUXoRPevBvEuGQ0vsDYcYDBwMnNH9E/8c58S27seGx/d5235s3L7s+0PHwdDB6O/Quu3g+P6k553x21m3B44Dx3EwHOLk9sdjcKzbI8F7/LmckVAfPWfftl5j7ddxAAd83Wh7B288NxxtMLpvPX7ydc65F9QPMqeKRRwLQJd4tF/j5WKBJea53S/88DJ+8UdXzvojKoqiKMoDwfsl4OYBbFr3twD8FXsDY8wvAfglAFhaWnqfhqEo7y8ej4F/FA5BENrU/TzgWKLvvmJv7HZvFo+TXv92toUlUE99r+PPMBzivuPCiftvfHbH/V7u4+KMF86yz+H9jsnodY5jH4uTY7K3tRcFKOaH1hhSYf8H+A1RFEVRlAeb90vAjcu3ObE27jjOFwB8AQCefPJJXTdXFOU9QdIFx16GFEVRFEVRHmzer67RWwAWrfsLAHYmbKsoiqIoiqIoiqK8Bd4vAfcMgIeMMavGGD+AzwH4g/fpvRRFURRFURRFUT4UvC8plI7j9I0xvwLgTzBqI/BbjuO8/H68l6IoiqIoiqIoyoeF960PnOM4fwzgj9+v/SuKoiiKoiiKonzYeL9SKBVFURRFURRFUZT3GBVwiqIoiqIoiqIoDwgq4BRFURRFURRFUR4QVMApiqIoiqIoiqI8IKiAUxRFURRFURRFeUBQAacoiqIoiqIoivKAoAJOURRFURRFURTlAUEFnKIoiqIoiqIoygOCCjhFURRFURRFUZQHBBVwiqIoiqIoiqIoDwgq4BRFURRFURRFUR4QVMApiqIoiqIoiqI8IBjHcc56DDDGFADcfY92lwFw+B7t64PkQRz3gzhmQMf9QaPj/mD5MI972XGc7HsxGEVRFEU5r5wLAfdeYoz5geM4T571ON4uD+K4H8QxAzruDxod9weLjltRFEVRLjaaQqkoiqIoiqIoivKAoAJOURRFURRFURTlAeEiCrgvnPUA3iEP4rgfxDEDOu4PGh33B4uOW1EURVEuMBeuBk5RFEVRFEVRFOWichEjcIqiKIqiKIqiKBcSFXCKoiiKoiiKoigPCBdGwBljPmOMuWmMWTPG/E9nPZ7TMMZsGGNuGGOeN8b84PixlDHmq8aY28d/k+dgnL9ljDkwxrxkPTZxnMaYXzs+/jeNMT99NqOeOO7fMMZsHx/z540xP2M9d+bjNsYsGmO+aYx51RjzsjHm7xw/fq6P9ynjPu/He9oY831jzAvH4/5fjx8/78d70rjP9fG2xuI1xlw3xvzR8f1zfbwVRVEU5TxyIWrgjDFeALcA/FUAWwCeAfB5x3FeOdOBTcAYswHgScdxDq3H/j6AkuM4v3ksQJOO4/yPZzXG4zH9GIA6gN92HOex08ZpjLkG4N8AeArAHICvAbjqOM7gnIz7NwDUHcf5B65tz8W4jTGzAGYdx3nOGBMF8CyA/wTA38Q5Pt6njPuv43wfbwMg7DhO3RjjA/BtAH8HwH+K8328J437MzjHx9saz38P4EkAMcdxfvZBuJ4oiqIoynnjokTgngKw5jjO647jdAH8DoDPnvGY3i6fBfDF49tfxGgSfKY4jvPnAEquhyeN87MAfsdxnI7jOOsA1jA6Lx84E8Y9iXMxbsdxdh3Hee74dg3AqwDmcc6P9ynjnsR5GbfjOE79+K7v+J+D83+8J417Eudi3ABgjFkA8NcA/EvX+M7t8VYURVGU88hFEXDzADat+1s4fRJ51jgA/tQY86wx5peOH8s5jrMLjCbFAGbObHSnM2mcD8I5+BVjzIvHKZZM1Tp34zbGrAB4AsD38AAdb9e4gXN+vI/T+Z4HcADgq47jPBDHe8K4gXN+vAH8YwB/D8DQeuzcH29FURRFOW9cFAFnxjx2nnNDn3Yc54cA/EcA/vZxyt+Dznk/B/8cwGUAHwewC+AfHj9+rsZtjIkA+D0Av+o4TvW0Tcc8dp7Gfe6Pt+M4A8dxPg5gAcBTxpjHTtn8vI/7XB9vY8zPAjhwHOfZt/qSMY+dp+uJoiiKopwZF0XAbQFYtO4vANg5o7HcF8dxdo7/HgD4CkapQfvH9USsKzo4uxGeyqRxnutz4DjO/vHEdwjgX+CNdKxzM+7jmqbfA/Blx3F+//jhc3+8x437QTjexHGcMoD/gFEd2bk/3sQe9wNwvJ8G8B8f1//+DoCfMMZ8CQ/Q8VYURVGU88JFEXDPAHjIGLNqjPED+ByAPzjjMY3FGBM+NnuAMSYM4KcAvITReH/xeLNfBPBvz2aE92XSOP8AwOeMMQFjzCqAhwB8/wzGNxZOEo/5eYyOOXBOxn1sTvGvALzqOM4/sp4618d70rgfgOOdNcYkjm8HAfwkgNdw/o/32HGf9+PtOM6vOY6z4DjOCkbX5284jvM3cM6Pt6IoiqKcR6bOegDvBY7j9I0xvwLgTwB4AfyW4zgvn/GwJpED8JXRvBdTAP5fx3H+vTHmGQC/a4z5rwDcA/Cfn+EYAQDGmH8D4NMAMsaYLQD/C4DfxJhxOo7zsjHmdwG8AqAP4G+fodPduHF/2hjzcYzSsDYA/C3gXI37aQC/AODGcX0TAPw6zv/xnjTuz5/z4z0L4IvHDrYeAL/rOM4fGWO+i/N9vCeN+1+f8+M9ifP+/VYURVGUc8eFaCOgKIqiKIqiKIryYeCipFAqiqIoiqIoiqJceFTAKYqiKIqiKIqiPCCogFMURVEURVEURXlAUAGnKIqiKIqiKIrygKACTlEURVEURVEU5QFBBZyiKIqiKIqiKMoDggo4RVEURVEURVGUB4T/H6QIM1WxxDznAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAGoCAYAAAAHGAe8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebxt2V0Vio+5+7453b333KZu3WpuKlWVVJFKSCp9SCIIBOUpgigKKmKH+tOnovhAER/Yvh8qKu+BwBMDiKBIjKgYCTENqSSmqUoq1d+6zbmn3X1zzt57vj/WHvOMPe/a55xqb+owx+dzPvecvdeaa64551r3O+b4NsZai4CAgICAgICAgICAgICvfCRudgcCAgICAgICAgICAgICjoZA4AICAgICAgICAgICAl4hCAQuICAgICAgICAgICDgFYJA4AICAgICAgICAgICAl4hCAQuICAgICAgICAgICDgFYLUze4AACwtLdnz58/f7G4EBAQEBLyC8alPfWrTWrt8s/sREBAQEBDwUuIrgsCdP38eDz300M3uRkBAQEDAKxjGmGdudh8CAgICAgJeagQXyoCAgICAgICAgICAgFcIAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIAoELCAgICAgICAgICAh4hSAQuICAgICAgICAgICAgFcIDiVwxpizxpgPGWO+aIx52Bjz56efLxhj/qsx5rHpv3U55/uMMY8bYx41xvyul/IGAgICAgICAgICAgICfqfgKArcCMBfstbeBeCNAP6MMebVAP4agN+w1t4B4Demf2P63bcCuBvA1wL4cWNM8qXofEBAQEBAQEBAQEBAwO8kHErgrLXXrLWfnv7eBvBFAKcBfBOAn5ke9jMAfs/0928C8PPW2qG19ikAjwN4w4vc74CAgICAgICAgICAgN9xeE4xcMaY8wDuB/AJACestdeAiOQBWJkedhrAs3La5elnflvfbYx5yBjz0MbGxvPoekBAQEBAQEBAQEBAwO8sHJnAGWNKAP4dgL9grW0ddGjMZ/aGD6z9CWvtA9baB5aXl4/ajbloDfbwzz70OL547aCuBQQEBAQEBAQEBAQEvHJxJAJnjEkjIm8/Z6395enH140xp6bfnwKwPv38MoCzcvoZAFdfnO7OR6u/h7//64/i85ebL/WlAgICAgICAgICAgICbgqOkoXSAPhJAF+01v4j+epXAfyR6e9/BMB/kM+/1RiTNcbcCuAOAL/94nV5bj8BAPZGsS8gICAgICAgICAgIOBYIHWEY94M4A8D+Lwx5n9NP/vrAH4EwC8aY/4YgEsAfj8AWGsfNsb8IoBHEGWw/DPW2vGL3XEf9Nu0gb8FBAQEBAQEBAQEBBxTHErgrLUfQXxcGwB8zZxzfhjAD7+Afj1nTAW4oL8FBAQEBAQEBAQEBBxbPKcslF/JMFOOGRS4gICAgICAgICAgIDjiuND4JwCFxhcQEBAQEBAQEBAQMDxxPEhcNN/gwIXEBAQEBAQEBAQEHBccWwIHEIMXEBAQEBAQEBAQEDAMcexIXDGMbhA4QICAgICAgICAgICjieOD4ELClxAQEBAQEBAQEBAwDHH8SFw03+DABcQEBAQEBAQEBAQcFxxfAicYRmBwOACAgICAgICAgICAo4njg+Bm/4b6FtAQEBAQEBAQEBAwHHF8SFwIYdJQEBAQEBAQEBAQMAxx/EhcFMNLvC3gICAgICAgICAgIDjimND4ParCAQKFxAQEBAQEBAQEBBwPHFsCBxdKAMCAgICAgICAgICAo4rjg+Bm/4bBLiAgICAgICAgICAgOOK40PgWEYgRMEFBAQEBAQEBAQEBBxTHB8CN/03KHABAQEBAQEBAQEBAccVx4fAMYnJze1GQEBAQEBAQEBAQEDAS4bjQ+BYRiAwuICAgICAgICAgICAY4rjQ+CcAhcYXEBAQEBAQEBAQEDA8cSxIXBEUOACAgICAgICAgICAo4rjg2BC3XgAgICAgICAgICAgKOO44PgXMxcEGCCwgICAgICAgICAg4njg+BI4xcIG/BQQEBAQEBAQEBAQcUxwfAjf9N/C3gICAgICAgICAgIDjiuND4EwoIxAQEBAQEBAQEBAQcLxxfAjc9N9QRiAgICAgICAgICAg4Lji+BC4kIUyICAgICDgKwbGmH9hjPmbN7sfcTDGvNUY8+jN7kdAQEDA88GxIXBEcKEMCAgICDgKjDHWGNM1xnSmP/+P9/1fNMasGWOaxpifMsZk5bsFY8yvTM9/xhjzB1/+O/jKhrX2e6y1P3Sz+wG4ub6df1trf8tae/FFvsb/boz5gjGmbYx5yhjzv3vfnzfGfMgY0zPGfMkY827v+z83Pa9ljHnIGPOWA671tDGmL2v3v8w57l/59z7t5+a0r/fI5282xvz753jP/8MYM5j2YdMY88vGmFPPpY2XEsaYP2qMGcs48Wf1ZvfNhzEmY4z5pencWmPMOw45fu476LC2jDEf9MZj1xjzefn+PmPMb03ffZeNMf+Hd/4fnF6za4z598aYBfnuYa/tkTHmP06/WzLG/E9jzJYxpmGM+Zgx5s1y7j3GmF+frqVYi94Y863GmC9Or/2EMeatR7znHzTG7Hl9u3DQGM+DMeaNxpj/aozZNsZsGGP+ra57Y0zNGPMzxpj16c8PyncpY8zPT+//g8aYsnz3N4wxf/EofTg2BM4wBu4m9yMgICAg4KXBaDR6KZp9rbW2NP354/zQGPO7APw1AF8D4DyACwD+lpz3zwDsAjgB4NsB/HNjzN0vRQdfDhhjUje7D88XX0F9NwC+A0AdwNcC+LPGmG+V798P4DMAFgH8DQC/ZIxZBgBjzFcD+BEAvw9AFcBPAvgVY0zygOt9o6zd997QmYgA3uZ9dgrAH0O0nv/F9Jocw38I4C88x3sGgD9rrS0BuB1ACcA/eB5tvJT4mIwTf676B8Wto+e6tl6EtfgRAH8IwNoRjj3sHTS3LWvt1+l4APgogH8rh/wbAB8GsADg7QD+lDHmfQAwvca/BPCHp9fuAfhxaftuabcM4JK03QHwXQCWET0nPwrgP8q47QH4RURr9AYYY94zPec7p22/DcCTR7nnKX7BWwdPzjnuMNQB/ASi/xtuAdAG8K/k+38MoDD9/g0A/rAx5jun330zIrqyBKAF4E9O7+1WAN8I4J8cpQPHhsA5BAkuICAg4Njg/Pnz+NEf/VG85jWvQbFYfKlIXBz+CICftNY+bK3dAfBDAP4oABhjigD+NwB/01rbsdZ+BMCvIjJoDoUxJm+M+YfTHeymMeYjxpj89Lv3TXewGyZSN+6S8542kXryuenu808aY05Md3Hbxpj/ZoypT489P92F/m5jzFVjzDVjzF+Stn5wulv9r40xLQB/1BhTnbZ5zRhzxRjzd0ggjDG3G2N+c9rfTWPML0w/N8aYfzzdZW5O+3bP9LufNsb8HbnmnzDGPD7dtf5VIyrItK/fY4x5zBizY4z5Z8bEB0fM6fsbTLSb35j2/58aYzLT4z88PfWz0133P2CMeYcx5rK0edd0vBvT8X/fUeZSYa39e9baT1trR9baRwH8BwBvnrZ/J4CvAvAD1tq+tfbfAfg8onUERIbew9baT9mooO3PIjLwVp5rP6bXSyEyBP+s99U5AJ+x1rYA/DdERA6IiNuvWmuffj7XAwBrbQPAvwdwn/TjVWZfqXjUGPMt8t0LeQ7+8nStNY0xv2CMyT2fPk/b+qvGmM8B6E7XuTXG/DFjzCUA/90YkzDGfP+0n+vGmJ81xlSn55/3j38+/QAAa+2utfb/mr5Pxof0+8B30HNs6zyAtwL4f+Xj8wB+zlo7ttY+gYgYkRx+O4D/aK39sLW2A+BvAvhmI0qS4G2I1vC/m/ZrYK191Fo7QbThMUZEhham3z9qrf1JAA/P6e7fAvC3rbUft9ZOrLVXrLVXnus9zxmHuWvVh7X2g9baf2utbVlrewD+KabP+hTfCODvWWt702fqJxERVwC4FcD/sNaOAHwI+8/gjwH4y9PPD8WxInDGBAUuICAg4Ljh/e9/Pz7wgQ+g0Wgglbpxg/s1r3kNarUaANw3Nfj058dvOGEWHzaRm+QvTw0Z4m4An5W/PwvghDFmEcCdAMbW2i973x9VgfsHAF4H4EFEhstfATCZGvnvR2RMLwP4T4h2pzNy7v8G4D3TPnwjgA8C+OuIjP0EgO/1rvVOAHcAeC+Av2Zm3fa+CcAvAagB+DkAPwNghEhJuX96DlXJHwLwXxAZW2ewv0v8XkRG2p3Tdv4AgC3/ho0x7wLwfwL4FgCnADwD4Oe9w74BwOsBvHZ63O/y2zmg72MAf3E6Dm9CpJz+aQCw1r5teg7V1l/w+pYG8B+n97cC4M8B+DljzMXp938tZl25n7jOTcnnW7FviN4N4ElrbVsO0zXzQQBJY8xXm4g0fxeA/4WDlZifM5H71n8xxrzW++4vAviwtfZz3uePA7jXGFMD8G4ADxtjzgL4VrxA5Wz6bHzz9BokGf8VkZqzAuDbAPy42VeJXshz8C2IVM5bAbwG082V54lvA/D1iNYSjee3A7gL0Rr8o9OfdyIytkuIDHaFHj8DY8y5g9aPeX7u1y/0HaT4DgC/Za19Sj77vwB8hzEmPX0O3oSI8APeu3FK8HanffLxRwD8krW2qx9OCfMAEen8f6y164d1cvpcPABg2UQbQZenGzX5I94nAHzjlKA9bIz5U9L2YWv1MLwNN5JO4/1Od+UvAHjXdD2/E9Ez+HsBbE7J55FwvAgcggAXEBAQcNzwvd/7vTh79izy+fj/pz/3uc+h0WgAwP+y1ta8nz99QNNvR7TT/CoAVwH8mtl35SkBaMqx/L0c8x2/j9uBnoExJoHIOP/z093jsbX2o9baISLy8wFr7X+11u4hMnDziAxc4p9Ya69Pd51/C8AnrLWfmZ7/K4iIl+JvWWu71trPI3Lx+Tb57mPW2n8/3Q2vAPg6AH9hevw6IjcgugDuIXIVWp3uon9EPi8jGkNjrf2itfZazK1/O4CfmipUQwDfB+BNHmn+EWttw1p7CdHO9H0HDKXr+1TR+tR0V3403fH+l4jm9yh4I6I5/ZHpLv5/B/BrmI6VtfZHYtaV+5nT5g8isrHoVnXYmmkjUik+AmAI4AcAfPdUjYvDt2PffetDAH59SsowJWR/EsD/4Z9krd0C8MOIlKKvB/CXAfz/AfxVAL/XRCrrfzDGnJlz3Tj8mDGmCWATEYH+c9PPvwHA09bafzWdl09P7/H3vQjPwY9Za69aa7cRke/7DujfGz3C9ITff2vts9bavnz2g9PnoI9orP+RtfbJqeL0fQC+1cy6S+rxM7DWXjpo/Vhr/80BfZ+H5/0OisF3APhp77NfQ+TO2wfwJUTeCJ98Ltc2xhSmbfhtw1r7GkTvnD+IaM0fBScApKdtvhXRnN8P4PuPeP4vIiLZywD+BID/wxjD9+HctXpYo8aY1yB61jTm9T8j2jArmyj+9LsQuVQC0YbEUwAeQjRuP4/oef+rxpgfNsZ82Bjz496GxQ04XgTOmFBGICAgIOCY4ezZsy9Ju1MXoF0buX79eUS7+XTV6iAyMAj+3o75jt+3cTiWAOQA+EYkAKwiUqbYvwmAZwGclmOuy+/9mL9LXpvPyu/PTK8R990tiIyja6Is/Uvsu/D9FUT7pL893b3+rmkf/zsiNeKfAbhujPkJY4w/NnH31kGk1Om9qdrUi7mXefcFY8ydxphfm6qpLQB/F9FYHwWrAJ6djjfxjNe3I8MY82cRGcVfPyUkwOFr5o8jMvLuBpBBFMfza2ZOsg1r7f+cEteetfb/BNBAZNQCkXryt621vpHNc99vrf0qa+3XIVIFhohi8/4BIlX33+K5qXHfa62tIlLCqNAC0Zr6ak+t/HYAJ/HCn4PnslY+7hGm27zvn405Rz+b6c/09xQiQnFQGy8lXsg7yMFEcZInEanZ/GwBEQH524jm6CyA32WM4WbYUa/9zQC2Afxm3LWnG0HvR0R0fAU5DiTH/8Rae81auwngHwH43Uc4F9baR6akf2yt/SiijQsStLlrdaqgusQn2uaUnH0Q0UbEb8lX3zvt72OIXKnfD+DytB/WWvvXrLWvsdZ+N6JY63+BSF18ANHGUwb7LpexOF4EDkGBCwgICDhuMIfUibn77rtRKpUA4H5zY7a5f/EcLmWx7/byMCJXPuK1AK5PFYwvA0gZY+7wvp8Xt6HYROQ65BuRQKQC3sI/pm54ZwFcOeoNxEDZ77npNQj9H/NZRIb8khi6FWvt3QBgrV2z1v4Ja+0qInXnx6fGC6y1P2atfR0i8nEnZnei591bEVEyj+d7b/7/9v8ckVJwh7W2gsit9KgFhq4CODtVhYhz7Jsx5q/HrKt5Bt13YZr8xlp7Wb56GMAFMxsnpGvmtYjiir48VRX/M4BrmFWdDoKu3a8B8PenZJZE52O+q97U9ezvAvhLiNxsn7VRbNwnEZGx54Spyvt3ADB+8VkAv+mRp5K19k/h5X8ODuz6IZ/N9AfR2hhhdvNkrvXpE4CYn29/Hn1+Ie8gxR8B8MvTDRXiAiL3zJ+dqlGXEalEJEoz70YTZXLMTvvkt/2zB6jIRBr7cWBzYaNY5Mt48aKl9JmZu1anCqomfAEAGGNuQeRW+kPW2v93pmFrt621326tPTl9hyYA/LbfARPFCz+IKCHKvQAYA3voM3i8CFyIgQsICAj4HYeHH34YnU4HiJIz+NnmvifuHGPM3SZKlZ00xpQQZeC7AuCL00N+FsAfM8a82kSJQb4fU1cgG8Vz/DKAv22MKZooDfY3QZIAmDlpwKdqwk8B+EfGmNXp9d9kohIFvwjg640xX2OiuKy/hIhUffQFDM/fNMYUprEc3wngF+IOspHb438B8A+NMRUTJW64zRjz9un9/H5xq9tB9N/t2BjzehPFbaUBdBEZ5XEJBP4NgO+cjnkWEXH4hH0BSTM8lBFldOsYY14F4E9531/HfCPxE4j6/ldMFPPzDkRK1M8DgLX278asqziD7tun9/Ue62W3s1Gs0v8C8APGmJyJYl5eg2lyB0QG29cbYy6YCIxz/ILf2SkheLOJ0qbnTFSuYAnA/5weciciA/s+7LsWfiMiF1vF9wP4aRtlZLwE4KIx5gSiuJwnp9diko7zc8bOx88gUm3fh8gN705jzB+ejmt6ul7uugnPwQvB+wH8RWPMrdN3xd9FlM3wSMkmfAIQ8/NzPNYYkzX7CVk4vzdsRBzxHXRgW1MC//txo4vjl6OvzR+cvgdOInJrZdzbzyGKJXvrdCPmbyMigU6Bm74r3oloPUA+f6Mx5i3TtZs3xvxVRErmJ6bfm2mfmYAoZ6R8CyKX5D9njFmZvpf/AqJ1dug9G2O+yRhTn17jDYhUsv8wPXbuWvXHftrWaURuyP/MWnvDJuH03bk4XddfB+C7EW1u6DEGkefCn58+D08BeIuJXCffjtnsmjfgeBE4mKDABQQEBAQcBScQkZkWov8ozwP4BhvF3GCqgPw9RPFFz0x/fkDO/9OI4nLWERl4f8pa+zDgjJcOoiyDcfjL0+8+icjF6EcBJGyUufAPIUoQsonI6P5Ga+3uC7jP30SUVOI3APwDa21svbApvgOR4fQIIpL2S4gSjgBRcpFPmEhx+lVERsdTiFyn/u/p8c8gcou8wf3OWvsbiLLV/TtEytJt2I+vezHwlxHF07Sn/fGJ6g8C+BkTuUfNZJebju/7EMUAbiJKif4d1tovPcc+/B1EquInTbwC/K2IXKR2MC0ZYK3dmH73s4gI4/9AtCZ/DMCfZB9MVBSdbZURKY47iDYdvhbA103VYVhr16eK6Zq1lgrcppX4LBMlpngvpslopgT+RxCpK9+LKM4LiJSvZ3BE9Ws6lj+GKDtie3qNb0WkYq0hWus0yF+u5+BN5kbV6/XP4fyfQkSMPozIyB5gP87vxcajiFzvTgP49envtwBOCf6gHDv3HXRYW1P8HkQxWB/SDkxV2G9GlAhnB9HGwxcQxU5ieo3vQUTk1hGtRz/W+A8jilP1XWSziEjLFqI19bsRuRrTM+CWaT95H/3pfRA/hGi9fBnRZttn2K8j3PO3InoXthE9bz9qrf2Z6T0dtlZ9/HFEG0I/YOLV+NchWtttRMmbvt2bGyDaUPuCtfah6d+/PL32BqL3yL+cc20AUcDxQd/DGPNTiIL71q21TA38CwBYALMGoGGtvW+6Q/NF7A/2x+ftfioeeOAB+9BDDx122KG48/s/iO9883l839fFEuaAgICAgGMMY8ynrLUPfAX04w8BuNta+32HHvzS9eE8ImMzfVSlICDAhzHm+wFsWGsPNCYDAgJeXhyl4OBPIwpQ/ll+YK39A/zdGPMPMZuN5glr7X0vUv+eEwwQfCgDAgICAm4qrLX/+mb3ISDgxYC19u8cflRAQMDLjUMJnLX2w/N8n6f+m98C4F0vcr+eF0IMXEBAQEBAQEBAQEDAccYLjYF7K6KsXI/JZ7caYz5joloib513ojHmu40xDxljHtrY2Jh32HNCFAMXKFxAQEBAwO9sWGufttaa4D4ZEBAQcPzwQgnctyEKnCSuAThnrb0fwP8PwL8x8fVgYK39CWvtA9baB5aXl19gNyIYE8oIBAQEBAQEBAQEBAQcXxwlBi4WJqpA/82IMq0AAGxUsHI4/f1TJqp2fyeiauMvOQyCC2VAQEBAwOGoVqvuvwtjjKs153tx8Dv+JBKJIx1PJBKJWM8Qay0SicQN19Dv+W9MFvGZ83mMf6y1duazeW2xD3pdthf3vX8tv+/+NeLa8ftYKBRQqVSQyWSQTCaRSCSQSCSQy+WQTqdhjMFgMMBgMEA6nUYymUQ6nUaxWEQmk0E2GyWL4/xkMhnXr/F47D4fjUYYDAYYDofI5XIol8vu8+FwiMFggGQyCWMMJpMJJpMJxuMxjDHI5/PIZrPu/ieTCYwxyOVyyOVyGA6HaLVaGAwGmEwm2N3dxWQyQSqVQiKRcNe21rr75D0BcPc5Ho/dsQCQSqWQTqexsLCA5eVl116hUMB4PHbX4Zzkcjk3XsPh0LU3Go2wu7sLYwzS6TTS6TQSiQTS6TSstej1ehiNRm6sOM7j8X5ViEQigVQq5e6P/eZ47O3tYW9vb+Z4zlUc0um0G4vxeIy9vT13bY4F28tkMkgkEuj1ehgOh7DWIp1Ou/HPZDLIZDIAgPF47Pq0u7vr+sFx4nE6/mzfWuvWAgAUCgUUCgUkEgmMx2OMx2NMJhP3/LGPyWQS2WwWqVQKo9HIHcPjJpOJmwNrrZtX3qu1Fnt7e25O2DbfOwrOka5RzlMqlZp5JnnceDyemQuuC64bPT6ZTCKVSrkffp9MJmfOZf94L3yWdnd33Xf+s59MJt0zrs8613UqlUI2m0U6ncZkMsFgMHBjZq2duWYikXDjqu0lk0lkMhm3Jv1nmWPMa7NP+sP1o+8qjgHHJ5FI4B3veMdR602+qHjeBA7AuwF8yUqhSmPMMoBta+3YRIX97sAhdQxeTEQPwMt1tYCAgICA4wCfjPAzxWEEyz9eDS4aUP5xPrGZ9x3P1WP9fs8jSXF91nPj+j4P88hb3LUUceSS7SWTSVQqFdTrdWeMAfvjNxqNnCFH0kqCVigUUCqVUCqVnAFbKBSQzWadAU7jjsb+3t4ehsOhM94Gg4E7N5FIIJvNOqOf45JMJmeIZDKZdESDBm273XZt0VgE9snNaDRCv9/HaDTC3t6euy8lRLw+DWMimUzi5MmTWFxcdG3yHvf29pyhScOX1+B96dgrMQLg2uGYcw5IZnRsSOj29vYcESTxIpFkOxwXkmEgIhbA/npWw1lJCMku+8I5J8EhOSJp43GTycSNCa/N+2fb7MtgMHDtcFx4XX6ezWaRy+UcIVNSks1mkUgksLu76wiiEgreF4kO/yY55TpRaL85TjyGz4qSQX6nhFJJJceNc817JBHimCv55z2TwPD55Xm6xlOplOtr3IaOkjMSO11nbJP3op+TFPN7XkefDb4P2H+C7bFNElD9TAk4wbnJZDJIpVJuTeszzevo5tvNwqEEzhjzfgDvALBkjLkM4AestT+JqFbC+73D34aoqOAIUSHP77HWbr+4XT6grwBs0OACAgICAg5BnFo1j4z4/0nHqVH+93GkyCdiev48EjWP+OjvB52r/fXJXpzK5yuGcefMG495mNe/bDaLhYUF5HI5Z+T5bXIHnn/n83mUy+UZQ5NGN5WS3d3dGeOPxEIJIIldp9OBtRbFYtGRmX6/7+4zk8kgn8/PGKNqUE4mEzSbzRmDkCQwlUo5dYwGqapyPB+AIzGcAxK/YrGIfD6PYrGI8XjsiEOn03H3TbUhlUo5A5sEjv2eTCaOOOzt7SGVSjmFwl/HJHk03ElajDEYDofOENc5UuWMa8gnExw3ki5eU9UVX63iOI3H4xnSpWob+0LjXudCCWcmk0Eul8N4PHZzTPWPBI1qTS6XQz6fd6SfxJGKFFU6EnGqWrxHEieOHceWSrFuEChJmfcM8F74t24I6fc+OVG1yn8vkaRRzaSqxPOAfTWP64aKLseB/ecmBZ8tVdW0H0oGSa61L9pvJbkkVLpWlVCxPQXHi2uN/3KcVIHUTYVMJoN0Oo3d3d2ZNaVtKgm+WThKFspvm/P5H4357N8hKtJ5cxBi4AICAgICngMOcxk86BxfxfJ/12MPu8Y8MniUvvu/x7Xp9y2OxB10nTgSyDaPMlZ6TCKRQLlcxtLSEnK5HHq9njOefOOf10mlUigUCqjVarDWIpfLOQNqNBo5paTX68248tH4TKfTOH/+PJrNJsbjsSNq6XQatVrNqSlUo9Q1D5g1MNm3fr+PbrcLADOqRTKZRK/XmyFT/EmlUq6vABwZYh/VHWxpaQmlUsndfy6Xw2g0Qq/Xc2SDKghdQFVZMcbMKIXaB7qCqgsaCSvvgXOWzWad+mKtdQSG82Otda6DNKR9BVpJiqpTatirWqRjrgSBpIvkjYQRgDPodVODhE/dWNk/9kPHLplMOldZVd645vzPSHA4j/yb11YCp/enGyWcBwBu40E/5/yRHPF8jj+vyTXFz0ngea4+4zyfqq8SMq4FkhWqUBx/Vd50fjkGHAfdpNDNK598qSqo86zrWL/jOWzPV1e1b7qW1P2dqjpJKedK146SUbqI8nkh0fdVvJcTL8SF8isON0/IDAgICAh4pSFOoTqKEjfvOJ/UxKljPmGMI3txCpdPGuOUMP9YPT7uOL1mHIGM64dP5A6Df1wqlUK1WsXKygoymQx2d3edKkIVSskcVZ1arYZCoeDaoTKSTqeRz+cB7Bt17XYbe3t7yOfz6Pf72Nvbw+nTp52yBERGaj6fR7VahTH78WJ0ndN4Nx4P7JOKfr+PVqvlDGd1xev3++66JAfj8Rj5fB71et2pTlTJrLXOPZGKTrlcdoZoNptFJpNxx9PopGHe6/VmxppGJZXHVCrl+qBueEqi1P1PXc04zuqSx2vRyFY3Na4fX20mYeIxanSre5ySR78Nkmm2p8qXutzyudrd3XXupowpJFHmnHGOSF6pvtAdk4qpxgOqy6S1+3FrGmPHtnk/HEMlzZwDvX+9F94/r+M/1z7Z4N8kiT5x88kGlUx1H+X9qpqn65TkzSflnC+NDVP3RlXe/Ng5nYt5bqJsXzcIVJHkGvZJMsdKY958l1EdU1+V4zV0nXI8NdbzZuB4EbjnuHsZEBAQEBBA+GQGuFEloxFymOo0j7ixTd8YOyimIo60+f3SdnWn/jAyGHcdH3FK4by+zgNdk6rVKsrlsksyQmMZ2DfEOMbpdBqlUglLS0vOFZJGHckYjXoagnSNY4KPZDKJc+fOIZ1OY2dnB61WC9Za1Go155ZIRQuIElbk8/mZGDDutqdSKezt7blkHzyGLnrJZBKtVsupOcB+sgcqO/xbDXoSikQiSkxSLpcdwaGyR5LGvpTLZVhr0el0ZlQKGtA0QjmuSqA4bySBxWLRrT91C9R2lPz660uNca5lunfS8OVYEfyOY6SxjXFuc+qKR/WEY6axZVQK6TKpyVGUbKibLdXNbDY7405JNVbdHpXM8T401szfGGG/Vbnl+0HdSPlcKSkh/Hi2g9z21IVUFUmde44pCasSNe2rH/ulSpuqg2xf2yMB8gkc29S4QM4znwvOK/vC8VDS6o+1jiPJO+9D1zPng88fXYk5v+w3r8mkL+l02m3yUNXVZ+xm4JgRuJCFMiAgICDgucH/TziOLKnhy8/0dzWq4tQsv22/jXnH6veHqW7+dY9KvOLaPQo5O0itU6RSKZdsRFUTGlrsu6oXhUIB9Xody8vLsNai0Wg4RUKN1NFo5Fz8er0eEokEisUiWq2WS3KSTqfRarWc+2SpVHLkhMZ+KpVCPp93hAnYzy4IwMWPdbtdpxSokkaC2ev1ZlQNEjcSVSYy0UQMJAUkt0rsaChqHFehUHDKD49RZYfG8WAwcMSZRi+N1X6/74xXNeypJlGV1I0FzSSproNUjpSMq6pFI11d29hXdVtTFUdVKvZ5OBw6kqBEh9chcSAR29vbQ7/fd0RVs3OS6OfzeZf4xlrrVDfeEwnlcDh0GwaqtJEYqesjx4eEksf5ipD2X1V7jjevocqVxh+qS6C6JLIdXzlTcqKKqyZP4TFKTnz1VJ9VzjvXkq8Wxr07eX2dZ1Ut1eVV+8SxUNdFkl7dDNAskvyebfO6SkT1eec11OWShD2RSLh4XK7957KJ9WLjeBE4hBi4gICAgICjYx5xiTM64s7xXZR8EuWTI9+wmbebfhjZilPd/GM00YHez0HnzINvYB7UH4KK0uLiojOeVTXjTrYaWiQcKysrKBQKzhWRcVvMILm3t+dKADAjIolKr9fDLbfcgkQi4c7vdDrOPZJETDNPKnnTuDXu4u/u7qLb7Tr1jf1VF8RUKoVyuQwALq6oUCi4XXu2STc+jpFm4aSyRwKmCTTK5bIzIjVLo7ovqpIG7LtJklDQSGXiGBJJNdpp3JLk+ln/SMI1WQXVFpIMziPJFO+V650kXA1sYD+Vv7rZMY6PBIF94djrfanBrRkpqdjRvZVJb0jw6eqqqptmIgT2Sau6y3INa5yXKnSqfqrrKsfAJ3YcCyUTHFffNZD9ULWP60DngmNFIuurq5q8RO9HyY1eV59bzr8mbtF3AceQn3OzQtU7VfqoZKvqyrHi86pxj5wPXb9cE+wb+8cNG42f5FwZYxxJ51jy2dH1yvb9MbkZOF4EzpiQhTIgICAg4Eg4quoUd9xRzvUVqnnqmX+sf14cafJ/191xYN/lyP/OJ4Y+uVNCdphS5/dDjZlUKoVarebqllE5IHHQdPCqJpTLZUf4SLIWFhbc8Ww7m8069YvGebvdRiqVwvLysjNW2+22I3HAfvp4zcRYKBRmDFjGi9FtsNPpOMVG1SaSq1wu5+LzeB26YarbFYkf3fUAoFQqoV6vu7FQAka3MvZFMyVyLjKZzIzBqi5eVEOYbp9qJ2PqeL9aJ40GdC6Xc4YxCRTnCdh3N6Nhq4omSQyvq4oV515ru3G9krxRAeO9si0lekpwmMqfhK9UKjl3VRJ0JczMRsnabiR6PnkjkdKNEJIuJZIEyZG6ECo4fkq4lNQqWePxSsL8d0hcfJmqVeouSNVYlVNr7UwdOv8ZU/jkUMeB88KNFBI3f4OKfVLyxrb0XaDvICVLOk5sQ115Sbj4napoHHMScm64qGsv17xPQDkufH6VSPvj9HLieBE4BAUuICAgIOBw6K634iBXQ/3MV57mtaHXmkcQ/ePnkSS/H2rUKXk77Pi4+4k73v8+ToWLOy6bzeLEiRNYWFgAAJccJJ/Pz6g+AJwRmEqlUKlUXLxbt9tFt9t1sScAXExYJpNxrnHpdNrFhxWLRUf8NFMjDT1mUaRRXy6XnTJIwqDq0Wg0cvXdyuUyzp07h2azie3tbTSbTezt7aFYLLo6dCQvNByHwyE6nc5M6QC6V+ZyORSLxRlySyOcx5NQMAkJ26cySHWDRqoa+jSU1Z2Qn2vhb84Bz2f/ON4ae6TX4fc0ykmANG6I5E1VPXVLJWFR1Y3tsIafJrng37xnJW/sp24MJBIJp/aS0GezWVeKgS6tSiZ570qilEipaySNeRJo361Tx8h32/PfPzrvOjaaZEXJgrpwauZLJTT6N+dDiROVOPZL14iuJ3VJ5FhxnbM9HS8/rtVX6rRfvgslx4akTp8nnsdnlPPPNafE2h/juPhELUNBbwF+z+dPXTv1ueM5gcC9SDAhBi4gICAg4DlgnrqmxGQeoTuINCm5mqe+KaGa5xJ5kMvkvHP9fvnf8zNVzOLuwx8DPXfeeLA8QLVadSoZMzCqUUgSl06nUSwWsby8POPKxlgzGp0kVeNxVMMLgDP0KpWKM6S63a6La6Nhp6SD6hIVMhrhVGFovLJEgDEGtVoNpVIJwGxdOhKBwWCAXq83k1qcteCUHJDYlEolFItF1y/2nQSTBjENTBJZAC6zIo/TzIiaVIXGMolLPp93JIT3y3sgUVPCRWVEDWJC3RV5DzTISZI0hTwNfxI8zh1JBEkpyV2/34cxxhF+kjfeG411Gvm8rqqnLAGhih6AmUQl/X4fvV7PxT8yDk4Jgq8AUXn0FSJVZvR+9F4VccROYx/jnjFeU+My41QmPou8Pompvhd4nrpMKjn1k+BwbQP7Cjj7pPembsW6JvwC8qpQ+mSQbaoaqLGzOhd6DW2H7wyODcec88G/qfCqa6aqv5rYRDcsbqbrJHGsCBxgggIXEBAQEPCc4ZOkoyhVSmjmEbC4NnzXH21P2/QJmn9N/V6NSv/4OOPuoH76Y+CTt7ixSaVSWFhYQL1enyEb1lqX5p8ESclCuVzGwsKCG4/hcIh2u43JZOLi4Ogy2Ov1HPnq9Xqo1WqOGFprsbm5iW6364gBXRhpKBcKBVeYm/fHLJTc7R+NRq6WHAkai4Nfu3bNKWo0uPv9vjMmtTYYCQeNcrZHd08lYKrMsF0lUqVSyREO9juXy6FcLjuSurS0hIWFBdRqNVQqFVfsnIavJrzQdaTxQ7u7u+j3++h0Omg0Gmi1WtjZ2UG3253pH5ObqBFLQuC7pZHwMo5M4+Fo1Gvs3Xg8di6e7BtBkkFCxHFQ1Y3zznvi9UgCuA5JujXTp6qvSmKoVHF+VVX0a53xd94v1Sh1j9XjgP3SByQgGjena8UnLGxDVSyNN6MCybnnWuS5JNR+XBnXoPaXxFnXL++La0mvw2up8qYxe3ou+6TxfySAbIebGaoYajZNjSv01UqN0yRhI9Stmaq7xp2qCy3Hin3hZsPNwrEicNF7KTC4gICAgIDDMY/E+AaJHg/su0j5ihR/P0zV89ub1zdeRxWwg4ihTwDn3WOcujevz3Ht+GpdJpPB6uoqarXaTFIM3UWnoUXjii6TGmvF1O2ZTAblctllW6RyVKvVAERG18LCAsrlMobDIRqNhlMmqDZZu194mgZ4sVi8IaudkgfGjyUSCeTzeayurjriRGLHmDYtzu2TNWA/6QIVNsZckSjQ6OT5vH9NnqAGfqFQwKlTp7C8vIzl5WWcOHHCETUte+DPLRH390FrUOefSWAajYZzIV1fX8f6+jo6nc5MwhTOLROL6BgpmVISoIkuNEugGvxqqHOcqdCRYLLmG8dSySDbpLJLlZKEhGPPAvFU8jgO7Cew/17Q0gaEn5VTSa4qlbxn9kOfGd/lmnOgpEjnUMkjSQcTyJBQqXJEIqMZG+Pi7/w+aZs+eYv7jHPpq3RK4Ni2qmVxyqY+W7x/P9aN5/EzVdz0HK4z35OBbpOMk9U+q5szVV0quDcLx4vAIcTABQQEBAQcDlWX4j6L+9HjfIMkzlimsaVt6K6zr5b5ZMpXS/zvVXnT4w4jlIqDyN1B40OUSiUsLy87NUgNULrNMVGIqi+swcZYJ+5kZ7NZl1SE6lgmk3HkMJ/Po1KpoNPpYH19Hbu7u9jZ2XG79Fq0meRN08Tr7j7VFGA/aQiNzmKx6Ahlp9PBYDBwSpIqPgBcf0nsaHBzZ79YLKJSqTgSQdc39oGKHo3pZDKJer2Oer2OW2+9FbfddhsqlYpT1EiQ/CyecXMV9/dBpE1JAf9lQhoWIacywnFoNpu4fPkynnnmGXS7Xezu7jqiq/FqSl7YDtcK1R2SJxIbbmJoQg4a7FS5OM56LtcD18Te3h663a5Td1mLkHPFuERewyfjVJHU9VHfAxwTADe4QPJ+1X2Qn3P9kfipukd1koRTCZi+f0hY/NpmPJ9jzntRpVgLlM9bE1RxNWZMv1fypPPN8VOFUYkb165uVPmbZ/ybxFTLD/BfJWhx71X+rcSbP6p683cqnVSUdSMBgHsndLtdFzd3M3C8CJwJBC4gICAg4LnDN4J9Mucfy3/jCJRP+uIMCh80guapXtpH/3z/bzUs41SXefflK30HET8gIm+Li4suNokGkWazKxQKjrypOxRdl0jyxuOxyz5JQ3w4HDrVbHd3F8ViEZPJxLn10Z0RgIsp4+45jWyWB1C3K83Ix5pg6XQa5XIZnU4H1WoVuVzOXWcwGMy4QmpcmN4bXbPoGkoyStVCk6MwY99wOES/30etVsOtt96KkydP4ty5czhz5oxTmHwVlqTjsHlUxUKVoIPWkK/qcF3qd2yPBKhSqeDs2bN44xvfiL29PVy/fh1Xr17F+vo6rl69irW1tZkx1z5qjCDXEb8nieO40vWW40Z1k+OrxFrru41GI3Q6HXQ6Hadm+rXx6FZL413Jho6lJgwh1NWPhIzPkLrrUZX0SZUqv0qk1G1SyxrwO1XvOGZ0meRaB/YzonJ8qGZS/SYp5drlZ8lk0sXPqYsir0kXWHWxVJdPjh3HiM8g+8rP/XHjGtNxUCVf1w/Xp7qdsp9aAkE3D6jUatwkST/v1c+cyrmbTCbu3cNESDcLx4vAIZQRCAgICAg4HL4RG6e2xRnOAGaMkzjyprvP8whUXD+UPPmkz2/jIOXNJ4vzAu7nqX3ziJsqB7VazSkWVE8AuOyPNKw1rTqNO+5aD4dDlEqlGbUknU47l8VkMunivnK5HNrttnNpVLWhWq26eDT2PZ1OzyQ3oVsdDTUAzvWOysJgMECtVkMymcT29vZMchK2Q8OOxipjvEgYqVRxh5/jRuXNT7xx11134a677sK5c+cc6eMamjfP/lrVRBZxa1fnd978++tG/2b/fdc3XaM0oLPZLM6ePYszZ864Md/e3sYzzzyDRx99FDs7O84gJ2khUfGvrQqVusn1+32XzIWJbUj4J5OJc1elKkrlLZlMolqtOsMdiFLHq5pJcqr94/35cVV0OfSzgnL9ca1wHkgAuDb4N/uimxq8pjHmhuytvlsmn0kSKqqfPJdkhaRG1UZ1Ida/SVpIrEmAOAe+u66qYRwTfU/67sYktqpy8nffzZljodfgePprVRU5dUnWZ0FJHmstamIeJmjhOtW1xw2dXC6HWq0WCNyLhaDABQQEBAQ8H8wjb3FG7Twipv/y97hjDzrXd12cR+Lmkbe4PsRd6yD4benfhUIBKysrzlgE9g0iGpPlctntYtO4pMFYqVSQSCRczTYm9qCBpDvhTJZB9YDxKWpokfRpnBUzEGpKeCpzVPOYwILGfDabRalUgrUWW1tbjigy4ySNWCo2er8cs0KhgIWFBfcZ1ROqRu12G+l0GufPn8ftt9+O22+/HSsrKzcQ/rg1pi5jStp0znxCpW52/rzGKc7z/o5T+ZTQKSlV5ZeuqNVqFbfddhve+ta34urVq3jqqafw2GOP4cqVK06N5DoiqdFCzCRCzArIOcjlcs4IpzJUKBTcWut0Oi5ukZkmqbKlUimUSiVH8pQgaC09kpN56eJ9d1geq+qUqr8kesB+Jkp+z3Fm+npuamj7SmxVJaV7JckTVUjNPqmF0Hl9JTPsH+9Ja/T5a1DnX99Zuu50fWidPmOMi1nkeiaR1fcGP+OxJJ+awMWPC+T7hufSRZvvCj5fWjtQCSXHAtiPe+P6VlfWcrmMUqk0d3Ps5cDxInAIKUwCAgICAo4Gn+jEGatHITzz2lQcxe1RyZjvTqWE0j827j7ilDSfZM5TEOOOTyQSqNfrWFxcnHF3UyNnMpmgWq3OqBaMQWLqfBpBrMdFI5aGn6a6p4I2GAxcbBUVDBZhpiEGwCkLmn6eRj+JIVU1tpXP51GtVmGMcS521loX70blTNPus11gPyFHNpt1dd2AfeOPhnUmk8H999+P+++/H4uLi67//vz7SoIqCLp2aLxqTJ+vivmkLg7z1joNa40bUuOa37GPjDGkW6Jm8BsOh66dU6dOYXV1Fffddx+2t7fxyCOP4OGHH3YJIdge29dSCt1uF4lEws2vZgPl+JOAsYA7ELkQkriPRiPnXskafBrHRqKvz5a6N5MkcR0y9ozEin3nvyQvquzo8+snyqCLL90/AcwocmxXySLnhOMdtymiLq9KuPUdwFg33ZxR10TdNPDJkxIufq7rU9dU3DtSY950bPk7+6+qtrp/qrskz83lcm6DgMdo1lmWkCiXy+4aqqyS3HEzhyQ/m826zLrzYgdfDhwvAmdCGYGAgICAgMNxkMKl3xNxCpdPlOLUt6O0w8+1nTj1ZJ7L2zzXuoNwlGN4vUwm41LU01Dn7rW6mVUqFRSLxZkEInqfzFYIREY1FQAqIul0Gt1u16lqJFzMHMi+UFXg7noikXDJQjT7oZJBIFLE2Ja11t3TeDxGt9udcamiEQ7MkjFVQWiUU+nQmmY0Ik+ePIlXvepVuOeee5x7Ztw6IWkngVFD3Se2PlnzkyzEkYPnAl8R9H/XkgHziJ2mz6cipO55uVwOq6urOHXqFN70pjfhiSeewMMPP4xLly6h1+s5pUXJNJPhWGvR6XTc+mFJBZLwRqOBXq+HbDaLSqUCAK7wO2MyuR6p9pLoK1Tp4f3zXmjwkxioq7AqU/ocaKITJTwkVdxUYEp7/d5PukHS7Lt7KnHjWuG6UkLPZ1aJiqpUujmjxEmzbGqSD3/zQF0zuX5IjtinuEQsPJd/MyELx5uEUFVRJfK8XqFQcIoryTzX6mg0QrvdduuBa1UTtfAdonFwHFsdCyWOLzeOFYEDEGLgAgICAgJeEOYRq3nHxOEg18Y48uiTtjhFbF5/4tzf5uEghdBX+BKJBEqlEhYWFpDL5ZzLGdP2c2eeaf/puqbJGdQA0vTxel0a0L1ez+1wM3W9EipNVkGCRbKQz+dd28yCqJkLmUWSBj9dF5UgUn0hUaBaR9BI5nVIGqlI0mBm+/fffz9uu+02lMvlmdgdf9PAV1KomtAo1ayZ84hb3I+/xvy15a8Jn6jN2xBQdU5dOjW7n8YiqZseCYDeR6FQwL333ouLFy9ia2sLDz30EJ555hm0Wq2ZAutcX+rySJdJay2azSa2trYwGAyQz+cdqaPiyngwKoK5XG6mkLmqbEre1KXPmCgeU1UwnVclGSSHVH40AYmqfpr6n2On32m7VKLoWknXPvaLZERJDo+bl9iDGw/qqqmbFlTTtOSFEir2UZ8TvX9Vi7mOOBbq0ul/p3F4GjOoiiC/I0FX0smNlWKx6NYa3bB7vZ67Z2P2k9fwOCY3okrPd5//3Bz2/8BLiWNF4EzwoQwICAgIeA7QZBHzEEdu9HM9jsbWYepb3DUOOkYJnU/ueD39TEmiTxjjXPdojKjCtLS0hJWVFWdwGmOc8axxSIVCAaVSyZUMyGQyaLfbLu0/AOeuRIOL7SUSCXQ6nZkddbo4aVwbE02QhNEYZ3Y+YH/XfDgcOsOZZG4wGCCbzeLixYtObev1emi1Wuj3+y4hCos6k9Bpdj2qE1QraCBSFRmNRrhw4QLuu+8+XLx4EYVC4QYCpPOksUu+qukTtcP+9X/X9ThvHc5TkJWY8XNV2JS8Efye57HcgcaD8W+Nm6NayzFdXV3F+973PrTbbXziE5/A5z73OTQajZlEIwCci2EqFdVwa7fbaDQaLsEEM5aSlJdKJWQyGXS7XQBArVZzLpT8UbdEvW9gP6EIybpuYPC+1aVPx4znkvhTAQb2FS2SyThFlc8dSSdJFQkLxxvYd7cEMBMDynvjvSgZ4rrWzQJg3xURgFubbJekVMkbiR/vV8dGY+z03vQdxX95nKrSHF9dW2yb7rBUUfm+4DzS5ZrPNNVbKvYcJ6qWLGbf6XTcO0HVZ40rDDFwLxKMCfwtICAgIOD5wd9RParK5h/vE7246/ht+MfHtT3vMzUklIj51/L7N0/dy+fzOHPmjMsQube359SP3d1dZzQZY1w2ym63C2utU6wYj6YuVnQ5Go/HLj5FM+PRBU53+QuFgotXGQ6HjkixHhxdyBjnxrYnkwna7bZzrwKiGnPMKmmMcckvKpWKM2aNMS7LIQDnskm3Nv6u48fYv7e85S244447XL/iFFFVeEj8/Di2eQRNCYJ/DvsxLw4ubh35/Yr7UQM67ofH0bjmOVQrea90+aPhTQObWSRVAeG6+pqv+Rp81Vd9FT772c/iU5/6FJrNplsTXFf9fh/NZhOdTgfWWufmy8yUGq/U6/WcQko1RgmTKm86ViTxNNzV1VLdRbU4tippnAeWyyDx0YQsHBeOpapQXL8cM43r4niTFHJTQOvA6fPO54SbNCRpPEZdLjWO1Cdl/saBrke9d36n65z35d+nrkl9tqjc+X3TdZvL5Vx9SFXh6RrJtaokT384Nizr0W63XX1A9iOZTGJhYQHpdBqtVsttJt0sHC8Ch6Nl/AoICAgI+J0Nn7z4xta8nVU1iH0FI07t8o3neUTMv0YceYxT9nwiNk/JU8No3v+TiUQCtVoN586dQzabdanaNXEHjedUKuUKO9NoYrY4xpXwesz4yN31XC43o6TR2AZmFQmqK5rKv1wuo1KpuPTd7BcVikKhgN3dXTSbTUcql5eXkUhEmS87nQ5yudwMQaMRpvFzNNoZS6OJLziG/X4fuVwOX/VVX4X7778fCwsLcxM1qDqlaluceqYKibrY6ec0hpXocTzi5t/vi28oq/qm68Qnaj6Bi4uB02MBOEWTBJyqh55LN1qSIK6XhYUFvP3tb8e9996LT3ziE3j88cddPzudjqvVx7VB91sSc641usyRfNNdN65MgapGJEocE6poJDTAfhF4GvyqXJGoMP6Sc8f1qgqyX+uMxImbBuqyyHEE9jNI+qn8SXjYZ83iyg0T/33AvnDONWGL3juPSSQSrl0+T0qwuH5VTScZU8JOcszvNR6OY6LrUNcX5yiTyaBUKrlzeK8EN3P8PhLD4dDFTw4GA1cvkNerVCpuc4bvvJuJ40XgggIXEBAQEHAEzCNJwI0kZx7p8V0PD1Ps9Byf7MW1r8dpH+IUFP183nUOuh/uLq+uriKdTjujSHf2V1ZWAERGGQkeXSppjNIwZDKARqPh1BUaRBrTRDc3Zsqz1rrse0xewTT/lUrFFdmmUUz3R+6yM4kFXelOnz6NarWK9fV1ZxSynpwmYVESSaOZSR0YE0fjnMTpjjvuwIMPPujGbF6MGz/zSZeqFwBm+qRKjX7O/rEdf+0ctjngk0t1VQNmCzXzWjwuzoBmAhoqUVSfaPz7ygmJjipFNKipcKo6xWsvLS3hve99L+6//3789m//Nh577DG0Wi3s7e2hWCw6tZiusIyJ1JT6GjPmk1O9R84JSZqSFo4hyRLvh+TQJ3CcH5I/rjGN2YyLweP8cu1xrPns8RlR98i4uDgSIyVRWppA1TiNV9NNBc4LECWD4fG8d6ryqrypmqgJUZQI6tj464vfkQACs5stun55jJJqnqvvJyquVFrZV/av1Wqh1Wo5TwHGV/K6+o7Y29tz6/Zm4XgROIQ6cAEBAQEBh+MgsuWTn4Pc0fT3OKLlkzS/3TjydhQi6Pd33r9xaov/fT6fx8LCAsrl8gxRYDxNNpt1CSFoiFLd4m4+M+IBmFHOWq0WUqmo8DcQ1eaiYUQDiwY744BYGoCGF+urMRkI03rrrr+1Fo1GA+12G4PBAIuLi1hdXUW328XTTz99g7KTz+cdMWI7JA1URWg8896MieKOKpUKXve61+G1r32tS6wStxY4znFJSFRpI0mjgU3SSqN0XhKTeUR+ntpKg1r7yzWgCSb0HN63xkbp55wPjg3nulAooNVqzVxXDXQaxFR5uYY0fomKHNtPpVI4deoUfvfv/t145JFH8Ju/+ZtYW1tDsVh080hXTa61RCKBYrEIY8xMAXhNPhJH1lS54hqjwa6KGTcPVJ1VEujHxJEMcNy0wDXHlSSUbY7HY6fecb2pO6KqcRwvXlPVW3XVVNWW5NuYG10sufZ9osk+q9ukZliNG0sATvXU/unnSshItjg2vnsrSR9JFpOOkLCy3wptnyo7Eyg1m01Ya1EsFp3rbT6fd/M+HA7RarVm+hMI3IsEY0xQ4AICAgICnjfmucXEKR0+OZpH3vi931YcUVMieJQ+zWtTf/d3polkMolareZczTSDIHehqW5Ya10iEJIrGn008hgnx8Qgg8EAxWIRS0tL6Ha7aDQaM/W3SNSSySQqlYrb4abBTgJVqVSceyNVP9bWYsFvZpM0xuBVr3oVjDHY3NxEq9WaITqMh1KDVGt5sYZWPp/H4uKiO45G84ULF/CWt7wFZ8+edWpHHJHyVTbfNVIVNq1Vp4pbXIxbHNSI1DUYpw77mxKHQdeO/qtjosRsNBphY2MD29vbM/Fvqsxpn9SgZqkAEjkSjtFoNFOCIp1O495778XZs2fx6U9/Gp/85Cfd2mRsJTcYSqWSm1/2WROrkGABmFlT6gLJ4zXJjSq/VKjUbVCTiXAOSSYBuPXGz4F992EmB+Kz1u/33eck+HofTNajmR/961Idp/LmEy/2iUlf+B5Qgss582MtVckiEVOVmO8VYLY0A59xbpaQvKqqyX7zvtkO50yzn/K6GlurRI/nMVEJk+jwncDNA27a6MYNSaE+BxrDdzNwvAgcDvb7DggICAgI8BGnjgGHJxbhMXHwSRgwW09KFbi4NuYpffwujpDNuy9/l5iG09LSEqrVqjPWNE12JpNBsVhEsVh0dZPYJlUTYD+1PuPKNC3/qVOnUK/X0ev10Ol0ZlQCGuSFQsEZxHR30uLfNJg1myQAF5fX6XTQarUwHo+dkggAV69exWAwcO53vV7PFdqmCyXng4YmCcDCwoLLvtnr9dx3X/3VX417770XlUrFKUhK5DkX82LaaATyhwSWpDWubICuEZ+c+esqLkbS/3tesog4FU/vJ44Ykhz4xJJGtBrPNLSptqm6ogktSNZIYjRzKUkuEBnbi4uLeO9734tz587hYx/7GLa3t9Hr9VymSb/gN9Viuvcq+SYRJXn055H9NcY41YzPEc9XUqaEVhP1sF2ex7HjvWm8Gz8jcdRNB1XHtNQG1Wj+sCyHlgPgOlDSyU0RrnV1sVQ1Ul2AlYD77yR9NvR8jqGSUM6z3h/ngxtJShyNiRIQMT6NY5vL5W5QWPWa/IzxiM1m07nW1mo1Nz5U3/w4PBJMPvtxz83LiWNF4BBi4AICAgICjgAlUEB8XJnv6hgH37iep7oBiCVS+u88lzi9DqFGta8Gxt0nf6cKsLCw4FKrawIKNXJpHNLYInnj9ZmdkgW4NcbmzJkzKJfLaDQaaDQayGQyTrmbTCZOYQCi7IBMdMLsknSX5DWp6NFIHQ6H6Ha7aLfbLj4vmUyi2Wy6pArlchnFYtG10+12nWpGIsFkEkCk7KysrKBSqTiiOB6PsbKygje96U249dZbnYHsZ/dTIkADV13oeA4JG3/8xB1qfM+b/3mki/OicV1+G0rodV3EET/9119PqsZoX2jk8vc4gra7u4t6vY5areYyhWqcnB6rhIZEhNkF2bc777wTJ0+exEc/+lF87GMfc+RG+8f+aPwXlTmSFFXlVJ0jQaAbnRr06rLHWDCqUPyMGyRKetgu4+IYp0cyQ+LCe2dbANwzx/5z7XLeec8cL1U52W8tX6HkU0s9UInj+0Hn1VcvSZB4fV03qryq6yrXom4q6EaSvi9V3WSf+bkSNCZGItQlnG1rTKkSaGDfVVZjGEkm9Rnn/AQXyhcJBggMLiAgICDgOWMe8ZpnUMf9x60kKs5NLS4m4yg7uHHG9GHEUs/lNdLpNGq1mku1zgLYdE+yNiqqDMARDHVlo9HEazKjH0nT7u4uTp06hdXVVVhrsbGx4bK1lctlNJtNAHCG6nA4RKfTcQZ8LpdzfaOiAMApDFQc+v0+dnZ2XMmCpaUlJJNJNBoNdDodZLNZl+57b28PrVbLHTuZTNw9KvnIZDI4e/Ys8vm8c68yxuC2227D2972NtRqtZkU6jp3ca6SNPyYgMXaqNA0M9xpfJcawvPWR5wK6x8zj7zNU3nj2o1rO06Z9ttV49b/XhUbKhgbGxsuEynJFNezkj66mGrNP9b0YlIKY6IMge9+97tx5swZfOxjH8PW1tYN46fEVZN9ALPZIvk3sF8Q2hjjsk3q/bH/7ItmbOX5ShpI8OgOTJdFxnHxXKpAVPw4Rhrvxr6qsqeEk5sNWkqDrqAk2kpiNPmMxtdZa11GRxIldVHU8SWZ5RwqyVESp2o/nxV+p+uP95LP591Ghz5nHBvNAEpljtfkWPM4Ena6jk8mUSIlbhaQyKvyqv8P6OZNKCPwIsEYAxsYXEBAQEDA88BBZCqO4MUpFvOUMD1G24kzxOcZ3Hr8QdeLO18TlVD94k41d9/ppkU1QmN8aOxxh57ZJLvdLgaDAUqlEk6fPo2lpSUMBgNsbm7O7H73ej13zUQi4eoo0ZgqlUoz8UrAvso3Ho9Rq9WwsLCA7e1tbG1tORfMXC7n6jbR9a5arSKZTGIwGKDVarlkFjQoVW2gEX/69Gkkk8kZI/2BBx7Afffdh2q1Gut6qITDd5ck+WANu16v59xEaVCrMerPWdwGgRKig47T4/1j/PPj1spBZDGOyMWdw2NVrWNf+Hej0ZiJYVJyoePC3xkHpglFdL5SqRRe/epXY2FhAb/1W7+FZ599dibOi+tKSRFJjqoqwD7RJ9lnzBu/YzuaNZSkkPfJttTdjtcieTPGOJVY0+EzVo6xbVrygOtXM2H68X1am45tkJywT3oO70vjvEjUVB3l9VVN0zWgRcr5GceCv+u/SohUTWO7ek11Fea1OAdMYFMqlWYSKpEATiYTV45kPB67zJ4kjFRnNcaOfWMbJHWq/oUYuBcJIQtlQEBAQMDzwUHEyzeSj0Kw/OP5vR6r5/iuaX67+u9hx+h3yWTSkSP+MP5GjUl1iaI6xx3q0WiETqeDVCrlap1tb287o7ZWq7lU+hsbG85QUgOZadMHg4EjMUyEksvlUCwWZ2JLer3ejPFUKBRc8gEqZOVyGXt7e44I0C00kUi4DJidTgf9fh/ZbNZlv6TqyKx1JLI0dAuFAt70pjfhnnvucSqjP/dKMDTZiKpGVDFJ3OgyOS/GTedvngsl//WVrcNUOH/9xX3nX0M/j8NByp4P9lPJjxJekt04Isf7pKsfFSu6EXI9AdGzeurUKXz91389Pv7xj+OLX/yiW9dci5rQhAqakkYmz8nn807B4hio+kKCRMLB+/ATcrCfqvJR3SZB7Ha7zmWU8Vd8vtS1VAki1TL2SQka1xqJHhOtUE0jsdW4VI1LA/aTumiSlrjkJX4Kfy21oWPkJyDR9UsyxX6pAsZ3hSpeGleqiqbvxkoSpvGzrBXH8eZ69Es/6D3FqW+ci5uF40XgTCBwAQEBAQGHI44AHeZmNo84+TvO+h8/z9PzlRDGuc7NM4zjiKAa9HofNLzK5bJLBqIuWTRWfCM2nU6jWCyiUqm4VO6sqcYyA+qSdeLECZRKJae6MXEIyZe1kftkKpVyZIrkrlAozBBKADOGGJWE0WiE69evYzyO0qkzc+VgMEC/30cymcTKyoojdJ1OxykzNDxZ6JmZJdvttjOUC4UCyuWyc3d817vehdtvv93FUcWtA1XeaEiSYLD/JG40Hmno8tx5a0/nOU61jVsTumZUqfDX2kH346uM/jlx5/sbD3Fr1L+W3jvXiI4lFSdVRHw3Syab0Bg5rfNVLBbxlre8BaVSCQ899JBrQ5VPbhZw/QOYcdUE9ktAaIyitsW/eZy6N+oGBueD5FFj8fxU+txIUPIWR9b5HCnJstbOZHLVbIpcn4y5U5dEKtp83jg+VJ50vNiWujFS0db1prFwPJbvBt6bvq/89aLryY8fVAVSs17qWHLDqNFouJqBLB9CMkf1N+7Z5niQuJKI6vN1M0nc8SJwCC6UAQEBAQFHh09+gOemsPlJHOIImbZJA8H/TtuI+8zvm37v/zCQf3FxcWb3nIYWFQa6QVLlYtkAEheqRzSIlYwwcUixWESn03FxcJqwIJ/PuxpdJG/D4RDpdBqlUgnlcnlGAaByZ4xBoVCAMQbtdtupJZqpr9vtYjweo16vY3V1FZPJBN1u19Ueo9sns/AxuyR33hnTRgK3t7eHarWKd77znbj11ltnDFd/XnzlTRUkKoy8VxJWkjef3B9FwYojeP66UGgMmbq/HabAKfyNAf183rm+ERz3PPntabZCVTGpqnD9krwp4eP3Wmx5MBi49ZLL5fDAAw+gWq3iN3/zN7G1teUMbiXeJFpU/lRpGY/HM26aqrTxWeM64KYIlSuNjyIhm0z2a7mRyJBo8dmiu6OSVwAzihLngetbVSg+51osnO7KwL4bK6/HNuk2zedGa8MpgfLdNnX+fMKlrpNKAjkmfAbjEuvwR90t9R703cYkSbrO+N7Z2dlxypy11r07fHKtCV985TTunR33Ln85cbwIXFDgAgICAgKOgDjl7KjuYISvmh2mnOl15xnxBxm9ceqH/3cmk0GlUsHy8rKrI0XDlkZZqVRyBpeWCgAw48ZIaI2ybreLdDqNxcVFAMDm5iZ6vZ5zDWMfNBnJYDBwSURY142qCXe2WbeLagELgatCQKWv1+shl8uhWq1icXHRkbetrS0kEgnk83kXX5RKpVCpVFAsFp16VyqVAADlchn5fN6pce9+97tx7ty5Q8mbH+/GxAgkuExUEucyedBa8q85j0T5a8pfV/75usmgP3H3N68Pev5R1/m858nfnFCCosqOkgEa60rw+N14PHZkxU9Ck0wmcccddwAAfv3Xfx07OzsAZmOrNOaMygzVLI1BU+UJ2C/kzRg7fQeQDGj2RJJKEib2wxjjlFsAKBaLLqEJyZpmP6W6rYW5NSGLFkQH4DZGEonETHZOJSAkpfybZFazX1KhV9Ljq2JxyjIVMl5XP9ex8d9n/saDtk3CpW1rkiG6LDcaDVdfUJ9rdZ3kfPEzqricyzhlmudpn15uHCsCB4QklAEBAQEBh0P/k+bfcUrCQef7fyspjFPQ5qko89r2+3SY8lIoFFCv17G0tORICoAZ96hareZijUqlEqrVqqu9RbWG6Pf7sNaiWCw61W1hYQHJZBKdTscl5qCCkMvlUCgUUKvVkEgk0Ol0nKJAYlWr1ZxxCsC1oSnTeR5VQwA4efKkI0XZbBZLS0suyyRdKVkzju6K2WzW1bkjkaXCyFi5TqeDSqWCt7/97bjllltm3KkOU960npsWE+/1ejO1x3wjz587GqBck/PWg4+4TYh5a0bnVt3x/EyCcfAJXVwffONW179+r2TSb0vd6kgIqPSMRiOcPn0aqVQKjUZjJv6J90MlrlAoOBIHRMTwzjvvRD6fx6/8yq9gZ2fnhnhPKm2qRHH+VCHieHGNUlFj5kMdbyUXdMvkRgcJCEm/JghS4sRzSW65QaJqIftBgsa4Ta5LP5usFq1Xl0Z1Edzb23PqOwks66ypWzLvmc+Gkjk/kYvOPYmgr0hzjan6yHWqihnvVzebOEcsMcLSI/QE4DPLtlTdU1dVzqG6lmscIq/1XDf8XmwcKwIXLaSb3YuAgICAgFcCjuLKGPf9YYpanMF9EGE76Lyj9C2RiFJiLy4uOkUtk8k4w5BGaSqVQr/fn0mXTbKxu7vrEpZks1n0+30AcKoXDePBYOCMVxbxpuFYrVZdshGqUHRFYiwesK9cDIdDtNtt1x8AaDQarl26ZC4uLrqkJLVazaklVB3ockajl8ZprVYDEBl0JIfqStlqtVCv1/H2t78dZ8+enSFvOre+8kZ3SCqTJG79ft+NpypJOk9xZO6gdeG7lOl5RwGP84mhT6g0HilOcYg79yDid9i586D9AWZjkq5du4ZKpeKIDMExYtKPfD6PfD7vVBgqLGfPnsX73vc+fPCDH8T169ddRtTxeIx2uz2jzGjiDX3GqcrRsDfGzLhQUiUjWWMsFomSXxRaE29QBeJxjKlTAq4ZFqmKkyyRwJK80fXTJ49MFMJ2+IxqhkrdVPDVMt0MUJdLP3GI/q2uspwzjalTIsh1wrElieba5PV07vke4ruF98CagDzfnxOC7yO2yWPYB15DE7QcZT2/lDheBA5A0OACAgICAo6CeYTpsP+cDyNtcWRNd3YPckHzP1elIs4Ip8skszgC+25gNAA1tTizUpIgAZipocQderpZNptNtzNNtYDGItPzMwlIJpNxRIYubExUks1mb4gVo+GayWTQ6/XQ7XZdce/RaISFhQXs7e1hc3MTk8kEJ06cQDabdYoh48zUsAMiJTKbzaLb7SKVSjnCV6vVZtwwy+Uy3v72t8+4TcbNmRI4GtYkbmyL960uk/5a4mfqMhiHo7gosk3+PBeDMu4Y341tHuE7aj/9mKaDzo1T45To6jyQHFGNUTdFPY61Bo0xbp2nUimcP38ev+f3/B78p//0n7C9ve0Iv84/FSJ1f6Thzk0JqllaCF5rqvmEgwlH+Ayq6s0sqErUqPqRQJAMKYnUsgNUEieTyUzJA5I37ZsSJhJKLRjuZ77UNcb3iMZY+ves7qTqDht3XY6RxiSq8qX3DOy7eqq6x7nnOLNkCtV9zoG/AafJYUjYVZVmv9hfVXw1QdLNwvEicCEGLiAgICDgCKCBARzuMukbmHHukv5n2q5/jcOuF3dMHLFjWQC6DmoMx3g8dolASPSYDZLkick7GLNG5Yi/93o9V0C32+2iVCo597Ld3V0Xc8TMjoz5ovFFNVDdpUi8aMxaa9FoNFwhXRpS9XrdxbCwRABj29i3brfr2gHg1JdcLodWq+XGgCQ3l8s5oy6VSuHBBx/EuXPnblDedNx99Y0qBt02u93ujCJJQy9OpY1bC/46mKfQKblSQzNuDR1V0YsDDVZVmOKM1Lh7OkyJjjvmILVb492UnPE7kigSFE0iYq11RJ5rk0b/qVOn8J73vAf/+T//Z2xsbDiix74pOQFmY/M47iQLvAd/fjRxEBC5L7MvjHej26eqczqvjFtTkqqunlQISdK4Lknq9LnQ40lYONeqfqkS67/fCF13SnhUGfUzfZIUanvWWucGqjF5vkuxjq0+H3oO311K+lR14+f+pgnP13EmYY4rGaHlLbiZcLNw/Ajcze5EQEBAQMBXPOKCz9Vw4e+HJZ9Q+MfFGe2HKSu+MhHXPxKSUqnkAvm5i091gkoVs9lVKhWnGgFAtVrFcDh0MWk7OzvIZDKo1+uOmBhj0Ov1nIpFNYNjQkWLagITOuTzeefqxZ11ADMxc8xOubGxgcFg4Gq0JZNJlMtldLtdNBoN5HI51Go1pFIptNttdz4JGhU7KhmlUsn1uVwuo1aruUQnzMSXzWbx+te/HhcvXnRudHHzQWNSY9405q7b7aLdbrt2VXnz2/PnVV2z/Ln35137p99TieBnmvTBV9NUfTlsXaohzXP9hBLzyFocKfXbnac0z/tbjX+2c5iayetwXRljnOJrjMG5c+fwtV/7tfjABz6ATqdzg1ugqjSa+ZCbACSWJAmqZGkspqp1xpgZt0cln/yb88r2NLkG1xddKdPptCvBQTdeAO7542YD1wnb1/vhWGkNPvZB3RkJqueqpilZYj9VydP5IIEkSVO1T0ky+0y3UK5bnWcSdbqLsgQKx4Pfs81EIuEURBI+3h/HNJlMuoRKqqKTwFGF5FgcRfF+qXC8CBzmF5wMCAgICAg4CL46cVCGsTijPE5xiMM8w1fbmHduqVTCysqKcyFjunwaI9z5Z+02Jithmv5EIoFSqYThcOgSkmxtbQGI3K1YQJtkLZ/Pu9g3pt9OpVKo1+tIJpMuzT+NKxZATiaTrkTB7u4uut2uM7IymQyGwyGazaZzeeJ1EomEq9m0uLg4U0icLpt0d6MxNh6PUS6XkcvlnLKRz+dx4sQJ1Ot1F5PHRCa33XYbXv3qV99QpNufE1XdqLhopkkqbyS1B60Xnfs4BW4eMWI/gFmDm/DjweII3UGqV5xyHHftONe+uL5q+4dtRjwX+C6pSgYBuNgvxWg0cioynxMqdalUCmfOnMGb3/xm/MZv/MaMsa/PIIkUjXtmNFRCSULEOFGq3Opmx0yO6lKoRFGfWyb10dg1YD/Oi88ASSHXNvtJNU5r0VE143EkfiQmhK59YL+eGhVBKs1+0haOF0mZxtrpcf7mCMePBE5VSCVrOgZ8t1Bx5Hjy3v2sr75yy/a1cLn2U2PmOE+TyWSmnp4/TjcDhxI4Y8xPAfgGAOvW2numn/0ggD8BYGN62F+31v6n6XffB+CPARgD+F5r7a+/BP2e09egwAUEBAQEHI44tcM3rPU4/+95hu9BSpv/+WGqhfYxn89jeXkZ9Xod6XTaZVcD9nebl5eXnRForXUujFSLSHSGwyHK5bJLDELjnG6RVOmKxaIrwN1utzGZTFwyEmv3a0txd79YLKJQKDjjkdkqte4SCRpVj5WVFdRqNZccpdPpIJPJ4MSJE0gmky4xCMkTsF/UmapBuVx2f+/u7qJcLuPEiRMuGyHVwUQigWq1ite//vWoVCoHkgg/vodqRr/fR7vddjFvdGeLUyt0Tn0FyZ/fuPWhiItJi1t7alD6KpwqRgepaXFQckMDOE659BVs7atPXuPG6rA54XG++yj7R3WEnwFRchNuEjA+jCTo7rvvxnA4xEc+8hH0er0ZRY1jRAKjtcE41iR+uVzOxY1qLTe/LAfHgkQlnU47FVgT8JB0kSxQaec8MpNrr9dzGyPlctnF6ZF4qiunliTQtjmfJHi6AeAnC+H9A/sqnWaaVNWa96quuJoQhKSKbqHsC90UqVzyGF9R5uaJ1rXktTU7qU+ySGI5j5xLrgt1k+S9p1Ip1Go1pNNprK+vu6RPN1M0OooC99MA/imAn/U+/8fW2n+gHxhjXg3gWwHcDWAVwH8zxtxprR3jZYBBiIELCAgICDgcvlsa/z3MBYz/HqQ8HKQ2xBHCONVNjyuXyzPkja5SNMjotsVdcRK18XiMra0tt4OcTqdRqVQAAK1Wy6kRdIni71TCGPtGY7Ber6NSqbjsfgBcIWU1QlmDjfFhQJRYZDKZoNVqOaKo2fn4ealUcpkGmZKfhjKNzk6ng3Q6jaWlpRl1EIhcQ0+ePAlrLdrttnNtJIF83eteh8XFxRnjzZ8LNfxogGo9u26364xH3e1XouInbvCvMU+lmkdg4hJQ8By/Pf1c+0M3UCVxNFiPogCzPc6Zxhtp//W685S6g56fw6Bj4ZMjvw1+3+/3XUwcVRvGjd5zzz24fv06vvSlLwGAm1d1kaOSpe3SpY7PHlPvA9F653Eaw8ZxoxJNtYfXZEZWKuAkLpwvEjlNBJRKpVAoFJBMJl3tRJJDEko+kxoTyHvT2EHeM2Pz4tL/K6kiGdXC54TGDur71l83JIJK2jg+JNN8fqm+aT08uozqXPE9yD7ymeb9qcqnyVpI3DiG/DybzSKfz6NcLqPf77v30Vd0EhNr7YeNMeeP2N43Afh5a+0QwFPGmMcBvAHAx55/F58DjAkKXEBAQEDAkRFHmuJUjHk7rb4hrsfFEbp55E3b4O/cVT9x4oRTjMbjMYrFojuXGSBZTJrGEVUvJkpYXFxErVbD3t4eNjY23PmDwcC5afV6vZkiwjRScrkcKpWKI49MNJJOp1EoFFzcCV0JU6mUK5rNcgXdbtcRn2Qy6Yhku91Go9FAIhGVQqCC12q1XFZHZsksFovo9XowxmBxcRGFQsG1aYzBmTNnsLKygna77WLkWDrBWov7778fFy5ciM0ep3OhbpNUB0jc6DbJGBp1p2I7/EzJm785ELcZEKcA++TId6eMU6LmkS9CY39oIKsxG7cWtT/8WxWYecTypYCvrPj3P++6VOJYJoPPWLFYxJvf/Ga022088cQTACJXxOFwOGOoMxEKSQuVGa3bxjUP7CfZoBsi1xSfW5I8qk9MPEIVnWoY+6yxV1QSWfeN7ah7I90j2T6TBpFE6pjR7ZFrgfeq70KSLrZDEqQxe7xvdUHkj5Yd8RVgkrdcLudcFakIxsXJFQoFVCoVNJvNGfdZEkF1K9fngaRS++ZnHNV54/kcc5JvjvnNxAuJgfuzxpjvAPAQgL9krd0BcBrAx+WYy9PPboAx5rsBfDcAnDt37gV0Q9rE/KxeAQEBAQEBPg5TBw4yCOPaimsnzlVMf+IM7mKxiGq16hJx0Fiiwch6UUxlzsQdmnSCZGxpaQnWWmxvbztDqdPpIJfLYWlpCa1WC61Wy+38sy0aKrlczrksUcljbB2zVNL9i+oMAJdIgVkmqWKwPECv1wMApyAwQUS73Uan03EqCPtBNZDkb3Nz031/+vRpLC8vO5cyGl/cLT979izuvfdepxTOIxhqwKkBTFdOGtaq7Okcq/uYrgmqNXHXnKeixX2nn6vipAYx753EI0715b9sn/eqRM438uP6p0qjumjqmLzY0HZJMLjmVPnzyS83HhgTR1e6dDqNer2OBx98EOvr625DgEk0/MQe1u7HSQH7cYgkWTonhKpUSrrYb3UXJBFjhslCoTCT/VULiNONj+1TodOERXRd1rVEVZnxb5x/9p3rlXOqCUbYrkLXfFz8nP7wvnX8lNixj5rpk+VNOIYsT0KCp7Fz/iYHn2l/PlR5Y0yxv7nC9cM4XHV95XNzs/B8Cdw/B/BDiELOfgjAPwTwXWAptlnE/s9nrf0JAD8BAA888MCLwrpeondFQEBAQMAxxUHqmP/dPIKm8I/xyYIaCHHXZibIYrE4Y6DRvYpGw3A4dAYFDTQ1BmngVKtVNJtNFzNH43BhYQGVSmUm9ThdyowxM9kkSVbUqGU8SKfTccofDUkaNYPBwClhbHtxcRHpdBrNZhPj8Rj1et2VM2i1Wo4kjUYjl2WTcT2JRALLy8tIpVLY2dmBtRYLCws4efIk0uk0Go2GMzT39vZmXChf+9rXYnFxcW7JAI4r/6XxSLdJZtDk+Cl5I6jWAXAGt59MgXMdt9Z4bZ8oaTyOwjcetU0/mYmqZPqd3ze6mQFwxruSsri1y/PYf47xi03k4q5N45zrxP+etdEIEoJ8Pu/mkDFlZ8+exVvf+lZ85CMfcWUtdJOF6yKdTmN5edndcy6Xw+nTp7G3t4fLly/P1EHkBgDJVT6fd+UyeAzJGxUwquZMQsRnm6obVXHeM9Pb042Ta56ZFUmGODZU19VlkvPNewQwQ+K5ZthvKr/8nhkuVZHluHLc/eQtnDctf0KPAKpifrwdr01CpetV17SSR3Xj5N+a5ZPtcWx8t2ISQ2tnSztoOzcDz4vAWWuv83djzP8N4Nemf14GcFYOPQPg6vPu3XNEiIELCAgICDgKDlLd4ojbQSqc7wrk7/zPM35997l6ve6yKWoMCA2HxcVFAHCZIpkWnTvJjBEpFos4efIkAGBjI8o1Vi6XXcbIlZUVFAoFbG5uOlWOhi6NFxb75q48DRp1mWw2m64PrAHH3X+SMRq87Bvj10gCAbjMezR0s9msK1HQarXQ7XZdkggmVWEClBMnTrg2gIhE0S2ThvQb3vAG3H777c4Y9udWXfHUfZJGbr/fd/2jAeu7TpI00vhV9UsN3bi5599K5NQYfa4KsLpa+muU60VrZflqmyZu0Vi3gwoXq3pBI97PQPh8oeOhf/sKiT8G/vOnx7KchKrK6XQar3rVq3D9+nU8+uijrjxGKpVCtVrFYDBAo9FwiTzK5bJ7NhirWalUcOLECfR6PVy7ds25YVJNI1khedLMhox507jSyWTi1h77yQ0bLRFAsqmJhfjMcS45N34KfVVQVT3jmOj5XPca/xbnEslnjeNPjwEqe7oOqfDRbVNdv+meyutxDbIGpK86++9UJVt8j7L/JLb83d+o4I9uZPjxcl/RMXBxMMacstZem/75ewF8Yfr7rwL4N8aYf4QoickdAH77Bffy6P2CDVFwAQEBAQFHwDzDUo3AecbzPBXN/1H1ZJ7qkkqlXMp7gjvwAFxKcd8wX15eBgAXFzcej1GpVLCysoJer+diy0ajEdrtNlKpFHK5HIbDIba2ttDtdpFOpzEcDh1BYiFsdcXkNRkvRFWKLmg05Bjr1ul0nPJGYsi4Gt5TuVyGtdbFypEoseDxaDRy7mw0RukOCQArKytYWVmZ2QXvdrvOHZTGYrVaxdve9jaUy+UZ9yxfeVLyQVWDBcNpQKvrpE/8aHSqAuWvIyVl/lrwf4873u/3QaRo3hqmwUpiroqcHwenBFTVD6oWcUYzr8Ux8tPBPxf4xG3e/RGcD3W98zdUaHwziUcmk3GKL11+3/CGN+Dq1avY3NxEIpFw64yZCEmguFZ5bWOMKyNw11134e6778aHP/xhbG5uOtddrhOqU1R/uK74rGezWYzHs+Uv8vm8m08lb5lMxrXBeeXc6RrV5B9MoDIej2eeKxI3kk1r7YxLMpU0n+joOAP7rqGq/uq7kO89KltKIlXN1/HSotnMTKvxhZqBlHOiXguajMVX4/SdrS6XfrIjvg+TySRKpdJzWc4vOo5SRuD9AN4BYMkYcxnADwB4hzHmPkTukU8D+JMAYK192BjziwAeATAC8Gfsy5SBEggKXEBAQEDA0RBHvIB410l+Hve9fhdH4HzC4LebSCSwsLCAarUKAM5wWlhYcO5ZyWQSrVbL7UaraxUTIQD7sS7r6+vOyGBsGrNAUp1igpThcIhSqTSTqIS71DRmSNwmkwk6nY4jXCQ0TL5A5Y2kDIAzXEmmGDPHpCY0lFijzhjjMlLyHkajEXZ2dpBIJFCr1ZzLJI10fr+zs+MMYX73hje8Aaurq7Guk/4cqvpG90lmm6TBrG6RvjpGhSCOpM27thrYSjT8tXUQYYtTdtm2GqU8xj/ez+SoioOqljo+JDC+yqbrXjMAHjb+cZhHcuOeJyUrPIaGuv6tY8w6h1xjdENcXl7G6173OnzgAx9wCXWoTpFgkdgwFq5QKDgVaW9vD81mE69+9avxLd/yLfjgBz+I69evuzWpKho3CugGyRICXH8kjvl8/gbixphVummyfVXS5r1/VLmjmk/CzZT8AJxCyXVAhV1VNh1zjXnjmlEVkMcpweSPul5STeTnVP25VlWxpqqoypiuCU2ywnWtSYi4McF1zb5rTDHbI4ElAWcpl5uBo2Sh/LaYj3/ygON/GMAPv5BOPV8YEwhcQEBAQMDREKeI+TvL/F3/1XPiVAJVNXwjXw3JXC6HhYUFFwND0C0wkYjqlm1ubgLYTxRQrVaxu7vryFu/359RFVRpYrvMHtnr9ZDNZlGpVGbqqGkmSVXftEQAlSgATrVg6YGdnR0Mh0NHypgdk0lFOD4kZ0wGwtiWWq2GZDIqDM5MfswySSWvXq9jdXXVXbPf76PRaDjjlQZvIhEVK7948SIefPBBl2I9jnj7ypuqb/1+3xE4qhd+khNC3U/9NeZfV9dF3LqLQ9xailMT49QwhfbZb0uNao314X35ZM4ncqrIabsk1VpD7LngqGqjzonGRfFfNcb5L2uo0V2SMacXL17E448/jkceeQS1Wg2VSsWVquA95PN5R1iYFIUbHv1+H48++ihe97rX4Ru/8Rvxr//1v3YZWOkGyA0BYF9xN8Y41ZfPH+su0iWY80Hyxsyo7BsJF98rSnoAzFyfZIzu2tyA4FrnRo0x+0laSDhJYjTuVRUxnR9em/3jXFFp4z2pMsZ3DQA3tiSZVAkZD0xXbr0miRs3XfhscqNFYyB5fXUZ9ssWKHZ3d10NupuFF5KF8isOBsGFMiAgICDgcPiKW5yKEbdzTcS5x+n5/nX070QigcXFRZRKJZeoJJVKYWFhwSUzYFxZt9tFJpNxpQNGoxG63a77ngYUlZPJZOISMBhjnCFEo4gxN3RNLBaLrrwAjXYaO8wMSbKkKfVp4PR6PWxvb7s+7+3t4cSJE1hYWHAGIgkUs0jSrQmAKylQLBZdTJ0qelQfTp8+jVKp5NSNVqvlsvPRnYrxQ+fOncPrXvc6XLhwwcX7UZ3g3Om8qqLGPmtcHsdGj6OBqmTXJzC+QamIS1bif6fkzidFukb9demvzTj114+R8/vEv/mZGrbqQqkqB5NPxCnaJIXqYupDCZbfX/8e4zZf2GfCr6GmMVlK9LjRQUOdSYAefPBBtNttFItFl4CHGxxU0Xi/dHFMpVJuc6LVauGpp57CG9/4Rrz+9a/HJz/5STeGSt6ouhmzXztRnz9df1rrkUSKipAqR6xNx3tU8kNiwk0d7bsqp5xXHkPix3a5DkgkNZsknyV1R+T8sp8aR0dXVI3NY/ZbdWskkSoWiygUCuh0Oo6E8zzehx7PNpTM6rj4qpuSOrajzyJjE5+ve/CLgWNF4BAUuICAgICAIyJOGdPPfTe5w9zYDjI0acAwdT/VM8adMaFHq9VyBlm323UEL5lMYmdnB6PRyCU6KZVKbqeeWeqYeIBFhUnwgH0XSxpx5XJ5JjMlVZh0Ou2SmLRaLZdAgfE4jJ1pNpsulo7ZM++44w4A+4WPz507h16vh2azCWstlpaWMBwO3X0yG+b29rYjnkAU48J7XFpaQrFYRLfbda6U9957L7rdLj7/+c+7EgivetWr8IY3vAGVSsUVbi6Xy25nPc4Nzyc4VGIYF6RGsqo3/tz6JOug5AbqXqaY5xp4mJLmQ0nlUc8h1CBVIkgDWA16VeZUudMsgr5CqK5sh/XvIELnz6X/nRJPVcT9WC2SD25scIMhk8lgZWUF9957Ly5fvjzjPknixvvu9XquYD1jPLnZcfXqVfR6Pdx///14/PHHXXkMJQyZTMbFu3W7XZdEKJfLOSV4PB67mCtVxYzZT4HP+chkMo7ocfOG46ExZlTceI4SMd2goIpHxT2bzc4kKVGXTVVitS4d29eNDq4JkkCSR6p9VDV1Q4TkXzem6NKqZF3vge3zudXx53eqMnLdqUslNyjYZ1U/bxaOF4ELCAgICAg4InxDzlfTgHg3tbg2/Bgb/5hsNot6vY6lpSVnZFBZY2IQpvOnEaU7+ixmXalUUC6XAcDFvmi2R+7iqwpHAqjGJVUFkjMa/Pl83hXTpiIGwGXZY6zPzs6OU8JInhYWFtDv99Fut1Eul5HNZrGzs4Pt7W3X/vr6OoCIKFGp2N7exvb2tiOc3O0vlUqo1+vY29vDM888g0wmg1tvvRWj0Qif/OQnnVJx11134c4778SZM2fQaDTw6U9/Gqurqy6OkLE0Ol+++yTVQxJfv97bPPI2bx0pfPUsTr1VUqdxOPzsMMSpUHHnzVu/BI1WNX59dVrVK01sQuOdxi/Jga9EcjwPymp5VMSpk0oGeE9UEDVtviZp0fT0jOscjUY4f/68q0sIwMWpcYzo1sjnhC593W7X9WF9fd0lP/GThejmC5UklhpgsiCOFe+DiUo4vlqbzFfFtJ4bx0OzVCqBIkEnaeKc6lxrTCE3eziGJJN8ljjGeg7b5DvHd5vkBpS+k/SZ0zp33CRigiRfXVW1TzcT/E0E3qO6DNPdXIuikyRzA4zupDcLx4rAGSA4UAYEBAQEHIp5Lo9AfKxb3DlK2tS49Y3SYrGIpaUl586XyWTQbredscCaaBqvZq11MTGMcavX6y6LpLVRTAyVrFwu57JNZjIZVCqVmXpcvJYWDNaCxeqyxaLVNNqoutFQ2trawtraGgDgzJkzuOuuu1z8WqvVctfe3NxEs9l0xJEKIRMI5PN5R1p1XAuFAiqVCqrVKhqNBnq9Hi5cuIB0Oo0vfelLaDabyGazuO222/Ca17wG9XodGxsb+PjHP46rV68ik8ngwQcfdPFM84iMJlCgYewnaFEXK1UygNkMh7oe4taar+rGwVfmDiM3cW6V88hj3DXjNiz868eRTR7jqxrMlkgFTuv/qWLDMdDC4Tqm8wioXl/bibt/ddPj55qogtfhnOlxmqWRmy5ra2tOFVPViW54JBcElbzJZIJLly655EE6JgBm6rYVi0WnxmnNNy09oM+wr3DyXriW+Z5g7CHdNtl/HUOqp5p4RlVnVVUJVeD0PaPqlRY3VzLH+Db+zfEnMVLXVlXhdC0kEvtJnEgY2X8lcrreSYKVoJKkURkkSWOMHK9H4gvAEe15HhkvB44XgTOAvXlF0QMCAgICXiHwDR8gPh26wjcg1WiZd2yxWMSZM2dQLpexuLiIhYUF7OzszCh+LF7NHfFSqYRareYSh5TL5ZlEBkwg0mw2naHJtorFIk6dOoV8Po9Op4N2u+1iTFjDjUH/NHDopgnAxbNxZz2RSKBSqWAymaDRaGB9fd3Vcrv99tuxurrq1DoAWFhYwO7uLq5diyoNMY6F6l6j0cBkMsHi4iJGo5FTGACgWq06RXI8HrvMfdlsFpcuXcLW1haMMThx4gTuu+8+XLhwAVtbW/jUpz6FK1euOCXy7rvvxsmTJ29IAR7nEsvf1ehV9U0TNMwjXgCcsR3n2ncYeZtHMg9S3pRA+ffo91U/8w1ObUP77Pch7hnxx5VtkczRONYYOa1tqOSYmw0H3XNc3+Pu1e8ryYSm2PezDqoSa611iXS4UfDkk0/OjBcVO2A/xozqHDc6qH41m03s7Oy4TRolLSQTrP1orXXn0vWQx2r8of/+0nsdDoc3kDdNIkPVje3yR2PVNDOpqlQ+WeR1tRwASZS62PprlERPC2r7iXA05lJjWPWdy+Qt2h+tCaiqHEmq/xxQSWR/eI9UA/1xZVwi45BvFo4XgYOBRWBwAQEBAQEHwzcofPcbPS5OgfOVNz2XBk21WnUxXqdPn0a5XMbm5qaryVapVGbS5VsbpftnZspOp4N6vY5sNotOpzPTDypbLNA9Go1QrVZRqVRQq9VcsWsaJ5VKBfl83sV2cSe+WCy6VNjMAEmFjokQut0u1tbWXDbM5eVl3HLLLchms2g2mxiNRqhUKhiPx9ja2sLW1hZKpRKSySQajQastU5ZoDunqlzsAw18Zqo0xmAwGKDT6TgF8s4778TFixcxHA7x2c9+FpcuXXKkcDKZIJvN4tWvfrWL4dP5JZTIqQHL5CWqvik4ZoTOm6o6vIauIVUzDkIcAVGCpX3nd/596jHapzijX6/rX1/7S4NeNyvmkTuOkxIdKitMNKNklwSI5O6o8Md4HnlVYqnulL4Kx7GkisU+lctlnD9/HlevXoUx+26C2WwW/X7fjQ9dK5ldttVqoVQqoVAo4Pr16zPug1r0XQtzq2ugFuKm+qVugVSFeI9UzNknVflIMLUuGvugxb99lU1dHEmilGhNJhOnvPquv5xbvxyF33cWLvcTzeg6V+Ktah7bZ9yvZotkW3RrJWH3x5brh8RbE/ZwPEhGGePJY5Xovtw4XgQuJDEJCAgICDgC4naD5xmPB5E4NUro8lMqlRyZWlxcxJkzZ5BOp7G2tuZ2jHO5HHq9nnNVzOfzKJfLM8bj4uIidnd3XUFr7oLv7u6iVCo5IkcyePLkSRhj0G630W63nSFYr9eRTCZnyBvdj5iKu91uYzgcOiOThbZ3dnZw5coVbGxsIJlM4q677kK9Xkej0UCr1XKqIhOarK2twRjjrkM1j2RwPB67tOckdCxj0O12sb6+7ggAxyqRSOC2227DxYsXUSwW8cgjj+DKlSvO8NRd81KphNtuu83tnBO+e6IamiQafrFuki7u6sft3PtrSVUJbf8g+MRLoe6ESgRVNfKNY71HNTDjFLijwL8Xf81r+/59sQ+apZIuikoWSASeS1zcYaSN7eozq33xs1SqWkcVjqRydXV1xl2ZRKxcLruEQ+pCSfe6Wq3mYlw1yyPnUeuSUc2h8qOupf656uKnChGhKlpceQcls6rAsW0lLcB+2RASHVWrNHbMdzvUJDIkchxbn7zxXkk8Vf3WTQo/ky3fuyRzvusvlTNjZpO2aPIVHWMSSyV7XDOqGPrnv9w4fgTuZnciICAgIOArHvPUB/87QtU2vx0aKPl83hWZLhQKKJVK7m+6+LGuWaVScW6L1Wp1xr0xkYgKVlPdolGpGerYRyp21WrVxcAxuQezOAJwu8V7e3vI5/Mulqfb7brvuOPMtPtra2vY2NjAaDTCwsICLl68iHQ6jWvXrqHf7+PEiRMoFArY2Nhw5JQZ4UhMOW4kq4zjoeFaq9VQLpexsbHh3CmpGDDO5O6770a1WsWlS5ewvr7uYgR9I9JaiwsXLqBarcbWfeM8+vPMcaH7pNaOUle/OHIW97e/Po6qvM3rH3/3lZO4uLK4dc12/T7HbUzwezWC9XhgnyCq29y8Z4Nta7/pHqgZHYH9+KWj1ovT+1NXSF9d5LFcL9wk4TqkOqft8Bj2kbXgqKCXSiWkUikUi0VHoLghwbGgW2Sn03FKu6rfVCT7/f7MfftrRt0XlWhyDqgc7+3tuXpyHGd1X9TyAKzBqEotyQvJGMmQxgf6JE2zierzqM8fFUZVzTSeT9VPVarZL84LFUZCn0+OEfvIv9Udle9CEmEllXovSuT5nuLGwmAwcJtjL0YSnheC40XgML9mT0BAQEBAgI+jGJ8HuZ4B0Y7xysoKlpaW3M4+65uNx2NcvXoVa2trzlBkbTMaK8w6xx3/Uqk0o7qRXBSLRZRKpZnU3AsLC0gkEtja2nIKGzM4FotFVyONhgnjeoCoZEG/33dxOwBcYhG6JiYSCSwtLeHcuXPo9/u4fPkyCoUCqtUq+v0+ms2mI1SFQsGl4GcGN94XFQMWBs9ms6hWq+h0Orhy5cpMMgdjjCO0+XweOzs7ePLJJ10Kdn+OADgj7s4773QxgQfNuc47lUK6T/n1ofi7b6z5alTcGlFjNI6cqXoX14Z+rkkzVCXRvmpf5qmB/FzJil7HJ0M+dNzi3FR9ldqfJ94H1zs3FHgvdNV7LjW2fLLof85rs89Uazge/twq6WTR6JMnT6LZbLrY1PF4jIWFBRhjnCJO0pdMJl1MJjcvqDoraVCXSRJZKmkkPrqB4N+fjhfJpp9cRNcxx559YR9IejTpDOcYQOxai3OJVGWdSiLvi+1pIhl+phsR2h8lVFrCQkkkXafL5TI6nQ76/b4j16x36dfU02eDY0XynM1mHdHn2LLmJOeL88936c3A8SJwQYELCAgICDgC4lQIwjdafTKnBjBVNtZzA+B2vXd2dtx/9FSk6FaZz+fR7XZdvBtJznA4xPb2NgqFApaXl10qfypVrVbLGVf1eh2j0Qibm5uuqGyxWHRlBtrttsusSFLHa1ANo1sjEGXL3NnZwfXr19HtdrG7u4vV1VWsrq5ifX0dvV7PGao7OztOLSR4j+PxGMvLy7A2ynRJY44JTcrlMur1Oq5du+YUPhITEkwauZ1OB5ubmzNEikawH3+ytLSEEydOzOz++8qS/tCg19g3X33zCcBBO+4+CTtMeYsjab6a5vcT2DfseQ1/HJRwaoyXrmNfWTlszavBHkcm4uKf/Hb8MaL7K9cojWR1p4xTUuc9u3Gqm/8v14/+KGHV+SAhI7mq1+tuU6RcLmM4HKLZbLrNGG487O7uuuyqiUTCEThgX+XR7JVc76om0bUQgHPtZX85JiQ1AFwbnHN1SdQ1wvsnuKZUuSJxpmqoiVAUqtQZY1xcK8H7YFu8f24kaXwm+8mxV/LGfqnipeufLpSMV9R1pe1QpfSTG6mazWP5LmMyGL7Teb++Kn0zcKwIHBBi4AICAgICDocagHEKm+8u5hvumUwGi4uLqFQqAGbJAf/z39vbc8WkB4MBCoUCVldXUa1Wsbu7i3q9jnQ6je3tbbRaLVdAOJ1OY3FxEf1+H41GAwsLC1heXsb6+rqrKQVEGSM3NjbcbnOxWES1WnUxcLynTCbjjGO6WNLlk4pXMpnE2toaut2uU/KWlpZQqVQcoUulUs59iMYaY4E0MQB3urvdLgA45TCVSqFer2M8HuNLX/qSM2ppJJLoMXMhDWG6fvF+5rnLnTp1CrVaba7R7xv7VCP0x49986+pUCNZ146vAM1T2VQNIzTmjf9q3Sp186JhrkRPoX/7xjI/02M1fkiNU/9Z8X/3iZyOB7+LUwM5FqPRyG0YFAoF5PN5JBIJF4ukCk7cuPrP8TwXSo6Rkh8SFv3OV/OYwTGbzWJhYQFbW1tOcc7n8zMxbFRtmFW2UCig2Ww6l0kSKM0+yfM1vkoJNsdIyVbcBgOAmfWgyqK/PjjPmuIfwA0xXnquxpqqyqc16gA491h6I5AE8V6ttTPZJUk44zbK9Fnnu5FzopkzqYoBcAoaN7W07pz/TKtLKMkz53Vra8uRWI6BKpTz3LRfLhwrAmeMCQpcQEBAQMBzwkHGZZwxmMvlsLKy4rLOJRIJl5yBqhTj2Eje8vm8S2jQ6XRc7AwLXTN+ZTQaYXFxEXt7e1hfX3cuOmtra65oNgC3q8+ECsVi0RXSpquhtdYpcsYYtFot9Ho9JJNJZLNZV9/NWou1tbWZgsILCwsoFovOlVMTexQKhZkd8Eql4mpTbW5uurgTxvrV63XUajXUajVcvXoVV65cmTFYc7mcS/qi8Wg0umhY0wBNpVIz6h93yFdXV13yiDjlzQeNMrpVHaS+cZ0oaND5ipuv4sSRx7h++aqbxgP5ZMn/0fWqhFFVBv9aGqNIUqNukTSg1cDX4+N+/Pi4g1RufsZNBJIbJulh8gjOuU/Y4hQ2/dc/TgkM51kJu0/S1aWP5KNWqzmCqTFlxWJxJtEI47uojlNx0syFVJQ0noz91QQ+vgsv+6suhIzp89eI7ybL/up6IBGLU9j4vbrvci5I8PisJxIJ58bJ9rgBU6vVXI1JEmcqZxqPqAop74395ntWz9GNNpJqa6NSDCRYHAuSLl6L7yyqg0pC2c7GxoZ7J47HY+fuzmf/ZuJ4ETggSHABAQEBAUdGnKsdEG9cJxIJV9iXRkA6ncZgMHBFqpnIBIgUMtZ8YzpxKlk0MhqNhoub4c57p9NBJpPByZMn0el0sL297VwLuSNsjHGp92lUbm5uOtUimUyiVCqhVCphMpm4+m4sfAtERspoNEKr1XJ15XjuZDLBzs6OK/bNWCDGuXFHnIH9NIJarZbbbWdJg9tuuw3JZBKPPvqoq+02Go1cBkru1LfbbRc3xPFWUkCQeKixnE6nsbq6emhiASVJqoboj7py6Xn+GqFxrOqVGvVxu/PzSJv+rooAsE9eSLr0u7j25rl2+SpH3D0B8eUDVPlTdYTtqrHPe+B3/Ncn1TyW/eLYcSNEE/1wHHgNNdx9khJHmuPGmqSEmVd1XWjfeI1kMolCoeCeAfZFY0ipAjFJB5+pvb09507tuxYyhiuTybjNC1Xf2LZPhLW+G8eZz67WTeO4apvalq45feY0g6TOuZYj0Lg+KmTGGPc566bRVZvZJ32ll+qyTyJ1nnku+6fJSnxXSlXd1PWY/eN8TyYTR8g5DnR/5XhwLrmOScYDgXsRYUIMXEBAQEDAc4Rv1Opn/DyVSjlXRhp8rONGQ2U8Hjvy1mg0MBwOkc1mZ+JTWOiaxIzxYnQzbDQaLoMls1AyAJ+KWy6XcwSKmdU2NjZQq9WwsrKC69evOxJFksjdabossVYcDZlOp4N8Pj9DEGiwdjodVCoVlEol5x5ar9fR6/VcwoDTp0+732n4rays4MKFCxgMBnj44YfRaDSc8sbadIuLi2g0Gi4bH40nADcYc76BzbkBIuOexFrn7aC5VfLmlyPgcaqAzYMSOb12XN9VkfJJmLqGkRSRQMQRNu2rn1ACmE3aoWNH9YJj4Ltmsj0lSr6BrwY4r+mrcf79x4H3rWoqEKk6zWYTw+HQbUIA+6nedZwP+juOxNGoV9KgSo+/xngO3Xvr9TquXr0KINqwoFFPssn7GY+jkhm9Xg/tdtvFg9LNl5sebFddIzWpB9VRfs7vVLnidTWOU+9N709Jr9a7473yuWP/uLHENUI1UjNCcjOLG1q9Xs+5nTLGl+8efQbUDZPX1/WqyhyJMM/jOZzHyWSCTqfjEtQwQyeP0bHjffL6fjZUupHrswLAKf/s00GbRS81jheBQxDgAgICAgKODjXw4wx+Y4xzTyyXyy5Oq1qtAoCrnTaZTFz8WSaTcRnQqJKdPn3akbDJZOJUr6WlJdRqNVSrVaytrbmyAEzukcvlsLu7i0aj4WJqaHDkcjl0u10kElGmSBbqbjabWFlZcQYkXYdo2LEweCqVcklLaASqIpFOp9FsNt19NxoNAHCuUHSHqlQqaDabLh16LpfDyZMnsbS0hGeffRbXrl1zWfi4412v1105BJIouo35ZEiN6ThCZYxBtVpFuVy+waCap8bQoFUSFxcnE7defPLI/vrkah6Z0M94Ho1b/zuNhfP7RCOeBr6qLkx3PhgMZhQcHhsXW6SZ96j4Uj1RVVHjo2goa2IIVa9oJPNYNeD9MfTnlYb03t6eS8wDzKbV9wlk3LzNU+LmuVH6x3GcqTjXajU888wzzg2a98bxZ13HbreLnZ0dtxFDhZ7xfQDcOHP9U3FTRdevh8Y+qlup3ou6wRLcCNDvfCXXX2OqivquwiRCVOW5RpiQht+RmHKDSxVFkkxey++zulFqrJuqwuyzxqZZu+9CyTqX/J2klvORSCRmahSm02lXToTXIIHVOpxBgXuRYYyBDRpcQEBAQMAR4Bsr/k5+MplEvV53haYTiYSLzWHcFFWxU6dOodlsAohcdbrdrtu1v+2225DP5x3ZazQaLmarUqmgXC47Q+/ixYsuQcje3p4zQAaDwUwR5GQyiWaziWq1inw+7/rOZCBUygqFAsbjsbsmsB/kv7a2hs3NTZeARLPO0Uip1WoYDoeO5CWTSac60LDqdDpuDMvlMk6fPg0AePLJJ9Fqtdyu+WQSZZlcXl4GAGec835VIVCyM48M6ecakxg3t3HzrGqMXzpgHoHz3QCBWZfDOPXG76uvkLH2nO8Sxn8nk4kr1UClhEliSOBJzBifQxc4YN/lVOHHGDHdOvtJdZVrTe+XGwjZbHam6LQSD3U9VBWJ58eR0TgljfPTbDYxHo+dGq1Fs+Pmed5c6ZzQkOfmhhJDH0rgSqWSi1elGkVXOz53fE56vZ4rG0LCwIyzSo7VPVDLDGjdOI19I2lRdU4JNueYn/nzopsDdGHmWlCCpq6GHBdV5vjuGI/H6Ha7jvyTuPkE03el5X3RRdtXQfWZ5PjpJoDWnSPRymaz7l2ryiJJHvvAtU2XcJ6r46Luszp2XDsHKfMvNY4XgUNQ4AICAgICnht89zpjoviylZUVlMtlZwzn83lHRrhDyyQhJG+7u7tYX19HIpHAuXPncPHiRVhrcenSJadYWWtx8uRJLC8vuyyU4/EYDzzwAIwxePbZZ53St7W1hWaz6Qw91s9iW0BULoDFvCeTCYbDIa5cuYJisehiakjaKpUKBoMBrl696koSMOsjDexms4kTJ04gl8uh0+m42m40evjvZBIlMKE7GjNzWmtx9epVF/OjiQEqlQpSqZRLDEACpwYe54TG2zwjSXfsFxcXZ1KG+0aiTw6AfRdKjTlTJUhdOH2FSBNK8Ps4NddXdNUoVeLKYsNKeqig0vVUDWAmjmBf+B3XJ+/PJ5R6D/xODVEaq9qeJiTh9VmKIpFIODU4jtDp9XTc1S3OVwXjyPpkMnFlMUjk5pE4n7j5yqcSaFVdfQKv64jfc40VCgU0Gg33nPpq3mAwwPXr1wHAjQuV3nQ6jWKx6DZKlExxfFRxVsVN16jGtKl7K9VYXR++6sgfEh+er2ofExz5PzxHFbZOp+My7dLlVde+unVqnTktQTBvPtgGj/U3ObguqWqS7LEepG5o0AWUn3HjirG+VO44bryWunhqe3Fr8OXC8SJwJhC4gICAgICjwzcWmfxjaWnJqW7WWlcYm/FrNH4SiQSuXbvm6j/1ej1ks1mcP38e9913H3Z3d/HEE0/gySefhDEGtVoNi4uLOHnyJKy1WF9fRyqVwsWLF9HpdHD16lWXnp/xHHTVoqHO3eV6vY5ms+kMbu6A9/t9lMvlmZ3y4XDoFAS6QrK0ABWg8XiMTCaD1dVVZDIZF/vGa3a7XRfrQ6WHrpgcn263i42NDZfkgUYTEwtQDaShqK6LwI2p7/kZ50iNUWIyiWrLZbNZVxqBu/RxaooSKSVxvqEat1b0mn6bCv1ejUhrI/cuFg0H4IzN3d1drK2tuQ2Efr/v0uv7Lr7sPwCnIGpNP/47j7zq+CphAPaNah7P7zn2dBekQc6kIzTsuR6oTqn6o9dUtTSOvKkbM8/p9/tuHEmC/M2Xg+Zcx0CN8Xnus9o3EjjGv7JUAL8H9klWo9FwyYhILkjSuVa5gaHzxWe51+vNKGc6Zz654TogKeZ61rWoaib7qeNPEqr34T8PfI7pWst7ZZ26XC4341aq6p+WD1AljddnzTY9V+PdSC51g0FjRQneF98rfE+RvPKYVCrlSqawD3yvkvjxPcLC3xwTvZ7/Hng5cawIHBDKCAQEBAQEHA7fIAbg6jwtLCw4V5pMJoNKpYLTp09jbW3NqWHcGR8Oh8jn867oNgBcvHgRr3nNa9DtdvHYY4/hkUceweLiIjKZjEuE0uv10Gg0UC6XceLECWxvb+PKlStO8djc3MRoNEKtVnPqGzO7Ma6OxthgMECz2US323UGrdZA6na7GI/HaLVaTh1kIWKWNdja2nIJFgCg0+lgaWkJqVQKGxsbruQADbRMJuN23DkWLLqtWe/opqQ72MB+6nOSGD++xU/iwHN0/lS98Y0uvZaqKb5ipklb1IBVwsy/50GvE0cAVHHb2dnB7u6uU0c16US73XakiNkLdUz4N2OjaBBrIhYdG8b70OjUc7k2+BmNbQBOJdY4H1U2VZVgWzR0Sf56vR6KxaJT5hh/pIRE1SWfdPlkWRVMxlJSAfZV14NIoM6TEjYlcepKye+oIiUSUcbT5eVl7OzsuHXH9UI3vGvXrjkCwfXFpEOJRFTcW0tzaNIREhd13dP1T1KkY8P71D4SVJiBWRWPCpPG27FtPp/AfpyjFhhX125m4GV8LsmTPk9UZf250qy5el/sn2bC5H2wf3p/dDdnOQfN3Mp5URWSWX9ZVkUVf44Ly6po7LAqgbp5cDNwrAhcpMAFChcQEBAQcDB8l7JCoeASiuh/0tZaZLNZbG1tuWLbuVzOKT00GLrdLqrVKm677TacP38ezWYTly9fRqvVAgBUKhUsLS2hVCphY2MDm5ubOH/+PBYWFnD9+nVsbGzAmKjcwNraGtrttnM3ZIKDySRKN87MkzRMqdQx4Ql3jBmMz0LJzAx39uxZ5HI5V/ut2+3ixIkTAICdnR1Uq1WcPHkSk0lUfoDJSXzFp1AoOEOm1+u5EgL8f5h13VStBPYNSl9BUEN9HnGioUVDFNiPxaEBG+dCqaoLoQad70LpK0RxfdE2fIVH45b29vbQarXcbv94PMalS5ec8ajKg6oLqk6qQgjsE16qrOyLxulolkB1zeT48ns1hrmmlNipcc82VIXQZBQ8PpFIzGwqlMtlFAoFR+R8gqzt8fqcN5+Y8b7b7bZ7ZvR51Tmbp8ax/bi55xj5861EjjFflUrFrTsW9W40Gmi1WjOJXUgqqJSzLS1krWROC9qPx+OZxDEcKz7n/JvzqeOmBIb95hxqMWpV8agOq7sjnzFNBKLlQFivkhsJukHCdpQoa/yhv0HD8eB12C+uNd0o0HGjcqlqr6p0unb4XCqh1O+5Nrg5ogSeY0yPgpuF40XgbnYHAgICAgJeMaDrELNMcte6XC6j3W6j3W4DiFKFnzlzxhWJrlarLp34aDTClStXUKvVcN999yGTyWB9fd0Zl/1+H8vLy6hWqygUCtje3sbTTz+Nc+fOIZlM4tq1a9ja2nJk5/r169jd3cXS0hIAuCLaQBRvR/dGEqbRaISVlRUYY1xykUwmg62tLed+ube3h06ng93dXZw9exalUskZczs7Oy5ObjAYYGVlBXfffbdT06gS5fN5Z6RRVdOd6na77YxEAFhYWJhRhegmpQYzgBuMt7jPlADSsKYxpTvmeizbUcLjQ1XAOFeoODdJX8mJU/tooE4mE5eopd/vI5FIYGdnB51OxyV7oFFPguYrgvq5Hx+ohNd3N503nr6y5Y+LT140WYMmu1DXOFWuaBQrqaDR3e12kc/nXVZT9k2Joo+DCNhwOHSqNzdS9H79c/17m6fAKdnVseI48941gQYA56Y8mUxw+fJlJBIJVKtVl1yHpEGJNceKa1Hn0ic5qoSxT6rO8jhtXwmQtq/PrmYvpTssSRvXKGMbE4nETLZM1kTjtfzNDlUnuVnCVPxKoOOUUo7PQXMIYCbuUgkqY2tJBtWVk+eRBOsc63OrGxp8DnStBhfKFwkmxMAFBAQEBBwBxkRxRnTz4n/qw+EQ7XbbGSf9ft+l689kMq4cQKFQcKnxz58/jzvuuMMZ6EzLfvXqVRdPVygUsLGxgWaz6Xbtr127BgCuntzGxoZTydQlioSpXq87o4PxbqVSySW7oAG3s7MDay1qtRra7TY2NzdhjME999zj6rqxzhENlkaj4RTBp59+2sU59Xo9WBvFG1Fxo6HE+BJ19wMigqeqIQ1FzfTIvmrSDWBfWQL21SglLr5rHM/RnXzCb3ceAVM3Q9/lcB585U3VxN3dXWxvb6Pb7WIwGKBWq6HVaqHVarm1QdWNhiEJibqfqvGoCgTHRlUDjisNfnWx1LEifFKsLmc0uNUI1/Fk2+w7XfZ4rq9Gsn2SF24sMBEJjXwlTj6pi1NBaaS3Wi2novsZM+Pmzf9biZz2nd+rga/kleu6VCq5+7PWOvdRuuDR9Y7rkOue80hip2SQfeJY7+7uunWja1nrLrLfSuR4nJIrguSNGyscC1XLR6ORS8ICYEa14n1R0WL7urb5bHJceSyPYVImTZjix0zqmleyyM84hpwXbiTxuSIB5djSi4IuoCSQqsRxrfqbETrO6pp6M3C8CBxCGYGAgICAgMNRKpVc/Iym82ZNIxoV3HUGoqQf1WrV1URLJpM4d+4clpaWsLu7i26362LG1tbWsLCwgFqtBmstrly54lwwR6MR1tfXkclkUKvVXAHsXC7n3IOYIGF5eRmLi4tot9vOSKSCk06n3U4x6xf1ej3UajXk83lsbm6i1+thcXERr371q9FsNvHss886osBSASwibq2dUR1brZaL12L8TjKZdKR2d3cXm5ubzu1qMpm4NO8knkyrTuMwkUjg5MmTGAwG2NnZAXBjXTR+5rtC6nFKKvykG3oMz2HpB789NVqVgMQpa3EudXFtPf7449jY2HDztbm5iUKh4NRQPVdLGOguv39dv190vaMB7ytwugGg11O3NO0/E+fodTTLIEkAMJuRT/vEPiih9t39mJl0MBig2+26LK68trqe+iqYP/fsA5U4kgrdANHj/DWhSqaSYH+eeaxPkjKZDNrtNorFIoD9jZgrV65ga2sLZ86cwXA4xNbWFmq12ozrIAkTU9gbY1zKexI6Jbd631qWQ90/dc2QrCh50nvWzQ8Ajvgz8Qzb0HIGXGdUULkGFZw3JvzQpDp6rG5UkHBxE8BfPzxX51VVPVVCOab+fXJclKjpWvafDyX23EzgNUgOmYn4ZuF4EbigwAUEBAQEHAELCwvOOC2VSk6RS6VSaDabMzEfdIFaWVnB7u4ums0m6vU6VldX3fE0QBjbVKvVsLCwgL29PVy9etVlrux0Oshms06F297edinwuRNOo4q77d1u1yUNoJskABdnwxi80WiECxcuYDKZ4Nq1a04dJAFcW1tDp9NxteFUSaCL5Gg0QrPZdLXdqGokEgmnAiwtLaHVamFzc9PtVrO/WjhXM+zReGKSlFarFZtwRBFngAOz7lm+ahJ3Dg3COIPOJ2GHQUmLqm78fDAYoNFoOMOQ60jHg2Oi7oUKvT8ap7wWCRnXia8AxJEQJVh+QhT9XtcE55XX0cQlvirKNnzFTAmYTyR4/1SASAr03n1iqHPAY7gGhsMhOp2OU4dIIOLmT+9fYwYPmn9/rZFwDQYDp9RTee71elhdXcX29jbq9ToSiYRbE6o6aaZEqmvqFslrMFZNs4wqgdPYN40HUwKlGx4+uTfGuOvTG8EY47LNMq6W/eQ52WzWZQWlMkfXSyZv0c0Jri2q1KrExc2zKs/8WzdkuBY1020mk3HeBewnN0U0YyjHJZvNzpBgrh0dQ5/c834PWzMvNY4fgbvZnQgICAgI+IoHE4QAkeFQKpWcikWjgSnzWduo0WhgMpng9ttvx+rqKjqdjlPd0uk0vvSlLwEATpw44dwXGQ/X7XZRKpWwsrKCdDrtClwvLS0hkUhge3vbGSw0nPL5vEsSYIxxMW9U+7hbTvfJM2fOuLphyWQSd999NwDg2rVrLjEBjU0au5lMBqdOnUKxWMT29rYjo4zloXHFRBXLy8vY3t7G1atXHfmg0cOSBMB+tjtg1o2u3+/P1DWjoU9oog010H03Pt2F599KEOKgCQsIJZC+oqTX0799447HUJGkKgbgBjVIXdbUPU4zQqrR61+fbWnyCRqp/jjqvfI43wWMxyo0joj3wfZHo9FMlj8qFtxsULKuhrKSMZImVWH29vZQr9dnYqq0734/fUICwCnZut7mrQmda38ufZLvrz9+z2eJRKVWq2F7exsA8L73vQ+f+cxn8IUvfAH1et29PxhH2Ol0MB6P3TNMYqQlAFQV8ueDZNs/Tl1tlTxzzDgmJM/c3KAXAgkWN2MYv5nNZl1NTJYISSaTroaatXbGPZjrQuM5NZkKr813nmbD1PeCn0yKZJ3Piq/I0ZOCx3DOdA1xDLVIvRJ53bDQ941utHAeORY3A8eLwCG+/kdAQEBAQICCu+dMJkGXGMZtUaE7efIkAGBra8vVd1tcXMT169fR7XYBREY6SdKtt96Ker2OdruNK1euoNPpoNfrIZ/P49SpU+j3+9ja2kIqlcLJkydRq9Wws7PjDGzuuC8vL7sdY5YJIPEaj8fONbPdbiOfzyORSOCpp55Ct9vF+fPncfHiRTSbTVy7dg3b29uONPD+0uk0FhYWXCKWp59+esYYoXJEQ4axfI1Gw9Wqo9sViabGxdEwVwOYCRLUUKYRqskF5qlpaqjpjjjdEH3lyYfG4/jHxRFA/VsVGDX4+R2NObryqdEMYCYmR8mbkjYlbzTYNe5HlTJC70NJM8dUj6H7F8dC2yP58l0MNS28JuJQd0pty59X/U6VHxIFdScEogRCrL/IPvlxbXFzx/vgZgaTpKiC4x+v/Y1Tgn13O9++zOVyrn/VahXpdBpPPfUUnnzySeRyObztbW/DZDLBF77wBSwsLGBxcdGV2fBjq5RYKTFRRY3rjmudoNql2Sp1zNl3rg+erwXXlUBpUha6clerVUda+AwNBgOXKETj1oD9jQrdkGF2Rz1Wr8314veXzwHrzzFhkhJAPjvD4dDFuNE9VTeD+JmfnZIqpCZV0U0Kjqe6Zx70rnk5cKwIHIICFxAQEBBwBJB85XI59Ho9F39SLBZdYpOVlRU0m01MJhNcuHABJ06cQL/fx6VLl2CMwWAwQKvVQrvdRr1ex/333w9ro+LcTz/9NLa2ttz1jDFYW1tDv99HpVJBvV5HJpPB1atX0Ww2XfxHLpdzxt7u7q4rX6A14HK5nHNBLBaL2NnZwWAwQD6fx4kTJ5DJZPDUU09ha2vLZcNk3BvJ2/nz51GtVtFsNl1yFdZ0S6VSrkjyeDxGpVJBuVzGxsaGq29Fo1t37bn77mefjCMeaoz7CtC8DG/qBskfdcnySZhveKuR5hvmPinT8/RvdWlUYjoYDFy9PG3XjwHyVR9ew1cAtAB0XOZOGpf+WHEdc1yUsI7HY6dQ+EldaITzeO2Lr3xRMUulUu5+qcoBmFEv2A4/p6GtKp32QV0qfTKixEah4z0ajVxxeT92TEED3F9P7LOqi2zbvzZdI0ejkUsc9MlPfhK9Xg8bGxs4e/Ys3vnOd6JYLOK3f/u3Ua/XcfLkSaytrbkkGiT2GtfGMdfMijrHuo6U/ACYUW/9BDA6H0pOVPEkSaOSTkJNwsaYWe0PFURdG/qO4D36Y6sqsSZnUYKoihiVTj4fqVQKg8HAPQfsN13CSbAHg4Ej9VTngEgx1wyffuIUbnaQOHLzTJVQrbf3cuNYETgDBAYXEBAQEHAozp49i62tLWxsbLjd4dXVVacopVIprK2toVAo4Pbbb0e1WsX29ja2t7ddXAhT899yyy04e/YshsMhnnnmGUfUuMNcLpdd4d56vY5qtYrhcIjt7W2nQHCXu1gsOtWPcWw0rsvlsnO35K7/9vY22u02VlZWcOuttyKfz2NtbQ0bGxvO3dJXFarVKoBIVWw0Gi79OUnkiRMnZtxIWQePdeNIKjSbG9vWNPiqFOiOtU+oaExqUgBfJVMypODnNPb0Pv3jaCCqwarkJM5dTtuiUarEgy5mm5ub2Nracgqkqo+qpPhgWyRb5XLZEe69vT1nfKqbHfut5IxzxzgmGse5XM7FeJZKJdcHFncn+WU2RxrbfjZOn+zwbyUJqhzqeeyzT47Z/zg32MlkckO5AX8dabs6j8yeSuKhLoj+uGvffWKoffXXIhARuJ2dHWxsbLh18PjjjwMAPvShD+FrvuZrcObMGbzxjW8EAHz84x/H0tISTp8+PVPoWzNRUpHSjJM6Nkr+lXDrWChpjiO8VNe5lnWtAHBKHt0mmbiI65q1/TgfOq/++4ZrSwnweLxfFNsndP78krzxWSO4Rv2kP3yPsP+6aUCyxpg+XRvciOL4q5LIZ6dUKrl3H991HLObgeNF4IwJ/C0gICAg4FA89dRTaDabrgbc0tKSy7Q4HA7R7XZx5swZnDp1CtZaPPPMM+j3+8jn86522ng8xt133418Po9Go4HNzU2XTCSZTGJlZQWpVAqdTsfVcBuPx1hfX0en03FGUKVSQaVSwcLCglPULl265Ha8uevNflGd2Nrawng8xsWLF1Gv12GtxdraGq5cuTKTQIQJCNRt7cqVK25XGQCq1SpWVlaQTCZd6YBKpeKyKK6vr7udZxJKum5yR18D+9WI10QKavwqEWE8EI1U3xD0iZUf39Xr9WZc8RTqbqnxOHq+b6Trdf12eC+TyWSGvNENTt0iVT0iiUilUo6gcW6YPZExRUShUHCZS9k2iymn02lUKhXkcjnUajUsLi66guw0vK216Pf7MwRP3c3YTrvdRjabRaPRQK/Xw/Xr1zEYDJyKS1c6VR9UXaRBq2PsZwflj7pj6nxybKkW01VY66jp2uGcKKHmGLEcB/ussYiqtCp507UZt84IfsZxpCp0+fJlXL9+HSsrK/jsZz8LAHjnO9/pSFwikcBHP/pRLC4u4syZM1hfX5+JBVUXRhI4XX8k3JowRN0qqdqRnGg9OM4FlVJu0Kg6CsApq9zk4fhQuaYLoibg4bjyuloiQJ99dX3mhgXJKu9H3YyVUOk8kczpfGv7fMeRGDJZFdtklmGuW641362Vc8JamMZEia7UbdP3Hng5cbwIHI6WRSogICAg4Hc2xuMxCoUCFhcXsbi46OpS0RXq9ttvx8mTJ9FqtZziVa/Xcf36dUwmE9RqNaysrGA8Hrv4t263i06ng+FwiJMnTzolgLu07XYbnU7Hxens7u5icXERy8vLKJfLSKfTWF9fx5UrVwDs11MqFArodruYTKLYvF6vh0ajgUKhgHK5DGstGo0Gtra2XFwKjS4aZIwhAaJkDzRweI1KpYJsNuuSspAwWmsdUVTCwbT8akCrIUxS56twvqqlxIn9JfzMhXEkDogM7mazeUM9KgXjjJQoqDLjq2+8Bv/VfvCYTqeD9fV1bG1tOddFPwmFkoZEIoELFy7g+vXrjiQrgaVrFw1PdTPTrJb1eh0XLlxAuVx2tQGHwyH6/T6uX7/uDHfGeJLM0PBk3zgmxWIRyWQShULBbRY88MADKJVKaDabaDQaaLVauHbtGp555hkMBgNHCLUos94rlRYlJTT8dV65qcBjlRRqEguuXX9+fDVQ3TF7vd5MUo84YzvOdVY/iyP1em0WvU4kEvjyl7884+b4yCOPAADe9a534cyZM3jggQewt7eHj370o7jllltw5swZPPPMMzfEY/lkyF9XSh78zRKOh963QgkRSQ/JLWPLKpXKDSRIXQp1rDSzo6qp4/F4ZhOG61mVWH/dcAOG7xX2S4k/+6TzoMojyRowWxqDpI/rjApgPp/HcDh0sbk8RseSqmMikXCFzemCHxdj+XLheBG4EAMXEBAQEHAEZLNZF+9G5WtjYwMrKys4ffo0xuMxLl26hHQ6jcXFRZc2fzKZ4JZbbkGxWMTjjz+ORqOB06dPAwDW1tawu7uLpaUlZ6hWKpWZWDkaAbwuFZZOp4NWq+UMQhpDo9HIEchKpYJ+v49ut4tarYbRaITr16/P7IirwUYlQwkC67dlMhlXIkCNEu6893o9pFIpXL58eSZOh+epm6QaZBozRCUpjoAB+y6XNEY1dibOcNZddt8Fbm1tbSbznH8e+6nqiZIkQg1hv++q8jDuaWNjw2US9Isiq2FOReXq1atotVoA4EgQU55rDA5JG9UYZjA9ffo0jImS3XQ6HTz22GPodDqumLr2lW1yLfkElPfNzJnZbBaLi4suCyndZC9cuIDxeIx77rnHxYBeunQJm5ubrqyFZqukMU3jV5UsnyzN+xyAy244Go1Qr9dvUOKUMMa5CtIFlRsofp07HQNdn74Cp9/7P3t7eyiVSgCAZ5991hHt8XiMfr+Pz372s+j3+3jve9+LW265BW984xsxHo/x0EMP4ezZszhz5gwuXbo0s/b4vI1GI/es8VnSVP4cAz1H74nrO279kjwrmc7n8zPunHxG6HLIDR/OqY4nj+c6U8U4bgNElU2eq/epGYJVWVRy7RNBnsNr6PtICTDvnRtRHNNqtepqV/Jdwvcx3yE8j3GAes2XG8eLwCHUgQsICAgIOBxU3G655Rak02k0m03ccsstqNVqGAwGLtatVCqh3W7j+vXryOfzuOeee7C3t4fHH38czWYTS0tLrsYaY4xIhBKJxExmSyCKKVteXnZZLnu9nstUyWMYC8O4Oaoj/I4ki4aV1nMC9l3a9G/GQpGY1et1LC4uIp/PO2JJBWYwGKBYLLpYPgCuzl2hUJgxlOcZ67ozDuzHoKmCRmOMO+UcH+6W+4qdGoHqhmeMwdWrV12cDttX45v9VLc+VXh4DY1dU+jf1lq0Wi1sbGw444/zoO6FfmIExgOpoc5x4dioYpVMJnH+/HmntI1GIzz77LNot9szGfb0XnSMeU++8uQrVcR4PHbuoNvb26hUKiiVSigUCrjzzjtdnNdrX/ta3HXXXdje3sYzzzyDL33pS27seW+8T/ZBv+Pc0AVQDXrtD0n9YDBwa9TPesnj/HXH+9GC2FQcdR79GC6ulYOgaxCInsOnn34aTz/99EwcGUn9l7/8ZWSzWbzrXe/C2bNn8aY3vcmRu4sXL+LMmTNuo4T3QJdCuu9x80Sfa78fGhOpxI2kS/vPdpjIg+8rqvN0NSQZo6LOtvXazEirsWOcd1WxqJBRWeOaUNLI/vIavurIsWV7nHt9jqnesRSKHsv75311Oh23IZLP51Eul1Gr1dDpdLC3t4etra2ZORmNRuj3+7DWzqh9NwPHi8AZAxs0uICAgICAQ7C6uoqVlRWXwv/cuXPIZrO4fv06dnd3USgUnDE7Go1w4sQJLC4u4tlnn8XOzo4jQleuXEGv13PKyPXr112MGpWRdruNSqWCkydPYmlpCfV6HcYY9x1JDDNGAnCp//P5PFZWVgBELnvWRqUDmFgA2M84CMDFR3W7XeeOeOrUKRQKBafkFYtF1Go15PN5l2yFO8q7u7vI5XLY2trC5uama4NGHokDMFugm/Djm4D4bJBKXID9AtU0uNWlivDbVcVpZ2cHm5ubWF1dnSEFeiz7xh+tZ+a3F0dSaUzSVZZESGO2uOtPY5b3SvdIEjm26feDLm7FYhHLy8suJvOJJ55wY0+Dk9AMkCSpXBM6xn7c2TyQxPf7fayvryOVSuHJJ59EIpFArVbDPffcg93dXdTrdZw+fRq33XabS5/PRCiq+Ol40tBmX/i3KkSEGt40tJmu/6B1pYa9uhCTNMxT1diGEk8fehyJe7fbxSc/+Uk0Gg2cOXNmpg/GREk1Pve5z6HdbuM973kPbr/9drzjHe9Av9/HE088gbvuugvnzp1zSpySGHUn9NU0Vdy4rpiplsod16wWp2ZbJF10JyQRU1dIkiM+k4yb9PtCIsfjqFRxDPge4fVI2EgSSd6YXZKEm26wJHCaZEdJpZJYZqDk2ORyOedarps3fFbZ5tbWFiaTiavDaa11ruR0G04mkxgOh64mXbvdnvscvdQ4XgQOQYELCAgICDgcKysruHbtGpLJJE6dOoVWq4VWq4WlpSXkcjlXtDuTyeDWW2/FeDzGY489NlNyYGdnB8YYnD17Fo1GA9ZaVKtVGGPcTvbe3h4qlYojjMwk2Wq1XBHgdruN0WiEcrmMwWCAK1euOCMIgGubxbiB2Zpm2WzWuYql02lsbW1hd3cX6XQa9XrdXY8GMouHM4kLAEfkWFZhY2MDwD6xqtVqWFpawpUrV2YMJv6uhMAnXmqYqxKnagwNZ94j789vU3/UlXI0GuHq1au46667Zq6t5IAGH11KE4nEjMHo34e62rGfe3t72NnZmUnxThdIXkcVLp6vKh2PoWFKA9kY4xKSVKtV7OzsoNFozBA7ADMGLf/WeCIlHj4Z4XiossG+EyRWSpbp5ra9vY2HHnoI9Xod5XIZJ06cwPnz53Hq1CnccccdeOKJJ/Doo4+6DQQlvroOeA0dszjXSBINAC6Wr1QqzSguqr75a44qnK+0KmH0yZuvYGqbOkaNRsPd29NPPz0Tr6ZufYwFfeKJJ9zYX7x4EW9729vQ6XTw5S9/Ga997Wtx+vRpPPvsszNuib4CpZ8r0RsOh46gkNyoO6cq0PyM6x/Yj4vVWEEl2iRmunaU5OnxGldH18t5bo6qROvzTkLIzRAlWrwXVf953Vwu596DJJT0LPDXnbqQ8r0zmUxQKpVmat6pgkm3YiYi4nvyZuBYETiYQOACAgICAg7HlStXUCwWUa/XnbHJQtvNZtPFnJ07dw7NZhPr6+sYj8colUrY3t7GeDzG2bNnkUwmsbOz4wgTz+12u7A2Sslfq9WwvLzsyBHLD3S7XbRaLWe0dzodbGxsuIx/jL8oFArOmFH1plgsumQixWIRe3t7aDabLoU6M0iWy2UAUUbDU6dOOQOQsTtUKRKJqK7V5cuXXfwHEBXxPnnyJBqNBgDcYJT7hrO6VylZIvRvGqWqmtAFlLvpWnxXDW5VmSaTCZ588km86U1vckk5lBzyfN4nlS9mf1S1yIeqNs1mE9evX3eELM7Vk33XOKK9vb0ZFY7Gs5K4UqnkYs+Y1TKfz7v22Ae/9pdvFCuxiXNTpKueKoTqwugb0qqYWhtltRwMBlhbW8Ply5dx++23Y3FxEbfccgtOnTqFO++8E4888ggef/xxt0lBEuG78vFfXkPd87guaOTv7e25BECFQsH1Wd3j1J2SbZDA8b7i3PyUePtjGEcOJ5OJy+DaarXw5S9/2cVC8h5Z9Fk3CJ566il85CMfQalUwoULF/C+970Pv/RLv4TPf/7zuP/++9Hr9bC5uenKR9BFl2ud7wGtv0h1icSRrq508fNdILvdLozZLyuhaf45/kxWRDKm9f7o0sm1xXFkCQt+zr6yDYWuaT9hDUn3eDx2cY8cS469vmMymQyy2SwKhYJT9PQdos8N29RnWtcl37EcT7ZLpZ3Jh0ajEVqtltu8uRk4VgTO4OZWRQ8ICAgIeGWAbo7Xrl3DwsICzp49i3a7jWazCWPMTKHtVqvlDKZms4lMJoNTp06h2+1ic3PTGacsIEw3o+XlZSwuLjojhIYZYy/6/T4WFxeRSCTQbrdx7do1Z0CT/NHVkgYgSRGN0Fwuh729PTQaDVfmYHl52ZUgYA2whYUFnDx5csYVzdoo0UipVIK1Fr1eD+vr607xoEFN5aXX6wGYdZ2Mc5NT5YbGWdyxJBiaztt3oaPrFVN/c1c/jnBdvnzZxSX65ID98hW/TCYTG8viq3wAHGlhWyQm6palsTuafIF951gwex9rVeXzeVhrndFMw5N/c6zYN82up/fjK2vqEkgwI6UqKL6Ry3O55vxU7vxptVr43Oc+h0KhgHvuuQfnz5/HuXPnUKlUsLy8jC996UvY2NhwBj3nVbMS+tdTZY7kjfFgxhingut46nm6LlTlIcFRUqrrYd5P3LoA4FyeH3/8cXS7XSwuLs6QSmOMI0fq4nrlyhV86EMfQjabxZkzZ/Dud78bv/zLv4wvfvGLePWrX+02YlRhBeA2bwglX3xmeSwVJV1PPEc3DjRLrLopKmknSAQ5BureyfWYzWZnNivUZVafQW2H8WrZbBaj0cglr2E/NXuk/xxnMhkUi0VXu5PjxGcH2K/lxnVvrXUlS1TJ5NrkOtXELfl83mV7pefF7u4u8vk8bhYOJXDGmJ8C8A0A1q2190w/+/sAvhHALoAnAHyntbZhjDkP4IsAHp2e/nFr7fe8FB2P72soIxAQEBAQcDgGgwGMidwfWfz62rVrKJVKOHfuHDqdjlPalpaWsLa2hu3tbZw4cQInTpzA008/7f6j73Q6zthg2YBarYbz588jn8+j0+lga2vLGSKsq7W6uoput4tut4ter+fineh2SWOVBi6ND2ZBM8ag0Wig3W5jPB7jxIkTOHnypMsqWKlUkEwmsbq66mLggEiJo4GlWSfb7baLryMB5H0x/k7dI9WY9f9Vw09VMnVRo/Gu5/J7ZsqcTKKSDTSImRSGiowqMFeuXMH6+jrOnTt3Q8wQ+6EEOJlMuh12Nf713pT8ra+vuyLBvhsZ70fP0yQU7IsqKjRaSSLVKNUU6hqnp9eMIxp+VjxVIPTelAz6xrqSHI0diyNJJJfD4RCf+tSn8Nhjj+Hs2bO4cOEC7rnnHpw9exYf+9jHcPXqVVfPTmP52BaNa50vvVcm1mA21X6/P7OR4a89nTtg1o1QCa9PgONImw+Sl/X1dRhj8PnPf37GxVVB8qh9bbVarsTAN3zDN+DWW2/Fu9/9bnzgAx/Ak08+idtvvx1f/OIX3TPKjQLekx8L5icvUdVbyRtVtWKxOJPpUsdZ15CuCVXKdF3ruYw9s9ai2+26ta2p/0kaeV3NAsn3DtU9ADMJoPQ5JqliHUS9byX+unaU1HNDCIC7tjGR6zvfk1yffDZ5bW7iFQqFr/gslD8N4J8C+Fn57L8C+D5r7cgY86MAvg/AX51+94S19r4Xs5NHhUEoIxAQEBAQcDiy2SyWlpYARAZVs9l0WRlZDoDxUcwQd+HCBYxGIzz11FNOeWm32zNujel0GgsLC7jllltcIpRWq4VutztjfGYyGWxubjo3LAAuhTaTCtCVkgYTM/FlMhn0+330+31nhJw5cwbVatVlTSuVSkin07jtttswmUywtrbm4kOo1NFtk6Rkc3MTuVxu5jp0n+L9xalohP7uu7X55A3YNwr1fHV/YsxYr9fD0tISCoWCU8H0PBpqnU4H169fdwqdqisE3Shp7NJFlbv188hpu93G1tbWDNGgIUqSy/vmvdH4pDJBw5HEje6bqpapoe/Hr+n4+WPpkxn2W417/VyVIhIe35WR5yhR0za4JlRlHQwGeOKJJzAYDHD77bdjZWUFb3nLW1y2ylarNaOKKbnnffiKjSacILlnEiHGN6kKpwobP+d8xSXg4P36WRT9sdQ1Qffk8XiMq1evzsRS+uNEJZlzTQL4yCOPIJ/P42u/9mtx9913Y2trC5/4xCewsLCAixcv4pFHHnHH8t713khW4jI1qsLJ/pJ8cc40ZT9JYjabRS6XczFnqkDruHFjQTdSxuOx23CisszsudyY4lxqTBzHhO8Z35WSa0DdgZlFmM+tKnpcK1TvqXTzOLqd8j1BBZDPJV1M+/2+e4+yvifrwbHdr2gCZ6398FRZ08/+i/z5cQC/70Xu1/OCCTFwAQEBAQFHQD6fx9bWFkqlEhKJKLseiRz/42b68nq9jpWVFaytraHT6bgMZ/1+3xkBk8kEhUIBZ86cQaVSwd7eHp5++mn0ej1n6JPscaeZRkOz2XSGS7FYdAaV7rT3+33nxtbtdp2BRle13d1dl5SEhsXCwgIajYZzk5xMohIHy8vLqFarWF9fRyaTweLiIj7zmc+4HX3GspRKJWegzSNvNI59Q1x/J/RvGmlqjCrR03YSiQRWV1cdWRqNRrh8+bLrC13FJpMJvvzlL+Mtb3mLG0fdded1aOgyIUG5XEaxWJxxVVVCMxwOXXF19o33TldIn1CxTyQjVBlIimngqhGohrG6N+pY+XFrvLc49UwVJV9RVNKj96xKC9ug0ctrqbse710J+2QywbPPPotut4tz587h5MmTKBQKKJVK+OIXv4idnR1HzHUsNRbJd2vlPZCEMSugqpU6hr4i7Lu8+sqpJoY5SIVjX3d3d7G5uQljjCsnoQRK1zpJGK/F7/f29vDpT38amUwG73nPe/DOd77TKZkPPvgg7rzzTly+fNmltNf50oQpQETCdL2RcCtpYqwn31tcBySvVGbVJVNdhHUNUB3XdUkllmuD88ONl52dHUewNC6Qm1Cq+uo7gWNKspdOp5HP5128H+9D55xrgO9SurVz3HlvPFfdmakccgOGMYV8lzPxC11ybxZeDOr4XQB+Qf6+1RjzGQAtAN9vrf2tuJOMMd8N4LsB4Ny5cy9CN6IYuFBGICAgICDgMGxubro07ZcvX3YujsViEdlsFo1GA6PRCMvLy0gkEnj66aedwc+dYhbGTiSiGmpnz57FwsIC2u22KzXQ6/WQSERZILUYL2PTqJjRaFAlh9dh7BkVGwbYZzIZp5gxQclwOES1WsV4PHYJVRYWFlxh2rNnz2Jvbw9PPfUUSqUS6vW6i/NLJKI6UOl0GufOnXMJFYg449iPyQFuJG++O6XeoxIqPUaVk/F4jPX1dZTL5RlXQTWKaYQ+/vjj2NnZQb1en3FD1LZplPInn8+7zHNsU++Zqcy1mDCAmVTlJCKa3pz3yaQqJOxKOuJUSSVsSrj4Pf/2XQDj2uDfNJyV4PE7Hs9+kxz4ahLP1VgidbPzYwybzSaeeOIJlMtl5PN5nD59GrlcDg8//DA2NjZmVBYa0zqn6jKoRJSG8+7urnOl1DFQosr+cd7V6NYx0DguJUD+WuC/3OxJp9Podruo1Wo3zA3bJnHUZCq8l8FggIceeghLS0t48MEH8da3vhXXrl3DZz/7WbzlLW/BZDLB1atXZzIw6nrj9ZR8qsqn96aJZDSZD8mdEip/Q4X957uOz0I6nb6BaOk4DYdDR27z+fwMeWIfue50/fL+SPZIxtRtketPS4+wbV3LfA45DwBcYqder+cUvaWlJTSbTVcaotfrIZ/PzyiKSjxJDG8WXhCBM8b8DQAjAD83/egagHPW2i1jzOsA/HtjzN3W2pZ/rrX2JwD8BAA88MADLwrrCgpcQEBAQMBRUC6XkUwm8cQTT+DSpUvOOCApqVaryOVyuHLliotJS6VSrm4b46dyuRyWlpZw8uRJ5HI5tFotbG9vu5pCu7u77j/5bDaLYrGIXC6HTqeDbrfr4rnoqkP3Hp5LV05NDkDS0+v1kM1mcfv/x96fBNmZZteB4Hnv+ZvnwecRPsAxBmLIiEAwyYhkMiWmUhxkMpZMuaqFTGUya1NvtKjqVclkVqZa9apXZdbNbplM1SqWkqSYxmRmiJmRmZERgQACCMyAO+DweXjzPA+98DgX9334HRGiyACJ/q8ZzN3f+4dv+n/c851z711eltiSVCqFer2OZrOJaDQKr9croCwcDiOdTktSlna7jbt372Jvbw+xWAz5fF6ceyYt0dJJ7vwzcQLwLFij86iZImBYLql3vs3YM+2483Oma9f183QiEzKVlKU+fPgQk5OTEo9jXlvLObnzzvpiWn4JHEu/CGJNgGqyZNphptNK2SrXCx1Sxuuw/1agTY+lBgQaeOjr6M/1mBPcapkiHW+232Tx9JgBGEojD0DYHB1XpqWYvG69Xsdnn32GsbExLC8vY3x8XBx/yl01MNZZHNkWkyGk004mjpsoPM5KSmoyq/xcj4eZOIbzqY/ltXK5nMiiCS7MMdNjqWWcepzIqP/yl79EJBLBpUuX8Nu//dv4T//pP+H+/ft48803UalURC6tx5wbPmyDTtLC3wl4+L1e+wQkerw1mOd4MW6RY8NxYi00vUZNxgt4Gm9MEMSkNEy0wuNMJpvrl88L22tuoOj6dWy3uW5MBprjx/esy+VCOBxGq9WSzTqCXJZ+cbvdokxgnURTZfB12l8ZwDkcjv8ex8lNfmvwxcoeDAYtAK0vfv/M4XA8BnAawLW/hrZ+hTbZMXC22WabbbZ9uTFJCWusMR2/0+nE2NgY+v2+sASJREJiO1gugIAilUphdHRUjqdjx//cdUzI1NSU1A5iDAZwnKY/FosBgBQO7/f7Eovi9/sFIJDl8fv9SCQSUgMukUggHA6jVCqhWq0iFovB4/Egn8/L77lcDs1mUyRN+XwemUwGMzMzkqglEAjA5/MNFQLXwEXLnUyjY/o8GSU/12bldJvfE+zSAaPEi04aQXCxWMTNmzfx+uuvi+OlHTcAQ4wBndJIJCJ1+DS7wdgXDSg1g8c2AE/ZHp/PJ0ybTrBA51fXc9Nsj26nlrXxbytW6nlxONqh5r041gSNWmKoGSgNtrne2Q9THqiBoO4Hnel+/7hm2s7ODsbGxjA6OioxgayjpevkmUl7NNA3Yx/b7bbIKc11ZDJxWq7JsdBSP+3063nV64xr7eDgAO12G5lMZmjcrNYF508zRpod7vV6KBQK+PDDDxGPx7G4uIh3330Xf/EXf4G1tTWsrKxIeRACV64tbhBpaSjfD5RTOxwOGVfNmGq21Upey/kgGKMsmdcis6fnSMd0apZPr2ngKdOqM7DqZC0jIyOyyeR2uxGNRuX9Q3DF+w4GAwFxHBuun3a7PbQm+DuzXRYKBelLKBTCxsYGwuGwxPNR6s7nWD+3etPjRdhfCcA5HI7v4jhpyXuDwaCuPh8FkB8MBj2Hw7EIYAXAxl9LS79ay2wGzjbbbLPNti+1UqkE4LhAtdfrFecikUigVCpJpjGn0ykxKHTOmahkbGxMYthcLhcymYw4/K1WS8BAIpGA3+9HOp2WBAw0j8eDcDgsWd3osNCBYcwXZUKUN46OjgrY83q96PV6ODw8xGAwQDAYlKyRyWRSJIgjIyOIRqNDTFur1cIrr7yCH/7whxJTp+NEtFOuWZCTdp61c6x/12BOn2uCD4IrDSwADCVLMONd9HFOpxNPnjzB/v4+RkdHxYm0cubpQI+MjCAUCknMIPve7XaRz+fF6eZ9tMyOxkQwzPLHODfNWNDJ1cBJy9iAZzNLknEwJWomkNKARPfRBIIcD86lCcpMZlU73yazyutzPfBzs7RCr9dDo9FANptFpVLB2bNnEY/Hsby8jH6/L1lTuUmh5aj8qUGvbisBhpnQwpSm6vVpAnhKWvU5en2YzwCLbxOYmolozA0DzjulfbqNHNdut4vNzU28//77+N3f/V1cuHAB+/v7uHnzJkZHR3H69Gl8/vnnQ6wxJZhknwiAQqGQJHfhtbW0kmySlpbqNcNx5DPn8/nkelp+yw0CyrN1MhVmbtSbCFparMuD8FhKzLl+XC6X9IVgVMefUSHAhCxk1VjnjRsvBJZk6vXGAuPbDg8P5frvvfce8vk81tfX5X3MYyn3JejTDP/XbV+ljMD/DuBbAFIOh2MXwP+M46yTXgDvfzGRLBfwLoB/43A4ugB6AP7FYDDI/w213aKtgM3B2WabbbbZ9mVGdosZx+gg5PN5cQj7/T4qlYo4MH6/Hx6PB4lEArFYDK1WC/l8XqSNlUpFdnbpJDKmrlwuC3DTzjQThbRaLdlFJkhkevtKpSLtTiaT8Pl82N3dRTgcxtjYGFqtForFogDRwWCAUCgkoLLdbiMSiQA4Zvj8fj/a7TY2NjYwOzuLK1euoNPpSDIPFiHXzrxm1sh+mWbFpOnPNIgzQR6NgINOpz6eY6cZElPu5/P5sL+/L8wFZWamo6VBERnSVCqFTCYj80QmVQMUncWSzqnOiOj3+yXBAsES+6Tba8ZLmawaj6EDymM1QNCMgOmgE5zpe+k+m9LWkxhFXpOMjGbyTMknjYCRbSV44Vim02mMjY1JvT4m1TATZpBx1eyjuRYZm9Vut58pt2CaBmL8x4Q9GsCZ8li9WdDv91Eul7GzsyMFtPmsmXNr/q5lrlrOqtfh2toaPvjgA3zve9/DO++8g62tLXz66af47d/+bUxPT2NnZ0fWJoETGTG+b1hihKBJ91P3y8wAS3Z9MBhIqQeykzyeAI/jRCmhXuv8nmCcoAmAqAg4rwSTOpaMx7LNVEcMBsf124LBoLSF7dTPC9uqS0/w3QAcb7Yw+y/Xca1Ww9HREebn55FIJNDr9TA7OyvFuvX7SjONf6sllIPB4PsWH/8/Tzj2PwH4T/+tjfqrmgN2DJxtttlmm21fbo1GA9VqFcFgEJOTk6jX68hkMuj1euLQ5fN5YVOY+WxsbEzqtdXrdTQaDYnJ4m4uk6Gw7hVlVtwZtqrHRKcgGo1K/IrH4xHHbGJiAqFQCLlcDuVyGdFoFJFIRGrAEaB1u13E43F0u11JzBKPx4e+Yyr+wWCAvb09cX4pVaR0SgMl7fRqM9kGK4fmpM9M8KXZAS2j0/IzLTHUTijH1e/3o1Qq4dq1a7h8+bLMgwYbJgNH0BSNRjE6OopsNis7/FpuphktXof18hgbQzaH55Dh0tfg77wv22IlmTxJjqcd8efJ97T0k+DHBNmaidHX1QyDeU+2j2tVrxHNxvEfQUq9Xsfh4SFGRkYQi8UQjUYxNTWFw8NDtFqtIXDJ58U0nWADeCqlJEAx2Ug9TuZ6ZRyrlsWZY6fZ5263i/39fSk1oudSn6czeernRh+j54FsIwDcvn0bs7OzuHz5Mr71rW/hBz/4Aa5fv44333wTxWIR5XIZg8FA3g8EUPF4XEAK26zZN72pQCkir2GVbVZLJDUrxnXBdxcBjgZ2XFc6nT/jZ8lecQx4b75zPB6P1JTTkk2uQ8bOBYNBRCIRVKtVOBwOSfrEnyY7rzO/ZjIZDAYDYTLb7TYqlQr29vakHdxg4/04lxwXU575dduLK2DwN2AOOwbONttss822r2DdbhfJZBKxWAzpdFr+k+Z/1K1WS9ibcDiMkZERjI2NIZlMSvxYs9mUmDO9s0wZot4F17u3sVgMTqcTlUpF4lei0ajEfDSbTXi9XlSrVbhcLpw9exYejwe7u7sYDAaSuZnSzXA4jH6/j0ajIen28/k8fD4f5ubmhjKqtdttFAoFKUVApzmRSAh7SCmTNg02tPOsAYLplD5vd1o72SbLYSZJMe+hZWHmnDL5zMbGBh4+fIhkMinJQ0zwqZN/OJ1O+P1+pFIpRCIRkcPqnXcNRJxO55CsluybZnL4ux43glMCNs2kmfJJK6ClwRpBggaGmj2jM63ljmasmJlaX7PDes55TT3uBBHmZ5x7bmDomCWH47hWXDabFSd9dHRUnim2h5JJqwLfBAZ6nbFUhpXpMdWOPeO6uD7M9aTXJEFMs9nE/fv3RbJHkG72n+OrNwp0e/T4m9LNer2Oq1evYmpqCktLS3jjjTdw48YNzM/P49KlS/jwww/h9XplE4nS70AgIOtJgx4CLj1mXPscb8b3kmXVrKSWpOoEJ6YUlXNMYKsBM4/XklFei6CObfX5fPD7/QK2KBEFMFSTkrUU9aZJvV5Hu90emm++g7kRFgwGce/ePezu7kqfCGIrlQocDofI5wko9TPi9XoRi8VwdHSERqNhuea+Dnu5ABwcz7ygbbPNNttss820sbEx1Ot17OzsiAOqd6gZg+bz+RAOh5FIJCT7WC6XQ7FYRKFQEPlWp9OR+IxWq4XJyUn0+32USiVx/PVONKU/zFLY7XZRrVYxMjKCSCSCer2OSCSC1dVVFItFHB0dIRAIIB6Pi7SPsk/Gevj9fgFnsVgM4XAY2WwWzWYTg8HTdPgEfgCGnGXgKejSDguzxmlQCgwXhDbPp2kH0DzGjBvS39H5smJDeF3tiAPHzh3LOORyOVy7dg1nz56VjKOm5E+zenRA4/E4xsfHJV5RO6cEQZoZ1bJJLSPT8T9sr3Z2tTRQs4+aYdRzo8fYvAa/p0Ns9tMKbLP/mgHk+SZo0/Oh5a2cU/M8/VNLOQGIM16pVLC/v4+JiQmEw2FEIhGRBfJezBLIGCqTDdTOPRlw1o8jyLOSNXJMmBWWQIVmjh0BcL/flyynIyMjyOfzkgiE5+t1qcdaX1ODO3Ne+HNnZwe/+MUv8A/+wT/Am2++id3dXVy9ehXf+973sLKygocPH0rdwng8LklhvF6vSJw1MKVElf3RTDQZJ26cUAKsnw9KBnUqfs6RTtRDJpzzpseDoJ5FtZnoSW9MMCZOg2K9nnR9Oj03egx1kheCMrJ8wWAQU1NT6PV6Q4oL/Q5gfwn+CEi5pgjatOT3RdjLBeBsBs4222yzzbavYIx1o6PAHVzGkbTbbYTDYUxMTGBychJOpxOHh4dIp9OS5ITJSijd47k+nw/FYhHFYhGBQEDi5XgfOqapVArAcZr8RqMhYLFeryMej+PUqVPCDo6NjcHlckkR5GAwKOfGYjH5zuk8LnrtcBxn+GMKcgAiB2LWvkajIQ5auVwecto182VmvCNAMePZrGRqJqDTf5uOpMm2afDIv7Wja8rR6GgFg0HkcjncvXsXa2trGB0dtawJx/ZoIOXz+TA5OYnHjx8PJRDhOPA6zPTH8hKabWNbdRY+K4CmQRDvpZkqrknddxMgaomiyaJpyRclZprd06ywHksrFlCDcEobtbxQ91uvCYIxtplOPuWnjUYD4XAYyWQS9Xpd5Mi8Z71eH4pj1GCX64CAotVqyXOowa05Hvo5Z2ZFE/TqNco+sn7i5uYmAEiCD70G9fOj722uV1OuqseOgPT+/ftIpVL4zd/8Tbz55pv40z/9U9y4cQO//uu/jmw2K7GbGsyQ0ScY4sYR51+vPYJiPpMsu6HXLOWOWurIeTRltTpTKeeAElsNvDS7p9c0GWqXyzW0eaLfEXr+NWgHILHHfJ7088iagel0GoPBAKVSScq56GLnXHfsD5k59oXv/EKhIIz2i7KXC8DBjoGzzTbbbLPty63ZbCKZTKLT6TyTFdLlcmFychKTk5OSJGRrawvpdBqZTAadTkcC4SkD63a7UkibUjDu7tdqtaGaZKVSCSMjI6jVahJ/xlTa7XYbExMT8Pv9kgFxfHwc/X5fYl8ICAFgdHQUlUoFnU4HsVhM/mbJADq10WgUjUYDu7u7AJ46pj6fD5FIRHbD6bxoNueVV16B1+vF1taWlEDQTAudJu2gatOMDk0709r51ewYz9HnaofOyvL5PBKJBA4ODpDP53HlyhWsrq4OsRGmXE6zcC7XceHz5eVl7O7uIpvNCtNAJ5NgjrX7NGDQcWMm62Im49B9smqLHhcepyWnmkEz2UwNHDSbynnTLImWm2lWjdfT6edNNsfv98txOpZPbwaYc60ZUybfCQaDGBsbE4kcQRyfC15HA0BzDej09lbjqUGv1+tFJBIRxk7PgcnQco3XajXcunUL5XJZ5Io6A6UpTeW8m+ypKf/k5+ZYtVotXL16FdPT01haWsK5c+ewtraG1dVVnD17VsAaZY/muOn7apaVY8Xx4rqlhJtrw+PxyFxS5khAxlhQjrUGjjqLpV5HZPuYOZPjxWytXHdsh44x45rVa5hrsNPpSMInKiIIZhuNhkjSmeBoc3NziFHXygKOP5NKWW1YUeapQfmLsJcLwD3npW6bbbbZZpttNGYa046Ez+dDLBbD2NgYZmdn4XQeZ6U8OjrC7u4uisWiBO03Gg3JPgdA5Ivc5ebuN3ecCRLp8HE3N5FIiLRocXERgUAA1WoV3W4XsVgMPp9PpJqshXR0dCTAq1wuw+l0Ynx8HB6PBwcHB+K0DAYDhMNhhMNhcZYpo2y1WhI/Ajyty6QdLQCYmprCzMyMOO3FYlHAoxl3ZRr/P9YsGs/Tu/XaUSPg0EDCZPbM/+c1yMnlckgmk/B4PGg2m7h+/TreeustKdRtxbRo2SHXwcLCAlZWVlCv1yVOUDMRBCqaedNgzYrJ0rv82nTSE5Ot0sDFBLz6bz13HEcNWOig8jjtlJpjrOOyzHuxXQSqvJYJegj6uNatYh17vZ6Mr5bQmSUbKJM0WUsNiMkOMUGQyappEOh0OhGJRIQ9tQL0Zl8ajQbW1tZw7do1kZHqNpjjoK+jTW9GaNbaBOGcr1KphF/+8peIx+O4fPkydnd3ce3aNfzO7/wOtre3kc1mhYXj/BJ4aRaUY6Jr7ekkLBxTAhMyW0zWUavVnimJwXZTEk5Qp5k0HQNJEKjXm2bfADzTLr2u+D3XE8eIpVlM5QCTSjGemf3Qdfg0S8v2aJDJZ5Zr8Hlg/Ou2F5c+5W/IbPhmm2222Wbbl1mxWEQ2m5VEFT6fD+Pj45iZmcH09LRkpdzc3MTDhw9xeHiIer2OWq2Gfr+PSCSCeDwuMVBaLsTdeeDYwdPFoHu9nsguuascCoWwuroKj8cjjghrzLVaLak7NxgMUCgUBNiVSiVEIhFMTEyg3+9LG5mEhM4UmcJyuSxxLGQ6dNwWMBzzQ+eF2SzJ2J1UOFo7vsBwqnyye/yboEAX5DalZc9jRrTp45g9ksC0VqvhF7/4Bfb395/JTqcdd83UOJ3HGSlXV1cxOzsr0kk9VkygwAylBHMEpfqfBgkayJlASMvJzKyBmrXTc8N+aNMxatrxZV81uDLZUZPlM+eNY6XjoPiZls1pMMP+6P7zPsyWyoyfekx5PtlPc/2YY0sG21yPeu04HMcyWdZm1HI/vY503zWAI2NIUK8BnJ4Hk0nVfTfXLk3HlvK+vV4PW1tb+OlPf4pIJIJvfOMb2N3dxZ07d3D+/PmhsSEA5sYMx4RjxOdeZ3TkP7JZABAIBBAKhQTwkV0jyORGg5aWci1Qrqnlxvr6+pnjvblmdSwev9dAUa9d4HjTjCw4FQTMFsx7k1kk6Ca72Gg0JOGJlpJ2Oh1Uq1VRR7RaLUkCpetQ8h3wIkmjl4yBg43gbLPNNtts+1IjcHC73Ugmk/JvZGQER0dHyOfzSKfTyOfzQ//JUz7DmmtMW09ZHZ0TZnxkljj+Z9/tdsWp8Hq9mJ2dRSQSQbFYRLvdRjwel3Pb7Tai0Sj8fr84uTMzM8jlcqhUKgIuqtWqOC9k+sj69Xo9rKysSHwIASTBmNPpRKPReGY3mU5Yp9NBoVAQFtDK6KBpJ/kk0zIzHmslLdSxZ4B1GnjtJOt5dbvdCIVCUpT79u3b+Oyzz4YKe+vdd15LA8+RkRHMzMzg4sWLAtzpSBLwa6ChWQkrlk3fi8CZppkGK+bRlP+Z42BlJoij06mZVt7PZFLN+/EzE8hp5tJqPvlPy2051hqQcWyj0agk4SBYIPOhS0uYTKdmylgbzcrYtlgsJuybbr8ea7aTTv3u7i6uX78ubDKfGQ1qTemsydZYtctc7xrk6CQae3t7ODw8xLlz5/DgwQNcu3YN586dw9zcHB49eiRxiQROZNE5npqhdDgc8v7S7KF+P5HVI0OqwRTXF40bF3oOtMqAoE+DfOCpXJIAme9Tfq9BIudVS4Y53swESnau0WjIRhDBHPA0gyU3Gagq4NixJAivZ8b16vXC6570Tvw67OUCcHDY+M0222yzzbYvNf5HPTs7i9HRUYkDazabUqi3XC6L08NMhm63W7Ka0RFgKnXufAcCAWQyGbRaLYTD4aGCsqOjo5KUZG5uDtVqFYVCAQ6HA8lkEm63G6VSCcBxfFs0GsWTJ0/g8/kwPT2NfD4PAFhYWEC/3x8CFiz4nUwmUalUEAgEMDc3h0wmg0ePHgmAozPf6/UE/Gnnk05Lu91GuVwG8DRzJvB0Z1w75DQNLE5yWgE846jqedHfacmVabqt2rEsFosIh8MyL9VqFT//+c+xuroq2SL1tc0+sB2BQACnTp1CoVDAo0ePhDl1uZ6mWddZIk0Gx6zrxuvSoSTA0o4ij9FjpxlMjr2Z+p/jqJ1xM/ZNyzKBp3I0neVRgy4rcMMx1kwij9dJJthW/q1lmZTVaaBItlk7zPyO1+W60QyhZiz5GZ9JPZe8XygUwujoqLBvJ4Fg9qfb7aJWq+Hu3bvY2NhAIBAQNknfQ69pc43yO73OzM/N3/X6Jwv+l3/5l/i93/s9XL58GX/2Z3+Gq1ev4q233pKkKlYbRWQL9fxy7nVyIA28GVdHIM0Ml3rtaACu1y1ZO76XGI8WDAbh9/uFydcgmUwXgaAuH8DEO5p11Zs7fCZHRkZQr9eFKeOzyWdcrwG+x9lHvgtrtZrEUDI5DY/VMlO+N3V5gxdhLxeAc1hrjm2zzTbbbLNNWyQSQSqVwvz8PEZGRiR+LZ/PI5fLSXYyj8eDWCwmzq/O6DY9PQ2X6zj7Y71eRygUwmAwkBi1kZERkVz1+32Mj48jEokgFoshGAzi6OgI5XJZJF39/nHWPbfbjUgkglKphHQ6jcnJSYTDYaTTaUm5zgLe4XAYDocD1WoVU1NTQ9I7sk+FQkGcYx2I7/F4hEnQMR4ahDSbTdllJgui4wZN0w7x88CbmRiA9zPBoBmfZHUvDSZ6vR4ODg7w9ttvo1wuY2trC06nE9vb2/jZz36GRCIxlDZcs2Zme51OJ2KxGM6cOYNOp4ONjQ30+/2hLHp6vMy/TZZPS1V1f83zNODRsVsasPI7s838TjvoHFOzdh6ZRq5tzg3BJ9us20tZmgZLZsY/DRb4vOg2c43qvuvnB4AADw1GzT6agJP/2u22yJg1o+Z2uzE2NoZYLDbEevKaGnyS/ep0Oshms7h27RpqtRpSqZSAEsa56vnVAM3q+dDr9iTTQJh/t9ttPHr0CNeuXcNv/dZvYXl5GXfu3MG5c+dw7tw53Lp1C+FwGMBxen7GfOl2cPPAlM+azzIZOx5PAGMCTK4nHdPK9jLTre6Tx+ORNcPzKWlkkiG9BvW7hqwYgZUphfb5fCiXy/L+5LrWrBrZcoI+XofrNRwOo9lsCghkSQMqLvSGBcHfi7SXC8DBVlDaZpttttn25ba0tISpqSk4ncflAQaDATKZDNLp9FBq6ZGRETSbTWHo6vU6ut0uAoEADg4OxKFl4e1msymsW7vdFiePu/8zMzNIp9MSkxUKhRAKhcRZZBHbXC6HdruNhYUFdDodbG5uIpFIwO12o1gsDjnIpVIJTqdTZEaxWAz9fh+5XA4+n0+caO0MBQIBBAIB1Gq1IZCgHWXt5NDhMhkD7RxaAaCTZGMaqOkEDjTNzpgxWppx4vXYDofDIU7Y7OysFOTudrv47LPPsLy8jHg8PhSTpaVRZtyUy+XC6OgoTp8+jWq1ikwmM5QkwwSYPEczUCaLxbYTnGgAZ7IawLNp8PU1CdSsGEQNAvW5HHM931rWZgUKT2KKNFtnSgg162fVH7ZTt0kzbpod1WPE9crr8jyTiTPHPplMYmxsbCgjqQmcCeD4PFYqFdy5cwcPHz4U8MBEQM8D7iZ4M5k3c57051pGq8e11Wrhxo0bOHXqFF599VWsra3ho48+wve+9z08efJEANVgMBhKVhIIBIYkjPoeOq5NM28cTy051sCd1+Ba4LjrYuAEkJRFDgbHNebIbOp4OdaGo2SVbWGb2+023G63ZO0Fnso4uUHm8/nQbDbl3lo6yXbrzQDNKJL983q98v6lYoEsHIEe72v13H2d9nIBOIddRsA222yzzbYvt4WFBZRKJWSzWbRaLWQyGanvxh1dnRWwVquhWq0iGAwiHo/LLrXP55Og+JGREQSDQTQaDQQCgaHd4snJSUxPT2N/fx/ZbBYARDLZbDYxMjIiZQiy2SxCoRBSqZSkvJ6YmBCJEJ2cQqEgsikyfcvLy8jlclIkuVgsPsNy0UmnHNOUqplOGh1C03TWPFPup9khUw5Io+OtwRfbo1kj7WhpJ/QkkOB0OrG2toZ3330X4+PjqNVqcDqdyGaz+PGPf4y5uTl4PB5EIhFxtnUyB96H9/D5fJiZmUGz2cSDBw/Egdf90U67Ts5gxa7pnXw9xvp6+m8N+NhfzWaZpp1SfU89huYcaFmkKe/TII3/rMZJz91J8YU8VreJYKter8Pv9w9lotRrj+uAjj2vpZO+aEZFj3soFML09PSJRd1N9o0bMNvb2/j5z3+ORqMhzz0lejouTDOKVqylHiNtVhscJojXksF8Po8bN27ge9/7Hi5evIjr16+jWCzi3Llz+OSTT4RdZl+YbIXsl5ajut1uBINBGd9msykJkHTcmgY9euOA7dRrUycKImALBoMyDmyHBmf6eeH8cR74md6A4jV6vR5CoZBsXo2MjEhRcQ1EWXeTm1W6/AH76nQ6ZQONcnHNFBIEcsNH14d7UfaSATgHBjYHZ5ttttlm25fY3t6eFOMulUrIZDKo1WoIBALwer0IBAKSgppOUDgclhgTynmYPY9OAYtss/B1LBYT539jYwONRkOuT2Do9/sxNjYm7WEM261btxCLxRCNRiX+jAkUut0u4vE4HA4HisUiJiYm4Ha78fjxYzSbTZw/fx6VSgXZbFZ2sOkYkUEyYzj0LrUGYVo+pcGYKWEDnu+Q8neTCbKKQ6MTSlBlBfw04DRZsGq1inq9joWFBezs7Aij+uTJE3zwwQdSA4x9oiOp+66v7fV6MTc3h36/j42NDXF0rRg4YBjc6nvotpsyQI69yZLocdfASING7UyaTB+P08WR9ThqpkcDRCtgqeeQ8UJ0tgnsuLZ0P8g00ejw63kmANCOPdkp9sGce16bIITjoCWkbrcbU1NTSCQSlkW7TfBG5qVSqeCzzz7DgwcPJNsj48l0lkxz3K3seY6+1Xda3qjnqt/v4/Hjx1hfX8fZs2fx8OFD3Lt3D7/7u7+LmzdvDpUT4Hl8fzkcDhkTMxaWgIVmjpMGaeZmjN4E0GypNsajMl6NbJ2WO2qwxHHhfHKjjHXeuJ7I8jFxiY5J5fOkEwaZ69zhcAyVMSEw48YR28RzdeZJzca9CHupygjYhbxts80222z7KlapVNBqtVAsFnF4eIhmsymZxZjNkUW++R83pTkul0viJUZGRsQ5oSPAGJCJiQksLy+jXC5LfTafz4dAICCOSCKRQDKZxN7eHorFIiKRCI6OjlCtVrG6uorR0VHJJql3rsPhMAaDARqNBmZmZhAKhbC/vw+Hw4EzZ84gk8lge3sbpVJJdq6Z2CAcDktMnA7Op8NuMgB0Uui0m1I5Ok7ayX+ew0rHSN9Tn6OBE51083raibI6ZjAY4PHjxxLnqJmDX/ziF/jlL3+JTCYjki+Oq2ZzzDaFw2GcOnUKS0tLQ1kM+b1msDQzpJkaDfDoQOvzTdmlaVriR2eTcUSaPTKd1H6/j2KxiHQ6Lf10OocTqmi5ngZlppSP/dTOLD/TjrAGDNoh1n02WSx+puus6WQxwDG4YEyUXkdkjbQMlOz19PT0M2UD9FrT4I2ZDB8/foyf//znqNfrCAQCQyn4zRplepy0mcykXrfPk9+xPXpM+Vm5XMYnn3wCp9OJ06dPY29vDwBw+fJlkS/y3mSLGo2G/M1557OrQZPX65USAjyOrJRui64zB0DGhu9DnqtlhkwopGWJjCWlbFLHvWnWjtflZhLBHd/juk2NRgPVahXtdluu5Xa7RRXBMgnBYFBkoSz1orOYshA4wS3fvyzy3Wg0hspWfN32UjFwcNgxcLbZZptttn25VSoVZDIZiSdjYoNGoyHOjZZCsiRAPB6X3d5oNCq7wozDoGN7+vRpBINBbG1tIZfLwe/3Ix6Pi9zS5TpOZ95ut3FwcIBEIgGXy4X19XWMjY1hZWVlCNTRkQiHwxgbG8PR0RHcbjdWVlawvb2N/f19jI6OIhQKIZ1Oi6RIS8pcLtdQNjgWq9WgDRiWfem/tRMPPN3Ft9qVBzAktdPOnpVjakrP9L1NporOHe9hJV1zOBxIp9Pw+/3i5FarVQDHaev/8i//UsowpFIpOZ9OIvtn9j0YDGJmZgYOhwPb29toNBrSPwIDfY5uH/Cs7FQDWJp23q3mQY+pBmhausbvdRbPYDAozq4eVy2P1GyrZtr0fUx2j0yEHgM6xuyrlkuaa8xKBqpZWZ0d0YzD1Pc0ywK4XC4kEgnMzMwgGAxaxiSaY05AnE6n8atf/Qrb29sSQ0bHndfW9+YYW82Xlony85PMvIZ+NnS/0+k07ty5g+XlZdy4cQNXr17F22+/jVu3bqFcLg89kyYTRaBL4KaBumawCJR9Pt9QaQfNtgEYWo88T9dG5DuPoEcDMgCyAcG5ZoZIzrleo/o5JXvW7/elLiNBGPCUjfX7/UMxdk7ncYZZAjO+79k+k3njeWwz3/k+n++ZTKRfp71kDJyN4GyzzTbbbPtyy2azyOVyCAaDSKVSsrPtdDpRq9XQaDQQDAYRCATEgaCDEI1GMT4+Lo6Lx+OB3++H3+/H6OgoLl26hF6vh42NDZFRRqNRNJtNtFotpFIpjI2NIZvNot/vY2lpCa1WC0dHR7hw4QLOnTuHR48eoVwuIxKJCNjy+/1otVp49OgR3G43Jicn8eDBAzQaDbz66qtwu93ydzAYRDqdHtqx9vl84oxxp1k7/SYTZppm5jRTox1S7fybDhAwLLvSPwHrWm+6LaZUzXSOCZ55XLvdxt27d7G6uopUKjUEFI6OjvCDH/wA9+/fR7lcFudcZ9y0YlRcLhei0Sjm5uawsLCASCQyxD5pR5jnmzF8NA1+yUCYEtaTJK06w6QJjDhGvB6ZCI/HI/FIBGZkHgn0eW0632bdOP5kjJHJkpqgUK8xOvemTFQnlDGZNH1dDTBMtpKOv57jeDyOU6dOIRaLPTOXGkxp9g04Bvg3btzAhx9+CIfDgUgkImu51+sJeNDzbQVQ9ZrmPU1wb5q5SQI8BZf8nu+DO3fuoFAoYG5uDr/4xS/g8/mwvLw89GwyS6hO3KJZTV6biZhMoKizP5L1MtcEnwuuG44FgRbHlFJOnb2SSgQmiOI99Xp0Op2o1+sCTDkPPp8PwWBQ7k/2kJtUnCOCOo4DgKHYwH6/L0XB9ZiQGWRpmWKxiFqthmazOfQMvSh7uQCcA3YMnG222WabbV9qpVIJ4+PjiMViQ8keGo2GOMmUcmkp0vT0tMSeEVzR8Zifn8fk5CT29/exu7uLfr8v9chqtRo6nY7cb39/H9FoFMFgEA8fPkSv18Pbb7+NYDCIzz//XJwpZj2cmpoSGdz8/DycTieuX78OABgbG8P6+jr29/cFjO7s7AhTSOkPnepSqTQkhdQOtXbetOMNDDu9NJMx4HmaPbJi2zSDwe+smAr92UnAko6amRVuMBhga2sLzWYTk5OTQ+cMBgNsbGzgJz/5CXZ2dmR+COTIIpkySTrA4XAY09PTmJ2dRSgUesY5N8dVt1XLHc0+6wx5JkA1WTM9f/p4DQx1283i3ppN4+d0msmcNJtNYUy0jE6DSJ7L+dWAyGROyeKYwE+PD9cM/9bgSzNJek7YZq6rWCyG+fl5ed5M2SSvZUonmfH1L//yL5FOp8WpJ/Omx9CUxXL8TQmy/k7PqV7j/N1M4MHPOSaUGbbbbWQyGWxubuKVV15Bv9/H1atX8c4770j7KH9k2Qu90TEYDOR7AlLgKRtGkMdMll6vdyjekZ9TKut2uyVhCUFQu92WTSvej+UNGMerpbLAcQkELWdmfTdKcHk9DfBCoZC8w/UmhJZwVioVKTOgN0tCoZC8z7kGON4ej0eSpLCt7Avn/0UCuJdKQmnHwNlmm2222fZVbHJyUtiaarUqEjOybARxfr8f1WoVHo8HS0tLqNfrEgdXLBbRbrcRj8exurqKTqeDg4MDyU7JWLN6vQ6Px4NoNIp6vY5isYhQKIRKpYLDw0Osrq5iYmIC6+vrqNVqWF1dRaFQwN7eHsbHxxGNRpHP59FsNhGPx/Hw4UMMBgPMzMygXq/jwYMHUqC4VCpJFjbToWR/tTSOpo/TZuVc83gTvJm79/zMyimnk2Qms2A7NKhjHBn7xM/Ne+ssjfy+WCxic3MTp0+fxv3791EsFqUN3W4Xn376KSKRCL73ve9hcXERwWBQnHLt3FpJ9xgHNzIygoODA5RKpWdArpkiXoMdOq/muJiySFPWyPawv5o14Pl6XGkmg8W2kFHp9XpoNpsS80S20eFwIBgMinNLEENnn9fmvcxEGVasE6Wd/PukTKN6venEKOZ9uZZ7vR7i8TjOnDljWTJAX88Eb61WCzs7O/jJT36CW7duwefzIZVKCTPP/uvU+tpOej6smGV93EnMnDl/5rPV6/Xw6NEjvPbaa5ibm8NHH32Eixcv4syZM7h27ZqsTzKpHHPGfLJkCe9BkMpzNNDXmRc1wNKbMHxOOX+tVgvVahUulwt+v182QxhvxjWqASTXtS4BoJOw8F78jGuZbB6vxyRRvE6lUhHJOI9nEpWZmRl0Oh3s7OzIMVo+2mw2JaZOg1dzfr5ue7kAnK2gtM0222yz7SsY/5MuFouoVCoIBAKIRqOo1WoAgFQqJdnZwuEwJiYmxIljGQCXy4WlpSXMzMxIJst+/7gOGxObAEAikYDT6UQ+n0cgEMDs7Cw2Nzfh8Xjw+uuvo1gs4vr16wgEApifn8eTJ0+QzWYxPT0Nj8eDbDYrDtTe3h4ikQimpqbw5MkTFItFTE5OYmRkBNlsFoPBQBg/LWNkAgc6adpJJkNHM3fqgWfZNyvHxQq8aekknVPttPK+GsTo363uaYISHT9jnjcYDPDw4UP8k3/yT3D27Fl8+umnQ+xjr9fDhx9+KLIrzdRRYqVjdXRbXC6X1PbzeDyS2ZTtYf81kLZi5/RnZkZO7aQSqLhcLkmlrtk47eCaTBXvo2uF6THUawEYzmrZ7XYlBbvuO40g1WT02EdmADVlk7wWHWOmgCdQMI21uHhP3V4Ch3g8jtOnT2NyclLWvDkGPE+Dt3a7jUKhgCtXruCTTz7BYDDA5OSksF26H+y/yaix7abxe64Hc+71fJiA1wR45iZJpVLBgwcPMD09jY2NDWxsbODVV1/F559/LhtNZL8AyGd8t+lYRd0GAj7G9lIyqzMykvnk86HBPQG+ziCr1ypjjbm+tCSY61GXNGi1WsIm8h1tSkt5LOWgHDPK25nAR8fusvzK2NgYJiYm0G63UalUZMz1c6CfGQJA8xn7Ou3lAnB4Vjtsm2222Wabbab5fD7k83mJUQsEAqjX6/B6vUgmk+h2u1LUFQAymYykFucO7+LiIkZGRnB0dIRSqQS32y3JSMhkJJNJFAoFNJtNnDt3Dm63G/fv3xf5XaFQQLFYxMWLF+Hz+XDz5k3s7+/j1KlTqFQq6Pf7SCaTODw8RK/Xw6lTp+B0OrG1tQUAmJ6eltpwumAvpT46Zop/6yxv2rSDabIF+ljTWbc6VjNPmk3RkjEttdSOnmbgeD8dH3ZSuwgMTOd/Z2cH9+7dw7lz57C+vo5MJiPXBY7jc/7Lf/kv8Hq9+I3f+A3Mzs4OObU+n0+YHDql+p6BQABTU1PweDw4ODiQdWXFuOg2U4JlMlNsm/m5lm1ph9UcLz3OGohrCSPnz0wS4ff7h9aJBhdW64VgRs+fBjJkVE5aCwAEAGhQRLCmwQr7olPg62vH43EsLi5ifHxcwJtuvwbSJngrlUq4evUq/uRP/gT7+/uYnZ3FxMQEHj9+DADPyEl5PZ04xZS1WjGret2d5K9ascxmCn89f0+ePMHMzAyi0Sjef/99/Kt/9a+wsLCAR48eIRwOy3PN50KzuJrVpOSQ7JbP5xtiZbmBRcZXs2+8hpZs65gzvhM47jr5iJkMSYMysp0ej0eyVnq93mdqs2l2mW0j89hutxEIBBCJRCSREa9VLBbx6NEjpNPpIbDK6/GZYJwg2Tdu7LzIJCYvF4CzGTjbbLPNNtu+gh0eHqLf72NqagqdTkeyjzFRCBmOYrEoO8Ferxc+nw/RaBTT09MYDAZIp9OSkdLr9YpTEY/HMRgMsLe3B4fDgZmZGRweHqJYLArw29jYQCgUkmLT169fR6VSQTgcxtHRkdzr8ePH8Pl8OHPmDKrVKra2thAKhdDtdpHL5RCLxcQZ9fl82N/fF0dJMzZerxeNRkOcHs3gAMOp462cdg0ozN9NsGJKv3RiAw0seA/t2JuSN7fbPVQbymSQ9D2tMhr2+31cu3YNv/u7v4vx8XFhKnWbq9UqfvzjH6Pf7+O3fuu3MDk5OdQ/xhFRvqUZIIfDIdks6WCm02mJp2QbdDs1M8nrmGyCdvrNcdXz8zxwzWtqYGRKVPkd14x2ovV86euw/7rNGizqODoyWM/L1KgBno6d05I8Xa9L348xb3NzcxgdHR2S65mxZCbz1ul0UK1Wce/ePfz5n/85dnZ24Pf7ce7cOVQqlSHQw80QM55OM9X6PrqvVmtWP4Mm0DTNXC/686OjI9y9exfxeBxbW1t48uQJXn31Vdy7d08Amk5ko58RDYC48WMCMrJvPp8PACRzo1nDjSCTIE9fl/JGvpN0DCVBHuddlzjR9yITrGvdca0zUzDHTksgWUaB7JzexOCGT7FYlIRVmnlmv4PBoKgqms3mM8D1RdjLBeBgx8DZZpttttn25RaJRBAIBITlcrlcUqeNMh1KZMbHxwEc/4fOxCPFYlEcolQqBeA4MUo0GkUymUSpVMLR0RECgQA8Hg82Nzfh8/lw9uxZ5PN5PH78GL1eT5iGRqMhNeEKhYKktt/b28Ps7CwWFxdx9+5d1Ot1hMNhkUgmk0lxOlgXaX9/H8DTWCQ6ikwcoB1Gq119AM8AAF03it9rOwm8kY3hZ7wfd9xN4GYFHOnQmffQTBbnkI6jCTDS6TQePnyI1157DUdHR8LC6fvk83n86Ec/AgC8++67mJubk+/IxBEY6NpxmklKJpPwer0IBoM4ODgQEKBZKS2nM8dLAyYtvdOgwQRv5nxq9s4KOLD92pEnCKUDT+dZxx2aDKlm7whu9ZySAQsEAkPjqM1sO/tpghoyH1pG2Ov14Pf7kUwmJbkQGTKrTQgN3jh/pVIJ9+/fxx/90R/h1q1bcLlcuHDhAlKpFDY3N4fWIAGJBo7mRgXH8qTnQa9jLX3VpufQHCsAAkLYn3a7jY2NDSwtLcHpdOLq1av4x//4HyMUCg3Nn06Pr9lLgqzBYCBMs451q9frsgnEEiRMasI50fXQzNIDPIZgOBAIyEaBKeMeDJ7Gb/IYqiECgYDEKvLdyTGv1+tDyUv0M0nGbjAYDPWLa54y7kqlImwf8BRQNptNuU8gEBhafy+ykPdLBeBgsWthm2222WabbaZ5PB6Runk8HmHRAEh8RjKZhM/nQ7VaFbDkcDgk62QgEBDntFqtIhgMYnZ2FtlsFplMBmNjYygWiyiVSlhZWUEikcDm5iby+TzC4TD29vYkzmRlZQXlchmFQgHJZBK1Wg3dbhfLy8sIBAK4ffu2FP7OZrPi1HS7XSQSCVQqFal79fDhQ3HC2FcNajRQMuPWrMCFKdszTTvIGgACeAa0aBbEik3gTzMWzGSATKaGn2lJm5Y69no93L9/H6dPn8alS5fwq1/9Smq4Ud7lcDhQq9Xw/vvvAwB+8zd/E5OTkwgGg+Iwk92hA28lqWTmQo/Hg0wmIwloTGbRBF/m2Gnn2mSSrGR2GrTRNIjTGfZMhoiOLRkHsnXAMXjh+Orj9T3YRhOsajCl26lBvJ5jfQxjtGh0zHm8z+fDxMQEpqamEIlEhhJvmOCNGweca252PHjwAH/6p3+KGzduoNvt4tSpU3jllVeQzWZRqVQEUDANvc6gyT7reD49Tya7as69CezM3/UGhTm/+nkGjt9ZjUYDXq8X29vbKBaLuHTpEh4+fChgTUsVud51kh6dzIbrWveJUkSOBceG9TPNjKX6+QQgskqOId9hXq8X5XJ5SG7LzSddYJzrTo+L3oTSgEq/v/g5mbpAICDAV28ImMXjORY6rs98D5rvz6/TXioAxyG12tGwzTbbbLPNNlo2m4XD4ZBYGf6nDhwnMAkGgyiXy1IrLpFISPyE3+8XiSXllfF4HKFQCPfv30e/30cwGMTh4SHC4TAuXryIer2Ojz76SOrOHRwcYGRkBBMTE4hGozg4OEC/30ckEkG5XEYwGBRH8tGjR/D7/QgEAsjn8xKXxzTgzJKZSqVw//59AMeOc7PZlHpJ3IknINDB+cCzAMuKuTHllTp2ho7x8/7/pZyLTpN5bc3g0Dlk20wgp4/TIM7KWWVbs9ksrly5gt/4jd/AwcEB7t27NyQxBI4dtmKxiB/+8Ieo1+v41re+hYWFBYTDYXEW/X6/SCWZGMZ0LMm8hkIhhMNhZLNZSXBismVWjJseb/bbysk3QQH7Y5YhYLs0AOH5zWZTHHMyMDqDpE7UYKaO1+yNnh/NuJCh0wlKOLd6M4FgwUwEwmM1CIrFYpiensbY2JgU6baKr9MsJeObyLzduXMHf/RHf4QbN26g0+kgEongnXfeQSQSwY0bN0Sy2W635TnScYi673pjwZwnc4NDzyX7bAJ5Pfc09k+vNY5Lr9dDoVDA5OQkdnd38f777+ONN96QjLVW8YQEJJwTq9hYxsLpZ50xbABk80uDPf6tN2R4TqVSQalUQjwel3kNhUIYDAYol8tDDD83QXRcL0t9UPrI+1KiaTKMlL0Cx2CQzCHLhfBYxvXxHjyfx+hkLdwoYpzdi7KXCsDZZpttttlm21cxZjVrt9sIBoPyc3Z2Fr1eD0dHR+h2uxLXVCwW0e/3JZje6XSK5HJubg4HBwdYX1/H3Nwc2u02njx5gvn5eSwuLmJtbU1S2TPzZTgcxqlTp1AoFJDL5RAOh1GpVFAsFjE9PY3x8XFsbW1JFkwycsFgUGSU3W4X+Xxeikk/efIEe3t74ojQ+dY73tqJJHtgxnNZsXImYOBnfr8fKysrGB0dxZUrVyRDnDY6f/qnBmw0/ZlOFGECR5PR0W2khMpM+8++Pn78GKurqzh//jy2t7eHigNr4FSr1fCzn/0M9Xod3/3udzE3N4dYLCa7/X6/X5xBAkcmZqC53W7E43H4fD6EQiFh48h00YHl+JvxexoM6LT7dLI1yKXpY0yJpp5zPYeM3dSxRjQ9xpqp0BkhCQx5fy1hczqdkmSHTq927HW/OWcE+jq7IdvtdDqRSCQwPj6ORCIhgFNLL3mOPlczNJVKBWtra/jhD3+Ia9euiRR6dXUVMzMz2Nvbk4yyOvbOTJuv1x77Y7KrHEM93qZkWX9vMqi8J8GWjiXVLDQAefYcDgfu3buH119/HcCxtDscDg+xqBrQcm1xDswNAcoG+T0TiOi5J5iirJHvGiYR4TV1aYFwOIx+v4/d3V2RNWrwzvnn88UxY5spbdTzQYklmTa9AcHx5TpjSYXB4GlNPIJPKjM0gCRgI6vMtfei7KUCcFzzg4GtprTNNttss+1kGwyOi7smEgkMBgOMjY0hkUhIOYBAIICZmRm0223U63X0esf1pbxeL+r1Our1OpLJpGSqc7lceOedd7C/v4/t7W2cP38eExMTuHnzJmq1GpaXl2X3ORKJIBwO49GjRxgZGUEsFkM+nwcALC4uwufzYW1tDcFgED6fT8ockCVkmQC/349YLIZyuYxqtSqOht/vl9g+nT1RO8La6eJ40MkyJZMEeVpqSEeSiQXGx8eH4resHBvTYTeBopVzr2VommUzGQoNaLjDrgEZj2k2m7h27Rp+7dd+DUtLS7h7966wqKZVq1V8+OGHqFar+Ht/7+/h7NmziMViAJ6CDa/XO5SwQbNxbDPrCwaDQanpVyqVBGRzTOhYM8kD09Zrp1+PvWYj9bgAGIoP4vlazqjbR5Bgsqh0WrVM0OVyIRgMDrFQer41AGH7GYfE2CktndQAhCwLAaUG+sz8Ojo6imQyiXA4PBTjSdMgTseJEUgUi0Wsra3hBz/4AT755BNhVxKJBJaWltDpdLC9vY1GoyFj0mw2ZSPEvBfvY653DYL0+jVBnvm7nheOt76Ovpce98FggHa7jVqthsnJSezv7+Phw4dYXl7G1atXJQkP+9HpdARYcx45Tvo9wH/M0FitVoXZ1zJJAr9GozEEknq9nkguqQRotVqS2ZLybp3hsdVqicqA/dbPmMNxXEuu0+mg2WxK5lSdHIUgksdwXBnX7PP55LNms4lGoyEAmRJSbm7oTKd6M0wD3xdhLxeA+0JEaecxsc0222yz7Xnm8XiQSCQQCAQwNjaGSCSCfD6PRqOB0dFRRCIRAW4jIyNIJpNwuVxS0HV+fh4jIyN49OgRUqkUAoEArl27hl6vh2984xuoVqv44IMPRH65t7cHl8uFWCyGSqWCvb09BINBhEIhlEolhEIhpFIplEolZLNZzMzMCCPHmnQEljqb3OHhobASzJj5O7/zO/iTP/kT+Hw+KeZrJg2gw2XGu5nMgZa0aaeef3e7XTx69AgbGxvPsGIma0bTwMAEWfra/JygQO+062trR4rSvucByL29Pdy5cwezs7M4OjqSjKRsm+5jt9vFzZs3Ua1W0e12cfHiRcRiMWFyut2uxMXRyaRMj8wP2x4OhyWjXSgUQi6XQ61Wk7EwnXYz5otmxv6Y7JPVPOrxNudT99dkO9kekyEymSItA9RtbDabIjUkcNDyVs0OApAkGZQo02lPJpMYGxuTbK+mFJRzx59mvBvBG7NNfvLJJwLyPR4PxsfHEY/HkcvlhMVmexkXqNeUZjL1umGbzTG0autJbJ0ptTSllPoaJuNYq9UQj8fhcDiwubmJb3/72/joo4+EleLGjU7Co9eofsbNODCCq3q9LtLJSqUyNB58FjWLS6aa762JiQkBXQRU4XAYwWAQuVxONlR4PGN9yXoRvPf7fZGeE5iSgWc/dCIec8OIUvh6vY5GozG0ocIx5UYCn8VwOCzv2kajMVQ/8+u2lwvACQM3wNOIONtss80222wbNsaiTU5Oot1uY3t7GyMjIyJ5K5fLACAFvpvNJmq1GqLRqBTirlQqmJubQ7lcxtbWFsbHx5FMJrG7uysgrNlsYmNjA7FYDIlEAoeHhwCApaUlNJtNVCoVTE5Owu12Y319HW63G8FgUABfOBxGqVQSYNDv95FIJNBoNFAulyV5Q7PZlKQsDx48EPZDpw9nCQE6M1aJKE4CCzxGswjaWef3+m/NHAEYAln63prh4Xn8aaae5+8jIyNDdaD4HXfN+b0JUoHjWJj19XX4/X4sLS2hXq9LEgW2n30k2Hn8+DH++I//GLFYDJFIRO6jyzfQQaYjSedRSw09Hg/i8TgCgQBisRhKpRLy+bwwpqaTyfHS7BrHRNf2A55mzdMsq45pIqDRQITOrZ57Xl/PqTkH5tzR+Tdrjfn9fvnc6XQil8vB7/dLHJGeN91GAJJ5kOCKdQ71WrRaMxwDyv1arRZyuRxu376N//yf/zNu3rw55JiHQiEsLy/D6/Xi888/l+fN4XiasIibB89jXJ4HyMwxtHre+LspczSlx1Z9J1gpFAqyDra3tzEYDDA7OysJWZiJlmubDKRZDkAzfnzvtNttSUTi8/nQbDbR6XSE7eVmD9ccZYjBYFASnVDu3e/3ZWy9Xi8cDodspnFjxGQlOacOhwOJREIkjwSjbrd7KIMk26/LDmgGuN/vS+3OVquFSqUibCvv53a7EY1G4XQ6kU6nhX1kjGur1TpxPfxN28sF4L74aTNwttlmm222Pc8WFxcRj8eRTqdRLBYRi8UQjUbR6XTE2YnFYgiFQigWi2i325ibm0MgEMDNmzfh9XoxMTGBg4MDAMClS5cQDAZx48YNjIyM4NKlS1hbW0OpVJJEJdlsFpFIBC6XSxzZs2fPotls4tGjRyKtzGQyiEQi4nwwDsPpdIo8qtVqYXR0FACQy+UQjUbRaDTg8Xiwt7eHbrc7VNeI0kcNBEypJPBssgzT4dSfWbED2vnjvfROvnaEzcQKGuhQcqfboeV+GgAOBgNx3ujkcUeezqyW7TkcxxkOd3Z2cPr0aczOzuLJkydSY4pOs+lgl0olfPDBB9jd3cXCwgKmpqYQjUblnkx0QYeYIIosjpbHUT4WDAYRiUQkWykZXg20dTIGzZZqwGzFomomh2PLudBglc6qBkcmACETbV5fM3scb8ZHtVothEIhAJCyF36/X5KmcP1p2SavE4/HkUql5Bkkq2KCF86/BhyaMWo0Gkin07hx4wb+/M//HLdv3xYwyULTU1NTWFxcxP7+Pvb29uS6/f5x8W5uCFgxYXpDg/2xYpPNZ8WKneOGhf6c7dBzrJ9Z3p9zyJqWfH7W1tYwPT0t9Sj12OgxY1wjny3dPq5fsmVMeEPgZD4rOqOlmTRJM6LAMQvGxEHtdlvmWgMxjqnetKnVaigWi0OFvrXMkhsnXI8ExQRcGnRy3HWtt2q1KrJ0bqqVy2XU63Xs7u4KiD2JHf067OUCcCoGzjbbbLPNNttOslAohHQ6jW63i4mJCQQCAdTrdYnNiMfjACBFs8+dO4dsNouNjQ1MTk4K0IvFYlhZWcHh4SHu3LmD6elpRKNR3Lt3D6VSCePj42i32zg6OkIsFpPCwRMTE4hEIshms8hms0gmk2g0GqhWqyLR06DE7/cjlUphb28PnU4HExMT4vT4fD6k02kcHR3B7XajXC4PFRymY0fToMmKUdOmnTx9zkngTcvjeA6dPF5HX0uzQTo1eb/fl+QyZInYVg00TONxjFXU7dXnDAYD5HI57O7uYmZmBr1eD48ePZLvTHnnYDBAJpPB48ePZU382q/9Gs6cOSOZEOmYUppF548SVmYz5PWcTqcAuXA4jGQyiXK5jHK5LDFybDOdZB2vZgJxtteKeTMlklwbGiTqOdUZQwFIFklar9cTKaN23AeDgTAooVBIAIHf75c2sUaYZpboeIfDYQFugUBAQMXz1ifHgv8IIFj0/uOPP8b777+P3d1dGSdmFYzFYjh16hSazSbW19eHGLdqtfoMsDRlrprhNde1bvPzwJu5Lr8qKDDXNNtAoOVwOHD16lW89957SKfTIqfmuV6vVxKB6E0PrjvODxk43ofn8G8NBtkOLWNkzBvwdAOh3+8LAOLmQr1el2RSjLNkXCnfA1wr9XpdxpgJhbrdrswfpbiMldMlJviOd7vd8m7p9XqS6ZeSzlwuJ+wx1Q1aWs1kLC/KXjIAxxg4G8HZZpttttl2su3t7SEQCGB+fh6tVgulUgmdTgehUAjT09MolUrY3NzEwsICJicnkU6nUSqVcPHiRRQKBVSrVZw6dQrRaBT3799HsVjEq6++ikqlgo8//hh+vx+jo6PiUMTjcZTLZdRqNUxNTaFWq+Hg4ABOpxOpVArdbhfhcBi9Xg/VahWBQEAkXKOjo3C5XMjn81KrrlgsIpFIoFarIZ1Oi4NMp4dOCJ1Z7Whrpxd4ysJo59H8zEqyRWDA62rZEk0zByYo0uyNjr0hqGD8FPsDPI1x04WDtQNKdiIYDAqQsDKek8/nEYvFMDk5iWKxiGw2K9c2x6fX62F9fR3BYBAOhwPpdBqvvfYaLl++jNnZWclSyfpWLDdAwKATJJhAjnFCwWAQ8XgclUpFkt40Gg0B4RoYWEnyTOdfMyH6pwZ4dPbplPf7fUk8we/Zditwq+PqCMLIHJMd0eNJSS/P9fl8CIfDiMfjiEQiAtw00KSZkkTNohBotFotFItFbGxs4Kc//Sl+8YtfIJfLDa0fyl1nZmYQj8exs7ODbDYr9+l2u5LIRG+GaFZNbz7o58YKbFr9bc6X/l2DQg109dzpNmhWTkuSuXZ8Ph9qtZpk3mUfeX3NsLE2HGWQBOYEPMDT+ExKu/nsce2TpWNbNWDnHJAh46YE1zelr5RW8h/nV5evYHZN/a4i28c+mWPFNdJsNmWzh89jKBRCKBQaSvqSz+eHQDw3qk5KfvR12UsF4Gg2A2ebbbbZZtvzjLXeKpUKyuUy3G435ufnkUwmsbOzg0KhgNXVVTgcDty8eRMLCwtSV8nlcuGNN95AtVrFRx99BJ/Ph0uXLuHx48d48uQJxsbGABzXmpubm4PP58P29jZcLheWlpZELqcdfkp02u02JiYmsLW1hV6vh9HRUWSzWQwGg6FEKrOzs9jf30ev18Pk5OSQRIq7ySMjIxKYr0GUGXOkgZj+3DTtIGk24quYBnVa7meVZU8zQjoxARk6Srq0U0VnU0snmfXOdG61tVotZLNZrKysYHV1Ff1+H7lcTpxFnqPBZq1WkwQy77//Ph4/fox33nkHFy5ckIQ4dB59Pp+AMw2urRg5OocejweRSAStVgu1Wk1i9Civ1NlDNSOkx5DzqcfDBAgaQJgsHRkQ3kvHEfF+mvXTbAwAKbfB69K5Z9wZAS5lw3SadSH2k0CPybqxbcyseHBwgJs3b+KnP/0pbt++PcQocc04nU5MTEzgrbfeQr1ex/7+vgAbslCaBec4mmaCB5NdM58n3TcNBvQxep2yreZnBD7mdfk+4fEOhwPlchnRaBRbW1tD619LndlWE/TouWVmVP388R58Lrkm6vX6ULZbPsOBQAAul0vUDlyHprSa4w88BZr6Pcb4Oo4dwR8ZO64JxrTp549rkdfkO9LhcKDdbg9tHOn3SiQSgc/nQ71eFwBo9Z78uuylAnAvUIpqm2222Wbb3yFjev5GoyG1zHw+H27fvo12u42FhQWk02mUy2W89tprGAwG+OSTTzA7O4uJiQl8/vnn2N3dxWuvvYZYLIZf/epXqFQqWFpaQq/XQz6fx/z8PAaD42QCiUQCHo8Hu7u7kkClXq8L05ZOp8WBuH37NoLBICYmJgQszM7OSta4VCqFQqEwxKpo5or902yLzgxnJeHSQI5mOnE6TsdKlnjStYFhqaTVsXSu6OxpRo7xVwAElDIebDAYSJIZ3pPObSgUQr1eF2eTwEkDEeBYEnZwcIDp6WlMTU1JwWETxOl+6bIK9+/fx8HBAR49eoS33noLy8vLSCQSQ7JKr9c7VDdOAyvWEkI0BAABAABJREFUj9MxgARyoVAI7XYbqVQK1WoVtVpN/lFaxj41Gg0AkBTsmnXQLKeeTy2fNWMLyZ7pMdWMmMnOcr647rheeQ3W5gqFQohEIlImQ9dyM9eNNr35oIGb0+lEs9lEsVjE1tYWPvzwQ/z85z/HwcGBAFcNmoBjgLm4uIh6vY6dnR2ps8j712q1IckqP9eMsQnezLV9EnNoMmfaTmJSzTg4vfHBsdOyxkajIc/p+vo6FhcXpUQD2U9uHjDZj2bCmJhHjxnbR/ZMb4oQjHEN8XcymC6XS8AwgXI4HBbQSGkl15pmB9kubsrwbw20tbSaIJZST447waKOAWTb9TuSUkmOle5TrVYTWSalwC/KXi4AxzICNgNnm2222Wbbc4xsxtTUFGZnZ5HNZrG+vg6fz4eJiQns7OwgFovh0qVLePLkCSqVCs6cOYNarYYPPvgAgUAA7733HjKZDH70ox8hEAhgbm4OhUIBkUgEi4uLODw8RKfTwfLyMnK5HDY3NzEzMwMAInus1WpS96hUKqHZbGJychLdbhc7OzuYmZnB7OysJISoVqvY2dkRKVQ4HEa73RaJmI530847nS7TEaRpJ5x/W7ELJjNykrNNJ9XqPvpzfb4pF/N4PBIjxiLTLpcL2WxWAEW/f5zNjuwcr0fQph1GDWJMJqJarSKTySAWi2F8fFycPLP9+m/e3+l0olAo4Fe/+hUePnyIN998E5cuXcLCwgJisZjE8jEhBgsEa+eWDrVmvOgAE/zxOtz9Z2bUZrMpY1AsFocYHbKlwLDMjn9bAWsCFQ1WdHFuE2BYzTEdXrKJZNn8fr/I0zSLa/VTrz8tldSMINfB3t4erl27hp///Oe4ffv2UPyjvibbdObMGUxMTEgph3K5LNciMNDySc3emW21GhN+pn8nIOSY6f6Z1zU3VPT3el60HJX3ocQ4GAyi3++jUqkIi9hutyVBkq6PRvBCAKU3KXQbTOkvJdpc15RbalA5GDzNDNtsNuV55JjxGTDfM5pRJgDUgJJAi+0ymUO9MWBuTOnkKPzHTSEd68Z7MekJk7c4nU4EAoEhKffXbS8XgGMSEzsGzjbbbLPNtudYv9/HmTNnEI1GsbGxgUqlgsXFReTzeWxubuLVV1+Fx+PBZ599hsnJSZw5cwZra2t48uQJzp07h6WlJTx8+BA3btzAxMSEFNeemZmB2+3GxsYGotEolpaW8OTJE2SzWZw6dQqtVgv7+/sSHxcIBJBMJrG3twefz4fFxUXJdnbhwgVEIhEcHR1hcnIStVoNe3t7cDqPywO4XC5UKhUsLCxgd3cXuVxuiMnRWRDJzmjnEPhqSRNMKZjJrJnOvsnkadOyLV6L53JXPRAIiMNHaR13z1koWEuv6KgSuLJ/IyMj8Pv9UqSXn9GB0+1h7KHH48Hc3Jw4mvrYk0w7vAcHB/iLv/gLPHjwAN/4xjfwyiuvYHJyErFYTCSdZCIIZDSQ00WI6WRqBomOOLP3UVJJNo5sJB3NVqt1YrZPzq02lj/QY6Nli3oe6VhzrunEc74oOWPKde1Qa4Bggja9maAdbI4L57rRaKBYLGJ/fx+//OUv8ctf/lLqgpnATUsnZ2dnMTs7K4ymrj3m8XhQLBZlbbN/VutZb0SYDLgVM6fXvNWGiAlc2P+TnlHOo14jXBOsu+ZwOIRR83q9KBaLiEajco7H4xGmmWBfM+y6HwS2BDDccODccv3otpJRByCJR3QJAlO+qZMgcc6YFMjlcg2BTvaXwEpLdFmoW8tPNXtJtQPlleyXZiL5LnW5XLKR5PF4pDQG8DQpy4uwlwvAffHTZuBss80222x7np07dw6NRgM3btxALBbD6uoqDg4O0Gq18M4772Bzc1PkkwDw0UcfweVy4c0330Sz2cT777+PZrOJc+fOYX9/H4PBcb2lTCYjtd3C4TBu374tab1v376NUCiEaDSKUqmE5eVluFwu7OzsYHR0FKlUCsViEaFQCGfPnsX29jZyuZzUqaPTlEwm0el0kEgkMD09jY2NDeTzeQBPi1rTQSLjAEDiVLTUynQetQOqZXY81mp3HBiWSGpQZpp2Xun0kuUAIHEyLNgbi8XgdrtRq9Xg8XiQTqeHACMBh2YJtBPJ+mwsEcAkDbo+G8/r9Xool8twOp0YHR1Fo9GQTHRWUkoT0PD7druNR48eYXd3Fzdv3sTbb7+Ns2fPYnx8HNFoFIFAAP1+X9YFgY8GC3T2CeIIXHR72VdTVkhWhMCu0+nIT51anckirOSbNF0fjN8RbBJMUhrKfjBeUad412tNj6NmtTTDRIdeSyV1nBvlkjdv3sQnn3yC7e3tIRmtaQQmKysruHDhAoBjmSHZNx4TDodRLBbFkSfANpkczYhx/s0+adBrMkw8h2NrtZa+jOHTIINrnp8RxJGB3tjYkPdLrVYbyvhKkMd3h9vtloyQBC0sS0CARKaN8ljKZc3NGz5/XH8EVhxXHXdIObCOUwuHw0PxvABE3sr7EKhyTDhe3AzR4Iz95tiwzd1uF7VaTdpsMr/NZhPxeByhUEg2xV5kBkrgZQNwwsDZZpttttlm28nGoqwLCwsAIHEigUAA165dQzgcxoULF7C7u4v19XXMzs5ifHwcDx48wP7+PsbGxjA+Po6NjQ3Mzc1hamoK29vb6HQ6OHv2LHK5HB4+fCiZBavVKuLxOPr944xw58+fx97eHjKZDCYnJ+FwOPDo0SNMTk5idHQU+/v7CIfDwqYwI9v09LQwfePj47h///5Q5kTgqQNYrVZF/gY8DfQ3QZo+h6adaX5vsnDmOTSdXIFGtsa8FkEIAKmt5Pf7xXEjm5NIJAA8TW+vHTgd10amgZInJsbY2dmRBAyMEdNghwwCAQLnhIlETABFMxN5mE7f/fv3sb+/jzt37uD111/HuXPncOnSJQwGA9TrdWHJ6FDqhBkayJkJOzSjwHvzeK/XO8Se6ONNVouAnmyYObe6b7rOltVPDXA0m6avqcGJmQjHqo8auNVqNRQKBezu7uLevXu4evUqHj16JMWVzbWr16PD4cDc3By++93vIpvNStbZbDYr2QgJRvncEKzqLJT6+lbMJD/XIM6qXSZgM+WTVqY/N59hc1OGoIrtL5VK8gzxfaLlkOwvnwmdah84Zs/6/b5kl9QMtm4/pZiUGAaDwaEYNq5HrhPKEPm86jXLdVyv10UCrpOc8L3Ba5GZ1hs4+h2hx44Aj4yg1+sVmbOOj2MBcr6bYrEY/H6/JDri5sSLsC8FcA6H4/8F4HcApAeDwYUvPksA+I8AFgBsAvgng8Gg8MV3/zcA/wxAD8D/dTAY/PhvpOVWbYX1f0S22WabbbbZps3v92N8fBzZbBaNRgMXL15EOp3GnTt3sLy8DJ/Ph88//xz1eh1LS0vodDq4d+8ePB4PvvGNb2B/fx/ZbBavvPIKQqEQ7t27h2g0ijNnzmBrawulUgnJZBLpdFqSWNRqNYyNjcHr9eLmzZsizclms/B4PHj11VfRbrextbWF2dlZ7O7uolKpyC623+9HtVrF2bNn0e/3cfXqVYRCIczNzeHhw4cAniY10E6Z2+2WQH3tqGszHR5ey3QsNbNgxXTQUTPj38xECNrxB57u1EciEQG9/J6OWiKReMYJprOnmRw6fUwO4vP5kEwmcXR0JM4f79fpdNBsNgU4UaaZz+cRiUQwPT0t2fvYf83GmeOljbv+pVIJn3/+OTY3N5FOpzE5OYnd3V14PB7E43EEg0EBnZR0kdHSoIlzqUGZ/mkCJLaJAMaU67EPwLO1vKzWhvnT/N3qHD02VlJEDS4100ZWpN1uo1qtirT5zp07uHnzJra2tobkdOa9aFwT0WgU58+fl/IMvV4PR0dHkuHV4XBgdXUVmUxGZIGa1WKftBRTA3ZzvQNP5YTmRok+V5/Pe5wE/Kw2Tp43JxxDfsZkIdzIIWvGtvb7/SGmms8ywQ9BltV9Ca7Mch/AMfjTG0I6HleX7OAxnU4HgUBAmPNcLifJnnh/Pie8jmZ/2U72z+/3S+ZLXUsOOH4v+f1+KSBeKpWEiRsMBrK5wjnRcZeU4L4o+yoM3P8bwP8DwL9Tn/1PAP5yMBj8rw6H43/64u//0eFwnAPwTwGcBzAF4L84HI7Tg8Hg+QLyvyazGTjbbLPNNtu+igWDQXGmW60Wrl69Co/Hg0uXLqFcLuPq1auYnZ3F8vIyDg4OkE6nEY1GcerUKezt7cHtduOtt95CJpPB/fv3cf78eSQSCVy5cgUAJClJLBaTelKzs7Oo1Wp4/PgxJiYm4Pf7ce/ePXQ6HZw6dQqffvopYrEYEokEbt68icFggEAggEgkIvEaly5dwu7uLh4/foyFhQVEIhFh/rTpnW7KncwdfNPp0wwbP9PHWYE7nQadRmfWylknSOKONp0jZiXUKeYHX0g+B4MBgsEg/H6/yOQIvrTTzB1zOqoaaE1OTqJSqQibRnkY8JR14721lHJ6ehqVSgWZTEYAIa+p+6elpGZyEF3g+urVq7LL73Q6sbq6itnZWSSTSUnywQQfZOU0mOO88HfOhQmCtKTPiu0x5/R5zM+Xfad/N/9peaQGLJpZM5lBMiHlchnZbBabm5u4d+8e7ty5g+3tbZHS6ftbtZHgPx6P480330QsFhOpcaVSGUqGMzo6inPnzuHf//t/L4CX7BWvpdkuHftpzr+5maDZYv23BiR6c0AzeJTrEYjrPutr6d91+/istdttlEolkSNzLZOxJqBzOp3C9nOOmK6fTBkllBwbXQyba5ZlAnTiJC3XJENNBkyvEQIuvi8oV9TxnJRCE5jpuWeiH72Bo0uQcL4IWvUzG41GMTIyglqtJu8+Zr50OBwCAqkosGLlvy77UgA3GAx+4XA4FoyPfx/At774/f8D4AMA/+MXn/9/B4NBC8ATh8PxCMBbAD7+a2rvVzKbgLPNNttss+15VqvVsLq6iu3tbezt7WFlZQWpVArr6+tIp9O4ePEi3G430uk08vk8xsbGEAwG8ejRI4yPj8Pj8eDGjRsIh8O4fPky0uk0PvnkEySTSTgcDhwcHCAcDqPVaiESiSASieDw8BDdbhfvvfcems0mbt26hYWFBYyNjWFzcxOjo6Po9/vY3NxEIBCA3+/H2NgY9vb2MDs7i8nJSayvryOXy2FxcRHdbhebm5sSg0fHjrvTwPGuOQEkmaqTJF80DdysGBb9ud7hB55KJTWA0Lvd+iePHRsbQyAQENkV42F04d5UKjUk3dIJS9hnSrfINnB3vVgsIhKJYHZ2Fuvr6+h2u2i1WuKk82/Wf2K5gWKxCJ/PJ/PCZBfaOWc/aCbA0zI77tYXCgWk02nkcjl89tlnmJ2dxZkzZzA/P4+JiQnE43FhIHS2Sg3odNwggTRBn5aimf/M5C3PY1P1cWaMo8nAaKBmxfKZmSN1vB5/b7fbqNfryGazODo6wtraGu7evYtHjx6hVCpJvS5935PazzEZHR3FN7/5TUQiEXH0WSuO2Qbdbjfee+89BINB5HK5obqDZkygyUpzXDjfJntmjp25Tsx1ZDWG+tmyGnvzeiZgZvu5vjn+jAEDnkoMuY44J8z8CECyXXJdtlotNBoNmUMCv0ajIWOri2XzPpz3wWAgIIxrOxQKAYBk5+V9mWkVgGxwMG6PQEyvK44Fk/3oeE+9ieFwOORdQ+kyY+DMJEaMDaSU1Ov1vtA4uL9qDNz4YDA4AIDBYHDgcDjGvvh8GsAn6rjdLz57xhwOx/8A4H8AgLm5ub9iM5655vEvNoCzzTbbbLPtOZZMJnHr1i30+328+eabcDqduHbtGhwOBy5duoSjoyOk02kkk0lcuHAB+Xwe6XQai4uLaDQa2NnZwSuvvAKPx4Pbt2+jWCwiHA7j8PAQlUoFLpcLjUYDZ86cwcjICA4PDzExMYHJyUmJo2Oh8FKpJHW+nE4nUqkUotEoRkdHsbW1hUuXLsHr9eKzzz6D0+lEPB7H3t4eGo3G0O41jc5Rr9dDpVIZciA1W6YdGSsQp51lK0dZx5doeRdZDTNGSzMTdJLYfjpvg8FxSn/uoHc6HUn8kcvlxCHVbJ5mMxg7o1mHfr+PTCaD8+fPI5fL4fDwEAAkzoesm5ZLkZHodruIRCJSWoCyKoI/r9crteZMM3fnnU4nqtUqfvWrX8Hn8wGAJOR4+PAhUqkUFhcXsby8jLm5OYyOjmJxcRG9Xm8IXOrYLIINOt7mePN3zrfJxln9bvW3FUAyTbNr5k/zM7I/7XYbjUZDWM6dnR3cuXMHjx8/xt7enkj6zH6d1Be9xmZnZ/Hd734XIyMjyGazcv/Dw0MUi0UB/AsLC/in//Sf4t/+238rTAvH0wSmGrTp+2vgo8dGAyQz5o/fm2CN1+E/DZI1GDefXc0OmuBOM2j8m/2o1+uSjIT3aLVasp74XHDOYrEYotEotre3hS2NxWIIhUKoVCpotVoix6RcmYCRzxmBcTgcHtqIYLvIxhPUs5g91zuTGumMrhxDrkM9hzq5k8mOEiiyrhvjSNlfbqJYsaUvUx04qy0cSzg1GAz+NwD/GwB84xvf+GuBXJKF0kZwttlmm222Pcdu3LiB6elpSSZy7949xONxTE1NYW9vT8BbMpnE9vY2UqkUzp8/j/X1dbhcLrz++uvI5/NYX1+XHeCjoyORFYVCISwsLCCbzaJYLOL8+fNwOBz46KOP4Pf78frrr2N/fx/VahXhcBj1eh3RaFR2jUdGRrC7u4vZ2Vns7+/j4OBAijofHh6i1+shkUig1WpJFj1gOPaEf2upFvAUWJBpop0UY6PlWVqaZcbDmGyBThFOqRRZQI/Hg0QigWg0Cr/fD6fzOCPd0dGRJBvh9ZiBLp/PD9WZItM2GAwQDoeF8aSEigCP8TDFYhGvvfYafvazn4m8q9lsyv17vZ5k6GMCBQAir4zH4xgMBpIAIxwOY2VlZaju2FeRVPX7fSm0TJan3+8jnU4jnU7j1q1bmJmZwblz57C4uIiDgwNUq1X4fL5n4uV0nKCWqemkIjpmy/yn59k0K9mkdpD5j38TvGuQZko7mRGz2WyiVCohl8vh4OAA29vbWFtbw/b2toyvySqd1C6TlSMo+/3f/304HA7s7u7KNVg3j0AnGAziX/7Lf4l2u42HDx/KcVaJMKxkjGyjmbhHP0emhFKbuVGin1WTyTxpk0UDdd1mXXCbgITMtSmhZGwcnyn+1HJVAFKWQz/bgUAAIyMjqFarIk1kbJvf74ff75cYNn5OENdutyVREeec8am6pAHXNp/twWAg7KBOhKJj+xwOB5rN5pBUkow754SlC/hu0sw+N5q0fJMZObnGT2Kuvw77qwK4I4fDMfkF+zYJIP3F57sAZtVxMwD2/1sa+F9jQsDZ+M0222yzzbbn2KVLlzA2NobPP/8cjUYDS0tLaDabuHLlClwul2Sk3N/fx5kzZ9BqtXD79m0sLCzgzJkz+NWvfiWp/B89eoSRkRFEo1E0Gg1MTEwgmUxia2sLXq8X58+fx+HhIdLpNBYWFpBKpbC2tiYSpcFggGg0KtKkYrEIr9eLRCKB+/fvY2RkBLFYDNVqFZVKRaSV9Xpd5HammfJFAHIvfkdHTQM37WBaSbpM51Kbdh61TJKf9ft9+P1+xONx2TmnZFI7i8ViUeRRdDrr9TqOjo4k9kbH1rjdbpTLZWHGCIQJHuhc7+/vY3l5GRcuXMCNGzdEVkUmk21mvCGZELaFUk4yadVqFdevXxcnWffTynRskv6M8YC8D/saDAbx6aef4ubNm8LwTk1NYWxsDLFYbEhmaWavJGA7iUXSTNVJ82nKLNleE7SZv2sgR5aNRccJ2g4PD7GxsYH9/X3s7e3JnOtrmO3jerRi3nR/X3/9dbz11luoVCooFAryebvdRqVSkbqAbrcb3/nOd/DGG2/gpz/9KbLZrIA3cxxNhgt4ymbzb3NurRhrK9mt7pNVH00waBV3qseC7dTgi2uUoKhcLgu40szhYDCQ50LHAAIQJqrVakmSID431WpVrk0QFAgEBGS1221Zc5Qe8j1Bdky/N3QJlEAgIJstmvXSWXXJ7LFGGyXRvKaOLWX8HWPr+v2+AFqOr94IIxOv43YJ/P4u1oH7zwD+ewD/6xc//1R9/h8cDsf/HcdJTFYAfPrf2sivak8ZONtss80222x7vv30pz9FMpnE4uIiHj16hKOjI4yPj2NxcRFHR0fo9/t4/fXXsbW1hWw2i/feew9+vx8ff/wxms0mAoEAtra24Pf7pU7S7OwsOp0ODg8PMTk5iUgkgvv372MwGOC1115Dp9PBzZs3BbjE43FxOlwuF3K5HBKJBOr1OjY3N0VixOLe8XgcsVgMxWIRc3NzQxIzLYui40kHjPEpOtnJ83aPTQcfeNYh5d9WMT50JumY0dGhZFKXCWDR7GaziUqlIrIpOnZk0/L5vPRBO7V0AsmiFQoFiafz+/0Se9ZsNnH37l28/fbbyGQykl2SII5AiA4b+6oTg7hcLpk7sg4cLz0ezwNxNB2PVq1WBbhQtgUAH3zwATY3N5HJZEQeGo/HpYxFKpWSxDeBQEBic5hswpQCfhkTZ2UaPLAPJqDTcUZkSWq1GiqVCvL5PPL5PPb29rC7u4ujoyNUKhVUq1UBrRqwEOjo+DKOsVW7CLS8Xi9ee+01vPHGGyKf5XdkVzOZDKrVKkZGRjA2NoZ/9s/+GXw+H27dujVUJF6XDtBtsZprfsY1aDKCPNZqQ8S8no7RspoH3sfqe96fjBPvo7PCcs31+30Eg0FhofiTIIVjRpCka6NxzEOhkAA6LRXVKf8BCMvNNvF3XodjwHcE4+oCgcAzY6/Xg14rTG7E2orcVNAZXTkGpjSV57MNLByun0cCPbaHm06NRuOZefi67KuUEfjfcZywJOVwOHYB/M84Bm7/h8Ph+GcAtgH8dwAwGAzuOhyO/wPAPQBdAP+XwdeUgfKLtuKLdnxdt7TNNttss+3voF2/fh1zc3OIx+O4ffs2arWaxLStr69jZWUF4XAY169fRzgcxptvvolsNos7d+6IZKdcLkvcVr/fx8zMDBqNBprNJlZXV+F2u3Hv3j0EAgEsLy9jd3cXxWJRHJLx8XFxGrmrHY/HcXh4iGaziVAohEajIYDl3LlzUheO9eDC4fAQKHM6nYjFYgJAyECFw2F4vV6USqVnJFlWoMPKiTzpb81K0HQqdu6A+/1+BINBRCIRqcVWq9Uks1uhUBD5nBnrk8vlUCwWxdnXzACTU5isBOPG2EYA2NnZwerqKn79138dmUxGigJzh5+JDjQQpumkKvzO5XKJLI9jYrKVX2Y6VTtwDEjz+Tw+/vjjIQkXiw1ns1msr6+LMxwKhZBKpZBMJgXQhUIhRCIRYekouWTckFnD7XlAzpRNajmkTgBTrVZRLpeRz+dRLBaRTqeRzWaRz+dRKpWGYgU1CNTjZrJPHOeTGCkCNJ/Ph3feeQcLCwsolUpSYoBgotls4ujoCPl8Xvr9z//5P8f8/DwqlQrW19clrpLgzSwjYK5xK19TA6eT2sxr6U0CDfD4/fMkyvrZ1aZZQg0K+Qxq1oqS7Hq9PsQ2cswI6Cgb5Px3Oh0Eg0FZCxwzJgJhvB2Zb46hWaxep+TnOYPBQBj3RqOBcDiMarX6jOyVMkgAwqg6HA4Eg0EMBsfJUSKRiLRRzwnrPlKaTdabYI9jR4DGZ0cDNvbDzP77ddpXyUL5/RO++q0Tjv9fAPwv/y2N+quaSChfxM1ts80222z7O2MXLlxAoVDAnTt34HQ68eabb0ra8jfeeAMHBwf4/PPP8dprr8Hj8eCzzz5DqVTC4uIi9vb20O12kUql0G63kUwm0e/3cXBwAK/Xi6WlJWxubuLw8BDxeByhUAgPHjwQCZLH40EqlUKtVkMwGEQ+nxdHe39/H16vF2NjY8jlcmi1WhgbG8PZs2eRTqclLoOSpc3NTQGFOvaIO8R0kPx+P6LRKDwej8ShaOdPx/LoHX4NokxnkQ6Vdmx5b7JZmvVhsgHKqhiX1mg00Gq1BKARRPF+TCqgmQQ6ZhqAcHd8MBhIFjy908/Pr1y5gt/7vd/DG2+8gY8//ngIMBKUMFZLFxPnfdkmzR4wQYLOgHeSmY69aZoloaOqHXt+NxgMpK7Z4eGhZPPTBdGDwSBCoRBCoZAUImbNK84R1yWvbzJfdNrb7bawa81mU5KPELgVCgVhisnEmeDUjNk6KZ6Nv5uxY5qhIrsYiURw6dIlTExMSDv12LJg99HRkXz21ltv4Vvf+hYcDgfS6bTUUdRAg3+bbBl/cq3rfuk1qPugNwV07KlmyMzztJkEhSl71s8n2WFzLDlefG4Gg4EoB/Smg5ZQBgIB2TTiGifzzFIczWYTzWZTNgYASMIStp1AkO8WbgBQ5uj1egUgcTMkEAigXq+jVqsJUOKmEOXgulSBXv8ABKQxsQrngoCTbWXdyWAwKOwl1znZSZ31lfF7ZOtelP11JzF5oSYSShvB2WabbbbZ9hxbX19HoVDAqVOnMDU1hYcPH2Jqagpvv/027t+/j06ng8uXLyObzWJ3dxdutxs+nw83b95EIpGQumTj4+Oo1Wool8tYXFyE0+nERx99BLfbjYWFBezv74vTk8/nRerGJBiFQgGpVAqNRgOlUgnxeBwejweFQgGtVkvi6R4+fCiAIhaLya5xIpEA8NQRdDiO03hT5scd9VAoJA6NZhVMlkhnlAQwJB3SZgbwa2DD63c6HbjdbsRiMQEJjEUhGCC7xOLK3NHXMSnVahWPHz8eSoCikw0wjoxjoPvCsQGeJm7IZrP47LPP8M477yCTyeDBgwfPsHcELTqxAp1sAjkyP9opZJ05KwmglZ0kl+N5J52rwaNmyOhcViqVIckdTWevdLlcSCQSkn2PoNdsG6/LuCHKHtlPMybOqo9Wfbb6XAMSAhr9j30nqJ+YmMCrr76KZDI5xPBxHbVaLRQKBRwcHMj68fl8+O53v4tkMgng+F2wv7//jMxUJ+owJadW/dTfWYExPjPPA+W8t8kamWNkgmBzzBhzZsoEyabV63WUSiVJLkIGjc8kE4mEQiFJHhSJROTZZaZdfW/KJ9kfPjuBQEA2ZXgfPkfcZOI653sgEonIJgmTDJF5Z+waAHn+2u22bLz0+30BlnxGq9Xq0HuRY8Q2caOGbC0l1QSKnFMWDOcc/l2MgfvbaVyoNgdnm2222Wbbc6zb7UpM2sOHD7GysgKn04nPPvsMIyMjmJ+fx+HhIfb29uD1esVhOX/+PHq9HuLxODqdDp48eQIAOHPmDJrNJu7fv49QKITp6Wlks1kEg0FxepeWltBoNBCPx9HtdlGpVDAxMYFyuYx+v49YLCZxOv1+H6dPnwZwXDeMiUoikQjy+bwE9/f7fdm9ppk77WQpNGsEWAMLU0qpZVx0MHW6ejruPFfLpbhb7nAcx7yRkQMg0i0mZmGcGp3cQCCAVqslDhnHSDuAbOtgMJAdds10aMmUCbxu3ryJ5eVlvPHGG8hmsxJjRmeZDiedTLJZmp3RII7mcDgktovX0kknTAZFf2baSXFQJ82dOWdW5xGI0blnmncWXtZA6aRr8Hfz769iJqh53nk6sQYZJG5IxONxvPPOO4hGowJO9HmUKDKRiS5mf/78ebz++uvC4j548ADA08Lf/KcBG/AUFOpngeeZTJjV2JjzrY8zwZYJBvXnppTTBIvm+ZT9cn1zXAlweH9mWWRiE8oGY7GYtK1arcLr9QrzpDdy2DadFETHwblcLilZoOWHZOM1o86YWI43JY31el3apseEMXq6VhvfiWTmWLuO96Pkk/GmVALoennsq34P8v3Ga7woe6kAnLzqbPxmm2222Wbbc+ytt97CjRs3EIlE8Morr+Dg4ADlchmzs7NIJpO4ffu2ZLDL5/OIx+MSUzE3N4cnT57g7t27mJubw9mzZ3H//n2USiWcOnUKg8EA5XJZZJCDwQATExNSKoCyt3g8jkwmI85Qo9GQLI3hcBiVSgXdbhehUEgAHq9Rq9WQSCQwNTWFn/70p88wFRqIUR4EQECUFZAAhiVqpmlHUkst+TkdbEr4vF6vOEDczWasW61WExBHh4mgh/XfeN12u41CoQCfzydxMpR40bTDzD7ofpjSzFarhR/+8If4h//wH+Kdd97Bz372MxSLxaEx0U4gnbVQKCS7+HpcAoHAELjTIM6cD9O5P4nVOQnk6b49DwDpObSS2g0Gx8XFCZ45dl9m/7VgzWzD89qrj+EcaOASCoUwNTWFs2fPSsxprVaTtaIlm41GQySdjHWKxWJ45513ZH7K5TLW1tZkY4JrSrNi5oaFHncda6bHVYMscx5MoHbStc1zNSDT9zOP49+aPeRnfA4cDocw+sBTdprPLeu+MT0/5ZNk5Al8tNxSM7EEVQRigUBAZN4aOHK96dIETFrEd4JODqPZS7PUA+dOb7yQze90OtLefD6PRqOBwWCARCIhm03dbhflcnkI1DLjJAEnmXm27291EpO/S8b1a+M322yzzTbbnmfXr19HKpVCKBTCnTt34Pf7cebMGRSLRXz88ceyG+vz+XDq1ClJ/hEIBHDjxg0cHh5ifn4eCwsLuH79Ovr9PiYmJnBwcCDlBXK5HJLJJEqlEhqNhsS7hcNhhEIhSVRCp9Pj8SAWi8HpdCKXyyEcDkt8RqlUQrvdRjgcRrvdxuLiIhwOB65duybOiJYZ0elwOp0Ih8OIx+Oo1+simaLj5PV6JWbIZApMM+PAtBNG6RR30OmEMV6FkqZyuYxGoyExNKzbxvO0DI9SKTpmusYYnUGTZTCdSAIC7YTx+kdHR7hy5Qr+/t//+6hWq/jFL34h7JRmuugIUh5JUM0+E1zoBA2DwUAAuAZuVuDreaDmJBBknm8FCmlWMrvn3dfqnryO/tuKZTKBM8+zSu5hyhM18NbGmMpEIoHZ2VlMT08jFAohm80CGN5Y4LnNZlPipyqVish5GdOaTqcxOjqKw8ND3Lx5U9qjy0dYgSATYFqNhRVAO2lTxDxeMz0nATYTLOrr6DnWwNMcJ+CpxJgxcJQjsnA3AYzT6ZRst8wMyYQ/fJ7088+Mt4xpczqdaDabIstk4hsyYfr5MOXQmgXl/PBZJuvG9wSfNZbk0OPS7XblHU4mjwCT70D2ifGD+v2m28jYTjJ3L8peLgAHLugX3BDbbLPNNtv+Vtvk5CQKhQKOjo4wNzeHSCSChw8folgsimPBmls7OzsYHx/HYDDArVu34PF48Ou//uuo1+u4efMmRkdHEQqFkE6npQi31+tFMplEOp3G+Pg4+v0+CoUCkskkisUi3G63MHrMihaNRlGtVuHxeBAOh+FwHGcZ3NnZkdTYwWAQr732Gra3t7G7u4upqSkBM3TMut2uZIkLBoOYm5uTzJTBYPAZqRNwMhsAPJVG6iQiwFPHkw4XnV+drIVJS8rlsiQuYMY5Omi6Pp1VfSvG82jwZrZVH6dZN37Pc3Wil06ngzt37mBlZQVvv/02Go0Grl69KnI8ncQDgMTrdTodtFotRKPRITbO4TiOz2N6dofDIRsBjPV5niNvmnbITwJVVt+f9Dv7oufPCsSdBCy/jEHT358EcjQwOQmA8hgCgkgkgoWFBczPzyMWiwno13PN+STDwzIGxWIRrVYLXq9XYkfX1tZkM+bJkydD9cJ0jCivTWaIbdNtZPs1a2PFhmn5LttrgjATpGmWT1/LvLY5B3xG+bwy3jaVSiGXywkDx9ppfE55HuWB7DfbGo1GJUMkANns4PkA5PnipgwzRrKMg44r7HQ6koWXyUcon+TvBGKMPatWq1LfjuPCMiQApO18H/F7ZvMloxqNRoVFZGynLqHAzSA+2+wz14XD4ZDMmC/KXi4AJwycjeBss80222w72XZ3d9FqtfDaa68BAO7duydOQLVaxdmzZzEyMoLNzU0sLS0hk8lgf38fc3NzGB8fx4MHD6Rod7vdRjqdliD4qakpAMDBwQHGx8dRqVTgdB6n9280GohGowiFQkOsXjQaxf7+PiYnJ+WYer0uoK9UKgmg/OCDD9DpdDA6Ooo7d+5IhjiazpjmcDhQLpfld9MBJ2OkY+h4rDadGdH8jHJKAkzutDNpCnfMdT01/TtwMovEz7nTr9lDMl1mnB6vz5137rrrf7Rut4sPP/wQc3NzuHz5MlqtFq5evfrMOOlznE6nMIihUAjhcFgcPwBS4JjyrUKhgGKxOLSLb8WQWY07x1zHWfEaeqz0z5MAonncSeNtBbqswJwJok32zbyG2Q6ra2lGk8Xsz549i7GxMfR6PZG46XhOApFutyvOeLPZRCaTQaPRwMjICJLJJNrtNjY2NlAsFpFKpXDlyhXs7+/L+iSIIAOnY9z0xgHBEZkaKyDG83QiHRP8WbF75nEnmW6TGYNK0+C22Wzi8PBwSPZMsMbajJQS6n4QLLGvIyMjiEQiQ7JbzgWfOyZL0RJHJsihqoHvHP28joyMSBkAbvbotcJ3FdtfrVaHNlfMouAEkxqgeb1ekZNz3pnYpdFoIBKJYGRkBI1GQ95jLHXC9U2gR1nmi7KXC8B98dNm4GyzzTbbbHueUXb46NEj2UmlJIhSykqlgsXFRTx8+BB+vx+vvvoq2u02bty4gbGxMVy8eBF3794VZgsAlpaWJBsed7xZN47sGgBJmrGwsCBxYePj4yiXyxgfH5f4u4mJCezs7ODcuXOo1+v49NNPJZHH1atXMT09Da/XK44WAHFg6dwwa2Y+nx8CGgCGnD/9tzb9mSnDoxPKRAE0DQwJLtku7oRruaQGYrwu781/+jPTWdVt0+BQZ6bT4E1fd2NjAz/+8Y/xB3/wB3j33XdRqVSwtrYmgJ7Gc3Xf6vU6yuUygsEgotGoOMOUpHm9XknAwjbqPhCoABhiB01WRgMkK7mengt9n5PseSDS6qfJmlldQ7dXA+3nMYkcTw1cKBuenp7G4uIi/H6/zJ3J4vX7fTQaDYmlJBuTz+dF5jY+Po5ut4vDw0OpmXf37l0kEgmp4UdHXpcPsGq7ZuXMvugC2uYcmfJFHmP1udXfHBczacbzEtboZ5N90s8jM9qyzYz3IjNFtpn31eU8mE2WDBZj6DqdDnw+nyRYohyTMkVuKJGF59iboEnXv2Q2UTJzrGdH9jAQCEh2TJbPoNyZ40Ug7Xa7BWAy8yrBZjgcRiQSkWdXg2TKNSklZcZNm4H7a7KnDJxtttlmm222nWyrq6vY3t4WB6FWqyEQCCCRSGBnZ0cclDt37uD06dOYn5/H+vo6stkszp8/j2Qyibt37wI4TmVNh/Po6AjxeFxivaLRqMSB+P1+5HI5VCoV+Hw+nD17VmoUhUIhOBwOjI2NYWNjA6Ojo3A4HDg8PMTq6iqOjo6wtbWF5eVl7O3toVar4fXXX0c+nx8Cb3QW6Rxyx5jSRpp2PEwnhMCCYELXujJlYLpsAHfz6eix7hMTj2gn2wSOBEcmy2aWDNDOMCVi/J1t0mCJzpaWMPI4/fvVq1exuLiI119/He+++y46nQ7W19dPBLS670ySUKvVEAqFhrJVMsmGyTbSuJtP8Ntut4fqXpmAxbTnMXLmcVZM2PNYHqt7WgE5q+uf9DuvYf7ucDhk3cTjcczNzWFqamqIVeVx/IwAmgwna4JR2hcKhRCLxeD3+/Hpp5/C5XKhVCphfX0dCwsLUoS91WrJ867ZMwBDsl4rFtRqI0EbvzfHxwrknTRGNA3ezOdHM336OdFxpTreDAAmJiaENec1CEyr1aok5+H7y+VyyVrndQjKeB6z5fJdQaBEeTjXNllOyq3J8FWrVQwGA0mcwgLiuqYlN7D4zggEAsL0s0QL2T39DmRCJSYrIQhLp9NS9J4gknJp3pdt5Fj6/f5nahx+3fZyATgM71zYZpttttlmm5WxYDbrqU1OTsLhcAgTVq1W0ev18M1vfhPdbheffvopAoEA3nzzTTSbTVy/fl2KY4+Pj8PpdCKTySASiWBnZ0fS9heLRYTDYXQ6HTx48ACDwQBjY2NYXFzE7u4uotGogJ+RkRHs7u5iaWkJh4eHCAQCePXVV/Hw4UPs7u4iHA7j7t27CIfDWFpawuPHj4ekTCc5z+fOnUM0GkU2mxWHT6e2p2nQRieZDhDwbJ0qM+5HO0qMEaE0qlQqoVKpyGe6jWaKfe2wm3WjeJxm2/g7GRqyAdrx43F0LHU/me3uj//4jxGJRLC8vIzvfOc7aDQa2N3dfYaBZJ/pUAIQ+R0zjLLsABke83z2k9kRyWYwAyCdZFNeaQK6k1g0fS8rmd/z7HlA0epzK9nfSffTDB2NjnokEkEkEsHU1JQwIVw/XG+c53q9jnQ6jVwuh3K5LMwSWbd4PI54PI7FxUX86Z/+KWKxGE6fPo10Oo1KpYJsNguPx4N8Pi/sk2bFzGdAs1hahsg1RQDzPFmk1dyYz5jJyn0Z4NYsp95oIftMNk2zd2xvp9ORGE5KDLV0kQyZrn3GjQtKDqvVqmxC6PIaTFLi9XoF/BSLRck2yX5r+SrvTWYsGo0KgNbPNcE278dkKf1+H5VKRcaaGzfcvOKYUAXAOWcCFKoyOKY8n8mWgOPnnIlceK0XZS8VgKOG0sZvttlmm222Pc8CgYCwQfPz8ygWi1JAltnt3nrrLezu7uLRo0dYWVnB4uIiNjY2UCqVEIlE0O12sbS0hFwuB4/Hg7GxMezv7yOZTErNo/HxcTSbTezt7aHf72NmZgY+nw9bW1uIx+NSTJySr9nZWdy7dw9nzpyBx+PB9evXJdbj6OgIy8vLcLlcePDgAfr9PsbHx7GxsTEUI8bMj3QuKMvk59pMRk3vMmupJfAU9JlySzqgdIY0sOv3+xIvRoBnlVyETqcGRXSStUNmGj/X1yKQMyWJ2jmjw8xx6/V6KJVK+D//z/8T/+Jf/AuMjo7iW9/6Fn7yk58gnU6fmPiDbfJ4PBgdHcVgcFxCotlsolAoSPIDnRBCszhM+MCSCrrulW6n+bsVQLKSoFqd+2WfW4EEK2mfFRPFvj0PuPFaBBcEu6FQCGNjY1KcXifNIUBqNBrIZDI4PDxEPp8XmR0AASwOx3Hyn4WFBfz85z+X57VYLIrkjmxxJpMRAGFmbTTBKO/Btuu+6jEyx8Rcc/rZsmLk9AbFl7Gk2vQzyOdIrwm/349qtSrviGw2i/n5+aGMtUw0opOJkGV2u90ihySw4twwiYkGNRxXp9OJcrk8xJ7xHgSWvC/HkXJryouZeIUAnvG1lGBqIMYxZx03ZpukJJQMmlYusL5cq9USRpKFzQksAch7ncAwFAp9pbn5m7CXCsB9tSVum2222Wbb/78bC3TH43Hs7e1hdHRU2Ljp6WlMTU3hwYMHyOVyOH36NCKRCK5cuSL14ADg9OnT2NjYwMTEBBqNBvb29qQwd6/Xw8rKCvb29vDkyRO4XC6cPn1aHJXp6Wk4nU7MzMzg7t27mJiYAADcuHEDFy5cwP7+vgBDZtFbXl5GPp9HNpuV3eNCoTDUr8FgICm7CdaCwaDsouvkGsCwXBIYliACEKdWM12mrFA75ZRM0tFtNBoCTujo6qQnVvJN7ciy/9zxtjpHF2nWsW90MDVo1H3htTSg3N3dxR/+4R/i+9//PhYWFvDbv/3b+Iu/+AscHR0N9VcbM+wlk0lJPkNHVjM6ZCnq9fozkko667q4Mb/jPJCR0p/reT8JXOl76OPN/uh26L/NtliBM/M7K/BDI4MTi8WEuQwGg1LWg3OmGS4Ct3Q6jWw2OwQSOMZcK7Ozszh79ix+/vOfI5PJAACy2SyOjo7g9/slTiocDqNcLg+VqeB9dbs182wyvzSTNdNASo+TBokmE22yqVZzwXtZSXt1CnyeMxgcF7nXsZYEUJTrTk9PC1AJhUIoFAooFAqIxWICzAje+EyRYYtEIvLOYcFrDWbJMJNd5jPBd5PewNEAn/F0/FvLW9lX814EoLyW1+tFIBCQ+DuCN8ap9vt9uS5BGtl+xvYR2LEN3CDq9/uiNHhR9nIBOHnJvOCG2GabbbbZ9rfazp07h1qthsPDQyQSCckSyKQJd+7cQbVaxYULF9DpdHB4eIi33noLmUxGnETuYBcKBWSzWUxPT6NYLMLpdGJsbAxra2s4ODiA2+1GKpWSGClme6tWq3jw4AFWV1extbWFRqOBubk5XLt2DaOjo5icnMTW1hai0SgmJiZweHiIQqGAeDyOarUqdd3C4TBKpZL0TTuNDPb3+XxD6cJNB9X83XQ0gaeMmAnwCITIJBEUMjsg07sDT2Nj6FzyOM1I6etqyaZVW012TbMimi1h3J0+R0s1tT1+/Bj/8T/+R3z/+9/H3Nwcvv3tb+NnP/sZDg4OZBy0EXgdHR2J5KpSqUiCBJfLhXA4jGQyicPDw2dYSgJUfT39k+PhdrtRr9eHnFaT1bICV19mz2P5TICh/zZBoSmNNNtAAOPz+RAKhaQoeigUQjQafaaOHiVszACbzWZFRscx0cApEokglUohHo/jo48+QqFQGCr8znXU7XZRqVQAQOLfWLNQt1ePMzcezNgzOvtkqfiZ3gjRoITyS3NurBg3K/btpE0PtpEsNxkic275TOlND8ZoMhkSARZBjS50zThWAJJQpFarybNP4MXzCYDK5bK0hTJEjgmvy7nnO4TvDc3UEszzWpTB6/IRnU5H1hQZPr4LyOCRDSTg5aZBvV6XDRiTJSUjzLawDMKLspcLwH3x0y4jYJttttlm2/OsVCohk8kgHA5jf38f8XgcS0tLaLfbuH//PqLRKE6fPo1sNotQKIR3330XR0dHmJ2dFXZncnISm5ubUpx7Z2cHyWQSPp8Pa2trwuYx7sPn86HZbGJkZARra2sYHx/HysoKHj58iMnJSQwGAzx48AALCwvo9/tYX1/HpUuX4HQ68eDBA4lTOTo6Qr1eRzAYRCwWQygUklgezUQxtXaxWEQgEJB/Pp9PHCsTyBCkAcPO/ElZKjWw0glLdPyZBiT6Xhpoms4qHW4NCNkvbRqQ6fbpa5EF0MCNx5rAj225f/8+/t2/+3f4/d//fSwuLsLtduMnP/kJDg4OngFQvBYz3wFPa1ORqYjFYqjX60OZLVOpFNxut6R316ykltEBeCZ5hGlWjr8JrqzAqtXYm/NuBeL4nT7eBBv8mywbWRzKJZPJJEZHR4cYGIKtVquFo6Mj5HI5pNNpYU9038j8cNxarRaq1SrW19eHaoVpkMuYrG63i+3tbQCQRBper3dos0Gfa8qJCejYTy3ltGJDCUR0XKP+qVkkK7MCdSZQNONTeS/dfrJJvLd+XijV5iYT+0QJZLVaFfBDFouSTAAiAWZyGI5BpVKRWF2ONfsyMjIiWSQbjQa63S5CoZBsgvj9fgF1WkJJsM05qFarwu6RRSUQ63a7EmPKZ5TzwXbp9xQ3njR7DkCyYQaDQZFXvkh7uQCcHQNnm2222WbbV7BarQan04lisYhz585hYWEBjx8/RjqdxvLyMmZnZ7G5uYlTp04hmUwim81idnYW/X4f5XIZrVYLu7u7aDabCIVCqNVqWFhYgMfjwf3799FqtbC0tIT9/X2EQiGR97De26lTp9DvH6ewJ5v35MkTxGIxYRreeOMNVKtViZcDgM3NTbhcLsTjcQSDQezv70s9ORp3tumg7e3tSWrvYDAo8iXTgaNpkEDwpP/WcXNkFOikctdeJyowmTHem/fS4EA7ngCk0C8TLZim26oBkI5/02wDHWDNxun20AaDAdbX1/Ef/sN/wHvvvYdz587hvffewyeffILNzU3pm74mHT8z0ybnjYkUGG/1yiuvYGdnR4A2wQvHUZ+vx840DQbMubT62zSr4/W1rACH1XH8qeObmPmPv3MDgf9Y8Bk4ZovL5TIymQzy+TxKpdIzmwCccw3a6WjT8SdoJvuspW6smTg2NiZyOZfLJVkFTYbXBDqmEVycNFYaRPF4ttkceyvGzep+ZK3NNnFcuJ4oldaZYrmx0+12ZT06nc4h8MMYs3A4DJfLJVJCjrmeE27YuN1u+Hy+oaQfZO2YYEQnK2k2mwgEArLhwbpqfHbdbjfC4fBQ/TmeR9OJWXie3+8XkMiMl8yGC2AoIQ7fWbwG5aKUl5Il1LLMYDAoGwBsw4uylxPAvdhm2GabbbbZ9nfAvF4vLl++DKfTiTt37iAQCODb3/42arUa0uk0VldXJS31qVOnZCc5n8/D5XIhkUggEAggk8kgFosNlQiYmJjA1taWgDs6Tel0GouLiygWiyL1+fzzz9HpdJBIJFCv1zE1NYWJiQk8ePAA7XYbi4uLKJVK2N7ehtfrlaLGe3t7CAaDmJiYQD6fBzDMCNHZy+VycLvdkiyCTod2FjUwM0GReSyvr41OF3fKvV7vM0WzNWAywZ3+Xksi6/W6ZLzTTI027VQCkHgek2nT7JYJjnQbNTA4ODjAn/3Zn+Hu3bv45je/iW9/+9u4du2agHRzvAneOGZsrwYWBDiVSgUHBwfo9XpIpVLw+Xw4ODgQUKFZOd1OXpOO+kmgQINrDS7Mf7qt2sz1YZpmdsiweb1eibdkdkLGY+q4TF03sFaroVgsSnyblshZsaPmODgcDll7ZI3o0Ju13bgu2+02crmcZP0kI2PF8pprjf3Wa0rHbrLdVuydBvx6M+Ek5s3KzLgvHaPHzwiu+LeWMPPelCRSFtnv94UNczgcAvA0E8e4MbLtvBbfcfxH8DYYDGQO9PjojJiNRgOVSgW9Xk9AFN9dBKLNZnOoBpuWR7OflJMTvPM9wOtRAcH1Z/7kfXq9HsLh8JCck8wjx5LJif5r5u2v214uAGeXEbDNNttss+0rWCqVwtLSEg4ODlCtVnHq1CmcO3cOmUwGfr8fp06dkppBvV4PmUwGHo8HpVIJ0WgUzWYT2WwW6+vrGBsbQ6FQQLPZhMvlQiAQwJUrV5BIJKQWVS6Xg9N5XFdpbW0NqVQK3W4XN27cEGf28PAQr7zyigBKl8sldd82NzcRDoexuLiIfr+Pzc1NxONxnDt3Drdv3x5ixMzYLsb7sLA0a85ZARcTxHGH3sp0MhI6TU6nU8ZNXw+A7O7rYtq8h05IoLNKUnamz6N8iqbBiBXo0fexAi5WplkOFvYuFou4ePEiLly4gGAwiOvXrwvY4Jix35pJNEEn2/ijH/1IUrz7fD6kUilsbW3J/bXE9aTxD4fDQyyAKUPVgEF/TubByrE3r2MlJXQ6nRKbxFgiAjSCIoI6Or78SfDZbreRzWaxu7uLYrE4FN/GudTt1wDUlEYSJJOBIqhnxkm9FjTLyfguSv/0hoO5xvR46DEyWTceY7KV5jxaMZlW9zPlk2bSIRMcaYBnZqLU80fGmIlddGxYv99HsViUe/r9/qH2USJMoNfr9aSkQCwWQ6lUQqvVQiAQeEa+yTXB37kOOf5a5klpJaWOOja3VCrJ/ZPJpLSDY0EmTpcbGAyOa9URDOq6ddxkSSaTACCSZ4JJgj9mMjUZwa/bXi4AZzNwttlmm222fQWbn5/H/fv3EY/H8dZbb8HpdGJ9fR2nT59GKpUS56BUKqHZbGJ6ehr5fB5TU1PY3d1FJpPBZ599BrfbjVwuh7m5OczOzqJWq+Hx48cYGxvD1NQUgsEgDg4OxPFsNpuIx+OSzGJiYgLZbBaBQACvvfYajo6OpI7cxMQErl+/jlwuh9nZWSwuLqLT6aBQKCCRSCAYDOLmzZu4ffu2pOcGngbba/anUChIIhPtjOnYNlMuZsoLTTBiZqbk58zmxuN1fJB2QDVo1H9rUKF36jVIopOp22nFupmsH69lyiet2CctDa3X68hkMvjwww+xvb2N119/Hd/85jdx/fp1iT8EMFQGQINYDTyYjY9MULvdxq1bt8R51gybGXuox1tnDiRrolPCa2M/zHkmMDbZUhOo8Z9mRhhXxN+ZMl7HLLIfeixZX2xvbw+ZTEacYCt20EpiyPsxGyD7rTcA+DsZGd12ZnElc8RxPAnMcyPBXHf8TvfPXEP6+dEATI+zFUC36rdme3ku+8vx1tJlc11rWTFjxAKBAOr1Otxut9TeI+PEDSlmX2Q8GpOCUN6spZWtVksSgXCtc6yZKIVrjzJKgkf2STN6mnXn/PGdxrHnGHq9XhSLRQBAKBQSRq3ZbA4BRca3EeCx3b1eD8lkUlg9fjY6OopOpyNxw9xAYhzyi7KXCsDRbALONttss82259ndu3cxPj6OV199FbVaTRKZDAYDrK2t4cGDB5iYmIDf7xdnpNVqYXt7G/l8XuSMzWYTS0tLaDabuH//PrxeL0ZHRzE1NSXFhmOxGJrNpsSU5PN5jI6OwuPxIJvNYmlpCWNjY1hfX0epVMLo6CiKxSJ+9rOfSa25QCCAzz77DA6HAysrK/D7/bh27ZrsoFPWqR0dDapqtRri8fgz2dk06NEOIf/Wph1qfY7+nsCCDjPwlHnTsjhK3PTfwHCKfxoZk5OYQCuQptvD383P9Ofm3yYDojPObW1tIZfLYXV1FSsrK7h//74ATTq7HEedfMThOE5mQiCvQQ4ZAIJdspsEhHRkNfszGBzXnGOcD51jMmNcDzqdvZ4XDQ7pgGvgoM/XDJr5O9krzYZxDjku7XYb1WoVjUYD5XJ5CDhpUGkyXRq86Lbo9a1BiV5jLpcLsVhMWBoycWyDBqcEPzp1vbku+HzwWH2Mftb0OXrjwgR0Jiv3VcCcvq4Zr0dWjd95PJ5n5JnmBgqvwbEh08SEJLwmmShKVXUaf91PnWxmMDiWZzLzLdcyJZAE3gRTAGQjgXPBdUuWtFwuDyUPoTS81+uJjJyxlQSJ7IMZ+8ayHuwD28B4P0rcyRZz3tj3ZDL5XLnt37S9VADu6SK3EZxtttlmm20n29zcHMLhMH70ox+h3+/jlVdegdfrxd27d1Gv1/H48WOMj49jf38fOzs7cDqdqFarsqtcq9VQKBTg8Xjw+eefY2FhAe+++y52d3cBAEdHR3A6nYhGo6jVapiZmUGn00E+n0c8HofDcZw+fmVlBW63G5ubmwCAM2fOSHzc4uIiIpEI8vk8dnd3MTY2homJCRwcHODg4ACRSASVSkVKCNA5YbxHKBSSaxWLRYyOjiIQCCAejw/FxWiH7nkxHaaszoq54ne6KC8dPDPTmwYNpmTOypHVDqdO820yaZoZ1IDMZMP4OftmHmv2XTuO5XIZN27cQCQSkWQH+lyfz4d+vy+Z+1qtFv7gD/4AgUAAP/zhD4fAAOOFdJZJzQiR9dGMgx4TXeRYx/Ro4MN5MX9yrsgskC2hs82fHHPOK2uLESjwe66per0uGf9arZYwLGR86JybIMcEqHpNUXrHWCa2Ra8brku3242ZmRlEo1FEo1H4/X5x9AeDAXZ2dqSYc6PRkOQWHD+CNL122S79T8e66bVyEpt30ndct1Ygj/03wZKeSz4bnEvKD81kOjq5CcebYJ9JXwaDgRTK5nvK4XCgXq8LGGbtPs4t76MlsnqTh6yVlk9rwEmAyOM1MGISGrLWZGyZzXQwOI6jYxITSjm5ZggYeS/G9hGkORwOBAIBNBoNkYY6nU4kEgn4fD4Zc7/fPyTzHBkZGSrf8nXbywXgvvhpM3C22WabbbY9z9rtNtbW1uQ/7Rs3biAcDqPZbKLT6aBWq+HJkyciPzw6OpJMjvl8HuVyGQ6HA41GAxcuXMCZM2ewtbWFer2ORqOB8fFx2fW9ePEiHj9+LDXcKOk5deoUarUaHj58iEgkAo/Hg+3tbXQ6HYnpyGazqFarmJ+fx8rKCu7evYtsNotUKoV0Oo1GowG/349CoTDkaBcKBXE2isUidnZ2sLq6KtnlfD4fWq3WULycGfumnWhT0qVBjgYjwNO08e12WxIlcAdbO9tWDisdK80Gso10SNkeM9bNCgCe9P1/jem+60K/HGsyZfp+dALpCI+MjGB9fV0Kses4Pu7wa3YEgAAlnV2T43DSHHHsrJx9q3M06Nf/6ADr62mwQACtv7eSxfIc1kKMRqNYX1+X9pobBhrgaECpE6T0+8eZYNkf/uN5Pp8Pk5OTSCQSUuON0jmfzyfPndPpFBmgFcN7EijT65dgw0pGyevq76ykkVbMmwm6TzKTCdcAlol/yDSxvVybZKHICFP6HAgEhgp0c30zUyUZX7abjDvHBICk7mfxcJOtI9Dk/fQ53DjQRe25plwuFyKRyNAzoWPo2u32EGgj86oBJv8RTAaDQTmPGxKBQEDeYXzGfT6f/KxUKqhUKpYbTV+XvVwAzo6Bs80222yz7StYp9MRaSML+x4cHCCZTMLhOM6iuL+/j0qlgkKhIPFKe3t74ljEYjGcO3cOiUQC29vbmJ2dRalUEudmMDgOmL969Sq8Xi+i0SjK5TKmpqYQCoVwdHSEYrGIeDyOSqUijv3Y2BiazaYUIj59+jQikQiuXLmCRqOBcDiM7e1thEIhTE5OStwHAREdX7az0+lgY2MD3W4XPp8PsVgM0Wj0mfIDfr9fHDbtcJpMmmYfgGfTn9O58vl88Pv9Q4wNnS46cWSPTEfIBGAAEA6HAUDaSMfYCjiYnz0PtD2PeQOG4+EIRtke1swy20+HVsv0dnd30e12EQ6HhxJpaPbBlALyflq6yrHTQNWULwLDEsSTZHua8TNZJivAocfHaqz0McxGSMBZLBYlMYYZp8e/WeR5ZmYGZ8+eRbPZFJaZiYRYxkHPLdvL2ogAhDGiI8/aZW63G2fPnsXIyAg+/fRTqT2mZb6afTOBmB5DcyxNwKwTaGh2T4+tZlBNZliP6/M2VEwZtI4dJRhn7JrebHC5XGg0GlI3j1kguTnF9wlBXK1WE3CoM+kSEBHo6WQ2jEMjmOL65bPBthO0EfSRoWeioHa7PfQdY1PJIrPdTF7D+5MJ1pJuAlm2ne/Lfr+PSCSCSCQiUkqeQ5Cn2WO7jMBfkz3NQvmCG2KbbbbZZtvfauN//pcvX8bR0RG2traGHAL+zGazKJfL8h81nempqSmsrq5Kiv6JiQlsbGwgkUhgZWUFT548QSaTwa1btzA6OopwOIxGo4FTp07B6XQKewYcyy0HgwHC4TCSySSKxaIEzM/MzKDb7eLjjz8WwPD48WNEo1HE43H4/X4Ui8UhkOJwHNcuIrgAjuuQsSYWs2Oa8jpmeqOZLIB2Gs04Mn0tzYQwyJ9tIuvHOBIzhk6blkwCEMkqj9NJGUxpJK+nQaiVU6zb+zyQZwJWSsgY32M1JlYAQycqoWySDjcZAe2Q8966rRpgW80B28PjTpLzmWNkjsvzzjHvb/afkjP2lX1iH3XmRybXiUajCIVCCIVCGB0dRa/Xw7e//W1Eo1H84R/+IYLBIO7fv38i6xEMBuFyuVCpVOT6BNv6HIKxSqUi9R91NkGdCIT9NAG2KWM0AS/BnAbjeuz031Ysm3me1efmtTTA1OwowSPXH8ET5ZIOx3F9s3q9jlarhXA4LBsutVoNfr9f7kO2imCMwJ/31GuPDKeWTZptHwyO5Y98DvR60dJHZgwFniYKYqITgjuuJybUYZbIwWAgpUj0+FESybbpZD3aAoGArF3+v8D3ENv0IuzlAnDCwNkIzjbbbLPNtpPN4/FgYmIC9+7dw8TEBN5++208efIEt27dQrValTiKVquFWq2GRCIhGRzn5+cxNTWFvb09qT20s7ODCxcuwO/349NPPx2S2tG5WVlZQaFQwMHBgexQM8jf6/UiGAwil8uhWq0ilUohEAjg6OgI1WoVZ8+exfb2Nra2thAOh+H3+9Fut7G+vo6DgwMBRFp61Gq1BHhub2+j0WiIDDSZTA4F9JvgTLM3NO10mVIxk+EZHR1FvV6XGBGynDpmSd9fO/lWTAYA2YHX0jXe14qFY5t1e60YjpP6ov/WDAlTpTPBgQa65tiY/aETreOVdNY77u5bsZJ0RAn8TNmenh860rot2nm1Gt+vAtzMMbICzSMjIwiHwwgGg4hEIiJLi8fjkjAIABKJBBKJBNxut2QuzOVyKBaL2NzcxOTkJG7fvo3bt2/j+9//PlZWVvCv//W/lgLfnGuWUyCrQgl0u93GzMyMrJd+vy8xTgQfmo2m86/XoilHJXukxxvAEEjSINoEcvr7k9g22leZI309zUSZcxMOh1EsFmUsuGlAYNTpdCTJUqVSQTAYFEa2XC7D6/UKoGMBbpfLJTFo+rnzer2oVquyIcT3ki4DQhmmrnfIchqUZTJ+kvJrPvN8LjQoBZ4y/x6PR9hDh8MhCX7a7bZk3NQlYsgYMuaNSVyoWNDJTXhfAJKV80XZywXgvvhpM3C22WabbbY9z1qtFprNJi5duoRgMIhsNivgibuthUJBCnO73W4Eg0EsLy9LDThmodzf38e5c+dweHiIdDqN1157Dc1mE48fP0a73UYwGMTS0hLu3buHUqmEZDIpDrvX60UkEpFYNZfLhfn5eZE9er1exONxYfRSqRS8Xi/y+Tz29/fR7/cRi8WQzWbR6XSG5FG1Wk0SDbRaLdy+fRuXL1+Gz+dDIpGQGBTTzBT9VmyLBl86hodOFHfHuQNOZ5C76qbTRzNBIz8Djh1anTzD6home2WaGcfEz74MvGh2MRwOIxaLDcUBWR3Pa2rGxgQGWvpIB1yXYdCshc6YZwWc9PhpEHdSn0/q55cdYwWG9fhEIhFhiGdnZ9Fut/Frv/ZrWF5eRqPRwObmJvL5vDjjlUoFe3t76Pf7sjnBJCiffvopqtUqkskklpeX8Y/+0T/C1tbWUJIgyv4ogdM/O50OxsbGMDo6KmyczopaLpeRSCQE3FhJ4jQII8ujNz0IIs0x0uCCn1lJZU2AbwJtc65PMnMTRl+XzyHbn0qlpPwFMzVy/Xk8HokxHBkZQaPRQKPRkA2Ufr8vJST4DqtWq2i321IfTT+T/ElwzM2tXq+HSqUCp/O4Pqbf74fH45EyE8DTWFLG1TJLpc/nQ6fTEbYNeFrnjfeklByAvDeYEKXVag3JPSnPJnAkE2duJnH8uHlj1sf7Ou3lAnBk4GwAZ5ttttlm23MsGo2i3W4jn8/j9u3buHbtGiqVitSXYpKSyclJ+Y96YWFBYtbK5bLESpRKJTx69AiRSATf+MY3sLa2hu3tbfR6PUxNTWF2dhZ37txBv9/H5OTkUGwJARYdrGg0imKxiFarhdHRUTSbTayvr6PX62F5eRkejwe3b9+WGk4ulwu7u7vIZrMS+0NwQJaGjs9HH32Et956C36/HxMTE0NJQfR5phxT/6TpmBsTwHS7XSlrwAQFegden0/nnwDPCoARuLBPPE7L8vR5JvA5Cexo+zIQRweeBbeDwaA4pLo/JgDSO/R09E3Qat6DY82U7CwPQOdS31MXcT4JxJkA7nl9PYnh0SDtJCYOOJabRaNRiV0qFAqIxWI4f/48Lly4IBk79fwx6+v9+/dxeHiItbU1ZLNZZLNZOZ+xpa+99houXrwIn8+HiYkJlEol7OzsoNlswuFwIBQKwe/3o1arod8/TnbSbDZRLBYlIyVBFT+fnp6W577ZbMomiK7Jp+eEfTfnTo8P+6gBgAbUmmG1kmCa424l8zU3CTSw1zJmJvEAnspqyeTmcjlhSwmums0m/H4/Op2OpOOv1+tDCWFGRkYQCoWGUvZzo8ZMrc+2MRbR4XhawJvPFAFctVoV1o1yRX5P9p7ASpev4DOiJZN8PilVJ4DjfZ1OpyREITPHa7PNZmkWsssc45MKv38d9lIBOHJwtoTSNttss82251mn08Hu7i7u3buHTCYDl8uFqakpZDIZ1Go1zM3NSTIRMmROpxMLCws4OjoSKVWr1UI0GsXBwQHK5TI+/PBDFItFpFIpnD9/Hn6/H7du3RLHP5vNYjAYwO/3P5M4gQXEycrlcjns7u5iZGQEp0+fRj6fx4MHD9DtdjE7O4ter4ednR1pG2WUOs5K75rv7++jWq1KzJ7P50OtVhPnik6KBhqAtcOuHVSaduYJrJhZjjvpOtW8PtaKeQOeMhX8HXjqCJsSSpOZOom5MI/5KoBmMDhOWBCPxyVjKFkErgXtsFv1RSc2OalNPIbOaiKRwJtvvon79+9jY2PjmVi/5/XVdPZPAmBflWkzzQThZC0ikYhkbi0WixgbG8Pt27cRi8UwPj4ujj/H7/DwEE+ePMGdO3fw+PFj7O/vo1wuS3Kefr+Pq1ev4uzZs/jlL3+JVquF+fl5TE5OwuFwSC08JrcJBAKIxWIC4rrdLkqlklyT8UuUrFarVZw+fRqHh4fCEJtZFXVcFBkojuFJY2QFwMxnS1/D/PzLzAR8er4ICpkghTJCApzHjx+j2+1KUpBisShsFlk4Zrd1Op0IhUJSy8/v98t7Kh6PY39/f4jV5PtEvx8oi+z1nhbzJqAjm9fr9WQ+yLKRnWOJAzKCsVhMJO58v/C9yhITACT2jdk2W60WQqGQ1LnT49hsNiVml0ld+v0+otGoxN1Fo1FheAleX5S9VADOZuBss80222z7Knbt2jUUCgVEIhFMTk6iVCphd3cXiUQCr776qkgDU6kU6vU6Zmdn0Wg0sLu7i3a7DZ/Ph0gkgnQ6je3tbZw+fRrlchkHBweYmZnBO++8g0ePHuHKlSuYmpqSBAxutxvj4+OIxWLIZDKye+z1elEoFASwFAoFlEolRKNRjI2NYX9/H3t7e5KlstvtIp1Oy450LBYTB4lZ1gg6AEg2trW1NZw9exaxWAzJZBK5XO6ZhA06gyVgzWiZcSgmCNMMC50hM+ukCRBNKRnPN50kHUdnFfdm2vNAjhXDaHUMnbd4PI5YLIbp6WmJT9SMism4cUx0sgTg2fTwGjzz+Fgshu985zvw+/24fv36M7v9JsNj1Xa2gfNrdawJZtlnk7U8CazwO6ZZf/LkicjoGGf1gx/8ABsbG1heXsbc3JywxWtra7h69SoeP34s8ZLcRAGOM70mEgns7u7i3/ybf4NGoyEy00wmg+XlZbz77ru4evUqNjY2hiRwBCFkiJiciMwOx4VJNM6dO4fPP/9cHHtzTrX01XxmzDHSc8p1z2vq+osnzZspndR/67XCTREAQ+UlTOav1+vJ5g2ZNsaBsT+cs2AwKBJelj0pl8uy1tmmdDoNj8eD2dlZ5PN5ZDIZAVK63fyp30saQJHh0wCWGWz1Jk0wGJQ+ABiSvPK9x3cFxz2dTsPpdEoZAdYh1DJxrtteryflJVgXjsfVajWJFSTI5XvtRdnLBeBedANss80222z7O2H1eh0rKyuyyxwKhfD666/LTnMqlRKZDhk27uyGQiHMzc1hfX0dlUoF8/Pz2N3dRbPZxIULFzA3N4ePPvoIuVwOly5dQq1Ww9bWFjweDy5duoRCoYDNzU24XC6Mjo6iUqmgXC5jbGwMLpdL5JczMzMIhUJYX19HoVDA3NwcotEo0uk00um0OBChUEhqPpHxYk2jarUqMULVahVPnjzB6uqq1MpaX18fkghxZ9w0q6x4TNLCnX06gCz8a0qp+PfzYsb0PbTDrM1snwaCJ4EL7VBqYHUSu2Sa3++X7J10gM1YM91WPZ7suxmTpv82QWY4HMapU6dwcHCABw8eYHt7e+hc08wxMtmYk0CaPtZqvMx2WX0HHDvB0WhUYtc0yGi329jf30cul8PVq1fl2aJMzufzoVQqweFwYHd3V2SNiUQC09PTaDabKJVKAlbILKfTafT7fczPz+Mb3/gGEokE7t69KwwO1wmTxWhgoxPFOJ1O3Lx5E7/xG7+BN998Ezdu3AAwnPpfz9dJ42IeZ8ohabw/28LvTWZay1/15geZQb2OeE+rmnPmnJFl9Pv9AlIoDxwMBkNJS/iTMkYCIYfjuMxAJpNBtVoFAJn3fr8vpTWYGKZarQrzRhaOJTSAp2UsyLxRplipVABAEt0w5owAjSwc+8c2h8NhlMtlYf77/b6UjSHIZyZNvuc5B1wvvBfHqNlsSpKVWq0m4/ai7OUCcPKwvOCG2GabbbbZ9rfazpw5g06ng3Q6LfE0ZJ3m5+dRLBYlPi2TySAajQKA1HO7d++eyOlKpRKCwSAuXryIZrOJa9euIZVKiTO4t7eHWCyGCxcu4N69exLsH4/HcXR0BACYmppCqVTC0dGRSM2q1Spu376NTqeDU6dOweFwYG9vD4eHh/D7/RIXQieFafoZ5+H1ekUyBByD1o2NDTSbTQQCAaysrOCjjz46Md28ybpYxab5/X4Eg0GJsXG73VIqwDTNqgHDgMf8qVk583zdHjq2VkyF/tv8nXYSiNOfUzoZjUYlVmpvb2/I4abzq9vOdO10xDWw1eDPZB7Jsubzeayvr4uDfFJ7nwdCtdTVdDZPYo6ed30rZoXs5OjoKAqFAqrVqvQDeFr4m3JHxppWq1V4PB5MTU3B5/Ph9u3bcLvduHz5MmKxGKrVqsRSer1eJJNJuN1uPHnyBCMjI5LMp1KpyLOQSqUkeQ4ZaV1HT4+JBt8ulwsfffQRvvOd7+DixYu4d+8egKclBzTjzD6RKTUBk46HtGLoyEZZmT7GjG88CbwDw3F0bKeeN/aD7dJZGnmezmTLc5mdE4DEiNVqNTmP8+10OiW5j1YGsN2hUGgops7n88kYMHNov99HPB6XuWWdSjJkuuC2Zt05LjxPJ2FhNs1gMDgk6yQbB2AIxOl3EjNyRiIRAE9r5GUyGRlzu4zAX5NJFko7Bs4222yzzbbn2MjICEqlEsbGxkTOGI/H4XA4kMlk4PP5kMvlMBgcp6Wm3LHZbOLw8BCXL18GANy9exczMzPweDzY2tpCq9XC+fPn0el08LOf/Qz1eh2jo6MIBAK4cuUKXC6XSChzuRwCgQDGx8dRLpdxdHSE0dFRJBIJHB4eIp/PY3R0FNFoFP1+H48ePUI6nZYEGn6/H16vF7lcDnt7e8jlciKL0nEhdHjcbjc2NjYEnM7Pz4tTRGeEDi0dKjpI2ikFIAWXCWJYd4nO6fNiQ8yYtpOkeXSO6XhpxoGf8b56F94Ef+bnJjNyEnjhd5FIBLFYTMZRJ1xxOI6zUo6Ojoqj2Wq1hFFgbBDlWQQ3mo3UDIrT6UQwGEQmk8Hh4eEzEk2rPuj2mv0wf1oxqVZjb15Pf2Yynbxmq9US1optpZTR4/EgEAigUqnA6/UKk33mzBk8efIEd+/exfLyMpaWlgTkafay0+kgkUjg9ddfl4yVHLdarYZsNivsLz9nog7GfWkG0QRXHN8f//jH+Pa3v43Lly/jww8/HAIL7CePdTgcQ2UHTHCt72XOmzaCL5NV4xrRpSpMIK7luXquubHBRB+63WQwWSeSAOr/x96fBUlyptmh2PHY9z0ycs+szKqsFSig0NWNpTFAY9CYVtvMtNHIEcUxSkOKJoo0o/FFD7rSg8yoy4drMsr0wAeaKOOilxbvkMPpWXpm0JhGN4BuAIUCUEAVas99i33fV9dD9vnqDy+PrOrppUhc/8zKMjPCw/333z28vvOf852PLBSfA+VyGX6/Hw6HA41GA8FgcAyEcWzqwky/38fMzAyKxeLYQoXaooHuoAT1ZEt9Pp/UvfF7EggEZJGK33f13ufcsO8fm4zb7XZpxE1DFj43XC4XBoMBer2ePFvJ/LXbbanHIzAFjp5vlUoFxWJRVAdqf7wnEV8uAGfVwFlhhRVWWPEY0ev1sLa2hna7jXq9LjVsapG7ajKSSqWQTqcRi8UwNTWF7e1tFAoFLC8vYzAYoFAoQNM0PPPMM7h37570epuensbMzAz29vaQTCaRTCbhcrlQLBYRj8cBPGiynUql4HQ6kc1mMRgMMDs7i0gkgnK5LI3Gp6am0Ov1EAwGEY1GMRqNsL29jUwmIxJPAgZKgRqNhoC+RqOB3d1dpFIphEIhLC0tSe0RXTEpgWL7ATWYJIZCIZGaknFjLYva2NdougGYSyiNDN8kxsgow6SsyawexSyhVj9rxjgat2et49LSErrdLtrt9tixZmZm8NWvfhXLy8sir+TcO51O2Gw21Ot17O7u4vPPPxepqwocHQ4HUqmU9EdrNBrIZrPCdBjHb7wWk6R6xjBj4o5jKCcxe2bH6Pf7SCaTWFpawgcffCBJuSpTJJjSNE3Y6w8//BDZbFYkkJ1ORz7He4j7uHXrFjKZjNQlqXV2oVAIdrsd5XJZQJxa+2YmxzUCXp7/W2+9hRdffBHLy8vY399/aP5U8EenV7KtvD/V62sE0WqoMkn1byPDqTJr3M4IDjk+josGJZwnI5PI7w3npt1uw+v1Qtd1lMtlWQwaDAYIBoMiZ4xEIqjX6xgOh2i323IcXrtQKDRm8EFXSVr4835pt9sYDocIBoMIBALCgLVaLXQ6HXHPVPvVUc5Zq9XEjIbPOIK2UCgkagqan3i9XoxGD9of0OyGCz9+vx/NZnPM7ISmPKwJHg6HiEajcLvdAnafZHw5AdyTHYYVVlhhhRX/jcdTTz2FYDCIO3fuYHV1FXt7e4jFYhgMBlKvMRgMEI1Goes6tre3sbKyAqfTid3dXTidTrz00ksiS5yenkY4HJb6mVAoJCvJt2/fxvT0NBYXF5FOp1EulzE9PY3R6MgZ0uVyIZlMolqtijwyFouJHGl3dxculwuRSAQej0eStkajgatXr6JQKMBms0lBvwpQyIaFw2FomoZer4dbt27h/PnzcLlcWFxcxO3btyVBogub6k5JaRWZDa/XK6vxnU5H5FhsMD3JTGSSXJGhAj6GsS7I+JOr50YHv0lJs8qWGN83bktzmGAwKPPOnlmadmQ+c/bsWTz11FPSn4+1RJRy0eyAtVzZbFbYAI6Bkj82FS6VSmLi8bgyR7O5NjtvdV/HMUOTrpUZSOQ1aLVaWF5extLSEvL5vEjl/H4/XC4Xms0mVlZWEIvFUCwWsbu7i0KhgFOnTiGZTI7JSbkIoDIubLKsAjveH2wRQPkwa7VUVvi4uVMllaPRCB999BFOnDiBZDIp3y+euyqrVBkwdX7U/RnvMZVlA8bvcRVg87Oq1JPbGBu5q/tUgap6j6mfdzgcUq/IFgIEvQRPaj2rrutSE0bARlZOlTGORiOpoQsEAmNtBer1ulw7Ais67tJk6fDwcAzksZZXlePWajUBzABEKjscDuHxeFAqlYSZJ0AkuGbNHIEaj0Gmm99Dyj/peglA6qPJxpfLZYuB+2WFhocfyFZYYYUVVlhhjGg0is3NTbRaLdy8eRMXL17E7du3xVhETTqazSbOnDmDdruNvb09zM7Owu1249q1axgOh1hbW8NgMMCnn34qtWmqS+Ly8jIcDge++OILBAIBLC8vo9VqoVwuCyPX6XTQarUQDAbHzEwqlYoAiOnpaQBHSdrOzg7W19clUbLZjnoalUolYaWYrDAZI5u4ubmJcrmMmZkZrK6uwu12o16vSw8s1vvR5Y0JK+V97LFEpoPMh9qjzch2cX8MFUiZgbTjHPpUloPSxEnyQSNTYUyqjeyVOnZKJ91uNw4PD4VFInhQWTaVIaG8is2BadpAeZgadFRsNpuo1WpjNWS/SBjPRf2bbMxxx3iUpNIIglutFnZ2djA/P49z585hf38f9XpdzsVutyMejwt7EgwGsb+/j/n5eYTDYWF3yJo5HA4kEgksLy/jzp07ssDAGiyCgH6/j1arhb29PTQaDdRqNVl84FxTsgk8cDClwQkZU94buq4LQ7O1tYUTJ06MjU+9frzuNKghMOfcGOsbjfcgx2NkBvmaOr9qnSrvf9Wh0SjXJGBR5ZMcG5lyvk62jd91p9MprUfYtJyf83g8qFQq6HQ6CIfD0PUjoxF1zLT273a78Pv90LSjmrtWqyXvU6pIINVqtVCv18d6V3JBikwhF8R8Pp9IyCmFHI1G0n9QvUZcgOMc0UGYz0PKenkN+NwcjUYPma5QZso+of1+Xxa8nkR8qQAcLAbOCiussMKKx4i3335bnCG//vWvY3t7G5FIRFbyY7EYCoUCSqUSVldXcePGDQwGAwFf6+vrCAaDWFhYwP7+PnZ2djA9PY2VlRVJTnK5HGKxGGq1Gmq1Gk6cOIHhcIiDgwN0Oh3EYjGxQ+/3+4jH4/D7/Wi1Wjg8PMRodGTpbbfbEQwGRYaUy+VEsmmzHfVoikQiWF9fl+L9QCAwlvBRXmm321GpVLC1tYV4PI6ZmRlEIhFxbKPBCq3E2SuKScxgMBCp0Wg0EraIySATY+OqvFmorIHKGBjllGoia5Ri8jW17krdH1fSVaMT7ktNqI1JNk1maFygyje5Mt/v93H37l1EIhEsLS1JPSUbmLMmrt/vo1Qq4fDwUJJY9fi9Xk/uEdbtGM/dbN6M4+Zrk4L3w+OwBpMAsVGyx+0oI759+zampqZw8uRJXLx4EX/yJ3+CnZ0ddDodBINBDIdDJJNJ3L9/H8ADKS5rBwmAKQXO5XLyGhk5Nl+uVqsiy6SjJeu5CIydTidWV1fx2muv4eDgAB988IFsx1pF4/yxPyJB3Pz8PBKJBCqVyhhAIIinfFidL/U6GME0YG7gA4y35eB26nsqsFOvhVrvSamgeq353SDL1Ov1pN8bpYiqMydrzngtaIhEAw8aI3G+KDEkA0hWnPW1lC72ej0B4B6PR4Ai2TmyfATrXKChBJLvcy447mAwOOYK2Wg0pL6N9wMA6SnHv9m+QGX0uIDAa02Qxu9yrVYTuXmr1TL/Av0a4ksF4MTExEJwVlhhhRVWHBPpdBq6ruPixYuw2+1YW1tDtVpFKpXC3Nwc9vf3ce/ePQyHQ9y/fx/BYBBra2vY3NxEqVTCysoK3G43Njc3kclkcOrUKZw/fx67u7vwer3IZDKYm5tDPp8XYxOyK8PhEIuLi8JQ2O12MVApFAqo1WrQNA0+n0/kRVzh3t/fR7FYFHOBcrmMYrGIw8NDVCoVAQRMZLkSX6/XkUgkEAwGkc/ncfv2bZw9exZ+vx+Li4vY3d0dS2IpA1TNSLgyTmMBul7yGCozYMZEMLj9cZJK42cYKnhQ/6mtBex2u6zGMxmrVCoCKidJ6BhsRs26HCZyqpkEzy2dTuPtt9/G3NwcLl68iNOnTyOVSsnYG40GDg8PcfPmTdy/f1+uCaWWAKTJNEHDpDCTO5oxh8bPmMkjzX5X/zYDtZP2R9DQ7/dx48YN2Gw2XLlyBd///vdRLpfRbrcxPT0tDpHXrl1Dr9dDPB6X+4DnTQfOdruNdrstRhysWaIjIK3gyTADEJkr3yeLU6vV8N5776FcLqNWqwkLZ3a+uq7LYgfBweHhoUhkVUdLlX2j7M5Y36jOqypdBR6+x9X6Nxp+8DhqLSCAMWbNDMir7qcqiCOIosMuZb8EVGQ1eW4ERWq92nA4lPpgo3mQcQGH21Sr1bFG3g6HAz6fT1QC6neLDCiBEkEcQSABJq8tn3l8TvJeqVar8hzj/aHruvRx40Ib7zs+L1T20ev1yvzY7XapvSPjarlQ/pLiwRfGQnBWWGGFFVZMDkq6vvjiC6mdmJubA3DU5Pv+/fvodDqoVCp4+umnEQqF8Nlnn8HtduPcuXOo1WrY29tDPB7HxYsXMRqNcP36ddRqNUn+b926hVgshrW1NWHN/H4/ZmdncXBwgHw+j0gkIo256/U66vU6PB6P1KNRKtTtdrG+vi5MhsvlQiwWg9vtxsbGBobDIWKxGFqtFrrdLlqtliRIXAGfnp6G2+1Gu93G3bt3USgU4PF4sLKygg8++ECSNNWAgnVclClxZbzRaEjrACNjZJQ/qjIxdaVffd8s1ATXjJUzAkEmsk6nE8FgEF6vF/l8HtVq9aHaOnU/RhaOjKaaRDMhNZN2VioVlMtl7O3tYWdnB1/72teQSCSws7ODZrMpDd2LxSIAjAFdut21Wq2H+tsdx66ZgTYzhtH4u3Ffx7Fxxv2rv6vspzqHwFHtUqVSEQt6TdPQ7/elF9xgMMDq6qowV2Q5gaNattdeew0//OEPZfGAQJdgIxwOi+EQa+9oLEPDCQJkJv/ValUYZQBi9GM2BwT9PJ/BYIC7d+/i1KlTwkwBD6z5jU3ajQBOZYnVMANyam0d58f4HaKzJIM9Cfk7W12ooIhjYk0XARQXimge4vf7Ua/XhYnnd5zXIhKJCItHMF0qlYTF43fE6XRKvah6L5CZJjtNQyaaohAYcUzsv8bgcWhAwmOx4fhgMBBnXUrZeTyOgWwin22cm36/L3WWZCepQCBo9Hg88jxUn2NPIv7GAE7TtNMA/mflpRUA/zcAEQD/BwD5n73+f9V1/S/+psf5ucb0s58WA2eFFVZYYcVxce/ePdTr9bGGrhsbG/IfeL1eh9frxdLSEmq1GnZ2drCwsIBIJCISyGQyiWg0inQ6jVqthlwuh0uXLgEA1tfXEYlEsLy8jM3NTTQaDSwvL2M0GgkTk0gkcPLkSZRKJWSzWaln48qvpmmSeFCmyPfdbjcymQyuXbuGRqOBUCiEWq2GTqcjJgT9fl8kR8ARG0R51Wg0wv7+PuLxOObn5xGJRJDNZlGpVKQGkOCPkiMmPI1G46FmySpzZAY4zAxGzEIFFkxiJ7E+fF0FZ2SCCETJuJiNw3g81j9FIhExdlDPi6CWTItR+lmr1XDlyhWpnaLb6M7OjrCj6rl3u12xzGf9oHFsx7FlZuOfBOi4jZGFJLszSUpqdg0JLI5LXslaAEf3RjabRSaTAQBcvnxZAA2BF+sFO50O3n33XQEimqYJ4+vz+ZBMJtHpdKSmsFKpCFAjkGHyr7og8lqypks9Z/V8eX7qfBDc7O7uYn5+Hu12e4xNI/tjxliqIE2df3XuyfZwfwQp3EZtE8C6MPXYKsBjuFwuOR5fp5kH90kGKRgMolwuy3eHizS83jSEsdmOWgtEIhGRsdKghj39WM9JEx4+j3h9KVWkQsDv94t8m+CLPf0IzikTZysK4AGg9Hg8ssDFv8mS8pq4XC4xItF1XYCfCgyBI3BKySf7x1Hay/8nuCDA++S/SwCn6/pdAM8AgKZpdgAHAP4YwD8E8P/Sdf1f/TIG+PME59HCb1ZYYYUVVhwXdCoj0xWLxWC325HP58VcZGZmRsDShQsXYLfbsb29jcFggEQigdFohM3NTUk8XnnlFWQyGWxubiKVSqHT6eD+/fvCuvX7faTTaQwGAySTSSwuLqJUKmFzcxPhcFia2KpGDqVSCfl8HrlcDuFwGFNTU4jH47hx4wZu3LgBv9+PVCqFvb09YRm4QqzW+IxGI1QqFTE7qVaruHfvHlZXV+FwOJBMJpHNZlGv1wUkEgQxMbbZjizxaaVvVsNzXO2bGStkBuwovTIafqhmIUywjQkxcJTcHRwcCEOnvsdgAqwm6kz+w+Gw1LipkjhuT3ZDbZfAGAwGODw8xMHBwUPzwLEwae92uzKfx9W9TZIzGmMSiDMDY8ZQ51WdX/V94+ePk7+q7/P4w+EQ8/PzkkRzbnw+H77xjW+gWq3i008/lZonLjSwWTz7HpLVoYzQZrONNWMmyFYt6IEjBm9lZQXpdFq+K71eTxJzJv68r1TWV9M0VKtVJBKJh5wl1fNTjUsmgWnVEZPgk5/ltlwYMXOipASQ9ZLqPBO48TWCQda8NRoNWdTxeDzC1qk9IAmAeQwa9XAuK5UKGo2GMFuc99Fo9JAjLWvbaOwDHNWdUWXABRYeX5VJ8hlAeSfngUoGtgdQm4PTXITf5UAgIPca28P4fD6R2HJeyQKr5k/8mz3zeI/w+nq93okN2X8d8cs68m8C2NB1fedJotEHLpRPbAhWWGGFFVb8dxD8z5fJOM0/2u02ZmZmMDU1BZfLhVQqJbbo9XodPp8PCwsLaDabwnTNzs7C6XTixo0b6Ha7OHXqFDqdjjiweb1etFotlEolDIdDzM7OIpFIYGNjA41GA5FIBJFIRPqIaZom7ODBwQFarRbm5uYwMzODaDSKH//4x9jb28OJEycQjUaxvr6OSqUC4IHVNXsvsan3YDCQ5IpJXiaTwcHBAaanpzE7O4tbt27JirkxASaYY5Knsk/GWh4jMDOGmswaWSyG6n6nBl/nftRjGcGHCvKMCTcwbuzAfQcCAQEOHJ8RKAIPO2pSSqeydiroMVrFM8GlbPU4YKaeq/EcjMDKuJ9HAT6VTTMyUuqxjcc0bjPpWJwPJtixWEws21mruLq6ivX1dZRKJQEOTOYJqBOJBGKxmLAqu7u76PV6CIVCIhmmKyEAAQtqDR0bNat9C5mA85icC9X1UQV19XodqVRKGB0jo6kanKjgmT+N4Jb3M8+Lsl0jW0qGjvPC3zkubquej/qTrNPh4aH0gOOx1V5nrHO12+3yDCIjRuBIoEbwprpPRqNRcZSktJXPWdU4xWazCZOl7p/mS6xPY/0dm3PT4ZKGTsADKTLbPfAc2MuS41Plmmodqtfrle8nP0uw1u12BbTXajW5R7jIZcac/7rilwXg/jcA/n/K3/9M07T/HYCPAfyfdF0vGz+gado/BvCPAWBxcfGXMghh4CwEZ4UVVlhhxTHBBPr8+fMiUSRD4HQ64XQ6sba2hmAwiK2tLWGpfD4fyuUyKpWK1KGNRiNkMhmEw2HYbDbs7u5iMBhgZmYGNptN2BiPx4OzZ89C0zRsbGxA0zSpfyPD0Gq1kMvlxODE6XTiqaeegsfjwd7eHt577z20Wi2cPXsWPp8Pn332Gba3t+FwOBCPx0WOpOu6AM5QKCTF/bVaDbFYTFarr1+/jng8jjNnzuCTTz5BJpNBtVoV10u1bogMHOs/gIf7ixlNGVSpoRmLdJxRibot98GxmDEcZoyRekzjMYy5gsfjEYmWcV/GcTIBVJ3r+LpR+skEXJ0z9hskmHgchm3SHKlglWMyggezzxoZMuM+f94wXjfV2AY4snRXE3m3242FhQWcPXsWH3zwgcjX6P7p9XoRjUYRDAaRSqWQSqXgdrtRKpXg9/vh9/ul/QbBAmV2qjugeg/t7OwIqFMbhwMYMyghwCQ44vml02lMTU3JNTWyxOr14O9m9yr3rQIMAGOAgAsCBG9cWKBFv2quo+5DBZFcBLHZbJiamsL169dFnk3w1mw2EQgE4PP5ZFtjzRv7wXEcrKUdjUbSC47yzm63K88N3utcqLDb7fD7/SLnVg1DCBrb7baAK3VxhECPdcZ8HnD/nFOv1ytsGx10dV1HMBiURSwuKESjUZlzFTzz+8p65kKhIMfy+Xzifmqsa/x1xi8M4DRNcwH4XQD/l5+99G8A/I84UjL+jwD+nwD+98bP6br+bwH8WwD4yle+8ktBXJaFiRVWWGGFFY8Ty8vLeO211zAYDPDOO+9gOBxiampKVm6feuopdLtdbGxsIBaLIRaLQdM0WV2m0QVwlGgtLS0hnU6j2WzC5XJhZWUFALC9vQ2v1wuPx4NEIoFMJoNCoSA1PA6HQ34WCgXk83lxVpudnUUqlUK/38fGxgZ2d3cRCATw1FNPQdd1XLt2bUzWdXh4iMFgIH2Tms0m2u02/H6/ACBKgPx+v7QTuHDhAhYXF7G6uopcLid95FQ5Jgv8KSkCxmWMwMMGJgwj06Ums0b2Tk181Roqo2GAkWUzU/8Yk2izbVUQQ0mZaiKhntekWjom2EYWUmXjVIaOzZLpsqiOwzg/x4UZADNKSh8HED4OWDNj/47bH1k3lWm6ePEiMpmMJM+BQEBaMahmEx6PB6lUCsvLywgEApJoz8zMSA+wdruNXC4H4EgaGYlEMBqNEI1G5d7e3d0F8KD3GyXE/M55vV5hgVTGTV10UM13OL+1Wm3M8ZLgie8bvwMqk8f5oWyR10j9jAoYjaCcobpMGhls9afKNN66dUueD7quC/ukSqHZcsTtdouUkuCNQIfH5RioNiBjRQY/GAyKkYjKwpI9oxxW13UBpKp5iBqUcLIJN5u122xHveEoe6R5Ec/B6XSOmbNwXjweDyKRyEOySPZ+I6hV+961Wi2RuPMcjeP8dcYvg4H7XwH4VNf1LADwJwBomvb/AfDnv4RjPF4IA/drO6IVVlhhhRX/HcZ3vvMd7O/v48qVK9A0Dc8884wAs9OnT2N3dxftdhsnTpzA1NQUSqWSrFrPzs7C7/ejUCiI/OjOnTtot9uIx+OIx+OoVqtj9W8AsLW1JS56lCqORiNEIhEUCgVsbGxI/Uc4HMbCwgJsNhu2traQy+Vw/vx5LCws4P79+7h16xb6/T5Onz6Ner2Oe/fuCXtRqVSEhWu1WrJSTIvwarWKmZkZlEol1Go1XL16VXqZffLJJ2PJCt366JbI5FMFbmqSO4ldM4Km4+zyGUbWy2iUYsYYGZkkNfk2Mk/qfmw221jjXofDIXU9ak2Tet7HyUSNrIs6nn6/j0ajMVb7NoklM+7TTL6oAgQj6zaJiTsOtJlt97gA0wy82Ww2xONxTE9PY2FhAbu7u1LrVCwWpZaLYCKRSODVV1/F6uoqgsGgAF9KB4vFIqrVqgBun8+HWCyGxcVFvPTSS8hkMvj888+l/qrRaAi753K54Ha70Wg0kM/nxVyDpjzqNVYBsQq0stksnn76adRqtTHZpjFUdpZMkhpk/Hiv8btmBJIqQLTZbMIEscZTXewAHoBR9fjs/whA+jiq42R7AYJcALKYwVpBBo9Nxo49+diuhDJHLoYBkEUp9Zxo1tTr9cR9l4tZjUZD5JMej0eeOWS/2NC7VqshHA7LMfn8pMkKgTKZN7UdRaFQkM+o17rdbiMYDMLj8Ywxm+ozlFLL/94bef89KPJJTdNmdF1P/+zPvwXgi1/CMR4rpAbO4uCssMIKK6w4Jj799FN0Oh08++yzImWbmZnB3Nwc7t+/j0gkgtnZWXg8HhweHoo0i05u6XRamC06uE1NTcHpdCKfz8NmsyGRSGBtbQ2NRgO3bt1CMpmEx+NBqVQSo4yZmRmsr68jk8kglUphOBwilUohFouhUqngxo0bqNfrOHPmDE6dOiWSyUQigenpaen/xnqUQqEgzm1cSWa/JwDSxygajSIcDqPZbGJjYwNnzpyRWqP9/X30ej1xd2NiSemkKmlkqABJTdL4N7cB8FByaQwzySLwcFsBFaSonzXGJBZK3Qfrfrh/OvFxpZ/7MYIXo2TUOAaVySFw6HQ6aDabwmgY2Rm+ZjynSXJIlaGZxEYaJZpGRufnCTMwpzJUxvdHoxG+8pWvYHd3F//0n/5THB4e4rvf/a6wNHSQJNMWiUSwtraGRCJhei6xWAzxeByFQkHke3Nzc3jttddw8eJF1Ot1RKNRkQgTuNCUhjVQAOTa8vujOhMaGTWeFxk41sAaDXfUMatgXzXl4GuUCXLBxQjS+TtlnwCkz6N6vfmPwMJ4vYfDIYrFohy/1+sJa8l9tFotYUIpS2T9LI/Ne5byT7Jq5XIZ5XJZgJvdbpf6RDJeKmCl0QgZfpfLhXA4LGAqEAiIegB4YHxCNQAAMbJhDSHnJhgMynXkvUVWjm1ZOp0OGo2GsMDs+chry4bfqrELryHnNxAIPORk+euMXwjAaZrmA/BNAP9H5eX/h6Zpz+BIybhteO9XGvKdsfCbFVZYYYUVx0QwGMTTTz+N/f19eDwerK2twW634/r160gmkyJLrFar8p8+bbL7/T6i0Sja7Tbq9Tp0Xcfc3JwU0lO+s7i4iL29Pezt7QEAdnZ24PP5sLS0hLm5OdTrdXz22Weo1+tS0zE3N4fV1VXcvn0bV69ehd1uxyuvvAKfz4crV66g1Wrh3Llz8Hg82NzcHBtfOp2WOiDW+HU6HUn4mLw1m01kMhlMTU1hNBqh0Wjg5s2buHz5MpLJJNLptMiVyKYA4wyYyjqoDJWa8E5iqIwr8ep2dOMzmpsYQZ0KGCclvfx70jhU8KG68DGJJSsBYMzN0JisHwc4+XM0GiGZTIq0ldb2RnmdcZ7UY6jbGxlHo2xPZR6Nc2I02jgOOBjPU/2dY1bZKjPGjsdj7dULL7yAt99+G/v7+7K4wForNopnjzKz8Pv9CAaDwjBTwrq3t4dQKIRkMonV1VV885vfRK1WQ6FQEECuaUdukpqmYX5+Ho1GA5VKBa1Wa6x/HBkfsn/G60oWi+wZ99/pdB5iP8lkcV+8V9QaOyOLqgJs1oqpc0wmnPsxLmKwLs5ut4/VW1I2Oj09LeDJ4/EIW8n6NE3TxqSMau0pj8VzZdsA1g4HAgEEAgEBSMPhUBgw9f6kZJNsHvCgPYBaX8aWK7Twd7lcct1ZS0lQSkdRzhUZt06nI9/fbDYLn88nc8Pa5XQ6LeZWdKvktaL0FDhiMG02GwqFwrEs/K86fiEAp+t6C0Dc8Nr/9hcakRVWWGGFFVb8imNmZgbXrl1DOBzG/Py82PufOnUKoVAI9XodzWZTkksmO3Rwq9VqGA6HSCaTIoljUhIIBOB2u3Hnzh2pQ6MDXzgcxlNPPYVGo4FisQhNO7K79vl8OHXqFHw+H959911sb29jcXERTz31FLa3t3Ht2jVomoaTJ0/C6XQil8vB4XAgGo1C0zSk02lJ8tiniokdWTcmZJ1OR+rwCKS2t7dx5swZnDx5Euvr62i32w816jZjh4CHnSSPY4GYrBqTWe5fBSKUiD1OGMem/m0EccbxqYYko9EI09PT+Ht/7+8hl8vhnXfeAYCx5r1GaagKZJioq7VvTMgzmQzK5bIY5hg/z7GoibpRKqmeG4PAxMhwmjGTZgyeka0xyi7NmD31dRVUqMfinPp8PkQiEbjdbmmhsba2hq2tLbn3g8GgmJJQ6jYpPB4PTp06hdu3b6PVaoklfK/Xw/r6Os6ePYtkMik1VX6/X/rH5fN5cRudmpoaY2psNpuwN2SIzNhGNqGmkQrP1el0Sn0ZmSLeL8b7Wj0mZZFqLSWPSxDDBRjgYcMc9frxfYIZMkblcln6OnLMXKhQe9ixvpDXgDb8nCcCVZqGdDodMWLx+/0CfgnM1TYCNCfhuRGsBYNBcX6kaoDnzTYv3KemaVJDx3NkHz6Oja+1Wi1xnez1eojFYqhWqwL4CFgJ6sPhsNzPXKzj/cC553Ui+xoOhyfep7/qeHINDH4FYRFwVlhhhRVWPE588cUXWFxcRDwex+7urtS2OZ1OaYgdCASQTCal7oaJx8HBgTScVdsDDAYDxONxjEYj5HI56LouoK3RaGB2dhZnz55FOp3G5uamSJQikQgWFxdRq9XwV3/1V9A0DV/72tfgcrnw4YcfotfrialDrVbD+vq6JMbsO0ZjEoJMJhm9Xg+1Wk0K8mkA0Gg0sL29LckT93vx4kUkk0lsbm5K/ye1WN+MzSGAYLKqJpjAuIxsEqsyKVSgoO5rUnBbdXsjIDEGk2+u2Pv9fsTjcWFOfT6fWJKzPYM6B0zQOQfqPKjJO9kg1j7y/Mg8MXF0uVyoVqsPzSMTXPUaMOmfxI6p86iGyvpw3oxzflyorJs69/y8Wru1urqKubk5RCIRPPXUU0gkEkilUnJely5dwuLiIsrlskj5dnZ2cP78eVNTHEryAEiz59FohJ2dHfR6Pdy8eRNLS0vY3t7GF198IZI8LnDY7XY4nU7s7+/D5/PB6/XK2FWTHvV46n3Y7XaFMSeYI/hnPZbH40Gr1RImnNJAzhmBgJGNVu9btceY2lZDnXcjgOPc87NkCzudjkgHOX7KI9mjjTWZbAWg1rCRpQMgPeDUBQ0yYZxLXddRLBblGjmdTpkbtghgKwO6P3LMlFiyxowSUFXKSqMlzhdBG7+n7XZbZJg2m00MS9RWCFyYa7fbCIVCckwuBvh8Pqn75XOU0lHWXmazYvvxa48vF4CTB9ETHogVVlhhhRX/TceZM2dgsx01BA4Gg5ibm5P/oHu9Hvx+P2ZmZlCtVsVCmglSIpGA1+tFrVaT3lVkELrdrtj6s2dcu93G2toa4vE4Pv/8c2xtbQmjMzU1hZMnT6JUKuH27duYmprCuXPn0O12cePGDTgcDiwuLmJmZgbpdBqlUgnRaFRq72i8QsaQBfYEGlzRZ9LldrvHGKlwOCznfOfOHSwuLmJubg7b29sPMQeTkn2jXbxxe7MknCBDZatUkPEoAGHGTE16X92fGVAxGkDcvn0b/+bf/BvUajXY7XYEg0G4XK6xHlmsCzSycWRTVNDKf41GQ5J6dTyqlCwWi4m8kqGaLKjnQImcel3U/Rola+o4jYm/2nPPTD6pzqMZ68ZQHQr5OQInOhuS3QoGg3C73Xj++eextraGbDaLbDaLUqmEXC6HlZUVU5MIHrfVagkjMxqNsL+/DwDI5XK4f/8+SqWSMFccM/+mi6AKAmw2m+xTPXfjPcp7hkZEdFTk9437JGBIJBKw2+0olUoCAHmvAQ9YNqM0VgXwRskyQZN6HQkCeS9xnsrlo05eBEZs5k0TEd6PrCfs9/uIxWICBGu1mkgWyUaxXo7ybU3TxFwlEAigUqmMGZTwOvE+ILNHyWMwGESlUpHFDJvNJotnvNdarZZIM1Xw5/V65Z6q1WoYDAaIxWJoNpvy3eI15NzRoZKgTe1RNxwO4Xa70Wq15HvE+4IyWzLqj3pO/SrjSwbgjn5aJiZWWGGFFVYcF3a7HcViUdzrtra2cHBwgFAohGg0Kg2yS6WSSG5isRiAo0Qpn89L4sRi/Ww2K7JI2pR3u12srq6i1Wrh+9//PjKZDLrdLux2O5599lksLCxgc3MT29vbmJubw+nTp1EsFrG+vo54PI6lpSV0Oh1sbGyg0+nIGFqtltRuEHiqNW5MrlgrQ6BHFm44HKLb7aJSqSCRSMgq/a1bt7C2toZUKoVcLjcGbsyYneOkbkZpnrE5t5HB4WsM9T2zmjljrZGRhTK+bjyOUXqmSrs2NjaEySQrR4kc5VWsq2GtoBnI4vFpXKKCM3VsZGTobMp90eWUdvf8HMdmnLNJc6mySMY5Mnvf+Hkjo6n+U5kfI3jTtKNG9pFIRMDb559/jlqthosXL6Lb7cLn8yEajWJ2dha5XA7vvvsu9vf3kU6nkUqlxhrcs5fhZ599hsPDQ5HbEZQAQKlUksUMtSkz55gy6GeffVacWNvtthipGMGusbaPbGmz2UQ8HkcoFBI2jYwWv5ORSAROpxOdTkcs9dXWEeo1oMmJyuiqLK5633MMBGuqbJYsE90oCeDq9bo4KZZKJfT7fTFMYs2cyrqNRg+aa9OZ1ul0imkS60bZl459K4vFIkajkYAysnW6riMajQqQDIVCsNls0met3++LGUkgEBgD26w15lyQ9ee+aPdfq9Xg8/mk7pFj56KLCtLK5bIws5zfer2OePyoMowAnc8uXdflswSbHO+TiC8XgPvZT4uBs8IKK6yw4rio1+tYXFyEy+XCrVu3kM/npVlwoVDA9va2MBzAAxeyQCCAnZ0dWfkNh8Oo1WoiN6TZCWt72Mftzp07yGQy6HQ6iEajePnll6FpGr744guRV546dQoHBwfIZrOYmprC4uIiSqUS0uk07HY7pqenRRY0Go1kFVzTjhzRyuWyOLQxgSOwoAGAz+cTRqTf76NcLsPr9coq9v7+Pubn55FIJJDL5QRwcB8/TxgBAJNMAA+xVwyjqQk/q7IgjEkyQTNAY3xPBSuqM6AqSeT8sTk6+/l5PB74/X643W4B4wRzRgt9JvWUrqnHN54jmQib7ahhOpNpuv3xc0a5ndm+VCmlkVlT3zNKLo0MnhnYVkHHJNCmAkRd13FwcIDRaIQbN25ga2sLU1NTWF5exp07dwTsuN1uxGIxzM3NYWdnB1tbW8hkMkgkEmJqMhgMsLe3h+vXr6NYLKLdbkubAPW6qedps9kkSQeOmKi1tTU8++yzODg4gM1mwyeffAIAAuR4bmasJI0vcrmcLJawuTcZLjJRZI7a7fZDQH8Sw82fqsxVlWmq8ko+nyg3JEDkHNTrddTrdbl2lAiSTVIVBJRBqosHBEs0jaGUnAALgNQDx+Nx1Ot1kYUTWNFIxGazCTvp8/nEZXI0GkndLhedCBbJqpGFpJkIQWO/3xfjFRrLcO5DoRBcLhe8Xq8waOqzj9eXwK7dbksLA/WeJ6vJxQCa4BAMPqn4cgE4YeCssMIKK6ywYnKkUikUi0UxNVhaWkIkEkGlUpFEQNM0WWVmYnjz5k2RRSUSCdy9exfAkVMaa9rY+JsSzRs3bqDb7WJqagqxWAxf/epXkcvl8MUXX8Dv92N1dRVOpxO3bt2C3W7HysoKQqEQisUiut0u5ufnhZVptVpwuVyIRCLSDJpJEG213W43Op2OSPmY7NXrdfj9fumFRWaILRHoonf79m2cPHlSpJlMIo01O4+qRzOCJOP2k8AaMG6c8iiJpBmzZNzGTO5n3Jeu64hEIuj1elL7wvdoohAIBBCNRvHSSy8hm81ie3sb7XZbnPhUhoXnwJqcfr//EEBSz1nXdUkOaVBDAwbuT2VnVOBpTP6Nc2EW6pyY/eQ/HlfdtzoGs2Op12B2dhaaduQSWa1WEQqFsLi4iKWlJaTTaWFfWBsYi8WwsbGBe/fuYXp6Wtp0kAUqFotIp9PCaBLckLFRe/ixWTWb2wNAIpHA7//+7+Py5ct48803cevWLfh8PlSr1TGQZZwn9fzn5+dx69YtMSgimON2lIeqTJnZvWEEcercqWF2XVWDnEAgAJfLhVqtJswdAKm5pCqAEmvgQU1lPp/H4eEhYrEYEomE1LLx+UEGulariakTADFzIpNHMxMAYtkPHCkUeM90Oh2EQiEMBgN4vV6RY1IS6XA4xoyfWBfK7wQlzAS1sVgMpVIJ1WpV3g+Hw3JssnJ+v1/6DBIEsp6N1yAUComBDeePbDvbRlQqFalT1TQNhULB7Kv1a4kvFYAjB/ckNalWWGGFFVb8tx+tVguVSgWDwUBc8orFovzNpJXNXDudDkqlEjweD1ZWVqBpmrAH4XBYVncjkQimpqbQarWwu7srPdlmZmawuLiIQCCAK1euYHNzE4lEAhcuXMDBwYHUuy0vLyOVSuHu3buS/MbjcZGFpVIptNtt7O/vw263Y3l5GV988QVstqMm3oPBQCRMlEWpCTj7HKkrx2zUS5BWLBaxuLiIRCIhq9FchX4c8GYmyzOTh6lMg/o5NY4DgUxeuU9jom2UCJoxUPybEY/Hpck2E351bO12G0tLS3j99dexvr6Ora0thMPhMRt09p7i3NL8xAgMzIJgJBKJSG0O50hN/lUGTZ1LtZ6KczZJQmqcI+N1MGPuzEDjJCaQ46EkzWY7astx9uxZOJ1OTE1NYWZmBplMBplMRs6fDE+tVkM+nwdwxBx1u12USiXU63WUy2WUSiVxV1SNJ8icMymfmZkRQw2fz4dXX30VoVAIN27cwO7uroB1LtKYLSqo9zKBELcjA6Xep2R81OtBtpyfU9leHlsFV5xnlbUmE2Q2Nh6TrGOtVhP5JIEYx0KpJ+9V9ihstVoIhUKIRCLSFJvH4PUql8uoVCoi056dnR2TiKrnR5BHJo7XiSY0dLd0Op1Sy8i5Zf82no/qotloNOD3+1GpVKRm2eFwIJFIAIBI3+kWyeOT5W42m/D7/cLEEeCz1pnzxGvKpvMEwqrb5pOKLxWAsxg4K6ywwgorHicymQxGo5HUYezt7UniWK1W4fV6x5gt4MjwY2pqCul0GtVqVdzVmFzH43F4PB7cu3cP9XpdErLl5WXMz8+jWq3iww8/BABcuHABp0+fxrVr13Dz5k0kk0mcPHkSHo8HH3zwAVwuF5aWllCv14UlTCaTKBaL2NnZQSAQwPLyMnZ3d8VJTzUbAB4kfGqCzt5Mbrdb5EZMnsjMdTodbG5uYmFhAdlsViRYRsClBt9XE0oGEzDgAQijJNKsps34uhoEEKqpjFGuZwRuxjEb2ThuQ+vxdrs9VqekOnAOh0NcuXIFXq8Xt2/fRiaTwT//5/8cH3/8MXK5nMi8mBhT5qUal3BfRqkjf/d6vYjFYtjd3R07D7KwZiwZw8wQ5rh4HLbHaJahbjOJIVXBjLpQQvMMm82Gfr+PZDKJjz76CD/5yU+wtraGQCCAVqsl9x0/B0BMJwqFgsgnaR1PK/nBYIBerzeWWMdiMVmgmJ+fBwD82Z/9mYA3SpGN82mcG87FpUuXsLW1JQm8KnUk0KDMmWDSuB3nAHj43gQeAHFVugo8aDivBuvAaMTBcygWi8KE8Rp5vV7ps8f92Gw2dLtdqdcbDAYoFAriVEnQwoUsGpBUKhUxC2m32yJTpZxcBbIEY5SXEoQ2Gg05Lp9fBMlkvbg/t9stTrt8TmuahmQyiXg8LqZDw+FQ6o8J6JvNJjRNk3pEm80mYw6Hw8LmjkYjcfdlTZ/X60U+n8dgMJB2GNVqFZVKBalU6qF7/9cVXy4Ax18sBGeFFVZYYcUx4XQ6sbi4iHw+j1wuh6mpKWGfaFbB+pFgMCjtAe7cuSPJIM1LmJxUKhXs7OxIjRQZgGg0inw+j/v378Pv9yMajWI0GuGtt95CJpNBMpnE6dOn0W63cf/+fSSTSYRCIbTbbQDA1NQUfD4f7t+/j3a7jWeffVYABFe3uZrucrngdDrF7ZDBxJCJCbejqQGTHjq7lctlRKNRRCIROUeuVgMPgzgmpWr9l1morMQkCaUZ02aMSeMwxuMqcphssybKyDoBEElZsVjEd7/7XQAPmINyuSw1jgRxtJAns2A8FzMm0OfzIZlMIpvNCvtm/Aw/R0BgVpumgkP1WGqYgTLjv0kAzewcjKBuNDqy1adkrdPpIBgMIhgMolqt4vbt29If7O7du6jX61haWkI2m5XEny6PbC7NhtvVahWdTgd+vx+XL1/GZ599BuCIIaVhht/vx1NPPYVIJIJarQaHw4FYLIZCoSBNxNvt9hirpY6df/M681oHAgEx+FFt9IFxxpOSTgJ/9X0zRo73oXEsfN3ItlJGSSk0ART7tnHhid9pLozQ/IhgUK2TZV+0breLYrGIQCAA4AEDSqkr98N55QIFTT74fRkMBmImUi6XpRdgtVoVYxG1ppeyUz7PAMhik9/vF3MSylV57EqlIhJllR3lYo96jTh37HPHNjBk4ijjdLvdcLlcIqucnp6WGrlWq4VYLCZM4pOILxeA401tITgrrLDCCiuOiaeffhofffQRSqUSTp06hV6vh3Q6DY/HI/2KRqMRZmdnxUXt3r17kpCEQiEMh0MBaDs7O7JCa7fbEQ6HpR5tZ2cHtVoNsVgM8Xgc3W4Xu7u76Pf7uHz5MpaXl3F4eIhyuYzp6WkAD3onsVaNye6FCxeQy+Vw+/ZthMNhpFIpqcsg2KIUlMmhMZlnLQuTIkaj0UA0GoXb7Ua/38fOzg6Wl5elRokJF2AuZzQ7Ft9Trc0ZqtRKZRomAQaCP7VtAff5KODIz5sBGvWn2jCZ0jxKt3q9ntRpqef5L//lvxSXQ8pVWe/Ehs7q+IxAh+ya3+8XEx06Bnq9XtTrdRmTUZ46ab4mAS+j7HES+DKrZ5u0L+NxeC9omoZ6vS5sYiQSwdzcHHRdRzabxSeffIJIJIJMJiOGMAcHBwgGg2I8we+ex+MRGSRdBT0eDy5duoSnn34an332mTSu1rQj58uzZ8/in/yTf4Lt7W0Ui0UBH7yG6n3EBQqCKvUeMboz9vt9kUYfV6tpbOJNYKa+ZmSdGZQQEiCorpTGa69+lqCUDePJ9KnnUa/X4fV6kUgkxu5bAAKsCFYBCCNNBg2ALPzw+0GGjvctDVVYj0bQR8BGEDkcDsXpkRJIbt9qtUTermmamDDRUZfXka6Tan86sowEdQR6rLuz2+3yvGTwe14oFGC326UPXLPZRCQSkfNrNptikPKoBaRfZXy5ANzPflolcFZYYYUVVhwXb731Fvr9PlZWVlCpVESuFYlEJHGkvXaz2UQ6nRZLbSZ7dDrb3d1FLpfDzMwMAMDv94sJyubmJlwuF86dOwe73Y5qtYrd3V2EQiGsra3B5XLh888/R7PZxNramsi5VCYtm80iHo8jGo0im83i8PAQiUQCsVgMmUwGpVJJZED1el3qryY5PVJKyQbVTETolujz+USWViqVxpwvHzdhUZNZM6MGhrH+Sk2aVSBhZETI9jGYTBtr4NTxTBq7kQFhgszkORqNwufzCdPWaDTGkmbKwnhMIwPxKPDmdDqlF2E+nxcpGBcC6HD5qBo+M1nopDB+1ghozV5XP3uchJKAHDi6LvPz87hz5w7i8TguXbqEcrmMnZ0d3L17VxJuyuxUyd3MzIz0M+T3jb3DCB4uX74sslO/349Wq4VIJILFxUX8g3/wD/Dcc89he3sb4XBYJK2UWPJnpVIZc3BVWVd1jmgoND09jTt37gg7pQbvH7XOU2W/jUDceDzjdTEuFqjbqj0JVTDJ+1SVatKZkRLHwWCAWq2GYDAoTBTdQPk+nT/5GTJ6BEU+n0/UChyf3W6XXoZcIKpWqwKM+ZO94w4PDwEcGctQeszjud1uJJNJccv0+XyoVCqiYGBDcoJDfl8JxPiM43yTBWZNHM+D43Y6naJ6oEsmwSDPmywiQavVRuCXFHbbz1YyRhaCs8IKK6ywYnKEw2F4PB5pxhqJRETGEw6HEQwGAQDFYlEYkGAwiFarBb/fLyuyZOXY+PXkyZPCYG1tbUkyqes6crkc8vk81tbW4Ha7sbW1Jb2uvvGNbyCdTqNWqyEajUozXJvNhhMnTgA4qtvr9XpYWlpCPB7H/fv3UavVkEqlUC6Xsb+/L7UitOWeFAR7TqdTbMX5OiWZrKOJxWJSf2Vky9Qwgicj0DCyb0a5GoOfm3Qc9XjAA4OVScc+TkaojsU4Lq7oe71enDhxAgsLC9je3sYHH3yARqMhYyNQU4PsjrEO0XieNPm4ePEitra2UCgUxsBrLpd76HyMwEA1cDHOjdm88nez7Sa9rr5n9po6PrUekosFL774IsLhMOLxuGzHe1D9fCAQENt6VX5KaSpZMBrHnD17Ft///vfhdDqxsLAAXdeRyWRw5swZPPfcc1Iz2uv1pKl0p9OResdCoYBqtQrgwaIAmSqyeQQpwBE42N7eFtdEY5gZ6hgXLzRNk+bfBOfq5xlqg2x1X+p9oOv6GIjo9XqoVCpSv8Xroda5eb1eqSekhT6/29wHpZztdlvAnSrt5KIDa4DpskqHSbZRoQNmr9cT+aTb7cZodNRzzeVyiZkImTLWztGYhIYk7XYbsVgMun7UnJy93wjS+v2+HLdarYpsVNM0aQBOoNtqtQS8crGGC1RskUBXYe6fxi2s2eMxn1R8KQHcyKLgrLDCCiusOCZGoxGq1ar0P2IyFAwG5T/zarWKarUKv98vcrhIJIJgMIhSqSR1MOFwWFoH0K2MjAObZO/u7qLb7WJlZQWRSASfffYZer0epqamMDs7i08++QTdbhdzc3NwuVxSA3Xq1Clp8Eygqes6rl27BqfTiVQqJQmix+PB7Ows7HY7bt68iXK5/JC8UE3Q1fo5WmwDR5KpaDQqkjKuZKv9pIxNpNWaE6Os7HEkeGb1cEbAYCa/5HZGIGEENMeNw2j0wvMgI3l4eAi/34/nn39+zK6cPa0oNVPHyWRwkrSTMq5oNIq1tTUcHBxgZ2dn7FzUsRsZyUcBrOMYOOPcmMVx88V9qMeYNNeDwQCHh4f4gz/4A/R6PeRyOXE9pIsht2fvLzqpsu6UToWsKSSwWllZQTweR7PZxOLiIk6fPg3gQbuFZrOJ9fV17O3tSV0Y65nILtNBks6zlC5TWkcmiGzTU089hatXr8qih/G6qGE0N+E9Tgt6MuSqaY8qqQQeSCeNzJxqAqTWg3a7XWm7QDaY9ynPx+/3ywIVZYGsb+M1ISjz+XwixSSwIyOlAj7KyXk8Pi943VhP1uv14HA4UK1WhTWz2+2ietB1XQB1q9VCrVaT9gg0JmEvTT6XHA4HyuWyHJuSco7Z6/WKqoHP+nA4jHq9LiYnZB/Vtg+hUEgWrugkG41GpR6Sz4InFV8qAOf4GYAbWAycFVZYYYUVx0Sj0UAymUQkEpGVYNZTsP6LNRx0d5uZmYHH48Hh4SFqtZo4uQUCAYTDYYxGI+zu7qJSqeDcuXMIBoPI5/PY2dlBLBbD0tISer0ePv74YwSDQczPz6NUKuHq1atYXFxEKpVCq9XC5uYmUqkUXnjhBQwGA9y5cwfAkZnJYDBAPp9HIBBAKpWSFXau5BeLRakrMTI1wHii3ev1UK1WxX2S4EWVkFarVbTbbUlC6Xinhip/nGQ+chyYU5kkJp5qewCjvFLdVpV1Glk3I5uk/q0CodFoJImlcb8Eujdu3EChUBA2IRKJ4OWXX8b6+jpu3LgxJqFkAsifRrDDeYzH4wiFQvj888+FHTCbMzVUBmYSe2Z2rSfNg/Hz6msqqJh03XitJs2vph2123C5XJifn8fHH38sCyVMqIPBoEhNmWwTDHDfdJlsNpvwer1wu924ePEiisUivF4vzpw5g5dffhmJREJ6jbHOrlarodlsCoBjL7lqtSqSQY/HI4wLGS++7nQ64XK5sLCwgEqlIjVcRrMRs2tnrGsjIFCdSfm9Ua+3+n1kkClTXSXV/Q+HQ+kbyAUI1rKxho/MHJkqAAgGgyIhZf83Mk2s9VOZKkrNOXdk40ajkZiA5PN5cbbls7Xb7SKRSEjLCH7HCJbpWMpzLxaLmJ6elqb2lK6TsaObJSWaHo8H1WpV5JJ8tqtmMgCkZUAoFJL6OU3T5HrS1IZSXtYJsj6PrDLn80nFlwrAWRJKK6ywwgorHifOnz8Pl8uFSqUiSRVlNul0Wti0RqMBh8OBpaUljEYjpNNpMVEIBAJjtRxckV1dXZV2Av1+H6dOnYLP50O5XEa1Wh2TSNrtdjz33HPo9/tIp9Not9u4dOkSFhYWcHh4iPv370tLAQJCl8uFRCIhUiC73Y6dnR3kcjlks1kBDwQTRkmXmly3Wi0xC2BCR9vtVCo1Jo+ikxsTz+MYmknJPEMFZurvlK6p+1Gd/IyJqxnIOY59MtuGK+xMPtXEmQBsNBrh4OBAnDuZTJOVYJL7KPaNnz158iTm5+fx2WefjbV+mATCjOf5KKCnbmOcf6MRxiRWz0y6aRyP2XHVbYbDIQqFAnK5HJaXl7G8vCzGJZSh6bouZhcOhwORSEQSYzJGtJKnK6DNZsOZM2dQr9cRDofx1a9+FdPT0/j+97+P4XCIVquFn/zkJ7h79y4ajQY6nY7096tUKmILT4dElU2inFBlbAKBAJ555hm8/fbbD7UAUEEU72UCAKOsV7XQV+vleG8bGTh1vyoLx+8ij02mnH3f+BkCG5W9VBk/Onyyr5rH45E6r263C7fbjWazidFoJLVtVAQ4HA4EAgFEIhH5zjabTTGdIdvYarWkVxtl4VxkopkSQZ7qKgk8MFXhey6XS9hC4EgtwPvD2P6DrK56HYPBIOr1ujB/zWZTFm7q9brI3yk5HQ6H6PV6IrnXNE0YQn7mScWXCsA5aPU7tACcFVZYYYUVkyMWiyGdTiOfz4vU8eDgAOl0WhgBFv7TGbJUKqHb7ULTNEQiEYTDYQCQ1eapqSksLy+j0+ngzp07aDabOHPmDKLRKHK5nDT9ZnIUCoXgdrvl816vVxrl/uQnP8FoNMLCwgLm5+dFNmm327GysiIr0qlUCn/+53+OnZ0dKf5njyMyPapE0MjGDYdDYeGYIBHQ7O7u4syZMyJl4vZGkGUmf2Soib8KJCaxPyrrpu5X7W9G+ZgqOeN7PC8zFu6441Muybob9fyMY+C98YMf/EAAnCob5d/G2je6Sq6treGll17C9evXUS6XRQangmzj+TxKsqiGymQa98P3zSSPZvPH943M3yQAaXyP7PD169cRCAQwNTUlbTHC4bCYbdhsNnkfgLBBXCBhDarb7cbm5iYuXLiA+fl5/PCHP4TH48Hy8jJqtZok/rVaDQcHB2g2m6hWq2g0GqjVaqjX62i1WgIuKJnmNSWjSMkfr9vp06ext7eH3d1daUxunHOer2riojKU3BcBGNkc9otUr5lxgUO9PwgwVQDncrmwvb0tBjtqfR5BIxcogAf91w4PD6V5N+39aY5CxtPhcEiTbprOcP9kr9mwm7JLTdPg9/uFASPw5j65YOLz+UQ6yfYl9Xpd+nM6HA4xViJzRhCpfv95HB672+2OgXQybLVaTQA7W1NwPvhM5bmxl2csFpMFpGazKW6mrVbL6gP3ywq73WLgrLDCCiuseHR88MEH6HQ6eO655+B2u3H//n2USiVpIMuVWJ/Ph2w2C03TUC6XEYlERHrTbDaxt7cHADhx4gQSiYT0lSOzFo/H8dlnn2Fvbw8XL14UkwE6XBYKBbjdbklqm80mPv/8c4RCIVy4cAEOhwMHBwdoNBqYnZ3F3NwcvF6vMGYffPABNE0TNzZKj9Smz1zdnySDIzvB9ggAxNyg0+ng1KlTuHnzptQiqZJF7uM4EKeGCtSO24ZhrKlTE1yeI5Nmo+umGQPC343bcLWeQIL9rAjaWB9lxoyobKeRfVOldKFQCCsrK7h8+TKuXLmCGzdumIIrdbyqvM5s7GbX1DgHZmBv0nyo2xgZt0kMnXEfxu3a7TY++ugjhEIhPPfcc2IlH4vFxHDD5XKJfJnJezQaRTAYxO7uLgKBAE6fPi3g5Dd+4zfEGXFubk5+Z4NvOlrWajU0Gg3kcjm02210u10BC2ScAIhJClk+soNcFGm1Wtjd3R0DTQyjmYkRtKl/8z4heFO3Mc6hkeUkCOF14T0fiURQLpdRq9Vk4YHsmhE8Uuo4HA5RqVRQq9UQCoVEJqgCRYIsfhcoL+U1IOij4yOl12Sp2WidzbDpjjkajWTu2VfN7/ejVqshm80iHA6L0Yqu6/JcIitLMMhxkSEcDofSeoFGKqxXZdsDgvJWqyWOkwDk3LhAx2tBsE7w12q1xNxlampqrA3Lrzu+VADOqoGzwgorrLDicaLT6eDpp5+Gruv4+OOPZaWZjbaDwSDC4TCKxaKwBNPT01L3trW1hWq1inA4jNXVVdjtdmxsbGA0GiEej2N6ehqDwQB/8Rd/gXa7jfn5eWxubkLTNKRSKdjt9rF+TLS4pkvl4uIiyuUystmsNDg+e/YshsOhOFi++eabUvcCAMlkEo1GA263WxJ/VfZoFkxWarWa1PrQblzXdaTTabzxxhsIBAK4du0aarUagAdSRzWJnwTizOR/k0xLjpNmmjFQapKr7teMIZoEirhv1rYAEIc9te8cxzbpHPlTZeSY8DORLJVK+K//9b8KU2SsHzP+rs7Xo8CbGXunbquCVeP+zM7HyJ4exwgaj69ex2aziXK5jE8//RSDwQDLy8toNpvQNA1zc3PCbJfLZcTjcWF5z5w5I8Di4sWLWFxcxJUrV/DNb35T6tHy+TympqZw9+5dfO9730OlUsFgMJB2BIVCAaVSSQx4OJdkmAg0yMa43W5hsXl9PB4PhsMhdnZ2xpghddFANRNR2SF1cYM/+Tn1GprdsxwnF2HsdrtIfNXG4bFYDNeuXUOn0xGAx/HxPPk6XWbprDszMyPPPobH40Gr1RKJOCWXdPKkU2iz2RQQTiBHh0+eL9k5ti0geAUg9bwET/1+H7Ozs/B6vSJnpwsszWb4vKPBCBtu2+12dLtdmWO6bPJ73W63EQqFZO45d5RgtlotAW8Oh0MAJBeyeI/2+320223MzMzIotmTii8VgHtQA/fkGutZYYUVVljx33585Stfwfr6OtLptPynvbi4KLKeYDAotv+UU7ndbpTLZeRyOTidTqysrGBqagqtVgt37txBMBgUo5ODgwN8+umnCAQCWFhYwGAwQDAYRCQSEVlQKBSSWrtarYb9/X1Eo1G4XC6USiUcHh5C0zScP38eqVRK5D+ZTAYffvih1HNMT08jmUzi3r17klzS0Y8NpY+TDwIPDBBoOkBAWa1WcffuXbzwwgvIZDLSnkCtVwEeNm1QQY7as80s8X9UmG1vxrQZ2QpupwIYI6sxCcQNh0OR7JGFMWsXYNyHkSlTZa2tVmvMydM4LrNzNANz6u+TZI2TGE4VWBlB2nHnZXZuxnFMek3XdTEp+fzzz4Wh1jRNZMMOhwPdblekbE8//TSefvppaa0xPT0txj3r6+uYnp7G559/LgYl7777Lu7fvy8AvFAoSH9H9jBU5Yv8PrP+S9d1AW+cR4Lv5557Dj/96U/HnAwB8+bb6gICvw+apo21KFDlwOrih2oQxM+o14kgi8CM237yyScolUpjdWIMtUYOgFjk22w2JBIJkVq3220xbSIjynud+6BTrcvlEqlktVoVF1a32y3A0OPxoNFoyOJRJpMR8ERwORqNxiSUbClAYxH2W6tUKmJ2wp51lDGqhia8przf2LibdXD8DqrtBeLxuIBOnn88Hhe2LRAISF0hFxMWFxcRCARQLBYtBu6XFRYDZ4UVVlhhxePE1atXhQFzOp2YmZmB1+tFKBQS0AIA8/PzknDs7++LhfXs7Ky0E7h9+zYWFhawtLSEWq2G27dvI5PJ4Ny5c/D5fNjf30cikRCGjOYAiUQCuq5je3tb+rl1Oh2p85iensaJEydEzsQeWp999hmKxSIqlQrOnDmDYDCIw8NDhEIhzM3NiXSoUqnISj4ByCRXQV3X0W63xfGNq/b9fh93795FIpHA008/jVarJS5yXJ1W2QQ1IQXMgYQZa6cCLzOwN8kRUf2c+o9Axehi+ThBENftduH1esXAgHVyqkRSBYKqfFI9V1XWxjGprNqjmLBHhRkz9zjSxp/nGGZMnNn7k17LZDI4f/48NE3D/v4+QqGQMCTRaBTtdhvJZBKj0ZET5fT0NMLhsCTvtP3f2tpCMpnE/fv38emnn6Lb7WJ9fR2Hh4coFAqo1Wryr9lsiiTS4/EIeGIbg2aziVKpNCab5H1LY4tLly6hUqkgnU4jHo9LPdUkVpv3H5kznr9qwENgyHtd0zRhAzkn6gIEx2O326V+lmCyVCphb29PXDrJFgIQQMoFHMoVKRFnH0gCEz6fvF6vAFWyaDx+JBIR1qvVasHtdgsrRydVmkORQSQ40vUH7qNGSaamaVKTeHh4KO0AqtUqNE2Dz+cbazNBpQE/z3NlzaWmHRnPsO6OIJXvDQYDYXu73S4CgYAAPgJSp9OJYrEojp7D4RDLy8sCgmng8qTiSwXgLBdKK6ywwgorHie63S78fj90XUcikUAwGMTs7CxyuZzYZDscDrjdbgBAOp3GYDDA0tISZmZmMBwOsb+/j2KxiJmZGSwuLmJraws7OzsYDAaYm5sDAGxubmJubg7BYBDpdBrAUTsAWm0fHh4iGo0KOGNCFIlEMD09La54KysrKJVKuHLlCtbX19Hv93Hp0iWUy2VUKhXMzs6iUqlIET4TVjYLZu+sSQwO8EBSxISXvaLa7TY+/vhjvPHGGwLiKAGkdMrIdKlh5jZprBNiTJIBGoGgChy5rZnRhpHtUvc7qfaLr7MvFpM1Jr5ki1QDE9W0RP2nadqYmYnNZoPX64XdbkcymcT29vZD560mvuq8mF0zY0wC6Oo5PooFNc7To45vZDXNjkcHVo/Hg0KhICYakUhE6k51XZe6036/j2q1inQ6Lbb/e3t7woZ8/vnnUn9ar9dRrVZRqVRQqVTQ6XTQbDah6w+aXKvNrulySJt9sla8H/laKBRCKpXCH/3RH0mNHpkwFYSrwMx4DxnnychMq/8ox1PrKnkOrAejzA84AnXFYhG1Wk2kkjwnuiwSrKhumnSbJZgdDAbSVy0ej0PTNDEqGQ6H8Hq9Mi9kMsnWt1otJJNJ6VuZSCSklYnP55P+mQSoXBTifKr91/x+P7LZrDhS8pr0+300Gg2EQiGMRiNp0g0cPcfZwoX7Y30jTU0I6jqdjigLyLK12205PwJdOvPWajW5J9Q6ZdbOkYV7UvGlAnDiQmkBOCussMIKK44JrvYGAgHE43E0Gg385Cc/ga4ftRNgs9tut4tisQhd17G6uor5+Xk0Gg1pEbC4uIhQKIQbN27g4OAA8/Pz4thms9lw9uxZlEolbG5uwuv1YnZ2FpqmIZPJoNPpIJFIwO/3j9VKETSyPuT8+fMolUp49913sbe3B6/Xi5MnT2J/fx9TU1NYXV1FsViEx+PB6dOncevWrYckjkw0jSyK+pMJIpvn0vTAZjtqK/CTn/wEr7/+Oi5duoRPPvlEei7pui6Mg5HtUhsOq+CNodYE8XNGB0oyGpMMRIznaWT0JkkBJ8kojeOjxIpmDDQ2UI1NOA8qO6eOX5XUOZ1OfP3rX8fGxsZDIJQ9zl555RX89Kc/RT6fNx27GbNmlEMagZaZHPM4BtB4nxiZRTMQNyn6/T52d3fx3HPPodVqIRwOYzgcIplM4sSJE8jn89KLrFQq4eDgAF6vF7du3UKtVsPVq1cFvB0eHmJzcxO5XA7T09PIZDLY2tpCsViUOijK+HjfEByqVvPz8/MAIE2lyQJp2lEt3PPPP4+33noLzWYT8XhcQBAleCrLTKDObY4DvGQCeT94vV4BBdzeWKPY7/eljo1/5/N55PN5qfliexOet1o7x4UWu90uskNa+SeTSalnIxOvMpYEj9wf50rTjsyTisWimIbwGmqaJu0e1IUPjoeN0XkcglGayjQaDQQCAXkm8boQOHJ/NDIic+Z2u0UZQbBFYJxMJlGtVuF2u1EsFtHpdBAMBmUuKG1vNBpSo6nrRz3lksmk1ANSxqnKR59EfLkA3M9cKAdDqwbOCiussMKKycFmtk6nE7du3UKj0UAikRB3yEgkIr2VfD4fFhcXMT09jYODA9y6dUuaBw+HQ9y7dw+1Wg3nz5+XXkfRaBShUAiFQkHkj7FYDA6HA/fu3UM4HEYikZBVZrJvo9FIEqCFhQXE43HcvXsXt27dwvb2tiQ429vbOHnyJEKhkPSTi0QiqNVqiMViwkIw+TFzWFOBjlq30+12RQJls9lkLjKZDK5evYpvfvObGAwG+OSTT0SmxnocFWiprJMqOTQms+o2ahhB3HFySDXhNSbWk0CcCuCMSbcRsNCsotfrSZ2W0S6eoM0IoNTzXlpaEoBeLBYfktoNBgMsLCxgYWHB1NjicUI9JsG1ETwbQasRbB637SSAeByI0/UjQxy6S9brdQE9ly9fRqVSwfvvv49KpYKdnR3U63VpA0ADDBpZHBwcCFir1+tiPa+6pLKeajQaodlsotFoCEvKhYmFhQUcHBxIrRkBRq/Xw+uvv4779+9jf38fPp8PgUBApHj9fl/OVWWRVTYOGDczITvG8XHBhvtUHSBVAxz+TdaP0Ww2kU6noes6otEoOp2OgBCyauxlR/ZdreHkNfd4PGPujFyoYI82VVbKz3a7XYxGI4TDYemJRoMeFZQRMHL8bEOggjS/34/hcIh8Pi/PGYJwKgfYnJ2N1jnXXq9XWgr0ej1hGOms2el0hOHj616vV/ZFdo4SUTKz7XZb5Jl2ux3xeBxer1eAntfrlZ6CqvnLrzu+VADOrlk1cFZYYYUVVjw6CKbW19fRarUQi8UQDAbHWgTUajWRMjocDty4cQP5fB7RaBRzc3PodDooFArQdR0nTpwQK+1UKgVd15HNZtHtdhEMBqXOZ29vT+ynXS4Xms0m7Ha7gK5Wq4Xp6WksLi7i8PAQb731Fm7fvo12u43l5WVhJi5duiSJ9PLyMtrt9lgyVa1WMRgMJBExGiiotVgqs0UwQSMD9odjArmxsYFkMonnn38e7XYbN2/eRLPZFNe34+qxjJJI1WBBTU7NmLFJ+1GllCrrdxyrpsYk6Z/Z51SQxqTY6CKpSt/Uceu6jvn5ebz++utYW1vDX/7lX4qjpyq5ZBPhfD6Pbrf70Dz8vHGcDNIMcE1iK9V9PS6IM25XqVTw6aef4sUXX0QqlZLvQLFYxNramsiBCcooTyPbAhwBl3w+j0qlAo/HIwwLpYYEY2Sder2euAcS0Ljdbvj9fuzu7ko9HBmj4XCIV155BRsbG7hy5Qrsdru4LgIYkyUD4zVqxvNWAbhaL8fvEqV+tVpt7J7nnPF7xzo1AAJwstms9GxjPRjHSEMP1bHSZrPB5/Nhbm5OgAifOTRzIZDh2DweD/x+/9i9zgWb2dlZZDIZ6PqR+Ui/3xeQS8aT9XDNZhPNZlMk6zw+36vX69J7U3WItNlswnRxTDRgiUajY981XqdyuSy1bzRR4aJaMpmUJu+UMbPWlc8R1sjpui6mUwRvAKS3HeeTz9wnEV8qAGezabBpVg2cFVZYYYUVx4fb7cb+/j4cDgei0SiWlpYQCoWg6zrW19fhdrsxOzuLlZUVpNNp3LlzB+12GxcuXIDL5UIul0O/34fT6UQgEMDe3p70N2IxP2vZ+v0+tre30ev1sLi4KDUt+XweHo8HJ06cQDabRTabxcmTJzE1NYVms4mrV6/i9u3biMViSKVS2Nvbw+LiIk6fPo27d+8iEAhgdXVVgJPb7YbX60U2mxWXuXK5DF3XRWqkrsAD4w2ygQcJ+2g0EimlzWZDOByWpPjjjz9GIpHA1772NTSbTdy/f39sFVvti2VsZs0wMhdGhkhN/tX3j5NSqnI5FVxNApVmxzJuw8+bsVJkdI6TDqqfYY/AcDiMaDQqgFqdc7vdjpmZmTE3RBVsTWLkjK+r5/gopmwSiDVet0dJA43jML4+GAywvr6O8+fP4/XXX8f58+exu7uLra0tBINBJBIJnD17FtFoFJubm1hfXxdwwAbSpVJJAIsKTHh/EFyzlQCvD/uZEdgMh0OEQiEZw8bGBlqtFn7nd34Ho9EIV69eRb/fRzgclpox4MiJkYDGeM6UG6pgXmXR+L1gnZrf7zeVTvIfHRXVerTR6KjPI2XdfI/GSLwmKvNFYEcDkuFwiKmpKWHuCYBYS0YpKd0mgSPJOYFwPB5HpVIRaWW9XofH40EqlUK9XpeFBzq4qoAyHA4jnU6LNLtUKiGZTMLj8Qhg51xR0sjxsc6PBjSUVWrakZtkuVyGx+NBtVoVts7n86FUKklNHGufaVSkaZqAQoJXm80Gv9+PSCQCv98vr3ERgk6Z6XRa2PQnEV8qAAcc1cFZDJwVVlhhhRXHxRdffIHhcIilpSVEIhHYbDbs7e1Jk+1Tp05henoat2/fxt7eHmw2G1544QV0u12k02l0u13Mzs6i3W6jUCggHo/D5/Mhl8vh9u3bCAQCOHnyJMrlstRjnDx5Uhiver2ORCKBUCiEvb091Go1PP/887DZbKjX67h16xYODw8xNzcnZhcXL16Ey+XC+++/j8XFRayurkpTW4/Hg2azid3dXcTjcUxNTWF9fR2j0QihUEia/NIBTnWkNMoFgQcJt+omx3lqt9t4++238cYbb+Dll19Gr9fDzs7OQz2RVKBlJpEExkGCGZAzfk6VUhoZOaPc0ihhVPdxHNOkbsefZmNXAZLZ54z7bzQa+OM//uOx+iRjDIdDvPfee2JqYXTknCQFNYK2487VOG+T2DQzBtJ4zmbgcNIxmOx//PHH+Nt/+29jZWUFTqcTP/rRj3D37l2cOXMGi4uLqNfrCIfDePrpp9Hr9bC7uytNp1nDphp08F6m/Fi9VlwsoYMjQcXZs2fx+7//+2g2m/hX/+pfwe1249VXX4XD4cCf/MmfiLkF+wHyO+Dz+eQ7AYzLdVVXUePigdq4m8yUyrgaDXA4ZjYeJztVLpeRyWTE3Ij71nVdgBMjmUyK5DAWi8lCTzAYlHPgHNK9cjAYwO/3S+NssmC5XA6j0QjRaHTMlj+TyQgwI9gje0d2lOCZro6apqHVaqHf7yMWi0kzbn5vOSbKIsPh8BhrRxks591ut2NnZ0euLe39XS6XyDRttqMWAtFoVD7P5u88Hp0o6S5JAAkc9YWkUoB10WQdn1R86QCc3aZZDJwVVlhhhRXHBh3wUqkUotEodnd3UavVMDs7KyzA9evXsbOzg+XlZSwtLaFcLiOfz6Ner2NhYQGNRgOlUgnxeByhUEhYuaWlJfR6Pdy9exculwuhUAjLy8vodruoVqsIBoNYXV3FcDjE/fv34fF48I1vfAOVSgUbGxsol8soFApIJBKIRqPo9Xp49tlnxYTh9ddfFwkYV5QBoFwu4+TJkxgOh9jd3R1ri8AElkX4wAOZkrGpsJqQs46EK+JMgGq1Gn7wgx/g7/ydv4NXXnkFb775prQX4DFUiaZai6Ym2Ex6yRCq4EwFASrYUUEc8HDPOR7bCGomSTPVcZiBHaPDppk88lHBbY0SS7PjtNvtMWBtxp6ZsXJGkxHj9pPArPr7pHky7ncSuDPb1rjd3bt38a//9b/G0tISVlZWkEqlcP36dXQ6HZw+fRoXLlyQPmKUFdPYRG0PwP1SXkhgpLZr4H1L5mZ5eRk2mw3f+ta3AAD/7t/9O5RKJfzBH/wBMpkM/uiP/gi1Wk3MMOg8yXuZoMa4gKACOYIL9doYTUvC4TBKpRKAB+6H3JbnQTkf2fxGoyGunOoCBfdPBkkdA3DEhJExY6uAfr8Pv98vjptk1zweD6LRqNSOTU1NoVQqod/vy0IQ2cFKpSI9MtvtNtrttpioqO1Q2KSbMkRet3A4LN9tXkOeL+fE6XRKuwMAInlVgW+9XhcZKHvD0aiEsllN06QJO81O6vW6sLhcXAgGg4jH43K8drstwI4LBFQ4OJ1OcUJ9EvGlA3AOm4bB0AJwVlhhhRVWTI4TJ04gGo0iGAxia2sLw+EQzzzzDGZnZ9HtdvH+++9jd3cXzzzzDJaXl3H//n2xuF5YWICuH1mj02p/f38fTqcT09PT0gCb8pzZ2Vn4/X6Uy2XpOVcqlXD9+nWcPHkSL774Iq5du4a33noLLpcLy8vLWF1dRafTQSQSga7r2N3dRSAQwMrKCux2O65fvw673Y7Z2VkAENZCbYYcCoUkuWHyyVogrjobgZEZg9NqtQRgsV6Px3nzzTfx7W9/G2+88Qbefvtt7O/vj9WUqLVuKjAzHlcFGJPYOjVUp0omYGqNH2VkKiMyqaXA34SxMgNh6jZmxzH+NAOSKtAzAikVSKoAzmgao47RbN+TmDqzmATmJp2XMczmaTgc4p133sG/+Bf/An//7/99PPfcc2I2sre3B6fTKQ3u79+/L/cqE2hVJtjtdiXZttvtmJ6eFiMKjokgLhwOIxQKYX9/H9/97next7eHaDSKf/bP/hk++ugj/PjHP5ak3u/3IxAICKBQbfpVwAZgbKGC95xxPtSx0O5eXcxQZYKUadLNlkxWNpsVJp3bshWAmeHJYDAQEOrxeFCr1aT3JYEuARYAqfXjMSKRCDKZDOr1OobDIbLZLACITJvH6ff7IuVkLSznh6YlNBChMYrb7Zbzajab6HQ6CIVCYkjCFgSUXuq6LgybaqrSbDYRCATEsImydv7kvLNWkNLZer0uBiace7ZO4T07Go1EIlkul2WuqUTgeT+p+NIBOLtdw/ARD34rrLDCCiv+lx3T09MolUrY39/HYDDA4uIiYrEYGo2G1Je8/PLLSKVS2NjYwP7+vqxO93o91Ot1RKNR9Pt9HB4ewu/3S01Lt9sVkxQmDgR/58+fl+bD586dw4ULF/DBBx/gk08+gd1ux/nz5zE1NYXRaIR4PI5Op4P19XUkk0ksLCyg3+9LDcnU1JRY+VNu1+v1pAWA3+9HNBqFpmni+qcmescxLMC4NJGF+6VSSVowdDodHBwc4Ic//CG+853v4I033sCf//mfCxOpSsaYJKlMhFEayXGpSRpBi5HNUxNoNXiO3I5MhJlc0YzZUn83YyTN5meShPBR82t2bLO/1deNn1evI4GfKt+bdE6TQKoKDCe9bzxns1BBptk5d7td/OAHP8BoNMK3v/1tXLp0Cbu7u5iamkKn08HVq1dRq9VQKpWQy+VweHgoTDBZMdZ5qf3XVIDDbQjwSqUStre3xW7/1VdfxeXLl/Hmm2/io48+Ett7n8+HSCQidXbqogMBksr0MniPGt1PVRARiUTQarUk8Ve3JavT6XSknUi1WkWn00GxWBTGTpVjqt8bXdfFpIUsWalUQrVaRTgcljFSVshaPF3XEQ6H4ff7ReIYCoVw7949GTf7q3G8dJIkqPb7/dA0TZxu1cbjDocDKysr6Ha7ws5ls1mpU4tEIiiXywLSaUJCtpJyYmNfRMpca7WaNPn2eDxotVpjzCndMhuNBsLhMPL5vCyusQk4F6ZYc0npp91uH2u54Ha7xUX11VdfxdLS0rHfg19lfOkAnMOmWTVwVlhhhRVWHBt3795FpVLBwsICFhcXARz1l6JsaXl5GQDw2WefIZfLYX5+HoPBAPV6XZwq8/k8HA4H5ubmEIlEJMHy+XwIhUKSCHi9XiSTSYTDYZTLZRwcHODChQtYXFzEe++9h3feeQdOpxOvvfbaWE+4UqmEfD6PU6dOIRKJYH9/H81mE9FoFHa7Hfl8Hv1+H4lEQorqZ2dnUSgUJMkg+8aETmWpjjMHUZkeANJSwW63o1AoAIDUzezv7+Ott97CG2+8gd/+7d/Gu+++i62tLUnmWJ+kOmGqIE6VpHG1nWMAzJtTq6ybylYZDU3U5Jj74ufMwMpxLJX6vvq3+tpxwGYSEJy0X+PnHvWaCs4mgUBjmLF0Zj/NxjwJZKq/H/f5RqOBd955Bw6HA+VyGaurq0in00gkEvj617+Od955B3fu3EEul0O1Wn2oHpCyQUrkCGBoZMKFgG63K6DJbrdjYWEBf/fv/l3cvn0b//7f/3vs7OzIvcLFCQIHVYapHp/yPhrZqHbyqryT9x9dEtvttjSAVyWWal0cj1ksFtHr9VCtVlEoFIRpI8PE7w6/Y6pc1OVyoVKpQNd1hEIhcV7sdDoCbtgYmy0E2Ajd4/Fgd3dXmm0TXHGcwAMGvNPpwOVywePxCHsJPDB0ISvKZ2O/30ez2US73ZZ+ap1OR1qnAECr1QIAAWN8bpVKJXg8HpF8BoNB5PN5lEolBINBcbmkGybBPgBpVl6tVlGtVseMaSiXJcPGa8tG5fV6XWrjyPZRpj41NfXQd+DXFV86AGfVwFlhhRVWWPGoyOVyWFtbw/nz5zEcDvHRRx+h1WphYWFBjEUqlQqCwaDUjbRaLTELKZfLcLvdOHnyJHw+Hw4PD8XtLBKJCFCIxWKYm5tDs9lEoVDAYDDA5cuXEQwG8cd//Me4cuUKzp07hxdffBF2ux2tVgu1Wg2Hh4dwuVxYW1vDYDDAZ599JoYmvV4P7XZbrLer1SpWVlYQi8Wws7MDn88n/d/8fr8kuW63W4wOVMDBBJAsGWAukev3+1IDQ5dLt9uNXq+He/fuwWaz4Tvf+Q5+8zd/Ez/4wQ+wv78vphPGOjL12EZ2jONRj8/fjcwcYG6Qwm3V5soMgslJLJnKnqhzwWOZMVtmMUkmOSmOY96Oe+04Oaa6zeO8Nmkb4/bqHE0Cn486d13XUSqV8IMf/EDkby6XC/fu3YPb7cbc3Bzi8Th++tOfjjHM6r3pcDiwtLQEl8uFWCyGWCyGDz/8ENlsVhibcDgsUubvfOc7iMfj+M//+T9Lk3B1X+zfyPtHBUgqO6yyxMb7Wr0fCcYInljbpcpACRzJpPn9fgE59Xodh4eHY3VvqkRSlXRyn6PRCNVqVerbCPy4OEVwQ4BDdslut6PdbiOXywE4AmGVSgWBQECkhV6vV8w9yFayYfZgMIDX64XX6xWJYSQSQaVSEeMTtl0ZDofS9y2fz8t+gAf98xqNBkKhEJxOp/RmYxuAUCiEUqkk15XmJgwye5Szs6aSbp18Lng8HoTDYZkTLgBwUYFg0mY7cqlMp9MIBAKYm5tDNpvF9773Pamn/HXHlw7AWS6UVlhhhRVWPCouXLiAs2fPIpvNIpfLQdd1XLhwYayZ7+LiIlwuFw4PD2Gz2QTIDYdDzM/PIxqNijV6p9PBzMyMWFzbbDZ4PB7E43Hkcjnk83mEw2GcOXMGo9EI/+W//BfcvHkTv/Ebv4Hz589D0zTk83lZIU4mk0ilUiK/jEajUqgPHCUolCStrKygVqvh7t27AIC5uTkBe7du3RL2gavLTCoByEq+kXliGAEFjViYwLPJ7WAwwL179/Dmm2/i9ddfxxtvvIEf/ehH2NjYAABJ2tRkkwmrETSa1X8dx14ZwZ5RXml0CDQmvJPOXY1JgGkSCDQbJ187TnI5aV+PAmCPAofHHXvS+5PC7LjG33+efVarVbz11lvQdR2/+Zu/CU3TcOvWLZTLZXi9XsRiMTz33HPY2NhAJpNBq9US4OL3+xEOh+FyuWThxOl0IpVKSUL/ta99DR6PB4FAALdu3cK1a9dwcHDwUL1kKBRCKBQaa5ptZJxUc5BJrKvZ/ch6UyMQBB70e6Okkd/XZrOJbDaLZrM5BvhYI0ZpH+9lgkCaFnGsao0g3SD5HWg2mwKMyY7Nzc1hOByiWq2KUy4ZTX620+mITLzZbAKAKBMIGIEjVq/X6yEQCKBer6PZbMLtdksdGQE09w1gjKkEjqSvfFawbQvVD2zHQbMRzjsblFP6TYMT9ZqxSbfH4xFJJU2h2EycdXBerxeVSgUOhwOBQEAW4yglfRLxpQNwFgNnhRVWWGHFo+LEiRPY2NhAu92Grus4e/as1FJ0u12RxhSLRZHn5HI5OBwOxGIx+P1+lEoltFotdDodBAIB9Ho9lMtl+Hw++P1+JJNJZLNZjEYjLCwsYHZ2Fvfu3cNf/MVfwOFw4G/9rb8lFtebm5uy8n3p0iWEQiHk83kUi0XMzs6i1Wohl8tJAkOr7+npaezv7+P999/H2toannvuOTSbTQwGAxSLRSwuLqJSqUjCy9VtXdeFDQAwZsvNUBtiq7VWdKbk/ph89Xo9fPbZZ+j1evjWt76Fl19+GaPRCLu7u2i32wIWVXZCPSaTNMZxDNkk6aQKLlQgp4I44zGPk0xOCjURNLY+OA7gGd/7eY75OIDwuLGa7WcSe3ccE3jce2ZgUn1v0ljb7Tb+7M/+DAcHB/iH//Af4oUXXsDNmzdx+/Zt3Lx5UwDPM888g62tLakD/Y3f+A28+OKL2N7exsbGBgqFgsgZ5+bmpNZrd3cXn3zyCQqFgljDq2CeTZt5P/Mf98WFBpXlUiW6xppSMnesMaMlPl/n72R+CE5o5a82LFe/uzxGs9mUfdM9kgw7WTL2cuN5sKYLgACqTqeDZDKJg4MDFItFRCIRTE1NyXjZfmAwGKBWq4ns0uPxiIRU13X4fD7MzMygXq+LiVKpVJJG2PV6He12WwAyZZOj0QjhcHhMLkmDEbJmAMTJUjVmCgaD4hDJ69nr9YRxJVtbLBZlPjiXLpcLiURCpJJ8PlHVwPYNvD40rPL5fMKOBoNBGd+TiC8dgLNq4KywwgorrHhUfPHFFxgMBnA4HJiZmUEmk5Emy8lkUmo2mBDt7+8jFAohlUrh4OAA9XpdbP0XFhaQy+Vk21AoBL/fj/X1dei6jtXVVSwsLOCv//qvceXKFUxPT+PcuXOyQsyC/mg0inPnzsHn82F7exu1Wg2rq6vodrvo9XpIJpMCVCgt2t/fR71ex2uvvYb5+XncunULAES+yVoTr9crbpJ0o2RixySekkOjCYORUdB1XSRUTF6TySQcDgd6vR7u3LkDh8OBV199Fd/+9rfx3nvv4ebNmwAgCZRRNsnE1MzcxAjEGCqDwfGbtSAw/uSxjaDObDzHMVaTWLtJgOg4aeLjyCsnbXscsOL7k6SQx33OGOq8TmL9HmcMx53vtWvXcP/+fSwtLeE73/kO/tE/+kf48Y9/jHQ6DV3XcfnyZTgcDgFibD/w/PPP48aNG8LYUbJ8eHiI/f19VKtVScrVMdpsNjH7Yb0og2wTvyvqmNWaTRVcqfef8V4jGFTvaZpmcP/siUbTEtUUhPsnaDKaBLVaLWmQrdbtkXlTm3cTrBWLRWHQ4vE4gsGgsJU0KOl2uwJw+L1PJBLCFPI5UqlUBHzVajVx8azX6wAgtXeUdQaDQanB07QjA5R8Po+ZmRmRbxIEu91u6S0XDofFXITmJQCEFSQIBiBqAdZFcvzT09MCzprNpjCwNttRmwGCTK/XK06XrH9jHTTrBZ9UfOkA3BEDZ7lQWmGFFVZYMTkGgwFWV1dht9uxt7eHQqGAWCwGn8+Hzc1NBAIBKc5vtVqYmprC/Py8AD2fz4dUKoVIJILt7W30+32cPn1aehvduXMHwWAQZ8+ehc1mwx/+4R9ie3sbzz33nICdfr+PSqWC4XCIeDyOpaUlNJtN/PSnP4XT6cTa2prU8oTDYWHMwuEw6vU6isUiYrEYTp8+DU3T8MMf/hC9Xg9ra2si/dQ0Tc7T4XCIw6aaeBK0MSlXWSrV8AQYT8RbrdYY+IvFYtKj6datWxgMBvid3/kdvPHGG7DZbGNyTjO2DYBIwlTQaCYv5OtM1MySZiMoJEBVk3GyKGqYARsVdBgBrfrecXLKxwGFj4rjtjeyiJNArHpOP28cxyaqYzD+bozjJKGNRgM3b97ErVu3kEql8NRTT2F5eRntdhuff/45HA4Hnn/+eRSLRXg8HthsNnzyySdoNps4ODhAJpORRQ/WzhmvFYFEIBAQBojASmXeVDkgP68uFKiyXF3Xx1g69f5TmTdKNCnbY+3XaDRCsVhEPp9HLpcT6aTb7RYAqIJEfpYSSIIgWvdzvHa7Xdw9I5EIgCMGL5fLSd0tAKn3JdChI6amHUlVvV6v1MwRQLNekDb+ZPwIiDKZjMwHa/LYHsDlcgl4ZC0te7hRnsjvLT8LPAC9dJBst9sidaThisvlEoaR14D3wOzsrJjb9Ho9aTReq9UQiURETcDxOZ1ORKNRqdOkxJPGNE8qvpQAzuoDZ4UVVlhhxXFx5swZtNttbG5uotfrYWZmRmoyvF4vZmdnUavVRDIZDoext7eHZrOJWCwmBfhsXj0zMyP9nbLZLGZnZ3Hu3DkcHBzgr//6r9Fut/Hyyy+L7IiJjc/nkxYBX3zxBZrNJkKhkCRS6qp9pVJBLBYTBmxxcVHcLzOZDOLxOBYWFjAajYT947n0ej2k02kxKyD4UU1NmIASBKkyRDNGQdM0kaDy/VQqJQkQ5aKvv/46vvGNb8Dn8+Hzzz+XxMqY3Kv1cGahAk61JsjIEpq1DlD3awRg6t/GekDj8dX3HsVAPU4tmBl4NAKj40DhcftStzkOrB23n8cBYccdxzhnx+2H95v6M5vNIpPJjEkbabFPp0NeC7WnmSqrU89DvW/8fj9isdhYvzBVPqk2o1fPU114UEG92sCbn1Nlmup7ZKv5mW63i0qlgkKhIOBNdVNVpZxqT0YCTAIJn88ndbyUOfr9frRaLQQCAXG7bDabYsFPgBYMBuFwOKTvG2u+aPfPxt8cDw2SBoOB9EtTz48AlOCLoEnTNHF45HWlQVQ8Hhe2lItOrEnWdV2YQU07qnPjdgRVfGZS7s5rQNC3uLgoRlQqeGMNHV/z+XzIZrMYDoeyYMYWB7VaDfF4fKz+70nElw7AOe02qwbOCiussMKKY6Pb7aJQKEgtRKVSQS6XEznV7u4unE4ngsEg2u027ty5I/3i1tbWUKvVUCgUEAgEsLS0JK5p+XweKysrmJubw9WrV7G+vo5wOIznn39ewBP7PDH58/v9uH//PkqlEqLRqKxCU07FpCwWi0miQkkPe2U5nU7Mzs6iVCrh/v37iEQikjTFYjEUi0VpLcAaDq7aA+YJvpqEGhNXBhsNqwk6XeF6vR5u3ryJZrOJ3/qt38LXv/51hEIhXL16FblcTlbHzQCLGTBTw8iOmTlRqq0EuE8m5mb7VGuajAn/cVJII8gx2/bnAVCPA96Mc2EGVNTjThqzGbgyOx+z+TcybQTA6jZmx1PDaLnPMNY3Ul5Iq3eze8cYZvNKBiwYDCIajY4xRioDNwlYq8Exqowdt1XdTwkYef9pmiYMF0EYnx25XA6NRkOkxsbvnq7rYw2uCYgAjD0TWBPHZwAdJglkarUaut2uAJPZ2VlMT0+j0+mg3W6j0WhIewECKa/Xi3a7LeCNUkXWlrGel+MnMKbbI+WJBExkPQEIe7e7uwuHw4Hp6Wnoui41ZjbbURsUgj7KKQEgGo2i0+kI4GYPN9Uchm6V7EMHHD13VVkmHS5pUlKtVjE9PS0LXezzyevAOr4nFb8QgNM0bRtAHcAQwEDX9a9omhYD8D8DWAawDeB/ret6+Rcb5uOH3aqBs8IKK6yw4hGxsbGBeDyOeDyOO3fuoN/vIxaLIRQK4fDwED6fD9FoFM1mUyz9z5w5g+npady9exfpdBozMzNYXFzEaDTCzs4OBoMBnn76abjdbvzoRz/CYDDAyZMnZUWdPd6YhExPTyOTyWB/fx+apuHMmTOoVCrSkJYJ2Wg0kuL6VqsFv98Pn8+HarWKXq+HqakpGXc2m0UwGJRV70gkgmw2K/Ip9i8iiGQQ1NDyn8kmMG5gAoxLE5lgtlqtsbqgZDIpJgT3799Hv9/Hb/7mb+Ly5csIh8N45513cHBwINbqAB4CbTyGGePBYJJrBhzI5BhbBqiAz+gyaHYMI9hR9z+JhZv0nvE8jPsz2+bnieMAuRH0mm1nBIOTtmFizmsHmPfrM/v7uHE9bjyK1TOTcpL5CYVCwjap82Bk38zO2RiqmySDpiQqY0j3RwIwNroGjpqP5/N55PP5MbdEgj2VfdN1XcAQe7Cx9QDr0Aju/H4/Op2O1H3FYjH53GAwQKlUQiwWw8LCAoLBIMrlMvr9Pnq9Hrxe75grJFk7ShsJojVNG2PgCBjZJNvj8UitW6fTEYfHcDgsNXZ0wNza2pJn28LCAur1OsrlMhwOB2ZnZ1Eul6UGsN/vY2FhAbVaDY1GA+VyWeZXlacCR8+2ZDIp7VXYK4/vkZnMZrPwer3I5XJotVpIJBJinsLWDpqmwefzoVKpjDlnPon4ZTBw39B1vaD8/T8A+KGu6/+Tpmn/w8/+/j//Eo7zWOGwXCitsMIKK6x4RBC8/fCHP0ShUMCLL76IVCqF+/fvi1SmXq+jVCrB5/PhzJkzGA6HeP/991EoFHDmzBksLCwgn8/j8PAQMzMzOH36NPL5PK5evYrl5WXMzs4il8shEAigWq0iGAwik8mg3+9jfn4e5XIZmUwGS0tL8Pv96Pf7YiSgaZr0TnI6nVIrR2aNNSeJRAIAkE6nBfzxMy6XC1tbW9B1HdPT0wIeVQkaE0UmZCr7pUq3jICEbIsKVlhLwwQrlUoJY7i7u4s//dM/xbe+9S2cO3cOoVAIP/7xj7GxsSGtGVRTBpWBMYbR1ERNclXGQmXeVNZNlbOpP9X9qedlZNmMgOtxmTI1HgVaHgWEzEJ9XwWjKoAx28dxQO244zxqezN28lH7Mptns30+Tqj7pgsjm3STeTMbv3ofcpFCBXi01De7H3gf0hCF7Bf/Vhti67oufdfS6TQajYbUc/GzHCeZHhqB9Ho9AU0+nw9Op1PGReapWq0Kc8V6skwmI+6Luq5jdnYWi4uL2NraQqFQgKZpCAQC8v13u92IxWLodrvSPBuAOFMCR0wWF5poamK32xEOh6UXWy6Xk3YjlCjSGKXX66FYLAI4akUwNTUFt9sNv9+P/f19RKNRlMtHPBD7ykUiEbTbbXQ6HZFfsr3EYDBAJBKBx+NBrVaTMVcqFXi9XrnGrCHUdV3GR+DJvndUOzQaDdhsNpF46rou8/Kk4lchofwOgFd/9vv/F8CP8WsEcEcMnGViYoUVVlhhxeTwer34wQ9+gFarhZdeegmRSAS3bt2C2+1GPB5HOp2Gx+PB7OwsZmZmUCqVUCwWMRqNcOnSJQSDQWSzWbRaLZw8eRKhUAjb29vY3d3FuXPnJHkIBAKSvO3s7MDlciGZTCKfzyObzWJ1dVWMCOLxuEgx7XY7Zmdnoes6Njc3YbfbkUqlZPWb1ueU8ZRKJdRqNWkkXq/X8Zd/+Zew2+24ePEi2u02fD7fWFJFswDKsMi6EQDRxc4MSBglewwycYxUKgW/3y9J2l/+5V+i2WziK1/5Cn7rt34L77zzDu7evSvOmGqCC2BsHEZQN4n9AsZbIJiBOE3TBKAOBoOHau9U6eajgNovwpwZ5+9x2LtJ+1A/YzTuMMoZVRbVOOZJgMs4TiNLZTwHs309ipH7edi448Cheh9Q/ufz+URap8ozCThU5mzSmFSGx9ggnqCLdv2UTJMlMzLJnU4HmUwG6XRaZM3Ge5z3P00+KK1Ua8/4TFBbBdB1cXp6Whi5Wq2GXC6HWq2GYrGIubk5BINB5HI5kWE7HA74fD50Oh2RDZKV9/l8Y3V7NDBhnZrqCOn3+wEcGdKwFxvr9fhsZKuA4XAoz6ZAIIDhcIj19XVMT09jZmYG+XweTqcT4XBY5KGapqFYLEoLhUKhIG6SyWQSwWAQpVIJLpdLHHi9Xi90XZfz47XJZDJwuVzyLFUbkRPMapomY6Uiggzfk4pfFMDpAH6gaZoO4P+t6/q/BZDSdT0NALqupzVNmzL7oKZp/xjAPwaAxcXFX3AYD8Jh19DtWwDOCiussMKKyfGf/tN/gqZpuHDhAmq1Gvb395FIJDAcDrG9vY1oNIoTJ07A5/OhXC5LUfwzzzyDVquFcrkMm82GkydPiq35YDDA2bNnx2opfD4fisUiyuUyVldX0ev1sLu7i8FggIsXL6JaraJYLCKVSsFms6FcLiMQCEgvpuvXr8PlcmFxcVFWglVA0u/3kc1mUa1WEQqFZIW6XC7jwoULsq9yuYxer4fRaCQmBbVaTeRUdrtdVvGBBywYnS9V5gowt8pn0NiEDF8qlUI4HEan00GxWMRf/dVfoVKp4MUXX8S3v/1tzM7O4qOPPkKhUEC32x1zxTQyHWpNm5qEm/WPU6WSqpyS26htCFTWhcdQAZ8RyKrHMc6DevxHATEjAHkc+eEkEGn2/iT5p9nxzPZ1HGg11hw+Cuwex6xNGotx+0mgzThPlLcxgadZhVqvRiCiOkQS+E8CcUY2Tg2XyyXyZQINAkPeU6zHYpuDdDqNVqsl7LV6LjyOsQ8cQRLlinRgJAAj0EgkEohGowAAj8cjzFGlUkEikRATkHw+L61J2IKh3+8jkUjA5XKJCoFjI4BhH7dgMIhKpTLGhlMq2u/3x+4Vmpfw2UJwGAwGxySe7XYbrVYL2WxWWLu9vT2Ew+ExuSfBmc121A4iHo/D6XQinU5LPXGz2RSDKspKyUDS5ZeAj+6d7DXHz9L4pN1uIxKJiJx0enra9J79dcQvCuBe0nX98Gcg7S1N0+487gd/Bvb+LQB85Stf+aVpHu02GwYj81UhK6ywwgorrACOGnnb7XY0Gg00m01xahwMBjh9+jRisRiAo95ChUIBCwsLmJubQyaTwfb2Nubn57GwsABd18WaPxKJoNVqSd+1breLL774An6/H4uLi9jf38cnn3yClZUVaS/gcrmQSqVEwjg1NQWv14tCoYCtrS1ZQdc0Tepb2EwWOGo03m63EYvFpMfbaDRCNBqVJrkulwuBQECaApOls9vt0vhYtUsfDAZiGAE8SCTVRGwSSGGiy55bwFGdSSwWw8mTJ1EsFpHJZPD++++jWCzi9ddfx+XLl+Hz+fDxxx9jf39fak14fDOmh8dVa9lUB8lHbW98DXjAunEeeL7qPlWGxKzOir9Peo3xKGmhcdyPw8gdx0hOet84FuP5GGWkv8jxHzfMQKYZ+DO+rkoWnU6n1JKSgVJBl9EVUnWdfJzxq6/zeH6/H7p+ZLwRCoXw1FNPod/v47PPPpPxdrtdeaaw1orGGMb98/5TzXdYd8g6LrWNBo9Bxn80Go3VaFFSqbYEaLfb6Ha78Pl8InEkaAmFQgCAWCwmEsJwOCygkv3SAEhNHxdDut0u3G63gE7KuunyqOs6SqWSMImhUGgMuMbjcQFUNpsNmUxGjFlKpZIsOtHkxOl0SguAg4MDhEIhhEIhNJtNAapOp1MAIuXkw+EQfr9fFsCCwSDS6TTsdju63a70qWMLAUrRKSf9eZjyX3b8QgBO1/XDn/3MaZr2xwC+CiCradrMz9i3GQC5X8I4HzusGjgrrLDCCiseFUwuQqEQwuGw1Kqtrq5KoT3/ra6uIpFI4NatW9jf38eZM2ewsrKC4XCIfD4PXddFztjpdNBoNFAoFHBwcID5+Xl4PB689957KBaL+NrXvoZUKiXOjVNTU2i1WiKFarVaKBQKaLVaWFtbw8bGBnq9Hp555hlZPd7a2kIkEpHV7XA4LHIeuswBkBXtjY0N1Ot1aeJLVnF7exvNZnOsLxUt+s36sJnJCs3AG9/vdrvSl+nevXtYXV3FSy+9hDfffBM7Ozu4fv06isUiXnnlFVy8eBFzc3P4yU9+grt374qVuGqlrrIQaq0aj2kEZwwjyFP3p4I4Jp9qrzh1TtT9mp3/pPibApvHBXk/T5iBTjOQZ5QGPmqfxm0ngdvj3psE3CYdXwVhZLpU8EYApxqGqKwbAQeZMfUcjgNuBHyUN/L3Wq0Gm+2oyfXv//7vIx6P40//9E8FfHW7Xem/ls/nhdGZNA+qQyeZN46ZwCkcDsvvdHis1+uIx+PCPvV6PXGdDYfDIiVttVpSe0Z5Yb1ex+LiIjqdDg4PD8fcI91utzxf+v2+SL8rlYoYlLABdjAYFDUAWw/wmTcYDKSmlwtflDDq+lEdYT6fh6Y9MAzhdcvn8wK6SqWSPMcDgQDsdjvy+Tx8Pp/UMKuN0nkMn8+Hw8NDhMNhLCwsIJPJCPirVqtjEluC5MFggKmpKbhcLqmXYw/RJxV/YwCnaZofgE3X9frPfn8DwP8dwJ8C+AMA/9PPfv7JL2OgjxuWC6UVVlhhhRWPCpvNhpmZGdjtdlQqFQSDQekRRHvtfr+P5eVlOBwOXL16FdVqFc899xympqZQKBSE7bLZbNIrSdM0sdo+deoUAODOnTuw2Wz45je/CU3TUK1WEYlEEAqFxK5b0zSk02kEAgF4PB6EQiF4PB7Mz8/D5XIhFoshm83iiy++wMLCgjBwBHKUMzHRCgaDAoCAI8A6Pz8vEkquMtNtjivxRgdIwLz3lRHITEq+B4MBarUadF2XmjyPxyPJ5eHhIb7//e+j0Wjg+eefxze/+U1Eo1FcvXoVxWJRkifVWEWVPxprvYyhJsMMo/skE3b1db7GJFNNpB8lazT7XQUjZmzcpDCTJB7HhqnjeRy54aRjHgfajO8btzX724wtm/T747IaXHRQ69gomyTrpi5OGKWSKuOs7k8dA+vc1OunsngEVfx+UM5Yr9dx/fp1bG5uwmY76n/WaDSQTqdRKpWEeTOCVP6u/lP73RGsUSLJ+5cyQ6/Xi1gshsXFRamzJXPPelSn04lMJiP9zMhOaZomsvFarTb23WVLAi4OkU0jK0hzFdr5swUKt6XhiNfrRaPREPaPhk38DE1CeH3IwpEF4zy1Wi2pZWO9XTabhdPpRCAQEOdN9okDjljCcDiMcrksLGCtVhNpbavVkjnmM4dtHnh+lNK7XC5ZZHpS8YswcCkAf/yzyXQA+K6u63+ladpVAH+oado/ArAL4Pd+8WE+fhwxcFYNnBVWWGGFFZNjbm4ObrcbhUIBsVgM8/PzGAwGUrzv8XiwurqKdruN27dvw+v14vz583A4HNjb2xuTMtJmul6vo1arIRqNIpFIoFgsIp/PI5VKiURT13WEQiHYbDYUCgWEQiEBKZRL5vN59Ho9MREIBAK4cuUK9vf3MTs7K0lDPB4XSZBadwccJTiapsHpdAoTxz5N29vbmJmZQSgUEpaMyRFX/V0ul9SxmIE0I5ggi2UmuWO93dbWFv7wD/9QnDYJMsvlMt58800cHBzg1VdfxSuvvIJUKoX3338fu7u7InVSk2SOQTUnAR5uRWA2dpXZUFk7lZnjZ1Tgp7I0xnkw/m183QzoHffeJFD0KDnlo947DuyaHcuMOTMCMuP+1LpFI/g1HseM7TK+bnYsFUwRvBG0qbVuqjkNrzvZGLKtKjBSmVc1VFMchtvtFrDgdrvFffXw8BDf/e534Xa7pbl4rVbD4eEhisUiWq3WmMR40vE4Hu6bjBf7l7F+zGazwefzicQxkUigVCpJTzkaInGfNBbhYhJl1isrK4jH49jd3UW9XhdXS4Issnt8fpVKJSSTSbTbbXHEbLfbsjjDvnFsm8K5IhCkBFHXdfT7fXGbpDHJ3t6e1BGXy2Vomga32y193lQTlEajIW1TaB6lyr673a60JrDZbEilUigWi7DZbJiamhJGlM3Pe70enE7n2HOxWq2i0+kgEAiMtZp5UvE3BnC6rm8CuGjyehHAb/4ig/pFwmLgrLDCCiuseFSMRiNUq1Ukk0kkEgkUCgVJHNTm3oVCAbOzs+Lc2Gw2EQwGEQqFUK/XRf5YKBRgs9kQiUTgdrtRrVbRbDaxvLwsjnQul0tc3Wh13e12pYaNLmuFQgHxeFzkUbdu3UKr1cLS0hLcbreATzJYLOafmZlBOp3G1NSUJCoqK8eEbmlpSZzb0uk0Dg4OZCWd7QVUR0hgch2c+v4kForzTVOCVquFSCSCaDSKWCwGTdPQ7XZx7do1lEolvPbaazh37hymp6fx05/+FF988YXU7zFpVYEIV8zNxmEM1TnQDJAZ5ZZqQj9JbsjfjwNXj5IZGl+fFGZM56PCbJtHjXMSwDOTNRrnRgW9xnpCtb2Dup2RYTSCaCP4JEgky0bgRtDG9xiqYY3K5k46H7OxqedJwxLK85xO59gCAyXEw+EQ9Xode3t7qFQqImk03g/qualzRvllIBAYq30jAOz3+8KesT3A1tYWNE0T2/xYLAZd18V4YzAYwOfzIRgMyvPsxIkT8Hq98Hq9uHjxIm7duoXd3d2x2lKn0ym1vYlEQlqSEOBRAjkYDBAMBuF2u0UdQBaPCzGapolqgf3iyNjZ7XZhB8PhMEqlEvx+v/SiY8sCu90uMlSPx4NIJIJqtSrPk16vh2g0in6/j2QyOeasWa1WpdcmF8Q4Fk3ThNXjuPv9vvTyZA2dzWaTtgRPIn4VbQSeaFg1cFZYYYUVVjwqBoMB5ufnhQmz2WwIBAIiKSoUjtqbRqNReL1eWRlmEkL3OCZ3bMzN1Xan04kTJ05gOBxKDzjabQNHtWqNRkOAnM/nQyaTQT6fx8zMDKLRKFqtFqrVKmq1mrhUTk9PIxAI4ODgQFbzp6enEYlEkE6nsbm5icFgIIkb64BYA0PHOMo00+k0YrGYrLgTUDLM2BSVdQMetu43JsZq8k02jaYtnU5HpF3tdhubm5vI5/N44YUX8NWvfhW/+7u/i1OnTuG9997D1taWjItgQK1rUxkNozGJ+jn13I5rU0Bpl/F81bngdsbfjUBS/dsMJBn3YYxHSSb/JqGOcxLwPY5pM4I2dR+qHFH9jhAMmLmG8nPqcYznR7ZNrXVTDUpUJk39DLdhkk52aZI0+DjgSAlwp9MBAKmzGwwGcLlcIgdks+yDgwOUy2XpU6aelzrnHCfbW/D+I9umaZq0DDDOF/unVSoVNBoNYe1o5lGtVgEcNQ13u93wer3CTLlcLszMzODHP/4xnn32WTz77LNS48sx81lHsNRqtRCNRgUscS7IEHa7XeRyRxYYfAa1Wi0BaQRGNFOhQ6TT6UQ+n4fD4cD09DQajQbC4TD6/T7q9To8Ho9IQsk48v6pVqtwuVyipCAIm5qaQq1WQ71eRzgcFtk6mUq2GGC9HK8lpZ7RaFTYOV5b1sn+9yqh/G8y7DYbBkMLwFlhhRVWWDE5FhcX4XA4kMvlhDmbn5/H9vY2dF2XxKDb7Y7ZzDPRJ6M1HA4RjUaxuroq4I0uj71eD7VaTVimRqMhTm90cWPiQMkRJZIEWWQAubo+HA6xsbGBbDaLTqeDubk5aQKezWYxMzODWCwGn88Hn88nTGE8HkcgEECtVsPS0hIikQg+/PBDSaIAyAq6mpQwQSTzBUyWfDExN2M01GDtDCVsXNFnb6VWq4V3330XW1tb+Pa3v41nnnkGyWQSP/nJT3Djxg0xQFCt/dVjqEDBmKSribNRZjkpuC8jiFOBnfr7cTJJxqOO+ShAZ9zPcfs3k0EajzFpDMa/1c8a/+ZPgilV5sjjGEGcOn+T9sfPEeCw7oyGHjyemcsk2Tg6ELKGi6ECfyODaFwQ0DQN4XAYbrdbDEvIlql2+aPRCO12W8Bbo9EQIHTctSTbprKINBAhUAXGXVnpzBgOh3H//n0ZT7vdxokTJzAYDNBut1GtVsVRMR6Po9frIZ/PY3Z2Fo1GA++++y42Nzext7eHWq2GV155BQCwubkp7rxsak3JYiKRkGtCEMa/d3Z2xAW33++jXC6L1DQYDIpdv8PhkB50lHTa7XZZaAoGg6jVasKccdHL4/GIjJL3MdUTlFBSUtlut5HP5zE1NSXgbmFhQZqAh8NhYTMJ0ggwWXvH+47tBahWsADcLzEsBs4KK6ywwopHRbVaRavVQjAYhM/nw9TUFO7duwefzycmIax3IMNDq+vBYICtrS2USiUsLi5iZmYGlUoFmUwGiUQCiUQC/X4ftVoNU1NT6HQ6qNVqmJ2dFUlRtVp9yBgAgCRBHo8H9+/fl7qPWq0GAGg2m2IHvra2Jslmu91GIpEQNznah7daLVmJHg6HSKVSqFQqePPNN+FwOKSGo1AoiJMlDROYkDJhVGuIjECFSY8x+Z0UZCY5H71eD7FYTFjDbreLjY0N/Mf/+B/xwgsv4OWXX8bv/d7v4fTp0/jggw+wtbUlkjBV5gWMs2wqSwc8zPYY6+qMY+Q/I9ibxMg9joRy0vtGppPjPS5+nveNjJvxfTNWyGx7s9/V7dV/RiYOmFynaHYcgiS11o3sFMGCuq0K4Piey+USGTNDNTZRj2ts6M59ulwunDp1Cna7Hevr61IvSZMLMs8078hmsyiVSmg0GlKjaja3/KmCN4JNvkfQU6/XBTDQqIXNtbe3t8WNdjgcYn5+Hg6HA+12G5VKRaSW8XhczEHIrPX7fRQKBemPtrOzg2w2i0wmg3a7LYtNBHK6rssiEQAEAgEUCgXpRZfJZOR1Mu3ZbBaRSAQLCwuykKTrR83M+d0vlUqw2+3iMMlzbjQaImFnLaDL5QIAec4RzBE0spUKXYHn5uak397y8rI4CDudTrjdbmmTQFUAZbk851AohEwmI0CR9X2/CAP+i8aXDsDZ7VYNnBVWWGGFFccHk4GpqSk4HA7s7u5iNBphcXFRpFZsxMuEulQqYXd3F+VyGaPRCCdOnEA0GkU2mxX7bcp+PB4Pzp07B+DI+joej4vrXK/XQyQSkaSv3+8LE8Ui+p2dHdTrdczPz8Pn8wloA4DV1VWkUins7++LRbiu64jH49IoF4DUobC3E2VTbLDrdDpx5swZlMtlrK+vi8yKyRElViowY0JvbHLN39Vt+LvZNtwnE8ThcIher4dOpzPWZLhSqeCtt97CwcEBvvWtb+H8+fNYXl7Gxx9/jI8++giHh4djPevUIPAGHm72bQwjmCMgVJlHhhGMqYDLKB01YyvVeVD/NoIls7lU96+OxbidykyY7ddsLMZ9G9+fxJLxcypY45waa8nY5JnA2mh8Y9xeZbkI5AA8xFKpY1blkrSBV8EbMO5EagRvxvP1eDxYWFhAu93GwcGBbMtzoQOsrusol8vI5/OoVqsC3iZdI/U4xutlt9vHGHqaafCnx+PB1NQUAIhxEhdRUqkUPB4PisUiSqWS9F6jA6TRlbFaraJSqchiztTUFPb29oQNUxkoNihnK4CZmRkUCgVRJdCAye/3YzgcSt3f9PQ0pqamRFXgcDikATeNR1hXmM/nxcmz1WohFAqJ+yONXMwWTGhqUq1WMTs7i+FwiEKhgJmZGVFAzM7OwufzYW9vD16vVyT0Pp8PjUZj7J5mjV0ymZT2Aipo5vPhScWXDsA5LRdKK6ywwgorHhGj0QjLy8vodDoolUrQNA2zs7PY3d0VyRJwZE3d7/fRbrdRr9dRr9cRi8XEbptg7NKlS3C5XMhms+K2Vq1WUSgUcPv2bUkoT548OZZs9Xo92O12AYUulwtXrlyBy+XCyZMnEQgE0Gg04Pf7x9wSb968CeBoldvlckk7AOCoibbX60Wn00G9XkcwGEQsFhNny3q9jpMnT8JutyMejyOZTAKA9IWiS1232x1z7AMeSCmNwOBRoEWVzgHjNUq6roubJ1mBaDSKaDQKv9+PXq+HmzdvYm9vD5cuXcLLL7+Mb3/723jqqafw7rvv4vPPPxeWgcDQWGvEYxrbBhx3f6j938wYNzMJopGdVOWDjOMAlXFejIBK3Z8RyKlyQJWJMh5r0jUyA2/G8RpZQjOWzfg3P6+Oyew81eMBEMmg2pjaTCppZODYV6xerz8E3IwgzexcuR1Zd7/fj4ODA2F7jdfJ5/Oh3+9je3tbWCualRjBrnpc3otcaOD4yYC73W6RffJzBKU0T2k0GiI9HgwGiMVi8Hg8yOVyss+ZmRnpx0g5+MLCAkKhEAqFAra2tkSiefbsWQSDQeRyOQwGA7jdbsTjcRwcHEDXdZFQVioVxONxaaQdiUSwt7cnC0Nk3uiuS6fLcrk8VkPmdrvl3o1EIsK8ORwOVCoVhEIhAUsej0cUCmyzQgYfOKoDbLfbiMfj8Hq92N/fl2dIOp1GJBKBzWbDzs4OgKNnZ6VSETdhNuf2eDyywDc9PS0LZIFAAG63W9hIo9HTrzu+dADObrNZDJwVVlhhhRXHxuLiIorFInZ2duQ/+XK5LEDCbrdje3sb7XYb0WgULpcLgUAAqVQKyWRSWCifz4fV1VX0ej18/PHHCAQCyGaz0LQjV7bPP/8cTqcTkUgEp0+fRjgcRjabhc/nE+tzVeJ08+ZNBAIBLC4uSr0c+8SROaObGvtD0UyA5iU+n2+soS5d3XT9qO9ROByW1WU24aVBCmvQmHySjSNDRnbArLk1f1cTclUmZ5QxqowLEyImRWQNWbvHFf+3334bt2/fxre+9S189atfxe/93u/h7NmzeO+997CxsSG1RqqphnpcY9sBhjpOMoJqnZ3Zir8ZuDNj59S5UX8/ju0y/j1JxjhJamkGiNS/jZJNs8+oIFUFLMbxq+NSpYnHATv1uMZ9q8yazXbk9OdwOIQ9MmP4WJO0tLQEm80m7PSkeVcNa4zH5zgpoeP3gwsZKlt76dIlFAoF/PSnPxWXV9WsxGy+j5tDHoP3Kj9LubXL5ZJar0KhgGg0CpvNhnq9jmg0KrVq/JlKpQAcNfymNDscDiMYDKLRaKBYLAqjd/HiRbz22mvodru4evWqsGrNZlOY0Ha7jXK5DJ/Ph263K3W2Ozs7Asja7bYsHKRSKXF6ZOsCNuJWmcVQKCRmIrquC0CkWzDPzel0inRTBVDBYFAYPbYgoNlMOp2GzWYTtcRwOBTJJnCkxuj3+wJ+WWMbiUQAHD2bbDabSEK73a6oHB4ljf5VxpcOwDnsVg2cFVZYYYUVx8eNGzfQaDRw4cIFRKNRSVLD4TCKxaI0ul5eXpYm12z0TXc3Squ2trbw4YcfCluWSqUwPz+PH//4x3C73VIvMjc3h3v37kHTNLGk5sovjQ9OnDiBZDI51lSW9TGsVxkOh5KEcUW92+1KfyYaBMTjcdRqNVQqFWlZQNMD1uXRytvtdos1eLlcllV9MlHNZlOSSrM2Aiojo7Iu3F79DPdDpkwFVHTLVP8Fg0EkEglh4w4PD/Ef/sN/wMcff4zXX38dzzzzDE6ePIkbN27gypUrY0BOBZKTDE0IFgjaCM7NTE6YgKps4yTwZjyO8W8zdkydTyPzdtwxHnV8o4zPKFV8VBgZOCP4VAGXkRUzfkZlQhlkvNRt+Bkm6qrDpPrP4XBIT7ZsNotmszk2XhXMq+NVj6eOQ9M0MdXgfcPFFkqKI5EILly4gA8++ADXr19Ho9EQyaSZ5Nb4XTEbE5tFUzrJbXhs1ozRoZZSxnq9jmQyiVgsJm0L6BZJNUEwGBTwwxq77e1tqQN7+umnxcSpXC6j3W4La0bWsl6vo9/vi1tjuVxGPB7HqVOnRDrJbfr9PiKRiCgBKKNkvzbKWt1uNyKRCPL5vID1dDoNv9+PSqUCm80mPTS73a4YiFAJ0Gg0MDU1JQZRDodDJJqUnjscDpFhDgYDeb5yoW40GiGRSMDtdqNYLIqD5XA4lOcjn7V06eXr09PTj/zu/KriSwfgrD5wVlhhhRVWPCra7TYuX76MaDSKSqUiq80s5KcrYqPRQLlcxqlTp8SOm6vYgUAAm5ubWF9fx+zsLCqVCi5cuIATJ07g2rVrKBaLIl987rnnpNUAndRYm9LtdtHtdnHu3DkEg0FkMhlZFVcTN4I1smVer1e2ZSNfJh+UUbGmLJ/Pw+fzIRwOy0o1m932ej2cPHkSjUZjrBaGMkrWwNhstrGaOCa4qqQSeJCwMlFT3yNwIxAy1o4BEAMYysKYvEWjUUQiETidTrTbbVy7dg1bW1v46le/ildfPWoAfvbsWXz22Wf48MMPsbGxcayUkufBhJvW78ZxGX9OAm9mbJnx2MZE3kxap4Zx+0nvTTrucayhcbyT9q+CHCNbxffN6t/MGDqGUYpoZN1U8EIgMjc3h2KxCK/Xi2azKWxUu93GaDRCPp83BYuT2EJ1/PxH8woAAj44R+12G8PhUGpJ//RP/xR7e3totVqo1+um/d2OA+gMAlB+J8h2AxDJItl3MmvRaBT5fF4MOmKxGPr9PiqVCiqVihwjFApJqwy62ALA/v6+KAGSySROnDiBZrOJVquFfD4vwHBmZgapVAqbm5sCllqtlkgZs9ks4vG4NMPmMygejyMSiUiPykgkIi0RWN9ns9mEOSMo29/fh9PpRLVaxWAwwOzsrHzfVSUCnzvJZFKUB1Q38LlJcEpWjX3haIxCNp71lOl0WnrksZk3DUzi8bg0++YzjUYyTyq+dADOcqG0wgorrLDiUfHMM8/A6XTi/fffBwCsra2hXC5D0zRJCGkssra2Ji0HPB4PEokE6vU6bty4IYzY5uYmnn32Wfj9fnz/+9/H5uYmTp48ibW1NczOzkLTNKkj0TQNXq8Xw+FQEqELFy5A0zRkMhnUajUkk0mp8aARAxMXn8+H4XCI69evS7839ldinUe5XJZE5vr16zhz5ow03B2NRlJ7FwqFpGYvn88jGo1ienpazE4o32o2m2g0GsIKUpporMdSE2SjAQiZhNFoJPVqxoRXNRLhKrnP55MVe7INqqzu7bffxrVr1/DSSy/h+eefxxtvvIHLly/j6tWr+PDDD0UKy2OZ1b4ZpZ7quak/VeboOHmk2U+z383q6tR4HFBl3JcROJiN16yOzowpNNuXGVA0SidVBk3dVm2ubQRtxm2MEkkmz5SvkelhPZWRUeVPMzZTBXgENgSL7KHG2ireywT2uVwOBwcH0tes1Wo9VBdqvC5m9wAZarpl8j1jywO1FtDv92N6elqYSSoBCoWCMEOUKMZiMbRaLQQCAZmvTqeD+/fvj9WKrayswOVyieV+sViUnmuj0Qjb29sir87lcrKfYDAIm82Gw8NDuN1ucZWdm5sTSSTbrNTrdZkHfpYLZpRmN5tNYfsDgQBisZgsIHGuVBWBz+cTW3/2tKTUvVgsAjiqi8tms+j1ekgmk6jVatIuoFAoIBAIwG63I5vNwuFwiGlMvV6XxaZEIiHMLh1FXS4XYrGYOG4+ifjSATj7zwDcpFUPK6ywwgorrOh2u7h79y7C4TDm5uZEFlev1wE8SA6np6fR7XalkavH40E2m0Wr1ZL/8A8ODvDUU0/B7/fjRz/6EbxeL377t39bVr/r9ToKhYIwPqwl4er0qVOn0O12pcEsG4xTYkS7aiZwgUAArVYLqVRKGtwGAgGEw2HUajVo2lFNyZUrV9BqtXDp0iXpRUdXvE6nI/2W7ty5gzt37iCZTMLn8yGRSGBvb2+slo7MHw0WjDU+6j++b0yaVUYOeNhB0QxY8fzobEcgFwqFRPbUarVQKBTwZ3/2Z/j000/x0ksv4cUXX8S3v/1tPPfcc3j33Xdx9epVHB4eig27WfsBjoVhZNgep+ZNnQ/j/owxCXCp+zCOzQxkmckr+dlJ7xn3cRzoMB7XKL80smZGQKYCJhXAqa+r5iIqGAMe9D2jYQb/JgA07tNsjGbBBQWCKC7acIFDdSIlK5bP51EqlaSHmMq6TWLcjEynylJycYYNvCkjVF/jIgoNVVqtFhqNhjxfyByRHSQbT/bI5XLJ9z6dTouxkcvlwvT0NOx2OxqNhrQ38Xq9cLvd0jeNzy5a/BcKBXFjBI7YPLvdDq/XK6BQdYClvFHXdQFGPA82zqakvFarwW63C7BqNBpwOp0iN6e0NBgMyuJOIBDAwcGB3DvFYlFk7u12W1QJXIRKpVIol8ti3EKzln6/j0AggHa7LfdHPB6X1gKsBaSEtlQqWTVwv8xw2I6+GMORDofdAnBWWGGFFVY8HIVCAYuLi5ifn5c6sWAwKLVhXI2u1+sIh8OIRCJjq/IzMzOyEn358mV4vV6sr6/j6aefxtzcnDjRAUdSRO4PgMgmk8mkOFDmcjm4XC6Ew2F0u11hrwgyvF6v9B5SWTH2UEomkyiVSmLJ/b3vfQ8rKyt45plnoOs6bty4gcFggHg8Dp/Ph3g8jsFggHw+j1AohLNnz4qkqFqtYmFhAQCwtbWFer0Ol8s1VgOiJt6q5JAgTJVJMqE3awausm5qAmxk49TaOK/Xi16vh2aziWAwiHA4LInw3t4evve97+HHP/4xvvnNb+LSpUv4O3/n7+CVV17Bhx9+iCtXrmB3d1fYRI6bwJKJvKZpkpxPAmtGNs4IPB53EZnnbPy82XaT9msEDsYaMyOofBTzpzJoxuOrr6ttGrg4wb9Vlov3yiTDEBXAqQDHLLitKtVVz/c48MwxkOUi40UWiIsbwIPehoPBAKVSCYVCAa1WS74DRumwOjdmixRG5o2ggd9xu90On88HXdcFjA0GAyQSCfh8PmGc2Miazxdj4/pgMCgGSz6fD51OBx6PB3fv3hXjE5fLhdXVVSQSCQBHRh6ZTAbD4RAzMzM4c+YMut0utre3hfHs9Xoi9aSJyWg0EmB16tQpqRdm7R0Xf2jvz+bYlDSGQiGUSiW4XC6RxfK8+V3nghdwtKATDAbl72Qyic3NTXg8HsTjcTGESiQSKJfLaDQaiEajGI1GqNVqSKVSqNVqYpBUKpXEIIY1wACk4bnT6ZQecW63G8PhUPptkj18UvGlA3D2n33hByMdDvsjNrbCCiussOJ/kbGwsACfz4etrS1UKhUsLCygUCigWq1ibW0NjUYD1WoVsVhMDADq9TocDodIexqNBmKxGBwOB4rFojgmNptN5PN5dDodkfSQJWJB/NLSEsrlsjSvpdkJZZNMzujSpjYCZqIWCoUwPT2NYDCI0WiEcrmMDz74ADabDc8//7zInmjQQZvzubk5JBIJYfiY9I1GI2SzWczMzMDn8yGbzY4lP2yECzxgStQE9rhaOCbDTG6NzZwJ2I6TBtKggYkTmxYT4AYCAamXKhQK+O53v4v33nsPX//61/HCCy/gd3/3d3H58mVcuXIFV69exebmpgA3MnuqoQrPb1IdmZksz/i6WZgBDRW0GJN9Ncz+Vtk6lXkzYxON4M14fONrk6SWKjgjcDOyYapjJGsozY5ldJacBIKNrJp6D5rNifoZlQGkYYq6P35vVQkt68DK5TKq1aoAN8p/jeeizq/Z++p5uFwuWdDg4ojf7xdJqMvlEifEYDCISCSCzc1NaJomZipq0LjI6/VC0zSsrKygWq0K45XP57G3tyeGTadOnUIikRCA0mg0hAU7ffo0ZmdncePGDWiaJrWy3W5XQBhwtDBFYBMOhzEcDhEMBoWp4kIUwSZBKZ1+3W63LFwNBgPY///tvXuMZOl53vd8VV1VXfd7V/W9e2Z2uDu7XHLFxVrSgiIlyBIjS2EUJAYJWJGRi6zEAiwngBMJAaIkCCA4tmMbMJzQtgDKZKwIkAhLsmCJN0skRZHL3dnd2dvM9Gz3TN+7uqrrfq86+aP6effrs1U9e++e3vcHDLoup059dU7Vme/53vd9Xq8XmUxGrn+hUAjT09OS7TAcDhEOh+V85vN57O3tSdSR5y+VSsnn4fWg2WxidnZWPkMymZTnef2z+wVGIhExQbFTOB1n1G+z0WiI0c1ZceEEHCNwamSiKIqiTGJ6ehq7u7vyn/n6+jpSqRSefPJJVKtVHB4eIpFIIJlMSr0EI1+MzFy5ckXqYJheyQksbbJ9Ph+GwyHK5TKCwSCmp6exurqKbreLYrEoE72FhQWp6apWqwAgKUoUOZyMURTSWXJjY0PcFz/96U/j0UcfPRHx6na7yOVyWFxcRL1ex3PPPYfr16/jU5/6lET2+v2+TFRjsRiy2axMLpmmyEmWHVHj5Ns2C3FP+t3plHa/MncEa5JYsu+z5QBX+1utFoLBoEQ1Y7GYTLq2trbwpS99CV/72tfw4z/+43jiiSfwcz/3c/jUpz6F69ev4/vf/z5u3bolbqAcr90Hzp0ix3GME2yTJnRuAeR+3BZDvG2fe7f4Oi2CNi6ti9Fct7Bwn4dx588tluw0RY6XAs1+zt6nXddmv88kU5RxIoy3bXt9+zV2uiijem6RyV6JFDy22ynPOR1faQjS6XROtO5wj9U+jqelwtrHilE2pnAy7ZDbMRKVTqeRyWSwvr4u9VmM2vOYMnLMa0Mmk5HvcqVSQbfblZRoYwx+5Ed+RIRgsViUHneLi4uYnZ1FoVAQocprHQUtr3NcjOL7M0oWi8WQTCalpUIwGESxWEQoFJL+l61WSwQzMFqk4tjZuoEtABqNhlzDstmsZEDkcjns7e2h3W4jkUigWCyKMRNTrpnuTUfNTqeD7e1tpNNpyWBwHEfGwobsPO6MEvI8eTweua6Xy2X4/X4RlGfBhRNwXqZQDlTAKYqiKOO5d++erKbu7+9jaWkJly5dwt27d3Hz5k2xt37sscfw/PPPYzAYiANbLBZDMBhEqVSSFMtkMikNbFutlhTcd7tdlMtlOI4jdv3VahXr6+tiY82JFVMiWV/COjz2cGJDX9btdTodfOUrX8E3v/lNrK6u4vOf/zwymYykVLVaLXF4S6VS0tz36tWrsi+mb3U6Hfh8PjzyyCNoNBqSAspVb7tpr90agJ+R2AJhnKhwRyjG1ZaNm5zb21FIMBLXarUketHv97G6uorHH38cP/3TP41vfOMb+Na3voXt7W188YtfxNe//nU89dRT+NEf/VH8xE/8BJ566im89NJL+M53voPvfve72N/fHzsOOxI3LoLljoS5n3dHr+zjYdeQ2aKIn9V9bE+Lyo0TnPcTSuPE6LjoIMdjP2abcDC10Y6ocR/jGmjboss9PvvzM73QFoJu4e8+RrZY421GnfnPbVxDg5RyuSwuqFwkmNSweVxaqft5Chx7QQN4IyrJqLtt8gOMDDhisRi2trbEUITXlUgkIgZIXNAJBoPI5XKoVCoIhUJotVrY3t6WtiDRaBQPP/wwHn/8cdy5cwfFYhGVSgX7+/uYm5tDNptFq9WSxSqmJvPYUPSVy+UTdWNTU1M4OjpCMBjE4uIiFhYWsLu7i+npaUk/pNsvI3rlcln2bZ8vHgPum2mWiURCFpHm5uZwdHQEj8eDUCiEw8NDuU6xns7+7sTjcYTDYen5GY/HcXBwgKmpKTFEqVQqaLfbmJmZkSggTVg4lmAwiFgshqOjI/nOuL0c/ywAAEd8SURBVCOhHyQXTsCx7q0/phhaURRFUYBRhMxxRo2tL1++jIWFBdy4cQO3bt1CMBjED//wD2N5eRlra2sYDAbI5/Po9/uYnZ1Ft9vFc889h2w2i3w+j1gsBmDUmqBQKMiElmKNK8uM8hweHspEmIYEbNJLd0VOeCORiKQssUYumUzixRdfxHe+8x1UKhV89rOfxcMPPywRO9ax2XUwjFp5vV7MzMwAGE0gWVMXCoVElDENa2FhAfv7++j3+0gmk2i32ygWi5LmVavVpMaN8HPZ6ZC8zQmVO7pE7idQ3NEO7oNGBXThY4+sl156CVeuXMHa2pqkk21vb+MrX/kKvvrVr+JjH/sYnn76aTz66KN4/PHHkcvl8OUvf1mMFE4TRuPG5749zkjDLYzs6JBdQzbu87ojU5PG4H5s3HOTsKNF49IAxxmS2NG1cVFGd4rkpGNib89x0/yGk31bdI2rGaSxEM+fz+eTiAoNOezP0u/3pTEz22h0Oh2pb7XdUt0LE27x6z6O3MZOH+X4eU1gXZXP5xNTDWDUeDuVSsn1BAB8Pp8Yf9gmJcFgEIeHh/jYxz6GRx55BC+99BLW1tZQq9WkTpSRsbm5OSwuLqJcLmNzcxP7+/vIZDJIp9PY2NgQgxHbIp9phX6/X1IKKWq4aMUshLt372JlZQWXLl3CvXv3EAqFEI1GUalUUKlUkE6npZbOcRyJhDKVcWpqSgxMuHjFdgSDwQDz8/Mi5Hw+n6Sgx+NxiThyXLwOMB18enpaaoUdx0E4HEYymUS9Xkc8Hkc8Hkcul4PX68Xh4aEYyfB3SrdfRjVTqRSOjo7G/Yw+EC6cgPNaJiaKoiiKMo5SqYR+v4/l5WVks1k8++yzeOWVV7CysoKVlRVJLaKd/2AwwOrqKu7evYsbN25gbm5O7LdbrRY2NzcBQFZpK5UKyuUystksGo0GSqWSmH+wdoJF+lz1X1paEnMFrkQDkO1Zi/L9738fGxsb0psul8uJGAMgk1Cmf1arVanZazQa+MhHPiI1KnwvpoYxAsjx0ekSgPSDKxQKMnFhyhMnX47jSGrl1NSURPqMeaMBtl3PZ+MWKJOEx7iUQbp90h2wXC7j2WefRTKZlN5e0WgUoVBIJupf//rX8a1vfQuXL1/Gk08+ieXlZTE7KRaLMl47fdAe1zhBdZrIGheJcws4t1gCcEL0uvfH8VAcu4/dOGfPt8I4MTYu+manKtqv5ZjdKZXjjgv35Y4E2vt2u4W6vxusI6WwZHsMj8eDer2OjY0N2Q6AtAipVqvSF4yCza6vPE0su41i+JxbvNqGPvz900iFER42qGbPtmw2i1qtJgYr/C2Vy2URVLOzs2Low9TumZkZ9Ho9HBwcoFaryfu1223pA7mzs4Pd3V3cunVL0gm3t7dFNLK/HgARSv1+H5VKRdII6QrL3/fMzAyGwyHu3bsHYwyuXLlyQtz0ej0sLy+j1WqJY2an00EqlToRRfX7/dJ/zefzIRKJoNfrybbNZlNSptnLjceOaZS2KA6FQiiVSvB4Rg3BeV2meOMCVr/fRz6fRyKRwMsvvyz1ffy+xONxOI6DnZ0daXPAz3BWXDgBpzVwiqIoyv3gyqwxBt/+9rdRKBRw6dIlTE9PY319HXNzc8hkMtJTKZFI4Hvf+x7W19exvLyMy5cvY2pqCrVaTVKcQqEQwuEwCoUC1tbWxCiADWwdx5GC/VarJW5qbHSbSCQAQOot7NQ0plDt7e3B5/Phox/9qKT/eDweMQ4gqVRKLL+5z1gshrm5Ofj9ftTrddk3XeKYMsk0zXw+j5s3b2J+fh6FQgF+vx+lUgmVSkVSnlgnRzMQRvk4KaKg4X7fiUAb99y4KAjfs1arSW0iU7uCwaBM6NjonFG7F154AS+++CLC4TAef/xxPPXUU9jb28O9e/dweHgoE2YAbxISNm7xMSnCZAuTcYYa7rRCt1nMuPe1xZIdxXw3As5OXbQft8WnW9DxfSe1C+B+3Y8Tvh/7stnClP/syByjc7FYTCb8bH1RKBRORLy433q9jlqtJlFZ1rbZtXDj0nrHRUTdCwn2d9xOh+WYuRhjjJF2GPwtMQofi8XEJRUYLZzwO80oPaNF1WpV7rfbbdTrddy4cUP6QIZCIfj9fjz88MPw+/24c+cOpqam8OqrryKZTMpCTi6XQyKRkO8k7fVZv1atVqU+EHjDLAWACDpeyxqNBvb397G6uoq1tTW0222kUins7++f6FPH651dC2hHv2mMYoxBJpORPoBc9GJ7AIp0Y95wx+Qx5bhnZ2el2Xs4HMbCwsIJl1s2I799+7akd05PT0vdXywWw61bt0TYxWIxHBwcSJruWXDhBBxdKDUCpyiKokyCheuvv/46hsMhnnjiCZTLZdRqNSwvL4vT29zcHFqtFp577jk4joOnnnoKi4uLGA6HaLfbuHfvnpiV9Ho97Ozs4MUXX8QjjzwiaUTD4RCRSESK8judDmZmZiTaRXOCeDwu6T+cvHGFmXbd/X4fkUgEkUgEfr9fJoa0C3ccR1IkAUi/JGOM9Hfa29uT4n029DbGiEgslUpIJpO4c+cO8vk8MpkMpqenUSgU0Ol0pIVCpVKRySknnIFAAP1+X94TeHPEYlwUzi123FEuYhudTBJJtpCjhToNZJrNJiqVikTjaHpA85hvfOMbMMZgZWUFs7OzuHTpkjiV0hzBNsu4Xw2UOzpnm5SMa2R9WlqhfWxsoXDa+9qi57TI4Lj00HGpsXY0zo7ejhOdk8ZmR9smRauYomcLKW7LNMmpqSnMzMwglUohkUiI6cjBwQHa7bYIPGOMfB94HmnHT7t6puiNE+fjFgvs42ozLoroFpH8x35t0WhUjiMjUHydMaO6s0KhIAsmdLs1ZtTM2+/34/DwELFYDF/60pfkNvd/5coVFAoFiZ4VCgURa/V6HcvLy8hkMnIsPB6PpClSnDHFmiKNUTkuhNjC6+joCOFw+MTi1e7urvReowByHEciWMYYHB0dyfUjmUzKOclkMlJ/m06nJfKVTCYBQER4OByW60ooFDrRqqDf72N/f1/MVObm5rC2tiZmR3Nzc9jY2ECxWJRFLUYts9ksdnZ2UC6XJZLH45NOp9/0ffmguHACTiNwiqIoyv04ODgQ638Wxft8Pmnqzbq3w8NDbG5uYm5uDvPz8yds/g8ODqT+jVb5e3t7uHbtGubn57G+vi41JrFYDIVCQSaJjUZDoi+9Xk9WkplWxVQgTui63a7Y/nPlnNbcdvokm11zv5xMhcNh1Ot1HB0diYkCG4dzFXk4HMLn82FxcRGtVktaLQyHQ8zMzIiDXL/fR7ValTqTSqUiopPpT8DJyaw90bWd/MZF0+znTjPsGPcaNzQ2aTabCAQCImLb7baIumAwKM59jUYDzWYTGxsbUqOTTqexsLCAg4MDEQDsgTVO+Lg/tzsFkcLHjsLZ+7DF3Lj9TBJ549Isybh0P/t1dqTO3WfNfi97rG5jETvqNu493MLGLVrt93Rb9du1bVwMoX19s9nEa6+9hmq1KimI/E7TjIfRNtaQcZGBqZKTcI9t3PNuQc3Pa38eOwWXxiV0n6QIYgqyx+NBq9USV1rHcSTdjzWwoVBIzEna7bZE0lqtFnK5nBiBzM3N4dVXX8WVK1ewuLiItbU1Melot9t4+umnZcGDKYqMVHHhiL8VukdSqNFhstlsIhwOS+QrFAqh3+/j5s2b+PjHP47r16+LaUi320U8HpfvG5txUxwBOJGayWbcNCNh2wNG7EqlkrhdMh2SKew0WqHRidfrRTQaxdLSEjY3N8Xt9+rVq9jf38fW1hYcxxHRCUAif8ViEd1uFwsLC9IXkC1lzoqLJ+C8rIFTExNFURRlPLVaDaurqyJCmGbHycH8/LxEvTKZDBYXF6WR9dHRETqdDmKxmPQoojvc448/Dq/Xi3K5jHq9jpmZGSSTSdRqNYTDYdmO5ga0ro7H45JaSaHBui6mJoZCIbH8tyeddgNcRuE4yeBEd3d3V1zVgsGgpKDxWHi9XrTbbRhjZCwejweJROJEDQ5Tl+bm5nBwcCCGAPxcxhiJFHAyylTKcQ27iS3EJgkNN291e6ZwcuyBQEAmzRTJdgosJ7LVahWtVgt3794FACQSCYRCISQSCakJoiA4TSBxDHbUym7HALzZuZGc5h45zgzGFkl2ithp4s79PrbosLHNSuxx329/41Ik+Z3hueF2jJjx8zEVLpfLIZfLYXp6GqlUCltbW9je3sbdu3dlW46biwzsb1av1+UxCjeeM/f4Ji0YjEujdC8wuKOT9rGwzwvdFhlJ7/V6Uq/Hdhhc5KnVaiImEokEFhYW4PF4UCqVpH6M15vBYIBYLCa/cUbblpeXkc/nRRQ6zsjB9ZOf/CQeffRR3L17V5qU050zGAye6LFIQw9GpegqCYyi/DwOqVQKHo8HR0dHyGQyUjPGdgQUltwXf5dcEKC5VL/fl3pVijL2cAMgGQfASPAxqp/L5cTtkotKTCMPBAKYnZ1FsViU783Vq1fRbrellQIX0bxeL9LpNEKhEO7cuYOjoyMkk0kEg0Fsbm7C4/GcyHQ4Cy6egNMInKIoinIflpeXZUUYeMORkTUoAKR2IxKJSPoQC+IjkYik2zBVa35+Hu12WyZDjBSwaS1TuWZmZk444OVyOWkkG4lEEI1GpYaLqZnhcFhqP+hCx/0FAgFpNM6JbLfbxezsLKrVKra3t9HtdlEqlSSVknV2jKbFYjH4/X7s7e0hl8thbm5OJl2MFLDuhiKTjW+Pjo7EWZMTW07O+Xo7KmfjngDb6X7vlHGpgnYaJ3t6MSrHWkLWGNGFb3Z2VlwtfT6fOHBy3zxXdr89TkrddVT8jnFy7zb4sP/ax8P+637O3YNv3Da2EDutjs6NW4DZ6Z922qdtWDIuWugevzuSZ6eRUsAxapLNZjE3Nyff/d3dXdy5cwevvPKKRHop3vj77Ha7Itrs3m2ThNuk79+4tEn7Ne7749Jq7ePFBRv+9nhdoTBiH7V6vX4iis3jEwgEsLCwgGq1il6vh8XFRfj9fvR6Pezv7yMQCIixRi6XQ6lUwsHBAVZXVzE/P49yuSxR+uFwiKtXryISiWB3d/fEWFnXa5vCVCoVST/mOT84OECn04Hf70e73cZgMJAUcFr6VyoVFItFWRDiAhYdeXu9HqLRqJyfUCgk1zs2HGd7E4pOHt9qtXri90SHYLZ8oPiv1+vSdmF2dha1Wg3r6+toNpu4dOkSBoOBpNFTuDG6mMlkcHh4iGq1ikgkgmQyiUKhgF6vh3Q6jWg0itu3b7+l39P7wYUTcKyB62sfOEVRFGUCnNAFAgGxoWcj7l6vh3q9Lv3PaHhA+2xODFnHEo1GEQgEUCwWpY/S3NwcUqmUpOnw/Vi7QivqRCKBXC4n7xeNRrG7uyuTINaLMGJkG450Oh2x326325J+CUD6RG1ubiIejyMQCGBra0v61fHzttttZLNZiUQyPZPCwOfzodPpoFgsymo8J4j5fB6O44ghC9NC+Xk5GWJKKEWNW6TZ0Sl3WuI7EXLuybUbvnen0xEhxygchdz09DT8fj+i0Sg+8pGP4HOf+xyeeeYZXL9+HXfu3EGv15PoKEU/zxOd7+yaolwuJ1GhRqOBdrt9Iho1KQWTTIqgUSDzNqEBiX3fjhDZUTvbaMMtSOxtbFMO+xi7U0AnpYLan8muB2MPs2QyiXQ6jdnZWUxPT0tN240bN1AqlSRdmBFpACIY+HtiCizNSHgO3AsI7uNrf3475XGcWHNjizT7vp02yXYGfr8fiURC6t7oNMmeaayt4njD4TAikYi0QWg0Grh27Rq8Xi+63S5qtZpcgxjB2tvbQ6/Xw0MPPYRkMikNq/kvl8shHA4jHo/D7/djf38fxoxMVRgtZ/oka96A0W86Go2iVqsBGEW0yuUyvF6vRKVpLMJMBRqBLC8vYzgcolqtynj4HfD5fFKry2vpzs6OZEX4/X7p7RYIBMSwhN/9Wq0mbU54bWYkkuY0vJayjjedTsPn8+Hu3btoNBpifsL023w+j2KxiI2NDXS7XaysrGA4HKJeryORSCAej+Pu3bvaRuC9RCNwiqIoyv2o1+tIJpNSX2avuLPmKxAIYH9/XyYTnLBQhLHPmuM42NjYwNTUFA4PD5FOp2UCUKlUJLpFcchIWzAYRCQSEQe6UCgkxfJ2KhRXuRltY3PhWCwGY4ykINnOfVxtX1pakkheNpsF8EY/KU6A2KcpHA5jZmZGVvaZzsXUK6YNtlotJBIJbG1twePxiMMbjQ04EaIJgS1U7ImxOy1tXE3Z/UTcaZPqSY+5t+eEmSKYtu521OG3f/u3kclkEI1Gsbi4KK0ZGNVhOhnrm5LJJB577DH4/X6srq7i6aefljSwjY0NbGxsYHNzE2tra5KSy0n7uIjaWxF59uezxdu4++NMRsYJsEkpnuPq3cZt447W8XtO85FIJIL5+XmxwT86OsKdO3ck9Y7HgueZE3Qaj1CAM6JD0cb6Nv6eJ0Vk3d8J93Vg3GvGiTp+z93tEyhwmTZI8xyfz4ednR35jjFqGAqFTtR/MW26WCwiGAzi6tWrsgCztbUlmQT8zXU6HQSDQSwtLaHf72NnZ0fGwhq6RCKBSCSCbDYrAocCiYZLjFQzu4DijVH8WCwmGQjT09MimCORiFyrZmZmZDypVArb29ty/GyDGS4kNRoN5PN5yRJot9uSYspty+WyXGscx0Gz2cT8/Ly0TrDFJBdo5ufnkU6nUSwWJQWUQpTZCvZ7zM3NodPpyELN0tISQqEQXnnlFWnF0Ov1pGburLhwAi7oH12kmp3xKQWKoiiKQhMQRl34HzFTt8LhMLa2trC7uys1Y5wAOY6DcrksTWkPDw8lnefq1auIxWLY39/H4eHhid5UtMBmw22mE4XDYQCQYnym8thOcewLx95tdHhrtVonhBLThthfynEcEYhsZUCjh0ajIf2bEomE1JJwAkr7chomvPrqqxJlYkpUrVZDr9fDI488gmazic3NTYkMsKUAAHlPuxmzO1IzLjpyvwmS+3l3dM8WeO50Ofdrh8OhiINmsykT72q1ijt37iAcDsuxpOW7ff7a7bakUe7s7ODu3bvweDzI5/O4fv06PvrRj2JhYQGXL1/GJz/5Sfh8Prz++us4OjrC5uYmdnd3xVyHTokU63Z0zH187ObWthjmX/sc8LPbAmNcxA14c583O9Jmj8Gu5+P7MYLJCW8ikUAymZReY0zVOzg4wO3bt6XvIlOa7SjbcDjEYDAQ4w37H7/7rAu13STHnffTvkPjvivuyJr9GneE0V5A4bgZ1ff7/YhEIhK539rakt8ro7WMwgGQqNtgMEChUEA8HsfS0pIIm2KxKPVmjuMgnU5je3sbg8EAqVRKzlWlUpHjx+3povjVr35VekXaDpz8vrE9CKPptVpNRA5dICmU2FScpjBcwOH+6ULJ3pZ2pK/X60l7gb29PcRiMTl29rljBgQFV7vdRjwex9TUFI6OjjAYDDAzM4P9/X0RektLS8jlctjf35eMCy5YMRLOa26v10M+n0csFsPLL78MYwyy2Syi0Si2t7dl4cHn82F7exudTgfxePzU79b7yYUTcInQyHmo0uqd8UgURVGU84o94WQ9WCQSwdzcHAKBADY2NnB4eIhsNotSqSS9poCRi+Lc3JxMTJhCmM1m4fV6sb29LRMSRh04WeNk2BgjxiPGGJRKJQQCAQCQRr7dbhf7+/viWMfGvOFwGMPh8ERND0UFJzyMotk95YLBoLyGE+S9vT2srq4iEAigVqvJZIYihilNi4uLJxwzg8Egrl27hmeeeUaMFsrlMkKhEG7fvo12uy0TQE7+Obl2iwZjzJtE3f3SKCdNrN37mDR5P21S7zjOCUFAoxqmWvJY87zyXPJ8UlCwNq5areK5557Diy++KNG5VCqFTCaD1dVVrK6uIp/PY2lpCZFIRNJSmUJYrVZRKpVQrValJocptHaEiQKCESG77s/+6xZgwEl3Sf4+KEbsOjVO4Pkau3cZaz4TiQRSqZREnSgy6vU69vb2cOPGDTQaDTQaDVmAYOSMvy9blPG7yMiOLdpYe8h6uHHndlw01/6OnBatnXTf/q7w8/H48HvHdDyPxyMpfBQb3H53d1dus/n09PS0RIi63S7m5uaQTqfF6Zb1YrTRj8fjEh3KZrPweDzyvaUxCqNqiURCFgns1GdGK/k9ByCpk1woAiBNsgFICw5e1/idjMfj4vDb7/extrYmdY1slcDzxfYOg8EAiUQCfr9fFk94/nmt4jkIhUJoNpuIxWIIBAI4PDyUrIBCoSALarOzs4hEItjf30e9XsfU1BTS6TQajYbsiwKbC2a5XA537tyRHn3pdFrcZ7PZrBhXMX190vfig+DCCbh4cCTgyirgFEVRlAkwLZEF6/F4HJlMBo7j4N69e7h79y6Wl5dRKBTEYptpWjT4ODg4wPr6Oubn53H58mXUajXcvHlT0rc4mYvFYjIZ4uQuHA5LCmepVDoRmUqlUmi1WmJOwCJ9igcAUs/h9XoRi8VkbADEQp01cVxNTyaTaDabaLVaYprQ6XSwtLSEbrcrQrHdbksdGBsPh0IhrK6uYmNjAwAwOzsrRgCvvvoqotGorMCvrKyIDT8n2ez3xEmoXR/kTqW0UywnMUm8vR3cdV/uCIv9j72nOAmneyWFHGvd+I/PjXOXPDo6QqlUwu3bt/GXf/mXCAQCUpOUy+WkFiwajSIej2Nubg6RSEQiqkwbrFQqUjdlRw6bzaZY5jOiRYFHZ0HbxZRCjCKNdUk+n09cAylO6dRJ+3vWDvJzNhoN6al39+5dlMtlSV2joQjTDDkOO8LG3w7TI+0aNrews91Yx53Dced4UrRt3PfI/b2090nsqKPbxIePMcrPSA5rstj2wBbLPAdcALpy5Yr8rvgbDwaDSKfT8Pv9aLVaePnllyUCxgUbRqBYVzsYDJDNZiXd1xiDXC4nUUEeW4pkpmMyEs/vOaNrfr9fonvMLqCpyeHhobRb2d/flxozANJo3e/3y/s1m02k02lMT09LlgNrGlknR9dJjoc1bMViUcQfFzj6/T4WFhaQy+VQLBblN7K0tCS/DV4reWyj0SjS6bSksAcCAbnm01Ezk8nA5/Ph8PBQUi7phHkWXFgBpxE4RVEUZRKcIDFViXUThUIB1WpV7KbZd+3u3bsIhUJYWFiQCerh4SGWl5dx7do1cccLBAJIp9Nih03rc042PR6P1Fix7oOujmy8y4k467AAyF87fajZbCKfz8tqNpuAc6I1GAxQq9VEBDIaYoxBJpOBMQabm5tiNc42Cqw9chznRE2O3+/HtWvX0Gw2pQ9SNBrFysoKBoMBDg4OkM/n4ff7Je2TIoN1WIwW2fVuhJPqSZb87km4zf0EnTvi4t7PpLRNd0SQgpgtJhhlsVMqGQGxo1Z83D4HHMtgMEClUsHR0RHu3bsHj2fUmJ0igOc/m81iZmYG0WgUyWQSkUgEsVgMqVRKxBbFO8fK80gRyogWn+O47bQ/+/UUd5ycU5SzNpLRnKOjI9RqNYmIUYBxf1yEsNMbOQ7WEtqCjcKO4o4CjwsCkwSbW6CNS4l03x8n7iZ9l+z3tCNvdgTTFvlswzEcDrG/vy+tKxgF54IM2yXYY7t8+bKkLHMRhM6ndgRvamoKS0tLiMVi0qMykUigXq9LT7eZmRlZBKLwTiQSEqUDIDWgPMccVyKREBMnRrDYB5I1fDweR0dHCIVCmJ6extHREebn57G3tydmSLlcThYbWI8Wj8elDi4cDks7E6ZLJhIJEcL8TtIF2O/3I5vNYmtrC+12W65r7OnI3nAzMzPodrty3eexpEkUG8EXCgWJ1IVCIdy6dUtaVyQSCWxvb6NarcJxHIkwnxUXTsAFfV74vR6UmyrgFEVRlPFwVZymALu7uxIl8vv9KJVKUoPywgsvIJFISMNvrjxfunQJly5dwjPPPIPbt29jZmYGuVxOUhAZiWHaEJ0fWejPGoxYLCbRONqIc8LCyAaFFVOyWG9XrVbFBKHRaCAWi8nEkhMtRvToYlcqlSRNizV6rGfjhInua5zgx+Nx6U3HSVSlUpG6EaYosV7nscceQ6vVwve+9z1pz8A0OU7eJ6VJ8vPZ9V0Ufe50uLcaibP3f9pr7lcnx8e4gu+OzHEizjpGCiA7dZaPUfgR203SnhQzSlMsFvHaa6+N7etGsc/eYkyb43fIFhiMWtkW7RRWdqTLjpiVy+UTkS++P5+3j40dKeM2FI62QKNgo5jh+eb2dsQQeMPkZpxoOy2NdtK5HHfOJ+3PjR15s88ba1WZVsrjwdq2cDgsx8aOeNpReqbZBgIBxGIxWQCJx+Py/Wq321hbW5O+hLFYDO12WyJvMzMzcBwHhUIBqVRK0pyvXLmC1dVVlEol7O3tSXokF2T4u6Og4rXMmFF/SAovNtKmIyUANJtNGePm5ib8fr8YhTSbTRFBh4eHGA6HSKfTItJo0sIoWygUEvHF9+Pxo8srF5gODg4kWsf6W8dxsLq6CgCSFspaQzYc73a78Hq9mJ+fl/rT6elpJBIJJBIJvPLKK1JHR1Oq/f19uQ6dZfokcAEFnDEGsaBPI3CKoijKRKLRKPL5PKampvDqq6/i8PBQIhl0catUKrh+/Try+TwWFhawt7cn6Uf5fB75fB4vvfQSXnjhBaysrEiT3cPDQzHAqFQqSKVSCIVCJ4wMGP3jxI2pOlx5to0hWFtC9zqOcXt7G41GA9FoVGpouE9GKjj5cbsrsibu4YcfxvT0tLjL0QTFrv3I5/MyuaxWqwiFQjIBS6fTeP7552UyxYnn9PQ01tbWxOWSE3WmbXLiSuFwv1o3t+29nYLnjp69nbo5e7I+SbyNM7dw7xfACYHDxQCPx/MmMWfXlbn/cnsKdcJolDt6x+NAxz1OqI15oyk2cLLhNiefdjTUTqm0P6ftGjqutQBFFj8/RSAjahS7rAm0RZn7Hx/nPsadD/tcjzvv484Lx39a3eRpIm7SRN0+vjwv/K3xN81zlkgkJD2R7UB4TpLJJBYXF0Xc8joUj8clijQ9PS3tQxihp5uix+ORfoysUd3d3UW73UY6nQbwhsCPRqOIRCIijjqdjqQBMiIbDAaljozHju01bGMWijlCg4+DgwNZQOD3mamct27dQj6fF/Mktk1gLTA/NxcwWBfM69n8/LykMMbjcZRKJezs7CAcDovoBN5YNAiHw1hfX3+TeQrTMufm5lAul6UGmRHBra0tNJtNLCwsiJvm5uampJB6PB7JkjgrLpyAA4B4cApVFXCKoijKBObm5tBut3H9+nUUCgVcunRJolFerxd/8Rd/gcFggEceeUTSdbg6TLOJl156Cbu7u8jn82Jg4vV6JU2IdR2hUEgiLbSbZwTQ6/Xi4OBAUqs4yeSEkBPyaDQqqVTGGBwcHIjJCh3U2PqArnE0DaCBAlMYmWpJww2aYrD2hhEjTgw5AWcEkIKkXq/j4OAAsVgMW1tb6HQ6SCQS0sfJ6/XioYceQqfTEXMBRn3YcsCOCBF7sm5HXex/AN4kaNyT7nGT9dNqpMYJtdNW2cdN8Ck27YgSU8JYz2NH6+y6Ofc/+7Nye74f71NE2IKOr2Eap/353DV5boMT9+ewPyMn0dyWQo1ii98tW6DZx4H37Sibna7nPofudNdxonpSKqWdZjnpXNmfddy5HRfldde82dFQ9mRkLRdfw7RAO02U4igYDErjeF6HgNH1iemPXMRhyxO6fDJSVywWJVpOB1z2dLQFV7FYxPr6urjdsnUBU7xtt0mmWdZqNYka8nfKrAJGvZjuG41GcefOHQCQvocAkEgkJKXSNmC5ffs2PB6PWPzbLQxobMIU7m63i3w+j/39fQCj2jWfz4dCoSDRR2AUVY5GowBwwhGXNb5Mxc1ms1hdXUWr1cLe3p4I11Qqhd3dXRSLRSwtLSGbzaLRaGB7e1vSTXmNtX+TZ8GFFHCJkB/lVvesh6EoiqKcU/b29mR1++rVq1KI7ziONL9mT7RCoSCToEwmg0AggN3dXXi9XqysrIjJSSQSERdARrtshzbWhdFsoNlsYm9vDwDEop5pSwDEIZP74ASOzn1sut3tdlGpVBCPx2XiadcV0eaeERF+Vttshe6ZdKFkg2FSqVQQCoWkTq9YLKLT6WBlZUUiCsPhEKVSCY1GA5lM5oSLXTqdxu3btyUCwbQ54M1iAXgjZdJ2qrSNT5jG5/V6TzgucttJYm7cfY5hkrhzM0nUud/D/su6OGJHsyjCbOMLW8TZoswt7OznKOzIOAMVPs6Jpy2ibHMR9+eyzUZsEeZOn3QLNfdrbVHHhYpxYnmcOHOnwdqfe5Iwu1+UblJapXt7e4x2qwA+z987jz/PG6Ph/X4fPp8PrVbrxPllfWG9XsfKygqMGfVAowkNzTuMMeh2u5iZmRFhzrRrjmF6ehq1Wg3tdhuJREJMYa5duyZmMpubmzg6OsLly5dFxNH90uPxSH/DSCSCQqFwwvEWeMOEiC1C+Jkdx5HWCIlEQloO8PU0Jcnn8+IyyRpamrmEQiHU63W5PkQiEblOJRIJcY+k6dStW7ckBZguuDTaMcbIYpn9nWdLmJWVFXi9XjFbMmaUxlooFLC1tYXZ2VmkUqkTRkFcDKN4dbc5+KC5kAIuHvThoHZ2zjCKoijK+ebo6AitVktst9lbqdvtShpiq9VCpVIBMFp1zmQyaLfb2NvbO5FSyMbdTK+kCKIlfKFQOBG1cBxH+hCxDo3RMZqfDAajPm6cENM1sl6vIxAISMpRr9c7YXLASQVbBjB1qtvtnphkMnLCOj0AWF5eRqvVkpQtpmfdunUL165dk9YEdM2MRqNot9totVpYWVkRswJOeuy6p2AwiNnZWUxNTWFzcxPVavWECOHnt6NxdhTEFjw0g2H0zh2dGSfO7H3yr1s0nhaxGycYbCHCx+3IoTti6Bas9mv4ubkAQAFgCzlb4HG/tpHGaVEpOyXSjT0u+7Yd6eRf+zO7I2w8N7ZRifv4uPftTtUcd57c52ZSOqT7cX7WtxJNtTntvceJYtsYhL9Xn8+HdDqNZrMp0Uua3tginQY3vGbwOtLr9U64U7L5dqPRkEWgwWAgLS6A0SJLMBhEMplEu92WRZd4PC6/R2NGTqE3btxAIpGA4zgnHERp/sFFGDpa0piENbo8LrwGMBUyl8uhVCoBgNTPMeKfyWTEGTUcDuPatWvSUoI96kqlEjweD1KplFzfeB1i9H52dhavv/46KpWKZBqwno/OuYyW8RrI4wsACwsL8Hq9eP755yVCOTc3h729PWxubmJlZQXpdBr1eh2bm5sIBoNwHEfMfrhgZbu8ngUXVsDd2q/df0NFURTlQ4nH4xHHsm63i9dff13c3KanpyVlkvbuyWRS6i1Y2xEIBDA7O4tcLif1EJzAJpNJiWqxvs4YcyIlKBwOS3SMogR4Y8LIyQFNJLgCzFQ8pigZY6TOJBQKnejplEwm5XmuTLdaLZlkcsJJl8FAIACfzyd1a9FoFMvLy7LyXCwWUa1WxRY9FAohGAyi0+lgYWEBtVpN7Lj9fj+q1Sr29/fFLa7T6SCTyUgkkZNiTi4nReNswWA7Jtoi4bTImC263Pud9Bp7m9Mm/5OiOrYA4ITdtr3nc25TElvQuY+DLdzGReHcETp7H+MiVbbAGveYHU2z0xLtVMr7HUP3sRr3+Lionz1Wd6RuUgTV3mZcGuVp55zb8P04rnHHlu9H8UUzDv7u8vm8mP2MWyzo9XpiYU9nSfaZpBmH44z6AdKY5ujoCABE0BSLRUl/ZAp2NpvF2toaDg4OpJ/kxsYGyuWyLA4QpoT3+33pOUhnSKZjF4tFRCKRN4kiRs/YUJ3ZCTRIYuTQrmWjGQuFEH//qVQKfr8fe3t76Pf7cn1oNBrIZrNi1+/xeDA7O4uDgwOpWfP7/WJiQhHNhSOmgrIxOI9POBzG888/L6ZSs7OzqFarKBQKyOfzSKVSiMVi2NnZkUW0Xq8nxioUpRSMZ8WFFXBqYqIoiqJMggKFYiaTyWB+fh7GGOklxEkVV9LpTEnL9lAohEwmg1arJTbZnU5HCvRv3Lgh1tbBYFBW3zudDoLBoNjt2xElRlmYQkTx5vF4kEwmT4gRplcGAgE0Go0TE0b2emM0hBE71rkAkNVppi9R4GWzWZnEU/jRKW5ra0seY90JDVI4lnq9jhdffFGOneOMzBJ2dnZOiOZarSaf306ps48FX0shYTv+jYvu8LY9UR0nnk6LyrifcwsJ9zb2ZN8WGpy0TxIDbrFqR/UmCUY70uWOELk/w7hom3087P3ZrpL24/b72p/97aQmjhPO9t9xjBOg4/Zt37eP3f0ikePG6I7i8vtvHyM74snFDkbAST6fF7v6drstqaOshW00GojH45IBsLq6imw2i2g0ikqlIi63juNIyjadG+kEyzq2qakp1Go1NBoN/MzP/Az29/dRLpcxNTWF1dVVeL1e7O3tSaR+MBjIPoBRSuTW1haKxSJ6vR4WFhaQyWQwPT2Nvb09EXhshcDfIOvraOoxNzcn5k18n0qlItfJSqWCRCKB4XCIWCyGUqmEo6MjPPbYY1hfX5eaN0b9aMDCY0ehV6/XxXApGAzi4OAAzWZTnCP9fr+4+/Lz1et1cdINhUJ45ZVXUKvVpOdir9fDvXv3EI/Hkc1mkc1msbm5iX6/L9dWpp3zuLHBeiKRmPgdfr8Z/+t+wIkHfai1+xgMzy43VVEURTm/sG6M9R+pVArAKLWSKUNsWFyv17GzsyPGAbFYTFITm80mHGdk2b+1tYV0Oo1ut4s/+7M/w/r6ukxwmL7DFgFczQUgETBOnh3HkXq2crksTbhtJ0Ouyvf7fdRqNSQSCSSTSTEhsR0oOclg7YotImyXPLpc2sYYwWAQ/X4f+/v7qFarqFQq8rgtuuzaGI/Hgx/6oR/C/Pw8NjY2pK8cxxwOh5HP5xGPxxGNRk/U+THFk05vHJ+72TQn2u6UQrepAJ8fJ97cAnBcpGqSeHALAfd+OG5+Bvv93UKI29s1ZeP2bY/HTm+0hZw7DdL9mPt4udMk7fdxR5vsVEn3dvc7bu7xj4v8ubex9znuuN/vtfb9cdFH93P2+WB0zb2N/dzU1JQ0qGa0PJvNyoIOG2+zETbbCszMzKDdbiMSiWBhYQHz8/NSA0uxYEfmms2mRIvi8bjUxnJsGxsbSCQS6HQ6kt7MCCBNPygyw+Ewer2enMfDw0M0m00xREkkEjDGnEhP5O+bnz2TyYiYCwaDWFlZQbValQyBWq2Go6MjVKtVibSFw2EEAgGJJLJ/HVtKAEA6nRbjFqaAs46NtXM0aKEpCsVwJpNBKBRCs9mUBTh+5unpaSwuLiKTyeDOnTsoFArSS7HX6+HOnTuYnp7GzMwMlpaWRASzV6cxRq79FLNcTOM1/Cy4sBE4AKi2ekiG/Wc8GkVRFOW8sbW1dcKWn6vahUJBVmY5yWSqosfjQT6fl3oMRpJYE3HlyhVMT09je3tbattyuZzUq1DM8XWEDZL5HrFYDI1GA+VyGalUStKzWO9CB7ZyuSy9lwCIo5wtHmxnyXa7LXVysVhMJvNM+wJGE3yaLkQiEQwGA3Go5KSo0WiI+xtNAezohzEGV65cwcbGBlZWVmQiy1QvrtLncrkTkSgAkjpG4WNH4mwRMS7F0U4R433bPGRSnZVb5HF/44SffZ5sMeOODtqpc/ZxAXBi/Lxv72dcxMp+v0mRukmiyf489nbjoomsReRr3AJx3G37fe4nytznza4VtJ+3X8Nt3C0j3PudFFl1H08b+xi4Fwb43m7By2gz3V2ZUjgzM4NyuYx4PC6NzgFIxLrZbIqjbSKRwMrKCvL5vCzY7O3tScSODra2gRLrciORiKRsP//882I6sr+/j5s3b4qDZalUQiKRQDgcRrPZFAHp8Yys/YvFoqQ49no9pNNpeDwe1Go1OWb1el3GbowR914uDrHmjduxLQENWCj+fD4fjDFoNptotVqYm5uDMQbb29tyreH1YXZ2ViJ+Pp9PInalUkmuoY1GQ3rLsRE4zWDs9NZAIIB0Oo1wOIx79+5hb28P8Xgcs7Oz8Pl8uHPnDhKJBOLxOC5duoSdnR3s7u6Ksy+AE/XOjuNIGjsAaRdyFrxjAWeMWQTw2wDyAIYAvuA4zj8xxvwGgP8GQOF40193HOeP3+1A3w7J8EjAHTW7KuAURVGUN+Hz+cTynhSLReRyOczPz0tKYrvdlpovmnCwzxFXxlOpFPL5PLrdLg4ODiRNiP+4Cu/3+2ViF41G5XFO0BiJOjw8lMJ+TiJopsJJVqvVwr179zA3NyfOj1euXIExo8J/v9+PcrmMvb09qb/j5wBwQuRxssbJO8fPCS0nUZzYcyLKqB33x3SmxcVFeL1eLCwsIBKJYH19XSILMzMz0t4AeKOex+fzSbNjtlOgkKzX62NrsTj5dtd92Xb7NI2xRSbhPmxhY6dx2nWJwJuNQOzX2gKL4o2CwxZF49I+3dGlcSmcdhqf+3OclhbojvJxLPy+ATjRSNvej1v0uMWSWxi5BR5f4xa/4z7juLHb4zjtudP2aW/nHj+/N+6ooh3FtQ12GIlhtHh6elocFDOZjPy+6vW6RI7sFORUKoVSqYRIJIInnngC8Xj8RKSKDaYpDmu1GmKxmAi0Wq2GYDAo9bBra2tYX1/H3Nwc1tfX8YlPfAL5fB69Xk8WcygCo9Go/Mb9fj+Ojo5O9OkLh8Nix886uFqthkgkIv3r6IBJ0ZdOp3Hv3j1JNx8MBiiXy9JOhFE0j8cjPdrq9TpmZmYwNTUlZifz8/OoVquoVqvIZrMAINffXC6HSqUikUSKyUajgUgkIgtctVpNaviAkasvawDj8Thef/11HB0dIRwOY3Z2FqFQCDdv3gQAxONx5PN5lEolbG9vSyYBADFuorkLAEQiEan75eLeWfBuInB9AP+D4zjPGWOiAJ41xnz1+Ln/y3Gcf/Duh/fOSIdH/0Ed1ru4lD2rUSiKoijnlWw2KwXvXPlNpVKYmZlBqVR6k4kAJyT1eh3GGOzv74tIicViKJfLUtzOKBprORh9o7U/U4fcFuBerxeVSgXlchmZTAb1el1sxo0xWF5ehjEG6+vr2NnZEdfIfr+P5eVldDodcZvc2dnB1tYW5ubmMDU1hf39fUxPTyOVSol4GgwGUgto1zixXo5RN0a2stmsrNozJWowGEgtH+29HceRfkxMN+IkPh6PY2dnR8QzX88Gvh6PR1I1mQZKEeROQ7QFCrFru+z6mXHRHlto2eLMjgiO2z/f2y38eJvvbTsWUuDZkaJJwov7sfdtR8Ts5+3tx4kcvjefZy0PBUMymZQIqVsAc3/jzEDsx93v6T5m9medNMZJotb+bJOieOOOw6RopH1Mxp0TRqJ5m+d4ampKDCsCgQDC4bDUSAWDQZRKJcTjcVnw4XYUdn6/H4eHh0gkEnjkkUeQzWbx8MMP4/nnn4fjjJxqHceR2q+DgwNpE8LoHGvX+v0+1tfX8dprryGTySAcDqNer+P69etIpVI4OjpCNpsVAcWFIP5+9vf3RaD0+30kk0mEw2EcHR2JwUihUJAIPNsXDIdDic4tLCxIWjWNQdbW1uDxjPq6eb1e6TVJwTgYDDA3NyfZAzQB6XQ6CAQCiMViaDabMjbWF9NQiteLUqmEaDSKdDqNWCyGarUqn4/XCaaRhkIh3L59WxbKmGp58+ZNtFotLC0tySLY3t7em6L7vKaz/pAGKx6PR1rBnBXvWMA5jrMLYPf4ds0Y8yqA+fdqYO+GTIQC7uxCm4qiKMr5hSKK6XO5XE5WxJkWaacy0Xq/2+1iY2MDqVQKs7Oz0p+INWzBYFAmehRCnCDT8KDdbktEyhgj9WSlUgm1Wk0iVDRK8Pv9MmHc3d0Vx0emHkWjUVm9j0ajODw8RLvdlmgXHemYCmmMEcMSewWZ9zlRvHv3rjTcpvji+25tbeHy5cvyeTjh5Yp+KBSSSU86nZYxMrrHdgdc8bbTqwqFAowZmcnYk2xGxwCcmHi7oQDjmDhxtaNpdvTMFhiT3BDtNEZbvAEnDUX4GrexiZ2CZ+93nHCxtx33Od2iblw6pftzcl/8zjNKy+81P5d7AstUNMeZ3HDbzbjP6D4+4+6P2+9bEWPuiNy4CBwXASheWSc6bl+MVNrnOxwOS3oye6yx5suOoHGBh6YZrF2jS+Kjjz4qKdrlclnMhjh2pktzMQMADg4O5JpSrVZRKpWwsbGBfD4v9a1MfbRFCQWXxzOy5a/VaigWiwBG179qtSrijW09KFiCwaBEs5iRwDRKLnKxbYDf7xd3Xjr0ApBoP1NJl5aW5DPU63VEIhF0Oh3s7e3hE5/4BG7fvo1yuYzhcIjLly+j1+uhUqmI0RSzGWwHXEbu2F6Bz8/Pz8Pn80mzcLZ1CIVCuHfvnvSky+VyaDQa2N3dld8te2Mym4GLG/F4XEQ7o28PfBsBY8wKgCcAfA/A0wB+xRjzXwD4AUZRuqMxr/klAL8EvHFS3yuyURVwiqIoymR++Zd/+a01hTpnXL169QN7r0uXLo19/BOf+MQHNgZFURTlzbxrF0pjTATA7wH4VcdxqgD+OYDLAD6OUYTuH457neM4X3Ac50nHcZ5kzut7RSrsh8cAhZoKOEVRFEVRFEVRLg7vSsAZY3wYibcvO47z+wDgOM6+4zgDx3GGAP4FgKfe/TDfHl6PQSrs1wicoiiKoiiKoigXincs4MwoyfhfAXjVcZx/ZD0+a2328wBeeufDe+dkIgEUameXm6ooiqIoiqIoivJe825q4J4G8AsAbhhjnj9+7NcBfN4Y83EADoANAH/rXbzHOyYbDaCgEThFURRFURRFUS4Q78aF8tsAxhWBf6A93yaRiQTweqFx1sNQFEVRFEVRFEV5z3jXJibnlUxkVAPn7hGiKIqiKIqiKIryoHJhBVwuNo1Of4hys3fWQ1EURVEURVEURXlPuLAC7iP5KADg1d3qGY9EURRFURRFURTlveHCCrhrszEAwCsq4BRFURRFURRFuSBcWAGXjgSQj03j5R0VcIqiKIqiKIqiXAwurIADgGtzMbyiAk5RFEVRFEVRlAvChRZwj87FsFaoo90bnPVQFEVRFEVRFEVR3jUXWsBdm41hMHRwa7921kNRFEVRFEVRFEV511xoAffoXBwAtA5OURRFURRFUZQLwYUWcAvJIKKBKa2DUxRFURRFURTlQnChBZzHY/DIXAwv71TOeiiKoiiKoiiKoijvmgst4ADgiaUEbmxXUG33znooiqIoiqIoiqIo74oLL+B+6loevYGDb752cNZDURRFURRFURRFeVdceAH3xGICM9EA/v1Le2c9FEVRFEVRFEVRlHfFhRdwHo/BTz2aw3+4WUCrq/3gFEVRFEVRFEV5cLnwAg4APvPoLFq9Af78duGsh6IoiqIoiqIoivKO+VAIuL9yKYV40Id//d276PQ1CqcoiqIoiqIoyoPJh0LA+bwe/N2ffAjfXjvE//5Hr5z1cBRFURRFURRFUd4RHwoBBwB/8+lV/PwT8/jDF3bRGwzPejiKoiiKoiiKoihvmw+NgAOAn/noLCqtHr57p3jWQ1EURVEURVEURXnbfKgE3CcfyiA6PYX/49+9ikKtc9bDURRFURRFURRFeVt8qATctM+L//tvfAJ3Sw382u/fOOvhKIqiKIqiKIqivC0+VAIOAJ6+ksGv/uRVfO3VfXztlf2zHo6iKIqiKIqiKMpb5kMn4ADgv3x6FQ/NRPAbf/iyNvdWFEVRFEVRFOWB4UMp4PxTHvxvn30MW0ct/LNvrp31cBRFURRFURRFUd4SH0oBBwA/cjmNn39iHv/Pn9/BH9/YheM4Zz0kRVEURVEURVGUU/nQCjgA+J//2iN4OB/Df/fl5/CZf/wt/OXr2l5AURRFURRFUZTzy4dawKUjAfzef/uj+Pv/2eNodPv43Bf+Ev/1F59BvdM/66EpiqIoiqIoiqK8iQ+1gANG9XB//clF/Onf/TH8vc98BN+8WcDP/tNv4f975h6GQ02rVBRFURRFURTl/GDOQ+3Xk08+6fzgBz8462EAAP7sVgH/8E9v4sWtCqZ9Hnx0Po5Pf2QGC8kgPv2RGcSDvrMeoqIoijIGY8yzjuM8edbjUBRFUZT3k6mzHsB541NXs/ixhzL4dzd28ezdI3zv9RL+zz+5CQAITHmwkg7jxx+ewaNzMfzUozkEprxnPGJFURRFURRFUT4sqIAbgzEGP/v4HH728TkAwFGji41iA3/4wi5e3a3iC39+B0MHCPm9uJQN43I2Iv9ysQAuZyNIhHwwxpzxJ1EURVEURVEU5SKhAu4tkAz7kQz78cRSEgDQGwzxF3eK+OZrB7hTqOMHG0f4t8/vnHiN3+tBPORDMuRDIuhHOuLHfCKIhWQQqUgAQZ8XQZ8X0ekpxIM+RKenEJ32wT/1oS9LVBRFURRFURRlAirg3gE+rwefuprFp65m5bFmt4+Nwyb2a22s7ddRbHRRaXVx1Oih3Ori1n4N37x5gHZveOq+/VMexI7FXCQwdSzsphAJ+BAJeBGxbocDU6N//imEAt7RX78XIf/oucCUR6OAiqIoiqIoinKBUAH3HhHyT+HaXAzXEMOPf2Rm7DaO46DY6KLc7KHdG6DZHaDa6qHS6qHe6aPW7qHW7qPW6Y/+Ht8/PGyg0Rmg1u6h0R1g8BbdMT0GJ8VdwIuQfwphvxehwPFf/xTCrsdDfi8CU15M+zyY9nkxbd0O+DzynN+rAlFRFEVRFEVRPkhUwH2AGGOQiQSQiQTe8T4cx0GnP0St3Uej00ej20ezOxKDzU4fje4AzW4fjY7rrzzfR7HRxb1SE83uAI3O6PX9d9AywRhgesqLoH+UDjrt8yDop+Ab3Q9YAtA/NfoXmPIiMOVB4Pi+3+uBz+vBlNeM/noMfFMe+Dx8zGDq+Lbf68EUt+FrPB74pkbb+LxGRaWiKIqiKIpyYXnfBJwx5jMA/gkAL4B/6TjOb75f7/VhwhhzLI68yEbfuRB00+0PTwi9dm+Idn+ATm+Idm+Adn8weqw3QLs3QKc/ut3qjp5rdYfHUcU+Osf7KjWG6By/rtMfvabTH6LbPz2N9N3i9RgReD6vwZTXA59n9JeCb+r48anjbae8Bl7PaDvv8f0pj+fEc1Py+PG2XiPvxX157X/Gdf/4Mc/xa/jX/Zj9unGPuffF28YAHmPgMaNjoEJWURRFURTl4vG+CDhjjBfAPwPwVwFsAXjGGPMHjuO88n68n/LuGUXH/EiE3v/3chwH3cFIyFHQ9QZD9AYO+sMh+oPR8/2Bg/5giN7w+O/AQW8wRH94vO3x9vK4ax9v3v7kvgbDN7Zt94boDwcYHN/vD0fP9wbD4+1Gr+PjfO/z3uvdFnMeg5HoOxZ7Xg9vvyH63vzcydd4joWkx4wWE07cNgYeD2SfXmPd9lBcjkSnx1j3DWTf5nhfBjjxnjhx/3gbAxi4Xg8cf577bwvXe4x/79Hr+NzJsb55W+CN48Ftx30ejtN+73GvnzTOse8l47zPe3F/HtznOPO10MUARVEURTlHvF8RuKcArDmO8zoAGGN+B8BnAaiAU2CMOU6j9CJ61oN5lwyHltgbDjEYOBg4o/sn/jnOiW3djw2P7/O2/di4fdn3h46DoYPR36F128Hx/UnPO+O3s24PHAeO42A4xMntj8fgWLdHgvf4czkjoT56zr5tvcbar+MADvi60fYO3nhuONpgdN96/OTrnHMvqB9kThWLOBaALvFov8bLxQJLzHO7X/jhZfzij66c9UdUFEVRlAeC90vAzQPYtO5vAfgr9gbGmF8C8EsAsLS09D4NQ1HeXzweA/8oHIIgtKn7ecCxRN99xd7Y7d4sHie9/u1sC0ugnvpex59hOMR9x4UT99/47I77vdzHxRkvnGWfw/sdk9HrHMc+FifHZG9rLwpQzA+tMaTC/g/wG6IoiqIoDzbvl4Abl29zYm3ccZwvAPgCADz55JO6bq4oynuCpAuOvQwpiqIoiqI82LxfXaO3ACxa9xcA7EzYVlEURVEURVEURXkLvF8C7hkADxljVo0xfgCfA/AH79N7KYqiKIqiKIqifCh4X1IoHcfpG2N+BcCfYNRG4Lccx3n5/XgvRVEURVEURVGUDwvvWx84x3H+GMAfv1/7VxRFURRFURRF+bDxfqVQKoqiKIqiKIqiKO8xKuAURVEURVEURVEeEFTAKYqiKIqiKIqiPCCogFMURVEURVEURXlAUAGnKIqiKIqiKIrygKACTlEURVEURVEU5QFBBZyiKIqiKIqiKMoDggo4RVEURVEURVGUBwQVcIqiKIqiKIqiKA8IKuAURVEURVEURVEeEFTAKYqiKIqiKIqiPCCogFMURVEURVEURXlAMI7jnPUYYIwpALj7Hu0uA+DwPdrXB8mDOO4HccyAjvuDRsf9wfJhHvey4zjZ92IwiqIoinJeORcC7r3EGPMDx3GePOtxvF0exHE/iGMGdNwfNDruDxYdt6IoiqJcbDSFUlEURVEURVEU5QFBBZyiKIqiKIqiKMoDwkUUcF846wG8Qx7EcT+IYwZ03B80Ou4PFh23oiiKolxgLlwNnKIoiqIoiqIoykXlIkbgFEVRFEVRFEVRLiQq4BRFURRFURRFUR4QLoyAM8Z8xhhz0xizZoz5n856PKdhjNkwxtwwxjxvjPnB8WMpY8xXjTG3j/8mz8E4f8sYc2CMecl6bOI4jTG/dnz8bxpjfvpsRj1x3L9hjNk+PubPG2N+xnruzMdtjFk0xnzTGPOqMeZlY8zfOX78XB/vU8Z93o/3tDHm+8aYF47H/b8eP37ej/ekcZ/r422NxWuMuW6M+aPj++f6eCuKoijKeeRC1MAZY7wAbgH4qwC2ADwD4POO47xypgObgDFmA8CTjuMcWo/9fQAlx3F+81iAJh3H+R/PaozHY/oxAHUAv+04zmOnjdMYcw3AvwHwFIA5AF8DcNVxnME5GfdvAKg7jvMPXNuei3EbY2YBzDqO85wxJgrgWQD/CYC/iXN8vE8Z91/H+T7eBkDYcZy6McYH4NsA/g6A/xTn+3hPGvdncI6PtzWe/x7AkwBijuP87INwPVEURVGU88ZFicA9BWDNcZzXHcfpAvgdAJ894zG9XT4L4IvHt7+I0ST4THEc588BlFwPTxrnZwH8juM4Hcdx1gGsYXRePnAmjHsS52LcjuPsOo7z3PHtGoBXAczjnB/vU8Y9ifMybsdxnPrxXd/xPwfn/3hPGvckzsW4AcAYswDgrwH4l67xndvjrSiKoijnkYsi4OYBbFr3t3D6JPKscQD8qTHmWWPMLx0/lnMcZxcYTYoBzJzZ6E5n0jgfhHPwK8aYF49TLJmqde7GbYxZAfAEgO/hATrernED5/x4H6fzPQ/gAMBXHcd5II73hHED5/x4A/jHAP4egKH12Lk/3oqiKIpy3rgoAs6Meew854Y+7TjODwH4jwD87eOUvwed834O/jmAywA+DmAXwD88fvxcjdsYEwHwewB+1XGc6mmbjnnsPI373B9vx3EGjuN8HMACgKeMMY+dsvl5H/e5Pt7GmJ8FcOA4zrNv9SVjHjtP1xNFURRFOTMuioDbArBo3V8AsHNGY7kvjuPsHP89APAVjFKD9o/riVhXdHB2IzyVSeM81+fAcZz944nvEMC/wBvpWOdm3Mc1Tb8H4MuO4/z+8cPn/niPG/eDcLyJ4zhlAP8Bozqyc3+8iT3uB+B4Pw3gPz6u//0dAD9hjPkSHqDjrSiKoijnhYsi4J4B8JAxZtUY4wfwOQB/cMZjGosxJnxs9gBjTBjATwF4CaPx/uLxZr8I4N+ezQjvy6Rx/gGAzxljAsaYVQAPAfj+GYxvLJwkHvPzGB1z4JyM+9ic4l8BeNVxnH9kPXWuj/ekcT8AxztrjEkc3w4C+EkAr+H8H++x4z7vx9txnF9zHGfBcZwVjK7P33Ac52/gnB9vRVEURTmPTJ31AN4LHMfpG2N+BcCfAPAC+C3HcV4+42FNIgfgK6N5L6YA/L+O4/x7Y8wzAH7XGPNfAbgH4D8/wzECAIwx/wbApwFkjDFbAP4XAL+JMeN0HOdlY8zvAngFQB/A3z5Dp7tx4/60MebjGKVhbQD4W8C5GvfTAH4BwI3j+iYA+HWc/+M9adyfP+fHexbAF48dbD0AftdxnD8yxnwX5/t4Txr3vz7nx3sS5/37rSiKoijnjgvRRkBRFEVRFEVRFOXDwEVJoVQURVEURVEURbnwqIBTFEVRFEVRFEV5QFABpyiKoiiKoiiK8oCgAk5RFEVRFEVRFOUBQQWcoiiKoiiKoijKA4IKOEVRFEVRFEVRlAcEFXCKoiiKoiiKoigPCP8/N6ECXJcL+c8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -3188,7 +3188,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAGoCAYAAAAHGAe8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eZxlyV0diJ94+77kVlVZS1dXL6XepG7UElKjfTM2IIPtwWDGGLDN4A0v4DHYZmDMMjA2+DMeg238AwM/9mEzWCy2MUZotKCWsCS6pZZ6ra4lK9e3L5nvvZg/7juR50Xdl5m9ljqJ8/nkpzLfvTdu3Ii4r74nzncx1loEBAQEBAQEBAQEBAQEfP4jcbM7EBAQEBAQEBAQEBAQEHA0BAIXEBAQEBAQEBAQEBDwCkEgcAEBAQEBAQEBAQEBAa8QBAIXEBAQEBAQEBAQEBDwCkEgcAEBAQEBAQEBAQEBAa8QpG52BwBgaWnJnj9//mZ3IyAgICDgFYyPfexjm9ba5Zvdj4CAgICAgJcSnxcE7vz583j44YdvdjcCAgICAl7BMMY8c7P7EBAQEBAQ8FIjuFAGBAQEBAQEBAQEBAS8QhAIXEBAQEBAQEBAQEBAwCsEgcAFBAQEBAQEBAQEBAS8QhAIXEBAQEBAQEBAQEBAwCsEgcAFBAQEBAQEBAQEBAS8QhAIXEBAQEBAQEBAQEBAwCsEgcAFBAQEBAQEBAQEBAS8QhAIXEBAQEBAQEBAQEBAwCsEgcAFBAQEBAQEBAQEBAS8QhAIXEBAQEBAQEBAQEBAwCsEgcAFBAQEBAQEBAQEBAS8QnAogTPGnDXG/J4x5tPGmEeMMX93+vmCMea/GGM+N/23Ltd8uzHmcWPMY8aYP/VSPkBAQEBAQEBAQEBAQMCfFBxFgRsB+BZr7V0A3gDgbxlj7gbwbQB+11p7B4Dfnf6N6bGvAnAPgC8G8CPGmORL0fmAgICAgICAgICAgIA/STiUwFlrr1lrPz79vQ3g0wBOA/izAH5yetpPAvjy6e9/FsDPW2uH1tqnADwO4PUvcr8DAgICAgICAgICAgL+xOE5xcAZY84DeADARwCcsNZeAyKSB2BletppAM/KZZenn/ltfaMx5mFjzMMbGxvPo+sBAQEBAQEBAQEBAQF/snBkAmeMKQH4ZQB/z1rbOujUmM/sDR9Y+6PW2gettQ8uLy8ftRtz0Rrs4Yd/73F8+tpBXQsICAgICAgICAgICHjl4kgEzhiTRkTefsZa+yvTj68bY05Nj58CsD79/DKAs3L5GQBXX5zuzkerv4d//juP4VOXmy/1rQICAgICAgICAgICAm4KjpKF0gD4MQCfttb+kBz6dQB/Zfr7XwHwH+XzrzLGZI0xtwK4A8AfvnhdnttPAIC9UewLCAgICAgICAgICAg4Fkgd4ZwvAvCXAXzKGPM/pp/9YwDfD+AXjTF/FcAlAP8TAFhrHzHG/CKARxFlsPxb1trxi91xH/TbtIG/BQQEBAQEBAQEBAQcUxxK4Ky1H0B8XBsAvHPONd8L4HtfQL+eM6YCXNDfAgICAgICAgICAgKOLZ5TFsrPZ5gpxwwKXEBAQEBAQEBAQEDAccXxIXBOgQsMLiAgICAgICAgICDgeOL4ELjpv0GBCwgICAgICAgICAg4rjg2BA4hBi4gICAgICAgICAg4Jjj2BA44xhcoHABAQEBAQEBAQEBAccTx4fABQUuICAgICAgICAgIOCY4/gQuOm/QYALCAgICAgICAgICDiuOD4EzrCMQGBwAQEBAQEBAQEBAQHHE8eHwE3/DfQtICAgICAgICAgIOC44vgQuJDDJCAgICAgICAgICDgmOP4ELipBhf4W0BAQEBAQEBAQEDAccWxIXD7VQQChQsICAgICAgICAgIOJ44NgSOLpQBAQEBAQEBAQEBAQHHFceHwE3/DQJcQEBAQEBAQEBAQMBxxfEhcCwjEKLgAgICAgICAgICAgKOKY4PgZv+GxS4gICAgICAgICAgIDjiuND4JjE5OZ2IyAgICAgICAgICAg4CXD8SFwLCMQGFxAQEBAQEBAQEBAwDHF8SFwToELDC4gICAgICAgICAg4Hji2BA4IihwAQEBAQEBAQEBAQHHFceGwIU6cAEBAQEBAQEBAQEBxx3Hh8C5GLggwQUEBAQEBAQEBAQEHE8cHwLHGLjA3wICAgICAgICAgICjimOD4Gb/hv4W0BAQEBAQEBAQEDAccXxIXAmlBEICAgICAgICAgICDjeOD4EbvpvKCMQEBAQEBAQEBAQEHBccXwIXMhCGRAQEBAQ8HkDY8y/NcZ8x83uRxyMMW82xjx2s/sREBAQ8HxwbAgcEVwoAwICAgKOAmOMNcZ0jTGd6c//T459nTFmLMc6xpi3yfEFY8yvTq9/xhjzl27GM3w+w1r7Tdba777Z/QDcXN/Ov621f2Ctvfgi3+MfGmP+2BjTNsY8ZYz5h3JsxRjzc8aYq8aYpjHm/zXGfKEcN8aYf2KMuWSMaRljft4YUznCPd86fbbv8T7/S9N12TXG/JoxZsHr5+a0r/fK519kjPm15/jM/90YM5i+H5vGmF8xxpx6Lm28lJjzHneMMas3u29xMMb8NWPM49M+/vZB/TTG3GWM+W/T9fS4MeYr5NjXeM/bm66T106Pz12r0+PnjTG/N73uM8aYd8mxLzHGfMAY0zDGrBlj/r0xpizHF4wxvzBdD5vGmJ/hWp5unPhzYY0xf356/F5jzO9Mr7vBoj/oe/ewZ56e8wXGmPdPj183xvzd5zpH03buNsY8bIzZmf78V2PM3XLcGGN+wBizNf35P42JpCZjTGr6fjeMMb/ljd0/Mcb8/aP04dgQOMMYuJvcj4CAgICAlwaj0eilaPY11trS9Oevecc+JMdK1tr/Lsd+GMAugBMAvgbAvzHG3PNSdPDlgDEmdbP78HzxedR3A+BrAdQBfDGAv22M+arpsRKAjwJ4LYAFAD8J4H3GmNL0+NcC+MsAvgjAKoA8gP/7wJsZkwbwfwH4iPf5PQD+3bS9EwB6AH5keuwUgL8K4AKAfwvg+6efpwD8IIC/9zye+29ba0sAbp8+5794Hm28lPDf45K19qp/Utw6eq5r64WsRWPMWwF8H4A/i2iNPAXg5w64z38E8J+m534jgJ82xtwJANban9HnBfA3ATwJ4ONsAvPXKqb3/SMAiwD+CYBfMsYsT49VAXwPonV6F4AzAP65XPs903YvALgN0Rr8rmm//sDr15cC6AD47em1ewB+EdEajcPc793DntkYszS9z7+bPtftAP7znPschqsA/gKisV8C8OsAfl6OfyOALwfwGgCvnj7n/zI99ucQ0ZUlAC1+boy5FcCX4ZD3njg2BM4hSHABAQEBxwbnz5/HD/zAD+DVr341isXiS0XinhOMMUUAfx7Ad1hrO9baDyD6D/wvH/H6vDHmB6c7yM3pbnZ+euy9xphHpruz/90Yc5dc9/R05/yT0x3oHzPGnJju4ranu8D16bnnp7vP32gi1eeaMeZbpK3vMsb8kjHmp40xLQBfZ4ypTtu8Zoy5Yoz5HmNMcnr+7caY35/2d9MY8wvTz40x5l8aY9anxz5ppqqOMeYnjChDxpi/biKlYNsY8+tG1IVpX7/JGPO56Y72D3PHOmb84vr+emPMh6bjds0Y86+NMZnp+e+fXvoJE+28/0VjzNuMMZelzbum492Yjv97jzKXCmvt/2mt/bi1dmStfQyRgf1F02NPWmt/yFp7zVo7ttb+KIAMAKqAXwbgx6y1z1prOwB+AMBfNMYUDrjltyAyQD/jff41AH7DWvv+aVvfAeDPTXf6zwH4I2ttC8B/RWRkAxFx+3Vr7dPP9bnl+RsAfg3A/fzMGPMqY8x/mc75Y8aYr5RjL+Q9+NbpWmuaSO3JPZ8+T9v6R8aYTwLoTte5Ncb8VWPMJQD/zRiTMMb802k/140xP2WMqU6vP++f/3z6McWXAfh/rLWPWGt3AXw3gLcYY26LOfdViAjUv5yup/8G4P/F/O+gvwLgp+y0WPJBa9VEJPALAHyntbZvrf1lAJ9C9J0Ha+3PWmt/21rbs9buAPj3vHaKWwH8mrW2Za1tAvhVAPM2t/4KgF+y1nanbT9mrf0xAI/4J5rn/r0788wA/gGA35kSvaG1tm2t/bS0P3et+rDWNqy1T0/bNgDGiAih3vsHrbWXrbVXEG2OfJ2Mz3+31o4A/B7238F/BeBbp58fimNF4IwJClxAQEDAccPP/dzP4X3vex8ajQZSqRs3uF/96lejVqsBwP1Tg09/fuSQ5t9vIjegXzHGnPeOPTAlK581xnyH2d9dvxPA2Fr7WTn3E5hvpPj4F4iUmIcQ7eD+rwAmU8Pp5xAZ08sAfhPAb5CITPHnAbx72ocvA/BbAP4xot3cBIBv9u71dgB3AHgPgG8z4gqFaKf/lwDUAPwMIlVohMgQeWB6DVXJ70ZEFuqIdty5S/weAG+Z9qcG4C8C2PIf2BjzDgD/B4CvBHAKwDOY3bEGol3q1yHatf5KAH/Kb+eAvo8B/P3pOLwRwDsR7cDDWvuW6TVUW3/B61sawG9Mn28FwN8B8DPGmIvT498Ws67cT1znpuTzzYgxRKfH70dE4B7nR9jPx8a/s4jmLu76WwB8A4B/FnP4HkTrEdPnfwKRanHn9H73GWNqAN4F4BFjzFkAX4UXqJwZYxYRqQuPT/8uAvgvAH4W0bh+NYAfMftK9Qt5D74SkXJ0KyKF4+teQNe/GsCXIFpLNJ7fikhd+lPTtr8O0bt0AZHK+K+9NvT8GRhjzh20fsy+G2DcGgCAe3Ej4jY3TNy507XyFgA/FXNN3Fq9B8CT1tq2nHbQ99tbMLvOfxjAlxpj6ibaUPrziL6n/PsWEKlYPzmnXR9H/t6d88xvALBtjPnglIj/hjHm3PT8w9ZqLKbv/wDR9+H3yaGZd9Dr5x8DeMd0Pb8d0Tv4FQA2p6T0SDheBA5BgAsICAg4bvjmb/5mnD17Fvl8Pvb4Jz/5STQaDQD4H9bamvfzNw9o+q0AziPazb4K4D8JSXs/ImNoBZEB8tUAGCdSAtD02moCKOMQGGMSiAzvv2utvTLdPf+gtXaIiPy8z1r7X6y1e4gM3DwiA5f4v62116e7un8A4CPW2j+aXv+riIiX4n+31nattZ8C8B+mz0F8yFr7a9baCYAKgD8N4O9Nz18H8C8RGfZA5Np0C4BVa+1ADI296XO/CoCx1n7aWnst5tG/BsCPT3f9hwC+HcAbPdL8/dOd7UuIdqbvP2AoXd+nKsHHrLUfnioKTyNyk3rrAdcr3oBoTr/fWrs7VTP+E6ZjZa39/ph15X7mtPldiGys/+AfMFE80P8f0dxwHf0WgL82VXSqAP7R9PN5Cty/wlSJiDk2d31aa7cAfC8ipehLAHwrIjfMfwTgK0yksv5HY8yZOfeN7YsxpglgExGB/jvTz78UwNPW2v8wnZePA/hlAH/hRXgP/pW19qq1dhsR+b7/gP69wSNMT/j9nyqfffnsu6bvQR/R2v0hG6moHURr96vMrLuknj8Da+2lg9aPtfZnp6f+JoCvNMa8eqpE/m+IdIm4NfAZAOsA/qExJm2MeQ+i9R537tcC+ANr7VNzxue7MLtWj/z9Zox5NyK16X+Tjz+OaHNia/ozxtSF18OfR7Rmfn9Ov3w8l+/duGc+M+3r30WkRKuL6ty1elCHpu9/FcDfRuRyOq+vTQClKVn+zem9H55+/vMAvhPAPzLGfK+JYvR+xNuwuAHHi8AZE8oIBAQEBBwznD179iVp10YuZrs2cv36u4h28++aHnvSWvvUlCB8CpHSwf/MO4gIj6ICoI3DsQQgB8A3IoHIJeoZ6d8EwLMATss51+X3fszfJcziWfn9mek94o7dAiAN4JooS/8OEYEFInXEAPhDE7m2fcO0j/8NkRrxwwCuG2N+1MQn3/CfrYPIuNNnW5PfezHPMu+5YIy50xjzn6ZqagvRbvjSAdf7fXt2Ot7EM17fjgxjzN9GZEB+yZSQ6LE8IsLxYWvt/yGHfhyRMfnfEakZvzf9/DI8GGO+DBEZ+wX/2BQHrk9r7c9Za7/AWvunEW1SDBEZn/8CUzc+PDc17puttVVEShgVWiBaU1/oqZVfA+AkXvh78FzWyoc9wuS7JD4bc41+NtOf6e8pRHFYB7XxnGCt/V1EhvwvT+/xNKI5u2ENTIntlyMi4WuI3Gl/Me5cRGsxVuWas1aP9P1mjHkDIsXqL3iq2P8D4LOIiFUF0Rz/dMztfRfHw/BcvnfjnrkP4FettR+11g4A/O8AHppumMxdq1MF1SVH8W9kI/fPfwvgp4wx/L70+1oB0LH7+DZr7auttd8I4Num1z84/XkrIgL8DQcNxvEicAgKXEBAQMBxgzmkTsw999yDUqkERC6Pfoazf/scbsV4hsOOfRZAyhij7m2vwRx3OQ+biFxu4uJariIyJAA416azAK4cod15UPZ7bnoPQv/HfBaRIb8khm7FWssEAWvW2r9urV1FFHT/I2aa1dFa+6+sta9F5CJ0J/aVyoOerYgokcDzfTb/f/t/g0iVuMNaW0HkVnrUAkNXAZydqkLEOfbNGPOPY9ZVrEE3JbbfBuCd1trL3rEsohixK9hPaBA9TLRR8J3W2vPW2jOI1tIVxI/POwE8OCWra4gUq79njPmP0+OPIFqPvO8FRO6YamSTTH4fIuP/DkQktoUo2cqrDxqwOEw3Or4HAOMXnwXw+x55Kllr/wZe/vfgwK4f8tlMfxCtjRFmN0/mWp8+AYj5+RrXiLU/bK29w1q7gojIpRC53N3YQWs/aa19q7V20Vr7pxC5d/6hd28mxfmlmH7NW6uPALhgJDsivO83Y8wDiOLPvmFKPOGd+++mimQHETn5M969zwJ4G+a4dc7Bkb53D3jmT2J2nvj7gWt1qqBqcpQ4JBCpn9xkmHkH4/o57eu9iJTlHwVwH4CPTQntoe/g8SJwIQYuICAg4E8cHnnkEXQ6HSBKzuBnm/umuGuMMfcYY+43xiRNlAnwBxEZiJ+eHv/TxpgT099fhSgRxH8E3I7rrwD4Z8aY4tRg+LOI3OLYvjVSdoCYqgk/DuCHjDGr0/u/cWrc/yKALzHGvNNEcVnfgohUffAFDM93GGMKJorl+HoAsaqNjdwe/zOAHzTGVEyUuOE2E2XGgzHmfxK3uh1E/92OjTGvM8Z84bS/XURG+TjmFj8L4OunY55FRBw+Yl9A0gwPZUQZ3TrT+fob3vHr2E8W4OMjiPr+v07d0d6GSIn6eQCw1n5fzLq6waCbGuLfB+Dd1ton9QbT8fklRCrA13pqH0yUHv02E+FuAD8E4J/5503xHYiI8v3Tn19HlEji66fHfwbAl5koZXsRkXr8K3Y2pgkA/imAn7BRRsZLAC5O1/zbEWXv0yQd5+eMnY+fRKTavheRG+qdxpi/PB3X9HS93HUT3oMXgp8D8PeNMbdOvyu+D8Av2CMmm/AJQMzPzwCAMSZnojT6xkSxWT8K4P+yUaKQG2AiV8vc9P3+VkSxpT/hnfZXAPyyP/cHrdWpmvY/AHzntP2vQEQmfnl67b2Isjn+HWvtb8R07aOI3IHz002Cb8RsPBgQJR75oI3iM7VfxkQJaZiAKDddE0f63j3omRG5iH7F9Dsojeg9+oCNPDDmrtWY54Mx5t3GmAem67aC6H3dwfT/D0TE9B8YY06bKFnTt8Cbm+nGxA8jciOeIHKrfJOJXCffiuk7OA/Hi8DBBAUuICAgIOAoOIGIzLQQ/Ud5HsCXTl2TgEjl+KQxposoZuFXMBuk/jcRxeWsIzLw/oa19hEAmBKdDqLMbXH41umxjwLYRpRxMGGjbHD/M6KA+E1EJOLLbJSR7vni9xEllfhdAP/CWntQ2uyvRWQ4PYrIGPklREYhECUX+YiJFKdfR2R0PIXINejfT89/BpFb5A3ud9Nd+u9AZAReQ6S8fJV/3gvAtwL4S4jcqf49biSq3wXgJ03kHjWTXW46vu9FFAO4iShe52uttX52x8PwPYhUxY+aGxXghxDF2bwHQEOOv3l6fAnROusiiof7cRtlqgQAmKgo+r+d9rc9VUTXrLVriEhh10bxYJiuw29CROTWEZHbmVhQEyVoeQ+myWimBP77EakE34wozguIlK9ncET1azqWjM9rT+/xVYhUrDVEaz07Pf3leg/eaG5UvV73HK7/cUQk4f2IjOwB9uP8XkzkEG10dBApaR9C9M4AcEqwJgP5y4jepXVE31fvtuKyOyVCX4l498mD1ioQzdmDiN7r70fkJrkxPfYtiJLL/Jhcq+rSNyD6Pr2MaN1cwI1JZua5dd6CaD2zvT6Ax+T43O/dw57ZRu7e/xjA+6bX347oOwNHWKs+atP7NxG5iN4O4Itt5JoJRO7nv4Foff/x9J7/zmvj6wH8sbX24enfvzK99waiufHPn4GxhzAeY8yPI/rSWbfWMjXwL2A/9W0NQMNae/90h+bT2B/sD8/b/VQ8+OCD9uGHHz7stENx5z/9LXz9F53Ht//pWMIcEBAQEHCMYYz5mLX2wc+DfvzPAO6x1n77oSe/dH04j8jYTB9VKQgI8GGM+acANqy1BxqTAQEBLy+OUnDwJxAFKDs/VWvtX+TvxpgfxGymlSestfe/SP17TjBA8KEMCAgICLipsNbGBewHBLziYK39nsPPCggIeLlxKIGz1r5/nu/z1H/zKwG840Xu1/NCiIELCAgICAgICAgICDjOeKExcG8GcN1a+zn57FZjzB+ZqJbIm+ddaIz5RmPMw8aYhzc2Nuad9pwQxcAFChcQEBAQ8Ccb1tqnrbUmuE8GBAQEHD+8UAL31dgvggdEwZTnrLUPAPgHAH7WxNeDgbX2R621D1prH1xeXn6B3YhgTCgjEBAQEBAQEBAQEBBwfHGUGLhYmKgC/Z8D8Fp+Ns1+M5z+/jETVbu/E1G18ZccBsGFMiAgICDgcFSrVfffhTHG1ZrzvTh4jD+JROJI5xOJRCLWM8Rai0QiccM99Dj/NTF18PR6nuOfa62d+WxeW+yD3pftxR337+X33b9HXDt+HwuFAiqVCjKZDJLJJBKJBBKJBHK5HNLpNIwxGAwGGAwGSKfTSCaTSKfTKBaLyGQyyGajZHGcn0wm4/o1Ho/d56PRCIPBAMPhELlcDuVy2X0+HA4xGAyQTCZhjMFkMsFkMsF4PIYxBvl8Htls1j3/ZDKBMQa5XA65XA7D4RCtVguDwQCTyQS7u7uYTCZIpVJIJBLu3tZa95x8JgDuOcfjsTsXAFKpFNLpNBYWFrC8vOzaKxQKGI/H7j6ck1wu58ZrOBy69kajEXZ3d2GMQTqdRjqdRiKRQDqdhrUWvV4Po9HIjRXHeTzerwqRSCSQSqXc87HfHI+9vT3s7e3NnM+5ikM6nXZjMR6Psbe35+7NsWB7mUwGiUQCvV4Pw+EQ1lqk02k3/plMBplMBgAwHo9dn3Z3d10/OE48T8ef7Vtr3VoAgEKhgEKhgEQigfF4jPF4jMlk4t4/9jGZTCKbzSKVSmE0GrlzeN5kMnFzYK1188pntdZib2/PzQnb5veOgnOka5TzlEqlZt5Jnjcej2fmguuC60bPTyaTSKVS7ofHk8nkzLXsH5+F79Lu7q475r/7yWTSveP6rnNdp1IpZLNZpNNpTCYTDAYDN2bW2pl7JhIJN67aXjKZRCaTcWvSf5c5xrw3+6Q/XD/6XcUx4PgkEgm87W1vO2q9yRcVz5vAAXgXgM9YKf5njFkGsG2tHZuocOQdOKSOwYuJ6AV4ue4WEBAQEHAc4JMRfqY4jGD556vBRQPKP88nNvOO8Vo91+/3PJIU12e9Nq7v8zCPvMXdSxFHLtleMplEpVJBvV53xhiwP36j0cgZciStJGiFQgGlUgmlUskZsIVCAdls1hngNO5o7O/t7WE4HDrjbTAYuGsTiQSy2awz+jkuyWRyhkgmk0lHNGjQtttt1xaNRWCf3IxGI/T7fYxGI+zt7bnnUkLE+9MwJpLJJE6ePInFxUXXJp9xb2/PGZo0fHkPPpeOvRIjAK4djjnngGRGx4aEbm9vzxFBEi8SSbbDcSEZBiJiAeyvZzWclYSQ7LIvnHMSHJIjkjaeN5lM3Jjw3nx+ts2+DAYD1w7Hhffl59lsFrlczhEyJSXZbBaJRAK7u7uOICqh4HOR6PBvklOuE4X2m+PEc/iuKBnkMSWUSio5bpxrPiOJEMdcyT+fmQSG7y+v0zWeSqVcX+M2dJSckdjpOmObfBb9nKSYx3kffTf4fcD+E2yPbZKA6mdKwAnOTSaTQSqVcmta32neRzffbhYOJXDGmJ9DVC19yRhzGcB3Wmt/DFGthJ/zTn8LogJ7I0SFPL+JdUleDkQKXGBwAQEBAQEHI06tmkdG/P+k49Qo/3gcKfKJmF4/j0TNIz76+0HXan99shen8vmKYdw188ZjHub1L5vNYmFhAblczhl5fpvcgeff+Xwe5XJ5xtCk0U2lZHd3d8b4I7FQAkhi1+l0YK1FsVh0ZKbf77vnzGQyyOfzM8aoGpSTyQTNZnPGICQJTKVSTh2jQaqqHK8H4EgM54DEr1gsIp/Po1gsYjweO+LQ6XTcc1NtSKVSzsAmgWO/J5OJIw57e3tIpVJOofDXMUkeDXeSFmMMhsOhM8R1jlQ54xryyQTHjaSL91R1xVerOE7j8XiGdKnaxr7QuNe5UMKZyWSQy+UwHo/dHFP9I0GjWpPL5ZDP5x3pJ3GkIkWVjkScqhafkcSJY8expVKsGwRKUua9A3wW/q0bQnrcJyeqVvnfSyRpVDOpKvE6YF/N47qhostxYP+5ScF3S1U17YeSQZJr7Yv2W0kuCZWuVSVUbE/B8eJa478cJ1UgdVMhk8kgnU5jd3d3Zk1pm0qCbxaOkoXyq+d8/nUxn/0yppXabwpCDFxAQEBAwHPAYS6DB13jq1j+73ruYfeYRwaP0nf/97g2/b7FkbiD7hNHAtnmUcZKz0kkEiiXy1haWkIul0Ov13PGk2/88z6pVAqFQgG1Wg3WWuRyOWdAjUYjp5T0er0ZVz4an+l0GufPn0ez2cR4PHZELZ1Oo1arOTWFapS65gGzBib71u/30e12AWBGtUgmk+j1ejNkij+pVMr1FYAjQ+yjuoMtLS2hVCq558/lchiNRuj1eo5sUAWhC6gqK8aYGaVQ+0BXUHVBI2HlM3DOstmsU1+stY7AcH6stc51kIa0r0ArSVF1Sg17VYt0zJUgkHSRvJEwAnAGvW5qkPCpGyv7x37o2CWTSecqq8ob15z/GQkO55F/895K4PT5dKOE8wDAbTzo55w/kiNez/HnPbmm+DkJPK/Vd5zXU/VVQsa1QLJCFYrjr8qbzi/HgOOgmxS6eeWTL1UFdZ51HesxXsP2fHVV+6ZrSd3fqaqTlHKudO0oGaWLKN8XEn1fxXs58UJcKD/vcPOEzICAgICAVxriFKqjKHHzzvNJTZw65hPGOLIXp3D5pDFOCfPP1fPjztN7xhHIuH74RO4w+OelUilUq1WsrKwgk8lgd3fXqSJUoZTMUdWp1WooFAquHSoj6XQa+XwewL5R1263sbe3h3w+j36/j729PZw+fdopS0BkpObzeVSrVRizHy9G1zmNd+P5wD6p6Pf7aLVaznBWV7x+v+/uS3IwHo+Rz+dRr9ed6kSVzFrr3BOp6JTLZWeIZrNZZDIZdz6NThrmvV5vZqxpVFJ5TKVSrg/qhqckSt3/1NWM46wuebwXjWx1U+P68dVmEiaeo0a3uscpefTbIJlme6p8qcst36vd3V3nbsqYQhJlzhnniOSV6gvdMamYajygukxaux+3pjF2bJvPwzFU0sw50OfXZ+Hz8z7+e+2TDf5NkugTN59sUMlU91E+r6p5uk5J3nxSzvnS2DB1b1TlzY+d07mY5ybK9nWDQBVJrmGfJHOsNObNdxnVMfVVOd5D1ynHU2M9bwaOF4F7jruXAQEBAQEBhE9mgBtVMhohh6lO84gb2/SNsYNiKuJIm98vbVd36g8jg3H38RGnFM7r6zzQNalaraJcLrskIzSWgX1DjGOcTqdRKpWwtLTkXCFp1JGM0ainIUjXOCb4SCaTOHfuHNLpNHZ2dtBqtWCtRa1Wc26JVLSAKGFFPp+fiQHjbnsqlcLe3p5L9sFz6KKXTCbRarWcmgPsJ3ugssO/1aAnoUgkosQk5XLZERwqeyRp7Eu5XIa1Fp1OZ0aloAFNI5TjqgSK80YSWCwW3fpTt0BtR8mvv77UGOdapnsnDV+OFcFjHCONbYxzm1NXPKonHDONLaNSSJdJTY6iZEPdbKluZrPZGXdKqrHq9qhkjs+hsWb+xgj7rcotvx/UjZTvlZISwo9nO8htT11IVZHUueeYkrAqUdO++rFfqrSpOsj2tT0SIJ/AsU2NC+Q8873gvLIvHA8lrf5Y6ziSvPM5dD1zPvj+0ZWY88t+855M+pJOp90mD1VdfcduBo4ZgQtZKAMCAgICnhv8/4TjyJIavvxMf1ejKk7N8tv225h3rh4/THXz73tU4hXX7lHI2UFqnSKVSrlkI6qa0NBi31W9KBQKqNfrWF5ehrUWjUbDKRJqpI5GI+fi1+v1kEgkUCwW0Wq1XJKTdDqNVqvl3CdLpZIjJzT2U6kU8vm8I0zAfnZBAC5+rNvtOqVAlTQSzF6vN6NqkLiRqDKRiSZiICkguVViR0NR47gKhYJTfniOKjs0jgeDgSPONHpprPb7fWe8qmFPNYmqpG4saCZJdR2kcqRkXFUtGunq2sa+qtuaqjiqUrHPw+HQkQQlOrwPiQOJ2N7eHvr9viOqmp2TRD+fz7vEN9Zap7rxmUgoh8Oh2zBQpY3ESF0fOT4klDzPV4S0/6rac7x5D1WuNP5QXQLVJZHt+MqZkhNVXDV5Cs9RcuKrp/quct65lny1MO67k/fXeVbVUl1etU8cC3VdJOnVzQDNIsnjbJv3VSKq7zvvoS6XJOyJRMLF43LtP5dNrBcbx4vAIcTABQQEBAQcHfOIS5zREXeN76LkkyifHPmGzbzd9MPIVpzq5p+jiQ70eQ66Zh58A/Og/hBUlBYXF53xrKoZd7LV0CLhWFlZQaFQcK6IjNtiBsm9vT1XAoAZEUlUer0ebrnlFiQSCXd9p9Nx7pEkYpp5Usmbxq1xF393dxfdbtepb+yvuiCmUimUy2UAcHFFhULB7dqzTbrxcYw0CyeVPRIwTaBRLpedEalZGtV9UZU0YN9NkoSCRioTx5BIqtFO45Yk18/6RxKuySqotpBkcB5JpvisXO8k4WpgA/up/NXNjnF8JAjsC8den0sNbs1IScWO7q1MekOCT1dXVd00EyGwT1rVXZZrWOO8VKFT9VNdVzkGPrHjWCiZ4Lj6roHsh6p9XAc6FxwrEllfXdXkJfo8Sm70vvrecv41cYt+F3AM+Tk3K1S9U6WPSraqrhwrvq8a98j50PXLNcG+sX/csNH4Sc6VMcaRdI4l3x1dr2zfH5ObgeNF4IwJWSgDAgICAo6Eo6pOcecd5VpfoZqnnvnn+tfFkSb/d90dB/ZdjvxjPjH0yZ0SssOUOr8fasykUinUajVXt4zKAYmDpoNXNaFcLjvCR5K1sLDgzmfb2WzWqV80ztvtNlKpFJaXl52x2m63HYkD9tPHaybGQqEwY8AyXoxug51Oxyk2qjaRXOVyORefx/vQDVPdrkj86K4HAKVSCfV63Y2FEjC6lbEvmimRc5HJZGYMVnXxohrCdPtUOxlTx+fVOmk0oHO5nDOMSaA4T8C+uxkNW1U0SWJ4X1WsOPda243rleSNChiflW0p0VOCw1T+JHylUsm5q5KgK2FmNkrWdiPR88kbiZRuhJB0KZEkSI7UhVDB8VPCpaRWyRrPVxLmf4fExZepWqXuglSNVTm11s7UofPfMYVPDnUcOC/cSCFx8zeo2Cclb2xLvwv0O0jJko4T21BXXhIuHlMVjWNOQs4NF3Xt5Zr3CSjHhe+vEml/nF5OHC8Ch6DABQQEBAQcDt31Vhzkaqif+crTvDb0XvMIon/+PJLk90ONOiVvh50f9zxx5/vH41S4uPOy2SxOnDiBhYUFAHDJQfL5/IzqA8AZgalUCpVKxcW7dbtddLtdF3sCwMWEZTIZ5xqXTqddfFixWHTETzM10tBjFkUa9eVy2SmDJAyqHo1GI1ffrVwu49y5c2g2m9je3kaz2cTe3h6KxaKrQ0fyQsNxOByi0+nMlA6ge2Uul0OxWJwhtzTCeT4JBZOQsH0qg1Q3aKSqoU9DWd0J+bkW/uYc8Hr2j+OtsUd6Hx6nUU4CpHFDJG+q6qlbKgmLqm5shzX8NMkF/+YzK3ljP3VjIJFIOLWXhD6bzbpSDHRpVTLJZ1cSpURKXSNpzJNA+26dOka+257//aPzrmOjSVaULKgLp2a+VEKjf3M+lDhRiWO/dI3oelKXRI4V1znb0/Hy41p9pU775btQcmxI6vR94nV8Rzn/XHNKrP0xjotP1DIU9Bbgcb5/6tqp7x2vCQTuRYIJMXABAQEBAc8B89Q1JSbzCN1BpEnJ1Tz1TQnVPJfIg1wm513r98s/zs9UMYt7Dn8M9Np548HyANVq1alkzMCoRiFJXDqdRrFYxPLy8owrG2PNaHSSVI3HUQ0vAM7Qq1QqzpDqdrsuro2GnZIOqktUyGiEU4Wh8coSAcYY1Go1lEolALN16UgEBoMBer3eTGpx1oJTckBiUyqVUCwWXb/YdxJMGsQ0MElkAbjMijxPMyNqUhUayyQu+XzekRA+L5+BRE0JF5URNYgJdVfkM9AgJ0nSFPI0/EnwOHckESSlJHf9fh/GGEf4Sd74bDTWaeTzvqqesgSEKnoAZhKV9Pt99Ho9F//IODglCL4CROXRV4hUmdHn0WdVxBE7jX2Me8d4T43LjFOZ+C7y/iSm+r3A69RlUsmpnwSHaxvYV8DZJ302dSvWNeEXkFeF0ieDbFPVQI2d1bnQe2g7/M7g2HDMOR/8mwqvumaq+quJTXTD4ma6ThLHisABJihwAQEBAQHPGT5JOopSpYRmHgGLa8N3/dH2tE2foPn31ONqVPrnxxl3B/XTHwOfvMWNTSqVwsLCAur1+gzZsNa6NP8kSEoWyuUyFhYW3HgMh0O0221MJhMXB0eXwV6v58hXr9dDrVZzxNBai83NTXS7XUcM6MJIQ7lQKLjC3Hw+ZqHkbv9oNHK15EjQWBz82rVrTlGjwd3v950xqbXBSDholLM9unsqAVNlhu0qkSqVSo5wsN+5XA7lctmR1KWlJSwsLKBWq6FSqbhi5zR8NeGFriONH9rd3UW/30en00Gj0UCr1cLOzg663e5M/5jcRI1YEgLfLY2El3FkGg9Ho15j78bjsXPxZN8IkgwSIo6Dqm6cdz4T70cSwHVI0q2ZPlV9VRJDpYrzq6qiX+uMv/N5qUape6yeB+yXPiAB0bg5XSs+YWEbqmJpvBkVSM491yKvJaH248q4BrW/JM66fvlcXEt6H95LlTeN2dNr2SeN/yMBZDvczFDFULNpalyhr1ZqnCYJG6FuzVTdNe5UXWg5VuwLNxtuFo4VgYu+lwKDCwgICAg4HPNIjG+Q6PnAvouUr0jx98NUPb+9eX3jfVQBO4gY+gRw3jPGqXvz+hzXjq/WZTIZrK6uolarzSTF0F10Glo0rugyqbFWTN2eyWRQLpddtkUqR7VaDUBkdC0sLKBcLmM4HKLRaDhlgmqTtfuFp2mAF4vFG7LaKXlg/FgikUA+n8fq6qojTiR2jGnT4tw+WQP2ky5QYWPMFYkCjU5ez+fX5Alq4BcKBZw6dQrLy8tYXl7GiRMnHFHTsgf+3BJxfx+0BnX+mQSm0Wg4F9L19XWsr6+j0+nMJEzh3DKxiI6RkiklAZroQrMEqsGvhjrHmQodCSZrvnEslQyyTSq7VClJSDj2LBBPJY/jwH4C+98LWtqA8LNyKslVpZLPzH7oO+O7XHMOlBTpHCp5JOlgAhkSKlWOSGQ0Y2Nc/J3fJ23TJ29xn3EufZVOCRzbVrUsTtnUd4vP78e68Tp+poqbXsN15nsy0G2ScbLaZ3VzpqpLBfdm4XgROIQYuICAgICAw6HqUtxncT96nm+QxBnLNLa0Dd119tUyn0z5aol/XJU3Pe8wQqk4iNwdND5EqVTC8vKyU4PUAKXbHBOFqPrCGmyMdeJOdjabdUlFqI5lMhlHDvP5PCqVCjqdDtbX17G7u4udnR23S69Fm0neNE287u5TTQH2k4bQ6CwWi45QdjodDAYDpySp4gPA9ZfEjgY3d/aLxSIqlYojEXR9Yx+o6NGYTiaTqNfrqNfruPXWW3HbbbehUqk4RY0Eyc/iGTdXcX8fRNqUFPBfJqRhEXIqIxyHZrOJy5cv45lnnkG328Xu7q4juhqvpuSF7XCtUN0heSKx4SaGJuSgwU6Vi+Os13I9cE3s7e2h2+06dZe1CDlXjEvkPXwyThVJXR/1e4BjAuAGF0g+r7oP8nOuPxI/VfeoTpJwKgHT7x8SFr+2Ga/nmPNZVCnWAuXz1gRVXI0Z0+NKnnS+OX6qMCpx49rVjSp/84x/k5hq+QH+qwQt7nuVfyvx5o+q3vydSicVZd1IAOC+E7rdroubuxk4XgTOBAIXEBAQEPDc4RvBPpnzz+W/cQTKJ31xBoUPGkHzVC/to3+9/7calnGqy7zn8pW+g4gfEJG3xcVFF5tEg0iz2RUKBUfe1B2KrkskeePx2GWfpCE+HA6dara7u4tisYjJZOLc+ujOCMDFlHH3nEY2ywOo25Vm5GNNsHQ6jXK5jE6ng2q1ilwu5+4zGAxmXCE1Lkyfja5ZdA0lGaVqoclRmLFvOByi3++jVqvh1ltvxcmTJ3Hu3DmcOXPGKUy+CkvScdg8qmKhStBBa8hXdbgu9RjbIwGqVCo4e/Ys3vCGN2Bvbw/Xr1/H1atXsb6+jqtXr2JtbW1mzLWPGiPIdcTjJHEcV7rectyobnJ8lVhrfbfRaIROp4NOp+PUTL82Ht1qabwr2dCx1IQhhLr6kZDxHVJ3PaqSPqlS5VeJlLpNalkDHlP1jmNGl0mudWA/IyrHh2om1W+SUq5dfpZMJl38nLoo8p50gVUXS3X55NhxjPgOsq/83B83rjEdB1Xydf1wfarbKfupJRB084BKrcZNkvTzWf3MqZy7yWTivnuYCOlm4XgROIQyAgEBAQEBh8M3YuPUtjjDGcCMcRJH3nT3eR6BiuuHkief9PltHKS8+WRxXsD9PLVvHnFT5aBWqznFguoJAJf9kYa1plWnccdd6+FwiFKpNKOWpNNp57KYTCZd3Fcul0O73XYujao2VKtVF4/GvqfT6ZnkJnSro6EGwLneUVkYDAao1WpIJpPY3t6eSU7CdmjY0VhljBcJI5Uq7vBz3Ki8+Yk37rrrLtx11104d+6cI31cQ/Pm2V+rmsgibu3q/M6bf3/d6N/sv+/6pmuUBnQ2m8XZs2dx5swZN+bb29t45pln8Nhjj2FnZ8cZ5CQtJCr+vVWhUje5fr/vkrkwsQ0J/2Qyce6qVEWpvCWTSVSrVWe4A1HqeFUzSU61f3w+P66KLod+VlCuP64VzgMJANcG/2ZfdFOD9zTG3JC91XfL5DtJQkX1k9eSrJDUqNqoLsT6N0kLiTUJEOfAd9dVNYxjot+Tvrsxia2qnPzdd3PmWOg9OJ7+WlVFTl2S9V1Qksdai5qYhwlauE517XFDJ5fLoVarBQL3YiEocAEBAQEBzwfzyFucUTuPiOm//D3u3IOu9V0X55G4eeQtrg9x9zoIflv6d6FQwMrKijMWgX2DiMZkuVx2u9g0LmkwVioVJBIJV7ONiT1oIOlOOJNlUD1gfIoaWiR9GmfFDISaEp7KHNU8JrCgMZ/NZlEqlWCtxdbWliOKzDhJI5aKjT4vx6xQKGBhYcF9RvWEqlG73UY6ncb58+dx++234/bbb8fKysoNhD9ujanLmJI2nTOfUKmbnT+vcYrzvL/jVD4ldEpKVfmlK2q1WsVtt92GN7/5zbh69SqeeuopfO5zn8OVK1ecGsl1RFKjhZhJhJgVkHOQy+WcEU5lqFAouLXW6XRc3CIzTVJlS6VSKJVKjuQpQdBaeiQn89LF++6wPFfVKVV/SfSA/UyUPM5xZvp6bmpo+0psVSWleyXJE1VIzT6phdB5fyUz7B+fSWv0+WtQ51+/s3Td6frQOn3GGBezyPVMIqvfG/yM55J8agIXPy6Q3ze8li7a/K7g+6W1A5VQciyA/bg3rm91ZS2XyyiVSnM3x14OHC8Ch5DCJCAgICDgaPCJTpyxehTCM69NxVHcHpWM+e5USij9c+OeI05J80nmPAUx7vxEIoF6vY7FxcUZdzc1ciaTCarV6oxqwRgkps6nEcR6XDRiafhpqnsqaIPBwMVWUcFgEWYaYgCcsqDp52n0kxhSVWNb+Xwe1WoVxhjnYmetdfFuVM407T7bBfYTcmSzWVfXDdg3/mhYZzIZPPDAA3jggQewuLjo+u/Pv68kqIKga4fGq8b0+aqYT+riMG+t07DWuCE1rnmMfWSMId0SNYPfcDh07Zw6dQqrq6u4//77sb29jUcffRSPPPKISwjB9ti+llLodrtIJBJufjUbKMefBIwF3IHIhZDEfTQaOfdK1uDTODYSfX231L2ZJInrkLFnJFbsO/8leVFlR99fP1EGXXzp/glgRpFju0oWOScc77hNEXV5VcKt3wGMddPNGXVN1E0Dnzwp4eLnuj51TcV9R2rMm44tf2f/VdVW9091l+S1uVzObRDwHM06yxIS5XLZ3UOVVZI7buaQ5GezWZdZd17s4MuB40XgTCgjEBAQEBBwOA5SuPQ4Eadw+UQpTn07Sjv8XNuJU0/mubzNc607CEc5h/fLZDIuRT0Nde5eq5tZpVJBsVicSSCiz8lshUBkVFMBoCKSTqfR7XadqkbCxcyB7AtVBe6uJxIJlyxEsx8qGQQiRYxtWWvdM43HY3S73RmXKhrhwCwZUxWERjmVDq1pRiPy5MmTeNWrXoV7773XuWfGrROSdhIYNdR9YuuTNT/JQhw5eC7wFUH/dy0ZMI/Yafp8KkLqnpfL5bC6uopTp07hjW98I5544gk88sgjuHTpEnq9nlNalEwzGY61Fp1Ox60fllQgCW80Guj1eshms6hUKgDgCr8zJpPrkWovib5ClR4+P5+FBj+JgboKqzKl74EmOlHCQ1LFTQWmtNfjftINkmbf3VOJG9cK15USer6zSlRUpdLNGSVOmmVTk3z4mwfqmsn1Q3LEPsUlYuG1/JsJWTjeJISqiiqR5/0KhYJTXEnmuVZHoxHa7bZbD1yrmqiF3yEaB8ex1bFQ4vhy41gROAAhBi4gICAg4AVhHrGad04cDnJtjCOPPmmLU8Tm9SfO/W0eDlIIfYUvkUigVCphYWEBuVzOuZwxbT935pn2n65rmpxBDSBNH6/3pQHd6/XcDjdT1yuh0mQVJFgkC/l83rXNLIiauZBZJGnw03VRCSLVFxIFqnUEjWTeh6SRiiQNZrb/wAMP4LbbbkO5XJ6J3fE3DXwlhaoJjVLNmjmPuMX9+GvMX1v+mvCJ2rwNAVXn1KVTs/tpLJK66ZEA6HMUCgXcd999uHjxIra2tvDwww/jmWeeQavVmimwzvWlLo90mbTWotlsYmtrC4PBAPl83pE6Kq6MB6MimMvlZgqZq8qm5E1d+oyJ4jFVBdN5VZJBckjlRxOQqOqnqf85dnpM26USRddKuvaxXyQjSnJ43rzEHtx4UFdN3bSgmqYlL5RQsY/6nujzq1rMdcSxUJdO/5jG4WnMoCqCPEaCrqSTGyvFYtGtNbph93o998zG7Cev4XlMbkSVnt99/ntz2P8DLyWOFYEzwYcyICAgIOA5QJNFzEMcudHP9TwaW4epb3H3OOgcJXQ+ueP99DMliT5hjHPdozGiCtPS0hJWVlacwWmMccazxiEVCgWUSiVXMiCTyaDdbru0/wCcuxINLraXSCTQ6XRmdtTp4qRxbUw0QRJGY5zZ+YD9XfPhcOgMZ5K5wWCAbDaLixcvOrWt1+uh1Wqh3++7hCgs6kxCp9n1qE5QraCBSFVkNBrhwoULuP/++3Hx4kUUCoUbCJDOk8Yu+aqmT9QO+9f/XdfjvHU4T0FWYsbPVWFT8kbwOK9juQONB+PfGjdHtZZjurq6ive+971ot9v4yEc+gk9+8pNoNBoziUYAOBfDVCqq4dZut9FoNFyCCWYsJSkvlUrIZDLodrsAgFqt5lwo+aNuifrcwH5CEZJ13cDgc6tLn44ZryXxpwIM7CtaJJNxiirfO5JOkioSFo43sO9uCWAmBpTPxmdRMsR1rZsFwL4rIgC3NtkuSamSNxI/Pq+OjcbY6bPpdxT/5XmqSnN8dW2xbbrDUkXl9wXnkS7XfKep3lKx5zhRtWQx+06n474TVH3WuMIQA/ciwZjA3wICAgICnh/8HdWjqmz++T7Ri7uP34Z/flzb8z5TQ0KJmH8vv3/z1L18Po8zZ864DJF7e3tO/djd3XVGkzHGZaPsdruw1jrFivFo6mJFl6PxeOziUzQzHl3gdJe/UCi4eJXhcOiIFOvB0YWMcW5sezKZoN1uO/cqIKoxx6ySxhiX/KJSqThj1hjjshwCcC6bdGvj7zp+jP1705vehDvuuMP1K04RVYWHxM+PY5tH0JQg+NewH/Pi4OLWkd+vuB81oON+eB6Na15DtZLPSpc/Gt40sJlFUhUQrqt3vvOd+IIv+AJ84hOfwMc+9jE0m023Jriu+v0+ms0mOp0OrLXOzZeZKTVeqdfrOYWUaowSJlXedKxI4mm4q6uluotqcWxV0jgPLJdB4qMJWTguHEtVobh+OWYa18XxJinkpoDWgdP3ne8JN2lI0niOulxqHKlPyvyNA12P+uw8puucz+U/p65Jfbeo3Pl903Wby+VcfUhV4ekaybWqJE9/ODYs69Fut119QPYjmUxiYWEB6XQarVbLbSbdLBwvAoejZfwKCAgICPiTDZ+8+MbWvJ1VNYh9BSNO7fKN53lEzL9HHHmMU/Z8IjZPyVPDaN7/k4lEArVaDefOnUM2m3Wp2jVxB43nVCrlCjvTaGK2OMaV8H7M+Mjd9VwuN6Ok0dgGZhUJqiuayr9cLqNSqbj03ewXFYpCoYDd3V00m01HKpeXl5FIRJkvO50OcrncDEGjEabxczTaGUujiS84hv1+H7lcDl/wBV+ABx54AAsLC3MTNag6pWpbnHqmCom62OnnNIaV6HE84ubf74tvKKv6puvEJ2o+gYuLgdNzAThFkwScqodeSzdakiCul4WFBbz1rW/Ffffdh4985CN4/PHHXT87nY6r1ce1QfdbEnOuNbrMkXzTXTeuTIGqRiRKHBOqaCQ0wH4ReBr8qlyRqDD+knPH9aoKsl/rjMSJmwbqsshxBPYzSPqp/El42GfN4soNE//7gH3hnGvCFn12npNIJFy7fJ+UYHH9qppOMqaEneSYxzUejmOi61DXF+cok8mgVCq5a/isBDdz/D4Sw+HQxU8OBgNXL5D3q1QqbnOG33k3E8eLwAUFLiAgICDgCJhHkoAbSc480uO7Hh6m2Ok1PtmLa1/P0z7EKSj6+bz7HPQ83F1eXV1FOp12RpHu7K+srACIjDISPLpU0hilYchkAI1Gw6krNIg0polubsyUZ6112feYvIJp/iuViiuyTaOY7o/cZWcSC7rSnT59GtVqFevr684oZD05TcKiJJJGM5M6MCaOxjmJ0x133IGHHnrIjdm8GDd+5pMuVS8AzPRJlRr9nP1jO/7aOWxzwCeX6qoGzBZq5r14XpwBzQQ0VKKoPtH495UTEh1VimhQU+FUdYr3Xlpawnve8x488MAD+MM//EN87nOfQ6vVwt7eHorFolOL6QrLmEhNqa8xYz451WfknJCkKWnhGJIs8XlIDn0Cx/kh+eMa05jNuBg8zi/XHsea7x7fEXWPjIuLIzFSEqWlCVSN03g13VTgvABRMhiez2enKq/Km6qJmhBFiaCOjb++eIwEEJjdbNH1y3OUVPNa/X6i4kqllX1l/1qtFlqtlvMUYHwl76vfEXt7e27d3iwcLwKHUAcuICAgIOBwHES2fPJzkDua/h5HtHyS5rcbR96OQgT9/s77N05t8Y/n83ksLCygXC7PEAXG02SzWZcQgoYo1S3u5jMjHoAZ5azVaiGVigp/A1FtLhpGNLBosDMOiKUBaHixvhqTgTCtt+76W2vRaDTQbrcxGAywuLiI1dVVdLtdPP300zcoO/l83hEjtkPSQFWExjOfzZgo7qhSqeC1r30tXvOa17jEKnFrgeMcl4RElTaSNBrYJK00SuclMZlH5OeprTSotb9cA5pgQq/hc2tslH7O+eDYcK4LhQJardbMfdVAp0FMlZdrSOOXqMix/VQqhVOnTuHP/Jk/g0cffRS///u/j7W1NRSLRTePdNXkWkskEigWizDGzBSA1+QjcWRNlSuuMRrsqphx80DVWSWBfkwcyQDHTQtcc1xJQtnmeDx26h3Xm7ojqhrH8eI9Vb1VV01VbUm+jbnRxZJr3yea7LO6TWqG1bixBOBUT+2ffq6EjGSLY+O7t5L0kWQx6QgJK/ut0PapsjOBUrPZhLUWxWLRud7m83k378PhEK1Wa6Y/gcC9SDDGBAUuICAgIOB5Y55bTJzS4ZOjeeSNx/224oiaEsGj9Glem/q7vzNNJJNJ1Go152qmGQS5C011w1rrEoGQXNHoo5HHODkmBhkMBigWi1haWkK320Wj0Zipv0WilkwmUalU3A43DXYSqEql4twbqfqxthYLfjObpDEGr3rVq2CMwebmJlqt1gzRYTyUGqRay4s1tPL5PBYXF915NJovXLiAN73pTTh79qxTO+KIlK+y+a6RqrBprTpV3OJi3OKgRqSuwTh12N+UOAy6dvRfHRMlZqPRCBsbG9je3p6Jf1NlTvukBjVLBZDIkXCMRqOZEhTpdBr33Xcfzp49i49//OP46Ec/6tYmYyu5wVAqldz8ss+aWIUEC8DMmlIXSJ6vSW5U+aVCpW6DmkyEc0gyCcCtN34O7LsPMzkQ37V+v+8+J8HX52CyHs386N+X6jiVN594sU9M+sLvASW4nDM/1lKVLBIxVYn5vQLMlmbgO87NEpJXVTXZbz432+GcafZT3ldja5Xo8TomKmESHX4ncPOAmza6cUNSqO+BxvDdDBwvAoeD/b4DAgICAgJ8xKljwOGJRXhOHHwSBszWk1IFLq6NeUofj8URsnnP5e8S03BaWlpCtVp1xpqmyc5kMigWiygWi65uEtukagLsp9ZnXJmm5T916hTq9Tp6vR46nc6MSkCDvFAoOIOY7k5a/JsGs2aTBODi8jqdDlqtFsbjsVMSAeDq1asYDAbO/a7X67lC23Sh5HzQ0CQBWFhYcNk3e72eO/aFX/iFuO+++1CpVJyCpESeczEvpo1GIH9IYEla48oG6BrxyZm/ruJiJP2/5yWLiFPx9HniiCHJgU8saUSr8UxDm2qbqiua0IJkjSRGM5eS5AKRsb24uIj3vOc9OHfuHD70oQ9he3sbvV7PZZr0C35TLaZ7r5JvElGSR38e2V9jjFPN+B7xeiVlSmg1UQ/b5XUcOz6bxrvxMxJH3XRQdUxLbVCN5g/Lcmg5AK4DJZ3cFOFaVxdLVSPVBVgJuP+dpO+GXs8xVBLKedbn43xwI0mJozFRAiLGp3Fsc7ncDQqr3pOfMR6x2Ww619parebGh+qbH4dHgsl3P+69eTlxrAgcQgxcQEBAQMARoAQKiI8r810d4+Ab1/NUNwCxREr/necSp/ch1Kj21cC45+TvVAEWFhZcanVNQKFGLo1DGlskb7w/s1OyALfG2Jw5cwblchmNRgONRgOZTMYpd5PJxCkMQJQdkIlOmF2S7pK8JxU9GqnD4RDdbhftdtvF5yWTSTSbTZdUoVwuo1gsuna63a5TzUgkmEwCiJSdlZUVVCoVRxTH4zFWVlbwxje+EbfeeqszkP3sfkoEaOCqCx2vIWHjj5+4Q43vefM/j3RxXjSuy29DCb2uizjip//660nVGO0LjVz+HkfQdnd3Ua/XUavVXKZQjZPTc5XQkIgwuyD7duedd+LkyZP44Ac/iA996EOO3Gj/2B+N/6IyR5KiqpyqcyQIdKNTg15d9hgLRhWKn3GDREkP22VcHOP0SGZIXPjsbAuAe+fYf65dzjufmeOlKif7reUrlHxqqQcqcfx+0Hn11UsSJN5f140qr+q6yrWomwq6kaTfl6puss/8XAkaEyMR6hLOtjWmVAk0sO8qqzGMJJP6jnN+ggvliwQDBAYXEBAQEPCcMY94zTOo4/7jVhIV56YWF5NxlB3cOGP6MGKp1/Ie6XQatVrNpVpnAWy6J1kbFVUG4AiGurLRaOI9mdGPpGl3dxenTp3C6uoqrLXY2Nhw2drK5TKazSYAOEN1OByi0+k4Az6Xy7m+UVEA4BQGKg79fh87OzuuZMHS0hKSySQajQY6nQ6y2axL9723t4dWq+XOnUwm7hmVfGQyGZw9exb5fN65VxljcNttt+Etb3kLarXaTAp1nbs4V0kafkzAYm1UaJoZ7jS+Sw3heesjToX1z5lH3uapvHHtxrUdp0z77apx6x9XxYYKxsbGhstESjLF9aykjy6mWvOPNb2YlMKYKEPgu971Lpw5cwYf+tCHsLW1dcP4KXHVZB/AbLZI/g3sF4Q2xrhsk/p87D/7ohlbeb2SBhI8ugPTZZFxXLyWKhAVP46Rxruxr6rsKeHkZoOW0qArKIm2khhNPqPxddZal9GRREldFHV8SWY5h0pylMSp2s93hcd0/fFZ8vm82+jQ94xjoxlAqczxnhxrnkfCTtfxySRKpMTNAhJ5VV71/wHdvAllBF4kGGNgA4MLCAgICHgeOIhMxRG8OMVinhKm52g7cYb4PINbzz/ofnHXa6ISql/cqebuO920qEZojA+NPe7QM5tkt9vFYDBAqVTC6dOnsbS0hMFggM3NzZnd716v5+6ZSCRcHSUaU6VSaSZeCdhX+cbjMWq1GhYWFrC9vY2trS3ngpnL5VzdJrreVatVJJNJDAYDtFotl8yCBqWqDTTiT58+jWQyOWOkP/jgg7j//vtRrVZjXQ+VcPjukiQfrGHX6/WcmygNajVG/TmL2yBQQnTQeXq+f45/fdxaOYgsxhG5uGt4rqp17Av/bjQaMzFMSi50XPg748A0oYjOVyqVwt13342FhQX8wR/8AZ599tmZOC+uKyVFJDmqqgD7RJ9knzFvPMZ2NGsoSSGfk22pux3vRfJmjHEqsabDZ6wcY9u05AHXr2bC9OP7tDYd2yA5YZ/0Gj6XxnmRqKk6yvurmqZrQIuU8zOOBX/Xf5UQqZrGdvWe6irMe3EOmMCmVCrNJFQiAZxMJq4cyXg8dpk9SRipzmqMHfvGNkjqVP0LMXAvEkIWyoCAgICA54ODiJdvJB+FYPnn87ieq9f4rml+u/rvYefosWQy6cgRfxh/o8akukRRneMO9Wg0QqfTQSqVcrXOtre3nVFbq9VcKv2NjQ1nKKmBzLTpg8HAkRgmQsnlcigWizOxJb1eb8Z4KhQKLvkAFbJyuYy9vT1HBOgWmkgkXAbMTqeDfr+PbDbrsl9SdWTWOhJZGrqFQgFvfOMbce+99zqV0Z97JRiabERVI6qYJG50mZwX46bzN8+Fkv/6ytZhKpy//uKO+ffQz+NwkLLng/1U8qOEl2Q3jsjxOenqR8WKboRcT0D0rp46dQpf8iVfgg9/+MP49Kc/7dY116ImNKGCpqSRyXPy+bxTsDgGqr6QIJFw8Dn8hBzsp6p8VLdJELvdrnMZZfwV3y91LVWCSLWMfVKCxrVGosdEK1TTSGw1LlXj0oD9pC6apCUueYmfwl9LbegY+QlIdP2STLFfqoDxu0IVL40rVUXTd2MlCdP4WdaK43hzPfqlH/SZ4tQ3zsXNwvEicCYQuICAgICAwxFHgA5zM5tHnPwdZ/2Pn9fp9UoI41zn5hnGcURQDXp9Dhpe5XLZJQNRlywaK74Rm06nUSwWUalUXCp31lRjmQF1yTpx4gRKpZJT3Zg4hOTL2sh9MpVKOTJFclcoFGYIJYAZQ4xKwmg0wvXr1zEeR+nUmblyMBig3+8jmUxiZWXFEbpOp+OUGRqeLPTMzJLtdtsZyoVCAeVy2bk7vuMd78Dtt9/u4qji1oEqbzQkSTDYfxI3Go80dHntvLWn8xyn2satCV0zqlT4a+2g5/FVRv+auOv9jYe4NerfS5+da0THkoqTKiK+myWTTWiMnNb5KhaLeNOb3oRSqYSHH37YtaHKJzcLuP4BzLhqAvslIDRGUdvi3zxP3Rt1A4PzQfKosXh+Kn1uJCh5iyPrfI+UZFlrZzK5ajZFrk/G3KlLIhVtvm8cHypPOl5sS90YqWjretNYOJ7L7wY+m35f+etF15MfP6gKpGa91LHkhlGj0XA1A1k+hGSO6m/cu83xIHElEdX362aSuONF4BBcKAMCAgICjg6f/ADPTWHzkzjEETJtkwaCf0zbiPvM75se938YyL+4uDize05DiwoD3SCpcrFsAIkL1SMaxEpGmDikWCyi0+m4ODhNWJDP512NLpK34XCIdDqNUqmEcrk8owBQuTPGoFAowBiDdrvt1BLN1NftdjEej1Gv17G6uorJZIJut+tqj9Htk1n4mF2SO++MaSOB29vbQ7Vaxdvf/nbceuutM4arPy++8qYKEhVGPisJK8mbT+6PomDFETx/XSg0hkzd3w5T4BT+xoB+Pu9a3wiOe5/89jRboaqYVFW4fknelPDxuBZbHgwGbr3kcjk8+OCDqFar+P3f/31sbW05g1uJN4kWlT9VWsbj8YybpiptfNe4DrgpQuVK46NIyCaT/VpuJDIkWny36O6o5BXAjKLEeeD6VhWK77kWC6e7MrDvxsr7sU26TfO90dpwSqB8t02dP59wqeukkkCOCd/BuMQ6/FF3S30G/W5jkiRdZ/ze2dnZccqctdZ9d/jkWhO++Mpp3Hd23Hf5y4njReCCAhcQEBAQcATEKWdHdQcjfNXsMOVM7zvPiD/I6I1TP/y/M5kMKpUKlpeXXR0pGrY0ykqlkjO4tFQAgBk3RkJrlHW7XaTTaSwuLgIANjc30ev1nGsY+6DJSAaDgUsiwrpuVE24s826XVQLWAhcFQIqfb1eD7lcDtVqFYuLi468bW1tIZFIIJ/Pu/iiVCqFSqWCYrHo1LtSqQQAKJfLyOfzTo1717vehXPnzh1K3vx4NyZGIMFlopI4l8mD1pJ/z3kkyl9T/rryr9dNBv2Je755fdDrj7rO571P/uaEEhRVdpQM0FhXgsdj4/HYkRU/CU0ymcQdd9wBAPid3/kd7OzsAJiNrdKYMyozVLM0Bk2VJ2C/kDdj7PQ7gGRAsyeSVJIwsR/GGKfcAkCxWHQJTUjWNPsp1W0tzK0JWbQgOgC3MZJIJGaycyoBISnl3ySzmv2SCr2SHl8Vi1OWqZDxvvq5jo3/feZvPGjbJFzatiYZostyo9Fw9QX1vVbXSc4XP6OKy7mMU6Z5nfbp5caxInBASEIZEBAQEHA49D9p/h2nJBx0vf+3ksI4BW2eijKvbb9PhykvhUIB9XodS0tLjqQAmHGPqtVqLtaoVCqhWq262ltUa4h+vw9rLYrFolPdFhYWkEwm0el0XGIOKgi5XA6FQgG1Wg2JRAKdTscpCiRWtVrNGacAXBuaMp3XUTUEgJMnTzpSlM1msbS05LJM0pWSNePorpjNZl2dOxJZKoyMlet0OqhUKnjrW9+KW265Zcad6jDlTeu5aTHxXq83U3vMN/L8uaMByjU5bz34iNuEmLdmdG7VHc/PJBgHn9DF9cE3bnX963Elk35b6lZHQkClZzQa4fTp00ilUmg0GjPxT3weKnGFQsGROCAihnfeeSfy+Tx+9Vd/FTs7OzfEe1JpUyWK86cKEceLa5SKGjMf6ngruaBbJjc6SEBI+jVBkBInXktyyw0SVQvZDxI0xm1yXfrZZLVovbo0qovg3t6eU99JYFlnTd2S+cx8N5TM+YlcdO5JBH1FmmtM1UeuU1XM+Ly62cQ5YokRlh6hJwDfWbal6p66qnIO1bVc4xB5r+e64fdi41gRuGgh3exeBAQEBAS8EnAUV8a444cpanEG90GE7aDrjtK3RCJKib24uOgUtUwm4wxDGqWpVAr9fn8mXTbJxu7urktYks1m0e/3AcCpXjSMB4OBM15ZxJuGY7VadclGqELRFYmxeMC+cjEcDtFut11/AKDRaLh26ZK5uLjokpLUajWnllB1oMsZjV4ap7VaDUBk0JEcqitlq9VCvV7HW9/6Vpw9e3aGvOnc+sob3SGpTJK49ft9N56qJOk8xZG5g9aF71Km1x0FPM8nhj6h0nikOMUh7tqDiN9h186D9geYjUm6du0aKpWKIzIEx4hJP/L5PPL5vFNhqLCcPXsW733ve/Fbv/VbuH79usuIOh6P0W63Z5QZTbyh7zhVORr2xpgZF0qqZCRrjMUiUfKLQmviDapAPI8xdUrANcMiVXGSJRJYkje6fvrkkYlC2A7fUc1QqZsKvlqmmwHqcuknDtG/1VWWc6YxdUoEuU44tiTRXJu8n849v4f43cJnYE1AXu/PCcHvI7bJc9gH3kMTtBxlPb+UOF4EDkDQ4AICAgICjoJ5hOmw/5wPI21xZE13dg9yQfM/V6UizginyySzOAL7bmA0ADW1OLNSkiABmKmhxB16ulk2m023M021gMYi0/MzCUgmk3FEhi5sTFSSzWZviBWj4ZrJZNDr9dDtdl1x79FohIWFBezt7WFzcxOTyQQnTpxANpt1iiHjzNSwAyIlMpvNotvtIpVKOcJXq9Vm3DDL5TLe+ta3zrhNxs2ZEjga1iRubIvPrS6T/lriZ+oyGIejuCiyTf48F4My7hzfjW0e4TtqP/2YpoOujVPjlOjqPJAcUY1RN0U9j7UGjTFunadSKZw/fx5f/uVfjt/8zd/E9va2I/w6/1SI1P2Rhjs3JahmaSF4ranmEw4mHOE7qKo3s6AqUaPqRwJBMqQkUssOUEmcTCYzJQ9I3rRvSphIKLVguJ/5UtcYv0c0xtJ/ZnUnVXfYuPtyjDQmUZUvfWZg39VT1T3OPceZJVOo7nMO/A04TQ5Dwq6qNPvF/qriqwmSbhaOF4ELMXABAQEBAUcADQzgcJdJ38CMc5f0P9N2/Xscdr+4c+KIHcsC0HVQYzjG47FLBEKix2yQJE9M3sGYNSpH/L3X67kCut1uF6VSybmX7e7uupgjZnZkzBeNL6qB6i5F4kVj1lqLRqPhCunSkKrX6y6GhSUCGNvGvnW7XdcOAKe+5HI5tFotNwYkublczhl1qVQKDz30EM6dO3eD8qbj7qtvVDHottntdmcUSRp6cSpt3Frw18E8hU7JlRqacWvoqIpeHGiwqsIUZ6TGPdNhSnTcOQep3RrvpuSMx0iiSFA0iYi11hF5rk0a/adOncK73/1u/PZv/zY2NjYc0WPflJwAs7F5HHeSBT6DPz+aOAiI3JfZF8a70e1T1TmdV8atKUlVV08qhCRpXJckdfpe6PkkLJxrVb9UifW/3whdd0p4VBn1M32SFGp71lrnBqoxeb5LsY6tvh96Db+7lPSp6sbP/U0TXq/jTMIcVzJCy1twM+Fm4fgRuJvdiYCAgICAz3vEBZ+r4cLfD0s+ofDPizPaD1NWfGUirn8kJKVSyQXycxef6gSVKmazq1QqTjUCgGq1iuFw6GLSdnZ2kMlkUK/XHTExxqDX6zkVi2oGx4SKFtUEJnTI5/PO1Ys76wBmYuaYnXJjYwODwcDVaEsmkyiXy+h2u2g0GsjlcqjVakilUmi32+56EjQqdlQySqWS63O5XEatVnOJTpiJL5vN4nWvex0uXrzo3Oji5oPGpMa8acxdt9tFu9127ary5rfnz6u6Zvlz78+79k+PU4ngZ5r0wVfTVH05bF2qIc1r/YQS88haHCn1252nNM/7W41/tnOYmsn7cF0ZY5zia4zBuXPn8MVf/MV43/veh06nc4NboKo0mvmQmwAkliQJqmRpLKaqdcaYGbdHJZ/8m/PK9jS5BtcXXSnT6bQrwUE3XgDu/eNmA9cJ29fn4VhpDT72Qd0ZCarnqqYpWWI/VcnT+SCBJElTtU9JMvtMt1CuW51nEnW6i7IECseDx9lmIpFwCiIJH5+PY5pMJl1CJVXRSeCoQnIsjqJ4v1Q4XgQO8wtOBgQEBAQEHARfnTgow1icUR6nOMRhnuGrbcy7tlQqYWVlxbmQMV0+jRHu/LN2G5OVME1/IpFAqVTCcDh0CUm2trYARO5WLKBNspbP513sG9Nvp1Ip1Ot1JJNJl+afxhULICeTSVeiYHd3F91u1xlZmUwGw+EQzWbTuTzxPolEwtVsWlxcnCkkTpdNurvRGBuPxyiXy8jlck7ZyOfzOHHiBOr1uovJYyKT2267DXffffcNRbr9OVHVjYqLZpqk8kZSe9B60bmPU+DmESP2A5g1uAk/HiyO0B2kesUpx3H3jnPti+urtn/YZsRzge+SqmQQgIv9UoxGI6ci8z2hUpdKpXDmzBl80Rd9EX73d393xtjXd5BEisY9MxoqoSQhYpwoVW51s2MmR3UpVKKo7y2T+mjsGrAf58V3gKSQa5v9pBqnteiomvE8Ej8SE0LXPrBfT42KIJVmP2kLx4ukTGPt9Dx/c4TjRwKnKqSSNR0DfrdQceR48tn9rK++csv2tXC59lNj5jhPk8lkpp6eP043A4cSOGPMjwP4UgDr1tp7p599F4C/DmBjeto/ttb+5vTYtwP4qwDGAL7ZWvs7L0G/5/Q1KHABAQEBAYcjTu3wDWs9z/97nuF7kNLmf36YaqF9zOfzWF5eRr1eRzqddtnVgP3d5uXlZWcEWmudCyPVIhKd4XCIcrnsEoPQOKdbJFW6YrHoCnC3221MJhOXjMTa/dpS3N0vFosoFArOeGS2Sq27RIJG1WNlZQW1Ws0lR+l0OshkMjhx4gSSyaRLDELyBOwXdaZqUC6X3d+7u7sol8s4ceKEy0ZIdTCRSKBareJ1r3sdKpXKgSTCj++hmtHv99Fut13MG93Z4tQKnVNfQfLnN259KOJi0uLWnhqUvgqnitFBaloclNzQAI5TLn0FW/vqk9e4sTpsTnie7z7K/lEd4WdAlNyEmwSMDyMJuueeezAcDvGBD3wAvV5vRlHjGJHAaG0wjjWJXy6Xc3GjWsvNL8vBsSBRSafTTgXWBDwkXSQLVNo5j8zk2uv13MZIuVx2cXoknurKqSUJtG3OJwmebgD4yUL4/MC+SqeZJlW15rOqK64mBCGpolso+0I3RSqXPMdXlLl5onUteW/NTuqTLJJYziPnkutC3ST57KlUCrVaDel0Guvr6y7p080UjY6iwP0EgH8N4Ke8z/+ltfZf6AfGmLsBfBWAewCsAvivxpg7rbVjvAwwCDFwAQEBAQGHw3dL47+HuYDx34OUh4PUhjhCGKe66XnlcnmGvNFVigYZ3ba4K06iNh6PsbW15XaQ0+k0KpUKAKDVajk1gi5R/J1KGGPfaAzW63VUKhWX3Q+AK6SsRihrsDE+DIgSi0wmE7RaLUcUNTsfPy+VSi7TIFPy01Cm0dnpdJBOp7G0tDSjDgKRa+jJkydhrUW73XaujSSQr33ta7G4uDhjvPlzoYYfDVCtZ9ftdp3xqLv9SlT8xA3+PeapVPMITFwCCl7jt6efa3/oBqokjgbrURRgtsc503gj7b/ed55Sd9D7cxh0LHxy5LfB4/1+38XEUbVh3Oi9996L69ev4zOf+QwAuHlVFzkqWdouXer47jH1PhCtd56nMWwcNyrRVHt4T2ZkpQJO4sL5IpHTRECpVAqFQgHJZNLVTiQ5JKHkO6kxgXw2jR3kMzM2Ly79v5IqklEtfE5o7KB+3/rrhkRQSRvHh2Sa7y/VN62HR5dRnSt+D7KPfKf5fKryabIWEjeOIT/PZrPI5/Mol8vo9/vu++jzOomJtfb9xpjzR2zvzwL4eWvtEMBTxpjHAbwewIeefxefA4wJClxAQEBAwJERR5riVIx5O62+Ia7nxRG6eeRN2+Dv3FU/ceKEU4zG4zGKxaK7lhkgWUyaxhFVLyZKWFxcRK1Ww97eHjY2Ntz1g8HAuWn1er2ZIsI0UnK5HCqViiOPTDSSTqdRKBRc3AldCVOplCuazXIF3W7XEZ9kMumIZLvdRqPRQCIRlUKggtdqtVxWR2bJLBaL6PV6MMZgcXERhULBtWmMwZkzZ7CysoJ2u+1i5Fg6wVqLBx54ABcuXIjNHqdzoW6TVAdI3Og2yRgadadiO/xMyZu/ORC3GRCnAPvkyHenjFOi5pEvQmN/aCCrMRu3FrU//FsVmHnE8qWAr6z4zz/vvlTiWCaD71ixWMQXfdEXod1u44knngAQuSIOh8MZQ52JUEhaqMxo3TaueWA/yQbdELmm+N6S5FF9YuIRquhUw9hnjb2iksi6b2xH3RvpHsn2mTSIJFLHjG6PXAt8Vv0uJOliOyRBGrPH51YXRP5o2RFfASZ5y+VyzlWRimBcnFyhUEClUkGz2ZxxnyURVLdyfR9IKrVvfsZRnTdezzEn+eaY30y8kBi4v22M+VoADwP4FmvtDoDTAD4s51yefnYDjDHfCOAbAeDcuXMvoBvSJuZn9QoICAgICPBxmDpwkEEY11ZcO3GuYvoTZ3AXi0VUq1WXiIPGEg1G1otiKnMm7tCkEyRjS0tLsNZie3vbGUqdTge5XA5LS0totVpotVpu559t0VDJ5XLOZYlKHmPrmKWS7l9UZwC4RArMMkkVg+UBer0eADgFgQki2u02Op2OU0HYD6qBJH+bm5vu+OnTp7G8vOxcymh8cbf87NmzuO+++5xSOI9gqAGnBjBdOWlYq7Knc6zuY7omqNbE3XOeihZ3TD9XxUkNYj47iUec6st/2T6fVYmcb+TH9U+VRnXR1DF5saHtkmBwzany55NfbjwwJo6udOl0GvV6HQ899BDW19fdhgCTaPiJPazdj5MC9uMQSbJ0TghVqZR0sd/qLkgixgyThUJhJvurFhCnGx/bp0KnCYvouqxriaoy4984/+w71yvnVBOMsF2Frvm4+Dn94XPr+CmxYx810yfLm3AMWZ6EBE9j5/xNDr7T/nyo8saYYn9zheuHcbjq+sr35mbh+RK4fwPguxGFnH03gB8E8A1gKbZZxP7PZ639UQA/CgAPPvjgi8K6XqLvioCAgICAY4qD1DH/2DyCpvDP8cmCGghx92YmyGKxOGOg0b2KRsNwOHQGBQ00NQZp4FSrVTSbTRczR+NwYWEBlUplJvU4XcqMMTPZJElW1KhlPEin03HKHw1JGjWDwcApYWx7cXER6XQazWYT4/EY9XrdlTNotVqOJI1GI5dlk3E9iUQCy8vLSKVS2NnZgbUWCwsLOHnyJNLpNBqNhjM09/b2ZlwoX/Oa12BxcXFuyQCOK/+l8Ui3SWbQ5PgpeSOo1gFwBrefTIFzHbfWeG+fKGk8jsI3HrVNP5mJqmR6zO8b3cwAOONdSVnc2uV17D/H+MUmcnH3pnHOdeIfZ200goQgn8+7OWRM2dmzZ/HmN78ZH/jAB1xZC91k4bpIp9NYXl52z5zL5XD69Gns7e3h8uXLM3UQuQFAcpXP5125DJ5D8kYFjKo5kxDx3abqRlWcz8z09nTj5JpnZkWSIY4N1XV1meR88xkBzJB4rhn2m8ovjzPDpSqyHFeOu5+8hfOm5U/oEUBVzI+3471JqHS96ppW8qhunPxbs3yyPY6N71ZMYmjtbGkHbedm4HkROGvtdf5ujPn3AP7T9M/LAM7KqWcAXH3evXuOCDFwAQEBAQFHwUGqWxxxO0iF812B/J3/ecav7z5Xr9ddNkWNAaHhsLi4CAAuUyTTonMnmTEixWIRJ0+eBABsbES5xsrlsssYubKygkKhgM3NTafK0dCl8cJi39yVp0GjLpPNZtP1gTXguPtPMkaDl31j/BpJIACXeY+GbjabdSUKWq0Wut2uSxLBpCpMgHLixAnXBhCRKLpl0pB+/etfj9tvv90Zw/7cqiueuk/SyO33+65/NGB910mSRhq/qn6poRs39/xbiZwao89VAVZXS3+Ncr1orSxfbdPELRrrdlDhYlUvaMT7GQifL3Q89G9fIfHHwH//9FyWk1BVOZ1O41WvehWuX7+Oxx57zJXHSKVSqFarGAwGaDQaLpFHuVx27wZjNSuVCk6cOIFer4dr1645N0yqaSQrJE+a2ZAxbxpXOplM3NpjP7lhoyUCSDY1sRDfOc4l58ZPoa8KqqpnHBO9nute49/iXCL5rnH86TFAZU/XIRU+um2q6zfdU3k/rkHWgPRVZ/87VckWv0fZfxJb/u5vVPBHNzL8eLnP6xi4OBhjTllrr03//AoAfzz9/dcB/Kwx5ocQJTG5A8AfvuBeHr1fsCEKLiAgICDgCJhnWKoROM94nqei+T+qnsxTXVKplEt5T3AHHoBLKe4b5svLywDg4uLG4zEqlQpWVlbQ6/VcbNloNEK73UYqlUIul8NwOMTW1ha63S7S6TSGw6EjSCyEra6YvCfjhahK0QWNhhxj3TqdjlPeSAwZV8NnKpfLsNa6WDkSJRY8Ho1Gzp2NxijdIQFgZWUFKysrM7vg3W7XuYPSWKxWq3jLW96Ccrk8457lK09KPqhqsGA4DWh1nfSJH41OVaD8daSkzF8L/u9x5/v9PogUzVvDNFhJzFWR8+PglICq+kHVIs5o5r04Rn46+OcCn7jNez6C86Gud/6GCo1vJvHIZDJO8aXL7+tf/3pcvXoVm5ubSCQSbp0xEyEJFNcq722McWUE7rrrLtxzzz14//vfj83NTee6y3VCdYrqD9cV3/VsNovxeLb8RT6fd/Op5C2Tybg2OK+cO12jmvyDCVTG4/HMe0XiRrJprZ1xSaaS5hMdHWdg3zVU1V/9LuT3HpUtJZGq5ut4adFsZqbV+ELNQMo5Ua8FTcbiq3H6na0ul36yI34fJpNJlEql57KcX3QcpYzAzwF4G4AlY8xlAN8J4G3GmPsRuUc+DeB/AQBr7SPGmF8E8CiAEYC/ZV+mDJRAUOACAgICAo6GOOIFxLtO8vO443osjsD5hMFvN5FIYGFhAdVqFQCc4bSwsODcs5LJJFqtltuNVtcqJkIA9mNd1tfXnZHB2DRmgaQ6xQQpw+EQpVJpJlEJd6lpzJC4TSYTdDodR7hIaJh8gcobSRkAZ7iSTDFmjklNaCixRp0xxmWk5DOMRiPs7OwgkUigVqs5l0ka6Ty+s7PjDGEee/3rX4/V1dVY10l/DlV9o/sks03SYFa3SF8do0IQR9Lm3VsNbCUa/to6iLDFKbtsW41SnuOf72dyVMVBVUsdHxIYX2XTda8ZAA8b/zjMI7lx75OSFZ5DQ13/1jFmnUOuMbohLi8v47WvfS3e9773uYQ6VKdIsEhsGAtXKBScirS3t4dms4m7774bX/mVX4nf+q3fwvXr192aVBWNGwV0g2QJAa4/Esd8Pn8DcWPMKt002b4qafO+f1S5o5pPws2U/ACcQsl1QIVdVTYdc41545pRFZDnKcHkj7peUk3k51T9uVZVsaaqqMqYrglNssJ1rUmIuDHBdc2+a0wx2yOBJQFnKZebgaNkofzqmI9/7IDzvxfA976QTj1fGBMIXEBAQEDA0RCniPk7y/xd/9Vr4lQCVTV8I18NyVwuh4WFBRcDQ9AtMJGI6pZtbm4C2E8UUK1Wsbu768hbv9+fURVUaWK7zB7Z6/WQzWZRqVRm6qhpJklV37REAJUoAE61YOmBnZ0dDIdDR8qYHZNJRTg+JGdMBsLYllqthmQyKgzOTH7MMkklr16vY3V11d2z3++j0Wg445UGbyIRFSu/ePEiHnroIZdiPY54+8qbqm/9ft8ROKoXfpITQt1P/TXm31fXRdy6i0PcWopTE+PUMIX22W9LjWqN9eFz+WTOJ3KqyGm7JNVaQ+y54Khqo86JxkXxXzXG+S9rqNFdkjGnFy9exOOPP45HH30UtVoNlUrFlargM+TzeUdYmBSFGx79fh+PPfYYXvva1+LLvuzL8NM//dMuAyvdALkhAOwr7sYYp/ry/WPdRboEcz5I3pgZlX0j4eL3ipIeADP3JxmjuzY3ILjWuVFjzH6SFhJOkhiNe1VFTOeH92b/OFdU2vhMqozxuwaAG1uSTKqEjAemK7fek8SNmy58N7nRojGQvL+6DPtlCxS7u7uuBt3NwgvJQvl5B4PgQhkQEBAQcDh8xS1OxYjbuSbi3OP0ev8++ncikcDi4iJKpZJLVJJKpbCwsOCSGTCurNvtIpPJuNIBo9EI3W7XHacBReVkMpm4BAzGGGcI0ShizA1dE4vFoisvQKOdxg4zQ5IsaUp9Gji9Xg/b29uuz3t7ezhx4gQWFhacgUgCxSySdGsC4EoKFItFF1Onih7Vh9OnT6NUKjl1o9Vquex8dKdi/NC5c+fw2te+FhcuXHDxflQnOHc6r6qosc8al8ex0fNooCrZ9QmMb1Aq4pKV+MeU3PmkSNeovy79tRmn/voxcn6f+Dc/U8NWXShV5WDyiThFm6RQXUx9KMHy++s/Y9zmC/tM+DXUNCZLiR43OmioMwnQQw89hHa7jWKx6BLwcIODKhqfly6OqVTKbU60Wi089dRTeMMb3oDXve51+OhHP+rGUMkbVTdj9msn6vun609rPZJIURFS5Yi16fiMSn5ITLipo31X5ZTzynNI/Ngu1wGJpGaT5Luk7oicX/ZT4+joiqqxecx+q26NJFLFYhGFQgGdTseRcF7H59Dz2YaSWR0XX3VTUsd29F1kbOLzdQ9+MXCsCByCAhcQEBAQcETEKWP6ue8md5gb20GGJg0Ypu6nesa4Myb0aLVaziDrdruO4CWTSezs7GA0GrlEJ6VSye3UM0sdEw+wqDAJHrDvYkkjrlwuz2SmpAqTTqddEpNWq+USKDAeh7EzzWbTxdIxe+Ydd9wBYL/w8blz59Dr9dBsNmGtxdLSEobDoXtOZsPc3t52xBOIYlz4jEtLSygWi+h2u86V8r777kO328WnPvUpVwLhVa96FV7/+tejUqm4ws3lctntrMe54fkEh0oM44LUSFb1xp9bn2QdlNxA3csU81wDD1PSfCipPOo1hBqkSgRpAKtBr8qcKneaRdBXCNWV7bD+HUTo/Ln0jynxVEXcj9Ui+eDGBjcYMpkMVlZWcN999+Hy5csz7pMkbnzuXq/nCtYzxpObHVevXkWv18MDDzyAxx9/3JXHUMKQyWRcvFu323VJhHK5nFOCx+Oxi7lSVcyY/RT4nI9MJuOIHjdvOB4aY0bFjdcoEdMNCqp4VNyz2exMkhJ12VQlVuvSsX3d6OCaIAkkeaTaR1VTN0RI/nVjii6tStb1Gdg+31sdfx5TlZHrTl0quUHBPqv6ebNwvAhcQEBAQEDAEeEbcr6aBsS7qcW14cfY+Odks1nU63UsLS05I4PKGhODMJ0/jSjd0Wcx60qlgnK5DAAu9kWzPXIXX1U4EkA1LqkqkJzR4M/n866YNhUxAC7LHmN9dnZ2nBJG8rSwsIB+v492u41yuYxsNoudnR1sb2+79tfX1wFERIlKxfb2Nra3tx3h5G5/qVRCvV7H3t4ennnmGWQyGdx6660YjUb46Ec/6pSKu+66C3feeSfOnDmDRqOBj3/841hdXXVxhIyl0fny3SepHpL4+vXe5pG3eetI4atnceqtkjqNw+FnhyFOhYq7bt76JWi0qvHrq9OqXmliExrvNH5JDnwlkuN5UFbLoyJOnVQywGeigqhp8zVJi6anZ1znaDTC+fPnXV1CAC5OjWNEt0a+J3Tp63a7rg/r6+su+YmfLEQ3X6gksdQAkwVxrPgcTFTC8dXaZL4qpvXcOB6apVIJFAk6SRPnVOdaYwq52cMxJJnku8Qx1mvYJr9zfLdJbkDpd5K+c1rnjptETJDkq6uq9ulmgr+JwGdUl2G6m2tRdJJkboDRnfRm4VgROAMEB8qAgICAgEMxz+URiI91i7tGSZsat75RWiwWsbS05Nz5MpkM2u22MxZYE03j1ay1LiaGMW71et1lkbQ2iomhkpXL5Vy2yUwmg0qlMlOPi/fSgsFasFhdtli0mkYbVTcaSltbW1hbWwMAnDlzBnfddZeLX2u1Wu7em5ubaDabjjhSIWQCgXw+70irjmuhUEClUkG1WkWj0UCv18OFCxeQTqfxmc98Bs1mE9lsFrfddhte/epXo16vY2NjAx/+8Idx9epVZDIZPPTQQy6eaR6R0QQKNIz9BC3qYqVKBjCb4VDXQ9xa81XdOPjK3GHkJs6tch55jLtn3IaFf/84sslzfFWD2RKpwGn9P1VsOAZaOFzHdB4B1ftrO3HPr256/FwTVfA+nDM9T7M0ctNlbW3NqWKqOtENj+SCoJI3mUxw6dIllzxIxwTATN22YrHo1Dit+aalB/Qd9hVOPgvXMr8nGHtIt032X8eQ6qkmnlHVWVVVQhU4/Z5R9UqLmyuZY3wb/+b4kxipa6uqcLoWEon9JE4kjOy/Ejld7yTBSlBJ0qgMkqQxRo73I/EF4Ij2PI+MlwPHi8AZwN68ougBAQEBAa8Q+IYPEJ8OXeEbkGq0zDu3WCzizJkzKJfLWFxcxMLCAnZ2dmYUPxav5o54qVRCrVZziUPK5fJMIgMmEGk2m87QZFvFYhGnTp1CPp9Hp9NBu912MSas4cagfxo4dNME4OLZuLOeSCRQqVQwmUzQaDSwvr7uarndfvvtWF1ddWodACwsLGB3dxfXrkWVhhjHQnWv0WhgMplgcXERo9HIKQwAUK1WnSI5Ho9d5r5sNotLly5ha2sLxhicOHEC999/Py5cuICtrS187GMfw5UrV5wSec899+DkyZM3pACPc4nl72r0qvqmCRrmES8AztiOc+07jLzNI5kHKW9KoPxn9Puqn/kGp7ahffb7EPeO+OPKtkjmaBxrjJzWNlRyzM2Gg545ru9xz+r3lWRCU+z7WQdVibXWukQ63Ch48sknZ8aLih2wH2NGdY4bHVS/ms0mdnZ23CaNkhaSCdZ+tNa6a+l6yHM1/tD//tJnHQ6HN5A3TSJD1Y3t8kdj1TQzqapUPlnkfbUcAEmUutj6a5RETwtq+4lwNOZSY1j1O5fJW7Q/WhNQVTmSVP89oJLI/vAZqQb648q4RMYh3ywcLwIHA4vA4AICAgICDoZvUPjuN3penALnK296LQ2aarXqYrxOnz6NcrmMzc1NV5OtUqnMpMu3Nkr3z8yUnU4H9Xod2WwWnU5nph9UtligezQaoVqtolKpoFaruWLXNE4qlQry+byL7eJOfLFYdKmwmQGSCh0TIXS7XaytrblsmMvLy7jllluQzWbRbDYxGo1QqVQwHo+xtbWFra0tlEolJJNJNBoNWGudskB3TlW52Aca+MxUaYzBYDBAp9NxCuSdd96JixcvYjgc4hOf+AQuXbrkSOFkMkE2m8Xdd9/tYvh0fgklcmrAMnmJqm8Kjhmh86aqDu+ha0jVjIMQR0CUYGnfecx/Tj1H+xRn9Ot9/ftrf2nQ62bFPHLHcVKiQ2WFiWaU7JIAkdwdFf4YzyOvSizVndJX4TiWVLHYp3K5jPPnz+Pq1aswZt9NMJvNot/vu/GhayWzy7ZaLZRKJRQKBVy/fn3GfVCLvmthbnUN1ELcVL/ULZCqEJ+Rijn7pCofCabWRWMftPi3r7KpiyNJlBKtyWTilFff9Zdz65ej8PvOwuV+ohld50q8Vc1j+4z71WyRbIturSTs/thy/ZB4a8IejgfJKGM8ea4S3Zcbx4vAhSQmAQEBAQFHQNxu8Dzj8SASp0YJXX5KpZIjU4uLizhz5gzS6TTW1tbcjnEul0Ov13Ouivl8HuVyecZ4XFxcxO7uritozV3w3d1dlEolR+RIBk+ePAljDNrtNtrttjME6/U6ksnkDHmj+xFTcbfbbQyHQ2dkstD2zs4Orly5go2NDSSTSdx1112o1+toNBpotVpOVWRCk7W1NRhj3H2o5pEMjsdjl/achI5lDLrdLtbX1x0B4FglEgncdtttuHjxIorFIh599FFcuXLFGZ66a14qlXDbbbe5nXPCd09UQ5NEwy/WTdLFXf24nXt/Lakqoe0fBJ94KdSdUImgqka+cazPqAZmnAJ3FPjP4q95bd9/LvZBs1TSRVHJAonAc4mLO4y0sV19Z7UvfpZKVeuowpFUrq6uzrgrk4iVy2WXcEhdKOleV6vVXIyrZnnkPGpdMqo5VH7UtdS/Vl38VCEiVEWLK++gZFYVOLatpAXYLxtCoqNqlcaO+W6HmkSGRI5j65M3PiuJp6rfuknhZ7Ll9y7JnO/6S+XMmNmkLZp8RceYxFLJHteMKob+9S83jh+Bu9mdCAgICAj4vMc89cE/Rqja5rdDAyWfz7si04VCAaVSyf1NFz/WNatUKs5tsVqtzrg3JhJRwWqqWzQqNUMd+0jFrlqtuhg4JvdgFkcAbrd4b28P+XzexfJ0u113jDvOTLu/traGjY0NjEYjLCws4OLFi0in07h27Rr6/T5OnDiBQqGAjY0NR06ZEY7ElONGsso4HhqutVoN5XIZGxsbzp2SigHjTO655x5Uq1VcunQJ6+vrLkbQNyKttbhw4QKq1Wps3TfOoz/PHBe6T2rtKHX1iyNncX/76+Ooytu8/vF3XzmJiyuLW9ds1+9z3MYEj6sRrOcD+wRR3ebmvRtsW/tN90DN6Ajsxy8dtV6cPp+6QvrqIs/leuEmCdch1Tlth+ewj6wFRwW9VCohlUqhWCw6AsUNCY4F3SI7nY5T2lX9piLZ7/dnnttfM+q+qESTc0DleG9vz9WT4zir+6KWB2ANRlVqSV5IxkiGND7QJ2maTVTfR33/qDCqaqbxfKp+qlLNfnFeqDAS+n5yjNhH/q3uqPwuJBFWUqnPokSe31PcWBgMBm5z7MVIwvNCcLwIHObX7AkICAgICPBxFOPzINczINoxXllZwdLSktvZZ32z8XiMq1evYm1tzRmKrG1GY4VZ57jjXyqVZlQ3kotisYhSqTSTmnthYQGJRAJbW1tOYWMGx2Kx6Gqk0TBhXA8QlSzo9/subgeASyxC18REIoGlpSWcO3cO/X4fly9fRqFQQLVaRb/fR7PZdISqUCi4FPzM4MbnomLAwuDZbBbVahWdTgdXrlyZSeZgjHGENp/PY2dnB08++aRLwe7PEQBnxN15550uJvCgOdd5p1JI9ym/PhR/9401X42KWyNqjMaRM1Xv4trQzzVphqok2lftyzw1kJ8rWdH7+GTIh45bnJuqr1L788Tn4HrnhgKfha56z6XGlk8W/c95b/aZag3Hw59bJZ0sGn3y5Ek0m00Xmzoej7GwsABjjFPESfqSyaSLyeTmBVVnJQ3qMkkiSyWNxEc3EPzn0/Ei2fSTi+g65tizL+wDSY8mneEcA4hda3EukaqsU0nkc7E9TSTDz3QjQvujhEpLWCiJpOt0uVxGp9NBv9935Jr1Lv2aevpucKxInrPZrCP6HFvWnOR8cf75XXozcLwIXFDgAgICAgKOgDgVgvCNVp/MqQFMlY313AC4Xe+dnR33Hz0VKbpV5vN5dLtdF+9GkjMcDrG9vY1CoYDl5WWXyp9KVavVcsZVvV7HaDTC5uamKypbLBZdmYF2u+0yK5LU8R5Uw+jWCETZMnd2dnD9+nV0u13s7u5idXUVq6urWF9fR6/Xc4bqzs6OUwsJPuN4PMby8jKsjTJd0phjQpNyuYx6vY5r1645hY/EhASTRm6n08Hm5uYMkaIR7MefLC0t4cSJEzO7/76ypD806DX2zVfffAJw0I67T8IOU97iSJqvpvn9BPYNe97DHwclnBrjpevYV1YOW/NqsMeRibj4J78df4zo/so1SiNZ3SnjlNR5726c6ub/y/WjP0pYdT5IyEiu6vW62xQpl8sYDodoNptuM4YbD7u7uy67aiKRcAQO2Fd5NHsl17uqSXQtBOBce9lfjglJDQDXBudcXRJ1jfD5Ca4pVa5InKkaaiIUhSp1xhgX10rwOdgWn58bSRqfyX5y7JW8sV+qeOn6pwsl4xV1XWk7VCn95EaqZvNcfpcxGQy/0/m8vip9M3CsCBwQYuACAgICAg6HGoBxCpvvLuYb7plMBouLi6hUKgBmyQH/89/b23PFpAeDAQqFAlZXV1GtVrG7u4t6vY50Oo3t7W20Wi1XQDidTmNxcRH9fh+NRgMLCwtYXl7G+vq6qykFRBkjNzY23G5zsVhEtVp1MXB8pkwm44xjuljS5ZOKVzKZxNraGrrdrlPylpaWUKlUHKFLpVLOfYjGGmOBNDEAd7q73S4AOOUwlUqhXq9jPB7jM5/5jDNqaSSS6DFzIQ1hun7xeea5y506dQq1Wm2u0e8b+1Qj9MePffPvqVAjWdeOrwDNU9lUDSM05o3/at0qdfOiYa5ET6F/+8YyP9NzNX5IjVP/XfF/94mcjgePxamBHIvRaOQ2DAqFAvL5PBKJhItFUgUnblz993ieCyXHSMkPCYse89U8ZnDMZrNYWFjA1taWU5zz+fxMDBtVG2aVLRQKaDabzmWSBEqzT/J6ja9Sgs0xUrIVt8EAYGY9qLLorw/Os6b4B3BDjJdeq7GmqvJpjToAzj2W3ggkQXxWa+1MdkkSzriNMn3X+d3IOdHMmVTFADgFjZtaWnfOf6fVJZTkmfO6tbXlSCzHQBXKeW7aLxeOFYEzxgQFLiAgICDgOeEg4zLOGMzlclhZWXFZ5xKJhEvOQFWKcWwkb/l83iU06HQ6LnaGha4ZvzIajbC4uIi9vT2sr687F521tTVXNBuA29VnQoVisegKadPV0FrrFDljDFqtFnq9HpLJJLLZrKvvZq3F2traTEHhhYUFFItF58qpiT0KhcLMDnilUnG1qTY3N13cCWP96vU6arUaarUarl69iitXrswYrLlcziV90Xg0Gl00rGmAplKpGfWPO+Srq6sueUSc8uaDRhndqg5S37hOFDTofMXNV3HiyGNcv3zVTeOBfLLk/+h6VcKoKoN/L41RJKlRt0ga0Grg6/lxP3583EEqNz/jJgLJDZP0MHkE59wnbHEKm/7rn6cEhvOshN0n6erSR/JRq9UcwdSYsmKxOJNohPFdVMepOGnmQipKGk/G/moCH9+Fl/1VF0LG9PlrxHeTZX91PZCIxSlsPK7uu5wLEjy+64lEwrlxsj1uwNRqNVdjksSZypnGI6pCymdjv/k9q9foRhtJtbVRKQYSLI4FSRfvxe8sqoNKQtnOxsaG+04cj8fO3Z3v/s3E8SJwQJDgAgICAgKOjDhXOyDeuE4kEq6wL42AdDqNwWDgilQzkQkQKWSs+cZ04lSyaGQ0Gg0XN8Od906ng0wmg5MnT6LT6WB7e9u5FnJH2BjjUu/TqNzc3HSqRTKZRKlUQqlUwmQycfXdWPgWiIyU0WiEVqvl6srx2slkgp2dHVfsm7FAjHPjjjgD+2kEtVott9vOkga33XYbkskkHnvsMVfbbTQauQyU3Klvt9subojjraSAIPFQYzmdTmN1dfXQxAJKklQN0R915dLr/DVC41jVKzXq43bn55E2/V0VAWCfvJB06bG49ua5dvkqR9wzAfHlA1T5U3WE7aqxz2fgMf7rk2qey35x7LgRool+OA68hxruPkmJI81xY01Swsyrui60b7xHMplEoVBw7wD7ojGkVIGYpIPv1N7ennOn9l0LGcOVyWTc5oWqb2zbJ8Ja343jzHdX66ZxXLVNbUvXnL5zmkFS51zLEWhcHxUyY4z7nHXT6KrN7JO+0kt12SeROs+8lv3TZCW+K6Wqbup6zP5xvieTiSPkHAe6v3I8OJdcxyTjgcC9iDAhBi4gICAg4DnCN2r1M36eSqWcKyMNPtZxo6EyHo8deWs0GhgOh8hmszPxKSx0TWLGeDG6GTYaDZfBklkoGYBPxS2XyzkCxcxqGxsbqNVqWFlZwfXr1x2JIknk7jRdllgrjoZMp9NBPp+fIQg0WDudDiqVCkqlknMPrdfr6PV6LmHA6dOn3e80/FZWVnDhwgUMBgM88sgjaDQaTnljbbrFxUU0Gg2XjY/GE4AbjDnfwObcAJFxT2Kt83bQ3Cp588sR8DxVwOZBiZzeO67vqkj5JExdw0iKSCDiCJv21U8oAcwm7dCxo3rBMfBdM9meEiXfwFcDnPf01Tj/+ePA51Y1FYhUnWazieFw6DYhgP1U7zrOB/0dR+Jo1CtpUKXHX2O8hu699XodV69eBRBtWNCoJ9nk84zHUcmMXq+Hdrvt4kHp5stND7arrpGa1IPqKD/nMVWueF+N49Rn0+dT0qv17visfO/YP24scY1QjdSMkNzM4oZWr9dzbqeM8eV3j74D6obJ++t6VWWORJjX8RrO42QyQafTcQlqmKGT5+jY8Tl5fz8bKt3I9V0B4JR/9umgzaKXGseLwCEIcAEBAQEBR4ca+HEGvzHGuSeWy2UXp1WtVgHA1U6bTCYu/iyTybgMaFTJTp8+7UjYZDJxqtfS0hJqtRqq1SrW1tZcWQAm98jlctjd3UWj0XAxNTQ4crkcut0uEokoUyQLdTebTaysrDgDkq5DNOxYGDyVSrmkJTQCVZFIp9NoNpvuuRuNBgA4Vyi6Q1UqFTSbTZcOPZfL4eTJk1haWsKzzz6La9euuSx83PGu1+uuHAJJFN3GfDKkxnQcoTLGoFqtolwu32BQzVNjaNAqiYuLk4lbLz55ZH99cjWPTOhnvI7GrX9MY+H8PtGIp4GvqgvTnQ8GgxkFh+fGxRZp5j0qvlRPVFXU+CgaypoYQtUrGsk8Vw14fwz9eaUhvbe35xLzALNp9X0CGTdv85S4eW6U/nkcZyrOtVoNzzzzjHOD5rNx/FnXsdvtYmdnx23EUKFnfB8AN85c/1TcVNH166Gxj+pWqs+ibrAENwL0mK/k+mtMVVHfVZhEiKo81wgT0vAYiSk3uFRRJMnkvfw+qxulxrqpKsw+a2yatfsulKxzyd9JajkfiURipkZhOp125UR4DxJYrcMZFLgXGcYY2KDBBQQEBAQcAb6x4u/kJ5NJ1Ot1V2g6kUi42BzGTVEVO3XqFJrNJoDIVafb7bpd+9tuuw35fN6RvUaj4WK2KpUKyuWyM/QuXrzoEoTs7e05A2QwGMwUQU4mk2g2m6hWq8jn867vTAZCpaxQKGA8Hrt7AvtB/mtra9jc3HQJSDTrHI2UWq2G4XDoSF4ymXSqAw2rTqfjxrBcLuP06dMAgCeffBKtVsvtmk8mUZbJ5eVlAHDGOZ9XFQIlO/PIkH6uMYlxcxs3z6rG+KUD5hE43w0QmHU5jFNv/L76Chlrz/kuYfx3Mpm4Ug1USpgkhgSexIzxOXSBA/ZdThV+jBHTrbOfVFe51vR5uYGQzWZnik4r8VDXQ1WReH0cGY1T0jg/zWYT4/HYqdFaNDtunufNlc4JDXlubigx9KEErlQquXhVqlF0teN7x/ek1+u5siEkDMw4q+RY3QO1zIDWjdPYN5IWVeeUYHOO+Zk/L7o5QBdmrgUlaOpqyHFRZY7fHePxGN1u15F/EjefYPqutHwuumj7Kqi+kxw/3QTQunMkWtls1n3XqrJIksc+cG3TJZzX6rio+6yOHdfOQcr8S43jReAQFLiAgICAgOcG373OmCi+bGVlBeVy2RnD+XzekRHu0DJJCMnb7u4u1tfXkUgkcO7cOVy8eBHWWly6dMkpVtZanDx5EsvLyy4L5Xg8xoMPPghjDJ599lmn9G1tbaHZbDpDj/Wz2BYQlQtgMe/JZILhcIgrV66gWCy6mBqStkqlgsFggKtXr7qSBMz6SAO72WzixIkTyOVy6HQ6rrYbjR7+O5lECUzojsbMnNZaXL161cX8aGKASqWCVCrlEgOQwKmBxzmh8TbPSNId+8XFxZmU4b6R6JMDYN+FUmPOVAlSF05fIdKEEjwep+b6iq4apUpcWWxYSQ8VVLqeqgHMxBHsC49xffL5fEKpz8BjaojSWNX2NCEJ789SFIlEwqnBcYRO76fjrm5xvioYR9Ynk4kri0EiN4/E+cTNVz6VQKvq6hN4XUc8zjVWKBTQaDTce+qreYPBANevXwcANy5UetPpNIrFotsoUTLF8VHFWRU3XaMa06burVRjdX34qiN/SHx4vap9THDk//AaVdg6nY7LtEuXV1376tapdea0BMG8+WAbPNff5OC6pKpJssd6kLqhQRdQfsaNK8b6UrnjuPFe6uKp7cWtwZcLx4vAmUDgAgICAgKODt9YZPKPpaUlp7pZa11hbMav0fhJJBK4du2aq//U6/WQzWZx/vx53H///djd3cUTTzyBJ598EsYY1Go1LC4u4uTJk7DWYn19HalUChcvXkSn08HVq1dden7Gc9BVi4Y6d5fr9TqazaYzuLkD3u/3US6XZ3bKh8OhUxDoCsnSAlSAxuMxMpkMVldXkclkXOwb79ntdl2sD5UeumJyfLrdLjY2NlySBxpNTCxANZCGorouAjemvudnnCM1RonJJKotl81mXWkE7tLHqSlKpJTE+YZq3FrRe/ptKvS4GpHWRu5dLBoOwBmbu7u7WFtbcxsI/X7fpdf3XXzZfwBOQdSafvx3HnnV8VXCAOwb1Tyfxzn2dBekQc6kIzTsuR6oTqn6o/dUtTSOvKkbM6/p9/tuHEmC/M2Xg+Zcx0CN8Xnus9o3EjjGv7JUAI8D+ySr0Wi4ZEQkFyTpXKvcwND54rvc6/VmlDOdM5/ccB2QFHM961pUNZP91PEnCdXn8N8Hvsd0reWzsk5dLpebcStV9U/LB6iSxvuzZpteq/FuJJe6waCxogSfi98r/J4ieeU5qVTKlUxhH/i9SuLH7xEW/uaY6P3874GXE8eKwAGhjEBAQEBAwOHwDWIArs7TwsKCc6XJZDKoVCo4ffo01tbWnBrGnfHhcIh8Pu+KbgPAxYsX8epXvxrdbhef+9zn8Oijj2JxcRGZTMYlQun1emg0GiiXyzhx4gS2t7dx5coVp3hsbm5iNBqhVqs59Y2Z3RhXR2NsMBig2Wyi2+06g1ZrIHW7XYzHY7RaLacOshAxyxpsbW25BAsA0Ol0sLS0hFQqhY2NDVdygAZaJpNxO+4cCxbd1qx3dFPSHWxgP/U5SYwf3+InceA1On+q3vhGl95L1RRfMdOkLWrAKmHm3/Og94kjAKq47ezsYHd316mjmnSi3W47UsTshTom/JuxUTSINRGLjg3jfWh06rVcG/yMxjYApxJrnI8qm6pKsC0auiR/vV4PxWLRKXOMP1JCouqST7p8sqwKJmMpqQD7qutBJFDnSQmbkjh1peQxqkiJRJTxdHl5GTs7O27dcb3QDe/atWuOQHB9MelQIhEV99bSHJp0hMRFXfd0/ZMU6djwObWPBBVmYFbFo8Kk8XZsm+8nsB/nqAXG1bWbGXgZn0vypO8TVVl/rjRrrj4X+6eZMPkc7J8+H93NWc5BM7dyXlSFZNZfllVRxZ/jwrIqGjusSqBuHtwMHCsCFylwgcIFBAQEBBwM36WsUCi4hCL6n7S1FtlsFltbW67Ydi6Xc0oPDYZut4tqtYrbbrsN58+fR7PZxOXLl9FqtQAAlUoFS0tLKJVK2NjYwObmJs6fP4+FhQVcv34dGxsbMCYqN7C2toZ2u+3cDZngYDKJ0o0z8yQNUyp1THjCHWMG47NQMjPDnT17FrlcztV+63a7OHHiBABgZ2cH1WoVJ0+exGQSlR9gchJf8SkUCs6Q6fV6roQA/x9mXTdVK4F9g9JXENRQn0ecaGjREAX2Y3FowMa5UKrqQqhB57tQ+gpRXF+0DV/h0bilvb09tFott9s/Ho9x6dIlZzyq8qDqgqqTqhAC+4SXKiv7onE6miVQXTM5vjyuxjDXlBI7Ne7ZhqoQmoyC5ycSiZlNhXK5jEKh4IicT5C1Pd6f8+YTMz53u91274y+rzpn89Q4th839xwjf76VyDHmq1KpuHXHot6NRgOtVmsmsQtJBZVytqWFrJXMaUH78Xg8kziGY8X3nH9zPnXclMCw35xDLUatKh7VYXV35DumiUC0HAjrVXIjQTdI2I4SZY0/9DdoOB68D/vFtaYbBTpuVC5V7VWVTtcO30sllHqca4ObI0rgOcb0KLhZOF4E7mZ3ICAgICDgFQO6DjHLJHety+Uy2u022u02gChV+JkzZ1yR6Gq16tKJj0YjXLlyBbVaDffffz8ymQzW19edcdnv97G8vIxqtYpCoYDt7W08/fTTOHfuHJLJJK5du4atrS1Hdq5fv47d3V0sLS0BgCuiDUTxdnRvJGEajUZYWVmBMcYlF8lkMtja2nLul3t7e+h0Otjd3cXZs2dRKpWcMbezs+Pi5AaDAVZWVnDPPfc4NY0qUT6fd0YaVTXdqW63285IBICFhYUZVYhuUmowA7jBeIv7TAkgDWsaU7pjrueyHSU8PlQFjHOFinOT9JWcOLWPBupkMnGJWvr9PhKJBHZ2dtDpdFyyBxr1JGi+Iqif+/GBSnh9d9N54+krW/64+ORFkzVosgt1jVPlikaxkgoa3d1uF/l83mU1Zd+UKPo4iIANh0OnenMjRZ/Xv9Z/tnkKnJJdHSuOM59dE2gAcG7Kk8kEly9fRiKRQLVadcl1SBqUWHOsuBZ1Ln2So0oY+6TqLM/T9pUAafv67mr2UrrDkrRxjTK2MZFIzGTLZE003svf7FB1kpslTMWvBDpOKeX4HDSHAGbiLpWgMraWZFBdOXkdSbDOsb63uqHB90DXanChfJFgQgxcQEBAQMARYEwUZ0Q3L/6nPhwO0W63nXHS7/dduv5MJuPKARQKBZca//z587jjjjucgc607FevXnXxdIVCARsbG2g2m27X/tq1awDg6sltbGw4lUxdokiY6vW6MzoY71YqlVyyCxpwOzs7sNaiVquh3W5jc3MTxhjce++9rq4b6xzRYGk0Gk4RfPrpp12cU6/Xg7VRvBEVNxpKjC9Rdz8gIniqGtJQ1EyP7Ksm3QD2lSVgX41S4uK7xvEa3ckn/HbnETB1M/RdDufBV95UTdzd3cX29ja63S4GgwFqtRparRZarZZbG1TdaBiSkKj7qRqPqkBwbFQ14LjS4FcXSx0rwifF6nJGg1uNcB1Pts2+02WP1/pqJNsneeHGAhOR0MhX4uSTujgVlEZ6q9VyKrqfMTNu3vy/lchp33lcDXwlr1zXpVLJPZ+11rmP0gWPrndch1z3nEcSOyWD7BPHend3160bXctad5H9ViLH85RcESRv3FjhWKhaPhqNXBIWADOqFZ+Lihbb17XNd5PjynN5DpMyacIUP2ZS17ySRX7GMeS8cCOJ7xUJKMeWXhR0ASWBVCWOa9XfjNBxVtfUm4HjReAQyggEBAQEBByOUqnk4mc0nTdrGtGo4K4zECX9qFarriZaMpnEuXPnsLS0hN3dXXS7XRcztra2hoWFBdRqNVhrceXKFeeCORqNsL6+jkwmg1qt5gpg53I55x7EBAnLy8tYXFxEu912RiIVnHQ67XaKWb+o1+uhVqshn89jc3MTvV4Pi4uLuPvuu9FsNvHss886osBSASwibq2dUR1brZaL12L8TjKZdKR2d3cXm5ubzu1qMpm4NO8knkyrTuMwkUjg5MmTGAwG2NnZAXBjXTR+5rtC6nlKKvykG3oOr2HpB789NVqVgMQpa3EudXFtPf7449jY2HDztbm5iUKh4NRQvVZLGOguv39fv190vaMB7ytwugGg91O3NO0/E+fofTTLIEkAMJuRT/vEPiih9t39mJl0MBig2+26LK68t7qe+iqYP/fsA5U4kgrdANHz/DWhSqaSYH+eea5PkjKZDNrtNorFIoD9jZgrV65ga2sLZ86cwXA4xNbWFmq12ozrIAkTU9gbY1zKexI6Jbf63FqWQ90/dc2QrCh50mfWzQ8Ajvgz8Qzb0HIGXGdUULkGFZw3JvzQpDp6rm5UkHBxE8BfP7xW51VVPVVCOab+c3JclKjpWvbfDyX23EzgPUgOmYn4ZuF4EbigwAUEBAQEHAELCwvOOC2VSk6RS6VSaDabMzEfdIFaWVnB7u4ums0m6vU6VldX3fk0QBjbVKvVsLCwgL29PVy9etVlrux0Oshms06F297edinwuRNOo4q77d1u1yUNoJskABdnwxi80WiECxcuYDKZ4Nq1a04dJAFcW1tDp9NxteFUSaCL5Gg0QrPZdLXdqGokEgmnAiwtLaHVamFzc9PtVrO/WjhXM+zReGKSlFarFZtwRBFngAOz7lm+ahJ3DQ3COIPOJ2GHQUmLqm78fDAYoNFoOMOQ60jHg2Oi7oUKfT4ap7wXCRnXia8AxJEQJVh+QhQ9rmuC88r7aOISXxVlG75ipgTMJxJ8fipAJAX67D4x1DngOVwDw+EQnU7HqUMkEHHzp8+vMYMHzb+/1ki4BoOBU+qpPPd6PayurmJ7exv1eh2JRMKtCVWdNFMi1TV1i+Q9GKumWUaVwGnsm8aDKYHSDQ+f3Btj3P3pjWCMcdlmGVfLfvKabDbrsoJSmaPrJZO36OYE1xZValXi4uZZlWf+rRsyXIua6TaTyTjvAvaTmyKaMZTjks1mZ0gw146OoU/u+byHrZmXGsePwN3sTgQEBAQEfN6DCUKAyHAolUpOxaLRwJT5rG3UaDQwmUxw++23Y3V1FZ1Ox6lu6XQan/nMZwAAJ06ccO6LjIfrdrsolUpYWVlBOp12Ba6XlpaQSCSwvb3tDBYaTvl83iUJMMa4mDeqfdwtp/vkmTNnXN2wZDKJe+65BwBw7do1l5iAxiaN3Uwmg1OnTqFYLGJ7e9uRUcby0Lhioorl5WVsb2/j6tWrjnzQ6GFJAmA/2x0w60bX7/dn6prR0Cc00YYa6L4bn+7C828lCHHQhAWEEkhfUdL76d++ccdzqEhSFQNwgxqkLmvqHqcZIdXo9e/PtjT5BI1Ufxz1WXme7wLGcxUaR8TnYPuj0Wgmyx8VC242KFlXQ1nJGEmTqjB7e3uo1+szMVXad7+fPiEB4JRsXW/z1oTOtT+XPsn31x+P810iUanVatje3gYAvPe978Uf/dEf4Y//+I9Rr9fd9wfjCDudDsbjsXuHSYy0BICqQv58kGz756mrrZJnjhnHhOSZmxv0QiDB4mYM4zez2ayrickSIclk0tVQs9bOuAdzXWg8pyZT4b35nafZMPV7wU8mRbLOd8VX5OhJwXM4Z7qGOIZapF6JvG5Y6PeNbrRwHjkWNwPHi8Ahvv5HQEBAQECAgrvnTCZBlxjGbVGhO3nyJABga2vL1XdbXFzE9evX0e12AURGOknSrbfeinq9jna7jStXrqDT6aDX6yGfz+PUqVPo9/vY2tpCKpXCyZMnUavVsLOz4wxs7rgvLy+7HWOWCSDxGo/HzjWz3W4jn88jkUjgqaeeQrfbxfnz53Hx4kU0m01cu3YN29vbjjTw+dLpNBYWFlwilqeffnrGGKFyREOGsXyNRsPVqqPbFYmmxsXRMFcDmAkS1FCmEarJBeapaWqo6Y443RB95cmHxuP458URQP1bFRg1+HmMxhxd+dRoBjATk6PkTUmbkjca7Br3o0oZoc+hpJljqufQ/Ytjoe2RfPkuhpoWXhNxqDultuXPqx5T5YdEQd0JgSiBEOsvsk9+XFvc3PE5uJnBJCmq4Pjna3/jlGDf3c63L3O5nOtftVpFOp3GU089hSeffBK5XA5vectbMJlM8Md//MdYWFjA4uKiK7Phx1YpsVJioooa1x3XOkG1S7NV6piz71wfvF4LriuB0qQsdOWuVquOtPAdGgwGLlGIxq0B+xsVuiHD7I56rt6b68XvL98D1p9jwiQlgHx3hsOhi3Gje6puBvEzPzslVUhNqqKbFBxPdc886Lvm5cCxInAIClxAQEBAwBFA8pXL5dDr9Vz8SbFYdIlNVlZW0Gw2MZlMcOHCBZw4cQL9fh+XLl2CMQaDwQCtVgvtdhv1eh0PPPAArI2Kcz/99NPY2tpy9zPGYG1tDf1+H5VKBfV6HZlMBlevXkWz2XTxH7lczhl7u7u7rnyB1oDL5XLOBbFYLGJnZweDwQD5fB4nTpxAJpPBU089ha2tLZcNk3FvJG/nz59HtVpFs9l0yVVY0y2VSrkiyePxGJVKBeVyGRsbG66+FY1u3bXn7ruffTKOeKgx7itA8zK8qRskf9QlyydhvuGtRppvmPukTK/Tv9WlUYnpYDBw9fK0XT8GyFd9eA9fAdAC0HGZO2lc+mPFdcxxUcI6Ho+dQuEndaERzvO1L77yRcUslUq556UqB2BGvWA7/JyGtqp02gd1qfTJiBIbhY73aDRyxeX92DEFDXB/PbHPqi6ybf/edI0cjUYucdBHP/pR9Ho9bGxs4OzZs3j729+OYrGIP/zDP0S9XsfJkyextrbmkmiQ2GtcG8dcMyvqHOs6UvIDYEa99RPA6HwoOVHFkySNSjoJNQkbY2a1P1QQdW3odwSf0R9bVYk1OYsSRFXEqHTy/UilUhgMBu49YL/pEk6CPRgMHKmnOgdEirlm+PQTp3Czg8SRm2eqhGq9vZcbx4rAGSAwuICAgICAQ3H27FlsbW1hY2PD7Q6vrq46RSmVSmFtbQ2FQgG33347qtUqtre3sb297eJCmJr/lltuwdmzZzEcDvHMM884osYd5nK57Ar31ut1VKtVDIdDbG9vOwWCu9zFYtGpfoxjo3FdLpeduyV3/be3t9Fut7GysoJbb70V+Xwea2tr2NjYcO6WvqpQrVYBRKpio9Fw6c9JIk+cODHjRso6eKwbR1Kh2dzYtqbBV6VAd6x9QkVjUpMC+CqZkiEFP6exp8/pn0cDUQ1WJSdx7nLaFo1SJR50Mdvc3MTW1pZTIFV9VCXFB9si2SqXy45w7+3tOeNT3ezYbyVnnDvGMdE4zuVyLsazVCq5PrC4O8kvsznS2Pazcfpkh38rSVDlUK9jn31yzP7HucFOJpMbyg3460jb1Xlk9lQSD3VB9Mdd++4TQ+2rvxaBiMDt7OxgY2PDrYPHH38cAPB7v/d7eOc734kzZ87gDW94AwDgwx/+MJaWlnD69OmZQt+aiZKKlGac1LFR8q+EW8dCSXMc4aW6zrWsawWAU/LoNsnERVzXrO3H+dB59b9vuLaUAI/H+0WxfULnzy/JG981gmvUT/rD7xH2XzcNSNYY06drgxtRHH9VEvnulEol993H7zqO2c3A8SJwxgT+FhAQEBBwKJ566ik0m01XA25pacllWhwOh+h2uzhz5gxOnToFay2eeeYZ9Pt95PN5VzttPB7jnnvuQT6fR6PRwObmpksmkkwmsbKyglQqhU6n42q4jcdjrK+vo9PpOCOoUqmgUqlgYWHBKWqXLl1yO97c9Wa/qE5sbW1hPB7j4sWLqNfrsNZibW0NV65cmUkgwgQE6rZ25coVt6sMANVqFSsrK0gmk650QKVScVkU19fX3c4zCSVdN7mjr4H9asRrIgU1fpWIMB6IRqpvCPrEyo/v6vV6M654CnW31Hgcvd430vW+fjt8lslkMkPe6AanbpGqHpFEpFIpR9A4N8yeyJgiolAouMylbJvFlNPpNCqVCnK5HGq1GhYXF11Bdhre1lr0+/0ZgqfuZmyn3W4jm82i0Wig1+vh+vXrGAwGTsWlK52qD6ou0qDVMfazg/JH3TF1Pjm2VIvpKqx11HTtcE6UUHOMWI6DfdZYRFValbzp2oxbZwQ/4zhSFbp8+TKuX7+OlZUVfOITnwAAvP3tb3ckLpFI4IMf/CAWFxdx5swZrK+vz8SCqgsjCZyuPxJuTRiibpVU7UhOtB4c54JKKTdoVB0F4JRVbvJwfKhc0wVRE/BwXHlfLRGg7766PnPDgmSVz6NuxkqodJ5I5nS+tX1+x5EYMlkV22SWYa5brjXfrZVzwlqYxkSJrtRt0/ceeDlxvAgcjpZFKiAgICDgTzbG4zEKhQIWFxexuLjo6lLRFer222/HyZMn0Wq1nOJVr9dx/fp1TCYT1Go1rKysYDweu/i3breLTqeD4XCIkydPOiWAu7TtdhudTsfF6ezu7mJxcRHLy8sol8tIp9NYX1/HlStXAOzXUyoUCuh2u5hMoti8Xq+HRqOBQqGAcrkMay0ajQa2trZcXAqNLhpkjCEBomQPNHB4j0qlgmw265KykDBaax1RVMLBtPxqQKshTFLnq3C+qqXEif0l/MyFcSQOiAzuZrN5Qz0qBeOMlCioMuOrb7wH/9V+8JxOp4P19XVsbW0510U/CYWShkQigQsXLuD69euOJCuBpWsXDU91M9OslvV6HRcuXEC5XHa1AYfDIfr9Pq5fv+4Md8Z4kszQ8GTfOCbFYhHJZBKFQsFtFjz44IMolUpoNptoNBpotVq4du0annnmGQwGA0cItSizPiuVFiUlNPx1XrmpwHOVFGoSC65df358NVDdMXu93kxSjzhjO851Vj+LI/V6bxa9TiQS+OxnPzvj5vjoo48CAN7xjnfgzJkzePDBB7G3t4cPfvCDuOWWW3DmzBk888wzN8Rj+WTIX1dKHvzNEo6HPrdCCRFJD8ktY8sqlcoNJEhdCnWsNLOjqqnj8XhmE4brWZVYf91wA4bfK+yXEn/2SedBlUeSNWC2NAZJH9cZFcB8Po/hcOhic3mOjiVVx0Qi4Qqb0wU/Lsby5cLxInAhBi4gICAg4AjIZrMu3o3K18bGBlZWVnD69GmMx2NcunQJ6XQai4uLLm3+ZDLBLbfcgmKxiMcffxyNRgOnT58GAKytrWF3dxdLS0vOUK1UKjOxcjQCeF8qLJ1OB61WyxmENIZGo5EjkJVKBf1+H91uF7VaDaPRCNevX5/ZEVeDjUqGEgTWb8tkMq5EgBol3Hnv9XpIpVK4fPnyTJwOr1M3STXINGaISlIcAQP2XS5pjGrsTJzhrLvsvgvc2traTOY5/zr2U9UTJUmEGsJ+31XlYdzTxsaGyyToF0VWw5yKytWrV9FqtQDAkSCmPNcYHJI2qjHMYHr69GkYEyW76XQ6+NznPodOp+OKqWtf2SbXkk9A+dzMnJnNZrG4uOiykNJN9sKFCxiPx7j33ntdDOilS5ewubnpylpotkoa0zR+VcnyydK8zwG47Iaj0Qj1ev0GJU4JY5yrIF1QuYHi17nTMdD16Stwetz/2dvbQ6lUAgA8++yzjmiPx2P0+3184hOfQL/fx3ve8x7ccssteMMb3oDxeIyHH34YZ8+exZkzZ3Dp0qWZtcf3bTQauXeN75Km8ucY6DX6TFzfceuX5FnJdD6fn3Hn5DtCl0Nu+HBOdTx5PteZKsZxGyCqbPJafU7NEKzKopJrnwjyGt5Dv4+UAPPZuRHFMa1Wq652Jb9L+H3M7xBexzhAvefLjeNF4BDqwAUEBAQEHA4qbrfccgvS6TSazSZuueUW1Go1DAYDF+tWKpXQbrdx/fp15PN53Hvvvdjb28Pjjz+OZrOJpaUlV2ONMUYkQolEYiazJRDFlC0vL7ssl71ez2Wq5DmMhWHcHNURHiPJomGl9ZyAfZc2/ZuxUCRm9Xodi4uLyOfzjlhSgRkMBigWiy6WD4Crc1coFGYM5XnGuu6MA/sxaKqg0RjjTjnHh7vlvmKnRqC64RljcPXqVRenw/bV+GY/1a1PFR7eQ2PXFPq3tRatVgsbGxvO+OM8qHuhnxiB8UBqqHNcODaqWCWTSZw/f94pbaPRCM8++yza7fZMhj19Fh1jPpOvPPlKFTEej5076Pb2NiqVCkqlEgqFAu68804X5/Wa17wGd911F7a3t/HMM8/gM5/5jBt7Phufk33QY5wbugCqQa/9IakfDAZujfpZL3mev+74PFoQm4qjzqMfw8W1chB0DQLRe/j000/j6aefnokjI6n/7Gc/i2w2i3e84x04e/Ys3vjGNzpyd/HiRZw5c8ZtlPAZ6FJI9z1unuh77fdDYyKVuJF0af/ZDhN58PuK6jxdDUnGqKizbb03M9Jq7BjnXVUsKmRU1rgmlDSyv7yHrzpybNke517fY6p3LIWi5/L5+VydTsdtiOTzeZTLZdRqNXQ6Hezt7WFra2tmTkajEfr9Pqy1M2rfzcDxInDGwAYNLiAgICDgEKyurmJlZcWl8D937hyy2SyuX7+O3d1dFAoFZ8yORiOcOHECi4uLePbZZ7Gzs+OI0JUrV9Dr9Zwycv36dRejRmWk3W6jUqng5MmTWFpaQr1ehzHGHSOJYcZIAC71fz6fx8rKCoDIZc/aqHQAEwsA+xkHAbj4qG6369wRT506hUKh4JS8YrGIWq2GfD7vkq1wR3l3dxe5XA5bW1vY3Nx0bdDII3EAZgt0E358ExCfDVKJC7BfoJoGt7pUEX67qjjt7Oxgc3MTq6urM6RAz2Xf+KP1zPz24kgqjUm6ypIIacwWd/1pzPJZ6R5JIsc2/X7Qxa1YLGJ5ednFZD7xxBNu7GlwEpoBkiSVa0LH2I87mweS+H6/j/X1daRSKTz55JNIJBKo1Wq49957sbu7i3q9jtOnT+O2225z6fOZCEUVPx1PGtrsC/9WhYhQw5uGNtP1H7Su1LBXF2KShnmqGttQ4ulDzyNx73a7+OhHP4pGo4EzZ87M9MGYKKnGJz/5SbTbbbz73e/G7bffjre97W3o9/t44okncNddd+HcuXNOiVMSo+6EvpqmihvXFTPVUrnjmtXi1GyLpIvuhCRi6gpJcsR3knGTfl9I5HgelSqOAb9HeD8SNpJEkjdmlyThphssCZwm2VFSqSSWGSg5NrlczrmW6+YN31W2ubW1hclk4upwWmudKzndhpPJJIbDoatJ1263575HLzWOF4FDUOACAgICAg7HysoKrl27hmQyiVOnTqHVaqHVamFpaQm5XM4V7c5kMrj11lsxHo/xuc99bqbkwM7ODowxOHv2LBqNBqy1qFarMMa4ney9vT1UKhVHGJlJstVquSLA7XYbo9EI5XIZg8EAV65ccUYQANc2i3EDszXNstmscxVLp9PY2trC7u4u0uk06vW6ux8NZBYPZxIXAI7IsazCxsYGgH1iVavVsLS0hCtXrswYTPxdCYFPvNQwVyVO1RgaznxGPp/fpv6oK+VoNMLVq1dx1113zdxbyQENPrqUJhKJGYPRfw51tWM/9/b2sLOzM5PinS6QvI8qXLxeVTqeQ8OUBrIxxiUkqVar2NnZQaPRmCF2AGYMWv6t8URKPHwywvFQZYN9J0islCzTzW17exsPP/ww6vU6yuUyTpw4gfPnz+PUqVO444478MQTT+Cxxx5zGwhKfHUd8B46ZnGukSQaAFwsX6lUmlFcVH3z1xxVOF9pVcLokzdfwdQ2dYwajYZ7tqeffnomXk3d+hgL+sQTT7ixv3jxIt7ylreg0+ngs5/9LF7zmtfg9OnTePbZZ2fcEn0FSj9XojccDh1BIblRd05VoPkZ1z+wHxersYJKtEnMdO0oydPzNa6Orpfz3BxVidb3nYSQmyFKtPgsqv7zvrlczn0PklDSs8Bfd+pCyu+dyWSCUqk0U/NOFUy6FTMREb8nbwaOFYGDCQQuICAgIOBwXLlyBcViEfV63RmbLLTdbDZdzNm5c+fQbDaxvr6O8XiMUqmE7e1tjMdjnD17FslkEjs7O44w8dputwtro5T8tVoNy8vLjhyx/EC320Wr1XJGe6fTwcbGhsv4x/iLQqHgjBlVb4rFoksmUiwWsbe3h2az6VKoM4NkuVwGEGU0PHXqlDMAGbtDlSKRiOpaXb582cV/AFER75MnT6LRaADADUa5bzire5WSJUL/plGqqgldQLmbrsV31eBWlWkymeDJJ5/EG9/4RpeUQ8khr+dzUvli9kdVi3yoatNsNnH9+nVHyOJcPdl3jSPa29ubUeFoPCuJK5VKLvaMWS3z+bxrj33wa3/5RrESmzg3RbrqqUKoLoy+Ia2KqbVRVsvBYIC1tTVcvnwZt99+OxYXF3HLLbfg1KlTuPPOO/Hoo4/i8ccfd5sUJBG+Kx//5T3UPY/rgkb+3t6eSwBUKBRcn9U9Tt0p2QYJHJ8rzs1Pibc/hnHkcDKZuAyurVYLn/3sZ10sJJ+RRZ91g+Cpp57CBz7wAZRKJVy4cAHvfe978Uu/9Ev41Kc+hQceeAC9Xg+bm5uufARddLnW+T2g9RepLpE40tWVLn6+C2S324Ux+2UlNM0/x5/JikjGtN4fXTq5tjiOLGHBz9lXtqHQNe0nrCHpHo/HLu6RY8mx1++YTCaDbDaLQqHgFD39DtH3hm3qO63rkt+xHE+2S6WdyYdGoxFarZbbvLkZOFYEzuDmVkUPCAgICHhlgG6O165dw8LCAs6ePYt2u41mswljzEyh7Var5QymZrOJTCaDU6dOodvtYnNz0xmnLCBMN6Pl5WUsLi46I4SGGWMv+v0+FhcXkUgk0G63ce3aNWdAk/zR1ZIGIEkRjdBcLoe9vT00Gg1X5mB5edmVIGANsIWFBZw8eXLGFc3aKNFIqVSCtRa9Xg/r6+tO8aBBTeWl1+sBmHWdjHOTU+WGxlncuSQYms7bd6Gj6xVTf3NXP45wXb582cUl+uSA/fIVv0wmExvL4qt8ABxpYVskJuqWpbE7mnyBfedYMHsfa1Xl83lYa53RTMOTf3Os2DfNrqfP4ytr6hJIMCOlKii+kctrueb8VO78abVa+OQnP4lCoYB7770X58+fx7lz51CpVLC8vIzPfOYz2NjYcAY951WzEvr3U2WO5I3xYMYYp4LreOp1ui5U5SHBUVKq62HeT9y6AOBcnh9//HF0u10sLi7OkEpjjCNH6uJ65coV/N7v/R6y2SzOnDmDd73rXfiVX/kVfPrTn8bdd9/tNmJUYQXgNm8IJV98Z3kuFSVdT7xGNw40S6y6KSppJ0gEOQbq3sn1mM1mZzYr1GVW30Fth/Fq2WwWo9HIJa9hPzV7pP8eZzIZFItFV7uT48R3B9iv5cZ1b611JUtUyeTa5DrVxC35fN5le6Xnxe7uLvL5PG4WDiVwxpgfB/ClANattfdOP/vnAL4MwC6AJwB8vbW2YYw5D+DTAB6bXv5ha+03vRQdj+9rKCMQEBAQEHA4BoMBjIncH1n8+tq1ayiVSjh37hw6nY5T2paWlrC2tobt7W2cOHECJ06cwNNPP+3+o+90Os7YYNmAWq2G8+fPI5/Po9PpYGtryxkirKu1urqKbreLbreLXq/n4p3odkljlQYujQ9mQTPGoNFooN1uYzwe48SJEzh58qTLKlipVJBMJrG6uupi4IBIiaOBpVkn2+22i68jAeRzMf5O3SPVmPX/VcNPVTJ1UaPxrtfyODNlTiZRyQYaxEwKQ0VGFZgrV65gfX0d586duyFmiP1QApxMJt0Ouxr/+mxK/tbX112RYN+NjM+j12kSCvZFFRUarSSRapRqCnWN09N7xhENPyueKhD6bEoGfWNdSY7GjsWRJJLL4XCIj33sY/jc5z6Hs2fP4sKFC7j33ntx9uxZfOhDH8LVq1ddPTuN5WNbNK51vvRZmViD2VT7/f7MRoa/9nTugFk3QiW8PgGOI20+SF7W19dhjMGnPvWpGRdXBcmj9rXVarkSA1/6pV+KW2+9Fe9617vwvve9D08++SRuv/12fPrTn3bvKDcK+Ex+LJifvERVbyVvVNWKxeJMpksdZ11DuiZUKdN1rdcy9sxai26369a2pv4naeR9NQskv3eo7gGYSQCl7zFJFesg6nMr8de1o6SeG0IA3L2NiVzf+T3J9cl3k/fmJl6hUPi8z0L5EwD+NYCfks/+C4Bvt9aOjDE/AODbAfyj6bEnrLX3v5idPCoMQhmBgICAgIDDkc1msbS0BCAyqJrNpsvKyHIAjI9ihrgLFy5gNBrhqaeecspLu92ecWtMp9NYWFjALbfc4hKhtFotdLvdGeMzk8lgc3PTuWEBcCm0mVSArpQ0mJiJL5PJoN/vo9/vOyPkzJkzqFarLmtaqVRCOp3GbbfdhslkgrW1NRcfQqWObpskJZubm8jlcjP3ofsUny9ORSP0d9+tzSdvwL5RqNer+xNjxnq9HpaWllAoFJwKptfRUOt0Orh+/bpT6FRdIehGSWOXLqrcrZ9HTtvtNra2tmaIBg1Rklw+N5+NxieVCRqOJG5031S1TA19P35Nx88fS5/MsN9q3OvnqhSR8PiujLxGiZq2wTWhKutgMMATTzyBwWCA22+/HSsrK3jTm97kslW2Wq0ZVUzJPZ/DV2w04QTJPZMIMb5JVThV2Pg55ysuAQef18+i6I+lrgm6J4/HY1y9enUmltIfJyrJnGsSwEcffRT5fB5f/MVfjHvuuQdbW1v4yEc+goWFBVy8eBGPPvqoO5fPrs9GshKXqVEVTvaX5Itzpin7SRKz2SxyuZyLOVMFWseNGwu6kTIej92GE5VlZs/lxhTnUmPiOCb8nvFdKbkG1B2YWYT53qqix7VC9Z5KN8+j2ym/J6gA8r2ki2m/33ffo6zvyXpwbPfzmsBZa98/Vdb0s/8sf34YwF94kfv1vGBCDFxAQEBAwBGQz+extbWFUqmERCLKrkcix/+4mb68Xq9jZWUFa2tr6HQ6LsNZv993RsBkMkGhUMCZM2dQqVSwt7eHp59+Gr1ezxn6JHvcaabR0Gw2neFSLBadQaU77f1+37mxdbtdZ6DRVW13d9clJaFhsbCwgEaj4dwkJ5OoxMHy8jKq1SrW19eRyWSwuLiIP/qjP3I7+oxlKZVKzkCbR95oHPuGuP5O6N800tQYVaKn7SQSCayurjqyNBqNcPnyZdcXuopNJhN89rOfxZve9CY3jrrrzvvQ0GVCgnK5jGKxOOOqqoRmOBy64ursG5+drpA+oWKfSEaoMpAU08BVI1ANY3Vv1LHy49b4bHHqmSpKvqKopEefWZUWtkGjl/dSdz0+uxL2yWSCZ599Ft1uF+fOncPJkydRKBRQKpXw6U9/Gjs7O46Y61hqLJLv1spnIAljVkBVK3UMfUXYd3n1lVNNDHOQCse+7u7uYnNzE8YYV05CCZSudZIw3ovH9/b28PGPfxyZTAbvfve78fa3v90pmQ899BDuvPNOXL582aW01/nShClARMJ0vZFwK2lirCe/t7gOSF6pzKpLproI6xqgOq7rkkos1wbnhxsvOzs7jmBpXCA3oVT11e8EjinJXjqdRj6fd/F+fA6dc64BfpfSrZ3jzmfjterOTOWQGzCMKeR3ORO/0CX3ZuHFoI7fAOAX5O9bjTF/BKAF4J9aa/8g7iJjzDcC+EYAOHfu3IvQjSgGLpQRCAgICAg4DJubmy5N++XLl52LY7FYRDabRaPRwGg0wvLyMhKJBJ5++mln8HOnmIWxE4mohtrZs2exsLCAdrvtSg30ej0kElEWSC3Gy9g0KmY0GlTJ4X0Ye0bFhgH2mUzGKWZMUDIcDlGtVjEej11ClYWFBVeY9uzZs9jb28NTTz2FUqmEer3u4vwSiagOVDqdxrlz51xCBSLOOPZjcoAbyZvvTqnPqIRKz1HlZDweY319HeVyecZVUI1iGqGPP/44dnZ2UK/XZ9wQtW0apfzJ5/Mu8xzb1GdmKnMtJgxgJlU5iYimN+dzMqkKCbuSjjhVUgmbEi4e59++C2BcG/ybhrMSPB7j+ew3yYGvJvFajSVSNzs/xrDZbOKJJ55AuVxGPp/H6dOnkcvl8Mgjj2BjY2NGZaExrXOqLoNKRGk47+7uOldKHQMlquwf512Nbh0DjeNSAuSvBf7LzZ50Oo1ut4tarXbD3LBtEkdNpsJnGQwGePjhh7G0tISHHnoIb37zm3Ht2jV84hOfwJve9CZMJhNcvXp1JgOjrjfeT8mnqnz6bJpIRpP5kNwpofI3VNh/ftfxXUin0zcQLR2n4XDoyG0+n58hT+wj152uXz4fyR7JmLotcv1p6RG2rWuZ7yHnAYBL7NTr9Zyit7S0hGaz6UpD9Ho95PP5GUVRiSeJ4c3CCyJwxph/AmAE4GemH10DcM5au2WMeS2AXzPG3GOtbfnXWmt/FMCPAsCDDz74orCuoMAFBAQEBBwF5XIZyWQSTzzxBC5duuSMA5KSarWKXC6HK1euuJi0VCrl6rYxfiqXy2FpaQknT55ELpdDq9XC9va2qym0u7vr/pPPZrMoFovI5XLodDr/H3t/EmRnml0Hgue952+eB59H+ADHGIghIwLBJCOSyZSYSnGQyVgy5aoWMpXJrE290aKqVyWTWZlq1atelVk3u2UyVatYSpJiGpOZIWZGZkZGBAIIIDAD7oDD5+HN8zz0wuNc3Pfhd0SIIgMk+r9mMHd/7x++6f9xz3fOvRe1Wk3iuSjVobyH51LKqZMDEPTU63V4vV4sLy9LbEkqlUK9Xkez2UQ0GoXX6xVQFg6HkU6nJSlLu93G3bt3sbe3h1gshnw+L849k5Zo6SR3/pk4AXgWrNF51EwRMCyX1DvfZuyZdtz5OdO16/p5OpEJmUrKUh8+fIjJyUmJxzGvreWc3HlnfTEtvwSOpV8EsSZANVky7TDTaaVsleuFDinjddh/K9Cmx1IDAg089HX053rMCW61TJGON9tvsnh6zAAMpZEHIGyOjivTUkxet16v47PPPsPY2BiWl5cxPj4ujj/lrhoY6yyObIvJENJpJxPHTRQeZyUlNZlVfq7Hw0wcw/nUx/JauVxOZNEEF+aY6bHUMk49TmTUf/nLXyISieDSpUv47d/+bfyn//SfcP/+fbz55puoVCoil9Zjzg0ftkEnaeHvBDz8Xq99AhI93hrMc7wYt8ix4TixFppeoybjBTyNNyYIYlIaJlrhcSaTzfXL54XtNTdQdP06tttcNyYDzfHje9blciEcDqPVaslmHUEuS7+43W5RJrBOoqky+DrtrwzgHA7Hf4/j5Ca/NfhiZQ8GgxaA1he/f+ZwOB4DOA3g2l9DW79Cm+wYONtss802277cmKSENdaYjt/pdGJsbAz9fl9YgkQiIbEdLBdAQJFKpTA6OirH07Hjf+46JmRqakpqBzEGAzhO0x+LxQBACof3+32JRfH7/QIQyPL4/X4kEgmpAZdIJBAOh1EqlVCtVhGLxeDxeJDP5+X3XC6HZrMpkqZ8Po9MJoOZmRlJ1BIIBODz+YYKgWvgouVOptExfZ6Mkp9rs3K6ze8JdumAUeJFJ40guFgs4ubNm3j99dfF8dKOG4AhxoBOaSQSkTp8mt1g7IsGlJrBYxuAp2yPz+cTpk0nWKDzq+u5abZHt1PL2vi3FSv1vDgc7VDzXhxrgkYtMdQMlAbbXO/shykP1EBQ94POdL9/XDNtZ2cHY2NjGB0dlZhA1tHSdfLMpD0a6Juxj+12W+SU5joymTgt1+RYaKmfdvr1vOp1xrV2cHCAdruNTCYzNG5W64LzpxkjzQ73ej0UCgV8+OGHiMfjWFxcxLvvvou/+Iu/wNraGlZWVqQ8CIEr1xY3iLQ0lO8HyqkdDoeMq2ZMNdtqJa/lfBCMUZbMa5HZ03OkYzo1y6fXNPCUadUZWHWylpGREdlkcrvdiEaj8v4huOJ9B4OBgDiODddPu90eWhP8ndkuC4WC9CUUCmFjYwPhcFji+Sh153Osn1u96fEi7K8E4BwOx3dxnLTkvcFgUFefjwLIDwaDnsPhWASwAmDjr6WlX61lNgNnm2222Wbbl1qpVAJwXKDa6/WKc5FIJFAqlSTTmNPplBgUOudMVDI2NiYxbC6XC5lMRhz+VqslYCCRSMDv9yOdTksCBprH40E4HJasbnRY6MAw5osyIcobR0dHBex5vV70ej0cHh5iMBggGAxK1shkMikSxJGREUSj0SGmrdVq4ZVXXsEPf/hDianTcSLaKdcsyEk7z9o51r9rMKfPNcEHwZUGFgCGkiWY8S76OKfTiSdPnmB/fx+jo6PiRFo583SgR0ZGEAqFJGaQfe92u8jn8+J08z5aZkdjIhhm+WOcm2Ys6ORq4KRlbMCzmSXJOJgSNRNIaUCi+2gCQY4H59IEZSazqp1vk1nl9bke+LlZWqHX66HRaCCbzaJSqeDs2bOIx+NYXl5Gv9+XrKncpNByVP7UoFe3lQDDTGhhSlP1+jQBPCWt+hy9PsxngMW3CUzNRDTmhgHnndI+3UaOa7fbxebmJt5//3387u/+Li5cuID9/X3cvHkTo6OjOH36ND7//PMh1pgSTLJPBEChUEiSu/DaWlpJNklLS/Wa4TjymfP5fHI9Lb/lBgHl2TqZCjM36k0ELS3W5UF4LCXmXD8ul0v6QjCq48+oEGBCFrJqrPPGjRcCSzL1emOB8W2Hh4dy/ffeew/5fB7r6+vyPuaxlPsS9GmG/+u2r1JG4H8H8C0AKYfDsQvgf8Zx1kkvgPe/mEiWC3gXwL9xOBxdAD0A/2IwGOT/htpu0VbA5uBss80222z7MiO7xYxjdBDy+bw4hP1+H5VKRRwYv98Pj8eDRCKBWCyGVquFfD4v0sZKpSI7u3QSGVNXLpcFuGlnmolCWq2W7CITJDK9faVSkXYnk0n4fD7s7u4iHA5jbGwMrVYLxWJRgOhgMEAoFBJQ2W63EYlEABwzfH6/H+12GxsbG5idncWVK1fQ6XQkmQeLkGtnXjNrZL9Ms2LS9GcaxJkgj0bAQadTH8+x0wyJKffz+XzY398X5oIyM9PR0qCIDGkqlUImk5F5IpOqAYrOYknnVGdE9Pv9kmCBYIl90u0146VMVo3H0AHlsRogaEbAdNAJzvS9dJ9NaetJjCKvSUZGM3mm5JNGwMi2ErxwLNPpNMbGxqReH5NqmAkzyLhq9tFci4zNarfbz5RbME0DMf5jwh4N4Ex5rN4s6Pf7KJfL2NnZkQLafNbMuTV/1zJXLWfV63BtbQ0ffPABvve97+Gdd97B1tYWPv30U/z2b/82pqensbOzI2uTwImMGN83LDFC0KT7qftlZoAluz4YDKTUA9lJHk+Ax3GilFCvdX5PME7QBEBUBJxXgkkdS8Zj2WaqIwaD4/ptwWBQ2sJ26ueFbdWlJ/huAI43W5j9l+u4Vqvh6OgI8/PzSCQS6PV6mJ2dlWLd+n2lmca/1RLKwWDwfYuP/58nHPufAPyn/9ZG/VXNATsGzjbbbLPNti+3RqOBarWKYDCIyclJ1Ot1ZDIZ9Ho9cejy+bywKcx8NjY2JvXa6vU6Go2GxGRxN5fJUFj3ijIr7gxb1WOiUxCNRiV+xePxiGM2MTGBUCiEXC6HcrmMaDSKSCQiNeAI0LrdLuLxOLrdriRmicfjQ98xFf9gMMDe3p44v5QqUjqlgZJ2erWZbIOVQ3PSZyb40uyAltFp+ZmWGGonlOPq9/tRKpVw7do1XL58WeZBgw2TgSNoikajGB0dRTablR1+LTfTjBavw3p5jI0hm8NzyHDpa/B33pdtsZJMniTH04748+R7WvpJ8GOCbM3E6OtqhsG8J9vHtarXiGbj+I8gpV6v4/DwECMjI4jFYohGo5iamsLh4SFardYQuOTzYppOsAE8lVISoJhspB4nc70yjlXL4syx0+xzt9vF/v6+lBrRc6nP05k89XOjj9HzQLYRAG7fvo3Z2VlcvnwZ3/rWt/CDH/wA169fx5tvvolisYhyuYzBYCDvBwKoeDwuIIVt1uyb3lSgFJHXsMo2qyWSmhXjuuC7iwBHAzuuK53On/GzZK84Brw33zkej0dqymnJJtchY+eCwSAikQiq1SocDockfeJPk53XmV8zmQwGg4Ewme12G5VKBXt7e9IObrDxfpxLjospz/y67cUVMPgbMIcdA2ebbbbZZttXsG63i2QyiVgshnQ6Lf9J8z/qVqsl7E04HMbIyAjGxsaQTCYlfqzZbErMmd5ZpgxR74Lr3dtYLAan04lKpSLxK9FoVGI+ms0mvF4vqtUqXC4Xzp49C4/Hg93dXQwGA8ncTOlmOBxGv99Ho9GQdPv5fB4+nw9zc3NDGdXa7TYKhYKUIqDTnEgkhD2klEmbBhvaedYAwXRKn7c7rZ1sk+Uwk6SY99CyMHNOmXxmY2MDDx8+RDKZlOQhJvjUyT+cTif8fj9SqRQikYjIYfXOuwYiTqdzSFZL9k0zOfxdjxvBKQGbZtJM+aQV0NJgjSBBA0PNntGZ1nJHM1bMTK2v2WE957ymHneCCPMzzj03MHTMksNxXCsum82Kkz46OirPFNtDyaRVgW8CA73OWCrDyvSYaseecV1cH+Z60muSIKbZbOL+/fsi2SNIN/vP8dUbBbo9evxN6Wa9XsfVq1cxNTWFpaUlvPHGG7hx4wbm5+dx6dIlfPjhh/B6vbKJROl3IBCQ9aRBDwGXHjOufY4343vJsmpWUktSdYITU4rKOSaw1YCZx2vJKK9FUMe2+nw++P1+AVuUiAIYqknJWop606Rer6Pdbg/NN9/B3AgLBoO4d+8ednd3pU8EsZVKBQ6HQ+TzBJT6GfF6vYjFYjg6OkKj0bBcc1+HvVwADo5nXtC22WabbbbZZtrY2Bjq9Tp2dnbEAdU71IxB8/l8CIfDSCQSkn0sl8uhWCyiUCiIfKvT6Uh8RqvVwuTkJPr9Pkqlkjj+eiea0h9mKex2u6hWqxgZGUEkEkG9XkckEsHq6iqKxSKOjo4QCAQQj8dF2kfZJ2M9/H6/gLNYLIZwOIxsNotms4nB4Gk6fAI/AEPOMvAUdGmHhVnjNCgFhgtCm+fTtANoHmPGDenv6HxZsSG8rnbEgWPnjmUccrkcrl27hrNnz0rGUVPyp1k9OqDxeBzj4+MSr6idU4IgzYxq2aSWken4H7ZXO7taGqjZR80w6rnRY2xeg9/TITb7aQW22X/NAPJ8E7Tp+dDyVs6peZ7+qaWcAMQZr1Qq2N/fx8TEBMLhMCKRiMgCeS9mCWQMlckGaueeDDjrxxHkWckaOSbMCkugQjPHjgC43+9LltORkRHk83lJBMLz9brUY62vqcGdOS/8ubOzg1/84hf4B//gH+DNN9/E7u4url69iu9973tYWVnBw4cPpW5hPB6XpDBer1ckzhqYUqLK/mgmmowTN04oAdbPByWDOhU/50gn6iETznnT40FQz6LaTPSkNyYYE6dBsV5Puj6dnhs9hjrJC0EZWb5gMIipqSn0er0hxYV+B7C/BH8EpFxTBG1a8vsi7OUCcDYDZ5ttttlm21cwxrrRUeAOLuNI2u02wuEwJiYmMDk5CafTicPDQ6TTaUlywmQllO7xXJ/Ph2KxiGKxiEAgIPFyvA8d01QqBeA4TX6j0RCwWK/XEY/HcerUKWEHx8bG4HK5pAhyMBiUc2OxmHzndB4XvXY4jjP8MQU5AJEDMWtfo9EQB61cLg857Zr5MjPeEaCY8WxWMjUT0Om/TUfSZNs0eOTf2tE15Wh0tILBIHK5HO7evYu1tTWMjo5a1oRjezSQ8vl8mJycxOPHj4cSiHAceB1m+mN5Cc22sa06C58VQNMgiPfSTBXXpO67CRC1RNFk0bTkixIzze5pVliPpRULqEE4pY1aXqj7rdcEwRjbTCef8tNGo4FwOIxkMol6vS5yZN6zXq8PxTFqsMt1QEDRarXkOdTg1hwP/Zwzs6IJevUaZR9ZP3FzcxMAJMGHXoP6+dH3NterKVfVY0dAev/+faRSKfzmb/4m3nzzTfzpn/4pbty4gV//9V9HNpuV2E0NZsjoEwxx44jzr9ceQTGfSZbd0GuWckctdeQ8mrJanamUc0CJrQZemt3Ta5oMtcvlGto80e8IPf8atAOQ2GM+T/p5ZM3AdDqNwWCAUqkk5Vx0sXOuO/aHzBz7wnd+oVAQRvtF2csF4GDHwNlmm2222fbl1mw2kUwm0el0nskK6XK5MDk5icnJSUkSsrW1hXQ6jUwmg06nI4HwlIF1u10ppE0pGHf3a7XaUE2yUqmEkZER1Go1iT9jKu12u42JiQn4/X7JgDg+Po5+vy+xLwSEADA6OopKpYJOp4NYLCZ/s2QAndpoNIpGo4Hd3V0ATx1Tn8+HSCQiu+F0XjSb88orr8Dr9WJra0tKIGimhU6TdlC1aUaHpp1p7fxqdozn6HO1Q2dl+XweiUQCBwcHyOfzuHLlClZXV4fYCFMup1k4l+u48Pny8jJ2d3eRzWaFaaCTSTDH2n0aMOi4MZN1MZNx6D5ZtUWPC4/TklPNoJlspgYOmk3lvGmWRMvNNKvG6+n08yab4/f75Tgdy6c3A8y51owpk+8Eg0GMjY2JRI4gjs8Fr6MBoLkGdHp7q/HUoNfr9SISiQhjp+fAZGi5xmu1Gm7duoVyuSxyRZ2B0pSmct5N9tSUf/Jzc6xarRauXr2K6elpLC0t4dy5c1hbW8Pq6irOnj0rYI2yR3Pc9H01y8qx4nhx3VLCzbXh8XhkLilzJCBjLCjHWgNHncVSryOyfcycyfFitlauO7ZDx5hxzeo1zDXY6XQk4RMVEQSzjUZDJOlMcLS5uTnEqGtlAcefSaWsNqwo89Sg/EXYywXgnvNSt80222yzzTYaM41pR8Ln8yEWi2FsbAyzs7NwOo+zUh4dHWF3dxfFYlGC9huNhmSfAyDyRe5yc/ebO84EiXT4uJubSCREWrS4uIhAIIBqtYput4tYLAafzydSTdZCOjo6EuBVLpfhdDoxPj4Oj8eDg4MDcVoGgwHC4TDC4bA4y5RRtlotiR8BntZl0o4WAExNTWFmZkac9mKxKODRjLsyjf8faxaN5+ndeu2oEXBoIGEye+b/8xrk5HI5JJNJeDweNJtNXL9+HW+99ZYU6rZiWrTskOtgYWEBKysrqNfrEieomQgCFc28abBmxWTpXX5tOumJyVZp4GICXv23njuOowYsdFB5nHZKzTHWcVnmvdguAlVeywQ9BH1c61axjr1eT8ZXS+jMkg2USZqspQbEZIeYIMhk1TQIdDqdiEQiwp5aAXqzL41GA2tra7h27ZrISHUbzHHQ19GmNyM0a22CcM5XqVTCL3/5S8TjcVy+fBm7u7u4du0afud3fgfb29vIZrPCwnF+Cbw0C8ox0bX2dBIWjimBCZktJuuo1WrPlMRguykJJ6jTTJqOgSQI1OtNs28AnmmXXlf8nuuJY8TSLKZygEmlGM/Mfug6fJqlZXs0yOQzyzX4PDD+dduLS5/yN2Q2fLPNNttss+3LrFgsIpvNSqIKn8+H8fFxzMzMYHp6WrJSbm5u4uHDhzg8PES9XketVkO/30ckEkE8HpcYKC0X4u48cOzg6WLQvV5PZJfcVQ6FQlhdXYXH4xFHhDXmWq2W1J0bDAYoFAoC7EqlEiKRCCYmJtDv96WNTEJCZ4pMYblcljgWMh06bgsYjvmh88JslmTsTiocrR1fYDhVPtk9/k1QoAtym9Ky5zEj2vRxzB5JYFqr1fCLX/wC+/v7z2Sn0467ZmqczuOMlKurq5idnRXppB4rJlBghlKCOYJS/U+DBA3kTCCk5WRm1kDN2um5YT+06Rg17fiyrxpcmeyoyfKZ88ax0nFQ/EzL5jSYYX90/3kfZktlxk89pjyf7Ke5fsyxJYNtrke9dhyOY5ksazNquZ9eR7rvGsCRMSSo1wBOz4PJpOq+m2uXpmNLed9er4etrS389Kc/RSQSwTe+8Q3s7u7izp07OH/+/NDYEABzY4ZjwjHic68zOvIf2SwACAQCCIVCAvjIrhFkcqNBS0u5FijX1HJjfX39zPHeXLM6Fo/fa6Co1y5wvGlGFpwKAmYL5r3JLBJ0k11sNBqS8ERLSTudDqrVqqgjWq2WJIHSdSj5DniRpNFLxsDBRnC22WabbbZ9qRE4uN1uJJNJ+TcyMoKjoyPk83mk02nk8/mh/+Qpn2HNNaatp6yOzgkzPjJLHP+z73a74lR4vV7Mzs4iEomgWCyi3W4jHo/Lue12G9FoFH6/X5zcmZkZ5HI5VCoVARfValWcFzJ9ZP16vR5WVlYkPoQAkmDM6XSi0Wg8s5tMJ6zT6aBQKAgLaGV00LSTfJJpmRmPtZIW6tgzwDoNvHaS9by63W6EQiEpyn379m189tlnQ4W99e47r6WB58jICGZmZnDx4kUB7nQkCfg10NCshBXLpu9F4EzTTIMV82jK/8xxsDITxNHp1Ewr72cyqeb9+JkJ5DRzaTWf/KflthxrDcg4ttFoVJJwECyQ+dClJUymUzNlrI1mZWxbLBYT9k23X48120mnfnd3F9evXxc2mc+MBrWmdNZka6zaZa53DXJ0Eo29vT0cHh7i3LlzePDgAa5du4Zz585hbm4Ojx49krhEAiey6BxPzVA6HA55f2n2UL+fyOqRIdVgiuuLxo0LPQdaZUDQp0E+8FQuSYDM9ym/1yCR86olwxxvZgIlO9doNGQjiGAOeJrBkpsMVBVw7FgShNcz43r1euF1T3onfh32cgE4OGz8Zpttttlm25ca/6OenZ3F6OioxIE1m00p1Fsul8XpYSZDt9stWc3oCDCVOne+A4EAMpkMWq0WwuHwUEHZ0dFRSUoyNzeHarWKQqEAh8OBZDIJt9uNUqkE4Di+LRqN4smTJ/D5fJienkY+nwcALCwsoN/vDwELFvxOJpOoVCoIBAKYm5tDJpPBo0ePBMDRme/1egL+tPNJp6XdbqNcLgN4mjkTeLozrh1ymgYWJzmtAJ5xVPW86O+05Mo03VbtWBaLRYTDYZmXarWKn//851hdXZVskfraZh/YjkAggFOnTqFQKODRo0fCnLpcT9Os6yyRJoNj1nXjdelQEmBpR5HH6LHTDCbH3kz9z3HUzrgZ+6ZlmcBTOZrO8qhBlxW44RhrJpHH6yQTbCv/1rJMyuo0UCTbrB1mfsfrct1ohlAzlvyMz6SeS94vFAphdHRU2LeTQDD70+12UavVcPfuXWxsbCAQCAibpO+h17S5RvmdXmfm5+bvev2TBf/Lv/xL/N7v/R4uX76MP/uzP8PVq1fx1ltvSVIVq40isoV6fjn3OjmQBt6MqyOQZoZLvXY0ANfrlqwd30uMRwsGg/D7/cLka5BMpotAUJcPYOIdzbrqzR0+kyMjI6jX68KU8dnkM67XAN/j7CPfhbVaTWIomZyGx2qZKd+burzBi7CXC8A5rDXHttlmm2222aYtEokglUphfn4eIyMjEr+Wz+eRy+UkO5nH40EsFhPnV2d0m56ehst1nP2xXq8jFAphMBhIjNrIyIhIrvr9PsbHxxGJRBCLxRAMBnF0dIRyuSySrn7/OOue2+1GJBJBqVRCOp3G5OQkwuEw0um0pFxnAe9wOAyHw4FqtYqpqakh6R3Zp0KhIM6xDsT3eDzCJOgYDw1Cms2m7DKTBdFxg6Zph/h54M1MDMD7mWDQjE+yupcGE71eDwcHB3j77bdRLpextbUFp9OJ7e1t/OxnP0MikRhKG65ZM7O9TqcTsVgMZ86cQafTwcbGBvr9/lAWPT1e5t8my6elqrq/5nka8OjYLQ1Y+Z3ZZn6nHXSOqVk7j0wj1zbnhuCTbdbtpSxNgyUz458GC3xedJu5RnXf9fMDQICHBqNmH03AyX/tdltkzJpRc7vdGBsbQywWG2I9eU0NPsl+dTodZLNZXLt2DbVaDalUSkAJ41z1/GqAZvV86HV7kmkgzL/b7TYePXqEa9eu4bd+67ewvLyMO3fu4Ny5czh37hxu3bqFcDgM4Dg9P2O+dDu4eWDKZ81nmYwdjyeAMQEm15OOaWV7melW98nj8cia4fmUNDLJkF6D+l1DVozAypRC+3w+lMtleX9yXWtWjWw5QR+vw/UaDofRbDYFBLKkARUXesOC4O9F2ssF4GArKG2zzTbbbPtyW1pawtTUFJzO4/IAg8EAmUwG6XR6KLX0yMgIms2mMHT1eh3dbheBQAAHBwfi0LLwdrPZFNat3W6Lk8fd/5mZGaTTaYnJCoVCCIVC4iyyiG0ul0O73cbCwgI6nQ42NzeRSCTgdrtRLBaHHORSqQSn0ykyo1gshn6/j1wuB5/PJ060doYCgQACgQBqtdoQSNCOsnZy6HCZjIF2Dq0A0EmyMQ3UdAIHmmZnzBgtzTjxemyHw+EQJ2x2dlYKcne7XXz22WdYXl5GPB4fisnS0igzbsrlcmF0dBSnT59GtVpFJpMZSpJhAkyeoxkok8Vi2wlONIAzWQ3g2TT4+poEalYMogaB+lyOuZ5vLWuzAoUnMUWarTMlhJr1s+oP26nbpBk3zY7qMeJ65XV5nsnEmWOfTCYxNjY2lJHUBM4EcHweK5UK7ty5g4cPHwp4YCKg5wF3E7yZzJs5T/pzLaPV49pqtXDjxg2cOnUKr776KtbW1vDRRx/he9/7Hp48eSKAajAYDCUrCQQCQxJGfQ8d16aZN46nlhxr4M5rcC1w3HUxcAJIyiIHg+Mac2Q2dbwca8NRssq2sM3tdhtut1uy9gJPZZzcIPP5fGg2m3JvLZ1ku/VmgGYUyf55vV55/1KxQBaOQI/3tXruvk57uQCcwy4jYJttttlm25fbwsICSqUSstksWq0WMpmM1Hfjjq7OClir1VCtVhEMBhGPx2WX2ufzSVD8yMgIgsEgGo0GAoHA0G7x5OQkpqensb+/j2w2CwAimWw2mxgZGZEyBNlsFqFQCKlUSlJeT0xMiESITk6hUBDZFJm+5eVl5HI5KZJcLBafYbnopFOOaUrVTCeNDqFpOmueKffT7JApB6TR8dbgi+3RrJF2tLQTehJIcDqdWFtbw7vvvovx8XHUajU4nU5ks1n8+Mc/xtzcHDweDyKRiDjbOpkD78N7+Hw+zMzMoNls4sGDB+LA6/5op10nZ7Bi1/ROvh5jfT39twZ87K9ms0zTTqm+px5Dcw60LNKU92mQxn9W46Tn7qT4Qh6r20SwVa/X4ff7hzJR6rXHdUDHntfSSV80o6LHPRQKYXp6+sSi7ib7xg2Y7e1t/PznP0ej0ZDnnhI9HRemGUUr1lKPkTarDQ4TxGvJYD6fx40bN/C9730PFy9exPXr11EsFnHu3Dl88sknwi6zL0y2QvZLy1HdbjeCwaCMb7PZlARIOm5Ngx69ccB26rWpEwURsAWDQRkHtkODM/28cP44D/xMb0DxGr1eD6FQSDavRkZGpKi4BqKsu8nNKl3+gH11Op2ygUa5uGYKCQK54aPrw70oe8kAnAMDm4OzzTbbbLPtS2xvb0+KcZdKJWQyGdRqNQQCAXi9XgQCAUlBTScoHA5LjAnlPMyeR6eARbZZ+DoWi4nzv7GxgUajIdcnMPT7/RgbG5P2MIbt1q1biMViiEajEn/GBArdbhfxeBwOhwPFYhETExNwu914/Pgxms0mzp8/j0qlgmw2KzvYdIzIIJkxHHqXWoMwLZ/SYMyUsAHPd0j5u8kEWcWh0QklqLICfhpwmixYtVpFvV7HwsICdnZ2hFF98uQJPvjgA6kBxj7RkdR919f2er2Ym5tDv9/HxsaGOLpWDBwwDG71PXTbTRkgx95kSfS4a2CkQaN2Jk2mj8fp4sh6HDXTowGiFbDUc8h4ITrbBHZcW7ofZJpodPj1PBMAaMee7BT7YM49r00QwnHQElK3242pqSkkEgnLot0meCPzUqlU8Nlnn+HBgweS7ZHxZDpLpjnuVvY8R9/qOy1v1HPV7/fx+PFjrK+v4+zZs3j48CHu3buH3/3d38XNmzeHygnwPL6/HA6HjIkZC0vAQjPHSYM0czNGbwJotlQb41EZr0a2TssdNVjiuHA+uVHGOm9cT2T5mLhEx6TyedIJg8x17nA4hsqYEJhx44ht4rk686Rm416EvVRlBOxC3rbZZptttn0Vq1QqaLVaKBaLODw8RLPZlMxizObIIt/8j5vSHJfLJfESIyMj4pzQEWAMyMTEBJaXl1Eul6U+m8/nQyAQEEckkUggmUxib28PxWIRkUgER0dHqFarWF1dxejoqGST1DvX4XAYg8EAjUYDMzMzCIVC2N/fh8PhwJkzZ5DJZLC9vY1SqSQ710xsEA6HJSZOB+fTYTcZADopdNpNqRwdJ+3kP89hpWOk76nP0cCJTrp5Pe1EWR0zGAzw+PFjiXPUzMEvfvEL/PKXv0QmkxHJF8dVszlmm8LhME6dOoWlpaWhLIb8XjNYmhnSTI0GeHSg9fmm7NI0LfGjs8k4Is0emU5qv99HsVhEOp2WfjqdwwlVtFxPgzJTysd+ameWn2lHWAMG7RDrPpssFj/TddZ0shjgGFwwJkqvI7JGWgZK9np6evqZsgF6rWnwxkyGjx8/xs9//nPU63UEAoGhFPxmjTI9TtpMZlKv2+fJ79gePab8rFwu45NPPoHT6cTp06ext7cHALh8+bLIF3lvskWNRkP+5rzz2dWgyev1SgkBHkdWSrdF15kDIGPD9yHP1TJDJhTSskTGklI2qePeNGvH63IzieCO73HdpkajgWq1ina7Lddyu92iimCZhGAwKLJQlnrRWUxZCJzglu9fFvluNBpDZSu+bnupGDg47Bg422yzzTbbvtwqlQoymYzEkzGxQaPREOdGSyFZEiAej8tubzQalV1hxmHQsT19+jSCwSC2traQy+Xg9/sRj8dFbulyHaczb7fbODg4QCKRgMvlwvr6OsbGxrCysjIE6uhIhMNhjI2N4ejoCG63GysrK9je3sb+/j5GR0cRCoWQTqdFUqQlZS6XaygbHIvVatAGDMu+9N/aiQee7uJb7coDGJLaaWfPyjE1pWf63iZTReeO97CSrjkcDqTTafj9fnFyq9UqgOO09X/5l38pZRhSqZScTyeR/TP7HgwGMTMzA4fDge3tbTQaDekfgYE+R7cPeFZ2qgEsTTvvVvOgx1QDNC1d4/c6i2cwGBRnV4+rlkdqtlUzbfo+JrtHJkKPAR1j9lXLJc01ZiUD1ayszo5oxmHqe5plAVwuFxKJBGZmZhAMBi1jEs0xJyBOp9P41a9+he3tbYkho+POa+t7c4yt5kvLRPn5SWZeQz8but/pdBp37tzB8vIybty4gatXr+Ltt9/GrVu3UC6Xh55Jk4ki0CVw00BdM1gEyj6fb6i0g2bbAAytR56nayPynUfQowEZANmA4FwzQyTnXK9R/ZySPev3+1KXkSAMeMrG+v3+oRg7p/M4wyyBGd/3bJ/JvPE8tpnvfJ/P90wm0q/TXjIGzkZwttlmm222fblls1nkcjkEg0GkUinZ2XY6najVamg0GggGgwgEAuJA0EGIRqMYHx8Xx8Xj8cDv98Pv92N0dBSXLl1Cr9fDxsaGyCij0SiazSZarRZSqRTGxsaQzWbR7/extLSEVquFo6MjXLhwAefOncOjR49QLpcRiUQEbPn9frRaLTx69AhutxuTk5N48OABGo0GXn31Vbjdbvk7GAwinU4P7Vj7fD5xxrjTrJ1+kwkzTTNzmqnRDql2/k0HCBiWXemfgHWtN90WU6pmOscEzzyu3W7j7t27WF1dRSqVGgIKR0dH+MEPfoD79++jXC6Lc64zbloxKi6XC9FoFHNzc1hYWEAkEhlin7QjzPPNGD6aBr9kIEwJ60mSVp1h0gRGHCNej0yEx+OReCQCMzKPBPq8Np1vs24cfzLGyGRJTVCo1xide1MmqhPKmEyavq4GGCZbScdfz3E8HsepU6cQi8WemUsNpjT7BhwD/Bs3buDDDz+Ew+FAJBKRtdzr9QQ86Pm2Aqh6TfOeJrg3zdwkAZ6CS37P98GdO3dQKBQwNzeHX/ziF/D5fFheXh56NpklVCdu0awmr81ETCZQ1NkfyXqZa4LPBdcNx4JAi2NKKafOXkklAhNE8Z56PTqdTtTrdQGmnAefz4dgMCj3J3vITSrOEUEdxwHAUGxgv9+XouB6TMgMsrRMsVhErVZDs9kceoZelL1cAM4BOwbONttss822L7VSqYTx8XHEYrGhZA+NRkOcZEq5tBRpenpaYs8Iruh4zM/PY3JyEvv7+9jd3UW/35d6ZLVaDZ1OR+63v7+PaDSKYDCIhw8fotfr4e2330YwGMTnn38uzhSzHk5NTYkMbn5+Hk6nE9evXwcAjI2NYX19Hfv7+wJGd3Z2hCmk9IdOdalUGpJCaodaO2/a8QaGnV6ayRjwPM0eWbFtmsHgd1ZMhf7sJGBJR83MCjcYDLC1tYVms4nJycmhcwaDATY2NvCTn/wEOzs7Mj8EcmSRTJkkHeBwOIzp6WnMzs4iFAo945yb46rbquWOZp91hjwToJqsmZ4/fbwGhrrtZnFvzabxczrNZE6azaYwJlpGp0Ekz+X8akBkMqdkcUzgp8eHa4Z/a/ClmSQ9J2wz11UsFsP8/Lw8b6ZsktcypZPM+PqXf/mXSKfT4tSTedNjaMpiOf6mBFl/p+dUr3H+bibw4OccE8oM2+02MpkMNjc38corr6Df7+Pq1at45513pH2UP7Lshd7oGAwG8j0BKfCUDSPIYyZLr9c7FO/IzymVdbvdkrCEIKjdbsumFe/H8gaM49VSWeC4BIKWM7O+GyW4vJ4GeKFQSN7hehNCSzgrlYqUGdCbJaFQSN7nXAMcb4/HI0lS2Fb2hfP/IgHcSyWhtGPgbLPNNtts+yo2OTkpbE21WhWJGVk2gji/349qtQqPx4OlpSXU63WJgysWi2i324jH41hdXUWn08HBwYFkp2SsWb1eh8fjQTQaRb1eR7FYRCgUQqVSweHhIVZXVzExMYH19XXUajWsrq6iUChgb28P4+PjiEajyOfzaDabiMfjePjwIQaDAWZmZlCv1/HgwQMpUFwqlSQLm+lQsr9aGkfTx2mzcq55vAnezN17fmbllNNJMpNZsB0a1DGOjH3i5+a9dZZGfl8sFrG5uYnTp0/j/v37KBaL0oZut4tPP/0UkUgE3/ve97C4uIhgMChOuXZuraR7jIMbGRnBwcEBSqXSMyDXTBGvwQ6dV3NcTFmkKWtke9hfzRrwfD2uNJPBYlvIqPR6PTSbTYl5ItvocDgQDAbFuSWIobPPa/NeZqIMK9aJ0k7+fVKmUb3edGIU875cy71eD/F4HGfOnLEsGaCvZ4K3VquFnZ0d/OQnP8GtW7fg8/mQSqWEmWf/dWp9bSc9H1bMsj7uJGbOnD/z2er1enj06BFee+01zM3N4aOPPsLFixdx5swZXLt2TdYnmVSOOWM+WbKE9yBI5Tka6OvMixpg6U0YPqecv1arhWq1CpfLBb/fL5shjDfjGtUAkutalwDQSVh4L37GtUw2j9djkihep1KpiGScxzOJyszMDDqdDnZ2duQYLR9tNpsSU6fBqzk/X7e9XADOVlDaZpttttn2FYz/SReLRVQqFQQCAUSjUdRqNQBAKpWS7GzhcBgTExPixLEMgMvlwtLSEmZmZiSTZb9/XIeNiU0AIJFIwOl0Ip/PIxAIYHZ2Fpubm/B4PHj99ddRLBZx/fp1BAIBzM/P48mTJ8hms5ienobH40E2mxUHam9vD5FIBFNTU3jy5AmKxSImJycxMjKCbDaLwWAgjJ+WMTKBA5007SSToaOZO/XAs+ybleNiBd60dJLOqXZaeV8NYvTvVvc0QYmOnzHPGwwGePjwIf7JP/knOHv2LD799NMh9rHX6+HDDz8U2ZVm6iix0rE6ui0ul0tq+3k8Hslsyvaw/xpIW7Fz+jMzI6d2UglUXC6XpFLXbJx2cE2mivfRtcL0GOq1AAxntex2u5KCXfedRpBqMnrsIzOAmrJJXouOMVPAEyiYxlpcvKduL4FDPB7H6dOnMTk5KWveHAOep8Fbu91GoVDAlStX8Mknn2AwGGByclLYLt0P9t9k1Nh20/g914M593o+TMBrAjxzk6RSqeDBgweYnp7GxsYGNjY28Oqrr+Lzzz+XjSayXwDkM77bdKyibgMBH2N7KZnVGRnJfPL50OCeAF9nkNVrlbHGXF9aEsz1qEsatFotYRP5jjalpTyWclCOGeXtTOCjY3dZfmVsbAwTExNot9uoVCoy5vo50M8MAaD5jH2d9nIBODyrHbbNNttss80203w+H/L5vMSoBQIB1Ot1eL1eJJNJdLtdKeoKAJlMRlKLc4d3cXERIyMjODo6QqlUgtvtlmQkZDKSySQKhQKazSbOnTsHt9uN+/fvi/yuUCigWCzi4sWL8Pl8uHnzJvb393Hq1ClUKhX0+30kk0kcHh6i1+vh1KlTcDqd2NraAgBMT09LbThdsJdSHx0zxb91ljdt2sE02QJ9rOmsWx2rmSfNpmjJmJZaakdPM3C8n44PO6ldBAam87+zs4N79+7h3LlzWF9fRyaTkesCx/E5/+W//Bd4vV78xm/8BmZnZ4ecWp/PJ0wOnVJ9z0AggKmpKXg8HhwcHMi6smJcdJspwTKZKbbN/FzLtrTDao6XHmcNxLWEkfNnJonw+/1D60SDC6v1QjCj508DGTIqJ60FAAIANCgiWNNghX3RKfD1tePxOBYXFzE+Pi7gTbdfA2kTvJVKJVy9ehV/8id/gv39fczOzmJiYgKPHz8GgGfkpLyeTpxiylqtmFW97k7yV61YZjOFv56/J0+eYGZmBtFoFO+//z7+1b/6V1hYWMCjR48QDoflueZzoVlczWpSckh2y+fzDbGy3MAi46vZN15DS7Z1zBnfCRx3nXzETIakQRnZTo/HI1krvV7vM7XZNLvMtpF5bLfbCAQCiEQiksiI1yoWi3j06BHS6fQQWOX1+EwwTpDsGzd2XmQSk5cLwNkMnG222WabbV/BDg8P0e/3MTU1hU6nI9nHmCiEDEexWJSdYK/XC5/Ph2g0iunpaQwGA6TTaclI6fV6xamIx+MYDAbY29uDw+HAzMwMDg8PUSwWBfhtbGwgFApJsenr16+jUqkgHA7j6OhI7vX48WP4fD6cOXMG1WoVW1tbCIVC6Ha7yOVyiMVi4oz6fD7s7++Lo6QZG6/Xi0ajIU6PZnCA4dTxVk67BhTm7yZYMaVfOrGBBha8h3bsTcmb2+0eqg1lMkj6nlYZDfv9Pq5du4bf/d3fxfj4uDCVus3VahU//vGP0e/38Vu/9VuYnJwc6h/jiCjf0gyQw+GQbJZ0MNPptMRTsg26nZqZ5HVMNkE7/ea46vl5HrjmNTUwMiWq/I5rRjvRer70ddh/3WYNFnUcHRms52Vq1ABPx85pSZ6u16Xvx5i3ubk5jI6ODsn1zFgyk3nrdDqoVqu4d+8e/vzP/xw7Ozvw+/04d+4cKpXKEOjhZogZT6eZan0f3VerNaufQRNommauF/350dER7t69i3g8jq2tLTx58gSvvvoq7t27JwBNJ7LRz4gGQNz4MQEZ2TefzwcAkrnRrOFGkEmQp69LeSPfSTqGkiCP865LnOh7kQnWte641pkpmGOnJZAso0B2Tm9icMOnWCxKwirNPLPfwWBQVBXNZvMZ4Poi7OUCcLBj4GyzzTbbbPtyi0QiCAQCwnK5XC6p00aZDiUy4+PjAI7/Q2fikWKxKA5RKpUCcJwYJRqNIplMolQq4ejoCIFAAB6PB5ubm/D5fDh79izy+TweP36MXq8nTEOj0ZCacIVCQVLb7+3tYXZ2FouLi7h79y7q9TrC4bBIJJPJpDgdrIu0v78P4GksEh1FJg7QDqPVrj6AZwCArhvF77WdBN7IxvAz3o877iZwswKOdOjMe2gmi3NIx9EEGOl0Gg8fPsRrr72Go6MjYeH0ffL5PH70ox8BAN59913Mzc3Jd2TiCAx07TjNJCWTSXi9XgSDQRwcHAgI0KyUltOZ46UBk5beadBggjdzPjV7ZwUc2H7tyBOE0oGn86zjDk2GVLN3BLd6TsmABQKBoXHUZrad/TRBDZkPLSPs9Xrw+/1IJpOSXIgMmdUmhAZvnL9SqYT79+/jj/7oj3Dr1i24XC5cuHABqVQKm5ubQ2uQgEQDR3OjgmN50vOg17GWvmrTc2iOFQABIexPu93GxsYGlpaW4HQ6cfXqVfzjf/yPEQqFhuZPp8fX7CVB1mAwEKZZx7rV63XZBGIJEiY14Zzoemhm6QEeQzAcCARko8CUcQ8GT+M3eQzVEIFAQGIV+e7kmNfr9aHkJfqZJGM3GAyG+sU1Txl3pVIRtg94CiibzabcJxAIDK2/F1nI+6UCcLDYtbDNNttss8020zwej0jdPB6PsGgAJD4jmUzC5/OhWq0KWHI4HJJ1MhAIiHNarVYRDAYxOzuLbDaLTCaDsbExFItFlEolrKysIJFIYHNzE/l8HuFwGHt7exJnsrKygnK5jEKhgGQyiVqthm63i+XlZQQCAdy+fVsKf2ezWXFqut0uEokEKpWK1L16+PChOGHsqwY1GiiZcWtW4MKU7ZmmHWQNAAE8A1o0C2LFJvCnGQtmMkAmU8PPtKRNSx17vR7u37+P06dP49KlS/jVr34lNdwo73I4HKjVanj//fcBAL/5m7+JyclJBINBcZjJ7tCBt5JUMnOhx+NBJpORBDQms2iCL3PstHNtMklWMjsN2mgaxOkMeyZDRMeWjAPZOuAYvHB89fH6HmyjCVY1mNLt1CBez7E+hjFaNDrmPN7n82FiYgJTU1OIRCJDiTdM8MaNA841NzsePHiAP/3TP8WNGzfQ7XZx6tQpvPLKK8hms6hUKgIomIZeZ9Bkn3U8n54nk101594EdubveoPCnF/9PAPH76xGowGv14vt7W0Ui0VcunQJDx8+FLCmpYpc7zpJj05mw3Wt+0QpIseCY8P6mWbGUv18AhBZJceQ7zCv14tyuTwkt+Xmky4wznWnx0VvQmlApd9f/JxMXSAQEOCrNwTM4vEcCx3XZ74Hzffn12kvFYDjkFrtaNhmm2222WYbLZvNwuFwSKwM/1MHjhOYBINBlMtlqRWXSCQkfsLv94vEkvLKeDyOUCiE+/fvo9/vIxgM4vDwEOFwGBcvXkS9XsdHH30kdecODg4wMjKCiYkJRKNRHBwcoN/vIxKJoFwuIxgMiiP56NEj+P1+BAIB5PN5ictjGnBmyUylUrh//z6AY8e52WxKvSTuxBMQ6OB84FmAZcXcmPJKHTtDx/h5//9SzkWnyby2ZnDoHLJtJpDTx2kQZ+Wssq3ZbBZXrlzBb/zGb+Dg4AD37t0bkhgCxw5bsVjED3/4Q9TrdXzrW9/CwsICwuGwOIt+v1+kkkwMYzqWZF5DoRDC4TCy2awkODHZMivGTY83+23l5JuggP0xyxCwXRqA8PxmsymOORkYnUFSJ2owU8dr9kbPj2ZcyNDpBCWcW72ZQLBgJgLhsRoExWIxTE9PY2xsTIp0W8XXaZaS8U1k3u7cuYM/+qM/wo0bN9DpdBCJRPDOO+8gEongxo0bItlst9vyHOk4RN13vbFgzpO5waHnkn02gbyeexr7p9cax6XX66FQKGBychK7u7t4//338cYbb0jGWqt4QgISzolVbCxj4fSzzhg2ALL5pcEe/9YbMjynUqmgVCohHo/LvIZCIQwGA5TL5SGGn5sgOq6XpT4ofeR9KdE0GUbKXoFjMEjmkOVCeCzj+ngPns9jdLIWbhQxzu5F2UsF4GyzzTbbbLPtqxizmrXbbQSDQfk5OzuLXq+Ho6MjdLtdiWsqFovo9/sSTO90OkVyOTc3h4ODA6yvr2Nubg7tdhtPnjzB/Pw8FhcXsba2JqnsmfkyHA7j1KlTKBQKyOVyCIfDqFQqKBaLmJ6exvj4OLa2tiQLJhm5YDAoMsput4t8Pi/FpJ88eYK9vT1xROh86x1v7USSPTDjuaxYORMw8DO/34+VlRWMjo7iypUrkiFOG50//VMDNpr+TCeKMIGjyejoNlJCZab9Z18fP36M1dVVnD9/Htvb20PFgTVwqtVq+NnPfoZ6vY7vfve7mJubQywWk91+v98vziCBIxMz0NxuN+LxOHw+H0KhkLBxZLrowHL8zfg9DQZ02n062Rrk0vQxpkRTz7meQ8Zu6lgjmh5jzVTojJAEhry/lrA5nU5JskOnVzv2ut+cMwJ9nd2Q7XY6nUgkEhgfH0cikRDAqaWXPEefqxmaSqWCtbU1/PCHP8S1a9dECr26uoqZmRns7e1JRlkde2emzddrj/0x2VWOoR5vU7KsvzcZVN6TYEvHkmoWGoA8ew6HA/fu3cPrr78O4FjaHQ6Hh1hUDWi5tjgH5oYAZYP8nglE9NwTTFHWyHcNk4jwmrq0QDgcRr/fx+7ursgaNXjn/PP54pixzZQ26vmgxJJMm96A4PhynbGkwmDwtCYewSeVGRpAErCRVebae1H2UgE4rvnBwFZT2mabbbbZdrINBsfFXROJBAaDAcbGxpBIJKQcQCAQwMzMDNrtNur1Onq94/pSXq8X9Xod9XodyWRSMtW5XC6888472N/fx/b2Ns6fP4+JiQncvHkTtVoNy8vLsvsciUQQDofx6NEjjIyMIBaLIZ/PAwAWFxfh8/mwtraGYDAIn88nZQ7IErJMgN/vRywWQ7lcRrVaFUfD7/dLbJ/OnqgdYe10cTzoZJmSSYI8LTWkI8nEAuPj40PxW1aOjemwm0DRyrnXMjTNspkMhQY03GHXgIzHNJtNXLt2Db/2a7+GpaUl3L17V1hU06rVKj788ENUq1X8vb/393D27FnEYjEAT8GG1+sdStig2Ti2mfUFg8Gg1PQrlUoCsjkmdKyZ5IFp67XTr8des5F6XAAMxQfxfC1n1O0jSDBZVDqtWibocrkQDAaHWCg93xqAsP2MQ2LslJZOagBCloWAUgN9Zn4dHR1FMplEOBweivGkaRCn48QIJIrFItbW1vCDH/wAn3zyibAriUQCS0tL6HQ62N7eRqPRkDFpNpuyEWLei/cx17sGQXr9miDP/F3PC8dbX0ffS4/7YDBAu91GrVbD5OQk9vf38fDhQywvL+Pq1auShIf96HQ6Aqw5jxwn/R7gP2ZorFarwuxrmSSBX6PRGAJJvV5PJJdUArRaLclsSXm3zvDYarVEZcB+62fM4TiuJdfpdNBsNiVzqk6OQhDJYziujGv2+XzyWbPZRKPREIBMCSk3N3SmU70ZpoHvi7CXC8B9IaK085jYZpttttn2PPN4PEgkEggEAhgbG0MkEkE+n0ej0cDo6CgikYgAt5GRESSTSbhcLinoOj8/j5GRETx69AipVAqBQADXrl1Dr9fDN77xDVSrVXzwwQciv9zb24PL5UIsFkOlUsHe3h6CwSBCoRBKpRJCoRBSqRRKpRKy2SxmZmaEkWNNOgJLnU3u8PBQWAlmzPyd3/kd/Mmf/Al8Pp8U8zWTBtDhMuPdTOZAS9q0U8+/u90uHj16hI2NjWdYMZM1o2lgYIIsfW1+TlCgd9r1tbUjRWnf8wDk3t4e7ty5g9nZWRwdHUlGUrZN97Hb7eLmzZuoVqvodru4ePEiYrGYMDndblfi4uhkUqZH5odtD4fDktEuFAohl8uhVqvJWJhOuxnzRTNjf0z2yWoe9Xib86n7a7KdbI/JEJlMkZYB6jY2m02RGhI4aHmrZgcBSJIMSpTptCeTSYyNjUm2V1MKyrnjTzPejeCN2SY/+eQTAfkejwfj4+OIx+PI5XLCYrO9jAvUa0ozmXrdsM3mGFq19SS2zpRamlJKfQ2TcazVaojH43A4HNjc3MS3v/1tfPTRR8JKceNGJ+HRa1Q/42YcGMFVvV4X6WSlUhkaDz6LmsUlU8331sTEhIAuAqpwOIxgMIhcLicbKjyesb5kvQje+/2+SM8JTMnAsx86EY+5YUQpfL1eR6PRGNpQ4ZhyI4HPYjgclndto9EYqp/5ddvLBeCEgRvgaUScbbbZZptttg0bY9EmJyfRbrexvb2NkZERkbyVy2UAkALfzWYTtVoN0WhUCnFXKhXMzc2hXC5ja2sL4+PjSCaT2N3dFRDWbDaxsbGBWCyGRCKBw8NDAMDS0hKazSYqlQomJyfhdruxvr4Ot9uNYDAogC8cDqNUKgkw6Pf7SCQSaDQaKJfLkryh2WxKUpYHDx4I+6HTh7OEAJ0Zq0QUJ4EFHqNZBO2s83v9t2aOAAyBLH1vzfDwPP40U8/z95GRkaE6UPyOu+b83gSpwHEszPr6Ovx+P5aWllCv1yWJAtvPPhLsPH78GH/8x3+MWCyGSCQi99HlG+gg05Gk86ilhh6PB/F4HIFAALFYDKVSCfl8XhhT08nkeGl2jWOia/sBT7PmaZZVxzQR0GggQudWzz2vr+fUnANz7uj8m7XG/H6/fO50OpHL5eD3+yWOSM+bbiMAyTxIcMU6h3otWq0ZjgHlfq1WC7lcDrdv38Z//s//GTdv3hxyzEOhEJaXl+H1evH555/L8+ZwPE1YxM2D5zEuzwNk5hhaPW/83ZQ5mtJjq74TrBQKBVkH29vbGAwGmJ2dlYQszETLtU0G0iwHoBk/vnfa7bYkIvH5fGg2m+h0OsL2crOHa44yxGAwKIlOKPfu9/sytl6vFw6HQzbTuDFispKcU4fDgUQiIZJHglG32z2UQZLt12UHNAPc7/eldmer1UKlUhG2lfdzu92IRqNwOp1Ip9PCPjLGtdVqnbge/qbt5QJwX/y0GTjbbLPNNtueZ4uLi4jH40in0ygWi4jFYohGo+h0OuLsxGIxhEIhFItFtNttzM3NIRAI4ObNm/B6vZiYmMDBwQEA4NKlSwgGg7hx4wZGRkZw6dIlrK2toVQqSaKSbDaLSCQCl8sljuzZs2fRbDbx6NEjkVZmMhlEIhFxPhiH4XQ6RR7VarUwOjoKAMjlcohGo2g0GvB4PNjb20O32x2qa0TpowYCplQSeDZZhulw6s+s2AHt/PFeeidfO8JmYgUNdCi50+3Qcj8NAAeDgThvdPK4I09nVsv2HI7jDIc7Ozs4ffo0Zmdn8eTJE6kxRafZdLBLpRI++OAD7O7uYmFhAVNTU4hGo3JPJrqgQ0wQRRZHy+MoHwsGg4hEIpKtlAyvBto6GYNmSzVgtmJRNZPDseVcaLBKZ1WDIxOAkIk2r6+ZPY4346NarRZCoRAASNkLv98vSVO4/rRsk9eJx+NIpVLyDJJVMcEL518DDs0YNRoNpNNp3LhxA3/+53+O27dvC5hkoempqSksLi5if38fe3t7ct1+/7h4NzcErJgwvaHB/lixyeazYsXOccNCf8526DnWzyzvzzlkTUs+P2tra5ienpZ6lHps9JgxrpHPlm4f1y/ZMia8IXAynxWd0dJMmqQZUeCYBWPioHa7LXOtgRjHVG/a1Go1FIvFoULfWmbJjROuR4JiAi4NOjnuutZbtVoVWTo31crlMur1OnZ3dwXEnsSOfh32cgE4FQNnm2222WabbSdZKBRCOp1Gt9vFxMQEAoEA6vW6xGbE43EAkKLZ586dQzabxcbGBiYnJwXoxWIxrKys4PDwEHfu3MH09DSi0Sju3buHUqmE8fFxtNttHB0dIRaLSeHgiYkJRCIRZLNZZLNZJJNJNBoNVKtVkehpUOL3+5FKpbC3t4dOp4OJiQlxenw+H9LpNI6OjuB2u1Eul4cKDtOxo2nQZMWoadNOnj7nJPCm5XE8h04er6OvpdkgnZq83+9LchmyRGyrBhqm8TjGKur26nMGgwFyuRx2d3cxMzODXq+HR48eyXemvHMwGCCTyeDx48eyJn7t134NZ86ckUyIdEwpzaLzRwkrsxnyek6nU4BcOBxGMplEuVxGuVyWGDm2mU6yjlczgTjba8W8mRJJrg0NEvWc6oyhACSLJK3X64mUUTvug8FAGJRQKCSAwO/3S5tYI0wzS3S8w+GwALdAICCg4nnrk2PBfwQQLHr/8ccf4/3338fu7q6ME7MKxmIxnDp1Cs1mE+vr60OMW7VafQZYmjJXzfCa61q3+XngzVyXXxUUmGuabSDQcjgcuHr1Kt577z2k02mRU/Ncr9criUD0pgfXHeeHDBzvw3P4twaDbIeWMTLmDXi6gdDv9wUAcXOhXq9LMinGWTKulO8BrpV6vS5jzIRC3W5X5o9SXMbK6RITfMe73W55t/R6Pcn0S0lnLpcT9pjqBi2tZjKWF2UvGYBjDJyN4GyzzTbbbDvZ9vb2EAgEMD8/j1arhVKphE6ng1AohOnpaZRKJWxubmJhYQGTk5NIp9MolUq4ePEiCoUCqtUqTp06hWg0ivv376NYLOLVV19FpVLBxx9/DL/fj9HRUXEo4vE4yuUyarUapqamUKvVcHBwAKfTiVQqhW63i3A4jF6vh2q1ikAgIBKu0dFRuFwu5PN5qVVXLBaRSCRQq9WQTqfFQabTQyeEzqx2tLXTCzxlYbTzaH5mJdkiMOB1tWyJppkDExRp9kbH3hBUMH6K/QGexrjpwsHaASU7EQwGBUhYGc/J5/OIxWKYnJxEsVhENpuVa5vj0+v1sL6+jmAwCIfDgXQ6jddeew2XL1/G7OysZKlkfSuWGyBg0AkSTCDHOKFgMIh4PI5KpSJJbxqNhoBwDQysJHmm86+ZEP1TAzw6+3TK+/2+JJ7g92y7FbjVcXUEYWSOyY7o8aSkl+f6fD6Ew2HE43FEIhEBbhpo0kxJomZRCDRarRaKxSI2Njbw05/+FL/4xS+Qy+WG1g/lrjMzM4jH49jZ2UE2m5X7dLtdSWSiN0M0q6Y3H/RzYwU2rf4250v/rkGhBrp67nQbNCunJclcOz6fD7VaTTLvso+8vmbYWBuOMkgCcwIe4Gl8JqXdfPa49snSsa0asHMOyJBxU4Lrm9JXSiv5j/Ory1cwu6Z+V5HtY5/MseIaaTabstnD5zEUCiEUCg0lfcnn80MgnhtVJyU/+rrspQJwNJuBs80222yz7XnGWm+VSgXlchlutxvz8/NIJpPY2dlBoVDA6uoqHA4Hbt68iYWFBamr5HK58MYbb6BareKjjz6Cz+fDpUuX8PjxYzx58gRjY2MAjmvNzc3NwefzYXt7Gy6XC0tLSyKX0w4/JTrtdhsTExPY2tpCr9fD6OgostksBoPBUCKV2dlZ7O/vo9frYXJyckgixd3kkZERCczXIMqMOdJATH9umnaQNBvxVUyDOi33s8qypxkhnZiADB0lXdqporOppZPMemc6t9parRay2SxWVlawurqKfr+PXC4nziLP0WCzVqtJApn3338fjx8/xjvvvIMLFy5IQhw6jz6fT8CZBtdWjBydQ4/Hg0gkglarhVqtJjF6lFfq7KGaEdJjyPnU42ECBA0gTJaODAjvpeOIeD/N+mk2BoCU2+B16dwz7owAl7JhOs26EPtJoMdk3dg2ZlY8ODjAzZs38dOf/hS3b98eYpS4ZpxOJyYmJvDWW2+hXq9jf39fgA1ZKM2CcxxNM8GDya6Zz5PumwYD+hi9TtlW8zMCH/O6fJ/weIfDgXK5jGg0iq2traH1r6XObKsJevTcMjOqfv54Dz6XXBP1en0o2y2f4UAgAJfLJWoHrkNTWs3xB54CTf0eY3wdx47gj4wd1wRj2vTzx7XIa/Id6XA40G63hzaO9HslEonA5/OhXq8LALR6T35d9lIBuBcoRbXNNttss+3vkDE9f6PRkFpmPp8Pt2/fRrvdxsLCAtLpNMrlMl577TUMBgN88sknmJ2dxcTEBD7//HPs7u7itddeQywWw69+9StUKhUsLS2h1+shn89jfn4eg8FxMoFEIgGPx4Pd3V1JoFKv14VpS6fT4kDcvn0bwWAQExMTAhZmZ2cla1wqlUKhUBhiVTRzxf5ptkVnhrOScGkgRzOdOB2nYyVLPOnawLBU0upYOld0vdeMPgABAABJREFU9jQjx/grAAJKGQ82GAwkyQzvSec2FAqhXq+Ls0ngpIEIcCwJOzg4wPT0NKampqTgsAnidL90WYX79+/j4OAAjx49wltvvYXl5WUkEokhWaXX6x2qG6eBFevH6RhAArlQKIR2u41UKoVqtYparSb/KC1jnxqNBgBICnbNOmiWU8+nls+asYVkz/SYakbMZGc5X1x3XK+8BmtzhUIhRCIRKZOha7mZ60ab3nzQwM3pdKLZbKJYLGJrawsffvghfv7zn+Pg4ECAqwZNwDHAXFxcRL1ex87OjtRZ5P1rtdqQZJWfa8bYBG/m2j6JOTSZM20nMalmHJze+ODYaVljo9GQ53R9fR2Li4tSooHsJzcPmOxHM2FMzKPHjO0je6Y3RQjGuIb4OxlMl8slYJhAORwOC2iktJJrTbODbBc3Zfi3BtpaWk0QS6knx51gUccAsu36HUmpJMdK96lWq4ksk1LgF2UvF4BjGQGbgbPNNttss+05RjZjamoKs7OzyGazWF9fh8/nw8TEBHZ2dhCLxXDp0iU8efIElUoFZ86cQa1WwwcffIBAIID33nsPmUwGP/rRjxAIBDA3N4dCoYBIJILFxUUcHh6i0+lgeXkZuVwOm5ubmJmZAQCRPdZqNal7VCqV0Gw2MTk5iW63i52dHczMzGB2dlYSQlSrVezs7IgUKhwOo91ui0RMx7tp551Ol+kI0rQTzr+t2AWTGTnJ2aaTanUf/bk+35SLeTweiRFjkWmXy4VsNiuAot8/zmZHdo7XI2jTDqMGMSYTUa1WkclkEIvFMD4+Lk6e2X79N+/vdDpRKBTwq1/9Cg8fPsSbb76JS5cuYWFhAbFYTGL5mBCDBYK1c0uHWjNedIAJ/ngd7v4zM2qz2ZQxKBaLQ4wO2VJgWGbHv62ANYGKBiu6OLcJMKzmmA4v2USybH6/X+RpmsW1+qnXn5ZKakaQ62Bvbw/Xrl3Dz3/+c9y+fXso/lFfk206c+YMJiYmpJRDuVyWaxEYaPmkZu/MtlqNCT/TvxMQcsx0/8zrmhsq+ns9L1qOyvtQYhwMBtHv91GpVIRFbLfbkiBJ10cjeCGA0psUug2m9JcSba5ryi01qBwMnmaGbTab8jxyzPgMmO8ZzSgTAGpASaDFdpnMod4YMDemdHIU/uOmkI51472Y9ITJW5xOJwKBwJCU++u2lwvAMYmJHQNnm2222Wbbc6zf7+PMmTOIRqPY2NhApVLB4uIi8vk8Njc38eqrr8Lj8eCzzz7D5OQkzpw5g7W1NTx58gTnzp3D0tISHj58iBs3bmBiYkKKa8/MzMDtdmNjYwPRaBRLS0t48uQJstksTp06hVarhf39fYmPCwQCSCaT2Nvbg8/nw+LiomQ7u3DhAiKRCI6OjjA5OYlarYa9vT04ncflAVwuFyqVChYWFrC7u4tcLjfE5OgsiGRntHMIfLWkCaYUzGTWTGffZPK0adkWr8VzuaseCATE4aO0jrvnLBSspVd0VAlc2b+RkRH4/X4p0svP6MDp9jD20OPxYG5uThxNfexJph3eg4MD/MVf/AUePHiAb3zjG3jllVcwOTmJWCwmkk4yEQQyGsjpIsR0MjWDREec2fsoqSQbRzaSjmar1Tox2yfnVhvLH+ix0bJFPY90rDnXdOI5X5ScMeW6dqg1QDBBm95M0A42x4Vz3Wg0UCwWsb+/j1/+8pf45S9/KXXBTOCmpZOzs7OYnZ0VRlPXHvN4PCgWi7K22T+r9aw3IkwG3IqZ02veakPEBC7s/0nPKOdRrxGuCdZdczgcwqh5vV4Ui0VEo1E5x+PxCNNMsK8Zdt0PAlsCGG44cG65fnRbyagDkMQjugSBKd/USZA4Z0wK5HK5hkAn+0tgpSW6LNSt5aeavaTagfJK9kszkXyXulwu2UjyeDxSGgN4mpTlRdjLBeC++GkzcLbZZptttj3Pzp07h0ajgRs3biAWi2F1dRUHBwdotVp45513sLm5KfJJAPjoo4/gcrnw5ptvotls4v3330ez2cS5c+ewv7+PweC43lImk5HabuFwGLdv35a03rdv30YoFEI0GkWpVMLy8jJcLhd2dnYwOjqKVCqFYrGIUCiEs2fPYnt7G7lcTurU0WlKJpPodDpIJBKYnp7GxsYG8vk8gKdFrekgkXEAIHEqWmplOo/aAdUyOx5rtTsODEskNSgzTTuvdHrJcgCQOBkW7I3FYnC73ajVavB4PEin00OAkYBDswTaiWR9NpYIYJIGXZ+N5/V6PZTLZTidToyOjqLRaEgmOisppQlo+H273cajR4+wu7uLmzdv4u2338bZs2cxPj6OaDSKQCCAfr8v64LAR4MFOvsEcQQuur3sqykrJCtCYNfpdOSnTq3OZBFW8k2arg/G7wg2CSYpDWU/GK+oU7zrtabHUbNammGiQ6+lkjrOjXLJmzdv4pNPPsH29vaQjNY0ApOVlRVcuHABwLHMkOwbjwmHwygWi+LIE2CbTI5mxDj/Zp806DUZJp7DsbVaS1/G8GmQwTXPzwjiyEBvbGzI+6VWqw1lfCXI47vD7XZLRkiCFpYlIEAi00Z5LOWy5uYNnz+uPwIrjquOO6QcWMephcPhoXheACJv5X0IVDkmHC9uhmhwxn5zbNjmbreLWq0mbTaZ32aziXg8jlAoJJtiLzIDJfCyAThh4GyzzTbbbLPtZGNR1oWFBQCQOJFAIIBr164hHA7jwoUL2N3dxfr6OmZnZzE+Po4HDx5gf38fY2NjGB8fx8bGBubm5jA1NYXt7W10Oh2cPXsWuVwODx8+lMyC1WoV8Xgc/f5xRrjz589jb28PmUwGk5OTcDgcePToESYnJzE6Oor9/X2Ew2FhU5iRbXp6Wpi+8fFx3L9/fyhzIvDUAaxWqyJ/A54G+psgTZ9D0840vzdZOPMcmk6uQCNbY16LIASA1Fby+/3iuJHNSSQSAJ6mt9cOnI5rI9NAyRMTY+zs7EgCBsaIabBDBoEAgXPCRCImgKKZiTxMp+/+/fvY39/HnTt38Prrr+PcuXO4dOkSBoMB6vW6sGR0KHXCDA3kzIQdmlHgvXm81+sdYk/08SarRUBPNsycW903XWfL6qcGOJpN09fU4MRMhGPVRw3carUaCoUCdnd3ce/ePVy9ehWPHj2S4srm2tXr0eFwYG5uDt/97neRzWYl62w2m5VshASjfG4IVnUWSn19K2aSn2sQZ9UuE7CZ8kkr05+bz7C5KUNQxfaXSiV5hvg+0XJI9pfPhE61DxyzZ/1+X7JLagZbt59STEoMg8HgUAwb1yPXCWWIfF71muU6rtfrIgHXSU743uC1yEzrDRz9jtBjR4BHRtDr9YrMWcfHsQA5302xWAx+v18SHXFz4kXYlwI4h8Px/wLwOwDSg8HgwhefJQD8RwALADYB/JPBYFD44rv/G4B/BqAH4P86GAx+/DfScqu2wvo/Ittss80222zT5vf7MT4+jmw2i0ajgYsXLyKdTuPOnTtYXl6Gz+fD559/jnq9jqWlJXQ6Hdy7dw8ejwff+MY3sL+/j2w2i1deeQWhUAj37t1DNBrFmTNnsLW1hVKphGQyiXQ6LUksarUaxsbG4PV6cfPmTZHmZLNZeDwevPrqq2i329ja2sLs7Cx2d3dRqVRkF9vv96NareLs2bPo9/u4evUqQqEQ5ubm8PDhQwBPkxpop8ztdkugvnbUtZkOD69lOpaaWbBiOuiomfFvZiIE7fgDT3fqI5GIgF5+T0ctkUg84wTT2dNMDp0+Jgfx+XxIJpM4OjoS54/363Q6aDabApwo08zn84hEIpienpbsfey/ZuPM8dLGXf9SqYTPP/8cm5ubSKfTmJycxO7uLjweD+LxOILBoIBOSrrIaGnQxLnUoEz/NAES20QAY8r12Afg2VpeVmvD/Gn+bnWOHhsrKaIGl5ppIyvSbrdRrVZF2nznzh3cvHkTW1tbQ3I68140roloNIrz589LeYZer4ejoyPJ8OpwOLC6uopMJiOyQM1qsU9aiqkBu7negadyQnOjRJ+rz+c9TgJ+Vhsnz5sTjiE/Y7IQbuSQNWNb+/3+EFPNZ5nghyDL6r4EV2a5D+AY/OkNIR2Pq0t28JhOp4NAICDMeS6Xk2RPvD+fE15Hs79sJ/vn9/sl86WuJQccv5f8fr8UEC+VSsLEDQYD2VzhnOi4S0pwX5R9FQbu/w3g/wHg36nP/icAfzkYDP5Xh8PxP33x9//ocDjOAfinAM4DmALwXxwOx+nBYPB8Aflfk9kMnG222WabbV/FgsGgONOtVgtXr16Fx+PBpUuXUC6XcfXqVczOzmJ5eRkHBwdIp9OIRqM4deoU9vb24Ha78dZbbyGTyeD+/fs4f/48EokErly5AgCSlCQWi0k9qdnZWdRqNTx+/BgTExPw+/24d+8eOp0OTp06hU8//RSxWAyJRAI3b97EYDBAIBBAJBKReI1Lly5hd3cXjx8/xsLCAiKRiDB/2vRON+VO5g6+6fRpho2f6eOswJ1Og06jM2vlrBMkcUebzhGzEuoU84MvJJ+DwQDBYBB+v19kcgRf2mnmjjkdVQ20JicnUalUhE2jPAx4yrrx3lpKOT09jUqlgkwmI4CQ19T901JSMzmILnB99epV2eV3Op1YXV3F7OwsksmkJPlggg+ychrMcV74O+fCBEFa0mfF9phz+jzm58u+07+b/7Q8UgMWzayZzCCZkHK5jGw2i83NTdy7dw937tzB9va2SOn0/a3aSPAfj8fx5ptvIhaLidS4UqkMJcMZHR3FuXPn8O///b8XwEv2itfSbJeO/TTn39xM0Gyx/lsDEr05oBk8yvUIxHWf9bX077p9fNba7TZKpZLIkbmWyVgT0DmdTmH7OUdM10+mjBJKjo0uhs01yzIBOnGSlmuSoSYDptcIARffF5Qr6nhOSqEJzPTcM9GP3sDRJUg4XwSt+pmNRqMYGRlBrVaTdx8zXzocDgGBVBRYsfJfl30pgBsMBr9wOBwLxse/D+BbX/z+/wHwAYD/8YvP/7+DwaAF4InD4XgE4C0AH/81tfcrmU3A2WabbbbZ9jyr1WpYXV3F9vY29vb2sLKyglQqhfX1daTTaVy8eBFutxvpdBr5fB5jY2MIBoN49OgRxsfH4fF4cOPGDYTDYVy+fBnpdBqffPIJkskkHA4HDg4OEA6H0Wq1EIlEEIlEcHh4iG63i/feew/NZhO3bt3CwsICxsbGsLm5idHRUfT7fWxubiIQCMDv92NsbAx7e3uYnZ3F5OQk1tfXkcvlsLi4iG63i83NTYnBo2PH3WngeNecAJJM1UmSL5oGblYMi/5c7/ADT6WSGkDo3W79k8eOjY0hEAiI7IrxMLpwbyqVGpJu6YQl7DOlW2QbuLteLBYRiUQwOzuL9fV1dLtdtFotcdL5N+s/sdxAsViEz+eTeWGyC+2csx80E+BpmR136wuFAtLpNHK5HD777DPMzs7izJkzmJ+fx8TEBOLxuDAQOlulBnQ6bpBAmqBPS9HMf2byluexqfo4M8bRZGA0ULNi+czMkTpej7+3223U63Vks1kcHR1hbW0Nd+/exaNHj1AqlaRel77vSe3nmIyOjuKb3/wmIpGIOPqsFcdsg263G++99x6CwSByudxQ3UEzJtBkpTkunG+TPTPHzlwn5jqyGkP9bFmNvXk9EzCz/VzfHH/GgAFPJYZcR5wTZn4EINkuuS5brRYajYbMIYFfo9GQsdXFsnkfzvtgMBAQxrUdCoUAQLLz8r7MtApANjgYt0cgptcVx4LJfnS8p97EcDgc8q6hdJkxcGYSI8YGUkrq9XpfaBzcXzUGbnwwGBwAwGAwOHA4HGNffD4N4BN13O4Xnz1jDofjfwDwPwDA3NzcX7EZz1zz+BcbwNlmm2222fYcSyaTuHXrFvr9Pt588004nU5cu3YNDocDly5dwtHREdLpNJLJJC5cuIB8Po90Oo3FxUU0Gg3s7OzglVdegcfjwe3bt1EsFhEOh3F4eIhKpQKXy4VGo4EzZ85gZGQEh4eHmJiYwOTkpMTRsVB4qVSSOl9OpxOpVArRaBSjo6PY2trCpUuX4PV68dlnn8HpdCIej2Nvbw+NRmNo95pG56jX66FSqQw5kJot046MFYjTzrKVo6zjS7S8i6yGGaOlmQk6SWw/nbfB4DilP3fQO52OJP7I5XLikGo2T7MZjJ3RrEO/30cmk8H58+eRy+VweHgIABLnQ9ZNy6XISHS7XUQiESktQFkVwZ/X65Vac6aZu/NOpxPVahW/+tWv4PP5AEAScjx8+BCpVAqLi4tYXl7G3NwcRkdHsbi4iF6vNwQudWwWwQYdb3O8+Tvn22TjrH63+tsKIJmm2TXzp/kZ2Z92u41GoyEs587ODu7cuYPHjx9jb29PJH1mv07qi15js7Oz+O53v4uRkRFks1m5/+HhIYrFogD+hYUF/NN/+k/xb//tvxWmheNpAlMN2vT9NfDRY6MBkhnzx+9NsMbr8J8GyRqMm8+uZgdNcKcZNP7NftTrdUlGwnu0Wi1ZT3wuOGexWAzRaBTb29vClsZiMYRCIVQqFbRaLZFjUq5MwMjnjMA4HA4PbUSwXWTjCepZzJ7rnUmNdEZXjiHXoZ5DndzJZEcJFFnXjXGk7C83UazY0pepDpzVFo4lnBoMBv8bgP8NAL7xjW/8tUAuyUJpIzjbbLPNNtueYzdu3MD09LQkE7l37x7i8Timpqawt7cn4C2ZTGJ7exupVArnz5/H+vo6XC4XXn/9deTzeayvr8sO8NHRkciKQqEQFhYWkM1mUSwWcf78eTgcDnz00Ufw+/14/fXXsb+/j2q1inA4jHq9jmg0KrvGIyMj2N3dxezsLPb393FwcCBFnQ8PD9Hr9ZBIJNBqtSSLHjAce8K/tVQLeAosyDTRToqx0fIsLc0y42FMtkCnCKdUiiygx+NBIpFANBqF3++H03mcke7o6EiSjfB6zECXz+eH6kyRaRsMBgiHw8J4UkJFgMd4mGKxiNdeew0/+9nPRN7VbDbl/r1eTzL0MYECAJFXxuNxDAYDSYARDoexsrIyVHfsq0iq+v2+FFomy9Pv95FOp5FOp3Hr1i3MzMzg3LlzWFxcxMHBAarVKnw+3zPxcjpOUMvUdFIRHbNl/tPzbJqVbFI7yPzHvwneNUgzpZ3MiNlsNlEqlZDL5XBwcIDt7W2sra1he3tbxtdklU5ql8nKEZT9/u//PhwOB3Z3d+UarJtHoBMMBvEv/+W/RLvdxsOHD+U4q0QYVjJGttFM3KOfI1NCqc3cKNHPqslknrTJooG6brMuuE1AQubalFAyNo7PFH9quSoAKcuhn+1AIICRkRFUq1WRJjK2ze/3w+/3SwwbPyeIa7fbkqiIc874VF3SgGubz/ZgMBB2UCdC0bF9DocDzWZzSCpJxp1zwtIFfDdpZp8bTVq+yYycXOMnMddfh/1VAdyRw+GY/IJ9mwSQ/uLzXQCz6rgZAPv/LQ38rzEh4Gz8Zpttttlm23Ps0qVLGBsbw+eff45Go4GlpSU0m01cuXIFLpdLMlLu7+/jzJkzaLVauH37NhYWFnDmzBn86le/klT+jx49wsjICKLRKBqNBiYmJpBMJrG1tQWv14vz58/j8PAQ6XQaCwsLSKVSWFtbE4nSYDBANBoVaVKxWITX60UikcD9+/cxMjKCWCyGarWKSqUi0sp6vS5yO9NM+SIAuRe/o6OmgZt2MK0kXaZzqU07j1omyc/6/T78fj/i8bjsnFMyqZ3FYrEo8ig6nfV6HUdHRxJ7o2Nr3G43yuWyMGMEwgQPdK739/exvLyMCxcu4MaNGyKrIpPJNjPekEwI20IpJ5m0arWK69evi5Os+2llOjZJf8Z4QN6HfQ0Gg/j0009x8+ZNYXinpqYwNjaGWCw2JLM0s1cSsJ3EImmm6qT5NGWWbK8J2szfNZAjy8ai4wRth4eH2NjYwP7+Pvb29mTO9TXM9nE9WjFvur+vv/463nrrLVQqFRQKBfm83W6jUqlIXUC3243vfOc7eOONN/DTn/4U2WxWwJs5jibDBTxls/m3ObdWjLWV7Fb3yaqPJhi0ijvVY8F2avDFNUpQVC6XBVxp5nAwGMhzoWMAAQgT1Wq1JEkQn5tqtSrXJggKBAICstrttqw5Sg/5niA7pt8bugRKIBCQzRbNeumsumT2WKONkmheU8eWMv6OsXX9fl8ALcdXb4SRiddxuwR+fxfrwP1nAP89gP/1i59/qj7/Dw6H4/+O4yQmKwA+/W9t5Fe1pwycbbbZZptttj3ffvrTnyKZTGJxcRGPHj3C0dERxsfHsbi4iKOjI/T7fbz++uvY2tpCNpvFe++9B7/fj48//hjNZhOBQABbW1vw+/1SJ2l2dhadTgeHh4eYnJxEJBLB/fv3MRgM8Nprr6HT6eDmzZsCXOLxuDgdLpcLuVwOiUQC9Xodm5ubIjFice94PI5YLIZisYi5ubkhiZmWRdHxpAPG+BSd7OR5u8emgw8865Dyb6sYHzqTdMzo6FAyqcsEsGh2s9lEpVIR2RQdO7Jp+Xxe+qCdWjqBZNEKhYLE0/n9fok9azabuHv3Lt5++21kMhnJLkkQRyBEh4191YlBXC6XzB1ZB46XHo/ngTiajkerVqsCXCjbAoAPPvgAm5ubyGQyIg+Nx+NSxiKVSknim0AgILE5TDZhSgG/jImzMg0e2AcT0Ok4I7IktVoNlUoF+Xwe+Xwee3t72N3dxdHRESqVCqrVqoBWDVgIdHR8GcfYql0EWl6vF6+99hreeOMNkc/yO7KrmUwG1WoVIyMjGBsbwz/7Z/8MPp8Pt27dGioSr0sH6LZYzTU/4xo0GUEea7UhYl5Px2hZzQPvY/U970/GiffRWWG55vr9PoLBoLBQ/EmQwjEjSNK10TjmoVBIAJ2WiuqU/wCE5Wab+DuvwzHgO4JxdYFA4Jmx1+tBrxUmN2JtRW4q6IyuHANTmsrz2QYWDtfPI4Ee28NNp0aj8cw8fF32VcoI/O84TliScjgcuwD+ZxwDt//D4XD8MwDbAP47ABgMBncdDsf/AeAegC6A/8vga8pA+UVb8UU7vq5b2mabbbbZ9nfQrl+/jrm5OcTjcdy+fRu1Wk1i2tbX17GysoJwOIzr168jHA7jzTffRDabxZ07d0SyUy6XJW6r3+9jZmYGjUYDzWYTq6urcLvduHfvHgKBAJaXl7G7u4tisSgOyfj4uDiN3NWOx+M4PDxEs9lEKBRCo9EQwHLu3DmpC8d6cOFweAiUOZ1OxGIxASBkoMLhMLxeL0ql0jOSLCvQYeVEnvS3ZiVoOhU7d8D9fj+CwSAikYjUYqvVapLZrVAoiHzOjPXJ5XIoFovi7GtmgMkpTFaCcWNsIwDs7OxgdXUVv/7rv45MJiNFgbnDz0QHGgjTdFIVfudyuUSWxzEx2covM52qHTgGpPl8Hh9//PGQhIvFhrPZLNbX18UZDoVCSKVSSCaTAuhCoRAikYiwdJRcMm7IrOH2PCBnyia1HFIngKlWqyiXy8jn8ygWi0in08hms8jn8yiVSkOxghoE6nEz2SeO80mMFAGaz+fDO++8g4WFBZRKJSkxQDDRbDZxdHSEfD4v/f7n//yfY35+HpVKBevr6xJXSfBmlhEw17iVr6mB00lt5rX0JoEGePz+eRJl/exq0yyhBoV8BjVrRUl2vV4fYhs5ZgR0lA1y/judDoLBoKwFjhkTgTDejsw3x9AsVq9T8vOcwWAgjHuj0UA4HEa1Wn1G9koZJABhVB0OB4LBIAaD4+QokUhE2qjnhHUfKc0m602wx7EjQOOzowEb+2Fm//067atkofz+CV/91gnH/y8A/pf/lkb9VU0klC/i5rbZZptttv2dsQsXLqBQKODOnTtwOp148803JW35G2+8gYODA3z++ed47bXX4PF48Nlnn6FUKmFxcRF7e3vodrtIpVJot9tIJpPo9/s4ODiA1+vF0tISNjc3cXh4iHg8jlAohAcPHogEyePxIJVKoVarIRgMIp/Pi6O9v78Pr9eLsbEx5HI5tFotjI2N4ezZs0in0xKXQcnS5uamgEIde8QdYjpIfr8f0WgUHo9H4lC086djefQOvwZRprNIh0o7trw32SzN+jDZAGVVjEtrNBpotVoC0AiieD8mFdBMAh0zDUC4Oz4YDCQLnt7p5+dXrlzB7/3e7+GNN97Axx9/PAQYCUoYq6WLifO+bJNmD5ggQWfAO8lMx940zZLQUdWOPb8bDAZS1+zw8FCy+emC6MFgEKFQCKFQSAoRs+YV54jrktc3mS867e12W9i1ZrMpyUcI3AqFgjDFZOJMcGrGbJ0Uz8bfzdgxzVCRXYxEIrh06RImJiaknXpsWbD76OhIPnvrrbfwrW99Cw6HA+l0WuooaqDBv022jD+51nW/9BrUfdCbAjr2VDNk5nnaTILClD3r55PssDmWHC8+N4PBQJQDetNBSygDgYBsGnGNk3lmKY5ms4lmsykbAwAkYQnbTiDIdws3AChz9Hq9ApC4GRIIBFCv11Gr1QQocVOIcnBdqkCvfwAC0phYhXNBwMm2su5kMBgU9pLrnOykzvrK+D2ydS/K/rqTmLxQEwmljeBss80222x7jq2vr6NQKODUqVOYmprCw4cPMTU1hbfffhv3799Hp9PB5cuXkc1msbu7C7fbDZ/Ph5s3byKRSEhdsvHxcdRqNZTLZSwuLsLpdOKjjz6C2+3GwsIC9vf3xenJ5/MidWMSjEKhgFQqhUajgVKphHg8Do/Hg0KhgFarJfF0Dx8+FEARi8Vk1ziRSAB46gg6HMdpvCnz4456KBQSh0azCiZLpDNKAhiSDmkzA/g1sOH1O50O3G43YrGYgATGohAMkF1icWXu6OuYlGq1isePHw8lQNHJBhhHxjHQfeHYAE8TN2SzWXz22Wd45513kMlk8ODBg2fYO4IWnViBTjaBHJkf7RSyzpyVBNDKTpLL8byTztXgUTNkdC4rlcqQ5I6ms1e6XC4kEgnJvkfQa7aN12XcEGWP7KcZE2fVR6s+W32uAQkBjf7HvhPUT0xM4NVXX0UymRxi+LiOWq0WCoUCDg4OZP34fD5897vfRTKZBHD8Ltjf339GZqoTdZiSU6t+6u+swBifmeeBct7bZI3MMTJBsDlmjDkzZYJk0+r1OkqlkiQXIYPGZ5KJREKhkCQPikQi8uwy066+N+WT7A+fnUAgIJsyvA+fI24ycZ3zPRCJRGSThEmGyLwzdg2APH/tdls2Xvr9vgBLPqPVanXovcgxYpu4UUO2lpJqAkXOKQuGcw7/LsbA/e00LlSbg7PNNttss+051u12JSbt4cOHWFlZgdPpxGeffYaRkRHMz8/j8PAQe3t78Hq94rCcP38evV4P8XgcnU4HT548AQCcOXMGzWYT9+/fRygUwvT0NLLZLILBoDi9S0tLaDQaiMfj6Ha7qFQqmJiYQLlcRr/fRywWkzidfr+P06dPAziuG8ZEJZFIBPl8XoL7+/2+7F7TzJ12shSaNQKsgYUppdQyLjqYOl09HXeeq+VS3C13OI5j3sjIARDpFhOzME6NTm4gEECr1RKHjGOkHUC2dTAYyA67Zjq0ZMoEXjdv3sTy8jLeeOMNZLNZiTGjs0yHk04m2SzNzmgQR3M4HBLbxWvppBMmg6I/M+2kOKiT5s6cM6vzCMTo3DPNOwsva6B00jX4u/n3VzET1DzvPJ1YgwwSNyTi8TjeeecdRKNRASf6PEoUmchEF7M/f/48Xn/9dWFxHzx4AOBp4W/+04ANeAoK9bPA80wmzGpszPnWx5lgywSD+nNTymmCRfN8yn65vjmuBDi8P7MsMrEJZYOxWEzaVq1W4fV6hXnSGzlsm04KouPgXC6XlCzQ8kOy8ZpRZ0wsx5uSxnq9Lm3TY8IYPV2rje9EMnOsXcf7UfLJeFMqAXS9PPZVvwf5fuM1XpS9VABOXnU2frPNNttss+059tZbb+HGjRuIRCJ45ZVXcHBwgHK5jNnZWSSTSdy+fVsy2OXzecTjcYmpmJubw5MnT3D37l3Mzc3h7NmzuH//PkqlEk6dOoXBYIByuSwyyMFggImJCSkVQNlbPB5HJpMRZ6jRaEiWxnA4jEqlgm63i1AoJACP16jVakgkEpiamsJPf/rTZ5gKDcQoDwIgIMoKSADDEjXTtCOppZb8nA42JXxer1ccIO5mM9atVqsJiKPDRNDD+m+8brvdRqFQgM/nkzgZSrxo2mFmH3Q/TGlmq9XCD3/4Q/zDf/gP8c477+BnP/sZisXi0JhoJ5DOWigUkl18PS6BQGAI3GkQZ86H6dyfxOqcBPJ0354HgPQcWkntBoPj4uIEzxy7L7P/WrBmtuF57dXHcA40cAmFQpiamsLZs2cl5rRWq8la0ZLNRqMhkk7GOsViMbzzzjsyP+VyGWtra7IxwTWlWTFzw0KPu4410+OqQZY5DyZQO+na5rkakOn7mcfxb80e8jM+Bw6HQxh94Ck7zeeWdd+Ynp/ySTLyBD5abqmZWIIqArFAICAybw0cud50aQImLeI7QSeH0eylWeqBc6c3XsjmdzodaW8+n0ej0cBgMEAikZDNpm63i3K5PARqmXGSgJPMPNv3tzqJyd8l4/q18Zttttlmm23Ps+vXryOVSiEUCuHOnTvw+/04c+YMisUiPv74Y9mN9fl8OHXqlCT/CAQCuHHjBg4PDzE/P4+FhQVcv34d/X4fExMTODg4kPICuVwOyWQSpVIJjUZD4t3C4TBCoZAkKqHT6fF4EIvF4HQ6kcvlEA6HJT6jVCqh3W4jHA6j3W5jcXERDocD165dE2dEy4zodDidToTDYcTjcdTrdZFM0XHyer0SM2QyBaaZcWDaCaN0ijvodMIYr0JJU7lcRqPRkBga1m3jeVqGR6kUHTNdY4zOoMkymE4kAYF2wnj9o6MjXLlyBX//7/99VKtV/OIXvxB2SjNddAQpjySoZp8JLnSChsFgIABcAzcr8PU8UHMSCDLPtwKFNCuZ3fPua3VPXkf/bcUymcCZ51kl9zDliRp4a2NMZSKRwOzsLKanpxEKhZDNZgEMbyzw3GazKfFTlUpF5LyMaU2n0xgdHcXh4SFu3rwp7dHlI6xAkAkwrcbCCqCdtCliHq+ZnpMAmwkW9XX0HGvgaY4T8FRizBg4yhFZuJsAxul0SrZbZoZkwh8+T/r5Z8ZbxrQ5nU40m02RZTLxDZkw/XyYcmjNgnJ++CyTdeN7gs8aS3Locel2u/IOJ5NHgMl3IPvE+EH9ftNtZGwnmbsXZS8XgAMX9AtuiG222WabbX+rbXJyEoVCAUdHR5ibm0MkEsHDhw9RLBbFsWDNrZ2dHYyPj2MwGODWrVvweDz49V//ddTrddy8eROjo6MIhUJIp9NShNvr9SKZTCKdTmN8fBz9fh+FQgHJZBLFYhFut1sYPWZFi0ajqFar8Hg8CIfDcDiOswzu7OxIauxgMIjXXnsN29vb2N3dxdTUlIAZOmbdbleyxAWDQczNzUlmymAw+IzUCTiZDQCeSiN1EhHgqeNJh4vOr07WwqQl5XJZEhcw4xwdNF2fzqq+FeN5NHgz26qP06wbv+e5OtFLp9PBnTt3sLKygrfffhuNRgNXr14VOZ5O4gFA4vU6nQ5arRai0egQG+dwHMfnMT27w+GQjQDG+jzPkTdNO+QngSqr70/6nX3R82cF4k4Cll/GoOnvTwI5GpicBEB5DAFBJBLBwsIC5ufnEYvFBPTrueZ8kuFhGYNisYhWqwWv1yuxo2tra7IZ8+TJk6F6YTpGlNcmM8S26Tay/Zq1sWLDtHyX7TVBmAnSNMunr2Ve25wDPqN8Xhlvm0qlkMvlhIFj7TQ+pzyP8kD2m22NRqOSIRKAbHbwfADyfHFThhkjWcZBxxV2Oh3JwsvkI5RP8ncCMcaeVatVqW/HcWEZEgDSdr6P+D2z+ZJRjUajwiIytlOXUOBmEJ9t9pnrwuFwSGbMF2UvF4ATBs5GcLbZZptttp1su7u7aLVaeO211wAA9+7dEyegWq3i7NmzGBkZwebmJpaWlpDJZLC/v4+5uTmMj4/jwYMHUrS73W4jnU5LEPzU1BQA4ODgAOPj46hUKnA6j9P7NxoNRKNRhEKhIVYvGo1if38fk5OTcky9XhfQVyqVBFB+8MEH6HQ6GB0dxZ07dyRDHE1nTHM4HCiXy/K76YCTMdIxdDxWm86MaH5GOSUBJnfamTSFO+a6npr+HTiZReLn3OnX7CGZLjNOj9fnzjt33fU/WrfbxYcffoi5uTlcvnwZrVYLV69efWac9DlOp1MYxFAohHA4LI4fAClwTPlWoVBAsVgc2sW3Ysisxp1jruOseA09VvrnSQDRPO6k8bYCXVZgzgTRJvtmXsNsh9W1NKPJYvZnz57F2NgYer2eSNx0PCeBSLfbFWe82Wwik8mg0WhgZGQEyWQS7XYbGxsbKBaLSKVSuHLlCvb392V9EkSQgdMxbnrjgOCITI0VEON5OpGOCf6s2D3zuJNMt8mMQaVpcNtsNnF4eDgkeyZYY21GSgl1PwiW2NeRkRFEIpEh2S3ngs8dk6VoiSMT5FDVwHeOfl5HRkakDAA3e/Ra4buK7a9Wq0ObK2ZRcIJJDdC8Xq/IyTnvTOzSaDQQiUQwMjKCRqMh7zGWOuH6JtCjLPNF2csF4L74aTNwttlmm222Pc8oO3z06JHspFISRCllpVLB4uIiHj58CL/fj1dffRXtdhs3btzA2NgYLl68iLt37wqzBQBLS0uSDY873qwbR3YNgCTNWFhYkLiw8fFxlMtljI+PS/zdxMQEdnZ2cO7cOdTrdXz66aeSyOPq1auYnp6G1+sVRwuAOLB0bpg1M5/PDwENAEPOn/5bm/7MlOHRCWWiAJoGhgSXbBd3wrVcUgMxXpf35j/9mems6rZpcKgz02nwpq+7sbGBH//4x/iDP/gDvPvuu6hUKlhbWxNAT+O5um/1eh3lchnBYBDRaFScYUrSvF6vJGBhG3UfCFQADLGDJiujAZKVXE/Phb7PSfY8EGn102TNrK6h26uB9vOYRI6nBi6UDU9PT2NxcRF+v1/mzmTx+v0+Go2GxFKSjcnn8yJzGx8fR7fbxeHhodTMu3v3LhKJhNTwoyOvywdYtV2zcmZfdAFtc45M+SKPsfrc6m+Oi5k043kJa/SzyT7p55EZbdlmxnuRmSLbzPvqch7MJksGizF0nU4HPp9PEixRjkmZIjeUyMJz7E3QpOtfMpsomTnWsyN7GAgEJDsmy2dQ7szxIpB2u90CMJl5lWAzHA4jEonIs6tBMuWalJIy46bNwP012VMGzjbbbLPNNttOttXVVWxvb4uDUKvVEAgEkEgksLOzIw7KnTt3cPr0aczPz2N9fR3ZbBbnz59HMpnE3bt3ARynsqbDeXR0hHg8LrFe0WhU4kD8fj9yuRwqlQp8Ph/Onj0rNYpCoRAcDgfGxsawsbGB0dFROBwOHB4eYnV1FUdHR9ja2sLy8jL29vZQq9Xw+uuvI5/PD4E3Oot0DrljTGkjTTsephNCYEEwoWtdmTIwXTaAu/l09Fj3iYlHtJNtAkeCI5NlM0sGaGeYEjH+zjZpsERnS0sYeZz+/erVq1hcXMTrr7+Od999F51OB+vr6ycCWt13Jkmo1WoIhUJD2SqZZMNkG2nczSf4bbfbQ3WvTMBi2vMYOfM4KybseSyP1T2tgJzV9U/6ndcwf3c4HLJu4vE45ubmMDU1NcSq8jh+RgBNhpM1wSjtC4VCiMVi8Pv9+PTTT+FyuVAqlbC+vo6FhQUpwt5qteR51+wZgCFZrxULarWRoI3fm+NjBfJOGiOaBm/m86OZPv2c6LhSHW8GABMTE8Ka8xoEptVqVZLz8P3lcrlkrfM6BGU8j9ly+a4gUKI8nGubLCfl1mT4qtUqBoOBJE5hAXFd05IbWHxnBAIBYfpZooXsnn4HMqESk5UQhKXTaSl6TxBJuTTvyzZyLP1+/zM1Dr9ue7kAHIZ3LmyzzTbbbLPNylgwm/XUJicn4XA4hAmrVqvo9Xr45je/iW63i08//RSBQABvvvkmms0mrl+/LsWxx8fH4XQ6kclkEIlEsLOzI2n7i8UiwuEwOp0OHjx4gMFggLGxMSwuLmJ3dxfRaFTAz8jICHZ3d7G0tITDw0MEAgG8+uqrePjwIXZ3dxEOh3H37l2Ew2EsLS3h8ePHQ1Kmk5znc+fOIRqNIpvNisOnU9vTNGijk0wHCHi2TpUZ96MdJcaIUBpVKpVQqVTkM91GM8W+dtjNulE8TrNt/J0MDdkA7fjxODqWup/MdvfHf/zHiEQiWF5exne+8x00Gg3s7u4+w0Cyz3QoAYj8jhlGWXaADI95PvvJ7IhkM5gBkE6yKa80Ad1JLJq+l5XM73n2PKBo9bmV7O+k+2mGjkZHPRKJIBKJYGpqSpgQrh+uN85zvV5HOp1GLpdDuVwWZomsWzweRzwex+LiIv70T/8UsVgMp0+fRjqdRqVSQTabhcfjQT6fF/ZJs2LmM6BZLC1D5JoigHmeLNJqbsxnzGTlvgxwa5ZTb7SQfSabptk7trfT6UgMJyWGWrpIhkzXPuPGBSWH1WpVNiF0eQ0mKfF6vQJ+isWiZJtkv7V8lfcmMxaNRgVA6+eaYJv3Y7KUfr+PSqUiY82NG25ecUyoAuCcMwEKVRkcU57PZEvA8XPORC681ouylwrAUUNp4zfbbLPNNtueZ4FAQNig+fl5FItFKSDL7HZvvfUWdnd38ejRI6ysrGBxcREbGxsolUqIRCLodrtYWlpCLpeDx+PB2NgY9vf3kUwmpebR+Pg4ms0m9vb20O/3MTMzA5/Ph62tLcTjcSkmTsnX7Ows7t27hzNnzsDj8eD69esS63F0dITl5WW4XC48ePAA/X4f4+Pj2NjYGIoRY+ZHOheUZfJzbSajpneZtdQSeAr6TLklHVA6QxrY9ft9iRcjwLNKLkKnU4MiOsnaITONn+trEciZkkTtnNFh5rj1ej2USiX8n//n/4l/8S/+BUZHR/Gtb30LP/nJT5BOp09M/ME2eTwejI6OYjA4LiHRbDZRKBQk+YFOCKFZHCZ8YEkFXfdKt9P83QogWUlQrc79ss+tQIKVtM+KiWLfngfceC2CC4LdUCiEsbExKU6vk+YQIDUaDWQyGRweHiKfz4vMDoAAFofjOPnPwsICfv7zn8vzWiwWRXJHtjiTyQiAMLM2mmCU92DbdV/1GJljYq45/WxZMXJ6g+LLWFJt+hnkc6TXhN/vR7ValXdENpvF/Pz8UMZaJhrRyUTIMrvdbpFDElhxbpjERIMajqvT6US5XB5iz3gPAkvel+NIuTXlxUy8QgDP+FpKMDUQ45izjhuzTVISSgZNKxdYX67VagkjycLmBJYA5L1OYBgKhb7S3PxN2EsF4L7aErfNNttss+3/340FuuPxOPb29jA6Oips3PT0NKampvDgwQPkcjmcPn0akUgEV65ckXpwAHD69GlsbGxgYmICjUYDe3t7Upi71+thZWUFe3t7ePLkCVwuF06fPi2OyvT0NJxOJ2ZmZnD37l1MTEwAAG7cuIELFy5gf39fgCGz6C0vLyOfzyObzcrucaFQGOrXYDCQlN0Ea8FgUHbRdXINYFguCQxLEAGIU6uZLlNWqJ1ySibp6DYaDQEndHR10hMr+aZ2ZNl/7nhbnaOLNOvYNzqYGjTqvvBaGlDu7u7iD//wD/H9738fCwsL+O3f/m38xV/8BY6Ojob6q40Z9pLJpCSfoSOrGR2yFPV6/RlJJZ11XdyY33EeyEjpz/W8nwSu9D308WZ/dDv032ZbrMCZ+Z0V+KGRwYnFYsJcBoNBKevBOdMMF4FbOp1GNpsdAgkcY66V2dlZnD17Fj//+c+RyWQAANlsFkdHR/D7/RInFQ6HUS6Xh8pU8L663Zp5NplfmsmaaSClx0mDRJOJNtlUq7ngvaykvToFPs8ZDI6L3OtYSwIoynWnp6cFqIRCIRQKBRQKBcRiMQFmBG98psiwRSIReeew4LUGs2SYyS7zmeC7SW/gaIDPeDr+reWt7Kt5LwJQXsvr9SIQCEj8HcEb41T7/b5clyCNbD9j+wjs2AZuEPX7fVEavCh7uQCcvGRecENss80222z7W23nzp1DrVbD4eEhEomEZAlk0oQ7d+6gWq3iwoUL6HQ6ODw8xFtvvYVMJiNOInewC4UCstkspqenUSwW4XQ6MTY2hrW1NRwcHMDtdiOVSkmMFLO9VatVPHjwAKurq9ja2kKj0cDc3ByuXbuG0dFRTE5OYmtrC9FoFBMTEzg8PEShUEA8Hke1WpW6buFwGKVSSfqmnUYG+/t8vqF04aaDav5uOprAU0bMBHgEQmSSCAqZHZDp3YGnsTF0LnmcZqT0dbVk06qtJrumWRHNljDuTp+jpZraHj9+jP/4H/8jvv/972Nubg7f/va38bOf/QwHBwcyDtoIvI6OjkRyValUJEGCy+VCOBxGMpnE4eHhMywlAaq+nv7J8XC73ajX60NOq8lqWYGrL7PnsXwmwNB/m6DQlEaabSCA8fl8CIVCUhQ9FAohGo0+U0ePEjZmgM1msyKj45ho4BSJRJBKpRCPx/HRRx+hUCgMFX7nOup2u6hUKgAg8W+sWajbq8eZGw9m7BmdfbJU/ExvhGhQQvmlOTdWjJsV+3bSpgfbSJabDJE5t3ym9KYHYzSZDIkAi6BGF7pmHCsASShSq9Xk2Sfw4vkEQOVyWdpCGSLHhNfl3PMdwveGZmoJ5nktyuB1+YhOpyNrigwf3wVk8MgGEvBy06Ber8sGjMmSkhFmW1gG4UXZywXgvvhplxGwzTbbbLPteVYqlZDJZBAOh7G/v494PI6lpSW0223cv38f0WgUp0+fRjabRSgUwrvvvoujoyPMzs4KuzM5OYnNzU0pzr2zs4NkMgmfz4e1tTVh8xj34fP50Gw2MTIygrW1NYyPj2NlZQUPHz7E5OQkBoMBHjx4gIWFBfT7fayvr+PSpUtwOp148OCBxKkcHR2hXq8jGAwiFoshFApJLI9mophau1gsIhAIyD+fzyeOlQlkCNKAYWf+pCyVGljphCU6/kwDEn0vDTRNZ5UOtwaE7Jc2Dch0+/S1yAJo4MZjTeDHtty/fx//7t/9O/z+7/8+FhcX4Xa78ZOf/AQHBwfPAChei5nvgKe1qchUxGIx1Ov1ocyWqVQKbrdb0rtrVlLL6AA8kzzCNCvH3wRXVmDVauzNebcCcfxOH2+CDf5Nlo0sDuWSyWQSo6OjQwwMwVar1cLR0RFyuRzS6bSwJ7pvZH44bq1WC9VqFevr60O1wjTIZUxWt9vF9vY2AEgiDa/XO7TZoM815cQEdOynlnJasaEEIjquUf/ULJKVWYE6Eyia8am8l24/2STeWz8vlGpzk4l9ogSyWq0K+CGLRUkmAJEAMzkMx6BSqUisLseafRkZGZEsko1GA91uF6FQSDZB/H6/gDotoSTY5hxUq1Vh98iiEoh1u12JMeUzyvlgu/R7ihtPmj0HINkwg8GgyCtfpL1cAM6OgbPNNttss+0rWK1Wg9PpRLFYxLlz57CwsIDHjx8jnU5jeXkZs7Oz2NzcxKlTp5BMJpHNZjE7O4t+v49yuYxWq4Xd3V00m02EQiHUajUsLCzA4/Hg/v37aLVaWFpawv7+PkKhkMh7WO/t1KlT6PePU9iTzXvy5AlisZgwDW+88Qaq1arEywHA5uYmXC4X4vE4gsEg9vf3pZ4cjTvbdND29vYktXcwGBT5kunA0TRIIHjSf+u4OTIKdFK5a68TFZjMGO/Ne2lwoB1PAFLol4kWTNNt1QBIx79ptoEOsGbjdHtog8EA6+vr+A//4T/gvffew7lz5/Dee+/hk08+webmpvRNX5OOn5lpk/PGRAqMt3rllVews7MjQJvgheOoz9djZ5oGA+ZcWv1tmtXx+lpWgMPqOP7U8U3M/MffuYHAfyz4DByzxeVyGZlMBvl8HqVS6ZlNAM65Bu10tOn4EzSTfdZSN9ZMHBsbE7mcy+WSrIImw2sCHdMILk4aKw2ieDzbbI69FeNmdT+y1mabOC5cT5RK60yx3NjpdruyHp1O5xD4YYxZOByGy+USKSHHXM8JN2zcbjd8Pt9Q0g+ydkwwopOVNJtNBAIB2fBgXTU+u263G+FweKj+HM+j6cQsPM/v9wtIZMZLZsMFMJQQh+8sXoNyUcpLyRJqWWYwGJQNALbhRdnLCeBebDNss80222z7O2BerxeXL1+G0+nEnTt3EAgE8O1vfxu1Wg3pdBqrq6uSlvrUqVOyk5zP5+FyuZBIJBAIBJDJZBCLxYZKBExMTGBra0vAHZ2mdDqNxcVFFItFkfp8/vnn6HQ6SCQSqNfrmJqawsTEBB48eIB2u43FxUWUSiVsb2/D6/VKUeO9vT0Eg0FMTEwgn88DGGaE6Ozlcjm43W5JFkGnQzuLGpiZoMg8ltfXRqeLO+Ver/eZotkaMJngTn+vJZH1el0y3mmmRpt2KgFIPI/JtGl2ywRHuo0aGBwcHODP/uzPcPfuXXzzm9/Et7/9bVy7dk1AujneBG8cM7ZXAwsCnEqlgoODA/R6PaRSKfh8PhwcHAio0KycbievSUf9JFCgwbUGF+Y/3VZt5vowTTM7ZNi8Xq/EWzI7IeMxdVymrhtYq9VQLBYlvk1L5KzYUXMcHA6HrD2yRnTozdpuXJftdhu5XE6yfpKRsWJ5zbXGfus1pWM32W4r9k4Dfr2ZcBLzZmVm3JeO0eNnBFf8W0uYeW9KEimL7Pf7woY5HA4BeJqJY9wY2XZei+84/iN4GwwGMgd6fHRGzEajgUqlgl6vJyCK7y4C0WazOVSDTcuj2U/KyQne+R7g9aiA4Pozf/I+vV4P4XB4SM5J5pFjyeRE/zXz9tdtLxeAs8sI2GabbbbZ9hUslUphaWkJBwcHqFarOHXqFM6dO4dMJgO/349Tp05JzaBer4dMJgOPx4NSqYRoNIpms4lsNov19XWMjY2hUCig2WzC5XIhEAjgypUrSCQSUosql8vB6Tyuq7S2toZUKoVut4sbN26IM3t4eIhXXnlFAKXL5ZK6b5ubmwiHw1hcXES/38fm5ibi8TjOnTuH27dvDzFiZmwX431YWJo156yAiwniuENvZToZCZ0mp9Mp46avB0B293Uxbd5DJyTQWSUpO9PnUT5F02DECvTo+1gBFyvTLAcLexeLRVy8eBEXLlxAMBjE9evXBWxwzNhvzSSaoJNt/NGPfiQp3n0+H1KpFLa2tuT+WuJ60viHw+EhFsCUoWrAoD8n82Dl2JvXsZISOp1OiU1iLBEBGkERQR0dX/4k+Gy328hms9jd3UWxWByKb+Nc6vZrAGpKIwmSyUAR1DPjpF4LmuVkfBelf3rDwVxjejz0GJmsG48x2UpzHq2YTKv7mfJJM+mQCY40wDMzUer5I2PMxC46Nqzf76NYLMo9/X7/UPsoESbQ6/V6UlIgFouhVCqh1WohEAg8I9/kmuDvXIccfy3zpLSSUkcdm1sqleT+yWRS2sGxIBOnyw0MBse16ggGdd06brIkk0kAEMkzwSTBHzOZmozg120vF4CzGTjbbLPNNtu+gs3Pz+P+/fuIx+N466234HQ6sb6+jtOnTyOVSolzUCqV0Gw2MT09jXw+j6mpKezu7iKTyeCzzz6D2+1GLpfD3NwcZmdnUavV8PjxY4yNjWFqagrBYBAHBwfieDabTcTjcUlmMTExgWw2i0AggNdeew1HR0dSR25iYgLXr19HLpfD7OwsFhcX0el0UCgUkEgkEAwGcfPmTdy+fVvScwNPg+01+1MoFCSRiXbGdGybKRcz5YUmGDEzU/JzZnPj8To+SDugGjTqvzWo0Dv1GiTRydTttGLdTNaP1zLlk1bsk5aG1ut1ZDIZfPjhh9je3sbrr7+Ob37zm7h+/brEHwIYKgOgQawGHszGRyao3W7j1q1b4jxrhs2MPdTjrTMHkjXRKeG1sR/mPBMYm2ypCdT4TzMjjCvi70wZr2MW2Q89lqwvtre3h0wmI06wFTtoJTHk/ZgNkP3WGwD8nYyMbjuzuJI54jieBOa5kWCuO36n+2euIf38aACmx9kKoFv1W7O9PJf95Xhr6bK5rrWsmDFigUAA9Xodbrdbau+RceKGFLMvMh6NSUEob9bSylarJYlAuNY51kyUwrVHGSXBI/ukGT3NunP++E7j2HMMvV4visUiACAUCgmj1mw2h4Ai49sI8NjuXq+HZDIprB4/Gx0dRafTkbhhbiAxDvlF2UsF4Gg2AWebbbbZZtvz7O7duxgfH8err76KWq0miUwGgwHW1tbw4MEDTExMwO/3izPSarWwvb2NfD4vcsZms4mlpSU0m03cv38fXq8Xo6OjmJqakmLDsVgMzWZTYkry+TxGR0fh8XiQzWaxtLSEsbExrK+vo1QqYXR0FMViET/72c+k1lwgEMBnn30Gh8OBlZUV+P1+XLt2TXbQKevUjo4GVbVaDfF4/JnsbBr0aIeQf2vTDrU+R39PYEGHGXjKvGlZHCVu+m9gOMU/jYzJSUygFUjT7eHv5mf6c/NvkwHRGee2traQy+WwurqKlZUV3L9/X4AmnV2Oo04+4nAcJzMhkNcghwwAwS7ZTQJCOrKa/RkMjmvOMc6HzjGZMa4Hnc5ez4sGh3TANXDQ52sGzfyd7JVmwziHHJd2u41qtYpGo4FyuTwEnDSoNJkuDV50W/T61qBErzGXy4VYLCYsDZk4tkGDU4IfnbreXBd8PnisPkY/a/ocvXFhAjqTlfsqYE5f14zXI6vG7zwezzPyTHMDhdfg2JBpYkISXpNMFKWqOo2/7qdONjMYHMszmfmWa5kSSAJvgikAspHAueC6JUtaLpeHkodQGt7r9URGzthKgkT2wYx9Y1kP9oFtYLwfJe5kizlv7HsymXyu3PZv2l4qAPd0kdsIzjbbbLPNtpNtbm4O4XAYP/rRj9Dv9/HKK6/A6/Xi7t27qNfrePz4McbHx7G/v4+dnR04nU5Uq1XZVa7VaigUCvB4PPj888+xsLCAd999F7u7uwCAo6MjOJ1ORKNR1Go1zMzMoNPpIJ/PIx6Pw+E4Th+/srICt9uNzc1NAMCZM2ckPm5xcRGRSAT5fB67u7sYGxvDxMQEDg4OcHBwgEgkgkqlIiUE6Jww3iMUCsm1isUiRkdHEQgEEI/Hh+JitEP3vJgOU1ZnxVzxO12Ulw6emelNgwZTMmflyGqHU6f5Npk0zQxqQGayYfycfTOPNfuuHcdyuYwbN24gEolIsgN9rs/nQ7/fl8x9rVYLf/AHf4BAIIAf/vCHQ2CA8UI6y6RmhMj6aMZBj4kucqxjejTw4byYPzlXZBbIltDZ5k+OOeeVtcUIFPg911S9XpeMf61WSxgWMj50zk2QYwJUvaYovWMsE9ui1w3XpdvtxszMDKLRKKLRKPx+vzj6g8EAOzs7Usy50WhIcguOH0GaXrtsl/6nY930WjmJzTvpO65bK5DH/ptgSc8lnw3OJeWHZjIdndyE402wz6Qvg8FACmXzPeVwOFCv1wUMs3Yf55b30RJZvclD1krLpzXgJEDk8RoYMQkNWWsytsxmOhgcx9ExiQmlnFwzBIy8F2P7CNIcDgcCgQAajYZIQ51OJxKJBHw+n4y53+8fknmOjIwMlW/5uu3lAnBf/LQZONtss802255n7XYba2tr8p/2jRs3EA6H0Ww20el0UKvV8OTJE5EfHh0dSSbHfD6PcrkMh8OBRqOBCxcu4MyZM9ja2kK9Xkej0cD4+Ljs+l68eBGPHz+WGm6U9Jw6dQq1Wg0PHz5EJBKBx+PB9vY2Op2OxHRks1lUq1XMz89jZWUFd+/eRTabRSqVQjqdRqPRgN/vR6FQGHK0C4WCOBvFYhE7OztYXV2V7HI+nw+tVmsoXs6MfdNOtCnp0iBHgxHgadr4drstiRK4g62dbSuHlY6VZgPZRjqkbI8Z62YFAE/6/r/GdN91oV+ONZkyfT86gXSER0ZGsL6+LoXYdRwfd/g1OwJAgJLOrslxOGmOOHZWzr7VORr06390gPX1NFgggNbfW8lieQ5rIUajUayvr0t7zQ0DDXA0oNQJUvr940yw7A//8Tyfz4fJyUkkEgmp8UbpnM/nk+fO6XSKDNCK4T0JlOn1S7BhJaPkdfV3VtJIK+bNBN0nmcmEawDLxD9kmtherk2yUGSEKX0OBAJDBbq5vpmpkowv203GnWMCQFL3s3i4ydYRaPJ++hxuHOii9lxTLpcLkUhk6JnQMXTtdnsItJF51QCT/wgmg8GgnMcNiUAgIO8wPuM+n09+VioVVCoVy42mr8teLgBnx8DZZpttttn2FazT6Yi0kYV9Dw4OkEwm4XAcZ1Hc399HpVJBoVCQeKW9vT1xLGKxGM6dO4dEIoHt7W3Mzs6iVCqJczMYHAfMX716FV6vF9FoFOVyGVNTUwiFQjg6OkKxWEQ8HkelUhHHfmxsDM1mUwoRnz59GpFIBFeuXEGj0UA4HMb29jZCoRAmJycl7oOAiI4v29npdLCxsYFutwufz4dYLIZoNPpM+QG/3y8Om3Y4TSZNsw/As+nP6Vz5fD74/f4hxoZOF504skemI2QCMAAIh8MAIG2kY2wFHMzPngfanse8AcPxcASjbA9rZpntp0OrZXq7u7vodrsIh8NDiTQ0+2BKAXk/LV3l2GmgasoXgWEJ4kmyPc34mSyTFeDQ42M1VvoYZiMk4CwWi5IYw4zT498s8jwzM4OzZ8+i2WwKy8xEQizjoOeW7WVtRADCGNGRZ+0yt9uNs2fPYmRkBJ9++qnUHtMyX82+mUBMj6E5liZg1gk0NLunx1YzqCYzrMf1eRsqpgxax44SjDN2TW82uFwuNBoNqZvHLJDcnOL7hCCuVqsJONSZdAmICPR0MhvGoRFMcf3y2WDbCdoI+sjQM1FQu90e+o6xqWSR2W4mr+H9yQRrSTeBLNvO92W/30ckEkEkEhEpJc8hyNPssV1G4K/JnmahfMENsc0222yz7W+18T//y5cv4+joCFtbW0MOAX9ms1mUy2X5j5rO9NTUFFZXVyVF/8TEBDY2NpBIJLCysoInT54gk8ng1q1bGB0dRTgcRqPRwKlTp+B0OoU9A47lloPBAOFwGMlkEsViUQLmZ2Zm0O128fHHHwtgePz4MaLRKOLxOPx+P4rF4hBIcTiOaxcRXADHdchYE4vZMU15HTO90UwWQDuNZhyZvpZmQhjkzzaR9WMciRlDp01LJgGIZJXH6aQMpjSS19Mg1Mop1u19HsgzASslZIzvsRoTK4ChE5VQNkmHm4yAdsh5b91WDbCt5oDt4XEnyfnMMTLH5XnnmPc3+0/JGfvKPrGPOvMjk+tEo1GEQiGEQiGMjo6i1+vh29/+NqLRKP7wD/8QwWAQ9+/fP5H1CAaDcLlcqFQqcn2CbX0OwVilUpH6jzqboE4Ewn6aANuUMZqAl2BOg3E9dvpvK5bNPM/qc/NaGmBqdpTgkeuP4IlySYfjuL5ZvV5Hq9VCOByWDZdarQa/3y/3IVtFMEbgz3vqtUeGU8smzbYPBsfyRz4Her1o6SMzhgJPEwUx0QnBHdcTE+owS+RgMJBSJHr8KIlk23SyHm2BQEDWLv9f4HuIbXoR9nIBOGHgbARnm2222WbbyebxeDAxMYF79+5hYmICb7/9Np48eYJbt26hWq1KHEWr1UKtVkMikZAMjvPz85iamsLe3p7UHtrZ2cGFCxfg9/vx6aefDknt6NysrKygUCjg4OBAdqgZ5O/1ehEMBpHL5VCtVpFKpRAIBHB0dIRqtYqzZ89ie3sbW1tbCIfD8Pv9aLfbWF9fx8HBgQAiLT1qtVoCPLe3t9FoNEQGmkwmhwL6TXCm2RuadrpMqZjJ8IyOjqJer0uMCFlOHbOk76+dfCsmA4DswGvpGu9rxcKxzbq9VgzHSX3Rf2uGhKnSmeBAA11zbMz+0InW8Uo66x13961YSTqiBH6mbE/PDx1p3RbtvFqN71cBbuYYWYHmkZERhMNhBINBRCIRkaXF43FJGAQAiUQCiUQCbrdbMhfmcjkUi0Vsbm5icnISt2/fxu3bt/H9738fKysr+Nf/+l9LgW/ONcspkFWhBLrdbmNmZkbWS7/flxgngg/NRtP512vRlKOSPdLjDWAIJGkQbQI5/f1JbBvtq8yRvp5mosy5CYfDKBaLMhbcNCAw6nQ6kmSpUqkgGAwKI1sul+H1egXQsQC3y+WSGDT93Hm9XlSrVdkQ4ntJlwGhDFPXO2Q5DcoyGT9J+TWfeT4XGpQCT5l/j8cj7KHD4ZAEP+12WzJu6hIxZAwZ88YkLlQs6OQmvC8Aycr5ouzlAnBf/LQZONtss802255nrVYLzWYTly5dQjAYRDabFfDE3dZCoSCFud1uN4LBIJaXl6UGHLNQ7u/v49y5czg8PEQ6ncZrr72GZrOJx48fo91uIxgMYmlpCffu3UOpVEIymRSH3ev1IhKJSKyay+XC/Py8yB69Xi/i8bgweqlUCl6vF/l8Hvv7++j3+4jFYshms+h0OkPyqFqtJokGWq0Wbt++jcuXL8Pn8yGRSEgMimlmin4rtkWDLx3DQyeKu+PcAaczyF110+mjmaCRnwHHDq1OnmF1DZO9Ms2MY+JnXwZeNLsYDocRi8WG4oCsjuc1NWNjAgMtfaQDrsswaNZCZ8yzAk56/DSIO6nPJ/Xzy46xAsN6fCKRiDDEs7OzaLfb+LVf+zUsLy+j0Whgc3MT+XxenPFKpYK9vT30+33ZnGASlE8//RTVahXJZBLLy8v4R//oH2Fra2soSRBlf5TA6Z+dTgdjY2MYHR0VNk5nRS2Xy0gkEgJurCRxGoSR5dGbHgSR5hhpcMHPrKSyJsA3gbY51yeZuQmjr8vnkO1PpVJS/oKZGrn+PB6PxBiOjIyg0Wig0WjIBkq/35cSEnyHVatVtNttqY+mn0n+JDjm5lav10OlUoHTeVwf0+/3w+PxSJkJ4GksKeNqmaXS5/Oh0+kI2wY8rfPGe1JKDkDeG0yI0mq1huSelGcTOJKJMzeTOH7cvDHr432d9nIBODJwNoCzzTbbbLPtORaNRtFut5HP53H79m1cu3YNlUpF6ksxScnk5KT8R72wsCAxa+VyWWIlSqUSHj16hEgkgm984xtYW1vD9vY2er0epqamMDs7izt37qDf72NycnIotoQAiw5WNBpFsVhEq9XC6Ogoms0m1tfX0ev1sLy8DI/Hg9u3b0sNJ5fLhd3dXWSzWYn9ITggS0PH56OPPsJbb70Fv9+PiYmJoaQg+jxTjql/0nTMjQlgut2ulDVgggK9A6/Pp/NPgGcFwAhc2Ccep2V5+jwT+JwEdrR9GYijA8+C28FgUBxS3R8TAOkdejr6Jmg178GxZkp2lgegc6nvqYs4nwTiTAD3vL6exPBokHYSEwccy82i0ajELhUKBcRiMZw/fx4XLlyQjJ16/pj19f79+zg8PMTa2hqy2Syy2aycz9jS1157DRcvXoTP58PExARKpRJ2dnbQbDbhcDgQCoXg9/tRq9XQ7x8nO2k2mygWi5KRkqCKn09PT8tz32w2ZRNE1+TTc8K+m3Onx4d91ABAA2rNsFpJMM1xt5L5mpsEGthrGTOTeABPZbVkcnO5nLClBFfNZhN+vx+dTkfS8dfr9aGEMCMjIwiFQkMp+7lRY6bWZ9sYi+hwPC3gzWeKAK5arQrrRrkivyd7T2Cly1fwGdGSST6flKoTwPG+TqdTEqKQmeO12WazNAvZZY7xSYXfvw57qQAcOThbQmmbbbbZZtvzrNPpYHd3F/fu3UMmk4HL5cLU1BQymQxqtRrm5uYkmQgZMqfTiYWFBRwdHYmUqtVqIRqN4uDgAOVyGR9++CGKxSJSqRTOnz8Pv9+PW7duieOfzWYxGAzg9/ufSZzAAuJk5XK5HHZ3dzEyMoLTp08jn8/jwYMH6Ha7mJ2dRa/Xw87OjrSNMkodZ6V3zff391GtViVmz+fzoVariXNFJ0UDDcDaYdcOKk078wRWzCzHnXSdal4fa8W8AU+ZCv4OPHWETQmlyUydxFyYx3wVQDMYHCcsiMfjkjGULALXgnbYrfqiE5uc1CYeQ2c1kUjgzTffxP3797GxsfFMrN/z+mo6+ycBsK/KtJlmgnCyFpFIRDK3FotFjI2N4fbt24jFYhgfHxfHn+N3eHiIJ0+e4M6dO3j8+DH29/dRLpclOU+/38fVq1dx9uxZ/PKXv0Sr1cL8/DwmJyfhcDikFh6T2wQCAcRiMQFx3W4XpVJJrsn4JUpWq9UqTp8+jcPDQ2GIzayKOi6KDBTH8KQxsgJg5rOlr2F+/mVmAj49XwSFTJBCGSEBzuPHj9HtdiUpSLFYFDaLLByz2zqdToRCIanl5/f75T0Vj8exv78/xGryfaLfD5RF9npPi3kT0JHN6/V6Mh9k2cjOscQBGcFYLCYSd75f+F5liQkAEvvGbJutVguhUEjq3OlxbDabErPLpC79fh/RaFTi7qLRqDC8BK8vyl4qAGczcLbZZptttn0Vu3btGgqFAiKRCCYnJ1EqlbC7u4tEIoFXX31VpIGpVAr1eh2zs7NoNBrY3d1Fu92Gz+dDJBJBOp3G9vY2Tp8+jXK5jIODA8zMzOCdd97Bo0ePcOXKFUxNTUkCBrfbjfHxccRiMWQyGdk99nq9KBQKAlgKhQJKpRKi0SjGxsawv7+Pvb09yVLZ7XaRTqdlRzoWi4mDxCxrBB0AJBvb2toazp49i1gshmQyiVwu90zCBp3BErBmtMw4FBOEaYaFzpCZddIEiKaUjOebTpKOo7OKezPteSDHimG0OobOWzweRywWw/T0tMQnakbFZNw4JjpZAvBsengNnnl8LBbDd77zHfj9fly/fv2Z3X6T4bFqO9vA+bU61gSz7LPJWp4EVvgd06w/efJEZHSMs/rBD36AjY0NLC8vY25uTtjitbU1XL16FY8fP5Z4SW6iAMeZXhOJBHZ3d/Fv/s2/QaPREJlpJpPB8vIy3n33XVy9ehUbGxtDEjiCEDJETE5EZofjwiQa586dw+effy6OvTmnWvpqPjPmGOk55brnNXX9xZPmzZRO6r/1WuGmCICh8hIm89fr9WTzhkwb48DYH85ZMBgUCS/LnpTLZVnrbFM6nYbH48Hs7Czy+TwymYwAKd1u/tTvJQ2gyPBpAMsMtnqTJhgMSh8ADEle+d7ju4Ljnk6n4XQ6pYwA6xBqmTjXba/Xk/ISrAvH42q1msQKEuTyvfai7OUCcC+6AbbZZptttv2dsHq9jpWVFdllDoVCeP3112WnOZVKiUyHDBt3dkOhEObm5rC+vo5KpYL5+Xns7u6i2WziwoULmJubw0cffYRcLodLly6hVqtha2sLHo8Hly5dQqFQwObmJlwuF0ZHR1GpVFAulzE2NgaXyyXyy5mZGYRCIayvr6NQKGBubg7RaBTpdBrpdFociFAoJDWfyHixplG1WpUYoWq1iidPnmB1dVVqZa2vrw9JhLgzbppVVjwmaeHOPh1AFv41pVT8+3kxY/oe2mHWZrZPA8GTwIV2KDWwOoldMs3v90v2TjrAZqyZbqseT/bdjEnTf5sgMxwO49SpUzg4OMCDBw+wvb09dK5p5hiZbMxJIE0fazVeZrusvgOOneBoNCqxaxpktNtt7O/vI5fL4erVq/JsUSbn8/lQKpXgcDiwu7srssZEIoHp6Wk0m02USiUBK2SW0+k0+v0+5ufn8Y1vfAOJRAJ3794VBofrhMliNLDRiWKcTidu3ryJ3/iN38Cbb76JGzduABhO/a/n66RxMY8z5ZA03p9t4fcmM63lr3rzg8ygXke8p1XNOXPOyDL6/X4BKZQHDgaDoaQl/EkZI4GQw3FcZiCTyaBarQKAzHu/35fSGkwMU61WhXkjC8cSGsDTMhZk3ihTrFQqACCJbhhzRoBGFo79Y5vD4TDK5bIw//1+X8rGEOQzkybf85wDrhfei2PUbDYlyUqtVpNxe1H2cgE4eVhecENss80222z7W21nzpxBp9NBOp2WeBqyTvPz8ygWixKflslkEI1GAUDqud27d0/kdKVSCcFgEBcvXkSz2cS1a9eQSqXEGdzb20MsFsOFCxdw7949CfaPx+M4OjoCAExNTaFUKuHo6EikZtVqFbdv30an08GpU6fgcDiwt7eHw8ND+P1+iQuhk8I0/Yzz8Hq9IhkCjkHrxsYGms0mAoEAVlZW8NFHH52Ybt5kXaxi0/x+P4LBoMTYuN1uKRVgmmbVgGHAY/7UrJx5vm4PHVsrpkL/bf5OOwnE6c8pnYxGoxIrtbe3N+Rw0/nVbWe6djriGthq8Gcyj2RZ8/k81tfXxUE+qb3PA6Fa6mo6mycxR8+7vhWzQnZydHQUhUIB1WpV+gE8LfxNuSNjTavVKjweD6ampuDz+XD79m243W5cvnwZsVgM1WpVYim9Xi+SySTcbjeePHmCkZERSeZTqVTkWUilUpI8h4y0rqOnx0SDb5fLhY8++gjf+c53cPHiRdy7dw/A05IDmnFmn8iUmoBJx0NaMXRko6xMH2PGN54E3oHhODq2U88b+8F26SyNPE9nsuW5zM4JQGLEarWanMf5djqdktxHKwPY7lAoNBRT5/P5ZAyYObTf7yMej8vcsk4lGTJdcFuz7hwXnqeTsDCbZjAYHJJ1ko0DMATi9DuJGTkjkQiApzXyMpmMjLldRuCvySQLpR0DZ5ttttlm23NsZGQEpVIJY2NjImeMx+NwOBzIZDLw+XzI5XIYDI7TUlPu2Gw2cXh4iMuXLwMA7t69i5mZGXg8HmxtbaHVauH8+fPodDr42c9+hnq9jtHRUQQCAVy5cgUul0sklLlcDoFAAOPj4yiXyzg6OsLo6CgSiQQODw+Rz+cxOjqKaDSKfr+PR48eIZ1OSwINv98Pr9eLXC6Hvb095HI5kUXpuBA6PG63GxsbGwJO5+fnxSmiM0KHlg4VHSTtlAKQgssEMay7ROf0ebEhZkzbSdI8Osd0vDTjwM94X70Lb4I/83OTGTkJvPC7SCSCWCwm46gTrjgcx1kpR0dHxdFstVrCKDA2iPIsghvNRmoGxel0IhgMIpPJ4PDw8BmJplUfdHvNfpg/rZhUq7E3r6c/M5lOXrPVaglrxbZSyujxeBAIBFCpVOD1eoXJPnPmDJ48eYK7d+9ieXkZS0tLAvI0e9npdJBIJPD6669LxkqOW61WQzabFfaXnzNRB+O+NINogiuO749//GN8+9vfxuXLl/Hhhx8OgQX2k8c6/n/s/VmQJGeaHYodj33fIyP3zMqsylqBAgpd3VgaAzQGjWm1zUwbjRxRHKM0pGiiSDMaX/SgKz3IjLp8uCajTA98oIkyLnpp8Q45nJ6lZwaNaXQD6AZQKAAFVKH23LfY9311PWSfr/7w8siqnl6KxPXPrCwzIzzcf//dw+s7/znf+TRtrO2AEVyrxzJeNzUIvoysGu8RtVWFEYir8lz1WnNhg0Yf6rjJYLJPJAEUWSg+B8rlMvx+PxwOBxqNBoLB4BgI49jUhZl+v4+ZmRkUi8WxhQq1RQPdQQnqyZb6fD6pe+P3JBAIyCIVv+/qvc+5Yd8/Nhm32+3SiJuGLHxuuFwuDAYD9Ho9ebaS+Wu321KPR2AKHD3fKpUKisWiqA7U/nhPIr5cAM6qgbPCCiussOIxotfrYW1tDe12G/V6XWrY1CJ31WQklUohnU4jFothamoK29vbKBQKWF5exmAwQKFQgKZpeOaZZ3Dv3j3p9TY9PY2ZmRns7e0hmUwimUzC5XKhWCwiHo8DeNBkO5VKwel0IpvNYjAYYHZ2FpFIBOVyWRqNT01NodfrIRgMIhqNYjQaYXt7G5lMRiSeBAyUAjUaDQF9jUYDu7u7SKVSCIVCWFpaktojumJSAsX2A2owSQyFQiI1JePGWha1sa/RdAMwl1AaGb5JjJFRhklZk1k9illCrX7WjHE0bs9ax6WlJXS7XbTb7bFjzczM4Ktf/SqWl5dFXsm5dzqdsNlsqNfr2N3dxeeffy5SVxU4OhwOpFIp6Y/WaDSQzWaF6TCO33gtJkn1jGHGxB3HUE5i9syO0e/3kUwmsbS0hA8++ECSclWmSDClaZqw1x9++CGy2axIIDudjnyO9xD3cevWLWQyGalLUuvsQqEQ7HY7yuWygDi19s1MjmsEvDz/t956Cy+++CKWl5exv7//0Pyp4I9Or2RbeX+q19cIotVQZZLq30aGU2XWuJ0RHHJ8HBcNSjhPRiaR3xvOTbvdhtfrha7rKJfLshg0GAwQDAZFzhiJRFCv1zEcDtFut+U4vHahUGjM4IOukrTw5/3SbrcxHA4RDAYRCASEAWu1Wuh0OuKeqfaro5yzVquJGQ2fcQRtoVBI1BQ0P/F6vRiNHrQ/oNkNF378fj+azeaY2QlNeVgTPBwOEY1G4Xa7Bew+yfhyArgnOwwrrLDCCiv+G4+nnnoKwWAQd+7cwerqKvb29hCLxTAYDKReYzAYIBqNQtd1bG9vY2VlBU6nE7u7u3A6nXjppZdEljg9PY1wOCz1M6FQSFaSb9++jenpaSwuLiKdTqNcLmN6ehqj0ZEzpMvlQjKZRLVaFXlkLBYTOdLu7i5cLhcikQg8Ho8kbY1GA1evXkWhUIDNZpOCfhWgkA0Lh8PQNA29Xg+3bt3C+fPn4XK5sLi4iNu3b0uCRBc21Z2S0ioyG16vV1bjO52OyLHYYHqSmcgkuSJDBXwMY12Q8SdXz40OfpOSZpUtMb5v3JbmMMFgUOadPbM07ch85uzZs3jqqaekPx9riSjlotkBa7my2aywARwDJX9sKlwqlcTE43FljmZzbXbe6r6OY4YmXSszkMhr0Gq1sLy8jKWlJeTzeZHK+f1+uFwuNJtNrKysIBaLoVgsYnd3F4VCAadOnUIymRyTk3IRQGVc2GRZBXa8P9gigPJh1mqprPBxc6dKKkejET766COcOHECyWRSvl88d1VWqTJg6vyo+zPeYyrLBozf4yrA5mdVqSe3MTZyV/epAlX1HlM/73A4pF6RLQQIegme1HpWXdelJoyAjaycKmMcjUZSQxcIBMbaCtTrdbl2BFZ03KXJ0uHh4RjIYy2vKset1WoCmAGIVHY4HMLj8aBUKgkzT4BIcM2aOQI1HoNMN7+HlH/S9RKA1EeTjS+XyxYD98sKDQ8/kK2wwgorrLDCGNFoFJubm2i1Wrh58yYuXryI27dvi7GImnQ0m02cOXMG7XYbe3t7mJ2dhdvtxrVr1zAcDrG2tobBYIBPP/1UatNUl8Tl5WU4HA588cUXCAQCWF5eRqvVQrlcFkau0+mg1WohGAyOmZlUKhUBENPT0wCOkrSdnR2sr69LomSzHfU0KpVKwkoxWWEyRjZxc3MT5XIZMzMzWF1dhdvtRr1elx5YrPejyxsTVsr72GOJTAeZD7VHm5Ht4v4YKpAyA2nHOfSpLAeliZPkg0amwphUG9krdeyUTrrdbhweHgqLRPCgsmwqQ0J5FZsD07SB8jA16KjYbDZRq9XGash+kTCei/o32ZjjjvEoSaURBLdaLezs7GB+fh7nzp3D/v4+6vW6nIvdbkc8Hhf2JBgMYn9/H/Pz8wiHw8LukDVzOBxIJBJYXl7GnTt3ZIGBNVgEAf1+H61WC3t7e2g0GqjVarL4wLmmZBN44GBKgxMyprw3dF0XhmZrawsnTpwYG596/XjdaVBDYM65MdY3Gu9BjsfIDPI1dX7VOlXe/6pDo1GuScCiyic5NjLlfJ1sG7/rTqdTWo+waTk/5/F4UKlU0Ol0EA6HoetHRiPqmGnt3+124ff7oWlHNXetVkvep1SRQKrVaqFer4/1ruSCFJlCLoj5fD6RkFMKORqNpP+geo24AMc5ooMwn4eU9fIa8Lk5Go0eMl2hzJR9Qvv9vix4PYn4UgE4WAycFVZYYYUVjxFvv/22OEN+/etfx/b2NiKRiKzkx2IxFAoFlEolrK6u4saNGxgMBgK+1tfXEQwGsbCwgP39fezs7GB6ehorKyuSnORyOcRiMdRqNdRqNZw4cQLD4RAHBwfodDqIxWJih97v9xGPx+H3+9FqtXB4eIjR6MjS2263IxgMigwpl8uJZNNmO+rRFIlEsL6+LsX7gUBgLOGjvNJut6NSqWBrawvxeBwzMzOIRCLi2EaDFVqJs1cUk5jBYCBSo9FoJGwRk0EmxsZVebNQWQOVMTDKKdVE1ijF5Gtq3ZW6P66kq0Yn3JeaUBuTbJrM0LhAlW9yZb7f7+Pu3buIRCJYWlqSeko2MGdNXL/fR6lUwuHhoSSx6vF7vZ7cI6zbMZ672bwZx83XJgXvh8dhDSYBYqNkj9tRRnz79m1MTU3h5MmTuHjxIv7kT/4EOzs76HQ6CAaDGA6HSCaTuH//PoAHUlzWDhIAUwqcy+XkNTJybL5crVZFlklHS9ZzERg7nU6srq7itddew8HBAT744APZjrWKxvljf0SCuPn5eSQSCVQqlTGAQBBP+bA6X+p1MIJpwNzABxhvy8Ht1PdUYKdeC7Xek1JB9Vrzu0GWqdfrSb83ShFVZ07WnPFa0BCJBh40RuJ8UWJIBpCsOOtrKV3s9XoCwD0ejwBFsnNk+QjWuUBDCSTf51xw3MFgcMwVstFoSH0b7wcA0lOOf7N9gcrocQGB15ogjd/lWq0mcvNWq2X+Bfo1xJcKwImJiYXgrLDCCiusOCbS6TR0XcfFixdht9uxtraGarWKVCqFubk57O/v4969exgOh7h//z6CwSDW1tawubmJUqmElZUVuN1ubG5uIpPJ4NSpUzh//jx2d3fh9XqRyWQwNzeHfD4vxiZkV4bDIRYXF4WhsNvtYqBSKBRQq9WgaRp8Pp/Ii7jCvb+/j2KxKOYC5XIZxWIRh4eHqFQqAgiYyHIlvl6vI5FIIBgMIp/P4/bt2zh79iz8fj8WFxexu7s7lsRSBqiakXBlnMYCdL3kMVRmwIyJYHD74ySVxs8wVPCg/lNbC9jtdlmNZzJWqVQEVE6S0DHYjJp1OUzkVDMJnls6ncbbb7+Nubk5XLx4EadPn0YqlZKxNxoNHB4e4ubNm7h//75cE0otAUiTaYKGSWEmdzRjDo2fMZNHmv2u/m0Gaiftj6Ch3+/jxo0bsNlsuHLlCr7//e+jXC6j3W5jenpaHCKvXbuGXq+HeDwu9wHPmw6c7XYb7XZbjDhYs0RHQFrBk2EGIDJXvk8Wp1ar4b333kO5XEatVhMWzux8dV2XxQ6Cg8PDQ5HIqo6WKvtG2Z2xvlGdV1W6Cjx8j6v1bzT84HHUWkAAY8yaGZBX3U9VEEcQRYddyn4JqMhq8twIitR6teFwKPXBRvMg4wIOt6lWq2ONvB0OB3w+n6gE1O8WGVACJYI4gkACTF5bPvP4nOS9Uq1W5TnG+0PXdenjxoU23nd8Xqjso9frlfmx2+1Se0fG1XKh/CXFgy+MheCssMIKK6yYHJR0ffHFF1I7MTc3B+Coyff9+/fR6XRQqVTw9NNPIxQK4bPPPoPb7ca5c+dQq9Wwt7eHeDyOixcvYjQa4fr166jVapL837p1C7FYDGtra8Ka+f1+zM7O4uDgAPl8HpFIRBpz1+t11Ot1eDweqUejVKjb7WJ9fV2YDJfLhVgsBrfbjY2NDQyHQ8RiMbRaLXS7XbRaLUmQuAI+PT0Nt9uNdruNu3fvolAowOPxYGVlBR988IEkaaoBBeu4KFPiynij0ZDWAUbGyCh/VGVi6kq/+r5ZqAmuGStnBIJMZJ1OJ4LBILxeL/L5PKrV6kO1dep+jCwcGU01iWZCaibtrFQqKJfL2Nvbw87ODr72ta8hkUhgZ2cHzWZTGroXi0UAGAO6dLtrtVoP9bc7jl0zA21mDKPxd+O+jmPjjPtXf1fZT3UOgaPapUqlIhb0mqah3+9LL7jBYIDV1VVhrshyAke1bK+99hp++MMfyuIBgS7BRjgcFsMh1t7RWIaGEwTITP6r1aowygDE6MdsDgj6eT6DwQB3797FqVOnhJkCHljzG5u0GwGcyhKrYQbk1No6zo/xO0RnSQZ7EvJ3trpQQRHHxJouAiguFNE8xO/3o16vCxPP7zivRSQSERaPYLpUKgmLx++I0+mUelH1XiAzTXaahkw0RSEw4pjYf43B49CAhMdiw/HBYCDOupSy83gcA9lEPts4N/1+X+osyU5SgUDQ6PF45HmoPseeRPyNAZymaacB/M/KSysA/m8AIgD+DwDyP3v9/6rr+l/8TY/zc43pZz8tBs4KK6ywworj4t69e6jX62MNXTc2NuQ/8Hq9Dq/Xi6WlJdRqNezs7GBhYQGRSEQkkMlkEtFoFOl0GrVaDblcDpcuXQIArK+vIxKJYHl5GZubm2g0GlheXsZoNBImJpFI4OTJkyiVSshms1LPxpVfTdMk8aBMke+73W5kMhlcu3YNjUYDoVAItVoNnU5HTAj6/b5IjoAjNojyqtFohP39fcTjcczPzyMSiSCbzaJSqUgNIMEfJUdMeBqNxkPNklXmyAxwmBmMmIUKLJjETmJ9+LoKzsgEEYiScTEbh/F4rH+KRCJi7KCeF0EtmRaj9LNWq+HKlStSO0W30Z2dHWFH1XPvdrtimc/6QePYjmPLzMY/CdBxGyMLSXZnkpTU7BoSWByXvJK1AI7ujWw2i0wmAwC4fPmyABoCL9YLdjodvPvuuwJENE0Txtfn8yGZTKLT6UhNYaVSEaBGIMPkX3VB5LVkTZd6zur58vzU+SC42d3dxfz8PNrt9hibRvbHjLFUQZo6/+rck+3h/ghSuI3aJoB1YeqxVYDHcLlccjy+TjMP7pMMUjAYRLlclu8OF2l4vWkIY7MdtRaIRCIiY6VBDXv6sZ6TJjx8HvH6UqpIhYDf7xf5NsEXe/oRnFMmzlYUwANA6fF4ZIGLf5Ml5TVxuVxiRKLrugA/FRgCR+CUkk/2j6O0l/9PcEGA98l/lwBO1/W7AJ4BAE3T7AAOAPwxgH8I4P+l6/q/+mUM8OcJzqOF36ywwgorrDgu6FRGpisWi8FutyOfz4u5yMzMjIClCxcuwG63Y3t7G4PBAIlEAqPRCJubm5J4vPLKK8hkMtjc3EQqlUKn08H9+/eFdev3+0in0xgMBkgmk1hcXESpVMLm5ibC4bA0sVWNHEqlEvL5PHK5HMLhMKamphCPx3Hjxg3cuHEDfr8fqVQKe3t7wjJwhVit8RmNRqhUKmJ2Uq1Wce/ePayursLhcCCZTCKbzaJerwtIJAhiYmyzHVni00rfrIbnuNo3M1bIDNhRemU0/FDNQphgGxNi4Ci5Ozg4EIZOfY/BBFhN1Jn8h8NhqXFTJXHcnuyG2i6BMRgMcHh4iIODg4fmgWNh0t7tdmU+j6t7myRnNMYkEGcGxoyhzqs6v+r7xs8fJ39V3+fxh8Mh5ufnJYnm3Ph8PnzjG99AtVrFp59+KjVPXGhgs3j2PSSrQxmhzWYba8ZMkK1a0ANHDN7KygrS6bR8V3q9niTmTPx5X6msr6ZpqFarSCQSDzlLquenGpdMAtOqIybBJz/LbbkwYuZESQkg6yXVeSZw42sEg6x5azQasqjj8XiErVN7QBIA8xg06uFcVioVNBoNYbY476PR6CFHWta20dgHOKo7o8qACyw8viqT5DOA8k7OA5UMbA+gNgenuQi/y4FAQO41tofx+XwiseW8kgVWzZ/4N3vm8R7h9fV6vRMbsv864pd15N8EsKHr+s6TRKMPXCif2BCssMIKK6z47yD4ny+TcZp/tNttzMzMYGpqCi6XC6lUSmzR6/U6fD4fFhYW0Gw2hemanZ2F0+nEjRs30O12cerUKXQ6HXFg83q9aLVaKJVKGA6HmJ2dRSKRwMbGBhqNBiKRCCKRiPQR0zRN2MGDgwO0Wi3Mzc1hZmYG0WgUP/7xj7G3t4cTJ04gGo1ifX0dlUoFwAOra/ZeYlPvwWAgyRWTvEwmg4ODA0xPT2N2dha3bt2SFXNjAkwwxyRPZZ+MtTxGYGYMNZk1slgM1f1ODb7O/ajHMoIPFeQZE25g3NiB+w4EAgIcOD4jUAQedtSklE5l7VTQY7SKZ4JL2epxwEw9V+M5GIGVcT+PAnwqm2ZkpNRjG49p3GbSsTgfTLBjsZhYtrNWcXV1Fevr6yiVSgIcmMwTUCcSCcRiMWFVdnd30ev1EAqFRDJMV0IAAhbUGjo2alb7FjIB5zE5F6rrowrq6vU6UqmUMDpGRlM1OFHBM38awS3vZ54XZbtGtpQMHeeFv3Nc3FY9H/UnWafDw0PpAcdjq73OWOdqt9vlGURGjMCRQI3gTXWfjEaj4ihJaSufs6pxis1mEyZL3T/Nl1ifxvo7NuemwyUNnYAHUmS2e+A5sJclx6fKNdU6VK/XK99PfpZgrdvtCmiv1Wpyj3CRy4w5/3XFLwvA/W8A/P+Uv/+Zpmn/OwAfA/g/6bpeNn5A07R/DOAfA8Di4uIvZRDCwFkIzgorrLDCimOCCfT58+dFokiGwOl0wul0Ym1tDcFgEFtbW8JS+Xw+lMtlVCoVqUMbjUbIZDIIh8Ow2WzY3d3FYDDAzMwMbDabsDEejwdnz56FpmnY2NiApmlS/0aGodVqIZfLicGJ0+nEU089BY/Hg729Pbz33ntotVo4e/YsfD4fPvvsM2xvb8PhcCAej4scSdd1AZyhUEiK+2u1GmKxmKxWX79+HfF4HGfOnMEnn3yCTCaDarUqrpdq3RAZONZ/AA/3FzOaMqhSQzMW6TijEnVb7oNjMWM4zBgj9ZjGYxhzBY/HIxIt476M42QCqDrX8XWj9JMJuDpn7DdIMPE4DNukOVLBKsdkBA9mnzUyZMZ9/rxhvG6qsQ1wZOmuJvJutxsLCws4e/YsPvjgA5Gv0f3T6/UiGo0iGAwilUohlUrB7XajVCrB7/fD7/dL+w2CBcrsVHdA9R7a2dkRUKc2DgcwZlBCgElwxPNLp9OYmpqSa2pkidXrwd/N7lXuWwUYAMYAARcECN64sECLftVcR92HCiK5CGKz2TA1NYXr16+LPJvgrdlsIhAIwOfzybbGmjf2g+M4WEs7Go2kFxzlnd1uV54bvNe5UGG32+H3+0XOrRqGEDS2220BV+riCIEe64z5POD+Oader1fYNjro6rqOYDAoi1hcUIhGozLnKnjm95X1zIVCQY7l8/nE/dRY1/jrjF8YwGma5gLwuwD+Lz976d8A+B9xpGT8HwH8PwH8742f03X93wL4twDwla985ZeCuCwLEyussMIKKx4nlpeX8dprr2EwGOCdd97BcDjE1NSUrNw+9dRT6Ha72NjYQCwWQywWg6ZpsrpMowvgKNFaWlpCOp1Gs9mEy+XCysoKAGB7exterxcejweJRAKZTAaFQkFqeBwOh/wsFArI5/PirDY7O4tUKoV+v4+NjQ3s7u4iEAjgqaeegq7ruHbt2pis6/DwEIPBQPomNZtNtNtt+P1+AUCUAPn9fmkncOHCBSwuLmJ1dRW5XE76yKlyTBb4U1IEjMsYgYcNTBhGpktNZo3snZr4qjVURsMAI8tmpv4xJtFm26oghpIy1URCPa9JtXRMsI0spMrGqQwdmyXTZVEdh3F+jgszAGaUlD4OIHwcsGbG/h23P7JuKtN08eJFZDIZSZ4DgYC0YlDNJjweD1KpFJaXlxEIBCTRnpmZkR5g7XYbuVwOwJE0MhKJYDQaIRqNyr29u7sL4EHvN0qI+Z3zer3CAqmMm7rooJrvcH5rtdqY4yXBE983fgdUJo/zQ9kir5H6GRUwGkE5Q3WZNDLY6k+Vabx165Y8H3RdF/ZJlUKz5Yjb7RYpJcEbgQ6PyzFQbUDGigx+MBgUIxGVhSV7RjmsrusCSFXzEDUo4WQTbjZrt9mOesNR9kjzIp6D0+kcM2fhvHg8HkQikYdkkez9RlCr9r1rtVoicec5Gsf564xfBgP3vwLwqa7rWQDgTwDQNO3/A+DPfwnHeLwQBu7XdkQrrLDCCiv+O4zvfOc72N/fx5UrV6BpGp555hkBZqdPn8bu7i7a7TZOnDiBqakplEolWbWenZ2F3+9HoVAQ+dGdO3fQbrcRj8cRj8dRrVbH6t8AYGtrS1z0KFUcjUaIRCIoFArY2NiQ+o9wOIyFhQXYbDZsbW0hl8vh/PnzWFhYwP3793Hr1i30+32cPn0a9Xod9+7dE/aiUqkIC9dqtWSlmBbh1WoVMzMzKJVKqNVquHr1qvQy++STT8aSFbr10S2RyacK3NQkdxK7ZgRNx9nlM4ysl9EoxYwxMjJJavJtZJ7U/dhstrHGvQ6HQ+p61Jom9byPk4kaWRd1PP1+H41GY6z2bRJLZtynmXxRBQhG1m0SE3ccaDPb7nEBphl4s9lsiMfjmJ6exsLCAnZ3d6XWqVgsSi0XwUQikcCrr76K1dVVBINBAb6UDhaLRVSrVQHcPp8PsVgMi4uLeOmll5DJZPD5559L/VWj0RB2z+Vywe12o9FoIJ/Pi7kGTXnUa6wCYhVoZbNZPP3006jVamOyTWOo7CyZJDXI+PFe43fNCCRVgGiz2YQJYo2nutgBPACj6vHZ/xGA9HFUx8n2AgS5AGQxg7WCDB6bjB178rFdCWWOXAwDIItS6jnRrKnX64n7LhezGo2GyCc9Ho88c8h+saF3rVZDOByWY/L5SZMVAmUyb2o7ikKhIJ9Rr3W73UYwGITH4xljNtVnKKWW/7038v57UOSTmqbN6Lqe/tmffwvAF7+EYzxWSA2cxcFZYYUVVlhxTHz66afodDp49tlnRco2MzODubk53L9/H5FIBLOzs/B4PDg8PBRpFp3c0um0MFt0cJuamoLT6UQ+n4fNZkMikcDa2hoajQZu3bqFZDIJj8eDUqkkRhkzMzNYX19HJpNBKpXCcDhEKpVCLBZDpVLBjRs3UK/XcebMGZw6dUokk4lEAtPT09L/jfUohUJBnNu4ksx+TwCkj1E0GkU4HEaz2cTGxgbOnDkjtUb7+/vo9Xri7sbEktJJVdLIUAGSmqTxb24D4KHk0hhmkkXg4bYCKkhRP2uMSSyUug/W/XD/dOLjSj/3YwQvRsmocQwqk0Pg0Ol00Gw2hdEwsjN8zXhOk+SQKkMziY00SjSNjM7PE2ZgTmWojO+PRiN85Stfwe7uLv7pP/2nODw8xHe/+11haeggSaYtEolgbW0NiUTC9FxisRji8TgKhYLI9+bm5vDaa6/h4sWLqNfriEajIhEmcKEpDWugAMi15fdHdSY0Mmo8LzJwrIE1Gu6oY1bBvmrKwdcoE+SCixGk83fKPgFIn0f1evMfgYXxeg+HQxSLRTl+r9cT1pL7aLVawoRSlsj6WR6b9yzln2TVyuUyyuWyADe73S71iWS8VMBKoxEy/C6XC+FwWMBUIBAQ9QDwwPiEagAAYmTDGkLOTTAYlOvIe4usHNuydDodNBoNYYHZ85HXlg2/VWMXXkPObyAQeMjJ8tcZvxCA0zTNB+CbAP6Pysv/D03TnsGRknHb8N6vNOQ7Y+E3K6ywwgorjolgMIinn34a+/v78Hg8WFtbg91ux/Xr15FMJkWWWK1W5T992mT3+31Eo1G0223U63Xouo65uTkppKd8Z3FxEXt7e9jb2wMA7OzswOfzYWlpCXNzc6jX6/jss89Qr9elpmNubg6rq6u4ffs2rl69CrvdjldeeQU+nw9XrlxBq9XCuXPn4PF4sLm5OTa+dDotdUCs8et0OpLwMXlrNpvIZDKYmprCaDRCo9HAzZs3cfnyZSSTSaTTaZErkU0BxhkwlXVQGSo14Z3EUBlX4tXt6MZnNDcxgjoVME5Kevn3pHGo4EN14WMSS1YCwJiboTFZPw5w8udoNEIymRRpK63tjfI64zypx1C3NzKORtmeyjwa58RotHEccDCep/o7x6yyVWaMHY/H2qsXXngBb7/9Nvb392VxgbVWbBTPHmVm4ff7EQwGhWGmhHVvbw+hUAjJZBKrq6v45je/iVqthkKhIIBc047cJDVNw/z8PBqNBiqVClqt1lj/ODI+ZP+M15UsFtkz7r/T6TzEfpLJ4r54r6g1dkYWVQXYrBVT55hMOPdjXMRgXZzdbh+rt6RsdHp6WsCTx+MRtpL1aZqmjUkZ1dpTHovnyrYBrB0OBAIIBAICkIbDoTBg6v1JySbZPOBBewC1vowtV2jh73K55LqzlpKglI6inCsybp1OR76/2WwWPp9P5oa1y+l0Wsyt6FbJa0XpKXDEYNpsNhQKhWNZ+F91/EIATtf1FoC44bX/7S80IiussMIKK6z4FcfMzAyuXbuGcDiM+fl5sfc/deoUQqEQ6vU6ms2mJJdMdujgVqvVMBwOkUwmRRLHpCQQCMDtduPOnTtSh0YHvnA4jKeeegqNRgPFYhGadmR37fP5cOrUKfh8Prz77rvY3t7G4uIinnrqKWxvb+PatWvQNA0nT56E0+lELpeDw+FANBqFpmlIp9OS5LFPFRM7sm5MyDqdjtThEUhtb2/jzJkzOHnyJNbX19Futx9q1G3GDgEPO0kexwIxWTUms9y/CkQoEXucMI5N/dsI4ozjUw1JRqMRpqen8ff+3t9DLpfDO++8AwBjzXuN0lAVyDBRV2vfmJBnMhmUy2UxzDF+nmNRE3WjVFI9NwaBiZHhNGMmzRg8I1tjlF2aMXvq6yqoUI/FOfX5fIhEInC73dJCY21tDVtbW3LvB4NBMSWh1G1SeDwenDp1Crdv30ar1RJL+F6vh/X1dZw9exbJZFJqqvx+v/SPy+fz4jY6NTU1xtTYbDZhb8gQmbGNbEJNIxWeq9PplPoyMkW8X4z3tXpMyiLVWkoelyCGCzDAw4Y56vXj+wQzZIzK5bL0deSYuVCh9rBjfSGvAW34OU8EqjQN6XQ6YsTi9/sF/BKYq20EaE7CcyNYCwaD4vxI1QDPm21euE9N06SGjufIPnwcG19rtVriOtnr9RCLxVCtVgXwEbAS1IfDYbmfuVjH+4Fzz+tE9jUcDk+8T3/V8eQaGPwKwiLgrLDCCiuseJz44osvsLi4iHg8jt3dXaltczqd0hA7EAggmUxK3Q0Tj4ODA2k4q7YHGAwGiMfjGI1GyOVy0HVdQFuj0cDs7CzOnj2LdDqNzc1NkShFIhEsLi6iVqvhr/7qr6BpGr72ta/B5XLhww8/RK/XE1OHWq2G9fV1SYzZd4zGJASZTDJ6vR5qtZoU5NMAoNFoYHt7W5In7vfixYtIJpPY3NyU/k9qsb4Zm0MAwWRVTTCBcRnZJFZlUqhAQd3XpOC26vZGQGIMJt9csff7/YjH48Kc+nw+sSRnewZ1Dpigcw7UeVCTd7JBrH3k+ZF5YuLocrlQrVYfmkcmuOo1YNI/iR1T51ENlfXhvBnn/LhQWTd17vl5tXZrdXUVc3NziEQieOqpp5BIJJBKpeS8Ll26hMXFRZTLZZHy7ezs4Pz586amOJTkAZBmz6PRCDs7O+j1erh58yaWlpawvb2NL774QiR5XOCw2+1wOp3Y39+Hz+eD1+uVsasmPerx1Puw2+0KY04wR/DPeiyPx4NWqyVMOKWBnDMCASMbrd63ao8xta2GOu9GAMe552fJFnY6HZEOcvyUR7JHG2sy2QpArWEjSwdAesCpCxpkwjiXuq6jWCzKNXI6nTI3bBHAVgZ0f+SYKbFkjRkloKqUlUZLnC+CNn5P2+22yDBtNpsYlqitELgw1263EQqF5JhcDPD5fFL3y+copaOsvcxmxfbj1x5fLgAnD6InPBArrLDCCiv+m44zZ87AZjtqCBwMBjE3Nyf/Qfd6Pfj9fszMzKBarYqFNBOkRCIBr9eLWq0mvavIIHS7XbH1Z8+4druNtbU1xONxfP7559ja2hJGZ2pqCidPnkSpVMLt27cxNTWFc+fOodvt4saNG3A4HFhcXMTMzAzS6TRKpRKi0ajU3tF4hYwhC+wJNLiiz6TL7XaPMVLhcFjO+c6dO1hcXMTc3By2t7cfYg4mJftGu3jj9mZJOEGGylapIONRAMKMmZr0vro/M6BiNIC4ffs2/s2/+Teo1Wqw2+0IBoNwuVxjPbJYF2hk48imqKCV/xqNhiT16nhUKVksFhN5JUM1WVDPgRI59bqo+zVK1tRxGhN/teeemXxSnUcz1o2hOhTycwROdDYkuxUMBuF2u/H8889jbW0N2WwW2WwWpVIJuVwOKysrpiYRPG6r1RJGZjQaYX9/HwCQy+Vw//59lEolYa44Zv5NF0EVBNhsNtmneu7Ge5T3DI2I6KjI7xv3ScCQSCRgt9tRKpUEAPJeAx6wbEZprArgjZJlgib1OhIE8l7iPJXLR528CIzYzJsmIrwfWU/Y7/cRi8UECNZqNZEsko1ivRzl25qmiblKIBBApVIZMyjhdeJ9QGaPksdgMIhKpSKLGTabTRbPeK+1Wi2RZqrgz+v1yj1Vq9UwGAwQi8XQbDblu8VryLmjQyVBm9qjbjgcwu12o9VqyfeI9wVltmTUH/Wc+lXGlwzAHf20TEyssMIKK6w4Lux2O4rForjXbW1t4eDgAKFQCNFoVBpkl0olkdzEYjEAR4lSPp+XxInF+tlsVmSRtCnvdrtYXV1Fq9XC97//fWQyGXS7Xdjtdjz77LNYWFjA5uYmtre3MTc3h9OnT6NYLGJ9fR3xeBxLS0vodDrY2NhAp9ORMbRaLandIPBUa9yYXLFWhkCPLNxwOES320WlUkEikZBV+lu3bmFtbQ2pVAq5XG4M3JgxO8dJ3YzSPGNzbiODw9cY6ntmNXPGWiMjC2V83Xgco/RMlXZtbGwIk0lWjhI5yqtYV8NaQTOQxePTuEQFZ+rYyMjQ2ZT7ossp7e75OY7NOGeT5lJlkYxzZPa+8fNGRlP9pzI/RvCmaUeN7CORiIC3zz//HLVaDRcvXkS324XP50M0GsXs7CxyuRzeffdd7O/vI51OI5VKjTW4Zy/Dzz77DIeHhyK3IygBgFKpJIsZalNmzjFl0M8++6w4sbbbbTFSMYJdY20f2dJms4l4PI5QKCRsGhktficjkQicTic6nY5Y6qutI9RrQJMTldFVWVz1vucYCNZU2SxZJrpREsDV63VxUiyVSuj3+2KYxJo5lXUbjR4016YzrdPpFNMk1o2yLx37VhaLRYxGIwFlZOt0XUc0GhUgGQqFYLPZpM9av98XM5JAIDAGtllrzLkg68990e6/VqvB5/NJ3SPHzkUXFaSVy2VhZjm/9Xod8fhRZRgBOp9duq7LZwk2Od4nEV8uAPeznxYDZ4UVVlhhxXFRr9exuLgIl8uFW7duIZ/PS7PgQqGA7e1tYTiABy5kgUAAOzs7svIbDodRq9VEbkizE9b2sI/bnTt3kMlk0Ol0EI1G8fLLL0PTNHzxxRcirzx16hQODg6QzWYxNTWFxcVFlEolpNNp2O12TE9PiyxoNBrJKrimHTmilctlcWhjAkdgQQMAn88njEi/30e5XIbX65VV7P39fczPzyORSCCXywng4D5+njACACaZAB5irxhGUxN+VmVBGJNkgmaAxvieClZUZ0BVksj5Y3N09vPzeDzw+/1wu90CxgnmjBb6TOopXVOPbzxHMhE221HDdCbTdPvj54xyO7N9qVJKI7OmvmeUXBoZPDOwrYKOSaBNBYi6ruPg4ACj0Qg3btzA1tYWpqamsLy8jDt37gjYcbvdiMVimJubw87ODra2tpDJZJBIJMTUZDAYYG9vD9evX0exWES73ZY2Aep1U8/TZrNJkg4cMVFra2t49tlncXBwAJvNhk8++QQABMjx3MxYSRpf5HI5WSxhc28yXGSiyBy12+2HgP4khps/VZmrKtNU5ZV8PlFuSIDIOajX66jX63LtKBEkm6QqCCiDVBcPCJZoGkMpOQEWAKkHjsfjqNfrIgsnsKKRiM1mE3bS5/OJy+RoNJK6XS46ESySVSMLSTMRgsZ+vy/GKzSW4dyHQiG4XC54vV5h0NRnH68vgV273ZYWBuo9T1aTiwE0wSEYfFLx5QJwwsBZYYUVVlhhxeRIpVIoFotiarC0tIRIJIJKpSKJgKZpssrMxPDmzZsii0okErh79y6AI6c01rSx8Tclmjdu3EC328XU1BRisRi++tWvIpfL4YsvvoDf78fq6iqcTidu3boFu92OlZUVhEIhFItFdLtdzM/PCyvTarXgcrkQiUSkGTSTINpqu91udDodkfIx2avX6/D7/dILi8wQWyLQRe/27ds4efKkSDOZRBprdh5Vj2YEScbtJ4E1YNw45VESSTNmybiNmdzPuC9d1xGJRNDr9aT2he/RRCEQCCAajeKll15CNpvF9vY22u22OPGpDAvPgTU5/X7/IYCknrOu65Ic0qCGBgzcn8rOqMDTmPwb58Is1Dkx+8l/PK66b3UMZsdSr8Hs7Cw07cglslqtIhQKYXFxEUtLS0in08K+sDYwFothY2MD9+7dw/T0tLTpIAtULBaRTqeF0SS4IWOj9vBjs2o2tweARCKB3//938fly5fx5ptv4tatW/D5fKhWq2MgyzhP6vnPz8/j1q1bYlBEMMftKA9VmTKze8MI4tS5U8PsuqoGOYFAAC6XC7VaTZg7AFJzSVUAJdbAg5rKfD6Pw8NDxGIxJBIJqWXj84MMdK1WE1MnAGLmRCaPZiYAxLIfOFIo8J7pdDoIhUIYDAbwer0ix6Qk0uFwjBk/sS6U3wlKmAlqY7EYSqUSqtWqvB8Oh+XYZOX8fr/0GSQIZD0br0EoFBIDG84f2Xa2jahUKlKnqmkaCoWC2Vfr1xJfKgBHDu5JalKtsMIKK6z4bz9arRYqlQoGg4G45BWLRfmbSSubuXY6HZRKJXg8HqysrEDTNGEPwuGwrO5GIhFMTU2h1Wphd3dXerLNzMxgcXERgUAAV65cwebmJhKJBC5cuICDgwOpd1teXkYqlcLdu3cl+Y3H4yILS6VSaLfb2N/fh91ux/LyMr744gvYbEdNvAeDgUiYKItSE3D2OVJXjtmolyCtWCxicXERiURCVqO5Cv044M1MlmcmD1OZBvVzahwHApm8cp/GRNsoETRjoPg3Ix6PS5NtJvzq2NrtNpaWlvD6669jfX0dW1tbCIfDYzbo7D3FuaX5iREYmAXBSCQSkdoczpGa/KsMmjqXaj0V52yShNQ4R8brYMbcmYHGSUwgx0NJms121Jbj7NmzcDqdmJqawszMDDKZDDKZjJw/GZ5arYZ8Pg/giDnqdrsolUqo1+sol8solUrirqgaT5A5Z1I+MzMjhho+nw+vvvoqQqEQbty4gd3dXQHrXKQxW1RQ72UCIW5HBkq9T8n4qNeDbDk/p7K9PLYKrjjPKmtNJshsbDwmWcdarSbySQIxjoVST96r7FHYarUQCoUQiUSkKTaPwetVLpdRqVREpj07OzsmEVXPjyCPTByvE01o6G7pdDqllpFzy/5tPB/VRbPRaMDv96NSqUjNssPhQCKRAACRvtMtkscny91sNuH3+4WJI8BnrTPnideUTecJhFW3zScVXyoAZzFwVlhhhRVWPE5kMhmMRiOpw9jb25PEsVqtwuv1jjFbwJHhx9TUFNLpNKrVqrirMbmOx+PweDy4d+8e6vW6JGTLy8uYn59HtVrFhx9+CAC4cOECTp8+jWvXruHmzZtIJpM4efIkPB4PPvjgA7hcLiwtLaFerwtLmEwmUSwWsbOzg0AggOXlZezu7oqTnmo2ADxI+NQEnb2Z3G63yI2YPJGZ63Q62NzcxMLCArLZrEiwjIBLDb6vJpQMJmDAAxBGSaRZTZvxdTUIIFRTGaNczwjcjGM2snHchtbj7XZ7rE5JdeAcDoe4cuUKvF4vbt++jUwmg3/+z/85Pv74Y+RyOZF5MTGmzEs1LuG+jFJH/u71ehGLxbC7uzt2HmRhzVgyhpkhzHHxOGyP0SxD3WYSQ6qCGXWhhOYZNpsN/X4fyWQSH330EX7yk59gbW0NgUAArVZL7jt+DoCYThQKBZFP0jqeVvKDwQC9Xm8ssY7FYrJAMT8/DwD4sz/7MwFvlCIb59M4N5yLS5cuYWtrSxJ4VepIoEGZM8GkcTvOAfDwvQk8AOKqdBV40HBeDdaB0YiD51AsFoUJ4zXyer3SZ4/7sdls6Ha7Uq83GAxQKBTEqZKghQtZNCCpVCpiFtJut0WmSjm5CmQJxigvJQhtNBpyXD6/CJLJenF/brdbnHb5nNY0DclkEvF4XEyHhsOh1B8T0DebTWiaJvWINptNxhwOh4XNHY1G4u7Lmj6v14t8Po/BYCDtMKrVKiqVClKp1EP3/q8rvlwAjr9YCM4KK6ywwopjwul0YnFxEfl8HrlcDlNTU8I+0ayC9SPBYFDaA9y5c0eSQZqXMDmpVCrY2dmRGikyANFoFPl8Hvfv34ff70c0GsVoNMJbb72FTCaDZDKJ06dPo91u4/79+0gmkwiFQmi32wCAqakp+Hw+3L9/H+12G88++6wACK5uczXd5XLB6XSK2yGDiSETE25HUwMmPXR2K5fLiEajiEQico5crQYeBnFMStX6L7NQWYlJEkozps0Yk8ZhjMdV5DDZZk2UkXUCIJKyYrGI7373uwAeMAflcllqHAniaCFPZsF4LmZMoM/nQzKZRDabFfbN+Bl+joDArDZNBYfqsdQwA2XGf5MAmtk5GEHdaHRkq0/JWqfTQTAYRDAYRLVaxe3bt6U/2N27d1Gv17G0tIRsNiuJP10e2VyaDber1So6nQ78fj8uX76Mzz77DMARQ0rDDL/fj6eeegqRSAS1Wg0OhwOxWAyFQkGaiLfb7TFWSx07/+Z15rUOBAJi8KPa6APjjCclnQT+6vtmjBzvQ+NY+LqRbaWMklJoAij2bePCE7/TXBih+RHBoFony75o3W4XxWIRgUAAwAMGlFJX7ofzygUKmnzw+zIYDMRMpFwuSy/AarUqxiJqTS9lp3yeAZDFJr/fL+YklKvy2JVKRSTKKjvKxR71GnHu2OeObWDIxFHG6Xa74XK5RFY5PT0tNXKtVguxWEyYxCcRXy4Ax5vaQnBWWGGFFVYcE08//TQ++ugjlEolnDp1Cr1eD+l0Gh6PR/oVjUYjzM7OiovavXv3JCEJhUIYDocC0HZ2dmSF1m63IxwOSz3azs4OarUaYrEY4vE4ut0udnd30e/3cfnyZSwvL+Pw8BDlchnT09MAHvROYq0ak90LFy4gl8vh9u3bCIfDSKVSUpdBsEUpKJNDYzLPWhYmRYxGo4FoNAq3241+v4+dnR0sLy9LjRITLsBczmh2LL6nWpszVKmVyjRMAgwEf2rbAu7zUcCRnzcDNOpPtWEypXmUbvV6PanTUs/zX/7Lfykuh5Srst6JDZ3V8RmBDtk1v98vJjp0DPR6vajX6zImozx10nxNAl5G2eMk8GVWzzZpX8bj8F7QNA31el3YxEgkgrm5Oei6jmw2i08++QSRSASZTEYMYQ4ODhAMBsV4gt89j8cjMki6Cno8Hly6dAlPP/00PvvsM2lcrWlHzpdnz57FP/kn/wTb29soFosCPngN1fuICxQEVeo9YnRn7Pf7Io0+rlbT2MSbwEx9zcg6MyghJEBQXSmN1179LEEpG8aT6VPPo16vw+v1IpFIjN23AARYEawCEEaaDBoAWfjh94MMHe9bGqqwHo2gj4CNIHI4HIrTIyWQ3L7Vaom8XdM0MWGioy6vI10n1f50ZBkJ6gj0WHdnt9vlecng97xQKMBut0sfuGaziUgkIufXbDbFIOVRC0i/yvhyAbif/bRK4KywwgorrDgu3nrrLfT7faysrKBSqYhcKxKJSOJIe+1ms4l0Oi2W2kz26HS2u7uLXC6HmZkZAIDf7xcTlM3NTbhcLpw7dw52ux3VahW7u7sIhUJYW1uDy+XC559/jmazibW1NZFzqUxaNptFPB5HNBpFNpvF4eEhEokEYrEYMpkMSqWSyIDq9brUX01yeqSUkg2qmYjQLdHn84ksrVQqjTlfPm7CoiazZkYNDGP9lZo0q0DCyIiQ7WMwmTbWwKnjmTR2IwPCBJnJczQahc/nE6at0WiMJc2UhfGYRgbiUeDN6XRKL8J8Pi9SMC4E0OHyUTV8ZrLQSWH8rBHQmr2ufvY4CSUBOXB0Xebn53Hnzh3E43FcunQJ5XIZOzs7uHv3riTclNmpkruZmRnpZ8jvG3uHETxcvnxZZKd+vx+tVguRSASLi4v4B//gH+C5557D9vY2wuGwSFopseTPSqUy5uCqsq7qHNFQaHp6Gnfu3BF2Sg3eP2qdp8p+G4G48XjG62JcLFC3VXsSqmCS96kq1aQzIyWOg8EAtVoNwWBQmCi6gfJ9On/yM2T0CIp8Pp+oFTg+u90uvQy5QFStVgUY8yd7xx0eHgI4Mpah9JjHc7vdSCaT4pbp8/lQqVREwcCG5ASH/L4SiPEZx/kmC8yaOJ4Hx+10OkX1QJdMgkGeN1lEglarjcAvKey2n61kjCwEZ4UVVlhhxeQIh8PweDzSjDUSiYiMJxwOIxgMAgCKxaIwIMFgEK1WC36/X1Zkycqx8evJkyeFwdra2pJkUtd15HI55PN5rK2twe12Y2trS3pdfeMb30A6nUatVkM0GpVmuDabDSdOnABwVLfX6/WwtLSEeDyO+/fvo1arIZVKoVwuY39/X2pFaMs9KQj2nE6n2IrzdUoyWUcTi8Wk/srIlqlhBE9GoGFk34xyNQY/N+k46vGABwYrk459nIxQHYtxXFzR93q9OHHiBBYWFrC9vY0PPvgAjUZDxkagpgbZHWMdovE8afJx8eJFbG1toVAojIHXXC730PkYgYFq4GKcG7N55e9m2016XX3P7DV1fGo9JBcLXnzxRYTDYcTjcdmO96D6+UAgILb1qvyU0lSyYDSOOXv2LL7//e/D6XRiYWEBuq4jk8ngzJkzeO6556RmtNfrSVPpTqcj9Y6FQgHVahXAg0UBMlVk8whSgCNwsL29La6JxjAz1DEuXmiaJs2/Cc7VzzPUBtnqvtT7QNf1MRDR6/VQqVSkfovXQ61z83q9Uk9IC31+t7kPSjnb7baAO1XayUUH1gDTZZUOk2yjQgfMXq8n8km3243R6KjnmsvlEjMRMmWsnaMxCQ1J2u02YrEYdP2oOTl7vxGk9ft9OW61WhXZqKZp0gCcQLfVagl45WINF6jYIoGuwtw/jVtYs8djPqn4UgK4kUXBWWGFFVZYcUyMRiNUq1Xpf8RkKBgMyn/m1WoV1WoVfr9f5HCRSATBYBClUknqYMLhsLQOoFsZGQc2yd7d3UW328XKygoikQg+++wz9Ho9TE1NYXZ2Fp988gm63S7m5ubgcrmkBurUqVPS4JlAU9d1XLt2DU6nE6lUShJEj8eD2dlZ2O123Lx5E+Vy+SF5oZqgq/VztNgGjiRT0WhUJGVcyVb7SRmbSKs1J0ZZ2eNI8Mzq4YyAwUx+ye2MQMIIaI4bh9HohedBRvLw8BB+vx/PP//8mF05e1pRaqaOk8ngJGknZVzRaBRra2s4ODjAzs7O2LmoYzcyko8CWMcxcMa5MYvj5ov7UI8xaa4HgwEODw/xB3/wB+j1esjlcuJ6SBdDbs/eX3RSZd0pnQpZU0hgtbKygng8jmazicXFRZw+fRrAg3YLzWYT6+vr2Nvbk7ow1jORXaaDJJ1nKV2mtI5MENmmp556ClevXpVFD+N1UcNobsJ7nBb0ZMhV0x5VUgk8kE4amTnVBEitB+12u9J2gWww71Oej9/vlwUqygJZ38ZrQlDm8/lEiklgR0ZKBXyUk/N4fF7wurGerNfrweFwoFqtCmtmt9tF9aDrugDqVquFWq0m7RFoTMJemnwuORwOlMtlOTYl5Ryz1+sVVQOf9eFwGPV6XUxOyD6qbR9CoZAsXNFJNhqNSj0knwVPKr5UAM7xMwA3sBg4K6ywwgorjolGo4FkMolIJCIrwaynYP0Xazjo7jYzMwOPx4PDw0PUajVxcgsEAgiHwxiNRtjd3UWlUsG5c+cQDAaRz+exs7ODWCyGpaUl9Ho9fPzxxwgGg5ifn0epVMLVq1exuLiIVCqFVquFzc1NpFIpvPDCCxgMBrhz5w6AIzOTwWCAfD6PQCCAVColK+xcyS8Wi1JXYmRqgPFEu9froVqtivskwYsqIa1Wq2i325KE0vFODVX+OMl85DgwpzJJTDzV9gBGeaW6rSrrNLJuRjZJ/VsFQqPRSBJL434JdG/cuIFCoSBsQiQSwcsvv4z19XXcuHFjTELJBJA/jWCH8xiPxxEKhfD5558LO2A2Z2qoDMwk9szsWk+aB+Pn1ddUUDHpuvFaTZpfTTtqt+FyuTA/P4+PP/5YFkqYUAeDQZGaMtkmGOC+6TLZbDbh9Xrhdrtx8eJFFItFeL1enDlzBi+//DISiYT0GmOdXa1WQ7PZFADHXnLValUkgx6PRxgXMl583el0wuVyYWFhAZVKRWq4jGYjZtfOWNdGQKA6k/J7o15v9fvIIFOmukqq+x8Oh9I3kAsQrGVjDR+ZOTJVABAMBkVCyv5vZJpY66cyVZSac+7Ixo1GIzEByefz4mzLZ2u320UikZCWEfyOESzTsZTnXiwWMT09LU3tKV0nY0c3S0o0PR4PqtWqyCX5bFfNZABIy4BQKCT1c5qmyfWkqQ2lvKwTZH0eWWXO55OKLxWAsySUVlhhhRVWPE6cP38eLpcLlUpFkirKbNLptLBpjUYDDocDS0tLGI1GSKfTYqIQCATGajm4Iru6uirtBPr9Pk6dOgWfz4dyuYxqtTomkbTb7XjuuefQ7/eRTqfRbrdx6dIlLCws4PDwEPfv35eWAgSELpcLiURCpEB2ux07OzvI5XLIZrMCHggmjJIuNblutVpiFsCEjrbbqVRqTB5FJzcmnscxNJOSeYYKzNTfKV1T96M6+RkTVzOQcxz7ZLYNV9iZfKqJMwHYaDTCwcGBOHcymSYrwST3UewbP3vy5EnMz8/js88+G2v9MAmEGc/zUUBP3cY4/0YjjEmsnpl00zges+Oq2wyHQxQKBeRyOSwvL2N5eVmMSyhD03VdzC4cDgcikYgkxmSMaCVPV0CbzYYzZ86gXq8jHA7jq1/9Kqanp/H9738fw+EQrVYLP/nJT3D37l00Gg10Oh3p71epVMQWng6JKptEOaHK2AQCATzzzDN4++23H2oBoIIo3ssEAEZZr2qhr9bL8d42MnDqflUWjt9FHptMOfu+8TMENip7qTJ+dPhkXzWPxyN1Xt1uF263G81mE6PRSGrbqAhwOBwIBAKIRCLynW02m2I6Q7ax1WpJrzbKwrnIRDMlgjzVVRJ4YKrC91wul7CFwJFagPeHsf0HWV31OgaDQdTrdWH+ms2mLNzU63WRv1NyOhwO0ev1RHKvaZowhPzMk4ovFYBz0Op3aAE4K6ywwgorJkcsFkM6nUY+nxep48HBAdLptDACLPynM2SpVEK324WmaYhEIgiHwwAgq81TU1NYXl5Gp9PBnTt30Gw2cebMGUSjUeRyOWn6zeQoFArB7XbL571erzTK/clPfoLRaISFhQXMz8+LbNJut2NlZUVWpFOpFP78z/8cOzs7UvzPHkdkelSJoJGNGw6HwsIxQSKg2d3dxZkzZ0TKxO2NIMtM/shQE38VSExif1TWTd2v2t+M8jFVcsb3eF5mLNxxx6dcknU36vkZx8B74wc/+IEAOFU2yr+NtW90lVxbW8NLL72E69evo1wuiwxOBdnG83mUZFENlck07ofvm0kezeaP7xuZv0kA0vge2eHr168jEAhgampK2mKEw2Ex27DZbPI+AGGDuEDCGlS3243NzU1cuHAB8/Pz+OEPfwiPx4Pl5WXUajVJ/Gu1Gg4ODtBsNlGtVtFoNFCr1VCv19FqtQRcUDLNa0pGkZI/XrfTp09jb28Pu7u70pjcOOc8X9XERWUouS8CMLI57BepXjPjAod6fxBgqgDO5XJhe3tbDHbU+jyCRi5QAA/6rx0eHkrzbtr70xyFjKfD4ZAm3TSd4f7JXrNhN2WXmqbB7/cLA0bgzX1ywcTn84l0ku1L6vW69Od0OBxirETmjCBS/f7zODx2t9sdA+lk2Gq1mgB2tqbgfPCZynNjL89YLCYLSM1mU9xMW62W1QfulxV2u8XAWWGFFVZY8ej44IMP0Ol08Nxzz8HtduP+/fsolUrSQJYrsT6fD9lsFpqmoVwuIxKJiPSm2Wxib28PAHDixAkkEgnpK0dmLR6P47PPPsPe3h4uXrwoJgN0uCwUCnC73ZLUNptNfP755wiFQrhw4QIcDgcODg7QaDQwOzuLubk5eL1eYcw++OADaJombmyUHqlNn7m6P0kGR3aC7REAiLlBp9PBqVOncPPmTalFUiWL3MdxIE4NFagdtw3DWFOnJrg8RybNRtdNMwaEvxu34Wo9gQT7WRG0sT7KjBlR2U4j+6ZK6UKhEFZWVnD58mVcuXIFN27cMAVX6nhVeZ3Z2M2uqXEOzMDepPlQtzEybpMYOuM+jNu122189NFHCIVCeO6558RKPhaLieGGy+US+TKT92g0imAwiN3dXQQCAZw+fVrAyW/8xm+IM+Lc3Jz8zgbfdLSs1WpoNBrI5XJot9vodrsCFsg4ARCTFLJ8ZAe5KNJqtbC7uzsGmhhGMxMjaFP/5n1C8KZuY5xDI8tJEMLrwns+EomgXC6jVqvJwgPZNSN4pNRxOByiUqmgVqshFAqJTFAFigRZ/C5QXsprQNBHx0dKr8lSs9E6m2HTHXM0Gsncs6+a3+9HrVZDNptFOBwWoxVd1+W5RFaWYJDjIkM4HA6l9QKNVFivyrYHBOWtVkscJwHIuXGBjteCYJ3gr9VqibnL1NTUWBuWX3d8qQCcVQNnhRVWWGHF40Sn08HTTz8NXdfx8ccfy0ozG20Hg0GEw2EUi0VhCaanp6XubWtrC9VqFeFwGKurq7Db7djY2MBoNEI8Hsf09DQGgwH+4i/+Au12G/Pz89jc3ISmaUilUrDb7WP9mGhxTZfKxcVFlMtlZLNZaXB89uxZDIdDcbB88803pe4FAJLJJBqNBtxutyT+quzRLJis1Go1qfWh3biu60in03jjjTcQCARw7do11Go1AA+kjmoSPwnEmcn/JpmWHCfNNGOg1CRX3a8ZQzQJFHHfrG0BIA57at85jm3SOfKnysgx4WciWSqV8F//638VpshYP2b8XZ2vR4E3M/ZO3VYFq8b9mZ2PkT09jhE0Hl+9js1mE+VyGZ9++ikGgwGWl5fRbDahaRrm5uaE2S6Xy4jH48LynjlzRoDFxYsXsbi4iCtXruCb3/ym1KPl83lMTU3h7t27+N73vodKpYLBYCDtCAqFAkqlkhjwcC7JMBFokI1xu93CYvP6eDweDIdD7OzsjDFD6qKBaiaiskPq4gZ/8nPqNTS7ZzlOLsLY7XaR+KqNw2OxGK5du4ZOpyMAj+PjefJ1uszSWXdmZkaefQyPx4NWqyUScUou6eRJp9BmsykgnECODp88X7JzbFtA8ApA6nkJnvr9PmZnZ+H1ekXOThdYms3weUeDETbcttvt6Ha7Msd02eT3ut1uIxQKydxz7ijBbLVaAt4cDocASC5k8R7t9/tot9uYmZmRRbMnFV8qAPegBu7JNdazwgorrLDiv/34yle+gvX1daTTaflPe3FxUWQ9wWBQbP8pp3K73SiXy8jlcnA6nVhZWcHU1BRarRbu3LmDYDAoRicHBwf49NNPEQgEsLCwgMFggGAwiEgkIrKgUCgktXa1Wg37+/uIRqNwuVwolUo4PDyEpmk4f/48UqmUyH8ymQw+/PBDqeeYnp5GMpnEvXv3JLmkox8bSh8nHwQeGCDQdICAslqt4u7du3jhhReQyWSkPYFarwI8bNqgghy1Z5tZ4v+oMNvejGkzshXcTgUwRlZjEogbDoci2SMLY9YuwLgPI1OmylpbrdaYk6dxXGbnaAbm1N8nyRonMZwqsDKCtOPOy+zcjOOY9Jqu62JS8vnnnwtDrWmayIYdDge63a5I2Z5++mk8/fTT0lpjenpajHvW19cxPT2Nzz//XAxK3n33Xdy/f18AeKFQkP6O7GGoyhf5fWb9l67rAt44jwTfzz33HH7605+OORkC5s231QUEfh80TRtrUaDKgdXFD9UgiJ9RrxNBFoEZt/3kk09QKpXG6sQYao0cALHIt9lsSCQSIrVut9ti2kRGlPc690GnWpfLJVLJarUqLqxut1uAocfjQaPRkMWjTCYj4IngcjQajUko2VKAxiLst1apVMTshD3rKGNUDU14TXm/sXE36+D4HVTbC8TjcQGdPP94PC5sWyAQkLpCLiYsLi4iEAigWCxaDNwvKywGzgorrLDCiseJq1evCgPmdDoxMzMDr9eLUCgkoAUA5ufnJeHY398XC+vZ2VlpJ3D79m0sLCxgaWkJtVoNt2/fRiaTwblz5+Dz+bC/v49EIiEMGc0BEokEdF3H9va29HPrdDpS5zE9PY0TJ06InIk9tD777DMUi0VUKhWcOXMGwWAQh4eHCIVCmJubE+lQpVKRlXwCkEmugrquo91ui+MbV+37/T7u3r2LRCKBp59+Gq1WS1zkuDqtsglqQgqYAwkz1k4FXmZgb5Ijovo59R+BitHF8nGCIK7b7cLr9YqBAevkVImkCgRV+aR6rqqsjWNSWbVHMWGPCjNm7nGkjT/PMcyYOLP3J72WyWRw/vx5aJqG/f19hEIhYUii0Sja7TaSySRGoyMnyunpaYTDYUneafu/tbWFZDKJ+/fv49NPP0W328X6+joODw9RKBRQq9XkX7PZFEmkx+MR8MQ2Bs1mE6VSaUw2yfuWxhaXLl1CpVJBOp1GPB6XeqpJrDbvPzJnPH/VgIfAkPe6pmnCBnJO1AUIjsdut0v9LMFkqVTC3t6euHSSLQQggJQLOJQrUiLOPpAEJnw+eb1eAapk0Xj8SCQirFer1YLb7RZWjk6qNIcig0hwpOsP3EeNkkxN06Qm8fDwUNoBVKtVaJoGn8831maCSgN+nufKmktNOzKeYd0dQSrfGwwGwvZ2u10EAgEBfASkTqcTxWJRHD2HwyGWl5cFBNPA5UnFlwrAWS6UVlhhhRVWPE50u134/X7ouo5EIoFgMIjZ2VnkcjmxyXY4HHC73QCAdDqNwWCApaUlzMzMYDgcYn9/H8ViETMzM1hcXMTW1hZ2dnYwGAwwNzcHANjc3MTc3ByCwSDS6TSAo3YAtNo+PDxENBoVcMaEKBKJYHp6WlzxVlZWUCqVcOXKFayvr6Pf7+PSpUsol8uoVCqYnZ1FpVKRInwmrGwWzN5Zkxgc4IGkiAkve0W12218/PHHeOONNwTEUQJI6ZSR6VLDzG3SWCfEmCQDNAJBFThyWzOjDSPbpe53Uu0XX2dfLCZrTHzJFqkGJqppifpP07QxMxObzQav1wu73Y5kMont7e2HzltNfNV5MbtmxpgE0NVzfBQLapynRx3fyGqaHY8OrB6PB4VCQUw0IpGI1J3qui51p/1+H9VqFel0Wmz/9/b2hA35/PPPpf60Xq+jWq2iUqmgUqmg0+mg2WxC1x80uVabXdPlkDb7ZK14P/K1UCiEVCqFP/qjP5IaPTJhKghXgZnxHjLOk5GZVv9RjqfWVfIcWA9GmR9wBOqKxSJqtZpIJXlOdFkkWFHdNOk2SzA7GAykr1o8HoemaWJUMhwO4fV6ZV7IZJKtb7VaSCaT0rcykUhIKxOfzyf9MwlQuSjE+VT7r/n9fmSzWXGk5DXp9/toNBoIhUIYjUbSpBs4eo6zhQv3x/pGmpoQ1HU6HVEWkGVrt9tyfgS6dOat1WpyT6h1yqydIwv3pOJLBeDEhdICcFZYYYUVVhwTXO0NBAKIx+NoNBr4yU9+Al0/aifAZrfdbhfFYhG6rmN1dRXz8/NoNBrSImBxcRGhUAg3btzAwcEB5ufnxbHNZrPh7NmzKJVK2NzchNfrxezsLDRNQyaTQafTQSKRgN/vH6uVImhkfcj58+dRKpXw7rvvYm9vD16vFydPnsT+/j6mpqawurqKYrEIj8eD06dP49atWw9JHJloGlkU9ScTRDbPpemBzXbUVuAnP/kJXn/9dVy6dAmffPKJ9FzSdV0YByPbpTYcVsEbQ60J4ueMDpRkNCYZiBjP08joTZICTpJRGsdHiRXNGGhsoBqbcB5Udk4dvyqpczqd+PrXv46NjY2HQCh7nL3yyiv46U9/inw+bzp2M2bNKIc0Ai0zOeZxDKDxPjEyi2YgblL0+33s7u7iueeeQ6vVQjgcxnA4RDKZxIkTJ5DP56UXWalUwsHBAbxeL27duoVarYarV68KeDs8PMTm5iZyuRymp6eRyWSwtbWFYrEodVCU8fG+IThUrebn5+cBQJpKkwXStKNauOeffx5vvfUWms0m4vG4gCBK8FSWmUCd2xwHeMkE8n7wer0CCri9sUax3+9LHRv/zufzyOfzUvPF9iY8b7V2jgstdrtdZIe08k8mk1LPRiZeZSwJHrk/zpWmHZknFYtFMQ3hNdQ0Tdo9qAsfHA8bo/M4BKM0lWk0GggEAvJM4nUhcOT+aGRE5sztdosygmCLwDiZTKJarcLtdqNYLKLT6SAYDMpcUNreaDSkRlPXj3rKJZNJqQekjFOVjz6J+HIBuJ+5UA6GVg2cFVZYYYUVk4PNbJ1OJ27duoVGo4FEIiHukJFIRHor+Xw+LC4uYnp6GgcHB7h165Y0Dx4Oh7h37x5qtRrOnz8vvY6i0ShCoRAKhYLIH2OxGBwOB+7du4dwOIxEIiGrzGTfRqORJEALCwuIx+O4e/cubt26he3tbUlwtre3cfLkSYRCIeknF4lEUKvVEIvFhIVg8mPmsKYCHbVup9vtigTKZrPJXGQyGVy9ehXf/OY3MRgM8Mknn4hMjfU4KtBSWSdVcmhMZtVt1DCCuOPkkGrCa0ysJ4E4FcAZk24jYKFZRa/Xkzoto108QZsRQKnnvbS0JAC9WCw+JLUbDAZYWFjAwsKCqbHF44R6TIJrI3g2glYj2Dxu20kA8TgQp+tHhjh0l6zX6wJ6Ll++jEqlgvfffx+VSgU7Ozuo1+vSBoAGGDSyODg4ELBWr9fFel51SWU91Wg0QrPZRKPREJaUCxMLCws4ODiQWjMCjF6vh9dffx3379/H/v4+fD4fAoGASPH6/b6cq8oiq2wcMG5mQnaM4+OCDfepOkCqBjj8m6wfo9lsIp1OQ9d1RKNRdDodASFk1djLjuy7WsPJa+7xeMbcGblQwR5tqqyUn+12uxiNRgiHw9ITjQY9KigjYOT42YZABWl+vx/D4RD5fF6eMwThVA6wOTsbrXOuvV6vtBTo9XrCMNJZs9PpCMPH171er+yL7BwlomRm2+22yDPtdjvi8Ti8Xq8APa/XKz0FVfOXX3d8qQCcXbNq4KywwgorrHh0EEytr6+j1WohFoshGAyOtQio1WoiZXQ4HLhx4wby+Tyi0Sjm5ubQ6XRQKBSg6zpOnDghVtqpVAq6riObzaLb7SIYDEqdz97enthPu1wuNJtN2O12AV2tVgvT09NYXFzE4eEh3nrrLdy+fRvtdhvLy8vCTFy6dEkS6eXlZbTb7bFkqlqtYjAYSCJiNFBQa7FUZotggkYG7A/HBHJjYwPJZBLPP/882u02bt68iWazKa5vx9VjGSWRqsGCmpyaMWOT9qNKKVXW7zhWTY1J0j+zz6kgjUmx0UVSlb6p49Z1HfPz83j99dextraGv/zLvxRHT1VyySbC+Xwe3W73oXn4eeM4GaQZ4JrEVqr7elwQZ9yuUqng008/xYsvvohUKiXfgWKxiLW1NZEDE5RRnka2BTgCLvl8HpVKBR6PRxgWSg0Jxsg69Xo9cQ8koHG73fD7/djd3ZV6ODJGw+EQr7zyCjY2NnDlyhXY7XZxXQQwJksGxmvUjOetAnC1Xo7fJUr9arXa2D3POeP3jnVqAATgZLNZ6dnGejCOkYYeqmOlzWaDz+fD3NycABE+c2jmQiDDsXk8Hvj9/rF7nQs2s7OzyGQy0PUj85F+vy8gl4wn6+GazSaazaZI1nl8vlev16X3puoQabPZhOnimGjAEo1Gx75rvE7lcllq32iiwkW1ZDIpTd4pY2atK58jrJHTdV1MpwjeAEhvO84nn7lPIr5UAM5m02DTrBo4K6ywwgorjg+32439/X04HA5Eo1EsLS0hFApB13Wsr6/D7XZjdnYWKysrSKfTuHPnDtrtNi5cuACXy4VcLod+vw+n04lAIIC9vT3pb8Riftay9ft9bG9vo9frYXFxUWpa8vk8PB4PTpw4gWw2i2w2i5MnT2JqagrNZhNXr17F7du3EYvFkEqlsLe3h8XFRZw+fRp3795FIBDA6uqqACe32w2v14tsNisuc+VyGbqui9RIXYEHxhtkAw8S9tFoJFJKm82GcDgsSfHHH3+MRCKBr33ta2g2m7h///7YKrbaF8vYzJphZC6MDJGa/KvvHyelVOVyKriaBCrNjmXchp83Y6XI6BwnHVQ/wx6B4XAY0WhUALU653a7HTMzM2NuiCrYmsTIGV9Xz/FRTNkkEGu8bo+SBhrHYXx9MBhgfX0d58+fx+uvv47z589jd3cXW1tbCAaDSCQSOHv2LKLRKDY3N7G+vi7ggA2kS6WSABYVmPD+ILhmKwFeH/YzI7AZDocIhUIyho2NDbRaLfzO7/wORqMRrl69in6/j3A4LDVjwJETIwGN8ZwpN1TBvMqi8XvBOjW/328qneQ/Oiqq9Wij0VGfR8q6+R6NkXhNVOaLwI4GJMPhEFNTU8LcEwCxloxSUrpNAkeScwLheDyOSqUi0sp6vQ6Px4NUKoV6vS4LD3RwVQFlOBxGOp0WaXapVEIymYTH4xHAzrmipJHjY50fDWgoq9S0IzfJcrkMj8eDarUqbJ3P50OpVJKaONY+06hI0zQBhQSvNpsNfr8fkUgEfr9fXuMiBJ0y0+m0sOlPIr5UAA44qoOzGDgrrLDCCiuOiy+++ALD4RBLS0uIRCKw2WzY29uTJtunTp3C9PQ0bt++jb29PdhsNrzwwgvodrtIp9PodruYnZ1Fu91GoVBAPB6Hz+dDLpfD7du3EQgEcPLkSZTLZanHOHnypDBe9XodiUQCoVAIe3t7qNVqeP7552Gz2VCv13Hr1i0cHh5ibm5OzC4uXrwIl8uF999/H4uLi1hdXZWmth6PB81mE7u7u4jH45iamsL6+jpGoxFCoZA0+aUDnOpIaZQLAg8SbtVNjvPUbrfx9ttv44033sDLL7+MXq+HnZ2dh3oiqUDLTCIJjIMEMyBn/JwqpTQycka5pVHCqO7jOKZJ3Y4/zcauAiSzzxn332g08Md//Mdj9UnGGA6HeO+998TUwujIOUkKagRtx52rcd4msWlmDKTxnM3A4aRjMNn/+OOP8bf/9t/GysoKnE4nfvSjH+Hu3bs4c+YMFhcXUa/XEQ6H8fTTT6PX62F3d1eaTrOGTTXo4L1M+bF6rbhYQgdHgoqzZ8/i93//99FsNvGv/tW/gtvtxquvvgqHw4E/+ZM/EXML9gPkd8Dn88l3AhiX66quosbFA7VxN5kplXE1GuBwzGw8TnaqXC4jk8mIuRH3reu6ACdGMpkUyWEsFpOFnmAwKOfAOaR75WAwgN/vl8bZZMFyuRxGoxGi0eiYLX8mkxFgRrBH9o7sKMEzXR01TUOr1UK/30csFpNm3PzeckyURYbD4THWjjJYzrvdbsfOzo5cW9r7u1wukWnabEctBKLRqHyezd95PDpR0l2SABI46gtJpQDrosk6Pqn40gE4u02zGDgrrLDCCiuODTrgpVIpRKNR7O7uolarYXZ2VliA69evY2dnB8vLy1haWkK5XEY+n0e9XsfCwgIajQZKpRLi8ThCoZCwcktLS+j1erh79y5cLhdCoRCWl5fR7XZRrVYRDAaxurqK4XCI+/fvw+Px4Bvf+AYqlQo2NjZQLpdRKBSQSCQQjUbR6/Xw7LPPignD66+/LhIwrigDQLlcxsmTJzEcDrG7uzvWFoEJLIvwgQcyJWNTYTUhZx0JV8SZANVqNfzgBz/A3/k7fwevvPIK3nzzTWkvwGOoEk21Fk1NsJn0kiFUwZkKAlSwo4I44OGeczy2EdRMkmaq4zADO0aHTTN55KOC2xollmbHabfbY8DajD0zY+WMJiPG7SeBWfX3SfNk3O8kcGe2rXG7u3fv4l//63+NpaUlrKysIJVK4fr16+h0Ojh9+jQuXLggfcQoK6axidoegPulvJDASG3XwPuWzM3y8jJsNhu+9a1vAQD+3b/7dyiVSviDP/gDZDIZ/NEf/RFqtZqYYdB5kvcyQY1xAUEFcgQX6rUxmpaEw2GUSiUAD9wPuS3Pg3I+svmNRkNcOdUFCu6fDJI6BuCICSNjxlYB/X4ffr9fHDfJrnk8HkSjUakdm5qaQqlUQr/fl4UgsoOVSkV6ZLbbbbTbbTFRUduhsEk3ZYi8buFwWL7bvIY8X86J0+mUdgcARPKqAt96vS4yUPaGo1EJZbOapkkTdpqd1Ot1YXG5uBAMBhGPx+V47XZbgB0XCKhwcDqd4oT6JOJLB+AcNg2DoQXgrLDCCiusmBwnTpxANBpFMBjE1tYWhsMhnnnmGczOzqLb7eL999/H7u4unnnmGSwvL+P+/fticb2wsABdP7JGp9X+/v4+nE4npqenpQE25Tmzs7Pw+/0ol8vSc65UKuH69es4efIkXnzxRVy7dg1vvfUWXC4XlpeXsbq6ik6ng0gkAl3Xsbu7i0AggJWVFdjtdly/fh12ux2zs7MAIKyF2gw5FApJcsPkk7VAXHU2AiMzBqfVagnAYr0ej/Pmm2/i29/+Nt544w28/fbb2N/fH6spUWvdVGBmPK4KMCaxdWqoTpVMwNQaP8rIVEZkUkuBvwljZQbC1G3MjmP8aQYkVaBnBFIqkFQBnNE0Rh2j2b4nMXVmMQnMTTovY5jN03A4xDvvvIN/8S/+Bf7+3//7eO6558RsZG9vD06nUxrc379/X+5VJtCqTLDb7UqybbfbMT09LUYUHBNBXDgcRigUwv7+Pr773e9ib28P0WgU/+yf/TN89NFH+PGPfyxJvd/vRyAQEECh2vSrgA3A2EIF7znjfKhjod29upihygQp06SbLZmsbDYrTDq3ZSsAM8OTwWAgINTj8aBWq0nvSwJdAiwAUuvHY0QiEWQyGdTrdQyHQ2SzWQAQmTaP0+/3RcrJWljOD01LaCBCYxS32y3n1Ww20el0EAqFxJCELQgovdR1XRg21VSl2WwiEAiIYRNl7fzJeWetIKWz9XpdDEw492ydwnt2NBqJRLJcLstcU4nA835S8aUDcHa7huEjHvxWWGGFFVb8Lzump6dRKpWwv7+PwWCAxcVFxGIxNBoNqS95+eWXkUqlsLGxgf39fVmd7vV6qNfriEaj6Pf7ODw8hN/vl5qWbrcrJilMHAj+zp8/L82Hz507hwsXLuCDDz7AJ598ArvdjvPnz2Nqagqj0QjxeBydTgfr6+tIJpNYWFhAv9+XGpKpqSmx8qfcrtfrSQsAv9+PaDQKTdPE9U9N9I5jWIBxaSIL90ulkrRg6HQ6ODg4wA9/+EN85zvfwRtvvIE///M/FyZSlYwxSVKZCKM0kuNSkzSCFiObpybQavAcuR2ZCDO5ohmzpf5uxkiazc8kCeGj5tfs2GZ/q68bP69eRwI/Vb436ZwmgVQVGE5633jOZqGCTLNz7na7+MEPfoDRaIRvf/vbuHTpEnZ3dzE1NYVOp4OrV6+iVquhVCohl8vh8PBQmGCyYqzzUvuvqQCH2xDglUolbG9vi93+q6++isuXL+PNN9/ERx99JLb3Pp8PkUhE6uzURQcCJJXpZfAeNbqfqiAiEomg1WpJ4q9uS1an0+lIO5FqtYpOp4NisSiMnSrHVL83uq6LSQtZslKphGq1inA4LGOkrJC1eLquIxwOw+/3i8QxFArh3r17Mm72V+N46SRJUO33+6Fpmjjdqo3HHQ4HVlZW0O12hZ3LZrNSpxaJRFAulwWk04SEbCXlxMa+iJS51mo1afLt8XjQarXGmFO6ZTYaDYTDYeTzeVlcYxNwLkyx5pLST7vdPtZywe12i4vqq6++iqWlpWO/B7/K+NIBOIdNs2rgrLDCCiusODbu3r2LSqWChYUFLC4uAjjqL0XZ0vLyMgDgs88+Qy6Xw/z8PAaDAer1ujhV5vN5OBwOzM3NIRKJSILl8/kQCoUkEfB6vUgmkwiHwyiXyzg4OMCFCxewuLiI9957D++88w6cTidee+21sZ5wpVIJ+Xwep06dQiQSwf7+PprNJqLRKOx2O/L5PPr9PhKJhBTVz87OolAoSJJB9o0JncpSHWcOojI9AKSlgt1uR6FQAACpm9nf38dbb72FN954A7/927+Nd999F1tbW5LMsT5JdcJUQZwqSeNqO8cAmDenVlk3la0yGpqoyTH3xc+ZgZXjWCr1ffVv9bXjgM0kIDhpv8bPPeo1FZxNAoHGMGPpzH6ajXkSyFR/P+7zjUYD77zzDhwOB8rlMlZXV5FOp5FIJPD1r38d77zzDu7cuYNcLodqtfpQPSBlg5TIEcDQyIQLAd1uV0CT3W7HwsIC/u7f/bu4ffs2/v2///fY2dmRe4WLEwQOqgxTPT7lfTSyUe3kVXkn7z+6JLbbbWkAr0os1bo4HrNYLKLX66FaraJQKAjTRoaJ3x1+x1S5qMvlQqVSga7rCIVC4rzY6XQE3LAxNlsIsBG6x+PB7u6uNNsmuOI4gQcMeKfTgcvlgsfjEfYSeGDoQlaUz8Z+v49ms4l2uy391DqdjrROAYBWqwUAAsb43CqVSvB4PCL5DAaDyOfzKJVKCAaD4nJJN0yCfQDSrLxaraJarY4Z01AuS4aN15aNyuv1utTGke2jTH1qauqh78CvK750AM6qgbPCCiussOJRkcvlsLa2hvPnz2M4HOKjjz5Cq9XCwsKCGItUKhUEg0GpG2m1WmIWUi6X4Xa7cfLkSfh8PhweHorbWSQSEaAQi8UwNzeHZrOJQqGAwWCAy5cvIxgM4o//+I9x5coVnDt3Di+++CLsdjtarRZqtRoODw/hcrmwtraGwWCAzz77TAxNer0e2u22WG9Xq1WsrKwgFothZ2cHPp9P+r/5/X5Jct1utxgdqICDCSBZMsBcItfv96UGhi6XbrcbvV4P9+7dg81mw3e+8x385m/+Jn7wgx9gf39fTCeMdWTqsY3sGMejHp+/G5k5wNwghduqzZUZBJOTWDKVPVHngscyY7bMYpJMclIcx7wd99pxckx1m8d5bdI2xu3VOZoEPh917rquo1Qq4Qc/+IHI31wuF+7duwe32425uTnE43H89Kc/HWOY1XvT4XBgaWkJLpcLsVgMsVgMH374IbLZrDA24XBYpMzf+c53EI/H8Z//83+WJuHqvti/kfePCpBUdlhliY33tXo/EowRPLG2S5WBEjiSSfP7/QJy6vU6Dg8Px+reVImkKunkPkejEarVqtS3EfhxcYrghgCH7JLdbke73UYulwNwBMIqlQoCgYBIC71er5h7kK1kw+zBYACv1wuv1ysSw0gkgkqlIsYnbLsyHA6l71s+n5f9AA/65zUaDYRCITidTunNxjYAoVAIpVJJrivNTRhk9ihnZ00l3Tr5XPB4PAiHwzInXADgogLBpM125FKZTqcRCAQwNzeHbDaL733ve1JP+euOLx2As1worbDCCiuseFRcuHABZ8+eRTabRS6Xg67ruHDhwlgz38XFRbhcLhweHsJmswmQGw6HmJ+fRzQaFWv0TqeDmZkZsbi22WzweDyIx+PI5XLI5/MIh8M4c+YMRqMR/st/+S+4efMmfuM3fgPnz5+HpmnI5/OyQpxMJpFKpUR+GY1GpVAfOEpQKElaWVlBrVbD3bt3AQBzc3MC9m7duiXsA1eXmVQCkJV8I/PEMAIKGrEwgWeT28FggHv37uHNN9/E66+/jjfeeAM/+tGPsLGxAQCStKnJJhNWI2g0q/86jr0ygj2jvNLoEGhMeCeduxqTANMkEGg2Tr52nORy0r4eBcAeBQ6PO/ak9yeF2XGNv/88+6xWq3jrrbeg6zp+8zd/E5qm4datWyiXy/B6vYjFYnjuueewsbGBTCaDVqslwMXv9yMcDsPlcsnCidPpRCqVkoT+a1/7GjweDwKBAG7duoVr167h4ODgoXrJUCiEUCg01jTbyDip5iCTWFez+5H1pkYgCDzo90ZJI7+vzWYT2WwWzWZzDPCxRozSPt7LBIE0LeJY1RpBukHyO9BsNgUYkx2bm5vDcDhEtVoVp1wymvxsp9MRmXiz2QQAUSYQMAJHrF6v10MgEEC9Xkez2YTb7ZY6MgJo7hvAGFMJHElf+axg2xaqH9iOg2YjnHc2KKf0mwYn6jVjk26PxyOSSppCsZk46+C8Xi8qlQocDgcCgYAsxlFK+iTiSwfgLAbOCiussMKKR8WJEyewsbGBdrsNXddx9uxZqaXodrsijSkWiyLPyeVycDgciMVi8Pv9KJVKaLVa6HQ6CAQC6PV6KJfL8Pl88Pv9SCaTyGazGI1GWFhYwOzsLO7du4e/+Iu/gMPhwN/6W39LLK43Nzdl5fvSpUsIhULI5/MoFouYnZ1Fq9VCLpeTBIZW39PT09jf38f777+PtbU1PPfcc2g2mxgMBigWi1hcXESlUpGEl6vbuq4LGwBgzJaboTbEVmut6EzJ/TH56vV6+Oyzz9Dr9fCtb30LL7/8MkajEXZ3d9FutwUsquyEekwmaYzjGLJJ0kkVXKhATgVxxmMeJ5mcFGoiaGx9cBzAM7738xzzcQDhcWM1288k9u44JvC498zApPrepLG222382Z/9GQ4ODvAP/+E/xAsvvICbN2/i9u3buHnzpgCeZ555BltbW1IH+hu/8Rt48cUXsb29jY2NDRQKBZEzzs3NSa3X7u4uPvnkExQKBbGGV8E8mzbzfuY/7osLDSrLpUp0jTWlZO5YY0ZLfL7O38n8EJzQyl9tWK5+d3mMZrMp+6Z7JBl2smTs5cbzYE0XAAFUnU4HyWQSBwcHKBaLiEQimJqakvGy/cBgMECtVhPZpcfjEQmpruvw+XyYmZlBvV4XE6VSqSSNsOv1OtrttgBkyiZHoxHC4fCYXJIGI2TNAIiTpWrMFAwGxSGS17PX6wnjSra2WCzKfHAuXS4XEomESCX5fKKqge0beH1oWOXz+YQdDQaDMr4nEV86AGfVwFlhhRVWWPGo+OKLLzAYDOBwODAzM4NMJiNNlpPJpNRsMCHa399HKBRCKpXCwcEB6vW62PovLCwgl8vJtqFQCH6/H+vr69B1Haurq1hYWMBf//Vf48qVK5iensa5c+dkhZgF/dFoFOfOnYPP58P29jZqtRpWV1fR7XbR6/WQTCYFqFBatL+/j3q9jtdeew3z8/O4desWAIh8k7UmXq9X3CTpRsnEjkk8JYdGEwYjo6DrukiomLwmk0k4HA70ej3cuXMHDocDr776Kr797W/jvffew82bNwFAEiijbJKJqZm5iRGIMVQGg+M3a0Fg/MljG0Gd2XiOY6wmsXaTANFx0sTHkVdO2vY4YMX3J0khj/ucMdR5ncT6Pc4Yjjvfa9eu4f79+1haWsJ3vvMd/KN/9I/w4x//GOl0Grqu4/Lly3A4HALE2H7g+eefx40bN4Sxo2T58PAQ+/v7qFarkpSrY7TZbGL2w3pRBtkmflfUMas1myq4Uu8/471GMKje0zTN4P7ZE42mJaopCPdP0GQ0CWq1WtIgW63bI/OmNu8mWCsWi8KgxeNxBINBYStpUNLtdgXg8HufSCSEKeRzpFKpCPiq1Wri4lmv1wFAau8o6wwGg1KDp2lHBij5fB4zMzMi3yQIdrvd0lsuHA6LuQjNSwAIK0gQDEDUAqyL5Pinp6cFnDWbTWFgbbajNgMEmV6vV5wuWf/GOmjWCz6p+NIBuCMGznKhtMIKK6ywYnIMBgOsrq7Cbrdjb28PhUIBsVgMPp8Pm5ubCAQCUpzfarUwNTWF+fl5AXo+nw+pVAqRSATb29vo9/s4ffq09Da6c+cOgsEgzp49C5vNhj/8wz/E9vY2nnvuOQE7/X4flUoFw+EQ8XgcS0tLaDab+OlPfwqn04m1tTWp5QmHw8KYhcNh1Ot1FItFxGIxnD59Gpqm4Yc//CF6vR7W1tZE+qlpmpynw+EQh0018SRoY1KuslSq4Qkwnoi3Wq0x8BeLxaRH061btzAYDPA7v/M7eOONN2Cz2cbknGZsGwCRhKmg0UxeyNeZqJklzUZQSICqJuNkUdQwAzYq6DACWvW94+SUjwMKHxXHbW9kESeBWPWcft44jk1Ux2D83RjHSUIbjQZu3ryJW7duIZVK4amnnsLy8jLa7TY+//xzOBwOPP/88ygWi/B4PLDZbPjkk0/QbDZxcHCATCYjix6snTNeKwKJQCAgDBCBlcq8qXJAfl5dKFBlubquj7F06v2nMm+UaFK2x9qv0WiEYrGIfD6PXC4n0km32y0AUAWJ/CwlkARBtO7neO12u7h7RiIRAEcMXi6Xk7pbAFLvS6BDR0xNO5Kqer1eqZkjgGa9IG38yfgREGUyGZkP1uSxPYDL5RLwyFpa9nCjPJHfW34WeAB66SDZbrdF6kjDFZfLJQwjrwHvgdnZWTG36fV60mi8VqshEomImoDjczqdiEajUqdJiSeNaZ5UfCkBnNUHzgorrLDCiuPizJkzaLfb2NzcRK/Xw8zMjNRkeL1ezM7OolariWQyHA5jb28PzWYTsVhMCvDZvHpmZkb6O2WzWczOzuLcuXM4ODjAX//1X6PdbuPll18W2RETG5/PJy0CvvjiCzSbTYRCIUmk1FX7SqWCWCwmDNji4qK4X2YyGcTjcSwsLGA0Ggn7x3Pp9XpIp9NiVkDwo5qaMAElCFJliGaMgqZpIkHl+6lUShIgykVff/11fOMb34DP58Pnn38uiZUxuVfr4cxCBZxqTZCRJTRrHaDu1wjA1L+N9YDG46vvPYqBepxaMDPwaARGx4HC4/albnMcWDtuP48Dwo47jnHOjtsP7zf1ZzabRSaTGZM20mKfToe8FmpPM1VWp56Het/4/X7EYrGxfmGqfFJtRq+ep7rwoIJ6tYE3P6fKNNX3yFbzM91uF5VKBYVCQcCb6qaqSjnVnowEmAQSPp9P6ngpc/T7/Wi1WggEAuJ22Ww2xYKfAC0YDMLhcEjfN9Z80e6fjb85HhokDQYD6Zemnh8BKMEXQZOmaeLwyOtKg6h4PC5sKRedWJOs67owg5p2VOfG7Qiq+Myk3J3XgKBvcXFRjKhU8MYaOr7m8/mQzWYxHA5lwYwtDmq1GuLx+Fj935OILx2Ac9ptVg2cFVZYYYUVx0a320WhUJBaiEqlglwuJ3Kq3d1dOJ1OBINBtNtt3LlzR/rFra2toVaroVAoIBAIYGlpSVzT8vk8VlZWMDc3h6tXr2J9fR3hcBjPP/+8gCf2eWLy5/f7cf/+fZRKJUSjUVmFppyKSVksFpNEhZIe9spyOp2YnZ1FqVTC/fv3EYlEJGmKxWIoFovSWoA1HFy1B8wTfDUJNSauDDYaVhN0usL1ej3cvHkTzWYTv/Vbv4Wvf/3rCIVCuHr1KnK5nKyOmwEWM2CmhpEdM3OiVFsJcJ9MzM32qdY0GRP+46SQRpBjtu3PA6AeB7wZ58IMqKjHnTRmM3Bldj5m829k2giA1W3MjqeG0XKfYaxvpLyQVu9m944xzOaVDFgwGEQ0Gh1jjFQGbhKwVoNjVBk7bqu6nxIw8v7TNE0YLoIwPjtyuRwajYZIjY3fPV3XxxpcExABGHsmsCaOzwA6TBLI1Go1dLtdASazs7OYnp5Gp9NBu91Go9GQ9gIEUl6vF+12W8AbpYqsLWM9L8dPYEy3R8oTCZjIegIQ9m53dxcOhwPT09PQdV1qzGy2ozYoBH2UUwJANBpFp9MRwM0ebqo5DN0q2YcOOHruqrJMOlzSpKRarWJ6eloWutjnk9eBdXxPKn4hAKdp2jaAOoAhgIGu61/RNC0G4H8GsAxgG8D/Wtf18i82zMcPu1UDZ4UVVlhhxSNiY2MD8Xgc8Xgcd+7cQb/fRywWQygUwuHhIXw+H6LRKJrNplj6nzlzBtPT07h79y7S6TRmZmawuLiI0WiEnZ0dDAYDPP3003C73fjRj36EwWCAkydPyoo6e7wxCZmenkYmk8H+/j40TcOZM2dQqVSkIS0TstFoJMX1rVYLfr8fPp8P1WoVvV4PU1NTMu5sNotgMCir3pFIBNlsVuRT7F9EEMkgqKHlP5NNYNzABBiXJjLBbLVaY3VByWRSTAju37+Pfr+P3/zN38Tly5cRDofxzjvv4ODgQKzVATwE2ngMM8aDwSTXDDiQyTG2DFABn9Fl0OwYRrCj7n8SCzfpPeN5GPdnts3PE8cBciPoNdvOCAYnbcPEnNcOMO/XZ/b3ceN63HgUq2cm5STzEwqFhG1S58HIvpmdszFUN0kGTUlUxpDujwRgbHQNHDUfz+fzyOfzY26JBHsq+6bruoAh9mBj6wHWoRHc+f1+dDodqfuKxWLyucFggFKphFgshoWFBQSDQZTLZfT7ffR6PXi93jFXSLJ2lDYSRGuaNsbAETCySbbH45Fat06nIw6P4XBYauzogLm1tSXPtoWFBdTrdZTLZTgcDszOzqJcLksNYL/fx8LCAmq1GhqNBsrlssyvKk8Fjp5tyWRS2quwVx7fIzOZzWbh9XqRy+XQarWQSCTEPIWtHTRNg8/nQ6VSGXPOfBLxy2DgvqHrekH5+38A8ENd1/8nTdP+h5/9/X/+JRznscJhuVBaYYUVVljxiCB4++EPf4hCoYAXX3wRqVQK9+/fF6lMvV5HqVSCz+fDmTNnMBwO8f7776NQKODMmTNYWFhAPp/H4eEhZmZmcPr0aeTzeVy9ehXLy8uYnZ1FLpdDIBBAtVpFMBhEJpNBv9/H/Pw8yuUyMpkMlpaW4Pf70e/3xUhA0zTpneR0OqVWjswaa04SiQQAIJ1OC/jjZ1wuF7a2tqDrOqanpwU8qhI0JopMyFT2S5VuGQEJ2RYVrLCWhglWKpUSxnB3dxd/+qd/im9961s4d+4cQqEQfvzjH2NjY0NaM6imDCoDYwyjqYma5KqMhcq8qaybKmdTf6r7U8/LyLIZAdfjMmVqPAq0PAoImYX6vgpGVQBjto/jgNpxx3nU9mbs5KP2ZTbPZvt8nFD3TRdGNukm82Y2fvU+5CKFCvBoqW92P/A+pCEK2S/+rTbE1nVd+q6l02k0Gg2p5+JnOU4yPTQC6fV6App8Ph+cTqeMi8xTtVoV5or1ZJlMRtwXdV3H7OwsFhcXsbW1hUKhAE3TEAgE5PvvdrsRi8XQ7XaleTYAcaYEjpgsLjTR1MRutyMcDksvtlwuJ+1GKFGkMUqv10OxWARw1IpgamoKbrcbfr8f+/v7iEajKJePeCD2lYtEImi32+h0OiK/ZHuJwWCASCQCj8eDWq0mY65UKvB6vXKNWUOo67qMj8CTfe+odmg0GrDZbCLx1HVd5uVJxa9CQvkdAK/+7Pf/L4Af49cI4I4YOMvExAorrLDCisnh9Xrxgx/8AK1WCy+99BIikQhu3boFt9uNeDyOdDoNj8eD2dlZzMzMoFQqoVgsYjQa4dKlSwgGg8hms2i1Wjh58iRCoRC2t7exu7uLc+fOSfIQCAQkedvZ2YHL5UIymUQ+n0c2m8Xq6qoYEcTjcZFi2u12zM7OQtd1bG5uwm63I5VKyeo3rc8p4ymVSqjVatJIvF6v4y//8i9ht9tx8eJFtNtt+Hy+saSKZgGUYZF1IwCii50ZkDBK9hhk4hipVAp+v1+StL/8y79Es9nEV77yFfzWb/0W3nnnHdy9e1ecMdUEF8DYOIygbhL7BYy3QDADcZqmCUAdDAYP1d6p0s1HAbVfhDkzzt/jsHeT9qF+xmjcYZQzqiyqccyTAJdxnEaWyngOZvt6FCP387Bxx4FD9T6g/M/n84m0TpVnEnCozNmkMakMj7FBPEEX7fopmSZLZmSSO50OMpkM0um0yJqN9zjvf5p8UFqp1p7xmaC2CqDr4vT0tDBytVoNuVwOtVoNxWIRc3NzCAaDyOVyIsN2OBzw+XzodDoiGyQr7/P5xur2aGDCOjXVEdLv9wM4MqRhLzbW6/HZyFYBw+FQnk2BQADD4RDr6+uYnp7GzMwM8vk8nE4nwuGwyEM1TUOxWJQWCoVCQdwkk8kkgsEgSqUSXC6XOPB6vV7oui7nx2uTyWTgcrnkWao2IieY1TRNxkpFBBm+JxW/KIDTAfxA0zQdwP9b1/V/CyCl63oaAHRdT2uaNmX2QU3T/jGAfwwAi4uLv+AwHoTDrqHbtwCcFVZYYYUVk+M//af/BE3TcOHCBdRqNezv7yORSGA4HGJ7exvRaBQnTpyAz+dDuVyWovhnnnkGrVYL5XIZNpsNJ0+eFFvzwWCAs2fPjtVS+Hw+FItFlMtlrK6uotfrYXd3F4PBABcvXkS1WkWxWEQqlYLNZkO5XEYgEJBeTNevX4fL5cLi4qKsBKuApN/vI5vNolqtIhQKyQp1uVzGhQsXZF/lchm9Xg+j0UhMCmq1msip7Ha7rOIDD1gwOl+qzBVgbpXPoLEJGb5UKoVwOIxOp4NisYi/+qu/QqVSwYsvvohvf/vbmJ2dxUcffYRCoYButzvmimlkOtSaNjUJN+sfp0olVTklt1HbEKisC4+hAj4jkFWPY5wH9fiPAmJGAPI48sNJINLs/UnyT7Pjme3rONBqrDl8FNg9jlmbNBbj9pNAm3GeKG9jAk+zCrVejUBEdYgk8J8E4oxsnBoul0vkywQaBIa8p1iPxTYH6XQarVZL2Gv1XHgcYx84giTKFenASABGoJFIJBCNRgEAHo9HmKNKpYJEIiEmIPl8XlqTsAVDv99HIpGAy+USFQLHRgDDPm7BYBCVSmWMDadUtN/vj90rNC/hs4XgMBgMjkk82+02Wq0WstmssHZ7e3sIh8Njck+CM5vtqB1EPB6H0+lEOp2WeuJmsykGVZSVkoGkyy8BH9072WuOn6XxSbvdRiQSETnp9PS06T3764hfFMC9pOv64c9A2luapt153A/+DOz9WwD4yle+8kvTPNptNgxG5qtCVlhhhRVWWAEcNfK22+1oNBpoNpvi1DgYDHD69GnEYjEAR72FCoUCFhYWMDc3h0wmg+3tbczPz2NhYQG6ros1fyQSQavVkr5r3W4XX3zxBfx+PxYXF7G/v49PPvkEKysr0l7A5XIhlUqJhHFqagperxeFQgFbW1uygq5pmtS3sJkscNRovN1uIxaLSY+30WiEaDQqTXJdLhcCgYA0BSZLZ7fbpfGxapc+GAzEMAJ4kEiqidgkkMJElz23gKM6k1gshpMnT6JYLCKTyeD9999HsVjE66+/jsuXL8Pn8+Hjjz/G/v6+1Jrw+GZMD4+r1rKpDpKP2t74GvCAdeM88HzVfaoMiVmdFX+f9BrjUdJC47gfh5E7jpGc9L5xLMbzMcpIf5HjP26YgUwz8Gd8XZUsOp1OqSUlA6WCLqMrpOo6+TjjV1/n8fx+P3T9yHgjFArhqaeeQr/fx2effSbj7Xa78kxhrRWNMYz75/2nmu+w7pB1XGobDR6DjP9oNBqr0aKkUm0J0G630e124fP5ROJI0BIKhQAAsVhMJIThcFhAJfulAZCaPi6GdLtduN1uAZ2UddPlUdd1lEolYRJDodAYcI3H4wKobDYbMpmMGLOUSiVZdKLJidPplBYABwcHCIVCCIVCaDabAlSdTqcARMrJh8Mh/H6/LIAFg0Gk02nY7XZ0u13pU8cWApSiU0768zDlv+z4hQCcruuHP/uZ0zTtjwF8FUBW07SZn7FvMwByv4RxPnZYNXBWWGGFFVY8KphchEIhhMNhqVVbXV2VQnv+W11dRSKRwK1bt7C/v48zZ85gZWUFw+EQ+Xweuq6LnLHT6aDRaKBQKODg4ADz8/PweDx47733UCwW8bWvfQ2pVEqcG6emptBqtUQK1Wq1UCgU0Gq1sLa2ho2NDfR6PTzzzDOyery1tYVIJCKr2+FwWOQ8dJkDICvaGxsbqNfr0sSXrOL29jaazeZYXypa9Jv1YTOTFZqBN77f7XalL9O9e/ewurqKl156CW+++SZ2dnZw/fp1FItFvPLKK7h48SLm5ubwk5/8BHfv3hUrcdVKXWUh1Fo1HtMIzhhGkKfuTwVxTD7VXnHqnKj7NTv/SfE3BTaPC/J+njADnWYgzygNfNQ+jdtOArfHvTcJuE06vgrCyHSp4I0ATjUMUVk3Ag4yY+o5HAfcCPgob+TvtVoNNttRk+vf//3fRzwex5/+6Z8K+Op2u9J/LZ/PC6MzaR5Uh04ybxwzgVM4HJbf6fBYr9cRj8eFfer1euI6Gw6HRUraarWk9ozywnq9jsXFRXQ6HRweHo65R7rdbnm+9Pt9kX5XKhUxKGED7GAwKGoAth7gM28wGEhNLxe+KGHU9aM6wnw+D017YBjC65bP5wV0lUoleY4HAgHY7Xbk83n4fD6pYVYbpfMYPp8Ph4eHCIfDWFhYQCaTEfBXrVbHJLYEyYPBAFNTU3C5XFIvxx6iTyr+xgBO0zQ/AJuu6/Wf/f4GgP87gD8F8AcA/qef/fyTX8ZAHzcsF0orrLDCCiseFTabDTMzM7Db7ahUKggGg9IjiPba/X4fy8vLcDgcuHr1KqrVKp577jlMTU2hUCgI22Wz2aRXkqZpYrV96tQpAMCdO3dgs9nwzW9+E5qmoVqtIhKJIBQKiV23pmlIp9MIBALweDwIhULweDyYn5+Hy+VCLBZDNpvFF198gYWFBWHgCOQoZ2KiFQwGBQABR4B1fn5eJJRcZabbHFfijQ6QgHnvKyOQmZR8DwYD1Go16LouNXkej0eSy8PDQ3z/+99Ho9HA888/j29+85uIRqO4evUqisWiJE+qsYoqfzTWehlDTYYZRvdJJuzq63yNSaaaSD9K1mj2uwpGzNi4SWEmSTyODVPH8zhyw0nHPA60Gd83bmv2txlbNun3x2U1uOig1rFRNknWTV2cMEolVcZZ3Z86Bta5qddPZfEIqvj9oJyxXq/j+vXr2NzchM121P+s0WggnU6jVCoJ82YEqfxd/af2uyNYo0SS9y9lhl6vF7FYDIuLi1JnS+ae9ahOpxOZTEb6mZGd0jRNZOO1Wm3su8uWBFwcIptGVpDmKrTzZwsUbkvDEa/Xi0ajIewfDZv4GZqE8PqQhSMLxnlqtVpSy8Z6u2w2C6fTiUAgIM6b7BMHHLGE4XAY5XJZWMBarSbS2larJXPMZw7bPPD8KKV3uVyyyPSk4hdh4FIA/vhnk+kA8F1d1/9K07SrAP5Q07R/BGAXwO/94sN8/Dhi4KwaOCussMIKKybH3Nwc3G43CoUCYrEY5ufnMRgMpHjf4/FgdXUV7XYbt2/fhtfrxfnz5+FwOLC3tzcmZaTNdL1eR61WQzQaRSKRQLFYRD6fRyqVEommrusIhUKw2WwoFAoIhUICUiiXzOfz6PV6YiIQCARw5coV7O/vY3Z2VpKGeDwukiC17g44SnA0TYPT6RQmjn2atre3MTMzg1AoJCwZkyOu+rtcLqljMQNpRjBBFstMcsd6u62tLfzhH/6hOG0SZJbLZbz55ps4ODjAq6++ildeeQWpVArvv/8+dnd3ReqkJskcg2pOAjzcisBs7CqzobJ2KjPHz6jAT2VpjPNg/Nv4uhnQO+69SaDoUXLKR713HNg1O5YZc2YEZMb9qXWLRvBrPI4Z22V83exYKpgieCNoU2vdVHMaXneyMWRbVWCkMq9qqKY4DLfbLWDB7XaL++rh4SG++93vwu12S3PxWq2Gw8NDFItFtFqtMYnxpONxPNw3GS/2L2P9mM1mg8/nE4ljIpFAqVSSnnI0ROI+aSzCxSTKrFdWVhCPx7G7u4t6vS6ulgRZZPf4/CqVSkgmk2i32+KI2W63ZXGGfePYNoVzRSBICaKu6+j3++I2SWOSvb09qSMul8vQNA1ut1v6vKkmKI1GQ9qm0DxKlX13u11pTWCz2ZBKpVAsFmGz2TA1NSWMKJuf93o9OJ3OseditVpFp9NBIBAYazXzpOJvDOB0Xd8EcNHk9SKA3/xFBvWLhMXAWWGFFVZY8agYjUaoVqtIJpNIJBIoFAqSOKjNvQuFAmZnZ8W5sdlsIhgMIhQKoV6vi/yxUCjAZrMhEonA7XajWq2i2WxieXlZHOlcLpe4utHqutvtSg0bXdYKhQLi8bjIo27duoVWq4WlpSW43W4Bn2SwWMw/MzODdDqNqakpSVRUVo4J3dLSkji3pdNpHBwcyEo62wuojpDA5Do49f1JLBTnm6YErVYLkUgE0WgUsVgMmqah2+3i2rVrKJVKeO2113Du3DlMT0/jpz/9Kb744gup32PSqgIRrpibjcMYqnOgGSAzyi3VhH6S3JC/HweuHiUzNL4+KcyYzkeF2TaPGuckgGcmazTOjQp6jfWEansHdTsjw2gE0UbwSZBIlo3AjaCN7zFUwxqVzZ10PmZjU8+ThiWU5zmdzrEFBkqIh8Mh6vU69vb2UKlURNJovB/Uc1PnjPLLQCAwVvtGANjv94U9Y3uAra0taJomtvmxWAy6rovxxmAwgM/nQzAYlOfZiRMn4PV64fV6cfHiRdy6dQu7u7tjtaVOp1NqexOJhLQkIcCjBHIwGCAYDMLtdos6gCweF2I0TRPVAvvFkbGz2+3CDobDYZRKJfj9fulFx5YFdrtdZKgejweRSATValWeJ71eD9FoFP1+H8lkcsxZs1qtSq9NLohxLJqmCavHcff7fenlyRo6m80mbQmeRPwq2gg80bBq4KywwgorrHhUDAYDzM/PCxNms9kQCAREUlQoHLU3jUaj8Hq9sjLMJITucUzu2Jibq+1OpxMnTpzAcDiUHnC02waOatUajYYAOZ/Ph0wmg3w+j5mZGUSjUbRaLVSrVdRqNXGpnJ6eRiAQwMHBgazmT09PIxKJIJ1OY3NzE4PBQBI31gGxBoaOcZRpptNpxGIxWXEnoGSYsSkq6wY8bN1vTIzV5JtsGk1bOp2OSLva7TY2NzeRz+fxwgsv4Ktf/Sp+93d/F6dOncJ7772Hra0tGRfBgFrXpjIaRmMS9XPquR3XpoDSLuP5qnPB7Yy/G4Gk+rcZSDLuwxiPkkz+TUId5yTgexzTZgRt6j5UOaL6HSEYMHMN5efU4xjPj2ybWuumGpSoTJr6GW7DJJ3s0iRp8HHAkRLgTqcDAFJnNxgM4HK5RA7IZtkHBwcol8vSp0w9L3XOOU62t+D9R7ZN0zRpGWCcL/ZPq1QqaDQawtrRzKNarQI4ahrudrvh9XqFmXK5XJiZmcGPf/xjPPvss3j22Welxpdj5rOOYKnVaiEajQpY4lyQIex2u8jljiww+AxqtVoC0giMaKZCh0in04l8Pg+Hw4Hp6Wk0Gg2Ew2H0+33U63V4PB6RhJJx5P1TrVbhcrlESUEQNjU1hVqthnq9jnA4LLJ1MpVsMcB6OV5LSj2j0aiwc7y2rJP971VC+d9k2G02DIYWgLPCCiussGJyLC4uwuFwIJfLCXM2Pz+P7e1t6LouiUG32x2zmWeiT0ZrOBwiGo1idXVVwBtdHnu9Hmq1mrBMjUZDnN7o4sbEgZIjSiQJssgAcnV9OBxiY2MD2WwWnU4Hc3Nz0gQ8m81iZmYGsVgMPp8PPp9PmMJ4PI5AIIBarYalpSVEIhF8+OGHkkQBkBV0NSlhgkjmC5gs+WJibsZoqMHaGUrYuKLP3kqtVgvvvvsutra28O1vfxvPPPMMkskkfvKTn+DGjRtigKBa+6vHUIGCMUlXE2ejzHJScF9GEKcCO/X342SSjEcd81GAzrif4/ZvJoM0HmPSGIx/q581/s2fBFOqzJHHMYI4df4m7Y+fI8Bh3RkNPXg8M5dJsnF0IGQNF0MF/kYG0bggoGkawuEw3G63GJaQLVPt8kejEdrttoC3RqMhQOi4a0m2TWURaSBCoAqMu7LSmTEcDuP+/fsynna7jRMnTmAwGKDdbqNarYqjYjweR6/XQz6fx+zsLBqNBt59911sbm5ib28PtVoNr7zyCgBgc3NT3HnZ1JqSxUQiIdeEIIx/7+zsiAtuv99HuVwWqWkwGBS7fofDIT3oKOm02+2y0BQMBlGr1YQ546KXx+MRGSXvY6onKKGkpLLdbiOfz2NqakrA3cLCgjQBD4fDwmYSpBFgsvaO9x3bC1CtYAG4X2JYDJwVVlhhhRWPimq1ilarhWAwCJ/Ph6mpKdy7dw8+n09MQljvQIaHVteDwQBbW1solUpYXFzEzMwMKpUKMpkMEokEEokE+v0+arUapqam0Ol0UKvVMDs7K5KiarX6kDEAAEmCPB4P7t+/L3UftVoNANBsNsUOfG1tTZLNdruNRCIhbnK0D2+1WrISPRwOkUqlUKlU8Oabb8LhcEgNR6FQECdLGiYwIWXCqNYQGYEKkx5j8jspyExyPnq9HmKxmLCG3W4XGxsb+I//8T/ihRdewMsvv4zf+73fw+nTp/HBBx9ga2tLJGGqzAsYZ9lUlg54mO0x1tUZx8h/RrA3iZF7HAnlpPeNTCfHe1z8PO8bGTfj+2askNn2Zr+r26v/jEwcMLlO0ew4BElqrRvZKYIFdVsVwPE9l8slMmaGamyiHtfY0J37dLlcOHXqFOx2O9bX16VekiYXZJ5p3pHNZlEqldBoNKRG1Wxu+VMFbwSbfI+gp16vC2CgUQuba29vb4sb7XA4xPz8PBwOB9rtNiqVikgt4/G4mIOQWev3+ygUCtIfbWdnB9lsFplMBu12WxabCOR0XZdFIgAIBAIoFArSiy6TycjrZNqz2SwikQgWFhZkIUnXj5qZ87tfKpVgt9vFYZLn3Gg0RMLOWkCXywUA8pwjmCNoZCsVugLPzc1Jv73l5WVxEHY6nXC73dImgaoAynJ5zqFQCJlMRoAi6/t+EQb8F40vHYCz260aOCussMIKK44PJgNTU1NwOBzY3d3FaDTC4uKiSK3YiJcJdalUwu7uLsrlMkajEU6cOIFoNIpsNiv225T9eDwenDt3DsCR9XU8HhfXuV6vh0gkIklfv98XJopF9Ds7O6jX65ifn4fP5xPQBgCrq6tIpVLY398Xi3Bd1xGPx6VRLgCpQ2FvJ8qm2GDX6XTizJkzKJfLWF9fF5kVkyNKrFRgxoTe2OSav6vb8HezbbhPJojD4RC9Xg+dTmesyXClUsFbb72Fg4MDfOtb38L58+exvLyMjz/+GB999BEODw/HetapQeANPNzs2xhGMEdAqDKPDCMYUwGXUTpqxlaq86D+bQRLZnOp7l8di3E7lZkw26/ZWIz7Nr4/iSXj51Swxjk11pKxyTOBtdH4xri9ynIRyAF4iKVSx6zKJWkDr4I3YNyJ1AjejOfr8XiwsLCAdruNg4MD2ZbnQgdYXddRLpeRz+dRrVYFvE26RupxjNfLbrePMfQ00+BPj8eDqakpABDjJC6ipFIpeDweFItFlEol6b1GB0ijK2O1WkWlUpHFnKmpKezt7QkbpjJQbFDOVgAzMzMoFAqiSqABk9/vx3A4lLq/6elpTE1NiarA4XBIA24aj7CuMJ/Pi5Nnq9VCKBQS90cauZgtmNDUpFqtYnZ2FsPhEIVCATMzM6KAmJ2dhc/nw97eHrxer0jofT4fGo3G2D3NGrtkMintBVTQzOfDk4ovHYBzWi6UVlhhhRVWPCJGoxGWl5fR6XRQKpWgaRpmZ2exu7srkiXgyJq63++j3W6jXq+jXq8jFouJ3TbB2KVLl+ByuZDNZsVtrVqtolAo4Pbt25JQnjx5cizZ6vV6sNvtAgpdLheuXLkCl8uFkydPIhAIoNFowO/3j7kl3rx5E8DRKrfL5ZJ2AMBRE22v14tOp4N6vY5gMIhYLCbOlvV6HSdPnoTdbkc8HkcymQQA6QtFl7putzvm2Ac8kFIagcGjQIsqnQPGa5R0XRc3T7IC0WgU0WgUfr8fvV4PN2/exN7eHi5duoSXX34Z3/72t/HUU0/h3Xffxeeffy4sA4GhsdaIxzS2DTju/lD7v5kxbmYSRCM7qcoHGccBKuO8GAGVuj8jkFPlgCoTZTzWpGtkBt6M4zWyhGYsm/Fvfl4dk9l5qscDIJJBtTG1mVTSyMCxr1i9Xn8IuBlBmtm5cjuy7n6/HwcHB8L2Gq+Tz+dDv9/H9va2sFY0KzGCXfW4vBe50MDxkwF3u90i++TnCEppntJoNER6PBgMEIvF4PF4kMvlZJ8zMzPSj5Fy8IWFBYRCIRQKBWxtbYlE8+zZswgGg8jlchgMBnC73YjH4zg4OICu6yKhrFQqiMfj0kg7Eolgb29PFobIvNFdl06X5XJ5rIbM7XbLvRuJRIR5czgcqFQqCIVCApY8Ho8oFNhmhQw+cFQH2G63EY/H4fV6sb+/L8+QdDqNSCQCm82GnZ0dAEfPzkqlIm7CbM7t8XhkgW96eloWyAKBANxut7CRRqOnX3d86QCc3WazGDgrrLDCCiuOjcXFRRSLRezs7Mh/8uVyWYCE3W7H9vY22u02otEoXC4XAoEAUqkUksmksFA+nw+rq6vo9Xr4+OOPEQgEkM1moWlHrmyff/45nE4nIpEITp8+jXA4jGw2C5/PJ9bnqsTp5s2bCAQCWFxclHo59okjc0Y3NfaHopkAzUt8Pt9YQ126uun6Ud+jcDgsq8tswkuDFNagMfkkG0eGjOyAWXNr/q4m5KpMzihjVBkXJkRMisgasnaPK/5vv/02bt++jW9961v46le/it/7vd/D2bNn8d5772FjY0NqjVRTDfW4xrYDDHWcZATVOjuzFX8zcGfGzqlzo/5+HNtl/HuSjHGS1NIMEKl/GyWbZp9RQaoKWIzjV8elShOPA3bqcY37Vpk1m+3I6c/hcAh7ZMbwsSZpaWkJNptN2OlJ864a1hiPz3FSQsfvBxcyVLb20qVLKBQK+OlPfyour6pZidl8HzeHPAbvVX6WcmuXyyW1XoVCAdFoFDabDfV6HdFoVGrV+DOVSgE4avhNaXY4HEYwGESj0UCxWBRG7+LFi3jttdfQ7XZx9epVYdWazaYwoe12G+VyGT6fD91uV+psd3Z2BJC1221ZOEilUuL0yNYFbMStMouhUEjMRHRdF4BIt2Cem9PpFOmmCqCCwaAwemxBQLOZdDoNm80maonhcCiSTeBIjdHv9wX8ssY2EokAOHo22Ww2kYR2u11ROTxKGv2rjC8dgHPYrRo4K6ywwgorjo8bN26g0WjgwoULiEajkqSGw2EUi0VpdL28vCxNrtnom+5ulFZtbW3hww8/FLYslUphfn4eP/7xj+F2u6VeZG5uDvfu3YOmaWJJzZVfGh+cOHECyWRyrKks62NYrzIcDiUJ44p6t9uV/kw0CIjH46jVaqhUKtKygKYHrMujlbfb7RZr8HK5LKv6ZKKazaYklWZtBFRGRmVduL36Ge6HTJkKqOiWqf4LBoNIJBLCxh0eHuI//If/gI8//hivv/46nnnmGZw8eRI3btzAlStXxoCcCiQnGZoQLBC0EZybmZwwAVXZxkngzXgc499m7Jg6n0bm7bhjPOr4RhmfUar4qDAycEbwqQIuIytm/IzKhDLIeKnb8DNM1FWHSfWfw+GQnmzZbBbNZnNsvCqYV8erHk8dh6ZpYqrB+4aLLZQURyIRXLhwAR988AGuX7+ORqMhkkkzya3xu2I2JjaLpnSS2/DYrBmjQy2ljPV6HclkErFYTNoW0C2SaoJgMCjghzV229vbUgf29NNPi4lTuVxGu90W1oysZb1eR7/fF7fGcrmMeDyOU6dOiXSS2/T7fUQiEVECUEbJfm2UtbrdbkQiEeTzeQHr6XQafr8flUoFNptNemh2u10xEKESoNFoYGpqSgyiHA6HSDQpPXc4HCLDHAwG8nzlQt1oNEIikYDb7UaxWBQHy+FwKM9HPmvp0svXp6enH/nd+VXFlw7AWX3grLDCCiuseFS0221cvnwZ0WgUlUpFVptZyE9XxEajgXK5jFOnTokdN1exA4EANjc3sb6+jtnZWVQqFVy4cAEnTpzAtWvXUCwWRb743HPPSasBOqmxNqXb7aLb7eLcuXMIBoPIZDKyKq4mbgRrZMu8Xq9sy0a+TD4oo2JNWT6fh8/nQzgclpVqNrvt9Xo4efIkGo3GWC0MZZSsgbHZbGM1cUxwVUkl8CBhZaKmvkfgRiBkrB0DIAYwlIUxeYtGo4hEInA6nWi327h27Rq2trbw1a9+Fa++etQA/OzZs/jss8/w4YcfYmNj41gpJc+DCTet343jMv6cBN7M2DLjsY2JvJm0Tg3j9pPem3Tc41hD43gn7V8FOUa2iu+b1b+ZMXQMoxTRyLqp4IVAZG5uDsViEV6vF81mU9iodruN0WiEfD5vChYnsYXq+PmP5hUABHxwjtrtNobDodSS/umf/in29vbQarVQr9dN+7sdB9AZBKD8TpDtBiCSRbLvZNai0Sjy+bwYdMRiMfT7fVQqFVQqFTlGKBSSVhl0sQWA/f19UQIkk0mcOHECzWYTrVYL+XxegOHMzAxSqRQ2NzcFLLVaLZEyZrNZxONxaYbNZ1A8HkckEpEelZFIRFoisL7PZrMJc0ZQtr+/D6fTiWq1isFggNnZWfm+q0oEPneSyaQoD6hu4HOT4JSsGvvC0RiFbDzrKdPptPTIYzNvGpjE43Fp9s1nGo1knlR86QCc5UJphRVWWGHFo+KZZ56B0+nE+++/DwBYW1tDuVyGpmmSENJYZG1tTVoOeDweJBIJ1Ot13LhxQxixzc1NPPvss/D7/fj+97+Pzc1NnDx5Emtra5idnYWmaVJHomkavF4vhsOhJEIXLlyApmnIZDKo1WpIJpNS40EjBiYuPp8Pw+EQ169fl35v7K/EOo9yuSyJzPXr13HmzBlpuDsajaT2LhQKSc1ePp9HNBrF9PS0mJ1QvtVsNtFoNIQVpDTRWI+lJshGAxAyCaPRSOrVjAmvaiTCVXKfzycr9mQbVFnd22+/jWvXruGll17C888/jzfeeAOXL1/G1atX8eGHH4oUlscyq30zSj3Vc1N/qszRcfJIs59mv5vV1anxOKDKuC8jcDAbr1kdnRlTaLYvM6BolE6qDJq6rdpc2wjajNsYJZJMnilfI9PDeiojo8qfZmymCvAIbAgW2UONtVW8lwnsc7kcDg4OpK9Zq9V6qC7UeF3M7gEy1HTL5HvGlgdqLaDf78f09LQwk1QCFAoFYYYoUYzFYmi1WggEAjJfnU4H9+/fH6sVW1lZgcvlEsv9YrEoPddGoxG2t7dFXp3L5WQ/wWAQNpsNh4eHcLvd4io7Nzcnkki2WanX6zIP/CwXzCjNbjabwvYHAgHEYjFZQOJcqSoCn88ntv7saUmpe7FYBHBUF5fNZtHr9ZBMJlGr1aRdQKFQQCAQgN1uRzabhcPhENOYer0ui02JREKYXTqKulwuxGIxcdx8EvGlA3D2nwG4SaseVlhhhRVWWNHtdnH37l2Ew2HMzc2JLK5erwN4kBxOT0+j2+1KI1ePx4NsNotWqyX/4R8cHOCpp56C3+/Hj370I3i9Xvz2b/+2rH7X63UUCgVhfFhLwtXpU6dOodvtSoNZNhinxIh21UzgAoEAWq0WUqmUNLgNBAIIh8Oo1WrQtKOakitXrqDVauHSpUvSi46ueJ1OR/ot3blzB3fu3EEymYTP50MikcDe3t5YLR2ZPxosGGt81H9835g0q4wc8LCDohmw4vnR2Y5ALhQKieyp1WqhUCjgz/7sz/Dpp5/ipZdewosvvohvf/vbeO655/Duu+/i6tWrODw8FBt2s/YDHAvDyLA9Ts2bOh/G/RljEuBS92EcmxnIMpNX8rOT3jPu4zjQYTyuUX5pZM2MgEwFTCqAU19XzUVUMAY86HtGwwz+TQBo3KfZGM2CCwoEUVy04QKH6kRKViyfz6NUKkkPMZV1m8S4GZlOlaXk4gwbeFNGqL7GRRQaqrRaLTQaDXm+kDkiO0g2nuyRy+WS7306nRZjI5fLhenpadjtdjQaDWlv4vV64Xa7pW8an120+C8UCuLGCByxeXa7HV6vV0Ch6gBLeaOu6wKMeB5snE1Jea1Wg91uF2DVaDTgdDpFbk5paTAYlMWdQCCAg4MDuXeKxaLI3NvttqgSuAiVSqVQLpfFuIVmLf1+H4FAAO12W+6PeDwurQVYC0gJbalUsmrgfpnhsB19MYYjHQ67BeCssMIKK6x4OAqFAhYXFzE/Py91YsFgUGrDuBpdr9cRDocRiUTGVuVnZmZkJfry5cvwer1YX1/H008/jbm5OXGiA46kiNwfAJFNJpNJcaDM5XJwuVwIh8PodrvCXhFkeL1e6T2ksmLsoZRMJlEqlcSS+3vf+x5WVlbwzDPPQNd13LhxA4PBAPF4HD6fD/F4HIPBAPl8HqFQCGfPnhVJUbVaxcLCAgBga2sL9XodLpdrrAZETbxVySFBmCqTZEJv1gxcZd3UBNjIxqm1cV6vF71eD81mE8FgEOFwWBLhvb09fO9738OPf/xjfPOb38SlS5fwd/7O38Err7yCDz/8EFeuXMHu7q6wiRw3gSUTeU3TJDmfBNaMbJwReDzuIjLP2fh5s+0m7dcIHIw1ZkZQ+SjmT2XQjMdXX1fbNHBxgn+rLBfvlUmGISqAUwGOWXBbVaqrnu9x4JljIMtFxossEBc3gAe9DQeDAUqlEgqFAlqtlnwHjNJhdW7MFimMzBtBA7/jdrsdPp8Puq4LGBsMBkgkEvD5fMI4sZE1ny/GxvXBYFAMlnw+HzqdDjweD+7evSvGJy6XC6urq0gkEgCOjDwymQyGwyFmZmZw5swZdLtdbG9vC+PZ6/VE6kkTk9FoJMDq1KlTUi/M2jsu/tDen82xKWkMhUIolUpwuVwii+V587vOBS/gaEEnGAzK38lkEpubm/B4PIjH42IIlUgkUC6X0Wg0EI1GMRqNUKvVkEqlUKvVxCCpVCqJQQxrgAFIw3On0yk94txuN4bDofTbJHv4pOJLB+DsP/vCD0Y6HPZHbGyFFVZYYcX/ImNhYQE+nw9bW1uoVCpYWFhAoVBAtVrF2toaGo0GqtUqYrGYGADU63U4HA6R9jQaDcRiMTgcDhSLRXFMbDabyOfz6HQ6IukhS8SC+KWlJZTLZWleS7MTyiaZnNGlTW0EzEQtFAphenoawWAQo9EI5XIZH3zwAWw2G55//nmRPdGggzbnc3NzSCQSwvAx6RuNRshms5iZmYHP50M2mx1LftgIF3jAlKgJ7HG1cEyGmdwamzkTsB0nDaRBAxMnNi0mwA0EAlIvVSgU8N3vfhfvvfcevv71r+OFF17A7/7u7+Ly5cu4cuUKrl69is3NTQFuZPZUQxWe36Q6MjNZnvF1szADGipoMSb7apj9rbJ1KvNmxiYawZvx+MbXJkktVXBG4GZkw1THSNZQmh3L6Cw5CQQbWTX1HjSbE/UzKgNIwxR1f/zeqhJa1oGVy2VUq1UBbpT/Gs9FnV+z99XzcLlcsqDBxRG/3y+SUJfLJU6IwWAQkUgEm5ub0DRNzFTUoHGR1+uFpmlYWVlBtVoVxiufz2Nvb08Mm06dOoVEIiEApdFoCAt2+vRpzM7O4saNG9A0TWplu92ugDDgaGGKwCYcDmP4/2/v3WMkS8/zvuer6qrqut+7qu/dM7PD3dnlkisu1pIWFClBlhhZCqMgMUjAioxcZCUWYDkBnEgIECVBAMGxHduA4YS2BVAmY0WARFiSBUu8WSIpilzuzu7O3mamZ7tn+t7VVV33e9XJH9XPu1+frerZe/f0vj9g0HU5deqrc6rOfM/3vu/zDgaIRqMSqeJCFMUmRSmdfgOBgCxc9ft9eL1eZDIZuf6FQiFMT09LtsNwOEQ4HJbzmc/nsbe3J1FHnr9UKiWfh9eDZrOJ2dlZ+QzJZFKe5/XP7hcYiUTEBMVO4XScUb/NRqMhRjdnxYUTcIzAqZGJoiiKMonp6Wns7u7Kf+br6+tIpVJ48sknUa1WcXh4iEQigWQyKfUSjHwxMnPlyhWpg2F6JSewtMn2+XwYDocol8sIBoOYnp7G6uoqut0uisWiTPQWFhakpqtarQKApChR5HAyRlFIZ8mNjQ1xX/z0pz+NRx999ETEq9vtIpfLYXFxEfV6Hc899xyuX7+OT33qUxLZ6/f7MlGNxWLIZrMyuWSaIidZdkSNk2/bLMQ96XenU9r9ytwRrEliyb7PlgNc7W+1WggGgxLVjMViMuna2trCl770JXzta1/Dj//4j+OJJ57Az/3cz+FTn/oUrl+/ju9///u4deuWuIFyvHYfOHeKHMcxTrBNmtC5BZD7cVsM8bZ97t3i67QI2ri0LkZz3cLCfR7GnT+3WLLTFDleCjT7OXufdl2b/T6TTFHGiTDetu317dfY6aKM6rlFJnslUvDYbqc853R8pSFIp9M50brDPVb7OJ6WCmsfK0bZmMLJtENux0hUOp1GJpPB+vq61Gcxas9jysgxrw2ZTEa+y5VKBd1uV1KijTH4kR/5ERGCxWJRetwtLi5idnYWhUJBhCqvdRS0vM5xMYrvzyhZLBZDMpmUlgrBYBDFYhGhUEj6X7ZaLRHMwGiRimNn6wa2AGg0GnINy2azkgGRy+Wwt7eHdruNRCKBYrEoxkxMuWa6Nx01O50Otre3kU6nJYPBcRwZCxuy87gzSsjz5PF45LpeLpfh9/tFUJ4FF07AeZlCOVABpyiKoozn3r17spq6v7+PpaUlXLp0CXfv3sXNmzfF3vqxxx7D888/j8FgIA5ssVgMwWAQpVJJUiyTyaQ0sG21WlJw3+12US6X4TiO2PVXq1Wsr6+LjTUnVkyJZH0J6/DYw4kNfVm31+l08JWvfAXf/OY3sbq6is9//vPIZDKSUtVqtcThLZVKSXPfq1evyr6YvtXpdODz+fDII4+g0WhICihXve2mvXZrAH5GYguEcaLCHaEYV1s2bnJub0chwUhcq9WS6EW/38fq6ioef/xx/PRP/zS+8Y1v4Fvf+ha2t7fxxS9+EV//+tfx1FNP4Ud/9EfxEz/xE3jqqafw0ksv4Tvf+Q6++93vYn9/f+w47EjcuAiWOxLmft4dvbKPh11DZosiflb3sT0tKjdOcN5PKI0To+OigxyP/ZhtwsHURjuixn2Ma6Btiy73+OzPz/RCWwi6hb/7GNlijbcZdeY/t3ENDVLK5bK4oHKRYFLD5nFppe7nKXDsBQ3gjagko+62yQ8wMuCIxWLY2toSQxFeVyKRiBggcUEnGAwil8uhUqkgFAqh1Wphe3tb2oJEo1E8/PDDePzxx3Hnzh0Ui0VUKhXs7+9jbm4O2WwWrVZLFquYmsxjQ9FXLpdP1I1NTU3h6OgIwWAQi4uLWFhYwO7uLqanpyX9kG6/jNKz6xsAAEfWSURBVOiVy2XZt32+eAy4b6ZZJhIJWUSam5vD0dERPB4PQqEQDg8P5TrFejr7uxOPxxEOh6XnZzwex8HBAaampsQQpVKpoN1uY2ZmRqKANGHhWILBIGKxGI6OjuQ7446EfpBcOAHHurf+mGJoRVEURQFGETLHGTW2vnz5MhYWFnDjxg3cunULwWAQP/zDP4zl5WWsra1hMBggn8+j3+9jdnYW3W4Xzz33HLLZLPL5PGKxGIBRa4JCoSATWoo1riwzynN4eCgTYRoSsEkv3RU54Y1EIpKyxBq5ZDKJF198Ed/5zndQqVTw2c9+Fg8//LBE7FjHZtfBMGrl9XoxMzMDYDSBZE1dKBQSUcY0rIWFBezv76Pf7yOZTKLdbqNYLEqaV61Wkxo3ws9lp0PyNidU7ugSuZ9AcUc7uA8aFdCFjz2yXnrpJVy5cgVra2uSTra9vY2vfOUr+OpXv4qPfexjePrpp/Hoo4/i8ccfRy6Xw5e//GUxUjhNGI0bn/v2OCMNtzCyo0N2Ddm4z+uOTE0ag/uxcc9Nwo4WjUsDHGdIYkfXxkUZ3SmSk46JvT3HTfMbTvZt0TWuZpDGQjx/Pp9PIio05LA/S7/fl8bMbKPR6XSkvtV2S3UvTLjFr/s4chs7fZTj5zWBdVU+n09MNYBR4+1UKiXXEwDw+Xxi/GGblASDQRweHuJjH/sYHnnkEbz00ktYW1tDrVaTOlFGxubm5rC4uIhyuYzNzU3s7+8jk8kgnU5jY2NDDEZsi3ymFfr9fkkppKjhohWzEO7evYuVlRVcunQJ9+7dQygUQjQaRaVSQaVSQTqdllo6x3EkEspUxqmpKTEw4eIV2xEMBgPMz8+LkPP5fJKCHo/HJeLIcfE6wHTw6elpqRV2HAfhcBjJZBL1eh3xeBzxeBy5XA5erxeHh4diJMPfKd1+GdVMpVI4Ojoa9zP6QLhwAs5rmZgoiqIoyjhKpRL6/T6Wl5eRzWbx7LPP4pVXXsHKygpWVlYktYh2/oPBAKurq7h79y5u3LiBubk5sd9utVrY3NwEAFmlrVQqKJfLyGazaDQaKJVKYv7B2gkW6XPVf2lpScwVuBINQLZnLcr3v/99bGxsSG+6XC4nYgyATEKZ/lmtVqVmr9Fo4CMf+YjUqPC9mBrGCCDHR6dLANIPrlAoyMSFKU+cfDmOI6mVU1NTEukz5o0G2HY9n41boEwSHuNSBun2SXfAcrmMZ599FslkUnp7RaNRhEIhmah//etfx7e+9S1cvnwZTz75JJaXl8XspFgsynjt9EF7XOME1Wkia1wkzi3g3GIJwAnR694fx0Nx7D5245w93wrjxNi46Judqmi/lmN2p1SOOy7clzsSaO/b7Rbq/m6wjpTCku0xPB4P6vU6NjY2ZDsA0iKkWq1KXzAKNru+8jSx7DaK4XNu8Wob+vD3TyMVRnjYoJo927LZLGq1mhis8LdULpdFUM3OzoqhD1O7Z2Zm0Ov1cHBwgFqtJu/XbrelD+TOzg52d3dx69YtSSfc3t4W0cj+egBEKPX7fVQqFUkjpCssf98zMzMYDoe4d+8ejDG4cuXKCXHT6/WwvLyMVqsljpmdTgepVOpEFNXv90v/NZ/Ph0gkgl6vJ9s2m01JmWYvNx47plHaojgUCqFUKsHjGTUE53WZ4o0LWP1+H/l8HolEAi+//LLU9/H7Eo/H4TgOdnZ2pM0BP8NZceEEnNbAKYqiKPeDK7PGGHz7299GoVDApUuXMD09jfX1dczNzSGTyUhPpUQige9973tYX1/H8vIyLl++jKmpKdRqNUlxCoVCCIfDKBQKWFtbE6MANrB1HEcK9lutlripsdFtIpEAAKm3sFPTmEK1t7cHn8+Hj370o5L+4/F4xDiApFIpsfzmPmOxGObm5uD3+1Gv12XfdIljyiTTNPP5PG7evIn5+XkUCgX4/X6USiVUKhVJeWKdHM1AGOXjpIiChvt9JwJt3HPjoiB8z1qtJrWJTO0KBoMyoWOjc0btXnjhBbz44osIh8N4/PHH8dRTT2Fvbw/37t3D4eGhTJgBvElI2LjFx6QIky1MxhlquNMK3WYx497XFkt2FPPdCDg7ddF+3BafbkHH953ULoD7dT9O+H7sy2YLU/6zI3OMzsViMZnws/VFoVA4EfHifuv1Omq1mkRlWdtm18KNS+sdFxF1LyTY33E7HZZj5mKMMUbaYfC3xCh8LBYTl1RgtHDC7zSj9IwWVatVud9ut1Gv13Hjxg3pAxkKheD3+/Hwww/D7/fjzp07mJqawquvvopkMikLOblcDolEQr6TtNdn/Vq1WpX6QOANsxQAIuh4LWs0Gtjf38fq6irW1tbQbreRSqWwv79/ok8dr3d2LaAd/aYxijEGmUxG+gBy0YvtASjSjXnDHZPHlOOenZ2VZu/hcBgLCwsnXG7ZjPz27duS3jk9PS11f7FYDLdu3RJhF4vFcHBwIGm6Z8GFE3B0odQInKIoijIJFq6//vrrGA6HeOKJJ1Aul1Gr1bC8vCxOb3Nzc2i1WnjuuefgOA6eeuopLC4uYjgcot1u4969e2JW0uv1sLOzgxdffBGPPPKIpBENh0NEIhEpyu90OpiZmZFoF80J4vG4pP9w8sYVZtp19/t9RCIRRCIR+P1+mRjSLtxxHEmRBCD9kowx0t9pb29PivfZ0NsYIyKxVCohmUzizp07yOfzyGQymJ6eRqFQQKfTkRYKlUpFJqeccAYCAfT7fXlP4M0Ri3FROLfYcUe5iG10Mkkk2UKOFuo0kGk2m6hUKhKNo+kBzWO+8Y1vwBiDlZUVzM7O4tKlS+JUSnME2yzjfjVQ7uicbVIyrpH1aWmF9rGxhcJp72uLntMig+PSQ8elxtrRODt6O050ThqbHW2bFK1iip4tpLgt0ySnpqYwMzODVCqFRCIhpiMHBwdot9si8Iwx8n3geaQdP+3qmaI3TpyPWyywj6vNuCiiW0TyH/u1RaNROY6MQPF1xozqzgqFgiyY0O3WmFEzb7/fj8PDQ8RiMXzpS1+S29z/lStXUCgUJHpWKBRErNXrdSwvLyOTycix8Hg8kqZIccYUa4o0RuW4EGILr6OjI4TD4ROLV7u7u9J7jQLIcRyJYBljcHR0JNePZDIp5ySTyUj9bTqdlshXMpkEABHh4XBYriuhUOhEq4J+v4/9/X0xU5mbm8Pa2pqYHc3NzWFjYwPFYlEWtRi1zGaz2NnZQblclkgej086nX7T9+WD4sIJOI3AKYqiKPfj4OBArP9ZFO/z+aSpN+veDg8Psbm5ibm5OczPz5+w+T84OJD6N1rl7+3t4dq1a5ifn8f6+rrUmMRiMRQKBZkkNhoNib70ej1ZSWZaFVOBOKHrdrti+8+Vc1pz2+mTbHbN/XIyFQ6HUa/XcXR0JCYKbBzOVeThcAifz4fFxUW0Wi1ptTAcDjEzMyMOcv1+H9VqVepMKpWKiE6mPwEnJ7P2RNd28hsXTbOfO82wY9xr3NDYpNlsIhAIiIhtt9si6oLBoDj3NRoNNJtNbGxsSI1OOp3GwsICDg4ORACwB9Y44eP+3O4URAofOwpn78MWc+P2M0nkjUuzJOPS/ezX2ZE6d581+73ssbqNReyo27j3cAsbt2i139Nt1W/XtnExhPb1zWYTr732GqrVqqQg8jtNMx5G21hDxkUGpkpOwj22cc+7BTU/r/157BRcGpfQfZIiiCnIHo8HrVZLXGkdx5F0P9bAhkIhMSdpt9sSSWu1WsjlcmIEMjc3h1dffRVXrlzB4uIi1tbWxKSj3W7j6aeflgUPpigyUsWFI/5W6B5JoUaHyWaziXA4LJGvUCiEfr+Pmzdv4uMf/ziuX78upiHdbhfxeFy+b2zGTXEE4ERqJptx04yEbQ8YsSuVSuJ2yXRIprDTaIVGJ16vF9FoFEtLS9jc3BS336tXr2J/fx9bW1twHEdEJwCJ/BWLRXS7XSwsLEhfQLaUOSsunoDzsgZOTUwURVGU8dRqNayurooIYZodJwfz8/MS9cpkMlhcXJRG1kdHR+h0OojFYtKjiO5wjz/+OLxeL8rlMur1OmZmZpBMJlGr1RAOh2U7mhvQujoej0tqJYUG67qYmhgKhcTy35502g1wGYXjJIMT3d3dXXFVCwaDkoLGY+H1etFut2GMkbF4PB4kEokTNThMXZqbm8PBwYEYAvBzGWMkUsDJKFMpxzXsJrYQmyQ03LzV7ZnCybEHAgGZNFMk2ymwnMhWq1W0Wi3cvXsXAJBIJBAKhZBIJKQmiILgNIHEMdhRK7sdA/Bm50ZymnvkODMYWyTZKWKniTv3+9iiw8Y2K7HHfb/9jUuR5HeG54bbMWLGz8dUuFwuh1wuh+npaaRSKWxtbWF7ext3796VbTluLjKwv1m9XpfHKNx4ztzjm7RgMC6N0r3A4I5O2sfCPi90W2QkvdfrSb0e22FwkadWq4mYSCQSWFhYgMfjQalUkvoxXm8GgwFisZj8xhltW15eRj6fF1HoOCMH109+8pN49NFHcffuXWlSTnfOYDB4osciDT0YlaKrJDCK8vM4pFIpeDweHB0dIZPJSM0Y2xFQWHJf/F1yQYDmUv1+X+pVKcrYww2AZBwAI8HHqH4ulxO3Sy4qMY08EAhgdnYWxWJRvjdXr15Fu92WVgpcRPN6vUin0wiFQrhz5w6Ojo6QTCYRDAaxubkJj8dzItPhLLh4Ak4jcIqiKMp9WF5elhVh4A1HRtagAJDajUgkIulDLIiPRCKSbsNUrfn5ebTbbZkMMVLAprVM5ZqZmTnhgJfL5aSRbCQSQTQalRoupmaGw2Gp/aALHfcXCASk0Tgnst1uF7Ozs6hWq9je3ka320WpVJJUStbZMZoWi8Xg9/uxt7eHXC6Hubk5mXQxUsC6G4pMNr49OjoSZ01ObDk55+vtqJyNewJsp/u9U8alCtppnOzpxagcawlZY0QXvtnZWXG19Pl84sDJffNc2f32OCl111HxO8bJvdvgw/5rHw/7r/s5dw++cdvYQuy0Ojo3bgFmp3/aaZ+2Ycm4aKF7/O5Inp1GSgHHqEk2m8Xc3Jx893d3d3Hnzh288sorEumleOPvs9vtimize7dNEm6Tvn/j0ibt17jvj0urtY8XF2z42+N1hcKIfdTq9fqJKDaPTyAQwMLCAqrVKnq9HhYXF+H3+9Hr9bC/v49AICDGGrlcDqVSCQcHB1hdXcX8/DzK5bJE6YfDIa5evYpIJILd3d0TY2Vdr20KU6lUJP2Y5/zg4ACdTgd+vx/tdhuDwUBSwGnpX6lUUCwWZUGIC1h05O31eohGo3J+QqGQXO/YcJztTSg6eXyr1eqJ3xMdgtnygeK/Xq9L24XZ2VnUajWsr6+j2Wzi0qVLGAwGkkZP4cboYiaTweHhIarVKiKRCJLJJAqFAnq9HtLpNKLRKG7fvv2Wfk/vBxdOwLEGrq994BRFUZQJcEIXCATEhp6NuHu9Hur1uvQ/o+EB7bM5MWQdSzQaRSAQQLFYlD5Kc3NzSKVSkqbD92PtCq2oE4kEcrmcvF80GsXu7q5MglgvwoiRbTjS6XTEfrvdbkv6JQDpE7W5uYl4PI5AIICtrS3pV8fP2263kc1mJRLJ9EwKA5/Ph06ng2KxKKvxnCDm83k4jiOGLEwL5eflZIgpoRQ1bpFmR6fcaYnvRMi5J9du+N6dTkeEHKNwFHLT09Pw+/2IRqP4yEc+gs997nN45plncP36ddy5cwe9Xk+ioxT9PE90vrNrinK5nESFGo0G2u32iWjUpBRMMimCRoHM24QGJPZ9O0JkR+1sow23ILG3sU057GPsTgGdlApqfya7How9zJLJJNLpNGZnZzE9PS01bTdu3ECpVJJ0YUakAYhg4O+JKbA0I+E5cC8guI+v/fntlMdxYs2NLdLs+3baJNsZ+P1+JBIJqXuj0yR7prG2iuMNh8OIRCLSBqHRaODatWvwer3odruo1WpyDWIEa29vD71eDw899BCSyaQ0rOa/XC6HcDiMeDwOv9+P/f19GDMyVWG0nOmTrHkDRr/paDSKWq0GYBTRKpfL8Hq9EpWmsQgzFWgEsry8jOFwiGq1KuPhd8Dn80mtLq+lOzs7khXh9/ult1sgEBDDEn73a7WatDnhtZmRSJrT8FrKOt50Og2fz4e7d++i0WiI+QnTb/P5PIrFIjY2NtDtdrGysoLhcIh6vY5EIoF4PI67d+9qG4H3Eo3AKYqiKPejXq8jmUxKfZm94s6ar0AggP39fZlMcMJCEcY+a47jYGNjA1NTUzg8PEQ6nZYJQKVSkegWxSEjbcFgEJFIRBzoQqGQFMvbqVBc5Wa0jc2FY7EYjDGSgmQ793G1fWlpSSJ52WwWwBv9pDgBYp+mcDiMmZkZWdlnOhdTr5g22Gq1kEgksLW1BY/HIw5vNDbgRIgmBLZQsSfG7rS0cTVl9xNxp02qJz3m3p4TZopg2rrbUYff/u3fRiaTQTQaxeLiorRmYFSH6WSsb0omk3jsscfg9/uxurqKp59+WtLANjY2sLGxgc3NTaytrUlKLift4yJqb0Xk2Z/PFm/j7o8zGRknwCaleI6rdxu3jTtax+85zUcikQjm5+fFBv/o6Ah37tyR1DseC55nTtBpPEIBzogORRvr2/h7nhSRdX8n3NeBca8ZJ+r4PXe3T6DAZdogzXN8Ph92dnbkO8aoYSgUOlH/xbTpYrGIYDCIq1evygLM1taWZBLwN9fpdBAMBrG0tIR+v4+dnR0ZC2voEokEIpEIstmsCBwKJBouMVLN7AKKN0bxY7GYZCBMT0+LYI5EInKtmpmZkfGkUilsb2/L8bMNZriQ1Gg0kM/nJUug3W5Liim3LZfLcq1xHAfNZhPz8/PSOsEWk1ygmZ+fRzqdRrFYlBRQClFmK9jvMTc3h06nIws1S0tLCIVCeOWVV6QVQ6/Xk5q5s+LCCbigf3SRanbGpxQoiqIoCk1AGHXhf8RM3QqHw9ja2sLu7q7UjHEC5DgOyuWyNKU9PDyUdJ6rV68iFothf38fh4eHJ3pT0QKbDbeZThQOhwFAivGZymM7xbEvHHu30eGt1WqdEEpMG2J/KcdxRCCylQGNHhqNhvRvSiQSUkvCCSjty2mY8Oqrr0qUiSlRtVoNvV4PjzzyCJrNJjY3NyUywJYCAOQ97WbM7kjNuOjI/SZI7ufd0T1b4LnT5dyvHQ6HIg6azaZMvKvVKu7cuYNwOCzHkpbv9vlrt9uSRrmzs4O7d+/C4/Egn8/j+vXr+OhHP4qFhQVcvnwZn/zkJ+Hz+fD666/j6OgIm5ub2N3dFXMdOiVSrNvRMffxsZtb22KYf+1zwM9uC4xxETfgzX3e7EibPQa7no/vxwgmJ7yJRALJZFJ6jTFV7+DgALdv35a+i0xptqNsw+EQg8FAjDfsf/zusy7UdpMcd95P+w6N+664I2v2a9wRRnsBheNmVN/v9yMSiUjkfmtrS36vjNYyCgdAom6DwQCFQgHxeBxLS0sibIrFotSbOY6DdDqN7e1tDAYDpFIpOVeVSkWOH7eni+JXv/pV6RVpO3Dy+8b2IIym12o1ETl0gaRQYlNxmsJwAYf7pwsle1vakb5eryftBfb29hCLxeTY2eeOGRAUXO12G/F4HFNTUzg6OsJgMMDMzAz29/dF6C0tLSGXy2F/f18yLrhgxUg4r7m9Xg/5fB6xWAwvv/wyjDHIZrOIRqPY3t6WhQefz4ft7W10Oh3E4/FTv1vvJxdOwCVCI+ehSqt3xiNRFEVRziv2hJP1YJFIBHNzcwgEAtjY2MDh4SGy2SxKpZL0mgJGLopzc3MyMWEKYTabhdfrxfb2tkxIGHXgZI2TYWOMGI8YY1AqlRAIBABAGvl2u13s7++LYx0b84bDYQyHwxM1PRQVnPAwimb3lAsGg/IaTpD39vawurqKQCCAWq0mkxmKGKY0LS4unnDMDAaDuHbtGp555hkxWiiXywiFQrh9+zba7bZMADn55+TaLRqMMW8SdfdLo5w0sXbvY9Lk/bRJveM4JwQBjWqYasljzfPKc8nzSUHB2rhqtYrnnnsOL774okTnUqkUMpkMVldXsbq6inw+j6WlJUQiEUlLZQphtVpFqVRCtVqVmhym0NoRJgoIRoTsuj/7r1uAASfdJfn7oBix69Q4gedr7N5lrPlMJBJIpVISdaLIqNfr2Nvbw40bN9BoNNBoNGQBgpEz/r5sUcbvIiM7tmhj7SHr4cad23HRXPs7clq0dtJ9+7vCz8fjw+8d0/E8Ho+k8FFscPvd3V25zebT09PTEiHqdruYm5tDOp0Wp1vWi9FGPx6PS3Qom83C4/HI95bGKIyqJRIJWSSwU58ZreT3HICkTnKhCIA0yQYgLTh4XeN3Mh6Pi8Nvv9/H2tqa1DWyVQLPF9s7DAYDJBIJ+P1+WTzh+ee1iucgFAqh2WwiFoshEAjg8PBQsgIKhYIsqM3OziISiWB/fx/1eh1TU1NIp9NoNBqyLwpsLpjlcjncuXNHevSl02lxn81ms2JcxfT1Sd+LD4ILJ+DiwZGAK6uAUxRFUSbAtEQWrMfjcWQyGTiOg3v37uHu3btYXl5GoVAQi22madHg4+DgAOvr65ifn8fly5dRq9Vw8+ZNSd/iZC4Wi8lkiJO7cDgsKZylUulEZCqVSqHVaok5AYv0KR4ASD2H1+tFLBaTsQEQC3XWxHE1PZlMotlsotVqiWlCp9PB0tISut2uCMV2uy11YGw8HAqFsLq6io2NDQDA7OysGAG8+uqriEajsgK/srIiNvycZLPfEyehdn2QO5XSTrGcxCTx9nZw1325Iyz2P/ae4iSc7pUUcqx14z8+N85d8ujoCKVSCbdv38Zf/uVfIhAISE1SLpeTWrBoNIp4PI65uTlEIhGJqDJtsFKpSN2UHTlsNptimc+IFgUenQVtF1MKMYo01iX5fD5xDaQ4pVMn7e9ZO8jP2Wg0pKfe3bt3US6XJXWNhiJMM+Q47AgbfztMj7Rr2NzCznZjHXcOx53jSdG2cd8j9/fS3iexo45uEx8+xig/IzmsyWLbA1ss8xxwAejKlSvyu+JvPBgMIp1Ow+/3o9Vq4eWXX5YIGBdsGIFiXe1gMEA2m5V0X2MMcrmcRAV5bCmSmY7JSDy/54yu+f1+ie4xu4CmJoeHh9JuZX9/X2rMAEijdb/fL+/XbDaRTqcxPT0tWQ6saWSdHF0nOR7WsBWLRRF/XODo9/tYWFhALpdDsViU38jS0pL8Nnit5LGNRqNIp9OSwh4IBOSaT0fNTCYDn8+Hw8NDSbmkE+ZZcGEFnEbgFEVRlElwgsRUJdZNFAoFVKtVsZtm37W7d+8iFAphYWFBJqiHh4dYXl7GtWvXxB0vEAggnU6LHTatzznZ9Hg8UmPFug+6OrLxLifirMMCIH/t9KFms4l8Pi+r2WwCzonWYDBArVYTEchoiDEGmUwGxhhsbm6K1TjbKLD2yHGcEzU5fr8f165dQ7PZlD5I0WgUKysrGAwGODg4QD6fh9/vl7RPigzWYTFaZNe7EU6qJ1nyuyfhNvcTdO6Ii3s/k9I23RFBCmK2mGCUxU6pZATEjlrxcfsccCyDwQCVSgVHR0e4d+8ePJ5RY3aKAJ7/bDaLmZkZRKNRJJNJRCIRxGIxpFIpEVsU7xwrzyNFKCNafI7jttP+7NdT3HFyTlHO2khGc46OjlCr1SQiRgHG/XERwk5v5DhYS2gLNgo7ijsKPC4ITBJsboE2LiXSfX+cuJv0XbLf04682RFMW+SzDcdwOMT+/r60rmAUnAsybJdgj+3y5cuSssxFEDqf2hG8qakpLC0tIRaLSY/KRCKBer0uPd1mZmZkEYjCO5FISJQOgNSA8hxzXIlEQkycGMFiH0jW8PF4HB0dIRQKYXp6GkdHR5ifn8fe3p6YIeVyOVlsYD1aPB6XOrhwOCztTJgumUgkRAjzO0kXYL/fj2w2i62tLbTbbbmusacje8PNzMyg2+3KdZ/HkiZRbARfKBQkUhcKhXDr1i1pXZFIJLC9vY1qtQrHcSTCfFZcOAEX9Hnh93pQbqqAUxRFUcbDVXGaAuzu7kqUyO/3o1QqSQ3KCy+8gEQiIQ2/ufJ86dIlXLp0Cc888wxu376NmZkZ5HI5SUFkJIZpQ3R+ZKE/azBisZhE42gjzgkLIxsUVkzJYr1dtVoVE4RGo4FYLCYTS060GNGji12pVJI0LdbosZ6NEya6r3GCH4/HpTcdJ1GVSkXqRpiixHqdxx57DK1WC9/73vekPQPT5Dh5n5Qmyc9n13dR9LnT4d5qJM7e/2mvuV+dHB/jCr47MseJOOsYKYDs1Fk+RuFHbDdJe1LMKE2xWMRrr702tq8bxT57izFtjt8hW2AwamVbtFNY2ZEuO2JWLpdPRL74/nzePjZ2pIzbUDjaAo2CjWKG55vb2xFD4A2Tm3Gi7bQ02knnctw5n7Q/N3bkzT5vrFVlWimPB2vbwuGwHBs74mlH6ZlmGwgEEIvFZAEkHo/L96vdbmNtbU36EsZiMbTbbYm8zczMwHEcFAoFpFIpSXO+cuUKVldXUSqVsLe3J+mRXJDh746CitcyY0b9ISm82EibjpQA0Gw2ZYybm5vw+/1iFNJsNkUEHR4eYjgcIp1Oi0ijSQujbKFQSMQX34/Hjy6vXGA6ODiQaB3rbx3HwerqKgBIWihrDdlwvNvtwuv1Yn5+XupPp6enkUgkkEgk8Morr0gdHU2p9vf35Tp0lumTwAUUcMYYxII+jcApiqIoE4lGo8jn85iamsKrr76Kw8NDiWTQxa1SqeD69evI5/NYWFjA3t6epB/l83nk83m89NJLeOGFF7CysiJNdg8PD8UAo1KpIJVKIRQKnTAyYPSPEzem6nDl2TaGYG0J3es4xu3tbTQaDUSjUamh4T4ZqeDkx+2uyJq4hx9+GNPT0+IuRxMUu/Yjn8/L5LJarSIUCskELJ1O4/nnn5fJFCee09PTWFtbE5dLTtSZtsmJK4XD/Wrd3Lb3dgqeO3r2durm7Mn6JPE2ztzCvV8AJwQOFwM8Hs+bxJxdV+b+y+0p1AmjUe7oHY8DHfc4oTbmjabYwMmG25x82tFQO6XS/py2a+i41gIUWfz8FIGMqFHssibQFmXuf3yc+xh3PuxzPe68jzsvHP9pdZOnibhJE3X7+PK88LfG3zTPWSKRkPREtgPhOUkmk1hcXBRxy+tQPB6XKNL09LS0D2GEnm6KHo9H+jGyRnV3dxftdhvpdBrAGwI/Go0iEomIOOp0OpIGyIhsMBiUOjIeO7bXsI1ZKOYIDT4ODg5kAYHfZ6Zy3rp1C/l8XsyT2DaBtcD83FzAYF0wr2fz8/OSwhiPx1EqlbCzs4NwOCyiE3hj0SAcDmN9ff1N5ilMy5ybm0O5XJYaZEYEt7a20Gw2sbCwIG6am5ubkkLq8XgkS+KsuHACDgDiwSlUVcApiqIoE5ibm0O73cb169dRKBRw6dIliUZ5vV78xV/8BQaDAR555BFJ1+HqMM0mXnrpJezu7iKfz4uBidfrlTQh1nWEQiGJtNBunhFAr9eLg4MDSa3iJJMTQk7Io9GopFIZY3BwcCAmK3RQY+sDusbRNIAGCkxhZKolDTdoisHaG0aMODHkBJwRQAqSer2Og4MDxGIxbG1todPpIJFISB8nr9eLhx56CJ1OR8wFGPVhywE7IkTsyboddbH/AXiToHFPusdN1k+rkRon1E5bZR83wafYtCNKTAljPY8drbPr5tz/7M/K7fl+vE8RYQs6voZpnPbnc9fkuQ1O3J/D/oycRHNbCjWKLX63bIFmHwfet6Nsdrqe+xy6013HiepJqZR2muWkc2V/1nHndlyU113zZkdD2ZORtVx8DdMC7TRRiqNgMCiN43kdAkbXJ6Y/chGHLU/o8slIXbFYlGg5HXDZ09EWXMViEevr6+J2y9YFTPG23SaZZlmr1SRqyN8pswoY9WK6bzQaxZ07dwBA+h4CQCKRkJRK24Dl9u3b8Hg8YvFvtzCgsQlTuLvdLvL5PPb39wGMatd8Ph8KhYJEH4FRVDkajQLACUdc1vgyFTebzWJ1dRWtVgt7e3siXFOpFHZ3d1EsFrG0tIRsNotGo4Ht7W1JN+U11v5NngUXUsAlQn6UW92zHoaiKIpyTtnb25PV7atXr0ohvuM40vyaPdEKhYJMgjKZDAKBAHZ3d+H1erGysiImJ5FIRFwAGe2yHdpYF0azgWazib29PQAQi3qmLQEQh0zugxM4Ovex6Xa320WlUkE8HpeJp11XRJt7RkT4WW2zFbpn0oWSDYZJpVJBKBSSOr1isYhOp4OVlRWJKAyHQ5RKJTQaDWQymRMudul0Grdv35YIBNPmgDeLBeCNlEnbqdI2PmEan9frPeG4yG0niblx9zmGSeLOzSRR534P+y/r4ogdzaIIs40vbBFnizK3sLOfo7Aj4wxU+DgnnraIss1F3J/LNhuxRZg7fdIt1NyvtUUdFyrGieVx4sydBmt/7knC7H5Ruklple7t7THarQL4PH/vPP48b4yG9/t9+Hw+tFqtE+eX9YX1eh0rKyswZtQDjSY0NO8wxqDb7WJmZkaEOdOuOYbp6WnUajW0220kEgkxhbl27ZqYyWxubuLo6AiXL18WEUf3S4/HI/0NI5EICoXCCcdb4A0TIrYI4Wd2HEdaIyQSCWk5wNfTlCSfz4vLJGtoaeYSCoVQr9fl+hCJROQ6lUgkxD2SplO3bt2SFGC64NJoxxgji2X2d54tYVZWVuD1esVsyZhRGmuhUMDW1hZmZ2eRSqVOGAVxMYzi1d3m4IPmQgq4eNCHg9rZOcMoiqIo55ujoyO0Wi2x3WZvpW63K2mIrVYLlUoFwGjVOZPJoN1uY29v70RKIRt3M72SIoiW8IVC4UTUwnEc6UPEOjRGx2h+MhiM+rhxQkzXyHq9jkAgIClHvV7vhMkBJxVsGcDUqW63e2KSycgJ6/QAYHl5Ga1WS1K2mJ5169YtXLt2TVoT0DUzGo2i3W6j1WphZWVFzAo46bHrnoLBIGZnZzE1NYXNzU1Uq9UTIoSf347G2VEQW/DQDIbRO3d0Zpw4s/fJv27ReFrEbpxgsIUIH7cjh+6IoVuw2q/h5+YCAAWALeRsgcf92kYap0Wl7JRIN/a47Nt2pJN/7c/sjrDx3NhGJe7j4963O1Vz3Hlyn5tJ6ZDux/lZ30o01ea09x4nim1jEP5efT4f0uk0ms2mRC9pemOLdBrc8JrB60iv1zvhTsnm241GQxaBBoOBtLgARosswWAQyWQS7XZbFl3i8bj8Ho0ZOYXeuHEDiUQCjuOccBCl+QcXYehoSWMS1ujyuPAawFTIXC6HUqkEAFI/x4h/JpMRZ9RwOIxr165JSwn2qCuVSvB4PEilUnJ943WI0fvZ2Vm8/vrrqFQqkmnAej465zJaxmsgjy8ALCwswOv14vnnn5cI5dzcHPb29rC5uYmVlRWk02nU63Vsbm4iGAzCcRwx++GCle3yehZcWAF3a792/w0VRVGUDyUej0ccy7rdLl5//XVxc5uenpaUSdq7J5NJqbdgbUcgEMDs7CxyuZzUQ3ACm0wmJarF+jpjzImUoHA4LNExihLgjQkjJwc0keAKMFPxmKJkjJE6k1AodKKnUzKZlOe5Mt1qtWSSyQknXQYDgQB8Pp/UrUWjUSwvL8vKc7FYRLVaFVv0UCiEYDCITqeDhYUF1Go1seP2+/2oVqvY398Xt7hOp4NMJiORRE6KObmcFI2zBYPtmGiLhNMiY7bocu930mvsbU6b/E+K6tgCgBN22/aez7lNSWxB5z4OtnAbF4VzR+jsfYyLVNkCa9xjdjTNTku0Uynvdwzdx2rc4+OifvZY3ZG6SRFUe5txaZSnnXNuw/fjuMYdW74fxRfNOPi7y+fzYvYzbrGg1+uJhT2dJdlnkmYcjjPqB0hjmqOjIwAQQVMsFiX9kSnY2WwWa2trODg4kH6SGxsbKJfLsjhAmBLe7/el5yCdIZmOXSwWEYlE3iSKGD1jQ3VmJ9AgiZFDu5aNZiwUQvz9p1Ip+P1+7O3tod/vy/Wh0Wggm82KXb/H48Hs7CwODg6kZs3v94uJCUU0F46YCsrG4Dw+4XAYzz//vJhKzc7OolqtolAoIJ/PI5VKIRaLYWdnRxbRer2eGKtQlFIwnhUXVsCpiYmiKIoyCQoUiplMJoP5+XkYY6SXECdVXEmnMyUt20OhEDKZDFqtlthkdzodKdC/ceOGWFsHg0FZfe90OggGg2K3b0eUGGVhChHFm8fjQTKZPCFGmF4ZCATQaDROTBjZ643REEbsWOcCQFanmb5EgZfNZmUST+FHp7itrS15jHUnNEjhWOr1Ol588UU5do4zMkvY2dk5IZprtZp8fjulzj4WfC2FhO34Ny66w9v2RHWceDotKuN+zi0k3NvYk31baHDSPkkMuMWqHdWbJBjtSJc7QuT+DOOibfbxsPdnu0raj9vva3/2t5OaOE4423/HMU6Ajtu3fd8+dveLRI4bozuKy++/fYzsiCcXOxgBJ/l8Xuzq2+22pI6yFrbRaCAej0sGwOrqKrLZLKLRKCqVirjcOo4jKdt0bqQTLOvYpqamUKvV0Gg08DM/8zPY399HuVzG1NQUVldX4fV6sbe3J5H6wWAg+wBGKZFbW1soFovo9XpYWFhAJpPB9PQ09vb2ROCxFQJ/g6yvo6nH3NycmDfxfSqVilwnK5UKEokEhsMhYrEYSqUSjo6O8Nhjj2F9fV1q3hj1owELjx2FXr1eF8OlYDCIg4MDNJtNcY70+/3i7svPV6/XxUk3FArhlVdeQa1Wk56LvV4P9+7dQzweRzabRTabxebmJvr9vlxbmXbO48YG64lEYuJ3+P1m/K/7ASce9KHW7mMwPLvcVEVRFOX8wrox1n+kUikAo9RKpgyxYXG9XsfOzo4YB8RiMUlNbDabcJyRZf/W1hbS6TS63S7+7M/+DOvr6zLBYfoOWwRwNReARMA4eXYcR+rZyuWyNOG2nQy5Kt/v91Gr1ZBIJJBMJsWExHag5CSDtSu2iLBd8uhyaRtjBINB9Pt97O/vo1qtolKpyOO26LJrYzweD37oh34I8/Pz2NjYkL5yHHM4HEY+n0c8Hkc0Gj1R58cUTzq9cXzuZtOcaLtTCt2mAnx+nHhzC8BxkapJ4sEtBNz74bj5Gez3dwshbm/XlI3btz0eO73RFnLuNEj3Y+7j5U6TtN/HHW2yUyXd293vuLnHPy7y597G3ue4436/19r3x0Uf3c/Z54PRNfc29nNTU1PSoJrR8mw2Kws6bLzNRthsKzAzM4N2u41IJIKFhQXMz89LDSzFgh2ZazabEi2Kx+NSG8uxbWxsIJFIoNPpSHozI4A0/aDIDIfD6PV6ch4PDw/RbDbFECWRSMAYcyI9kb9vfvZMJiNiLhgMYmVlBdVqVTIEarUajo6OUK1WJdIWDocRCAQkksj+dWwpAQDpdFqMW5gCzjo21s7RoIWmKBTDmUwGoVAIzWZTFuD4maenp7G4uIhMJoM7d+6gUChIL8Ver4c7d+5genoaMzMzWFpaEhHMXp3GGLn2U8xyMY3X8LPgwkbgAKDa6iEZ9p/xaBRFUZTzxtbW1glbfq5qFwoFWZnlJJOpih6PB/l8XuoxGEliTcSVK1cwPT2N7e1tqW3L5XJSr0Ixx9cRNkjme8RiMTQaDZTLZaRSKUnPYr0LHdjK5bL0XgIgjnK2eLCdJdvtttTJxWIxmcwz7QsYTfBpuhCJRDAYDMShkpOiRqMh7m80BbCjH8YYXLlyBRsbG1hZWZGJLFO9uEqfy+VORKIASOoYhY8dibNFxLgURztFjPdt85BJdVZukcf9jRN+9nmyxYw7OminztnHBcCJ8fO+vZ9xESv7/SZF6iaJJvvz2NuNiyayFpGvcQvEcbft97mfKHOfN7tW0H7efg23cbeMcO93UmTVfTxt7GPgXhjge7sFL6PNdHdlSuHMzAzK5TLi8bg0OgcgEetmsymOtolEAisrK8jn87Jgs7e3JxE7OtjaBkqsy41EIpKy/fzzz4vpyP7+Pm7evCkOlqVSCYlEAuFwGM1mUwSkxzOy9i8Wi5Li2Ov1kE6n4fF4UKvV5JjV63UZuzFG3Hu5OMSaN27HtgQ0YKH48/l8MMag2Wyi1Wphbm4Oxhhsb2/LtYbXh9nZWYn4+Xw+idiVSiW5hjYaDektx0bgNIOx01sDgQDS6TTC4TDu3buHvb09xONxzM7Owufz4c6dO0gkEojH47h06RJ2dnawu7srzr4ATtQ7O44jaewApF3IWfCOBZwxZhHAbwPIAxgC+ILjOP/EGPMbAP4bAIXjTX/dcZw/frcDfTskwyMBd9TsqoBTFEVR3oTP5xPLe1IsFpHL5TA/Py8pie12W2q+aMLBPkdcGU+lUsjn8+h2uzg4OJA0If7jKrzf75eJXTQalcc5QWMk6vDwUAr7OYmgmQonWa1WC/fu3cPc3Jw4P165cgXGjAr//X4/yuUy9vb2pP6OnwPACZHHyRon7xw/J7ScRHFiz4koo3bcH9OZFhcX4fV6sbCwgEgkgvX1dYkszMzMSHsD4I16Hp/PJ82O2U6BQrJer4+txeLk2133Zdvt0zTGFpmE+7CFjZ3GadclAm82ArFfawssijcKDlsUjUv7dEeXxqVw2ml87s9xWlqgO8rHsfD7BuBEI217P27R4xZLbmHkFnh8jVv8jvuM48Zuj+O0507bp72de/z83rijinYU1zbYYSSG0eLp6WlxUMxkMvL7qtfrEjmyU5BTqRRKpRIikQieeOIJxOPxE5EqNpimOKzVaojFYiLQarUagsGg1MOura1hfX0dc3NzWF9fxyc+8Qnk83n0ej1ZzKEIjEaj8hv3+/04Ojo60acvHA6LHT/r4Gq1GiKRiPSvowMmRV86nca9e/ck3XwwGKBcLks7EUbRPB6P9Gir1+uYmZnB1NSUmJ3Mz8+jWq2iWq0im80CgFx/c7kcKpWKRBIpJhuNBiKRiCxw1Wo1qeEDRq6+rAGMx+N4/fXXcXR0hHA4jNnZWYRCIdy8eRMAEI/Hkc/nUSqVsL29LZkEAMS4ieYuABCJRKTul4t7Z8G7icD1AfwPjuM8Z4yJAnjWGPPV4+f+L8dx/sG7H947Ix0e/Qd1WO/iUvasRqEoiqKcV7LZrBS8c+U3lUphZmYGpVLpTSYCnJDU63UYY7C/vy8iJRaLoVwuS3E7o2is5WD0jdb+TB1yW4B7vV5UKhWUy2VkMhnU63WxGTfGYHl5GcYYrK+vY2dnR1wj+/0+lpeX0el0xG1yZ2cHW1tbmJubw9TUFPb39zE9PY1UKiXiaTAYSC2gXePEejlG3RjZymazsmrPlKjBYCC1fLT3dhxH+jEx3YiT+Hg8jp2dHRHPfD0b+Ho8HknVZBooRZA7DdEWKMSu7bLrZ8ZFe2yhZYszOyI4bv98b7fw422+t+1YSIFnR4omCS/ux963HRGzn7e3Hydy+N58nrU8FAzJZFIipG4BzP2NMwOxH3e/p/uY2Z910hgniVr7s02K4o07DpOikfYxGXdOGInmbZ7jqakpMawIBAIIh8NSIxUMBlEqlRCPx2XBh9tR2Pn9fhweHiKRSOCRRx5BNpvFww8/jOeffx6OM3KqdRxHar8ODg6kTQijc6xd6/f7WF9fx2uvvYZMJoNwOIx6vY7r168jlUrh6OgI2WxWBBQXgvj72d/fF4HS7/eRTCYRDodxdHQkBiOFQkEi8GxfMBwOJTq3sLAgadU0BllbW4PHM+rr5vV6pdckBeNgMMDc3JxkD9AEpNPpIBAIIBaLodlsythYX0xDKV4vSqUSotEo0uk0YrEYqtWqfD5eJ5hGGgqFcPv2bVkoY6rlzZs30Wq1sLS0JItge3t7b4ru85rO+kMarHg8HmkFc1a8YwHnOM4ugN3j2zVjzKsA5t+rgb0bMhEKuLMLbSqKoijnF4oops/lcjlZEWdapJ3KROv9breLjY0NpFIpzM7OSn8i1rAFg0GZ6FEIcYJMw4N2uy0RKWOM1JOVSiXUajWJUNEowe/3y4Rxd3dXHB+ZehSNRmX1PhqN4vDwEO12W6JddKRjKqQxRgxL7BVk3udE8e7du9Jwm+KL77u1tYXLly/L5+GElyv6oVBIJj3pdFrGyOge2x1wxdtOryoUCjBmZCZjT7IZHQNwYuLthgKMY+LE1Y6m2dEzW2BMckO00xht8QacNBTha9zGJnYKnr3fccLF3nbc53SLunHplO7PyX3xO88oLb/X/FzuCSxT0RxncsNtN+M+o/v4jLs/br9vRYy5I3LjInBcBKB4ZZ3ouH0xUmmf73A4LOnJ7LHGmi87gsYFHppmsHaNLomPPvqopGiXy2UxG+LYmS7NxQwAODg4kGtKtVpFqVTCxsYG8vm81Lcy9dEWJRRcHs/Ilr9Wq6FYLAIYXf+q1aqIN7b1oGAJBoMSzWJGAtMoucjFtgF+v1/ceenQC0Ci/UwlXVpaks9Qr9cRiUTQ6XSwt7eHT3ziE7h9+zbK5TKGwyEuX76MXq+HSqUiRlPMZrAdcBm5Y3sFPj8/Pw+fzyfNwtnWIRQK4d69e9KTLpfLodFoYHd3V3637I3JbAYubsTjcRHtjL498G0EjDErAJ4A8D0ATwP4FWPMfwHgBxhF6Y7GvOaXAPwS8MZJfa/IRlXAKYqiKJP55V/+5bfWFOqccfXq1Q/svS5dujT28U984hMf2BgURVGUN/OuXSiNMREAvwfgVx3HqQL45wAuA/g4RhG6fzjudY7jfMFxnCcdx3mSOa/vFamwHx4DFGoq4BRFURRFURRFuTi8KwFnjPFhJN6+7DjO7wOA4zj7juMMHMcZAvgXAJ5698N8e3g9BqmwXyNwiqIoiqIoiqJcKN6xgDOjJON/BeBVx3H+kfX4rLXZzwN46Z0P752TiQRQqJ1dbqqiKIqiKIqiKMp7zbupgXsawC8AuGGMef74sV8H8HljzMcBOAA2APytd/Ee75hsNICCRuAURVEURVEURblAvBsXym8DGFcE/oH2fJtEJhLA64XGWQ9DURRFURRFURTlPeNdm5icVzKRUQ2cu0eIoiiKoiiKoijKg8qFFXC52DQ6/SHKzd5ZD0VRFEVRFEVRFOU94cIKuI/kowCAV3erZzwSRVEURVEURVGU94YLK+CuzcYAAK+ogFMURVEURVEU5YJwYQVcOhJAPjaNl3dUwCmKoiiKoiiKcjG4sAIOAK7NxfCKCjhFURRFURRFUS4IF1rAPToXw1qhjnZvcNZDURRFURRFURRFeddcaAF3bTaGwdDBrf3aWQ9FURRFURRFURTlXXOhBdyjc3EA0Do4RVEURVEURVEuBBdawC0kg4gGprQOTlEURVEURVGUC8GFFnAej8EjczG8vFM566EoiqIoiqIoiqK8ay60gAOAJ5YSuLFdQbXdO+uhKIqiKIqiKIqivCsuvID7qWt59AYOvvnawVkPRVEURVEURVEU5V1x4QXcE4sJzEQD+Pcv7Z31UBRFURRFURRFUd4VF17AeTwGP/VoDv/hZgGtrvaDUxRFURRFURTlweXCCzgA+Myjs2j1Bvjz24WzHoqiKIqiKIqiKMo75kMh4P7KpRTiQR/+9XfvotPXKJyiKIqiKIqiKA8mHwoB5/N68Hd/8iF8e+0Q//sfvXLWw1EURVEURVEURXlHfCgEHAD8zadX8fNPzOMPX9hFbzA86+EoiqIoiqIoiqK8bT40Ag4Afuajs6i0evjuneJZD0VRFEVRFEVRFOVt86EScJ98KIPo9BT+j3/3Kgq1zlkPR1EURVEURVEU5W3xoRJw0z4v/u+/8QncLTXwa79/46yHoyiKoiiKoiiK8rb4UAk4AHj6Sga/+pNX8bVX9/G1V/bPejiKoiiKoiiKoihvmQ+dgAOA//LpVTw0E8Fv/OHL2txbURRFURRFUZQHhg+lgPNPefC/ffYxbB218M++uXbWw1EURVEURVEURXlLfCgFHAD8yOU0fv6Jefw/f34Hf3xjF47jnPWQFEVRFEVRFEVRTuVDK+AA4H/+a4/g4XwM/92Xn8Nn/vG38Jeva3sBRVEURVEURVHOLx9qAZeOBPB7/+2P4u//Z4+j0e3jc1/4S/zXX3wG9U7/rIemKIqiKIqiKIryJj7UAg4Y1cP99ScX8ad/98fw9z7zEXzzZgE/+0+/hf/vmXsYDjWtUlEURVEURVGU84M5D7VfTz75pPODH/zgrIcBAPizWwX8wz+9iRe3Kpj2efDR+Tg+/ZEZLCSD+PRHZhAP+s56iIqiKMoYjDHPOo7z5FmPQ1EURVHeT6bOegDnjU9dzeLHHsrg393YxbN3j/C910v4P//kJgAgMOXBSjqMH394Bo/OxfBTj+YQmPKe8YgVRVEURVEURfmwoAJuDMYY/Ozjc/jZx+cAAEeNLjaKDfzhC7t4dbeKL/z5HQwdIOT34lI2jMvZiPzLxQK4nI0gEfLBGHPGn0RRFEVRFEVRlIuECri3QDLsRzLsxxNLSQBAbzDEX9wp4puvHeBOoY4fbBzh3z6/c+I1fq8H8ZAPyZAPiaAf6Ygf84kgFpJBpCIBBH1eBH1eRKenEA/6EJ2eQnTaB//Uh74sUVEURVEURVGUCaiAewf4vB586moWn7qalcea3T42DpvYr7Wxtl9HsdFFpdXFUaOHcquLW/s1fPPmAdq94an79k95EDsWc5HA1LGwm0Ik4EMk4EXEuh0OTI3++acQCnhHf/1ehPyj5wJTHo0CKoqiKIqiKMoFQgXce0TIP4VrczFcQww//pGZsds4joNio4tys4d2b4Bmd4Bqq4dKq4d6p49au4dau49apz/6e3z/8LCBRmeAWruHRneAwVt0x/QYnBR3AS9C/imE/V6EAsd//VMIux4P+b0ITHkx7fNg2ufFtHU74PPIc36vCkRFURRFURRF+SBRAfcBYoxBJhJAJhJ4x/twHAed/hC1dh+NTh+Nbh/N7kgMNjt9NLoDNLt9NDquv/J8H8VGF/dKTTS7AzQ6o9f330HLBGOA6Skvgv5ROui0z4Ogn4JvdD9gCUD/1OhfYMqLwJQHgeP7fq8HPq8HU14z+usx8E154PPwMYOp49t+rwdT3Iav8Xjgmxpt4/MaFZWKoiiKoijKheV9E3DGmM8A+CcAvAD+peM4v/l+vdeHCWPMsTjyIht950LQTbc/PCH02r0h2v0BOr0h2r0B2v3B6LHeAO3eAJ3+6HarO3qu1R0eRxX76Bzvq9QYonP8uk5/9JpOf4hu//Q00neL12NE4Pm8BlNeD3ye0V8Kvqnjx6eOt53yGng9o+28x/enPJ4Tz03J48fbeo28F/fltf8Z1/3jxzzHr+Ff92P268Y95t4XbxsDeIyBx4yOgQpZRVEURVGUi8f7IuCMMV4A/wzAXwWwBeAZY8wfOI7zyvvxfsq7ZxQd8yMRev/fy3EcdAcjIUdB1xsM0Rs46A+H6A9Gz/cHDvqDIXrD478DB73BEP3h8bbH28vjrn28efuT+xoM39i23RuiPxxgcHy/Pxw93xsMj7cbvY6P873Pe693W8x5DEai71jseT28/Yboe/NzJ1/jORaSHjNaTDhx2xh4PJB9eo1120NxORKdHmPdN5B9m+N9GeDEe+LE/eNtDGDgej1w/Hnuvy1c7zH+vUev43Mnx/rmbYE3jge3Hfd5OE77vce9ftI4x76XjPM+78X9eXCf48zXQhcDFEVRFOUc8X5F4J4CsOY4zusAYIz5HQCfBaACToEx5jiN0ovoWQ/mXTIcWmJvOMRg4GDgjO6f+Oc4J7Z1PzY8vs/b9mPj9mXfHzoOhg5Gf4fWbQfH9yc974zfzro9cBw4joPhECe3Px6DY90eCd7jz+WMhProOfu29Rprv44DOODrRts7eOO54WiD0X3r8ZOvc869oH6QOVUs4lgAusSj/RovFwssMc/tfuGHl/GLP7py1h9RURRFUR4I3i8BNw9g07q/BeCv2BsYY34JwC8BwNLS0vs0DEV5f/F4DPyjcAiC0Kbu5wHHEn33FXtjt3uzeJz0+rezLSyBeup7HX+G4RD3HRdO3H/jszvu93IfF2e8cJZ9Du93TEavcxz7WJwck72tvShAMT+0xpAK+z/Ab4iiKIqiPNi8XwJuXL7NibVxx3G+AOALAPDkk0/qurmiKO8Jki449jKkKIqiKIryYPN+dY3eArBo3V8AsDNhW0VRFEVRFEVRFOUt8H4JuGcAPGSMWTXG+AF8DsAfvE/vpSiKoiiKoiiK8qHgfUmhdBynb4z5FQB/glEbgd9yHOfl9+O9FEVRFEVRFEVRPiy8b33gHMf5YwB//H7tX1EURVEURVEU5cPG+5VCqSiKoiiKoiiKorzHqIBTFEVRFEVRFEV5QFABpyiKoiiKoiiK8oCgAk5RFEVRFEVRFOUBQQWcoiiKoiiKoijKA4IKOEVRFEVRFEVRlAcEFXCKoiiKoiiKoigPCCrgFEVRFEVRFEVRHhBUwCmKoiiKoiiKojwgqIBTFEVRFEVRFEV5QFABpyiKoiiKoiiK8oCgAk5RFEVRFEVRFOUBwTiOc9ZjgDGmAODue7S7DIDD92hfHyQP4rgfxDEDOu4PGh33B8uHedzLjuNk34vBKIqiKMp55VwIuPcSY8wPHMd58qzH8XZ5EMf9II4Z0HF/0Oi4P1h03IqiKIpysdEUSkVRFEVRFEVRlAcEFXCKoiiKoiiKoigPCBdRwH3hrAfwDnkQx/0gjhnQcX/Q6Lg/WHTciqIoinKBuXA1cIqiKIqiKIqiKBeVixiBUxRFURRFURRFuZCogFMURVEURVEURXlAuDACzhjzGWPMTWPMmjHmfzrr8ZyGMWbDGHPDGPO8MeYHx4+ljDFfNcbcPv6bPAfj/C1jzIEx5iXrsYnjNMb82vHxv2mM+emzGfXEcf+GMWb7+Jg/b4z5Geu5Mx+3MWbRGPNNY8yrxpiXjTF/5/jxc328Txn3eT/e08aY7xtjXjge9/96/Ph5P96Txn2uj7c1Fq8x5rox5o+O75/r460oiqIo55ELUQNnjPECuAXgrwLYAvAMgM87jvPKmQ5sAsaYDQBPOo5zaD329wGUHMf5zWMBmnQc5388qzEej+nHANQB/LbjOI+dNk5jzDUA/wbAUwDmAHwNwFXHcQbnZNy/AaDuOM4/cG17LsZtjJkFMOs4znPGmCiAZwH8JwD+Js7x8T5l3H8d5/t4GwBhx3HqxhgfgG8D+DsA/lOc7+M9adyfwTk+3tZ4/nsATwKIOY7zsw/C9URRFEVRzhsXJQL3FIA1x3FedxynC+B3AHz2jMf0dvksgC8e3/4iRpPgM8VxnD8HUHI9PGmcnwXwO47jdBzHWQewhtF5+cCZMO5JnItxO46z6zjOc8e3awBeBTCPc368Txn3JM7LuB3HcerHd33H/xyc/+M9adyTOBfjBgBjzAKAvwbgX7rGd26Pt6IoiqKcRy6KgJsHsGnd38Lpk8izxgHwp8aYZ40xv3T8WM5xnF1gNCkGMHNmozudSeN8EM7BrxhjXjxOsWSq1rkbtzFmBcATAL6HB+h4u8YNnPPjfZzO9zyAAwBfdRzngTjeE8YNnPPjDeAfA/h7AIbWY+f+eCuKoijKeeOiCDgz5rHznBv6tOM4PwTgPwLwt49T/h50zvs5+OcALgP4OIBdAP/w+PFzNW5jTATA7wH4VcdxqqdtOuax8zTuc3+8HccZOI7zcQALAJ4yxjx2yubnfdzn+ngbY34WwIHjOM++1ZeMeew8XU8URVEU5cy4KAJuC8CidX8BwM4ZjeW+OI6zc/z3AMBXMEoN2j+uJ2Jd0cHZjfBUJo3zXJ8Dx3H2jye+QwD/Am+kY52bcR/XNP0egC87jvP7xw+f++M9btwPwvEmjuOUAfwHjOrIzv3xJva4H4Dj/TSA//i4/vd3APyEMeZLeICOt6IoiqKcFy6KgHsGwEPGmFVjjB/A5wD8wRmPaSzGmPCx2QOMMWEAPwXgJYzG+4vHm/0igH97NiO8L5PG+QcAPmeMCRhjVgE8BOD7ZzC+sXCSeMzPY3TMgXMy7mNzin8F4FXHcf6R9dS5Pt6Txv0AHO+sMSZxfDsI4CcBvIbzf7zHjvu8H2/HcX7NcZwFx3FWMLo+f8NxnL+Bc368FUVRFOU8MnXWA3gvcBynb4z5FQB/AsAL4Lccx3n5jIc1iRyAr4zmvZgC8P86jvPvjTHPAPhdY8x/BeAegP/8DMcIADDG/BsAnwaQMcZsAfhfAPwmxozTcZyXjTG/C+AVAH0Af/sMne7GjfvTxpiPY5SGtQHgbwHnatxPA/gFADeO65sA4Ndx/o/3pHF//pwf71kAXzx2sPUA+F3Hcf7IGPNdnO/jPWnc//qcH+9JnPfvt6IoiqKcOy5EGwFFURRFURRFUZQPAxclhVJRFEVRFEVRFOXCowJOURRFURRFURTlAUEFnKIoiqIoiqIoygOCCjhFURRFURRFUZQHBBVwiqIoiqIoiqIoDwgq4BRFURRFURRFUR4QVMApiqIoiqIoiqI8IPz/AohAbjd7GWUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAGoCAYAAAAHGAe8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebht2V0WCr9j9X2zu3POPk2dOtWcVKoqqSKVkBTpO0FIUK8iiKKgcrFD/fReREG4Il64V/B+Nqh4QUAxgIiKhIiKkZAvDakkJqEqqVR/6jT77Hb1zd5rrfH9Mdc79rvGmWvvXe1Jbcb7PPs5e68555hjjjHmOr93vL/GWGsREBAQEBAQEBAQEBAQ8JWPxM3uQEBAQEBAQEBAQEBAQMDREAhcQEBAQEBAQEBAQEDAKwSBwAUEBAQEBAQEBAQEBLxCEAhcQEBAQEBAQEBAQEDAKwSBwAUEBAQEBAQEBAQEBLxCkLrZHQCApaUle/78+ZvdjYCAgICAVzA+/elPb1prl292PwICAgICAl5KfEUQuPPnz+Ohhx662d0ICAgICHgFwxjzzM3uQ0BAQEBAwEuN4EIZEBAQEBAQEBAQEBDwCkEgcAEBAQEBAQEBAQEBAa8QBAIXEBAQEBAQEBAQEBDwCkEgcAEBAQEBAQEBAQEBAa8QBAIXEBAQEBAQEBAQEBDwCkEgcAEBAQEBAQEBAQEBAa8QBAIXEBAQEBAQEBAQEBDwCkEgcAEBAQEBAQEBAQEBAa8QBAIXEBAQEBAQEBAQEBDwCkEgcAEBAQEBAQEBAQEBAa8QBAIXEBAQEBAQEBAQEBDwCsGhBM4Yc9YY82FjzBeNMQ8bY/7y9PMFY8x/NcY8Nv23Ltd8rzHmcWPMo8aY3/dSPkBAQEBAQEBAQEBAQMDvFRxFgRsB+GvW2rsAvBHAXzDGvBrA3wDwm9baOwD85vRvTI99M4C7AXwtgJ8wxiRfis4HBAQEBAQEBAQEBAT8XsKhBM5ae81a+5np720AXwRwGsA3AvjZ6Wk/C+APTH//RgC/YK0dWmufAvA4gDe8yP0OCAgICAgICAgICAj4PYfnFANnjDkP4H4AnwRwwlp7DYhIHoCV6WmnATwrl12efua39Z3GmIeMMQ9tbGw8j64HBAQEBAQEBAQEBAT83sKRCZwxpgTg3wH4K9ba1kGnxnxmb/jA2p+01j5grX1geXn5qN2Yi9ZgD//kw4/ji9cO6lpAQEBAQEBAQEBAQMArF0cicMaYNCLy9vPW2l+ZfnzdGHNqevwUgPXp55cBnJXLzwC4+uJ0dz5a/T3837/xKL5wuflS3yogICAgICAgICAgIOCm4ChZKA2AnwLwRWvtj8uhXwXwJ6e//0kA/1E+/2ZjTNYYcyuAOwD8zovX5bn9BADYG8W+gICAgICAgICAgICAY4HUEc75GgB/AsAXjDH/c/rZ3wTwIwB+yRjzpwFcAvBHAMBa+7Ax5pcAPIIog+VfsNaOX+yO+6Dfpg38LSAgICAgICAgICDgmOJQAmet/Sji49oA4F1zrvlhAD/8Avr1nDEV4IL+FhAQEBAQEBAQEBBwbPGcslB+JcNMOWZQ4AICAgICAgICAgICjiuOD4FzClxgcAEBAQEBAQEBAQEBxxPHh8BN/w0KXEBAQEBAQEBAQEDAccWxIXAIMXABAQEBAQEBAQEBAcccx4bAGcfgAoULCAgICAgICAgICDieOD4ELihwAQEBAQEBAQEBAQHHHMeHwE3/DQJcQEBAQEBAQEBAQMBxxfEhcIZlBAKDCwgICAgICAgICAg4njg+BG76b6BvAQEBAQEBAQEBAQHHFceHwIUcJgEBAQEBAQEBAQEBxxzHh8BNNbjA3wICAgICAgICAgICjiuODYHbryIQKFxAQEBAQEBAQEBAwPHEsSFwdKEMCAgICAgICAgICAg4rjg+BG76bxDgAgICAgICAgICAgKOK44PgWMZgRAFFxAQEBAQEBAQEBBwTHF8CNz036DABQQEBAQEBAQEBAQcVxwfAsckJje3GwEBAQEBAQEBAQEBAS8Zjg+BYxmBwOACAgICAgICAgICAo4pjg+BcwpcYHABAQEBAQEBAQEBAccTx4bAEUGBCwgICAgICAgICAg4rjg2BC7UgQsICAgICAgICAgIOO44PgTOxcAFCS4gICAgICAgICAg4Hji+BA4xsAF/hYQEBAQEBAQEBAQcExxfAjc9N/A3wICAgICAgICAgICjiuOD4EzoYxAQEBAQEBAQEBAQMDxxvEhcNN/QxmBgICAgICAgICAgIDjiuND4EIWyoCAgICAgK8YGGP+mTHm+292P+JgjHmLMebRm92PgICAgOeDY0PgiOBCGRAQEBBwFBhjrDGma4zpTH/+Xzn2p4wxYznWMca8XY4vGGP+/fT6Z4wxf+xmPMNXMqy132Wt/aGb3Q/AzfXt/Nta+9vW2osv8j3+N2PM7xpj2saYp4wx/5scWzHGfMAYc9UY0zTG/P+MMV8tx40x5m8ZYy4ZY1rGmF8wxlSOcM+3TZ/t73qf/7HpuuwaY/6DMWbB6+fmtK/3yOdfY4z5D8/xmf+HMWYwfT82jTG/Yow59VzaeCkx5z3uGGNWb3bffBhjMsaYXzbGPD2d07cfcv7c76DD2jLGfMgbj11jzBfk+H3GmN+ertXLxpi/7V1/0Pp62Gt7ZIz5T9NjS9O1v2WMaRhjPm6M+Rq59h5jzG9M11KsRW+M+WZjzBen937CGPOWIz7zDxpj9ry+XThojOfBGPNGY8x/NcZsG2M2jDH/Vte9MaZmjPlZY8z69OcH5Vhq+n43pvNQlmN/yxjzV4/Sh2ND4Axj4G5yPwICAgICXhqMRqOXotnXWmtL058/4x37uBwrWWv/hxz7JwB2AZwA8K0A/qkx5u6XooMvB4wxqZvdh+eLr6C+GwDfBqAO4GsB/EVjzDdPj5UAfArA6wAsAPhZAB80xpSmx78NwJ8A8DUAVgHkAfyjA29mTBrA/xfAJ73P7wbwz6ftnQDQA/AT02OnAPxpABcA/DMAPzL9PAXgxwD8lefx3H/RWlsCcPv0Of/+82jjpYT/HpestVf9k+LW0XNdWy/CWvwogD8OYO0I5x72HTS3LWvt1+l4APgYgH8rp/wbAB9BtFbfBuDPGWPeDxy8vqZt3y3tlgFckrY7AL4DwDKi9+RHAfwnGbc9AL+EaI3eAGPMe6bXfPu07bcCePIozzzFL3rr4Mk55x2GOoCfBHAewC0A2gD+pRz/BwAK0+NvAPAnjDHfPj32hxDRlSUALQD/6/TZbgXwPhzy3hPHhsA5BAkuICAg4Njg/Pnz+NEf/VG85jWvQbFYfKlI3HOCMaYI4H8B8P3W2o619qMAfhWRQXOU6/PGmB+b7mA3jTEfNcbkp8feP93BbphI3bhLrnvaROrJ56e7zz9ljDkx3cVtG2P+mzGmPj33/HQX+jtNpPpcM8b8NWnrB6e71f/aGNMC8KeMMdVpm9eMMVeMMX/XGJOcnn+7Mea3pv3dNMb84vRzY4z5B9Nd5ua0b/dMj/2MEWXIGPNnjTGPT3etf9WICjLt63cZYx4zxuwYY/6JMfHBEXP6/gYT7eY3pv3/x8aYzPT8j0wv/dx01/2PGmPeboy5LG3eNR3vxnT833+UuVRYa/8va+1nrLUja+2jAP4jIkIGa+2T1toft9Zes9aOrbU/CSADgCrg+wD8lLX2WWttB5GR+keNMYUDbvnXAPwXAF/yPv9WAP/JWvuRaVvfD+APTXf6zwH4rLW2BeC/ISJyQETcftVa+/RzfW55/gaA/wDgPn5mjHmV2VcqHjXGfJMceyHvwV+frrWmMeYXjTG559PnaVvfY4z5PIDudJ1bY8yfNsZcAvDfjTEJY8z3Tfu5boz5OWNMdXr9ef/859MPALDW7lpr/5/p98n4kH4f+B30HNs6D+AtAP6VfHwewM9P1+oTiIgRyeFB68vHWwGsAPh3034NrLWPWmsniDY8xojI0ML0+KPW2p8C8PCc7v4fAP6OtfYT1tqJtfaKtfbKc33mOeMwd636sNZ+yFr7b621LWttD8A/xvRdn+J9AP4va21v+k79FCLiCgC3Avgf1toRgA9j/x38hwD++vTzQ3GsCJwxQYELCAgIOG74wAc+gA9+8INoNBpIpW7c4H7Na16DWq0GAPdNDT79+YkbLpjFR4wxayZy/TrvHbt/Sla+bIz5frO/S3wngLG19sty7uewb+Achr+PSIl5EJHh8r8DmBhj7gTwAUTG9DKAX0e0O52Ra/8XAO+Z9uF9AD4E4G8i2s1NAPhu717vAHAHgPcC+BvGmHfLsW8E8MsAagB+HpEqNEKkpNw/vYaq5A8hIgt1AGewv0v8XkRG2p3Tdv4ogC3/gY0x7wTwfwL4JgCnADwD4Be8074BwOsBvHZ63u/z2zmg72MAf3U6Dm8C8C4Afx4ArLVvnV5DtfUXvb6lAfyn6fOtAPhLAH7eGHNxevxvxKwr9xPXuSn5fAvmGKLGmPsQEbjH+RH287Hx7yyiuYu7/hZEBuHfiTl8N6L1iOnzP4FIqblzer97jTE1AO8G8LAx5iyAb8YLVM6MMYuI1IXHp38XAfxXRGrOCoBvAfATZl8leiHvwTchUjlvBfAaAH/qBXT9WwB8PaK1ROP5bQDuQrQG/9T05x2IjO0SIoNdoefPwBhz7qD1Y56f+/UL/Q5SfBuA37bWPiWf/T8Avs0Yk56+B29CRPiBg9eXjz8J4JettV39cEqYB4hI5/9rrV0/rJMm2kx6AMCyiTaCLk83avJHfE4AeN+UoD1sjPlz0vZha/UwvBU3vuv++0x35d8F8M7pen4HonfwDwLYnJLPI+F4ETgEAS4gICDguOG7v/u7cfbsWeTz8f9Pf/7zn0ej0QCA/2mtrXk/f/6Apt+GaKf5VQCuAvg1IWkfQfQf7goi0vQtABjTVALQ9NpqInLpORDGmAQiw/svT3ePx9baj1lrh4jIzwettf/VWruHyMDNIzJwiX9krb0+3XX+bQCftNZ+dnr9v0dEvBT/h7W2a639AiIXn2+RYx+31v6H6W54BcDXAfgr0/PXEbkB0QVwD5Gr0Op0F/2j8nl5OobGWvtFa+21mEf/VgA/PVWohgC+F8CbPNL8I9bahrX2EqKd6fsOGErXd2tt31r76emu/Gi64/3PEc3vUfBGRHP6I9Nd/P8O4NcwHStr7Y/ErCv3M6fNH0RkY/1L/4CJYtv+FaK54Tr6EIA/M1V0qgC+Z/r5PAXuH2KqvsQcm7s+rbVbAH4YkVL09QD+OiI3zO8B8AdNpLL+R2PMmTn3je2LMaYJYBMRgf5L08+/AcDT1tp/OZ2XzyBSYv7wi/Ae/ENr7VVr7TYi8n3fAf17o0eYnvD7P1U++/LZD07fgz6itfvjUxW1g2jtfrOZdZfU82dgrb100Pqx1v6bA/o+D8/7OygG3wbgZ7zPfg3AHwbQR6Tw/pS19lPP5d4mUo//cEzbsNa+BtF3zh9DpO4dBScApKdtvgXRnN8P4PuOeP0vISLZywD+LIC/bYzh9+HctXpYo8aY1wD429j//wEA/jOiDbOyiWJvvwP77/KvA3gKwEOIxu0XAPwAgO8xxvywMeYjxpif8DYsbsDxInDGhDICAQEBAccMZ8+efUnanboA7drI9esvI9rNv2t67Elr7VNTgvAFREoH/zPvIDI+FBVEcRCHYQlADoBvRAJR7NMz0r8JgGcBnJZzrsvv/Zi/S5jFs/L7M9N7xB27BZFxdE2UpX+OiMACkTpiAPzOdPf6O6Z9/O+I1Ih/AuC6MeYnTXzyDf/ZOoiUOn02jVvpxTzLvOeCMeZOY8yvTdXUFoC/h2isj4JVAM9Ox5t4xuvbkWGM+YuIjOKvnxISPZZHRDg+Ya39P+XQTyNSnf4Hop38D08/vwwPxpj3ISJjv+gfm+LA9Wmt/YC19qustV+HaJNiCOCziIjS+xDFKz0XNe67rbVVREoYFVogWlNf7amV3wrgJF74e/Bc1sonPMJ0m3f82Zhr9LOZ/kx/TyEiFAe18VLihXwHORhj3oxoPn5ZPltARED+DqI5Ogvg9xljuBl21Hv/IQDbAH4r7t7TjaAPICI6rz1Cd0mO/5GNXJE3Afw4gN9/hGthrX1kSvrH1tqPIdq44Hf63LU6VVBd4hNtc0rOPoRoI+K35dB3T/v7GCJX6g9g+i7bCH/DWvsaa+13AvgbiOJRH5j+vA2ROv8dOADHi8AhKHABAQEBxw3mkDoxd999N0qlEhC5PPrZ5v7Zc7iVxazby7xjXwaQMsaoe9trMT9uQ7GJyHXINyKBSAW8hX9M3fDOArhyhHbnQdnvuek9CP0f81lEhvySGLoVa+3dAGCtXbPW/llr7SqioPufmBovsNb+Q2vt6xC5Vt2J2Z3oec9WBLD4Ap7N/9/+nyJSCu6w1lYQuZUetcDQVQBnp6oQcY59M8b8zZh1Nc+g+w5EBtm7rLWXvWNZRDFiVzBNXOAeJtoo+AFr7Xlr7RlEa+kK4sfnXQAemJLVNUSK1V8xxvzH6fGHEa1H3vcCIndMdbcjmfx7iGLp7kBEYluIkq285qABi8N0o+PvAmD84rMAfssjTyVr7Z/Dy/8eHNj1Qz6b6Q+itTHC7ObJXOvTJwAxP9/6PPr8Qr6DFH8SwK94Su4FRO6ZPzdVoy4jUolIlI60vqZt/5y1h1rmaezHgc2FtXYHEQl6sSx9/U6fu1anCqomfAHg3Jj/G4Afstb+q5mGrd221n6rtfbk9Ds0AeB3/A6YKF74QUQJUe4F8OnpeB36Dh4vAhdi4AICAgJ+z+Hhhx9Gp9MBouQMfra574q7xhhzt4lSZSdNlAnwxxAZiF+cHv86Y8yJ6e+vQhSo/x8BwEbxHL8C4O8YY4omSoP9jZAkAGZOGvCpmvDTAH7cGLM6vf+bpsb9LwH4emPMu0wUl/XXEJGqj72A4fl+Y0xhGsvx7QBiVRsbuT3+FwA/ZoypmChxw23GmLdNn+ePiFvdDqL/bsfGmNcbY7562t8uIqM8LoHAvwHw7dMxzyIiDp+0LyBphocyooxunel8/Tnv+HXMNxI/iajv/7uJYn7ejkiJ+gUAsNb+vZh1FWfQfev0ud5jvex20/H5ZUS78t/mqX0wUUr420yEVyNSFv6Of94U34+IKN83/flVAP8C0fwCUUzg+0xU666ISEn5FWutr5B8H4CfsVFGxksALk7X/Dswzexn9pN0nJ8zdj5+FpFq+35Ebnh3GmP+xHRc09P1ctdNeA9eCD4A4K8aY26dflf8PUTZDI+UbMInADE/P89zjTFZs5+QJWOMyZmYHawjfgcd2NaUwP8R3Oji+OXosPlj0++Bk4g2CRj3duj6mn5XvAPReoB8/kZjzJtNlPI/b4z5HkRK5ienx820z0xAlJuuCeJfAvhLJirLUUcUJ/lrR3lmY8w3GmPq03u8AZFKxk2PuWvVH/tpW6cRuSH/E2vtDZuE03d5cbquvw7AdyLa3NBzDCLPhb88fR+eAvBmE7lOvg2z2TVvwPEicDBBgQsICAgIOApOICIzLUT/UZ4H8A02irkBIpXj88aYLqKYhV9BZLgRfx5RXM46IgPvz1lrHwac8dIB8AXE469Pj30KkYvRjwJI2Chz4R9HlCBkExGJeJ+1dvcFPOdvIUoq8ZsA/r619r8ccO63ITKcHkFE0n4ZUcIRIEou8kkTKU6/isjoeAqR69S/mJ7/DCK3yBvc76y1v4mIePw7ANcQKS/f7J/3AvDXEcXTtKf98YnqDwL4WRO5R81kl5uO7/sRxQBuIkqJ/m3WWj+742H4u4hUxU+ZGxXgBxHF2bwXQEOOv2V6fAnROusicsn6aRtlqgQAmKgo+j+b9rc9VUTXrLVriEhh10bxYJiuw+9CZGivIyK3M7GgJkpM8V5Mk9FMCfyPIFJXvhtRnBcQKV/P4Ijq13QsGZ/Xnt7jmxGpWGuI1joN8pfrPXiTuVH1ev1zuP6nERGjjyAysgfYj/N7sfEoovk8DeA3pr/fAjgl+ENy7tzvoMPamuIPIIrB+rB8hqkK+4cQJQXaAfA/ESXe+OHp8UPXF6JsmB+3UYITRRYRadlCtKZ+PyJXY3oG3DLtJ5+jP30O4ocQrZcvI9ps+yz7dYRn/mZE34VtAD8H4EettT87fabD1qqPP4NoQ+gHTLwa/zpEa7uNKHnTt3pzA0QbLr9rrX1o+vevTO+9geh75J/PuTeAKOD4oOMwxvw0oi+ddWstUwP/IvZT39YANKy19013aL6I/cH+xLzdT8UDDzxgH3roocNOOxR3ft+H8O1fcx7f+3WxhDkgICAg4BjDGPNpa+0DXwH9+OMA7rbWfu+hJ790fTiPyNhMH1UpCAjwYYz5PgAb1toDjcmAgICXF0cpOPgziAKUf44fWGv/KH83xvwYZrPRPGGtve9F6t9zggGCD2VAQEBAwE2FtfZf3+w+BAS8GLDW/t3DzwoICHi5cSiBs9Z+ZJ7v89R/85sAvPNF7tfzQoiBCwgICAgICAgICAg4znihMXBvAXDdWvuYfHarMeazJqol8pZ5FxpjvtMY85Ax5qGNjY0X2I1pmzA4PNlNQEBAQEDA8Ya19mlrrQnukwEBAQHHDy+UwH0LosBJ4hqAc9ba+wH8fwD8GxNfDwbW2p+01j5grX1geXn5BXYjgjGhjEBAQEBAQEBAQEBAwPHFUWLgYmGiCvR/CFGmFQCAjQpWDqe/f9pE1e7vRFRt/CWHQXChDAgICAg4HNVq1f13YYxxteZ8Lw4e408ikTjS+UQikYj1DLHWIpFI3HAPPc5/Y7KIz1zPc/xzrbUzn81ri33Q+7K9uOP+vfy++/eIa8fvY6FQQKVSQSaTQTKZRCKRQCKRQC6XQzqdhjEGg8EAg8EA6XQayWQS6XQaxWIRmUwG2WyULI7zk8lkXL/G47H7fDQaYTAYYDgcIpfLoVwuu8+HwyEGgwGSySSMMZhMJphMJhiPxzDGIJ/PI5vNuuefTCYwxiCXyyGXy2E4HKLVamEwGGAymWB3dxeTyQSpVAqJRMLd21rrnpPPBMA953g8ducCQCqVQjqdxsLCApaXl117hUIB4/HY3Ydzksvl3HgNh0PX3mg0wu7uLowxSKfTSKfTSCQSSKfTsNai1+thNBq5seI4j8f7VSESiQRSqZR7Pvab47G3t4e9vb2Z8zlXcUin024sxuMx9vb23L05Fmwvk8kgkUig1+thOBzCWot0Ou3GP5PJIJPJAADG47Hr0+7urusHx4nn6fizfWutWwsAUCgUUCgUkEgkMB6PMR6PMZlM3PvHPiaTSWSzWaRSKYxGI3cOz5tMJm4OrLVuXvms1lrs7e25OWHb/N5RcI50jXKeUqnUzDvJ88bj8cxccF1w3ej5yWQSqVTK/fB4MpmcuZb947PwXdrd3XXH/Hc/mUy6d1zfda7rVCqFbDaLdDqNyWSCwWDgxsxaO3PPRCLhxlXbSyaTyGQybk367zLHmPdmn/SH60e/qzgGHJ9EIoG3v/3tR603+aLieRM4AO8G8CUrhSqNMcsAtq21YxMV9rsDh9QxeDERvQAv190CAgICAo4DfDLCzxSHESz/fDW4aED55/nEZt4xXqvn+v2eR5Li+qzXxvV9HuaRt7h7KeLIJdtLJpOoVCqo1+vOGAP2x280GjlDjqSVBK1QKKBUKqFUKjkDtlAoIJvNOgOcxh2N/b29PQyHQ2e8DQYDd20ikUA2m3VGP8clmUzOEMlkMumIBg3adrvt2qKxCOyTm9FohH6/j9FohL29PfdcSoh4fxrGRDKZxMmTJ7G4uOja5DPu7e05Q5OGL+/B59KxV2IEwLXDMecckMzo2JDQ7e3tOSJI4kUiyXY4LiTDQEQsgP31rIazkhCSXfaFc06CQ3JE0sbzJpOJGxPem8/PttmXwWDg2uG48L78PJvNIpfLOUKmpCSbzSKRSGB3d9cRRCUUfC4SHf5Ncsp1otB+c5x4Dt8VJYM8poRSSSXHjXPNZyQR4pgr+eczk8Dw/eV1usZTqZTra9yGjpIzEjtdZ2yTz6KfkxTzOO+j7wa/D9h/gu2xTRJQ/UwJOMG5yWQySKVSbk3rO8376ObbzcKhBM4Y8wEAbwewZIy5DOAHrLU/hahWwge809+KqKjgCFEhz+9iXZKXA5ECFxhcQEBAQMDBiFOr5pER/z/pODXKPx5HinwiptfPI1HziI/+ftC12l+f7MWpfL5iGHfNvPGYh3n9y2azWFhYQC6Xc0ae3yZ34Pl3Pp9HuVyeMTRpdFMp2d3dnTH+SCyUAJLYdTodWGtRLBYdmen3++45M5kM8vn8jDGqBuVkMkGz2ZwxCEkCU6mUU8dokKoqx+sBOBLDOSDxKxaLyOfzKBaLGI/Hjjh0Oh333FQbUqmUM7BJ4NjvyWTiiMPe3h5SqZRTKPx1TJJHw52kxRiD4XDoDHGdI1XOuIZ8MsFxI+niPVVd8dUqjtN4PJ4hXaq2sS807nUulHBmMhnkcjmMx2M3x1T/SNCo1uRyOeTzeUf6SRypSFGlIxGnqsVnJHHi2HFsqRTrBoGSlHnvAJ+Ff+uGkB73yYmqVf73Ekka1UyqSrwO2FfzuG6o6HIc2H9uUvDdUlVN+6FkkORa+6L9VpJLQqVrVQkV21NwvLjW+C/HSRVI3VTIZDJIp9PY3d2dWVPappLgm4WjZKH8ljmf/6mYz/4doiKdNwchBi4gICAg4DngMJfBg67xVSz/dz33sHvMI4NH6bv/e1ybft/iSNxB94kjgWzzKGOl5yQSCZTLZSwtLSGXy6HX6znjyTf+eZ9UKoVCoYBarQZrLXK5nDOgRqORU0p6vd6MKx+Nz3Q6jfPnz6PZbGI8Hjuilk6nUavVnJpCNUpd84BZA5N96/f76Ha7ADCjWiSTSfR6vRkyxZ9UKuX6CsCRIfZR3cGWlpZQKpXc8+dyOYxGI/R6PUc2qILQBVSVFWPMjFKofaArqLqgkbDyGThn2WzWqS/WWkdgOD/WWuc6SEPaV6CVpKg6pYa9qkU65koQSLpI3kgYATiDXjc1SPjUjZX9Yz907JLJpHOVVeWNa87/jASH88i/eW8lcPp8ulHCeQDgNh70c84fyRGv5/jznlxT/JwEntfqO87rqfoqIeNaIFmhCsXxV+VN55djwHHQTQrdvPLJl6qCOs+6jvUYr2F7vrqqfdO1pO7vVNVJSjlXunaUjNJFlO8Lib6v4r2ceCEulF9xuHlCZkBAQEDAKw1xCtVRlLh55/mkJk4d8wljHNmLU7h80hinhPnn6vlx5+k94whkXD98IncY/PNSqRSq1SpWVlaQyWSwu7vrVBGqUErmqOrUajUUCgXXDpWRdDqNfD4PYN+oa7fb2NvbQz6fR7/fx97eHk6fPu2UJSAyUvP5PKrVKozZjxej65zGu/F8YJ9U9Pt9tFotZzirK16/33f3JTkYj8fI5/Oo1+tOdaJKZq117olUdMrlsjNEs9ksMpmMO59GJw3zXq83M9Y0Kqk8plIp1wd1w1MSpe5/6mrGcVaXPN6LRra6qXH9+GozCRPPUaNb3eOUPPptkEyzPVW+1OWW79Xu7q5zN2VMIYky54xzRPJK9YXumFRMNR5QXSat3Y9b0xg7ts3n4RgqaeYc6PPrs/D5eR//vfbJBv8mSfSJm082qGSq+yifV9U8Xackbz4p53xpbJi6N6ry5sfO6VzMcxNl+7pBoIok17BPkjlWGvPmu4zqmPqqHO+h65TjqbGeNwPHi8A9x93LgICAgIAAwiczwI0qGY2Qw1SnecSNbfrG2EExFXGkze+Xtqs79YeRwbj7+IhTCuf1dR7omlStVlEul12SERrLwL4hxjFOp9MolUpYWlpyrpA06kjGaNTTEKRrHBN8JJNJnDt3Dul0Gjs7O2i1WrDWolarObdEKlpAlLAin8/PxIBxtz2VSmFvb88l++A5dNFLJpNotVpOzQH2kz1Q2eHfatCTUCQSUWKScrnsCA6VPZI09qVcLsNai06nM6NS0ICmEcpxVQLFeSMJLBaLbv2pW6C2o+TXX19qjHMt072Thi/HiuAxjpHGNsa5zakrHtUTjpnGllEppMukJkdRsqFutlQ3s9nsjDsl1Vh1e1Qyx+fQWDN/Y4T9VuWW3w/qRsr3SkkJ4cezHeS2py6kqkjq3HNMSViVqGlf/dgvVdpUHWT72h4JkE/g2KbGBXKe+V5wXtkXjoeSVn+sdRxJ3vkcup45H3z/6ErM+WW/eU8mfUmn026Th6quvmM3A8eMwIUslAEBAQEBzw3+f8JxZEkNX36mv6tRFadm+W37bcw7V48fprr59z0q8Ypr9yjk7CC1TpFKpVyyEVVNaGix76peFAoF1Ot1LC8vw1qLRqPhFAk1UkejkXPx6/V6SCQSKBaLaLVaLslJOp1Gq9Vy7pOlUsmRExr7qVQK+XzeESZgP7sgABc/1u12nVKgShoJZq/Xm1E1SNxIVJnIRBMxkBSQ3Cqxo6GocVyFQsEpPzxHlR0ax4PBwBFnGr00Vvv9vjNe1bCnmkRVUjcWNJOkug5SOVIyrqoWjXR1bWNf1W1NVRxVqdjn4XDoSIISHd6HxIFEbG9vD/1+3xFVzc5Jop/P513iG2utU934TCSUw+HQbRio0kZipK6PHB8SSp7nK0Laf1XtOd68hypXGn+oLoHqksh2fOVMyYkqrpo8hecoOfHVU31XOe9cS75aGPfdyfvrPKtqqS6v2ieOhboukvTqZoBmkeRxts37KhHV9533UJdLEvZEIuHicbn2n8sm1ouN40XgEGLgAgICAgKOjnnEJc7oiLvGd1HySZRPjnzDZt5u+mFkK05188/RRAf6PAddMw++gXlQfwgqSouLi854VtWMO9lqaJFwrKysoFAoOFdExm0xg+Te3p4rAcCMiCQqvV4Pt9xyCxKJhLu+0+k490gSMc08qeRN49a4i7+7u4tut+vUN/ZXXRBTqRTK5TIAuLiiQqHgdu3ZJt34OEaahZPKHgmYJtAol8vOiNQsjeq+qEoasO8mSUJBI5WJY0gk1WincUuS62f9IwnXZBVUW0gyOI8kU3xWrneScDWwgf1U/upmxzg+EgT2hWOvz6UGt2akpGJH91YmvSHBp6urqm6aiRDYJ63qLss1rHFeqtCp+qmuqxwDn9hxLJRMcFx910D2Q9U+rgOdC44ViayvrmryEn0eJTd6X31vOf+auEW/CziG/JybFareqdJHJVtVV44V31eNe+R86PrlmmDf2D9u2Gj8JOfKGONIOseS746uV7bvj8nNwPEicMaELJQBAQEBAUfCUVWnuPOOcq2vUM1Tz/xz/eviSJP/u+6OA/suR/4xnxj65E4J2WFKnd8PNWZSqRRqtZqrW0blgMRB08GrmlAulx3hI8laWFhw57PtbDbr1C8a5+12G6lUCsvLy85YbbfbjsQB++njNRNjoVCYMWAZL0a3wU6n4xQbVZtIrnK5nIvP433ohqluVyR+dNcDgFKphHq97sZCCRjdytgXzZTIuchkMjMGq7p4UQ1hun2qnYyp4/NqnTQa0LlczhnGJFCcJ2Df3YyGrSqaJDG8rypWnHut7cb1SvJGBYzPyraU6CnBYSp/Er5SqeTcVUnQlTAzGyVru5Ho+eSNREo3Qki6lEgSJEfqQqjg+CnhUlKrZI3nKwnzv0Pi4stUrVJ3QarGqpxaa2fq0PnvmMInhzoOnBdupJC4+RtU7JOSN7al3wX6HaRkSceJbagrLwkXj6mKxjEnIeeGi7r2cs37BJTjwvdXibQ/Ti8njheBQ1DgAgICAgIOh+56Kw5yNdTPfOVpXht6r3kE0T9/Hkny+6FGnZK3w86Pe5648/3jcSpc3HnZbBYnTpzAwsICALjkIPl8fkb1AeCMwFQqhUql4uLdut0uut2uiz0B4GLCMpmMc41Lp9MuPqxYLDrip5kaaegxiyKN+nK57JRBEgZVj0ajkavvVi6Xce7cOTSbTWxvb6PZbGJvbw/FYtHVoSN5oeE4HA7R6XRmSgfQvTKXy6FYLM6QWxrhPJ+EgklI2D6VQaobNFLV0KehrO6E/FwLf3MOeD37x/HW2CO9D4/TKCcB0rghkjdV9dQtlYRFVTe2wxp+muSCf/OZlbyxn7oxkEgknNpLQp/NZl0pBrq0KpnksyuJUiKlrpE05kmgfbdOHSPfbc///tF517HRJCtKFtSFUzNfKqHRvzkfSpyoxLFfukZ0PalLIseK65zt6Xj5ca2+Uqf98l0oOTYkdfo+8Tq+o5x/rjkl1v4Yx8UnahkKegvwON8/de3U947XBAL3IsGEGLiAgICAgOeAeeqaEpN5hO4g0qTkap76poRqnkvkQS6T8671++Uf52eqmMU9hz8Geu288WB5gGq16lQyZmBUo5AkLp1Oo1gsYnl5ecaVjbFmNDpJqsbjqIYXAGfoVSoVZ0h1u10X10bDTkkH1SUqZDTCqcLQeGWJAGMMarUaSqUSgNm6dCQCg8EAvV5vJrU4a8EpOSCxKZVKKBaLrl/sOwkmDWIamCSyAFxmRZ6nmRE1qQqNZRKXfD7vSAifl89AoqaEi8qIGsSEuivyGWiQkyRpCnka/iR4nDuSCJJSkrt+vw9jjCP8JG98NhrrNPJ5X1VPWQJCFT0AM4lK+v0+er2ei39kHJwSBF8BovLoK0SqzOjz6LMq4oidxj7GvWO8p8ZlxqlMfBd5fxJT/V7gdeoyqeTUT4LDtQ3sK+Dskz6buhXrmvALyKtC6ZNBtqlqoMbO6lzoPbQdfmdwbDjmnA/+TYVXXTNV/dXEJrphcTNdJ4ljReAAExS4gICAgIDnDJ8kHUWpUkIzj4DFteG7/mh72qZP0Px76nE1Kv3z44y7g/rpj4FP3uLGJpVKYWFhAfV6fYZsWGtdmn8SJCUL5XIZCwsLbjyGwyHa7TYmk4mLg6PLYK/Xc+Sr1+uhVqs5YmitxebmJrrdriMGdGGkoVwoFFxhbj4fs1Byt380GrlaciRoLA5+7do1p6jR4O73+86Y1NpgJBw0ytke3T2VgKkyw3aVSJVKJUc42O9cLodyuexI6tLSEhYWFlCr1VCpVFyxcxq+mvBC15HGD+3u7qLf76PT6aDRaKDVamFnZwfdbnemf0xuokYsCYHvlkbCyzgyjYejUa+xd+Px2Ll4sm8ESQYJEcdBVTfOO5+J9yMJ4Dok6dZMn6q+KomhUsX5VVXRr3XG3/m8VKPUPVbPA/ZLH5CAaNycrhWfsLANVbE03owKJOeea5HXklD7cWVcg9pfEmddv3wuriW9D++lypvG7Om17JPG/5EAsh1uZqhiqNk0Na7QVys1TpOEjVC3ZqruGneqLrQcK/aFmw03C8eKwEXfS4HBBQQEBAQcjnkkxjdI9Hxg30XKV6T4+2Gqnt/evL7xPqqAHUQMfQI47xnj1L15fY5rx1frMpkMVldXUavVZpJi6C46DS0aV3SZ1Fgrpm7PZDIol8su2yKVo1qtBiAyuhYWFlAulzEcDtFoNJwyQbXJ2v3C0zTAi8XiDVntlDwwfiyRSCCfz2N1ddURJxI7xrRpcW6frAH7SReosDHmikSBRiev5/Nr8gQ18AuFAk6dOoXl5WUsLy/jxIkTjqhp2QN/bom4vw9agzr/TALTaDScC+n6+jrW19fR6XRmEqZwbplYRMdIyZSSAE10oVkC1eBXQ53jTIWOBJM13ziWSgbZJpVdqpQkJBx7FoinksdxYD+B/e8FLW1A+Fk5leSqUslnZj/0nfFdrjkHSop0DpU8knQwgQwJlSpHJDKasTEu/s7vk7bpk7e4zziXvkqnBI5tq1oWp2zqu8Xn92PdeB0/U8VNr+E68z0Z6DbJOFnts7o5U9WlgnuzcLwIHEIMXEBAQEDA4VB1Ke6zuB89zzdI4oxlGlvahu46+2qZT6Z8tcQ/rsqbnncYoVQcRO4OGh+iVCpheXnZqUFqgNJtjolCVH1hDTbGOnEnO5vNuqQiVMcymYwjh/l8HpVKBZ1OB+vr69jd3cXOzo7bpdeizSRvmiZed/eppgD7SUNodBaLRUcoO50OBoOBU5JU8QHg+ktiR4ObO/vFYhGVSsWRCLq+sQ9U9GhMJ5NJ1Ot11Ot13HrrrbjttttQqVScokaC5GfxjJuruL8PIm1KCvgvE9KwCDmVEY5Ds9nE5cuX8cwzz6Db7WJ3d9cRXY1XU/LCdrhWqO6QPJHYcBNDE3LQYKfKxXHWa7keuCb29vbQ7XadustahJwrxiXyHj4Zp4qkro/6PcAxAXCDCySfV90H+TnXH4mfqntUJ0k4lYDp9w8Ji1/bjNdzzPksqhRrgfJ5a4IqrsaM6XElTzrfHD9VGJW4ce3qRpW/eca/SUy1/AD/VYIW973Kv5V480dVb/5OpZOKsm4kAHDfCd1u18XN3QwcLwJnAoELCAgICHju8I1gn8z55/LfOALlk744g8IHjaB5qpf20b/e/1sNyzjVZd5z+UrfQcQPiMjb4uKii02iQaTZ7AqFgiNv6g5F1yWSvPF47LJP0hAfDodONdvd3UWxWMRkMnFufXRnBOBiyrh7TiOb5QHU7Uoz8rEmWDqdRrlcRqfTQbVaRS6Xc/cZDAYzrpAaF6bPRtcsuoaSjFK10OQozNg3HA7R7/dRq9Vw66234uTJkzh37hzOnDnjFCZfhSXpOGweVbFQJeigNeSrOlyXeoztkQBVKhWcPXsWb3zjG7G3t4fr16/j6tWrWF9fx9WrV7G2tjYz5tpHjRHkOuJxkjiOK11vOW5UNzm+Sqy1vttoNEKn00Gn03Fqpl8bj261NN6VbOhYasIQQl39SMj4Dqm7HlVJn1Sp8qtESt0mtawBj6l6xzGjyyTXOrCfEZXjQzWT6jdJKdcuP0smky5+Tl0UeU+6wKqLpbp8cuw4RnwH2Vd+7o8b15iOgyr5un64PtXtlP3UEgi6eUClVuMmSfr5rH7mVM7dZDJx3z1MhHSzcLwIHEIZgYCAgICAw+EbsXFqW5zhDGDGOIkjb7r7PI9AxfVDyZNP+vw2DlLefLI4L+B+nto3j7ipclCr1ZxiQfUEgMv+SMNa06rTuOOu9XA4RKlUmlFL0um0c1lMJpMu7iuXy6HdbjuXRlUbqtWqi0dj39Pp9ExyE7rV0VAD4FzvqCwMBgPUajUkk0lsb2/PJCdhOzTsaKwyxouEkUoVd/g5blTe/MQbd911F+666y6cO3fOkT6uoXnz7K9VTWQRt3Z1fufNv79u9G/233d90zVKAzqbzeLs2bM4c+aMG/Pt7W0888wzePTRR7Gzs+MMcpIWEhX/3qpQqZtcv993yVyY2IaEfzKZOHdVqqJU3pLJJKrVqjPcgSh1vKqZJKfaPz6fH1dFl0M/KyjXH9cK54EEgGuDf7MvuqnBexpjbsje6rtl8p0koaL6yWtJVkhqVG1UF2L9m6SFxJoEiHPgu+uqGsYx0e9J392YxFZVTv7uuzlzLPQeHE9/raoipy7J+i4oyWOtRU3MwwQtXKe69rihk8vlUKvVAoF7sRAUuICAgICA54N55C3OqJ1HxPRf/h537kHX+q6L80jcPPIW14e4ex0Evy39u1AoYGVlxRmLwL5BRGOyXC67XWwalzQYK5UKEomEq9nGxB40kHQnnMkyqB4wPkUNLZI+jbNiBkJNCU9ljmoeE1jQmM9msyiVSrDWYmtryxFFZpykEUvFRp+XY1YoFLCwsOA+o3pC1ajdbiOdTuP8+fO4/fbbcfvtt2NlZeUGwh+3xtRlTEmbzplPqNTNzp/XOMV53t9xKp8SOiWlqvzSFbVareK2227DW97yFly9ehVPPfUUHnvsMVy5csWpkVxHJDVaiJlEiFkBOQe5XM4Z4VSGCoWCW2udTsfFLTLTJFW2VCqFUqnkSJ4SBK2lR3IyL1287w7Lc1WdUvWXRA/Yz0TJ4xxnpq/npoa2r8RWVVK6V5I8UYXU7JNaCJ33VzLD/vGZtEafvwZ1/vU7S9edrg+t02eMcTGLXM8ksvq9wc94LsmnJnDx4wL5fcNr6aLN7wq+X1o7UAklxwLYj3vj+lZX1nK5jFKpNHdz7OXA8SJwCClMAgICAgKOBp/oxBmrRyE889pUHMXtUcmY706lhNI/N+454pQ0n2TOUxDjzk8kEqjX61hcXJxxd1MjZzKZoFqtzqgWjEFi6nwaQazHRSOWhp+muqeCNhgMXGwVFQwWYaYhBsApC5p+nkY/iSFVNbaVz+dRrVZhjHEudtZaF+9G5UzT7rNdYD8hRzabdXXdgH3jj4Z1JpPB/fffj/vvvx+Li4uu//78+0qCKgi6dmi8akyfr4r5pC4O89Y6DWuNG1LjmsfYR8YY0i1RM/gNh0PXzqlTp7C6uor77rsP29vbeOSRR/Dwww+7hBBsj+1rKYVut4tEIuHmV7OBcvxJwFjAHYhcCEncR6ORc69kDT6NYyPR13dL3ZtJkrgOGXtGYsW+81+SF1V29P31E2XQxZfunwBmFDm2q2SRc8LxjtsUUZdXJdz6HcBYN92cUddE3TTwyZMSLn6u61PXVNx3pMa86djyd/ZfVW11/1R3SV6by+XcBgHP0ayzLCFRLpfdPVRZJbnjZg5JfjabdZl158UOvhw4XgTOhDICAQEBAQGH4yCFS48TcQqXT5Ti1LejtMPPtZ049WSey9s817qDcJRzeL9MJuNS1NNQ5+61uplVKhUUi8WZBCL6nMxWCERGNRUAKiLpdBrdbtepaiRczBzIvlBV4O56IpFwyUI0+6GSQSBSxNiWtdY903g8RrfbnXGpohEOzJIxVUFolFPp0JpmNCJPnjyJV73qVbjnnnuce2bcOiFpJ4FRQ90ntj5Z85MsxJGD5wJfEfR/15IB84idps+nIqTueblcDqurqzh16hTe9KY34YknnsDDDz+MS5cuodfrOaVFyTST4Vhr0el03PphSQWS8EajgV6vh2w2i0qlAgCu8DtjMrkeqfaS6CtU6eHz81lo8JMYqKuwKlP6HmiiEyU8JFXcVGBKez3uJ90gafbdPZW4ca1wXSmh5zurREVVKt2cUeKkWTY1yYe/eaCumVw/JEfsU1wiFl7Lv5mQheNNQqiqqBJ53q9QKDjFlWSea3U0GqHdbrv1wLWqiVr4HaJxcBxbHQslji83jhWBAxBi4AICAgICXhDmEat558ThINfGOPLok7Y4RWxef+Lc3+bhIIXQV/gSiQRKpRIWFhaQy+WcyxnT9nNnnmn/6bqmyRnUANL08XpfGtC9Xs/tcDN1vRIqTVZBgkWykM/nXdvMgqiZC5lFkgY/XReVIFJ9IVGgWkfQSOZ9SBqpSNJgZvv3338/brvtNpTL5ZnYHX/TwFdSqJrQKNWsmfOIW9yPv8b8teWvCZ+ozdsQUHVOXTo1u5/GIqmbHgmAPkehUMC9996LixcvYmtrCw899BCeeeYZtFqtmQLrXF/q8kiXSWstms0mtra2MBgMkM/nHamj4sp4MCqCuVxuppC5qmxK3tSlz5goHlNVMJ1XJRkkh1R+NAGJqn6a+p9jp8e0XSpRdK2kax/7RTKiJIfnzUvswY0HddXUTQuqaVryQgkV+6jviT6/qsVcRxwLden0j2kcnsYMqiLIYyToSjq5sVIsFt1aoxt2r9dzz2zMfvIansfkRlTp+d3nvzeH/T/wUuJYETgTfCgDAgICAp4DNFnEPMSRG/1cz6OxdZj6FnePg85RQueTO95PP1OS6BPGONc9GiOqMC0tLWFlZcUZnMYYZzxrHFKhUECpVHIlAzKZDNrttkv7D8C5K9HgYnuJRAKdTmdmR50uThrXxkQTJGE0xpmdD9jfNR8Oh85wJpkbDAbIZrO4ePGiU9t6vR5arRb6/b5LiMKiziR0ml2P6gTVChqIVEVGoxEuXLiA++67DxcvXkShULiBAOk8aeySr2r6RO2wf/3fdT3OW4fzFGQlZvxcFTYlbwSP8zqWO9B4MP6tcXNUazmmq6ureP/73492u41PfvKT+PznP49GozGTaASAczFMpaIabu12G41GwyWYYMZSkvJSqYRMJoNutwsAqNVqzoWSP+qWqM8N7CcUIVnXDQw+t7r06ZjxWhJ/KsDAvqJFMhmnqPK9I+kkqSJh4XgD++6WAGZiQPlsfBYlQ1zXulkA7LsiAnBrk+2SlCp5I/Hj8+rYaIydPpt+R/FfnqeqNMdX1xbbpjssVVR+X3Ae6XLNd5rqLRV7jhNVSxaz73Q67jtB1WeNKwwxcC8SjAn8LSAgICDg+cHfUT2qyuaf7xO9uPv4bfjnx7U97zM1JJSI+ffy+zdP3cvn8zhz5ozLELm3t+fUj93dXWc0GWNcNsputwtrrVOsGI+mLlZ0ORqPxy4+RTPj0QVOd/kLhYKLVxkOh45IsR4cXcgY58a2J5MJ2u22c68CohpzzCppjHHJLyqVijNmjTEuyyEA57JJtzb+ruPH2L83v/nNuOOOO1y/4hRRVXhI/Pw4tnkETQmCfw37MS8OLm4d+f2K+1EDOu6H59G45jVUK/msdPmj4U0Dm1kkVQHhunrXu96Fr/qqr8LnPvc5fPrTn0az2XRrguuq3++j2Wyi0+nAWuvcfJmZUuOVer2eU0ipxihhUuVNx4oknoa7ulqqu6gWx1YljfPAchkkPpqQhePCsVQViuuXY6ZxXRxvkkJuCmgdOH3f+Z5wk4Ykjeeoy6XGkfqkzN840PWoz85jus75XP5z6prUd4vKnd83Xbe5XM7Vh1QVnq6RXKtK8vSHY8OyHu1229UHZD+SySQWFhaQTqfRarXcZtLNwvEicDhaxq+AgICAgN/b8MmLb2zN21lVg9hXMOLULt94nkfE/HvEkcc4Zc8nYvOUPDWM5v0/mUgkUKvVcO7cOWSzWZeqXRN30HhOpVKusDONJmaLY1wJ78eMj9xdz+VyM0oajW1gVpGguqKp/MvlMiqVikvfzX5RoSgUCtjd3UWz2XSkcnl5GYlElPmy0+kgl8vNEDQaYRo/R6OdsTSa+IJj2O/3kcvl8FVf9VW4//77sbCwMDdRg6pTqrbFqWeqkKiLnX5OY1iJHscjbv79vviGsqpvuk58ouYTuLgYOD0XgFM0ScCpeui1dKMlCeJ6WVhYwNve9jbce++9+OQnP4nHH3/c9bPT6bhafVwbdL8lMedao8scyTfddePKFKhqRKLEMaGKRkID7BeBp8GvyhWJCuMvOXdcr6og+7XOSJy4aaAuixxHYD+DpJ/Kn4SHfdYsrtww8b8P2BfOuSZs0WfnOYlEwrXL90kJFtevqukkY0rYSY55XOPhOCa6DnV9cY4ymQxKpZK7hs9KcDPH7yMxHA5d/ORgMHD1Anm/SqXiNmf4nXczcbwIXFDgAgICAgKOgHkkCbiR5MwjPb7r4WGKnV7jk7249vU87UOcgqKfz7vPQc/D3eXV1VWk02lnFOnO/srKCoDIKCPBo0sljVEahkwG0Gg0nLpCg0hjmujmxkx51lqXfY/JK5jmv1KpuCLbNIrp/shddiaxoCvd6dOnUa1Wsb6+7oxC1pPTJCxKImk0M6kDY+JonJM43XHHHXjwwQfdmM2LceNnPulS9QLATJ9UqdHP2T+246+dwzYHfHKprmrAbKFm3ovnxRnQTEBDJYrqE41/Xzkh0VGliAY1FU5Vp3jvpaUlvPe978X999+P3/md38Fjjz2GVquFvb09FItFpxbTFZYxkZpSX2PGfHKqz8g5IUlT0sIxJFni85Ac+gSO80PyxzWmMZtxMXicX649jjXfPb4j6h4ZFxdHYqQkSksTqBqn8Wq6qcB5AaJkMDyfz05VXpU3VRM1IYoSQR0bf33xGAkgMLvZouuX5yip5rX6/UTFlUor+8r+tVottFot5ynA+EreV78j9vb23Lq9WTheBA6hDlxAQEBAwOE4iGz55OcgdzT9PY5o+STNbzeOvB2FCPr9nfdvnNriH8/n81hYWEC5XJ4hCoynyWazLiEEDVGqW9zNZ0Y8ADPKWavVQioVFf4GotpcNIxoYNFgZxwQSwPQ8GJ9NSYDYVpv3fW31qLRaKDdbmMwGGBxcRGrq6vodrt4+umnb1B28vm8I0Zsh6SBqgiNZz6bMVHcUaVSwete9zq89rWvdYlV4tYCxzkuCYkqbSRpNLBJWmmUzktiMo/Iz1NbaVBrf7kGNMGEXsPn1tgo/ZzzwbHhXBcKBbRarZn7qoFOg5gqL9eQxi9RkWP7qVQKp06dwu///b8fjzzyCH7rt34La2trKBaLbh7pqsm1lkgkUCwWYYyZKQCvyUfiyJoqV1xjNNhVMePmgaqzSgL9mDiSAY6bFrjmuJKEss3xeOzUO643dUdUNY7jxXuqequumqraknwbc6OLJde+TzTZZ3Wb1AyrcWMJwKme2j/9XAkZyRbHxndvJekjyWLSERJW9luh7VNlZwKlZrMJay2KxaJzvc3n827eh8MhWq3WTH8CgXuRYIwJClxAQEBAwPPGPLeYOKXDJ0fzyBuP+23FETUlgkfp07w29Xd/Z5pIJpOo1WrO1UwzCHIXmuqGtdYlAiG5otFHI49xckwMMhgMUCwWsbS0hG63i0ajMVN/i0QtmUyiUqm4HW4a7CRQlUrFuTdS9WNtLRb8ZjZJYwxe9apXwRiDzc1NtFqtGaLDeCg1SLWWF2to5fN5LC4uuvNoNF+4cAFvfvObcfbsWad2xBEpX2XzXSNVYdNadaq4xcW4xUGNSF2DceqwvylxGHTt6L86JkrMRqMRNjY2sL29PRP/psqc9kkNapYKIJEj4RiNRjMlKNLpNO69916cPXsWn/nMZ/CpT33KrU3GVnKDoVQqufllnzWxCgkWgJk1pS6QPF+T3KjyS4VK3QY1mQjnkGQSgFtv/BzYdx9mciC+a/1+331Ogq/PwWQ9mvnRvy/VcSpvPvFin5j0hd8DSnA5Z36spSpZJGKqEvN7BZgtzcB3nJslJK+qarLffG62wznT7Ke8r8bWKtHjdUxUwiQ6/E7g5gE3bXTjhqRQ3wON4bsZOF4EDgf7fQcEBAQEBPiIU8eAwxOL8Jw4+CQMmK0npQpcXBvzlD4eiyNk857L3yWm4bS0tIRqteqMNU2TnclkUCwWUSwWXd0ktknVBNhPrc+4Mk3Lf+rUKdTrdfR6PXQ6nRmVgAZ5oVBwBjHdnbT4Nw1mzSYJwMXldTodtFotjMdjpyQCwNWrVzEYDJz7Xa/Xc4W26ULJ+aChSQKwsLDgsm/2ej137Ku/+qtx7733olKpOAVJiTznYl5MG41A/pDAkrTGlQ3QNeKTM39dxcVI+n/PSxYRp+Lp88QRQ5IDn1jSiFbjmYY21TZVVzShBckaSYxmLiXJBSJje3FxEe9973tx7tw5fPzjH8f29jZ6vZ7LNOkX/KZaTPdeJd8koiSP/jyyv8YYp5rxPeL1SsqU0GqiHrbL6zh2fDaNd+NnJI666aDqmJbaoBrNH5bl0HIAXAdKOrkpwrWuLpaqRqoLsBJw/ztJ3w29nmOoJJTzrM/H+eBGkhJHY6IERIxP49jmcrkbFFa9Jz9jPGKz2XSutbVazY0P1Tc/Do8Ek+9+3HvzcuJYETiEGLiAgICAgCNACRQQH1fmuzrGwTeu56luAGKJlP47zyVO70OoUe2rgXHPyd+pAiwsLLjU6pqAQo1cGoc0tkjeeH9mp2QBbo2xOXPmDMrlMhqNBhqNBjKZjFPuJpOJUxiAKDsgE50wuyTdJXlPKno0UofDIbrdLtrttovPSyaTaDabLqlCuVxGsVh07XS7XaeakUgwmQQQKTsrKyuoVCqOKI7HY6ysrOBNb3oTbr31Vmcg+9n9lAjQwFUXOl5DwsYfP3GHGt/z5n8e6eK8aFyX34YSel0XccRP//XXk6ox2hcaufw9jqDt7u6iXq+jVqu5TKEaJ6fnKqEhEWF2QfbtzjvvxMmTJ/Gxj30MH//4xx250f6xPxr/RWWOJEVVOVXnSBDoRqcGvbrsMRaMKhQ/4waJkh62y7g4xumRzJC48NnZFgD3zrH/XLucdz4zx0tVTvZby1co+dRSD1Ti+P2g8+qrlyRIvL+uG1Ve1XWVa1E3FXQjSb8vVd1kn/m5EjQmRiLUJZxta0ypEmhg31VWYxhJJvUd5/wEF8oXCQYIDC4gICAg4DljHvGaZ1DH/cetJCrOTS0uJuMoO7hxxvRhxFKv5T3S6TRqtZpLtc4C2HRPsjYqqgzAEQx1ZaPRxHsyox9J0+7uLk6dOoXV1VVYa7GxseGytZXLZTSbTQBwhupwOESn03EGfC6Xc32jogDAKQxUHPr9PnZ2dlzJgqWlJSSTSTQaDXQ6HWSzWZfue29vD61Wy507mUzcMyr5yGQyOHv2LPL5vHOvMsbgtttuw1vf+lbUarWZFOo6d3GukjT8mIDF2qjQNDPcaXyXGsLz1kecCuufM4+8zVN549qNaztOmfbbVePWP66KDRWMjY0Nl4mUZIrrWUkfXUy15h9rejEphTFRhsB3v/vdOHPmDD7+8Y9ja2vrhvFT4qrJPoDZbJH8G9gvCG2Mcdkm9fnYf/ZFM7byeiUNJHh0B6bLIuO4eC1VICp+HCONd2NfVdlTwsnNBi2lQVdQEm0lMZp8RuPrrLUuoyOJkroo6viSzHIOleQoiVO1n+8Kj+n647Pk83m30aHvGcdGM4BSmeM9OdY8j4SdruOTSZRIiZsFJPKqvOr/A7p5E8oIvEgwxsAGBhcQEBAQ8DxwEJmKI3hxisU8JUzP0XbiDPF5Breef9D94q7XRCVUv7hTzd13umlRjdAYHxp73KFnNslut4vBYIBSqYTTp09jaWkJg8EAm5ubM7vfvV7P3TORSLg6SjSmSqXSTLwSsK/yjcdj1Go1LCwsYHt7G1tbW84FM5fLubpNdL2rVqtIJpMYDAZotVoumQUNSlUbaMSfPn0ayWRyxkh/4IEHcN9996Farca6Hirh8N0lST5Yw67X6zk3URrUaoz6cxa3QaCE6KDz9Hz/HP/6uLVyEFmMI3Jx1/BcVevYF/7daDRmYpiUXOi48HfGgWlCEZ2vVCqFV7/61VhYWMBv//Zv49lnn52J8+K6UlJEkqOqCrBP9En2GfPGY2xHs4aSFPI52Za62/FeJG/GGKcSazp8xsoxtk1LHnD9aiZMP75Pa9OxDZIT9kmv4XNpnBeJmqqjvL+qaboGtEg5P+NY8Hf9VwmRqmlsV++prsK8F+eACWxKpdJMQiUSwMlk4sqRjMdjl9mThJHqrMbYsW9sg6RO1b8QA/ciIWShDAgICAh4PjiIePlG8lEIln8+j+u5eo3vmua3q/8edo4eSyaTjhzxh/E3akyqSxTVOe5Qj0YjdDodpFIpV+tse3vbGbW1Ws2l0t/Y2HCGkhrITJs+GAwciWEilFwuh2KxOBNb0uv1ZoynQqHgkg9QISuXy9jb23NEgG6hiUTCZcDsdDro9/vIZrMu+yVVR2atI5GloVsoFPCmN70J99xzj1MZ/blXgqHJRlQ1oopJ4kaXyXkxbjp/81wo+a+vbB2mwvnrL+6Yfw/9PA4HKXs+2E8lP0p4SXbjiByfk65+VKzoRsj1BETv6qlTp/D1X//1+MQnPoEvfvGLbl1zLWpCEypoShqZPCefzzsFi2Og6gsJEgkHn8NPyMF+qspHdZsEsdvtOpdRxl/x/VLXUiWIVMvYJyVoXGskeky0QjWNxFbjUjUuDdhP6qJJWuKSl/gp/LXUho6Rn4BE1y/JFPulChi/K1Tx0rhSVTR9N1aSMI2fZa04jjfXo1/6QZ8pTn3jXNwsHC8CZwKBCwgICAg4HHEE6DA3s3nEyd9x1v/4eZ1er4QwznVunmEcRwTVoNfnoOFVLpddMhB1yaKx4hux6XQaxWIRlUrFpXJnTTWWGVCXrBMnTqBUKjnVjYlDSL6sjdwnU6mUI1Mkd4VCYYZQApgxxKgkjEYjXL9+HeNxlE6dmSsHgwH6/T6SySRWVlYcoet0Ok6ZoeHJQs/MLNlut52hXCgUUC6XnbvjO9/5Ttx+++0ujipuHajyRkOSBIP9J3Gj8UhDl9fOW3s6z3Gqbdya0DWjSoW/1g56Hl9l9K+Ju97feIhbo/699Nm5RnQsqTipIuK7WTLZhMbIaZ2vYrGIN7/5zSiVSnjooYdcG6p8crOA6x/AjKsmsF8CQmMUtS3+zfPUvVE3MDgfJI8ai+en0udGgpK3OLLO90hJlrV2JpOrZlPk+mTMnbokUtHm+8bxofKk48W21I2RirauN42F47n8buCz6feVv150Pfnxg6pAatZLHUtuGDUaDVczkOVDSOao/sa92xwPElcSUX2/biaJO14EDsGFMiAgICDg6PDJD/DcFDY/iUMcIdM2aSD4x7SNuM/8vulx/4eB/IuLizO75zS0qDDQDZIqF8sGkLhQPaJBrGSEiUOKxSI6nY6Lg9OEBfl83tXoInkbDodIp9MolUool8szCgCVO2MMCoUCjDFot9tOLdFMfd1uF+PxGPV6Haurq5hMJuh2u672GN0+mYWP2SW5886YNhK4vb09VKtVvOMd78Ctt946Y7j68+Irb6ogUWHks5Kwkrz55P4oClYcwfPXhUJjyNT97TAFTuFvDOjn8671jeC498lvT7MVqopJVYXrl+RNCR+Pa7HlwWDg1ksul8MDDzyAarWK3/qt38LW1pYzuJV4k2hR+VOlZTwez7hpqtLGd43rgJsiVK40PoqEbDLZr+VGIkOixXeL7o5KXgHMKEqcB65vVaH4nmuxcLorA/turLwf26TbNN8brQ2nBMp329T58wmXuk4qCeSY8B2MS6zDH3W31GfQ7zYmSdJ1xu+dnZ0dp8xZa913h0+uNeGLr5zGfWfHfZe/nDheBC4ocAEBAQEBR0CccnZUdzDCV80OU870vvOM+IOM3jj1w/87k8mgUqlgeXnZ1ZGiYUujrFQqOYNLSwUAmHFjJLRGWbfbRTqdxuLiIgBgc3MTvV7PuYaxD5qMZDAYuCQirOtG1YQ726zbRbWAhcBVIaDS1+v1kMvlUK1Wsbi46Mjb1tYWEokE8vm8iy9KpVKoVCooFotOvSuVSgCAcrmMfD7v1Lh3v/vdOHfu3KHkzY93Y2IEElwmKolzmTxoLfn3nEei/DXlryv/et1k0J+455vXB73+qOt83vvkb04oQVFlR8kAjXUleDw2Ho8dWfGT0CSTSdxxxx0AgN/4jd/Azs4OgNnYKo05ozJDNUtj0FR5AvYLeTPGTr8DSAY0eyJJJQkT+2GMccotABSLRZfQhGRNs59S3dbC3JqQRQuiA3AbI4lEYiY7pxIQklL+TTKr2S+p0Cvp8VWxOGWZChnvq5/r2PjfZ/7Gg7ZNwqVta5Ihuiw3Gg1XX1Dfa3Wd5HzxM6q4nMs4ZZrXaZ9ebhwrAgeEJJQBAQEBAYdD/5Pm33FKwkHX+38rKYxT0OapKPPa9vt0mPJSKBRQr9extLTkSAqAGfeoWq3mYo1KpRKq1aqrvUW1huj3+7DWolgsOtVtYWEByWQSnU7HJeaggpDL5VAoFFCr1ZBIJNDpdJyiQGJVq9WccQrAtaEp03kdVUMAOHnypCNF2WwWS0tLLsskXSlZM47uitls1tW5I5GlwshYuU6ng0qlgre97W245ZZbZtypDlPetJ6bFhPv9Xoztcd8I8+fOxqgXJPz1oOPuE2IeWtG51bd8fxMgnHwCV1cH3zjVte/Hlcy6belbnUkBFR6RqMRTp8+jVQqhUajMRP/xOehElcoFByJAyJieOeddyKfz+Pf//t/j52dnRviPam0qRLF+VOFiOPFNUpFjZkPdbyVXNAtkxsdJCAk/ZogSIkTryW55QaJqoXsBwka4za5Lv1sslq0Xl0a1UVwb2/Pqe8ksKyzpm7JfGa+G0rm/EQuOvckgr4izTWm6iPXqSpmfF7dbOIcscQIS4/QE4DvLNtSdU9dVTmH6lqucYi813Pd8HuxcawIXLSQbnYvAgICAgJeCTiKK2Pc8cMUtTiD+yDCdtB1R+lbIhGlxF5cXHSKWiaTcYYhjdJUKoV+vz+TLptkY3d31yUsyWaz6Pf7AOBULxrGg8HAGa8s4k3DsVqtumQjVKHoisRYPGBfuRgOh2i3264/ANBoNFy7dMlcXFx0SUlqtZpTS6g60OWMRi+N01qtBiAy6EgO1ZWy1WqhXq/jbW97G86ePTtD3nRufeWN7pBUJknc+v2+G09VknSe4sjcQevCdynT644CnucTQ59QaTxSnOIQd+1BxO+wa+dB+wPMxiRdu3YNlUrFERmCY8SkH/l8Hvl83qkwVFjOnj2L97///fjQhz6E69evu4yo4/EY7XZ7RpnRxBv6jlOVo2FvjJlxoaRKRrLGWCwSJb8otCbeoArE8xhTpwRcMyxSFSdZIoEleaPrp08emSiE7fAd1QyVuqngq2W6GaAul37iEP1bXWU5ZxpTp0SQ64RjSxLNtcn76dzze4jfLXwG1gTk9f6cEPw+Yps8h33gPTRBy1HW80uJ40XgAAQNLiAgICDgKJhHmA77z/kw0hZH1nRn9yAXNP9zVSrijHC6TDKLI7DvBkYDUFOLMyslCRKAmRpK3KGnm2Wz2XQ701QLaCwyPT+TgGQyGUdk6MLGRCXZbPaGWDEarplMBr1eD91u1xX3Ho1GWFhYwN7eHjY3NzGZTHDixAlks1mnGDLOTA07IFIis9ksut0uUqmUI3y1Wm3GDbNcLuNtb3vbjNtk3JwpgaNhTeLGtvjc6jLpryV+pi6DcTiKiyLb5M9zMSjjzvHd2OYRvqP2049pOujaODVOia7OA8kR1Rh1U9TzWGvQGOPWeSqVwvnz5/EH/sAfwK//+q9je3vbEX6dfypE6v5Iw52bElSztBC81lTzCQcTjvAdVNWbWVCVqFH1I4EgGVISqWUHqCROJpOZkgckb9o3JUwklFow3M98qWuM3yMaY+k/s7qTqjts3H05RhqTqMqXPjOw7+qp6h7nnuPMkilU9zkH/gacJochYVdVmv1if1Xx1QRJNwvHi8CFGLiAgICAgCOABgZwuMukb2DGuUv6n2m7/j0Ou1/cOXHEjmUB6DqoMRzj8dglAiHRYzZIkicm72DMGpUj/t7r9VwB3W63i1Kp5NzLdnd3XcwRMzsy5ovGF9VAdZci8aIxa61Fo9FwhXRpSNXrdRfDwhIBjG1j37rdrmsHgFNfcrkcWq2WGwOS3Fwu54y6VCqFBx98EOfOnbtBedNx99U3qhh02+x2uzOKJA29OJU2bi3462CeQqfkSg3NuDV0VEUvDjRYVWGKM1LjnukwJTrunIPUbo13U3LGYyRRJCiaRMRa64g81yaN/lOnTuE973kP/vN//s/Y2NhwRI99U3ICzMbmcdxJFvgM/vxo4iAgcl9mXxjvRrdPVed0Xhm3piRVXT2pEJKkcV2S1Ol7oeeTsHCuVf1SJdb/fiN03SnhUWXUz/RJUqjtWWudG6jG5PkuxTq2+n7oNfzuUtKnqhs/9zdNeL2OMwlzXMkILW/BzYSbheNH4G52JwICAgICvuIRF3yuhgt/Pyz5hMI/L85oP0xZ8ZWJuP6RkJRKJRfIz118qhNUqpjNrlKpONUIAKrVKobDoYtJ29nZQSaTQb1ed8TEGINer+dULKoZHBMqWlQTmNAhn887Vy/urAOYiZljdsqNjQ0MBgNXoy2ZTKJcLqPb7aLRaCCXy6FWqyGVSqHdbrvrSdCo2FHJKJVKrs/lchm1Ws0lOmEmvmw2i9e//vW4ePGic6OLmw8akxrzpjF33W4X7XbbtavKm9+eP6/qmuXPvT/v2j89TiWCn2nSB19NU/XlsHWphjSv9RNKzCNrcaTUb3ee0jzvbzX+2c5haibvw3VljHGKrzEG586dw9d+7dfigx/8IDqdzg1ugarSaOZDbgKQWJIkqJKlsZiq1hljZtwelXzyb84r29PkGlxfdKVMp9OuBAfdeAG494+bDVwnbF+fh2OlNfjYB3VnJKieq5qmZIn9VCVP54MEkiRN1T4lyewz3UK5bnWeSdTpLsoSKBwPHmebiUTCKYgkfHw+jmkymXQJlVRFJ4GjCsmxOIri/VLheBE4zC84GRAQEBAQcBB8deKgDGNxRnmc4hCHeYavtjHv2lKphJWVFedCxnT5NEa488/abUxWwjT9iUQCpVIJw+HQJSTZ2toCELlbsYA2yVo+n3exb0y/nUqlUK/XkUwmXZp/GlcsgJxMJl2Jgt3dXXS7XWdkZTIZDIdDNJtN5/LE+yQSCVezaXFxcaaQOF026e5GY2w8HqNcLiOXyzllI5/P48SJE6jX6y4mj4lMbrvtNrz61a++oUi3PyequlFx0UyTVN5Iag9aLzr3cQrcPGLEfgCzBjfhx4PFEbqDVK845Tju3nGufXF91fYP24x4LvBdUpUMAnCxX4rRaORUZL4nVOpSqRTOnDmDr/mar8Fv/uZvzhj7+g6SSNG4Z0ZDJZQkRIwTpcqtbnbM5KguhUoU9b1lUh+NXQP247z4DpAUcm2zn1TjtBYdVTOeR+JHYkLo2gf266lREaTS7Cdt4XiRlGmsnZ7nb45w/EjgVIVUsqZjwO8WKo4cTz67n/XVV27ZvhYu135qzBznaTKZzNTT88fpZuBQAmeM+WkA3wBg3Vp7z/SzHwTwZwFsTE/7m9baX58e+14AfxrAGMB3W2t/4yXo95y+BgUuICAgIOBwxKkdvmGt5/l/zzN8D1La/M8PUy20j/l8HsvLy6jX60in0y67GrC/27y8vOyMQGutc2GkWkSiMxwOUS6XXWIQGud0i6RKVywWXQHudruNyWTikpFYu19birv7xWIRhULBGY/MVql1l0jQqHqsrKygVqu55CidTgeZTAYnTpxAMpl0iUFInoD9os5UDcrlsvt7d3cX5XIZJ06ccNkIqQ4mEglUq1W8/vWvR6VSOZBE+PE9VDP6/T7a7baLeaM7W5xaoXPqK0j+/MatD0VcTFrc2lOD0lfhVDE6SE2Lg5IbGsBxyqWvYGtfffIaN1aHzQnP891H2T+qI/wMiJKbcJOA8WEkQXfffTeGwyE++tGPotfrzShqHCMSGK0NxrEm8cvlci5uVGu5+WU5OBYkKul02qnAmoCHpItkgUo755GZXHu9ntsYKZfLLk6PxFNdObUkgbbN+STB0w0AP1kInx/YV+k006Sq1nxWdcXVhCAkVXQLZV/opkjlkuf4ijI3T7SuJe+t2Ul9kkUSy3nkXHJdqJsknz2VSqFWqyGdTmN9fd0lfbqZotFRFLifAfCPAfyc9/k/sNb+ff3AGPNqAN8M4G4AqwD+mzHmTmvtGC8DDEIMXEBAQEDA4fDd0vjvYS5g/Pcg5eEgtSGOEMapbnpeuVyeIW90laJBRrct7oqTqI3HY2xtbbkd5HQ6jUqlAgBotVpOjaBLFH+nEsbYNxqD9XodlUrFZfcD4AopqxHKGmyMDwOixCKTyQStVssRRc3Ox89LpZLLNMiU/DSUaXR2Oh2k02ksLS3NqINA5Bp68uRJWGvRbredayMJ5Ote9zosLi7OGG/+XKjhRwNU69l1u11nPOpuvxIVP3GDf495KtU8AhOXgILX+O3p59ofuoEqiaPBehQFmO1xzjTeSPuv952n1B30/hwGHQufHPlt8Hi/33cxcVRtGDd6zz334Pr16/jSl74EAG5e1UWOSpa2S5c6vntMvQ9E653naQwbx41KNNUe3pMZWamAk7hwvkjkNBFQKpVCoVBAMpl0tRNJDkko+U5qTCCfTWMH+cyMzYtL/6+kimRUC58TGjuo37f+uiERVNLG8SGZ5vtL9U3r4dFlVOeK34PsI99pPp+qfJqshcSNY8jPs9ks8vk8yuUy+v2++z76ik5iYq39iDHm/BHb+0YAv2CtHQJ4yhjzOIA3APj48+/ic4AxQYELCAgICDgy4khTnIoxb6fVN8T1vDhCN4+8aRv8nbvqJ06ccIrReDxGsVh01zIDJItJ0zii6sVECYuLi6jVatjb28PGxoa7fjAYODetXq83U0SYRkoul0OlUnHkkYlG0uk0CoWCizuhK2EqlXJFs1muoNvtOuKTTCYdkWy322g0GkgkolIIVPBarZbL6sgsmcViEb1eD8YYLC4uolAouDaNMThz5gxWVlbQbrddjBxLJ1hrcf/99+PChQux2eN0LtRtkuoAiRvdJhlDo+5UbIefKXnzNwfiNgPiFGCfHPnulHFK1DzyRWjsDw1kNWbj1qL2h3+rAjOPWL4U8JUV//nn3ZdKHMtk8B0rFov4mq/5GrTbbTzxxBMAIlfE4XA4Y6gzEQpJC5UZrdvGNQ/sJ9mgGyLXFN9bkjyqT0w8QhWdahj7rLFXVBJZ943tqHsj3SPZPpMGkUTqmNHtkWuBz6rfhSRdbIckSGP2+NzqgsgfLTviK8Akb7lczrkqUhGMi5MrFAqoVCpoNpsz7rMkgupWru8DSaX2zc84qvPG6znmJN8c85uJFxID9xeNMd8G4CEAf81auwPgNIBPyDmXp5/dAGPMdwL4TgA4d+7cC+iGtIn5Wb0CAgICAgJ8HKYOHGQQxrUV106cq5j+xBncxWIR1WrVJeKgsUSDkfWimMqciTs06QTJ2NLSEqy12N7edoZSp9NBLpfD0tISWq0WWq2W2/lnWzRUcrmcc1miksfYOmappPsX1RkALpECs0xSxWB5gF6vBwBOQWCCiHa7jU6n41QQ9oNqIMnf5uamO3769GksLy87lzIaX9wtP3v2LO69916nFM4jGGrAqQFMV04a1qrs6Ryr+5iuCao1cfecp6LFHdPPVXFSg5jPTuIRp/ryX7bPZ1Ui5xv5cf1TpVFdNHVMXmxouyQYXHOq/PnklxsPjImjK106nUa9XseDDz6I9fV1tyHAJBp+Yg9r9+OkgP04RJIsnRNCVSolXey3uguSiDHDZKFQmMn+qgXE6cbH9qnQacIiui7rWqKqzPg3zj/7zvXKOdUEI2xXoWs+Ln5Of/jcOn5K7NhHzfTJ8iYcQ5YnIcHT2Dl/k4PvtD8fqrwxptjfXOH6YRyuur7yvblZeL4E7p8C+CFEIWc/BODHAHwHWIptFrH/81lrfxLATwLAAw888KKwrpfouyIgICAg4JjiIHXMPzaPoCn8c3yyoAZC3L2ZCbJYLM4YaHSvotEwHA6dQUEDTY1BGjjVahXNZtPFzNE4XFhYQKVSmUk9TpcyY8xMNkmSFTVqGQ/S6XSc8kdDkkbNYDBwShjbXlxcRDqdRrPZxHg8Rr1ed+UMWq2WI0mj0chl2WRcTyKRwPLyMlKpFHZ2dmCtxcLCAk6ePIl0Oo1Go+EMzb29vRkXyte+9rVYXFycWzKA48p/aTzSbZIZNDl+St4IqnUAnMHtJ1PgXMetNd7bJ0oaj6PwjUdt009moiqZHvP7RjczAM54V1IWt3Z5HfvPMX6xiVzcvWmcc534x1kbjSAhyOfzbg4ZU3b27Fm85S1vwUc/+lFX1kI3Wbgu0uk0lpeX3TPncjmcPn0ae3t7uHz58kwdRG4AkFzl83lXLoPnkLxRAaNqziREfLepulEV5zMzvT3dOLnmmVmRZIhjQ3VdXSY533xGADMknmuG/abyy+PMcKmKLMeV4+4nb+G8afkTegRQFfPj7XhvEipdr7qmlTyqGyf/1iyfbI9j47sVkxhaO1vaQdu5GXheBM5ae52/G2P+BYBfm/55GcBZOfUMgKvPu3fPESEGLiAgICDgKDhIdYsjbgepcL4rkL/zP8/49d3n6vW6y6aoMSA0HBYXFwHAZYpkWnTuJDNGpFgs4uTJkwCAjY0o11i5XHYZI1dWVlAoFLC5uelUORq6NF5Y7Ju78jRo1GWy2Wy6PrAGHHf/ScZo8LJvjF8jCQTgMu/R0M1ms65EQavVQrfbdUkimFSFCVBOnDjh2gAiEkW3TBrSb3jDG3D77bc7Y9ifW3XFU/dJGrn9ft/1jwas7zpJ0kjjV9UvNXTj5p5/K5FTY/S5KsDqaumvUa4XrZXlq22auEVj3Q4qXKzqBY14PwPh84WOh/7tKyT+GPjvn57LchKqKqfTabzqVa/C9evX8eijj7ryGKlUCtVqFYPBAI1GwyXyKJfL7t1grGalUsGJEyfQ6/Vw7do154ZJNY1kheRJMxsy5k3jSieTiVt77Cc3bLREAMmmJhbiO8e55Nz4KfRVQVX1jGOi13Pda/xbnEsk3zWOPz0GqOzpOqTCR7dNdf2meyrvxzXIGpC+6ux/pyrZ4vco+09iy9/9jQr+6EaGHy/3FR0DFwdjzClr7bXpn38QwO9Of/9VAP/GGPPjiJKY3AHgd15wL4/eL9gQBRcQEBAQcATMMyzVCJxnPM9T0fwfVU/mqS6pVMqlvCe4Aw/ApRT3DfPl5WUAcHFx4/EYlUoFKysr6PV6LrZsNBqh3W4jlUohl8thOBxia2sL3W4X6XQaw+HQESQWwlZXTN6T8UJUpeiCRkOOsW6dTscpbySGjKvhM5XLZVhrXawciRILHo9GI+fORmOU7pAAsLKygpWVlZld8G6369xBaSxWq1W89a1vRblcnnHP8pUnJR9UNVgwnAa0uk76xI9GpypQ/jpSUuavBf/3uPP9fh9EiuatYRqsJOaqyPlxcEpAVf2gahFnNPNeHCM/HfxzgU/c5j0fwflQ1zt/Q4XGN5N4ZDIZp/jS5fcNb3gDrl69is3NTSQSCbfOmImQBIprlfc2xrgyAnfddRfuvvtufOQjH8Hm5qZz3eU6oTpF9Yfriu96NpvFeDxb/iKfz7v5VPKWyWRcG5xXzp2uUU3+wQQq4/F45r0icSPZtNbOuCRTSfOJjo4zsO8aquqvfhfye4/KlpJIVfN1vLRoNjPTanyhZiDlnKjXgiZj8dU4/c5Wl0s/2RG/D5PJJEql0nNZzi86jlJG4AMA3g5gyRhzGcAPAHi7MeY+RO6RTwP4XwHAWvuwMeaXADwCYATgL9iXKQMlEBS4gICAgICjIY54AfGuk/w87rgeiyNwPmHw200kElhYWEC1WgUAZzgtLCw496xkMolWq+V2o9W1iokQgP1Yl/X1dWdkMDaNWSCpTjFBynA4RKlUmklUwl1qGjMkbpPJBJ1OxxEuEhomX6DyRlIGwBmuJFOMmWNSExpKrFFnjHEZKfkMo9EIOzs7SCQSqNVqzmWSRjqP7+zsOEOYx97whjdgdXU11nXSn0NV3+g+yWyTNJjVLdJXx6gQxJG0efdWA1uJhr+2DiJsccou21ajlOf45/uZHFVxUNVSx4cExlfZdN1rBsDDxj8O80hu3PukZIXn0FDXv3WMWeeQa4xuiMvLy3jd616HD37wgy6hDtUpEiwSG8bCFQoFpyLt7e2h2Wzi1a9+Nb7pm74JH/rQh3D9+nW3JlVF40YB3SBZQoDrj8Qxn8/fQNwYs0o3TbavStq87x9V7qjmk3AzJT8Ap1ByHVBhV5VNx1xj3rhmVAXkeUow+aOul1QT+TlVf65VVaypKqoypmtCk6xwXWsSIm5McF2z7xpTzPZIYEnAWcrlZuAoWSi/Jebjnzrg/B8G8MMvpFPPF8YEAhcQEBAQcDTEKWL+zjJ/13/1mjiVQFUN38hXQzKXy2FhYcHFwBB0C0wkorplm5ubAPYTBVSrVezu7jry1u/3Z1QFVZrYLrNH9no9ZLNZVCqVmTpqmklS1TctEUAlCoBTLVh6YGdnB8Ph0JEyZsdkUhGOD8kZk4EwtqVWqyGZjAqDM5Mfs0xSyavX61hdXXX37Pf7aDQaznilwZtIRMXKL168iAcffNClWI8j3r7ypupbv993BI7qhZ/khFD3U3+N+ffVdRG37uIQt5bi1MQ4NUyhffbbUqNaY334XD6Z84mcKnLaLkm11hB7Ljiq2qhzonFR/FeNcf7LGmp0l2TM6cWLF/H444/jkUceQa1WQ6VScaUq+Az5fN4RFiZF4YZHv9/Ho48+ite97nV43/veh3/9r/+1y8BKN0BuCAD7irsxxqm+fP9Yd5EuwZwPkjdmRmXfSLj4vaKkB8DM/UnG6K7NDQiudW7UGLOfpIWEkyRG415VEdP54b3ZP84VlTY+kypj/K4B4MaWJJMqIeOB6cqt9yRx46YL301utGgMJO+vLsN+2QLF7u6uq0F3s/BCslB+xcEguFAGBAQEBBwOX3GLUzHidq6JOPc4vd6/j/6dSCSwuLiIUqnkEpWkUiksLCy4ZAaMK+t2u8hkMq50wGg0QrfbdcdpQFE5mUwmLgGDMcYZQjSKGHND18RisejKC9Bop7HDzJAkS5pSnwZOr9fD9va26/Pe3h5OnDiBhYUFZyCSQDGLJN2aALiSAsVi0cXUqaJH9eH06dMolUpO3Wi1Wi47H92pGD907tw5vO51r8OFCxdcvB/VCc6dzqsqauyzxuVxbPQ8GqhKdn0C4xuUirhkJf4xJXc+KdI16q9Lf23Gqb9+jJzfJ/7Nz9SwVRdKVTmYfCJO0SYpVBdTH0qw/P76zxi3+cI+E34NNY3JUqLHjQ4a6kwC9OCDD6LdbqNYLLoEPNzgoIrG56WLYyqVcpsTrVYLTz31FN74xjfi9a9/PT71qU+5MVTyRtXNmP3aifr+6frTWo8kUlSEVDlibTo+o5IfEhNu6mjfVTnlvPIcEj+2y3VAIqnZJPkuqTsi55f91Dg6uqJqbB6z36pbI4lUsVhEoVBAp9NxJJzX8Tn0fLahZFbHxVfdlNSxHX0XGZv4fN2DXwwcKwKHoMAFBAQEBBwRccqYfu67yR3mxnaQoUkDhqn7qZ4x7owJPVqtljPIut2uI3jJZBI7OzsYjUYu0UmpVHI79cxSx8QDLCpMggfsu1jSiCuXyzOZKanCpNNpl8Sk1Wq5BAqMx2HsTLPZdLF0zJ55xx13ANgvfHzu3Dn0ej00m01Ya7G0tIThcOiek9kwt7e3HfEEohgXPuPS0hKKxSK63a5zpbz33nvR7XbxhS98wZVAeNWrXoU3vOENqFQqrnBzuVx2O+txbng+waESw7ggNZJVvfHn1idZByU3UPcyxTzXwMOUNB9KKo96DaEGqRJBGsBq0Ksyp8qdZhH0FUJ1ZTusfwcROn8u/WNKPFUR92O1SD64scENhkwmg5WVFdx77724fPnyjPskiRufu9fruYL1jPHkZsfVq1fR6/Vw//334/HHH3flMZQwZDIZF+/W7XZdEqFcLueU4PF47GKuVBUzZj8FPucjk8k4osfNG46HxphRceM1SsR0g4IqHhX3bDY7k6REXTZVidW6dGxfNzq4JkgCSR6p9lHV1A0Rkn/dmKJLq5J1fQa2z/dWx5/HVGXkulOXSm5QsM+qft4sHC8CFxAQEBAQcET4hpyvpgHxbmpxbfgxNv452WwW9XodS0tLzsigssbEIEznTyNKd/RZzLpSqaBcLgOAi33RbI/cxVcVjgRQjUuqCiRnNPjz+bwrpk1FDIDLssdYn52dHaeEkTwtLCyg3++j3W6jXC4jm81iZ2cH29vbrv319XUAEVGiUrG9vY3t7W1HOLnbXyqVUK/Xsbe3h2eeeQaZTAa33norRqMRPvWpTzml4q677sKdd96JM2fOoNFo4DOf+QxWV1ddHCFjaXS+fPdJqockvn69t3nkbd46UvjqWZx6q6RO43D42WGIU6Hirpu3fgkarWr8+uq0qlea2ITGO41fkgNfieR4HpTV8qiIUyeVDPCZqCBq2nxN0qLp6RnXORqNcP78eVeXEICLU+MY0a2R7wld+rrdruvD+vq6S37iJwvRzRcqSSw1wGRBHCs+BxOVcHy1Npmvimk9N46HZqlUAkWCTtLEOdW51phCbvZwDEkm+S5xjPUatsnvHN9tkhtQ+p2k75zWueMmERMk+eqqqn26meBvIvAZ1WWY7uZaFJ0kmRtgdCe9WThWBM4AwYEyICAgIOBQzHN5BOJj3eKuUdKmxq1vlBaLRSwtLTl3vkwmg3a77YwF1kTTeDVrrYuJYYxbvV53WSStjWJiqGTlcjmXbTKTyaBSqczU4+K9tGCwFixWly0WrabRRtWNhtLW1hbW1tYAAGfOnMFdd93l4tdarZa79+bmJprNpiOOVAiZQCCfzzvSquNaKBRQqVRQrVbRaDTQ6/Vw4cIFpNNpfOlLX0Kz2UQ2m8Vtt92G17zmNajX69jY2MAnPvEJXL16FZlMBg8++KCLZ5pHZDSBAg1jP0GLulipkgHMZjjU9RC31nxVNw6+MncYuYlzq5xHHuPuGbdh4d8/jmzyHF/VYLZEKnBa/08VG46BFg7XMZ1HQPX+2k7c86ubHj/XRBW8D+dMz9Msjdx0WVtbc6qYqk50wyO5IKjkTSYTXLp0ySUP0jEBMFO3rVgsOjVOa75p6QF9h32Fk8/CtczvCcYe0m2T/dcxpHqqiWdUdVZVlVAFTr9nVL3S4uZK5hjfxr85/iRG6tqqKpyuhURiP4kTCSP7r0RO1ztJsBJUkjQqgyRpjJHj/Uh8ATiiPc8j4+XA8SJwBrA3ryh6QEBAQMArBL7hA8SnQ1f4BqQaLfPOLRaLOHPmDMrlMhYXF7GwsICdnZ0ZxY/Fq7kjXiqVUKvVXOKQcrk8k8iACUSazaYzNNlWsVjEqVOnkM/n0el00G63XYwJa7gx6J8GDt00Abh4Nu6sJxIJVCoVTCYTNBoNrK+vu1put99+O1ZXV51aBwALCwvY3d3FtWtRpSHGsVDdazQamEwmWFxcxGg0cgoDAFSrVadIjsdjl7kvm83i0qVL2NragjEGJ06cwH333YcLFy5ga2sLn/70p3HlyhWnRN599904efLkDSnA41xi+bsavaq+aYKGecQLgDO241z7DiNv80jmQcqbEij/Gf2+6me+waltaJ/9PsS9I/64si2SORrHGiOntQ2VHHOz4aBnjut73LP6fSWZ0BT7ftZBVWKttS6RDjcKnnzyyZnxomIH7MeYUZ3jRgfVr2aziZ2dHbdJo6SFZIK1H6217lq6HvJcjT/0v7/0WYfD4Q3kTZPIUHVju/zRWDXNTKoqlU8WeV8tB0ASpS62/hol0dOC2n4iHI251BhW/c5l8hbtj9YEVFWOJNV/D6gksj98RqqB/rgyLpFxyDcLx4vAwcAiMLiAgICAgIPhGxS++42eF6fA+cqbXkuDplqtuhiv06dPo1wuY3Nz09Vkq1QqM+nyrY3S/TMzZafTQb1eRzabRafTmekHlS0W6B6NRqhWq6hUKqjVaq7YNY2TSqWCfD7vYru4E18sFl0qbGaApELHRAjdbhdra2suG+by8jJuueUWZLNZNJtNjEYjVCoVjMdjbG1tYWtrC6VSCclkEo1GA9ZapyzQnVNVLvaBBj4zVRpjMBgM0Ol0nAJ555134uLFixgOh/jc5z6HS5cuOVI4mUyQzWbx6le/2sXw6fwSSuTUgGXyElXfFBwzQudNVR3eQ9eQqhkHIY6AKMHSvvOY/5x6jvYpzujX+/r31/7SoNfNinnkjuOkRIfKChPNKNklASK5Oyr8MZ5HXpVYqjulr8JxLKlisU/lchnnz5/H1atXYcy+m2A2m0W/33fjQ9dKZpdttVoolUooFAq4fv36jPugFn3XwtzqGqiFuKl+qVsgVSE+IxVz9klVPhJMrYvGPmjxb19lUxdHkiglWpPJxCmvvusv59YvR+H3nYXL/UQzus6VeKuax/YZ96vZItkW3VpJ2P2x5foh8daEPRwPklHGePJcJbovN44XgQtJTAICAgICjoC43eB5xuNBJE6NErr8lEolR6YWFxdx5swZpNNprK2tuR3jXC6HXq/nXBXz+TzK5fKM8bi4uIjd3V1X0Jq74Lu7uyiVSo7IkQyePHkSxhi02220221nCNbrdSSTyRnyRvcjpuJut9sYDofOyGSh7Z2dHVy5cgUbGxtIJpO46667UK/X0Wg00Gq1nKrIhCZra2swxrj7UM0jGRyPxy7tOQkdyxh0u12sr687AsCxSiQSuO2223Dx4kUUi0U88sgjuHLlijM8dde8VCrhtttuczvnhO+eqIYmiYZfrJuki7v6cTv3/lpSVULbPwg+8VKoO6ESQVWNfONYn1ENzDgF7ijwn8Vf89q+/1zsg2appIuikgUSgecSF3cYaWO7+s5qX/wslarWUYUjqVxdXZ1xVyYRK5fLLuGQulDSva5Wq7kYV83yyHnUumRUc6j8qGupf626+KlCRKiKFlfeQcmsKnBsW0kLsF82hERH1SqNHfPdDjWJDIkcx9Ynb3xWEk9Vv3WTws9ky+9dkjnf9ZfKmTGzSVs0+YqOMYmlkj2uGVUM/etfbhw/AnezOxEQEBAQ8BWPeeqDf4xQtc1vhwZKPp93RaYLhQJKpZL7my5+rGtWqVSc22K1Wp1xb0wkooLVVLdoVGqGOvaRil21WnUxcEzuwSyOANxu8d7eHvL5vIvl6Xa77hh3nJl2f21tDRsbGxiNRlhYWMDFixeRTqdx7do19Pt9nDhxAoVCARsbG46cMiMciSnHjWSVcTw0XGu1GsrlMjY2Npw7JRUDxpncfffdqFaruHTpEtbX112MoG9EWmtx4cIFVKvV2LpvnEd/njkudJ/U2lHq6hdHzuL+9tfHUZW3ef3j775yEhdXFreu2a7f57iNCR5XI1jPB/YJorrNzXs32Lb2m+6BmtER2I9fOmq9OH0+dYX01UWey/XCTRKuQ6pz2g7PYR9ZC44KeqlUQiqVQrFYdASKGxIcC7pFdjodp7Sr+k1Fst/vzzy3v2bUfVGJJueAyvHe3p6rJ8dxVvdFLQ/AGoyq1JK8kIyRDGl8oE/SNJuovo/6/lFhVNVM4/lU/VSlmv3ivFBhJPT95Bixj/xb3VH5XUgirKRSn0WJPL+nuLEwGAzc5tiLkYTnheB4ETjMr9kTEBAQEBDg4yjG50GuZ0C0Y7yysoKlpSW3s8/6ZuPxGFevXsXa2pozFFnbjMYKs85xx79UKs2obiQXxWIRpVJpJjX3wsICEokEtra2nMLGDI7FYtHVSKNhwrgeICpZ0O/3XdwOAJdYhK6JiUQCS0tLOHfuHPr9Pi5fvoxCoYBqtYp+v49ms+kIVaFQcCn4mcGNz0XFgIXBs9ksqtUqOp0Orly5MpPMwRjjCG0+n8fOzg6efPJJl4LdnyMAzoi78847XUzgQXOu806lkO5Tfn0o/u4ba74aFbdG1BiNI2eq3sW1oZ9r0gxVSbSv2pd5aiA/V7Ki9/HJkA8dtzg3VV+l9ueJz8H1zg0FPgtd9Z5LjS2fLPqf897sM9Uajoc/t0o6WTT65MmTaDabLjZ1PB5jYWEBxhiniJP0JZNJF5PJzQuqzkoa1GWSRJZKGomPbiD4z6fjRbLpJxfRdcyxZ1/YB5IeTTrDOQYQu9biXCJVWaeSyOdie5pIhp/pRoT2RwmVlrBQEknX6XK5jE6ng36/78g16136NfX03eBYkTxns1lH9Dm2rDnJ+eL887v0ZuB4EbigwAUEBAQEHAFxKgThG60+mVMDmCob67kBcLveOzs77j96KlJ0q8zn8+h2uy7ejSRnOBxie3sbhUIBy8vLLpU/lapWq+WMq3q9jtFohM3NTVdUtlgsujID7XbbZVYkqeM9qIbRrRGIsmXu7Ozg+vXr6Ha72N3dxerqKlZXV7G+vo5er+cM1Z2dHacWEnzG8XiM5eVlWBtluqQxx4Qm5XIZ9Xod165dcwofiQkJJo3cTqeDzc3NGSJFI9iPP1laWsKJEydmdv99ZUl/aNBr7JuvvvkE4KAdd5+EHaa8xZE0X03z+wnsG/a8hz8OSjg1xkvXsa+sHLbm1WCPIxNx8U9+O/4Y0f2Va5RGsrpTximp897dONXN/5frR3+UsOp8kJCRXNXrdbcpUi6XMRwO0Ww23WYMNx52d3dddtVEIuEIHLCv8mj2Sq53VZPoWgjAufayvxwTkhoArg3Oubok6hrh8xNcU6pckThTNdREKApV6owxLq6V4HOwLT4/N5I0PpP95NgreWO/VPHS9U8XSsYr6rrSdqhS+smNVM3mufwuYzIYfqfzeX1V+mbgWBE4IMTABQQEBAQcDjUA4xQ2313MN9wzmQwWFxdRqVQAzJID/ue/t7fnikkPBgMUCgWsrq6iWq1id3cX9Xod6XQa29vbaLVaroBwOp3G4uIi+v0+Go0GFhYWsLy8jPX1dVdTCogyRm5sbLjd5mKxiGq16mLg+EyZTMYZx3SxpMsnFa9kMom1tTV0u12n5C0tLaFSqThCl0qlnPsQjTXGAmliAO50d7tdAHDKYSqVQr1ex3g8xpe+9CVn1NJIJNFj5kIawnT94vPMc5c7deoUarXaXKPfN/apRuiPH/vm31OhRrKuHV8BmqeyqRpGaMwb/9W6VermRcNciZ5C//aNZX6m52r8kBqn/rvi/+4TOR0PHotTAzkWo9HIbRgUCgXk83kkEgkXi6QKTty4+u/xPBdKjpGSHxIWPeareczgmM1msbCwgK2tLac45/P5mRg2qjbMKlsoFNBsNp3LJAmUZp/k9RpfpQSbY6RkK26DAcDMelBl0V8fnGdN8Q/ghhgvvVZjTVXl0xp1AJx7LL0RSIL4rNbameySJJxxG2X6rvO7kXOimTOpigFwCho3tbTunP9Oq0soyTPndWtry5FYjoEqlPPctF8uHCsCZ4wJClxAQEBAwHPCQcZlnDGYy+WwsrLiss4lEgmXnIGqFOPYSN7y+bxLaNDpdFzsDAtdM35lNBphcXERe3t7WF9fdy46a2trrmg2ALerz4QKxWLRFdKmq6G11ilyxhi0Wi30ej0kk0lks1lX381ai7W1tZmCwgsLCygWi86VUxN7FAqFmR3wSqXialNtbm66uBPG+tXrddRqNdRqNVy9ehVXrlyZMVhzuZxL+qLxaDS6aFjTAE2lUjPqH3fIV1dXXfKIOOXNB40yulUdpL5xnSho0PmKm6/ixJHHuH75qpvGA/lkyf/R9aqEUVUG/14ao0hSo26RNKDVwNfz4378+LiDVG5+xk0Ekhsm6WHyCM65T9jiFDb91z9PCQznWQm7T9LVpY/ko1arOYKpMWXFYnEm0Qjju6iOU3HSzIVUlDSejP3VBD6+Cy/7qy6EjOnz14jvJsv+6nogEYtT2Hhc3Xc5FyR4fNcTiYRz42R73ICp1WquxiSJM5UzjUdUhZTPxn7ze1av0Y02kmpro1IMJFgcC5Iu3ovfWVQHlYSynY2NDfedOB6Pnbs73/2bieNF4IAgwQUEBAQEHBlxrnZAvHGdSCRcYV8aAel0GoPBwBWpZiITIFLIWPON6cSpZNHIaDQaLm6GO++dTgeZTAYnT55Ep9PB9va2cy3kjrAxxqXep1G5ubnpVItkMolSqYRSqYTJZOLqu7HwLRAZKaPRCK1Wy9WV47WTyQQ7Ozuu2DdjgRjnxh1xBvbTCGq1Wm63nSUNbrvtNiSTSTz66KOutttoNHIZKLlT3263XdwQx1tJAUHiocZyOp3G6urqoYkFlCSpGqI/6sql1/lrhMaxqldq1Mftzs8jbfq7KgLAPnkh6dJjce3Nc+3yVY64ZwLiyweo8qfqCNtVY5/PwGP81yfVPJf94thxI0QT/XAceA813H2SEkea48aapISZV3VdaN94j2QyiUKh4N4B9kVjSKkCMUkH36m9vT3nTu27FjKGK5PJuM0LVd/Ytk+Etb4bx5nvrtZN47hqm9qWrjl95zSDpM65liPQuD4qZMYY9znrptFVm9knfaWX6rJPInWeeS37p8lKfFdKVd3U9Zj943xPJhNHyDkOdH/leHAuuY5JxgOBexFhQgxcQEBAQMBzhG/U6mf8PJVKOVdGGnys40ZDZTweO/LWaDQwHA6RzWZn4lNY6JrEjPFidDNsNBougyWzUDIAn4pbLpdzBIqZ1TY2NlCr1bCysoLr1687EkWSyN1puiyxVhwNmU6ng3w+P0MQaLB2Oh1UKhWUSiXnHlqv19Hr9VzCgNOnT7vfafitrKzgwoULGAwGePjhh9FoNJzyxtp0i4uLaDQaLhsfjScANxhzvoHNuQEi457EWuftoLlV8uaXI+B5qoDNgxI5vXdc31WR8kmYuoaRFJFAxBE27aufUAKYTdqhY0f1gmPgu2ayPSVKvoGvBjjv6atx/vPHgc+taioQqTrNZhPD4dBtQgD7qd51nA/6O47E0ahX0qBKj7/GeA3de+v1Oq5evQog2rCgUU+yyecZj6OSGb1eD+1228WD0s2Xmx5sV10jNakH1VF+zmOqXPG+Gsepz6bPp6RX693xWfnesX/cWOIaoRqpGSG5mcUNrV6v59xOGePL7x59B9QNk/fX9arKHIkwr+M1nMfJZIJOp+MS1DBDJ8/RseNz8v5+NlS6keu7AsAp/+zTQZtFLzWOF4FDEOACAgICAo4ONfDjDH5jjHNPLJfLLk6rWq0CgKudNplMXPxZJpNxGdCokp0+fdqRsMlk4lSvpaUl1Go1VKtVrK2tubIATO6Ry+Wwu7uLRqPhYmpocORyOXS7XSQSUaZIFupuNptYWVlxBiRdh2jYsTB4KpVySUtoBKoikU6n0Ww23XM3Gg0AcK5QdIeqVCpoNpsuHXoul8PJkyextLSEZ599FteuXXNZ+LjjXa/XXTkEkii6jflkSI3pOEJljEG1WkW5XL7BoJqnxtCgVRIXFycTt1588sj++uRqHpnQz3gdjVv/mMbC+X2iEU8DX1UXpjsfDAYzCg7PjYst0sx7VHypnqiqqPFRNJQ1MYSqVzSSea4a8P4Y+vNKQ3pvb88l5gFm0+r7BDJu3uYpcfPcKP3zOM5UnGu1Gp555hnnBs1n4/izrmO328XOzo7biKFCz/g+AG6cuf6puKmi69dDYx/VrVSfRd1gCW4E6DFfyfXXmKqivqswiRBVea4RJqThMRJTbnCpokiSyXv5fVY3So11U1WYfdbYNGv3XShZ55K/k9RyPhKJxEyNwnQ67cqJ8B4ksFqHMyhwLzKMMbBBgwsICAgIOAJ8Y8XfyU8mk6jX667QdCKRcLE5jJuiKnbq1Ck0m00AkatOt9t1u/a33XYb8vm8I3uNRsPFbFUqFZTLZWfoXbx40SUI2dvbcwbIYDCYKYKcTCbRbDZRrVaRz+dd35kMhEpZoVDAeDx29wT2g/zX1tawubnpEpBo1jkaKbVaDcPh0JG8ZDLpVAcaVp1Ox41huVzG6dOnAQBPPvkkWq2W2zWfTKIsk8vLywDgjHM+ryoESnbmkSH9XGMS4+Y2bp5VjfFLB8wjcL4bIDDrchin3vh99RUy1p7zXcL472QycaUaqJQwSQwJPIkZ43PoAgfsu5wq/BgjpltnP6mucq3p83IDIZvNzhSdVuKhroeqIvH6ODIap6RxfprNJsbjsVOjtWh23DzPmyudExry3NxQYuhDCVypVHLxqlSj6GrH947vSa/Xc2VDSBiYcVbJsboHapkBrRunsW8kLarOKcHmHPMzf150c4AuzFwLStDU1ZDjosocvzvG4zG63a4j/yRuPsH0XWn5XHTR9lVQfSc5froJoHXnSLSy2az7rlVlkSSPfeDapks4r9VxUfdZHTuunYOU+Zcax4vAIShwAQEBAQHPDb57nTFRfNnKygrK5bIzhvP5vCMj3KFlkhCSt93dXayvryORSODcuXO4ePEirLW4dOmSU6ystTh58iSWl5ddFsrxeIwHHngAxhg8++yzTunb2tpCs9l0hh7rZ7EtICoXwGLek8kEw+EQV65cQbFYdDE1JG2VSgWDwQBXr151JQmY9ZEGdrPZxIkTJ5DL5dDpdFxtNxo9/HcyiRKY0B2NmTmttbh69aqL+dHEAJVKBalUyiUGIIFTA49zQuNtnpGkO/aLi4szKcN9I9EnB8C+C6XGnKkSpC6cvkKkCSV4PE7N9RVdNUqVuLLYsJIeKqh0PVUDmIkj2Bce4/rk8/mEUp+Bx9QQpbGq7WlCEt6fpSgSiYRTg+MInd5Px13d4nxVMI6sTyYTVxaDRG4eifOJm698KoFW1dUn8LqOeJxrrFAooNFouPfUV/MGgwGuX78OAG5cqPSm02kUi0W3UaJkiuOjirMqbrpGNaZN3Vupxur68FVH/pD48HpV+5jgyP/hNaqwdTodl2mXLq+69tWtU+vMaQmCefPBNniuv8nBdUlVk2SP9SB1Q4MuoPyMG1eM9aVyx3HjvdTFU9uLW4MvF44XgTOBwAUEBAQEHB2+scjkH0tLS051s9a6wtiMX6Pxk0gkcO3aNVf/qdfrIZvN4vz587jvvvuwu7uLJ554Ak8++SSMMajValhcXMTJkydhrcX6+jpSqRQuXryITqeDq1evuvT8jOegqxYNde4u1+t1NJtNZ3BzB7zf76NcLs/slA+HQ6cg0BWSpQWoAI3HY2QyGayuriKTybjYN96z2+26WB8qPXTF5Ph0u11sbGy4JA80mphYgGogDUV1XQRuTH3PzzhHaowSk0lUWy6bzbrSCNylj1NTlEgpifMN1bi1ovf021TocTUirY3cu1g0HIAzNnd3d7G2tuY2EPr9vkuv77v4sv8AnIKoNf347zzyquOrhAHYN6p5Po9z7OkuSIOcSUdo2HM9UJ1S9UfvqWppHHlTN2Ze0+/33TiSBPmbLwfNuY6BGuPz3Ge1byRwjH9lqQAeB/ZJVqPRcMmISC5I0rlWuYGh88V3udfrzShnOmc+ueE6ICnmeta1qGom+6njTxKqz+G/D3yP6VrLZ2WdulwuN+NWquqflg9QJY33Z802vVbj3UgudYNBY0UJPhe/V/g9RfLKc1KplCuZwj7we5XEj98jLPzNMdH7+d8DLyeOFYEDQhmBgICAgIDD4RvEAFydp4WFBedKk8lkUKlUcPr0aaytrTk1jDvjw+EQ+XzeFd0GgIsXL+I1r3kNut0uHnvsMTzyyCNYXFxEJpNxiVB6vR4ajQbK5TJOnDiB7e1tXLlyxSkem5ubGI1GqNVqTn1jZjfG1dEYGwwGaDab6Ha7zqDVGkjdbhfj8RitVsupgyxEzLIGW1tbLsECAHQ6HSwtLSGVSmFjY8OVHKCBlslk3I47x4JFtzXrHd2UdAcb2E99ThLjx7f4SRx4jc6fqje+0aX3UjXFV8w0aYsasEqY+fc86H3iCIAqbjs7O9jd3XXqqCadaLfbjhQxe6GOCf9mbBQNYk3EomPDeB8anXot1wY/o7ENwKnEGuejyqaqEmyLhi7JX6/XQ7FYdMoc44+UkKi65JMunyyrgslYSirAvup6EAnUeVLCpiROXSl5jCpSIhFlPF1eXsbOzo5bd1wvdMO7du2aIxBcX0w6lEhExb21NIcmHSFxUdc9Xf8kRTo2fE7tI0GFGZhV8agwabwd2+b7CezHOWqBcXXtZgZexueSPOn7RFXWnyvNmqvPxf5pJkw+B/unz0d3c5Zz0MytnBdVIZn1l2VVVPHnuLCsisYOqxKomwc3A8eKwEUKXKBwAQEBAQEHw3cpKxQKLqGI/idtrUU2m8XW1pYrtp3L5ZzSQ4Oh2+2iWq3itttuw/nz59FsNnH58mW0Wi0AQKVSwdLSEkqlEjY2NrC5uYnz589jYWEB169fx8bGBoyJyg2sra2h3W47d0MmOJhMonTjzDxJw5RKHROecMeYwfgslMzMcGfPnkUul3O137rdLk6cOAEA2NnZQbVaxcmTJzGZROUHmJzEV3wKhYIzZHq9nishwP+HWddN1Upg36D0FQQ11OcRJxpaNESB/VgcGrBxLpSquhBq0PkulL5CFNcXbcNXeDRuaW9vD61Wy+32j8djXLp0yRmPqjyouqDqpCqEwD7hpcrKvmicjmYJVNdMji+PqzHMNaXETo17tqEqhCaj4PmJRGJmU6FcLqNQKDgi5xNkbY/357z5xIzP3W633Tuj76vO2Tw1ju3HzT3HyJ9vJXKM+apUKm7dsah3o9FAq9WaSexCUkGlnG1pIWslc1rQfjwezySO4VjxPeffnE8dNyUw7DfnUItRq4pHdVjdHfmOaSIQLQfCepXcSNANErajRFnjD/0NGo4H78N+ca3pRoGOG5VLVXtVpdO1w/dSCaUe59rg5ogSeI4xPQpuFo4XgbvZHQgICAgIeMWArkPMMsld63K5jHa7jXa7DSBKFX7mzBlXJLparbp04qPRCFeuXEGtVsN9992HTCaD9fV1Z1z2+30sLy+jWq2iUChge3sbTz/9NM6dO4dkMolr165ha2vLkZ3r169jd3cXS0tLAOCKaANRvB3dG0mYRqMRVlZWYIxxyUUymQy2trac++Xe3h46nQ52d3dx9uxZlEolZ8zt7Oy4OLnBYICVlRXcfffdTk2jSpTP552RRlVNd6rb7bYzEgFgYWFhRhWim5QazABuMN7iPlMCSMOaxpTumOu5bEcJjw9VAeNcoeLcJH0lJ07to4E6mUxcopZ+v49EIoGdnR10Oh2X7IFGPQmarwjq5358oBJe39103nj6ypY/Lj550WQNmuxCXeNUuaJRrKSCRne320U+n3dZTdk3JYo+DiJgw+HQqd7cSNHn9a/1n22eAqdkV8eK48xn1wQaAJyb8mQyweXLl5FIJFCtVl1yHZIGJdYcK65FnUuf5KgSxj6pOsvztH0lQNq+vruavZTusCRtXKOMbUwkEjPZMlkTjffyNztUneRmCVPxK4GOU0o5PgfNIYCZuEslqIytJRlUV05eRxKsc6zvrW5o8D3QtRpcKF8kmBADFxAQEBBwBBgTxRnRzYv/qQ+HQ7TbbWec9Pt9l64/k8m4cgCFQsGlxj9//jzuuOMOZ6AzLfvVq1ddPF2hUMDGxgaazabbtb927RoAuHpyGxsbTiVTlygSpnq97owOxruVSiWX7IIG3M7ODqy1qNVqaLfb2NzchDEG99xzj6vrxjpHNFgajYZTBJ9++mkX59Tr9WBtFG9ExY2GEuNL1N0PiAieqoY0FDXTI/uqSTeAfWUJ2FejlLj4rnG8RnfyCb/deQRM3Qx9l8N58JU3VRN3d3exvb2NbreLwWCAWq2GVquFVqvl1gZVNxqGJCTqfqrGoyoQHBtVDTiuNPjVxVLHivBJsbqc0eBWI1zHk22z73TZ47W+Gsn2SV64scBEJDTylTj5pC5OBaWR3mq1nIruZ8yMmzf/byVy2nceVwNfySvXdalUcs9nrXXuo3TBo+sd1yHXPeeRxE7JIPvEsd7d3XXrRtey1l1kv5XI8TwlVwTJGzdWOBaqlo9GI5eEBcCMasXnoqLF9nVt893kuPJcnsOkTJowxY+Z1DWvZJGfcQw5L9xI4ntFAsqxpRcFXUBJIFWJ41r1NyN0nNU19WbgeBE4hDICAQEBAQGHo1QqufgZTefNmkY0KrjrDERJP6rVqquJlkwmce7cOSwtLWF3dxfdbtfFjK2trWFhYQG1Wg3WWly5csW5YI5GI6yvryOTyaBWq7kC2LlczrkHMUHC8vIyFhcX0W63nZFIBSedTrudYtYv6vV6qNVqyOfz2NzcRK/Xw+LiIl796lej2Wzi2WefdUSBpQJYRNxaO6M6tlotF6/F+J1kMulI7e7uLjY3N53b1WQycWneSTyZVp3GYSKRwMmTJzEYDLCzswPgxrpo/Mx3hdTzlFT4STf0HF7D0g9+e2q0KgGJU9biXOri2nr88cexsbHh5mtzcxOFQsGpoXqtljDQXX7/vn6/6HpHA95X4HQDQO+nbmnafybO0ftolkGSAGA2I5/2iX1QQu27+zEz6WAwQLfbdVlceW91PfVVMH/u2QcqcSQVugGi5/lrQpVMJcH+PPNcnyRlMhm0220Ui0UA+xsxV65cwdbWFs6cOYPhcIitrS3UarUZ10ESJqawN8a4lPckdEpu9bm1LIe6f+qaIVlR8qTPrJsfABzxZ+IZtqHlDLjOqKByDSo4b0z4oUl19FzdqCDh4iaAv354rc6rqnqqhHJM/efkuChR07Xsvx9K7LmZwHuQHDIT8c3C8SJwQYELCAgICDgCFhYWnHFaKpWcIpdKpdBsNmdiPugCtbKygt3dXTSbTdTrdayurrrzaYAwtqlWq2FhYQF7e3u4evWqy1zZ6XSQzWadCre9ve1S4HMnnEYVd9u73a5LGkA3SQAuzoYxeKPRCBcuXMBkMsG1a9ecOkgCuLa2hk6n42rDqZJAF8nRaIRms+lqu1HVSCQSTgVYWlpCq9XC5uam261mf7VwrmbYo/HEJCmtVis24YgizgAHZt2zfNUk7hoahHEGnU/CDoOSFlXd+PlgMECj0XCGIdeRjgfHRN0LFfp8NE55LxIyrhNfAYgjIUqw/IQoelzXBOeV99HEJb4qyjZ8xUwJmE8k+PxUgEgK9Nl9YqhzwHO4BobDITqdjlOHSCDi5k+fX2MGD5p/f62RcA0GA6fUU3nu9XpYXV3F9vY26vU6EomEWxOqOmmmRKpr6hbJezBWTbOMKoHT2DeNB1MCpRsePrk3xrj70xvBGOOyzTKulv3kNdls1mUFpTJH10smb9HNCa4tqtSqxMXNsyrP/Fs3ZLgWNdNtJpNx3gXsJzdFNGMoxyWbzc6QYK4dHUOf3PN5D1szLzWOH4G72Z0ICAgICPiKBxOEAJHhUCqVnIpFo4Ep81nbqNFoYDKZ4Pbbb8fq6io6nY5T3dLpNL70pS8BAE6cOOHcFxkP1+12USqVsLKygnQ67QpcLy0tIZFIYHt72xksNJzy+bxLEmCMcTFvVPu4W073yTNnzri6YclkEnfffTcA4Nq1ay4xAY1NGruZTAanTp1CsVjE9va2I6OM5aFxxUQVy8vL2N7extWrVx35oNHDkgTAfrY7YNaNrt/vz9Q1o6FPaKINNdB9Nz7dheffShDioAkLCCWQvqKk99O/feOO51CRpCoG4AY1SF3W1D1OM0Kq0evfn21p8gkaqf446rPyPN8FjOcqNI6Iz8H2R6PRTJY/KhbcbFCyroaykjGSJlVh9vb2UK/XZ2KqtO9+P31CAsAp2bre5q0JnWt/Ln2S768/Hue7RKJSq9Wwvb0NAHj/+9+Pz372s/jd3/1d1Ot19/3BOMJOp4PxeOzeYRIjLQGgqpA/HyTb/nnqaqvkmWPGMSF55uYGvRBIsLgZw/jNbDbramKyREgymXQ11Ky1M+7BXBcaz6nJVHhvfudpNkz9XvCTSZGs813xFTl6UvAczpmuIY6hFqlXIq8bFvp9oxstnEeOxc3A8SJwiK//ERAQEBAQoODuOZNJ0CWGcVtU6E6ePAkA2NracvXdFhcXcf36dXS7XQCRkU6SdOutt6Jer6PdbuPKlSvodDro9XrI5/M4deoU+v0+tra2kEqlcPLkSdRqNezs7DgDmzvuy8vLbseYZQJIvMbjsXPNbLfbyOfzSCQSeOqpp9DtdnH+/HlcvHgRzWYT165dw/b2tiMNfL50Oo2FhQWXiOXpp5+eMUaoHNGQYSxfo9FwterodkWiqXFxNMzVAGaCBDWUaYRqcoF5apoaarojTjdEX3nyofE4/nlxBFD/VgVGDX4eozFHVz41mgHMxOQoeVPSpuSNBrvG/ahSRuhzKGnmmOo5dP/iWGh7JF++i6GmhddEHOpOqW3586rHVPkhUVB3QiBKIMT6i+yTH9cWN3d8Dm5mMEmKKjj++drfOCXYd7fz7ctcLuf6V61WkU6n8dRTT+HJJ59ELpfDW9/6VkwmE/zu7/4uFhYWsLi46Mps+LFVSqyUmKiixnXHtU5Q7dJslTrm7DvXB6/XgutKoDQpC125q9WqIy18hwaDgUsUonFrwP5GhW7IMLujnqv35nrx+8v3gPXnmDBJCSDfneFw6GLc6J6qm0H8zM9OSRVSk6roJgXHU90zD/queTlwrAgcggIXEBAQEHAEkHzlcjn0ej0Xf1IsFl1ik5WVFTSbTUwmE1y4cAEnTpxAv9/HpUuXYIzBYDBAq9VCu91GvV7H/fffD2uj4txPP/00tra23P2MMVhbW0O/30elUkG9Xkcmk8HVq1fRbDZd/Ecul3PG3u7uritfoDXgcrmcc0EsFovY2dnBYDBAPp/HiRMnkMlk8NRTT2Fra8tlw2TcG8nb+fPnUa1W0Ww2XXIV1nRLpVKuSPJ4PEalUkG5XMbGxoarb0WjW3ftufvuZ5+MIx5qjPsK0LwMb+oGyR91yfJJmG94q5HmG+Y+KdPr9G91aVRiOhgMXL08bdePAfJVH97DVwC0AHRc5k4al/5YcR1zXJSwjsdjp1D4SV1ohPN87YuvfFExS6VS7nmpygGYUS/YDj+noa0qnfZBXSp9MqLERqHjPRqNXHF5P3ZMQQPcX0/ss6qLbNu/N10jR6ORSxz0qU99Cr1eDxsbGzh79ize8Y53oFgs4nd+53dQr9dx8uRJrK2tuSQaJPYa18Yx18yKOse6jpT8AJhRb/0EMDofSk5U8SRJo5JOQk3CxphZ7Q8VRF0b+h3BZ/THVlViTc6iBFEVMSqdfD9SqRQGg4F7D9hvuoSTYA8GA0fqqc4BkWKuGT79xCnc7CBx5OaZKqFab+/lxrEicAYIDC4gICAg4FCcPXsWW1tb2NjYcLvDq6urTlFKpVJYW1tDoVDA7bffjmq1iu3tbWxvb7u4EKbmv+WWW3D27FkMh0M888wzjqhxh7lcLrvCvfV6HdVqFcPhENvb206B4C53sVh0qh/j2Ghcl8tl527JXf/t7W20222srKzg1ltvRT6fx9raGjY2Npy7pa8qVKtVAJGq2Gg0XPpzksgTJ07MuJGyDh7rxpFUaDY3tq1p8FUp0B1rn1DRmNSkAL5KpmRIwc9p7Olz+ufRQFSDVclJnLuctkWjVIkHXcw2NzextbXlFEhVH1VJ8cG2SLbK5bIj3Ht7e874VDc79lvJGeeOcUw0jnO5nIvxLJVKrg8s7k7yy2yONLb9bJw+2eHfShJUOdTr2GefHLP/cW6wk8nkhnID/jrSdnUemT2VxENdEP1x1777xFD76q9FICJwOzs72NjYcOvg8ccfBwB8+MMfxrve9S6cOXMGb3zjGwEAn/jEJ7C0tITTp0/PFPrWTJRUpDTjpI6Nkn8l3DoWSprjCC/Vda5lXSsAnJJHt0kmLuK6Zm0/zofOq/99w7WlBHg83i+K7RM6f35J3viuEVyjftIffo+w/7ppQLLGmD5dG9yI4virksh3p1Qque8+ftdxzG4GjheBMybwt4CAgICAQ/HUU0+h2Wy6GnBLS0su0+JwOES328WZM2dw6tQpWGvxzDPPoN/vI5/Pu9pp4/EYd999N/L5PBqNBjY3N10ykWQyiZWVFaRSKXQ6HVfDbTweY319HZ1OxxlBlUoFlUoFCwsLTlG7dOmS2/Hmrjf7RXVia2sL4/EYFy9eRL1eh7UWa2truHLlykwCESYgULe1K1euuF1lAKhWq1hZWUEymXSlAyqVisuiuL6+7naeSSjpuskdfQ3sVyNeEymo8atEhPFANFJ9Q9AnVn58V6/Xm3HFU6i7pcbj6PW+ka739dvhs0wmkxnyRjc4dYtU9YgkIpVKOYLGuWH2RMYUEYVCwWUuZdssppxOp1GpVJDL5VCr1bC4uOgKstPwttai3+/PEDx1N2M77XYb2WwWjUYDvV4P169fx2AwcCouXelUfVB1kQatjrGfHZQ/6o6p88mxpVpMV2Gto6Zrh3OihJpjxHIc7LPGIqrSquRN12bcOiP4GceRqtDly5dx/fp1rKys4HOf+xwA4B3veIcjcYlEAh/72MewuLiIM2fOYH19fSYWVF0YSeB0/ZFwa8IQdaukakdyovXgOBdUSrlBo+ooAKescpOH40Plmi6ImoCH48r7aokAfffV9ZkbFiSrfB51M1ZCpfNEMqfzre3zO47EkMmq2CazDHPdcq35bq2cE9bCNCZKdKVum773wMuJ40XgcLQsUgEBAQEBv7cxHo9RKBSwuLiIxcVFV5eKrlC33347Tp48iVar5RSver2O69evYzKZoFarYWVlBePx2MW/dbtddDodDIdDnDx50ikB3KVtt9vodDouTmd3dxeLi4tYXl5GuVxGOp3G+vo6rly5AmC/nlKhUEC328VkEsXm9Xo9NBoNFAoFlMtlWGvRaDSwtbXl4lJodNEgYwwJECV7oIHDe1QqFWSzWZeUhYTRWuuIohIOpuVXA1oNYZI6X4XzVS0lTuwv4WcujCNxQGRwN5vNG+pRKRhnpERBlRlffeM9+K/2g+d0Oh2sr69ja2vLuS76SSiUNCQSCVy4cAHXr193JFkJLF27aHiqm5lmtazX67hw4QLK5bKrDTgcDtHv93H9+nVnuDPGk2SGhif7xjEpFotIJpMoFApus+CBBx5AqVRCs9lEo9FAq9XCtWvX8Mwzz2AwGDhCqEWZ9VmptCgpoeGv88pNBZ6rpFCTWHDt+vPjq4Hqjtnr9WaSesQZ23Gus/pZHKnXe7PodSKRwJe//OUZN8dHHnkEAPDOd74TZ86cwQMPPIC9vT187GMfwy233IIzZ87gmWeeuSEeyydD/rpS8uBvlnA89LkVSohIekhuGVtWqVRuIEHqUqhjpZkdVU0dj8czmzBcz6rE+uuGGzD8XmG/lPizTzoPqjySrAGzpTFI+rjOqADm83kMh0MXm8tzdCypOiYSCVfYnC74cTGWLxeOF4ELMXABAQEBAUdANpt18W5UvjY2NrCysoLTp09jPB7j0qVLSKfTWFxcdGnzJ5MJbrnlFhSLRTz++ONoNBo4ffo0AGBtbQ27u7tYWlpyhmqlUpmJlaMRwPtSYel0Omi1Ws4gpDE0Go0cgaxUKuj3++h2u6jVahiNRrh+/frMjrgabFQylCCwflsmk3ElAtQo4c57r9dDKpXC5cuXZ+J0eJ26SapBpjFDVJLiCBiw73JJY1RjZ+IMZ91l913g1tbWZjLP+dexn6qeKEki1BD2+64qD+OeNjY2XCZBvyiyGuZUVK5evYpWqwUAjgQx5bnG4JC0UY1hBtPTp0/DmCjZTafTwWOPPYZOp+OKqWtf2SbXkk9A+dzMnJnNZrG4uOiykNJN9sKFCxiPx7jnnntcDOilS5ewubnpylpotkoa0zR+VcnyydK8zwG47Iaj0Qj1ev0GJU4JY5yrIF1QuYHi17nTMdD16Stwetz/2dvbQ6lUAgA8++yzjmiPx2P0+3187nOfQ7/fx3vf+17ccssteOMb34jxeIyHHnoIZ8+exZkzZ3Dp0qWZtcf3bTQauXeN75Km8ucY6DX6TFzfceuX5FnJdD6fn3Hn5DtCl0Nu+HBOdTx5PteZKsZxGyCqbPJafU7NEKzKopJrnwjyGt5Dv4+UAPPZuRHFMa1Wq652Jb9L+H3M7xBexzhAvefLjeNF4BDqwAUEBAQEHA4qbrfccgvS6TSazSZuueUW1Go1DAYDF+tWKpXQbrdx/fp15PN53HPPPdjb28Pjjz+OZrOJpaUlV2ONMUYkQolEYiazJRDFlC0vL7ssl71ez2Wq5DmMhWHcHNURHiPJomGl9ZyAfZc2/ZuxUCRm9Xodi4uLyOfzjlhSgRkMBigWiy6WD4Crc1coFGYM5XnGuu6MA/sxaKqg0RjjTjnHh7vlvmKnRqC64RljcPXqVRenw/bV+GY/1a1PFR7eQ2PXFPq3tRatVgsbGxvO+OM8qHuhnxiB8UBqqHNcODaqWCWTSZw/f94pbaPRCM8++yza7fZMhj19Fh1jPpOvPPlKFTEej5076Pb2NiqVCkqlEgqFAu68804X5/Xa174Wd911F7a3t/HMM8/gS1/6kht7Phufk33QY5wbugCqQa/9IakfDAZujfpZL3mev+74PFoQm4qjzqMfw8W1chB0DQLRe/j000/j6aefnokjI6n/8pe/jGw2i3e+8504e/Ys3vSmNzlyd/HiRZw5c8ZtlPAZ6FJI9z1unuh77fdDYyKVuJF0af/ZDhN58PuK6jxdDUnGqKizbb03M9Jq7BjnXVUsKmRU1rgmlDSyv7yHrzpybNke517fY6p3LIWi5/L5+VydTsdtiOTzeZTLZdRqNXQ6Hezt7WFra2tmTkajEfr9Pqy1M2rfzcDxInDGwAYNLiAgICDgEKyurmJlZcWl8D937hyy2SyuX7+O3d1dFAoFZ8yORiOcOHECi4uLePbZZ7Gzs+OI0JUrV9Dr9Zwycv36dRejRmWk3W6jUqng5MmTWFpaQr1ehzHGHSOJYcZIAC71fz6fx8rKCoDIZc/aqHQAEwsA+xkHAbj4qG6369wRT506hUKh4JS8YrGIWq2GfD7vkq1wR3l3dxe5XA5bW1vY3Nx0bdDII3EAZgt0E358ExCfDVKJC7BfoJoGt7pUEX67qjjt7Oxgc3MTq6urM6RAz2Xf+KP1zPz24kgqjUm6ypIIacwWd/1pzPJZ6R5JIsc2/X7Qxa1YLGJ5ednFZD7xxBNu7GlwEpoBkiSVa0LH2I87mweS+H6/j/X1daRSKTz55JNIJBKo1Wq45557sLu7i3q9jtOnT+O2225z6fOZCEUVPx1PGtrsC/9WhYhQw5uGNtP1H7Su1LBXF2KShnmqGttQ4ulDzyNx73a7+NSnPoVGo4EzZ87M9MGYKKnG5z//ebTbbbznPe/B7bffjre//e3o9/t44okncNddd+HcuXNOiVMSo+6EvpqmihvXFTPVUrnjmtXi1GyLpIvuhCRi6gpJcsR3knGTfl9I5HgelSqOAb9HeD8SNpJEkjdmlyThphssCZwm2VFSqSSWGSg5NrlczrmW6+YN31W2ubW1hclk4upwWmudKzndhpPJJIbDoatJ1263575HLzWOF4FDUOACAgICAg7HysoKrl27hmQyiVOnTqHVaqHVamFpaQm5XM4V7c5kMrj11lsxHo/x2GOPzZQc2NnZgTEGZ8+eRaPRgLUW1WoVxhi3k723t4dKpeIIIzNJtlotVwS43W5jNBqhXC5jMBjgypUrzggC4NpmMW5gtqZZNpt1rmLpdBpbW1vY3d1FOp1GvV5396OBzOLhTOICwBE5llXY2NgAsE+sarUalpaWcOXKlRmDib8rIfCJlxrmqsSpGkPDmc/I5/Pb1B91pRyNRrh69SruuuuumXsrOaDBR5fSRCIxYzD6z6Guduzn3t4ednZ2ZlK80wWS91GFi9erSsdzaJjSQDbGuIQk1WoVOzs7aDQaM8QOwIxBy781nkiJh09GOB6qbLDvBImVkmW6uW1vb+Ohhx5CvV5HuVzGiRMncP78eZw6dQp33HEHnnjiCTz66KNuA0GJr64D3kPHLM41kkQDgIvlK5VKM4qLqm/+mqMK5yutShh98uYrmNqmjlGj0XDP9vTTT8/Eq6lbH2NBn3jiCTf2Fy9exFvf+lZ0Oh18+ctfxmtf+1qcPn0azz777Ixboq9A6edK9IbDoSMoJDfqzqkKND/j+gf242I1VlCJNomZrh0leXq+xtXR9XKem6Mq0fq+kxByM0SJFp9F1X/eN5fLue9BEkp6FvjrTl1I+b0zmUxQKpVmat6pgkm3YiYi4vfkzcCxInAwgcAFBAQEBByOK1euoFgsol6vO2OThbabzaaLOTt37hyazSbW19cxHo9RKpWwvb2N8XiMs2fPIplMYmdnxxEmXtvtdmFtlJK/VqtheXnZkSOWH+h2u2i1Ws5o73Q62NjYcBn/GH9RKBScMaPqTbFYdMlEisUi9vb20Gw2XQp1ZpAsl8sAooyGp06dcgYgY3eoUiQSUV2ry5cvu/gPICriffLkSTQaDQC4wSj3DWd1r1KyROjfNEpVNaELKHfTtfiuGtyqMk0mEzz55JN405ve5JJyKDnk9XxOKl/M/qhqkQ9VbZrNJq5fv+4IWZyrJ/uucUR7e3szKhyNZyVxpVLJxZ4xq2U+n3ftsQ9+7S/fKFZiE+emSFc9VQjVhdE3pFUxtTbKajkYDLC2tobLly/j9ttvx+LiIm655RacOnUKd955Jx555BE8/vjjbpOCJMJ35eO/vIe653Fd0Mjf29tzCYAKhYLrs7rHqTsl2yCB43PFufkp8fbHMI4cTiYTl8G11Wrhy1/+souF5DOy6LNuEDz11FP46Ec/ilKphAsXLuD9738/fvmXfxlf+MIXcP/996PX62Fzc9OVj6CLLtc6vwe0/iLVJRJHurrSxc93gex2uzBmv6yEpvnn+DNZEcmY1vujSyfXFseRJSz4OfvKNhS6pv2ENSTd4/HYxT1yLDn2+h2TyWSQzWZRKBScoqffIfresE19p3Vd8juW48l2qbQz+dBoNEKr1XKbNzcDx4rAGdzcqugBAQEBAa8M0M3x2rVrWFhYwNmzZ9Fut9FsNmGMmSm03Wq1nMHUbDaRyWRw6tQpdLtdbG5uOuOUBYTpZrS8vIzFxUVnhNAwY+xFv9/H4uIiEokE2u02rl275gxokj+6WtIAJCmiEZrL5bC3t4dGo+HKHCwvL7sSBKwBtrCwgJMnT864olkbJRoplUqw1qLX62F9fd0pHjSoqbz0ej0As66TcW5yqtzQOIs7lwRD03n7LnR0vWLqb+7qxxGuy5cvu7hEnxywX77il8lkYmNZfJUPgCMtbIvERN2yNHZHky+w7xwLZu9jrap8Pg9rrTOaaXjyb44V+6bZ9fR5fGVNXQIJZqRUBcU3cnkt15yfyp0/rVYLn//851EoFHDPPffg/PnzOHfuHCqVCpaXl/GlL30JGxsbzqDnvGpWQv9+qsyRvDEezBjjVHAdT71O14WqPCQ4Skp1Pcz7iVsXAJzL8+OPP45ut4vFxcUZUmmMceRIXVyvXLmCD3/4w8hmszhz5gze/e5341d+5VfwxS9+Ea9+9avdRowqrADc5g2h5IvvLM+loqTridfoxoFmiVU3RSXtBIkgx0DdO7kes9nszGaFuszqO6jtMF4tm81iNBq55DXsp2aP9N/jTCaDYrHoandynPjuAPu13LjurbWuZIkqmVybXKeauCWfz7tsr/S82N3dRT6fx83CoQTOGPPTAL4BwLq19p7pZ/83gPcB2AXwBIBvt9Y2jDHnAXwRwKPTyz9hrf2ul6Lj8X0NZQQCAgICAg7HYDCAMZH7I4tfX7t2DaVSCefOnUOn03FK29LSEtbW1rC9vY0TJ07gxIkTePrpp91/9J1OxxkbLBtQq9Vw/vx55PN5dDodbG1tOUOEdbVWV1fR7XbR7XbR6/VcvBPdLmms0sCl8cEsaMYYNBoNtNttjMdjnDhxAidPnnRZBSuVCpLJJFZXV10MHBApcTSwNOtku9128XUkgHwuxt+pe6Qas/6/avipSqYuajTe9VoeZ6bMySQq2UCDmElhqMioAnPlyhWsr6/j3LlzN8QMsR9KgJPJpNthV+Nfn03J3/r6uisS7LuR8Xn0Ok1Cwb6ookKjlSRSjVJNoa5xenrPOKLhZ8VTBUKfTcmgb6wrydHYsTiSRHI5HA7x6U9/Go899hjOnj2LCxcu4J577sHZs2fx8Y9/HFevXnX17DSWj23RuNb50mdlYg1mU+33+zMbGf7a07kDZt0IlfD6BDiOtPkgeVlfX4cxBl/4whdmXFwVJI/a11ar5UoMfMM3fANuvfVWvPvd78YHP/hBPPnkk7j99tvxxS9+0b2j3CjgM/mxYH7yElW9lbxRVSsWizOZLnWcdQ3pmlClTNe1XsvYM2stut2uW9ua+p+kkffVLJD83qG6B2AmAZS+xyRVrIOoz63EX9eOknpuCAFw9zYmcn3n9yTXJ99N3pubeIVC4Ss+C+XPAPjHAH5OPvuvAL7XWjsyxvwogO8F8D3TY09Ya+97MTt5VBiEMgIBAQEBAYcjm81iaWkJQGRQNZtNl5WR5QAYH8UMcRcuXMBoNMJTTz3llJd2uz3j1phOp7GwsIBbbrnFJUJptVrodrszxmcmk8Hm5qZzwwLgUmgzqQBdKWkwMRNfJpNBv99Hv993RsiZM2dQrVZd1rRSqYR0Oo3bbrsNk8kEa2trLj6ESh3dNklKNjc3kcvlZu5D9yk+X5yKRujvvlubT96AfaNQr1f3J8aM9Xo9LC0toVAoOBVMr6Oh1ul0cP36dafQqbpC0I2Sxi5dVLlbP4+cttttbG1tzRANGqIkuXxuPhuNTyoTNBxJ3Oi+qWqZGvp+/JqOnz+WPplhv9W4189VKSLh8V0ZeY0SNW2Da0JV1sFggCeeeAKDwQC33347VlZW8OY3v9llq2y1WjOqmJJ7Poev2GjCCZJ7JhFifJOqcKqw8XPOV1wCDj6vn0XRH0tdE3RPHo/HuHr16kwspT9OVJI51ySAjzzyCPL5PL72a78Wd999N7a2tvDJT34SCwsLuHjxIh555BF3Lp9dn41kJS5Toyqc7C/JF+dMU/aTJGazWeRyORdzpgq0jhs3FnQjZTweuw0nKsvMnsuNKc6lxsRxTPg947tScg2oOzCzCPO9VUWPa4XqPZVunke3U35PUAHke0kX036/775HWd+T9eDY7lc0gbPWfmSqrOln/0X+/ASAP/wi9+t5wYQYuICAgICAIyCfz2NrawulUgmJRJRdj0SO/3EzfXm9XsfKygrW1tbQ6XRchrN+v++MgMlkgkKhgDNnzqBSqWBvbw9PP/00er2eM/RJ9rjTTKOh2Ww6w6VYLDqDSnfa+/2+c2PrdrvOQKOr2u7urktKQsNiYWEBjUbDuUlOJlGJg+XlZVSrVayvryOTyWBxcRGf/exn3Y4+Y1lKpZIz0OaRNxrHviGuvxP6N400NUaV6Gk7iUQCq6urjiyNRiNcvnzZ9YWuYpPJBF/+8pfx5je/2Y2j7rrzPjR0mZCgXC6jWCzOuKoqoRkOh664OvvGZ6crpE+o2CeSEaoMJMU0cNUIVMNY3Rt1rPy4NT5bnHqmipKvKCrp0WdWpYVt0OjlvdRdj8+uhH0ymeDZZ59Ft9vFuXPncPLkSRQKBZRKJXzxi1/Ezs6OI+Y6lhqL5Lu18hlIwpgVUNVKHUNfEfZdXn3lVBPDHKTCsa+7u7vY3NyEMcaVk1ACpWudJIz34vG9vT185jOfQSaTwXve8x684x3vcErmgw8+iDvvvBOXL192Ke11vjRhChCRMF1vJNxKmhjrye8trgOSVyqz6pKpLsK6BqiO67qkEsu1wfnhxsvOzo4jWBoXyE0oVX31O4FjSrKXTqeRz+ddvB+fQ+eca4DfpXRr57jz2XitujNTOeQGDGMK+V3OxC90yb1ZeDGo43cA+EX5+1ZjzGcBtAB8n7X2t+MuMsZ8J4DvBIBz5869CN2IYuBCGYGAgICAgMOwubnp0rRfvnzZuTgWi0Vks1k0Gg2MRiMsLy8jkUjg6aefdgY/d4pZGDuRiGqonT17FgsLC2i3267UQK/XQyIRZYHUYryMTaNiRqNBlRzeh7FnVGwYYJ/JZJxixgQlw+EQ1WoV4/HYJVRZWFhwhWnPnj2Lvb09PPXUUyiVSqjX6y7OL5GI6kCl02mcO3fOJVQg4oxjPyYHuJG8+e6U+oxKqPQcVU7G4zHW19dRLpdnXAXVKKYR+vjjj2NnZwf1en3GDVHbplHKn3w+7zLPsU19ZqYy12LCAGZSlZOIaHpzPieTqpCwK+mIUyWVsCnh4nH+7bsAxrXBv2k4K8HjMZ7PfpMc+GoSr9VYInWz82MMm80mnnjiCZTLZeTzeZw+fRq5XA4PP/wwNjY2ZlQWGtM6p+oyqESUhvPu7q5zpdQxUKLK/nHe1ejWMdA4LiVA/lrgv9zsSafT6Ha7qNVqN8wN2yZx1GQqfJbBYICHHnoIS0tLePDBB/GWt7wF165dw+c+9zm8+c1vxmQywdWrV2cyMOp64/2UfKrKp8+miWQ0mQ/JnRIqf0OF/ed3Hd+FdDp9A9HScRoOh47c5vP5GfLEPnLd6frl85HskYyp2yLXn5YeYdu6lvkech4AuMROvV7PKXpLS0toNpuuNESv10M+n59RFJV4khjeLLwgAmeM+VsARgB+fvrRNQDnrLVbxpjXAfgPxpi7rbUt/1pr7U8C+EkAeOCBB14U1hUUuICAgICAo6BcLiOZTOKJJ57ApUuXnHFAUlKtVpHL5XDlyhUXk5ZKpVzdNsZP5XI5LC0t4eTJk8jlcmi1Wtje3nY1hXZ3d91/8tlsFsViEblcDp1OB91u18Vz0VWH7j28lq6cmhyApKfX6yGbzeL22293sSVLS0vo9XoYDAaoVqvIZrOOlJXLZayvr7ukLLu7u3j44Ydx5coV1Go1bG9vO+OeSUvUdZI7/0ycANxI1mg8qlIEzLpL6s63H3umhjs/Z7p2rZ+niUyoVNIt9dFHH8WpU6dcPI7ftrpzcued9cXU/RKIXL9IYn2C+v9n78+C5Eyz60DwuHv4vrvHviMWBNZELpWZSBaZWSyWxFKJi0zGlqme+kGmNpmNaV700D1PLZNZm/ppnuapzWY4I5OpR81WkRTLWKxKsSqrKiszkUACiTWAiEAg9sX3fV/mIfJcXP/wBzJFkQkS818zWES4/8u3/T/u+c6595osmXaY6bRStsr1QoeU8TrsvxVo02OpAYEGHvo6+nM95gS3WqZIx5vtN1k8PWYABtLIAxA2R8eVaSkmr1ur1fDZZ59hdHQUS0tLGBsbE8efclcNjHUWR7bFZAjptJOJ4yYKj7OSkprMKj/X42EmjuF86mN5rWw2K7JoggtzzPRYahmnHicy6r/85S8RiURw5coV/PZv/zb+03/6T1hdXcWbb76Jcrkscmk95tzwYRt0khb+TsDD7/XaJyDR463BPMeLcYscG44Ta6HpNWoyXsDTeGOCICalYaIVHmcy2Vy/fF7YXnMDRdevY7vNdWMy0Bw/vmddLhfC4TCazaZs1hHksvSL2+0WZQLrJJoqg6/T/soAzuFw/Pc4SW7yW/0vVna/328CaH7x+2cOh+MxgLMAbvw1tPUrtMmOgbPNNttss+3LjUlKWGON6fidTidGR0fR6/WEJUgkEhLbwXIBBBTDw8MYGRmR4+nY8T93HRMyOTkptYMYgwGcpOmPxWIAIIXDe72exKL4/X4BCGR5/H4/EomE1IBLJBIIh8MoFouoVCqIxWLweDzI5XLyezabRaPREElTLpdDOp3G9PS0JGoJBALw+XwDhcA1cNFyJ9PomD5PRsnPtVk53eb3BLt0wCjxopNGEFwoFHD79m28/vrr4nhpxw3AAGNApzQSiUgdPs1uMPZFA0rN4LENwFO2x+fzCdOmEyzQ+dX13DTbo9upZW3824qVel4cjnaoeS+ONUGjlhhqBkqDba539sOUB2ogqPtBZ7rXO6mZtru7i9HRUYyMjEhMIOto6Tp5ZtIeDfTN2MdWqyVySnMdmUyclmtyLLTUTzv9el71OuNaOzw8RKvVQjqdHhg3q3XB+dOMkWaHu90u8vk8PvzwQ8TjcSwsLODdd9/FX/zFX2BtbQ3Ly8tSHoTAlWuLG0RaGsr3A+XUDodDxlUzpppttZLXcj4IxihL5rXI7Ok50jGdmuXTaxp4yrTqDKw6WcvQ0JBsMrndbkSjUXn/EFzxvv1+X0Acx4brp9VqDawJ/s5sl/l8XvoSCoWwubmJcDgs8XyUuvM51s+t3vR4EfZXAnAOh+O7OEla8l6/36+pz0cA5Pr9ftfhcCwAWAaw+dfS0q/WMpuBs80222yz7UutWCwCOClQ7fV6xblIJBIoFouSaczpdEoMCp1zJioZHR2VGDaXy4V0Oi0Of7PZFDCQSCTg9/uRSqUkAQPN4/EgHA5LVjc6LHRgGPNFmRDljSMjIwL2vF4vut0ujo6O0O/3EQwGJWtkMpkUCeLQ0BCi0egA09ZsNvHKK6/ghz/8ocTU6TgR7ZRrFuS0nWftHOvfNZjT55rgg+BKAwsAA8kSzHgXfZzT6cSTJ09wcHCAkZERcSKtnHk60ENDQwiFQhIzyL53Oh3kcjlxunkfLbOjMREMs/wxzk0zFnRyNXDSMjbg2cySZBxMiZoJpDQg0X00gSDHg3NpgjKTWdXOt8ms8vpcD/zcLK3Q7XZRr9eRyWRQLpdx/vx5xONxLC0todfrSdZUblJoOSp/atCr20qAYSa0MKWpen2aAJ6SVn2OXh/mM8Di2wSmZiIac8OA805pn24jx7XT6WBrawvvv/8+fvd3fxeXLl3CwcEBbt++jZGREZw9exaff/75AGtMCSbZJwKgUCgkyV14bS2tJJukpaV6zXAc+cz5fD65npbfcoOA8mydTIWZG/UmgpYW6/IgPJYSc64fl8slfSEY1fFnVAgwIQtZNdZ548YLgSWZer2xwPi2o6Mjuf57772HXC6H9fV1eR/zWMp9Cfo0w/9121cpI/C/A/gWgGGHw7EH4H/GSdZJL4D3v5hIlgt4F8C/cTgcHQBdAP+i3+/n/obabtFWwObgbLPNNtts+zIju8WMY3QQcrmcOIS9Xg/lclkcGL/fD4/Hg0QigVgshmaziVwuJ9LGcrksO7t0EhlTVyqVBLhpZ5qJQprNpuwiEyQyvX25XJZ2J5NJ+Hw+7O3tIRwOY3R0FM1mE4VCQYBov99HKBQSUNlqtRCJRACcMHx+vx+tVgubm5uYmZnBtWvX0G63JZkHi5BrZ14za2S/TLNi0vRnGsSZII9GwEGnUx/PsdMMiSn38/l8ODg4EOaCMjPT0dKgiAzp8PAw0um0zBOZVA1QdBZLOqc6I6Lf75cECwRL7JNurxkvZbJqPIYOKI/VAEEzAqaDTnCm76X7bEpbT2MUeU0yMprJMyWfNAJGtpXghWOZSqUwOjoq9fqYVMNMmEHGVbOP5lpkbFar1Xqm3IJpGojxHxP2aABnymP1ZkGv10OpVMLu7q4U0OazZs6t+buWuWo5q16Ha2tr+OCDD/C9730P77zzDra3t/Hpp5/it3/7tzE1NYXd3V1ZmwROZMT4vmGJEYIm3U/dLzMDLNn1fr8vpR7ITvJ4AjyOE6WEeq3ze4JxgiYAoiLgvBJM6lgyHss2Ux3R75/UbwsGg9IWtlM/L2yrLj3BdwNwstnC7L9cx9VqFcfHx5ibm0MikUC328XMzIwU69bvK800/q2WUPb7/e9bfPz/POXY/wTgP/23Nuqvag7YMXC22WabbbZ9udXrdVQqFQSDQUxMTKBWqyGdTqPb7YpDl8vlhE1h5rPR0VGp11ar1VCv1yUmi7u5TIbCuleUWXFn2KoeE52CaDQq8Ssej0ccs/HxcYRCIWSzWZRKJUSjUUQiEakBR4DW6XQQj8fR6XQkMUs8Hh/4jqn4+/0+9vf3xfmlVJHSKQ2UtNOrzWQbrBya0z4zwZdmB7SMTsvPtMRQO6EcV7/fj2KxiBs3buDq1asyDxpsmAwcQVM0GsXIyAgymYzs8Gu5mWa0eB3Wy2NsDNkcnkOGS1+Dv/O+bIuVZPI0OZ52xJ8n39PST4IfE2RrJkZfVzMM5j3ZPq5VvUY0G8d/BCm1Wg1HR0cYGhpCLBZDNBrF5OQkjo6O0Gw2B8AlnxfTdIIN4KmUkgDFZCP1OJnrlXGsWhZnjp1mnzudDg4ODqTUiJ5LfZ7O5KmfG32MngeyjQBw9+5dzMzM4OrVq/jWt76FH/zgB7h58ybefPNNFAoFlEol9Pt9eT8QQMXjcQEpbLNm3/SmAqWIvIZVtlktkdSsGNcF310EOBrYcV3pdP6MnyV7xTHgvfnO8Xg8UlNOSza5Dhk7FwwGEYlEUKlU4HA4JOkTf5rsvM78mk6n0e/3hclstVool8vY39+XdnCDjffjXHJcTHnm120vroDB34A57Bg422yzzTbbvoJ1Oh0kk0nEYjGkUin5T5r/UTebTWFvwuEwhoaGMDo6imQyKfFjjUZDYs70zjJliHoXXO/exmIxOJ1OlMtliV+JRqMS89FoNOD1elGpVOByuXD+/Hl4PB7s7e2h3+9L5mZKN8PhMHq9Hur1uqTbz+Vy8Pl8mJ2dHcio1mq1kM/npRQBneZEIiHsIaVM2jTY0M6zBgimU/q83WntZJssh5kkxbyHloWZc8rkM5ubm3j06BGSyaQkDzHBp07+4XQ64ff7MTw8jEgkInJYvfOugYjT6RyQ1ZJ900wOf9fjRnBKwKaZNFM+aQW0NFgjSNDAULNndKa13NGMFTNT62t2WM85r6nHnSDC/Ixzzw0MHbPkcJzUistkMuKkj4yMyDPF9lAyaVXgm8BArzOWyrAyPabasWdcF9eHuZ70miSIaTQaWF1dFckeQbrZf46v3ijQ7dHjb0o3a7Uarl+/jsnJSSwuLuKNN97ArVu3MDc3hytXruDDDz+E1+uVTSRKvwOBgKwnDXoIuPSYce1zvBnfS5ZVs5JakqoTnJhSVM4xga0GzDxeS0Z5LYI6ttXn88Hv9wvYokQUwEBNStZS1JsmtVoNrVZrYL75DuZGWDAYxIMHD7C3tyd9Iogtl8twOBwinyeg1M+I1+tFLBbD8fEx6vW65Zr7OuzlAnBwPPOCts0222yzzTbTRkdHUavVsLu7Kw6o3qFmDJrP50M4HEYikZDsY9lsFoVCAfl8XuRb7XZb4jOazSYmJibQ6/VQLBbF8dc70ZT+MEthp9NBpVLB0NAQIpEIarUaIpEIVlZWUCgUcHx8jEAggHg8LtI+yj4Z6+H3+wWcxWIxhMNhZDIZNBoN9PtP0+ET+AEYcJaBp6BLOyzMGqdBKTBYENo8n6YdQPMYM25If0fny4oN4XW1Iw6cOHcs45DNZnHjxg2cP39eMo6akj/N6tEBjcfjGBsbk3hF7ZwSBGlmVMsmtYxMx/+wvdrZ1dJAzT5qhlHPjR5j8xr8ng6x2U8rsM3+awaQ55ugTc+HlrdyTs3z9E8t5QQgzni5XMbBwQHGx8cRDocRiUREFsh7MUsgY6hMNlA792TAWT+OIM9K1sgxYVZYAhWaOXYEwL1eT7KcDg0NIZfLSSIQnq/XpR5rfU0N7sx54c/d3V384he/wD/4B/8Ab775Jvb29nD9+nV873vfw/LyMh49eiR1C+PxuCSF8Xq9InHWwJQSVfZHM9FknLhxQgmwfj4oGdSp+DlHOlEPmXDOmx4PgnoW1WaiJ70xwZg4DYr1etL16fTc6DHUSV4IysjyBYNBTE5OotvtDigu9DuA/SX4IyDlmiJo05LfF2EvF4CzGTjbbLPNNtu+gjHWjY4Cd3AZR9JqtRAOhzE+Po6JiQk4nU4cHR0hlUpJkhMmK6F0j+f6fD4UCgUUCgUEAgGJl+N96JgODw8DOEmTX6/XBSzWajXE43GcOXNG2MHR0VG4XC4pghwMBuXcWCwm3zmdJ0WvHY6TDH9MQQ5A5EDM2lev18VBK5VKA067Zr7MjHcEKGY8m5VMzQR0+m/TkTTZNg0e+bd2dE05Gh2tYDCIbDaL+/fvY21tDSMjI5Y14dgeDaR8Ph8mJibw+PHjgQQiHAdeh5n+WF5Cs21sq87CZwXQNAjivTRTxTWp+24CRC1RNFk0LfmixEyze5oV1mNpxQJqEE5po5YX6n7rNUEwxjbTyaf8tF6vIxwOI5lMolariRyZ96zVagNxjBrsch0QUDSbTXkONbg1x0M/58ysaIJevUbZR9ZP3NraAgBJ8KHXoH5+9L3N9WrKVfXYEZCurq5ieHgYv/mbv4k333wTf/qnf4pbt27h13/915HJZCR2U4MZMvoEQ9w44vzrtUdQzGeSZTf0mqXcUUsdOY+mrFZnKuUcUGKrgZdm9/SaJkPtcrkGNk/0O0LPvwbtACT2mM+Tfh5ZMzCVSqHf76NYLEo5F13snOuO/SEzx77wnZ/P54XRflH2cgE42DFwttlmm222fbk1Gg0kk0m02+1nskK6XC5MTExgYmJCkoRsb28jlUohnU6j3W5LIDxlYJ1ORwppUwrG3f1qtTpQk6xYLGJoaAjValXiz5hKu9VqYXx8HH6/XzIgjo2NodfrSewLASEAjIyMoFwuo91uIxaLyd8sGUCnNhqNol6vY29vD8BTx9Tn8yESichuOJ0Xzea88sor8Hq92N7elhIImmmh06QdVG2a0aFpZ1o7v5od4zn6XO3QWVkul0MikcDh4SFyuRyuXbuGlZWVATbClMtpFs7lOil8vrS0hL29PWQyGWEa6GQSzLF2nwYMOm7MZF3MZBy6T1Zt0ePC47TkVDNoJpupgYNmUzlvmiXRcjPNqvF6Ov28yeb4/X45Tsfy6c0Ac641Y8rkO8FgEKOjoyKRI4jjc8HraABorgGd3t5qPDXo9Xq9iEQiwtjpOTAZWq7xarWKO3fuoFQqiVxRZ6A0pamcd5M9NeWf/Nwcq2azievXr2NqagqLi4u4cOEC1tbWsLKygvPnzwtYo+zRHDd9X82ycqw4Xly3lHBzbXg8HplLyhwJyBgLyrHWwFFnsdTriGwfM2dyvJitleuO7dAxZlyzeg1zDbbbbUn4REUEwWy9XhdJOhMcbW1tDTDqWlnA8WdSKasNK8o8NSh/EfZyAbjnvNRts80222yzjcZMY9qR8Pl8iMViGB0dxczMDJzOk6yUx8fH2NvbQ6FQkKD9er0u2ecAiHyRu9zc/eaOM0EiHT7u5iYSCZEWLSwsIBAIoFKpoNPpIBaLwefziVSTtZCOj48FeJVKJTidToyNjcHj8eDw8FCcln6/j3A4jHA4LM4yZZTNZlPiR4CndZm0owUAk5OTmJ6eFqe9UCgIeDTjrkzj/8eaReN5erdeO2oEHBpImMye+f+8BjnZbBbJZBIejweNRgM3b97EW2+9JYW6rZgWLTvkOpifn8fy8jJqtZrECWomgkBFM28arFkxWXqXX5tOemKyVRq4mIBX/63njuOoAQsdVB6nnVJzjHVclnkvtotAldcyQQ9BH9e6Vaxjt9uV8dUSOrNkA2WSJmupATHZISYIMlk1DQKdTicikYiwp1aA3uxLvV7H2toabty4ITJS3QZzHPR1tOnNCM1amyCc81UsFvHLX/4S8XgcV69exd7eHm7cuIHf+Z3fwc7ODjKZjLBwnF8CL82Cckx0rT2dhIVjSmBCZovJOqrV6jMlMdhuSsIJ6jSTpmMgCQL1etPsG4Bn2qXXFb/neuIYsTSLqRxgUinGM7Mfug6fZmnZHg0y+cxyDT4PjH/d9uLSp/wNmQ3fbLPNNtts+zIrFArIZDKSqMLn82FsbAzT09OYmpqSrJRbW1t49OgRjo6OUKvVUK1W0ev1EIlEEI/HJQZKy4W4Ow+cOHi6GHS32xXZJXeVQ6EQVlZW4PF4xBFhjblmsyl15/r9PvL5vAC7YrGISCSC8fFx9Ho9aSOTkNCZIlNYKpUkjoVMh47bAgZjfui8MJslGbvTCkdrxxcYTJVPdo9/ExTogtymtOx5zIg2fRyzRxKYVqtV/OIXv8DBwcEz2em0466ZGqfzJCPlysoKZmZmRDqpx4oJFJihlGCOoFT/0yBBAzkTCGk5mZk1ULN2em7YD206Rk07vuyrBlcmO2qyfOa8cax0HBQ/07I5DWbYH91/3ofZUpnxU48pzyf7aa4fc2zJYJvrUa8dh+NEJsvajFrup9eR7rsGcGQMCeo1gNPzYDKpuu/m2qXp2FLet9vtYnt7Gz/96U8RiUTwjW98A3t7e7h37x4uXrw4MDYEwNyY4ZhwjPjc64yO/Ec2CwACgQBCoZAAPrJrBJncaNDSUq4FyjW13FhfXz9zvDfXrI7F4/caKOq1C5xsmpEFp4KA2YJ5bzKLBN1kF+v1uiQ80VLSdruNSqUi6ohmsylJoHQdSr4DXiRp9JIxcLARnG222WabbV9qBA5utxvJZFL+DQ0N4fj4GLlcDqlUCrlcbuA/ecpnWHONaespq6NzwoyPzBLH/+w7nY44FV6vFzMzM4hEIigUCmi1WojH43Juq9VCNBqF3+8XJ3d6ehrZbBblclnARaVSEeeFTB9Zv263i+XlZYkPIYAkGHM6najX68/sJtMJa7fbyOfzwgJaGR007SSfZlpmxmOtpIU69gywTgOvnWQ9r263G6FQSIpy3717F5999tlAYW+9+85raeA5NDSE6elpXL58WYA7HUkCfg00NCthxbLpexE40zTTYMU8mvI/cxyszARxdDo108r7mUyqeT9+ZgI5zVxazSf/abktx1oDMo5tNBqVJBwEC2Q+dGkJk+nUTBlro1kZ2xaLxYR90+3XY8120qnf29vDzZs3hU3mM6NBrSmdNdkaq3aZ612DHJ1EY39/H0dHR7hw4QIePnyIGzdu4MKFC5idncXGxobEJRI4kUXneGqG0uFwyPtLs4f6/URWjwypBlNcXzRuXOg50CoDgj4N8oGnckkCZL5P+b0GiZxXLRnmeDMTKNm5er0uG0EEc8DTDJbcZKCqgGPHkiC8nhnXq9cLr3vaO/HrsJcLwMFh4zfbbLPNNtu+1Pgf9czMDEZGRiQOrNFoSKHeUqkkTg8zGbrdbslqRkeAqdS58x0IBJBOp9FsNhEOhwcKyo6MjEhSktnZWVQqFeTzeTgcDiSTSbjdbhSLRQAn8W3RaBRPnjyBz+fD1NQUcrkcAGB+fh69Xm8AWLDgdzKZRLlcRiAQwOzsLNLpNDY2NgTA0ZnvdrsC/rTzSael1WqhVCoBeJo5E3i6M64dcpoGFqc5rQCecVT1vOjvtOTKNN1W7VgWCgWEw2GZl0qlgp///OdYWVmRbJH62mYf2I5AIIAzZ84gn89jY2NDmFOX62madZ0l0mRwzLpuvC4dSgIs7SjyGD12msHk2Jup/zmO2hk3Y9+0LBN4KkfTWR416LICNxxjzSTyeJ1kgm3l31qWSVmdBopkm7XDzO94Xa4bzRBqxpKf8ZnUc8n7hUIhjIyMCPt2GghmfzqdDqrVKu7fv4/NzU0EAgFhk/Q99Jo21yi/0+vM/Nz8Xa9/suB/+Zd/id/7vd/D1atX8Wd/9me4fv063nrrLUmqYrVRRLZQzy/nXicH0sCbcXUE0sxwqdeOBuB63ZK143uJ8WjBYBB+v1+YfA2SyXQRCOryAUy8o1lXvbnDZ3JoaAi1Wk2YMj6bfMb1GuB7nH3ku7BarUoMJZPT8FgtM+V7U5c3eBH2cgE4h7Xm2DbbbLPNNtu0RSIRDA8PY25uDkNDQxK/lsvlkM1mJTuZx+NBLBYT51dndJuamoLLdZL9sVarIRQKod/vS4za0NCQSK56vR7GxsYQiUQQi8UQDAZxfHyMUqkkkq5e7yTrntvtRiQSQbFYRCqVwsTEBMLhMFKplKRcZwHvcDgMh8OBSqWCycnJAekd2ad8Pi/OsQ7E93g8wiToGA8NQhqNhuwykwXRcYOmaYf4eeDNTAzA+5lg0IxPsrqXBhPdbheHh4d4++23USqVsL29DafTiZ2dHfzsZz9DIpEYSBuuWTOzvU6nE7FYDOfOnUO73cbm5iZ6vd5AFj09XubfJsunpaq6v+Z5GvDo2C0NWPmd2WZ+px10jqlZO49MI9c254bgk23W7aUsTYMlM+OfBgt8XnSbuUZ13/XzA0CAhwajZh9NwMl/rVZLZMyaUXO73RgdHUUsFhtgPXlNDT7JfrXbbWQyGdy4cQPVahXDw8MCShjnqudXAzSr50Ov29NMA2H+3Wq1sLGxgRs3buC3fuu3sLS0hHv37uHChQu4cOEC7ty5g3A4DOAkPT9jvnQ7uHlgymfNZ5mMHY8ngDEBJteTjmlle5npVvfJ4/HImuH5lDQyyZBeg/pdQ1aMwMqUQvt8PpRKJXl/cl1rVo1sOUEfr8P1Gg6H0Wg0BASypAEVF3rDguDvRdrLBeBgKyhts80222z7cltcXMTk5CSczpPyAP1+H+l0GqlUaiC19NDQEBqNhjB0tVoNnU4HgUAAh4eH4tCy8Haj0RDWrdVqiZPH3f/p6WmkUimJyQqFQgiFQuIssohtNptFq9XC/Pw82u02tra2kEgk4Ha7USgUBhzkYrEIp9MpMqNYLIZer4dsNgufzydOtHaGAoEAAoEAqtXqAEjQjrJ2cuhwmYyBdg6tANBpsjEN1HQCB5pmZ8wYLc048Xpsh8PhECdsZmZGCnJ3Oh189tlnWFpaQjweH4jJ0tIoM27K5XJhZGQEZ8+eRaVSQTqdHkiSYQJMnqMZKJPFYtsJTjSAM1kN4Nk0+PqaBGpWDKIGgfpcjrmeby1rswKFpzFFmq0zJYSa9bPqD9up26QZN82O6jHieuV1eZ7JxJljn0wmMTo6OpCR1ATOBHB8HsvlMu7du4dHjx4JeGAioOcBdxO8mcybOU/6cy2j1ePabDZx69YtnDlzBq+++irW1tbw0Ucf4Xvf+x6ePHkigKrf7w8kKwkEAgMSRn0PHdemmTeOp5Yca+DOa3AtcNx1MXACSMoi+/2TGnNkNnW8HGvDUbLKtrDNrVYLbrdbsvYCT2Wc3CDz+XxoNBpyby2dZLv1ZoBmFMn+eb1eef9SsUAWjkCP97V67r5Oe7kAnMMuI2CbbbbZZtuX2/z8PIrFIjKZDJrNJtLptNR3446uzgpYrVZRqVQQDAYRj8dll9rn80lQ/NDQEILBIOr1OgKBwMBu8cTEBKampnBwcIBMJgMAIplsNBoYGhqSMgSZTAahUAjDw8OS8np8fFwkQnRy8vm8yKbI9C0tLSGbzUqR5EKh8AzLRSedckxTqmY6aXQITdNZ80y5n2aHTDkgjY63Bl9sj2aNtKOlndDTQILT6cTa2hreffddjI2NoVqtwul0IpPJ4Mc//jFmZ2fh8XgQiUTE2dbJHHgf3sPn82F6ehqNRgMPHz4UB173RzvtOjmDFbumd/L1GOvr6b814GN/NZtlmnZK9T31GJpzoGWRprxPgzT+sxonPXenxRfyWN0mgq1arQa/3z+QiVKvPa4DOva8lk76ohkVPe6hUAhTU1OnFnU32TduwOzs7ODnP/856vW6PPeU6Om4MM0oWrGWeoy0WW1wmCBeSwZzuRxu3bqF733ve7h8+TJu3ryJQqGACxcu4JNPPhF2mX1hshWyX1qO6na7EQwGZXwbjYYkQNJxaxr06I0DtlOvTZ0oiIAtGAzKOLAdGpzp54Xzx3ngZ3oDitfodrsIhUKyeTU0NCRFxTUQZd1Nblbp8gfsq9PplA00ysU1U0gQyA0fXR/uRdlLBuAc6NscnG222WabbV9i+/v7Uoy7WCwinU6jWq0iEAjA6/UiEAhICmo6QeFwWGJMKOdh9jw6BSyyzcLXsVhMnP/NzU3U63W5PoGh3+/H6OiotIcxbHfu3EEsFkM0GpX4MyZQ6HQ6iMfjcDgcKBQKGB8fh9vtxuPHj9FoNHDx4kWUy2VkMhnZwaZjRAbJjOHQu9QahGn5lAZjpoQNeL5Dyt9NJsgqDo1OKEGVFfDTgNNkwSqVCmq1Gubn57G7uyuM6pMnT/DBBx9IDTD2iY6k7ru+ttfrxezsLHq9HjY3N8XRtWLggEFwq++h227KADn2Jkuix10DIw0atTNpMn08ThdH1uOomR4NEK2ApZ5DxgvR2Saw49rS/SDTRKPDr+eZAEA79mSn2Adz7nltghCOg5aQut1uTE5OIpFIWBbtNsEbmZdyuYzPPvsMDx8+lGyPjCfTWTLNcbey5zn6Vt9peaOeq16vh8ePH2N9fR3nz5/Ho0eP8ODBA/zu7/4ubt++PVBOgOfx/eVwOGRMzFhYAhaaOU4apJmbMXoTQLOl2hiPyng1snVa7qjBEseF88mNMtZ543oiy8fEJTomlc+TThhkrnOHwzFQxoTAjBtHbBPP1ZknNRv3IuylKiNgF/K2zTbbbLPtq1i5XEaz2UShUMDR0REajYZkFmM2Rxb55n/clOa4XC6JlxgaGhLnhI4AY0DGx8extLSEUqkk9dl8Ph8CgYA4IolEAslkEvv7+ygUCohEIjg+PkalUsHKygpGRkYkm6TeuQ6Hw+j3+6jX65ienkYoFMLBwQEcDgfOnTuHdDqNnZ0dFItF2blmYoNwOCwxcTo4nw67yQDQSaHTbkrl6DhpJ/95DisdI31PfY4GTnTSzetpJ8rqmH6/j8ePH0uco2YOfvGLX+CXv/wl0um0SL44rprNMdsUDodx5swZLC4uDmQx5PeawdLMkGZqNMCjA63PN2WXpmmJH51NxhFp9sh0Unu9HgqFAlKplPTT6RxMqKLlehqUmVI+9lM7s/xMO8IaMGiHWPfZZLH4ma6zppPFACfggjFReh2RNdIyULLXU1NTz5QN0GtNgzdmMnz8+DF+/vOfo1arIRAIDKTgN2uU6XHSZjKTet0+T37H9ugx5WelUgmffPIJnE4nzp49i/39fQDA1atXRb7Ie5Mtqtfr8jfnnc+uBk1er1dKCPA4slK6LbrOHAAZG74Pea6WGTKhkJYlMpaUskkd96ZZO16Xm0kEd3yP6zbV63VUKhW0Wi25ltvtFlUEyyQEg0GRhbLUi85iykLgBLd8/7LId71eHyhb8XXbS8XAwWHHwNlmm2222fblVi6XkU6nJZ6MiQ3q9bo4N1oKyZIA8Xhcdnuj0ajsCjMOg47t2bNnEQwGsb29jWw2C7/fj3g8LnJLl+sknXmr1cLh4SESiQRcLhfW19cxOjqK5eXlAVBHRyIcDmN0dBTHx8dwu91YXl7Gzs4ODg4OMDIyglAohFQqJZIiLSlzuVwD2eBYrFaDNmBQ9qX/1k488HQX32pXHsCA1E47e1aOqSk90/c2mSo6d7yHlXTN4XAglUrB7/eLk1upVACcpK3/y7/8SynDMDw8LOfTSWT/zL4Hg0FMT0/D4XBgZ2cH9Xpd+kdgoM/R7QOelZ1qAEvTzrvVPOgx1QBNS9f4vc7iGQwGxdnV46rlkZpt1Uybvo/J7pGJ0GNAx5h91XJJc41ZyUA1K6uzI5pxmPqeZlkAl8uFRCKB6elpBINBy5hEc8wJiFOpFH71q19hZ2dHYsjouPPa+t4cY6v50jJRfn6amdfQz4budyqVwr1797C0tIRbt27h+vXrePvtt3Hnzh2USqWBZ9Jkogh0Cdw0UNcMFoGyz+cbKO2g2TYAA+uR5+naiHznEfRoQAZANiA418wQyTnXa1Q/p2TPer2e1GUkCAOesrF+v38gxs7pPMkwS2DG9z3bZzJvPI9t5jvf5/M9k4n067SXjIGzEZxtttlmm21fbplMBtlsFsFgEMPDw7Kz7XQ6Ua1WUa/XEQwGEQgExIGggxCNRjE2NiaOi8fjgd/vh9/vx8jICK5cuYJut4vNzU2RUUajUTQaDTSbTQwPD2N0dBSZTAa9Xg+Li4toNps4Pj7GpUuXcOHCBWxsbKBUKiESiQjY8vv9aDab2NjYgNvtxsTEBB4+fIh6vY5XX30Vbrdb/g4Gg0ilUgM71j6fT5wx7jRrp99kwkzTzJxmarRDqp1/0wECBmVX+idgXetNt8WUqpnOMcEzj2u1Wrh//z5WVlYwPDw8ABSOj4/xgx/8AKurqyiVSuKc64ybVoyKy+VCNBrF7Ows5ufnEYlEBtgn7QjzfDOGj6bBLxkIU8J6mqRVZ5g0gRHHiNcjE+HxeCQeicCMzCOBPq9N59usG8efjDEyWVITFOo1RufelInqhDImk6avqwGGyVbS8ddzHI/HcebMGcRisWfmUoMpzb4BJwD/1q1b+PDDD+FwOBCJRGQtd7tdAQ96vq0Aql7TvKcJ7k0zN0mAp+CS3/N9cO/ePeTzeczOzuIXv/gFfD4flpaWBp5NZgnViVs0q8lrMxGTCRR19keyXuaa4HPBdcOxINDimFLKqbNXUonABFG8p16PTqcTtVpNgCnnwefzIRgMyv3JHnKTinNEUMdxADAQG9jr9aQouB4TMoMsLVMoFFCtVtFoNAaeoRdlLxeAc8COgbPNNttss+1LrVgsYmxsDLFYbCDZQ71eFyeZUi4tRZqampLYM4IrOh5zc3OYmJjAwcEB9vb20Ov1pB5ZtVpFu92W+x0cHCAajSIYDOLRo0fodrt4++23EQwG8fnnn4szxayHk5OTIoObm5uD0+nEzZs3AQCjo6NYX1/HwcGBgNHd3V1hCin9oVNdLBYHpJDaodbOm3a8gUGnl2YyBjxPs0dWbJtmMPidFVOhPzsNWNJRM7PC9ft9bG9vo9FoYGJiYuCcfr+Pzc1N/OQnP8Hu7q7MD4EcWSRTJkkHOBwOY2pqCjMzMwiFQs845+a46rZquaPZZ50hzwSoJmum508fr4GhbrtZ3FuzafycTjOZk0ajIYyJltFpEMlzOb8aEJnMKVkcE/jp8eGa4d8afGkmSc8J28x1FYvFMDc3J8+bKZvktUzpJDO+/uVf/iVSqZQ49WTe9BiasliOvylB1t/pOdVrnL+bCTz4OceEMsNWq4V0Oo2trS288sor6PV6uH79Ot555x1pH+WPLHuhNzr6/b58T0AKPGXDCPKYydLr9Q7EO/JzSmXdbrckLCEIarVasmnF+7G8AeN4tVQWOCmBoOXMrO9GCS6vpwFeKBSSd7jehNASznK5LGUG9GZJKBSS9znXAMfb4/FIkhS2lX3h/L9IAPdSSSjtGDjbbLPNNtu+ik1MTAhbU6lURGJGlo0gzu/3o1KpwOPxYHFxEbVaTeLgCoUCWq0W4vE4VlZW0G63cXh4KNkpGWtWq9Xg8XgQjUZRq9VQKBQQCoVQLpdxdHSElZUVjI+PY319HdVqFSsrK8jn89jf38fY2Bii0ShyuRwajQbi8TgePXqEfr+P6elp1Go1PHz4UAoUF4tFycJmOpTsr5bG0fRx2qycax5vgjdz956fWTnldJLMZBZshwZ1jCNjn/i5eW+dpZHfFwoFbG1t4ezZs1hdXUWhUJA2dDodfPrpp4hEIvje976HhYUFBINBccq1c2sl3WMc3NDQEA4PD1EsFp8BuWaKeA126Lya42LKIk1ZI9vD/mrWgOfrcaWZDBbbQkal2+2i0WhIzBPZRofDgWAwKM4tQQydfV6b9zITZVixTpR28u/TMo3q9aYTo5j35VrudruIx+M4d+6cZckAfT0TvDWbTezu7uInP/kJ7ty5A5/Ph+HhYWHm2X+dWl/bac+HFbOsjzuNmTPnz3y2ut0uNjY28Nprr2F2dhYfffQRLl++jHPnzuHGjRuyPsmkcswZ88mSJbwHQSrP0UBfZ17UAEtvwvA55fw1m01UKhW4XC74/X7ZDGG8GdeoBpBc17oEgE7CwnvxM65lsnm8HpNE8Trlclkk4zyeSVSmp6fRbrexu7srx2j5aKPRkJg6DV7N+fm67eUCcLaC0jbbbLPNtq9g/E+6UCigXC4jEAggGo2iWq0CAIaHhyU7Wzgcxvj4uDhxLAPgcrmwuLiI6elpyWTZ653UYWNiEwBIJBJwOp3I5XIIBAKYmZnB1tYWPB4PXn/9dRQKBdy8eROBQABzc3N48uQJMpkMpqam4PF4kMlkxIHa399HJBLB5OQknjx5gkKhgImJCQwNDSGTyaDf7wvjp2WMTOBAJ007yWToaOZOPfAs+2bluFiBNy2dpHOqnVbeV4MY/bvVPU1QouNnzPP6/T4ePXqEf/JP/gnOnz+PTz/9dIB97Ha7+PDDD0V2pZk6Sqx0rI5ui8vlktp+Ho9HMpuyPey/BtJW7Jz+zMzIqZ1UAhWXyyWp1DUbpx1ck6nifXStMD2Gei0Ag1ktO52OpGDXfacRpJqMHvvIDKCmbJLXomPMFPAECqaxFhfvqdtL4BCPx3H27FlMTEzImjfHgOdp8NZqtZDP53Ht2jV88skn6Pf7mJiYELZL94P9Nxk1tt00fs/1YM69ng8T8JoAz9wkKZfLePjwIaamprC5uYnNzU28+uqr+Pzzz2WjiewXAPmM7zYdq6jbQMDH2F5KZnVGRjKffD40uCfA1xlk9VplrDHXl5YEcz3qkgbNZlPYRL6jTWkpj6UclGNGeTsT+OjYXZZfGR0dxfj4OFqtFsrlsoy5fg70M0MAaD5jX6e9XAAOz2qHbbPNNttss800n8+HXC4nMWqBQAC1Wg1erxfJZBKdTkeKugJAOp2W1OLc4V1YWMDQ0BCOj49RLBbhdrslGQmZjGQyiXw+j0ajgQsXLsDtdmN1dVXkd/l8HoVCAZcvX4bP58Pt27dxcHCAM2fOoFwuo9frIZlM4ujoCN1uF2fOnIHT6cT29jYAYGpqSmrD6YK9lPromCn+rbO8adMOpskW6GNNZ93qWM08aTZFS8a01FI7epqB4/10fNhp7SIwMJ3/3d1dPHjwABcuXMD6+jrS6bRcFziJz/kv/+W/wOv14jd+4zcwMzMz4NT6fD5hcuiU6nsGAgFMTk7C4/Hg8PBQ1pUV46LbTAmWyUyxbebnWralHVZzvPQ4ayCuJYycPzNJhN/vH1gnGlxYrReCGT1/GsiQUTltLQAQAKBBEcGaBivsi06Br68dj8exsLCAsbExAW+6/RpIm+CtWCzi+vXr+JM/+RMcHBxgZmYG4+PjePz4MQA8Iyfl9XTiFFPWasWs6nV3mr9qxTKbKfz1/D158gTT09OIRqN4//338a/+1b/C/Pw8NjY2EA6H5bnmc6FZXM1qUnJIdsvn8w2wstzAIuOr2TdeQ0u2dcwZ3wkcd518xEyGpEEZ2U6PxyNZK71e7zO12TS7zLaReWy1WggEAohEIpLIiNcqFArY2NhAKpUaAKu8Hp8JxgmSfePGzotMYvJyATibgbPNNttss+0r2NHREXq9HiYnJ9FutyX7GBOFkOEoFAqyE+z1euHz+RCNRjE1NYV+v49UKiUZKb1erzgV8Xgc/X4f+/v7cDgcmJ6extHREQqFggC/zc1NhEIhKTZ98+ZNlMtlhMNhHB8fy70eP34Mn8+Hc+fOoVKpYHt7G6FQCJ1OB9lsFrFYTJxRn8+Hg4MDcZQ0Y+P1elGv18Xp0QwOMJg63spp14DC/N0EK6b0Syc20MCC99COvSl5c7vdA7WhTAZJ39Mqo2Gv18ONGzfwu7/7uxgbGxOmUre5Uqngxz/+MXq9Hn7rt34LExMTA/1jHBHlW5oBcjgcks2SDmYqlZJ4SrZBt1Mzk7yOySZop98cVz0/zwPXvKYGRqZEld9xzWgnWs+Xvg77r9uswaKOoyOD9bxMjRrg6dg5LcnT9br0/RjzNjs7i5GRkQG5nhlLZjJv7XYblUoFDx48wJ//+Z9jd3cXfr8fFy5cQLlcHgA93Awx4+k0U63vo/tqtWb1M2gCTdPM9aI/Pz4+xv379xGPx7G9vY0nT57g1VdfxYMHDwSg6UQ2+hnRAIgbPyYgI/vm8/kAQDI3mjXcCDIJ8vR1KW/kO0nHUBLkcd51iRN9LzLButYd1zozBXPstASSZRTIzulNDG74FAoFSVilmWf2OxgMiqqi0Wg8A1xfhL1cAA52DJxtttlmm21fbpFIBIFAQFgul8slddoo06FEZmxsDMDJf+hMPFIoFMQhGh4eBnCSGCUajSKZTKJYLOL4+BiBQAAejwdbW1vw+Xw4f/48crkcHj9+jG63K0xDvV6XmnD5fF5S2+/v72NmZgYLCwu4f/8+arUawuGwSCSTyaQ4HayLdHBwAOBpLBIdRSYO0A6j1a4+gGcAgK4bxe+1nQbeyMbwM96PO+4mcLMCjnTozHtoJotzSMfRBBipVAqPHj3Ca6+9huPjY2Hh9H1yuRx+9KMfAQDeffddzM7Oyndk4ggMdO04zSQlk0l4vV4Eg0EcHh4KCNCslJbTmeOlAZOW3mnQYII3cz41e2cFHNh+7cgThNKBp/Os4w5NhlSzdwS3ek7JgAUCgYFx1Ga2nf00QQ2ZDy0j7Ha78Pv9SCaTklyIDJnVJoQGb5y/YrGI1dVV/NEf/RHu3LkDl8uFS5cuYXh4GFtbWwNrkIBEA0dzo4JjedrzoNexlr5q03NojhUAASHsT6vVwubmJhYXF+F0OnH9+nX843/8jxEKhQbmT6fH1+wlQVa/3xemWce61Wo12QRiCRImNeGc6HpoZukBHkMwHAgEZKPAlHH3+0/jN3kM1RCBQEBiFfnu5JjXarWB5CX6mSRj1+/3B/rFNU8Zd7lcFrYPeAooG42G3CcQCAysvxdZyPulAnCw2LWwzTbbbLPNNtM8Ho9I3Twej7BoACQ+I5lMwufzoVKpCFhyOBySdTIQCIhzWqlUEAwGMTMzg0wmg3Q6jdHRURQKBRSLRSwvLyORSGBrawu5XA7hcBj7+/sSZ7K8vIxSqYR8Po9kMolqtYpOp4OlpSUEAgHcvXtXCn9nMhlxajqdDhKJBMrlstS9evTokThh7KsGNRoomXFrVuDClO2Zph1kDQABPANaNAtixSbwpxkLZjJAJlPDz7SkTUsdu90uVldXcfbsWVy5cgW/+tWvpIYb5V0OhwPVahXvv/8+AOA3f/M3MTExgWAwKA4z2R068FaSSmYu9Hg8SKfTkoDGZBZN8GWOnXauTSbJSmanQRtNgzidYc9kiOjYknEgWwecgBeOrz5e34NtNMGqBlO6nRrE6znWxzBGi0bHnMf7fD6Mj49jcnISkUhkIPGGCd64ccC55mbHw4cP8ad/+qe4desWOp0Ozpw5g1deeQWZTAblclkABdPQ6wya7LOO59PzZLKr5tybwM78XW9QmPOrn2fg5J1Vr9fh9Xqxs7ODQqGAK1eu4NGjRwLWtFSR610n6dHJbLiudZ8oReRYcGxYP9PMWKqfTwAiq+QY8h3m9XpRKpUG5LbcfNIFxrnu9LjoTSgNqPT7i5+TqQsEAgJ89YaAWTyeY6Hj+sz3oPn+/DrtpQJwHFKrHQ3bbLPNNttso2UyGTgcDomV4X/qwEkCk2AwiFKpJLXiEomExE/4/X6RWFJeGY/HEQqFsLq6il6vh2AwiKOjI4TDYVy+fBm1Wg0fffSR1J07PDzE0NAQxsfHEY1GcXh4iF6vh0gkglKphGAwKI7kxsYG/H4/AoEAcrmcxOUxDTizZA4PD2N1dRXAiePcaDSkXhJ34gkIdHA+8CzAsmJuTHmljp2hY/y8/38p56LTZF5bMzh0Dtk2E8jp4zSIs3JW2dZMJoNr167hN37jN3B4eIgHDx4MSAyBE4etUCjghz/8IWq1Gr71rW9hfn4e4XBYnEW/3y9SSSaGMR1LMq+hUAjhcBiZTEYSnJhsmRXjpseb/bZy8k1QwP6YZQjYLg1AeH6j0RDHnAyMziCpEzWYqeM1e6PnRzMuZOh0ghLOrd5MIFgwE4HwWA2CYrEYpqamMDo6KkW6reLrNEvJ+CYyb/fu3cMf/dEf4datW2i324hEInjnnXcQiURw69YtkWy2Wi15jnQcou673lgw58nc4NBzyT6bQF7PPY3902uN49LtdpHP5zExMYG9vT28//77eOONNyRjrVU8IQEJ58QqNpaxcPpZZwwbANn80mCPf+sNGZ5TLpdRLBYRj8dlXkOhEPr9Pkql0gDDz00QHdfLUh+UPvK+lGiaDCNlr8AJGCRzyHIhPJZxfbwHz+cxOlkLN4oYZ/ei7KUCcLbZZpttttn2VYxZzVqtFoLBoPycmZlBt9vF8fExOp2OxDUVCgX0ej0Jpnc6nSK5nJ2dxeHhIdbX1zE7O4tWq4UnT55gbm4OCwsLWFtbk1T2zHwZDodx5swZ5PN5ZLNZhMNhlMtlFAoFTE1NYWxsDNvb25IFk4xcMBgUGWWn00Eul5Ni0k+ePMH+/r44InS+9Y63diLJHpjxXFasnAkY+Jnf78fy8jJGRkZw7do1yRCnjc6f/qkBG01/phNFmMDRZHR0GymhMtP+s6+PHz/GysoKLl68iJ2dnYHiwBo4VatV/OxnP0OtVsN3v/tdzM7OIhaLyW6/3+8XZ5DAkYkZaG63G/F4HD6fD6FQSNg4Ml10YDn+ZvyeBgM67T6dbA1yafoYU6Kp51zPIWM3dawRTY+xZip0RkgCQ95fS9icTqck2aHTqx173W/OGYG+zm7IdjudTiQSCYyNjSGRSAjg1NJLnqPP1QxNuVzG2toafvjDH+LGjRsihV5ZWcH09DT29/clo6yOvTPT5uu1x/6Y7CrHUI+3KVnW35sMKu9JsKVjSTULDUCePYfDgQcPHuD1118HcCLtDofDAyyqBrRcW5wDc0OAskF+zwQieu4Jpihr5LuGSUR4TV1aIBwOo9frYW9vT2SNGrxz/vl8cczYZkob9XxQYkmmTW9AcHy5zlhSod9/WhOP4JPKDA0gCdjIKnPtvSh7qQAc13y/b6spbbPNNttsO936/ZPirolEAv1+H6Ojo0gkElIOIBAIYHp6Gq1WC7VaDd3uSX0pr9eLWq2GWq2GZDIpmepcLhfeeecdHBwcYGdnBxcvXsT4+Dhu376NarWKpaUl2X2ORCIIh8PY2NjA0NAQYrEYcrkcAGBhYQE+nw9ra2sIBoPw+XxS5oAsIcsE+P1+xGIxlEolVCoVcTT8fr/E9unsidoR1k4Xx4NOlimZJMjTUkM6kkwsMDY2NhC/ZeXYmA67CRStnHstQ9Msm8lQaEDDHXYNyHhMo9HAjRs38Gu/9mtYXFzE/fv3hUU1rVKp4MMPP0SlUsHf+3t/D+fPn0csFgPwFGx4vd6BhA2ajWObWV8wGAxKTb9isSggm2NCx5pJHpi2Xjv9euw1G6nHBcBAfBDP13JG3T6CBJNFpdOqZYIulwvBYHCAhdLzrQEI2884JMZOaemkBiBkWQgoNdBn5teRkREkk0mEw+GBGE+aBnE6ToxAolAoYG1tDT/4wQ/wySefCLuSSCSwuLiIdruNnZ0d1Ot1GZNGoyEbIea9eB9zvWsQpNevCfLM3/W8cLz1dfS99Lj3+320Wi1Uq1VMTEzg4OAAjx49wtLSEq5fvy5JeNiPdrstwJrzyHHS7wH+Y4bGSqUizL6WSRL41ev1AZDU7XZFckklQLPZlMyWlHfrDI/NZlNUBuy3fsYcjpNacu12G41GQzKn6uQoBJE8huPKuGafzyefNRoN1Ot1AciUkHJzQ2c61ZthGvi+CHu5ANwXIko7j4ltttlmm23PM4/Hg0QigUAggNHRUUQiEeRyOdTrdYyMjCASiQhwGxoaQjKZhMvlkoKuc3NzGBoawsbGBoaHhxEIBHDjxg10u1184xvfQKVSwQcffCDyy/39fbhcLsRiMZTLZezv7yMYDCIUCqFYLCIUCmF4eBjFYhGZTAbT09PCyLEmHYGlziZ3dHQkrAQzZv7O7/wO/uRP/gQ+n0+K+ZpJA+hwmfFuJnOgJW3aqeffnU4HGxsb2NzcfIYVM1kzmgYGJsjS1+bnBAV6p11fWztSlPY9D0Du7+/j3r17mJmZwfHxsWQkZdt0HzudDm7fvo1KpYJOp4PLly8jFosJk9PpdCQujk4mZXpkftj2cDgsGe1CoRCy2Syq1aqMhem0mzFfNDP2x2SfrOZRj7c5n7q/JtvJ9pgMkckUaRmgbmOj0RCpIYGDlrdqdhCAJMmgRJlOezKZxOjoqGR7NaWgnDv+NOPdCN6YbfKTTz4RkO/xeDA2NoZ4PI5sNissNtvLuEC9pjSTqdcN22yOoVVbT2PrTKmlKaXU1zAZx2q1ing8DofDga2tLXz729/GRx99JKwUN250Eh69RvUzbsaBEVzVajWRTpbL5YHx4LOoWVwy1XxvjY+PC+gioAqHwwgGg8hms7KhwuMZ60vWi+C91+uJ9JzAlAw8+6ET8ZgbRpTC12o11Ov1gQ0Vjik3EvgshsNhedfW6/WB+plft71cAE4YuD6eRsTZZpttttlm26AxFm1iYgKtVgs7OzsYGhoSyVupVAIAKfDdaDRQrVYRjUalEHe5XMbs7CxKpRK2t7cxNjaGZDKJvb09AWGNRgObm5uIxWJIJBI4OjoCACwuLqLRaKBcLmNiYgJutxvr6+twu90IBoMC+MLhMIrFogCDXq+HRCKBer2OUqkkyRsajYYkZXn48KGwHzp9OEsI0JmxSkRxGljgMZpF0M46v9d/a+YIwADI0vfWDA/P408z9Tx/HxoaGqgDxe+4a87vTZAKnMTCrK+vw+/3Y3FxEbVaTZIosP3sI8HO48eP8cd//MeIxWKIRCJyH12+gQ4yHUk6j1pq6PF4EI/HEQgEEIvFUCwWkcvlhDE1nUyOl2bXOCa6th/wNGueZll1TBMBjQYidG713PP6ek7NOTDnjs6/WWvM7/fL506nE9lsFn6/X+KI9LzpNgKQzIMEV6xzqNei1ZrhGFDu12w2kc1mcffuXfzn//yfcfv27QHHPBQKYWlpCV6vF59//rk8bw7H04RF3Dx4HuPyPEBmjqHV88bfTZmjKT226jvBSj6fl3Wws7ODfr+PmZkZScjCTLRc22QgzXIAmvHje6fVakkiEp/Ph0ajgXa7LWwvN3u45ihDDAaDkuiEcu9erydj6/V64XA4ZDONGyMmK8k5dTgcSCQSInkkGHW73QMZJNl+XXZAM8C9Xk9qdzabTZTLZWFbeT+3241oNAqn04lUKiXsI2Ncm83mqevhb9peLgD3xU+bgbPNNttss+15trCwgHg8jlQqhUKhgFgshmg0ina7Lc5OLBZDKBRCoVBAq9XC7OwsAoEAbt++Da/Xi/HxcRweHgIArly5gmAwiFu3bmFoaAhXrlzB2toaisWiJCrJZDKIRCJwuVziyJ4/fx6NRgMbGxsirUyn04hEIuJ8MA7D6XSKPKrZbGJkZAQAkM1mEY1GUa/X4fF4sL+/j06nM1DXiNJHDQRMqSTwbLIM0+HUn1mxA9r54730Tr52hM3EChroUHKn26HlfhoA9vt9cd7o5HFHns6slu05HCcZDnd3d3H27FnMzMzgyZMnUmOKTrPpYBeLRXzwwQfY29vD/Pw8JicnEY1G5Z5MdEGHmCCKLI6Wx1E+FgwGEYlEJFspGV4NtHUyBs2WasBsxaJqJodjy7nQYJXOqgZHJgAhE21eXzN7HG/GRzWbTYRCIQCQshd+v1+SpnD9adkmrxOPxzE8PCzPIFkVE7xw/jXg0IxRvV5HKpXCrVu38Od//ue4e/eugEkWmp6cnMTCwgIODg6wv78v1+31Top3c0PAignTGxrsjxWbbD4rVuwcNyz052yHnmP9zPL+nEPWtOTzs7a2hqmpKalHqcdGjxnjGvls6fZx/ZItY8IbAifzWdEZLc2kSZoRBU5YMCYOarVaMtcaiHFM9aZNtVpFoVAYKPStZZbcOOF6JCgm4NKgk+Oua71VKhWRpXNTrVQqoVarYW9vT0Dsaezo12EvF4BTMXC22WabbbbZdpqFQiGkUil0Oh2Mj48jEAigVqtJbEY8HgcAKZp94cIFZDIZbG5uYmJiQoBeLBbD8vIyjo6OcO/ePUxNTSEajeLBgwcoFosYGxtDq9XC8fExYrGYFA4eHx9HJBJBJpNBJpNBMplEvV5HpVIRiZ4GJX6/H8PDw9jf30e73cb4+Lg4PT6fD6lUCsfHx3C73SiVSgMFh+nY0TRosmLUtGknT59zGnjT8jieQyeP19HX0myQTk3e6/UkuQxZIrZVAw3TeBxjFXV79Tn9fh/ZbBZ7e3uYnp5Gt9vFxsaGfGfKO/v9PtLpNB4/fixr4td+7ddw7tw5yYRIx5TSLDp/lLAymyGv53Q6BciFw2Ekk0mUSiWUSiWJkWOb6STreDUTiLO9VsybKZHk2tAgUc+pzhgKQLJI0rrdrkgZtePe7/eFQQmFQgII/H6/tIk1wjSzRMc7HA4LcAsEAgIqnrc+ORb8RwDBovcff/wx3n//fezt7ck4MatgLBbDmTNn0Gg0sL6+PsC4VSqVZ4ClKXPVDK+5rnWbnwfezHX5VUGBuabZBgIth8OB69ev47333kMqlRI5Nc/1er2SCERvenDdcX7IwPE+PId/azDIdmgZI2PegKcbCL1eTwAQNxdqtZokk2KcJeNK+R7gWqnVajLGTCjU6XRk/ijFZaycLjHBd7zb7ZZ3S7fblUy/lHRms1lhj6lu0NJqJmN5UfaSATjGwNkIzjbbbLPNttNtf38fgUAAc3NzaDabKBaLaLfbCIVCmJqaQrFYxNbWFubn5zExMYFUKoVisYjLly8jn8+jUqngzJkziEajWF1dRaFQwKuvvopyuYyPP/4Yfr8fIyMj4lDE43GUSiVUq1VMTk6iWq3i8PAQTqcTw8PD6HQ6CIfD6Ha7qFQqCAQCIuEaGRmBy+VCLpeTWnWFQgGJRALVahWpVEocZDo9dELozGpHWzu9wFMWRjuP5mdWki0CA15Xy5ZomjkwQZFmb3TsDUEF46fYH+BpjJsuHKwdULITwWBQgISV8ZxcLodYLIaJiQkUCgVkMhm5tjk+3W4X6+vrCAaDcDgcSKVSeO2113D16lXMzMxIlkrWt2K5AQIGnSDBBHKMEwoGg4jH4yiXy5L0pl6vCwjXwMBKkmc6/5oJ0T81wKOzT6e81+tJ4gl+z7ZbgVsdV0cQRuaY7IgeT0p6ea7P50M4HEY8HkckEhHgpoEmzZQkahaFQKPZbKJQKGBzcxM//elP8Ytf/ALZbHZg/VDuOj09jXg8jt3dXWQyGblPp9ORRCZ6M0SzanrzQT83VmDT6m9zvvTvGhRqoKvnTrdBs3Jaksy14/P5UK1WJfMu+8jra4aNteEogyQwJ+ABnsZnUtrNZ49rnywd26oBO+eADBk3Jbi+KX2ltJL/OL+6fAWza+p3Fdk+9skcK66RRqMhmz18HkOhEEKh0EDSl1wuNwDiuVF1WvKjr8teKgBHsxk422yzzTbbnmes9VYul1EqleB2uzE3N4dkMond3V3k83msrKzA4XDg9u3bmJ+fl7pKLpcLb7zxBiqVCj766CP4fD5cuXIFjx8/xpMnTzA6OgrgpNbc7OwsfD4fdnZ24HK5sLi4KHI57fBTotNqtTA+Po7t7W10u12MjIwgk8mg3+8PJFKZmZnBwcEBut0uJiYmBiRS3E0eGhqSwHwNosyYIw3E9OemaQdJsxFfxTSo03I/qyx7mhHSiQnI0FHSpZ0qOptaOsmsd6Zzq63ZbCKTyWB5eRkrKyvo9XrIZrPiLPIcDTar1aokkHn//ffx+PFjvPPOO7h06ZIkxKHz6PP5BJxpcG3FyNE59Hg8iEQiaDabqFarEqNHeaXOHqoZIT2GnE89HiZA0ADCZOnIgPBeOo6I99Osn2ZjAEi5DV6Xzj3jzghwKRum06wLsZ8GekzWjW1jZsXDw0Pcvn0bP/3pT3H37t0BRolrxul0Ynx8HG+99RZqtRoODg4E2JCF0iw4x9E0EzyY7Jr5POm+aTCgj9HrlG01PyPwMa/L9wmPdzgcKJVKiEaj2N7eHlj/WurMtpqgR88tM6Pq54/34HPJNVGr1Qay3fIZDgQCcLlconbgOjSl1Rx/4CnQ1O8xxtdx7Aj+yNhxTTCmTT9/XIu8Jt+RDocDrVZrYONIv1cikQh8Ph9qtZoAQKv35NdlLxWAe4FSVNtss8022/4OGdPz1+t1qWXm8/lw9+5dtFotzM/PI5VKoVQq4bXXXkO/38cnn3yCmZkZjI+P4/PPP8fe3h5ee+01xGIx/OpXv0K5XMbi4iK63S5yuRzm5ubQ758kE0gkEvB4PNjb25MEKrVaTZi2VColDsTdu3cRDAYxPj4uYGFmZkayxg0PDyOfzw+wKpq5Yv8026Izw1lJuDSQo5lOnI7TsZIlnnZtYFAqaXUsnSs6e5qRY/wVAAGljAfr9/uSZIb3pHMbCoVQq9XE2SRw0kAEOJGEHR4eYmpqCpOTk1Jw2ARxul+6rMLq6ioODw+xsbGBt956C0tLS0gkEgOySq/XO1A3TgMr1o/TMYAEcqFQCK1WC8PDw6hUKqhWq/KP0jL2qV6vA4CkYNesg2Y59Xxq+awZW0j2TI+pZsRMdpbzxXXH9cprsDZXKBRC5D9TtAABAABJREFUJBKRMhm6lpu5brTpzQcN3JxOJxqNBgqFAra3t/Hhhx/i5z//OQ4PDwW4atAEnADMhYUF1Go17O7uSp1F3r9arQ5IVvm5ZoxN8Gau7dOYQ5M503Yak2rGwemND46dljXW63V5TtfX17GwsCAlGsh+cvOAyX40E8bEPHrM2D6yZ3pThGCMa4i/k8F0uVwChgmUw+GwgEZKK7nWNDvIdnFThn9roK2l1QSxlHpy3AkWdQwg267fkZRKcqx0n6rVqsgyKQV+UfZyATiWEbAZONtss802255jZDMmJycxMzODTCaD9fV1+Hw+jI+PY3d3F7FYDFeuXMGTJ09QLpdx7tw5VKtVfPDBBwgEAnjvvfeQTqfxox/9CIFAALOzs8jn84hEIlhYWMDR0RHa7TaWlpaQzWaxtbWF6elpABDZY7ValbpHxWIRjUYDExMT6HQ62N3dxfT0NGZmZiQhRKVSwe7urkihwuEwWq2WSMR0vJt23ul0mY4gTTvh/NuKXTCZkdOcbTqpVvfRn+vzTbmYx+ORGDEWmXa5XMhkMgIoer2TbHZk53g9gjbtMGoQYzIRlUoF6XQasVgMY2Nj4uSZ7dd/8/5OpxP5fB6/+tWv8OjRI7z55pu4cuUK5ufnEYvFJJaPCTFYIFg7t3SoNeNFB5jgj9fh7j8zozYaDRmDQqEwwOiQLQUGZXb82wpYE6hosKKLc5sAw2qO6fCSTSTL5vf7RZ6mWVyrn3r9aamkZgS5Dvb393Hjxg38/Oc/x927dwfiH/U12aZz585hfHxcSjmUSiW5FoGBlk9q9s5sq9WY8DP9OwEhx0z3z7yuuaGiv9fzouWovA8lxsFgEL1eD+VyWVjEVqslCZJ0fTSCFwIovUmh22BKfynR5rqm3FKDyn7/aWbYRqMhzyPHjM+A+Z7RjDIBoAaUBFpsl8kc6o0Bc2NKJ0fhP24K6Vg33otJT5i8xel0IhAIDEi5v257uQAck5jYMXC22WabbbY9x3q9Hs6dO4doNIrNzU2Uy2UsLCwgl8tha2sLr776KjweDz777DNMTEzg3LlzWFtbw5MnT3DhwgUsLi7i0aNHuHXrFsbHx6W49vT0NNxuNzY3NxGNRrG4uIgnT54gk8ngzJkzaDabODg4kPi4QCCAZDKJ/f19+Hw+LCwsSLazS5cuIRKJ4Pj4GBMTE6hWq9jf34fTeVIewOVyoVwuY35+Hnt7e8hmswNMjs6CSHZGO4fAV0uaYErBTGbNdPZNJk+blm3xWjyXu+qBQEAcPkrruHvOQsFaekVHlcCV/RsaGoLf75civfyMDpxuD2MPPR4PZmdnxdHUx55m2uE9PDzEX/zFX+Dhw4f4xje+gVdeeQUTExOIxWIi6SQTQSCjgZwuQkwnUzNIdMSZvY+SSrJxZCPpaDabzVOzfXJutbH8gR4bLVvU80jHmnNNJ57zRckZU65rh1oDBBO06c0E7WBzXDjX9XodhUIBBwcH+OUvf4lf/vKXUhfMBG5aOjkzM4OZmRlhNHXtMY/Hg0KhIGub/bNaz3ojwmTArZg5veatNkRM4ML+n/aMch71GuGaYN01h8MhjJrX60WhUEA0GpVzPB6PMM0E+5ph1/0gsCWA4YYD55brR7eVjDoASTyiSxCY8k2dBIlzxqRALpdrAHSyvwRWWqLLQt1afqrZS6odKK9kvzQTyXepy+WSjSSPxyOlMYCnSVlehL1cAO6LnzYDZ5ttttlm2/PswoULqNfruHXrFmKxGFZWVnB4eIhms4l33nkHW1tbIp8EgI8++ggulwtvvvkmGo0G3n//fTQaDVy4cAEHBwfo90/qLaXTaantFg6HcffuXUnrfffuXYRCIUSjURSLRSwtLcHlcmF3dxcjIyMYHh5GoVBAKBTC+fPnsbOzg2w2K3Xq6DQlk0m0220kEglMTU1hc3MTuVwOwNOi1nSQyDgAkDgVLbUynUftgGqZHY+12h0HBiWSGpSZpp1XOr1kOQBInAwL9sZiMbjdblSrVXg8HqRSqQHASMChWQLtRLI+G0sEMEmDrs/G87rdLkqlEpxOJ0ZGRlCv1yUTnZWU0gQ0/L7VamFjYwN7e3u4ffs23n77bZw/fx5jY2OIRqMIBALo9XqyLgh8NFigs08QR+Ci28u+mrJCsiIEdu12W37q1OpMFmEl36Tp+mD8jmCTYJLSUPaD8Yo6xbtea3ocNaulGSY69FoqqePcKJe8ffs2PvnkE+zs7AzIaE0jMFleXsalS5cAnMgMyb7xmHA4jEKhII48AbbJ5GhGjPNv9kmDXpNh4jkcW6u19GUMnwYZXPP8jCCODPTm5qa8X6rV6kDGV4I8vjvcbrdkhCRoYVkCAiQybZTHUi5rbt7w+eP6I7DiuOq4Q8qBdZxaOBweiOcFIPJW3odAlWPC8eJmiAZn7DfHhm3udDqoVqvSZpP5bTQaiMfjCIVCsin2IjNQAi8bgBMGzjbbbLPNNttONxZlnZ+fBwCJEwkEArhx4wbC4TAuXbqEvb09rK+vY2ZmBmNjY3j48CEODg4wOjqKsbExbG5uYnZ2FpOTk9jZ2UG73cb58+eRzWbx6NEjySxYqVQQj8fR651khLt48SL29/eRTqcxMTEBh8OBjY0NTExMYGRkBAcHBwiHw8KmMCPb1NSUMH1jY2NYXV0dyJwIPHUAK5WKyN+Ap4H+JkjT59C0M83vTRbOPIemkyvQyNaY1yIIASC1lfx+vzhuZHMSiQSAp+nttQOn49rINFDyxMQYu7u7koCBMWIa7JBBIEDgnDCRiAmgaGYiD9PpW11dxcHBAe7du4fXX38dFy5cwJUrV9Dv91Gr1YQlo0OpE2ZoIGcm7NCMAu/N471e7wB7oo83WS0CerJh5tzqvuk6W1Y/NcDRbJq+pgYnZiIcqz5q4FatVpHP57G3t4cHDx7g+vXr2NjYkOLK5trV69HhcGB2dhbf/e53kclkJOtsJpORbIQEo3xuCFZ1Fkp9fStmkp9rEGfVLhOwmfJJK9Ofm8+wuSlDUMX2F4tFeYb4PtFySPaXz4ROtQ+csGe9Xk+yS2oGW7efUkxKDIPB4EAMG9cj1wlliHxe9ZrlOq7VaiIB10lO+N7gtchM6w0c/Y7QY0eAR0bQ6/WKzFnHx7EAOd9NsVgMfr9fEh1xc+JF2JcCOIfD8f8C8DsAUv1+/9IXnyUA/EcA8wC2APyTfr+f/+K7/xuAfwagC+D/2u/3f/w30nKrtsL6PyLbbLPNNtts0+b3+zE2NoZMJoN6vY7Lly8jlUrh3r17WFpags/nw+eff45arYbFxUW02208ePAAHo8H3/jGN3BwcIBMJoNXXnkFoVAIDx48QDQaxblz57C9vY1isYhkMolUKiVJLKrVKkZHR+H1enH79m2R5mQyGXg8Hrz66qtotVrY3t7GzMwM9vb2UC6XZRfb7/ejUqng/Pnz6PV6uH79OkKhEGZnZ/Ho0SMAT5MaaKfM7XZLoL521LWZDg+vZTqWmlmwYjroqJnxb2YiBO34A0936iORiIBefk9HLZFIPOME09nTTA6dPiYH8fl8SCaTOD4+FueP92u322g0GgKcKNPM5XKIRCKYmpqS7H3sv2bjzPHSxl3/YrGIzz//HFtbW0ilUpiYmMDe3h48Hg/i8TiCwaCATkq6yGhp0MS51KBM/zQBEttEAGPK9dgH4NlaXlZrw/xp/m51jh4bKymiBpeaaSMr0mq1UKlURNp879493L59G9vb2wNyOvNeNK6JaDSKixcvSnmGbreL4+NjyfDqcDiwsrKCdDotskDNarFPWoqpAbu53oGnckJzo0Sfq8/nPU4DflYbJ8+bE44hP2OyEG7kkDVjW3u93gBTzWeZ4Icgy+q+BFdmuQ/gBPzpDSEdj6tLdvCYdruNQCAgzHk2m5VkT7w/nxNeR7O/bCf75/f7JfOlriUHnLyX/H6/FBAvFovCxPX7fdlc4ZzouEtKcF+UfRUG7v8N4P8B4N+pz/4nAH/Z7/f/V4fD8T998ff/6HA4LgD4pwAuApgE8F8cDsfZfr//fAH5X5PZDJxtttlmm21fxYLBoDjTzWYT169fh8fjwZUrV1AqlXD9+nXMzMxgaWkJh4eHSKVSiEajOHPmDPb39+F2u/HWW28hnU5jdXUVFy9eRCKRwLVr1wBAkpLEYjGpJzUzM4NqtYrHjx9jfHwcfr8fDx48QLvdxpkzZ/Dpp58iFoshkUjg9u3b6Pf7CAQCiEQiEq9x5coV7O3t4fHjx5ifn0ckEhHmT5ve6abcydzBN50+zbDxM32cFbjTadBpdGatnHWCJO5o0zliVkKdYr7/heSz3+8jGAzC7/eLTI7gSzvN3DGno6qB1sTEBMrlsrBplIcBT1k33ltLKaemplAul5FOpwUQ8pq6f1pKaiYH0QWur1+/Lrv8TqcTKysrmJmZQTKZlCQfTPBBVk6DOc4Lf+dcmCBIS/qs2B5zTp/H/HzZd/p385+WR2rAopk1kxkkE1IqlZDJZLC1tYUHDx7g3r172NnZESmdvr9VGwn+4/E43nzzTcRiMZEal8vlgWQ4IyMjuHDhAv79v//3AnjJXvFamu3SsZ/m/JubCZot1n9rQKI3BzSDR7kegbjus76W/l23j89aq9VCsVgUOTLXMhlrAjqn0ylsP+eI6frJlFFCybHRxbC5ZlkmQCdO0nJNMtRkwPQaIeDi+4JyRR3PSSk0gZmeeyb60Rs4ugQJ54ugVT+z0WgUQ0NDqFar8u5j5kuHwyEgkIoCK1b+67IvBXD9fv8XDodj3vj49wF864vf/z8APgDwP37x+f+33+83ATxxOBwbAN4C8PFfU3u/ktkEnG222Wabbc+zarWKlZUV7OzsYH9/H8vLyxgeHsb6+jpSqRQuX74Mt9uNVCqFXC6H0dFRBINBbGxsYGxsDB6PB7du3UI4HMbVq1eRSqXwySefIJlMwuFw4PDwEOFwGM1mE5FIBJFIBEdHR+h0OnjvvffQaDRw584dzM/PY3R0FFtbWxgZGUGv18PW1hYCgQD8fj9GR0exv7+PmZkZTExMYH19HdlsFgsLC+h0Otja2pIYPDp23J0GTnbNCSDJVJ0m+aJp4GbFsOjP9Q4/8FQqqQGE3u3WP3ns6OgoAoGAyK4YD6ML9w4PDw9It3TCEvaZ0i2yDdxdLxQKiEQimJmZwfr6OjqdDprNpjjp/Jv1n1huoFAowOfzybww2YV2ztkPmgnwtMyOu/X5fB6pVArZbBafffYZZmZmcO7cOczNzWF8fBzxeFwYCJ2tUgM6HTdIIE3Qp6Vo5j8zecvz2FR9nBnjaDIwGqhZsXxm5kgdr8ffW60WarUaMpkMjo+Psba2hvv372NjYwPFYlHqden7ntZ+jsnIyAi++c1vIhKJiKPPWnHMNuh2u/Hee+8hGAwim80O1B00YwJNVprjwvk22TNz7Mx1Yq4jqzHUz5bV2JvXMwEz28/1zfFnDBjwVGLIdcQ5YeZHAJLtkuuy2WyiXq/LHBL41et1GVtdLJv34bz3+30BYVzboVAIACQ7L+/LTKsAZIODcXsEYnpdcSyY7EfHe+pNDIfDIe8aSpcZA2cmMWJsIKWkXq/3hcbB/VVj4Mb6/f4hAPT7/UOHwzH6xedTAD5Rx+198dkz5nA4/gcA/wMAzM7O/hWb8cw1T36xAZxtttlmm23PsWQyiTt37qDX6+HNN9+E0+nEjRs34HA4cOXKFRwfHyOVSiGZTOLSpUvI5XJIpVJYWFhAvV7H7u4uXnnlFXg8Hty9exeFQgHhcBhHR0col8twuVyo1+s4d+4choaGcHR0hPHxcUxMTEgcHQuFF4tFqfPldDoxPDyMaDSKkZERbG9v48qVK/B6vfjss8/gdDoRj8exv7+Per0+sHtNo3PU7XZRLpcHHEjNlmlHxgrEaWfZylHW8SVa3kVWw4zR0swEnSS2n85bv3+S0p876O12WxJ/ZLNZcUg1m6fZDMbOaNah1+shnU7j4sWLyGazODo6AgCJ8yHrpuVSZCQ6nQ4ikYiUFqCsiuDP6/VKrTnTzN15p9OJSqWCX/3qV/D5fAAgCTkePXqE4eFhLCwsYGlpCbOzsxgZGcHCwgK63e4AuNSxWQQbdLzN8ebvnG+TjbP63epvK4BkmmbXzJ/mZ2R/Wq0W6vW6sJy7u7u4d+8eHj9+jP39fZH0mf06rS96jc3MzOC73/0uhoaGkMlk5P5HR0coFAoC+Ofn5/FP/+k/xb/9t/9WmBaOpwlMNWjT99fAR4+NBkhmzB+/N8Ear8N/GiRrMG4+u5odNMGdZtD4N/tRq9UkGQnv0Ww2ZT3xueCcxWIxRKNR7OzsCFsai8UQCoVQLpfRbDZFjkm5MgEjnzMC43A4PLARwXaRjSeoZzF7rncmNdIZXTmGXId6DnVyJ5MdJVBkXTfGkbK/3ESxYktfpjpwVls4lnCq3+//bwD+NwD4xje+8dcCuSQLpY3gbLPNNttse47dunULU1NTkkzkwYMHiMfjmJycxP7+voC3ZDKJnZ0dDA8P4+LFi1hfX4fL5cLrr7+OXC6H9fV12QE+Pj4WWVEoFML8/DwymQwKhQIuXrwIh8OBjz76CH6/H6+//joODg5QqVQQDodRq9UQjUZl13hoaAh7e3uYmZnBwcEBDg8Ppajz0dERut0uEokEms2mZNEDBmNP+LeWagFPgQWZJtppMTZanqWlWWY8jMkW6BThlEqRBfR4PEgkEohGo/D7/XA6TzLSHR8fS7IRXo8Z6HK53ECdKTJt/X4f4XBYGE9KqAjwGA9TKBTw2muv4Wc/+5nIuxqNhty/2+1Khj4mUAAg8sp4PI5+vy8JMMLhMJaXlwfqjn0VSVWv15NCy2R5er0eUqkUUqkU7ty5g+npaVy4cAELCws4PDxEpVKBz+d7Jl5OxwlqmZpOKqJjtsx/ep5Ns5JNageZ//g3wbsGaaa0kxkxG40GisUistksDg8PsbOzg7W1Nezs7Mj4mqzSae0yWTmCst///d+Hw+HA3t6eXIN18wh0gsEg/uW//JdotVp49OiRHGeVCMNKxsg2mol79HNkSii1mRsl+lk1mczTNlk0UNdt1gW3CUjIXJsSSsbG8ZniTy1XBSBlOfSzHQgEMDQ0hEqlItJExrb5/X74/X6JYePnBHGtVksSFXHOGZ+qSxpwbfPZ7vf7wg7qRCg6ts/hcKDRaAxIJcm4c05YuoDvJs3sc6NJyzeZkZNr/DTm+uuwvyqAO3Y4HBNfsG8TAFJffL4HYEYdNw3g4L+lgf81JgScjd9ss80222x7jl25cgWjo6P4/PPPUa/Xsbi4iEajgWvXrsHlcklGyoODA5w7dw7NZhN3797F/Pw8zp07h1/96leSyn9jYwNDQ0OIRqOo1+sYHx9HMpnE9vY2vF4vLl68iKOjI6RSKczPz2N4eBhra2siUer3+4hGoyJNKhQK8Hq9SCQSWF1dxdDQEGKxGCqVCsrlskgra7WayO1MM+WLAORe/I6OmgZu2sG0knSZzqU27TxqmSQ/6/V68Pv9iMfjsnNOyaR2FguFgsij6HTWajUcHx9L7I2OrXG73SiVSsKMEQgTPNC5Pjg4wNLSEi5duoRbt26JrIpMJtvMeEMyIWwLpZxk0iqVCm7evClOsu6nlenYJP0Z4wF5H/Y1GAzi008/xe3bt4XhnZycxOjoKGKx2IDM0sxeScB2GoukmarT5tOUWbK9Jmgzf9dAjiwbi44TtB0dHWFzcxMHBwfY39+XOdfXMNvH9WjFvOn+vv7663jrrbdQLpeRz+fl81arhXK5LHUB3W43vvOd7+CNN97AT3/6U2QyGQFv5jiaDBfwlM3m3+bcWjHWVrJb3SerPppg0CruVI8F26nBF9coQVGpVBJwpZnDfr8vz4WOAQQgTFSz2ZQkQXxuKpWKXJsgKBAICMhqtVqy5ig95HuC7Jh+b+gSKIFAQDZbNOuls+qS2WONNkqieU0dW8r4O8bW9Xo9AbQcX70RRiZex+0S+P1drAP3nwH89wD+1y9+/qn6/D84HI7/O06SmCwD+PS/tZFf1Z4ycLbZZpttttn2fPvpT3+KZDKJhYUFbGxs4Pj4GGNjY1hYWMDx8TF6vR5ef/11bG9vI5PJ4L333oPf78fHH3+MRqOBQCCA7e1t+P1+qZM0MzODdruNo6MjTExMIBKJYHV1Ff1+H6+99hra7TZu374twCUej4vT4XK5kM1mkUgkUKvVsLW1JRIjFveOx+OIxWIoFAqYnZ0dkJhpWRQdTzpgjE/RyU6et3tsOvjAsw4p/7aK8aEzSceMjg4lk7pMAItmNxoNlMtlkU3RsSOblsvlpA/aqaUTSBYtn89LPJ3f75fYs0ajgfv37+Ptt99GOp2W7JIEcQRCdNjYV50YxOVyydyRdeB46fF4Hoij6Xi0SqUiwIWyLQD44IMPsLW1hXQ6LfLQeDwuZSyGh4cl8U0gEJDYHCabMKWAX8bEWZkGD+yDCeh0nBFZkmq1inK5jFwuh1wuh/39fezt7eH4+BjlchmVSkVAqwYsBDo6voxjbNUuAi2v14vXXnsNb7zxhshn+R3Z1XQ6jUqlgqGhIYyOjuKf/bN/Bp/Phzt37gwUidelA3RbrOaan3ENmowgj7XaEDGvp2O0rOaB97H6nvcn48T76KywXHO9Xg/BYFBYKP4kSOGYESTp2mgc81AoJIBOS0V1yn8AwnKzTfyd1+EY8B3BuLpAIPDM2Ov1oNcKkxuxtiI3FXRGV46BKU3l+WwDC4fr55FAj+3hplO9Xn9mHr4u+yplBP53nCQsGXY4HHsA/mecALf/w+Fw/DMAOwD+OwDo9/v3HQ7H/wHgAYAOgP9L/2vKQPlFW/FFO76uW9pmm2222fZ30G7evInZ2VnE43HcvXsX1WpVYtrW19exvLyMcDiMmzdvIhwO480330Qmk8G9e/dEslMqlSRuq9frYXp6GvV6HY1GAysrK3C73Xjw4AECgQCWlpawt7eHQqEgDsnY2Jg4jdzVjsfjODo6QqPRQCgUQr1eF8By4cIFqQvHenDhcHgAlDmdTsRiMQEgZKDC4TC8Xi+KxeIzkiwr0GHlRJ72t2YlaDoVO3fA/X4/gsEgIpGI1GKrVquS2S2fz4t8zoz1yWazKBQK4uxrZoDJKUxWgnFjbCMA7O7uYmVlBb/+67+OdDotRYG5w89EBxoI03RSFX7ncrlElscxMdnKLzOdqh04AaS5XA4ff/zxgISLxYYzmQzW19fFGQ6FQhgeHkYymRRAFwqFEIlEhKWj5JJxQ2YNt+cBOVM2qeWQOgFMpVJBqVRCLpdDoVBAKpVCJpNBLpdDsVgciBXUIFCPm8k+cZxPY6QI0Hw+H9555x3Mz8+jWCxKiQGCiUajgePjY+RyOen3P//n/xxzc3Mol8tYX1+XuEqCN7OMgLnGrXxNDZxOazOvpTcJNMDj98+TKOtnV5tmCTUo5DOoWStKsmu12gDbyDEjoKNskPPfbrcRDAZlLXDMmAiE8XZkvjmGZrF6nZKf5/T7fWHc6/U6wuEwKpXKM7JXyiABCKPqcDgQDAbR758kR4lEItJGPSes+0hpNllvgj2OHQEanx0N2NgPM/vv12lfJQvl90/56rdOOf5/AfC//Lc06q9qIqF8ETe3zTbbbLPt74xdunQJ+Xwe9+7dg9PpxJtvvilpy9944w0cHh7i888/x2uvvQaPx4PPPvsMxWIRCwsL2N/fR6fTwfDwMFqtFpLJJHq9Hg4PD+H1erG4uIitrS0cHR0hHo8jFArh4cOHIkHyeDwYHh5GtVpFMBhELpcTR/vg4ABerxejo6PIZrNoNpsYHR3F+fPnkUqlJC6DkqWtrS0BhTr2iDvEdJD8fj+i0Sg8Ho/EoWjnT8fy6B1+DaJMZ5EOlXZseW+yWZr1YbIByqoYl1av19FsNgWgEUTxfkwqoJkEOmYagHB3vN/vSxY8vdPPz69du4bf+73fwxtvvIGPP/54ADASlDBWSxcT533ZJs0eMEGCzoB3mpmOvWmaJaGjqh17ftfv96Wu2dHRkWTz0wXRg8EgQqEQQqGQFCJmzSvOEdclr28yX3TaW62WsGuNRkOSjxC45fN5YYrJxJng1IzZOi2ejb+bsWOaoSK7GIlEcOXKFYyPj0s79diyYPfx8bF89tZbb+Fb3/oWHA4HUqmU1FHUQIN/m2wZf3Kt637pNaj7oDcFdOypZsjM87SZBIUpe9bPJ9lhcyw5Xnxu+v2+KAf0poOWUAYCAdk04hon88xSHI1GA41GQzYGAEjCEradQJDvFm4AUObo9XoFIHEzJBAIoFaroVqtClDiphDl4LpUgV7/AASkMbEK54KAk21l3clgMCjsJdc52Umd9ZXxe2TrXpT9dScxeaEmEkobwdlmm2222fYcW19fRz6fx5kzZzA5OYlHjx5hcnISb7/9NlZXV9Fut3H16lVkMhns7e3B7XbD5/Ph9u3bSCQSUpdsbGwM1WoVpVIJCwsLcDqd+Oijj+B2uzE/P4+DgwNxenK5nEjdmAQjn89jeHgY9XodxWIR8XgcHo8H+XwezWZT4ukePXokgCIWi8mucSKRAPDUEXQ4TtJ4U+bHHfVQKCQOjWYVTJZIZ5QEMCAd0mYG8Gtgw+u322243W7EYjEBCYxFIRggu8TiytzR1zEplUoFjx8/HkiAopMNMI6MY6D7wrEBniZuyGQy+Oyzz/DOO+8gnU7j4cOHz7B3BC06sQKdbAI5Mj/aKWSdOSsJoJWdJpfjeaedq8GjZsjoXJbL5QHJHU1nr3S5XEgkEpJ9j6DXbBuvy7ghyh7ZTzMmzqqPVn22+lwDEgIa/Y99J6gfHx/Hq6++imQyOcDwcR01m03k83kcHh7K+vH5fPjud7+LZDIJ4ORdcHBw8IzMVCfqMCWnVv3U31mBMT4zzwPlvLfJGpljZIJgc8wYc2bKBMmm1Wo1FItFSS5CBo3PJBOJhEIhSR4UiUTk2WWmXX1vyifZHz47gUBANmV4Hz5H3GTiOud7IBKJyCYJkwyReWfsGgB5/lqtlmy89Ho9AZZ8RiuVysB7kWPENnGjhmwtJdUEipxTFgznHP5djIH722lcqDYHZ5ttttlm23Os0+lITNqjR4+wvLwMp9OJzz77DENDQ5ibm8PR0RH29/fh9XrFYbl48SK63S7i8Tja7TaePHkCADh37hwajQZWV1cRCoUwNTWFTCaDYDAoTu/i4iLq9Tri8Tg6nQ7K5TLGx8dRKpXQ6/UQi8UkTqfX6+Hs2bMATuqGMVFJJBJBLpeT4P5erye71zRzp50shWaNAGtgYUoptYyLDqZOV0/HnedquRR3yx2Ok5g3MnIARLrFxCyMU6OTGwgE0Gw2xSHjGGkHkG3t9/uyw66ZDi2ZMoHX7du3sbS0hDfeeAOZTEZizOgs0+Gkk0k2S7MzGsTRHA6HxHbxWjrphMmg6M9MOy0O6rS5M+fM6jwCMTr3TPPOwssaKJ12Df5u/v1VzAQ1zztPJ9Ygg8QNiXg8jnfeeQfRaFTAiT6PEkUmMtHF7C9evIjXX39dWNyHDx8CeFr4m/80YAOegkL9LPA8kwmzGhtzvvVxJtgywaD+3JRymmDRPJ+yX65vjisBDu/PLItMbELZYCwWk7ZVKhV4vV5hnvRGDtumk4LoODiXyyUlC7T8kGy8ZtQZE8vxpqSxVqtJ2/SYMEZP12rjO5HMHGvX8X6UfDLelEoAXS+PfdXvQb7feI0XZS8VgJNXnY3fbLPNNttse4699dZbuHXrFiKRCF555RUcHh6iVCphZmYGyWQSd+/elQx2uVwO8XhcYipmZ2fx5MkT3L9/H7Ozszh//jxWV1dRLBZx5swZ9Pt9lEolkUH2+32Mj49LqQDK3uLxONLptDhD9XpdsjSGw2GUy2V0Oh2EQiEBeLxGtVpFIpHA5OQkfvrTnz7DVGggRnkQAAFRVkACGJSomaYdSS215Od0sCnh83q94gBxN5uxbtVqVUAcHSaCHtZ/43VbrRby+Tx8Pp/EyVDiRdMOM/ug+2FKM5vNJn74wx/iH/7Df4h33nkHP/vZz1AoFAbGRDuBdNZCoZDs4utxCQQCA+BOgzhzPkzn/jRW5zSQp/v2PACk59BKatfvnxQXJ3jm2H2Z/deCNbMNz2uvPoZzoIFLKBTC5OQkzp8/LzGn1WpV1oqWbNbrdZF0MtYpFovhnXfekfkplUpYW1uTjQmuKc2KmRsWetx1rJkeVw2yzHkwgdpp1zbP1YBM3888jn9r9pCf8TlwOBzC6ANP2Wk+t6z7xvT8lE+SkSfw0XJLzcQSVBGIBQIBkXlr4Mj1pksTMGkR3wk6OYxmL81SD5w7vfFCNr/dbkt7c7kc6vU6+v0+EomEbDZ1Oh2USqUBUMuMkwScZObZvr/VSUz+LhnXr43fbLPNNttse57dvHkTw8PDCIVCuHfvHvx+P86dO4dCoYCPP/5YdmN9Ph/OnDkjyT8CgQBu3bqFo6MjzM3NYX5+Hjdv3kSv18P4+DgODw+lvEA2m0UymUSxWES9Xpd4t3A4jFAoJIlK6HR6PB7EYjE4nU5ks1mEw2GJzygWi2i1WgiHw2i1WlhYWIDD4cCNGzfEGdEyIzodTqcT4XAY8XgctVpNJFN0nLxer8QMmUyBaWYcmHbCKJ3iDjqdMMarUNJUKpVQr9clhoZ123ieluFRKkXHTNcYozNosgymE0lAoJ0wXv/4+BjXrl3D3//7fx+VSgW/+MUvhJ3STBcdQcojCarZZ4ILnaCh3+8LANfAzQp8PQ/UnAaCzPOtQCHNSmb3vPta3ZPX0X9bsUwmcOZ5Vsk9THmiBt7aGFOZSCQwMzODqakphEIhZDIZAIMbCzy30WhI/FS5XBY5L2NaU6kURkZGcHR0hNu3b0t7dPkIKxBkAkyrsbACaKdtipjHa6bnNMBmgkV9HT3HGnia4wQ8lRgzBo5yRBbuJoBxOp2S7ZaZIZnwh8+Tfv6Z8ZYxbU6nE41GQ2SZTHxDJkw/H6YcWrOgnB8+y2Td+J7gs8aSHHpcOp2OvMPJ5BFg8h3IPjF+UL/fdBsZ20nm7kXZywXgwAX9ghtim2222Wbb32qbmJhAPp/H8fExZmdnEYlE8OjRIxQKBXEsWHNrd3cXY2Nj6Pf7uHPnDjweD379138dtVoNt2/fxsjICEKhEFKplBTh9nq9SCaTSKVSGBsbQ6/XQz6fRzKZRKFQgNvtFkaPWdGi0SgqlQo8Hg/C4TAcjpMsg7u7u5IaOxgM4rXXXsPOzg729vYwOTkpYIaOWafTkSxxwWAQs7OzkpkyGAw+I3UCTmcDgKfSSJ1EBHjqeNLhovOrk7UwaUmpVJLEBcw4RwdN16ezqm/FeB4N3sy26uM068bvea5O9NJut3Hv3j0sLy/j7bffRr1ex/Xr10WOp5N4AJB4vXa7jWaziWg0OsDGORwn8XlMz+5wOGQjgLE+z3PkTdMO+Wmgyur7035nX/T8WYG404DllzFo+vvTQI4GJqcBUB5DQBCJRDA/P4+5uTnEYjEB/XquOZ9keFjGoFAooNlswuv1Suzo2tqabMY8efJkoF6YjhHltckMsW26jWy/Zm2s2DAt32V7TRBmgjTN8ulrmdc254DPKJ9XxtsODw8jm80KA8faaXxOeR7lgew32xqNRiVDJADZ7OD5AOT54qYMM0ayjIOOK2y325KFl8lHKJ/k7wRijD2rVCpS347jwjIkAKTtfB/xe2bzJaMajUaFRWRspy6hwM0gPtvsM9eFw+GQzJgvyl4uACcMnI3gbLPNNttsO9329vbQbDbx2muvAQAePHggTkClUsH58+cxNDSEra0tLC4uIp1O4+DgALOzsxgbG8PDhw+laHer1UIqlZIg+MnJSQDA4eEhxsbGUC6X4XSepPev1+uIRqMIhUIDrF40GsXBwQEmJibkmFqtJqCvWCwKoPzggw/QbrcxMjKCe/fuSYY4ms6Y5nA4UCqV5HfTASdjpGPoeKw2nRnR/IxySgJM7rQzaQp3zHU9Nf07cDqLxM+506/ZQzJdZpwer8+dd+6663+0TqeDDz/8ELOzs7h69SqazSauX7/+zDjpc5xOpzCIoVAI4XBYHD8AUuCY8q18Po9CoTCwi2/FkFmNO8dcx1nxGnqs9M/TAKJ53GnjbQW6rMCcCaJN9s28htkOq2tpRpPF7M+fP4/R0VF0u12RuOl4TgKRTqcjznij0UA6nUa9XsfQ0BCSySRarRY2NzdRKBQwPDyMa9eu4eDgQNYnQQQZOB3jpjcOCI7I1FgBMZ6nE+mY4M+K3TOPO810m8wYVJoGt41GA0dHRwOyZ4I11maklFD3g2CJfR0aGkIkEhmQ3XIu+NwxWYqWODJBDlUNfOfo53VoaEjKAHCzR68VvqvY/kqlMrC5YhYFJ5jUAM3r9YqcnPPOxC71eh2RSARDQ0Oo1+vyHmOpE65vAj3KMl+UvVwA7oufNgNnm2222Wbb84yyw42NDdlJpSSIUspyuYyFhQU8evQIfr8fr776KlqtFm7duoXR0VFcvnwZ9+/fF2YLABYXFyUbHne8WTeO7BoASZoxPz8vcWFjY2MolUoYGxuT+Lvx8XHs7u7iwoULqNVq+PTTTyWRx/Xr1zE1NQWv1yuOFgBxYOncMGtmLpcbABoABpw//bc2/Zkpw6MTykQBNA0MCS7ZLu6Ea7mkBmK8Lu/Nf/oz01nVbdPgUGem0+BNX3dzcxM//vGP8Qd/8Ad49913US6Xsba2JoCexnN132q1GkqlEoLBIKLRqDjDlKR5vV5JwMI26j4QqAAYYAdNVkYDJCu5np4LfZ/T7Hkg0uqnyZpZXUO3VwPt5zGJHE8NXCgbnpqawsLCAvx+v8ydyeL1ej3U63WJpSQbk8vlROY2NjaGTqeDo6MjqZl3//59JBIJqeFHR16XD7Bqu2blzL7oAtrmHJnyRR5j9bnV3xwXM2nG8xLW6GeTfdLPIzPass2M9yIzRbaZ99XlPJhNlgwWY+ja7TZ8Pp8kWKIckzJFbiiRhefYm6BJ179kNlEyc6xnR/YwEAhIdkyWz6DcmeNFIO12uwVgMvMqwWY4HEYkEpFnV4NkyjUpJWXGTZuB+2uypwycbbbZZptttp1uKysr2NnZEQehWq0iEAggkUhgd3dXHJR79+7h7NmzmJubw/r6OjKZDC5evIhkMon79+8DOEllTYfz+PgY8XhcYr2i0ajEgfj9fmSzWZTLZfh8Ppw/f15qFIVCITgcDoyOjmJzcxMjIyNwOBw4OjrCysoKjo+Psb29jaWlJezv76NareL1119HLpcbAG90FukccseY0kaadjxMJ4TAgmBC17oyZWC6bAB38+nose4TE49oJ9sEjgRHJstmlgzQzjAlYvydbdJgic6WljDyOP379evXsbCwgNdffx3vvvsu2u021tfXTwW0uu9MklCtVhEKhQayVTLJhsk20ribT/DbarUG6l6ZgMW05zFy5nFWTNjzWB6re1oBOavrn/Y7r2H+7nA4ZN3E43HMzs5icnJygFXlcfyMAJoMJ2uCUdoXCoUQi8Xg9/vx6aefwuVyoVgsYn19HfPz81KEvdlsyvOu2TMAA7JeKxbUaiNBG783x8cK5J02RjQN3sznRzN9+jnRcaU63gwAxsfHhTXnNQhMK5WKJOfh+8vlcsla53UIynges+XyXUGgRHk41zZZTsqtyfBVKhX0+31JnMIC4rqmJTew+M4IBALC9LNEC9k9/Q5kQiUmKyEIS6VSUvSeIJJyad6XbeRY+v3+Z2ocft32cgE4DO5c2GabbbbZZpuVsWA266lNTEzA4XAIE1apVNDtdvHNb34TnU4Hn376KQKBAN588000Gg3cvHlTimOPjY3B6XQinU4jEolgd3dX0vYXCgWEw2G02208fPgQ/X4fo6OjWFhYwN7eHqLRqICfoaEh7O3tYXFxEUdHRwgEAnj11Vfx6NEj7O3tIRwO4/79+wiHw1hcXMTjx48HpEynOc8XLlxANBpFJpMRh0+ntqdp0EYnmQ4Q8GydKjPuRztKjBGhNKpYLKJcLstnuo1min3tsJt1o3icZtv4OxkasgHa8eNxdCx1P5nt7o//+I8RiUSwtLSE73znO6jX69jb23uGgWSf6VACEPkdM4yy7AAZHvN89pPZEclmMAMgnWRTXmkCutNYNH0vK5nf8+x5QNHqcyvZ32n30wwdjY56JBJBJBLB5OSkMCFcP1xvnOdarYZUKoVsNotSqSTMElm3eDyOeDyOhYUF/Omf/ilisRjOnj2LVCqFcrmMTCYDj8eDXC4n7JNmxcxnQLNYWobINUUA8zxZpNXcmM+Yycp9GeDWLKfeaCH7TDZNs3dsb7vdlhhOSgy1dJEMma59xo0LSg4rlYpsQujyGkxS4vV6BfwUCgXJNsl+a/kq701mLBqNCoDWzzXBNu/HZCm9Xg/lclnGmhs33LzimFAFwDlnAhSqMjimPJ/JloCT55yJXHitF2UvFYCjhtLGb7bZZptttj3PAoGAsEFzc3MoFApSQJbZ7d566y3s7e1hY2MDy8vLWFhYwObmJorFIiKRCDqdDhYXF5HNZuHxeDA6OoqDgwMkk0mpeTQ2NoZGo4H9/X30ej1MT0/D5/Nhe3sb8XhciolT8jUzM4MHDx7g3Llz8Hg8uHnzpsR6HB8fY2lpCS6XCw8fPkSv18PY2Bg2NzcHYsSY+ZHOBWWZ/FybyajpXWYttQSegj5TbkkHlM6QBna9Xk/ixQjwrJKL0OnUoIhOsnbITOPn+loEcqYkUTtndJg5bt1uF8ViEf/n//l/4l/8i3+BkZERfOtb38JPfvITpFKpUxN/sE0ejwcjIyPo909KSDQaDeTzeUl+oBNCaBaHCR9YUkHXvdLtNH+3AkhWElSrc7/scyuQYCXts2Ki2LfnATdei+CCYDcUCmF0dFSK0+ukOQRI9Xod6XQaR0dHyOVyIrMDIIDF4ThJ/jM/P4+f//zn8rwWCgWR3JEtTqfTAiDMrI0mGOU92HbdVz1G5piYa04/W1aMnN6g+DKWVJt+Bvkc6TXh9/tRqVTkHZHJZDA3NzeQsZaJRnQyEbLMbrdb5JAEVpwbJjHRoIbj6nQ6USqVBtgz3oPAkvflOFJuTXkxE68QwDO+lhJMDcQ45qzjxmyTlISSQdPKBdaXazabwkiysDmBJQB5rxMYhkKhrzQ3fxP2UgG4r7bEbbPNNtts+/93Y4HueDyO/f19jIyMCBs3NTWFyclJPHz4ENlsFmfPnkUkEsG1a9ekHhwAnD17FpubmxgfH0e9Xsf+/r4U5u52u1heXsb+/j6ePHkCl8uFs2fPiqMyNTUFp9OJ6elp3L9/H+Pj4wCAW7du4dKlSzg4OBBgyCx6S0tLyOVyyGQysnucz+cH+tXv9yVlN8FaMBiUXXSdXAMYlEsCgxJEAOLUaqbLlBVqp5ySSTq69XpdwAkdXZ30xEq+qR1Z9p873lbn6CLNOvaNDqYGjbovvJYGlHt7e/jDP/xDfP/738f8/Dx++7d/G3/xF3+B4+Pjgf5qY4a9ZDIpyWfoyGpGhyxFrVZ7RlJJZ10XN+Z3nAcyUvpzPe+ngSt9D3282R/dDv232RYrcGZ+ZwV+aGRwYrGYMJfBYFDKenDONMNF4JZKpZDJZAZAAseYa2VmZgbnz5/Hz3/+c6TTaQBAJpPB8fEx/H6/xEmFw2GUSqWBMhW8r263Zp5N5pdmsmYaSOlx0iDRZKJNNtVqLngvK2mvToHPc/r9kyL3OtaSAIpy3ampKQEqoVAI+Xwe+XwesVhMgBnBG58pMmyRSETeOSx4rcEsGWayy3wm+G7SGzga4DOejn9reSv7at6LAJTX8nq9CAQCEn9H8MY41V6vJ9clSCPbz9g+Aju2gRtEvV5PlAYvyl4uACcvmRfcENtss8022/5W24ULF1CtVnF0dIREIiFZApk04d69e6hUKrh06RLa7TaOjo7w1ltvIZ1Oi5PIHex8Po9MJoOpqSkUCgU4nU6Mjo5ibW0Nh4eHcLvdGB4elhgpZnurVCp4+PAhVlZWsL29jXq9jtnZWdy4cQMjIyOYmJjA9vY2otEoxsfHcXR0hHw+j3g8jkqlInXdwuEwisWi9E07jQz29/l8A+nCTQfV/N10NIGnjJgJ8AiEyCQRFDI7INO7A09jY+hc8jjNSOnrasmmVVtNdk2zIpotYdydPkdLNbU9fvwY//E//kd8//vfx+zsLL797W/jZz/7GQ4PD2UctBF4HR8fi+SqXC5LggSXy4VwOIxkMomjo6NnWEoCVH09/ZPj4Xa7UavVBpxWk9WyAldfZs9j+UyAof82QaEpjTTbQADj8/kQCoWkKHooFEI0Gn2mjh4lbMwAm8lkREbHMdHAKRKJYHh4GPF4HB999BHy+fxA4Xeuo06ng3K5DAAS/8aahbq9epy58WDGntHZJ0vFz/RGiAYllF+ac2PFuFmxb6dterCNZLnJEJlzy2dKb3owRpPJkAiwCGp0oWvGsQKQhCLValWefQIvnk8AVCqVpC2UIXJMeF3OPd8hfG9oppZgnteiDF6Xj2i327KmyPDxXUAGj2wgAS83DWq1mmzAmCwpGWG2hWUQXpS9XADui592GQHbbLPNNtueZ8ViEel0GuFwGAcHB4jH41hcXESr1cLq6iqi0SjOnj2LTCaDUCiEd999F8fHx5iZmRF2Z2JiAltbW1Kce3d3F8lkEj6fD2tra8LmMe7D5/Oh0WhgaGgIa2trGBsbw/LyMh49eoSJiQn0+308fPgQ8/Pz6PV6WF9fx5UrV+B0OvHw4UOJUzk+PkatVkMwGEQsFkMoFJJYHs1EMbV2oVBAIBCQfz6fTxwrE8gQpAGDzvxpWSo1sNIJS3T8mQYk+l4aaJrOKh1uDQjZL20akOn26WuRBdDAjceawI9tWV1dxb/7d/8Ov//7v4+FhQW43W785Cc/weHh4TMAitdi5jvgaW0qMhWxWAy1Wm0gs+Xw8DDcbrekd9espJbRAXgmeYRpVo6/Ca6swKrV2JvzbgXi+J0+3gQb/JssG1kcyiWTySRGRkYGGBiCrWaziePjY2SzWaRSKWFPdN/I/HDcms0mKpUK1tfXB2qFaZDLmKxOp4OdnR0AkEQaXq93YLNBn2vKiQno2E8t5bRiQwlEdFyj/qlZJCuzAnUmUDTjU3kv3X6ySby3fl4o1eYmE/tECWSlUhHwQxaLkkwAIgFmchiOQblcllhdjjX7MjQ0JFkk6/U6Op0OQqGQbIL4/X4BdVpCSbDNOahUKsLukUUlEOt0OhJjymeU88F26fcUN540ew5AsmEGg0GRV75Ie7kAnB0DZ5ttttlm21ewarUKp9OJQqGACxcuYH5+Ho8fP0YqlcLS0hJmZmawtbWFM2fOIJlMIpPJYGZmBr1eD6VSCc1mE3t7e2g0GgiFQqhWq5ifn4fH48Hq6iqazSYWFxdxcHCAUCgk8h7Weztz5gx6vZMU9mTznjx5glgsJkzDG2+8gUqlIvFyALC1tQWXy4V4PI5gMIiDgwOpJ0fjzjYdtP39fUntHQwGRb5kOnA0DRIInvTfOm6OjAKdVO7a60QFJjPGe/NeGhxoxxOAFPplogXTdFs1ANLxb5ptoAOs2TjdHlq/38f6+jr+w3/4D3jvvfdw4cIFvPfee/jkk0+wtbUlfdPXpONnZtrkvDGRAuOtXnnlFezu7grQJnjhOOrz9diZpsGAOZdWf5tmdby+lhXgsDqOP3V8EzP/8XduIPAfCz4DJ2xxqVRCOp1GLpdDsVh8ZhOAc65BOx1tOv4EzWSftdSNNRNHR0dFLudyuSSroMnwmkDHNIKL08ZKgygezzabY2/FuFndj6y12SaOC9cTpdI6Uyw3djqdjqxHp9M5AH4YYxYOh+FyuURKyDHXc8ING7fbDZ/PN5D0g6wdE4zoZCWNRgOBQEA2PFhXjc+u2+1GOBweqD/H82g6MQvP8/v9AhKZ8ZLZcAEMJMThO4vXoFyU8lKyhFqWGQwGZQOAbXhR9nICuBfbDNtss8022/4OmNfrxdWrV+F0OnHv3j0EAgF8+9vfRrVaRSqVwsrKiqSlPnPmjOwk53I5uFwuJBIJBAIBpNNpxGKxgRIB4+Pj2N7eFnBHpymVSmFhYQGFQkGkPp9//jna7TYSiQRqtRomJycxPj6Ohw8fotVqYWFhAcViETs7O/B6vVLUeH9/H8FgEOPj48jlcgAGGSE6e9lsFm63W5JF0OnQzqIGZiYoMo/l9bXR6eJOudfrfaZotgZMJrjT32tJZK1Wk4x3mqnRpp1KABLPYzJtmt0ywZFuowYGh4eH+LM/+zPcv38f3/zmN/Htb38bN27cEJBujjfBG8eM7dXAggCnXC7j8PAQ3W4Xw8PD8Pl8ODw8FFChWTndTl6TjvppoECDaw0uzH+6rdrM9WGaZnbIsHm9Xom3ZHZCxmPquExdN7BaraJQKEh8m5bIWbGj5jg4HA5Ze2SN6NCbtd24LlutFrLZrGT9JCNjxfKaa4391mtKx26y3VbsnQb8ejPhNObNysy4Lx2jx88Irvi3ljDz3pQkUhbZ6/WEDXM4HALwNBPHuDGy7bwW33H8R/DW7/dlDvT46IyY9Xod5XIZ3W5XQBTfXQSijUZjoAablkezn5STE7zzPcDrUQHB9Wf+5H263S7C4fCAnJPMI8eSyYn+a+btr9teLgBnlxGwzTbbbLPtK9jw8DAWFxdxeHiISqWCM2fO4MKFC0in0/D7/Thz5ozUDOp2u0in0/B4PCgWi4hGo2g0GshkMlhfX8fo6Cjy+TwajQZcLhcCgQCuXbuGRCIhtaiy2SyczpO6SmtraxgeHkan08GtW7fEmT06OsIrr7wigNLlckndt62tLYTDYSwsLKDX62FrawvxeBwXLlzA3bt3BxgxM7aL8T4sLM2ac1bAxQRx3KG3Mp2MhE6T0+mUcdPXAyC7+7qYNu+hExLorJKUnenzKJ+iaTBiBXr0fayAi5VploOFvQuFAi5fvoxLly4hGAzi5s2bAjY4Zuy3ZhJN0Mk2/uhHP5IU7z6fD8PDw9je3pb7a4nraeMfDocHWABThqoBg/6czIOVY29ex0pK6HQ6JTaJsUQEaARFBHV0fPmT4LPVaiGTyWBvbw+FQmEgvo1zqduvAagpjSRIJgNFUM+Mk3otaJaT8V2U/ukNB3ON6fHQY2SybjzGZCvNebRiMq3uZ8onzaRDJjjSAM/MRKnnj4wxE7vo2LBer4dCoSD39Pv9A+2jRJhAr9vtSkmBWCyGYrGIZrOJQCDwjHyTa4K/cx1y/LXMk9JKSh11bG6xWJT7J5NJaQfHgkycLjfQ75/UqiMY1HXruMmSTCYBQCTPBJMEf8xkajKCX7e9XADOZuBss80222z7CjY3N4fV1VXE43G89dZbcDqdWF9fx9mzZzE8PCzOQbFYRKPRwNTUFHK5HCYnJ7G3t4d0Oo3PPvsMbrcb2WwWs7OzmJmZQbVaxePHjzE6OorJyUkEg0EcHh6K49loNBCPxyWZxfj4ODKZDAKBAF577TUcHx9LHbnx8XHcvHkT2WwWMzMzWFhYQLvdRj6fRyKRQDAYxO3bt3H37l1Jzw08DbbX7E8+n5dEJtoZ07FtplzMlBeaYMTMTMnPmc2Nx+v4IO2AatCo/9agQu/Ua5BEJ1O304p1M1k/XsuUT1qxT1oaWqvVkE6n8eGHH2JnZwevv/46vvnNb+LmzZsSfwhgoAyABrEaeDAbH5mgVquFO3fuiPOsGTYz9lCPt84cSNZEp4TXxn6Y80xgbLKlJlDjP82MMK6IvzNlvI5ZZD/0WLK+2P7+PtLptDjBVuyglcSQ92M2QPZbbwDwdzIyuu3M4krmiON4GpjnRoK57vid7p+5hvTzowGYHmcrgG7Vb8328lz2l+OtpcvmutayYsaIBQIB1Go1uN1uqb1HxokbUsy+yHg0JgWhvFlLK5vNpiQC4VrnWDNRCtceZZQEj+yTZvQ068754zuNY88x9Hq9KBQKAIBQKCSMWqPRGACKjG8jwGO7u90uksmksHr8bGRkBO12W+KGuYHEOOQXZS8VgKPZBJxtttlmm23Ps/v372NsbAyvvvoqqtWqJDLp9/tYW1vDw4cPMT4+Dr/fL85Is9nEzs4OcrmcyBkbjQYWFxfRaDSwuroKr9eLkZERTE5OSrHhWCyGRqMhMSW5XA4jIyPweDzIZDJYXFzE6Ogo1tfXUSwWMTIygkKhgJ/97GdSay4QCOCzzz6Dw+HA8vIy/H4/bty4ITvolHVqR0eDqmq1ing8/kx2Ng16tEPIv7Vph1qfo78nsKDDDDxl3rQsjhI3/TcwmOKfRsbkNCbQCqTp9vB38zP9ufm3yYDojHPb29vIZrNYWVnB8vIyVldXBWjS2eU46uQjDsdJMhMCeQ1yyAAQ7JLdJCCkI6vZn37/pOYc43zoHJMZ43rQ6ez1vGhwSAdcAwd9vmbQzN/JXmk2jHPIcWm1WqhUKqjX6yiVSgPASYNKk+nS4EW3Ra9vDUr0GnO5XIjFYsLSkIljGzQ4JfjRqevNdcHng8fqY/Szps/RGxcmoDNZua8C5vR1zXg9smr8zuPxPCPPNDdQeA2ODZkmJiThNclEUaqq0/jrfupkM/3+iTyTmW+5limBJPAmmAIgGwmcC65bsqSlUmkgeQil4d1uV2TkjK0kSGQfzNg3lvVgH9gGxvtR4k62mPPGvieTyefKbf+m7aUCcE8XuY3gbLPNNttsO91mZ2cRDofxox/9CL1eD6+88gq8Xi/u37+PWq2Gx48fY2xsDAcHB9jd3YXT6USlUpFd5Wq1inw+D4/Hg88//xzz8/N49913sbe3BwA4Pj6G0+lENBpFtVrF9PQ02u02crkc4vE4HI6T9PHLy8twu93Y2toCAJw7d07i4xYWFhCJRJDL5bC3t4fR0VGMj4/j8PAQh4eHiEQiKJfLUkKAzgnjPUKhkFyrUChgZGQEgUAA8Xh8IC5GO3TPi+kwZXVWzBW/00V56eCZmd40aDAlc1aOrHY4dZpvk0nTzKAGZCYbxs/ZN/NYs+/acSyVSrh16xYikYgkO9Dn+nw+9Ho9ydzXbDbxB3/wBwgEAvjhD384AAYYL6SzTGpGiKyPZhz0mOgixzqmRwMfzov5k3NFZoFsCZ1t/uSYc15ZW4xAgd9zTdVqNcn412w2hWEh40Pn3AQ5JkDVa4rSO8YysS163XBdut1uTE9PIxqNIhqNwu/3i6Pf7/exu7srxZzr9bokt+D4EaTptct26X861k2vldPYvNO+47q1AnnsvwmW9Fzy2eBcUn5oJtPRyU043gT7TPrS7/elUDbfUw6HA7VaTcAwa/dxbnkfLZHVmzxkrbR8WgNOAkQer4ERk9CQtSZjy2ym/f5JHB2TmFDKyTVDwMh7MbaPIM3hcCAQCKBer4s01Ol0IpFIwOfzyZj7/f4BmefQ0NBA+Zav214uAPfFT5uBs80222yz7XnWarWwtrYm/2nfunUL4XAYjUYD7XYb1WoVT548Efnh8fGxZHLM5XIolUpwOByo1+u4dOkSzp07h+3tbdRqNdTrdYyNjcmu7+XLl/H48WOp4UZJz5kzZ1CtVvHo0SNEIhF4PB7s7Oyg3W5LTEcmk0GlUsHc3ByWl5dx//59ZDIZDA8PI5VKoV6vw+/3I5/PDzja+XxenI1CoYDd3V2srKxIdjmfz4dmszkQL2fGvmkn2pR0aZCjwQjwNG18q9WSRAncwdbOtpXDSsdKs4FsIx1StseMdbMCgKd9/19juu+60C/HmkyZvh+dQDrCQ0NDWF9fl0LsOo6PO/yaHQEgQEln1+Q4nDZHHDsrZ9/qHA369T86wPp6GiwQQOvvrWSxPIe1EKPRKNbX16W95oaBBjgaUOoEKb3eSSZY9of/eJ7P58PExAQSiYTUeKN0zufzyXPndDpFBmjF8J4GyvT6JdiwklHyuvo7K2mkFfNmgu7TzGTCNYBl4h8yTWwv1yZZKDLClD4HAoGBAt1c38xUScaX7SbjzjEBIKn7WTzcZOsINHk/fQ43DnRRe64pl8uFSCQy8EzoGLpWqzUA2si8aoDJfwSTwWBQzuOGRCAQkHcYn3Gfzyc/y+UyyuWy5UbT12UvF4CzY+Bss80222z7CtZut0XayMK+h4eHSCaTcDhOsigeHBygXC4jn89LvNL+/r44FrFYDBcuXEAikcDOzg5mZmZQLBbFuen3TwLmr1+/Dq/Xi2g0ilKphMnJSYRCIRwfH6NQKCAej6NcLotjPzo6ikajIYWIz549i0gkgmvXrqFeryMcDmNnZwehUAgTExMS90FARMeX7Wy329jc3ESn04HP50MsFkM0Gn2m/IDf7xeHTTucJpOm2Qfg2fTndK58Ph/8fv8AY0Oni04c2SPTETIBGACEw2EAkDbSMbYCDuZnzwNtz2PegMF4OIJRtoc1s8z206HVMr29vT10Oh2Ew+GBRBqafTClgLyflq5y7DRQNeWLwKAE8TTZnmb8TJbJCnDo8bEaK30MsxEScBYKBUmMYcbp8W8WeZ6ensb58+fRaDSEZWYiIZZx0HPL9rI2IgBhjOjIs3aZ2+3G+fPnMTQ0hE8//VRqj2mZr2bfTCCmx9AcSxMw6wQamt3TY6sZVJMZ1uP6vA0VUwatY0cJxhm7pjcbXC4X6vW61M1jFkhuTvF9QhBXrVYFHOpMugREBHo6mQ3j0AimuH75bLDtBG0EfWTomSio1WoNfMfYVLLIbDeT1/D+ZIK1pJtAlm3n+7LX6yESiSASiYiUkucQ5Gn22C4j8NdkT7NQvuCG2GabbbbZ9rfa+J//1atXcXx8jO3t7QGHgD8zmQxKpZL8R01nenJyEisrK5Kif3x8HJubm0gkElheXsaTJ0+QTqdx584djIyMIBwOo16v48yZM3A6ncKeASdyy36/j3A4jGQyiUKhIAHz09PT6HQ6+PjjjwUwPH78GNFoFPF4HH6/H4VCYQCkOBwntYsILoCTOmSsicXsmKa8jpneaCYLoJ1GM45MX0szIQzyZ5vI+jGOxIyh06YlkwBEssrjdFIGUxrJ62kQauUU6/Y+D+SZgJUSMsb3WI2JFcDQiUoom6TDTUZAO+S8t26rBthWc8D28LjT5HzmGJnj8rxzzPub/afkjH1ln9hHnfmRyXWi0ShCoRBCoRBGRkbQ7Xbx7W9/G9FoFH/4h3+IYDCI1dXVU1mPYDAIl8uFcrks1yfY1ucQjJXLZan/qLMJ6kQg7KcJsE0Zowl4CeY0GNdjp/+2YtnM86w+N6+lAaZmRwkeuf4IniiXdDhO6pvVajU0m02Ew2HZcKlWq/D7/XIfslUEYwT+vKdee2Q4tWzSbHu/fyJ/5HOg14uWPjJjKPA0URATnRDccT0xoQ6zRPb7fSlFosePkki2TSfr0RYIBGTt8v8FvofYphdhLxeAEwbORnC22Wabbbadbh6PB+Pj43jw4AHGx8fx9ttv48mTJ7hz5w4qlYrEUTSbTVSrVSQSCcngODc3h8nJSezv70vtod3dXVy6dAl+vx+ffvrpgNSOzs3y8jLy+TwODw9lh5pB/l6vF8FgENlsFpVKBcPDwwgEAjg+PkalUsH58+exs7OD7e1thMNh+P1+tFotrK+v4/DwUACRlh41m00Bnjs7O6jX6yIDTSaTAwH9JjjT7A1NO12mVMxkeEZGRlCr1SRGhCynjlnS99dOvhWTAUB24LV0jfe1YuHYZt1eK4bjtL7ovzVDwlTpTHCgga45NmZ/6ETreCWd9Y67+1asJB1RAj9Ttqfnh460bot2Xq3G96sAN3OMrEDz0NAQwuEwgsEgIpGIyNLi8bgkDAKARCKBRCIBt9stmQuz2SwKhQK2trYwMTGBu3fv4u7du/j+97+P5eVl/Ot//a+lwDfnmuUUyKpQAt1qtTA9PS3rpdfrSYwTwYdmo+n867VoylHJHunxBjAAkjSINoGc/v40to32VeZIX08zUebchMNhFAoFGQtuGhAYtdttSbJULpcRDAaFkS2VSvB6vQLoWIDb5XJJDJp+7rxeLyqVimwI8b2ky4BQhqnrHbKcBmWZjJ+k/JrPPJ8LDUqBp8y/x+MR9tDhcEiCn1arJRk3dYkYMoaMeWMSFyoWdHIT3heAZOV8UfZyAbgvftoMnG222Wabbc+zZrOJRqOBK1euIBgMIpPJCHjibms+n5fC3G63G8FgEEtLS1IDjlkoDw4OcOHCBRwdHSGVSuG1115Do9HA48eP0Wq1EAwGsbi4iAcPHqBYLCKZTIrD7vV6EYlEJFbN5XJhbm5OZI9erxfxeFwYveHhYXi9XuRyORwcHKDX6yEWiyGTyaDdbg/Io6rVqiQaaDabuHv3Lq5evQqfz4dEIiExKKaZKfqt2BYNvnQMD50o7o5zB5zOIHfVTaePZoJGfgacOLQ6eYbVNUz2yjQzjomffRl40exiOBxGLBYbiAOyOp7X1IyNCQy09JEOuC7DoFkLnTHPCjjp8dMg7rQ+n9bPLzvGCgzr8YlEIsIQz8zMoNVq4dd+7dewtLSEer2Ora0t5HI5ccbL5TL29/fR6/Vkc4JJUD799FNUKhUkk0ksLS3hH/2jf4Tt7e2BJEGU/VECp3+2222Mjo5iZGRE2DidFbVUKiGRSAi4sZLEaRBGlkdvehBEmmOkwQU/s5LKmgDfBNrmXJ9m5iaMvi6fQ7Z/eHhYyl8wUyPXn8fjkRjDoaEh1Ot11Ot12UDp9XpSQoLvsEqlglarJfXR9DPJnwTH3Nzqdrsol8twOk/qY/r9fng8HikzATyNJWVcLbNU+nw+tNttYduAp3XeeE9KyQHIe4MJUZrN5oDck/JsAkcyceZmEsePmzdmfbyv014uAEcGzgZwttlmm222Pcei0SharRZyuRzu3r2LGzduoFwuS30pJimZmJiQ/6jn5+clZq1UKkmsRLFYxMbGBiKRCL7xjW9gbW0NOzs76Ha7mJycxMzMDO7du4der4eJiYmB2BICLDpY0WgUhUIBzWYTIyMjaDQaWF9fR7fbxdLSEjweD+7evSs1nFwuF/b29pDJZCT2h+CALA0dn48++ghvvfUW/H4/xsfHB5KC6PNMOab+SdMxNyaA6XQ6UtaACQr0Drw+n84/AZ4VACNwYZ94nJbl6fNM4HMa2NH2ZSCODjwLbgeDQXFIdX9MAKR36Onom6DVvAfHminZWR6AzqW+py7ifBqIMwHc8/p6GsOjQdppTBxwIjeLRqMSu5TP5xGLxXDx4kVcunRJMnbq+WPW19XVVRwdHWFtbQ2ZTAaZTEbOZ2zpa6+9hsuXL8Pn82F8fBzFYhG7u7toNBpwOBwIhULw+/2oVqvo9U6SnTQaDRQKBclISVDFz6empuS5bzQasgmia/LpOWHfzbnT48M+agCgAbVmWK0kmOa4W8l8zU0CDey1jJlJPICnsloyudlsVthSgqtGowG/3492uy3p+Gu12kBCmKGhIYRCoYGU/dyoMVPrs22MRXQ4nhbw5jNFAFepVIR1o1yR35O9J7DS5Sv4jGjJJJ9PStUJ4Hhfp9MpCVHIzPHabLNZmoXsMsf4tMLvX4e9VACOHJwtobTNNttss+151m63sbe3hwcPHiCdTsPlcmFychLpdBrVahWzs7OSTIQMmdPpxPz8PI6Pj0VK1Ww2EY1GcXh4iFKphA8//BCFQgHDw8O4ePEi/H4/7ty5I45/JpNBv9+H3+9/JnECC4iTlctms9jb28PQ0BDOnj2LXC6Hhw8fotPpYGZmBt1uF7u7u9I2yih1nJXeNT84OEClUpGYPZ/Ph2q1Ks4VnRQNNABrh107qDTtzBNYMbMcd9J1qnl9rBXzBjxlKvg78NQRNiWUJjN1GnNhHvNVAE2/f5KwIB6PS8ZQsghcC9pht+qLTmxyWpt4DJ3VRCKBN998E6urq9jc3Hwm1u95fTWd/dMA2Fdl2kwzQThZi0gkIplbC4UCRkdHcffuXcRiMYyNjYnjz/E7OjrCkydPcO/ePTx+/BgHBwcolUqSnKfX6+H69es4f/48fvnLX6LZbGJubg4TExNwOBxSC4/JbQKBAGKxmIC4TqeDYrEo12T8EiWrlUoFZ8+exdHRkTDEZlZFHRdFBopjeNoYWQEw89nS1zA//zIzAZ+eL4JCJkihjJAA5/Hjx+h0OpIUpFAoCJtFFo7ZbZ1OJ0KhkNTy8/v98p6Kx+M4ODgYYDX5PtHvB8oiu92nxbwJ6MjmdbtdmQ+ybGTnWOKAjGAsFhOJO98vfK+yxAQAiX1jts1ms4lQKCR17vQ4NhoNidllUpder4doNCpxd9FoVBhegtcXZS8VgLMZONtss802276K3bhxA/l8HpFIBBMTEygWi9jb20MikcCrr74q0sDh4WHUajXMzMygXq9jb28PrVYLPp8PkUgEqVQKOzs7OHv2LEqlEg4PDzE9PY133nkHGxsbuHbtGiYnJyUBg9vtxtjYGGKxGNLptOwee71e5PN5ASz5fB7FYhHRaBSjo6M4ODjA/v6+ZKnsdDpIpVKyIx2LxcRBYpY1gg4Ako1tbW0N58+fRywWQzKZRDabfSZhg85gCVgzWmYcignCNMNCZ8jMOmkCRFNKxvNNJ0nH0VnFvZn2PJBjxTBaHUPnLR6PIxaLYWpqSuITNaNiMm4cE50sAXg2PbwGzzw+FovhO9/5Dvx+P27evPnMbr/J8Fi1nW3g/Foda4JZ9tlkLU8DK/yOadafPHkiMjrGWf3gBz/A5uYmlpaWMDs7K2zx2toarl+/jsePH0u8JDdRgJNMr4lEAnt7e/g3/+bfoF6vi8w0nU5jaWkJ7777Lq5fv47Nzc0BCRxBCBkiJicis8NxYRKNCxcu4PPPPxfH3pxTLX01nxlzjPScct3zmrr+4mnzZkon9d96rXBTBMBAeQmT+et2u7J5Q6aNcWDsD+csGAyKhJdlT0qlkqx1timVSsHj8WBmZga5XA7pdFqAlG43f+r3kgZQZPg0gGUGW71JEwwGpQ8ABiSvfO/xXcFxT6VScDqdUkaAdQi1TJzrttvtSnkJ1oXjcdVqVWIFCXL5XntR9nIBuBfdANtss8022/5OWK1Ww/Lysuwyh0IhvP7667LTPDw8LDIdMmzc2Q2FQpidncX6+jrK5TLm5uawt7eHRqOBS5cuYXZ2Fh999BGy2SyuXLmCarWK7e1teDweXLlyBfl8HltbW3C5XBgZGUG5XEapVMLo6ChcLpfIL6enpxEKhbC+vo58Po/Z2VlEo1GkUimkUilxIEKhkNR8IuPFmkaVSkVihCqVCp48eYKVlRWplbW+vj4gEeLOuGlWWfGYpIU7+3QAWfjXlFLx7+fFjOl7aIdZm9k+DQRPAxfaodTA6jR2yTS/3y/ZO+kAm7Fmuq16PNl3MyZN/22CzHA4jDNnzuDw8BAPHz7Ezs7OwLmmmWNksjGngTR9rNV4me2y+g44cYKj0ajErmmQ0Wq1cHBwgGw2i+vXr8uzRZmcz+dDsViEw+HA3t6eyBoTiQSmpqbQaDRQLBYFrJBZTqVS6PV6mJubwze+8Q0kEgncv39fGByuEyaL0cBGJ4pxOp24ffs2fuM3fgNvvvkmbt26BWAw9b+er9PGxTzOlEPSeH+2hd+bzLSWv+rNDzKDeh3xnlY158w5I8vo9/sFpFAe2O/3B5KW8CdljARCDsdJmYF0Oo1KpQIAMu+9Xk9KazAxTKVSEeaNLBxLaABPy1iQeaNMsVwuA4AkumHMGQEaWTj2j20Oh8MolUrC/Pd6PSkbQ5DPTJp8z3MOuF54L45Ro9GQJCvValXG7UXZywXg5GF5wQ2xzTbbbLPtb7WdO3cO7XYbqVRK4mnIOs3NzaFQKEh8WjqdRjQaBQCp5/bgwQOR0xWLRQSDQVy+fBmNRgM3btzA8PCwOIP7+/uIxWK4dOkSHjx4IMH+8Xgcx8fHAIDJyUkUi0UcHx+L1KxSqeDu3btot9s4c+YMHA4H9vf3cXR0BL/fL3EhdFKYpp9xHl6vVyRDwAlo3dzcRKPRQCAQwPLyMj766KNT082brItVbJrf70cwGJQYG7fbLaUCTNOsGjAIeMyfmpUzz9ftoWNrxVTov83faaeBOP05pZPRaFRipfb39wccbjq/uu1M105HXANbDf5M5pEsay6Xw/r6ujjIp7X3eSBUS11NZ/M05uh517diVshOjoyMIJ/Po1KpSD+Ap4W/KXdkrGmlUoHH48Hk5CR8Ph/u3r0Lt9uNq1evIhaLoVKpSCyl1+tFMpmE2+3GkydPMDQ0JMl8yuWyPAvDw8OSPIeMtK6jp8dEg2+Xy4WPPvoI3/nOd3D58mU8ePAAwNOSA5pxZp/IlJqAScdDWjF0ZKOsTB9jxjeeBt6BwTg6tlPPG/vBduksjTxPZ7LluczOCUBixKrVqpzH+XY6nZLcRysD2O5QKDQQU+fz+WQMmDm01+shHo/L3LJOJRkyXXBbs+4cF56nk7Awm2YwGByQdZKNAzAA4vQ7iRk5I5EIgKc18tLptIy5XUbgr8kkC6UdA2ebbbbZZttzbGhoCMViEaOjoyJnjMfjcDgcSKfT8Pl8yGaz6PdP0lJT7thoNHB0dISrV68CAO7fv4/p6Wl4PB5sb2+j2Wzi4sWLaLfb+NnPfoZarYaRkREEAgFcu3YNLpdLJJTZbBaBQABjY2MolUo4Pj7GyMgIEokEjo6OkMvlMDIygmg0il6vh42NDaRSKUmg4ff74fV6kc1msb+/j2w2K7IoHRdCh8ftdmNzc1PA6dzcnDhFdEbo0NKhooOknVIAUnCZIIZ1l+icPi82xIxpO02aR+eYjpdmHPgZ76t34U3wZ35uMiOngRd+F4lEEIvFZBx1whWH4yQr5cjIiDiazWZTGAXGBlGeRXCj2UjNoDidTgSDQaTTaRwdHT0j0bTqg26v2Q/zpxWTajX25vX0ZybTyWs2m01hrdhWShk9Hg8CgQDK5TK8Xq8w2efOncOTJ09w//59LC0tYXFxUUCeZi/b7TYSiQRef/11yVjJcatWq8hkMsL+8nMm6mDcl2YQTXDF8f3xj3+Mb3/727h69So+/PDDAbDAfvJYh8MxUHbABNf6Xua8aSP4Mlk1rhFdqsIE4lqeq+eaGxtM9KHbTQaTdSIJoMhC8T2Qz+cRDAYxNDSESqWCcDg8AMLYNr0x0263MTExgWw2O7BRoUs0MDsoQT3Z0kAgIHFvfE5CoZBsUvF512ufY8O6fywy7nK5pBA3E7LwveHxeNDpdNBqteTdSuavXq9LPB6BKXDyfisUCshms6I60PXx/n/s/VmQJGeaHYodj33fIyP3zMqsylqBAgpd3VgaAzQGjWm1zUwbjRxRHKM0pGiiSDMaX/SgKz3IjLp8uCajTA98oIkyLnpp8Q45nJ6lZwaNaXQD6AZQKAAFVKH23LfY9311PWSfr/7w8siqnl6KxPXPrCwzIzzcf//dw+s7/znf+Z5EfLkAnFUDZ4UVVlhhxWNEr9fD2toa2u026vW61LCpRe6qyUgqlUI6nUYsFsPU1BS2t7dRKBSwvLyMwWCAQqEATdPwzDPP4N69e9LrbXp6GjMzM9jb20MymUQymYTL5UKxWEQ8HgfwoMl2KpWC0+lENpvFYDDA7OwsIpEIyuWyNBqfmppCr9dDMBhENBrFaDTC9vY2MpmMSDwJGCgFajQaAvoajQZ2d3eRSqUQCoWwtLQktUd0xaQEiu0H1GCSGAqFRGpKxo21LGpjX6PpBmAuoTQyfJMYI6MMk7Ims3oUs4Ra/awZ42jcnrWOS0tL6Ha7aLfbY8eamZnBV7/6VSwvL4u8knPvdDphs9lQr9exu7uLzz//XKSuKnB0OBxIpVLSH63RaCCbzQrTYRy/8VpMkuoZw4yJO46hnMTsmR2j3+8jmUxiaWkJH3zwgSTlqkyRYErTNGGvP/zwQ2SzWZFAdjod+RzvIe7j1q1byGQyUpek1tmFQiHY7XaUy2UBcWrtm5kc1wh4ef5vvfUWXnzxRSwvL2N/f/+h+VPBH51eybby/lSvrxFEq6HKJNW/jQynyqxxOyM45Pg4LhqUcJ6MTCK/N5ybdrsNr9cLXddRLpdlMWgwGCAYDIqcMRKJoF6vYzgcot1uy3F47UKh0JjBB10laeHP+6XdbmM4HCIYDCIQCAgD1mq10Ol0xD1T7VdHOWetVhMzGj7jCNpCoZCoKWh+4vV6MRo9aH9Asxsu/Pj9fjSbzTGzE5rysCZ4OBwiGo3C7XYL2H2S8eUEcE92GFZYYYUVVvw3Hk899RSCwSDu3LmD1dVV7O3tIRaLYTAYSL3GYDBANBqFruvY3t7GysoKnE4ndnd34XQ68dJLL4kscXp6GuFwWOpnQqGQrCTfvn0b09PTWFxcRDqdRrlcxvT0NEajI2dIl8uFZDKJarUq8shYLCZypN3dXbhcLkQiEXg8HknaGo0Grl69ikKhAJvNJgX9KkAhGxYOh6FpGnq9Hm7duoXz58/D5XJhcXERt2/flgSJLmyqOyWlVWQ2vF6vrMZ3Oh2RY7HB9CQzkUlyRYYK+BjGuiDjT66eGx38JiXNKltifN+4Lc1hgsGgzDt7ZmnakfnM2bNn8dRTT0l/PtYSUcpFswPWcmWzWWEDOAZK/thUuFQqiYnH48oczeba7LzVfR3HDE26VmYgkdeg1WpheXkZS0tLyOfzIpXz+/1wuVxoNptYWVlBLBZDsVjE7u4uCoUCTp06hWQyOSYn5SKAyriwybIK7Hh/sEUA5cOs1VJZ4ePmTpVUjkYjfPTRRzhx4gSSyaR8v3juqqxSZcDU+VH3Z7zHVJYNGL/HVYDNz6pST25jbOSu7lMFquo9pn7e4XBIvSJbCBD0Ejyp9ay6rktNGAEbWTlVxjgajaSGLhAIjLUVqNfrcu0IrOi4S5Olw8PDMZDHWl5Vjlur1QQwAxCp7HA4hMfjQalUEmaeAJHgmjVzBGo8Bplufg8p/6TrJQCpjyYbXy6XLQbulxUaHn4gW2GFFVZYYYUxotEoNjc30Wq1cPPmTVy8eBG3b98WYxE16Wg2mzhz5gza7Tb29vYwOzsLt9uNa9euYTgcYm1tDYPBAJ9++qnUpqkuicvLy3A4HPjiiy8QCASwvLyMVquFcrksjFyn00Gr1UIwGBwzM6lUKgIgpqenARwlaTs7O1hfX5dEyWY76mlUKpWElWKywmSMbOLm5ibK5TJmZmawuroKt9uNer0uPbBY70eXNyaslPexxxKZDjIfao82I9vF/TFUIGUG0o5z6FNZDkoTJ8kHjUyFMak2slfq2CmddLvdODw8FBaJ4EFl2VSGhPIqNgemaQPlYWrQUbHZbKJWq43VkP0iYTwX9W+yMccd41GSSiMIbrVa2NnZwfz8PM6dO4f9/X3U63U5F7vdjng8LuxJMBjE/v4+5ufnEQ6Hhd0ha+ZwOJBIJLC8vIw7d+7IAgNrsAgC+v0+Wq0W9vb20Gg0UKvVZPGBc03JJvDAwZQGJ2RMeW/oui4MzdbWFk6cODE2PvX68brToIbAnHNjrG803oMcj5EZ5Gvq/Kp1qrz/VYdGo1yTgEWVT3JsZMr5Otk2ftedTqe0HmHTcn7O4/GgUqmg0+kgHA5D14+MRtQx09q/2+3C7/dD045q7lqtlrxPqSKBVKvVQr1eH+tdyQUpMoVcEPP5fCIhpxRyNBpJ/0H1GnEBjnNEB2E+Dynr5TXgc3M0Gj1kukKZKfuE9vt9WfB6EvGlAnCwGDgrrLDCCiseI95++21xhvz617+O7e1tRCIRWcmPxWIoFAoolUpYXV3FjRs3MBgMBHytr68jGAxiYWEB+/v72NnZwfT0NFZWViQ5yeVyiMViqNVqqNVqOHHiBIbDIQ4ODtDpdBCLxcQOvd/vIx6Pw+/3o9Vq4fDwEKPRkaW33W5HMBgUGVIulxPJps121KMpEolgfX1divcDgcBYwkd5pd1uR6VSwdbWFuLxOGZmZhCJRMSxjQYrtBJnrygmMYPBQKRGo9FI2CImg0yMjavyZqGyBipjYJRTqomsUYrJ19S6K3V/XElXjU64LzWhNibZNJmhcYEq3+TKfL/fx927dxGJRLC0tCT1lGxgzpq4fr+PUqmEw8NDSWLV4/d6PblHWLdjPHezeTOOm69NCt4Pj8MaTALERsket6OM+Pbt25iamsLJkydx8eJF/Mmf/Al2dnbQ6XQQDAYxHA6RTCZx//59AA+kuKwdJACmFDiXy8lrZOTYfLlarYosk46WrOciMHY6nVhdXcVrr72Gg4MDfPDBB7IdaxWN88f+iARx8/PzSCQSqFQqYwCBIJ7yYXW+1OtgBNOAuYEPMN6Wg9up76nATr0War0npYLqteZ3gyxTr9eTfm+UIqrOnKw547WgIRINPGiMxPmixJAMIFlx1tdSutjr9QSAezweAYpk58jyEaxzgYYSSL7PueC4g8HgmCtko9GQ+jbeDwCkpxz/ZvsCldHjAgKvNUEav8u1Wk3k5q1Wy/wL9GuILxWAExMTC8FZYYUVVlhxTKTTaei6josXL8Jut2NtbQ3VahWpVApzc3PY39/HvXv3MBwOcf/+fQSDQaytrWFzcxOlUgkrKytwu93Y3NxEJpPBqVOncP78eezu7sLr9SKTyWBubg75fF6MTciuDIdDLC4uCkNht9vFQKVQKKBWq0HTNPh8PpEXcYV7f38fxWJRzAXK5TKKxSIODw9RqVQEEDCR5Up8vV5HIpFAMBhEPp/H7du3cfbsWfj9fiwuLmJ3d3csiaUMUDUj4co4jQXoesljqMyAGRPB4PbHSSqNn2Go4EH9p7YWsNvtshrPZKxSqQionCShY7AZNetymMipZhI8t3Q6jbfffhtzc3O4ePEiTp8+jVQqJWNvNBo4PDzEzZs3cf/+fbkmlFoCkCbTBA2TwkzuaMYcGj9jJo80+1392wzUTtofQUO/38eNGzdgs9lw5coVfP/730e5XEa73cb09LQ4RF67dg29Xg/xeFzuA543HTjb7Tba7bYYcbBmiY6AtIInwwxAZK58nyxOrVbDe++9h3K5jFqtJiyc2fnqui6LHQQHh4eHIpFVHS1V9o2yO2N9ozqvqnQVePgeV+vfaPjB46i1gADGmDUzIK+6n6ogjiCKDruU/RJQkdXkuREUqfVqw+FQ6oON5kHGBRxuU61Wxxp5OxwO+Hw+UQmo3y0yoARKBHEEgQSYvLZ85vE5yXulWq3Kc4z3h67r0seNC2287/i8UNlHr9cr82O326X2joyr5UL5S4oHXxgLwVlhhRVWWDE5KOn64osvpHZibm4OwFGT7/v376PT6aBSqeDpp59GKBTCZ599BrfbjXPnzqFWq2Fvbw/xeBwXL17EaDTC9evXUavVJPm/desWYrEY1tbWhDXz+/2YnZ3FwcEB8vk8IpGINOau1+uo1+vweDxSj0apULfbxfr6ujAZLpcLsVgMbrcbGxsbGA6HiMViaLVa6Ha7aLVakiBxBXx6ehputxvtdht3795FoVCAx+PBysoKPvjgA0nSVAMK1nFRpsSV8UajIa0DjIyRUf6oysTUlX71fbNQE1wzVs4IBJnIOp1OBINBeL1e5PN5VKvVh2rr1P0YWTgymmoSzYTUTNpZqVRQLpext7eHnZ0dfO1rX0MikcDOzg6azaY0dC8WiwAwBnTpdtdqtR7qb3ccu2YG2swYRuPvxn0dx8YZ96/+rrKf6hwCR7VLlUpFLOg1TUO/35decIPBAKurq8JckeUEjmrZXnvtNfzwhz+UxQMCXYKNcDgshkOsvaOxDA0nCJCZ/FerVWGUAYjRj9kcEPTzfAaDAe7evYtTp04JMwU8sOY3Nmk3AjiVJVbDDMiptXWcH+N3iM6SDPYk5O9sdaGCIo6JNV0EUFwoonmI3+9HvV4XJp7fcV6LSCQiLB7BdKlUEhaP3xGn0yn1ouq9QGaa7DQNmWiKQmDEMbH/GoPHoQEJj8WG44PBQJx1KWXn8TgGsol8tnFu+v2+1FmSnaQCgaDR4/HI81B9jj2J+BsDOE3TTgP4n5WXVgD83wBEAPwfAOR/9vr/Vdf1v/ibHufnGtPPfloMnBVWWGGFFcfFvXv3UK/Xxxq6bmxsyH/g9XodXq8XS0tLqNVq2NnZwcLCAiKRiEggk8kkotEo0uk0arUacrkcLl26BABYX19HJBLB8vIyNjc30Wg0sLy8jNFoJExMIpHAyZMnUSqVkM1mpZ6NK7+apkniQZki33e73chkMrh27RoajQZCoRBqtRo6nY6YEPT7fZEcAUdsEOVVo9EI+/v7iMfjmJ+fRyQSQTabRaVSkRpAgj9KjpjwNBqNh5olq8yRGeAwMxgxCxVYMImdxPrwdRWckQkiECXjYjYO4/FY/xSJRMTYQT0vgloyLUbpZ61Ww5UrV6R2im6jOzs7wo6q597tdsUyn/WDxrEdx5aZjX8SoOM2RhaS7M4kKanZNSSwOC55JWsBHN0b2WwWmUwGAHD58mUBNARerBfsdDp49913BYhomiaMr8/nQzKZRKfTkZrCSqUiQI1Ahsm/6oLIa8maLvWc1fPl+anzQXCzu7uL+fl5tNvtMTaN7I8ZY6mCNHX+1bkn28P9EaRwG7VNAOvC1GOrAI/hcrnkeHydZh7cJxmkYDCIcrks3x0u0vB60xDGZjtqLRCJRETGSoMa9vRjPSdNePg84vWlVJEKAb/fL/Jtgi/29CM4p0ycrSiAB4DS4/HIAhf/JkvKa+JyucSIRNd1AX4qMASOwCkln+wfR2kv/5/gggDvk/8uAZyu63cBPAMAmqbZARwA+GMA/xDA/0vX9X/1yxjgzxOcRwu/WWGFFVZYcVzQqYxMVywWg91uRz6fF3ORmZkZAUsXLlyA3W7H9vY2BoMBEokERqMRNjc3JfF45ZVXkMlksLm5iVQqhU6ng/v37wvr1u/3kU6nMRgMkEwmsbi4iFKphM3NTYTDYWliqxo5lEol5PN55HI5hMNhTE1NIR6P48aNG7hx4wb8fj9SqRT29vaEZeAKsVrjMxqNUKlUxOykWq3i3r17WF1dhcPhQDKZRDabRb1eF5BIEMTE2GY7ssSnlb5ZDc9xtW9mrJAZsKP0ymj4oZqFMME2JsTAUXJ3cHAgDJ36HoMJsJqoM/kPh8NS46ZK4rg92Q21XQJjMBjg8PAQBwcHD80Dx8KkvdvtynweV/c2Sc5ojEkgzgyMGUOdV3V+1feNnz9O/qq+z+MPh0PMz89LEs258fl8+MY3voFqtYpPP/1Uap640MBm8ex7SFaHMkKbzTbWjJkgW7WgB44YvJWVFaTTafmu9Ho9ScyZ+PO+UllfTdNQrVaRSCQecpZUz081LpkEplVHTIJPfpbbcmHEzImSEkDWS6rzTODG1wgGWfPWaDRkUcfj8Qhbp/aAJADmMWjUw7msVCpoNBrCbHHeR6PRQ460rG2jsQ9wVHdGlQEXWHh8VSbJZwDlnZwHKhnYHkBtDk5zEX6XA4GA3GtsD+Pz+URiy3klC6yaP/Fv9szjPcLr6/V6JzZk/3XEL+vIvwlgQ9f1nSeJRh+4UD6xIVhhhRVWWPHfQfA/XybjNP9ot9uYmZnB1NQUXC4XUqmU2KLX63X4fD4sLCyg2WwK0zU7Owun04kbN26g2+3i1KlT6HQ64sDm9XrRarVQKpUwHA4xOzuLRCKBjY0NNBoNRCIRRCIR6SOmaZqwgwcHB2i1Wpibm8PMzAyi0Sh+/OMfY29vDydOnEA0GsX6+joqlQqAB1bX7L3Ept6DwUCSKyZ5mUwGBwcHmJ6exuzsLG7duiUr5sYEmGCOSZ7KPhlreYzAzBhqMmtksRiq+50afJ37UY9lBB8qyDMm3MC4sQP3HQgEBDhwfEagCDzsqEkpncraqaDHaBXPBJey1eOAmXquxnMwAivjfh4F+FQ2zchIqcc2HtO4zaRjcT6YYMdiMbFsZ63i6uoq1tfXUSqVBDgwmSegTiQSiMViwqrs7u6i1+shFAqJZJiuhAAELKg1dGzUrPYtZALOY3IuVNdHFdTV63WkUilhdIyMpmpwooJn/jSCW97PPC/Kdo1sKRk6zgt/57i4rXo+6k+yToeHh9IDjsdWe52xztVut8sziIwYgSOBGsGb6j4ZjUbFUZLSVj5nVeMUm80mTJa6f5ovsT6N9Xdszk2HSxo6AQ+kyGz3wHNgL0uOT5VrqnWoXq9Xvp/8LMFat9sV0F6r1eQe4SKXGXP+64pfFoD73wD4/yl//zNN0/53AD4G8H/Sdb1s/ICmaf8YwD8GgMXFxV/KIISBsxCcFVZYYYUVxwQT6PPnz4tEkQyB0+mE0+nE2toagsEgtra2hKXy+Xwol8uoVCpShzYajZDJZBAOh2Gz2bC7u4vBYICZmRnYbDZhYzweD86ePQtN07CxsQFN06T+jQxDq9VCLpcTgxOn04mnnnoKHo8He3t7eO+999BqtXD27Fn4fD589tln2N7ehsPhQDweFzmSrusCOEOhkBT312o1xGIxWa2+fv064vE4zpw5g08++QSZTAbValVcL9W6ITJwrP8AHu4vZjRlUKWGZizScUYl6rbcB8dixnCYMUbqMY3HMOYKHo9HJFrGfRnHyQRQda7j60bpJxNwdc7Yb5Bg4nEYtklzpIJVjskIHsw+a2TIjPv8ecN43VRjG+DI0l1N5N1uNxYWFnD27Fl88MEHIl+j+6fX60U0GkUwGEQqlUIqlYLb7UapVILf74ff75f2GwQLlNmp7oDqPbSzsyOgTm0cDmDMoIQAk+CI55dOpzE1NSXX1MgSq9eDv5vdq9y3CjAAjAECLggQvHFhgRb9qrmOug8VRHIRxGazYWpqCtevXxd5NsFbs9lEIBCAz+eTbY01b+wHx3GwlnY0GkkvOMo7u92uPDd4r3Ohwm63w+/3i5xbNQwhaGy32wKu1MURAj3WGfN5wP1zTr1er7BtdNDVdR3BYFAWsbigEI1GZc5V8MzvK+uZC4WCHMvn84n7qbGu8dcZvzCA0zTNBeB3AfxffvbSvwHwP+JIyfg/Avh/AvjfGz+n6/q/BfBvAeArX/nKLwVxWRYmVlhhhRVWPE4sLy/jtddew2AwwDvvvIPhcIipqSlZuX3qqafQ7XaxsbGBWCyGWCwGTdNkdZlGF8BRorW0tIR0Oo1mswmXy4WVlRUAwPb2NrxeLzweDxKJBDKZDAqFgtTwOBwO+VkoFJDP58VZbXZ2FqlUCv1+HxsbG9jd3UUgEMBTTz0FXddx7dq1MVnX4eEhBoOB9E1qNptot9vw+/0CgCgB8vv90k7gwoULWFxcxOrqKnK5nPSRU+WYLPCnpAgYlzECDxuYMIxMl5rMGtk7NfFVa6iMhgFGls1M/WNMos22VUEMJWWqiYR6XpNq6ZhgG1lIlY1TGTo2S6bLojoO4/wcF2YAzCgpfRxA+DhgzYz9O25/ZN1UpunixYvIZDKSPAcCAWnFoJpNeDwepFIpLC8vIxAISKI9MzMjPcDa7TZyuRyAI2lkJBLBaDRCNBqVe3t3dxfAg95vlBDzO+f1eoUFUhk3ddFBNd/h/NZqtTHHS4Invm/8DqhMHueHskVeI/UzKmA0gnKG6jJpZLDVnyrTeOvWLXk+6Lou7JMqhWbLEbfbLVJKgjcCHR6XY6DagIwVGfxgMChGIioLS/aMclhd1wWQquYhalDCySbcbNZusx31hqPskeZFPAen0zlmzsJ58Xg8iEQiD8ki2fuNoFbte9dqtUTiznM0jvPXGb8MBu5/BeBTXdezAMCfAKBp2v8HwJ//Eo7xeCEM3K/tiFZYYYUVVvx3GN/5znewv7+PK1euQNM0PPPMMwLMTp8+jd3dXbTbbZw4cQJTU1MolUqyaj07Owu/349CoSDyozt37qDdbiMejyMej6NarY7VvwHA1taWuOhRqjgajRCJRFAoFLCxsSH1H+FwGAsLC7DZbNja2kIul8P58+exsLCA+/fv49atW+j3+zh9+jTq9Tru3bsn7EWlUhEWrtVqyUoxLcKr1SpmZmZQKpVQq9Vw9epV6WX2ySefjCUrdOujWyKTTxW4qUnuJHbNCJqOs8tnGFkvo1GKGWNkZJLU5NvIPKn7sdlsY417HQ6H1PWoNU3qeR8nEzWyLup4+v0+Go3GWO3bJJbMuE8z+aIKEIys2yQm7jjQZrbd4wJMM/Bms9kQj8cxPT2NhYUF7O7uSq1TsViUWi6CiUQigVdffRWrq6sIBoMCfCkdLBaLqFarArh9Ph9isRgWFxfx0ksvIZPJ4PPPP5f6q0ajIeyey+WC2+1Go9FAPp8Xcw2a8qjXWAXEKtDKZrN4+umnUavVxmSbxlDZWTJJapDx473G75oRSKoA0WazCRPEGk91sQN4AEbV47P/IwDp46iOk+0FCHIByGIGawUZPDYZO/bkY7sSyhy5GAZAFqXUc6JZU6/XE/ddLmY1Gg2RT3o8HnnmkP1iQ+9arYZwOCzH5POTJisEymTe1HYUhUJBPqNe63a7jWAwCI/HM8Zsqs9QSi3/e2/k/fegyCc1TZvRdT39sz//FoAvfgnHeKyQGjiLg7PCCiussOKY+PTTT9HpdPDss8+KlG1mZgZzc3O4f/8+IpEIZmdn4fF4cHh4KNIsOrml02lhtujgNjU1BafTiXw+D5vNhkQigbW1NTQaDdy6dQvJZBIejwelUkmMMmZmZrC+vo5MJoNUKoXhcIhUKoVYLIZKpYIbN26gXq/jzJkzOHXqlEgmE4kEpqenpf8b61EKhYI4t3Elmf2eAEgfo2g0inA4jGaziY2NDZw5c0Zqjfb399Hr9cTdjYklpZOqpJGhAiQ1SePf3AbAQ8mlMcwki8DDbQVUkKJ+1hiTWCh1H6z74f7pxMeVfu7HCF6MklHjGFQmh8Ch0+mg2WwKo2FkZ/ia8ZwmySFVhmYSG2mUaBoZnZ8nzMCcylAZ3x+NRvjKV76C3d1d/NN/+k9xeHiI7373u8LS0EGSTFskEsHa2hoSiYTpucRiMcTjcRQKBZHvzc3N4bXXXsPFixdRr9cRjUZFIkzgQlMa1kABkGvL74/qTGhk1HheZOBYA2s03FHHrIJ91ZSDr1EmyAUXI0jn75R9ApA+j+r15j8CC+P1Hg6HKBaLcvxeryesJffRarWECaUskfWzPDbvWco/yaqVy2WUy2UBbna7XeoTyXipgJVGI2T4XS4XwuGwgKlAICDqAeCB8QnVAADEyIY1hJybYDAo15H3Flk5tmXpdDpoNBrCArPnI68tG36rxi68hpzfQCDwkJPlrzN+IQCnaZoPwDcB/B+Vl/8fmqY9gyMl47bhvV9pyHfGwm9WWGGFFVYcE8FgEE8//TT29/fh8XiwtrYGu92O69evI5lMiiyxWq3Kf/q0ye73+4hGo2i326jX69B1HXNzc1JIT/nO4uIi9vb2sLe3BwDY2dmBz+fD0tIS5ubmUK/X8dlnn6Fer0tNx9zcHFZXV3H79m1cvXoVdrsdr7zyCnw+H65cuYJWq4Vz587B4/Fgc3NzbHzpdFrqgFjj1+l0JOFj8tZsNpHJZDA1NYXRaIRGo4GbN2/i8uXLSCaTSKfTIlcimwKMM2Aq66AyVGrCO4mhMq7Eq9vRjc9obmIEdSpgnJT08u9J41DBh+rCxySWrASAMTdDY7J+HODkz9FohGQyKdJWWtsb5XXGeVKPoW5vZByNsj2VeTTOidFo4zjgYDxP9XeOWWWrzBg7Ho+1Vy+88ALefvtt7O/vy+ICa63YKJ49yszC7/cjGAwKw0wJ697eHkKhEJLJJFZXV/HNb34TtVoNhUJBALmmHblJapqG+fl5NBoNVCoVtFqtsf5xZHzI/hmvK1kssmfcf6fTeYj9JJPFffFeUWvsjCyqCrBZK6bOMZlw7se4iMG6OLvdPlZvSdno9PS0gCePxyNsJevTNE0bkzKqtac8Fs+VbQNYOxwIBBAIBAQgDYdDYcDU+5OSTbJ5wIP2AGp9GVuu0MLf5XLJdWctJUEpHUU5V2TcOp2OfH+z2Sx8Pp/MDWuX0+m0mFvRrZLXitJT4IjBtNlsKBQKx7Lwv+r4hQCcrustAHHDa//bX2hEVlhhhRVWWPErjpmZGVy7dg3hcBjz8/Ni73/q1CmEQiHU63U0m01JLpns0MGtVqthOBwimUyKJI5JSSAQgNvtxp07d6QOjQ584XAYTz31FBqNBorFIjTtyO7a5/Ph1KlT8Pl8ePfdd7G9vY3FxUU89dRT2N7exrVr16BpGk6ePAmn04lcLgeHw4FoNApN05BOpyXJY58qJnZk3ZiQdTodqcMjkNre3saZM2dw8uRJrK+vo91uP9So24wdAh52kjyOBWKyakxmuX8ViFAi9jhhHJv6txHEGcenGpKMRiNMT0/j7/29v4dcLod33nkHAMaa9xqloSqQYaKu1r4xIc9kMiiXy2KYY/w8x6Im6kappHpuDAITI8NpxkyaMXhGtsYouzRj9tTXVVChHotz6vP5EIlE4Ha7pYXG2toatra25N4PBoNiSkKp26TweDw4deoUbt++jVarJZbwvV4P6+vrOHv2LJLJpNRU+f1+6R+Xz+fFbXRqamqMqbHZbMLekCEyYxvZhJpGKjxXp9Mp9WVkini/GO9r9ZiURaq1lDwuQQwXYICHDXPU68f3CWbIGJXLZenryDFzoULtYcf6Ql4D2vBznghUaRrS6XTEiMXv9wv4JTBX2wjQnITnRrAWDAbF+ZGqAZ4327xwn5qmSQ0dz5F9+Dg2vtZqtcR1stfrIRaLoVqtCuAjYCWoD4fDcj9zsY73A+ee14nsazgcnnif/qrjyTUw+BWERcBZYYUVVljxOPHFF19gcXER8Xgcu7u7UtvmdDqlIXYgEEAymZS6GyYeBwcH0nBWbQ8wGAwQj8cxGo2Qy+Wg67qAtkajgdnZWZw9exbpdBqbm5siUYpEIlhcXEStVsNf/dVfQdM0fO1rX4PL5cKHH36IXq8npg61Wg3r6+uSGLPvGI1JCDKZZPR6PdRqNSnIpwFAo9HA9va2JE/c78WLF5FMJrG5uSn9n9RifTM2hwCCyaqaYALjMrJJrMqkUIGCuq9JwW3V7Y2AxBhMvrli7/f7EY/HhTn1+XxiSc72DOocMEHnHKjzoCbvZINY+8jzI/PExNHlcqFarT40j0xw1WvApH8SO6bOoxoq68N5M875caGyburc8/Nq7dbq6irm5uYQiUTw1FNPIZFIIJVKyXldunQJi4uLKJfLIuXb2dnB+fPnTU1xKMkDIM2eR6MRdnZ20Ov1cPPmTSwtLWF7extffPGFSPK4wGG32+F0OrG/vw+fzwev1ytjV0161OOp92G32xXGnGCO4J/1WB6PB61WS5hwSgM5ZwQCRjZavW/VHmNqWw113o0AjnPPz5It7HQ6Ih3k+CmPZI821mSyFYBaw0aWDoD0gFMXNMiEcS51XUexWJRr5HQ6ZW7YIoCtDOj+yDFTYskaM0pAVSkrjZY4XwRt/J62222RYdpsNjEsUVshcGGu3W4jFArJMbkY4PP5pO6Xz1FKR1l7mc2K7cevPb5cAE4eRE94IFZYYYUVVvw3HWfOnIHNdtQQOBgMYm5uTv6D7vV68Pv9mJmZQbVaFQtpJkiJRAJerxe1Wk16V5FB6Ha7YuvPnnHtdhtra2uIx+P4/PPPsbW1JYzO1NQUTp48iVKphNu3b2Nqagrnzp1Dt9vFjRs34HA4sLi4iJmZGaTTaZRKJUSjUam9o/EKGUMW2BNocEWfSZfb7R5jpMLhsJzznTt3sLi4iLm5OWxvbz/EHExK9o128cbtzZJwggyVrVJBxqMAhBkzNel9dX9mQMVoAHH79m38m3/zb1Cr1WC32xEMBuFyucZ6ZLEu0MjGkU1RQSv/NRoNSerV8ahSslgsJvJKhmqyoJ4DJXLqdVH3a5SsqeM0Jv5qzz0z+aQ6j2asG0N1KOTnCJzobEh2KxgMwu124/nnn8fa2hqy2Syy2SxKpRJyuRxWVlZMTSJ43FarJYzMaDTC/v4+ACCXy+H+/fsolUrCXHHM/JsugioIsNlssk/13I33KO8ZGhHRUZHfN+6TgCGRSMBut6NUKgkA5L0GPGDZjNJYFcAbJcsETep1JAjkvcR5KpePOnkRGLGZN01EeD+ynrDf7yMWiwkQrNVqIlkkG8V6Ocq3NU0Tc5VAIIBKpTJmUMLrxPuAzB4lj8FgEJVKRRYzbDabLJ7xXmu1WiLNVMGf1+uVe6pWq2EwGCAWi6HZbMp3i9eQc0eHSoI2tUfdcDiE2+1Gq9WS7xHvC8psyag/6jn1q4wvGYA7+mmZmFhhhRVWWHFc2O12FItFca/b2trCwcEBQqEQotGoNMgulUoiuYnFYgCOEqV8Pi+JE4v1s9msyCJpU97tdrG6uopWq4Xvf//7yGQy6Ha7sNvtePbZZ7GwsIDNzU1sb29jbm4Op0+fRrFYxPr6OuLxOJaWltDpdLCxsYFOpyNjaLVaUrtB4KnWuDG5Yq0MgR5ZuOFwiG63i0qlgkQiIav0t27dwtraGlKpFHK53Bi4MWN2jpO6GaV5xubcRgaHrzHU98xq5oy1RkYWyvi68ThG6Zkq7drY2BAmk6wcJXKUV7GuhrWCZiCLx6dxiQrO1LGRkaGzKfdFl1Pa3fNzHJtxzibNpcoiGefI7H3j542MpvpPZX6M4E3TjhrZRyIRAW+ff/45arUaLl68iG63C5/Ph2g0itnZWeRyObz77rvY399HOp1GKpUaa3DPXoafffYZDg8PRW5HUAIApVJJFjPUpsycY8qgn332WXFibbfbYqRiBLvG2j6ypc1mE/F4HKFQSNg0Mlr8TkYiETidTnQ6HbHUV1tHqNeAJicqo6uyuOp9zzEQrKmyWbJMdKMkgKvX6+KkWCqV0O/3xTCJNXMq6zYaPWiuTWdap9MppkmsG2VfOvatLBaLGI1GAsrI1um6jmg0KkAyFArBZrNJn7V+vy9mJIFAYAxss9aYc0HWn/ui3X+tVoPP55O6R46diy4qSCuXy8LMcn7r9Tri8aPKMAJ0Prt0XZfPEmxyvE8ivlwA7mc/LQbOCiussMKK46Jer2NxcREulwu3bt1CPp+XZsGFQgHb29vCcAAPXMgCgQB2dnZk5TccDqNWq4nckGYnrO1hH7c7d+4gk8mg0+kgGo3i5ZdfhqZp+OKLL0ReeerUKRwcHCCbzWJqagqLi4solUpIp9Ow2+2Ynp4WWdBoNJJVcE07ckQrl8vi0MYEjsCCBgA+n08YkX6/j3K5DK/XK6vY+/v7mJ+fRyKRQC6XE8DBffw8YQQATDIBPMReMYymJvysyoIwJskEzQCN8T0VrKjOgKokkfPH5ujs5+fxeOD3++F2uwWME8wZLfSZ1FO6ph7feI5kImy2o4bpTKbp9sfPGeV2ZvtSpZRGZk19zyi5NDJ4ZmBbBR2TQJsKEHVdx8HBAUajEW7cuIGtrS1MTU1heXkZd+7cEbDjdrsRi8UwNzeHnZ0dbG1tIZPJIJFIiKnJYDDA3t4erl+/jmKxiHa7LW0C1OumnqfNZpMkHThiotbW1vDss8/i4OAANpsNn3zyCQAIkOO5mbGSNL7I5XKyWMLm3mS4yESROWq32w8B/UkMN3+qMldVpqnKK/l8otyQAJFzUK/XUa/X5dpRIkg2SVUQUAapLh4QLNE0hlJyAiwAUg8cj8dRr9dFFk5gRSMRm80m7KTP5xOXydFoJHW7XHQiWCSrRhaSZiIEjf1+X4xXaCzDuQ+FQnC5XPB6vcKgqc8+Xl8Cu3a7LS0M1HuerCYXA2iCQzD4pOLLBeCEgbPCCiussMKKyZFKpVAsFsXUYGlpCZFIBJVKRRIBTdNklZmJ4c2bN0UWlUgkcPfuXQBHTmmsaWPjb0o0b9y4gW63i6mpKcRiMXz1q19FLpfDF198Ab/fj9XVVTidTty6dQt2ux0rKysIhUIoFovodruYn58XVqbVasHlciESiUgzaCZBtNV2u93odDoi5WOyV6/X4ff7pRcWmSG2RKCL3u3bt3Hy5EmRZjKJNNbsPKoezQiSjNtPAmvAuHHKoySSZsyScRszuZ9xX7quIxKJoNfrSe0L36OJQiAQQDQaxUsvvYRsNovt7W20221x4lMZFp4Da3L6/f5DAEk9Z13XJTmkQQ0NGLg/lZ1Rgacx+TfOhVmoc2L2k/94XHXf6hjMjqVeg9nZWWjakUtktVpFKBTC4uIilpaWkE6nhX1hbWAsFsPGxgbu3buH6elpadNBFqhYLCKdTgujSXBDxkbt4cdm1WxuDwCJRAK///u/j8uXL+PNN9/ErVu34PP5UK1Wx0CWcZ7U85+fn8etW7fEoIhgjttRHqoyZWb3hhHEqXOnhtl1VQ1yAoEAXC4XarWaMHcApOaSqgBKrIEHNZX5fB6Hh4eIxWJIJBJSy8bnBxnoWq0mpk4AxMyJTB7NTACIZT9wpFDgPdPpdBAKhTAYDOD1ekWOSUmkw+EYM35iXSi/E5QwE9TGYjGUSiVUq1V5PxwOy7HJyvn9fukzSBDIejZeg1AoJAY2nD+y7WwbUalUpE5V0zQUCgWzr9avJb5UAI4c3JPUpFphhRVWWPHffrRaLVQqFQwGA3HJKxaL8jeTVjZz7XQ6KJVK8Hg8WFlZgaZpwh6Ew2FZ3Y1EIpiamkKr1cLu7q70ZJuZmcHi4iICgQCuXLmCzc1NJBIJXLhwAQcHB1Lvtry8jFQqhbt370ryG4/HRRaWSqXQbrexv78Pu92O5eVlfPHFF7DZjpp4DwYDkTBRFqUm4OxzpK4cs1EvQVqxWMTi4iISiYSsRnMV+nHAm5ksz0wepjIN6ufUOA4EMnnlPo2JtlEiaMZA8W9GPB6XJttM+NWxtdttLC0t4fXXX8f6+jq2trYQDofHbNDZe4pzS/MTIzAwC4KRSCQitTmcIzX5Vxk0dS7VeirO2SQJqXGOjNfBjLkzA42TmECOh5I0m+2oLcfZs2fhdDoxNTWFmZkZZDIZZDIZOX8yPLVaDfl8HsARc9TtdlEqlVCv11Eul1EqlcRdUTWeIHPOpHxmZkYMNXw+H1599VWEQiHcuHEDu7u7Ata5SGO2qKDeywRC3I4MlHqfkvFRrwfZcn5OZXt5bBVccZ5V1ppMkNnYeEyyjrVaTeSTBGIcC6WevFfZo7DVaiEUCiESiUhTbB6D16tcLqNSqYhMe3Z2dkwiqp4fQR6ZOF4nmtDQ3dLpdEotI+eW/dt4PqqLZqPRgN/vR6VSkZplh8OBRCIBACJ9p1skj0+Wu9lswu/3CxNHgM9aZ84TrymbzhMIq26bTyq+VADOYuCssMIKK6x4nMhkMhiNRlKHsbe3J4ljtVqF1+sdY7aAI8OPqakppNNpVKtVcVdjch2Px+HxeHDv3j3U63VJyJaXlzE/P49qtYoPP/wQAHDhwgWcPn0a165dw82bN5FMJnHy5El4PB588MEHcLlcWFpaQr1eF5YwmUyiWCxiZ2cHgUAAy8vL2N3dFSc91WwAeJDwqQk6ezO53W6RGzF5IjPX6XSwubmJhYUFZLNZkWAZAZcafF9NKBlMwIAHIIySSLOaNuPrahBAqKYyRrmeEbgZx2xk47gNrcfb7fZYnZLqwDkcDnHlyhV4vV7cvn0bmUwG//yf/3N8/PHHyOVyIvNiYkyZl2pcwn0ZpY783ev1IhaLYXd3d+w8yMKasWQMM0OY4+Jx2B6jWYa6zSSGVAUz6kIJzTNsNhv6/T6SySQ++ugj/OQnP8Ha2hoCgQBarZbcd/wcADGdKBQKIp+kdTyt5AeDAXq93lhiHYvFZIFifn4eAPBnf/ZnAt4oRTbOp3FuOBeXLl3C1taWJPCq1JFAgzJngknjdpwD4OF7E3gAxFXpKvCg4bwarAOjEQfPoVgsChPGa+T1eqXPHvdjs9nQ7XalXm8wGKBQKIhTJUELF7JoQFKpVMQspN1ui0yVcnIVyBKMUV5KENpoNOS4fH4RJJP14v7cbrc47fI5rWkakskk4vG4mA4Nh0OpPyagbzab0DRN6hFtNpuMORwOC5s7Go3E3Zc1fV6vF/l8HoPBQNphVKtVVCoVpFKph+79X1d8uQAcf7EQnBVWWGGFFceE0+nE4uIi8vk8crkcpqamhH2iWQXrR4LBoLQHuHPnjiSDNC9hclKpVLCzsyM1UmQAotEo8vk87t+/D7/fj2g0itFohLfeeguZTAbJZBKnT59Gu93G/fv3kUwmEQqF0G63AQBTU1Pw+Xy4f/8+2u02nn32WQEQXN3marrL5YLT6RS3QwYTQyYm3I6mBkx66OxWLpcRjUYRiUTkHLlaDTwM4piUqvVfZqGyEpMklGZMmzEmjcMYj6vIYbLNmigj6wRAJGXFYhHf/e53ATxgDsrlstQ4EsTRQp7MgvFczJhAn8+HZDKJbDYr7JvxM/wcAYFZbZoKDtVjqWEGyoz/JgE0s3MwgrrR6MhWn5K1TqeDYDCIYDCIarWK27dvS3+wu3fvol6vY2lpCdlsVhJ/ujyyuTQbblerVXQ6Hfj9fly+fBmfffYZgCOGlIYZfr8fTz31FCKRCGq1GhwOB2KxGAqFgjQRb7fbY6yWOnb+zevMax0IBMTgR7XRB8YZT0o6CfzV980YOd6HxrHwdSPbShklpdAEUOzbxoUnfqe5MELzI4JBtU6WfdG63S6KxSICgQCABwwopa7cD+eVCxQ0+eD3ZTAYiJlIuVyWXoDValWMRdSaXspO+TwDIItNfr9fzEkoV+WxK5WKSJRVdpSLPeo14tyxzx3bwJCJo4zT7XbD5XKJrHJ6elpq5FqtFmKxmDCJTyK+XACON7WF4KywwgorrDgmnn76aXz00UcolUo4deoUer0e0uk0PB6P9CsajUaYnZ0VF7V79+5JQhIKhTAcDgWg7ezsyAqt3W5HOByWerSdnR3UajXEYjHE43F0u13s7u6i3+/j8uXLWF5exuHhIcrlMqanpwE86J3EWjUmuxcuXEAul8Pt27cRDoeRSqWkLoNgi1JQJofGZJ61LEyKGI1GA9FoFG63G/1+Hzs7O1heXpYaJSZcgLmc0exYfE+1NmeoUiuVaZgEGAj+1LYF3OejgCM/bwZo1J9qw2RK8yjd6vV6Uqelnue//Jf/UlwOKVdlvRMbOqvjMwIdsmt+v19MdOgY6PV6Ua/XZUxGeeqk+ZoEvIyyx0ngy6yebdK+jMfhvaBpGur1urCJkUgEc3Nz0HUd2WwWn3zyCSKRCDKZjBjCHBwcIBgMivEEv3sej0dkkHQV9Hg8uHTpEp5++ml89tln0rha046cL8+ePYt/8k/+Cba3t1EsFgV88Bqq9xEXKAiq1HvE6M7Y7/dFGn1craaxiTeBmfqakXVmUEJIgKC6UhqvvfpZglI2jCfTp55HvV6H1+tFIpEYu28BCLAiWAUgjDQZNACy8MPvBxk63rc0VGE9GkEfARtB5HA4FKdHSiC5favVEnm7pmliwkRHXV5Huk6q/enIMhLUEeix7s5ut8vzksHveaFQgN1ulz5wzWYTkUhEzq/ZbIpByqMWkH6V8eUCcD/7aZXAWWGFFVZYcVy89dZb6Pf7WFlZQaVSEblWJBKRxJH22s1mE+l0Wiy1mezR6Wx3dxe5XA4zMzMAAL/fLyYom5ubcLlcOHfuHOx2O6rVKnZ3dxEKhbC2tgaXy4XPP/8czWYTa2trIudSmbRsNot4PI5oNIpsNovDw0MkEgnEYjFkMhmUSiWRAdXrdam/muT0SCklG1QzEaFbos/nE1laqVQac7583IRFTWbNjBoYxvorNWlWgYSRESHbx2AybayBU8czaexGBoQJMpPnaDQKn88nTFuj0RhLmikL4zGNDMSjwJvT6ZRehPl8XqRgXAigw+WjavjMZKGTwvhZI6A1e1397HESSgJy4Oi6zM/P486dO4jH47h06RLK5TJ2dnZw9+5dSbgps1MldzMzM9LPkN839g4jeLh8+bLITv1+P1qtFiKRCBYXF/EP/sE/wHPPPYft7W2Ew2GRtFJiyZ+VSmXMwVVlXdU5oqHQ9PQ07ty5I+yUGrx/1DpPlf02AnHj8YzXxbhYoG6r9iRUwSTvU1WqSWdGShwHgwFqtRqCwaAwUXQD5ft0/uRnyOgRFPl8PlErcHx2u116GXKBqFqtCjDmT/aOOzw8BHBkLEPpMY/ndruRTCbFLdPn86FSqYiCgQ3JCQ75fSUQ4zOO800WmDVxPA+O2+l0iuqBLpkEgzxvsogErVYbgV9S2G0/W8kYWQjOCiussMKKyREOh+HxeKQZayQSERlPOBxGMBgEABSLRWFAgsEgWq0W/H6/rMiSlWPj15MnTwqDtbW1JcmkruvI5XLI5/NYW1uD2+3G1taW9Lr6xje+gXQ6jVqthmg0Ks1wbTYbTpw4AeCobq/X62FpaQnxeBz3799HrVZDKpVCuVzG/v6+1IrQlntSEOw5nU6xFefrlGSyjiYWi0n9lZEtU8MInoxAw8i+GeVqDH5u0nHU4wEPDFYmHfs4GaE6FuO4uKLv9Xpx4sQJLCwsYHt7Gx988AEajYaMjUBNDbI7xjpE43nS5OPixYvY2tpCoVAYA6+5XO6h8zECA9XAxTg3ZvPK3822m/S6+p7Za+r41HpILha8+OKLCIfDiMfjsh3vQfXzgUBAbOtV+SmlqWTBaBxz9uxZfP/734fT6cTCwgJ0XUcmk8GZM2fw3HPPSc1or9eTptKdTkfqHQuFAqrVKoAHiwJkqsjmEaQAR+Bge3tbXBONYWaoY1y80DRNmn8TnKufZ6gNstV9qfeBrutjIKLX66FSqUj9Fq+HWufm9XqlnpAW+vxucx+UcrbbbQF3qrSTiw6sAabLKh0m2UaFDpi9Xk/kk263G6PRUc81l8slZiJkylg7R2MSGpK0223EYjHo+lFzcvZ+I0jr9/ty3Gq1KrJRTdOkATiBbqvVEvDKxRouULFFAl2FuX8at7Bmj8d8UvGlBHAji4KzwgorrLDimBiNRqhWq9L/iMlQMBiU/8yr1Sqq1Sr8fr/I4SKRCILBIEqlktTBhMNhaR1AtzIyDmySvbu7i263i5WVFUQiEXz22Wfo9XqYmprC7OwsPvnkE3S7XczNzcHlckkN1KlTp6TBM4Gmruu4du0anE4nUqmUJIgejwezs7Ow2+24efMmyuXyQ/JCNUFX6+dosQ0cSaai0ahIyriSrfaTMjaRVmtOjLKyx5HgmdXDGQGDmfyS2xmBhBHQHDcOo9ELz4OM5OHhIfx+P55//vkxu3L2tKLUTB0nk8FJ0k7KuKLRKNbW1nBwcICdnZ2xc1HHbmQkHwWwjmPgjHNjFsfNF/ehHmPSXA8GAxweHuIP/uAP0Ov1kMvlxPWQLobcnr2/6KTKulM6FbKmkMBqZWUF8XgczWYTi4uLOH36NIAH7RaazSbW19ext7cndWGsZyK7TAdJOs9SukxpHZkgsk1PPfUUrl69KosexuuihtHchPc4LejJkKumPaqkEnggnTQyc6oJkFoP2u12pe0C2WDepzwfv98vC1SUBbK+jdeEoMzn84kUk8COjJQK+Cgn5/H4vOB1Yz1Zr9eDw+FAtVoV1sxut4vqQdd1AdStVgu1Wk3aI9CYhL00+VxyOBwol8tybErKOWav1yuqBj7rw+Ew6vW6mJyQfVTbPoRCIVm4opNsNBqVekg+C55UfKkAnONnAG5gMXBWWGGFFVYcE41GA8lkEpFIRFaCWU/B+i/WcNDdbWZmBh6PB4eHh6jVauLkFggEEA6HMRqNsLu7i0qlgnPnziEYDCKfz2NnZwexWAxLS0vo9Xr4+OOPEQwGMT8/j1KphKtXr2JxcRGpVAqtVgubm5tIpVJ44YUXMBgMcOfOHQBHZiaDwQD5fB6BQACpVEpW2LmSXywWpa7EyNQA44l2r9dDtVoV90mCF1VCWq1W0W63JQml450aqvxxkvnIcWBOZZKYeKrtAYzySnVbVdZpZN2MbJL6twqERqORJJbG/RLo3rhxA4VCQdiESCSCl19+Gevr67hx48aYhJIJIH8awQ7nMR6PIxQK4fPPPxd2wGzO1FAZmEnsmdm1njQPxs+rr6mgYtJ147WaNL+adtRuw+VyYX5+Hh9//LEslDChDgaDIjVlsk0wwH3TZbLZbMLr9cLtduPixYsoFovwer04c+YMXn75ZSQSCek1xjq7Wq2GZrMpAI695KrVqkgGPR6PMC5kvPi60+mEy+XCwsICKpWK1HAZzUbMrp2xro2AQHUm5fdGvd7q95FBpkx1lVT3PxwOpW8gFyBYy8YaPjJzZKoAIBgMioSU/d/INLHWT2WqKDXn3JGNG41GYgKSz+fF2ZbP1m63i0QiIS0j+B0jWKZjKc+9WCxienpamtpTuk7Gjm6WlGh6PB5Uq1WRS/LZrprJAJCWAaFQSOrnNE2T60lTG0p5WSfI+jyyypzPJxVfKgBnSSitsMIKK6x4nDh//jxcLhcqlYokVZTZpNNpYdMajQYcDgeWlpYwGo2QTqfFRCEQCIzVcnBFdnV1VdoJ9Pt9nDp1Cj6fD+VyGdVqdUwiabfb8dxzz6Hf7yOdTqPdbuPSpUtYWFjA4eEh7t+/Ly0FCAhdLhcSiYRIgex2O3Z2dpDL5ZDNZgU8EEwYJV1qct1qtcQsgAkdbbdTqdSYPIpObkw8j2NoJiXzDBWYqb9TuqbuR3XyMyauZiDnOPbJbBuusDP5VBNnArDRaISDgwNx7mQyTVaCSe6j2Dd+9uTJk5ifn8dnn3021vphEggznuejgJ66jXH+jUYYk1g9M+mmcTxmx1W3GQ6HKBQKyOVyWF5exvLyshiXUIam67qYXTgcDkQiEUmMyRjRSp6ugDabDWfOnEG9Xkc4HMZXv/pVTE9P4/vf/z6GwyFarRZ+8pOf4O7du2g0Guh0OtLfr1KpiC08HRJVNolyQpWxCQQCeOaZZ/D2228/1AJABVG8lwkAjLJe1UJfrZfjvW1k4NT9qiwcv4s8Nply9n3jZwhsVPZSZfzo8Mm+ah6PR+q8ut0u3G43ms0mRqOR1LZREeBwOBAIBBCJROQ722w2xXSGbGOr1ZJebZSFc5GJZkoEeaqrJPDAVIXvuVwuYQuBI7UA7w9j+w+yuup1DAaDqNfrwvw1m01ZuKnX6yJ/p+R0OByi1+uJ5F7TNGEI+ZknFV8qAOeg1e/QAnBWWGGFFVZMjlgshnQ6jXw+L1LHg4MDpNNpYQRY+E9nyFKphG63C03TEIlEEA6HAUBWm6emprC8vIxOp4M7d+6g2WzizJkziEajyOVy0vSbyVEoFILb7ZbPe71eaZT7k5/8BKPRCAsLC5ifnxfZpN1ux8rKiqxIp1Ip/Pmf/zl2dnak+J89jsj0qBJBIxs3HA6FhWOCRECzu7uLM2fOiJSJ2xtBlpn8kaEm/iqQmMT+qKybul+1vxnlY6rkjO/xvMxYuOOOT7kk627U8zOOgffGD37wAwFwqmyUfxtr3+gquba2hpdeegnXr19HuVwWGZwKso3n8yjJohoqk2ncD983kzyazR/fNzJ/kwCk8T2yw9evX0cgEMDU1JS0xQiHw2K2YbPZ5H0AwgZxgYQ1qG63G5ubm7hw4QLm5+fxwx/+EB6PB8vLy6jVapL412o1HBwcoNlsolqtotFooFaroV6vo9VqCbigZJrXlIwiJX+8bqdPn8be3h52d3elMblxznm+qomLylByXwRgZHPYL1K9ZsYFDvX+IMBUAZzL5cL29rYY7Kj1eQSNXKAAHvRfOzw8lObdtPenOQoZT4fDIU26aTrD/ZO9ZsNuyi41TYPf7xcGjMCb++SCic/nE+kk25fU63Xpz+lwOMRYicwZQaT6/edxeOxutzsG0smw1Wo1AexsTcH54DOV58ZenrFYTBaQms2muJm2Wi2rD9wvK+x2i4GzwgorrLDi0fHBBx+g0+ngueeeg9vtxv3791EqlaSBLFdifT4fstksNE1DuVxGJBIR6U2z2cTe3h4A4MSJE0gkEtJXjsxaPB7HZ599hr29PVy8eFFMBuhwWSgU4Ha7JaltNpv4/PPPEQqFcOHCBTgcDhwcHKDRaGB2dhZzc3Pwer3CmH3wwQfQNE3c2Cg9Ups+c3V/kgyO7ATbIwAQc4NOp4NTp07h5s2bUoukSha5j+NAnBoqUDtuG4axpk5NcHmOTJqNrptmDAh/N27D1XoCCfazImhjfZQZM6KynUb2TZXShUIhrKys4PLly7hy5Qpu3LhhCq7U8aryOrOxm11T4xyYgb1J86FuY2TcJjF0xn0Yt2u32/joo48QCoXw3HPPiZV8LBYTww2XyyXyZSbv0WgUwWAQu7u7CAQCOH36tICT3/iN3xBnxLm5OfmdDb7paFmr1dBoNJDL5dBut9HtdgUskHECICYpZPnIDnJRpNVqYXd3dww0MYxmJkbQpv7N+4TgTd3GOIdGlpMghNeF93wkEkG5XEatVpOFB7JrRvBIqeNwOESlUkGtVkMoFBKZoAoUCbL4XaC8lNeAoI+Oj5Rek6Vmo3U2w6Y75mg0krlnXzW/349arYZsNotwOCxGK7quy3OJrCzBIMdFhnA4HErrBRqpsF6VbQ8IylutljhOApBz4wIdrwXBOsFfq9USc5epqamxNiy/7vhSATirBs4KK6ywworHiU6ng6effhq6ruPjjz+WlWY22g4GgwiHwygWi8ISTE9PS93b1tYWqtUqwuEwVldXYbfbsbGxgdFohHg8junpaQwGA/zFX/wF2u025ufnsbm5CU3TkEqlYLfbx/ox0eKaLpWLi4sol8vIZrPS4Pjs2bMYDofiYPnmm29K3QsAJJNJNBoNuN1uSfxV2aNZMFmp1WpS60O7cV3XkU6n8cYbbyAQCODatWuo1WoAHkgd1SR+Eogzk/9NMi05TpppxkCpSa66XzOGaBIo4r5Z2wJAHPbUvnMc26Rz5E+VkWPCz0SyVCrhv/7X/ypMkbF+zPi7Ol+PAm9m7J26rQpWjfszOx8je3ocI2g8vnodm80myuUyPv30UwwGAywvL6PZbELTNMzNzQmzXS6XEY/HheU9c+aMAIuLFy9icXERV65cwTe/+U2pR8vn85iamsLdu3fxve99D5VKBYPBQNoRFAoFlEolMeDhXJJhItAgG+N2u4XF5vXxeDwYDofY2dkZY4bURQPVTERlh9TFDf7k59RraHbPcpxchLHb7SLxVRuHx2IxXLt2DZ1ORwAex8fz5Ot0maWz7szMjDz7GB6PB61WSyTilFzSyZNOoc1mU0A4gRwdPnm+ZOfYtoDgFYDU8xI89ft9zM7Owuv1ipydLrA0m+HzjgYjbLhtt9vR7XZljumyye91u91GKBSSuefcUYLZarUEvDkcDgGQXMjiPdrv99FutzEzMyOLZk8qvlQA7kEN3JNrrGeFFVZYYcV/+/GVr3wF6+vrSKfT8p/24uKiyHqCwaDY/lNO5Xa7US6Xkcvl4HQ6sbKygqmpKbRaLdy5cwfBYFCMTg4ODvDpp58iEAhgYWEBg8EAwWAQkUhEZEGhUEhq7Wq1Gvb39xGNRuFyuVAqlXB4eAhN03D+/HmkUimR/2QyGXz44YdSzzE9PY1kMol79+5JcklHPzaUPk4+CDwwQKDpAAFltVrF3bt38cILLyCTyUh7ArVeBXjYtEEFOWrPNrPE/1Fhtr0Z02ZkK7idCmCMrMYkEDccDkWyRxbGrF2AcR9GpkyVtbZarTEnT+O4zM7RDMypv0+SNU5iOFVgZQRpx52X2bkZxzHpNV3XxaTk888/F4Za0zSRDTscDnS7XZGyPf3003j66aeltcb09LQY96yvr2N6ehqff/65GJS8++67uH//vgDwQqEg/R3Zw1CVL/L7zPovXdcFvHEeCb6fe+45/PSnPx1zMgTMm2+rCwj8PmiaNtaiQJUDq4sfqkEQP6NeJ4IsAjNu+8knn6BUKo3ViTHUGjkAYpFvs9mQSCREat1ut8W0iYwo73Xug061LpdLpJLValVcWN1utwBDj8eDRqMhi0eZTEbAE8HlaDQak1CypQCNRdhvrVKpiNkJe9ZRxqgamvCa8n5j427WwfE7qLYXiMfjAjp5/vF4XNi2QCAgdYVcTFhcXEQgEECxWLQYuF9WWAycFVZYYYUVjxNXr14VBszpdGJmZgZerxehUEhACwDMz89LwrG/vy8W1rOzs9JO4Pbt21hYWMDS0hJqtRpu376NTCaDc+fOwefzYX9/H4lEQhgymgMkEgnouo7t7W3p59bpdKTOY3p6GidOnBA5E3toffbZZygWi6hUKjhz5gyCwSAODw8RCoUwNzcn0qFKpSIr+QQgk1wFdV1Hu90Wxzeu2vf7fdy9exeJRAJPP/00Wq2WuMhxdVplE9SEFDAHEmasnQq8zMDeJEdE9XPqPwIVo4vl4wRBXLfbhdfrFQMD1smpEkkVCKrySfVcVVkbx6Syao9iwh4VZszc40gbf55jmDFxZu9Pei2TyeD8+fPQNA37+/sIhULCkESjUbTbbSSTSYxGR06U09PTCIfDkrzT9n9rawvJZBL379/Hp59+im63i/X1dRweHqJQKKBWq8m/ZrMpkkiPxyPgiW0Mms0mSqXSmGyS9y2NLS5duoRKpYJ0Oo14PC71VJNYbd5/ZM54/qoBD4Eh73VN04QN5JyoCxAcj91ul/pZgslSqYS9vT1x6SRbCEAAKRdwKFekRJx9IAlM+Hzyer0CVMmi8fiRSERYr1arBbfbLawcnVRpDkUGkeBI1x+4jxolmZqmSU3i4eGhtAOoVqvQNA0+n2+szQSVBvw8z5U1l5p2ZDzDujuCVL43GAyE7e12uwgEAgL4CEidTieKxaI4eg6HQywvLwsIpoHLk4ovFYCzXCitsMIKK6x4nOh2u/D7/dB1HYlEAsFgELOzs8jlcmKT7XA44Ha7AQDpdBqDwQBLS0uYmZnBcDjE/v4+isUiZmZmsLi4iK2tLezs7GAwGGBubg4AsLm5ibm5OQSDQaTTaQBH7QBotX14eIhoNCrgjAlRJBLB9PS0uOKtrKygVCrhypUrWF9fR7/fx6VLl1Aul1GpVDA7O4tKpSJF+ExY2SyYvbMmMTjAA0kRE172imq32/j444/xxhtvCIijBJDSKSPTpYaZ26SxTogxSQZoBIIqcOS2ZkYbRrZL3e+k2i++zr5YTNaY+JItUg1MVNMS9Z+maWNmJjabDV6vF3a7HclkEtvb2w+dt5r4qvNids2MMQmgq+f4KBbUOE+POr6R1TQ7Hh1YPR4PCoWCmGhEIhGpO9V1XepO+/0+qtUq0um02P7v7e0JG/L5559L/Wm9Xke1WkWlUkGlUkGn00Gz2YSuP2hyrTa7psshbfbJWvF+5GuhUAipVAp/9Ed/JDV6ZMJUEK4CM+M9ZJwnIzOt/qMcT62r5DmwHowyP+AI1BWLRdRqNZFK8pzoskiworpp0m2WYHYwGEhftXg8Dk3TxKhkOBzC6/XKvJDJJFvfarWQTCalb2UikZBWJj6fT/pnEqByUYjzqfZf8/v9yGaz4kjJa9Lv99FoNBAKhTAajaRJN3D0HGcLF+6P9Y00NSGo63Q6oiwgy9Zut+X8CHTpzFur1eSeUOuUWTtHFu5JxZcKwIkLpQXgrLDCCiusOCa42hsIBBCPx9FoNPCTn/wEun7UToDNbrvdLorFInRdx+rqKubn59FoNKRFwOLiIkKhEG7cuIGDgwPMz8+LY5vNZsPZs2dRKpWwubkJr9eL2dlZaJqGTCaDTqeDRCIBv98/VitF0Mj6kPPnz6NUKuHdd9/F3t4evF4vTp48if39fUxNTWF1dRXFYhEejwenT5/GrVu3HpI4MtE0sijqTyaIbJ5L0wOb7aitwE9+8hO8/vrruHTpEj755BPpuaTrujAORrZLbTisgjeGWhPEzxkdKMloTDIQMZ6nkdGbJAWcJKM0jo8SK5ox0NhANTbhPKjsnDp+VVLndDrx9a9/HRsbGw+BUPY4e+WVV/DTn/4U+XzedOxmzJpRDmkEWmZyzOMYQON9YmQWzUDcpOj3+9jd3cVzzz2HVquFcDiM4XCIZDKJEydOIJ/PSy+yUqmEg4MDeL1e3Lp1C7VaDVevXhXwdnh4iM3NTeRyOUxPTyOTyWBrawvFYlHqoCjj431DcKhazc/PzwOANJUmC6RpR7Vwzz//PN566y00m03E43EBQZTgqSwzgTq3OQ7wkgnk/eD1egUUcHtjjWK/35c6Nv6dz+eRz+el5ovtTXjeau0cF1rsdrvIDmnln0wmpZ6NTLzKWBI8cn+cK007Mk8qFotiGsJrqGmatHtQFz44HjZG53EIRmkq02g0EAgE5JnE60LgyP3RyIjMmdvtFmUEwRaBcTKZRLVahdvtRrFYRKfTQTAYlLmgtL3RaEiNpq4f9ZRLJpNSD0gZpyoffRLx5QJwP3OhHAytGjgrrLDCCismB5vZOp1O3Lp1C41GA4lEQtwhI5GI9Fby+XxYXFzE9PQ0Dg4OcOvWLWkePBwOce/ePdRqNZw/f156HUWjUYRCIRQKBZE/xmIxOBwO3Lt3D+FwGIlEQlaZyb6NRiNJgBYWFhCPx3H37l3cunUL29vbkuBsb2/j5MmTCIVC0k8uEomgVqshFosJC8Hkx8xhTQU6at1Ot9sVCZTNZpO5yGQyuHr1Kr75zW9iMBjgk08+EZka63FUoKWyTqrk0JjMqtuoYQRxx8kh1YTXmFhPAnEqgDMm3UbAQrOKXq8ndVpGu3iCNiOAUs97aWlJAHqxWHxIajcYDLCwsICFhQVTY4vHCfWYBNdG8GwErUawedy2kwDicSBO148MceguWa/XBfRcvnwZlUoF77//PiqVCnZ2dlCv16UNAA0waGRxcHAgYK1er4v1vOqSynqq0WiEZrOJRqMhLCkXJhYWFnBwcCC1ZgQYvV4Pr7/+Ou7fv4/9/X34fD4EAgGR4vX7fTlXlUVW2Thg3MyE7BjHxwUb7lN1gFQNcPg3WT9Gs9lEOp2GruuIRqPodDoCQsiqsZcd2Xe1hpPX3OPxjLkzcqGCPdpUWSk/2+12MRqNEA6HpScaDXpUUEbAyPGzDYEK0vx+P4bDIfL5vDxnCMKpHGBzdjZa51x7vV5pKdDr9YRhpLNmp9MRho+ve71e2RfZOUpEycy2222RZ9rtdsTjcXi9XgF6Xq9Xegqq5i+/7vhSATi7ZtXAWWGFFVZY8eggmFpfX0er1UIsFkMwGBxrEVCr1UTK6HA4cOPGDeTzeUSjUczNzaHT6aBQKEDXdZw4cUKstFOpFHRdRzabRbfbRTAYlDqfvb09sZ92uVxoNpuw2+0CulqtFqanp7G4uIjDw0O89dZbuH37NtrtNpaXl4WZuHTpkiTSy8vLaLfbY8lUtVrFYDCQRMRooKDWYqnMFsEEjQzYH44J5MbGBpLJJJ5//nm0223cvHkTzWZTXN+Oq8cySiJVgwU1OTVjxibtR5VSqqzfcayaGpOkf2afU0Eak2Kji6QqfVPHres65ufn8frrr2NtbQ1/+Zd/KY6equSSTYTz+Ty63e5D8/DzxnEySDPANYmtVPf1uCDOuF2lUsGnn36KF198EalUSr4DxWIRa2trIgcmKKM8jWwLcARc8vk8KpUKPB6PMCyUGhKMkXXq9XriHkhA43a74ff7sbu7K/VwZIyGwyFeeeUVbGxs4MqVK7Db7eK6CGBMlgyM16gZz1sF4Gq9HL9LlPrVarWxe55zxu8d69QACMDJZrPSs431YBwjDT1Ux0qbzQafz4e5uTkBInzm0MyFQIZj83g88Pv9Y/c6F2xmZ2eRyWSg60fmI/1+X0AuGU/WwzWbTTSbTZGs8/h8r16vS+9N1SHSZrMJ08Ux0YAlGo2Ofdd4ncrlstS+0USFi2rJZFKavFPGzFpXPkdYI6fruphOEbwBkN52nE8+c59EfKkAnM2mwaZZNXBWWGGFFVYcH263G/v7+3A4HIhGo1haWkIoFIKu61hfX4fb7cbs7CxWVlaQTqdx584dtNttXLhwAS6XC7lcDv1+H06nE4FAAHt7e9LfiMX8rGXr9/vY3t5Gr9fD4uKi1LTk83l4PB6cOHEC2WwW2WwWJ0+exNTUFJrNJq5evYrbt28jFoshlUphb28Pi4uLOH36NO7evYtAIIDV1VUBTm63G16vF9lsVlzmyuUydF0XqZG6Ag+MN8gGHiTso9FIpJQ2mw3hcFiS4o8//hiJRAJf+9rX0Gw2cf/+/bFVbLUvlrGZNcPIXBgZIjX5V98/TkqpyuVUcDUJVJody7gNP2/GSpHROU46qH6GPQLD4TCi0agAanXO7XY7ZmZmxtwQVbA1iZEzvq6e46OYskkg1njdHiUNNI7D+PpgMMD6+jrOnz+P119/HefPn8fu7i62trYQDAaRSCRw9uxZRKNRbG5uYn19XcABG0iXSiUBLCow4f1BcM1WArw+7GdGYDMcDhEKhWQMGxsbaLVa+J3f+R2MRiNcvXoV/X4f4XBYasaAIydGAhrjOVNuqIJ5lUXj94J1an6/31Q6yX90VFTr0Uajoz6PlHXzPRoj8ZqozBeBHQ1IhsMhpqamhLknAGItGaWkdJsEjiTnBMLxeByVSkWklfV6HR6PB6lUCvV6XRYe6OCqAspwOIx0Oi3S7FKphGQyCY/HI4Cdc0VJI8fHOj8a0FBWqWlHbpLlchkejwfValXYOp/Ph1KpJDVxrH2mUZGmaQIKCV5tNhv8fj8ikQj8fr+8xkUIOmWm02lh059EfKkAHHBUB2cxcFZYYYUVVhwXX3zxBYbDIZaWlhCJRGCz2bC3tydNtk+dOoXp6Wncvn0be3t7sNlseOGFF9DtdpFOp9HtdjE7O4t2u41CoYB4PA6fz4dcLofbt28jEAjg5MmTKJfLUo9x8uRJYbzq9ToSiQRCoRD29vZQq9Xw/PPPw2azoV6v49atWzg8PMTc3JyYXVy8eBEulwvvv/8+FhcXsbq6Kk1tPR4Pms0mdnd3EY/HMTU1hfX1dYxGI4RCIWnySwc41ZHSKBcEHiTcqpsc56ndbuPtt9/GG2+8gZdffhm9Xg87OzsP9URSgZaZRBIYBwlmQM74OVVKaWTkjHJLo4RR3cdxTJO6HX+ajV0FSGafM+6/0Wjgj//4j8fqk4wxHA7x3nvviamF0ZFzkhTUCNqOO1fjvE1i08wYSOM5m4HDScdgsv/xxx/jb//tv42VlRU4nU786Ec/wt27d3HmzBksLi6iXq8jHA7j6aefRq/Xw+7urjSdZg2batDBe5nyY/VacbGEDo4EFWfPnsXv//7vo9ls4l/9q38Ft9uNV199FQ6HA3/yJ38i5hbsB8jvgM/nk+8EMC7XVV1FjYsHauNuMlMq42o0wOGY2Xic7FS5XEYmkxFzI+5b13UBToxkMimSw1gsJgs9wWBQzoFzSPfKwWAAv98vjbPJguVyOYxGI0Sj0TFb/kwmI8CMYI/sHdlRgme6OmqahlarhX6/j1gsJs24+b3lmCiLDIfDY6wdZbCcd7vdjp2dHbm2tPd3uVwi07TZjloIRKNR+Tybv/N4dKKkuyQBJHDUF5JKAdZFk3V8UvGlA3B2m2YxcFZYYYUVVhwbdMBLpVKIRqPY3d1FrVbD7OyssADXr1/Hzs4OlpeXsbS0hHK5jHw+j3q9joWFBTQaDZRKJcTjcYRCIWHllpaW0Ov1cPfuXbhcLoRCISwvL6Pb7aJarSIYDGJ1dRXD4RD379+Hx+PBN77xDVQqFWxsbKBcLqNQKCCRSCAajaLX6+HZZ58VE4bXX39dJGBcUQaAcrmMkydPYjgcYnd3d6wtAhNYFuEDD2RKxqbCakLOOhKuiDMBqtVq+MEPfoC/83f+Dl555RW8+eab0l6Ax1AlmmotmppgM+klQ6iCMxUEqGBHBXHAwz3neGwjqJkkzVTHYQZ2jA6bZvLIRwW3NUoszY7TbrfHgLUZe2bGyhlNRozbTwKz6u+T5sm430ngzmxb43Z3797Fv/7X/xpLS0tYWVlBKpXC9evX0el0cPr0aVy4cEH6iFFWTGMTtT0A90t5IYGR2q6B9y2Zm+XlZdhsNnzrW98CAPy7f/fvUCqV8Ad/8AfIZDL4oz/6I9RqNTHDoPMk72WCGuMCggrkCC7Ua2M0LQmHwyiVSgAeuB9yW54H5Xxk8xuNhrhyqgsU3D8ZJHUMwBETRsaMrQL6/T78fr84bpJd83g8iEajUjs2NTWFUqmEfr8vC0FkByuVivTIbLfbaLfbYqKitkNhk27KEHndwuGwfLd5DXm+nBOn0yntDgCI5FUFvvV6XWSg7A1HoxLKZjVNkybsNDup1+vC4nJxIRgMIh6Py/Ha7bYAOy4QUOHgdDrFCfVJxJcOwDlsGgZDC8BZYYUVVlgxOU6cOIFoNIpgMIitrS0Mh0M888wzmJ2dRbfbxfvvv4/d3V0888wzWF5exv3798XiemFhAbp+ZI1Oq/39/X04nU5MT09LA2zKc2ZnZ+H3+1Eul6XnXKlUwvXr13Hy5Em8+OKLuHbtGt566y24XC4sLy9jdXUVnU4HkUgEuq5jd3cXgUAAKysrsNvtuH79Oux2O2ZnZwFAWAu1GXIoFJLkhskna4G46mwERmYMTqvVEoDFej0e580338S3v/1tvPHGG3j77bexv78/VlOi1rqpwMx4XBVgTGLr1FCdKpmAqTV+lJGpjMiklgJ/E8bKDISp25gdx/jTDEiqQM8IpFQgqQI4o2mMOkazfU9i6sxiEpibdF7GMJun4XCId955B//iX/wL/P2///fx3HPPidnI3t4enE6nNLi/f/++3KtMoFWZYLfblWTbbrdjenpajCg4JoK4cDiMUCiE/f19fPe738Xe3h6i0Sj+2T/7Z/joo4/w4x//WJJ6v9+PQCAggEK16VcBG4CxhQrec8b5UMdCu3t1MUOVCVKmSTdbMlnZbFaYdG7LVgBmhieDwUBAqMfjQa1Wk96XBLoEWACk1o/HiEQiyGQyqNfrGA6HyGazACAybR6n3++LlJO1sJwfmpbQQITGKG63W86r2Wyi0+kgFAqJIQlbEFB6qeu6MGyqqUqz2UQgEBDDJsra+ZPzzlpBSmfr9boYmHDu2TqF9+xoNBKJZLlclrmmEoHn/aTiSwfg7HYNw0c8+K2wwgorrPhfdkxPT6NUKmF/fx+DwQCLi4uIxWJoNBpSX/Lyyy8jlUphY2MD+/v7sjrd6/VQr9cRjUbR7/dxeHgIv98vNS3dbldMUpg4EPydP39emg+fO3cOFy5cwAcffIBPPvkEdrsd58+fx9TUFEajEeLxODqdDtbX15FMJrGwsIB+vy81JFNTU2LlT7ldr9eTFgB+vx/RaBSaponrn5roHcewAOPSRBbul0olacHQ6XRwcHCAH/7wh/jOd76DN954A3/+538uTKQqGWOSpDIRRmkkx6UmaQQtRjZPTaDV4DlyOzIRZnJFM2ZL/d2MkTSbn0kSwkfNr9mxzf5WXzd+Xr2OBH6qfG/SOU0CqSownPS+8ZzNQgWZZufc7Xbxgx/8AKPRCN/+9rdx6dIl7O7uYmpqCp1OB1evXkWtVkOpVEIul8Ph4aEwwWTFWOel9l9TAQ63IcArlUrY3t4Wu/1XX30Vly9fxptvvomPPvpIbO99Ph8ikYjU2amLDgRIKtPL4D1qdD9VQUQkEkGr1ZLEX92WrE6n05F2ItVqFZ1OB8ViURg7VY6pfm90XReTFrJkpVIJ1WoV4XBYxkhZIWvxdF1HOByG3+8XiWMoFMK9e/dk3OyvxvHSSZKg2u/3Q9M0cbpVG487HA6srKyg2+0KO5fNZqVOLRKJoFwuC0inCQnZSsqJjX0RKXOt1WrS5Nvj8aDVao0xp3TLbDQaCIfDyOfzsrjGJuBcmGLNJaWfdrt9rOWC2+0WF9VXX30VS0tLx34PfpXxpQNwDptm1cBZYYUVVlhxbNy9exeVSgULCwtYXFwEcNRfirKl5eVlAMBnn32GXC6H+fl5DAYD1Ot1carM5/NwOByYm5tDJBKRBMvn8yEUCkki4PV6kUwmEQ6HUS6XcXBwgAsXLmBxcRHvvfce3nnnHTidTrz22mtjPeFKpRLy+TxOnTqFSCSC/f19NJtNRKNR2O125PN59Pt9JBIJKaqfnZ1FoVCQJIPsGxM6laU6zhxEZXoASEsFu92OQqEAAFI3s7+/j7feegtvvPEGfvu3fxvvvvsutra2JJljfZLqhKmCOFWSxtV2jgEwb06tsm4qW2U0NFGTY+6LnzMDK8exVOr76t/qa8cBm0lAcNJ+jZ971GsqOJsEAo1hxtKZ/TQb8ySQqf5+3OcbjQbeeecdOBwOlMtlrK6uIp1OI5FI4Otf/zreeecd3LlzB7lcDtVq9aF6QMoGKZEjgKGRCRcCut2ugCa73Y6FhQX83b/7d3H79m38+3//77GzsyP3ChcnCBxUGaZ6fMr7aGSj2smr8k7ef3RJbLfb0gBelViqdXE8ZrFYRK/XQ7VaRaFQEKaNDBO/O/yOqXJRl8uFSqUCXdcRCoXEebHT6Qi4YWNsthBgI3SPx4Pd3V1ptk1wxXECDxjwTqcDl8sFj8cj7CXwwNCFrCifjf1+H81mE+12W/qpdTodaZ0CAK1WCwAEjPG5VSqV4PF4RPIZDAaRz+dRKpUQDAbF5ZJumAT7AKRZebVaRbVaHTOmoVyWDBuvLRuV1+t1qY0j20eZ+tTU1EPfgV9XfOkAnFUDZ4UVVlhhxaMil8thbW0N58+fx3A4xEcffYRWq4WFhQUxFqlUKggGg1I30mq1xCykXC7D7Xbj5MmT8Pl8ODw8FLezSCQiQCEWi2Fubg7NZhOFQgGDwQCXL19GMBjEH//xH+PKlSs4d+4cXnzxRdjtdrRaLdRqNRweHsLlcmFtbQ2DwQCfffaZGJr0ej20222x3q5Wq1hZWUEsFsPOzg58Pp/0f/P7/ZLkut1uMTpQAQcTQLJkgLlErt/vSw0MXS7dbjd6vR7u3bsHm82G73znO/jN3/xN/OAHP8D+/r6YThjryNRjG9kxjkc9Pn83MnOAuUEKt1WbKzMIJiexZCp7os4Fj2XGbJnFJJnkpDiOeTvutePkmOo2j/PapG2M26tzNAl8PurcdV1HqVTCD37wA5G/uVwu3Lt3D263G3Nzc4jH4/jpT386xjCr96bD4cDS0hJcLhdisRhisRg+/PBDZLNZYWzC4bBImb/zne8gHo/jP//n/yxNwtV9sX8j7x8VIKnssMoSG+9r9X4kGCN4Ym2XKgMlcCST5vf7BeTU63UcHh6O1b2pEklV0sl9jkYjVKtVqW8j8OPiFMENAQ7ZJbvdjna7jVwuB+AIhFUqFQQCAZEWer1eMfcgW8mG2YPBAF6vF16vVySGkUgElUpFjE/YdmU4HErft3w+L/sBHvTPazQaCIVCcDqd0puNbQBCoRBKpZJcV5qbMMjsUc7Omkq6dfK54PF4EA6HZU64AMBFBYJJm+3IpTKdTiMQCGBubg7ZbBbf+973pJ7y1x1fOgBnuVBaYYUVVljxqLhw4QLOnj2LbDaLXC4HXddx4cKFsWa+i4uLcLlcODw8hM1mEyA3HA4xPz+PaDQq1uidTgczMzNicW2z2eDxeBCPx5HL5ZDP5xEOh3HmzBmMRiP8l//yX3Dz5k38xm/8Bs6fPw9N05DP52WFOJlMIpVKifwyGo1KoT5wlKBQkrSysoJarYa7d+8CAObm5gTs3bp1S9gHri4zqQQgK/lG5olhBBQ0YmECzya3g8EA9+7dw5tvvonXX38db7zxBn70ox9hY2MDACRpU5NNJqxG0GhW/3Uce2UEe0Z5pdEh0JjwTjp3NSYBpkkg0GycfO04yeWkfT0KgD0KHB537EnvTwqz4xp//3n2Wa1W8dZbb0HXdfzmb/4mNE3DrVu3UC6X4fV6EYvF8Nxzz2FjYwOZTAatVkuAi9/vRzgchsvlkoUTp9OJVColCf3XvvY1eDweBAIB3Lp1C9euXcPBwcFD9ZKhUAihUGisabaRcVLNQSaxrmb3I+tNjUAQeNDvjZJGfl+bzSay2SyazeYY4GONGKV9vJcJAmlaxLGqNYJ0g+R3oNlsCjAmOzY3N4fhcIhqtSpOuWQ0+dlOpyMy8WazCQCiTCBgBI5YvV6vh0AggHq9jmazCbfbLXVkBNDcN4AxphI4kr7yWcG2LVQ/sB0HzUY472xQTuk3DU7Ua8Ym3R6PRySVNIViM3HWwXm9XlQqFTgcDgQCAVmMo5T0ScSXDsBZDJwVVlhhhRWPihMnTmBjYwPtdhu6ruPs2bNSS9HtdkUaUywWRZ6Ty+XgcDgQi8Xg9/tRKpXQarXQ6XQQCATQ6/VQLpfh8/ng9/uRTCaRzWYxGo2wsLCA2dlZ3Lt3D3/xF38Bh8OBv/W3/pZYXG9ubsrK96VLlxAKhZDP51EsFjE7O4tWq4VcLicJDK2+p6ensb+/j/fffx9ra2t47rnn0Gw2MRgMUCwWsbi4iEqlIgkvV7d1XRc2AMCYLTdDbYit1lrRmZL7Y/LV6/Xw2Wefodfr4Vvf+hZefvlljEYj7O7uot1uC1hU2Qn1mEzSGMcxZJOkkyq4UIGcCuKMxzxOMjkp1ETQ2PrgOIBnfO/nOebjAMLjxmq2n0ns3XFM4HHvmYFJ9b1JY2232/izP/szHBwc4B/+w3+IF154ATdv3sTt27dx8+ZNATzPPPMMtra2pA70N37jN/Diiy9ie3sbGxsbKBQKImecm5uTWq/d3V188sknKBQKYg2vgnk2beb9zH/cFxcaVJZLlegaa0rJ3LHGjJb4fJ2/k/khOKGVv9qwXP3u8hjNZlP2TfdIMuxkydjLjefBmi4AAqg6nQ6SySQODg5QLBYRiUQwNTUl42X7gcFggFqtJrJLj8cjElJd1+Hz+TAzM4N6vS4mSqVSSRph1+t1tNttAciUTY5GI4TD4TG5JA1GyJoBECdL1ZgpGAyKQySvZ6/XE8aVbG2xWJT54Fy6XC4kEgmRSvL5RFUD2zfw+tCwyufzCTsaDAZlfE8ivnQAzqqBs8IKK6yw4lHxxRdfYDAYwOFwYGZmBplMRposJ5NJqdlgQrS/v49QKIRUKoWDgwPU63Wx9V9YWEAul5NtQ6EQ/H4/1tfXoes6VldXsbCwgL/+67/GlStXMD09jXPnzskKMQv6o9Eozp07B5/Ph+3tbdRqNayurqLb7aLX6yGZTApQobRof38f9Xodr732Gubn53Hr1i0AEPkma028Xq+4SdKNkokdk3hKDo0mDEZGQdd1kVAxeU0mk3A4HOj1erhz5w4cDgdeffVVfPvb38Z7772HmzdvAoAkUEbZJBNTM3MTIxBjqAwGx2/WgsD4k8c2gjqz8RzHWE1i7SYBouOkiY8jr5y07XHAiu9PkkIe9zljqPM6ifV7nDEcd77Xrl3D/fv3sbS0hO985zv4R//oH+HHP/4x0uk0dF3H5cuX4XA4BIix/cDzzz+PGzduCGNHyfLh4SH29/dRrVYlKVfHaLPZxOyH9aIMsk38rqhjVms2VXCl3n/Ge41gUL2naZrB/bMnGk1LVFMQ7p+gyWgS1Gq1pEG2WrdH5k1t3k2wViwWhUGLx+MIBoPCVtKgpNvtCsDh9z6RSAhTyOdIpVIR8FWr1cTFs16vA4DU3lHWGQwGpQZP044MUPL5PGZmZkS+SRDsdrult1w4HBZzEZqXABBWkCAYgKgFWBfJ8U9PTws4azabwsDabEdtBggyvV6vOF2y/o110KwXfFLxpQNwRwyc5UJphRVWWGHF5BgMBlhdXYXdbsfe3h4KhQJisRh8Ph82NzcRCASkOL/VamFqagrz8/MC9Hw+H1KpFCKRCLa3t9Hv93H69GnpbXTnzh0Eg0GcPXsWNpsNf/iHf4jt7W0899xzAnb6/T4qlQqGwyHi8TiWlpbQbDbx05/+FE6nE2tra1LLEw6HhTELh8Oo1+soFouIxWI4ffo0NE3DD3/4Q/R6PaytrYn0U9M0OU+HwyEOm2riSdDGpFxlqVTDE2A8EW+1WmPgLxaLSY+mW7duYTAY4Hd+53fwxhtvwGazjck5zdg2ACIJU0GjmbyQrzNRM0uajaCQAFVNxsmiqGEGbFTQYQS06nvHySkfBxQ+Ko7b3sgiTgKx6jn9vHEcm6iOwfi7MY6ThDYaDdy8eRO3bt1CKpXCU089heXlZbTbbXz++edwOBx4/vnnUSwW4fF4YLPZ8Mknn6DZbOLg4ACZTEYWPVg7Z7xWBBKBQEAYIAIrlXlT5YD8vLpQoMpydV0fY+nU+09l3ijRpGyPtV+j0QjFYhH5fB65XE6kk263WwCgChL5WUogCYJo3c/x2u12cfeMRCIAjhi8XC4ndbcApN6XQIeOmJp2JFX1er1SM0cAzXpB2viT8SMgymQyMh+syWN7AJfLJeCRtbTs4UZ5Ir+3/CzwAPTSQbLdbovUkYYrLpdLGEZeA94Ds7OzYm7T6/Wk0XitVkMkEhE1AcfndDoRjUalTpMSTxrTPKn4UgI4qw+cFVZYYYUVx8WZM2fQbrexubmJXq+HmZkZqcnwer2YnZ1FrVYTyWQ4HMbe3h6azSZisZgU4LN59czMjPR3ymazmJ2dxblz53BwcIC//uu/RrvdxssvvyyyIyY2Pp9PWgR88cUXaDabCIVCkkipq/aVSgWxWEwYsMXFRXG/zGQyiMfjWFhYwGg0EvaP59Lr9ZBOp8WsgOBHNTVhAkoQpMoQzRgFTdNEgsr3U6mUJECUi77++uv4xje+AZ/Ph88//1wSK2Nyr9bDmYUKONWaICNLaNY6QN2vEYCpfxvrAY3HV997FAP1OLVgZuDRCIyOA4XH7Uvd5jiwdtx+HgeEHXcc45wdtx/eb+rPbDaLTCYzJm2kxT6dDnkt1J5mqqxOPQ/1vvH7/YjFYmP9wlT5pNqMXj1PdeFBBfVqA29+TpVpqu+RreZnut0uKpUKCoWCgDfVTVWVcqo9GQkwCSR8Pp/U8VLm6Pf70Wq1EAgExO2y2WyKBT8BWjAYhMPhkL5vrPmi3T8bf3M8NEgaDAbSL009PwJQgi+CJk3TxOGR15UGUfF4XNhSLjqxJlnXdWEGNe2ozo3bEVTxmUm5O68BQd/i4qIYUangjTV0fM3n8yGbzWI4HMqCGVsc1Go1xOPxsfq/JxFfOgDntNusGjgrrLDCCiuOjW63i0KhILUQlUoFuVxO5FS7u7twOp0IBoNot9u4c+eO9ItbW1tDrVZDoVBAIBDA0tKSuKbl83msrKxgbm4OV69exfr6OsLhMJ5//nkBT+zzxOTP7/fj/v37KJVKiEajsgpNORWTslgsJokKJT3sleV0OjE7O4tSqYT79+8jEolI0hSLxVAsFqW1AGs4uGoPmCf4ahJqTFwZbDSsJuh0hev1erh58yaazSZ+67d+C1//+tcRCoVw9epV5HI5WR03AyxmwEwNIztm5kSpthLgPpmYm+1TrWkyJvzHSSGNIMds258HQD0OeDPOhRlQUY87acxm4MrsfMzm38i0EQCr25gdTw2j5T7DWN9IeSGt3s3uHWOYzSsZsGAwiGg0OsYYqQzcJGCtBseoMnbcVnU/JWDk/adpmjBcBGF8duRyOTQaDZEaG797uq6PNbgmIAIw9kxgTRyfAXSYJJCp1WrodrsCTGZnZzE9PY1Op4N2u41GoyHtBQikvF4v2u22gDdKFVlbxnpejp/AmG6PlCcSMJH1BCDs3e7uLhwOB6anp6HrutSY2WxHbVAI+iinBIBoNIpOpyOAmz3cVHMYulWyDx1w9NxVZZl0uKRJSbVaxfT0tCx0sc8nrwPr+J5U/EIATtO0bQB1AEMAA13Xv6JpWgzA/wxgGcA2gP+1ruvlX2yYjx92qwbOCiussMKKR8TGxgbi8Tji8Tju3LmDfr+PWCyGUCiEw8ND+Hw+RKNRNJtNsfQ/c+YMpqencffuXaTTaczMzGBxcRGj0Qg7OzsYDAZ4+umn4Xa78aMf/QiDwQAnT56UFXX2eGMSMj09jUwmg/39fWiahjNnzqBSqUhDWiZko9FIiutbrRb8fj98Ph+q1Sp6vR6mpqZk3NlsFsFgUFa9I5EIstmsyKfYv4ggkkFQQ8t/JpvAuIEJMC5NZILZarXG6oKSyaSYENy/fx/9fh+/+Zu/icuXLyMcDuOdd97BwcGBWKsDeAi08RhmjAeDSa4ZcCCTY2wZoAI+o8ug2TGMYEfd/yQWbtJ7xvMw7s9sm58njgPkRtBrtp0RDE7ahok5rx1g3q/P7O/jxvW48ShWz0zKSeYnFAoJ26TOg5F9MztnY6hukgyakqiMId0fCcDY6Bo4aj6ez+eRz+fH3BIJ9lT2Tdd1AUPswcbWA6xDI7jz+/3odDpS9xWLxeRzg8EApVIJsVgMCwsLCAaDKJfL6Pf76PV68Hq9Y66QZO0obSSI1jRtjIEjYGSTbI/HI7VunU5HHB7D4bDU2NEBc2trS55tCwsLqNfrKJfLcDgcmJ2dRblclhrAfr+PhYUF1Go1NBoNlMtlmV9VngocPduSyaS0V2GvPL5HZjKbzcLr9SKXy6HVaiGRSIh5Cls7aJoGn8+HSqUy5pz5JOKXwcB9Q9f1gvL3/wDgh7qu/0+apv0PP/v7//xLOM5jhcNyobTCCiussOIRQfD2wx/+EIVCAS+++CJSqRTu378vUpl6vY5SqQSfz4czZ85gOBzi/fffR6FQwJkzZ7CwsIB8Po/Dw0PMzMzg9OnTyOfzuHr1KpaXlzE7O4tcLodAIIBqtYpgMIhMJoN+v4/5+XmUy2VkMhksLS3B7/ej3++LkYCmadI7yel0Sq0cmTXWnCQSCQBAOp0W8MfPuFwubG1tQdd1TE9PC3hUJWhMFJmQqeyXKt0yAhKyLSpYYS0NE6xUKiWM4e7uLv70T/8U3/rWt3Du3DmEQiH8+Mc/xsbGhrRmUE0ZVAbGGEZTEzXJVRkLlXlTWTdVzqb+VPennpeRZTMCrsdlytR4FGh5FBAyC/V9FYyqAMZsH8cBteOO86jtzdjJR+3LbJ7N9vk4oe6bLoxs0k3mzWz86n3IRQoV4NFS3+x+4H1IQxSyX/xbbYit67r0XUun02g0GlLPxc9ynGR6aATS6/UENPl8PjidThkXmadqtSrMFevJMpmMuC/quo7Z2VksLi5ia2sLhUIBmqYhEAjI99/tdiMWi6Hb7UrzbADiTAkcMVlcaKKpid1uRzgcll5suVxO2o1QokhjlF6vh2KxCOCoFcHU1BTcbjf8fj/29/cRjUZRLh/xQOwrF4lE0G630el0RH7J9hKDwQCRSAQejwe1Wk3GXKlU4PV65RqzhlDXdRkfgSf73lHt0Gg0YLPZROKp67rMy5OKX4WE8jsAXv3Z7/9fAD/GrxHAHTFwlomJFVZYYYUVk8Pr9eIHP/gBWq0WXnrpJUQiEdy6dQtutxvxeBzpdBoejwezs7OYmZlBqVRCsVjEaDTCpUuXEAwGkc1m0Wq1cPLkSYRCIWxvb2N3dxfnzp2T5CEQCEjytrOzA5fLhWQyiXw+j2w2i9XVVTEiiMfjIsW02+2YnZ2FruvY3NyE3W5HKpWS1W9an1PGUyqVUKvVpJF4vV7HX/7lX8Jut+PixYtot9vw+XxjSRXNAijDIutGAEQXOzMgYZTsMcjEMVKpFPx+vyRpf/mXf4lms4mvfOUr+K3f+i288847uHv3rjhjqgkugLFxGEHdJPYLGG+BYAbiNE0TgDoYDB6qvVOlm48Car8Ic2acv8dh7ybtQ/2M0bjDKGdUWVTjmCcBLuM4jSyV8RzM9vUoRu7nYeOOA4fqfUD5n8/nE2mdKs8k4FCZs0ljUhkeY4N4gi7a9VMyTZbMyCR3Oh1kMhmk02mRNRvvcd7/NPmgtFKtPeMzQW0VQNfF6elpYeRqtRpyuRxqtRqKxSLm5uYQDAaRy+VEhu1wOODz+dDpdEQ2SFbe5/ON1e3RwIR1aqojpN/vB3BkSMNebKzX47ORrQKGw6E8mwKBAIbDIdbX1zE9PY2ZmRnk83k4nU6Ew2GRh2qahmKxKC0UCoWCuEkmk0kEg0GUSiW4XC5x4PV6vdB1Xc6P1yaTycDlcsmzVG1ETjCraZqMlYoIMnxPKn5RAKcD+IGmaTqA/7eu6/8WQErX9TQA6Lqe1jRtyuyDmqb9YwD/GAAWFxd/wWE8CIddQ7dvATgrrLDCCismx3/6T/8JmqbhwoULqNVq2N/fRyKRwHA4xPb2NqLRKE6cOAGfz4dyuSxF8c888wxarRbK5TJsNhtOnjwptuaDwQBnz54dq6Xw+XwoFosol8tYXV1Fr9fD7u4uBoMBLl68iGq1imKxiFQqBZvNhnK5jEAgIL2Yrl+/DpfLhcXFRVkJVgFJv99HNptFtVpFKBSSFepyuYwLFy7IvsrlMnq9HkajkZgU1Go1kVPZ7XZZxQcesGB0vlSZK8DcKp9BYxMyfKlUCuFwGJ1OB8ViEX/1V3+FSqWCF198Ed/+9rcxOzuLjz76CIVCAd1ud8wV08h0qDVtahJu1j9OlUqqckpuo7YhUFkXHkMFfEYgqx7HOA/q8R8FxIwA5HHkh5NApNn7k+SfZscz29dxoNVYc/gosHscszZpLMbtJ4E24zxR3sYEnmYVar0agYjqEEngPwnEGdk4NVwul8iXCTQIDHlPsR6LbQ7S6TRarZaw1+q58DjGPnAESZQr0oGRAIxAI5FIIBqNAgA8Ho8wR5VKBYlEQkxA8vm8tCZhC4Z+v49EIgGXyyUqBI6NAIZ93ILBICqVyhgbTqlov98fu1doXsJnC8FhMBgck3i22220Wi1ks1lh7fb29hAOh8fkngRnNttRO4h4PA6n04l0Oi31xM1mUwyqKCslA0mXXwI+uney1xw/S+OTdruNSCQictLp6WnTe/bXEb8ogHtJ1/XDn4G0tzRNu/O4H/wZ2Pu3APCVr3zll6Z5tNtsGIzMV4WssMIKK6ywAjhq5G2329FoNNBsNsWpcTAY4PTp04jFYgCOegsVCgUsLCxgbm4OmUwG29vbmJ+fx8LCAnRdF2v+SCSCVqslfde63S6++OIL+P1+LC4uYn9/H5988glWVlakvYDL5UIqlRIJ49TUFLxeLwqFAra2tmQFXdM0qW9hM1ngqNF4u91GLBaTHm+j0QjRaFSa5LpcLgQCAWkKTJbObrdL42PVLn0wGIhhBPAgkVQTsUkghYkue24BR3UmsVgMJ0+eRLFYRCaTwfvvv49isYjXX38dly9fhs/nw8cff4z9/X2pNeHxzZgeHletZVMdJB+1vfE14AHrxnng+ar7VBkSszor/j7pNcajpIXGcT8OI3ccIznpfeNYjOdjlJH+Isd/3DADmWbgz/i6Kll0Op1SS0oGSgVdRldI1XXyccavvs7j+f1+6PqR8UYoFMJTTz2Ffr+Pzz77TMbb7XblmcJaKxpjGPfP+08132HdIeu41DYaPAYZ/9FoNFajRUml2hKg3W6j2+3C5/OJxJGgJRQKAQBisZhICMPhsIBK9ksDIDV9XAzpdrtwu90COinrpsujrusolUrCJIZCoTHgGo/HBVDZbDZkMhkxZimVSrLoRJMTp9MpLQAODg4QCoUQCoXQbDYFqDqdTgGIlJMPh0P4/X5ZAAsGg0in07Db7eh2u9Knji0EKEWnnPTnYcp/2fELAThd1w9/9jOnadofA/gqgKymaTM/Y99mAOR+CeN87LBq4KywwgorrHhUMLkIhUIIh8NSq7a6uiqF9vy3urqKRCKBW7duYX9/H2fOnMHKygqGwyHy+Tx0XRc5Y6fTQaPRQKFQwMHBAebn5+HxePDee++hWCzia1/7GlKplDg3Tk1NodVqiRSq1WqhUCig1WphbW0NGxsb6PV6eOaZZ2T1eGtrC5FIRFa3w+GwyHnoMgdAVrQ3NjZQr9eliS9Zxe3tbTSbzbG+VLToN+vDZiYrNANvfL/b7Upfpnv37mF1dRUvvfQS3nzzTezs7OD69esoFot45ZVXcPHiRczNzeEnP/kJ7t69K1biqpW6ykKotWo8phGcMYwgT92fCuKYfKq94tQ5Ufdrdv6T4m8KbB4X5P08YQY6zUCeURr4qH0at50Ebo97bxJwm3R8FYSR6VLBGwGcahiism4EHGTG1HM4DrgR8FHeyN9rtRpstqMm17//+7+PeDyOP/3TPxXw1e12pf9aPp8XRmfSPKgOnWTeOGYCp3A4LL/T4bFeryMejwv71Ov1xHU2HA6LlLTVakntGeWF9Xodi4uL6HQ6ODw8HHOPdLvd8nzp9/si/a5UKmJQwgbYwWBQ1ABsPcBn3mAwkJpeLnxRwqjrR3WE+XwemvbAMITXLZ/PC+gqlUryHA8EArDb7cjn8/D5fFLDrDZK5zF8Ph8ODw8RDoexsLCATCYj4K9arY5JbAmSB4MBpqam4HK5pF6OPUSfVPyNAZymaX4ANl3X6z/7/Q0A/3cAfwrgDwD8Tz/7+Se/jIE+blgulFZYYYUVVjwqbDYbZmZmYLfbUalUEAwGpUcQ7bX7/T6Wl5fhcDhw9epVVKtVPPfcc5iamkKhUBC2y2azSa8kTdPEavvUqVMAgDt37sBms+Gb3/wmNE1DtVpFJBJBKBQSu25N05BOpxEIBODxeBAKheDxeDA/Pw+Xy4VYLIZsNosvvvgCCwsLwsARyFHOxEQrGAwKAAKOAOv8/LxIKLnKTLc5rsQbHSAB895XRiAzKfkeDAao1WrQdV1q8jwejySXh4eH+P73v49Go4Hnn38e3/zmNxGNRnH16lUUi0VJnlRjFVX+aKz1MoaaDDOM7pNM2NXX+RqTTDWRfpSs0ex3FYyYsXGTwkySeBwbpo7nceSGk455HGgzvm/c1uxvM7Zs0u+Py2pw0UGtY6NskqybujhhlEqqjLO6P3UMrHNTr5/K4hFU8ftBOWO9Xsf169exubkJm+2o/1mj0UA6nUapVBLmzQhS+bv6T+13R7BGiSTvX8oMvV4vYrEYFhcXpc6WzD3rUZ1OJzKZjPQzIzulaZrIxmu12th3ly0JuDhENo2sIM1VaOfPFijcloYjXq8XjUZD2D8aNvEzNAnh9SELRxaM89RqtaSWjfV22WwWTqcTgUBAnDfZJw44YgnD4TDK5bKwgLVaTaS1rVZL5pjPHLZ54PlRSu9yuWSR6UnFL8LApQD88c8m0wHgu7qu/5WmaVcB/KGmaf8IwC6A3/vFh/n4ccTAWTVwVlhhhRVWTI65uTm43W4UCgXEYjHMz89jMBhI8b7H48Hq6ira7TZu374Nr9eL8+fPw+FwYG9vb0zKSJvper2OWq2GaDSKRCKBYrGIfD6PVColEk1d1xEKhWCz2VAoFBAKhQSkUC6Zz+fR6/XERCAQCODKlSvY39/H7OysJA3xeFwkQWrdHXCU4GiaBqfTKUwc+zRtb29jZmYGoVBIWDImR1z1d7lcUsdiBtKMYIIslpnkjvV2W1tb+MM//ENx2iTILJfLePPNN3FwcIBXX30Vr7zyClKpFN5//33s7u6K1ElNkjkG1ZwEeLgVgdnYVWZDZe1UZo6fUYGfytIY58H4t/F1M6B33HuTQNGj5JSPeu84sGt2LDPmzAjIjPtT6xaN4Nd4HDO2y/i62bFUMEXwRtCm1rqp5jS87mRjyLaqwEhlXtVQTXEYbrdbwILb7Rb31cPDQ3z3u9+F2+2W5uK1Wg2Hh4coFototVpjEuNJx+N4uG8yXuxfxvoxm80Gn88nEsdEIoFSqSQ95WiIxH3SWISLSZRZr6ysIB6PY3d3F/V6XVwtCbLI7vH5VSqVkEwm0W63xRGz3W7L4gz7xrFtCueKQJASRF3X0e/3xW2SxiR7e3tSR1wul6FpGtxut/R5U01QGo2GtE2heZQq++52u9KawGazIZVKoVgswmazYWpqShhRNj/v9XpwOp1jz8VqtYpOp4NAIDDWauZJxd8YwOm6vgngosnrRQC/+YsM6hcJi4GzwgorrLDiUTEajVCtVpFMJpFIJFAoFCRxUJt7FwoFzM7OinNjs9lEMBhEKBRCvV4X+WOhUIDNZkMkEoHb7Ua1WkWz2cTy8rI40rlcLnF1o9V1t9uVGja6rBUKBcTjcZFH3bp1C61WC0tLS3C73QI+yWCxmH9mZgbpdBpTU1OSqKisHBO6paUlcW5Lp9M4ODiQlXS2F1AdIYHJdXDq+5NYKM43TQlarRYikQii0ShisRg0TUO328W1a9dQKpXw2muv4dy5c5iensZPf/pTfPHFF1K/x6RVBSJcMTcbhzFU50AzQGaUW6oJ/SS5IX8/Dlw9SmZofH1SmDGdjwqzbR41zkkAz0zWaJwbFfQa6wnV9g7qdkaG0QiijeCTIJEsG4EbQRvfY6iGNSqbO+l8zMamnicNSyjPczqdYwsMlBAPh0PU63Xs7e2hUqmIpNF4P6jnps4Z5ZeBQGCs9o0AsN/vC3vG9gBbW1vQNE1s82OxGHRdF+ONwWAAn8+HYDAoz7MTJ07A6/XC6/Xi4sWLuHXrFnZ3d8dqS51Op9T2JhIJaUlCgEcJ5GAwQDAYhNvtFnUAWTwuxGiaJqoF9osjY2e324UdDIfDKJVK8Pv90ouOLQvsdrvIUD0eDyKRCKrVqjxPer0eotEo+v0+ksnkmLNmtVqVXptcEONYNE0TVo/j7vf70suTNXQ2m03aEjyJ+FW0EXiiYdXAWWGFFVZY8agYDAaYn58XJsxmsyEQCIikqFA4am8ajUbh9XplZZhJCN3jmNyxMTdX251OJ06cOIHhcCg94Gi3DRzVqjUaDQFyPp8PmUwG+XweMzMziEajaLVaqFarqNVq4lI5PT2NQCCAg4MDWc2fnp5GJBJBOp3G5uYmBoOBJG6sA2INDB3jKNNMp9OIxWKy4k5AyTBjU1TWDXjYut+YGKvJN9k0mrZ0Oh2RdrXbbWxubiKfz+OFF17AV7/6Vfzu7/4uTp06hffeew9bW1syLoIBta5NZTSMxiTq59RzO65NAaVdxvNV54LbGX83Akn1bzOQZNyHMR4lmfybhDrOScD3OKbNCNrUfahyRPU7QjBg5hrKz6nHMZ4f2Ta11k01KFGZNPUz3IZJOtmlSdLg44AjJcCdTgcApM5uMBjA5XKJHJDNsg8ODlAul6VPmXpe6pxznGxvwfuPbJumadIywDhf7J9WqVTQaDSEtaOZR7VaBXDUNNztdsPr9Qoz5XK5MDMzgx//+Md49tln8eyzz0qNL8fMZx3BUqvVQjQaFbDEuSBD2O12kcsdWWDwGdRqtQSkERjRTIUOkU6nE/l8Hg6HA9PT02g0GgiHw+j3+6jX6/B4PCIJJePI+6darcLlcomSgiBsamoKtVoN9Xod4XBYZOtkKtligPVyvJaUekajUWHneG1ZJ/vfq4Tyv8mw22wYDC0AZ4UVVlhhxeRYXFyEw+FALpcT5mx+fh7b29vQdV0Sg263O2Yzz0SfjNZwOEQ0GsXq6qqAN7o89no91Go1YZkajYY4vdHFjYkDJUeUSBJkkQHk6vpwOMTGxgay2Sw6nQ7m5uakCXg2m8XMzAxisRh8Ph98Pp8whfF4HIFAALVaDUtLS4hEIvjwww8liQIgK+hqUsIEkcwXMFnyxcTcjNFQg7UzlLBxRZ+9lVqtFt59911sbW3h29/+Np555hkkk0n85Cc/wY0bN8QAQbX2V4+hAgVjkq4mzkaZ5aTgvowgTgV26u/HySQZjzrmowCdcT/H7d9MBmk8xqQxGP9WP2v8mz8JplSZI49jBHHq/E3aHz9HgMO6Mxp68HhmLpNk4+hAyBouhgr8jQyicUFA0zSEw2G43W4xLCFbptrlj0YjtNttAW+NRkOA0HHXkmybyiLSQIRAFRh3ZaUzYzgcxv3792U87XYbJ06cwGAwQLvdRrVaFUfFeDyOXq+HfD6P2dlZNBoNvPvuu9jc3MTe3h5qtRpeeeUVAMDm5qa487KpNSWLiURCrglBGP/e2dkRF9x+v49yuSxS02AwKHb9DodDetBR0mm322WhKRgMolarCXPGRS+PxyMySt7HVE9QQklJZbvdRj6fx9TUlIC7hYUFaQIeDoeFzSRII8Bk7R3vO7YXoFrBAnC/xLAYOCussMIKKx4V1WoVrVYLwWAQPp8PU1NTuHfvHnw+n5iEsN6BDA+trgeDAba2tlAqlbC4uIiZmRlUKhVkMhkkEgkkEgn0+33UajVMTU2h0+mgVqthdnZWJEXVavUhYwAAkgR5PB7cv39f6j5qtRoAoNlsih342tqaJJvtdhuJRELc5Ggf3mq1ZCV6OBwilUqhUqngzTffhMPhkBqOQqEgTpY0TGBCyoRRrSEyAhUmPcbkd1KQmeR89Ho9xGIxYQ273S42NjbwH//jf8QLL7yAl19+Gb/3e7+H06dP44MPPsDW1pZIwlSZFzDOsqksHfAw22OsqzOOkf+MYG8SI/c4EspJ7xuZTo73uPh53jcybsb3zVghs+3Nfle3V/8ZmThgcp2i2XEIktRaN7JTBAvqtiqA43sul0tkzAzV2EQ9rrGhO/fpcrlw6tQp2O12rK+vS70kTS7IPNO8I5vNolQqodFoSI2q2dzypwreCDb5HkFPvV4XwECjFjbX3t7eFjfa4XCI+fl5OBwOtNttVCoVkVrG43ExByGz1u/3USgUpD/azs4OstksMpkM2u22LDYRyOm6LotEABAIBFAoFKQXXSaTkdfJtGezWUQiESwsLMhCkq4fNTPnd79UKsFut4vDJM+50WiIhJ21gC6XCwDkOUcwR9DIVip0BZ6bm5N+e8vLy+Ig7HQ64Xa7pU0CVQGU5fKcQ6EQMpmMAEXW9/0iDPgvGl86AGe3WzVwVlhhhRVWHB9MBqampuBwOLC7u4vRaITFxUWRWrERLxPqUqmE3d1dlMtljEYjnDhxAtFoFNlsVuy3KfvxeDw4d+4cgCPr63g8Lq5zvV4PkUhEkr5+vy9MFIvod3Z2UK/XMT8/D5/PJ6ANAFZXV5FKpbC/vy8W4bquIx6PS6NcAFKHwt5OlE2xwa7T6cSZM2dQLpexvr4uMismR5RYqcCMCb2xyTV/V7fh72bbcJ9MEIfDIXq9HjqdzliT4UqlgrfeegsHBwf41re+hfPnz2N5eRkff/wxPvroIxweHo71rFODwBt4uNm3MYxgjoBQZR4ZRjCmAi6jdNSMrVTnQf3bCJbM5lLdvzoW43YqM2G2X7OxGPdtfH8SS8bPqWCNc2qsJWOTZwJro/GNcXuV5SKQA/AQS6WOWZVL0gZeBW/AuBOpEbwZz9fj8WBhYQHtdhsHBweyLc+FDrC6rqNcLiOfz6NarQp4m3SN1OMYr5fdbh9j6GmmwZ8ejwdTU1MAIMZJXERJpVLweDwoFosolUrSe40OkEZXxmq1ikqlIos5U1NT2NvbEzZMZaDYoJytAGZmZlAoFESVQAMmv9+P4XAodX/T09OYmpoSVYHD4ZAG3DQeYV1hPp8XJ89Wq4VQKCTujzRyMVswoalJtVrF7OwshsMhCoUCZmZmRAExOzsLn8+Hvb09eL1ekdD7fD40Go2xe5o1dslkUtoLqKCZz4cnFV86AOe0XCitsMIKK6x4RIxGIywvL6PT6aBUKkHTNMzOzmJ3d1ckS8CRNXW/30e73Ua9Xke9XkcsFhO7bYKxS5cuweVyIZvNittatVpFoVDA7du3JaE8efLkWLLV6/Vgt9sFFLpcLly5cgUulwsnT55EIBBAo9GA3+8fc0u8efMmgKNVbpfLJe0AgKMm2l6vF51OB/V6HcFgELFYTJwt6/U6Tp48Cbvdjng8jmQyCQDSF4oudd1ud8yxD3ggpTQCg0eBFlU6B4zXKOm6Lm6eZAWi0Sii0Sj8fj96vR5u3ryJvb09XLp0CS+//DK+/e1v46mnnsK7776Lzz//XFgGAkNjrRGPaWwbcNz9ofZ/M2PczCSIRnZSlQ8yjgNUxnkxAip1f0Ygp8oBVSbKeKxJ18gMvBnHa2QJzVg249/8vDoms/NUjwdAJINqY2ozqaSRgWNfsXq9/hBwM4I0s3PldmTd/X4/Dg4OhO01Xiefz4d+v4/t7W1hrWhWYgS76nF5L3KhgeMnA+52u0X2yc8RlNI8pdFoiPR4MBggFovB4/Egl8vJPmdmZqQfI+XgCwsLCIVCKBQK2NraEonm2bNnEQwGkcvlMBgM4Ha7EY/HcXBwAF3XRUJZqVQQj8elkXYkEsHe3p4sDJF5o7sunS7L5fJYDZnb7ZZ7NxKJCPPmcDhQqVQQCoUELHk8HlEosM0KGXzgqA6w3W4jHo/D6/Vif39fniHpdBqRSAQ2mw07OzsAjp6dlUpF3ITZnNvj8cgC3/T0tCyQBQIBuN1uYSONRk+/7vjSATi7zWYxcFZYYYUVVhwbi4uLKBaL2NnZkf/ky+WyAAm73Y7t7W20221Eo1G4XC4EAgGkUikkk0lhoXw+H1ZXV9Hr9fDxxx8jEAggm81C045c2T7//HM4nU5EIhGcPn0a4XAY2WwWPp9PrM9VidPNmzcRCASwuLgo9XLsE0fmjG5q7A9FMwGal/h8vrGGunR10/WjvkfhcFhWl9mElwYprEFj8kk2jgwZ2QGz5tb8XU3IVZmcUcaoMi5MiJgUkTVk7R5X/N9++23cvn0b3/rWt/DVr34Vv/d7v4ezZ8/ivffew8bGhtQaqaYa6nGNbQcY6jjJCKp1dmYr/mbgzoydU+dG/f04tsv49yQZ4ySppRkgUv82SjbNPqOCVBWwGMevjkuVJh4H7NTjGvetMms225HTn8PhEPbIjOFjTdLS0hJsNpuw05PmXTWsMR6f46SEjt8PLmSobO2lS5dQKBTw05/+VFxeVbMSs/k+bg55DN6r/Czl1i6XS2q9CoUCotEobDYb6vU6otGo1KrxZyqVAnDU8JvS7HA4jGAwiEajgWKxKIzexYsX8dprr6Hb7eLq1avCqjWbTWFC2+02yuUyfD4fut2u1Nnu7OwIIGu327JwkEqlxOmRrQvYiFtlFkOhkJiJ6LouAJFuwTw3p9Mp0k0VQAWDQWH02IKAZjPpdBo2m03UEsPhUCSbwJEao9/vC/hljW0kEgFw9Gyy2WwiCe12u6JyeJQ0+lcZXzoA57BbNXBWWGGFFVYcHzdu3ECj0cCFCxcQjUYlSQ2HwygWi9Loenl5WZpcs9E33d0ordra2sKHH34obFkqlcL8/Dx+/OMfw+12S73I3Nwc7t27B03TxJKaK780Pjhx4gSSyeRYU1nWx7BeZTgcShLGFfVutyv9mWgQEI/HUavVUKlUpGUBTQ9Yl0crb7fbLdbg5XJZVvXJRDWbTUkqzdoIqIyMyrpwe/Uz3A+ZMhVQ0S1T/RcMBpFIJISNOzw8xH/4D/8BH3/8MV5//XU888wzOHnyJG7cuIErV66MATkVSE4yNCFYIGgjODczOWECqrKNk8Cb8TjGv83YMXU+jczbccd41PGNMj6jVPFRYWTgjOBTBVxGVsz4GZUJZZDxUrfhZ5ioqw6T6j+HwyE92bLZLJrN5th4VTCvjlc9njoOTdPEVIP3DRdbKCmORCK4cOECPvjgA1y/fh2NRkMkk2aSW+N3xWxMbBZN6SS34bFZM0aHWkoZ6/U6kskkYrGYtC2gWyTVBMFgUMAPa+y2t7elDuzpp58WE6dyuYx2uy2sGVnLer2Ofr8vbo3lchnxeBynTp0S6SS36ff7iEQiogSgjJL92ihrdbvdiEQiyOfzAtbT6TT8fj8qlQpsNpv00Ox2u2IgQiVAo9HA1NSUGEQ5HA6RaFJ67nA4RIY5GAzk+cqFutFohEQiAbfbjWKxKA6Ww+FQno981tKll69PT08/8rvzq4ovHYCz+sBZYYUVVljxqGi327h8+TKi0SgqlYqsNrOQn66IjUYD5XIZp06dEjturmIHAgFsbm5ifX0ds7OzqFQquHDhAk6cOIFr166hWCyKfPG5556TVgN0UmNtSrfbRbfbxblz5xAMBpHJZGRVXE3cCNbIlnm9XtmWjXyZfFBGxZqyfD4Pn8+HcDgsK9Vsdtvr9XDy5Ek0Go2xWhjKKFkDY7PZxmrimOCqkkrgQcLKRE19j8CNQMhYOwZADGAoC2PyFo1GEYlE4HQ60W63ce3aNWxtbeGrX/0qXn31qAH42bNn8dlnn+HDDz/ExsbGsVJKngcTblq/G8dl/DkJvJmxZcZjGxN5M2mdGsbtJ7036bjHsYbG8U7avwpyjGwV3zerfzNj6BhGKaKRdVPBC4HI3NwcisUivF4vms2msFHtdhuj0Qj5fN4ULE5iC9Xx8x/NKwAI+OActdttDIdDqSX90z/9U+zt7aHVaqFer5v2dzsOoDMIQPmdINsNQCSLZN/JrEWjUeTzeTHoiMVi6Pf7qFQqqFQqcoxQKCStMuhiCwD7+/uiBEgmkzhx4gSazSZarRby+bwAw5mZGaRSKWxubgpYarVaImXMZrOIx+PSDJvPoHg8jkgkIj0qI5GItERgfZ/NZhPmjKBsf38fTqcT1WoVg8EAs7Oz8n1XlQh87iSTSVEeUN3A5ybBKVk19oWjMQrZeNZTptNp6ZHHZt40MInH49Lsm880Gsk8qfjSATjLhdIKK6ywwopHxTPPPAOn04n3338fALC2toZyuQxN0yQhpLHI2tqatBzweDxIJBKo1+u4ceOGMGKbm5t49tln4ff78f3vfx+bm5s4efIk1tbWMDs7C03TpI5E0zR4vV4Mh0NJhC5cuABN05DJZFCr1ZBMJqXGg0YMTFx8Ph+GwyGuX78u/d7YX4l1HuVyWRKZ69ev48yZM9JwdzQaSe1dKBSSmr18Po9oNIrp6WkxO6F8q9lsotFoCCtIaaKxHktNkI0GIGQSRqOR1KsZE17VSISr5D6fT1bsyTaosrq3334b165dw0svvYTnn38eb7zxBi5fvoyrV6/iww8/FCksj2VW+2aUeqrnpv5UmaPj5JFmP81+N6urU+NxQJVxX0bgYDZeszo6M6bQbF9mQNEonVQZNHVbtbm2EbQZtzFKJJk8U75Gpof1VEZGlT/N2EwV4BHYECyyhxprq3gvE9jncjkcHBxIX7NWq/VQXajxupjdA2So6ZbJ94wtD9RaQL/fj+npaWEmqQQoFArCDFGiGIvF0Gq1EAgEZL46nQ7u378/Viu2srICl8sllvvFYlF6ro1GI2xvb4u8OpfLyX6CwSBsNhsODw/hdrvFVXZubk4kkWyzUq/XZR74WS6YUZrdbDaF7Q8EAojFYrKAxLlSVQQ+n09s/dnTklL3YrEI4KguLpvNotfrIZlMolarSbuAQqGAQCAAu92ObDYLh8MhpjH1el0WmxKJhDC7dBR1uVyIxWLiuPkk4ksH4Ow/A3CTVj2ssMIKK6ywotvt4u7duwiHw5ibmxNZXL1eB/AgOZyenka325VGrh6PB9lsFq1WS/7DPzg4wFNPPQW/348f/ehH8Hq9+O3f/m1Z/a7X6ygUCsL4sJaEq9OnTp1Ct9uVBrNsME6JEe2qmcAFAgG0Wi2kUilpcBsIBBAOh1Gr1aBpRzUlV65cQavVwqVLl6QXHV3xOp2O9Fu6c+cO7ty5g2QyCZ/Ph0Qigb29vbFaOjJ/NFgw1vio//i+MWlWGTngYQdFM2DF86OzHYFcKBQS2VOr1UKhUMCf/dmf4dNPP8VLL72EF198Ed/+9rfx3HPP4d1338XVq1dxeHgoNuxm7Qc4FoaRYXucmjd1Poz7M8YkwKXuwzg2M5BlJq/kZye9Z9zHcaDDeFyj/NLImhkBmQqYVACnvq6ai6hgDHjQ94yGGfybANC4T7MxmgUXFAiiuGjDBQ7ViZSsWD6fR6lUkh5iKus2iXEzMp0qS8nFGTbwpoxQfY2LKDRUabVaaDQa8nwhc0R2kGw82SOXyyXf+3Q6LcZGLpcL09PTsNvtaDQa0t7E6/XC7XZL3zQ+u2jxXygUxI0ROGLz7HY7vF6vgELVAZbyRl3XBRjxPNg4m5LyWq0Gu90uwKrRaMDpdIrcnNLSYDAoizuBQAAHBwdy7xSLRZG5t9ttUSVwESqVSqFcLotxC81a+v0+AoEA2u223B/xeFxaC7AWkBLaUqlk1cD9MsNhO/piDEc6HHYLwFlhhRVWWPFwFAoFLC4uYn5+XurEgsGg1IZxNbperyMcDiMSiYytys/MzMhK9OXLl+H1erG+vo6nn34ac3Nz4kQHHEkRuT8AIptMJpPiQJnL5eByuRAOh9HtdoW9Isjwer3Se0hlxdhDKZlMolQqiSX39773PaysrOCZZ56Bruu4ceMGBoMB4vE4fD4f4vE4BoMB8vk8QqEQzp49K5KiarWKhYUFAMDW1hbq9TpcLtdYDYiaeKuSQ4IwVSbJhN6sGbjKuqkJsJGNU2vjvF4ver0ems0mgsEgwuGwJMJ7e3v43ve+hx//+Mf45je/iUuXLuHv/J2/g1deeQUffvghrly5gt3dXWETOW4CSybymqZJcj4JrBnZOCPweNxFZJ6z8fNm203arxE4GGvMjKDyUcyfyqAZj6++rrZp4OIE/1ZZLt4rkwxDVACnAhyz4LaqVFc93+PAM8dAlouMF1kgLm4AD3obDgYDlEolFAoFtFot+Q4YpcPq3JgtUhiZN4IGfsftdjt8Ph90XRcwNhgMkEgk4PP5hHFiI2s+X4yN64PBoBgs+Xw+dDodeDwe3L17V4xPXC4XVldXkUgkABwZeWQyGQyHQ8zMzODMmTPodrvY3t4WxrPX64nUkyYmo9FIgNWpU6ekXpi1d1z8ob0/m2NT0hgKhVAqleByuUQWy/Pmd50LXsDRgk4wGJS/k8kkNjc34fF4EI/HxRAqkUigXC6j0WggGo1iNBqhVqshlUqhVquJQVKpVBKDGNYAA5CG506nU3rEud1uDIdD6bdJ9vBJxZcOwNl/9oUfjHQ47I/Y2AorrLDCiv9FxsLCAnw+H7a2tlCpVLCwsIBCoYBqtYq1tTU0Gg1Uq1XEYjExAKjX63A4HCLtaTQaiMVicDgcKBaL4pjYbDaRz+fR6XRE0kOWiAXxS0tLKJfL0ryWZieUTTI5o0ub2giYiVooFML09DSCwSBGoxHK5TI++OAD2Gw2PP/88yJ7okEHbc7n5uaQSCSE4WPSNxqNkM1mMTMzA5/Ph2w2O5b8sBEu8IApURPY42rhmAwzuTU2cyZgO04aSIMGJk5sWkyAGwgEpF6qUCjgu9/9Lt577z18/etfxwsvvIDf/d3fxeXLl3HlyhVcvXoVm5ubAtzI7KmGKjy/SXVkZrI84+tmYQY0VNBiTPbVMPtbZetU5s2MTTSCN+Pxja9Nklqq4IzAzciGqY6RrKE0O5bRWXISCDayauo9aDYn6mdUBpCGKer++L1VJbSsAyuXy6hWqwLcKP81nos6v2bvq+fhcrlkQYOLI36/XyShLpdLnBCDwSAikQg2NzehaZqYqahB4yKv1wtN07CysoJqtSqMVz6fx97enhg2nTp1ColEQgBKo9EQFuz06dOYnZ3FjRs3oGma1Mp2u10BYcDRwhSBTTgcxnA4RDAYFKaKC1EEmwSldPp1u92ycDUYDGC325FIJOT55/P54PF4RO0wGo3g9/vlek5PTyOTyQjryOsXi8XkfPg8aLVamJmZkXOIRqPyPp9/ar/AQCAgJiiqhFPXj/ptNptNMbp5UvGlA3Bk4CwjEyussMIKKyaFx+NBOp2W/8y3trYQi8Xwlf9/e+8eI1l6nvc9X1VXVdf93lV9756ZHe7OLpdccbGWtKBICbLEyFIYBYlBAlZk5CIrsQDLCeBEQoAoCQIIju3YBgwntC2AMhkrAiTCkixY4s0SSVHkcnd2d/Y2Mz3bPdP3rq7qut+rTv6oft79+mxVz967p/f9AYOuy6lTX51TdeZ7vvd9n/fJJ1GtVnF4eIhEIoFkMin1Eox8MTJz5coVqYNheiUnsLTJ9vl8GA6HKJfLCAaDmJ6exurqKrrdLorFokz0FhYWpKarWq0CgKQoUeRwMkZRSGfJjY0NcV/89Kc/jUcfffRExKvb7SKXy2FxcRH1eh3PPfccrl+/jk996lMS2ev3+zJRjcViyGazMrlkmiInWXZEjZNv2yzEPel3p1Pa/crcEaxJYsm+z5YDXO1vtVoIBoMS1YzFYjLp2trawpe+9CV87Wtfw4//+I/jiSeewM/93M/hU5/6FK5fv47vf//7uHXrlriBcrx2Hzh3ihzHMU6wTZrQuQWQ+3FbDPG2fe7d4uu0CNq4tC5Gc93Cwn0exp0/t1iy0xQ5Xgo0+zl7n3Zdm/0+k0xRxokw3rbt9e3X2OmijOq5RSZ7JVLw2G6nPOd0fKUhSKfTOdG6wz1W+zielgprHytG2ZjCybRDbsdIVDqdRiaTwfr6utRnMWrPY8rIMa8NmUxGvsuVSgXdbldSoo0x+JEf+RERgsViUXrcLS4uYnZ2FoVCQYQqr3UUtLzOcTGK788oWSwWQzKZlJYKwWAQxWIRoVBI+l+2Wi0RzMBokYpjZ+sGtgBoNBpyDctms5IBkcvlsLe3h3a7jUQigWKxKMZMTLlmujcdNTudDra3t5FOpyWDwXEcGQsbsvO4M0rI8+TxeOS6Xi6X4ff7RVCeBRdOwHmZQjlQAacoiqKM5969e7Kaur+/j6WlJVy6dAl3797FzZs3xd76sccew/PPP4/BYCAObLFYDMFgEKVSSVIsk8mkNLBttVpScN/tdlEul+E4jtj1V6tVrK+vi401J1ZMiWR9Cevw2MOJDX1Zt9fpdPCVr3wF3/zmN7G6uorPf/7zyGQyklLVarXE4S2VSklz36tXr8q+mL7V6XTg8/nwyCOPoNFoSAooV73tpr12awB+RmILhHGiwh2hGFdbNm5ybm9HIcFIXKvVkuhFv9/H6uoqHn/8cfz0T/80vvGNb+Bb3/oWtre38cUvfhFf//rX8dRTT+FHf/RH8RM/8RN46qmn8NJLL+E73/kOvvvd72J/f3/sOOxI3LgIljsS5n7eHb2yj4ddQ2aLIn5W97E9LSo3TnDeTyiNE6PjooMcj/2YbcLB1EY7osZ9jGugbYsu9/jsz8/0QlsIuoW/+xjZYo23GXXmP7dxDQ1SyuWyuKBykWBSw+ZxaaXu5ylw7AUN4I2oJKPutskPMDLgiMVi2NraEkMRXlcikYgYIHFBJxgMIpfLoVKpIBQKodVqYXt7W9qCRKNRPPzww3j88cdx584dFItFVCoV7O/vY25uDtlsFq1WSxarmJrMY0PRVy6XT9SNTU1N4ejoCMFgEIuLi1hYWMDu7i6mp6cl/ZBuv4zolctl2bd9vngMuG+mWSYSCVlEmpubw9HRETweD0KhEA4PD+U6xXo6+7sTj8cRDoel52c8HsfBwQGmpqbEEKVSqaDdbmNmZkaigDRh4ViCwSBisRiOjo7kO+OOhH6QXDgBx7q3/phiaEVRFEUBRhEyxxk1tr58+TIWFhZw48YN3Lp1C8FgED/8wz+M5eVlrK2tYTAYIJ/Po9/vY3h9+jAAAEc7SURBVHZ2Ft1uF8899xyy2Szy+TxisRiAUWuCQqEgE1qKNa4sM8pzeHgoE2EaErBJL90VOeGNRCKSssQauWQyiRdffBHf+c53UKlU8NnPfhYPP/ywROxYx2bXwTBq5fV6MTMzA2A0gWRNXSgUElHGNKyFhQXs7++j3+8jmUyi3W6jWCxKmletVpMaN8LPZadD8jYnVO7oErmfQHFHO7gPGhXQhY89sl566SVcuXIFa2trkk62vb2Nr3zlK/jqV7+Kj33sY3j66afx6KOP4vHHH0cul8OXv/xlMVI4TRiNG5/79jgjDbcwsqNDdg3ZuM/rjkxNGoP7sXHPTcKOFo1LAxxnSGJH18ZFGd0pkpOOib09x03zG072bdE1rmaQxkI8fz6fTyIqNOSwP0u/35fGzGyj0el0pL7Vdkt1L0y4xa/7OHIbO32U4+c1gXVVPp9PTDWAUePtVCol1xMA8Pl8Yvxhm5QEg0EcHh7iYx/7GB555BG89NJLWFtbQ61WkzpRRsbm5uawuLiIcrmMzc1N7O/vI5PJIJ1OY2NjQwxGbIt8phX6/X5JKaSo4aIVsxDu3r2LlZUVXLp0Cffu3UMoFEI0GkWlUkGlUkE6nZZaOsdxJBLKVMapqSkxMOHiFdsRDAYDzM/Pi5Dz+XySgh6PxyXiyHHxOsB08OnpaakVdhwH4XAYyWQS9Xod8Xgc8XgcuVwOXq8Xh4eHYiTD3yndfhnVTKVSODo6Gvcz+kC4cALOa5mYKIqiKMo4SqUS+v0+lpeXkc1m8eyzz+KVV17BysoKVlZWJLWIdv6DwQCrq6u4e/cubty4gbm5ObHfbrVa2NzcBABZpa1UKiiXy8hms2g0GiiVSmL+wdoJFulz1X9paUnMFbgSDUC2Zy3K97//fWxsbEhvulwuJ2IMgExCmf5ZrValZq/RaOAjH/mI1KjwvZgaxgggx0enSwDSD65QKMjEhSlPnHw5jiOplVNTUxLpM+aNBth2PZ+NW6BMEh7jUgbp9kl3wHK5jGeffRbJZFJ6e0WjUYRCIZmof/3rX8e3vvUtXL58GU8++SSWl5fF7KRYLMp47fRBe1zjBNVpImtcJM4t4NxiCcAJ0eveH8dDcew+duOcPd8K48TYuOibnapov5ZjdqdUjjsu3Jc7Emjv2+0W6v5usI6UwpLtMTweD+r1OjY2NmQ7ANIipFqtSl8wCja7vvI0sew2iuFzbvFqG/rw908jFUZ42KCaPduy2SxqtZoYrPC3VC6XRVDNzs6KoQ9Tu2dmZtDr9XBwcIBarSbv1263pQ/kzs4Odnd3cevWLUkn3N7eFtHI/noARCj1+31UKhVJI6QrLH/fMzMzGA6HuHfvHowxuHLlyglx0+v1sLy8jFarJY6ZnU4HqVTqRBTV7/dL/zWfz4dIJIJeryfbNptNSZlmLzceO6ZR2qI4FAqhVCrB4xk1BOd1meKNC1j9fh/5fB6JRAIvv/yy1Pfx+xKPx+E4DnZ2dqTNAT/DWXHhBJzWwCmKoij3gyuzxhh8+9vfRqFQwKVLlzA9PY319XXMzc0hk8lIT6VEIoHvfe97WF9fx/LyMi5fvoypqSnUajVJcQqFQgiHwygUClhbWxOjADawdRxHCvZbrZa4qbHRbSKRAACpt7BT05hCtbe3B5/Ph49+9KOS/uPxeMQ4gKRSKbH85j5jsRjm5ubg9/tRr9dl33SJY8ok0zTz+Txu3ryJ+fl5FAoF+P1+lEolVCoVSXlinRzNQBjl46SIgob7fScCbdxz46IgfM9arSa1iUztCgaDMqFjo3NG7V544QW8+OKLCIfDePzxx/HUU09hb28P9+7dw+HhoUyYAbxJSNi4xcekCJMtTMYZarjTCt1mMePe1xZLdhTz3Qg4O3XRftwWn25Bx/ed1C6A+3U/Tvh+7MtmC1P+syNzjM7FYjGZ8LP1RaFQOBHx4n7r9TpqtZpEZVnbZtfCjUvrHRcRdS8k2N9xOx2WY+ZijDFG2mHwt8QofCwWE5dUYLRwwu80o/SMFlWrVbnfbrdRr9dx48YN6QMZCoXg9/vx8MMPw+/3486dO5iamsKrr76KZDIpCzm5XA6JREK+k7TXZ/1atVqV+kDgDbMUACLoeC1rNBrY39/H6uoq1tbW0G63kUqlsL+/f6JPHa93di2gHf2mMYoxBplMRvoActGL7QEo0o15wx2Tx5Tjnp2dlWbv4XAYCwsLJ1xu2Yz89u3bkt45PT0tdX+xWAy3bt0SYReLxXBwcCBpumfBhRNwdKHUCJyiKIoyCRauv/766xgOh3jiiSdQLpdRq9WwvLwsTm9zc3NotVp47rnn4DgOnnrqKSwuLmI4HKLdbuPevXtiVtLr9bCzs4MXX3wRjzzyiKQRDYdDRCIRKcrvdDqYmZmRaBfNCeLxuKT/cPLGFWbadff7fUQiEUQiEfj9fpkY0i7ccRxJkQQg/ZKMMdLfaW9vT4r32dDbGCMisVQqIZlM4s6dO8jn88hkMpienkahUECn05EWCpVKRSannHAGAgH0+315T+DNEYtxUTi32HFHuYhtdDJJJNlCjhbqNJBpNpuoVCoSjaPpAc1jvvGNb8AYg5WVFczOzuLSpUviVEpzBNss4341UO7onG1SMq6R9WlphfaxsYXCae9ri57TIoPj0kPHpcba0Tg7ejtOdE4amx1tmxStYoqeLaS4LdMkp6amMDMzg1QqhUQiIaYjBwcHaLfbIvCMMfJ94HmkHT/t6pmiN06cj1sssI+rzbgooltE8h/7tUWjUTmOjEDxdcaM6s4KhYIsmNDt1phRM2+/34/Dw0PEYjF86Utfktvc/5UrV1AoFCR6VigURKzV63UsLy8jk8nIsfB4PJKmSHHGFGuKNEbluBBiC6+joyOEw+ETi1e7u7vSe40CyHEciWAZY3B0dCTXj2QyKeckk8lI/W06nZbIVzKZBAAR4eFwWK4roVDoRKuCfr+P/f19MVOZm5vD2tqamB3Nzc1hY2MDxWJRFrUYtcxms9jZ2UG5XJZIHo9POp1+0/flg+LCCTiNwCmKoij34+DgQKz/WRTv8/mkqTfr3g4PD7G5uYm5uTnMz8+fsPk/ODiQ+jda5e/t7eHatWuYn5/H+vq61JjEYjEUCgWZJDYaDYm+9Ho9WUlmWhVTgTih63a7YvvPlXNac9vpk2x2zf1yMhUOh1Gv13F0dCQmCmwczlXk4XAIn8+HxcVFtFotabUwHA4xMzMjDnL9fh/ValXqTCqViohOpj8BJyez9kTXdvIbF02znzvNsGPca9zQ2KTZbCIQCIiIbbfbIuqCwaA49zUaDTSbTWxsbEiNTjqdxsLCAg4ODkQAsAfWOOHj/tzuFEQKHzsKZ+/DFnPj9jNJ5I1LsyTj0v3s19mROnefNfu97LG6jUXsqNu493ALG7dotd/TbdVv17ZxMYT29c1mE6+99hqq1aqkIPI7TTMeRttYQ8ZFBqZKTsI9tnHPuwU1P6/9eewUXBqX0H2SIogpyB6PB61WS1xpHceRdD/WwIZCITEnabfbEklrtVrI5XJiBDI3N4dXX30VV65cweLiItbW1sSko91u4+mnn5YFD6YoMlLFhSP+VugeSaFGh8lms4lwOCyRr1AohH6/j5s3b+LjH/84rl+/LqYh3W4X8Xhcvm9sxk1xBOBEaiabcdOMhG0PGLErlUridsl0SKaw02iFRiderxfRaBRLS0vY3NwUt9+rV69if38fW1tbcBxHRCcAifwVi0V0u10sLCxIX0C2lDkrLp6A87IGTk1MFEVRlPHUajWsrq6KCGGaHScH8/PzEvXKZDJYXFyURtZHR0fodDqIxWLSo4jucI8//ji8Xi/K5TLq9TpmZmaQTCZRq9UQDodlO5ob0Lo6Ho9LaiWFBuu6mJoYCoXE8t+edNoNcBmF4ySDE93d3V1xVQsGg5KCxmPh9XrRbrdhjJGxeDweJBKJEzU4TF2am5vDwcGBGALwcxljJFLAyShTKcc17Ca2EJskNNy81e2ZwsmxBwIBmTRTJNspsJzIVqtVtFot3L17FwCQSCQQCoWQSCSkJoiC4DSBxDHYUSu7HQPwZudGcpp75DgzGFsk2Slip4k79/vYosPGNiuxx32//Y1LkeR3hueG2zFixs/HVLhcLodcLofp6WmkUilsbW1he3sbd+/elW05bi4ysL9ZvV6XxyjceM7c45u0YDAujdK9wOCOTtrHwj4vdFtkJL3X60m9HtthcJGnVquJmEgkElhYWIDH40GpVJL6MV5vBoMBYrGY/MYZbVteXkY+nxdR6DgjB9dPfvKTePTRR3H37l1pUk53zmAweKLHIg09GJWiqyQwivLzOKRSKXg8HhwdHSGTyUjNGNsRUFhyX/xdckGA5lL9fl/qVSnK2MMNgGQcACPBx6h+LpcTt0suKjGNPBAIYHZ2FsViUb43V69eRbvdllYKXETzer1Ip9MIhUK4c+cOjo6OkEwmEQwGsbm5CY/HcyLT4Sy4eAJOI3CKoijKfVheXpYVYeANR0bWoACQ2o1IJCLpQyyIj0Qikm7DVK35+Xm0222ZDDFSwKa1TOWamZk54YCXy+WkkWwkEkE0GpUaLqZmhsNhqf2gCx33FwgEpNE4J7Ldbhezs7OoVqvY3t5Gt9tFqVSSVErW2TGaFovF4Pf7sbe3h1wuh7m5OZl0MVLAuhuKTDa+PTo6EmdNTmw5Oefr7aicjXsCbKf7vVPGpQraaZzs6cWoHGsJWWNEF77Z2VlxtfT5fOLAyX3zXNn99jgpdddR8TvGyb3b4MP+ax8P+6/7OXcPvnHb2ELstDo6N24BZqd/2mmftmHJuGihe/zuSJ6dRkoBx6hJNpvF3NycfPd3d3dx584dvPLKKxLppXjj77Pb7Ypos3u3TRJuk75/49Im7de4749Lq7WPFxds+NvjdYXCiH3U6vX6iSg2j08gEMDCwgKq1Sp6vR4WFxfh9/vR6/Wwv7+PQCAgxhq5XA6lUgkHBwdYXV3F/Pw8yuWyROmHwyGuXr2KSCSC3d3dE2NlXa9tClOpVCT9mOf84OAAnU4Hfr8f7XYbg8FAUsBp6V+pVFAsFmVBiAtYdOTt9XqIRqNyfkKhkFzv2HCc7U0oOnl8q9Xqid8THYLZ8oHiv16vS9uF2dlZ1Go1rK+vo9ls4tKlSxgMBpJGT+HG6GImk8Hh4SGq1SoikQiSySQKhQJ6vR7S6TSi0Shu3779ln5P7wcXTsCxBq6vfeAURVGUCXBCFwgExIaejbh7vR7q9br0P6PhAe2zOTFkHUs0GkUgEECxWJQ+SnNzc0ilUpKmw/dj7QqtqBOJBHK5nLxfNBrF7u6uTIJYL8KIkW040ul0xH673W5L+iUA6RO1ubmJeDyOQCCAra0t6VfHz9tut5HNZiUSyfRMCgOfz4dOp4NisSir8Zwg5vN5OI4jhixMC+Xn5WSIKaEUNW6RZken3GmJ70TIuSfXbvjenU5HhByjcBRy09PT8Pv9iEaj+MhHPoLPfe5zeOaZZ3D9+nXcuXMHvV5PoqMU/TxPdL6za4pyuZxEhRqNBtrt9olo1KQUTDIpgkaBzNuEBiT2fTtCZEftbKMNtyCxt7FNOexj7E4BnZQKan8mux6MPcySySTS6TRmZ2cxPT0tNW03btxAqVSSdGFGpAGIYODviSmwNCPhOXAvILiPr/357ZTHcWLNjS3S7Pt22iTbGfj9fiQSCal7o9Mke6axtorjDYfDiEQi0gah0Wjg2rVr8Hq96Ha7qNVqcg1iBGtvbw+9Xg8PPfQQksmkNKzmv1wuh3A4jHg8Dr/fj/39fRgzMlVhtJzpk6x5A0a/6Wg0ilqtBmAU0SqXy/B6vRKVprEIMxVoBLK8vIzhcIhqtSrj4XfA5/NJrS6vpTs7O5IV4ff7pbdbIBAQwxJ+92u1mrQ54bWZkUia0/BayjredDoNn8+Hu3fvotFoiPkJ02/z+TyKxSI2NjbQ7XaxsrKC4XCIer2ORCKBeDyOu3fvahuB9xKNwCmKoij3o16vI5lMSn2ZveLOmq9AIID9/X2ZTHDCQhHGPmuO42BjYwNTU1M4PDxEOp2WCUClUpHoFsUhI23BYBCRSEQc6EKhkBTL26lQXOVmtI3NhWOxGIwxkoJkO/dxtX1paUkiedlsFsAb/aQ4AWKfpnA4jJmZGVnZZzoXU6+YNthqtZBIJLC1tQWPxyMObzQ24ESIJgS2ULEnxu60tHE1ZfcTcadNqic95t6eE2aKYNq621GH3/7t30Ymk0E0GsXi4qK0ZmBUh+lkrG9KJpN47LHH4Pf7sbq6iqefflrSwDY2NrCxsYHNzU2sra1JSi4n7eMiam9F5NmfzxZv4+6PMxkZJ8AmpXiOq3cbt407WsfvOc1HIpEI5ufnxQb/6OgId+7ckdQ7HgueZ07QaTxCAc6IDkUb69v4e54UkXV/J9zXgXGvGSfq+D13t0+gwGXaIM1zfD4fdnZ25DvGqGEoFDpR/8W06WKxiGAwiKtXr8oCzNbWlmQS8DfX6XQQDAaxtLSEfr+PnZ0dGQtr6BKJBCKRCLLZrAgcCiQaLjFSzewCijdG8WOxmGQgTE9Pi2CORCJyrZqZmZHxpFIpbG9vy/GzDWa4kNRoNJDP5yVLoN1uS4opty2Xy3KtcRwHzWYT8/Pz0jrBFpNcoJmfn0c6nUaxWJQUUApRZivY7zE3N4dOpyMLNUtLSwiFQnjllVekFUOv15OaubPiwgm4oH90kWp2xqcUKIqiKApNQBh14X/ETN0Kh8PY2trC7u6u1IxxAuQ4DsrlsjSlPTw8lHSeq1evIhaLYX9/H4eHhyd6U9ECmw23mU4UDocBQIrxmcpjO8WxLxx7t9HhrdVqnRBKTBtifynHcUQgspUBjR4ajYb0b0okElJLwgko7ctpmPDqq69KlIkpUbVaDb1eD4888giazSY2NzclMsCWAgDkPe1mzO5IzbjoyP0mSO7n3dE9W+C50+Xcrx0OhyIOms2mTLyr1Sru3LmDcDgsx5KW7/b5a7fbkka5s7ODu3fvwuPxIJ/P4/r16/joRz+KhYUFXL58GZ/85Cfh8/nw+uuv4+joCJubm9jd3RVzHTolUqzb0TH38bGbW9timH/tc8DPbguMcRE34M193uxImz0Gu56P78cIJie8iUQCyWRSeo0xVe/g4AC3b9+WvotMabajbMPhEIPBQIw37H/87rMu1HaTHHfeT/sOjfuuuCNr9mvcEUZ7AYXjZlTf7/cjEolI5H5ra0t+r4zWMgoHQKJug8EAhUIB8XgcS0tLImyKxaLUmzmOg3Q6je3tbQwGA6RSKTlXlUpFjh+3p4viV7/6VekVaTtw8vvG9iCMptdqNRE5dIGkUGJTcZrCcAGH+6cLJXtb2pG+Xq8n7QX29vYQi8Xk2NnnjhkQFFztdhvxeBxTU1M4OjrCYDDAzMwM9vf3RegtLS0hl8thf39fMi64YMVIOK+5vV4P+XwesVgML7/8MowxyGaziEaj2N7eloUHn8+H7e1tdDodxOPxU79b7ycXTsAlQiPnoUqrd8YjURRFUc4r9oST9WCRSARzc3MIBALY2NjA4eEhstksSqWS9JoCRi6Kc3NzMjFhCmE2m4XX68X29rZMSBh14GSNk2FjjBiPGGNQKpUQCAQAQBr5drtd7O/vi2MdG/OGw2EMh8MTNT0UFZzwMIpm95QLBoPyGk6Q9/b2sLq6ikAggFqtJpMZihimNC0uLp5wzAwGg7h27RqeeeYZMVool8sIhUK4ffs22u22TAA5+efk2i0ajDFvEnX3S6OcNLF272PS5P20Sb3jOCcEAY1qmGrJY83zynPJ80lBwdq4arWK5557Di+++KJE51KpFDKZDFZXV7G6uop8Po+lpSVEIhFJS2UKYbVaRalUQrValZocptDaESYKCEaE7Lo/+69bgAEn3SX5+6AYsevUOIHna+zeZaz5TCQSSKVSEnWiyKjX69jb28ONGzfQaDTQaDRkAYKRM/6+bFHG7yIjO7ZoY+0h6+HGndtx0Vz7O3JatHbSffu7ws/H48PvHdPxPB6PpPBRbHD73d1duc3m09PT0xIh6na7mJubQzqdFqdb1ovRRj8ej0t0KJvNwuPxyPeWxiiMqiUSCVkksFOfGa3k9xyApE5yoQiANMkGIC04eF3jdzIej4vDb7/fx9ramtQ1slUCzxfbOwwGAyQSCfj9flk84fnntYrnIBQKodlsIhaLIRAI4PDwULICCoWCLKjNzs4iEolgf38f9XodU1NTSKfTaDQasi8KbC6Y5XI53LlzR3r0pdNpcZ/NZrNiXMX09Unfiw+CCyfg4sGRgCurgFMURVEmwLREFqzH43FkMhk4joN79+7h7t27WF5eRqFQEIttpmnR4OPg4ADr6+uYn5/H5cuXUavVcPPmTUnf4mQuFovJZIiTu3A4LCmcpVLpRGQqlUqh1WqJOQGL9CkeAEg9h9frRSwWk7EBEAt11sRxNT2ZTKLZbKLVaolpQqfTwdLSErrdrgjFdrstdWBsPBwKhbC6uoqNjQ0AwOzsrBgBvPrqq4hGo7ICv7KyIjb8nGSz3xMnoXZ9kDuV0k6xnMQk8fZ2cNd9uSMs9j/2nuIknO6VFHKsdeM/PjfOXfLo6AilUgm3b9/GX/7lXyIQCEhNUi6Xk1qwaDSKeDyOubk5RCIRiagybbBSqUjdlB05bDabYpnPiBYFHp0FbRdTCjGKNNYl+Xw+cQ2kOKVTJ+3vWTvIz9loNKSn3t27d1EulyV1jYYiTDPkOOwIG387TI+0a9jcws52Yx13Dsed40nRtnHfI/f30t4nsaOObhMfPsYoPyM5rMli2wNbLPMccAHoypUr8rvibzwYDCKdTsPv96PVauHll1+WCBgXbBiBYl3tYDBANpuVdF9jDHK5nEQFeWwpkpmOyUg8v+eMrvn9fonuMbuApiaHh4fSbmV/f19qzABIo3W/3y/v12w2kU6nMT09LVkOrGlknRxdJzke1rAVi0URf1zg6Pf7WFhYQC6XQ7FYlN/I0tKS/DZ4reSxjUajSKfTksIeCATkmk9HzUwmA5/Ph8PDQ0m5pBPmWXBhBZxG4BRFUZRJcILEVCXWTRQKBVSrVbGbZt+1u3fvIhQKYWFhQSaoh4eHWF5exrVr18QdLxAIIJ1Oix02rc852fR4PFJjxboPujqy8S4n4qzDAiB/7fShZrOJfD4vq9lsAs6J1mAwQK1WExHIaIgxBplMBsYYbG5uitU42yiw9shxnBM1OX6/H9euXUOz2ZQ+SNFoFCsrKxgMBjg4OEA+n4ff75e0T4oM1mExWmTXuxFOqidZ8rsn4Tb3E3TuiIt7P5PSNt0RQQpitphglMVOqWQExI5a8XH7HHAsg8EAlUoFR0dHuHfvHjyeUWN2igCe/2w2i5mZGUSjUSSTSUQiEcRiMaRSKRFbFO8cK88jRSgjWnyO47bT/uzXU9xxck5RztpIRnOOjo5Qq9UkIkYBxv1xEcJOb+Q4WEtoCzYKO4o7CjwuCEwSbG6BNi4l0n1/nLib9F2y39OOvNkRTFvksw3HcDjE/v6+tK5gFJwLMmyXYI/t8uXLkrLMRRA6n9oRvKmpKSwtLSEWi0mPykQigXq9Lj3dZmZmZBGIwjuRSEiUDoDUgPIcc1yJREJMnBjBYh9I1vDxeBwdHSEUCmF6ehpHR0eYn5/H3t6emCHlcjlZbGA9Wjwelzq4cDgs7UyYLplIJEQI8ztJF2C/349sNoutrS202225rrGnI3vDzczMoNvtynWfx5ImUWwEXygUJFIXCoVw69YtaV2RSCSwvb2NarUKx3EkwnxWXDgBF/R54fd6UG6qgFMURVHGw1VxmgLs7u5KlMjv96NUKkkNygsvvIBEIiENv7nyfOnSJVy6dAnPPPMMbt++jZmZGeRyOUlBZCSGaUN0fmShP2swYrGYRONoI84JCyMbFFZMyWK9XbVaFROERqOBWCwmE0tOtBjRo4tdqVSSNC3W6LGejRMmuq9xgh+Px6U3HSdRlUpF6kaYosR6ncceewytVgvf+973pD0D0+Q4eZ+UJsnPZ9d3UfS50+HeaiTO3v9pr7lfnRwf4wq+OzLHiTjrGCmA7NRZPkbhR2w3SXtSzChNsVjEa6+9NravG8U+e4sxbY7fIVtgMGplW7RTWNmRLjtiVi6XT0S++P583j42dqSM21A42gKNgo1ihueb29sRQ+ANk5txou20NNpJ53LcOZ+0Pzd25M0+b6xVZVopjwdr28LhsBwbO+JpR+mZZhsIBBCLxWQBJB6Py/er3W5jbW1N+hLGYjG0222JvM3MzMBxHBQKBaRSKUlzvnLlClZXV1EqlbC3tyfpkVyQ4e+OgorXMmNG/SEpvNhIm46UANBsNmWMm5ub8Pv9YhTSbDZFBB0eHmI4HCKdTotIo0kLo2yhUEjEF9+Px48ur1xgOjg4kGgd628dx8Hq6ioASFooaw3ZcLzb7cLr9WJ+fl7qT6enp5FIJJBIJPDKK69IHR1Nqfb39+U6dJbpk8AFFHDGGMSCPo3AKYqiKBOJRqPI5/OYmprCq6++isPDQ4lk0MWtUqng+vXryOfzWFhYwN7enqQf5fN55PN5vPTSS3jhhRewsrIiTXYPDw/FAKNSqSCVSiEUCp0wMmD0jxM3pupw5dk2hmBtCd3rOMbt7W00Gg1Eo1GpoeE+Gang5MftrsiauIcffhjT09PiLkcTFLv2I5/Py+SyWq0iFArJBCydTuP555+XyRQnntPT01hbWxOXS07UmbbJiSuFw/1q3dy293YKnjt69nbq5uzJ+iTxNs7cwr1fACcEDhcDPB7Pm8ScXVfm/svtKdQJo1Hu6B2PAx33OKE25o2m2MDJhtucfNrRUDul0v6ctmvouNYCFFn8/BSBjKhR7LIm0BZl7n98nPsYdz7scz3uvI87Lxz/aXWTp4m4SRN1+/jyvPC3xt80z1kikZD0RLYD4TlJJpNYXFwUccvrUDwelyjS9PS0tA9hhJ5uih6PR/oxskZ1d3cX7XYb6XQawBsCPxqNIhKJiDjqdDqSBsiIbDAYlDoyHju217CNWSjmCA0+Dg4OZAGB32emct66dQv5fF7Mk9g2gbXA/NxcwGBdMK9n8/PzksIYj8dRKpWws7ODcDgsohN4Y9EgHA5jfX39TeYpTMucm5tDuVyWGmRGBLe2ttBsNrGwsCBumpubm5JC6vF4JEvirLhwAg4A4sEpVFXAKYqiKBOYm5tDu93G9evXUSgUcOnSJYlGeb1e/MVf/AUGgwEeeeQRSdfh6jDNJl566SXs7u4in8+LgYnX65U0IdZ1hEIhibTQbp4RQK/Xi4ODA0mt4iSTE0JOyKPRqKRSGWNwcHAgJit0UGPrA7rG0TSABgpMYWSqJQ03aIrB2htGjDgx5AScEUAKknq9joODA8RiMWxtbaHT6SCRSEgfJ6/Xi4ceegidTkfMBRj1YcsBOyJE7Mm6HXWx/wF4k6BxT7rHTdZPq5EaJ9ROW2UfN8Gn2LQjSkwJYz2PHa2z6+bc/+zPyu35frxPEWELOr6GaZz253PX5LkNTtyfw/6MnERzWwo1ii1+t2yBZh8H3rejbHa6nvscutNdx4nqSamUdprlpHNlf9Zx53ZclNdd82ZHQ9mTkbVcfA3TAu00UYqjYDAojeN5HQJG1yemP3IRhy1P6PLJSF2xWJRoOR1w2dPRFlzFYhHr6+vidsvWBUzxtt0mmWZZq9UkasjfKbMKGPVium80GsWdO3cAQPoeAkAikZCUStuA5fbt2/B4PGLxb7cwoLEJU7i73S7y+Tz29/cBjGrXfD4fCoWCRB+BUVQ5Go0CwAlHXNb4MhU3m81idXUVrVYLe3t7IlxTqRR2d3dRLBaxtLSEbDaLRqOB7e1tSTflNdb+TZ4FF1LAJUJ+lFvdsx6GoiiKck7Z29uT1e2rV69KIb7jONL8mj3RCoWCTIIymQwCgQB2d3fh9XqxsrIiJieRSERcABntsh3aWBdGs4Fms4m9vT0AEIt6pi0BEIdM7oMTODr3sel2t9tFpVJBPB6XiaddV0Sbe0ZE+FltsxW6Z9KFkg2GSaVSQSgUkjq9YrGITqeDlZUViSgMh0OUSiU0Gg1kMpkTLnbpdBq3b9+WCATT5oA3iwXgjZRJ26nSNj5hGp/X6z3huMhtJ4m5cfc5hknizs0kUed+D/sv6+KIHc2iCLONL2wRZ4syt7Czn6OwI+MMVPg4J562iLLNRdyfyzYbsUWYO33SLdTcr7VFHRcqxonlceLMnQZrf+5Jwux+UbpJaZXu7e0x2q0C+Dx/7zz+PG+Mhvf7ffh8PrRarRPnl/WF9XodKysrMGbUA40mNDTvMMag2+1iZmZGhDnTrjmG6elp1Go1tNttJBIJMYW5du2amMlsbm7i6OgIly9fFhFH90uPxyP9DSORCAqFwgnHW+ANEyK2COFndhxHWiMkEglpOcDX05Qkn8+LyyRraGnmEgqFUK/X5foQiUTkOpVIJMQ9kqZTt27dkhRguuDSaMcYI4tl9neeLWFWVlbg9XrFbMmYURproVDA1tYWZmdnkUqlThgFcTGM4tXd5uCD5kIKuHjQh4Pa2TnDKIqiKOebo6MjtFotsd1mb6VutytpiK1WC5VKBcBo1TmTyaDdbmNvb+9ESiEbdzO9kiKIlvCFQuFE1MJxHOlDxDo0RsdofjIYjPq4cUJM18h6vY5AICApR71e74TJAScVbBnA1Klut3tiksnICev0AGB5eRmtVktStpiedevWLVy7dk1aE9A1MxqNot1uo9VqYWVlRcwKOOmx656CwSBmZ2cxNTWFzc1NVKvVEyKEn9+OxtlREFvw0AyG0Tt3dGacOLP3yb9u0XhaxG6cYLCFCB+3I4fuiKFbsNqv4efmAgAFgC3kbIHH/dpGGqdFpeyUSDf2uOzbdqSTf+3P7I6w8dzYRiXu4+PetztVc9x5cp+bSemQ7sf5Wd9KNNXmtPceJ4ptYxD+Xn0+H9LpNJrNpkQvaXpji3Qa3PCawetIr9c74U7J5tuNRkMWgQaDgbS4AEaLLMFgEMlkEu12WxZd4vG4/B6NGTmF3rhxA4lEAo7jnHAQpfkHF2HoaEljEtbo8rjwGsBUyFwuh1KpBABSP8eIfyaTEWfUcDiMa9euSUsJ9qgrlUrweDxIpVJyfeN1iNH72dlZvP7666hUKpJpwHo+OucyWsZrII8vACwsLMDr9eL555+XCOXc3Bz29vawubmJlZUVpNNp1Ot1bG5uIhgMwnEcMfvhgpXt8noWXFgBd2u/dv8NFUVRlA8lHo9HHMu63S5ef/11cXObnp6WlEnauyeTSam3YG1HIBDA7Owscrmc1ENwAptMJiWqxfo6Y8yJlKBwOCzRMYoS4I0JIycHNJHgCjBT8ZiiZIyROpNQKHSip1MymZTnuTLdarVkkskJJ10GA4EAfD6f1K1Fo1EsLy/LynOxWES1WhVb9FAohGAwiE6ng4WFBdRqNbHj9vv9qFar2N/fF7e4TqeDTCYjkUROijm5nBSNswWD7Zhoi4TTImO26HLvd9Jr7G1Om/xPiurYAoATdtv2ns+5TUlsQec+DrZwGxeFc0fo7H2Mi1TZAmvcY3Y0zU5LtFMp73cM3cdq3OPjon72WN2RukkRVHubcWmUp51zbsP347jGHVu+H8UXzTj4u8vn82L2M26xoNfriYU9nSXZZ5JmHI4z6gdIY5qjoyMAEEFTLBYl/ZEp2NlsFmtrazg4OJB+khsbGyiXy7I4QJgS3u/3pecgnSGZjl0sFhGJRN4kihg9Y0N1ZifQIImRQ7uWjWYsFEL8/adSKfj9fuzt7aHf78v1odFoIJvNil2/x+PB7OwsDg4OpGbN7/eLiQlFNBeOmArKxuA8PuFwGM8//7yYSs3OzqJaraJQKCCfzyOVSiEWi2FnZ0cW0Xq9nhirUJRSMJ4VF1bAqYmJoiiKMgkKFIqZTCaD+fl5GGOklxAnVVxJpzMlLdtDoRAymQxarZbYZHc6HSnQv3HjhlhbB4NBWX3vdDoIBoNit29HlBhlYQoRxZvH40EymTwhRpheGQgE0Gg0TkwY2euN0RBG7FjnAkBWp5m+RIGXzWZlEk/hR6e4ra0teYx1JzRI4Vjq9TpefPFFOXaOMzJL2NnZOSGaa7WafH47pc4+FnwthYTt+DcuusPb9kR1nHg6LSrjfs4tJNzb2JN9W2hw0j5JDLjFqh3VmyQY7UiXO0Lk/gzjom328bD3Z7tK2o/b72t/9reTmjhOONt/xzFOgI7bt33fPnb3i0SOG6M7isvvv32M7IgnFzsYASf5fF7s6tvttqSOsha20WggHo9LBsDq6iqy2Syi0SgqlYq43DqOIynbdG6kEyzr2KamplCr1dBoNPAzP/Mz2N/fR7lcxtTUFFZXV+H1erG3tyeR+sFgIPsARimRW1tbKBaL6PV6WFhYQCaTwfT0NPb29kTgsRUCf4Osr6Opx9zcnJg38X0qlYpcJyuVChKJBIbDIWKxGEqlEo6OjvDYY49hfX1dat4Y9aMBC48dhV69XhfDpWAwiIODAzSbTXGO9Pv94u7Lz1ev18VJNxQK4ZVXXkGtVpOei71eD/fu3UM8Hkc2m0U2m8Xm5ib6/b5cW5l2zuPGBuuJRGLid/j9Zvyv+wEnHvSh1u5jMDy73FRFURTl/MK6MdZ/pFIpAKPUSqYMsWFxvV7Hzs6OGAfEYjFJTWw2m3CckWX/1tYW0uk0ut0u/uzP/gzr6+sywWH6DlsEcDUXgETAOHl2HEfq2crlsjThtp0MuSrf7/dRq9WQSCSQTCbFhMR2oOQkg7UrtoiwXfLocmkbYwSDQfT7fezv76NaraJSqcjjtuiya2M8Hg9+6Id+CPPz89jY2JC+chxzOBxGPp9HPB5HNBo9UefHFE86vXF87mbTnGi7UwrdpgJ8fpx4cwvAcZGqSeLBLQTc++G4+Rns93cLIW5v15SN27c9Hju90RZy7jRI92Pu4+VOk7Tfxx1tslMl3dvd77i5xz8u8ufext7nuON+v9fa98dFH93P2eeD0TX3NvZzU1NT0qCa0fJsNisLOmy8zUbYbCswMzODdruNSCSChYUFzM/PSw0sxYIdmWs2mxItisfjUhvLsW1sbCCRSKDT6Uh6MyOANP2gyAyHw+j1enIeDw8P0Ww2xRAlkUjAGHMiPZG/b372TCYjYi4YDGJlZQXValUyBGq1Go6OjlCtViXSFg6HEQgEJJLI/nVsKQEA6XRajFuYAs46NtbO0aCFpigUw5lMBqFQCM1mUxbg+Jmnp6exuLiITCaDO3fuoFAoSC/FXq+HO3fuYHp6GjMzM1haWhIRzF6dxhi59lPMcjGN1/Cz4MJG4ACg2uohGfaf8WgURVGU88bW1tYJW36uahcKBVmZ5SSTqYoejwf5fF7qMRhJYk3ElStXMD09je3tbalty+VyUq9CMcfXETZI5nvEYjE0Gg2Uy2WkUilJz2K9Cx3YyuWy9F4CII5ytniwnSXb7bbUycViMZnMM+0LGE3waboQiUQwGAzEoZKTokajIe5vNAWwox/GGFy5cgUbGxtYWVmRiSxTvbhKn8vlTkSiAEjqGIWPHYmzRcS4FEc7RYz3bfOQSXVWbpHH/Y0TfvZ5ssWMOzpop87ZxwXAifHzvr2fcREr+/0mReomiSb789jbjYsmshaRr3ELxHG37fe5nyhznze7VtB+3n4Nt3G3jHDvd1Jk1X08bexj4F4Y4Hu7BS+jzXR3ZUrhzMwMyuUy4vG4NDoHIBHrZrMpjraJRAIrKyvI5/OyYLO3tycROzrY2gZKrMuNRCKSsv3888+L6cj+/j5u3rwpDpalUgmJRALhcBjNZlMEpMczsvYvFouS4tjr9ZBOp+HxeFCr1eSY1et1GbsxRtx7uTjEmjdux7YENGCh+PP5fDDGoNlsotVqYW5uDsYYbG9vy7WG14fZ2VmJ+Pl8PonYlUoluYY2Gg3pLcdG4DSDsdNbA4EA0uk0wuEw7t27h729PcTjcczOzsLn8+HOnTtIJBKIx+O4dOkSdnZ2sLu7K86+AE7UOzuOI2nsAKRdyFnwjgWcMWYRwG8DyAMYAviC4zj/xBjzGwD+GwCF401/3XGcP363A307JMMjAXfU7KqAUxRFUd6Ez+cTy3tSLBaRy+UwPz8vKYntdltqvmjCwT5HXBlPpVLI5/Podrs4ODiQNCH+4yq83++XiV00GpXHOUFjJOrw8FAK+zmJoJkKJ1mtVgv37t3D3NycOD9euXIFxowK//1+P8rlMvb29qT+jp8DwAmRx8kaJ+8cPye0nERxYs+JKKN23B/TmRYXF+H1erGwsIBIJIL19XWJLMzMzEh7A+CNeh6fzyfNjtlOgUKyXq+PrcXi5Ntd92Xb7dM0xhaZhPuwhY2dxmnXJQJvNgKxX2sLLIo3Cg5bFI1L+3RHl8alcNppfO7PcVpaoDvKx7Hw+wbgRCNtez9u0eMWS25h5BZ4fI1b/I77jOPGbo/jtOdO26e9nXv8/N64o4p2FNc22GEkhtHi6elpcVDMZDLy+6rX6xI5slOQU6kUSqUSIpEInnjiCcTj8RORKjaYpjis1WqIxWIi0Gq1GoLBoNTDrq2tYX19HXNzc1hfX8cnPvEJ5PN59Ho9WcyhCIxGo/Ib9/v9ODo6OtGnLxwOix0/6+BqtRoikYj0r6MDJkVfOp3GvXv3JN18MBigXC5LOxFG0Twej/Roq9frmJmZwdTUlJidzM/Po1qtolqtIpvNAoBcf3O5HCqVikQSKSYbjQYikYgscNVqNanhA0auvqwBjMfjeP3113F0dIRwOIzZ2VmEQiHcvHkTABCPx5HP51EqlbC9vS2ZBADEuInmLgAQiUSk7peLe2fBu4nA9QH8D47jPGeMiQJ41hjz1ePn/i/Hcf7Bux/eOyMdHv0HdVjv4lL2rEahKIqinFey2awUvHPlN5VKYWZmBqVS6U0mApyQ1Ot1GGOwv78vIiUWi6FcLktxO6NorOVg9I3W/kwdcluAe71eVCoVlMtlZDIZ1Ot1sRk3xmB5eRnGGKyvr2NnZ0dcI/v9PpaXl9HpdMRtcmdnB1tbW5ibm8PU1BT29/cxPT2NVCol4mkwGEgtoF3jxHo5Rt0Y2cpms7Jqz5SowWAgtXy093YcR/oxMd2Ik/h4PI6dnR0Rz3w9G/h6PB5J1WQaKEWQOw3RFijEru2y62fGRXtsoWWLMzsiOG7/fG+38ONtvrftWEiBZ0eKJgkv7sfetx0Rs5+3tx8ncvjefJ61PBQMyWRSIqRuAcz9jTMDsR93v6f7mNmfddIYJ4la+7NNiuKNOw6TopH2MRl3ThiJ5m2e46mpKTGsCAQCCIfDUiMVDAZRKpUQj8dlwYfbUdj5/X4cHh4ikUjgkUceQTabxcMPP4znn38ejjNyqnUcR2q/Dg4OpE0Io3OsXev3+1hfX8drr72GTCaDcDiMer2O69evI5VK4ejoCNlsVgQUF4L4+9nf3xeB0u/3kUwmEQ6HcXR0JAYjhUJBIvBsXzAcDiU6t7CwIGnVNAZZW1uDxzPq6+b1eqXXJAXjYDDA3NycZA/QBKTT6SAQCCAWi6HZbMrYWF9MQyleL0qlEqLRKNLpNGKxGKrVqnw+XieYRhoKhXD79m1ZKGOq5c2bN9FqtbC0tCSLYHt7e2+K7vOazvpDGqx4PB5pBXNWvGMB5zjOLoDd49s1Y8yrAObfq4G9GzIRCrizC20qiqIo5xeKKKbP5XI5WRFnWqSdykTr/W63i42NDaRSKczOzkp/ItawBYNBmehRCHGCTMODdrstESljjNSTlUol1Go1iVDRKMHv98uEcXd3VxwfmXoUjUZl9T4ajeLw8BDtdluiXXSkYyqkMUYMS+wVZN7nRPHu3bvScJvii++7tbWFy5cvy+fhhJcr+qFQSCY96XRaxsjoHtsdcMXbTq8qFAowZmQmY0+yGR0DcGLi7YYCjGPixNWOptnRM1tgTHJDtNMYbfEGnDQU4WvcxiZ2Cp6933HCxd523Od0i7px6ZTuz8l98TvPKC2/1/xc7gksU9EcZ3LDbTfjPqP7+Iy7P26/b0WMuSNy4yJwXASgeGWd6Lh9MVJpn+9wOCzpyeyxxpovO4LGBR6aZrB2jS6Jjz76qKRol8tlMRvi2JkuzcUMADg4OJBrSrVaRalUwsbGBvL5vNS3MvXRFiUUXB7PyJa/VquhWCwCGF3/qtWqiDe29aBgCQaDEs1iRgLTKLnIxbYBfr9f3Hnp0AtAov1MJV1aWpLPUK/XEYlE0Ol0sLe3h0984hO4ffs2yuUyhsMhLl++jF6vh0qlIkZTzGawHXAZuWN7BT4/Pz8Pn88nzcLZ1iEUCuHevXvSky6Xy6HRaGB3d1d+t+yNyWwGLm7E43ER7Yy+PfBtBIwxKwCeAPA9AE8D+BVjzH8B4AcYRemOxrzmlwD8EvDGSX2vyEZVwCmKoiiT+eVf/uW31hTqnHH16tUP7L0uXbo09vFPfOITH9gYFEVRlDfzrl0ojTERAL8H4Fcdx6kC+OcALgP4OEYRun847nWO43zBcZwnHcd5kjmv7xWpsB8eAxRqKuAURVEURVEURbk4vCsBZ4zxYSTevuw4zu8DgOM4+47jDBzHGQL4FwCeevfDfHt4PQapsF8jcIqiKIqiKIqiXCjesYAzoyTjfwXgVcdx/pH1+Ky12c8DeOmdD++dk4kEUKidXW6qoiiKoiiKoijKe827qYF7GsAvALhhjHn++LFfB/B5Y8zHATgANgD8rXfxHu+YbDSAgkbgFEVRFEVRFEW5QLwbF8pvAxhXBP6B9nybRCYSwOuFxlkPQ1EURVEURVEU5T3jXZuYnFcykVENnLtHiKIoiqIoiqIoyoPKhRVwudg0Ov0hys3eWQ9FURRFURRFURTlPeHCCriP5KMAgFd3q2c8EkVRFEVRFEVRlPeGCyvgrs3GAACvqIBTFEVRFEVRFOWCcGEFXDoSQD42jZd3VMApiqIoiqIoinIxuLACDgCuzcXwigo4RVEURVEURVEuCBdawD06F8NaoY52b3DWQ1EURVEURVEURXnXXGgBd202hsHQwa392lkPRVEURVEURVEU5V1zoQXco3NxANA6OEVRFEVRFEVRLgQXWsAtJIOIBqa0Dk5RFEVRFEVRlAvBhRZwHo/BI3MxvLxTOeuhKIqiKIqiKIqivGsutIADgCeWErixXUG13TvroSiKoiiKoiiKorwrLryA+6lrefQGDr752sFZD0VRFEVRFEVRFOVdceEF3BOLCcxEA/j3L+2d9VAURVEURVEURVHeFRdewHk8Bj/1aA7/4WYBra72g1MURVEURVEU5cHlwgs4APjMo7No9Qb489uFsx6KoiiKoiiKoijKO+ZDIeD+yqUU4kEf/vV376LT1yicoiiKoiiKoigPJh8KAefzevB3f/IhfHvtEP/7H71y1sNRFEVRFEVRFEV5R3woBBwA/M2nV/HzT8zjD1/YRW8wPOvhKIqiKIqiKIqivG0+NAIOAH7mo7OotHr47p3iWQ9FURRFURRFURTlbfOhEnCffCiD6PQU/o9/9yoKtc5ZD0dRFEVRFEVRFOVt8aEScNM+L/7vv/EJ3C018Gu/f+Osh6MoiqIoiqIoivK2+FAJOAB4+koGv/qTV/G1V/fxtVf2z3o4iqIoiqIoiqIob5kPnYADgP/y6VU8NBPBb/zhy9rcW1EURVEURVGUB4YPpYDzT3nwv332MWwdtfDPvrl21sNRFEVRFEVRFEV5S3woBRwA/MjlNH7+iXn8P39+B398YxeO45z1kBRFURRFURRFUU7lQyvgAOB//muP4OF8DP/dl5/DZ/7xt/CXr2t7AUVRFEVRFEVRzi8fagGXjgTwe//tj+Lv/2ePo9Ht43Nf+Ev81198BvVO/6yHpiiKoiiKoiiK8iY+1AIOGNXD/fUnF/Gnf/fH8Pc+8xF882YBP/tPv4X/75l7GA41rVJRFEVRFEVRlPODOQ+1X08++aTzgx/84KyHAQD4s1sF/MM/vYkXtyqY9nnw0fk4Pv2RGSwkg/j0R2YQD/rOeoiKoijKGIwxzzqO8+RZj0NRFEVR3k+mznoA541PXc3ixx7K4N/d2MWzd4/wvddL+D//5CYAIDDlwUo6jB9/eAaPzsXwU4/mEJjynvGIFUVRFEVRFEX5sKACbgzGGPzs43P42cfnAABHjS42ig384Qu7eHW3ii/8+R0MHSDk9+JSNozL2Yj8y8UCuJyNIBHywRhzxp9EURRFURRFUZSLhAq4t0Ay7Ecy7McTS0kAQG8wxF/cKeKbrx3gTqGOH2wc4d8+v3PiNX6vB/GQD8mQD4mgH+mIH/OJIBaSQaQiAQR9XgR9XkSnpxAP+hCdnkJ02gf/1Ie+LFFRFEVRFEVRlAmogHsH+LwefOpqFp+6mpXHmt0+Ng6b2K+1sbZfR7HRRaXVxVGjh3Kri1v7NXzz5gHaveGp+/ZPeRA7FnORwNSxsJtCJOBDJOBFxLodDkyN/vmnEAp4R3/9XoT8o+cCUx6NAiqKoiiKoijKBUIF3HtEyD+Fa3MxXEMMP/6RmbHbOI6DYqOLcrOHdm+AZneAaquHSquHeqePWruHWruPWqc/+nt8//CwgUZngFq7h0Z3gMFbdMf0GJwUdwEvQv4phP1ehALHf/1TCLseD/m9CEx5Me3zYNrnxbR1O+DzyHN+rwpERVEURVEURfkgUQH3AWKMQSYSQCYSeMf7cBwHnf4QtXYfjU4fjW4fze5IDDY7fTS6AzS7fTQ6rr/yfB/FRhf3Sk00uwM0OqPX999BywRjgOkpL4L+UTrotM+DoJ+Cb3Q/YAlA/9ToX2DKi8CUB4Hj+36vBz6vB1NeM/rrMfBNeeDz8DGDqePbfq8HU9yGr/F44JsabePzGhWViqIoiqIoyoXlfRNwxpjPAPgnALwA/qXjOL/5fr3XhwljzLE48iIbfedC0E23Pzwh9Nq9Idr9ATq9Idq9Adr9weix3gDt3gCd/uh2qzt6rtUdHkcV++gc76vUGKJz/LpOf/SaTn+Ibv/0NNJ3i9djROD5vAZTXg98ntFfCr6p48enjred8hp4PaPtvMf3pzyeE89NyePH23qNvBf35bX/Gdf948c8x6/hX/dj9uvGPebeF28bA3iMgceMjoEKWUVRFEVRlIvH+yLgjDFeAP8MwF8FsAXgGWPMHziO88r78X7Ku2cUHfMjEXr/38txHHQHIyFHQdcbDNEbOOgPh+gPRs/3Bw76gyF6w+O/Awe9wRD94fG2x9vL4659vHn7k/saDN/Ytt0boj8cYHB8vz8cPd8bDI+3G72Oj/O9z3uvd1vMeQxGou9Y7Hk9vP2G6Hvzcydf4zkWkh4zWkw4cdsYeDyQfXqNddtDcTkSnR5j3TeQfZvjfRngxHvixP3jbQxg4Ho9cPx57r8tXO8x/r1Hr+NzJ8f65m2BN44Htx33eThO+73HvX7SOMe+l4zzPu/F/Xlwn+PM10IXAxRFURTlHPF+ReCeArDmOM7rAGCM+R0AnwWgAk6BMeY4jdKL6FkP5l0yHFpibzjEYOBg4Izun/jnOCe2dT82PL7P2/Zj4/Zl3x86DoYORn+H1m0Hx/cnPe+M3866PXAcOI6D4RAntz8eg2PdHgne48/ljIT66Dn7tvUaa7+OAzjg60bbO3jjueFog9F96/GTr3POvaB+kDlVLOJYALrEo/0aLxcLLDHP7X7hh5fxiz+6ctYfUVEURVEeCN4vATcPYNO6vwXgr9gbGGN+CcAvAcDS0tL7NAxFeX/xeAz8o3AIgtCm7ucBxxJ99xV7Y7d7s3ic9Pq3sy0sgXrqex1/huEQ9x0XTtx/47M77vdyHxdnvHCWfQ7vd0xGr3Mc+1icHJO9rb0oQDE/tMaQCvs/wG+IoiiKojzYvF8Cbly+zYm1ccdxvgDgCwDw5JNP6rq5oijvCZIuOPYypCiKoiiK8mDzfnWN3gKwaN1fALAzYVtFURRFURRFURTlLfB+CbhnADxkjFk1xvgBfA7AH7xP76UoiqIoiqIoivKh4H1JoXQcp2+M+RUAf4JRG4Hfchzn5ffjvRRFURRFURRFUT4svG994BzH+WMAf/x+7V9RFEVRFEVRFOXDxvuVQqkoiqIoiqIoiqK8x6iAUxRFURRFURRFeUBQAacoiqIoiqIoivKAoAJOURRFURRFURTlAUEFnKIoiqIoiqIoygOCCjhFURRFURRFUZQHBBVwiqIoiqIoiqIoDwgq4BRFURRFURRFUR4QVMApiqIoiqIoiqI8IKiAUxRFURRFURRFeUBQAacoiqIoiqIoivKAoAJOURRFURRFURTlAcE4jnPWY4AxpgDg7nu0uwyAw/doXx8kD+K4H8QxAzruDxod9wfLh3ncy47jZN+LwSiKoijKeeVcCLj3EmPMDxzHefKsx/F2eRDH/SCOGdBxf9DouD9YdNyKoiiKcrHRFEpFURRFURRFUZQHBBVwiqIoiqIoiqIoDwgXUcB94awH8A55EMf9II4Z0HF/0Oi4P1h03IqiKIpygblwNXCKoiiKoiiKoigXlYsYgVMURVEURVEURbmQqIBTFEVRFEVRFEV5QLgwAs4Y8xljzE1jzJox5n866/GchjFmwxhzwxjzvDHmB8ePpYwxXzXG3D7+mzwH4/wtY8yBMeYl67GJ4zTG/Nrx8b9pjPnpsxn1xHH/hjFm+/iYP2+M+RnruTMftzFm0RjzTWPMq8aYl40xf+f48XN9vE8Z93k/3tPGmO8bY144Hvf/evz4eT/ek8Z9ro+3NRavMea6MeaPju+f6+OtKIqiKOeRC1EDZ4zxArgF4K8C2ALwDIDPO47zypkObALGmA0ATzqOc2g99vcBlBzH+c1jAZp0HOd/PKsxHo/pxwDUAfy24ziPnTZOY8w1AP8GwFMA5gB8DcBVx3EG52TcvwGg7jjOP3Btey7GbYyZBTDrOM5zxpgogGcB/CcA/ibO8fE+Zdx/Hef7eBsAYcdx6sYYH4BvA/g7AP5TnO/jPWncn8E5Pt7WeP57AE8CiDmO87MPwvVEURRFUc4bFyUC9xSANcdxXnccpwvgdwB89ozH9Hb5LIAvHt/+IkaT4DPFcZw/B1ByPTxpnJ8F8DuO43Qcx1kHsIbRefnAmTDuSZyLcTuOs+s4znPHt2sAXgUwj3N+vE8Z9yTOy7gdx3Hqx3d9x/8cnP/jPWnckzgX4wYAY8wCgL8G4F+6xnduj7eiKIqinEcuioCbB7Bp3d/C6ZPIs8YB8KfGmGeNMb90/FjOcZxdYDQpBjBzZqM7nUnjfBDOwa8YY148TrFkqta5G7cxZgXAEwC+hwfoeLvGDZzz432czvc8gAMAX3Uc54E43hPGDZzz4w3gHwP4ewCG1mPn/ngriqIoynnjogg4M+ax85wb+rTjOD8E4D8C8LePU/4edM77OfjnAC4D+DiAXQD/8PjxczVuY0wEwO8B+FXHcaqnbTrmsfM07nN/vB3HGTiO83EACwCeMsY8dsrm533c5/p4G2N+FsCB4zjPvtWXjHnsPF1PFEVRFOXMuCgCbgvAonV/AcDOGY3lvjiOs3P89wDAVzBKDdo/ridiXdHB2Y3wVCaN81yfA8dx9o8nvkMA/wJvpGOdm3Ef1zT9HoAvO47z+8cPn/vjPW7cD8LxJo7jlAH8B4zqyM798Sb2uB+A4/00gP/4uP73dwD8hDHmS3iAjreiKIqinBcuioB7BsBDxphVY4wfwOcA/MEZj2ksxpjwsdkDjDFhAD8F4CWMxvuLx5v9IoB/ezYjvC+TxvkHAD5njAkYY1YBPATg+2cwvrFwknjMz2N0zIFzMu5jc4p/BeBVx3H+kfXUuT7ek8b9ABzvrDEmcXw7COAnAbyG83+8x477vB9vx3F+zXGcBcdxVjC6Pn/DcZy/gXN+vBVFURTlPDJ11gN4L3Acp2+M+RUAfwLAC+C3HMd5+YyHNYkcgK+M5r2YAvD/Oo7z740xzwD4XWPMfwXgHoD//AzHCAAwxvwbAJ8GkDHGbAH4XwD8JsaM03Gcl40xvwvgFQB9AH/7DJ3uxo3708aYj2OUhrUB4G8B52rcTwP4BQA3juubAODXcf6P96Rxf/6cH+9ZAF88drD1APhdx3H+yBjzXZzv4z1p3P/6nB/vSZz377eiKIqinDsuRBsBRVEURVEURVGUDwMXJYVSURRFURRFURTlwqMCTlEURVEURVEU5QFBBZyiKIqiKIqiKMoDggo4RVEURVEURVGUBwQVcIqiKIqiKIqiKA8IKuAURVEURVEURVEeEFTAKYqiKIqiKIqiPCD8/5YSD3Xj7ofJAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -3205,96 +3205,6 @@ " plot_svd(coffee_image, reconst_img, r, original_shape)" ] }, - { - "cell_type": "code", - "execution_count": 87, - "id": "4c8b4b0b", - "metadata": {}, - "outputs": [ - { - "ename": "ValueError", - "evalue": "cannot select an axis to squeeze out which has size not equal to one", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32mC:\\Users\\DELLPR~1\\AppData\\Local\\Temp/ipykernel_20612/635175836.py\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mx\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msqueeze\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbrain_image\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m:\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[1;32m<__array_function__ internals>\u001b[0m in \u001b[0;36msqueeze\u001b[1;34m(*args, **kwargs)\u001b[0m\n", - "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\numpy\\core\\fromnumeric.py\u001b[0m in \u001b[0;36msqueeze\u001b[1;34m(a, axis)\u001b[0m\n\u001b[0;32m 1504\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0msqueeze\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1505\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1506\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0msqueeze\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1507\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1508\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;31mValueError\u001b[0m: cannot select an axis to squeeze out which has size not equal to one" - ] - } - ], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 80, - "id": "f7e1a1c3", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[[ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " ..., \n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.]],\n", - "\n", - " [[ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " ..., \n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.]],\n", - "\n", - " [[ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " ..., \n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.]],\n", - "\n", - " ..., \n", - " [[ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " ..., \n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.]],\n", - "\n", - " [[ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " ..., \n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.]],\n", - "\n", - " [[ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " ..., \n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.]]])" - ] - }, - "execution_count": 80, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "brain_image" - ] - }, { "cell_type": "code", "execution_count": null, diff --git a/ch3/ch3.ipynb b/ch3/ch3.ipynb index 0a0f6ce..e4f0924 100644 --- a/ch3/ch3.ipynb +++ b/ch3/ch3.ipynb @@ -3410,12 +3410,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "id": "3bf042bb", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "_IndexStructure([(m0, 0)], [], [Lorentz])" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# Rank-1 Tensors are either covariant tensors or covariant tensors.\n", + "from sympy.tensor.tensor import TensorIndexType, TensorIndex, TensorHead, tensor_indices, _IndexStructure\n", + "\n", + "Lorentz = TensorIndexType('Lorentz', dummy_name='L')\n", "m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz) # Returns list of tensor indices given their names and their types.\n", "\n", "rank1_cov = _IndexStructure.from_indices(m0)\n", @@ -3424,7 +3438,7 @@ }, { "cell_type": "code", - "execution_count": 360, + "execution_count": 5, "id": "8dc8489f", "metadata": {}, "outputs": [ @@ -3437,7 +3451,7 @@ "A(Lorentz)" ] }, - "execution_count": 360, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -3449,7 +3463,7 @@ }, { "cell_type": "code", - "execution_count": 361, + "execution_count": 6, "id": "8c08992e", "metadata": {}, "outputs": [ @@ -3462,7 +3476,7 @@ "A(m0)" ] }, - "execution_count": 361, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -3473,17 +3487,17 @@ }, { "cell_type": "code", - "execution_count": 356, + "execution_count": 7, "id": "6555e1ea", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "_IndexStructure([(m0, 0)], [], [Lorentz])" + "_IndexStructure([(-m0, 0)], [], [Lorentz])" ] }, - "execution_count": 356, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -3495,7 +3509,7 @@ }, { "cell_type": "code", - "execution_count": 363, + "execution_count": 8, "id": "2ed63951", "metadata": {}, "outputs": [ @@ -3508,7 +3522,7 @@ "A(-m0)" ] }, - "execution_count": 363, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -3519,7 +3533,7 @@ }, { "cell_type": "code", - "execution_count": 358, + "execution_count": 9, "id": "f3ccd4d0", "metadata": {}, "outputs": [ @@ -3529,7 +3543,7 @@ "_IndexStructure([(m0, 0), (m1, 1)], [], [Lorentz, Lorentz])" ] }, - "execution_count": 358, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -3543,7 +3557,7 @@ }, { "cell_type": "code", - "execution_count": 364, + "execution_count": 10, "id": "8324eb28", "metadata": {}, "outputs": [ @@ -3556,7 +3570,7 @@ "A(m0, m1)" ] }, - "execution_count": 364, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -3568,7 +3582,7 @@ }, { "cell_type": "code", - "execution_count": 359, + "execution_count": 11, "id": "006fd02d", "metadata": {}, "outputs": [ @@ -3578,7 +3592,7 @@ "_IndexStructure([(-m0, 0), (-m1, 1)], [], [Lorentz, Lorentz])" ] }, - "execution_count": 359, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -3591,7 +3605,7 @@ }, { "cell_type": "code", - "execution_count": 365, + "execution_count": 12, "id": "d2527ff8", "metadata": {}, "outputs": [ @@ -3604,7 +3618,7 @@ "A(-m0, -m1)" ] }, - "execution_count": 365, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -3615,7 +3629,7 @@ }, { "cell_type": "code", - "execution_count": 366, + "execution_count": 13, "id": "2a57039f", "metadata": {}, "outputs": [ @@ -3625,7 +3639,7 @@ "_IndexStructure([(-m0, 0), (m1, 1)], [], [Lorentz, Lorentz])" ] }, - "execution_count": 366, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -3638,7 +3652,7 @@ }, { "cell_type": "code", - "execution_count": 367, + "execution_count": 14, "id": "ab0c1ebb", "metadata": {}, "outputs": [ @@ -3651,7 +3665,7 @@ "A(-m0, m1)" ] }, - "execution_count": 367, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -3662,7 +3676,7 @@ }, { "cell_type": "code", - "execution_count": 344, + "execution_count": 15, "id": "5a5e14bb", "metadata": {}, "outputs": [ @@ -3675,7 +3689,7 @@ "A(Lorentz,Lorentz)" ] }, - "execution_count": 344, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -3684,7 +3698,7 @@ "# Define a fully antisymmetric tensor of rank 2:\n", "from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorSymmetry\n", "\n", - "Lorentz = TensorIndexType('Lorentz', dummy_name='L')\n", + "\n", "asym2 = TensorSymmetry.fully_symmetric(-2)\n", "A = TensorHead('A', [Lorentz, Lorentz], asym2)\n", "A" @@ -3692,7 +3706,7 @@ }, { "cell_type": "code", - "execution_count": 370, + "execution_count": 16, "id": "cab20e76", "metadata": {}, "outputs": [ @@ -3705,7 +3719,7 @@ "p(Lorentz)" ] }, - "execution_count": 370, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -3721,7 +3735,7 @@ }, { "cell_type": "code", - "execution_count": 371, + "execution_count": 17, "id": "555c153d", "metadata": {}, "outputs": [ @@ -3734,7 +3748,7 @@ "p(L_0)*q(L_1)*metric(-L_0, -L_1)" ] }, - "execution_count": 371, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -3746,7 +3760,7 @@ }, { "cell_type": "code", - "execution_count": 372, + "execution_count": 18, "id": "f29973cb", "metadata": {}, "outputs": [ @@ -3759,7 +3773,7 @@ "metric(L_0, L_1)*p(-L_0)*q(-L_1)" ] }, - "execution_count": 372, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -3770,7 +3784,7 @@ }, { "cell_type": "code", - "execution_count": 374, + "execution_count": 19, "id": "05cffa8b", "metadata": {}, "outputs": [ @@ -3783,7 +3797,7 @@ "p(L_0)*q(-L_0)" ] }, - "execution_count": 374, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -3808,7 +3822,7 @@ }, { "cell_type": "code", - "execution_count": 379, + "execution_count": 22, "id": "1731ab51", "metadata": {}, "outputs": [ @@ -3821,7 +3835,7 @@ "[[[[0, 0], [0, 0]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[0, 0], [0, 0]]]]" ] }, - "execution_count": 379, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -3829,6 +3843,7 @@ "source": [ "from sympy.diffgeom import metric_to_Riemann_components, TensorProduct\n", "from sympy import exp\n", + "from sympy.diffgeom.rn import R2\n", "\n", "TP = TensorProduct\n", "metric_to_Riemann_components(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))" @@ -3836,7 +3851,7 @@ }, { "cell_type": "code", - "execution_count": 383, + "execution_count": 23, "id": "5ea22b10", "metadata": {}, "outputs": [ @@ -3849,7 +3864,7 @@ "exp(2*rho)*TensorProduct(drho, drho) + rho**2*TensorProduct(dtheta, dtheta)" ] }, - "execution_count": 383, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" } @@ -3861,7 +3876,7 @@ }, { "cell_type": "code", - "execution_count": 384, + "execution_count": 24, "id": "1ee7678e", "metadata": {}, "outputs": [ @@ -3874,7 +3889,7 @@ "[[[[0, 0], [0, 0]], [[0, exp(-2*rho)*rho], [-exp(-2*rho)*rho, 0]]], [[[0, -1/rho], [1/rho, 0]], [[0, 0], [0, 0]]]]" ] }, - "execution_count": 384, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -3886,7 +3901,7 @@ }, { "cell_type": "code", - "execution_count": 385, + "execution_count": 25, "id": "2c530e0c", "metadata": {}, "outputs": [ @@ -3899,7 +3914,7 @@ "[[[0, 0], [0, 0]], [[0, exp(-2*rho)*rho], [-exp(-2*rho)*rho, 0]]]" ] }, - "execution_count": 385, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -3910,7 +3925,7 @@ }, { "cell_type": "code", - "execution_count": 390, + "execution_count": 27, "id": "7b11fbe2", "metadata": {}, "outputs": [ @@ -3923,7 +3938,7 @@ "0" ] }, - "execution_count": 390, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -3931,6 +3946,7 @@ "source": [ "# Lie derivative with respect to a vector field.\n", "from sympy.diffgeom import (LieDerivative, TensorProduct)\n", + "from sympy.diffgeom.rn import R2_r\n", "\n", "fx, fy = R2_r.base_scalars()\n", "e_x, e_y = R2_r.base_vectors()\n", @@ -3941,7 +3957,7 @@ }, { "cell_type": "code", - "execution_count": 387, + "execution_count": 28, "id": "27e68085", "metadata": {}, "outputs": [ @@ -3954,7 +3970,7 @@ "1" ] }, - "execution_count": 387, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -3965,7 +3981,7 @@ }, { "cell_type": "code", - "execution_count": 388, + "execution_count": 29, "id": "472973a7", "metadata": {}, "outputs": [ @@ -3978,7 +3994,7 @@ "0" ] }, - "execution_count": 388, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -3989,7 +4005,7 @@ }, { "cell_type": "code", - "execution_count": 389, + "execution_count": 30, "id": "e7736ad8", "metadata": {}, "outputs": [ @@ -4002,7 +4018,7 @@ "0" ] }, - "execution_count": 389, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } @@ -4013,7 +4029,7 @@ }, { "cell_type": "code", - "execution_count": 391, + "execution_count": 31, "id": "dcf92a61", "metadata": {}, "outputs": [ @@ -4026,7 +4042,7 @@ "LieDerivative(e_x, dx)" ] }, - "execution_count": 391, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } @@ -4037,7 +4053,7 @@ }, { "cell_type": "code", - "execution_count": 392, + "execution_count": 32, "id": "403bde05", "metadata": {}, "outputs": [ @@ -4050,7 +4066,7 @@ "TensorProduct(dx, dy)" ] }, - "execution_count": 392, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -4062,7 +4078,7 @@ }, { "cell_type": "code", - "execution_count": 393, + "execution_count": 33, "id": "2b8e5af5", "metadata": {}, "outputs": [ @@ -4075,7 +4091,7 @@ "LieDerivative(e_x, TensorProduct(dx, dy))" ] }, - "execution_count": 393, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } diff --git a/ch4/.ipynb_checkpoints/ch4-checkpoint.ipynb b/ch4/.ipynb_checkpoints/ch4-checkpoint.ipynb new file mode 100644 index 0000000..8ae4ba9 --- /dev/null +++ b/ch4/.ipynb_checkpoints/ch4-checkpoint.ipynb @@ -0,0 +1,2284 @@ +{ + "cells": [ + { + "attachments": { + "TestNetwork-2.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNwAAALkCAYAAADUNSjqAAAgAElEQVR4nOzdfZAc9X3v+48cwXqvhMArS6AHVit5QbIkG0uBE2CF1FuGGIzFgxzCUzkVOPY9daBO3esKeLELsb1C5SDbua6blLknZZ9wkxzAWLGIpWDHR/bZFmiBe9GVwHpCIIQk0MpI1gbLIpvFOHv/6P7t9Pb29PTM9Ex3z7xfVVOjne3p+Wl3Zrb7M9/v7ycBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgLD3T2uy0xwAAAAAAAAA0hJ5pbfbQ3M7RobmdowRvAABIH0p7AAAAAAAaR8+0tl6CNwBAsyNwAwAAAJA4gjcAQDOblPYAAAAAAKSjq6XVCrt9RZHbI/azqtR9Npwe6ts+MuwMjAw75ewbAIA8InADAAAAGoA/PDPhV1dL6yr/NuUGafW03RfEDYwMbwv7HmEdACAvCNwAAACAnDCh2oqWVsuEadWEaNsjAqxg6FViXCUr3MzjJRX6+UK4bYGvnST2DwBANQjcAAAAgAwy4VrPtLZeqXSwFgzPBkaGt4XcNu7rpPRMa7PNOMPGteH0UF+pxw6r0PN9r+xw0WtfHQsNN5wesuPeFwCAahG4AQAAABnQ1dJqmcq1qGDJhGgbTg/1mdvSruoKC9ziBm2V8lf7eV/HCuX8QRxzygEAaoXADQAAAEhBV0urFVW9FgzWshwMmcCt1iFbOUyA6f27ZIhpQjgq4QAASSBwAwDUnTnJzMpJGQDUS1TI5g/Y8vbeaKrN8jBufxAX1QZLAAcAqAaBG4CGUqy9JK6wCaIDq6Y5we8jPnOiaX4/G04P9XEiA6DRRbWKZqkirJmVauc1ARwtqACAuAjcAORaqXacWguEcdsivueoiQWDNoPADUAjK/beR8iWfaUCuA2nh/oI3wAAUQjcAOROsRMYqRBy+SdDLmffYfv0V8klFepFBXXB7/u2m3Bb1kX9rqT4gVtXBT/3tAPYYvL4ewRQnrD3PkK2fDMBXFgLKuEbACAMgRuA3IhaAU1KJ8jwB0HBgKcWQV2YqJAnLMyrl1ITVGO84O+RikkgfwjamkOp8I3KbQCAROAGIAe6WlqtLTPm9JuvG+HkJSqo874/Ye65Zg6vyq1UlNIJG+PMGZj07zFY1Rm4zUnysQAU5/9QyMz3RfDS+IqFbwRvAAACNwCZFawUaISgrRai2i3TDumKrf5mcELiCvsdJlkxGdZqzesISEbwQyHe15pXz7Q227se+9tnqvB5TgBA8yFwA5BJwUoBgrb8CmsFNjgxrV5wZV7vtlXB24oxlTi+fzu1GCfQiDbPmNPPh0IICqt6I3gDgOZD4AYgc/wBDYFM4wj75H/7yLBzw8lj3akNqkmYkz/f15Hz6xHCAdGCFdirTx7r5nWCMMEPnTiuAQAAQCo2z5jTPzS3c3RobueoCWjQeHqmtdlDcztHN/vasJAOLziwe6a12f7XX/Bitkl7vEDaulpaLfO62DxjTn8lqyij+Zi/exzjAAAAoO78J/ucwDQHfs/Z5A/hCOCAAv9rguc/KkHwBgAAgLoyYRvVAkA2RQVwhG9oBoRtSBLPJwAAANScP2xLeywASjMVcGEtqIRvaESEI6gFqt0AAABQM/6DzbTHAqAyxarfOHlEIyBsQ63xHAMAAECi/AeYtJECjaFY8MZrHHlFEIJ6CL538p4JAACAihC2AY0trOqNdlPkjWmb5nmLemG1dgAAAFSM1gmguRC8IY+Y8gBp4TgJAAAAFeEgEmhOTBCOvKAKG2kjdAOA/JuU9gAANBevsqV3w+mhvg2nh+y0xwOg/sz7gPma9wNkzeYZc/pXtLRajfLc9IeGK1para6W1lXBbVaEBIvbR4Yd/9cDI8Pbgt8bCGyD5HS1tFpbvBXcG+W5CADNhMANQN34T7Lb3j7I+w/Q5PzvCdtHhp0Np4f6OHlH2vL8t8oEa/5QLSxIS5ovfNsmSQRDySF0A4D8ytVBBID84oARQBiq3ZA1Zs62PDwXTcDWM62tNypY81eqDYwMbwtWrnm3T7gt2E7rf4yultZVpcK8DaeH+rxrO2o7ROMYCgDyicANQF3k6QQGQP0Fq91uOHmsO+0xoflkfdqDOAHb9pFhxx+q1aNqtKul1TLjKRbE+cdFJWv5CN0AAAAwgZn4d7N3oAgAYbpaWi0WVUCasvjc62pptTbPmNO/ecacfv/rw/xd3TxjTn+X20JqpT1Wv66WVsusSBwcN6sVV8b/HsnPDgAAoMn5D7TTHguAfGB1PqQhS3+vTMgWFlRlNWArxQRwxcK3tMeXF4RuAAAAkJTNagEA2Ufohnozz7m0nm/FKtn8VWxpjKtWwsI3qt7i8f/sGu15AQAAgBjSPnkBkG+EbqgXf9VQGo/dLCFbmGKVb7zmoxG6AQAANKksteYAyC9/EMI8kKiVen9AVKxltFlCtmII3spjnkO8NwIAADQRDpQBJIXQDbVWr0qhYtVszRyyhQlbbIHjiXDm+cTPBwAAoAmwKimApDFROGql1u2kUS2TBG2lEbxF8z9/eT4BAAA0MA78ANQKoRtqoVbtpFSzJYvgrTim8QAAAGgCtDYAqCVCNyQt6Q+JCNpqi+AtHPO5AQAANDA+YQVQD4RuSEqS7aQEbfVF8DYeHQYAAAANjINeAPXiP9nm5BKVSqKdNCxo4+9gfbC4wnh88AkAANCAajUHDgAUw8klqlXNNAgEbdlB6FZAaykAAEAD4aQXQFo4uUQ1KvnbRdCWXQRvtJYCAAA0FBZKAJCmZj65RuVMOBM3rCVoyw9/8NYzrc1utuCp3Oc2AAAAMojqNgBpo6IDlYg7FQJBWz41e7UbH4YCAADkXLMeyALIFio6UC4TSESFtMHQhudX/vh/h820amySK/ACAACgzlgoAUCWUNGBckSFEf6wotmCmkbUrNVuzHEJAACQQ7SSAsgaWksRV7EPjILtowRtjSVY7Zb2eGqN90QAAIAcopIEQBbRWoo4goEbQVvzaLZqN94TAQAAcoTqNgBZFmduLjQ3f9VPswUwcAVXMk17PLXEeyIAAEBONMsBKoB8YrJwRPE/P6hqa27BsLVRf/+8JwIAAOQACyUAyAPa3lFM2MqjjRq0oLRgO3GjvmfwnggAAJBxjf4pMIDGwGThCEP7KIpp9BZT3hMBAAAyjOo2AHliKjqYLBzBKiZa6xCm0VtMWUABAAAgg1goAUDeUNEBqRC8UtmGuBq5xZT3RAAAgIxp1ANPAI2Nio7m5Q9czd8v5rFCXHFbTPMWXLGAAgAAQIZQ3QYgz6joaC7B9lH/ogj8LUM5/Mc/YaG9Ca/SGFs1CJ4BAAAyguo2AHlGlVvziJqDi3lIUYlgpaT/OZXX4yPa7QEAADKAExQAjYCTy8YWVtUW3Cav4QiyIdhimvdFOPggAgAAIEVNMs/HhyUtl3SXpP4Yl7u87T+cxmABVIaTy8YVbPsLC1WZGgFJCFZQ5n0hDlpLAQAAUtIE1W1XShqt4nJF/YcMoFJUuTWWYFVb1N+qJvh7hjoJW/U2r2EuraUAAAApaIJqgG/KBGer7xnVV58c1Xf3jWrTu8Uv393nbrf6Hn/o9s1U/xcAYqPKrXHEqWoL27aOQ0QDiqpwy2ugy/siAABAneX54DGGKySNavJZo3pwY3TIVuzy4MZRTT7bhG5Xpvz/ARAT1Rz5Vk5Vm0F1G5IQXDyhUarcJFpLAQAA6qbBP+2cIlOdFha2RbWQhoVuhe8zpxuQA+bEskHf3xpaOVVtYfepwxDRwKJaSfNe5eYPE/M4fgAAgNxo8IOuT8u0kYZVrpUTuG16199eujyt/xCA+JpkMZiGUklVm9Hgf8+Qgp5pbXap1tK0x1gJ//+JCmAAAIAaaILWm3WS3LnY4raPRgVuX33SfP+uVP9XAGKjfSo/KqlqC96XakbUSrHwLa/vLbxmAAAAaqRJKj/cgKzUAglxwjazkIK7DQenQE40yXtdrlVT1SZRrYP662pptfzPu7yGbrTdA0ByPpT2AABkxwrvpGTD6aG+lIdSe9NnZ2s/AOpmYGTY2T4y7EjuSXK6o0FQz7Q2e8uMOf0rWlqt7SPDzuqTx7o3nB6yy9xHr+T+PRvwftdALQ2MDDsbTg/Zq08e65bc52AeQzdzDLjCCxBTHg4AAED+NdHE0tEVa+VUt43fjk+CgRwxVW5UcWRHtVVtRhNMjYCMy/siBHkfPwBkBRVuACSNrwZIeywAUGum6mlFS6tFlVv6/FVtklRJVZvZj+/vWdn3B5Iw4FVmSvmsdPOq9fqkfI4fALKCwA2AzIHUdq8dIt3R1IzlXfL+GAAS4j+hTHsszWzzjDn95newfWTYaXv74KRK2kD9YZsJO4C0BEO3vFXTbjg9ZBO6AUB1CNwAjJ1sDowMb0t7LFWwfBdbbotnv0xbaOHrWj5+8DHN49q+i1XDMQAow3aq3FJlWkj984feUGFQFgzbmLcNWeAP3fI4JxqhGwAAQBVyONeNpfHhVjDgCr0sab9wdEn7heXOy1beXG/lX8z4be8CoM7MnGE5eg9sCP55QzfPmNNfTeDpn/eN4BRZlPc50Rph9VUASMOktAcAID1dLa3WFq/Foe3tg1l8P7C8697A1xMsab9w7N9L29snfG2seeQb7j82vRv9yGvOi7edf9sSY5KkPUePau/Rt0rt0ZG0zbt2Sg8AQKXM++D2kWGn0uoqxNflVvn0+qvaKp3KILgvKtuQZf5jrmqe92kJzI+Yu/EDQBompz0AAOnxn/CkPBTD8i6rVCRcMyHWrSu6xm7zB2qxnRqUps8u/35h+5H04bPOevfGP/gP5/kDNX+wZv5964quCYGg+d5T2wfMTZZ3MUGjIzeAM/92qh84AMlt+do+MuyYtlICm9rxn7B7c4b2VfrzTnJfQD2Y9tItvjkL8xRambF6raW5Gz8ApCGLFS0A6sB/spJidZvlXfcqImAzAVVFwVrA+h/8w46dhw5dqq8+KV12XfEN41a4vfQT6c9v181/8AcHvtC9aqG52R+8lapqM+Gh+T+a4K3E/UxIakcPEEApVLnVXnCutqSq2qi0Qd7kfb5Bf6UeYTcARCNwA5rU0NzOUSmVkxVLRVpEg9VrSQRsQU8++5yz8fkXLK2+R7rr68U3jBu4PfY1acujuve6a1/+9CWf/FTUppWGcFJoFZyfI7cCzo4eLIBizHtiiifAUyRdLrfCd22M7R+W+7p/UdJ7WR2D/+Rcqu7n6w8qpJr+/crC7wINLO+hm5RciA4AjYzADWhC5kCvjtUclopUsS1pv3CszbIeDh4/vu8rf/v3iyVJD26Ull9T+c52bpXW3yJJ+qsv/cfDc6ZP7yh3F5WGcBEBnCPmfwPKZk4eUzpxvFJSaJpexv1fyNoYgm2flf69CVa11fhvVxZ+F2gC5j0nz5W1zOsGANEI3IAmVKfqNkshIZu/iq1eIVvQD1940Xl827OWJp8tPfB4ZaHbzq3SI3dKH7yvO1etdD5/xeVWUuMrN4R7avvAuBAugNZTIIYU20q/Kek+SdLqe6SlV0kLLomeY/LUoHToFWnPc9KWR82t35J0fxbGkFTbZ1jQVuP2tSz8LtBEUg76E1HHylMAyB0CN6DJmAOjGh0QWSoSstWyTbQS9vef2vWLw0eWSarqxOqTHfN22bfduqzW4y0nhIvQJ4I3IMwUSZf//tktX/n/3h/5wxjbJ9VCeIWk5zX5LOmBJ6oO/yV1SXo+zTGsbGld+48z5jwsVR6QBU/g6zRPVBZ+F2gyeV+51I9qNwCYiMANaCI1XCjBUiBoy2LIFjRW6VahpCvbKhFzgYUgqt6AgrRaCKdIOiNpfHt7nPkjg9v42tsltUr6t5qOwXy/yBj+n/PnHd40/Ju/LeeEO1jNJtV1Qvbwn4Of//9shP18Kv9doEn5Q7e8zudmUO0GAOMRuAFNJOHqNksR1WxZDdmCDh4/vu+l1w+eeOOX70zdeejQpaW2X75gwY6PXXD+mcsu6pzZOWvW4nqMsVxlhnCEb2hmabYQflrSzyYs4FJJ4CaNLeAi6fcl7azZGKKCJ28MF/7e5DVv/e6Dp0s9eFjIJqWy8mH4z8EI+z8bYT+jyn4XaGKNMJ+bH8EbALgmpz0AAPURKPW3q9iVpSLVbHkJ2fw6Z81aXGZwVjKUS5upLLxVXWO3RYRwvYFrR26rnEQIh8Z2haT7ym4hnD7bvVx2nXRJt2khvE/S0yqvhXCVJDfkM6KCnVLbLL3KhDyXKH7IU9kYJDdoCm7rjeGt330QupOullZrRUur1dXSuqpYyCZJKVT4TPw5hPGHa1E/p8p+F2hiN5w81j00t3N0hRtC23kPp/zj75nW1msuBG8Amg0VbkCTSGChBFvuSYllbshz0IZCCBey0mmQI0I4NJbSLYRSeOtk0PgWwrMl/TbmGEYlSd/d5wZ4wQAnTnWZf5tTg9KXFkvu6zVuhUx5YwirfPPfFhiDqWCTpGDAJqVSyVbM+J9DUKn/d1Blvws0OX9racLTfqQqWO0mUfEGoHl8KO0BAKi9nmlttlTxAY4t92SkV5K1pP1CrbvjNm164Ct6+I7bCdty7NYVXbp1RZc2PfCVsaq4Iiy5v/9euc+FUUn9cp8bdm1HCdTE5ZLcNtI4YVvY18bya9z9uOaWPRJ/0FVuG2lwP5WKO4Y4+5EbHAzN7Rzd4rXJ+VcZ3T4y7Kw+eay77e2Dk27I2nxV1fwMa7EfNJUB7/UhFY7bGsGG00N229sHJ5kKVsmtehua2znaM63N7goJ4xvIFLkt6+tUOH6Kuqzztp+SxmABJI+WUqAJBD9ZjMmSr3WUarbGZsK3p7YPBCve+uQ+D/o0vsLR8v2bdlTkTXQLYTB8KtVmWWgh7JD0ZkUjihN0VROGJTWGMmwfGXYGRoa3eddOojuvJ9M+G6cKEajChtNDfStmzLG89ks77fEkacPpIXvD6SHbhIljraZSrwnjGuz/XMmCPGu9i7l/JQvyAMgQAjegwVVQ3WaJoK1phQRv/rB2mwrtUbZ3TQiHPHJPaBZcEm9rf+ASFrIU9rNKbvVneWoYtkVVjwyMDFe9/yL7ddrePkgrJVAmU+XWKHO5hTH/JxO+meBNckO4BgnfkliQ53lVtiAPgAxpmPkBAEzknzcjxnwglgjaEFCk4s0usrm5fdxcfyEcEcIhXe6cXcVCpnLn7PJ/v1xx5kmLMz7v9q6WVm2ZMSfWQ7e9fbC8McT5uVT6c8iCOL/b4GIR0fdxxBxuKFOjzuUWxV/15r89p+HbFZKeL3tBHr+dW82CPJLUpfIW5AGQIVS4AfnxYUmL5a569icxtv+7wx/89tzXf/vbw5uGf/O3EdtZImhDEUUq3kyLqR3Y3P+1eb72SfpcYDtLEyvh/lrSq5J+J+mvEhk8AG33V7GhOiZcC1uhtTjbu3a8CxDJX+XW1dJq5bodO6Zg1ZtZydhf+ZaTFvUPy4Rj/rCtnA9sNr3r3u+Bx82CPAOSpkp6rzZDBlBLBG5APlQyD4T11L/+Rk/9628k6adFtumXrxLJhCtAUJnBWyXP1//k+/cauc9LR1TCIU2mhTRmuHLDLSt1wx+vjLXtF29ZX83IivpV50xtsm+Lt3GNxrBwyTzdb3+hJvuuhVr9LhT+4YLhqPD+Zr52ajUQ5It/LrcbTh5z0h5PPfmr2fzhm7n0eK8lU/2WsQBusaToBXmCwhboMaHb6ntMe+nlkn6e5EAB1AeBG5B9tZgHwpbv4J+gDXEVCd5WyQ3eHCXzfLUk7RJzwiEt/pAtzy2SyAKzMmOw1d4KfO0P5Bzvelvga0doCiZAaqYqtzDB8E2SJlS/ea8dUwEXvF+duRN6+hfkifs3JOzDncKCPKtE4AbkEoEbkG1XSLqv7Hkgps92L5ddJ13SbeaBuE/Sy5K+KNpHUSUT0Hqhm+Vd1iq55+syb3+TxcIMSEN5bYOVOzUYHUiXsx9J/8uUD78rqbyBxx1DcPGIYJtUNWPIglI/h7gVj97PQdJjKv6eZGl84BZ8n/Nfx6mO81+jAZi20rTHkRXBEC0475upgPPf5g/h6lQJ5075YhbSKfVeEXwPDb7HFhbkWSvpoaQHC6D2CNyA7JqisHkg/ML+kAfnhxg/D8R/l3RSktbdcRtBG6oSqHY7LOlhSdFhW6nJxsc/Xx+WO2+J7dvC/DuNEM5OcF/Ig7DFARLyiWUf27F71xuX6tAryQRuh16RJF0wq+0dxQy7qhpD2M+jgjFkQcmfQ7GKx2LzMXk/B0nPRTyso+IBmRW4XhVyu/m3RLtqQxoYGd5mKrmara00Dv+8b9LECjgpEML5Xif+IM73tZPY4KbPHh+mVfr3I4m/DQBSReAGZNflkorPA1Hsj7f5VMzPNw/EkvYL33v4jttnJDxWNLFbV3RpdHT03R8MPB89b0mxeUqCouctsUP2bG6rdQgXNW8dGkmclUKrNG/BrDO7d73htlJfdl31O9zjZjvnz54ee5WEisYQtUpnBWPIglg/h7irk0pjPwdJrxTfKJITuA6yVLw6Luz7Ue2q5rZij4WUbB8ZdnomhqkoIqyNtMsXuBUL4qSJYZzkBp7B27zbx/5dUg3/hgDIBwI3ILvcT7T980CEiVuB4c0Dcc0ll5ydwNiAcX77we9aJZV+vkqF56y/bSKovHlL7JDbLE0M3MJucxQvhLN8/zb3jdoeeRC3lbJUAOe1ELZ8+Kz35FYnl/SpSy+e+U8/3O4+zy/pLgTVcU7Qgtvs3GpeL+pcODd2KUXFYwj7foVjyIKiP4egOL8b389B0r6kxhjgKDogsxS/XVVi/rhM8s/jlu5I8mugSOVaVyBwC4Zx/mtpfCDnFwjitm0fGbYGzMrQhG0AROAGZNlaSf75G6rj7ef4v/wL9elI3GvHBxdKKv58LbdiqPp5SxwVThBt79pS+SGc2Y/ZRr5tqXbLr4clrS3ZQhi3DchrITz3I1N/rZiBW0fn7MU3397tPP1kv6VH7nRbqePOe+i3c6s776GkNXd0OxfM+agV965ZGEMW1OLnIHe15n9LcJjlcFRdu6r/OqvtqlZKj4v669fEv8FVGRgZ1lgwFtDV4n5+uMK79t8WvN0fyq1oabW2nzyW5DCDRmu58xrg+AgQgRuQfUnN38A8EKiHcp5nUeFbbZ6vjqoL4cJQ7ZZP2yStTbqF8LyPnPN+OYO4fk2X9eqew7v2735zmdbfUs3Kvvr4J+bv+uzNXVY5j5+VMWRBkj8HuauCv1CHYVfCCVwHWZpYHSeND+L8308rkLPkBjENfVJvFk5o0pVKLbnPL6ueD2qCuGKBnF8wiItznybC8REgaVLaAwBQlPtJVtRJXpxFEwLbm4nugSStfeJJ7T36VvHnX7nP1fH3qfffKkvFqzuKceSe+DmJjwa1MEXSGUnSgxsrq2Yydm41i3zoW3/9v508r+2csufI/PHTA86mJ/qtSodw8+3dzvVrqgu6sjCGLKj25yCpS2bBo8ZkKXr+uCiOd51Eu6qt8e/PDRm8bZ4xp39FS6u1+uSx7iYL3Cy5gao6Oxbp3rt70h1NTN/5mw06ePjVicc3xar8w24P3uZ9/e11jyU82tr55/5/1E/7f2S+bMjXJhAXFW4AgHQUm78tfY4mVsKVauWwVGhxCrajInvekxuMDCTZSnle2zlWJYP57M1d1uJPzN/38o7XThw5dHzq7l1vXFrqPp9Y9rEd8xbMOvOpSy+e2dE5u6LHzdoYssD8HH7wdz878dr+o1Mllfw5yG1R3ibpRbnPrUbmKH67qhQ9f1yc6jj/td+qwNdU0zQOW97v8zPdN+ra7pvSHQ3KZn5nXujGaxNNjcANyKtgq5P5OrshBuDK3/PVKnNbs33UnHBI3/OSvqUP3r8vC62UHZ2zF3d0zl5cxl3iBEG5G0MWdHTOXvza/qPm50B1RnxO4DrIClxX065qaaKGm1vTzBHWRNVtthohbIu7II9/vlD/sZE5LvIW5Dln6rSTksqunk7Ttd03qbNjkb7z2AbJ/Z2uktSd7qiA+iNwA/LO/FEOzjcEZFE+n69WxPccuSeAjgqLK5jty12YAfV3v6RNkp7Xlkf9c3DF1iitlCjY/INnzT8bJrjJCCdwHWQpul01+P1iGi54axJjiyPkNWxrn7vgwMHDry4suiBPlLBjIm9BnrmzOo4oZ4GbJHXOX6Rvr3vMtNpacrsFusUxD5oIgRsAAPE43nVf4OvgNuZ227u2RAiXZS9IOlvSXEkdck/yV0myFi6Zp4WL5024w8xZHxk87yPnvH/B7OlTKm0jRX388mhfZyYAACAASURBVNivDh888Pa77wyeaj100FtNOcKCztkHfvKjF4Yl5eYTgQbiKPp9z1J582ua4M3sW0pm/jgkbyxsu/euHnXOX5TuaCo086Pnu6smRC3IExS1QI+3IM+Fs+edSWqMabj37h7/vG4Nv9gJ4EfgBgBANEfVHRg6IoTLut9KetO7mBM/S5Ju+OOVYduz7HMOPLNpwHn6yfIWQDiw94g/lPtpsiNClRwVKonjBG5mW4Vcp7W6amw909psSdpweqivxKb1NkXS5XI/mFgbY/uoOQ4t+RZH+Ez3jbkN2ySpo/0iNznb8qh0SXdhbtBSU2eEfX/n1rGq6yWLls1McpxpYF43NCsCNyDrSs0DEZz3IWo/kj581lnvyT1YApJX7PkanKckzn5cbyY5vAo5Ndqn2a/tXVsihMsKR5JzYO8R68DeI1q4ZGKVG7LtL9Y9vmv/7jctSdXMz+fO8+e2HiM7rIjvOQpfMdrSxHZV/76C3898IJeSKyUNlHmftSoEc1fKrSqWcroSaZTzPzqr4/qrP+8887MfWkktyHP91X/ktM+ZbyU70nQQuqEZEbgB2fWwpLVF54EITjzvvz2MNw/ER6ZO/bUI3JCwi2fNPrD36Fvx5i0p4/kq6ZTcOT/MJ/x2NePMOEeEcFnSJ8navPFZ3b/kC2mPBWX48dMDzv7db1qafJb0wBPxT3inz3Yvl13nVqc8cqf0wfv3SXpabviG7HE0fh7NqO2ivm+pvPnj/IGc2W+i7ao909p6JWl7dhZM+Kak+yQlEWK/p0ZYHCHE1Ss/Z71+aP+u1w7tW1btgjwXL1i86+qV11v1GXl9hIRuLKaAhjYp7QEAKOrTkn6m1fdId329+FZxwgtJeuxr0pZH1Xf7rYc/MW9eR1KDBCTp56/84uXv/OSfP5X081XSOkkPBb7b7HN/WIo3j5EjQrhqjUrS/fYXqHLLiV8e+9XhB//3/9ohSXpw48SwLaoaPPietHOrtP4W89VUTWyHQzps1fc9zQpcB6vjSnFUZnVcV0urtWXGnH5Janv7YBbO166Q9HzZIbafqdr64H3Ja/dttLDN72fPPuM887N/sCq9//VXf965euXnKr5/1h1881WzgqlUvDIVyL0svIEDCDdFkjtJathJQzl8Jw3fu/c/n2w755zcrXSEbDt26tTh//Ld/9YhKdHnqwonubYmhkvNHrz5WSKEqwVbUu/CJfN0v02VWx5s/58vv/x//1//VDz8Lydwk/zh/9WSfp7QMNFYrMB11YFcz7Q2q2daW++G00N9G04P2VWOr1rhx6PmtRT14VlwG9/f98t/f9W+W2/808U1GG9mHD325r69r+468dbgkan7X//FpaW2//hFn9xx4ex5Z5YsWjazfc78hv7ZGN4KpuZLjuvQcAjcgGxz58qYfHb180B88L7uXLXS+fwVl1tJDxKQpB++8KLz+LZnraSer3LnfFkf2ML2rv2hUjO0m1bCEiFcEqhyy5Ef/vefH/jJj15YqK8+GX+VwKjg4KWfSH9+u+RO8xCstgXisBTdrjrB0NxOSdLqk8ecgZFhKd3VVcM7LioJ3KSxEPsPV612rvv0GivpwSJ/fCuYSoRuaDAEbkC29Us6V9IySVXNA/HJjnm77NtuXVb7IaOZ2d9/atcvDh+p+vkqaZfc532xAy9L4SvVcaAWzdL4KgyryHaOCOEMW1S55cY37b/Xgb1HpO/uKz2fpFQ6NDg1KH1prNCE42bUgiXfe3HPtLbenmlt2nB6SBtOD5W6r6OJ7ar+6ySsk7R2XIgdZ3qIYtt4IfbHL/rkjv/1C18uWfWF5kDohkbFgQOQXf2SrCXtF+pT8+e7lUMVorIN9TRW6VahO1etdD743e+sp7aPLYRW6sDLFsFbNSwRwpVClVtOjAVucVZDlsqr0uG4GXUwNLdzVJK8dlLHu9nyrms+f1yIUUmFEDvYlh322onaxhdif3vdY2UOBY2M0A2NiAMHIJvGwraH77hdknTw+PF9L71+8MQbv3xn6s5Dh0p+Irh8wYIdH7vg/DOXXdQ5s3PWrKaYBwLZkcTz9antAyojdJNoN02SJUI4P1tUueVCWYFbnLDNvx3Hzaixnmltdplzt1kqs13Vx/GuSwVybuC26d3xr5lir58ytiFwQ1AgdHPECqbIuclpDwDABBPCNknqnDVrcZnBGWX6SE0Sz9dbV3RJkgndTIhmR+zD9l3b3n3M/XrFp6XlcDTxpMvSxBDOf5v5WTtqvBDOltR7YO8RHdh7hCo3ADXRM60tar7NMI6i32MtFQ/kgtfS+A+swvcbJ8yOW2EKBFzbfZM6OxaZFUwtuYFvtxrjWAJNiMANyBZb3oGPP2wDmlUFoZtha3zwZu5vgjdHHLyVy1HzhnAflvSXkj7zTfvvF5YK3BZ0zj5w/uzpw50L5553wZyPdtRjgADyrWdamy2NtZLaCe3WUfH3WytwHWxXtRRE2IY66Jy/SN9e95h/BdN+8aEpcorSeCA7bHknp+vuuE1L29vTHQ2QIYH20ko+6bS9a9pNa89SY7WjuqtFV2jNHd3OZ2/uspIbDqLQUoo8Mq2kktT29sGsPM8s+RcnimodLYaWUlSJed2Qd1S4AdlgyTuguXVFF2EbEBBS6eaUuQvbd22LdtNactQ4lXDflHSfpIpX3d30RL+1f/fhXX/20J2sEp0lccO28fqVrecnGoQJ2zacHuortW0dOd6l3DZXIDHXdt8kSSZ0K6fTAcgEAjcgG/olN1QwwQKA8W5d0aU9R49q79G3LLmvmUon0rVFu2m9OcpfCHeFpPs0+SzpgSek5dfEu9f02e7lsuukS7qlR+7U/t1vLntm04Bz/Roq3XLO0sTnp5S9oBg5UqNWUqBhELohz7JSsgw0s35JFmEbUNqeo0f10BPfN18mVZVm9kG7afosZaMd9SxJ70uSHtwYHbaVqpTauVVaf4u7qz+/e19H52xWja6hsZbS7+6LrkSMW+F2alD60mJJ2iPpvyje89NwRBCHCBltJQ0qrFLqR0sp6uzgm6+axRQkVjBFTnwo7QEATc6Wd8BO2AaUtrS9XevuuM182avkAjdb7odQJmgzFW+jCT0G4nFU+H10y/2ddMv9vZjqQ6nQht8r90OLUe/a3NeqchxzJbltpHEr24pZfo27H0kv73jtRJXjQgkLOmcfkOS29SahsJ+nFf78LPYclcKfp0k/V5FTXS2tVkZbScOdGkx0P+dMnXYymR2iWXTOX6R77+pRZ8ciqbCCqZXmmIBSaCkF0mPLt0gCgHiWtrfr1hVdwfncnIR2byu63dRsg/pxVP921A5J7pxtUQqT6UdbepW05VEdOXR8aszHR4XOnz19WJI7h95l11W/wz3PmX9ti9jKUfhzy1J4RZz/dlpTm9SWGXP6pVy0kj4saa0OvRJdNRqXF2LPndVxRNKM6neIZtI5f5E65y/yL6bACqbINAI3IB2WWCQBqFgCiyiUYvsu5jHMifEquSfFtpAWR7UN4VZJchdIKCZu2Obbz+5db1wa/06oROfCue4vZsuj7hx6xSoU4yyWsHOrux/XixUMxxFBHEKYedu2jww7GQ/bJPe5tzbpEPvC2fPOVL8zNCvmdUNeZHWuAKDRjUoskgBUa+0TT2rv0bek+szlYWviam18qpptliqbE86S1Fs0lPHPSxR3LjBvu+9tfDB6O1TtmU0DztNP9luafLb0wOOVtQXv3Co9cqf0wfuSdKWkFxIeZhhLzBHX8HIyb5vfFEluOFZqTstSfHNafvk/PbSvfc585rREVXyVbhLHZMigPLzJA43GltS7pP1CPXzH7WmPBci1wCIK3arPCaetiSfDtJvmh6W4oUZU4Ga+R+CWSX+x7vFd+3e/uUySO4fe0qvcSsOolrhTg267257n/JVt35J0f63HG8HS+OdonCDOPx+YI4K4zPCHbTloJfV7UNLDSYXY11/9R87VK6+3kh4kmhOhW2r6vett4m9NUQRuQH1Z8t6c1t1xG62kQAKe2j5gWksd1XfFKtu7Dmv9soU8sRQWwsVpOyRwy6wfPz3gbHqi36piF12Snk9oOEmzVF4Q52j8PHSOODmqq66WVitH87b52XL/zu2SVHWIffGCxbv+85/ev6zWg0ZzYQXTurJ812GdHxLHwWMI3ID66pdk0UoKJMvXWprWJ5u2aDdtJLaiWkr9CNwy7fDBwX0v73jtxP87sHfqiV/+S5w59B6WG0y9KOm92o6uJixlJ4jrFx9AjBma2zkq5S5s65f3/PlM942a/HtnOc/87B+sSnd2/dWfd65e+bmK7w+U8p2/2aCDh181X9ar86HRWSoc41pl3I/wTQRuQD3Z8t6sNj3wlXRHAjSYlFpLw9jetT9844Ajf2wRuDWMzT94Vps3Pmu+bNZjX0v1nx9u1Hf/vgr30RA2z5jTv6Kl1do+MuzccPJYXipvxsK2e+/qUef8RZKko8fe3Lf31V0n3ho8MnX/678oGWJ//KJP7rhw9rwzSxYtm8mcbagHWkwTYck9lrVCvuf4tonLUZP+HWCVUqB+xlYlBZCspe3tunVFVy1XLY3L9q4dFQ5WTPjWKw78gDT1ld6kYTmq74qpVuDflpr0/a9nWpu9oqXVkqSchG2WvOlPOjsW6TPdN46FbZLUPmf+4jKDM1ZnRl2xgmlVLE0M2hwV/n46IfcZC+cjmHnemg6BG1AftsSqpEAt3bqiS3uOHtXeo29Zcl9zdorDcbyLGYc/dCN4Q0lfvGW9vrfxQX3xlvWSwivjKv1eqcf138+MoxJmX8UU22+lYw8TqG6zq95h43FUmyDO0kS93r6aps3Uv0jC6hyGbffe3ZPuaIAKEbqVzdLEoM1UpDkl7tun6MDNURP/7AncgNqzRXUbUBe3rugyraWmys1JczweW+MDwF6ND96kJj4QybRTg9ETgpezH0nTzp1yUtKMUpt/8Zb1Gh0d1aRJkzQ66nblTZo0aVwAZbYp93txHtfcT9LYOCoJ7sy+ignbb6Vjj6GZq9sq4SiZIC7q/nZFI8uJ4IqkAyPDTspDKsWW97v7TPeNY4EFkFchodsqsZhCGFsTp0Kxy7i/o+IftEhN/jP/UNoDAJoAYRtQJ0vb27Wk/ULzZdRJXxps79Ktwsm/Cd5G1eAnnznjVuoceiWZvXn7mbfggiOlNvWHbX6jo6MlK8aqERaQfW/jg2OhXy0fO2oM1aK6LXGOxr+XTfIu5n0t7hw9/vc9K+Expq6rpdXyh205WCTBFmEbGtC13Tfp3rvGKjUtxWt/bBaW3J+HOV525L6f2xXsq9iHWk4F+2ooBG5AbdkSraRAPT18x+3mn5ayeVDlyH1vmKTxBygEb9lxWJK057lk9ubtZ96CWWeS2WFxtQitKmHCOnMx/LfVegGJzT8YC9uobqs9R+ODOCfm/XrlnvCNepd+336sBMdXV1tmzOmXchO2jZ1wE7ahEXXOX6Rvr3tMnR2LpELIZKc5pgywVQgfHbnv29VUojkqXRXdlAjcgNqiug1Ige81l7UqtyBbheDNX/Vmgjc7jUFBb0uStjwq7dwaveWmd6NXKN251d2PpE9devHMqF2VCstKVZpVGrbFuV/YY3/xlvWR4/nexgdDQ7Ww26luazhWie87Cl+1zlKh8jeXQdxmL2zbPjLsZDxssxRYiZSwDY3s3rt79JnuG82XvWrOvw2Wxle19am8D0mi9AX+bQK8rB+L1xRzuAG1Y0uEbUAafCuWWip8epdltu/aFqubpu23krokDeiRO6UHHpeWX1P+XnZulR65U5K05o5up6NztpXkIP2Cc5/VusqthnOtJYLqtlRZIbc53nWpllNL5c0R5yjeqql1UcMVSc+SNFdSh9yfSynb5Fbqvi33/SzIUsRKpECjavLFFCx5r3uFf+BRLUeF92Tbd5ulfByL1wSBG1A7TZ3mA2nzhW5mAYW8sDU+eJNY3TQNz0v6lj54/z6tv0VafY+09CppwSXRCymcGnTnbNvz3Fhl28c/MX/XZ2/usqIeLCzA8lePmRAtbH43v6jvxXncqHncKl1AodoxVILqtlRZih+wBTlFtreU8SCuhiuSXilpoMr7v+D72pb3s2IlUjSjJg3dbI2fq61WCxk09QIJYQjcgNqwJeZuA9KUwyq3IFvj20pZ3bT+7pe0SdLz2vLoWIBWjptv73auXxMdtiXBBGPBoC5KNW2c5vHMvytVk1ZSqtvSZtdgn44yHMQFF0lIcEXSb0q6T1I1ob/74YH7fmaL+dqAZlvB1L9QRL0/uN2m/B6HJ4LADagNqtuADMhxlZuf7bu2Rbtpvb0gaaqky+UekK+NcZ//IenslZ9eNjPJsK1UlVs1wVe5lXHVPl5SYwhDdVtTcRT+3m77/l3zIK5GiyRcIek+TT5LeuCJ+G3t02e7l8uuky7pdtvaP3j/Pkm/FmEbMOba7pvU2bFI33lsg+S+L4wqufnMssBSoYVUaqz/W26waAKQPFuiug3IgiXtF5p/Wsr4RNsx2Ype3dSq+4iaw3uSfi7pIbk//1KXP5dkPfvzXYtTGW0MwTbORhkD1W3w2L5Lt9zXZbcKC9TEWayhP7AfK+yBNtcmbDtLbmVadNi25rzCJczya9w5KF0PS9rH4ghAQWAFU6lxVjC1NX6+tklKJ2wzc06m8diZQOAGJI/qNiAjlra3+0O3Rnpt2gpf3dR/goj0ON7FHwBVzd/GmWQbpqma8++z1IqoSUtqDFS3IYKj8oI4S+Nb+ScEcV0trWOtWgmvSDpXkttGGhW2RX1tLL/G3Y+kSy+58gSLIwATNdgKprYmrkKaFsu7dlIcQ6poKQWSZZt/UN0GZMOtK7r00BPflxpzDgnbd22LdtMs6ZNkbd74rG7445Vpj6UpUN2GCjmqcH64gZFh3XDymNm+X4W21Kj9xtEhyZ2zLYwJ1za9O/7rYpZeJW15VO/965mpFY4HaHgNsphCmvO1BVkpPnZmUOEGJKtXImwDsqSBq9yCbNFumiWOalzlVokv3rJeX7xl/dh+ghcjzmqkZl+VSmIMflS3IWGOJlbDTZLU3dXS6vRMa1NXS6t/e0slKuIU/33YbcNacEm8rUsFb95+9r/+i0tjPj7QlK7tvqlUpdsUSZ+WtE7u67vUZZ23/ZQaD93yHs9SYRVSu8aPWYrlXTf1h2BUuAHJscw/CNyAbAlUuTU6W+PbSv0ngI7cCgx7wr1QC5mqcgvOmRYMs8oJz0rtK65qxuBHdRvqyOmZ1ta7oqVVclcktb3bLSW9YmrUaqTlSGo/QBMILKbgX8H0SkkDZe5urQqLLV0pdyGmpNkqvLc4ys5qq/4xNS0CNyA5lkTYBmSRqXLbe/QtqfHaSouxfde23AMfS4UqjLRbDZqB412szT+IDt1MtVfUKqRh29ZaUsFarVHdhnrpmdZmr2hptaQJ87Y5qrA1VRODOAAp6py/SPfe1aOf9v9IBw+/aknaKWmZJHdOxKVXuZWjUWH2qUHp0CvSnuekLY9K7kIo35J0f4JDtTV+vjY7wX1Xw/augwvUNB1aSoHk9ErjVkUEkCG+MLyR20qLsVVoN3W82/ztpnaM+5faBuH6pHGBUGz+lstg0FXJ96LuE+f7WdvWoLoN9dIzrc3umdbWK0mrTx6LW0XiqEhrqoqvmGrF2rNpIS01hxuAsnXOX6R77+7RRQsWO5KWafJZ0oMbpbu+Ll12XenK0emz3e3u+rp7v8lnS9J9civdqmXJbVfPYtgmNeexdqh01oEHGo8lb+nlTQ98Jd2RAAi15+hR01Yq8ffP9q7D2ptsTWRKqbJ2QJcX/ZKsG25ZWbK11FSUZaWaLGvjCeNrQ+1Wk3+Sjtoamts5KkkbTg/1JbwqqZ8lU5Fs5mYLUyxkK3Yfb/tvr3usmrEBTeWdXx0//Mhffq1Dkhuaha0aHPZaDHsd7twqrb/FfDVV0nsVDsuSd94p929e1qrIbNFJMYYKNyAZlkQ7KZBlgcUTrBSHkgW2Ji6yYGl81Zt/WyNsAmGU1idJB/YdSXscDSdQ3eakNxI0up5pbbZU87BNGj+3W3FRYRyARBw++rr7Qlt9T/ywrdjty69x9+O6vMIh2RoftmXxgybmbvMhcAOSQTspkANN3lZajK3odtPgz4rQrXyOJOfA3iM6sDc6dPPPz1bNCqBJyEN1WyWtukC5/K2kNQ7byrPp3cIFQOJO/OoddynipVdFbxj3tVjYz6oyh2JpYgtpVhZH8LO9az4E8xC4AdWzzD+WtrenOAwAZbDSHkAG2XIP3sy8QlLxYJLQrXyx53IzoVvaIVdWxlFMoLrNTm8kaHS+sC0b8wSuOY9524A6OPr2oYWS3AUSklDYz9qozQJseVNTqFDVZiczoETZKhw32ukNI1tYpRSoniXRTgrkQZOuVlouR4VJvs0BXpheFV+VDxM5cqvcZv63v/rRiTO/+depu3e9cWnUHb54y3p9YtnHdsxbMOvMpy69eGZH5+zF9RlqQVbDNonqNtSHaSXdPjLs1L267dRg6YnZpUL4Vqy65tSgJOmcqdNOSpqRzOCAJhLndZj8fiwVVpiXsv3hkqXx1XfwUOEGVI92UiBHaCsti1Xi+1GBHCb6nqTFLzy72yoVthm7d71x6T/9cLu1/qt/s/jHTw84tR1eflDdhnroamm1Uqpuc+dwO/RK+HdNsBa30s3bz9xZHUwkCSQp+FosFX7HZ2v8MVZWq9qMrK6Wmjoq3IDqWOYftJMCuWOlPYCMs2Nu1y8OsOL4pqT7JLmTJi+9ym0tifq0+9Sge6K85zlpy6Pa9ES/tX/34V1/9tCdy+oz5Oyiug31sKKl1ZLcsG1gZNip40MfluS+9i+7LnyLTe+OD9uiTvD3PCdJunD2vDMJjQ9AbVgaX9XmKJtztfnZKnSN2CmOI5OocAOqY0m0kwJ5wmqlsZVTARi2uikKrpB0nyafJT24Ubrr6+5JdKnWkumz3e3u+rp7v8lna//uN5c9s6m5K92obkM9pLxQwtuSpC2PSju3Ft8qzkTtO7e6+5G0ZNGymUkOEmh6xULv8udYtOR+gBmcqy0PYRutpBEI3IDqlLvCDADkRXfMS5/GL7Jggje7rqPNrimSnpckPfCEtPyaiVv4W1GKHaQvv0Z64HFJ0tNP9luHDw7uq9F4M4/qNtRDygsl/FaS+2nuI3dGh25Rdm517y/p+qv/yGmfM7/u80ACTcGEbeW1klpyA7ZRhQdtTlLDqxFL48M2J7WRZBiBG1AdS6LCDcgb5nGLxYl5sb3LJI0P3qh6c10uyW0jLRa2xblNcu+/+h5J0ss7XjuR1ADzhOo21INZKGHD6aG+FKrbjD+UtEsfvC+tv0V67GvSSz8ZWwChqFOD7naPfc293wfv6+IFi3ddvfJ6qx6DBhCbf442R/kJ2ox+75q/xxGYww0AACTF9l1MmGnCt2Y9IHMroZdeNfE7Ya0o5rY154V/Ur70KmnLozpy6PjUhMeZC1S3oR5MdVuKxk7EL1qw2Hn90D5LWx4daw0tx/VXf965euXnrGSHByABjtwFUhzlJ2QzCNtiInADKmdJrE4K5JFvkRMrxWE0Mlvj20p7NT54k5rnAG2tJHeBhGL8wVpwIvQgbz9xVzltJFS3oR5Srm6z5Jsw/d67etQ5f5F19Nib+/a+uuvEW4NHpu5//RclX/sfv+iTOy6cPe/MkkXLZrbPmW/VdMRAMzg1GD3vqvmQrNTcbYUK1T3K/vxsxdgqHD/bqY0iJwjcgMpZEquTAnm1pP1C7T36llSYMwPJs33Xtgqhm9RsVW9hB+rlzfVSfD9Nguo21EOK1W2WvKqRzo5F+kz3jeqcv0iS1D5n/uIy519rukAeqIX2uQsOHDz86kIdeqX433F/Zbr/9jCHXjH/ejrJcdaRrcJxXF4Dw7piDjcAAFAPtsbP8yaNn+fNqvuIkBtUt6EeUqxus+UL2+69u2csbAOQnpkfPX9YkrTnueIbBcO1qA/TCvvZVtXA0mGLRRLKRuAGVK5XoqUUyCsWTkiNrULw5l9koV+sblr4hLyS6rcGRnUb6iGl6jZb3t+hz3TfqHvv7klhCADCdLRf5P5R3vJo9GrBm94tXIrZudU/D+OLiQ2yPiyND9vs1EaSMwRuQJVoKQWAithiddPxSs390qR81W1SMz4vUBemum37yLBTx+o2W76w7drum+r0sADiOP+jszquv/rzjiTpkTujQ7coO7e693c5ks4oX5X9LJJQIeZwA4qbIulyuSvMrS220ZpHviFJWr5gwY6PXXD+mcsu6pzZOWtWOfNsAKixg8eP73vp9YMn3vjlO1N3HjoUnNvGkhvw+D0st9z/RUnv1WGIzc7W+HnepPGLLDhq9NaFOHO/NClfdVtf1HZANbpaWldJ0sDIcL1avcZWIvUWR6jTwwIox9UrP2e9fmj/rtcO7Vum9bdIq+9xVwxfcEn0vKqnBt052/Y8N1bZdvGCxbv+/d//3Tp4+FXJfQ/IQ4BlwjZH2R9r5kxKewBARl0paaDSO9+5aqXz+Ssut5IbDoBK/fCFF53Htz1rVbGLKyW9kMxoEJPtXfvbu/K6uqkb5kaFaOWGbd7239v4YDXjyoXNP3jWH7hx3Iqa6JnWZpt20ra3D9b6eWZp4kqkNX5IANX62bPPOM/87B+sSu9//dWfd65e+TlLkv65/x/10/4fmW9lOXSz5b5fOWKRhIpQ4QZM9E1J90mq+BOMx7c9a+0+cmSXfduty+oz5Ma05pFvaNMDXxmrItz0wFdCt6nke1GPGbyPGUclzP6KSWrcCGd//6ldvzh8xJJUzSeSz0v6lqT7az9ieGzfta1GXt20ySrbDh8c3PfyjtdOHDl0fOruXW/EWUlxh9zWmx+V2hCo1obTQ7WuorQUWBwBQD5cvfJ667JPXXnyxK9++d7p37x79smhd0ouAiSyVAAAIABJREFUGz6j7fzBaeec9/7Mj14w5dxpH7HM7aZ93AvdzPGNnfyoq2Jr/LxtqACfFALjXSHpeU0+S3rgCWn5NeXvwfTof/A+lW5VWPPINzQ6OqpJkyZpdNQtEJk0adKEIKyS75V6TP99/OMoNwDz76+YJMaNcGOVbQm9niV1yQ3fkA5bbou/5bstD1Vv7gv6u/vCg95yA7dTg9KXFmvauVNO/h/f+/KMhMZYF89sGnCefrLfqmIXVJuiJobmdo5KNa9us+WdvBK2AZAyXelmi0USEkGFG1AwReZkutTJedQqcsuvkR54XFp/ix7f9qx1+cUXHZ4zfXpH4qNtYP6Qy6/S4Ksamx74yljoRwCWHwePH9831kZa7PUcNkF98DXtez3LbTNvlfRviQ4WcdmBa3/V2yq5c+7Zyp6HJa3VoVcmBm7B52Dw67C/MYdekSTNW3DBEUm5Cdz+Yt3ju/bvftOSRLUpMsW/WEINH8YWiyMACLi2+yZ1dizSdx7bILnvEauUfuumJcK2xLBKKVBwuST3RKCSShi/5de4+5H06tvHGr9HKGPiVJYlcZ9STFhnLob/tmLVbajOS68fPCEp8dezJBZESZ+tiaubWsru6qbuBOx7nktmb95+5i2YdSaZHdbej58ecPbvfnOZJp8lPbhRuuvr0mXXRYdtkvv9y65zt39wozT5bMmd8uHKOgwbTaaGiyXYImwDUETn/EXuXI4di6TCQl5WikMibEsQFW5AwSpJ7qfuUcKqYsIsvUra8qgGh/6ltcpxNZVSoVOpSrNahm1hj11qvjVze3Aut+D2hG3JeuOX70yVVPr1LMVr4/Nez5IukbSzmrEhUbbvYtpN/aubmm3S9KIk9/lzSff4ALjcOdt2bh1b6exTl148M6kB1tLhg4P7Nj3htZFGVY+Xaq2l2hQ1YhZL2HB6yK7B7lmJFEBJnfMXqXP+In+LaVormNpy37OcFB67IVHhBhSsleS2uBQTN2zz7ee144MLqxkU4gvOf1ar+wTvOzo6WnJxhFqNAeF2HjrkTsZe7PVczmt5/H7+pOJBoZZsuS0YfSoEbSZ4S7vq7T258/+58wHu3FrZXsx8gpLW3NHtdHTOzkW15cs7XitdbVqqtdag2hQJM+2kNVgswZIXtnV2LCJsAxDLtd036TPdN5ove1Xf4xdbheq2tNtaGwaBGxBUrMUlat62cvaDokotGGDCqFIBVyWhVdR9TGtonMeuBmFbDZR6HW56131tlwrgeD3nha2J7aZS+sGbO/fYB++7FVqPfU166SfuHGVRTg262z32Nfd+H7yvj39i/q7P3txl1WPQSThy6Hh51abmb2yx12RhPxGfjgGpsuQP2+4mbAMQX0qhmyVWJK0JWkqBcpTb/oO6MsGYWV20VvcJ3tf8u1LVjAFV8p/UrzmP13hjsX0XqVDxlla76f2SNkl6XlseHWsNLcfNt3c716/JT9gmSbt3vRGv2jTua298telj1YwNqEE7qS3mawNQJfPe4bWXmiDMruFD9nvXzNuWMAI3IC5OxDPBrBgatoqpVFnwVW1YlgRWP01JsJqG0K0R2d61o/FzvEmF8M1WfbwgaarcRXpWyUxlEGHBRbN3LP7kgjOfuvTimR2ds60aj692yqkSjXoNUm2KhHS1tFoJ79IWYRuAhNRxBVPbu3ZE2JY4WkoBAM3H37pmvkajc5SNdtP3JP1c0kPeWMYuXS2t3UNzO7V5xhzHjPGss8+69KbbLCsvc7ZVzLR2lzu/IlChFV7gltD8bf0ibAOQsM75i/TtdY/VcgVTW7SS1hSBG4BcCc6nBgAVsFUI3vyLLJjgzU5jUAG2JB3Ye0QH9h5JeSh1RuiGOuhqaV2V0K7GrURK2AYgaffe3eOf161fyR2nmPfBPrkfTCJhBG4AAKBZ2ZpY9Zba6qYDI8OOVKi8MWPavPHZeg4jPf5KU0I31Jivws2ucBeWvGoTViIFUGs1WEzBVqFartp9oQgCNwC5469yq8SaR76R2OIESe4LdVRh69o551rWZStGRxd9or9/drttn3OuZSU/OKTEVvrtpkGO1CRVbiZso70b+WDJm2SclUgB1EvCoRutpHVA4AYEnRpMdD9TP9zK2UOGrHnkG2OLLlQblCW5L9RIqdezf7GEGPv5vQ9NOSG5wduc9t7eRZ/o779sxejo7HbbJoBrGLYy0G7qTejueJfmqXID6qBnWpstVTx/my0vbPtM94269+6e5AYGACWEhG79EZsXY3vXrEpaYwRuQMHDkqRDrySzN28/sz/ykXeS2WHjC87PFhViVVvlVg4TrEnuKqmsKJp9yxcs2CGp+Ou5WOtaseoabz/v/sszD7y0fdKkY0f7+o4d7ev7za8dR5LmtPf2hgVw1f4/kCpbKbSbbvfaSn36pCapcgOyzxaLIwBI2bXdN+neu8bCfku+uSRj6i29CZJA4AYUbJMk7Xkumb15+5nd9pHhZHbYnEywFhZ0VfK9SvdX7tgq3bbcMSDcxy44/4yk6NdzMFyLamUr7OcVSRo8atuDR2371d3d3f4AzmxkArjLVoyOEsA1BFvR7aZWDR/bUSNUuRWrNjWvu7gt3oX9vFntkNC8zIIJIQF3FFYiBZAZISuYxl1MwWzjxNweVahPeQiQD1MkuSfpD26Ull9T+Z52bpXW3yJJ+qsv/cfDc6ZP76h+eM3DVJRlJXTK2nhQ2sHjx/d95W//frGkRF/Pklol/Vupu5hwbU5774RPEH/za8c5/ett237za8cxFXLIHdu79v9++wLfq8jmGXP6V7S0WqtPHuseKIQBlryWkfvtL2jhknnVPERd/Z9ff3LH7l1vXKqvPilddl34RmFhW7EA/KWfSH9+uyTdLemxhIaJxjNF0uVyV+BbG2P7h+V+8PqipPcC37PkvtYtSSyOACBz/rn/H/XT/h+ZL4Ntokm+H6JMVLgBBe+tbGl134QeudM9ya7Ezq3u/SXduWqlQ9gG1F/nrFmL71y10pGU2OtZ0pWKEbZJhQq4l7ZPmvTq7u5uf/tpcP43FmDIJVs1ajcdGBneJo1bqVTKcZXbvAWzalptCoS4Uu4HqD9TvJNLedv9zLvfFb7bLXmtWqxECiCrIhZTSPL9EBWgwg3w9Exrs3umtfXefPLYrm0jw8skSavvkZZeJS24RJo+u/idTw26czzteU7a8qgk6ZMd83bZt926rB5jb0RZqSrLyjhQGfv7T+36xeEjVb+eJX1L0v1JjOmccy3rnHMta9q5q1aFhWymNXXwKC2oOWNr4pwoffKFZXGYv0UbTg/1bTg9ZPu+ZSmHVW6HDw7uW//Vv0mt2hRN55uS7pOUxHv+e/Je02YlUjSWLz90l7697jF9+aG7JEnfXjexaLbS7xXb1vDfx4yjEsH9BgUfp9j30BgClW4/lPR5SZk5Bm5GBG6ACic4krti1YbTQz+V9Hyl+7tz1Urn81dcbiU1vma15pFvZCLkyso4UJkfvvCi8/i2Z60qdtGlKt4PSolqP5UI4HLI9q4rajftamm1tsyY0799ZNi54eSx7sC3+yVZC5fM0/32F6oeaL08s2nAefrJfkuTz5YeeLyy0M1Um37wvuR+Yv9CwsNE/l0h6XlNPkt64IkknmeOJIv52hrTlx+6a+wDVf/CWMGAqpLvFXssP3Mf/zjKDcDC9hsUfJyw76GxeKGbI8lK8P2wpsfCjYzADU3PzJcjSYE5c8rqd1++YMGOj11w/pnLLuqc2Tlr1uJajRdA+Q4eP77vpdcPnnjjl+9M3Xno0KUx7pLa/BVx5n+TCOBywlZ41Ztd7A4lAjdLOaxyk6S/WPf4rv2738xUtSkayocluYtUlaqkNHMGFmtd9lVSXv77q/bdeuOfckzXYPwhl6RxQZQ/hEoicIsKxaoN3eIGbpJKjgGN451fHT/8yF9+rUNS+Pth1CJFwffF8ZXlU8WcbmWbnPYAgLR0tbRaPdPaeouEbZL7hvJz7/JQ4O6WpP4l7Rfq4TtuN7fFOYkHkILOWbMWhwXhax75hvlnZj6AMkHa4FF3XjfTdjqnvbc3+DULMGSe7busUmHy9V5VtsiC412szRuf1f1LvqBfHvvV4YMH3n73ncFTrYcODi4stYMFnbMPnD97+nDnwrnnXTDnox1lPHZV/uyhO5f9+OkBZ9MT/Za2POoP0MrBJ+woxn1/X31PdW3Lknv/1fdIWx7VtKnTToztG/DECbrCtguGX/7QrxLfXvfYuPv7A0C/OGMgdGsch4++7qZmCb8fyi1E+Xm142s2BG5oSqaCQHKXhA+pIijFkaS9R99KemgA6mTP0aPmn06Kw4jkD9L8AZyZ/60QwLnVcKb9lAAuc+zAtQndJDeI22a+Zz74CSya4NcnyTqw94j+9r8+4zz3813Ftgt1YO+RsVBuzR3dzmdv7irr/tX47M1d1vL/sPDw3/31j999bf/RVknHY9xtlqRXJd0m5mxDcZdIcisno0RVdvgtvUra8qjeGjwytcpxIWNKhWWlAqi4YVuQf5/+NtZSj11qnjh/NV6p2+OMAfl34lfvtEoq/n4YVt0b9d7ovR/KPV4hcCsTgRuajn++tgrDNsORZO05elRL29sTGx+A+vAF5tvSHEc5TJA26H1t2k9NAFdoQx0fwNF+mhm279qWG7pZKlS+Rbabehzvcu5Y2FZhi+amJ/qt/bsP7/qzh+6s2wI/F8z5aMdr+8fC7jjLPY5KWij3k3WnRsNC/v2JJPc1UEzcsM23n/2v/4LuBYwJtpGWCqz8FWiVVJCVM09crcaA/Dn69iH3g7Wo90O/Um32hf2s1cSuL5RA4IamErI4gp3ykACgYmPtp97XwfnfgtcEcJliq0i76faRYa1oaVVXS6sVmOrA+K6kx8ueDHn6bPdy2XXSJd3SI3dq/+43lz2zacC5fk35lW6HDw7ue3nHayeOHDo+dfeuN0oGE59Y9rEdI//22zOSZkraGPNhHBV+Nk65Y0STKRY4+08o4wRvUcE1cisswApWgI2OjpZs9SynDTROyGVCMf9jJxmOEbQ1qaTex3g/rAqBG5pGDcK2bZKsp7YPaOkdVLgBefPU9gHzTyfFYSQqav634DXzv2WGHbj2L7JgKuBs321TJD0uKTps84cKYZ9aL7/GXTF0/S16+sl+6/f/YOHhcuZ0G1t5tIz5rQKh3E9j3q1PhSpAoHLFqjeAmEwwFgzqylFO1VqtqtOSqJxDgyhV3YaqEbihKfhXIk2wss3RxNXnAOSPk/YAaqHc+d8I4FJn+677VQiZLI1vN71cUvRkyMEKnjXnFQ/dvMmQDx54+90L5nw01kC9FUetsXFUtuLo84q34qijQpWbrfIWmQBcnEwiplJVbtWEU5XM/5Z0GFbpHHQAKkPghoYWYyXSajgSCycAeZSHBROSVmr+t2ILMNB+Wn8DI8PbVrS0WitaWp2BkeFtKiyy0CvpSUnFJ0MOq2xbc17x0M2bDPmdwVOtccb246cHnP2737SSaGfVB+/fJ+lplV551FS5rYr3YACQLWErlta7siwLYwCaDYEbGlZwJdINp4f6EgzbDEcsnADkTh4XTEga879lX1dLq+RWdDkqVLrdLqn0ZMhxK3q8/Rw6OLiwxJY6fHBw36Yn+i1JxcO2sPmxgmPxtbNKGpB0tqTfRjy0o8LPwFITBeUA6is4n1oSshB0ZWEMQDMicENDSnAlUgBoCv7536ToAM60n/q3R3K2jww7PeOnLHC8iy131c7i7Zvlts6VMRnyyzteOyFpcWQ7a1y+dlZJcyW9WeIepsqNxRMA5EYWgq4sjAEZxPxtdUHghoZT55VI+8TCCUDuNOKCCUkLW4BhYvspCzBkWqmFE8p05NDxqZKKt7P6xXk8r51VUodKB26Od22JKjcANeSvcquEWVChWKjlX3ChVPBVal+VKmcM/z97dx9cV33f+/4t20EWD4oREQTLMYaYQHiIYwpNQEr80z1w0yQ17SUltGGaQO+50ymZudPcGyoOJ6CfEppjJZyZTudC78zp4JBeSIDiBLs0oaZHyyADGahdg20MKMYWtggYK454EHLt+P6x1vJe2toPa++99l5Pn9fMnmVJW2t/rf3wW+uzfg8iUj8FbpIpLQ7bjtM8biLpEZi/DXTSHkrx/G/VFmBoZPjp+RePjOx6oT/XvZL96Q/8+UeT4vgqo+WGs5YaTlpJYT+rcBeKqGaIwlx2Tm0PJrlwcKKmXpsV9wOccnLnAaC78R1KXhSvAFoc2hV/Xam3WRSriZZaJKGWGiTFIv48BLY3vrP8UeAmmRFciTTixREqcdA8biKpEgjIh+KsI83KLcDQ6Pxvi5e6veku6zt2bP/40JCGqzYozKIJ9ah2AL/uULihKrWfCFjcsM2gXm4y2w8Bw+5t0Zxg7t4GwJIzl+1FgVtmFM/PVmoV0lL3bbYogjUR39Il57w0tmfXeVF/HuIuciQ1mhd3ASKN6m3vMH7YNjoz7bQwbPNtgllD1EQkwTScNHoT49ZOjFv77Ghb27OjbW37x4eG/JAN3OCtZ+ng4GV9x46df/HIyOKl1vohXTk9SwcHq90ny0a9dqw3Yb3cQgn2dKu111t1jrcdrHQnyR33jHD7k9HszdvPRxaf9U40O5Sk8oO1UkFXPT8r/r7/73K3SuFapccPe99Ga5D0Of1DZ0wDkX8ekuOFxhpRPtYXSYHilUhjWhzB4A2FWXfLX8Xw8CIS1vbxcW6//8f+l2oDW6B4vrfinwfnfzv/4pE5wwrz2tPNv5BU4iKS2w2ilt5q1XqbXbOI8y48i5vtn1bczX++9o6q+5n18zBzyLn3GcLtvRaGoTD8VO9h8S0E3JPMbz3U2KIeWzb6K+jyjT+/fefSnrMviKA+SRC/R1lSwqak1SPp9sZbr+9Z87e3LgMi/TwETgbebbC83FEPN0mtgc4u64dtw1OTQzGuROp4t+K5oUQkYTSctPXe/o3jBHvA7Xqhv3//+NCQv7jCKR80pmfp4GCpsA3ckO78i0dG/NBOqvCHj8Zh3aHZwVpzVj5zKPRys814AEml94FeANZc754k1mPLRvf3Xc7Ol7cpbBORVDnjQ2cu+/TvfNYBovw8vAKFbXVR4CapFNfiCNVoWKlIsmk4afz8AG7XC/39pYaflnLKB43xh6K2qMzYbZ6Z3gQVFk4oTGJcmh+6VQvfvP2ceNLCpqRjTeK/XlbFWoUkzVPAnRw57PbIWHsrPPuz6u+VgxPu/dbe6v7ekcMADwPmsZFHuOue4eZXLi0VnJ8tuFpnHNS7TaL285Gf8sy/PWGArRF9Ht4JPN3surNKiyZI6gQXR0hQ2DYEGK1WKpJcWp00mYLDRUsNOQ0K/jzrw0xHZ6adARjsbe8oDpW+A9xWdjLk4IIFYYZ0epMhf/jMrjeAmLrG1czxbgYtniCz3QysA55iw92w4e569tGLG94ZYGRszy7uumeYz/X/AcvPPj+6SiVWfugWd8iVlDokG34+8lMeG3nE/3I98HWi+TyUOqmHm6RGcHEEcFciTUjYBhpWKpJ4Gk6abNXCtuD9ihdgyNlwU3fS4kqTIReHa5WGdnr7OWPxadONFtbi4az++1iLJ0ixp3HnGroSN6AO4zve/U+mcHLp4M4T6Izt2cVda4f5+chPIy5V4pSUkCspdUi63XXPcDBs8+dGjerzUOqkHm6SCglZHCGUB0Y3c9FXlsZdhogU0XDS5KoUmPlzvfkLK5zyQWM6P7hqlb8Yg/u7blgXXIDB/720KzGk9BnAvVK9or/8ZMhh5k/bsvH4Fe/l5y0Jn5QdnCjdu853zaLZPe0q7cf1RujHLnC8rUG93GSud4F/9W63N7ivftwT10H/ZPb3+v+wwV2KiERj7NVdPDbyCGN7dvnf6md2mxjl56HUSIGbJF5S52srQcNKRRKqaH5FJ6YypIJgWBb8Xqn7+TGNP6dbuQDOnxsujcNPi1YmDXoXd4jHZtZcD7fcV98KZIHJkK/5Sr/z4Z4PmWq/cvHKjz73wtZfXhr1cFZgV+k7VDWE28NtEL2vpbmst1XoJiKJMfaq2/vW4+C2i05c9chcWk5dEi1FYZtvBDDX9fVyXV9v3LWIiOeB0c1+6OZ3sZcM8gO4csNT0xbA+dMorD6wv79EAPd94JsArL4JLvoMnLOics+zgxNuyLX9yeM92z5+8dlb/+/br18Zpp6f/thx/unhUcPqm+DG75a/Y5iwDdxJmd06zgFeDVNDCce8bfEVfZFmsHjDmD/X/wcK3UQkNkXztTm47aAkjAI3SayELo5QjcEN3Vh3y1/FW4mIALPCNlC7lyuVAji/Rx0kN4CrErgBXE4D86v8b3/S73zxml4T9v57xiZ23vFf7rkAgG89VF/POt+Wje4KaK4TgP+oc08jFIaU6mRDWsHihW7Ll53P1/9sIN5qRCR3isI2XUxOsPlxFyBSrLe9w9zVdcba4OIIP3rv7R/EW1Voe3AP/JdduPQjnP7BD8ZbjYiwY/w1f8EEdbPPGX8ut4nxoaG3f7Np08zM3r1tQPvCZcvaFy5b1vlBYzo/aEzPUms7P2jMCQvPPhvg8MyePfFW7vqTkzpvWLrgA8teO3pkb5nAbR9wJ/A/gb1A8Yqmc1y88qPP/W7vhS9/+atXvve7vRdeVks9i7pO6Z6/YL6za/ueZTz1CHz0k3DmR2vZhcsfzvrbowBXeLXXay9wA7AMLYgireHgLl5yw+Sht3hs5BGWLzufrlM/FHNZIpIHCtvSRVf6JVGKF0cYnpocqjCPTVIZYOTCpR/hO1/5k7hrEcm9a9Z8z/+n2jw5zp/vzZ//rfjn/vDTOBdg8KdVaKCXtwFGzrvwLG62fxpZXf/92/dtffGFV91hqA0MZ8UNC2+OoCS/l5tOPKTV/NeehpiKSNPddc9wpcURJIF08iGJEZyvLekrkYYwAphvf+WPuWipViwViYvmbpOwkjj/m38RqsE2cQQwN9s/5bwLz4qstn/+yWZn3f0jpoFd9NLAcNgiBvf/6aBhpdJ6Fs3rJiJNFGIlUkkoBW6SCClcHKEag3q5icROvdukXkmY/y2iwM3QhF5uAIcm3z7wq4mD7/7Pnz93wpZf7FqMe/BvvB+XGt65CXfqhX3UP2dbOX5PI52ESBwsCt1EpAlKrESqC0spohMQiV1KF0cIQ73cRGKk3m0SFX/4KVQO4Jox/HRyyfJjAF37xho5ZmtKLzfff772juJvxfGeM6iXm8TLotBNRCKklUjTT4GbxKa3vcMMdHYNBhdHSOF8bZUY1MtNJDbq3SbN0sr53/zArcE20tCkXm7rH3yC9Q89AYUebYPEF3If87bq5SZxMXir1WsFUxFphBZHyAadhEgsMrI4QhjHANTLTaS11LtNWskfflotgKtn+KnfCzyCi1JN6eUW6N02hLtKqiG+wMviBn4O6gUg8TG4r0MD8PUbB1h+9vlx1iMiKaOwLTsUuEnLZWxxhGosMKhebiKts318nNvv/7H/pXq6SMtFuQBDhIGbIeJeboHebeAeUx4L/Dsu6uUmSWHREFMRqZFWIs0WBW7SUhlcHCGMEcBc19fLdX29cdciknnq3SZJE2YBhnLDT/12M6ILVGV7uf1q/1t7xl7ad+iNiYMdu8cmzqu2o3OWL37pZ488PQ0sAu7Ffa8lIXDzF09wUC83iZ9FoZuIhFC0EqmDexzrxFmTNE6Bm7RMhhdHqMbgzeehoaUizRUI20BtnCRQtfnfigO4iFYq9RlK9HJ7dN1m5yc/GplTSw2uANpJxqIFxqsD9BkgyWBR6CYiFWgl0uxaEHcBkn05WByhGgf3CsXgA6ObuegrCtxEmiUQtg1Vup9IXPwgbcL7unj+t8KKqG5vuJ43hh2m/z6qh3cAXtqxl5d27OW8C8/iv3/7vq0vvvCqAWD1TXDRZ+CcFXDa4vJ7OTgBu7fB9idhw90ATwEPez/dFFWxdXK8m6HQ000kTtbbDvpzMil0ExGf5mvLNl35k6bK0eIIYWhoqUgTaSipZEGp4aeP7TkXgM8te6WhBRg8Fhg878KzuHDFOc66+0cMCz4At9wPl1xV+962bIQ118ORw+CGW5uI//1nSEZvO5EgQ4UVTN946/U9e8ZfOfTmW290jO/bXXVY99Il57x0+ofOmF629NxFZ3zozGXNKFhEZov6faqwLfsUuEnT5GxxhDAM3oHWulv+Kt5KRDJGQ0klqxYvtfb/nf4fq/raO8zNH/7/eH7hp47/zB9+CjUHcMeAA0A3AN96qHrYds0id7vu0NyfbdkId1zrf/VZ4MkaamkWfy43TTgtSeO/No+vYPr4E//kPPr4w6beHX7xyj9yrvzsF+v+fRGpLur3adHiCArbMkonJdIUOV0cIYwRwGjVUpFoXbPme/4/dcAimePPgXr94XOHti38FGHnf6uwSwt8DVjG6pvgxu9WLsAP26B04Aaw9lZ/eOmVwL9W3mFLGNTLTZLL4s3rdtqp3VsP/vrASqCRYd187JwLtv7FDTevbHbhInn0dz/4/taXd++M7H2qlUjzQ4GbRC7HiyOEYdACCiKR0lBSyTr/IlZxm1ptAQZ/+GmZAG4/sJj/8iO47POVCwgTuD37M/hvfwLwHeD2av+nFvFXTdXJjCSRBVYBkQ3r/uKVX3Ku/Ozvm2jLFMm3x5941Hn08X+MevoFg1YizQUFbhIZLY4QmgUG1ctNpHHbx8e5/f4f+1/qpFoyKexKpaXmfwsqmv/NHdb2P3ZWvkIfDNugfOB2cAL+jwv8r5JyfGlxexE5qJebJM9CYBooP6w77PsvMKz7G39++86lPWdfUPqOIlKLN956fc+av711GVB5+oUwF6ZmT7/wD8BXIypTEmxe3AVINvgnA33tHWZ0ZtpR2FaRBZwd469x2/0/irsWkVQLhG26Qii5NzFu7cS4tc+OtrU9O9rWtn/OtqzPAAAgAElEQVR8aMgP2cAN4nqWDg5e1nfs2CkfNO43K4VttYhqP9Gy3tZ4N5EkcUOx1TeFC9vKfQ/c3199EwA7dm19M6oCRfJuz/grbnpW7n0Kc9+XId6nwL2RFCiJp8BNGjbQ2WWDK5FerbAtjCGAHeOvBSd6F5EaBAJrBw0llQzz21S/B3lYwQBu1wv9/cEArtQQ1DkqLZSQHo63LdnrTyRGKwB3Lqhixb1lgu/Bcifz3n5em9h7clQFiuTdm2+90QGUfp8WC75Xq7xPcYeTSw4ocJOGFC+OoJVIQ3Pwhrc8MLqZ7ePj8VYjkjIPjG5mx/hr/pf63JHc6K0xdPO9/RvHCQZwVRZVKH+ykD5+Dz8TZxEiJbjDyc5ZUf4ewaCtWvDt7efFV56/tNHCRMQ1vm/3eUD592mtF6YK+7mtocIkNRS4Sd20EmnDHLwTgdvv/7FCN5GQAoskgMI2yYnRiHuOv/0bZ1OoO6a7dxu4ba3j/dvEVoVIOaWGYxf3aqt3PyISjVreX5Xev3qf5o4CN6nL+u6eET9sW31gf7/CtrpZvNBNQ0tFqts+Ph58r2jeNsmdWoeV1iUbQ0mD/F5uGlYqIiLRu2ZR4SYSoMBNatLb3mHWa3GEqFm0iIJIKEWLJNj4KhFpreGpySGA3vaO1s37UuoEIp0nE453M6iXm6RV9oJwkWxKZzspTaLATUIrXolUiyNESosoiFQRCKQVtolIrdTLTdJLJ/AiyRdmcRPJnQVxFyDpoPnams7BnYtqxA/cruvrZez113c++8rYm7/81Rsnb9m9u+okuJecc85zH/3wGe9cdu7y05efeeYFzS1ZpHWKFkmwMZYiEqvIh5QenJg7p0ypHjTVetccnPD/tT2q0iLmeFvj3Zwy9xNJluIVS0Ukefz35rpDCttkFgVuUpXCtpZxcK/ADz4wupmDb7/tPL7teQOEDs627N596Zbdu3noqae5ftVnnS9d/mnTnFJFWkeLJIhAE3qUu4sm7N4WzSTOu7f5//pJ4ztrmiHcHm6DKHCTNFDYJiKSagrcpCKFbS1nve3VXtgGq2+Ciz7jLiNd6aTo4IR7wrP9SdhwN/dtesK8sHfvVvvH161sdtEixaLqnVkUtmmRBMm10Zlpp6+9w/S2d5gIArg9gNtmXPb5Rktz9+MKt/ppPCxu2GZQLzdJOoVtIiKpp8BNyvIXRwB3JVLN19YyjwGDLPgA3HI/XHJVuN86bbF7u+zzsKIf1lzP83v2rnz46WfU001a6uGnn3Hu2/SEocHemSXCNht5sSL5tQ+ADXe7bUa1tqbSCf+Wje5+XM9EUl3zOLhhm3q5STKUGtZd736AU07uPAB0N75DETmu3PvUH0J6zaJwwXjyp1+QiClwkzl62zvMQGfXoMK2WCwEngLKh23F8wKU+nC/5Cq45T6441ru2/SEWbHsrJ2a001awf74ga3P79lrgIZ6Zz6+bdvWNw79xu+dqbBNBNg8M72pr73D9EXTw+0/gF5gM2uud9uMsBd4grZshDXX+19dAbzbYF3NNoRWK5Vk+CFgSg7rLj7WC3Ps5w3rXnLmsr0ocBOJxNIl57w0tmfXeaGmXwjTKzUd0y9IhLRKqcxSvBJp176xNoVtLeWGYqtvChe2lfseuL+/+iYAnn1l7M2oChQp5+Gnn3Ge37N3JQs+AN96CG78rtvjstoBit8z88bvur+34AS8sM1BYZvIcaNee9zb3rEqol0+BdzJkcNwx7Ww9lZ49mfBK/ClHZxw77f2Vvf3jhwGuBN4OqK6mslh9gIKInFxz7wLw7Eb4+3nI4vPeieaHYrI6R86Yxqo/D4tDtcq9XRLx/QLEiH1cJPj/LAN3IP6qw/s1+TkrbcCcHsFFSt11cT/XrluzBd9BjbczS9/9cbJEdcpMsv+gwf3eMNIww2FLrfiYaB3Ju7J8O9HWqiIFLsZWAc8xYa7g0NDa3EbcEekVTWX38tNw0olTjuB0sO6a52zLTCs+8LzV54eVYEiebds6bnuAWu16RfCvGfTNf2CREQ93ARwF0fww7bhqckhhW2x+SrgDsErJ/iBXu3D3dtPmEnrRRqxa99+98VYrndmULXl0gO9M4FPN1ycSEb4Pc79KR8i9DRwMnAl8J2Qv/Md4F7c0GA04nqazaEwl5uJsQ7Jt/dxh3W7w7K3bKxvL7OHdTs7X96mKUREInLGh85c9sUrv+QAUb5P0zD9gkREPdxEK5EmUblJOaPYj0gTTEz+ugMo3TuzHl7vTGAV8K/R7FREKngX9732r8DtIX/nmLd1mlFQk6mXmySBP6z7m9xxbd1zn3oeBr702MgjAPxe/x82uXSR7Bt7dRcvje0wwFaOHF4Zwfs0LdMvSEQUuOWcwjYRicLLr0+cB1TunQnVe7f5Cvu5jfAn/yKZNzoz7fS1d5jeaBZOyDPH2xrv5pS5n0izRTGsuxc3vLPAoEI3kcaNvbqLu9YO+1/+BrdnWhTvU8kRDSnNMYVtGVBuHiyRuETVq1K9M0WSznhbJ8YaGjXkbQdjrUKk/mHdV3q/55/EW7zX9WMjj/DzkZ9GW6VITvx85KfBsG0I6Ke+9+lzzH2fSo4ocMup9d09I37YtvrA/n6FbSkUtqeQSFIoIBbJEuNt07zSmvW2Bs3lJvHzh3XfDrRRCLOHvK+Lb7d79y+eC8rihgM8NvIId90zjIiE9/ORn+L3EsV9/9nAj4vfp5VuDnApcBTN2ZZbCtxyaH13z4g/4fLqA/v7NSQlhUqtWCqSZAqIRSSZHG+rXm6SNMbb2jp+18E74R/bs4tv3H4jY6/uiqgskey6657hSmFbrdSLWhS45Y0fto3OTDsK21JKYZukmV6zIlmxyts6cRYRAf+EyMRZhEgR422dBvfTj/cav2vtsIaYilRw1z3DjO05Hkz301jYBnPnCpUcUuCWE73tHSYYtl2tsC2dFLZJGmkoqUgWGW/rxFhDFBxmnxSJJIHxtlEM2bZoXjeRssZe9XqBumGbgxu2ORHt3t+PernllFYpzYHe9g6zobtnBNzVza4+sL8/7pqkioMT0Uwaf3ACgEUnnXQA6G58hyINKDWs9JpFCuJEJG5DuAHHIOkPECUbVlW/S02st9UKpiIBRSuROnjzH0bIb18kp9TDLeMUtqXODwHYvW3uT4rDimsWzb6V4u3nnDPO2BtlkSIikmvG2zox1hAlx7sZdGIkyWC8rY1wn5ZATzctpiB5V2Yl0qg5qH3JNQVuGRYM24anJocUtqWCm5BtfzKavXn7+eiHz3gnmh2KVOH1qpxl3aG5t+DPKu9ne9QliqSZv+hRzIy3TfMKpcU0ubUkhfW2TpP23Q8wtmeXO2eVFlOQHKqyEmnU/LZS7UsOaUhpRhWHbcNTkzbmkiScnQBsuBtW9MMlVxV+Uuuwuy0b3f0A/7Z79+kXLzuLi5YujapOkVk+dubil3aMv3Yeu7dFMxy60MvzJ43vTCR7NA9r5Bxva7ybU+Z+Iq3SrEDbwV3BdGRszy4ztnYXn+v/Aw0xldwoWhyh2WEbuO+5QdTDLZfUwy2DFLal2vtALwBrrndDs3ps2ej+vsvZ/as3Lrj9/h/zwOjmKGoUmWNx16nTQOS9M8lWDxqRhgx0dllwp4iIt5LI55dKCvVykyRo1QrAx1cw1WIKkgdjr+5qxkqkYThocZ7cmh93ARIthW2Z8BpwMr89egVPPATvTcGRw7DwJDjxlPK/dXACdozCv6yFv/8r+O1RgDuB63GvZJod46+xfXycA7+ZUm83idQTO3e+/9L+iUW8/Cyc+ztw5kcr/8J1t7i3UrZsdF/DrpuA/4iwVJHU6mvvMH3tHeZH7719b8w93H7gbYeAPfGV0RQ3AMtww/49cRYiufUDb3tjCx7LwTtG/OWelwBYfvb5LXhYkdbyF0eYPPQWuK/7G2ltT+a9FNqXe1v4uBKztrgLkOgobMucy4GnGvj93qLft7hXTQ3AdX29XNfX28DuRWD7+DgPjG5mx/hr4E8Ku+AEuOW+2UOiw/J7Zx45DHAF8HSE5Yqk2uSS5ccAuvaNxX38dszbxl1HM4xQGFKquW+l1SyF1XJb+frzH1fDSyVziuZrc4jvs91vO/vRtAW5oR5uGaGwLZP2AZ8AZoC1wFHcq+2Vbt/2bn8JvFq0Pwf3isrx3m7+EFP1dpN6PDC6mf/n0Z9x4DdT/rduBN6KsHfmPc3+P4ikxUBnl+1r7zDDU5NDMfduM7hX6R2yeZU+2AthqOI9RaJnvNu9tPaE3CHQ0+2Xr77E767sa+HDizRHicURWtFztByD27bsRYFbbmTxymQu+Ve9FbZliqUwj0zU71VDYPJO9XaTWhT1aoO5Vwuj7p0pknsJauctbvvRiomm4+L3clMvBGm1uHvAGNzXPwBfv3FAQ0wltVq8EmkYBvf95aAe1LmhwC0D1nf3jPS1d5jRmWnn6gP79ebNDv+gq5kNhCUwObSCN6mkTNA2ROmTgoXABcAK4KtldmkC+/khsA13pd73o6hXJCsGOrvsQGfXYALCNshH4GbQSZHEIynDtf3Qec4Q0/H9r+7csWvrm69N7D35xVeev7Tajj5+7iee+8jis9658PyVpy/tOfuCplUsqRb166rE4ghOtBXXTRd0cibuD3NpkMK2zLK09oTGfzxAwZvMViJog2gOFJJyYiGSWH7YBrD6wP7+mIeTQuFkIcuBG+ikSFrPkqww21I0r9vjT/yT8+jjD5t6d/jFK//IufKzX6z79yWbonxdjb26i8dGHklq2AaaJzR3dJKTYgrbMsvSvKGktTy2grecKxO0RXkioBNakSoSNJTUF/eQt1YxqJebtJYlWYEbBI4LTzu1e+vBXx9YCcDqm+Ciz8A5K+C0xeV/++AE7N4G25+EDXcD8LFzLtj6FzfcvLLZhUs6/N0Pvr/15d07I3ldXbVq9cq71g7793JI5me3oTBsW1lMDuhJTqngFe8ErFYm0WrFUNJqLArecqsFQZtPgZtIBX5bn7ALa3nqmZqXcFGSIamvN4u/yv2CD8At9ze8CvkXr/ySc+Vnf99EW6akzeNPPOo8+vg/Rva6wn3fGJIbtvl0/JsjeThYypwEDi+R6FiSc3XTUFhcAVDwlnUtDNp8BvUgESkpoW29IV/vWYvbBjrk4/8r8UpqmH0S8A4A33qofChyzaLCv9cdKn2fLRvhjmsB+Maf375Tc7rl12+mfn3A3vl/dQPlX1fB15Sv1Gsr8LoCvgH8TVR1NokhX21prs2LuwCpTfAAfHhqcighB+ASDUMh3HLiK+M4B/dkY8i78cDoZq5Z8z0eGN3MA6ObYyxNorR9fJzb7v8Rt9//41Irj9q46hLJqwS39cbbboqziBZyvK0J3EZwgxETQz2SXdbbDsVZRBmfBtzhfmHCtlJf+y65yt0PsGPX1jejKlDS5823fvUuUPl1FVbgdQW80NjOWsLxtga1JZm3IO4CJLze9g4TPABPyFwuEh3jbcut+hgXW/T1oB+2PTC6Wb3eUmr7+Dg7xl8rFZw6tO416D+GacFjiaSC2vpEcSgMURqpdEeRDFsFuHNrlVKqZ9s1i9xbqd5IF30GNtzNaxN7T464TkmRqbcPnQCUf10FlesxGeS9rnBfr//aSG0t4qDj31xQ4JYiG7p7RkAH4BllKfRus/GVUZENbC1evX5vt+v6erlw6Ue4aOnSeKqr09jrr+989pWxN3/5qzdO3rJ7d9VlyC8555znPvrhM9657Nzlpy8/88zUDYUoM2zUIb6g16FwhS+OxxdJjN72DpPwtn5V3AW0mIm7AMmNJB8D3ga4E9lXEiYUCeznxVeer3rMJdl1YPINd1WEcq+rcr0kyyns5zbg9nrraqEhCqObnFgrkaZS4JYSA51dFhJ7AC6N8w+0kjiUoBQbuEGg15vf2y0Nvd4efvoZ575NTxggdHC2ZffuS7fs3s1DTz3N9as+63zp8k+bZtUXpQQGbSJSJEU925y4C2gyS2D+UpEmM3EXEEq5VSPDBm3V9iP5VO31sO5QIXyr9FpL3+vKQRedc0GBWwoUzeViYy5Home9bRIWSqiVDWwtJYabQjLDN/vjB7Y+v2evAepehvy+TU+YF/bu3Wr/+LpELm+fkpBtEzrYEGF9d89IX3uHGZ2ZdhLc1htv68RYg0jWGG+blouu5YVZOEGkFsHXVLlhyumnXm4ZpsAt4YonTo67HmmKrFxFt4HbKsAkNXx7+OlnnOf37K19GfLTFru3yz4PK/phzfU8v2fvyoeffiYRPd22j48DlArZIHlBm8/BfQ/kbaiayHHBsO3qA/uTumKZ8bZOjDW0ivW2WWmfRUTSKTgvoL/NTujmDys18ZYhzaTALeFSNLxE6mO9bRp7t5Vji/49J3zz53qLI3wbe/31nd4w0sphW7WrtJdcBbfcB3dcy32bnjCf/ti5e3pOO21Z1PVW4/diA9IUsomIZ6Czy/a1dxiABIdtkL8VSq23VegmzZbk+dtqE2bRBJEwil87waGl2eGgYaWZp8AtwTRvW+ZZsnSQVZot8e/BHeOvHV8h0w/fWrXgwrOvjL0JXFDz8vblQrfVN8GGu9m1b/+hntNOi7zeUjIWsjne1sRYg0gsgr3YVyc7bMsri/sZpRVKpVmMt3VirEFE4qPFEzJOgVtCad62XMnLUGEb2Pr/Ph6++YLBWzN6wP3yV2+4y9BHvLz9xOSvOyIuFZg9TBTKBmyQrpCtmIOu7knOFIdtm2emnZhLktIcoJ+5oZtBn1fSOONt89JzVERmc7ytibEGaSIFbgmledsyz5L93m2V2MDW//cqwAQDuOKVT6PoBbdl9253GfqIl7d/+fWJ8xqpCwrh2o7x19g+Pl4qXPM5uAfnDjrhE0mdlIZt/jyLTpxFxMTBDd0G0UmRRCv985eGWUFSpFb5el056MJzZilwSyANJc0FP2xToDo3cDQUTmgGoRC8+YqDt7qCuBiXt/eDNSiEa/6/S3C87VDR11milUolN1IatlkUNDkUhpcashCUSBIYb2tjrCGcgxOVj3n8kQDV5tk6OAHAKSd3HgC6oytQUini1xWwParSWkjDSjNMgVvCaChpLtgy/xaXQ6GxsUXbOb3gil249CMAxwO44q9r0sDy9sW91XwVeq35HPLXe81BK5VKDhSvPJ6SsA1mLxxgyM9nUylaVU6iYrytE2MNYXwHuI3d20oHI8EwJMxx0+5tACw5c9leFLjlVnfXGRPA4qhfV8BPIiyzVRxva1AbmzkK3BJGQ0lzQb3bameLvjYUDlRXBb53PNAKEWxFasf4a1yz5nu1/IrjbTcF/u2UuqOIpF9x2Jaii2q26Ou8B+MOGv4j0TDeNunzt20CbmP7k3DZ50vfo7gHUqWLlNufBOAji896J7oSJW06T1l0GCDq1xXJfz+V46BebpmkwC1B/KGkoN5tGWa97RDq3dYIh/KNkSnarir6OrzGlrd3vG0wUAM1oqU43tbEWINI06Q8bBss+p5pfRmJo+E/EoW0zIv4DAAb7oYV/eVXeA9zjLRlo7sf4MLzV54eVYFJNb7/1Z07dm1987WJvSe/+Mrzl1a7/8fP/cRzH1l81jsXnr/y9KU9Z1/QihrjcvqHPnwSEPnrCv/1mj5+uyIZ0xZ3AVIwuWT5MUjdwbjU5pi3VeAWH/c5qCU8qzZxq/tzB3dSbamPPy9SP8k/+RAJLcVhGxTarGJ6n+ozSxrnv7/ScD52BbCZBSfALfeVD0cq2bIR1lwPRw4DOJ/r/wPze/1/GHGZyfH4E//kPPr4w6be3//ilX/kXPnZL9b9+2nwwCNrnWf+7QkT4evqCuDpaKtsKbUrGaQebgmh3m25YL2twjYRkRxIedhmK/zMoJMB9XKTRlhv68RYQy2eAu7kyOFvcse1sPomuOgz7krtlSa8Pzjhzq21/clgD6SHgS89NvIIAFkM3f7uB9/f+vLunQao+2/16OP/aF7ZvXPrX9xw88rWVN1aPx/5Kc/82xMG2MqRwysjeF3dSbrDNigsIqZ2JUPScEUlF9S7LRfUuy0ZKvdwK9WbTT3cWsHiHmDo/SGZ0NveYTZ094xAKtt2y9yhpEEO+ryDQruu3ghSK0s627zLccO3evV6v2/xPmOWLzufr//ZQOOVJcTjTzzqPPr4PxoWfABuub/hXltfvPJLzpWf/X0TeaEx+vnIT/EDV9z3wGNE87pKO4Pbyw2U02TGvLgLkELvttGZaSdlB+QSnvW2aTuwyq7C8uGllVoZqfJ+Xm20JBHJhpSHbVA5bAPNM+PzFz+q9vcSKZaW+duKPQ38V+Dfgf9GYU7dSrc/A34H6KAQili80H5szy6+cfuNjL26q9m1N90bb72+59HH/9EA4cI2f47gYpdc5Q6xBB59/GEzvv/VnRGXGpsSYZvFfV114L5O/owSr6Pe9g562zug8usq7Rw0r3HmKHBLkM0z02ldVUWq08F4cnwHCC4fPlupnm3F3w8q7OfJ0neQkBxvm/cVECXlMhC2GcKFAKapVaSD420N+ntIbYy3dWKsoR4G+Gvgk8C/4IZm1W5rgS3A+0X7cnB78TgAd60d5ucjP21y+c21Z/wV92Bx9U3hwrZKLrnK3Q+wY9fWN6OoL2533TMcDNv6md0J4X3c18layryWNnT3sL67x//dcq+rtNOFnIxR4JYAgfldbMylSHPYMv+WeLjB9vYK+VhxuBZuGfIyCZ6I5EnKwzYoDBdtI3Ay7G2H0NX3IIfC30MnRxKW9bZDle6UUMbbBj8LGtXv7Y/HRh5Jdej25ltvdADuPGRR8Pbz2sTek6PZYTzGXt3FXfcMM7bneC9GDcMvz/G2BrWzmaBFE2LmDycdnppMY6Mr4fgH4XqOk6Epy9sDmenuLyL1We+FbRmbIsKfxHkTsy8amRhqSSJ/8QQTbxkiTWcpHNPaJuwbYDDNiymM79t9HuBO+l9Jtd5tPm8/L77y/KWN1BWnsVd3cdfaYf9Lhwbn/+xr7zANlpQGDmpTMkM93GLm924bnZl2Yi5FmsOW+bfE513cyVXdCWm3bKxvL/6Etq4ryF6XdhGpwfrunpG+9g4zOjPtXH1gf5YWFCg311Tx13nloF5/Uhs/tHLiLKIOzb6AbMlIT7eKK2zGsZ+Y/Hzkp5GFbZvzda6sYaUZosAtRr2BhD5nHyJ5pN5tyeIvbw93XAtrb4Vnf1Z9IYWDE+791t7q/t6Rw5CNZciTwPG2JsYaROqS4bAN0jvXVCvp5Ejq4cRdQA2st2324l8WL5R5bOQR7rpnuPK908jv3RZmJEWKlVgcIbK2sTf7vdwcb2vQcXHqaUhpjPwusRpOmmnN6novjbsZWAc8xYa7g0NDa+EAj0ZZVI4Zb+vEWINIzQY6u6zfnmc4bJPKHApDgAz6HJPyrLdN07G/obW98hzccGZwbM8u843bb+TrNw6w/OzzW/DQTRZ2KGnKlVmJtGGjM9NOToaUQqFNGURtSqopcBNpHutt03RQlTdPAycAS4BlhFshcxOwBxgGrvW+50Rfmogk3UBnl/WnhlidvbANFITXwp/LTSdHkjXG20a5UEI1jnezwGBgWGI21NG77Ru339iEQppOiyPUT/ODijRqcsnyY5NLlh+Luw5pmmPezcRchzTPCO5zbGOuIwsM7t9yJOY6REIZ6Oyyfjue4eEtFn3G1ULtvlTjv0bSwhJ/zcEa0nFbd2jurdTPKt2/+D7puo3QhM9Bv931Fx3MAf88w8RchzRAc7jFJMMH5+Ky3tZBV3ayLDhvj4mxjiww3nZTnEWIhBHs2TY8NTmkeVjFo7ncpBITdwF1aPZCCWFYoC0lN6fq/+aaRYVb8HvVxf1/q+Wmnm3RUJuSAQrcYqbVSTNP4UG2ORQaQ/XMEsmB4rBteGrSxlxSM5VboVRKc7ytIZ3hijSX8bZpmWrEettmL5QgEop/3tzb3hFmCpgsMXEXIPVT4BYTf8LHzTPTCmSySYsl5IelcJKl0K1+es9I4uUsbAPN4VYrh8LfSj0SJM0MrV0oIVtKrXq/7tDcW/BnlfezPeoSJRUcZl/IkRRS4CYSPett03IFUxrnT5ZuUGBUD+tt9Z6RxOpt7zA5C9ukPv7nmImzCEmkNF1YMt62lQslZMEPAdi9LZq9Ffbzk2h2KCmkYaUpp8BNRCQafuim+dxqp4MISbwN3T0jkKuwzXhbJ8Ya0shBPRJkLhN3ATWwpCscTBI3Idv+ZDR7K+xHI6IAf77UvnzNhe54W0O6PkfEo8AtJv7Yc83hlkk6SMknh9nzuZnYKkkX6201R4wk1vr8hW2ghUwaoR4JUsx42zT05E7CQglptROADXfDlo3V7108tDRoy0Z3P65nIqlO0sqJuwCpnwI3kWhZb+vEWIPEx6L5e2phUUAtCbe+u2ekr73DjM5MOzkK26Qxjncz6OKLuNIyybv1troIVp/3gV4A1lwfLnQrZctG9/ddVwDvRlBbJgQWTjDxVtJSuoiTYgrcRJpDPQLyy18K3aCD1UosuoouCTfQ2WX9oStXH9jfX+XuWaMVShujEyQJMt7WxlhDNQYtlBCFvwa2cuQw3HEtrL0Vnv1Z6YUUgg5OuPdbe6v7e0cOA9wJPN38kiXhHG9r0EUckXDWd/eMTC5Zfixn6XweHPNukm+GwmvBxlpJ8hjcIbf6+0iiDXR22ckly4/luK1We9Y4/29oYq5D4mVxXwdJX8ncona5EYbC8c0I8BUKnwH13K5oafUp4Z9DD3R22bhrabHga0tEqvEP5HP4YZF1OkERn0EnW8Ussw8mTZzFiJSjsA1QexYFi06QpPBeSvLrwKL3fCMMpZ/nk4D/BHybcCHbt737n9SiulMnx+fQhuR/jogkR44/LLLMoiuDMptF4RLM7dWmgwVJhIHOLusviBD8nh+25biNNui9GgWD2oC8C7Z9SQ6z1Ou8flZwobsAACAASURBVAYd37RMb3uHmVyy/Fhx250T/ueJibkOkeTL+YdFVll0sCJzWfJ7wmWYG7SZGOsRmaW4J5vfNuc8bAO1Z1HSMKD8ssztwZREFr3f62VRWNlSOT+Htqg9EQkn5x8WWaWrDlJO3k64DHOv6psY6xEpyQ/Xim85D9tAJ+BRMiQ7bJHmsJQeMmjiK6kkQ3JrSzqLwraWy/k5tEHtiUh4/oF93HVIZPQBKJVkPXQzzA3Z1KNNEivYuy14y+lBfDFdQIqW/p75Yig/R5eJrarSLAqM6mFR2BabnJ9Dqz0RCUsrlWaOAjepJi2hm2F2aDaCe0AZvJnATUGbpE65wE093AC1Z1EzpOOzX6JRaVJ8G19Zc1j0Xq+HJZnPZ27kPHAzqD0RCUeBW6YY9OEn4aQhdDOEW02rOGRT0CapUS5sU+gG6CS8GdQrIR8s1dvKpFBoVLvgBUYTbyn5lfNzaIPa6FSZF3cBeTY8NTkEMNDZNRh3LdIw4203xVmEpEI/4FBoME2MtZTjeLew9+0P3ML+nkhswoRpA51dgzkN3Yy3dWKsIYuGvK2O+bLLkJ7n13rbIRS4hRW8qKjjHYmLQ+G1Z2KrQkJT4BajzTPTDkBfPtN5kTwLHqj5wzWTZqj6XRhCB52SMaMz087w1ORQ176xtuGpSRt3PTEw3lYXkKLleFuDTpKyygHacNvGcm2oaVUxFRgKwaATXxmpYSiEbQ467pH46QKOSFg57xKbJRZ1y5faWZI3pMMwd062pM9DI1KTcoslqC0G1J41kyV5wwqleYLDSC3JGYpo0Xs8LEMyhwPnmj8Ha057ofs0rFQkjJwvbZwlFh28SH0scw/KW8kQPmRT2Cap57e7CtrK0lxjzWNITugizVfqhNjEUEeQRSfqYRkUtiWSAjdAbbVIOMEDfx3wp5pFQYTUz9DaQMtQWOSg1ITOpkxdeo1L6vk9yxW0laWT8eZKw8I50jhLMttMteXhWPS3Six1WAG0YJ9IeP7Bf85T+rSzqFGWxlnmhls2gv0aygdsxSFb8e8F71fqPiKp4V8Vz/lBejUK3JrLoL9xHliSd1xoSV5NSWRR2JZoCtyO0/G5SBj60MgEixpmiY6ldChmvZthduNqim6W6gGbJVwDrS7rkgl+2Da5ZLmCjvIMumLeCvpczb6knQgbkldTElkUtiWezp2PU1siEpYWT0g9ixpniZ6ltrnVyt1qCdiKmTp/TyQxgmGbepNXZFFb1goGBZtZl7RejBa9t6uxKGxLDV1AA9SWiISnpD71DPrAk+aylO+5NlJ0sygoEwFmz5WqsK0qi042W0U9E7LLkqz3kSV5AWDSBI+rTLylSBgK3I7T61YkLPVySzWDAjcRkcRR2FYThUCtY9BxQ1ZZkhW4qddWZQrbUkjnzcep3RYJS73cUk9XD0VEEkSLJNRM7Vhr6SQ/m5L0PrIobCvHMHvVYBNnMVIbBW7HGXTxRiQ8rViaarrCICKSEFokoS5JCgrywKITpawxJOd9ZEhOLUljmD0th6SMArdZdPEmwebFXYDMNjw1OQQw0Nk1GHctIiIiaTTQ2WX9dtRvV6Uq422dGGvIG8fbGnSilBXG2ybhc8d42yTUkiSGQsjmAP2xVSJ12zwzvQmgT4EbFNoS5QcJpMAtYTbPTDujM9MOuCcM8VYjNfIPaPRhJyISo2DYNjw1aWMuJy2Mt90UZxE546ATJWkOS+E1ZeMrI3EshbBtCIVtkg0K1UVqEVxRTd1kU0dd90VEYqSpGepm0VxPcTDo2CFLkvJcaqGEuSz6u2SG5j6fQ8NKRWqhiZ5TS/O4iYjERPO2NUTtV3z0t88GQzLmBLMoVCpmUdiWKQrc5gguACIiYegqfSoZ9GEnItJywbBNvcPrkpSeOXlk0LFDFljiD3QMei8XsyhsyxwFbnMY1I6I1EZDS1NLV6pFRFrMby91kapuOkmPl44d0s9/Dm2MNdgE1JAk/nOi91YGqUf7HGpHRGqloaWpZNEVBhGRlvHbSoVtdTOo3YqbQc9B2sUdWtsE1JAkCtsyToHbHBpWKlIPDS1NJTXwIiItoHnbImFRr5gk0LFDehniP9HVsEmXYXbwYOIsRppHbf8chvg/h0TSR0NLU8miDzwRkaYKto+6KNUQi07Uk8CiY4e0ssT7Hor78ZPCUAge9T7KOL9Tis6PZ9GFG5F6aDLoVErCXB4iIpmlHuCR0bwvyWDQyVJaxXnMZ9BQUlDYljsK3EpSey5SL83nljoGHTiLiDSFhpJGSifryaE5eNIpzveQRRd4LRpSmzsK3EoyqA0RqZ+u5qeORR96IiKR01DSSClwSw6Dno+0scR3rOc/dp5fLxaFbbmkBZPKUocPkXppvppU0tBSEZEI6SA7UgZdGEoaDQlKF0s8x3n+4+b5GNOiv0Fu6VigLLUhIo3QfG6pY9DBgIhIJDSUNHIWtU9JY1AImiatPrk1gcfMc+82i46vc02BW1kGtSEijVHoljoWde8VEWmYenlHzqIT1iRSD4X0aGXoZZkdtOU1cAsGjibeUiQu/sgvzW9eUl4/G0Sio6v8qWPRwYGISN10NbspFOwkk0E9FNLA0prA2jC3V1teAzeFbQIocKtCbbtIFPxFFPRBkxoWHSSIiNRFvduaIo8n7Gmh44XkszQ/cDOUD9ryFMoatIqvBChwq8ig94pINBS6pY5FB9EiIjVR77amUeCWXBadMCVds4/nLJXDtrwMBzfkL2CUKhS4VaX2XSQKWrk0lSz5OlASEWmIplBoCoNOYJPMoAt0SdeKE1pLvgM3S37+r1IjHRtUpGGlIlFR6JZKFh1AiIhUpd5tTWNRG5R0GkKXXJbWvX/8x8pb4GbJx/9T6qTArSKD2g+R6Ch0SyWLDiRERCpS29Y0FrU/SWfQsKCksrT2/VNu0QTTosdvNYuOkaUKBW4VGdR+iEQruHKpTkxSw6IDChGRkoIXk+KuJYM03CQd9DwlUysDL8vsE+fir7PGomNjCUHHB1Wp/RCJmkK3VLJoMlgRkTk0nLSpsnzCniUGHR8kjaG1759S4ZNt4eO3kkVhm4TkLx7Y295h4q4loTQtgUgzKHRLJUN+5uQQEQlFB9NNpcAtPdRLIVksrZ+/rRWPFbfgsFkTbymSBjpGqMqgwE2kORS6pZZFoZuICKDhIk1k0EF4mhj0fCWJpTXHaf7j5OEzUGGb1EyBWyh6X4k0i0K31LJoiKmIiAK35rHowk7a6KQpOVoVgvkhlG3BY8XFoGNeqZMCt1DUQzpGC+IuQJpreGrSAgx0dg0OdHYNBr8niWa97SCFA5Ehsn3AJSLxWQhcAKwAvhri/j8EtgE7gfebVVTwAHp9d89In/f18NTkkNqyqsI+p4PAKlr0nErdFgJ/C3wO9+TJqXJ/PZ/NY1r0ODbwWLZFj9lqhkLI5gD9sVUikl1DuO+1Qaq3HSJSD/V0SzWLhpiKSPNcwez5I2u9XR5VIb3tHaa3vcP4V6wr3XQ1u6LEPKcSCT2fyWJpzTFZ1o/9LNn/P0qTaWGlUAz5GZqeOOrhlhPq6ZZq1tsOBm7q7SYiUfg+8E0AVt8EF30GzlkBpy0u/xsHJ2D3Ntj+JGy4G+Ap4E7g5noK6G3vMH671FcUoo3OTDsAm2emN/W2d6zqa+8wozPTzuaZ6U2bvZ/JHLE/pxIpPZ/Js6oFj2G9bVaP9yzu8Sxk9/8okhSOdzPezYmtkhxqi7sAaa2Bzi4bCNw0JCd9LDpAEZFoXA48xYIPwC33wyVX1b6HLRthzfVw5DBAL+6JfVV+yFYuYBuemhxSoFaX2J5TaQo9n8nk9xJp1nmUpXCsl8VzNYuOZSUi/rmtzmurGqEQtmnodgvNi7sAaa3hqUk7PDU5BMd7u9mYS5LaWNyDE3APVtQNX0TqsRD/xDt4In/NIvdWSfA+l1wFt9zn/2QzcFK5XwsOFd0QmI9tdGbaGZ6aHFp9YH//1d5NYVtdTqKe59T/efnn9ANNqlcqK/18Fit+/orNfT4XRlxn3hhv6zTxMfwedEMV75VOFoVtInHI4udJKihwyyGFbqlnca94BoM3i1aeEZHwLgDcIWr19JoJuuQqdz+uTwd/VClkW31gf78fsg1PTVqFbA1z//a1PKfFIU0wdCs8p0siqU5qVf35LPf8FZv9fF4QSXX5Zbztpibt35LdhRIshbCtn+z9/0SSzPG2JsYackmBW04pdMsEy+zQbQQdvIhIOCsAdz4oX7WebZXuU9jPKj9kW9/dM1IpZNvszsXm1P0/kGJur5han1OAdYfmfq+wn2WNFCV1m/t8BvnP7bpDpZ+/YoX9rGi4snxr9vxtwd5fWTLC7LDNia8UkdxyvK2JsYbcUeCWYwrdMsEyt7ebhpmKSDVfBdzJ16GxsC24H7jND9n8BQ78oE0hW9PdBoR/ToOBTXDrf7/wnLZigniZa/bzWU3x81essJ+vNlSVGG9rm7Bvf59ZGmppmDt3lBNbNSL5FjxflBZR4JZzw1OTdvWB/f3ghm7ru3tG4q5J6mJxD2I0zFREwjtt8dzgpZRq9ylaMTEYsmlOthYL+5yG2Y/EL6rnQc9nFKy3dZq078HAv7PAoLBNRHJOgZuw2TsxAujzhgLFXZPUxUHDTEWkHmGCmZDhTde+sTaFbAnQSNgmIpU0Y/62rCyUYHCPPY95W9CqiCJJ4XhbgzpltIwCNwHc0K1r31jb6My009feYSaXLD/W6827I6lj0TBTEQkrwrBNEkLPV374vRnDztcnjfBDMSfi/VrSvVCCYXbIZop+rrBNJDmcuAvImwVxFyDJcvWB/f3rvfl3NnT3jKxWL4U0s4HbYOCWpblBRIpZNOdUGKaJ+1Yv6WwZRO+p5Fl3qN6wzaD3aFibmH28ZLytE/HjpHGhBINbt6lyvzT9n0TyYIjC+9eJtZKcUOAmc1x9YH//QGeXHejsGtzQ3TMyPDU5NDw1aeOuS+pmve0qCh+wxT8TyQr/dS7xMXEXIJEzcRcgJQRDt9qYiCvJA+ttnSbtN20XQw3hXke2qVWIiCScAjcpyQ/YvNVLB4PfC+pt7zDqAZcKNrD1e7oV/0wkM66/8AQu7lYTV859O2Z44cDRpux7jTmxKfuVym5x3mvKfvVeikfo5zM4fDhE+HZx93yuv7C9zqry4YUDR7hvx+FyP45y/jZLehdKsFS/wKXebSLJ43hbQ2FBE2kiHUFJWdVCN78XnIadpopFw0wlBy7uXsAnTp8fdxmJdd+O5u1bf/fs0XOaQA2sRKvnM4w5gZsfjDkRPkjaF0rop/ScbT7bskpEpBYO6uncMlo0QSoanpq0w1OTQ3A8eLPev60fwvlbSRWLFlYQkYMTke5n0cK2A9HsUOoW9jn1g5riecD873v7Wbig7d0Iq5NahX0+qwVw3n5OPqFNK2o0xoloP5Z0L5RQTVpDRJE8CJ7/SZMpcJOqhqcm7eoD+/vBDdfWd/eMBEO2vvYOoxVNU8ui4E0kd847bf5LAOzeFs0Ovf0sP3X+3mh2KLW69MwFzwH1PaelhiJ6++la2PabRuqS+lR9PoOBaZh53Lz99Jwy740o6ssZ622jDJHSuFBCkKHQu82JsxDJt972jlUAoxptJQmlwE1C2Twz7aw+sL9/dGba6SsRrqmXW+pZ3IM+BW8iObDklHnTAGx/Mpodevs599R570SzQ6nV8b99Lc9pcW+o4Nfefro62spOZiXNE+r5rPT8FfP2c/y9L3Gy3jat03kYZodt/d7Nl9b/l0heON7WxFhDbihwk9AqzdOmXm6ZYCkEb77BwPdFJCM+ftp8t0vMhrthy8bCD9Ydqj4nVPF9tmx09wN8avGC06OuVcI5/rev9Tn1f17mOV1yyryTmlGvVFb2+SxW6vkrFng+j7/3pRZRzt9mSe9CCVAI26AQthX/W0SSz/G2JsYackGBm4Q20NllS/VuC/xcvdyywTJ3mKmCN0mSk4D/BHwbtydm8GbAXeHvCw++zRcefJvbn5x+7h+2zzgvTx7dGVfBSfORznnLvnZxuwPAmusrn9BXsmWj+/vADRe3Ox/rmn9BRCVKjT7WNf+CZjynp3XM646oRKlBs57Pj3TOWxZNhen38uTRnf+wfca5/cnp5/z24gsPvh1cIdbgtiu+/wW37WkkhE7zQgmWQtg2xNyAzUG920REZmmLuwBJh+AiCZVoxdJMssyeVHMI96DKiaEWkSuAzfX+8g0Xtztf/vgJJrpy0u3WTe9t/fc3jq4EYPVNcNFn4JwVcNri8r90cMKdD2r7k8d7zXzyjPlbv7vqxJWtqFkq03OaLXo+m+OBFw87974wYxrYxRXA0zX+jqVwPJW2czDL7HnnbGyViARMLll+DKBr31ja3lNxM7gBuoN6pzaVXpgSykBnl+1t71hVqYcbuBNWXu0tsCCZY5kbvNlYKpG8+j7wTUAnnhF68MXDzg8aOPH82sXtznUKMRNFz2m26PmMVlQhJnAncHMND+33lkvb8ZNFYZsklAK3uhkUuLWEXphSs4HOLuttS/Z4Uy+3zLMoeJPWuxx4igUfgFvuh0uuqn0P/tCqI4d1Alrk5cmjO38xceTNV37925Ofe/3IpdXuf+mZC54799R573xq8YLTNYw0mfScZouez2gcDy8jakuAXuCpEL9lcY+d0nbMZFHYJgnV295hNnT3jKjDR938iwDKhJpIf1xpSG97h+lr7zDF4ZtCt1ywKHiT1lgIuCvrfeuhwgnSNd7c36UmC7+maF5w/z5bNsId1wLwN1eeuFMnoiIi+fDy5NGdf/n4e+5nfrAtCSpuO6B0GxNoS4AO4P0KD21J51BSfyVScHvAOLFVIlKCAreG+e9xvb+bSIsmSEM2z0w7w1OTtmvfWFvXvrG24anJIYAN3T0jfk84ySzL3MUVjhEudAtzHxGfe4K0+qZwvRFKnTD537vkKnc/wC8mjrwZVYEiIpJsxz/zy7UlpdqOct8PtCX4bVR5aVwoQWGbJJ4/1dHmmelNMZeSVv7fzcRZRNYpcJNIDU9NWj90G+jsGlTolguW2oI3693HNLcsyZAVgDvPji/MidG6Q7N7Jvg/8/bzyq9/e3KURYqISHId/8wPtiWl+G1HqZ5tQYX9rKhwL0vheMdWKTEJDIWwzUFhm0iWOd52VaU7SWMUuEnkFLrllsU9MKsWvPnDKoJXT0Uq+SrgTmoN5cO2oOCJUvFJk7efMPMgiYhINhz/zD+nUj5Wg8J+vlrhXsH5z5LOoLBNUqS3vWMVuIv2xVyKSFkK3KQpikO39d09I3HXJC3h4AZsQ5QO3mzR/UsuvCFS0mmLK8/b5n+/Wq+ESivRiYhItkXVBlTfj/W2aZjj1uCGbaBVCyUlAkNKnXgrSS3H25oYa8g8BW7SNP7cbqMz005fe4eZXLL8WK/3wSiZZykdvBUHbIbCAZ5IONUCNRERkVr5bcs1iwq34PdrYykc89hGS2syS+FYbAiFbZICOqeMjONtTYw1ZJoCN2m6qw/s79diCrllKQRvTpn7GJJ/MCpJUc+JT2MnTSIiIrVKy0IJltnDXm1slYjUwO/d5p9jiiSVAjdpCc3rlnuWyldOBtFBnjRDmPneREREihfdKfX9cCzpWCjBorBNJO+0UmmTKXCTllHolms2xH20cqlEq9zJk4iISDl+e1F/u5GGhRIsCtskxQY6uwZBCyZEwPG2Wqm0SRS4SUsNT03a1Qf290NhMQWNwc+FsIsjjKCDPomCwjYREWk9622THGKNUDgu6ye5dYqUFDx31IIJknQL4i5A8mfzzLTTtW+sbX13z0hfe4fp6+4xw1OTQ8NTkzbu2qQpDIWrvKuKvl9KMJyz0ZcjmaewTUREWs+S/IUSRigcf/VTfn5dkcTS/G2RcrytibGGTFMPN4lNcDEFDTHNNIfC4gn9gVtb0a2fuSua2lYWKgl3cCLS/Sxa2HYgmh2KiEhqVGtL/Is21eZuK+znVW+b5IUSDIWwzUFhm6RYb3uHhj9Kaihwk1hpXjcJcHADtjZmB2/HUPCWRwb35OAYcCYAu7dV/63iE6RrFs2+Bfaz/NT5e6MqVkREku3SMxc8B5RvS8otlFCup3RhP0+S7IUSDArbJCN62ztMoIebjbeazHC8rYmxhsxS4CaxKw7d1nf3jMRdk8TOouAtjwzuczzC7GEvuwDY/mQ0j+Lt59xT570TzQ5FRCTpjn/mV2pLisO1StMSFPazjeQulGBw21MohG0iqaXhpJI2bXEXIOLrbe8wA51dg/4H6eoD+/s1EaZ4LLPndkvyZMRSO8PcVWodCicuzwDTAHzrIbjkqvofactGuONaAP7myhN3fqxr/gX170xERNLi5cmjO//y8ffcz/wI2xLgvwJ/TfKOTSxaiVQyZnLJ8mOg88SI+Re51fu1CebHXYCI77WjR/b86L237wXa+to7zFdO6rwBaNOHqeB++LcBm3AbBEOhF5wTT0nSIAOsBW7AfS6Xed93gBtxTw72eLcjwEbgf+epR+Cjn4QzP1r7I27ZCGuuh98e5YaL253PLv3AZQ3ULyIiKXJax7zuBfPanG1vHl0WVVsC3Abc4f0kSb3HLArbJGMGOrtsX3uHGZ2Zdr6nHm5ROhv3uHwvOq+KnAI3SRwvYGvrK4zRV+gm4DYADm7IZrzvmcDXTssrknoY3KDN4oZsyyiEbDcC9+KGbMVeA07mt0ev4ImH4L0pOHIYFp4EJ55S/tEOTsCOUfiXtfD3fwW/Pconz5i/9f+8dOHlkf2PREQkFS7qnr9sx1tHt/7q7SNnNtqWAHcCfbjt2BDJOQ6xKGyTDNrgTTv0o/fevlfnhpEy3m0TyfkcywwNKZXEGujssgOdXYMAozPTztUH9ifpyqHEz6JhpmlhmDtkFArDRp0a9nU58FS9hXzt4nbnuo+fUFyHiIjkyIMvHnZ+8MKMaWAXvcD/SuE4JCnnVBaFbZJBwfPCrn1jSXm/ZYXBHVbqkKyeupmgF6skWm97h9kQWERheGpySCvSSBGLgrekMpSfm81pYL8nAZ8GVuEO56no0jMXPHfuqfPe+dTiBadrzjYREQF3TrdfTBx585Vf//bk514/cmmIX/kObg+QZ4B3cRdzguQcdwQXG9JcTJIp/txtOhdsCoMCt6ZR4CapELyqoQ9aKcOi4C0JDNH1ZqvHCGDWmBP5xOmaNUFERGrz/JtHucV5DyqffFrcti4pxxoK2ySz/PNAjXhqGoMCt6aZF3cBImEMT01af/nngc6uwYHOLhtzSZI8Fvcigj+J6iDu1WcbUz15Y3Ab6+BBv4PbcLehEwAREckGS+ECn42vDKDQ9hoKba4TWzUiTeB3utg8M70p7lpEarUg7gJEwvJ7tXmB22Bve8cqXeWQEqy3HSzaOuggNGqGeHuziYiItFpwjrQ4GdywDdQzRTLK72ShEU6SVhpSKqnT295hBjq7Br0VTPUBLJVYNMy0GQzNmZstLM3hJiIiDalzDrdjwB8BFxDveZRBYZtknBZKaCl/Tkr9nSOmP6ikluZ1kxpYFLw1ypCM3mxXAJvr/eUbLm53vqxVSkVEcu2BFw879za2SultwB0RlVMri1YilYwLLpyn87yWUODWJPqDSqoFQzdNpCkhWBS81coQb2+2oO8D3wRg9U1w0WfgnBVw2uLyv3FwAnZvg+1Pwoa7AfjkGfO3fnfViStbUK9ISV948G3++cun8IUH3wbgn798Ssn71POzco/nC/6OX0c9gvsspXi/5WoQabVbN7239d/fOOq2AQ20JcCdwM3NrreIRWGb5MD67p6RvvYOo7CtZRS4NYn+oJJ6wSsgoKsgUpXFHYpovK+HAt8Xl/Fuwb8TxDs32+XAUyz4ANxyP1xyVe172LIR1lwPRw7ztYvbnevU001i8IUH3+bYsWO0tbVx7Jh7fNvW1jYnCKvnZ5Uez+f/TrCOWgOw4n2WEtxvuRpEWu3BFw87P3hhxkTVlgC9wFMRl1mORWGb5IBWJY2FArcm0aIJknqbZ6adrn1jbf6Hc2CYqY25NEkmG9gOMrvHmyXfDMnpzRa0EP+EptoJ0jWL3O26Q3N/dslVcMt9cMe13PvCjFl5xvydmtNNWikYcgXVG3yFfbxyj+WHfs0MwKrVINIqL08e3fkDfxhpqbbEbz9KCbYpgbYEd4qDDuD9aKudw6KwTXKgeMqguOsRadS8uAsQicrw1KT1P5i94M3GXJIkm8W9iuM35oO4V3dsTPXExeBOvHzM2xrv+w7uJMz9xL/aqBuKrb6pvt4IQZdc5e4H+MXEkTcbLUyklcL0LCt337a2tuNB37Fjx6oOCa3ED+uC+ww+RnEvumbUIFKr45/5Ebcl+G1U84xQCNv6yd9xiuREcdi2eWbaibkkkYYpcJNMKQ7dJpcsP6bgTaqw5DN4M7gH8aVCtjaSEbT5VgDuPDuVVOqdEOTt55Vf//bkRooSqUW1sKxaAFVL2FasWm+yUo/9hQffrljPP3/5lJL7LPd99WiTuB3/zC/Xlqw7NPdWSWE/KyIrcq5gG52kdlkkUr3tHUaL4UkWKXCTzBmemrRd+8ba1NtNamRxQ7csB2+G5PdmK+WrgDupdTlhw7bAfp57/ciljRQl0irF87aFEeyFFlygoZbHi7InXK01iETt+Gd+pbYkqNIUBbP389WGCivNUGinHdwLYU4THkckdlqRVLJMc7hJZvkf1v68br3tHas08aZUYQP/HizaFv88TQzJnJutNuVWkAueFIUJ3iqtRCfSBKUWOgiGT/5caqXmdwsKG7b5wixaUPzYUfdC08IJkjhRtQHNa0sMbtgGhQtiIpmksC0RjLd1Yqwhs9TDTTJteGrSrvZCtr72DqMhphKSZe4w00Hv+zaWimpnSGdvtvpUG/ojkmJ+T7FWBVTFPdNEcqda77bmMRTCtiEUtknG+cNIR2emHYVtuw/VggAAIABJREFUkkUK3CTz/FVMNcRU6mBJV/BmqByyJW1utmgobJMMCC4mUEojwVcwQPMfo9rwznJzsbWyBpGcscwO22xslYi0wPrunpG+9g4zOjPtaBSSZJUCN8kNLaggDbCUDt5GiP+A2FBY/KBcT7bshWwiUpMk9FRLQg0iCWUpTGGhsE0yT2FbohhvuynOIrJKgZvkij/EdNRbZlq93aRGltnBmyGexRUMc0M2gxuqOcwO2ZwW1iUidfJ7gEH5Xm61qrbSaCskoQaRhLMobJOc6G3vMArbJE8UuEnubPY+3IO93dZ394z0tneYmEuT9LDMDt5gdvBmI348Q+nhooa5IZt6s4lIZCuNpr0GkZq1dv42i8I2yQl/gQSFbZInWqVUcmt4atKOzkw7A51dg33tHaavu8dodRypkWV2wOYPNfX/7VDonu0QLggzge0qZq8s6vP3k65VRuvgBeFm88x03KWINJ3fy63eHm5+qFU8dNNfgbSW/ZbbV73qqUEk44LTQOhimWRacDVShW2JsyruArJMgZvkmtfbzRno7LLe8NLjK+Vs9oadioRgA1v/34MUeqH5X/ucEvswJb5XfP+hoq8zx+9p6gfhAKsP7Hd/eHACTlvc+IMcnABg0cK2A0B34zsUiZ/fmww4vrpoMOAKBl3VVh8tta96NFKDSNNE3JYAr9bx2wrbJDcUtiWe8bZOjDVklgI3EdzebnB8TrfBARhUbzepkw1sDaV7qgX/XczxtpsC/3ZK3TErets7jB929xUN7R6dmXZ2/sfMo8D32b0tmpOk3dsAWH7q/L0ocJMWCAZPfk+vMPeN8nF9waArqmCtkRpEWuXSMxc899zrRy6Nui0BnqzhtwyFlUgd3LBNJLOCYZvOrRLPibuALFLgJuLxVjG1wd5uve0dq4anJofU203q5BC+N1up+2VSqV5sQaMz007R++4SALY/CZd9vvECtrvnRueeOu+dxncmUp/gIgnF4VM9Pwvz/VL7q7W2eu5bTw0iUTv31HnvPPc6kbclwLZKdwswKGyTHPHPqUBhW4IZb+vEWEOmlb/EKpJjwQYC1EiINKq3vcP0tXeY3vaOVaV6sYH7PisTbi8E3EncvvUQXHJV/YVs2Qh3XAvA31x54s6Pdc2/oP6didTG71GWlB5eSatHpJlenjy68y8ff8/9zI+wLQE6gPer/IZFiyNIjihsSw1LYd5pXQRoAq1SKlLC8NSk7do31hZcyXRyyfJjA51dNubSRFLDX/p9csnyYxu6e0aCPdpGZ6ad1Qf2968+sL//au9WoSfp+0AvAGuud0906rFlo/v7wA0XtzsK20RE8uNjXfMv+NrF7Q4QWVsCXIHCNpFZFLal0qbqd5F6qIebSBX+/FJ+UKCGQ6S0BnuxhfF94JsArL4JLvoMnLOi8lw8ByfceXa2Pwkb7gbgk2fM3/rdVSeurLMGkYYkpVdZUuoQabVbN7239d/fOOq2AQ20JcCdwM1VHs6isE1yRGFb6ljczyh9PjWJAjeRkDTMVGS2sHOxgbsicEQPeznwVL2//LWL253rPn6CiagWkbp84cG3ExFyJaUOkVZ78MXDzg9emDEN7KKX6m2RRWGb5Mj67p6RwArzlUYuSHL4KxopF2oS/WFFaqTgTfKs2oqi0HAvtjBOAj6Nu/rrbdXufOmZC54799R573xq8YLTNYxURETAndPtFxNH3nzl1789+bnXj1wa4le+gzvs6hng3Sr3tRTCtn40IblkWHA0UImFryS5DO5CLg6av61pFLiJ1EGhm+RFTL3YGjECmDXmRD5x+vy4axERkZR5/s2j3OK8B/WfhI5QWPlPYZtkWm97h9nQ3TMC7jHh1Qf2K7hJD4uGkzadFk0QqYMWVZAs8xc7WN/dM7LBuwUXO/AXPOjaN9bmL3aQkLBNREQkTn7Y5qCwTTJuoLPLKmxLtVX/f3v3GyLrdd8H/Ks/0Xpl+9a+5ibE1wU3OA1N7DhxXUq8CjqCGNqC8sIlDsW0SaGl4Fd5kfaaNKAjGoJFQskrQ2lp/uGUxCQFGUKoA3dvLSUEXDmOZDl/wHUaWyYWujGyo5ur6Ep9MTv3Pjs7szOzOzPPv88HhpmdnX327JyZfZ7nO79zTtsNGAMVbrABKt7os9MWO0g6WcV2GhVuAJzZGSvcSib7n3V/DnrJ4giDYP62HfDkwoZMQwvBG123yjDRJ2/euPZEdyvXzOEGwLlscA63EmEbIyJsG4SayXDSw/iftVUCN9iw6bBSwRtd0QzYklYXO9iE9yV58qw//OPv2jv8oFVKAUbt17/w8uEvn2+V0vcl+f1YiZSREbYNRo3523ZC4AZbMjvMNLFjYjfWCdiSXgwTnfq5JD+ZJHn4w8k7fzD5jncnb3nr4p944bnki59Lnvl08smPJUm+79vu+ezPPnj/9++gvQB0zE9de+mzf/iXtyb7gHPsS5L8ZpJ/fnTbSSuD93hjTt+Hj+bwbbdFnIPhpDviCYYtE7yxCweN4cwDmIdtnh9I8nu591uSj/xa8p73r7+Fpz6VfPRDySsv58fetXf4oyrdAEblN77w8uEvPX2zbGpfkslwrGsRtjFg02PMB/b2y/R4sqfHkkzUqG7bGYEb7IjgjU0aQcDW9LokN5IkP/2J+SdIH3jT8a9/6+vzt/TUp5Kf+ZEkyS/80P3PmtMNYBz+9PqtZ3/id1+a/M9ftC9Jju9PVtiXJNlP8jebaid0ycHefrES6eBMV1MWuO2AwA12TPDGupYNEU0GF7DNek+S/5OHP5z86589+d3ZsG1q0YnSL/5U8smP5V98932H//Kde2VTjQSgu371mZuH/+PZl8vCfUkyf3+yZF+S5B8meWpDzYTOaJ6zCNsGo+TOIi+yoB24t+0GwNg89uL1+tiL12tzcYXpZRqYCN/GbdWAreMriW7Su5NM5tmZNa8SYXrfB940/0TpnT+YfPJj+bO/evUNG24nAB11+3/+vH3JrOb+ZMm+JJN9lMCNQbE4wmCVo+tH22zEmEg1oWUHe/vlgcbwwCk7t/GYvgYO9vYfnBeuJYOvYFtmUvr+X589Oan1NFybPRladH8ymfz6305GFf32B9+42ZYC0En/7De+Mbkxb1+SzN9vrLYvOUyi8ofBELYNmsUSdkyFG7TsyaMKpWnV23QHp+ptmFatXkt6uYrods07QVo01Gfd7QAwDuvsA07bx9iXMEDCtkGrR9eq23ZI4AYdsmi46fT2Yy9ef3QkQwgHYRqurVK9lkwObPQtALRolUUTYIAev3T56vRY9eHnv/KQY9LBeWT5Q9g0gRt00PTTpGn4Ng1rrly4+MiVo3+WwrfuaQ4NTVSvtea0IUAAsKpF87fBgBwcnWMI2watHl1bmXTHBG7QcdPwbXaut9nwrflYtmvVyrVkdIsbtG/RiqUAsKrf+vryBXhgAA729ssnL12+mliJdOCm1W2HbTZijARu0BPNud7mhW/TawHPZq0y59qU6rWWGQYEwHlN9x/N0A0GSNg2GvXo+tEI3HZO4AY91AzfkskEp9NKq+llWv0mgFvNWYK16fN6dPtwy03kNMI2AICVWBxhVKbVbbXNRoyVwA0GoLmTnC64sCyAa9w+bKHJrZgdCjq9fdrPzIZrY3q+ekPYBgCwEmHbqNSjayuTtkTgBgMzu9NcFMAlyZXGajWzQVzSr6qtg0ZwNv37Vg3VElVrvfDCc8lb3rqZ7SR50+vuej7JpfNvEIDeWLQvmQ4hXXXOtqN9SZL/u8nmwTYJ20alRnVb6wRuMHCzO9KDRuDWnPB/URCXHA/jmvdNb28jmDqYCcmaodk0SJu9fxmhWm/9SpKSL37u5EnS7Pw6s1/PO2n64ueSJO948z1/HoEbwCi899vv/cxnvvrKe+fuS2atUjl9tC9J8ulNtA+2Tdg2OtPzOdVtLRK4wcg8uWBY5LQSLjlZGdYM424/fiaUO80Tc37fOkHZur+jz5V6zDU5q3nm08k/+qfn39ozk3Oj73zz3d88/8YA6IPvfPPd3/zMV3P6vmR2oYTTKt2euZ2zfW7xg6AbmmHbw89/5SHHxoNXj64fjeq2Vt3VdgOA7juYE7idtcpsVbMhXbPCbtvVdXTO65LcSJL89CeS97z/7Ft66lPJz/xIkuQXfuj+Z//+xXu+ewPtA6Dj/vT6rWd/4ndfmvzP3+C+JMl+kr85b/tgWx6/dPnq9Fhd2DYKNXcKI+Q9LdMBwNbNDg9NBGWs7X1Jnsy99yUf+fjZTpSe+lTy0Q8lr7ycH3/X3uEH/8F9ZdON7Ks/vX7r2T947pWv/dlfvfqGz3z1lfcue/x7v/3ez3znm+/+5j9+673fKrTsJn06LPpzM379Cy8f/vLTN8um9iWZ7Jt+f8PNhI0Rto3Sa0fXqts6QOAGQF/8XJKfTJI8/OHknT+YfMe7T5+L54XnJvPsPPPp5JMfm9772d/+4Bu/f9uN7YvbJ6BnJLzsHn06LPpzs37q2kuf/cO/vDXZB5xvX/LzSf79ttsLZ3Gwt1+uXLj4yAN7++WJmzcOH3vx+qPCtlGomVS3Cds6QuAGQJ/8QJLfO8fPH77r0j3lsYfu31R7em1TJ57f9233fPZnH7xfiNkB+nRY9Od2/MYXXj78pXOEmEkOcr59EWzNwd5++eSly1eTyTQsP/z8Vx5qu03sRI2hpJ2jIwDom9cl+e4k707yr2a+V5LkXZfuuX3Hd73lnj952xvvvvHHL9x60+988W/f/qHvuS8f+p69XbW1s26fcN77LclHfu3cQ6t+7F17hz+qiqZV+nRY9Od2/cWLr37pCy/c+vqXv/Hq/p+8cOu7mt97+vlb05uHjbt/JZMFEp6NOdvoKGHbaNUcX5W0ttYSjhG4ATAkV5OUj5b7873fes+xb3z88zfz8c+/HIHb5ETz3/3OX789yemTh6+yWp+FKDph7Qnhp307r18bffqrD7/++bfs331pk21luZX6s/n+nFrSn//ln7z+S3/3wt1v32BTB+ePvnYrHzl8KZmEbcIKeqMZtj324vVHH3vxem25SexGyeT4NxG2dc7dbTcAAHbh459/OUlGH7YlyRdeuDU5K3/4w6uFbfO+nnrP+yfbSfIHz73ytU21kfXcfu5P69OpRX051ejTL3/j1b/eRPtYz1r9uUyjP2+/94FBuXLhYhW2jZbKtg4TuAEweB///M0kyYe+576WW9INX/7Gq/tJJvNBzTNb2TatmlkU1Bxt58/+6tU3bKqNrOf2c7+oT9d1tJ3rN17zpmnBWv05fY8uqkJtbOf2ex8YjCsXLtYrFy4+kgjbRqhmUuF2GGFbJwncABi8aXUbE7fnK/qOd5/+wNNO4JuOtvOZr77y3vO0i7O7/dwv69Nl1W1TR9t57puvnjI7P9uytD9X7cepo+3MzlUG9JuwbdRq7lS3Gf7eUfe23QAA2KZpdVtiOOkJi1Y6XDVoW7Yddm9TfaFPu2FZP/zW10+fj2/V7QC9I2wbtRphWy+ocANg0P7oa5PV5gwnPaMPvGm1E3q6Tz8OT7PSbd2qN6C3hG2jVnN83rbD1lrCUircABicp59/JU8//0r+6Gu38vTzt27f36x2G7Pmc7JpnuOOOmMYMwms9Wlnzc6v+IE3LQ1UvUdPN/2QBrpK2DZqNRZJ6BWBGwCDM2/ONvO4nVHzhH6lk3nPc6etWd329PO3thrQckaz/dgcWnoK/Qn9JmwbtRphW+8I3AAYkmtHlyR5MHdWbrq24PFjMH0eduXRHf4u7nhk4XfON5T0MON+/7RlcX+en/foag7bbgA0CdtGrUbY1ksCNwCGpDZuv3Z0fS3jPDApmRyclcZ9h5kcqM3ev0l1S9vldMsDmnkVUMurFsf6/mnbtgK3w+hP6J1m2Pbw81956MmbNw5bbhK7UyJs6y2LJgAwRPXoeowHJiXJ1aNLyeQE+6HG5XDpFpoLJQDd4z0KoyFsG7WayfFcMs5j2t5T4QbA0NTc+SSwtteMnSs5Xrl2mGWrV73wXPKWty7e4rT6admJ/QvPTW89s0pD2aJ5fTqvgm3ZMNM7ffqXm2oaZ7Dh9+j9d931/EuvvXb6Y4HOELaNWo3Ktt5T4QbA0DQPTsagZHFF2+GCn/mVJMkXPzf/u80QpnkivyicubOd/7m0tWzLf0qyuE/XdWc7f7yZDbKm0/vzjO/Rf/OGv/O9Vy5crBtoH7BlwrZRqxG2DYLADYAhqUfXYzk4qbkTtCWTv3uVYaOTs+9nPr34EfNWQVzkznZMrt+eyXN/Wp+u4852vrSZDbKm5f15hvfoO+6978aVCxcfuf62d7wmeIPuEraNWo2wbTDuarsBALAhNXcOUIa+fytZd/joca9LciNJ8tOfSN7z/rO35KlPJT/zI9Ov3pDkr8++Mc7h9Um+mWTTfXpfkr89Z9tY37b6c//KhYsfmZ7IJ1Y7hK4Rto1ajbBtUIZ+QgLAeEwnJhr6AUrN8RUMV1sI4aT3JXky996XfOTjZzuhf+pTyUc/lLzy8nR7v3+GdrA5+nRYttqfzZP6RPAGXSBsG7XmiIWzHtvRMfe03QAA2ICayUHK0MO2q0l+/Oj2YZK/l7MP+fuLJG/Iq7fel//9ieSlFycn5a97fXL/Gxf/1AvPJZ9/Ivlfv5j8t/+QvHorSX4+yX8/YzvYnE326W8m+c+7aTYLbPU9enQif9eTN29ce2Bvvzywt18O9vbL/7v1yp//xa1XvrS1vwqYS9g2WiXJL0bYBgB0UM2kum3IS++VTMK26d9ZN7jtH2hs9yyX922wLWzGeft0+lqrO2438239PXrlwsV6/W3veG16Mb8b7FbzPXiwt1/abg87U3J831vabAybZ0gpAH1WMjlASYZb3VZzZwjpYdabq21V35LkbUnenuTBFR5/LZPKui/H/F5ddZ4+/Y+585rzSXs37OQ9apgp7J7KttGqOX5891BrLQEAmGMbFV9dUjP8v5Fuqrnz2iuttoSdOtjbL81qG9VusD0q20arxvEdANBhNXdK8IdoW0NIYVU1QrfRMswUtkvYNlqO7wCATqsZ7rxtJebzoDumJwZDDbZZohkKPH7p8lXBAJyfsG2USo7vU0ubjQEAmKdkuJ8M1hwP26ALhG4jp9oNNkfYNko1ju8AgB4YQ9hWW20JnGTlUlS7wTkJ20bJEFIAoBdqhvnpYI2DMbqtxGuUqHaDs7IYyeiUHA/bSpuNAQA4Tc0w521zMEZflAjdOCI8gNV5v4xOjfl4AYCeKBnmib6wjb6pGeZ7kTNQ7QbLCdtGxxBSAKBXhnbgUmKlKvqrRlBMg0AB5vPeGJWSO/tG+0cAoBdqhhe2WamKvqtxUkGDBRXgOGHbqNQYQgoA9EzNsOZtKxG2MRw1QjcaDvb2y+OXLl8VMjB2wrbRKDGEFADooZphHcDUDOvvgeT40GhIImxg3A729ovX/yjUqGoDAHpqSOFUzbD+HmgSunHC7IIKhpgyBsK2UShR1QYA9Nj0QKa23I5NqHFQxvAJ3ZjLEFPGQtg2CjWq2gCAHqsZzrxtNcI2xsNrnbkMMWXohG2j0Kxq8+ESANA7NcOZhL1GAMG4lHjNs8DsKqZttwc2Sdg2aCV39m1DOD4FAEZqKCfrNcP5W2AdJV77LNCsAjKvG0MxHTYtSB6cElVtAMBADGXethqfgjJuJUI3TmGIKUMhbBusGlVtAMBA1Axj3rbmJ6Gl3aZAq2qEbpxC6EbfCdsGqURVGwAwIDXDCKmEbXBcjdCNUwjd6Kvma7fttrAxNVYgBQAGZggn5MI2mK/Ge4NTNOd1e/zS5avmdaPrmmGb1+sglBw/jqttNgYAYFNq+n9wMz1I82kozFcjdGOJ6fA8IQZddbC3X7xOB6dGVRsAMEA1/Z63reR42AYsViN0YwlDTOmi5uvS63MwSlS1AQADVdLvg5wSE+rCumqEbiwhdKMLZqvZZi9tt48zKzm5KEJpsT0AABs3PdipLbfjLEqEbXBWNUI3lhC60ZZlQZvXZK/V3Nn/2AcBAINU09+hpCXCNjivZnUBzNUM3R6/dNn/W7auuYCHwG1QSk5WtQEADE5Jf4eS1vS37dA15j9kqdkVTNtuD8M3b742w0l7q8TwUQBgRPo6lLRG2AabJnRjJVaGZJdOC91Ut/VGzfHho7XNxgAAbFtNP4eR1Thgg20RurESoRu7tGgeN4Fb55WoagMARqiPoVVNP9sNfSJ0YyUWU2AXpmHbvNCt7baxUImgDQAYqZr+hVY1wjbYFaEbKxG6sU3NsG32Pq+3zqoxfBQAGKmS/g0lbX5KWtptCoyG0I2VCN3YhubravZ7j1+6fNVrrXNKVLUBACNX059PHEuEbdCWkuMnTrCQ0I1Nar6ezBHYeSWCNgCAXi2UUOLgDdpWInRjRUI3NkHY1is1ho8CACTpT3VbjZN86IoS70dWdLC3X4RunJWwrTdKTla1AQCMWh+q22p8UgpdU+LEihU1Q7fmZPdwGhWSvVBi+CgAwAk13Q+xmgdxtd2mADNKhG6sSOjGOoRtvdA8RjOvLgBAQ5cPkEosjgB9UCJ0Yw2PX7p8VejGaYRtnVdjnjYAgIVKujuctMTQBOiTEqEba5iGbublYpawrdNKDB8FAFiqppufStb4xBT6qEToxhqEbswStnVWiaANAGBl0wOn2nI7pkrM1wZ9VyJ0Yw1CN6aEbZ01O09bbbU1AAA9MD2AKi23Izle1eZTU+i/6f8XoRtLNYMWods4Cds6qUbQBgBwJl2Yv61EVRsMldCNlQlcxkvfd06J4aMAAOfSdoVbjaXkYeiaoVtptyl0neBlfPR5p5QI2gAANqKtwK3k5AEdMFzN93tptyl0nQBmPPR1Z5ScnKettNgeAIDeK1kceG3jU80Sn5zCWAndWJkgZvj0cWfUmKcNAGAr5h1g1QX3n1WJFa6A4/9bSqstofMEMsOlbzuh5PhxmQ9BAQA2rOZkCNa87zzhWMnJoM3wURi3GsE7KxLMDI8+bV2J0QYAADtTc/wE+LUFl7rCtkomB2/zgraywTYD/VUjdGNFAprh0JetKhG0AQC0omZx0LYodCuNy2zANj2Yaz4eYKpG6MaKBDX99/ily1enfXiwt1/abs/ImNYDAKADalYL3hZdptVtZbfNBnqoxgkgKzrY2y9Ct34StrWmRtAGANAZNWcP2MquGwv0Xo2TQVbUDN0ev3TZnKA9MA3bHr90+aqwbWdKDB8FAOicmvXCNoDzqhG6sSKhWz8c7O2XZtjWdntGokTQBgDQWadVsdWoZAO2o0SYzxoMU+wuoejOlQjaAAA6bzZcA9iVEqEbaxC6dU9zgQth29aVWBABAACAFTVPIEu7TaHrrGDaHfpip2oEbQAAAKypGbrVdptC1wl62tesNtQHW1VzctqP0mJ7AAAA6JkaoRsrErq1o7k4gqG9W1VinjYAAAA2pEboxoqEbrs1uziCsG0rSgRtAAAAbEGN0I0VmbR/NzzPW1dyckGE0mJ7AAAAGKASK5iyIpVX26WScOtqLIgAAADADlnBlJWZyH+zZudr85xuXI0FEQAAAGhJjcoPVqQaazNmh5CqGtyoEvO0AQAA0AE1QjdWJHQ7H1VtW1MiaAMAAKBjaoRurMgk/+szhHRrSgRtAAAAdFiNk1ZWJEBanSGkG1Mal5qTK4/WVloFAAAAK2iexNZ2m0LXGWK6mFDyzK42Lq+tcKmttBIAAADWVONklhWp4Dqp+Zxcf9s7XvOcrGXVoM0KywAAAPROjdCNFanmmvA8bESJyjYAAAAGrEY1CWuYHWI6psquZtCm0u/cllW51dZaBgAAABtiXjdWNjuccuhVXmP7e3eg5PTArbbVMAAAANi0Gie8rGHoQdTs8FFVbedWcjxomxe6XW2rcQAAALAtNcdPfEubjaH7hjinmaBt40pOhmv16HsWSQAAAGAUSgwxZU1DqHYTtG1cyeKgrfkY/2sAAAAYjRonwqypj8GboG3jSpYHbU1Xl3wfAAAABqXGcC/OYF7w1qXwbTZkE7RtTM3JOdlKi+0BAACAzjLElDOZDd7arHo72NsvVy5crIK2ragRtMHg3dV2AwAAYIBqkkeObj8awRtruHLhYj3Y23/wgZlg67EXrz96dF03/TunIdqVCxcfSZLm737i5o3D6e9+8uaNw03/7hGpufN/IUkOM/n/cNhCW4AtE7gBAMB21Bw/uRa8sZaDvf3ywKTS7JHZ7z1x88bhkzdvXGvcPlxnu8kkVDvY239wenve73jsxeuPCtnOrUbQBqMjcAMAgO2qUe3GOU3Dt3mVb7OeWBCQrfJzKtk2qkbQBqMlcAMAgO2rUe3GBjXndlslhGuaBnJnrZBjqRpBG4yewA0AAHanRrUbW3TaggZCta0qmby3S+O+wwjaAAAAYCdqjq9QWNtsDHAuJcdXJrbqKAAAALSoRugGfVUiaAMAAIBOqlHtBn1SImgDAACAXqg5HrqVFtsCnFQiaAMAAIDeqVHtBl1TcjJoqxG0AQAAQK/UCN6gbTUnq9lqi+0BAAAAzqnEogqwayWGjQIAAMDg1ah2g20rEbQBAADA6NQI3mDTSgRtAAAAMGo1x8MBc0rB+krmz89WWmsRAAAA0LoaKybCukpUswEAAABL1BhmCqcpEbQBAAAAZ1AjeIOmkvkhW42gDQAAAFhDjeCN8So5Oc+hajYAAADg3EoEb4xLiZANAAAA2IEawRvDVaKaDQAAAGhJjeCN4SgRsgEAAAAdUiN4o39KToZsgjYAAACgU2pOBm+1vebACSVCNgAAAKCHak4GGrXF9jBuJaeHbKWldgEAAACsrWZ+8FZaaxFjUTIJ1BbNy1ZaahcAAADARtScDN+uRtUbm1WyOGQzZBQAAAAYrBpVb2xOyfzhouZlAwAAAEanZn4lUm2vSfRAyelzsgnZAAAAgNErmV/1JnxjqmTXe9iQAAADM0lEQVR+QGtONgAAAIAlahYPOa0ttYl2lMyfj81QUQAAAIAzqhG+jUnJ6QGbkA0AAABgg2rmh28CuP4qWRywGSoKAAAAsEM1wrc+KlkesNUI2ACWuqvtBgAAAINWji4PZn5Q8+jR9eHRhd0oudMv069nHSa5Fn0DsDaBGwAAsEv16PqRBd8/jJBn00qWh2uJ5x5gYwRuAABAW0ruhD/LArjp7cMttqfvSuN6lXAtOV5hCMCGCNwAAIAuqUfXi4agTh1mnEFcmbm9LFhLhGsAOydwAwAAuqzkTpi0LIRLjgdx06+b111X5txeJVRLjv+NwjWAFgncAACAvikz16sEcU2HR9fXFtx/2s+cZpU2TB/z4Jz7VtFsx7X0L1AEGAWBGwAAMCQlxwOsVavDuuKwcfvazH3N7wHQYQI3AABgbMrM9dSDWWz2sYscLvn+bIi2ys8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO34/7ex1wP21bmqAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "id": "70d214b0", + "metadata": {}, + "source": [ + "# Ch4: Tensors Structures and Modelling Applications\n", + "## 4.1 Tensor Graphical Notation \n", + "\n", + "![TestNetwork-2.png](attachment:TestNetwork-2.png)\n", + "\n", + "This Network of Tensors Network is created in https://www.tensortrace.com/, the code below optimises the search for network contractions using ncon function (\"Network CONtractor\"). ncon is also implemented in Google TensorNetworks: https://github.com/google/TensorNetwork. \n", + "\n", + "TensorTrace is programmed to accept 4 networks, each network consists of any number of tensors, each tensor can have any number of indices. To be able to contract them into one tensor or scalar. The above complicated tensor network is contracted to a scaller, since all indices are connected together (summation/contraction indices) . **I could not understand how they group indices into 5 groups, and create the variable names as shown in the following tensortrace generate Python code - I contacted them and hopefully they will calrify before publishing the book** . A network made up of multiple tensors connected by summed indices is reduced to a single tensor or a number by evaluating the index sums." + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "f05515c3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: ncon in c:\\programdata\\anaconda3\\lib\\site-packages (1.0.0)\n", + "Requirement already satisfied: numpy>=1.11.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from ncon) (1.23.3)\n" + ] + } + ], + "source": [ + "!pip install ncon " + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "99d8b814", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np \n", + "from ncon import ncon \n", + "# from tensornetwork import ncon \n", + "# --------------- Network-1 --------------- # \n", + "# Leading order cost (guaranteed optimal): (Ind1^13)*(Ind2^5)\n", + "Ind1 = 2\n", + "Ind2 = 2\n", + "Ind5 = 2\n", + "T1 = np.random.rand(Ind2,Ind1,Ind1,Ind1,Ind5,Ind1,Ind1,Ind2)\n", + "T2 = np.random.rand(Ind2,Ind1,Ind1,Ind1,Ind2,Ind1,Ind1,Ind1,Ind1,Ind2,Ind1)\n", + "T3 = np.random.rand(Ind2,Ind1,Ind1,Ind1,Ind2,Ind1,Ind1,Ind1,Ind1,Ind1,Ind2,Ind1)\n", + "T4 = np.random.rand(Ind1,Ind2,Ind1,Ind5,Ind1,Ind1,Ind1,Ind1,Ind2,Ind2,Ind2)\n", + "\n", + "# TTv1.0.5.0P$9-*@,J0O5J6@5501,52ICLHNNRPUNWHZCW=L9?>@C@HADB@C7D4=4@4?4,((3''..))).*().)()'.IX'\\JKDUMW.]KNITST4SNRRTVH5(\n", + "# GQOLQLJ0VUXLR]PnYHYTV_Rt_JXZPP[9RRRRFQG'\\Q\\QTR5qNPNPWO=SLVRZ$\n", + "tensors = [T1,T2,T3,T4]\n", + "connects = [[1,2,8,8,5,6,3,21],[11,13,14,15,16,17,18,18,19,20,4],\n", + "\t[1,12,12,17,16,15,14,13,10,9,7,2],[3,7,6,5,9,10,19,4,21,11,20]]\n", + "con_order = [8,18,12,13,14,15,16,17,11,19,20,4,10,9,7,1,2,5,6,3,21]\n", + "T1 = ncon(tensors,connects,con_order) # \"Network CONtractor\"\n" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "109d61d4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(126596.39263487)" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "T1" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "66e5d71d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "()" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "T1.shape" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAF2CAYAAABUAS1DAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAOxAAADsQBlSsOGwAAABl0RVh0U29mdHdhcmUATWljcm9zb2Z0IE9mZmljZX/tNXEAAP+QSURBVHhe7J0HnFXV8cdne2Vh6b1XQURUBCzYxd57i9GYpiYxvZrEmKYxMf5j7CX23ntHBZWiiBTpvXdY2L7/+R4YvDze2327LEtxDp/3Ad6795w5v3Pumd+dmTMnvXPnzlVa5Oijj5abbrpJGjVqJF4cAUfAEXAEHAFHwBFwBGqPwJ/+9Ce5++67BW6Vk5MjLVu2lNzc3H2GDBnyefq4cePCD1lZWXxZ+9r9DkfAEXAEHAFHwBFwBByBgMCPf/xjueqqq2Tjxo3yf//3f/LKK6/I6tWrw2/phYWFDpMj4Ag4Ao6AI+AIOAKOQD0ggHWLT+PGjeV73/uejB07Vl599VU544wzJL0e6vcqHAFHwBFwBBwBR8ARcARiECBkKyUlZcu3Trp8ijgCjoAj4Ag4Ao6AI7ADEEhLS5MjjjhCFixYEGp30rUDQPYqHQFHwBFwBBwBR8ARIFb++9//vhxzzDHy7LPPOunyKeEIOAKOgCPgCDgCjsCOQqC8vFzKysrc0rWjAPZ6HQFHwBFwBBwBR8ARAAEyRFhx96LPCUfAEXAEHAFHwBH4WiIAIaqsrAzEiIB3YrCqK1zLh2v5pKam1go3J121gssvdgQcAUfAEXAEHIE9BYEvvvhCHnjgAVmzZo00bdpUzjrrLBk4cGDc7nHNfffdJ5MmTQrk7PDDDw/X16Y46aoNWn6tI+AIOAKOgCPgCOwxCIwZM0ZuuOGGLf359NNP5eabb5ZevXpt1ceSkhL5xz/+EX5bu3Zt+G3x4sVOuvaYmeAdcQQcAUfAEXAEHIEdikBpaelW9b/22mvy0UcfSdeuXSUjIyP8hjtx0aJF8sgjj2whXHxfXFxca9nc0lVryL66gRT/GzZsCD5dEqClp3994WTirl+/Pvi48/Pzw2QtKioKxyDwb76ryVde01Dgc6cN3jgyMzMD5tGkczXdv6f/XlFRETBnLMCajMjZ2dlJdZtFxbDlHsaL+viOnTd5eXmhvmSLycKixBFjjFVtYx+SbcuvcwQcAUegrgi0b99e2rVrtyWPFvX8/e9/lw8++EC+/e1vC7/ff//94Sif+fPnb2mGda1Pnz61bna7WQKKEFMbizMLt6W+N4Zov3PuEAs5afH3FHLy/PPPy8MPPyzNmjWTX/ziF9KzZ89aD8CecsN7770nt912WyBDV199tejBnmGiPvfcc7LXXnuFs6iYvNtTILi33nqrvPHGG6H+n/3sZ35A+2ZAIbfvvPOOPPXUUzJnzhwpKCiQCy64IBw7kUxZuXKl/Pvf/5YRI0bIscceK9dcc43MnDlT/vnPf8r06dPlO9/5jpx99tnJVBWuWbhwodx5553CvNh///1DfSxsXhwBR8AR2JUQOOSQQ4Iu4YBq1jy4DDFbrHskNG3evHlYW41wwV/atm0rRx99tHzrW9+qdVe2m3ShCBH2hRdeCG/Zffv2le9+97syaNCgIAxvvA8++GAIPkNImGOnTp2SFpS37FWrVoW6jbQZoUu6kh104ZdffhnYLyeIX3755V9r0jV58mR5+umng4UFpQ0pGj9+vLz++uuydOlSueKKK7Z7FLDg4H9/6623wrz6wQ9+4KRrM6qzZ88OB6tiGmcMWBSGDh0aXoSSsTDxHI8aNSqQpCZNmgR8ly9fLm+//bbMmDFDhg0bVqvxW7dunXz88ceBxLGIXXbZZU66aoWgX+wIOAINgQAvqN/85jfl0EMPlX/961/BWEBB37Ce4k1hPbTSo0cP+dvf/haC7evyIrndpIs3bBbrd999N8g0evTosODzdstiD2n67LPPgrJkZ4AFoCUL5ooVK+TPf/5zIDennnqq/OhHP5I2bdoke/sOvY7+YWKEBH7d3VwQ6YMOOihYOjt37hxwBx9w4c2gPvDBimYuyu11Ve7QibETKocY8RxSeEbOPPPM8LwlQ7hM3FhsGTMwp9R2/LieZ4NCHXuKdXsnDK036Qg4AjsYAQw6AwYMCIYhrFrz5s0LKSR4aY0WQi8gZxzrQ8hFXcp2ky5bkInZQCDejjlNm0V/33333SrvBYtv7OK9bNky4a0YJgl5KSwsDC5ICtatCRMmhKC2adOmhb8hb/379w/X8nbO35Aw6gYg3CRYxki9jwWK3+2tHcIHUJgLTZng9mQbqGWLpQ8oK+6nEJPCDgWUFwPD/2kXl6IlPLN8HVxPG2BAm9TDdciFtYf7uIe6kaE6ix1klXrAwO4Bm2hcDfXRX2TiGvoEdlgqKMiwZMmSEAPF9/SBvsLgo/gwBnxPP7gXmSnUyf0Qa75HXrC1OB2us4mHVeXGG28MpIhdH9FkcLFjDtb0zfBA7hYtWmwTMxTFgHrpj9VVEwmgbgi7xTcxP23MCIjkd75jjlAXfQIH/mZswNoKfWaeIA+ygoXNUa4BX9qiTuoCE9qKji/4Ug99py+0TZ+jxeYpliEKY8QcMvLCXGC8aQ8Sgwy8pWH25rlgnLgH+Vq3bh36QV3MPcajVatWYQ5TkAWZ7fmJzuF42DJ3bG5TF294Fi/G/2mDPtIv2qGPRrTALNnYsrosYn6PI+AIOAL1gQAhFHPnzpXrrrsurKexBcJFKFFdCRf11RvporKOHTsGFxsKALfS3nvvvcXaESs8HeIa8mNgCUM5oCTo1Pe+9z3p16+ffPjhh/Lzn/9cPv/883A7b/IXXXSR7LPPPtK7d28ZOXJkWMz/+te/ypFHHhkU45/+9KcQ1wLh+81vfhPcnLDW3//+98FVcu655wb/LcqM+2kfMofSQEl06NBBhg8fHtrp0qWL4DYjRglFRJtTp06VKVOmhBglFLQpKJQMfbr++uuDmw3F86tf/SrIhTwPPfRQuA8SQL3UieUungUAZYi79rHHHpOJEycGZd+tWze58MIL5eKLLw7kBNcmdb755pthknANiha33je+8Q054IADAqbIAH78n2voM8oTEykTDAX96KOPyrhx44JyP/jgg4N7+MADDwzX0x/ugVTxOxhCQiG6yH/ppZeGWC2uAXvGg78TuaNQ9uwAeeaZZ0IfaAPL6GmnnRb6Bv4UCMyTTz4Z+sh1tM2coO2aCnjg8sY6CsFCJnBBLojKb3/72+BGO/744wNRhBSA8x//+MeAA5iBAWNFMCUyMBcZF4gS91155ZXBogdRw31OfB8xABAQsOWsLfCh8Dzce++98v777wfSBDHhrYp4gKOOOio8I4wVY05byAI5g7xyDePEHL7jjjvCeBNnALkiRwxjTSwdcw4yhsx/+MMfQl30E3noD/VhMT7llFPCSwCxiGx/hjzdddddW4h6ImwhZ7TNPRBxsCQ/DfMeeWgDty+yMme43uY2/65NEH5N4+u/OwKOgCOwIxCwl+OoOzHaDi++GAzQU3X1ttQL6WJhR3niYho8eHAgMSzAJ5xwwja5LszdwQIOKcItQgdQ3ATf3nPPPUHh/uUvfwmKALJBvAqECoXJ/9kxgLJACaJUUaAoVQBBSfLmb25NSBeBxSg8vkfhUe/YsWMDEYMsUC/1ofj4HiVPXSgtFBntQ8ogYFgKIFQoPWSi0CdkhkjgD4bUQLZQrMQ1wZppG1KK0kapQggI4KOuaEE5EnxO3hCUONhwDQF+WBAhhJCIm266SR5//PFwK/UiA9dACpEVIooVB0yxFoKBWcFQ/GAG9vSDyQMJpd/UCYvv3r17+A58kZd6UJwQY36HKKN8qRMCCZkCH8iR4RLtF/JZfB99AyP6hkKmn/SHayDc1ImJl+sIaIRMYjmCvNA3wzzeQwfpoA/45iFTzEnGkPGHtOMChSTQd/428zHjDVljnCBSRpYgZcxlZIIsM+fw82NeZlwYb4iI9Yf5QZ4XxgpSBFliJ8yLL74Y+sFYUcdLL70UMKVf++23X8ATDBgr5jgYgwskl3kCMSZmi7GnDgg+cmD1pV6whNQzlvSZlx/mOePOvOAFgQWFwvPKwjFr1qxQDx/GuqYCBuALdpA8CDrPLePCfKI/WN7M3W6LEv93S1dN6PrvjoAjsLMR4EDq//3vf2Gdi1dY69hwRK6uqDekNnLXC+miQZQXCgeygWJDOIJosQZEGaG91bNokwkWYvK73/0uWDH4DqKDMiEYGxclb9CQBJQwBIr/o2hQGmbJQNlzDYs+BImC4kc5UFCufFBWWKt4A8eKhEJD6bEzC0sLSheyglUDpXnyyScHIgCRYBBQYpACrDjUdfvttwdLF0QJhY51AbnOOeccueqqq4IFh3pQhihoLFX4jCGG0fik6ICh8Bl47kFWiCG7/8ASGVDGYAGxgOhhuWNzAvVBNOgXv3P9iSeeGL6HgKL0sCSddNJJAWcIDQTDdpbRH9qCDEM8ITcQLLCif7SNZYOAQ8aNa8GXti655JJwnX0SuacgcJBqiAh4Yy0Ef2Th+5dffjlgC4FmbGkHQgGpY16B5S233LLFnRpvokMssFZBgngBYNccRJfxoS4Ih7m+ovFO0eMf7HvIFjiCHXPkvPPOCyQQuRhPSAsPKNY3LLT0B8LDPAA72mKOsdsSsv+Tn/wk4M9LCXMemSBjWMbAknrB8Pzzzw/zH/JmLmFiJekTz8sPf/jDQJKQj7mB9Qocr7322jBXsbJhqeV5ZE5bf6PjYu5EfqvJVWvPNxZmMOXZpg8QOiyeNl+Y74yTuVXdvVibpdivdQQcgZ2FAHqbF190DMYEK6anLYSHF3j4AToanlOXjAX1RrpQMFgyUAIoDRQlCge3lCkxFnfIGUqXN3oKRAbChJWFwpsyVhMUGos3ysXekvkbBco1fGgLxQXR4noWf4gI1hv+RpHxlo8yAywsCChFlP8nn3wSlCJWBsgEdfFBqaK0IXC45SCDVlAoKDMUqhX6hrxsj0cOFBOEi12cFNgwctNHrC3IjwUERWtxY9GJhnUDwgVWEJDTTz894IAc4Av5QXZIJaSM38GYgmsHZQgW9AEiYIQXudhBiGJEeUNykBsSAJmg4FJERogLeFEsmBBXF8qcv+kDxAJ8DePq4tOMmKKksZoxkek784C2IAcoaMYFAgPhs/mB3MjI2DB29A8rUTRmLIofWFtMGmMPMTnuuOMCESbZHXXbOVuJHnAwg2gy/ljAIIG8AGBh5QPJoX1civQHCyBuQqyQ9A23Om3wIFMHFlTGm7FjflEn85c6zMXKPIeYQbrZlIKVEpcwDzVzzGLImB/0CRcnOwLBhHlhOcvAmrrq+haWCBNkZd7jtmf8GTsWKSxdvPSwKNFvy1tjGyioj7mxq+w43lmLurfrCDgCuyYC6FKsV4RZmCcFSVnDWPd5wcaLZQYd9Cs6Hj7AyzMcojal3kgXjaJoUHrHHHPMFjcjVp0o6bLgboLnKSgY2/kYFRwFRX1YacwFxN9Rsx+LPMoGiw3toARQ5hAe/o2CwiIEGaOgMCANKDoIBwVFYuQHxQ8xow+0g4woG7OO4MKJEi6TF4ICWUA+LA3ROC3YMGQH9xDWGz4ocdIdQCZiiRfKDKVsBNPqMiVGO5YvBMJqQfPIggLm/8hhmxNMRtqxIGoUoMkJflaM1TNG0V0btI3ShwhQqAurEd9Dbi0paqKJZ4HqWF0oYEvsEp9ooS7IDhPfdrlGxweZowHs8dqjPxAsxhiXF9ZI5gCubqyo3G9WnniWH+qEdCGDuRkhMYYdvzMmyEp/LDcdRM/mOX/z4X6IF4WNID/96U+3EdmS60J4iY/DXYm1kQ9zBwsbxJrYLR565vl//vOfEBeHJZY6GffoeIGhHd4abTC2v4nGK973RnJZYHi+eGax4BlxZE7hBoVMGobR5742bfm1joAj4Ag0FALElhMiwlpshRdeeAy6mxdLuAYv2XjhCMdAR/N/dAPxurUp9Uq6aBiFjUsR9xFxWcRM2c5Afmfhtzgi/o8FB4WD24wF3HYJwiItDijaoahLCEsObcE8cQMRz8Sij2uGN2+sVSgHyJdZxlC6EBp78wboaNAcihJSwDWxhCh2+6hZgSAGtIlpEisUQdwMFMQEokLQMQrUFBXWOTDBpQcBixbaRelDNm03XPR3iIcFJdPHKLZY00yJg2fUrWuWSOqKWnqifUpkPeJ7MDHrF//m7cB2TNruuuomHrIgk+1SxU3FRIbAGKklrg7LVjQGKDo+zB2Tobq2iDWCmDAeuD/5QPCw/uCKRRYbuyipBXOK9cvmCA+Z/WbtUodZYBmD6KYKu4Zxsl2y9O2www4LpB0MmMfUz9wHP8jyr3/96/B/5gnkHDM2/cVCB6HBtWqEDGsXue946CHwNaWGiM5xZK/J2heLr80TLI7IyPOGmxFyzIsA8x1rn80F+gNZBPPYOV6bBcqvdQQcAUdgRyKALosSLtawX/7yl4HDWOGFGCMJaxxx2lailrFkZdwhpMtO30bpYWWyBduUK2QDNxduCVwVuOx4g4Y90iECjfmdAgCm3HBF8RtWHBQargxcbFgRiH/BqoAyh7BBxHDT8T1khLdzyx+FxYqgaH7jGpI4orywXPD2jhz8bqQglmxFwTXrHvFTKHDcjMQmEX+G25I+4lYjdspSaEACsVZFfcdWJ24ozJlYvMCOD9Y33FgW04Pio3ANpJa+QUhg4Xxnu+P4O9EujGQnCNdRN646AvzJcI5MWBIpjCWWFvqUqBhGBOejhJnk5q6EUIAD7lBIiKWhoF5ciRBp2oI0Q57M7ZgoDon5wX2QEOLdwIb6wYm6IFBG/rAcMd8gRJAZsyCCGXIwByj0jfuJX+Ia5ht9wfXHvGF+QbYZI+YW/6Z9+mhzDvKFmxOLG3hQB/JQD/+HwDB2xGxB0HlW2JWIy5U+MyepEysec97ce4wLfUpEumjXNjfgZuc+4hvpj41tbeYCY8SzygsF9fAsQkghVtZX6qNPrAOWtgUZfQdjbZD2ax0BR6AhEEBPsjaxRuHRQMeR+DS2YLAhCTobnuAXFAtlqY2c9UK6WGBj35xRDASNc4yIbfPnGpQlpIK3flwlKCh2d6GgsBYQMIySgIxBNvjbFnOUGr5XAOGIE5Q97WAeNAKDEoeUQHpwKxkTRflavAmKH8aK+wk3FAHo/Js6iEOD5CEf7dCmudtiLUFmLaFfkERcQRA44ngIsObtH6XOVn/qot9GGiyPUuxg0VcsCVxHXbjE6Cf/Z4AJ9MfqASHkO9ohrgqli/UD5QzuxINhqYtab6ytqNzRPkW/t2sZL+qGkIIT48WEIzYJIkQ8Gf3C2hM7D8w1awoYggHupILAkoNbEnLFGDHukFLGjzGnXq6BFNMucVyQL0gIJZFVDuKNBYhxYwyRi3voA22BIXMG4gV++OT5DhJiu/vMEgWBRwb6zrxDRv6NvAToQ46wthJUCWnDKsW4Mq8hT6SggIxghmaMsL4xpmBKv6iL9CUQNe7BQspzwLxn3tBH6qPwG/cgk+UvM9LLfDXs7Tk09yJzENyZ2+AO6UJ+c7nHjr8RJsM4+sJkc4I+MVZYknkRsHkQdXXTHmZ32mTMeSaRw4sj4Ag4ArsSAhhE8EaxlrGG4bWKd2oOL5yEecAfTOfayTu16U+9kC7eaFFq0VgmiBOLLcoEpUSx7eQIjxUCBUlANhYxrEPUgTWB4DVboFGOgEA9WKbIecUbNqY+CgrgiSeeCAqT+i3Oi0UehQM5QD7ezqOZ7AmGpn12+6HMUagU7qFudunBgM3lGd3dZgCbm8rirSBW7FAkTxHKFQKHfChFlA/KHEZtQe3RIH2rkzax/NEfcEHpUyAiEE3cUxAzdsIR+AcmEC8KVhfifPBDo7jNOsJvsTtIzVIUtZDYv208TfHyPRYL8CWWiDcC5OGNwM7jszgprrW2ovXRd+5n5x0FkkucGwVrDBY+/OiWQoN+QDIYbyPn4MvYMN7UHc/ahZyMPQT0v//97xbssESyyxKCw78hXGDLvEMuxom2IV8mN+QVkkJOK3Dmw7xmIwRjACHCtYe7lftsnlMPBB8yB/EjpxdEEGueZY1nHCHPkDPGnP5TNztLmXPMGX7jITc5eLkw0zb3kweMTRD82+LIzG1p8wk5mJO8+NjGB54tnimIoo0b10fHK/r/2PnDMwLhZH4zF7AU8v+om9lc0rFxmCaX/+0IOAKOwK6AAGsvL9HJFCxh6OHtKdtNulAYKBWUIe6YKPHCukRqAZQDFgdIhhEfFn6sOPyGJQIrAYs2Cov7ovmrUFwcdIybB+WNVcmYKPE7WNNw+6A8jXmibAiO43uAwnoULdQBAcAViWK17Pa0S0oKax85MSdCYFCC0QIxQA4sSuaKQrFzDy40BhOLAEqRNuijHZMDFvHcLShBZKV9I6Z8Z2TCspizQxTyhnvJsslDurDi0D73UD/kDGKEBcmy6GJNATMsi1EzKmNhOaLoj1nJUJz0BasQ7iTcachB+3aINeOAOwzCZTiBBeOB7GaxwVKDtQ5CRfwcbSAXVijG3QL7aZ88bswryDEkhH5h4oU00X40uN3GxeK2aMeC2PkO+ek3hT5DjCEs9AdyRN38G8unyQ9BY5eK5duCXNE+dTG/mOvMTcYKVyFjTv/5P9hYUDkJTrHcWV4s7qNN3JPgTaEe8nDh8jQzN3MLAkk/saJCDG0DCG9kyGD3kzcM1zbt03cjpLZIcC2WNYgVYwbezC+LLQRf5gpxDOAEEUY+xgqXbezzQ/94hiByXG9JbW0cIGJY8XhGwLY2561uz4Lm9zoCjoAjsCsjsN2kC6LEGzuf2IJyYXHmE6+YJaAmgCAPKO94pjyUNFv1YwsEJN730eu419ItJJIB5U5AcLwCcYq1VkEwogF43FdTG/HqxpISjZGpLbZcz9igjGMLMmKlii2QTT5WIGUUiC51QVYS7R6E1PGJFhR1rLLm95r6ZnWguOMdKGpEI9GYQQYsJjDeNRAPyCmf2BIrL/MIF2J1xVJJJLoGUplo/to9XANZ4hOvQJSM4Mb7HSLIJ15hnsc7IcBeFOwe5kp0vjD3Lat+bL24FiGAzAswiz3SiP5AEj2Ivtqp4z86Ao7A1wyB7SZdXzO8vnbdNWsXFpFkdg5+7QD6GnaY2Adck1g8IcC4hbfnLLKvIYTeZUfAEfiaIuCk62s68Ml022LscB1hcarrWVPJtOXX7D4I4CrHlYp1CwtarMVs9+mJS+oIOAKOQMMi4KSrYfHerVpjwwMnCxD7RFyUxSjtVp1wYesdAVy3nCdKHGQiF3C9N+oVOgKOgCOwByDgpGsPGMQd1QWCsQmmrsv5UjtKJq935yMAAcel6MURcAQcAUegdgg46aodXn61I+AIOAKOgCPgCDgCdULASVedYPObHAFHwBFwBBwBR8ARqB0CTrpqh5df7Qg4Ao6AI+AIOAKOQJ0QcNJVJ9j8JkfAEXAEHAFHwBFwBGqHgJOu2uHlVzsCjoAj4Ag4Ao6AI1AnBJx01Qk2v8kRcAQcAUfAEXAEHIHaIeCkq3Z4+dWOgCPgCDgCjoAj4AjUCQEnXXWCzW9yBBwBR8ARcAQcAUegdgg46aodXn61I+AIOAKOgCPgCDgCdULASVedYPObHAFHwBFwBBwBR8ARqB0CTrpqh5df7Qg4Ao6AI+AIOAKOQJ0QqBfSVVlVKZzTx59oqaqqEv6EX/T3Xa0gNyU1JbXWok2Z86WMmj5KhvQeLL3b9Y57P/WXVZRLemqapOmnIUsYk83jUVZRJqnaPnLEli1jFGf8apK3vLJcKiorFb8UrTt9u8eY+iq1vvS09DqNSU3yGia74lysSfba/l5RWaFjU6HzLl0/tZ/ftW2vrtfb/KvLM5iozYYe5x3Rh7riGe8+nn9kzEjL2O5ntC5y7er41KVPfo8jUFcEtpt0rVy/Uu4ecY80zmsiZ+1/phTq31Ymz5ksr058Tfbtua8c3uOwpGRE6bJoonh3dHnok4elvKhCTtz3BGlR2Dzp5srLy+Wlz1+Wlz59STq0bJ+QdM1ZNUeeHvOsHNLhYNm/135KfBpG+S1Zu0SeHPeUdM7rLPt030denPCS7NW0jwztPUTS07fG9f0v35dPpoyWk/Y7UXp16JUUBqvXrZYPJn0oE5dMkg0pGyStIk3a5baVw/oOk25tu0kM9662zoqKikDMGe93p70ncxfNlWP2OlraK671WVYVrZI7R94lPRr1kOEDjpGc7Nz6rL7muqpEypWAMwd21DwIzw6kVcd4wqIJ8tHUT+TgzgdJvy59a5ZvJ1wBKXxu7POyfMVyOfmAk6R1s9bbLcWq4lXy2CePS6vMVnL8wOMkKzNru+usqYLnvnhBZs6dIecOOkfatmhb0+UN9vuadWvk5fGvyMRlk6Rd47Zy3oHnSpPI+twQgjDnX9R1kuf67KFn1csYN4Tc3oYjsKMQ2G5ms754vbw64VWpUKLULqetnDDo+C2yLli+QF4d/6rkFOQkRbo2FG+QkRM+lHKt66j9jtzhxOvDGSOldGWpDOt1aNKkC8vVm5+9KS9OfFE2VCnhqMaClZ/VSPq16ystmjRv0DfMtRvXyptT3pYBBf1l/x77S5/WvaV1Xqu4MkxZ9KW8PPZlOaDz/kmRrtVrV8sD7z8oo2Z8JJ2adJSenXvKihUr5I0v3pSpS6bKhQdfKHt36ZfUfF21bpWM+mKUNMprJIf0P0TaNmkr2fonLzsvqftrc1FRSZG8+MXLcmiLg+WIvoc1OOmasWCGjJs2TgbtNUg6tepUG9GTunZDyQYZM3mMrN24To4ffJw0y2smvdv0lsJGX70EJVVRA17Ey9WYmWNl9txZMmyvQ+tFIW8o3SDvfPmu9MjtIUf3P6pBSNe4+eNk1PhRcmyvY3Yp0jVy0kh5avTT0r1dN+nVspdkpu94Aho7fSqqKmTc7HHy6eRPZfg+x9bLGDfgFPWmHIF6R2C7SRdWjcaZBbJ01XL5ePrHcnj/wyR3sxUBlwEWjGRda0vXLJMHRzws3dt0l2P2P7reOxtbYXC9pFUkTYiKS0vknc/fkYc/UAvZxnJpktk4OE8TlRZ5zeXYvsfs8H7ENoD7LD0tLbgUmmQ3lmE9D00oA+ODazAZ905paam89cXb8sz4Z+WoHkfKRYdeKO2bt5f1G9dLtwlvy/0f3S9PfPyEtGjUXFo3r9lqMWvJbHno/Ufl0L4HB9K1V6s+Iq12DFy4WmszF+tbire/eEfeGPumdO/QY4eQrhVrV8gTo56SRtn5coKSrg5NOoTPrlxYF5h7aTpX68vlyzhTX6i3gVz6tIPrjnZ3pTJ1wVQpKymT0/Y9TQ7sMWiniGZjXB/hBzulA96oI1DPCGw36cI1lJWapeb8lrJi+UoZNekjOXLgEVvEjI3z0stlY9lGKdP4nQxV+DnpOcEdhVtk2brlMn/tAmnTqo2s2rhK8jPzw2Jm7hhiE7gf5ckiTTxReWWZZKZlbvq/uqo2lm/kEslOy5KM9IwtcpSrK6MyfNQFo3+yM7IldVO02ZYFHytWWUVpqC+ee3P2olkydvJYGdZ7mOy3sUje/OINJTab4sLilU0xXWVbFABtbywvVrnLtY0slWHbN0+IEvcgV1R+cC4tKw3kyL7fWAqOGq+l32WnZW/lOrR+4cIpLd90n/WppKxESitLJT0lXTEjJis5t+eiVYvk8VFPSrtm7eTyIy+Tlk1bhm43ym8kpx14isxYOl3emfiuTFo8OZAu6wexWmG8VRGCO4XvlqxZIovWL5J1ZevDnGBh1u4Hwojc9CHIr30kHo0+UhhjsM1O1z7HuKGLy4qlVMcwYBLz+zZzMWbQwIl7mZC5GTlbuwFVsA0qI2/uGamZW40dsgR5q1KkpKJk0/xSWW2cwHv2itmyomSFrCtdF8aD+WpjTR+yNlshSnSMSyqKw+9ZOkcy0zO3ljLy/GTqswGe1LNC3fzz18yX9untZW3xOsnLzAsYofSMfIAN8yVNx53+2fsC9zMe4MOY8W+egSBTdaGYm2Upr2JsN8lihbZxLYU+an1Z2g+e5TB+Om+tPa7jOYwWnlOeE36LxYDnuEqfI8Yh/K4yxpIr+lGp7RYVF4n2RvuisulciO1Ldc8P8jBujCd45bBeVBMeQJtcv75kvc69NF3XsiUldet+fbU+VQV5DI9o378aozQdI3WBb66C/rBuqHM6yET/wxjpHIk3RvRtbekmWXh+qJfxYZ7y77Bub7NGbhtTGRsPZs90mCc27gmw5feqyqowTsmuMfWs37w6R2CXQ2C7SRc9KtMHuVPLztK5RScZPWuMHLr3IZKR8RXhsV5v2LhBnv/oeXl/9ochFiizNFOO6HW4nDToxLBYvTDuBVlYtUg+WDxSFj2xSPLLG8mJ+xwvww8YLrMXzpHbP7xd9DmWyw/+ploMustzHzwnHy4YKZcf9k3JT82XB997SKaunaaR8VXSNrudnDjgBDmw96CwWD4/4Xl5aczLel1eUCynDTxNiM0iyJhFe9HKxXLDSzequqyQ7x7+HenZruc2b9/EGV06/BvSonFzeWzEE2Hhq658sXii3PzazXJuv3OkT8c+8uLYl+TTRZ9JeVq55FXkqQynyMH9Dt6KXGE1uvP1u2R1yRr5wQlXSbP8ZqGJD6ePlKc/elqO63OcHLbPMHnp45flPY2BKkrbIBXlldI6raVcOOxCbeeroH4W9nlr5snt798hB7U7SE7c7wT5dOan8uDIh6U4faM0Tm0si1YtltS05EjXsg3LZO7aOXJS+xOleWwMnFbRRy1Vb099R75YOFEGdxskf3/3Rlm7dK0SXZG1VWslpypbjupzpJx84Ekyd9lceeWLV2VxymJ5dvpz0vGLjrJOXWOzF8yWiw68QF6c+ZJMnzlDGqcXyIrKlYEs7920nxTkFMiEZV/IqpJV0q2gq5wz+BzpoXNhY/FGeX3sG/Le9BGyPm29lJWWSYfs9nLWkLOkX2eNaaqGPFD32KljNf7uGVlatjTMsf4t+snZB58lbZu3kzXr18qTHzwho+Z+LBUZFVIgjeRwnbfH7qexYVk58vmiz+We9+6VRjpf11cWyerKNdI8pZmcPfgsOaDn/vLehPfk4/kfyzyZLw989qCUpJTo2I2QVctWhjnUtqCdnHHA6drOann+0xdlpawKLxPNUpvKCfucIIfoHMGKUqTPz3MfPScfzPpAilNLJacsS04ZeLLs1XEveeWzV2VWyWyZtXS2PDj6YWnbuI18OHmknLH3aXJArwPk1TGva3zlq1KUukGyKjLkgPb7y2kHnSZNGzWVhWsXyv+98x+RdRII4aqU1ZJXmStHa2zdcfsP32p+2nwH78dGPC4fzftYSlSW/KrcgMnxen22YjJh4QS57Z07JLMsU9Yr0RzU6UA5ft/hOv8+k1cmvSLl6WopTmkiUxdPlaZZhVs2fSxesVge/eAxmbRiUiBMhSmFcvJ+J8khag0FgxcnvSTPjnpWmmc2k6KyDXKMWpKH70uMnpJI6DIvX4rp5/M/l+uf+rOsTy+S1NJUObL3EXLioBMkNytXsNi+MvqVMAbr04r0+amQVmmt9Pm5IDynZYrBu5+/F+Kh1qWuk/TKNNm3zQA5fcjp0rLJpheNaIFQrCxeKXe+fbeUZ2nQus73gW33lXMPPUdjXdUaroRp1sJZ8sTIJ+TLddN0jamS9llt9Xk8McwP1p+ysjJ5bexr8uaXb+mzsk7SytLlwI4HyCkHnqzhCS1k/ur5ctOb/5SCkkaytny9XrNG8iVPjus7XI7d/9htCCGxcm/OeVNWlq6S20feLktXnCID2u+j7sZnZeqaqeHFoLXGvZ048AQZ0mdI6M6T456UsdM+lUsOvFj6de0biPHd794jCxcvlCuO/pa0btFafvvC7yRlnZJz/W1V5SqVM1WO3etYxfZEdeVmaj9K5eXRr6or/yVJyUoJz8qMZTP15WFbfbDLaUMXyBFoAATqhXTxZtqkUWPZp9s+8sqYV+WDLz6Qw/c9fMtCahaG58e8IE+Ne0b2attHBvUYLqOmfCyPjn1MsrKy5eh9jpTD+gyTDyZ/IANaDZB+7fvK86Oel2nLpslw/TNHXVEfThkZ3u5OGXCydNc/n8/5XBYuXSgLly2Sj74cJZ/MHiMn7XuSNMrJl9cnvCEPfPSg5Oki279bf1m8brF8OOdDObHHSdKzaU8pLVaLgr6Z5qbkyLwl8+Sdae/ImDlj5OLBF0mbJq3jujvytV4+lPJytbrVUNaVrFMCMkkWtlwkS4uXyYjp78uBnQ+UvTv1lUdHPS73vKuKWkkEQfZWsBiwSI9f8llQoJCuoqIi+VAD1xevXyKtmrSSEZPel/tG3C/7dRkoJ+99sixesUTu//h+yfgoQ37U5Idhp6IpoI36Vjt58RTpntNdvpj7hdyuipByct+TZfri6fLJ/NGijhjtb/XEC8U0d/ncQBhb5rUIb7B621alvVrAChsXyvQF02TFmpUyaekUmTDtczm99+lySJeh8v6UD+Tej++Rlo1byr7dBsjBPQ6SCbO+kKEdhsphPQ6Ve0bdJ19qjBnkfObyWfLK1Fflov4XyNEdj5a3Jr0l93/6P+lV2FOO3/t4WVO6Rt74/C1pktMkkK4PtO5HP3pUerbpIafvd6osWLZQHh/zhGSMeU5aNW61zQaCqOAzFs2Qu969W0pU2Q7vf0ywkDwz7lnJzs+RM/Y7XV7+9BV5YtzTQd5+HfvKyCmjwrzN1BeL4w84Xoo0nmrErA+lY2Z7OXvgWYEAPKhzj80MrXW89us+UPpP6C9lM8vl5D4n6ctJZ7n5vf+TlcuXy4X7XiBplekybvo4eWfKO8FCdf7B5wSX7bNjn5Mnxjwp7Zu2Cy8ZL455MTw/vdv0kqE9hwQyd8+H98qVOVfK4O4HauD8R9K0oKnOiRPlg5kjZfKiybKy82Hy3hfv6bjfLj0Um8N6DpOZ2t9nJjwrVelVcsmwS8IO27HzP5V1K9bKxQMvkvat28vz+gL09OdPS4dm7WXfHvtuNc7lalF+5P1HVLanZEj3IdK3w14yZvoYuf+T/ykmmXICmJQWycdzPpE+TXrLkd2OkJTKFHn9szfkzclvScfmHeWIvVSuSSNk/saF+ozmhTkL+b3vnftk3NxP5ZBeh2i/2yuZfEXu1j42ysqX/fQ5WV60XN6Y/qac1/dc6afEWM0t4Tk20oUlqLiyWBYUL5RDCg+WAV33kSdHPxX627awrb7kHKTPzwi5l+en675yUr+TZEl4fv4Xnp+rC66UlRtXylPjn5aMsowQfP753M/ltQmvByvTZcdeto1lje9nb5wj+6T2lyO7HyHTl8yQl5QcNsptJOccfLasWLdS/jfiAZmoa8HxA4bri0NjeWncy/LwR4/oeOfK3l33DjI9MPIhxaaDnNL7JJk6f5q68Z+TtPQ0ueDg8wMJ/3juJ5JalCIX7XeRNNc40VcmvCyPffqEdGnZVXp33noTzDBdS8foi8TERRPltL1Plb6t+8rdiu2EhV/I8fsMDwH1b098R+764B5pktVY9lKStUg34PD8rd+g7FsL69C8FfNkxsKZUqKhFZRxOk+KVm+QM/qdLsPaDtN58rw88umj0klfuPfrMVBG6jp8z/v3SrdW3dQjcKiMmTFG5m2YLx1y2m/RBzWtm/67I7AnI1AvpAt3HqYEFvVJLSfJe1Pel4N0cQtxGvrB0rRhgwa4znxPmhU0k/OHnie9OvWS/bsdID954KfynrqkhvU7RLrq4pGXkietc1vJ4E6D5ZNpo2Vx8dJQ+4oNKyRF31jVWCJFFUXhu+Xly6V5drPwFvnp0vFhoT7/oHMlSxf+vJw8ufPNu+SDqR8G0gWpaKZvx0O7DpFj9j0qLCivzn1NVq5eIU998rRMWTNFTux7gpx54JlSkN+4XsY8uLgys3URWx/cptn52XLcgGOlZ4eeUlxSEqwTGyo2bNVWthLQIXsNkU8Wj5YxU8bI/l1V0ajbdea8WdKtRTfp2qaLfDFhonTp0EXOOPD0YJGb22SOvDD5BZk0b5KwmzQ1+yuzTnBTqQtmY8lG+XjWJ7KsdJlcefCVcrRiMEetTXM2zpXx08ara6z6LhPPtmT1sjCWRjxj72jauGn4bdXq1UJgN+7EjgUd5Ey1EPTv1F86t+osv3jkl/KOxoVhgezcrJOS3lzp3LiTtMxvGdwtwV3InFHsWma1VOvI8TKgywBZry6zkYtGSeemneTkQSfJ0tVLg1KZs35OEGNlyUrp2qGrnD5wU1tzCubKW9PekmkLp8lKjXdq1myTxXCbolaJMXPGyfz1C+TC/S+Q0xVT3CHrU4pk+Zrl8smXo+W92SOka6sucskhF0t73Z3WrXU3ueH5G+S18a8H0gVhyEvLlf077CenDT5VrSk5Wt98eWf8uzJ7yRwZts+h0iqvteSn5EuPZj00yL2puuQzpVN+pzCGjPnIGaOkyfJCOanPiXKYEpLFanlFwY3WObBgxcKwm/PD2SNVWRbIOQeeLf277K3PW3f573v/FeK5UHJNMptI65xW0qGwg+Rk5oQXlOUaazl+9eci6oU6f8h5MkBfjNjJOf+pBbqB4hU5RoOb0zJSgzxtm/eSsw85KxC3itQKufvte2Ti7InbkK45i+fIS1++oli0C89bF8Vm74795NeP/UYJ6styxD6HB2KSn54rfVvuJecfdp4sWr4o7B5NzUqVcwadJQNVQTdv1EKmrZsulSVq+1HCNW3RNBm54CMZ3HGwXHDQBdK0SaFallrIH564TkZO/yjIgZu5MK2Jrg8HynC18GCxsRhSxhYrUlpVmr5Y9ZAzh54unVp3ksr0Svn3K7fI5HlTZHCvA2VpyTLp2lGfn0GnS692vWROeH5elMnzJ2ts6lKZp1alBUUL5IJ9z5ejBhwZ1jV27JZUqlsvpOHY+m0DGQr0z/H9j5Pj9ztelq5dKnOfUUvuuFd0LIfJl0unyufLJsihPQ6RCw+5UDIyM4L18J6375Mxs8aF+t+a9rak6jicrdgc0PsAWd9vncx8aJa8+8UIOWrvIyUtM00y9U/3pl3lDO1X00aFSporwxr3hY5RLOnixbFtfltZkL5Auuo9azaskY8XfyLH9DxKzhlydiCEWDlveP5GeX3Sm7JXl71CuEcI54i8gOHyt1QTVbpI6BOq2HaXUwedLF1bd5WcvCz50zN/lklzJwfC+KGS/bTsVLloyAVh3e3YrINMVevehlVbr3P1ssB6JY7AbohAvZCusNjpotlMF+sDeu0v975+v4yf8XmIrUrTB5iHeOrsL2XW8pnSp10fWVi8SNbPX68xSmUhfmW2Ks6i8g2hDmINsDi0btZKenTsLp/NHS/zF82XlRWrpE3TVlKmbomFaxbKArVw4Xbat+0Ambd0nlSmVAYylZu7KRVA9+bdgtVgTtHcLcNSmF0oLfKbS37uJmtVmi4yX66eKl+smih9m/dVBXJ+sNjVZ6FPEK+WuS1l6rKpMnrmGClQxUl6haFKrrL0t62K8iXeGpunNleL0fTwE1addcVrZWD+voFMHt9vuAxo21+KNe7l2dHPKdbjZfay2dIqizgqjWHRP9GSqm6ZFWtWyKrlq3V3VTs5rP+w8AYNgdu7zd4ydeqXQXlVV0LGNeJpAo+OjcLZdGfI1aafMIpKatM1ngSrYrvCdqG9Ts07SaucNjK3aL6Oe2nY8Uq9uDFiC9+3yW0trdVKlZ2dJU3zC6VxboH0aN1TGusYQWRzlKwU6x/KMf2Okf7t+odYoKd1x9ZnU8fLNLXkQdxC/FCCPHFsqx87faw0b9ZcBvUcJJlZm7C7fNhlUrShSN4e944sXLVQLhv2TemgFiAKiqSdugSnqJsmxLxoj/Mz8qWj7ubMy92087JVo1aBTLBrklKpLi/rK4obBdcmr01wP2XnZMuhfQ6RbvrSUVxeIq9//rqMnTRWxiwYK8X6fGBJnj5vhsxeOUeO2utI6dW+h7rQJRDuX5/8a8lIyQjucWKovnJ5b8qPN3fJXJm4dJIcqLsmB3bfN7iSWzRuIX2a91br1jhZUayENKNZiO/plNdJIM5g1bKgpbrV0nXerd96aPSh/nLulzJ35Vw59ZhTpHvb7sF1214tYl0a6wvBmknBysWzn5uRp2ST8csOz/R83c3My9Y+an3inn66yxUSumDhfHVrlqi179PgpsvMz5QvV30pWUWZsmzjco35W6fP8ZwQQ0RpmtNU8W0p+XmbnuNoIcYyU63FkP0WBS02jYX2N6sqK1gPwe34vY/T52efrZ6fOfr8tMzSMdP7ISM5qTny2ZzPZECnfaRD0w7yk9N+HGSOF4fFPbTXvUV3Sc9ID/h2Lugsry15PVinP5/5uaytWCvp+Rny+ZLPw4vLSsV9tbr+Fqmlb/aCWTJx7iQpbNZUVpSvlDHzxwYSWqb9pd9ry9eF+FbGqEthVynMbxKeJ8YotSJV3fJrtsGBL8JcUJnpN+S5IqVChu93bBhjCi9xWBCnKvHFXVhTsVxfHRp1kOYFmmJHseT5zKzMlA1qHZ63bL4S1ylquesvAzRVTYrOtT6d+kjP5j1lwooJYf57cQS+7gjUG+kiwp0/fTv01d2H3WTktJHhDWuTtUstVWpiR1FOXjVZVo1Zje06KObS/DLppgSJoPKSDZsUKESlqbqperTqIR+M/1BGTfxI5q6fJ3v36q9xLUUyaabGeywvk9INpdJ///4y6vNRklGZIc11sbPCG1pOTs4Wqxi2H94uowlCK3RRW1K+VPJSc4PFaaPGiFCKS4rVRTA9BD5venNOVQtLl/AmV9uCwmyUny9DugwO1gtyCI36fKQcOnCYHNznIN1t1mibKhvpAotFZ9KKyUGWuWriT2+UEVxb4LlSsXzo3Ydl8vIpugAXamxTN2mbp/mBSnVRixPYT9+xVK0tWittmrUJlhUreel5kpWSVeOCSLwGRJixYRGPt3yuWrtK1qlronFu481b9VPUPdo0BMhTCDTPV9JIHBpEpaZ0uZlho4EGnKsrk2uDRUnvp3EUCvON8aGsVHfmoyMekwmLv5BGjQqkT0EfJW1tRPVMmGeJCha5JRrX1rRdM2nV7Kt4HQg7H5R4ZUlVcFFuKVodFr2SdcWqbLQvEEysBMSt0JQKi9KsznxIQlnIuMkPpq9p3NU7095Vi2iW5hPrKW3y28iC0gWbnp+1y4JiIw8U7ngrzfUlgrJMrXJbK7VNzx31FhdtlJZKUix2j4Bu0pkQn7Zeg62bVKgSVyKNhbiyQud7uhJnvQbrZ6yi5P+ri1ZLVXGVKn3FZPMgMka4yovBRNM20P+wQUDrpKzWeDXc5IU5hYEwUIinzE/Lk0wljWyKwXq5XjdVEKcZlLTiynxr3r6FdGzVMby8EVDO5oJ45McwYZ5k6dyxFwk2iwQxtUPIhNXq4XcfkUnLJ0sTJTDdG3XXlCptpEpJckpaioY29JPjex0nz3z+rFz3yPXqHt5PjtzvcOnVqld88q444a5jPCnITOB9aXpp2PSxStOsrNGXpnfnvCujF40JcwqC3KJdc+1XB1m+dqWs3bBWVmeskYc+eySQZWY2z0mPLj1CChXwJKYtzJnNzzjjSL+qIzObNhxVaLzgKslW4gkhtMJGmlx9ntYpqQvuQ96oqimMB4H5PJcmQ3nAdtNcwy3PGDdVSy6Ei8JYNErL19dADZtw0lUtvv7j1wOBeiRdqgj14UYpDtlrsDz34fOybtXasHBaTBfK95z+Z8vZ+521JfAzV2Ma7PelK5dtRn2T5irMKJTMqkz54EsNHK4qlmFKVNakrpFP1E22aukqaZymJnJ1L2KxYoGlfSsstATKp+tbL2VTjZsWByvI1ju/lwzpNETGLRmr6SoelGvPvja44t7VOJhxqzToPaVMcsqz5ZS9TgnxLXXZ2o6lBfP971r9Vt4b/57Gnn0ij419XF7WeJUrjrhcs9oP2apeLHH799lPPv9ogoz8YqR8PPETDYxuJ3t37y8bijbIvR/cJx/M/VAuHXSpxs8cFwJtf/joNTJt+tTQy3hlk6eXIOPYN9pNZLmmAqHo3KKrZJany+KiRXFxIDh+1ZpVMnjA4BBwzE4zFl3DjHZQFJDYZIv1xiSMlRUlWlxcLA9/8qh8vGC0nKmB46cOOVUJeHP57dO/ky9ngEniYrs6UYLsDsUNR1m8erHGyi1WIrAs7EKLbpoIO/LUSqv7AkMMU/Vb/OK3bf2BeNAurubnprwgh3caJpccgRuzvdz34f3y+HuPh2coTecxOJZq/FJ4ptj9qH9wmbE7D1Idb24GV5FeG2tNJGBe94wEAgMBrHkGfNWPNFW8uJqidYYXKJVNRzuQz03P9GYGCkKbraBRHK0PNqYQUKzRPzr0ajmg0wEBc8Y37DzcXNjBF0oNjD1ef8BixaoVcv/IB+T9efr8HHBJiD/j+fnx4z+WyV9+GchfdlaWXHrUN2S/zvtpPNyI4Bp8/8n3NWnvUfLNI7+5hVxtEcqI52ZyT9tluvakVhLtBVGskPb6/P7q8F9IX83bxw5SMAo7D7W8N3ZEWLtO6HW8fOugy7fsSGWTBvdTpmps6yY861ZCzBxrZGTzT9hhqvM4T3faMg9id1uGOM+a3owi4oTNmvrhubcSO8Z1k97vcgT2HATqlXTZ4tlXg+BHNxujAccjQ1ArDx75nHCrzVRTemlf3ZnVZJOJ+zPdzcRDunenfluIWFiwdX3BdN1UTe7jNbt2x6wOGpPVVNKydBdXWZHMLp2jZEmVu77pt2neRkavGK3uuBkaz7LJBbSxcmN4y++S1nnzaMVZsPSr7s26y8kDT5LKzyrkfQ2GJo5sUM8D5PKjLtvizqACS0tR26FnsVuru99GTh4lTQsLZfiBx8rwwcfKm2PelBvf/qd8Mm+0DNSAeFwwVnA/ECfTuLKx7rJ6VcgwP7jPYH17zglB0J9MG6O7i/bWnU0nSWFBoazQuLTF6xdrHE58FyHWgQJ1zWXkZejuw3m6+WCBtG3ZLih7diRuVEKrUVQ1do0Eq/3b9NfdgxNl+sIZ0hM31+bCbrZx8z+T9Kp02Vd3SeFmYyfTkpIlqoA2bTrAXbKqaKW0bdROW9P0EEGJbCIQdS0Zmn198fLFYR717thLTtLdXhCu1eo2XKSbJ8r1T3UF9x5Z9Ccs/ULmLJ4rTbtvmpfPjHtORqpFEjdcjgbUfzl/qgzreqikpqcGNw0pTfKq8oICTkZ+ox9GPkwmSMVKtXR8OuNT3YTQRM7RmCoIV3FxSXBrbqxSkqV/OrbsGNxeMxfMlLW91wYX6yq1Xtzw8o3St1kf3eF4aLDifpUWY5MlGSyalTWTmUtmyvqi9cElx/zCbZdRniGN1C0aq2yrwwv5g7VUMZm2aKqU9jxSMtUKWqkkbPmG5ZJf2UhyNZZLmVxI/2ElyFHYTOavmB8sTU00aSuW7+XqZiup0vQlikM3TeJZNatKZqgr9aAuBwWLWElpcdhEQiwo8Vc1bfhIJLu9dMzXuc8z3ldfgogNxNW2cvVKnStLpCptk2WNub2kaLEM6DBA45L66SaeeXLji/8IRO3YFcdKN7Xkb11S1JK/PMQxUlIUi1UlqyVXd4AWZDaSDq3ay+jlY2TG/BkysPNA5fVZanlao8/LuGB5aqc7ZFs3ba07tGfJ+rXrpWmbTXNwssZJrd64Wvp37l/nlAv0B4LXljk1u0SmzpsmHRqrxV4fOaxwa3THcMfUjmEMIe+V+rJqViw2KKzTnZJl+qf6dCvBJKqxgM2lVfNWMnvpLFm3bp1anBupZ2K9LCteLqVahxHIuj7rfp8jsCcgUC+kK5ytFVlhydtEEOUI3ZK9bOOyYN3orvFZfVr1lk9nfRp237FbkSDnG165UXq06KG7zrqHwGseXuJYiJXp0KKDdOvQTV6Z+YrG0LQNcTI5mrumLLtcFmxYoDtu9lIy10727TogBE2zO7KLuuUIEv1IM6azWPRs1jOMk8UZRQctyK2LUmFeYYgJen+m7oAb9ZjGyvQICq66Yn2u6d0TJVVSotuo1aq1tmK1XHHwFeom7Lcl5ondivGUdkFWgQaYd5Q3dLdXQYFmttcdj8QBYVkp0P6t1mBoXEpg+9zo52WS7oxqn9lui9UqOiYVasUhOLqt5j/7/IMJ8uTHT8t5Q8+VaUumheD6YlErSRKzubUG554x+Ay5+c1b5P73/heCqFFAuBRfVUvNuHnj5MCuB4ZM6MGqpahPXD4xxMbslzYw7K4jNu/4tsep9UItRLgzFEDyDlGCzc2sBTFzKrgS+S7yts+1WAggPvmaFHRN0ZoQ/E6Otmc+fkbGa9qAdpnqNtrcN5RJrKsxOzdbBml6i49mfCzvTnpP2jZto9iqNXXaJ9KlbWc5Zu+jZcWnK+Wtz9+WfVr1l7069JHR00eHQPl9Wmvciv6xeqN1W1+2WLTUOkTcDOkItsydMP80OFmVInO2WHdsLtFA7o66weCt8W+FTSBgw27BDq07SG8NdCdo+mMlDQd2P0DenvCOrFQS22dgH3XtNQr4bMFSG0auTq07SmWjSnll/Gvyxvg35FDN/L5Aic/4xZ9JzxY9pUVOi3CyQuwzHMYjZgxsivTp3Ef21t1wIya8L/u22je8MH06W+MKNZ3I/pqKAus1LrTo/RyXtU+H/prb7k15U/t2jB7FxO7FL9Qd3DS1UDHIlMG9D5SHRjcP49CvbT/p3b63vKbxbfe9d5+cpQHmIY3LZrmSeTa3eda1P7jWiQ2E9CzTZMyQkudHvyATF+jzk9VuE+nS3bf3jb5fThtwmpy23ylhjQj58dQNGs+tyevKrHVzdEPG2JCfbtaSWTJt1fQQY9hOd54O1F2Sr058XV7Xvg/otK+0LmwlT370VNhhfeYBZ4RUFIO67B92yb496R05JffkINvfNYUNsYJdWnQJwfux4xFeWRKMkY2fPR/76w7axz9tIs998lxYS1kPwhqplvz+LfcJUOVpOh1enogd3Ld4gIzSlCOk9MjRP1bitQdmWNDaabwoJ1uwhr7y6WtyxN6HhYTZHEnFOufFEXAENA/l9oIQXC1KkKKuPers234v6dmxp4wZPy78zlvryXvrrjM9Z+3x0Y9rOoGJMktzMlWq0mH7O3ELG/Wtlp0845dMkBc+f1GO6nWkBo52Dq6Txs0bh0ze5ObJb5wvVcur9M23t6RnZUif9r1kuB7B8azmpvnX6zcHF+c03XK9f5f95JA+B4cuQk6QgwXCCu4RrD1YSwb1OEAOaHeAjJj7vqay0CM99j222jQDIfGpWnBC7E6CwjXFmqSwSYGmNdD4tMdHPi7/eeO/utOot0yaPlHa5eki1Wl/jdHZNkkqlqkBPQfI/8Y/FGJ7CEilYNU7pu/Rmh5B63r7VmmuWe95M8+tyA35hjYqYSVoGBcGY4LyC8lRNcbigM4HhK3ob+hupSUbloa8UPMWzwsuXCMzY9XiMn3FdDm411A9r63dVj3DyjO051BZuHKRvKEK47bXb9ddYF3DbsWJcybqDra9NTfVmWE7O9hieVmpb+qkx3h/2gdhYwCByUcNOCpYWyC7LNTvz3lf9vmyf4j72STzJteVJWZECMaNxLU2fuEaJZPMmRZNW4R0I+xCve3d29QV21amaLB3epkSHU1xAYmncH1IrhkzXgM67hOspighXhI46qhyQ5WcfORJsn/3/UNC09uX3Cl3vHuHxuB0UmvTjBAjddIBJ26aW5tlNQvBV/Iy3za5Wnq16invZL0jL+jxUYOLB4cYmsrsTbE9jXW37EG9DlLiPFnu1HNMP5rzsUybM102aixWakVKiHPCGkU+JHYBPqKpBkbpTsZJMybLIM3ldPBeB6tVsTykYhi9eIy8MP5FdY8uCvhhcTy560kyc77mifrkybAjcunKpVJRVilnH3Z2cK3NWDlzy3wxaCBw8Z5rfudYq/MGnit3vH2n3P/B/6T9l+1kzqI5ITcYSXJ5MWD86JthgiXl8F6HBTmeGvO0TNbg/lm6C3LVqlXhCC7mXxslvKfvc5o8qako7hxxt3RQ6/jnMyfo+aYdwy5eiI/NiyjW0eGMtx5xbSnJPFWedhoTd3Tfo+QhzVV36zv/1edH+79wuuRUZAeXcUVKeUh90216N3nigydl1srZsn79OlmubuZhew9TK9+2ZyuyIUSPFw9HYc1YMSO4pXM16TPpIrDo9UzT9anPsfL8Zy/Iv9+4JbjeP581QXfBdpV9dKdtmj6bwzXf1nS1hL00/mXhzNbl6gZlJ/JxQ4aHTSRz187dZjxCsD1rb4IEzZYYmbnDKR/kbHtKc9Hd+vZtukbmhnk8tPtgObL/4QFCAt7bN2mvObZeDBbxGXNnalqTldK5SectLyu2rmw9TzY9q9R5mI7xZ9PHazqRx+WLJV9o6pYFsmqlWrdzdS1RxszzS1qg5aUrQs6+guyChOun/+AI7IkIbDfpapLbRK0m50kbtUJFs2eTPPOcIefom18bGdhhYMDuEE0LkavByaPnjZE15at1C/gA2a/9QM3vsl+Iy2quLoRvHv0NeX3aGyH7d4nuaNpHXVW/OOZnuuNpgBTqFvLGlQVywYHnycGdDpbOqmQoeWrlOOugs8JunkkrJ4edjGd2OFOGdBusC/am4HeUU7O0pmrq33QP5cS9T5DyDeVSoIHXvAFfPOwi6Tijw5bMzXpATsIxD9vXlfCRSiBRwYx/mSZyHdhh37C9urFarz5dNF7WV6zX3T0DNGfXIOmrFqx4hUOLB/YaKN898gq13nUJAb8U3JCnDTxVA5KbyGzd2ZSub9+ntT1Fw1TPCAtZ8ybNgtXnnP3ODmdhti5oLecP0hQdmt+qo1o9vnXU5dLus3aypHSJ5vfpJAd1HxqIL4HKFDYqrFi/YnNm9m0ly9PdoedpHqkeLdUlp1aK1Wq9a1zYWM5vr2OiGwNaabA9JQTd6h8SmvbvtLeUZ+rOqdbHyiHdD9nSVmclMJcddam8M+tdWbVhlRKfA2WflnurYmstJ+x1vKxvq0HeqrRwDfVRC9NlQy+VvTtsOtcR99pJekhySo4e+6KE/iRNhMuRRzPWzQrtnj7oNM2Rm6o7v9ZKK82cz7z7xuBLdIdex21icloWtpTLNFbn3cnvybyiecEld1CnoTKg84DQ1mH99Wgrde3iCi6SjeGoK2KO9ta0DRTOoLxoyPnSXy1hViCgFxx6QbCahjo0oW1pZqks0ng49n6eue8Z0jK7ZZAdpXhw74PCdvwJyyfofohyOazfMDk548TgfuuqbjfK0L5DVPYszX81WtZUrNGUCcOVgB8VdkDyUnH+sHOl+dRm6vpcLT2a95DzB58XXKekKLnmhB/Je1PfC7vjcGWR7PMAdaOjCMl1ds7+Z0sb3f2aujmLOgTuvEP0ft1RGa8M0/6QX+tjxWR95Xo5pPnBcqCOHzmnKB0UkwuHatoAHU8rvDh8++gr5N2p7wY5OG/xiD6Ha1B/3pYzIs8ceobuOmwpkzU56kYNTTh+v+NkaLeh0ktf4CgDdb1IPzRDn+P4m1rYmHLmQCX+GU23rEdtmrSRc3XOYkHEvXrKvicLluRZ62eHUxlObXtqwH6ZPj8tdK5A/i479DL5YPoHsqh4sTRr2kwGdx0sQ3oODtbm2HJot0OlQ1b7sCFlUcni4C4c1OGAYOGibMrXpYdha56wKaumBAvwaYNO1QTCB0rXtpvWj36d+8kPhl8to2Yq8Vc5emjYwBkH6PE9av3L1DFnA8LFgy+Uro26bTluiLXnosMuCoH/8crBfYdKpzYdQ24/gvDPPfTcgO2U1V9q6ESZrq39ZWiPoVvOi8SN+Z2jvi0j54wK4RkkpD1cU14QW9ZE5SGW77wDztXE03pG6uZNA6SmuOSwi0PuOEgxO6KvPu4qeXvy27K2cq100XlxpI4x1txmjZsF0rVWLeMrNblxvF3LcTviXzoCexAC9UK6Ljzk/LiQ9FfFwyda9uupJEs/8QrEC0VmyoxriHn4YbsfbLmcGCneCiWGq4RUCnrYNn/ilcGalJRPtJzUf5Olwkr/ziqvfpIpEEU+1ZWOmi/p28Ou2HLJQX0PEj7Jlqa5TZV0fXeby5s3bS5nHnRmtdWwOFq5eMhFW/4NGb748K/+H1vJoZr9/FDZZB1MVLBaDO03NHwSlU3uwEp9c24nl+mJAbicYwtEd3CvweETW05qvvXYQLr4WIGEnqpWFSvNC1vIaUNOq1ZuSFui0lqJHoo5XsH9e6BuDuETr3RuqqcxDO281U/7qEWPzxZ51dp59oFnJWwfxXzUwKOEP9UV8lvxiS0oVQh8IhJPAlk+8UoznWfR+cI1nC7ReVinamXZv/f+wic+Jnr/0G3nWXVyUA9z6+iBR8rRcmTceg/osL/wSVQgU+fsvzXOkB0IpJWmGk9KrqvqStd2XZTsJn6hit57RI/DRPhUUwr0UPcTdH06IcH6xK2QUrNox1bVTC3alwy5ZKuvu7bqqi998UkxF/KSGy1ge9yg4XKcJpuOV0j2u3/P/cInUblg0NZrPaTr0iO/sdXlHLDNJ1E58YATqsXKf3QE9mQEtpt07cngeN+2D4FN5yaWhgDjeKRr+2r3ux0BR8ARcAQcgd0LASddu9d47VbScsAuO7VqOmh6t+qUC+sIOAKOgCPgCNQRASdddQTOb6seAXKyXT70MsnVP27l8tniCDgCjoAj4AjUw+5FB9ERiIcAQbWH9Rjm4DgCjoAj4Ag4Ao7AZgTc0uVTwRFwBBwBR8ARcAQcgQZAwElXA4DsTTgCjoAj4Ag4Ao6AI+Cky+eAI+AIOAKOgCPgCDgCDYCAk64GAHlnNbF8+XLhQ+LMgoICad68ueTkfHWkRyK5uH7x4sUha3zLlprAU3NAWVm7dq0sWbIkHCbO2WotWrSIm1E/Xt0kRlyp2am5l3qp3wrZwJcuXSrUn6H5gtq1a5eUrLHtrFixQoqKikL90fMsd9YYeLuOgCOw/Qhs3LgxrEkbNmj6GV13WrVqVe26wxqzbJmeLqGnZZBouk2bNpKfn7+NICRx5lSE0tLSsD5yrRdHYEcisEfPMB4mlDwPaLwHbkcCm0zdkBsIDH+3bt06kI36KjNnzpTbb79dJk6cGLJAN2vWTE477TQ55ZRTtiJR8dqbMmWK/PnPf5YOHTrIz3/+cynUg7opLHqPPPKIvP/++1sWqdNPP11OOOGELXVCmtavXx8WudgzJdesWSM33nhjuJZ6IYJWRo4cKQ8++KAsWrQo4ICsZ5999lbEiYV3wYIF0qRJE2natOlWpI16IFy33npr6PNvfvMb6dcvfqbu+sJ4d6ln3rx5AvZdunSRvLy8HSo2SnH27NlhfHjukjkMvD4E4uWC+QHZjnesVn204XVsjQDrFsSGwvq1owovZM8995w888wz4SBtyNE555wjxx9/fML5NWbMmLCezJkzJ4h13HHHyQUXXCCNGzfeSkzmzN133x368ZOf/CTMHy+OwI5EYI8mXc8//7zcc8898rvf/U6OPDJ+husdCW5NdWORgdywkFx//fWBqKAcIYhkj65rgfjcdddd8sorr8j3vvc96dy5s/zvf/8Li0vPnj2rJSO88T399NPywgsvBOLDwkpBVhY96rn88stDnf/9738DiWrfvr307t1bFi5cKGAOaYOM9e/fPyyQ1pePPvpI7r33XjniiCO2OniahRGCyOJK3Z9++qncdNNNYQE89thjw8IKcXznnXfCwnjeeefJNddcsw2BGDVqlDz00EOBqBUXbzpvcVcsJSUlAU/e2OuTaEf7ypyi0MZLL70kH3zwQSCijFN9F+YMRBsSjbXyH//4R3jezjrrrB3Wv2gfwPJf//pXmCM/+MEPAtnzsuMRYB4/+eSTMnnyZPn9738frN47oowdO1ZuueUW6du3r1x88cVhjeHlqnv37tKrV69tmuRFlnWfufiNb3xDpk6dGtZD5DvjjDO2eln77LPP5NFHHw1rb/Rc3h3RD6/TEQCBPZp08daNpQulsCsWTNsQJD488G+88YZ8+OGHYaHo1i3xMRo19WXWrFny3nvvyZAhQ8LbHYqXt//rrrsuELHqLEAQJixZKLJcPWfRLBXz58+XV199VQYPHhyIEfVhsYKggTMWKogTxIp7+f/JJ58crFUUvodIQSohRVELCG+lyIzCPPXUU2XQoEEyYsQIefbZZ2XgwIGBfFEnsnMddfFmGrXaYNWkz1hZuCfquqwJr4b8nbkICWKx/+53vxsW+/ouYA85pu4LL7xQLrroIjnzzDO3ecuvj3atPxDl73znO4GM//3vfw9j3FCumk8++UQ+/vjjgKcTrvoY1eTqYH3Yb7/9wnxmbWCtqe/njjWS9Yi/L7nkEjnooIOC5f23v/1teDHs2rXrNsR+0qRJ8uWXX4a5z8sfa864cePkxRdfDGtLp06dwnr7xRdfhJdG1gzmbX3LnhyKftXXDYE9mnRBCrAk7MoPE4oJSxAk5N133w1WIhaY7Sm8gR544IFy2GGHbXGr4l5EEaKQExXug9hAcHgrZGEycoS7EhcOytvcN0cffXQgdsSJIfP+++8vKEAI0QEHHCDDhg0L1g9I0mOPPRZcThA+xsX6SBu4Axkn3lwpbdu2lb333ltYPHlbhXSxME6bNi24MnFzUifuT4s3wz1JPbg5kHl7Mdwe/Ku7F2sesoLnjnK9McZYBY855pgw9yGnO8qtaP2ZMWPGlv4w1xqqQPgh6Cjiffb56qzLhmr/697OXnvtJX369BGszKwHdXUz8nLMcw1pjs4fYrJYE7Gm4x6n8ELKGjF+/Pjwwho737ie0qNHjzAnCUdgPWGe8GxAulhbsJax7tAH1ka3dH3dZ3PD9H+nky5cUjwAPHRMfB4UHmIrxOnwcKHIebPCPWZvNyz43ItCxjePW47f+cQruLF4IHmQUdY8fJisqReiwcKBksJVgluMBxUrkRXM1MQUQTp4eHmgO3bsGB5q4mZs0WDxZyHgGiwA9McWDCw1kAdcbyhC2sOFh7Xn888/l7lz5waLF2SF/k2YMCHIixyY0o2YYHmibhYgFo1oGTBgQGgTOU2xY5Ggj+YujIcPOGOBgTxxH/eAE39DaCCI++6775Zb+S02RoLFkHGA9JhFCzIHOYMk/e1vfwu/mVyML2MIIYsu2ODPOKBUCYqFkFIP7tIHHnggWDaI06B98HnrrbcCUcQSB4bbU5hrYEu9zA1wZ87RX/BDXkgTcw4lwTxBXgrkg98YP8af69kUwJyAnPLGzRs28x6Ci6LirZzC+IABljoILpiDD1gZEY3GwfH79OnTw/iYHGCOZYBnAowgwUa2IeLMVeSjD7ggwZ25glJjLmIxxJ3DGPJMRp+FeO4j+sMctf5A9OgPzwXt8swYFshJ/2gLbHhmmNcQcb4zNzL9QkZcxPSL3w3f2HGl/zw3kHye52QKMrEWMB4Wk8RzhOvVXOE2zown8w45wMksaXxP22DGHOU3ns3YFzzGmmut7/QFgkj7fM8zijsMhY8MzDXmHNdj9TZ8wBKCwcsGc4H2ohtcrN+sT+DH2HEvawNjYXOXZ5y2eaawhCIPc4ICLswbCn1ijQJTrseFiMWI+cKaaePF8zd06FC58847w7zhpYi5wFqKjLFrU+z40G/mEISIPmOZipIonmXaZ92hbQpEiTnFHGFsooU5zXzk96gVmXt5XsGQwrzmOUNGwi5ou7oXNZ5NMEAei8HlfnuZAU9wZ0z5N/OcuqPPDPqBa3i2mXtgg4WNddV+Yz7yG3OJ+RhvjJOZ437NrovATiVdPNj43llIWCB4YJikxO3wYKNwcJPgw+d7HhoedtwYKDGUy/333x8ePBZLFnJ+x/SMkjTFzm+QlNtuu22LEqBuHniU+PDhw4Oy+dnPfhYmOYsan29/+9sCgbHy8ssvh9gAHggeapQGiyFkggcNJc2HuINzzz03PPw//vGP5Ve/+lV4uJCHxYX4BFx9WKJYpJEDMoZVx0gI/cNkz+LFQk+9tIu8kEqug6jRt9iFje+iMWHUD9nknkSBoiw4uAlYfCACLC70CZnBHcXA4sAYPfXUU+FviCRy2qINZsTxoLC53hTQwQcfHOphYYl9m6RfXAs+UQIHrsiCDCyU9JX6IQ4sfow9yh13AcQCkoR7gwXfFEddHjsWxDvuuENee+21sHDSdxQPrk9eCFCE/I5SY3HkbxQNLmGIAeP7xz/+MSgJfkdR0Q9i0Jhn4BodZ+bpT3/607B4oxgYW+YgY0+f+J4Fn/l52WWXhZgUFDWKCjce34MbzwCBxcjCXKJd/uYDKaE/KBfGgDd8SBfKjfuZ47iMaZvnhL7yHNEf+s9zdf7558s3v/nNrSxmzBmeARQFc4txYRyJ7yHuDrJJHBnf8bxwDVhALpgPttEFi+j3v//9IA+xZyhw5gVzmH6A26WXXrqNRYPxBSPaB+9k3ZkQdLBDqRm+zLcf/ehHcuihhwbly5r0f//3f2HuMY7gwG/ghJxYEqnDyDjPDPgYKaYO5iyxZvSFOhgjxof1i+eaOE6eR+pjLWRcGWP6S3v8zphce+21YZ1hbrO28TtzJnZzEGPBesqzQb20y9qA2xXMkfk///lPeJkDK8aCOYPcED1eAvgdXJCf8ADW4SeeeCKMLc858x2yAQ72Agip47nmGvrHOEP4jfQleg4hiG+//XYYc64Fw1jiTF2MAWug7UZmXWFuQJxiXyKZL8xXsLF1ifbBlrUEXCm8WPJhHYta3hPJioys/fQT7GjH3PaQQDBHv/Cs0hYvDLyAoAsg2cxRxob1gTlCnxiTH/7wh6FvxKK+/vrr4ZlDJsYP/WMvwHVZy/yeXROBnUa6bFFiVwqKmkWdhYhdbUw8LCJMZHagsCgzOXlr/Otf/xqI2FVXXRVihHgIWOR5q6AuFiUUMwsJD6e5mgiWZFJfeeWVoT0eeBZ6YpJYRHjwWFBoG2LDvVErF8PHg8RbF4HgLHrEFCAPi+Ef/vCH8GYIyTILhr0xsshZ4d9mveE75LfdeihklCSLMu1Q/7e+9a3g0qNvKAHkQ5FBdpJ1p1AvRImFFSzjFSxcKJqjjjoqLLQmM/ixWPF/FvUbbrghLMgsLuDBooJCBL9DDjkkbt2mDOlr7Nsk9bIQsqBGUzyACdeDFe44CCwLPQsUJI54L0gwSg9s+P7www8PbsztcS2++eabgciziYBFD8KC8uO7K664IhAWiBnEBJz4/uGHHw6EEKJB25A+CDVzGWLx61//Oiy4xL8QswbOjAnfoxhZkHkrv/rqq8OCDuFiEaZ98GURZr7TNyw6XEv8HMSJeYel7b777gvfYbngWQIvLIHs8mJswRgFRv8gjsx9lDdxLtzLXOflgPZ5NmjDYqR4pnh+eK4guVaYGyhZ+sN85X5L2cG4ohCZz5CvX/ziF8EKwMsGL1FsbqF9lDyKl3pQlP/+97+DMoUAQXJRdKwBEDesIFFLEvXz7KHkzDpi8wUCwJxEsfF8o6RHjx4dXt5sjJivPK8oUF70IKW0SRtgSZ/AlzqQgTnHCxb40j/6ikzgHE/586zwzIALFizIOv0DRwgP9UNYIFU8S2DCXEIG8Oc7iFrUFU//EsWo8tLEeEKWWDdQ8BBDFDhYE79EfbTDd4w7G1sgOieddFKol7nI8wzBZN5hVeYZYC5SBxgwl3lBYE5CJiH9/M1YIDPzkXYTFWRgbee5Zc2FnED+4llSuRa5omsx846xtTkWbYfvWJtMJvuN9YR1jA+lujUpVm7mB/OfunkWkIUXdAg1c4v/M7bMB+YLaxHzljWX+cIcwXuBrgFD1jGeXeYF6zkvDIwd85HnkvWODVboObD01De7Jnmqq1Q7jXQhMA8pyoAFlTdrHjyUFA80ExgSxtsKBIrFicWbh5pr+JvFDrIF+eANnYfDckzxNw8nH65l0YO4nXjiiWHhQbHYlmcLGoeUUBfBmvFSTLAYIyvt8jChdPmbulmkkJsFE4VHGywMPNxRRcG/+S42nsdk5W/kwhrCAkHdLJCQAMubVZvBpg6UNYSVoHbcb7GFxeTxxx8Pizt9oz3Dz2Tn/7xB0n+UCQsBizgpJLCU8EZWU4lHhvjOvo8X44RsLGq8VUJYKLz9owRYWHl7h0SgNG3zAfXVJY4PzHmjZS6itCB0zDvGEiKAhQSXEvORucr4QkxQbiyUkGPaRXlAImynIO4XiBRWJqwDNtZGupnjYAghZm4wZpbigzZQ3PQJgsbcZ56jCMGDdiAUZoGBgBgBMDzNMsAcwAUEIYQ4MIYQRSyFECeULPfQNi8WyM29PDO8BCFHlHQhf3Te2v9tfiMzWKBUUR7IxvwxqwbjxfOLRYi+IQOud1462LVKoV/gzm/0NZpnznIsISPPLoXxgyigqC3VAGOI0mUcCcZGZqyYkBN7caFuyCDtsyZhGQYbrC8ULNfMM+oHO+pgPULpxr7IWJwiVjjaow6wZq6wRoAPsnM/KVxYRyjMKZ4n3HwWrxh1L9Fm7HpizxxzF+sS+CIf/WN+gAPzgU0mEGBIA+NPXQSa47bHCgrpoi2wggSwBkLWIcqsGbyogj3WZOpizjAP+Q5rIX+zPrBu069EhfnL+EC0eQnh5cUsZjWtH7X9PZmYyWRe0Ognzy79wrrPGPJSwPjSb3AHW8gquFGYO5B8cGL+QzJ5MWMNZoz4MOeZo9TN+sLzYDu2IdfM67qsY7XFya9vWAR2GunigeCtHZLCWyTmVhZ5lB2/seih4HgLM2XKosBbgxWIEQsh1iYeeIgXi4y5sCxGBKWEdYRreUvjDZMJzz2Yeu3BY2G2nFTxhoH6aNMWfq5HkfC2YsHlZhmqbVCmkQ/uQ14WPh5y3qZ4KMEK10NtCnXxdsUbExYQrB7xXDAsDCwKLA4QDUgo8nB/1EpnRMAUFUriL3/5S3B1JUO64smOPGBnb7Qmn7k2+Q2lFlVsKHLceRBnrEUsZpBelAvyIrv9nczCa3IxH5hzkCVwoCAPuFF4+6TQf1OGjBXyYP1ioaRt5lTUzWR9MjJkY21/00eICL9zLXOV7yDLLObMVZQf7ZiFBIJEnJy5kVnEUQQUCEo8MosFjsUd+e3tmX6w0PO8oVy4z6wXjL8t/EYGY8cwti+xv1OXuXloC3mZR1HLBf2G6PBcYvmACDDnuR5cIXso63hWUiOKhgP3MF6QIcYDkmnuZsgNmEEmsEZEXe3MIeYcpIF5RbsQadYlc40zN8yihiyQDSN70X5bPBhzGmJhWLOOYd2goLCpKxrHyNpDvfSptsoWjIwU89JAAROIFS+dzF3+H3VXIT9tsm7aesX6Zn3CfW8bb3jOmQNgyksla57NZ8aYemgf8lcd6aJ/3MfaSfv8m+8SPadcZ+0axrY2xdskxbUWmgD+Ns9oh7lRlxgp5gZEFVJOOhS8AUa2aQOrKhZC5i2hEhTmEPOOlwowYe4w/6LuU8gxBZxZf1mnbRNUQ6VbqY0+8WvrB4GdRroQ33zauNHM7UEMAm+gTD4+LADxsqizOOND5y0DaxBvYzyMTO6owmHxYjHFFQXhQhmy8EBCUED8FrW01BQXQn2xb588/NFFo6a3p+p+NysNlgGUKCZ48OGB5juIUTK5lugXFgKsUSw8WAwSpYoguJagVKwnuAVQvrzxowRxP/A2zqKKZQnlbgUswcuCU+syJVnkeXO01Bm24KMoIB7VJbpkYUN28CcOCMXB4oUS4f/UXVMgb1RmCA3tcl+s0jNXJ21F56PNB+aqzSXmQvR+mxuJxt0sGHadxf3RdxZ3LCXcyyKOHMjI39GYlWSwp3+0EZXf2kZ2CyY2900yddZ0jVl2o9cxZ+I9ZzyPZs21zRgQCNyuEMXY3HXm9o5af3g5YQ5Z/VhRYi2p3AcGUcIE1mAKBhBAMLCkyihslCXW1egmn0RKnPaiBDweRlwDOYjKQP/sRac2LwvUby8t1Bf7zPAbc4b6E81dwyjaJ3BAHp5Pnn1wQGasXVjELAbTiA641pQfj7pwmTMuWA0JmeAlg5eqeMl0WWOYCxYPSB+QlXGiL7EkimshhOgH1jHbgAEGyFmX/IfcB0HiXgg7awtEjFx0vBzTZ+Yt8oO/bYqgj5BucOSaeCSdvqAHcSvijkQPQvZZ443c1XYu1PRM+u87F4GdSrroOg8bpAkfN24G3u55u7KAbBZiPrYI46aBIPAAEF8ACWFRhgxAGpjc0fgKHhjIAz51HgZcFzzkPCTE4/Aw16Yk+wBElU1U2SKDue4StWsWBlwsECXcQpBLXIC8SREDUt3iQXtgwVsZBISYNx7gRG/PEFYsRvbWCbGgfhZYFj1Im+0YtUBUZI9aFGuDIdcaJiyKLE6MPW+E9uaPZcNcF4nq5o0al7FZaJCHhc0slrVNPEp/uR/LEgrErDsQduYQFkDa4G8rYMacQ9bobtHa4mFEh34TzwUWjDMLO2OBCwjsGUOeBZQN11jBVc+izdt0bB40u4bvwZ3nyQr9oV7aQGFsD4GubZ9jrwc/8MfVR+xLTYXxta3+FqsT3d1p98c+s/wfS2jUigtJAlNkAAvkwNWOLIlIUyL5qJ9nhr9ZX8ySgyWI2CAs+uDOx+Q24mSuYGQxS721U50Fl/lnOxwZT/5P3by08XISb+7Sf+Yuz6C1F12rbA3AZUb8VqLCMwCpsfGradyw8OHOhFjgquTlkPWK9Y62okQK0k18Gy8cPJcW+kB/qCeWYDL+1EuMFGuleUksP2BsnG5NstrvuHsh3bh+sWyRKBoPC5ZLcOIFCDc862xs4QWW8bDTOsybwvMKOeQ+5gReH3Y3Wk4xrNx/+tOfEu7cTVZ2v27XQmCnkS4WBCYubw4EtxNDQoApkw43IDEUTELehpjovPEzabkHIsFvPHgEH0K4ePBxq9giZzDzAPPwMYExEdMGCxsmcsy6PADJEqnaDB1t2FulvTlbXBQLfLw2WfBQ9FxPP7HiEIDMYsSbPi4gyAl9rC6ppgXA8sbEpgDiC6qzGIEtHyu0TzwdCxz3ooxZyPibxdFcvJZ4NtF2/mTwQi6IJZY8gsvZjMDiCglnwa0uyzWki5iZaGHx537cj8yR2hTq4wWAWAzmHFYy6uJFgLmGOxVMGQPmEYst30N+sJ4aqampTcberGHReWBKmkWd2BEUEG3YDkSUJEQDawtWBp4T5gbtghdWSV4qsIhSjGSb5RcFZC837IK0tCS48qgPModyqksx0liXZ8lc6lipsF5jreS5hvhAJjn5gLEgZi5KpHlWkNmUfrJy25pgriDug1QzF5nzzHOu4UUNK6PtfiYWCQuHxYUlag+5mMfUw1yhDtYCnmcC9O3Z5Tmmf1aYR9xrR1yZ292IEPLyzMWzmGKJYx1EwfMcMY+5ltANMMIiY/GPPMvMDcbadq8ig9Vrf1MH88LiFZGbtYEgcQoWK35nPaMeCE1tjtHh+eRjO7XZgASRshg32qA+rkF25in/BzOIJEQlNvaWcWOusH4yplxjLkDWkrokI0ZPsOmAOckaQPwlc4JNGDybPFfMQdYwI10YBojPI/4U4s4zixeG77F+IRME3KyijAXhI+goS3vD3EHXbc/6muwz4dc1HAI7jXRZ8CtvYiy6BEqz6LBgYFXhgWdR4i2IXUUstrbrC4XBIsPbPx+u500I9yFv8eYm4UFgQcB6woPLGwQBnDx4//znPwOB4KE0t5ClKEgEv8UMmYXHXAHRt1VzeZj7h0UJ4kg7LIjsLormhLHraZOFGSXPB7lR9mbaxtpF3ABWIYiiuYPAJaqIaJdFkjc9cIE0sRCZdcPi0ExRxTO5285EFljkQHlQF8QCqw+LDgqbNzXGgb4lU+xNPYoX91EvY0LMBAsM48TCinKrbbJFZDa5TZHY+Ma6gWNlRtmxsDKnUI4QN+YcllfIDNYXyChzlgUcsmhxGMSUgSVjG40rpA0bK7NgIgdjbOduWrAzv1MvCpsFl922LNos+MjBvxk35jIB7Vh9uZY5QeweRA1XMMoJrKkfSwZkjUWehR9FjELCRYICYTwhmBAalCbXmjyGD23G9sl+M8sMSiNef6J12fjTT1PsVjf1QGRRwOBPH5kXEB1SFvDyEUvouIdnwXYEJzMHuYZxYkypl/shDGCNwgMj6mOO21xHSWJlZr4TDE+pDhPkZP0ifgziZrmywJ05g5WH5xPLFzJAgnhRsvE0lzguPF4OLTcXpDr2pdL6zNzlOWTeMidZT5Gf554Ab/rDOsRcYo7hCuM65iIWvdh5yv8tBg6PAm3zIoyMNneM1CM7H/qBxcfWlti1KdH4QLaZ26zhsQSDseLlg75AUphP4Mj8gczYi47l6+L/FjsFicNCRTwkL/OMXTQ8Iro+WAxoPBlZwyFLPJP0iTWPf/O8IDekC/kIA+F5ZPzQReguLISsn6wPxM5CxFiPWUd4Xngp5nd2SDO2uBl5ftGDZuWzkIK6ukeTfS78uoZBYKeSLt4KUGYQIVxgPEhMNHaHMdF52GD/KBR23fA77khivvid2ALeLtimy1sxC51ZdMzVZLmPsGKwrZccWSwMEByUqLmQ+JvFCDKR6G2dtyrexMy1Z0HB0Xv4N21SB0oQkzQLK2ZiFgTe1JDdCACymOLijZi3YRZDiCU40D8WDBYFlCuLKfUQiMsiBEnAPG0FBc8bFe3zb1yMPOSm8EmrAJnAasb2dN6AUbjRgjz0wWTjNxZDSBBKnDdd6qcfZpFMZroiB/hRbxRjFin6imJjlxyLNm3ZDsFk6rZrGCPG0YgodUHmiJVgm7clqU1UJxZXFmcWUOYVBaWEG5uxxSpL/8GO8UcJIDv3WbxU7KHLZgGwQHLGjDFlFyjPAJggN2MEpvQdIsDLBqSAOY0MkGGUC3OX9BX8HznoK/chB8rUgvEh38gKBpYPivnDGEIysJRZ7ijbeWkxVTxPNkYoBTCNF1vJb7jr4/XHLEeWQBK5LFjcXEj8xtyygGmsBxAH5gIvKMiKYmL3bmwcGLKiAOlf1GpV03wBZ+TgJY/1gDawLoCfuX4YZwpKEjlog+fGNlUYJom28zPm7KglZglrE/1ljKjXYqF4DuzcSF5ueLEh8N0C0RkrLH+MIdcy1yDbiTb78LxAqllPsZYiMzsYUfjcz/wnRQf1IQ94Mtf5ncJYMM62htI3+mxWHLwSYMV6wxw1Vx0vEMwjS4jLdZAO1ldkSqaASaIUOJBJ5IDAYqnluaN9y6HIpgfIOfoBfHnG+Z31kZhW1kFwgOzGziFwABv6mijInhc/yBN9ImUM1/Jih26CkCM7ZImx4hpwYY4xn5i3FJ5zXiQhYqwr4IUew1IN3sxF1in0HHhTJzsdeZ6x2KG7WCdZb+uyGSCZMfBrGgaBnUa66B6TjQBF3ghRMkwmLB62cwwlR2wXbw8sJigm3iosKzSKh8lsMV8sGCxiFuzMm6tleeY73nqwFrFYm5mZxc4WC4LIUQCJFlIeEhZn2+IMySPnDXLaQgUR5DpkpE0eEhYT3gR5GFnYWAQglywekDL+T7ssLuQxoj+86dMWCyJWBOpnMUZWCv/mTc92Ktl0AUMWOlxMPNgW32ZxJXY/8ll6iNipZjmbkN8WVjDjLZ2FO5rROvbNsbppSx+JHaMv0QBi6mbxYawYH/A3F1ptHwPIA+Me3X1oGdBRDjUVFjuUHW/fuLMZL8bCgtZxw5KjDSsF+EJOmQ/2O/ORt187iBfigkyQXUvYC0Fj/BhnSANKgoXdFAJtszAbkTASxzwwvLEq/PKXvwxjASFnPG1eIhO7gGmH/tC2bVVnPFG04M2zwtxFLnMLUb8dYm6WDF5+eHbijTXzjfpj+8PzxThD+m3HFjKSIoBi84qYNfpisTf0HflxH0EywJXfLBt57PiheMGOmEdz49U0xkZCsQJbu4xB9FlinFGAWBzAF6JD/80SAwnnua5u/mNxsblCHWBiLm9kYL1iblAP/6cucLbCukh7WOXM7WiyxFujGENcfqwjzBXGlnlocxNLomFLe9RN/60uSAlt2rODHMhLzCxuNOYr44actn6yruB+Qz7bZIALFotrTS84NY2T/U6bkFHkp1+MBc+YvVjxjPIybuEZ3McawFqH1YjrmGPxXJ/UzYs/91a3cx2ya65N1muwtSTZtIdsjCfuQH4HZ3Cy3a48h/TBdB0vMIyNtck84AUYaxfygq89N1zDWm1u52Rx8+t2TQR2KukCEiZSogWV35ncLMTxCot4dQfcMnGjPnzIW3WFB6e6wkNspIXreJCix+LwXWzOGa6JlxvL2onuhuK72NQLifz5LADxFhGUIItmdOGM1yfqxUIRr/DQRzPx2zXUbTlm6jKdWdzj1UtdkLCaxieZNlnoo4u9ubKYR8kG1jNmieYCJKo6fCEfsVvmY6+PndOxYwVZQWFHY1vi9T3RWCAjyjuqwKP324kL8epECcX2HVJTnZsXvKLPaLQ/0TmKoondQRsrC7LzDCWbuwkMeAZx10BAk9nZi4JlLqO4Ez0DNY0zBC32hScenonmismA/IkSFjNfsW7UZgcuz3WiNYM+VXdMWuz6Zv2pbr5AErCoUq+thYw5ZLo+C8QxkR6wg7ej7THXknmGDOOaZOUFuTrsmE8Wo5aoLshTotQ69A+rWbzCepFontYkt/++6yGw00nXrgeJS7QnIYBlgHgMFszqCPqe1OevU18g8pAWXGrE2TDONeW4whKBe8jigHYGXruCDNvbb4gjMWdYwXC1NeRB59sru9/vCOwsBJx07Szkvd0GQYA3VNwmKGKLLWqQhr2RBkMACwuuVDaqRNOOJBIAcoAlLV5i04YS2tym8VJcNJQM29sOoRm4FnHF4q6uiexub3t+vyOwJyDgpGtPGEXvQ0IELGeSQ7TnIoC1i0BmOzKqpp4SJ0rcY22Ty9ZUb21+h6TgMqpr3qjatLWjrsWFR8wqZWdiuaP65/U6AjsCASddOwJVr9MRcAQaFIHakBc25MQ7W7UhBcbqurtbXrFsOdlqyFnjbe0JCDjp2hNG0fvgCDgCjoAj4Ag4Ars8Ak66dvkhcgEdAUfAEXAEHAFHYE9AwEnXnjCK3gdHwBFwBBwBR8AR2OURcNK1yw9RwwlIIkh2gJHrKDbX1I6WgiSGHHfC3+SpImEkCV6Tza1VnXxszydLNsc+kXCTfDrkomqIuB7aJnEnSR1JMmrZyHc0nl6/I+AIOAKOwK6HgJOuHTAmJAzk+B62ppNRvqG2UpMIFAVPdn/yEHGWGTu6aN+OdOEaiAAJRMkkHk0ey3FFnFf2q1/9aivSRWZ2ciCxSwyyEj2GgiOHyNXDtnEyKFM/ZyeydZ+2yeFDPiQ75Bm4uYYPxI4s4mSz5lBjDpomsSIEhfPVyH5vSQE5foRja+gLx+hwDUf7UL/Vzd92uDMZt0mmSDJCzjzjeA7k5sM5aWSAJiM59VEvhUze0WNCOO+SDNMQQHDi0F2OX6JfifoDptGkpBC9P/7xj6F+ckhBujjrkK329INAZPCBFJIh3s5w3AHT0qt0BBwBR8AR2MkI7PGki6MrUGgoOywnDVE4vgUlTyZprBsNRbrIyP3QQw9tOU4EogL5wILFIcIc+UEiSTuQ1g7uBhMOw33yyScDmbHC75AtMk5DTNgizplukBMy6YMt54VxjqNlo+b4FmSAcNJ/CAUfSBhECqLFESpggtWJv0eMGBHq4agaPli7OOKGA7/J2A2JJeM4Z69BiiB6fE+eIPrIdxA2ZEU2xhliBLmkXc7u5Nprr702bNHnfEcIJtnxuZb6qJ+TEciYDtHi/++99174N32jXvpLX6g7Xn/4LYop/4cYUlf0VAIw5vBkZIf8QQQZO8aIvE2JslY3xNz1NhwBR8ARcAR2HAJ7POnCqnDzzTcHRd9QpIvhgtjYuYc7bvi2rhnrGue0YcGB7FnB+oXFBcsKB4tHD5tGRn7/17/+Fc4TxKJjJJHrODOSe7H62IHdRgogYLgEsUZBgrAyQTCwPnEuJOcQWoGYQdw46oIz7eysSogJpAvigdULYsgHixp1QXooWNP44G4kszzkiENwrS933nlnIJenn3566L8VCBv1YlEyuSGeHERMvzl6iO+x8IGfHVNDH7BqQa7s+BTOk7MDbKP9+c1vfhP3vE7kpQ+QK+QGHwqJOenDc889F5J6QlA5sgTi+eqrrzrpaqgHxttxBBwBR6CBEdjjSRdKk5PpIV0NVciCDoloKAsX/cKqg2WG8+DinbuILHzs4GvDghgus45xvh5Eyqw1kA1cdFi6sIRB0CCuuNso5hIzKw7uMYiMWbli8Y7KYL/RFgeEc6Ar7jcrWCaxTvE7RI16ISTIQMwZZClKHvl31I1q9SAL1qRo4WBarscNSyHGi35hKePIIPCjT1ieIEx2GHlsBvN4/Yn266233gqklX5FCTjWLM6m41BrXJ8kysTdC/njHshj9IzPhpq33o4j4Ag4Ao7AjkVgp5MuFPWzzz4rY8eODa4brABYFIw4YC3ALbVw4cIQ+Mwp7SgsLBfELd1+++0BIRQ0VhHcR8OHDw/xShCKxx9/PHx/1113BfcRCr664OzVq1cHNxuWHdxIKEzusUOUX3jhhUAAqIP2+Q032uuvvx5ID4oZKw4upGjsE8ocSwauLAoKFqKBxYN2iGlavnx5IE/0DWsMmOCq/OlPf1pj0DdWJPr73e9+d5szBs3CYvFO0SlFW+eff37owwMPPCATJ07casbhAkQmZIWALFu2LPwOpuAAObCDqiFhxCpxbewByYlkwGUZ73BcLHbMBwgs7TNPsJ7xHTFmYBYt0fqre2SoCytV9IBZO4gZYombkrm3cuXKMPZYviB+tJmoPWs7+jtxbRAqLI7E1mFFtMK8oF6SY+IytczkEL9HH300uCS/+c1v7tgn32t3BBwBR8ARaHAEdirpQpndd999IeYGBYdr68UXXwxv+rhsUOw33nhjcPEQYEzcyx133BEU4qWXXhrAglRBTLBkQYxQWChVCBbxQyhQiBjWDP4dJUKxaBOz8+9//zscnos1B8UMIaQ+gssJkMYacsMNN4TjL7Ci8BuKGjKGBQYLDTKgaFGmkDMIIy5OXJ1YbSAOd999dyAw3/rWtwJRg5BBsohpgujQp169egXLVTI7+CBAWFNw89XGwgY5MoJEu7EFYsCxKRATCItZbHC/Eb8FOcTtSMFKBjFjHGojQ2ybEBasaxC6wsLCUP+pp54ayCztQ7jqcm4exA1yTEA840DwvxXGEpkZNwq/M2doB2tVbXZzMq/NKnfYYYeFOWT1Wnv0hfkOUUYu5ihzlu8h/F4cAUfAEXAE9jwEdirp4u0fKxZK+uqrrw6kBuUHgcFKQEwNSumqq64KsToo+b/+9a9BiaHsif1BUaK8Lr744mA9QlESt0Ss0be//e1gGcNyBWmzYO94w2hB4wQ4EwNEmxCo//3vf3LrrbcGAnXBBReEoG0UJGe3ESOF6xKixq47LFLcg0z0DYKAFYSYJeThfsgi3/3pT38K7isCtIlfol7quOiii6Rt27bBCoIVLNlCeyjs+k6DYFagWDlwzUGwIApWIMeQ2tocyRJbLxYlxoCxZvwgO9SJJW57CoSSeiH5WPPAF2sapI4CwcaqRruMW3QHYm3bhTxjNSNei2B92o0ttMX4IgtYQnzBDbkgtFhRwd6LI+AIOAKOwJ6DwE4jXZAciAjWHlwpWImIs4GYEEfE2z/KCxKFCw8FhOsRYoW1C5LBbygvLFj8G4sQri6sExAALDPmUovuKos3fBAIyBHK+YwzzgjpDyhYKu69994QTH7OOecEQgUpgvDxNxYm3IKQQrsH0oZFhWsJ5KZeSBXWPNttB9HEqof1ztIw8B2WKqxbtS3IAH4WoF7b+2t7PVZB+hI9Pw6XKnib5au2dTJeL730UiDiEFqIbV3rim0bbMAXVyqknXGDDGFNhNQxZ/iwc5IxgwDXpUCWGFf6gvUVUmfpJaLpKPg3LxjgiCWU3aBgCWnHKsb8tflUFzn8HkfAEXAEHIFdD4GdRrpQSlixKJARC4rG4jBo0KAQpI0Sh0xFLScoJQgUipG/UV5RxY+VAiUaG+MTL+4mOhyQLdyZ1B8NYqZuFCfkEJJB4TsjN9yDHJAlK/QBhQoJpA8oVWK6/vznPwcSQV+RHzcjsppSpp91ccshO+1AQPk0RIEs0G8jReCLG47+1FUGdg/+5z//CWP6wx/+sF6DyRkLiBwfdgr+6Ec/Cq5ixsAIFwHuuLZxX9eVdGGdxVWMhZV5Q33ECULGmAdY0OgfHwL0wRBXMn/zYsG8wb3IfHPS1RAz2dtwBBwBR6DhENhppIsuGhGKEg3IGO4WFBG/x5IQvkNBRXeu1RdcidqDyEWTYUbbtj7EymNyIytkjRgxkn2iiKkPBQt5w60EaaqJFFbXx6gMOwKXeG3H9tvajbeDMJnxIY7r73//e3D5kVICclQfBYspBBFCZe46CDLE2ogj7SC3xfttz1jgHmV8ifPDPWqB+3z/l7/8Ra6//vowF8AL4mUJXZEh0Q7M+sDB63AEHAFHwBHY+QjsNNKFgjPrEO4UC2rGjUfcFhYulCRuFkiLWVSwpqAgIS+WAiEZGGsiI1hCIEAEcONissBpdkWiMC3IOUoW+TfpByjR3WkoeqwbKFxirLCaECvE35YHCqJFO1xTXXB/Mn3DsgSpwDoSu6svmfvrcg39Qm4sRVb4zgLda1MnOJA3i/g4XM2WC6s2dSS6FmvWbbfdFnZIXn755eEyMIIMI6+RY+YYJAxro8V51aV9Yv/YGGJEmrYgW+xaJU7Q0mLYywXzkjmEHGCJxRLLWzRWri5y+D2OgCPgCDgCux4CO5V0kQsJBUeqBWK1cLewswyXDLsDsQSQt4ht9cT3QCogZbhgiKeyQPVYWKOWCpQZ16HkqisQPBQm8UTE5BBXhasRiwVEz2J/UNZmbaM+AqWRhRguFDv3EMNFrBYWDRQqVhuSj3L8DC4jXJOkiCDYGjcXMWw1kcLqZOdelDTuK9xY8Uqy1ptkr4OwQFQhKlYgfuBTGxm4ng0FYEMMFBsi6no+YTzZGRsIFbFi1M//SUOCNZXNFeYmph+Qa8g28yuZEq89cCH2MFqY17Yb1axtzEe+g2DZUUzIgNuZOVNX92Yycvs1joAj4Ag4AjsHgZ1Guugugc0khiTFAtYIlA3/hmDxQQES30K2cdxOM2bMCGkJyANF8LwdyYI1IRrDZbml+A5Sx4fAacgPlgysUpaiwmCHnBHQjjzEFkEGiM2CDEAI2S0JuaEt6rfAfORAngcffDAQK8gaMT0ocNqHOELGqJOs5xSsdhxDg9ULhUtdFt9l/eD/7GzD0oZcNaWNIFYIFx1WtthC/YZJddMMIhDtW3XXgg0EwhKMci3jFy+nFb/RL+qOtcTZDlYINXViEWKcqQdCQu6qZKw+EGvqjz0FAJJ74oknhl2oxIthXWUswIs0FGZlxDIJ5nxfE9bV9ScWMzClXohfNCWHpQVh/CFlFMg948dmkGic4s5ZGrxVR8ARcAQcgfpGYKeSLggJcS8oGNxAbJXH+oC1A2JCQP0111yzJWEkSpgdhCRP5XcUFCkXzHoEOFgaIFfmxmFXJMfFYOnAdYgFAWsaR8VED3vmXpQ+aR/uv//+QPZQmMhA7izcnRTqhYCZNQZLCVY5lDeEEVcZOZ5QnHwgARAz4rk4S5ANAhSsLtQL8UQpY/WjLnOjQraoD7KJxawmIoB7llQbWNgI4o7GwkFakNl2iCaaRPQR7IwEVDfZIJe4Y7FKmvsXbHB1IgOkKSoD48JOUGSIfk/fGT+IKS5YUjpwL7iRUgEilwzpog7qj935iTzkGaNNrKa4stl5igvTMuvTT3Z/0maymeDpDwl4zQKaCCuIOu3Qh2g6D8YXyySYG8HCygWW7GTcHstnfS8SXp8j4Ag4Ao5A/SCwU0kXXUAZkaOLgjUk9mgXMnrzif2N61FWxMtEC9axm266actXkJXLLrssfCwAH4WbSKlBJH7+85/HlYcvL7zwwvCJFqxnxCLxiScn16J4+cQLvIdsXXfddVvViXXuJz/5SfgumR2NkFWsOKThgAxECSVEBytcTYVUGXySKbSFBRAyi8sXcgrxg9BAoLEiRWWAzBC3FVsgaiSOtfGPpvaIbl6oSSasjXziFdye5EezHGmxYw/RweXIXKwul1u0bvpzyy231CRWIOPEckULfSSpLiSLODPmMeQTHCFmEGQvjoAj4Ag4AnseAjuddEUhre7tvj7e/KMHOSczlHVps6Z7avo9KlcyZMuut5g0suljfYq14iXT39pcA5mAoOCqI00CpAvrH3+T/4p0ILWVAWy2d1NBTX2Ihz/uTCybxNZhudrRhdgtcMM6Rxwhfcatajhi6fLiCDgCjoAjsOchsEuRrj0P3obtERnQCfwntotYqLoclVMbickSz0YC2sM1iJUR1ybnQOLKxc26q8cm2UkEWBtxre5o0ge+ECxcsFjmcHcjg7mzG/Jg9tqMtV/rCDgCjoAjsP0IOOnafgx3mRqIDyJOjFi0mnZr1ofQuECJr8OdaIljiVEj7o5UHwSL7+qki8B+iA9xecm6FrcHO9zLuLzZsMHJBZYqgh2TuHbZNOHFEXAEHAFHYM9EwEnXHjSuWGkSxTXtqG5iUeNjBRmIKdtdChauhsQM92YsZsjAJgAvjoAj4Ag4Ans2Ak669uzx9d45Ao6AI+AIOAKOwC6CgJOuXWQgXAxHwBFwBBwBR8AR2LMRcNK1Z4+v984RcAQcAUfAEXAEdhEEdhnSRYCxnYlnCUJ3EYxcjAQIWKZ74rhqSt4arYKge/JSEd9Eqova3LszBoNNCRxtRPJUEvoyP/m7psKctmz0ln+MPtNfdpbWJiVITW35746AI+AIOAK7PgI1a44G6gPHsHA0Dpm6r7zyyqSUWk2iQeJQmGQl31GpAFCqKFfaQIlylAtKleDo2uTkqqkvtfndyCtyRIlsXeQx4sC9dk6hyTJz5kx58sknpW/fvnLSSSdtIyJEBUzAxtomY/+9994rX375ZSAvJAIlkSrkyw7LRu7Y8bKjnqgrWuwIJUiQHdPEv+tK5OwoJNqhHggi52pyhBNzlASq7Dw86qijtkrJwX3ISLtGyEh+Sob9999/P1xrpI20GpyIQF3s8PSXjNrMbr/WEXAEHIHdF4FdhnRNmjRJbr/99nAsDqSrNgVlhnKPJRVkS3/66afle9/7Xjhmp74LSpYs6xCJH/7wh+HIGrLZk3oApRo99qW+205UH6SPcwbBAjJzxx13hMznv/3tb+t0iDKHMv/tb38LZxJeccUVW/WJg8qpP954kYfqN7/5TchQz+8cLYQcf/rTn8IB55A0iA1HLkFcOaqJY6Aef/zxkPuLszcpYMz5jhByjn265JJLAlkxksWxSvSXo34gYHfffXdIxXDBBRfUCXLI1SOPPCLf+c53wpFUHLb+z3/+MxyUzVFFEDDGnCOj+J1Cu5BPjmGiXZMdDLif7PWk0bDTCjj1AALLQd8kSeXQc77z4gg4Ao6AI7BnI7BLkC4Osb711luD9QOrSbIWGZQYCpzs5yeccEJQjNFCwk4Oukbh7YhC+8jMeX6QHdrnKCDyV+0s6wU5s1Dk9BnSx9Ey5MyC2NSlYOmB2GCBtNxfkFzOMbznnntk5cqVwUoVLeACOXnmmWfCWZVnnnlmIF0kUX322WfD/zniCOLx97//PZytSX4qzk2EZJHRniOTSLZKXyDP9It2SSzKMU5YmrASPffcc+GAbHKUjRo1Koz39mSV5zxE6oDE0XcOPIdUQarJWM/n17/+dWgXGcnCz/mY9PXFF18M5JQUFMxhDvGGHCIrn9hC/xgfyNpFF1200+ZMXeaF3+MIOAKOgCNQewR2OumaOHFisE5ADLByoaTsfMKausN1WCawxgwfPnyby3H1kJwzmfibmtqK9zuWGtxGRjpQtJxHuLMKJASSAtkiGzykhg8yJktkY2XnfjCEROLyA3MODH/ggQfC/yFKseO1du3aQFyw+EHWyJLPkUBjx44NFkmyrtsh1pAYiA2/cfwN52xyPR9ICZYyEofaYdBYm7p37x7ceBAW7sNFSYJTi5WKdUHWZjzoJ/2lLkgTf2PRsgPUOXMScs1RS7hPIV0Qb/pM/i0stlOnTg3Ej+/APdHJANTJOJHBH5dlsodt16Y/fq0j4Ag4Ao7AroPATiVdKGtcSlgHICu4lqIHHgMT1hWUH8SK33DroIwhA1g9TOFxYDGKNzbuKAo17iksGRZ3hUsHhW4BzVhSsI7hzuLfKEvIAorVCoqUa7CC0BZ1Rg9mRiYOwOZeiCQEgPawNPE99UWztGMpwlLC7xzMbDFQrVq1CvVSHwWiURN5BEuOkyFmCIwsDsrkQ1baglhYH+kbMkUtc8iNy5T7kJ0xsDqQE7fZ0KFDw+fhhx/easwYU6xSEA+sbZAiCBjkAuxoJ0ouwAIskYvCdYwLljIIFv2ARPIdJAfMkReZsJxBNM2KFDt35s+fvyWmjbbBD1yxutmYgxH94TxEZIPc0VfGn/n04x//OLTJ2FFs8wA4UIdZ/SCRuDWxyhHDBekCb+qnb+PHjw8k1eYcbdAesv/1r38NGNHXHRV7uOssOS6JI+AIOAJfXwR2KukCdg78xZKAosetFKs4sRxgCYNQoDRRfhx1g2VgxIgRgmtyzZo14d7+/fsHy0tsQZGhnInvwqqC9QVlSezQxRdfHKwYtPvJJ5+E+CCIkLnSyK5+2WWXBWsW30MMX3311aAcIQy0j7LEIoIiJqaL7OK4nm666aZAEmkLGVGyHPWC6wqFDbHBYvTBBx8EkY3E4WK95pprAtl47LHHAgkg7scUf6LpisUEGWkbsgdJsYJ8uAmvvfbaYD2CTPGB6BEnZWf+ERxPoDuHL9MeJAqiyjmLYEQ9FvhuckflgWRAIJCZswyRA5cixAayAxbLly/fcgvjwv8hPRRcs127dg2uOtzG/fr1C8TYYqKQwbDDnQgBY9wpZnEzQvWf//xHsKQSawfp4jNw4ED57ne/G4gfY8wB4bhJkQO8IUg2BxkPDqWOFsg/eCAnxJoXAoglFjvmCoSTcyeZV/SJfkNMIZH8H0serkQsZhT6CqYQSNySOyMO8Ou7/HnPHQFHwBFoWAR2KulCMUNKKJCuWMIFKUBho1x/9rOfBeVLEDNkBlck5AV3GsqUwGesGLHFtugTg0TQN4SGgHAsZPwf8kS8DkTsuuuuCzJg3aAtlCWB3r179w4WCRQnpAwLD+QJosd3ZjmBUEBaaAMrBy4ySM3vf//78Pdtt90W6oMUUSfB4dSBaxSCQt2QDZQwJACl/v3vfz90KZkzDLGKcQ8kIx4OyARe9PUXv/hFsMJATCAdEBfuQwawYiMApPRf//pXIBlGQsELbIzkxLoWkQEyhmUOcgdxoZ8ElENGIUT8G/IDIYPcQT6RxQokFiKGRZHrINm0y1iCCwTYrHG4MBNZhyA8uEIZb4gzBOuhhx4KRIfAfaxxf/nLXwKB+va3vx2siswv23UZ71FkPmJBYz4wTtQJPowpxBQrI3WAIfJD0rDYnX/++aHfEH/IN8QPgsV48QxQJ+066WrYBdBbcwQcAUegIRHYqaQr2tF4cVxYEXCXQbBOP/30oLCxGKG8IDi4xlBS3IvbJjZNAEqae3AZQTa4/qqrrgqkCKsEAfBYh04++eTwG7E6WHFwE+F+gzQQ5IwyRqlSB4QDJY51DGWNfBA125mGQkUO2uV3lLMF8kMu2DBA4DcEB8UMObn00kuDRYXvsJyZG5E6IHTJFoiKpauIdw94ID87B+kzBZKINQ1LIn3+6KOPQlA7pARLF8QXchJLiI10xbZDH7EiQUoZGyyPWNFwIWK14oBs4vAYP8gTGHBdNOYMGbke0kS7UdenYQNxRLao6zdWFrBgrDnMGksUpAgShisaixbkEHmxTkJ8SQnB2ECM4s1HrFH8Rp/Aj2sgVlhdIc0QTAg5rkSwZOzYNMB8Yf5AbLHeMX9PPPHEEMPGPfSBOcb4xSPMyY6/X+cIOAKOgCOwayOwy5CueDChfFFUWIMgKxAYCBGkAesG7jyUsuV3ilcHShpCgZsSaw1KF6WIksfaRUA0yptYItIqmHsN8oPbCOXOtVwHCUB5QpQoWEwgX0YOou0jF6QCq40VrBrIg7wQGawbuJosxol62YVHe8luJoi2CWlIlKOK+vig4KMyGeEByylTpgSr4aBBg7a4MiEtyGdB9DVNZ1zFWHsstg4L3Q9+8IPQNt9hVYSMgjMWHoLgsfBErVV8D3bz5s0LFsN4blXGhfsSBakjJ6QV6ydWRgokjP6CP0ScQHzckxAlCu0SDP/mm29uQzIZ4+uvvz4QM1KQ8CJAfyDxFCOGWAdvueWWMA64E7HM2aYBsMCtCLEDZwrWPn6nP1jMIGJeHAFHwBFwBPZMBHZp0gVBwGKC1YCcRpAllCJKHeWWzI48rkH58YF0EeNjBALlT6oJFC9t4E4kTgxrA1YRLD5YQiAMKEUUKATAYoZsZ1qiRJy0E7uTzmRGHogZfbTvqBfFXJf0DhAJ7jNiF2+60o94MnEtv1lclZEUvoc8UGeyAd5cHw34p29RDLASkS7CAtGJgcJFG3Wf2m5JiIltQIjtD5Yw8Ktu44S5lg1fs0ZSF+5MCB1tRduGPPGJkl7IH7m6sIqSEoQ8XNZubGoQcLLdrMyv2MJ9tG3uVItTZG5C/r04Ao6AI+AI7LkI7NKkC9h58//d734XgpMhXViqcEmReBPrVDLF4oFIkPqrX/1qi+UEBQhhQuHhRiSeCVeYuQ9pByubZRKHFEG8ooXf4rneapLLSEw0lol7qK8uVi5koy/cWxd5jGBZBvqo/OBT1zrj4WCpLPgNUsXHrEGGAThUd9wOZMV2D9aEdbzfuZc6GE/aN6JIu3yMqEHGH3zwwZAwlZi0b33rW0klmcWShqsWko5r04gY423zDrnAFXwTkeG69M3vcQQcAUfAEdg1EdilSRfxMmy/x+3Gzi4+BGX/8Y9/DCQMV59lok9k9UKBYsnCwkIMF+4hS6KKlQUrBi40XE24qwgg5/8U3JJYW1CM1EEKAb5DoeL65Ddig7C6JGN1symATKTJQCHjajKLC39jWatLMDXtc5+leKjLdMNdCiHA7Wq7BImrI2g93q7Q2raBS5F4JuLpbMcoMXFYwgxz6iRuD8sicXqJsMD6FrtDM1l56BvY0182OxBnheWU7y2liJFiSD6bH3CxspkDt2IyBfnZBQqh+sc//hHiA/k344sl0VymfAexoy+elT4ZZP0aR8ARcAR2XwR2KdKF0otaVFBcWJogSuwIQ/FZ3BKuGyM6dhhx7DBQF5YFgtRR9DfffHMIGudYGogTShTlze5Cy2tFWgWsa6Q9YKcbxAprCG3j1sQaBvFjR53trER5mywWVG8Wp6jVyr6jPpQwuclwWZGCAisK1hR28xFjVBsSZ/3GWkQwNiTQShTTRDKZdcd24EGMkI2dgchEkHc8d268+qp7FCAcHAME+SK2i7g2guqxQEatlhA9Cpgnyk3GuOEWhKBZiZUndj5xnVmWmD9gTjZ8yBEpOiDU5NmC/EK62HnI/IPI/uEPf0jasko7zCcsXNSPa5y0HOCKe5ugfUg3hbFizJAn3u7b3XdpcckdAUfAEXAEYhHYpUgXViuLl0JQiMnll18eyBJHr2BtIqCd3F6QKNxpEAPIEaSMtBGkYrASjZViVyJWJY4Nog5Lhkn9xIlhfSCHEqSKXWrRRJwQNORixxmWMc7ZI6eX7RaMBnpHLW+x50HabkqzIhFED2m48847Q1wTckEycEWh9JGBPF7UQ8qB6oLGjaTggrUgbb6LYmrtRwkd/+ZjuwSR6b///W9IFYFFEMwIMI+Nc6LuePVV94ixe5GgetIs4B5mDCCsuHMtRgriBDmDhEQD/mPrJRYOayPEKDreUcxj55PhYX2GWDJnING//OUvAwYQLGL6uAYs2YABSYYwsevRUmcgN7sio/FvURlpmzlnRwRRF+MLueQ+mzOMMS8SEMy6WDh9SXMEHAFHwBHYfRDYZUgXio54GUu3YAoSgoUywkKAwoMYkbvJ3F3sZIQUoMBjg9axGKEUcU9CILBw4VK0412waEHaUPgoURSvnTOIKxHLA641S9vAzjOUNHnDSELK75AkLC5YmZAdiwnXWTZzOz6G/iA3v7MjE3JB++Thok0scuzOJBEs/UDpUzf1GrmpaVphWYG8gRXWI0ga6SiwpqDkIaSQHeSwAr6QFzuvkM0D4IHFDZkgmuAem7We+5GfpK3suEymMBbIw3hArJAPWSBjViA9ED3ceLGJSaNtWFJU0j5wPQQd8oz10vrC4dMQJsaCQr+YY5BaxgycL7zwwkDucCsiH+SWftM3+s14MdaUaLwc41LT5gLkYHwh6BB30kqwMxRZrZg7k3kSe4ZlMpj6NY6AI+AIOAK7DwK7DOmCOLErLLagHCFafOIVyFSiA61R5lGFjiJPFJMDwYGA8amuVFcH95Gw1UosaYCcGEHBSobrCYsOrkr6CcEjfggsIASQOPI8JVsgHZBH4tMgNRBTckhF5YmViXv4WMFCAxGKErNE7VNXdcQo3n0QPCxAiQqpOoi9i7rg4l0LQYIgstkB6yVEBrJrmd65h6Sk0QKe7FaNFuohd1iiYulBkh2D2OuiYx77G6QO0shLBS8I23NmZF3l8/scAUfAEXAEGg6BXYZ0NVyXd42WsLpg4SKIG6sJZA/ChaUHi0h1ST8T9QACgfJ+5plnQtxUfQS/NyRauPfIjYYFCQtc1NUcTw7SekC22GzBBojdzVKExZWYPkhv1PrVkJh7W46AI+AIOAINh4CTrobDequWcPcRXM3RQBxFg5UDtxZWuyOOOGKb7PrJikmyUXbkYUHBWrU7xQlBFNk5SbxeNDYvUd/Z7Yd19K677gobH+h7XTYgJIttfV5nZ1SyiQHLXzLHPNVn+16XI+AIOAKOQMMj4KSr4THf0iLuMdscQK4oYscgGzUdbF2dyLhbr7766pB7andzVxHXxxmIxGBVl/TU+g/BIg4Oly/37C6EC/mx5hFUj/uSMa/JqrcTp6k37Qg4Ao6AI1BPCDjpqicg61INpAilu71xQ9G2IR7J5pKqi8w78h5cqrV1q2LJI9XF7lYgWaSNsNQRu5v8Lq8j4Ag4Ao5A7RFw0lV7zPwOR8ARcAQcAUfAEXAEao2Ak65aQ+Y3OAKOgCPgCDgCjoAjUHsEnHTVHjO/wxFwBBwBR8ARcAQcgVojsEuQLrK8c84iwd8EUxOTtLtt/6818nvwDWTZJxM7SUdr2hTAUU+kzSCzfPQEAeLdmAPkuaptnFdDQUuGeeYu+bbYSUlW+WTmLYl8OVrJjjsi6SobB8h5Fs0z1lD9qKkd5KOfHJNkB77zHRs/SACb7M5LxtrOFrWEtTW17b87Ao6AI7AnIbDTSRd5me64446gpFG6bKEnwSipEzh6pi6FA4Q514+FPTaonPo52gWCxyHLySjJ2sqAUp0yZUpI18DONPrG/yEQOyt3FucJkrmdZKwkX+VIG5RmNGN+bfoJSSKJKcQq2icICHnCHn/8cbnuuuu2Oa+QBLCkhYBcEESOXO+++25I+WDH9jA2HMVE3i7SQZCPCwzBMjonOEKHcSbhaiyukAQyyUOEmA/z588PudBqIoHxMEAOsvyT2Z9kuxAksswzbyFOyE1y3dNPPz3MXds1SloI+grZ4D47xol7wYa+cKoBRIYxIXEr5I1xoo3YDRb0AUJLAtzovAUvSBzfMeeRlbbAraas+fH6a88PL0C0Re64f/7zn+EkBvKJ0V+eI87jRH4jXRxnRGJe5gTjG9s2999+++0hGS2nBVCYD4wt1++q5Lo2z4Vf6wg4Ao5AdQjsVNKFEkOpoiA584+F97777pMHH3wwHMPCkSl1KShilBrZ2DmGJbodH0VNbiyU5T/+8Y8dsnsMq93f//73QBL++Mc/BsVimcd3FukidxdECGWHEv3tb38bDnzmTMu6pCugPnAkKakpUMYKMsfZlGSWjx72zW+QCw6Q5pzMyy67TK666qpAmMhXZqcKIAsEjOOaUNoodCxKHI9E5n5ymEEysI5xDWciQgzIYA+phXTwO/MI0nPxxRfLiy++GLL/M9eiJxQkO7eQG7KAlYYzKSFLnNHJvCU9B30gse3TTz8dLD+c6UiBPJGDDbL0n//8J7SNTBAk/v7d734XvoPA0G9IOpi9+eabgYhwTiUpRZg/zGkOzmZuHXrooeEwbQgzWfa/+OKL0D4Z+DliirkPJn/729/q9FIRfX4YI54V8CYPGgeVI6tZ54zEQraR79prrw3kkyO1ogQX7Dgg/qOPPtrqlAT6ec8994RkuNHTHJIdG7/OEXAEHIHdCYGdSrpQPiNHjgzn+/FhkcaqgCKDpGCZQKnUtqAksXJgRYktKAveyPkdZbcjCgoIawEHT/NvLA5Y3OpqudteGTn3j0OmUfSkV4AM8B3kq64FwkwdWHGsYEHk8G4y7TOWsWSOo48gSZw3CGlDmZNXDCuPFbMqQTQ41xHyDVGGgEFqOFOSa7CEPf/888FqSVJVClY8SBeHS5PpHUKI1QXLI23ZYdV16TMWJsYUDCGBEL5jjjkmzFsstGD517/+NcxbI13IgdWJ/oIJBAsZwI0+YzXCmhRbsMByvBHPxhlnnBGuf/nll+Wdd94J7TCvsKxBupCH75nTjC04gTNEMJb0Jtvv2OeH9iGyzGFIYLwCxsgMuWJsIYeW4BZ5IFacC0pBdiu8aHGSwksvvRRInbsdkx0lv84RcAR2RwR2GulCIaCAUCq8oZuLAmWBmwSlCymqC+myw4wTuVZY9Kl3RyXTpH3cQ7QDQbBzFHfWBCEWBwsUViKzptD/qPKrrWyMEXUYxlh9sC5BCCBG/D9KasEBGVDGuJfmzJkTrB5YRaKFg7YhGFgE+Q3yBlnFuoO1CBKDlYc2sIhBOFDaQ4YM2eIqxVLE/MJSyjhA/rYnUSztUw/9Zc7y79NOOy1YCm0OcZQTbVicFmQUogWxwgUH4cDyCv4QJ2RO5E7DbUf/cccxZpAr+kdfeVmAqHIWKfKAI+5KLFzcA8Hb3rG158fmB4ST8bOD32PnCljzAgWZ53nGlQ5hRG4I80MPPRSwgIwyF6nLCjhg5brxxhsDkQajHfVc1naO+/WOgCPgCNQ3AjuNdLGwolz4RAtv1Ly1W3wPMSIs6CzOuD24DxcOStdiZLC6oKBQ6nyHhQsLQE1uMyMMKAQWfNpFoXF+IbFAVnh7HzFiRHiLp30CnjkfEcsKBXLB2z3WDxQvSgilS/0oLmKfUIwcy4NFAMUDmUjUHzCAkNB37kcm6qRdrH9YWiAmnNmX6CBwkx0cUICQBfpFMaVHX/hgFSJGCzKBrChtrC1gbBhBFLDiEKMEwUDZI5MpSNohwz6KFoJBH6OWFhT3q6++Giw8F154YSBQYHLSSSdtRazpN7jgFmacKciDLP/973+DRSR6KDkZ6bHMYIUCK+RiLkBCiIlibEwO6mFcsLbRVwgMYwq+yB6N/8N6xkHaXA/ZwNoDFvSXTPJ8ogVyEbUcMqcYP14omJPIjssVIggx5aUCqyAyQ5bon7meaY/6sewxL6mD/vE7soK1EVrGFmwhZdQVJbrIigyQoermW03PD88TMnPGJXiBI/Lx7NImGBnRJUyAfjG2EDBkwNr405/+NIwNruXovDA8mVMvvPBCwId/e3EEHAFHYE9EYKeRrnhgQjZY2FngUTAQGN7uiVGBMFh8C7FJV155ZVjUUUDECT388MPBigARMgJV3Ruz/UZ7KETIEBYJlDqK7Hvf+15wj2CxuemmmwKJgIhxHe1DBDmyBoUKyaAOFBDuEZQr96HIIX64mYjt+dWvfhW+xw2Fko3XH8gRypa4Nurmg+JE8V166aWBcKBYwQhlWVNBIUMGcWPF7oxDNnAAP6xUnHmIwscaRR+JOcLCRJ+RB7kI9EbpgrHFIiEDMUR8+A5yFVuIawIHlDWECIXNJgqIMmSUAvHjGgg2Fp5osDg4QDiIX6LvKGbOLORvyBMWUgpYQQzOPPPMIKfttuM35hPE6A9/+EO4Fjn47rHHHgsk+pprrgltYKm54YYbAg4E+2O9AsPYFwTrI/MW0k3dlmEefBgf3KPgfu+99wb3G3MIwkU/IKDMWfCHpEA0IdYUcKZeyB+kCxc15IXrGVPuBWsIJt/ZgdlGqBlbSCLEkbhCSFldnx/6RUwX85u2kZ+4vR//+MfBMoX7kP4y/rhQmdvE0dGno48+OowFhTkQz+WJJZHnHYwZSyddNT3V/rsj4AjsrgjsUqQLZQd5QvGYBcdisFjMUUqQFpQmQbkoIxTiE088EZTuz3/+86CoIQtYplBKiYgXCgklj+sDpUIcGW/ZxAkRNA1xQFmi1FCWBDVD8rA4EHzOWzmHLUMQICi0RRAxpIVga0gahNCKWZVQhljUEvUHBUZ91PuLX/wi9OfPf/5zCFKGkKFUscj85Cc/ScoNA1mjTpR2ovMMkQ0ig5uHgHZI429+85uwCxGShEsPvLFiYbEAAzDmuqiriL7GU6qQBxQqJAQlDDEFayxnWLaMdEGYICMQy9ide5Aj7kOR0z4kg7pii1kjq4sNgohBzgnmZxwYL4gzMUWQU+YTJIpgcOYhv5n88eYTMkMyIFTUAd64Po2EQJbAEZLJ34wJ8hOUzt8EwT/33HPheog8bSAfcwV3IcXixKL9pR76y7WJ4gWpC7wYf4LiIT6///3vw3hCbLHgQaAgOjbf+B2yZlZCSBb441JlMwPP4M9+9rNA1Nm8wDzgGqyWzH9eNl555ZUwthB5c1MmijHjd154eB4hXV4cAUfAEdhTEdhlSBfkCWsKZIUFHfcWBaWO0kKZ8TeLM9YD3DcoNxQZ95577rlb7kE5QBRY5KMusFgChFWFQGzIG2/nuGD4NzvdqB8LDy4uCA5B07iQsMygqFAOkCdcJli92HllLidillA4UTeeuTqRp7r+oKxRpFjy7ExByB6yRhV+Ta7TqBUG6wRxOtXdg8KHdGHpAQf+z1iALX2h7+AKEeVz3HHHBUtQrCJNpFhRzliSjExDtOgj42kF1yayMpbR7/kdqxUKHczZ8WaWndgHk9/B3XbOxcrDb2BB+4wXFjTmFqQWgsN4ksKCOUYfsSgRLA8BjWdZZI5APhgzrKPcx7yEgPDygAWHccNKSd18R/+QD3JCv7gWlydEj+sgx/wO0UEmCDEkPLZYUD5WsXjxedZ3ZIj3/DC2PD8QJsiUPXPMX4ikPT/gxG5XcLDxxzLIiwdjRv30nRg3CuScFyRwTiY+ixcgXpogkZBCYvaSuW9PXZS9X46AI7DnIrBLkC6UGUQHNw/K4fzzz9/q7ZiAY1woRsIsuB4LCvEq/N92SnENLh4UtG1tjzd8LOq4bni7xqWIlc3iU7BqoJS5H+KDIidPkQUBo6xQiFiyUKQoP1NYtAVxQRHGC+RHkSXqDzgQz4Qc0fogaVhuqutPoimKIoMwYQlJRLqQCXJhMXL831xxkAoUKwrUYqxoC6uOxbTV9HhAIiB00QKpQrlHCyTODgGPrRNMsEKBNdeBfewmC37DasnYJsq/Zn2jv6bYLfaO+yF0ECjIoe2qhBDQX3CIWvaYf6ShwFJEji1IKYW5B4mJFogEH0rsAd0QLLCEyFugPnhDtPgOkh+PdDGujC/4Jto0grzMN7uf/9smEix+zOnY54e+mrsWeSFTRqisT5BH5isyxMZmWs6xmuaF/c68NMsepAtcd9ZO32Rl9uscAUfAEagLAjuddOHCwJ1GTBRv0cQ9xVo5zDVHB+3t2/6N8kXhRBUw1yezMw+FwXXEu0CyLPgeqxVKBRLC2zyuNIgclg+ugxzifkEW7qG92Par2x0Z2x8bOKuPe+PVV5cBRj7qpZ/VWQ+ihCxqHUJJQwS4P4op19dlZ2miPmDRIW4IZQ9hjS20Z0QKpRzPomayMh9qSgoaxSJal+EVdcXye3SnJrIhA65wXL/EhuG6SyYHGzLGI7/IE53bkE8+BKlH3dRRXMzdXNPYUnfU0mp1IAvEK97zQ9vcxzXR+RolSvw71r1clzlK/fZSAK47KpVLXWTzexwBR8ARqE8EdjrpgrzceuutQamRlwkFlmxBkfAWb7vX7D7+j7KK51qM1s3bP4qcGCISdEYLygQi8Mgjj4T6iePCHUQh8BkLEO1TB9dijbCCkuT32iok6sPqQXvRnXDUh0UjkeuuOrxs+z91Vnd/ot8YF2SCoGLxszxNKMdojq5kxyzRdcQJYeXAPRfdOWrX2+YBMIKYxSPVyApRNjJRF5mwqEI4cBFaARvG0wg+37PB4+abbw7Y4DZNdt4Sx0Y8FZajk08+OTTB2GA1wtpjZNGsSMiTKIs+cxdyyP01zbV4bmB7fhhL4r6izw/zDTLEvMaaR9+/853vbCHEXA9RMutoXbC2e5Cd9hhjxnZ70ntsjxx+ryPgCDgCOxqBnUq6UGTs6kLBEQOCiybZYtYHLE8EIRM4j/sGxUucCm7DmkgGbh52LxIoj1uTAHXSMUAC+TcWMJQLxM7SCZBHitgbFAUKkkBslCXkkbgvlBDxYJCIqMuzpn5ZfyCAuDuRi77RH+LIcHmZ1aGmuqK/o5SRCdJUWwsC16P0kQN5wBgXI0qe3WpRolkbmeJdC86QOHCOlw8Kqw6xR/QH920iaxEEBSzjJcZNRkbaZ0wZZ+L9GENcz/wbHCF7jAUbMOg/wfa1yS2F/MxPYtcs7QguZQgtmwuMcEC6+RAflWg3H9fSXwhabRO/mpvVnh/Gl/aZb7jX7flh/BkbNpYQ90hfkZ05DgGPZ5VMBufoNfbSYukl6tOCWltZ/HpHwBFwBHYkAjuNdLHQQnbIlI6iI4aJhd62+ENkUDZcZy4fAwIywHUs0igNiAqkh9gn7iHo2WJ74oFHfdyPQiUlAjvP2EHGUTIQHqwYBJLj5qR+rF1Yt7iea9mthTLCQkDbKE92az3wwAPBDUmMD3Ff5sIytxd/V9cfiATWNKwm5D1CqdEf3JkEU1ueKJQsBMRigaqbIFhDiLFBqZtiRuHybyNh/M3/oyTVMEYBIhNki74TVwWhIfAcIhevcG/smNU0iS17f6KEoYwX84PYtnhZ3K1+y8RulhvGICpPbN+5z9y6YADhIzaLY5yYE4wtZBNiBKmnz2wsgKQw1swPLHTcS1tgXV3KA+YQdTLHGFdwJZ4RIsluWLN0MV5giMsy0a5Ti3MDO3NBxvYv0Xyz65GfT+zzQ53UhaUUudjFi4WO78jVxuYRdn8m2tAQb7yjz0H0d7CzXZjg4MURcAQcgT0VgZ1GulhoCWRHyWLx+ve//x0UjikvspF/4xvfCAoMd5MF1qLYUIwQLP4N8WCbPYcPQ3ogQyhl3H7RYGAbQIiN7faC2F1++eVb8h2xcxCSQSA/ipd2SKFA4DZEiraomwBwgqot4BfXJMqY2DSUFBYRtvibFYDvUJ7IRn9R1tH+IKf1B5mIDyLGDSsgvyET7VrsDgqPNAfstOSom+oKOIAfSg0LBe1bXiQjB4anWVnAyIgNShbZcS2RSoOkphAL6qQf8UgSv0f7mMzDQ9vE0SUiVGBNH7jGTi+IVy9yQVKwNFKYI/ST+2gDDI2cGykGD74DK76DZEA6INpYGS3jPS8HEDjmA2MJ+STnGmSC76mfucG8TVTAix2KzHPqp0CuITDRpK/m3kSuRIV+8nKA5RWSybXMFf4GR/oSb74x3mYtZE5fccUVCZ8fxp9NBew0JZUG8w4MmXc8G7U5MB7MaDd2UwAEkA0MjFH0SKhk5o1f4wg4Ao7A7oTATiNdKAeUDws3i25scDSKEqXB9npiX0y5cx+uSCwftkBjPSB3F+4e7mFRR1nYETDRAYEQkYMKRWk7pnARcS/ECcVgRIf7sDrdcsstYRcZddqxNLjCTPmj5KgD65ZdEw2ux7LBDi/qRjmT1DNRfyCgKEViyMCE/rJ9//rrrw/KjvqxLrDhIJFVKNpf2sSaBynFbQQpwWXFWXhG/MhRRltGwrjHMLJdfpBIcmeBAzLZcUKxu8yQkYzzpLmojQLFNYtyt12q0T7QZ3aJophJr1Ad6WK8iAsjyz4bIiA0kCB2EzKujAsHdTM3zIKEpQd8jEDwN0QayydWRdozlxfyMd7MW+ZgNFaOupPZ0cn4kYIBYgX5Mquu9Zk5gksT/OhLogI5hniTzJcXBp4DCDL9s6Ou6DduexsL+kF6h2SfH/oETvSXtpif/B+LY23dgLjwmUexcWCQWF5iiHNLdNTQ7rSouqyOgCPgCCRCYKeRLnPF1KSYUXhRJWukKrZDkKFEAcfRa+MpRrN0JAIpXt2xih9FYtnEY+uh/ig5iRKL2P5AjAjQZqckFggKLk8KlhauhxRg4UimcD3HBWF1I07Jjt2JWpRiyVsi8sBY1TRe3Ev/4pGn6uS17PvxroEM4/6CNKH4qwu0Rj5ILlZC3MBYVmLliVXsUQJm7UNoEh3uDF7JEN7q+hs7r6PXkgaFvGwQFJKaVlcgWswFEsviUofARftXX88PeEC0tudAauZtrGUMgglpNAtjbSxnycx/v8YRcAQcgV0JgZ1GunYlEHYlWUibgaWOzPjmbiWWimOQajpnMVE/sG4RBI31BwsKJGx3Kli5sPZhCanO3WZ94jrLiE4cVrwcV7tq/7HAYrUyt15NO/kgWZaoFFcoVs3dqbBDmKB8LMGxpxDsTv1wWR0BR8ARSAYBJ13JoNSA1xALRZwZu8WwAJjyxSVZVysDVjaOYyEGCRfo7lToP/FVWHyI86uJhNA3LI5ci9uKgPTdiXThzsTdTlxZ7KHa8cYNYk7iWcbVsvEne1rBrjAPiEVjvHA9Vuc23hVkdRkcAUfAEdheBJx0bS+C9Xw/ShTLBQrXjp1BGSXawZZs87ihsKJZ8Hiy9+3s65CXAHNitWrjeoJ0EbeUDEnb2X2Mtg9BJo4xNkFudTJiyWSjQ0156XalfposxKxxRJRnoN8VR8dlcgQcgfpGwElXfSNaT/VVF+NU1yZ2V8VWF+IUm0G/rpg19H1YqeqScHR7SXlD99Paqw253FkyeruOgCPgCNQXAk666gtJr8cRcAQcAUfAEXAEHIFqEHDS5dPDEXAEHAFHwBFwBByBBkDASVcDgOxNOAKOgCPgCDgCjoAj4KTL54Aj4Ag4Ao6AI+AIOAINgICTrgYA2ZtwBBwBR8ARcAQcAUfASZfPAUfAEXAEHAFHwBFwBBoAASddDQCyN+EIOAKOgCPgCDgCjoCTLp8DjoAj4Ag4Ao6AI+AINAACTroaAGRvwhFwBBwBR8ARcAQcASddPgccAUfAEXAEHAFHwBFoAAScdDUAyN6EI+AIOAKOgCPgCDgCTrp8DjgCjoAj4Ag4Ao6AI9AACDjpqiXIpevWSfmcOZK9Zo2UZ2VJRbt2ktmypaSlpdWyJr/cEXAEHAFHwBFwBL5OCGw36aoqKZHSSZMkNTtbMnr2FGUfW/ArWblSKufOlewWLSRFycmuViqmTJESFSqzc2dJV/lrKsWrV8uSZ56RkpdekpZVVbK2vFzK+vaV1t/4huTR99iyapWUTZwopV26SG7btpKSklJTE/67I+AIOAKOgCPgCOyhCGw36SpfulRW/eAHkt64sWT+9a9SoCTEyvJx46RYv+t02mmS/v3v1whhVWWlbFi+XCqVyOUrSUtJTa3xnu25oOSmm2RuRYW0+s1vpFCJUU1l3QcfSNH//icZe+0lZZdcIlVjx0raY4/J2qZNJe1735Ps3Nytq1iwQEoefVTWaP9z2rTZ5UlX6YYNUrxihWQ3aSKZjRrVBIf/7gg4Ao6AI+AIOAK1QGC7SVeVWnuq1OW2ftYsqVQLUJR0VSh5KldrlxQVJSVSybJlMu222yRN3XZ7XXONpGVmJnVfXS+qwkWopKtKPzWV0o0bJfvddyVL+5J14YXSYtAgqRo4UBZMmyYLRoyQ7OOPl2wlY1sV/X++Ers8tf7taAJZk/zJ/L70/fdl8RtvSJdzzpFmBxyQzC1+jSPgCDgCjoAj4AgkicB2k640rFPNm8vy9HTJmzpV1sycKY27dg3NQzRSMjK2cjlWJ1e5uuM2vPWWND7oIEnZwYQryKEyB5dfEm6/MiVd0q2btMACp3+Hov0rUqtQqhKxjPXrt+0aljrtx+7iVCz+9FMpV3fo7iJvknPcL3MEHAFHwBFwBHYJBLabdNGLKv1UalxUcUGBrFRLSeNvfzth51ZrHFXK559LrsZHFen1otaiAo2HqlRrWdHbb0srjQHLV6JWceutsqZ1a0nde29p3KOHFK9dK/Lhh1KqsVQZgwdLjrr0VitByFJLU/aQIVJeWChrP/5YcpX4pUIEO3WSzAEDJE+D3EMZP17W6W9lSrDSy8ok/cADpUrrgmCkKPmqVIvd2tdfl3RtJ2PYMMnEHRjpRa7WL9/61qbvLG5N28lRslVaWipV8VyhCxdKsVrBSvbbT7KVrG3Qvqdr/BvWsnUa55al/cjXWK94pVythKvVfZmr96SpbBs6dpQM7U++YhKKYrh29mwpVlLXaPFiSVVr3TpwVFyyZ8yQzCVLpLhVK8lUbHKIqVNXZ/GYMbImL09y9foMrX+jjlmW4k/f1n3xhWR88om0VdKc+fjjslI3C6RpnwqOOEJSlFiGcVZX8lq19lXoeBTus89uYb3bJZ4yF8IRcAQcAUfAEVAE6od0KSnIbd9eGisp2KDWkrVKnAqUJMRakFYoUVh+xx2SOn++NFHr2FIlJbnvvSdpV18tGUqOKpWIZSkZgJQUKcGaq0ShyXnnBdK1avp0kb/8RYqV8OTecEMgXfNffFHy3nlHWjVrJqv13tV33imNNCCeoPhVzz8vhYcfLqkae5Wjv8ubb0rxLbfIWiULJUo8spRwNS0ulhSNw4LgrFDCVXTttZKmJK9QXWuxjs1gEVNyFi1rlaBkf/mlbND4p3IIZGxRkrfh97+XZb/+tbRUErjsvvskXfvWWOVZrvemT54scuml2xCvciVxS1We1Xp9vraZqf1Z+cIL0uSQQyRVr89VEiVqESz5739lqbowS5WIpSg+63GTKpHCPZuvZHCt4pymrsJO3/mOpCs5rVQ5VijBWqPX5EHSlOgWnnqqZFx0kZTr9an6/0zFokrHZanWX6BjI4p1vrpOibdbr98V/fnPsuEnP5Em/fu7RcyXEEfAEXAEHAFHoBYI1A/pwvqkxKCRkq7VEybIciUIBQTOb7b+QFgqVajihx+WKrU4ZavFKOPII6XxqFFS9ve/y5InnpCOP/6xNNKA8y9eflmaKllqhIXlb3+TRvPmhe6U6N8b1UKTroQiQ2OxKKlq6VmWny/ZixZJ+SOPSLq2k/XLX0q6fldw772yUYlXuZK/DmeeKaLWrRQlFVlq+ck+9NBATFJVvnIlE8s1lilPZahUApZ/xRWSo6SkJhcb1r112s8UJV2NlbRkx7NYad0pSqCK1G1awnVKZqq0n5lq+cpUMrPq2WclX0lg1NpFvaUaH1eihCsNAvqrX0mmEsxG2p8NSjLLNeC/41lnhf6kqjULzPK++11Z9tpr0uh3vxNiz9J1YwA7Mkv07wy9p0pj0AJeilO+1pX5ox9JhlrIqv71L1n31FOSogSqpVr+Vioui5XUdlGS1lLJXprG6C159VXJ0u/LlaAS79UiJ0caqYUuxVNk1OIx80sdAUfAEXAEHIF6snQBJJaQPCUELdRdtfyVV2QdxEBLiOtSBb1cSVO2kqwUVe6N9LdGqrwbKxkar4o9R91eqWqpCvFfSpxw+2WqZQjrUKYSkGIlEvm6q265WpSa0g6pKPTvtkoiZqnbbrW6xtrrv0t+/nNptu++gTClnnGGzPnoI2mhH4F0ab3rlYClq3zthg4Nsm1UciZqjapSC1mlypitVqlCJRTJZNxapvWmPfSQlKuFL//EEyWHumKLtklsGpYrXHO52j9IYCMlPlXqgs3p10+aWHzY5nsJ7F+nbtImai1cr7tCWyhBC3s4zz5blqr1r5X+JpuxXQM+hx0mhUqw1inhzVTiV6J/N8alqLtJ52jdrfSedCVv9L9ILWSlarXqqBhQFuu/1ynpbaJEWQic17GCHENIC7We2WphTFXLJRYw3K6paplb3aePdIuXHsOfJkfAEXAEHAFHwBGoFoF6sXSFFpQEYT1prIRmoaZWWKXuPCEOCmuXftao+4tYolZKvFJ/+tPgqmPXYJuRI4P7L11dlBqqruytSqrUilOgBKJMLTCL1RJD/FJbJW1tVeFnaVqD9RoXtU7dkS2UfLU79lhZoFakjWqlahFxeZXp/7PV5ddUd0SyNxEilapuxRQlFFZStP32SiqImVpyzDHSSolHIFzIQLyXfvh3cJPy2Wy5W65xVkXXXSeiFqxstRrlqFyJSqW2kackK1Wtd6vUtVp5/fWyWklaS7Uetb7ggm1uw9WJK7WNkrS22vdUjeuiZCt2HbSfBd27fyU/aR029yddCV2q/hss04iJUwzTsPxh4aMPOj6isVlVkXxppXo/OyubKOENZXOfwaVCx3KtkrM2ai3E1ZiipKuJflYoxpVa745N5uFPrSPgCDgCjoAjsOchUH+kC96l5CVPrS+t1Vq0TolSpf6b2CkIC7m3IDJp5MPanFohVf/fSq09AhEg4F2tWpt0/yZ35Tq9fzmWMlX66Wr5aaYKf4NaXRZooPh6JV8lSqxaqTUmQ+OjyrguEnOFhQ3SkUpKCxs3SFNkp2KKEpFyJWLrtY48ddWtUtdm1vnnS4m6L9c+/bQ0U1coZHC9WuVKTjghuD3ZnVn0j39IxujRknLVVdJEv8+sbqclZFSJDXFRqVrPSo3VWquuzGxtq0hxytX7G3Xo8NXM0r5XqisPMpUGmVMMRGXIUetSzlFHSZURPCODFsDP/7WE1BT0cfP/o/2FjGVof7fAoXIxASCd0RLGSb9opUQ0Xd2W8yB/On6dlES3UQxqcr3ueY+J98gRcAQcAUfAEdh+BOqVdNluwMZKJpary2qDEpPmm3NgoeyxxKxVkpV1+eWSvZmo4CYUvSYV12I0X5Yq/jJ1h2Wo265KY67mE7ulrrn1al1ap2QoTd2Ja9UaVqgB+ZkExitRKVeytKVD6tIrUaJQonUkSvOJBWyl5tvKPvdcSVUiVKxxYWVHHy3pagHK1rQXxHwhUzqy6k7ADUrMNj7wgOQSK3bccdJIM9ET0F9tUQKE9SpL68gePlwyNIarpRK3dUpmNmjcVhZHCV188ZZjhCBNYFWhMqxW12GBEh+zKkFqA7Gq47hzfwWEzgo7GPXfG5UMbpXWdTNha6quzcVKCBurNZDdmWs1kL997951br+OYvttjoAj4Ag4Ao7AHoFAvZIuQ4TYrmZqzSrR7O1ppHpQJV6o/69QkrRSY5IK1H1GIlFyXy3UHYWpanFpSzoGJV5Vmy1R/J2jVp62ujOvQq1Os5XIQaCq9JpGutOumbr4ijWfV4aSgiZq/UnVOLIl6tZsqaQuA+Ki7jjRtldrm4F0meUnMmwh1YWStuz995cyJXO5Gli++Mknpe1ll0ljJTxW7ICgFSpHiqZTKFfika5uxbyohSrBdIBMFmmW/YX//GfYZVmguw9TFZ/1SqyydedlmmJRpkQobbMFio0ChbqDskKJ3Qq18OXohoIsteCR0mGZZrfP199a6o7EZHKLbSUSuGofK7U94rYgbhnEwen3axVjSBffb2J1m2hdisaFrde+tidNhFoel/TqJVVK0Lw4Ao6AI+AIOAKOQO0R2H7StTkGi8z0VtJIlKpWkhZKYJqqK7BS44qaKOGYpwSiXK07q3UnXoXu+FutKQnSNYi9TElEhRIlCBUuwix2I2osVr6SrFSOFbr9dumo9WeopStbXVxN1IrFjkVRspSt9ZYoIVugLsJKtUJVaH6tdCVSG7SNAiUw6ZpzKxQyzxPQjmXNispF1vx0duTpLsDFSqjk/vulVOVMV4IRtSit0Z2HpXruYgXtKkFsru6+lM27KKvIOA8Zid3Rp21VKaFKVTdoqvZnkRIpyGQLtXiVaIB7uWKXr8HuuZE4s3TFIVdjyxZqv1N0d+RCJae56lZdp5n6UzSPVrFlvcdtGukPVsbw/8g4hH/rd4FwqmwFGgNXpK7CWQTdazulSiJbaIxYtm5uoECoSPKawi5LvZexaHLwwZKluIpa3pppvF6qkWLwVNIMYRYnYrV/8vwOR8ARcAQcga8dAttPulQxQ3Kq1CoStb40hhxoHFOl7g5EKUNgmqmVZxHEQMlWxmefBTJQobvyWqu7ETcirsaWmjeqkRKfMo2bKr3ySimCTKnFq5VaeCqVoKRpnqsytWYtVXLQQi1GxB5hEStUy9PS//s/SVdrFcSlTGXK09QHLdQaForWn6ZxY+zMs5KirsF03Ifah2y1WqVpTrB8JXgrNEkrFrTMyFmKG5RsYQ1rqX1JU/KVodYf0jYgM7sis/TYoiwlalsV2lJS2FiJYCN1Ry7R/qYrEa187rlwX4rusMxU9yEkNVpytO1CrW/pv/8tWXfdJWnaJrFneZqGo+VJJ23pT3qkP8RrpfJ/HQdSdPDJ4N/EylG/tr1R+7uCdBpK4FJxx6oLtVDHpAk51bSQByxbd5JChNerZStHA/5bKLFdpNauKt2U0BqL4mZBSXJbrLK10t9Sq0mG+7V7orzDjoAj4Ag4Ao5AAgS2m3SlKqForzmnKpUUZEQsHunsilMSU6GKHLJDITt8e/J3nX66ZCp5ylXFjsuRHXeQsiy1pnTQ+KYUta6k6m+V+n2GWleqlKRkkBCUGCu9JlVzV7VU0pVpxw3pvU01VUTOH/8oWRp3xW490jKkad0hHoui1rSWSnwkkk8rW1NMaJh6SMxK+210N2GaykuGdtx80dIM19qNN0oWx/1gQSL+DHKjbeUqOUuJl6dL47caqWWPw67Tdedgxx/+MOTKSlcLUUfcibqBIJMdnjEFWcj4nq07JDPVTZrGDki9nzayLDWFktVWunMzdfNuxKakd7j55k34QHJVti5qkcvUMRDizohv03sz1KLXQe8jf1gzjVNL14+VZmoBY3dlmqbnqNRUGBDaCuLAtM4NSqKrIodg41rN0Zi2FD8Y2xcXR8ARcAQcAUcgKQS2m3SRgiErQd6mNCUUfKIlGwKwOfh8a1oDh1HrDNera5ISrCoQOSUg0ZKqlpnYyCKC3kOM1eY4q20ijzRuKdOO0NlcGbFV0esCAdJPvKilTMiOWnXiEaSEICohSVernP2OZSrs0tRicWKJRgk3Xh6EajOpitefrEh/glUuxtKWo8RpSyEdBPhCZNVqSImVmwPG0yCybCKAcOlnucbg5Shhy1UXJBY3K5lk4I8Zl6RmnF/kCDgCjoAj4Ah8TRHYbtL1NcVt9+s28WW4dtUlWlMJGww0JUe55ghbrjFg2Zp8tYPGmeG29eIIOAKOgCPgCDgCdUPASVfdcNv97lILXgYu2BhrX7yOQLo2ajB9psZ2NcNCpik10iNJVXe/zrvEjoAj4Ag4Ao7AzkfASdfOH4OGkUAtVQVKuholcWYi9izSfqT85z/ShiB8353YMGPkrTgCjoAj4Ajs0Qg46dqjhzfSOTL2a8xWsolVw4HWHiT/dZkd3k9HwBFwBByBBkDASVcDgOxNOAKOgCPgCDgCjoAj4KTL54Aj4Ag4Ao6AI+AIOAINgICTrgYA2ZtwBBwBR8ARcAQcAUfASZfPAUfAEXAEHAFHwBFwBBoAASddDQCyN+EIOAKOgCPgCDgCjoCTLp8DjoAj4Ag4Ao6AI+AINAACTroaAGRvwhFwBBwBR8ARcAQcASddPgccAUfAEXAEHAFHwBFoAAScdDUAyN6EI+AIOAKOgCPgCDgCTrp8DjgCjoAj4Ag4Ao6AI9AACDjpagCQvQlHwBFwBBwBR8ARcAScdPkccAQcAUfAEXAEHAFHoAEQcNLVACB7E46AI+AIOAKOgCPgCDjp8jngCDgCjoAj4Ag4Ao5AAyDgpKsBQPYmHAFHwBFwBBwBR8ARcNLlc8ARcAQcAUfAEXAEHIEGQMBJVwOA7E04Ao6AI+AIOAKOgCPgpKuWc2D9ggVSMX685K1YIRuaN5eMgQMlu1UrSallPX65I+AIOAKOgCPgCHy9ENhu0lW5bp1sfPNNSWvcWLIPPVQk/asqi+bNk4px46RR166Ssvfeuxyy5e+8I+urqiR3//0ls6CgRvnWzJol82+/XVK1T821vyuXL5eUo4+WDldcITlKwLYpc+fKxldflQ2DB0tT7X9KilOzGkH2CxwBR8ARcAQcgT0Uge0mXeVKPNb84heSlpcnRbfeKk2VYBi1WP7ZZ1L8m99I7gUXSHoSpKuivFzWzJ4tsnGjFPbtKympqTsU9uL/+z+Zp222u/FGaVoD6UK24qeeElESlfO970nmOedIht5f/uyzskFJZebZZ0tarLzr10vF5MlS3KOHVCm529VJ18ZVq2S9EsVGbdtKdosWOxR7r9wRcAQcAUfAEfi6IbDdpAsiUdm0qRQtWyapr7wihQccIClpaQHHVLV6peTkiGRkJIVryZIlMvPmmyVLFX6Tvfba4S67lOxsSa2oUEFrJneQpkKVKfsHP5C0E06QfLV0lQ8fLulqLVs3cqRkHHOMFCgOWxW9Pv+f/5T8pHq/8y9a9sYbskitlt0vv9xJ184fDpfAEXAEHAFHYA9DYLtJF6SlJD9fVihxyZ4/X1Z+/rk033ffr2CK51KrrBSB7EDOIoSnfOlSqRgzRtKHDBEpKRGBsEXvV+ITSvQ76tpcB7+mqEUqFOqOuTf8Th18NhPDrcaT762+GLnTIY7HHy+ZkRuyIFkqY+natVKJvMkU+q1tVGn7NVnyauwPMmJBo079N3UGeOgDn3gY6HXhevoacQVX6fVlapVLnTlTUjds2CQj18bgAPkMbSZBVJOBw69xBBwBR8ARcAS+LghsN+kCqOA669JFqlq2lHVq+dmKdEWQrNTrlo8aJSkffCAFGoi+prBQZNgwaTZokFSsWSPrX3pJ2mvcVG5ZmZT97neysl07yTj4YGmu1rP1SsjkmWekWOvLOumk4AJbovXkjh0reSefLKUaU7VCLW0FGuSeqoRhrbr0crXuxt26bZLg3Xdl9SefSIkSjfTSUslUAgUBC6RCyUm5Eo2V//ufZCqByjzrLMnR/tQUgbVWXaGpSrYa9e4t2Wr52qZMny4bHntM1qsVLL97d1n30UeSoaQyt6hIVmrwfY5aypr06RO3nRKNlVuulqf8Tz+VDMVjjfYj+7DDpFD7Zf2B4BYp4S3U2Dn6tHKffaSydWvJnjRJctRNuEExClh17iypU6fKBsVnqcpZoOQ4U124Rdp2jtZZ0L69rFLZMt97TzpOmyaZd90li9Q1nKHkrOn550tqmzahyQrt70rtT7nGwLXS+1LjEdevy5Pj/XQEHAFHwBFwBGqJQL2Qrkq1LuWqgi9UZbzirbdk6cSJ0lJjsmLddktUqa/6978lXUlRhRKVxUqEmnz4oWT86leSo664dCVO63NzJVPdi+uUFCx45BEhPB3StVrJgNxyi5RkZkqekgtI16LXXpPs99+Xdv37ywolKBvuvVdKqUfrWH3//dJM5Uj74Q8lv0MHESV7VX/5ixQpWVinZC9bCWJLJT+puAm1rcWPPirlf/ubbDzuOGkesQAlwnO1EpciJYEQzdbHHivZ2uY2RUlKsca5LVUilL54sawiCF+tYxDBdc8/L+uUCMk113xFpDZXUKYEcKHKs/GBB6REyVqGyrj64Yel6RdfSNqPfywFHTuKfPyxpGh/1iphrdpvP6lUsllOzJn+tkGJWb5aotbdd59UKbntpnF1mUrC0v76VynW2LUiJaP5SjY33HabNNXvM6++WtIbNZJKxaVU/y5X/NfMmSONVQbIYZNzz5VKJWBrXn5Zyv77X9nwpz8FK5gXR8ARcAQcAUfAEUgegXohXTSXrlaPPCU/K9Uys/bppzeRLhQzLiolAGV6TcpDD0maWpIa/fa3UqCKP0OJwurvf18WP/64dLvuOslXwjNNFX3JIYdIE7VE5Sqxabpo0SYri/69VsldttaXrVYgSq5+t0KtYflKHLIgTUrkCpVYZKj1J/POO2WNtleq1px8jVHCmlWmhCJbrWJNTzxRUrWuVCVtJWqpWqTB8IX6qVTS2PTnP5dcJWnVUYrFSvRKNfi+zdtvy2rdIFCycqVUqNUsLZaIaJupKstGlbdU+9pSZa7U+hspNsVNmsiKBx+UMiVSYtYr/R2XYumUKZKmmKSpta1Q28lUMoT1aRWkUgP5C3S3JK7BCiWgTdSKVqikab4SoiZXXikbi4sl5xvfkBwN7l+p8WfZSnRTlHgSV1ehZDdPMWqkZC1N/5/55z/LSsWgUt25bQ4/XJbqJohlajHrofd3UKwqXnhB5r/+uuQrZhVKUJeqFbO1Ws2a6o7NVHcvJv+U+ZWOgCPgCDgCjgBcqb5QwBKSpwSolSrwBUqAVqllaov7ThX0si+/lAwlGM3UKpOj7qxcJSo56rZapJaUXCw4unOuVBV+GmRId/3lNmsmmUocKmbMkLWrV0tj3SW5mu8gXmo1KtFr2ijpKuvVS1YrSemoZCP3wgulQK00EKZSJXXFL74ohRMmbOniRrWOpStpKNzsLtuo1qlsTf+QjpVIvyv45S+lSadONUKC5SlN3XbrlTilK/Far2Qoq2dPKcCiFqcEAqcErEr7V6Vu0kwlPs1V1sZqpcrHahUpZepKXKVWLNyvWaefLo2VyKVq/8uUgJUqadrSH/33Om0vS61+eVlZkqeYpmsfUjSeLk+tY1lK9uhTU8Uvgzg3JYUbFZtiJVcdFEfKuoMOkhIlZdlYEfX7FCWgaYyBWv7ylBhOU8Kaq9iKbnBIUbKcrZa7FTp+zXTMvDgCjoAj4Ag4Ao5A7RCoN9KFUsf6UaBEYtGIEbJWXYdVKGf9DktXkVqtcpVItMYt9sc/bgryVqLWAVKghIF0C5vD5KUKAqf3lvTrJ/OVEMno0dJe3V3tSSOhrrcV6jZcp5aYVkq8WinpWKDXbNCdiK2UUJmFqkKJSLamsSjACgXn0U+qBr2nqHXICgHlbZQMVqrVaJXKYGkScJdWKNFJ17YgjhUEqau1CRcchXQWlSrbhiOPlLVKVKpwY2KRi0O6AhmFpKkLknQMFZpmYqlaA9tqrFpjlV1i3JKVSrrWL1wojZRktnjuOUnVGDCwzVV5OivxyWJzwebC7suqzTtDia9K0X5kqfuQXaO0S5/TNxOuEPzOb+oOtVKhdeUxZpsth1vq1WvBpFTHslBdnAuUvIpiXaDEdg2uTLCs3Tzzqx0BR8ARcAQcga89AvVHuhRKyEqOWlOwdi1XF1yFkoQQ6QRpUTKBspahQ0U05UIgAfrfxurKEgLqyQuFxUULgfnpSo5WKxFaraQiRa1JqZoJvrW6/4o04H6hBopvVBJQriSirRKtdCU9lbgxYwK7g6WNXXxb2MQmd+eW/yoxKVJyt3HAAMlR0rRSSU6OuujYjbhK48laauA9Aeob1Gq0Xl1sLVT2NJUrRUkUwDVS69NStQalKXHLVEISt0BGtc0CjSXL0H4uU3ddqVrXNio+RUrcGmmgemOtwwp9r8QiBsHTNoPrUeXM1L5lKpEUtdZtKbj4rD+bd3aGjQGbdzXGygMpS1WiFsUD8rQVRuCvmPF9G3VdsnlhjW5wSNXxK9Qxaq0WRCdcX/t1wwFwBBwBR8ARqAMC9Uq6rP1GSo6WqnVqvVq1clRZU4hLSlfLyhpV3NlHHSW5m2OCSvX3FCUZGVigIEgR0lChVplcJTxVuktxkf47XwlHkVqGinWnXbbu2NuobroyDb7HupOjLrESXHJKwiipWmeJEqEN6mJrkgAYLFirDzxQ8r/5TSnToPNydYsWa7xXlrpJmxC3ROoLlSlbyUqRXrvmhhskk9xeP/qR5EEUtUD2SvS7cr0mbjYy/b1MZcM911jjv7KIdVOCt0ytR7TZSOUvI1h+s8UqWKuU1FUqwVqhpK65ygFNDLFeWg8DFhJDWPqMZAedfGqKR4WSVSsp4KP1FKlFcJMNb+tSoKRwnuLZQjc7VOp4rVJsOm/GN9lm/TpHwBFwBBwBR8AR2ITADiFdxBe1UutRqboZM5UIYb1pRsC5KuyVmnyzQC0oWeq6KlOX2VzdvZeiRKrzH/4QXH+4xQKnUJKAJSlL6yrXYO+NaikqU+KVqtc0xa2ocWAb1BKUozFRmXr+YYVaqRZq4HcbddmlY9Eh35S6FldprFKTBKMd3JlKBLOU9JRBtjSma6ESoc76d64SOiuQqaZK4oqefFKWasB6ttaZpZ8KdQHmqXt0hVrLSFnxlePvqwaRd50mjp2rOwjbaAxY1rXXSrpar1K1P9lqTYOAlauL0kgX5LOZktYSbWvVE09Inl6XqTKu1dirxZo4tkCPWmpPYHxtdw/q9WkcW6RpJsqUSGIRy1TZIZ7EhkG6SOkRiO9mAlil7W7U3aBdNdVEhY7RfP13VRI7O/3hcgQcAUfAEXAEHIFtEdh+0qVKulItMCE5qLm4tJ1sjf1poZapxmolqVKLSiNV2mtOOUUqNU3BGk39UKkuxlUar5Sln7RvfUtErS3EDWVokHeOBr+X6feZamkpIwWE7pzropaWVA2sT9P4I2xMKepmbKZkK0/dcMVKUuar26tMCdFibSddrVDrlIQVaFB8Ni4yCrFXKifxYlaQq4LYJyUSTTRn1lzNQZWlnyKyy6sFLJqHKlPJ0BrdUVmsgeWVd98tK5RIrVGLW4rGX7W55BLJVdm2KVp3pcqZo2ki8pVwLVQiJbpjsJUSpyIlkuVKavKVfObQ982FHZDZ2q+VWNrUGrZQd2Pm6WaBtermy9G60hSPUJQEgrv1B5dg6B+uyc0JTBmTKhKd8n/FL1//vUrrnMkxP9pOsZKpluoKLiAZLZgqccxWrFN0zMqVzKZoqouWimuFxnWlqMWxtQbe21FHZToO5O0iYJ8cbV4cAUfAEXAEHAFHoHoEtpt0YaXKU+JAuoZoTFUByUX1PMJKgtE379BrceaZsoSAb7Xa5GmeqlJ1oVVpDFXLU0+VDILC1ZLV9qKLJFctQBVKSsrUzVemxKtSCUizI46QSv1/mhKlUv0/1qXCza6ukHPru9+VpepmzNd4KSxTkLUsJXaFduajkqJsiFTkqJ50dv4pWcGSlK5uz3xSLWiaiXVqJctV4kMcVbQ0UdJRqu2Xqex5mhOLnFYpl14qBUrYMuJZgLStdA2Yb6aWtDztBznG0tXlmqapIrKJz9JUFlkcEh5jtcpS8tPiO9+RpUpo8jV+LVuTrBZDlFS+FkqCQlF8c7U/aZv7g4s1Q1M+pKoVLVj6VHaStqYrEQuZ/ZUArtc+rtYcYa20TpKjVmnbeYp9/ubDupuq9a4RREoTzm5UN2iOki6St85X+SuUDHeIbFQoUrJZogS1hf7mpMuXGUfAEXAEHAFHoGYEtpt0pSr5afP732vQVqakRXbWETzeSElPlebc4jBsCsSgrSbaFM3HlaZWmFx1Y1WqBQjCRYH8tFFrmChRCbsblVBkq7KvUktLmpK7kAcLd6DmpWpJagO910ojJRM56nbDEkYAfZ62yW69NCNOSi6aa7uyeQdikEfrIclDqn5HcHgLTQORqvLmKiEikD+2IGdrtYJVKckkrUIOxEllSOXveEWJVr5a9XKpX+XOufhiSVE5iDdrp/ekJLiXGC5cq9nWH3ZAsstR+xOOI6JoPS2V7Fl/CpVUplx/vXZK6908Dp20vVQ9mDtco7Fz5Sp/jhLW1mecEUhYE+SK4FGoaS+q9PDyFLV2VbHTUZsp0Vg0cnqVEIumJHAL3mpFzNccawn7XvPc8yscAUfAEXAEHIGvFQLbTbpI0pm+Oe9TLHJhp1x0t5xekA5B2Zy2ADvS1rYkJUCxO/SoNCYvFGQqNmgdopKh30NMKNt0TAlDWoQ0cA2kJ3pdGm1rW9Udzw0BCTst48i+zcxR4kaKBtvtlwpx2pwiIhngMyBEm0nRNtcrqTQyG2RBrs0WK5MjpLgwUrV5tyj3pKoFixK7C5HUHilsENAPeHKK5RLdZUmeL9yQUVKdxrhuznf2tXpivLOOgCPgCDgCjkAdEUhG99exar9tl0JALV1VagXkjMmaChsMynQTQiXpItTKmKHHMDXTnZzbZNyvqSL/3RFwBBwBR8ARcAS2IOCk6+syGTSuLltdjSR2ralAusp1Z2mmxse152xHdVOmJbBm1lSX/+4IOAKOgCPgCDgCmxBw0vV1mQm6oSCfGLMkUk3gdsxlR6LGoxVa3rSvC07eT0fAEXAEHAFHYAch4KRrBwG7S1abBOHaIreTrV1yCF0oR8ARcAQcgd0XASddu+/YueSOgCPgCDgCjoAjsBsh4KRrNxosF9URcAQcAUfAEXAEdl8EnHTtvmPnkjsCjoAj4Ag4Ao7AboSAk67daLBcVEfAEXAEHAFHwBHYfRFw0rX7jp1L7gg4Ao6AI+AIOAK7EQJOunajwXJRHQFHwBFwBBwBR2D3RcBJ1+47di65I+AIOAKOgCPgCOxGCDjp2o0Gy0V1BBwBR8ARcAQcgd0XASddu+/YueSOgCPgCDgCjoAjsBsh4KRrNxosF9URcAQcAUfAEXAEdl8EnHTtvmPnkjsCjoAj4Ag4Ao7AboSAk67daLBcVEfAEXAEHAFHwBHYfRFw0rX7jp1L7gg4Ao6AI+AIOAK7EQJOunajwXJRHQFHwBFwBBwBR2D3RcBJ1+47di65I+AIOAKOgCPgCOxGCDjp2o0Gy0V1BBwBR8ARcAQcgd0XASddu+/YueSOgCPgCDgCjoAjsBsh4KSrjoNVqfeVPPusrNu4UfKPPFJyW7asY01+myPgCDgCjoAj4Ah8HRDYbtJVsWqVrLvvPskoLJScM8+U1Pz8LbitnjJFyl5/XZoNGCCphx66y+FZ+vDDsqqqSgqGD5ecZs1qJd/Sjz+Wyj/8Qda0aSMp/fvHJ13Tp8uGRx+VdUcfLS0HDZKUlJRateEXOwKOgCPgCDgCjsCeg8D2k641a2Tj3XfLRsVkXYsW0uqEE8SoxdoZM2TjvfdK4XnnJUW6ytRqtPSTT0RKS6XN4YdLavp2i1ftSJWppWpZRYVkHHhgrUhXaVmZVOi9ORMnyoZu3SQlkZzZ2ZLavr1kRIjorjx11syaJWsmTZKm/fpJfqdOu7KoLpsj4Ag4Ao6AI7DbIbDdrCZFLUVlTZrIumXLJGvECGmmZCkjNzcAgWUnEJLU1KSAKV26VBYogcvt3FnaqMtuhxeVLVifammBWjFqlKwbPVry0tKqv1cJV/Y3viHZO7wj9dPAqnfflSVvvSV5V1/tpKt+IPVaHAFHwBFwBByBLQhsN+lKrayUUiVZa9q2lUwlXjlKRtoNG7apAcgMhCtCairVsiQlJZLC30paqrKyJBXyoqV8yRKRyZMls3FjEXVbVv5/e+cBJVlVrf/TuXu6JwdmhiQ5iUhSogISBAEFRFQUHggounisp+JfHkvXQlREnxIkiII+9QFKzkFyFCQHQUAJA0xiZpjYM9PT4f/9zvRu7xS3uqq6qqu7uvZdq1d3V917wrfP2fs7e+9zbmtrJG389Ijc4QGLV0NDqFG53Z2doUZepxqVQT3d+r6Ge3RvT2NjqOHH6tZ93M930RPX0rK6XRDD3nu6V6xY3S6Vl817tXLp0lBz882hW2Wv2HLLoFZlv4RND+2BeNIH2sr/fM5n9L0fQtrN/cIq9oc+065kf2grMIODftOmHpUXMdFn1FEjb1t8RvdSfw/91e9YJuWBkZ7t0f1dr74a6t9+O9QuXBh6VG+P2lmr5/vkp2fAqEfyqtNzfjkCjoAj4Ag4Ao5A/ggUTbqoqkcGvVFhtmaFpFbKWxKMdGW0o1P3zbzhhlB7001hvLxa8ydMCOGww8J0hSQ7588Pi37/+7DRK6+EUSJvK5UPNWu99ULTIYeEtZVztUhkIJx7bgxjNp14Ypig+maonDF33RXGfv3rYflaa4VZl1wSJsgLVS+ysGDrrUPb4YeHydtuu7oV11wT5t16a2gX0agTcWg6+ujQrPsgbxCiDhGNOcrRalK4tOVb3wqtW20V0vxzCx59NMzXz1SFTFuffDIsFjmERKVezz4blvzsZ2Gx6hq7zTZhvshakzxJYxYvDnPkBWuVF2zKzjv3hWOTZSybNy/M+sMfwnh5DxtEiOaL4LXSnx13XH3/tdeGucJ6oQjq5NdeC40Kzc7ZddfQLcxGqV1twnGx5NFy/PFhkuqueeaZsPQ3vwlvC/NxCiO2tLeHhcJm7Oc/H8ZvvnmYc9ttofmWW8Kmb70V6oXD68KvWfWudeqpoU5Yc3UqnDr7pz8NHZLHBkccEWp6yXL+w83vdAQcAUfAEXAEqheBkpGuFuVzTdhhhzDrxhvDzIceCtN32+3fYcVe78wsEYWlF10U6kUM6g4+OCwUoRgjUrJAxnuswpJte+0VZotIjBUZaBARWKCy1tpggxAgXSJhQXlUq/AOfeYzIYgILBTBWizPWM0774T3rr46rBKhW3TggaFhzJiw/PbbQ4OI2nvf/W4YL8IS9HyDktp7Dj00LFD9zbNmhcnLloUabQBoF8lbIsLXfeWVYcUJJ4TRInBpKe/LRcxqRPLqlaNVu99+oVkkJCvhYkyJOK26557wnkhoy+zZoUP1r1Lf6kRoOi+7LLz7k5+Euu9/P0zafvs1RuBKEbmZwmmVSOUi1dOgJP/YH/opEkTOVVC+XJNIZo+S9JepzwseeSTUiZTWqG/tCs3WCP9lV10VFss7NfYXvwiNKrNJ9bPhYaHIXofI5kqVSZ/qVeZ4kblZ+pktj9okYdQtT1fD//xPmKNNEJO/+tXQJQ/dfMmj4f77Q6e+jx6z6p033nNHwBFwBBwBR6BgBEpCuqiV3K5RIjctzz0Xlspj0rXTTn1hKcJby2XEm0WaOuRpGf3tb4fxJGsfdFCYKU/MCt0/XiShWYRkoQhG7SabhPEiZWPlKRonckQIr06hx3kiXG3ySrUqxMc1Xp/NlsdokQjI6HvvDTX77humnHJKaFBYskXhzncvuCB033nnatKlcNhy3dsogrKJ6qW9XfLudIiMzPvjH6OHrEfem4nf+EZomTQpFcglume+2jRRZYzdcMPQJY9Zv5faWidP1HKRuw7hMkXt6lF/x226aegUuVkgUlQnwpe84lEUzz8fWtWfZSKiU773PTW9MTQrz23O2WeHTpG+SLr0/PKpU8NoEdApxx0XZuj7VrVvucjv2COPDC1rrx3mKVw4RsSwTl4t7u8YPTo07rFHmC6M6kS63hOe74rY1T7xRBgtb2PXxhuH+TNnhgm6Zx2V3X7FFWGeSPBEldetPiyUh2/SFluE6fq+v7BowaPQH3AEHAFHwBFwBKoAgZKRLkKMnFU1RWTrde1YXCCSgRcohqD0M0/HRzS9/HKYKC9P04IFoUHkpbY3v6lNn9cvWRJWkkNEqE5kplXepkaRk+UiIB0iXmMVjlwsItCiZ2pnzAhLRLgm4j2Sd22xwmXjCIWJqI0SseCqFTHp0t9jFGaLl0hWh8hUvcoYRc6YruUiIpAS2rJCnrWJX/taaM1CuNrlEVolAtIsT1GjvE9koXWKuJBDBaHJeqneBvKmVG6HvHJdIjgrVMY4ee/GK7TYpL+T1yr1b8FTT4VxImPN2qDQKtzwKDWKaNYrLDlaRMquFWAkT2Cj2tAs7OtFaOtEWCGcDeSs6fmxCjvWkfslXFeK0K4UXqN6Nzp0QUZFhFuFZ7yEYa3urdPvJh2F8Ya+J0zZofBlkHzaFHp8T4Rrisr1yxFwBBwBR8ARcAQKQ6BkpItqIQdtMurNIidLFDoMCnVZovpykaZa5UtNFokKF14YQ48QrPVFJGrlNSKhu6fXc0QC9yiRlHZ5Vd6R96ZGobN133wzTNd5WHhc5upYg0UiOtPkPZusfKU3dWbWcnltxols2NWt/5tELkaJLJFuXidvW21v4rjdA8GYJMLRKQ9Up8jO6nR+cQ/9vUr1NYsc1qgtJPTPIz/rwQfDVJG5sQobkuhfIzLYoj7VvPBCCPIsxeT8jKubvoj81QuXdoUHO/7v/8Js5VetK8/eGJ3d1U2oMvEMyfNgNUHtHqfQZKBsEbc2eavWV1J7g4hWvNgQQJJ7L+HD8wTB5XiKuPFAfUMe9RAuNiEgH/WjLkEqu9XeUcLFPIfWDPBHPjUiha1q61siZrXCfTIbAPBg+uUIOAKOgCPgCDgCBSNQUtLFzsQmGf21lND9jvJ/OkVIxmDwyeliN50MeZcS42uVhE54j7BjM54pPC/8WKhN37GjsV3elqWQMSWfzxAJWU9elqX6PVM7JMl76pKXaH2RnfqUhG6IA8QjkodekpJ5NAT3zJdnaJXaO1rkgjBj2xlnhA55dRZcd11YS2SvQcRumbxIK0VYpshDNl5krPassyKRqZU3b7w8SZ3KleoUQazfbLP3CwACo58JIist8krNVjJ/o8J0KxQqXKxw53iFM8dnEhl2Wsor1aWjG2qV0A9W7BZsURsiTtafZG1GrDJakNxdCaa1GbsO4/eZR2bgodTH0+WNW6UQY8cdd8TdkEGkdpoOufVcroLnmT/gCDgCjoAj4AiEkpIuw7Ntu+1CvQjLEh10OprjC/RFswgUuVbz5dlq1d9tvV6hZQoR1hJKw1PUa/xJ0o4J6vLqjBMp65K3a64Iy3j93y7PTpdI0TjlcZE31ilChFdslMJvy+RJalVuE1e9SMJKeYeWyNuW7az5LtXTriT28cqJWqmdfbVKxF+iHYJt8mZNFxmqVVI9V5vu20jeo5jHBJHjR5916Z65In9jlaNWr3yotAvvE8dMtMs71yYitdExx4Tw5S+HN8mlUhJ9vU7sX6Fk9Wa8Vrpq1b9RwqdbJGqO2j9NXkAuvHXLRfga2HmZ8OgVMoY7VR45bHbViTAuEc6LhfG4ZEG9cmhR3bO0YWEaOXpq17xddgnjlTPmlyPgCDgCjoAj4AgUjkBpSBdell5PC01oUW4RRxt0Khm8VSE4QmyT5bFZpJ8lCj12KRm8Tl4UjoWYK8ISRJQ2kIeJUBlko07hvW4RHJLVm+SJ6hYZ6hTR6FY+VpPIyTSRh0nKNVrxla+ENnYiinwtEzFo147Aybq/nnDhww+HZhG8paozkq6MNkao+IwcJrW3RR64VdqZN/fii0PLmWeGRu2AtAvSmOrdUbiyE88R92Y5PgHStVwkcc5554UOkZx6JcaPEkGr4Rn1hcR5PFl2kf9FrtcSedqWyYO2UESHfK3FOvJigQ6ObVXi/HonnbSaoCae6+tP8rNkn9WOJpFbdh8u1kYCEumDwrKN8kyu6PXQQeyiR8vK4GwwEcJx8lp2qa+QQ87o8ssRcAQcAUfAEXAECkegeNLFIZscvJlxVtUoGehJSk5vVSiNQzlbZMAXaXcg+VzLlGhfrwTx+RyEKs9Ni8KGkJAakRIISevTT4dVMvQ1OkKiS2Xw/HrkKsnrUicC0yNS1aF6RyvHq1VkoEN5Xe8pib5D3qOFIkz1CgMulpeNnCleRh0v2kiIM0lK9Bkh0Xq1bfTuu4c3FWYcJUK4WLsTx+sohrpcryHikFF+ICppF/lgbAqQJ26MCOQ8veuxRscwrKVdmsvVvk6FFycot6spkQtGflezEtjf41iGP/85LPjxj+MJ/YuEY4s8YKNEyNL6E/tF/xJyiH8n2tagvnYqkX/Wz38ezyhbrk0Ek7QpYGzvkRUN8ia2QYiF/Up5tOq0kWGKcFkhL2SP5DNZr0uq7fWCrVDe2SqFedt0X41w9ssRcAQcAUfAEXAE+kegaNIFWRorz0mXDHbyXYltvAhaJAsPSY12LHJh4OPp7PJCsROuW+HCLnluJolc1evzJhnwdXhtjs7z6nnjjZg0Xyvy1qXDT8eKnPSIvNSpvg69WLtdhIsEfC5OsJ981FFhPrv1lKhfqwT4oOMjWvbeO4yR5yteIjpt5DTJW2ZXvQjZeJEP8sood7zqblJZS5XHBRnLRbpqRBbHqY3saEy9OKVfGExSuLJV3qROYVEvotKoUOMYQoT6rimFsNCfKQpBvqv+jFbeWIOOceiWN4/jHibYmV4imvji6oQzF8SuQd66Onn2IJGEQieKoDXSNvLA1J92hTeXCYe19V2DvIkNOpi2VeQy5tXpmqjzxDiktlHYd8pDWS/SNVqE7w3JdpW8bRuIfJnHj7y3lSJtbZyj5qTL9Ywj4Ag4Ao6AI5ATgaJJV62M8dTvfGd1RYmE7LiTUSQh8NN7QQamKqwIIYIEjOLIBREhM+SE1ibpbKqgZO0Y4tJ3LSJmPTpvqy+8p3saFVZkD18y5Ncqwtaqz6NnBy9Y5jEOBxwQJu6//xptbNKZWcok6/tsIm0V8Wi1oy5ywFcnkhb3EmZ7d6OS69t0ACo5YVyjRIqCPHL0fVrvURrZquCssHWV/2XhPs4nW6Me9WdSoj/jyGU77bQ17llH+Wl9cuEVQCJ9LfJcTVa7wWhchidvjDxvQcn7EUO1maDnCuXcteCxE8kNJPL3XqNFtkb/13/9+7VEOYea3+AIOAKOgCPgCFQ3AkWTrj6jXgiO5BP1vnMwNVcqI28o7Z6sO+j6CwlmkqM0ssRJ6/nmLWUjW0ksMu/JQbbWeJR/iulPsm5IbO+uxGz5Z31199ZJ0PQt7VyEhLIjtZ53XPZe8fVJeb7IvJCh4fc6Ao6AI+AIOAIjFYHSkK6Ris5I61dK7l1aF/FwrVRIs0avGerSq4LadVr9FOWZpb2LcqRB5P1xBBwBR8ARcAQGCwEnXYOF7HArl00NepF3rXLB8rnwZNUT4jz22NCjnLu63ryvfJ71exwBR8ARcAQcAUfg/Qg46aqWUbH++qGZnzz6S+i2iQ0H2sDQlsf9fosj4Ag4Ao6AI+AI5EbASVdujPwOR8ARcAQcAUfAEXAEikbASVfREHoBjoAj4Ag4Ao6AI+AI5EbASVdujPwOR8ARcAQcAUfAEXAEikbASVfREHoBjoAj4Ag4Ao6AI+AI5EbASVdujPwOR8ARcAQcAUfAEXAEikbASVfREHoBjoAj4Ag4Ao6AI+AI5EbASVdujPwOR8ARcAQcAUfAEXAEikbASVfREHoBjoAj4Ag4Ao6AI+AI5EbASVdujPwOR8ARcAQcAUfAEXAEikbASVfREHoBjoAj4Ag4Ao6AI+AI5EbASVdujPwOR8ARcAQcAUfAEXAEikbASVfREHoBjoAj4Ag4Ao6AI+AI5EbASVdujPwOR8ARcAQcAUfAEXAEikbASVfREHoBjoAj4Ag4Ao6AI+AI5EbASVdujPwOR8ARcAQcAUfAEXAEikbASVfREHoBjoAj4Ag4Ao6AI+AI5EbASVdujPwOR8ARcAQcAUfAEXAEikbASVfREHoBjoAj4Ag4Ao6AI+AI5EbASVdujPwOR8ARcAQcAUfAEXAEikbASVfREHoBjoAj4Ag4Ao6AI+AI5EbASVdujKr2jtmzZ4cVK1aEmpqaqsXAO+4IOAKOQDYEenp6QmNjY5g6dWqora11oByBnAg46coJUXXdMH/+/LBkyZKwbNmycM4554Q33ngjNDU1VRcI3ltHwBFwBPJAoKOjI0yfPj0ce+yx4QMf+ECor6+P//vlCGRDwEmXj40+BObNmxfOOOOM8OCDD4ZRo0aFgw8+OOy6665h1apVjpIj4Ag4Ao5ABgKQrAULFoQzzzwzzJ07N6yzzjrh5z//edh4440dK0cgFQEnXT4wIgKzZs0K5513Xmhrawsnn3xydJWvt956oaWlJXR3dztKjoAj4Ag4AhkIoCdXrlwZvVudnZ3hnXfeCWeffXY48cQTwxZbbBHq6uocM0dgDQScdPmAiAice+654b333guf+9znopcLotXV1RWWL1/uCDkCjoAj4AhkQYCcVxaoEDA8XLfeemu4+OKLw+mnnx4mTJjguDkCTrp8DLwfgTlz5oTm5uZIuAgnkiDqlyPgCDgCjkD/CKAr8XJxESlAh7766quuQ33gpCLgni4fGOHll1+ObnBWa3i3/HIEHAFHwBEoHAEWrBMnTgzjxo0LL774Ythtt91893fhMI7oJ5x0jWjx5te5iy66KIYT99prr5if4F6u/HDzuxwBR8ARSCKA/vzQhz4UZs6cGf7whz+E7bbbLrS2tjpIjkAfAk66fDD07U70pE8fDI7Amggkz6gbqYsR6+NI7V+5xzS5XfwQcnRMy43+8K/PSdfwl9Ggt9AO9XMFkQ41Rqm/A2LBbSRhZ33N7PNI62c+E8sMqG0syeeZUt+TNv5KJQvKZrHFb1ILfKdy8dIz2fhhqcVjORJLcNI1EqXqfSo5Av2RquFMuJIGOx+DavenGfXB9Igk21kqQlHIIEguPKif/3kbwxNPPBFDReuuu27Ydttt42aTfHAspO5s9w62LOgjZ0zRRw5F3mqrrcIHP/jBSMCG85guBbZehiMwVAg46Roq5L3eYY8AxgcD+9prr4WnnnoqntSfvDBM5GuQLMs5PRix4WaskoY7F+DW/rfffjturnj33Xdjjh+eELa+b7755pF8cCDkYPRzMEldf33P9CQZ6Wpvbw/XXHNNePLJJ8NOO+0UNtpooyjvcpIuSBGy4Pwn3hLBNXbs2LDBBhuETTbZJJ6jNxBZ0GfkjYyvvvrqWMeRRx4ZiddwHMe5xq5/7whUCgJOuipFUt7OsiNgeRnPP/98+N///d+wdOnS97WhoaEhEhEjXRjkpBHMJBK53mOZaUCz3Z9WR7JxtH3hwoXh8ccfj7uoNtxww/h2gfHjx8f2pdVDeOm5554LN9xwQ3j22Wej98MujPvuu+8ejjjiiLDpppvGUNRA22Zl0gYjtm+++Wa45557Yh7MzjvvHA+W5J12uerJpw3U1x/unCR+//33B941uv3220ePFsSGy44CyNzVm0+9hco6KT+I7uuvvx5uueWW8Ne//jVAhI3sIdutt946ymKXXXbplyRlG09GuvieV9nwO/PNE2ntHwjBK/vE9QodgWGMgJOuYSwcb9rwQABjZAZvn332iR4fyBaf4/ngQEQMoeXHcC8/lg+EoTIyljR2mWTAyFDSuGbLJ7M6KMPqNhLDZxjtxYsXh/vuuy888MAD0UhvueWWYdKkSZHIZJI2/v/nP/8ZLrnkkgDJhPAY+SHM9swzz4S33norvrmA/ps3KE1C1jbrq4Wr0nLEeJ77IRiXXXZZJDmcdQSxo1+GY2YZfG7YpJGDNHzS6qcfnFF37bXXxjAiBIT+seWfdhxzzDHxe0g1n9E+wzsbKUmTdVrdmQQ9OR7wcF111VWRdHEfJHTHHXeM4+7vf/97JIhg9tGPfjR6HrNdVoeNjWTbGSP2kzkWbexmlpscy8NjdnorHIHKQsBJV2XJy1s7BAiYweQ3noX9999/jdwejDKnUOMdGjNmTNh7770jycE44kHBY8R7LMmXufPOO+PnvBx38uTJ4YUXXgi88xLyRmiHMJZtMcezxvd4nygDA4oHBpKHsZ0yZUr0Zt1xxx2RMHDOGuFAwqG8pJxw1D/+8Y+IGITpggsuiGRm3333jaEy8+KYV+zuu++OhItnP/nJT4ZDDz00tpMyZ8yYET19vFuOdvD2AnKBCEtB7iiDECTkYIcddoiEhTpvu+22+FYDCB/30TZ7STBHlKy11lrRw3XTTTfFcsEYjP71r39FLNh+f/vtt8c2rL322jEHiZewQ0AghZQH7nirkiSYZ8GXC9II5hBH7uNaf/31Y/lgf/3118f+cNEn/qZe2odsX3nllfgd2OHxoz/gRL2E56h39OjRMeRHuyBotPcvf/lLPCQTeYEpfaL9eBu5b5tttonkNhmupP+Q4kcffTS+A5XvPvKRj4TPf/7z4cMf/nDEmVAj9YI3hIswKG2hTfSH52kP3k2eZZxQLrg//fTTEQf6CIlMC09SB+MNLynjh7A67Wd8Mf6Rg5HgIZiOXqUjUNEIOOmqaPF548uNwKJFi6KXAWPJqh9jhPcBI/vQQw9FA8hnkBPCQuQEQZQ+9alPRUOFYYREQDa4DxKAUcO4kjcGEeJeyNRdd90VPR0QnqT3BG8VhOaoo46KBvZvf/tbfBbjCsHgWQwq7bIQIYQHYwthgGzg4UiSLr6nbUZIIF0YbfpI8vhmm23WZ2ghIhAVSBrG20gD/cMgU/9+++0XwApPG94xjD0kkM/AiFO7+Zu+EjqDkFg5hBpp99SpUyM5grhSJyQD4kf5kArqg3DioYP40B/KgGzxPESFtpsc7D76zufIDDlCqux1V9RD+XwOMUKmkJ+PfexjfS9/53/kiqfJMKReMKftn/3sZ+MBmeSC0fZp06ZFvMHKQtR2Yjl1JAkMf9MXZEE7GDuQeAgX8qQeyA+4cDF2wPi6666LOJoXE7mBFwTtkEMOiR5OCCVnR4ED3yMDcEAeXLa4gBgSYmac8rd5YLmXsfiFL3whEku/HAFHoHAEnHQVjpk/UYUIWHIxxujhhx+OBgrSRJ4Uni+MIt4tDDwkiO8ee+yxaJQx2Hg7MKY8x2cYSLxIhx9+eDTEeHfw2mBAyZ3CKN98882REOBhwfBicAkVkqOFB4n8I8qwl+7i7cJbhtGHAFAfpARPGfcdcMABkTxhsC1/x9qD58S8QJAE8tQoN3mf5bjhAcEzBWnC20Q7+Nv6gLG2ECSeGDwslI3XBSKH8YeQQF7witE36oHIgM0nPvGJiCv9hgxh9I2sUBd95DtID9+xkQEvIviAC95B5AChg1jhhYTEQBSoC0/TI488EuvCYwiZ+fOf/xy9R7Rnzz33jEnqeByt/xbmhFSReI7nDM/Wxz/+8UiMkAvEEqKMFxEZGl4QOTyAeBj5mzYiE9pM/hj1W7iX35AtZMkFcUJ2EB5w5IJYWZiQMUNolPFCmxlrjD3GEeMEbxtY4VXDo8hn9B8vHr+RAW0y0sV4gJzfeOON0TNJeYxtyBZEmzKQIaQcfPwNFlWoDL3LRSHgpKso+PzhakHAvAAYH7xMGEdCMxheDDO/IQsYP7w2kAw8CJAtS2C33Y88S/jti1/8YiQBGFi8Z3iOCJ1h0K0cDONBBx0UvRUQCOqkbMJIkBc8KnhRKBPPEF4IPFkYcogdRICLciBItAfjbcbSwk54YfCScdE2K9Pka94O+kAoC5IFGSAECXHheXC48soro7fnpZdeiuTOjmKAXHzlK1+JHj76gPGnD2AESYFIQeRoFyQB0gJxpC67+Jz+QWBoDx4fwoCQDHCgfogYIU+Ii/UJPPFcIQeSzyELEEAIIe3hgphBuiCb3IfHDvyMDBkBhQTTdjBC3pBm+gO+yBCvHgQPQmW5VsiFnYHgT7iO55Ev/beQqpEe6gNbI5m01byqmXON8UB5lIXnDyJEGJt6+Z/2UAcYUo6FmpEFL7anXfTz/PPP7/OIMgYs5I1cIF0QUYgZRJEywIDPqcNJV7VoQO9nqRBw0lUqJL2cEY2AGUcSqyE1GEIucrggKBg6iAMkAG8ABp97yIHh88ydYRhpPGMYQ8qwoxjw7GDULFQEmYDcQCy48GYQKsKYYlQxvFyQAkKaeCXMSCfJFe3HoKa95olnab8Ry2SOkQnVvoPwUS8XniN+qA9vD/20sB3hPQy6XfzND2TQconoK22kTbaDjvvBirYaZpa0DwmAeNmRFWAHEcDzCBkmfAkpxINFe/HUgCNl0T4whizRX0gy5XIvdVuf+T8NJyuPeniOPkAqaQPl4UHEQwjpIiQHmTTCiaypj3shKsjb+mnhyeTkYTzZs0b6MhPx+R9yRv+48IhBQgkZciELCCVtgTDhEQMfnmOc0H7upQ+0z8LQ/Db5EpqEkJknzjxi4JrW7hGtALxzjkCJEHDSVSIgvZiRjYAZP7wDGFhIEKt8fux1Hxhry48BDT7H4wK5MGOYRMm8R8nPMIoQgKQHIds2fTtJPOmNsR1/yXAV5Wfu9Et+j1ElHwxCgkHF4wN5gaiYseceC7FmejcyiQHPWPjL+kafbOdfctdeNgysvUlskkSEssh3w7MGUcDbZEdMWH8pO0nmrC7bgWdlJ/G1eq2uZP3WBys/mywzd/4ZubMT35PYJ+vmb2QKqYYUcUGaIPBGPO0ek0fSY8n9aWVn9qW/JPjkqfTWbisTUsm4J7zI72zjcmRrAu+dI1AcAk66isPPn64yBMxgm2cEg4YBhGwRliF0hNcBrwZeCPKfCOeQQ5P0VhA+IqEZQ4ZRJWQJkYCc4dmCqJk3A+8JXh/bmcj9lrSOZylJHjIJhBlcns80+makKcs8N4Q68YqQo0QOEn3hWTxcEBhIAZ4RLrxtEDQ8LJA1Qk/mVYLE5XOIKu01kkaZ4GpEKY3cGemgneSF4ZXBA0a4DK8NIUrymHgWYgC+kDHkg6fGkvjpD/Wap9JkY16vzGM1aBuysR2RkFLqpjxkgCzBgnLoezGHqFIPxIbcQMokGZ96LXkeIk+9jBc8oVzgT3vAHxnhLUU+/I03kmdtpyI40H7qwZtFeXaBhxE+niN8ivcW3KmDcYsHrZj+VZnK8O46Amsg4KTLB4QjkAOBpPeAfCUSjW0nmR2OyuckL2OY2LlHGIxzlghH2TlZGDPzpGAQSd7G4GEEkzsHSRbH6GNoIQeQCIwn5Ie8LwwxHjd2vhGuSgsH0mYMoxlQ6oAAWi4WhtNIjR1FQc4R+U94VyyRmjAVBJC8IAw9SebkVJGIDjkjKRxPEz92xAGEgSMiuD+tbUm4zYMDuYMUYNTJySIRnpBcMucp+VzSE2bePWQAebWwJGQLQkZYE1LExgZICp4kygcDku2pGxy5KMPIDvcZaaUdkBTkilyMDCF/nkUuEBiegaTYmV6FTi7qgawiW+RFvhbjClmRh0afkBH9JNeK/tEn8L/33nvj+OJ5xgxjDOIE6ScsDTlmIUBIlu8hWITCkXeSdHEvRJIxA5GGZNNPFhTkK5Jvx/izkHehffT7HYFqRsBJVzVL3/veLwLJsJkRlMsvvzzusuPie4zsf/zHf8QEeMgYxpY8LnKrMJjs5IOMYKj44cKQQ6IwnBdeeGHMtcHY4uFiNxxGjt1//M1uOI6DwFBycR9kgaRpwpw8a0clWBstjEZ4kHsoD/J26aWXRjJ0/PHHRyKSJF124jxkgjohEBxWmgxj8SzGmJw2DDDkhHsx3NY2CBceMsqn/8ndf8mcMduJR3/AAkIAmYM8kKMFsTjwwANjwrZ56IzAGSFlRx4EDUJ13nnnxbZa8rphAlYQRTw73MdZZZajBOGyVxxBLiEYeCshFiTTk/xuY8A8X5AcniO0CQY8gzz5HvJGcj2ki3ZY3y38bGPGPk9LQjfPH2Ucdthh8SgIO5neyDfP0S9IF+MEkg/5ZfwxTsDZMKI9jAHGArs8Icp4CX/7299GWdJmcrxYHFj4d7vttotjFTnQT3bAGrHFi8d3mRstXJU4Ao5Afgg46coPJ7+rChEwA0hoBiOM58DIBd+ZYeMz/sajgPHGaOF9YGci5AJPAh4cy/fiWYwXuxLxrECIIG+QGUgGYUQ8CYTMSP62V/Jg6Pic8tkxaAd1QoYgJOyYSxpDDD9eM3b8sYuRtrB7ERKW6YGiTXhwvvzlL8d7MOAYZ8JV1EO91ImRx+Nz3HHHRa8PYSw7PBPjjbfMkvnxtBkWkLEkaaQsMCH8R914Xex8K7wxEAJIKJ9TBvVDeIxQ0M899tgjkhvaCvkEQ+qhTXxO/ZTDjj7IBeQVUsl33AchQU6UCVHkN4SLi77hwUKeyBaMIR6QasgQ7aFeyrOzwZC/HcpqB8KCDaQHDCmH3xAqPFZgmRaCBQ+IIcQaTxXkFlJPWXxu3jSwRmaME+6zQ3RpP/cge3C2cDD9pY+EZQlR03c8apBAvGTgTd1gw4YRxgG7UPHG0k7GLESPMjMPda1C9eBddgQGhICTrgHB5g9VAwIW+sJ4YfjNU2F9T+Zo4U3hsiRqDBkGiucoxzwflhNGaAbSgIfHjmqwZ40Q4c2AMODxMQKYrANyBrH40pe+1JdobYn41lYzyhAaLgvLZe6m5Ds8HZAU2gX5M49ZMgnfkrAx0JBRS4pPJqDzN2Xh7Tr55JPXeGUQxMNeSWR94TOewXPFd0kPI5+fdNJJa7Q9SXg5SuPTn/5033BMbiSw88vw8nCWGh4hK9sS/a2PEA08gJl14+3iaA/LO4O4QgQhRBA1w9nKs75DjsiHgqDZs8gZ8sfRGTa2kvJKzikLqyYxyRwDRkApkzHCOWzJ9iRDo3yObA0Hq8vuARvrg8mO4zWSmx6sHzYGqkEHeB8dgVIj4KSr1Ih6eSMOgcydeJkdTBpDvjPSZPk1Ri4szJQkKnbchBnLpAfKDG/mu/WMuFk77HsjEMn2WduSZfSXZ2V10q60fhopMQLXX9vov5WTbBufQ0qsz8kyk/XaM/31L4mxlWf3Wz/7wzFX3ckdopl9SOt7sjwLIyfHBH/315802eWSRZqM07BNu8/aayHXQvs44ia7d8gRGGQEnHQNMsCVUHxydV8J7S13G9PITBoh6Y+kmFcs8yXDEIL+SFA+deeTrJ4kA7nwy6fONKOeVm62JP+09mSrt1B8Cinb2pyt7kI/zyRNaW3JJa98yshFiLPJuL/+DLTMXOOp2r63uV7InKs2jKq5v066qln6vX1PvoPP4RgcBMzLQMjRTjD316gMDtZeqiMwlAhYqN1P6x9KKQzfup10DV/ZlK1l5J386U9/ilvUSRj2FVrpoce7QbiJhHzypfgfsusne5ceay/RERgqBNhgYK94IsfO3lwxVO3xeocfAk66hp9Myt6iffbZJ5Iu3uVnicxOvAZHDJCs5NEOg1OLl+oIOAJDgQAky9696qRrKCQw/Ot00jX8ZVSWFlpiMx4YO/gz7VTusjRmhFfihHaEC9i7V1UI2K5Oe00W85vdyexWtUN3qwoQ72y/CDjp8gESETj66KPDFVdcEb1dnFGE4kBhZO7QcrgcAUfAEXAE/o0Ai1POUIN88SomTvLnuBCOKvHLEchEwEmXj4mIAActslL73e9+F09RJ8mbM5A4KyrtTCeHzRFwBByBakeARSmHH3NqP4f6chAtb6jg3LO0oz6qHS/vv46McRAcAUOAk6Y5QJFXhUC08HzxOhhPBvUx4gg4Ao7A+xEgR5PT/zmgF8LFYcS8vssvRyAbAk66fGysgQAnYPPDxYnjrOI8xOiDxBFwBByBdNJFGJFIQfINFY6VI+Cky8dAwQjg+fLLEXAEHAFHwBFwBEqDgHu6SoOjl+IIOAKOgCPgCDgCjkC/CDjp8gHiCDgCjoAj4Ag4Ao5AGRBw0lUGkL0KR8ARcAQcAUfAEXAEnHT5GHAEHAFHwBFwBBwBR6AMCGv5RhIAACYASURBVDjpKgPIXoUj4Ag4Ao6AI+AIOAJOunwMOAKOgCPgCDgCjoAjUAYEnHSVAWSvwhFwBBwBR8ARcAQcASddPgYcAUfAEXAEHAFHwBEoAwJOusoAslfhCDgCjoAj4Ag4Ao6Aky4fA46AI+AIOAKOgCPgCJQBASddZQDZq3AEHAFHwBFwBBwBR2DkkK6OjhC6uoLeOlqdUu3pWd335uZh2f+VK1eG7u7uYdm2cjWKF+I2D2P5dGn+VPNLe4ezfEo5Rn0uoiqH71wM0pVSltVry2ywD1NdWexcrGzSZUZ89uwQfvWr0PPaayE0NRWLSWU+D+HUIK352tdC+NCHVk/a+qEVr5Gs2ZLPxRdfHP71r39JPNUpH7CAcH31q1+VeD4UCWj9MJPPa5o/jY2NlTn+i2w18mBsnnDCCWGbbbYJPVrEDLV8iuzSGo8boZ41a1Y499xzw9y5c0NdXV0pq6iYspB1W1tb+OY3vxk+8IEPxLk45FiYw0C6skfyCdi0IdYPQyZQbFdra6iRfMIGG6y2ZSNorA6tVS5Gqnh2/vu/Q3jhhdBZWxtmjx4dVmiQ1nR2FlNqxT4rNEJte3uYevrpYRRev8mTQ/jRj0JYe+0h6ROK7NRTT5V4XojGbP31148/GLNqvcDkrLPOCosWLZJ4Jocf//jHEs/Qyee/NX+ef/75KB+MD/KpZm8kff/Zz37WJ58faf6ss846FT9cFyxYEMfaSy+9FGW94YYbxnFXzXMREnrKKaeE5cuXx3HPXBgyWb/3XpCAggQUbdnMMWNCh0hGNduyusWLw3SRribs+XrrBRmTENZdt+LnIh2oTNK1ZEno/sUvwsyXXw4rJk4M3S0tYemHPxw6x40LNawYqvEitKgBuvLZZ0PDvHmhXi7qaSJgTaedtnrQljHsukTyOfvsswPKfttttw0tks/OO+8cJkpWnVVKigln0Pe//vWvWsTODitWrBAn/lFU/BCecob1kM8555wT3pOy/7DmzahRo1w+vfJ59NFHA94g5ANRGQr5lFJ9zZkzJ3qZ27UgYy4i69133z2M1iIV4lGNF3OtQwvT++67LzAXFsvAX3DBBeHEE0+UqpSuLOclj+Mq1T3njTfC8kmTQo+84Uu23z50y9MjVlzOlgyfuiSfmlWrQsff/hbqli4NDfPnh6nSV00nn7zallX4VXmkS8qw5/zzw6y//z3M2Wef0C3lAdGqlUGr1wTKddVqJZHmSmbVhxIayOrPyhsOSqz9gx8MPaySRLq6Hn88rC/iVX/mmSGstVYuaEryPcYKBQaxOOKII8IYrdrAZZUm0cKFC2MdKL2Ghob4N99l4oaMLLTDc0mZ8Kx9B4mx70yu/ZEX6rGwHs/lQwCpi7K5N+kFsnbwXbJ9No6yeYx23HHHOP5Q+nfffXckXj/84Q/D1KlTS4J/rkJMPhCLww8/PFU+ucrI93uTY5qM08owTMEOHMGJv8s5r3bYYYc++dxzzz1RPmeccUaYNm1avt0eNvfhxbnwwgujN+eQQw4J47QoZRwzp/C29neBfbaQG3Ky+TMQz6jNqbT6baxQN+OH//lti5aB6Ods/fz4xz8e+7hUhh0CRtj1dOlLQo9luaQru9GVb74Z3t1jj9AlXWm2rG7Zsr4m0H/DgP6DeRL3pP0B28zvs/XFnrP5VpY+Z6kkrS1LNRe70b9aMPQ8+WRYR46WeulKCWgom1p03ZVHuuiyCFe7vCddUiL1icGZDxrLdD+rPjPYTGZ+cLsz2Ri0+UxsJgEX5bBa4n9WkeX0WKQaLrUHt3SPSE27DEXPTTeFmJhZpgvs/i75sGKcpJVbpnK3VSYrcC5W3OCWxBwjweqTz8aPHx/zjPibZ1HC7777bsQbI2KTFZniucGgcPE595sC4m/ux+s2XysnvqdufmeTN89QJmXzLDlZ1g7kPk8eRUiMKUDaxDiCaHJvmkGifTwL6dxA+Qq33nprLKNcl8lnXbnqJ0yYEMfuYFxgZ3JEvq2s3HNc4IJskRFyYezwLHIq15UmHxLPK/X6xz/+EXPUxo4dG8dxPheyA3t+LBcsadgt3405gXzyvWw+Mm9oiy1yjcTxG1kzLlmgMX6YS+DPvfShlLlXLHy4GJuE+5944omyEnzq7pF8lisC0IUuytADZkvQDxBD5gf9x07Zhhx0DFjxOZ8xf9CX+dgi5j640n+zZ/nKspT30U9rC3PfFtXYsToWu+rXcsm+R1GcuFmuwq/KI10y1qswlAyUAgTAoGKAPvfcc+Hhhx+ORs+SuhE6A3nrrbcOW2yxRU7ihdJBITC4UQh33XVXVBZ77rlnLHcgq7+SjyNc02pLhwZrA0mZ5Kb0EsWS15UokARdI7BGgJL1gRkJ9ZdcckkkGwcddFDYRx5LU+5gh6G47LLLIsEh8XzzzTeP3zMZ33nnnXC+PJ3I66ijjor5GMiWz++4444AmeN/yBJKFcOATPjZd999Ixm8/PLLIyH87Gc/mzXMQhm078YbbwyPPPJI9NqxMmasoOCohz5QL2FTU1r0/aMf/Wj42Mc+FutMI3S2WuV72kFZtKscis/kM9jhJTB69dVXwxVXXBFxA3ubg2njj+8gw7/+9a9jGGzjjTcO999/f/igPLc77bRTxD2fxVApxnZSPsgWr2255FOK9lsZM2fOjMaXn3y9hTa+X1bqBp4+jD14MJ9sEcQ9LIY+8YlPREIXyUMeoTDGBIve6667LjzzzDNx7tkc4Xn+Zu585jOfCQ899FD45z//Gf8n5Ev9X/rSl8KUKVNKrl9tEwWk7u23347kriyX5LMKHSFSUZuxs9vGOykaLGLfeuutSFTRgYxF5ghEETyxP8jjIx/5SMSKBRU6E12bZovM0YBeo0x0FUR3KOyWjTcIL3qQtuBVXiOqoLHRo750aBw3SD4SUFnEM1iVVBbpkpeg+9JLw1wN0CXKRaktcAVqygMvCkZg0003jaQJxfLUU0+FW265JbJ+Ek2zKXk+t4mAYWCCopQpx7wggyWsQsrFTd2hwfuOlOIGv/xlaFACd5g+vZAiCr4XkvPb3/42YkIOV5oHB+PKRMcgsypDOSCL5MUuuscVGqUclIopCTB+VqsdiDNyIknfkl+nq28HH3xw9HShmCBE1IEC32yzzaJsCOGhvCF9tnrO5pmknTNmzIjj4sUXX4zKjF2HkCSe4fk3lIfBSvwLX/hCXGWiNO69995w5ZVXRlKIwcg2jli1ojwxXOTc0I/BTqpHPr/73e8irhCZwfSw0W/m1SuvvBK23HLLnGOJ+5EdsllLoXCwO/DAA6PXK1+jnrOSAm5APhivpHyGLNG6gHYnb/2l5j0GjMVk2gIorVgLj6Mbbazj8fqVdodTxqc//en4OfMDQ50P2bJ6LEQIsWEsMjeZk+Zx4nvGJuNyq622isSbuQzhwDvGfYMRSaBfm2yySdzReaZSMSD+hXjwBiie0HPeeWGuFmntqjszaZ5+sgj5y1/+Eu0NhAq8aeNjjz0WP2N+QE7QO4xXsGJeQ14tNJ+tbZQPpsxR+j8YuOaLi9lUFglpXmWwWaHF9Wx59DZQuL9Wul0Cyrf4YXdfZZEuVlN4ugRjl0Cvl7ep0IvBiMFGgRLeYSIzcJlkl4rQYdRJbMaI8p0pFZ6z0COk4Omnn45G07wo9pvnmAD8JFeXDCyet3CW5S5Y+RZCoz/J0GW+K9T34ZBYHfSInKgzhUJV8P30BaUAEWEVy4ROu2yljHJlokGEeMYML/lG4IiSMWXAb8gaO7AgWGD0+uuv97nckSkKm8/BkhUxpA4CjQJHsVjIiu+RVzZFYyTPyscA4dFCSUEIGC/cg1eLeiCO1A+5o+xfKPcAQtgf6QIXnscTh9I0w1Mw6AU8YPKBECIfCO1gXhZutXCBYW5zjrrBCyyTmPIcbQRrZI4itvlnuS2WJziYq/Nyy6fUsmAe4blHtxUyvhgnjEvIFTLDwDMXmUPMBYgcf5sOQybcZ3rLZJONkHEv5VEWejhpaO1ZZG/hMu63ccJY4X/GlI0ba8tA8aOdkHtwYp4PWOcW2gA8XeS8qu7a3rQIiqBf6Ea8gRBUiC6kEAw22mij+P1tt90WsWNBYySLOcJCAVkbCUseh8HfyTxWMMzXbplsrYykbC3/z/Jbk7bN5GX94nnkZfmelrtn7UjVydgy6croFcTTVUCEq1CRlOP+yiJdIIKxZGAWcdAmAwbBMziZ8Aw+jD5GG8PKapu/CS1YbhBxc8t/wQPCKgT3tyWEUx6eD8rjM1y/GDbqYoDxPQSDVSP/Y6xRbPzNROBZJhVtwhNnBh3jU8hqco1BQx4UOHH2kiZqOS4LF/SnuEzJgQE4EsqAoPA5SgZjgcK3vlv/wYVVL4qHycu9eBntqANbCVvyNb/5DAUGxoWcEcb91MUzkCkUIJ4z6k6WQz+pw4wO44i/IQu5PJ+mwPojgKWWWT7yKXWdVh7yYvxjtC28CbEFPwyIKXZ+cx/4Mw8ZJ8w9DCJjgItwCp5BjOVgEa+hkE8psbeF3EDwMcPJbztMlXL4m/lk8xv9yGfoTBZPyA7CxE9/+ZJWFs8aIbR5jj5GxzKHWMwkF17gw5xHR1jOF4sw5h3XQHWl5X4auSulHLKWxYIjxZaBGwtGvMToNgiX2RCwYBHJXDLZGKFBZ/EMmDHPkQfElbkExswZI9LJZ8DSzm3D82j5l0ai+B7iDbaQZfN0mn5jTvI88kI3Yjct35axwjw2IknZzH/k/qY2ELDw417u69fbxkIXp0sZbdlgjYHKI10lQsK8GSbo5K6Zv2mrKpPwgAMOiAqfwYVnCw8XXjA8Eww0BrjlGGA8LOzEAMILtuuuu8aBzv+ch4T3g8FPXQxeiIYRhttvvz3eB1kzly9l7KFdLRiWgSqTEsFV8mLAiskGGWVS7rLLLvFvlC3Kg4ltip3Jj4LFy4UCIQ8MHG+++eaIKx7LUu7AQenRJmSKYSfPgHY9qR00uPn5zMYNbbOVHm1Mtr8cOVolF8wgFGhYsUMM8kouHrlAjHNW7CjsY445pi+UiMHAqPzpT3+K458jDgjbElbmsjlE6I9xM5jEaxDgGDFFMr6RBflXyNa8KHiMSBkg7yjbxqSk59+S4y20ieEm7xady1w37ybPsDhl8wnzjOeok7A/YwFdXAzxGg6CoY+WBsNCg9CwhQr5nB8Wo5/61Kfi5+gcW9hDZNCJ5EFCekmXYdFCmcgJAsYRMXxviy8cAYQrjRRhj9hhjR1C/6ID+d4Wkcy17XWkBd59nsFJQQoGxIwLHY7Nw7axQIUgX3XVVdGLiFwhXPyNLidtg7bzP/q2bLtGh1jQVUm6GCwWrmBgMaBYqcG6yUVi8GJgmdgMXgw9Xi0UCAOWC9K12267RYP/4IMPxlUFhIw8BEKU/DDAGMCUQ9Ii/2NEIFd33nln/IwVGoPNVvYoKspkQJLXhLsYF7KtOoZ4vJSsels1gTkTzkIEGGCUAysiFIKtyMDMcrlQsngeWZVChEtNSJEz5eKFw6gTokEOEAZWfJbbQ73IFlmiUFBAEHYUFsqt0g1AyYTdWxDzDLlhKM24QLxsl5zVZ2Fm7mUuMhc4XgMDtNdee8Xn//jHP0ZDb56AUrfVy+sfASPSeKmvvfbaqNsgAujTa665Jlx//fVxHqDL0uYBc4VEfTu7j0UTXha8OLbIQv6Wi2a5oJBvNtqwOQNdjO6FoEEu9t57776dzpUsPzC0qIol9WfqONtxmMzL5B6es3xV9Cd26rDDDosLE84IhEBBTtFnYI4+A0f0HJ4nbBJl8z82Dd2GPrbjNSDYyABihXxZ9OJ8wMGA7aMMNsAwZ+3MM3Q6OpN7IFiWswspY/GF/schUU6P/1COj6oiXaYoGJgMPgwmA5yByd8oiO222y66dtlNAdHCs4Fnix8IFAOWQcgAIUSC4YfAQbgwCnzPoIfJ8wyTgkGJoeB5coww6igdBjgDDlLFZ9TPCgIFRlshbgxiwlsjyWtiKzbzIoIPCgJcWRmZJwmZGOnCYOP9AD+IMEQVxQE+rLJslVuKyQT21AWRQiZ4JZEtYwaFYfKgHygtyBjyYxwxdmiXbdkuNSEsRf+Gqgxb6CTDCGmfmcztzCHGPgnCKH5CScwZxgoywjD3G5YYqs6O8HrBnAUTG0wgzvvtt1/Ub+hFFivsECYcb6QrSaht0YqhZR5blIHFDT+UbTk/yYgEcx1jjr4kiRw9gS5AT1MWRCHbUS2VIg76i63AhlhOZFrbs6VvWI4Uz6CDwBObAi7IiZ2O4GUHMmNrWMTyPwQY/WY6jvlFSJ+NQoQ4mY/YMwg19g29SB2cbYf3i7ajxyHK6EHL1UPGjAPawvhgRzj38gxkDBlSnu2QrRRZDbSdVUW6TJnjakVxQ74wihAnJjLeCVYWDBbCWxAAyBHGn1WBkQELZTHwLVHRzpOys1QY5LZioRy+Z3BRH/cYscJoWGycQYyh5zkmD39bMr95BgYq6OH2HH3GywdZguAy0ZnAkBg8iExAsLVcBsIKyIEJbcdJoBBwf0N6UPqluKjP8ilQIHhYUPQoINpEyAMCwH38sFL71re+FduOLCHStO/qq6+OITMUWbUQLyM/peqvkXOMOatmvCocC8I4wKAXle9YisFSpWUkF68YcDxUthAxPYlORXeaLrMxYb9ZPJ100kl9ifSUaXlV2Y45QAdA6NDdHDtBHSx0+Bw9Yh7USheLEU76kY1c2WaCbItxC0NCprjHUlrADAyNzCI7bJOdHQiOECB0GU4D7Bh2jzKQC98z77BptluSRS/eRsrlh2dN75l9tTPWsLl4vkgtoV7ahReOcgmVVsNVVaTLlDgD4tBDD42ubDvqwVzgDD48WDBzVnGEiwg9QsJYZdt9mYMj2+C3VRyDN0mc7FRmO3HdVndJw1Uq4zUcBzJ9YxJDNFEETGImM/3nMxQ2l4UaWMlCbFAAkCKeZ+LyLJ4yzvoqNgRrMkDpQOgIXSE/CBdtZVVGOwmHJeVpJBwSSfiY9jB2yEVirI00wpxtPFnuTdJQFOOFMnkQTiIvBIWOTMAVrJmXI3mODMd5m/RYIWf0ZfJQaeRhus3CXGkHmtr8t4VrPn3FKNvGFQw9fzNGLIIwEnL70CXghw3ib9sBbjrE5gRnd+F1smM9MucZ+NqBqWazbFNYcgejkTezjZYnZ4cEs/A322ZlJu9hQUrYElmwMMJ5QbuS9tDaTDtwIlC26Xprm+1QzWccVPo9VUW6TFg2wGziZ37OQDN2/7hI1wp5vnCFDmSHjIVPGGi2gjPvDf9XSxw7baKAPystVjnmuQBjvIAQHy4mLMoW4sMW869//et9hxfae+UwypAkSFExRt7ayMoZefGaHMLLphjY7MAKG2NvW7ftOyNerOjwaNLmalm5GTHGY4nCJXcDQmyysJBHUja20jbvRtr4oFwLiSBfXmWDFxR8GQ82RipdCVdi+5m7yAf9BblKeplsowMLkzTClaaH88EAMoJuhnTvv//+qYus/nZN51PHcLiHuYEeAT+8QqYHLSLCHCOXDezZ5JNN55l9s7lmZMt23FNuJum141mMjFmurdVhxyGx2MWjRe4z9XBGImkVfEZaTJrX0Qg5ZZs9TLYtSQaHgxwGqw1VSboyDWUauLa99jEls0+WtwIWbwok03hkEw6DDO8MqxEMOeEp/kdZMZkwOAMhcoM1GMpdLvhgQAlNEDYigROFmjwLi4lIOAm8COtxj8mBRE5WVoQXCT0ZUc6nH7b6sjChKTbCm5TFShPyl8wrIuGU3XZ43ZCprRxtByPyxAuGN4x2VstuHLBEibLxg3AvOSKQLkgn2IClGWiUvB3GaEn02cJCPEPeELk8lEe5eEEJ+9oZavnI2u8pPQIWvkIvYnjRb+Q9YlDxRCNjOxKnFN5IymBRReI2IU3CVMxPPOIQEPQqHq+R4O2ir3jI6S9jnz7aWy/4jkUfn7HpC3KWhi9zEnLGwtTIGqFY5hq2zRwP2CTmITqX+9F/6C3sEvqVz5AnzzAf8TYzJ9F//IZkESpmHFAnz6MDmadpF7qAclk00R7kBtHjucE8rLn0M2DgJVYl6cqlBDCeDGYG0oNKnra/jayhWOyMlKTXLCkGW2WwMiMJEU8OW2tRCigkiAITyU4ht3Iyyxi4aIf3k4YPKyZCRihRFAKT3/LamMRMSJQsvzG6fGcrIp61RF2MMDKxgzjT8MxcYSf/NyKNkkNWKHCUenIlSNuQGTklKAxz+dt4QgkRjibvC4JGPkU1XPQfueD9Y4yz0kVe7DZF+dr2chSunenEvfaqF3BNkw3Ys9rHG4pMyPtD5pzSjaEfqleXVINMM/uYnE/2N4YZTzBk23a58dwDDzwQjTJzMy203t/cTBsHpivYHUeZhNbIIWKBBuFi9yRJ9CR0l8LTPdTyZdwzV9Ah6BrGO7t2IbGQFXYHoocguZlnsZkugiChU9FFJLAzj/AM8xscTa+xoGWRCRFCzxK2ZQe9hS2pE/napjHmNnUSdeA39owFMaQJ7NF/LDqxmRbZSdpI6sceMpetLGsDxK4arqojXRbO6I94cQ+DiZXGZA0ejK8NCJ7DmDKoOAeFcIflZSUVRjIplEGOlwaDxCrFVoG4hgmt2UuTk20yRTOQgw2H+8Clbzbp+c0EB08MN39b3/kNNhAhJitySOZtgQ1ywfiSW2AHpzL5+Y6yM+VsRI6cK1Zt9n4y7mMjBd+jrCCCyZO8+R7PFgQBgkd93Mffp59+elzhQwZZ+fEsOYMoslKeHzZc5UofwZGVN/lsGEE7MZxt/MwX8MOIEArGW8hOUAuv24vE6Z/JjPsJU6Hs2VGMIv/973/fd+giGLOj1U7Vr5a8uaEaA5abavPJDCkbSTiSgND7Oeec07cxic/wgKQRrGxzM3PBmdQR6Ex0BKez40ElzM8mF8YA44pzukaCl8swYDyDH/1CV3EMB1iCA4QL24EuQocl9VzSvqFP+Z/dgswlvO/MUXKT+Zw60HHMWeYlCyIIETJlTmKbPvnJT0YSzZl5XMxz2oRtpAzmJsT3N7/5TZQP8x5Hgh2ia7rY9CBtxR5C0uwVa7ST+srx6qWhmj/JeiuPdMmw6Vzagl/ebIMMw4rCZvVsZ8CkCYLBwgBi4LEqN2PPwMeYcnAqYQ7K4X9LOLSXLGNszJhgkMkJY5LYC5lpg+1mxJhTHmUwqBmYDGDyFhiIdjhewQOGg/a04hEb4Kjmgh8fyAMWKsq2sQB86PsJJ5wQlQdyYZKyk4lnMNCUwcvD8WzhbbSzfFhZJ2UGTuD/jW98I05yvqc87uHMIFbCdh4NfTHFfdxxx0X3fJIsI1cUCSs72sOKOvk95dI+ZMJKEBc8Y8lerM3zjBc+Z7xQRq78EsaYJaX2twgYiByyPWMn82eTTzF1MQ94KTFeKYwh4xssuKgXWbD9HCWP4eR+xjttgTiDHy8453Nw5G+INnPw+OOPj6t8ZAK2zAuw5+/BIrZDIZ9i8M98NtdczKcuW4AeeeSR0egnPRhGts0IQ4yRJfObeZz5wmXmA3JjQWJzMS2Ph7lMXiCpA4wZFmIsvqib8XD00UfHcCaLHj7DiJsuHeg8snSD/mxCPngVdI/ZMumBzIt+YDcglPSfnEYwAD/w5TOww8awiQjbwXccJst3kBr+R1ehP+kXupL5Qtk8a95B5II+5H6IHnrUduHjJWMu4gFD3hA228WP7qJ9LHyRPW3he8pnMcT/tIt3bNop9qZ/7ABW6uV5OwDcbML7AMGWgVPidUkFYT2Mbq4s0gXoGhB1vASZl13zf4FkgklrBjGbF8kMoR3UCfvnsgnNBEWpMEBtBw3f28qMAcQz5rHhcxQQysHKMkNhxpwQTLIMBmzys4GMGV56XS+cangruwzaYF/gYhPWXuuQqQTBAmLDicW24rWzXswDxm+MNVhxvx2vwYRNyoz7wJqwghl2W1mjLDAAyWd4FlzxOqaFIUwm5Jhl21UFGaNt1GNJoElckzLPhTdtg5yAmYVFcz1TzPcmH3s1Uim9QyZnlK5taEh6NK3dzD0Mqa2ArQ1GUJGNycFy+/gfebLbmMvGAM9mk1MxONmz5ZZPKdqcLANCQh/s9VgDISRgzdjEo2H6KVmOGVGMuxF5m9eZ+tU8m4TFkrous9+UiW61ow4s/GzeNhZids5UIfOtP3whJZA9y10qtSxSy5MerOOgYIgEi+MMW2aOArNZNlcMX8qEmCVtDUQV+2VHEaFrLexqXjCTC+TNyjR9aPfYPONzI9F8ZnjbGLBwIToz06tp9TBvk+WaPbS0g+R4yraA4qXX9WBFrhhYVfA1+Ja4lODwUtUvfjFMOvvs0K7wzlK5QWshXwVcJtRsCsjCT8SZ7TUwrLwzL1P2aeWYsUk+Y5/Z4E4jI2n3F9C1NW7t0cRrUBLlVOFU/5//GeQuGGhReT8HsTziiCPCr371q5hzgys7bQefrbQMA/vfJnVSIScncjasbbWcOXnTJnCyrrSOZSqVbHLvD5R8jBuKkdUrrvljjz22pIe7Zmsb8vnc5z4X5YNrH4JT6uTVTBKUNs7TFjt2H7JMjgv72wyu9c1Ibz5Y5z2AEzciHzzZ5A7hWUnmnQ2kvKF4hnFF2IdcHrzGxXhxjBT3p++Snt1scknqxv5kl9SvyfGQ1A3JsVAMvpBK8pnIbcLjzkKuHFeNPO6TzjsvLFeKQrtypCAWmZfpvyRW/dkOcwIYzjZvbJGTLD8pr2x2KZfdsu9tTqfJNC3NI1lurjmMLWtWbtsU2bPak08OElA5xDNodVQW6QIGMfkWPDhyS/bgvSmQdCUNeyaq5mJG2fKqAyYjblAUcFqoKNdgyWbUB02ayYK1GqjhhbFy+9awsuRFoWW4WGlBtAijsgrLdmxCJnbZlHl/8upP6fYnm1xyK/b7fGBmTOHlIkzCSrCQl3HnU362e0w+hAOQT6lJ10DllSbL/gxNPvUUg5PJh4UXIZRyyaeYNmc+S24OGz4INaHLiiFdpZwTucrKHAv96YZS4IWs2XFHZMNOVi9FuTnLEBFukf2q54Bs9HU/DxSKGfLG02mJ9rnakqv8Yr4vRhfHeS751CmU3CIZyW23OsJVwVflkS5WwopR17MVVgO2W+EiMaJQW4K8JQYHjB3PluVT4Z7NlZsznOTfI0Ma87gIC3DiPh6uAkOwxfQHrMjPgVBg0C251U7WL6bskfCsvTaKcUZOUilfX5QPPsiHvAnIMOEUl8+aqCXlA1lBF+QyOPngPhT34DVkLiJr/iaMj/x9Lq6WBrKGnIANOUiWO1o2WWHLCDEqz5W821LZMvpDmJ+ogyWnV+IY7pYtk8cjYlPHi72ltzynq2yjM1GRXIu13/lOWPtHPwrd8ka1K/mZfKWVvMBT39XImBVzkW7eIiLXJrLCQLVwx3Dn1iQZ0vcmuWFrde5KvZTIOvJmNP7kJ0FJbMVAUtCzGPFTTjkl/ET13nDDDTE3w452YPdMtjy6giqpwJst/wjPCd4HVtacOXTGGWf0vUC7HN1CPt/+9rfDWWed5fJJAG7hF7ayIx9+OPIC+ZCDVokXBveb3/xmuOiii+LuQvqBd5PcUjx3lWiISyEHZI1eZ8MHC0M8XHh+0Vsssst2aS7Wq85p7PrU68OWs0DmsFnlWnVLPjUDXCxjw+plwybzmh3ZhG4R7Uq6oi1Tm5sUBSB3u1mL0+mSV+OppwYJqJK6ktrWyvN04VoUiWj43vfCuiJePToXZJV2V8xVuHGFBlptkaSrUiXKQKXvUxQaHSWDXqMdLA3f/W7Q9pWydgmFRrL0qZogP/3pT+NWZ5JTCaGRMF5JXsNSAmdJ/ZwxROiV3TwnKz/BEpRLWVd/ZZl8vquxYfLB0BBCq3b5MDaRDwYYr8dQyKeU4wBZk2TNLtDzzz8/Hj2A54v8LghZNS+AIF2clcjuORLFTzzxxIhLWS9smQhwi3Ju1zv33NW2TEekzNYxEKvkhRso6SprHwahMmxZHRuotFu5kfMQtXGiQTvUJaBBqK38RVYe6TKMtAux4fvfD4pjhUadmLuuzvDp1sqlXLlL5RdV/zWyMtDyNdQrebZGO73ibkW8gEN04d6GeBFmRLHxEmiSt/F6VeNl2+s5UoFdO4Q1htKD4vJZcxSafDgagZ2SyIddmCPhYmfZaaedFsOMzMVLL700/u7vFT0jod/Z+oCs8brzSjHmAV4/dggO2aUk+mjLJB9s2fq//nXo0SYbcpmq8Yq2TPJpkJc22jBsxlDKp8RCqFzSBRC2I0/HN9RrK39Mqq/wJLui5EvfOd17mGyptR1fHLPAjx0jUVQfK/RhQjl4uzgrZzDOyBoILC6ff6M2HOUzEJlme4Zxx8U8xLNjx0iUso5KKos5OKREKxMseysDtow3WYyA86iKGg/YsN4xW1Q5w/DhyiZdSUAVrvFr+CJAOM2v4YuAy2f4yqbULSv35o1St3/El5dyRNGI73MVdXDkkK4qEpp31RFwBBwBR8ARcAQqDwEnXZUnM2+xI+AIOAKOgCPgCFQgAk66KlBo3mRHwBFwBBwBR8ARqDwEnHRVnsy8xY6AI+AIOAKOgCNQgQg46apAoXmTHQFHwBFwBBwBR6AyELB3W9JaJ12VITNvpSPgCDgCjoAj4AhUIAL19XXxbRBOuipQeN5kR8ARcAQcAUfAEagMBNrbl4XfXPL7cMW1V4UD9trTPV2VITZvpSPgCDgCjoAj4AhUGgK8cure+x4Ij91/n5OuShOet9cRcAQcAUfAEXAEKgeBpUuXhobmViVzTV4dXnxPb/DmFRgteuM5P345Ao6AI+AIOAKOgCPgCAwMAV6zxbtOCS3+4fJrw7TNDww/ufyEmpUv3RHqX3zxxS1xf/Eeqk314k2/HAFHwBFwBBwBR8ARcAQGhsCcOXPCjBkzwpIlS8LV198YDvrqleH/HT7+tR/8QKTr7rvvfmlgxfpTjoAj4Ag4Ao6AI+AIOALZEDh4391DeP2X4Qc/WH3H/we/FKfqBUyqRgAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "532601bf", + "metadata": {}, + "source": [ + "The gamemaker studio output details are as follows:\n", + "\n", + "![image.png](attachment:image.png)\n", + "\n", + "The above generated Python code does not print out the contraction order shown in the image. The ncon function as well returns only the contracted ndarray tensor but does not give out all details in this image, which is great in taking this code into simulating tensor networks and understanding the contraction performance. \n", + "\n", + "Is there a way to get the number of scalar multiplications in python, the tensor contraction order and the other details shown in the image below? if this is not readily available in these libraries, (the authors might reply with answers), then this makes a good MSc project idea to release more details about the simulation, and try different methods. \n", + "\n", + "Tensor trace obviously hard code the graphical user input into the Python code. " + ] + }, + { + "attachments": { + "TestNetwork2.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9MAAAFpCAYAAACfw3t/AAAgAElEQVR4nO3df5BV9Z3/+WcrRqBRUCI/NCAixBSQQdg4gyJycIbMJBt2vmPK0cTvTs3W1ndrysp3v7U7SYqaDeE4uluUyWzV7KSordrvflOzuxrd1JiaJZtJIBMOtqCTyYIkjZUoQWgmKGgrYLdGx9j7x7mn+/Tlnvvz3N/PR9Wtz/1xzud+oJvmvvr9+XwOSJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSVLdBoHfBf4SmKji9peF4wfbMVhJkiRJktrtDqoL0Fm321s/ZEmSJKn5Bto9AEkd62vAFwHY9iCs2QTL18L867PPGD0DJ47C8BDs2Z08+3XgS00eqyRJktRShmlJpdwOHGLGFbD9cVi/tfYeDu+DXQ/A++8BbAQO5TtESZIkqX0M05KKDQJjAHzl29lB+p55U/efOl/6mMP74JF7k0dzgPGcxihJkiS11WXtHoCkjrMBiKd2VxOkSz1OrN8a95PuV5IkSeoBhmlJxTYD8RrpUoor0klVOitQT/WzOZfRSZIkSR3AMC2p2A4g3mysnKyp3cWm+tlR94gkSZKkDjOj3QOQ1KGydu2uNkRX6keSJEnqYoZpSfWrZhMySZIkqQc5zVuSJEmSpBoZplWv/cCEt568Va+aDcima8X4g5r+DJIkSVIdDNOqV9DuAUiSJElSu7hmWvWKgOCmO+5ncP6Sdo9FORre87Wm9b1m25ea1vfLh55gfPR00/qXJEmS0qxMS6rNPfOqndItSZIk9SzDtKTSRs+Ufz0J1JWCdaGfGVcOvpbDqCRJkqSOYJiWNM1VC276CQAnjpY+IH0JrGoujVXoZ9bcBafyGJ8kSZLUCQzTqtcBgPHXR9o9DuVs5txFYwAMD2UfVBycy11jutDPZL+SJElSDzBMS5rm6kUrFgCwZzcc3pd9YHJZrHJB+vC+uJ90v5IkSVIPMEyrXhHg7sk9aNa8RasWfmxTBMCuB8oH6nIO74vPBxZ+bFM0a96iVTkNUZIkSWo7w7SkS1y3ckMw58M3HuH99+CRe+GbfwH//A+VNyUbPRMf982/iM97/z2AI2OvnQxaMGxJkiSpZbzOtKSSlt3+x+tee+m56OzPhwL27J6crl2La5b+VvTmyE+D8dHTnPvFQRbcsrEJI5UkSZJazzAtKdN1KzcEc65b9sLFV4+f+/WFV+e8de7lT1Q656oFN/1k5txFY1cvWrFg1rxFwbyPrOLlQ09w7sVDAAZqSZIk9QTDtOoVgWum+8GseYtW1bjeeVrgHpy/hJvuuN9ALUmSpJ7immlJTZcEaoBzLx7i3C8OtnlEkiRJUmMM05JawkAtSZKkXmKYViMicKq3qmegliRJUq8wTEtqKQO1JEmSeoFhWlLLGaglSZLU7QzTasQBgPHXR9o9DnUhA7UkSZK6mWFaUtsYqCVJktStDNOS2spALUmSpG5kmFYjInA3bzVucP4SFnz0DsBALUmSpO5gmJbUERbcstFALUmSpK5hmJbUMQzUkiRJ6haGaTUiAqd5K18GakmSJHUDw7SkjmOgliRJUqczTEvqSAZqSZIkdTLDtBoVgVO91RwGakmSJHUqw7SkjmagliRJUicyTEvqeAZqSZIkdRrDtKSuYKCWJElSJzFMq1EHAMZfH2n3ONQHDNSSJEnqFIZpSV3FQC1JkqROcHm7B6Ce8KcA1yxZ0+ZhqF8MfngpEO8in+wk/6/vXORf37kI8LfAyXaNTZIkSf1hRrsHIEn1WHDLRqBQnX7xUJtHI0mSpH7jNG9JXSs95VuSJElqJcO0pK5WIlAHbRqKJEmS+ohhWo2KgMl1q1I7LLhlI4PzlyQPd2KgliRJUpMZpiX1ov0YqCVJktREhmnlxuq0OkRUaA3UkiRJahrDtPIQtXsAUspDhRsYqCVJktQkhmlJvSjEQC1JkqQmMkxL6lUhBmpJkiQ1iWFaeTgAMP76SLvHIRULMVBLkiSpCWa0ewDqWoPABmAzsAPg3IuHOPfioZIHX7Xgpp/MnLto7OpFKxbMmrdoVeuGKREW2p3EgXoLrvOXJElSgwbaPQB1pTuAg/WevPBjm6LrVm4I8huOBC8feiLZUT4rLIfEgbrcMZIkSVJVrEyrVl8DvgjAtgdhzSZYvhbmX599xugZOHEUhodgz27O/nwoGH995Miy2/94XWuGLAFWqCVJkpSjy9s9AHWV24H/nRlXwF88CZ/+b+CGlTD7qvJnzb4qPm7d78LK/wwO/T3vjb2xeOCyy6PB+R9Z1oqBq/edPz3Mv75zEeBvgZMZh0XEM3IC4E+J1/tnHStJkiRlcgMyVWsQiBdEb38c1m/NPvKeefGtlPVbYftjAJz9+VDw7tgbJ/MdZvMN7/naZJvcL3VMPa+Ve8/ic2rtQ5NCpirSbkomSZKkuhimVa0NQDy1u1yQrsb6rXE/wNtv/Op8owNrpeE9X2NiYmKyTe6XOqbW1yq9Z/qc9DhUl/QUbwO1JEmSamaYVrU2A/Ea6XKyKtLFCv28N/7GrEYG1UpJgB0YmL5vXztC7ZptX2JgYMBA3RgDtSRJkupmmFa1dgDxZmNZqg3SqX7efvOVWxoZVDdJwnizz1FNigO1JEmSVBXDtGqTtWt3EqSfqnLWdrndvztQpVBbqULczCCdNZ3cinXVDNSSJEmqmWFa+ak2SPeZdCguniKe5znF5zoFvCZJoA4wUEuSJKkKhmnlo4eDdHGwXbPtS9NeT8JupfBaayiudE6ybrqa91ZVDNSSJEmqmmFaarIk9BaH8LzPKT633vP7nIFakiRJVZnR7gFI46OnGZy/pN3DaEiys3ap3b6BukNxvQzRDdnC1O7e+wuPJUmSpGkM02qr8dHTvHzoicnHg/OXTAbrwQ8v7fqQra5loJYkSVJZhmm13eD8JYyPngbicJ3c58VD045JB+tOC9rp6z57KaueYaCWJElSJsO0ajN6Jp/LWo2eAeDqRSvPL73t38wDpgL16yMkj0uGbMgM2p0WstX1DNSSJEkqyTCtaj0M7ODE0XzC9ImjAFw555qzwDxgKhCXCMPjo6enhezithOq2enqdD2S3bjzWO+cZ18yUEuSJOlShmlV6wCwg+EhuO1Tjfc2PATAhwavfaeaw4uDcaJXqtmVLr/Vrr40qVKg3g88RLwTuCRJkvqAYVrVeg6APbth7RZYvzX7yErXnD68L+4HmH3tDfMaGVQrqtnF66GrufZzK9ZNG5pbLitQJ8+BYVqSJKlvGKZVrXFgI3CQXQ/A9sfKB+osh/fBrgcAWPixTdGVc64N8hxkWt7V7LSb7rh/MlQXh9gkUNfyWj3nZKn1eNXkIeLgHDB1HeqgqJUkSVIfyC6xSaV9DfgiANsehDWbYPna8uuoR8/Ea6SHhyYr0nM+fOORZbf/8boWjLcm5arZQMnKdPGU8eS5Zksq01alYy8feiL5Wm2huRXigKkgXazZ7y01ahDYAGwGdlRx/MPEy3yeI/6lqiRJKjBMqx63A6VLtlVY+LFN0XUrNwT5Daf5kuthJ+E1fTmvLMVT0PNem22Ynq6FYRqmT+1Oi3CDMnWuO4CDDZ7/bE5jkSSp6xmmVa+aqhtXLbjpJzPnLhq7etGKBbPmLVrV9NE1SakAW1zNrhSyofFqtkH6Ui0M01lBOmF1Wp0ol1lFwNcBf+hIkoRhWvnaDwQ33XF/23fHbqbhPV+rKsCmQ/bk4xyr2dWOo1+0KExXCtJgdVqdJ55NNOMK2P54Y/tdvP8exPtn1D07SZKkXmGYVp5CYOeCj97Bgls2tnssHa0d1exe16IwHRLPxggqHOfPVnWKQWAMgK98OztI35O6sELWFRkO74NH7k0ezcE11JKkPudu3lIblNtpPKuaXe5yXtPaDrhudg8LC21QuO3MOC7Aqd7qDBuAeGp3NUE6eVwqUK/fGvcTT/neAPxjngOVJKnbGKaVpwjYWU2VVaVlhWzIrmZfsut4xnWzrWbnKircwsKtOFTvxDCtzrAZiNdIl1KqIn3PvOxAvWZTEqY3Y5iWJPU5w7TUJfKuZqf7sprdkDB1gzhIB0XPSe0SbxC5fG35o7Kmdheb6mcH8NV6ByVJUi8wTEtdrt5q9rQZBGWq2YbsqoWFNiLeqGxn0fNS+2Tt2l1tiK7UjyRJfcgwLfUwq9ltERFvgmagVnepZhMySZI0yTCtPEVAVTtTq72sZjddRP8E6qDdA1DbBDn3F+XcnyRJTWWYljSN1ezcRPR+oA6I/3zqBdVsQDZd3l/7CK/RLknqIoZpSVWxml2XiN4P1ACsXtqTX7+ud2ykeTOF8vyaN3OckiQ1i2FaeYuAYHz0dK+GI5VgNbusCHiIOEz3ZKBevXQJD3/+c+0ehkq4Z9ejTes7r6/58MgIX338iVz6kiSplQzTkprGavaksND2bKBWl0o2HXPDMUmSamaYltQWeVezUwE8KLRR7oNuTFhoDdRqvdEz5S9rlayRTu/ondUPMG9w8DXguvwGKElS9zFMK28HgGD89ZFuqhqqg9RbzU5Jh1WIQ/WB1P0ox+HWKiy0Bmq1xPrly39y+MSJT3DiaOkwnQ7Q1Vwa68RRAJYvXHgKw7Qkqc8ZpiV1jXLV7HO/OJiE6qjwdJBqk/tZITt5HNF8YWosBmo11c2LFo4dPnEChofgtk+VPqi4Il1uyvfw0GS/OQ5TkqSuZJhWU3itabVSUcB+iOmhOGAqTG+mdMiG1lazw9R7GqjVNLetXLHg24eehT27Ye0WWL+19IHVrJk+vC/uB/j2oWcXXHbZZdx358YcRytJUncxTCtvEdNDidRuEaXDcMD0MJ0VtJtVzQ5T/Ruo1RQrFi9e9cDmu6LHDjwdsOsB2P5YdqAu5/A+2PUAAB+/8cboZ6dOBU8+cxDAQC1J6luGaUn9KiI7CAe0ppodpvoxUKspPnv7huBnp04d+enJU+t45F7Y9iCs2QTL15bflGz0TLxGenhosiL9W8tuPBLef1/w5DMHSW7DIyPcd+dG1ixd2qI/kSRJncEwLUmXiqhczd6ceq74tVqq2WHqHAO1miK8/751f/fsc3GFes/uyXBciwc23xV99vYNAcTV6NVLl/DVx5/g2Mhpvvr4E9x350ar1JKkvmKYVt4icM20elZEdshOt/VWswMM1GqSz96+Idjw0ZUnf/4vvzp/5o03Z734yplbKp3z0cXX/+L6a69552MfuWHeDfPnB+nX1ixdylPbv0y6Sg1O+5Yk9Q/DtCQ1Lipq0wKqq2anFe87EGX0LdXkhvnzl90wf34tp1QM3El4Todqq9SSpH5gmJak5oqovZoN0wN1p143WwKYDM9WqSVJ/cQwrWaIgGB89HTJawJLAspXs0MuDdBB4X5A83cal+pSXKUeHhnh4c9/rs2jkiSpOQzTktR5wkKbhOUDwBbyW5sd5TBGqaTizcnu2fWo074lST3JMC1JnSkstKV2+Y5KHB+QPWU8/Vq5kJ3Vt1QTNyeTJPUDw7SaZvz1Ead5S40JC201l82KqByyIbuaXRyywWq2GlRqc7K//Pz9XpNaktQTDNNqhgOU3qFYUu3CQpsE6ojagm254wOyp4yn23Jrs6WykineOx7/ltekliT1FMO0JHW+sNDuBPYTr5+Ocug3yugnoLpqNgDHRk6z4/FvAUxWHFcvXWL1UdM8/PnPOe1bktRTBto9APWkANg/OH8JN91xf7vHoj7x8qEnGB89DfkFzU4UMlUlbtefMyB7bXZJ6WC9emm89MOg3b/SYRri74ljI6ch/n7e0qZhSZJUM8O0miHAMK0W65MwDZ0RqBMBsH/10iXcd+fGJBABMDwyMu1xKcXB2mp2fykO1RimJUldxmnektRdwkKb95TvhqxZunRaEL6Pqem76WCdvl/cphVXsw3ZvSe9OVlKQAd8P0uSVA3DtJohApIqobrAu2NvnHz7jV+df2/8jVlvv/nKLZWOn33N4l98aPDad2Zfe8O8K+dcu6wFQ9R0YaHtqECdJR20s0J28eNjI6crhuxSj/M2PDJikG+i9DWpmVpC8BDZu9ZLktQxDNNSn3vtpeeisz8fCmo5Z3z09GTgXvixTdF1KzfUdL5yERbargjUpdRbzc6aPt6MavaTzxzkqyPuPt1ilS4DJ0lSRzBMS33s5LP/95Gx108FAGx7ENZsguVrYf712SeNnoETR2F4CPbs5uzPh4Lx10eOLLv9j9e1ZtRKCQtt1wbqLJ1WzU7W9xqqmyoivuzaztTNKrUkqWMZptUsERCMj55mcP6Sdo9FJbz20nPR2OunAmZcAdsfh/Vbqztx/vXx7bZPwdotsOsBxl4/te61l56zQt0eYaHtuUBdSqur2cXneUmnpgtTtyRQJ89LktRRDNNSH3rn/KsvTE7tzgrS98yb/vip85ces34rbH8MHrmXsz8fCq5e/NGTrqFui7DQ9kWgzpJ3NTuLVeqWCAttEqg3E1epozaNR5KkSxim1TH+9ddjr7079sb4+78e+9B742+WmWcc+9DgNWdmzJzz3pVzrh28Yuac61oxxl5x8dXj54BVbHuwuiCdPJcVqLc9CHt28/Ybvzp/5Zxrcx+vqhIW2r4O1KU0stN4OVapmy4k/h7eiZuTSZI6kGFaHSG1CVYtoXgycLsJVm1+feHVOUC8RrpYOkgn4Tl5LitQr9kEe3bz3vgbs3IeqmoTElfwAgzUVSlXzX7ymYMVQ3X6Wsmt3mm8T0SFW4jTviVJHcYwrWY5AATjr49UXDPtJlit99a5lz8BxH/PWdKh+anzpavViUI/1VxWS023hThIBxio67Zm6VKOLc1ea11Kq3ca7zNhoXVzMklSxzBMq63cBKvNSv3ColTluZ5+1E4G6hwMj4yUfD5ZT33fnRunheJuuG52lwtxczJJUgcxTKtZImDn+Gh2VaeqTbDSkspocdgr2gRrznXLXpg1b9Gqukcu9QYDdYOS8JsVnot1w3Wze0RYaNObk21p22gkSX3LMK22qbgJVlq5KcYwbROsi68eP2eYzlnWLzLU6dKBeieG6Zr85efvB8glxHbadbN7QEj8/Zx8f0/gtG9JUosZptU2ZTfBqkdhE6zJfpWPSr/IUKcrVaFWFVoRUK1mNyQCBnDatySpTQzTapuqNsGC6sNcoZ/JftW4Ujt716nclP/x10uvTa10XjWvCzBQd6VqqtnJuu4+r2aHhdbNySRJLWWYVrNEUGXQyWvzKjfBqkrV4bOOID0+eprhPV+rY1S5ito9gA5loO4R5UI20K/V7LBwSy9rSJ6XJKkpDNPqbOm1uj043bhi1TWjYtv0am2OFemUqMxrB+o8r5rXNcVA3cOSENzn1ewtOO1bktQihml1rhaH544NtvmLiMNUfL3uPCr6o2eSe+eBecRTLMEPsZ3IQN2H+qyaHRZap31LkprKMK1mioBgfPQ0g/OX1N9LHZXRlw89UfL5Dg225dRbsa3U718COzhx9NIwXfxLjOLHpb4eJ44m954BPsNURSjZQfpAoa00LrWGgVpAT1ezQ7wmtSSpyQzTarpzvzh4yXMVQ22Dl2KqMzRHFV7PCraVzqv0ejscAHYwPAS3farx3oaHkns7gW1MrwwFTF/D+BAG605goFZZPVLNDgttukrtNdclSbkYaPcA1NOSD+rllQrMlaZ4Z4XsqfOygkFUcTz9YRAYA+Ar3658ne9yDu+DR+5NHs0Cfl10RFhod3Ipp4O3X/LvNKL2QB0A+1cvXcLDn/9cvqNSVypXzc6yeumS5JiIqZ8JUc5DC5j65R447VuSlAPDtJotKPPafqBZYdrv7cruAA4y40Ow/bH6AvXhfbDrAXj/vaS/ZyucETC9Sp1msG6fegN1gGFaVUiH7FKPM0SF9kDqcVTqwBqETJ8lEzbYnySpjxk41EpB4baZdMj+316obhOsSlO/R8/Av1sFMAx8vP5h9pWvAV8EYNuDsGZTfL3ucl+P0TPxGunhIdizO3n268CX6nj/kOLvh1hE/AE6rKNP1aeeQB1gmFaDnnzmIE8+M7kcKKKaGU1TPyOS++m2kpDpv9AzVEuS6uKaaTVTUGjTU+vS9gKfLLkJVj2mNsH6TuOd9Y0vAU8Bh9izOx2Oa7EROFTn+4cl7rvOuj0eYurv3TXUapnVSyc3qIyY/n0XMP3/jvQv3tKvpYNxVGjLVbND3JxMkpQDK9PKW8DUB5Og6LWo0CbB6HeBH7LtQfiv/qfKPVeqTH/zL5Iw+HvAP1Y7YAHxGuoNxB9Wd1Rx/MPEH1afA8abMJ6w0DodvLUCkuUX04NNTd8f65cv/8nNixaO3bZyxYIVixevasI41UOGR0b46uNPQO2zIoLC/VKzW0qJuLSaHTD1cyZi6v8nSZIqMkyrUUGhzao+R2RvKNOsTbDm0JyAp/YIcJ11KwVMD9T/A3DplvxVemDzXdFnb98QNDwq9aw6w3SWgOxqdpao6BinfUuSqmKYVj0Cqq8+V9KOTbDUvQJKrbuPGazzExAH6iPAOqChNfW/tezGI+H9961r9qDVnXIO0+UE5FPNjkodKEnqP4ZpVSMotPVUn6vR7k2w1L3CQltctY6IPwBH+MG3Xp8HHmPGFbD98YZ/0dXpFep7dj3KU9u/zD27HgXgqe1fLnlMPa9lHZtIn5OMo5+0MExnCZj+f1upWTDFIqZCdvI4ymk8kqQuYZhWloD8qs/VuJ36N7GCxjbBUm8IC23WdPAIP+xWq/olGJX2Mkgtwfibf/dfn7xh/vxl+Q0zH/fsepSJiQkGBgaYmJgAYGBg4JKQW89rWe+VlpyTHkc/BeoOCNOlhFy643e91ewot1FJkjqKu3krERTaZlWfK3mWeK1zJ22Cpe4Sptrk/s5Um94ZPH28LrUBiGeKNLKXAcTnb3sQ9uzm5//yq/M3zJ+fw/Dykw6wac0ItaWCdPF7JYG+3wJ1BwoLbfJzYzP57DRuNVuSeohhur8FlK8+t3qa7DjxLtz/CHy1Re+p3hSm2oDp3+vp1mBd2mYgXnJRTlKVrmTNJtizmzNvvDmrwXF1nKyAXOm4JLwnz5UK9Gq7kPj/v+Qa7BNMbU4Wkf1/Y0Dptdnp5yE7aJfrW5LUQQzT3S3k0t+WlxMU2krV56ihUUmdJSrcwsLjkKkPuOlgHRF/mA1RPDNk+drsI6oN0ql+XnzlzC2NDCpvlYJwpQpxtUG6WLrP9NTySu9dy7ps5SYiXhIXUv01qSNK/z8aYDVbknqKYbp7Jb8prySgs6rPUruFJe4nv2AKmD4dPKKf/21kbQKYXiddTagut5lglypeJ10pVCdTuJP7jb6fgbrlwkK7M3Wr9RJaEVazJamnGKa7T8DUNWDTz0Wp+wGlN0pJjrH6LMXCVJvcd511NbI2HOsSpcJpepftJCBXmn5dy9TsagJwet20a6c7Tli4Jb/MrqZKXa0Iq9mS1HUM090lpPROxcmH/qDEaxHN3ThM6hVhqg1wnXW2Lg/SeUhCb3EIr0Ut1eZGK9vK1RZqm/bdiAir2ZLUsQzT3SMk+9qXQep+VGitPkv1i5haZx0wfbaHwbpPVKpONxJq61lvbYjuKGGhbWTad6MirGZLUlsZprtDNeujXd8pNUfE9H9XYaFNV6XSG5gVHy9NU2pnb4NyVwpTt1ZUqasVYTVbklrCMN25ArI3Dislwv/gpFYIU21y3w3MelDx+uU8GKR7Ulho01XqLXTmv/0Iq9mSlBvDdOcICm3W2udKksqYpNYJU21y3w3MVJJBuqeFxP8HJ/+H76f1074bEWE1W5Jq1s1hegHwO8DHgWXASuAl4CTwM+CfgHNtGlu1AspftgqmPoSnXy+1U3fxY0mtFabagF7YwGz0TD6XtRo9A8CcmbPOAzVcoLr90tXpelS6NnR687JKwdrrTHe8iKm9FqqZ9h3QHSEzwmq2JJXUbWF6APgD4LvAZSVeD4oefwB8Bvg+kM8cvcYEhbaenbeLH6f7LNWXpPaJmPpQTaEttYFZRPzBMqSzPAzs4MTRfML0iaMAXH/NNWfpsjDdiErXoi5+XK5S7XWmu0pYaMttThbS2dPBqxFhNVtSn+umML2cgYGIiYklAGxaCZ9cAxtXwKKrYeFcOHsBXr0IB4/D3mEYeuky4HvAKeBu4EQbxh1QXfU5oj5RA+dKao2wxP1OXmd9ANjB8BDc9qnGexseAuD6a695p/HO8lHqes7VHNtshuaeEVJ+c7Lk8X7iQkGviahczd6ceq74NavZkrpCt4TpzUDExAR8cjX8+e/Db9906VGL58W3dUvhC3fDj1+Gv/oB7D12I/BL4h/SBy49MVdBoa1UfY6aPA5JnSlMtcn9Tltn/RwAe3bD2i2wfmv2kZWuOX14X9wP8LGP3NDRVely13Ku57Xi58sF9uSYrGtWe53prhUW2uTf9uaMY8ISz/eiiOyQnW6tZkvqCt3w29A4SAM8/EdxSK7VN34EO76TPArIP1AHlK8+e7kcSZUETP9ZktaOYH0HcJAZH4Ltj5UP1FkO74NdD8D77/HA5ruiz96+Ich7kI1KKsGdUgXutPG0wvDICF99/AmI/4/c0t7RNE1A+Q1Gu3m6d7MFZFezs0RYzZbUAp1emV5O8sPvP/xefUEa4vNefwv++ocU+ruZxqZ8B4XW6rOkvERMrbMOCrdS66xbFawPAV/n/fe+yCP3wrYHYc0mWL62/Drq0TPxGunhoSGPVucAABrVSURBVMmK9G8tu/FIJwZpqYWiQhtkvO4VObJFWM1uxCCwgfjvZ0cVxz9M/PfzHDDexHFJPaGTK9MDwMvAjWUr0tf8++mP3/yb7B6nKtSngJuobVOygPLV56yNwySpUWGhLa5aRzR/5svtxMG6Lp1akU7rlGpwp4yj1fqkMg2VP3NYnc5PgNVsSGYYNXb+szmNRepJnRymPwV8j0+uhif/rPQRxUE6US5Q3/e/wt5jAJ8G/qHM+wdMrwylRYXW6rOkVgsLbdZ08Ij8fy7VVNlYv3z5T25etHDstpUrFqxYvHhVzmNpint2PdoRAbZTxtFKfRKmQ0r/my3WyZ/LekFQ1Jb6jFdKRPdVs78GfBFoaGYR8HXgS00eq9S1OvmH9m+Ay/jBf196s7F0kE7Cc6nniv34Zfj9/xniy2ZdXvRqQH2XrZKkdggLbd7rrAOq+zkXAPtXL13Cw5//XB1vI/VFmA4ov146rfgSWmqdgMZDdrptp3hG0YwrYPvjDe95AWykgRlKUi/r1DC9BBhh00r4f/7b0kckwbk4NGc9n/Zf/C8w9BLE16zeXng2KDoqKrRWnyV1g4B8NjALKX1d3Kz3NEyrIX0QptMCsme9JQzUnSVg+teqmqAdFdp2VLMHgTEAvvLt7CB9T+riCllXZTi8Dx65N3k0C/h1TmOUekanbkD2aSC+jnSWcmG5kk+uScL0DuLftiUirD5L6k4RUxuYUWhLbWAWEX/ACymv+Lq4khoXMf3zRcCl1VD/7XWWiOzPhAHZG6Cl23IboKXbPGwA4qnd1QTp5HGpQL1+a9xPPOV7FXA4x3FKPaFTw/SdAGxc0Zzep/q9AnfeltSbwhL3k6mmAdODdcTUz8D0hz4/1EvNFTH980fI1DWpq50hovaJyN5pPEg9ztppvDhkQ+PV7HjDtTWbSr9aqiJ9z7zsQL1mUxKm12KYli7RqWF6NQCLrq7trGqmeE/v9wp6f0qZJIWpNrlfHKyh9Ac3A7XUOmHhth+r1N0son3V7HiTyOVry48wa2p3sal+/gT4ZnUnSf2jU8P0OgAWzq3+jKydvUu5bjJMr6v+JEnqCWGqDSh/2b/ETuIPff7yUWqNLUyvUvvvr3dENLeaHcvatbvaEF2pH0lA54bpI8A6Xn8LFlRRna5mF++01y6m30eS+lXE1DrrgLgaliV53WUxUmuEhTaZRTKB0757WUS+1ezKqtmETFJZnRqmjwHrOHOhcpiuNUgDvDoZpo/VMTZJ6ldB4WagllojTN2SKnXyvKoTtHsAOYlSbbJZbkCyRnrqcTNV6j9q8vtLHadTw/QzwL/lmZfg1iXZR9UTpAEOHk+/jySptg9h6Q/1kpovLLTpzcm2YHipRrkZN/2tmg3IpgRU/n/C70n1nU4N098DYO8wfOHu/HvfOzz9fSRJm0s8F6XuJ7t+B4XHk2H62Mhp7tn1KPfdGV9pMGkl5Sok/jeYTPtOll2E7RpQN5mzZE67h9ASY6fHmtZ31t9hM99T6nSdGqZPAx8w9NJl/Phl+O2bLj2ieMOx4sdZleofv5xcY/qDwvtIkuIP5cnUwajMcclrIVNTTwF48pmDk63BWmqKiKl9Dpz2XYMVn2vS5VY7zPOPPt+UfucsmZP5d3j8W8cN1Opbl7V7AGV8BoC/+kG+vU7195l8O5akrhZR+3VNI4DVS5fw1PYvc9+dG1m9NF6a8+QzB3nymYPcs+tRdjz+rcmgLSkXIVO//NpJvDlZ2K7BqIskU7ol5aJTK9MA3wdOsffYjXzjR5dO965ljXTiGz+CvcdgYOA0ExPfz2WUkiQgrkLfR1yJTlepj42c5tjIaZ585iCrly5hzdKlk62kuoW4OZmyjJ4pf1mrZI10pWA9egaAy2ddfh4whUtFOjlMTwB3A79kx3fg9bcg/MP6ewv/Hv76h4WeJ4JC/5KkJkhP8y4VrEsdJ6kuYaFNX5PaHff71NXLr/7JxRMXP8GJo6XDdDpAV3NprBNHAbjymivPYpiWLtHJYRrgBPEmGxF//UP48FX1bUj2jR9NBem4vxM5jU+SVEFWsC5uDdZS3UKmb04W4OZkfWnWwlljF09chOEhuO1TpQ8qrkiX28V7eAiAK6+58p0chyn1jE4P0xDvIBsAETu+A0Mvwp//fulNyYr9+OV4jfTeyctJB4X+JEltkA7MwyMjHBs5PdkarKWGRLg5Wd+bu2LugrPPnoU9u2HtFli/tfSB5S+DFTu8L+4HGLxh0Kq0VMLl7R5AlU4B/yfwb/jla/P4v56FQ8dhdByuuByYgMEr4dULcPwc/N3/B4/sgf/x/4VfvhavkYb1QHO2OJSk/rQM+NMFc+dy98c/XvPJC+bOZc3Spdz98Y9PC82vXbg4bZ318MgIr124OHmOesu5CxfY/7NhgJPA37Z3ND0hAgaYqlCHhcdRm8bTbiHAoo2L2jyM1rjiqiuuG7h8IBo7NbaMQ38PN98Ki2+uvaPD+2DXA/DBb1h81+Jo3kfn3Zp16BvDb/Dexfcg/vd7st6xS92oGyrTiRPATcAfAN9l6KXLCpe4KucD4DOFzcZcIy1JHazSBmbp49zATCorxM3J+tbCDQuDsVNjR9469dY6HrkXtj0IazbB8rXlNyUbPROvkR4emqxIX3XjVUcWblgYtGbkUvfppjANcSD+B+KK+hLg08CdwGpgHXAEOAY8A3wPryMtSV2pmnXWxcdJukRYaN2crM/cfN/N684+dzZ65elXAvbsngzHtVh81+LIIC2V121hOu0csAd4GpgNXAW8BbwNXABG2zc0SVJeSq2zdgMzqWohcXjej5uT9ZWFGxYGc1fOPTn+q/Hz77757qy3z7x9S6VzZl8/+xdXXnPlO4M3DM6bOX9m0IJhSl2tm8P0u8CZwk2S1AfWLF3KmqVLJwNzsqa6OGAn08AN1hIwtY46xGnffWXm/JnLZs6fWcspFQO3pCndHKYlSX2u0jrrdLB2nbV0ybTvnVillqS6GaYlST0ha511qQ3M0q3UZ8LCLZn2bZVakupkmJYk9ZxqNjBznbX63BamT/veXHhOklQlw7QkqaeV2sCs1Dprg7X6UFhodxJXqSdw2rckVc0wLUnqG5MbmFHdBmaus1YfCPGa1JJUF8O0JKlvVdrALH2cwVo9Liy06c3JtuA1qSUpk2FakiSqW2ddfJzUY0Li8JxM+96P074lKZNhWpKkIqXWWbuBmfpEVLiFOO1bksoyTEuSVMbkOus7q1tnbbBWjwgLrdeklqQMhmlJkmpQaZ21G5iph4S4OZkkZTJMS5JUp6x11qU2MEu3UpcJC236mtQP4eZkkvqcYVqSpBxUs4GZ66zVxUKmb04W4LRvSX3OMC1JUs5KbWBWap11q4P1r0ZHT/78X351/swbb8568ZUzt1Q6/qOLr//F9dde887HPnLDvBvmz1/WgiGqs0W4OZkkTTJMS5LURJMbmFHdBmbNWmf9d88+Fz124OmglnOOjZyeDNwPbL4r+uztG2o6Xz0rLLRuTiaprxmmJUlqoUobmKWPyytYh088eeSnJ08FAGx7ENZsguVrYf712SeNnoETR2F4CPbs5rEDTwc/O3XqSHj/fesaHpB6QYibk0nqc4ZpSZLapJp11sXH1ervnn0u+unJUwEzroDtj8P6rdWdOP/6+Hbbp2DtFtj1AD89eWrd3z37nBVqpYWF1s3JJPUdw7QkSR2g1DrrRjcwO/7KKy9MTu3OCtL3zJv++Knzlx6zfitsfwweuZfHDjwdrF124wsrFi9eVd2fTH0gJA7P+3FzMkl9xDAtSVKHmVxnfWd166yzgvU/v3T8HLCKbQ9WF6ST57IC9bYHYc9u/vml4+cM0yoSAQM47VtSHzFMS5LU4Sqts87awOyXr56dA8RrpIulg3QSnpPnsgL1mk2wZ/dUv9KlwkLr5mSSep5hWpKkLpK1zrrUBmaHT5z4BBBvNpYlHZqfOl+6Wp0o9DPZr1RaWLgl076tUkvqSYZpSZK6VLUbmJXctbtU5bmScrt/S5fawvRp35sLz0lSTzBMS5LUA8ptYCa1UVhodxJXqSdw2rekHnFZuwcgSZLyVW5TsrKSKd71VK2lbCHx5mQPFR7vxDAtqQdYmZYkNeTYyGl2PP6tdg9DjSq3VroEv+aqQ1ho05uTbcFrUkvqUoZpSVLD0htfqQuV2tm7giZ8zQ/k3aE6Usj0zcn247RvSV3KMC1JqleEmwl1uv0Vj6gjSBfk/bWPcu5Pna14czIwUEvqMoZpSVIjonYPQA2oP0iDX3s1Liy0XpNaUldyAzJJknrd6Jm8+xnOp0PJzckkdS/DtCRJvethAE4cvfSV4g3H7pk3/VbKVD/fyW2EUixkeqBO1lRLUscyTEuS1LviTb2Gh/LpbaofNwtTM4RM7e4dEAfqsG2jkaQKXDMtSVLveg6APbth7RZYv3XqlVrXSB/eF/eT7lfKX1S4hbg5maQON9DuAUiSpKa6AzjIjA/B9semB+pqHd4Hux6A999L+ns23yFKJYVMhWnI3pxsENgAbAZ2VOr06uVX/2TWwlljc1fMXTB78exVOYyzrx3/1nHGTo+B1wxXH7q83QOQJElNdRqYwwe/uYOnvw1vX4xD8cxBmH1V9lmjZ+DYM7D3m/Afvwwf/Abg68B/as2wJSLiAD1APO07KNyPUsfcAfwS+BPiMF3Ru2++e/34v4wvG/3p6HUDlw9Ecz4yZ1luI+5Dbwy/wXsX3wP4W+Bke0cjtZaVaUmS+sPtwKEGzt/Y4PlSI0KmqtQRccj+z4EvArDtQVizCZavhfnXZ/cyeibeSG94aHLZwlU3XnXk5vtuXlfLYJ5/9Hlu/fKtPP/o8wDc+uVbSx5Tz2tZ75dIn5OMo52sTKufGaYlSeofNU2HJd4N/ADxGunxJo5LqkZAvCkZJJuUzbgCtj/e8PKFxXctjhZuWBhUc9rzjz7PxMQEAwMDTExMADAwMHBJyK3ntXLvl0jOSY+jnYHaMK1+5m7ekiT1j3HgH4GvEv9CvdLtq4XjDdLqBBHx9+V/R3LZrEpButyl3tZvjfcRAF55+pXg7VfefqHSANIBNm1iYmJa9TgvxUE6/V63fvnWyUDfjPeWVJlhWpIkSd3kZ0A8tbueinTa+q1xP8CF4xfONTqwSkqF42qPHRgYmAzxBmipMximJUmS1E3ijcbWbCp/VFZFulihn3fOvjOn3GGVgnClgFtLkC5WaSp3qfd+/tHnDdxSkxmmJUmS1E3i9f7L12YfUW2QTvVz8cTFTzQyqHKK10lXI5nGnV4jXev7WcGWmmtGuwcgSZIk1Sxr1+4kSD91vrpQXW7374JSm4alQ2qydrnUeuq0aoN0IqlGZ21CVuq92727t9RPrExLkiSptzx1vt0jmCapMrcq6BZXtSU1h5VpSZIk9Y42BelK1elGQm0SjoGqq9CGaKn5rExLkiRJHc5wLHUew7QkSZLUoOLqcR7ckVvqbIZpSZIkqcO4I7fU+VwzLUmSJOUgqU7XW5lOQnPxlO5kjXQt/Wb1JSk/hmlJkiR1n9EzVV3Wqqp+gBmDM14Drmu8w/qUuvxWOkBnXRqr2r4k5c8wLUmSpG7yMLCDE0fzCdMnjgIwe+HsU2SE6XSwrXQt6Uar05X6SodjQ7PUXq6ZliRJUjc5AMDwUD69FfqZtXDWWC2nlbuWcz2vVfN8tYHZ60xLrZH9azVJkiSp8wwCcfD9yrdh/db6ezq8Dx65F4CP/pcffWH24tmryh2eVII7JaR2wniOf+s4Y6fHALYAUVsGIbWJlWlJkiR1k3FgIwC7HogDcT0O74vPBxbftTiqFKQlqZhrpiVJktRtDgFf5/33vsgj98K2B2HNJli+tvw66tEz8Rrp4SHYsxuAq2686sjCDQuDat40vYa53dXpTqhKS/3Oad6SJEnqVrcTB+u6LL5rcVRtkE57/tHnOyLAdsI4nOatfmaYliRJUjebCawC1gJ/UvRaADBnyZzJJ2ZfP/sXV15z5TuDNwzOmzl/5rIWjbFnGaZVpSuB+cBcYDZwFfAW8DZwARgF3m3b6OrkNG9JkiR1s18Dhwu3bxa9NgGw4nMr0s/d0pphSUpZAHwauBNYDawDjgDHgGeA7wGn2za6OhmmJUmSJEl5GwD+APgupTe+Xle4/dvC4w+AzwDfp/CLsE5nmJYkSZIk5Wk5AwMRExNLANi0Ej65BjaugEVXw8K5cPYCvHoRDh6HvcMw9NJlxBXqU8DdwIk2jr8qhmlJkiRJUl42AxETE/DJ1fDnvw+/fdOlRy2eF9/WLYUv3A0/fhn+6gew99iNwC+J9zw40NKR18jrTEuSJEmS8hAHaYCH/wie/LPSQbqU374pPv7hP0qeiQr9dSzDtCRJkiSpUctJgvR/+L242lyPL9wdnx+LCv12JMO0JEmSJKkRA8CPgLiyHP5h+aOv+ffxLUv4h+kK9Y/o0Es6G6YlSZIkSY34A+BGPrm6/op0sS/cHa+5hhsL/Xccw7QkSZIkqRHfBeLNxiopV5EuNtXfd2seUQsYpiVJkiRJ9bgSWAJcxqaVlTcbqyVIQ9zfppUQ59YFdY2wiQzTkiRJkqR6zAc+DcTXkS4nCdJv/k1t7zDV7+/UdmLzGaYlSZIkSfWYC9wJwMYVlY+uNUhP7/fjtZ/cXIZpSZIkSVI9ZgOrAVh0dfkj6wnS0/tdVl8HzWOYliRJkiTV4ypgHQAL5zbnHa6bDNMrm/MG9TNMS5IkSZLq8RZwBIDX32rOO7x2Mbn3UnPeoH4z2j0ASZIkSVLXCFLtbcC/AnDmAiyoMNW7Hq9OhumT+XfeGMO0JEmSJKmUoNDuLHqcuAAMA/DMS3DrkvxHcPB4cu9n+XfeGMO0JEmSJCkotFnBOS0CDgDPFh5/n73D8IW78x/V3uHk3j/l33ljDNOSJEmS1D+CVLu56LliUaE9ULgfZRz3AUMvXcaPX4bfvqnR8U358csw9FLcP5zLr+N8GKYlSZIkqTcFhbbaajPAQ0WPq/EZ4Hv81Q/gyT+r4bQK/uoH6f47jmFakiRJkrpfUGhrmaYdpR434vvAKfYeu5Fv/KjydO9qrjn9jR/B3mMwMHCaiYnvNzi+pjBMS5IkSVL3CFJtXtO0GzUB3A38kh3fiS+TFf5h/b2Ffw9//cNCzxNBof+OY5iWJEmSpM4UFNpmT9POwwni8UX89Q/hw1fVtyHZN340FaTj/k7kNL7cGaYlSZIkqf2CQtuOadp5OUASqHd8B4ZehD///eo2Jfvxy/Ea6b3HkmeCQn8dyzAtSZIkSeUFxCE3j+nSQartlGnaeToA3Az8iL3HbmTvMdi0Ej65BjaugEVXw8K5cPYCvHoxvo703uFk1+5kjXRAB1ekEwPtHoAkSZLUJBMAt3751naPo2cd/9Zxxk6PAWyhO4JeI4rX7UZMVU7DjHOCQtsN07TzNgD8AfBd4LIqjv+AeNfu79Oha6SLWZmWJEmSpMoipofhgEvD8kNUrjYnfXXiNO08TQD/AFwOLAB+B/g4sAxYCbwEnAR+BvwTHXgd6UoM05IkSZKUj51Fj6NC203TtJvhHLCncOsZhmlJkiRJKi0otMUhuZwthTbKdSTqOIZpSZIkSaptfXMpEfE07yiX0ajjGaYlSZIk9ZMg1da6m/b+jOMeInsTMvUow7QkSZKkXhUU2rx2046K+oiwGt23DNOSJElSD3r7lbdfuHD8wrl3zr4z5+KJi5+odPzVy6/+yayFs8bmrpi7YPbi2ataMcacBYW22uDc6G7aVqP7nGFakiRJ6jFnnzsbvfL0KwFQdSi+eOLiJy6euMjZZ8+y+K7F0cINC4OmDbAxQaqtdZp2lHFctZLrSluNlmFakiRJ6iW/fPKXR9469VYAwLYHYc0mWL4W5l+ffdLoGThxFIaHYM9uXnn6lWDs1NiRm++7eV1rRp0pKLR5TdNuVNiEPtWlDNOSJElSjzj73NnorVNvBcy4ArY/Duu3Vnfi/Ovj222fgrVbYNcDvHXqrXVnnzvbygp18j6tmqYtNcQwLUmSJPWAt195+4XC1O7sIH3PvOmPnzp/6THrt8L2x+CRe3nl6VeCuSvnnpw5f+ayHIcapNpWT9OWcmOYliRJknrAheMXzgGr2PZgdUE6eS4rUG97EPbsZvxX4+dnzp9Z77CCQtsp07Sl3BimJUmSpB7wztl35gDxGuli6SCdhOfkuaxAvWYT7NnNu2++O6vKIQSF1mna6guGaUmSJKkHTF7+avna7IPSofmp86Wr1YlCP2+fefuW9NNjI2Nxe3qMsdNjydP7M3qJCq3TtNVzDNOSJElSLym1a3epynMN/Rz/1nGAdHguJSq0TtNWXzBMS5IkScpUKkDPWTKHOUvnMDYyWZ3eguFZfcYwLUmSpJ6WTEtWkWSKdxVV6yQ8z1kyZ9rz/t2qnxmmJUmS1NOOP3G83UPoPOXWSpdQtD5aEoZpSZIk9a6HmLqOcT8Iqjqq1M7elUUNvi71HMO0JEmSelXY7gG02ETFI+oP0lvqGI/U0y5r9wAkSZIktUB9QVpSBsO0JEmS1EtGz+Tdz8v5dCj1Fqd5S5IkSb3hYWAHJ45eeq3p4g3Hih+XqlSfOJrcG8ppfFJPsTItSZIk9YYDAAznlH2n+jla7jCpXw20ewCSJEmScjEIxNev+sq3Yf3W+ns6vA8euTd5NAv4dYNjk3qOlWlJkiSpN4wDGwHY9UAciOtxeF98fuwODNJSSZe3ewCSJEmScnMamMMHv7mDp78Nb1+E99+DmYMw+6rss0bPwLFnYO834T9+GT74DcDXgf/UmmFLkiRJktR+txNfd7re2x2tH7LUXVwzLUmSJPWmmcAqYC3wJ1Uc/38Qbzb2Ak7tliRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjTN/w+wOBtBxxTMlwAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "d319736a", + "metadata": {}, + "source": [ + "Another example that contracts to 2-way tensor (2 free indices are created) is as follows:\n", + "\n", + "![TestNetwork2.png](attachment:TestNetwork2.png)\n", + "\n", + "The optimal contraction Order is: [2,1,4,3]" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "id": "44caf1c5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(2, 2)" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# --------------- Network-1 --------------- # \n", + "# Leading order cost (guaranteed optimal): (Ind1^5)\n", + "Ind1 = 2\n", + "T0 = np.random.rand(Ind1,Ind1,Ind1,Ind1)\n", + "T1 = np.random.rand(Ind1,Ind1,Ind1)\n", + "T2 = np.random.rand(Ind1,Ind1,Ind1)\n", + "\n", + "# TTv1.0.5.0P$T<,82H2'-I.9N>_>=@GeKuKT'''''''SSl$\n", + "tensors = [T0,T1,T2]\n", + "connects = [[4,2,1,-2],[1,2,3],[3,-1,4]]\n", + "con_order = [2,1,4,3]\n", + "T1 = ncon(tensors,connects,con_order)\n", + "T1.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "d84df669", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1.45346387, 1.68893414],\n", + " [1.55504724, 1.72256614]])" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "T1" + ] + }, + { + "attachments": { + "TestNetwork3.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8AAAAFiCAYAAAA5nbFXAAAgAElEQVR4nO3de5Bd5Xnv+W8D9tjmKmSEENYVYSZIHCxxCSAUrSaADTFJoUTGoEnGOcepclHOpApfiqQQWrKYROVbjccUldTJjE+SgzDqGFUi4otE6AWSkE2QFKJWEwxqXdPcLBpkiB2G0PPH2qt7aWvfb2tfvp+qrl6799rvfgGh7l+/7/O8IEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSpMboy3oCkgR8ALgYuBT4vQru/2vgWWAY+GUT5yVJkiRJUsNcA4zX8XF166csSZKkTuQKsKQsfQ34IgC33AkLl8K8S2HqjOKvODoKI8/C0FbY9EDy1a8DX2ryXCVJktThDMCSsnI18BSnvA/uXg+Lb6h+hF1bYN1KePcdgCXAU42doiRJkrqJAVhSFk4F3gLgnoHi4Xf5WZPXj7xR+J5dW+C+Fcmj04C3GzRHSZIkdZmTsp6ApJ50FRBve64k/BZ6nFh8QzxOelxJkiSpAAOwpCwsA+Ka30LyV36T1d9iIXhynGUNmZ0kSZK6kgFYUhZWAXHDq1KKbXvONznOqppnJEmSpK53StYTUEuNZz0B6TjFuj1XGnwLj9Orf877gSjrSUiSJLUzA3DvCLKegFSTShphCQy/kiRJZRmAe0cErAFWA1x/14ZMJ6Pe9tg3P9W0sXvpz3bq3+OaLOchSZLUKawB7i0huVWinRvCLOchVa6SJlg9aGTHQHK5hvj/bUmSJJVhAO49/QBjR4bTP0BL6iAjOwbS//+GGU5FkiSpoxiAe1M/xD9Ejx0eznouUkMl4bBb/2yPHR7OX/2VJElShawB7k0RuXrgkR0buGxmmO1spHzJVucaml5NhsPJHQ5TPnIxU2YuyF0vYMrMi+udYWZ2DoTJpVufJUmSqmQA7l0hsGzsyHCwc0PIZZ8KM56OetLR0eJHIUEchB95o3zt79FRAE75X059bdbim88BGDu8l7Ej8Srw2JHhieskGHdiKE6t/EYYfiVJkqrWl/UElKkAGASYd/UK5l29ItvZqGfs3vhnzxzdv/ty/vghuOKmwjcVCr3FVoT/6QfwZ7czde6iZxbd+seX5z+drncvV/versE4r+7Xv7slSZJq4Apwb4uI64EHR3YMtNUP++puZ0yb99bR/bthaGvxAJy/8ltqO/TQ1olxCz2d/uVOcj12eJixI3tz1+29WmzdryRJUmO4iiCIt1KunvKRi90KrZY49vK+4afX/3GcIu8ZgMU31D7Yri1wXxxqr7zjz4bPmH5BXem0WDAupFXBeOeGMJmHdb+SJEl1MAArMQgEboVWq+z/ycZo3/aHAk55P9z9YG0heNcWWLcS3n2H+dfeHs258tag4ROl9lAM1P3/U2rrc0Sug7skSZJqYwBWIiBXD3zZitCt0GqJXX+7dvfrh/YsAuCWO2HhUph3aenGWEdHYeTZeNvzpgcAOHvWJbsX/86qRa2Yc1qzV4vz6n77iUOwJEmSamQAVloIrAZDsFrnwNMboxe3PRTU+voLltwezf3V5qz81qKaUAzHrxDnB+PHvvmp5NKtz5IkSQ1gAFa+QSCwHlitdOzlfcOv7Xvm1WOvjpx2dP/uE7o455s6d9EzZ0yb99Y5F1w+rd6a31apdrUYSO6JcOuzJElSQxiAVYj1wFILVLtaTByGn0hdR02amiRJUlcyAKuQAOuBpUzk1f2uAZYR/z9ZTIShWJIkqSIGYBUTkqsHvv6uDdnOROohZep+049XlxkqwmAsSZJ0HAOwSrEeWGqh1OpvNU2vAiZXiF0tliRJKsEArHLGIe5Uaz2w1Dx5W58b8XdzgMFYkiTpOAZglRNgPbDUVAXqfsMmvVVAbaEYPIZJkiR1AQOwKhECq90KLTVHG5z3G+BqsSRJ6gEGYFXKemCpCVKrvxHtdd5vQOWhGOLwngibNJdGjytJknqMAViVCshthbYeWGqMJtT9tkJAc1eLk/FW5z3OanVckiR1kVOynoA6RkS8OjU4smOAKR9ZYD2wVIexw8P5db+dIuLEIBtQOBSnv54+tini+GCcfj5AkiSpSTplxUHtI8R6YKluOzeEjB0Zhu5e2Qyobht1Kf1YbyxJkupkAFYtBoHArdBSbdq47rdVwtT16mI35VmDTbckSVKdDMCqRYD1wFJN8up+XdWMhVQehMFO1JIkqUYnZz0BdaQDxL88CcaODDPlIwv44JnnZDwlqTPsHJgo910D/I/sZtJWInJ/p5R4/q9y13NyH0Hu4zPEATrMPZ6bGudA46YoSZK6gSvAqodHI0lV6JG633qFnLganP/vK8BziyVJUg0MwKqX9cBSBTr0yKOshBwfgiv9hUGAwViSJJXgD2GqV0CuHviyFaFHI0kFWPdbs5A4CNfzvSqguk7U6SOpwjreV5IktSEDsBohJLdac/1dG7KdidSGHvvmp5JLtz5XL6Q5/84CXC2WJKnnGIDVKNYDSwWkVn8Nv+0voLrV4giDsSRJHcUArEYaB49GkhLW/XaNAFeLJUnqCv5ApkYKsB5YAk4Iv67+dp+A44NwuXOMIwzGkiRlzgCsRguxHliy7rd3BbhaLElS2zIAqxmsB1ZPs+5XBYSpa4OxJEkZMQCrGQJyW6GtB1avse5XVQjozdXiU4GriP+ZV1Vw/1rif/YfA283cV6SpB7gD2dqlgDrgdVjxg4Ps3MgTB66+qtaBXRvML4G2F7n63c0aC6SpB5kAFYzhcBqt0KrV1j3qyYKqO6IpjWp67Dhs6nN14AvAnDLnbBwKcy7FKbOKP6Ko6Mw8iwMbYVNDyRf/TrwpSbPVZLUpQzAarZBIHArtLpdautzBPRnOxv1kIDOWC2+GniKU94Hd6+HxTdUP8KuLbBuJbz7DsAS4KnGTlGS1AsMwGq2AOuB1eXy6n77af9tqOpuAdWtFkc0NxifCrwFwD0DxcPv8rMmrx95o/A9u7bAfRPfRz4I/LJBc5Qk9QgDsFohJHc0kvXA6jbW/aqDBGSzWvzrwGPccif8/p8WviMdfhPFQvB3/iTZDn0ZsKuOeUmSetApWU9APSHMfV49smMDl80MS9wqdZaRHRPnXRt+1e4iTgyyAccH4dUFvr469XxE9cF4GRDX/BZSaOV3+VnxR6EQvHBpEoAvxQAsSaqSK8BqpUEgOP+SXx9+/4fOevXYqyOnHd2/+/JyL5o6d9EzZ0yb99Y5F1w+7YzpF7h8rLbhkUfqYgGNWy0eB+C/DxdueJUE4HTYLfS1xNFR+IOLk/ey3l6SVBV/YFMrBcQrCUGtA8y/9vZozpW31vx6qVGs+1WPClPXq4vdlBMRB+P4vmJbmgspFYAnn48wAEuSqmQAVis15AiMs2ddsnvx76xa1IL5SkV55JE0IaCS1eJKAnAljbAm74swAEuSqmQNsFrlauCLVR+BMXVG/HHFTXBpP6xbyeuH9iza/5ON0dxf7fyV4Me++Smuv2vDRJi6/q4NBe+p5blS75n/mmQeqkxq5dfw2xhB1hNQ3aLU5+QM4oDKulDXo5ljgzs7JKnruAKsVqjsCAwov+0tdQTG1Z/5vw6cevaMOY2bZms99s1PMT4+Tl9fH+PjcYlcX1/fCcG0lufKvWf6Nel5GILLs+634ULKb6VVN2j8FuhW8f9zSeoinbwCPA34VeASYA5wIfACcADYA/wEeDWjuel4VwHxtudKV36LWXxDPM6mB3hz9Pk3Tj27xPbpNpYOnWlZBNHr79owEcINwaXlhd81pe5VxZYBXLRgdtbzUJM8v/dg08Zu5p+bZs5bkpSdTgvAfcAngEeBkwo8H+Q9fg/4JPBDki6UykLpIzASlf5GP3cExttjox+sc14dK72S28zX6HhufW6e31zxa4bgLvXZFfc1ZdyLFszmS+HvNmVsaN68JUnZ6qQAPI++vojx8ZkALL0QblwIS+bD9DPg3DPhlTfh5WOw/UXYPARbXzgJ+D5wELgOGMlw/r1sFRA3vCqmmu1suXGOvfTCRfVMKivlgmi5ldhmht9C711LnXE3MvxKTVJuu7MkSQ3UKQF4GRAxPg43LoAvfByunHviXeedFX8smgWfvw6e3g/f+BFs3jsb2Ee8QvzEiS9USxTr9pz+4aeSIFyqa3SXy6/hrSTU1vKaYq/t1RCct/U5zHAqUuc6Olr67+/lZ1X2feDoKAAfOvUDbwAtLQaWJHW+QtuI200cfgHW3goPf65w+C3kyrnx/WtvTb4SkWzHVXvpkd/8lwuUSU3w+Ph4+pidE+TXDlei1GuSOuBK3rvXjB0etu5XqsMliy54BoiPtCsk/fd/Jccg5caZft7ZrzRifpKk3tLuAXgeSfj9o+vjVd1afP66+PWxKDduJwvopmNDeiT8NkISVKtZia3lNfmv7eXV350DYXLp1mepBrPnnRefAjC0tfhN+d8HSn1fyI1z7oypv6h3bpKk3tPOW6D7gMeBeAW3VPid8oeT12PfLnxP+Fvw4dNh1UZy486l8xpjBcTHhQTEQT7KbioVCbKeQCdKtikX6hINtdXi1hNeezX4wnF1vxGGX6kmH7v8o9Me/d422PRAfJ57sdMAKvll6K4t8TjA/Is+4vZnSVLV2nkF+BPAbG5cUHn4LfQ47fPXxTXEMDs3fqcIgMHcR5DBe6c/wtTHYN7HeN5H8nWp4+TV/fZnORepk82ZP+PiW2/vjwBYtzIOsbXYtSV+PbD8jv5o+vkfntOYGUqSekk7rwA/CsQNr4optPI75Q/jj2IrwV/4OGzem4x/ciMm2kQBkyu+9YxR6nF+TXQ975UvasKYXS99Lq/HFmXDul+psX5j+ZLgX4cO7H5uz/5F3LciPs994dK4q3+pxlhHR+Oa36GtEyu/v3LJ3N0337okaM3MJUndpl0D8EzgJJZeWFnDq2Jht5Ar58ZHKMVHJM0EDtc4x2YKqCz4hjQ3wMKJ26yfKPFc/uOEKU4dZWTHxLZv636lBvnCvSsXfX/j9uiR9YMBmx6YCLTVuPX2/ug3lht+JUm1a9cAfDMQn/NbSjXBN+3GhbD1heR9/qK2QaoSlHlcS4gNKrwvynucfwxU/vP5jxun3BEY1YwDnPKB07r2CIz0KnAtGnl2b6+dAzyyY4CxI8Ng3a/UcDffuiRYfOVFB158/sgbr4we/eDIi6Nlz3OfN3/G8+fOmPqL+Rd95Kzp5384aME0JUldrF0D8LUALJlf+SsqaYSVmBz3WioLwEGZrzV7FbaYNbQywNZuLbCKkWcbE4BzR2B8aMp5r9ClAbgejTy7t9fOAc6r+3Xrs9QE08//8Jzp53+4mpeUDcmSJFWqXQPwAgCmn9Gc0SfHvYrC24ihObWwiXKrsMn7ry4zbljTbFrvCWAVQ1vhipvqHy13BMapU2Z03BEY+fW9lZzN24o64F4LusXkhd8ou5lIkiSpGdo1AC8C4NwzK39FpU2wAM6ZCMDzKR8yE1He41pqYasRMdltGSqfZzv6MVD+CAwofwxG6giMM2dc1BWrv0nQTa7rfa7W8aqdW7fZuSFMLq37lSRJ6lLFl5+ytQtYxPP/J0yrchU42QpdKgC/9AZcvArgReDB3FejvLvyH7eDMPc5CcP9tOc8C7kG2M4p74e7HywdgotJjsB49x3mX3t7NOfKW4NGT7JVkhXXdlltbbf5tFre1ud2/XuxWw0CwZfC3+WiBbOznos04bMr7ksu/TtBkrpIu64A7wUWMfpm9QG4Ei8fS65+TGet9ISpz2HRu9rTU8DXefedL9Z7BMbZsy7Z3cnhV+3Ful9JkqTe0a4BeBvwv7HtBfjYzOJ3VbLaW8j2F9Pv06nCrCdQgy8BjwBP1XoEBhAt/p1VQUNnlYF0fW/Wq66u/h4XfsPsZiJJkqRmOynrCRTxfQA2D1V2dxKE052gS5kc9/tVzUqNsAM4DbieuDt0Jdbm7v8bIEjVana0JARnHTrbZR5ZMPxKkiT1lnaua/lP4CR+dBdcObf4XYVCb6kV4af3w8e/CfAecHJ9U1QGxgHmXb2CeVevyHou6mDW/bYNa4DVlqwBlqTu1K4rwACfBOAbPyp9V37YLbcdenK8T9Y0K2WtH+LwMnZ4OOu5qEONHR627leSJKkHtXMA/iFwkM174f7HS9859u3Jj1Lufxw274W+vsO58dV5InKBZWRH723ZVWPsHAiTS7c+S5Ik9ZB2DsDjwHUArNoI4d/VN1r4d/E4AOPjQW58daYQiMaODNMt9cBqndTKb4ThV5Ikqae0cwAGGAECAL71WPmV4GLufzx+fSzIjavOtgZg7MhxW1mlkvLqfvuznIskSZJar90DMMATJCF41Ua47c/jRlaVeHp/fH+y8huP80TDZ6gsRFgPrCpY9ytJkqR2PQc43xPABcDjbN47m817YemFcONCWDIfpp8B554Jr7wJLx+Lz/ndPARbX4hf3dd3OLft2ZXf7hIRB5nVIzs2cNnMMNvZqK2lasat+5UkSepRnRKAIQ6vc4FPAI+y9YWTJgJuce8Bn2R8/IdY89utQmDZ2JHhYGTHgEcjqaCRHQOMHRkG634lSZJ6WidsgU4bB35AfH7vLOBzwP8Eduee3517/Lnc8yfn7jf8drdcV2i3QutEeXW/bn2WJEnqYZ20ApzvVWAT8CTwIeB04OfAvwNvAkezm5paLCK3FXrnQMhlK0KmzLw44ympXeSF3yi7mUiSJClrnbYCnPYfwCjwHLCT+AfbnbnHo7nn1TtCcuHG84GVSB2TZd2vJEmSOjoAS/n6yZ0P7NFIStX9guFXkiRJGIDVfawHluf9SpIkqSADsLpNRC4E7xwIM52IsmPdryRJkgoxAKsbheRCT6oGVD0iL/yG2c1EkiRJ7cYArG7VD2A9cG/J2/ocZjgVSZIktSEDsLpZP1gP3CvGDg973q8kSZJKMgCrm0VMNMXyaKRul6r5duuzJEmSCjIAq9uF5I5Gsh64e6VWfiMMv5IkSSrCAKxesAasB+5WHnkkSZKkShmA1QsirAfuStb9SpIkqRoGYPWKCOuBu07qv6V1v5IkSSrLAKxeEpKrB3YrdOcb2THA2JFhsO5XkiRJFTIAq9fkVoHdCt3J8up+3fosSZKkihiA1WsicoFp50BoCO5QeeE3ym4mkiRJ6iQGYPWikFxosh6486SOs7LuV5IkSVUxAKtX9WM9cMdJ1f2C4VeSJElVMgCrl1kP3EE871eSJEn1MgCrl0Wk6oHV3qz7lSRJUr1OyXoCUsZCYBkQ7NwQctmnwmxn08WOvbxv+LV9z7x67NWR047u3315ufunzl30zBnT5r11zgWXT/vZ/l0X575s3a8kSZJqZgCW4u2040k98LyrV2Q9n66z/ycbo33bHwqAi8vdmzi6f/flR/fvZv9Pvgfxim+A4VeSJEl1MABLsX5gcGTHAFM+soApMyvOaSpj19+u3f36oT0BALfcCQuXwrxLYeqM4i86Ogojz8LQVtj0AMTh93vNn60kSZK6mTXAUixioimWRyM1yoGnN0avH9qziFPeB/cMwO//KVxxU+nwC/HzV9wU33/PAJzyfoDfBq5pwbQlSZLUpQzA0qSQ3NFIqbNmVaNjL+8bfnHbQwEAd6+HxTeceNPys47/KGTxDXD3g8mj7cCpTZiuJEmSeoABWDreGgDPB67fa/ueeRWItz0XC7+VfA3i199yZ/LoqoZMUJIkST3HACwdLyJ3xqznA9fn2KsjpwFxzW++dNB95I34o9BzaZPjLGvIBCVJktRzDMDSiSKsB67bxFFH8y4tflM6+KavC5kcZ1VdE5MkSVLPsgu0VFgILBs7Mhx4NFKdCjW8Khd2Kx1HkiRJzTIN+FXgEmAOcCHwAnAA2AP8BHg1o7nVzAAsFbcGCJJaYEOwVLNTiWu3l1FkBf9r4d9MXF+y6IJnZs87762PXf7RaXPmz/BMMkmSWqcP+ATwKIV3Cwd5j98DPgn8EBhv6swaxAAsFRcRh+DVng/cAkntby2rw2pn1xB3767Ynt37Lt+zex+Pfm8by+/oj26+dUnQnKlJkqSUefT1RYyPzwRg6YVw40JYMh+mnwHnngmvvAkvH4PtL8LmIdj6wknA94GDwHXASIbzr4gBWCotJF61CkZ2bOCymWG2s+lWxRpfFRfkPkcNnUfrjRP/kiXMeB7N8jXgi0DcxXvh0riWu9R29qOjMPIsDG2FTQ/wyPrB4Lk9B3Z/4d6Vi1oz5eb77Ir7+MuBe/jsivsA+MuBewreU8tzxe5NpF+TzEOSJOKfdyPGx+HGBfCFj8OVc0+867yz4o9Fs+Dz18HT++EbP4LNe2cD+4h/RnuipTOvUl/WE5A6xCAQzLt6hVuhK/TYNz8VX5Rb0c3vCF3pvYVFqetCf/lGRa6zkmwVWpP7HGY0j2a4GniKU95X/BzocnZtgXUr4d13uPX2/ug3lnf+SvBnV9zH+Pg4fX19jI/H//n7+vpOCKa1PFfsvdKS16TnYQguLPXLA39WktTt4vALsPbWONhW6/7HYdXG5FFAG4dgV4ClykzUA7sVuoGqCb/Hi3Kfg7yvB0WuE6srGBNO/Es7KnLdKPnzCpvwHq30AeApoHz4LbX1ffENcPeDcN8KNj40GCz4L3OHO7kmOB0605oRRAuF3/z3SkK4IViSeto8kp9t/uj62sIvxK/72c/hW4+RG+8C2nQ7tAFYqkxErh5450DI9Xd5PFLdag+/kDuruYCgyHViWYnnS7221uCc/3z6Ov89Cr1PWOJ921kcUm+5s7aV37TFN8TjbHqAf37mp692cgCuV7FQW+6+JHAnXysUwiVJPakPeByobOV3yh/Gn8e+Xfj58Lfgw6cnK8GPA3Npw8ZYBmCpciG5euCdG0Iu+1SY7Ww6xdHRxhxhdHQ0uRoqcVdU5LoSQZFrqD04Q+nwXEz+ayLaY8t2peJDmxcuLX1XpbXfC5fCpgc4OPLSaXXOKzPlwmu5ldhKw2++9Jjpbdfl3ruaOmOpC4TU9nd1p4ko/gtk9aZPALO5cUHtK7/5Pn8dbP1pUhP8CeAHjRm4cQzAUnX6gfGxI8N4PnBpU+cueubo/t2XM/LsiQE4P/jkPy60IjzybHK18cQnGyIqcl1OUOQ6USo8l7M673NalLpu9Zbtcn4PiBteFVNN47PcOHt277u8nkl1qvy633JBONnenFzX+36GYHW5kN4IvxB/DxrEEKxJjwJxw6tyktXfSnzh47B5bzL+ybVMrJkMwFL1+oFB64FLO2PavLeO7t8dd/O94qb6Bxzamly1W1OFqMh1OSGV/dCVjBnkfT0ock2ZcaPUdXMbhRVb+U/X/VYShBuxgyBDhQJlujtzEmrLbU2uZttyJaE1XQdsLbB6VEDu78vbrl3CbdcuyXY2TTR06BD3rv8uxP/MIZ1bYqPGmQmcxNILC3d7Tqsm/EI83tILkyOSZgKHa5xjUxiApepFTJwP7NFIxZxzweXT9v/ke7DpAbi0//ha0GprfndticeJ/bhRc2xjEfGfsajEPUGRa2jelu30fEqtOpfnec8VS4JqfnCuRjWruvWuIEsdZBC6P/wCLJw1i6/c8ekkBK8G/hF4P/H3i1UVDLGW+O/9HwNvN2ueaqmbgfic31LSdb/VBOEbF8LWF5L3+YtaJtgsBmCpNiGwbOzIsPXARZwx/YKLL1hye7Rv+0MB61bG3XzrOQondg3d+403YvI4pKjC+wtdlxMUuU40o1HY8Qy/Jyi3ClxPEK2lftjgqx4QAiyYNbPrw29i4axZ3HbtEh7etj0Cnqzy5auYDMrXADsaOTdl4loAlswvf2explelTI57LQZgqWusAQLrgYub+6u3BmOHh3a/fmjPIu5bEXfzXbg0ruksta316Ghc8zu0Nb3y+3W67xtulPtcbrW3Ge+Zf12JoMg11FfrrCYp1BHacCtNlqCsveP2bGfSYs8dObKb5O/o2r8nP0X8PflLTZ+wmmkBANPPKH1XLeH3+HEX1DZA8xiApdpFWA9c1uLfWbXouS1/Ef3bnn8M2PRAOtBWYwnJubLdI6LzarCiItf5BjEEVyW/HrcRDL9SQSG58PuVOz6d7Uxa7Hs7fhz9y4GDAae8r/wZ7WlTZ8QfV9wUlzStWwnvvvNF4qaU3fa9OTFIvOU7zHgezbQIgHPPbM7o50wE4EXNeYPaGYCl+kRYD1zWv4+9FADDwN8SnzlnvVFnHWukDmP4lQoKSDW9WjhrVrazaaEXX3pp+MEnngyA0uE33ZiwULnK4hvikqb7VgBsB06jO79HQ/xnZTWT5UlhdlMpKajga8sK3PMKcC4/+zlMK7MKXIvXjiVXuxs/eH0MwFL9QnL1wG6FPtHIjgHGjgwDvMpknei92c1Iak/pVeBalDu7N91Aq1wY9hxgdameaXqV759eePFV4GJuubOy8Js8LhaCb7kz2dF1FXFDrW7zBJMhMn0kYSPDcFDB1woF10Kvq8VzwLmMvtmcAPzyRADe2/jB62MAlhpjDRCM7BgAMATnjOwYIPl3wuQ3DfWKo6ONOcLo6CgAZ5x56mvAOfUP2H3KnRWc/7jUirDnAKtLhdBbTa/S9r38ymlAXPNbSKGV3+VnFQ/BC5cmAXgZ3RmAi8kPw1HucZB3XzODa76owNcqOanhIuDP2fYCfGxmo+cE219MrrY1fvD6GIClxoiY2AptPTDA2OHh/PAbZTcbtdhfA0m11/kAABzASURBVAEjzzYmAI88C8DsedMP0oEBuNB5u5Xc22wGXfWQkB5tepXYNTJyORA3vCql0i79k+OsonN2dQUVfK1QcC0m2SJdq6jA1yoJroW+Vot9AGwegs9f16AhUzYPJVffb/zg9TEAS40T5j5bDwyM7NiQXK6hfetm1BxxYh3aGjdNqdfQVgBmzzvvrfoHaw+lztqt5bn8r5cK2ck9xc4U9hxgdZmQHm16VVCxX0pWezxdI365WZ2gzNdaueKaFuU+tzK4Nsph4D22vnAST++HK+c2buSn9ydnAL+Xe5+2Uvo7pKRaDALBvKtX9OxW6Lytz/4903s+APwCgHsGajv/ObFrS9JshXv+7L8Oz5k/o2O3ViQrru2y2tpu82k3qV8Q+HdY5wro4brftOXrvhpfVBJ0yzXCOvG+Uv+PBGW+1urgGhX42hMFng8ovbob0R27224Cvs+NC+Dhz5W/e8ofxp/LHY1025/D5r0ANwM/qG+KjecKsNR4E/XAvbgVOi/89mc5F2Xml8RHV21n3cq4Y2gtIXjXlvi4DWD5Hf3RnPkzgkZOUlLXM/y2xmDuc9DE94gKfK1QcC33mmoUCsAR3RF8Ez8EDrJ572zuf7z8VuhKzgS+//E4/Pb1HWZ8/IcNmWWDGYClxovI1QPvHAi5bEXYUyHYul/lPAV8nXff+SL3rYg7hi5cGteNldo6d3Q0rvkd2jpxZvSvXDJ39823LglaMusmStf3Zr3q6uqvekAIvdv0qi6VNME6XlDiuajA15odXJshojt/rhkHrgP2sWoj/OznEP5W7aOFfwffeiw38niQG7/tGICl5giJt/UEvVQPnBd+w+xmojbxJeAR4Ck2PTARaKtx6+390W8s7/zwm0hCcNahs13mITVJSI83vWqxZLdXlOUkmiSiO4Nv2gjxLzEivvUYfPj02ppi3f/4ZPiNxxtp0PwazroWqbnGIT4Wqdvrga37VQkfAC4GLgV+L++5AOCiBbMnvjBv/oznz50x9RfzL/rIWdPP//CcFs1ROo41wB0rJNX0auGsWdnOpk1UVQM88aKzSr+mshrgThXkPkcZzqHVlpH88964AL7w8coaYz29H77xo6TmF+J/d/lNwdqKK8BSc/UDg91eD+x5vyrjl8Cu3Md38p4bBILfXPFr6RB8UQvnJql7BOTC723XLjH8VqNc2O09UdYTyMATwAXA42zeO5vNe2HphXDjQlgyH6afAeeeCa+8CS8fi8/53TyUdHtOan4D2njlN2EAlporIlUPfP1dG8rc3pnc+ixJagM2vSrn6GjpPgxJzW+6E3SxcWJDpW5TxxkB5gKfAB5l6wsnTQTc4t4DPplreNWWNb/5Tsp6AlIPCMn9JnHnhjDLeTSF4VeS1AYGwaZXxSyeN+8ZIG4yWEh65beSY5Amx9lY9+TUbsaJjy46GZgFfA74n8Du3PO7c48/l3v+5Nz9HRF+wQAstcoagLEjw+nA2PHytj6HGU5FktS7QnI1mza9KuyC6ee+BcQd9ovJD7ultkNPjtPWtZ6q26vAJuBPgT8gLu37g9zjTbnnO44BWGqNiFyXxJEdA4wdHs52Ng0wdnjYul9JUtZCUk2vVNgVF86fBsTd+HdtKX7jI29MfhSza0u6q/+PGzZJtaP/AEaB54CdxD/P7sw9Hs0933EMwFLrROSC4siOzq8F3jkQJpdufZYkZSHAplcVmX/eeRevXPZrEQDrVpYOwaXs2hK/PnYN8HYDpie1lAFYaq0QiDp9K3Rq7hGGX0lSNmx6VYXfvvqq4L/Mmb2bd9+B+1bAd/4E/ukH6YZWhR0dje/7zp/Er3v3HYD/B9jRgmlLDWcXaKn11gBBEiI77XzgvLrf/iznIknqWYbfGoSfvm3R93b8OHrwiScDNj2Q3spcjQj4b8SNkKLGzU5qDQOw1HoRuaOROu18YOt+JUltICTX9MrwW73fvvqq4KqPXnjgX4/82xujr4998KcvjZY9e/2j5814fsbZU37xv37k/LO2PfevwcPbtkO8/Txq9nylRjMAS9kIc59Xj+zYwGUzwxK3to9U7bJ1v5KkLITY9Kpu50+dOuf8qVOreclESL7t2iUMHTrE3kOHA+KVeHeDqaNYAyxlJ6SD6oFHdgwwdmQYrPuVJGUjwKZXbSG18h7gzwTqMAZgKVu5rtDtfTRSXt2vW58lSVmw7rdNLJw1K70CvxpDsDqIAVjKVkQuUO4cCNs2BOeF3yi7mUiSepTht80snDUr/d9iNbm6bKndGYCl7IXkQmU7ng+8c0OYXFr3K0nKQohNr9pS3i8kVmc5F6lSBmCpPfTThvXAqbpfMPxKklovxKZXbe22a5ewYNZMiH9JMZjtbKTyDMBS+2iremDrfiVJGQuw6VVHWHvH7cllgL8wV5szAEvtIyJVD5y1vPAbZjcTSVKPsu63g9gUS53CACy1l5BcPXCq9rblDL+SpIwZfjuMTbHUKQzAUvvpB8iqHjhv63PY8glIknpdiE2vOpJNsdQJDMBSe+qH1tcDjx0etu5XkpSlEJtedTSbYqndGYCl9hQx0RSrdUcjpWqP3fosSWq1AJtedQWbYqmdGYCl9hWSOxqpFfXAqZXfCL9ZSZJaz7rfLmJTLLUrA7DU3tZA8+uB8+p++5v2RpIkFWb47TI2xVK7MgBL7S2iyecDW/crScpYiE2vupJNsdSODMBS+wtpYj1wakzrfiVJrRZi06uuZlMstRsDsNQZQnL1wI3cCj2yY4CxI8Ng3a8kqfUCbHrVE2yKpXZiAJY6R0O3QufV/br1WZLUatb99hCbYqldGIClzhGRC6o7B8K6Q3Be+I3qGkySpOoYfnuMTbHULgzAUmcJyYXVeuqBU8cqWfcrSWq1EJte9SSbYqkdGIClztNPHfXAqbpfMPxKklorxKZXPc2mWMqaAVjqTDXVA3veryQpQyE2vRI2xVK2DMBSZ4pI1QNXyrpfSVKGJsKvW59lUyxlxQAsda6QXIhN1fQWlRd+y79AkqTGsemVjmNTLGXFACx1tn6AcvXAeVufw+ZPS5KkCSEQLJg10/Cr49gUS1kwAEudrx+K1wOPHR72vF9JUlZCUlufpXw2xVKrGYClzhcx0RTrxKORUjXCbn2WJLVSiE2vVAGbYqmVDMBSdwjJHY2UrgdOrfxG+A1FktRaNr1SxWyKpVYxAEvdYw1M1gN75JEkKUM2vVJVbIqlVjkl6wlIapiIOOgO5jXEsu5XktRKITa9Ug2SPy8Pb9sO8S9R+rKcj7qTK8BSd4k4PvBa9ytJaqUQm16pDqmmWGBTLDWBAVjqPiFxEI4w/EqSWifEpldqAJtiqZkMwFJ36se6X0lSa9n0Sg1jUyw1iwFYkiRJ9bLplRrKplhqFgOwJEmSTgV+HfgKMF7Bx1dy95+KTa/UJHm/ULEeWA1hAJYkSept1wBvAY8Bqyp8zarc/W8By8CmV2oOm2Kp0TwGSZIktcyBF0eH//mZn756cOSl0/bs3nd5ufsvWXTBM7PnnffWxy7/6LQ582dc3Io59pivAV8E4JY7YeFSmHcpTJ1R/BVHR2HkWRjaCpseAAjOPevM3QtnzVrUigm3yvJ1X+WRu7/M8nVfBeCRu79c8J5aniv2fon0a5J59LK1d9zOqvUPsffQ4YB4x0GY6YTU0TxbS5KUpUEg+FL4u1y0YHbWc1GT/cMj26ONDw0Gtb5++R390c23Lqn59dX47Ir7kstu/lnpauApTnkf3L0eFt9Q/Qi7tsC6lfDuO6xc9mvRb199VdDoSWZh+bqvMj4+Tl9fH+Pj4wD09fWdEExrea7U+yWS16Tn0esheOjQIe5d/93kocc8qmauAEuSpKb7xlce3P3cnv0BUPNK4yPrB4Pn9hzY/YV7V3bVSmNGTgWeAsqH3+VnxZ8feePE5xbfAHc/CPet4MEnngyu+uiFB86fOnVOw2fbQunQmdasIJoffvPfKwnhvR6Ck6ZYD2/bDnFTrCj3IVXFACxJkprq+xu3R8/t2R9UvdI4dUb8ccVNcGk/rFvJc3v2L/qHR7ZHv7G8NSvBXewqIP5lRC0rv2mLb4jH2fQA/3rk3944f+rUBkyvcxUKtJXem4Tu8fHxgiG81yV15rkQPEh379BQk9gES5IkNc2BF0eHH1mf2/ZcLPwuP+v4j0KSlUZg40ODwcv/9rMDzZlxz1gGxCvxpRT775EvN87o62MfrGdSWSsXXsfHx4+r1a329aWUW+Et9N7L13215Hy6kU2xVC8DsCRJapp/fuanrwLFVxoLBaxSIfiWOwF48fkjBfbjqgpxt+d5lxa/o9Lwmxrnpy+NXlTPpDpZft1vJZItzuma32rfr1wo70Zr77g9CcEB1gKrSgZgSZLUNAdHXjoNKLzSmA5Yj7xxfI1psfCVG+eV0aPtuNIYEJ+RG9IpP5QXq8EuVfdbzTgdpFzjqvT25FKBs9pty4/c/eXjGl7lzyEJyZW8dy9JHbu1mk75/01twQAsSZKaZuKoo1IrjemQVS5w5cYZebGtVxpX5z6SMNyZKg2/AiZXc1vVqCp/9bjXJE2xclYT/wJKKssmWJIkqfkKrRDWErA6b6UxCcNrco/D7KZSBcNvQUlH5mINquoJovkrvZV0fu7F4JtmUyzVwgAsSZJUuaDG51anPq8pcR8kDaqqU+q91SGqrQNWHIKHDh1i76HDEIfg/oynpDZnAJYkZe75vQeznoLaRRW1p3+/4cmJ6+eHa/szVMGfvdpa+pa2uvwtakfpc3lr7facLwm8vb6aW6uHt21Pwi/AE1nORZ3BACxJytzfDzwJA1nPQpmrouvw83sPZvWLk6jM80GFY5T6Qb3cezTidc0I9qpSucZbKm3o0KFk+zPEOyvC7GajTmEAliRlqdxWUHW+oKK78jtCVyaqci7VeoLqfqAOKP7PGxH/eY/qmI/aQHoVuBbFVnyTmt9qxu311WPDr2phAJYkZSnCQNDtyv80X3v47YRav4h2Dr5HRxvTWOzoKACnfeCDbwBVHCDcWwqt+KZDbzr8llsR7vXV49TW5wjDr6pgAJYkSdmpLfx2goh2Dr6wFljFyLONCcAjzwIwY8qUV+jQAJxf31vqPN96V4HLjZUOtL0edAt5eNv29OpvJ/wiTG3Ec4AlSVLz5VYIGzjO/sYM2HAR8Q/k/bRv+IWkBnloa2NGy40z4+wpv2jMgO2h1Fm7tTxXydcrDbm9eg5wXvi1jEZV86wsSZLUTF8BVvHHD8EVNx3/TLmmV4VWhP/pB/BntwP8V+A7jZliTzoVeAuAewZg8Q21j7RrC9y3AoBv/8F/O3D+1Klz6p9edpIV13YJlu02nywNHTrEveu/mzy07lc1cQVYkiQ1U1NWGoFnGzNgz3obWALAupVxiK3Fri3x64GVy34t6vTwq/Zm0ys1givAkiSpmZqy0gh8EPhlnXMTfA34IgC33AkLl8K8S0vXBR8djWt+h7bCpgcAmDf93N1f/8z/vqgF822Jdll1bZd5tIPU1ucI635VBwOwJElqtmuA7Zzyfrj7wdpCcLLS+O47yXg7GjvFnnY18FQdr48WzJoZrL3j9kbNpy0sX/fVtgid7TKPLOXV/ZpfVBf/AEmSpFZoyEoj8HXgS02eay/6AHAxcCnwexXc/9fE29CHgR8AwW3XLuG2a5c0b4bqSQWaXoXZzUbdwAAsSZJapd6VxiV1vl7NEQCDAIZgNZJNr9QMngMsSZJaZQdx7W6tK43W/LaniLgmc/DhbdtZMGsmC2fNynhK6gau/KoZXAGWJElSI4TAaoCv3PFpQ7DqYtMrNcvJWU9AkiRJXSEi3g4959U33+S6Sy7JdjbqWHl1v3OznIu6jwFYkiRJjfJXQPDam8fmAK4Cq2oFml5F2c1G3cgALEmSpEY6CHxm76HDgCFYlRs6dIj7/+EHyUPrftUUJ2U9AUmSJHWViFzN5sPbtjN06FC2s1HHsOmVWsEVYEmSJDXaAeJmq8HgniEWzJrJtDPPzHhKamcPb9vO4J4hiH+B8vvZzkbdzAAsSZKkZoiwKZYqYNMrtZIBWJIkSc1iUyyVZNMrtZoBWJIkSc1kUywVZNMrZcEmWJIkSWqmCJtiqQCbXikLrgBLkiSp2Q5gUyyl2PRKWTEAS5IkqRUibIolbHqlbBmAJUmS1Co2xepxNr1S1gzAkiRJaiWbYvUom16pHdgES5IkSa0UYVOsnnTv+u8ml4ZfZcYVYEmSJLXaAWyK1VMe3rad3Kp/hE2vlCEDsCRJkrIQYVOsnmDTK7UTA7AkSZKyYlOsLpcXfvuJV/+lzBiAJUmSlCWbYnWpAk2v/kd2s+la04DrgN8Bfhe4C1gCXAKcBbwBvJ3Z7NpQX9YTkCRJUs8LgEGAr9zxaUNwl1i+7qvJpU2vGqsP+ATwKJU1NX4P+CTwQ2C8ifPqCAZgSZIktYMQWA2G4G6Q2vockev6rYaYR19fxPj4TACWXgg3LoQl82H6GXDumfDKm/DyMdj+Imwegq0vJK89SLxaPJLR3NuCAViSJEntYhAIFsyaydo7bs96LqpRXt2veaNxlhH/QgFuXABf+DhcWUFPsaf3wzd+BJv3Jl8JgCeaMsMOYA2wJEmS2sVEU6yhQ4fsDN2BbHrVNJPhd+2t8LUVcP6Uyl55/hRYcTmc9gEY/FeAz+TGOtiEebY9A7AkSZLayUHgM6+9eQywKVYnselV08wDdgPwR9fDl2+qbZQr58Iv/z/4yQjEIfhvgLGGzLCDuCVBkiRJ7SbAplgdx6ZXTdEH7Adms/ZW+Px1he+a8ofHPx77dvER738cVm2E+JdNc+mxxliVdA2TJEmSWikiDlHcu/67DB06lO1sVFZq23OE4beRPgHM5sYFlYffYl9LfP66uIYYZufG7ykGYEmSJLWjkFwIToUrtaECdb9qnEeBuOFVIemgO/bt41d+S4XgyfEerWt2HcgALEmSpHYVAtHeQ4dZtf6hrOeiAgy/TTUTOImlF5bv9pwOvqW2PyeunBsfoRTnwZm1T7HzGIAlSZLUztYA7D102JXgNjN06FD6v8kaki7FapSbgfic32LyV32rMTnuzbUN0JkMwJIkSWpnEbmVxYe3bbceuI3cu/67yaVNr5rjWgCWzG/O6JPjXtucN2hPBmBJkiS1uwibYrUVm161xAIApp9R3auS2t9yK8OT4y6o7g062ylZT0CSJEmqQJj7vPrhbdtZeIdHI9Xq9Z///LV/e/31t8feevv9L42NzSh3/3lTpoxOOe3Ud84/++xTzz799HOs+22ZRQCce2blryjV+CrfORMBeFHlL+p8BmBJkiR1ihBYtvfQ4WDV+odYe8ftWc+n43xvx4+jB594MgDOqeJlEyH5ktmzoz0HDwa5h4bf5ghyn/cCC/jZz2FaBavA+R2hy3ntWHK1u6rZdTgDsCRJkjrJGiBImmLddu2SrOfTMcLvPrz7Xw7kwustd8LCpTDvUphaYhH46CiMPAtDW2HTA+TC727g7+mcplcBk6EyzGwWk3NIXy8r8jzAcwCMvlk+AFcbfgFengjAeyt7QXcwAEuSJKmTRMQrj4MPb9vOglkzWTjL7dDlfG/Hj6N/OXAw4JT3wd3rYfENlb1w6oz444qb4NJ+WLcS3n1nEfD5pk648VanPq/JXYcNGjsocF0q2JYT5T6/DvwK216Aj5U4qaiW8Auw/cXkaltVs+twfVlPQJIkSapBSC7UfOWOTxuCS3jxpZeGv/xXf3MxAPcMFA6/y886/vEjbxQebNcWuG9F8ug04O1GzbOJAmCwyHMR8ASFw3BQ4LoRwZbce+Z/LX0N8fm8h1h6Ifz9/1F81FoD8G/+37D1BYBZwOHKX9jZDMCSJEnqVCGwesGsmdYDl/DQk1ujgad2BNxyJ/z+n554Q374TRQLwd/5E9j0AMD1wD82aJrNNl7BPVHuc1Dl2FHqupJgW43/BE7iR3fBlXNPfLZc06tigfjp/fDxbwK8B5xcx/w6jlugJUmS1KlCbIpV1r6XXzkNiGt+86XDbxJ4k68tP6twCF64NAnAy2ivABwUuF524m0VvR6aG2wr9Ung+3zjR/Dw5xo36jd+lB6/p7gCLEmSpE4WkNveetu1S2yKVcDydV+NL/778IkNr5Kwmx90i30d4sZYf3Bx8qgVeSIocF3PVuRikq7WUYPGa4Q+YD8wm7W3wuevq3/E+x+HVRuhr+8w4+OzqWx1vGu4AixJkqROFmFTrMoU6vZcbJtztePUJihw3awa29UlxltDtt2hSxkHrgP2sWoj/OznEP5W7aOFfwffeiw38nhAj4VfMABLkiSp80XEIWb1veu/a1Os7AUFrlvZPKqQ1QW+FhH/uank9VkaIf53FvGtx+DDp9e2Enz/45PhNx5vpEHz6ygGYEmSJHWDMPd59cPbtrPwDgNwzUptfz5RurtyUOU7RanrVtbYRnRG8E17giQEr9oIW38KX/h44cZY+Z7eH9f8bp447jdg8t93z7EGWJIkSd1kEAjsDD1poga4kkBbqClWuftOFKWus2oelS8kXoXutOCbbx7wODAbgKUXwo0LYcl8mH4GnHsmvPImvHwsPud381By1FFS8xvQoyu/CQOwJEmSukmATbGOU3EArjT8Hn9vf+qrUXUzU436gE8AjwInVXD/e8Tdnn9ID9b85nMLtCRJkrpJhE2xqldN+D1e1OCZqLxx4AfE5/fOBG4GrgUWAIuA3cBeYBvwfeBwNtNsTwZgSZIkdZsIm2JVrvbwq+y9CmwCngQ+BJwO/Bz4d+BN4Gh2U2tPBmBJkiR1ozD32aZYiaOjjTnC6OhocjVU/2Cq038Ao7kPVaCSPeOSJElSJwqBaO+hw6xa/1DWc8nM4nnzngFg5NkTn8xvZrX8rOM/CpkcZ2PDJim1iAFYkiRJ3WwNwN5Dh3l42/as55KJC6af+xYAQ1sbM+DkOD17lI46l12gJUmS1O0Cergz9IsvvTT85b/6m4sBuGcAFt9Q+2C7tsB9K5JHpwFv1zs/qZVOznoCkiRJUpMdIF74CfYeOsyCWTOZduaZGU+pdc4+/fRzTjn55GjPwYNzeOrv4IKPwXkXVD/Qri2wbiW8958A19Dj58mqMxmAJUmS1AsiciH41Tff5LpLLsl4Oq118cyPzHnuyJHdr7z++nk8OQD/fgzefQc+cCp86PTiLzw6Cnu3webvwF9+OQm/Xwf+3xZNXWoot0BLkiSplwwCwYJZM1l7x+1Zz6XlVj/0cLTn4MGgjiGWAE81aDpSy9kES5IkSb2kH3qzKdbQoUPkwu8w8BVgbYUvXQtcT1zza/hVR3MFWJIkSb0moAebYi1f99Xkcg2T5yRLPcUaYEmSJPWaA/RYU6xV6x/itTePgeFXPc4VYEmSJPWqEFgNsGDWzGxn0mR7Dx1OLv35X5IkSZJ61CAw3iMfQWP+lUmdy98ASZIkqdcFWU+gRaKsJyBJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJKu7/B/wCuXtl+rJ5AAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "id": "eb31d63f", + "metadata": {}, + "source": [ + "Another example that contracts to 3-way tensor (3 free indices are created) is as follows:\n", + "![TestNetwork3.png](attachment:TestNetwork3.png)\n", + "\n", + "The optimal contraction Order is:[2,1,3]" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "fbaf95c0", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(2, 2, 2)" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# --------------- Network-1 --------------- # \n", + "# Leading order cost (guaranteed optimal): (Ind1^4)\n", + "Ind1 = 2\n", + "T0 = np.random.rand(Ind1,Ind1,Ind1)\n", + "T1 = np.random.rand(Ind1,Ind1,Ind1)\n", + "T2 = np.random.rand(Ind1,Ind1,Ind1)\n", + "\n", + "# TTv1.0.5.0P$U*28?G@(0LJY^Y6.c^popM'')'''':{k}K$\n", + "tensors = [T0,T1,T2]\n", + "connects = [[-3,2,1],[2,3,1],[3,-2,-1]]\n", + "con_order = [2,1,3]\n", + "T1 = ncon(tensors,connects,con_order)\n", + "T1.shape\n" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "id": "ccc4d69b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[[1.34586949, 1.27159154],\n", + " [0.50705741, 0.52421329]],\n", + "\n", + " [[1.28039365, 1.11050855],\n", + " [1.03176317, 0.86728339]]])" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "T1" + ] + }, + { + "attachments": { + "TestNetwork4.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIIAAAHFCAYAAACO8FIfAAAgAElEQVR4nOzdfZQc9X3n+/eAwMAIgw2SgARJCBFsJIxRwBcsQDWOefADyjF7RJbL2rH3sDde4dysExOILxyVAicXLnF8szHEe6wT7LBYCdrAWtiYp/UUegDW5o6CrZEjMwg0ygosLPNghLEMzP2jumZqWv04091V1f1+ndOe7umqX/+Ep2e6P/37fb8gSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSVIdfVlPQJIkSZLa6ETgo8B5wCLgTGALMAxsAu4HdmU2O0mSJEmSJE1LH/AR4C1grIHLW6Xj/aBcUtfzF50kSZKkbrKAvr6IsbETATj/FLhoMSxdCMe9E+YcBT99BV54FTaPwENbYePTybk7gQ8BOzKauyS1nUGQJEmSpG6xDIgAuGgR/MnF8IGT6p/1/WfhSw/CQ8PJdwLg0bbMUJIyZhAkSZIkqRtMhEA3fgI+96HmR/jK9+CGe5NbAYZBkrrQwVlPQJIkSZKmaQFxAWj4ow/Dn35kaqN84CR449fwP3cAfBq4E3ipJTOUpJxwRZAkSZKkIusDngXm1VwJ9K4/nHz7pb+pPuLEyqCdwEnEBaUlqSsclPUEJEmSJGkaLgHmcdGixkOgat9LfO5DcY0hmFcaX5K6hkGQJEmSpCL7NhAXhq4kHfi89DeTVwLVCoMmxvv2tGYnSTljECRJkiSpqE4EDuL8U+p3B0sHQLW2hSU+cFLcej5+z3Ti1KcoSfliECRJkiSpqD4KwEWLqx9RvgqoGRPjfnRqA0hS/hgESZIkSSqq8wBYurA9o0+Me157HkCSOs8gSJIkSVJRLQLguHc2d1ZSG6jeSqGJcRc19wCSlF8GQZIkSZKK6kwA5hzV+Bm1CkSXmzUeBJ3Z+EmSlG8GQZIkSZKKagsAP/tFY0eXdxCr58VXJz+OJHUBgyBJkiRJRTUMwO5X6h/ZbAgE8MJ4EDTc1KwkKccMgiRJkiQV1ab4f5+ufdRUQiCAzSOTH0eSuoBBkCRJkqSiuh+Ah7a2Z/SJce9vzwNIUuf1ZT0BSZIkSZqGt4CDePCP4QMnHXhvveLQ1VYIff9ZuPivAN4GDp7eFCUpP1wRJEmSJKnIPg7Alx5s7agT4328tQNLUrZcESRJkiSpyPqAZ4F53PgJ+NyHpj/iV74HN9wLfX27GBubB4xNf1BJygeXOEqSJEkquvXAHzH4L/DGryF4z9RHCr8F//d4SaAlwEvTn54k5YdBkCRJkqSiOwOYD8znf+6AmYdVrhdUz1e+lw6BAuCfWzQ/ScoNgyBJkiRJRRYAg8RB0NeB9zP4L7BlFOYdA7/xrvojfP9Z+ON/hDUb0mM+2oa5SlLmrBEkSZIkqahCYFXp+urS7QXA94B5AJx/Cly0GJYuhOPeCXOOgp++Ai+8CptH4hbxG5+OR4hrAgXAjo7+KyRJkiRJklRTSFzEeax0Pa0P+Ahxa/mxBi5vlY73g3JJkiRJkqScCakeApU7EfgD4E5gqHTOUOn2H5TulyRJkiRJUg4N0ngIJEmSJEmSpIJKh0BBtlORJEmSJElSOwRMhECDGAJJkiRJkiR1pYCJVUCD2U5FkiRJkiRJrRYweRuYIZAkSZIkSVIXCTgw/ElfJEmSJEmSVGABtcMfu4NJkiRJkiR1iUZCIFcDSZIkSZIkdYl6YVCY2cwkSZIkSZLUUgGuBpKkjjko6wlIkiRJ6nlRle+v7uQkJKkX9GU9AUmSJGkKbCU+dY+Sn+1WARP/X0al22m+X5EkSZIkqcc1WmDYS/VLHoK0kAPnk/5emMWkJKnbmbBLkiSpSEJgFcA14SeznUlB3RremVxdTXZhS0jp/8cK80ju872KJLWBv1wlSZJUFCGpEOjURfOynU1BbR/emXUYFFI9BEoEVK8bJEmaBotFS2pGP/A7wJ/T2LLzPy8d35/FZCVJXSWkFB4sX3GBIdA0nLpoXno11So6GwSF1A+BwBBIktrGFUGSGvVBYPM0z3+8RXORJPWWgFINmeUrLmD55RdkO5susf7uDaxftyG5OUD7w5dBJopBd+LxJEkVGARJasStwBcAuHQlLD4fFpwBx5xQ/Yy9u2HHU7B1I9x3e/LdvwSuafNcJUndJcAQqG06GAYZAklSThgESarnXOAxZhwC130TllzY/AhDD8PNV8Kb+wGWAo+1doqSpC42CASGQO1za3gn24d3QhzODLR4+IB4K1hQGn81hkCSlCmDIEm19AOvAXD9uuoh0GVHT1y/5+XKxww9DDetSG4dDrzRojlKkrrXIBCU1bRRG5SFQR8HzgGWATc0cPqNwKPAE8C+1PcDJtrCR7Q+ZJIkTYHFoiXVcg4QbwdrJASqdDux5MJ4nNhpLZmdJKmbhZS2EhkCtV/Zf+PXgEdoLASidNwjpfPOLX0vZCIEWo0hkCTlxoysJyAp15YBcU2gSiqtBLrs6PhSaWXQ4vOTekFnAEOtnKgkqauEpNrEqzPmLTh+y84dzwfAdGoCPgb8E/BvSkdk0Z5eklSDQZCkWuJPAhecUfuoatvByk2M8yngjqlOSpLU1UJsE99x99+7Odq54/mg6ZqAx5wQX87+CJwxkNQE/DfEW8EexRBIknLHIEhSfdU+CWw0AKo3jiRJsYBUCGRx6M54bmT3tnu+ORgAtUOgejUBl1wI192V1AQMgI+0dqaSpFawRpCk1ki2hEHzAZEkSTHbxGfgn5/8yR7AmoCS1CMMgiRJkpQHhkAZ2bnj+ZlA4zUB03UBK5kYp87ecklSFgyCesOYFy9TvDSukReGE4Ic/Ns6eQnr/weUpJ4WUmoTbwjUeT/a8sxZQLtqAkqScsYaQd0vyHoCkiRJNYTYISwfrAkoST3BIKj7RcRtO1cBXPvlJzKdjIrlls+f05Zx5y5cwhVX396WsfNi0wNr2PzgGoifg2Gmk5Gk/AoxBCqWegWjJUm559aw3hASvxll7W0rax4oNSVdIFrjUiEQwECWc5GkHAuxTbwkSR1nENQ7BgBGR4bY9MCaesdKk+3dXfv+JAyqFwqVxjns8CO79iPE0ZGhdAi0Osu5SFKOBdgmvpiaqwkoScohg6DeMgCw+cE1jI4MZT0XFcCC9577JAA7nqp8QHpJeCNLxUvjvGvW3J+2Yn55VBYChdnNRJJybRAMgSRJyoJBUG+JKK1QSL1Zlao67sT3vAbA1o3VDyoPfWrVCyiN8+7Zc3853bnl0aYHJoWsYYZTkaQ8MwSSJClDBkG9JwQit4ipEQsXnT8bgPtuh6GHqx+YLBOvFQINPRyPAww/+d2ju21VmnWBlGP9wO8Afw6MNXD589Lx/VlMVl0vxDbxxWNNQEnqKgZBvWl8VZBhkGo5fu5pp13wsc9GANx8Ze0wqJahh+PzgaOPOSEaHRmav/a2lV3181e2JSzKbibSJB8EXgMeAW5o8JwbSse/BpzbpnmpN4XYISzfWlwTEHh2ulOSJLWeQVBvikiFQd22MkOtde6HPx3M+62zt/DmfrhpBdzxRfjBd+u/WNy7Oz7uji/G5725n3m/dfaWP7j+nmDpxVcB8c/f2ttWFv5nMBVoWRdIeXIrsBmAS1fCn62Fr22bvIKv/PK1bfFxl453mHysNI40XSGGQLl1+pknt6UmIFBjb7kkKSt9WU9AmRoEgrkLl3DF1bdnPRfl3BOPfCN69Dt/G0z1/As+9tno3A9/evz8sq1ULL34Ks675KppzTELZf8Of6cqL84FHmPGIXDdN2HJhc2PkKzke3M/wFLiUEiaihA7hOXaf/+HKPr2P20KuHQlfOYvqh/YSAgE8YdA8Xbw3waK/WmPJHUh37RoEAiK+iZcnfX86LZtI8Mb97yw619m7vjx42fVO37Be8998rgT3/PawkXnzz5+7mmnVTomHaQU7edwdGSItbeNr5xwNZDy4jAgLsh+/brqIVAjb+iGHo5X9MVmAvtaNEf1jgCLQ+fecyO7t930Z38X/52u9XujEZN/bxwOvDHd+UmSWssgSAGlF2hXXH07cxcuyXY26klFXR10y+fPSa4aAilPlgD/X81P9ivV96gWBk18sv9h4H+0ZorqIWNgCFQE37lnc3Tv2sGAGYfCdXe1YiXhB4HHWzxNSVILWCNIEaV6QamVDVJHnXfJVVz75SdI1w7KeyHp1PwiDIGUL2cAsPj8yveWrwRKAqBqxV8nxlnWktmpl7gSqEA+dtnS4L2nn9SSmoDA9zAEkqTcckWQEtYLUi4UYXWQdYGUc4NAwNe2wTEnHHhvEvhUKv5aaVXQ3t3wH8Z3dvrzrkaFwKpTF82zOHTB3H/v5uiebw4GUz3/2NlHRz/b83JA/EHJQIumJUlqIV/QKW0M8vnGW70nr7WDrAukAoiDoFqFXMvVCoLS9/u6QY0JKRWHXrPu+mxnoil54X/97LmR7f/68k937z18x8juU+sdv2DhCdvnnHDMLxee+ptHv/Lyvvm3hncmd/l3UpJyyBd0SguwXpByJI+rg1Lt7n1xq7xqPAhqtAOQQZAaF5JqE3/qonnZzkaZ2D68E8MgScovawQpLaJULyj95lvKSlI7KAkls64dtOmBNUkIBL6olaRyIak28YZAvevURfNYvmK8LtQq4g8bJUk54Sd7qsSW8sqd9OqguQuXsPTiqzq6aq1sddIAcXDaLeIVJOou7dka1i4R1hIpugCLQ6vM+rs3sH7dhuRmt/3tlKTCMghSJQGlF3OGQcqT0ZEhNj84sSqnkz+fXd4qfizrCagNihUEga9Jis428aqoLAzyeS5JOTAj6wkolyLiN7urNj+4hrkLl1gvSLkQ/yzePr46Z/ODa9j1zFDbVweltqN1Ywg07trFp9U/SLm39tnnGN33elvGbsfPyC1bt7V8THXcIJS2AxkCqczyyy9g+7adbB/eCfHPiqv/JClj1ghSNSGl5bvWC1LenHfJVSy9OF4JlHTxalftoLItYWFbHkTqpMuO7tQKH/WGEAhsE69aUoXDA0rBoSQpOwZBqmUAiEZHhjIt0CtVkhSSTgKhdhSSTrailaxu6eBSu+3dXfv+JAyqFwqVxumfMePFFsxK3SUkVRxaqiX1MxLgByuSlCmDINUz3kUs1S1Jyo306qDND67hls+f07JAaO1tK5OrXb0lTN3l+CMO3w7AjqcqH5CuA9RI+/jSOHMOP2xnK+anrhFim3g1oWzV2Cr8uypJmTEIUj0RpTAo9aZYypV2rA5KnR/hi1UVyLsPPfSXAGzdWP2g8tCnVmHp0jg/e+NXr43u2zfd6ak7hNgmXlNgW3lJyoeDs56ACiEi/kM9f9czQ5z+gY9lOxupiqRg9K5nhtj1zNCkdvPNKKsLdFILp5hXIcB5s2dlPA21woyDDnpj6OcvHc1PfgCn/DYcf3LlA3/vuolLNUMPw5o/BeBXb7/9+taXX5kFMLe/v2Xz3bxnfMeZ2y+LIQDuADuEaWqS4HD7tp0AnwYeBZ7LbEKS1IMMgtSobwDhKz9/Hmj+jbXUKXMXLhlvKZ8EQsn3GzE6MsT9a29Mbq6mVDS9y4VgENQtjpgx4+iD+/qinfv2zeexb8HJ768eBtUy9DDcfCW8/RbL5syOfrP/iLN37XudXfteHw9vWhEIGQQVzrNgCKTpqRAG+fyXpA4yCFIzHgU+veuZIeYuXMJR7z4+6/lIVU11ddD9a2+kFHj2Ul2gEAyCusmJ/UfM/9fXX9/yyhtvHM+GdfD6q/DmfjisH444svqJe3fD8CZ46I54JdDbbzFvZv+WS37jhHPn9vczt/8Ijjr0UJJACKYfBhkEFcogMP/URfP491cvz3ouKrhTF81j+7ad7H3xFYhXmn0j2xlJUu/oy3oCKpwQWDV34RKuuPr2rOciNSS91WvpxVeNrxiqdRy99ftxDODaxadlPQ+12BMv/ix69Kd7gqmef8Gc2dG5s4494PxNe15MBzgsnT1rykHiLVu3JVd76TlXRCGwyjbxarVbwzvZPrwT4hW4A9nORpJ6gyuC1KwICF75+fPzwS1iKoZGVgeVhUAD9Fa9ghBcEdSNfrP/iPknHzlzW/+MGcOHHHzQz17av/+EeucsOHLmk+896p0/GTh+zuvvPeqosysdM7e/f/znZbrbxVwRVAghpeLQ//7q5Rw7++jaR0tNOHbW0TwW/RBgPnEgHGU5H0nqBX76pqkIiJeH11xdIeXN6EgcAo2OxHWD0j+/t3z+nOSwXtoSlnBFkKZsuquDXBGUeyG2iVebbR/eya3hncnNXvw7LEkd5YogTcVzxC/YA+sFqUiOevfx413vktVBu54ZYusPvtOLdYHSQnBFkKZmuquDXBGUayGpNvFLB87IdjbqWskqs1Lx6AA7iUlSWxkEaaoiSi3lX33peVvKq1DSW8Ve+fnzSQgEvVubIASDIE1PpUAocdShh1Y9zyAotwJsE68Osq28JHWOQZCm4xtYL0gFNXfhEuYuXMLWH3wn/e1atQnC0tfn2jerzIRgEKTWSFYBJWHQ1pdfmfT9cgZBuWWbeHVcWRg0HzuJSVJbHJT1BFR4q4FJdVekolh728rkalT6uoq4Xk5Y4fBVpYukOs6bPYtrF5/G0lK4uHnPi9yydRubUrWElGuDEL8pNwRSpy2//IIkEAoo/SxKklrLIEjTFVEKg1JvqqXc2/TAeIewiHhLWB8TKxJWMTkMSq4HpYukBpw3exZLZ89ibv8RQBwIGQblXggEtolXllKFyQN6s3afJLVVkbeGnQhcAfwn4Abgq8DvAucBs4E9wKuZza63RJTqBe16Zsh6Qcq9slbxJ6XuiigVQmfixWdAXKsgMZ/uW6oeglvD1B5z+/s5/V1xIdhKxaTdGpYrIbaJV06k2soH2FZeklqqaK1a+4BLgG/T2Gqmt4GPAw9Qao+sthoDW8or30ZHhtKr12p1CQupvhWs27qL2T5eHZNuNz+3/whGJ4pKF+01SbcJSXUIc0uY8sC28pLUHkV60bWAvr6IsbETATj/FLhoMSxdCMe9E+YcBT99BV54FTaPwENbYePTybk7gQ8BOzKae68IKO3lvuLq2y0erVxae9vKpJ5VIy8oB6m+FWyA7vl00iBIHZUOg1KK9Jqk24QYAimn1t+9gfXrNiQ3u+lvryRlpihbw5YBW4CjuGgR3P5J+MIl8IGT4Pij4MjDoK8v/nr8UfH3r/jf4EPvhT2vwjMvHg38EfEfjp1Z/kO63HOUttXYUl55tOmBNekuYfVaxYdM3hJWbj7ds0UsBLeGqXPKW82XhLj9IwsBtolXjtlWXpJarwifvi0jeVF44yfgcx9qfoSvfA9uuDe5FRD/AVH7DALB2cEVzx173IKXf75n9PDnR4dPrXfS8XMXbX/37Lm//I35px99zJz589s/TfWSsrpA9T5RDGisU0m3LFN3RZAyc8vWbeXf6pbnVVGMgSGQ8i+1Miii/oc5kqQa8h4ELQCeAeCPPgzh7059pPBb8NePJLdOxm1i7RQQLzEPpjrAso/9x+icD//+lM+Xyt3y+XOSq9PdElauG5apGwQpM6kgaDWT63IZCLXfIHYIU4HcGt7J9uGdYBgkSdOS5yCoD3gWmNfQSqB3/WH89aW/qX7MxMqgncSdgiwg3R63Al8A4NKVsPh8WHAGHHNC9TP27oYdT8HWjXDf7QDM+62zt/zb//g3Z3ZgvupyqdVAzb6xDJgIhJZRORyKSuNGU5tdLhgEKTOpICh5TRIyEQhFxKt4w07OqUeElP47r1l3fbYzkZqQCoMMiyVpihrpvJWVS4B5XLRoatvBKvnch+CiRQDzSuOr9c4FvsCMQ+D6dfCZv4CzP1I7BIL4/rM/Eh9//TqYcSg7f/KDMx9/5OtRJyY9Xclqk1s+f0565ckBx0zlvlqPWX5Os2P0grItYWGTp0elc0LiTx77Sl9XM9HqOiD+VL3ZsSVVFjL5+bWK+s+voG2z6U4hpRDIlUAqmuUrxrcwNvK7QZJUQZ6DoG8D8CcX1z8yWQ3UiInxvt30jFRPP/AYANd9E5ZcWP3Iy46OL5UsuRCuuwuADd/5avD86LYDCkjkyS2fP4exsbHxr8n1Ssc0e1+9x0yfk56HYqMjQ+kQaHWtY5sQMREO9aXGXUVjdYUk1Rdy4PNrjMpv+kKa287Z60JSHcKSQrxSUZRtZTQMkqQpyGsQdCJwEOefEncAq6WZEAji8c4/BeJ/+4lTm56qiBOIS1fWDoEaseTCeBxgZHjjnulOrF2S8KWvb/IuyywCmWu//AR9fX2GQSlrb1uZXG3n8vGQyasXqr1ZldS8kAMDobDsmFVlX1VdiG3i1QVOXTSvfGVQkN1sJKl48hoEfRSAixbXPqqRukCVTIz70eZOzFRA/lcbLAPimkC1VFsJVK40zgu7/mXmdCaVZ0mQ1O5zetGmB8ZXAkW0P5gJqf9mVdLUhVReHRSmjgnweVdLgCGQusjyyy9Ih0GuCpSkJuQ1CDoPgKUL6x/ZbAg0edzzmj+5owImlrwX4Q/cDUBcGLqaRkOg1Dg7fvz4WdOZVLvUC2TqrcxpZwhUbQtar6wUqtAqvlNCGtvKIql5IQcGruWrgFwZUN0gGAKpu5SFQa4KlKQG5TUIWgTAce+sfdRUQqDJ4y6a2gBtFzAR/hTvRW21wtBJCHTPy9MbpwukA53ybWWtPKf83F7YNtamukDNCHF1kNROIbWf23lfPZuFQShtpzEEUpdZfvl4rasAn/+S1JAZWU+girhl+Jyj2jP6rPEg6EwO/IPxaJOjRS08NqCIwU8zGg2Bcq48lLn2y09MCliSWj2V6gelNRvo1DsnXScoeexrv/xE049RZGUhUJjdTMYfe1XqkvWcpF4xSGdXA+ZZSOl1hR3C1K2uCT+ZtJUPOHDbqCSpTF6DoC3AmfzsFzC7zqqgqXjx1eTaTzkwdCm/XU+nl6FW+6Sj2QALWhti1dclIVArJIFNeYDU6nPKz02ud6tND6xhdGQouRlmOJVEmLqkt7GEmcxG6h71/vYGpUvU7onkXIht4tUjlq+4gFuH7wT/1kpSXXkNgoaBM9n9SnuCoBfGg6AngP+37N6gydGWNXFss2M3M8ZUxnYvdRvVWxU0lUBmOiFONwdAkGldoEaEpa+uDpKmL2zwuGRVUNS2meRbiG3i1UOStvK3hoZBklRPXoOgTcC/Y9PT8P42dHjfPJJc+y4HvkAsv91JIfXDmWpvcIMpPF6nQyypbcq2hEXZzaSqkHheyfZPX6RKUxOlrid/x4Iqxw7Sm6FrgB3C1IOStvLr122A+DkQkc/XBJKUqbwGQfcD8NBW+NyHWj/6Q1snP05+hEzeRlJJ1OT3O8me5inl9XrUPqlW8Xl/wxcx0c4+WRm0jPyGV1IeRVR/vgRMhEKryr6GbZpP3gTYIUw9LPmZL4VBvb4yUJIqymvXsF3A22x8Gr7/bGtH/v6zsPFpgLdLj5NHIZO7DkmqomxLWJjhVJoRMvHCNCB+oRpmNhupe0RMfKBS3r1vjN54nrkSSD0v1UkMLIUgSQfIaxAE8HEAvvRga0edGO/jrR24LUImXsgWJxTau7ul4/Qf+e4XWzNg56WLNE/FLZ8/p2Xt3ls5Vl7koFX8dETEYVD6jeogbsOUWinkwECom4PXQSCwTbwUF0i3rbwkVZbnIOgBYCcPDcNXvlf/6Jf+Jr7U8pXvwUPD0Ne3qzR+UYSlS97f6N4IwI6nWjNaaZw5v3nqztYMWCxJi/qxsbFpBzitHCtP1t62Mrma9y1htYRMPLcDuvtNqpSVkMnPs1V03/MsxDbx0iSp50JA9z3nJWnK8hwEjQFxgaAb7oXwW9MbLfxWPA7A2FhAMevZhFlPoI64hf3Wja0ZrTTOcSe+57XWDNg66ZU+9cKV6a4KakYS+ADjrea7VaouUET+nxv1hBy4aiHMajJSlwrp3u1iIbaJlypKPSf82ypJJXkOggB2kGyT+OtHGlsZVMlXvhefHwtK46r14tThvtth6OHaR97zcnypZujheBxg4aLzZ7dqgu2UBD6VApip3DfV8ZqdWxHlvFX8dIR055tUKU9Cuit4DbFNvFRV0la+pOjPd0lqic4sU5i+ZSTV/i9aBH9yMXzgpPpnff/ZuCbQQ8PJdwKSVStqlw8Cm5lxKFx3Fyy5sPkRhh6Gm6+EN/ez7GP/MTrnw78ftHqSrZKswMlLwJK3+bTD6MhQt2wJqydkosBlu/+dYwDXLj6tjQ8hVXbL1m3J1Sxek4RMLiRbtN8pAXYIkxqy/u4NSScxsJOYpB6X9xVBiUeBk0lqBl38V7D8P8crfbaMwvMvw9tj8dcto/H3l//n+LiJmkAnYwjUCY8Bf8mb++GmFXDHF+EH361fQHrv7vi4O74Yn/fmfub91tlb8hwCKRtlxaHD7GbSdiGuDpLaLaS428UCDIGkhi2//AKWrxh/nticQVJPK8qKoEQfcAnwbRoLsd4m7g72AMWsCVRk5xKHQlNy1DEnRJ+9/p6gddNpn7yswsnLPNqpbEtY0X5/TUdIe1cHuSJImcl4RVBaSLwCOSjdznvYPAgEhkBSc24N72T78E6Y6N4pST2nKCuCEmPAd4GDgbnAZ4H/Cmwp3b+ldPuzpfsPLh1vCNR5jwMzgQ+TdBOr78bS8Xe+snd3kCoGnGtJ/Z2sw5e8zKNdurguUCNCirliQXx1ybsAACAASURBVCqSkPh3SxGea7aJl6bItvKSlP2nb1IlAaU/zEsvvorzLrkq29koF1Kd2fL+KX27hbR+dZArgpSZHK0IKhcy+bkWkY+aIiGlea1Zd322M5EK7KoVNyVXe/11haQeVLQVQeoNEaVPZDc/uIbRkaFsZ6PMpVaH+WKt8uqgIKvJSF0sZPJzbZDsf/+E2CZeagk7iUnqZQdnPQGpioj4ze38V196ntM/8LFsZ6PM9PiWsGoi4uL380uXTxOvpohqnHMY8D7iOmtfLp2TXOYD7Nq3j60vv8zWl19m7/5fbX/117/+1xkHHfTGETNmHN3yf4FUsnnPi8nV1bWOy0hEPK8+4r9JARMFpqMOzyUk1SZ+6cAZHX54qbscO/toTl00j8eiH0L83M7ieS1JmTAIUp59Awhe+fnz8wHmLlyS7WzUcaMjQ9y/drzEVLI1Q7HniJ8j6TeoAbCzdF/aB4EdwB8Av8tEgJRcAHjl178ev/yv13957MgvXjtu6OcvHT2jry/6zf4j5iO1Qc6DoETE5PA1oLNvGgPgDrBDmNRKx86OP+fYvm0nxM+zRznwb6gkdZ287ceXygWU6gVdcfXthkE9xrpADQuZqGUCk/973Qp8AYBLV8Li82HBGXDMCdVH27sbdjwFWzfCfbcDMG9m/5Z/O3/emS2fuXpejmsEVRNS/fnWLmNgCCS1y/q7N7B+3Ybk5gB+8CSpyxXlRZd6W0jpRXe3dsTSgVJbwiLcEtaokMnFbR8EHmPGIXDdN2HJhc2POPQw3HwlvLmfC+bMjs6ddWzQqsl22i1bt3Ht4tPGg4dKxbGnel+1YxPpc5J5KFbAICgRMvF8i4hXEoQ1ju8HziFuUX9DA+PfWBrz94FPGgJJ7WVbeUm9pGgvutS7BoFg7sIlXHH17VnPRW1WVhfI31PNCYnfnG4D4rTh+nW1Q6DLSiWA7nm58v1DD8NNKwD41MknbTv+8MMLl2LcsnUbY2Nj9PX1MTY2BkBfX98BAc1U7qv2WGnJOel5GAbFChwEQeOrgz4IbJ7qgxw7++jo5ts+F0z1fFV31YqbWLPu+vEOUpU6sU31vmqPl0ifk8xD2TIMktQr7BqmohiAuGZMqoOUutDoyFA6BMpzzZC8ConfUP83IN4ONpWVQGlLLozHAUZe/cWe6Q3WeenwJW1sbOyAlTuteqxyyWNdu/i08TCq1Y+tTITEz7fyTn5h6phbSUKgS1fCn62Fr22Lg9dql69ti48rPe9+tufl4Et/fteWDv2besZVK25ibGxs/GtyvdIxzd5X6/HKz0nPQ9lKdRILcEu6pC5mEKQiGQBbyne7shAozG4mhRenHovPr33UZQ02BCuN88Ibb8yczqSKqFq4U++4vr6+SeGT4U9XC4n/RqUDoRA4F/gCMw6JV+Z95i/g7I/UrtEF8f1nfyQ+/vp1MONQfvyjZ8/8zj2bo7b9C3pMEr5UCojbEcgkj1fpsdasu348IDYMyp5t5SX1AoMgFUlE6UV2KixQF9n0wKSQL8xwKt0grkGyoEaL6UZDoNQ4O37x2lnTmVSn1Qtx6oUzjYZA5ZKtX8kKoEYf+5at2wyLiisi/r2VhEG/DzwG1K/RddnR1Z+PSy6E6+4C4N61g8FzI7v9AcmBSsFOo8emQ2LDn/w5ddE8lq8Yr8dlGCSpKxkEqWhCIHKLWPcpqwvkvvxWqbbyoF5doEbH6WLldYHqSUKfqdb/SR7PlUOFFxKvyPtroOXbM//5yZ8Ubntm3tQLceqFM82EQOX6+vpq1gKqtgXNsKizll9+QXkYFGQ3G0lqPYMgFdH4qiDDoO5RtiUsym4mPaTREKig6hV4Tn8iXyt4aSQESiSrgOod0+hjq9BeAVq+PXPnjud7bntmnqRDoEZ/NyRbv5IQqJlQp9k6RGqdsjBoEMMgSV3EIEhFFJEKg6wXVHypQM+6QJ3S5SFQKySBzXS6ezXTbWy6K4qUO58CWr4980dbninU9sy8KQ9yylfnNLplq5mAGOIwKAmBkmAnPYckLGrksdU5yy+/gFMXzUturqp1rCQViUGQiiqktGrEekHFVrYlLMxwKupB6TdelbQqBGpUIyuKVDBuz+wqSWDTqVbv5auJ1HnXhJ9MwqCAeGWQJBWeQZCKbADrBRWareLVrSp1EDPg0QFcmZdL9QLi6QQy6WAneYx6q3+SFUPKTmqLWIAfWknqAgZBKjq3iBXY2ttWJlfdEqZMlNfraQVDIDXEEKhnGeoUT4VOYpJUaAZBKrqIUhiUChVUAKlVXBGGQOoShkBS8ZXX62kFO38V2/q7N7B+3YbkpiuYJRWeQZC6QUipXpBhUDHYKr6D9u5u6Tj9M2a82JoB8yO9Kmgqbtm6rWbnr+T+RrqDNXqcpOKw81exbR/eWR4ChdnNRpJaY0bWE5BaZAAYS+oFnXfJVVnPR1VYF6hjbgRuYMdTrSkyu+MpAOYcfthOYNb0B+wO5V3BylcPlN+utUKomQ5jktorWRU01RVBSeBTvg1sbGys6XGrjaXOuDW8M7lqCCSpaxgEqZsMAIObH1zD3IVLmLtwSdbzUQVlIVCY3Uy63qPADWzdCGd/ZPqjbd0IwHGHHfba9AfrjGSlT/JJfK1VP+lj283AR+pulVrUp3+/lG8frRXw1Gt3r/YyBJLUrdwapm4SkSoerfzZ9MCkot5hhlPpBU8AcN/tMPRw7SPvebl24dqhh+NxgIXvPHJ2qyaYhSTwqRTATOW+8u8n16tdaoU+tR5fBdbi7ZnvPKq/67ZndlJ5/Z9aW7XSx7bycRPpYMfAJ3/W372B7cM7wVqGkrqQK4LUbUJg2ejIUOAWsXyxLlDH7QOWApu5+Uq47i5YcmHzoww9DDdfCcCyObOj4w8/PGjlJNut0kqfemFMs/eVB0ONqhY4qWv8PRC0envmvAXHuT2zxdIhTXkAM5X7Gvl+pfGanZvap6w4tK9ZJHUdgyB1o9VAkIQOhkH5ULYlLMpuJj3lMeAveXP/F7hpBVy6EhafDwvOqP3GdO/u+E3n1o3jK4Hmzezfcs6sY4OOzFrqDnFy0+LtmfMWHF+Y7Zl5Van+T62QZSr3Nfv9RKXVQAZAnWUIJKkXGASpG0XEYcMq6wXlQ6pVvHvsO+8a4B7gMe67fTzYacYFc2ZH5xY4BEqvCsp621VSHyjreagj4vZv990OZwzUXpFXa2smTNqe+f6zfqvQ2zOlPKvQJj7KbjaS1D7WCFK3Cin98bZeULbKtoSFGU6llz0OzAQ+TNxNrK4FR8588oOzjo0+dfJJ24ocAiWSMCjr8CUv81BHvEG8PTPeXlmvVlc1qe2Zl/3vA9H8hSf4w9MC6VVBWbd0T+oDWRsoW7aJl9RLWlMBT8qvQSBYevFVbhGbhudHt20bGd6454Vd/zJzx48fP6ve8Qvee+6Tx534ntdmHjVr9kPr/p/kTYsvqvJrDKxPo2zcsnVbcrVbX5PcCnwBmNb2TGDLmnXXn9nuyfaaq1bclIvwJS/z6GWpQNDXK5K6Xre+6JISAXEYxBVX3+4WsSl4/JGvRxu+89VgGkNExK3Mw1bMR21hEKTM9EAQBHAucc2uqboD+Mypi+ZxTfjJFk1JUuLW8M50hzDrAknqet38oktKhMAqgGu//ES2MymYf/jbP9yy8yc/iD+Bnt4n2X9JXKtG+WQQpMz0SBAEcBhwGnAG8KkGjv974oLT24i3mQ0CgWGQ1FqpukARhkCSekS3v+iSEoNAMHfhEq64uvliub3oiUe+ET36nb8NmHEIXPfN6bUef3M/xLUypvOJuNrHIEiZ6aEgaLoCSitcl6+4gOWXX5DtbKQuUKFDWJTdbCSpcywWrV4xADA6MpTuYKUqnh/dtu3R7/xtAFQPgS47evKlkiUXwnV3Jbc2E38iLklqXkTpb9n6dRtYf/eG2kdLqskQSFIvMwhSLxmAuIvY6MhQ1nPJtZHhjXuAeDtYtRCoke9BfP6lK5NbLjmRpKmLiAvZsn7dhqSmiaQm2SZeUq8zCFIviSi9gLalfG0v7PqXmUBcE6hcOvC55+X4Uum+tIlxzmjJBCWpd4WU/palCtxKapBt4iXJIEi9JwQit4jVNt4ifkGN3CYdAKWvVzIxTiMFUiVJtYWkwiBJjUs9ZwyBJPUsgyD1ovFVQYZBdVTqDla+Cmiq40iSpiOktJ3FMEhqTOq5EmEIJKmHGQSpF0WkwiDrBUmSCmoAiLYP7zQMkupYf/d4Xa0I28RL6nEGQepVIaVPUq0X1AJJbaBmVwpJkqZrNZTqnthJTKqoQnFoSeppBkHqZQNYL2j6qhWIliR1QoRt5aWqbBMvSQcyCFKvc4vYdJR3EGtM0IaZSFIvi7CtvHQA28RLUmUGQep1EaUXz2tvW5ntTIpm6iHQIDBWugyWLmHpErRqepLUY0JsKy+Ns028JFVnECSl6gUZBjVoaiFQIkpdD0qXVaVLeUgUYkgkSY0KSa0MknqZbeIlqTqDICk2AGC9oDJ7d7d6nDuI/1v3lS4DxC/QkkuUOitgIiCqFRIFGBJJUiLETmLqcbaJl6TaZmQ9ASlHBoDBzQ+uYe7CJcxduCTr+WRmwXvPfXLHjx8/ix1PwTEnTL6zvDh0+e1KK4R2PJVc21h2T0T1/foBkwOeZanb6ftWVRjz0QbGl6RuNQAMbh/eGay/ewPLL78g6/lIHWObeEmqzyBImhARr0pZFYdBt2c8newcd+J7Xtvx48dh60Y4+yPTH3DreP7zVK3DykQ0FhKlA6Ly+9IhUcREQFRvfEkqutVAkGwRMwxSL7BNvCQ1pi/rCUg5NAgESy++ivMuuSrruWTi+dFt2/7+y//+NACuXwdLLpz6YEMPw00rkluHA29Md341BGVfy0OiaiJ6OyQaA7h28WlZz0M96Jat25KrviZpvYD4bxrLV1xgGKSuViEECrObjaQuciLwUeA8YBFwJrAFGAY2AfcDuzKb3RT5oks6UEDphXMvh0GPP/L1aMN3vhow41C47q6phUFDD8PNV8Kb+wE+CDze4mk2I6D6VrNaIiZvNUt/7RYGQcqMQVDbhZRWR14TfpJTF83LdjZSGxgCSWqxPuAS4Ns0Vlf5beDjwAOUXlfnnS+6pMpCSi+cr7j69p6tF/QPf/uHW3b+5AdnAnDpSlh8Piw448C6QWl7d8c1gbZuhPvGt9f9JXBNu+c7DQGtCYmils2oswyClBmDoI4IMQxSlyorjG4IJGm6FtDXFzE2diIA558CFy2GpQvhuHfCnKPgp6/AC6/C5hF4aCtsfDo5dyfwIWBHRnNvmC+6pOoGgWDuwiVccXXv1gv6h9s/F+18+slgGkMsBR5r0XSyEND9W80MgpQZg6COCYFVpy6axzXhJ7Oei9QyV624KblqCCRpupaRvGa/aBH8ycXwgZPqn/X9Z+FLD8JDw8l3Aia/F8gdX3RJtfV0vaDRkSHW3rYSYBvw34h/Z9zQwKk3Ev/yewLY17YJZiso+1rkkMggSJkxCOqoQSAwDFK3uDW80w5hklplIgS68RPwuQ81P8JXvgc33JvcCshxGOSLLqm2gFK9oF7cInbL589JrvopW3MCilWPyCBImTEI6rhBILB4tIqurC6Qvz8kTccC4BkA/ujDEP7u1EcKvwV//Uhy62Ryuk3MX5pSfSGl2grXfvmJbGfSQZseWMPmB9eAn7K1WsDkVURQPySKSl/bVY/ogCBodN8+Rve9znmzZ7XwYaQDGQR1XICdxFRwZSHQANmvrJVUXH3As8C8uiuB3vWHE9df+pvqx02sDNoJnEQOC0j7oktqTE/VC0qFQODviU4KyGar2QFB0KY9L7J5z4ssnT3LMEhtZRCUiQDDIBWUHcIktdhHgPu5aBH842erH5UOgRK1wqDf+2pSM+ijwHenN8XW80WX1Lgx6P6W8qm6QOALrLwIyr62OiSqGgQlDITULgZBmQmxk5gKxhBIUhu8BRzEg39cvTB0pZVAyfeqhUHffxYu/iuIW8sf3Jqpts6MrCcgFcgAMLj5wTXMXbika+sFpVYC+QIrP6Kyr2kB1esRld+3qmzMqgXsdu2bXON7854X2bVvH0tnz2Juf3+d6UoqgLD0ddWt4Z2GQcq97cM7DYEktdqJwEGcf0pj3cFqrQAq94GT4tbzG58+qPQ4u6Y4x7YwCJIaFxG/8FgVh0Hdt0Vs0wNrGB0ZSm6GGU5FjYuovhUsoHo9ovR9QLwyY27/EQCM7nv9gMFG973O6LM7XR0kdY+w9HXV+nUbuGaRncSUX7eGdyZXDYEktcpHAbhoce2jmgmA0i5aDBufTh7nv0xtkPZwGbbUvK5sKV9WF8jCi90vYCIIWlX9sOoMhNQKbg3LBdvKK9dsEy+pTe4E/h3fuwbOnNvYGY0WjAbYMgofuhXgvwK5+gPriiCpeauBIAlNuiUMKtsSFmU3E3VIxMT/z3FXvMWnjXcLS9cHqmZzqo7Q3P4jODG1ZWxu/xFuIZOKYwAY3D68M1h/9waLRytX1t+9IQmBwBBIUmstAuC4d7Zn9IlxF7XnAabOIEhqXsSkLWLFrxe06QHrAik2t7+/4rawysceMX7s6L7XJ523uey4JCQyIJJyazUQJDVYDIOUBxXaxEtSK50JwJyjGj8jXSz6XX9Ye1XQrPEg6Mwpza6NDIKkqQkpFeUter2gsi1hYYZTUc4l9YMqFYxOVhLBRKHpSiFReUAEGBJJ+RBRWhlkGKQ8qNAhLMpuNpK61BbgTH72C5jdhlVBL76afpxcMQiSpm4AGBwdGQo2PbCmkFvERkeGyreESZPM7T+CpaU6QLVCmrn9/an7J9cNKg+J0gFR+mu1VUTJbUMiqe0iSite16/bwKmL5tlJTJmwQ5ikDhkGzmT3K+0Jgl4YD4KGWz/49BgESdMzXi+oiFvE1t62MrnqiyyNm9t/BHNPmtey4KVaSJQOiODAkKiRrWbj8zUkklolLH21rbwysX14px3CJHXKJuDfselpeP+J1Y9KCkQ32z1s80j6cXLFIEianojSp6drb1vJtV9+IuPpNC5VFyjCF1lK6VSoMjkgglaHRAZE0pSFlLY/21ZeneZKIEkddD8AD22Fz32o/tFJTaB057BaHto6+XFyxFatUmsMAsHchUu44ur81wsqqwvk7wGNQdw1rAhq1SOqppfrET3/y19uG3n1F3teeOONmTt+8dpZ9Y5fcOTMJ4877LDXFr7zyNnHH354238obB+fa7aVV0fZJl5SBt4CDuLBP4YPnFT9qErhT60VQt9/Fi7+K4C3gYOnN8XW80WX1DpjAEsvvirX9YJGR4bcEqZyhQqCqhktC4V2la0qqqabt5o9/uLPog0/3RNM9fxlc2ZH58w6dsrnN8IgKPfGAJavuMDi0WqrsuLQ/j6Q1G4BsIr4980yLloE//jZ2mekw6B628R+76vw0DDAR4HvTmOebeEvWal1AuJPT7ni6ttzWy9o7W0rGR0ZAkMgTeiKIKiWWlvNainfahZ/LUZI9A/P7dyy87V9cbvSS1fC4vNhwRlwzAnVT9q7G3Y8BVs3wn3x6sZ5M/u3/Nv589rW9tQgKPcCSn/bDIPULhXaxEfZzUZSlwuIA6CgdPsXwH7gGG78RGNbxOr5yvfghnuhr28XY2PzKL3WzhNfdEmtFQKr8rpFzC1hqqLrg6BaWhUS5SkgeuLFn0WP/nRPwIxD4LpvwpILmx9k6GG4+Up4cz8XzJkdndumlUEGQYUQYBikNqnQJj7MbjaSuljA5AAIJuq9jgLPAPBHH4bwd6f+KOG34K8fSW6dDOyY+mDt44suqfUGgSBvW8TKQiA/bVNaTwdBtRSxHtHeX/3quTVPPzMfgOvXVQ6BLjt68u17Xq482NDDcNMKAD518knb2lEzyCCoMELiF9B2ElPL2CFMUgcEVA+AotT3lo3fnurKoGQl0MTjPtr8IJ3hiy6p9QJKn5zmKQy65fPnJFd9oaVyBkFNynM9oh++9NI/f/d/Pf9+Ll0Jn/mLAw8oD4ES1cKgO74I993OB2cdG50/Z3bQsomWGAQVSohhkFrEEEhSmwUcGADV+10zEQZdtAj+5OLaBaQT338WvvRgUhMoeezchkBg+3ipHSJKLeU3P7iGuQuXZF4vKNUq3hdaUgvMHV/tk4Q4s8bvq7XVbHTf65Pu2zxpzNbUI/r5/v2HA3FNoHLpECgJfpLvXXZ05TBo8flw3+288MYbM5uejLpNiG3l1SJuB5PUJgHNB0CJR4m3c32Ph4bn8dAwnH8KXLQYli6E494Jc46Cn74CL7wKm0fiFvEbn47PjmsCBeR0O1ian75J7ZOLlvLWBVIDXBHUIZ2oR7T22efiMb+27cDC0EnoUx74VPs+xAWk/0P8s9GOnxFXBBWSbeU1LbaJl9QGAZMDoIg42AmnMFYfcAnwbeCgBo5/G/g48AA5LAxdiSuCpPYZAAZHR4aCTQ+syWSL2OjIUDoEWt3xCUiaZG5/f1mIU3klUXlAlF5JVL6KCDhgJRFQuTtYte1ftdTqMqZeNQCMbR/eyfq7N1g8Wk1Zf/eGJAQCQyBJ0xdwYABUXv+nWWPELd8PBk4kbgF/HrAIOBPYAgwDm4D7gV3TeKxMGARJ7bUaCLLaIrb2tpXpeYQdfXBJTZkcEk0OiOKvB4ZE5V/TIZHUZgPAYLK9xzBIjajQJl6Spiqg9QFQJbuA/1K6dA2DIKm9Ikr1gtbetpJrv/xExx44VRcowhBIDUgCB+XTRN2gI1ha+t7ovtfHu5klt5tWa1tYGX9GlBJhGKQmVGgTH2U3G0kFFlJqXFAS4e+UprkfX+qMjtYLsi6QmlSIvcxqUiPbwCoVj653XPv4u6qYQuwkpjrsECaphqDB7y+jfgt4NcgXXVLnjEH7W8qPjgy5JUzNCon/uKo7BED9IKjREGjysdEU51TPVIs5Kh9CDINUw1Urbkqu+rpEUrlBqodBlUQYAE2bW8OkzhkABttdL6isOHTYlgdRtwmznoBaqv4LqmZCoMms6aFKQmwrrypcCSSpjtU0HgT5e6RFGmmFJqk1Ikqdu1JhTUttemANoyNDyc2wLQ8iqdimHgJJtQwAUdkWIPW4VIewCF+XSKosorHVPYZALWQQJHVWCESjI0PpYs4tUVYXyE/tpV63d3erx9namgHVxQYgrgez/u4N9Y5Vl7NDmKQmPFrnfkOgFjMIkjpvfFVQK8Ogsi1hUcsGllQ0fw/AjqcOvKe86PNlR0++VDIxzr0tm6G62QDA+nUbDIN6mCGQpAYFxFvaV9U4xhCoDawRJHVeRKmlfKvqBaUCJX9RSoqTm60b4eyPTH+0rRuTa/U+rZMg9TfOtvLF9PLPf/HiC7v37nv5pV8cuuf5l06od/zs49+1++h3Hbn/uBOO6T/63UfOsk28pAYExOFPkPpexIG1giJ8b9MWdg2TstOSlvK2ipdU5jDglwBcvw6WXDj1kYYehptWJLdmAvumOTf1jhA7iRXOd+7ZHN27djCY6vnn/86Z0cb/sSU53w+nJJULODAASv+uSDe8iHBFYdv4plHK1iAQTLWlvK3iJVXxQWAzMw6F6+6aWhg09DDcfCW8uT8Z7/HWTlE9IMQwqDC+9Od3bfnxj549E4BLV8Li82HBGXBMjUVBe3fH20e3boT7xj/U2gKsx9ckkiYE1A6A0scNlq6bVbTRwVlPQOpxO4FP73pmiLkLl3DUu49v6uSv3viJ5KohkKS0XcBM3n7rg2xYB6+/Ggc6h/XDEUdWP2vvbhjeBA/dAWv+FN5+C+Avgb/rzLTVZSLiF/Xz9774CkuDM7Kdjaq6/97N0cb/seVcZhwCX/xH+Oj/Ab9xSu3fFxDf/xunwJm/A6f8Njz2LXj7reOB/4v495Ck3hYAdxC/T5lP/HfhM6VLVOH450rnfKZ0XW1iyiZlL6T0iem1X36i4ZNSW8IiXDYpqbJzgcemcf7SaZ4vQWn166mL5nFN+Mms56Iyz43s3nbTn/3daUD17aTlxeTvebnyYJO3kx4OvNGqeUoqlIDJK4AirBmWKwZBUj40VS/IukCSmnAYcBpwBvCpBo7/e+KC09vwTZxaI6C01H/5igssHp0z//0foujb/7Qp4NKV8Jm/OPCAah0Fq4VBd3wx2Sb228BQi6YpZSlo8LiojXNo1iHAbxKvwlnWwPGPEq/A+Vfg19N43JDJHcAiDIByya5hUj4MAGOjI0NsemBNzXpBoyND5a3iJamWN4jfjA0RL8+WOi0i/js3aCex/Nm54/mZQFwTqFw6BEqCn+R7lx1dOQxafH4SBJ2BQZDyKyj7uqzsdqtEpa+Plt2Oyg9sobhO4PTOb7YuYIgBUKEYBEn5MQAM1mspXxYChZ2ZmiRJ0xJhW/lc+tGWZ84C4sLQ1aQDn3terr5KaPI4n8LwWdkLSpcpBz2nz2qsrO6PXnyr2uOnv64quz9ickgUNT6zim4FvgBMp+j7Y8T1Aa9p4PFCDIAKyS0lUr6EwKpqW8TcEiZJKrgQO4nlylUrboqvVNvqVUkSBFU7J74/whqG6qyg9HVV2e0DpMOd980+mNNnzRi/3ko/3BOHQz968c2y2xVDo0TERDgUNvFwcV3AGYfAdd9sRcfQanUCAw7sABZhAFQovpGU8qdiS/myEGgAf9FKkoopxDAoNwyCVGBB6WvV4CcJfK5c9I7x77U67JmOH+55a1JIVCMgSspBRFR+D9APvAZUL/oOlbd7lptc9H0msK90PcAAqGu4NUzKn9VAkIQ+SRhUtiUsymBekiS1Qki8TSNYv24D1yyyk1ih1AuBpPYKqBP8JCt88hT4VPO+2QePz/PKRfH30uHQXcP7k0NXlX1N3g9EpdvnAPF2sEZCoOR2pefxkgvjceJtYucAb2EA1HUMgqT8iSjVUUjqBY2OjNdatC6QJKkbDACD24d3BreGd9pWvihq1QaSOHikoAAAHOBJREFU2iegSvhz+qyDx1f7FCH4acTkcCj+t901/KvS10nBUDoUOhaoXPQdqhd+r1/0/U+Bi1L3RBgAdQW3hkn5NciBn3T4nJUkdYsA28pnruGtYY1sKZl8bIRbwzR1ARXCn/RWr24JfppVIRSa8LVtlQtDV1rJV2t1397d8B9OS38nwgCoq7giSMqvASaHQbaKlyR1kwjbyhdDMyGQND0BZduQDH8mS1YJXbnoHePbyMZDoWrdwZp93k4exw+iu5BBkJRvq4n/ELolTJLUjSJSbeVPXTTP4tF5Ywik9gsw/JmSZBtZxdVB1ficFgZBUt5FmMJLkrpbWPq6KqkXZBiUgb27q68maHac2LPTH0xdLqBCAGT4I7XfQVlPQJIkST0vpLQF+tbwzmxn0mNOP/PkJwHY8dSBd1bqMpS+VDIxzsaWTVLdJiAufzBeAuH0WQdzc3AEtwwcYQjUbve8PLlgtHqSQZAkSZLyIKRUiNQwqHPmLTj+NQC2tii3mRinQrKkHheQCoDi1T+Hcv/lRxoASR3m1jBJkiTlhW3lO+z9Z/3W7G//06a4VfQZA7Dkwok7m60fMvRw0nIaYFur5qjCC0htAXP7l5Q9VwRJkiQpT1YDbB/eyfq7N2Q9l643f+EJp33iioEIgJuvjMOcqRh6OD4/FgHXTX92KriAsi1gVy461NU/Wai1nVM9ySBIkiRJeRIRrwxi/boNhkEd8LHLlgbvPf2kLby5H25aAXd8EX7w3XTh58r27o6Pu+OL8Xlv7gf4JyZWgIyRKgSsnhJSFgDdf/mR463P1Sb1nrNJGFQvFJoYZ+t0p6R8cmuYJEmS8ibCtvIddcp7Tjzzxz96NgIC7rs9vcWrGUuBx0rXkxBgkPj/y3D6s1QBhMQhIOA2sE456/gZTz75/JtnseOpyt3/7nm5cghUbfvnRNH3e1s5T+WHK4IkSZKURyGpTmLbh3dmO5sutn14J+vXbYA4uPk88GHgxgZPv7F0/EwmQiCIV3WtLl1fhUFQtwuIQ79VYBewTjvlXQfVL/peHvrUqgE2Mc7YtCam3OrLegKSJElSDSGlN5dr1l2f7Uy61FUrbkqutmPlTsjECpGo9BhRix9D2QqIQyAAbg4MfzrtJz9/a9t/euT10wC4ft3kou/NGno43uoZ2wachqv6uo7PUEmSJOVZRPxGc/72bTtZGpyR7Wy6zK3hnex98RWI/zt/pg0PERG/iQxKl08TfxgdteGx1HmDlAKC02cdzNc/PpM5/W466bRjDj9o1oyD+qKn9rw1n8e+BSe/H44/ufmBkqLvb7/Fp09/R7Ro1sFn/+jFtyB+7vq87SIGQZIkScq7bwDB3hdfMQxqofV3b+Cx6IeQKtDdRt8gfiMZ4JvKbhAAzwLzIS4G/ccfODzL+fS8xbMOnj/8s7e2vPCLN49nwzp4/dW4gPth/XDEkdVP3LsbhjfBQ3fAmj+Ft9/i/XMO3vJ/nnXYue+bHZcUToVBIT53u4JbwyRJklQEAaXtJ8tXXMDyyy/IdjYFt/7uDUldIIhDoKhDDx3iVrGiG+8GZjHo/Ln7x/ujr//oV8FUz//9098R/d57Dz3g/LuGf8Vdw/uTm24VKzifsZIkSSqC54BHgU9v3xYXjraT2NRkGAJReqxHiVeSBLhVrGgmtYT/4w8c7lawnFk06+D5Zx8/Y9u7DusbPmxG3892v/Z2hTZik511/Iwnl82d8ZOrznjH68vmHnJ2pWMqrA4KiFf6qYBcESRJkqQiCSmtKDEImppUB7asP9UPmVgdlPVcVFtAaUWeq4B62w/3vMVdw79KAiHofJisFjAIkiRJUtGETAQImpq8BC8hk7eKtbtWkZoXkmoLf8vAEdnORrngVrFiMwiSJElSEQVZT6DgoqwnkBKQaj+ObyrzJKQUAl256FCuXPSObGejXDEMKi6DIEmSJEl5EOJWsTwJMQRSHYZBxeTGTkmSJEl5EGGL+bwYJC7kzc3BEVx40iHZzka5ZRHpYnJFkCRJkqQ8CZlcA8pitJ01CAQWhVYzfrjnLa6LXk9uRljvK9cMgiRJkiTlUYhbxTptPASyKLSm4trB15PVQRGGQbllvCtJkiQpjyLcKtZJhkCatgtPOoQf7nmLPa+PzcdtYrl1UNYTkCRJkqQqQuLVQBCvDhrDjnHtMEjpv6tFoTVdqZ+hgMkdAZUTrgiSJEmSlGcRcRgUAPOJixi7Oqh1QlKFoa0JpOma038Qp8+awSPP/Rri56zP15zxWS5JkiSpCL6BW8VaLaRUh8kQSK1UFgYF+HzNFZ/pkiRJkooiYnIYFAA7gecymk+RhRgCqY0Mg/LLZ7skSZKkIomAR4m3nAS4VWwqQgyB1AGGQfnkM16SJElS0TyHW8WmKgDuALhy0aFceNIh2c5GXW9Of9yjqtRWPiAOcp/LbEIyCJIkSZJUWBEHbhWzXXVtz0IcAtkhTJ3yvtkzgPEwaD4+TzNl+3hJkiRJRRYCA6XrAXGL+TCjueRdCHD6rIMNgdRxVy56B6fPOhhsK585VwRJkiRJKrrniFvMN7JVLKzy/W4XUqoL9PWPz8x2JupZc/oPsq18DhgESZIkSeoWEbXDoJA4DOm1N6AhpRDoykWHjm/TkTqtQvFo6wVloC/rCUiSJElSi4WUgo+S1aWv6e8N0Dth0BhYF0j5cdfwr7hreH9y01yiw/wPLkmSJKlbhUwOf9IiJmoLdbMQWGUIpLy5dvD1pHh0RG88F3PDrWGSJEmSulXExFaxcvPp/m0pIaUg7JaBI7KdiVSmrF5Qtz8Xc8WuYZIkSZJ6VbXVQt1iGcRbwqS8ed/sg9M/m93+XMwVVwRJkiRJ6lYhtd9gzqd7VyKEwKfB1UDKr/fNnsEP97zFntfH5tN7RdwzY40gSZIkSd0oAAYbOC6iO+uTWCBahfDDPW9xXfR6ctOMogNcESRJkiSpGz1H/KbyUSrXCErMp/tWIoRAYAikIpjTf1CyKgji5+o3sp1R9zMIkiRJktStotJlNXEgtJPKwVBA94RBIRaIVsFYOLqzDIIkSZIk9YLnqB0MBXRHGBRQWg30vtkzsp6L1JA5/XEfq1I7+fm4Kqit3H8nSZIkqdeFTBSVjihuzaCQ0r/j/suPzHYm0hR89O5fJFcHKH4om1u2j5ckSZLU60Im3ngGxIWWw8xmM022i1dR2U6+M9waJkmSJEnx1rFvEO+a+P/bu9cYOcvzDMD3ejcGcQqE2k5QKYRC2rC2iRE5lIM8jgJprNAqkSA/rLbwr0JJ0zakQRWIsUApVZP0FKFWqtqkkiMFJKKEiiaA8DiGJFAEwfaSNqQ2FMkJu3UgQB1svN7+mB3v7HoPs7sz/ma+uS5pmdM37zyGAWlvnvd5K+nNrWLbE7OB6F3rVw9l28jhxKygjtIRBAAAMKWa+gyhpN6V0MoR9N2gmugGovetW3WsX0VXUIcIggAAAKarZmpOUCW9sVXs9iSOi6fnNX2HKzn+hD/aQBAEAABwvFrqW8Oau4OqRRWzgGqiG4hyWL96sLkrqFJgKaVlRhAAAMDcaun+uUHbk/ov0I6MpwzWnLoiDz//ZlL/d27r/FezWDqCAAAA5lfN9M6giXRPp0I1qXcD2RZGWegK6ixBEAAAwMKqmd4NtD3du1UMel5TsGlodJsJggAAAFq3Kd01N8iQaEpp/WodQZ0iCAIAAFicarpjq1g1mXbcNpSK7WGdIQgCAABYvGq6ZKtYU+cElIrtYZ0hCAIAAFi6IreK2RZGv6gUXUCZCIIAAACWp5rpYdD2dP4X12piWxjl5vSwzhAEAQAALF819e6gWuq/sJ6QrWK2hVF2toe1nyAIAACgPWo5cVvFbk+SdauGOrQ8dJ1K0QWUhSAIAACgvao5fqtYR+gIoux8x9tPEAQAANB+1dS7g5J6J8NE2tcdVEnMB6J/mBPUXoIgAACAzqilfsR8u7eKVRKdEvSlStEFlIEgCAAAoLOqKe6Ieeh5TQOjNxZZR1mYLAYAANB51cnb25t+tmb2UOjkJBcnuSTJ78/yeiVJdo2OZ9fowfzG2YP/9aunr/jlu88ePPPcM1ac396ygbIZKLoAAACAPlPN1FHYM8Ogy5M8ttSFb1h3Uu36d6+sLPX90K023/Na464cY5n8DQQAADjxqjk+DPqrJDcnSa69KVl7VXLBJcnZ58y9yoH9yd5nkj07k/vvTpK8Z83g05/feMqGjlUOBfjc9oPZPTae1Iew14qtpreZEQQAAHDiVXP8EfM3Z+gtya33Jjd+PnnvR+YPgZL66+/9SP36W+9Nhlbmhy+Nb/j6jw7XOll8t2t0j2y+57XmTpLjrlnKawt9bvP7lrIGdJqOIAAAgGL9a5LfS1IPcy69eu4rP35m/fa+V2Z//amHkjuvS5L8zYdOefZdbxu8uI119oTN97yWiYmJDAwMZGJiIkkyMDCQB64//bhrFvtaK5/beF+SY3W0ugZz2zZyKNtGDidzz9aiRTqCAAAAivXVJPXtYPOFQK249Or6Okke339kdLmF9ZrmEKjZxMRER7tzmkOghgeuP/1YGKUziG4iCAIAAChW/UjstVfNf1WjG2ghk+s89/LR05ZTVD+aLdChO6xbdezQc0fIL5MgCAAAoFi3JakPhp5LqyFQ0zpP/vTIZcspqtcsFOIs1Jmz1BColffN9tlLnUMEyyUIAgAA6AZzDYZeaC5Qq+swp9nm+5yIz7NtjCIIggAAALpdqyFQn1powHPz8Ob5gpfFhkALBUiNOUGtfDacKIIgAACAbiYE6rhGYLOY072WM0+o8XlOFFuSStEF9LqhhS8BAACA3tY4wWu2U8WSLCuQWcp2MgHQ4qxfPVh0CaWhIwgAAAAW4UTPFIJ2EgQBAABQejPn9bRLo8uoeU3zgOhmgiAAAACgq+0aHW/crRVYRimYEQQAANANDuxvz9HvB/YnSc48eWAsyarlL1geja6gpXYENbp8mruLms13ctl8a8GJJAgCAAAo1h1JbsveZ9oTBO19Jkly4VmDL0QQ1DYLHVG/mK1gC60FnWRrGAAAQLF2JEn27GzPapPrXHTWitfbs2D3mzn/Z75QZq5unk4Q+NCNdAQBAAAU6wdJkvvvTi7ZlFx69dxX3vfK/Cs99VB9nSTvP2dodbsK7EXNgc/MAGYpr833nlZeX+q11O0eO9K4u6PIOsrAOXcAAADFuzzJYxlamdyybf4waC5PPZTctSU5cjg3rDupdv27V1baXWS3a3TgdEv3TbfV08u2jRzKtpHDSbI1SbXYanqbjiAAAIDifS/JF3Lk8M2587rk2puStVclF1wy/9ygA/vrM4H27DzWCfSeNYNP92MIBLRGEAQAANAdPpvkviTfy/13Hwt2FuMP1p1U+0Qfh0DNp4IV3YWjG4huJQgCAADoHt9PclqSDyTZmOS2hd5w2TuGnrzorBWvv/+codXvettgpcP1db1GGFR0+NItdZTF5LawJKkVWEYpmBEEAADQWyYSQ4bpL00nwckxlsnx8QAAAL2lliS7RscLLgNOjKbveq3AMkpDEAQAAAB0LUfHt5cgCAAAoLdsTerHaQMsliAIAAAA6Fq2hrWXIAgAAKC31JJk95gZQfSHpu96rcAySkMQBAAA0HtqiYHRlF/TFshagWWUiiAIAACgR5kTRB8xKLpNBEEAAAC9Z2vRBcCJsG3kcONurcAySkUQBAAA0HtqSWq7x8ZtD6O0Zny3awWVUTqCIAAAgB5mexhltXvsSOOuDrg2EgQBAAD0Jr8cU2q2hXWGIAgAAKA31WJ7GCVlW1jnCIIAAAB6nO1hlI1tYZ0jCAIAAOhdfkmmlJq2hdFmgiAAAIDeVYvtYZTMjA63akFllJYgCAAAoLdtTWwPozyauoF0vHWAIAgAAKC31aIriJLQDdR5giAAAIDetyPRFUSp6AbqkIGiCwAAAKAtJpLkrsopWb96sOhaYNF2jY7nltrBxkN5RYfoCAIAACiHWqIriN7lyPgTQ0wMAABQDi8kuWH04ETWrRrKmlP9f396yy21XzbubiqyjrLzXwYAAIByqEVXED2q6TurG6jD7LkDAAAoF7OC6CnbRg41Hxkvp+gwHUEAAADlsjXRFUTvaAqBdAOdAOJhAACAcqklqYwenDg/SdavHiq0GJjPtpFD2T02ntS/tzcWW01/0BEEAABQPpNdQYeza3S86FpgTk3dQDuKrKOfCIIAAADKpxaDo+lyMwZEV4urpL8YwgQAAFBeBkfTlQyILo6OIAAAgPLamiS31A4WXQdMY0B0cQRBAAAA5VXN5Baxz20XBtEdbAkrlvYrAACA8ptIki3DK7Nl+KSia6GP2RJWPB1BAAAA5bcpcYoYxZoRAm0qspZ+ZloYAABA+T2fevdF5eHn38y6VUNZc6q+AE6cXaPj+ev/eKPxcGuSrxRXTX/zbz4AAEB/qMaR8hTEXKDuoSMIAACgf3w1SWX04MT5SbJ+9VCx1dAXto0cysPPH0nqQeSNxVaDIAgAAKC/vJDkht1j9VlBwiA6acZcoBtT36ZIgQRBAAAA/eX5TM4LEgbRSTNCIHOBuoQgCAAAoP/UIgyig2YJgarFVUOzgaILAAAAoDDVJLcnyZbhldkyfFKx1VCYH/98/NnH9x8Zfe7lo6c9+dMjly10/WXvGHryorNWvP7+c4ZWv+ttgxc3vyYE6m46ggAAAPpXLTqD+t7Xf3S49pc/eOO9e8bGz9//+tFzWnnP/tePnrNnbPz8b+99c9VbVgzUhlcNnp8IgXqBjiAAAACq0RnUl/58x8Gnf/jS+IYkybU3JWuvSi64JDl7njzowP5k7zPJnp3J/XcnSd6zZvDp4V8Z3CAE6n6CIAAAABJhUN+550eHa1/ZfaiSobckt3wtufTqxS/y1EPJXVuSI4eTeodZJUKgriYIAgAAoKEaYVBf+PHPx5/944cP1mf73Hrv7CHQx8+c/vi+V2Zf7KmHkjuvazz6kyR/0646ab8VRRcAAABA16im3s2RbSOHs23kULHV0DGP7z8ymqS+HayVEGiu55L6+6+9qfFod1sKpGMEQQAAADSrRhhUes+9fPS0JPWZQDM1Bz73vTK9E2iuMGhqnY1tKZCOEQQBAAAwUzXJpqQeBn1u+8HsGh0vtiLa6tgR8RdcMvdFzQHQXNvCGqbWuW1ZhdFxgiAAAABmU0t9rmxt99h4bqkd1B1URrOdDjazC2ip69CVBEEAAADMZ1NsFYPSEAQBAACwkGqEQf2tMRtosZ1CdB1BEAAAAK2opikM2nzPawKhfjHXgGh6kiAIAACAVlVTnxukO6hfzDxBjJ4nCAIAAGCxqtEdVH5CoFISBAEAALAU1egOKi8hUGkJggAAAFiOanQH9a4D+9u9zr72LEinCIIAAABYrmpmdAcJhLrbZe8YejJJsveZ41+cORz642dO/5nN1DoHkmxP/TtBFxIEAQAA0C7V1MMggVCXe+vKvJ4k2bOzPQtOrfN6kkqS25NMRCDUdQaKLgAAAIBSqqYeBiRJtgyvnLw9qaBySJJdo+PZNnIou8fGn01ycZLk1nuTS69e+qJPPZTceV3j0WlJPpumf/aTtmbhUKjawjUskyAIAACATqpGIFS4pgCo+enbktyRoZXJLduWFgY99VBy15bkyOEkuTzJ95terU7eNodCcwVC1cnrakk2Lb4QWjVYdAEAAACUWi31X/4HklR2j41n99h4to0cTpKsXz1UYGnlt2t0PF964o187dnDGT040Xh6a+phy3eTnJaj45fnu/cmB1+tBzonn5qccvrcix7Yn4w8mjz4L8k//VlydDxJvpDkn2dcWZv8GUiyI/UtY5VMzZRKkucnbxuvnT/5Wm3xf1paoSMIAACAE6maGduGtgyv1CHURnN0/9RSD2Oqs7zlt5J8bxkfecUi3l/N8R1CG1MPgTLj+eoyamIOgiAAAACKUJ28tW2sTeYJgLZm4Q6bU5N8IPVQ5rYWPu6O1IOlHyT5v8XWmlkCwVm0Kww6N8nmJFcmGU6yIcnTSUaSPJrkgSQvtuFzeoIgCAAAgCJVMnXK1DFbhldm3aqhrF9tosl8GuFPkqUGQEWrZv5AaKlh0ECS307yb2ntxPSjST6a5Nupn3ZWWoIgAAAAukU1s4QCQqHpFgh/5tr+1a2qWbgzaFMWF2hdkIGBWiYmzk2SXHVRcs3a5IoLk7efkax5a/LSL5KfvZo89pPkwT3Jzuca730hyQeT7F3Un6KHCIIAAADoNpXM0iWU9O/2sQXCn6Q3un9m02r3Tath0MZj110znHzmw8n73rnwu57Yl3zxO8mDI41nKqmHaqUjCAIAAKCbVbJAKFTGbqFdo+PZPXZk8nZ85su1ydteDX8aqlm4G6jZQtvEpkKgOz6WfPKDi6/oy48kt32j8aiSEoZBgiAAAAB6RWXyZ7ZTprJu1eCxQKiXOoZ2jdaDnjk6fhpqk7e9Hv40qy7w+sam+5Wm+1tnef8FSf47SfLpDyXV311GVd9M/vbhxqNfT8m2iQmCAAAA6FXVydtZg6Fkeji0btVQkhTWPdQIfBqdPvX7s4Y+yfTgp/lxP6vm+KPnG7f7kpzXcifQWZ+q377897O/PtUZ9EKSd6ZEA6QFQQAAAJRFJVOB0IJbjppDoqnnho67bq7gqBHmzLR77Mi01+cJe5rVUt+GVIvQZyHVTP/nuyPJxlwznHz9Dxd+dyMESuYOgpLkE//QmBm0Ocm/L6HOriQIAgAAoMwqmQqHNjY9V4Ta5O2OGY9rMy+kJdUkNyc5JclAvvOnrQ2GbjUIemJf8uEvJfWj5UszhEoQBAAAQL+q5PhQaOPxl80ZHNXmeF7Qc+Kcm+R/ctVFybf+aOGrm0OgZP4gKEl+5+8aR8v/WpIXl1Zidzm+5w0AAAD6Qy1Cml63OUlyzdrOrH7N2kYQtDnJP3bmQ06sFUUXAAAAALBEVyZJrrhw4SsXGhA9m6l1r1xUVV1MEAQAAAD0quEkydvPmP+qmVvCWjW17vDSFug+giAAAACgV21Ikqx5a2tXL6YbKElWHQuCNizujd1LEAQAAAD0qqeTJP/72txXLGVLWMPYq9M/pwQMiwYAAAB61UiSDdn/i2T1EraHnfWp+QOinx0LgkaWWF/X0REEAAAA9KpH6399rjOrP/aT6Z9TAjqCAAAAgF71QJLkwT3JJz84+xWzdfy0ul3swT3TP6cEdAQBAAAAverFJEez87nkiX3tXfmJfcnO55Lk6OTnlIIgCAAAAOhlH02SfPE77V11ar2PtnfhYg0UXQAAAADAMgwk2ZfkvNzxsbm3iC3Glx9JbvtGMjDwYiYmzksysfxFu8Ng0QUAAAAALNO3knw62/8zeePNpPKbS1+p+s3kL46NBLo0ycvLL697CIIAAACAXvdyklqSG/L43uS0k5P3vXPxq3z5keYQqJLkh22qr2vYGgYAAACUxcbUA6HkmuHkMx9uLRB6Yl99JtCDI41nKkl2dKTCggmCAAAAgDK5IMkjSc5Lklx1UXLN2uSKC5O3n5GseWvy0i+Sn72aPPaT+hHx9dPBGjOBKkn2FlQ7AAAAAIs0kOQjScZTH/S80M/45PWlb5gp/R8QAAAA6GvnJtmc5Mokw0k2JHk6yUiSR5M8kOTFwqoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgh/w8BUrZSAyPvKAAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "59d3a49b", + "metadata": {}, + "source": [ + "Another example that contracts to 4-way tensor (4 free indices are created) is as follows:\n", + "\n", + "![TestNetwork4.png](attachment:TestNetwork4.png)\n", + "\n", + "The optimal contraction Order is: [2,1,3,4]\n" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "2481886a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(2, 2, 2, 2)" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# --------------- Network-1 --------------- # \n", + "# Leading order cost (guaranteed optimal): (Ind1^5)\n", + "Ind1 = 2\n", + "T0 = np.random.rand(Ind1,Ind1,Ind1)\n", + "T1 = np.random.rand(Ind1,Ind1,Ind1)\n", + "T2 = np.random.rand(Ind1,Ind1,Ind1)\n", + "T3 = np.random.rand(Ind1,Ind1,Ind1)\n", + "\n", + "# TTv1.0.5.0P$B,,92C2/>8>>J>30C?LML0EQ\\XiXN'''''''''9N'[n\\G$\n", + "tensors = [T0,T1,T2,T3]\n", + "connects = [[-1,2,1],[1,2,3],[3,4,-2],[4,-4,-3]]\n", + "con_order = [2,1,3,4]\n", + "T1 = ncon(tensors,connects,con_order)\n", + "T1.shape\n" + ] + }, + { + "cell_type": "markdown", + "id": "f565676a", + "metadata": {}, + "source": [ + "## 4.2.1 The Tensor Train Decomposition" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "5c9c9938", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(1, 2, 2), (2, 2, 2), (2, 2, 2), (2, 2, 1)]" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "from tensorly.decomposition import matrix_product_state\n", + "\n", + "rank = list(T1.shape) # full rank : boundaring conditions dictatate rank[0] == rank[-1] == 1: setting rank[0] to 1.\n", + "rank[0] = 1\n", + "rank.append(1) # boundaring conditions dictatate rank[0] == rank[-1] == 1: setting rank[0] to 1.\n", + "factors = matrix_product_state(T1, rank=rank)\n", + "\n", + "[f.shape for f in factors]\n" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "id": "eef755f6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[[[1.01619903, 1.11245758],\n", + " [0.30639639, 0.97319392]],\n", + "\n", + " [[0.81253976, 0.89205887],\n", + " [0.24767257, 0.78259668]]],\n", + "\n", + "\n", + " [[[1.8293858 , 2.00411737],\n", + " [0.55310029, 1.7544822 ]],\n", + "\n", + " [[1.47286976, 1.61984617],\n", + " [0.45192814, 1.42352728]]]])" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from tensorly import tt_to_tensor\n", + "\n", + "reconstruction_t = np.round(tt_to_tensor(factors), decimals=10)\n", + "reconstruction_t" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "id": "2211238d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MPS RMSE for rank [1, 2, 2, 2, 1] RMSE = 2.797548853035411e-11\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "MPS_RMSE = math.sqrt(np.square(np.subtract(T1,reconstruction_t)).mean() )\n", + "print (\"MPS RMSE for rank \" + str(rank) + \" RMSE = \", MPS_RMSE)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "id": "8053972b", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\tensorly\\tt_tensor.py:187: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n", + " if rank == 'same':\n" + ] + }, + { + "ename": "ValueError", + "evalue": "Provided incorrect number of ranks. Should verify len(rank) == tl.ndim(tensor)+1, but len(rank) = 2 while tl.ndim(tensor) + 1 = 5", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32mC:\\Users\\DELLPR~1\\AppData\\Local\\Temp/ipykernel_3016/3508838178.py\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mtt\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mTensorTrain\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mT1\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mTrue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 6\u001b[1;33m \u001b[0mtt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit_transform\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mT1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\tensorly\\decomposition\\_tt.py\u001b[0m in \u001b[0;36mfit_transform\u001b[1;34m(self, tensor)\u001b[0m\n\u001b[0;32m 141\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 142\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mfit_transform\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtensor\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 143\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdecomposition_\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtensor_train\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtensor\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mrank\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrank\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mverbose\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 144\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdecomposition_\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 145\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\tensorly\\decomposition\\_tt.py\u001b[0m in \u001b[0;36mtensor_train\u001b[1;34m(input_tensor, rank, verbose)\u001b[0m\n\u001b[0;32m 30\u001b[0m \u001b[1;33m.\u001b[0m\u001b[1;33m.\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m \u001b[0mIvan\u001b[0m \u001b[0mV\u001b[0m\u001b[1;33m.\u001b[0m \u001b[0mOseledets\u001b[0m\u001b[1;33m.\u001b[0m \u001b[1;34m\"Tensor-train decomposition\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mSIAM\u001b[0m \u001b[0mJ\u001b[0m\u001b[1;33m.\u001b[0m \u001b[0mScientific\u001b[0m \u001b[0mComputing\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m33\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m5\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;36m2295\u001b[0m\u001b[0;31m–\u001b[0m\u001b[1;36m2317\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m2011.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 31\u001b[0m \"\"\"\n\u001b[1;32m---> 32\u001b[1;33m \u001b[0mrank\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mvalidate_tt_rank\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtl\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0minput_tensor\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mrank\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mrank\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 33\u001b[0m \u001b[0mtensor_size\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0minput_tensor\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 34\u001b[0m \u001b[0mn_dim\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtensor_size\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\tensorly\\tt_tensor.py\u001b[0m in \u001b[0;36mvalidate_tt_rank\u001b[1;34m(tensor_shape, rank, constant_rank, rounding, allow_overparametrization)\u001b[0m\n\u001b[0;32m 240\u001b[0m message = 'Provided incorrect number of ranks. Should verify len(rank) == tl.ndim(tensor)+1, but len(rank) = {} while tl.ndim(tensor) + 1 = {}'.format(\n\u001b[0;32m 241\u001b[0m len(rank), n_dim + 1)\n\u001b[1;32m--> 242\u001b[1;33m \u001b[1;32mraise\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mValueError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmessage\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 243\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 244\u001b[0m \u001b[1;31m# Initialization\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mValueError\u001b[0m: Provided incorrect number of ranks. Should verify len(rank) == tl.ndim(tensor)+1, but len(rank) = 2 while tl.ndim(tensor) + 1 = 5" + ] + } + ], + "source": [ + "from tensorly.decomposition import TensorTrain\n", + "import tensorly as tl\n", + "\n", + "\n", + "tt = TensorTrain (T1, verbose=True)\n", + "tt.fit_transform(T1) # I asked them about this error, if they resolve, will correct, otherwise, I will remove" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "id": "7b38accc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tl.tt_tensor" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "id": "05c96b46", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[1, 2, 2, 2, 1]" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rank" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "id": "690fcc98", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[[[1.01619903, 1.11245758],\n", + " [0.30639639, 0.97319392]],\n", + "\n", + " [[0.81253976, 0.89205887],\n", + " [0.24767257, 0.78259668]]],\n", + "\n", + "\n", + " [[[1.8293858 , 2.00411737],\n", + " [0.55310029, 1.7544822 ]],\n", + "\n", + " [[1.47286976, 1.61984617],\n", + " [0.45192814, 1.42352728]]]])" + ] + }, + "execution_count": 59, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tt.rank" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "id": "ba0dc8bd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[[[1.01619903, 1.11245758],\n", + " [0.30639639, 0.97319392]],\n", + "\n", + " [[0.81253976, 0.89205887],\n", + " [0.24767257, 0.78259668]]],\n", + "\n", + "\n", + " [[[1.8293858 , 2.00411737],\n", + " [0.55310029, 1.7544822 ]],\n", + "\n", + " [[1.47286976, 1.61984617],\n", + " [0.45192814, 1.42352728]]]])" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "T1" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "id": "28986927", + "metadata": {}, + "outputs": [], + "source": [ + "from tensorly import tt_tensor" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "id": "108e8d31", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(1, 2, 2), (2, 2, 2), (2, 2, 2), (2, 2, 1)]" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from tensorly.contrib.decomposition import tensor_train_cross\n", + "factors2 = tensor_train_cross(T1, rank)\n", + "[f.shape for f in factors2]" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "id": "6e0f4e51", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "False" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "factors2 == factors" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "id": "4d1ea039", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[array([[[0.78259668, 1.01619903],\n", + " [1.42352728, 1.8293858 ]]]),\n", + " array([[[-1.55344925e-17, 1.71360091e-01],\n", + " [ 6.89210987e-01, 1.00000000e+00]],\n", + " \n", + " [[ 1.00000000e+00, 8.25712346e-01],\n", + " [ 2.68811052e-01, -5.22023632e-17]]]),\n", + " array([[[ 1.00000000e+00, 5.44676741e-01],\n", + " [-2.76540677e-01, 2.04512317e-17]],\n", + " \n", + " [[ 3.18849242e-17, 5.74353774e-01],\n", + " [ 6.03596818e-01, 1.00000000e+00]]]),\n", + " array([[[ 1.00000000e+00],\n", + " [-3.13308551e-17]],\n", + " \n", + " [[-5.06683654e-17],\n", + " [ 1.00000000e+00]]])]" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "factors2" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "id": "5bbc7e85", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "TT for rank [1, 2, 2, 2, 1] RMSE = 2.797548853035411e-11\n" + ] + } + ], + "source": [ + "reconstruction_t = np.round(tt_to_tensor(factors2), decimals=10)\n", + "reconstruction_t\n", + "\n", + "TT_RMSE = math.sqrt(np.square(np.subtract(T1,reconstruction_t)).mean() )\n", + "print (\"TT for rank \" + str(rank) + \" RMSE = \", TT_RMSE)" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "id": "729561a6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.797548853035411e-11" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "MPS_RMSE" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "id": "04379ebc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "False" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "TT_RMSE > MPS_RMSE" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "id": "d33aede3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting git+https://github.com/PGelss/scikit_tt\n", + " Cloning https://github.com/PGelss/scikit_tt to c:\\users\\dell precision\\appdata\\local\\temp\\pip-req-build-z97rbw8h\n", + " Resolved https://github.com/PGelss/scikit_tt to commit 2ead9c4872cd865f7770f8f3a9274468b5b61b1f\n", + "Requirement already satisfied: numpy>=1.14 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-tt==1.0) (1.23.3)\n", + "Requirement already satisfied: scipy>=1 in c:\\users\\dell precision\\appdata\\roaming\\python\\python39\\site-packages (from scikit-tt==1.0) (1.7.3)\n", + "Collecting numpy>=1.14\n", + " Downloading numpy-1.22.4-cp39-cp39-win_amd64.whl (14.7 MB)\n", + "Installing collected packages: numpy\n", + " Attempting uninstall: numpy\n", + " Found existing installation: numpy 1.23.3\n", + " Uninstalling numpy-1.23.3:\n", + " Successfully uninstalled numpy-1.23.3\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " Running command git clone -q https://github.com/PGelss/scikit_tt 'C:\\Users\\Dell Precision\\AppData\\Local\\Temp\\pip-req-build-z97rbw8h'\n", + "ERROR: Could not install packages due to an OSError: [WinError 5] Access is denied: 'C:\\\\ProgramData\\\\Anaconda3\\\\Lib\\\\site-packages\\\\~.mpy\\\\.libs\\\\libopenblas.FB5AE2TYXYH2IJRDKGDGQ3XBKLKTF43H.gfortran-win_amd64.dll'\n", + "Consider using the `--user` option or check the permissions.\n", + "\n" + ] + } + ], + "source": [ + "#!pip install git+https://github.com/PGelss/scikit_tt" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "id": "9aeb1330", + "metadata": {}, + "outputs": [], + "source": [ + " from scikit_tt.tensor_train import TT\n", + "\n", + "# this class rebuild a TT from the cores. It accepts cores in such a format of\n", + "# a list of cores, i.e. \"t = TT(cores)\" where cores is given by a list of 4-dimensional tensors \"[cores[0] , ..., cores[d-1]]\",\n", + "# where cores[i] is an ndarry with dimensions \"ranks[i] x row_dims[i] x col_dims[i] x ranks[i+1]\"\n", + "# or from a full tensor representation, i.e. \"t = TT(x)\" where x is an ndarray with dimensions \"row_dims[0] x ... x row_dims[-1] x col_dims[0] x ... x col_dims[-1]\"\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "id": "42a7f3d0", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(1, 2, 2), (2, 2, 2), (2, 2, 2), (2, 2, 1)]" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# we can read the previously generated cores iteratively\n", + "cores = []\n", + "for f in factors2:\n", + " cores.append(f)\n", + "[f.shape for f in cores] # list of cores, but must be 4-dimensions each, so we can not use the ones generated by Tensorly" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "id": "2023500e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tensor train with order = 2, \n", + " row_dims = [2, 3], \n", + " col_dims = [3, 2], \n", + " ranks = [1, 4, 1]\n" + ] + } + ], + "source": [ + "# generating a TT from cores randonly generated as requested by scikit_tt\n", + "cores = [np.random.rand(1, 2, 3, 4), np.random.rand(4, 3, 2, 1)] # random cores\n", + "t = TT(cores)\n", + "print(t)" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "id": "e731fa8b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "scikit_tt.tensor_train.TT" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(t)" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "id": "0c8f8ed8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# conversion from TT format into QTT format.\n", + "t_qtt = t.tt2qtt\n", + "t_qtt" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "id": "8fde9686", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1, 2, 3, 4, 5, 6)" + ] + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tensor = np.random.rand(1, 2, 3, 4, 5, 6) # can also construct TT from numpy ndarray as a ful tensor, this is 6-way tensor\n", + "tensor.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "id": "961b3ed5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tensor train with order = 3, \n", + " row_dims = [1, 2, 3], \n", + " col_dims = [4, 5, 6], \n", + " ranks = [1, 4, 18, 1]\n" + ] + } + ], + "source": [ + "t = TT(tensor)\n", + "print (t)" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "id": "2bfa184f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tensor train with order = 2, \n", + " row_dims = [2, 2], \n", + " col_dims = [2, 2], \n", + " ranks = [1, 4, 1]\n" + ] + } + ], + "source": [ + "# from a full tensor representation, the T1 4-way tensor used earlier, it is decomsed into rank [1, 4, 1], \n", + "t = TT(T1) # we can \n", + "print(t)" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "id": "81a4600e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting t3f\n", + " Downloading t3f-1.2.0.tar.gz (57 kB)\n", + "Requirement already satisfied: numpy in c:\\programdata\\anaconda3\\lib\\site-packages (from t3f) (1.22.4)\n", + "Building wheels for collected packages: t3f\n", + " Building wheel for t3f (setup.py): started\n", + " Building wheel for t3f (setup.py): finished with status 'done'\n", + " Created wheel for t3f: filename=t3f-1.2.0-py3-none-any.whl size=69178 sha256=5d37f3bf7deea85231fc9f39d064b349deec8a0fdf52fe8c80da5300f9733550\n", + " Stored in directory: c:\\users\\dell precision\\appdata\\local\\pip\\cache\\wheels\\19\\ba\\b6\\4374128efd1e8839a677ff1114fb4e1f085d8274838d4bae1d\n", + "Successfully built t3f\n", + "Installing collected packages: t3f\n", + "Successfully installed t3f-1.2.0\n" + ] + } + ], + "source": [ + "#!pip install t3f" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "id": "2f47f369", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import t3f\n", + "\n", + "a_tt = t3f.to_tt_tensor(T1, max_tt_rank=2)\n", + "a_tt" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "id": "0c5043cd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "TensorShape([2, 2, 2, 2])" + ] + }, + "execution_count": 89, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a_tt.get_shape()" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "id": "1e9d0d86", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "TensorShape([1, 2, 2, 2, 1])" + ] + }, + "execution_count": 92, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a_tt.get_tt_ranks()" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "id": "3daa88e1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(,\n", + " ,\n", + " ,\n", + " )" + ] + }, + "execution_count": 93, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a_tt.tt_cores" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "id": "33eb50c4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[TensorShape([1, 2, 2]),\n", + " TensorShape([2, 2, 2]),\n", + " TensorShape([2, 2, 2]),\n", + " TensorShape([2, 2, 1])]" + ] + }, + "execution_count": 96, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "[c.shape for c in a_tt.tt_cores]" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "id": "199ab81e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T3F TT for rank [2, 2] RMSE = 3.694568430527454e-15\n" + ] + } + ], + "source": [ + "reconstruction_t = t3f.full(a_tt)\n", + "T3f_TT_RMSE = math.sqrt(np.square(np.subtract(T1,reconstruction_t)).mean() )\n", + "print (\"T3F TT for rank \" + str(rank) + \" RMSE = \", T3f_TT_RMSE)" + ] + }, + { + "cell_type": "markdown", + "id": "fe43a6e6", + "metadata": {}, + "source": [ + "### 4.2.2 Tensor Rings \n", + "\n", + "so far I could not find a TR that works in isolation of NN layers. Even NN layers are not well explained in the tutorials how to use them. I have sent them emails and waiting for their reply, then will update this notebook with the final findings, whether there is, or there is not." + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "id": "df52752f", + "metadata": {}, + "outputs": [], + "source": [ + "#!pip install tednet\n", + "#!pip install torch\n", + "#!pip install --upgrade numpy" + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "id": "9f5b8ff5", + "metadata": {}, + "outputs": [ + { + "ename": "AssertionError", + "evalue": "The number of ranks is not suitable.", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAssertionError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32mC:\\Users\\DELLPR~1\\AppData\\Local\\Temp/ipykernel_3016/2381440515.py\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mrank\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m2\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 6\u001b[1;33m \u001b[0mmodel\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtr\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mTRLinear\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mT1\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m2\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mranks\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mrank\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 7\u001b[0m \u001b[0mtn_type\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m\"tr\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 8\u001b[0m \u001b[0mmodel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtn_info\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m\"type\"\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtn_type\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\tednet\\tnn\\tensor_ring\\base.py\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, in_shape, out_shape, ranks, bias)\u001b[0m\n\u001b[0;32m 210\u001b[0m \u001b[0muse\u001b[0m \u001b[0mbias\u001b[0m \u001b[0mof\u001b[0m \u001b[0mlinear\u001b[0m \u001b[1;32mor\u001b[0m \u001b[1;32mnot\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m\u001b[1;32mTrue\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m \u001b[0mto\u001b[0m \u001b[0muse\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;32mand\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m\u001b[1;32mFalse\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m \u001b[0mto\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0muse\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 211\u001b[0m \"\"\"\n\u001b[1;32m--> 212\u001b[1;33m \u001b[0msuper\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mTRLinear\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0min_shape\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0min_shape\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mout_shape\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mout_shape\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mranks\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mranks\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbias\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mbias\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 213\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 214\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mreset_parameters\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\tednet\\tnn\\tn_linear.py\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, in_shape, out_shape, ranks, bias)\u001b[0m\n\u001b[0;32m 29\u001b[0m \u001b[0muse\u001b[0m \u001b[0mbias\u001b[0m \u001b[0mof\u001b[0m \u001b[0mlinear\u001b[0m \u001b[1;32mor\u001b[0m \u001b[1;32mnot\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m\u001b[1;32mTrue\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m \u001b[0mto\u001b[0m \u001b[0muse\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;32mand\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m\u001b[1;32mFalse\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m \u001b[0mto\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0muse\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 30\u001b[0m \"\"\"\n\u001b[1;32m---> 31\u001b[1;33m \u001b[0msuper\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0m_TNLinear\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0min_shape\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0min_shape\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mout_shape\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mout_shape\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mranks\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mranks\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbias\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mbias\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 32\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 33\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mforward\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0minputs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\tednet\\tnn\\tn_module.py\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, in_shape, out_shape, ranks, bias)\u001b[0m\n\u001b[0;32m 51\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 52\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mset_tn_type\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 53\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mset_nodes\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 54\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mset_params_info\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 55\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\tednet\\tnn\\tensor_ring\\base.py\u001b[0m in \u001b[0;36mset_nodes\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 229\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mranks_fill\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mranks\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mranks\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 230\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 231\u001b[1;33m \u001b[1;32massert\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mnodes_num\u001b[0m \u001b[1;33m==\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mranks\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"The number of ranks is not suitable.\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 232\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 233\u001b[0m \u001b[0mnodes_info\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mAssertionError\u001b[0m: The number of ranks is not suitable." + ] + } + ], + "source": [ + "import tednet as tdt\n", + "\n", + "import tednet.tnn.tensor_ring as tr\n", + "\n", + "rank=[2, 2]\n", + "model = tr.TRLinear(T1.shape, [2, 2], ranks=rank)\n", + "tn_type = \"tr\"\n", + "model.tn_info[\"type\"] = tn_type" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "id": "2072fdf4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(2, 2, 2, 2)" + ] + }, + "execution_count": 80, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "T1.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 109, + "id": "bbbe4fd1", + "metadata": {}, + "outputs": [ + { + "ename": "AttributeError", + "evalue": "'Module' object has no attribute 'tn_info'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32mC:\\Users\\DELLPR~1\\AppData\\Local\\Temp/ipykernel_3016/430665470.py\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 6\u001b[0m \u001b[0mnode_info\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mdict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m\"node1\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mshape\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m3\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m4\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 7\u001b[0m \u001b[0mnodes_info\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mnode_info\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 8\u001b[1;33m \u001b[0mmodel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtn_info\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m\"nodes\"\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnodes_info\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;32m~\\AppData\\Roaming\\Python\\Python39\\site-packages\\torch\\nn\\modules\\module.py\u001b[0m in \u001b[0;36m__getattr__\u001b[1;34m(self, name)\u001b[0m\n\u001b[0;32m 1175\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mname\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mmodules\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1176\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mmodules\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1177\u001b[1;33m raise AttributeError(\"'{}' object has no attribute '{}'\".format(\n\u001b[0m\u001b[0;32m 1178\u001b[0m type(self).__name__, name))\n\u001b[0;32m 1179\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mAttributeError\u001b[0m: 'Module' object has no attribute 'tn_info'" + ] + } + ], + "source": [ + "#from tednet.tnn import tn_module\n", + "from torch.nn.modules.module import Module\n", + "\n", + "model = Module()\n", + "nodes_info = []\n", + "node_info = dict(name=\"node1\", shape=[2, 3, 4])\n", + "nodes_info.append(node_info)\n", + "model.tn_info[\"nodes\"] = nodes_info\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2674f6a5", + "metadata": {}, + "outputs": [], + "source": [ + "for epoch in range(20):\n", + " model.train(\n", + " torch.utils.data.DataLoader(\n", + " datasets.MNIST('./data', train=True, download=True,\n", + " transform=transforms.Compose([\n", + " transforms.ToTensor(),\n", + " transforms.Normalize((0.1307,), (0.3081,))\n", + " ])),\n", + " batch_size=128, shuffle=True, **kwargs)\n", + " optim.SGD(model.parameters(), lr=2e-2, momentum=0.9, weight_decay=5e-4), \n", + " epoch\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a57f3585", + "metadata": {}, + "outputs": [], + "source": [ + "model.train?" + ] + }, + { + "cell_type": "markdown", + "id": "21bfb337", + "metadata": {}, + "source": [ + "## 4.3.1 Introduction to NN:\n", + "\n", + "To keep code simpler, I tried to load the dataset once, and in every new model, updated its format as required by the new model. If anything goes wrong, all cells from next one, need to run in sequence\n", + "\n", + "## Perceptron" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "1e44d0f1", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Dell Precision\\AppData\\Roaming\\Python\\Python39\\site-packages\\scipy\\__init__.py:146: UserWarning: A NumPy version >=1.16.5 and <1.23.0 is required for this version of SciPy (detected version 1.23.3\n", + " warnings.warn(f\"A NumPy version >={np_minversion} and <{np_maxversion}\"\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1797, 64)\n" + ] + } + ], + "source": [ + "import numpy as np \n", + "from sklearn.datasets import load_digits\n", + "from sklearn.linear_model import Perceptron\n", + "\n", + "digits = load_digits() # consider binary case\n", + "X = digits.data\n", + "y = digits.target\n", + "print(X.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "4882e9b1", + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "\n", + "X = X / 255.0\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0, test_size=0.4)\n", + "X_test, X_val, y_test, y_val = train_test_split(X_test, y_test, random_state=0, test_size=0.5)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "155009a0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1078, 64)\n", + "(359, 64)\n", + "(360, 64)\n" + ] + } + ], + "source": [ + "print (X_train.shape)\n", + "print (X_test.shape)\n", + "print (X_val.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "bff4a293", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPoAAAECCAYAAADXWsr9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAL1klEQVR4nO3db6yWdR3H8c+nA3gEcViYGajkpjRzSxijjKIEdZgO19YD2HTL1ehBOVltTnuSPm4z22ouwz9sIk5RsjkzWGrmMox/Jgg2ZZiEcvwTgTT++u3BfdGITp3rwPW7zn3O9/3azrjPOfe5P98DfM7vuu9z3ffPESEAI9tHhnoAAOVRdCABig4kQNGBBCg6kABFBxLoiqLbnmf7Vduv2b6lcNa9tvtsbyqZc0zeObafsb3F9mbbNxXO67X9ou2XqrzbS+ZVmT22N9h+onRWlbfd9su2N9peWzhrgu0VtrdW/4aXFsyaWn1PR9/22F7cyI1HxJC+SeqR9Lqk8yWNkfSSpIsK5s2WNF3Sppa+v7MlTa8uj5f0l8LfnyWdVl0eLWmNpM8X/h6/J+lBSU+09He6XdLElrKWSvpWdXmMpAkt5fZIelvSeU3cXjes6DMlvRYR2yLioKSHJF1bKiwinpP0fqnb7yfvrYhYX13eK2mLpEkF8yIiPqjeHV29FTsryvZkSVdLWlIqY6jYPl2dheEeSYqIgxGxu6X4uZJej4g3mrixbij6JElvHvP+DhUswlCyPUXSNHVW2ZI5PbY3SuqTtDoiSubdKelmSR8WzDheSFple53tRQVzzpf0jqT7qrsmS2yPK5h3rAWSljd1Y91QdPfzsRF3Xq7t0yQ9KmlxROwpmRURRyLiEkmTJc20fXGJHNvXSOqLiHUlbv//mBUR0yVdJek7tmcXyhmlzt28uyJimqR9koo+hiRJtsdImi/pkaZusxuKvkPSOce8P1nSziGapQjbo9Up+bKIeKyt3Oow81lJ8wpFzJI03/Z2de5yzbH9QKGsf4uIndWffZJWqnP3r4QdknYcc0S0Qp3il3aVpPURsaupG+yGov9J0gW2P1X9JFsg6VdDPFNjbFud+3hbIuKOFvLOtD2hunyqpMslbS2RFRG3RsTkiJiizr/b0xFxXYmso2yPsz3+6GVJV0oq8huUiHhb0pu2p1YfmivplRJZx1moBg/bpc6hyZCKiMO2vyvpN+o80nhvRGwulWd7uaSvSJpoe4ekH0bEPaXy1Fn1rpf0cnW/WZJ+EBFPFso7W9JS2z3q/CB/OCJa+bVXS86StLLz81OjJD0YEU8VzLtR0rJqEdom6YaCWbI9VtIVkr7d6O1WD+UDGMG64dAdQGEUHUiAogMJUHQgAYoOJNBVRS98OuOQZZFH3lDndVXRJbX5l9nqPxx55A1lXrcVHUABRU6YGeNToleDf5LPIR3QaJ3S+DxDnXWyeWM+Pfifx/t371fvhN4TyjvlI4cH/TX7/n5Q484Yc0J5u3eNH/TXHN6/T6N6T+yJZD3v7Rv01wyX/y/7tU8H48B/PVGsyCmwvRqnz3luiZtO6ZNLB1+Ek3HB2L5W8355x5xW8864/4VW89q0Jn7b78c5dAcSoOhAAhQdSICiAwlQdCABig4kQNGBBCg6kECtore5ZRKA5g1Y9OpFBn+mzkvQXiRpoe2LSg8GoDl1VvRWt0wC0Lw6RU+zZRIwUtV5UkutLZOqJ8ovkqRejT3JsQA0qc6KXmvLpIi4OyJmRMSMNp/OB2BgdYo+ordMAjIY8NC97S2TADSv1gtPVPuEldorDEBhnBkHJEDRgQQoOpAARQcSoOhAAhQdSICiAwlQdCCBIju1oFnb93601bz7zv19q3m/mP2lVvPOuL/VuK7Aig4kQNGBBCg6kABFBxKg6EACFB1IgKIDCVB0IAGKDiRA0YEE6mzJdK/tPtub2hgIQPPqrOj3S5pXeA4ABQ1Y9Ih4TtL7LcwCoBDuowMJNPY0VfZeA7pXYys6e68B3YtDdyCBOr9eWy7pBUlTbe+w/c3yYwFoUp1NFhe2MQiAcjh0BxKg6EACFB1IgKIDCVB0IAGKDiRA0YEEKDqQAHuvnYAPvzyt1byfX/jTVvOkca2mnf7ymFbzMmJFBxKg6EACFB1IgKIDCVB0IAGKDiRA0YEEKDqQAEUHEqDoQAJ1XhzyHNvP2N5ie7Ptm9oYDEBz6pzrfljS9yNive3xktbZXh0RrxSeDUBD6uy99lZErK8u75W0RdKk0oMBaM6g7qPbniJpmqQ1RaYBUETtp6naPk3So5IWR8Sefj7P3mtAl6q1otserU7Jl0XEY/1dh73XgO5V51F3S7pH0paIuKP8SACaVmdFnyXpeklzbG+s3r5aeC4ADaqz99rzktzCLAAK4cw4IAGKDiRA0YEEKDqQAEUHEqDoQAIUHUiAogMJjIi91/562xdazXv8hh+1mnfh6Hb3QmvbpFXvtZp3pNW07sCKDiRA0YEEKDqQAEUHEqDoQAIUHUiAogMJUHQgAYoOJEDRgQTqvApsr+0Xbb9U7b12exuDAWhOnXPdD0iaExEfVK/v/rztX0fEHwvPBqAhdV4FNiR9UL07unqLkkMBaFbdnVp6bG+U1CdpdUSw9xowjNQqekQciYhLJE2WNNP2xcdfx/Yi22ttrz2kAw2PCeBkDOpR94jYLelZSfP6+Rx7rwFdqs6j7mfanlBdPlXS5ZK2Fp4LQIPqPOp+tqSltnvU+cHwcEQ8UXYsAE2q86j7nyVNa2EWAIVwZhyQAEUHEqDoQAIUHUiAogMJUHQgAYoOJEDRgQRGxN5r5972h1bzFt/1tVbzntywqtW8th2aOLbVvIyrW8bvGUiHogMJUHQgAYoOJEDRgQQoOpAARQcSoOhAAhQdSICiAwnULnq1icMG27wwJDDMDGZFv0nSllKDACin7pZMkyVdLWlJ2XEAlFB3Rb9T0s2SPiw3CoBS6uzUco2kvohYN8D12HsN6FJ1VvRZkubb3i7pIUlzbD9w/JXYew3oXgMWPSJujYjJETFF0gJJT0fEdcUnA9AYfo8OJDCol5KKiGfV2TYZwDDCig4kQNGBBCg6kABFBxKg6EACFB1IgKIDCVB0IIERsfcahre+6ae2mveJ37Ua1xVY0YEEKDqQAEUHEqDoQAIUHUiAogMJUHQgAYoOJEDRgQQoOpBArVNgq5d63ivpiKTDETGj5FAAmjWYc90vi4h3i00CoBgO3YEE6hY9JK2yvc72opIDAWhe3UP3WRGx0/bHJa22vTUinjv2CtUPgEWS1KuxDY8J4GTUWtEjYmf1Z5+klZJm9nMd9l4DulSd3VTH2R5/9LKkKyVtKj0YgObUOXQ/S9JK20ev/2BEPFV0KgCNGrDoEbFN0mdbmAVAIfx6DUiAogMJUHQgAYoOJEDRgQQoOpAARQcSoOhAAhQdSICiAwlQdCABig4kQNGBBCg6kABFBxKg6EACFB1IgKIDCVB0IIFaRbc9wfYK21ttb7F9aenBADSn7gYOP5H0VER83fYYiR0agOFkwKLbPl3SbEnfkKSIOCjpYNmxADSpzqH7+ZLekXSf7Q22l1QbOfwH24tsr7W99pAOND4ogBNXp+ijJE2XdFdETJO0T9Itx1+JLZmA7lWn6Dsk7YiINdX7K9QpPoBhYsCiR8Tbkt60PbX60FxJrxSdCkCj6j7qfqOkZdUj7tsk3VBuJABNq1X0iNgoaUbZUQCUwplxQAIUHUiAogMJUHQgAYoOJEDRgQQoOpAARQcSqHtmHI5xZFdfq3mXbb621bxnPvN4q3mHv/iPVvP043bjugErOpAARQcSoOhAAhQdSICiAwlQdCABig4kQNGBBCg6kMCARbc91fbGY9722F7cwmwAGjLgKbAR8aqkSyTJdo+kv0laWXYsAE0a7KH7XEmvR8QbJYYBUMZgi75A0vISgwAop3bRq9d0ny/pkf/xefZeA7rUYFb0qyStj4hd/X2SvdeA7jWYoi8Uh+3AsFSr6LbHSrpC0mNlxwFQQt0tmf4p6WOFZwFQCGfGAQlQdCABig4kQNGBBCg6kABFBxKg6EACFB1IgKIDCTgimr9R+x1JJ/Kc9YmS3m14nG7IIo+8tvLOi4gzj/9gkaKfKNtrI2LGSMsij7yhzuPQHUiAogMJdFvR7x6hWeSRN6R5XXUfHUAZ3baiAyiAogMJUHQgAYoOJEDRgQT+BWVtkEnsFjPvAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "plt.matshow(digits.images[1])" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "7336972a", + "metadata": {}, + "outputs": [], + "source": [ + "clf = Perceptron(tol=1e-3, random_state=0)\n", + "from time import time\n", + "start= time()\n", + "clf.fit(X, y)\n", + "p_learnTime= time()-start" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "94edb44f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training set score: 0.914657\n", + "Test set score: 0.908078\n" + ] + } + ], + "source": [ + "print(\"Training set score: %f\" % clf.score(X_train, y_train))\n", + "P_MNIST_score = clf.score(X_test, y_test)\n", + "print(\"Test set score: %f\" % P_MNIST_score)" + ] + }, + { + "cell_type": "markdown", + "id": "38ae3bb8", + "metadata": {}, + "source": [ + "## Multi Layer Perceptron" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "692e31c5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 1, loss = 2.32083410\n", + "Iteration 2, loss = 2.30143372\n", + "Iteration 3, loss = 2.29487446\n", + "Iteration 4, loss = 2.28683077\n", + "Iteration 5, loss = 2.27889477\n", + "Iteration 6, loss = 2.27008412\n", + "Iteration 7, loss = 2.25852477\n", + "Iteration 8, loss = 2.24779170\n", + "Training set score: 0.320037\n", + "Test set score: 0.281337\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\neural_network\\_multilayer_perceptron.py:702: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (8) reached and the optimization hasn't converged yet.\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "from sklearn.neural_network import MLPClassifier\n", + "\n", + "epochs = 8\n", + "\n", + "mlp = MLPClassifier(\n", + " hidden_layer_sizes=(40,),\n", + " max_iter=epochs,\n", + " alpha=1e-4,\n", + " solver=\"sgd\",\n", + " verbose=10,\n", + " random_state=1,\n", + " learning_rate_init=0.2,\n", + ")\n", + "\n", + "start= time()\n", + "mlp.fit(X_train, y_train)\n", + "mlp_learnTime= time()-start\n", + "\n", + "print(\"Training set score: %f\" % mlp.score(X_train, y_train))\n", + "MLP_MNIST_score = mlp.score(X_test, y_test)\n", + "print(\"Test set score: %f\" % MLP_MNIST_score)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "fbf8eb85", + "metadata": {}, + "outputs": [], + "source": [ + "#!pip install --upgrade tensorflow" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "557eda1b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"model\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " input_1 (InputLayer) [(None, 64)] 0 \n", + " \n", + " dense (Dense) (None, 10) 650 \n", + " \n", + " activation (Activation) (None, 10) 0 \n", + " \n", + "=================================================================\n", + "Total params: 650\n", + "Trainable params: 650\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "import tensorflow as tf\n", + "#import as tk\n", + "#from tensorflow.keras.datasets import mnist\n", + "from tensorflow.keras.utils import to_categorical\n", + "num_classes = 10\n", + "\n", + "y_train = to_categorical(y_train, num_classes=num_classes) # NN encoding\n", + "y_test = to_categorical(y_test, num_classes=num_classes)\n", + "#from tf.keras import Input\n", + "#from tensorflow.keras.layers import Dense, Activation\n", + "#from tensorflow.keras.models import Model\n", + "\n", + "xi = tf.keras.Input(shape=(X_train.shape[1],))\n", + "xo = tf.keras.layers.Dense(num_classes)(xi)\n", + "yo = tf.keras.layers.Activation('softmax')(xo)\n", + "model = tf.keras.models.Model(inputs=[xi], outputs=[yo])\n", + "\n", + "model.summary()" + ] + }, + { + "cell_type": "markdown", + "id": "7e6a35ad", + "metadata": {}, + "source": [ + "## Keras Fully Connected / Dense Model" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "82afd099", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/8\n", + "8/8 [==============================] - 0s 18ms/step - loss: 2.2918 - accuracy: 0.1485 - val_loss: 2.3010 - val_accuracy: 0.1111\n", + "Epoch 2/8\n", + "8/8 [==============================] - 0s 5ms/step - loss: 2.2882 - accuracy: 0.1649 - val_loss: 2.2978 - val_accuracy: 0.1204\n", + "Epoch 3/8\n", + "8/8 [==============================] - 0s 5ms/step - loss: 2.2848 - accuracy: 0.1701 - val_loss: 2.2944 - val_accuracy: 0.1111\n", + "Epoch 4/8\n", + "8/8 [==============================] - 0s 5ms/step - loss: 2.2812 - accuracy: 0.1845 - val_loss: 2.2912 - val_accuracy: 0.1111\n", + "Epoch 5/8\n", + "8/8 [==============================] - 0s 4ms/step - loss: 2.2779 - accuracy: 0.1918 - val_loss: 2.2879 - val_accuracy: 0.1204\n", + "Epoch 6/8\n", + "8/8 [==============================] - 0s 4ms/step - loss: 2.2743 - accuracy: 0.1969 - val_loss: 2.2850 - val_accuracy: 0.1296\n", + "Epoch 7/8\n", + "8/8 [==============================] - 0s 4ms/step - loss: 2.2709 - accuracy: 0.2010 - val_loss: 2.2819 - val_accuracy: 0.1389\n", + "Epoch 8/8\n", + "8/8 [==============================] - 0s 4ms/step - loss: 2.2675 - accuracy: 0.2103 - val_loss: 2.2786 - val_accuracy: 0.1389\n", + "Test loss: 2.2778701782226562\n", + "Test accuracy: 0.16155989468097687\n" + ] + } + ], + "source": [ + "batch_size = 128\n", + "\n", + "model.compile(loss='categorical_crossentropy', \n", + " optimizer='adam', \n", + " metrics=['accuracy'])\n", + "\n", + "start= time()\n", + "model.fit(X_train, y_train,\n", + " batch_size=batch_size,\n", + " epochs=epochs,\n", + " verbose=1,\n", + " validation_split=0.1)\n", + "\n", + "FC_learnTime= time()-start\n", + "\n", + "score = model.evaluate(X_test, y_test, verbose=0)\n", + "print('Test loss:', score[0])\n", + "FC_MNIST_score = score[1]\n", + "print('Test accuracy:', FC_MNIST_score)" + ] + }, + { + "cell_type": "markdown", + "id": "ab62f373", + "metadata": {}, + "source": [ + "## Keras CNN Model\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "ae4b6f34", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1078, 64)\n", + "(359, 64)\n", + "(1078, 8, 8)\n", + "(359, 8, 8)\n" + ] + } + ], + "source": [ + "# images are flattened to 64, will return to 28 x 28\n", + "# then add another dimension to make sure images have shape (8, 8, 1) for CNN\n", + "\n", + "print(X_train.shape)\n", + "print(X_test.shape)\n", + "X_train = X_train.reshape((X_train.shape[0], 8, 8))\n", + "X_test = X_test.reshape((X_test.shape[0], 8, 8))\n", + "print(X_train.shape)\n", + "print(X_test.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "da88adb3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1078, 8, 8, 1)\n", + "(359, 8, 8, 1)\n" + ] + } + ], + "source": [ + "X_train = np.expand_dims(X_train, -1)\n", + "X_test = np.expand_dims(X_test, -1)\n", + "print(X_train.shape)\n", + "print(X_test.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "e457171c", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " conv2d (Conv2D) (None, 4, 4, 32) 320 \n", + " \n", + " dropout (Dropout) (None, 4, 4, 32) 0 \n", + " \n", + " flatten (Flatten) (None, 512) 0 \n", + " \n", + " dropout_1 (Dropout) (None, 512) 0 \n", + " \n", + " dense_1 (Dense) (None, 10) 5130 \n", + " \n", + "=================================================================\n", + "Total params: 5,450\n", + "Trainable params: 5,450\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "\n", + "input_shape = (8, 8, 1)\n", + "# 32 channels, a kernel size of 5×5, a stride of (2, 2), and padding=’same’.\n", + "dropout = 0.2\n", + "\n", + "model = tf.keras.Sequential(\n", + " [\n", + " tf.keras.Input(shape=input_shape),\n", + " tf.keras.layers.Conv2D(32, kernel_size=(3, 3), strides=(2,2), padding='same', activation=\"relu\", kernel_initializer='he_normal', bias_initializer='zeros'),\n", + " tf.keras.layers.Dropout(dropout),\n", + " #tf.keras.layers.Conv2D(64, kernel_size=(3, 3), activation=\"relu\"),\n", + " #tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2),\n", + " tf.keras.layers.Flatten(),\n", + " tf.keras.layers.Dropout(dropout),\n", + " tf.keras.layers.Dense(num_classes, activation=\"softmax\"),\n", + " ]\n", + ")\n", + "\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "6c6b9edd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1078, 8, 8, 1)" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "a51b677e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/8\n", + "8/8 [==============================] - 0s 18ms/step - loss: 2.2960 - accuracy: 0.1113 - val_loss: 2.2867 - val_accuracy: 0.1759\n", + "Epoch 2/8\n", + "8/8 [==============================] - 0s 6ms/step - loss: 2.2756 - accuracy: 0.2423 - val_loss: 2.2685 - val_accuracy: 0.3889\n", + "Epoch 3/8\n", + "8/8 [==============================] - 0s 6ms/step - loss: 2.2537 - accuracy: 0.3845 - val_loss: 2.2464 - val_accuracy: 0.4722\n", + "Epoch 4/8\n", + "8/8 [==============================] - 0s 6ms/step - loss: 2.2275 - accuracy: 0.4598 - val_loss: 2.2200 - val_accuracy: 0.5093\n", + "Epoch 5/8\n", + "8/8 [==============================] - 0s 6ms/step - loss: 2.1942 - accuracy: 0.5196 - val_loss: 2.1881 - val_accuracy: 0.5463\n", + "Epoch 6/8\n", + "8/8 [==============================] - 0s 5ms/step - loss: 2.1562 - accuracy: 0.5351 - val_loss: 2.1521 - val_accuracy: 0.5556\n", + "Epoch 7/8\n", + "8/8 [==============================] - 0s 6ms/step - loss: 2.1188 - accuracy: 0.5619 - val_loss: 2.1116 - val_accuracy: 0.6019\n", + "Epoch 8/8\n", + "8/8 [==============================] - 0s 6ms/step - loss: 2.0767 - accuracy: 0.5732 - val_loss: 2.0680 - val_accuracy: 0.6111\n" + ] + } + ], + "source": [ + "\n", + "model.compile(loss=\"categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n", + "\n", + "start= time()\n", + "model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)\n", + "CNN_learnTime= time()-start" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "68411915", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test loss: 2.083078384399414\n", + "Test accuracy: 0.5543175339698792\n" + ] + } + ], + "source": [ + "score = model.evaluate(X_test, y_test, verbose=0)\n", + "print(\"Test loss:\", score[0])\n", + "CNN_MNIST_score = score[1]\n", + "print(\"Test accuracy:\", CNN_MNIST_score)" + ] + }, + { + "cell_type": "markdown", + "id": "d85777a0", + "metadata": {}, + "source": [ + "## Keras RNN Model" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "5ce21148", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential_7\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " simple_rnn_5 (SimpleRNN) (None, 32) 1312 \n", + " \n", + " dense_4 (Dense) (None, 10) 330 \n", + " \n", + " activation_3 (Activation) (None, 10) 0 \n", + " \n", + "=================================================================\n", + "Total params: 1,642\n", + "Trainable params: 1,642\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "# network parameters\n", + "input_shape = (8, 8) # image size\n", + "units = 32 # trying to achieve fair comparison, by having 32 RNN units, while we had 32 channel in CNN \n", + "\n", + "# model is RNN with 32 units, input is 8x8-dim \n", + "model = tf.keras.Sequential()\n", + "model.add(tf.keras.layers.SimpleRNN(units=units,\n", + " dropout=dropout,\n", + " input_shape=input_shape))\n", + "model.add(tf.keras.layers.Dense(num_classes))\n", + "model.add(tf.keras.layers.Activation('softmax'))\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "89c52cc0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/8\n", + "9/9 [==============================] - 0s 2ms/step - loss: 2.3102 - accuracy: 0.1076\n", + "Epoch 2/8\n", + "9/9 [==============================] - 0s 2ms/step - loss: 2.3079 - accuracy: 0.1002\n", + "Epoch 3/8\n", + "9/9 [==============================] - 0s 2ms/step - loss: 2.3077 - accuracy: 0.0918\n", + "Epoch 4/8\n", + "9/9 [==============================] - 0s 2ms/step - loss: 2.3076 - accuracy: 0.0733\n", + "Epoch 5/8\n", + "9/9 [==============================] - 0s 2ms/step - loss: 2.3047 - accuracy: 0.0770\n", + "Epoch 6/8\n", + "9/9 [==============================] - 0s 2ms/step - loss: 2.3041 - accuracy: 0.0937\n", + "Epoch 7/8\n", + "9/9 [==============================] - 0s 2ms/step - loss: 2.3035 - accuracy: 0.0779\n", + "Epoch 8/8\n", + "9/9 [==============================] - 0s 2ms/step - loss: 2.3025 - accuracy: 0.0631\n", + "Test loss: 2.309088945388794\n", + "Test accuracy: 0.033426184207201004\n" + ] + } + ], + "source": [ + "model.compile(loss='categorical_crossentropy',\n", + " optimizer='sgd',\n", + " metrics=['accuracy'])\n", + "# train the network\n", + "\n", + "start= time()\n", + "model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size)\n", + "RNN_learnTime= time()-start\n", + "\n", + "score = model.evaluate(X_test, y_test, verbose=0)\n", + "print('Test loss:', score[0])\n", + "RNN_MNIST_score = score[1]\n", + "print('Test accuracy:', RNN_MNIST_score)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "061c418f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1078, 8, 8, 1)" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "markdown", + "id": "442b6990", + "metadata": {}, + "source": [ + "## Keras LSTM Model" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "31fd70c5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential_8\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " lstm_1 (LSTM) (None, 32) 5248 \n", + " \n", + " dense_5 (Dense) (None, 10) 330 \n", + " \n", + " activation_4 (Activation) (None, 10) 0 \n", + " \n", + "=================================================================\n", + "Total params: 5,578\n", + "Trainable params: 5,578\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "# model is LSTM with 32 units, input is 8x8-dim \n", + "model = tf.keras.Sequential()\n", + "model.add(tf.keras.layers.LSTM(units=units,\n", + " dropout=dropout,\n", + " input_shape=input_shape))\n", + "model.add(tf.keras.layers.Dense(num_classes))\n", + "model.add(tf.keras.layers.Activation('softmax'))\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "a546871c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/8\n", + "9/9 [==============================] - 1s 4ms/step - loss: 2.3017 - accuracy: 0.1113\n", + "Epoch 2/8\n", + "9/9 [==============================] - 0s 3ms/step - loss: 2.3017 - accuracy: 0.1169\n", + "Epoch 3/8\n", + "9/9 [==============================] - 0s 4ms/step - loss: 2.3015 - accuracy: 0.1169\n", + "Epoch 4/8\n", + "9/9 [==============================] - 0s 4ms/step - loss: 2.3014 - accuracy: 0.1169\n", + "Epoch 5/8\n", + "9/9 [==============================] - 0s 4ms/step - loss: 2.3014 - accuracy: 0.1058\n", + "Epoch 6/8\n", + "9/9 [==============================] - 0s 4ms/step - loss: 2.3012 - accuracy: 0.1252\n", + "Epoch 7/8\n", + "9/9 [==============================] - 0s 3ms/step - loss: 2.3013 - accuracy: 0.1085\n", + "Epoch 8/8\n", + "9/9 [==============================] - 0s 3ms/step - loss: 2.3012 - accuracy: 0.1122\n", + "Test loss: 2.303574562072754\n", + "Test accuracy: 0.08077994734048843\n" + ] + } + ], + "source": [ + "model.compile(loss='categorical_crossentropy',\n", + " optimizer='sgd',\n", + " metrics=['accuracy'])\n", + "# train the network\n", + "\n", + "start= time()\n", + "model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size)\n", + "LSTM_learnTime= time()-start\n", + "\n", + "score = model.evaluate(X_test, y_test, verbose=0)\n", + "print('Test loss:', score[0])\n", + "LSTM_MNIST_score = score[1]\n", + "print('Test accuracy:', LSTM_MNIST_score)" + ] + }, + { + "cell_type": "markdown", + "id": "58ef30f7", + "metadata": {}, + "source": [ + "## Keras GRU Model" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "3082576a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential_9\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " gru (GRU) (None, 32) 4032 \n", + " \n", + " dense_6 (Dense) (None, 10) 330 \n", + " \n", + " activation_5 (Activation) (None, 10) 0 \n", + " \n", + "=================================================================\n", + "Total params: 4,362\n", + "Trainable params: 4,362\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "# model is GRU with 256 units, input is 28-dim vector 28 timesteps\n", + "model = tf.keras.Sequential()\n", + "model.add(tf.keras.layers.GRU(units=units,\n", + " dropout=dropout,\n", + " input_shape=input_shape))\n", + "model.add(tf.keras.layers.Dense(num_classes))\n", + "model.add(tf.keras.layers.Activation('softmax'))\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "d5b23ecd", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/8\n", + "9/9 [==============================] - 1s 4ms/step - loss: 2.3016 - accuracy: 0.1104\n", + "Epoch 2/8\n", + "9/9 [==============================] - 0s 3ms/step - loss: 2.3015 - accuracy: 0.1178\n", + "Epoch 3/8\n", + "9/9 [==============================] - 0s 3ms/step - loss: 2.3013 - accuracy: 0.1215\n", + "Epoch 4/8\n", + "9/9 [==============================] - 0s 4ms/step - loss: 2.3012 - accuracy: 0.1364\n", + "Epoch 5/8\n", + "9/9 [==============================] - 0s 4ms/step - loss: 2.3009 - accuracy: 0.1354\n", + "Epoch 6/8\n", + "9/9 [==============================] - 0s 3ms/step - loss: 2.3009 - accuracy: 0.1215\n", + "Epoch 7/8\n", + "9/9 [==============================] - 0s 3ms/step - loss: 2.3008 - accuracy: 0.1150\n", + "Epoch 8/8\n", + "9/9 [==============================] - 0s 4ms/step - loss: 2.3007 - accuracy: 0.1113\n", + "Test loss: 2.3027074337005615\n", + "Test accuracy: 0.07799442857503891\n" + ] + } + ], + "source": [ + "model.compile(loss='categorical_crossentropy',\n", + " optimizer='sgd',\n", + " metrics=['accuracy'])\n", + "# train the network\n", + "\n", + "start= time()\n", + "model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size)\n", + "GRU_learnTime= time()-start\n", + "\n", + "score = model.evaluate(X_test, y_test, verbose=0)\n", + "print('Test loss:', score[0])\n", + "GRU_MNIST_score = score[1]\n", + "print('Test accuracy:', GRU_MNIST_score)" + ] + }, + { + "cell_type": "code", + "execution_count": 101, + "id": "b5eb18f4", + "metadata": {}, + "outputs": [], + "source": [ + "# Import Necessary Pytorch Modules\n", + "import torch\n", + "import torch.nn as nn\n", + "from torch import Tensor\n", + "from tednet.tnn import tensor_ring as tr\n", + "\n", + "# A Simple MNIST Classifier based on Tensor Ring.\n", + "class TRClassifier (nn.Module) :\n", + " def init (self):\n", + " super (TRClassifier, self).init()\n", + "\n", + " # Define a Tensor Ring Convolutional Layer\n", + " self.trcnn = tr.TRConv2D ([1] , [4, 5] , [ 6, 6, 6, 6], 3)\n", + " # Define a Tensor Ring Fully−Connected Layer\n", + " self.trfc = tr.TRLinear ([20, 26, 26],[10], [6, 6, 6, 6])\n", + "\n", + " def forward (self, inputs: Tensor ) -> Tensor :\n", + " # Call TRConv2D to process inputs\n", + " out = self.trcnn (inputs)\n", + " out = torch.relu (out)\n", + " out = out.view (inputs.size (0), -1)\n", + "\n", + " # Call TRLinear to classify the features\n", + " out = self.trfc (out)\n", + " return out\n" + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "id": "7c9213ab", + "metadata": {}, + "outputs": [ + { + "ename": "TypeError", + "evalue": "__init__() takes 1 positional argument but 2 were given", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32mC:\\Users\\DELLPR~1\\AppData\\Local\\Temp/ipykernel_3016/370578838.py\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mTRCls\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mTRClassifier\u001b[0m\u001b[1;33m(\u001b[0m \u001b[0mX_train\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[0mTRCls\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mTypeError\u001b[0m: __init__() takes 1 positional argument but 2 were given" + ] + } + ], + "source": [ + "TRCls = TRClassifier( X_train)\n", + "TRCls" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "id": "5559916f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "compression_ration is: 0.3968253968253968\n", + "compression_ration is: 14.17233560090703\n", + "compression_ration is: 241.54589371980677\n", + "compression_ration is: 2.867383512544803\n" + ] + } + ], + "source": [ + "# You can also build a network in only one line of code, e.g., TR-LeNet5\n", + "\n", + "model = tr.TRLeNet5(10, [6, 6, 6, 6])" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "0cf24864", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEWCAYAAAB2X2wCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAn8ElEQVR4nO3de7wVZd338c9XQMAAT6AZqEAeEOQooBkphSHkWSxBE7EUMbHE6pGnu1vJ7GT2aCre3GREpQJqiocwypsQ8XALKOIB9YWIssUEIVFE5PR7/pjZ28Vm7b3WhrXZe4/f9+vFizUz11zzm7XW/q1rrpm5RhGBmZk1fLvVdQBmZlYaTuhmZhnhhG5mlhFO6GZmGeGEbmaWEU7oZmYZ4YRuDZKkCZL+s67jKETSjyTdVtdx1GeS2ksKSY2LKDtC0txdEVdD5IReSyQtk7RRUutK8xemX9726fTkdLpvTplDJEXO9GxJF+ZM/0jS65LWSSqTNC2d/2I6b52kLZI25Ez/KE+M4yRtkvRB+u9VSbdIOqAG+7lNbLtKRIyKiJ/u6u3WVET8PCJ26fuTfp+el7RbzrxrJU1OX5cn0L9WWu92SeN2ZaxWWk7otet1YFj5hKSuQPM85dYA1xZToaTzgfOAEyKiBdAb+B+AiOgSES3S+Y8Bo8unI+LnVVQ5LSJaAvsAZwCfBRbUJKlbfsW0OGvR54ChBcocI+mLuyIY2zWc0GvXn4HhOdPnA3/KU+6PQDdJxxdRZx9gZkS8BhAR/4qIiTsbaERsiogXgbOBVcD3ASTtLekhSask/Tt93S5d9jPgS8At6VHALen830paLul9SQskfamq7eY5+qg4pFbiBkkrJa2VtEjSkemyyZKuTV/3T49Uvp+WfVvSBTl17ivpwTSeeWlrNe9hu6S/SRpdad5zks4stG/pEc89aUv3fWBEOu/2nDKnpkdS76X7fkTOspB0SM507j62Tt/79yStkfRYbgs8j+uAnxT4UbmO4hsSIyQ9nn4e70laKunYdP7y9H0/P6f8npL+lH5v3pD04/J4JTWSdL2kdyUtBU6qtK09Jf0+/RzfSj+vRnliqvL78WnlhF67ngJaSToi/UKeDdyep9x64OfAz4qsc7ikH0rqne+LvjMiYgtwP0mihuQ78gfgYOAg4CPglrTsf7DtkUB5IpwH9CBp9d8J3C2p2Q6EMxA4DjgM2Ivk/VtdRdnPAnsCbYFvA+Ml7Z0uGw98mJY5P/1XlTvZ9qiqM8m+l3dPFNq304B70njvyK1Y0mHAFOByoA0wA3hQ0u7VxFPu+0BZut7+wI+A6sbtuBd4HxhRTZnxwGGSTihi+wBHA4uAfUn2fSpJA+MQ4JskP+wt0rI3k3weHYHjSRo25T+yFwEnAz1JjjDPqrSdPwKb03p7knwP8nVb1eT78anghF77ylvpXwVeBt6qotx/AwdJGlxdZRFxO3AZcCLwKLBS0tjShQvACpKERUSsjoi/RMT6iPiA5Een2iOJiLg9XW9zRPwGaAocvgNxbAJaAp0ARcTiiHi7mrLXpEcaM4B1wOHpD94Q4Op0H14iSRhVuQ/oIengdPpc4N6I+LjIfXsyIqZHxNaI+KhS3WcDf42If0TEJuB6ki64Y4t8Lw4ADk738bGofiCmAP4TuEpS0yrKbCD5PItqpQOvR8Qf0h/9acCBJO/5xxHxd2AjcEhO4+X/RsQHEbEM+A1JVyHAN4AbI2J5RKwBflG+AUn7A4OByyPiw4hYCdxA/u6jmnw/PhWc0Gvfn4FzSFpK+bpbAEgTxk/Tf6quwoi4IyJOIGmVjAKukXRiieKFpJW7BkDSHpL+Oz1sfh+YA+xV3ZFB2vWxOD0Mfo+kpda6qvJViYhZJEcD44F3JE2U1KqK4qsjYnPO9HqgBUmLtjGwPGdZ7uvK2/yApDVenkCGktPSLmLfqqybpF/7jZxtbU3Lt61mnXK/BpYAf0+7Owr+iKc/bG8CI6sp9jtgf0mnFBHDOzmvP0q3UXleC5L3Y3dy9jV9Xb6fn2Pb9ym33MFAE+DttGvnPZLGzn6Vg6nh9+NTwQm9lkXEGyQnR79GchhcnT+QJIgziqx7U0TcTXIYXJK+w7Sf8xSSrhRIDvUPB46OiFYkh7jwyY9OVFr/S8CVJK2wvSNiL2AtVf9IfQjskTP92dyFEXFTRBwFdCE5tP5hDXdpFcnhe7uceQcWWGcKMEzSF0ha0P+EovetulbzCpKERVqf0ljKj9rWU8V7kbZ0vx8RHUk+nyskDSiwHwA/Bv6jUr2fBJscKfyEIhoSNfAuSev54Jx5B/HJfr7Ntp/BQTmvlwMfA60jYq/0X6uI6FJF/Dv7/cgUJ/Rd49vAVyLiw+oKpS3McSRJI6/0JNRJklpK2i3toukC/O/OBCipSXqCbgpJIvl/6aKWJC2v9yTtA1xdadV3SPpJySm/mSSRNpZ0FVBdq2khcGZ6JHAIyXtVHlMfSUdLakKS+DcAW2qyX2n3wL3AuHQbndj2RHU+M0iS0TUkVwFt3cF9q+wu4CRJA9J9+j5J8noiXb4QOCc9aTiInK4tSScruZxVJH3jWyjivYiI2cDzVH/e4M8kXUeDarAv1W1zC8m+/iz9nh4MXMEn54/uAr4rqV16nmNszrpvA38HfiOpVfod/7zyXDBQiu9H1jih7wIR8VpEzC+y+BSSFkxV3ic5IfYm8B7JlQqXRMSO3mxxtqR1aV0PkJxUOioiVqTLbyRppb5LckL2b5XW/y1wlpIrYG4CZgIPA6+SHEpvoPpuiBtI+l7fIenbzj2R2IqkS+DfaV2rSfqda2o0yZHPv0iS1xSSRJpX2v11L3ACycm/cjXdt8r1vkJy8vBmkvfzFOCUiNiYFvleOu89kr776TmrHwo8QnJu4Eng1jRZF+PHpOdEqohrC8kPdZVldsBlJEl2KTCX5H2clC77Hcl7+RzwDNsfuQ4n6bJ5ieSzv4fk/EFlpfp+ZIb8gAv7tJH0K+CzEVFdq9WswXEL3TJPUidJ3dLrlvuSdOvcV9dxmZVaXd7JZrartCTpZvkcsJLkErr76zQis1rgLhczs4xwl4uZWUbUWZdL69ato3379nW1eTOzBmnBggXvRkSbfMvqLKG3b9+e+fOLvZLPzMwAJL1R1TJ3uZiZZYQTuplZRjihm5llRDHP8JtEMnbxyoiocgAoSX1Ibg0/OyLu2ZFgNm3aRFlZGRs2bNiR1a2ONWvWjHbt2tGkSZO6DsXsU6mYk6KTSYaorHLo13Qo1V+RjM+ww8rKymjZsiXt27cnGYPIGoqIYPXq1ZSVldGhQ4e6DsfsU6lgl0tEzCEdG7salwF/IbkLb4dt2LCBfffd18m8AZLEvvvu66Mrszq0033oktqSjN89oYiyIyXNlzR/1apVVZXZ2ZCsjvizM6tbpTgpeiNwZToEZ7UiYmJE9I6I3m3a5L0u3szMdlApbizqDUxNW2etga9J2hwR03e24vZj/1q4UA0s++VJhQsB9913H2eeeSaLFy+mU6dOJY2htm3dupXLL7+cWbNmIYlmzZpx1113uV/b7FNgpxN6RFRkCkmTgYdKkczr0pQpU+jXrx9Tp05l3LhxtbadLVu20KhRlY/m3CHTpk1jxYoVLFq0iN12242ysjI+85nP7FSdmzdvpnFjD8xpxrg9S1TP2tLUU0nBLhdJU0iekHK4pDJJ35Y0StKoWomojq1bt47HH3+c3//+90ydOrVi/pYtW/jBD35A165d6datGzfffDMA8+bN49hjj6V79+707duXDz74gMmTJzN69OiKdU8++WRmz54NQIsWLbjqqqs4+uijefLJJ7nmmmvo06cPRx55JCNHjqR89MslS5Zwwgkn0L17d3r16sVrr73Geeedx/33fzLq67nnnssDDzywTfxvv/02BxxwALvtlny07dq1Y++99wbgb3/7G7169aJ79+4MGJA8jnLNmjWcfvrpdOvWjWOOOYZFixYBMG7cOEaOHMnAgQMZPnw4q1atYsiQIfTp04c+ffrw+OOPl/JtN7MSKNjsiohhxVYWESN2Kpp6YPr06QwaNIjDDjuMffbZh2eeeYZevXoxceJEXn/9dZ599lkaN27MmjVr2LhxI2effTbTpk2jT58+vP/++zRv3rza+j/88EOOPPJIrrnmGgA6d+7MVVddBcB5553HQw89xCmnnMK5557L2LFjOeOMM9iwYQNbt27lwgsv5IYbbuC0005j7dq1PPHEE/zxj3/cpv5vfOMb9OvXj8cee4wBAwbwzW9+k549e7Jq1Souuugi5syZQ4cOHVizJrlw6eqrr6Znz55Mnz6dWbNmMXz4cBYuXAjAggULmDt3Ls2bN+ecc85hzJgx9OvXjzfffJMTTzyRxYsXl/jdN7Od4ePoSqZMmcLll18OwNChQ5kyZQq9evXikUceYdSoURVdD/vssw/PP/88BxxwAH369AGgVavCzwtu1KgRQ4YMqZj+5z//yXXXXcf69etZs2YNXbp0oX///rz11lucccYZQHLDDsDxxx/PpZdeysqVK7n33nsZMmTIdl0h7dq145VXXmHWrFnMmjWLAQMGcPfdd7N+/XqOO+64ir70ffZJHh85d+5c/vKXvwDwla98hdWrV7N2bXI4eOqpp1b8QD3yyCO89NJLFdt5//33+eCDD2jZsmUN3l0zq01O6DlWr17NrFmzeOGFF5DEli1bkMR1111HRGx3WV6+eQCNGzdm69atFdO512Y3a9asot98w4YNfOc732H+/PkceOCBjBs3jg0bNlDdQ0fOO+887rjjDqZOncqkSZPylmnatCmDBw9m8ODB7L///kyfPp2vfvWreWPNt63ycrl971u3buXJJ58seARiZnXHY7nkuOeeexg+fDhvvPEGy5YtY/ny5XTo0IG5c+cycOBAJkyYwObNm4Gk77lTp06sWLGCefPmAfDBBx+wefNm2rdvz8KFC9m6dSvLly/n6aefzru98kTfunVr1q1bxz33JCMmtGrVinbt2jF9+nQAPv74Y9avXw/AiBEjuPHGGwHo0qXLdnU+88wzrFixAkiS8KJFizj44IP5whe+wKOPPsrrr79eET/Acccdxx133AHA7Nmzad26dd4jjYEDB3LLLbdUTJd3y5hZ/VGvW+jFXmZYKlOmTGHs2LHbzBsyZAh33nknN998M6+++irdunWjSZMmXHTRRYwePZpp06Zx2WWX8dFHH9G8eXMeeeQRvvjFL9KhQwe6du3KkUceSa9evfJub6+99uKiiy6ia9eutG/fvqLrBuDPf/4zF198MVdddRVNmjTh7rvvpmPHjuy///4cccQRnH766XnrXLlyJRdddBEff/wxAH379mX06NE0a9aMiRMncuaZZ7J161b2228//vGPfzBu3DguuOACunXrxh577LFdn3y5m266iUsvvZRu3bqxefNmjjvuOCZMKHgvmZntQnX2TNHevXtH5QdcLF68mCOOOKJO4mko1q9fT9euXXnmmWfYc88SXUJVQv4MLdPqwWWLkhZERO98y+p1C9229cgjj/Ctb32LK664ol4mc7MaqQfJMWuc0BuQE044gTfffLOuwzCzesonRc3MMsIJ3cwsI5zQzcwywgndzCwj6vdJ0VKdBa+or/DZ8BYtWrBu3brSbrcaxx57LE888cRO1TFz5kyuvPJKIBnUq23btjRv3pxu3bpx7LHHssceezB8+PBShGtm9Vj9TugZUGjo2Z1N5gAnnngiJ554IgD9+/fn+uuvp3fvvJepmlmGuculCK+99hqDBg3iqKOO4ktf+hIvv/wyAA8++CBHH300PXv25IQTTuCdd94Bth96dty4cXzrW9+if//+dOzYkZtuuqmi7hYtWgDJbff9+/fnrLPOolOnTpx77rkV46zMmDGDTp060a9fP7773e9y8sknFx37uHHjuP7664Ek2Y8ZM4bjjjuOI444gnnz5nHmmWdy6KGH8uMf/7hindtvv52+ffvSo0cPLr74YrZsKfgwKjOrB5zQizBy5EhuvvlmFixYwPXXX893vvMdAPr168dTTz3Fs88+y9ChQ7nuuusq1lmwYAH3338/d955JwAvv/wyM2fO5Omnn+YnP/kJmzZt2m47zz77LDfeeCMvvfQSS5cu5fHHH2fDhg1cfPHFPPzww8ydO5eqnsVarN133505c+YwatQoTjvtNMaPH88LL7zA5MmTWb16NYsXL2batGk8/vjjLFy4kEaNGlWM9WJm9Zu7XApYt24dTzzxBF//+tcr5pWPk1JWVsbZZ5/N22+/zcaNG7d5zFvu0LMAJ510Ek2bNqVp06bst99+vPPOO7Rr126bbfXt27diXo8ePVi2bBktWrSgY8eOFXUPGzaMiRMn7vD+nHrqqQB07dqVLl26cMABBwDQsWNHli9fzty5c1mwYEHFuDIfffQR++233w5vz8x2HSf0ArZu3cpee+2Vd3TByy67jCuuuIJTTz2V2bNnb/O4usqPfWvatGnF60aNGlWM2lioTKnH2infxm677bbN9nbbbbeK7Z1//vn84he/KOl2zaz2uculgFatWtGhQwfuvvtuIBk//LnnngNg7dq1tG3bFqDKUQp3VqdOnVi6dCnLli0DkmeG1qYBAwZwzz33sHLlSiAZZveNN96o1W2aWWnU7xZ6HQy6s379+m26Qq644gruuOMOLrnkEq699lo2bdrE0KFD6d69O+PGjePrX/86bdu25ZhjjqkYa7yUmjdvzq233sqgQYNo3bo1ffv2Lfk2cnXu3Jlrr72WgQMHsnXrVpo0acL48eM5+OCDa3W7ZrbzPHxuA7Bu3TpatGhBRHDppZdy6KGHMmbMmLoOKy9/hla0hjjaYj2Iubrhc93l0gD87ne/o0ePHnTp0oW1a9dy8cUX13VIZlYPFexykTQJOBlYGRFH5ll+LnBlOrkOuCQinitplJ9yY8aMqbctcjOrP4ppoU8GBlWz/HXg+IjoBvwU2PFr6sj/0GJrGPzZmdWtggk9IuYAa6pZ/kRE/DudfApoV1XZQpo1a8bq1audGBqgiGD16tU0a9asrkMx+9Qq9VUu3wYermqhpJHASICDDjpou+Xt2rWjrKxsp++GtLrRrFmz7W6WMrNdp2QJXdKXSRJ6v6rKRMRE0i6Z3r17b9cMb9KkyTZ3W5qZWfFKktAldQNuAwZHxOpS1GlmZjWz05ctSjoIuBc4LyJe3fmQzMxsRxRz2eIUoD/QWlIZcDXQBCAiJgBXAfsCt0oC2FzVRe9mZlZ7Cib0iBhWYPmFwIUli8jMzHaI7xQ1M8sIJ3Qzs4xwQjczywgndDOzjHBCNzPLCCd0M7OMcEI3M8sIJ3Qzs4xwQjczywgndDOzjHBCNzPLCCd0M7OMcEI3M8sIJ3Qzs4xwQjczywgndDOzjHBCNzPLCCd0M7OMcEI3M8sIJ3Qzs4xwQjczy4iCCV3SJEkrJb1QxXJJuknSEkmLJPUqfZhmZlZIMS30ycCgapYPBg5N/40E/mvnwzIzs5oqmNAjYg6wppoipwF/isRTwF6SDihVgGZmVpxS9KG3BZbnTJel87YjaaSk+ZLmr1q1qgSbNjOzcqVI6MozL/IVjIiJEdE7Inq3adOmBJs2M7NypUjoZcCBOdPtgBUlqNfMzGqgFAn9AWB4erXLMcDaiHi7BPWamVkNNC5UQNIUoD/QWlIZcDXQBCAiJgAzgK8BS4D1wAW1FayZmVWtYEKPiGEFlgdwackiMjOzHeI7Rc3MMsIJ3cwsI5zQzcwywgndzCwjnNDNzDLCCd3MLCOc0M3MMsIJ3cwsIwreWFQftR/715LUs+yXJ5WkHjOz+sAtdDOzjHBCNzPLCCd0M7OMcEI3M8sIJ3Qzs4xwQjczywgndDOzjHBCNzPLCCd0M7OMcEI3M8sIJ3Qzs4xwQjczy4iiErqkQZJekbRE0tg8y/eU9KCk5yS9KOmC0odqZmbVKZjQJTUCxgODgc7AMEmdKxW7FHgpIroD/YHfSNq9xLGamVk1immh9wWWRMTSiNgITAVOq1QmgJaSBLQA1gCbSxqpmZlVq5iE3hZYnjNdls7LdQtwBLACeB74XkRsrVyRpJGS5kuav2rVqh0M2czM8ikmoSvPvKg0fSKwEPgc0AO4RVKr7VaKmBgRvSOid5s2bWoYqpmZVaeYhF4GHJgz3Y6kJZ7rAuDeSCwBXgc6lSZEMzMrRjEJfR5wqKQO6YnOocADlcq8CQwAkLQ/cDiwtJSBmplZ9Qo+UzQiNksaDcwEGgGTIuJFSaPS5ROAnwKTJT1P0kVzZUS8W4txm5lZJUU9JDoiZgAzKs2bkPN6BTCwtKGZmVlN+E5RM7OMcEI3M8sIJ3Qzs4woqg/d7FNn3J4lqmdtaeoxK4Jb6GZmGeGEbmaWEU7oZmYZ4YRuZpYRTuhmZhnhhG5mlhFO6GZmGeGEbmaWEb6xyGqfb9Ix2yXcQjczywgndDOzjHBCNzPLCCd0M7OMcEI3M8sIJ3Qzs4zwZYtmWeBLQw230M3MMqOohC5pkKRXJC2RNLaKMv0lLZT0oqRHSxummZkVUrDLRVIjYDzwVaAMmCfpgYh4KafMXsCtwKCIeFPSfrUUr5mZVaGYFnpfYElELI2IjcBU4LRKZc4B7o2INwEiYmVpwzQzs0KKSehtgeU502XpvFyHAXtLmi1pgaTh+SqSNFLSfEnzV61atWMRm5lZXsUkdOWZF5WmGwNHAScBJwL/Kemw7VaKmBgRvSOid5s2bWocrJmZVa2YyxbLgANzptsBK/KUeTciPgQ+lDQH6A68WpIozcysoGJa6POAQyV1kLQ7MBR4oFKZ+4EvSWosaQ/gaGBxaUM1M7PqFGyhR8RmSaOBmUAjYFJEvChpVLp8QkQslvQ3YBGwFbgtIl6ozcDNzGxbRd0pGhEzgBmV5k2oNP1r4NelC83MzGrCd4qamWWEx3KxTGk/9q8lqWdZs5JUY7ZLuYVuZpYRTuhmZhnhhG5mlhFO6GZmGeGEbmaWEU7oZmYZ4YRuZpYRTuhmZhnhhG5mlhFO6GZmGeGEbmaWEU7oZmYZ4YRuZpYRTuhmZhnhhG5mlhFO6GZmGeGEbmaWEU7oZmYZ4YRuZpYRRSV0SYMkvSJpiaSx1ZTrI2mLpLNKF6KZmRWjYEKX1AgYDwwGOgPDJHWuotyvgJmlDtLMzAorpoXeF1gSEUsjYiMwFTgtT7nLgL8AK0sYn5mZFamYhN4WWJ4zXZbOqyCpLXAGMKG6iiSNlDRf0vxVq1bVNFYzM6tGMQldeeZFpekbgSsjYkt1FUXExIjoHRG927RpU2SIZmZWjMZFlCkDDsyZbgesqFSmNzBVEkBr4GuSNkfE9FIEaWZmhRWT0OcBh0rqALwFDAXOyS0QER3KX0uaDDzkZG5mtmsVTOgRsVnSaJKrVxoBkyLiRUmj0uXV9pubmdmuUUwLnYiYAcyoNC9vIo+IETsflpmZ1ZTvFDUzywgndDOzjHBCNzPLCCd0M7OMcEI3M8sIJ3Qzs4xwQjczywgndDOzjHBCNzPLCCd0M7OMcEI3M8sIJ3Qzs4woanAu23ntx/61JPUs++VJJanHzLLHLXQzs4xwQjczywgndDOzjHBCNzPLCCd0M7OMcEI3M8sIJ3Qzs4xwQjczy4iiErqkQZJekbRE0tg8y8+VtCj994Sk7qUP1czMqlMwoUtqBIwHBgOdgWGSOlcq9jpwfER0A34KTCx1oGZmVr1iWuh9gSURsTQiNgJTgdNyC0TEExHx73TyKaBdacM0M7NCiknobYHlOdNl6byqfBt4ON8CSSMlzZc0f9WqVcVHaWZmBRWT0JVnXuQtKH2ZJKFfmW95REyMiN4R0btNmzbFR2lmZgUVM9piGXBgznQ7YEXlQpK6AbcBgyNidWnCMzOzYhXTQp8HHCqpg6TdgaHAA7kFJB0E3AucFxGvlj5MMzMrpGALPSI2SxoNzAQaAZMi4kVJo9LlE4CrgH2BWyUBbI6I3rUXtpmZVVbUAy4iYgYwo9K8CTmvLwQuLG1oZmZWE35ikVWpZE9ZalaSasysAN/6b2aWEU7oZmYZ4YRuZpYRTuhmZhnhhG5mlhFO6GZmGeGEbmaWEU7oZmYZ4YRuZpYRTuhmZhnhhG5mlhEey8XMaqQhjvHTEGPeEW6hm5llhBO6mVlGOKGbmWWEE7qZWUY4oZuZZYQTuplZRviyRbM69Gm5nM52DbfQzcwyoqgWuqRBwG+BRsBtEfHLSsuVLv8asB4YERHPlDjW0hu3Z4nqWVuaeoraVgOM2cx2iYItdEmNgPHAYKAzMExS50rFBgOHpv9GAv9V4jjNzKyAYrpc+gJLImJpRGwEpgKnVSpzGvCnSDwF7CXpgBLHamZm1VBEVF9AOgsYFBEXptPnAUdHxOicMg8Bv4yIuen0/wBXRsT8SnWNJGnBAxwOvFKqHdlBrYF36ziGmnLMu0ZDi7mhxQuOeUcdHBFt8i0opg9deeZV/hUopgwRMRGYWMQ2dwlJ8yOid13HUROOeddoaDE3tHjBMdeGYrpcyoADc6bbASt2oIyZmdWiYhL6POBQSR0k7Q4MBR6oVOYBYLgSxwBrI+LtEsdqZmbVKNjlEhGbJY0GZpJctjgpIl6UNCpdPgGYQXLJ4hKSyxYvqL2QS6redP/UgGPeNRpazA0tXnDMJVfwpKiZmTUMvlPUzCwjnNDNzDKi3iZ0SVskLZT0gqS7Je1RBzGcnueu2NrcXkj6c850Y0mr0uv8kTRC0i151lsm6XlJz0n6u6TP1kJs5Z/Hi+l2rpBUb78/VZH0WUlTJb0m6SVJMyQdlr73l+WUu0XSiPT1ZElvSWqaTreWtGwXxZv7d/CgpL3S+e3rW8yS1uWZd7ik2ek+LJY0UdKJ6fRCSeskvZK+/pOk/ul+fTunjp7pvB/UYuz7S7pT0lJJCyQ9KemMNJ61kp6V9LKk63PWGVc5pvRvsXVtxVlIff6D/CgiekTEkcBGYFQxK0kq5QiSp5MMd1Db2yn3IXCkpObp9FeBt4pc98sR0R2YD/yoFmIr/zy6pHF9Dbi6FrZTa9Ixh+4DZkfE5yOiM8l7tT+wEvheeiVXPluAb+2aSLeR+3ewBrg0Z1l9jTnXTcAN6T4cAdwcETPT6R4k39dz0+nh6TrPA2fn1DEUeK62Aky/F9OBORHRMSKOSrfZLi3yWET0BHoCJ0v6Ym3FsrPqc0LP9RhwiKTPSJokaV76i3kaVLRc75b0IPB3SS0k/SFttS6SNCQtNzD95X0mLd8inb9M0q8kPZ3+O0TSscCpwK/T1sPn05bGzyU9SvKHNCCN4/k0rqY59f0k3c7zkjrVYF8fBk5KXw8DptTwvZoDHFLDdWokIlaS3PE7WolGkn6dfi6LJF0MkLZuZku6J23d3JH+8SDpl0payIvKWz2S2kj6S1rPvFr4w/kysCm9Mqt8XxYCy4FVwP8A51ex7o3AmFr6IS/Wk0DbnOmGEPMBJPepABARzxexzptAs7TVLGAQyd9FbfkKsLHS9+KNiLg5t1BEfAQsZNvPoF6p9wk9/TIOJvnV/g9gVkT0Ifnj/LWkz6RFvwCcHxFfAf6T5Fr4rhHRDZiVHgb9GDghInqRtAyuyNnU+xHRF7gFuDEiniC5vv6HaevhtbTcXhFxPMmAZZOBsyOiK8kloJfk1Pduup3/AmpyqDgVGCqpGdAN+N8arAtwMsl7VasiYinJ92c/4Nsk73cfoA9wkaQOadGewOUkRzodgS9K2gc4A+iSfj7XpmV/S9Ka6wMMAW4rcdhHAguqWf5L4PtKBqSr7E1gLnBeiWMqShrTALa/B6Texpy6geTv72FJY5R2GRXhHuDrwLHAM8DHtRQfQJd0G9WStDfJAIRzajGWnVKfE3pzSQtJEu+bwO+BgcDYdP5soBlwUFr+HxGxJn19AknCBSAi/g0cQ5JUHk/XPx84OGd7U3L+/0I1cU1L/z8ceD0iXk2n/wgcl1Pu3vT/BUD76nY0V0QsSssPI7m+v1j/TPerFfCLGqy3M8qHfBhIcmPZQpIfoH1JvvgAT0dEWURsJWndtAfeBzYAt0k6k+TeBUg+t1vSeh4AWklqWfu7kYiI14GngXOqKPJz4Ifs2r+b8r+D1cA+wD9yF9bTmCtExB+AI4C7gf7AU+VHsgXcRZLQd+QodadIGq/kPNG8dNaXJC0C/gU8FBH/SudXdc13nV0LXp+fWPRR2sdWIT38GhIRr1SafzRJ/3PFLPKPN/OPiBhWxfaiiteVlW8n3/g1ucpbFFuo+fv8AHA9yR/AvkWu8+WI2GWDBknqSLJvK0nei8siYmalMv3ZtmW1BWic3qzWl6TFORQYTXLYuxvwhfTQtja8CJxVoMzPSVqH27XCImJJmly/UfrQqvRRRPSQtCfwEEkf+k2VytS3mCvHsAKYBEyS9AKFj5SIiH9J2kRyvuZ7JC312vIiyRFh+bYvTY/oywcXfCwiTpZ0GDBX0n1pV91qki6lXC2B92ox1mrV5xZ6PjOBy3L6YXtWUe7vJEmCtNzewFMkh/uHpPP2SD+gcmfn/P9k+voDkg8on5eB9uX1kRzWPlqz3anSJOCaIvsbdzlJbYAJwC2R3Jk2E7hEUpN0+WE5XWH51m8B7BkRM0i6Y3qkiyp/bj0qr7uTZgFNJV2Us40+5BypRcTLwEskXVf5/IyadaGVRESsBb4L/KD8fc5ZVi9jhuThODnfi8+SNFCKPdF/FcmorVtqK77ULJI++9wu0+2uqkuPxn8BXJnOmgOcWn4UmR5tPrcL4q1SQ0voPwWaAIvSX/qfVlHuWmBvJZd6PUfSel0FjACmpIdPTwG5JyubSvpfktbAmHTeVOCH6YnPz+duICI2kAxxcLek54GtJElup6VdFL+tYvEISWU5/9pVUa7Umqcnh18EHiFJvj9Jl91GklCeST+X/6b6o5KWwEPp5/Aon7zf3wV6pydKX6LIK5uKlf74nAF8Vclliy8C49h+ILmf8ckVDpXreJEi+ltrQ0Q8S3K1x9A8i+tDzHtU+m5eQdIdV/53OJPknNS/qq8mERFPRMT0Woy3fDtBckXb8ZJel/Q0SRfqlXmKTwCOk9Qh7R69haTVvpDk+3phbcdbHd/6T3JVCtB7V3ZZmJmVWkNroZuZWRXcQjczywi30M3MMsIJ3cwsI5zQzcwywgndGiwlI/D9Jmf6B5LGpa/HSVovab+c5duNBpjOXybpsUrzFqaXYNYkntmSqn2AcDFlzHaUE7o1ZB8DZ6rq4UrfBb5fZF0tJR0IIOmIUgRntqs5oVtDtpnkGY9jqlg+CTg7HQyskLv45G7hbcYPkdRMn4ze+aykL6fzmysZW32RpGlA85x18o7saVabnNCtoRsPnJuOdVLZOpKk/r0i6rkHODN9fQrwYM6ySwHSUTWHAX9UMhrmJcD6dMTInwFHQfIwCaof2dOsVtTnwbnMCoqI9yX9iWTYgHyDet0ELMzta6/CGuDfkoYCi/lkBEiAfsDN6fZelvQGcBjJ6Jo3pfMXpUMZwLYjewLszifjA5nVGid0y4IbScYq+UPlBRHxnqQ7ge8UUc80khb/iErzqxtZM9+deYVG9jSrFe5ysQYvHQf/LpIHbeTz/4CLKdyAuQ+4jmQQqVxzgHMhGUmSZAz+VyrNP5LkgSRQeGRPs1rhhG5Z8Rsg79Uu6aBr9wHVPlghIj6IiF9FxMZKi24FGqWjak4DRkTExyRPo2qRdrX8H5IHTVDEyJ5mtcJjuZiZZYRb6GZmGeGEbmaWEU7oZmYZ4YRuZpYRTuhmZhnhhG5mlhFO6GZmGfH/AXaS6JmzKGjEAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "x = ['Perceptron', 'MLP', 'Dense', 'CNN', 'RNN', 'LSTM', 'GRU']\n", + "AccScore = [P_MNIST_score, MLP_MNIST_score, FC_MNIST_score, CNN_MNIST_score, RNN_MNIST_score, LSTM_MNIST_score, GRU_MNIST_score]\n", + "LearnTime=[p_learnTime, mlp_learnTime, FC_learnTime, CNN_learnTime, RNN_learnTime, LSTM_learnTime, GRU_learnTime]\n", + "x_pos = np.arange(len(x))\n", + "\n", + "\n", + "plt.bar(x_pos - 0.2, AccScore, 0.4, label = 'Accuracy Score')\n", + "plt.bar(x_pos + 0.2, LearnTime, 0.4, label = 'Learning Time')\n", + " \n", + "plt.xticks(x_pos, x)\n", + "plt.xlabel(\"NN Model\")\n", + "plt.title(\"MNIST Data using various NN models\")\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "e4a1461e", + "metadata": {}, + "source": [ + "This is not an apple to apple comparison, as every model has more properties and hyperparameters that have been fine-tuned to perform at its best. These experiments need to be repeated using different datasets (text and sequential time series to show test the spatial (2D and 3D) vs temperoal dependency (1D)), more complex (this was MNIST 8x8 pixels), more layers, more channels or units, use regularisation, more ephochs, ... and so forth.\n", + "\n", + "The best way to compare all models is to define a particular acceptable accuracy score, and select the minimum parameter's values that achieves this accuracy score. Such that we say RNN converged (reached 90% accuracy) after xx epochs, using these parameter values and compare with the other models." + ] + }, + { + "cell_type": "markdown", + "id": "ea307e2f", + "metadata": {}, + "source": [ + "## Tensorised NN\n", + "\n", + "There are many public domain examples for compressed NN using Tensor decomposition approaches.\n", + "\n", + "- https://github.com/tensorly/Proceedings_IEEE_companion_notebooks/blob/master/tt-compression.ipynb\n", + "- https://github.com/tensorly/Proceedings_IEEE_companion_notebooks/blob/master/tensor_regression_layer.ipynb \n", + "\n", + "- https://github.com/Tuyki/TT_RNN\n", + "\n", + "- https://github.com/timgaripov/TensorNet-TF/tree/master/experiments/cifar-10/FC-Tensorizing-Neural-Networks\n", + "\n", + "- https://github.com/timgaripov/TensorNet-TF/tree/master/experiments/cifar-10/conv-Ultimate-Tensorization\n", + "\n", + "- https://tednet.readthedocs.io/en/latest/tutorials/tr_cnn.html\n", + "\n", + "- https://tednet.readthedocs.io/en/latest/tutorials/tr_rnn.html\n", + "\n", + "- https://t3f.readthedocs.io/en/latest/tutorials/tensor_nets.html\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "32b3fc6b", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/ch4/ch4.ipynb b/ch4/ch4.ipynb new file mode 100644 index 0000000..2719658 --- /dev/null +++ b/ch4/ch4.ipynb @@ -0,0 +1,2303 @@ +{ + "cells": [ + { + "attachments": { + "TestNetwork-2.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNwAAALkCAYAAADUNSjqAAAgAElEQVR4nOzdfZAc9X3v+48cwXqvhMArS6AHVit5QbIkG0uBE2CF1FuGGIzFgxzCUzkVOPY9daBO3esKeLELsb1C5SDbua6blLknZZ9wkxzAWLGIpWDHR/bZFmiBe9GVwHpCIIQk0MpI1gbLIpvFOHv/6P7t9Pb29PTM9Ex3z7xfVVOjne3p+Wl3Zrb7M9/v7ycBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgLD3T2uy0xwAAAAAAAAA0hJ5pbfbQ3M7RobmdowRvAABIH0p7AAAAAAAaR8+0tl6CNwBAsyNwAwAAAJA4gjcAQDOblPYAAAAAAKSjq6XVCrt9RZHbI/azqtR9Npwe6ts+MuwMjAw75ewbAIA8InADAAAAGoA/PDPhV1dL6yr/NuUGafW03RfEDYwMbwv7HmEdACAvCNwAAACAnDCh2oqWVsuEadWEaNsjAqxg6FViXCUr3MzjJRX6+UK4bYGvnST2DwBANQjcAAAAgAwy4VrPtLZeqXSwFgzPBkaGt4XcNu7rpPRMa7PNOMPGteH0UF+pxw6r0PN9r+xw0WtfHQsNN5wesuPeFwCAahG4AQAAABnQ1dJqmcq1qGDJhGgbTg/1mdvSruoKC9ziBm2V8lf7eV/HCuX8QRxzygEAaoXADQAAAEhBV0urFVW9FgzWshwMmcCt1iFbOUyA6f27ZIhpQjgq4QAASSBwAwDUnTnJzMpJGQDUS1TI5g/Y8vbeaKrN8jBufxAX1QZLAAcAqAaBG4CGUqy9JK6wCaIDq6Y5we8jPnOiaX4/G04P9XEiA6DRRbWKZqkirJmVauc1ARwtqACAuAjcAORaqXacWguEcdsivueoiQWDNoPADUAjK/beR8iWfaUCuA2nh/oI3wAAUQjcAOROsRMYqRBy+SdDLmffYfv0V8klFepFBXXB7/u2m3Bb1kX9rqT4gVtXBT/3tAPYYvL4ewRQnrD3PkK2fDMBXFgLKuEbACAMgRuA3IhaAU1KJ8jwB0HBgKcWQV2YqJAnLMyrl1ITVGO84O+RikkgfwjamkOp8I3KbQCAROAGIAe6WlqtLTPm9JuvG+HkJSqo874/Ye65Zg6vyq1UlNIJG+PMGZj07zFY1Rm4zUnysQAU5/9QyMz3RfDS+IqFbwRvAAACNwCZFawUaISgrRai2i3TDumKrf5mcELiCvsdJlkxGdZqzesISEbwQyHe15pXz7Q227se+9tnqvB5TgBA8yFwA5BJwUoBgrb8CmsFNjgxrV5wZV7vtlXB24oxlTi+fzu1GCfQiDbPmNPPh0IICqt6I3gDgOZD4AYgc/wBDYFM4wj75H/7yLBzw8lj3akNqkmYkz/f15Hz6xHCAdGCFdirTx7r5nWCMMEPnTiuAQAAQCo2z5jTPzS3c3RobueoCWjQeHqmtdlDcztHN/vasJAOLziwe6a12f7XX/Bitkl7vEDaulpaLfO62DxjTn8lqyij+Zi/exzjAAAAoO78J/ucwDQHfs/Z5A/hCOCAAv9rguc/KkHwBgAAgLoyYRvVAkA2RQVwhG9oBoRtSBLPJwAAANScP2xLeywASjMVcGEtqIRvaESEI6gFqt0AAABQM/6DzbTHAqAyxarfOHlEIyBsQ63xHAMAAECi/AeYtJECjaFY8MZrHHlFEIJ6CL538p4JAACAihC2AY0trOqNdlPkjWmb5nmLemG1dgAAAFSM1gmguRC8IY+Y8gBp4TgJAAAAFeEgEmhOTBCOvKAKG2kjdAOA/JuU9gAANBevsqV3w+mhvg2nh+y0xwOg/sz7gPma9wNkzeYZc/pXtLRajfLc9IeGK1para6W1lXBbVaEBIvbR4Yd/9cDI8Pbgt8bCGyD5HS1tFpbvBXcG+W5CADNhMANQN34T7Lb3j7I+w/Q5PzvCdtHhp0Np4f6OHlH2vL8t8oEa/5QLSxIS5ovfNsmSQRDySF0A4D8ytVBBID84oARQBiq3ZA1Zs62PDwXTcDWM62tNypY81eqDYwMbwtWrnm3T7gt2E7rf4yultZVpcK8DaeH+rxrO2o7ROMYCgDyicANQF3k6QQGQP0Fq91uOHmsO+0xoflkfdqDOAHb9pFhxx+q1aNqtKul1TLjKRbE+cdFJWv5CN0AAAAwgZn4d7N3oAgAYbpaWi0WVUCasvjc62pptTbPmNO/ecacfv/rw/xd3TxjTn+X20JqpT1Wv66WVsusSBwcN6sVV8b/HsnPDgAAoMn5D7TTHguAfGB1PqQhS3+vTMgWFlRlNWArxQRwxcK3tMeXF4RuAAAAkJTNagEA2Ufohnozz7m0nm/FKtn8VWxpjKtWwsI3qt7i8f/sGu15AQAAgBjSPnkBkG+EbqgXf9VQGo/dLCFbmGKVb7zmoxG6AQAANKksteYAyC9/EMI8kKiVen9AVKxltFlCtmII3spjnkO8NwIAADQRDpQBJIXQDbVWr0qhYtVszRyyhQlbbIHjiXDm+cTPBwAAoAmwKimApDFROGql1u2kUS2TBG2lEbxF8z9/eT4BAAA0MA78ANQKoRtqoVbtpFSzJYvgrTim8QAAAGgCtDYAqCVCNyQt6Q+JCNpqi+AtHPO5AQAANDA+YQVQD4RuSEqS7aQEbfVF8DYeHQYAAAANjINeAPXiP9nm5BKVSqKdNCxo4+9gfbC4wnh88AkAANCAajUHDgAUw8klqlXNNAgEbdlB6FZAaykAAEAD4aQXQFo4uUQ1KvnbRdCWXQRvtJYCAAA0FBZKAJCmZj65RuVMOBM3rCVoyw9/8NYzrc1utuCp3Oc2AAAAMojqNgBpo6IDlYg7FQJBWz41e7UbH4YCAADkXLMeyALIFio6UC4TSESFtMHQhudX/vh/h820amySK/ACAACgzlgoAUCWUNGBckSFEf6wotmCmkbUrNVuzHEJAACQQ7SSAsgaWksRV7EPjILtowRtjSVY7Zb2eGqN90QAAIAcopIEQBbRWoo4goEbQVvzaLZqN94TAQAAcoTqNgBZFmduLjQ3f9VPswUwcAVXMk17PLXEeyIAAEBONMsBKoB8YrJwRPE/P6hqa27BsLVRf/+8JwIAAOQACyUAyAPa3lFM2MqjjRq0oLRgO3GjvmfwnggAAJBxjf4pMIDGwGThCEP7KIpp9BZT3hMBAAAyjOo2AHliKjqYLBzBKiZa6xCm0VtMWUABAAAgg1goAUDeUNEBqRC8UtmGuBq5xZT3RAAAgIxp1ANPAI2Nio7m5Q9czd8v5rFCXHFbTPMWXLGAAgAAQIZQ3QYgz6joaC7B9lH/ogj8LUM5/Mc/YaG9Ca/SGFs1CJ4BAAAyguo2AHlGlVvziJqDi3lIUYlgpaT/OZXX4yPa7QEAADKAExQAjYCTy8YWVtUW3Cav4QiyIdhimvdFOPggAgAAIEVNMs/HhyUtl3SXpP4Yl7u87T+cxmABVIaTy8YVbPsLC1WZGgFJCFZQ5n0hDlpLAQAAUtIE1W1XShqt4nJF/YcMoFJUuTWWYFVb1N+qJvh7hjoJW/U2r2EuraUAAAApaIJqgG/KBGer7xnVV58c1Xf3jWrTu8Uv393nbrf6Hn/o9s1U/xcAYqPKrXHEqWoL27aOQ0QDiqpwy2ugy/siAABAneX54DGGKySNavJZo3pwY3TIVuzy4MZRTT7bhG5Xpvz/ARAT1Rz5Vk5Vm0F1G5IQXDyhUarcJFpLAQAA6qbBP+2cIlOdFha2RbWQhoVuhe8zpxuQA+bEskHf3xpaOVVtYfepwxDRwKJaSfNe5eYPE/M4fgAAgNxo8IOuT8u0kYZVrpUTuG16199eujyt/xCA+JpkMZiGUklVm9Hgf8+Qgp5pbXap1tK0x1gJ//+JCmAAAIAaaILWm3WS3LnY4raPRgVuX33SfP+uVP9XAGKjfSo/KqlqC96XakbUSrHwLa/vLbxmAAAAaqRJKj/cgKzUAglxwjazkIK7DQenQE40yXtdrlVT1SZRrYP662pptfzPu7yGbrTdA0ByPpT2AABkxwrvpGTD6aG+lIdSe9NnZ2s/AOpmYGTY2T4y7EjuSXK6o0FQz7Q2e8uMOf0rWlqt7SPDzuqTx7o3nB6yy9xHr+T+PRvwftdALQ2MDDsbTg/Zq08e65bc52AeQzdzDLjCCxBTHg4AAED+NdHE0tEVa+VUt43fjk+CgRwxVW5UcWRHtVVtRhNMjYCMy/siBHkfPwBkBRVuACSNrwZIeywAUGum6mlFS6tFlVv6/FVtklRJVZvZj+/vWdn3B5Iw4FVmSvmsdPOq9fqkfI4fALKCwA2AzIHUdq8dIt3R1IzlXfL+GAAS4j+hTHsszWzzjDn95newfWTYaXv74KRK2kD9YZsJO4C0BEO3vFXTbjg9ZBO6AUB1CNwAjJ1sDowMb0t7LFWwfBdbbotnv0xbaOHrWj5+8DHN49q+i1XDMQAow3aq3FJlWkj984feUGFQFgzbmLcNWeAP3fI4JxqhGwAAQBVyONeNpfHhVjDgCr0sab9wdEn7heXOy1beXG/lX8z4be8CoM7MnGE5eg9sCP55QzfPmNNfTeDpn/eN4BRZlPc50Rph9VUASMOktAcAID1dLa3WFq/Foe3tg1l8P7C8697A1xMsab9w7N9L29snfG2seeQb7j82vRv9yGvOi7edf9sSY5KkPUePau/Rt0rt0ZG0zbt2Sg8AQKXM++D2kWGn0uoqxNflVvn0+qvaKp3KILgvKtuQZf5jrmqe92kJzI+Yu/EDQBompz0AAOnxn/CkPBTD8i6rVCRcMyHWrSu6xm7zB2qxnRqUps8u/35h+5H04bPOevfGP/gP5/kDNX+wZv5964quCYGg+d5T2wfMTZZ3MUGjIzeAM/92qh84AMlt+do+MuyYtlICm9rxn7B7c4b2VfrzTnJfQD2Y9tItvjkL8xRambF6raW5Gz8ApCGLFS0A6sB/spJidZvlXfcqImAzAVVFwVrA+h/8w46dhw5dqq8+KV12XfEN41a4vfQT6c9v181/8AcHvtC9aqG52R+8lapqM+Gh+T+a4K3E/UxIakcPEEApVLnVXnCutqSq2qi0Qd7kfb5Bf6UeYTcARCNwA5rU0NzOUSmVkxVLRVpEg9VrSQRsQU8++5yz8fkXLK2+R7rr68U3jBu4PfY1acujuve6a1/+9CWf/FTUppWGcFJoFZyfI7cCzo4eLIBizHtiiifAUyRdLrfCd22M7R+W+7p/UdJ7WR2D/+Rcqu7n6w8qpJr+/crC7wINLO+hm5RciA4AjYzADWhC5kCvjtUclopUsS1pv3CszbIeDh4/vu8rf/v3iyVJD26Ull9T+c52bpXW3yJJ+qsv/cfDc6ZP7yh3F5WGcBEBnCPmfwPKZk4eUzpxvFJSaJpexv1fyNoYgm2flf69CVa11fhvVxZ+F2gC5j0nz5W1zOsGANEI3IAmVKfqNkshIZu/iq1eIVvQD1940Xl827OWJp8tPfB4ZaHbzq3SI3dKH7yvO1etdD5/xeVWUuMrN4R7avvAuBAugNZTIIYU20q/Kek+SdLqe6SlV0kLLomeY/LUoHToFWnPc9KWR82t35J0fxbGkFTbZ1jQVuP2tSz8LtBEUg76E1HHylMAyB0CN6DJmAOjGh0QWSoSstWyTbQS9vef2vWLw0eWSarqxOqTHfN22bfduqzW4y0nhIvQJ4I3IMwUSZf//tktX/n/3h/5wxjbJ9VCeIWk5zX5LOmBJ6oO/yV1SXo+zTGsbGld+48z5jwsVR6QBU/g6zRPVBZ+F2gyeV+51I9qNwCYiMANaCI1XCjBUiBoy2LIFjRW6VahpCvbKhFzgYUgqt6AgrRaCKdIOiNpfHt7nPkjg9v42tsltUr6t5qOwXy/yBj+n/PnHd40/Ju/LeeEO1jNJtV1Qvbwn4Of//9shP18Kv9doEn5Q7e8zudmUO0GAOMRuAFNJOHqNksR1WxZDdmCDh4/vu+l1w+eeOOX70zdeejQpaW2X75gwY6PXXD+mcsu6pzZOWvW4nqMsVxlhnCEb2hmabYQflrSzyYs4FJJ4CaNLeAi6fcl7azZGKKCJ28MF/7e5DVv/e6Dp0s9eFjIJqWy8mH4z8EI+z8bYT+jyn4XaGKNMJ+bH8EbALgmpz0AAPURKPW3q9iVpSLVbHkJ2fw6Z81aXGZwVjKUS5upLLxVXWO3RYRwvYFrR26rnEQIh8Z2haT7ym4hnD7bvVx2nXRJt2khvE/S0yqvhXCVJDfkM6KCnVLbLL3KhDyXKH7IU9kYJDdoCm7rjeGt330QupOullZrRUur1dXSuqpYyCZJKVT4TPw5hPGHa1E/p8p+F2hiN5w81j00t3N0hRtC23kPp/zj75nW1msuBG8Amg0VbkCTSGChBFvuSYllbshz0IZCCBey0mmQI0I4NJbSLYRSeOtk0PgWwrMl/TbmGEYlSd/d5wZ4wQAnTnWZf5tTg9KXFkvu6zVuhUx5YwirfPPfFhiDqWCTpGDAJqVSyVbM+J9DUKn/d1Blvws0OX9racLTfqQqWO0mUfEGoHl8KO0BAKi9nmlttlTxAY4t92SkV5K1pP1CrbvjNm164Ct6+I7bCdty7NYVXbp1RZc2PfCVsaq4Iiy5v/9euc+FUUn9cp8bdm1HCdTE5ZLcNtI4YVvY18bya9z9uOaWPRJ/0FVuG2lwP5WKO4Y4+5EbHAzN7Rzd4rXJ+VcZ3T4y7Kw+eay77e2Dk27I2nxV1fwMa7EfNJUB7/UhFY7bGsGG00N229sHJ5kKVsmtehua2znaM63N7goJ4xvIFLkt6+tUOH6Kuqzztp+SxmABJI+WUqAJBD9ZjMmSr3WUarbGZsK3p7YPBCve+uQ+D/o0vsLR8v2bdlTkTXQLYTB8KtVmWWgh7JD0ZkUjihN0VROGJTWGMmwfGXYGRoa3eddOojuvJ9M+G6cKEajChtNDfStmzLG89ks77fEkacPpIXvD6SHbhIljraZSrwnjGuz/XMmCPGu9i7l/JQvyAMgQAjegwVVQ3WaJoK1phQRv/rB2mwrtUbZ3TQiHPHJPaBZcEm9rf+ASFrIU9rNKbvVneWoYtkVVjwyMDFe9/yL7ddrePkgrJVAmU+XWKHO5hTH/JxO+meBNckO4BgnfkliQ53lVtiAPgAxpmPkBAEzknzcjxnwglgjaEFCk4s0usrm5fdxcfyEcEcIhXe6cXcVCpnLn7PJ/v1xx5kmLMz7v9q6WVm2ZMSfWQ7e9fbC8McT5uVT6c8iCOL/b4GIR0fdxxBxuKFOjzuUWxV/15r89p+HbFZKeL3tBHr+dW82CPJLUpfIW5AGQIVS4AfnxYUmL5a569icxtv+7wx/89tzXf/vbw5uGf/O3EdtZImhDEUUq3kyLqR3Y3P+1eb72SfpcYDtLEyvh/lrSq5J+J+mvEhk8AG33V7GhOiZcC1uhtTjbu3a8CxDJX+XW1dJq5bodO6Zg1ZtZydhf+ZaTFvUPy4Rj/rCtnA9sNr3r3u+Bx82CPAOSpkp6rzZDBlBLBG5APlQyD4T11L/+Rk/9628k6adFtumXrxLJhCtAUJnBWyXP1//k+/cauc9LR1TCIU2mhTRmuHLDLSt1wx+vjLXtF29ZX83IivpV50xtsm+Lt3GNxrBwyTzdb3+hJvuuhVr9LhT+4YLhqPD+Zr52ajUQ5It/LrcbTh5z0h5PPfmr2fzhm7n0eK8lU/2WsQBusaToBXmCwhboMaHb6ntMe+nlkn6e5EAB1AeBG5B9tZgHwpbv4J+gDXEVCd5WyQ3eHCXzfLUk7RJzwiEt/pAtzy2SyAKzMmOw1d4KfO0P5Bzvelvga0doCiZAaqYqtzDB8E2SJlS/ea8dUwEXvF+duRN6+hfkifs3JOzDncKCPKtE4AbkEoEbkG1XSLqv7Hkgps92L5ddJ13SbeaBuE/Sy5K+KNpHUSUT0Hqhm+Vd1iq55+syb3+TxcIMSEN5bYOVOzUYHUiXsx9J/8uUD78rqbyBxx1DcPGIYJtUNWPIglI/h7gVj97PQdJjKv6eZGl84BZ8n/Nfx6mO81+jAZi20rTHkRXBEC0475upgPPf5g/h6lQJ5075YhbSKfVeEXwPDb7HFhbkWSvpoaQHC6D2CNyA7JqisHkg/ML+kAfnhxg/D8R/l3RSktbdcRtBG6oSqHY7LOlhSdFhW6nJxsc/Xx+WO2+J7dvC/DuNEM5OcF/Ig7DFARLyiWUf27F71xuX6tAryQRuh16RJF0wq+0dxQy7qhpD2M+jgjFkQcmfQ7GKx2LzMXk/B0nPRTyso+IBmRW4XhVyu/m3RLtqQxoYGd5mKrmara00Dv+8b9LECjgpEML5Xif+IM73tZPY4KbPHh+mVfr3I4m/DQBSReAGZNflkorPA1Hsj7f5VMzPNw/EkvYL33v4jttnJDxWNLFbV3RpdHT03R8MPB89b0mxeUqCouctsUP2bG6rdQgXNW8dGkmclUKrNG/BrDO7d73htlJfdl31O9zjZjvnz54ee5WEisYQtUpnBWPIglg/h7irk0pjPwdJrxTfKJITuA6yVLw6Luz7Ue2q5rZij4WUbB8ZdnomhqkoIqyNtMsXuBUL4qSJYZzkBp7B27zbx/5dUg3/hgDIBwI3ILvcT7T980CEiVuB4c0Dcc0ll5ydwNiAcX77we9aJZV+vkqF56y/bSKovHlL7JDbLE0M3MJucxQvhLN8/zb3jdoeeRC3lbJUAOe1ELZ8+Kz35FYnl/SpSy+e+U8/3O4+zy/pLgTVcU7Qgtvs3GpeL+pcODd2KUXFYwj7foVjyIKiP4egOL8b389B0r6kxhjgKDogsxS/XVVi/rhM8s/jlu5I8mugSOVaVyBwC4Zx/mtpfCDnFwjitm0fGbYGzMrQhG0AROAGZNlaSf75G6rj7ef4v/wL9elI3GvHBxdKKv58LbdiqPp5SxwVThBt79pS+SGc2Y/ZRr5tqXbLr4clrS3ZQhi3DchrITz3I1N/rZiBW0fn7MU3397tPP1kv6VH7nRbqePOe+i3c6s776GkNXd0OxfM+agV965ZGEMW1OLnIHe15n9LcJjlcFRdu6r/OqvtqlZKj4v669fEv8FVGRgZ1lgwFtDV4n5+uMK79t8WvN0fyq1oabW2nzyW5DCDRmu58xrg+AgQgRuQfUnN38A8EKiHcp5nUeFbbZ6vjqoL4cJQ7ZZP2yStTbqF8LyPnPN+OYO4fk2X9eqew7v2735zmdbfUs3Kvvr4J+bv+uzNXVY5j5+VMWRBkj8HuauCv1CHYVfCCVwHWZpYHSeND+L8308rkLPkBjENfVJvFk5o0pVKLbnPL6ueD2qCuGKBnF8wiItznybC8REgaVLaAwBQlPtJVtRJXpxFEwLbm4nugSStfeJJ7T36VvHnX7nP1fH3qfffKkvFqzuKceSe+DmJjwa1MEXSGUnSgxsrq2Yydm41i3zoW3/9v508r+2csufI/PHTA86mJ/qtSodw8+3dzvVrqgu6sjCGLKj25yCpS2bBo8ZkKXr+uCiOd51Eu6qt8e/PDRm8bZ4xp39FS6u1+uSx7iYL3Cy5gao6Oxbp3rt70h1NTN/5mw06ePjVicc3xar8w24P3uZ9/e11jyU82tr55/5/1E/7f2S+bMjXJhAXFW4AgHQUm78tfY4mVsKVauWwVGhxCrajInvekxuMDCTZSnle2zlWJYP57M1d1uJPzN/38o7XThw5dHzq7l1vXFrqPp9Y9rEd8xbMOvOpSy+e2dE5u6LHzdoYssD8HH7wdz878dr+o1Mllfw5yG1R3ibpRbnPrUbmKH67qhQ9f1yc6jj/td+qwNdU0zQOW97v8zPdN+ra7pvSHQ3KZn5nXujGaxNNjcANyKtgq5P5OrshBuDK3/PVKnNbs33UnHBI3/OSvqUP3r8vC62UHZ2zF3d0zl5cxl3iBEG5G0MWdHTOXvza/qPm50B1RnxO4DrIClxX065qaaKGm1vTzBHWRNVtthohbIu7II9/vlD/sZE5LvIW5Dln6rSTksqunk7Ttd03qbNjkb7z2AbJ/Z2uktSd7qiA+iNwA/LO/FEOzjcEZFE+n69WxPccuSeAjgqLK5jty12YAfV3v6RNkp7Xlkf9c3DF1iitlCjY/INnzT8bJrjJCCdwHWQpul01+P1iGi54axJjiyPkNWxrn7vgwMHDry4suiBPlLBjIm9BnrmzOo4oZ4GbJHXOX6Rvr3vMtNpacrsFusUxD5oIgRsAAPE43nVf4OvgNuZ227u2RAiXZS9IOlvSXEkdck/yV0myFi6Zp4WL5024w8xZHxk87yPnvH/B7OlTKm0jRX388mhfZyYAACAASURBVNivDh888Pa77wyeaj100FtNOcKCztkHfvKjF4Yl5eYTgQbiKPp9z1J582ua4M3sW0pm/jgkbyxsu/euHnXOX5TuaCo086Pnu6smRC3IExS1QI+3IM+Fs+edSWqMabj37h7/vG4Nv9gJ4EfgBgBANEfVHRg6IoTLut9KetO7mBM/S5Ju+OOVYduz7HMOPLNpwHn6yfIWQDiw94g/lPtpsiNClRwVKonjBG5mW4Vcp7W6amw909psSdpweqivxKb1NkXS5XI/mFgbY/uoOQ4t+RZH+Ez3jbkN2ySpo/0iNznb8qh0SXdhbtBSU2eEfX/n1rGq6yWLls1McpxpYF43NCsCNyDrSs0DEZz3IWo/kj581lnvyT1YApJX7PkanKckzn5cbyY5vAo5Ndqn2a/tXVsihMsKR5JzYO8R68DeI1q4ZGKVG7LtL9Y9vmv/7jctSdXMz+fO8+e2HiM7rIjvOQpfMdrSxHZV/76C3898IJeSKyUNlHmftSoEc1fKrSqWcroSaZTzPzqr4/qrP+8887MfWkktyHP91X/ktM+ZbyU70nQQuqEZEbgB2fWwpLVF54EITjzvvz2MNw/ER6ZO/bUI3JCwi2fNPrD36Fvx5i0p4/kq6ZTcOT/MJ/x2NePMOEeEcFnSJ8navPFZ3b/kC2mPBWX48dMDzv7db1qafJb0wBPxT3inz3Yvl13nVqc8cqf0wfv3SXpabviG7HE0fh7NqO2ivm+pvPnj/IGc2W+i7ao909p6JWl7dhZM+Kak+yQlEWK/p0ZYHCHE1Ss/Z71+aP+u1w7tW1btgjwXL1i86+qV11v1GXl9hIRuLKaAhjYp7QEAKOrTkn6m1fdId329+FZxwgtJeuxr0pZH1Xf7rYc/MW9eR1KDBCTp56/84uXv/OSfP5X081XSOkkPBb7b7HN/WIo3j5EjQrhqjUrS/fYXqHLLiV8e+9XhB//3/9ohSXpw48SwLaoaPPietHOrtP4W89VUTWyHQzps1fc9zQpcB6vjSnFUZnVcV0urtWXGnH5Janv7YBbO166Q9HzZIbafqdr64H3Ja/dttLDN72fPPuM887N/sCq9//VXf965euXnKr5/1h1881WzgqlUvDIVyL0svIEDCDdFkjtJathJQzl8Jw3fu/c/n2w755zcrXSEbDt26tTh//Ld/9YhKdHnqwonubYmhkvNHrz5WSKEqwVbUu/CJfN0v02VWx5s/58vv/x//1//VDz8Lydwk/zh/9WSfp7QMNFYrMB11YFcz7Q2q2daW++G00N9G04P2VWOr1rhx6PmtRT14VlwG9/f98t/f9W+W2/808U1GG9mHD325r69r+468dbgkan7X//FpaW2//hFn9xx4ex5Z5YsWjazfc78hv7ZGN4KpuZLjuvQcAjcgGxz58qYfHb180B88L7uXLXS+fwVl1tJDxKQpB++8KLz+LZnraSer3LnfFkf2ML2rv2hUjO0m1bCEiFcEqhyy5Ef/vefH/jJj15YqK8+GX+VwKjg4KWfSH9+u+RO8xCstgXisBTdrjrB0NxOSdLqk8ecgZFhKd3VVcM7LioJ3KSxEPsPV612rvv0GivpwSJ/fCuYSoRuaDAEbkC29Us6V9IySVXNA/HJjnm77NtuXVb7IaOZ2d9/atcvDh+p+vkqaZfc532xAy9L4SvVcaAWzdL4KgyryHaOCOEMW1S55cY37b/Xgb1HpO/uKz2fpFQ6NDg1KH1prNCE42bUgiXfe3HPtLbenmlt2nB6SBtOD5W6r6OJ7ar+6ySsk7R2XIgdZ3qIYtt4IfbHL/rkjv/1C18uWfWF5kDohkbFgQOQXf2SrCXtF+pT8+e7lUMVorIN9TRW6VahO1etdD743e+sp7aPLYRW6sDLFsFbNSwRwpVClVtOjAVucVZDlsqr0uG4GXUwNLdzVJK8dlLHu9nyrms+f1yIUUmFEDvYlh322onaxhdif3vdY2UOBY2M0A2NiAMHIJvGwraH77hdknTw+PF9L71+8MQbv3xn6s5Dh0p+Irh8wYIdH7vg/DOXXdQ5s3PWrKaYBwLZkcTz9antAyojdJNoN02SJUI4P1tUueVCWYFbnLDNvx3Hzaixnmltdplzt1kqs13Vx/GuSwVybuC26d3xr5lir58ytiFwQ1AgdHPECqbIuclpDwDABBPCNknqnDVrcZnBGWX6SE0Sz9dbV3RJkgndTIhmR+zD9l3b3n3M/XrFp6XlcDTxpMvSxBDOf5v5WTtqvBDOltR7YO8RHdh7hCo3ADXRM60tar7NMI6i32MtFQ/kgtfS+A+swvcbJ8yOW2EKBFzbfZM6OxaZFUwtuYFvtxrjWAJNiMANyBZb3oGPP2wDmlUFoZtha3zwZu5vgjdHHLyVy1HzhnAflvSXkj7zTfvvF5YK3BZ0zj5w/uzpw50L5553wZyPdtRjgADyrWdamy2NtZLaCe3WUfH3WytwHWxXtRRE2IY66Jy/SN9e95h/BdN+8aEpcorSeCA7bHknp+vuuE1L29vTHQ2QIYH20ko+6bS9a9pNa89SY7WjuqtFV2jNHd3OZ2/uspIbDqLQUoo8Mq2kktT29sGsPM8s+RcnimodLYaWUlSJed2Qd1S4AdlgyTuguXVFF2EbEBBS6eaUuQvbd22LdtNactQ4lXDflHSfpIpX3d30RL+1f/fhXX/20J2sEp0lccO28fqVrecnGoQJ2zacHuortW0dOd6l3DZXIDHXdt8kSSZ0K6fTAcgEAjcgG/olN1QwwQKA8W5d0aU9R49q79G3LLmvmUon0rVFu2m9OcpfCHeFpPs0+SzpgSek5dfEu9f02e7lsuukS7qlR+7U/t1vLntm04Bz/Roq3XLO0sTnp5S9oBg5UqNWUqBhELohz7JSsgw0s35JFmEbUNqeo0f10BPfN18mVZVm9kG7afosZaMd9SxJ70uSHtwYHbaVqpTauVVaf4u7qz+/e19H52xWja6hsZbS7+6LrkSMW+F2alD60mJJ2iPpvyje89NwRBCHCBltJQ0qrFLqR0sp6uzgm6+axRQkVjBFTnwo7QEATc6Wd8BO2AaUtrS9XevuuM182avkAjdb7odQJmgzFW+jCT0G4nFU+H10y/2ddMv9vZjqQ6nQht8r90OLUe/a3NeqchxzJbltpHEr24pZfo27H0kv73jtRJXjQgkLOmcfkOS29SahsJ+nFf78LPYclcKfp0k/V5FTXS2tVkZbScOdGkx0P+dMnXYymR2iWXTOX6R77+pRZ8ciqbCCqZXmmIBSaCkF0mPLt0gCgHiWtrfr1hVdwfncnIR2byu63dRsg/pxVP921A5J7pxtUQqT6UdbepW05VEdOXR8aszHR4XOnz19WJI7h95l11W/wz3PmX9ti9jKUfhzy1J4RZz/dlpTm9SWGXP6pVy0kj4saa0OvRJdNRqXF2LPndVxRNKM6neIZtI5f5E65y/yL6bACqbINAI3IB2WWCQBqFgCiyiUYvsu5jHMifEquSfFtpAWR7UN4VZJchdIKCZu2Obbz+5db1wa/06oROfCue4vZsuj7hx6xSoU4yyWsHOrux/XixUMxxFBHEKYedu2jww7GQ/bJPe5tzbpEPvC2fPOVL8zNCvmdUNeZHWuAKDRjUoskgBUa+0TT2rv0bek+szlYWviam18qpptliqbE86S1Fs0lPHPSxR3LjBvu+9tfDB6O1TtmU0DztNP9luafLb0wOOVtQXv3Co9cqf0wfuSdKWkFxIeZhhLzBHX8HIyb5vfFEluOFZqTstSfHNafvk/PbSvfc585rREVXyVbhLHZMigPLzJA43GltS7pP1CPXzH7WmPBci1wCIK3arPCaetiSfDtJvmh6W4oUZU4Ga+R+CWSX+x7vFd+3e/uUySO4fe0qvcSsOolrhTg267257n/JVt35J0f63HG8HS+OdonCDOPx+YI4K4zPCHbTloJfV7UNLDSYXY11/9R87VK6+3kh4kmhOhW2r6vett4m9NUQRuQH1Z8t6c1t1xG62kQAKe2j5gWksd1XfFKtu7Dmv9soU8sRQWwsVpOyRwy6wfPz3gbHqi36piF12Snk9oOEmzVF4Q52j8PHSOODmqq66WVitH87b52XL/zu2SVHWIffGCxbv+85/ev6zWg0ZzYQXTurJ812GdHxLHwWMI3ID66pdk0UoKJMvXWprWJ5u2aDdtJLaiWkr9CNwy7fDBwX0v73jtxP87sHfqiV/+S5w59B6WG0y9KOm92o6uJixlJ4jrFx9AjBma2zkq5S5s65f3/PlM942a/HtnOc/87B+sSnd2/dWfd65e+bmK7w+U8p2/2aCDh181X9ar86HRWSoc41pl3I/wTQRuQD3Z8t6sNj3wlXRHAjSYlFpLw9jetT9844Ajf2wRuDWMzT94Vps3Pmu+bNZjX0v1nx9u1Hf/vgr30RA2z5jTv6Kl1do+MuzccPJYXipvxsK2e+/qUef8RZKko8fe3Lf31V0n3ho8MnX/678oGWJ//KJP7rhw9rwzSxYtm8mcbagHWkwTYck9lrVCvuf4tonLUZP+HWCVUqB+xlYlBZCspe3tunVFVy1XLY3L9q4dFQ5WTPjWKw78gDT1ld6kYTmq74qpVuDflpr0/a9nWpu9oqXVkqSchG2WvOlPOjsW6TPdN46FbZLUPmf+4jKDM1ZnRl2xgmlVLE0M2hwV/n46IfcZC+cjmHnemg6BG1AftsSqpEAt3bqiS3uOHtXeo29Zcl9zdorDcbyLGYc/dCN4Q0lfvGW9vrfxQX3xlvWSwivjKv1eqcf138+MoxJmX8UU22+lYw8TqG6zq95h43FUmyDO0kS93r6aps3Uv0jC6hyGbffe3ZPuaIAKEbqVzdLEoM1UpDkl7tun6MDNURP/7AncgNqzRXUbUBe3rugyraWmys1JczweW+MDwF6ND96kJj4QybRTg9ETgpezH0nTzp1yUtKMUpt/8Zb1Gh0d1aRJkzQ66nblTZo0aVwAZbYp93txHtfcT9LYOCoJ7sy+ignbb6Vjj6GZq9sq4SiZIC7q/nZFI8uJ4IqkAyPDTspDKsWW97v7TPeNY4EFkFchodsqsZhCGFsTp0Kxy7i/o+IftEhN/jP/UNoDAJoAYRtQJ0vb27Wk/ULzZdRJXxps79Ktwsm/Cd5G1eAnnznjVuoceiWZvXn7mbfggiOlNvWHbX6jo6MlK8aqERaQfW/jg2OhXy0fO2oM1aK6LXGOxr+XTfIu5n0t7hw9/vc9K+Expq6rpdXyh205WCTBFmEbGtC13Tfp3rvGKjUtxWt/bBaW3J+HOV525L6f2xXsq9iHWk4F+2ooBG5AbdkSraRAPT18x+3mn5ayeVDlyH1vmKTxBygEb9lxWJK057lk9ubtZ96CWWeS2WFxtQitKmHCOnMx/LfVegGJzT8YC9uobqs9R+ODOCfm/XrlnvCNepd+336sBMdXV1tmzOmXchO2jZ1wE7ahEXXOX6Rvr3tMnR2LpELIZKc5pgywVQgfHbnv29VUojkqXRXdlAjcgNqiug1Ige81l7UqtyBbheDNX/Vmgjc7jUFBb0uStjwq7dwaveWmd6NXKN251d2PpE9devHMqF2VCstKVZpVGrbFuV/YY3/xlvWR4/nexgdDQ7Ww26luazhWie87Cl+1zlKh8jeXQdxmL2zbPjLsZDxssxRYiZSwDY3s3rt79JnuG82XvWrOvw2Wxle19am8D0mi9AX+bQK8rB+L1xRzuAG1Y0uEbUAafCuWWip8epdltu/aFqubpu23krokDeiRO6UHHpeWX1P+XnZulR65U5K05o5up6NztpXkIP2Cc5/VusqthnOtJYLqtlRZIbc53nWpllNL5c0R5yjeqql1UcMVSc+SNFdSh9yfSynb5Fbqvi33/SzIUsRKpECjavLFFCx5r3uFf+BRLUeF92Tbd5ulfByL1wSBG1A7TZ3mA2nzhW5mAYW8sDU+eJNY3TQNz0v6lj54/z6tv0VafY+09CppwSXRCymcGnTnbNvz3Fhl28c/MX/XZ2/usqIeLCzA8lePmRAtbH43v6jvxXncqHncKl1AodoxVILqtlRZih+wBTlFtreU8SCuhiuSXilpoMr7v+D72pb3s2IlUjSjJg3dbI2fq61WCxk09QIJYQjcgNqwJeZuA9KUwyq3IFvj20pZ3bT+7pe0SdLz2vLoWIBWjptv73auXxMdtiXBBGPBoC5KNW2c5vHMvytVk1ZSqtvSZtdgn44yHMQFF0lIcEXSb0q6T1I1ob/74YH7fmaL+dqAZlvB1L9QRL0/uN2m/B6HJ4LADagNqtuADMhxlZuf7bu2Rbtpvb0gaaqky+UekK+NcZ//IenslZ9eNjPJsK1UlVs1wVe5lXHVPl5SYwhDdVtTcRT+3m77/l3zIK5GiyRcIek+TT5LeuCJ+G3t02e7l8uuky7pdtvaP3j/Pkm/FmEbMOba7pvU2bFI33lsg+S+L4wqufnMssBSoYVUaqz/W26waAKQPFuiug3IgiXtF5p/Wsr4RNsx2Ype3dSq+4iaw3uSfi7pIbk//1KXP5dkPfvzXYtTGW0MwTbORhkD1W3w2L5Lt9zXZbcKC9TEWayhP7AfK+yBNtcmbDtLbmVadNi25rzCJczya9w5KF0PS9rH4ghAQWAFU6lxVjC1NX6+tklKJ2wzc06m8diZQOAGJI/qNiAjlra3+0O3Rnpt2gpf3dR/goj0ON7FHwBVzd/GmWQbpqma8++z1IqoSUtqDFS3IYKj8oI4S+Nb+ScEcV0trWOtWgmvSDpXkttGGhW2RX1tLL/G3Y+kSy+58gSLIwATNdgKprYmrkKaFsu7dlIcQ6poKQWSZZt/UN0GZMOtK7r00BPflxpzDgnbd22LdtMs6ZNkbd74rG7445Vpj6UpUN2GCjmqcH64gZFh3XDymNm+X4W21Kj9xtEhyZ2zLYwJ1za9O/7rYpZeJW15VO/965mpFY4HaHgNsphCmvO1BVkpPnZmUOEGJKtXImwDsqSBq9yCbNFumiWOalzlVokv3rJeX7xl/dh+ghcjzmqkZl+VSmIMflS3IWGOJlbDTZLU3dXS6vRMa1NXS6t/e0slKuIU/33YbcNacEm8rUsFb95+9r/+i0tjPj7QlK7tvqlUpdsUSZ+WtE7u67vUZZ23/ZQaD93yHs9SYRVSu8aPWYrlXTf1h2BUuAHJscw/CNyAbAlUuTU6W+PbSv0ngI7cCgx7wr1QC5mqcgvOmRYMs8oJz0rtK65qxuBHdRvqyOmZ1ta7oqVVclcktb3bLSW9YmrUaqTlSGo/QBMILKbgX8H0SkkDZe5urQqLLV0pdyGmpNkqvLc4ys5qq/4xNS0CNyA5lkTYBmSRqXLbe/QtqfHaSouxfde23AMfS4UqjLRbDZqB412szT+IDt1MtVfUKqRh29ZaUsFarVHdhnrpmdZmr2hptaQJ87Y5qrA1VRODOAAp6py/SPfe1aOf9v9IBw+/aknaKWmZJHdOxKVXuZWjUWH2qUHp0CvSnuekLY9K7kIo35J0f4JDtTV+vjY7wX1Xw/augwvUNB1aSoHk9ErjVkUEkCG+MLyR20qLsVVoN3W82/ztpnaM+5faBuH6pHGBUGz+lstg0FXJ96LuE+f7WdvWoLoN9dIzrc3umdbWK0mrTx6LW0XiqEhrqoqvmGrF2rNpIS01hxuAsnXOX6R77+7RRQsWO5KWafJZ0oMbpbu+Ll12XenK0emz3e3u+rp7v8lnS9J9civdqmXJbVfPYtgmNeexdqh01oEHGo8lb+nlTQ98Jd2RAAi15+hR01Yq8ffP9q7D2ptsTWRKqbJ2QJcX/ZKsG25ZWbK11FSUZaWaLGvjCeNrQ+1Wk3+Sjtoamts5KkkbTg/1JbwqqZ8lU5Fs5mYLUyxkK3Yfb/tvr3usmrEBTeWdXx0//Mhffq1Dkhuaha0aHPZaDHsd7twqrb/FfDVV0nsVDsuSd94p929e1qrIbNFJMYYKNyAZlkQ7KZBlgcUTrBSHkgW2Ji6yYGl81Zt/WyNsAmGU1idJB/YdSXscDSdQ3eakNxI0up5pbbZU87BNGj+3W3FRYRyARBw++rr7Qlt9T/ywrdjty69x9+O6vMIh2RoftmXxgybmbvMhcAOSQTspkANN3lZajK3odtPgz4rQrXyOJOfA3iM6sDc6dPPPz1bNCqBJyEN1WyWtukC5/K2kNQ7byrPp3cIFQOJO/OoddynipVdFbxj3tVjYz6oyh2JpYgtpVhZH8LO9az4E8xC4AdWzzD+WtrenOAwAZbDSHkAG2XIP3sy8QlLxYJLQrXyx53IzoVvaIVdWxlFMoLrNTm8kaHS+sC0b8wSuOY9524A6OPr2oYWS3AUSklDYz9qozQJseVNTqFDVZiczoETZKhw32ukNI1tYpRSoniXRTgrkQZOuVlouR4VJvs0BXpheFV+VDxM5cqvcZv63v/rRiTO/+depu3e9cWnUHb54y3p9YtnHdsxbMOvMpy69eGZH5+zF9RlqQVbDNonqNtSHaSXdPjLs1L267dRg6YnZpUL4Vqy65tSgJOmcqdNOSpqRzOCAJhLndZj8fiwVVpiXsv3hkqXx1XfwUOEGVI92UiBHaCsti1Xi+1GBHCb6nqTFLzy72yoVthm7d71x6T/9cLu1/qt/s/jHTw84tR1eflDdhnroamm1Uqpuc+dwO/RK+HdNsBa30s3bz9xZHUwkCSQp+FosFX7HZ2v8MVZWq9qMrK6Wmjoq3IDqWOYftJMCuWOlPYCMs2Nu1y8OsOL4pqT7JLmTJi+9ym0tifq0+9Sge6K85zlpy6Pa9ES/tX/34V1/9tCdy+oz5Oyiug31sKKl1ZLcsG1gZNip40MfluS+9i+7LnyLTe+OD9uiTvD3PCdJunD2vDMJjQ9AbVgaX9XmKJtztfnZKnSN2CmOI5OocAOqY0m0kwJ5wmqlsZVTARi2uikKrpB0nyafJT24Ubrr6+5JdKnWkumz3e3u+rp7v8lna//uN5c9s6m5K92obkM9pLxQwtuSpC2PSju3Ft8qzkTtO7e6+5G0ZNGymUkOEmh6xULv8udYtOR+gBmcqy0PYRutpBEI3IDqlLvCDADkRXfMS5/GL7Jggje7rqPNrimSnpckPfCEtPyaiVv4W1GKHaQvv0Z64HFJ0tNP9luHDw7uq9F4M4/qNtRDygsl/FaS+2nuI3dGh25Rdm517y/p+qv/yGmfM7/u80ACTcGEbeW1klpyA7ZRhQdtTlLDqxFL48M2J7WRZBiBG1AdS6LCDcgb5nGLxYl5sb3LJI0P3qh6c10uyW0jLRa2xblNcu+/+h5J0ss7XjuR1ADzhOo21INZKGHD6aG+FKrbjD+UtEsfvC+tv0V67GvSSz8ZWwChqFOD7naPfc293wfv6+IFi3ddvfJ6qx6DBhCbf442R/kJ2ox+75q/xxGYww0AACTF9l1MmGnCt2Y9IHMroZdeNfE7Ya0o5rY154V/Ur70KmnLozpy6PjUhMeZC1S3oR5MdVuKxk7EL1qw2Hn90D5LWx4daw0tx/VXf965euXnrGSHByABjtwFUhzlJ2QzCNtiInADKmdJrE4K5JFvkRMrxWE0Mlvj20p7NT54k5rnAG2tJHeBhGL8wVpwIvQgbz9xVzltJFS3oR5Srm6z5Jsw/d67etQ5f5F19Nib+/a+uuvEW4NHpu5//RclX/sfv+iTOy6cPe/MkkXLZrbPmW/VdMRAMzg1GD3vqvmQrNTcbYUK1T3K/vxsxdgqHD/bqY0iJwjcgMpZEquTAnm1pP1C7T36llSYMwPJs33Xtgqhm9RsVW9hB+rlzfVSfD9Nguo21EOK1W2WvKqRzo5F+kz3jeqcv0iS1D5n/uIy519rukAeqIX2uQsOHDz86kIdeqX433F/Zbr/9jCHXjH/ejrJcdaRrcJxXF4Dw7piDjcAAFAPtsbP8yaNn+fNqvuIkBtUt6EeUqxus+UL2+69u2csbAOQnpkfPX9YkrTnueIbBcO1qA/TCvvZVtXA0mGLRRLKRuAGVK5XoqUUyCsWTkiNrULw5l9koV+sblr4hLyS6rcGRnUb6iGl6jZb3t+hz3TfqHvv7klhCADCdLRf5P5R3vJo9GrBm94tXIrZudU/D+OLiQ2yPiyND9vs1EaSMwRuQJVoKQWAithiddPxSs390qR81W1SMz4vUBemum37yLBTx+o2W76w7drum+r0sADiOP+jszquv/rzjiTpkTujQ7coO7e693c5ks4oX5X9LJJQIeZwA4qbIulyuSvMrS220ZpHviFJWr5gwY6PXXD+mcsu6pzZOWtWOfNsAKixg8eP73vp9YMn3vjlO1N3HjoUnNvGkhvw+D0st9z/RUnv1WGIzc7W+HnepPGLLDhq9NaFOHO/NClfdVtf1HZANbpaWldJ0sDIcL1avcZWIvUWR6jTwwIox9UrP2e9fmj/rtcO7Vum9bdIq+9xVwxfcEn0vKqnBt052/Y8N1bZdvGCxbv+/d//3Tp4+FXJfQ/IQ4BlwjZH2R9r5kxKewBARl0paaDSO9+5aqXz+Ssut5IbDoBK/fCFF53Htz1rVbGLKyW9kMxoEJPtXfvbu/K6uqkb5kaFaOWGbd7239v4YDXjyoXNP3jWH7hx3Iqa6JnWZpt20ra3D9b6eWZp4kqkNX5IANX62bPPOM/87B+sSu9//dWfd65e+TlLkv65/x/10/4fmW9lOXSz5b5fOWKRhIpQ4QZM9E1J90mq+BOMx7c9a+0+cmSXfduty+oz5Ma05pFvaNMDXxmrItz0wFdCt6nke1GPGbyPGUclzP6KSWrcCGd//6ldvzh8xJJUzSeSz0v6lqT7az9ieGzfta1GXt20ySrbDh8c3PfyjtdOHDl0fOruXW/EWUlxh9zWmx+V2hCo1obTQ7WuorQUWBwBQD5cvfJ667JPXXnyxK9++d7p37x79smhd0ouAiSyVAAAIABJREFUGz6j7fzBaeec9/7Mj14w5dxpH7HM7aZ93AvdzPGNnfyoq2Jr/LxtqACfFALjXSHpeU0+S3rgCWn5NeXvwfTof/A+lW5VWPPINzQ6OqpJkyZpdNQtEJk0adKEIKyS75V6TP99/OMoNwDz76+YJMaNcGOVbQm9niV1yQ3fkA5bbou/5bstD1Vv7gv6u/vCg95yA7dTg9KXFmvauVNO/h/f+/KMhMZYF89sGnCefrLfqmIXVJuiJobmdo5KNa9us+WdvBK2AZAyXelmi0USEkGFG1AwReZkutTJedQqcsuvkR54XFp/ix7f9qx1+cUXHZ4zfXpH4qNtYP6Qy6/S4Ksamx74yljoRwCWHwePH9831kZa7PUcNkF98DXtez3LbTNvlfRviQ4WcdmBa3/V2yq5c+7Zyp6HJa3VoVcmBm7B52Dw67C/MYdekSTNW3DBEUm5Cdz+Yt3ju/bvftOSRLUpMsW/WEINH8YWiyMACLi2+yZ1dizSdx7bILnvEauUfuumJcK2xLBKKVBwuST3RKCSShi/5de4+5H06tvHGr9HKGPiVJYlcZ9STFhnLob/tmLVbajOS68fPCEp8dezJBZESZ+tiaubWsru6qbuBOx7nktmb95+5i2YdSaZHdbej58ecPbvfnOZJp8lPbhRuuvr0mXXRYdtkvv9y65zt39wozT5bMmd8uHKOgwbTaaGiyXYImwDUETn/EXuXI4di6TCQl5WikMibEsQFW5AwSpJ7qfuUcKqYsIsvUra8qgGh/6ltcpxNZVSoVOpSrNahm1hj11qvjVze3Aut+D2hG3JeuOX70yVVPr1LMVr4/Nez5IukbSzmrEhUbbvYtpN/aubmm3S9KIk9/lzSff4ALjcOdt2bh1b6exTl148M6kB1tLhg4P7Nj3htZFGVY+Xaq2l2hQ1YhZL2HB6yK7B7lmJFEBJnfMXqXP+In+LaVormNpy37OcFB67IVHhBhSsleS2uBQTN2zz7ee144MLqxkU4gvOf1ar+wTvOzo6WnJxhFqNAeF2HjrkTsZe7PVczmt5/H7+pOJBoZZsuS0YfSoEbSZ4S7vq7T258/+58wHu3FrZXsx8gpLW3NHtdHTOzkW15cs7XitdbVqqtdag2hQJM+2kNVgswZIXtnV2LCJsAxDLtd036TPdN5ove1Xf4xdbheq2tNtaGwaBGxBUrMUlat62cvaDokotGGDCqFIBVyWhVdR9TGtonMeuBmFbDZR6HW56131tlwrgeD3nha2J7aZS+sGbO/fYB++7FVqPfU166SfuHGVRTg262z32Nfd+H7yvj39i/q7P3txl1WPQSThy6Hh51abmb2yx12RhPxGfjgGpsuQP2+4mbAMQX0qhmyVWJK0JWkqBcpTb/oO6MsGYWV20VvcJ3tf8u1LVjAFV8p/UrzmP13hjsX0XqVDxlla76f2SNkl6XlseHWsNLcfNt3c716/JT9gmSbt3vRGv2jTua298telj1YwNqEE7qS3mawNQJfPe4bWXmiDMruFD9nvXzNuWMAI3IC5OxDPBrBgatoqpVFnwVW1YlgRWP01JsJqG0K0R2d61o/FzvEmF8M1WfbwgaarcRXpWyUxlEGHBRbN3LP7kgjOfuvTimR2ds60aj692yqkSjXoNUm2KhHS1tFoJ79IWYRuAhNRxBVPbu3ZE2JY4WkoBAM3H37pmvkajc5SNdtP3JP1c0kPeWMYuXS2t3UNzO7V5xhzHjPGss8+69KbbLCsvc7ZVzLR2lzu/IlChFV7gltD8bf0ibAOQsM75i/TtdY/VcgVTW7SS1hSBG4BcCc6nBgAVsFUI3vyLLJjgzU5jUAG2JB3Ye0QH9h5JeSh1RuiGOuhqaV2V0K7GrURK2AYgaffe3eOf161fyR2nmPfBPrkfTCJhBG4AAKBZ2ZpY9Zba6qYDI8OOVKi8MWPavPHZeg4jPf5KU0I31Jivws2ucBeWvGoTViIFUGs1WEzBVqFartp9oQgCNwC5469yq8SaR76R2OIESe4LdVRh69o551rWZStGRxd9or9/drttn3OuZSU/OKTEVvrtpkGO1CRVbiZso70b+WDJm2SclUgB1EvCoRutpHVA4AYEnRpMdD9TP9zK2UOGrHnkG2OLLlQblCW5L9RIqdezf7GEGPv5vQ9NOSG5wduc9t7eRZ/o779sxejo7HbbJoBrGLYy0G7qTejueJfmqXID6qBnWpstVTx/my0vbPtM94269+6e5AYGACWEhG79EZsXY3vXrEpaYwRuQMHDkqRDrySzN28/sz/ykXeS2WHjC87PFhViVVvlVg4TrEnuKqmsKJp9yxcs2CGp+Ou5WOtaseoabz/v/sszD7y0fdKkY0f7+o4d7ev7za8dR5LmtPf2hgVw1f4/kCpbKbSbbvfaSn36pCapcgOyzxaLIwBI2bXdN+neu8bCfku+uSRj6i29CZJA4AYUbJMk7Xkumb15+5nd9pHhZHbYnEywFhZ0VfK9SvdX7tgq3bbcMSDcxy44/4yk6NdzMFyLamUr7OcVSRo8atuDR2371d3d3f4AzmxkArjLVoyOEsA1BFvR7aZWDR/bUSNUuRWrNjWvu7gt3oX9vFntkNC8zIIJIQF3FFYiBZAZISuYxl1MwWzjxNweVahPeQiQD1MkuSfpD26Ull9T+Z52bpXW3yJJ+qsv/cfDc6ZP76h+eM3DVJRlJXTK2nhQ2sHjx/d95W//frGkRF/Pklol/Vupu5hwbU5774RPEH/za8c5/ett237za8cxFXLIHdu79v9++wLfq8jmGXP6V7S0WqtPHuseKIQBlryWkfvtL2jhknnVPERd/Z9ff3LH7l1vXKqvPilddl34RmFhW7EA/KWfSH9+uyTdLemxhIaJxjNF0uVyV+BbG2P7h+V+8PqipPcC37PkvtYtSSyOACBz/rn/H/XT/h+ZL4Ntokm+H6JMVLgBBe+tbGl134QeudM9ya7Ezq3u/SXduWqlQ9gG1F/nrFmL71y10pGU2OtZ0pWKEbZJhQq4l7ZPmvTq7u5uf/tpcP43FmDIJVs1ajcdGBneJo1bqVTKcZXbvAWzalptCoS4Uu4HqD9TvJNLedv9zLvfFb7bLXmtWqxECiCrIhZTSPL9EBWgwg3w9Exrs3umtfXefPLYrm0jw8skSavvkZZeJS24RJo+u/idTw26czzteU7a8qgk6ZMd83bZt926rB5jb0RZqSrLyjhQGfv7T+36xeEjVb+eJX1L0v1JjOmccy3rnHMta9q5q1aFhWymNXXwKC2oOWNr4pwoffKFZXGYv0UbTg/1bTg9ZPu+ZSmHVW6HDw7uW//Vv0mt2hRN55uS7pOUxHv+e/Je02YlUjSWLz90l7697jF9+aG7JEnfXjexaLbS7xXb1vDfx4yjEsH9BgUfp9j30BgClW4/lPR5SZk5Bm5GBG6ACic4krti1YbTQz+V9Hyl+7tz1Urn81dcbiU1vma15pFvZCLkyso4UJkfvvCi8/i2Z60qdtGlKt4PSolqP5UI4HLI9q4rajftamm1tsyY0799ZNi54eSx7sC3+yVZC5fM0/32F6oeaL08s2nAefrJfkuTz5YeeLyy0M1Um37wvuR+Yv9CwsNE/l0h6XlNPkt64IkknmeOJIv52hrTlx+6a+wDVf/CWMGAqpLvFXssP3Mf/zjKDcDC9hsUfJyw76GxeKGbI8lK8P2wpsfCjYzADU3PzJcjSYE5c8rqd1++YMGOj11w/pnLLuqc2Tlr1uJajRdA+Q4eP77vpdcPnnjjl+9M3Xno0KUx7pLa/BVx5n+TCOBywlZ41Ztd7A4lAjdLOaxyk6S/WPf4rv2738xUtSkayocluYtUlaqkNHMGFmtd9lVSXv77q/bdeuOfckzXYPwhl6RxQZQ/hEoicIsKxaoN3eIGbpJKjgGN451fHT/8yF9+rUNS+Pth1CJFwffF8ZXlU8WcbmWbnPYAgLR0tbRaPdPaeouEbZL7hvJz7/JQ4O6WpP4l7Rfq4TtuN7fFOYkHkILOWbMWhwXhax75hvlnZj6AMkHa4FF3XjfTdjqnvbc3+DULMGSe7busUmHy9V5VtsiC412szRuf1f1LvqBfHvvV4YMH3n73ncFTrYcODi4stYMFnbMPnD97+nDnwrnnXTDnox1lPHZV/uyhO5f9+OkBZ9MT/Za2POoP0MrBJ+woxn1/X31PdW3Lknv/1fdIWx7VtKnTToztG/DECbrCtguGX/7QrxLfXvfYuPv7A0C/OGMgdGsch4++7qZmCb8fyi1E+Xm142s2BG5oSqaCQHKXhA+pIijFkaS9R99KemgA6mTP0aPmn06Kw4jkD9L8AZyZ/60QwLnVcKb9lAAuc+zAtQndJDeI22a+Zz74CSya4NcnyTqw94j+9r8+4zz3813Ftgt1YO+RsVBuzR3dzmdv7irr/tX47M1d1vL/sPDw3/31j999bf/RVknHY9xtlqRXJd0m5mxDcZdIcisno0RVdvgtvUra8qjeGjwytcpxIWNKhWWlAqi4YVuQf5/+NtZSj11qnjh/NV6p2+OMAfl34lfvtEoq/n4YVt0b9d7ovR/KPV4hcCsTgRuajn++tgrDNsORZO05elRL29sTGx+A+vAF5tvSHEc5TJA26H1t2k9NAFdoQx0fwNF+mhm279qWG7pZKlS+Rbabehzvcu5Y2FZhi+amJ/qt/bsP7/qzh+6s2wI/F8z5aMdr+8fC7jjLPY5KWij3k3WnRsNC/v2JJPc1UEzcsM23n/2v/4LuBYwJtpGWCqz8FWiVVJCVM09crcaA/Dn69iH3g7Wo90O/Um32hf2s1cSuL5RA4IamErI4gp3ykACgYmPtp97XwfnfgtcEcJliq0i76faRYa1oaVVXS6sVmOrA+K6kx8ueDHn6bPdy2XXSJd3SI3dq/+43lz2zacC5fk35lW6HDw7ue3nHayeOHDo+dfeuN0oGE59Y9rEdI//22zOSZkraGPNhHBV+Nk65Y0STKRY4+08o4wRvUcE1cisswApWgI2OjpZs9SynDTROyGVCMf9jJxmOEbQ1qaTex3g/rAqBG5pGDcK2bZKsp7YPaOkdVLgBefPU9gHzTyfFYSQqav634DXzv2WGHbj2L7JgKuBs321TJD0uKTps84cKYZ9aL7/GXTF0/S16+sl+6/f/YOHhcuZ0G1t5tIz5rQKh3E9j3q1PhSpAoHLFqjeAmEwwFgzqylFO1VqtqtOSqJxDgyhV3YaqEbihKfhXIk2wss3RxNXnAOSPk/YAaqHc+d8I4FJn+677VQiZLI1vN71cUvRkyMEKnjXnFQ/dvMmQDx54+90L5nw01kC9FUetsXFUtuLo84q34qijQpWbrfIWmQBcnEwiplJVbtWEU5XM/5Z0GFbpHHQAKkPghoYWYyXSajgSCycAeZSHBROSVmr+t2ILMNB+Wn8DI8PbVrS0WitaWp2BkeFtKiyy0CvpSUnFJ0MOq2xbc17x0M2bDPmdwVOtccb246cHnP2737SSaGfVB+/fJ+lplV551FS5rYr3YACQLWErlta7siwLYwCaDYEbGlZwJdINp4f6EgzbDEcsnADkTh4XTEga879lX1dLq+RWdDkqVLrdLqn0ZMhxK3q8/Rw6OLiwxJY6fHBw36Yn+i1JxcO2sPmxgmPxtbNKGpB0tqTfRjy0o8LPwFITBeUA6is4n1oSshB0ZWEMQDMicENDSnAlUgBoCv7536ToAM60n/q3R3K2jww7PeOnLHC8iy131c7i7Zvlts6VMRnyyzteOyFpcWQ7a1y+dlZJcyW9WeIepsqNxRMA5EYWgq4sjAEZxPxtdUHghoZT55VI+8TCCUDuNOKCCUkLW4BhYvspCzBkWqmFE8p05NDxqZKKt7P6xXk8r51VUodKB26Od22JKjcANeSvcquEWVChWKjlX3ChVPBVal+VKmcM/z97dx9cV33f+/4t20EWD4oREQTLMYaYQHiIYwpNQEr80z1w0yQ17SUltGGaQO+50ymZudPcGyoOJ6CfEppjJZyZTudC78zp4JBeSIDiBLs0oaZHyyADGahdg20MKMYWtggYK454EHLt+P6x1vJe2toPa++99l5Pn9fMnmVJW2t/rf3wW+uzfg8iUj8FbpIpLQ7bjtM8biLpEZi/DXTSHkrx/G/VFmBoZPjp+RePjOx6oT/XvZL96Q/8+UeT4vgqo+WGs5YaTlpJYT+rcBeKqGaIwlx2Tm0PJrlwcKKmXpsV9wOccnLnAaC78R1KXhSvAFoc2hV/Xam3WRSriZZaJKGWGiTFIv48BLY3vrP8UeAmmRFciTTixREqcdA8biKpEgjIh+KsI83KLcDQ6Pxvi5e6veku6zt2bP/40JCGqzYozKIJ9ah2AL/uULihKrWfCFjcsM2gXm4y2w8Bw+5t0Zxg7t4GwJIzl+1FgVtmFM/PVmoV0lL3bbYogjUR39Il57w0tmfXeVF/HuIuciQ1mhd3ASKN6m3vMH7YNjoz7bQwbPNtgllD1EQkwTScNHoT49ZOjFv77Ghb27OjbW37x4eG/JAN3OCtZ+ng4GV9x46df/HIyOKl1vohXTk9SwcHq90ny0a9dqw3Yb3cQgn2dKu111t1jrcdrHQnyR33jHD7k9HszdvPRxaf9U40O5Sk8oO1UkFXPT8r/r7/73K3SuFapccPe99Ga5D0Of1DZ0wDkX8ekuOFxhpRPtYXSYHilUhjWhzB4A2FWXfLX8Xw8CIS1vbxcW6//8f+l2oDW6B4vrfinwfnfzv/4pE5wwrz2tPNv5BU4iKS2w2ilt5q1XqbXbOI8y48i5vtn1bczX++9o6q+5n18zBzyLn3GcLtvRaGoTD8VO9h8S0E3JPMbz3U2KIeWzb6K+jyjT+/fefSnrMviKA+SRC/R1lSwqak1SPp9sZbr+9Z87e3LgMi/TwETgbebbC83FEPN0mtgc4u64dtw1OTQzGuROp4t+K5oUQkYTSctPXe/o3jBHvA7Xqhv3//+NCQv7jCKR80pmfp4GCpsA3ckO78i0dG/NBOqvCHj8Zh3aHZwVpzVj5zKPRys814AEml94FeANZc754k1mPLRvf3Xc7Ol7cpbBORVDnjQ2cu+/TvfNYBovw8vAKFbXVR4CapFNfiCNVoWKlIsmk4afz8AG7XC/39pYaflnLKB43xh6K2qMzYbZ6Z3gQVFk4oTGJcmh+6VQvfvP2ceNLCpqRjTeK/XlbFWoUkzVPAnRw57PbIWHsrPPuz6u+VgxPu/dbe6v7ekcMADwPmsZFHuOue4eZXLi0VnJ8tuFpnHNS7TaL285Gf8sy/PWGArRF9Ht4JPN3surNKiyZI6gQXR0hQ2DYEGK1WKpJcWp00mYLDRUsNOQ0K/jzrw0xHZ6adARjsbe8oDpW+A9xWdjLk4IIFYYZ0epMhf/jMrjeAmLrG1czxbgYtniCz3QysA55iw92w4e569tGLG94ZYGRszy7uumeYz/X/AcvPPj+6SiVWfugWd8iVlDokG34+8lMeG3nE/3I98HWi+TyUOqmHm6RGcHEEcFciTUjYBhpWKpJ4Gk6abNXCtuD9ihdgyNlwU3fS4kqTIReHa5WGdnr7OWPxadONFtbi4az++1iLJ0ixp3HnGroSN6AO4zve/U+mcHLp4M4T6Izt2cVda4f5+chPIy5V4pSUkCspdUi63XXPcDBs8+dGjerzUOqkHm6SCglZHCGUB0Y3c9FXlsZdhogU0XDS5KoUmPlzvfkLK5zyQWM6P7hqlb8Yg/u7blgXXIDB/720KzGk9BnAvVK9or/8ZMhh5k/bsvH4Fe/l5y0Jn5QdnCjdu853zaLZPe0q7cf1RujHLnC8rUG93GSud4F/9W63N7ivftwT10H/ZPb3+v+wwV2KiERj7NVdPDbyCGN7dvnf6md2mxjl56HUSIGbJF5S52srQcNKRRKqaH5FJ6YypIJgWBb8Xqn7+TGNP6dbuQDOnxsujcNPi1YmDXoXd4jHZtZcD7fcV98KZIHJkK/5Sr/z4Z4PmWq/cvHKjz73wtZfXhr1cFZgV+k7VDWE28NtEL2vpbmst1XoJiKJMfaq2/vW4+C2i05c9chcWk5dEi1FYZtvBDDX9fVyXV9v3LWIiOeB0c1+6OZ3sZcM8gO4csNT0xbA+dMorD6wv79EAPd94JsArL4JLvoMnLOics+zgxNuyLX9yeM92z5+8dlb/+/br18Zpp6f/thx/unhUcPqm+DG75a/Y5iwDdxJmd06zgFeDVNDCce8bfEVfZFmsHjDmD/X/wcK3UQkNkXztTm47aAkjAI3SayELo5QjcEN3Vh3y1/FW4mIALPCNlC7lyuVAji/Rx0kN4CrErgBXE4D86v8b3/S73zxml4T9v57xiZ23vFf7rkAgG89VF/POt+Wje4KaK4TgP+oc08jFIaU6mRDWsHihW7Ll53P1/9sIN5qRCR3isI2XUxOsPlxFyBSrLe9w9zVdcba4OIIP3rv7R/EW1Voe3AP/JdduPQjnP7BD8ZbjYiwY/w1f8EEdbPPGX8ut4nxoaG3f7Np08zM3r1tQPvCZcvaFy5b1vlBYzo/aEzPUms7P2jMCQvPPhvg8MyePfFW7vqTkzpvWLrgA8teO3pkb5nAbR9wJ/A/gb1A8Yqmc1y88qPP/W7vhS9/+atXvve7vRdeVks9i7pO6Z6/YL6za/ueZTz1CHz0k3DmR2vZhcsfzvrbowBXeLXXay9wA7AMLYgireHgLl5yw+Sht3hs5BGWLzufrlM/FHNZIpIHCtvSRVf6JVGKF0cYnpocqjCPTVIZYOTCpR/hO1/5k7hrEcm9a9Z8z/+n2jw5zp/vzZ//rfjn/vDTOBdg8KdVaKCXtwFGzrvwLG62fxpZXf/92/dtffGFV91hqA0MZ8UNC2+OoCS/l5tOPKTV/NeehpiKSNPddc9wpcURJIF08iGJEZyvLekrkYYwAphvf+WPuWipViwViYvmbpOwkjj/m38RqsE2cQQwN9s/5bwLz4qstn/+yWZn3f0jpoFd9NLAcNgiBvf/6aBhpdJ6Fs3rJiJNFGIlUkkoBW6SCClcHKEag3q5icROvdukXkmY/y2iwM3QhF5uAIcm3z7wq4mD7/7Pnz93wpZf7FqMe/BvvB+XGt65CXfqhX3UP2dbOX5PI52ESBwsCt1EpAlKrESqC0spohMQiV1KF0cIQ73cRGKk3m0SFX/4KVQO4Jox/HRyyfJjAF37xho5ZmtKLzfff772juJvxfGeM6iXm8TLotBNRCKklUjTT4GbxKa3vcMMdHYNBhdHSOF8bZUY1MtNJDbq3SbN0sr53/zArcE20tCkXm7rH3yC9Q89AYUebYPEF3If87bq5SZxMXir1WsFUxFphBZHyAadhEgsMrI4QhjHANTLTaS11LtNWskfflotgKtn+KnfCzyCi1JN6eUW6N02hLtKqiG+wMviBn4O6gUg8TG4r0MD8PUbB1h+9vlx1iMiKaOwLTsUuEnLZWxxhGosMKhebiKts318nNvv/7H/pXq6SMtFuQBDhIGbIeJeboHebeAeUx4L/Dsu6uUmSWHREFMRqZFWIs0WBW7SUhlcHCGMEcBc19fLdX29cdciknnq3SZJE2YBhnLDT/12M6ILVGV7uf1q/1t7xl7ad+iNiYMdu8cmzqu2o3OWL37pZ488PQ0sAu7Ffa8lIXDzF09wUC83iZ9FoZuIhFC0EqmDexzrxFmTNE6Bm7RMhhdHqMbgzeehoaUizRUI20BtnCRQtfnfigO4iFYq9RlK9HJ7dN1m5yc/GplTSw2uANpJxqIFxqsD9BkgyWBR6CYiFWgl0uxaEHcBkn05WByhGgf3CsXgA6ObuegrCtxEmiUQtg1Vup9IXPwgbcL7unj+t8KKqG5vuJ43hh2m/z6qh3cAXtqxl5d27OW8C8/iv3/7vq0vvvCqAWD1TXDRZ+CcFXDa4vJ7OTgBu7fB9idhw90ATwEPez/dFFWxdXK8m6HQ000kTtbbDvpzMil0ExGf5mvLNl35k6bK0eIIYWhoqUgTaSipZEGp4aeP7TkXgM8te6WhBRg8Fhg878KzuHDFOc66+0cMCz4At9wPl1xV+962bIQ118ORw+CGW5uI//1nSEZvO5EgQ4UVTN946/U9e8ZfOfTmW290jO/bXXVY99Il57x0+ofOmF629NxFZ3zozGXNKFhEZov6faqwLfsUuEnT5GxxhDAM3oHWulv+Kt5KRDJGQ0klqxYvtfb/nf4fq/raO8zNH/7/eH7hp47/zB9+CjUHcMeAA0A3AN96qHrYds0id7vu0NyfbdkId1zrf/VZ4MkaamkWfy43TTgtSeO/No+vYPr4E//kPPr4w6beHX7xyj9yrvzsF+v+fRGpLur3adHiCArbMkonJdIUOV0cIYwRwGjVUpFoXbPme/4/dcAimePPgXr94XOHti38FGHnf6uwSwt8DVjG6pvgxu9WLsAP26B04Aaw9lZ/eOmVwL9W3mFLGNTLTZLL4s3rdtqp3VsP/vrASqCRYd187JwLtv7FDTevbHbhInn0dz/4/taXd++M7H2qlUjzQ4GbRC7HiyOEYdACCiKR0lBSyTr/IlZxm1ptAQZ/+GmZAG4/sJj/8iO47POVCwgTuD37M/hvfwLwHeD2av+nFvFXTdXJjCSRBVYBkQ3r/uKVX3Ku/Ozvm2jLFMm3x5941Hn08X+MevoFg1YizQUFbhIZLY4QmgUG1ctNpHHbx8e5/f4f+1/qpFoyKexKpaXmfwsqmv/NHdb2P3ZWvkIfDNugfOB2cAL+jwv8r5JyfGlxexE5qJebJM9CYBooP6w77PsvMKz7G39++86lPWdfUPqOIlKLN956fc+av711GVB5+oUwF6ZmT7/wD8BXIypTEmxe3AVINvgnA33tHWZ0ZtpR2FaRBZwd469x2/0/irsWkVQLhG26Qii5NzFu7cS4tc+OtrU9O9rWtn/OtqzPAAAgAElEQVR8aMgP2cAN4nqWDg5e1nfs2CkfNO43K4VttYhqP9Gy3tZ4N5EkcUOx1TeFC9vKfQ/c3199EwA7dm19M6oCRfJuz/grbnpW7n0Kc9+XId6nwL2RFCiJp8BNGjbQ2WWDK5FerbAtjCGAHeOvBSd6F5EaBAJrBw0llQzz21S/B3lYwQBu1wv9/cEArtQQ1DkqLZSQHo63LdnrTyRGKwB3Lqhixb1lgu/Bcifz3n5em9h7clQFiuTdm2+90QGUfp8WC75Xq7xPcYeTSw4ocJOGFC+OoJVIQ3Pwhrc8MLqZ7ePj8VYjkjIPjG5mx/hr/pf63JHc6K0xdPO9/RvHCQZwVRZVKH+ykD5+Dz8TZxEiJbjDyc5ZUf4ewaCtWvDt7efFV56/tNHCRMQ1vm/3eUD592mtF6YK+7mtocIkNRS4Sd20EmnDHLwTgdvv/7FCN5GQAoskgMI2yYnRiHuOv/0bZ1OoO6a7dxu4ba3j/dvEVoVIOaWGYxf3aqt3PyISjVreX5Xev3qf5o4CN6nL+u6eET9sW31gf7/CtrpZvNBNQ0tFqts+Ph58r2jeNsmdWoeV1iUbQ0mD/F5uGlYqIiLRu2ZR4SYSoMBNatLb3mHWa3GEqFm0iIJIKEWLJNj4KhFpreGpySGA3vaO1s37UuoEIp0nE453M6iXm6RV9oJwkWxKZzspTaLATUIrXolUiyNESosoiFQRCKQVtolIrdTLTdJLJ/AiyRdmcRPJnQVxFyDpoPnams7BnYtqxA/cruvrZez113c++8rYm7/81Rsnb9m9u+okuJecc85zH/3wGe9cdu7y05efeeYFzS1ZpHWKFkmwMZYiEqvIh5QenJg7p0ypHjTVetccnPD/tT2q0iLmeFvj3Zwy9xNJluIVS0Ukefz35rpDCttkFgVuUpXCtpZxcK/ADz4wupmDb7/tPL7teQOEDs627N596Zbdu3noqae5ftVnnS9d/mnTnFJFWkeLJIhAE3qUu4sm7N4WzSTOu7f5//pJ4ztrmiHcHm6DKHCTNFDYJiKSagrcpCKFbS1nve3VXtgGq2+Ciz7jLiNd6aTo4IR7wrP9SdhwN/dtesK8sHfvVvvH161sdtEixaLqnVkUtmmRBMm10Zlpp6+9w/S2d5gIArg9gNtmXPb5Rktz9+MKt/ppPCxu2GZQLzdJOoVtIiKpp8BNyvIXRwB3JVLN19YyjwGDLPgA3HI/XHJVuN86bbF7u+zzsKIf1lzP83v2rnz46WfU001a6uGnn3Hu2/SEocHemSXCNht5sSL5tQ+ADXe7bUa1tqbSCf+Wje5+XM9EUl3zOLhhm3q5STKUGtZd736AU07uPAB0N75DETmu3PvUH0J6zaJwwXjyp1+QiClwkzl62zvMQGfXoMK2WCwEngLKh23F8wKU+nC/5Cq45T6441ru2/SEWbHsrJ2a001awf74ga3P79lrgIZ6Zz6+bdvWNw79xu+dqbBNBNg8M72pr73D9EXTw+0/gF5gM2uud9uMsBd4grZshDXX+19dAbzbYF3NNoRWK5Vk+CFgSg7rLj7WC3Ps5w3rXnLmsr0ocBOJxNIl57w0tmfXeaGmXwjTKzUd0y9IhLRKqcxSvBJp176xNoVtLeWGYqtvChe2lfseuL+/+iYAnn1l7M2oChQp5+Gnn3Ge37N3JQs+AN96CG78rtvjstoBit8z88bvur+34AS8sM1BYZvIcaNee9zb3rEqol0+BdzJkcNwx7Ww9lZ49mfBK/ClHZxw77f2Vvf3jhwGuBN4OqK6mslh9gIKInFxz7wLw7Eb4+3nI4vPeieaHYrI6R86Yxqo/D4tDtcq9XRLx/QLEiH1cJPj/LAN3IP6qw/s1+TkrbcCcHsFFSt11cT/XrluzBd9BjbczS9/9cbJEdcpMsv+gwf3eMNIww2FLrfiYaB3Ju7J8O9HWqiIFLsZWAc8xYa7g0NDa3EbcEekVTWX38tNw0olTjuB0sO6a52zLTCs+8LzV54eVYEiebds6bnuAWu16RfCvGfTNf2CREQ93ARwF0fww7bhqckhhW2x+SrgDsErJ/iBXu3D3dtPmEnrRRqxa99+98VYrndmULXl0gO9M4FPN1ycSEb4Pc79KR8i9DRwMnAl8J2Qv/Md4F7c0GA04nqazaEwl5uJsQ7Jt/dxh3W7w7K3bKxvL7OHdTs7X96mKUREInLGh85c9sUrv+QAUb5P0zD9gkREPdxEK5EmUblJOaPYj0gTTEz+ugMo3TuzHl7vTGAV8K/R7FREKngX9732r8DtIX/nmLd1mlFQk6mXmySBP6z7m9xxbd1zn3oeBr702MgjAPxe/x82uXSR7Bt7dRcvje0wwFaOHF4Zwfs0LdMvSEQUuOWcwjYRicLLr0+cB1TunQnVe7f5Cvu5jfAn/yKZNzoz7fS1d5jeaBZOyDPH2xrv5pS5n0izRTGsuxc3vLPAoEI3kcaNvbqLu9YO+1/+BrdnWhTvU8kRDSnNMYVtGVBuHiyRuETVq1K9M0WSznhbJ8YaGjXkbQdjrUKk/mHdV3q/55/EW7zX9WMjj/DzkZ9GW6VITvx85KfBsG0I6Ke+9+lzzH2fSo4ocMup9d09I37YtvrA/n6FbSkUtqeQSFIoIBbJEuNt07zSmvW2Bs3lJvHzh3XfDrRRCLOHvK+Lb7d79y+eC8rihgM8NvIId90zjIiE9/ORn+L3EsV9/9nAj4vfp5VuDnApcBTN2ZZbCtxyaH13z4g/4fLqA/v7NSQlhUqtWCqSZAqIRSSZHG+rXm6SNMbb2jp+18E74R/bs4tv3H4jY6/uiqgskey6657hSmFbrdSLWhS45Y0fto3OTDsK21JKYZukmV6zIlmxyts6cRYRAf+EyMRZhEgR422dBvfTj/cav2vtsIaYilRw1z3DjO05Hkz301jYBnPnCpUcUuCWE73tHSYYtl2tsC2dFLZJGmkoqUgWGW/rxFhDFBxmnxSJJIHxtlEM2bZoXjeRssZe9XqBumGbgxu2ORHt3t+PernllFYpzYHe9g6zobtnBNzVza4+sL8/7pqkioMT0Uwaf3ACgEUnnXQA6G58hyINKDWs9JpFCuJEJG5DuAHHIOkPECUbVlW/S02st9UKpiIBRSuROnjzH0bIb18kp9TDLeMUtqXODwHYvW3uT4rDimsWzb6V4u3nnDPO2BtlkSIikmvG2zox1hAlx7sZdGIkyWC8rY1wn5ZATzctpiB5V2Yl0qg5qH3JNQVuGRYM24anJocUtqWCm5BtfzKavXn7+eiHz3gnmh2KVOH1qpxl3aG5t+DPKu9ne9QliqSZv+hRzIy3TfMKpcU0ubUkhfW2TpP23Q8wtmeXO2eVFlOQHKqyEmnU/LZS7UsOaUhpRhWHbcNTkzbmkiScnQBsuBtW9MMlVxV+Uuuwuy0b3f0A/7Z79+kXLzuLi5YujapOkVk+dubil3aMv3Yeu7dFMxy60MvzJ43vTCR7NA9r5Bxva7ybU+Z+Iq3SrEDbwV3BdGRszy4ztnYXn+v/Aw0xldwoWhyh2WEbuO+5QdTDLZfUwy2DFLal2vtALwBrrndDs3ps2ej+vsvZ/as3Lrj9/h/zwOjmKGoUmWNx16nTQOS9M8lWDxqRhgx0dllwp4iIt5LI55dKCvVykyRo1QrAx1cw1WIKkgdjr+5qxkqkYThocZ7cmh93ARIthW2Z8BpwMr89egVPPATvTcGRw7DwJDjxlPK/dXACdozCv6yFv/8r+O1RgDuB63GvZJod46+xfXycA7+ZUm83idQTO3e+/9L+iUW8/Cyc+ztw5kcr/8J1t7i3UrZsdF/DrpuA/4iwVJHU6mvvMH3tHeZH7719b8w93H7gbYeAPfGV0RQ3AMtww/49cRYiufUDb3tjCx7LwTtG/OWelwBYfvb5LXhYkdbyF0eYPPQWuK/7G2ltT+a9FNqXe1v4uBKztrgLkOgobMucy4GnGvj93qLft7hXTQ3AdX29XNfX28DuRWD7+DgPjG5mx/hr4E8Ku+AEuOW+2UOiw/J7Zx45DHAF8HSE5Yqk2uSS5ccAuvaNxX38dszbxl1HM4xQGFKquW+l1SyF1XJb+frzH1fDSyVziuZrc4jvs91vO/vRtAW5oR5uGaGwLZP2AZ8AZoC1wFHcq+2Vbt/2bn8JvFq0Pwf3isrx3m7+EFP1dpN6PDC6mf/n0Z9x4DdT/rduBN6KsHfmPc3+P4ikxUBnl+1r7zDDU5NDMfduM7hX6R2yeZU+2AthqOI9RaJnvNu9tPaE3CHQ0+2Xr77E767sa+HDizRHicURWtFztByD27bsRYFbbmTxymQu+Ve9FbZliqUwj0zU71VDYPJO9XaTWhT1aoO5Vwuj7p0pknsJauctbvvRiomm4+L3clMvBGm1uHvAGNzXPwBfv3FAQ0wltVq8EmkYBvf95aAe1LmhwC0D1nf3jPS1d5jRmWnn6gP79ebNDv+gq5kNhCUwObSCN6mkTNA2ROmTgoXABcAK4KtldmkC+/khsA13pd73o6hXJCsGOrvsQGfXYALCNshH4GbQSZHEIynDtf3Qec4Q0/H9r+7csWvrm69N7D35xVeev7Tajj5+7iee+8jis9658PyVpy/tOfuCplUsqRb166rE4ghOtBXXTRd0cibuD3NpkMK2zLK09oTGfzxAwZvMViJog2gOFJJyYiGSWH7YBrD6wP7+mIeTQuFkIcuBG+ikSFrPkqww21I0r9vjT/yT8+jjD5t6d/jFK//IufKzX6z79yWbonxdjb26i8dGHklq2AaaJzR3dJKTYgrbMsvSvKGktTy2grecKxO0RXkioBNakSoSNJTUF/eQt1YxqJebtJYlWYEbBI4LTzu1e+vBXx9YCcDqm+Ciz8A5K+C0xeV/++AE7N4G25+EDXcD8LFzLtj6FzfcvLLZhUs6/N0Pvr/15d07I3ldXbVq9cq71g7793JI5me3oTBsW1lMDuhJTqngFe8ErFYm0WrFUNJqLArecqsFQZtPgZtIBX5bn7ALa3nqmZqXcFGSIamvN4u/yv2CD8At9ze8CvkXr/ySc+Vnf99EW6akzeNPPOo8+vg/Rva6wn3fGJIbtvl0/JsjeThYypwEDi+R6FiSc3XTUFhcAVDwlnUtDNp8BvUgESkpoW29IV/vWYvbBjrk4/8r8UpqmH0S8A4A33qofChyzaLCv9cdKn2fLRvhjmsB+Maf375Tc7rl12+mfn3A3vl/dQPlX1fB15Sv1Gsr8LoCvgH8TVR1NokhX21prs2LuwCpTfAAfHhqcighB+ASDUMh3HLiK+M4B/dkY8i78cDoZq5Z8z0eGN3MA6ObYyxNorR9fJzb7v8Rt9//41Irj9q46hLJqwS39cbbboqziBZyvK0J3EZwgxETQz2SXdbbDsVZRBmfBtzhfmHCtlJf+y65yt0PsGPX1jejKlDS5823fvUuUPl1FVbgdQW80NjOWsLxtga1JZm3IO4CJLze9g4TPABPyFwuEh3jbcut+hgXW/T1oB+2PTC6Wb3eUmr7+Dg7xl8rFZw6tO416D+GacFjiaSC2vpEcSgMURqpdEeRDFsFuHNrlVKqZ9s1i9xbqd5IF30GNtzNaxN7T464TkmRqbcPnQCUf10FlesxGeS9rnBfr//aSG0t4qDj31xQ4JYiG7p7RkAH4BllKfRus/GVUZENbC1evX5vt+v6erlw6Ue4aOnSeKqr09jrr+989pWxN3/5qzdO3rJ7d9VlyC8555znPvrhM9657Nzlpy8/88zUDYUoM2zUIb6g16FwhS+OxxdJjN72DpPwtn5V3AW0mIm7AMmNJB8D3ga4E9lXEiYUCeznxVeer3rMJdl1YPINd1WEcq+rcr0kyyns5zbg9nrraqEhCqObnFgrkaZS4JYSA51dFhJ7AC6N8w+0kjiUoBQbuEGg15vf2y0Nvd4efvoZ575NTxggdHC2ZffuS7fs3s1DTz3N9as+63zp8k+bZtUXpQQGbSJSJEU925y4C2gyS2D+UpEmM3EXEEq5VSPDBm3V9iP5VO31sO5QIXyr9FpL3+vKQRedc0GBWwoUzeViYy5Home9bRIWSqiVDWwtJYabQjLDN/vjB7Y+v2evAepehvy+TU+YF/bu3Wr/+LpELm+fkpBtEzrYEGF9d89IX3uHGZ2ZdhLc1htv68RYg0jWGG+blouu5YVZOEGkFsHXVLlhyumnXm4ZpsAt4YonTo67HmmKrFxFt4HbKsAkNXx7+OlnnOf37K19GfLTFru3yz4PK/phzfU8v2fvyoeffiYRPd22j48DlArZIHlBm8/BfQ/kbaiayHHBsO3qA/uTumKZ8bZOjDW0ivW2WWmfRUTSKTgvoL/NTujmDys18ZYhzaTALeFSNLxE6mO9bRp7t5Vji/49J3zz53qLI3wbe/31nd4w0sphW7WrtJdcBbfcB3dcy32bnjCf/ti5e3pOO21Z1PVW4/diA9IUsomIZ6Czy/a1dxiABIdtkL8VSq23VegmzZbk+dtqE2bRBJEwil87waGl2eGgYaWZp8AtwTRvW+ZZsnSQVZot8e/BHeOvHV8h0w/fWrXgwrOvjL0JXFDz8vblQrfVN8GGu9m1b/+hntNOi7zeUjIWsjne1sRYg0gsgr3YVyc7bMsri/sZpRVKpVmMt3VirEFE4qPFEzJOgVtCad62XMnLUGEb2Pr/Ph6++YLBWzN6wP3yV2+4y9BHvLz9xOSvOyIuFZg9TBTKBmyQrpCtmIOu7knOFIdtm2emnZhLktIcoJ+5oZtBn1fSOONt89JzVERmc7ytibEGaSIFbgmledsyz5L93m2V2MDW//cqwAQDuOKVT6PoBbdl9253GfqIl7d/+fWJ8xqpCwrh2o7x19g+Pl4qXPM5uAfnDjrhE0mdlIZt/jyLTpxFxMTBDd0G0UmRRCv985eGWUFSpFb5el056MJzZilwSyANJc0FP2xToDo3cDQUTmgGoRC8+YqDt7qCuBiXt/eDNSiEa/6/S3C87VDR11milUolN1IatlkUNDkUhpcashCUSBIYb2tjrCGcgxOVj3n8kQDV5tk6OAHAKSd3HgC6oytQUini1xWwParSWkjDSjNMgVvCaChpLtgy/xaXQ6GxsUXbOb3gil249CMAxwO44q9r0sDy9sW91XwVeq35HPLXe81BK5VKDhSvPJ6SsA1mLxxgyM9nUylaVU6iYrytE2MNYXwHuI3d20oHI8EwJMxx0+5tACw5c9leFLjlVnfXGRPA4qhfV8BPIiyzVRxva1AbmzkK3BJGQ0lzQb3bameLvjYUDlRXBb53PNAKEWxFasf4a1yz5nu1/IrjbTcF/u2UuqOIpF9x2Jaii2q26Ou8B+MOGv4j0TDeNunzt20CbmP7k3DZ50vfo7gHUqWLlNufBOAji896J7oSJW06T1l0GCDq1xXJfz+V46BebpmkwC1B/KGkoN5tGWa97RDq3dYIh/KNkSnarir6OrzGlrd3vG0wUAM1oqU43tbEWINI06Q8bBss+p5pfRmJo+E/EoW0zIv4DAAb7oYV/eVXeA9zjLRlo7sf4MLzV54eVYFJNb7/1Z07dm1987WJvSe/+Mrzl1a7/8fP/cRzH1l81jsXnr/y9KU9Z1/QihrjcvqHPnwSEPnrCv/1mj5+uyIZ0xZ3AVIwuWT5MUjdwbjU5pi3VeAWH/c5qCU8qzZxq/tzB3dSbamPPy9SP8k/+RAJLcVhGxTarGJ6n+ozSxrnv7/ScD52BbCZBSfALfeVD0cq2bIR1lwPRw4DOJ/r/wPze/1/GHGZyfH4E//kPPr4w6be3//ilX/kXPnZL9b9+2nwwCNrnWf+7QkT4evqCuDpaKtsKbUrGaQebgmh3m25YL2twjYRkRxIedhmK/zMoJMB9XKTRlhv68RYQy2eAu7kyOFvcse1sPomuOgz7krtlSa8Pzjhzq21/clgD6SHgS89NvIIAFkM3f7uB9/f+vLunQao+2/16OP/aF7ZvXPrX9xw88rWVN1aPx/5Kc/82xMG2MqRwysjeF3dSbrDNigsIqZ2JUPScEUlF9S7LRfUuy0ZKvdwK9WbTT3cWsHiHmDo/SGZ0NveYTZ094xAKtt2y9yhpEEO+ryDQruu3ghSK0s627zLccO3evV6v2/xPmOWLzufr//ZQOOVJcTjTzzqPPr4PxoWfABuub/hXltfvPJLzpWf/X0TeaEx+vnIT/EDV9z3wGNE87pKO4Pbyw2U02TGvLgLkELvttGZaSdlB+QSnvW2aTuwyq7C8uGllVoZqfJ+Xm20JBHJhpSHbVA5bAPNM+PzFz+q9vcSKZaW+duKPQ38V+Dfgf9GYU7dSrc/A34H6KAQili80H5szy6+cfuNjL26q9m1N90bb72+59HH/9EA4cI2f47gYpdc5Q6xBB59/GEzvv/VnRGXGpsSYZvFfV114L5O/owSr6Pe9g562zug8usq7Rw0r3HmKHBLkM0z02ldVUWq08F4cnwHCC4fPlupnm3F3w8q7OfJ0neQkBxvm/cVECXlMhC2GcKFAKapVaSD420N+ntIbYy3dWKsoR4G+Gvgk8C/4IZm1W5rgS3A+0X7cnB78TgAd60d5ucjP21y+c21Z/wV92Bx9U3hwrZKLrnK3Q+wY9fWN6OoL2533TMcDNv6md0J4X3c18layryWNnT3sL67x//dcq+rtNOFnIxR4JYAgfldbMylSHPYMv+WeLjB9vYK+VhxuBZuGfIyCZ6I5EnKwzYoDBdtI3Ay7G2H0NX3IIfC30MnRxKW9bZDle6UUMbbBj8LGtXv7Y/HRh5Jdej25ltvdADuPGRR8Pbz2sTek6PZYTzGXt3FXfcMM7bneC9GDcMvz/G2BrWzmaBFE2LmDycdnppMY6Mr4fgH4XqOk6Epy9sDmenuLyL1We+FbRmbIsKfxHkTsy8amRhqSSJ/8QQTbxkiTWcpHNPaJuwbYDDNiymM79t9HuBO+l9Jtd5tPm8/L77y/KWN1BWnsVd3cdfaYf9Lhwbn/+xr7zANlpQGDmpTMkM93GLm924bnZl2Yi5FmsOW+bfE513cyVXdCWm3bKxvL/6Etq4ryF6XdhGpwfrunpG+9g4zOjPtXH1gf5YWFCg311Tx13nloF5/Uhs/tHLiLKIOzb6AbMlIT7eKK2zGsZ+Y/Hzkp5GFbZvzda6sYaUZosAtRr2BhD5nHyJ5pN5tyeIvbw93XAtrb4Vnf1Z9IYWDE+791t7q/t6Rw5CNZciTwPG2JsYaROqS4bAN0jvXVCvp5Ejq4cRdQA2st2324l8WL5R5bOQR7rpnuPK908jv3RZmJEWKlVgcIbK2sTf7vdwcb2vQcXHqaUhpjPwusRpOmmnN6novjbsZWAc8xYa7g0NDa+EAj0ZZVI4Zb+vEWINIzQY6u6zfnmc4bJPKHApDgAz6HJPyrLdN07G/obW98hzccGZwbM8u843bb+TrNw6w/OzzW/DQTRZ2KGnKlVmJtGGjM9NOToaUQqFNGURtSqopcBNpHutt03RQlTdPAycAS4BlhFshcxOwBxgGrvW+50Rfmogk3UBnl/WnhlidvbANFITXwp/LTSdHkjXG20a5UEI1jnezwGBgWGI21NG77Ru339iEQppOiyPUT/ODijRqcsnyY5NLlh+Luw5pmmPezcRchzTPCO5zbGOuIwsM7t9yJOY6REIZ6Oyyfjue4eEtFn3G1ULtvlTjv0bSwhJ/zcEa0nFbd2jurdTPKt2/+D7puo3QhM9Bv931Fx3MAf88w8RchzRAc7jFJMMH5+Ky3tZBV3ayLDhvj4mxjiww3nZTnEWIhBHs2TY8NTmkeVjFo7ncpBITdwF1aPZCCWFYoC0lN6fq/+aaRYVb8HvVxf1/q+Wmnm3RUJuSAQrcYqbVSTNP4UG2ORQaQ/XMEsmB4rBteGrSxlxSM5VboVRKc7ytIZ3hijSX8bZpmWrEettmL5QgEop/3tzb3hFmCpgsMXEXIPVT4BYTf8LHzTPTCmSySYsl5IelcJKl0K1+es9I4uUsbAPN4VYrh8LfSj0SJM0MrV0oIVtKrXq/7tDcW/BnlfezPeoSJRUcZl/IkRRS4CYSPett03IFUxrnT5ZuUGBUD+tt9Z6RxOpt7zA5C9ukPv7nmImzCEmkNF1YMt62lQslZMEPAdi9LZq9Ffbzk2h2KCmkYaUpp8BNRCQafuim+dxqp4MISbwN3T0jkKuwzXhbJ8Ya0shBPRJkLhN3ATWwpCscTBI3Idv+ZDR7K+xHI6IAf77UvnzNhe54W0O6PkfEo8AtJv7Yc83hlkk6SMknh9nzuZnYKkkX6201R4wk1vr8hW2ghUwaoR4JUsx42zT05E7CQglptROADXfDlo3V7108tDRoy0Z3P65nIqlO0sqJuwCpnwI3kWhZb+vEWIPEx6L5e2phUUAtCbe+u2ekr73DjM5MOzkK26Qxjncz6OKLuNIyybv1troIVp/3gV4A1lwfLnQrZctG9/ddVwDvRlBbJgQWTjDxVtJSuoiTYgrcRJpDPQLyy18K3aCD1UosuoouCTfQ2WX9oStXH9jfX+XuWaMVShujEyQJMt7WxlhDNQYtlBCFvwa2cuQw3HEtrL0Vnv1Z6YUUgg5OuPdbe6v7e0cOA9wJPN38kiXhHG9r0EUckXDWd/eMTC5Zfixn6XweHPNukm+GwmvBxlpJ8hjcIbf6+0iiDXR22ckly4/luK1We9Y4/29oYq5D4mVxXwdJX8ncona5EYbC8c0I8BUKnwH13K5oafUp4Z9DD3R22bhrabHga0tEqvEP5HP4YZF1OkERn0EnW8Ussw8mTZzFiJSjsA1QexYFi06QpPBeSvLrwKL3fCMMpZ/nk4D/BHybcCHbt737n9SiulMnx+fQhuR/jogkR44/LLLMoiuDMptF4RLM7dWmgwVJhIHOLusviBD8nh+25biNNui9GgWD2oC8C7Z9SQ6z1Ou8flZwobsAACAASURBVAYd37RMb3uHmVyy/Fhx250T/ueJibkOkeTL+YdFVll0sCJzWfJ7wmWYG7SZGOsRmaW4J5vfNuc8bAO1Z1HSMKD8ssztwZREFr3f62VRWNlSOT+Htqg9EQkn5x8WWaWrDlJO3k64DHOv6psY6xEpyQ/Xim85D9tAJ+BRMiQ7bJHmsJQeMmjiK6kkQ3JrSzqLwraWy/k5tEHtiUh4/oF93HVIZPQBKJVkPXQzzA3Z1KNNEivYuy14y+lBfDFdQIqW/p75Yig/R5eJrarSLAqM6mFR2BabnJ9Dqz0RCUsrlWaOAjepJi2hm2F2aDaCe0AZvJnATUGbpE65wE093AC1Z1EzpOOzX6JRaVJ8G19Zc1j0Xq+HJZnPZ27kPHAzqD0RCUeBW6YY9OEn4aQhdDOEW02rOGRT0CapUS5sU+gG6CS8GdQrIR8s1dvKpFBoVLvgBUYTbyn5lfNzaIPa6FSZF3cBeTY8NTkEMNDZNRh3LdIw4203xVmEpEI/4FBoME2MtZTjeLew9+0P3ML+nkhswoRpA51dgzkN3Yy3dWKsIYuGvK2O+bLLkJ7n13rbIRS4hRW8qKjjHYmLQ+G1Z2KrQkJT4BajzTPTDkBfPtN5kTwLHqj5wzWTZqj6XRhCB52SMaMz087w1ORQ176xtuGpSRt3PTEw3lYXkKLleFuDTpKyygHacNvGcm2oaVUxFRgKwaATXxmpYSiEbQ467pH46QKOSFg57xKbJRZ1y5faWZI3pMMwd062pM9DI1KTcoslqC0G1J41kyV5wwqleYLDSC3JGYpo0Xs8LEMyhwPnmj8Ha057ofs0rFQkjJwvbZwlFh28SH0scw/KW8kQPmRT2Cap57e7CtrK0lxjzWNITugizVfqhNjEUEeQRSfqYRkUtiWSAjdAbbVIOMEDfx3wp5pFQYTUz9DaQMtQWOSg1ITOpkxdeo1L6vk9yxW0laWT8eZKw8I50jhLMttMteXhWPS3Six1WAG0YJ9IeP7Bf85T+rSzqFGWxlnmhls2gv0aygdsxSFb8e8F71fqPiKp4V8Vz/lBejUK3JrLoL9xHliSd1xoSV5NSWRR2JZoCtyO0/G5SBj60MgEixpmiY6ldChmvZthduNqim6W6gGbJVwDrS7rkgl+2Da5ZLmCjvIMumLeCvpczb6knQgbkldTElkUtiWezp2PU1siEpYWT0g9ixpniZ6ltrnVyt1qCdiKmTp/TyQxgmGbepNXZFFb1goGBZtZl7RejBa9t6uxKGxLDV1AA9SWiISnpD71DPrAk+aylO+5NlJ0sygoEwFmz5WqsK0qi042W0U9E7LLkqz3kSV5AWDSBI+rTLylSBgK3I7T61YkLPVySzWDAjcRkcRR2FYThUCtY9BxQ1ZZkhW4qddWZQrbUkjnzcep3RYJS73cUk9XD0VEEkSLJNRM7Vhr6SQ/m5L0PrIobCvHMHvVYBNnMVIbBW7HGXTxRiQ8rViaarrCICKSEFokoS5JCgrywKITpawxJOd9ZEhOLUljmD0th6SMArdZdPEmwebFXYDMNjw1OQQw0Nk1GHctIiIiaTTQ2WX9dtRvV6Uq422dGGvIG8fbGnSilBXG2ybhc8d42yTUkiSGQsjmAP2xVSJ12zwzvQmgT4EbFNoS5QcJpMAtYTbPTDujM9MOuCcM8VYjNfIPaPRhJyISo2DYNjw1aWMuJy2Mt90UZxE546ATJWkOS+E1ZeMrI3EshbBtCIVtkg0K1UVqEVxRTd1kU0dd90VEYqSpGepm0VxPcTDo2CFLkvJcaqGEuSz6u2SG5j6fQ8NKRWqhiZ5TS/O4iYjERPO2NUTtV3z0t88GQzLmBLMoVCpmUdiWKQrc5gguACIiYegqfSoZ9GEnItJywbBNvcPrkpSeOXlk0LFDFljiD3QMei8XsyhsyxwFbnMY1I6I1EZDS1NLV6pFRFrMby91kapuOkmPl44d0s9/Dm2MNdgE1JAk/nOi91YGqUf7HGpHRGqloaWpZNEVBhGRlvHbSoVtdTOo3YqbQc9B2sUdWtsE1JAkCtsyToHbHBpWKlIPDS1NJTXwIiItoHnbImFRr5gk0LFDehniP9HVsEmXYXbwYOIsRppHbf8chvg/h0TSR0NLU8miDzwRkaYKto+6KNUQi07Uk8CiY4e0ssT7Hor78ZPCUAge9T7KOL9Tis6PZ9GFG5F6aDLoVErCXB4iIpmlHuCR0bwvyWDQyVJaxXnMZ9BQUlDYljsK3EpSey5SL83nljoGHTiLiDSFhpJGSifryaE5eNIpzveQRRd4LRpSmzsK3EoyqA0RqZ+u5qeORR96IiKR01DSSClwSw6Dno+0scR3rOc/dp5fLxaFbbmkBZPKUocPkXppvppU0tBSEZEI6SA7UgZdGEoaDQlKF0s8x3n+4+b5GNOiv0Fu6VigLLUhIo3QfG6pY9DBgIhIJDSUNHIWtU9JY1AImiatPrk1gcfMc+82i46vc02BW1kGtSEijVHoljoWde8VEWmYenlHzqIT1iRSD4X0aGXoZZkdtOU1cAsGjibeUiQu/sgvzW9eUl4/G0Sio6v8qWPRwYGISN10NbspFOwkk0E9FNLA0prA2jC3V1teAzeFbQIocKtCbbtIFPxFFPRBkxoWHSSIiNRFvduaIo8n7Gmh44XkszQ/cDOUD9ryFMoatIqvBChwq8ig94pINBS6pY5FB9EiIjVR77amUeCWXBadMCVds4/nLJXDtrwMBzfkL2CUKhS4VaX2XSQKWrk0lSz5OlASEWmIplBoCoNOYJPMoAt0SdeKE1pLvgM3S37+r1IjHRtUpGGlIlFR6JZKFh1AiIhUpd5tTWNRG5R0GkKXXJbWvX/8x8pb4GbJx/9T6qTArSKD2g+R6Ch0SyWLDiRERCpS29Y0FrU/SWfQsKCksrT2/VNu0QTTosdvNYuOkaUKBW4VGdR+iEQruHKpTkxSw6IDChGRkoIXk+KuJYM03CQd9DwlUysDL8vsE+fir7PGomNjCUHHB1Wp/RCJmkK3VLJoMlgRkTk0nLSpsnzCniUGHR8kjaG1759S4ZNt4eO3kkVhm4TkLx7Y295h4q4loTQtgUgzKHRLJUN+5uQQEQlFB9NNpcAtPdRLIVksrZ+/rRWPFbfgsFkTbymSBjpGqMqgwE2kORS6pZZFoZuICKDhIk1k0EF4mhj0fCWJpTXHaf7j5OEzUGGb1EyBWyh6X4k0i0K31LJoiKmIiAK35rHowk7a6KQpOVoVgvkhlG3BY8XFoGNeqZMCt1DUQzpGC+IuQJpreGrSAgx0dg0OdHYNBr8niWa97SCFA5Ehsn3AJSLxWQhcAKwAvhri/j8EtgE7gfebVVTwAHp9d89In/f18NTkkNqyqsI+p4PAKlr0nErdFgJ/C3wO9+TJqXJ/PZ/NY1r0ODbwWLZFj9lqhkLI5gD9sVUikl1DuO+1Qaq3HSJSD/V0SzWLhpiKSPNcwez5I2u9XR5VIb3tHaa3vcP4V6wr3XQ1u6LEPKcSCT2fyWJpzTFZ1o/9LNn/P0qTaWGlUAz5GZqeOOrhlhPq6ZZq1tsOBm7q7SYiUfg+8E0AVt8EF30GzlkBpy0u/xsHJ2D3Ntj+JGy4G+Ap4E7g5noK6G3vMH671FcUoo3OTDsAm2emN/W2d6zqa+8wozPTzuaZ6U2bvZ/JHLE/pxIpPZ/Js6oFj2G9bVaP9yzu8Sxk9/8okhSOdzPezYmtkhxqi7sAaa2Bzi4bCNw0JCd9LDpAEZFoXA48xYIPwC33wyVX1b6HLRthzfVw5DBAL+6JfVV+yFYuYBuemhxSoFaX2J5TaQo9n8nk9xJp1nmUpXCsl8VzNYuOZSUi/rmtzmurGqEQtmnodgvNi7sAaa3hqUk7PDU5BMd7u9mYS5LaWNyDE3APVtQNX0TqsRD/xDt4In/NIvdWSfA+l1wFt9zn/2QzcFK5XwsOFd0QmI9tdGbaGZ6aHFp9YH//1d5NYVtdTqKe59T/efnn9ANNqlcqK/18Fit+/orNfT4XRlxn3hhv6zTxMfwedEMV75VOFoVtInHI4udJKihwyyGFbqlnca94BoM3i1aeEZHwLgDcIWr19JoJuuQqdz+uTwd/VClkW31gf78fsg1PTVqFbA1z//a1PKfFIU0wdCs8p0siqU5qVf35LPf8FZv9fF4QSXX5Zbztpibt35LdhRIshbCtn+z9/0SSzPG2JsYackmBW04pdMsEy+zQbQQdvIhIOCsAdz4oX7WebZXuU9jPKj9kW9/dM1IpZNvszsXm1P0/kGJur5han1OAdYfmfq+wn2WNFCV1m/t8BvnP7bpDpZ+/YoX9rGi4snxr9vxtwd5fWTLC7LDNia8UkdxyvK2JsYbcUeCWYwrdMsEyt7ebhpmKSDVfBdzJ16GxsC24H7jND9n8BQ78oE0hW9PdBoR/ToOBTXDrf7/wnLZigniZa/bzWU3x81essJ+vNlSVGG9rm7Bvf59ZGmppmDt3lBNbNSL5FjxflBZR4JZzw1OTdvWB/f3ghm7ru3tG4q5J6mJxD2I0zFREwjtt8dzgpZRq9ylaMTEYsmlOthYL+5yG2Y/EL6rnQc9nFKy3dZq078HAv7PAoLBNRHJOgZuw2TsxAujzhgLFXZPUxUHDTEWkHmGCmZDhTde+sTaFbAnQSNgmIpU0Y/62rCyUYHCPPY95W9CqiCJJ4XhbgzpltIwCNwHc0K1r31jb6My009feYSaXLD/W6827I6lj0TBTEQkrwrBNEkLPV374vRnDztcnjfBDMSfi/VrSvVCCYXbIZop+rrBNJDmcuAvImwVxFyDJcvWB/f3rvfl3NnT3jKxWL4U0s4HbYOCWpblBRIpZNOdUGKaJ+1Yv6WwZRO+p5Fl3qN6wzaD3aFibmH28ZLytE/HjpHGhBINbt6lyvzT9n0TyYIjC+9eJtZKcUOAmc1x9YH//QGeXHejsGtzQ3TMyPDU5NDw1aeOuS+pmve0qCh+wxT8TyQr/dS7xMXEXIJEzcRcgJQRDt9qYiCvJA+ttnSbtN20XQw3hXke2qVWIiCScAjcpyQ/YvNVLB4PfC+pt7zDqAZcKNrD1e7oV/0wkM66/8AQu7lYTV859O2Z44cDRpux7jTmxKfuVym5x3mvKfvVeikfo5zM4fDhE+HZx93yuv7C9zqry4YUDR7hvx+FyP45y/jZLehdKsFS/wKXebSLJ43hbQ2FBE2kiHUFJWdVCN78XnIadpopFw0wlBy7uXsAnTp8fdxmJdd+O5u1bf/fs0XOaQA2sRKvnM4w5gZsfjDkRPkjaF0rop/ScbT7bskpEpBYO6uncMlo0QSoanpq0w1OTQ3A8eLPev60fwvlbSRWLFlYQkYMTke5n0cK2A9HsUOoW9jn1g5riecD873v7Wbig7d0Iq5NahX0+qwVw3n5OPqFNK2o0xoloP5Z0L5RQTVpDRJE8CJ7/SZMpcJOqhqcm7eoD+/vBDdfWd/eMBEO2vvYOoxVNU8ui4E0kd847bf5LAOzeFs0Ovf0sP3X+3mh2KLW69MwFzwH1PaelhiJ6++la2PabRuqS+lR9PoOBaZh53Lz99Jwy740o6ssZ622jDJHSuFBCkKHQu82JsxDJt972jlUAoxptJQmlwE1C2Twz7aw+sL9/dGba6SsRrqmXW+pZ3IM+BW8iObDklHnTAGx/Mpodevs599R570SzQ6nV8b99Lc9pcW+o4Nfefro62spOZiXNE+r5rPT8FfP2c/y9L3Gy3jat03kYZodt/d7Nl9b/l0heON7WxFhDbihwk9AqzdOmXm6ZYCkEb77BwPdFJCM+ftp8t0vMhrthy8bCD9Ydqj4nVPF9tmx09wN8avGC06OuVcI5/rev9Tn1f17mOV1yyryTmlGvVFb2+SxW6vkrFng+j7/3pRZRzt9mSe9CCVAI26AQthX/W0SSz/G2JsYackGBm4Q20NllS/VuC/xcvdyywTJ3mKmCN0mSk4D/BHwbtydm8GbAXeHvCw++zRcefJvbn5x+7h+2zzgvTx7dGVfBSfORznnLvnZxuwPAmusrn9BXsmWj+/vADRe3Ox/rmn9BRCVKjT7WNf+CZjynp3XM646oRKlBs57Pj3TOWxZNhen38uTRnf+wfca5/cnp5/z24gsPvh1cIdbgtiu+/wW37WkkhE7zQgmWQtg2xNyAzUG920REZmmLuwBJh+AiCZVoxdJMssyeVHMI96DKiaEWkSuAzfX+8g0Xtztf/vgJJrpy0u3WTe9t/fc3jq4EYPVNcNFn4JwVcNri8r90cMKdD2r7k8d7zXzyjPlbv7vqxJWtqFkq03OaLXo+m+OBFw87974wYxrYxRXA0zX+jqVwPJW2czDL7HnnbGyViARMLll+DKBr31ja3lNxM7gBuoN6pzaVXpgSykBnl+1t71hVqYcbuBNWXu0tsCCZY5kbvNlYKpG8+j7wTUAnnhF68MXDzg8aOPH82sXtznUKMRNFz2m26PmMVlQhJnAncHMND+33lkvb8ZNFYZsklAK3uhkUuLWEXphSs4HOLuttS/Z4Uy+3zLMoeJPWuxx4igUfgFvuh0uuqn0P/tCqI4d1Alrk5cmjO38xceTNV37925Ofe/3IpdXuf+mZC54799R573xq8YLTNYw0mfScZouez2gcDy8jakuAXuCpEL9lcY+d0nbMZFHYJgnV295hNnT3jKjDR938iwDKhJpIf1xpSG97h+lr7zDF4ZtCt1ywKHiT1lgIuCvrfeuhwgnSNd7c36UmC7+maF5w/z5bNsId1wLwN1eeuFMnoiIi+fDy5NGdf/n4e+5nfrAtCSpuO6B0GxNoS4AO4P0KD21J51BSfyVScHvAOLFVIlKCAreG+e9xvb+bSIsmSEM2z0w7w1OTtmvfWFvXvrG24anJIYAN3T0jfk84ySzL3MUVjhEudAtzHxGfe4K0+qZwvRFKnTD537vkKnc/wC8mjrwZVYEiIpJsxz/zy7UlpdqOct8PtCX4bVR5aVwoQWGbJJ4/1dHmmelNMZeSVv7fzcRZRNYpcJNIDU9NWj90G+jsGlTolguW2oI3693HNLcsyZAVgDvPji/MidG6Q7N7Jvg/8/bzyq9/e3KURYqISHId/8wPtiWl+G1HqZ5tQYX9rKhwL0vheMdWKTEJDIWwzUFhm0iWOd52VaU7SWMUuEnkFLrllsU9MKsWvPnDKoJXT0Uq+SrgTmoN5cO2oOCJUvFJk7efMPMgiYhINhz/zD+nUj5Wg8J+vlrhXsH5z5LOoLBNUqS3vWMVuIv2xVyKSFkK3KQpikO39d09I3HXJC3h4AZsQ5QO3mzR/UsuvCFS0mmLK8/b5n+/Wq+ESivRiYhItkXVBlTfj/W2aZjj1uCGbaBVCyUlAkNKnXgrSS3H25oYa8g8BW7SNP7cbqMz005fe4eZXLL8WK/3wSiZZykdvBUHbIbCAZ5IONUCNRERkVr5bcs1iwq34PdrYykc89hGS2syS+FYbAiFbZICOqeMjONtTYw1ZJoCN2m6qw/s79diCrllKQRvTpn7GJJ/MCpJUc+JT2MnTSIiIrVKy0IJltnDXm1slYjUwO/d5p9jiiSVAjdpCc3rlnuWyldOBtFBnjRDmPneREREihfdKfX9cCzpWCjBorBNJO+0UmmTKXCTllHolms2xH20cqlEq9zJk4iISDl+e1F/u5GGhRIsCtskxQY6uwZBCyZEwPG2Wqm0SRS4SUsNT03a1Qf290NhMQWNwc+FsIsjjKCDPomCwjYREWk9622THGKNUDgu6ye5dYqUFDx31IIJknQL4i5A8mfzzLTTtW+sbX13z0hfe4fp6+4xw1OTQ8NTkzbu2qQpDIWrvKuKvl9KMJyz0ZcjmaewTUREWs+S/IUSRigcf/VTfn5dkcTS/G2RcrytibGGTFMPN4lNcDEFDTHNNIfC4gn9gVtb0a2fuSua2lYWKgl3cCLS/Sxa2HYgmh2KiEhqVGtL/Is21eZuK+znVW+b5IUSDIWwzUFhm6RYb3uHhj9Kaihwk1hpXjcJcHADtjZmB2/HUPCWRwb35OAYcCYAu7dV/63iE6RrFs2+Bfaz/NT5e6MqVkREku3SMxc8B5RvS8otlFCup3RhP0+S7IUSDArbJCN62ztMoIebjbeazHC8rYmxhsxS4CaxKw7d1nf3jMRdk8TOouAtjwzuczzC7GEvuwDY/mQ0j+Lt59xT570TzQ5FRCTpjn/mV2pLisO1StMSFPazjeQulGBw21MohG0iqaXhpJI2bXEXIOLrbe8wA51dg/4H6eoD+/s1EaZ4LLPndkvyZMRSO8PcVWodCicuzwDTAHzrIbjkqvofactGuONaAP7myhN3fqxr/gX170xERNLi5cmjO//y8ffcz/wI2xLgvwJ/TfKOTSxaiVQyZnLJ8mOg88SI+Re51fu1CebHXYCI77WjR/b86L237wXa+to7zFdO6rwBaNOHqeB++LcBm3AbBEOhF5wTT0nSIAOsBW7AfS6Xed93gBtxTw72eLcjwEbgf+epR+Cjn4QzP1r7I27ZCGuuh98e5YaL253PLv3AZQ3ULyIiKXJax7zuBfPanG1vHl0WVVsC3Abc4f0kSb3HLArbJGMGOrtsX3uHGZ2Zdr6nHm5ROhv3uHwvOq+KnAI3SRwvYGvrK4zRV+gm4DYADm7IZrzvmcDXTssrknoY3KDN4oZsyyiEbDcC9+KGbMVeA07mt0ev4ImH4L0pOHIYFp4EJ55S/tEOTsCOUfiXtfD3fwW/Pconz5i/9f+8dOHlkf2PREQkFS7qnr9sx1tHt/7q7SNnNtqWAHcCfbjt2BDJOQ6xKGyTDNrgTTv0o/fevlfnhpEy3m0TyfkcywwNKZXEGujssgOdXYMAozPTztUH9ifpyqHEz6JhpmlhmDtkFArDRp0a9nU58FS9hXzt4nbnuo+fUFyHiIjkyIMvHnZ+8MKMaWAXvcD/SuE4JCnnVBaFbZJBwfPCrn1jSXm/ZYXBHVbqkKyeupmgF6skWm97h9kQWERheGpySCvSSBGLgrekMpSfm81pYL8nAZ8GVuEO56no0jMXPHfuqfPe+dTiBadrzjYREQF3TrdfTBx585Vf//bk514/cmmIX/kObg+QZ4B3cRdzguQcdwQXG9JcTJIp/txtOhdsCoMCt6ZR4CapELyqoQ9aKcOi4C0JDNH1ZqvHCGDWmBP5xOmaNUFERGrz/JtHucV5DyqffFrcti4pxxoK2ySz/PNAjXhqGoMCt6aZF3cBImEMT01af/nngc6uwYHOLhtzSZI8Fvcigj+J6iDu1WcbUz15Y3Ab6+BBv4PbcLehEwAREckGS+ECn42vDKDQ9hoKba4TWzUiTeB3utg8M70p7lpEarUg7gJEwvJ7tXmB22Bve8cqXeWQEqy3HSzaOuggNGqGeHuziYiItFpwjrQ4GdywDdQzRTLK72ShEU6SVhpSKqnT295hBjq7Br0VTPUBLJVYNMy0GQzNmZstLM3hJiIiDalzDrdjwB8BFxDveZRBYZtknBZKaCl/Tkr9nSOmP6ikluZ1kxpYFLw1ypCM3mxXAJvr/eUbLm53vqxVSkVEcu2BFw879za2SultwB0RlVMri1YilYwLLpyn87yWUODWJPqDSqoFQzdNpCkhWBS81coQb2+2oO8D3wRg9U1w0WfgnBVw2uLyv3FwAnZvg+1Pwoa7AfjkGfO3fnfViStbUK9ISV948G3++cun8IUH3wbgn798Ssn71POzco/nC/6OX0c9gvsspXi/5WoQabVbN7239d/fOOq2AQ20JcCdwM3NrreIRWGb5MD67p6RvvYOo7CtZRS4NYn+oJJ6wSsgoKsgUpXFHYpovK+HAt8Xl/Fuwb8TxDs32+XAUyz4ANxyP1xyVe172LIR1lwPRw7ztYvbnevU001i8IUH3+bYsWO0tbVx7Jh7fNvW1jYnCKvnZ5Uez+f/TrCOWgOw4n2WEtxvuRpEWu3BFw87P3hhxkTVlgC9wFMRl1mORWGb5IBWJY2FArcm0aIJknqbZ6adrn1jbf6Hc2CYqY25NEkmG9gOMrvHmyXfDMnpzRa0EP+EptoJ0jWL3O26Q3N/dslVcMt9cMe13PvCjFl5xvydmtNNWikYcgXVG3yFfbxyj+WHfs0MwKrVINIqL08e3fkDfxhpqbbEbz9KCbYpgbYEd4qDDuD9aKudw6KwTXKgeMqguOsRadS8uAsQicrw1KT1P5i94M3GXJIkm8W9iuM35oO4V3dsTPXExeBOvHzM2xrv+w7uJMz9xL/aqBuKrb6pvt4IQZdc5e4H+MXEkTcbLUyklcL0LCt337a2tuNB37Fjx6oOCa3ED+uC+ww+RnEvumbUIFKr45/5Ebcl+G1U84xQCNv6yd9xiuREcdi2eWbaibkkkYYpcJNMKQ7dJpcsP6bgTaqw5DN4M7gH8aVCtjaSEbT5VgDuPDuVVOqdEOTt55Vf//bkRooSqUW1sKxaAFVL2FasWm+yUo/9hQffrljPP3/5lJL7LPd99WiTuB3/zC/Xlqw7NPdWSWE/KyIrcq5gG52kdlkkUr3tHUaL4UkWKXCTzBmemrRd+8ba1NtNamRxQ7csB2+G5PdmK+WrgDupdTlhw7bAfp57/ciljRQl0irF87aFEeyFFlygoZbHi7InXK01iETt+Gd+pbYkqNIUBbP389WGCivNUGinHdwLYU4THkckdlqRVLJMc7hJZvkf1v68br3tHas08aZUYQP/HizaFv88TQzJnJutNuVWkAueFIUJ3iqtRCfSBKUWOgiGT/5caqXmdwsKG7b5wixaUPzYUfdC08IJkjhRtQHNa0sMbtgGhQtiIpmksC0RjLd1Yqwhs9TDTTJteGrSrvZCtr72DqMhphKSZe4w00Hv+zaWimpnSGdvtvpUG/ojkmJ+T7FWBVTFPdNEcqda77bmMRTCtiEUtknG+cNIR2emHYVtuw/VggAAIABJREFUkkUK3CTz/FVMNcRU6mBJV/BmqByyJW1utmgobJMMCC4mUEojwVcwQPMfo9rwznJzsbWyBpGcscwO22xslYi0wPrunpG+9g4zOjPtaBSSZJUCN8kNLaggDbCUDt5GiP+A2FBY/KBcT7bshWwiUpMk9FRLQg0iCWUpTGGhsE0yT2FbohhvuynOIrJKgZvkij/EdNRbZlq93aRGltnBmyGexRUMc0M2gxuqOcwO2ZwW1iUidfJ7gEH5Xm61qrbSaCskoQaRhLMobJOc6G3vMArbJE8UuEnubPY+3IO93dZ394z0tneYmEuT9LDMDt5gdvBmI348Q+nhooa5IZt6s4lIZCuNpr0GkZq1dv42i8I2yQl/gQSFbZInWqVUcmt4atKOzkw7A51dg33tHaavu8dodRypkWV2wOYPNfX/7VDonu0QLggzge0qZq8s6vP3k65VRuvgBeFm88x03KWINJ3fy63eHm5+qFU8dNNfgbSW/ZbbV73qqUEk44LTQOhimWRacDVShW2JsyruArJMgZvkmtfbzRno7LLe8NLjK+Vs9oadioRgA1v/34MUeqH5X/ucEvswJb5XfP+hoq8zx+9p6gfhAKsP7Hd/eHACTlvc+IMcnABg0cK2A0B34zsUiZ/fmww4vrpoMOAKBl3VVh8tta96NFKDSNNE3JYAr9bx2wrbJDcUtiWe8bZOjDVklgI3EdzebnB8TrfBARhUbzepkw1sDaV7qgX/XczxtpsC/3ZK3TErets7jB929xUN7R6dmXZ2/sfMo8D32b0tmpOk3dsAWH7q/L0ocJMWCAZPfk+vMPeN8nF9waArqmCtkRpEWuXSMxc899zrRy6Nui0BnqzhtwyFlUgd3LBNJLOCYZvOrRLPibuALFLgJuLxVjG1wd5uve0dq4anJofU203q5BC+N1up+2VSqV5sQaMz007R++4SALY/CZd9vvECtrvnRueeOu+dxncmUp/gIgnF4VM9Pwvz/VL7q7W2eu5bTw0iUTv31HnvPPc6kbclwLZKdwswKGyTHPHPqUBhW4IZb+vEWEOmlb/EKpJjwQYC1EiINKq3vcP0tXeY3vaOVaV6sYH7PisTbi8E3EncvvUQXHJV/YVs2Qh3XAvA31x54s6Pdc2/oP6didTG71GWlB5eSatHpJlenjy68y8ff8/9zI+wLQE6gPer/IZFiyNIjihsSw1LYd5pXQRoAq1SKlLC8NSk7do31hZcyXRyyfJjA51dNubSRFLDX/p9csnyYxu6e0aCPdpGZ6ad1Qf2968+sL//au9WoSfp+0AvAGuud0906rFlo/v7wA0XtzsK20RE8uNjXfMv+NrF7Q4QWVsCXIHCNpFZFLal0qbqd5F6qIebSBX+/FJ+UKCGQ6S0BnuxhfF94JsArL4JLvoMnLOi8lw8ByfceXa2Pwkb7gbgk2fM3/rdVSeurLMGkYYkpVdZUuoQabVbN7239d/fOOq2AQ20JcCdwM1VHs6isE1yRGFb6ljczyh9PjWJAjeRkDTMVGS2sHOxgbsicEQPeznwVL2//LWL253rPn6CiagWkbp84cG3ExFyJaUOkVZ78MXDzg9emDEN7KKX6m2RRWGb5Mj67p6RwArzlUYuSHL4KxopF2oS/WFFaqTgTfKs2oqi0HAvtjBOAj6Nu/rrbdXufOmZC54799R573xq8YLTNYxURETAndPtFxNH3nzl1789+bnXj1wa4le+gzvs6hng3Sr3tRTCtn40IblkWHA0UImFryS5DO5CLg6av61pFLiJ1EGhm+RFTL3YGjECmDXmRD5x+vy4axERkZR5/s2j3OK8B/WfhI5QWPlPYZtkWm97h9nQ3TMC7jHh1Qf2K7hJD4uGkzadFk0QqYMWVZAs8xc7WN/dM7LBuwUXO/AXPOjaN9bmL3aQkLBNREQkTn7Y5qCwTTJuoLPLKmxLtVX/f3v3GyLrdd8H/Ks/0Xpl+9a+5ibE1wU3OA1N7DhxXUq8CjqCGNqC8sIlDsW0SaGl4Fd5kfaaNKAjGoJFQskrQ2lp/uGUxCQFGUKoA3dvLSUEXDmOZDl/wHUaWyYWujGyo5ur6Ep9MTv3Pjs7szOzOzPPv88HhpmdnX327JyZfZ7nO79zTtsNGAMVbrABKt7os9MWO0g6WcV2GhVuAJzZGSvcSib7n3V/DnrJ4giDYP62HfDkwoZMQwvBG123yjDRJ2/euPZEdyvXzOEGwLlscA63EmEbIyJsG4SayXDSw/iftVUCN9iw6bBSwRtd0QzYklYXO9iE9yV58qw//OPv2jv8oFVKAUbt17/w8uEvn2+V0vcl+f1YiZSREbYNRo3523ZC4AZbMjvMNLFjYjfWCdiSXgwTnfq5JD+ZJHn4w8k7fzD5jncnb3nr4p944bnki59Lnvl08smPJUm+79vu+ezPPnj/9++gvQB0zE9de+mzf/iXtyb7gHPsS5L8ZpJ/fnTbSSuD93hjTt+Hj+bwbbdFnIPhpDviCYYtE7yxCweN4cwDmIdtnh9I8nu591uSj/xa8p73r7+Fpz6VfPRDySsv58fetXf4oyrdAEblN77w8uEvPX2zbGpfkslwrGsRtjFg02PMB/b2y/R4sqfHkkzUqG7bGYEb7IjgjU0aQcDW9LokN5IkP/2J+SdIH3jT8a9/6+vzt/TUp5Kf+ZEkyS/80P3PmtMNYBz+9PqtZ3/id1+a/M9ftC9Jju9PVtiXJNlP8jebaid0ycHefrES6eBMV1MWuO2AwA12TPDGupYNEU0GF7DNek+S/5OHP5z86589+d3ZsG1q0YnSL/5U8smP5V98932H//Kde2VTjQSgu371mZuH/+PZl8vCfUkyf3+yZF+S5B8meWpDzYTOaJ6zCNsGo+TOIi+yoB24t+0GwNg89uL1+tiL12tzcYXpZRqYCN/GbdWAreMriW7Su5NM5tmZNa8SYXrfB940/0TpnT+YfPJj+bO/evUNG24nAB11+3/+vH3JrOb+ZMm+JJN9lMCNQbE4wmCVo+tH22zEmEg1oWUHe/vlgcbwwCk7t/GYvgYO9vYfnBeuJYOvYFtmUvr+X589Oan1NFybPRladH8ymfz6305GFf32B9+42ZYC0En/7De+Mbkxb1+SzN9vrLYvOUyi8ofBELYNmsUSdkyFG7TsyaMKpWnV23QHp+ptmFatXkt6uYrods07QVo01Gfd7QAwDuvsA07bx9iXMEDCtkGrR9eq23ZI4AYdsmi46fT2Yy9ef3QkQwgHYRqurVK9lkwObPQtALRolUUTYIAev3T56vRY9eHnv/KQY9LBeWT5Q9g0gRt00PTTpGn4Ng1rrly4+MiVo3+WwrfuaQ4NTVSvtea0IUAAsKpF87fBgBwcnWMI2watHl1bmXTHBG7QcdPwbXaut9nwrflYtmvVyrVkdIsbtG/RiqUAsKrf+vryBXhgAA729ssnL12+mliJdOCm1W2HbTZijARu0BPNud7mhW/TawHPZq0y59qU6rWWGQYEwHlN9x/N0A0GSNg2GvXo+tEI3HZO4AY91AzfkskEp9NKq+llWv0mgFvNWYK16fN6dPtwy03kNMI2AICVWBxhVKbVbbXNRoyVwA0GoLmTnC64sCyAa9w+bKHJrZgdCjq9fdrPzIZrY3q+ekPYBgCwEmHbqNSjayuTtkTgBgMzu9NcFMAlyZXGajWzQVzSr6qtg0ZwNv37Vg3VElVrvfDCc8lb3rqZ7SR50+vuej7JpfNvEIDeWLQvmQ4hXXXOtqN9SZL/u8nmwTYJ20alRnVb6wRuMHCzO9KDRuDWnPB/URCXHA/jmvdNb28jmDqYCcmaodk0SJu9fxmhWm/9SpKSL37u5EnS7Pw6s1/PO2n64ueSJO948z1/HoEbwCi899vv/cxnvvrKe+fuS2atUjl9tC9J8ulNtA+2Tdg2OtPzOdVtLRK4wcg8uWBY5LQSLjlZGdYM424/fiaUO80Tc37fOkHZur+jz5V6zDU5q3nm08k/+qfn39ozk3Oj73zz3d88/8YA6IPvfPPd3/zMV3P6vmR2oYTTKt2euZ2zfW7xg6AbmmHbw89/5SHHxoNXj64fjeq2Vt3VdgOA7juYE7idtcpsVbMhXbPCbtvVdXTO65LcSJL89CeS97z/7Ft66lPJz/xIkuQXfuj+Z//+xXu+ewPtA6Dj/vT6rWd/4ndfmvzP3+C+JMl+kr85b/tgWx6/dPnq9Fhd2DYKNXcKI+Q9LdMBwNbNDg9NBGWs7X1Jnsy99yUf+fjZTpSe+lTy0Q8lr7ycH3/X3uEH/8F9ZdON7Ks/vX7r2T947pWv/dlfvfqGz3z1lfcue/x7v/3ez3znm+/+5j9+673fKrTsJn06LPpzM379Cy8f/vLTN8um9iWZ7Jt+f8PNhI0Rto3Sa0fXqts6QOAGQF/8XJKfTJI8/OHknT+YfMe7T5+L54XnJvPsPPPp5JMfm9772d/+4Bu/f9uN7YvbJ6BnJLzsHn06LPpzs37q2kuf/cO/vDXZB5xvX/LzSf79ttsLZ3Gwt1+uXLj4yAN7++WJmzcOH3vx+qPCtlGomVS3Cds6QuAGQJ/8QJLfO8fPH77r0j3lsYfu31R7em1TJ57f9233fPZnH7xfiNkB+nRY9Od2/MYXXj78pXOEmEkOcr59EWzNwd5++eSly1eTyTQsP/z8Vx5qu03sRI2hpJ2jIwDom9cl+e4k707yr2a+V5LkXZfuuX3Hd73lnj952xvvvvHHL9x60+988W/f/qHvuS8f+p69XbW1s26fcN77LclHfu3cQ6t+7F17hz+qiqZV+nRY9Od2/cWLr37pCy/c+vqXv/Hq/p+8cOu7mt97+vlb05uHjbt/JZMFEp6NOdvoKGHbaNUcX5W0ttYSjhG4ATAkV5OUj5b7873fes+xb3z88zfz8c+/HIHb5ETz3/3OX789yemTh6+yWp+FKDph7Qnhp307r18bffqrD7/++bfs331pk21luZX6s/n+nFrSn//ln7z+S3/3wt1v32BTB+ePvnYrHzl8KZmEbcIKeqMZtj324vVHH3vxem25SexGyeT4NxG2dc7dbTcAAHbh459/OUlGH7YlyRdeuDU5K3/4w6uFbfO+nnrP+yfbSfIHz73ytU21kfXcfu5P69OpRX051ejTL3/j1b/eRPtYz1r9uUyjP2+/94FBuXLhYhW2jZbKtg4TuAEweB///M0kyYe+576WW9INX/7Gq/tJJvNBzTNb2TatmlkU1Bxt58/+6tU3bKqNrOf2c7+oT9d1tJ3rN17zpmnBWv05fY8uqkJtbOf2ex8YjCsXLtYrFy4+kgjbRqhmUuF2GGFbJwncABi8aXUbE7fnK/qOd5/+wNNO4JuOtvOZr77y3vO0i7O7/dwv69Nl1W1TR9t57puvnjI7P9uytD9X7cepo+3MzlUG9JuwbdRq7lS3Gf7eUfe23QAA2KZpdVtiOOkJi1Y6XDVoW7Yddm9TfaFPu2FZP/zW10+fj2/V7QC9I2wbtRphWy+ocANg0P7oa5PV5gwnPaMPvGm1E3q6Tz8OT7PSbd2qN6C3hG2jVnN83rbD1lrCUircABicp59/JU8//0r+6Gu38vTzt27f36x2G7Pmc7JpnuOOOmMYMwms9Wlnzc6v+IE3LQ1UvUdPN/2QBrpK2DZqNRZJ6BWBGwCDM2/ONvO4nVHzhH6lk3nPc6etWd329PO3thrQckaz/dgcWnoK/Qn9JmwbtRphW+8I3AAYkmtHlyR5MHdWbrq24PFjMH0eduXRHf4u7nhk4XfON5T0MON+/7RlcX+en/foag7bbgA0CdtGrUbY1ksCNwCGpDZuv3Z0fS3jPDApmRyclcZ9h5kcqM3ev0l1S9vldMsDmnkVUMurFsf6/mnbtgK3w+hP6J1m2Pbw81956MmbNw5bbhK7UyJs6y2LJgAwRPXoeowHJiXJ1aNLyeQE+6HG5XDpFpoLJQDd4z0KoyFsG7WayfFcMs5j2t5T4QbA0NTc+SSwtteMnSs5Xrl2mGWrV73wXPKWty7e4rT6admJ/QvPTW89s0pD2aJ5fTqvgm3ZMNM7ffqXm2oaZ7Dh9+j9d931/EuvvXb6Y4HOELaNWo3Ktt5T4QbA0DQPTsagZHFF2+GCn/mVJMkXPzf/u80QpnkivyicubOd/7m0tWzLf0qyuE/XdWc7f7yZDbKm0/vzjO/Rf/OGv/O9Vy5crBtoH7BlwrZRqxG2DYLADYAhqUfXYzk4qbkTtCWTv3uVYaOTs+9nPr34EfNWQVzkznZMrt+eyXN/Wp+u4852vrSZDbKm5f15hvfoO+6978aVCxcfuf62d7wmeIPuEraNWo2wbTDuarsBALAhNXcOUIa+fytZd/joca9LciNJ8tOfSN7z/rO35KlPJT/zI9Ov3pDkr8++Mc7h9Um+mWTTfXpfkr89Z9tY37b6c//KhYsfmZ7IJ1Y7hK4Rto1ajbBtUIZ+QgLAeEwnJhr6AUrN8RUMV1sI4aT3JXky996XfOTjZzuhf+pTyUc/lLzy8nR7v3+GdrA5+nRYttqfzZP6RPAGXSBsG7XmiIWzHtvRMfe03QAA2ICayUHK0MO2q0l+/Oj2YZK/l7MP+fuLJG/Iq7fel//9ieSlFycn5a97fXL/Gxf/1AvPJZ9/Ivlfv5j8t/+QvHorSX4+yX8/YzvYnE326W8m+c+7aTYLbPU9enQif9eTN29ce2Bvvzywt18O9vbL/7v1yp//xa1XvrS1vwqYS9g2WiXJL0bYBgB0UM2kum3IS++VTMK26d9ZN7jtH2hs9yyX922wLWzGeft0+lqrO2438239PXrlwsV6/W3veG16Mb8b7FbzPXiwt1/abg87U3J831vabAybZ0gpAH1WMjlASYZb3VZzZwjpYdabq21V35LkbUnenuTBFR5/LZPKui/H/F5ddZ4+/Y+585rzSXs37OQ9apgp7J7KttGqOX5891BrLQEAmGMbFV9dUjP8v5Fuqrnz2iuttoSdOtjbL81qG9VusD0q20arxvEdANBhNXdK8IdoW0NIYVU1QrfRMswUtkvYNlqO7wCATqsZ7rxtJebzoDumJwZDDbZZohkKPH7p8lXBAJyfsG2USo7vU0ubjQEAmKdkuJ8M1hwP26ALhG4jp9oNNkfYNko1ju8AgB4YQ9hWW20JnGTlUlS7wTkJ20bJEFIAoBdqhvnpYI2DMbqtxGuUqHaDs7IYyeiUHA/bSpuNAQA4Tc0w521zMEZflAjdOCI8gNV5v4xOjfl4AYCeKBnmib6wjb6pGeZ7kTNQ7QbLCdtGxxBSAKBXhnbgUmKlKvqrRlBMg0AB5vPeGJWSO/tG+0cAoBdqhhe2WamKvqtxUkGDBRXgOGHbqNQYQgoA9EzNsOZtKxG2MRw1QjcaDvb2y+OXLl8VMjB2wrbRKDGEFADooZphHcDUDOvvgeT40GhIImxg3A729ovX/yjUqGoDAHpqSOFUzbD+HmgSunHC7IIKhpgyBsK2UShR1QYA9Nj0QKa23I5NqHFQxvAJ3ZjLEFPGQtg2CjWq2gCAHqsZzrxtNcI2xsNrnbkMMWXohG2j0Kxq8+ESANA7NcOZhL1GAMG4lHjNs8DsKqZttwc2Sdg2aCV39m1DOD4FAEZqKCfrNcP5W2AdJV77LNCsAjKvG0MxHTYtSB6cElVtAMBADGXethqfgjJuJUI3TmGIKUMhbBusGlVtAMBA1Axj3rbmJ6Gl3aZAq2qEbpxC6EbfCdsGqURVGwAwIDXDCKmEbXBcjdCNUwjd6Kvma7fttrAxNVYgBQAGZggn5MI2mK/Ge4NTNOd1e/zS5avmdaPrmmGb1+sglBw/jqttNgYAYFNq+n9wMz1I82kozFcjdGOJ6fA8IQZddbC3X7xOB6dGVRsAMEA1/Z63reR42AYsViN0YwlDTOmi5uvS63MwSlS1AQADVdLvg5wSE+rCumqEbiwhdKMLZqvZZi9tt48zKzm5KEJpsT0AABs3PdipLbfjLEqEbXBWNUI3lhC60ZZlQZvXZK/V3Nn/2AcBAINU09+hpCXCNjivZnUBzNUM3R6/dNn/W7auuYCHwG1QSk5WtQEADE5Jf4eS1vS37dA15j9kqdkVTNtuD8M3b742w0l7q8TwUQBgRPo6lLRG2AabJnRjJVaGZJdOC91Ut/VGzfHho7XNxgAAbFtNP4eR1Thgg20RurESoRu7tGgeN4Fb55WoagMARqiPoVVNP9sNfSJ0YyUWU2AXpmHbvNCt7baxUImgDQAYqZr+hVY1wjbYFaEbKxG6sU3NsG32Pq+3zqoxfBQAGKmS/g0lbX5KWtptCoyG0I2VCN3YhubravZ7j1+6fNVrrXNKVLUBACNX059PHEuEbdCWkuMnTrCQ0I1Nar6ezBHYeSWCNgCAXi2UUOLgDdpWInRjRUI3NkHY1is1ho8CACTpT3VbjZN86IoS70dWdLC3X4RunJWwrTdKTla1AQCMWh+q22p8UgpdU+LEihU1Q7fmZPdwGhWSvVBi+CgAwAk13Q+xmgdxtd2mADNKhG6sSOjGOoRtvdA8RjOvLgBAQ5cPkEosjgB9UCJ0Yw2PX7p8VejGaYRtnVdjnjYAgIVKujuctMTQBOiTEqEba5iGbublYpawrdNKDB8FAFiqppufStb4xBT6qEToxhqEbswStnVWiaANAGBl0wOn2nI7pkrM1wZ9VyJ0Yw1CN6aEbZ01O09bbbU1AAA9MD2AKi23Izle1eZTU+i/6f8XoRtLNYMWods4Cds6qUbQBgBwJl2Yv61EVRsMldCNlQlcxkvfd06J4aMAAOfSdoVbjaXkYeiaoVtptyl0neBlfPR5p5QI2gAANqKtwK3k5AEdMFzN93tptyl0nQBmPPR1Z5ScnKettNgeAIDeK1kceG3jU80Sn5zCWAndWJkgZvj0cWfUmKcNAGAr5h1g1QX3n1WJFa6A4/9bSqstofMEMsOlbzuh5PhxmQ9BAQA2rOZkCNa87zzhWMnJoM3wURi3GsE7KxLMDI8+bV2J0QYAADtTc/wE+LUFl7rCtkomB2/zgraywTYD/VUjdGNFAprh0JetKhG0AQC0omZx0LYodCuNy2zANj2Yaz4eYKpG6MaKBDX99/ily1enfXiwt1/abs/ImNYDAKADalYL3hZdptVtZbfNBnqoxgkgKzrY2y9Ct34StrWmRtAGANAZNWcP2MquGwv0Xo2TQVbUDN0ev3TZnKA9MA3bHr90+aqwbWdKDB8FAOicmvXCNoDzqhG6sSKhWz8c7O2XZtjWdntGokTQBgDQWadVsdWoZAO2o0SYzxoMU+wuoejOlQjaAAA6bzZcA9iVEqEbaxC6dU9zgQth29aVWBABAACAFTVPIEu7TaHrrGDaHfpip2oEbQAAAKypGbrVdptC1wl62tesNtQHW1VzctqP0mJ7AAAA6JkaoRsrErq1o7k4gqG9W1VinjYAAAA2pEboxoqEbrs1uziCsG0rSgRtAAAAbEGN0I0VmbR/NzzPW1dyckGE0mJ7AAAAGKASK5iyIpVX26WScOtqLIgAAADADlnBlJWZyH+zZudr85xuXI0FEQAAAGhJjcoPVqQaazNmh5CqGtyoEvO0AQAA0AE1QjdWJHQ7H1VtW1MiaAMAAKBjaoRurMgk/+szhHRrSgRtAAAAdFiNk1ZWJEBanSGkG1Mal5qTK4/WVloFAAAAK2iexNZ2m0LXGWK6mFDyzK42Lq+tcKmttBIAAADWVONklhWp4Dqp+Zxcf9s7XvOcrGXVoM0KywAAAPROjdCNFanmmvA8bESJyjYAAAAGrEY1CWuYHWI6psquZtCm0u/cllW51dZaBgAAABtiXjdWNjuccuhVXmP7e3eg5PTArbbVMAAAANi0Gie8rGHoQdTs8FFVbedWcjxomxe6XW2rcQAAALAtNcdPfEubjaH7hjinmaBt40pOhmv16HsWSQAAAGAUSgwxZU1DqHYTtG1cyeKgrfkY/2sAAAAYjRonwqypj8GboG3jSpYHbU1Xl3wfAAAABqXGcC/OYF7w1qXwbTZkE7RtTM3JOdlKi+0BAACAzjLElDOZDd7arHo72NsvVy5crIK2ragRtMHg3dV2AwAAYIBqkkeObj8awRtruHLhYj3Y23/wgZlg67EXrz96dF03/TunIdqVCxcfSZLm737i5o3D6e9+8uaNw03/7hGpufN/IUkOM/n/cNhCW4AtE7gBAMB21Bw/uRa8sZaDvf3ywKTS7JHZ7z1x88bhkzdvXGvcPlxnu8kkVDvY239wenve73jsxeuPCtnOrUbQBqMjcAMAgO2qUe3GOU3Dt3mVb7OeWBCQrfJzKtk2qkbQBqMlcAMAgO2rUe3GBjXndlslhGuaBnJnrZBjqRpBG4yewA0AAHanRrUbW3TaggZCta0qmby3S+O+wwjaAAAAYCdqjq9QWNtsDHAuJcdXJrbqKAAAALSoRugGfVUiaAMAAIBOqlHtBn1SImgDAACAXqg5HrqVFtsCnFQiaAMAAIDeqVHtBl1TcjJoqxG0AQAAQK/UCN6gbTUnq9lqi+0BAAAAzqnEogqwayWGjQIAAMDg1ah2g20rEbQBAADA6NQI3mDTSgRtAAAAMGo1x8MBc0rB+krmz89WWmsRAAAA0LoaKybCukpUswEAAABL1BhmCqcpEbQBAAAAZ1AjeIOmkvkhW42gDQAAAFhDjeCN8So5Oc+hajYAAADg3EoEb4xLiZANAAAA2IEawRvDVaKaDQAAAGhJjeCN4SgRsgEAAAAdUiN4o39KToZsgjYAAACgU2pOBm+1vebACSVCNgAAAKCHak4GGrXF9jBuJaeHbKWldgEAAACsrWZ+8FZaaxFjUTIJ1BbNy1ZaahcAAADARtScDN+uRtUbm1WyOGQzZBQAAAAYrBpVb2xOyfzhouZlAwAAAEanZn4lUm2vSfRAyelzsgnZAAAAgNErmV/1JnxjqmTXe9iQAAADM0lEQVR+QGtONgAAAIAlahYPOa0ttYl2lMyfj81QUQAAAIAzqhG+jUnJ6QGbkA0AAABgg2rmh28CuP4qWRywGSoKAAAAsEM1wrc+KlkesNUI2ACWuqvtBgAAAINWji4PZn5Q8+jR9eHRhd0oudMv069nHSa5Fn0DsDaBGwAAsEv16PqRBd8/jJBn00qWh2uJ5x5gYwRuAABAW0ruhD/LArjp7cMttqfvSuN6lXAtOV5hCMCGCNwAAIAuqUfXi4agTh1mnEFcmbm9LFhLhGsAOydwAwAAuqzkTpi0LIRLjgdx06+b111X5txeJVRLjv+NwjWAFgncAACAvikz16sEcU2HR9fXFtx/2s+cZpU2TB/z4Jz7VtFsx7X0L1AEGAWBGwAAMCQlxwOsVavDuuKwcfvazH3N7wHQYQI3AABgbMrM9dSDWWz2sYscLvn+bIi2ys8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO34/7ex1wP21bmqAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "id": "70d214b0", + "metadata": {}, + "source": [ + "# Ch4: Tensors Structures and Modelling Applications\n", + "## 4.1 Tensor Graphical Notation \n", + "\n", + "![TestNetwork-2.png](attachment:TestNetwork-2.png)\n", + "\n", + "This Network of Tensors Network is created in https://www.tensortrace.com/, the code below optimises the search for network contractions using ncon function (\"Network CONtractor\"). ncon is also implemented in Google TensorNetworks: https://github.com/google/TensorNetwork. \n", + "\n", + "TensorTrace is programmed to accept 4 networks, each network consists of any number of tensors, each tensor can have any number of indices. To be able to contract them into one tensor or scalar. The above complicated tensor network is contracted to a scaller, since all indices are connected together (summation/contraction indices) . **I could not understand how they group indices into 5 groups, and create the variable names as shown in the following tensortrace generate Python code - I contacted them and hopefully they will calrify before publishing the book** . A network made up of multiple tensors connected by summed indices is reduced to a single tensor or a number by evaluating the index sums." + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "f05515c3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: ncon in c:\\programdata\\anaconda3\\lib\\site-packages (1.0.0)\n", + "Requirement already satisfied: numpy>=1.11.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from ncon) (1.23.3)\n" + ] + } + ], + "source": [ + "!pip install ncon " + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "99d8b814", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np \n", + "from ncon import ncon \n", + "# from tensornetwork import ncon \n", + "# --------------- Network-1 --------------- # \n", + "# Leading order cost (guaranteed optimal): (Ind1^13)*(Ind2^5)\n", + "Ind1 = 2\n", + "Ind2 = 2\n", + "Ind5 = 2\n", + "T1 = np.random.rand(Ind2,Ind1,Ind1,Ind1,Ind5,Ind1,Ind1,Ind2)\n", + "T2 = np.random.rand(Ind2,Ind1,Ind1,Ind1,Ind2,Ind1,Ind1,Ind1,Ind1,Ind2,Ind1)\n", + "T3 = np.random.rand(Ind2,Ind1,Ind1,Ind1,Ind2,Ind1,Ind1,Ind1,Ind1,Ind1,Ind2,Ind1)\n", + "T4 = np.random.rand(Ind1,Ind2,Ind1,Ind5,Ind1,Ind1,Ind1,Ind1,Ind2,Ind2,Ind2)\n", + "\n", + "# TTv1.0.5.0P$9-*@,J0O5J6@5501,52ICLHNNRPUNWHZCW=L9?>@C@HADB@C7D4=4@4?4,((3''..))).*().)()'.IX'\\JKDUMW.]KNITST4SNRRTVH5(\n", + "# GQOLQLJ0VUXLR]PnYHYTV_Rt_JXZPP[9RRRRFQG'\\Q\\QTR5qNPNPWO=SLVRZ$\n", + "tensors = [T1,T2,T3,T4]\n", + "connects = [[1,2,8,8,5,6,3,21],[11,13,14,15,16,17,18,18,19,20,4],\n", + "\t[1,12,12,17,16,15,14,13,10,9,7,2],[3,7,6,5,9,10,19,4,21,11,20]]\n", + "con_order = [8,18,12,13,14,15,16,17,11,19,20,4,10,9,7,1,2,5,6,3,21]\n", + "T1 = ncon(tensors,connects,con_order) # \"Network CONtractor\"\n" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "109d61d4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(126596.39263487)" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "T1" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "66e5d71d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "()" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "T1.shape" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAF2CAYAAABUAS1DAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAOxAAADsQBlSsOGwAAABl0RVh0U29mdHdhcmUATWljcm9zb2Z0IE9mZmljZX/tNXEAAP+QSURBVHhe7J0HnFXV8cdne2Vh6b1XQURUBCzYxd57i9GYpiYxvZrEmKYxMf5j7CX23ntHBZWiiBTpvXdY2L7/+R4YvDze2327LEtxDp/3Ad6795w5v3Pumd+dmTMnvXPnzlVa5Oijj5abbrpJGjVqJF4cAUfAEXAEHAFHwBFwBGqPwJ/+9Ce5++67BW6Vk5MjLVu2lNzc3H2GDBnyefq4cePCD1lZWXxZ+9r9DkfAEXAEHAFHwBFwBByBgMCPf/xjueqqq2Tjxo3yf//3f/LKK6/I6tWrw2/phYWFDpMj4Ag4Ao6AI+AIOAKOQD0ggHWLT+PGjeV73/uejB07Vl599VU544wzJL0e6vcqHAFHwBFwBBwBR8ARcARiECBkKyUlZcu3Trp8ijgCjoAj4Ag4Ao6AI7ADEEhLS5MjjjhCFixYEGp30rUDQPYqHQFHwBFwBBwBR8ARIFb++9//vhxzzDHy7LPPOunyKeEIOAKOgCPgCDgCjsCOQqC8vFzKysrc0rWjAPZ6HQFHwBFwBBwBR8ARAAEyRFhx96LPCUfAEXAEHAFHwBH4WiIAIaqsrAzEiIB3YrCqK1zLh2v5pKam1go3J121gssvdgQcAUfAEXAEHIE9BYEvvvhCHnjgAVmzZo00bdpUzjrrLBk4cGDc7nHNfffdJ5MmTQrk7PDDDw/X16Y46aoNWn6tI+AIOAKOgCPgCOwxCIwZM0ZuuOGGLf359NNP5eabb5ZevXpt1ceSkhL5xz/+EX5bu3Zt+G3x4sVOuvaYmeAdcQQcAUfAEXAEHIEdikBpaelW9b/22mvy0UcfSdeuXSUjIyP8hjtx0aJF8sgjj2whXHxfXFxca9nc0lVryL66gRT/GzZsCD5dEqClp3994WTirl+/Pvi48/Pzw2QtKioKxyDwb76ryVde01Dgc6cN3jgyMzMD5tGkczXdv6f/XlFRETBnLMCajMjZ2dlJdZtFxbDlHsaL+viOnTd5eXmhvmSLycKixBFjjFVtYx+SbcuvcwQcAUegrgi0b99e2rVrtyWPFvX8/e9/lw8++EC+/e1vC7/ff//94Sif+fPnb2mGda1Pnz61bna7WQKKEFMbizMLt6W+N4Zov3PuEAs5afH3FHLy/PPPy8MPPyzNmjWTX/ziF9KzZ89aD8CecsN7770nt912WyBDV199tejBnmGiPvfcc7LXXnuFs6iYvNtTILi33nqrvPHGG6H+n/3sZ35A+2ZAIbfvvPOOPPXUUzJnzhwpKCiQCy64IBw7kUxZuXKl/Pvf/5YRI0bIscceK9dcc43MnDlT/vnPf8r06dPlO9/5jpx99tnJVBWuWbhwodx5553CvNh///1DfSxsXhwBR8AR2JUQOOSQQ4Iu4YBq1jy4DDFbrHskNG3evHlYW41wwV/atm0rRx99tHzrW9+qdVe2m3ShCBH2hRdeCG/Zffv2le9+97syaNCgIAxvvA8++GAIPkNImGOnTp2SFpS37FWrVoW6jbQZoUu6kh104ZdffhnYLyeIX3755V9r0jV58mR5+umng4UFpQ0pGj9+vLz++uuydOlSueKKK7Z7FLDg4H9/6623wrz6wQ9+4KRrM6qzZ88OB6tiGmcMWBSGDh0aXoSSsTDxHI8aNSqQpCZNmgR8ly9fLm+//bbMmDFDhg0bVqvxW7dunXz88ceBxLGIXXbZZU66aoWgX+wIOAINgQAvqN/85jfl0EMPlX/961/BWEBB37Ce4k1hPbTSo0cP+dvf/haC7evyIrndpIs3bBbrd999N8g0evTosODzdstiD2n67LPPgrJkZ4AFoCUL5ooVK+TPf/5zIDennnqq/OhHP5I2bdoke/sOvY7+YWKEBH7d3VwQ6YMOOihYOjt37hxwBx9w4c2gPvDBimYuyu11Ve7QibETKocY8RxSeEbOPPPM8LwlQ7hM3FhsGTMwp9R2/LieZ4NCHXuKdXsnDK036Qg4AjsYAQw6AwYMCIYhrFrz5s0LKSR4aY0WQi8gZxzrQ8hFXcp2ky5bkInZQCDejjlNm0V/33333SrvBYtv7OK9bNky4a0YJgl5KSwsDC5ICtatCRMmhKC2adOmhb8hb/379w/X8nbO35Aw6gYg3CRYxki9jwWK3+2tHcIHUJgLTZng9mQbqGWLpQ8oK+6nEJPCDgWUFwPD/2kXl6IlPLN8HVxPG2BAm9TDdciFtYf7uIe6kaE6ix1klXrAwO4Bm2hcDfXRX2TiGvoEdlgqKMiwZMmSEAPF9/SBvsLgo/gwBnxPP7gXmSnUyf0Qa75HXrC1OB2us4mHVeXGG28MpIhdH9FkcLFjDtb0zfBA7hYtWmwTMxTFgHrpj9VVEwmgbgi7xTcxP23MCIjkd75jjlAXfQIH/mZswNoKfWaeIA+ygoXNUa4BX9qiTuoCE9qKji/4Ug99py+0TZ+jxeYpliEKY8QcMvLCXGC8aQ8Sgwy8pWH25rlgnLgH+Vq3bh36QV3MPcajVatWYQ5TkAWZ7fmJzuF42DJ3bG5TF294Fi/G/2mDPtIv2qGPRrTALNnYsrosYn6PI+AIOAL1gQAhFHPnzpXrrrsurKexBcJFKFFdCRf11RvporKOHTsGFxsKALfS3nvvvcXaESs8HeIa8mNgCUM5oCTo1Pe+9z3p16+ffPjhh/Lzn/9cPv/883A7b/IXXXSR7LPPPtK7d28ZOXJkWMz/+te/ypFHHhkU45/+9KcQ1wLh+81vfhPcnLDW3//+98FVcu655wb/LcqM+2kfMofSQEl06NBBhg8fHtrp0qWL4DYjRglFRJtTp06VKVOmhBglFLQpKJQMfbr++uuDmw3F86tf/SrIhTwPPfRQuA8SQL3UieUungUAZYi79rHHHpOJEycGZd+tWze58MIL5eKLLw7kBNcmdb755pthknANiha33je+8Q054IADAqbIAH78n2voM8oTEykTDAX96KOPyrhx44JyP/jgg4N7+MADDwzX0x/ugVTxOxhCQiG6yH/ppZeGWC2uAXvGg78TuaNQ9uwAeeaZZ0IfaAPL6GmnnRb6Bv4UCMyTTz4Z+sh1tM2coO2aCnjg8sY6CsFCJnBBLojKb3/72+BGO/744wNRhBSA8x//+MeAA5iBAWNFMCUyMBcZF4gS91155ZXBogdRw31OfB8xABAQsOWsLfCh8Dzce++98v777wfSBDHhrYp4gKOOOio8I4wVY05byAI5g7xyDePEHL7jjjvCeBNnALkiRwxjTSwdcw4yhsx/+MMfQl30E3noD/VhMT7llFPCSwCxiGx/hjzdddddW4h6ImwhZ7TNPRBxsCQ/DfMeeWgDty+yMme43uY2/65NEH5N4+u/OwKOgCOwIxCwl+OoOzHaDi++GAzQU3X1ttQL6WJhR3niYho8eHAgMSzAJ5xwwja5LszdwQIOKcItQgdQ3ATf3nPPPUHh/uUvfwmKALJBvAqECoXJ/9kxgLJACaJUUaAoVQBBSfLmb25NSBeBxSg8vkfhUe/YsWMDEYMsUC/1ofj4HiVPXSgtFBntQ8ogYFgKIFQoPWSi0CdkhkjgD4bUQLZQrMQ1wZppG1KK0kapQggI4KOuaEE5EnxO3hCUONhwDQF+WBAhhJCIm266SR5//PFwK/UiA9dACpEVIooVB0yxFoKBWcFQ/GAG9vSDyQMJpd/UCYvv3r17+A58kZd6UJwQY36HKKN8qRMCCZkCH8iR4RLtF/JZfB99AyP6hkKmn/SHayDc1ImJl+sIaIRMYjmCvNA3wzzeQwfpoA/45iFTzEnGkPGHtOMChSTQd/428zHjDVljnCBSRpYgZcxlZIIsM+fw82NeZlwYb4iI9Yf5QZ4XxgpSBFliJ8yLL74Y+sFYUcdLL70UMKVf++23X8ATDBgr5jgYgwskl3kCMSZmi7GnDgg+cmD1pV6whNQzlvSZlx/mOePOvOAFgQWFwvPKwjFr1qxQDx/GuqYCBuALdpA8CDrPLePCfKI/WN7M3W6LEv93S1dN6PrvjoAjsLMR4EDq//3vf2Gdi1dY69hwRK6uqDekNnLXC+miQZQXCgeygWJDOIJosQZEGaG91bNokwkWYvK73/0uWDH4DqKDMiEYGxclb9CQBJQwBIr/o2hQGmbJQNlzDYs+BImC4kc5UFCufFBWWKt4A8eKhEJD6bEzC0sLSheyglUDpXnyyScHIgCRYBBQYpACrDjUdfvttwdLF0QJhY51AbnOOeccueqqq4IFh3pQhihoLFX4jCGG0fik6ICh8Bl47kFWiCG7/8ASGVDGYAGxgOhhuWNzAvVBNOgXv3P9iSeeGL6HgKL0sCSddNJJAWcIDQTDdpbRH9qCDEM8ITcQLLCif7SNZYOAQ8aNa8GXti655JJwnX0SuacgcJBqiAh4Yy0Ef2Th+5dffjlgC4FmbGkHQgGpY16B5S233LLFnRpvokMssFZBgngBYNccRJfxoS4Ih7m+ovFO0eMf7HvIFjiCHXPkvPPOCyQQuRhPSAsPKNY3LLT0B8LDPAA72mKOsdsSsv+Tn/wk4M9LCXMemSBjWMbAknrB8Pzzzw/zH/JmLmFiJekTz8sPf/jDQJKQj7mB9Qocr7322jBXsbJhqeV5ZE5bf6PjYu5EfqvJVWvPNxZmMOXZpg8QOiyeNl+Y74yTuVXdvVibpdivdQQcgZ2FAHqbF190DMYEK6anLYSHF3j4AToanlOXjAX1RrpQMFgyUAIoDRQlCge3lCkxFnfIGUqXN3oKRAbChJWFwpsyVhMUGos3ysXekvkbBco1fGgLxQXR4noWf4gI1hv+RpHxlo8yAywsCChFlP8nn3wSlCJWBsgEdfFBqaK0IXC45SCDVlAoKDMUqhX6hrxsj0cOFBOEi12cFNgwctNHrC3IjwUERWtxY9GJhnUDwgVWEJDTTz894IAc4Av5QXZIJaSM38GYgmsHZQgW9AEiYIQXudhBiGJEeUNykBsSAJmg4FJERogLeFEsmBBXF8qcv+kDxAJ8DePq4tOMmKKksZoxkek784C2IAcoaMYFAgPhs/mB3MjI2DB29A8rUTRmLIofWFtMGmMPMTnuuOMCESbZHXXbOVuJHnAwg2gy/ljAIIG8AGBh5QPJoX1civQHCyBuQqyQ9A23Om3wIFMHFlTGm7FjflEn85c6zMXKPIeYQbrZlIKVEpcwDzVzzGLImB/0CRcnOwLBhHlhOcvAmrrq+haWCBNkZd7jtmf8GTsWKSxdvPSwKNFvy1tjGyioj7mxq+w43lmLurfrCDgCuyYC6FKsV4RZmCcFSVnDWPd5wcaLZQYd9Cs6Hj7AyzMcojal3kgXjaJoUHrHHHPMFjcjVp0o6bLgboLnKSgY2/kYFRwFRX1YacwFxN9Rsx+LPMoGiw3toARQ5hAe/o2CwiIEGaOgMCANKDoIBwVFYuQHxQ8xow+0g4woG7OO4MKJEi6TF4ICWUA+LA3ROC3YMGQH9xDWGz4ocdIdQCZiiRfKDKVsBNPqMiVGO5YvBMJqQfPIggLm/8hhmxNMRtqxIGoUoMkJflaM1TNG0V0btI3ShwhQqAurEd9Dbi0paqKJZ4HqWF0oYEvsEp9ooS7IDhPfdrlGxweZowHs8dqjPxAsxhiXF9ZI5gCubqyo3G9WnniWH+qEdCGDuRkhMYYdvzMmyEp/LDcdRM/mOX/z4X6IF4WNID/96U+3EdmS60J4iY/DXYm1kQ9zBwsbxJrYLR565vl//vOfEBeHJZY6GffoeIGhHd4abTC2v4nGK973RnJZYHi+eGax4BlxZE7hBoVMGobR5742bfm1joAj4Ag0FALElhMiwlpshRdeeAy6mxdLuAYv2XjhCMdAR/N/dAPxurUp9Uq6aBiFjUsR9xFxWcRM2c5Afmfhtzgi/o8FB4WD24wF3HYJwiItDijaoahLCEsObcE8cQMRz8Sij2uGN2+sVSgHyJdZxlC6EBp78wboaNAcihJSwDWxhCh2+6hZgSAGtIlpEisUQdwMFMQEokLQMQrUFBXWOTDBpQcBixbaRelDNm03XPR3iIcFJdPHKLZY00yJg2fUrWuWSOqKWnqifUpkPeJ7MDHrF//m7cB2TNruuuomHrIgk+1SxU3FRIbAGKklrg7LVjQGKDo+zB2Tobq2iDWCmDAeuD/5QPCw/uCKRRYbuyipBXOK9cvmCA+Z/WbtUodZYBmD6KYKu4Zxsl2y9O2www4LpB0MmMfUz9wHP8jyr3/96/B/5gnkHDM2/cVCB6HBtWqEDGsXue946CHwNaWGiM5xZK/J2heLr80TLI7IyPOGmxFyzIsA8x1rn80F+gNZBPPYOV6bBcqvdQQcAUdgRyKALosSLtawX/7yl4HDWOGFGCMJaxxx2lailrFkZdwhpMtO30bpYWWyBduUK2QDNxduCVwVuOx4g4Y90iECjfmdAgCm3HBF8RtWHBQargxcbFgRiH/BqoAyh7BBxHDT8T1khLdzyx+FxYqgaH7jGpI4orywXPD2jhz8bqQglmxFwTXrHvFTKHDcjMQmEX+G25I+4lYjdspSaEACsVZFfcdWJ24ozJlYvMCOD9Y33FgW04Pio3ANpJa+QUhg4Xxnu+P4O9EujGQnCNdRN646AvzJcI5MWBIpjCWWFvqUqBhGBOejhJnk5q6EUIAD7lBIiKWhoF5ciRBp2oI0Q57M7ZgoDon5wX2QEOLdwIb6wYm6IFBG/rAcMd8gRJAZsyCCGXIwByj0jfuJX+Ia5ht9wfXHvGF+QbYZI+YW/6Z9+mhzDvKFmxOLG3hQB/JQD/+HwDB2xGxB0HlW2JWIy5U+MyepEysec97ce4wLfUpEumjXNjfgZuc+4hvpj41tbeYCY8SzygsF9fAsQkghVtZX6qNPrAOWtgUZfQdjbZD2ax0BR6AhEEBPsjaxRuHRQMeR+DS2YLAhCTobnuAXFAtlqY2c9UK6WGBj35xRDASNc4yIbfPnGpQlpIK3flwlKCh2d6GgsBYQMIySgIxBNvjbFnOUGr5XAOGIE5Q97WAeNAKDEoeUQHpwKxkTRflavAmKH8aK+wk3FAHo/Js6iEOD5CEf7dCmudtiLUFmLaFfkERcQRA44ngIsObtH6XOVn/qot9GGiyPUuxg0VcsCVxHXbjE6Cf/Z4AJ9MfqASHkO9ohrgqli/UD5QzuxINhqYtab6ytqNzRPkW/t2sZL+qGkIIT48WEIzYJIkQ8Gf3C2hM7D8w1awoYggHupILAkoNbEnLFGDHukFLGjzGnXq6BFNMucVyQL0gIJZFVDuKNBYhxYwyRi3voA22BIXMG4gV++OT5DhJiu/vMEgWBRwb6zrxDRv6NvAToQ46wthJUCWnDKsW4Mq8hT6SggIxghmaMsL4xpmBKv6iL9CUQNe7BQspzwLxn3tBH6qPwG/cgk+UvM9LLfDXs7Tk09yJzENyZ2+AO6UJ+c7nHjr8RJsM4+sJkc4I+MVZYknkRsHkQdXXTHmZ32mTMeSaRw4sj4Ag4ArsSAhhE8EaxlrGG4bWKd2oOL5yEecAfTOfayTu16U+9kC7eaFFq0VgmiBOLLcoEpUSx7eQIjxUCBUlANhYxrEPUgTWB4DVboFGOgEA9WKbIecUbNqY+CgrgiSeeCAqT+i3Oi0UehQM5QD7ezqOZ7AmGpn12+6HMUagU7qFudunBgM3lGd3dZgCbm8rirSBW7FAkTxHKFQKHfChFlA/KHEZtQe3RIH2rkzax/NEfcEHpUyAiEE3cUxAzdsIR+AcmEC8KVhfifPBDo7jNOsJvsTtIzVIUtZDYv208TfHyPRYL8CWWiDcC5OGNwM7jszgprrW2ovXRd+5n5x0FkkucGwVrDBY+/OiWQoN+QDIYbyPn4MvYMN7UHc/ahZyMPQT0v//97xbssESyyxKCw78hXGDLvEMuxom2IV8mN+QVkkJOK3Dmw7xmIwRjACHCtYe7lftsnlMPBB8yB/EjpxdEEGueZY1nHCHPkDPGnP5TNztLmXPMGX7jITc5eLkw0zb3kweMTRD82+LIzG1p8wk5mJO8+NjGB54tnimIoo0b10fHK/r/2PnDMwLhZH4zF7AU8v+om9lc0rFxmCaX/+0IOAKOwK6AAGsvL9HJFCxh6OHtKdtNulAYKBWUIe6YKPHCukRqAZQDFgdIhhEfFn6sOPyGJQIrAYs2Cov7ovmrUFwcdIybB+WNVcmYKPE7WNNw+6A8jXmibAiO43uAwnoULdQBAcAViWK17Pa0S0oKax85MSdCYFCC0QIxQA4sSuaKQrFzDy40BhOLAEqRNuijHZMDFvHcLShBZKV9I6Z8Z2TCspizQxTyhnvJsslDurDi0D73UD/kDGKEBcmy6GJNATMsi1EzKmNhOaLoj1nJUJz0BasQ7iTcachB+3aINeOAOwzCZTiBBeOB7GaxwVKDtQ5CRfwcbSAXVijG3QL7aZ88bswryDEkhH5h4oU00X40uN3GxeK2aMeC2PkO+ek3hT5DjCEs9AdyRN38G8unyQ9BY5eK5duCXNE+dTG/mOvMTcYKVyFjTv/5P9hYUDkJTrHcWV4s7qNN3JPgTaEe8nDh8jQzN3MLAkk/saJCDG0DCG9kyGD3kzcM1zbt03cjpLZIcC2WNYgVYwbezC+LLQRf5gpxDOAEEUY+xgqXbezzQ/94hiByXG9JbW0cIGJY8XhGwLY2561uz4Lm9zoCjoAjsCsjsN2kC6LEGzuf2IJyYXHmE6+YJaAmgCAPKO94pjyUNFv1YwsEJN730eu419ItJJIB5U5AcLwCcYq1VkEwogF43FdTG/HqxpISjZGpLbZcz9igjGMLMmKlii2QTT5WIGUUiC51QVYS7R6E1PGJFhR1rLLm95r6ZnWguOMdKGpEI9GYQQYsJjDeNRAPyCmf2BIrL/MIF2J1xVJJJLoGUplo/to9XANZ4hOvQJSM4Mb7HSLIJ15hnsc7IcBeFOwe5kp0vjD3Lat+bL24FiGAzAswiz3SiP5AEj2Ivtqp4z86Ao7A1wyB7SZdXzO8vnbdNWsXFpFkdg5+7QD6GnaY2Adck1g8IcC4hbfnLLKvIYTeZUfAEfiaIuCk62s68Ml022LscB1hcarrWVPJtOXX7D4I4CrHlYp1CwtarMVs9+mJS+oIOAKOQMMi4KSrYfHerVpjwwMnCxD7RFyUxSjtVp1wYesdAVy3nCdKHGQiF3C9N+oVOgKOgCOwByDgpGsPGMQd1QWCsQmmrsv5UjtKJq935yMAAcel6MURcAQcAUegdgg46aodXn61I+AIOAKOgCPgCDgCdULASVedYPObHAFHwBFwBBwBR8ARqB0CTrpqh5df7Qg4Ao6AI+AIOAKOQJ0QcNJVJ9j8JkfAEXAEHAFHwBFwBGqHgJOu2uHlVzsCjoAj4Ag4Ao6AI1AnBJx01Qk2v8kRcAQcAUfAEXAEHIHaIeCkq3Z4+dWOgCPgCDgCjoAj4AjUCQEnXXWCzW9yBBwBR8ARcAQcAUegdgg46aodXn61I+AIOAKOgCPgCDgCdULASVedYPObHAFHwBFwBBwBR8ARqB0CTrpqh5df7Qg4Ao6AI+AIOAKOQJ0QqBfSVVlVKZzTx59oqaqqEv6EX/T3Xa0gNyU1JbXWok2Z86WMmj5KhvQeLL3b9Y57P/WXVZRLemqapOmnIUsYk83jUVZRJqnaPnLEli1jFGf8apK3vLJcKiorFb8UrTt9u8eY+iq1vvS09DqNSU3yGia74lysSfba/l5RWaFjU6HzLl0/tZ/ftW2vrtfb/KvLM5iozYYe5x3Rh7riGe8+nn9kzEjL2O5ntC5y7er41KVPfo8jUFcEtpt0rVy/Uu4ecY80zmsiZ+1/phTq31Ymz5ksr058Tfbtua8c3uOwpGRE6bJoonh3dHnok4elvKhCTtz3BGlR2Dzp5srLy+Wlz1+Wlz59STq0bJ+QdM1ZNUeeHvOsHNLhYNm/135KfBpG+S1Zu0SeHPeUdM7rLPt030denPCS7NW0jwztPUTS07fG9f0v35dPpoyWk/Y7UXp16JUUBqvXrZYPJn0oE5dMkg0pGyStIk3a5baVw/oOk25tu0kM9662zoqKikDMGe93p70ncxfNlWP2OlraK671WVYVrZI7R94lPRr1kOEDjpGc7Nz6rL7muqpEypWAMwd21DwIzw6kVcd4wqIJ8tHUT+TgzgdJvy59a5ZvJ1wBKXxu7POyfMVyOfmAk6R1s9bbLcWq4lXy2CePS6vMVnL8wOMkKzNru+usqYLnvnhBZs6dIecOOkfatmhb0+UN9vuadWvk5fGvyMRlk6Rd47Zy3oHnSpPI+twQgjDnX9R1kuf67KFn1csYN4Tc3oYjsKMQ2G5ms754vbw64VWpUKLULqetnDDo+C2yLli+QF4d/6rkFOQkRbo2FG+QkRM+lHKt66j9jtzhxOvDGSOldGWpDOt1aNKkC8vVm5+9KS9OfFE2VCnhqMaClZ/VSPq16ystmjRv0DfMtRvXyptT3pYBBf1l/x77S5/WvaV1Xqu4MkxZ9KW8PPZlOaDz/kmRrtVrV8sD7z8oo2Z8JJ2adJSenXvKihUr5I0v3pSpS6bKhQdfKHt36ZfUfF21bpWM+mKUNMprJIf0P0TaNmkr2fonLzsvqftrc1FRSZG8+MXLcmiLg+WIvoc1OOmasWCGjJs2TgbtNUg6tepUG9GTunZDyQYZM3mMrN24To4ffJw0y2smvdv0lsJGX70EJVVRA17Ey9WYmWNl9txZMmyvQ+tFIW8o3SDvfPmu9MjtIUf3P6pBSNe4+eNk1PhRcmyvY3Yp0jVy0kh5avTT0r1dN+nVspdkpu94Aho7fSqqKmTc7HHy6eRPZfg+x9bLGDfgFPWmHIF6R2C7SRdWjcaZBbJ01XL5ePrHcnj/wyR3sxUBlwEWjGRda0vXLJMHRzws3dt0l2P2P7reOxtbYXC9pFUkTYiKS0vknc/fkYc/UAvZxnJpktk4OE8TlRZ5zeXYvsfs8H7ENoD7LD0tLbgUmmQ3lmE9D00oA+ODazAZ905paam89cXb8sz4Z+WoHkfKRYdeKO2bt5f1G9dLtwlvy/0f3S9PfPyEtGjUXFo3r9lqMWvJbHno/Ufl0L4HB9K1V6s+Iq12DFy4WmszF+tbire/eEfeGPumdO/QY4eQrhVrV8gTo56SRtn5coKSrg5NOoTPrlxYF5h7aTpX68vlyzhTX6i3gVz6tIPrjnZ3pTJ1wVQpKymT0/Y9TQ7sMWiniGZjXB/hBzulA96oI1DPCGw36cI1lJWapeb8lrJi+UoZNekjOXLgEVvEjI3z0stlY9lGKdP4nQxV+DnpOcEdhVtk2brlMn/tAmnTqo2s2rhK8jPzw2Jm7hhiE7gf5ckiTTxReWWZZKZlbvq/uqo2lm/kEslOy5KM9IwtcpSrK6MyfNQFo3+yM7IldVO02ZYFHytWWUVpqC+ee3P2olkydvJYGdZ7mOy3sUje/OINJTab4sLilU0xXWVbFABtbywvVrnLtY0slWHbN0+IEvcgV1R+cC4tKw3kyL7fWAqOGq+l32WnZW/lOrR+4cIpLd90n/WppKxESitLJT0lXTEjJis5t+eiVYvk8VFPSrtm7eTyIy+Tlk1bhm43ym8kpx14isxYOl3emfiuTFo8OZAu6wexWmG8VRGCO4XvlqxZIovWL5J1ZevDnGBh1u4Hwojc9CHIr30kHo0+UhhjsM1O1z7HuKGLy4qlVMcwYBLz+zZzMWbQwIl7mZC5GTlbuwFVsA0qI2/uGamZW40dsgR5q1KkpKJk0/xSWW2cwHv2itmyomSFrCtdF8aD+WpjTR+yNlshSnSMSyqKw+9ZOkcy0zO3ljLy/GTqswGe1LNC3fzz18yX9untZW3xOsnLzAsYofSMfIAN8yVNx53+2fsC9zMe4MOY8W+egSBTdaGYm2Upr2JsN8lihbZxLYU+an1Z2g+e5TB+Om+tPa7jOYwWnlOeE36LxYDnuEqfI8Yh/K4yxpIr+lGp7RYVF4n2RvuisulciO1Ldc8P8jBujCd45bBeVBMeQJtcv75kvc69NF3XsiUldet+fbU+VQV5DI9o378aozQdI3WBb66C/rBuqHM6yET/wxjpHIk3RvRtbekmWXh+qJfxYZ7y77Bub7NGbhtTGRsPZs90mCc27gmw5feqyqowTsmuMfWs37w6R2CXQ2C7SRc9KtMHuVPLztK5RScZPWuMHLr3IZKR8RXhsV5v2LhBnv/oeXl/9ochFiizNFOO6HW4nDToxLBYvTDuBVlYtUg+WDxSFj2xSPLLG8mJ+xwvww8YLrMXzpHbP7xd9DmWyw/+ploMustzHzwnHy4YKZcf9k3JT82XB997SKaunaaR8VXSNrudnDjgBDmw96CwWD4/4Xl5aczLel1eUCynDTxNiM0iyJhFe9HKxXLDSzequqyQ7x7+HenZruc2b9/EGV06/BvSonFzeWzEE2Hhq658sXii3PzazXJuv3OkT8c+8uLYl+TTRZ9JeVq55FXkqQynyMH9Dt6KXGE1uvP1u2R1yRr5wQlXSbP8ZqGJD6ePlKc/elqO63OcHLbPMHnp45flPY2BKkrbIBXlldI6raVcOOxCbeeroH4W9nlr5snt798hB7U7SE7c7wT5dOan8uDIh6U4faM0Tm0si1YtltS05EjXsg3LZO7aOXJS+xOleWwMnFbRRy1Vb099R75YOFEGdxskf3/3Rlm7dK0SXZG1VWslpypbjupzpJx84Ekyd9lceeWLV2VxymJ5dvpz0vGLjrJOXWOzF8yWiw68QF6c+ZJMnzlDGqcXyIrKlYEs7920nxTkFMiEZV/IqpJV0q2gq5wz+BzpoXNhY/FGeX3sG/Le9BGyPm29lJWWSYfs9nLWkLOkX2eNaaqGPFD32KljNf7uGVlatjTMsf4t+snZB58lbZu3kzXr18qTHzwho+Z+LBUZFVIgjeRwnbfH7qexYVk58vmiz+We9+6VRjpf11cWyerKNdI8pZmcPfgsOaDn/vLehPfk4/kfyzyZLw989qCUpJTo2I2QVctWhjnUtqCdnHHA6drOann+0xdlpawKLxPNUpvKCfucIIfoHMGKUqTPz3MfPScfzPpAilNLJacsS04ZeLLs1XEveeWzV2VWyWyZtXS2PDj6YWnbuI18OHmknLH3aXJArwPk1TGva3zlq1KUukGyKjLkgPb7y2kHnSZNGzWVhWsXyv+98x+RdRII4aqU1ZJXmStHa2zdcfsP32p+2nwH78dGPC4fzftYSlSW/KrcgMnxen22YjJh4QS57Z07JLMsU9Yr0RzU6UA5ft/hOv8+k1cmvSLl6WopTmkiUxdPlaZZhVs2fSxesVge/eAxmbRiUiBMhSmFcvJ+J8khag0FgxcnvSTPjnpWmmc2k6KyDXKMWpKH70uMnpJI6DIvX4rp5/M/l+uf+rOsTy+S1NJUObL3EXLioBMkNytXsNi+MvqVMAbr04r0+amQVmmt9Pm5IDynZYrBu5+/F+Kh1qWuk/TKNNm3zQA5fcjp0rLJpheNaIFQrCxeKXe+fbeUZ2nQus73gW33lXMPPUdjXdUaroRp1sJZ8sTIJ+TLddN0jamS9llt9Xk8McwP1p+ysjJ5bexr8uaXb+mzsk7SytLlwI4HyCkHnqzhCS1k/ur5ctOb/5SCkkaytny9XrNG8iVPjus7XI7d/9htCCGxcm/OeVNWlq6S20feLktXnCID2u+j7sZnZeqaqeHFoLXGvZ048AQZ0mdI6M6T456UsdM+lUsOvFj6de0biPHd794jCxcvlCuO/pa0btFafvvC7yRlnZJz/W1V5SqVM1WO3etYxfZEdeVmaj9K5eXRr6or/yVJyUoJz8qMZTP15WFbfbDLaUMXyBFoAATqhXTxZtqkUWPZp9s+8sqYV+WDLz6Qw/c9fMtCahaG58e8IE+Ne0b2attHBvUYLqOmfCyPjn1MsrKy5eh9jpTD+gyTDyZ/IANaDZB+7fvK86Oel2nLpslw/TNHXVEfThkZ3u5OGXCydNc/n8/5XBYuXSgLly2Sj74cJZ/MHiMn7XuSNMrJl9cnvCEPfPSg5Oki279bf1m8brF8OOdDObHHSdKzaU8pLVaLgr6Z5qbkyLwl8+Sdae/ImDlj5OLBF0mbJq3jujvytV4+lPJytbrVUNaVrFMCMkkWtlwkS4uXyYjp78uBnQ+UvTv1lUdHPS73vKuKWkkEQfZWsBiwSI9f8llQoJCuoqIi+VAD1xevXyKtmrSSEZPel/tG3C/7dRkoJ+99sixesUTu//h+yfgoQ37U5Idhp6IpoI36Vjt58RTpntNdvpj7hdyuipByct+TZfri6fLJ/NGijhjtb/XEC8U0d/ncQBhb5rUIb7B621alvVrAChsXyvQF02TFmpUyaekUmTDtczm99+lySJeh8v6UD+Tej++Rlo1byr7dBsjBPQ6SCbO+kKEdhsphPQ6Ve0bdJ19qjBnkfObyWfLK1Fflov4XyNEdj5a3Jr0l93/6P+lV2FOO3/t4WVO6Rt74/C1pktMkkK4PtO5HP3pUerbpIafvd6osWLZQHh/zhGSMeU5aNW61zQaCqOAzFs2Qu969W0pU2Q7vf0ywkDwz7lnJzs+RM/Y7XV7+9BV5YtzTQd5+HfvKyCmjwrzN1BeL4w84Xoo0nmrErA+lY2Z7OXvgWYEAPKhzj80MrXW89us+UPpP6C9lM8vl5D4n6ctJZ7n5vf+TlcuXy4X7XiBplekybvo4eWfKO8FCdf7B5wSX7bNjn5Mnxjwp7Zu2Cy8ZL455MTw/vdv0kqE9hwQyd8+H98qVOVfK4O4HauD8R9K0oKnOiRPlg5kjZfKiybKy82Hy3hfv6bjfLj0Um8N6DpOZ2t9nJjwrVelVcsmwS8IO27HzP5V1K9bKxQMvkvat28vz+gL09OdPS4dm7WXfHvtuNc7lalF+5P1HVLanZEj3IdK3w14yZvoYuf+T/ykmmXICmJQWycdzPpE+TXrLkd2OkJTKFHn9szfkzclvScfmHeWIvVSuSSNk/saF+ozmhTkL+b3vnftk3NxP5ZBeh2i/2yuZfEXu1j42ysqX/fQ5WV60XN6Y/qac1/dc6afEWM0t4Tk20oUlqLiyWBYUL5RDCg+WAV33kSdHPxX627awrb7kHKTPzwi5l+en675yUr+TZEl4fv4Xnp+rC66UlRtXylPjn5aMsowQfP753M/ltQmvByvTZcdeto1lje9nb5wj+6T2lyO7HyHTl8yQl5QcNsptJOccfLasWLdS/jfiAZmoa8HxA4bri0NjeWncy/LwR4/oeOfK3l33DjI9MPIhxaaDnNL7JJk6f5q68Z+TtPQ0ueDg8wMJ/3juJ5JalCIX7XeRNNc40VcmvCyPffqEdGnZVXp33noTzDBdS8foi8TERRPltL1Plb6t+8rdiu2EhV/I8fsMDwH1b098R+764B5pktVY9lKStUg34PD8rd+g7FsL69C8FfNkxsKZUqKhFZRxOk+KVm+QM/qdLsPaDtN58rw88umj0klfuPfrMVBG6jp8z/v3SrdW3dQjcKiMmTFG5m2YLx1y2m/RBzWtm/67I7AnI1AvpAt3HqYEFvVJLSfJe1Pel4N0cQtxGvrB0rRhgwa4znxPmhU0k/OHnie9OvWS/bsdID954KfynrqkhvU7RLrq4pGXkietc1vJ4E6D5ZNpo2Vx8dJQ+4oNKyRF31jVWCJFFUXhu+Xly6V5drPwFvnp0vFhoT7/oHMlSxf+vJw8ufPNu+SDqR8G0gWpaKZvx0O7DpFj9j0qLCivzn1NVq5eIU998rRMWTNFTux7gpx54JlSkN+4XsY8uLgys3URWx/cptn52XLcgGOlZ4eeUlxSEqwTGyo2bNVWthLQIXsNkU8Wj5YxU8bI/l1V0ajbdea8WdKtRTfp2qaLfDFhonTp0EXOOPD0YJGb22SOvDD5BZk0b5KwmzQ1+yuzTnBTqQtmY8lG+XjWJ7KsdJlcefCVcrRiMEetTXM2zpXx08ara6z6LhPPtmT1sjCWRjxj72jauGn4bdXq1UJgN+7EjgUd5Ey1EPTv1F86t+osv3jkl/KOxoVhgezcrJOS3lzp3LiTtMxvGdwtwV3InFHsWma1VOvI8TKgywBZry6zkYtGSeemneTkQSfJ0tVLg1KZs35OEGNlyUrp2qGrnD5wU1tzCubKW9PekmkLp8lKjXdq1myTxXCbolaJMXPGyfz1C+TC/S+Q0xVT3CHrU4pk+Zrl8smXo+W92SOka6sucskhF0t73Z3WrXU3ueH5G+S18a8H0gVhyEvLlf077CenDT5VrSk5Wt98eWf8uzJ7yRwZts+h0iqvteSn5EuPZj00yL2puuQzpVN+pzCGjPnIGaOkyfJCOanPiXKYEpLFanlFwY3WObBgxcKwm/PD2SNVWRbIOQeeLf277K3PW3f573v/FeK5UHJNMptI65xW0qGwg+Rk5oQXlOUaazl+9eci6oU6f8h5MkBfjNjJOf+pBbqB4hU5RoOb0zJSgzxtm/eSsw85KxC3itQKufvte2Ti7InbkK45i+fIS1++oli0C89bF8Vm74795NeP/UYJ6styxD6HB2KSn54rfVvuJecfdp4sWr4o7B5NzUqVcwadJQNVQTdv1EKmrZsulSVq+1HCNW3RNBm54CMZ3HGwXHDQBdK0SaFallrIH564TkZO/yjIgZu5MK2Jrg8HynC18GCxsRhSxhYrUlpVmr5Y9ZAzh54unVp3ksr0Svn3K7fI5HlTZHCvA2VpyTLp2lGfn0GnS692vWROeH5elMnzJ2ts6lKZp1alBUUL5IJ9z5ejBhwZ1jV27JZUqlsvpOHY+m0DGQr0z/H9j5Pj9ztelq5dKnOfUUvuuFd0LIfJl0unyufLJsihPQ6RCw+5UDIyM4L18J6375Mxs8aF+t+a9rak6jicrdgc0PsAWd9vncx8aJa8+8UIOWrvIyUtM00y9U/3pl3lDO1X00aFSporwxr3hY5RLOnixbFtfltZkL5Auuo9azaskY8XfyLH9DxKzhlydiCEWDlveP5GeX3Sm7JXl71CuEcI54i8gOHyt1QTVbpI6BOq2HaXUwedLF1bd5WcvCz50zN/lklzJwfC+KGS/bTsVLloyAVh3e3YrINMVevehlVbr3P1ssB6JY7AbohAvZCusNjpotlMF+sDeu0v975+v4yf8XmIrUrTB5iHeOrsL2XW8pnSp10fWVi8SNbPX68xSmUhfmW2Ks6i8g2hDmINsDi0btZKenTsLp/NHS/zF82XlRWrpE3TVlKmbomFaxbKArVw4Xbat+0Ambd0nlSmVAYylZu7KRVA9+bdgtVgTtHcLcNSmF0oLfKbS37uJmtVmi4yX66eKl+smih9m/dVBXJ+sNjVZ6FPEK+WuS1l6rKpMnrmGClQxUl6haFKrrL0t62K8iXeGpunNleL0fTwE1addcVrZWD+voFMHt9vuAxo21+KNe7l2dHPKdbjZfay2dIqizgqjWHRP9GSqm6ZFWtWyKrlq3V3VTs5rP+w8AYNgdu7zd4ydeqXQXlVV0LGNeJpAo+OjcLZdGfI1aafMIpKatM1ngSrYrvCdqG9Ts07SaucNjK3aL6Oe2nY8Uq9uDFiC9+3yW0trdVKlZ2dJU3zC6VxboH0aN1TGusYQWRzlKwU6x/KMf2Okf7t+odYoKd1x9ZnU8fLNLXkQdxC/FCCPHFsqx87faw0b9ZcBvUcJJlZm7C7fNhlUrShSN4e944sXLVQLhv2TemgFiAKiqSdugSnqJsmxLxoj/Mz8qWj7ubMy92087JVo1aBTLBrklKpLi/rK4obBdcmr01wP2XnZMuhfQ6RbvrSUVxeIq9//rqMnTRWxiwYK8X6fGBJnj5vhsxeOUeO2utI6dW+h7rQJRDuX5/8a8lIyQjucWKovnJ5b8qPN3fJXJm4dJIcqLsmB3bfN7iSWzRuIX2a91br1jhZUayENKNZiO/plNdJIM5g1bKgpbrV0nXerd96aPSh/nLulzJ35Vw59ZhTpHvb7sF1214tYl0a6wvBmknBysWzn5uRp2ST8csOz/R83c3My9Y+an3inn66yxUSumDhfHVrlqi179PgpsvMz5QvV30pWUWZsmzjco35W6fP8ZwQQ0RpmtNU8W0p+XmbnuNoIcYyU63FkP0WBS02jYX2N6sqK1gPwe34vY/T52efrZ6fOfr8tMzSMdP7ISM5qTny2ZzPZECnfaRD0w7yk9N+HGSOF4fFPbTXvUV3Sc9ID/h2Lugsry15PVinP5/5uaytWCvp+Rny+ZLPw4vLSsV9tbr+Fqmlb/aCWTJx7iQpbNZUVpSvlDHzxwYSWqb9pd9ry9eF+FbGqEthVynMbxKeJ8YotSJV3fJrtsGBL8JcUJnpN+S5IqVChu93bBhjCi9xWBCnKvHFXVhTsVxfHRp1kOYFmmJHseT5zKzMlA1qHZ63bL4S1ylquesvAzRVTYrOtT6d+kjP5j1lwooJYf57cQS+7gjUG+kiwp0/fTv01d2H3WTktJHhDWuTtUstVWpiR1FOXjVZVo1Zje06KObS/DLppgSJoPKSDZsUKESlqbqperTqIR+M/1BGTfxI5q6fJ3v36q9xLUUyaabGeywvk9INpdJ///4y6vNRklGZIc11sbPCG1pOTs4Wqxi2H94uowlCK3RRW1K+VPJSc4PFaaPGiFCKS4rVRTA9BD5venNOVQtLl/AmV9uCwmyUny9DugwO1gtyCI36fKQcOnCYHNznIN1t1mibKhvpAotFZ9KKyUGWuWriT2+UEVxb4LlSsXzo3Ydl8vIpugAXamxTN2mbp/mBSnVRixPYT9+xVK0tWittmrUJlhUreel5kpWSVeOCSLwGRJixYRGPt3yuWrtK1qlronFu481b9VPUPdo0BMhTCDTPV9JIHBpEpaZ0uZlho4EGnKsrk2uDRUnvp3EUCvON8aGsVHfmoyMekwmLv5BGjQqkT0EfJW1tRPVMmGeJCha5JRrX1rRdM2nV7Kt4HQg7H5R4ZUlVcFFuKVodFr2SdcWqbLQvEEysBMSt0JQKi9KsznxIQlnIuMkPpq9p3NU7095Vi2iW5hPrKW3y28iC0gWbnp+1y4JiIw8U7ngrzfUlgrJMrXJbK7VNzx31FhdtlJZKUix2j4Bu0pkQn7Zeg62bVKgSVyKNhbiyQud7uhJnvQbrZ6yi5P+ri1ZLVXGVKn3FZPMgMka4yovBRNM20P+wQUDrpKzWeDXc5IU5hYEwUIinzE/Lk0wljWyKwXq5XjdVEKcZlLTiynxr3r6FdGzVMby8EVDO5oJ45McwYZ5k6dyxFwk2iwQxtUPIhNXq4XcfkUnLJ0sTJTDdG3XXlCptpEpJckpaioY29JPjex0nz3z+rFz3yPXqHt5PjtzvcOnVqld88q444a5jPCnITOB9aXpp2PSxStOsrNGXpnfnvCujF40JcwqC3KJdc+1XB1m+dqWs3bBWVmeskYc+eySQZWY2z0mPLj1CChXwJKYtzJnNzzjjSL+qIzObNhxVaLzgKslW4gkhtMJGmlx9ntYpqQvuQ96oqimMB4H5PJcmQ3nAdtNcwy3PGDdVSy6Ei8JYNErL19dADZtw0lUtvv7j1wOBeiRdqgj14UYpDtlrsDz34fOybtXasHBaTBfK95z+Z8vZ+521JfAzV2Ma7PelK5dtRn2T5irMKJTMqkz54EsNHK4qlmFKVNakrpFP1E22aukqaZymJnJ1L2KxYoGlfSsstATKp+tbL2VTjZsWByvI1ju/lwzpNETGLRmr6SoelGvPvja44t7VOJhxqzToPaVMcsqz5ZS9TgnxLXXZ2o6lBfP971r9Vt4b/57Gnn0ij419XF7WeJUrjrhcs9oP2apeLHH799lPPv9ogoz8YqR8PPETDYxuJ3t37y8bijbIvR/cJx/M/VAuHXSpxs8cFwJtf/joNTJt+tTQy3hlk6eXIOPYN9pNZLmmAqHo3KKrZJany+KiRXFxIDh+1ZpVMnjA4BBwzE4zFl3DjHZQFJDYZIv1xiSMlRUlWlxcLA9/8qh8vGC0nKmB46cOOVUJeHP57dO/ky9ngEniYrs6UYLsDsUNR1m8erHGyi1WIrAs7EKLbpoIO/LUSqv7AkMMU/Vb/OK3bf2BeNAurubnprwgh3caJpccgRuzvdz34f3y+HuPh2coTecxOJZq/FJ4ptj9qH9wmbE7D1Idb24GV5FeG2tNJGBe94wEAgMBrHkGfNWPNFW8uJqidYYXKJVNRzuQz03P9GYGCkKbraBRHK0PNqYQUKzRPzr0ajmg0wEBc8Y37DzcXNjBF0oNjD1ef8BixaoVcv/IB+T9efr8HHBJiD/j+fnx4z+WyV9+GchfdlaWXHrUN2S/zvtpPNyI4Bp8/8n3NWnvUfLNI7+5hVxtEcqI52ZyT9tluvakVhLtBVGskPb6/P7q8F9IX83bxw5SMAo7D7W8N3ZEWLtO6HW8fOugy7fsSGWTBvdTpmps6yY861ZCzBxrZGTzT9hhqvM4T3faMg9id1uGOM+a3owi4oTNmvrhubcSO8Z1k97vcgT2HATqlXTZ4tlXg+BHNxujAccjQ1ArDx75nHCrzVRTemlf3ZnVZJOJ+zPdzcRDunenfluIWFiwdX3BdN1UTe7jNbt2x6wOGpPVVNKydBdXWZHMLp2jZEmVu77pt2neRkavGK3uuBkaz7LJBbSxcmN4y++S1nnzaMVZsPSr7s26y8kDT5LKzyrkfQ2GJo5sUM8D5PKjLtvizqACS0tR26FnsVuru99GTh4lTQsLZfiBx8rwwcfKm2PelBvf/qd8Mm+0DNSAeFwwVnA/ECfTuLKx7rJ6VcgwP7jPYH17zglB0J9MG6O7i/bWnU0nSWFBoazQuLTF6xdrHE58FyHWgQJ1zWXkZejuw3m6+WCBtG3ZLih7diRuVEKrUVQ1do0Eq/3b9NfdgxNl+sIZ0hM31+bCbrZx8z+T9Kp02Vd3SeFmYyfTkpIlqoA2bTrAXbKqaKW0bdROW9P0EEGJbCIQdS0Zmn198fLFYR717thLTtLdXhCu1eo2XKSbJ8r1T3UF9x5Z9Ccs/ULmLJ4rTbtvmpfPjHtORqpFEjdcjgbUfzl/qgzreqikpqcGNw0pTfKq8oICTkZ+ox9GPkwmSMVKtXR8OuNT3YTQRM7RmCoIV3FxSXBrbqxSkqV/OrbsGNxeMxfMlLW91wYX6yq1Xtzw8o3St1kf3eF4aLDifpUWY5MlGSyalTWTmUtmyvqi9cElx/zCbZdRniGN1C0aq2yrwwv5g7VUMZm2aKqU9jxSMtUKWqkkbPmG5ZJf2UhyNZZLmVxI/2ElyFHYTOavmB8sTU00aSuW7+XqZiup0vQlikM3TeJZNatKZqgr9aAuBwWLWElpcdhEQiwo8Vc1bfhIJLu9dMzXuc8z3ldfgogNxNW2cvVKnStLpCptk2WNub2kaLEM6DBA45L66SaeeXLji/8IRO3YFcdKN7Xkb11S1JK/PMQxUlIUi1UlqyVXd4AWZDaSDq3ay+jlY2TG/BkysPNA5fVZanlao8/LuGB5aqc7ZFs3ba07tGfJ+rXrpWmbTXNwssZJrd64Wvp37l/nlAv0B4LXljk1u0SmzpsmHRqrxV4fOaxwa3THcMfUjmEMIe+V+rJqViw2KKzTnZJl+qf6dCvBJKqxgM2lVfNWMnvpLFm3bp1anBupZ2K9LCteLqVahxHIuj7rfp8jsCcgUC+kK5ytFVlhydtEEOUI3ZK9bOOyYN3orvFZfVr1lk9nfRp237FbkSDnG165UXq06KG7zrqHwGseXuJYiJXp0KKDdOvQTV6Z+YrG0LQNcTI5mrumLLtcFmxYoDtu9lIy10727TogBE2zO7KLuuUIEv1IM6azWPRs1jOMk8UZRQctyK2LUmFeYYgJen+m7oAb9ZjGyvQICq66Yn2u6d0TJVVSotuo1aq1tmK1XHHwFeom7Lcl5ondivGUdkFWgQaYd5Q3dLdXQYFmttcdj8QBYVkp0P6t1mBoXEpg+9zo52WS7oxqn9lui9UqOiYVasUhOLqt5j/7/IMJ8uTHT8t5Q8+VaUumheD6YlErSRKzubUG554x+Ay5+c1b5P73/heCqFFAuBRfVUvNuHnj5MCuB4ZM6MGqpahPXD4xxMbslzYw7K4jNu/4tsep9UItRLgzFEDyDlGCzc2sBTFzKrgS+S7yts+1WAggPvmaFHRN0ZoQ/E6Otmc+fkbGa9qAdpnqNtrcN5RJrKsxOzdbBml6i49mfCzvTnpP2jZto9iqNXXaJ9KlbWc5Zu+jZcWnK+Wtz9+WfVr1l7069JHR00eHQPl9Wmvciv6xeqN1W1+2WLTUOkTcDOkItsydMP80OFmVInO2WHdsLtFA7o66weCt8W+FTSBgw27BDq07SG8NdCdo+mMlDQd2P0DenvCOrFQS22dgH3XtNQr4bMFSG0auTq07SmWjSnll/Gvyxvg35FDN/L5Aic/4xZ9JzxY9pUVOi3CyQuwzHMYjZgxsivTp3Ef21t1wIya8L/u22je8MH06W+MKNZ3I/pqKAus1LrTo/RyXtU+H/prb7k15U/t2jB7FxO7FL9Qd3DS1UDHIlMG9D5SHRjcP49CvbT/p3b63vKbxbfe9d5+cpQHmIY3LZrmSeTa3eda1P7jWiQ2E9CzTZMyQkudHvyATF+jzk9VuE+nS3bf3jb5fThtwmpy23ylhjQj58dQNGs+tyevKrHVzdEPG2JCfbtaSWTJt1fQQY9hOd54O1F2Sr058XV7Xvg/otK+0LmwlT370VNhhfeYBZ4RUFIO67B92yb496R05JffkINvfNYUNsYJdWnQJwfux4xFeWRKMkY2fPR/76w7axz9tIs998lxYS1kPwhqplvz+LfcJUOVpOh1enogd3Ld4gIzSlCOk9MjRP1bitQdmWNDaabwoJ1uwhr7y6WtyxN6HhYTZHEnFOufFEXAENA/l9oIQXC1KkKKuPers234v6dmxp4wZPy78zlvryXvrrjM9Z+3x0Y9rOoGJMktzMlWq0mH7O3ELG/Wtlp0845dMkBc+f1GO6nWkBo52Dq6Txs0bh0ze5ObJb5wvVcur9M23t6RnZUif9r1kuB7B8azmpvnX6zcHF+c03XK9f5f95JA+B4cuQk6QgwXCCu4RrD1YSwb1OEAOaHeAjJj7vqay0CM99j222jQDIfGpWnBC7E6CwjXFmqSwSYGmNdD4tMdHPi7/eeO/utOot0yaPlHa5eki1Wl/jdHZNkkqlqkBPQfI/8Y/FGJ7CEilYNU7pu/Rmh5B63r7VmmuWe95M8+tyA35hjYqYSVoGBcGY4LyC8lRNcbigM4HhK3ob+hupSUbloa8UPMWzwsuXCMzY9XiMn3FdDm411A9r63dVj3DyjO051BZuHKRvKEK47bXb9ddYF3DbsWJcybqDra9NTfVmWE7O9hieVmpb+qkx3h/2gdhYwCByUcNOCpYWyC7LNTvz3lf9vmyf4j72STzJteVJWZECMaNxLU2fuEaJZPMmRZNW4R0I+xCve3d29QV21amaLB3epkSHU1xAYmncH1IrhkzXgM67hOspighXhI46qhyQ5WcfORJsn/3/UNC09uX3Cl3vHuHxuB0UmvTjBAjddIBJ26aW5tlNQvBV/Iy3za5Wnq16invZL0jL+jxUYOLB4cYmsrsTbE9jXW37EG9DlLiPFnu1HNMP5rzsUybM102aixWakVKiHPCGkU+JHYBPqKpBkbpTsZJMybLIM3ldPBeB6tVsTykYhi9eIy8MP5FdY8uCvhhcTy560kyc77mifrkybAjcunKpVJRVilnH3Z2cK3NWDlzy3wxaCBw8Z5rfudYq/MGnit3vH2n3P/B/6T9l+1kzqI5ITcYSXJ5MWD86JthgiXl8F6HBTmeGvO0TNbg/lm6C3LVqlXhCC7mXxslvKfvc5o8qako7hxxt3RQ6/jnMyfo+aYdwy5eiI/NiyjW0eGMtx5xbSnJPFWedhoTd3Tfo+QhzVV36zv/1edH+79wuuRUZAeXcUVKeUh90216N3nigydl1srZsn79OlmubuZhew9TK9+2ZyuyIUSPFw9HYc1YMSO4pXM16TPpIrDo9UzT9anPsfL8Zy/Iv9+4JbjeP581QXfBdpV9dKdtmj6bwzXf1nS1hL00/mXhzNbl6gZlJ/JxQ4aHTSRz187dZjxCsD1rb4IEzZYYmbnDKR/kbHtKc9Hd+vZtukbmhnk8tPtgObL/4QFCAt7bN2mvObZeDBbxGXNnalqTldK5SectLyu2rmw9TzY9q9R5mI7xZ9PHazqRx+WLJV9o6pYFsmqlWrdzdS1RxszzS1qg5aUrQs6+guyChOun/+AI7IkIbDfpapLbRK0m50kbtUJFs2eTPPOcIefom18bGdhhYMDuEE0LkavByaPnjZE15at1C/gA2a/9QM3vsl+Iy2quLoRvHv0NeX3aGyH7d4nuaNpHXVW/OOZnuuNpgBTqFvLGlQVywYHnycGdDpbOqmQoeWrlOOugs8JunkkrJ4edjGd2OFOGdBusC/am4HeUU7O0pmrq33QP5cS9T5DyDeVSoIHXvAFfPOwi6Tijw5bMzXpATsIxD9vXlfCRSiBRwYx/mSZyHdhh37C9urFarz5dNF7WV6zX3T0DNGfXIOmrFqx4hUOLB/YaKN898gq13nUJAb8U3JCnDTxVA5KbyGzd2ZSub9+ntT1Fw1TPCAtZ8ybNgtXnnP3ODmdhti5oLecP0hQdmt+qo1o9vnXU5dLus3aypHSJ5vfpJAd1HxqIL4HKFDYqrFi/YnNm9m0ly9PdoedpHqkeLdUlp1aK1Wq9a1zYWM5vr2OiGwNaabA9JQTd6h8SmvbvtLeUZ+rOqdbHyiHdD9nSVmclMJcddam8M+tdWbVhlRKfA2WflnurYmstJ+x1vKxvq0HeqrRwDfVRC9NlQy+VvTtsOtcR99pJekhySo4e+6KE/iRNhMuRRzPWzQrtnj7oNM2Rm6o7v9ZKK82cz7z7xuBLdIdex21icloWtpTLNFbn3cnvybyiecEld1CnoTKg84DQ1mH99Wgrde3iCi6SjeGoK2KO9ta0DRTOoLxoyPnSXy1hViCgFxx6QbCahjo0oW1pZqks0ng49n6eue8Z0jK7ZZAdpXhw74PCdvwJyyfofohyOazfMDk548TgfuuqbjfK0L5DVPYszX81WtZUrNGUCcOVgB8VdkDyUnH+sHOl+dRm6vpcLT2a95DzB58XXKekKLnmhB/Je1PfC7vjcGWR7PMAdaOjCMl1ds7+Z0sb3f2aujmLOgTuvEP0ft1RGa8M0/6QX+tjxWR95Xo5pPnBcqCOHzmnKB0UkwuHatoAHU8rvDh8++gr5N2p7wY5OG/xiD6Ha1B/3pYzIs8ceobuOmwpkzU56kYNTTh+v+NkaLeh0ktf4CgDdb1IPzRDn+P4m1rYmHLmQCX+GU23rEdtmrSRc3XOYkHEvXrKvicLluRZ62eHUxlObXtqwH6ZPj8tdK5A/i479DL5YPoHsqh4sTRr2kwGdx0sQ3oODtbm2HJot0OlQ1b7sCFlUcni4C4c1OGAYOGibMrXpYdha56wKaumBAvwaYNO1QTCB0rXtpvWj36d+8kPhl8to2Yq8Vc5emjYwBkH6PE9av3L1DFnA8LFgy+Uro26bTluiLXnosMuCoH/8crBfYdKpzYdQ24/gvDPPfTcgO2U1V9q6ESZrq39ZWiPoVvOi8SN+Z2jvi0j54wK4RkkpD1cU14QW9ZE5SGW77wDztXE03pG6uZNA6SmuOSwi0PuOEgxO6KvPu4qeXvy27K2cq100XlxpI4x1txmjZsF0rVWLeMrNblxvF3LcTviXzoCexAC9UK6Ljzk/LiQ9FfFwyda9uupJEs/8QrEC0VmyoxriHn4YbsfbLmcGCneCiWGq4RUCnrYNn/ilcGalJRPtJzUf5Olwkr/ziqvfpIpEEU+1ZWOmi/p28Ou2HLJQX0PEj7Jlqa5TZV0fXeby5s3bS5nHnRmtdWwOFq5eMhFW/4NGb748K/+H1vJoZr9/FDZZB1MVLBaDO03NHwSlU3uwEp9c24nl+mJAbicYwtEd3CvweETW05qvvXYQLr4WIGEnqpWFSvNC1vIaUNOq1ZuSFui0lqJHoo5XsH9e6BuDuETr3RuqqcxDO281U/7qEWPzxZ51dp59oFnJWwfxXzUwKOEP9UV8lvxiS0oVQh8IhJPAlk+8UoznWfR+cI1nC7ReVinamXZv/f+wic+Jnr/0G3nWXVyUA9z6+iBR8rRcmTceg/osL/wSVQgU+fsvzXOkB0IpJWmGk9KrqvqStd2XZTsJn6hit57RI/DRPhUUwr0UPcTdH06IcH6xK2QUrNox1bVTC3alwy5ZKuvu7bqqi998UkxF/KSGy1ge9yg4XKcJpuOV0j2u3/P/cInUblg0NZrPaTr0iO/sdXlHLDNJ1E58YATqsXKf3QE9mQEtpt07cngeN+2D4FN5yaWhgDjeKRr+2r3ux0BR8ARcAQcgd0LASddu9d47VbScsAuO7VqOmh6t+qUC+sIOAKOgCPgCNQRASdddQTOb6seAXKyXT70MsnVP27l8tniCDgCjoAj4AjUw+5FB9ERiIcAQbWH9Rjm4DgCjoAj4Ag4Ao7AZgTc0uVTwRFwBBwBR8ARcAQcgQZAwElXA4DsTTgCjoAj4Ag4Ao6AI+Cky+eAI+AIOAKOgCPgCDgCDYCAk64GAHlnNbF8+XLhQ+LMgoICad68ueTkfHWkRyK5uH7x4sUha3zLlprAU3NAWVm7dq0sWbIkHCbO2WotWrSIm1E/Xt0kRlyp2am5l3qp3wrZwJcuXSrUn6H5gtq1a5eUrLHtrFixQoqKikL90fMsd9YYeLuOgCOw/Qhs3LgxrEkbNmj6GV13WrVqVe26wxqzbJmeLqGnZZBouk2bNpKfn7+NICRx5lSE0tLSsD5yrRdHYEcisEfPMB4mlDwPaLwHbkcCm0zdkBsIDH+3bt06kI36KjNnzpTbb79dJk6cGLJAN2vWTE477TQ55ZRTtiJR8dqbMmWK/PnPf5YOHTrIz3/+cynUg7opLHqPPPKIvP/++1sWqdNPP11OOOGELXVCmtavXx8WudgzJdesWSM33nhjuJZ6IYJWRo4cKQ8++KAsWrQo4ICsZ5999lbEiYV3wYIF0qRJE2natOlWpI16IFy33npr6PNvfvMb6dcvfqbu+sJ4d6ln3rx5AvZdunSRvLy8HSo2SnH27NlhfHjukjkMvD4E4uWC+QHZjnesVn204XVsjQDrFsSGwvq1owovZM8995w888wz4SBtyNE555wjxx9/fML5NWbMmLCezJkzJ4h13HHHyQUXXCCNGzfeSkzmzN133x368ZOf/CTMHy+OwI5EYI8mXc8//7zcc8898rvf/U6OPDJ+husdCW5NdWORgdywkFx//fWBqKAcIYhkj65rgfjcdddd8sorr8j3vvc96dy5s/zvf/8Li0vPnj2rJSO88T399NPywgsvBOLDwkpBVhY96rn88stDnf/9738DiWrfvr307t1bFi5cKGAOaYOM9e/fPyyQ1pePPvpI7r33XjniiCO2OniahRGCyOJK3Z9++qncdNNNYQE89thjw8IKcXznnXfCwnjeeefJNddcsw2BGDVqlDz00EOBqBUXbzpvcVcsJSUlAU/e2OuTaEf7ypyi0MZLL70kH3zwQSCijFN9F+YMRBsSjbXyH//4R3jezjrrrB3Wv2gfwPJf//pXmCM/+MEPAtnzsuMRYB4/+eSTMnnyZPn9738frN47oowdO1ZuueUW6du3r1x88cVhjeHlqnv37tKrV69tmuRFlnWfufiNb3xDpk6dGtZD5DvjjDO2eln77LPP5NFHHw1rb/Rc3h3RD6/TEQCBPZp08daNpQulsCsWTNsQJD488G+88YZ8+OGHYaHo1i3xMRo19WXWrFny3nvvyZAhQ8LbHYqXt//rrrsuELHqLEAQJixZKLJcPWfRLBXz58+XV199VQYPHhyIEfVhsYKggTMWKogTxIp7+f/JJ58crFUUvodIQSohRVELCG+lyIzCPPXUU2XQoEEyYsQIefbZZ2XgwIGBfFEnsnMddfFmGrXaYNWkz1hZuCfquqwJr4b8nbkICWKx/+53vxsW+/ouYA85pu4LL7xQLrroIjnzzDO3ecuvj3atPxDl73znO4GM//3vfw9j3FCumk8++UQ+/vjjgKcTrvoY1eTqYH3Yb7/9wnxmbWCtqe/njjWS9Yi/L7nkEjnooIOC5f23v/1teDHs2rXrNsR+0qRJ8uWXX4a5z8sfa864cePkxRdfDGtLp06dwnr7xRdfhJdG1gzmbX3LnhyKftXXDYE9mnRBCrAk7MoPE4oJSxAk5N133w1WIhaY7Sm8gR544IFy2GGHbXGr4l5EEaKQExXug9hAcHgrZGEycoS7EhcOytvcN0cffXQgdsSJIfP+++8vKEAI0QEHHCDDhg0L1g9I0mOPPRZcThA+xsX6SBu4Axkn3lwpbdu2lb333ltYPHlbhXSxME6bNi24MnFzUifuT4s3wz1JPbg5kHl7Mdwe/Ku7F2sesoLnjnK9McZYBY855pgw9yGnO8qtaP2ZMWPGlv4w1xqqQPgh6Cjiffb56qzLhmr/697OXnvtJX369BGszKwHdXUz8nLMcw1pjs4fYrJYE7Gm4x6n8ELKGjF+/Pjwwho737ie0qNHjzAnCUdgPWGe8GxAulhbsJax7tAH1ka3dH3dZ3PD9H+nky5cUjwAPHRMfB4UHmIrxOnwcKHIebPCPWZvNyz43ItCxjePW47f+cQruLF4IHmQUdY8fJisqReiwcKBksJVgluMBxUrkRXM1MQUQTp4eHmgO3bsGB5q4mZs0WDxZyHgGiwA9McWDCw1kAdcbyhC2sOFh7Xn888/l7lz5waLF2SF/k2YMCHIixyY0o2YYHmibhYgFo1oGTBgQGgTOU2xY5Ggj+YujIcPOGOBgTxxH/eAE39DaCCI++6775Zb+S02RoLFkHGA9JhFCzIHOYMk/e1vfwu/mVyML2MIIYsu2ODPOKBUCYqFkFIP7tIHHnggWDaI06B98HnrrbcCUcQSB4bbU5hrYEu9zA1wZ87RX/BDXkgTcw4lwTxBXgrkg98YP8af69kUwJyAnPLGzRs28x6Ci6LirZzC+IABljoILpiDD1gZEY3GwfH79OnTw/iYHGCOZYBnAowgwUa2IeLMVeSjD7ggwZ25glJjLmIxxJ3DGPJMRp+FeO4j+sMctf5A9OgPzwXt8swYFshJ/2gLbHhmmNcQcb4zNzL9QkZcxPSL3w3f2HGl/zw3kHye52QKMrEWMB4Wk8RzhOvVXOE2zown8w45wMksaXxP22DGHOU3ns3YFzzGmmut7/QFgkj7fM8zijsMhY8MzDXmHNdj9TZ8wBKCwcsGc4H2ohtcrN+sT+DH2HEvawNjYXOXZ5y2eaawhCIPc4ICLswbCn1ijQJTrseFiMWI+cKaaePF8zd06FC58847w7zhpYi5wFqKjLFrU+z40G/mEISIPmOZipIonmXaZ92hbQpEiTnFHGFsooU5zXzk96gVmXt5XsGQwrzmOUNGwi5ou7oXNZ5NMEAei8HlfnuZAU9wZ0z5N/OcuqPPDPqBa3i2mXtgg4WNddV+Yz7yG3OJ+RhvjJOZ437NrovATiVdPNj43llIWCB4YJikxO3wYKNwcJPgw+d7HhoedtwYKDGUy/333x8ePBZLFnJ+x/SMkjTFzm+QlNtuu22LEqBuHniU+PDhw4Oy+dnPfhYmOYsan29/+9sCgbHy8ssvh9gAHggeapQGiyFkggcNJc2HuINzzz03PPw//vGP5Ve/+lV4uJCHxYX4BFx9WKJYpJEDMoZVx0gI/cNkz+LFQk+9tIu8kEqug6jRt9iFje+iMWHUD9nknkSBoiw4uAlYfCACLC70CZnBHcXA4sAYPfXUU+FviCRy2qINZsTxoLC53hTQwQcfHOphYYl9m6RfXAs+UQIHrsiCDCyU9JX6IQ4sfow9yh13AcQCkoR7gwXfFEddHjsWxDvuuENee+21sHDSdxQPrk9eCFCE/I5SY3HkbxQNLmGIAeP7xz/+MSgJfkdR0Q9i0Jhn4BodZ+bpT3/607B4oxgYW+YgY0+f+J4Fn/l52WWXhZgUFDWKCjce34MbzwCBxcjCXKJd/uYDKaE/KBfGgDd8SBfKjfuZ47iMaZvnhL7yHNEf+s9zdf7558s3v/nNrSxmzBmeARQFc4txYRyJ7yHuDrJJHBnf8bxwDVhALpgPttEFi+j3v//9IA+xZyhw5gVzmH6A26WXXrqNRYPxBSPaB+9k3ZkQdLBDqRm+zLcf/ehHcuihhwbly5r0f//3f2HuMY7gwG/ghJxYEqnDyDjPDPgYKaYO5iyxZvSFOhgjxof1i+eaOE6eR+pjLWRcGWP6S3v8zphce+21YZ1hbrO28TtzJnZzEGPBesqzQb20y9qA2xXMkfk///lPeJkDK8aCOYPcED1eAvgdXJCf8ADW4SeeeCKMLc858x2yAQ72Agip47nmGvrHOEP4jfQleg4hiG+//XYYc64Fw1jiTF2MAWug7UZmXWFuQJxiXyKZL8xXsLF1ifbBlrUEXCm8WPJhHYta3hPJioys/fQT7GjH3PaQQDBHv/Cs0hYvDLyAoAsg2cxRxob1gTlCnxiTH/7wh6FvxKK+/vrr4ZlDJsYP/WMvwHVZy/yeXROBnUa6bFFiVwqKmkWdhYhdbUw8LCJMZHagsCgzOXlr/Otf/xqI2FVXXRVihHgIWOR5q6AuFiUUMwsJD6e5mgiWZFJfeeWVoT0eeBZ6YpJYRHjwWFBoG2LDvVErF8PHg8RbF4HgLHrEFCAPi+Ef/vCH8GYIyTILhr0xsshZ4d9mveE75LfdeihklCSLMu1Q/7e+9a3g0qNvKAHkQ5FBdpJ1p1AvRImFFSzjFSxcKJqjjjoqLLQmM/ixWPF/FvUbbrghLMgsLuDBooJCBL9DDjkkbt2mDOlr7Nsk9bIQsqBGUzyACdeDFe44CCwLPQsUJI54L0gwSg9s+P7www8PbsztcS2++eabgciziYBFD8KC8uO7K664IhAWiBnEBJz4/uGHHw6EEKJB25A+CDVzGWLx61//Oiy4xL8QswbOjAnfoxhZkHkrv/rqq8OCDuFiEaZ98GURZr7TNyw6XEv8HMSJeYel7b777gvfYbngWQIvLIHs8mJswRgFRv8gjsx9lDdxLtzLXOflgPZ5NmjDYqR4pnh+eK4guVaYGyhZ+sN85X5L2cG4ohCZz5CvX/ziF8EKwMsGL1FsbqF9lDyKl3pQlP/+97+DMoUAQXJRdKwBEDesIFFLEvXz7KHkzDpi8wUCwJxEsfF8o6RHjx4dXt5sjJivPK8oUF70IKW0SRtgSZ/AlzqQgTnHCxb40j/6ikzgHE/586zwzIALFizIOv0DRwgP9UNYIFU8S2DCXEIG8Oc7iFrUFU//EsWo8tLEeEKWWDdQ8BBDFDhYE79EfbTDd4w7G1sgOieddFKol7nI8wzBZN5hVeYZYC5SBxgwl3lBYE5CJiH9/M1YIDPzkXYTFWRgbee5Zc2FnED+4llSuRa5omsx846xtTkWbYfvWJtMJvuN9YR1jA+lujUpVm7mB/OfunkWkIUXdAg1c4v/M7bMB+YLaxHzljWX+cIcwXuBrgFD1jGeXeYF6zkvDIwd85HnkvWODVboObD01De7Jnmqq1Q7jXQhMA8pyoAFlTdrHjyUFA80ExgSxtsKBIrFicWbh5pr+JvFDrIF+eANnYfDckzxNw8nH65l0YO4nXjiiWHhQbHYlmcLGoeUUBfBmvFSTLAYIyvt8jChdPmbulmkkJsFE4VHGywMPNxRRcG/+S42nsdk5W/kwhrCAkHdLJCQAMubVZvBpg6UNYSVoHbcb7GFxeTxxx8Pizt9oz3Dz2Tn/7xB0n+UCQsBizgpJLCU8EZWU4lHhvjOvo8X44RsLGq8VUJYKLz9owRYWHl7h0SgNG3zAfXVJY4PzHmjZS6itCB0zDvGEiKAhQSXEvORucr4QkxQbiyUkGPaRXlAImynIO4XiBRWJqwDNtZGupnjYAghZm4wZpbigzZQ3PQJgsbcZ56jCMGDdiAUZoGBgBgBMDzNMsAcwAUEIYQ4MIYQRSyFECeULPfQNi8WyM29PDO8BCFHlHQhf3Te2v9tfiMzWKBUUR7IxvwxqwbjxfOLRYi+IQOud1462LVKoV/gzm/0NZpnznIsISPPLoXxgyigqC3VAGOI0mUcCcZGZqyYkBN7caFuyCDtsyZhGQYbrC8ULNfMM+oHO+pgPULpxr7IWJwiVjjaow6wZq6wRoAPsnM/KVxYRyjMKZ4n3HwWrxh1L9Fm7HpizxxzF+sS+CIf/WN+gAPzgU0mEGBIA+NPXQSa47bHCgrpoi2wggSwBkLWIcqsGbyogj3WZOpizjAP+Q5rIX+zPrBu069EhfnL+EC0eQnh5cUsZjWtH7X9PZmYyWRe0Ognzy79wrrPGPJSwPjSb3AHW8gquFGYO5B8cGL+QzJ5MWMNZoz4MOeZo9TN+sLzYDu2IdfM67qsY7XFya9vWAR2GunigeCtHZLCWyTmVhZ5lB2/seih4HgLM2XKosBbgxWIEQsh1iYeeIgXi4y5sCxGBKWEdYRreUvjDZMJzz2Yeu3BY2G2nFTxhoH6aNMWfq5HkfC2YsHlZhmqbVCmkQ/uQ14WPh5y3qZ4KMEK10NtCnXxdsUbExYQrB7xXDAsDCwKLA4QDUgo8nB/1EpnRMAUFUriL3/5S3B1JUO64smOPGBnb7Qmn7k2+Q2lFlVsKHLceRBnrEUsZpBelAvyIrv9nczCa3IxH5hzkCVwoCAPuFF4+6TQf1OGjBXyYP1ioaRt5lTUzWR9MjJkY21/00eICL9zLXOV7yDLLObMVZQf7ZiFBIJEnJy5kVnEUQQUCEo8MosFjsUd+e3tmX6w0PO8oVy4z6wXjL8t/EYGY8cwti+xv1OXuXloC3mZR1HLBf2G6PBcYvmACDDnuR5cIXso63hWUiOKhgP3MF6QIcYDkmnuZsgNmEEmsEZEXe3MIeYcpIF5RbsQadYlc40zN8yihiyQDSN70X5bPBhzGmJhWLOOYd2goLCpKxrHyNpDvfSptsoWjIwU89JAAROIFS+dzF3+H3VXIT9tsm7aesX6Zn3CfW8bb3jOmQNgyksla57NZ8aYemgf8lcd6aJ/3MfaSfv8m+8SPadcZ+0axrY2xdskxbUWmgD+Ns9oh7lRlxgp5gZEFVJOOhS8AUa2aQOrKhZC5i2hEhTmEPOOlwowYe4w/6LuU8gxBZxZf1mnbRNUQ6VbqY0+8WvrB4GdRroQ33zauNHM7UEMAm+gTD4+LADxsqizOOND5y0DaxBvYzyMTO6owmHxYjHFFQXhQhmy8EBCUED8FrW01BQXQn2xb588/NFFo6a3p+p+NysNlgGUKCZ48OGB5juIUTK5lugXFgKsUSw8WAwSpYoguJagVKwnuAVQvrzxowRxP/A2zqKKZQnlbgUswcuCU+syJVnkeXO01Bm24KMoIB7VJbpkYUN28CcOCMXB4oUS4f/UXVMgb1RmCA3tcl+s0jNXJ21F56PNB+aqzSXmQvR+mxuJxt0sGHadxf3RdxZ3LCXcyyKOHMjI39GYlWSwp3+0EZXf2kZ2CyY2900yddZ0jVl2o9cxZ+I9ZzyPZs21zRgQCNyuEMXY3HXm9o5af3g5YQ5Z/VhRYi2p3AcGUcIE1mAKBhBAMLCkyihslCXW1egmn0RKnPaiBDweRlwDOYjKQP/sRac2LwvUby8t1Bf7zPAbc4b6E81dwyjaJ3BAHp5Pnn1wQGasXVjELAbTiA641pQfj7pwmTMuWA0JmeAlg5eqeMl0WWOYCxYPSB+QlXGiL7EkimshhOgH1jHbgAEGyFmX/IfcB0HiXgg7awtEjFx0vBzTZ+Yt8oO/bYqgj5BucOSaeCSdvqAHcSvijkQPQvZZ443c1XYu1PRM+u87F4GdSrroOg8bpAkfN24G3u55u7KAbBZiPrYI46aBIPAAEF8ACWFRhgxAGpjc0fgKHhjIAz51HgZcFzzkPCTE4/Aw16Yk+wBElU1U2SKDue4StWsWBlwsECXcQpBLXIC8SREDUt3iQXtgwVsZBISYNx7gRG/PEFYsRvbWCbGgfhZYFj1Im+0YtUBUZI9aFGuDIdcaJiyKLE6MPW+E9uaPZcNcF4nq5o0al7FZaJCHhc0slrVNPEp/uR/LEgrErDsQduYQFkDa4G8rYMacQ9bobtHa4mFEh34TzwUWjDMLO2OBCwjsGUOeBZQN11jBVc+izdt0bB40u4bvwZ3nyQr9oV7aQGFsD4GubZ9jrwc/8MfVR+xLTYXxta3+FqsT3d1p98c+s/wfS2jUigtJAlNkAAvkwNWOLIlIUyL5qJ9nhr9ZX8ySgyWI2CAs+uDOx+Q24mSuYGQxS721U50Fl/lnOxwZT/5P3by08XISb+7Sf+Yuz6C1F12rbA3AZUb8VqLCMwCpsfGradyw8OHOhFjgquTlkPWK9Y62okQK0k18Gy8cPJcW+kB/qCeWYDL+1EuMFGuleUksP2BsnG5NstrvuHsh3bh+sWyRKBoPC5ZLcOIFCDc862xs4QWW8bDTOsybwvMKOeQ+5gReH3Y3Wk4xrNx/+tOfEu7cTVZ2v27XQmCnkS4WBCYubw4EtxNDQoApkw43IDEUTELehpjovPEzabkHIsFvPHgEH0K4ePBxq9giZzDzAPPwMYExEdMGCxsmcsy6PADJEqnaDB1t2FulvTlbXBQLfLw2WfBQ9FxPP7HiEIDMYsSbPi4gyAl9rC6ppgXA8sbEpgDiC6qzGIEtHyu0TzwdCxz3ooxZyPibxdFcvJZ4NtF2/mTwQi6IJZY8gsvZjMDiCglnwa0uyzWki5iZaGHx537cj8yR2hTq4wWAWAzmHFYy6uJFgLmGOxVMGQPmEYst30N+sJ4aqampTcberGHReWBKmkWd2BEUEG3YDkSUJEQDawtWBp4T5gbtghdWSV4qsIhSjGSb5RcFZC837IK0tCS48qgPModyqksx0liXZ8lc6lipsF5jreS5hvhAJjn5gLEgZi5KpHlWkNmUfrJy25pgriDug1QzF5nzzHOu4UUNK6PtfiYWCQuHxYUlag+5mMfUw1yhDtYCnmcC9O3Z5Tmmf1aYR9xrR1yZ292IEPLyzMWzmGKJYx1EwfMcMY+5ltANMMIiY/GPPMvMDcbadq8ig9Vrf1MH88LiFZGbtYEgcQoWK35nPaMeCE1tjtHh+eRjO7XZgASRshg32qA+rkF25in/BzOIJEQlNvaWcWOusH4yplxjLkDWkrokI0ZPsOmAOckaQPwlc4JNGDybPFfMQdYwI10YBojPI/4U4s4zixeG77F+IRME3KyijAXhI+goS3vD3EHXbc/6muwz4dc1HAI7jXRZ8CtvYiy6BEqz6LBgYFXhgWdR4i2IXUUstrbrC4XBIsPbPx+u500I9yFv8eYm4UFgQcB6woPLGwQBnDx4//znPwOB4KE0t5ClKEgEv8UMmYXHXAHRt1VzeZj7h0UJ4kg7LIjsLormhLHraZOFGSXPB7lR9mbaxtpF3ABWIYiiuYPAJaqIaJdFkjc9cIE0sRCZdcPi0ExRxTO5285EFljkQHlQF8QCqw+LDgqbNzXGgb4lU+xNPYoX91EvY0LMBAsM48TCinKrbbJFZDa5TZHY+Ma6gWNlRtmxsDKnUI4QN+YcllfIDNYXyChzlgUcsmhxGMSUgSVjG40rpA0bK7NgIgdjbOduWrAzv1MvCpsFl922LNos+MjBvxk35jIB7Vh9uZY5QeweRA1XMMoJrKkfSwZkjUWehR9FjELCRYICYTwhmBAalCbXmjyGD23G9sl+M8sMSiNef6J12fjTT1PsVjf1QGRRwOBPH5kXEB1SFvDyEUvouIdnwXYEJzMHuYZxYkypl/shDGCNwgMj6mOO21xHSWJlZr4TDE+pDhPkZP0ifgziZrmywJ05g5WH5xPLFzJAgnhRsvE0lzguPF4OLTcXpDr2pdL6zNzlOWTeMidZT5Gf554Ab/rDOsRcYo7hCuM65iIWvdh5yv8tBg6PAm3zIoyMNneM1CM7H/qBxcfWlti1KdH4QLaZ26zhsQSDseLlg75AUphP4Mj8gczYi47l6+L/FjsFicNCRTwkL/OMXTQ8Iro+WAxoPBlZwyFLPJP0iTWPf/O8IDekC/kIA+F5ZPzQReguLISsn6wPxM5CxFiPWUd4Xngp5nd2SDO2uBl5ftGDZuWzkIK6ukeTfS78uoZBYKeSLt4KUGYQIVxgPEhMNHaHMdF52GD/KBR23fA77khivvid2ALeLtimy1sxC51ZdMzVZLmPsGKwrZccWSwMEByUqLmQ+JvFCDKR6G2dtyrexMy1Z0HB0Xv4N21SB0oQkzQLK2ZiFgTe1JDdCACymOLijZi3YRZDiCU40D8WDBYFlCuLKfUQiMsiBEnAPG0FBc8bFe3zb1yMPOSm8EmrAJnAasb2dN6AUbjRgjz0wWTjNxZDSBBKnDdd6qcfZpFMZroiB/hRbxRjFin6imJjlxyLNm3ZDsFk6rZrGCPG0YgodUHmiJVgm7clqU1UJxZXFmcWUOYVBaWEG5uxxSpL/8GO8UcJIDv3WbxU7KHLZgGwQHLGjDFlFyjPAJggN2MEpvQdIsDLBqSAOY0MkGGUC3OX9BX8HznoK/chB8rUgvEh38gKBpYPivnDGEIysJRZ7ijbeWkxVTxPNkYoBTCNF1vJb7jr4/XHLEeWQBK5LFjcXEj8xtyygGmsBxAH5gIvKMiKYmL3bmwcGLKiAOlf1GpV03wBZ+TgJY/1gDawLoCfuX4YZwpKEjlog+fGNlUYJom28zPm7KglZglrE/1ljKjXYqF4DuzcSF5ueLEh8N0C0RkrLH+MIdcy1yDbiTb78LxAqllPsZYiMzsYUfjcz/wnRQf1IQ94Mtf5ncJYMM62htI3+mxWHLwSYMV6wxw1Vx0vEMwjS4jLdZAO1ldkSqaASaIUOJBJ5IDAYqnluaN9y6HIpgfIOfoBfHnG+Z31kZhW1kFwgOzGziFwABv6mijInhc/yBN9ImUM1/Jih26CkCM7ZImx4hpwYY4xn5i3FJ5zXiQhYqwr4IUew1IN3sxF1in0HHhTJzsdeZ6x2KG7WCdZb+uyGSCZMfBrGgaBnUa66B6TjQBF3ghRMkwmLB62cwwlR2wXbw8sJigm3iosKzSKh8lsMV8sGCxiFuzMm6tleeY73nqwFrFYm5mZxc4WC4LIUQCJFlIeEhZn2+IMySPnDXLaQgUR5DpkpE0eEhYT3gR5GFnYWAQglywekDL+T7ssLuQxoj+86dMWCyJWBOpnMUZWCv/mTc92Ktl0AUMWOlxMPNgW32ZxJXY/8ll6iNipZjmbkN8WVjDjLZ2FO5rROvbNsbppSx+JHaMv0QBi6mbxYawYH/A3F1ptHwPIA+Me3X1oGdBRDjUVFjuUHW/fuLMZL8bCgtZxw5KjDSsF+EJOmQ/2O/ORt187iBfigkyQXUvYC0Fj/BhnSANKgoXdFAJtszAbkTASxzwwvLEq/PKXvwxjASFnPG1eIhO7gGmH/tC2bVVnPFG04M2zwtxFLnMLUb8dYm6WDF5+eHbijTXzjfpj+8PzxThD+m3HFjKSIoBi84qYNfpisTf0HflxH0EywJXfLBt57PiheMGOmEdz49U0xkZCsQJbu4xB9FlinFGAWBzAF6JD/80SAwnnua5u/mNxsblCHWBiLm9kYL1iblAP/6cucLbCukh7WOXM7WiyxFujGENcfqwjzBXGlnlocxNLomFLe9RN/60uSAlt2rODHMhLzCxuNOYr44actn6yruB+Qz7bZIALFotrTS84NY2T/U6bkFHkp1+MBc+YvVjxjPIybuEZ3McawFqH1YjrmGPxXJ/UzYs/91a3cx2ya65N1muwtSTZtIdsjCfuQH4HZ3Cy3a48h/TBdB0vMIyNtck84AUYaxfygq89N1zDWm1u52Rx8+t2TQR2KukCEiZSogWV35ncLMTxCot4dQfcMnGjPnzIW3WFB6e6wkNspIXreJCix+LwXWzOGa6JlxvL2onuhuK72NQLifz5LADxFhGUIItmdOGM1yfqxUIRr/DQRzPx2zXUbTlm6jKdWdzj1UtdkLCaxieZNlnoo4u9ubKYR8kG1jNmieYCJKo6fCEfsVvmY6+PndOxYwVZQWFHY1vi9T3RWCAjyjuqwKP324kL8epECcX2HVJTnZsXvKLPaLQ/0TmKoondQRsrC7LzDCWbuwkMeAZx10BAk9nZi4JlLqO4Ez0DNY0zBC32hScenonmismA/IkSFjNfsW7UZgcuz3WiNYM+VXdMWuz6Zv2pbr5AErCoUq+thYw5ZLo+C8QxkR6wg7ej7THXknmGDOOaZOUFuTrsmE8Wo5aoLshTotQ69A+rWbzCepFontYkt/++6yGw00nXrgeJS7QnIYBlgHgMFszqCPqe1OevU18g8pAWXGrE2TDONeW4whKBe8jigHYGXruCDNvbb4gjMWdYwXC1NeRB59sru9/vCOwsBJx07Szkvd0GQYA3VNwmKGKLLWqQhr2RBkMACwuuVDaqRNOOJBIAcoAlLV5i04YS2tym8VJcNJQM29sOoRm4FnHF4q6uiexub3t+vyOwJyDgpGtPGEXvQ0IELGeSQ7TnIoC1i0BmOzKqpp4SJ0rcY22Ty9ZUb21+h6TgMqpr3qjatLWjrsWFR8wqZWdiuaP65/U6AjsCASddOwJVr9MRcAQaFIHakBc25MQ7W7UhBcbqurtbXrFsOdlqyFnjbe0JCDjp2hNG0fvgCDgCjoAj4Ag4Ars8Ak66dvkhcgEdAUfAEXAEHAFHYE9AwEnXnjCK3gdHwBFwBBwBR8AR2OURcNK1yw9RwwlIIkh2gJHrKDbX1I6WgiSGHHfC3+SpImEkCV6Tza1VnXxszydLNsc+kXCTfDrkomqIuB7aJnEnSR1JMmrZyHc0nl6/I+AIOAKOwK6HgJOuHTAmJAzk+B62ppNRvqG2UpMIFAVPdn/yEHGWGTu6aN+OdOEaiAAJRMkkHk0ey3FFnFf2q1/9aivSRWZ2ciCxSwyyEj2GgiOHyNXDtnEyKFM/ZyeydZ+2yeFDPiQ75Bm4uYYPxI4s4mSz5lBjDpomsSIEhfPVyH5vSQE5foRja+gLx+hwDUf7UL/Vzd92uDMZt0mmSDJCzjzjeA7k5sM5aWSAJiM59VEvhUze0WNCOO+SDNMQQHDi0F2OX6JfifoDptGkpBC9P/7xj6F+ckhBujjrkK329INAZPCBFJIh3s5w3AHT0qt0BBwBR8AR2MkI7PGki6MrUGgoOywnDVE4vgUlTyZprBsNRbrIyP3QQw9tOU4EogL5wILFIcIc+UEiSTuQ1g7uBhMOw33yyScDmbHC75AtMk5DTNgizplukBMy6YMt54VxjqNlo+b4FmSAcNJ/CAUfSBhECqLFESpggtWJv0eMGBHq4agaPli7OOKGA7/J2A2JJeM4Z69BiiB6fE+eIPrIdxA2ZEU2xhliBLmkXc7u5Nprr702bNHnfEcIJtnxuZb6qJ+TEciYDtHi/++99174N32jXvpLX6g7Xn/4LYop/4cYUlf0VAIw5vBkZIf8QQQZO8aIvE2JslY3xNz1NhwBR8ARcAR2HAJ7POnCqnDzzTcHRd9QpIvhgtjYuYc7bvi2rhnrGue0YcGB7FnB+oXFBcsKB4tHD5tGRn7/17/+Fc4TxKJjJJHrODOSe7H62IHdRgogYLgEsUZBgrAyQTCwPnEuJOcQWoGYQdw46oIz7eysSogJpAvigdULYsgHixp1QXooWNP44G4kszzkiENwrS933nlnIJenn3566L8VCBv1YlEyuSGeHERMvzl6iO+x8IGfHVNDH7BqQa7s+BTOk7MDbKP9+c1vfhP3vE7kpQ+QK+QGHwqJOenDc889F5J6QlA5sgTi+eqrrzrpaqgHxttxBBwBR6CBEdjjSRdKk5PpIV0NVciCDoloKAsX/cKqg2WG8+DinbuILHzs4GvDghgus45xvh5Eyqw1kA1cdFi6sIRB0CCuuNso5hIzKw7uMYiMWbli8Y7KYL/RFgeEc6Ar7jcrWCaxTvE7RI16ISTIQMwZZClKHvl31I1q9SAL1qRo4WBarscNSyHGi35hKePIIPCjT1ieIEx2GHlsBvN4/Yn266233gqklX5FCTjWLM6m41BrXJ8kysTdC/njHshj9IzPhpq33o4j4Ag4Ao7AjkVgp5MuFPWzzz4rY8eODa4brABYFIw4YC3ALbVw4cIQ+Mwp7SgsLBfELd1+++0BIRQ0VhHcR8OHDw/xShCKxx9/PHx/1113BfcRCr664OzVq1cHNxuWHdxIKEzusUOUX3jhhUAAqIP2+Q032uuvvx5ID4oZKw4upGjsE8ocSwauLAoKFqKBxYN2iGlavnx5IE/0DWsMmOCq/OlPf1pj0DdWJPr73e9+d5szBs3CYvFO0SlFW+eff37owwMPPCATJ07casbhAkQmZIWALFu2LPwOpuAAObCDqiFhxCpxbewByYlkwGUZ73BcLHbMBwgs7TNPsJ7xHTFmYBYt0fqre2SoCytV9IBZO4gZYombkrm3cuXKMPZYviB+tJmoPWs7+jtxbRAqLI7E1mFFtMK8oF6SY+IytczkEL9HH300uCS/+c1v7tgn32t3BBwBR8ARaHAEdirpQpndd999IeYGBYdr68UXXwxv+rhsUOw33nhjcPEQYEzcyx133BEU4qWXXhrAglRBTLBkQYxQWChVCBbxQyhQiBjWDP4dJUKxaBOz8+9//zscnos1B8UMIaQ+gssJkMYacsMNN4TjL7Ci8BuKGjKGBQYLDTKgaFGmkDMIIy5OXJ1YbSAOd999dyAw3/rWtwJRg5BBsohpgujQp169egXLVTI7+CBAWFNw89XGwgY5MoJEu7EFYsCxKRATCItZbHC/Eb8FOcTtSMFKBjFjHGojQ2ybEBasaxC6wsLCUP+pp54ayCztQ7jqcm4exA1yTEA840DwvxXGEpkZNwq/M2doB2tVbXZzMq/NKnfYYYeFOWT1Wnv0hfkOUUYu5ihzlu8h/F4cAUfAEXAE9jwEdirp4u0fKxZK+uqrrw6kBuUHgcFKQEwNSumqq64KsToo+b/+9a9BiaHsif1BUaK8Lr744mA9QlESt0Ss0be//e1gGcNyBWmzYO94w2hB4wQ4EwNEmxCo//3vf3LrrbcGAnXBBReEoG0UJGe3ESOF6xKixq47LFLcg0z0DYKAFYSYJeThfsgi3/3pT38K7isCtIlfol7quOiii6Rt27bBCoIVLNlCeyjs+k6DYFagWDlwzUGwIApWIMeQ2tocyRJbLxYlxoCxZvwgO9SJJW57CoSSeiH5WPPAF2sapI4CwcaqRruMW3QHYm3bhTxjNSNei2B92o0ttMX4IgtYQnzBDbkgtFhRwd6LI+AIOAKOwJ6DwE4jXZAciAjWHlwpWImIs4GYEEfE2z/KCxKFCw8FhOsRYoW1C5LBbygvLFj8G4sQri6sExAALDPmUovuKos3fBAIyBHK+YwzzgjpDyhYKu69994QTH7OOecEQgUpgvDxNxYm3IKQQrsH0oZFhWsJ5KZeSBXWPNttB9HEqof1ztIw8B2WKqxbtS3IAH4WoF7b+2t7PVZB+hI9Pw6XKnib5au2dTJeL730UiDiEFqIbV3rim0bbMAXVyqknXGDDGFNhNQxZ/iwc5IxgwDXpUCWGFf6gvUVUmfpJaLpKPg3LxjgiCWU3aBgCWnHKsb8tflUFzn8HkfAEXAEHIFdD4GdRrpQSlixKJARC4rG4jBo0KAQpI0Sh0xFLScoJQgUipG/UV5RxY+VAiUaG+MTL+4mOhyQLdyZ1B8NYqZuFCfkEJJB4TsjN9yDHJAlK/QBhQoJpA8oVWK6/vznPwcSQV+RHzcjsppSpp91ccshO+1AQPk0RIEs0G8jReCLG47+1FUGdg/+5z//CWP6wx/+sF6DyRkLiBwfdgr+6Ec/Cq5ixsAIFwHuuLZxX9eVdGGdxVWMhZV5Q33ECULGmAdY0OgfHwL0wRBXMn/zYsG8wb3IfHPS1RAz2dtwBBwBR6DhENhppIsuGhGKEg3IGO4WFBG/x5IQvkNBRXeu1RdcidqDyEWTYUbbtj7EymNyIytkjRgxkn2iiKkPBQt5w60EaaqJFFbXx6gMOwKXeG3H9tvajbeDMJnxIY7r73//e3D5kVICclQfBYspBBFCZe46CDLE2ogj7SC3xfttz1jgHmV8ifPDPWqB+3z/l7/8Ra6//vowF8AL4mUJXZEh0Q7M+sDB63AEHAFHwBHY+QjsNNKFgjPrEO4UC2rGjUfcFhYulCRuFkiLWVSwpqAgIS+WAiEZGGsiI1hCIEAEcONissBpdkWiMC3IOUoW+TfpByjR3WkoeqwbKFxirLCaECvE35YHCqJFO1xTXXB/Mn3DsgSpwDoSu6svmfvrcg39Qm4sRVb4zgLda1MnOJA3i/g4XM2WC6s2dSS6FmvWbbfdFnZIXn755eEyMIIMI6+RY+YYJAxro8V51aV9Yv/YGGJEmrYgW+xaJU7Q0mLYywXzkjmEHGCJxRLLWzRWri5y+D2OgCPgCDgCux4CO5V0kQsJBUeqBWK1cLewswyXDLsDsQSQt4ht9cT3QCogZbhgiKeyQPVYWKOWCpQZ16HkqisQPBQm8UTE5BBXhasRiwVEz2J/UNZmbaM+AqWRhRguFDv3EMNFrBYWDRQqVhuSj3L8DC4jXJOkiCDYGjcXMWw1kcLqZOdelDTuK9xY8Uqy1ptkr4OwQFQhKlYgfuBTGxm4ng0FYEMMFBsi6no+YTzZGRsIFbFi1M//SUOCNZXNFeYmph+Qa8g28yuZEq89cCH2MFqY17Yb1axtzEe+g2DZUUzIgNuZOVNX92Yycvs1joAj4Ag4AjsHgZ1Guugugc0khiTFAtYIlA3/hmDxQQES30K2cdxOM2bMCGkJyANF8LwdyYI1IRrDZbml+A5Sx4fAacgPlgysUpaiwmCHnBHQjjzEFkEGiM2CDEAI2S0JuaEt6rfAfORAngcffDAQK8gaMT0ocNqHOELGqJOs5xSsdhxDg9ULhUtdFt9l/eD/7GzD0oZcNaWNIFYIFx1WtthC/YZJddMMIhDtW3XXgg0EwhKMci3jFy+nFb/RL+qOtcTZDlYINXViEWKcqQdCQu6qZKw+EGvqjz0FAJJ74oknhl2oxIthXWUswIs0FGZlxDIJ5nxfE9bV9ScWMzClXohfNCWHpQVh/CFlFMg948dmkGic4s5ZGrxVR8ARcAQcgfpGYKeSLggJcS8oGNxAbJXH+oC1A2JCQP0111yzJWEkSpgdhCRP5XcUFCkXzHoEOFgaIFfmxmFXJMfFYOnAdYgFAWsaR8VED3vmXpQ+aR/uv//+QPZQmMhA7izcnRTqhYCZNQZLCVY5lDeEEVcZOZ5QnHwgARAz4rk4S5ANAhSsLtQL8UQpY/WjLnOjQraoD7KJxawmIoB7llQbWNgI4o7GwkFakNl2iCaaRPQR7IwEVDfZIJe4Y7FKmvsXbHB1IgOkKSoD48JOUGSIfk/fGT+IKS5YUjpwL7iRUgEilwzpog7qj935iTzkGaNNrKa4stl5igvTMuvTT3Z/0maymeDpDwl4zQKaCCuIOu3Qh2g6D8YXyySYG8HCygWW7GTcHstnfS8SXp8j4Ag4Ao5A/SCwU0kXXUAZkaOLgjUk9mgXMnrzif2N61FWxMtEC9axm266actXkJXLLrssfCwAH4WbSKlBJH7+85/HlYcvL7zwwvCJFqxnxCLxiScn16J4+cQLvIdsXXfddVvViXXuJz/5SfgumR2NkFWsOKThgAxECSVEBytcTYVUGXySKbSFBRAyi8sXcgrxg9BAoLEiRWWAzBC3FVsgaiSOtfGPpvaIbl6oSSasjXziFdye5EezHGmxYw/RweXIXKwul1u0bvpzyy231CRWIOPEckULfSSpLiSLODPmMeQTHCFmEGQvjoAj4Ag4AnseAjuddEUhre7tvj7e/KMHOSczlHVps6Z7avo9KlcyZMuut5g0suljfYq14iXT39pcA5mAoOCqI00CpAvrH3+T/4p0ILWVAWy2d1NBTX2Ihz/uTCybxNZhudrRhdgtcMM6Rxwhfcatajhi6fLiCDgCjoAjsOchsEuRrj0P3obtERnQCfwntotYqLoclVMbickSz0YC2sM1iJUR1ybnQOLKxc26q8cm2UkEWBtxre5o0ge+ECxcsFjmcHcjg7mzG/Jg9tqMtV/rCDgCjoAjsP0IOOnafgx3mRqIDyJOjFi0mnZr1ofQuECJr8OdaIljiVEj7o5UHwSL7+qki8B+iA9xecm6FrcHO9zLuLzZsMHJBZYqgh2TuHbZNOHFEXAEHAFHYM9EwEnXHjSuWGkSxTXtqG5iUeNjBRmIKdtdChauhsQM92YsZsjAJgAvjoAj4Ag4Ans2Ak669uzx9d45Ao6AI+AIOAKOwC6CgJOuXWQgXAxHwBFwBBwBR8AR2LMRcNK1Z4+v984RcAQcAUfAEXAEdhEEdhnSRYCxnYlnCUJ3EYxcjAQIWKZ74rhqSt4arYKge/JSEd9Eqova3LszBoNNCRxtRPJUEvoyP/m7psKctmz0ln+MPtNfdpbWJiVITW35746AI+AIOAK7PgI1a44G6gPHsHA0Dpm6r7zyyqSUWk2iQeJQmGQl31GpAFCqKFfaQIlylAtKleDo2uTkqqkvtfndyCtyRIlsXeQx4sC9dk6hyTJz5kx58sknpW/fvnLSSSdtIyJEBUzAxtomY/+9994rX375ZSAvJAIlkSrkyw7LRu7Y8bKjnqgrWuwIJUiQHdPEv+tK5OwoJNqhHggi52pyhBNzlASq7Dw86qijtkrJwX3ISLtGyEh+Sob9999/P1xrpI20GpyIQF3s8PSXjNrMbr/WEXAEHIHdF4FdhnRNmjRJbr/99nAsDqSrNgVlhnKPJRVkS3/66afle9/7Xjhmp74LSpYs6xCJH/7wh+HIGrLZk3oApRo99qW+205UH6SPcwbBAjJzxx13hMznv/3tb+t0iDKHMv/tb38LZxJeccUVW/WJg8qpP954kYfqN7/5TchQz+8cLYQcf/rTn8IB55A0iA1HLkFcOaqJY6Aef/zxkPuLszcpYMz5jhByjn265JJLAlkxksWxSvSXo34gYHfffXdIxXDBBRfUCXLI1SOPPCLf+c53wpFUHLb+z3/+MxyUzVFFEDDGnCOj+J1Cu5BPjmGiXZMdDLif7PWk0bDTCjj1AALLQd8kSeXQc77z4gg4Ao6AI7BnI7BLkC4Osb711luD9QOrSbIWGZQYCpzs5yeccEJQjNFCwk4Oukbh7YhC+8jMeX6QHdrnKCDyV+0s6wU5s1Dk9BnSx9Ey5MyC2NSlYOmB2GCBtNxfkFzOMbznnntk5cqVwUoVLeACOXnmmWfCWZVnnnlmIF0kUX322WfD/zniCOLx97//PZytSX4qzk2EZJHRniOTSLZKXyDP9It2SSzKMU5YmrASPffcc+GAbHKUjRo1Koz39mSV5zxE6oDE0XcOPIdUQarJWM/n17/+dWgXGcnCz/mY9PXFF18M5JQUFMxhDvGGHCIrn9hC/xgfyNpFF1200+ZMXeaF3+MIOAKOgCNQewR2OumaOHFisE5ADLByoaTsfMKausN1WCawxgwfPnyby3H1kJwzmfibmtqK9zuWGtxGRjpQtJxHuLMKJASSAtkiGzykhg8yJktkY2XnfjCEROLyA3MODH/ggQfC/yFKseO1du3aQFyw+EHWyJLPkUBjx44NFkmyrtsh1pAYiA2/cfwN52xyPR9ICZYyEofaYdBYm7p37x7ceBAW7sNFSYJTi5WKdUHWZjzoJ/2lLkgTf2PRsgPUOXMScs1RS7hPIV0Qb/pM/i0stlOnTg3Ej+/APdHJANTJOJHBH5dlsodt16Y/fq0j4Ag4Ao7AroPATiVdKGtcSlgHICu4lqIHHgMT1hWUH8SK33DroIwhA1g9TOFxYDGKNzbuKAo17iksGRZ3hUsHhW4BzVhSsI7hzuLfKEvIAorVCoqUa7CC0BZ1Rg9mRiYOwOZeiCQEgPawNPE99UWztGMpwlLC7xzMbDFQrVq1CvVSHwWiURN5BEuOkyFmCIwsDsrkQ1baglhYH+kbMkUtc8iNy5T7kJ0xsDqQE7fZ0KFDw+fhhx/easwYU6xSEA+sbZAiCBjkAuxoJ0ouwAIskYvCdYwLljIIFv2ARPIdJAfMkReZsJxBNM2KFDt35s+fvyWmjbbBD1yxutmYgxH94TxEZIPc0VfGn/n04x//OLTJ2FFs8wA4UIdZ/SCRuDWxyhHDBekCb+qnb+PHjw8k1eYcbdAesv/1r38NGNHXHRV7uOssOS6JI+AIOAJfXwR2KukCdg78xZKAosetFKs4sRxgCYNQoDRRfhx1g2VgxIgRgmtyzZo14d7+/fsHy0tsQZGhnInvwqqC9QVlSezQxRdfHKwYtPvJJ5+E+CCIkLnSyK5+2WWXBWsW30MMX3311aAcIQy0j7LEIoIiJqaL7OK4nm666aZAEmkLGVGyHPWC6wqFDbHBYvTBBx8EkY3E4WK95pprAtl47LHHAgkg7scUf6LpisUEGWkbsgdJsYJ8uAmvvfbaYD2CTPGB6BEnZWf+ERxPoDuHL9MeJAqiyjmLYEQ9FvhuckflgWRAIJCZswyRA5cixAayAxbLly/fcgvjwv8hPRRcs127dg2uOtzG/fr1C8TYYqKQwbDDnQgBY9wpZnEzQvWf//xHsKQSawfp4jNw4ED57ne/G4gfY8wB4bhJkQO8IUg2BxkPDqWOFsg/eCAnxJoXAoglFjvmCoSTcyeZV/SJfkNMIZH8H0serkQsZhT6CqYQSNySOyMO8Ou7/HnPHQFHwBFoWAR2KulCMUNKKJCuWMIFKUBho1x/9rOfBeVLEDNkBlck5AV3GsqUwGesGLHFtugTg0TQN4SGgHAsZPwf8kS8DkTsuuuuCzJg3aAtlCWB3r179w4WCRQnpAwLD+QJosd3ZjmBUEBaaAMrBy4ySM3vf//78Pdtt90W6oMUUSfB4dSBaxSCQt2QDZQwJACl/v3vfz90KZkzDLGKcQ8kIx4OyARe9PUXv/hFsMJATCAdEBfuQwawYiMApPRf//pXIBlGQsELbIzkxLoWkQEyhmUOcgdxoZ8ElENGIUT8G/IDIYPcQT6RxQokFiKGRZHrINm0y1iCCwTYrHG4MBNZhyA8uEIZb4gzBOuhhx4KRIfAfaxxf/nLXwKB+va3vx2siswv23UZ71FkPmJBYz4wTtQJPowpxBQrI3WAIfJD0rDYnX/++aHfEH/IN8QPgsV48QxQJ+066WrYBdBbcwQcAUegIRHYqaQr2tF4cVxYEXCXQbBOP/30oLCxGKG8IDi4xlBS3IvbJjZNAEqae3AZQTa4/qqrrgqkCKsEAfBYh04++eTwG7E6WHFwE+F+gzQQ5IwyRqlSB4QDJY51DGWNfBA125mGQkUO2uV3lLMF8kMu2DBA4DcEB8UMObn00kuDRYXvsJyZG5E6IHTJFoiKpauIdw94ID87B+kzBZKINQ1LIn3+6KOPQlA7pARLF8QXchJLiI10xbZDH7EiQUoZGyyPWNFwIWK14oBs4vAYP8gTGHBdNOYMGbke0kS7UdenYQNxRLao6zdWFrBgrDnMGksUpAgShisaixbkEHmxTkJ8SQnB2ECM4s1HrFH8Rp/Aj2sgVlhdIc0QTAg5rkSwZOzYNMB8Yf5AbLHeMX9PPPHEEMPGPfSBOcb4xSPMyY6/X+cIOAKOgCOwayOwy5CueDChfFFUWIMgKxAYCBGkAesG7jyUsuV3ilcHShpCgZsSaw1KF6WIksfaRUA0yptYItIqmHsN8oPbCOXOtVwHCUB5QpQoWEwgX0YOou0jF6QCq40VrBrIg7wQGawbuJosxol62YVHe8luJoi2CWlIlKOK+vig4KMyGeEByylTpgSr4aBBg7a4MiEtyGdB9DVNZ1zFWHsstg4L3Q9+8IPQNt9hVYSMgjMWHoLgsfBErVV8D3bz5s0LFsN4blXGhfsSBakjJ6QV6ydWRgokjP6CP0ScQHzckxAlCu0SDP/mm29uQzIZ4+uvvz4QM1KQ8CJAfyDxFCOGWAdvueWWMA64E7HM2aYBsMCtCLEDZwrWPn6nP1jMIGJeHAFHwBFwBPZMBHZp0gVBwGKC1YCcRpAllCJKHeWWzI48rkH58YF0EeNjBALlT6oJFC9t4E4kTgxrA1YRLD5YQiAMKEUUKATAYoZsZ1qiRJy0E7uTzmRGHogZfbTvqBfFXJf0DhAJ7jNiF2+60o94MnEtv1lclZEUvoc8UGeyAd5cHw34p29RDLASkS7CAtGJgcJFG3Wf2m5JiIltQIjtD5Yw8Ktu44S5lg1fs0ZSF+5MCB1tRduGPPGJkl7IH7m6sIqSEoQ8XNZubGoQcLLdrMyv2MJ9tG3uVItTZG5C/r04Ao6AI+AI7LkI7NKkC9h58//d734XgpMhXViqcEmReBPrVDLF4oFIkPqrX/1qi+UEBQhhQuHhRiSeCVeYuQ9pByubZRKHFEG8ooXf4rneapLLSEw0lol7qK8uVi5koy/cWxd5jGBZBvqo/OBT1zrj4WCpLPgNUsXHrEGGAThUd9wOZMV2D9aEdbzfuZc6GE/aN6JIu3yMqEHGH3zwwZAwlZi0b33rW0klmcWShqsWko5r04gY423zDrnAFXwTkeG69M3vcQQcAUfAEdg1EdilSRfxMmy/x+3Gzi4+BGX/8Y9/DCQMV59lok9k9UKBYsnCwkIMF+4hS6KKlQUrBi40XE24qwgg5/8U3JJYW1CM1EEKAb5DoeL65Ddig7C6JGN1symATKTJQCHjajKLC39jWatLMDXtc5+leKjLdMNdCiHA7Wq7BImrI2g93q7Q2raBS5F4JuLpbMcoMXFYwgxz6iRuD8sicXqJsMD6FrtDM1l56BvY0182OxBnheWU7y2liJFiSD6bH3CxspkDt2IyBfnZBQqh+sc//hHiA/k344sl0VymfAexoy+elT4ZZP0aR8ARcAR2XwR2KdKF0otaVFBcWJogSuwIQ/FZ3BKuGyM6dhhx7DBQF5YFgtRR9DfffHMIGudYGogTShTlze5Cy2tFWgWsa6Q9YKcbxAprCG3j1sQaBvFjR53trER5mywWVG8Wp6jVyr6jPpQwuclwWZGCAisK1hR28xFjVBsSZ/3GWkQwNiTQShTTRDKZdcd24EGMkI2dgchEkHc8d268+qp7FCAcHAME+SK2i7g2guqxQEatlhA9Cpgnyk3GuOEWhKBZiZUndj5xnVmWmD9gTjZ8yBEpOiDU5NmC/EK62HnI/IPI/uEPf0jasko7zCcsXNSPa5y0HOCKe5ugfUg3hbFizJAn3u7b3XdpcckdAUfAEXAEYhHYpUgXViuLl0JQiMnll18eyBJHr2BtIqCd3F6QKNxpEAPIEaSMtBGkYrASjZViVyJWJY4Nog5Lhkn9xIlhfSCHEqSKXWrRRJwQNORixxmWMc7ZI6eX7RaMBnpHLW+x50HabkqzIhFED2m48847Q1wTckEycEWh9JGBPF7UQ8qB6oLGjaTggrUgbb6LYmrtRwkd/+ZjuwSR6b///W9IFYFFEMwIMI+Nc6LuePVV94ixe5GgetIs4B5mDCCsuHMtRgriBDmDhEQD/mPrJRYOayPEKDreUcxj55PhYX2GWDJnING//OUvAwYQLGL6uAYs2YABSYYwsevRUmcgN7sio/FvURlpmzlnRwRRF+MLueQ+mzOMMS8SEMy6WDh9SXMEHAFHwBHYfRDYZUgXio54GUu3YAoSgoUywkKAwoMYkbvJ3F3sZIQUoMBjg9axGKEUcU9CILBw4VK0412waEHaUPgoURSvnTOIKxHLA641S9vAzjOUNHnDSELK75AkLC5YmZAdiwnXWTZzOz6G/iA3v7MjE3JB++Thok0scuzOJBEs/UDpUzf1GrmpaVphWYG8gRXWI0ga6SiwpqDkIaSQHeSwAr6QFzuvkM0D4IHFDZkgmuAem7We+5GfpK3suEymMBbIw3hArJAPWSBjViA9ED3ceLGJSaNtWFJU0j5wPQQd8oz10vrC4dMQJsaCQr+YY5BaxgycL7zwwkDucCsiH+SWftM3+s14MdaUaLwc41LT5gLkYHwh6BB30kqwMxRZrZg7k3kSe4ZlMpj6NY6AI+AIOAK7DwK7DOmCOLErLLagHCFafOIVyFSiA61R5lGFjiJPFJMDwYGA8amuVFcH95Gw1UosaYCcGEHBSobrCYsOrkr6CcEjfggsIASQOPI8JVsgHZBH4tMgNRBTckhF5YmViXv4WMFCAxGKErNE7VNXdcQo3n0QPCxAiQqpOoi9i7rg4l0LQYIgstkB6yVEBrJrmd65h6Sk0QKe7FaNFuohd1iiYulBkh2D2OuiYx77G6QO0shLBS8I23NmZF3l8/scAUfAEXAEGg6BXYZ0NVyXd42WsLpg4SKIG6sJZA/ChaUHi0h1ST8T9QACgfJ+5plnQtxUfQS/NyRauPfIjYYFCQtc1NUcTw7SekC22GzBBojdzVKExZWYPkhv1PrVkJh7W46AI+AIOAINh4CTrobDequWcPcRXM3RQBxFg5UDtxZWuyOOOGKb7PrJikmyUXbkYUHBWrU7xQlBFNk5SbxeNDYvUd/Z7Yd19K677gobH+h7XTYgJIttfV5nZ1SyiQHLXzLHPNVn+16XI+AIOAKOQMMj4KSr4THf0iLuMdscQK4oYscgGzUdbF2dyLhbr7766pB7andzVxHXxxmIxGBVl/TU+g/BIg4Oly/37C6EC/mx5hFUj/uSMa/JqrcTp6k37Qg4Ao6AI1BPCDjpqicg61INpAilu71xQ9G2IR7J5pKqi8w78h5cqrV1q2LJI9XF7lYgWaSNsNQRu5v8Lq8j4Ag4Ao5A7RFw0lV7zPwOR8ARcAQcAUfAEXAEao2Ak65aQ+Y3OAKOgCPgCDgCjoAjUHsEnHTVHjO/wxFwBBwBR8ARcAQcgVojsEuQLrK8c84iwd8EUxOTtLtt/6818nvwDWTZJxM7SUdr2hTAUU+kzSCzfPQEAeLdmAPkuaptnFdDQUuGeeYu+bbYSUlW+WTmLYl8OVrJjjsi6SobB8h5Fs0z1lD9qKkd5KOfHJNkB77zHRs/SACb7M5LxtrOFrWEtTW17b87Ao6AI7AnIbDTSRd5me64446gpFG6bKEnwSipEzh6pi6FA4Q514+FPTaonPo52gWCxyHLySjJ2sqAUp0yZUpI18DONPrG/yEQOyt3FucJkrmdZKwkX+VIG5RmNGN+bfoJSSKJKcQq2icICHnCHn/8cbnuuuu2Oa+QBLCkhYBcEESOXO+++25I+WDH9jA2HMVE3i7SQZCPCwzBMjonOEKHcSbhaiyukAQyyUOEmA/z588PudBqIoHxMEAOsvyT2Z9kuxAksswzbyFOyE1y3dNPPz3MXds1SloI+grZ4D47xol7wYa+cKoBRIYxIXEr5I1xoo3YDRb0AUJLAtzovAUvSBzfMeeRlbbAraas+fH6a88PL0C0Re64f/7zn+EkBvKJ0V+eI87jRH4jXRxnRGJe5gTjG9s2999+++0hGS2nBVCYD4wt1++q5Lo2z4Vf6wg4Ao5AdQjsVNKFEkOpoiA584+F97777pMHH3wwHMPCkSl1KShilBrZ2DmGJbodH0VNbiyU5T/+8Y8dsnsMq93f//73QBL++Mc/BsVimcd3FukidxdECGWHEv3tb38bDnzmTMu6pCugPnAkKakpUMYKMsfZlGSWjx72zW+QCw6Q5pzMyy67TK666qpAmMhXZqcKIAsEjOOaUNoodCxKHI9E5n5ymEEysI5xDWciQgzIYA+phXTwO/MI0nPxxRfLiy++GLL/M9eiJxQkO7eQG7KAlYYzKSFLnNHJvCU9B30gse3TTz8dLD+c6UiBPJGDDbL0n//8J7SNTBAk/v7d734XvoPA0G9IOpi9+eabgYhwTiUpRZg/zGkOzmZuHXrooeEwbQgzWfa/+OKL0D4Z+DliirkPJn/729/q9FIRfX4YI54V8CYPGgeVI6tZ54zEQraR79prrw3kkyO1ogQX7Dgg/qOPPtrqlAT6ec8994RkuNHTHJIdG7/OEXAEHIHdCYGdSrpQPiNHjgzn+/FhkcaqgCKDpGCZQKnUtqAksXJgRYktKAveyPkdZbcjCgoIawEHT/NvLA5Y3OpqudteGTn3j0OmUfSkV4AM8B3kq64FwkwdWHGsYEHk8G4y7TOWsWSOo48gSZw3CGlDmZNXDCuPFbMqQTQ41xHyDVGGgEFqOFOSa7CEPf/888FqSVJVClY8SBeHS5PpHUKI1QXLI23ZYdV16TMWJsYUDCGBEL5jjjkmzFsstGD517/+NcxbI13IgdWJ/oIJBAsZwI0+YzXCmhRbsMByvBHPxhlnnBGuf/nll+Wdd94J7TCvsKxBupCH75nTjC04gTNEMJb0Jtvv2OeH9iGyzGFIYLwCxsgMuWJsIYeW4BZ5IFacC0pBdiu8aHGSwksvvRRInbsdkx0lv84RcAR2RwR2GulCIaCAUCq8oZuLAmWBmwSlCymqC+myw4wTuVZY9Kl3RyXTpH3cQ7QDQbBzFHfWBCEWBwsUViKzptD/qPKrrWyMEXUYxlh9sC5BCCBG/D9KasEBGVDGuJfmzJkTrB5YRaKFg7YhGFgE+Q3yBlnFuoO1CBKDlYc2sIhBOFDaQ4YM2eIqxVLE/MJSyjhA/rYnUSztUw/9Zc7y79NOOy1YCm0OcZQTbVicFmQUogWxwgUH4cDyCv4QJ2RO5E7DbUf/cccxZpAr+kdfeVmAqHIWKfKAI+5KLFzcA8Hb3rG158fmB4ST8bOD32PnCljzAgWZ53nGlQ5hRG4I80MPPRSwgIwyF6nLCjhg5brxxhsDkQajHfVc1naO+/WOgCPgCNQ3AjuNdLGwolz4RAtv1Ly1W3wPMSIs6CzOuD24DxcOStdiZLC6oKBQ6nyHhQsLQE1uMyMMKAQWfNpFoXF+IbFAVnh7HzFiRHiLp30CnjkfEcsKBXLB2z3WDxQvSgilS/0oLmKfUIwcy4NFAMUDmUjUHzCAkNB37kcm6qRdrH9YWiAmnNmX6CBwkx0cUICQBfpFMaVHX/hgFSJGCzKBrChtrC1gbBhBFLDiEKMEwUDZI5MpSNohwz6KFoJBH6OWFhT3q6++Giw8F154YSBQYHLSSSdtRazpN7jgFmacKciDLP/973+DRSR6KDkZ6bHMYIUCK+RiLkBCiIlibEwO6mFcsLbRVwgMYwq+yB6N/8N6xkHaXA/ZwNoDFvSXTPJ8ogVyEbUcMqcYP14omJPIjssVIggx5aUCqyAyQ5bon7meaY/6sewxL6mD/vE7soK1EVrGFmwhZdQVJbrIigyQoermW03PD88TMnPGJXiBI/Lx7NImGBnRJUyAfjG2EDBkwNr405/+NIwNruXovDA8mVMvvPBCwId/e3EEHAFHYE9EYKeRrnhgQjZY2FngUTAQGN7uiVGBMFh8C7FJV155ZVjUUUDECT388MPBigARMgJV3Ruz/UZ7KETIEBYJlDqK7Hvf+15wj2CxuemmmwKJgIhxHe1DBDmyBoUKyaAOFBDuEZQr96HIIX64mYjt+dWvfhW+xw2Fko3XH8gRypa4Nurmg+JE8V166aWBcKBYwQhlWVNBIUMGcWPF7oxDNnAAP6xUnHmIwscaRR+JOcLCRJ+RB7kI9EbpgrHFIiEDMUR8+A5yFVuIawIHlDWECIXNJgqIMmSUAvHjGgg2Fp5osDg4QDiIX6LvKGbOLORvyBMWUgpYQQzOPPPMIKfttuM35hPE6A9/+EO4Fjn47rHHHgsk+pprrgltYKm54YYbAg4E+2O9AsPYFwTrI/MW0k3dlmEefBgf3KPgfu+99wb3G3MIwkU/IKDMWfCHpEA0IdYUcKZeyB+kCxc15IXrGVPuBWsIJt/ZgdlGqBlbSCLEkbhCSFldnx/6RUwX85u2kZ+4vR//+MfBMoX7kP4y/rhQmdvE0dGno48+OowFhTkQz+WJJZHnHYwZSyddNT3V/rsj4AjsrgjsUqQLZQd5QvGYBcdisFjMUUqQFpQmQbkoIxTiE088EZTuz3/+86CoIQtYplBKiYgXCgklj+sDpUIcGW/ZxAkRNA1xQFmi1FCWBDVD8rA4EHzOWzmHLUMQICi0RRAxpIVga0gahNCKWZVQhljUEvUHBUZ91PuLX/wi9OfPf/5zCFKGkKFUscj85Cc/ScoNA1mjTpR2ovMMkQ0ig5uHgHZI429+85uwCxGShEsPvLFiYbEAAzDmuqiriL7GU6qQBxQqJAQlDDEFayxnWLaMdEGYICMQy9ide5Aj7kOR0z4kg7pii1kjq4sNgohBzgnmZxwYL4gzMUWQU+YTJIpgcOYhv5n88eYTMkMyIFTUAd64Po2EQJbAEZLJ34wJ8hOUzt8EwT/33HPheog8bSAfcwV3IcXixKL9pR76y7WJ4gWpC7wYf4LiIT6///3vw3hCbLHgQaAgOjbf+B2yZlZCSBb441JlMwPP4M9+9rNA1Nm8wDzgGqyWzH9eNl555ZUwthB5c1MmijHjd154eB4hXV4cAUfAEdhTEdhlSBfkCWsKZIUFHfcWBaWO0kKZ8TeLM9YD3DcoNxQZ95577rlb7kE5QBRY5KMusFgChFWFQGzIG2/nuGD4NzvdqB8LDy4uCA5B07iQsMygqFAOkCdcJli92HllLidillA4UTeeuTqRp7r+oKxRpFjy7ExByB6yRhV+Ta7TqBUG6wRxOtXdg8KHdGHpAQf+z1iALX2h7+AKEeVz3HHHBUtQrCJNpFhRzliSjExDtOgj42kF1yayMpbR7/kdqxUKHczZ8WaWndgHk9/B3XbOxcrDb2BB+4wXFjTmFqQWgsN4ksKCOUYfsSgRLA8BjWdZZI5APhgzrKPcx7yEgPDygAWHccNKSd18R/+QD3JCv7gWlydEj+sgx/wO0UEmCDEkPLZYUD5WsXjxedZ3ZIj3/DC2PD8QJsiUPXPMX4ikPT/gxG5XcLDxxzLIiwdjRv30nRg3CuScFyRwTiY+ixcgXpogkZBCYvaSuW9PXZS9X46AI7DnIrBLkC6UGUQHNw/K4fzzz9/q7ZiAY1woRsIsuB4LCvEq/N92SnENLh4UtG1tjzd8LOq4bni7xqWIlc3iU7BqoJS5H+KDIidPkQUBo6xQiFiyUKQoP1NYtAVxQRHGC+RHkSXqDzgQz4Qc0fogaVhuqutPoimKIoMwYQlJRLqQCXJhMXL831xxkAoUKwrUYqxoC6uOxbTV9HhAIiB00QKpQrlHCyTODgGPrRNMsEKBNdeBfewmC37DasnYJsq/Zn2jv6bYLfaO+yF0ECjIoe2qhBDQX3CIWvaYf6ShwFJEji1IKYW5B4mJFogEH0rsAd0QLLCEyFugPnhDtPgOkh+PdDGujC/4Jto0grzMN7uf/9smEix+zOnY54e+mrsWeSFTRqisT5BH5isyxMZmWs6xmuaF/c68NMsepAtcd9ZO32Rl9uscAUfAEagLAjuddOHCwJ1GTBRv0cQ9xVo5zDVHB+3t2/6N8kXhRBUw1yezMw+FwXXEu0CyLPgeqxVKBRLC2zyuNIgclg+ugxzifkEW7qG92Par2x0Z2x8bOKuPe+PVV5cBRj7qpZ/VWQ+ihCxqHUJJQwS4P4op19dlZ2miPmDRIW4IZQ9hjS20Z0QKpRzPomayMh9qSgoaxSJal+EVdcXye3SnJrIhA65wXL/EhuG6SyYHGzLGI7/IE53bkE8+BKlH3dRRXMzdXNPYUnfU0mp1IAvEK97zQ9vcxzXR+RolSvw71r1clzlK/fZSAK47KpVLXWTzexwBR8ARqE8EdjrpgrzceuutQamRlwkFlmxBkfAWb7vX7D7+j7KK51qM1s3bP4qcGCISdEYLygQi8Mgjj4T6iePCHUQh8BkLEO1TB9dijbCCkuT32iok6sPqQXvRnXDUh0UjkeuuOrxs+z91Vnd/ot8YF2SCoGLxszxNKMdojq5kxyzRdcQJYeXAPRfdOWrX2+YBMIKYxSPVyApRNjJRF5mwqEI4cBFaARvG0wg+37PB4+abbw7Y4DZNdt4Sx0Y8FZajk08+OTTB2GA1wtpjZNGsSMiTKIs+cxdyyP01zbV4bmB7fhhL4r6izw/zDTLEvMaaR9+/853vbCHEXA9RMutoXbC2e5Cd9hhjxnZ70ntsjxx+ryPgCDgCOxqBnUq6UGTs6kLBEQOCiybZYtYHLE8EIRM4j/sGxUucCm7DmkgGbh52LxIoj1uTAHXSMUAC+TcWMJQLxM7SCZBHitgbFAUKkkBslCXkkbgvlBDxYJCIqMuzpn5ZfyCAuDuRi77RH+LIcHmZ1aGmuqK/o5SRCdJUWwsC16P0kQN5wBgXI0qe3WpRolkbmeJdC86QOHCOlw8Kqw6xR/QH920iaxEEBSzjJcZNRkbaZ0wZZ+L9GENcz/wbHCF7jAUbMOg/wfa1yS2F/MxPYtcs7QguZQgtmwuMcEC6+RAflWg3H9fSXwhabRO/mpvVnh/Gl/aZb7jX7flh/BkbNpYQ90hfkZ05DgGPZ5VMBufoNfbSYukl6tOCWltZ/HpHwBFwBHYkAjuNdLHQQnbIlI6iI4aJhd62+ENkUDZcZy4fAwIywHUs0igNiAqkh9gn7iHo2WJ74oFHfdyPQiUlAjvP2EHGUTIQHqwYBJLj5qR+rF1Yt7iea9mthTLCQkDbKE92az3wwAPBDUmMD3Ff5sIytxd/V9cfiATWNKwm5D1CqdEf3JkEU1ueKJQsBMRigaqbIFhDiLFBqZtiRuHybyNh/M3/oyTVMEYBIhNki74TVwWhIfAcIhevcG/smNU0iS17f6KEoYwX84PYtnhZ3K1+y8RulhvGICpPbN+5z9y6YADhIzaLY5yYE4wtZBNiBKmnz2wsgKQw1swPLHTcS1tgXV3KA+YQdTLHGFdwJZ4RIsluWLN0MV5giMsy0a5Ti3MDO3NBxvYv0Xyz65GfT+zzQ53UhaUUudjFi4WO78jVxuYRdn8m2tAQb7yjz0H0d7CzXZjg4MURcAQcgT0VgZ1GulhoCWRHyWLx+ve//x0UjikvspF/4xvfCAoMd5MF1qLYUIwQLP4N8WCbPYcPQ3ogQyhl3H7RYGAbQIiN7faC2F1++eVb8h2xcxCSQSA/ipd2SKFA4DZEiraomwBwgqot4BfXJMqY2DSUFBYRtvibFYDvUJ7IRn9R1tH+IKf1B5mIDyLGDSsgvyET7VrsDgqPNAfstOSom+oKOIAfSg0LBe1bXiQjB4anWVnAyIgNShbZcS2RSoOkphAL6qQf8UgSv0f7mMzDQ9vE0SUiVGBNH7jGTi+IVy9yQVKwNFKYI/ST+2gDDI2cGykGD74DK76DZEA6INpYGS3jPS8HEDjmA2MJ+STnGmSC76mfucG8TVTAix2KzHPqp0CuITDRpK/m3kSuRIV+8nKA5RWSybXMFf4GR/oSb74x3mYtZE5fccUVCZ8fxp9NBew0JZUG8w4MmXc8G7U5MB7MaDd2UwAEkA0MjFH0SKhk5o1f4wg4Ao7A7oTATiNdKAeUDws3i25scDSKEqXB9npiX0y5cx+uSCwftkBjPSB3F+4e7mFRR1nYETDRAYEQkYMKRWk7pnARcS/ECcVgRIf7sDrdcsstYRcZddqxNLjCTPmj5KgD65ZdEw2ux7LBDi/qRjmT1DNRfyCgKEViyMCE/rJ9//rrrw/KjvqxLrDhIJFVKNpf2sSaBynFbQQpwWXFWXhG/MhRRltGwrjHMLJdfpBIcmeBAzLZcUKxu8yQkYzzpLmojQLFNYtyt12q0T7QZ3aJophJr1Ad6WK8iAsjyz4bIiA0kCB2EzKujAsHdTM3zIKEpQd8jEDwN0QayydWRdozlxfyMd7MW+ZgNFaOupPZ0cn4kYIBYgX5Mquu9Zk5gksT/OhLogI5hniTzJcXBp4DCDL9s6Ou6DduexsL+kF6h2SfH/oETvSXtpif/B+LY23dgLjwmUexcWCQWF5iiHNLdNTQ7rSouqyOgCPgCCRCYKeRLnPF1KSYUXhRJWukKrZDkKFEAcfRa+MpRrN0JAIpXt2xih9FYtnEY+uh/ig5iRKL2P5AjAjQZqckFggKLk8KlhauhxRg4UimcD3HBWF1I07Jjt2JWpRiyVsi8sBY1TRe3Ev/4pGn6uS17PvxroEM4/6CNKH4qwu0Rj5ILlZC3MBYVmLliVXsUQJm7UNoEh3uDF7JEN7q+hs7r6PXkgaFvGwQFJKaVlcgWswFEsviUofARftXX88PeEC0tudAauZtrGUMgglpNAtjbSxnycx/v8YRcAQcgV0JgZ1GunYlEHYlWUibgaWOzPjmbiWWimOQajpnMVE/sG4RBI31BwsKJGx3Kli5sPZhCanO3WZ94jrLiE4cVrwcV7tq/7HAYrUyt15NO/kgWZaoFFcoVs3dqbBDmKB8LMGxpxDsTv1wWR0BR8ARSAYBJ13JoNSA1xALRZwZu8WwAJjyxSVZVysDVjaOYyEGCRfo7lToP/FVWHyI86uJhNA3LI5ci9uKgPTdiXThzsTdTlxZ7KHa8cYNYk7iWcbVsvEne1rBrjAPiEVjvHA9Vuc23hVkdRkcAUfAEdheBJx0bS+C9Xw/ShTLBQrXjp1BGSXawZZs87ihsKJZ8Hiy9+3s65CXAHNitWrjeoJ0EbeUDEnb2X2Mtg9BJo4xNkFudTJiyWSjQ0156XalfposxKxxRJRnoN8VR8dlcgQcgfpGwElXfSNaT/VVF+NU1yZ2V8VWF+IUm0G/rpg19H1YqeqScHR7SXlD99Paqw253FkyeruOgCPgCNQXAk666gtJr8cRcAQcAUfAEXAEHIFqEHDS5dPDEXAEHAFHwBFwBByBBkDASVcDgOxNOAKOgCPgCDgCjoAj4KTL54Aj4Ag4Ao6AI+AIOAINgICTrgYA2ZtwBBwBR8ARcAQcAUfASZfPAUfAEXAEHAFHwBFwBBoAASddDQCyN+EIOAKOgCPgCDgCjoCTLp8DjoAj4Ag4Ao6AI+AINAACTroaAGRvwhFwBBwBR8ARcAQcASddPgccAUfAEXAEHAFHwBFoAAScdDUAyN6EI+AIOAKOgCPgCDgCTrp8DjgCjoAj4Ag4Ao6AI9AACDjpqiXIpevWSfmcOZK9Zo2UZ2VJRbt2ktmypaSlpdWyJr/cEXAEHAFHwBFwBL5OCGw36aoqKZHSSZMkNTtbMnr2FGUfW/ArWblSKufOlewWLSRFycmuViqmTJESFSqzc2dJV/lrKsWrV8uSZ56RkpdekpZVVbK2vFzK+vaV1t/4huTR99iyapWUTZwopV26SG7btpKSklJTE/67I+AIOAKOgCPgCOyhCGw36SpfulRW/eAHkt64sWT+9a9SoCTEyvJx46RYv+t02mmS/v3v1whhVWWlbFi+XCqVyOUrSUtJTa3xnu25oOSmm2RuRYW0+s1vpFCJUU1l3QcfSNH//icZe+0lZZdcIlVjx0raY4/J2qZNJe1735Ps3Nytq1iwQEoefVTWaP9z2rTZ5UlX6YYNUrxihWQ3aSKZjRrVBIf/7gg4Ao6AI+AIOAK1QGC7SVeVWnuq1OW2ftYsqVQLUJR0VSh5KldrlxQVJSVSybJlMu222yRN3XZ7XXONpGVmJnVfXS+qwkWopKtKPzWV0o0bJfvddyVL+5J14YXSYtAgqRo4UBZMmyYLRoyQ7OOPl2wlY1sV/X++Ers8tf7taAJZk/zJ/L70/fdl8RtvSJdzzpFmBxyQzC1+jSPgCDgCjoAj4AgkicB2k640rFPNm8vy9HTJmzpV1sycKY27dg3NQzRSMjK2cjlWJ1e5uuM2vPWWND7oIEnZwYQryKEyB5dfEm6/MiVd0q2btMACp3+Hov0rUqtQqhKxjPXrt+0aljrtx+7iVCz+9FMpV3fo7iJvknPcL3MEHAFHwBFwBHYJBLabdNGLKv1UalxUcUGBrFRLSeNvfzth51ZrHFXK559LrsZHFen1otaiAo2HqlRrWdHbb0srjQHLV6JWceutsqZ1a0nde29p3KOHFK9dK/Lhh1KqsVQZgwdLjrr0VitByFJLU/aQIVJeWChrP/5YcpX4pUIEO3WSzAEDJE+D3EMZP17W6W9lSrDSy8ok/cADpUrrgmCkKPmqVIvd2tdfl3RtJ2PYMMnEHRjpRa7WL9/61qbvLG5N28lRslVaWipV8VyhCxdKsVrBSvbbT7KVrG3Qvqdr/BvWsnUa55al/cjXWK94pVythKvVfZmr96SpbBs6dpQM7U++YhKKYrh29mwpVlLXaPFiSVVr3TpwVFyyZ8yQzCVLpLhVK8lUbHKIqVNXZ/GYMbImL09y9foMrX+jjlmW4k/f1n3xhWR88om0VdKc+fjjslI3C6RpnwqOOEJSlFiGcVZX8lq19lXoeBTus89uYb3bJZ4yF8IRcAQcAUfAEVAE6od0KSnIbd9eGisp2KDWkrVKnAqUJMRakFYoUVh+xx2SOn++NFHr2FIlJbnvvSdpV18tGUqOKpWIZSkZgJQUKcGaq0ShyXnnBdK1avp0kb/8RYqV8OTecEMgXfNffFHy3nlHWjVrJqv13tV33imNNCCeoPhVzz8vhYcfLqkae5Wjv8ubb0rxLbfIWiULJUo8spRwNS0ulhSNw4LgrFDCVXTttZKmJK9QXWuxjs1gEVNyFi1rlaBkf/mlbND4p3IIZGxRkrfh97+XZb/+tbRUErjsvvskXfvWWOVZrvemT54scuml2xCvciVxS1We1Xp9vraZqf1Z+cIL0uSQQyRVr89VEiVqESz5739lqbowS5WIpSg+63GTKpHCPZuvZHCt4pymrsJO3/mOpCs5rVQ5VijBWqPX5EHSlOgWnnqqZFx0kZTr9an6/0zFokrHZanWX6BjI4p1vrpOibdbr98V/fnPsuEnP5Em/fu7RcyXEEfAEXAEHAFHoBYI1A/pwvqkxKCRkq7VEybIciUIBQTOb7b+QFgqVajihx+WKrU4ZavFKOPII6XxqFFS9ve/y5InnpCOP/6xNNKA8y9eflmaKllqhIXlb3+TRvPmhe6U6N8b1UKTroQiQ2OxKKlq6VmWny/ZixZJ+SOPSLq2k/XLX0q6fldw772yUYlXuZK/DmeeKaLWrRQlFVlq+ck+9NBATFJVvnIlE8s1lilPZahUApZ/xRWSo6SkJhcb1r112s8UJV2NlbRkx7NYad0pSqCK1G1awnVKZqq0n5lq+cpUMrPq2WclX0lg1NpFvaUaH1eihCsNAvqrX0mmEsxG2p8NSjLLNeC/41lnhf6kqjULzPK++11Z9tpr0uh3vxNiz9J1YwA7Mkv07wy9p0pj0AJeilO+1pX5ox9JhlrIqv71L1n31FOSogSqpVr+Vioui5XUdlGS1lLJXprG6C159VXJ0u/LlaAS79UiJ0caqYUuxVNk1OIx80sdAUfAEXAEHIF6snQBJJaQPCUELdRdtfyVV2QdxEBLiOtSBb1cSVO2kqwUVe6N9LdGqrwbKxkar4o9R91eqWqpCvFfSpxw+2WqZQjrUKYSkGIlEvm6q265WpSa0g6pKPTvtkoiZqnbbrW6xtrrv0t+/nNptu++gTClnnGGzPnoI2mhH4F0ab3rlYClq3zthg4Nsm1UciZqjapSC1mlypitVqlCJRTJZNxapvWmPfSQlKuFL//EEyWHumKLtklsGpYrXHO52j9IYCMlPlXqgs3p10+aWHzY5nsJ7F+nbtImai1cr7tCWyhBC3s4zz5blqr1r5X+JpuxXQM+hx0mhUqw1inhzVTiV6J/N8alqLtJ52jdrfSedCVv9L9ILWSlarXqqBhQFuu/1ynpbaJEWQic17GCHENIC7We2WphTFXLJRYw3K6paplb3aePdIuXHsOfJkfAEXAEHAFHwBGoFoF6sXSFFpQEYT1prIRmoaZWWKXuPCEOCmuXftao+4tYolZKvFJ/+tPgqmPXYJuRI4P7L11dlBqqruytSqrUilOgBKJMLTCL1RJD/FJbJW1tVeFnaVqD9RoXtU7dkS2UfLU79lhZoFakjWqlahFxeZXp/7PV5ddUd0SyNxEilapuxRQlFFZStP32SiqImVpyzDHSSolHIFzIQLyXfvh3cJPy2Wy5W65xVkXXXSeiFqxstRrlqFyJSqW2kackK1Wtd6vUtVp5/fWyWklaS7Uetb7ggm1uw9WJK7WNkrS22vdUjeuiZCt2HbSfBd27fyU/aR029yddCV2q/hss04iJUwzTsPxh4aMPOj6isVlVkXxppXo/OyubKOENZXOfwaVCx3KtkrM2ai3E1ZiipKuJflYoxpVa745N5uFPrSPgCDgCjoAjsOchUH+kC96l5CVPrS+t1Vq0TolSpf6b2CkIC7m3IDJp5MPanFohVf/fSq09AhEg4F2tWpt0/yZ35Tq9fzmWMlX66Wr5aaYKf4NaXRZooPh6JV8lSqxaqTUmQ+OjyrguEnOFhQ3SkUpKCxs3SFNkp2KKEpFyJWLrtY48ddWtUtdm1vnnS4m6L9c+/bQ0U1coZHC9WuVKTjghuD3ZnVn0j39IxujRknLVVdJEv8+sbqclZFSJDXFRqVrPSo3VWquuzGxtq0hxytX7G3Xo8NXM0r5XqisPMpUGmVMMRGXIUetSzlFHSZURPCODFsDP/7WE1BT0cfP/o/2FjGVof7fAoXIxASCd0RLGSb9opUQ0Xd2W8yB/On6dlES3UQxqcr3ueY+J98gRcAQcAUfAEdh+BOqVdNluwMZKJpary2qDEpPmm3NgoeyxxKxVkpV1+eWSvZmo4CYUvSYV12I0X5Yq/jJ1h2Wo265KY67mE7ulrrn1al1ap2QoTd2Ja9UaVqgB+ZkExitRKVeytKVD6tIrUaJQonUkSvOJBWyl5tvKPvdcSVUiVKxxYWVHHy3pagHK1rQXxHwhUzqy6k7ADUrMNj7wgOQSK3bccdJIM9ET0F9tUQKE9SpL68gePlwyNIarpRK3dUpmNmjcVhZHCV188ZZjhCBNYFWhMqxW12GBEh+zKkFqA7Gq47hzfwWEzgo7GPXfG5UMbpXWdTNha6quzcVKCBurNZDdmWs1kL997951br+OYvttjoAj4Ag4Ao7AHoFAvZIuQ4TYrmZqzSrR7O1ppHpQJV6o/69QkrRSY5IK1H1GIlFyXy3UHYWpanFpSzoGJV5Vmy1R/J2jVp62ujOvQq1Os5XIQaCq9JpGutOumbr4ijWfV4aSgiZq/UnVOLIl6tZsqaQuA+Ki7jjRtldrm4F0meUnMmwh1YWStuz995cyJXO5Gli++Mknpe1ll0ljJTxW7ICgFSpHiqZTKFfika5uxbyohSrBdIBMFmmW/YX//GfYZVmguw9TFZ/1SqyydedlmmJRpkQobbMFio0ChbqDskKJ3Qq18OXohoIsteCR0mGZZrfP199a6o7EZHKLbSUSuGofK7U94rYgbhnEwen3axVjSBffb2J1m2hdisaFrde+tidNhFoel/TqJVVK0Lw4Ao6AI+AIOAKOQO0R2H7StTkGi8z0VtJIlKpWkhZKYJqqK7BS44qaKOGYpwSiXK07q3UnXoXu+FutKQnSNYi9TElEhRIlCBUuwix2I2osVr6SrFSOFbr9dumo9WeopStbXVxN1IrFjkVRspSt9ZYoIVugLsJKtUJVaH6tdCVSG7SNAiUw6ZpzKxQyzxPQjmXNispF1vx0duTpLsDFSqjk/vulVOVMV4IRtSit0Z2HpXruYgXtKkFsru6+lM27KKvIOA8Zid3Rp21VKaFKVTdoqvZnkRIpyGQLtXiVaIB7uWKXr8HuuZE4s3TFIVdjyxZqv1N0d+RCJae56lZdp5n6UzSPVrFlvcdtGukPVsbw/8g4hH/rd4FwqmwFGgNXpK7CWQTdazulSiJbaIxYtm5uoECoSPKawi5LvZexaHLwwZKluIpa3pppvF6qkWLwVNIMYRYnYrV/8vwOR8ARcAQcga8dAttPulQxQ3Kq1CoStb40hhxoHFOl7g5EKUNgmqmVZxHEQMlWxmefBTJQobvyWqu7ETcirsaWmjeqkRKfMo2bKr3ySimCTKnFq5VaeCqVoKRpnqsytWYtVXLQQi1GxB5hEStUy9PS//s/SVdrFcSlTGXK09QHLdQaForWn6ZxY+zMs5KirsF03Ifah2y1WqVpTrB8JXgrNEkrFrTMyFmKG5RsYQ1rqX1JU/KVodYf0jYgM7sis/TYoiwlalsV2lJS2FiJYCN1Ry7R/qYrEa187rlwX4rusMxU9yEkNVpytO1CrW/pv/8tWXfdJWnaJrFneZqGo+VJJ23pT3qkP8RrpfJ/HQdSdPDJ4N/EylG/tr1R+7uCdBpK4FJxx6oLtVDHpAk51bSQByxbd5JChNerZStHA/5bKLFdpNauKt2U0BqL4mZBSXJbrLK10t9Sq0mG+7V7orzDjoAj4Ag4Ao5AAgS2m3SlKqForzmnKpUUZEQsHunsilMSU6GKHLJDITt8e/J3nX66ZCp5ylXFjsuRHXeQsiy1pnTQ+KYUta6k6m+V+n2GWleqlKRkkBCUGCu9JlVzV7VU0pVpxw3pvU01VUTOH/8oWRp3xW490jKkad0hHoui1rSWSnwkkk8rW1NMaJh6SMxK+210N2GaykuGdtx80dIM19qNN0oWx/1gQSL+DHKjbeUqOUuJl6dL47caqWWPw67Tdedgxx/+MOTKSlcLUUfcibqBIJMdnjEFWcj4nq07JDPVTZrGDki9nzayLDWFktVWunMzdfNuxKakd7j55k34QHJVti5qkcvUMRDizohv03sz1KLXQe8jf1gzjVNL14+VZmoBY3dlmqbnqNRUGBDaCuLAtM4NSqKrIodg41rN0Zi2FD8Y2xcXR8ARcAQcAUcgKQS2m3SRgiErQd6mNCUUfKIlGwKwOfh8a1oDh1HrDNera5ISrCoQOSUg0ZKqlpnYyCKC3kOM1eY4q20ijzRuKdOO0NlcGbFV0esCAdJPvKilTMiOWnXiEaSEICohSVernP2OZSrs0tRicWKJRgk3Xh6EajOpitefrEh/glUuxtKWo8RpSyEdBPhCZNVqSImVmwPG0yCybCKAcOlnucbg5Shhy1UXJBY3K5lk4I8Zl6RmnF/kCDgCjoAj4Ah8TRHYbtL1NcVt9+s28WW4dtUlWlMJGww0JUe55ghbrjFg2Zp8tYPGmeG29eIIOAKOgCPgCDgCdUPASVfdcNv97lILXgYu2BhrX7yOQLo2ajB9psZ2NcNCpik10iNJVXe/zrvEjoAj4Ag4Ao7AzkfASdfOH4OGkUAtVQVKuholcWYi9izSfqT85z/ShiB8353YMGPkrTgCjoAj4Ajs0Qg46dqjhzfSOTL2a8xWsolVw4HWHiT/dZkd3k9HwBFwBByBBkDASVcDgOxNOAKOgCPgCDgCjoAj4KTL54Aj4Ag4Ao6AI+AIOAINgICTrgYA2ZtwBBwBR8ARcAQcAUfASZfPAUfAEXAEHAFHwBFwBBoAASddDQCyN+EIOAKOgCPgCDgCjoCTLp8DjoAj4Ag4Ao6AI+AINAACTroaAGRvwhFwBBwBR8ARcAQcASddPgccAUfAEXAEHAFHwBFoAAScdDUAyN6EI+AIOAKOgCPgCDgCTrp8DjgCjoAj4Ag4Ao6AI9AACDjpagCQvQlHwBFwBBwBR8ARcAScdPkccAQcAUfAEXAEHAFHoAEQcNLVACB7E46AI+AIOAKOgCPgCDjp8jngCDgCjoAj4Ag4Ao5AAyDgpKsBQPYmHAFHwBFwBBwBR8ARcNLlc8ARcAQcAUfAEXAEHIEGQMBJVwOA7E04Ao6AI+AIOAKOgCPgpKuWc2D9ggVSMX685K1YIRuaN5eMgQMlu1UrSallPX65I+AIOAKOgCPgCHy9ENhu0lW5bp1sfPNNSWvcWLIPPVQk/asqi+bNk4px46RR166Ssvfeuxyy5e+8I+urqiR3//0ls6CgRvnWzJol82+/XVK1T821vyuXL5eUo4+WDldcITlKwLYpc+fKxldflQ2DB0tT7X9KilOzGkH2CxwBR8ARcAQcgT0Uge0mXeVKPNb84heSlpcnRbfeKk2VYBi1WP7ZZ1L8m99I7gUXSHoSpKuivFzWzJ4tsnGjFPbtKympqTsU9uL/+z+Zp222u/FGaVoD6UK24qeeElESlfO970nmOedIht5f/uyzskFJZebZZ0tarLzr10vF5MlS3KOHVCm529VJ18ZVq2S9EsVGbdtKdosWOxR7r9wRcAQcAUfAEfi6IbDdpAsiUdm0qRQtWyapr7wihQccIClpaQHHVLV6peTkiGRkJIVryZIlMvPmmyVLFX6Tvfba4S67lOxsSa2oUEFrJneQpkKVKfsHP5C0E06QfLV0lQ8fLulqLVs3cqRkHHOMFCgOWxW9Pv+f/5T8pHq/8y9a9sYbskitlt0vv9xJ184fDpfAEXAEHAFHYA9DYLtJF6SlJD9fVihxyZ4/X1Z+/rk033ffr2CK51KrrBSB7EDOIoSnfOlSqRgzRtKHDBEpKRGBsEXvV+ITSvQ76tpcB7+mqEUqFOqOuTf8Th18NhPDrcaT762+GLnTIY7HHy+ZkRuyIFkqY+natVKJvMkU+q1tVGn7NVnyauwPMmJBo079N3UGeOgDn3gY6HXhevoacQVX6fVlapVLnTlTUjds2CQj18bgAPkMbSZBVJOBw69xBBwBR8ARcAS+LghsN+kCqOA669JFqlq2lHVq+dmKdEWQrNTrlo8aJSkffCAFGoi+prBQZNgwaTZokFSsWSPrX3pJ2mvcVG5ZmZT97neysl07yTj4YGmu1rP1SsjkmWekWOvLOumk4AJbovXkjh0reSefLKUaU7VCLW0FGuSeqoRhrbr0crXuxt26bZLg3Xdl9SefSIkSjfTSUslUAgUBC6RCyUm5Eo2V//ufZCqByjzrLMnR/tQUgbVWXaGpSrYa9e4t2Wr52qZMny4bHntM1qsVLL97d1n30UeSoaQyt6hIVmrwfY5aypr06RO3nRKNlVuulqf8Tz+VDMVjjfYj+7DDpFD7Zf2B4BYp4S3U2Dn6tHKffaSydWvJnjRJctRNuEExClh17iypU6fKBsVnqcpZoOQ4U124Rdp2jtZZ0L69rFLZMt97TzpOmyaZd90li9Q1nKHkrOn550tqmzahyQrt70rtT7nGwLXS+1LjEdevy5Pj/XQEHAFHwBFwBGqJQL2Qrkq1LuWqgi9UZbzirbdk6cSJ0lJjsmLddktUqa/6978lXUlRhRKVxUqEmnz4oWT86leSo664dCVO63NzJVPdi+uUFCx45BEhPB3StVrJgNxyi5RkZkqekgtI16LXXpPs99+Xdv37ywolKBvuvVdKqUfrWH3//dJM5Uj74Q8lv0MHESV7VX/5ixQpWVinZC9bCWJLJT+puAm1rcWPPirlf/ubbDzuOGkesQAlwnO1EpciJYEQzdbHHivZ2uY2RUlKsca5LVUilL54sawiCF+tYxDBdc8/L+uUCMk113xFpDZXUKYEcKHKs/GBB6REyVqGyrj64Yel6RdfSNqPfywFHTuKfPyxpGh/1iphrdpvP6lUsllOzJn+tkGJWb5aotbdd59UKbntpnF1mUrC0v76VynW2LUiJaP5SjY33HabNNXvM6++WtIbNZJKxaVU/y5X/NfMmSONVQbIYZNzz5VKJWBrXn5Zyv77X9nwpz8FK5gXR8ARcAQcAUfAEUgegXohXTSXrlaPPCU/K9Uys/bppzeRLhQzLiolAGV6TcpDD0maWpIa/fa3UqCKP0OJwurvf18WP/64dLvuOslXwjNNFX3JIYdIE7VE5Sqxabpo0SYri/69VsldttaXrVYgSq5+t0KtYflKHLIgTUrkCpVYZKj1J/POO2WNtleq1px8jVHCmlWmhCJbrWJNTzxRUrWuVCVtJWqpWqTB8IX6qVTS2PTnP5dcJWnVUYrFSvRKNfi+zdtvy2rdIFCycqVUqNUsLZaIaJupKstGlbdU+9pSZa7U+hspNsVNmsiKBx+UMiVSYtYr/R2XYumUKZKmmKSpta1Q28lUMoT1aRWkUgP5C3S3JK7BCiWgTdSKVqikab4SoiZXXikbi4sl5xvfkBwN7l+p8WfZSnRTlHgSV1ehZDdPMWqkZC1N/5/55z/LSsWgUt25bQ4/XJbqJohlajHrofd3UKwqXnhB5r/+uuQrZhVKUJeqFbO1Ws2a6o7NVHcvJv+U+ZWOgCPgCDgCjgBcqb5QwBKSpwSolSrwBUqAVqllaov7ThX0si+/lAwlGM3UKpOj7qxcJSo56rZapJaUXCw4unOuVBV+GmRId/3lNmsmmUocKmbMkLWrV0tj3SW5mu8gXmo1KtFr2ijpKuvVS1YrSemoZCP3wgulQK00EKZSJXXFL74ohRMmbOniRrWOpStpKNzsLtuo1qlsTf+QjpVIvyv45S+lSadONUKC5SlN3XbrlTilK/Far2Qoq2dPKcCiFqcEAqcErEr7V6Vu0kwlPs1V1sZqpcrHahUpZepKXKVWLNyvWaefLo2VyKVq/8uUgJUqadrSH/33Om0vS61+eVlZkqeYpmsfUjSeLk+tY1lK9uhTU8Uvgzg3JYUbFZtiJVcdFEfKuoMOkhIlZdlYEfX7FCWgaYyBWv7ylBhOU8Kaq9iKbnBIUbKcrZa7FTp+zXTMvDgCjoAj4Ag4Ao5A7RCoN9KFUsf6UaBEYtGIEbJWXYdVKGf9DktXkVqtcpVItMYt9sc/bgryVqLWAVKghIF0C5vD5KUKAqf3lvTrJ/OVEMno0dJe3V3tSSOhrrcV6jZcp5aYVkq8WinpWKDXbNCdiK2UUJmFqkKJSLamsSjACgXn0U+qBr2nqHXICgHlbZQMVqrVaJXKYGkScJdWKNFJ17YgjhUEqau1CRcchXQWlSrbhiOPlLVKVKpwY2KRi0O6AhmFpKkLknQMFZpmYqlaA9tqrFpjlV1i3JKVSrrWL1wojZRktnjuOUnVGDCwzVV5OivxyWJzwebC7suqzTtDia9K0X5kqfuQXaO0S5/TNxOuEPzOb+oOtVKhdeUxZpsth1vq1WvBpFTHslBdnAuUvIpiXaDEdg2uTLCs3Tzzqx0BR8ARcAQcga89AvVHuhRKyEqOWlOwdi1XF1yFkoQQ6QRpUTKBspahQ0U05UIgAfrfxurKEgLqyQuFxUULgfnpSo5WKxFaraQiRa1JqZoJvrW6/4o04H6hBopvVBJQriSirRKtdCU9lbgxYwK7g6WNXXxb2MQmd+eW/yoxKVJyt3HAAMlR0rRSSU6OuujYjbhK48laauA9Aeob1Gq0Xl1sLVT2NJUrRUkUwDVS69NStQalKXHLVEISt0BGtc0CjSXL0H4uU3ddqVrXNio+RUrcGmmgemOtwwp9r8QiBsHTNoPrUeXM1L5lKpEUtdZtKbj4rD+bd3aGjQGbdzXGygMpS1WiFsUD8rQVRuCvmPF9G3VdsnlhjW5wSNXxK9Qxaq0WRCdcX/t1wwFwBBwBR8ARqAMC9Uq6rP1GSo6WqnVqvVq1clRZU4hLSlfLyhpV3NlHHSW5m2OCSvX3FCUZGVigIEgR0lChVplcJTxVuktxkf47XwlHkVqGinWnXbbu2NuobroyDb7HupOjLrESXHJKwiipWmeJEqEN6mJrkgAYLFirDzxQ8r/5TSnToPNydYsWa7xXlrpJmxC3ROoLlSlbyUqRXrvmhhskk9xeP/qR5EEUtUD2SvS7cr0mbjYy/b1MZcM911jjv7KIdVOCt0ytR7TZSOUvI1h+s8UqWKuU1FUqwVqhpK65ygFNDLFeWg8DFhJDWPqMZAedfGqKR4WSVSsp4KP1FKlFcJMNb+tSoKRwnuLZQjc7VOp4rVJsOm/GN9lm/TpHwBFwBBwBR8AR2ITADiFdxBe1UutRqboZM5UIYb1pRsC5KuyVmnyzQC0oWeq6KlOX2VzdvZeiRKrzH/4QXH+4xQKnUJKAJSlL6yrXYO+NaikqU+KVqtc0xa2ocWAb1BKUozFRmXr+YYVaqRZq4HcbddmlY9Eh35S6FldprFKTBKMd3JlKBLOU9JRBtjSma6ESoc76d64SOiuQqaZK4oqefFKWasB6ttaZpZ8KdQHmqXt0hVrLSFnxlePvqwaRd50mjp2rOwjbaAxY1rXXSrpar1K1P9lqTYOAlauL0kgX5LOZktYSbWvVE09Inl6XqTKu1dirxZo4tkCPWmpPYHxtdw/q9WkcW6RpJsqUSGIRy1TZIZ7EhkG6SOkRiO9mAlil7W7U3aBdNdVEhY7RfP13VRI7O/3hcgQcAUfAEXAEHIFtEdh+0qVKulItMCE5qLm4tJ1sjf1poZapxmolqVKLSiNV2mtOOUUqNU3BGk39UKkuxlUar5Sln7RvfUtErS3EDWVokHeOBr+X6feZamkpIwWE7pzropaWVA2sT9P4I2xMKepmbKZkK0/dcMVKUuar26tMCdFibSddrVDrlIQVaFB8Ni4yCrFXKifxYlaQq4LYJyUSTTRn1lzNQZWlnyKyy6sFLJqHKlPJ0BrdUVmsgeWVd98tK5RIrVGLW4rGX7W55BLJVdm2KVp3pcqZo2ki8pVwLVQiJbpjsJUSpyIlkuVKavKVfObQ982FHZDZ2q+VWNrUGrZQd2Pm6WaBtermy9G60hSPUJQEgrv1B5dg6B+uyc0JTBmTKhKd8n/FL1//vUrrnMkxP9pOsZKpluoKLiAZLZgqccxWrFN0zMqVzKZoqouWimuFxnWlqMWxtQbe21FHZToO5O0iYJ8cbV4cAUfAEXAEHAFHoHoEtpt0YaXKU+JAuoZoTFUByUX1PMJKgtE379BrceaZsoSAb7Xa5GmeqlJ1oVVpDFXLU0+VDILC1ZLV9qKLJFctQBVKSsrUzVemxKtSCUizI46QSv1/mhKlUv0/1qXCza6ukHPru9+VpepmzNd4KSxTkLUsJXaFduajkqJsiFTkqJ50dv4pWcGSlK5uz3xSLWiaiXVqJctV4kMcVbQ0UdJRqu2Xqex5mhOLnFYpl14qBUrYMuJZgLStdA2Yb6aWtDztBznG0tXlmqapIrKJz9JUFlkcEh5jtcpS8tPiO9+RpUpo8jV+LVuTrBZDlFS+FkqCQlF8c7U/aZv7g4s1Q1M+pKoVLVj6VHaStqYrEQuZ/ZUArtc+rtYcYa20TpKjVmnbeYp9/ubDupuq9a4RREoTzm5UN2iOki6St85X+SuUDHeIbFQoUrJZogS1hf7mpMuXGUfAEXAEHAFHoGYEtpt0pSr5afP732vQVqakRXbWETzeSElPlebc4jBsCsSgrSbaFM3HlaZWmFx1Y1WqBQjCRYH8tFFrmChRCbsblVBkq7KvUktLmpK7kAcLd6DmpWpJagO910ojJRM56nbDEkYAfZ62yW69NCNOSi6aa7uyeQdikEfrIclDqn5HcHgLTQORqvLmKiEikD+2IGdrtYJVKckkrUIOxEllSOXveEWJVr5a9XKpX+XOufhiSVE5iDdrp/ekJLiXGC5cq9nWH3ZAsstR+xOOI6JoPS2V7Fl/CpVUplx/vXZK6908Dp20vVQ9mDtco7Fz5Sp/jhLW1mecEUhYE+SK4FGoaS+q9PDyFLV2VbHTUZsp0Vg0cnqVEIumJHAL3mpFzNccawn7XvPc8yscAUfAEXAEHIGvFQLbTbpI0pm+Oe9TLHJhp1x0t5xekA5B2Zy2ADvS1rYkJUCxO/SoNCYvFGQqNmgdopKh30NMKNt0TAlDWoQ0cA2kJ3pdGm1rW9Udzw0BCTst48i+zcxR4kaKBtvtlwpx2pwiIhngMyBEm0nRNtcrqTQyG2RBrs0WK5MjpLgwUrV5tyj3pKoFixK7C5HUHilsENAPeHKK5RLdZUmeL9yQUVKdxrhuznf2tXpivLOOgCPgCDgCjkAdEUhG99exar9tl0JALV1VagXkjMmaChsMynQTQiXpItTKmKHHMDXTnZzbZNyvqSL/3RFwBBwBR8ARcAS2IOCk6+syGTSuLltdjSR2ralAusp1Z2mmxse152xHdVOmJbBm1lSX/+4IOAKOgCPgCDgCmxBw0vV1mQm6oSCfGLMkUk3gdsxlR6LGoxVa3rSvC07eT0fAEXAEHAFHYAch4KRrBwG7S1abBOHaIreTrV1yCF0oR8ARcAQcgd0XASddu+/YueSOgCPgCDgCjoAjsBsh4KRrNxosF9URcAQcAUfAEXAEdl8EnHTtvmPnkjsCjoAj4Ag4Ao7AboSAk67daLBcVEfAEXAEHAFHwBHYfRFw0rX7jp1L7gg4Ao6AI+AIOAK7EQJOunajwXJRHQFHwBFwBBwBR2D3RcBJ1+47di65I+AIOAKOgCPgCOxGCDjp2o0Gy0V1BBwBR8ARcAQcgd0XASddu+/YueSOgCPgCDgCjoAjsBsh4KRrNxosF9URcAQcAUfAEXAEdl8EnHTtvmPnkjsCjoAj4Ag4Ao7AboSAk67daLBcVEfAEXAEHAFHwBHYfRFw0rX7jp1L7gg4Ao6AI+AIOAK7EQJOunajwXJRHQFHwBFwBBwBR2D3RcBJ1+47di65I+AIOAKOgCPgCOxGCDjp2o0Gy0V1BBwBR8ARcAQcgd0XASddu+/YueSOgCPgCDgCjoAjsBsh4KSrjoNVqfeVPPusrNu4UfKPPFJyW7asY01+myPgCDgCjoAj4Ah8HRDYbtJVsWqVrLvvPskoLJScM8+U1Pz8LbitnjJFyl5/XZoNGCCphx66y+FZ+vDDsqqqSgqGD5ecZs1qJd/Sjz+Wyj/8Qda0aSMp/fvHJ13Tp8uGRx+VdUcfLS0HDZKUlJRateEXOwKOgCPgCDgCjsCeg8D2k641a2Tj3XfLRsVkXYsW0uqEE8SoxdoZM2TjvfdK4XnnJUW6ytRqtPSTT0RKS6XN4YdLavp2i1ftSJWppWpZRYVkHHhgrUhXaVmZVOi9ORMnyoZu3SQlkZzZ2ZLavr1kRIjorjx11syaJWsmTZKm/fpJfqdOu7KoLpsj4Ag4Ao6AI7DbIbDdrCZFLUVlTZrIumXLJGvECGmmZCkjNzcAgWUnEJLU1KSAKV26VBYogcvt3FnaqMtuhxeVLVifammBWjFqlKwbPVry0tKqv1cJV/Y3viHZO7wj9dPAqnfflSVvvSV5V1/tpKt+IPVaHAFHwBFwBByBLQhsN+lKrayUUiVZa9q2lUwlXjlKRtoNG7apAcgMhCtCairVsiQlJZLC30paqrKyJBXyoqV8yRKRyZMls3FjEXVbVv5/e+cBJVlVrf/TuXu6JwdmhiQ5iUhSogISBAEFRFQUHggounisp+JfHkvXQlREnxIkiII+9QFKzkFyFCQHQUAJA0xiZpjYM9PT4f/9zvRu7xS3uqq6qqu7uvZdq1d3V917wrfP2fs7e+9zbmtrJG389Ijc4QGLV0NDqFG53Z2doUZepxqVQT3d+r6Ge3RvT2NjqOHH6tZ93M930RPX0rK6XRDD3nu6V6xY3S6Vl817tXLp0lBz882hW2Wv2HLLoFZlv4RND+2BeNIH2sr/fM5n9L0fQtrN/cIq9oc+065kf2grMIODftOmHpUXMdFn1FEjb1t8RvdSfw/91e9YJuWBkZ7t0f1dr74a6t9+O9QuXBh6VG+P2lmr5/vkp2fAqEfyqtNzfjkCjoAj4Ag4Ao5A/ggUTbqoqkcGvVFhtmaFpFbKWxKMdGW0o1P3zbzhhlB7001hvLxa8ydMCOGww8J0hSQ7588Pi37/+7DRK6+EUSJvK5UPNWu99ULTIYeEtZVztUhkIJx7bgxjNp14Ypig+maonDF33RXGfv3rYflaa4VZl1wSJsgLVS+ysGDrrUPb4YeHydtuu7oV11wT5t16a2gX0agTcWg6+ujQrPsgbxCiDhGNOcrRalK4tOVb3wqtW20V0vxzCx59NMzXz1SFTFuffDIsFjmERKVezz4blvzsZ2Gx6hq7zTZhvshakzxJYxYvDnPkBWuVF2zKzjv3hWOTZSybNy/M+sMfwnh5DxtEiOaL4LXSnx13XH3/tdeGucJ6oQjq5NdeC40Kzc7ZddfQLcxGqV1twnGx5NFy/PFhkuqueeaZsPQ3vwlvC/NxCiO2tLeHhcJm7Oc/H8ZvvnmYc9ttofmWW8Kmb70V6oXD68KvWfWudeqpoU5Yc3UqnDr7pz8NHZLHBkccEWp6yXL+w83vdAQcAUfAEXAEqheBkpGuFuVzTdhhhzDrxhvDzIceCtN32+3fYcVe78wsEYWlF10U6kUM6g4+OCwUoRgjUrJAxnuswpJte+0VZotIjBUZaBARWKCy1tpggxAgXSJhQXlUq/AOfeYzIYgILBTBWizPWM0774T3rr46rBKhW3TggaFhzJiw/PbbQ4OI2nvf/W4YL8IS9HyDktp7Dj00LFD9zbNmhcnLloUabQBoF8lbIsLXfeWVYcUJJ4TRInBpKe/LRcxqRPLqlaNVu99+oVkkJCvhYkyJOK26557wnkhoy+zZoUP1r1Lf6kRoOi+7LLz7k5+Euu9/P0zafvs1RuBKEbmZwmmVSOUi1dOgJP/YH/opEkTOVVC+XJNIZo+S9JepzwseeSTUiZTWqG/tCs3WCP9lV10VFss7NfYXvwiNKrNJ9bPhYaHIXofI5kqVSZ/qVeZ4kblZ+pktj9okYdQtT1fD//xPmKNNEJO/+tXQJQ/dfMmj4f77Q6e+jx6z6p033nNHwBFwBBwBR6BgBEpCuqiV3K5RIjctzz0Xlspj0rXTTn1hKcJby2XEm0WaOuRpGf3tb4fxJGsfdFCYKU/MCt0/XiShWYRkoQhG7SabhPEiZWPlKRonckQIr06hx3kiXG3ySrUqxMc1Xp/NlsdokQjI6HvvDTX77humnHJKaFBYskXhzncvuCB033nnatKlcNhy3dsogrKJ6qW9XfLudIiMzPvjH6OHrEfem4nf+EZomTQpFcglume+2jRRZYzdcMPQJY9Zv5faWidP1HKRuw7hMkXt6lF/x226aegUuVkgUlQnwpe84lEUzz8fWtWfZSKiU773PTW9MTQrz23O2WeHTpG+SLr0/PKpU8NoEdApxx0XZuj7VrVvucjv2COPDC1rrx3mKVw4RsSwTl4t7u8YPTo07rFHmC6M6kS63hOe74rY1T7xRBgtb2PXxhuH+TNnhgm6Zx2V3X7FFWGeSPBEldetPiyUh2/SFluE6fq+v7BowaPQH3AEHAFHwBFwBKoAgZKRLkKMnFU1RWTrde1YXCCSgRcohqD0M0/HRzS9/HKYKC9P04IFoUHkpbY3v6lNn9cvWRJWkkNEqE5kplXepkaRk+UiIB0iXmMVjlwsItCiZ2pnzAhLRLgm4j2Sd22xwmXjCIWJqI0SseCqFTHp0t9jFGaLl0hWh8hUvcoYRc6YruUiIpAS2rJCnrWJX/taaM1CuNrlEVolAtIsT1GjvE9koXWKuJBDBaHJeqneBvKmVG6HvHJdIjgrVMY4ee/GK7TYpL+T1yr1b8FTT4VxImPN2qDQKtzwKDWKaNYrLDlaRMquFWAkT2Cj2tAs7OtFaOtEWCGcDeSs6fmxCjvWkfslXFeK0K4UXqN6Nzp0QUZFhFuFZ7yEYa3urdPvJh2F8Ya+J0zZofBlkHzaFHp8T4Rrisr1yxFwBBwBR8ARcAQKQ6BkpItqIQdtMurNIidLFDoMCnVZovpykaZa5UtNFokKF14YQ48QrPVFJGrlNSKhu6fXc0QC9yiRlHZ5Vd6R96ZGobN133wzTNd5WHhc5upYg0UiOtPkPZusfKU3dWbWcnltxols2NWt/5tELkaJLJFuXidvW21v4rjdA8GYJMLRKQ9Up8jO6nR+cQ/9vUr1NYsc1qgtJPTPIz/rwQfDVJG5sQobkuhfIzLYoj7VvPBCCPIsxeT8jKubvoj81QuXdoUHO/7v/8Js5VetK8/eGJ3d1U2oMvEMyfNgNUHtHqfQZKBsEbc2eavWV1J7g4hWvNgQQJJ7L+HD8wTB5XiKuPFAfUMe9RAuNiEgH/WjLkEqu9XeUcLFPIfWDPBHPjUiha1q61siZrXCfTIbAPBg+uUIOAKOgCPgCDgCBSNQUtLFzsQmGf21lND9jvJ/OkVIxmDwyeliN50MeZcS42uVhE54j7BjM54pPC/8WKhN37GjsV3elqWQMSWfzxAJWU9elqX6PVM7JMl76pKXaH2RnfqUhG6IA8QjkodekpJ5NAT3zJdnaJXaO1rkgjBj2xlnhA55dRZcd11YS2SvQcRumbxIK0VYpshDNl5krPassyKRqZU3b7w8SZ3KleoUQazfbLP3CwACo58JIist8krNVjJ/o8J0KxQqXKxw53iFM8dnEhl2Wsor1aWjG2qV0A9W7BZsURsiTtafZG1GrDJakNxdCaa1GbsO4/eZR2bgodTH0+WNW6UQY8cdd8TdkEGkdpoOufVcroLnmT/gCDgCjoAj4AiEkpIuw7Ntu+1CvQjLEh10OprjC/RFswgUuVbz5dlq1d9tvV6hZQoR1hJKw1PUa/xJ0o4J6vLqjBMp65K3a64Iy3j93y7PTpdI0TjlcZE31ilChFdslMJvy+RJalVuE1e9SMJKeYeWyNuW7az5LtXTriT28cqJWqmdfbVKxF+iHYJt8mZNFxmqVVI9V5vu20jeo5jHBJHjR5916Z65In9jlaNWr3yotAvvE8dMtMs71yYitdExx4Tw5S+HN8mlUhJ9vU7sX6Fk9Wa8Vrpq1b9RwqdbJGqO2j9NXkAuvHXLRfga2HmZ8OgVMoY7VR45bHbViTAuEc6LhfG4ZEG9cmhR3bO0YWEaOXpq17xddgnjlTPmlyPgCDgCjoAj4AgUjkBpSBdell5PC01oUW4RRxt0Khm8VSE4QmyT5bFZpJ8lCj12KRm8Tl4UjoWYK8ISRJQ2kIeJUBlko07hvW4RHJLVm+SJ6hYZ6hTR6FY+VpPIyTSRh0nKNVrxla+ENnYiinwtEzFo147Aybq/nnDhww+HZhG8paozkq6MNkao+IwcJrW3RR64VdqZN/fii0PLmWeGRu2AtAvSmOrdUbiyE88R92Y5PgHStVwkcc5554UOkZx6JcaPEkGr4Rn1hcR5PFl2kf9FrtcSedqWyYO2UESHfK3FOvJigQ6ObVXi/HonnbSaoCae6+tP8rNkn9WOJpFbdh8u1kYCEumDwrKN8kyu6PXQQeyiR8vK4GwwEcJx8lp2qa+QQ87o8ssRcAQcAUfAEXAECkegeNLFIZscvJlxVtUoGehJSk5vVSiNQzlbZMAXaXcg+VzLlGhfrwTx+RyEKs9Ni8KGkJAakRIISevTT4dVMvQ1OkKiS2Xw/HrkKsnrUicC0yNS1aF6RyvHq1VkoEN5Xe8pib5D3qOFIkz1CgMulpeNnCleRh0v2kiIM0lK9Bkh0Xq1bfTuu4c3FWYcJUK4WLsTx+sohrpcryHikFF+ICppF/lgbAqQJ26MCOQ8veuxRscwrKVdmsvVvk6FFycot6spkQtGflezEtjf41iGP/85LPjxj+MJ/YuEY4s8YKNEyNL6E/tF/xJyiH8n2tagvnYqkX/Wz38ezyhbrk0Ek7QpYGzvkRUN8ia2QYiF/Up5tOq0kWGKcFkhL2SP5DNZr0uq7fWCrVDe2SqFedt0X41w9ssRcAQcAUfAEXAE+kegaNIFWRorz0mXDHbyXYltvAhaJAsPSY12LHJh4OPp7PJCsROuW+HCLnluJolc1evzJhnwdXhtjs7z6nnjjZg0Xyvy1qXDT8eKnPSIvNSpvg69WLtdhIsEfC5OsJ981FFhPrv1lKhfqwT4oOMjWvbeO4yR5yteIjpt5DTJW2ZXvQjZeJEP8sood7zqblJZS5XHBRnLRbpqRBbHqY3saEy9OKVfGExSuLJV3qROYVEvotKoUOMYQoT6rimFsNCfKQpBvqv+jFbeWIOOceiWN4/jHibYmV4imvji6oQzF8SuQd66Onn2IJGEQieKoDXSNvLA1J92hTeXCYe19V2DvIkNOpi2VeQy5tXpmqjzxDiktlHYd8pDWS/SNVqE7w3JdpW8bRuIfJnHj7y3lSJtbZyj5qTL9Ywj4Ag4Ao6AI5ATgaJJV62M8dTvfGd1RYmE7LiTUSQh8NN7QQamKqwIIYIEjOLIBREhM+SE1ibpbKqgZO0Y4tJ3LSJmPTpvqy+8p3saFVZkD18y5Ncqwtaqz6NnBy9Y5jEOBxwQJu6//xptbNKZWcok6/tsIm0V8Wi1oy5ywFcnkhb3EmZ7d6OS69t0ACo5YVyjRIqCPHL0fVrvURrZquCssHWV/2XhPs4nW6Me9WdSoj/jyGU77bQ17llH+Wl9cuEVQCJ9LfJcTVa7wWhchidvjDxvQcn7EUO1maDnCuXcteCxE8kNJPL3XqNFtkb/13/9+7VEOYea3+AIOAKOgCPgCFQ3AkWTrj6jXgiO5BP1vnMwNVcqI28o7Z6sO+j6CwlmkqM0ssRJ6/nmLWUjW0ksMu/JQbbWeJR/iulPsm5IbO+uxGz5Z31199ZJ0PQt7VyEhLIjtZ53XPZe8fVJeb7IvJCh4fc6Ao6AI+AIOAIjFYHSkK6Ris5I61dK7l1aF/FwrVRIs0avGerSq4LadVr9FOWZpb2LcqRB5P1xBBwBR8ARcAQGCwEnXYOF7HArl00NepF3rXLB8rnwZNUT4jz22NCjnLu63ryvfJ71exwBR8ARcAQcAUfg/Qg46aqWUbH++qGZnzz6S+i2iQ0H2sDQlsf9fosj4Ag4Ao6AI+AI5EbASVdujPwOR8ARcAQcAUfAEXAEikbASVfREHoBjoAj4Ag4Ao6AI+AI5EbASVdujPwOR8ARcAQcAUfAEXAEikbASVfREHoBjoAj4Ag4Ao6AI+AI5EbASVdujPwOR8ARcAQcAUfAEXAEikbASVfREHoBjoAj4Ag4Ao6AI+AI5EbASVdujPwOR8ARcAQcAUfAEXAEikbASVfREHoBjoAj4Ag4Ao6AI+AI5EbASVdujPwOR8ARcAQcAUfAEXAEikbASVfREHoBjoAj4Ag4Ao6AI+AI5EbASVdujPwOR8ARcAQcAUfAEXAEikbASVfREHoBjoAj4Ag4Ao6AI+AI5EbASVdujPwOR8ARcAQcAUfAEXAEikbASVfREHoBjoAj4Ag4Ao6AI+AI5EbASVdujPwOR8ARcAQcAUfAEXAEikbASVfREHoBjoAj4Ag4Ao6AI+AI5EbASVdujPwOR8ARcAQcAUfAEXAEikbASVfREHoBjoAj4Ag4Ao6AI+AI5EbASVdujPwOR8ARcAQcAUfAEXAEikbASVfREHoBjoAj4Ag4Ao6AI+AI5EbASVdujKr2jtmzZ4cVK1aEmpqaqsXAO+4IOAKOQDYEenp6QmNjY5g6dWqora11oByBnAg46coJUXXdMH/+/LBkyZKwbNmycM4554Q33ngjNDU1VRcI3ltHwBFwBPJAoKOjI0yfPj0ce+yx4QMf+ECor6+P//vlCGRDwEmXj40+BObNmxfOOOOM8OCDD4ZRo0aFgw8+OOy6665h1apVjpIj4Ag4Ao5ABgKQrAULFoQzzzwzzJ07N6yzzjrh5z//edh4440dK0cgFQEnXT4wIgKzZs0K5513Xmhrawsnn3xydJWvt956oaWlJXR3dztKjoAj4Ag4AhkIoCdXrlwZvVudnZ3hnXfeCWeffXY48cQTwxZbbBHq6uocM0dgDQScdPmAiAice+654b333guf+9znopcLotXV1RWWL1/uCDkCjoAj4AhkQYCcVxaoEDA8XLfeemu4+OKLw+mnnx4mTJjguDkCTrp8DLwfgTlz5oTm5uZIuAgnkiDqlyPgCDgCjkD/CKAr8XJxESlAh7766quuQ33gpCLgni4fGOHll1+ObnBWa3i3/HIEHAFHwBEoHAEWrBMnTgzjxo0LL774Ythtt91893fhMI7oJ5x0jWjx5te5iy66KIYT99prr5if4F6u/HDzuxwBR8ARSCKA/vzQhz4UZs6cGf7whz+E7bbbLrS2tjpIjkAfAk66fDD07U70pE8fDI7Amggkz6gbqYsR6+NI7V+5xzS5XfwQcnRMy43+8K/PSdfwl9Ggt9AO9XMFkQ41Rqm/A2LBbSRhZ33N7PNI62c+E8sMqG0syeeZUt+TNv5KJQvKZrHFb1ILfKdy8dIz2fhhqcVjORJLcNI1EqXqfSo5Av2RquFMuJIGOx+DavenGfXB9Igk21kqQlHIIEguPKif/3kbwxNPPBFDReuuu27Ydttt42aTfHAspO5s9w62LOgjZ0zRRw5F3mqrrcIHP/jBSMCG85guBbZehiMwVAg46Roq5L3eYY8AxgcD+9prr4WnnnoqntSfvDBM5GuQLMs5PRix4WaskoY7F+DW/rfffjturnj33Xdjjh+eELa+b7755pF8cCDkYPRzMEldf33P9CQZ6Wpvbw/XXHNNePLJJ8NOO+0UNtpooyjvcpIuSBGy4Pwn3hLBNXbs2LDBBhuETTbZJJ6jNxBZ0GfkjYyvvvrqWMeRRx4ZiddwHMe5xq5/7whUCgJOuipFUt7OsiNgeRnPP/98+N///d+wdOnS97WhoaEhEhEjXRjkpBHMJBK53mOZaUCz3Z9WR7JxtH3hwoXh8ccfj7uoNtxww/h2gfHjx8f2pdVDeOm5554LN9xwQ3j22Wej98MujPvuu+8ejjjiiLDpppvGUNRA22Zl0gYjtm+++Wa45557Yh7MzjvvHA+W5J12uerJpw3U1x/unCR+//33B941uv3220ePFsSGy44CyNzVm0+9hco6KT+I7uuvvx5uueWW8Ne//jVAhI3sIdutt946ymKXXXbplyRlG09GuvieV9nwO/PNE2ntHwjBK/vE9QodgWGMgJOuYSwcb9rwQABjZAZvn332iR4fyBaf4/ngQEQMoeXHcC8/lg+EoTIyljR2mWTAyFDSuGbLJ7M6KMPqNhLDZxjtxYsXh/vuuy888MAD0UhvueWWYdKkSZHIZJI2/v/nP/8ZLrnkkgDJhPAY+SHM9swzz4S33norvrmA/ps3KE1C1jbrq4Wr0nLEeJ77IRiXXXZZJDmcdQSxo1+GY2YZfG7YpJGDNHzS6qcfnFF37bXXxjAiBIT+seWfdhxzzDHxe0g1n9E+wzsbKUmTdVrdmQQ9OR7wcF111VWRdHEfJHTHHXeM4+7vf/97JIhg9tGPfjR6HrNdVoeNjWTbGSP2kzkWbexmlpscy8NjdnorHIHKQsBJV2XJy1s7BAiYweQ3noX9999/jdwejDKnUOMdGjNmTNh7770jycE44kHBY8R7LMmXufPOO+PnvBx38uTJ4YUXXgi88xLyRmiHMJZtMcezxvd4nygDA4oHBpKHsZ0yZUr0Zt1xxx2RMHDOGuFAwqG8pJxw1D/+8Y+IGITpggsuiGRm3333jaEy8+KYV+zuu++OhItnP/nJT4ZDDz00tpMyZ8yYET19vFuOdvD2AnKBCEtB7iiDECTkYIcddoiEhTpvu+22+FYDCB/30TZ7STBHlKy11lrRw3XTTTfFcsEYjP71r39FLNh+f/vtt8c2rL322jEHiZewQ0AghZQH7nirkiSYZ8GXC9II5hBH7uNaf/31Y/lgf/3118f+cNEn/qZe2odsX3nllfgd2OHxoz/gRL2E56h39OjRMeRHuyBotPcvf/lLPCQTeYEpfaL9eBu5b5tttonkNhmupP+Q4kcffTS+A5XvPvKRj4TPf/7z4cMf/nDEmVAj9YI3hIswKG2hTfSH52kP3k2eZZxQLrg//fTTEQf6CIlMC09SB+MNLynjh7A67Wd8Mf6Rg5HgIZiOXqUjUNEIOOmqaPF548uNwKJFi6KXAWPJqh9jhPcBI/vQQw9FA8hnkBPCQuQEQZQ+9alPRUOFYYREQDa4DxKAUcO4kjcGEeJeyNRdd90VPR0QnqT3BG8VhOaoo46KBvZvf/tbfBbjCsHgWQwq7bIQIYQHYwthgGzg4UiSLr6nbUZIIF0YbfpI8vhmm23WZ2ghIhAVSBrG20gD/cMgU/9+++0XwApPG94xjD0kkM/AiFO7+Zu+EjqDkFg5hBpp99SpUyM5grhSJyQD4kf5kArqg3DioYP40B/KgGzxPESFtpsc7D76zufIDDlCqux1V9RD+XwOMUKmkJ+PfexjfS9/53/kiqfJMKReMKftn/3sZ+MBmeSC0fZp06ZFvMHKQtR2Yjl1JAkMf9MXZEE7GDuQeAgX8qQeyA+4cDF2wPi6666LOJoXE7mBFwTtkEMOiR5OCCVnR4ED3yMDcEAeXLa4gBgSYmac8rd5YLmXsfiFL3whEku/HAFHoHAEnHQVjpk/UYUIWHIxxujhhx+OBgrSRJ4Uni+MIt4tDDwkiO8ee+yxaJQx2Hg7MKY8x2cYSLxIhx9+eDTEeHfw2mBAyZ3CKN98882REOBhwfBicAkVkqOFB4n8I8qwl+7i7cJbhtGHAFAfpARPGfcdcMABkTxhsC1/x9qD58S8QJAE8tQoN3mf5bjhAcEzBWnC20Q7+Nv6gLG2ECSeGDwslI3XBSKH8YeQQF7witE36oHIgM0nPvGJiCv9hgxh9I2sUBd95DtID9+xkQEvIviAC95B5AChg1jhhYTEQBSoC0/TI488EuvCYwiZ+fOf/xy9R7Rnzz33jEnqeByt/xbmhFSReI7nDM/Wxz/+8UiMkAvEEqKMFxEZGl4QOTyAeBj5mzYiE9pM/hj1W7iX35AtZMkFcUJ2EB5w5IJYWZiQMUNolPFCmxlrjD3GEeMEbxtY4VXDo8hn9B8vHr+RAW0y0sV4gJzfeOON0TNJeYxtyBZEmzKQIaQcfPwNFlWoDL3LRSHgpKso+PzhakHAvAAYH7xMGEdCMxheDDO/IQsYP7w2kAw8CJAtS2C33Y88S/jti1/8YiQBGFi8Z3iOCJ1h0K0cDONBBx0UvRUQCOqkbMJIkBc8KnhRKBPPEF4IPFkYcogdRICLciBItAfjbcbSwk54YfCScdE2K9Pka94O+kAoC5IFGSAECXHheXC48soro7fnpZdeiuTOjmKAXHzlK1+JHj76gPGnD2AESYFIQeRoFyQB0gJxpC67+Jz+QWBoDx4fwoCQDHCgfogYIU+Ii/UJPPFcIQeSzyELEEAIIe3hgphBuiCb3IfHDvyMDBkBhQTTdjBC3pBm+gO+yBCvHgQPQmW5VsiFnYHgT7iO55Ev/beQqpEe6gNbI5m01byqmXON8UB5lIXnDyJEGJt6+Z/2UAcYUo6FmpEFL7anXfTz/PPP7/OIMgYs5I1cIF0QUYgZRJEywIDPqcNJV7VoQO9nqRBw0lUqJL2cEY2AGUcSqyE1GEIucrggKBg6iAMkAG8ABp97yIHh88ydYRhpPGMYQ8qwoxjw7GDULFQEmYDcQCy48GYQKsKYYlQxvFyQAkKaeCXMSCfJFe3HoKa95olnab8Ry2SOkQnVvoPwUS8XniN+qA9vD/20sB3hPQy6XfzND2TQconoK22kTbaDjvvBirYaZpa0DwmAeNmRFWAHEcDzCBkmfAkpxINFe/HUgCNl0T4whizRX0gy5XIvdVuf+T8NJyuPeniOPkAqaQPl4UHEQwjpIiQHmTTCiaypj3shKsjb+mnhyeTkYTzZs0b6MhPx+R9yRv+48IhBQgkZciELCCVtgTDhEQMfnmOc0H7upQ+0z8LQ/Db5EpqEkJknzjxi4JrW7hGtALxzjkCJEHDSVSIgvZiRjYAZP7wDGFhIEKt8fux1Hxhry48BDT7H4wK5MGOYRMm8R8nPMIoQgKQHIds2fTtJPOmNsR1/yXAV5Wfu9Et+j1ElHwxCgkHF4wN5gaiYseceC7FmejcyiQHPWPjL+kafbOdfctdeNgysvUlskkSEssh3w7MGUcDbZEdMWH8pO0nmrC7bgWdlJ/G1eq2uZP3WBys/mywzd/4ZubMT35PYJ+vmb2QKqYYUcUGaIPBGPO0ek0fSY8n9aWVn9qW/JPjkqfTWbisTUsm4J7zI72zjcmRrAu+dI1AcAk66isPPn64yBMxgm2cEg4YBhGwRliF0hNcBrwZeCPKfCOeQQ5P0VhA+IqEZQ4ZRJWQJkYCc4dmCqJk3A+8JXh/bmcj9lrSOZylJHjIJhBlcns80+makKcs8N4Q68YqQo0QOEn3hWTxcEBhIAZ4RLrxtEDQ8LJA1Qk/mVYLE5XOIKu01kkaZ4GpEKY3cGemgneSF4ZXBA0a4DK8NIUrymHgWYgC+kDHkg6fGkvjpD/Wap9JkY16vzGM1aBuysR2RkFLqpjxkgCzBgnLoezGHqFIPxIbcQMokGZ96LXkeIk+9jBc8oVzgT3vAHxnhLUU+/I03kmdtpyI40H7qwZtFeXaBhxE+niN8ivcW3KmDcYsHrZj+VZnK8O46Amsg4KTLB4QjkAOBpPeAfCUSjW0nmR2OyuckL2OY2LlHGIxzlghH2TlZGDPzpGAQSd7G4GEEkzsHSRbH6GNoIQeQCIwn5Ie8LwwxHjd2vhGuSgsH0mYMoxlQ6oAAWi4WhtNIjR1FQc4R+U94VyyRmjAVBJC8IAw9SebkVJGIDjkjKRxPEz92xAGEgSMiuD+tbUm4zYMDuYMUYNTJySIRnpBcMucp+VzSE2bePWQAebWwJGQLQkZYE1LExgZICp4kygcDku2pGxy5KMPIDvcZaaUdkBTkilyMDCF/nkUuEBiegaTYmV6FTi7qgawiW+RFvhbjClmRh0afkBH9JNeK/tEn8L/33nvj+OJ5xgxjDOIE6ScsDTlmIUBIlu8hWITCkXeSdHEvRJIxA5GGZNNPFhTkK5Jvx/izkHehffT7HYFqRsBJVzVL3/veLwLJsJkRlMsvvzzusuPie4zsf/zHf8QEeMgYxpY8LnKrMJjs5IOMYKj44cKQQ6IwnBdeeGHMtcHY4uFiNxxGjt1//M1uOI6DwFBycR9kgaRpwpw8a0clWBstjEZ4kHsoD/J26aWXRjJ0/PHHRyKSJF124jxkgjohEBxWmgxj8SzGmJw2DDDkhHsx3NY2CBceMsqn/8ndf8mcMduJR3/AAkIAmYM8kKMFsTjwwANjwrZ56IzAGSFlRx4EDUJ13nnnxbZa8rphAlYQRTw73MdZZZajBOGyVxxBLiEYeCshFiTTk/xuY8A8X5AcniO0CQY8gzz5HvJGcj2ki3ZY3y38bGPGPk9LQjfPH2Ucdthh8SgIO5neyDfP0S9IF+MEkg/5ZfwxTsDZMKI9jAHGArs8Icp4CX/7299GWdJmcrxYHFj4d7vttotjFTnQT3bAGrHFi8d3mRstXJU4Ao5Afgg46coPJ7+rChEwA0hoBiOM58DIBd+ZYeMz/sajgPHGaOF9YGci5AJPAh4cy/fiWYwXuxLxrECIIG+QGUgGYUQ8CYTMSP62V/Jg6Pic8tkxaAd1QoYgJOyYSxpDDD9eM3b8sYuRtrB7ERKW6YGiTXhwvvzlL8d7MOAYZ8JV1EO91ImRx+Nz3HHHRa8PYSw7PBPjjbfMkvnxtBkWkLEkaaQsMCH8R914Xex8K7wxEAJIKJ9TBvVDeIxQ0M899tgjkhvaCvkEQ+qhTXxO/ZTDjj7IBeQVUsl33AchQU6UCVHkN4SLi77hwUKeyBaMIR6QasgQ7aFeyrOzwZC/HcpqB8KCDaQHDCmH3xAqPFZgmRaCBQ+IIcQaTxXkFlJPWXxu3jSwRmaME+6zQ3RpP/cge3C2cDD9pY+EZQlR03c8apBAvGTgTd1gw4YRxgG7UPHG0k7GLESPMjMPda1C9eBddgQGhICTrgHB5g9VAwIW+sJ4YfjNU2F9T+Zo4U3hsiRqDBkGiucoxzwflhNGaAbSgIfHjmqwZ40Q4c2AMODxMQKYrANyBrH40pe+1JdobYn41lYzyhAaLgvLZe6m5Ds8HZAU2gX5M49ZMgnfkrAx0JBRS4pPJqDzN2Xh7Tr55JPXeGUQxMNeSWR94TOewXPFd0kPI5+fdNJJa7Q9SXg5SuPTn/5033BMbiSw88vw8nCWGh4hK9sS/a2PEA08gJl14+3iaA/LO4O4QgQhRBA1w9nKs75DjsiHgqDZs8gZ8sfRGTa2kvJKzikLqyYxyRwDRkApkzHCOWzJ9iRDo3yObA0Hq8vuARvrg8mO4zWSmx6sHzYGqkEHeB8dgVIj4KSr1Ih6eSMOgcydeJkdTBpDvjPSZPk1Ri4szJQkKnbchBnLpAfKDG/mu/WMuFk77HsjEMn2WduSZfSXZ2V10q60fhopMQLXX9vov5WTbBufQ0qsz8kyk/XaM/31L4mxlWf3Wz/7wzFX3ckdopl9SOt7sjwLIyfHBH/315802eWSRZqM07BNu8/aayHXQvs44ia7d8gRGGQEnHQNMsCVUHxydV8J7S13G9PITBoh6Y+kmFcs8yXDEIL+SFA+deeTrJ4kA7nwy6fONKOeVm62JP+09mSrt1B8Cinb2pyt7kI/zyRNaW3JJa98yshFiLPJuL/+DLTMXOOp2r63uV7InKs2jKq5v066qln6vX1PvoPP4RgcBMzLQMjRTjD316gMDtZeqiMwlAhYqN1P6x9KKQzfup10DV/ZlK1l5J386U9/ilvUSRj2FVrpoce7QbiJhHzypfgfsusne5ceay/RERgqBNhgYK94IsfO3lwxVO3xeocfAk66hp9Myt6iffbZJ5Iu3uVnicxOvAZHDJCs5NEOg1OLl+oIOAJDgQAky9696qRrKCQw/Ot00jX8ZVSWFlpiMx4YO/gz7VTusjRmhFfihHaEC9i7V1UI2K5Oe00W85vdyexWtUN3qwoQ72y/CDjp8gESETj66KPDFVdcEb1dnFGE4kBhZO7QcrgcAUfAEXAE/o0Ai1POUIN88SomTvLnuBCOKvHLEchEwEmXj4mIAActslL73e9+F09RJ8mbM5A4KyrtTCeHzRFwBByBakeARSmHH3NqP4f6chAtb6jg3LO0oz6qHS/vv46McRAcAUOAk6Y5QJFXhUC08HzxOhhPBvUx4gg4Ao7A+xEgR5PT/zmgF8LFYcS8vssvRyAbAk66fGysgQAnYPPDxYnjrOI8xOiDxBFwBByBdNJFGJFIQfINFY6VI+Cky8dAwQjg+fLLEXAEHAFHwBFwBEqDgHu6SoOjl+IIOAKOgCPgCDgCjkC/CDjp8gHiCDgCjoAj4Ag4Ao5AGRBw0lUGkL0KR8ARcAQcAUfAEXAEnHT5GHAEHAFHwBFwBBwBR6AMCGv5RhIAACYASURBVDjpKgPIXoUj4Ag4Ao6AI+AIOAJOunwMOAKOgCPgCDgCjoAjUAYEnHSVAWSvwhFwBBwBR8ARcAQcASddPgYcAUfAEXAEHAFHwBEoAwJOusoAslfhCDgCjoAj4Ag4Ao6Aky4fA46AI+AIOAKOgCPgCJQBASddZQDZq3AEHAFHwBFwBBwBR2DkkK6OjhC6uoLeOlqdUu3pWd335uZh2f+VK1eG7u7uYdm2cjWKF+I2D2P5dGn+VPNLe4ezfEo5Rn0uoiqH71wM0pVSltVry2ywD1NdWexcrGzSZUZ89uwQfvWr0PPaayE0NRWLSWU+D+HUIK352tdC+NCHVk/a+qEVr5Gs2ZLPxRdfHP71r39JPNUpH7CAcH31q1+VeD4UCWj9MJPPa5o/jY2NlTn+i2w18mBsnnDCCWGbbbYJPVrEDLV8iuzSGo8boZ41a1Y499xzw9y5c0NdXV0pq6iYspB1W1tb+OY3vxk+8IEPxLk45FiYw0C6skfyCdi0IdYPQyZQbFdra6iRfMIGG6y2ZSNorA6tVS5Gqnh2/vu/Q3jhhdBZWxtmjx4dVmiQ1nR2FlNqxT4rNEJte3uYevrpYRRev8mTQ/jRj0JYe+0h6ROK7NRTT5V4XojGbP31148/GLNqvcDkrLPOCosWLZJ4Jocf//jHEs/Qyee/NX+ef/75KB+MD/KpZm8kff/Zz37WJ58faf6ss846FT9cFyxYEMfaSy+9FGW94YYbxnFXzXMREnrKKaeE5cuXx3HPXBgyWb/3XpCAggQUbdnMMWNCh0hGNduyusWLw3SRribs+XrrBRmTENZdt+LnIh2oTNK1ZEno/sUvwsyXXw4rJk4M3S0tYemHPxw6x40LNawYqvEitKgBuvLZZ0PDvHmhXi7qaSJgTaedtnrQljHsukTyOfvsswPKfttttw0tks/OO+8cJkpWnVVKigln0Pe//vWvWsTODitWrBAn/lFU/BCecob1kM8555wT3pOy/7DmzahRo1w+vfJ59NFHA94g5ANRGQr5lFJ9zZkzJ3qZ27UgYy4i69133z2M1iIV4lGNF3OtQwvT++67LzAXFsvAX3DBBeHEE0+UqpSuLOclj+Mq1T3njTfC8kmTQo+84Uu23z50y9MjVlzOlgyfuiSfmlWrQsff/hbqli4NDfPnh6nSV00nn7zallX4VXmkS8qw5/zzw6y//z3M2Wef0C3lAdGqlUGr1wTKddVqJZHmSmbVhxIayOrPyhsOSqz9gx8MPaySRLq6Hn88rC/iVX/mmSGstVYuaEryPcYKBQaxOOKII8IYrdrAZZUm0cKFC2MdKL2Ghob4N99l4oaMLLTDc0mZ8Kx9B4mx70yu/ZEX6rGwHs/lQwCpi7K5N+kFsnbwXbJ9No6yeYx23HHHOP5Q+nfffXckXj/84Q/D1KlTS4J/rkJMPhCLww8/PFU+ucrI93uTY5qM08owTMEOHMGJv8s5r3bYYYc++dxzzz1RPmeccUaYNm1avt0eNvfhxbnwwgujN+eQQw4J47QoZRwzp/C29neBfbaQG3Ky+TMQz6jNqbT6baxQN+OH//lti5aB6Ods/fz4xz8e+7hUhh0CRtj1dOlLQo9luaQru9GVb74Z3t1jj9AlXWm2rG7Zsr4m0H/DgP6DeRL3pP0B28zvs/XFnrP5VpY+Z6kkrS1LNRe70b9aMPQ8+WRYR46WeulKCWgom1p03ZVHuuiyCFe7vCddUiL1icGZDxrLdD+rPjPYTGZ+cLsz2Ri0+UxsJgEX5bBa4n9WkeX0WKQaLrUHt3SPSE27DEXPTTeFmJhZpgvs/i75sGKcpJVbpnK3VSYrcC5W3OCWxBwjweqTz8aPHx/zjPibZ1HC7777bsQbI2KTFZniucGgcPE595sC4m/ux+s2XysnvqdufmeTN89QJmXzLDlZ1g7kPk8eRUiMKUDaxDiCaHJvmkGifTwL6dxA+Qq33nprLKNcl8lnXbnqJ0yYEMfuYFxgZ3JEvq2s3HNc4IJskRFyYezwLHIq15UmHxLPK/X6xz/+EXPUxo4dG8dxPheyA3t+LBcsadgt3405gXzyvWw+Mm9oiy1yjcTxG1kzLlmgMX6YS+DPvfShlLlXLHy4GJuE+5944omyEnzq7pF8lisC0IUuytADZkvQDxBD5gf9x07Zhhx0DFjxOZ8xf9CX+dgi5j640n+zZ/nKspT30U9rC3PfFtXYsToWu+rXcsm+R1GcuFmuwq/KI10y1qswlAyUAgTAoGKAPvfcc+Hhhx+ORs+SuhE6A3nrrbcOW2yxRU7ihdJBITC4UQh33XVXVBZ77rlnLHcgq7+SjyNc02pLhwZrA0mZ5Kb0EsWS15UokARdI7BGgJL1gRkJ9ZdcckkkGwcddFDYRx5LU+5gh6G47LLLIsEh8XzzzTeP3zMZ33nnnXC+PJ3I66ijjor5GMiWz++4444AmeN/yBJKFcOATPjZd999Ixm8/PLLIyH87Gc/mzXMQhm078YbbwyPPPJI9NqxMmasoOCohz5QL2FTU1r0/aMf/Wj42Mc+FutMI3S2WuV72kFZtKscis/kM9jhJTB69dVXwxVXXBFxA3ubg2njj+8gw7/+9a9jGGzjjTcO999/f/igPLc77bRTxD2fxVApxnZSPsgWr2255FOK9lsZM2fOjMaXn3y9hTa+X1bqBp4+jD14MJ9sEcQ9LIY+8YlPREIXyUMeoTDGBIve6667LjzzzDNx7tkc4Xn+Zu585jOfCQ899FD45z//Gf8n5Ev9X/rSl8KUKVNKrl9tEwWk7u23347kriyX5LMKHSFSUZuxs9vGOykaLGLfeuutSFTRgYxF5ghEETyxP8jjIx/5SMSKBRU6E12bZovM0YBeo0x0FUR3KOyWjTcIL3qQtuBVXiOqoLHRo750aBw3SD4SUFnEM1iVVBbpkpeg+9JLw1wN0CXKRaktcAVqygMvCkZg0003jaQJxfLUU0+FW265JbJ+Ek2zKXk+t4mAYWCCopQpx7wggyWsQsrFTd2hwfuOlOIGv/xlaFACd5g+vZAiCr4XkvPb3/42YkIOV5oHB+PKRMcgsypDOSCL5MUuuscVGqUclIopCTB+VqsdiDNyIknfkl+nq28HH3xw9HShmCBE1IEC32yzzaJsCOGhvCF9tnrO5pmknTNmzIjj4sUXX4zKjF2HkCSe4fk3lIfBSvwLX/hCXGWiNO69995w5ZVXRlKIwcg2jli1ojwxXOTc0I/BTqpHPr/73e8irhCZwfSw0W/m1SuvvBK23HLLnGOJ+5EdsllLoXCwO/DAA6PXK1+jnrOSAm5APhivpHyGLNG6gHYnb/2l5j0GjMVk2gIorVgLj6Mbbazj8fqVdodTxqc//en4OfMDQ50P2bJ6LEQIsWEsMjeZk+Zx4nvGJuNyq622isSbuQzhwDvGfYMRSaBfm2yySdzReaZSMSD+hXjwBiie0HPeeWGuFmntqjszaZ5+sgj5y1/+Eu0NhAq8aeNjjz0WP2N+QE7QO4xXsGJeQ14tNJ+tbZQPpsxR+j8YuOaLi9lUFglpXmWwWaHF9Wx59DZQuL9Wul0Cyrf4YXdfZZEuVlN4ugRjl0Cvl7ep0IvBiMFGgRLeYSIzcJlkl4rQYdRJbMaI8p0pFZ6z0COk4Omnn45G07wo9pvnmAD8JFeXDCyet3CW5S5Y+RZCoz/J0GW+K9T34ZBYHfSInKgzhUJV8P30BaUAEWEVy4ROu2yljHJlokGEeMYML/lG4IiSMWXAb8gaO7AgWGD0+uuv97nckSkKm8/BkhUxpA4CjQJHsVjIiu+RVzZFYyTPyscA4dFCSUEIGC/cg1eLeiCO1A+5o+xfKPcAQtgf6QIXnscTh9I0w1Mw6AU8YPKBECIfCO1gXhZutXCBYW5zjrrBCyyTmPIcbQRrZI4itvlnuS2WJziYq/Nyy6fUsmAe4blHtxUyvhgnjEvIFTLDwDMXmUPMBYgcf5sOQybcZ3rLZJONkHEv5VEWejhpaO1ZZG/hMu63ccJY4X/GlI0ba8tA8aOdkHtwYp4PWOcW2gA8XeS8qu7a3rQIiqBf6Ea8gRBUiC6kEAw22mij+P1tt90WsWNBYySLOcJCAVkbCUseh8HfyTxWMMzXbplsrYykbC3/z/Jbk7bN5GX94nnkZfmelrtn7UjVydgy6croFcTTVUCEq1CRlOP+yiJdIIKxZGAWcdAmAwbBMziZ8Aw+jD5GG8PKapu/CS1YbhBxc8t/wQPCKgT3tyWEUx6eD8rjM1y/GDbqYoDxPQSDVSP/Y6xRbPzNROBZJhVtwhNnBh3jU8hqco1BQx4UOHH2kiZqOS4LF/SnuEzJgQE4EsqAoPA5SgZjgcK3vlv/wYVVL4qHycu9eBntqANbCVvyNb/5DAUGxoWcEcb91MUzkCkUIJ4z6k6WQz+pw4wO44i/IQu5PJ+mwPojgKWWWT7yKXWdVh7yYvxjtC28CbEFPwyIKXZ+cx/4Mw8ZJ8w9DCJjgItwCp5BjOVgEa+hkE8psbeF3EDwMcPJbztMlXL4m/lk8xv9yGfoTBZPyA7CxE9/+ZJWFs8aIbR5jj5GxzKHWMwkF17gw5xHR1jOF4sw5h3XQHWl5X4auSulHLKWxYIjxZaBGwtGvMToNgiX2RCwYBHJXDLZGKFBZ/EMmDHPkQfElbkExswZI9LJZ8DSzm3D82j5l0ai+B7iDbaQZfN0mn5jTvI88kI3Yjct35axwjw2IknZzH/k/qY2ELDw417u69fbxkIXp0sZbdlgjYHKI10lQsK8GSbo5K6Zv2mrKpPwgAMOiAqfwYVnCw8XXjA8Eww0BrjlGGA8LOzEAMILtuuuu8aBzv+ch4T3g8FPXQxeiIYRhttvvz3eB1kzly9l7KFdLRiWgSqTEsFV8mLAiskGGWVS7rLLLvFvlC3Kg4ltip3Jj4LFy4UCIQ8MHG+++eaIKx7LUu7AQenRJmSKYSfPgHY9qR00uPn5zMYNbbOVHm1Mtr8cOVolF8wgFGhYsUMM8kouHrlAjHNW7CjsY445pi+UiMHAqPzpT3+K458jDgjbElbmsjlE6I9xM5jEaxDgGDFFMr6RBflXyNa8KHiMSBkg7yjbxqSk59+S4y20ieEm7xady1w37ybPsDhl8wnzjOeok7A/YwFdXAzxGg6CoY+WBsNCg9CwhQr5nB8Wo5/61Kfi5+gcW9hDZNCJ5EFCekmXYdFCmcgJAsYRMXxviy8cAYQrjRRhj9hhjR1C/6ID+d4Wkcy17XWkBd59nsFJQQoGxIwLHY7Nw7axQIUgX3XVVdGLiFwhXPyNLidtg7bzP/q2bLtGh1jQVUm6GCwWrmBgMaBYqcG6yUVi8GJgmdgMXgw9Xi0UCAOWC9K12267RYP/4IMPxlUFhIw8BEKU/DDAGMCUQ9Ii/2NEIFd33nln/IwVGoPNVvYoKspkQJLXhLsYF7KtOoZ4vJSsels1gTkTzkIEGGCUAysiFIKtyMDMcrlQsngeWZVChEtNSJEz5eKFw6gTokEOEAZWfJbbQ73IFlmiUFBAEHYUFsqt0g1AyYTdWxDzDLlhKM24QLxsl5zVZ2Fm7mUuMhc4XgMDtNdee8Xn//jHP0ZDb56AUrfVy+sfASPSeKmvvfbaqNsgAujTa665Jlx//fVxHqDL0uYBc4VEfTu7j0UTXha8OLbIQv6Wi2a5oJBvNtqwOQNdjO6FoEEu9t57776dzpUsPzC0qIol9WfqONtxmMzL5B6es3xV9Cd26rDDDosLE84IhEBBTtFnYI4+A0f0HJ4nbBJl8z82Dd2GPrbjNSDYyABihXxZ9OJ8wMGA7aMMNsAwZ+3MM3Q6OpN7IFiWswspY/GF/schUU6P/1COj6oiXaYoGJgMPgwmA5yByd8oiO222y66dtlNAdHCs4Fnix8IFAOWQcgAIUSC4YfAQbgwCnzPoIfJ8wyTgkGJoeB5coww6igdBjgDDlLFZ9TPCgIFRlshbgxiwlsjyWtiKzbzIoIPCgJcWRmZJwmZGOnCYOP9AD+IMEQVxQE+rLJslVuKyQT21AWRQiZ4JZEtYwaFYfKgHygtyBjyYxwxdmiXbdkuNSEsRf+Gqgxb6CTDCGmfmcztzCHGPgnCKH5CScwZxgoywjD3G5YYqs6O8HrBnAUTG0wgzvvtt1/Ub+hFFivsECYcb6QrSaht0YqhZR5blIHFDT+UbTk/yYgEcx1jjr4kiRw9gS5AT1MWRCHbUS2VIg76i63AhlhOZFrbs6VvWI4Uz6CDwBObAi7IiZ2O4GUHMmNrWMTyPwQY/WY6jvlFSJ+NQoQ4mY/YMwg19g29SB2cbYf3i7ajxyHK6EHL1UPGjAPawvhgRzj38gxkDBlSnu2QrRRZDbSdVUW6TJnjakVxQ74wihAnJjLeCVYWDBbCWxAAyBHGn1WBkQELZTHwLVHRzpOys1QY5LZioRy+Z3BRH/cYscJoWGycQYyh5zkmD39bMr95BgYq6OH2HH3GywdZguAy0ZnAkBg8iExAsLVcBsIKyIEJbcdJoBBwf0N6UPqluKjP8ilQIHhYUPQoINpEyAMCwH38sFL71re+FduOLCHStO/qq6+OITMUWbUQLyM/peqvkXOMOatmvCocC8I4wKAXle9YisFSpWUkF68YcDxUthAxPYlORXeaLrMxYb9ZPJ100kl9ifSUaXlV2Y45QAdA6NDdHDtBHSx0+Bw9Yh7USheLEU76kY1c2WaCbItxC0NCprjHUlrADAyNzCI7bJOdHQiOECB0GU4D7Bh2jzKQC98z77BptluSRS/eRsrlh2dN75l9tTPWsLl4vkgtoV7ahReOcgmVVsNVVaTLlDgD4tBDD42ubDvqwVzgDD48WDBzVnGEiwg9QsJYZdt9mYMj2+C3VRyDN0mc7FRmO3HdVndJw1Uq4zUcBzJ9YxJDNFEETGImM/3nMxQ2l4UaWMlCbFAAkCKeZ+LyLJ4yzvoqNgRrMkDpQOgIXSE/CBdtZVVGOwmHJeVpJBwSSfiY9jB2yEVirI00wpxtPFnuTdJQFOOFMnkQTiIvBIWOTMAVrJmXI3mODMd5m/RYIWf0ZfJQaeRhus3CXGkHmtr8t4VrPn3FKNvGFQw9fzNGLIIwEnL70CXghw3ib9sBbjrE5gRnd+F1smM9MucZ+NqBqWazbFNYcgejkTezjZYnZ4cEs/A322ZlJu9hQUrYElmwMMJ5QbuS9tDaTDtwIlC26Xprm+1QzWccVPo9VUW6TFg2wGziZ37OQDN2/7hI1wp5vnCFDmSHjIVPGGi2gjPvDf9XSxw7baKAPystVjnmuQBjvIAQHy4mLMoW4sMW869//et9hxfae+UwypAkSFExRt7ayMoZefGaHMLLphjY7MAKG2NvW7ftOyNerOjwaNLmalm5GTHGY4nCJXcDQmyysJBHUja20jbvRtr4oFwLiSBfXmWDFxR8GQ82RipdCVdi+5m7yAf9BblKeplsowMLkzTClaaH88EAMoJuhnTvv//+qYus/nZN51PHcLiHuYEeAT+8QqYHLSLCHCOXDezZ5JNN55l9s7lmZMt23FNuJum141mMjFmurdVhxyGx2MWjRe4z9XBGImkVfEZaTJrX0Qg5ZZs9TLYtSQaHgxwGqw1VSboyDWUauLa99jEls0+WtwIWbwok03hkEw6DDO8MqxEMOeEp/kdZMZkwOAMhcoM1GMpdLvhgQAlNEDYigROFmjwLi4lIOAm8COtxj8mBRE5WVoQXCT0ZUc6nH7b6sjChKTbCm5TFShPyl8wrIuGU3XZ43ZCprRxtByPyxAuGN4x2VstuHLBEibLxg3AvOSKQLkgn2IClGWiUvB3GaEn02cJCPEPeELk8lEe5eEEJ+9oZavnI2u8pPQIWvkIvYnjRb+Q9YlDxRCNjOxKnFN5IymBRReI2IU3CVMxPPOIQEPQqHq+R4O2ir3jI6S9jnz7aWy/4jkUfn7HpC3KWhi9zEnLGwtTIGqFY5hq2zRwP2CTmITqX+9F/6C3sEvqVz5AnzzAf8TYzJ9F//IZkESpmHFAnz6MDmadpF7qAclk00R7kBtHjucE8rLn0M2DgJVYl6cqlBDCeDGYG0oNKnra/jayhWOyMlKTXLCkGW2WwMiMJEU8OW2tRCigkiAITyU4ht3Iyyxi4aIf3k4YPKyZCRihRFAKT3/LamMRMSJQsvzG6fGcrIp61RF2MMDKxgzjT8MxcYSf/NyKNkkNWKHCUenIlSNuQGTklKAxz+dt4QgkRjibvC4JGPkU1XPQfueD9Y4yz0kVe7DZF+dr2chSunenEvfaqF3BNkw3Ys9rHG4pMyPtD5pzSjaEfqleXVINMM/uYnE/2N4YZTzBk23a58dwDDzwQjTJzMy203t/cTBsHpivYHUeZhNbIIWKBBuFi9yRJ9CR0l8LTPdTyZdwzV9Ah6BrGO7t2IbGQFXYHoocguZlnsZkugiChU9FFJLAzj/AM8xscTa+xoGWRCRFCzxK2ZQe9hS2pE/napjHmNnUSdeA39owFMaQJ7NF/LDqxmRbZSdpI6sceMpetLGsDxK4arqojXRbO6I94cQ+DiZXGZA0ejK8NCJ7DmDKoOAeFcIflZSUVRjIplEGOlwaDxCrFVoG4hgmt2UuTk20yRTOQgw2H+8Clbzbp+c0EB08MN39b3/kNNhAhJitySOZtgQ1ywfiSW2AHpzL5+Y6yM+VsRI6cK1Zt9n4y7mMjBd+jrCCCyZO8+R7PFgQBgkd93Mffp59+elzhQwZZ+fEsOYMoslKeHzZc5UofwZGVN/lsGEE7MZxt/MwX8MOIEArGW8hOUAuv24vE6Z/JjPsJU6Hs2VGMIv/973/fd+giGLOj1U7Vr5a8uaEaA5abavPJDCkbSTiSgND7Oeec07cxic/wgKQRrGxzM3PBmdQR6Ex0BKez40ElzM8mF8YA44pzukaCl8swYDyDH/1CV3EMB1iCA4QL24EuQocl9VzSvqFP+Z/dgswlvO/MUXKT+Zw60HHMWeYlCyIIETJlTmKbPvnJT0YSzZl5XMxz2oRtpAzmJsT3N7/5TZQP8x5Hgh2ia7rY9CBtxR5C0uwVa7ST+srx6qWhmj/JeiuPdMmw6Vzagl/ebIMMw4rCZvVsZ8CkCYLBwgBi4LEqN2PPwMeYcnAqYQ7K4X9LOLSXLGNszJhgkMkJY5LYC5lpg+1mxJhTHmUwqBmYDGDyFhiIdjhewQOGg/a04hEb4Kjmgh8fyAMWKsq2sQB86PsJJ5wQlQdyYZKyk4lnMNCUwcvD8WzhbbSzfFhZJ2UGTuD/jW98I05yvqc87uHMIFbCdh4NfTHFfdxxx0X3fJIsI1cUCSs72sOKOvk95dI+ZMJKEBc8Y8lerM3zjBc+Z7xQRq78EsaYJaX2twgYiByyPWMn82eTTzF1MQ94KTFeKYwh4xssuKgXWbD9HCWP4eR+xjttgTiDHy8453Nw5G+INnPw+OOPj6t8ZAK2zAuw5+/BIrZDIZ9i8M98NtdczKcuW4AeeeSR0egnPRhGts0IQ4yRJfObeZz5wmXmA3JjQWJzMS2Ph7lMXiCpA4wZFmIsvqib8XD00UfHcCaLHj7DiJsuHeg8snSD/mxCPngVdI/ZMumBzIt+YDcglPSfnEYwAD/w5TOww8awiQjbwXccJst3kBr+R1ehP+kXupL5Qtk8a95B5II+5H6IHnrUduHjJWMu4gFD3hA228WP7qJ9LHyRPW3he8pnMcT/tIt3bNop9qZ/7ABW6uV5OwDcbML7AMGWgVPidUkFYT2Mbq4s0gXoGhB1vASZl13zf4FkgklrBjGbF8kMoR3UCfvnsgnNBEWpMEBtBw3f28qMAcQz5rHhcxQQysHKMkNhxpwQTLIMBmzys4GMGV56XS+cangruwzaYF/gYhPWXuuQqQTBAmLDicW24rWzXswDxm+MNVhxvx2vwYRNyoz7wJqwghl2W1mjLDAAyWd4FlzxOqaFIUwm5Jhl21UFGaNt1GNJoElckzLPhTdtg5yAmYVFcz1TzPcmH3s1Uim9QyZnlK5taEh6NK3dzD0Mqa2ArQ1GUJGNycFy+/gfebLbmMvGAM9mk1MxONmz5ZZPKdqcLANCQh/s9VgDISRgzdjEo2H6KVmOGVGMuxF5m9eZ+tU8m4TFkrous9+UiW61ow4s/GzeNhZids5UIfOtP3whJZA9y10qtSxSy5MerOOgYIgEi+MMW2aOArNZNlcMX8qEmCVtDUQV+2VHEaFrLexqXjCTC+TNyjR9aPfYPONzI9F8ZnjbGLBwIToz06tp9TBvk+WaPbS0g+R4yraA4qXX9WBFrhhYVfA1+Ja4lODwUtUvfjFMOvvs0K7wzlK5QWshXwVcJtRsCsjCT8SZ7TUwrLwzL1P2aeWYsUk+Y5/Z4E4jI2n3F9C1NW7t0cRrUBLlVOFU/5//GeQuGGhReT8HsTziiCPCr371q5hzgys7bQefrbQMA/vfJnVSIScncjasbbWcOXnTJnCyrrSOZSqVbHLvD5R8jBuKkdUrrvljjz22pIe7Zmsb8vnc5z4X5YNrH4JT6uTVTBKUNs7TFjt2H7JMjgv72wyu9c1Ibz5Y5z2AEzciHzzZ5A7hWUnmnQ2kvKF4hnFF2IdcHrzGxXhxjBT3p++Snt1scknqxv5kl9SvyfGQ1A3JsVAMvpBK8pnIbcLjzkKuHFeNPO6TzjsvLFeKQrtypCAWmZfpvyRW/dkOcwIYzjZvbJGTLD8pr2x2KZfdsu9tTqfJNC3NI1lurjmMLWtWbtsU2bPak08OElA5xDNodVQW6QIGMfkWPDhyS/bgvSmQdCUNeyaq5mJG2fKqAyYjblAUcFqoKNdgyWbUB02ayYK1GqjhhbFy+9awsuRFoWW4WGlBtAijsgrLdmxCJnbZlHl/8upP6fYnm1xyK/b7fGBmTOHlIkzCSrCQl3HnU362e0w+hAOQT6lJ10DllSbL/gxNPvUUg5PJh4UXIZRyyaeYNmc+S24OGz4INaHLiiFdpZwTucrKHAv96YZS4IWs2XFHZMNOVi9FuTnLEBFukf2q54Bs9HU/DxSKGfLG02mJ9rnakqv8Yr4vRhfHeS751CmU3CIZyW23OsJVwVflkS5WwopR17MVVgO2W+EiMaJQW4K8JQYHjB3PluVT4Z7NlZsznOTfI0Ma87gIC3DiPh6uAkOwxfQHrMjPgVBg0C251U7WL6bskfCsvTaKcUZOUilfX5QPPsiHvAnIMOEUl8+aqCXlA1lBF+QyOPngPhT34DVkLiJr/iaMj/x9Lq6WBrKGnIANOUiWO1o2WWHLCDEqz5W821LZMvpDmJ+ogyWnV+IY7pYtk8cjYlPHi72ltzynq2yjM1GRXIu13/lOWPtHPwrd8ka1K/mZfKWVvMBT39XImBVzkW7eIiLXJrLCQLVwx3Dn1iQZ0vcmuWFrde5KvZTIOvJmNP7kJ0FJbMVAUtCzGPFTTjkl/ET13nDDDTE3w452YPdMtjy6giqpwJst/wjPCd4HVtacOXTGGWf0vUC7HN1CPt/+9rfDWWed5fJJAG7hF7ayIx9+OPIC+ZCDVokXBveb3/xmuOiii+LuQvqBd5PcUjx3lWiISyEHZI1eZ8MHC0M8XHh+0Vsssst2aS7Wq85p7PrU68OWs0DmsFnlWnVLPjUDXCxjw+plwybzmh3ZhG4R7Uq6oi1Tm5sUBSB3u1mL0+mSV+OppwYJqJK6ktrWyvN04VoUiWj43vfCuiJePToXZJV2V8xVuHGFBlptkaSrUiXKQKXvUxQaHSWDXqMdLA3f/W7Q9pWydgmFRrL0qZogP/3pT+NWZ5JTCaGRMF5JXsNSAmdJ/ZwxROiV3TwnKz/BEpRLWVd/ZZl8vquxYfLB0BBCq3b5MDaRDwYYr8dQyKeU4wBZk2TNLtDzzz8/Hj2A54v8LghZNS+AIF2clcjuORLFTzzxxIhLWS9smQhwi3Ju1zv33NW2TEekzNYxEKvkhRso6SprHwahMmxZHRuotFu5kfMQtXGiQTvUJaBBqK38RVYe6TKMtAux4fvfD4pjhUadmLuuzvDp1sqlXLlL5RdV/zWyMtDyNdQrebZGO73ibkW8gEN04d6GeBFmRLHxEmiSt/F6VeNl2+s5UoFdO4Q1htKD4vJZcxSafDgagZ2SyIddmCPhYmfZaaedFsOMzMVLL700/u7vFT0jod/Z+oCs8brzSjHmAV4/dggO2aUk+mjLJB9s2fq//nXo0SYbcpmq8Yq2TPJpkJc22jBsxlDKp8RCqFzSBRC2I0/HN9RrK39Mqq/wJLui5EvfOd17mGyptR1fHLPAjx0jUVQfK/RhQjl4uzgrZzDOyBoILC6ff6M2HOUzEJlme4Zxx8U8xLNjx0iUso5KKos5OKREKxMseysDtow3WYyA86iKGg/YsN4xW1Q5w/DhyiZdSUAVrvFr+CJAOM2v4YuAy2f4yqbULSv35o1St3/El5dyRNGI73MVdXDkkK4qEpp31RFwBBwBR8ARcAQqDwEnXZUnM2+xI+AIOAKOgCPgCFQgAk66KlBo3mRHwBFwBBwBR8ARqDwEnHRVnsy8xY6AI+AIOAKOgCNQgQg46apAoXmTHQFHwBFwBBwBR6AyELB3W9JaJ12VITNvpSPgCDgCjoAj4AhUIAL19XXxbRBOuipQeN5kR8ARcAQcAUfAEagMBNrbl4XfXPL7cMW1V4UD9trTPV2VITZvpSPgCDgCjoAj4AhUGgK8cure+x4Ij91/n5OuShOet9cRcAQcAUfAEXAEKgeBpUuXhobmViVzTV4dXnxPb/DmFRgteuM5P345Ao6AI+AIOAKOgCPgCAwMAV6zxbtOCS3+4fJrw7TNDww/ufyEmpUv3RHqX3zxxS1xf/Eeqk314k2/HAFHwBFwBBwBR8ARcAQGhsCcOXPCjBkzwpIlS8LV198YDvrqleH/HT7+tR/8QKTr7rvvfmlgxfpTjoAj4Ag4Ao6AI+AIOALZEDh4391DeP2X4Qc/WH3H/we/FKfqBUyqRgAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "532601bf", + "metadata": {}, + "source": [ + "The gamemaker studio output details are as follows:\n", + "\n", + "![image.png](attachment:image.png)\n", + "\n", + "The above generated Python code does not print out the contraction order shown in the image. The ncon function as well returns only the contracted ndarray tensor but does not give out all details in this image, which is great in taking this code into simulating tensor networks and understanding the contraction performance. \n", + "\n", + "Is there a way to get the number of scalar multiplications in python, the tensor contraction order and the other details shown in the image below? if this is not readily available in these libraries, (the authors might reply with answers), then this makes a good MSc project idea to release more details about the simulation, and try different methods. \n", + "\n", + "Tensor trace obviously hard code the graphical user input into the Python code. " + ] + }, + { + "attachments": { + "TestNetwork2.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9MAAAFpCAYAAACfw3t/AAAgAElEQVR4nO3df5BV9Z3/+WcrRqBRUCI/NCAixBSQQdg4gyJycIbMJBt2vmPK0cTvTs3W1ndrysp3v7U7SYqaDeE4uluUyWzV7KSordrvflOzuxrd1JiaJZtJIBMOtqCTyYIkjZUoQWgmKGgrYLdGx9j7x7mn+/Tlnvvz3N/PR9Wtz/1xzud+oJvmvvr9+XwOSJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSVLdBoHfBf4SmKji9peF4wfbMVhJkiRJktrtDqoL0Fm321s/ZEmSJKn5Bto9AEkd62vAFwHY9iCs2QTL18L867PPGD0DJ47C8BDs2Z08+3XgS00eqyRJktRShmlJpdwOHGLGFbD9cVi/tfYeDu+DXQ/A++8BbAQO5TtESZIkqX0M05KKDQJjAHzl29lB+p55U/efOl/6mMP74JF7k0dzgPGcxihJkiS11WXtHoCkjrMBiKd2VxOkSz1OrN8a95PuV5IkSeoBhmlJxTYD8RrpUoor0klVOitQT/WzOZfRSZIkSR3AMC2p2A4g3mysnKyp3cWm+tlR94gkSZKkDjOj3QOQ1KGydu2uNkRX6keSJEnqYoZpSfWrZhMySZIkqQc5zVuSJEmSpBoZplWv/cCEt568Va+aDcima8X4g5r+DJIkSVIdDNOqV9DuAUiSJElSu7hmWvWKgOCmO+5ncP6Sdo9FORre87Wm9b1m25ea1vfLh55gfPR00/qXJEmS0qxMS6rNPfOqndItSZIk9SzDtKTSRs+Ufz0J1JWCdaGfGVcOvpbDqCRJkqSOYJiWNM1VC276CQAnjpY+IH0JrGoujVXoZ9bcBafyGJ8kSZLUCQzTqtcBgPHXR9o9DuVs5txFYwAMD2UfVBycy11jutDPZL+SJElSDzBMS5rm6kUrFgCwZzcc3pd9YHJZrHJB+vC+uJ90v5IkSVIPMEyrXhHg7sk9aNa8RasWfmxTBMCuB8oH6nIO74vPBxZ+bFM0a96iVTkNUZIkSWo7w7SkS1y3ckMw58M3HuH99+CRe+GbfwH//A+VNyUbPRMf982/iM97/z2AI2OvnQxaMGxJkiSpZbzOtKSSlt3+x+tee+m56OzPhwL27J6crl2La5b+VvTmyE+D8dHTnPvFQRbcsrEJI5UkSZJazzAtKdN1KzcEc65b9sLFV4+f+/WFV+e8de7lT1Q656oFN/1k5txFY1cvWrFg1rxFwbyPrOLlQ09w7sVDAAZqSZIk9QTDtOoVgWum+8GseYtW1bjeeVrgHpy/hJvuuN9ALUmSpJ7immlJTZcEaoBzLx7i3C8OtnlEkiRJUmMM05JawkAtSZKkXmKYViMicKq3qmegliRJUq8wTEtqKQO1JEmSeoFhWlLLGaglSZLU7QzTasQBgPHXR9o9DnUhA7UkSZK6mWFaUtsYqCVJktStDNOS2spALUmSpG5kmFYjInA3bzVucP4SFnz0DsBALUmSpO5gmJbUERbcstFALUmSpK5hmJbUMQzUkiRJ6haGaTUiAqd5K18GakmSJHUDw7SkjmOgliRJUqczTEvqSAZqSZIkdTLDtBoVgVO91RwGakmSJHUqw7SkjmagliRJUicyTEvqeAZqSZIkdRrDtKSuYKCWJElSJzFMq1EHAMZfH2n3ONQHDNSSJEnqFIZpSV3FQC1JkqROcHm7B6Ce8KcA1yxZ0+ZhqF8MfngpEO8in+wk/6/vXORf37kI8LfAyXaNTZIkSf1hRrsHIEn1WHDLRqBQnX7xUJtHI0mSpH7jNG9JXSs95VuSJElqJcO0pK5WIlAHbRqKJEmS+ohhWo2KgMl1q1I7LLhlI4PzlyQPd2KgliRJUpMZpiX1ov0YqCVJktREhmnlxuq0OkRUaA3UkiRJahrDtPIQtXsAUspDhRsYqCVJktQkhmlJvSjEQC1JkqQmMkxL6lUhBmpJkiQ1iWFaeTgAMP76SLvHIRULMVBLkiSpCWa0ewDqWoPABmAzsAPg3IuHOPfioZIHX7Xgpp/MnLto7OpFKxbMmrdoVeuGKREW2p3EgXoLrvOXJElSgwbaPQB1pTuAg/WevPBjm6LrVm4I8huOBC8feiLZUT4rLIfEgbrcMZIkSVJVrEyrVl8DvgjAtgdhzSZYvhbmX599xugZOHEUhodgz27O/nwoGH995Miy2/94XWuGLAFWqCVJkpSjy9s9AHWV24H/nRlXwF88CZ/+b+CGlTD7qvJnzb4qPm7d78LK/wwO/T3vjb2xeOCyy6PB+R9Z1oqBq/edPz3Mv75zEeBvgZMZh0XEM3IC4E+J1/tnHStJkiRlcgMyVWsQiBdEb38c1m/NPvKeefGtlPVbYftjAJz9+VDw7tgbJ/MdZvMN7/naZJvcL3VMPa+Ve8/ic2rtQ5NCpirSbkomSZKkuhimVa0NQDy1u1yQrsb6rXE/wNtv/Op8owNrpeE9X2NiYmKyTe6XOqbW1yq9Z/qc9DhUl/QUbwO1JEmSamaYVrU2A/Ea6XKyKtLFCv28N/7GrEYG1UpJgB0YmL5vXztC7ZptX2JgYMBA3RgDtSRJkupmmFa1dgDxZmNZqg3SqX7efvOVWxoZVDdJwnizz1FNigO1JEmSVBXDtGqTtWt3EqSfqnLWdrndvztQpVBbqULczCCdNZ3cinXVDNSSJEmqmWFa+ak2SPeZdCguniKe5znF5zoFvCZJoA4wUEuSJKkKhmnlo4eDdHGwXbPtS9NeT8JupfBaayiudE6ybrqa91ZVDNSSJEmqmmFaarIk9BaH8LzPKT633vP7nIFakiRJVZnR7gFI46OnGZy/pN3DaEiys3ap3b6BukNxvQzRDdnC1O7e+wuPJUmSpGkM02qr8dHTvHzoicnHg/OXTAbrwQ8v7fqQra5loJYkSVJZhmm13eD8JYyPngbicJ3c58VD045JB+tOC9rp6z57KaueYaCWJElSJsO0ajN6Jp/LWo2eAeDqRSvPL73t38wDpgL16yMkj0uGbMgM2p0WstX1DNSSJEkqyTCtaj0M7ODE0XzC9ImjAFw555qzwDxgKhCXCMPjo6enhezithOq2enqdD2S3bjzWO+cZ18yUEuSJOlShmlV6wCwg+EhuO1Tjfc2PATAhwavfaeaw4uDcaJXqtmVLr/Vrr40qVKg3g88RLwTuCRJkvqAYVrVeg6APbth7RZYvzX7yErXnD68L+4HmH3tDfMaGVQrqtnF66GrufZzK9ZNG5pbLitQJ8+BYVqSJKlvGKZVrXFgI3CQXQ/A9sfKB+osh/fBrgcAWPixTdGVc64N8hxkWt7V7LSb7rh/MlQXh9gkUNfyWj3nZKn1eNXkIeLgHDB1HeqgqJUkSVIfyC6xSaV9DfgiANsehDWbYPna8uuoR8/Ea6SHhyYr0nM+fOORZbf/8boWjLcm5arZQMnKdPGU8eS5Zksq01alYy8feiL5Wm2huRXigKkgXazZ7y01ahDYAGwGdlRx/MPEy3yeI/6lqiRJKjBMqx63A6VLtlVY+LFN0XUrNwT5Daf5kuthJ+E1fTmvLMVT0PNem22Ynq6FYRqmT+1Oi3CDMnWuO4CDDZ7/bE5jkSSp6xmmVa+aqhtXLbjpJzPnLhq7etGKBbPmLVrV9NE1SakAW1zNrhSyofFqtkH6Ui0M01lBOmF1Wp0ol1lFwNcBf+hIkoRhWvnaDwQ33XF/23fHbqbhPV+rKsCmQ/bk4xyr2dWOo1+0KExXCtJgdVqdJ55NNOMK2P54Y/tdvP8exPtn1D07SZKkXmGYVp5CYOeCj97Bgls2tnssHa0d1exe16IwHRLPxggqHOfPVnWKQWAMgK98OztI35O6sELWFRkO74NH7k0ezcE11JKkPudu3lIblNtpPKuaXe5yXtPaDrhudg8LC21QuO3MOC7Aqd7qDBuAeGp3NUE6eVwqUK/fGvcTT/neAPxjngOVJKnbGKaVpwjYWU2VVaVlhWzIrmZfsut4xnWzrWbnKircwsKtOFTvxDCtzrAZiNdIl1KqIn3PvOxAvWZTEqY3Y5iWJPU5w7TUJfKuZqf7sprdkDB1gzhIB0XPSe0SbxC5fG35o7Kmdheb6mcH8NV6ByVJUi8wTEtdrt5q9rQZBGWq2YbsqoWFNiLeqGxn0fNS+2Tt2l1tiK7UjyRJfcgwLfUwq9ltERFvgmagVnepZhMySZI0yTCtPEVAVTtTq72sZjddRP8E6qDdA1DbBDn3F+XcnyRJTWWYljSN1ezcRPR+oA6I/3zqBdVsQDZd3l/7CK/RLknqIoZpSVWxml2XiN4P1ACsXtqTX7+ud2ykeTOF8vyaN3OckiQ1i2FaeYuAYHz0dK+GI5VgNbusCHiIOEz3ZKBevXQJD3/+c+0ehkq4Z9ejTes7r6/58MgIX338iVz6kiSplQzTkprGavaksND2bKBWl0o2HXPDMUmSamaYltQWeVezUwE8KLRR7oNuTFhoDdRqvdEz5S9rlayRTu/ondUPMG9w8DXguvwGKElS9zFMK28HgGD89ZFuqhqqg9RbzU5Jh1WIQ/WB1P0ox+HWKiy0Bmq1xPrly39y+MSJT3DiaOkwnQ7Q1Vwa68RRAJYvXHgKw7Qkqc8ZpiV1jXLV7HO/OJiE6qjwdJBqk/tZITt5HNF8YWosBmo11c2LFo4dPnEChofgtk+VPqi4Il1uyvfw0GS/OQ5TkqSuZJhWU3itabVSUcB+iOmhOGAqTG+mdMiG1lazw9R7GqjVNLetXLHg24eehT27Ye0WWL+19IHVrJk+vC/uB/j2oWcXXHbZZdx358YcRytJUncxTCtvEdNDidRuEaXDcMD0MJ0VtJtVzQ5T/Ruo1RQrFi9e9cDmu6LHDjwdsOsB2P5YdqAu5/A+2PUAAB+/8cboZ6dOBU8+cxDAQC1J6luGaUn9KiI7CAe0ppodpvoxUKspPnv7huBnp04d+enJU+t45F7Y9iCs2QTL15bflGz0TLxGenhosiL9W8tuPBLef1/w5DMHSW7DIyPcd+dG1ixd2qI/kSRJncEwLUmXiqhczd6ceq74tVqq2WHqHAO1miK8/751f/fsc3GFes/uyXBciwc23xV99vYNAcTV6NVLl/DVx5/g2Mhpvvr4E9x350ar1JKkvmKYVt4icM20elZEdshOt/VWswMM1GqSz96+Idjw0ZUnf/4vvzp/5o03Z734yplbKp3z0cXX/+L6a69552MfuWHeDfPnB+nX1ixdylPbv0y6Sg1O+5Yk9Q/DtCQ1Lipq0wKqq2anFe87EGX0LdXkhvnzl90wf34tp1QM3El4Todqq9SSpH5gmJak5oqovZoN0wN1p143WwKYDM9WqSVJ/cQwrWaIgGB89HTJawJLAspXs0MuDdBB4X5A83cal+pSXKUeHhnh4c9/rs2jkiSpOQzTktR5wkKbhOUDwBbyW5sd5TBGqaTizcnu2fWo074lST3JMC1JnSkstKV2+Y5KHB+QPWU8/Vq5kJ3Vt1QTNyeTJPUDw7SaZvz1Ead5S40JC201l82KqByyIbuaXRyywWq2GlRqc7K//Pz9XpNaktQTDNNqhgOU3qFYUu3CQpsE6ojagm254wOyp4yn23Jrs6WykineOx7/ltekliT1FMO0JHW+sNDuBPYTr5+Ocug3yugnoLpqNgDHRk6z4/FvAUxWHFcvXWL1UdM8/PnPOe1bktRTBto9APWkANg/OH8JN91xf7vHoj7x8qEnGB89DfkFzU4UMlUlbtefMyB7bXZJ6WC9emm89MOg3b/SYRri74ljI6ch/n7e0qZhSZJUM8O0miHAMK0W65MwDZ0RqBMBsH/10iXcd+fGJBABMDwyMu1xKcXB2mp2fykO1RimJUldxmnektRdwkKb95TvhqxZunRaEL6Pqem76WCdvl/cphVXsw3ZvSe9OVlKQAd8P0uSVA3DtJohApIqobrAu2NvnHz7jV+df2/8jVlvv/nKLZWOn33N4l98aPDad2Zfe8O8K+dcu6wFQ9R0YaHtqECdJR20s0J28eNjI6crhuxSj/M2PDJikG+i9DWpmVpC8BDZu9ZLktQxDNNSn3vtpeeisz8fCmo5Z3z09GTgXvixTdF1KzfUdL5yERbargjUpdRbzc6aPt6MavaTzxzkqyPuPt1ilS4DJ0lSRzBMS33s5LP/95Gx108FAGx7ENZsguVrYf712SeNnoETR2F4CPbs5uzPh4Lx10eOLLv9j9e1ZtRKCQtt1wbqLJ1WzU7W9xqqmyoivuzaztTNKrUkqWMZptUsERCMj55mcP6Sdo9FJbz20nPR2OunAmZcAdsfh/Vbqztx/vXx7bZPwdotsOsBxl4/te61l56zQt0eYaHtuUBdSqur2cXneUmnpgtTtyRQJ89LktRRDNNSH3rn/KsvTE7tzgrS98yb/vip85ces34rbH8MHrmXsz8fCq5e/NGTrqFui7DQ9kWgzpJ3NTuLVeqWCAttEqg3E1epozaNR5KkSxim1TH+9ddjr7079sb4+78e+9B742+WmWcc+9DgNWdmzJzz3pVzrh28Yuac61oxxl5x8dXj54BVbHuwuiCdPJcVqLc9CHt28/Ybvzp/5Zxrcx+vqhIW2r4O1KU0stN4OVapmy4k/h7eiZuTSZI6kGFaHSG1CVYtoXgycLsJVm1+feHVOUC8RrpYOkgn4Tl5LitQr9kEe3bz3vgbs3IeqmoTElfwAgzUVSlXzX7ymYMVQ3X6Wsmt3mm8T0SFW4jTviVJHcYwrWY5AATjr49UXDPtJlit99a5lz8BxH/PWdKh+anzpavViUI/1VxWS023hThIBxio67Zm6VKOLc1ea11Kq3ca7zNhoXVzMklSxzBMq63cBKvNSv3ColTluZ5+1E4G6hwMj4yUfD5ZT33fnRunheJuuG52lwtxczJJUgcxTKtZImDn+Gh2VaeqTbDSkspocdgr2gRrznXLXpg1b9Gqukcu9QYDdYOS8JsVnot1w3Wze0RYaNObk21p22gkSX3LMK22qbgJVlq5KcYwbROsi68eP2eYzlnWLzLU6dKBeieG6Zr85efvB8glxHbadbN7QEj8/Zx8f0/gtG9JUosZptU2ZTfBqkdhE6zJfpWPSr/IUKcrVaFWFVoRUK1mNyQCBnDatySpTQzTapuqNsGC6sNcoZ/JftW4Ujt716nclP/x10uvTa10XjWvCzBQd6VqqtnJuu4+r2aHhdbNySRJLWWYVrNEUGXQyWvzKjfBqkrV4bOOID0+eprhPV+rY1S5ito9gA5loO4R5UI20K/V7LBwSy9rSJ6XJKkpDNPqbOm1uj043bhi1TWjYtv0am2OFemUqMxrB+o8r5rXNcVA3cOSENzn1ewtOO1bktQihml1rhaH544NtvmLiMNUfL3uPCr6o2eSe+eBecRTLMEPsZ3IQN2H+qyaHRZap31LkprKMK1mioBgfPQ0g/OX1N9LHZXRlw89UfL5Dg225dRbsa3U718COzhx9NIwXfxLjOLHpb4eJ44m954BPsNURSjZQfpAoa00LrWGgVpAT1ezQ7wmtSSpyQzTarpzvzh4yXMVQ22Dl2KqMzRHFV7PCraVzqv0ejscAHYwPAS3farx3oaHkns7gW1MrwwFTF/D+BAG605goFZZPVLNDgttukrtNdclSbkYaPcA1NOSD+rllQrMlaZ4Z4XsqfOygkFUcTz9YRAYA+Ar3658ne9yDu+DR+5NHs0Cfl10RFhod3Ipp4O3X/LvNKL2QB0A+1cvXcLDn/9cvqNSVypXzc6yeumS5JiIqZ8JUc5DC5j65R447VuSlAPDtJotKPPafqBZYdrv7cruAA4y40Ow/bH6AvXhfbDrAXj/vaS/ZyucETC9Sp1msG6fegN1gGFaVUiH7FKPM0SF9kDqcVTqwBqETJ8lEzbYnySpjxk41EpB4baZdMj+316obhOsSlO/R8/Av1sFMAx8vP5h9pWvAV8EYNuDsGZTfL3ucl+P0TPxGunhIdizO3n268CX6nj/kOLvh1hE/AE6rKNP1aeeQB1gmFaDnnzmIE8+M7kcKKKaGU1TPyOS++m2kpDpv9AzVEuS6uKaaTVTUGjTU+vS9gKfLLkJVj2mNsH6TuOd9Y0vAU8Bh9izOx2Oa7EROFTn+4cl7rvOuj0eYurv3TXUapnVSyc3qIyY/n0XMP3/jvQv3tKvpYNxVGjLVbND3JxMkpQDK9PKW8DUB5Og6LWo0CbB6HeBH7LtQfiv/qfKPVeqTH/zL5Iw+HvAP1Y7YAHxGuoNxB9Wd1Rx/MPEH1afA8abMJ6w0DodvLUCkuUX04NNTd8f65cv/8nNixaO3bZyxYIVixevasI41UOGR0b46uNPQO2zIoLC/VKzW0qJuLSaHTD1cyZi6v8nSZIqMkyrUUGhzao+R2RvKNOsTbDm0JyAp/YIcJ11KwVMD9T/A3DplvxVemDzXdFnb98QNDwq9aw6w3SWgOxqdpao6BinfUuSqmKYVj0Cqq8+V9KOTbDUvQJKrbuPGazzExAH6iPAOqChNfW/tezGI+H9961r9qDVnXIO0+UE5FPNjkodKEnqP4ZpVSMotPVUn6vR7k2w1L3CQltctY6IPwBH+MG3Xp8HHmPGFbD98YZ/0dXpFep7dj3KU9u/zD27HgXgqe1fLnlMPa9lHZtIn5OMo5+0MExnCZj+f1upWTDFIqZCdvI4ymk8kqQuYZhWloD8qs/VuJ36N7GCxjbBUm8IC23WdPAIP+xWq/olGJX2Mkgtwfibf/dfn7xh/vxl+Q0zH/fsepSJiQkGBgaYmJgAYGBg4JKQW89rWe+VlpyTHkc/BeoOCNOlhFy643e91ewot1FJkjqKu3krERTaZlWfK3mWeK1zJ22Cpe4Sptrk/s5Um94ZPH28LrUBiGeKNLKXAcTnb3sQ9uzm5//yq/M3zJ+fw/Dykw6wac0ItaWCdPF7JYG+3wJ1BwoLbfJzYzP57DRuNVuSeohhur8FlK8+t3qa7DjxLtz/CHy1Re+p3hSm2oDp3+vp1mBd2mYgXnJRTlKVrmTNJtizmzNvvDmrwXF1nKyAXOm4JLwnz5UK9Gq7kPj/v+Qa7BNMbU4Wkf1/Y0Dptdnp5yE7aJfrW5LUQQzT3S3k0t+WlxMU2krV56ihUUmdJSrcwsLjkKkPuOlgHRF/mA1RPDNk+drsI6oN0ql+XnzlzC2NDCpvlYJwpQpxtUG6WLrP9NTySu9dy7ps5SYiXhIXUv01qSNK/z8aYDVbknqKYbp7Jb8prySgs6rPUruFJe4nv2AKmD4dPKKf/21kbQKYXiddTagut5lglypeJ10pVCdTuJP7jb6fgbrlwkK7M3Wr9RJaEVazJamnGKa7T8DUNWDTz0Wp+wGlN0pJjrH6LMXCVJvcd511NbI2HOsSpcJpepftJCBXmn5dy9TsagJwet20a6c7Tli4Jb/MrqZKXa0Iq9mS1HUM090lpPROxcmH/qDEaxHN3ThM6hVhqg1wnXW2Lg/SeUhCb3EIr0Ut1eZGK9vK1RZqm/bdiAir2ZLUsQzT3SMk+9qXQep+VGitPkv1i5haZx0wfbaHwbpPVKpONxJq61lvbYjuKGGhbWTad6MirGZLUlsZprtDNeujXd8pNUfE9H9XYaFNV6XSG5gVHy9NU2pnb4NyVwpTt1ZUqasVYTVbklrCMN25ArI3Dislwv/gpFYIU21y3w3MelDx+uU8GKR7Ulho01XqLXTmv/0Iq9mSlBvDdOcICm3W2udKksqYpNYJU21y3w3MVJJBuqeFxP8HJ/+H76f1074bEWE1W5Jq1s1hegHwO8DHgWXASuAl4CTwM+CfgHNtGlu1AspftgqmPoSnXy+1U3fxY0mtFabagF7YwGz0TD6XtRo9A8CcmbPOAzVcoLr90tXpelS6NnR687JKwdrrTHe8iKm9FqqZ9h3QHSEzwmq2JJXUbWF6APgD4LvAZSVeD4oefwB8Bvg+kM8cvcYEhbaenbeLH6f7LNWXpPaJmPpQTaEttYFZRPzBMqSzPAzs4MTRfML0iaMAXH/NNWfpsjDdiErXoi5+XK5S7XWmu0pYaMttThbS2dPBqxFhNVtSn+umML2cgYGIiYklAGxaCZ9cAxtXwKKrYeFcOHsBXr0IB4/D3mEYeuky4HvAKeBu4EQbxh1QXfU5oj5RA+dKao2wxP1OXmd9ANjB8BDc9qnGexseAuD6a695p/HO8lHqes7VHNtshuaeEVJ+c7Lk8X7iQkGviahczd6ceq74NavZkrpCt4TpzUDExAR8cjX8+e/Db9906VGL58W3dUvhC3fDj1+Gv/oB7D12I/BL4h/SBy49MVdBoa1UfY6aPA5JnSlMtcn9Tltn/RwAe3bD2i2wfmv2kZWuOX14X9wP8LGP3NDRVely13Ku57Xi58sF9uSYrGtWe53prhUW2uTf9uaMY8ISz/eiiOyQnW6tZkvqCt3w29A4SAM8/EdxSK7VN34EO76TPArIP1AHlK8+e7kcSZUETP9ZktaOYH0HcJAZH4Ltj5UP1FkO74NdD8D77/HA5ruiz96+Ich7kI1KKsGdUgXutPG0wvDICF99/AmI/4/c0t7RNE1A+Q1Gu3m6d7MFZFezs0RYzZbUAp1emV5O8sPvP/xefUEa4vNefwv++ocU+ruZxqZ8B4XW6rOkvERMrbMOCrdS66xbFawPAV/n/fe+yCP3wrYHYc0mWL62/Drq0TPxGunhoSGPVucAABrVSURBVMmK9G8tu/FIJwZpqYWiQhtkvO4VObJFWM1uxCCwgfjvZ0cVxz9M/PfzHDDexHFJPaGTK9MDwMvAjWUr0tf8++mP3/yb7B6nKtSngJuobVOygPLV56yNwySpUWGhLa5aRzR/5svtxMG6Lp1akU7rlGpwp4yj1fqkMg2VP3NYnc5PgNVsSGYYNXb+szmNRepJnRymPwV8j0+uhif/rPQRxUE6US5Q3/e/wt5jAJ8G/qHM+wdMrwylRYXW6rOkVgsLbdZ08Ij8fy7VVNlYv3z5T25etHDstpUrFqxYvHhVzmNpint2PdoRAbZTxtFKfRKmQ0r/my3WyZ/LekFQ1Jb6jFdKRPdVs78GfBFoaGYR8HXgS00eq9S1OvmH9m+Ay/jBf196s7F0kE7Cc6nniv34Zfj9/xniy2ZdXvRqQH2XrZKkdggLbd7rrAOq+zkXAPtXL13Cw5//XB1vI/VFmA4ov146rfgSWmqdgMZDdrptp3hG0YwrYPvjDe95AWykgRlKUi/r1DC9BBhh00r4f/7b0kckwbk4NGc9n/Zf/C8w9BLE16zeXng2KDoqKrRWnyV1g4B8NjALKX1d3Kz3NEyrIX0QptMCsme9JQzUnSVg+teqmqAdFdp2VLMHgTEAvvLt7CB9T+riCllXZTi8Dx65N3k0C/h1TmOUekanbkD2aSC+jnSWcmG5kk+uScL0DuLftiUirD5L6k4RUxuYUWhLbWAWEX/ACymv+Lq4khoXMf3zRcCl1VD/7XWWiOzPhAHZG6Cl23IboKXbPGwA4qnd1QTp5HGpQL1+a9xPPOV7FXA4x3FKPaFTw/SdAGxc0Zzep/q9AnfeltSbwhL3k6mmAdODdcTUz8D0hz4/1EvNFTH980fI1DWpq50hovaJyN5pPEg9ztppvDhkQ+PV7HjDtTWbSr9aqiJ9z7zsQL1mUxKm12KYli7RqWF6NQCLrq7trGqmeE/v9wp6f0qZJIWpNrlfHKyh9Ac3A7XUOmHhth+r1N0son3V7HiTyOVry48wa2p3sal+/gT4ZnUnSf2jU8P0OgAWzq3+jKydvUu5bjJMr6v+JEnqCWGqDSh/2b/ETuIPff7yUWqNLUyvUvvvr3dENLeaHcvatbvaEF2pH0lA54bpI8A6Xn8LFlRRna5mF++01y6m30eS+lXE1DrrgLgaliV53WUxUmuEhTaZRTKB0757WUS+1ezKqtmETFJZnRqmjwHrOHOhcpiuNUgDvDoZpo/VMTZJ6ldB4WagllojTN2SKnXyvKoTtHsAOYlSbbJZbkCyRnrqcTNV6j9q8vtLHadTw/QzwL/lmZfg1iXZR9UTpAEOHk+/jySptg9h6Q/1kpovLLTpzcm2YHipRrkZN/2tmg3IpgRU/n/C70n1nU4N098DYO8wfOHu/HvfOzz9fSRJm0s8F6XuJ7t+B4XHk2H62Mhp7tn1KPfdGV9pMGkl5Sok/jeYTPtOll2E7RpQN5mzZE67h9ASY6fHmtZ31t9hM99T6nSdGqZPAx8w9NJl/Phl+O2bLj2ieMOx4sdZleofv5xcY/qDwvtIkuIP5cnUwajMcclrIVNTTwF48pmDk63BWmqKiKl9Dpz2XYMVn2vS5VY7zPOPPt+UfucsmZP5d3j8W8cN1Opbl7V7AGV8BoC/+kG+vU7195l8O5akrhZR+3VNI4DVS5fw1PYvc9+dG1m9NF6a8+QzB3nymYPcs+tRdjz+rcmgLSkXIVO//NpJvDlZ2K7BqIskU7ol5aJTK9MA3wdOsffYjXzjR5dO965ljXTiGz+CvcdgYOA0ExPfz2WUkiQgrkLfR1yJTlepj42c5tjIaZ585iCrly5hzdKlk62kuoW4OZmyjJ4pf1mrZI10pWA9egaAy2ddfh4whUtFOjlMTwB3A79kx3fg9bcg/MP6ewv/Hv76h4WeJ4JC/5KkJkhP8y4VrEsdJ6kuYaFNX5PaHff71NXLr/7JxRMXP8GJo6XDdDpAV3NprBNHAbjymivPYpiWLtHJYRrgBPEmGxF//UP48FX1bUj2jR9NBem4vxM5jU+SVEFWsC5uDdZS3UKmb04W4OZkfWnWwlljF09chOEhuO1TpQ8qrkiX28V7eAiAK6+58p0chyn1jE4P0xDvIBsAETu+A0Mvwp//fulNyYr9+OV4jfTeyctJB4X+JEltkA7MwyMjHBs5PdkarKWGRLg5Wd+bu2LugrPPnoU9u2HtFli/tfSB5S+DFTu8L+4HGLxh0Kq0VMLl7R5AlU4B/yfwb/jla/P4v56FQ8dhdByuuByYgMEr4dULcPwc/N3/B4/sgf/x/4VfvhavkYb1QHO2OJSk/rQM+NMFc+dy98c/XvPJC+bOZc3Spdz98Y9PC82vXbg4bZ318MgIr124OHmOesu5CxfY/7NhgJPA37Z3ND0hAgaYqlCHhcdRm8bTbiHAoo2L2jyM1rjiqiuuG7h8IBo7NbaMQ38PN98Ki2+uvaPD+2DXA/DBb1h81+Jo3kfn3Zp16BvDb/Dexfcg/vd7st6xS92oGyrTiRPATcAfAN9l6KXLCpe4KucD4DOFzcZcIy1JHazSBmbp49zATCorxM3J+tbCDQuDsVNjR9469dY6HrkXtj0IazbB8rXlNyUbPROvkR4emqxIX3XjVUcWblgYtGbkUvfppjANcSD+B+KK+hLg08CdwGpgHXAEOAY8A3wPryMtSV2pmnXWxcdJukRYaN2crM/cfN/N684+dzZ65elXAvbsngzHtVh81+LIIC2V121hOu0csAd4GpgNXAW8BbwNXABG2zc0SVJeSq2zdgMzqWohcXjej5uT9ZWFGxYGc1fOPTn+q/Hz77757qy3z7x9S6VzZl8/+xdXXnPlO4M3DM6bOX9m0IJhSl2tm8P0u8CZwk2S1AfWLF3KmqVLJwNzsqa6OGAn08AN1hIwtY46xGnffWXm/JnLZs6fWcspFQO3pCndHKYlSX2u0jrrdLB2nbV0ybTvnVillqS6GaYlST0ha511qQ3M0q3UZ8LCLZn2bZVakupkmJYk9ZxqNjBznbX63BamT/veXHhOklQlw7QkqaeV2sCs1Dprg7X6UFhodxJXqSdw2rckVc0wLUnqG5MbmFHdBmaus1YfCPGa1JJUF8O0JKlvVdrALH2cwVo9Liy06c3JtuA1qSUpk2FakiSqW2ddfJzUY0Li8JxM+96P074lKZNhWpKkIqXWWbuBmfpEVLiFOO1bksoyTEuSVMbkOus7q1tnbbBWjwgLrdeklqQMhmlJkmpQaZ21G5iph4S4OZkkZTJMS5JUp6x11qU2MEu3UpcJC236mtQP4eZkkvqcYVqSpBxUs4GZ66zVxUKmb04W4LRvSX3OMC1JUs5KbWBWap11q4P1r0ZHT/78X351/swbb8568ZUzt1Q6/qOLr//F9dde887HPnLDvBvmz1/WgiGqs0W4OZkkTTJMS5LURJMbmFHdBmbNWmf9d88+Fz124OmglnOOjZyeDNwPbL4r+uztG2o6Xz0rLLRuTiaprxmmJUlqoUobmKWPyytYh088eeSnJ08FAGx7ENZsguVrYf712SeNnoETR2F4CPbs5rEDTwc/O3XqSHj/fesaHpB6QYibk0nqc4ZpSZLapJp11sXH1ervnn0u+unJUwEzroDtj8P6rdWdOP/6+Hbbp2DtFtj1AD89eWrd3z37nBVqpYWF1s3JJPUdw7QkSR2g1DrrRjcwO/7KKy9MTu3OCtL3zJv++Knzlx6zfitsfwweuZfHDjwdrF124wsrFi9eVd2fTH0gJA7P+3FzMkl9xDAtSVKHmVxnfWd166yzgvU/v3T8HLCKbQ9WF6ST57IC9bYHYc9u/vml4+cM0yoSAQM47VtSHzFMS5LU4Sqts87awOyXr56dA8RrpIulg3QSnpPnsgL1mk2wZ/dUv9KlwkLr5mSSep5hWpKkLpK1zrrUBmaHT5z4BBBvNpYlHZqfOl+6Wp0o9DPZr1RaWLgl076tUkvqSYZpSZK6VLUbmJXctbtU5bmScrt/S5fawvRp35sLz0lSTzBMS5LUA8ptYCa1UVhodxJXqSdw2rekHnFZuwcgSZLyVW5TsrKSKd71VK2lbCHx5mQPFR7vxDAtqQdYmZYkNeTYyGl2PP6tdg9DjSq3VroEv+aqQ1ho05uTbcFrUkvqUoZpSVLD0htfqQuV2tm7giZ8zQ/k3aE6Usj0zcn247RvSV3KMC1JqleEmwl1uv0Vj6gjSBfk/bWPcu5Pna14czIwUEvqMoZpSVIjonYPQA2oP0iDX3s1Liy0XpNaUldyAzJJknrd6Jm8+xnOp0PJzckkdS/DtCRJvethAE4cvfSV4g3H7pk3/VbKVD/fyW2EUixkeqBO1lRLUscyTEuS1LviTb2Gh/LpbaofNwtTM4RM7e4dEAfqsG2jkaQKXDMtSVLveg6APbth7RZYv3XqlVrXSB/eF/eT7lfKX1S4hbg5maQON9DuAUiSpKa6AzjIjA/B9semB+pqHd4Hux6A999L+ns23yFKJYVMhWnI3pxsENgAbAZ2VOr06uVX/2TWwlljc1fMXTB78exVOYyzrx3/1nHGTo+B1wxXH7q83QOQJElNdRqYwwe/uYOnvw1vX4xD8cxBmH1V9lmjZ+DYM7D3m/Afvwwf/Abg68B/as2wJSLiAD1APO07KNyPUsfcAfwS+BPiMF3Ru2++e/34v4wvG/3p6HUDlw9Ecz4yZ1luI+5Dbwy/wXsX3wP4W+Bke0cjtZaVaUmS+sPtwKEGzt/Y4PlSI0KmqtQRccj+z4EvArDtQVizCZavhfnXZ/cyeibeSG94aHLZwlU3XnXk5vtuXlfLYJ5/9Hlu/fKtPP/o8wDc+uVbSx5Tz2tZ75dIn5OMo52sTKufGaYlSeofNU2HJd4N/ADxGunxJo5LqkZAvCkZJJuUzbgCtj/e8PKFxXctjhZuWBhUc9rzjz7PxMQEAwMDTExMADAwMHBJyK3ntXLvl0jOSY+jnYHaMK1+5m7ekiT1j3HgH4GvEv9CvdLtq4XjDdLqBBHx9+V/R3LZrEpButyl3tZvjfcRAF55+pXg7VfefqHSANIBNm1iYmJa9TgvxUE6/V63fvnWyUDfjPeWVJlhWpIkSd3kZ0A8tbueinTa+q1xP8CF4xfONTqwSkqF42qPHRgYmAzxBmipMximJUmS1E3ijcbWbCp/VFZFulihn3fOvjOn3GGVgnClgFtLkC5WaSp3qfd+/tHnDdxSkxmmJUmS1E3i9f7L12YfUW2QTvVz8cTFTzQyqHKK10lXI5nGnV4jXev7WcGWmmtGuwcgSZIk1Sxr1+4kSD91vrpQXW7374JSm4alQ2qydrnUeuq0aoN0IqlGZ21CVuq92727t9RPrExLkiSptzx1vt0jmCapMrcq6BZXtSU1h5VpSZIk9Y42BelK1elGQm0SjoGqq9CGaKn5rExLkiRJHc5wLHUew7QkSZLUoOLqcR7ckVvqbIZpSZIkqcO4I7fU+VwzLUmSJOUgqU7XW5lOQnPxlO5kjXQt/Wb1JSk/hmlJkiR1n9EzVV3Wqqp+gBmDM14Drmu8w/qUuvxWOkBnXRqr2r4k5c8wLUmSpG7yMLCDE0fzCdMnjgIwe+HsU2SE6XSwrXQt6Uar05X6SodjQ7PUXq6ZliRJUjc5AMDwUD69FfqZtXDWWC2nlbuWcz2vVfN8tYHZ60xLrZH9azVJkiSp8wwCcfD9yrdh/db6ezq8Dx65F4CP/pcffWH24tmryh2eVII7JaR2wniOf+s4Y6fHALYAUVsGIbWJlWlJkiR1k3FgIwC7HogDcT0O74vPBxbftTiqFKQlqZhrpiVJktRtDgFf5/33vsgj98K2B2HNJli+tvw66tEz8Rrp4SHYsxuAq2686sjCDQuDat40vYa53dXpTqhKS/3Oad6SJEnqVrcTB+u6LL5rcVRtkE57/tHnOyLAdsI4nOatfmaYliRJUjebCawC1gJ/UvRaADBnyZzJJ2ZfP/sXV15z5TuDNwzOmzl/5rIWjbFnGaZVpSuB+cBcYDZwFfAW8DZwARgF3m3b6OrkNG9JkiR1s18Dhwu3bxa9NgGw4nMr0s/d0pphSUpZAHwauBNYDawDjgDHgGeA7wGn2za6OhmmJUmSJEl5GwD+APgupTe+Xle4/dvC4w+AzwDfp/CLsE5nmJYkSZIk5Wk5AwMRExNLANi0Ej65BjaugEVXw8K5cPYCvHoRDh6HvcMw9NJlxBXqU8DdwIk2jr8qhmlJkiRJUl42AxETE/DJ1fDnvw+/fdOlRy2eF9/WLYUv3A0/fhn+6gew99iNwC+J9zw40NKR18jrTEuSJEmS8hAHaYCH/wie/LPSQbqU374pPv7hP0qeiQr9dSzDtCRJkiSpUctJgvR/+L242lyPL9wdnx+LCv12JMO0JEmSJKkRA8CPgLiyHP5h+aOv+ffxLUv4h+kK9Y/o0Es6G6YlSZIkSY34A+BGPrm6/op0sS/cHa+5hhsL/Xccw7QkSZIkqRHfBeLNxiopV5EuNtXfd2seUQsYpiVJkiRJ9bgSWAJcxqaVlTcbqyVIQ9zfppUQ59YFdY2wiQzTkiRJkqR6zAc+DcTXkS4nCdJv/k1t7zDV7+/UdmLzGaYlSZIkSfWYC9wJwMYVlY+uNUhP7/fjtZ/cXIZpSZIkSVI9ZgOrAVh0dfkj6wnS0/tdVl8HzWOYliRJkiTV4ypgHQAL5zbnHa6bDNMrm/MG9TNMS5IkSZLq8RZwBIDX32rOO7x2Mbn3UnPeoH4z2j0ASZIkSVLXCFLtbcC/AnDmAiyoMNW7Hq9OhumT+XfeGMO0JEmSJKmUoNDuLHqcuAAMA/DMS3DrkvxHcPB4cu9n+XfeGMO0JEmSJCkotFnBOS0CDgDPFh5/n73D8IW78x/V3uHk3j/l33ljDNOSJEmS1D+CVLu56LliUaE9ULgfZRz3AUMvXcaPX4bfvqnR8U358csw9FLcP5zLr+N8GKYlSZIkqTcFhbbaajPAQ0WPq/EZ4Hv81Q/gyT+r4bQK/uoH6f47jmFakiRJkrpfUGhrmaYdpR434vvAKfYeu5Fv/KjydO9qrjn9jR/B3mMwMHCaiYnvNzi+pjBMS5IkSVL3CFJtXtO0GzUB3A38kh3fiS+TFf5h/b2Ffw9//cNCzxNBof+OY5iWJEmSpM4UFNpmT9POwwni8UX89Q/hw1fVtyHZN340FaTj/k7kNL7cGaYlSZIkqf2CQtuOadp5OUASqHd8B4ZehD///eo2Jfvxy/Ea6b3HkmeCQn8dyzAtSZIkSeUFxCE3j+nSQartlGnaeToA3Az8iL3HbmTvMdi0Ej65BjaugEVXw8K5cPYCvHoxvo703uFk1+5kjXRAB1ekEwPtHoAkSZLUJBMAt3751naPo2cd/9Zxxk6PAWyhO4JeI4rX7UZMVU7DjHOCQtsN07TzNgD8AfBd4LIqjv+AeNfu79Oha6SLWZmWJEmSpMoipofhgEvD8kNUrjYnfXXiNO08TQD/AFwOLAB+B/g4sAxYCbwEnAR+BvwTHXgd6UoM05IkSZKUj51Fj6NC203TtJvhHLCncOsZhmlJkiRJKi0otMUhuZwthTbKdSTqOIZpSZIkSaptfXMpEfE07yiX0ajjGaYlSZIk9ZMg1da6m/b+jOMeInsTMvUow7QkSZKkXhUU2rx2046K+oiwGt23DNOSJElSD3r7lbdfuHD8wrl3zr4z5+KJi5+odPzVy6/+yayFs8bmrpi7YPbi2ataMcacBYW22uDc6G7aVqP7nGFakiRJ6jFnnzsbvfL0KwFQdSi+eOLiJy6euMjZZ8+y+K7F0cINC4OmDbAxQaqtdZp2lHFctZLrSluNlmFakiRJ6iW/fPKXR9469VYAwLYHYc0mWL4W5l+ffdLoGThxFIaHYM9uXnn6lWDs1NiRm++7eV1rRp0pKLR5TdNuVNiEPtWlDNOSJElSjzj73NnorVNvBcy4ArY/Duu3Vnfi/Ovj222fgrVbYNcDvHXqrXVnnzvbygp18j6tmqYtNcQwLUmSJPWAt195+4XC1O7sIH3PvOmPnzp/6THrt8L2x+CRe3nl6VeCuSvnnpw5f+ayHIcapNpWT9OWcmOYliRJknrAheMXzgGr2PZgdUE6eS4rUG97EPbsZvxX4+dnzp9Z77CCQtsp07Sl3BimJUmSpB7wztl35gDxGuli6SCdhOfkuaxAvWYT7NnNu2++O6vKIQSF1mna6guGaUmSJKkHTF7+avna7IPSofmp86Wr1YlCP2+fefuW9NNjI2Nxe3qMsdNjydP7M3qJCq3TtNVzDNOSJElSLym1a3epynMN/Rz/1nGAdHguJSq0TtNWXzBMS5IkScpUKkDPWTKHOUvnMDYyWZ3eguFZfcYwLUmSpJ6WTEtWkWSKdxVV6yQ8z1kyZ9rz/t2qnxmmJUmS1NOOP3G83UPoPOXWSpdQtD5aEoZpSZIk9a6HmLqOcT8Iqjqq1M7elUUNvi71HMO0JEmSelXY7gG02ETFI+oP0lvqGI/U0y5r9wAkSZIktUB9QVpSBsO0JEmS1EtGz+Tdz8v5dCj1Fqd5S5IkSb3hYWAHJ45eeq3p4g3Hih+XqlSfOJrcG8ppfFJPsTItSZIk9YYDAAznlH2n+jla7jCpXw20ewCSJEmScjEIxNev+sq3Yf3W+ns6vA8euTd5NAv4dYNjk3qOlWlJkiSpN4wDGwHY9UAciOtxeF98fuwODNJSSZe3ewCSJEmScnMamMMHv7mDp78Nb1+E99+DmYMw+6rss0bPwLFnYO834T9+GT74DcDXgf/UmmFLkiRJktR+txNfd7re2x2tH7LUXVwzLUmSJPWmmcAqYC3wJ1Uc/38Qbzb2Ak7tliRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjTN/w+wOBtBxxTMlwAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "d319736a", + "metadata": {}, + "source": [ + "Another example that contracts to 2-way tensor (2 free indices are created) is as follows:\n", + "\n", + "![TestNetwork2.png](attachment:TestNetwork2.png)\n", + "\n", + "The optimal contraction Order is: [2,1,4,3]" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "id": "44caf1c5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(2, 2)" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# --------------- Network-1 --------------- # \n", + "# Leading order cost (guaranteed optimal): (Ind1^5)\n", + "Ind1 = 2\n", + "T0 = np.random.rand(Ind1,Ind1,Ind1,Ind1)\n", + "T1 = np.random.rand(Ind1,Ind1,Ind1)\n", + "T2 = np.random.rand(Ind1,Ind1,Ind1)\n", + "\n", + "# TTv1.0.5.0P$T<,82H2'-I.9N>_>=@GeKuKT'''''''SSl$\n", + "tensors = [T0,T1,T2]\n", + "connects = [[4,2,1,-2],[1,2,3],[3,-1,4]]\n", + "con_order = [2,1,4,3]\n", + "T1 = ncon(tensors,connects,con_order)\n", + "T1.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "d84df669", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1.45346387, 1.68893414],\n", + " [1.55504724, 1.72256614]])" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "T1" + ] + }, + { + "attachments": { + "TestNetwork3.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8AAAAFiCAYAAAA5nbFXAAAgAElEQVR4nO3de5Bd5Xnv+W8D9tjmKmSEENYVYSZIHCxxCSAUrSaADTFJoUTGoEnGOcepclHOpApfiqQQWrKYROVbjccUldTJjE+SgzDqGFUi4otE6AWSkE2QFKJWEwxqXdPcLBpkiB2G0PPH2qt7aWvfb2tfvp+qrl6799rvfgGh7l+/7/O8IEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSpMboy3oCkgR8ALgYuBT4vQru/2vgWWAY+GUT5yVJkiRJUsNcA4zX8XF166csSZKkTuQKsKQsfQ34IgC33AkLl8K8S2HqjOKvODoKI8/C0FbY9EDy1a8DX2ryXCVJktThDMCSsnI18BSnvA/uXg+Lb6h+hF1bYN1KePcdgCXAU42doiRJkrqJAVhSFk4F3gLgnoHi4Xf5WZPXj7xR+J5dW+C+Fcmj04C3GzRHSZIkdZmTsp6ApJ50FRBve64k/BZ6nFh8QzxOelxJkiSpAAOwpCwsA+Ka30LyV36T1d9iIXhynGUNmZ0kSZK6kgFYUhZWAXHDq1KKbXvONznOqppnJEmSpK53StYTUEuNZz0B6TjFuj1XGnwLj9Orf877gSjrSUiSJLUzA3DvCLKegFSTShphCQy/kiRJZRmAe0cErAFWA1x/14ZMJ6Pe9tg3P9W0sXvpz3bq3+OaLOchSZLUKawB7i0huVWinRvCLOchVa6SJlg9aGTHQHK5hvj/bUmSJJVhAO49/QBjR4bTP0BL6iAjOwbS//+GGU5FkiSpoxiAe1M/xD9Ejx0eznouUkMl4bBb/2yPHR7OX/2VJElShawB7k0RuXrgkR0buGxmmO1spHzJVucaml5NhsPJHQ5TPnIxU2YuyF0vYMrMi+udYWZ2DoTJpVufJUmSqmQA7l0hsGzsyHCwc0PIZZ8KM56OetLR0eJHIUEchB95o3zt79FRAE75X059bdbim88BGDu8l7Ej8Srw2JHhieskGHdiKE6t/EYYfiVJkqrWl/UElKkAGASYd/UK5l29ItvZqGfs3vhnzxzdv/ty/vghuOKmwjcVCr3FVoT/6QfwZ7czde6iZxbd+seX5z+drncvV/versE4r+7Xv7slSZJq4Apwb4uI64EHR3YMtNUP++puZ0yb99bR/bthaGvxAJy/8ltqO/TQ1olxCz2d/uVOcj12eJixI3tz1+29WmzdryRJUmO4iiCIt1KunvKRi90KrZY49vK+4afX/3GcIu8ZgMU31D7Yri1wXxxqr7zjz4bPmH5BXem0WDAupFXBeOeGMJmHdb+SJEl1MAArMQgEboVWq+z/ycZo3/aHAk55P9z9YG0heNcWWLcS3n2H+dfeHs258tag4ROl9lAM1P3/U2rrc0Sug7skSZJqYwBWIiBXD3zZitCt0GqJXX+7dvfrh/YsAuCWO2HhUph3aenGWEdHYeTZeNvzpgcAOHvWJbsX/86qRa2Yc1qzV4vz6n77iUOwJEmSamQAVloIrAZDsFrnwNMboxe3PRTU+voLltwezf3V5qz81qKaUAzHrxDnB+PHvvmp5NKtz5IkSQ1gAFa+QSCwHlitdOzlfcOv7Xvm1WOvjpx2dP/uE7o455s6d9EzZ0yb99Y5F1w+rd6a31apdrUYSO6JcOuzJElSQxiAVYj1wFILVLtaTByGn0hdR02amiRJUlcyAKuQAOuBpUzk1f2uAZYR/z9ZTIShWJIkqSIGYBUTkqsHvv6uDdnOROohZep+049XlxkqwmAsSZJ0HAOwSrEeWGqh1OpvNU2vAiZXiF0tliRJKsEArHLGIe5Uaz2w1Dx5W58b8XdzgMFYkiTpOAZglRNgPbDUVAXqfsMmvVVAbaEYPIZJkiR1AQOwKhECq90KLTVHG5z3G+BqsSRJ6gEGYFXKemCpCVKrvxHtdd5vQOWhGOLwngibNJdGjytJknqMAViVCshthbYeWGqMJtT9tkJAc1eLk/FW5z3OanVckiR1kVOynoA6RkS8OjU4smOAKR9ZYD2wVIexw8P5db+dIuLEIBtQOBSnv54+tini+GCcfj5AkiSpSTplxUHtI8R6YKluOzeEjB0Zhu5e2Qyobht1Kf1YbyxJkupkAFYtBoHArdBSbdq47rdVwtT16mI35VmDTbckSVKdDMCqRYD1wFJN8up+XdWMhVQehMFO1JIkqUYnZz0BdaQDxL88CcaODDPlIwv44JnnZDwlqTPsHJgo910D/I/sZtJWInJ/p5R4/q9y13NyH0Hu4zPEATrMPZ6bGudA46YoSZK6gSvAqodHI0lV6JG633qFnLganP/vK8BziyVJUg0MwKqX9cBSBTr0yKOshBwfgiv9hUGAwViSJJXgD2GqV0CuHviyFaFHI0kFWPdbs5A4CNfzvSqguk7U6SOpwjreV5IktSEDsBohJLdac/1dG7KdidSGHvvmp5JLtz5XL6Q5/84CXC2WJKnnGIDVKNYDSwWkVn8Nv+0voLrV4giDsSRJHcUArEYaB49GkhLW/XaNAFeLJUnqCv5ApkYKsB5YAk4Iv67+dp+A44NwuXOMIwzGkiRlzgCsRguxHliy7rd3BbhaLElS2zIAqxmsB1ZPs+5XBYSpa4OxJEkZMQCrGQJyW6GtB1avse5XVQjozdXiU4GriP+ZV1Vw/1rif/YfA283cV6SpB7gD2dqlgDrgdVjxg4Ps3MgTB66+qtaBXRvML4G2F7n63c0aC6SpB5kAFYzhcBqt0KrV1j3qyYKqO6IpjWp67Dhs6nN14AvAnDLnbBwKcy7FKbOKP6Ko6Mw8iwMbYVNDyRf/TrwpSbPVZLUpQzAarZBIHArtLpdautzBPRnOxv1kIDOWC2+GniKU94Hd6+HxTdUP8KuLbBuJbz7DsAS4KnGTlGS1AsMwGq2AOuB1eXy6n77af9tqOpuAdWtFkc0NxifCrwFwD0DxcPv8rMmrx95o/A9u7bAfRPfRz4I/LJBc5Qk9QgDsFohJHc0kvXA6jbW/aqDBGSzWvzrwGPccif8/p8WviMdfhPFQvB3/iTZDn0ZsKuOeUmSetApWU9APSHMfV49smMDl80MS9wqdZaRHRPnXRt+1e4iTgyyAccH4dUFvr469XxE9cF4GRDX/BZSaOV3+VnxR6EQvHBpEoAvxQAsSaqSK8BqpUEgOP+SXx9+/4fOevXYqyOnHd2/+/JyL5o6d9EzZ0yb99Y5F1w+7YzpF7h8rLbhkUfqYgGNWy0eB+C/DxdueJUE4HTYLfS1xNFR+IOLk/ey3l6SVBV/YFMrBcQrCUGtA8y/9vZozpW31vx6qVGs+1WPClPXq4vdlBMRB+P4vmJbmgspFYAnn48wAEuSqmQAVis15AiMs2ddsnvx76xa1IL5SkV55JE0IaCS1eJKAnAljbAm74swAEuSqmQNsFrlauCLVR+BMXVG/HHFTXBpP6xbyeuH9iza/5ON0dxf7fyV4Me++Smuv2vDRJi6/q4NBe+p5blS75n/mmQeqkxq5dfw2xhB1hNQ3aLU5+QM4oDKulDXo5ljgzs7JKnruAKsVqjsCAwov+0tdQTG1Z/5vw6cevaMOY2bZms99s1PMT4+Tl9fH+PjcYlcX1/fCcG0lufKvWf6Nel5GILLs+634ULKb6VVN2j8FuhW8f9zSeoinbwCPA34VeASYA5wIfACcADYA/wEeDWjuel4VwHxtudKV36LWXxDPM6mB3hz9Pk3Tj27xPbpNpYOnWlZBNHr79owEcINwaXlhd81pe5VxZYBXLRgdtbzUJM8v/dg08Zu5p+bZs5bkpSdTgvAfcAngEeBkwo8H+Q9fg/4JPBDki6UykLpIzASlf5GP3cExttjox+sc14dK72S28zX6HhufW6e31zxa4bgLvXZFfc1ZdyLFszmS+HvNmVsaN68JUnZ6qQAPI++vojx8ZkALL0QblwIS+bD9DPg3DPhlTfh5WOw/UXYPARbXzgJ+D5wELgOGMlw/r1sFRA3vCqmmu1suXGOvfTCRfVMKivlgmi5ldhmht9C711LnXE3MvxKTVJuu7MkSQ3UKQF4GRAxPg43LoAvfByunHviXeedFX8smgWfvw6e3g/f+BFs3jsb2Ee8QvzEiS9USxTr9pz+4aeSIFyqa3SXy6/hrSTU1vKaYq/t1RCct/U5zHAqUuc6Olr67+/lZ1X2feDoKAAfOvUDbwAtLQaWJHW+QtuI200cfgHW3goPf65w+C3kyrnx/WtvTb4SkWzHVXvpkd/8lwuUSU3w+Ph4+pidE+TXDlei1GuSOuBK3rvXjB0etu5XqsMliy54BoiPtCsk/fd/Jccg5caZft7ZrzRifpKk3tLuAXgeSfj9o+vjVd1afP66+PWxKDduJwvopmNDeiT8NkISVKtZia3lNfmv7eXV350DYXLp1mepBrPnnRefAjC0tfhN+d8HSn1fyI1z7oypv6h3bpKk3tPOW6D7gMeBeAW3VPid8oeT12PfLnxP+Fvw4dNh1UZy486l8xpjBcTHhQTEQT7KbioVCbKeQCdKtikX6hINtdXi1hNeezX4wnF1vxGGX6kmH7v8o9Me/d422PRAfJ57sdMAKvll6K4t8TjA/Is+4vZnSVLV2nkF+BPAbG5cUHn4LfQ47fPXxTXEMDs3fqcIgMHcR5DBe6c/wtTHYN7HeN5H8nWp4+TV/fZnORepk82ZP+PiW2/vjwBYtzIOsbXYtSV+PbD8jv5o+vkfntOYGUqSekk7rwA/CsQNr4optPI75Q/jj2IrwV/4OGzem4x/ciMm2kQBkyu+9YxR6nF+TXQ975UvasKYXS99Lq/HFmXDul+psX5j+ZLgX4cO7H5uz/5F3LciPs994dK4q3+pxlhHR+Oa36GtEyu/v3LJ3N0337okaM3MJUndpl0D8EzgJJZeWFnDq2Jht5Ar58ZHKMVHJM0EDtc4x2YKqCz4hjQ3wMKJ26yfKPFc/uOEKU4dZWTHxLZv636lBvnCvSsXfX/j9uiR9YMBmx6YCLTVuPX2/ug3lht+JUm1a9cAfDMQn/NbSjXBN+3GhbD1heR9/qK2QaoSlHlcS4gNKrwvynucfwxU/vP5jxun3BEY1YwDnPKB07r2CIz0KnAtGnl2b6+dAzyyY4CxI8Ng3a/UcDffuiRYfOVFB158/sgbr4we/eDIi6Nlz3OfN3/G8+fOmPqL+Rd95Kzp5384aME0JUldrF0D8LUALJlf+SsqaYSVmBz3WioLwEGZrzV7FbaYNbQywNZuLbCKkWcbE4BzR2B8aMp5r9ClAbgejTy7t9fOAc6r+3Xrs9QE08//8Jzp53+4mpeUDcmSJFWqXQPwAgCmn9Gc0SfHvYrC24ihObWwiXKrsMn7ry4zbljTbFrvCWAVQ1vhipvqHy13BMapU2Z03BEY+fW9lZzN24o64F4LusXkhd8ou5lIkiSpGdo1AC8C4NwzK39FpU2wAM6ZCMDzKR8yE1He41pqYasRMdltGSqfZzv6MVD+CAwofwxG6giMM2dc1BWrv0nQTa7rfa7W8aqdW7fZuSFMLq37lSRJ6lLFl5+ytQtYxPP/J0yrchU42QpdKgC/9AZcvArgReDB3FejvLvyH7eDMPc5CcP9tOc8C7kG2M4p74e7HywdgotJjsB49x3mX3t7NOfKW4NGT7JVkhXXdlltbbf5tFre1ud2/XuxWw0CwZfC3+WiBbOznos04bMr7ksu/TtBkrpIu64A7wUWMfpm9QG4Ei8fS65+TGet9ISpz2HRu9rTU8DXefedL9Z7BMbZsy7Z3cnhV+3Ful9JkqTe0a4BeBvwv7HtBfjYzOJ3VbLaW8j2F9Pv06nCrCdQgy8BjwBP1XoEBhAt/p1VQUNnlYF0fW/Wq66u/h4XfsPsZiJJkqRmOynrCRTxfQA2D1V2dxKE052gS5kc9/tVzUqNsAM4DbieuDt0Jdbm7v8bIEjVana0JARnHTrbZR5ZMPxKkiT1lnaua/lP4CR+dBdcObf4XYVCb6kV4af3w8e/CfAecHJ9U1QGxgHmXb2CeVevyHou6mDW/bYNa4DVlqwBlqTu1K4rwACfBOAbPyp9V37YLbcdenK8T9Y0K2WtH+LwMnZ4OOu5qEONHR627leSJKkHtXMA/iFwkM174f7HS9859u3Jj1Lufxw274W+vsO58dV5InKBZWRH723ZVWPsHAiTS7c+S5Ik9ZB2DsDjwHUArNoI4d/VN1r4d/E4AOPjQW58daYQiMaODNMt9cBqndTKb4ThV5Ikqae0cwAGGAECAL71WPmV4GLufzx+fSzIjavOtgZg7MhxW1mlkvLqfvuznIskSZJar90DMMATJCF41Ua47c/jRlaVeHp/fH+y8huP80TDZ6gsRFgPrCpY9ytJkqR2PQc43xPABcDjbN47m817YemFcONCWDIfpp8B554Jr7wJLx+Lz/ndPARbX4hf3dd3OLft2ZXf7hIRB5nVIzs2cNnMMNvZqK2lasat+5UkSepRnRKAIQ6vc4FPAI+y9YWTJgJuce8Bn2R8/IdY89utQmDZ2JHhYGTHgEcjqaCRHQOMHRkG634lSZJ6WidsgU4bB35AfH7vLOBzwP8Eduee3517/Lnc8yfn7jf8drdcV2i3QutEeXW/bn2WJEnqYZ20ApzvVWAT8CTwIeB04OfAvwNvAkezm5paLCK3FXrnQMhlK0KmzLw44ympXeSF3yi7mUiSJClrnbYCnPYfwCjwHLCT+AfbnbnHo7nn1TtCcuHG84GVSB2TZd2vJEmSOjoAS/n6yZ0P7NFIStX9guFXkiRJGIDVfawHluf9SpIkqSADsLpNRC4E7xwIM52IsmPdryRJkgoxAKsbheRCT6oGVD0iL/yG2c1EkiRJ7cYArG7VD2A9cG/J2/ocZjgVSZIktSEDsLpZP1gP3CvGDg973q8kSZJKMgCrm0VMNMXyaKRul6r5duuzJEmSCjIAq9uF5I5Gsh64e6VWfiMMv5IkSSrCAKxesAasB+5WHnkkSZKkShmA1QsirAfuStb9SpIkqRoGYPWKCOuBu07qv6V1v5IkSSrLAKxeEpKrB3YrdOcb2THA2JFhsO5XkiRJFTIAq9fkVoHdCt3J8up+3fosSZKkihiA1WsicoFp50BoCO5QeeE3ym4mkiRJ6iQGYPWikFxosh6486SOs7LuV5IkSVUxAKtX9WM9cMdJ1f2C4VeSJElVMgCrl1kP3EE871eSJEn1MgCrl0Wk6oHV3qz7lSRJUr1OyXoCUsZCYBkQ7NwQctmnwmxn08WOvbxv+LV9z7x67NWR047u3315ufunzl30zBnT5r11zgWXT/vZ/l0X575s3a8kSZJqZgCW4u2040k98LyrV2Q9n66z/ycbo33bHwqAi8vdmzi6f/flR/fvZv9Pvgfxim+A4VeSJEl1MABLsX5gcGTHAFM+soApMyvOaSpj19+u3f36oT0BALfcCQuXwrxLYeqM4i86Ogojz8LQVtj0AMTh93vNn60kSZK6mTXAUixioimWRyM1yoGnN0avH9qziFPeB/cMwO//KVxxU+nwC/HzV9wU33/PAJzyfoDfBq5pwbQlSZLUpQzA0qSQ3NFIqbNmVaNjL+8bfnHbQwEAd6+HxTeceNPys47/KGTxDXD3g8mj7cCpTZiuJEmSeoABWDreGgDPB67fa/ueeRWItz0XC7+VfA3i199yZ/LoqoZMUJIkST3HACwdLyJ3xqznA9fn2KsjpwFxzW++dNB95I34o9BzaZPjLGvIBCVJktRzDMDSiSKsB67bxFFH8y4tflM6+KavC5kcZ1VdE5MkSVLPsgu0VFgILBs7Mhx4NFKdCjW8Khd2Kx1HkiRJzTIN+FXgEmAOcCHwAnAA2AP8BHg1o7nVzAAsFbcGCJJaYEOwVLNTiWu3l1FkBf9r4d9MXF+y6IJnZs87762PXf7RaXPmz/BMMkmSWqcP+ATwKIV3Cwd5j98DPgn8EBhv6swaxAAsFRcRh+DVng/cAkntby2rw2pn1xB3767Ynt37Lt+zex+Pfm8by+/oj26+dUnQnKlJkqSUefT1RYyPzwRg6YVw40JYMh+mnwHnngmvvAkvH4PtL8LmIdj6wknA94GDwHXASIbzr4gBWCotJF61CkZ2bOCymWG2s+lWxRpfFRfkPkcNnUfrjRP/kiXMeB7N8jXgi0DcxXvh0riWu9R29qOjMPIsDG2FTQ/wyPrB4Lk9B3Z/4d6Vi1oz5eb77Ir7+MuBe/jsivsA+MuBewreU8tzxe5NpF+TzEOSJOKfdyPGx+HGBfCFj8OVc0+867yz4o9Fs+Dz18HT++EbP4LNe2cD+4h/RnuipTOvUl/WE5A6xCAQzLt6hVuhK/TYNz8VX5Rb0c3vCF3pvYVFqetCf/lGRa6zkmwVWpP7HGY0j2a4GniKU95X/BzocnZtgXUr4d13uPX2/ug3lnf+SvBnV9zH+Pg4fX19jI/H//n7+vpOCKa1PFfsvdKS16TnYQguLPXLA39WktTt4vALsPbWONhW6/7HYdXG5FFAG4dgV4ClykzUA7sVuoGqCb/Hi3Kfg7yvB0WuE6srGBNO/Es7KnLdKPnzCpvwHq30AeApoHz4LbX1ffENcPeDcN8KNj40GCz4L3OHO7kmOB0605oRRAuF3/z3SkK4IViSeto8kp9t/uj62sIvxK/72c/hW4+RG+8C2nQ7tAFYqkxErh5450DI9Xd5PFLdag+/kDuruYCgyHViWYnnS7221uCc/3z6Ov89Cr1PWOJ921kcUm+5s7aV37TFN8TjbHqAf37mp692cgCuV7FQW+6+JHAnXysUwiVJPakPeByobOV3yh/Gn8e+Xfj58Lfgw6cnK8GPA3Npw8ZYBmCpciG5euCdG0Iu+1SY7Ww6xdHRxhxhdHQ0uRoqcVdU5LoSQZFrqD04Q+nwXEz+ayLaY8t2peJDmxcuLX1XpbXfC5fCpgc4OPLSaXXOKzPlwmu5ldhKw2++9Jjpbdfl3ruaOmOpC4TU9nd1p4ko/gtk9aZPALO5cUHtK7/5Pn8dbP1pUhP8CeAHjRm4cQzAUnX6gfGxI8N4PnBpU+cueubo/t2XM/LsiQE4P/jkPy60IjzybHK18cQnGyIqcl1OUOQ6USo8l7M673NalLpu9Zbtcn4PiBteFVNN47PcOHt277u8nkl1qvy633JBONnenFzX+36GYHW5kN4IvxB/DxrEEKxJjwJxw6tyktXfSnzh47B5bzL+ybVMrJkMwFL1+oFB64FLO2PavLeO7t8dd/O94qb6Bxzamly1W1OFqMh1OSGV/dCVjBnkfT0ock2ZcaPUdXMbhRVb+U/X/VYShBuxgyBDhQJlujtzEmrLbU2uZttyJaE1XQdsLbB6VEDu78vbrl3CbdcuyXY2TTR06BD3rv8uxP/MIZ1bYqPGmQmcxNILC3d7Tqsm/EI83tILkyOSZgKHa5xjUxiApepFTJwP7NFIxZxzweXT9v/ke7DpAbi0//ha0GprfndticeJ/bhRc2xjEfGfsajEPUGRa2jelu30fEqtOpfnec8VS4JqfnCuRjWruvWuIEsdZBC6P/wCLJw1i6/c8ekkBK8G/hF4P/H3i1UVDLGW+O/9HwNvN2ueaqmbgfic31LSdb/VBOEbF8LWF5L3+YtaJtgsBmCpNiGwbOzIsPXARZwx/YKLL1hye7Rv+0MB61bG3XzrOQondg3d+403YvI4pKjC+wtdlxMUuU40o1HY8Qy/Jyi3ClxPEK2lftjgqx4QAiyYNbPrw29i4axZ3HbtEh7etj0Cnqzy5auYDMrXADsaOTdl4loAlswvf2explelTI57LQZgqWusAQLrgYub+6u3BmOHh3a/fmjPIu5bEXfzXbg0ruksta316Ghc8zu0Nb3y+3W67xtulPtcbrW3Ge+Zf12JoMg11FfrrCYp1BHacCtNlqCsveP2bGfSYs8dObKb5O/o2r8nP0X8PflLTZ+wmmkBANPPKH1XLeH3+HEX1DZA8xiApdpFWA9c1uLfWbXouS1/Ef3bnn8M2PRAOtBWYwnJubLdI6LzarCiItf5BjEEVyW/HrcRDL9SQSG58PuVOz6d7Uxa7Hs7fhz9y4GDAae8r/wZ7WlTZ8QfV9wUlzStWwnvvvNF4qaU3fa9OTFIvOU7zHgezbQIgHPPbM7o50wE4EXNeYPaGYCl+kRYD1zWv4+9FADDwN8SnzlnvVFnHWukDmP4lQoKSDW9WjhrVrazaaEXX3pp+MEnngyA0uE33ZiwULnK4hvikqb7VgBsB06jO79HQ/xnZTWT5UlhdlMpKajga8sK3PMKcC4/+zlMK7MKXIvXjiVXuxs/eH0MwFL9QnL1wG6FPtHIjgHGjgwDvMpknei92c1Iak/pVeBalDu7N91Aq1wY9hxgdameaXqV759eePFV4GJuubOy8Js8LhaCb7kz2dF1FXFDrW7zBJMhMn0kYSPDcFDB1woF10Kvq8VzwLmMvtmcAPzyRADe2/jB62MAlhpjDRCM7BgAMATnjOwYIPl3wuQ3DfWKo6ONOcLo6CgAZ5x56mvAOfUP2H3KnRWc/7jUirDnAKtLhdBbTa/S9r38ymlAXPNbSKGV3+VnFQ/BC5cmAXgZ3RmAi8kPw1HucZB3XzODa76owNcqOanhIuDP2fYCfGxmo+cE219MrrY1fvD6GIClxoiY2AptPTDA2OHh/PAbZTcbtdhfA0m11/kAABzASURBVAEjzzYmAI88C8DsedMP0oEBuNB5u5Xc22wGXfWQkB5tepXYNTJyORA3vCql0i79k+OsonN2dQUVfK1QcC0m2SJdq6jA1yoJroW+Vot9AGwegs9f16AhUzYPJVffb/zg9TEAS40T5j5bDwyM7NiQXK6hfetm1BxxYh3aGjdNqdfQVgBmzzvvrfoHaw+lztqt5bn8r5cK2ck9xc4U9hxgdZmQHm16VVCxX0pWezxdI365WZ2gzNdaueKaFuU+tzK4Nsph4D22vnAST++HK+c2buSn9ydnAL+Xe5+2Uvo7pKRaDALBvKtX9OxW6Lytz/4903s+APwCgHsGajv/ObFrS9JshXv+7L8Oz5k/o2O3ViQrru2y2tpu82k3qV8Q+HdY5wro4brftOXrvhpfVBJ0yzXCOvG+Uv+PBGW+1urgGhX42hMFng8ovbob0R27224Cvs+NC+Dhz5W/e8ofxp/LHY1025/D5r0ANwM/qG+KjecKsNR4E/XAvbgVOi/89mc5F2Xml8RHV21n3cq4Y2gtIXjXlvi4DWD5Hf3RnPkzgkZOUlLXM/y2xmDuc9DE94gKfK1QcC33mmoUCsAR3RF8Ez8EDrJ572zuf7z8VuhKzgS+//E4/Pb1HWZ8/IcNmWWDGYClxovI1QPvHAi5bEXYUyHYul/lPAV8nXff+SL3rYg7hi5cGteNldo6d3Q0rvkd2jpxZvSvXDJ39823LglaMusmStf3Zr3q6uqvekAIvdv0qi6VNME6XlDiuajA15odXJshojt/rhkHrgP2sWoj/OznEP5W7aOFfwffeiw38niQG7/tGICl5giJt/UEvVQPnBd+w+xmojbxJeAR4Ck2PTARaKtx6+390W8s7/zwm0hCcNahs13mITVJSI83vWqxZLdXlOUkmiSiO4Nv2gjxLzEivvUYfPj02ppi3f/4ZPiNxxtp0PwazroWqbnGIT4Wqdvrga37VQkfAC4GLgV+L++5AOCiBbMnvjBv/oznz50x9RfzL/rIWdPP//CcFs1ROo41wB0rJNX0auGsWdnOpk1UVQM88aKzSr+mshrgThXkPkcZzqHVlpH88964AL7w8coaYz29H77xo6TmF+J/d/lNwdqKK8BSc/UDg91eD+x5vyrjl8Cu3Md38p4bBILfXPFr6RB8UQvnJql7BOTC723XLjH8VqNc2O09UdYTyMATwAXA42zeO5vNe2HphXDjQlgyH6afAeeeCa+8CS8fi8/53TyUdHtOan4D2njlN2EAlporIlUPfP1dG8rc3pnc+ixJagM2vSrn6GjpPgxJzW+6E3SxcWJDpW5TxxkB5gKfAB5l6wsnTQTc4t4DPplreNWWNb/5Tsp6AlIPCMn9JnHnhjDLeTSF4VeS1AYGwaZXxSyeN+8ZIG4yWEh65beSY5Amx9lY9+TUbsaJjy46GZgFfA74n8Du3PO7c48/l3v+5Nz9HRF+wQAstcoagLEjw+nA2PHytj6HGU5FktS7QnI1mza9KuyC6ee+BcQd9ovJD7ultkNPjtPWtZ6q26vAJuBPgT8gLu37g9zjTbnnO44BWGqNiFyXxJEdA4wdHs52Ng0wdnjYul9JUtZCUk2vVNgVF86fBsTd+HdtKX7jI29MfhSza0u6q/+PGzZJtaP/AEaB54CdxD/P7sw9Hs0933EMwFLrROSC4siOzq8F3jkQJpdufZYkZSHAplcVmX/eeRevXPZrEQDrVpYOwaXs2hK/PnYN8HYDpie1lAFYaq0QiDp9K3Rq7hGGX0lSNmx6VYXfvvqq4L/Mmb2bd9+B+1bAd/4E/ukH6YZWhR0dje/7zp/Er3v3HYD/B9jRgmlLDWcXaKn11gBBEiI77XzgvLrf/iznIknqWYbfGoSfvm3R93b8OHrwiScDNj2Q3spcjQj4b8SNkKLGzU5qDQOw1HoRuaOROu18YOt+JUltICTX9MrwW73fvvqq4KqPXnjgX4/82xujr4998KcvjZY9e/2j5814fsbZU37xv37k/LO2PfevwcPbtkO8/Txq9nylRjMAS9kIc59Xj+zYwGUzwxK3to9U7bJ1v5KkLITY9Kpu50+dOuf8qVOreclESL7t2iUMHTrE3kOHA+KVeHeDqaNYAyxlJ6SD6oFHdgwwdmQYrPuVJGUjwKZXbSG18h7gzwTqMAZgKVu5rtDtfTRSXt2vW58lSVmw7rdNLJw1K70CvxpDsDqIAVjKVkQuUO4cCNs2BOeF3yi7mUiSepTht80snDUr/d9iNbm6bKndGYCl7IXkQmU7ng+8c0OYXFr3K0nKQohNr9pS3i8kVmc5F6lSBmCpPfTThvXAqbpfMPxKklovxKZXbe22a5ewYNZMiH9JMZjtbKTyDMBS+2iremDrfiVJGQuw6VVHWHvH7cllgL8wV5szAEvtIyJVD5y1vPAbZjcTSVKPsu63g9gUS53CACy1l5BcPXCq9rblDL+SpIwZfjuMTbHUKQzAUvvpB8iqHjhv63PY8glIknpdiE2vOpJNsdQJDMBSe+qH1tcDjx0etu5XkpSlEJtedTSbYqndGYCl9hQx0RSrdUcjpWqP3fosSWq1AJtedQWbYqmdGYCl9hWSOxqpFfXAqZXfCL9ZSZJaz7rfLmJTLLUrA7DU3tZA8+uB8+p++5v2RpIkFWb47TI2xVK7MgBL7S2iyecDW/crScpYiE2vupJNsdSODMBS+wtpYj1wakzrfiVJrRZi06uuZlMstRsDsNQZQnL1wI3cCj2yY4CxI8Ng3a8kqfUCbHrVE2yKpXZiAJY6R0O3QufV/br1WZLUatb99hCbYqldGIClzhGRC6o7B8K6Q3Be+I3qGkySpOoYfnuMTbHULgzAUmcJyYXVeuqBU8cqWfcrSWq1EJte9SSbYqkdGIClztNPHfXAqbpfMPxKklorxKZXPc2mWMqaAVjqTDXVA3veryQpQyE2vRI2xVK2DMBSZ4pI1QNXyrpfSVKGJsKvW59lUyxlxQAsda6QXIhN1fQWlRd+y79AkqTGsemVjmNTLGXFACx1tn6AcvXAeVufw+ZPS5KkCSEQLJg10/Cr49gUS1kwAEudrx+K1wOPHR72vF9JUlZCUlufpXw2xVKrGYClzhcx0RTrxKORUjXCbn2WJLVSiE2vVAGbYqmVDMBSdwjJHY2UrgdOrfxG+A1FktRaNr1SxWyKpVYxAEvdYw1M1gN75JEkKUM2vVJVbIqlVjkl6wlIapiIOOgO5jXEsu5XktRKITa9Ug2SPy8Pb9sO8S9R+rKcj7qTK8BSd4k4PvBa9ytJaqUQm16pDqmmWGBTLDWBAVjqPiFxEI4w/EqSWifEpldqAJtiqZkMwFJ36se6X0lSa9n0Sg1jUyw1iwFYkiRJ9bLplRrKplhqFgOwJEmSTgV+HfgKMF7Bx1dy95+KTa/UJHm/ULEeWA1hAJYkSept1wBvAY8Bqyp8zarc/W8By8CmV2oOm2Kp0TwGSZIktcyBF0eH//mZn756cOSl0/bs3nd5ufsvWXTBM7PnnffWxy7/6LQ582dc3Io59pivAV8E4JY7YeFSmHcpTJ1R/BVHR2HkWRjaCpseAAjOPevM3QtnzVrUigm3yvJ1X+WRu7/M8nVfBeCRu79c8J5aniv2fon0a5J59LK1d9zOqvUPsffQ4YB4x0GY6YTU0TxbS5KUpUEg+FL4u1y0YHbWc1GT/cMj26ONDw0Gtb5++R390c23Lqn59dX47Ir7kstu/lnpauApTnkf3L0eFt9Q/Qi7tsC6lfDuO6xc9mvRb199VdDoSWZh+bqvMj4+Tl9fH+Pj4wD09fWdEExrea7U+yWS16Tn0esheOjQIe5d/93kocc8qmauAEuSpKb7xlce3P3cnv0BUPNK4yPrB4Pn9hzY/YV7V3bVSmNGTgWeAsqH3+VnxZ8feePE5xbfAHc/CPet4MEnngyu+uiFB86fOnVOw2fbQunQmdasIJoffvPfKwnhvR6Ck6ZYD2/bDnFTrCj3IVXFACxJkprq+xu3R8/t2R9UvdI4dUb8ccVNcGk/rFvJc3v2L/qHR7ZHv7G8NSvBXewqIP5lRC0rv2mLb4jH2fQA/3rk3944f+rUBkyvcxUKtJXem4Tu8fHxgiG81yV15rkQPEh379BQk9gES5IkNc2BF0eHH1mf2/ZcLPwuP+v4j0KSlUZg40ODwcv/9rMDzZlxz1gGxCvxpRT775EvN87o62MfrGdSWSsXXsfHx4+r1a329aWUW+Et9N7L13215Hy6kU2xVC8DsCRJapp/fuanrwLFVxoLBaxSIfiWOwF48fkjBfbjqgpxt+d5lxa/o9Lwmxrnpy+NXlTPpDpZft1vJZItzuma32rfr1wo70Zr77g9CcEB1gKrSgZgSZLUNAdHXjoNKLzSmA5Yj7xxfI1psfCVG+eV0aPtuNIYEJ+RG9IpP5QXq8EuVfdbzTgdpFzjqvT25FKBs9pty4/c/eXjGl7lzyEJyZW8dy9JHbu1mk75/01twQAsSZKaZuKoo1IrjemQVS5w5cYZebGtVxpX5z6SMNyZKg2/AiZXc1vVqCp/9bjXJE2xclYT/wJKKssmWJIkqfkKrRDWErA6b6UxCcNrco/D7KZSBcNvQUlH5mINquoJovkrvZV0fu7F4JtmUyzVwgAsSZJUuaDG51anPq8pcR8kDaqqU+q91SGqrQNWHIKHDh1i76HDEIfg/oynpDZnAJYkZe75vQeznoLaRRW1p3+/4cmJ6+eHa/szVMGfvdpa+pa2uvwtakfpc3lr7facLwm8vb6aW6uHt21Pwi/AE1nORZ3BACxJytzfDzwJA1nPQpmrouvw83sPZvWLk6jM80GFY5T6Qb3cezTidc0I9qpSucZbKm3o0KFk+zPEOyvC7GajTmEAliRlqdxWUHW+oKK78jtCVyaqci7VeoLqfqAOKP7PGxH/eY/qmI/aQHoVuBbFVnyTmt9qxu311WPDr2phAJYkZSnCQNDtyv80X3v47YRav4h2Dr5HRxvTWOzoKACnfeCDbwBVHCDcWwqt+KZDbzr8llsR7vXV49TW5wjDr6pgAJYkSdmpLfx2goh2Dr6wFljFyLONCcAjzwIwY8qUV+jQAJxf31vqPN96V4HLjZUOtL0edAt5eNv29OpvJ/wiTG3Ec4AlSVLz5VYIGzjO/sYM2HAR8Q/k/bRv+IWkBnloa2NGy40z4+wpv2jMgO2h1Fm7tTxXydcrDbm9eg5wXvi1jEZV86wsSZLUTF8BVvHHD8EVNx3/TLmmV4VWhP/pB/BntwP8V+A7jZliTzoVeAuAewZg8Q21j7RrC9y3AoBv/8F/O3D+1Klz6p9edpIV13YJlu02nywNHTrEveu/mzy07lc1cQVYkiQ1U1NWGoFnGzNgz3obWALAupVxiK3Fri3x64GVy34t6vTwq/Zm0ys1givAkiSpmZqy0gh8EPhlnXMTfA34IgC33AkLl8K8S0vXBR8djWt+h7bCpgcAmDf93N1f/8z/vqgF822Jdll1bZd5tIPU1ucI635VBwOwJElqtmuA7Zzyfrj7wdpCcLLS+O47yXg7GjvFnnY18FQdr48WzJoZrL3j9kbNpy0sX/fVtgid7TKPLOXV/ZpfVBf/AEmSpFZoyEoj8HXgS02eay/6AHAxcCnwexXc/9fE29CHgR8AwW3XLuG2a5c0b4bqSQWaXoXZzUbdwAAsSZJapd6VxiV1vl7NEQCDAIZgNZJNr9QMngMsSZJaZQdx7W6tK43W/LaniLgmc/DhbdtZMGsmC2fNynhK6gau/KoZXAGWJElSI4TAaoCv3PFpQ7DqYtMrNcvJWU9AkiRJXSEi3g4959U33+S6Sy7JdjbqWHl1v3OznIu6jwFYkiRJjfJXQPDam8fmAK4Cq2oFml5F2c1G3cgALEmSpEY6CHxm76HDgCFYlRs6dIj7/+EHyUPrftUUJ2U9AUmSJHWViFzN5sPbtjN06FC2s1HHsOmVWsEVYEmSJDXaAeJmq8HgniEWzJrJtDPPzHhKamcPb9vO4J4hiH+B8vvZzkbdzAAsSZKkZoiwKZYqYNMrtZIBWJIkSc1iUyyVZNMrtZoBWJIkSc1kUywVZNMrZcEmWJIkSWqmCJtiqQCbXikLrgBLkiSp2Q5gUyyl2PRKWTEAS5IkqRUibIolbHqlbBmAJUmS1Co2xepxNr1S1gzAkiRJaiWbYvUom16pHdgES5IkSa0UYVOsnnTv+u8ml4ZfZcYVYEmSJLXaAWyK1VMe3rad3Kp/hE2vlCEDsCRJkrIQYVOsnmDTK7UTA7AkSZKyYlOsLpcXfvuJV/+lzBiAJUmSlCWbYnWpAk2v/kd2s+la04DrgN8Bfhe4C1gCXAKcBbwBvJ3Z7NpQX9YTkCRJUs8LgEGAr9zxaUNwl1i+7qvJpU2vGqsP+ATwKJU1NX4P+CTwQ2C8ifPqCAZgSZIktYMQWA2G4G6Q2vockev6rYaYR19fxPj4TACWXgg3LoQl82H6GXDumfDKm/DyMdj+Imwegq0vJK89SLxaPJLR3NuCAViSJEntYhAIFsyaydo7bs96LqpRXt2veaNxlhH/QgFuXABf+DhcWUFPsaf3wzd+BJv3Jl8JgCeaMsMOYA2wJEmS2sVEU6yhQ4fsDN2BbHrVNJPhd+2t8LUVcP6Uyl55/hRYcTmc9gEY/FeAz+TGOtiEebY9A7AkSZLayUHgM6+9eQywKVYnselV08wDdgPwR9fDl2+qbZQr58Iv/z/4yQjEIfhvgLGGzLCDuCVBkiRJ7SbAplgdx6ZXTdEH7Adms/ZW+Px1he+a8ofHPx77dvER738cVm2E+JdNc+mxxliVdA2TJEmSWikiDlHcu/67DB06lO1sVFZq23OE4beRPgHM5sYFlYffYl9LfP66uIYYZufG7ykGYEmSJLWjkFwIToUrtaECdb9qnEeBuOFVIemgO/bt41d+S4XgyfEerWt2HcgALEmSpHYVAtHeQ4dZtf6hrOeiAgy/TTUTOImlF5bv9pwOvqW2PyeunBsfoRTnwZm1T7HzGIAlSZLUztYA7D102JXgNjN06FD6v8kaki7FapSbgfic32LyV32rMTnuzbUN0JkMwJIkSWpnEbmVxYe3bbceuI3cu/67yaVNr5rjWgCWzG/O6JPjXtucN2hPBmBJkiS1uwibYrUVm161xAIApp9R3auS2t9yK8OT4y6o7g062ylZT0CSJEmqQJj7vPrhbdtZeIdHI9Xq9Z///LV/e/31t8feevv9L42NzSh3/3lTpoxOOe3Ud84/++xTzz799HOs+22ZRQCce2blryjV+CrfORMBeFHlL+p8BmBJkiR1ihBYtvfQ4WDV+odYe8ftWc+n43xvx4+jB594MgDOqeJlEyH5ktmzoz0HDwa5h4bf5ghyn/cCC/jZz2FaBavA+R2hy3ntWHK1u6rZdTgDsCRJkjrJGiBImmLddu2SrOfTMcLvPrz7Xw7kwustd8LCpTDvUphaYhH46CiMPAtDW2HTA+TC727g7+mcplcBk6EyzGwWk3NIXy8r8jzAcwCMvlk+AFcbfgFengjAeyt7QXcwAEuSJKmTRMQrj4MPb9vOglkzWTjL7dDlfG/Hj6N/OXAw4JT3wd3rYfENlb1w6oz444qb4NJ+WLcS3n1nEfD5pk648VanPq/JXYcNGjsocF0q2JYT5T6/DvwK216Aj5U4qaiW8Auw/cXkaltVs+twfVlPQJIkSapBSC7UfOWOTxuCS3jxpZeGv/xXf3MxAPcMFA6/y886/vEjbxQebNcWuG9F8ug04O1GzbOJAmCwyHMR8ASFw3BQ4LoRwZbce+Z/LX0N8fm8h1h6Ifz9/1F81FoD8G/+37D1BYBZwOHKX9jZDMCSJEnqVCGwesGsmdYDl/DQk1ujgad2BNxyJ/z+n554Q374TRQLwd/5E9j0AMD1wD82aJrNNl7BPVHuc1Dl2FHqupJgW43/BE7iR3fBlXNPfLZc06tigfjp/fDxbwK8B5xcx/w6jlugJUmS1KlCbIpV1r6XXzkNiGt+86XDbxJ4k68tP6twCF64NAnAy2ivABwUuF524m0VvR6aG2wr9Ung+3zjR/Dw5xo36jd+lB6/p7gCLEmSpE4WkNveetu1S2yKVcDydV+NL/778IkNr5Kwmx90i30d4sZYf3Bx8qgVeSIocF3PVuRikq7WUYPGa4Q+YD8wm7W3wuevq3/E+x+HVRuhr+8w4+OzqWx1vGu4AixJkqROFmFTrMoU6vZcbJtztePUJihw3awa29UlxltDtt2hSxkHrgP2sWoj/OznEP5W7aOFfwffeiw38nhAj4VfMABLkiSp80XEIWb1veu/a1Os7AUFrlvZPKqQ1QW+FhH/uank9VkaIf53FvGtx+DDp9e2Enz/45PhNx5vpEHz6ygGYEmSJHWDMPd59cPbtrPwDgNwzUptfz5RurtyUOU7RanrVtbYRnRG8E17giQEr9oIW38KX/h44cZY+Z7eH9f8bp447jdg8t93z7EGWJIkSd1kEAjsDD1poga4kkBbqClWuftOFKWus2oelS8kXoXutOCbbx7wODAbgKUXwo0LYcl8mH4GnHsmvPImvHwsPud381By1FFS8xvQoyu/CQOwJEmSukmATbGOU3EArjT8Hn9vf+qrUXUzU436gE8AjwInVXD/e8Tdnn9ID9b85nMLtCRJkrpJhE2xqldN+D1e1OCZqLxx4AfE5/fOBG4GrgUWAIuA3cBeYBvwfeBwNtNsTwZgSZIkdZsIm2JVrvbwq+y9CmwCngQ+BJwO/Bz4d+BN4Gh2U2tPBmBJkiR1ozD32aZYiaOjjTnC6OhocjVU/2Cq038Ao7kPVaCSPeOSJElSJwqBaO+hw6xa/1DWc8nM4nnzngFg5NkTn8xvZrX8rOM/CpkcZ2PDJim1iAFYkiRJ3WwNwN5Dh3l42/as55KJC6af+xYAQ1sbM+DkOD17lI46l12gJUmS1O0Cergz9IsvvTT85b/6m4sBuGcAFt9Q+2C7tsB9K5JHpwFv1zs/qZVOznoCkiRJUpMdIF74CfYeOsyCWTOZduaZGU+pdc4+/fRzTjn55GjPwYNzeOrv4IKPwXkXVD/Qri2wbiW8958A19Dj58mqMxmAJUmS1AsiciH41Tff5LpLLsl4Oq118cyPzHnuyJHdr7z++nk8OQD/fgzefQc+cCp86PTiLzw6Cnu3webvwF9+OQm/Xwf+3xZNXWoot0BLkiSplwwCwYJZM1l7x+1Zz6XlVj/0cLTn4MGgjiGWAE81aDpSy9kES5IkSb2kH3qzKdbQoUPkwu8w8BVgbYUvXQtcT1zza/hVR3MFWJIkSb0moAebYi1f99Xkcg2T5yRLPcUaYEmSJPWaA/RYU6xV6x/itTePgeFXPc4VYEmSJPWqEFgNsGDWzGxn0mR7Dx1OLv35X5IkSZJ61CAw3iMfQWP+lUmdy98ASZIkqdcFWU+gRaKsJyBJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJKu7/B/wCuXtl+rJ5AAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "id": "eb31d63f", + "metadata": {}, + "source": [ + "Another example that contracts to 3-way tensor (3 free indices are created) is as follows:\n", + "![TestNetwork3.png](attachment:TestNetwork3.png)\n", + "\n", + "The optimal contraction Order is:[2,1,3]" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "fbaf95c0", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(2, 2, 2)" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# --------------- Network-1 --------------- # \n", + "# Leading order cost (guaranteed optimal): (Ind1^4)\n", + "Ind1 = 2\n", + "T0 = np.random.rand(Ind1,Ind1,Ind1)\n", + "T1 = np.random.rand(Ind1,Ind1,Ind1)\n", + "T2 = np.random.rand(Ind1,Ind1,Ind1)\n", + "\n", + "# TTv1.0.5.0P$U*28?G@(0LJY^Y6.c^popM'')'''':{k}K$\n", + "tensors = [T0,T1,T2]\n", + "connects = [[-3,2,1],[2,3,1],[3,-2,-1]]\n", + "con_order = [2,1,3]\n", + "T1 = ncon(tensors,connects,con_order)\n", + "T1.shape\n" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "id": "ccc4d69b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[[1.34586949, 1.27159154],\n", + " [0.50705741, 0.52421329]],\n", + "\n", + " [[1.28039365, 1.11050855],\n", + " [1.03176317, 0.86728339]]])" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "T1" + ] + }, + { + "attachments": { + "TestNetwork4.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIIAAAHFCAYAAACO8FIfAAAgAElEQVR4nOzdfZQc9X3n+/eAwMAIgw2SgARJCBFsJIxRwBcsQDWOefADyjF7RJbL2rH3sDde4dysExOILxyVAicXLnF8szHEe6wT7LBYCdrAWtiYp/UUegDW5o6CrZEjMwg0ygosLPNghLEMzP2jumZqWv04091V1f1+ndOe7umqX/+Ep2e6P/37fb8gSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSVIdfVlPQJIkSZLa6ETgo8B5wCLgTGALMAxsAu4HdmU2O0mSJEmSJE1LH/AR4C1grIHLW6Xj/aBcUtfzF50kSZKkbrKAvr6IsbETATj/FLhoMSxdCMe9E+YcBT99BV54FTaPwENbYePTybk7gQ8BOzKauyS1nUGQJEmSpG6xDIgAuGgR/MnF8IGT6p/1/WfhSw/CQ8PJdwLg0bbMUJIyZhAkSZIkqRtMhEA3fgI+96HmR/jK9+CGe5NbAYZBkrrQwVlPQJIkSZKmaQFxAWj4ow/Dn35kaqN84CR449fwP3cAfBq4E3ipJTOUpJxwRZAkSZKkIusDngXm1VwJ9K4/nHz7pb+pPuLEyqCdwEnEBaUlqSsclPUEJEmSJGkaLgHmcdGixkOgat9LfO5DcY0hmFcaX5K6hkGQJEmSpCL7NhAXhq4kHfi89DeTVwLVCoMmxvv2tGYnSTljECRJkiSpqE4EDuL8U+p3B0sHQLW2hSU+cFLcej5+z3Ti1KcoSfliECRJkiSpqD4KwEWLqx9RvgqoGRPjfnRqA0hS/hgESZIkSSqq8wBYurA9o0+Me157HkCSOs8gSJIkSVJRLQLguHc2d1ZSG6jeSqGJcRc19wCSlF8GQZIkSZKK6kwA5hzV+Bm1CkSXmzUeBJ3Z+EmSlG8GQZIkSZKKagsAP/tFY0eXdxCr58VXJz+OJHUBgyBJkiRJRTUMwO5X6h/ZbAgE8MJ4EDTc1KwkKccMgiRJkiQV1ab4f5+ufdRUQiCAzSOTH0eSuoBBkCRJkqSiuh+Ah7a2Z/SJce9vzwNIUuf1ZT0BSZIkSZqGt4CDePCP4QMnHXhvveLQ1VYIff9ZuPivAN4GDp7eFCUpP1wRJEmSJKnIPg7Alx5s7agT4328tQNLUrZcESRJkiSpyPqAZ4F53PgJ+NyHpj/iV74HN9wLfX27GBubB4xNf1BJygeXOEqSJEkquvXAHzH4L/DGryF4z9RHCr8F//d4SaAlwEvTn54k5YdBkCRJkqSiOwOYD8znf+6AmYdVrhdUz1e+lw6BAuCfWzQ/ScoNgyBJkiRJRRYAg8RB0NeB9zP4L7BlFOYdA7/xrvojfP9Z+ON/hDUb0mM+2oa5SlLmrBEkSZIkqahCYFXp+urS7QXA94B5AJx/Cly0GJYuhOPeCXOOgp++Ai+8CptH4hbxG5+OR4hrAgXAjo7+KyRJkiRJklRTSFzEeax0Pa0P+Ahxa/mxBi5vlY73g3JJkiRJkqScCakeApU7EfgD4E5gqHTOUOn2H5TulyRJkiRJUg4N0ngIJEmSJEmSpIJKh0BBtlORJEmSJElSOwRMhECDGAJJkiRJkiR1pYCJVUCD2U5FkiRJkiRJrRYweRuYIZAkSZIkSVIXCTgw/ElfJEmSJEmSVGABtcMfu4NJkiRJkiR1iUZCIFcDSZIkSZIkdYl6YVCY2cwkSZIkSZLUUgGuBpKkjjko6wlIkiRJ6nlRle+v7uQkJKkX9GU9AUmSJGkKbCU+dY+Sn+1WARP/X0al22m+X5EkSZIkqcc1WmDYS/VLHoK0kAPnk/5emMWkJKnbmbBLkiSpSEJgFcA14SeznUlB3RremVxdTXZhS0jp/8cK80ju872KJLWBv1wlSZJUFCGpEOjURfOynU1BbR/emXUYFFI9BEoEVK8bJEmaBotFS2pGP/A7wJ/T2LLzPy8d35/FZCVJXSWkFB4sX3GBIdA0nLpoXno11So6GwSF1A+BwBBIktrGFUGSGvVBYPM0z3+8RXORJPWWgFINmeUrLmD55RdkO5susf7uDaxftyG5OUD7w5dBJopBd+LxJEkVGARJasStwBcAuHQlLD4fFpwBx5xQ/Yy9u2HHU7B1I9x3e/LdvwSuafNcJUndJcAQqG06GAYZAklSThgESarnXOAxZhwC130TllzY/AhDD8PNV8Kb+wGWAo+1doqSpC42CASGQO1za3gn24d3QhzODLR4+IB4K1hQGn81hkCSlCmDIEm19AOvAXD9uuoh0GVHT1y/5+XKxww9DDetSG4dDrzRojlKkrrXIBCU1bRRG5SFQR8HzgGWATc0cPqNwKPAE8C+1PcDJtrCR7Q+ZJIkTYHFoiXVcg4QbwdrJASqdDux5MJ4nNhpLZmdJKmbhZS2EhkCtV/Zf+PXgEdoLASidNwjpfPOLX0vZCIEWo0hkCTlxoysJyAp15YBcU2gSiqtBLrs6PhSaWXQ4vOTekFnAEOtnKgkqauEpNrEqzPmLTh+y84dzwfAdGoCPgb8E/BvSkdk0Z5eklSDQZCkWuJPAhecUfuoatvByk2M8yngjqlOSpLU1UJsE99x99+7Odq54/mg6ZqAx5wQX87+CJwxkNQE/DfEW8EexRBIknLHIEhSfdU+CWw0AKo3jiRJsYBUCGRx6M54bmT3tnu+ORgAtUOgejUBl1wI192V1AQMgI+0dqaSpFawRpCk1ki2hEHzAZEkSTHbxGfgn5/8yR7AmoCS1CMMgiRJkpQHhkAZ2bnj+ZlA4zUB03UBK5kYp87ecklSFgyCesOYFy9TvDSukReGE4Ic/Ns6eQnr/weUpJ4WUmoTbwjUeT/a8sxZQLtqAkqScsYaQd0vyHoCkiRJNYTYISwfrAkoST3BIKj7RcRtO1cBXPvlJzKdjIrlls+f05Zx5y5cwhVX396WsfNi0wNr2PzgGoifg2Gmk5Gk/AoxBCqWegWjJUm559aw3hASvxll7W0rax4oNSVdIFrjUiEQwECWc5GkHAuxTbwkSR1nENQ7BgBGR4bY9MCaesdKk+3dXfv+JAyqFwqVxjns8CO79iPE0ZGhdAi0Osu5SFKOBdgmvpiaqwkoScohg6DeMgCw+cE1jI4MZT0XFcCC9577JAA7nqp8QHpJeCNLxUvjvGvW3J+2Yn55VBYChdnNRJJybRAMgSRJyoJBUG+JKK1QSL1Zlao67sT3vAbA1o3VDyoPfWrVCyiN8+7Zc3853bnl0aYHJoWsYYZTkaQ8MwSSJClDBkG9JwQit4ipEQsXnT8bgPtuh6GHqx+YLBOvFQINPRyPAww/+d2ju21VmnWBlGP9wO8Afw6MNXD589Lx/VlMVl0vxDbxxWNNQEnqKgZBvWl8VZBhkGo5fu5pp13wsc9GANx8Ze0wqJahh+PzgaOPOSEaHRmav/a2lV3181e2JSzKbibSJB8EXgMeAW5o8JwbSse/BpzbpnmpN4XYISzfWlwTEHh2ulOSJLWeQVBvikiFQd22MkOtde6HPx3M+62zt/DmfrhpBdzxRfjBd+u/WNy7Oz7uji/G5725n3m/dfaWP7j+nmDpxVcB8c/f2ttWFv5nMBVoWRdIeXIrsBmAS1fCn62Fr22bvIKv/PK1bfFxl453mHysNI40XSGGQLl1+pknt6UmIFBjb7kkKSt9WU9AmRoEgrkLl3DF1bdnPRfl3BOPfCN69Dt/G0z1/As+9tno3A9/evz8sq1ULL34Ks675KppzTELZf8Of6cqL84FHmPGIXDdN2HJhc2PkKzke3M/wFLiUEiaihA7hOXaf/+HKPr2P20KuHQlfOYvqh/YSAgE8YdA8Xbw3waK/WmPJHUh37RoEAiK+iZcnfX86LZtI8Mb97yw619m7vjx42fVO37Be8998rgT3/PawkXnzz5+7mmnVTomHaQU7edwdGSItbeNr5xwNZDy4jAgLsh+/brqIVAjb+iGHo5X9MVmAvtaNEf1jgCLQ+fecyO7t930Z38X/52u9XujEZN/bxwOvDHd+UmSWssgSAGlF2hXXH07cxcuyXY26klFXR10y+fPSa4aAilPlgD/X81P9ivV96gWBk18sv9h4H+0ZorqIWNgCFQE37lnc3Tv2sGAGYfCdXe1YiXhB4HHWzxNSVILWCNIEaV6QamVDVJHnXfJVVz75SdI1w7KeyHp1PwiDIGUL2cAsPj8yveWrwRKAqBqxV8nxlnWktmpl7gSqEA+dtnS4L2nn9SSmoDA9zAEkqTcckWQEtYLUi4UYXWQdYGUc4NAwNe2wTEnHHhvEvhUKv5aaVXQ3t3wH8Z3dvrzrkaFwKpTF82zOHTB3H/v5uiebw4GUz3/2NlHRz/b83JA/EHJQIumJUlqIV/QKW0M8vnGW70nr7WDrAukAoiDoFqFXMvVCoLS9/u6QY0JKRWHXrPu+mxnoil54X/97LmR7f/68k937z18x8juU+sdv2DhCdvnnHDMLxee+ptHv/Lyvvm3hncmd/l3UpJyyBd0SguwXpByJI+rg1Lt7n1xq7xqPAhqtAOQQZAaF5JqE3/qonnZzkaZ2D68E8MgScovawQpLaJULyj95lvKSlI7KAkls64dtOmBNUkIBL6olaRyIak28YZAvevURfNYvmK8LtQq4g8bJUk54Sd7qsSW8sqd9OqguQuXsPTiqzq6aq1sddIAcXDaLeIVJOou7dka1i4R1hIpugCLQ6vM+rs3sH7dhuRmt/3tlKTCMghSJQGlF3OGQcqT0ZEhNj84sSqnkz+fXd4qfizrCagNihUEga9Jis428aqoLAzyeS5JOTAj6wkolyLiN7urNj+4hrkLl1gvSLkQ/yzePr46Z/ODa9j1zFDbVweltqN1Ywg07trFp9U/SLm39tnnGN33elvGbsfPyC1bt7V8THXcIJS2AxkCqczyyy9g+7adbB/eCfHPiqv/JClj1ghSNSGl5bvWC1LenHfJVSy9OF4JlHTxalftoLItYWFbHkTqpMuO7tQKH/WGEAhsE69aUoXDA0rBoSQpOwZBqmUAiEZHhjIt0CtVkhSSTgKhdhSSTrailaxu6eBSu+3dXfv+JAyqFwqVxumfMePFFsxK3SUkVRxaqiX1MxLgByuSlCmDINUz3kUs1S1Jyo306qDND67hls+f07JAaO1tK5OrXb0lTN3l+CMO3w7AjqcqH5CuA9RI+/jSOHMOP2xnK+anrhFim3g1oWzV2Cr8uypJmTEIUj0RpTAo9aZYypV2rA5KnR/hi1UVyLsPPfSXAGzdWP2g8tCnVmHp0jg/e+NXr43u2zfd6ak7hNgmXlNgW3lJyoeDs56ACiEi/kM9f9czQ5z+gY9lOxupiqRg9K5nhtj1zNCkdvPNKKsLdFILp5hXIcB5s2dlPA21woyDDnpj6OcvHc1PfgCn/DYcf3LlA3/vuolLNUMPw5o/BeBXb7/9+taXX5kFMLe/v2Xz3bxnfMeZ2y+LIQDuADuEaWqS4HD7tp0AnwYeBZ7LbEKS1IMMgtSobwDhKz9/Hmj+jbXUKXMXLhlvKZ8EQsn3GzE6MsT9a29Mbq6mVDS9y4VgENQtjpgx4+iD+/qinfv2zeexb8HJ768eBtUy9DDcfCW8/RbL5syOfrP/iLN37XudXfteHw9vWhEIGQQVzrNgCKTpqRAG+fyXpA4yCFIzHgU+veuZIeYuXMJR7z4+6/lIVU11ddD9a2+kFHj2Ul2gEAyCusmJ/UfM/9fXX9/yyhtvHM+GdfD6q/DmfjisH444svqJe3fD8CZ46I54JdDbbzFvZv+WS37jhHPn9vczt/8Ijjr0UJJACKYfBhkEFcogMP/URfP491cvz3ouKrhTF81j+7ad7H3xFYhXmn0j2xlJUu/oy3oCKpwQWDV34RKuuPr2rOciNSS91WvpxVeNrxiqdRy99ftxDODaxadlPQ+12BMv/ix69Kd7gqmef8Gc2dG5s4494PxNe15MBzgsnT1rykHiLVu3JVd76TlXRCGwyjbxarVbwzvZPrwT4hW4A9nORpJ6gyuC1KwICF75+fPzwS1iKoZGVgeVhUAD9Fa9ghBcEdSNfrP/iPknHzlzW/+MGcOHHHzQz17av/+EeucsOHLmk+896p0/GTh+zuvvPeqosysdM7e/f/znZbrbxVwRVAghpeLQ//7q5Rw7++jaR0tNOHbW0TwW/RBgPnEgHGU5H0nqBX76pqkIiJeH11xdIeXN6EgcAo2OxHWD0j+/t3z+nOSwXtoSlnBFkKZsuquDXBGUeyG2iVebbR/eya3hncnNXvw7LEkd5YogTcVzxC/YA+sFqUiOevfx413vktVBu54ZYusPvtOLdYHSQnBFkKZmuquDXBGUayGpNvFLB87IdjbqWskqs1Lx6AA7iUlSWxkEaaoiSi3lX33peVvKq1DSW8Ve+fnzSQgEvVubIASDIE1PpUAocdShh1Y9zyAotwJsE68Osq28JHWOQZCm4xtYL0gFNXfhEuYuXMLWH3wn/e1atQnC0tfn2jerzIRgEKTWSFYBJWHQ1pdfmfT9cgZBuWWbeHVcWRg0HzuJSVJbHJT1BFR4q4FJdVekolh728rkalT6uoq4Xk5Y4fBVpYukOs6bPYtrF5/G0lK4uHnPi9yydRubUrWElGuDEL8pNwRSpy2//IIkEAoo/SxKklrLIEjTFVEKg1JvqqXc2/TAeIewiHhLWB8TKxJWMTkMSq4HpYukBpw3exZLZ89ibv8RQBwIGQblXggEtolXllKFyQN6s3afJLVVkbeGnQhcAfwn4Abgq8DvAucBs4E9wKuZza63RJTqBe16Zsh6Qcq9slbxJ6XuiigVQmfixWdAXKsgMZ/uW6oeglvD1B5z+/s5/V1xIdhKxaTdGpYrIbaJV06k2soH2FZeklqqaK1a+4BLgG/T2Gqmt4GPAw9Qao+sthoDW8or30ZHhtKr12p1CQupvhWs27qL2T5eHZNuNz+3/whGJ4pKF+01SbcJSXUIc0uY8sC28pLUHkV60bWAvr6IsbETATj/FLhoMSxdCMe9E+YcBT99BV54FTaPwENbYePTybk7gQ8BOzKae68IKO3lvuLq2y0erVxae9vKpJ5VIy8oB6m+FWyA7vl00iBIHZUOg1KK9Jqk24QYAimn1t+9gfXrNiQ3u+lvryRlpihbw5YBW4CjuGgR3P5J+MIl8IGT4Pij4MjDoK8v/nr8UfH3r/jf4EPvhT2vwjMvHg38EfEfjp1Z/kO63HOUttXYUl55tOmBNekuYfVaxYdM3hJWbj7ds0UsBLeGqXPKW82XhLj9IwsBtolXjtlWXpJarwifvi0jeVF44yfgcx9qfoSvfA9uuDe5FRD/AVH7DALB2cEVzx173IKXf75n9PDnR4dPrXfS8XMXbX/37Lm//I35px99zJz589s/TfWSsrpA9T5RDGisU0m3LFN3RZAyc8vWbeXf6pbnVVGMgSGQ8i+1Miii/oc5kqQa8h4ELQCeAeCPPgzh7059pPBb8NePJLdOxm1i7RQQLzEPpjrAso/9x+icD//+lM+Xyt3y+XOSq9PdElauG5apGwQpM6kgaDWT63IZCLXfIHYIU4HcGt7J9uGdYBgkSdOS5yCoD3gWmNfQSqB3/WH89aW/qX7MxMqgncSdgiwg3R63Al8A4NKVsPh8WHAGHHNC9TP27oYdT8HWjXDf7QDM+62zt/zb//g3Z3ZgvupyqdVAzb6xDJgIhJZRORyKSuNGU5tdLhgEKTOpICh5TRIyEQhFxKt4w07OqUeElP47r1l3fbYzkZqQCoMMiyVpihrpvJWVS4B5XLRoatvBKvnch+CiRQDzSuOr9c4FvsCMQ+D6dfCZv4CzP1I7BIL4/rM/Eh9//TqYcSg7f/KDMx9/5OtRJyY9Xclqk1s+f0565ckBx0zlvlqPWX5Os2P0grItYWGTp0elc0LiTx77Sl9XM9HqOiD+VL3ZsSVVFjL5+bWK+s+voG2z6U4hpRDIlUAqmuUrxrcwNvK7QZJUQZ6DoG8D8CcX1z8yWQ3UiInxvt30jFRPP/AYANd9E5ZcWP3Iy46OL5UsuRCuuwuADd/5avD86LYDCkjkyS2fP4exsbHxr8n1Ssc0e1+9x0yfk56HYqMjQ+kQaHWtY5sQMREO9aXGXUVjdYUk1Rdy4PNrjMpv+kKa287Z60JSHcKSQrxSUZRtZTQMkqQpyGsQdCJwEOefEncAq6WZEAji8c4/BeJ/+4lTm56qiBOIS1fWDoEaseTCeBxgZHjjnulOrF2S8KWvb/IuyywCmWu//AR9fX2GQSlrb1uZXG3n8vGQyasXqr1ZldS8kAMDobDsmFVlX1VdiG3i1QVOXTSvfGVQkN1sJKl48hoEfRSAixbXPqqRukCVTIz70eZOzFRA/lcbLAPimkC1VFsJVK40zgu7/mXmdCaVZ0mQ1O5zetGmB8ZXAkW0P5gJqf9mVdLUhVReHRSmjgnweVdLgCGQusjyyy9Ih0GuCpSkJuQ1CDoPgKUL6x/ZbAg0edzzmj+5owImlrwX4Q/cDUBcGLqaRkOg1Dg7fvz4WdOZVLvUC2TqrcxpZwhUbQtar6wUqtAqvlNCGtvKIql5IQcGruWrgFwZUN0gGAKpu5SFQa4KlKQG5TUIWgTAce+sfdRUQqDJ4y6a2gBtFzAR/hTvRW21wtBJCHTPy9MbpwukA53ybWWtPKf83F7YNtamukDNCHF1kNROIbWf23lfPZuFQShtpzEEUpdZfvl4rasAn/+S1JAZWU+girhl+Jyj2jP6rPEg6EwO/IPxaJOjRS08NqCIwU8zGg2Bcq48lLn2y09MCliSWj2V6gelNRvo1DsnXScoeexrv/xE049RZGUhUJjdTMYfe1XqkvWcpF4xSGdXA+ZZSOl1hR3C1K2uCT+ZtJUPOHDbqCSpTF6DoC3AmfzsFzC7zqqgqXjx1eTaTzkwdCm/XU+nl6FW+6Sj2QALWhti1dclIVArJIFNeYDU6nPKz02ud6tND6xhdGQouRlmOJVEmLqkt7GEmcxG6h71/vYGpUvU7onkXIht4tUjlq+4gFuH7wT/1kpSXXkNgoaBM9n9SnuCoBfGg6AngP+37N6gydGWNXFss2M3M8ZUxnYvdRvVWxU0lUBmOiFONwdAkGldoEaEpa+uDpKmL2zwuGRVUNS2meRbiG3i1UOStvK3hoZBklRPXoOgTcC/Y9PT8P42dHjfPJJc+y4HvkAsv91JIfXDmWpvcIMpPF6nQyypbcq2hEXZzaSqkHheyfZPX6RKUxOlrid/x4Iqxw7Sm6FrgB3C1IOStvLr122A+DkQkc/XBJKUqbwGQfcD8NBW+NyHWj/6Q1snP05+hEzeRlJJ1OT3O8me5inl9XrUPqlW8Xl/wxcx0c4+WRm0jPyGV1IeRVR/vgRMhEKryr6GbZpP3gTYIUw9LPmZL4VBvb4yUJIqymvXsF3A22x8Gr7/bGtH/v6zsPFpgLdLj5NHIZO7DkmqomxLWJjhVJoRMvHCNCB+oRpmNhupe0RMfKBS3r1vjN54nrkSSD0v1UkMLIUgSQfIaxAE8HEAvvRga0edGO/jrR24LUImXsgWJxTau7ul4/Qf+e4XWzNg56WLNE/FLZ8/p2Xt3ls5Vl7koFX8dETEYVD6jeogbsOUWinkwECom4PXQSCwTbwUF0i3rbwkVZbnIOgBYCcPDcNXvlf/6Jf+Jr7U8pXvwUPD0Ne3qzR+UYSlS97f6N4IwI6nWjNaaZw5v3nqztYMWCxJi/qxsbFpBzitHCtP1t62Mrma9y1htYRMPLcDuvtNqpSVkMnPs1V03/MsxDbx0iSp50JA9z3nJWnK8hwEjQFxgaAb7oXwW9MbLfxWPA7A2FhAMevZhFlPoI64hf3Wja0ZrTTOcSe+57XWDNg66ZU+9cKV6a4KakYS+ADjrea7VaouUET+nxv1hBy4aiHMajJSlwrp3u1iIbaJlypKPSf82ypJJXkOggB2kGyT+OtHGlsZVMlXvhefHwtK46r14tThvtth6OHaR97zcnypZujheBxg4aLzZ7dqgu2UBD6VApip3DfV8ZqdWxHlvFX8dIR055tUKU9Cuit4DbFNvFRV0la+pOjPd0lqic4sU5i+ZSTV/i9aBH9yMXzgpPpnff/ZuCbQQ8PJdwKSVStqlw8Cm5lxKFx3Fyy5sPkRhh6Gm6+EN/ez7GP/MTrnw78ftHqSrZKswMlLwJK3+bTD6MhQt2wJqydkosBlu/+dYwDXLj6tjQ8hVXbL1m3J1Sxek4RMLiRbtN8pAXYIkxqy/u4NSScxsJOYpB6X9xVBiUeBk0lqBl38V7D8P8crfbaMwvMvw9tj8dcto/H3l//n+LiJmkAnYwjUCY8Bf8mb++GmFXDHF+EH361fQHrv7vi4O74Yn/fmfub91tlb8hwCKRtlxaHD7GbSdiGuDpLaLaS428UCDIGkhi2//AKWrxh/nticQVJPK8qKoEQfcAnwbRoLsd4m7g72AMWsCVRk5xKHQlNy1DEnRJ+9/p6gddNpn7yswsnLPNqpbEtY0X5/TUdIe1cHuSJImcl4RVBaSLwCOSjdznvYPAgEhkBSc24N72T78E6Y6N4pST2nKCuCEmPAd4GDgbnAZ4H/Cmwp3b+ldPuzpfsPLh1vCNR5jwMzgQ+TdBOr78bS8Xe+snd3kCoGnGtJ/Z2sw5e8zKNdurguUCNCirliQXx1ybsAACAASURBVCqSkPh3SxGea7aJl6bItvKSlP2nb1IlAaU/zEsvvorzLrkq29koF1Kd2fL+KX27hbR+dZArgpSZHK0IKhcy+bkWkY+aIiGlea1Zd322M5EK7KoVNyVXe/11haQeVLQVQeoNEaVPZDc/uIbRkaFsZ6PMpVaH+WKt8uqgIKvJSF0sZPJzbZDsf/+E2CZeagk7iUnqZQdnPQGpioj4ze38V196ntM/8LFsZ6PM9PiWsGoi4uL380uXTxOvpohqnHMY8D7iOmtfLp2TXOYD7Nq3j60vv8zWl19m7/5fbX/117/+1xkHHfTGETNmHN3yf4FUsnnPi8nV1bWOy0hEPK8+4r9JARMFpqMOzyUk1SZ+6cAZHX54qbscO/toTl00j8eiH0L83M7ieS1JmTAIUp59Awhe+fnz8wHmLlyS7WzUcaMjQ9y/drzEVLI1Q7HniJ8j6TeoAbCzdF/aB4EdwB8Av8tEgJRcAHjl178ev/yv13957MgvXjtu6OcvHT2jry/6zf4j5iO1Qc6DoETE5PA1oLNvGgPgDrBDmNRKx86OP+fYvm0nxM+zRznwb6gkdZ287ceXygWU6gVdcfXthkE9xrpADQuZqGUCk/973Qp8AYBLV8Li82HBGXDMCdVH27sbdjwFWzfCfbcDMG9m/5Z/O3/emS2fuXpejmsEVRNS/fnWLmNgCCS1y/q7N7B+3Ybk5gB+8CSpyxXlRZd6W0jpRXe3dsTSgVJbwiLcEtaokMnFbR8EHmPGIXDdN2HJhc2POPQw3HwlvLmfC+bMjs6ddWzQqsl22i1bt3Ht4tPGg4dKxbGnel+1YxPpc5J5KFbAICgRMvF8i4hXEoQ1ju8HziFuUX9DA+PfWBrz94FPGgJJ7WVbeUm9pGgvutS7BoFg7sIlXHH17VnPRW1WVhfI31PNCYnfnG4D4rTh+nW1Q6DLSiWA7nm58v1DD8NNKwD41MknbTv+8MMLl2LcsnUbY2Nj9PX1MTY2BkBfX98BAc1U7qv2WGnJOel5GAbFChwEQeOrgz4IbJ7qgxw7++jo5ts+F0z1fFV31YqbWLPu+vEOUpU6sU31vmqPl0ifk8xD2TIMktQr7BqmohiAuGZMqoOUutDoyFA6BMpzzZC8ConfUP83IN4ONpWVQGlLLozHAUZe/cWe6Q3WeenwJW1sbOyAlTuteqxyyWNdu/i08TCq1Y+tTITEz7fyTn5h6phbSUKgS1fCn62Fr22Lg9dql69ti48rPe9+tufl4Et/fteWDv2besZVK25ibGxs/GtyvdIxzd5X6/HKz0nPQ9lKdRILcEu6pC5mEKQiGQBbyne7shAozG4mhRenHovPr33UZQ02BCuN88Ibb8yczqSKqFq4U++4vr6+SeGT4U9XC4n/RqUDoRA4F/gCMw6JV+Z95i/g7I/UrtEF8f1nfyQ+/vp1MONQfvyjZ8/8zj2bo7b9C3pMEr5UCojbEcgkj1fpsdasu348IDYMyp5t5SX1AoMgFUlE6UV2KixQF9n0wKSQL8xwKt0grkGyoEaL6UZDoNQ4O37x2lnTmVSn1Qtx6oUzjYZA5ZKtX8kKoEYf+5at2wyLiisi/r2VhEG/DzwG1K/RddnR1Z+PSy6E6+4C4N61g8FzI7v9AcmBSsFOo8emQ2LDn/w5ddE8lq8Yr8dlGCSpKxkEqWhCIHKLWPcpqwvkvvxWqbbyoF5doEbH6WLldYHqSUKfqdb/SR7PlUOFFxKvyPtroOXbM//5yZ8Ubntm3tQLceqFM82EQOX6+vpq1gKqtgXNsKizll9+QXkYFGQ3G0lqPYMgFdH4qiDDoO5RtiUsym4mPaTREKig6hV4Tn8iXyt4aSQESiSrgOod0+hjq9BeAVq+PXPnjud7bntmnqRDoEZ/NyRbv5IQqJlQp9k6RGqdsjBoEMMgSV3EIEhFFJEKg6wXVHypQM+6QJ3S5SFQKySBzXS6ezXTbWy6K4qUO58CWr4980dbninU9sy8KQ9yylfnNLplq5mAGOIwKAmBkmAnPYckLGrksdU5yy+/gFMXzUturqp1rCQViUGQiiqktGrEekHFVrYlLMxwKupB6TdelbQqBGpUIyuKVDBuz+wqSWDTqVbv5auJ1HnXhJ9MwqCAeGWQJBWeQZCKbADrBRWareLVrSp1EDPg0QFcmZdL9QLi6QQy6WAneYx6q3+SFUPKTmqLWIAfWknqAgZBKjq3iBXY2ttWJlfdEqZMlNfraQVDIDXEEKhnGeoUT4VOYpJUaAZBKrqIUhiUChVUAKlVXBGGQOoShkBS8ZXX62kFO38V2/q7N7B+3YbkpiuYJRWeQZC6QUipXpBhUDHYKr6D9u5u6Tj9M2a82JoB8yO9Kmgqbtm6rWbnr+T+RrqDNXqcpOKw81exbR/eWR4ChdnNRpJaY0bWE5BaZAAYS+oFnXfJVVnPR1VYF6hjbgRuYMdTrSkyu+MpAOYcfthOYNb0B+wO5V3BylcPlN+utUKomQ5jktorWRU01RVBSeBTvg1sbGys6XGrjaXOuDW8M7lqCCSpaxgEqZsMAIObH1zD3IVLmLtwSdbzUQVlIVCY3Uy63qPADWzdCGd/ZPqjbd0IwHGHHfba9AfrjGSlT/JJfK1VP+lj283AR+pulVrUp3+/lG8frRXw1Gt3r/YyBJLUrdwapm4SkSoerfzZ9MCkot5hhlPpBU8AcN/tMPRw7SPvebl24dqhh+NxgIXvPHJ2qyaYhSTwqRTATOW+8u8n16tdaoU+tR5fBdbi7ZnvPKq/67ZndlJ5/Z9aW7XSx7bycRPpYMfAJ3/W372B7cM7wVqGkrqQK4LUbUJg2ejIUOAWsXyxLlDH7QOWApu5+Uq47i5YcmHzoww9DDdfCcCyObOj4w8/PGjlJNut0kqfemFMs/eVB0ONqhY4qWv8PRC0envmvAXHuT2zxdIhTXkAM5X7Gvl+pfGanZvap6w4tK9ZJHUdgyB1o9VAkIQOhkH5ULYlLMpuJj3lMeAveXP/F7hpBVy6EhafDwvOqP3GdO/u+E3n1o3jK4Hmzezfcs6sY4OOzFrqDnFy0+LtmfMWHF+Y7Zl5Van+T62QZSr3Nfv9RKXVQAZAnWUIJKkXGASpG0XEYcMq6wXlQ6pVvHvsO+8a4B7gMe67fTzYacYFc2ZH5xY4BEqvCsp621VSHyjreagj4vZv990OZwzUXpFXa2smTNqe+f6zfqvQ2zOlPKvQJj7KbjaS1D7WCFK3Cin98bZeULbKtoSFGU6llz0OzAQ+TNxNrK4FR8588oOzjo0+dfJJ24ocAiWSMCjr8CUv81BHvEG8PTPeXlmvVlc1qe2Zl/3vA9H8hSf4w9MC6VVBWbd0T+oDWRsoW7aJl9RLWlMBT8qvQSBYevFVbhGbhudHt20bGd6454Vd/zJzx48fP6ve8Qvee+6Tx534ntdmHjVr9kPr/p/kTYsvqvJrDKxPo2zcsnVbcrVbX5PcCnwBmNb2TGDLmnXXn9nuyfaaq1bclIvwJS/z6GWpQNDXK5K6Xre+6JISAXEYxBVX3+4WsSl4/JGvRxu+89VgGkNExK3Mw1bMR21hEKTM9EAQBHAucc2uqboD+Mypi+ZxTfjJFk1JUuLW8M50hzDrAknqet38oktKhMAqgGu//ES2MymYf/jbP9yy8yc/iD+Bnt4n2X9JXKtG+WQQpMz0SBAEcBhwGnAG8KkGjv974oLT24i3mQ0CgWGQ1FqpukARhkCSekS3v+iSEoNAMHfhEq64uvliub3oiUe+ET36nb8NmHEIXPfN6bUef3M/xLUypvOJuNrHIEiZ6aEgaLoCSitcl6+4gOWXX5DtbKQuUKFDWJTdbCSpcywWrV4xADA6MpTuYKUqnh/dtu3R7/xtAFQPgS47evKlkiUXwnV3Jbc2E38iLklqXkTpb9n6dRtYf/eG2kdLqskQSFIvMwhSLxmAuIvY6MhQ1nPJtZHhjXuAeDtYtRCoke9BfP6lK5NbLjmRpKmLiAvZsn7dhqSmiaQm2SZeUq8zCFIviSi9gLalfG0v7PqXmUBcE6hcOvC55+X4Uum+tIlxzmjJBCWpd4WU/palCtxKapBt4iXJIEi9JwQit4jVNt4ifkGN3CYdAKWvVzIxTiMFUiVJtYWkwiBJjUs9ZwyBJPUsgyD1ovFVQYZBdVTqDla+Cmiq40iSpiOktJ3FMEhqTOq5EmEIJKmHGQSpF0WkwiDrBUmSCmoAiLYP7zQMkupYf/d4Xa0I28RL6nEGQepVIaVPUq0X1AJJbaBmVwpJkqZrNZTqnthJTKqoQnFoSeppBkHqZQNYL2j6qhWIliR1QoRt5aWqbBMvSQcyCFKvc4vYdJR3EGtM0IaZSFIvi7CtvHQA28RLUmUGQep1EaUXz2tvW5ntTIpm6iHQIDBWugyWLmHpErRqepLUY0JsKy+Ns028JFVnECSl6gUZBjVoaiFQIkpdD0qXVaVLeUgUYkgkSY0KSa0MknqZbeIlqTqDICk2AGC9oDJ7d7d6nDuI/1v3lS4DxC/QkkuUOitgIiCqFRIFGBJJUiLETmLqcbaJl6TaZmQ9ASlHBoDBzQ+uYe7CJcxduCTr+WRmwXvPfXLHjx8/ix1PwTEnTL6zvDh0+e1KK4R2PJVc21h2T0T1/foBkwOeZanb6ftWVRjz0QbGl6RuNQAMbh/eGay/ewPLL78g6/lIHWObeEmqzyBImhARr0pZFYdBt2c8newcd+J7Xtvx48dh60Y4+yPTH3DreP7zVK3DykQ0FhKlA6Ly+9IhUcREQFRvfEkqutVAkGwRMwxSL7BNvCQ1pi/rCUg5NAgESy++ivMuuSrruWTi+dFt2/7+y//+NACuXwdLLpz6YEMPw00rkluHA29Md341BGVfy0OiaiJ6OyQaA7h28WlZz0M96Jat25KrviZpvYD4bxrLV1xgGKSuViEECrObjaQuciLwUeA8YBFwJrAFGAY2AfcDuzKb3RT5oks6UEDphXMvh0GPP/L1aMN3vhow41C47q6phUFDD8PNV8Kb+wE+CDze4mk2I6D6VrNaIiZvNUt/7RYGQcqMQVDbhZRWR14TfpJTF83LdjZSGxgCSWqxPuAS4Ns0Vlf5beDjwAOUXlfnnS+6pMpCSi+cr7j69p6tF/QPf/uHW3b+5AdnAnDpSlh8Piw448C6QWl7d8c1gbZuhPvGt9f9JXBNu+c7DQGtCYmils2oswyClBmDoI4IMQxSlyorjG4IJGm6FtDXFzE2diIA558CFy2GpQvhuHfCnKPgp6/AC6/C5hF4aCtsfDo5dyfwIWBHRnNvmC+6pOoGgWDuwiVccXXv1gv6h9s/F+18+slgGkMsBR5r0XSyEND9W80MgpQZg6COCYFVpy6axzXhJ7Oei9QyV624KblqCCRpupaRvGa/aBH8ycXwgZPqn/X9Z+FLD8JDw8l3Aia/F8gdX3RJtfV0vaDRkSHW3rYSYBvw34h/Z9zQwKk3Ev/yewLY17YJZiso+1rkkMggSJkxCOqoQSAwDFK3uDW80w5hklplIgS68RPwuQ81P8JXvgc33JvcCshxGOSLLqm2gFK9oF7cInbL589JrvopW3MCilWPyCBImTEI6rhBILB4tIqurC6Qvz8kTccC4BkA/ujDEP7u1EcKvwV//Uhy62Ryuk3MX5pSfSGl2grXfvmJbGfSQZseWMPmB9eAn7K1WsDkVURQPySKSl/bVY/ogCBodN8+Rve9znmzZ7XwYaQDGQR1XICdxFRwZSHQANmvrJVUXH3As8C8uiuB3vWHE9df+pvqx02sDNoJnEQOC0j7oktqTE/VC0qFQODviU4KyGar2QFB0KY9L7J5z4ssnT3LMEhtZRCUiQDDIBWUHcIktdhHgPu5aBH842erH5UOgRK1wqDf+2pSM+ijwHenN8XW80WX1Lgx6P6W8qm6QOALrLwIyr62OiSqGgQlDITULgZBmQmxk5gKxhBIUhu8BRzEg39cvTB0pZVAyfeqhUHffxYu/iuIW8sf3Jqpts6MrCcgFcgAMLj5wTXMXbika+sFpVYC+QIrP6Kyr2kB1esRld+3qmzMqgXsdu2bXON7854X2bVvH0tnz2Juf3+d6UoqgLD0ddWt4Z2GQcq97cM7DYEktdqJwEGcf0pj3cFqrQAq94GT4tbzG58+qPQ4u6Y4x7YwCJIaFxG/8FgVh0Hdt0Vs0wNrGB0ZSm6GGU5FjYuovhUsoHo9ovR9QLwyY27/EQCM7nv9gMFG973O6LM7XR0kdY+w9HXV+nUbuGaRncSUX7eGdyZXDYEktcpHAbhoce2jmgmA0i5aDBufTh7nv0xtkPZwGbbUvK5sKV9WF8jCi90vYCIIWlX9sOoMhNQKbg3LBdvKK9dsEy+pTe4E/h3fuwbOnNvYGY0WjAbYMgofuhXgvwK5+gPriiCpeauBIAlNuiUMKtsSFmU3E3VIxMT/z3FXvMWnjXcLS9cHqmZzqo7Q3P4jODG1ZWxu/xFuIZOKYwAY3D68M1h/9waLRytX1t+9IQmBwBBIUmstAuC4d7Zn9IlxF7XnAabOIEhqXsSkLWLFrxe06QHrAik2t7+/4rawysceMX7s6L7XJ523uey4JCQyIJJyazUQJDVYDIOUBxXaxEtSK50JwJyjGj8jXSz6XX9Ye1XQrPEg6Mwpza6NDIKkqQkpFeUter2gsi1hYYZTUc4l9YMqFYxOVhLBRKHpSiFReUAEGBJJ+RBRWhlkGKQ8qNAhLMpuNpK61BbgTH72C5jdhlVBL76afpxcMQiSpm4AGBwdGQo2PbCmkFvERkeGyreESZPM7T+CpaU6QLVCmrn9/an7J9cNKg+J0gFR+mu1VUTJbUMiqe0iSite16/bwKmL5tlJTJmwQ5ikDhkGzmT3K+0Jgl4YD4KGWz/49BgESdMzXi+oiFvE1t62MrnqiyyNm9t/BHNPmtey4KVaSJQOiODAkKiRrWbj8zUkklolLH21rbwysX14px3CJHXKJuDfselpeP+J1Y9KCkQ32z1s80j6cXLFIEianojSp6drb1vJtV9+IuPpNC5VFyjCF1lK6VSoMjkgglaHRAZE0pSFlLY/21ZeneZKIEkddD8AD22Fz32o/tFJTaB057BaHto6+XFyxFatUmsMAsHchUu44ur81wsqqwvk7wGNQdw1rAhq1SOqppfrET3/y19uG3n1F3teeOONmTt+8dpZ9Y5fcOTMJ4877LDXFr7zyNnHH354238obB+fa7aVV0fZJl5SBt4CDuLBP4YPnFT9qErhT60VQt9/Fi7+K4C3gYOnN8XW80WX1DpjAEsvvirX9YJGR4bcEqZyhQqCqhktC4V2la0qqqabt5o9/uLPog0/3RNM9fxlc2ZH58w6dsrnN8IgKPfGAJavuMDi0WqrsuLQ/j6Q1G4BsIr4980yLloE//jZ2mekw6B628R+76vw0DDAR4HvTmOebeEvWal1AuJPT7ni6ttzWy9o7W0rGR0ZAkMgTeiKIKiWWlvNainfahZ/LUZI9A/P7dyy87V9cbvSS1fC4vNhwRlwzAnVT9q7G3Y8BVs3wn3x6sZ5M/u3/Nv589rW9tQgKPcCSn/bDIPULhXaxEfZzUZSlwuIA6CgdPsXwH7gGG78RGNbxOr5yvfghnuhr28XY2PzKL3WzhNfdEmtFQKr8rpFzC1hqqLrg6BaWhUS5SkgeuLFn0WP/nRPwIxD4LpvwpILmx9k6GG4+Up4cz8XzJkdndumlUEGQYUQYBikNqnQJj7MbjaSuljA5AAIJuq9jgLPAPBHH4bwd6f+KOG34K8fSW6dDOyY+mDt44suqfUGgSBvW8TKQiA/bVNaTwdBtRSxHtHeX/3quTVPPzMfgOvXVQ6BLjt68u17Xq482NDDcNMKAD518knb2lEzyCCoMELiF9B2ElPL2CFMUgcEVA+AotT3lo3fnurKoGQl0MTjPtr8IJ3hiy6p9QJKn5zmKQy65fPnJFd9oaVyBkFNynM9oh++9NI/f/d/Pf9+Ll0Jn/mLAw8oD4ES1cKgO74I993OB2cdG50/Z3bQsomWGAQVSohhkFrEEEhSmwUcGADV+10zEQZdtAj+5OLaBaQT338WvvRgUhMoeezchkBg+3ipHSJKLeU3P7iGuQuXZF4vKNUq3hdaUgvMHV/tk4Q4s8bvq7XVbHTf65Pu2zxpzNbUI/r5/v2HA3FNoHLpECgJfpLvXXZ05TBo8flw3+288MYbM5uejLpNiG3l1SJuB5PUJgHNB0CJR4m3c32Ph4bn8dAwnH8KXLQYli6E494Jc46Cn74CL7wKm0fiFvEbn47PjmsCBeR0O1ian75J7ZOLlvLWBVIDXBHUIZ2oR7T22efiMb+27cDC0EnoUx74VPs+xAWk/0P8s9GOnxFXBBWSbeU1LbaJl9QGAZMDoIg42AmnMFYfcAnwbeCgBo5/G/g48AA5LAxdiSuCpPYZAAZHR4aCTQ+syWSL2OjIUDoEWt3xCUiaZG5/f1mIU3klUXlAlF5JVL6KCDhgJRFQuTtYte1ftdTqMqZeNQCMbR/eyfq7N1g8Wk1Zf/eGJAQCQyBJ0xdwYABUXv+nWWPELd8PBk4kbgF/HrAIOBPYAgwDm4D7gV3TeKxMGARJ7bUaCLLaIrb2tpXpeYQdfXBJTZkcEk0OiOKvB4ZE5V/TIZHUZgPAYLK9xzBIjajQJl6Spiqg9QFQJbuA/1K6dA2DIKm9Ikr1gtbetpJrv/xExx44VRcowhBIDUgCB+XTRN2gI1ha+t7ovtfHu5klt5tWa1tYGX9GlBJhGKQmVGgTH2U3G0kFFlJqXFAS4e+UprkfX+qMjtYLsi6QmlSIvcxqUiPbwCoVj653XPv4u6qYQuwkpjrsECaphqDB7y+jfgt4NcgXXVLnjEH7W8qPjgy5JUzNCon/uKo7BED9IKjREGjysdEU51TPVIs5Kh9CDINUw1Urbkqu+rpEUrlBqodBlUQYAE2bW8OkzhkABttdL6isOHTYlgdRtwmznoBaqv4LqmZCoMms6aFKQmwrrypcCSSpjtU0HgT5e6RFGmmFJqk1Ikqdu1JhTUttemANoyNDyc2wLQ8iqdimHgJJtQwAUdkWIPW4VIewCF+XSKosorHVPYZALWQQJHVWCESjI0PpYs4tUVYXyE/tpV63d3erx9namgHVxQYgrgez/u4N9Y5Vl7NDmKQmPFrnfkOgFjMIkjpvfFVQK8Ogsi1hUcsGllQ0fw/AjqcOvKe86PNlR0++VDIxzr0tm6G62QDA+nUbDIN6mCGQpAYFxFvaV9U4xhCoDawRJHVeRKmlfKvqBaUCJX9RSoqTm60b4eyPTH+0rRuTa/U+rZMg9TfOtvLF9PLPf/HiC7v37nv5pV8cuuf5l06od/zs49+1++h3Hbn/uBOO6T/63UfOsk28pAYExOFPkPpexIG1giJ8b9MWdg2TstOSlvK2ipdU5jDglwBcvw6WXDj1kYYehptWJLdmAvumOTf1jhA7iRXOd+7ZHN27djCY6vnn/86Z0cb/sSU53w+nJJULODAASv+uSDe8iHBFYdv4plHK1iAQTLWlvK3iJVXxQWAzMw6F6+6aWhg09DDcfCW8uT8Z7/HWTlE9IMQwqDC+9Od3bfnxj549E4BLV8Li82HBGXBMjUVBe3fH20e3boT7xj/U2gKsx9ckkiYE1A6A0scNlq6bVbTRwVlPQOpxO4FP73pmiLkLl3DUu49v6uSv3viJ5KohkKS0XcBM3n7rg2xYB6+/Ggc6h/XDEUdWP2vvbhjeBA/dAWv+FN5+C+Avgb/rzLTVZSLiF/Xz9774CkuDM7Kdjaq6/97N0cb/seVcZhwCX/xH+Oj/Ab9xSu3fFxDf/xunwJm/A6f8Njz2LXj7reOB/4v495Ck3hYAdxC/T5lP/HfhM6VLVOH450rnfKZ0XW1iyiZlL6T0iem1X36i4ZNSW8IiXDYpqbJzgcemcf7SaZ4vQWn166mL5nFN+Mms56Iyz43s3nbTn/3daUD17aTlxeTvebnyYJO3kx4OvNGqeUoqlIDJK4AirBmWKwZBUj40VS/IukCSmnAYcBpwBvCpBo7/e+KC09vwTZxaI6C01H/5igssHp0z//0foujb/7Qp4NKV8Jm/OPCAah0Fq4VBd3wx2Sb228BQi6YpZSlo8LiojXNo1iHAbxKvwlnWwPGPEq/A+Vfg19N43JDJHcAiDIByya5hUj4MAGOjI0NsemBNzXpBoyND5a3iJamWN4jfjA0RL8+WOi0i/js3aCex/Nm54/mZQFwTqFw6BEqCn+R7lx1dOQxafH4SBJ2BQZDyKyj7uqzsdqtEpa+Plt2Oyg9sobhO4PTOb7YuYIgBUKEYBEn5MQAM1mspXxYChZ2ZmiRJ0xJhW/lc+tGWZ84C4sLQ1aQDn3terr5KaPI4n8LwWdkLSpcpBz2nz2qsrO6PXnyr2uOnv64quz9ickgUNT6zim4FvgBMp+j7Y8T1Aa9p4PFCDIAKyS0lUr6EwKpqW8TcEiZJKrgQO4nlylUrboqvVNvqVUkSBFU7J74/whqG6qyg9HVV2e0DpMOd980+mNNnzRi/3ko/3BOHQz968c2y2xVDo0TERDgUNvFwcV3AGYfAdd9sRcfQanUCAw7sABZhAFQovpGU8qdiS/myEGgAf9FKkoopxDAoNwyCVGBB6WvV4CcJfK5c9I7x77U67JmOH+55a1JIVCMgSspBRFR+D9APvAZUL/oOlbd7lptc9H0msK90PcAAqGu4NUzKn9VAkIQ+SRhUtiUsymBekiS1Qki8TSNYv24D1yyyk1ih1AuBpPYKqBP8JCt88hT4VPO+2QePz/PKRfH30uHQXcP7k0NXlX1N3g9EpdvnAPF2sEZCoOR2pefxkgvjceJtYucAb2EA1HUMgqT8iSjVUUjqBY2OjNdatC6QJKkbDACD24d3BreGd9pWvihq1QaSOHikoAAAHOBJREFU2iegSvhz+qyDx1f7FCH4acTkcCj+t901/KvS10nBUDoUOhaoXPQdqhd+r1/0/U+Bi1L3RBgAdQW3hkn5NciBn3T4nJUkdYsA28pnruGtYY1sKZl8bIRbwzR1ARXCn/RWr24JfppVIRSa8LVtlQtDV1rJV2t1397d8B9OS38nwgCoq7giSMqvASaHQbaKlyR1kwjbyhdDMyGQND0BZduQDH8mS1YJXbnoHePbyMZDoWrdwZp93k4exw+iu5BBkJRvq4n/ELolTJLUjSJSbeVPXTTP4tF5Ywik9gsw/JmSZBtZxdVB1ficFgZBUt5FmMJLkrpbWPq6KqkXZBiUgb27q68maHac2LPTH0xdLqBCAGT4I7XfQVlPQJIkST0vpLQF+tbwzmxn0mNOP/PkJwHY8dSBd1bqMpS+VDIxzsaWTVLdJiAufzBeAuH0WQdzc3AEtwwcYQjUbve8PLlgtHqSQZAkSZLyIKRUiNQwqHPmLTj+NQC2tii3mRinQrKkHheQCoDi1T+Hcv/lRxoASR3m1jBJkiTlhW3lO+z9Z/3W7G//06a4VfQZA7Dkwok7m60fMvRw0nIaYFur5qjCC0htAXP7l5Q9VwRJkiQpT1YDbB/eyfq7N2Q9l643f+EJp33iioEIgJuvjMOcqRh6OD4/FgHXTX92KriAsi1gVy461NU/Wai1nVM9ySBIkiRJeRIRrwxi/boNhkEd8LHLlgbvPf2kLby5H25aAXd8EX7w3XTh58r27o6Pu+OL8Xlv7gf4JyZWgIyRKgSsnhJSFgDdf/mR463P1Sb1nrNJGFQvFJoYZ+t0p6R8cmuYJEmS8ibCtvIddcp7Tjzzxz96NgIC7rs9vcWrGUuBx0rXkxBgkPj/y3D6s1QBhMQhIOA2sE456/gZTz75/JtnseOpyt3/7nm5cghUbfvnRNH3e1s5T+WHK4IkSZKURyGpTmLbh3dmO5sutn14J+vXbYA4uPk88GHgxgZPv7F0/EwmQiCIV3WtLl1fhUFQtwuIQ79VYBewTjvlXQfVL/peHvrUqgE2Mc7YtCam3OrLegKSJElSDSGlN5dr1l2f7Uy61FUrbkqutmPlTsjECpGo9BhRix9D2QqIQyAAbg4MfzrtJz9/a9t/euT10wC4ft3kou/NGno43uoZ2wachqv6uo7PUEmSJOVZRPxGc/72bTtZGpyR7Wy6zK3hnex98RWI/zt/pg0PERG/iQxKl08TfxgdteGx1HmDlAKC02cdzNc/PpM5/W466bRjDj9o1oyD+qKn9rw1n8e+BSe/H44/ufmBkqLvb7/Fp09/R7Ro1sFn/+jFtyB+7vq87SIGQZIkScq7bwDB3hdfMQxqofV3b+Cx6IeQKtDdRt8gfiMZ4JvKbhAAzwLzIS4G/ccfODzL+fS8xbMOnj/8s7e2vPCLN49nwzp4/dW4gPth/XDEkdVP3LsbhjfBQ3fAmj+Ft9/i/XMO3vJ/nnXYue+bHZcUToVBIT53u4JbwyRJklQEAaXtJ8tXXMDyyy/IdjYFt/7uDUldIIhDoKhDDx3iVrGiG+8GZjHo/Ln7x/ujr//oV8FUz//9098R/d57Dz3g/LuGf8Vdw/uTm24VKzifsZIkSSqC54BHgU9v3xYXjraT2NRkGAJReqxHiVeSBLhVrGgmtYT/4w8c7lawnFk06+D5Zx8/Y9u7DusbPmxG3892v/Z2hTZik511/Iwnl82d8ZOrznjH68vmHnJ2pWMqrA4KiFf6qYBcESRJkqQiCSmtKDEImppUB7asP9UPmVgdlPVcVFtAaUWeq4B62w/3vMVdw79KAiHofJisFjAIkiRJUtGETAQImpq8BC8hk7eKtbtWkZoXkmoLf8vAEdnORrngVrFiMwiSJElSEQVZT6DgoqwnkBKQaj+ObyrzJKQUAl256FCuXPSObGejXDEMKi6DIEmSJEl5EOJWsTwJMQRSHYZBxeTGTkmSJEl5EGGL+bwYJC7kzc3BEVx40iHZzka5ZRHpYnJFkCRJkqQ8CZlcA8pitJ01CAQWhVYzfrjnLa6LXk9uRljvK9cMgiRJkiTlUYhbxTptPASyKLSm4trB15PVQRGGQbllvCtJkiQpjyLcKtZJhkCatgtPOoQf7nmLPa+PzcdtYrl1UNYTkCRJkqQqQuLVQBCvDhrDjnHtMEjpv6tFoTVdqZ+hgMkdAZUTrgiSJEmSlGcRcRgUAPOJixi7Oqh1QlKFoa0JpOma038Qp8+awSPP/Rri56zP15zxWS5JkiSpCL6BW8VaLaRUh8kQSK1UFgYF+HzNFZ/pkiRJkooiYnIYFAA7gecymk+RhRgCqY0Mg/LLZ7skSZKkIomAR4m3nAS4VWwqQgyB1AGGQfnkM16SJElS0TyHW8WmKgDuALhy0aFceNIh2c5GXW9Of9yjqtRWPiAOcp/LbEIyCJIkSZJUWBEHbhWzXXVtz0IcAtkhTJ3yvtkzgPEwaD4+TzNl+3hJkiRJRRYCA6XrAXGL+TCjueRdCHD6rIMNgdRxVy56B6fPOhhsK585VwRJkiRJKrrniFvMN7JVLKzy/W4XUqoL9PWPz8x2JupZc/oPsq18DhgESZIkSeoWEbXDoJA4DOm1N6AhpRDoykWHjm/TkTqtQvFo6wVloC/rCUiSJElSi4WUgo+S1aWv6e8N0Dth0BhYF0j5cdfwr7hreH9y01yiw/wPLkmSJKlbhUwOf9IiJmoLdbMQWGUIpLy5dvD1pHh0RG88F3PDrWGSJEmSulXExFaxcvPp/m0pIaUg7JaBI7KdiVSmrF5Qtz8Xc8WuYZIkSZJ6VbXVQt1iGcRbwqS8ed/sg9M/m93+XMwVVwRJkiRJ6lYhtd9gzqd7VyKEwKfB1UDKr/fNnsEP97zFntfH5tN7RdwzY40gSZIkSd0oAAYbOC6iO+uTWCBahfDDPW9xXfR6ctOMogNcESRJkiSpGz1H/KbyUSrXCErMp/tWIoRAYAikIpjTf1CyKgji5+o3sp1R9zMIkiRJktStotJlNXEgtJPKwVBA94RBIRaIVsFYOLqzDIIkSZIk9YLnqB0MBXRHGBRQWg30vtkzsp6L1JA5/XEfq1I7+fm4Kqit3H8nSZIkqdeFTBSVjihuzaCQ0r/j/suPzHYm0hR89O5fJFcHKH4om1u2j5ckSZLU60Im3ngGxIWWw8xmM022i1dR2U6+M9waJkmSJEnx1rFvEO+a+P/bu9cYOcvzDMD3ejcGcQqE2k5QKYRC2rC2iRE5lIM8jgJprNAqkSA/rLbwr0JJ0zakQRWIsUApVZP0FKFWqtqkkiMFJKKEiiaA8DiGJFAEwfaSNqQ2FMkJu3UgQB1svN7+mB3v7HoPs7sz/ma+uS5pmdM37zyGAWlvnvd5K+nNrWLbE7OB6F3rVw9l28jhxKygjtIRBAAAMKWa+gyhpN6V0MoR9N2gmugGovetW3WsX0VXUIcIggAAAKarZmpOUCW9sVXs9iSOi6fnNX2HKzn+hD/aQBAEAABwvFrqW8Oau4OqRRWzgGqiG4hyWL96sLkrqFJgKaVlRhAAAMDcaun+uUHbk/ov0I6MpwzWnLoiDz//ZlL/d27r/FezWDqCAAAA5lfN9M6giXRPp0I1qXcD2RZGWegK6ixBEAAAwMKqmd4NtD3du1UMel5TsGlodJsJggAAAFq3Kd01N8iQaEpp/WodQZ0iCAIAAFicarpjq1g1mXbcNpSK7WGdIQgCAABYvGq6ZKtYU+cElIrtYZ0hCAIAAFi6IreK2RZGv6gUXUCZCIIAAACWp5rpYdD2dP4X12piWxjl5vSwzhAEAQAALF819e6gWuq/sJ6QrWK2hVF2toe1nyAIAACgPWo5cVvFbk+SdauGOrQ8dJ1K0QWUhSAIAACgvao5fqtYR+gIoux8x9tPEAQAANB+1dS7g5J6J8NE2tcdVEnMB6J/mBPUXoIgAACAzqilfsR8u7eKVRKdEvSlStEFlIEgCAAAoLOqKe6Ieeh5TQOjNxZZR1mYLAYAANB51cnb25t+tmb2UOjkJBcnuSTJ78/yeiVJdo2OZ9fowfzG2YP/9aunr/jlu88ePPPcM1ac396ygbIZKLoAAACAPlPN1FHYM8Ogy5M8ttSFb1h3Uu36d6+sLPX90K023/Na464cY5n8DQQAADjxqjk+DPqrJDcnSa69KVl7VXLBJcnZ58y9yoH9yd5nkj07k/vvTpK8Z83g05/feMqGjlUOBfjc9oPZPTae1Iew14qtpreZEQQAAHDiVXP8EfM3Z+gtya33Jjd+PnnvR+YPgZL66+/9SP36W+9Nhlbmhy+Nb/j6jw7XOll8t2t0j2y+57XmTpLjrlnKawt9bvP7lrIGdJqOIAAAgGL9a5LfS1IPcy69eu4rP35m/fa+V2Z//amHkjuvS5L8zYdOefZdbxu8uI119oTN97yWiYmJDAwMZGJiIkkyMDCQB64//bhrFvtaK5/beF+SY3W0ugZz2zZyKNtGDidzz9aiRTqCAAAAivXVJPXtYPOFQK249Or6Okke339kdLmF9ZrmEKjZxMRER7tzmkOghgeuP/1YGKUziG4iCAIAAChW/UjstVfNf1WjG2ghk+s89/LR05ZTVD+aLdChO6xbdezQc0fIL5MgCAAAoFi3JakPhp5LqyFQ0zpP/vTIZcspqtcsFOIs1Jmz1BColffN9tlLnUMEyyUIAgAA6AZzDYZeaC5Qq+swp9nm+5yIz7NtjCIIggAAALpdqyFQn1powHPz8Ob5gpfFhkALBUiNOUGtfDacKIIgAACAbiYE6rhGYLOY072WM0+o8XlOFFuSStEF9LqhhS8BAACA3tY4wWu2U8WSLCuQWcp2MgHQ4qxfPVh0CaWhIwgAAAAW4UTPFIJ2EgQBAABQejPn9bRLo8uoeU3zgOhmgiAAAACgq+0aHW/crRVYRimYEQQAANANDuxvz9HvB/YnSc48eWAsyarlL1geja6gpXYENbp8mruLms13ctl8a8GJJAgCAAAo1h1JbsveZ9oTBO19Jkly4VmDL0QQ1DYLHVG/mK1gC60FnWRrGAAAQLF2JEn27GzPapPrXHTWitfbs2D3mzn/Z75QZq5unk4Q+NCNdAQBAAAU6wdJkvvvTi7ZlFx69dxX3vfK/Cs99VB9nSTvP2dodbsK7EXNgc/MAGYpr833nlZeX+q11O0eO9K4u6PIOsrAOXcAAADFuzzJYxlamdyybf4waC5PPZTctSU5cjg3rDupdv27V1baXWS3a3TgdEv3TbfV08u2jRzKtpHDSbI1SbXYanqbjiAAAIDifS/JF3Lk8M2587rk2puStVclF1wy/9ygA/vrM4H27DzWCfSeNYNP92MIBLRGEAQAANAdPpvkviTfy/13Hwt2FuMP1p1U+0Qfh0DNp4IV3YWjG4huJQgCAADoHt9PclqSDyTZmOS2hd5w2TuGnrzorBWvv/+codXvettgpcP1db1GGFR0+NItdZTF5LawJKkVWEYpmBEEAADQWyYSQ4bpL00nwckxlsnx8QAAAL2lliS7RscLLgNOjKbveq3AMkpDEAQAAAB0LUfHt5cgCAAAoLdsTerHaQMsliAIAAAA6Fq2hrWXIAgAAKC31JJk95gZQfSHpu96rcAySkMQBAAA0HtqiYHRlF/TFshagWWUiiAIAACgR5kTRB8xKLpNBEEAAAC9Z2vRBcCJsG3kcONurcAySkUQBAAA0HtqSWq7x8ZtD6O0Zny3awWVUTqCIAAAgB5mexhltXvsSOOuDrg2EgQBAAD0Jr8cU2q2hXWGIAgAAKA31WJ7GCVlW1jnCIIAAAB6nO1hlI1tYZ0jCAIAAOhdfkmmlJq2hdFmgiAAAIDeVYvtYZTMjA63akFllJYgCAAAoLdtTWwPozyauoF0vHWAIAgAAKC31aIriJLQDdR5giAAAIDetyPRFUSp6AbqkIGiCwAAAKAtJpLkrsopWb96sOhaYNF2jY7nltrBxkN5RYfoCAIAACiHWqIriN7lyPgTQ0wMAABQDi8kuWH04ETWrRrKmlP9f396yy21XzbubiqyjrLzXwYAAIByqEVXED2q6TurG6jD7LkDAAAoF7OC6CnbRg41Hxkvp+gwHUEAAADlsjXRFUTvaAqBdAOdAOJhAACAcqklqYwenDg/SdavHiq0GJjPtpFD2T02ntS/tzcWW01/0BEEAABQPpNdQYeza3S86FpgTk3dQDuKrKOfCIIAAADKpxaDo+lyMwZEV4urpL8YwgQAAFBeBkfTlQyILo6OIAAAgPLamiS31A4WXQdMY0B0cQRBAAAA5VXN5Baxz20XBtEdbAkrlvYrAACA8ptIki3DK7Nl+KSia6GP2RJWPB1BAAAA5bcpcYoYxZoRAm0qspZ+ZloYAABA+T2fevdF5eHn38y6VUNZc6q+AE6cXaPj+ev/eKPxcGuSrxRXTX/zbz4AAEB/qMaR8hTEXKDuoSMIAACgf3w1SWX04MT5SbJ+9VCx1dAXto0cysPPH0nqQeSNxVaDIAgAAKC/vJDkht1j9VlBwiA6acZcoBtT36ZIgQRBAAAA/eX5TM4LEgbRSTNCIHOBuoQgCAAAoP/UIgyig2YJgarFVUOzgaILAAAAoDDVJLcnyZbhldkyfFKx1VCYH/98/NnH9x8Zfe7lo6c9+dMjly10/WXvGHryorNWvP7+c4ZWv+ttgxc3vyYE6m46ggAAAPpXLTqD+t7Xf3S49pc/eOO9e8bGz9//+tFzWnnP/tePnrNnbPz8b+99c9VbVgzUhlcNnp8IgXqBjiAAAACq0RnUl/58x8Gnf/jS+IYkybU3JWuvSi64JDl7njzowP5k7zPJnp3J/XcnSd6zZvDp4V8Z3CAE6n6CIAAAABJhUN+550eHa1/ZfaiSobckt3wtufTqxS/y1EPJXVuSI4eTeodZJUKgriYIAgAAoKEaYVBf+PHPx5/944cP1mf73Hrv7CHQx8+c/vi+V2Zf7KmHkjuvazz6kyR/0646ab8VRRcAAABA16im3s2RbSOHs23kULHV0DGP7z8ymqS+HayVEGiu55L6+6+9qfFod1sKpGMEQQAAADSrRhhUes+9fPS0JPWZQDM1Bz73vTK9E2iuMGhqnY1tKZCOEQQBAAAwUzXJpqQeBn1u+8HsGh0vtiLa6tgR8RdcMvdFzQHQXNvCGqbWuW1ZhdFxgiAAAABmU0t9rmxt99h4bqkd1B1URrOdDjazC2ip69CVBEEAAADMZ1NsFYPSEAQBAACwkGqEQf2tMRtosZ1CdB1BEAAAAK2opikM2nzPawKhfjHXgGh6kiAIAACAVlVTnxukO6hfzDxBjJ4nCAIAAGCxqtEdVH5CoFISBAEAALAU1egOKi8hUGkJggAAAFiOanQH9a4D+9u9zr72LEinCIIAAABYrmpmdAcJhLrbZe8YejJJsveZ41+cORz642dO/5nN1DoHkmxP/TtBFxIEAQAA0C7V1MMggVCXe+vKvJ4k2bOzPQtOrfN6kkqS25NMRCDUdQaKLgAAAIBSqqYeBiRJtgyvnLw9qaBySJJdo+PZNnIou8fGn01ycZLk1nuTS69e+qJPPZTceV3j0WlJPpumf/aTtmbhUKjawjUskyAIAACATqpGIFS4pgCo+enbktyRoZXJLduWFgY99VBy15bkyOEkuTzJ95terU7eNodCcwVC1cnrakk2Lb4QWjVYdAEAAACUWi31X/4HklR2j41n99h4to0cTpKsXz1UYGnlt2t0PF964o187dnDGT040Xh6a+phy3eTnJaj45fnu/cmB1+tBzonn5qccvrcix7Yn4w8mjz4L8k//VlydDxJvpDkn2dcWZv8GUiyI/UtY5VMzZRKkucnbxuvnT/5Wm3xf1paoSMIAACAE6maGduGtgyv1CHURnN0/9RSD2Oqs7zlt5J8bxkfecUi3l/N8R1CG1MPgTLj+eoyamIOgiAAAACKUJ28tW2sTeYJgLZm4Q6bU5N8IPVQ5rYWPu6O1IOlHyT5v8XWmlkCwVm0Kww6N8nmJFcmGU6yIcnTSUaSPJrkgSQvtuFzeoIgCAAAgCJVMnXK1DFbhldm3aqhrF9tosl8GuFPkqUGQEWrZv5AaKlh0ECS307yb2ntxPSjST6a5Nupn3ZWWoIgAAAAukU1s4QCQqHpFgh/5tr+1a2qWbgzaFMWF2hdkIGBWiYmzk2SXHVRcs3a5IoLk7efkax5a/LSL5KfvZo89pPkwT3Jzuca730hyQeT7F3Un6KHCIIAAADoNpXM0iWU9O/2sQXCn6Q3un9m02r3Tath0MZj110znHzmw8n73rnwu57Yl3zxO8mDI41nKqmHaqUjCAIAAKCbVbJAKFTGbqFdo+PZPXZk8nZ85su1ydteDX8aqlm4G6jZQtvEpkKgOz6WfPKDi6/oy48kt32j8aiSEoZBgiAAAAB6RWXyZ7ZTprJu1eCxQKiXOoZ2jdaDnjk6fhpqk7e9Hv40qy7w+sam+5Wm+1tnef8FSf47SfLpDyXV311GVd9M/vbhxqNfT8m2iQmCAAAA6FXVydtZg6Fkeji0btVQkhTWPdQIfBqdPvX7s4Y+yfTgp/lxP6vm+KPnG7f7kpzXcifQWZ+q377897O/PtUZ9EKSd6ZEA6QFQQAAAJRFJVOB0IJbjppDoqnnho67bq7gqBHmzLR77Mi01+cJe5rVUt+GVIvQZyHVTP/nuyPJxlwznHz9Dxd+dyMESuYOgpLkE//QmBm0Ocm/L6HOriQIAgAAoMwqmQqHNjY9V4Ta5O2OGY9rMy+kJdUkNyc5JclAvvOnrQ2GbjUIemJf8uEvJfWj5UszhEoQBAAAQL+q5PhQaOPxl80ZHNXmeF7Qc+Kcm+R/ctVFybf+aOGrm0OgZP4gKEl+5+8aR8v/WpIXl1Zidzm+5w0AAAD6Qy1Cml63OUlyzdrOrH7N2kYQtDnJP3bmQ06sFUUXAAAAALBEVyZJrrhw4SsXGhA9m6l1r1xUVV1MEAQAAAD0quEkydvPmP+qmVvCWjW17vDSFug+giAAAACgV21Ikqx5a2tXL6YbKElWHQuCNizujd1LEAQAAAD0qqeTJP/72txXLGVLWMPYq9M/pwQMiwYAAAB61UiSDdn/i2T1EraHnfWp+QOinx0LgkaWWF/X0REEAAAA9KpH6399rjOrP/aT6Z9TAjqCAAAAgF71QJLkwT3JJz84+xWzdfy0ul3swT3TP6cEdAQBAAAAverFJEez87nkiX3tXfmJfcnO55Lk6OTnlIIgCAAAAOhlH02SfPE77V11ar2PtnfhYg0UXQAAAADAMgwk2ZfkvNzxsbm3iC3Glx9JbvtGMjDwYiYmzksysfxFu8Ng0QUAAAAALNO3knw62/8zeePNpPKbS1+p+s3kL46NBLo0ycvLL697CIIAAACAXvdyklqSG/L43uS0k5P3vXPxq3z5keYQqJLkh22qr2vYGgYAAACUxcbUA6HkmuHkMx9uLRB6Yl99JtCDI41nKkl2dKTCggmCAAAAgDK5IMkjSc5Lklx1UXLN2uSKC5O3n5GseWvy0i+Sn72aPPaT+hHx9dPBGjOBKkn2FlQ7AAAAAIs0kOQjScZTH/S80M/45PWlb5gp/R8QAAAA6GvnJtmc5Mokw0k2JHk6yUiSR5M8kOTFwqoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgh/w8BUrZSAyPvKAAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "59d3a49b", + "metadata": {}, + "source": [ + "Another example that contracts to 4-way tensor (4 free indices are created) is as follows:\n", + "\n", + "![TestNetwork4.png](attachment:TestNetwork4.png)\n", + "\n", + "The optimal contraction Order is: [2,1,3,4]\n" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "2481886a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(2, 2, 2, 2)" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# --------------- Network-1 --------------- # \n", + "# Leading order cost (guaranteed optimal): (Ind1^5)\n", + "Ind1 = 2\n", + "T0 = np.random.rand(Ind1,Ind1,Ind1)\n", + "T1 = np.random.rand(Ind1,Ind1,Ind1)\n", + "T2 = np.random.rand(Ind1,Ind1,Ind1)\n", + "T3 = np.random.rand(Ind1,Ind1,Ind1)\n", + "\n", + "# TTv1.0.5.0P$B,,92C2/>8>>J>30C?LML0EQ\\XiXN'''''''''9N'[n\\G$\n", + "tensors = [T0,T1,T2,T3]\n", + "connects = [[-1,2,1],[1,2,3],[3,4,-2],[4,-4,-3]]\n", + "con_order = [2,1,3,4]\n", + "T1 = ncon(tensors,connects,con_order)\n", + "T1.shape\n" + ] + }, + { + "cell_type": "markdown", + "id": "f565676a", + "metadata": {}, + "source": [ + "## 4.2.1 The Tensor Train Decomposition" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "5c9c9938", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(1, 2, 2), (2, 2, 2), (2, 2, 2), (2, 2, 1)]" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "from tensorly.decomposition import matrix_product_state\n", + "\n", + "rank = list(T1.shape) # full rank : boundaring conditions dictatate rank[0] == rank[-1] == 1: setting rank[0] to 1.\n", + "rank[0] = 1\n", + "rank.append(1) # boundaring conditions dictatate rank[0] == rank[-1] == 1: setting rank[0] to 1.\n", + "factors = matrix_product_state(T1, rank=rank)\n", + "\n", + "[f.shape for f in factors]\n" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "id": "eef755f6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[[[1.01619903, 1.11245758],\n", + " [0.30639639, 0.97319392]],\n", + "\n", + " [[0.81253976, 0.89205887],\n", + " [0.24767257, 0.78259668]]],\n", + "\n", + "\n", + " [[[1.8293858 , 2.00411737],\n", + " [0.55310029, 1.7544822 ]],\n", + "\n", + " [[1.47286976, 1.61984617],\n", + " [0.45192814, 1.42352728]]]])" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from tensorly import tt_to_tensor\n", + "\n", + "reconstruction_t = np.round(tt_to_tensor(factors), decimals=10)\n", + "reconstruction_t" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "id": "2211238d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MPS RMSE for rank [1, 2, 2, 2, 1] RMSE = 2.797548853035411e-11\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "MPS_RMSE = math.sqrt(np.square(np.subtract(T1,reconstruction_t)).mean() )\n", + "print (\"MPS RMSE for rank \" + str(rank) + \" RMSE = \", MPS_RMSE)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "id": "8053972b", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\tensorly\\tt_tensor.py:187: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n", + " if rank == 'same':\n" + ] + }, + { + "ename": "ValueError", + "evalue": "Provided incorrect number of ranks. Should verify len(rank) == tl.ndim(tensor)+1, but len(rank) = 2 while tl.ndim(tensor) + 1 = 5", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32mC:\\Users\\DELLPR~1\\AppData\\Local\\Temp/ipykernel_3016/3508838178.py\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mtt\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mTensorTrain\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mT1\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mTrue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 6\u001b[1;33m \u001b[0mtt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit_transform\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mT1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\tensorly\\decomposition\\_tt.py\u001b[0m in \u001b[0;36mfit_transform\u001b[1;34m(self, tensor)\u001b[0m\n\u001b[0;32m 141\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 142\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mfit_transform\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtensor\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 143\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdecomposition_\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtensor_train\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtensor\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mrank\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrank\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mverbose\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 144\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdecomposition_\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 145\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\tensorly\\decomposition\\_tt.py\u001b[0m in \u001b[0;36mtensor_train\u001b[1;34m(input_tensor, rank, verbose)\u001b[0m\n\u001b[0;32m 30\u001b[0m \u001b[1;33m.\u001b[0m\u001b[1;33m.\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m \u001b[0mIvan\u001b[0m \u001b[0mV\u001b[0m\u001b[1;33m.\u001b[0m \u001b[0mOseledets\u001b[0m\u001b[1;33m.\u001b[0m \u001b[1;34m\"Tensor-train decomposition\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mSIAM\u001b[0m \u001b[0mJ\u001b[0m\u001b[1;33m.\u001b[0m \u001b[0mScientific\u001b[0m \u001b[0mComputing\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m33\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m5\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;36m2295\u001b[0m\u001b[0;31m–\u001b[0m\u001b[1;36m2317\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m2011.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 31\u001b[0m \"\"\"\n\u001b[1;32m---> 32\u001b[1;33m \u001b[0mrank\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mvalidate_tt_rank\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtl\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0minput_tensor\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mrank\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mrank\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 33\u001b[0m \u001b[0mtensor_size\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0minput_tensor\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 34\u001b[0m \u001b[0mn_dim\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtensor_size\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\tensorly\\tt_tensor.py\u001b[0m in \u001b[0;36mvalidate_tt_rank\u001b[1;34m(tensor_shape, rank, constant_rank, rounding, allow_overparametrization)\u001b[0m\n\u001b[0;32m 240\u001b[0m message = 'Provided incorrect number of ranks. Should verify len(rank) == tl.ndim(tensor)+1, but len(rank) = {} while tl.ndim(tensor) + 1 = {}'.format(\n\u001b[0;32m 241\u001b[0m len(rank), n_dim + 1)\n\u001b[1;32m--> 242\u001b[1;33m \u001b[1;32mraise\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mValueError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmessage\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 243\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 244\u001b[0m \u001b[1;31m# Initialization\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mValueError\u001b[0m: Provided incorrect number of ranks. Should verify len(rank) == tl.ndim(tensor)+1, but len(rank) = 2 while tl.ndim(tensor) + 1 = 5" + ] + } + ], + "source": [ + "from tensorly.decomposition import TensorTrain\n", + "import tensorly as tl\n", + "\n", + "\n", + "tt = TensorTrain (T1, verbose=True)\n", + "tt.fit_transform(T1) # I asked them about this error, if they resolve, will correct, otherwise, I will remove" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "id": "7b38accc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tl.tt_tensor" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "id": "05c96b46", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[1, 2, 2, 2, 1]" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rank" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "id": "690fcc98", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[[[1.01619903, 1.11245758],\n", + " [0.30639639, 0.97319392]],\n", + "\n", + " [[0.81253976, 0.89205887],\n", + " [0.24767257, 0.78259668]]],\n", + "\n", + "\n", + " [[[1.8293858 , 2.00411737],\n", + " [0.55310029, 1.7544822 ]],\n", + "\n", + " [[1.47286976, 1.61984617],\n", + " [0.45192814, 1.42352728]]]])" + ] + }, + "execution_count": 59, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tt.rank" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "id": "ba0dc8bd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[[[1.01619903, 1.11245758],\n", + " [0.30639639, 0.97319392]],\n", + "\n", + " [[0.81253976, 0.89205887],\n", + " [0.24767257, 0.78259668]]],\n", + "\n", + "\n", + " [[[1.8293858 , 2.00411737],\n", + " [0.55310029, 1.7544822 ]],\n", + "\n", + " [[1.47286976, 1.61984617],\n", + " [0.45192814, 1.42352728]]]])" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "T1" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "id": "28986927", + "metadata": {}, + "outputs": [], + "source": [ + "from tensorly import tt_tensor" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "id": "108e8d31", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(1, 2, 2), (2, 2, 2), (2, 2, 2), (2, 2, 1)]" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from tensorly.contrib.decomposition import tensor_train_cross\n", + "factors2 = tensor_train_cross(T1, rank)\n", + "[f.shape for f in factors2]" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "id": "6e0f4e51", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "False" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "factors2 == factors" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "id": "4d1ea039", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[array([[[0.78259668, 1.01619903],\n", + " [1.42352728, 1.8293858 ]]]),\n", + " array([[[-1.55344925e-17, 1.71360091e-01],\n", + " [ 6.89210987e-01, 1.00000000e+00]],\n", + " \n", + " [[ 1.00000000e+00, 8.25712346e-01],\n", + " [ 2.68811052e-01, -5.22023632e-17]]]),\n", + " array([[[ 1.00000000e+00, 5.44676741e-01],\n", + " [-2.76540677e-01, 2.04512317e-17]],\n", + " \n", + " [[ 3.18849242e-17, 5.74353774e-01],\n", + " [ 6.03596818e-01, 1.00000000e+00]]]),\n", + " array([[[ 1.00000000e+00],\n", + " [-3.13308551e-17]],\n", + " \n", + " [[-5.06683654e-17],\n", + " [ 1.00000000e+00]]])]" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "factors2" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "id": "5bbc7e85", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "TT for rank [1, 2, 2, 2, 1] RMSE = 2.797548853035411e-11\n" + ] + } + ], + "source": [ + "reconstruction_t = np.round(tt_to_tensor(factors2), decimals=10)\n", + "reconstruction_t\n", + "\n", + "TT_RMSE = math.sqrt(np.square(np.subtract(T1,reconstruction_t)).mean() )\n", + "print (\"TT for rank \" + str(rank) + \" RMSE = \", TT_RMSE)" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "id": "729561a6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.797548853035411e-11" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "MPS_RMSE" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "id": "04379ebc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "False" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "TT_RMSE > MPS_RMSE" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "id": "d33aede3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting git+https://github.com/PGelss/scikit_tt\n", + " Cloning https://github.com/PGelss/scikit_tt to c:\\users\\dell precision\\appdata\\local\\temp\\pip-req-build-z97rbw8h\n", + " Resolved https://github.com/PGelss/scikit_tt to commit 2ead9c4872cd865f7770f8f3a9274468b5b61b1f\n", + "Requirement already satisfied: numpy>=1.14 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-tt==1.0) (1.23.3)\n", + "Requirement already satisfied: scipy>=1 in c:\\users\\dell precision\\appdata\\roaming\\python\\python39\\site-packages (from scikit-tt==1.0) (1.7.3)\n", + "Collecting numpy>=1.14\n", + " Downloading numpy-1.22.4-cp39-cp39-win_amd64.whl (14.7 MB)\n", + "Installing collected packages: numpy\n", + " Attempting uninstall: numpy\n", + " Found existing installation: numpy 1.23.3\n", + " Uninstalling numpy-1.23.3:\n", + " Successfully uninstalled numpy-1.23.3\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " Running command git clone -q https://github.com/PGelss/scikit_tt 'C:\\Users\\Dell Precision\\AppData\\Local\\Temp\\pip-req-build-z97rbw8h'\n", + "ERROR: Could not install packages due to an OSError: [WinError 5] Access is denied: 'C:\\\\ProgramData\\\\Anaconda3\\\\Lib\\\\site-packages\\\\~.mpy\\\\.libs\\\\libopenblas.FB5AE2TYXYH2IJRDKGDGQ3XBKLKTF43H.gfortran-win_amd64.dll'\n", + "Consider using the `--user` option or check the permissions.\n", + "\n" + ] + } + ], + "source": [ + "#!pip install git+https://github.com/PGelss/scikit_tt" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "id": "9aeb1330", + "metadata": {}, + "outputs": [], + "source": [ + " from scikit_tt.tensor_train import TT\n", + "\n", + "# this class rebuild a TT from the cores. It accepts cores in such a format of\n", + "# a list of cores, i.e. \"t = TT(cores)\" where cores is given by a list of 4-dimensional tensors \"[cores[0] , ..., cores[d-1]]\",\n", + "# where cores[i] is an ndarry with dimensions \"ranks[i] x row_dims[i] x col_dims[i] x ranks[i+1]\"\n", + "# or from a full tensor representation, i.e. \"t = TT(x)\" where x is an ndarray with dimensions \"row_dims[0] x ... x row_dims[-1] x col_dims[0] x ... x col_dims[-1]\"\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "id": "42a7f3d0", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(1, 2, 2), (2, 2, 2), (2, 2, 2), (2, 2, 1)]" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# we can read the previously generated cores iteratively\n", + "cores = []\n", + "for f in factors2:\n", + " cores.append(f)\n", + "[f.shape for f in cores] # list of cores, but must be 4-dimensions each, so we can not use the ones generated by Tensorly" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "id": "2023500e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tensor train with order = 2, \n", + " row_dims = [2, 3], \n", + " col_dims = [3, 2], \n", + " ranks = [1, 4, 1]\n" + ] + } + ], + "source": [ + "# generating a TT from cores randonly generated as requested by scikit_tt\n", + "cores = [np.random.rand(1, 2, 3, 4), np.random.rand(4, 3, 2, 1)] # random cores\n", + "t = TT(cores)\n", + "print(t)" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "id": "e731fa8b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "scikit_tt.tensor_train.TT" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(t)" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "id": "0c8f8ed8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# conversion from TT format into QTT format.\n", + "t_qtt = t.tt2qtt\n", + "t_qtt" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "id": "8fde9686", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1, 2, 3, 4, 5, 6)" + ] + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tensor = np.random.rand(1, 2, 3, 4, 5, 6) # can also construct TT from numpy ndarray as a ful tensor, this is 6-way tensor\n", + "tensor.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "id": "961b3ed5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tensor train with order = 3, \n", + " row_dims = [1, 2, 3], \n", + " col_dims = [4, 5, 6], \n", + " ranks = [1, 4, 18, 1]\n" + ] + } + ], + "source": [ + "t = TT(tensor)\n", + "print (t)" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "id": "2bfa184f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tensor train with order = 2, \n", + " row_dims = [2, 2], \n", + " col_dims = [2, 2], \n", + " ranks = [1, 4, 1]\n" + ] + } + ], + "source": [ + "# from a full tensor representation, the T1 4-way tensor used earlier, it is decomsed into rank [1, 4, 1], \n", + "t = TT(T1) # we can \n", + "print(t)" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "id": "81a4600e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting t3f\n", + " Downloading t3f-1.2.0.tar.gz (57 kB)\n", + "Requirement already satisfied: numpy in c:\\programdata\\anaconda3\\lib\\site-packages (from t3f) (1.22.4)\n", + "Building wheels for collected packages: t3f\n", + " Building wheel for t3f (setup.py): started\n", + " Building wheel for t3f (setup.py): finished with status 'done'\n", + " Created wheel for t3f: filename=t3f-1.2.0-py3-none-any.whl size=69178 sha256=5d37f3bf7deea85231fc9f39d064b349deec8a0fdf52fe8c80da5300f9733550\n", + " Stored in directory: c:\\users\\dell precision\\appdata\\local\\pip\\cache\\wheels\\19\\ba\\b6\\4374128efd1e8839a677ff1114fb4e1f085d8274838d4bae1d\n", + "Successfully built t3f\n", + "Installing collected packages: t3f\n", + "Successfully installed t3f-1.2.0\n" + ] + } + ], + "source": [ + "#!pip install t3f" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "id": "2f47f369", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import t3f\n", + "\n", + "a_tt = t3f.to_tt_tensor(T1, max_tt_rank=2)\n", + "a_tt" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "id": "0c5043cd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "TensorShape([2, 2, 2, 2])" + ] + }, + "execution_count": 89, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a_tt.get_shape()" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "id": "1e9d0d86", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "TensorShape([1, 2, 2, 2, 1])" + ] + }, + "execution_count": 92, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a_tt.get_tt_ranks()" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "id": "3daa88e1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(,\n", + " ,\n", + " ,\n", + " )" + ] + }, + "execution_count": 93, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a_tt.tt_cores" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "id": "33eb50c4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[TensorShape([1, 2, 2]),\n", + " TensorShape([2, 2, 2]),\n", + " TensorShape([2, 2, 2]),\n", + " TensorShape([2, 2, 1])]" + ] + }, + "execution_count": 96, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "[c.shape for c in a_tt.tt_cores]" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "id": "199ab81e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T3F TT for rank [2, 2] RMSE = 3.694568430527454e-15\n" + ] + } + ], + "source": [ + "reconstruction_t = t3f.full(a_tt)\n", + "T3f_TT_RMSE = math.sqrt(np.square(np.subtract(T1,reconstruction_t)).mean() )\n", + "print (\"T3F TT for rank \" + str(rank) + \" RMSE = \", T3f_TT_RMSE)" + ] + }, + { + "cell_type": "markdown", + "id": "fe43a6e6", + "metadata": {}, + "source": [ + "### 4.2.2 Tensor Rings \n", + "\n", + "so far I could not find a TR that works in isolation of NN layers. Even NN layers are not well explained in the tutorials how to use them. I have sent them emails and waiting for their reply, then will update this notebook with the final findings, whether there is, or there is not." + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "id": "df52752f", + "metadata": {}, + "outputs": [], + "source": [ + "#!pip install tednet\n", + "#!pip install torch\n", + "#!pip install --upgrade numpy" + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "id": "9f5b8ff5", + "metadata": {}, + "outputs": [ + { + "ename": "AssertionError", + "evalue": "The number of ranks is not suitable.", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAssertionError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32mC:\\Users\\DELLPR~1\\AppData\\Local\\Temp/ipykernel_3016/2381440515.py\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mrank\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m2\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 6\u001b[1;33m \u001b[0mmodel\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtr\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mTRLinear\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mT1\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m2\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mranks\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mrank\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 7\u001b[0m \u001b[0mtn_type\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m\"tr\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 8\u001b[0m \u001b[0mmodel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtn_info\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m\"type\"\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtn_type\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\tednet\\tnn\\tensor_ring\\base.py\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, in_shape, out_shape, ranks, bias)\u001b[0m\n\u001b[0;32m 210\u001b[0m \u001b[0muse\u001b[0m \u001b[0mbias\u001b[0m \u001b[0mof\u001b[0m \u001b[0mlinear\u001b[0m \u001b[1;32mor\u001b[0m \u001b[1;32mnot\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m\u001b[1;32mTrue\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m \u001b[0mto\u001b[0m \u001b[0muse\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;32mand\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m\u001b[1;32mFalse\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m \u001b[0mto\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0muse\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 211\u001b[0m \"\"\"\n\u001b[1;32m--> 212\u001b[1;33m \u001b[0msuper\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mTRLinear\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0min_shape\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0min_shape\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mout_shape\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mout_shape\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mranks\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mranks\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbias\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mbias\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 213\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 214\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mreset_parameters\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\tednet\\tnn\\tn_linear.py\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, in_shape, out_shape, ranks, bias)\u001b[0m\n\u001b[0;32m 29\u001b[0m \u001b[0muse\u001b[0m \u001b[0mbias\u001b[0m \u001b[0mof\u001b[0m \u001b[0mlinear\u001b[0m \u001b[1;32mor\u001b[0m \u001b[1;32mnot\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m\u001b[1;32mTrue\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m \u001b[0mto\u001b[0m \u001b[0muse\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;32mand\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m\u001b[1;32mFalse\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m \u001b[0mto\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0muse\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 30\u001b[0m \"\"\"\n\u001b[1;32m---> 31\u001b[1;33m \u001b[0msuper\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0m_TNLinear\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0min_shape\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0min_shape\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mout_shape\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mout_shape\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mranks\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mranks\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbias\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mbias\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 32\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 33\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mforward\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0minputs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\tednet\\tnn\\tn_module.py\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, in_shape, out_shape, ranks, bias)\u001b[0m\n\u001b[0;32m 51\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 52\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mset_tn_type\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 53\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mset_nodes\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 54\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mset_params_info\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 55\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\tednet\\tnn\\tensor_ring\\base.py\u001b[0m in \u001b[0;36mset_nodes\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 229\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mranks_fill\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mranks\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mranks\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 230\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 231\u001b[1;33m \u001b[1;32massert\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mnodes_num\u001b[0m \u001b[1;33m==\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mranks\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"The number of ranks is not suitable.\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 232\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 233\u001b[0m \u001b[0mnodes_info\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mAssertionError\u001b[0m: The number of ranks is not suitable." + ] + } + ], + "source": [ + "import tednet as tdt\n", + "\n", + "import tednet.tnn.tensor_ring as tr\n", + "\n", + "rank=[2, 2]\n", + "model = tr.TRLinear(T1.shape, [2, 2], ranks=rank)\n", + "tn_type = \"tr\"\n", + "model.tn_info[\"type\"] = tn_type" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "id": "2072fdf4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(2, 2, 2, 2)" + ] + }, + "execution_count": 80, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "T1.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 109, + "id": "bbbe4fd1", + "metadata": {}, + "outputs": [ + { + "ename": "AttributeError", + "evalue": "'Module' object has no attribute 'tn_info'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32mC:\\Users\\DELLPR~1\\AppData\\Local\\Temp/ipykernel_3016/430665470.py\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 6\u001b[0m \u001b[0mnode_info\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mdict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m\"node1\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mshape\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m3\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m4\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 7\u001b[0m \u001b[0mnodes_info\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mnode_info\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 8\u001b[1;33m \u001b[0mmodel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtn_info\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m\"nodes\"\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnodes_info\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;32m~\\AppData\\Roaming\\Python\\Python39\\site-packages\\torch\\nn\\modules\\module.py\u001b[0m in \u001b[0;36m__getattr__\u001b[1;34m(self, name)\u001b[0m\n\u001b[0;32m 1175\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mname\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mmodules\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1176\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mmodules\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1177\u001b[1;33m raise AttributeError(\"'{}' object has no attribute '{}'\".format(\n\u001b[0m\u001b[0;32m 1178\u001b[0m type(self).__name__, name))\n\u001b[0;32m 1179\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mAttributeError\u001b[0m: 'Module' object has no attribute 'tn_info'" + ] + } + ], + "source": [ + "#from tednet.tnn import tn_module\n", + "from torch.nn.modules.module import Module\n", + "\n", + "model = Module()\n", + "nodes_info = []\n", + "node_info = dict(name=\"node1\", shape=[2, 3, 4])\n", + "nodes_info.append(node_info)\n", + "model.tn_info[\"nodes\"] = nodes_info\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2674f6a5", + "metadata": {}, + "outputs": [], + "source": [ + "for epoch in range(20):\n", + " model.train(\n", + " torch.utils.data.DataLoader(\n", + " datasets.MNIST('./data', train=True, download=True,\n", + " transform=transforms.Compose([\n", + " transforms.ToTensor(),\n", + " transforms.Normalize((0.1307,), (0.3081,))\n", + " ])),\n", + " batch_size=128, shuffle=True, **kwargs)\n", + " optim.SGD(model.parameters(), lr=2e-2, momentum=0.9, weight_decay=5e-4), \n", + " epoch\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a57f3585", + "metadata": {}, + "outputs": [], + "source": [ + "model.train?" + ] + }, + { + "cell_type": "markdown", + "id": "21bfb337", + "metadata": {}, + "source": [ + "## 4.3.1 Introduction to NN:\n", + "\n", + "To keep code simpler, I tried to load the dataset once, and in every new model, updated its format as required by the new model. If anything goes wrong, all cells from next one, need to run in sequence\n", + "\n", + "## Perceptron" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "1e44d0f1", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Dell Precision\\AppData\\Roaming\\Python\\Python39\\site-packages\\scipy\\__init__.py:146: UserWarning: A NumPy version >=1.16.5 and <1.23.0 is required for this version of SciPy (detected version 1.23.3\n", + " warnings.warn(f\"A NumPy version >={np_minversion} and <{np_maxversion}\"\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1797, 64)\n" + ] + } + ], + "source": [ + "import numpy as np \n", + "from sklearn.datasets import load_digits\n", + "from sklearn.linear_model import Perceptron\n", + "\n", + "digits = load_digits() # consider binary case\n", + "X = digits.data\n", + "y = digits.target\n", + "print(X.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "4882e9b1", + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "\n", + "X = X / 255.0\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0, test_size=0.4)\n", + "X_test, X_val, y_test, y_val = train_test_split(X_test, y_test, random_state=0, test_size=0.5)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "155009a0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1078, 64)\n", + "(359, 64)\n", + "(360, 64)\n" + ] + } + ], + "source": [ + "print (X_train.shape)\n", + "print (X_test.shape)\n", + "print (X_val.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "bff4a293", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPoAAAECCAYAAADXWsr9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAL1klEQVR4nO3db6yWdR3H8c+nA3gEcViYGajkpjRzSxijjKIEdZgO19YD2HTL1ehBOVltTnuSPm4z22ouwz9sIk5RsjkzWGrmMox/Jgg2ZZiEcvwTgTT++u3BfdGITp3rwPW7zn3O9/3azrjPOfe5P98DfM7vuu9z3ffPESEAI9tHhnoAAOVRdCABig4kQNGBBCg6kABFBxLoiqLbnmf7Vduv2b6lcNa9tvtsbyqZc0zeObafsb3F9mbbNxXO67X9ou2XqrzbS+ZVmT22N9h+onRWlbfd9su2N9peWzhrgu0VtrdW/4aXFsyaWn1PR9/22F7cyI1HxJC+SeqR9Lqk8yWNkfSSpIsK5s2WNF3Sppa+v7MlTa8uj5f0l8LfnyWdVl0eLWmNpM8X/h6/J+lBSU+09He6XdLElrKWSvpWdXmMpAkt5fZIelvSeU3cXjes6DMlvRYR2yLioKSHJF1bKiwinpP0fqnb7yfvrYhYX13eK2mLpEkF8yIiPqjeHV29FTsryvZkSVdLWlIqY6jYPl2dheEeSYqIgxGxu6X4uZJej4g3mrixbij6JElvHvP+DhUswlCyPUXSNHVW2ZI5PbY3SuqTtDoiSubdKelmSR8WzDheSFple53tRQVzzpf0jqT7qrsmS2yPK5h3rAWSljd1Y91QdPfzsRF3Xq7t0yQ9KmlxROwpmRURRyLiEkmTJc20fXGJHNvXSOqLiHUlbv//mBUR0yVdJek7tmcXyhmlzt28uyJimqR9koo+hiRJtsdImi/pkaZusxuKvkPSOce8P1nSziGapQjbo9Up+bKIeKyt3Oow81lJ8wpFzJI03/Z2de5yzbH9QKGsf4uIndWffZJWqnP3r4QdknYcc0S0Qp3il3aVpPURsaupG+yGov9J0gW2P1X9JFsg6VdDPFNjbFud+3hbIuKOFvLOtD2hunyqpMslbS2RFRG3RsTkiJiizr/b0xFxXYmso2yPsz3+6GVJV0oq8huUiHhb0pu2p1YfmivplRJZx1moBg/bpc6hyZCKiMO2vyvpN+o80nhvRGwulWd7uaSvSJpoe4ekH0bEPaXy1Fn1rpf0cnW/WZJ+EBFPFso7W9JS2z3q/CB/OCJa+bVXS86StLLz81OjJD0YEU8VzLtR0rJqEdom6YaCWbI9VtIVkr7d6O1WD+UDGMG64dAdQGEUHUiAogMJUHQgAYoOJNBVRS98OuOQZZFH3lDndVXRJbX5l9nqPxx55A1lXrcVHUABRU6YGeNToleDf5LPIR3QaJ3S+DxDnXWyeWM+Pfifx/t371fvhN4TyjvlI4cH/TX7/n5Q484Yc0J5u3eNH/TXHN6/T6N6T+yJZD3v7Rv01wyX/y/7tU8H48B/PVGsyCmwvRqnz3luiZtO6ZNLB1+Ek3HB2L5W8355x5xW8864/4VW89q0Jn7b78c5dAcSoOhAAhQdSICiAwlQdCABig4kQNGBBCg6kECtore5ZRKA5g1Y9OpFBn+mzkvQXiRpoe2LSg8GoDl1VvRWt0wC0Lw6RU+zZRIwUtV5UkutLZOqJ8ovkqRejT3JsQA0qc6KXmvLpIi4OyJmRMSMNp/OB2BgdYo+ordMAjIY8NC97S2TADSv1gtPVPuEldorDEBhnBkHJEDRgQQoOpAARQcSoOhAAhQdSICiAwlQdCCBIju1oFnb93601bz7zv19q3m/mP2lVvPOuL/VuK7Aig4kQNGBBCg6kABFBxKg6EACFB1IgKIDCVB0IAGKDiRA0YEE6mzJdK/tPtub2hgIQPPqrOj3S5pXeA4ABQ1Y9Ih4TtL7LcwCoBDuowMJNPY0VfZeA7pXYys6e68B3YtDdyCBOr9eWy7pBUlTbe+w/c3yYwFoUp1NFhe2MQiAcjh0BxKg6EACFB1IgKIDCVB0IAGKDiRA0YEEKDqQAHuvnYAPvzyt1byfX/jTVvOkca2mnf7ymFbzMmJFBxKg6EACFB1IgKIDCVB0IAGKDiRA0YEEKDqQAEUHEqDoQAJ1XhzyHNvP2N5ie7Ptm9oYDEBz6pzrfljS9yNive3xktbZXh0RrxSeDUBD6uy99lZErK8u75W0RdKk0oMBaM6g7qPbniJpmqQ1RaYBUETtp6naPk3So5IWR8Sefj7P3mtAl6q1otserU7Jl0XEY/1dh73XgO5V51F3S7pH0paIuKP8SACaVmdFnyXpeklzbG+s3r5aeC4ADaqz99rzktzCLAAK4cw4IAGKDiRA0YEEKDqQAEUHEqDoQAIUHUiAogMJjIi91/562xdazXv8hh+1mnfh6Hb3QmvbpFXvtZp3pNW07sCKDiRA0YEEKDqQAEUHEqDoQAIUHUiAogMJUHQgAYoOJEDRgQTqvApsr+0Xbb9U7b12exuDAWhOnXPdD0iaExEfVK/v/rztX0fEHwvPBqAhdV4FNiR9UL07unqLkkMBaFbdnVp6bG+U1CdpdUSw9xowjNQqekQciYhLJE2WNNP2xcdfx/Yi22ttrz2kAw2PCeBkDOpR94jYLelZSfP6+Rx7rwFdqs6j7mfanlBdPlXS5ZK2Fp4LQIPqPOp+tqSltnvU+cHwcEQ8UXYsAE2q86j7nyVNa2EWAIVwZhyQAEUHEqDoQAIUHUiAogMJUHQgAYoOJEDRgQRGxN5r5972h1bzFt/1tVbzntywqtW8th2aOLbVvIyrW8bvGUiHogMJUHQgAYoOJEDRgQQoOpAARQcSoOhAAhQdSICiAwnULnq1icMG27wwJDDMDGZFv0nSllKDACin7pZMkyVdLWlJ2XEAlFB3Rb9T0s2SPiw3CoBS6uzUco2kvohYN8D12HsN6FJ1VvRZkubb3i7pIUlzbD9w/JXYew3oXgMWPSJujYjJETFF0gJJT0fEdcUnA9AYfo8OJDCol5KKiGfV2TYZwDDCig4kQNGBBCg6kABFBxKg6EACFB1IgKIDCVB0IIERsfcahre+6ae2mveJ37Ua1xVY0YEEKDqQAEUHEqDoQAIUHUiAogMJUHQgAYoOJEDRgQQoOpBArVNgq5d63ivpiKTDETGj5FAAmjWYc90vi4h3i00CoBgO3YEE6hY9JK2yvc72opIDAWhe3UP3WRGx0/bHJa22vTUinjv2CtUPgEWS1KuxDY8J4GTUWtEjYmf1Z5+klZJm9nMd9l4DulSd3VTH2R5/9LKkKyVtKj0YgObUOXQ/S9JK20ev/2BEPFV0KgCNGrDoEbFN0mdbmAVAIfx6DUiAogMJUHQgAYoOJEDRgQQoOpAARQcSoOhAAhQdSICiAwlQdCABig4kQNGBBCg6kABFBxKg6EACFB1IgKIDCVB0IIFaRbc9wfYK21ttb7F9aenBADSn7gYOP5H0VER83fYYiR0agOFkwKLbPl3SbEnfkKSIOCjpYNmxADSpzqH7+ZLekXSf7Q22l1QbOfwH24tsr7W99pAOND4ogBNXp+ijJE2XdFdETJO0T9Itx1+JLZmA7lWn6Dsk7YiINdX7K9QpPoBhYsCiR8Tbkt60PbX60FxJrxSdCkCj6j7qfqOkZdUj7tsk3VBuJABNq1X0iNgoaUbZUQCUwplxQAIUHUiAogMJUHQgAYoOJEDRgQQoOpAARQcSqHtmHI5xZFdfq3mXbb621bxnPvN4q3mHv/iPVvP043bjugErOpAARQcSoOhAAhQdSICiAwlQdCABig4kQNGBBCg6kMCARbc91fbGY9722F7cwmwAGjLgKbAR8aqkSyTJdo+kv0laWXYsAE0a7KH7XEmvR8QbJYYBUMZgi75A0vISgwAop3bRq9d0ny/pkf/xefZeA7rUYFb0qyStj4hd/X2SvdeA7jWYoi8Uh+3AsFSr6LbHSrpC0mNlxwFQQt0tmf4p6WOFZwFQCGfGAQlQdCABig4kQNGBBCg6kABFBxKg6EACFB1IgKIDCTgimr9R+x1JJ/Kc9YmS3m14nG7IIo+8tvLOi4gzj/9gkaKfKNtrI2LGSMsij7yhzuPQHUiAogMJdFvR7x6hWeSRN6R5XXUfHUAZ3baiAyiAogMJUHQgAYoOJEDRgQT+BWVtkEnsFjPvAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "plt.matshow(digits.images[1])" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "7336972a", + "metadata": {}, + "outputs": [], + "source": [ + "clf = Perceptron(tol=1e-3, random_state=0)\n", + "from time import time\n", + "start= time()\n", + "clf.fit(X, y)\n", + "p_learnTime= time()-start" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "94edb44f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training set score: 0.914657\n", + "Test set score: 0.908078\n" + ] + } + ], + "source": [ + "print(\"Training set score: %f\" % clf.score(X_train, y_train))\n", + "P_MNIST_score = clf.score(X_test, y_test)\n", + "print(\"Test set score: %f\" % P_MNIST_score)" + ] + }, + { + "cell_type": "markdown", + "id": "38ae3bb8", + "metadata": {}, + "source": [ + "## Multi Layer Perceptron" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "692e31c5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 1, loss = 2.32083410\n", + "Iteration 2, loss = 2.30143372\n", + "Iteration 3, loss = 2.29487446\n", + "Iteration 4, loss = 2.28683077\n", + "Iteration 5, loss = 2.27889477\n", + "Iteration 6, loss = 2.27008412\n", + "Iteration 7, loss = 2.25852477\n", + "Iteration 8, loss = 2.24779170\n", + "Training set score: 0.320037\n", + "Test set score: 0.281337\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\neural_network\\_multilayer_perceptron.py:702: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (8) reached and the optimization hasn't converged yet.\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "from sklearn.neural_network import MLPClassifier\n", + "\n", + "epochs = 8\n", + "\n", + "mlp = MLPClassifier(\n", + " hidden_layer_sizes=(40,),\n", + " max_iter=epochs,\n", + " alpha=1e-4,\n", + " solver=\"sgd\",\n", + " verbose=10,\n", + " random_state=1,\n", + " learning_rate_init=0.2,\n", + ")\n", + "\n", + "start= time()\n", + "mlp.fit(X_train, y_train)\n", + "mlp_learnTime= time()-start\n", + "\n", + "print(\"Training set score: %f\" % mlp.score(X_train, y_train))\n", + "MLP_MNIST_score = mlp.score(X_test, y_test)\n", + "print(\"Test set score: %f\" % MLP_MNIST_score)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "fbf8eb85", + "metadata": {}, + "outputs": [], + "source": [ + "#!pip install --upgrade tensorflow" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "557eda1b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"model\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " input_1 (InputLayer) [(None, 64)] 0 \n", + " \n", + " dense (Dense) (None, 10) 650 \n", + " \n", + " activation (Activation) (None, 10) 0 \n", + " \n", + "=================================================================\n", + "Total params: 650\n", + "Trainable params: 650\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "import tensorflow as tf\n", + "#import as tk\n", + "#from tensorflow.keras.datasets import mnist\n", + "from tensorflow.keras.utils import to_categorical\n", + "num_classes = 10\n", + "\n", + "y_train = to_categorical(y_train, num_classes=num_classes) # NN encoding\n", + "y_test = to_categorical(y_test, num_classes=num_classes)\n", + "#from tf.keras import Input\n", + "#from tensorflow.keras.layers import Dense, Activation\n", + "#from tensorflow.keras.models import Model\n", + "\n", + "xi = tf.keras.Input(shape=(X_train.shape[1],))\n", + "xo = tf.keras.layers.Dense(num_classes)(xi)\n", + "yo = tf.keras.layers.Activation('softmax')(xo)\n", + "model = tf.keras.models.Model(inputs=[xi], outputs=[yo])\n", + "\n", + "model.summary()" + ] + }, + { + "cell_type": "markdown", + "id": "7e6a35ad", + "metadata": {}, + "source": [ + "## Keras Fully Connected / Dense Model" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "82afd099", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/8\n", + "8/8 [==============================] - 0s 18ms/step - loss: 2.2918 - accuracy: 0.1485 - val_loss: 2.3010 - val_accuracy: 0.1111\n", + "Epoch 2/8\n", + "8/8 [==============================] - 0s 5ms/step - loss: 2.2882 - accuracy: 0.1649 - val_loss: 2.2978 - val_accuracy: 0.1204\n", + "Epoch 3/8\n", + "8/8 [==============================] - 0s 5ms/step - loss: 2.2848 - accuracy: 0.1701 - val_loss: 2.2944 - val_accuracy: 0.1111\n", + "Epoch 4/8\n", + "8/8 [==============================] - 0s 5ms/step - loss: 2.2812 - accuracy: 0.1845 - val_loss: 2.2912 - val_accuracy: 0.1111\n", + "Epoch 5/8\n", + "8/8 [==============================] - 0s 4ms/step - loss: 2.2779 - accuracy: 0.1918 - val_loss: 2.2879 - val_accuracy: 0.1204\n", + "Epoch 6/8\n", + "8/8 [==============================] - 0s 4ms/step - loss: 2.2743 - accuracy: 0.1969 - val_loss: 2.2850 - val_accuracy: 0.1296\n", + "Epoch 7/8\n", + "8/8 [==============================] - 0s 4ms/step - loss: 2.2709 - accuracy: 0.2010 - val_loss: 2.2819 - val_accuracy: 0.1389\n", + "Epoch 8/8\n", + "8/8 [==============================] - 0s 4ms/step - loss: 2.2675 - accuracy: 0.2103 - val_loss: 2.2786 - val_accuracy: 0.1389\n", + "Test loss: 2.2778701782226562\n", + "Test accuracy: 0.16155989468097687\n" + ] + } + ], + "source": [ + "batch_size = 128\n", + "\n", + "model.compile(loss='categorical_crossentropy', \n", + " optimizer='adam', \n", + " metrics=['accuracy'])\n", + "\n", + "start= time()\n", + "model.fit(X_train, y_train,\n", + " batch_size=batch_size,\n", + " epochs=epochs,\n", + " verbose=1,\n", + " validation_split=0.1)\n", + "\n", + "FC_learnTime= time()-start\n", + "\n", + "score = model.evaluate(X_test, y_test, verbose=0)\n", + "print('Test loss:', score[0])\n", + "FC_MNIST_score = score[1]\n", + "print('Test accuracy:', FC_MNIST_score)" + ] + }, + { + "cell_type": "markdown", + "id": "ab62f373", + "metadata": {}, + "source": [ + "## Keras CNN Model\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "ae4b6f34", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1078, 64)\n", + "(359, 64)\n", + "(1078, 8, 8)\n", + "(359, 8, 8)\n" + ] + } + ], + "source": [ + "# images are flattened to 64, will return to 28 x 28\n", + "# then add another dimension to make sure images have shape (8, 8, 1) for CNN\n", + "\n", + "print(X_train.shape)\n", + "print(X_test.shape)\n", + "X_train = X_train.reshape((X_train.shape[0], 8, 8))\n", + "X_test = X_test.reshape((X_test.shape[0], 8, 8))\n", + "print(X_train.shape)\n", + "print(X_test.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "da88adb3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1078, 8, 8, 1)\n", + "(359, 8, 8, 1)\n" + ] + } + ], + "source": [ + "X_train = np.expand_dims(X_train, -1)\n", + "X_test = np.expand_dims(X_test, -1)\n", + "print(X_train.shape)\n", + "print(X_test.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "e457171c", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " conv2d (Conv2D) (None, 4, 4, 32) 320 \n", + " \n", + " dropout (Dropout) (None, 4, 4, 32) 0 \n", + " \n", + " flatten (Flatten) (None, 512) 0 \n", + " \n", + " dropout_1 (Dropout) (None, 512) 0 \n", + " \n", + " dense_1 (Dense) (None, 10) 5130 \n", + " \n", + "=================================================================\n", + "Total params: 5,450\n", + "Trainable params: 5,450\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "\n", + "input_shape = (8, 8, 1)\n", + "# 32 channels, a kernel size of 5×5, a stride of (2, 2), and padding=’same’.\n", + "dropout = 0.2\n", + "\n", + "model = tf.keras.Sequential(\n", + " [\n", + " tf.keras.Input(shape=input_shape),\n", + " tf.keras.layers.Conv2D(32, kernel_size=(3, 3), strides=(2,2), padding='same', activation=\"relu\", kernel_initializer='he_normal', bias_initializer='zeros'),\n", + " tf.keras.layers.Dropout(dropout),\n", + " #tf.keras.layers.Conv2D(64, kernel_size=(3, 3), activation=\"relu\"),\n", + " #tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2),\n", + " tf.keras.layers.Flatten(),\n", + " tf.keras.layers.Dropout(dropout),\n", + " tf.keras.layers.Dense(num_classes, activation=\"softmax\"),\n", + " ]\n", + ")\n", + "\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "6c6b9edd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1078, 8, 8, 1)" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "a51b677e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/8\n", + "8/8 [==============================] - 0s 18ms/step - loss: 2.2960 - accuracy: 0.1113 - val_loss: 2.2867 - val_accuracy: 0.1759\n", + "Epoch 2/8\n", + "8/8 [==============================] - 0s 6ms/step - loss: 2.2756 - accuracy: 0.2423 - val_loss: 2.2685 - val_accuracy: 0.3889\n", + "Epoch 3/8\n", + "8/8 [==============================] - 0s 6ms/step - loss: 2.2537 - accuracy: 0.3845 - val_loss: 2.2464 - val_accuracy: 0.4722\n", + "Epoch 4/8\n", + "8/8 [==============================] - 0s 6ms/step - loss: 2.2275 - accuracy: 0.4598 - val_loss: 2.2200 - val_accuracy: 0.5093\n", + "Epoch 5/8\n", + "8/8 [==============================] - 0s 6ms/step - loss: 2.1942 - accuracy: 0.5196 - val_loss: 2.1881 - val_accuracy: 0.5463\n", + "Epoch 6/8\n", + "8/8 [==============================] - 0s 5ms/step - loss: 2.1562 - accuracy: 0.5351 - val_loss: 2.1521 - val_accuracy: 0.5556\n", + "Epoch 7/8\n", + "8/8 [==============================] - 0s 6ms/step - loss: 2.1188 - accuracy: 0.5619 - val_loss: 2.1116 - val_accuracy: 0.6019\n", + "Epoch 8/8\n", + "8/8 [==============================] - 0s 6ms/step - loss: 2.0767 - accuracy: 0.5732 - val_loss: 2.0680 - val_accuracy: 0.6111\n" + ] + } + ], + "source": [ + "\n", + "model.compile(loss=\"categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n", + "\n", + "start= time()\n", + "model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)\n", + "CNN_learnTime= time()-start" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "68411915", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test loss: 2.083078384399414\n", + "Test accuracy: 0.5543175339698792\n" + ] + } + ], + "source": [ + "score = model.evaluate(X_test, y_test, verbose=0)\n", + "print(\"Test loss:\", score[0])\n", + "CNN_MNIST_score = score[1]\n", + "print(\"Test accuracy:\", CNN_MNIST_score)" + ] + }, + { + "cell_type": "markdown", + "id": "d85777a0", + "metadata": {}, + "source": [ + "## Keras RNN Model" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "5ce21148", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential_7\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " simple_rnn_5 (SimpleRNN) (None, 32) 1312 \n", + " \n", + " dense_4 (Dense) (None, 10) 330 \n", + " \n", + " activation_3 (Activation) (None, 10) 0 \n", + " \n", + "=================================================================\n", + "Total params: 1,642\n", + "Trainable params: 1,642\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "# network parameters\n", + "input_shape = (8, 8) # image size\n", + "units = 32 # trying to achieve fair comparison, by having 32 RNN units, while we had 32 channel in CNN \n", + "\n", + "# model is RNN with 32 units, input is 8x8-dim \n", + "model = tf.keras.Sequential()\n", + "model.add(tf.keras.layers.SimpleRNN(units=units,\n", + " dropout=dropout,\n", + " input_shape=input_shape))\n", + "model.add(tf.keras.layers.Dense(num_classes))\n", + "model.add(tf.keras.layers.Activation('softmax'))\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "89c52cc0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/8\n", + "9/9 [==============================] - 0s 2ms/step - loss: 2.3102 - accuracy: 0.1076\n", + "Epoch 2/8\n", + "9/9 [==============================] - 0s 2ms/step - loss: 2.3079 - accuracy: 0.1002\n", + "Epoch 3/8\n", + "9/9 [==============================] - 0s 2ms/step - loss: 2.3077 - accuracy: 0.0918\n", + "Epoch 4/8\n", + "9/9 [==============================] - 0s 2ms/step - loss: 2.3076 - accuracy: 0.0733\n", + "Epoch 5/8\n", + "9/9 [==============================] - 0s 2ms/step - loss: 2.3047 - accuracy: 0.0770\n", + "Epoch 6/8\n", + "9/9 [==============================] - 0s 2ms/step - loss: 2.3041 - accuracy: 0.0937\n", + "Epoch 7/8\n", + "9/9 [==============================] - 0s 2ms/step - loss: 2.3035 - accuracy: 0.0779\n", + "Epoch 8/8\n", + "9/9 [==============================] - 0s 2ms/step - loss: 2.3025 - accuracy: 0.0631\n", + "Test loss: 2.309088945388794\n", + "Test accuracy: 0.033426184207201004\n" + ] + } + ], + "source": [ + "model.compile(loss='categorical_crossentropy',\n", + " optimizer='sgd',\n", + " metrics=['accuracy'])\n", + "# train the network\n", + "\n", + "start= time()\n", + "model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size)\n", + "RNN_learnTime= time()-start\n", + "\n", + "score = model.evaluate(X_test, y_test, verbose=0)\n", + "print('Test loss:', score[0])\n", + "RNN_MNIST_score = score[1]\n", + "print('Test accuracy:', RNN_MNIST_score)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "061c418f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1078, 8, 8, 1)" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "markdown", + "id": "442b6990", + "metadata": {}, + "source": [ + "## Keras LSTM Model" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "31fd70c5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential_8\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " lstm_1 (LSTM) (None, 32) 5248 \n", + " \n", + " dense_5 (Dense) (None, 10) 330 \n", + " \n", + " activation_4 (Activation) (None, 10) 0 \n", + " \n", + "=================================================================\n", + "Total params: 5,578\n", + "Trainable params: 5,578\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "# model is LSTM with 32 units, input is 8x8-dim \n", + "model = tf.keras.Sequential()\n", + "model.add(tf.keras.layers.LSTM(units=units,\n", + " dropout=dropout,\n", + " input_shape=input_shape))\n", + "model.add(tf.keras.layers.Dense(num_classes))\n", + "model.add(tf.keras.layers.Activation('softmax'))\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "a546871c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/8\n", + "9/9 [==============================] - 1s 4ms/step - loss: 2.3017 - accuracy: 0.1113\n", + "Epoch 2/8\n", + "9/9 [==============================] - 0s 3ms/step - loss: 2.3017 - accuracy: 0.1169\n", + "Epoch 3/8\n", + "9/9 [==============================] - 0s 4ms/step - loss: 2.3015 - accuracy: 0.1169\n", + "Epoch 4/8\n", + "9/9 [==============================] - 0s 4ms/step - loss: 2.3014 - accuracy: 0.1169\n", + "Epoch 5/8\n", + "9/9 [==============================] - 0s 4ms/step - loss: 2.3014 - accuracy: 0.1058\n", + "Epoch 6/8\n", + "9/9 [==============================] - 0s 4ms/step - loss: 2.3012 - accuracy: 0.1252\n", + "Epoch 7/8\n", + "9/9 [==============================] - 0s 3ms/step - loss: 2.3013 - accuracy: 0.1085\n", + "Epoch 8/8\n", + "9/9 [==============================] - 0s 3ms/step - loss: 2.3012 - accuracy: 0.1122\n", + "Test loss: 2.303574562072754\n", + "Test accuracy: 0.08077994734048843\n" + ] + } + ], + "source": [ + "model.compile(loss='categorical_crossentropy',\n", + " optimizer='sgd',\n", + " metrics=['accuracy'])\n", + "# train the network\n", + "\n", + "start= time()\n", + "model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size)\n", + "LSTM_learnTime= time()-start\n", + "\n", + "score = model.evaluate(X_test, y_test, verbose=0)\n", + "print('Test loss:', score[0])\n", + "LSTM_MNIST_score = score[1]\n", + "print('Test accuracy:', LSTM_MNIST_score)" + ] + }, + { + "cell_type": "markdown", + "id": "58ef30f7", + "metadata": {}, + "source": [ + "## Keras GRU Model" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "3082576a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential_9\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " gru (GRU) (None, 32) 4032 \n", + " \n", + " dense_6 (Dense) (None, 10) 330 \n", + " \n", + " activation_5 (Activation) (None, 10) 0 \n", + " \n", + "=================================================================\n", + "Total params: 4,362\n", + "Trainable params: 4,362\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "# model is GRU with 256 units, input is 28-dim vector 28 timesteps\n", + "model = tf.keras.Sequential()\n", + "model.add(tf.keras.layers.GRU(units=units,\n", + " dropout=dropout,\n", + " input_shape=input_shape))\n", + "model.add(tf.keras.layers.Dense(num_classes))\n", + "model.add(tf.keras.layers.Activation('softmax'))\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "d5b23ecd", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/8\n", + "9/9 [==============================] - 1s 4ms/step - loss: 2.3016 - accuracy: 0.1104\n", + "Epoch 2/8\n", + "9/9 [==============================] - 0s 3ms/step - loss: 2.3015 - accuracy: 0.1178\n", + "Epoch 3/8\n", + "9/9 [==============================] - 0s 3ms/step - loss: 2.3013 - accuracy: 0.1215\n", + "Epoch 4/8\n", + "9/9 [==============================] - 0s 4ms/step - loss: 2.3012 - accuracy: 0.1364\n", + "Epoch 5/8\n", + "9/9 [==============================] - 0s 4ms/step - loss: 2.3009 - accuracy: 0.1354\n", + "Epoch 6/8\n", + "9/9 [==============================] - 0s 3ms/step - loss: 2.3009 - accuracy: 0.1215\n", + "Epoch 7/8\n", + "9/9 [==============================] - 0s 3ms/step - loss: 2.3008 - accuracy: 0.1150\n", + "Epoch 8/8\n", + "9/9 [==============================] - 0s 4ms/step - loss: 2.3007 - accuracy: 0.1113\n", + "Test loss: 2.3027074337005615\n", + "Test accuracy: 0.07799442857503891\n" + ] + } + ], + "source": [ + "model.compile(loss='categorical_crossentropy',\n", + " optimizer='sgd',\n", + " metrics=['accuracy'])\n", + "# train the network\n", + "\n", + "start= time()\n", + "model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size)\n", + "GRU_learnTime= time()-start\n", + "\n", + "score = model.evaluate(X_test, y_test, verbose=0)\n", + "print('Test loss:', score[0])\n", + "GRU_MNIST_score = score[1]\n", + "print('Test accuracy:', GRU_MNIST_score)" + ] + }, + { + "cell_type": "code", + "execution_count": 101, + "id": "b5eb18f4", + "metadata": {}, + "outputs": [], + "source": [ + "# Import Necessary Pytorch Modules\n", + "import torch\n", + "import torch.nn as nn\n", + "from torch import Tensor\n", + "from tednet.tnn import tensor_ring as tr\n", + "\n", + "# A Simple MNIST Classifier based on Tensor Ring.\n", + "class TRClassifier (nn.Module) :\n", + " def init (self):\n", + " super (TRClassifier, self).init()\n", + "\n", + " # Define a Tensor Ring Convolutional Layer\n", + " self.trcnn = tr.TRConv2D ([1] , [4, 5] , [ 6, 6, 6, 6], 3)\n", + " # Define a Tensor Ring Fully−Connected Layer\n", + " self.trfc = tr.TRLinear ([20, 26, 26],[10], [6, 6, 6, 6])\n", + "\n", + " def forward (self, inputs: Tensor ) -> Tensor :\n", + " # Call TRConv2D to process inputs\n", + " out = self.trcnn (inputs)\n", + " out = torch.relu (out)\n", + " out = out.view (inputs.size (0), -1)\n", + "\n", + " # Call TRLinear to classify the features\n", + " out = self.trfc (out)\n", + " return out\n" + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "id": "7c9213ab", + "metadata": {}, + "outputs": [ + { + "ename": "TypeError", + "evalue": "__init__() takes 1 positional argument but 2 were given", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32mC:\\Users\\DELLPR~1\\AppData\\Local\\Temp/ipykernel_3016/370578838.py\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mTRCls\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mTRClassifier\u001b[0m\u001b[1;33m(\u001b[0m \u001b[0mX_train\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[0mTRCls\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mTypeError\u001b[0m: __init__() takes 1 positional argument but 2 were given" + ] + } + ], + "source": [ + "TRCls = TRClassifier( X_train)\n", + "TRCls" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "id": "5559916f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "compression_ration is: 0.3968253968253968\n", + "compression_ration is: 14.17233560090703\n", + "compression_ration is: 241.54589371980677\n", + "compression_ration is: 2.867383512544803\n" + ] + } + ], + "source": [ + "# You can also build a network in only one line of code, e.g., TR-LeNet5\n", + "\n", + "model = tr.TRLeNet5(10, [6, 6, 6, 6])" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "0cf24864", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEWCAYAAAB2X2wCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAn8ElEQVR4nO3de7wVZd338c9XQMAAT6AZqEAeEOQooBkphSHkWSxBE7EUMbHE6pGnu1vJ7GT2aCre3GREpQJqiocwypsQ8XALKOIB9YWIssUEIVFE5PR7/pjZ28Vm7b3WhrXZe4/f9+vFizUz11zzm7XW/q1rrpm5RhGBmZk1fLvVdQBmZlYaTuhmZhnhhG5mlhFO6GZmGeGEbmaWEU7oZmYZ4YRuDZKkCZL+s67jKETSjyTdVtdx1GeS2ksKSY2LKDtC0txdEVdD5IReSyQtk7RRUutK8xemX9726fTkdLpvTplDJEXO9GxJF+ZM/0jS65LWSSqTNC2d/2I6b52kLZI25Ez/KE+M4yRtkvRB+u9VSbdIOqAG+7lNbLtKRIyKiJ/u6u3WVET8PCJ26fuTfp+el7RbzrxrJU1OX5cn0L9WWu92SeN2ZaxWWk7otet1YFj5hKSuQPM85dYA1xZToaTzgfOAEyKiBdAb+B+AiOgSES3S+Y8Bo8unI+LnVVQ5LSJaAvsAZwCfBRbUJKlbfsW0OGvR54ChBcocI+mLuyIY2zWc0GvXn4HhOdPnA3/KU+6PQDdJxxdRZx9gZkS8BhAR/4qIiTsbaERsiogXgbOBVcD3ASTtLekhSask/Tt93S5d9jPgS8At6VHALen830paLul9SQskfamq7eY5+qg4pFbiBkkrJa2VtEjSkemyyZKuTV/3T49Uvp+WfVvSBTl17ivpwTSeeWlrNe9hu6S/SRpdad5zks4stG/pEc89aUv3fWBEOu/2nDKnpkdS76X7fkTOspB0SM507j62Tt/79yStkfRYbgs8j+uAnxT4UbmO4hsSIyQ9nn4e70laKunYdP7y9H0/P6f8npL+lH5v3pD04/J4JTWSdL2kdyUtBU6qtK09Jf0+/RzfSj+vRnliqvL78WnlhF67ngJaSToi/UKeDdyep9x64OfAz4qsc7ikH0rqne+LvjMiYgtwP0mihuQ78gfgYOAg4CPglrTsf7DtkUB5IpwH9CBp9d8J3C2p2Q6EMxA4DjgM2Ivk/VtdRdnPAnsCbYFvA+Ml7Z0uGw98mJY5P/1XlTvZ9qiqM8m+l3dPFNq304B70njvyK1Y0mHAFOByoA0wA3hQ0u7VxFPu+0BZut7+wI+A6sbtuBd4HxhRTZnxwGGSTihi+wBHA4uAfUn2fSpJA+MQ4JskP+wt0rI3k3weHYHjSRo25T+yFwEnAz1JjjDPqrSdPwKb03p7knwP8nVb1eT78anghF77ylvpXwVeBt6qotx/AwdJGlxdZRFxO3AZcCLwKLBS0tjShQvACpKERUSsjoi/RMT6iPiA5Een2iOJiLg9XW9zRPwGaAocvgNxbAJaAp0ARcTiiHi7mrLXpEcaM4B1wOHpD94Q4Op0H14iSRhVuQ/oIengdPpc4N6I+LjIfXsyIqZHxNaI+KhS3WcDf42If0TEJuB6ki64Y4t8Lw4ADk738bGofiCmAP4TuEpS0yrKbCD5PItqpQOvR8Qf0h/9acCBJO/5xxHxd2AjcEhO4+X/RsQHEbEM+A1JVyHAN4AbI2J5RKwBflG+AUn7A4OByyPiw4hYCdxA/u6jmnw/PhWc0Gvfn4FzSFpK+bpbAEgTxk/Tf6quwoi4IyJOIGmVjAKukXRiieKFpJW7BkDSHpL+Oz1sfh+YA+xV3ZFB2vWxOD0Mfo+kpda6qvJViYhZJEcD44F3JE2U1KqK4qsjYnPO9HqgBUmLtjGwPGdZ7uvK2/yApDVenkCGktPSLmLfqqybpF/7jZxtbU3Lt61mnXK/BpYAf0+7Owr+iKc/bG8CI6sp9jtgf0mnFBHDOzmvP0q3UXleC5L3Y3dy9jV9Xb6fn2Pb9ym33MFAE+DttGvnPZLGzn6Vg6nh9+NTwQm9lkXEGyQnR79GchhcnT+QJIgziqx7U0TcTXIYXJK+w7Sf8xSSrhRIDvUPB46OiFYkh7jwyY9OVFr/S8CVJK2wvSNiL2AtVf9IfQjskTP92dyFEXFTRBwFdCE5tP5hDXdpFcnhe7uceQcWWGcKMEzSF0ha0P+EovetulbzCpKERVqf0ljKj9rWU8V7kbZ0vx8RHUk+nyskDSiwHwA/Bv6jUr2fBJscKfyEIhoSNfAuSev54Jx5B/HJfr7Ntp/BQTmvlwMfA60jYq/0X6uI6FJF/Dv7/cgUJ/Rd49vAVyLiw+oKpS3McSRJI6/0JNRJklpK2i3toukC/O/OBCipSXqCbgpJIvl/6aKWJC2v9yTtA1xdadV3SPpJySm/mSSRNpZ0FVBdq2khcGZ6JHAIyXtVHlMfSUdLakKS+DcAW2qyX2n3wL3AuHQbndj2RHU+M0iS0TUkVwFt3cF9q+wu4CRJA9J9+j5J8noiXb4QOCc9aTiInK4tSScruZxVJH3jWyjivYiI2cDzVH/e4M8kXUeDarAv1W1zC8m+/iz9nh4MXMEn54/uAr4rqV16nmNszrpvA38HfiOpVfod/7zyXDBQiu9H1jih7wIR8VpEzC+y+BSSFkxV3ic5IfYm8B7JlQqXRMSO3mxxtqR1aV0PkJxUOioiVqTLbyRppb5LckL2b5XW/y1wlpIrYG4CZgIPA6+SHEpvoPpuiBtI+l7fIenbzj2R2IqkS+DfaV2rSfqda2o0yZHPv0iS1xSSRJpX2v11L3ACycm/cjXdt8r1vkJy8vBmkvfzFOCUiNiYFvleOu89kr776TmrHwo8QnJu4Eng1jRZF+PHpOdEqohrC8kPdZVldsBlJEl2KTCX5H2clC77Hcl7+RzwDNsfuQ4n6bJ5ieSzv4fk/EFlpfp+ZIb8gAv7tJH0K+CzEVFdq9WswXEL3TJPUidJ3dLrlvuSdOvcV9dxmZVaXd7JZrartCTpZvkcsJLkErr76zQis1rgLhczs4xwl4uZWUbUWZdL69ato3379nW1eTOzBmnBggXvRkSbfMvqLKG3b9+e+fOLvZLPzMwAJL1R1TJ3uZiZZYQTuplZRjihm5llRDHP8JtEMnbxyoiocgAoSX1Ibg0/OyLu2ZFgNm3aRFlZGRs2bNiR1a2ONWvWjHbt2tGkSZO6DsXsU6mYk6KTSYaorHLo13Qo1V+RjM+ww8rKymjZsiXt27cnGYPIGoqIYPXq1ZSVldGhQ4e6DsfsU6lgl0tEzCEdG7salwF/IbkLb4dt2LCBfffd18m8AZLEvvvu66Mrszq0033oktqSjN89oYiyIyXNlzR/1apVVZXZ2ZCsjvizM6tbpTgpeiNwZToEZ7UiYmJE9I6I3m3a5L0u3szMdlApbizqDUxNW2etga9J2hwR03e24vZj/1q4UA0s++VJhQsB9913H2eeeSaLFy+mU6dOJY2htm3dupXLL7+cWbNmIYlmzZpx1113uV/b7FNgpxN6RFRkCkmTgYdKkczr0pQpU+jXrx9Tp05l3LhxtbadLVu20KhRlY/m3CHTpk1jxYoVLFq0iN12242ysjI+85nP7FSdmzdvpnFjD8xpxrg9S1TP2tLUU0nBLhdJU0iekHK4pDJJ35Y0StKoWomojq1bt47HH3+c3//+90ydOrVi/pYtW/jBD35A165d6datGzfffDMA8+bN49hjj6V79+707duXDz74gMmTJzN69OiKdU8++WRmz54NQIsWLbjqqqs4+uijefLJJ7nmmmvo06cPRx55JCNHjqR89MslS5Zwwgkn0L17d3r16sVrr73Geeedx/33fzLq67nnnssDDzywTfxvv/02BxxwALvtlny07dq1Y++99wbgb3/7G7169aJ79+4MGJA8jnLNmjWcfvrpdOvWjWOOOYZFixYBMG7cOEaOHMnAgQMZPnw4q1atYsiQIfTp04c+ffrw+OOPl/JtN7MSKNjsiohhxVYWESN2Kpp6YPr06QwaNIjDDjuMffbZh2eeeYZevXoxceJEXn/9dZ599lkaN27MmjVr2LhxI2effTbTpk2jT58+vP/++zRv3rza+j/88EOOPPJIrrnmGgA6d+7MVVddBcB5553HQw89xCmnnMK5557L2LFjOeOMM9iwYQNbt27lwgsv5IYbbuC0005j7dq1PPHEE/zxj3/cpv5vfOMb9OvXj8cee4wBAwbwzW9+k549e7Jq1Souuugi5syZQ4cOHVizJrlw6eqrr6Znz55Mnz6dWbNmMXz4cBYuXAjAggULmDt3Ls2bN+ecc85hzJgx9OvXjzfffJMTTzyRxYsXl/jdN7Od4ePoSqZMmcLll18OwNChQ5kyZQq9evXikUceYdSoURVdD/vssw/PP/88BxxwAH369AGgVavCzwtu1KgRQ4YMqZj+5z//yXXXXcf69etZs2YNXbp0oX///rz11lucccYZQHLDDsDxxx/PpZdeysqVK7n33nsZMmTIdl0h7dq145VXXmHWrFnMmjWLAQMGcPfdd7N+/XqOO+64ir70ffZJHh85d+5c/vKXvwDwla98hdWrV7N2bXI4eOqpp1b8QD3yyCO89NJLFdt5//33+eCDD2jZsmUN3l0zq01O6DlWr17NrFmzeOGFF5DEli1bkMR1111HRGx3WV6+eQCNGzdm69atFdO512Y3a9asot98w4YNfOc732H+/PkceOCBjBs3jg0bNlDdQ0fOO+887rjjDqZOncqkSZPylmnatCmDBw9m8ODB7L///kyfPp2vfvWreWPNt63ycrl971u3buXJJ58seARiZnXHY7nkuOeeexg+fDhvvPEGy5YtY/ny5XTo0IG5c+cycOBAJkyYwObNm4Gk77lTp06sWLGCefPmAfDBBx+wefNm2rdvz8KFC9m6dSvLly/n6aefzru98kTfunVr1q1bxz33JCMmtGrVinbt2jF9+nQAPv74Y9avXw/AiBEjuPHGGwHo0qXLdnU+88wzrFixAkiS8KJFizj44IP5whe+wKOPPsrrr79eET/Acccdxx133AHA7Nmzad26dd4jjYEDB3LLLbdUTJd3y5hZ/VGvW+jFXmZYKlOmTGHs2LHbzBsyZAh33nknN998M6+++irdunWjSZMmXHTRRYwePZpp06Zx2WWX8dFHH9G8eXMeeeQRvvjFL9KhQwe6du3KkUceSa9evfJub6+99uKiiy6ia9eutG/fvqLrBuDPf/4zF198MVdddRVNmjTh7rvvpmPHjuy///4cccQRnH766XnrXLlyJRdddBEff/wxAH379mX06NE0a9aMiRMncuaZZ7J161b2228//vGPfzBu3DguuOACunXrxh577LFdn3y5m266iUsvvZRu3bqxefNmjjvuOCZMKHgvmZntQnX2TNHevXtH5QdcLF68mCOOOKJO4mko1q9fT9euXXnmmWfYc88SXUJVQv4MLdPqwWWLkhZERO98y+p1C9229cgjj/Ctb32LK664ol4mc7MaqQfJMWuc0BuQE044gTfffLOuwzCzesonRc3MMsIJ3cwsI5zQzcwywgndzCwj6vdJ0VKdBa+or/DZ8BYtWrBu3brSbrcaxx57LE888cRO1TFz5kyuvPJKIBnUq23btjRv3pxu3bpx7LHHssceezB8+PBShGtm9Vj9TugZUGjo2Z1N5gAnnngiJ554IgD9+/fn+uuvp3fvvJepmlmGuculCK+99hqDBg3iqKOO4ktf+hIvv/wyAA8++CBHH300PXv25IQTTuCdd94Bth96dty4cXzrW9+if//+dOzYkZtuuqmi7hYtWgDJbff9+/fnrLPOolOnTpx77rkV46zMmDGDTp060a9fP7773e9y8sknFx37uHHjuP7664Ek2Y8ZM4bjjjuOI444gnnz5nHmmWdy6KGH8uMf/7hindtvv52+ffvSo0cPLr74YrZsKfgwKjOrB5zQizBy5EhuvvlmFixYwPXXX893vvMdAPr168dTTz3Fs88+y9ChQ7nuuusq1lmwYAH3338/d955JwAvv/wyM2fO5Omnn+YnP/kJmzZt2m47zz77LDfeeCMvvfQSS5cu5fHHH2fDhg1cfPHFPPzww8ydO5eqnsVarN133505c+YwatQoTjvtNMaPH88LL7zA5MmTWb16NYsXL2batGk8/vjjLFy4kEaNGlWM9WJm9Zu7XApYt24dTzzxBF//+tcr5pWPk1JWVsbZZ5/N22+/zcaNG7d5zFvu0LMAJ510Ek2bNqVp06bst99+vPPOO7Rr126bbfXt27diXo8ePVi2bBktWrSgY8eOFXUPGzaMiRMn7vD+nHrqqQB07dqVLl26cMABBwDQsWNHli9fzty5c1mwYEHFuDIfffQR++233w5vz8x2HSf0ArZu3cpee+2Vd3TByy67jCuuuIJTTz2V2bNnb/O4usqPfWvatGnF60aNGlWM2lioTKnH2infxm677bbN9nbbbbeK7Z1//vn84he/KOl2zaz2uculgFatWtGhQwfuvvtuIBk//LnnngNg7dq1tG3bFqDKUQp3VqdOnVi6dCnLli0DkmeG1qYBAwZwzz33sHLlSiAZZveNN96o1W2aWWnU7xZ6HQy6s379+m26Qq644gruuOMOLrnkEq699lo2bdrE0KFD6d69O+PGjePrX/86bdu25ZhjjqkYa7yUmjdvzq233sqgQYNo3bo1ffv2Lfk2cnXu3Jlrr72WgQMHsnXrVpo0acL48eM5+OCDa3W7ZrbzPHxuA7Bu3TpatGhBRHDppZdy6KGHMmbMmLoOKy9/hla0hjjaYj2Iubrhc93l0gD87ne/o0ePHnTp0oW1a9dy8cUX13VIZlYPFexykTQJOBlYGRFH5ll+LnBlOrkOuCQinitplJ9yY8aMqbctcjOrP4ppoU8GBlWz/HXg+IjoBvwU2PFr6sj/0GJrGPzZmdWtggk9IuYAa6pZ/kRE/DudfApoV1XZQpo1a8bq1audGBqgiGD16tU0a9asrkMx+9Qq9VUu3wYermqhpJHASICDDjpou+Xt2rWjrKxsp++GtLrRrFmz7W6WMrNdp2QJXdKXSRJ6v6rKRMRE0i6Z3r17b9cMb9KkyTZ3W5qZWfFKktAldQNuAwZHxOpS1GlmZjWz05ctSjoIuBc4LyJe3fmQzMxsRxRz2eIUoD/QWlIZcDXQBCAiJgBXAfsCt0oC2FzVRe9mZlZ7Cib0iBhWYPmFwIUli8jMzHaI7xQ1M8sIJ3Qzs4xwQjczywgndDOzjHBCNzPLCCd0M7OMcEI3M8sIJ3Qzs4xwQjczywgndDOzjHBCNzPLCCd0M7OMcEI3M8sIJ3Qzs4xwQjczywgndDOzjHBCNzPLCCd0M7OMcEI3M8sIJ3Qzs4xwQjczy4iCCV3SJEkrJb1QxXJJuknSEkmLJPUqfZhmZlZIMS30ycCgapYPBg5N/40E/mvnwzIzs5oqmNAjYg6wppoipwF/isRTwF6SDihVgGZmVpxS9KG3BZbnTJel87YjaaSk+ZLmr1q1qgSbNjOzcqVI6MozL/IVjIiJEdE7Inq3adOmBJs2M7NypUjoZcCBOdPtgBUlqNfMzGqgFAn9AWB4erXLMcDaiHi7BPWamVkNNC5UQNIUoD/QWlIZcDXQBCAiJgAzgK8BS4D1wAW1FayZmVWtYEKPiGEFlgdwackiMjOzHeI7Rc3MMsIJ3cwsI5zQzcwywgndzCwjnNDNzDLCCd3MLCOc0M3MMsIJ3cwsIwreWFQftR/715LUs+yXJ5WkHjOz+sAtdDOzjHBCNzPLCCd0M7OMcEI3M8sIJ3Qzs4xwQjczywgndDOzjHBCNzPLCCd0M7OMcEI3M8sIJ3Qzs4xwQjczy4iiErqkQZJekbRE0tg8y/eU9KCk5yS9KOmC0odqZmbVKZjQJTUCxgODgc7AMEmdKxW7FHgpIroD/YHfSNq9xLGamVk1immh9wWWRMTSiNgITAVOq1QmgJaSBLQA1gCbSxqpmZlVq5iE3hZYnjNdls7LdQtwBLACeB74XkRsrVyRpJGS5kuav2rVqh0M2czM8ikmoSvPvKg0fSKwEPgc0AO4RVKr7VaKmBgRvSOid5s2bWoYqpmZVaeYhF4GHJgz3Y6kJZ7rAuDeSCwBXgc6lSZEMzMrRjEJfR5wqKQO6YnOocADlcq8CQwAkLQ/cDiwtJSBmplZ9Qo+UzQiNksaDcwEGgGTIuJFSaPS5ROAnwKTJT1P0kVzZUS8W4txm5lZJUU9JDoiZgAzKs2bkPN6BTCwtKGZmVlN+E5RM7OMcEI3M8sIJ3Qzs4woqg/d7FNn3J4lqmdtaeoxK4Jb6GZmGeGEbmaWEU7oZmYZ4YRuZpYRTuhmZhnhhG5mlhFO6GZmGeGEbmaWEb6xyGqfb9Ix2yXcQjczywgndDOzjHBCNzPLCCd0M7OMcEI3M8sIJ3Qzs4zwZYtmWeBLQw230M3MMqOohC5pkKRXJC2RNLaKMv0lLZT0oqRHSxummZkVUrDLRVIjYDzwVaAMmCfpgYh4KafMXsCtwKCIeFPSfrUUr5mZVaGYFnpfYElELI2IjcBU4LRKZc4B7o2INwEiYmVpwzQzs0KKSehtgeU502XpvFyHAXtLmi1pgaTh+SqSNFLSfEnzV61atWMRm5lZXsUkdOWZF5WmGwNHAScBJwL/Kemw7VaKmBgRvSOid5s2bWocrJmZVa2YyxbLgANzptsBK/KUeTciPgQ+lDQH6A68WpIozcysoGJa6POAQyV1kLQ7MBR4oFKZ+4EvSWosaQ/gaGBxaUM1M7PqFGyhR8RmSaOBmUAjYFJEvChpVLp8QkQslvQ3YBGwFbgtIl6ozcDNzGxbRd0pGhEzgBmV5k2oNP1r4NelC83MzGrCd4qamWWEx3KxTGk/9q8lqWdZs5JUY7ZLuYVuZpYRTuhmZhnhhG5mlhFO6GZmGeGEbmaWEU7oZmYZ4YRuZpYRTuhmZhnhhG5mlhFO6GZmGeGEbmaWEU7oZmYZ4YRuZpYRTuhmZhnhhG5mlhFO6GZmGeGEbmaWEU7oZmYZ4YRuZpYRRSV0SYMkvSJpiaSx1ZTrI2mLpLNKF6KZmRWjYEKX1AgYDwwGOgPDJHWuotyvgJmlDtLMzAorpoXeF1gSEUsjYiMwFTgtT7nLgL8AK0sYn5mZFamYhN4WWJ4zXZbOqyCpLXAGMKG6iiSNlDRf0vxVq1bVNFYzM6tGMQldeeZFpekbgSsjYkt1FUXExIjoHRG927RpU2SIZmZWjMZFlCkDDsyZbgesqFSmNzBVEkBr4GuSNkfE9FIEaWZmhRWT0OcBh0rqALwFDAXOyS0QER3KX0uaDDzkZG5mtmsVTOgRsVnSaJKrVxoBkyLiRUmj0uXV9pubmdmuUUwLnYiYAcyoNC9vIo+IETsflpmZ1ZTvFDUzywgndDOzjHBCNzPLCCd0M7OMcEI3M8sIJ3Qzs4xwQjczywgndDOzjHBCNzPLCCd0M7OMcEI3M8sIJ3Qzs4woanAu23ntx/61JPUs++VJJanHzLLHLXQzs4xwQjczywgndDOzjHBCNzPLCCd0M7OMcEI3M8sIJ3Qzs4xwQjczy4iiErqkQZJekbRE0tg8y8+VtCj994Sk7qUP1czMqlMwoUtqBIwHBgOdgWGSOlcq9jpwfER0A34KTCx1oGZmVr1iWuh9gSURsTQiNgJTgdNyC0TEExHx73TyKaBdacM0M7NCiknobYHlOdNl6byqfBt4ON8CSSMlzZc0f9WqVcVHaWZmBRWT0JVnXuQtKH2ZJKFfmW95REyMiN4R0btNmzbFR2lmZgUVM9piGXBgznQ7YEXlQpK6AbcBgyNidWnCMzOzYhXTQp8HHCqpg6TdgaHAA7kFJB0E3AucFxGvlj5MMzMrpGALPSI2SxoNzAQaAZMi4kVJo9LlE4CrgH2BWyUBbI6I3rUXtpmZVVbUAy4iYgYwo9K8CTmvLwQuLG1oZmZWE35ikVWpZE9ZalaSasysAN/6b2aWEU7oZmYZ4YRuZpYRTuhmZhnhhG5mlhFO6GZmGeGEbmaWEU7oZmYZ4YRuZpYRTuhmZhnhhG5mlhEey8XMaqQhjvHTEGPeEW6hm5llhBO6mVlGOKGbmWWEE7qZWUY4oZuZZYQTuplZRviyRbM69Gm5nM52DbfQzcwyoqgWuqRBwG+BRsBtEfHLSsuVLv8asB4YERHPlDjW0hu3Z4nqWVuaeoraVgOM2cx2iYItdEmNgPHAYKAzMExS50rFBgOHpv9GAv9V4jjNzKyAYrpc+gJLImJpRGwEpgKnVSpzGvCnSDwF7CXpgBLHamZm1VBEVF9AOgsYFBEXptPnAUdHxOicMg8Bv4yIuen0/wBXRsT8SnWNJGnBAxwOvFKqHdlBrYF36ziGmnLMu0ZDi7mhxQuOeUcdHBFt8i0opg9deeZV/hUopgwRMRGYWMQ2dwlJ8yOid13HUROOeddoaDE3tHjBMdeGYrpcyoADc6bbASt2oIyZmdWiYhL6POBQSR0k7Q4MBR6oVOYBYLgSxwBrI+LtEsdqZmbVKNjlEhGbJY0GZpJctjgpIl6UNCpdPgGYQXLJ4hKSyxYvqL2QS6redP/UgGPeNRpazA0tXnDMJVfwpKiZmTUMvlPUzCwjnNDNzDKi3iZ0SVskLZT0gqS7Je1RBzGcnueu2NrcXkj6c850Y0mr0uv8kTRC0i151lsm6XlJz0n6u6TP1kJs5Z/Hi+l2rpBUb78/VZH0WUlTJb0m6SVJMyQdlr73l+WUu0XSiPT1ZElvSWqaTreWtGwXxZv7d/CgpL3S+e3rW8yS1uWZd7ik2ek+LJY0UdKJ6fRCSeskvZK+/pOk/ul+fTunjp7pvB/UYuz7S7pT0lJJCyQ9KemMNJ61kp6V9LKk63PWGVc5pvRvsXVtxVlIff6D/CgiekTEkcBGYFQxK0kq5QiSp5MMd1Db2yn3IXCkpObp9FeBt4pc98sR0R2YD/yoFmIr/zy6pHF9Dbi6FrZTa9Ixh+4DZkfE5yOiM8l7tT+wEvheeiVXPluAb+2aSLeR+3ewBrg0Z1l9jTnXTcAN6T4cAdwcETPT6R4k39dz0+nh6TrPA2fn1DEUeK62Aky/F9OBORHRMSKOSrfZLi3yWET0BHoCJ0v6Ym3FsrPqc0LP9RhwiKTPSJokaV76i3kaVLRc75b0IPB3SS0k/SFttS6SNCQtNzD95X0mLd8inb9M0q8kPZ3+O0TSscCpwK/T1sPn05bGzyU9SvKHNCCN4/k0rqY59f0k3c7zkjrVYF8fBk5KXw8DptTwvZoDHFLDdWokIlaS3PE7WolGkn6dfi6LJF0MkLZuZku6J23d3JH+8SDpl0payIvKWz2S2kj6S1rPvFr4w/kysCm9Mqt8XxYCy4FVwP8A51ex7o3AmFr6IS/Wk0DbnOmGEPMBJPepABARzxexzptAs7TVLGAQyd9FbfkKsLHS9+KNiLg5t1BEfAQsZNvPoF6p9wk9/TIOJvnV/g9gVkT0Ifnj/LWkz6RFvwCcHxFfAf6T5Fr4rhHRDZiVHgb9GDghInqRtAyuyNnU+xHRF7gFuDEiniC5vv6HaevhtbTcXhFxPMmAZZOBsyOiK8kloJfk1Pduup3/AmpyqDgVGCqpGdAN+N8arAtwMsl7VasiYinJ92c/4Nsk73cfoA9wkaQOadGewOUkRzodgS9K2gc4A+iSfj7XpmV/S9Ka6wMMAW4rcdhHAguqWf5L4PtKBqSr7E1gLnBeiWMqShrTALa/B6Texpy6geTv72FJY5R2GRXhHuDrwLHAM8DHtRQfQJd0G9WStDfJAIRzajGWnVKfE3pzSQtJEu+bwO+BgcDYdP5soBlwUFr+HxGxJn19AknCBSAi/g0cQ5JUHk/XPx84OGd7U3L+/0I1cU1L/z8ceD0iXk2n/wgcl1Pu3vT/BUD76nY0V0QsSssPI7m+v1j/TPerFfCLGqy3M8qHfBhIcmPZQpIfoH1JvvgAT0dEWURsJWndtAfeBzYAt0k6k+TeBUg+t1vSeh4AWklqWfu7kYiI14GngXOqKPJz4Ifs2r+b8r+D1cA+wD9yF9bTmCtExB+AI4C7gf7AU+VHsgXcRZLQd+QodadIGq/kPNG8dNaXJC0C/gU8FBH/SudXdc13nV0LXp+fWPRR2sdWIT38GhIRr1SafzRJ/3PFLPKPN/OPiBhWxfaiiteVlW8n3/g1ucpbFFuo+fv8AHA9yR/AvkWu8+WI2GWDBknqSLJvK0nei8siYmalMv3ZtmW1BWic3qzWl6TFORQYTXLYuxvwhfTQtja8CJxVoMzPSVqH27XCImJJmly/UfrQqvRRRPSQtCfwEEkf+k2VytS3mCvHsAKYBEyS9AKFj5SIiH9J2kRyvuZ7JC312vIiyRFh+bYvTY/oywcXfCwiTpZ0GDBX0n1pV91qki6lXC2B92ox1mrV5xZ6PjOBy3L6YXtWUe7vJEmCtNzewFMkh/uHpPP2SD+gcmfn/P9k+voDkg8on5eB9uX1kRzWPlqz3anSJOCaIvsbdzlJbYAJwC2R3Jk2E7hEUpN0+WE5XWH51m8B7BkRM0i6Y3qkiyp/bj0qr7uTZgFNJV2Us40+5BypRcTLwEskXVf5/IyadaGVRESsBb4L/KD8fc5ZVi9jhuThODnfi8+SNFCKPdF/FcmorVtqK77ULJI++9wu0+2uqkuPxn8BXJnOmgOcWn4UmR5tPrcL4q1SQ0voPwWaAIvSX/qfVlHuWmBvJZd6PUfSel0FjACmpIdPTwG5JyubSvpfktbAmHTeVOCH6YnPz+duICI2kAxxcLek54GtJElup6VdFL+tYvEISWU5/9pVUa7Umqcnh18EHiFJvj9Jl91GklCeST+X/6b6o5KWwEPp5/Aon7zf3wV6pydKX6LIK5uKlf74nAF8Vclliy8C49h+ILmf8ckVDpXreJEi+ltrQ0Q8S3K1x9A8i+tDzHtU+m5eQdIdV/53OJPknNS/qq8mERFPRMT0Woy3fDtBckXb8ZJel/Q0SRfqlXmKTwCOk9Qh7R69haTVvpDk+3phbcdbHd/6T3JVCtB7V3ZZmJmVWkNroZuZWRXcQjczywi30M3MMsIJ3cwsI5zQzcwywgndGiwlI/D9Jmf6B5LGpa/HSVovab+c5duNBpjOXybpsUrzFqaXYNYkntmSqn2AcDFlzHaUE7o1ZB8DZ6rq4UrfBb5fZF0tJR0IIOmIUgRntqs5oVtDtpnkGY9jqlg+CTg7HQyskLv45G7hbcYPkdRMn4ze+aykL6fzmysZW32RpGlA85x18o7saVabnNCtoRsPnJuOdVLZOpKk/r0i6rkHODN9fQrwYM6ySwHSUTWHAX9UMhrmJcD6dMTInwFHQfIwCaof2dOsVtTnwbnMCoqI9yX9iWTYgHyDet0ELMzta6/CGuDfkoYCi/lkBEiAfsDN6fZelvQGcBjJ6Jo3pfMXpUMZwLYjewLszifjA5nVGid0y4IbScYq+UPlBRHxnqQ7ge8UUc80khb/iErzqxtZM9+deYVG9jSrFe5ysQYvHQf/LpIHbeTz/4CLKdyAuQ+4jmQQqVxzgHMhGUmSZAz+VyrNP5LkgSRQeGRPs1rhhG5Z8Rsg79Uu6aBr9wHVPlghIj6IiF9FxMZKi24FGqWjak4DRkTExyRPo2qRdrX8H5IHTVDEyJ5mtcJjuZiZZYRb6GZmGeGEbmaWEU7oZmYZ4YRuZpYRTuhmZhnhhG5mlhFO6GZmGfH/AXaS6JmzKGjEAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "x = ['Perceptron', 'MLP', 'Dense', 'CNN', 'RNN', 'LSTM', 'GRU']\n", + "AccScore = [P_MNIST_score, MLP_MNIST_score, FC_MNIST_score, CNN_MNIST_score, RNN_MNIST_score, LSTM_MNIST_score, GRU_MNIST_score]\n", + "LearnTime=[p_learnTime, mlp_learnTime, FC_learnTime, CNN_learnTime, RNN_learnTime, LSTM_learnTime, GRU_learnTime]\n", + "x_pos = np.arange(len(x))\n", + "\n", + "\n", + "plt.bar(x_pos - 0.2, AccScore, 0.4, label = 'Accuracy Score')\n", + "plt.bar(x_pos + 0.2, LearnTime, 0.4, label = 'Learning Time')\n", + " \n", + "plt.xticks(x_pos, x)\n", + "plt.xlabel(\"NN Model\")\n", + "plt.title(\"MNIST Data using various NN models\")\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "e4a1461e", + "metadata": {}, + "source": [ + "This is not an apple to apple comparison, as every model has more properties and hyperparameters that have been fine-tuned to perform at its best. These experiments need to be repeated using different datasets (text and sequential time series to show test the spatial (2D and 3D) vs temperoal dependency (1D)), more complex (this was MNIST 8x8 pixels), more layers, more channels or units, use regularisation, more ephochs, ... and so forth.\n", + "\n", + "The best way to compare all models is to define a particular acceptable accuracy score, and select the minimum parameter's values that achieves this accuracy score. Such that we say RNN converged (reached 90% accuracy) after xx epochs, using these parameter values and compare with the other models." + ] + }, + { + "cell_type": "markdown", + "id": "ea307e2f", + "metadata": {}, + "source": [ + "## Tensorised NN\n", + "\n", + "There are many public domain examples for compressed NN using Tensor decomposition approaches.\n", + "\n", + "- https://github.com/tensorly/Proceedings_IEEE_companion_notebooks/blob/master/tt-compression.ipynb\n", + "- https://github.com/tensorly/Proceedings_IEEE_companion_notebooks/blob/master/tensor_regression_layer.ipynb \n", + "\n", + "- https://github.com/uwjunqi/TTN-VQC\n", + "\n", + "### RNN\n", + "\n", + "- https://github.com/Tuyki/TT_RNN\n", + "\n", + "- https://tednet.readthedocs.io/en/latest/tutorials/tr_rnn.html\n", + "\n", + "### FC/Dense\n", + "\n", + "- https://github.com/timgaripov/TensorNet-TF/tree/master/experiments/cifar-10/FC-Tensorizing-Neural-Networks\n", + "\n", + "- https://t3f.readthedocs.io/en/latest/tutorials/tensor_nets.html\n", + "\n", + "### CNN\n", + "\n", + "- https://github.com/timgaripov/TensorNet-TF/tree/master/experiments/cifar-10/conv-Ultimate-Tensorization\n", + "\n", + "- https://tednet.readthedocs.io/en/latest/tutorials/tr_cnn.html\n", + "\n", + "### Transformer\n", + "\n", + "- https://github.com/szhangtju/The-compression-of-Transformer\n", + "\n", + "### GAN\n", + "\n", + "- https://github.com/xwcao/TGAN\n", + "\n", + "### Generative Models approximating probability functions and probabilistic graphical models \n", + "\n", + "- https://github.com/emstoudenmire/TNML (C language, based on TN contraction C library itensor)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "32b3fc6b", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/ch5/.ipynb_checkpoints/ch5-checkpoint.ipynb b/ch5/.ipynb_checkpoints/ch5-checkpoint.ipynb new file mode 100644 index 0000000..3c730ff --- /dev/null +++ b/ch5/.ipynb_checkpoints/ch5-checkpoint.ipynb @@ -0,0 +1,2253 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "4e59d1c7", + "metadata": {}, + "source": [ + "# Ch5: Representation Theory\n", + "## 5.1 Group and Representation Theory\n", + "\n", + "\n", + "\n", + "Adopted from http://johnkerl.org/doc/kerl-pyaa.pdf. Only very exercises are attempted to demonstrate the ideas. SACK is not a powerful research-level computer-algebra package (such as, say, GAP). Thw Python wrapper for GAP is not installable now, and using its script language directly is much better and edicational.\n", + "\n", + "Downloading https://github.com/johnkerl/sack and extracting in a subfolder\n", + "\n", + "#### Python polymorphism and operator overloading, list data structure ability to carry different element types, and run-time binding, are features that enable groups of different element types, each invoke its own defined operation, such as the multiplication overloading. \n", + "\n", + "1. Groups are represented as Python Lists\n", + "2. Modules are python packages\n", + "\n", + "For example, importing files from the sack subfolder, is an example of Modules in abstract Algebra. We onlyn need to add an empty python file nammed \"__init__.py\". This way we import from foldername.filename.ClassName{ or functionName}. Also we can import from a file in the same folder by omitting the folder name in the import." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d870c5e1", + "metadata": {}, + "outputs": [], + "source": [ + "# install GAP on your system: https://www.gap-system.org/Releases/4.12.0.html, \n", + "# then install the Python wrapper, did not work, will focus on SACK now, and if this works \n", + "# before publishing, will come back to it. It would have been a better tutorial\n", + "\n", + "#!pip install Cython\n", + "#!pip install pytest\n", + "#!pip install cysignals\n", + "#!pip install gappy-system" + ] + }, + { + "cell_type": "markdown", + "id": "7e3dffed", + "metadata": {}, + "source": [ + "## 5.1.3 Group Types\n", + "\n", + "### This modadd_t class/data type represents elements of a cyclic group on n elements, with the group operation denoted by * modular addition is implemented here as addition mod n for the Cyclic group $C_n∼= \\frac {Z}{nZ} $" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d9a86e16", + "metadata": {}, + "outputs": [], + "source": [ + "class modadd_t:\n", + " def __init__(self, residue, modulus):\n", + " self.residue = residue % modulus\n", + " self.modulus = modulus\n", + " # Use \"*\" for addition. Seems weird, but groups are abstracted\n", + " # multiplicatively in SACK.\n", + " def __mul__(a,b):\n", + " if (a.modulus != b.modulus):\n", + " print (\"Mixed moduli %d, %d\" % (a, b))\n", + " sys.exit(1)\n", + " c = modadd_t(a.residue + b.residue, a.modulus)\n", + " return c\n", + " def __eq__(a,b):\n", + " if (a.residue != b.residue):\n", + " return 0\n", + " return 1\n", + " def __ne__(a,b):\n", + " return not (a == b)\n", + " def __str__(self):\n", + " return str(self.residue)\n", + " def inv(a):\n", + " c = modadd_t(-a.residue, a.modulus)\n", + " return c\n", + "\n", + "# in the test example function, number of elements n = 11 \n", + "def matest():\n", + " a = modadd_t(5, 11)\n", + " b = modadd_t(8, 11)\n", + " c = a * b\n", + " print (c)\n", + "matest()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "45471455", + "metadata": {}, + "outputs": [], + "source": [ + "# The above class is implemented in the package as modadd_tm\n", + "from sack.modadd_tm import modadd_t\n", + "\n", + "a = modadd_t([5], [11])\n", + "d = modadd_t([8], [11])\n", + "\n", + "b = modadd_t([5], [10])\n", + "e = modadd_t([8], [10])\n", + "\n", + "c = modadd_t([5], [6])\n", + "f = modadd_t([8], [6])\n", + "\n", + "# Abstraction Example\n", + "# with a and d ∈ C_11, b and e ∈ C_10, and c and f ∈ C_6. \n", + "# Run-time binding means, e Python interpreter will invoke the mul method (* operator) \n", + "# appropriate for each data type\n", + "\n", + "X = [a,b,c] \n", + "Y = [d,e,f]\n", + "\n", + "Z = [X[0]*Y[0], X[1]*Y[1], X[2]*Y[2]]\n", + "print(\" Z = [\" + str(Z[0]) + \", \"+ str(Z[1]) + \", \"+ str(Z[2]) + \"] \") # from __str__, only residue are printed" + ] + }, + { + "cell_type": "markdown", + "id": "64266729", + "metadata": {}, + "source": [ + "## Klein-four group, $V_4 ∼= Z_2 × Z_2$. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ed1af82c", + "metadata": {}, + "outputs": [], + "source": [ + "from sack.v4_tm import v4_t\n", + "\n", + "x = v4_t(3)\n", + "y = v4_t(2)\n", + "print (str(x)) # prints the Cayley table character for the numeric value the group is initialised with\n", + "print (str(y))\n", + "z = x * y\n", + "print (str(z))\n", + "z.scan(\"a\") # scans a character in the groups Cayley table to its numeric representation\n", + "print (str(z))\n", + "print ()\n", + "\n", + "for i in range(0, 4):\n", + " for j in range(0, 4):\n", + " x = v4_t(i)\n", + " y = v4_t(j)\n", + " z = x * y\n", + " print (\"X = \" + str(x) + \", Y = \" + str(y) + \", Klein-four X * Y = \" + str(z))\n", + " print ()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4c9e9fec", + "metadata": {}, + "outputs": [], + "source": [ + "# quaternion unit group.\n", + "\n", + "from sack.quatu_tm import quatu_t\n", + "\n", + "x = quatu_t(3)\n", + "y = quatu_t(2)\n", + "print (str(x)) # prints the Cayley table character for the numeric code value the group is initialised with\n", + "print (str(y))\n", + "z = x * y\n", + "print (str(z))\n", + "z.scan(\"k\") # scans a character in the groups Cayley table to its numeric code representation\n", + "print (str(z))\n", + "print ()\n", + "\n", + "for i in range(0, 8):\n", + " for j in range(0, 8):\n", + " x = quatu_t(i)\n", + " y = quatu_t(j)\n", + " z = x * y\n", + " print (\"X = \" + str(x) + \", Y = \" + str(y) + \", quaternion X * Y = \" + str(z))\n", + " print ()" + ] + }, + { + "cell_type": "markdown", + "id": "87a269ba", + "metadata": {}, + "source": [ + "### Symmtric Groups $S_n$ in cycle notation can be represented as image-map format in software implementation. For example,\n", + "$σ = (1234)(567) = \\left ( \\begin{matrix}\n", + "1 2 3 4 5 6 7 \\\\\n", + "2 3 4 1 6 7 5 \\end{matrix} \\right ) $\n", + "\n", + "\n", + "Here, 1 maps to 2, 2 maps to 3, 5 maps to 6, etc. Note that the top row of the image map\n", + "always consists of the numbers 1 through n, and thus may be omitted." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b0ea1f8e", + "metadata": {}, + "outputs": [], + "source": [ + "from sack.pmti_tm import pmti_t\n", + "\n", + "x = pmti_t([2, 3, 1], 3)\n", + "y = pmti_t([1, 3, 2], 3)\n", + "\n", + "print (\"X = \" + str(x))\n", + "print (\"X parity = \" + str(x.parity())) # 0 for even, 1 for odd\n", + "print (\"X sign = \" + str(x.sgn())) # : 1 for even, -1 for odd.\n", + "\n", + "print (\"Y = \" + str(y))\n", + "print (\"Y parity = \" + str(y.parity())) # 0 for even, 1 for odd\n", + "print (\"Y sign = \" + str(y.sgn())) # : 1 for even, -1 for odd.\n", + "z = x * y\n", + "z.scan(\"1,2,3,4\", 4)\n", + "print (\"Z = \" + str(z))" + ] + }, + { + "cell_type": "markdown", + "id": "d4be62e5", + "metadata": {}, + "source": [ + "## 5.1.3.2 Geometric groups:\n", + "\n", + "### The dihedral group $D_n$ is the symmetry group on a plane n-gon. It has order 2n and is given by the following representation:\n", + "\n", + "$D_n = <ρ, φ | ρ^n = φ^2 = 1, φρ = ρ^{n−1}φ>.$\n", + "\n", + "The element ρ (rho for rotate) has order n; the element φ (phi for flip) has order 2.\n", + "The repeated use of the final relation enables any element of $D_n$ to be put into the form $ρ^iφ^j$ for i = 0, 1, 2, . . . , n − 1 and j = 0, 1.\n", + "\n", + "Given two elements $ρ^iφ^j$ and $ρ^kφ^l$ of Dn, we obtain the product:\n", + "\n", + "j = 0 : $ρ^iρ^kφ^l = ρ^{i+k}φ^l$\n", + "\n", + "j = 1 : $ρ^iφρ^kφ^l = ρ^{i−k}φ^{l+1}$\n", + "\n", + "Similar definitions for the Metacyclic (metacyc_t) and generalized-quaternion groups (genquat_t)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ae6f4b61", + "metadata": {}, + "outputs": [], + "source": [ + "from sack.dih_tm import dih_t\n", + "\n", + "# rho = 2, flip = 3, n=2\n", + "x = dih_t(2, 3, 2)\n", + "# rho = 3, flip = 3, n=2\n", + "y = dih_t(3, 3, 2)\n", + "\n", + "print (\"X = \" + str(x)) # prints the Cayley table character for the numeric code value the group is initialised with\n", + "print (\"Inv(X) = \" + str(x.inv()))\n", + "print (\"Y = \" + str(y))\n", + "z = x * y # multiplication is only defined on = n\n", + "print (\"X*Y = \" + str(z))\n", + "z.scan(\"2,3\", 3) # scans a rho and flip from the string, and n in the last argument\n", + "print (\"Z = \" + str(z))\n", + "print ()\n", + "\n", + "for i in range(0, 4):\n", + " for j in range(0, 4):\n", + " x = dih_t(i+1, j+1, i+1) # just trying different combinations\n", + " y = dih_t(j+1, i+1, i+1)\n", + " z = x * y\n", + " print (\"X = \" + str(x) + \", Y = \" + str(y) + \", dihedral X * Y = \" + str(z))\n", + " print ()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "042ffd23", + "metadata": {}, + "outputs": [], + "source": [ + "from sack.sackgrp import * # this python file include other group useful functions\n", + "# other interesting group functions in this module such: as is_group, print_cayley_table, left_cosets, \n", + "if (is_group(Z)): \n", + " print(\"is a group\") # all axioms are true (closed, associative, unique identity, inverse)\n", + "else:\n", + " print(\"not a group\")\n", + " \n" + ] + }, + { + "cell_type": "markdown", + "id": "27ff0f99", + "metadata": {}, + "source": [ + "## 5.2 Harmonic analysis \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "The dataset is from https://zenodo.org/record/1188976#.YyR473bMJEY\n", + "\n", + "Livingstone SR, Russo FA (2018) The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English. PLoS ONE 13(5): e0196391. https://doi.org/10.1371/journal.pone.0196391." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "92e70963", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\DELLPR~1\\AppData\\Local\\Temp/ipykernel_7984/4177351705.py:8: WavFileWarning: Chunk (non-data) not understood, skipping it.\n", + " h_samplerate, HappySignal = wavfile.read('data/Actor_01/03-01-03-01-01-01-01.wav')\n", + "C:\\Users\\DELLPR~1\\AppData\\Local\\Temp/ipykernel_7984/4177351705.py:15: WavFileWarning: Chunk (non-data) not understood, skipping it.\n", + " a_samplerate, AngrySignal = wavfile.read(\"data/Actor_01/03-01-05-02-01-02-01.wav\")\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3wAAAEICAYAAAAEOPbcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABZ10lEQVR4nO3dd3iV5fkH8O+dBMLeYY+wRJagRAS3MhVbcOOCWlvqqlo7fqhVqZUWratq1eKoaB1YFyqCoiigIhCQKSvsyAo7rECS+/fHeU84OTn7vPOc7+e6cnHyvOt5T0Kec7/PuEVVQURERERERKknw+kKEBERERERkTUY8BEREREREaUoBnxEREREREQpigEfERERERFRimLAR0RERERElKIY8BEREREREaUoBnyUEkTkOhH53IbrnC8ihVZfx0wicpaIrBWRgyIywun6EBGR/dhOhsd2klIdAz7yDBE5W0S+E5H9IrJHRL4VkdMBQFXfUNXBDtfv3yLyXMD31UTkUJiyfjZW7SEAz6pqHVX9MNmTicirIvJwUFmuiKiIZCV7fiIiSgzbyYSZ2k76icg4o23sa9Y5iRLBgI88QUTqAfgEwDMAGgFoBeAvAEqcrFeQ2QDOC/g+D8BmAOcGlQHAQrsqBaAdgBWJHMgAjojIG9hOJsX0dlJEBMANAPYAGJ141RK7PlEgBnzkFScBgKq+paplqnpEVT9X1aUAICK/EJFv/DuLyGARWW085XxORGaJyK8C9xWRx0Rkr4hsEJGLAo69UURWikixiKwXkd/EWMdZALqKSBPj+3MAvA2gdlDZXFU9LiJjRWSdcZ0fReRS4/rZIrJPRHoE1ClHRI6ISFPj+0tEZLGx33cickqoConIOgAdAHxsDFXJFpGWIvKR8fS3QER+HbD/OBF5V0T+KyIHAPwixnsPvu4wEflBRA6IyBYRGRewzd8bOEZEtorINhH5fYg6TDbem0Ui0svY9kcReS/oWs+IyFOJ1JOIKIWwnXRXO3kOgJYA7gQwUkSqB5wj2vvbXkRmG/f9hYj8S0T+a2zzt6E3ichmADNFZKqI/DbovpYKh6eSgQEfecUaAGUiMklELhKRhuF2NBqNdwHcA6AxgNUAzgza7QyjvAmARwG8LCJibNsJ4BIA9QDcCOBJETktWgVVtRDAJvj+yAO+J5ZzAHwXVDbbeL3OKK8P31PY/4pIC1UtAfA+gGsCTn8VgFmqutOoyysAfmPc378BfCQi2SHq1BG+p6c/M4aqlAB4C0AhfA3RFQD+JiIDAg4bDt/71wDAG9HuO4xDAEYZ5xgG4JYQDc8FADoDGAxgrIgMDKrD/+B7Sv0mgA9FpBqA/wIYKiINgIonm1cDeD3BehIRpQq2k+5qJ0cD+BjAZOP7S4K2R3p/3wQw36j7OPh6CoOdB6ArgCEAJgG43r/BeEjaCsCnYepGaYYBH3mCqh4AcDYABfAigCLj6VuzELtfDGCFqr6vqqUAngawPWifTar6oqqWwfeHsgWAZsa1pqrqOvWZBeBznGiIopkF4FwRyQDQF8D38DVm/rKzjH2gqv9T1a2qWq6qkwGsNY4BfH/sAxuya40yAPg1gH+r6jzjKe4k+IbsRJ3vICJt4Hsf/09Vj6rqYgAvoXJjMldVPzTqdSTMqf5gPDXdJyL7ACwN3KiqX6vqMuMcS+FrPM8LOsdfVPWQqi4D8J+g+12oqu+q6nEATwCoAaCfqm6D74PAlcZ+QwHsUlU7h/4QEbkO20n3tJMiUgu+dupNox17F1WHdYZ8f0WkLYDTATygqsdU9RsAH4Wo6jijDT0CYAqAziLS2dh2A4DJqnos2v1SemDAR56hqitV9Req2hpAD/ievD0VYteWALYEHKfwPakLtD1g+2HjZR0AMJ6Mfm8M5dgHX8PYBLGZDd/TyZ4A1hvn/iagrCaAecZ1RgUMN9ln3JP/OjMB1BSRM0SkHYDeAD4wtrUD8PuggKuNcd/RtASwR1WLA8o2wfck0G8LontMVRv4vwBUGipj1PsrESkSkf0AbkbV9zDwOpuC6h/48yvHiSetQOUnmdeDvXtERADYTsI97eSlAEpxooftDQAXiUhOwD7h3l//9Q8H7BvqeoE/vxIA7wC43giarwHbRgrAgI88SVVXAXgVvj/+wbYBaO3/xhgi0TrEflUYwz3eA/AYgGZGMPMpAIl0XIDZAHrBN4xxjlG2Ar6GZhiABap61GicXgRwO4DGxnWW+69jBDnvwPdH+1oAnwQ0PlsAjA8MuFS1lqq+FUP9tgJoJCJ1A8raAvgp4HuN8V4jeRO+J5JtVLU+gBdQ9T1sE1SHraG2GY1X64DtHwI4RXxzNy5B4sNOiYhSFttJR9vJ0fAFb5tFZDt8UxSqoXKPZDjbjOvXCihrE2K/4DpMAnAdgAEADqvq3BiuRWmCAR95goicLCK/F5HWxvdt4PvD+X2I3acC6CkiI4w5XrcBaB7jpaoDyAZQBKDUmEQd8zLWqloAYAd8k7TnGGUK39PKO3FiXkJt+P5YFxn3cyOqNspvwjc/7TqcGKYC+BrAm42nmiIitcW3SEpdRKGqW+CbK/F3EakhvknsN8H8oKkufE8oj4pvOeprQ+xzv4jUEpHu8M0BmRywrY+IXGb8/O6CbyjO98Y9HIVveMybAOar6maT605E5DlsJ93RTopIK/iCrkvg63XsDV+A+whiWK1TVTcByAcwTkSqi0h/AD+L4bi5AMoBPA727lEQBnzkFcXwTXCeJyKH4GvAlgP4ffCOqroLvrHzjwLYDaAbfH88oy5NbTwdvAO+p4Z74QtUQo2dj2Q2gBwA3waUzQHQ1NgGVf0Rvj/Kc+Fr+HoG7Q9VnQff4ictAUwLKM+Hb37Cs0YdCxDfaprXAMiF7ynmBwAeVNUZcRwfi1sBPCQixQAegO/9DDYLvrp/Cd8Q0cCEwFPga8T3wjcX4TJjHoTfJPjeMzZqREQ+bCdPlDvZTt4AYLH6Vkjd7v+Cb56kf3RKNNcB6A/fz+Zh+B6IxpJe4zX43qf/xlhXShPie6hClLqMIYGFAK5T1a+crk+6E5FcABsAVDMWCwjePg5AJ1W9PnhbwD5tAawC0NxYqICIiBLEdtLdRGQygFWq+mCU/UYBGKOqZ9tTM/IK9vBRShKRISLSwJhrcC98Y/5DDWshjzE+mNwN4G0Ge0REiWE76V4icrqIdBSRDBEZCl8aiA+jHFMLvtE1E22oInlMltMVILJIf/jG81cH8COAEaGWTiZvEZHa8A3t2QRfSgYiIkoM20n3ag5fnsHG8PW83qKqP4TbWUSGGPt/gcpzGYkAcEgnERFRUozFMV6D70NaOYCJqvpPEWkE39ybXAAbAVylqnuNY+6BbyGIMgB3qOpnRnkf+FZWrAnfyod3qqoavTCvAegD37yeq1V1o023SEREHsYhnURERMkpBfB7Ve0KX2Ln20SkG4CxAL5U1c7wLU40FgCMbSMBdIevp/o5Eck0zvU8gDEAOhtf/p7smwDsVdVOAJ6Eb8U/IiKiqDw/pLNJkyaam5vrdDWIiMgGCxcu3KWqOdH3tI+qboMvdxZUtVhEVsKXpHk4gPON3SYB+BrA/xnlbxvJkjeISAGAviKyEUA9f/4sEXkNwAj4Vh8cDmCcca53ATwrIqJRhumwjSQiSg+R2kfPB3y5ubnIz893uhpERGQDEdnkdB0iMVahPRW+nGLNjGAQqrpNRJoau7VC5cUxCo2y48br4HL/MVuMc5WKyH745vfsClGHMfD1EqJt27ZsI4mI0kCk9jHpIZ0i0kZEvhKRlSKyQkTuNMobicgMEVlr/Nsw4Jh7RKRARFYbE0395X1EZJmx7WkRkWTrR0REZAcRqQPgPQB3RVlBNlTbphHKIx1TtVB1oqrmqWpeTo6rOkOJiMgBZszhs2PuAhERkWuJSDX4gr03VPV9o3iHiLQwtrcAsNMoLwTQJuDw1vAleC40XgeXVzpGRLIA1Aewx/w7ISKiVJN0wKeq21R1kfG6GEDg3IVJxm6T4JuHAATMXVDVDQD8cxdawJi7YMxJeC3gGCIiIlcyRqO8DGClqj4RsOkjAKON16MBTAkoHyki2SLSHr4HnPON4Z/FItLPOOeooGP857oCwMxo8/eIiIgAk+fwWTh3gYiIyK3OAnADgGUistgouxfABADviMhNADYDuBIAVHWFiLwDX+6zUgC3qWqZcdwtOJGWYZrxBfgCyteNBV72wDdShoiIKCrTAr7guQsRpt8lMnch+FqVJqQTERE5RVW/Qeg2DAAGhDlmPIDxIcrzAfQIUX4URsBIREQUD1Py8Nkwd6ESTkgnIiIiIiKKzoxVOu2Yu0BERERERERxMqOHzz934UIRWWx8XQzf3IVBIrIWwCDje6jqCgD+uQvTUXXuwkvwLeSyDifmLhCRiVQV7y4sxNHjvv96Ow4cBdd/ICIiLygqLsH05dudrgaRZyQ9h8+OuQtEZK6Zq3biD/9bgpXbDuCqvDYY8tRsPPizbrjxrPZOV42IiCii08d/AQB4eXQeBnRt5nBtiNzPlDl8ROQtxUdLAQBTFm/Fhl2HAABz1+12skpERERxmbp0m9NVIPIEBnxEaWzXwRLsOHDU6WoQERHF7f0ffnK6CkSewICPKM355/ERERERUephwEdEAIDPf9yB3LFT8ZePVzhdFSIiIiIyCQM+IqrkP99udLoKRERERGQSBnxEaUjCratLRERERCmFAR8REREREVGKYsBHlOaYbp2IiIgodTHgIyIiIiJP+mrVTqerQOR6DPiI0tyiTXudrgIREVFClv203+kqELkeAz6iNPf5jzucrgIRERERWYQBHxERERERUYpiwEeUhu58e7HTVSAiIkpauXLpMaJoGPARERERkSc99cVap6tA5HoM+IiIiIiIiFIUAz4iIiIiIhscLCnF+4sKna4GpZkspytARERERJQO7n1/GT5ashUdc+qgV5sGTleH0gR7+IioiunLtztdBSJPEZFXRGSniCwPKBsnIj+JyGLj6+KAbfeISIGIrBaRIQHlfURkmbHtaRERozxbRCYb5fNEJNfWGyQiU2w/cBQAcOR4mcM1oXTCgI+IqlixlYlsieL0KoChIcqfVNXextenACAi3QCMBNDdOOY5Eck09n8ewBgAnY0v/zlvArBXVTsBeBLAI1bdCBERpRYGfERERElS1dkA9sS4+3AAb6tqiapuAFAAoK+ItABQT1XnqqoCeA3AiIBjJhmv3wUwwN/7R0REFIkpAZ/VQ1mIyDzfFexyugpE6eR2EVlqtJMNjbJWALYE7FNolLUyXgeXVzpGVUsB7AfQONQFRWSMiOSLSH5RUZF5d0JERJ5kVg/fq7B2KAsRmeTal+ZF3WfXwWM21IQo5T0PoCOA3gC2AXjcKA/1MFMjlEc6pmqh6kRVzVPVvJycnLgqTEREqceUgM+GoSxEZKO35m92ugpEnqeqO1S1TFXLAbwIoK+xqRBAm4BdWwPYapS3DlFe6RgRyQJQH7G3u0TkEvM3+P7blmvI5zVElrB6Dp9ZQ1kq4XAVIiJyO+NBpt+lAPzTHj4CMNJYebM9fCNa5qvqNgDFItLPmNIwCsCUgGNGG6+vADDTeDhKRB707MwCp6tAacTKgM/MoSyVCzlchYiIXERE3gIwF0AXESkUkZsAPGrMS18K4AIAvwMAVV0B4B0APwKYDuA2VfWv0X4LgJfgG/2yDsA0o/xlAI1FpADA3QDG2nNnRO6355C7pyGs2VGMXQdLKpV9t263Q7WhdGRZ4nVV3eF/LSIvAvjE+DaRoSxERESuparXhCh+OcL+4wGMD1GeD6BHiPKjAK5Mpo5EqerTZdtwfb92TlcjrMFPzkbdGllYNm5I9J2JLGBZD5/JQ1mIyATvLiyMvhMRERGZqvhoKZ6dudbpalCaMistg9VDWYjIBI9/vtrpKhARUYo4VFKKTvd+ihk/7oi+M+Gxz9c4XQVKU6YM6bR6KAsRERERucuGXYdQWq54csYaDOrWzLF6HD1eFn0nojRm9SqdRERERESmOFZaXqXs4akrHahJdAs37UXu2KlhtzNQJbsw4CMiIiIiT5icvyX6Ti7xyrcbIm6/6+3F9lSE0h4DPiILqCpWbjvgdDWIiIgsoaq45JlvbL/u8RA9fF711eqdTleB0gQDPiILvDZ3Ey765xz89q0fLDn/63M3YuhTs+M+LlSyS6eVlpVj+/6jlcq+Wr0TY99b6lCNiIgommnLt1e8/pEPOBNSVh4y3TSR6RjwEVlgxdb9AICPl1iTSvL+KSuwanuxJee228NTV6Lf37/Eos17K8pu/M8CvL3AO8N2iIjSjduTnbvB1KXbIm4vZcBHNmHAR+QxG3YdcroKppq5yjek5bLnvnO4JkRERESphwEfkccs3LQ3+k4ecay0HJv3HHa6GkRE5BEPffKj01Ug8hwGfERkuXveX4ZPl1Ud2rLvMIcEEREREVmJAR8RWe6t+Ztx6xuLnK4GERGZ5Mgx5pAj8goGfEQWK9hZjANHj5tyrvVFB/HQxytCbvvVpAUY8PjX+GTpVlzw2NcoT4HJ4KVlqbP8NhFRKnl8xmqnq+BqTKpObsKAj8hiA5+YjWsmfm/KuX79Wj4OHC0Nue2LlTuxrugQ/vi/pdiw6xCOlnq/sbmTSWmJiFzp6HH7H8ht3XfE9msmav8Rcx70EpmBAR+RDVZsNSdHUTyddhpiXxGXZeKLUp2pIeb9ERFReoqW5oCIQmPAR2QBsSDF+fGy8iopGWavKap6bRtiusVb9nG4ChERURjfFuxyugpEFRjwEXnEzuKSKmWjXplvez227z+KEf/6FiffPx0aqhsxDpc/Xzn33spt5vSEEhEROenud5Y4XQWiCgz4iFKUVUu2FAcsQDN/w56Ez5P38Axs2VN5PsbPn/0m4fMRERERUVUM+IgsoJaFW9FZPaIz8M4OJzis89Nl27DrYNUcfMfLvL+yKBEREZGbMOAjcsDm3Ydx2XPfxrWKV7zDJ5MdbhnOwZLQq4TGgzn5iIi8a9/hqg/snLZ6e7HTVSByLQZ8RA54euZaLNq8D5+t2B7zMbHGb4eMZLjBwyXNctlz30XfKQmrtleex1ewk404EZGbvDFvsyPXjTR6pmDnQRtrQuQtDPjIU96Ytwm5Y6di98GqC5gk4ujxMkxL0aX/L356jtNVqGJdUfQG+cCRyj2IA5+YbVV1iIgoAf/4zJmk66/N3eTIdYm8zpSAT0ReEZGdIrI8oKyRiMwQkbXGvw0Dtt0jIgUislpEhgSU9xGRZca2p8V1ScPIScVHj+O+D3y/Yj+ZlHz1b5+uxC1vLEpq8ZF4lZSW4cMffor7uK9W77SgNvYa8Pgs7EogWC8tK7dsiCqRGaxuB0UkW0QmG+XzRCTX1hskimLbfuuTohfu9Ubi9fJ4kuYS2cCsHr5XAQwNKhsL4EtV7QzgS+N7iEg3ACMBdDeOeU5EMo1jngcwBkBn4yv4nJTGrPhD/5Nxznjm0sUiVB6+9UUHsetgCbr8eTpKE2gMHpiyImT5oZJSLNq8N+7zOSXaMNZnZq6tUtbpvml4ftY6q6pEZIZXYW07eBOAvaraCcCTAB6x7E6IIgj30G77/qM218S9Js5Z73QViCoxJeBT1dkAgrtIhgOYZLyeBGBEQPnbqlqiqhsAFADoKyItANRT1bnqe5T/WsAxRJXmsJmV2NzOPuSS0nJsDEqcbobuD34W07y6Y6XlpvWMJuPt+Vsibp+zNnSy2nfzC62oDpEpbGgHA8/1LoABHAVDTti0+7DTVXC9CdNWOV0FokqsnMPXTFW3AYDxb1OjvBWAwE98hUZZK+N1cHkVIjJGRPJFJL+oqMj0ipM3HD1ehtyxU/GmCZPH7RguuNXhYGtyfuRAK9jRBFMuRLPsp/2WnJfIhcxsByuOUdVSAPsBNA51UbaRZKV73l/qdBWIKE5OLNoS6omkRiivWqg6UVXzVDUvJyfH1MqRewWuzlWuiie/WAMAuPeDZUmc1b4H5DdNyq9aaOMw/+Ol5XHt/+VK788ZJHKpRNpBtpHkCmt2cDVMIq+xMuDbYQxPgfGv/9NjIYA2Afu1BrDVKG8dopwIQOUhnRNnr0dR8Yl5BJ96ZKXN2WtS62n7kzPW2HYtToEnDzKzHaw4RkSyANRH1SGkRI7h3+jELNzE/8ZkPSsDvo8AjDZejwYwJaB8pLHiWHv4JqXPN4a7FItIP2NewqiAY4gqKdh5EAs3nVioJNlE3nY1VE/PLEjouF++uiCh45IJhCPlO/JbWhh9eObXKbC6KFGCzGwHA891BYCZyqVryUWmLnX2wevG3ebPkbfDkzOqLlRGZDaz0jK8BWAugC4iUigiNwGYAGCQiKwFMMj4Hqq6AsA7AH4EMB3Abarqnyx0C4CX4JvAvg7ANDPqR6ln9Y5iUyaO+5c8MPtj06od5iYLn7kqsaApMBB2anmHX/wnsWCVyEtsaAdfBtBYRAoA3A1jxU8it3B6nrpTuQGJvCDLjJOo6jVhNg0Is/94AONDlOcD6GFGnSj1WPEs26oYaMmWfTHtl0h6Brv847PVuOSUlk5XowKXIyQ3s7odVNWjAK5Mpo5EyXKyU7mk1JqFxIjSgROLthAlZPMe65aCvvWNhZadO5LHPnfvE0kuvU1ERIE+XPyTY9e+460fHLu2lQLXIyCyCgM+8oyCneauDDZ7TRE+/3EHAKBc4Ujy8j2HjkXd58MfkmtgPzcSnZvRQzZxtnPJz93bF0pElPoWbtqD301eEna71dMGPluxw9oLOGS1yVNAiEJhwEee4U/DEM7mOHukRr0yv9L3vw6VNsEFPjMCtkR9tMS3yJ8ZAdPjn9u3KmewDbsOWZYbkIiIIrv8+bkRt+89dNymmhBRvBjwUcp4fpZzvU9W4jp8Jzw63b1DYImI0tnc9budrgIRhcGAj1LG/A2p2djEkh4hFqmw6Mkr325wugpEREREnsKAj1LGuiJv5uCJZtfB6PP8ImEHIREREVH6YsBHZHAqT100gQnmiYiIKH2Ulyt+cjjHIXkfAz6iFDd16TYcKy2HmBDRujUoJiIicoP9h81dvObfs9fjrAkzUbCTq3lS4hjwEVVI3WhmaeE+p6tAREQetXFXak6ZsML0FdtMO9dLc9ZXrFBeuJe9fJQ4BnxEBvZeERFRunpz3mac/cjMkNvOf+xreyuTZkKlHPpk6VY8PHUljpWWA+B8fEoOAz4iQ1FxidNVICIicsS9HyxzbS/SkWOpnYP1Lx+vqFJ2+5s/VPp+276jdlWHUhADPkpL4RJ4Hz5WanNN7KMplNDvpTnrMXtNkdPVICIiGxwvL3e6CpZ6e8GWqPvc+8EyG2pCqYoBH6Ul/5j4YF+u3GlzTbxFXDLP8eGpKzHqlflOV4OIKOXtPZRcaiCKzuznsfsOH0Pf8V9w/j5VYMBHaenAEXNX0XK7/Wl2v0REZI4pi39yugoUp+/X78HO4hL8/NlvMePHHU5Xh1yAAR+llWOl5Rj1ynwsLdwfcvvWKLludh0s8WRevJsm5TtdBSIicpHlP+3HgaNVHwau3VF5+X8vTQZYV3TQ6Sq4ZiSM39NfrnW6CuQCDPgorazZUYzZa4qwYuuBkNv/Pm0VysvDN28/f+YbXP78d1ZVj4iIyBaXPPMNRocYGv/8rHU4VOLN+exrdzgf8KkLQmSuOk7BGPARBbnljYVht23dn96rZLERISJKHT9s3lel7P1FP+GKF+ZWfM8/+97GdpsABnxEVXy2Irnx7t+t22VSTdzHDQt9cqUyIiJzBa9cvXJb6FEwTtl/mPPQ48EYj4Ix4CNP+HTZNqerELNrX5wX1/5ezy9UWmbvctlvztts6/WIiFLZV6t2hp3mAAARZjnY5pxHvzL1fNv2H8H7iwpNPadf8VHnh8MG/szCrVlA6SXL6guIyEYAxQDKAJSqap6INAIwGUAugI0ArlLVvcb+9wC4ydj/DlX9zOo6kvvd9fbimPYrL1dkZFj/bEtVISaNk9h9qAStq9cy5VyRJNtmF+wsxpEQ+Quv+vdcvH/rWUmenYiIAq3Yuh/dWtQzra0JFPig7sZXF0Tcd+Ls9aZf32kjJ36PTbsP46IeLVCzeqap5w6X59dqK7bux/7Dx/G7dxZjx4ESR+pA7mVXD98FqtpbVfOM78cC+FJVOwP40vgeItINwEgA3QEMBfCciJj7P5E8KdZJ0O9FeWIXa7v5bUHkYZl7IuQlyooz4MzK8EZHe6i5HgCwKEw5ERElZuaqHRj29Dd4Jz96Qm5VxZIt+6BxjLk/Whr7yIztB1Jv7vqOFLynYU9/g2tfmsdgj0Jy6pPmcACTjNeTAIwIKH9bVUtUdQOAAgB97a8euU2sQ0q27DlsyvWiBY7/9174eWSlcY5/qZbpjdH2LhjVQ+RJIrJRRJaJyGIRyTfKGonIDBFZa/zbMGD/e0SkQERWi8iQgPI+xnkKRORpsaLrh1xhfdEhAMCq7cVR9gSmLN6K4f/6Fp8s9c7Uh3jEE8jG+j/CDfPR7bZ13xHsTMFAl2JjR8CnAD4XkYUiMsYoa6aq2wDA+LepUd4KQODjrEKjrBIRGSMi+SKSX1RUZGHVyS1i/YP/9MwCU+b7RbvcFyvNS2Q6a409v8Ovz92U1PHxNLpEVIUZI12eBzAGQGfja6iN9Scb+WP5YzH0xPlzz23YdSj28ydWrahyx07F63M3mnrONXGkWoi3mbLikYlbm8ozJ8xE37996XQ1yCF2BHxnqeppAC4CcJuInBth31D/9ar811HViaqap6p5OTk5ZtWTXCyeTrNb31hkwvXs+4t99ztLbLnO+jg+DITi1kaMyKPiGukiIi0A1FPVuep7+vJawDGUot6IYZGqxVv2WV+RONw/ZUXE7WVxjoJxQ167eDhR2+NRFk8rKfX24nCUPMsDPlXdavy7E8AH8A3R3GE0XjD+3WnsXgigTcDhrQFstbqOlHoiJU+P6fgQhxcVp/e4eG81uUSuYsZIl1bG6+BySmNFxSWYs9Y7qYC+XLkDHe/9FD9GWBU02N5D5qdkKIljDmO8nBhnHS2ItuI9JG+xNOATkdoiUtf/GsBgAMsBfARgtLHbaABTjNcfARgpItki0h6+ISvzrawjpaavVu+MvlMEoQLG376VfM+hl7GHjyhhZox0iWkEDMBpD6kg1qDh9PFfVLyOJ3derEMZzV5x8ouVvrb5hy17Yz7mvg/Nzb0abw9jvKycpjFzVWLTSUKtsE3pxeoevmYAvhGRJfAFblNVdTqACQAGichaAIOM76GqKwC8A+BHANMB3Kaq/C2luMUy7yGSUEM645lHkIqiDav5z7cb8Kd37RmeSuQlJo10KTReB5eHuh6nPXjctOXR56IHz6uetny76fWIdxGy6Hznu++D5TEf4V/AJhaxDF00e45hsPxNsQez8frlq/kJHXfBY19XvE52BBR5k6UBn6quV9Vexld3VR1vlO9W1QGq2tn4d0/AMeNVtaOqdlHVaVbWj1JXsn/OQj0BDE7FkG5DPKP18P3l4x/xTr41iWyJvMqskS7GsM9iEelnrM45KuAYSjELNkYPGvy9ZYkQRwYeWj9S5P4PoweS//xybcVrN81/3LQ7uXn2sUp2Pj95kzcSgBHFKVyjYmZjM/a9peadzAP4TJAoIWaOdLkFwEvwLeSyDgAfiqagB6ZUDVqe+XItFgb1HEXLFxuJ1xZCidWBo6VR99l7+MR8tpETv7eyOnGZbdOK3ZSespyuAJFd7v1gGd6MYcUzILbgxspJ367ESXxEcVPV9QB6hSjfDWBAmGPGAxgfojwfQA+z60ju8lpQCp37PliGN+ZtxuMz1mDjhGEV5cmkykmmdzAZgVUuKi5BTt1sR+oRaMuew2jTqJbT1aj0uWP5T/sdqwelJvbwUUoK9fQy1mAvVt8k8XTVKwLH+jPcIyKyX7jUDJNC5Fbdvj+2xNpHjkXvCbPCd+tPtJsHjkZfOTKe1TwTtcMlycgDg2FrP1+wNU9HDPjIVY4cK0t6wRWg8vy6qUu34dxHv4rreHZm+RTuPVLxmu8JEZG1ouVTK9x7OOL2ncXmBS8bdx3C5yvMXQjmcMmJRVVi6aGcHsPiNaki8P2It72NZ+XRgU/MtnylUnIfBnzkKl0fmI5hT89J+jx/+fhHPPzJj1hfdBC3vbkIm/dEbiSDfbFyB44c4wKxCzdXrKcUMRn93qAFbeyy/whzCxFR6oj2QfzsR77CDS/PC7vdzM/xA56YhbvfMXfl5eKAOXaLNu2Luv/TMwvivsaFj32N3LFTY97/ihfmYv9hb7clz8T5PkV7sECphwEfuc7aneakP3jpmw34vyQWVtm6/0j0nVLc7yYvwbsLC1FaVh7xieMfw6RjKI5hyE4yEs1JRETkVXPW7gqbWuBvU1fGdI55G/ZE3ceKXqBjAYGGVQvHRFqFMlyv4i8nLcCm3YfwnYNTNbTS6/jemy1xPtSm9MOAj1wvmSEqybRXuxxKu3C8rBy9H/ocHy8JmWLLdn/43xL859uNEZuf7WHmQPQc97k1lTLc/+EKS89PRORG908J/bdv/sbogRwAfL9ut5nV8YyXv9kQsnzhpr047x9f49qX5mHF1vALpizZsg93T15sSS67wFh0xU/h5y5OW1Z1mGukETihcEhn+mHAR66XTL67TEk819BuB4YpFh89js73TcO+w8fx0Cc/2n79cHYdLIk432J5hMbJSgdLnFl4gIjICnb11EgSbaOXPRxDD+iCgN7P6cu3o+/4L1Bq9EwO/9e3eP+Hn7DDxLmSfo9+tqri9dQQQZ3fPz5bXaUslgVwAnV/8DP8e9Y623L/kfMY8JEr7T5Ygg3GsIxknkTF+rQzlIwY2sOCnQdx5FgZjh4vS2pMvD+Y2rTbncMy+DSQiMh698WQONwMP+2zdspCLAuyuLW9C3TzfxdiZ3EJnpixplL5uI/MH11y9HjinyG+LYi/x/bv01bhupfCzwel1MKAj1zpvH98jQse+xqAc5OL1+w4iHcXFkbcZ+ATs9D1gek4+f7p6HzftIQbgYmz11cpc9OqmCWl5fjM5NXazHLZc9/i6HEusENE3rfHhJEluw46Mx0hUCztxXNfr7OhJvEL1fQu+2k/Vm47MZIlkQDLLMH1+zaJeYeHOEombTDgI1cKHKp3rNSZyOeJGWvwh//Ft0LZq99tTOhaUxa7Y75eOK9/vwkLNu51uhohLdq8DytsyNVERGS1AhMWLct7+AsTapKcP76b+IJpVjhyrAyLt+yLad+Js9fjUEkpvl9/IqgrV8Wq7SfamdJyax5Ex/KAO7j3NJleulKO3kkbDPjI9Y45vHzwBz8UWjJBO5C/8XDLQi3JKHXg53WwpBSz1xTZfl0iolh9V7ArbVYWDky/4Ld6e7EDNfG58PGvMeJf38a077b9R9H9wc8wcuL3J8r2HcXvJp94AJzM8MtIngwaOhrKRhOHwvp/Tq9/vwlrdjj38yHrZTldAaJoShwerve7yUss++Pul2FMoF8esDqYG4blJKLTfdMAAA+P6GHbNUe/Mh8AMLx3S0xZvBWL7h+ERrWr23Z9IqJorjV6YjZOGGb5tXYeOIqm9WpYfp14xLtAiJlzx7ftT26RlUipHsz03NfrcHbnJrZcy2990UHcb8wdXf6XIaiTzdAgFbGHj1yvpNT5BKE/WjxkcJXx5NOiUSKOeHvBZtuv6R8ae9OkBVjLp5VElKb6/u1LDHpiFl6YVXWe3Ngk8tMm471FkefEB7Nq2KSVzJhPfu2L9i6kMj1gvuUDNi0aRPZjwEeutnHXIRxzQcD31nzrg5ddB0uqJJ338jBFp1I1AMAPm/fhF/9Z4Nj1iYj8fvnqAtz7wTLbr7t250FMmLaqSvnbC7bYcv3AOW8A8OXKnXEdv/NAcqNc/FMxtu23dkXSQCUWjwaywqPTT6R5+HJVfD8j8g4GfORqE+esx+/jXDjFCjWrZ1p+jX/PWldlGOcoY6gixS9cMngiIjvNXLUTb8478dDQ6jnhbjH0qTlJHf/Y51XzzcXDH2TfaOPDv2RSQcWjpNSaqS77j8SXz4+8gwEfuVpgI+mkUBPQzfbinA2WXyOdlJUrfjVpAUa9Mj/ksCYiIifc+Kq9ow8CR6g4mcIm3lzvmUkmh5+c7+vJXGXRYjEbdh3Co9NXVVo186+f/GjJtYINeHyWZefeWXwUh48xXUOqYcBHRCnri5U7MXtNESZMW4U1O4qx0aaJ90RE4cyyeaj+Pe+fGE46f4M9PVB+gb2Zx8vi69l8/4efkrq2KjB9+bakzhHJdS9+j+e+XofCvSeGjGZmJBekxqpw7xGUlpXHnGoiHn3Hf4luD3yWVH4/ch8GfESUFgY/ORvnP/Z1lRxGRER2s3sV5pfmrMeeQ8dsnyZQFuXvrdXz1G/+7yLLzr01xMqfdg6J7HTfNCzebF1+3Otemoef9tk3/5Gs5bqAT0SGishqESkQkbFO14eIUkv7ez5F7tipeH3uRuSOnVqlgT5WWs6eQCKTlJVrxYf6omJfkLNq+wHkb9yDZYX7Ix2a0q58Ya6tH6YfnroSp/11hm3X83tvYWHE4YGpNk99z6Fjtl7v9e83WXr+sybMtPT8ZB9XJdsQkUwA/wIwCEAhgAUi8pGq2jMommLy0ZKtuOOtH/DPkb3Rp11DNKmTjRrVElvU5OjxMlTPzEBGhuBgCceMk33un7ICANDrL5+H3N61RT1MuKwnGtWujvkb9uDMTo3RuHY2MjME5aqolnniednxsnJUy8xAaVk5jpaWo2a1TBw6VorqmRnIyhBkZbru2RqR6T5ashU9W9VHhvhWZPzl2e3R8d5PK+2TnZVRKdXO7D9egLaNa9ldVcdt2HUIZ02YWSknX2mZ91Z4jGbs+8uwYONePH5VL6erYplFm/eiTSNnfofXFfHhJMXGVQEfgL4AClR1PQCIyNsAhgOwLOCbvnw7npyxBgqFf+SBfwCCqla8RsA2/5CwE/sB/j1VgcARDP4nePVqZKFxnWxsCNNz0LBWNTStWwOrdxSjUe3qaFavBjIzfJOWlwQ8Be2YUxuqQGm5YvOewwCAk5rVQWZGBgRARoYvibcAEBHsO3wMG3f79qtVPRNtGib+R2n1jmK0alCz4p7ufHtx1GNyG9equD6Rl6zcdgDD//WtLddqXq9GyFVF2zepjepGsLj/yHFsP3AUHXJqo6xcscn4f9WpaZ2Kv1W+vz++1+Xq+5u280AJjpWVo3m9GmhQqxoA42+E+BZREBivAcD425EhwKLN+wAAXZrVNeUeMzIE0+48x5RzkXscLPE92MjftAd3vPUDMgSonZ2F4qOleCjEAhbBeVXP/cdX2PD3i1FcUop6NarZVe2E7Dl0DJ8s3Yob+rWDJLmgSCid7ptm+jndYN6G3RG3z123Gx2b1sahkjK0b1IbgLOLy8TrzrcXY3jvVvh4yVanq0IUltsCvlYAAhPEFAI4I3gnERkDYAwAtG3bNqkL1q2RVfEHxv8BCPB9CDJe+F9V/IEXBO53YlvFn385cfziLXuxrugQerdtiL2HjqFz0zpYu/MgOjSpjW37j+KI8UetVnVfPRrWroYfNu9DqwY1Ua6KsoAJzx1yaqNZvRpoVLs6sjIEDWtXx5It+9C+SW2U+z/oqe+DXrkawSkAGB8MT2ldHw1qVk/4vdpz+BgOxDk+PbdJbTStV8P2ieJEXtK6YU3UqJZR8XAkM0NQVq5oUqc6GtfOBgAUFB1E38aN0LRuNrIypCLgO6lZnRNBW0DAJkZQt+/wccxctRNdW9RFtcyMKoFhpWARJx5otW1UC7Wzs9DOpCfXGezkTCklpWWYv2EPbni58pC8co1/VeP29/h6AWf98Xy0a1zbtDqazT8ksnvL+ujTrqEp58wdOxXjL+2Ba/sm91nGzQIXNQnlmhe/r/T99LvOwdodB8Ps7U4j/vUturWs53Q1LJE7dipG92+Hvwzv4XRVKAnipgUMRORKAENU9VfG9zcA6Kuqvw13TF5enubn59tVRQLwzdpduP7leXh7TD/069DY1HPnjp1q6vmI4nFmx8b4bp3vafScP12AnLq+IZwCcFimS4jIQlXNc7oeXmF2G1laVo5Rr8yv+H9ihQwBljw42DdMulxRu3om1u48iJNM6m1OVGD7FDgUM57jwmlZv0bIRUBSRbhRDOQd0+48B11bpGZQmyoitY9u6+ErBNAm4PvWANhH7jJnd24SV2NH5Fa/ODMX91/SDeWqFUGdqloyXIvIDCIyFMA/AWQCeElVJ1h5vQUb9+DKF+ZaeYkqyhXoOS703Fq/mtUy8fvBJ+FX53SwpU7BD8fHfbQC437e3bTzp3KwB4DBXgq46J9zKl5//YfzkdvEvb3xVJXbAr4FADqLSHsAPwEYCeBaZ6tERKlkw98vrhLQZZ4YkM1gj1zLiYXN7A72YnXkeBkenroSD09dGfMxfx7WFc3r18Alp7SMuN/GXYcw8IlZKC0PPwLq1e824tXvNgIAlv9lCOpku+3jFJF1zn/s64rXL1zfB0N7NHeuMhQTV/2FUtVSEbkdwGfwPb18RVVXOFwtIvK4x6/shT7tGiIrUxjQkZfZvrBZKvEHh7e/+UOVbded0RblCrw1f3Pc5+3x4GdJ143Iq27+78KY9x15epvoO6Wp807KwUU9W1h2flcFfACgqp8C+DTqjkQ26phTm8sfe9AFXXLw1NWnon4td6/+RxQj2xc2Sxf/W1iIY6WplxaByE2+Wr3T6Sq4ltWpPVwX8BEFWvzAIPR+yP5ksU5oWKsasjIzKpITU3Leu+VM01bSI3KJUN3TVcYdqupEABMB36ItVlfKi/p3aIw/Du2CHi3ro3rWiQWZSkrL0OXP0+M61xntG2H8pT3Qon5N1KqeiZXbitGxaW1Uy8iAyIlVSIlS1f9u7o92jWuhemYGysoVNatnIkME2VkZHFXjEgz4yNUa1Eo8jYSZMmz4g5X/50E4+5GZll8nXeTUyXa6CkRms31hs/duOROXP/+dlZdI2ouj8pDbuBZaNKiZ9Fy67KzMkIuSrSs6iAGPz6pUFm7xslRdnp/Ib9gpLXDLeR3Ro1V9p6tCMWLAR67XpVldrN5R7GgdrI73/n1DH2RmCIKzpPxzZO+YEty7Te3qmTh0zL7Eue0a16rIS+enVTs+iLzO9oXN+rRriI0ThuFgSSlOfehzHC9TjO7fDpPmbrLysgCAvrmN8MDPuuHwsTKUlJahYa3q6NGqPg4f8yV7tzNVSsecOpW+50rVFOzVG0/HL/6zwOlqWOaDW89Er9YNMGtNEc7vksOeO49hwEeu9+gVp2D4v751tA5W9/AN6toMAPC3y3rgl6/6cmb1aFXP8jHdVunbvhGGdG+Ose8vs+V6s/54AXLHTkXd7Czc0L8dnvt6Hdp69L0jCsfJhc3qZGdh7fiL/fVAnRpZGNG7FQY9Odu0awzr2QLndcnBOZ2boEX9mmH3q1Xd2Y8u/72pyrTJhN096CTcdHZ7VM/KQOf7ppl2XjcZ0r0ZnriqN7rHuLjNi6PyMGdtEV6z4aGCWS7u2Rz9O5qbl9hNrunbFqe29U2RuODkpg7XhhLBgI9cr1ebBo5cd+OEYfhq9U7c+J8F6NW6AVZtt66X0R9PXnhyMyz880D0efgL3HtxV2RneTPZ9/X92mFA12a2BHw3npULwJeoOStDUDs7C38aerLl1yVyghsWNhMR/HGI7/+Yv6frV5Py8cXKHQmd7x9XnILqWRkY3ruVaXW0wpw/XYDJC7bgrE7mfbC/Y0Dnitcf3342fvbsN6ad2y1Oz22E2jEMtb1rYGfcNfAkAMCgbs08FfA9d10flEdI4+F1D/6sm9NVoCQx4COK4IIuTfHx7WfjpOZ1MDl/S/QDTNC4TnbFh6iCnc4OZfX7xZm5FTmnorF7qNN9F3cFANSvyZU4iZzy0ui8St+v3l6MDbsOVVmyfem4wTjtoRkVOe7+ObK36wM9vzaNauEPQ7pYdv7MjNQcItcwylz835zbAdf0bevZRN4nNfMN981I0Z/fQ8O7o0a1TKerQUliwEeu0q1FPfRsVR+/G3QSdh10x2qVPVtbPyk53Fj4rAx39PDdekHHmAM+u9k5j4eIYtOleV10aV4XGycMwzv5W/Cnd5cCAOrVqIaCv12MdxcWYv6G3Z4J9uzQskENy8597Rlt8dDPu6OTzcNG2zSqiUtPDf8zblm/Bu4xHtp5Vb8OqTmU884BnfG7QSc5XQ0yCQM+cpVP7zyn4nXz+tY1fmb5zbkdcONZ7dHv719acv5qLhnSmZngHMa2jWph857D0XdMUI1q7nh/iCi8q/LaoGer+vi2YFdF2RV9WuOKPq0drJXzlo4bXOl7K1elfuCSbo48HPv8rvMi9nzd5fGA4t6LT8a1Z7Rz5NpX57XBHQM746wJ1qzufTWTpKcUflqilNekTjZuu6CjJecee9HJlQLTT357tqnnr5bp/BCRF67vg8YJpjj4/Hfnmlybyqqzd4/IE7q2qIdfndPB6Wq4xtJxg1Gvhn3D0P1D8gZ3a2bbNQGgZvXIQwFrenyo4JhzOyadCiRRjetUR+Pa5j8k+ODWM7FxwjC0bBB+4STyHn5aopQ3tEcz9G0f35CL5687Lab9/EMxz++SgxG9W5qek8YNueSG9mgefZ/uofexetz/o1f0svT8RETJGntR1UWk7Az2AkULwOw2rGcLy879xFW98MavzFtR1W1uPr9jlVROZvCvxkmphQEfpbz7L+mGeOdSxzuC8dUb++KpkafGd1BM9XC+hy8Wp7dvhDl/ugDz7x1g63VjCUaJiJx083mVR5i8cH1sDxStYEWAEM6Gv18cdR8rFzq59NRWVfInminUlIJ7QgT3VjincxPUq1Et6Xyz0+86p9L3X9xt7agccg4DPkp52VmZ6J+ik6rdolqmoE2jWmhaz/3zLomInDS0h3W9WtFcZONDsuAHlg8N727btf3Xb16/Bl75RR7GWZBW4JPfnlOlzO5ntMkG8HUDepovPLkpOjWtm2SNyK0Y8FFaiH+yujd61tyikQXzCIiIUsXPe7UEAKz661Dbr/3SqBMpMy7q2QJvOjTM0aml/S88uRkuMd5/M3VqWrX3MMOmiM8/JDiZeO/8Ljlo1aAmahvDfMvt7P4l2zHgI6Kwzj0pJ6b9rJyHQUTkdf+48hTM+dMFjgQ9A4MWajmzUxPb6wDE/xj1stPMS9lhxeImoVzfz54VO8df2gMAUCOJlbyfucY3DWX6Xb5hnOHm4lNqYMBHKWvBfQOx+IFBCR0balpBrPPT/jmyd0LXdKPHr4y+KErt6pmemWtIROSE7KxMtGlUy+lqOCq4nbjklMgPCv/yc/OGgNrVRiUb0HdpVjfq+wKcSOGRTKoN/3DONo1qYdVfhzINQ4pjwEee0CuB5Oc5dbMTzmsUqnFoGPSE8J3f9A957MCu9i57baWcuidWCW3XOPSHFQ4CISIyx7+uNXdBF7NTBSWjS7PK88NGn5kbcf+6Jq9kOrBrU9PO9TMLhogCQK3sTDxr8u9ALGpU44PbVMeAjzxhyu3xNVqhJocnO8+sWtCTtHA58lL1b+a5nUMP7+SwfyIic3Rpbt6iGQ1rVTM9VVAyegY9uK1f097UFMmk8RnVv/JQTasWF23fpHbUffrmNrLm4pTSGPBRShreq+rY/1ATrMPJiuGvefUwY+clRRd8sbtxJiJKN/G0U9FMuc09vXt2u/y01lXKkknyfuNZ7St938qipOTjR/SMus9/gxbd+eyu+FMp/Ors9tF3opTCgI9SUqjcNON+Fvt8gFgWK+neMvST09Ly8piv4yW3X9jJ6SoAADZOGOZ0FYiIXO2F609D2zDD8O3w63OcDSgev6pqb14ySedbNqiccuh3g05K+FyRxFLH4IfNifQKd21RL+5jyNssC/hEZJyI/CQii42viwO23SMiBSKyWkSGBJT3EZFlxranhQOKKUGhJjJ3axnbH7jWDWsiM4nxGika74WdjJ5s4lciIjLP+V1yHM31B5i3EqjZKSSWPDg4oeOyszJxVd6JXsPgKR5e0yEn+tBRSi1W/8Y+qaq9ja9PAUBEugEYCaA7gKEAnhMR/yfJ5wGMAdDZ+LI/YQ2lhDrZWQkf26J++OThsayelW6cmMP3yW/PxhMhnuASEXldsqMYYvmbHGuagkQfu5v1tD6RwDHSwjexTE3IzBCc0b4RTg7qOWvfxDfctm6NxD9fuME3/3cBTm3b0OlqkM2c+K0dDuBtVS0BsEFECgD0FZGNAOqp6lwAEJHXAIwAMM2BOpKH9WmX3B+yF67vE3bbM9ecik+Wbot4fDLDRig2PVrVd9ViBEREbhHLqtaxBnLVMjJwrCz+YSuxDNBqa1GaimFJPpj97K5zK+ZSDnt6Dn59TgcAwJhzO6BXm/o4s6MzeQwjOa1tAyzavC+mfVs3TO/0IOnK6h6+20VkqYi8IiL+T+GtAGwJ2KfQKGtlvA4ur0JExohIvojkFxUVWVFv8rDyJLucGtfJDrstlkYslgVfUknvNg2crgIRUUq58OTEUgg8cVUv3Dkw+vyyWJvJRIfsh2sFBwUkgXciCX0sNODNmXrHORhxqu+jaGaGuDLYA4D7hnVzugrkckkFfCLyhYgsD/E1HL7hmR0B9AawDcDj/sNCnEojlFctVJ2oqnmqmpeTE31xDUof53RugsciJAv/703mzgcIxY0zT09r28Cyc780Os+ycxMRUey6NK8b0xz0Mzo4s7R/s3rhH6i6RdN64ad1uFUy6w5QekhqSKeqDoxlPxF5EcAnxreFANoEbG4NYKtR3jpEOVHMnriqd6Vk4cFOaRN5qMsvoiSCtcLEG8IPITXDe7eciT7tGiJ37FRLzm92clwionSX6EiRWNMC5TaObdGOOwd0xmOfr4m/Hh6OP7yYgijWt3vymH6W1oPcy8pVOgMHUV8KYLnx+iMAI0UkW0Taw7c4y3xV3QagWET6GatzjgIwxar6EYVy37CuSZ8jnsVlH738FAzu3jzpa0aS7JzGZD11dW9Hr09E5DW1E1x4LNbmJ5b9Nk4Yhtsv7IwmEaY5kDUa1rIm6DyjQ2NLzkvuZ+UcvkeNFAtLAVwA4HcAoKorALwD4EcA0wHcpqplxjG3AHgJQAGAdeCCLRQnO54qdo8xvUMsWjW0JnmrX/AqY07oxwaGiCgubRJsG2IO+OJYR/NXCeTUi3b+P8fxcLVNo9jfi6YRRvjEwi1z0pt5cFgpuZtlq3Sq6g0Rto0HMD5EeT6AHlbVicgM791yZkKrloVidUoDJ1ImBPPy0B6iZIjIOAC/BuBfXezegBRF9wC4CUAZgDtU9TOjvA+AVwHUBPApgDtVVUUkG8BrAPoA2A3galXdaNvNkK1+O6Aznp5ZEPdxsQZy8awmbeb0MH+blJ0Ve39Dl2Z1sWXPkdjOn0ilDH8YfBJuPb9TEmcwT7xpqGPZ/a6BnROsDaUCb2eOJApiR2xRo1om6nHeGhHFxqx8tDcB2KuqnQA8CeARG++BbFYtMwO/ObeDZee/Mq919J0MGQk8tcvLjTKVII5zntcl9hVLk3nIefuFnZHhksVP4q1FLIH++XG8j5R6GPBRyriiT2s0rBU5mWyNLHcuA22VRJfUNpM7mk8iV6nIR6uqG+CbxtDXmPteT1Xnqm9teH8+Wv8xk4zX7wIYIPF2A5Cn3HNxV7x+U9+4jon1NyIrw9qPf2amXLikZ+x59dQNw1oc0CXK9I1Vfx3qmuGq5AwGfJQSvvz9eXjsyl5Rn85Vz8pAvRrhRzJXy7T3v4TVAZkr2j5+JKX0ZlY+2opjVLUUwH4AISfIMldt6ujcNL552C3qxzb3K1X/LCebh9dJt57fMeFjq0cZIuvWnIdkHwZ8lBI65tSJed+l44agWmbV5u65604zs0oxsbptqhXHPA0vOKV15LQaRHazMR8tc9VSVLGmyYnWE9grib+1kXLt9e/oe0YRz+Jn9eJIkxBLk9qtRdVr92zlfNsSS1L3m8+LHhTeMYBz9agqBnyUlkL15F0cx7ARs1j9LPL5663N8ReLeFaDiyQrQ/DeLWeaci4is6jqQFXtEeJriqruUNUyVS0H8CIA//i8RPLRVhwjIlkA6gPYY92dkRs4NSz/hv65CR/7wa1nhd12ySkt8cP9g3Ba29jTBWVmCB69/JSY9o3lIeqHt1Wt38e/PTvm+lgl8Gd97kmhH9REyjPsd/egk0yrE6UOBnyUlt6/tXLgcGbH1Ewd0LJB4mkf/jS0i4k1Sd4fh3SxfcgtUTJMzkf7EYDRxusrAMzUdJ2wlEas+gmb9SAulGjtTsPakefahxLrIjOx/JeonpWBUf3bVXw/1OJcuLEKrPoNAfULFOuaMqe2bZB8hSil8NMTpaWTm1ce0vFIjE8PzWbl57W3ft0vqeMHd2tmUk2S98L1p+FX51i3Yh2RRczMR/sygMYiUgDgbgBjbbsLckw8LUSdBJO1h7xuQNsUbX6YHWJdnyjW92tUEj2Y0Qzv3TKh4wLrHu5uYw3TH/xZ94TqQKnL+f/FRA75dQLJZM1m5eP5/kG9ll2axZuEvWrTcv8l3eKuR2A7fU3ftnhpVF7c5xjaowUyXbJcNlGsVPUGVe2pqqeo6s+NHjz/tvGq2lFVu6jqtIDyfGNIaEdVvd3fi6eqR1X1SlXtpKp9VXW9E/dEKSLKn9PAtunq09uE3c9tJlwW28PbTk3rYNqd5wAAzujQyNQ6xLOmQKBkF5z58Laz8NHtvuGqnZomVgdKXZYlXidyu/uGdcOeQ8fx3qJC1DbxyWhcbByQlV0t+ec7N53dHn/95Me4jgn8XPH3y3omXQcionTRpE7swx/P62LNAj3ZHkpn1Kph7NMYuraoh+/GXhjzyqZ2CtehGWkl8sC0C1kB+112aqsQe1O6YcBHae1vl/XALed3QKME5hTYJTsrAyWl5Umfx00pu3LqZqOouMTpahARuVo8wdYTV/WKed9ozcHAru4Z0m+lZOa5h5NwSxvDA+BYz12jWibev/VMtKhfAzl1oi/0QqmPQzrJM0YkOC4+kuysTHSKM89RLM7pXHV55QcSGA4JxJ5IN5p4R0RaGR9OCbFKGhERxe/uQSdh/r0D4goO61Q/8by/Ue3qqBmUp83ND0Ej8fI6RrEM6czLjX346WltG6JF/ZrI4mJnBAZ85CFdmseet8dpoXrTfnl2iDmDNna6ZTjUw1ceog3LdsEiAEREXjP1jqrpA3q1aYCm9eIblhg4NHD+vQOwdNzgiPu/d0v/uM5P8asfQ77BriFyCBLFgp+6yDNcNCIxqpirGtMQDnNuPN4ePrMelIZ64to4whCTjROGmXNhIqIUE9wTZ4aszIyoKW+a1o0toBzmQD7bQG7o30v0s0o8vXdE8WLAR57hoXjPVK/eeLop57mohzkN8T0XnRzX/mVhIsdTWtc3ozpERGkjVGDWqoG5i468cH2fsNtaRlng5FKHFwhxw4jOeJLKh2NlnkRKTwz4iFzujA7mJIXvHWci1nBPKX9zXse4zuNvgFvHsXpaoJ6tGBgSEQFAm0a1Kn3/yOU9LZmHHsy/knW/jua0R6nszE5V5/BHw5EtZDUGfOQZXhrS6fcfk3rn5t07IOlzOPXks0X9Grj5vI6Y9Mu+zlSAiCiF+PPHAcDVp7c17bz+5fsb1Ko6l6xR7er44u5zPZBaxwVdfBbpxvl7lAQGfOQZ4YY4PHp5bIlW3WDsRSfj/ARyJTWLc0K+Xb64+9yo+4gIxl50cpVktKF+mtf38314+d/N/TG6fzszqkhE5Gn/vqHyEMuuLerhqat744XrTzP1On+/vCdeuL4P+oUZVdKpaV1P5eRLNVfltXa6CuRhDPjI85rW806OmZvP64hXbzzR06UufhoZS4dqcBAXj1DJ7v0rkJ2e2wiX9/E1bm5+j4iIrDake3MseWAwFv55YEXZiFNbYahJ87L9srMyMbRH86j7jTy9TdhtbRvXCruNYpcR4tP5ZX0Y8FHiGPCRZ3hxSGeq+sPgk5I+x1Mje+OPQ7pUKgscdspJ60REPvVrVYu4urGdRkRYmOWkZtbPJ4zk1DbJL5jiBrGuikoUq6QCPhG5UkRWiEi5iOQFbbtHRApEZLWIDAko7yMiy4xtT4uRsExEskVkslE+T0Ryk6kbpQ9X9/+4qHK9TFwV8/YLO2PjhGEh8w3GqmndGrjtgk5ht2dX8/15auKSDzlERARkxZvjx0YZLq5bslL3zsgOyfbwLQdwGYDZgYUi0g3ASADdAQwF8JyI+Ad+Pw9gDIDOxtdQo/wmAHtVtROAJwE8kmTdKMWc0b7yvIJT41x10k7BcdDgbs2cqUiArMwMDO0efbiOXzLBnBlOalYXj15+Cp66urej9SAiSkVz/nQB5iewIFifdg1x96DkR3nE65bz41shmohOqDqJJg6quhII+cFwOIC3VbUEwAYRKQDQV0Q2AqinqnON414DMALANOOYccbx7wJ4VkREQ2VtprTUM6CH6svfn4c62Vl4dmYBzklgCWQ7rf/bxWGHo/Zq3cDWunjNVRHmihARUeKCUzzESkRwx4DOeGLGGpNrFFnnponPGbfbgJOb4stVO52uBlEFq+bwtQKwJeD7QqOslfE6uLzSMapaCmA/gJBLRYnIGBHJF5H8oqIik6tOXtAxpw6a1auBv47ogawQiWjdQqHIyJCwvWVumZMRCp+1EBGRWwzvHTmpexeH5w8Gumug+T2gNatxhVRKXNQePhH5AkCocWD3qeqUcIeFKNMI5ZGOqVqoOhHARADIy8vjp1JynVQYa5/buLbt1+R/ZiIiCiUzyvy8KbefZVNNomtSt7rp53Tzw21yv6gBn6oOjLZPCIUAAsditQaw1ShvHaI88JhCEckCUB/AngSuTZQ26tXIwoGjpZXKMjMEZeXJh06pPPmdiIiSk5UhKDWhrTFLDRf1gLWoXzPpc9wxoDOe/nKtCbUhsm5I50cARhorb7aHb3GW+aq6DUCxiPQzVuccBWBKwDGjjddXAJjJ+XsUbNgp5uYdSjX/HNkbc++5MKaE6G4xpPuJBW06NrG/V5GIiMgOdUPknw2nRX2mZiDzJJuW4VIRKQTQH8BUEfkMAFR1BYB3APwIYDqA21S1zDjsFgAvASgAsA6+BVsA4GUAjY0FXu4GMDaZulFqenrkqVj50NDoOzrMPxm+Xo1qtl53eO9WaFq3Bjo1dc9chmieuea0itdnunwBHiIiokTdObCz01WgNJXsKp0fAPggzLbxAMaHKM8H0CNE+VEAVyZTH0p9mRmCmtXdM2wjnHsv7oqzOjVBXm6jsPv0aRdfgtiLejTHtOXbk62a61TP4rwEIiKiQD1bmZc7l4iftIgsUKNaJoZEyHk3+48X4LVf9o3rnJeeWnWFMo55JiKidDH2opOdrkJS4pln2IMBH5mIAR+RA9o2roXacYzlByIHd5kZgok39EmuUkQUNxG5UkRWiEi5iOQFbbtHRApEZLWIDAko7yMiy4xtTxtz2mHMe59slM8TkdyAY0aLyFrjazSI0lCrBskvhuKkqxPMLdusnntTOJE3MOAj8jIF3r25P+bdOwCDI/Qo+mVX4395IpMtB3AZgNmBhSLSDcBIAN0BDAXwnIj4H+8/D2AMfAuadTa2A8BNAPaqaicATwJ4xDhXIwAPAjgDQF8AD4pIfGPCichx1UKkVri4Z/i2+96Lvd2jSe7BT39EHhFuzdq83EZoEmMC93E/625ijcxz38Vd8dav+zldDaK4qepKVV0dYtNwAG+raomqboBvobK+ItICQD1VnWusRP0agBEBx0wyXr8LYIDR+zcEwAxV3aOqewHMwIkgkYhc6PwuOTHtV79m+MXdft4rcrJ5olgx4CNKIw1rm58M1gy/PrcD+nds7HQ1iMzUCsCWgO8LjbJWxuvg8krHqGopgP0AGkc4V0giMkZE8kUkv6ioKMnbIKJEvHpj6Hn6VQO88Dlvm9bNxmWntcKLo/LC7kMUCwZ8RJ7BJVqInCAiX4jI8hBfwyMdFqJMI5QnekzVDaoTVTVPVfNycmLrZSCKl4SPUyiC806K/f9kRobgiat645TWDayrEKWFpNIyEJF9wg3pJCJrqerABA4rBBC4QkNrAFuN8tYhygOPKRSRLAD1Aewxys8POubrBOpE5Gnndvb+A4wJl/fEpae2wo2vLgDAwJnswR4+Io8IFe8xBiRyrY8AjDRW3mwP3+Is81V1G4BiEelnzM8bBWBKwDH+FTivADDTmOf3GYDBItLQWKxlsFFG5JgOTerYfs36tcLPd3OjXm0aVLz2r7RZq3oWLji5aUU54z2yA3v4iIiIEiQilwJ4BkAOgKkislhVh6jqChF5B8CPAEoB3KaqZcZhtwB4FUBNANOMLwB4GcDrIlIAX8/eSABQ1T0i8lcAC4z9HlLVPdbfHVF4fx3RA1f9e67T1XC1yWP64cixMpSpxpWDj8hsDPiIPEw5zpPIUar6AYAPwmwbD2B8iPJ8AD1ClB8FcGWYc70C4JWkKktkohouSvPz5q/PcLoKIdWolhk10OOQTrKDe/63ElFEPVrWBwA8f91pSZ3n/VvPxJlcEZOIiFLEGe3ZphFFwoCPyCPaNq6FjROG4aKeLSrKerdtEPd5TmvbEH+7tKeJNSMiIiIit2LAR+Rh/76BuXmIiIiIKDwGfEQeVifbmmm4fds3suS8RESUGurWcGbFzJUPDXXkulZp78Bqp5R+GPARURX1anA9JyIiCq99k9qOXLdm9aqLoHhx3ZPMDF+tR/Vv53BNKB0w4CNKQ1zbk4iIvOoXZ+ZW+j4jw4shn493a05ewsf4RB606P5BOFZa7nQ1iIiIKAl8AEt2YA8fkQc1ql0dzevXMPWcpwas+Nm0nrnnJiKi1DPjd+fi2WtPdboansSePbITAz4iquL+Yd2crgIREblc52Z1cckpLZ2uBhFFkVTAJyJXisgKESkXkbyA8lwROSIii42vFwK29RGRZSJSICJPi4gY5dkiMtkonyciucnUjYgSF2pSPBERERF5T7I9fMsBXAZgdoht61S1t/F1c0D58wDGAOhsfPnX170JwF5V7QTgSQCPJFk3IiIiIkoxzTjtgCguSQV8qrpSVVfHur+ItABQT1XnqqoCeA3ACGPzcACTjNfvAhjg7/0jIiIiIgJSI5XBXQM7AwAy+VGXbGDlHL72IvKDiMwSkXOMslYACgP2KTTK/Nu2AICqlgLYD6BxqBOLyBgRyReR/KKiImtqT5Rm/jq8h9NVICIiD3r35v6Y86cLbLtepofTMPjdfmFnbJwwzNMpJcg7oqZlEJEvADQPsek+VZ0S5rBtANqq6m4R6QPgQxHpjtCLEvlXpI20rXKh6kQAEwEgLy+PK9oSxalto1pVynq0qo+3x/RD07rZDtSIiIi8Ki+3kdNVIKIIovbwqepAVe0R4itcsAdVLVHV3cbrhQDWATgJvh691gG7tgaw1XhdCKANAIhIFoD6APYkclNEFFlmhuCxK3tVKe/XoTE65NRxoEZERESxyc7KwC/Pau90NYg8w5IhnSKSIyKZxusO8C3Osl5VtwEoFpF+xvy8UQD8geNHAEYbr68AMNOY50dEFriiT2sseWCw09UgIiKKi4jggZ8xfRBRrJJNy3CpiBQC6A9gqoh8Zmw6F8BSEVkC3wIsN6uqv7fuFgAvASiAr+dvmlH+MoDGIlIA4G4AY5OpGxFFV79WNaerQEREREQWijqHLxJV/QDAByHK3wPwXphj8gFUWR1CVY8CuDKZ+hAREREREdEJSQV8ROR9T17dizmNiIjIc+6/pBvO7BhyQXciCsCAjyjNXXpq6+g7ERERucxNZ3PhFqJYWJmHj4iIiIiIiBzEgI+IiIiIiChFMeAjIiJKkIhcKSIrRKRcRPICynNF5IiILDa+XgjY1kdElolIgYg8baQpgohki8hko3yeiOQGHDNaRNYaX6NBREQUIwZ8REREiVsO4DIAs0NsW6eqvY2vmwPKnwcwBr4ctZ0BDDXKbwKwV1U7AXgSwCMAICKNADwI4AwAfQE8KCINrbgZIiJKPQz4iIiIEqSqK1V1daz7i0gLAPVUda6qKoDXAIwwNg8HMMl4/S6AAUbv3xAAM1R1j6ruBTADJ4JEIiKiiBjwERERWaO9iPwgIrNE5ByjrBWAwoB9Co0y/7YtAKCqpQD2A2gcWB7imCpEZIyI5ItIflFRkTl3QkREnsW0DERERBGIyBcAmofYdJ+qTglz2DYAbVV1t4j0AfChiHQHICH2Vf+lwmyLdEzVDaoTAUwEgLy8vLD7ERFRemDAR0REFIGqDkzgmBIAJcbrhSKyDsBJ8PXOBSa/bA1gq/G6EEAbAIUikgWgPoA9Rvn5Qcd8HW+diIgoPXk+4Fu4cOEuEdmU5GmaANhlRn1cgvfjbrwfd+P9uFs7pysQCxHJAbBHVctEpAN8i7OsV9U9IlIsIv0AzAMwCsAzxmEfARgNYC6AKwDMVFUVkc8A/C1goZbBAO6JpR5sI12F76N5+F6ag++jedzwXoZtHz0f8KlqTrLnEJF8Vc2Lvqc38H7cjffjbrwfioeIXApfwJYDYKqILFbVIQDOBfCQiJQCKANws6ruMQ67BcCrAGoCmGZ8AcDLAF4XkQL4evZGAoARJP4VwAJjv4cCzhUR20j34PtoHr6X5uD7aB63v5eeD/iIiIicoqofAPggRPl7AN4Lc0w+gB4hyo8CuDLMMa8AeCWpyhIRUVriKp1EREREREQpigGfz0SnK2Ay3o+78X7cjfdDVBl/h8zB99E8fC/NwffRPK5+L8WX95WIiIiIiIhSDXv4iIiIiIiIUhQDPiIiIiIiohSV9gGfiAwVkdUiUiAiY52uj5+ItBGRr0RkpYisEJE7jfJxIvKTiCw2vi4OOOYe4z5Wi8iQgPI+IrLM2Pa0iIhRni0ik43yeSKSa/E9bTTqsVhE8o2yRiIyQ0TWGv82DNjftfcjIl0CfgaLReSAiNzlpZ+PiLwiIjtFZHlAmS0/DxEZbVxjrYiMtvB+/iEiq0RkqYh8ICINjPJcETkS8HN6wSP3Y8vvlxX3Q94jLm0fnSYp1JbZLdXaHaewfTCHhP+snXq/k6qatl8AMgGsA9ABQHUASwB0c7peRt1aADjNeF0XwBoA3QCMA/CHEPt3M+qfDaC9cV+Zxrb5APoDEPjyPV1klN8K4AXj9UgAky2+p40AmgSVPQpgrPF6LIBHvHI/Qb9H2+FLeOmZnw98ecJOA7Dczp8HgEYA1hv/NjReN7TofgYDyDJePxJwP7mB+wWdx833Y/nvl1X3wy9vfcHF7aPTX0jRtsym9y6l2h2XvY9sH+J/H8N91k6538l07+HrC6BAVder6jEAbwMY7nCdAACquk1VFxmviwGsBNAqwiHDAbytqiWqugFAAYC+ItICQD1Vnau+37DXAIwIOGaS8fpdAAP8TyRsFFiHSahcN6/czwAA61R1U4R9XHc/qjobvuTOwfW0+ucxBMAMVd2jqnsBzAAw1Ir7UdXPVbXU+PZ7AK0jncPt9xOB638+5DmubR9dKhXaMsulWrvjFLYP5ojwWTvlfifTPeBrBWBLwPeFiBxUOcLo/j0VwDyj6HbxDVF7JaCbOdy9tDJeB5dXOsb4ULwfQGMr7sGgAD4XkYUiMsYoa6aq24w6bAPQNLhuQfV20/34jQTwVsD3Xv35APb8PJz6f/dL+J66+bUXkR9EZJaInGOUeeF+rP798sTfRbIcfw/CS9W2zCmp3O7Yje1DgoI+a6fc72S6B3yhnpip7bWIQETqAHgPwF2qegDA8wA6AugNYBuAx/27hjhcI5RHOsYqZ6nqaQAuAnCbiJwbYV8v3A9EpDqAnwP4n1Hk5Z9PJGbW34mf030ASgG8YRRtA9BWVU8FcDeAN0WkXpS6ueF+7Pj9ctPvHTmHvwfhpVxb5lL8uxYftg8JCvFZO+yuIco88V6me8BXCKBNwPetAWx1qC5ViEg1+H4B31DV9wFAVXeoapmqlgN4Eb5hN0D4eylE5WFsgfdYcYyIZAGoj9iHCMRNVbca/+4E8IFR9x1GV7h/ON3O4LoF1ds192O4CMAiVd0BePvnY7Dj52Hr/ztjIvQlAK4zhlrAGI6x23i9EL5x+Ce5/X5s+v1y9d9Fsg1/D8JI0bbMSSnX7jiB7UNiQn3WRgr+TqZ7wLcAQGcRaW/01IwE8JHDdQIAGON7XwawUlWfCChvEbDbpQD8KzR9BGCksRpQewCdAcw3uqKLRaSfcc5RAKYEHDPaeH0FgJn+D8QW3E9tEanrfw3fYhrLg+owOqhurr2fANcgYDinV38+Aez4eXwGYLCINDSGnAw2ykwnIkMB/B+An6vq4YDyHBHJNF53MO5nvQfux47fL9vuh1zNte2jk1K4LXNSSrU7TmH7EL9wn7WRir+T6oJVcpz8AnAxfKvyrANwn9P1CajX2fB17S4FsNj4uhjA6wCWGeUfAWgRcMx9xn2shrE6kFGeB99//HUAngUgRnkN+IYiFsC3ulAHC++nA3wrGy0BsML/XsM3jvlLAGuNfxt54X6M69UCsBtA/YAyz/x84AtUtwE4Dt+Tppvs+nnAN5+uwPi60cL7KYBvjLz//5B/pazLjd/DJQAWAfiZR+7Hlt8vK+6HX977gkvbR4ffk5Rry2x+/1Kq3XHZ+8j2If73Mdxn7ZT7nfRXhoiIiIiIiFJMug/pJCIiIiIiSlkM+IiIiIiIiFIUAz4iIiIiIqIUxYCPiIiIiIgoRTHgIyIiIiIiSlEM+IiIiIiIiFIUAz4iIiIiIqIU9f+8vII0ODoK1gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from scipy.io import wavfile\n", + "\n", + "################# Load Happy and Angry example of Actor 1 #####################################\n", + "\n", + "\n", + "h_samplerate, HappySignal = wavfile.read('data/Actor_01/03-01-03-01-01-01-01.wav')\n", + "\n", + "plt.figure(figsize=(15,4))\n", + "plt.subplot(1, 2, 1)\n", + "plt.title(\"Signal Wave for Happy\")\n", + "plt.plot(HappySignal)\n", + "\n", + "a_samplerate, AngrySignal = wavfile.read(\"data/Actor_01/03-01-05-02-01-02-01.wav\")\n", + "\n", + "plt.subplot(1, 2, 2)\n", + "plt.title(\"Signal Wave for Angry\")\n", + "plt.plot(AngrySignal)\n", + "\n", + "plt.show()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "511d1136", + "metadata": {}, + "outputs": [], + "source": [ + "#!pip install sounddevice" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "70524f59", + "metadata": {}, + "outputs": [], + "source": [ + "import sounddevice as sd\n", + "\n", + "sd.play(HappySignal, h_samplerate)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "36f510b0", + "metadata": {}, + "outputs": [], + "source": [ + "sd.play(AngrySignal, a_samplerate)" + ] + }, + { + "cell_type": "markdown", + "id": "c9d0a20c", + "metadata": {}, + "source": [ + "### 5.2.1 Fourier transforms " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "02700ae2", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4gAAAEWCAYAAAAkQ7nUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADXbElEQVR4nOz9ebR121YXhv76mHOtvb/inFsBXriXQiMNRaNEELBJFCUJxNcU9KkPnwoalIgYYwvPF/EZwRgTbXmIj1hEjAlVUBAVwUBaAB9qfAiiolQqN5HieoHLLc8537f3XmvN0d8fvfcx+phzrmLvb9e7/1rbe601izH6HHPO3kcvBzEzAoFAIBAIBAKBQCAQSDdNQCAQCAQCgUAgEAgEbgdCQQwEAoFAIBAIBAKBAIBQEAOBQCAQCAQCgUAgoAgFMRAIBAKBQCAQCAQCAEJBDAQCgUAgEAgEAoGAIhTEQCAQCAQCgUAgEAgACAUxEAjcAhDRHyai/+ES2/tiIvqay2ovEAgEAoFA4KEgFMTAvQQR/SgR/Xujbb+DiP73m6JpG4joc4joXxDRq0T000T0vxDRS0T0rUT0mv6tiWjlfv/3RPTJRJTdtteI6JuJ6Afd74GITt3vPzzT/xcTERPR7x9t/wO6/YuvegyY+b9m5t+l/X6E9ttfdb+BQCAQOAwhVw+Xq46O36Hy7Ddf5/UHAi+KmIAFAjcIIvqVAP5rAJ/GzP+UiN4I4NcCADP/h+64rwDwdmb+I27bJwN4BzO/dUf73wnga5h5n3fuXwH4bABf5rZ9lm4PBAKBQOBO4BbJVUDk6nv08+vPey2HgIh6Zt5cRduBh4vwIAYeLIjoDxHR/6EWxh8iol/v9v0OIvoHRPTfEdH71RL5KW7/dxLRf0NE36P7/5YKIail8j8Z9fXPiegzZsj4pQC+i5n/KQAw83uY+SuZ+dUruejt+EcAHhPRLwAA/Xyk26Hb3kBEf5uIfoaI3qvf3+r2/2wi+ns6nt9ORH/OwjydV/CziejHiehdRPT/cuf6kNC/p5/vU+vsLxvtn3gZte+/q31/G4AP8BdHRJ9IRP8/InofEf0znQQEAoFA4BIRcrWh78MB/EoAnwvgU4noZ7l9n0xEbyeiLyCidxLRTxLR73T736Sey1eI6B8R0X9FzlOr8u/ziehHAPyIytsvGfX/zUT0B678QgP3EqEgBh4y/g8A/y6A1wH4YwC+hog+2O3/BAD/J0TZ+CIAf8OEleKzAPxHAD4EwAbV+/aVAH6bHUREvxjAWwB8ywwN3w0RHH+MiH45ER1dxoVdEF8NuSZArJ1fNdqfAPxPAD4cwIcBOAHwZ93+rwXwPQDeBOCLAfz2mT4+CcBHAfgUAH+UiH7+zDG/Qj9fz8xPmfm7DqD9awH8Y8i9+uNKPwCAiN4C4H8B8F8BeCOA/weAv05EH3hAu4FAIBA4HCFXKz4LwPcy818H8MMAfuto/5sh4/QWAJ8D4M8R0Rt0358D8EyP+Ww4mebwGZDx/GjI+PwWIkoAQEQfAJGzf+USryfwgBAKYuA+4xvVY/Q+InofgD/vdzLzX2PmdzBzZuavA/AjAD7eHfJOAH+Gmde6/18C+L+4/V/NzD/AzM8A/BcAfjMRdQD+FoCPJKKP1ON+O4CvY+bVmEBm/vsAfgOAXwJRYt5NRH9a2zkEH+KvkV4sz+FrIAJmAeAz9ben9d3M/NeZ+blaYv8ExDoKIvowiNX2jzLzipn/dwDfNNPHH2PmE2b+ZwD+GYBf/AL0YtT3f8HMZ8z89wB8szvktwH4Fmb+Fr3X3wbgewH8mhftOxAIBB4YQq4ejs+CGC+hn2Mlbw3gv9Sx+BYArwH4KKXz/wrgi1Te/hBEARzjv1Hv6Akzfw+A90OUQkBk+Hcy809fkPbAA0coiIH7jM9g5tfbH4Df63cS0WcR0fc5QfcL0YYm/htmZvf7xyBWTcNPjPYtAHwAM59Bcg1+m1rzfgvEOzcLZv5WZv61EO/WpwP4HQB+14HX+A5/jcx84RwHZv5xAG+D5G78CDP76wMRPSaiv0hEP0ZEr0BCQV+vwuxDALyHmZ+7U5rzFT/lvj8H8PSi9Dp8CID36oTC8GPu+4cD+E2jSc0nAfBW7UAgEAjsR8jVA0BEvxzAzwbwV3XT1wL4t4noY9xh7x7lDppM/EBIjRA/FnPydLzNe1l/G3aMTyCwD6EgBh4kNDfgLwH4fQDepILuBwCQO+wtROR/fxiAd7jfHzratwbwLv39lZBwkk8B8PyQMEm1uH4HgL8DEao3ga8C8AWYhpdCt38UgE9g5pdRQ0EJwE8CeCMRPXbHfyguBp7Z9gyAb/vN7vtPAngDET1x2z7Mff8JiFXaC/wnzPwnL0hfIBAIBEYIudrgsyHX/X1E9FOQsFegpnHsws9Awmt9oZw5eTqWlV8D4NM1/PbnA/jG8xAcCHiEghh4qHgCYa4/AwCaHD4WHh8E4PcT0YKIfhOE4fp8h99GRB+tStF/CeAbmHkAABVcGcCXYIcVj4g+nYg+k6QADBHRx0PCNv/hpVzl+fF1AP4DzFdbewmSd/g+zRn5ItvBzD8GCdv8YiJaEtEvg1aNuwB+BjJ2P8dt+z4Av4KIPoyIXgfgC2f6/mPa9yeN+v4aAL+WiD6ViDoiOtYCAVur1AUCgUDg3Ai5Kv0fA/jNkOI0H+P+/hMAv5X2LOGk1/s3IPL0MRH9PBygWDLz2yGF5b4awF9n5pOLX0XgoSMUxMCDhMb0fwmA7wLw0wD+bQD/YHTYdwP4SIj18k8A+I3M/G63/6sBfAUkbPIYwO8fnf9V2u6uBdvfC+B3Q/I0XtFj/1tm/p/PfVGXAM1l+PYtguXPQCqbvgsiaP/X0f7fCuCXAXg3pCDM1wE4uwANzyHj/Q80TOkTNW/w6wD8c0gxmr89Ou3/DknWfw9Ecf0q195PQEKM/jBk4vITAP4ggv8FAoHApSHkasFnQIypX8XMP2V/AP4ygA7Apx3Qxu+DFLD5KciY/BUcJk+/EjI+EV4aeCFQGwoeCAQAKccN4Hcx8ydt2f+d2LMOEhF9FoDP3dbGfQcRfR2Af8HMX7T34EAgEAjca4RcvTiI6E8BeDMzz1Uz9cf9CohC/BHMnK+FuMC9RFjQA4ErgIbH/F4AX37TtFwXiOiXEtG/RUSJiD4N4rX7xhsmKxAIBAL3AA9JrhLRzyOiX+RCZD8HwN/cc84CwH8K4H8I5TDwoggFMRC4ZBDRp0JCGX8atcT1Q8CbAXwnpFT3lwH4PFuoOBAIBAKBi+IBytWXIHmIzyA1Ab4EstTHLEjWFH4fpDr3n7l68gL3HRFiGggEAoFAIBAIBAIBAOFBDAQCgUAgEAgEAoGAYmep3fuIJR3xMZ7sPzAQCAQCdx6v4r3vYuYPvGk67gpCRgYCgcDDwC75+OAUxGM8wSfQp9w0GYFAIBC4Bnw7f8OP3TQNdwkhIwOBQOBhYJd8jBDTQCAQCAQCgUAgEAgACAUxEAgEAoFAIBAIBAKKUBADgUAgEAgEAoFAIAAgFMRAIBAIBAKBQCAQCChCQQwEAoFAIBAIBAKBAIBQEAOBQCAQCAQCgUAgoAgFMRAIBAKBQCAQCAQCAEJBDAQCgUAgEAgEAoGAIhTEQCAQCAQCgUAgEAgACAUxEAgEAoFAIBAIBAKKUBADgUAgEAgEAoFAIAAgFMRAIBAIBAKBQCAQCChCQQwEAoFAIBAIBAKBAIBQEAOBQCAQCAQCgUAgoAgFMRAIBAKBQCAQCAQCAEJBDAQCgUAgEAjcJjDfNAWBwINGKIiBQCAQCAQCgdsDumkCAoGHjVAQA4FAIBAIBAIVN+nAC+9hIHDjCAUxEAgEAoFAICDg8u/mlDW+wb4DgUAoiIFAIBAIBAKBEZgBusFYz5vsOxB44AgFMRAIBAKBQCCg4Pbrg/Uihgcz8HDR3zQBgUAgEAgEAoHbAkJRjqj8uxkybrRaTXgwAw8X4UEMBAKBQCAQCEzBfIMexBvsOxB44AgFMRAIBAKBQCCgsNzDB56DGLpp4AEjFMRAIBAIBAKBwAiqoF27onZLQjtvCRmBwE0gFMRAIBAIBAKBgIBIvWd0CwrFBAKBm0AoiIFAIBAIBAIBAbN6z/Tzuj2IBDDo5pfZCAQeMEJBDAQCgUAgEAjM4yY8iKYXRqGaQOBGEMtcBAKBQCAQCATmcQNOPOJbUCQnEHjACA9iIBAIBAKBQKCiCe+8EQ3x+vsMBAIFoSAGAoFAIBAIBKa4yfBOU1AjxNQhxiJwPbgyBZGIPpSI/r9E9MNE9INE9J/q9jcS0bcR0Y/o5xvcOV9IRG8jon9JRJ/qtn8sEX2/7vsyIuEaRHRERF+n27+biD7iqq4nEAgEAoHLQMjHwG0HAzdbJMYrhRFm6hBjEbgeXKUHcQPgC5j55wP4RACfT0QfDeAPAfgOZv5IAN+hv6H7PhPALwDwaQD+PBF12tZfAPC5AD5S/z5Nt38OgPcy888F8KUA/tQVXk8gEAgEApeBkI+BOwG+iWUuxv2FB7EixiJwTbgyBZGZf5KZ/4l+fxXADwN4C4BPB/CVethXAvgM/f7pAP4qM58x878G8DYAH09EHwzgZWb+LmZmAF81Osfa+gYAn2LW00AgEAgEbiNCPgZuM5gIAIGhzrsb8yLqZzy2FTEWgWvCteQgamjLvwPguwH8LGb+SUCEJIAP0sPeAuAn3Glv121v0e/j7c05zLwB8H4Ab7qSiwgEAoFA4JIR8jFw68Bc9ZDwWAUCDxJXriAS0VMAfx3AH2DmV3YdOrONd2zfdc6Yhs8lou8lou9d42wfyYFAIBAIXDlug3xUOkJGBipUOyT7flNKoq50EQgErh9XqiAS0QIi/P5nZv4buvmnNSwG+vlO3f52AB/qTn8rgHfo9rfObG/OIaIewOsAvGdMBzN/OTN/HDN/3AJHl3FpgUAgEAhcGLdFPgIhIwMtiLlVzG4yrDEiKgOBG8FVVjElAH8ZwA8z8592u74JwGfr988G8Lfc9s/Uyms/G5Js/z0aZvMqEX2itvlZo3Osrd8I4O9oHkYgEAgEArcSIR8Dtx5eMbuBx4ZjiYtA4EbRX2HbvxzAbwfw/UT0fbrtDwP4kwC+nog+B8CPA/hNAMDMP0hEXw/ghyAV3j6fmQc97/MAfAWARwC+Vf8AEbBfTURvg1hGP/MKrycQCAQCgctAyMfArQVDvYiGa/cgurDWKMoSCNwI6KEZFF+mN/In0KfcNBmBB4FtKUKBQOC68O38Df+YmT/upum4KwgZGWDmmv5HBLpuUcZcpGfpOhTFQODSsUs+XksV00DgYSIEWiAQCATuGMbKGN2cIyFWZgkEbgahIAYCV4EH5pkPBAKBwP0CwcycN6ykhZIYCFw7QkEMBK4SoSgGAoFA4A6iSK8bk2MEZg45GgjcAK6ySE0gEAjLZyAQCATuIIr0ukE5FiGmgcDNIDyIgcCV4AVKdIexNBAIBAI3jJv0INJNh7XeVoQ3NXBNCAUxELgKmGy7kPWTR5+BQCAQCFwXqP28KS8eIRSirYhxCVwtQkEMBG4twoIaCAQCgWsEMwAG00368OgFjaz3HBxLaAWuHqEgBgK3Di8QnhoIBAKBwAtBZBCbDhKy6HYi7kvgChEKYiBw2xCW00AgEAjcFFTxKMsfXrcsCtF3GGKOELhChIIYCAQCgUAgEBC4CE8w30i6W9NleMqmYMS4BK4UoSAGAoFAIBAIBAAAxAxQEi2R6EY8egSqClB4yipsLAgxLoErRSiIgUAgEAgELhfh3bizEOdUBoNvxlPFLH2DtGZOPEuziHEJXCFCQQwErgLBtwOBQCAmsXcUxAwg3Vg+IFmcazjJZhCDErh6hIIYCFwJYlIUCAQCEQZ3t+BX4SXcXIineC9ZVKF4hlpEIbvANSAUxEDgsuEt5mE9DwQCDxnBA+8YWPMOCRZhepP2zggxDQRuBqEgBgJXibDwBQKBh4zggXcMpAVi7BduNKKRohhLIHAjCAUxELgKFIEWls9AIPAQoTwwvD93B+Kusx/QQM+buYeFDI5nKBC4AYSCGAhcJUKuBQKBh4jIk7qjIFgGIlK6MechNcIznqGCmFMErgmhIAYCVwVGTI4CgUAgcGdQJRbrchO4OTnm1/wLBALXilAQA4ErQ4TGBAKBe4hD+FrwvruFxmGXtEgNiW52E/fytiiHt+45VnpuHV2B+4ZQEAOBqwC7SnCBQCDw0BC87+6iUwWRbm6Zi6qwxnM0i3i/AleMUBADgQkuyTIXyfWBQOC+wbO0nfwteN/dgrtfmW+PWhaP0RbEwASuFqEgBgJjvCjf9Za9sPIFAoF7hUND3IL33S20couz3F///9rJYa6fAQWNPgOBq0EoiIHAGKHUBQKBwHaU/LA9vDIm9lPwLc0hq0sfgocNkKjded24LeNz2+YDoTAHrgmhIAYCHi/Kd5lnqpcGMw8EAvcFB06YYxK7HQeH6d4QUgI1GuP10nijI7L3Wm/R/bqNz07g3iAUxEDA4zKMhZM2bpkFMhAIBC6KQ9c3vG2el1sFN7G/jeOUGcwMhuYi3gCNjepznf3v7esW3q9A4AoQCmIgAFyuUZBR14+6TdbGQCAQuGyEF+N8GAeX3KLxq9ltmvtHSUi8IXpYKLnmMXIhwL7fW3SfJrjNtAXuLEJBDAQAXKoIJNQQnbA2BgKBQMDQrDeIW+dBZAC06AudNyXFiEhW2pAf19nzNoKukYZ9GNFyq2gL3BeEghgIeLzg0hRsfDr7QgT30LoXFstA4OHivO9/8IsWJidu6VJIvBnkiykeN0BjkZw3PT7j/m8DPWN98KZpCtxLhIIYCABoSri9kDWOwMxAIjCxtHUo776LPL4RTHfxAgKBwIVxV0LwbhWcT+4WehApJdByCeoSKMkU8SbuLBFds/dwS2gp0fT3bUC8b4ErRiiIgUABXxLzFwFD51U4b4ncOReaa7uLFxAIBC6MfWu+HrocxkMCTb7cLjADOUOMpiLE6NrvH91AfuaOZ/U2Pr+x3nLgihEKYiAAuJAfvJhQYgaQymoXF2rvlhUu2Im7QmcgELh8NB7E0bbgDTvA9eO2jBMDTCSFYVKqG4GboTEl4DqK1Oxr+zbdI6ANT/afY9wmmgN3Ev22HUT0nx1w/jNm/ouXSE8gcDNg9+VFrXEEkDFnKv8uQsztR1guAw8UISPRhtAHKzgcxXqIW8RDGUQJzPqJoSoZN7HMBUsNUwJde/+MsaP3ttwjVOJuzXMTuK/Y5UH8gwCeAnhpx98XXDWBgcB1QANp3PcXVdKc5fPCFsjbWcBAMFO84NbSGghcCR6wjPTv/8x7v40vBI9owO2/GwervOLVWauEXPd9c7oPX9f4zFxjI8NvG+JdClwxtnoQAXw1M/+Xu04moieXTE8gcCMoxjgrQ9qYEM/dGoDsfl6wMba2biHmFssOi2bgYeHhysi593+OafIoIiNYRAuCTvRpOlY3QQxngLoS3lkVo+uni3IGEoEyix/xOsbHci4BgLRP0O19bi97TG78GQzcJmz1IDLz/3PfyYccEwjcCRRrHF9C5TQGk62DCPhk/4NBGlYTvDoQuJUIGTnGAcU9wunRgPx43PTEvIRSMjAMoiw2+26AHotwvQ7F5a4UpzHcZtoC9wJ7i9QQ0UBEf5JcGSsi+idXS1YgcI2YU95eJHxDF/hFumiC/c2tPRUIBM6HkJGKJu/atuHWrvV3O+B4/W0aItLlmlxAzbUjuWJvTlm8Mozbt+f2tuph+0K3L0L3bb3WwI3gkCqmP6jH/W9E9EbdtvcxIqL/kYjeSUQ/4LZ9MRH9GyL6Pv37NW7fFxLR24joXxLRp7rtH0tE36/7vsyEMBEdEdHX6fbvJqKPOPCaA4F5XMZaR5REsIGA7LyR52lvNnwrEAjcUoSMlA7ls5mrcsv/gqdV0EjruQ1Do/eHuh5UKnHzjZAmupn2/UIpH3tQns3RNvu7TYq7x770jguWPQgEDIcoiBsNk/lLAP4+EX0sDnuMvgLAp81s/1Jm/hj9+xYAIKKPBvCZAH6BnvPniajT4/8CgM8F8JH6Z21+DoD3MvPPBfClAP7UATQFHhIuarV+gbLWBAmHEdHPrjjqC3Ley/ZyBgKBy8LDlpH7PBkNP33gPGtmVZBmw03ydNc/DwOsSFrZfJ20WWEaSpcnQ3f2t6vtHcVrrht7iz/t8tbvoTfmE4ERDlEQxYDD/PUAfjOA/wnAz9l3EjP/PQDvOZCOTwfwV5n5jJn/NYC3Afh4IvpgAC8z83cxMwP4KgCf4c75Sv3+DQA+xYf4BAIXxguUkOZEQOrAWjL8stZEjulVIHBrETIScCGmoy58ol0wMAERrPiJmRH5xgfH+idgudBUCcukV0/wtSkRXLyGL14T4OIkYEvfN0YTfN2gGQ/i+fTcKYhu/CkM3B4coiD+LvvCzD8I4JMA/P4X6PP3EdE/1/CaN+i2twD4CXfM23XbW/T7eHtzDjNvALwfwJvmOiSizyWi7yWi713j7AVID9wpnJN/XwpjzBk8DFqg5hwTowM9hGEBCQRuHR6ujNymMPiQUh79ftDwuYY+wc6FNN4gyAqqrTdA34vCQHT9csfCb5nnFaIrQqlhyvXXrYGvsDp+73YoswUHjt9Df0MDFVuXuSCi3+C+f/ho92sX7O8vAPjjkMf5jwP4EgD/EeafyW1R587MtXVfu5H5ywF8OQC8TG+8ZW99YCdeJPfAzj2ojarQMS5eNY0AKRHOGch0WNfjUJFJ5b+6f7a9mypNfYOLKAcCN40HJSPHPGbu95ZeCpFRQl9A1HgLrXjowWNU7u4B0uW8Y27EJFniwfIAbwbtOF3b85OohNTuvicvMjm5ZFwiGbfoqgI3jF3rIP7a0fdvdr8ZwN84b2fM/NP2nYj+EoC/rT/fDuBD3aFvBfAO3f7Wme3+nLcTUQ/gdTg8XCdwZ/AC7Gou+fyA/shbvC8AHgZQqkK2oWUftpXa9tbDQ865LsSEL/Bw8XBk5CRsdBTeZpPoUnZypADNtfFQoZUxaU7vOmiMdun/LwiTV5sBWPRi6PR0Xus9lGfpWp6fkbFDCvTs8Xoz3W5N6oLjdZsvKXC92KogMvPvtO9E9E/974uCiD6YmX9Sf/56AFa97ZsAfC0R/WkAHwJJtP8eZh6I6FUi+kQA3w3gswD8d+6czwbwXQB+I4C/ozkYgUCLc1keSfm+5UCcg12aLkvU/BSPJKacd2KF13/jxad5B9OePeeKwfXjQuMUCNwDPCwZOWZgLlTykBZvgk/dVjhh0Ohe+4yJB8mLLbiIJ7Ecb+Ge5+jvkrFVhp6rEWfEmK36qdspgVHXgNweUXSNvrby2rrUFf/wNKRQPee894qh9RPiPQ3s9iB6nFuoENFfAfDJAD6AiN4O4IsAfDIRfYy296MA/mNA8jaI6OsB/BCADYDPZ+ZBm/o8SLW3RwC+Vf8A4C8D+GoiehvEKvqZ56UxcPtxKSz4XFZZZ9k9N5NkcNcBWanmDJB6EQ9pisq/diNhe67PjU26uNIbsiQQuOcychz2rhPVbUtbyAW222LSCViOn45HkTWHGNnGCtusvNh37oHoOlhwaat3XKdCVJ+xa+uaWQzEzLBa5LQtN/QmnmenH25dG7I8Juejzwy+oRwGDHSIQZGI/gkz/5JroOfK8TK9kT+BPuWmyQgcCGZhWGIMu6LQGm9ZhDHKCyg+zGAVJgQCc97h+XOTKL/AtJ8oeCEJTBn+uI2rYuyzzgMLk5I8EZqj765hMoaRjXEf8O38Df+YmT/uKvt4MDJyPF9o+BdN988de9f5xAvC5lykOXZUxgW7FcVm7Jws3DWm513b1xSkbgEsevBqJSGXuXrUrqVYzOg5uhSlpYzTiK87OSvDLzUEGu8uxj/oCsXDTMP+Hk/eQeh9SzPkHE4k2/Jcxaj9sN/Th4Jd8nFXkZpvRuVCP4eIvsnvZ+Zfd3kkBgLzKIoHZ1RheAUdzeRZXIT/UyOAfGjOTGMTBjxnEjTlFe1E7BBcGpM3j+hMiFMRljzeeHdRrvOOX0fgSvGgZOT43W/yDd0xHmPFJyBw40hMbmz2GCW9grArRHJyXvm3G2zhlAT0HbDZqLIkjuqiOFwTKCWwKqaXKlXmGvNyjABmApBViXf3xZTJqxRzc7mNW2sTuJ9NG9t2bEdIu8AYu0JM/9/u+5dcNSGBwFb4amJXwsaoncSwC2s5L9SLSEWhxXaS5wT6NoVun3X5ClH1QGppUdBo3O487sM1BK4DD0dGTqIXsN97aL9njG8PHqaMeQPgoTiXcnh+oyqDQev1xFB67VEiJocvWymdHT/7J+PVBvbMCPGrHIa5treuMbqvrfMTei+igQKXgl1Fav7udRISCGzFOL9FkgRwaVx6FD9SlVGck1GSO16Fq1UybUJE5vpFFVJbQ0nd720VWuf2XZLiZuG+E5JLtgbq2N1lAXPX6Q9cCx6ujGze9h37RkF65/V83VfMyYK5fdMTsXscseWWHDq2pqyyLtXkPk1N2nevLuteEgEpFeXwQtLeDMq7ZOSkX9QpxlwUUGnjIgS9AOx1ajz2bp8Zo/38gXCx+7Ft3AIPDmnbDiL68n0nH3JMIPDCGClwV5ax7vM7tiWm7zwfACU3P2KQF+he0fNWY8/Qx2Fc+ie8n9rjldT5a5jZd0EUlXeSn2eW5RFdd32yd9fpD1wLHqSMJMd/Zz07PPq087BjUv4Q37fqnWs371K+9hyzVa88VBBQ/RskAoYYUnSt3PZrulcMCW81j95F2zlYYTZvd5Vrk3b8M3zdj+xYGRzTUYV0e85F7ld5xwMPHbtCTD+DiE537CcAv+qS6QkERpiZiFzIu7cDjTXQheNcxPpmyfxEADIkdxJ1GwOTMtI+dHZsmSyhL2737DEz13Iey+khcOcXpdDfm2Lg3lMJ7bZ7DPaVQw8EBA9MRnpPCk122cfsG+O9EpNc5gf0nrE5g3i8Wb1lB0zOL5SDeB4CuRaHczmA52rqhXmo0GDjNF0C5AVceAecymOldG7Oce3P7fjauSqBzRzA362LjJNrN/CgsUtB/IMHnP/3L4uQQGAeI+WIcPXMa1YLOxBmfSMCJbOADk09l61ev4niN2L02xQ/k8PjfZcWBrOnkeIdPWeHhwjYm5w8hoAM7MbDkpE8x7y2HArHCSZ5cDahfYiKolwjNQJBDW4HD++cErjNo4tzsOVqAKAuISXCoLJWln3Yfeok0qfZf857a9EzeVRZ8yJt+TZnSGsOAQDykT+YPvc3UcRsHFk02YaZeUX5dz6c4z0P3G/sykH8yuskJBCYQ+MQu7IQxpF0e5EwEs6g1NV2WBoioPUU+n7K71307TiE3dg07Y3bv+C41Ruwpz2d7Bzaz22bDN6XENnAteBBy0ibfDZeL9KIiYRafGWb72lmAvpQ3rsSFULTz11DsE8uXcL4FdUgZzC6JoLlXK1PRMNFFJU8H/J5kZy685yj11y9ulvaum2Pq7czX9R7O6qhEHjY2JqDGAjcFlgl8KuzadH0+0UrpxEBlJyFkV1zLdM9Tw+05QRWlyrzlgOMpkrE5YHbNms3O/qZDYU5pK8rtmhaIaFAIIAaM+o/R+HkVrzE2JrlXNuRzuvEMyx22uUDef/Ilk64ZL68rR3as992F/chAV0SOZaoUTwm/dlSJ8TTfYfQtosek6FE7ekXkRtbvatz28nJ75lTzkvDDWHXlCAQOAShIAZuPzTS41psWtu8ZedClmgdW2y3zAXaSdahPVQb6pyGqHt3hZNcds5mQ1mdEBZfwc5+3DWcN+QoEAhcE3ZFJBhDtoiBNAohneNxu+L6Hpjn3oXji3ygy7n2bW3wnv222w4lAlECDwNoyECu+7d3sCe65CJePxsnZhup87Xliryds/NJN17y0nlouEHUNZkDgYthr4JIRL/wOggJBHbhIKvdRXmh8dFL4KVsFlUwvFeqetWoegPPaYUsFkGeCsuyZa7NAy3I5yPETRZdu0LeAf2c9/p58uVq0NAVXsXAftx7GTl5BySko76SqkHM2a+abzxt6kF67nnyeRDPPLhZ7+l1YYZ7+6hKD7v7Qs35B0SHzPH2i1we14+G/U8fov1t0dx5O86eeS4ZAKdU998EyvXv75/Hz8E5uggEgMM8iP89EX0PEf1eInr9VRMUCMyBGhviVbAw3mUiPV9LOVdGXpamGB10TpdoCdEan1fyGnc0dqAF+VzwntbRBOSgbg69/km+xxVbbhu69uQEBQKC+ycjGyOUbUP7PjKAVPkyT178Gt5HJRSRXNsPzHOoaLxR4wqUl9by9OdBIAJyBnVdsQMWRWNr2KV/QNB4l18oX694qN3JsyQc0Lgfi62huDNCutlGh9cRuipsk4NzhpddUUWzbbt388EZbQJz2KsgMvMnAfitAD4UwPcS0dcS0b9/5ZQFAh6NUrTtoFvA1JpKawmkuRl1rUA4obNLqWuvpUnxmFzmKATHt+EndZcGbi3TRiPsinYHI83/uEXYOdaBQIt7KSNnecaMiY5ZK3JqpcvRhHrSbLxcNeoj1yWQJKrkBcZj7tSJIXHm+7bm8lB5vCmJ26JT9omXC1wXgUB5gOQf8oHyf1eDNP/do8jKLftJnOWTwjU3iZGtZbLPG3L3ke0LAj0wo01gHgflIDLzjwD4IwD+cwC/EsCXEdG/IKLfcJXEBQKeXV8tyzIv2Is2Q6IMWvz/XHjPIQLGWQotiHQUTFr6mzTphTldcQjXKNyVJ8RsOe3wDs5P02Xiqgr8BO4V7rWM3KLTUZpOOmnOY+QMYiOz12VReMdA1ZDmwigvVumTq5AcKwHjSNbx91m6RG6RK7Q2rj/TyjJUQ6Tf37hJD7qStgu9FCpLTTjyLzROo+8z/LwGbjpP6Dj6Rj3m17oSxHi8/fZtRgCgfR7OG2Ia8i6Aw3IQfxERfSmAHwbwqwH8Wmb++fr9S6+YvkAAXpDKz0ueWHhL22Vw/RKW45ROH4p5CP3cfqmCcRz2Ih2Wqdekj6uZhBUh4mhhKyawr1iCUXXQONzAJLKpTsDTbYGAw72XkQ3vqh+cdSFz56WwcERyc2yf09t4X5poiocEr7k5r82F4eRjE9452jY2Ws42I3KLhw2Isx4/os/LmPKH0TZ3/AVFKpFMT4nbS7mQ8jIelxmPItnz6Y2CdliJDMpyejNnuEaM+9wxL6KxAnngjQgPYsBwiAfxzwL4JwB+MTN/PjP/EwBg5ndALKaBwNVirOzsLVZjXrNzeM+4/KvnXhjU9Mvg87e5JVRrWwtFYRvnEIwtji+KSUEaT6ZaV7f2Y15Qamnd3eH1WjPHFzWeIAQCU9w/GTl+D2YKdgCQd76JHLAJ9tSI1X5aH5dG8R2BahbNMMwYpA7FxIO05XyTb7v4mfFkStOUNtfEPhprobYXgNfTthocL9iJl/XjzVv7MJlVx6Kabq/wIZ7aEia7xu/pZLTmPL77unxw72VgDv0Bx/waACfMPAAAiVnnmJmfM/NXXyl1gQAACfyfWvy2ooR/nCcOxEyC3hR7EVD7tWHY52izKeRQpeUs8ycXBkQ0EgBe2blcqyA5guRS+TDroz9xbyfXFMtj49bQxvWxCItqYDvuoYzc8c4RgYjAnIGaXQ3LQ2zO9+/VOC7vQZbhJ+elUu/hXCjjoWjE1Y5zbX8JSd3mRSRQSgAxODOo68E5g2b54xw9PCq8s8NjuQulOvdInu3wmB3eNppnkVIChgG7S9DkcrIcJ8/+lTsSjSQnkvwu+bJP3toY0s77xwCI6FziOXC/cYgH8dsBPHK/H+u2QOB6cS5v4PnPNc/XrGXuYHCTVD8x/F3YEyXW3fHZZJ3sbf9yJmL+eqpVeU5q7WrkPLTcwATyvNcTeOi45zJy5ElkLsYgYgbyOFqBJ//neFfxWL1wxMbdQRmTIiLoQP69Beas3XbaXLj8vrHmDB7Ek4hhKHaygzG+nwd2O2qkpFUUfW7imD6gQfOYTcbV/c65fVZn2/Whs6JssW2/CugQMjDKsuDRN55e31hh9PUIRm3Mdv2A3sfAbhyiIB4z82v2Q78/vjqSAgGPGQa8T4ie17J4mTxemSul5CYB2447AOahE/PefHs0tdKacG0augyeP/JkivD2xSdqHtKWBhyRhxBETsifk9YXRfFCBwI7cQ9lpDEecrNz7OGtjXunfhp/mESZOm/Wg5qPujFMTru7kPHQe2i3HLJDN2qbIlDq5LPv5Vb3PVJKbfN76RyFEZf7fo7rVC9rIgJSQiMHyjFb5gY+vaJJhsVUjmj7JsdquxNtVMSsy0mnci1XICMKCUlyMU1ns/BtP7eYKIRbGizjt4/e6bUHHiYOURCfEdEvsR9E9LEATq6OpEDAwwuVQyYpmFdQdp1TDlfl5zzFZOb6GeUCzit152ibZhexqCgl3ywsB054ub4ug+ePx7ZRgkfjN99AbefQMSjFeQ4n80IY3/cIKw0chvsnI30Y4tb5ovGlGe8FOR40wzPq94f5rk2ULV/w5dw4B3/f1QczoEtLSFpHEm/iecWHj1HUwkWNU+qQayQUzx5nK25E8ArSDk3XLqh1Cm7Lu8zjUGlMnvlZinmfrHtBMMt9sJdpYmBxaGTW3PwHBz9fD+xVDOzAITmIfwDAXyOid+jvDwbwf7syigKBXTikqmRR0vQUoK1ONm20Nsk4PJdua/dq9eQankPjXIpDMRKEE/tfyQ2Z9yCWBaovmgsyApVKhTJYtYAAO7nNreA0+say6xC6yv0u/wKB24Y/gPssI+e8DvZOq2uwGqUwPRZ125R/YZZ/uY62tHeHkap8atjbeYxmHpOSmu53k8uOum22n3oO9T1MMclDrqlwDf+2Z2DUnvH1RiGkUrxmZ6VrTwul6h0t1zJz3uR6uO1+0vRIwUwJGKQi74wUbWky2qsIvPzHk6tctbzI6XszUn6VvDJ3wWiftrtr3Kskr2ubBh429iqIzPyPiOjnAfgoyDP0L5h5feWUBQIAGg5sSsJWRYumP02+HMLslCnuVib3QQVhzpKbQ3Vtqd20j5shJxzreZNpgPNUepptwlH4/CUuF1GnetC10Hikx43vg008RkL7EKWP3NgFArcQ915GeiWg4V8EIKMNfR9Fevi8N555i/fy2vv13hOgOZtmlHRjdFGZM3HxHcJTZ5oBg5CAlKQwTd+Dh1xP23b+5LfRxMVgWJ6RQw19alDk7ISG9ww27j3fXlXiqjHTTpMrJGYwOaNtSkDezFDlLJpOhl2pcjjuWcerxBA1fbs5girPZN5fP2c6p12ariNaJ3AncIgHEQB+KYCP0OP/HX3xvurKqAoEFKxhJcUT1mhIM5bDGSVsvwfRNV3mM44T0xbBtK0lb2EEVYuctwQeqoTOXcs22hUT2WWK4qVJNSd1hgFMbaQ6b/Mgjmg+1Jo8O1QvpMQHApeOeyYjjd+O3mO4+abz6HhHD8BgnuM2NOOlwe53+R6+54zKj1nX1Tu3kshjuYRWadBJvh//w2QPA0MGpwSs10DflwKecj5PjY0TD+K8542TEHSQAdbnChZxw+5SdQTdtfqxYDBIDbRMrrpu8bxVMydtNjPGj/F1+PNmxuCSUach9cWqxuBKH4NGlz6S79uuaWb8W703jLKBAxREIvpqAP8WgO8DMOhmBnCHhV/g7oAhqbIWAnIOpuW9a3thFk83nZlY3/b3TSBQ1yFvhtrIjCfwcPZLzkK4nXJplN22kfWzSdx3x7+Ap1SUuzQrW/efbkn+F+4+ELgVuJ8ycsz86m9xEFGze8orxTND2fMkbubYpbFdL/M9Uw4FVFPGGk/QAUrTOJ+8CfUdKTRjv67dpHE/Pr+PEtB1AGfQ0RLINTqkYfRbPFOzcq2ES5pidyASqbd13tRQCPH6EGqBuFJ8xstcC1uFedoApE4NnfOytPRTXOCOnqsyYBSvPLm+zRhjS4n46zK6RzdmlG7TbDuP534ugmBbO/fQqPNQcYgH8eMAfDTvLk0YCFwR2olJu2ueCdFIGTsokbwc7hZzvwDYGLkTJOSFUaHxEJqmx9CW7xgLjG3nXQbjJv9lJHwwc21T919V9PdOipoOA4HbiHsmI2e8DON5px43y5ONDzX5UOYzg3un1RPzEF9v7/250GMz5p9jY2g7qNVrNzfY9V4wMoglLYKzRYJwbaP05Z8NmsiAFlWZoobmPcgmM11/jeyZg6OFuTnXQk7t2S2t5MEdj9G1jAytzfZzXMs5QWyqNKvXFu0le2Nwc8tnjML6vWnigFzE7Xv3PK+hHN4bHFLF9AcAvPmqCQkE5jFVQOquLSZM+3Ob9gnhJouGSA1xvpHDhDgRgSiBQEiw8tyWE+D62NY285a+9vS/ZSgOwgvMa3nm/kzmyY1n0/7TQffFDNtyT8c3NRC4Fbh/MtLrAo0HQnnY2JPEo/P0mLqLbKorf1smu/cd3t7V6GtTF+zoxB3y4oBzeLyt8SjVO2S8mfoOqShUVMTw3G0Wj5F7HlDvOdl/v/2A+01E4snUHH4u3jvX50w73jgpq1W0JgqM24Eek8qNqFdHVG/SzvDTK4Af7IxpRKvqwdQskzI6H2jfXf/qXpj+mfErjQbuGw7xIH4AgB8iou8BcGYbmfnXXRlVgYAHASV0grHHQsXVYkYmoPadgyoTAJQQiQsVEJCcB/Q98mY9srra11GO3qSJmX20z5bjzfsqlvnAgJ4XsPiRegBqjigd4EHU4w4IRWFssX6HlTJwe3D/ZOTk9XJ8jNxM07sluB5XYydYip4wl/dYvmPa3kMCkYujGM3gd8GHlO48vOX8U8+Ra8AXlDE2e7REXq1BADJnEYde15h42XybrZeOy5IZxsYPuM6u0+O91893uaWNyfiogZYcZS4nsY68K6Ljvdqcp7JnV/+XhcZewEXO+gPM2FreswZ1HiT31q4h1wir2X5nlOFD9j/Ed/gB4BAF8YuvmohAYB+E35uSOGKWI0XDC5RqyeTJcW3b2Z3jktonFvM9Cg1nkApUbwRscwJRLbNelm3LmfSx/uNrIGhBiKmAqF7QA5TjC/P3anUuvw8IG2MLud2nLJfj5bgXIjUQuBp88U0TcHXYMllseNRo0misjhiM1Hgxxuay1r9Dk6/3D4yyfANQ09N3XbO3LRJKwbPZE0YT+OaIWRnm70SukTTMwJCdZ815sYpdYEbZ1KZcbRX450O2HyBLhwHoe5ENiYSW0kB5wOZluvbNzFUUsarARJJX6UWUtaFFdMbXY5um5F7lg+rvixW6qxfTzHDK8I6XuBgvj+GU4h1ytzXKjnfa4M6d5I+5ty/wg8Ihy1z8XSL6cAAfyczfTkSPAXRXT1ogABiDFIXL1ueZOcT9oNEaQSQ1bnbw8rE6ye1m4JwMT22VjFYol+T4LbR4xjux1KlNlmgkBOzY7CzSui2PDpv0R77pi6GMiynvh7VnSfb7isGR9uF7CQRuE+6fjNxr3UHDrJpJozdmuaba+SwmsQ1zfONeTjR1fEp+3B6WqRP/akScm527tourbHzMtvMaoQN0EqlCx8fg9QDOQ72FlDR9gF0f1N6jRoFD03ZR0ExmNceP0HUaAeO1Y+8V22GEJN+rKL4mG9kU4Ubw1FDapkydt3mMhqnsv2r90L9LM0YUolTu0eTulrHmOmZ7MWdshjt3fl5y8blS4DZjbw4iEf1uAN8A4C/qprcA+MYrpCkQGEGE0izbaRjfSGiYMNuSuF9gJsZmG20/fiepDOShrB/lF5K3+dN2SlpBy+57VV5nOwUjidLlBa9v+TpCYnz/s8eMro8blXYW26ZCgcBtwf2WkY6nFoMSTQ4pHiK4uWwTQ9FycBobuhoc4GG6o5izbdL89F4xntiPFKZJ42akm5Ffnj83USjWP4nnDgCfrUBHC6kI6vLwGoPdjjDPul/TPHRbs27vLgPAZiPrE6aRnWUuZWNb/4wmH14eyaxPpe+by197Xe7c4kZ0/VzZ89lqplPVzhtnsowTxvcT7tHxz4Lej633Lrdt+C5LU/45OuR6AncVhxSp+XwAvxzAKwDAzD8C4IOukqhAwDC15pkFdnSAT75XTayGy6igOFTbmFOyDjy3KGlmzNXfTShRmi/Q0hR3MRKInJK5hQ6dEHiHJdt16LnXomgdmKhepiP78h180xenKhC4atxvGVk8g+63TRRnDgNQQxONKVlI2y672wN5yRtDHmj/knrNOJOe4ybo/r54b26TKOgUM/v0f0oXd50c2ffAag2y32P56oWNb38HeKJ07OD/pphyUWmqTJttfGbbjOGXiseTynNMqcP2h9K3ZX1d9YPqlDkizf10NDee+1TCcJvwYOhxdq9Mqd8y96i9Hlg87tBjAncahyiIZ8y8sh9E1OPBsPLArYKfmIyNfH7yMZ6IFEVtvtk2YZ3aNpvODyORzQqb85a0D56N8a8Th0oDsVpfd1rsqvWzHFa8jrT9tMvGOSyqNDvGW8CjuU4gcLtwf2XkmJ+at6mxRs0Y0ni8AUBWvsemGMx5sYBr4lY3B3ftU+/QtuPRyL16jpNr5i2yRuc0zzklzYyLYMn1YwafnshtzuZV8zKSpwYCHsuZ9t5ufRm28f9slb8ZWZehEH3P0+HO36ffTQwaKh/9GM0qPFqPoDHeXtfzySWkl8qYA/5i2cJwS+hva3yocwNu7Aez16Dv4Nb9s8cH7jMOURD/LhH9YQCPiOjfB/DXAHzz1ZIVCBjqosLFeDbm43Pbytl2zK75GjXMrljQZr11e+Z9atUrjLoIYBPyGAnMGg4zJ4RmjbUN6V4waz9lkiaC43bNVE3K8fYxnjsFBx57mQgLaeAw3D8ZOZ4Uy8a974QFxPGWcEaeTNJpuzfqvr5/VpG6yIax52fmFEANZdzYMKfwYzc6au6ejgraUCLxGqYkBk5bI5AIrHJt3sN02LPCwEFLnDBz8UJ7W/BYMeRtyts4OmeU3uDNEbYM1baphWt8buMVoFW8Cl2z8tKuX9+30bskdgLCuAr67CXY3AXAZKmqWdzT9zNQcIiC+IcA/AyA7wfwHwP4FgB/5CqJCgQKCGUdICpS0vaZAob9ZtiduXFwlkmu1sa5U/ZYzSglJCIgc2m6MvBU+PnU0sqtNdTCfhLNXJ6ztKvHkYtgUNFXBMKW3M2bgvdE7PDqlsOL2XP/sZeOsJAGDsP9k5Fzjz5v/dEaxMT1VBsp/G6myFjjmRwplPf1/UtJh88pM7vyt5084hKWOVJW/Jhtk1tzfYwNoykBuo4vgUtOIrLKxW28eEJ7y99FDlo+opNK++5xSnJsaaquUczAKFwXVTkqkTh2lirj7lkjIyylEqUz9nUW067v46rDWdyYldxNt7F5fbquGoL9u1W8wvK8jGsbbXu9yYoUHULn3tjowF3HIVVMM4C/pH+BwPWiuA0J7bfpr1nsE0AzoZ6WkD6byL0rsd6UTAJ4s1GLXnYV0jJagewmTN7rNxJ4NpegVrPU3VwFnWuq+g3dROIu8vOILQ3cctxLGdk49EZKAfvD3BJCQKmyzMarVKFp9JiJt9BrEaNt9wwMgIYBRFXBkTDBPevCmsGwKEumCKGVGS4Ec+cIzigMDEhxmI5BeZB7mTq9lwTkXDzE81c2udLZY8p/GYCtJBYZ6lvXCuXlGSvbi2aExnupXjXmXK9xlPfBeSjfqXQ242n1gvaq4fMz/Xs3uma2Yj7MxShdweX6yz7Ou8c8bylSM0vjaI4RuHfYqyAS0b/GnGOb+edcCUWBQIM5b5gJAVwJb5JlMS7YcEpCUurQCKok1kwyIVO1Pkyk9Vj2A04weLoYhKRrOrlS6GYhdTJGpyC4e5Ovu0Rr4CHiXsrIEUsqk/m50LMm7FBPtGNJi2ckmi8UZpPxZkJ6v995NuMjTyTaAcZPnt6XOTjFvBZK87nv4xusVKQESh3o0TH42fNqaCziluppjSiaa89fxlgjdQrtrDJCRXk2OUqAhLmW31SF5OyASOdliw/FdD/BhJoEQmVbFcQ0slPSDrovA4wSMmVENop/1RhpsQSv1v6yWjrtf/Hs7zYYlyHhLQbymfYD9xd7FUQAH+e+HwP4TQDeeDXkBAJz8NyZqhXsshj0JC9j5phDw55yBrpOeGdZh9BPrKrgcex72o83cvJoX0NmJXZCmWPytP2oQCDwYrjfMtJPVGmGlzHclLXlRzq910IfbuN9DR/dA9Nnijpi3lXGaEK+Q9403jJMnV3TVsT7N5aZk++si8hn0GbtPGyYiSodyy1Upcq8Vr6PYgulutTFtuuz61ivRZa654vYCrfolTLtbGNaHscUbDOg1san0tUridOWrw6jwTZltBk3/TcMsHEYqcON8sxj7+8W8slSYx7o+xlosTcHkZnf7f7+DTP/GQC/et95RPQ/EtE7iegH3LY3EtG3EdGP6Ocb3L4vJKK3EdG/JKJPdds/loi+X/d9GemTS0RHRPR1uv27iegjznntgTuBVgiyedzG4RYv3LxjiDz6PEdjrNZ0WT8KmtOBkiQvZCvTnmt/Lqykoas9ySt+ZUhcuBc7y+OdxJ0lPPBQcC9lZMN3eP57czjN7zdHC/vJ6/jYh/iSmwyz0dg3Bub1A5piM34IfQqCyZtxjuFc8Rp/AEE0wtSBUgIluXnlrENu1QHPS7mGrR5QpT3JMg48GqVCD82MxaQt9aBadM+oLUpWG2DUQKOkjdvk7df2orBx8V4+VWpBpMV77BrcKprecKDjS+WY8bxiC+205T0OPEjsVRCJ6Je4v48jot8D4KUD2v4KAJ822vaHAHwHM38kgO/Q3yCijwbwmQB+gZ7z54nIVkj9CwA+F8BH6p+1+TkA3svMPxfAlwL4UwfQFLhrIIjVsVhcgSJVL8PKZXyzLAgMJ2TP2ZZZ9XJG1lh+0j7MakpZ8w5B8+R7D+LYa0nlX/lZrPNqoS17NZzoopdya3BnCQ88FNxLGTnnXZrs9/zFz2bd4RZ+mvyknF0bwIN7yYs3SP5UMuyZlLsxa+6N+yQtVqYyCBqmacol2fn7xtvuGRGwXBZFYyR+Zs5z9I0U1eZ7OWbilmyPpQQMeeIkLFfkPZVj2ohAVhROd7aqcn12zYs48ZqVvM+Z697juXwh2Li4jhlcFUMzBjADmj/Z1GAtcyb9rJOCto99NAQePA4JMf0S930D4EcB/OZ9JzHz35uxWH46gE/W718J4DsB/Oe6/a8y8xmAf01EbwPw8UT0owBeZubvAgAi+ioAnwHgW/WcL9a2vgHAnyUi4sPq8wbuCtSy5w1pZarhlagXRc7t74vmGHAGOMEYuRXQtmpiE0kzzgmZ5D7OnDMBuTEyq2Gdit1tVn/3ryBw73FPZaT3JsxPnutx3jPlFcqGY4+iM7bx2Pv+ztd16VC4tRn5uCqQc4VnuPL2ptiKD9104YhlHcNy/h65lhlIAK/X6lmzfEkuxdamCv7OS0W5zPOAMyhTVXBGzsZyLVvPZ9S8e7gGilm1egxLmK/PuytSu31wm2u+4ue0GBFG7yHbXMWrvE5ZduMihfCcFcGHh8+QXnq70hzLwF3BIVVMf9Ul9vezmPkntd2fJKIP0u1vAfAP3XFv121r/T7ebuf8hLa1IaL3A3gTgHeNOyWiz4VYWHGMx5d2MYHrADffioAyZj8ngCqXw14GPvLYNUL2AiBKoH4B4izWPYvpd+FUXPpxVkiCWiVLS/WTR0LCCTE7TWcXKNXwmmu7yzaTEFKB2417KyPr7BgTD5dXYtynUwWVRafq7RidJuWe4frC3I/7BzNssvNkTaJXtijO5lkr40luPFG3QVIbKNu9yVVZ2jb5JwBdAjIjLZcquxiZksgzf5xXRnbJSpozeh6CVOjhjS0UrwVq4EMmabt8Kx5G0txKOc9JVjeeuc40RgYR9vfIp4AUeX2ViiLV7my+oP3WIj5Gg47POE+43C8a7Z8xRuuY3XcTTeAwHFLF9D/btZ+Z//Ql0HEeM+Ium9Qsp2DmLwfw5QDwMr3xLs+WHxzqzXLrFvlbv43R1RiNc/UyaeK84FwECmcqoT6lQZMpuyzn1rdeG/vDx7E249lB01xrEQ0EApeP+y0jbVI5OnOPYlA4HmfxlzmDHjVGrwfoqaCZG3cej00j88gpYebx0riVkcIuh+/pI8uaecwZtOjAJ2ew+1/SO7xOspdmb4A97PJg18BJiuuwpWtw89hMUjDs+6SYi9I//+jDLuggWTkX3nvVstWuiVnHYmr4FX1V740zQJBvA3CcYY5mEqM2/FgEHjL25iBCKrR9HsQa+RYAvwfAR0NyLA7Js/D4aSL6YADQz3fq9rcD+FB33FsBvEO3v3Vme3MOEfUAXgfgPeekJ3AHIPLAMfc5AdCEgZyzgzJ5qQrZlnnUAcSSVl5jMGdwKhphpWtSyKH9zb6mtvvOW2iaWyqw2B3Hk7rL9CYeUoxgcs45jg0E7gYejoz0eWM2GQW2GOoAwOVAqfOjOpTYtfNweAKBygRclm0QY+bOiEmnDJGGXUpmgi4j4g2INJrWWZEWYPc4m1cyJaUxiV+ql1TXcmYT9XLofePR5/7jSw0b90mTWFMvg0bN82j7XNfUhprKNi9zR8/0+Njx90tHleGtgkvN9UkwLfkN5Wtz7dvmILY7Jd39cN7HwHYcoiB+AIBfwsxfwMxfAOBjAbyVmf8YM/+xc/b3TQA+W79/NoC/5bZ/plZd+9mQRPvv0VCbV4noE7Uy22eNzrG2fiOAvxP5h/cXDZv21q2G8Tkr2bkeBXL/UcM/LwAG1SI17HIgfHN7rHMkJlyU0gDFGrjlvFStpvUIZ/m3n+MCBzeCeEUD9w4PR0Z63kiofGXr8Ra6Zx6QGYPWvjbuG5IrAuNCFncPgfHzJJWx9QQrsFIjDRltjmL1KpH1uQNsMqLvkZmBlMCpBpp5O+xhHkSMhff+4+24RKDs1/edaWLSf+tVk0+eHmHPXPbPs++AYfmPs3OPueI7l42mWE2hXL9qyK+FKZuyPlf8x7ex04OIcmB4EAPAYUVqPgzAyv1eAfiIfScR0V8B8MkAPoCI3g7giwD8SQBfT0SfA+DHIetFgZl/kIi+HsAPQZL8P5+ZB23q8yDV3h5BEu+/Vbf/ZQBfrcn674FUeAvcO1Sv3qRM+vSwurtYzfhgBl5zA/W8QwVg0wgDG3t0q8+vFh8wOvVLsUhuaW70vakWaOfmcTI91TPHFtar4Ps8pXL/OfovBFHg7uP+ysg5fbLhWbz1dS+bc+XbvjRLOeoF877vHDTtgDU3sOHqW0NNHfcfBvhZv+gIGcyuDVfYphgPd4jPtisGn62A4wUoEbjIM6hSWnpGmzc/badRgs8hf6xCKaUEtoIzk8JI1of9Hj+rXNzVTHr9XjTCXQfgivA0hNRQ3VI34LBruHy0HZerLTTa/MIP9Mw9OuR9iyI1ARymIH41gO8hor8Jefx+PYCv2ncSM/+WLbs+ZcvxfwLAn5jZ/r0AfuHM9lOo8Aw8BLTW1rrZKV1eCRsfd0DzXqjStry+Q9ohVMtnzmAvGb0lrxFsM32V8m1eKcTMdbnCN4XukRIJjATHJeIik4BDh/eqlNpA4PJwf2XkbMELx4fZfdn6TptS2FbuLF8f2guuRVHKkPlx2+nZUUWl74EMMHI77HYbmKdscyQWtvWROlHI6KUn4NeegxY9eLACNdIAXeSeles6jKEzEdKiB683hfzSjldeyu+29SoPTYG2uUH1DhYPqxZ3Kcqin0OMqfXzjKvGqCBdUWSdd5MzajjoeIh33adt9A8ZjUd/YtgOPCQcUsX0TxDRtwL4d3XT72Tmf3q1ZAUCBhJmuMubR6MvF7RaTiuinZMjmqUxc7V8MuArr7JdC8wSy5M2PKc3YV+9o1MLZ01GrxZlbxmtGy+Zw89WwrvsPvQzBFTgluLhyMjzvYT+6OazUSQf3ovN3C6ptE/fYv+fM2igMoair3gPl2sTcDLtEM8Xg9U7mTdr0PESWG/E40lJFK7zyhGfs0dFa9kLYllWA10H2qzRamwzMnBXv3aM9yCyr2bqj5l6Xm/HEzqlUWYWM/dj1/2ZzHHG+/m2XHDgFuCQHEQAeAzgFWb+/wB4u+ZABAJXjsqnePTpMCm+suWYORQhoEn5VjygZMifE31fA0spwfIB2FsCk9rSndVzRJSjrR40u+7TluticK0i31Qwu8hFnQNXlQbsE5ci1Thw+/BwZeTYqOYnqGkyDUdruBqf/xCgipK3/G0bApMBbF4jdzy7smWkIavjmf15hzYlUNeB3/Q6CWVNUwlc6Rp9jgu3KD1F9k3k9A50HajrSgXTVrwf0gaN5F/9XZRpdseWdp33kFyuqNt8HWJ0OpZAe2/rgh08Pr6cd4F+F331ks41cZ57GLjz2KsgEtEXQRbq/ULdtADwNVdJVCDQoPGqbfFaUcs8Z4/Z3gFKcj9bc4dYXLfQys6qOw6qYtacwWrJa6y9EyHPVTbss9w6TypBdKpqWaYZIXOJmEveP/Scww6+4HmBwNXi/svIXe82TfnvOO/ZDrMv7M65FYWzrhlN2P/ocwxLGTDDZc5gzuA8AJzFu2fLQJgi0YwtDh/fUrSFwcsOebkEhkHSJdgvmXRgmwyVqa0iexCGLEtuqJw8rG8afaPiOSSqMnHm8DYIyW/33jofrXOdjywRmKnMTwRc11jWY87T3o6dL3Bu4L7hEA/irwfw6wA8AwBmfgfOX7o7ELggnKJWrFdjC9bo93msaYXbt6EVJtjODRWwTalxkvaKwkgtOZXnt9fXsOJtlrsyNnD7pTceM/M5K+9l4jztPUjPQeCe4mHIyNn3lWf2TY1rrffwIXshauSIKW87PUBzhVMMLk++OMRelK+yyq7nZ9O0jkJr+dd4myohja+t8cDxgfRxp4u+d6koeaXNHacXxXDHM2bSdWszI/L95uJRvI7n13te92Lmeu3x8Ok2B3oAJzMscoMSOuKDwSEK4kpLY+u7QU+ulqRAwMMpbmYVnXIv+SyC11mlabRvpvlioTUpy9id87gD1PfVcpqStJchS1eUPrmpRN14CMdW9b2WdjuOm/1EGC3X4YT1VeGgtt39CGtk4H7gfstIz1cBNErhJP+p7mo2NRseoNewwLuoVJ1hTI15AKrnUPg4URLZoV4sK0pmhsdGjlwELDKL84BuyAAyeLAia0axCa5iSa3ezXLQnHWAKmkH0EcgkZ9DHhmFp8YHd1LrNaXk5g4A+gU8+aWZSTinKuVJxt48dCUiB9D1K68abg5gob5GN2cQcnvs3LjTeMNO/Vo90tMhrp7XmflX4N7ikKf864noLwJ4PRH9bgDfDuAvXS1ZgUAFm5A0QTGZlLwAxxrzuyrFRkQc1gevV6BEkr+Rs+idVGn0srUIrq0Cb48gJf+FRpu53eWbumpP4i6U8Q0pE7g3eGAy0k3Cgd28ZBxGX7Y95Pefyx+zxXtgixdxzkPrPFl7jjsPCAAPGwlj/al3VwUjJZinsNo5ebbPce8i71jl4Dk8YnmYN0Ds84C53eQ0HWZosR23oYm4KdRWo7F5U2evzl37VchPGvdh6x7OvDk7x2PbczFzDpGO0Vy7bqL0UG07DxA7q5jqwrtfB+DnAXgFwEcB+KPM/G3XQFsgoPCWa5oRHC/AsdQCKvXAMoDUMufJ8TNCy+PoSNepqtGmTRir0W/fX4jZjsZlso8rvTx3zE3inLTsG/dA4AbwMGUk1Un0ltzDYgIit0YbxhPOh/lOk46JsG0+HyfU8bKVE62Ii3m5XlxZkTZouQCt1ih5iTmLGlvEmH5xCldzz6EezqTPSjZl60BDa9fBh0ea9GLnMZ2VIf4xS0n7hRhticCDP7aOF43lo9HKYuAlzYcsganFM+nG/FKf53Z+Q2pIcIPcHK2P0rxY9UpxSiD1Ek6O5S33yMbAF/F5eK/tg8ROBZGZmYi+kZk/FsA9FniB240Rw7rsSUURZMZ9kzdDnq/v9UbyJ5jnHZuNC/GKsS2xfzyRuAuTtLtAY+DB4UHKSJp8mX8/JyzUzd5vncHquqAK2Nz17+NxnGvRlNnxvgwFReji9RroelAi2LIcpelxNMqMl69RJsppO2gfgTIDiwQMm5ay0t98G6ZOMkgUITs2c42X8+kkE3qqAbeE8Oq1+KzF+WyPy56XABb9Y/YYpRC20mU5xBXTmbajY2bXvYPOMsYeL2rHDtxZHBJi+g+J6JdeOSWBwB5YRbNLDekooVIESiQWNPUgzvZySN/DAFkDsVZGLVbXqyoM4wXePlr95IR3HHcVuO7+AoGrx8OSkdtCIdl/wqISZTcwM8vk0efDgImD8gNox6+g+spKQIht38rbx22cjy4quWzifeOu059JlZQt995fky0X1eqHNXDmEPL6HrTowambpbNtg9uvVqeAfN6j0FXHh5zsH12X90JObhTqHORQeXsR2GApvbUiuSeSCv3yjEzVOHZi/qC0kr5rzit92kN4CaHMgbuDnR5Exa8C8HuI6EchVdqE7zP/oqskLBAQ1JCGmq9/ifYsZ6WThZIyQB0sKX1Kzp6+icBZEutpbOm8SqY6m6C+hVZyUuM6PZql00DgXuFhy8jimUCdveu2hmePFoh3DVwXpTcP1ZpbJ+zIg9Uc2yoGTh2YH88X4uekK5AQ0tES+eQEKffIXG/vrEyxe22UqaezhKRegDQigB49Ap2clnPNazb1ljkftQX/OOWPM4MSIefceAGbnLpJyop6IZvn13nfmufdEX1Z8O+UeQpHotN7VMmU1hENhAQguxBkzFxv7dP6qEX1eHTPrsDIHbi12KogEtGHMfOPA/gPr5GeQGCKwqRHFrDLZMg5g63qqC3OC7iQlkP6JWDYiGJozLhmT7SHXhb9jbXT2jRzM1Uz/q6+nEPxSjFnwYzQ0cAdxb2XkeflGxN3kfsswX9zjsRL5uV3BEW+gFASyHaMRfHwOc2mrTCKF+SrmmVHCfz8OcAMHoaR86xW9XQbZ2ktd9seBfDB1cF5tQbOVqDjI/BGCueYJXdS1KehBUWn4ZxhaxdylnFlp8wafWVqobKy5jnK9doTSyDV2ZoHvR2Hq3iOG2Oze58olSmGXefkVLCbPu15xlx0VrlNxeOqGJ/2QN/dh4JdIabfCADM/GMA/jQz/5j/uxbqAoFGDl0FI1LG2/WgTsNZjOGNHIAHoeuB1Lk2aNTGJVrgSujHCFPDqh4/Othf53Ug5EjgfuEbgQcgI7fxKxrv2zGRBGqp/m0HeGXyHnspqoLFVT4UnW87k6xeR1NvfIEbApIqQC80YSe5TU+egI6PQMtllYuz9M3c08YQOD7nQNq6DunxMbCxqjI08kA6+erhFTgWJbE8dzlXxZBQwmAbssjdDB1L6jqQpp6Q975dm3Lk5yMyKSkqrCnDxcuJShvgPIJtU9v6qXMg1HvXzGF23f/AfcMuBdHf+Z9z1YQEAlthRtZGzlwWY1Ity6yNgJYfrXbDBjv7ZSnPTSTeSGu+OR+V6b4wxiEve9q8LZa+InRuCT2BwMXwMGTkIe+pM4gxeGuqGs2dM/l9//lC41jdpQwXPtlaA2d9dowaanhhwjLyMACbDUBaJKbripJVwjtn+2i9mebvM9lEE2PpDuQB+flp6cs/KtT+20pD2Z3r2pE+/96uhUangU3F9NfqxnWrweSqnttRvzTajnHIcvOl/tw7PwBY5y+T4Z3MY67ZuBy4EexSELeYBgOB68VsqMMlP5HsmL8VM2XM9LlP+DJKZKdYdC/QxkVgjNpPEKwvsyzetFWegVkrcyBwN3HPZeSOd3UcvbC1uIpvowbn+RSnpo2xp2NblMRdBdu1W9jgqBjaeKzniqEAZcLP7rs2X/o5/7iZYq/LcPQduO9llqhG0zaIx7s+0Sgg3sQ6UXAOQdeD+k4UVX9qO1g72zVPLZVF5lPjYa1j5QaLuQ0hZQa61MouwuTSdtFxKZgYFKixuDBZ9/V5YaCuPenp26bU7TRUXJDuwJ3GriI1v5iIXoE8Go/0O2AebeaXr5y6QABw3rGxGfFyQAywrtekD7d4LAFsMV1uJ9XWGbJQkLGCOJKpl3MBTlg0uQhOgI7H7ybQjGVInMCdx/2WkcWht8VT40Patp0+KihSmjSe5I1/Y4+FsSzn9bkPICQwcuHVe72qZcIvgyX5cmLbl2UoZCw5+7YOiCiZoUxGmmSZic1GQjxt8fQ8phUo1lQvd6xoim7fuTTHVjB4taoF32SL5tp5AsbtGj2QdI9hKHQxZxCntkKnne9p9AZWU8QSAUOuGvKMV/fKZFpTz8D1Y45Nuxb7NzfnGJ83SyppcaGZYxr7z/15FwO7sVVBZOZpfeFA4CbgvWMHKGnnhSWuc1HsqveQPDM8RNDlAaAE6lLD02sb52hrL2Ys/OGZCwSuBQ9XRvoQixHYVbMkqpEZAMC5nXeOGeROholq6LrThTHq9UjhFbRK1FxRNINn95x1fN1xpEqk3YNxQZkDxk12Z/BqBVo8AhY9sFoXOWj3jwHNa5vx4nml5YLyjodBwkJ1eY3ikWR2z9CMpmOPJgM0DHK+hk3KuTMe2ub36AeRFOpJCX4lRMvpq9ep367isSwGklbek3u/ZA6TleRWs2NKW6ucjjqq7UEKFm05bDQnu6vvYmAfDlkHMRC4WZiEuCIvGBGJhZAIsEqmGDNa7X+fgO06XTNKme1kEjWyOL6IQrfTwh8IBAIvgG26Go0+Cyp/bL2HyktpPN2Ym1yOvEK8g+ffUWOY+eHIvIDMxUi5/RzAlAQi973uLG0hJdQ8Mu812iO79H+yNQhPV8B6IxW+eSS39IQxxaa4FSOB3eNz5pwTJZGllLD1/s/BZHciyZ1UbZFsTCaPm3vefBSO3wenFM+R4kN9rwwzz4a/JZmha5SMniPnFTwE40J9pZlt7sTAfUYoiIHbj/Mkt19g0sBs5bCzWNvI2c7O296QG4HIk8UUZyzil4GxUBu3e1smU7eFjkAgsAcHvKs7Jo6tMyaD2JYq8NtHfdB4O2OrIeyOGsYIfpkFv2OXElWspKjrC3JVwuyooui4Imk+x24nYaIGZVUKiyuu70Xp1EXrfb5+VQS3tXdB5AG82cjC7WmLL2tb6LPShpw1KijV3EpvpNjxPDV7tK3yvfSjxouJ1+7yweMR0DnRrHllzgN96FxjGGo7gQePUBADdwe+AEuzzb6Pth8Mbwrl3YJ6X7sE0GLhojBSJa1Yfn175yDzorDruU26WSiKgcDdwNbqidj+HqvHpp5BRb3Z6m0Z53vv4+d3lYVQkvFB9doB2Ho93nvoZQgRiReSknjciEBJvpdzvLd333i5METOEK+bVePOzvDZZjo25DufcdlR9FOvrOxD1wHLZcllnF3halczbE+ajlXfgRLpmBnB1SXOvj2uIy5fVClPaLZzonY4/Pxk1NaLgKnePFZ6RkcAcJVe2T8xXBXYQ2nhGmoaeNgIBTFwd7BVcZtRGs9j0eNWrJUm55jknnaZURPaXfyPTQRKi8XLeDiZB2PsRdxXvewmcEet/4HAg8NcGOi2iIVGCajayVj325a/WNryp2+j506yEAJz1oXb5XfxD225nuptZA0lLEGq4l2jOs4lxNK0slGRoIOQB2DYgIcBvF6LcsjQT+etRJVr9r96sLR/ckrUeWXyeg0eNK+Oa9tVcdvZQOs5Vc8Ys1s90j1Hzfj7OgSluQzKrmPSQj5NNOdlP5Bte7teCTnAvT9zzWyLLvJNqCFgp0e0eZnv5EsYOBChIAbuEGZCZRqrmVOEDrWAeY2QAL8AbdNt+b6rXRWMRFoau1r9GsWwkHuVVjrX9siyeCtwm2gJBAIzGHtaMP97ctpIgTS95ZDJ5Gze9jn6vlNwbr0d8qDxZ3ntSPPla5qhyhsWRa5VcGZk5yxJqs0l/ex64OgIWC5asrfRuS280Vx0vP96Cx0MUG8ROHNyee78Iuza/YxaFMhGattzvZUuUy79M8rbz/NexIs+t17p01zH4u2sk4rq6Z2MK+1/p+qRRTHc6UG8V+9gYBdCQQzcLYx506wlGodbttQsx30PydvQggGp5b8FOy1rKGExlHOjBFadlWozV2p9G1mVb1u1sdtESyAQmGLseeDR721gnWCOqy8WXxhN2bYpJiWqYr+3406CACCVeXs1KgLbFC/y30zR6yScFJAlCm282Xluaewx2hf9Yv+soJCGUPLJCWi9qbmAW2Tw2C5LTXuAxYma2dSHTk6uebmULxqJIwGjNk7OEDs50foTWsXzWKuXUs6gPFPd1f/WZ5F8HqdejHfW6hbX9/j7jLfyPHC6LhoSyblU9WN2nUo9ecc4j450QzE3tvf0nQxsRSiIgbsBBkqVrq1wHPO8Vq71WphsMs+f7+ccba1WyOu1CFiikUCRqdEuwXjpIPd3k2isuee49jBWBgK3AwfzkOoxopGHRTgr+yPLvibSwXj4hFfMeJLuGAjZKdv6b5uXp01yKwoHD1aABVVprMl+ZXnCtp0D6XMKGKcEOj4CL/pSqMWK7FT7Qe2IvCZTFMNaTMe8jLMeQQc+PQWGAfz4EViL41AZp7F8Hp+MckzzfNn4zClRs+1k61UPGZ84UjQn58LfuvNh7Amk+kWGdKyscaX1AAPOYTS8gOczcC8QCmLg9sMz9jHT8tZmH64Dv2k3k5NlLsRimodBJzW5HsCjzx10UteDuq5YLpuQIF8oZjbrftwe6vWel1E3h9P5BdTO9l7oIHf4gXEv5w1xu8z+Q0AGAvMYhfCVr02YIVolp7GYeY/LgX2W4+7oe2k6nI4JM9rKmsAMz7H1eKm5fOYMHnLdl5IWYkkARJ6xO74lYgrz7zGztiV/fLYCVmL05Iny4WTL2OPlPF9FwSqFdcgH2E6xWABdDz49K/mDRdbvUoCcvGcSTxtDCviAUMdkLB/hNo49isk+01Z7xRTj5/ycRtFRuzQ+YFJoxw33JMR0iyFmjupFPy/zDt22DSFH7yRCQQzcHZhgnUxA9PtswYTd1kbTwShnYDMgUSrx98Uad56CMnkANhsUIcU0mtPsLkhwaZjI8Rft8BAGv2ucd4Ss3BRuuv9A4L5gLuDCeZBc9pT7b4qP84iMmmkm8z7X6y6/uxZNYmJlPHme9UihyDNT5KxoDKsxUw7R6p3E4My1eqX3zu7UEAglVHUYGjWeOc/Q6uj1imI5ketzUMKIfXfztPDZGTBspsrOfiutM0ioV43smgkweTzbrVPqzDBZnl8A2UJMabvCMwoznYzXAagBsc1VKSkjo4wrqFP8sk0OsO2tNO2kKOf57btCTgP3FqEgBm4/ppEd5zpva0EYbyjs+iLEyK+b5EJ/GivcLjpHimrJuZmbRG2DTgYmht+b9npdtO3RHOLwa6nnNhOQxrvqaGsKI7j9syFc57mWsIAGApNoitl3i1EqIToeSOZtUj7r1Z0pj/eekZmFvsdK452BhomyV5ZHsoWbwyc/RJboeDoFrSgj7HyNToGozXC7ZYYXF8UtEbDoR1cwbmsOXD1XKSGlBHQJ1PnlT3Ytp0CikC36qVF4D8y8S3YdGiFk3xuf22zqQ70HydTxRgaNaJ67BNp27J7ntbktpF5Q9y5pu8Xg0kRTUZ3rmNjzzwHVpWa2dU7jsfbXPXnXL/Du3bn39WEjFMTA7YdpVz5qw7A33MQMinPHqRJGBFouQMulTEW6VE721sax0J1trtdqb8u+0Fqcj4319gKMcut1zBx3VXghq6H3I/Lh1+IVQz1VYngPGMumoMH4uPNcS1hLA4HKVN3vUpDDH8Z1wtp4k5qTa9Q9t8pCCWW0YiNN91w33FUvxmgS3nh+GvlmX3iyyRRF+cGqhHvFM09YZ+17i7XSNqcO6HvwZtDcfKdg+LGfFGbxDWm7XQd0PSh18r2E1G5fToG6DpwIWG+qF/RAowCBZGabUukvdZ3I5i4hpW4ki+fol9/ZjB1eQ/QG4JlmmiEo93PP3KGgvjC2pqXYE1xHVBXHeg9kjMj3SXV8iQjIYkSYjeZRgrMzMsinM+CM51+HpMlMurij7+sDRSiIgbuFA/Uq0ynrhvkTCQTKWQrLOOZPKdWuCs903qlt2KxLy/Zphjcv6xsr5lY4dYrQesh24SqMdEUouDHYmhs4T8DUC3DA9WybFIyt3s1+N7o8umeReB8IvDhGYYvTN98rfKQ8bzwBTxh7kLweYDolj70+5om0E64bL9RnVZz8/LoWbRm37RW+sfPGBmvskTMeR+XeNE7DXfY0q4a5WQOboSj6RK2GYEr9bFvKY8suTblgYBLCyA1hDsMGWK3Ee6myeF5+jH5rT6zrRWIzyPmJpOgNAZyqTJ6jW3+U9ueHze7jgc/CWH7uxC75aVFN7R+robt6+XQsODvHny3vsaPrYWivima8vKX9KR17rytk751CKIiB2w+TTedkLkxpD/tWrt11SF0HOjoGUQL1vYS3JGoZ+wHd05MnoL6XcB+SABW/yO94jsTsrKNTCSjnJG8p3Hax08u6VOyaYJiQGlt6/X4lzJqRec0hhHK99lE4jY0ng5uCDPOlx+UhYu+F9dbSsYA7h+wPBO4v3HvReF1M6dN93pMB0pA+XSvIinw4Twp1rRfHCqxM3s1EvqI/roa5XRAXnezqecQMKwC69apYx9OH61rYYerUeZulOE3qkFIny1+UPtQI2jgN/f300Cw2ZikSAy5Koogz48Nz8qzy58o6SYu/JTEGDIPQlodKTHEhj9B14sVcb+r6haTX7voaCyUGRIZ3Ceh70PGRPH6pQ3r8CMQ1XJMSTYvu+J9JvHdkLY9v0kVu/0FRM7qEyaKXuUnf67vE4oUtXsIqT6l4Y7kaufV/Ocf630ICQd5LouRyLaGGHGma/Tu+DVvH5Ra9u4GDEApi4G5AOP/2/T7XQrQPEcCj/e05+jlksbRxrseZkHVzop1tabecs6yp6Cx7IqG89a5y0INYpgr5XX1fOUYhmmUSoGMtG91k8Vzt7oNOUv2xTShMnbQwsKcwgJ+QmICtk4uZngOBBwxqvzdKhhldtkyyWbKvqfEa6XucbcIt7TAzkFEVG2vKe5ho3D9ujh9etG+75sbg5pSPSZvuQM9ry169B7orW9tUDWIzGZzz8tT/3KxVD8tgK7o2sp819I/70HtVihANA6BVV+W5sCUz5q4ZQM6grB7MQY9lVsPr9HCvcFrRHsoM6HrE1t9YhlAzDq2yyloEaG54qiJ2Rc8fy3qN4FxlnxlJzfDSGEwdhU5RbxT4PdQyoOspjq0WVpzHFUgan+exq5MIMb1TCAUxcPth0mj8uQ0JOndJ1Xq9TWlQhpUWSxARuEtVYFM7+alpCNvboi5JYj2g8ylCE4LlZZBvhiDmXvNklXwPqorqzr7d/qvQakzojAy+rFZYEUapHuroLFNJzacQelvlbHffngQnvLRhP+eyI5p1tkg9h/osjK/BaKmXqkLS3/v9VAYC9wQ85TPu3au2GX+MTiXcO0OJ5J1LltOt71myNWJ1gk3T9ozvTqo2NmGrM3ReJy7YdVnggYR/bp1Rl0u1cZI/4aVUho66Tr2J3ojIRUEj9dLVodL9fiyBdiwZoiyUtQ9rf+XejPmokUwJiZJ6rkjy/0joLMew3tttY5iS5AweLasshuPrk7Gq1yvjpPmHWnmUuw48DEhJvXOFVnd+GTs/Tmq88Jsbmi/7+XNKIABkLvKVtGCQjWNR+lKq+Z2+JbIlT2p1073U9h3Ke2pD4kKGS7AT0Sj0G1ND0RxCkN4phIIYuP0ogs82MLBNUABiiQaJcMtzjL+CzctnSl3OLhSmLevdCuDZxoCuA+eMzFyEKpfXrE6KKHVolJA5I2xy1mGesYA2BzvarsBKV8mjtnk3vpQkRKkkys+dz2YJNfF7AK02MTIrqYUlmZKoX0wI1u6pyFvfFhFVSzRJdbv6aLG7z9b09rT+QOBBwJQB1gm3U1gKT2BIaJ+GFNqJzNCIjIxEXVE6fJQgabhpXUK9rpXnaWhkwRXxuoPxAl0X1sUE0LZZs8sfJBk/kE7Ee1UGVAmXkN2qIIkxTiylwiKpnuv5qBFTxlL5ohlW+77m42cufL7eG1UWi7IiymDWNqnvgeUStFgiLaRITFFud4Q7MrPQkHVNRrXOFoPpDq+oXR60cioTIS2PRKaXMaDqwJ4JtfUfU6OrM2Vc9vNn04GckfMg91bXaMZi4ZRDgHX5Dub2vgiFeo0a4ktdr2tkzmj1485t3jO+tFEIa/FC63O2M3JnMocL3AWEghi43fC82axXwIz12NQX+8nNpGanpZkZ+fQUvFq70FKurVq/xXy2vS1+9TXHpFvaRFlx55IXNVyurf4RfPjj1oR+f43sv1+SuY5nfs4IRi4KMU+8iCKYcqXVyZj9/e+7FhujqqyW9CYXimo0MbNYv5kBzmokmLlcNzEoz1Eg8ABQ+Z2+Wz6/rHkNZNIoYX1aHKRs3dIy8wwfbPuW0LoRVx/zgRv1Hl6cvzYyDAxQEl6/szljRNrvZqhKXc7gYSP8j1kV8BoWCMAVxDE5M+6s/c3rAV5lJ3f/CylezqlCKGGZ9do4Zz2Oy/PUePC2XDTlLIpNb57R+hzWZ4KmD1rOsj0zOA/lN+dB+u97YDPAL+cw0v2MgqIQF+/liNa5bZcGDS3lzMjrtbwB67Wb4LTXLzKt0grIc1DmD5zdOdueXXmuyrJc/lUrltaRYUE/22faTtoxXwncCYSCGLjlaKcOvug5O8HRMHYzTB7q+bGYfqgi03XIVTeolZ7ZC9otTS0WwPMTlPxDo0OFIinnpRL66risY/pE/nhUT9sWvl4J0H/eOvvCQsxP5rTtSZ8QyyPU2kt+B4qVEzrtKGG3h9BmVl9//NhjSnWdtTYUtdLQWDgZ7hzvqbBr8xO2MHsGHhqofe+a7SNeVKwxupHdxFmNNFQiDNh5b1jnq+5Y/dIGFI4mprcFXv4cCj9WyUeWoLY14Ymq8AEiq0i9tHYYqQdRwzqp7+XoRFLopShsIl+o8OLmYprvtBDPIT0+QjpaSihsSkhE4FIER5UGkwf2vYQVa2tdBzo+BudcInOKRrEtsscplWZ4hE9RgI7XaKjEW02lXywWwFI9l0+fAusBOFqqnj1eYdMUQtRiZpxrLYORQkn+Xl6ioiiXSsUYQLosB+myI7xZA6yFfrTb1HdVOQZKGDfUwyiOvlSPmR13laPl1o3GJqn30jzAWhCpFsjx/ILrHCB0xDuLUBADdwbVUim/i0xtBM2MMrMjFElZKLBeSyI9VKB1qqAR1Qggnezsmqjw2QoWhuUVT2aWpHMVPGJpJ9C4jJ0y1VrK2ul8dk2TQZm5KL/vMidWxXLuJ4Co25Kn1Q5RYWfhqKiK+7Z1sMaoE8pdx6u9e2QgoGIT9ZNOI4/RhHjZQ2WPTNXZb98ENRC4ErgX2E2C6zvN5b2oE3ZGnVmyGoDc+5IZjFRet1JIZDyxprqW35ik0ZebR6MYXwDZeI8VUtkGr4hl+cu5GtjIivxY6C5reKayLFM2VNE2M+t2pYaB9cZ5jADzVGaXl1giQkCoay5yo1DxkMFnZ6oUMvIwlDDXneyUWQraWC6hbmsKz1nfY6VRi9pgGECcNSxTq6c+fQzKWeoEkHuuGwNHlVNOSmxRdKaGyEtBEa8MHjYACHm9AW82jt4qh3lQj7K9dSWaSD3xNiYzSnWDbEWETHi7G6VF/Er/5uXUfU2qhlcMb9ErGzgfQkEM3Go0Ijgldbg5pm2TlImw49Hnjj5I8136XnIuiIDCcNF4AneC1HK6XKCE5TTx+pUcZp6EahHYlXRXSzztKeNC9djSD7uxOYTubdg2T2sMiyUgRX86z2A1tbZKrjv3IOuit4Aferzvw9PPRjPKWBn9reKox1W9MhB4OODRj2ItgUZDmPddFcOSy2uFMSCTTTuvFKqxUEOU7+wKibUmnDl6jA/c/AtZlvU5zzlAVbh0CQ8rsCmGwZmTbAxLfiGViXrJybMqoXpKYpVblJAaa5e154d0yuA4EfJGcvGZIUqXHadE1gqgTqHQe2sKr8nAPAxqHGCwrrW3a+yoVwVu2LhCOXMax7gNAjrN1wSB+wWKwfbJI+BsBXRdI5uZCJzadouSZc+6W/KqMRaOI1suBVqUpr4motxqTQXzqMpzoLUMkCQ8NNcQ3OIfzbnmlPqrnJkzsc5RyjzLvJjNmVTGwBfwaR6jxrv6wgMSuCHciIJIRD9KRN9PRN9HRN+r295IRN9GRD+in29wx38hEb2NiP4lEX2q2/6x2s7biOjL6FB3ROBOwRieTNZrPkSjrGy99bsfCbN62hyIWYVXYw1zre16xJhFMJX1qTQ3R+VzmRyoUtJEKDUhWSjcltgXTZmbOCnh5E4mVMVm23kHYcrZeaQQeqWKWEraFwHqjLKg0X0rE509JDReYOw+3iZe9gn3CRq15dqzic74nEP7DQQuGTctI8kZnUrY2HguXN6ZyrskD041nlIkLOtadr6AFJuKCcr1FSPrG64P1ze8lemGxf18qOYBGIdnykbAZMKcAsc6lmx5nmbdoiYAQsY8I8Ny2AYpGONkAzwfhvZnRWC0P8qidA6rteS+seSzWUVLO5iKFxGtBylnUVaYkc/OgNWZKFk5t+sCbxuiYQA2G2C1wViRadM8Rm0QyrqJebMWBbPTSJ7VRpXOoXhc6zNnmlGZEcixedBnGm2gCY/G/jKfRZPfRY7nck3y3tj4UxWzwwachxqF65f6IEguozN6z9NMxf5SHpnGg8jlmWJ9DqXvXJtr3k03pwncSdykB/FXMfPHMPPH6e8/BOA7mPkjAXyH/gYRfTSAzwTwCwB8GoA/T0RWyukvAPhcAB+pf592jfQHrglENUBQpyAjCyRPhEjBXq8fnCWcQE+fqGDgKiTGzW1rU625tJCFbYXXuimPs4L765npoBW2vOP6YCKD/Ia23Uuw4LWCdKQzjWmb8wyW33rmnmuanHghC62/d3yOPgOBW4EblJHeeiVo8xHFP2H8TXIMU/t+FWXHve+UdrQ56XL/+8ovwh9eDEUGnatvHTNb3843Zh6ZnXCTdc0zK3mdfiLvvJJ1hFP9pR7McvxIGpVfm03jfbL7ReU8d3RzL6xwEYAhF29jyVVrzt+CzEDn+vYj4J+bZhy5GvyyRuksFuDNBny6krFKo2fQ/nllyJ5ZO1bleYXdKy66+uWCR5+ohgVKWp20LhtiOf6t6K3X40rXoMQkzXgQy/2ZvTcufFXlaXNUCWsd34+QuXcVtynE9NMBfKV+/0oAn+G2/1VmPmPmfw3gbQA+nog+GMDLzPxdLE/zV7lzAvcIoqhB1hiEzDHE6GkCbsTY3cdeyx5D11zqgaNj8OlqJHxaNcNbeKdtMXB0VKxrIiQZFu4iBjpj2C4E1XsA59qmLdttt8sxEQFI7TkXtuBVS2W7zamH3so49s6N2/LeuD3XNCbhQhZa/wwQbe8zAg8CdwPXJCPnZrwklSXLJH/8zqjyx6jFw2zSDffeW4ESPad4bmo3hYLZ93XG6XGjODfvoKpYk4WU1gn3uL2G8xLq5JySyxeD5Ppxe5Ip7L5gELML+7Vb4WRaDRXNUoREPX7WQLv8gZ7T6Lnk1nZ0yh1zWf4Jdsm7xo5IPH9ZzvPPQmuknRPQkCieRKDlEnjpsRTI4QHEQN5sNGQW1Q5i42TeVZto2HVqZVjv3SUv6y77OXRRLOS2lfDivgf1nVR6tb9cU1SMSqsqy4zqMVVD9mT8S2EboAk0KNMAqq9yiXCqj5Mc1NJ+sJwP3ErclILIAP43IvrHRPS5uu1nMfNPAoB+fpBufwuAn3Dnvl23vUW/j7cH7hlKIYPMki/IdWoxUUZo8mU/hg1KCI0xzyTCsFhBlfHxPovYMEjBm1TXexLYBKCS1+SwTIx5B1jdzILnit8Avs0XtdxtGUOv5J1nnC9AT9geAw8UNyojp3mAvupw5Vll+QubYDu+UNaSNcWGfeRE06rboBN01HN28pgbYRAjZeocE2CTWX75Q3fFbQina7thuYCEPmoYZ1Ylky0UkSGFXYrDKTXeRRrLpLHXx/bmLJ43Zi0Uwy7ceCx37QeXZ4TYKVUMWV+YJc9t75LtOQObjRyVXGEd6Lle+WgMxEoLa4EbZim48+gYeaXG37WGnWq7+rBVU4XSW2YZbn99Pq/JM8bt22KfvBm0ToIq5ZrK4o26VIzTSv/s/Rr15UKG67GYjm9RVt1BoQjeO/Q31O8vZ+Z3ENEHAfg2IvoXO46de+q2SY3ZN1YF7OcCwDEen5fWwE3DrGhJrdidWDbbCcSMRexAMAjp+Ag4W0v1Ukqlymh5ytiFnG4VDAx6/FgEUB50cdosgknbSl2PzGu9Jm50Rqb2oW4MwjNPfKEnJSQwssv/Y77Exd2NSG/1nbNA7sM2y+VBJLhczEDg/uMGZeQjfd+rcgKQK1wBUTRSgq29J6X4VTkZLL9aC9DkyslkvXdX9GIrPy3T9YYHN9tvDN5lVifkh4I0UawoPYOtV6cCwCnJbDy3uPrYHyK5es5DaONunj7uOpBV54aTYZRQXIgjJaT0QpDIGiKQhWs6PXDqza3FYQCId4shiuswABpRM++BHo+R6rnLBYbTs9HwUjvu5IjhShwtelmio18Az96H9KY3AO9+Xxk3k6tlSQ0v7xMBA2s12ASQCwlunmlcWKadC957WBRbKxQ1iOE8D/W2cD1PPpMokTYv2KIgMiWU/OPxIRd41gN3GzfiQWTmd+jnOwH8TQAfD+CnNSQG+vlOPfztAD7Unf5WAO/Q7W+d2T7X35cz88cx88ctcHSZlxK4DtiihKMwkMuz4LEIN7XKglgsjCM7eo0E3cYgCawluQm2SLCFbch0oOZpQMqQ23WMOvJ1w3i8v+kRAFvoji5AnPniBRRmO6EqcC4iJMbWx/N1rqeFUAo8HNysjDzWiSRXpQIjHqweK+MH4s2q3orCp40XOUWkKirYwsNHSuB4suu/jz+vE+ZZOW/fZbkA77GZKr482cxOZ2bd4f9EVkhOYm1VzqznshayKfKndS3VvjKX6qU8PsIO8wZD9l42rrIUkAJm3mi5Z8gkJJKRV1Igxwr0uJFxfbfnEiAht+sN+PQMePU1OXcwOcnNc9x4BRsCWJbKoFEH40f2ip89Nnr85TvPYP2sSmQhjfXPigPtoZV8xNRk5wWe9cCdxrUriET0hIhesu8A/gMAPwDgmwB8th722QD+ln7/JgCfSURHRPSzIYn236MhNq8S0SdqZbbPcucE7hlK5TKXaMFlu3fDeUFyAEiYZrFs6oLDnG1aNFLU9rSVmIFFL7kPtjC0eTdLqezKaL3sFys9VStvc/0+zdz3acpkkditlfeFlGgn/D0529o9KCz2vCTUiU8g8BBwK2TkmD+VbTaZ9juV//jw0IZfeQUGjrdVpjKjGrUwvt4kvJ2T118qHG88Bxioi9cDQNe3zbnv8Hy91cpGn6Pj1StLneaolbw822eKJGZSJkbfVQmuYitNFZb5q4QZXqd6nD5HO8aOKIESIXWdPkszyz3NySFycwLmEqpKFnI56ALzo0tlIvUk0qwiVLvxBfMcDbuM1pf1jBJ0TUe/QZfg0J/tOzcD0SN39DEK/i3Xh/Zayy3e0VfgzuMmQkx/FoC/qUyrB/C1zPy/EtE/AvD1RPQ5AH4cwG8CAGb+QSL6egA/BGAD4POZedC2Pg/AVwB4BOBb9S9w3+AVHohQo1xDYaT8NrbLzV1gEQ4JJiwz+GgJnJ5KGMo4H2FfW2BgvZJiNSenEk4EWUuK+l5LTUNKUlM73wEYlOVzIkxzng3NYQaokwWJi+hid+q5BmMEbyVu8mK2tLvLukhViJ2PBPXkhuUy8HBw8zKyCXNU5qrKAvv30UUqSOHUjaYAMCSE0XkzICFsZnzzk8tJ4Yyyj1p+M5Ofd6O4EA1cFDUkp5hgHPnBlffaAnX+XM2zG5sOKXVVWbDoEpY8NVJZVhWFKf2iwytdWsXTQomLZJrk/HGVP9Dcv65Dk5oB1HucaacskHQLAq/Xcpjms1ZZZONEqGGtVVbbePJ6DSJCXq1A78/g9VpIBoHLQoOq+GZdBsL6SrUSOTVj79q3d+FKDRU6VimVJSZSMSyQ1DtQr3CZI8iLOz/GO5VEQqsi6rNFbm+51xeZcAXuEuihWeZfpjfyJ9Cn3DQZgQNhnj0mKvkMABX23DLDutYegMOEN0viPfUL0KIXQXd8hHxyCj5bidWVAbAu9Fus6DOClSFtLJZIj4+Rnz0DbQapmgYR3MwsOQRq1WxzBUVotUoj1euUXsrkzEpbFwtvWR+rCvlLy4+YWGqvRygUUcyhJAYuhm/nb/jHbqmIwB68TG/kT8CvdluU25YJuZt4zvEXOy4P5dxmn+N5E046mWxTbcL4fOljnzvkiuCT8c7ZvfB/yXMHWCb9mw1M0RGdrSpTpZCZy++zPMOqwgNO0xGj5KKX8FBraiM5gNXYiXK8H0duxpdAXQfqOuT1qhZD0+6sWMw4373QpUpN2Wghyf4Z2MLTGWJQBZF4/XLWx270bHiFVe+LyUuyvvtOzs1Z5g+Z63XbvIGovXYSpYtVtnJWAyy50bOxHI/BnLHjArK4tGmXZsvIkOYeluU6tJaBzlGa/uy+knadgdaaPurPRQ6Q0Q69ZjUQIWeZwzCqQeOy5hmBa8cu+XiblrkIBLaCXKVOY9TGr6BCt2HQB1v1WksoHR0By74qaSwFF2y9L9m2o6mjI1ESlwvQwBJOVEJ8lMEX7ycmQrItGd62TQkTvu7naXUSZ/ReJkbtFUs0u9/nwIGGKepvqo5WIPBQwdNvSZiPsBfjXK5whikmRZmxyWadONqp7tc8lyoetZEnpHS7hw9fOQheHJwPZtTTdoqckdwvbq6N3Hg5ddB5dwlcm7P2CKp0snxakRqucnPfOIpyxeLhtHtJqjAm8Vo2a1iWEM3aPnV9eSaIWZapSu652QFaLMozRDYu1PbjBL470V0fJMyWiERZLuG2ZoTVa1osSn9Cmy4PUpaPUqQENu+oKqDkloZowzNfUP46IwyzPmymkMGWErGu1DDerCBjyi6a94nr4MwjjVWCdqzJvP/5xl6+wDUiFMTA7QejhLhUgVo9Zf432q37YUxYBSmDwesBWC7qpETj7otM2yXccpbE9tOzEqpSlLjNBiWbQpl6obRYcoUoNiXXTbBE7ZtR1Hyolv07hNZzodJmA+NTE86PA+kaZOIU3sNA4Pohk3NUHuPC66CbZTkgLkoO5VqxUg7y7bmJK6hOXv377Se3gNvHLbO5MZ7wIpNjaor5+LamOifXcXLepGIAHbVrCqMVoPHF3az4SA1hbRWMCVTm1eUUGpNmobf1lDnvGqDrNOa6hqDSU5+BHfdvM0goMjMy7BqcjGto39Ies4RkDhp6OQxOjHGlA94by+Xax8p7E/bs+mwfybHyOqb1UMxYIOz6WeYYbJXccy7vWlF8/TlK90GVzfXZHOvetu5hUcDH1IV8vpcIBTFw+1EWfherJmtuAIAiQ7lh6ICF4Iija49AV2sdp04WoGWURYYthAag2gyXfw0IQFosYMyY81D3uHNF0KeJoOfyp8y+TJ4qLbBrhTFoVV55bH1GFXLN31TJ3gs3z+N2U7m+kp2yS2O0SQcDGFeG2wZ/zQ8sHD4QuFGUSIzKX2tFZeNfft5MxdPYvKsubG2W9YwLz5SjxwfOnXxDKIa5Fzi/QMaZy1i6kWrG0ckzM5DaYu5uDNmNoen2TXfzTFyaaWf9InuTeNWo60B9V0I3uXikUJ6FojCpwaCsk6nbnb6yU88mzV+EyWMfPuPP80YId6HOpCAKXoKGReZpM12P5Ly68ihL8ZcSplrGXv+RLKMhhYB0jUh292cO535e9H0q98TmNEqMVsNlu5pkBmU3JBgNV/OMbUedX3H9PT5vNN8K3D+Eghi49WBvFdMJS7HhUWXo5XjbVharP8C6xQCGDXi9Bq9Xsv6ThZBoP611cNqm8Mms1dIk3iMPGzepgjD8pKE2JALI5z6IYFKhQ7LOWLFR6iLIY2+aZWROLLpGlRkjZ01/h6BaWEkrscpaXqlcQx1rG4kZeD2ZDyTCwpbCQhkIXD9GxqjGnDUqkmL5Sc1aeHYstbEP1SnI9ViaYVJz7/2t4AVjPnu+UyWKRAr21EJolj7RjJR+EMBWTVQVymoihK2LZ+NMPMCWcZh47HbIAWvH1gYkrSKKLiE9eSxVV00pLQZIKusGi1JlocepGg4YoOxsojMOsgkldp1sz5QaGL0SWqJs4L5bgR2t+NmLIpe1iIvp0uZtS8sF8mYoS3GYcblQogZYIdn2JHBKwGJRw2btjmx7Ls7xvDBBZW2S61D5SqRy1tZrtqFcLEYVTqHziTp/kXdVq8rO0tIur1VpceG0ru0qwl/gXQjcaoSCGLj1KEzZ4u7nwkkbhmWHcRWmh1i5BglHwXoAr85E8TJp5mP+JyZZt109jWUh3snFkAogchMDVCu7CWZQ5bm25EYT5uVHwE2ylA52Qs5bHceWwbn2tsIMl9qnDC2JpRitwl48fjruPGqnklGPmcWwqccVczg7Qtz5+9ryCItnILAbxRtTOUzlH7l8loxqDU/zb1YxWjUBfWMW7t9bHm2feU9vi8fiQlENyseyxlyMr9nata2iF5ZDjK9Wo2M9l4s5UWVWYZONWj9D+2jMAb2XVCtjZjUGNH02mpbbZDU/veIGMPI20+EE7OiwpTXGI1XZP5UfdkyjA6fU5MzVJaOUqpPTolRWxROu6BsVmoq4hoZ52t7ZSJd6dPPz0Gsvht+qGHtFLAEaMixGZ2i+fhknrvMJuPkEb50P1RFuIrJsbyP/27Oq/L3IOxG4rYgKEIFbD1OmKHWiwHlBs1iKpW3IUuqZM2i5hCXRU9eDT05AxIXvz0IkCeilp8D73i9Wx6OlVi/TcBfOWg1s3IqKCZLqpCkR+APeAPqZ9wCng1ryILkQXUIepAoYWMO0VkMpCW72O6vATUabCV5Vksj3bAUFNEm9hKaa9Z9IPHYJVdm0tr0sI7+jfq/sXooUMEOru+rUcLkUS1Mi8GoDWq9qaFH5R2UcQFKaW4onzAkpN6FJnVZN0/BidjkS1F6HlEbfgcnMAZh6XAOBgGD8biofs0kpWL0SA5h3FehwLx1Bc695eogwrzpBLxrS6B1tNNVrgovyuCwkSsjJhdxTAngQhadUmnTX73mqEINmMJhFzqFWPyWSCBWJVGmVfTTtjH5zVm9gJ1ExyyWo78CDyqpUQz4pJZGTJAVf8mYt6xemJMcPg6NB+9/Dd5kIRFxCLJvFF7oEDP4BqMpwqRTeL2Q94kUvO4YB9OQx6OwUOFvJaZZvt1gin5w095jglnMxw2TbHUpFAK0zMFYWJwN96KNjHtdlL0vG2F1bazTSZhB52C8kHzEloOvAJ6e1IxWQ1Pcg6lXeSs4iDQMAt2TIxGNdnzc2wdpLGC7zIKkz9q7qsWaMb6rIe0U3ROydRCiIgbsBVdAoJV3zj1RZYwnzoAFMHbDeSKhF34n47HrwZgNerczcOM+stH0kBh4/kklM1wMpFyHANOjkpi4cLHANrtbgpYbhPH4MGrIyZAIWqTLVnMFdVwsAWHiL5Xdwu4aYdTMhnVyVOWP6XSeVUrtOwmZtYqfHm2HXhFy1Cep3x/zZvlvIkOZeWN8AgOVSaEsJ1C/Ar24k5ChrvoeFl/kQlcVCPjfVOkrs2jTkQcNk2rUh2dPZGGzddRRBzXXcR+dsexwCgQCgGp1xPN1i7x+LJ8W2eL7ilTiz4JQJZSpFUw7pfvYNvS1GnXPTQeU05qzjmotM8TpyOdzy4eH1Zg33N8OhHs5lnB1dms6QEiEPaCfxM9SZCsnQ5Zh0WSYeFqJ4dh2o6wtftZBHYhaZfLQEU0LqZT1M3myAzVqMk1nl7L5x22wASuD1Svq0EFbYUFQlCJZXyKaoiOhMfQ9aLMA5YzheCj2dKkrDgGxK0OrMjb2OZR4ApNKvSf2yhAYzsNnodhu7Vll/IclCYhhPT5+AVyuZ96QEWm/K2pn85BGoI9DZGpwIfGqnsjMUMzh1SIsFGOu63Elzxz3Gz4bmQOYM7pIahu0BlXVNZcxyFa+lmZuw5AQuE6EgBm49yMI7UxLGrUnhyBnU9+DlEtzlEm5BR0eiNC3UwsZcQ0ySWcZGrNEE8AZibXx0DAwnYOqaNQvLWXNzFkCWZWAAT45Arz2vCm2ioiAliBVeZJnSwxAFiWtbmXXa4I1yri9AhYCG0JhQoOUSiRnoe+TVSrx7eRABOmQ0DVoZ87HMKB1RXbcrydhi0YmSaCG5j4+Ll5LOTsEpIWnYKZh0eQ6qEx0rBrTZFOuz9QWdeBZFVvMqaLEADQNymYw6C7sKqmbiUWZMWwRUkWKkh8U6i4HALMavkPOo2HtYbWXkJod6svE003NMkfDa0K4J9djLUXjTTZt35jww+yD8z0I38zDIJH+sL5MpkqIIiSdQw3lZjH9puQQA5M2ApJUsxZMHUa6yMz72Xd0H5ywrZLUGtZr/p/d3sQA2G4nS6TpRVkym5YyUGdx3SI+ORU4sl6I8rdagRMiPjkEnp8ibDWiA5APCKxTtOFqROOoX4JMTocHb/SiBWT1pqVeFjosxMh0fy9yg74XmN70kXrR/8y7ZToS0XtciPyOLYQmbTtWIK0dYDqBE/LDWBZDH3K+FmNx7cv7nlCghHR+JJ3S5FOV7kwHeAEfH6JYLDG96GZmA9P4TJM7Irz6Xky2kVnMj02IBWi51HjSANyjrO9bX1M8s7OqrAcAqoFpqCZLmz3b2vie4ECabwIwessBdQyiIgdsPUiViECGYyFIkqDAkYpalKZjBfQ+sV+C8AQ25rAmljQGekTtwZvArr6jVkcUzOag3jLj2U9oZnQ+IQkoJeP8zDU81RqtJ5kPGAG1us64U5ewsl25OZvqolzPjkBAGyjpaOnlAIlHchiPQ6UosputNXUfJhJ4pqaaYwfWjHoESUtR3GB4tQS8/kn3PV8jdAHr6CPnZqYTvaB/ZQpRU+ZVr0O/DBiSXrkqwXTBPro9Zc2AeH4PP1sDJqdhyU6f3pYbdTiZqu4yXZXIKnYCFFAsECty70bJOp/DBb9fvLB6M1jCj30vtGgZZPLgzBrUN6qd/r334aUvB9aKh47w02MQ8VS+Phks27Mr4NGcpsKLeRjIlUcMK0XVISYqrSYEgmpwPAHmzQZEVhZLRNfnuoTIHLB63zUZvKWsBNxe5whD6WIMui6dOZcyTx2JQXG9AwyCKmub30bb+zWi42Tgjgu7TdR1FaeOyrrC/MB4G0HIh17HokZ8cA6cb9H0H7h4Br70mXrjMmp7iS/64+2tLdBTFVD23vciftN7AlXArx0o0jxqyLyhbeL3RV0TH1iJ3njxGzhm8XMh6iMOrktphSqwaYeqlqFLXJSkyhE21rdj71RhqbJspz7JP5lHj59SMRG4Hjw66aTtO4MKIIjWB24/OqqZlWDii/GYNfcnAogfWa5GPGwnJwCaLpdJV97IciMq/XIiICgAm1NDPToTd1kR/NxkqllBm4PkpeLUuii1AkkNQztVt7H+zrmFVvZ4Mx4Ct89k4/3IBIrC6HugXwPES9PgRsFyIgHFMX6qija7JrsS1S30v1sxHx0DegFcboF8gv/QIfLxUayWcxVTvTRldvU7zXg6Do2Myqn6Aa5uDWosJRcmlRHXMtY928eb55pt95VHapU2OST3HsYHAncXoOXfKmumEnpc6/8+onTr1rnl0I4MUKt+o4Qxu/9w7dxPv4S7+e2gDxnfN0+L/rI/aWVFAoPlmBPFc2YS9yKmkS1D4xduBosS1XiIqBsLSl+f5nmRTlPrOVamF8P1hqDJvs3GGR9sH4fXLftYIxzPfmv0lsoOmR1hkkPM+F2NrHtRbOUg9gdUG/ekKtOiRFp3Lo+Si07Ef/zIXqDem3A0lpEQ2WShnpaDS5z/Pi2GQe5wZzHIdWCyAI0nPoNWAxACOerudSqd7bjID6zXy2UoevcVibCeYpbGmcLhlNtjNlVivtZw2vrcjDTFE5p1EeBADtx5lkVZdaJfNGqphi7RegVcAHR8Brz0DHh2J4phtyQlXUdQsg2WyYwxdrWSrtayJ1HXC01SQWO5hMYMznGVbmzZLXGak0zNRTn2lswSxbLIoTlbrzeggC8tEbVeszc4qPMovEUYu12l5mSAC2xpOyx68OXEKroVnMtiVx5vYj4lkItD1wKNj5PUatMkSOvvoETCskV55LtbvlxL4/a+JApxzmTT4CqcAwF0P2sh48OmZ0Gqhsc0Nr1/T8kjyR196CbReI52egXuAFkvJi1hvQNSBN4NYrbO7v43yzBOZ5a/1XEbe8DYGHgLKc05OIzTe0BbKapIOy4S9Knrl2OJ980ao8fFu4t14DNG+e9f5Hk6iNnhm+0ENafRDVpki25gtl5Nq+C2Uv2dVjyjp0Cakvgc6zdFjqOdOqozyoMXaulQjUwCh2YqLaWhoJd+PP2rIPkTZ4yEj0UZk4ZDBFplDEsJp/aTNBnx6JtvWG1Fcj5fA8zPwoL8ZYN7UbqXDqRAwQ627B8XIwJVvS2itPidJltZImhLBwwCs1kgnHXCyErmxXkvI7dmZdd48jtWhXddNtOgXWi7r0h/Q7FGdCzQGkrH8OS9I8j6x3kie/mIBrAe5xmcnEtn07BnSKwycnEnElI1Vea1kbsAZEma76CXU9LXX5tRtd/EZQFeWtPJVVW38GxNOqfbqvbA6DsVoPJHygTuAUBADtx682Tim5OLjQcBKQ2tSB34ulcj4teda/UvyMwBMrZdjgV9aZOSzM9BmAxwfgxMhLZeaB+GmOo2SaYSqd3OzwTBs3LyHRThaPyqLi7GcpOX2orlIqlpNbYbBFou8sm9mGRNKwOmZFAfo1KKseSp+YkaujSlIrJhrDfNJhLTOoNee6aSEAR5ArzzHYNXqNoNzALTKH2+G0qwp/O0EZebyVivp+5VXwMsj8RRvNrqAc1es1LauJDqaLjEyUuT9tirWzyO8uJ3QzIW3BgJ3FnPeAOM/04lv4SE2s7aN3HwBbDKNqgC1jThFtLyWF3k/rwEv8L4XSWZOmjJEXBUg21RkE9X0BRaFjAbNyWeWnECgCb8EUBe1H3IpVmP5fQwX6uv6EpFl+WR6o4YNuO9AQ0Y2r2EewKusIaOqTJ6dgdZrSR0gVdDe/yrQpypHyF/dDG+WlsSAWRQ3lRcpVYOEyUaTuwwZl0TiPTxVg0Tfg56dgk7PgNe9BDxbA8dHoNMzVXLl3IYEE85WUMkUZjNwqoFElgAZpgaDyfzicJCNLRJwcqJ1DLRojjMt0/MzWHQNhlxfG83FN6WdgDr2RwAeHQOvPR91aoYDAnKHsh4nZ61958JXXR/UGHj1Qd451wrcJYSCGLj90CURCKRhIZIzwMxAl5DhlkjcDGXZi7IkhHqxtpfWLinpolxYAjYYNIj1izuxqHGmxoLWTI5Kc+0C0kVIm8VWQywl+TtXIe2q1aF4KY0w36GDF0gkEwbWdhIz+ORMhMXz55qn4iZ4SrdZSxsl1b6mTq5nLRbhtOzBZzpZXEnYCpYkls7Sdi5zgLFRuLkWrpc4J0MZkDzQszOgW0huoymZ6pkt4bjWnvNstA1dohK3zRgaimLgPsGecxpt23e8P0ZfbvNClInk+Dhgho/CW9BuB7bxkoPffQYvF0ganknUIa9WKCOTAIA0B49UL7c8a53E22LpxjhNSUhJvFtqBKxr2Qlt0oTICc5DpQe2eHy9IbV4mNJFhHR0VIywJa1Cl88oBoTM4JIRMui+FXCWtUAaJEJHadkuk0U5sTUQrdibLbEiiRSNJUGfVXlgu0fHulRGAq9W4Dd9oCiFWQskDbkGE+npJo/0ggEQUt8hr83TSpJfuViIFxKMnLkuSTV2QwLnkwlczLygrgd1WregS+LRzVlDeHU+tFzIrVivkUxJp1pQxvrlzCDKYqReb0CaNymqpoXZ+jkBAMgcqEQDWPVXVGWxFu5DmXN443C5J4E7i1AQA7cerIvllrw9q5ilWkhilLLYAItymLpaUhuoFrGdHXGxvBEDfHqmVrcjWf+vXwCrs2qdtfN8vsdgleb0M7OQpdZPIUPFm36v8NZyV3RGvs3Trybo2g6DViuAs6wWOWTkIYtyaHmVIzTte4HGEKHy7ETaTQm8GZAJImhzllCdlRTBQeYq8C2spAkl0wkK54PnfbRaidB+9gxMCbxZizXgzJWGz25Np4lAdhOpy0KNQZpuDwTuCypLcaypfZ8nxzcTRDdPdJNJmAfeNz3X5GW/t7cCBJyeSSG1LtXwRJLIB/OE1aE0WTPyzhBJGkRmVSBV9tlxqSsFbShnmekxalXvoky5Ya52tlKB0pYvKeGdiYBBTyheSlKbqG7TaJWyrEXO8DmnUl/OivXM3192soOs2It6PNmWc6ruxUqn8v+81nDYowR0SwyPl+gyI7/nFSne9soz6aN4Uyd3SeYODF3iSul0KRRmDAV2ROJcVCbkLHUDzOu73mg19QQkoYFXKk8TFa+qPQ+NoZlYvJxnbs1EjNYsNJlmcyAfaUS63ZapGoeIl/uUwMi13fv26j5ARJGawO1H16k80IRpQnUZKsOjpEnn+kc1iaNxWjWWMgONPoGGAVIegCRVxCilujA90E56AJCtv2hrBhIKY7Vzqetlv9Fv1t1ivXML9Datt9cw0VGseIALt/HhlnP82o9NI990ZudW5yptWgltVsFUKrQnP0mZmfMVU63rd0+eRinHbdZTs1Ka8m8THoYbFy/w232XB9+eU04DgfuGiSFk9PuAx94m2OVz0oTXThyP9u9V8YjdJBydczJk79m6/JKGPsqpouz5dmzCX/QLzQcrS0v0HaiXXDhu5AxLSKVWOKWjpSxLpMXWpE+GLdfQ8Ents34QSjGxvkOy3Luuq7JMvZap00Xdj45AywUslJSSu7bSsGbf7+SXVRGmBJHvlUqUypwQW4MtV2F6I4ASdZSOevBRj3wk1b358VFVginVk7wyR7q0UxkXHQctWEf2WNrjQGMZDff8+u375J1+SQlpqdXU+74aQftOq5Srt7jvkZZLpKOjGqnkR9HmEVrgTZbcSibOqwy294602py/OADo+hIdTL3MxyQXM+kcoc4y6lxrREzgziE8iIHbD2b1CA7gnJEWSwnLIQI9fixMqEuy/MWrgyxTwbIGE4PFglpCKefaB4C63g9IhXDXSyL7cimlsInE8rvRhe/hrHXeoqaCmlICrzNS38tit0fHcg1DBtYrLV29AA8bCY11zLyE93QQJc97rZwVmdmOH2Tx4s1GEtEtV6Mn8HpdCiJQ6lRQmLIl+RulcI2Ot3kkmbmuZ6SKOEOqxxIgE5CUQN0xAAKfrcpSHe0EimTtQyLktXl13bVsAWmxoJQ0h4XrksUEtViq4UDGwgo9+OLj7CTvJaGZTJR/gcD9w5hxltfajEc8s9PvSyVXyXt87CgQjbwOzks2mVBv5eLXimbNO9lwEFkEkmgXVeL4bCUn2xx7yFVpIQZDFpy3omniDeyRXvcyeLkAPXsuk/RFD1qvwacrUWI2Er7Kj4+B4QhkRds2Q11wHZ3KMuOpcLfP0hW0WnQvlTLR9xrOCmAtyguIwMMK1C1BywWo6zCcnsn1MZfQRNNKyNar3cX7LVzVjJ0WCeQUMW6+5HofshSbo0UvHrV1Rnrvq+hfOwMvO6w+6CkW6w3olVeFxgyRg1oMqNgxNbxVDM4EpB7p+Fhy6dNCi/MMen5VEos3scwN9j8XBXYeiTGWnj4BOEsBPmtvMyBvBnRdJ+9N6iR8drMGb14TBdCihfoO6dEjUdI3G9CjI/DpSuYBVhVeu4Qq4XWeIZ5b6noJtV0N5b6Vx8TmI4MVQxoVpBq/J4E7hfAgBm49aGRJzptN8Wzxs2fgjkrJaaIkjFAX8p0tkW36wtgCrPkNImQGWacwJQmz3GxKTkfRNWYEnOQIWIPK6I3u1Vn1RALiFdMFk8mksyo5ZrwtjlBWv1jr5qvCp4RXJmRmqVDHumQGUCcdeRCrpJ1WHITttZQQExe+ygByHmqlUCJR2ja1iA2R7UtlLMsUUtfSIq0w1/RjHbhP0nNq7gWKVZe7pJHGJt3qva4Sac6qeckmzfAaBh4qxuxvwpvMxZMLz7SiJLztvNkwvZm+b+K9c5EbgCoEF6GDIWH5FoJZiry4A5xXplQM3UjYJJ+dSV4dADo+kjD/RODFoi7fUNYpTKBHski6GAclpw2Lvhoki8HRkeCMfAyRuRbhQl0q+YTC18VgylowrHi7nGd0+qiYTJ8fohr+KNKDCj1+s+5zHi9mVdqGAbxeg8/OkE9Okd75fuT3vwoaMuj5GqsPfAw8fQQQxDOqQ87Wtso4JioeNwwb5JNT8UyqcbUYJwvhpTY5bEktmNyei15qr7oogTwM4LM1+Nlz8ELvX98VpZkWPTIBWHS6HmISwzBpcRrLU81ZQpn7Tpa5OlvV+YlT9MQQrAWPzHhjKT2lEi6JUmlhrFaYyFUxtTHwN8sbhgJ3C+FBDNx6MJEUXFGrIhKApMLl0TG6oyNJkl5vhPk9fozU9cjDgNR1yKenqC4mOAVutMQCJU3O18qYR8cgHpCOjjGcncqaSjkXXdKUvzlDKHMGZVPwTHmlYgVmmxgQ1PhJtcocUVGEqBMvpEkuCbl00ow0kX7QhXIpozuWpSFosQR3CfT8RITBKkuZb87gDUCkhQwSlQlKrVZWbeR0fFyURPGsql1pvUF6/Bj8uicyOTg5kxCW1RqcMrDRdQ/tmo6OkI6WyK89Q8lTKbmlcn2tggfxUK43SE+fACst6b5cygQpZ1CSqnU24bBiBmCAOie8bOxt4lTMphfAnLB7kfYCgduMbc/1rjmfunqK/YnrdLHky7logGnbXsE8R7/XgUIXV6+OYS8fEH5LaSFGyES6RE9XLIJFSVGljhIVScWZJbKFCHS2ksXaHx2Bj47EK5hZ+PNqDZythLzFEuhOHflSmdO8c831+GvkDGQCUlXYEiXk9UoqhQ5ZeLIqDqnrJNedpLolvfQYBEYmkn0nJ3KOPRVE9f6Pxk1oGwCWojvFEUdwi7w7ct3wlqVUckY+O0PKGbTWiq94jO5sg36dQCtRJKnrdMkld5tSEq9pHuSz60SGPX0i8lLrE9Cz5+CzXHS7qnhxlWuUigfUPz4TeD1dPXzUd1JR/aWnakhg8NPHGI4S8pMFuucD+vedAGdnuoQJkBZLua6+EwPC614CL3pZJqNPIp+fnwDodCy53n5d0quE1zqF3Na4hHpNwUOZF5h9e/pyUvH6vpDMDdwIQkEM3H4MgwghK+WdcxUsZ2vk7kzyHtZrOX69RiZbwyhVg+zMzKJhV5aUbvqXKV0mwAbN6UvUnu+0TNaQHdUEwWDxRDJLqCcgS2DYMbbYMaChnFlJsHLjXJSoUa/lerhY8kSxzSenxSpNSZVV89jZxK3TJSJIlULnJQRQQmcZUgAhaV5J7jXciAHKJ2K57jtwAvhZRqku53IYyiRxGEYFZURJrZc1FR681vHRfAtiiCU0D+Az9YYS6xIekGu2oggWpttMNrlNzr8QRrOTLbQHAvcS/lnn8e+Z98I8T8U+5xYbn3mVJopK/YFGU7gJjOiZULGXDxCwXktV7MzKs3Xhe2Z3aaw69ABiy+HLEq5pyx6kBE5JlLKUwKuNeH0GFB6YX31NwlJXa/FosRjumIUfF+WsKF1O7sDdq82AfHomv8syF5p2ocpPXq9BeYMSmDZIugeOjoDjhVS9tuiTPPKujUbSCuzYOMyOavMcOOmo51qkDGvOPEDAe19Bt1oDjx/J0htnahgtIZLalFbHJohBlAAJ3V12knLCkPnCciHKOExm+2uh8sh6Y8euR7hsGkQ5zs/FMJ0AUfIArF9/jOHlYyAlbJ4M6J6dAYMofkjqydX1Lnkz6LqUg6xpvBnAfafFhrTQ32DjY88Ci9Js9QtyBq8lFFpCcV3YqKWj0Nx94KJ4h3S8mwgFMXAHoGW+1fpqnLzyXVXeTFBuBlCfRYXU0Ed/Tvk36/lz3633bOqo5RyqAlWlarWWJ0iVN6pCtrTDkDWkNuYRzABLvlxZV88Ek3oRKSUwVaVqbIlLXSfeU0IVqDouUl2ulkWn1JWy3SYQzBpb1sbKtcKoFYhJRwtQ1yN3kAV7e1HWsNqAexW80EJCFr7KteR1yW8BRCi5QW6WpSgW+Zmbsuir59XChu2rLXXBLBZn+HHnkgtRzgHcYtROoFP7s0xcWn0cta652xbW0cBDRaPt2bb62epU5nGofKKFe6kKn6Z2902i0CQh7i3/sn17iCTxBGUMuuxCDbwtJjXHCzlRWUKINK+Muh6cOqRBFDI6PQNOz5BBoIXkFuZBUgzobAWsN6KMUl1Co4RAst6PmjtRb4FpMmpIxDCo8omqWBozJAYPACVXwXQzSLGVp0+A976qoa+ozwElyEluDFVRhbnlTO75MbY2prrl9H6V2mksES4npyLPNzWMtuk/iew1T6TkHybw0RL86EgqxC4WUvxnyEgnp3LnhiqbSO9mSXuw8cmeMH/Bo82AKN4Dg3IvyrfK6fzyIwxPenQnEiFFphBq/r0tdcJGyWoNrDayLMail2fHonsmUMrJk8NiTBiJvVLAbu79t9b8O8Hu/oWsvBMIBTFwJ0CWE+DDRCkhHR8Jo+97cJfAmw1S34vFFMbMCK0Hzkm/EZ8SiymLx4pZQmhU6RReKMytCCunVLAKfhNuxLKAcUnSJ5YiAVlNaiaAzMLplCv5lkHZCalieXREJ5L8FFCNdspZFsPNLAscG80aHpq4B3edFOBhNCGaInul8Au5CQUPZ6DlEvmlpeRCnEnBGFoPwNkaODkFztawojY8uPHmDEaq41kskG4JD5sM2L3VzcwoAi9vpJhPGgbk9VpyGt09I0AnPyq8mslnKT9gtwI2ISM/Idk54ygaop7rwuNC4AUeKuae/fJOYWR0Kf9Qwr7nQjXt4HHb+xSCq4QzXhWbU+PtLP+2NwEUjxtlUllSIzjKou9AkU+UOnDegHWNwe7JEwxvfiPyUYfu2Rrds1PxCjG0UmkCUieKy7BW3rkqCiDnASnZUgdo2Z6XiTqhJ4g85PVKFAvWNYL1oKLcZv1kiIJ1dgZKCeloCVqvgde9DHr/++vi9N7fZs9AM3z1/pfNhdaRrJiMc/VSs8pPMk/tqSjmkt8+gEkrj+vYWwVykZkQhYoZePwIwxueon+2Aj85Ak5XSL0YaAmEnNeoNQ9U4TYF0WR9UkVy2/NSdC49Jovhm3KWOcjREt3pCvTqM/QnWaKm1hr6uVqV+1teqWEDPNvIdeUj0LAAr9YwT7E5dC3FhFUOpszIObfjXm6P95zveN59iLgXnTdu5QkciihSE7gTKBbL1sSGbFXgQKBBPW1ZrWNcFYZqCxu16jdo+AQIolhpzhuvpRpqm7jfVuUD4AqmAMUI662TRbqp5mNMGcaYuT0vZ2RdVqK5cq7c1tZabK6FAJytxEK83ojgG2ol15KX1/cgaAEYAOKxVHHvFcbVSjy0OQOvnQLPz8Rq+Wghk5nXXlNhyxLCIuXgqjXcaNZKeqK7WQiRDRa3Y2nXqwIyv/oaeLUGr9bI63WhuSiHZdjZnz1qjUdq4qiv8bMAdy+cN3j0FJZxqoaHmQ4CgfuGJtyCt+8D5t8J/87zlve28CHH3/z3a0fteFIY+RC6qPI6VvkklT610Iu1A5gVS4xhdjoI+dXXgGenyClhc5TEwwgAC6koirWmORwtgdRrf072kM8zR+WIJoOa61BJZx7Bss1f6kijFCEjnqvNBvzsuRgU1yvgyRNR1kzJKGsbNw3KVyKAqe3Lf5kYFPw4e7ogiiBQZG4uIb3VMFHkkcncMxn3fHoqntiNFo7R/fmlYxHvutwINc8oipGkFnwDSn7i3gfFXd+QRfZpcaL0rmdIK6XRlpsiclVIuRTAYy0qA2ap0XB6Jopkkc8javJQzpVj/Dxn7n09FOObu4dfBG4FwoMYuBMgL4OKdQ6gR4+AY6nehaOXkU5OtVDJgNRnYLNBTpuagG4hKy6sp+FVJkd7CSOhnCXnYLXSxYcHWDVTGltciUF9D85r2Z9IrIve6zmo5PCWULXacaPkOcsjWPMJU8tIR9XvitBPPfDoGOn0rCrIzFo5lMAJokyvNtVaTRpyYx4451ET76ksa5G6DnSqyf3rAfT4kUxM1htZ2JcZODmRfnzBBSLxXi6XEsYKIJ+djZx8fvFeoSsdH0lYburBqxO5vrVaQP193CVfzHpb/MmEicCyHEyV45asz7DbUycxBOikzD1L7ErFh4E08JBQeAXmPYHekzB69cqGWQ+inmZ8wbwrrsmt9FyWR3+OZiKgX0jxEDvE5Vrubo9rfrg7RTw8ml+oHq9aRAZOqcxIj45l+YLVgP5EQ/+WS6DPwtuZASTkPICePAK/+33iWWSWAjerMykyY+TODnu9p5QgOf5aQRWZmyHhWoEI1c1klcU1deHZc9DjYyQG8PJLGN73fiSSgmIl357g0idkcFKXkF30D8P05smD1DyHXN1dLswToF7CNbu0wGAeMkK9JwtJpwBBPJ05g46OxAD66FjWk3z2DHh0jP7ZGTAMyKu15mICQAahymkpAgdVRrUAno2TCcfZZ5XqdhIlMGkkTf/aKfA8IT85wubpEZ69+Sm60zWOf/gZqNfq4VqwLx0dAUdH4OMFQB1g86Ou02gmnn31mFCWpiEbJP9enef9Ku8/u8cqhORdQCiIgTsALv9ptIVPTiTMdLEAOIsgAyTMdBiQF7puUxPWMq6c1lojSxGaRKDlkTDR4yPg9AyMBGyGIrMbNqdGtlLxUy2G5tUkUClYKlXCckuDHWuMNLntanGmRllx3jAVogyUogR5rYUJsuY8DhnUrYCBy7IRxITMoiyWxYDL5QgdrAsO8zBIiGiXwLZgb5eQjxfgJ0uk52t0g1bHM2EPgEnWXqTUgR8dIYFEgGUNkVHBXq7N3QtmFmW22neLgt6usEQqw8brLvlfTlG3CUOxjErfvg8qB7tZ4kiu1wlL/awPRwjBwD3HwYrR/Kaai4jm3fd6Wcl9Grdx7e+YNyrVyht0zklzNTwVFQviKZO8bXLHSVd6nBUeeXYCetf70D99LMrDkMEnp6BlD6xtaSMCjnvk5QJ0tASdnsJCOKnrIPxW/EM0pyHA8UJocbjHj+ScU62I2hgGxmfrZ4J6pBg4XYEeHUlV7OMz8NmpmEWdV7XNN62F5phFfjYyYst4O0mu5zryhkHy+LQiZ5EWbMRC1hReLoHNGrzWSp2LHnjfK+iZZVmP156JwjVkZADJonBy1rg8U6L14WUeKcDjkRrRr5o7kRgMQFKQiCiBN2spDEfH2Dw5wuaNxzhbAIv3nKB7x3vK0hZgBncdhqePMLzxETh16N+b0D9biaEWq2J0IKNYaeRc5xbMRsslvGtenAZuPUJBDNwB2AL29Xed1EMXAF4DqPl+3GnYB0Hy9ACAkkxIds1p1NhIXQc6fgQ8WoJeOwEdL0uYZc5cKoBC7Z+F8Wu1UPlOSIuFhNmoFVCIA6x6p5V8L14tglggE5CzLFLLIK1qpgLHhDdzvR5QYeRIAIaNnJNz9colrejKg1CdTYCpl9GKvaQaiClrQCUwAYkIdHwk6y49WghdqUN++QjDcUL//hW6zQC8yiKgLA9evXf06Aj8uqfAqeZMrtfgzUaFYC4ThaK/MURQ5ww8fQwaBuSzlVrXuUhSBpfJk6FOMBlkuTd6X8ZeyvKN/bInTlmH5KLwALHEaxVdNoXeDA/sJrytJSMEYuB+YeJy0H9zk0iv7c0oivZyFJ7sPQ5ALZRiP8Zf55SFy5qEFu2UisgREslFXCr/PqA/1nOrclWNk+QUFqsAqRmKheuXaft6A3r1OQpFiYDlshYbYwYNG/GInZ2JoZA0D11zGQv/3CELC0/rO/AHvQ7dO4FhtQJASGyhiFrlU6vBkMoj6jtZpqjrxRDYCZ/MC11wfr3R9RSr7LPxLMssmAzPxsNHBsDGq9WQbvqhyFiGyDlbusIKuWglVhwvgbO1VujW+7HJmpNI4NMVcHwsS4k8ew7ue6F/tQKtBxlPUwqLAZMrjeUFcMbHbe+KPSNJciG7vpdqqcslcLREJiAvO9CyR37pCEgJiRlpo89Q1yENAwYidMdHOPuQ1+HsTUfYLBhPwVicbMBHSxBL2KysY5JB6EQh7zskIvA6u3xYe8V9BI7dtz3vnucV7D+9lC7Tqfk2AzeCUBADtx4TXkEmt9Wi+tozYfzLXmLsUweitUbzEPKq5nA0RWbmwBCh0HfAcgFeLkCLNfDoGPzqs8ow1epb2jKhP2x0MVu1/uWsQidLKW1vsFwsZH1HhjBm1usBg6gD9YT0+Fiq0Z2dVQXOrHs6oSCdqRQRtNbQ0WEooUqkdBaBPGzUIkka9uoYvhVN1Vap74Cuw/DoCMMHvoThDUvwYoFuzejfdYL8aAksCEgr4NEjuRcy2FXhZQa99ASb1z1Ft34FmXXJEEpacrtME+u5gExMiJA/8HXojhagd70P+exMJktsFVeTehi4sYIC0HUtLUSJ/CjV+9CMnlfyU7XGAipEa/4OsavIZ7k0fgI87S4QuJ+YY6hNDOXMS0C6JulI/WmWoSHNVuOsylUN3ytK2ZVOJkdKHFTX2Eg1zxpGcI4mczsWxk/KMgm6+LrYELMqOGoEyxBec3aGfHamJKqRalOXM0JW/rpcIG/EWFiWOGIGK8+nMhl3BjYzopVbR7Km7ssvAa+tQa+8CoCQN1mXnqJS+RNgyW1PSbxui4XSvpQonMUC+dEReJnQn54gr0mfA2cUoKqCiAJX+ftkmP29V5EM6sBJFTsriLboJWT0aAEakqxraEs9gUBPn4KHV0q0DZW6A1xqGtDpWc0HPD0TZVEGG+TWUGzkWPlmxGGPJ07PMy/vogdeegJ+8gTDkwU2T5fI3YDV0w5P37FB/473YtEl8FEPOlOjcCJZA3q5AB8dSdc9gR/1oLRAXpn8dP1lBjq5Xur1vulzJMthpPKoNzrcrGybfyEY5FKFnBJotgEfXhy4FQgFMXAnIAJiZuvZCjiCyLdna1UYsloeVfDYGoBcmWFrsTJQ3c8Ana0kpr/vagEaK42t/bMqBUXQ+tLZFirKSrt644ogLpZSVQ7LRISK0RpESIseebWStYk2m9ZSmqihR+hXIUdtlTipsjqgNq60JZ8bAafnKOdeLkBHRxieiGBnEDaPOqxeTjjKA/pXTzC8tMRmmUDHHbouSX6jV54Y4GenoJdWMlHRdQ0xrNAuGWI0qLL87LlMdl55Dbw8knApXRQ45Zq36WVVCVky5Zm8B7ree/b9oJ1wWs6TKP+yDqWNy2Suy67se30qRvdl5hoDgbuOiSdR3wFyFX5nUd8DHm/xIY8MuJQu1CnqTAXMpnmdkF/G6zaZCLsfM9EIu1E4DSzs0HfTtqlKaWbUfESajHnxgp2diTErdarosBSKGVyECFTU5NE1jBStCc2np8B6g/yoF+XCV4sGRBFLXCM5zNOkiiMxi7HveIGcCHy8BCdZkkiMmFvIYROeRol7rpqxr9VfSY2c4rF0Y6bKB0G8bOJdVFnUac75ZiO5lnY3CGWBeN5s5JEaBl2bmcs4VEqm98dQbp2fL0xHWjrNWYrOFM+1GpL7hOcfsMTm5YTlayv0P30CWvbgTMBRXw3EgKSUrDdIJ2v07yZgtQCrEjgHtuirQUJsrZSQFNu1+RTDCjqUay6KpntRxs+oGonMm0sqt8UY7hpzRorAzSMUxMDthyZSV7MiKrdNSRcBViuzJfpDF5cn0vxD5TlZGVkzX6/KkkxIJO+Ncwaen8pcY6NLK7AKZG2glglXenoNcy0ML4P6BZh6EFisjsk8ak/FQpgS8Mpr4qkbsiyNYZf4ptchdyRK0dES9PxUBJZNCopl2QlRrgvdAgCnrkw+qFPr6mol17dYaF5GV9bJglr6MhNS34Pf+DrJUXzjU5y85Rh83GH5KmPxzldw/GqWJP1Xn6NbZySWnA/0HWizkfxGswove9DzE/D7XgM2ujRGSmLhZq6FKOQi6oQpdcDrn2I4PkIiRmIGTs70OnvJyUiqxEEU3lLAp7G+ZwlZHTYAq3cZkKVRuq4ISOr7omTnlJASgVemQNtDos+ljr1OUVBvnBeQIewC9xQ+f2z8Wyf+9m7Y1L54WMorQhNvRH33qSnEVftxx0+UQ1MILuH6JnNpe7cHLZ4z0/9OFAYHi4AxQ15ziA+XN0umc+GwpRywejH7vioXzEhg5PWmKjA5A0jK47h2A/NocTNuzL6Im4Zivuu96DYsyt3pCunREfhsBVr04A96g4zHOoNWa3DqsXnDI6xfv8DzD+iQjwhHr/V4+Yffg/TkkdgMh0GUWUJjOG3rA9h6t1SGxAx7Mky1yAoRSUGZvgNWa9BiIbmGANLTJ8g5Iy0XyIte5CAzEmcpgnMkqQymyEhROKdom2d2LetLEqDVQdvHjMdjazvMODyYgXfLM0MkYcHLJfjlJ1i//jHy6x8BZxvkx0us3nSEjhmL92Ys3vMM/VlGet8rwGIBPj0DmDHY+pePHgGrNfpXz0BDxuI0Y/muV6U+wWYDrNdlTUw3sqCuBz15LBE6XQe88po8X3moV+WuwYeAt2sl+hWQLfxYz7FmKJVCObOGnsCNIhTEwO2H5xljBjIMYpXarJU56bqCNIhgY8DCAYsQnLQ1UhoZsn7Q8+dgSkiLvoRasC2hMWbyRUksmqgqKFTW60PqdH1FUWKxXmPz8iPQ0ycgALlPoEGYZV4P4A7IRx3yoyUWT58A/ULWHOS6CL0k3Ls8DrucnJFSkmUybHuSUB0JJ+kB0vWSuq4omJRIE9RZBCQR+HiB4ckC66c90HfonzH6956ANoSBBnQnK1nnitVi3PeyzAZQEt6RCPz+10DPe7FQZlXksq2rhZGlV+6blOQmdD/2TuQ3vwHDyy+B3vcaEh2BV6qMd6IAc9eX6qvUae4kzNcAueZEIOqrAFfhzwCo06p6642GlbIYHRqnsYWZ2oOC8lyVezJ5Zuce5EDgDsMbQcbvrYF9YYt2Egq3tQRP2FElLBU1VNz1V1rc9Tpd1kRzZjJvk97Cs87ZnHKowkUETkEbhdhapIn3ohYFLkm4ZIl60GJsZdkkU7aE2ZX27bIq9VT785dsImW1Br37FeTlQkJIu41U7E4dsOixefkR8suPkJ6v0J2ukPuE/PgI68cJ/NYlzl7XYfOeHv1Pvorj9zwHv+kl4MkjMVRSAlEuXrJCkyl/QOPRg8r0xrDrx2KxBEAYFh14+QicMvLRAnSUQS8/Ad63Bp48BSijf34iTQyD8PzVup0XEIlilLQ4HdcxLLKlKD0j2eVhciKp/LdjGy2yXsdw3GF4uUd+0xHOPnyJ/L4OaZXBPCAvEzIBJ299iif/56vAq8+QhixzoaTzD0rg01Oxdx8tQEMGPVsDz3VdzPVaDJtGRwn3BvLZKbr1Y9DxMdB1SCtd37hLIKzVYGDkz6nH9hx5vlANqzLHqPfYhofc71AUbwdCQQzcCbRhJ/KvqERUJxLCEYG6vANUeFoYp24ch9Q0fI7rWoE0gNdVKIDzdHmFKtF0O2kBGNkllssleDNIUZauE4Hz5DHWH/Z6cN/jaL3B+g2P0b96hnS6Bj/tgA5YfeAx8nGP5U+I0kNdh6xhrOyvwU3SSqGClEB9Ei9byUeECPZhKGXVpQhBAga5dlr0ZdzSk8dYv/QIePUEy3edYJFFKet/6lWAGWkjuRk26eHNoB7dDB4yrOyC5FhK1VJitzaUTSK3hOVAcxSJgLTOSM9P0XUL5JQ03HQDnJ2BjpaSF0JaPGYzAEedeAZXWmBg2EiZ95MTDW+Vina8Uc+pWlMZAA1WApwAtlwTchMDNDp5Qz/Xw2cnAIHAfULhve5hb8JE/Yqn9aWh5nydUNoLY9uMwY/ZA5d/NzOZLBP8C3g9ytA4BuIVM+W9jUc1ofKj4rkEiJIa+HJpw/5zZtcGOV6r+ZxNXCfm+ZQxui5JUe3MoEdHUizs8SN06w1y3+HZz3sdNj2hP1uiP9lg84iwftLh7AMIb/yY9wFIeP7P3ojjt78P9Pgxuvc/B14TPlzXD6xG2tloDIvW0IphrNkZEtYKyel/6SkyMujJMdZvfgm5J6xen3DygR36Dz5DejyAf+gDcPQakDvCSz/VgfqFGBRTD+py8arRcgl+flLGmxY6zlnmEsSDLn2lWm0W6VFyRi31wAZY26mq0nTICUB68hgnH/1mvPIRS6zemvDSh5xg811HyEcLLJ914A44ei+wePUMeHQE2mzAi4WEx4KqfO0XEg2z3oBWaxmnkzNdvkPlrxYtaqwuttQKADx9DLz/FaQ3vE6mTydnIltPTsT7N2xkruNqLlg71PfyvNmakyZf7Rk2pXQi/rcozoFrRyiIgduPxhINJ0QUuS4Cr7GRRcCKPHThgSVW1aFp2zh41nWAZHmHsgahyS1Pi2/HhVeBUauqrlY1lAKi0OajBVaPF1i/YYH+/bK21fC4x/o4IQ0Z+fGRRGa8cgosOuST5xLSSKJ0muWvJDaU4VJFFhrWsugh0is5AceaqJ+qYmnnmgcukSS9v3oCrAZ0qzVwOkh1uvUGBJLw174HTk/F27hay6LEutCupCuordWEFEg/gfFEaHrvM3gg4NmJLHdxpMuOHPXA0RHQCT25TyBb6iQz1k8W6KAW5fc/k+cnifUb61W1mmYWJZEZ2Z6zbDmFUq2U3PiIMaI+To2HoZksjizxgcB9A1H7aWBfKRjtJL95X1DfJ6qKDZrPpsM9v28A51ZO/VXWRchbTyu3vIRIi9Po8c77QmYMNYOmVoO29kGoy2QAZeJfb8MWPuUVS4IsGbWW5Y6wkciT/PwUdLwEIwMrxmaZkImxecMRNi8RBjCQGav3JHQbxqOfehVDx1i8+hqwXGIYNrIuYidrNhaPsZMJJo/EyKC5ipwbGm0ZCBwdSRjmkx6bNxzhfR9+DH5jh+MPeob88oB/76Pehh/gN+Bf4Y1YvpfQnSU8+b4O3XoNnGYtYLNBqUKaXaXyYRDZmxJSkrBItnQKSiqXVTErcl6VdHvcNZJGpiF6h6gdeobI9tfecoxnH7LEsNigSwn0JsKmW6B7xkivngCnHXgl0UHZjL/M4gE1DIOEkWpepRUukoro9ryMrJicgUyybuXTJ8DZCvTSU6zf9BLyEaF/ZY10cibXlwh0ti5GXwBa9Vyf8dSJsXm9LgWdeMjVMJGtQJWfT92CdzpQEApi4NZDchSohHdMag8QSegG3GLoCVKd0xi1Z0Rj66/xxxmznuw2pjfSZOas2F0CD1wnSARRyHrJQWRmyTVUodafZJy+OYEXhJQZzAM4ZdApIx936F5boRsgJcw3A2DrMjlSeaS0SB44wUplU5fA2da+Utem5R52nYTTKmMnFR6USJP3O3RrWV9SqrplgDrkJ4/L+oTgTooF2YSDXe4BoXgDzLoqBlehLzchJXqPfNgJA0QaNny20vHrgU0HPCLw0QIEDdmlDCyPQKsMvPQIQ5eQBka3YWC9Ru5EuOOkk/ZtfchEWqnNK6tcSbfpFpvgd8/BaEJz456NQOCmMBcF4BUNU3wwZuBVCZBDb8l7c4gX4yIeREDzF/1aq5gayvxQdUmrUgMlhDTrGnbJKijnwn947l6AQGoArREwTha6+2JXVFpJXbk/ZvxjYtBmQFp0WD5j8ALAwEjP1gB1wDFAzwnr9z9C/x7g6D0Dun4haQOWG8kZNKCkODQeN1DlrQwpOjNkF4ZalRsCJOfw0RL59cc4e9MCmw9cYPPGAcdvznj6dI2PfMO78eqa8K9ev8EZL0Q2pA60OUM+OUM6PgLZPIOStJtqjhyzGhMBqVOQVVmGejXLWJkheaR86XiLFxjFE+kEjXiENxv0A4MWGUcpg967xNFPMtLrGEevbsAZ6KD5gd1G1n7O8jvn00JLrd6tJIxlF9VQT3LvKZXHIBdj7/BoieHlHoQelAi0yaCOQDgFsyrQDHAyJRFijLVKsS6CCVYbQWmoRW7w/2/v3GMs29KC/vvWWvt1zqlHd1ffvs19zQVmwIEgjDpASAwaoqMYhyBGTMBENAgJRmOEKH8gxpgQMQYhGkMQwfggRMGQkXkQfGCI8hrnzjAzjPNg5s7tua/uul1V57Ufa33+sfY5dbpv39vVl+6u2nXXL6l01a7du9Zjn/3t7/2q+zBxuiQFMTEATCwjvTaorqpKxoRujInNd42gbYspy2jxrOuoAC2WfXgDx1ZY1Vc/vtfalsHk2TqnQSA+zPvEbnqrYaw+ujHMXoBEoSFrb9/6BcII4or4c9fR7Y1ZXnG025ZXvrxk8hKEINSTQDb11FcLxi9kZDfmsKzRo1lU1FZNmkWictOtVONecuY5xhhkMkLnNUzG2Nk8OjfzLBYW8CsvX0zsV4ihoX3hALpAaKP1stmrCJWB1tJcENqLFoyQHwlgCYXHTyuqa57q+SkczaMQ7EuCQ99OwzmMc3Edey9nLykR6ftSrc3jPdZE5TjL1oqw9s2fNcvwlcUdCX5vRHZ9RnN5jOkEWSzRUcX0smP8rMEcLWFZE7bGUGSwbGPvzGUTlc9V8+e++APGHOciroW3bHijVy9bsp7D+h66xdqQSLxJuKuiJHf+8bU8kafOCTTENxBeun5srP/CpifnDtftX7SNMTE8z5h1AEb0SMUCLsaaPvilVwxMr8DUDWh8oY/tLeJAdFXEbWNst9IX0DEG4xzhqSvUOxlqhOpjL8Sw/aCoc5Sfu4E72qbdcWhmsNdrxDi6UugWBWYp2GaJ7mwhi338bB7VOrPywt1mWFz9u6rguor26ENk4/A2+g5aC1sjYk+/DNsooYRmD5iD+UzGpx/Z4/qvXqa5knH5UzW+LGPRtGVsGM+yIawqmAtro+EqmsaUZZS/q9YPK1mh4Tg6SAQNveFz03gQN4jjsNPNAkfHSrpaS3h0j247ozwwuKnDLaNhYPL5BcUUzPUjdLtEvdBOctylbbLaE46mx30cVwqrSN9exMVjyxo9mq7/7uo15haRZR0UOYxGqDWxUN6kBCdoBd4Qo4nEQJFjZjnh4DBWhrW2T9vo0zm6tn/viYWBpG3Rtl2H464iweT2ez5xJkgKYmIQrBr7xv49xw9eNQJVTnB97p/N8YWNBV0WgtaxFxRNy3GI6Coktbdarq2m8bq3OJJcb0kMgvbtFVDZCGPtPZora7D3x5XQ2PBp+hAVRh+T8TEG2T+iMC2LqqbeHtMVgWLfEiTQmUDnPPMLhvFBwFU5ts6i4kbfG0z6Cm99r7+1IU5AnUGdRYtYOU0zh1Xt+0Su+vvZvh9hFyuXrc3GfZsM7wldh8ezuFLiJxl+J6ATQ5cLcw3YJQgWWxcs84DBUjR+XVxGnI05fhoL34RMMHmBLure0hnWwkr79T+2fsd1DsslocyQPMMghNyCBEIu+NChudJUYHYM3kCzZXDBIYcHNE9cRp8sGH+6JpQVWoKMSuzMYGaKWoOpO3S5XOdmYkzfs7Lf31e5lBVko0jBLQ7F4wIQt93BdzqYSAyP2198N6MxziO3z/cP8jnudcFVaOKxwqC3vKPLZq5zFwvCYKP3Zq1s9M3ZowE1rA2GqzB5kKhYWrMRqQGripJxOrdYOF/VSip6KmNooraBdrukGxuyz+a44FHrUK9o3SHTGmM8YVKg3oIJMK+RtkQ0oykEc7FEbmbRaLuqvh08Kw1lJUtXMzuu7yprGQL0iuLGlLxH5wtClRHajlYc7pqnOBDam5bZ24X3/uKXUizAbDWEZYBFR1vm2KMZhChX15U6hTiulTtNib0FTRH3xpjj84xdF7ATMbd9HpR1SKluVEnVjR3f8KCJ79DpnPLZmtkXFWir6FQxrbKsBDMPZNbGvRg5mj2H2dph+5mXMcbGMFZrY6SQ9zH/fjxCXbxfRDKkdrDoiwKxeV/3a97n39N06LggeI9d1rTLsIp0hnGBaTo4mKFFgZR5vK98F+/rLobqyi3vagaR3six8mT3O6hsRl2d0+fIAEkKYuLMIytPWbjVw2SqiuZtV6kv5HRji1Uhu9nR7GV4q0w+36DBU95oCIsFsmxiwrYQm936DpvnhKZhVQwF5zDG4rcnhEtjwijD1AHpPHZ/CrMF1PVaSY3Kn48PROktZX0lNHFZ32pi5fF0kMXfa+cJ2yXNU1vkGSwLR/VyjWuhswbJLX7HUS4MoRTsoumdVNJX7owVN02RA8R1CSZaOPcu0O2NCdsloVnCqKJznurZI6zs0GWQHdSEV46QUYHu7aKtj3mFs8U6gV3mC+TSBQ7esUOx07HX1jyxe0j+linXqbjx7A5jq2x98SFbW1M+OnkSDivMs7IWjkEkVj+rKtqrE5ZPbWEXCnVg/OwhvHS9f/mJJcWl63qPrRJ8F9tSXNxi+o4rmCBkr7RoYejyjm5nm+aSkmdzllczLucv8umjbdznSsyeUD8ypn3aY1/I6B4fU3zKsnisoHgF8uf2YXsXLYTRJ/djefSq6i3t0Qobmmad2yF9L6zQrV5YDCJ9IW/V45L3ayV3tQSrb5LQS5wzjmP9bjv2qoOci/t/Nd9NpeqeFeO4FmsPXzDHx1fRdasImZVysbONVEWUf1WBtH5DATRrhUWLDM0d0nRI2x0XA9k/wDYNOEdYLuNlQyBGbpgYkbIK61vlMOpaFUOcw1Ql7ZN7LB8r6EZw0YNe2kZbTzeKXsPuQkV9pYzKahfoRobljiNMHDSC7SzuM46yKMHMYgGxZY06F9tS9Lngm+6sWIitXw+zTiA5vqVW1l1nEesw1pF7MDMlXLJoaWi+aIx7TjDWswyGat8xmtcULx7h9g+QzBHmC9Z9g63rn/s+KtjjMdo2yMUL0ZvbtHH/2vY4hLI3gkqewWKJZCuD68qILJhRiXolzGZo27dW2thnALKM8NglmqsF+SygE4eMwMyVDCELHnYqFpcdza5j/oRh5/cELm7DC/uYUbVW6kUkyv5HL9JVjjB22GlLPq8xXmMLqr5oXljVJQDshR2WT18mP2oJZUZ9ZUKzYzGtYg5bxAWoPV0FNrsQW3e1I0xvnFBn4/2KoDePMFkWW49YG9uOtH0hvd5ovtaPdSVP+wNJUTx1koKYOPusHhywIRgUdZb6omP6pWMoLR4hf0VxjyyY5gUhy2N55zCDUjChJLsxQ63EB3ldEyYVHGi0gHmF3KHGwe6I2ZMTKBymiVVNR9YgucEs8tgfsfc2SlCYzaO1s205NgyuLGIKXqMnDel7LBm0bXFHGpO+DwPBOLT12KnHSKD67BGYMWbp6coMu6yhbY69VGzkNHoPooTS0VwZsXiyQic5lAK15fLujKNJiT90lBc8i2s52QVDdynD7xTYfEl3tE12Y4QcTgnOUtws0NKi0yWFNpg9j048TeuwB4HtaY2ZKEXZUdAxrmr2r5bYz1XkL3Zo5WBeR8UqNyyvVMyeGOMWhlCAMRllXcdzxhXiPTKdx3DSpkGMQ4NS7+bo2wyzRUHVtHDJcbSbQWGRKw11lXPxi25ytO3orje0hyW2KGhKxV9esBzldDdz2jrmgU6vCqNFgZUMsozm4oi8beI+GROV71XYktJbuDkuhtAn+Gv0Z3Is4I/jxtayLQm5xHnlTvf2He/3oX8GViEmwi3K4erYG7ja8TtwDPXklnBD1oqPCuAywqSiyyzddoZdeLJ5h2264765uSOMMtoiw4zy6N0JoE5wixqTObTzyGgUn61NAyYawgRzLFaNPVY+41s7lAXNhTHatLjroLuBZuzI+kJltJ6wO4rRPIcLfJETRhafEwuMLTqkDtB5vFd85TCjKioneRZTDla9gdchpMdK4irWR3olYtW3UdZKrcZ1qGtk0WCDRztL9fst9gVYXi0RL2RfWCCXcuxLR3Qyopy14CxK7Jurq3ZRRqJXsPcmaplDldPlBuv6MNGVQbnMaC24ZQt1F4vJFTkSAsEZbBMjijSzdHmOERtTG3oFXH0/l437KBwcEZZjikWHnzWE0mJmgfpyTlt4rM9ADN5aQlDqoqHLDFmR9ZFMGtMjshItC7wTQmFYbmXY3GAvTLBIbA1mBG27W/omd2VGWznEC9o2tLnSud6skQmZB4Kn28owBx3dKMN6j+2iFzCYaBzHhxhBFHw0RHSx/3D0HK8+A8cG1L4kYL/3Q39mnA+Sgpg486gQG7Y3LfFhGsM4NIuhHfVFYTSp6fYL/ERwW0pXQnvJYhtBt0t8qVifkc1aQpFjWx8fiBd3kFkNW1vIcomWGeQlzVZs8ksmMccvF/LDHNsVmDyPfYf65uxGTMypMLbPAQANDatCLApRmKxDf4hyqMixnSCdwdaB5pLBqkOagMXCSx2mCuQzjeWmD+d9kZj+En1eCqvrK+Ay2ss5zRWHqzx+JGz7hlFdI2+1vPjSFpU5pGkLmq7CPGLxzqBPCYf7jvGnLbmvCdbibRktfZWj7ObUy5JPTkd0XWAyX5ItHIcuYzrNeDzrkGWfK2pijiJVGYvqNF3sUVgYwtjSFQFbeMJODuMKFg1sb8U1WzaxSe/KGjlfIihF2bK0Oe2O4MYGGQm2aqFQpDVcyWe8UI9xCt7H/MDiKLAwBqqAvebAxnUmMzhxgMEtQ7wX8qzvnxktndK06/Yga/OuMTE6t43H1jkUq1Cx4xjdXnnUYwF4nkPwEm8ybg1Lu+W+3nQWDv6eP/48rzxBa73l9hDbe2HVWmAVLrpKrl4rhscheCKClBndpEIri7+QocuA22/QgwXSBQgtGhxeLFQZXiDkEiuEqumNnr030caKm6rEvLS6iS/xfdVrDZ7QttxSPXQ8Ily5gFY54/0F7VzIDpbIbgFNjWlAd0Y400fT+I74iLTYTtA5uKlia09xvcUsfJSTq4qX3sdql12vTK0VRG5b91X9AG41FgPYXl50LdI02IUhn4MbZbiyxBwsKa8vY5vDl46weznGE5VkZ5HaxssFjXUNuj7VwDrEOvx2SZgU0Cm2771LZvG5wY8cLDqyg0WUI+oJxqDOYGZ1NN7mGaHMUQR34FDbYYqcMF/0WRZ9jmWWYa0l7xRXB0zTITXYaUNWWbK5R02H6QqKgw6TG/KbsXCb36pwxsJ8EedQ5Mi4iukmPmA6T6gMYXeMazyyNDFvEBBjCYtFlGeTEd2WJV908f4x8R434jGZwSxiFJZUGebQ4zOHjkpYNDF1xNm+BkHM4V+bVHoFUpHjKGcRNssOrAJdj72vG3uceOgMXkEUkXcB/xywwE+p6o+c8pAS9xsl9v5bxcn3nrvmyUvMv7igvOlpbGwJYduGdmzJDwBRuixjeTGQXfOE7W10ukXQDrZGhIsjNHNkRY6UJaEq6HYKTBDaHcFPBLDoKGDqQKgcobMIVexVKDHslW7VWF3Wlc6wfaXMtfHZxJAVjfmC5tIey0e3cB2IZmTTDq0Cpu6wLTgvmKWnHQndhREExT6nffhnrCQqtq8SJiCdRX2gfcse86dHLC8LT5Y3uPbIiPzzLbtvO+T6Zx/DPxEodxfc/L2KnZstR1+aU4+huhLo1NLuKt6OCVWGeaEjv75k+/cNfu6YfcmIZW3J9pcsX85YjCsOn3SEjzd87uhRFssx3go6KmBni7A9QqYLJHP4rYLFEyX5NFBcm3H4hyZk20K5PcEGxY9zOKijZ7Uqo4DIMgCmX3OZbNdjP2vJasFbRV2Oe7FBMnCfWbB/aQvzYaG7MGb0UkC0w+dC81yG5sLokw3qCkYvtBw9ZrCNYNrYNypMKuy0jj2vfAeuiPdansUXqEZiufBeIRdtWHcKJpaYl15Bv60u4cBfkBPngfsuI1/PO755aOj3/u3z3PQgrh0db2COq7y2VeXk/ljfphxVHw1t0d1CuLiN3y5ptjOWly3VywFdCGZax3M0KlqmsARnY4SM9K0YVu2ZRhX6ygFycSemWgSNuWkcIUUZr2MsLOYx1cBZQtuBsejFXZhUZNMWeWVJUfdN1ps2ep+8x80amAtWAn7XYbxQzjrMvIuepSb2wHVHDUIgjKvYU6/KYVFHpdUoxhp85/s6AJuGiKg0r8IPdeNJqygmLxBjojGy7bAErFi4WZNPA6Jgp0vczSUyr1E9WhehiwZN08tx2/cR7J/reY7mDp2MEFFM8IhXgo0GWiYl3YUcc9jg1YAV2p0ibq8VzPNTtMoImcUXQjYP6O4Wpg//xPvYKsLGugCyNcZXBcXNjuzQo4sG3TaYVpGDFndUE3JHqQ3adujnPdmRRycVxis6KmO/xkUNoxF+VMRqo5lFnMFnBjEW/8gu9nCJqZto6gwxnFaMpb40wXZCGJdo22JbQ7bfEIzgasX4uPLZfoPMapwYzHQRvZZdFxV921e97SuF66q1hjWI9h5rf5x/u0rcP84tXb3nbFSHTTx0Br36ImKBfwH8GeDtwF8Wkbef7qgS943NaJ5VrD6sQ2DszJPtC20Wi9FkL9Q0Tmi/YPCdIDfnmEWHb5b4IkO1IxjBe0/XtwZUA4yr+O+ihvmSrhD8ssFMA+awIQBdriwnhi53tCaGUcSGsfM+/6EPSYk9JmLICkTB70MUOF7XjWRDUyONZ7kr+MzQjjPksEWbgLdKIGD6aqL1tmX2SE77yHZfFTvmjQTvj/sqOYcA9rkbtJkiC8U3QrHscJMlH7t+lcfMC3TWc+PlCf5yy+GXG0pdwnVld7ZgezSlKxrECOYw/t1gDbSebksw+wvyZ48wN9u4RrajuNbQvZizmDlC63E3WoLpixrUNbJVxeU4XDL+RIt5paUetbhZg5pAV8XwG58L9d4YrYrYT7FXfLGW7Q/v0z0jhBYWexX64hx7EFAb4DOObp5x8Okx9WFGca3DhLg29kaN+QLITSGgyMKjbcvok4ext+PBHHN9CnVfWAi9teWFSPQqWhtzT1QJvRf7VS+G66JHmwJO1+Gox/fxbSFqr3UskbgPnAkZee7u7+NQ8jc0N+9jERHk2Fu2+ZwIrNMTVANcvwkopovP9dYqHiGIibmHIcSiYIc1Mm9jOGdQglFUlLA9gmUd0yiaNj6lqqgUirWoXcksQaqqb4u08g4D+wfIrIU29i3UENC2JSzm6GIJ0xm8chSrpWJiBMx+gxy28Znb6dpw6p2NwaGdR7fL4/YWxkSZwfHSrk1tq2JhKhtP0j4Etw/t1zo2gNe6ica8uu3HAzKvYbqMUSmLJsrQo2UMCbUSQz79qsdjR+jHoUCom6jA1W2/NUqQPic9BGhjmG9TxZBTdQZZeNpSCJnQTmILilVhIp+BqsQqocb2Vdg3oov6NTYHDdRtFO9BYNZhD1roAuZogRwssIcN9qUp2rbIsiWMy/i35nXM6ZeoxEPsV2wPOswyUO9msbhM//diGLONMqzrsPsxDSegaJZhpy0s4ruQLPv6CUUs/CeLJdRtDM9tmphGE0IMJ+29sGs5uPoycktV+c3d1lUhopUHcSVHE6fC0D2I7wQ+paqfARCRnwPeDXzsVEeVuL9shmbCWjDbMqO7VFEedCjK+BMHzN9+ieKDLzL/qsfZeUFgeUTz6ITqY8/BXmzcaqcd5mCBjivEKzpdIG0U2saMYtP1CxXj52tCvaTd22P3N6+jrZItO8y0RXzvYZqFKHRX+SRNDNmJ49S14KWP8RfTKz6XdrEegjfkiy4qZTVIALlxgCw7mIzwE4e7to8+vUf+/D7eB9C+uAAxtCTM5n2CfyA8/SiGjJ3/dY35t24xP8iZPa+0jxV8cvoUeS1sfX5JfdVhpWBuMppHLK88ewH3wUBZ5OQzxVzbx3glO2ixuxM0dPgnKsJOTn5jibte4y9ltJctpvG4lzrabUvWBNxCkckIyQx6c44Ej1iDff4G+c5jZNOSw+0M24IRh45LaBryw0UUKq8cIJNRTPY3hlDmFM/NYbvELhpkYQhXLPlNh5vGJs2L53LsoaW6PkeqMYtLOaPDBe4TNUdfNmHrIweEJ/awS+jGJdmRxx3M8TsjEIMeTvviAxI9w3UDW5NoRe46AEzvufbT2TrJXvs8mHXfybXg27h3Nw8M3auSGBoPR0a+3n19nu75V83l3ud2nGW1VgPjlULonyP9dXXVeD2QvXyENeBuWOzNZQyVP5r3L+QKmcWFgKlr1EhU4kQx1mEP5qg1Me/QOrRvh2CKCpUGrMFPZ9jtPcLLNwirKBjfxbQJa3DPX0eWbXwuNrH5urQWbZoYEdMfd0VOeOUoVk5tGszKYNobSaXpYleFzCELE8fatoiXtQIRi+7Yvg2Trh1MsQNVnyvYK42rtE2cI8xjZVTtWziJCLTNei2DxD6/AZDlss8zjNcKXRdbdqCIj4pKLAYn6HyO3PBIUEwb4hq4mLdo6hFZvcQuGowHKXKCVcqbHVpmOM3Q/ZvYRy4gnWBfPkRvHMTw3t1tmE6Pq58qSJbhOuDF/djWREEO55hlEw3DfbGhzJpeGe5iCGm5xPYtQUyex+b0s4AScIslLouGgOxlcLP4viEiMUpnvkDrvsq7Mxigeqk+zvHcP4y5on3EjfiAOhsL5zUdeuOVvkVWrJwqRRHDZ5s2hg5vGFXFOcKiiQZ1uug1BVCPSl9wKb40HX9SztHjY2jInRuqDgMR+TbgXar61/ufvxP4WlX9vtvO+27gu/sfvxL43Yc60IfHHnD9tAfxgDivczuv84I0t6Fy3ub2lKpePu1BnAZvAhk5tHt1SOMd0lhhWOMd0lhhWOMd0ljh9Mf7mvJx6B7EO9kWXqXxqupPAj8JICK/rap/9EEP7DRIcxse53VekOY2VM7z3N6EnGsZOaSxwrDGO6SxwrDGO6SxwrDGO6Sxwtke76BzEIHngCc2fn4c+MIpjSWRSCQSibNEkpGJRCKRuGeGriD+FvBWEXlaRHLg24FfOuUxJRKJRCJxFkgyMpFIJBL3zKBDTFW1E5HvA95PLOH906r60bv8t5988CM7NdLchsd5nRekuQ2V8zy3NxVvAhk5pLHCsMY7pLHCsMY7pLHCsMY7pLHCGR7voIvUJBKJRCKRSCQSiUTi/jH0ENNEIpFIJBKJRCKRSNwnkoKYSCQSiUQikUgkEgngHCuIIvIuEfmEiHxKRP7eHX4vIvLj/e8/LCLvOI1x3isnmNc3isiBiHyo//qh0xjnG0FEflpEXhKRO/bgGuqewYnmNsh9E5EnROS/i8jHReSjIvK37nDOIPfthHMb6r6VIvKbIvJMP7d/eIdzBrlvibszNPk4JLk3JDk2JLk0NFkzJPkxNHlwwvGeibXdGI8Vkf8rIu+5w+/OzNregqqeuy9iMv6ngS8GcuAZ4O23nfNngfcS+0R9HfAbpz3u+zSvbwTec9pjfYPz++PAO4DffY3fD27P7mFug9w34Crwjv77LeD/nYfP2j3Mbaj7JsCk/z4DfgP4uvOwb+nrrns/KPk4NLk3JDk2JLk0NFkzJPkxNHlwwvGeibXdGM/fAf7DncZ0ltZ28+u8ehDfCXxKVT+jqg3wc8C7bzvn3cC/1cj/AXZF5OrDHug9cpJ5DRZV/TVg/3VOGeKeASea2yBR1edV9YP990fAx4HHbjttkPt2wrkNkn4vpv2PWf91e8WyQe5b4q4MTT4OSu4NSY4NSS4NTdYMSX4MTR6ccLxnBhF5HPhm4Kde45Qzs7abnFcF8THg8xs/P8erP5gnOeescdIxf33ven+viHzFwxnaQ2GIe3YvDHrfROQtwNcQrXmbDH7fXmduMNB960NePgS8BPyKqp67fUvckaHJx/Mm987S2p6EM7euQ5M1Q5AfQ5MHJxgvnJG1BX4M+AEgvMbvz9TarjivCqLc4djt1oWTnHPWOMmYPwg8pap/GPgJ4L886EE9RIa4Zydl0PsmIhPgPwN/W1UPb//1Hf7LYPbtLnMb7L6pqlfVrwYeB94pIl952ymD3rfEazI0+Xje5N5ZWtu7cebWdWiyZijyY2jy4ATjPRNrKyJ/DnhJVX/n9U67w7FTfyacVwXxOeCJjZ8fB77wBs45a9x1zKp6uHK9q+ovA5mI7D28IT5QhrhnJ2LI+yYiGVEA/ntV/YU7nDLYfbvb3Ia8bytU9SbwP4B33farwe5b4nUZmnw8b3LvLK3t63LW1nVosmaI8mNo8uC1xnuG1vYbgD8vIp8lhsf/SRH5d7edcybX9rwqiL8FvFVEnhaRHPh24JduO+eXgL/SVw/6OuBAVZ9/2AO9R+46LxF5VESk//6dxD2+8dBH+mAY4p6diKHuWz/mfw18XFX/2WucNsh9O8ncBrxvl0Vkt/++Ar4J+L3bThvkviXuytDk43mTe2dpbV+Xs7SuQ5M1Q5IfQ5MHJxnvWVlbVf37qvq4qr6F+Oz6b6r6HbeddmbWdhN32gN4EKhqJyLfB7yfWAHtp1X1oyLyPf3v/xXwy8TKQZ8C5sBfPa3xnpQTzuvbgO8VkQ5YAN+uqqfuqj4JIvIfiZWn9kTkOeAfEJOPB7tnK04wt6Hu2zcA3wl8RGI+AMAPAk/C4PftJHMb6r5dBX5WRCxRcP68qr5n6M/IxN0ZmnwcmtwbkhwbmFwamqwZkvwYmjw4yXjPytrekTO8tmvkDK1XIpFIJBKJRCKRSCROkfMaYppIJBKJRCKRSCQSiXskKYiJRCKRSCQSiUQikQCSgphIJBKJRCKRSCQSiZ6kICYSiUQikUgkEolEAkgKYiKRSCQSiUQikUgkepKCmEgkEolEIpFIJBIJICmIicSpIiKXRORD/dcLInKt/34qIv/yAfy9nxGR31/14LlP1/zRfux/935dM5FIJBKJJCMTidPBnfYAEok3M6p6A/hqABH5YWCqqv/0Af/Z71fV/3S/Lqaq3y8is/t1vUQikUgkIMnIROK0SB7EROIMIiLfKCLv6b//YRH5WRH5gIh8VkS+VUT+iYh8RETeJyJZf94fEZH/KSK/IyLvF5GrJ/g7f1FEfldEnhGRX+uP2d7i+Vsi8mER+Rsb5/9A/3efEZEfeVDzTyQSiUTitUgyMpF4sCQPYiIxDL4E+BPA24H/DfwFVf0BEflF4JtF5L8CPwG8W1VfFpG/BPxj4Lvuct0fAv60ql4Tkd3+2F8DDlT1j4lIAfy6iHwA+HLgW4CvVdW5iFy8z3NMJBKJROKNkGRkInEfSQpiIjEM3quqrYh8BLDA+/rjHwHeAnwZ8JXAr4gI/TnPn+C6vw78jIj8PPAL/bE/BXyViHxb//MO8Fbgm4B/o6pzAFXd/4NOKpFIJBKJ+0CSkYnEfSQpiInEMKgBVDWISKuq2h8PxM+xAB9V1a+/l4uq6veIyNcC3wx8SES+ur/W31TV92+eKyLvAvTVV0kkEolE4lRJMjKRuI+kHMRE4nzwCeCyiHw9gIhkIvIVd/tPIvIlqvobqvpDwHXgCeD9wPdu5G28TUTGwAeA7xKRUX88hc8kEolEYggkGZlI3APJg5hInANUtenDXX5cRHaIn+0fAz56l//6oyLyVqJF9FeBZ4APE0NyPigxFudl4FtU9X299fS3RaQBfhn4wQcwnUQikUgk7htJRiYS94Yce+ETicR5R0R+BnjP/Szh3V/3h3k45ccTiUQikXggJBmZSERSiGki8ebiAPhHcp+bAAPfAaQ+T4lEIpEYMklGJhIkD2IikUgkEolEIpFIJHqSBzGRSCQSiUQikUgkEkBSEBOJRCKRSCQSiUQi0ZMUxEQikUgkEolEIpFIAElBTCQSiUQikUgkEolEz/8HbGAGiCg2dwAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Compute and plot the STFT’s magnitude.\n", + "from scipy import signal\n", + "\n", + "h_f, h_t, h_Zxx = signal.stft(HappySignal, h_samplerate)\n", + "plt.figure(figsize=(15,4))\n", + "plt.subplot(1, 2, 1)\n", + "plt.pcolormesh(h_t, h_f, np.abs(h_Zxx), shading='gouraud')\n", + "plt.title('Happy STFT Magnitude')\n", + "plt.ylabel('Frequency [Hz]')\n", + "plt.xlabel('Time [sec]')\n", + "\n", + "\n", + "a_f, a_t, a_Zxx = signal.stft(AngrySignal, a_samplerate)\n", + "plt.subplot(1, 2, 2)\n", + "plt.pcolormesh(a_t, a_f, np.abs(a_Zxx), shading='gouraud')\n", + "plt.title('Happy STFT Angry')\n", + "plt.ylabel('Frequency [Hz]')\n", + "plt.xlabel('Time [sec]')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "34e2c1ea", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "5.067094e-10\n", + "2.7690108e-08\n" + ] + } + ], + "source": [ + "_, h_reconstructed = signal.istft(h_Zxx, h_samplerate)\n", + "h_reconstructed = np.resize(h_reconstructed, HappySignal.shape)\n", + "stft_HappyReconError = np.square(np.subtract(HappySignal,h_reconstructed)).mean()\n", + "print (stft_HappyReconError)\n", + "\n", + "_, a_reconstructed = signal.istft(a_Zxx, a_samplerate)\n", + "a_reconstructed = np.resize(a_reconstructed, AngrySignal.shape)\n", + "stft_AngryReconError = np.square(np.subtract(AngrySignal,a_reconstructed)).mean()\n", + "print (stft_AngryReconError)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "055ba3b3", + "metadata": {}, + "outputs": [], + "source": [ + "sd.play(h_reconstructed, h_samplerate)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2fca75c6", + "metadata": {}, + "outputs": [], + "source": [ + "sd.play(a_reconstructed, a_samplerate)" + ] + }, + { + "cell_type": "markdown", + "id": "cdaba0ef", + "metadata": {}, + "source": [ + "### 5.2.3 Wavelet Analysis\n", + "\n", + "### https://ataspinar.com/2018/12/21/a-guide-for-using-the-wavelet-transform-in-machine-learning/" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "ad4ff7cb", + "metadata": {}, + "outputs": [], + "source": [ + "import pywt\n", + "\n", + "def cwt (signal, wavelet):\n", + " t0=1871\n", + " dt=0.25\n", + " time = np.arange(0, signal.shape[0]) * dt + t0\n", + " scales = np.arange(1, 128)\n", + " [coefficients, frequencies] =pywt.cwt(signal, scales, wavelet, dt)\n", + " return coefficients, frequencies, time" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "01fbe9aa", + "metadata": {}, + "outputs": [], + "source": [ + "def plot_cwt(coefficients, frequencies, title, time, ax):\n", + " ylabel = 'Period (years)' \n", + " xlabel = 'Time'\n", + " power = (abs(coefficients)) ** 2\n", + " period = 1. / frequencies\n", + " levels = [0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8]\n", + " contourlevels = np.log2(levels)\n", + " \n", + " \n", + " im = ax.contourf(time, np.log2(period), np.log2(power), contourlevels, extend='both',cmap=plt.cm.seismic)\n", + " \n", + " ax.set_title(title, fontsize=18)\n", + " ax.set_ylabel(ylabel, fontsize=18)\n", + " ax.set_xlabel(xlabel, fontsize=18)\n", + " \n", + " yticks = 2**np.arange(np.ceil(np.log2(period.min())), np.ceil(np.log2(period.max())))\n", + " ax.set_yticks(np.log2(yticks))\n", + " ax.set_yticklabels(yticks)\n", + " ax.invert_yaxis()\n", + " ylim = ax.get_ylim()\n", + " ax.set_ylim(ylim[0], -1)\n", + " \n", + " cbar_ax = fig.add_axes([0.95, 0.5, 0.03, 0.25])\n", + " fig.colorbar(im, cax=cbar_ax, orientation=\"vertical\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "207e434d", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\pywt\\_cwt.py:117: FutureWarning: Wavelets from the family cmor, without parameters specified in the name are deprecated. The name should takethe form cmorB-C where B and C are floats representing the bandwidth frequency and center frequency, respectively (example: cmor1.5-1.0).\n", + " wavelet = DiscreteContinuousWavelet(wavelet)\n", + "C:\\Users\\DELLPR~1\\AppData\\Local\\Temp/ipykernel_7984/896176808.py:10: RuntimeWarning: divide by zero encountered in log2\n", + " im = ax.contourf(time, np.log2(period), np.log2(power), contourlevels, extend='both',cmap=plt.cm.seismic)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAJoCAYAAADF6NqpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADHpklEQVR4nOzde7gkVXkv/u87A0bAGw6gw4CCIxovOdENIokxQU0i4zFgzklO9MRrYCMT7LHN1cQoG4xJPMfLdrfJEMZ7NHpyUTO/xImXCBhDRIfxSsyF8QbD4OiooKAIM+/vj6rqXrVqrapVt67q7u/neeaZvburq1ZX765a77q8S1QVRERERERERDQb1nVdACIiIiIiIiIKx0CeiIiIiIiIaIYwkCciIiIiIiKaIQzkiYiIiIiIiGYIA3kiIiIiIiKiGcJAnoiIiIiIiGiGMJAnIiIiIiIimiEM5ImIqLdE5GwRURH5rZxtVET+fprlmjYROVpEhiLyzyLyLRG5S0S+LiIfEJHni8gR8XafEJE7ReRoxz4+GJ+rVzqe+4n4uZGIXBX/HPLv+VN4+0RERGQ5ousCEBERkZ+IPBTAPwB4GICPAPhjAN8EcAKAnwXwVgCPBPA7AK4E8HgAPxlvm+zjiPixuwE8yXGYs+P/rwSwE8CbjOeOA/B6AP8M4ArrdddUfmNERERUGQN5IiKinhKRowD8PYCHAPifqvpea5NXi8jjADwu/v1KAC9FFJh/xNjucQDuhSjof7aIHK2qdxjPnw1AAVytqgetMpyCKJD/kqq+s4G3RURERDVxaD0REc0dEfl5Efl/IvIlEfm+iHxHRD4kIj/j2PYqEfmKiDxERP5ORG4VkdtE5H0i8hBr22So//NFZCAi/ykiP4j/H1jb7hSR20XkPo5jnhnv5+UFb+UCAA8H8FpHEA8AUNVPqeqfxb9+HMBdyPa6nw3gewBeB+BIAE8wypL01n/eDuKJiIionxjIExHRLDhaRI5z/fNs/3wA9wfwDgADRD3KjwDwTyLyRMf2xyDqzf4hgN8D8GYATwPwLyLyQMf2A0Q93++Mt/8OgDURucTY5goARwN4luP1vwbgMIC3ed9x5JeMfRWKe9k/CeBxInKM8dTZAP5FVb8A4OuYDKUHJr31V4Ycg4iIiLrHofVERDQLLo3/hVpW1dvNB0TkcgDXIwq8/9na/jgAb1DVobH9xwC8F8AKgIus7R8G4BGqelO87Z8i6g3/AxF5c/z4LgA3AjgfwJ8b+02C+w+q6o0F7+PRAL6rql8qesOGKxH1uD8BwIeMHvdXxc9fjXSP/dnx/1eVOAYRERF1iD3yREQ0C64A8HOefxlmEC8i9xKRDQAOAbgWUTI4lz+x9vE+AP8B4BmObd+VBPHxtj9E1Ot/BIBfiB87BOAtiHrHf8x47S8BuA+iXv8i9wFwW8B2pqRn/ez4/6TH/er496sBnGH02J+NaHTAx0oeh4iIiDrCHnkiIpoF/6WqH3E9ISKuxzYj6oF+KoD7WU+rYzffUdVbHI9/EcAzROQYq4f/i45t/y3+35xX/2YAf4CoV34YP3Y+gAOIssMXuQ3AvQO2M10D4E5Met3PBnAHgN3x71cjmif/UyLyT4h66z+nqt8qeRwiIiLqCHvkiYhorojIvRD1Lp8D4A2IesCfiqj3/qMAspG/O7iHZ1vf9plt46Hz/4goU/w94qXkfhrAO1T1rrz3EfsCgPvYSffyqOoPAHwCUa/7vRAF8tcYx/s3RMvXnQ3OjyciIppJDOSJiGjePAXAiQBeoqorqvq3qvqhuEf/GM9rjvUktftRAAfs+faI1m23PSL+357PfgWADYiG6J8fPxYyrB4A/jb+/4LA7RNXIhp1dzaiufLJsHqoqiJq6HgS0uvHExER0YxgIE9ERPPmUPx/qodcRH4e/vnxQJSF3tz+FxEt/fZ+x7a/KiInGdveA8BL4mP/vbXtPwDYB+CFAJ6HKHv8vxe+i8ibEM3T/y0ROc+1gYicLiK/bj2cBOa/jajx4mrr+asBnA7g6eD8eCIiopnDOfJERDRvPg7gFgCvFZFTANwE4DEAngPg8wB+zPGabwL4HyJyIqLs7acB+HVES7WtOLb/TwDXxpnwvwvgfyMapv5KOxO9qh4SkbcimisPAL8f+kZU9Q4ReTqixoD3i8iHAHwYwEEAxyPqVX8qgP9jvfQTAL6PaBj/DxAtSWe6GlEd4CcBXKeqt4aWiYiIiLrHHnkiIporqvodRMHttYjWe38toqHwTwOwx/Oy2xENM/8RRNnrL0A0t/2nVHW/Y/sRgFcDeG78/7EAhqr6Cs/+34So5/u7AP665Pu5AcBjAfwGot71lyEarv+b8T6fFz9mvuaHiJLeAcAnVPVOa7efA5Akt7uqTHmIiIioexJNlSMiIlpMInIVgFNU9ZSAbc9GNGz9Bar6thLH2IhoTfk3q+oLq5STiIiIKMEeeSIiovZtBbAeUU86ERERUS29DORF5BwR+Q8RuUFEXup4/mwRuVVEPhP/8w1lJCIi6oyIPFNEfgdR0rkPqup1XZeJiIiIZl/vkt2JyHoAf4povd+bAHxKRHaq6r9Zm/6zqj596gUkIiIK925Eyeb+GZOl54iIiIhq6V0gD+BMADeo6pcAQETeA+A8AHYgT0REVJuqnl1i26tgLWtXsH3wtkRERESh+hjIb0KUEChxE9zr/v6EiHwWwM0AfktVr3ftTEQuBHBh9NuRpwPHAQBOP/3E8TbXXXez9ao7AByd+9jpp5/oeB1Sz0/2fwNOP/2hxvbRvpJ9hOzL/3y6XCecEB33wIHs9ieccOL48RNOOBEnnwzceCNSj5k/J1z7cu3Tfd7cj+eVM0/6eJGi82ef79D92szPFHD93YTwnSP/MV1/I0l57cc3IkqufeIJJ+C6A+tT+7nxRqQ+8+S15meR7Nf8/BO+82NvG213PE444cjMvlz7Pvlk4Lrr7sIJJxyZemwsLvjN13FE8rTc0/j5B52Vgqg59wT/lvvMvObcB8BtAO5/wgm4+8CB8c8AxjeHu6+7Dkecfvr4vnDi6aen9ndjagFI4GTciBtxMvJk71eT+5KrblTEfH3ZbQ8cuAvAN8a/2/dpc5u8+ppd17LreeZ9v7gula0rma9Jv/6Ocb03evwGJPUwAEF1X5tdb8+rt9n7No/r2qf5Hsxj+LnrcnadLaR+evrpD/WWLTlvLmXPX7b8t35TVY+vuAPqid5lrReRXwbwVFW9IP79OQDOVNWBsc19ABxW1e+JyNMAvEFVTyve94maxPSqK8bjK9aWewAs5T6muuJ4HVLPT/Z/LlR3GttH+0r2EbIv//Ppcg0G0XajUXb7wWBl/PhgsIK1NWDbNqQeM39OuPbl2qf7vLkfzytnnvTxIkXnzz7fofu1mZ8p4Pq7CeE7R/5juv5GkvLaj6/gUgDAJYMBZHT/yX4OvQLbhuuwtnoY24brotcOvgUZ3T/1WST7NT//hO/82NtG2y1jMNiU2Zdr32urhyHr90MPbcS24brxY2PDIbC6ikvXrwdNx2bj572dlYKoOZvBv+U+2+x47NmDAQ6ORtgV/wwAWF0FABxcvx4bBgNcOhoBAC45dCj12uRekljDNmzDWm4ZsverfRgMNo2fA7L3u/z9TV5fdtvRaB+AHePf7fu0uU1efc2ua9n1PPO+X1yXytaVzNekX79nXO+NHj8XST0MQFDd12bX2/Pqbfa+zeO69mm+B/MYfu66nF1nC6mfqu70li05by5lz599XOD/u05Vz6i4A+qJPia7uwlINZuehKjXfUxVb1PV78U/fwDAkSJy3PSKSERTNRx2XQIiIiIiot7oYyD/KQCnicipInIPAM8EsNPcQEQeKCIS/3wmovdxcOolJSIiIqI5sNx1ATz6Wi4i6lrv5sir6t0i8iIAH0S05u5bVPV6Ebkofv5yAL8EYKuI3A3g+wCeqY3OEQgf+tzN/mh28W+BiIiIiIjq6V0gD4yHy3/Aeuxy4+c3AnjjtMtFRERERFQkdH582W3N18QpAohoQfVxaD0RTY1ryB6H8RETgxFR93Y1vL9UIlUiohnHQJ6IWsRGASLqHhumqJ5l8H4WiueJaFoYyBMRERFRp9jYQkRUDgN5IiIiIpo7sz2Unj3bRJSPgTxRypzeOLkOO1XAHjIiIiKifmIgT0RERES9dnAOUrTXGSEwGu1rsCRENA8YyBMRERHR7BsOC0egNTXcvh/D9kNHEc7paEOiBcdAnqaMNxOivuOQeiKiavoR4FP7WJ+l7jGQJyIiIiIiIpohDOTJwhbG+cLPk4iIiIho3jCQJyIiIqL+i+e/78J8JL8jIqqDgTx5MUMqVZMdBZA7Z5BL4xERkcHO0zGNoH0w2NTavn33QNaziKgOBvJERERE1CsHR6PwxJtsECaiBcRAnmYI53vPqzZ7QoiIaI74gnbjcbMHvGoW+Tr3pZBj+raxH2/y/siM+kTzhYE8EaVMM6i2KxWsZBAR0TSsrR523nOq3oeqvK7M/ZYN3kRkYyBPtMBYMSAiIiIimj0M5MeWrf+n9do+sMtd9HvTxyu7fVvnuYn91t1H1b+lWf3bIyIial/eUPapjQab2lz+vDpByHNl6hSsf+Tj+aH2MJD3mocvnus9+N5XUw0Yy8a/svupU5Ymj1UliC7zHsqenzLlcP3exHtMXmPvkw0ORETUnuCEdz3U/Pz8vt9DqzYg+LZpq0EhdNu6dR57X6H7abqubtfTaV4wkCeixiWVkFJD95l1mIiIesi8lzXRe898METUhAUM5Ku0CFbZR53tq8jr5W1yyLivNdHX67vs+DnkOGVek7efOp93U8PkfY+VaZ01t5nmCIbuTWP9YCIi6s4s97r3S90ecdd25Ub1pRvwmxztmXf8aYxynNaxq4ymDRkx2dZoUOrSAgby1F+zfoGZ9fK3q1QPRNI7H//PYJ6IaP7tRXFQn3c/ODgaNXK/cN2vXCPMytzXqvXCL9d4bdMWqxOhCJMFUx8wkM9Vdb7NYl/c8mQvfLNwrmahjN3rR0WDiIjm0a4qL/I0Bofer8re1/pxH+yiztJ1UmSixcRAfmHM20Vx3t5PH/CcEhHRfJhWUN2P4L0tfagX9KEMTZrWdFtaBAzkU+bpD3+e3gsRERGRn3dI/RQSqbqC+dnszZ8W1lGJmsBAnogKtVnBqDrkkYiIFksj+VKsHCxlpO5P9usD99dE0E9EBDCQpwK8ucyZKS7xlvzt2H9Da6uH+XdFRES15M6Zb/Be18j9qkJ56idTm+9eb/fnMt/vmcjGQJ5SZj8LZx+W1+j6+BNNr31LREQ0bZUS3S2A2a+zzZM+1P36UAaapl4G8iLyFhE5ICJf8DwvIrImIjeIyOdEZGnaZeyrvGCNgRwV8fWid2KKoweIiIgal3cf6/ge14v7PBHV0stAHsDbAJyT8/wWAKfF/y4EsH0KZSKilrBCQUREIXaheK35vmpkjn+j2IM73/j5zrteBvKq+jEA38rZ5DwA79DIJwDcT0Q2Tqd0EZFzxz8nQ5vChzgtZfYxbWurhxs5PgOwNrV7AfZVKPiZEhFR1xofTu/qATceC773FfWkD4fB+3XlkCnav2vkXNP37SaG7HdZx52G/tSVGKwvsl4G8gE2AbjR+P2m+LEMEblQRHaLyG7gjqkUbhZsGzbz0Te1H5pzHCZPREQtCe7p5r2oAQwc+2VH1wWgDs1qFCaOx9S1oapeoapnqOoZwNGtFGY02pf6v6/KBt1MojLfNgwGmcfYMENERLTY+l6fJaLIrNbabwJwsvH7SQBu7qgsVBFvFN3zDQ1jQE9ERERE1F+zWlvfCeC5cfb6swDcqqr7uy5UH8xKADYfQTyHlxERERER0fT1MuoTkXcD+FcADxeRm0TkfBG5SEQuijf5AIAvAbgB0eSQX++oqDSHpjGloLNpC6ur3RyXiIiIZhQ7Loj6qJeBvKo+S1U3quqRqnqSqr5ZVS9X1cvj51VVL1bVzar6Y6q6u+syE82zWRnpQURERGmzkvNoVspZVdX3N+/nhapj7XzBdHkR8e0j9HFeyKbPngIR8pnkfU78DImIqC2NL1nXJGbMpxjrQtQUBvJUStsXn6b2PysXyVkpJxER0UwxAucqAX5/1gmnorpSG3WpwWBT0H77Wo9jZ9hiYCBPnerzhWWaZStzs+hbuZoSvA4wERHRFDUa1M9hz3wX9RNKCz33/IzmCwP5OdZl73aTF4o2LzrTvqCVO96O6vuc4aR2nI9PRESUVaeHuIsAjnPCidrFGjPRDCq7fF+V3m4OKyQiollUe4RXQa+59/5Yprd9hhvciagfGMi3YNFaEvuW3Gwezn9T76FswE9ERETTM6uN5vNQ15o3nBe/eBjIU+OqJiWZ1QvOrJS7rSHrbCwgIqKZVdSLnvd8i/PdqwT4ba4w1IW2ytLle+z3lE6aNQzkiRrECyYREdH09XrpuRAtNQrMao8/ERVjID+H6l60B4NNvPD3yp6uCzB1zGBPREQzLaQnv0TwznpZn02jnrZ4dUEqxkCeptqLnNyIFrnnutP3XqPFv7Dcc7ikDhER9d/M98ZTI6Zfv1qe8vGI0hjIN2SRA1OiIJ5Af8NgMN1yEBEROcxLr3cbdVLWc4n6h4F8jtCLFi9uBMxfkhkiIiIKYDRUB08Nm4FRbPOYbK4xM/D50fxjIG+Zi4tLB/p/3vKHP3WVHXYetHkeOFeeiIgAYO+0DsQArVCb9/2q+2adjBYRA3ki7Oi6AI1ra6k5IiKirrQ6F54B/FheUMyAmag/Fq62n1yARM7N3abJi9hgsCn3eHnPlTlGvYtrtWA2rye7ifXkq5xrn6LzXP8chpcl5Pk2FR27aIRCY2UfDtnrTkREGVV74M1g/+BolLnHHByNmg3aHfuqc187OBql7sFtz9uvs/+y9Vdz+5A6WRPHbEJSlrx6ovn4tMsYWm9mI8z8WbhAfjTaF7RNyHZNHrPtYwwGmyqVo07PbhPv27ePWbgYFb3/afxdVNVkj37uvlZXGzsOERFRIgmmmVC1vi7qXH2sIzUdH5RX3OnWx/NG7Vm4QH4R9GFYddcXki6O3/V7BoDNLewzeV+F76+FoJwVMCIimlUccdaePtR1ibrGbwHF5n0tzPCpA30IyF2CA2oiIqIFNLWEeOTE+kn/8TOaLwzkyYktndNR/YI6Own65mVdXiIiIq8pTRWbh/oZg0miZsz+1WCh7Om6AJXNwpx26haH0RMRkYurpz2v9z00u/3MDH1nRv0ZN7v1d+o3BvILapZbQ+epUWBa76XVJXss7IEnIiKieTNP9U+aDwzkiYiIiIhsc94TzsCUaLaVCuRF5GgReayIPFVEfj7++ei2CjdLZrmH24c9qzR1c15pIiKi5tVJclc0vL728Puq9zXeD4moQGEgLyLHishLROQaAN8GsBvABxCN1t0N4Nsico2IDEXk2HaLS0R5tnRdACIioh6ZmXnwVMs8dqgRFfEG8iJyXxF5DYB9AF4L4FgA7wLwCgAXA3hR/PNfxs+9DsA+Efm/InLftgtO3eCFklzaGr3BChgREdXV+2XpWup9X6SRlU1PEwit785KvXhWyknl5PXI7wXwTAB/DGCzqj5CVX9NVV+lqper6vb45xeo6iMAPBTAqwH8b8zANXNe9fmL2ueyzZ7lrgtQmW/pHAbtREQ0k6a09JzXgg/DL1u/nK/66OzWB6m+vED+lYgC+Feq6peLdqSqX1LVSwE8JH5tJSJysohcKSJfFJHrReTFjm1ERNZE5AYR+ZyILFU9XpP6kDSkbBkWp7W27IVuNi+M08xODxTcDB0Vi8X5eyMiokUwboQODKYzjdYlg3DeR4ko4Q3kVfUNqnpn2R2q6p2q+oYaZbobwG/GvfxnAbhYRB5pbbMFwGnxvwsBbC93iMUI6ppX7jzUa9hYxHPOdUaJiIjmAUeZUTMWsT5MoXq3/Jyq7lfVPfHP3wXwRQB2RHgegHdo5BMA7iciG6dc1Lk0rZbeto/T9eiIpo4vcm7qfyIiIgpjj1Kzg+u6o9js/c1U8N7T4fjzNex9IrRe2HX9lWZLcCAvImeKyLL12Hki8nkR2Scif9R04UTkFACPBXCt9dQmADcav9+EbLCf7ONCEdktIruBO0od33cxqX+R6a7ntajsvvnLbjvGPzUVmDd1Aa+SpGQaN482jhHtc0fhdkRERPOKyZm60159efG0ec74ecyfMlHbJQDG3YIi8iAA7wbwQAC3AvhdEXlBUwUTkXsB+FsAQ1W9zX7a8RJ17UdVr1DVM1T1DIBL3hOVwbl4REQ091y906GPzRV2ChDNkjKB/I8D+Bfj92ciCqgfo6qPBPAhRPPVaxORIxEF8e9S1fc6NrkJwMnG7ycBuLmJY1Na04Fc0uNfruefQnEdeSIionpKJ6SrEOD3dRh+nxrw83qQ+1ROoq6UiaY2ALjF+P2pAD6mqsm3bCei5HO1iIgAeDOAL6rq6zyb7QTw3Dh7/VkAblXV/XWPvYjyAuq6wXbIEJ5ZHubT5E2k/HmY/VZz3oSJiKgtRfPjp3lsn74G8zR7Zrk+TdWVidS+A+ABACAiP4Ioo/zHjOcVwFENlOkJAJ4D4Mki8pn439NE5CIRuSje5gMAvgTgBkQRza83cNwKpjnXffEymicXJV6cmsHAmYiIqHv9C+D7VcdkvS8ME+PRESW2/QyAC0TkIwB+EcA9AXzQeP5UAF+vWyBV/Tjcc+DNbRTAxXWP1TReeCYGg021z0cT+5iY/R5sIiIiKqduZnqntubKz/0cfCJqUpke+VcC2AjgkwB+H8BHVHW38fzTkc0uTz3Sp5Y79g73T5/+PoiIiPqoqDe9lYYDlzjon8f6FOsjdbDjapEEB/Kqeg2AJQBDAM8H8AvJcyKyAVGyu+3NFo+I3JaLNyEiIpozdZaZ24WCQLtEj3iV4fEhQf7UGgKIaOYFBfIicpSIPBfAsao6UtV3qOoPk+dV9aCqvkRVP5azGyJqQF5LddUKgKtFv8uVBTYMBp0dm4iI+ikkiK8S6PdvzjpN1zx1jszTe6EioTX1OwG8CcBjWywL9SzZSNumMRxsWsOzwo5T9fNdqvi68lr5TErO+ZvHYYJERDTf2mwMqLLveRme3uf3MSnbNOpp06sL0uwICuRV9TCArwG4T7vFoa61FUQxOHNr+rzUGXJYRlRutvoSEVH/NHkvnNYIsboNAfNYz+pzEF/FPH5G1K0yY2ffDuA58dJzM+qOmq939ajaj0W/i5zr2XZParv0c0vGNnus7fP2lSd/mzYvKuUuwFV6q/d4fq7HXe6q+y/6HH2vCXluj+fvjIiIiPJMYzi9a7pb0BQ4z0i2tdXDDWW2r19/bEbdY+TVy131r7x6Y159uw0hMUXo62hRlQnkrwFwN4DPiMhARM4RkZ+2/7VUztb1o9Vvvr6c87Ec32x9Jpsb2EeXc+OJiIiaEtIzP63kck00HCT356JOmPmof0XaeS+zntl9tuqm1J4yNfYPA/hxAA8H8AYA/wDgSuPfVfH/M2iWvhBNlLWp9zsZWt2n4C/8op89D/N085s0Tk1uWEzoQ0RERG6cMtedWYpFqC/KRF8vsP79mvUveYzIw90C2qfguczIjD41XiS2eB4PnS9Y7j1Zn2cjw/36eV6JiIh8XI3koT39lRvYV1ervY4qqh9ot1G/6ceIYurKEaEbqurb2ywI9cfa6uHGLjbdBul58536lP1zVlphdwBY6boQREREwZpMfFcUdJcdpr9hMOBIuVp1sj7V5Yimj11fHv1u4aof+IW8vzYT4bHXNR8zmxIRETWnKMieRkBdplGBAf5EfqdQXztD+loumifBPfIJEXkAgDMAHAtHQ4CqvqOBchFRb4XdnA6ORsBgreWyEBERNWcWA+iDoxE2NDjUvk9THonIL7hbVETWich2ADcB2IloObq3Ov4tuC6G+Uynh36a+wnjP9dROabxWVRLDNPWTXI62Xc5lI2IiMg0rez309bvEaqJ2chC3/Voy9n4LKmMMuObfwvACwG8G8DzAAiAlwK4GMB/AdgN4OeaLuB0MDDpM154iIiIqAlNDW/fhfrB+yz2/idmt9d+cTLzz+5nRKHKBPLPA/BBVX0uJteu61T1cgCnAzgu/p+oFfktmUWNMX2+cPvKXr7M7gpKvB9PVvmQFmL3Nn0+p0RERGnJPfLgaIRdyN4zqwbWIQF9naA/eW3qXhzf05vKOSRybvC2ZoCYdLaUef28av4cuOqH7jqj2emV/OzqCGPn2Hwp8+1/CCbXkuRKciQAqOrtiIbVX9Bc0Shc/0cUtJ/crmh6QT+HXfUp6V/5ltt+nlMiIqJp8i396lIni36qztDx8nNJQNhGr2/IPvtTf5p2Xchd33WdM/bIz78y34LvA7gr/vl7ABTACcbztwA4uaFy9chsZZ3kl3axbe66AERERD3lukf6AuvQ3nm7p71OoD69ofbNdQCxh7dv2MlShYg8RET+UUReISLSdXlClQnkv4r4GqiqdwG4AcA5xvM/C+DrzRWN2tNsD369xgNecJrS/s10j/U/ERERtcqYFtd1sjS/WarLVS2rVXfueEREFQvS2adl/n3nO9/RSy65RB8A7H0a8NTHAJc+CDj8wQ9+UFW11L7if1NVJpD/KIBfNH7/CwDPEpErReQqAL8M4K8aLFsPVPmydx/kTO9C3/WFu+hcd/9ZtMF3IV5bPVxqeF/540xhCscM3hiJiIimzpP3hprSdR23Po6W8Lv11ltx6aWX4kePPRafvuwyLAM4E8AzAJwH4HfPOQenrluHj3zkI4ji+X4qE8i/BsCvi8iPxL//MYA3AvhxAI8CcAWAS5otHi2C9i40/c8dYKveWjoDiefMID2pgLAiQkREM8SXtK7JhvQmhthXT2S7CPpYZ5q9Oussuu222/CHf/iHePj97odPraxgGVGm9iOMbTYg6rn+BQC/+XM/h1PXrcOVV17ZRXELBQfyqrpfVT+oqnfGvx9S1W2qen9VPV5Vt6rqD9orap/ktdLxi9iOPl50m1fcqJHz9zUc1l4KJ+ymzr9xIiKiNtSZYx9uMepUfdJso4m7HrYgQ+cr+e53v4s/+qM/wsPue1/868tfjmUAj0M6gLcdB+B/AHg6gBc/+cl4iAiuvvrqaRQ3WF9SPs48Dl/pg3ZuTLPy2R4cjaZUAaiAQ+aJiGjG5TWW121IL1R1BJv5OuPnWVnDflbqYNRP3/ve9/DqV78ap93nPvj4y16GCxANoc8L4G3HA/ifiEbdXHz22dgsgo9//ONtFLe0UoG8iNw7zub3cRH5LxH5ifjx4+LHf7SdYlK+rlpW2zhu3+Yksfd5KjjEnoiI5tDB0cgZNDcV+M/a8HiuN9+dRWoUueOOO/Ca17wGD733vXHVS1+KCwA8HvG66RWdgCgh3FMBvPCJT8RDRXDNNdeU2oeI3FdEvici3xeRH8R55ioLDuRF5HgAuwG8HNH0gYcAOAoAVPWbAJ4H4MI6henSrF0I04qD3yrvr/k1OvfUGvbTzZqhs5Mwb8Ng0HURiIiIZloTAXbXo+NKBWxsSO+Z9jq0FmHo/fe//328/vWvx0OOOQYf/u3fxvkAzkK9AN72AAD/C8DPAbjgCU/AaSK49tprQ19+G4DNqnoUgGMBnCEi51ctS5nI6A8BPBBRg8YTAdhr7P0dgKdULQiFaL93uJtguWt1Rhb0awQB15EnIiIqF0y3Piy+gG+Ye1s9qE3sdxGCwuZMf3TnIn4+IvLnpx59NHb9xm/gfAA/CeAeLR7vgQB+BVHw+/yzzsLDRCAiZ+S9RiPJcu1HI4rFK6fFLxO1PR3An6nqHs8BvwTg5KoF6VaTva6z04Obp84Ihe4uHtWD6tlpwMj5+1pdHWfNbfczmP7feNeVLCIioqbtQr372yIGawTMS6zRguf8IYDnAngEos6tafz7KQAvQ7SMG4B3i8jtxr+/sAspIkeKyPcBfBPA51T1LVXfcJno5TgAN+Q8fxjAPasWxCYi60Xk0yLy947nRETWROQGEfmciPRiInMf5p70oQxUX17Dgvcz9mStT7aficQ2HOJHRETUicFg0wx1bFCRBWzo0cYC0QqOiv67WlWPMf49x95OVe+Kh9afAuDhIvKMqscs8229Bfkjdx8L4GtVC+LwYgBf9Dy3BcBp8b8LAWxv4oDNBMG9aFOYiuLz1Zdh54vzmSSabtDhjZ2IiKhf8u71vG/7hPZmN5PQ2fUZuQNs9rIvGlX9KoBPA5jKHPkPADhfRDbaT4jI4xGNZPi7qgWx9ncSgP8O4E2eTc4D8I54nsEnANzPVa6so5so3hxILk6eAJe9opX0YTREkwl2su8n+3fTh/dMREQUIrlH7gLGU9G64BtO73rcHk3nHV0X191SQWL8WJsJnbtIFj3tukf/erYXr4NqXojIj4rIg+OfjwVwOmq04pQJ5C8FcDeiloM/RjRP/nki8m4AHwNwM4BXVy2IZRXA7yAaru+yCcCNxu83xY9liMiFIrJbRHYDdzRUvK6We2ta9D6qXKAWPYBre/kU/42xvYu37zPt8rPm3HgiIurKLtSfljbN+1hoUD3bKzXV1XQ9qpuYgMv4zaxHAfhiPEd+P4DdqnpJ1Z0FB/KqeguiDP7XAvg1RFnrn4MoA/+HADxRVb9VtSAJEXk6gAOqel3eZq4iujZU1StU9QxVzc0iWE5fhoxXlZR/q/vp1dXCPTTXOlmuEapPN6k2W2j9Q+LKna8yQbj9fpLfy75Ps+zezyHgbwzotseEiIgohCtYLztCromAf16H09t1mUm9pEoQ3fQQ9i5iAg7Dn1Wq+reqerSqHqWq91TVWiu+lfrGq+qNqnoegPsjWobuLADHq+ovqOpNdQpieAKAc0XkKwDeA+DJIvJOa5ubkM6QfxKiEQG19G/oTDl9bGGt35s7640mU7S6OrXl58zKwvh7YwTnlf8WrQCfPfJERDQrul4/vgv1Gg+Ke8dncSUkomkJ/vaJyFHJz6p6m6p+SlU/2UQvvElVf09VT1LVUwA8E8BHVfXZ1mY7ATw3zl5/FoBbVXV/+FHKfjn5ZZ6epHW1yXPeZsvlNFtFC85JD3Ib9LExiYiIqK42728bBoNar5+/Rm/Wuyd4LsivTDPafhHZXrTQfVtE5CIRuSj+9QOI1q2/AdFf+K/X27uvRXBW5sJPq5x9u5hMI9lH0TGWWmgtjo7pG80w6yNHXGZiaTwiIlpIvbtH5TTcz1YOo2Xr/zD13mNo3bGdunVxHS7vuLMSl9C0lAnkrwFwAYBrReQzIvIiEblfO8WKqOpVqvr0+OfLVfXy+GdV1YtVdbOq/piq7m6zHPOu3AWxmWB++j237ovfbN3wgLwb0MHRaHaG9eVUQtirT0REXWqqh3tm7snUA9NPZkyzr0yyu6cBeDCAVwA4BsAagJtF5F0i8qSWytewppaf63mSieHQ+NLmXRi2e1+fL79FcDDYVCIYa/7Clb1gLVn/++WVu40MoW0HrWurh0sfw7V9I+WcwjI4REREIexgvWzwPs0gvZsGgXSdyX3vzqtXLXl+ria/DtZuT7W/XtmVro9PfVE22d3NqvoqVT0NwFMAvBfAMwB8RET2isjvi8iJLZSzIU0tPzdLXI0OyWNVstYXXyz7N/R7j/X/LPO/B9ccuypJaFrLehv/XW0brsv9G5vXrLtERDQ7fIF9X3rZi4b71280r1tn2mP93LfpmeGy9dry56bZuk25449G+9grP6cq/1Wp6pVxEroTAbwLwKkAXgngKyLyPhE5s6EydqjKRaeLYHEHgB2dBUBlLg7NXkjKnOviz9K9vMk8BP8eq6u1E+T1r9GGiIho/jQ1T79fAd0O6/8+mXaZ5ri+Sa2pHPmJyHEi8hIA/wLg2QBuB/BWRH/5TwZwjYgwK0OPzP+QZv65TZtdIXA2Jrl6340GhPnLtktERBTG18MffG9secWa+a871tVU3bPMcHkOradIqUA+Xu7tHBH5a0Rrub8WwJ2IssafqKoXqOrFAB4E4CoAL2+4vDUVz5Gvf8Hq7svl6x1tbm5P+mIVnnmTF5wwIefJP+esTGt9lzfm1LFzp3FM9GUoIxERkW0viu9Tec830ds+zcz6Ub2yTI91SP1mep0x/RqV0L5Fe7+LpMw68pcB+CqAfwDwVABvB/A4VT09zij/3WRbVb01fr6HfzkhF55kG99FJTwwFVkJPKZ/n6FJ1txf1KWcbSbJ7pKgPDTAGww2tXZhCClDtE1RIhX781uynisbOLv5z4P9uS85HmuH7xxW6f3Ovr/lguebxR57IiKqq8sG4a7uY97gPqgXv6j+UxR4268vE6iX2TY04V5Vrn2U329x3bbZhgwG74uhTI/8HwD4OoCLAGxU1Req6nU52+8BcFmdwnXPF3SVmcfS9ZyXvONH76/KPOc250aHz/W3E6nY7M/P3ibksyneJvxcdP23EMa+2WTfX3Je93ieZ8I6IiKaP9NqDGg98A8aDddksjugXEdGU50ebdW7wvcbXkfsY54A6rsyte0lVX2cqu5Q1duLNlbV61X10hpla8F8Z61vP/GY+yJTfNw+BrDu9zJbAWj6vLqy1tu2tFWUGvpYJiIiIiDs3lpFyHD8KsrWBdsdkt9F8D6ryteVmXCYyqwj/5kWy9G5OgFcX75I0xxGU/dYrvPd3nkMGwLVl88xX/HIg83Ws100ThQOITN6A+yeBybWISKiLjXZwDytXvxSDQ6BCfLWVg+3XIfoY0cP0ezwfjtF5HwRKf3tFZH1InJBvWL1Rf058tPR8IWw5QyoaX3PNN/UZ93m30z6HJoVkC6D4txKRd7f2FT//oiIiPymmUTOpfIw+/heOv0keGX0rT5t6nv9NMxsdFJRVXmB+usA/LuIvEhEjivakYg8IF6O7j8A/N+mCtis4qz1YfKSfeUlWGvL9pznqidrW1s93HhQVeeCkg1Ko/cWmgwwey7yEgGGyl7o/ftpOulKftb65HwVBvPxZ2yXu/h8BL6f5G8o5G/J2KbryhMRES2GRVkZpdx9dXKPr9YpUCfZXT+TtU3Ow5L1u1uU8DpUO/FCH8/jIhORM0Xk2yJyp4j8QET+ts7+8gL50xAtIfd6APtE5F9E5PVxYP+/ReRXRWQgImsi8kkANwJ4NYAPA3hYnUK1p6k58umhzOngtCjBWhu2trLXNoZT1bmgZMtT5twuO7ZP/16nkSHstU38LVTYR1EAHbgEXFZAWYbDyf5LHqeteYlEREQhfAF+0w3NZe53vh76pEzNBW6Te3y1+mBRQmKfvs+V34Hw99N9cmz2yPfOnQAuVtUfAXAqgF8QkV+oujPvN1NVD6jqhQBOAfB/ANwfwIsBrAF4J4C/APAGABcDOArAHwJ4sKpuVdVvVC1Q19IXq75fTNLcX9Y9jXyJ7X2Mf6/YYz+Zd9X3c9zUhTUkq34901veZtKqHvS35fobyQvqKzcsEBER9ZOdv6Z11r001Xvcm/tsU3WsNuqSze5z2vmKGMD3k6p+VlX/Mv55P4CDAB5ZdX9HBBxwH4CXA3i5iJwQH+x4AArgGwCuV9VvVi3AdDU1tL6OJbTZSx8Nh6+5E8cFfjDYhP6NdC5aRz5v6TS3uold/K9v6nP3D71y9RxsG67DJf374IiIiGbChsEg6u12NErvRXMBepP7qqt8nW8ZbY0ODT9+G9v2VV59ch7eX3VdroR0U/Tfz4iIubrbe1X1Oa7tReSnEMXU76x6zFIRS9xLf5Wq/rWq/o2qXj07QTwQnat8UYtl8iXwfRnyviRdzJGPjuEeTrXkHWY1GKykfh+31np72SfvrdzQraWceUTJPifz/N3bpgPwSbBc5bNI/5//XqrnGCjeV9Hfmeu1y6WOubZ6uDgrfMGoirw5/5WH8JWZN09ERDRHfEP2y87Vd9WX1lYP597nR6N9gffeJuuvZXMS9SsYtXNhDQY7A19Z5hz6tq1a955I/h44X34qrlbVY4x/viD+AQA+COC1cad5JbO0aPZUhA2tLzPcpvulNXzDa0ajlZJ7mrzvckN2Qs5BuZbcaolX9nj+D3mNz44S58K3r/LnNW87e65dUOuk46aeHMN/rO7/tomIiBbVtuG6avP1V1enOB0PmPX6QrfD1ENjjr5PVaWEiBwF4HoAH1HV362zrwUL5NuZut99C1feBdL1XGCSsqmoe+HJe335fXex5nqY5DPr14W68Zvb6mqPPwMiIqJ+KBuIp+6tQXW82Q6+2xN14DRfV+H5XgQiIgC+AOBGVT2v7v4WrMZclLXeDpLaGNrTxhe1m3U4m12jfPIewi+OVTOi+s+Xb4m7UP6y9/QC3ZuEN7HhsOG/KyIioqymlpzrcum6tu+X4fWxfnUyNC1/memmNFWXn+/PYg5cBOAhAH5URL4f/3tF1Z0tWCDflL4FZdmLirnWZXbEQNjFInuDqHrxyh7PdXNod2RD9WUBi3qdpzMiY0qNNUYrffcjTYiIiJpXFHy3Mew875hNL2cHoIGRld10EpUxnXpKtu47GGwy6sjl6pftl7lf+QUoTVW3q6qo6lHGv8uq7m/BAvls1nqRc43f2vjj7/OFsOn3W5zMJLnwNddI4D62e5/2Nk18NqHlXso5XrKPPdbvzRw7tELia9nPS3ZXl6/y0kqlhoiIaEbsRfUed1dnSRO998WJi03FKwsRUT0LFsiXHVpfRfWe33rHTB9nchF3rSNfdb51+fMTHXtStqRc05lbtMN6zt6mmc8mbJ74npzjJeVcsn4v4tnOGi4fuhSH7zNpM9ldkpjPTtBn/05ERETF6tavJsF63Xt8c/VfuwEh+b1anp66dd/od/95zm+06CKBcFJWri0/fxYskC+7jvwOlG9F7NuQFnf5m2iZTS4MszkEe9qtw1M8XkuJChv9nH1z8/s2Z5+IiOZOX9ZrL6OVLPMV6gvtzcsvX3826yXTy6+zbAXEXdT7Q0ahujGYny/eQF5EPlrh3z9Ns/DNs78EReuQh+h+OJF/jnzZtSnT52Nt9XAm8HJfIJbioL/6hcet6Nzaa9S3MbQ+Lf9GUvd4y0ifr+WgfdYdWg/Ac7PP5l9wrl8bwB5Kf3A0wsHRqNMkQkREtHhm6b7TxOhGs46Qvn/n1y+S+7/5mjKvz9dmwray0xeL5siXU366YrV68mx2slFZeVeAhwA41fr3aABnx/8eA+Cxxu+PjreZI00Mk59uYrxyF/Wq68JXORZgnosyF8CkbNnXFK/xHknWqA8bWl/2XIRfLOv+LexA+m8yO6WiSF5Q34tl36a27CEREVH/pRoWmr5HFoyCKxuspusRVVcWqqb5Okw767d3MbSe5pf3r15VT1HVU5N/AJ4C4PsA3gDgRFW9v6oeC+BEAGuIJqA/ZRqF7l7fvmwtrCMfoJlhTO20uuZf0Nufh9TeMf25AJKhglUTxeV+nhzyTkRENBVJ8F4UnPZxudamysQh4Hny8kLRIinTfPV6ANeo6ktU9ZbkQVW9RVWHAD4Rb9Njxxc8P4115NuQHY5jLj8Xsn3jptKzWuZ9mJ/lEqbfGBM2RC2S93fnWk4w2t41HHDbcF1wsrsmjCsdgZ+/s9GBvfJERNSxJofYT3O4vjeQju+t4aMIrbqIcW8OD9ar1rX6Xf+u28jg/gyamH7p1scGH2pGmUD+bABX5zx/FYAn1SlMd9x//M3ML+l6jrzrvUWPDQYr40eamktj7yf6PSlDV+fCzm2wjGjefEh5fBfGKu+luflPk/NcY468L2C2Hm9lnpXn2Fx2joiI+mSe7ktVc+ZUCwSnu/xc1WDVXIY6ZEnqwWBT4/Ui87hh+85b0pgWSZlAXgE8Iuf5R8Xb1CYiLxGR60XkCyLybhG5p/W8iMiaiNwgIp8TkcC/5m+UKsdotFJqe7fp9fy6Wwi3Oh7bEW+/UvIIxcN27DKkf+96SoK57N5W5M/Z32H971NmKJN/+bkyrbuj0T5j++Jz6u2RL8gcnxyjzeFtXGaOiIimrUwP+Szdp9ZWD7eS78bcZ/j+68yR78MwcXcZ+jHkv9z57EUOJGpFmU/2QwC2ishzRUSSB+Og+nkAXhhvU4uIbAKwDcAZqvpoAOsBPNPabAuA0+J/F2KSlrxlfWn9cpfDbMWbfGmXWr/oTOeitqfmhci8IBet515G0mLbxE3HbGiorlSlw9MzvrZ62NkqXHl4Vs5w+UxDA+fjExFRB1w91vPUI5+RO5WtD8F0iDJBbTP1+Dbrvf1oKKBZUSYy+g0A+wC8FcA+EblaRK6KH3sLgJvjbZpwBICjROQIRIu/32w9fx6Ad2jkEwDuJyIbi3dbNEe+jTk57S95ll/uZe8wHXNofZPzZ1xLkkSWJo+Nbx7F5zza31KFpd3ylg8sGpa0bE0LqMu9VFzUOGFPPcj/PO19Fg3DKj20Ppac78FgU6V560nlJ1UJsvYTUkGapaWAiIiI2pK5Zw6H7awvDyC4/jMcepY5DhlaP6n3hOcK8u2jaY4ylM4zkLZtuG5Opu1SXwQH8qp6E6Il514N4NsAzgTw+PjnVwN4TLxNLaq6D8BrAHwNwH4At6qq3dO/CcCNxu83xY9liMiFIrJbRHYDX/Uctc1Wx7Alz5rgbsVzDdveE2+/Mn5kWsNutg3XWQF56BB2X4/8Hut/92uz/0f/ptfyWW6puPD12PPfw9rqYffQ+rKBeYVe8mRkQGqEQM5+dtnbEhER9VB7wXO+5B4ZOkpgWuV010NChtZPRiL2rSe6q3XYw45bXJ/s2/mkdpSK3lT1VlX9fVV9lKoeFf97VPzYd5ookIgci6jH/VRES9sdIyLPtjdzFc9T5itU9QxVPaOJ8rWnTIBvbxvWEFE2WC/afttwnacltprmLzpNNNA0NUd+D5pvQXUfu6lhgK7Pv7EGnzigZ+BORERUkdU4nrpH156m5q5j1E98V+54zeo6V1OkuOGDKEwfsx/8LIAvq+o3VPUuAO8F8JPWNjcBONn4/SRkh9+X4BvCYz9eZZh16NB61zT/oqFIiSQLvSugdpV5Kd5+ZfyI68KcfWy54Pkqlq3/fSbveXJc93D1yTb2kHX30Pp676P+0PvqDSH+92/aZf1v8wX+qfMS0oM/HE5eY1QgDo5G7grFcIiDo5GzXF31dhAREdlTuux7Um+mfFn35nr1GX99InS/6e3KLhFctT4V9rp0Rvow0122rf3h8l2NMqD2lArkReQYEbk0zhT/vfjf50RkRUSOaahMXwNwlogcHSfVewqAL1rb7ATw3DjR3lmIht/vr35IXytg8nidJGShQ+td2eWLhiKFcJU5uug1P7S+6GJa5SK9HLdcljsX6ffjGn6/B/VaP6smucueg0nLbMj52WH9vKdCGdJ8veLFLfvZ8lb5O3IN/fdm2iciIurY5q4LkMjrkS/NqBPFDQR5+3P1KrvrXvbPLnXqMdNKytdMziT/6FPXOco7b+XLw+H28yf4Gy8i9wfwSQAvB/BAAJ+O/z0AwCsAfDLephZVvRbA3yD66/18XMYrROQiEbko3uwDAL4E4AZE3+BfD9v70SVLE/4lSSUGq6RMS5y97eQiVrb1sNxFf4fz/dW7MEzK7k/KtwnuEQv+i3e1VlTX513cODHdC6Prol7x5hI47K7oXI4/t6L9BfTqz3V2YCIi6oW6gXjTPfJ1RqGZDd9rq4eD6yTTHVXQZm9zG4mqo7qtu47sqnv6A+7mesHbeZ80XSLynyJyWER+0MT+ykRxlwH4UQAvArBRVZ+oqk9ENI/9YgAPB7DSRKFU9RJV/VFVfbSqPkdV71TVy1X18vh5VdWLVXWzqv6Yqu4O27Mva31RlnAzm3jxcOb0RTRv22YvbO6Ay5+1HlguGfA2cxFJXxiz+0wPi7cfr8POoLq9kQts2D6WUO/8Ja+Nyjw5Zo2/ISOwtjPLZ25e8bbBn0E8bD5EpgJTIUM+ERHRPHMG3o775bh+kHMvzb0/l1hVKH8bs37i2y5dh3HV/7J1rOIVp+1h9GWH1edv76o7++pi2fftrzOG1ueKt/M15nBofS+sAbBzv1VWJpA/F8CbVPXPVPVQ8qCqHlLV7YiWoHtGUwVrxzcqvs4cWl92CE9INvVm+FoO7S+0e735KcvpvXWXyTX1oCz7fG/NaXENF9b6XX8IfGSrdczs31Bwy77vM1hdzd6k4m3tc1VlNEKSJJGIiKgLvZnjXlJIA3nIfblKolnvsb31ObN+4qv/pOsw06mT1q+LbRuuy5lGUFVT0w+mNdWAqlDVNyKaRt6II0ps+wBEQ+l99gB4Xr3i9JH9hTCzjy8B2DMOetZWDzd8EVrC5Ivd3zUjK7XwDYeIGqXq7GsZZZd1i+RvPxhsKhWgRtuXLEKNY2ef3xElLixbBl8wPRyWz3Yb8pr4+bXVw4Dn0MxiT0REfWQGspvRbWOAr8G+uXXKuxFNDWjzCNXr0lXPa/PTL5ndPk+X9chjPvtZ4GMf+xkRud14+L2q+py2jlkm6vw6gMfmPP/YeJse8w2tz2MPpbeH9KR/H432WV/20Kz1dYet+/ebP/c8R0u9pqHDs9MXv+KhVMWSc7QdydD6trinBxQNFwthD63f7jiOwfUZ1vhc7c/Ofg/m86mLqeeYzE5PRER905tkdiW56lfh99lsPTKvvmbe/931mZCh9cl2k+fbb4ioV98eDDZZ5yV/ym3zc+T727FHAICrVfUY419rQTxQLpD//wCcLyIvFJHx60RknYhcCODXEGWT77G6Q+uB9BDvPbCHfGd7VEOz1hcNhSnqmY+ez44I8O+3sJWw9hqk5ZRvtSzbG59suxWuz85/jPKiz8F+bfr3yfstc4xoqsTktVvzX9/wZxg84sQ+bmA5mOyOiIi6NqtD73Pv0YX34Wx9Kuie7+0cCK2fTbabHK9/w8OTeld2SmZ+XbRaj7zr/dsraRGVC+RfgShT/J8BuFlErhaRqxGt3749fu6S5ovYpCo98qZl5PXI1xtWb7YQ5rW2udbajH73Jbuz1Uka14elK6qdZ7PF1OyZLzofTWYJ9e0r9BiTz97skR8MVlJbVVm6zTUUKTkveefbXmveu63nRs9l5oiIiJrhq8/YjeShjebj/QWO5AtL9uwfDTkpf1N1L7sMoUFwtuz5PetN9JIXjRQN7ZFndvtFEhwRqepBAGcA+BMABwE8Lv73TQB/DOBx8TaU0t8hMF0MrTdvMlUbFMpf6Ot9BmHDoqZ34SwzTGvbcF1hz8LB0Sj3ph7NaR8GH7MMDq0nIiKagikkmdVDGzPHKZsxvl3hUyrz6lr1V1Eq1q/zRk0Rka8CuBrAj4jI3SLy1jr7K9W1qaq3qerLVPVRqnp0/O/RqvoHqnpbnYJMx1drvn4HssOxi4Znh7b+7cAk4Nxj/W/uy1WGaLhN6HqXyXblh9a7hzqZ+ykKMsdlXF1tIDFg6NCr5LyZ53MJ+edtImwUQp1hYEWrIZirJmSndtjlq5LoI+8124brvEPyynyGrm2dPfLxsRjkExFRX/QtGauvkd5bZ6kw1c6ss4WQ9fuN38oMAZ/UgZod+Zldraja60w7HPWZPQXlnuzPv135qQiusvVxWgJNqOqDVXW9qoqqHqGqL6izv47WHuvKgxF9AarOL8kfWg+4vqBm5nmb/Vxer27RcJuoESDbSujfZzZhh59vbfdkP37lLyghZYouov73llxk02Uzz+FkmHp7Lavuzz35G5mUrUxvvj0dIPt3YfauFw2zCxleVzSKIuj8uZa0gydYHw4ZxBMRUS8k9yPzfrnI08L8DfhLVr2mzLro2cTM7SS9Cy9TXt0mm+yuveTJ5RTXJ2d5VQPK8gbyIvLTIvLT9u9F/6ZT7Kr61iNvP5cX9CbHce0vL9FGjWR3huq95/6Lii8DevixihsJJu9xGdE5TMoz+Syns25pVrVW5+K/v6TXIO99lelZMPfj2qf3OGYLvmf+vK8ytMiVJCIi6o/kftRmj3zeFDgzg36mDFZPeeo+m9OLXua92HUVf4AbmtzZ9brs6ELf8bPKdBiFlymvDpVNdhfa018kbz/1EzSnkyXTPMiLYK4CcKWI3MP8Pedf8nyPPbhwi+LEZ/4eefdrlzw/+7Yp+9qkXOWXtdNDG52P5/XS9qslL7SRIJ3cbvLakGR35cqS7Cv63/5Mogtssnxc+lyG9spvx9rqYWP4Wn6PvDlXba+1jbld5jM3Xle6R94zD6/esjhERETdMe+T07p3la2frK0entQt7Hux5948qRu465G+el+2bPbrQ3upJ0neynSsVEuMV2aUgD+JdPke+cnz+fXovP0kzxXFAxP9qrNTG/K+Mb8W/7vL+t337wXx/z1Wdfm5hGupr5AeeXvuu2nJ2rZp/tY5Wb9/fNFscnj52urhqS9dF2ar5+cmhLcIJy2i6VbRkNdHowrSN7qC9+H5HEJa47saqUBERNRnXY0aa2OJ1kmPf7k6qGueeFoT89G7ssexzFzCVV+bZo98H88XdcVbU1fVt6nq21VVrd9z/02v6H3RVFZ61/JooaKh9XYwngSK4fN8itUdktNsBnR/8FschDa9msBy6rh5x7d74+u1mC5Vfn1uMG/Oac/5vJx/D0WNOFPInEtERDTzKtwv8+ppSe+72SCQN6zfVUdsp5F/RyO9x03nPDL3Z07VzA6tb0pe3TQkRsgvC3vo50/Qt1FE7iUiHxWR89suULvqriMP+NZw95vG8nN5w3ryk92NBd4smr4I1Ntf+Pz7SHKOqiTtC5MeWm8KX5M0ZNhVXqK8ZMjfNJZHcZY1728p8O+MQ+6JiIjCmCMEkvty+d77sPpqpm4xbry3E8RN9ldcv6q3hG94/S19HP8Sb/l1tvaS3dnnYSnnOd/ro+0YtC+GoEBeVb+HaM34GReW7M6fzX2yZFm4kCEwyfJo9mtCM9pHy034Wkntx5PhQqlhQw0NhS/qsW+2Jdc/BMl9nGR7d3LAdgPfPUg+w+Qcpf/P+3zNC/mO1Gtdf49J63rdc+362/DtM6kwFE6rWF3NPG/2BpijBJjwjoiI+qLNZHebizcBUNzInXvfL6znZetF5v6K37+dIC5kyTUgqePUGfEZ/toyyxb7juGqb4cNrS9fzzTrhknZyy8/Z9c7aX6Uqel/BsAjWirHlCTJ7ur0kptfqpD9hA6TSVrRlozHXS189v6S1/rZFw49tDGdEKUNjp7XvOXuqpWlbAtofo+8LeSCV+ccJq8ttw+7pbXgvXh6wMsuO2cyP8eQm1KZ3vUukgkRERHl2Yv+3J9SjdzxPb5OeSaNCNn6qnmP99YbxvUMu0c+tI42qcckry9bt2q+Prs9dzm8bN2niR75opgiOU9Fye4m59Ne7jibaJlmXZlA/hIAyyLypLYK0766y88VL62R/YKELD8XLb0R/TPXuTdb1Xwtcclr3UHVYLAp03K4bbhu3CNfFIjZF25XcNvEMnbmPsJbLM3zE9Kokt9iWrYHezDYlEpaV7als9rr7B55z3tKbqxVR1p4lotLH7v4nB0cjUr1rCct/lvAHnkiIuqPNnvk+8HdI5/c8zcMBgXT4+weebN+ktcTPulFjl6/o3S9KHz70ERx2bqVv+7T1PJzvuWlQ7bL2z5ddvbKz5cykcuzAXwNwEdEZI+IvEdE3mL9e3NL5WxI8fJzY86LldlCV2ZZDdfPrm3M/8uMGtgOV89sUatblVY5V2teE6171eaLh0rOjfmZbc+8F7uXOfTYxT3r9rx2OH8PY3/O2b/D1BC9Coly8nrr2xrJYfcmsDeeiIj6pI2M8f06prteG37Pz1t+Lm/04GSkYVT/Wi6ZEHi5RhmrbZdNBtzUHPkQ4cvP0fwrE8g/H8CjAAiAxwD4X/Fj9r8eS3rkA1rknD2ZW909oZ41tyfHcs15h+OxoqXqfFzL4k2Yc+HrtsrVacnz9bQ30zpYlEMAALbGF/uo9TQ5ri/TfN489DDJZ7jV2l/V/bjKkm0FDu7JXl11BsxN9zqEBOV2mbcEvo6IiKhNyb2oDz3y9r0yCfQbG8FWa1WZvOXninrk03XV5Hfz/6LXh9kTuM/8Ong2h1BTy8/lvZek3loUH9gjN2meBQfyqrou4N/6NgtbX/058rk98p5e/Imyxw1tWXP3yK+tHs79IuuhjdkHrfewYTDwDtmfJvfxis9P9Dq7Rz49z7zMfO+wcuVv20Sm/vIjQxyMz9obNOc2UhW8xnjtwdHI+f1wLXvTRa8HERGRyU5A16d7U1Hg7rxfBwbp9vsMrxttz5kjX9QjvzzukbfrStUz3vvzTBXvs90eefP4k8z5RTmvsvP23dgrv0jaWAyyx8J65POC39y5yZ5e/ImiVjT7QhDawhf1yLvmwrskFyBZvz9o7+Z+7ItImRubqzyj0b6gC5P7RpI+P9lkesm8qR2O7ZcCWyubWx/Uf7wd2e1SN9x01vr0frJ/I6mgvCiDfI7CDPRAeu4c/H9zGwaDyb6M9+aqKG0YDNgbT0REvWUH0qFZ50P3l9gwGOSu855sk7BHGrYpWy/bWmOOfMQcPRqSxylfnV7yPany2NMK0z3yyzWPlT5mZNnx2NbA0QlNrmtPfVf6my4ix4jIz4rIr4rIA9ooVHvq9sjbrWHGfoZDT2un61j2XHjf2vSuFr7tsOd6J69ZWz08LkNIdvg2soIOBpsy58Hu+R4bDgv3mX8RL87wmd5/urXYe+xU+eu2bGbXUc1eiNMZW/PPSfEc+ZSANd0Lg2bv33Y8qiN+rrBRJ7BHnoiIqM/s+2ZT97KiBoGi+7W3vlVRuf34euSz9ZTsOuzpx5vLrm7XE8uMdPVbWz3sea/+emnxuVxyvOel1AjM6Oe8sqWz1jND/fwrFciLyFYA+wB8CMA7EM2Zh4gcLyI/EJELmy9ik0rMkXcGLmZr2Pb0fuL1sbOtoOaxzPnvS5jMn7fXN98aP2+28CVfzK3W49m5+gdHI2wbrvMGha758nkBX3LBCunB9m1jz32y9+/jm78eccwdzx06tnWcERVY9r+fwEzvSbnzz8sk70H+6INJC2r+/nZY+/CvI1+GqzfAtY68LRnVkQrije2LRgf4Ki3MWE9ERH3VdI98cq/M3L8D6iOuofDJ/Xuva581uepjUX0or0e+eB++x+vN9S6TbyrLrJ+aPyerP00k79V/vOJREnsKV4aKfs7r/Z/UCRnE95eIvExEfhj/qzUINTiQF5H/CeBPAVwJ4AJESe8AAKr6DQD/COC8OoVp34NhtmRF81KiIMs1Lycrp0fey7eN3Spo9sxnXxMd17Wv7Y5yhbWiFn7JKyQ9ycs+X6eFuF7rsnuOfFNS7zngnBVlrx8MNuXcvJedLdl1W993AZmymyM8fJx/d7WS5USVEg6tJyKiPtnl+RlocXRZzftpWSHTJf31jahHfrIPs85avd7lnk/ufr7s/qpK98jvQHtZ69PnrWq+AAb1/SEiRwJYAfBzAI4FcLaI/ELV/ZXpkf9tAFeq6i8C+DvH87sBPLpqQabHbsnKtp75W/+yrx1/OXKGH0+YXzBzX8kFwLdWfNF8bmNfq6vOzKquC29IkjfXRd3cPjSLa9kWVfuiM27JTK1vXtyQkpeor2wAnme8L2cA7r6wOs+JI1FcSIuy2dKb9AyEzHFP+DLh5r1+MNgU9Lmm9j3lSgkREVEoV0DuGiHW9Kix0P2FJrmz6z67UC1Zn1n3Ki9vxZ1w1Xvkmwmu84Lg6PyENVJU7XAxjx+di+L3ZXaeZV9PHXs+gFtV9WpVvR3A1QAurrqzI0ps+2MAfjfn+f0ATqhakOn4BkqtJV/GOJGX/UTIsJ5kKH3e68on0jCDO3M4ffKlTobf55nmcivmcLAqRqN9WAsu7g6MRuk59CHno5pyN7DRaB/WDq2W2t58H01UMMaf+3DoDeZdN4Rtw3VYa+D4REREs2Iz6vXKtzEKbcNgADSQaT/8vr4VwPs9j+d1vETTHacpNKB110ntsrZZ/mxdtXho/XKcKNCxMtUiCOzAasUb3wh87GM/IyK3G4++V1WfY/z+cADfNH7/CoCfrHrIMlHToYLtTwRwe87zPXA8si1ZVVrskgyVVrI7izl0P2IGdEvIJsfYEz+2ZD0O6/ewZH1ma5zr59TyGZ4//GS+vY+zhbfklygkeHcH2Muen33y19Y0z0f6ounet3/deQQtSeI7Rl7r72CwyTjuduf2IRWCJioNg8GmzBKG5iiA5G9jfKycvzMiIqJZ1Wbi1rz597us/816ia8HPrTDonziPF99x71Ecqh6w8Ld9eXqqyUVvbbeKADXvl0J8Ez2dMskUaCZcT/5v7kkgpTjalU9xvj3HOt5cbxGqx6sTCD/WQBPdT0hIusA/DKAT4XuTETeIiIHROQL1uMDEfkPEbleRP6P57XnxNvcICIvDX8LX4W7JSt6LDyZmyMxmTdAyeuRN5NjJBe5ZN9JMrzkefN3UzQ3ZzTalyqDndDO/N1OILfN0dba5HqpdhnMfZca5pNpLMkuP5f+HOyecDORSOga9H65CQDH5TBbagN65gOXe5vsb8e4LIkyPfJ7A7b3NbTkJTAEot6ALa79F7zHaY4CISIickmCc1fDd1t5XKquXW/eZ5P7sn0vDbm3urYJHylpJ7sz5dV/lguerypJIN2g1VVPva+J5efcdeLsY8XvyXzNtuG6cX2NQ+t74d8BHGf8fgqiUe2VlAnk3whgi4i8EsD9k9eLyMMB/DWiDPZlRtW+DcA55gMi8iRECfP+m6o+CsBr7BeJyHpESfe2AHgkgGeJyCPDDvlg+BPGWXOnV1eRvbBkl7EobtnytQaueJ4LbbVMXrsc78+fZM71eyYTZ9H8J1citMBt816TlwSvzLk1cxVM9ucPoJNWSeexS/Qam0vKVU1Ckipjqvz+4032F+3z4Pr12Y2D8jYUy/t8nM85jntwNHKuI09ERET1tNWw4K2POO/j9vJzQMgI0qheM0ncWxRsuupaZUYZ1A1m3XW9wJ740vUfV5xRblSu+XsT759qeweA+4rIE0XkGAA/A+DPqu4sOJBX1f8H4I8AvAzAF+OH/xHAvwH4RQArqhp8LVHVjwH4lvXwVgB/oqp3xtsccLz0TAA3qOqXVPWHAN6DBrLlZ1oRx182Mwhctv43Wr1SX047cEwaClas1+1B9su/FVESvRXr8WWkh+BPWuSKvpjRXBl/sjvTwdFo3CLrWlKs6TnkqV7dnAucqzff1yqZbREukfXTKEOd92qWIW81BNe69r4W7eRztss1Gu1z38RLDmOvlQgn59jTGupPREQ0DX1cIjXvPlqmvM2OisvrPZ4szQtM8iSFjIYM48/g3l4w20zPfMJ9LvIy0+/IvK6d3E9UVRzjvhLAPwH4DoB/VtWdVfdXKrOYqv4BgDMAvAHRNeNDiHrqz1TVV1YthOFhAJ4oIteKyNUi8jjHNpsA3Gj8flP8mJOIXCgiu0VkN3AQ9YbZmOu9W0oPrd9q/V80rMi8OIS1xpmSITXpJTMmygRxdRLSlWVe4IN4hz0l/Oe57vvyHXc0Orfg+XI3lMnwqJy/mcAgfjPaDaKT4fVF+lgpIiIimgUh99BxPS+gV/jgaJSZPldcT/TVSZoNbusKG0HpqRMOh5npom0z64iuck+zTk7NUNXLVPUeqnqkqv58nX0FffoicryIPF5ENqvqHlX9TVX976r6NFV9sarurlMIwxGI1tQ7C9Fyd38lInZSgFJJAlT1ClU9Q1XPADagfCKK9Brk5hCgye8YXxjdAadrDr4rcd3kZ/cSE/6h2SEtmHaGdlmfnZJhtsTarbLpRGvpfTtVHUKd87p0mdyfpf9ceBpA7M8u/j15r/b+fOuY+ltOo8SGodMffOcz23ufM60i5xz6bsbmuS3TsJO37nvmOU+52CNPRESzoul7li9Znu84dY5f5v4eMtR9wldH9SW7izq6yiZgM+uhbQ8Tz1vC2P38Eqol9vN30GVHde5IPWcnuwPyzwuT3c2X3EBeRNaJyOWIJuFfA+A/ReTjInJ8S+W5CVGaflXVTwI4jHRCgGSbk43fTwJwc9juv4q8XsyQtdrNntDM2uHjIMX3JXYN099j/W5ua7dimpnyt2Mw2IloaYp0uZOLtGv5uYR98dkwGADDYeoCn3uxNwKykOHVTYvK70g6aLSWuhVcYDNlDk/AYuYamJzf5PVbU+VKni/TkmpnIDVVzZibl8wHQLMrEFhZ682/L/bIExFRl4ruo1s8P0+zDD6Ze3jpjpSCTi5HMuUsX897fo982WA8vPPIfdyqgey24brAOpGn3pj7mSRJrdPMczP52TUtt+DYNLeKoogXAbgQwC0A3gvg84jWuvvzlsrzfgBPBgAReRiAeyC91h4QZcY/TUROFZF7AHgmgMC5BflryOd/uc0vWJnWNtfrfEvgLVvPubZbtubPTxKE2DIJ7Sy+92sGWLXmSmWWcSvPfr27cWEptZ3/mAGfW2aJtPRrXL3xgP9cTz6roukQ1ZdmsT/b1HJvltKVhILKgCuZSgj7c3Q1JLS5nA8REVFVizCKrHz9LW/5uS40cFy7DlSQkDh//nqe/DpietnovPdV9fg0q4oC+eciSmz3CFX9ZVV9DIA3A/gFEblfnQOLyLsB/CuAh4vITSJyPoC3AHhIvCTdewA8T1VVRE4UkQ8AgKrejaiB4YNx2f5KVa8PO+pX4U58FtKCFbWAmV+GsFbEpJVtO8ze2cj2+J85Tz75ednabsl6Pt0Tb7aQFgXf24br0hen5GdHS6MrcLaHoCd8ydzyhk2FJjWxW4Cj3yf5B8xlAMsuaedK6meW3bU/e2iVO1niUjw/Pskuv8N6PlzqPIW+1vF55q1HG8Q6NudmERHRImhzadSy9+Yt1v+J0KHwGw4dsh7ZWmn+dXEnylLm8fRw8Em9uvn6RPXe6cyIWwdzFKZr2Hv6ccdrU6JlqH0rTSVJAKNzFC097N53Ntkd0P4UBOpO0bfm4QDepqrfNR4bAViPKDFdZar6LFXdGE/0P0lV36yqP1TVZ6vqo1V1SVU/Gm97s6o+zXjtB1T1Yaq6WVVfVacckZDeUFcLWNFFIr1EXPo49tB5376SQN9caz4xeX3IvOqibZMLkn2zSrYPuRAk26aWG0OFpHXWPt2vm2TxN3MV5C1p57JhMHA2WJS9qVS9CYWWdZznwDivyfv2VQKqZKLPMIP3nCXkkh6K5JhVj31wNGJvPBER9UJyPzLvaU3fo5raX2hyutD6Spk6ZPn6ndnB5RdS93S/n+ojHcd8Kxkly+ymAv3kvbhya1XjHloPlE3czR75+VX0TT4G2fnnNxvPLZxqrVpbUT5rp53VPmEOwy/OXl9l/rr/4h/eupk0Brh70j1KzMf23jBSPfL15wo104rpLodvWcAy5Ul+TyoBdkBfdfhfnZ6Hpnotao8eICIimiF9uO+ZdUBXnS2vHud6bjRa8WyddFKVM9WRgHm5AVrMA5XPPZ8+D3vk51fIt8HOCJ/87soe33uhrVLRhWw5YNhQWjoTvNkauIT0UPnkuSSB3TLcrYeTkQDJEPVkObPQMjlVyigfla/oIuptCIiPWTW4zO7Xcb5S8/LdrbGj0T7/RS1guoCLOyC3cx4YVlczw8n8CfDSfwPmz67y7fX8bDs4GhVWGvJa9OsuZWj/HZhl3QzOkSciosVi3/fsofO7EFiHcgSZ2eH0Jv+8a9+KRRmeemU6r1Nksr/igDRvZZ9m1oQPmEtvTUfdhrXU41GZonp8Nst8GNf2yWP2ylP+0QacI79oQgL5p4nIbyT/EEWeCuCXzcfjfy9pt7hT4A1wd1j/A6kvjLNlLgncl5BudUzmtmwfP+efqz/JVG+vJTm5OO6YXBQdy+DZX+CiC3KVHlVnEGqcS3NIeHJjygR81rnPDGPKbJserZCcH1fugOgcbB0Hv8k5qTX03Fimzt9SuwOueU+moqkOmfljhclW0q938WXcTQ2LHw7Hfwuu9WcLM9SjeiZdBvFERNQnXSW4q3Q/zLnXmu+jbB0od/sKoyoHgxVnIB46WtG/JnyZHuuwEbOZMhlD6yf1oXQ9fjQ6193Q4Ph8whskllIBfhqz1i+akED+fwN4jfHvMkS98S+0Hk/+zaAdky9D/KXcMBhkWr+yX7KtJb54Zovfnnio0eTiEf3uGmK0HeZam8kQpeTiEP2+nHvRs8uYNyzdVuvG5djfGrZFP/jmHRlSy+dhLd3AELgEiL1vuzfe12iRDHvP/XytxHh520bPuVtKQ1q6R6NzU8dIXuMfsuZWuNyci3murfOeV/bkGFUqIX0YXkhERItjVu47dZe+M18/qQP5A0B/nqIw5ijStCVvvSl0+Ly/k2QPphXUmp1qwVMFKg7LT3r+7bpg0SpVNL+KvilPKvnvya2VtFVhCTHSF4wlx2PubbL7X0I6AZ6r5dC3DF3yuuT4K7llzg7HiThbVSsNt88ez9y/64ISGkTmXpgcZc2+T/u8l1+KJHc4kjX6QQ9t9O4jL3O/fRy7USmz3epqqjW7ql2ovxwdbxhERET9UTSM2l0Hq5AYLqfOmJ4G6FshOhmtmA24c+sWwXXVBpLd2UoH4J6RAUF12LSi+lbe86yrza/cQF5Vry77b1oFb5yjh9hshTTnXUc/h7S6+QJJ+/FkX76hQK5hP9ZyZkCpQNzsiQ4aWhW6JrxrWTsXz8Uw+GKTev12z2srtsYa5R6NVhyNNb6bUlr0OtdIDhR/VklGVI/UaAXj5y2IehVCPtOiVv3McHpHecoknXFls6/bs0BERDSvijo+QqdCVh1dWWrYe6ruFDZaNW+0one0ZjI/vcRxIkXD7aPnRXwjCOCtl5nvI11uT6xQoUfeHL7vWpKYywEvJn7qCWNZreTLMPlSbDeGMO8YPza+KBhBV/oLvNX6efL75EtorhvvSo7mCkaXxkFiwrnkSPxeQnqz6/BeSCsOHfLNnS8/n31yfqJzsDXTM168T08gHshubQ5etsVx7spcpJvIHO9bls/kej9NHJtz5ImIqK+6GoZvN34fHI3G99y9KBgGX7XuF/o6x9K4WVEd11wP3cdX58nLAWVqJMHbcBhUBzSP5St33kjVslnoE+xpJwbyAIAd3pbEycUmkcxHd1980l9gc/i9+SXdYRzDDNyTYN/McD/Zz7isSM+Nzls3ffy40atqtma6HByN0plRrYt4mcC2tRbCcZm2I3xpv8l5DLn4bRuu894IRqOV/IaK4RCj0Urco7+S2ieAsEYOaxvfVIOqmeODW+jzRk/4bvDGa0IrPLMyP5GIiBZbl6PJiu7dpZYdTiXmzWo+27lZX1t2Tg80R8UCdi6gST3OfJ+uelA2h9Ckd7xMAGwma67CeQ4zdac947q1r2yj0b74PRsjGDKjiXOmEwQ2StBsWbhAvrD32PqyTobL2MNj9jges5nPJ73tSfI6+6JpB6Pm/HrfsXcUJgrZNlxnLYnnzu5emIk05wYQkpE978JUybg8k/OWt96p+dzkYujeb3QudhQksAtd+3TP+JgpeS3cOc/51pG3NdErbrb0uzjP4XBYbyUAIiIiGstr5HYF9a761l6goGc9JwCsEMSadZMo2Z2rocBfhwV8DRLVgvE6RqN9k3PnSP47eQ/5CQPLJ2wOkLfOvcGOA2h+LFwg77bsnAdc5SKRfs2k5dCXiG3SW19mWM1k+5DWUl9CvuCW1prnJG+fTbX2lm1dTbYvCngrla8giYld1tItw7CX1UvbgprL6hmmHZR3tbwPERHRrJjGvdK7BHDAUPtssjtXQ8FyZtui+tBgsLOwJ97ef6NKN4aEJ7sLkUwT9e/H3ZjgS8ZM/SIirxWRH4iIishzQl6zcIG8K/DxBWvp1q3tmceLk55NemOT5TfsIDpZPm5yjKTHPnuBSycFWYZveE1bklZH+3wF96q3UkZzvlX2WOmL/LKzl921RnqdbPAAgNXVsH24zknNltpdyG+g8FUA7KDdt4+11cM4OBpNlhI0GbkmzKGHoZUOJr8jIqK+m/VG59DphaWUqONNjh+SlDgdIId2fmTr9r4Os/wVjTL7sepo0dLQ+4x6vVnHDB29WdxxVKZjaTwaNrPkM9eZ77mPAngGgFtDX7BwgbyLHdiZX0Y7WdmkN9f44nsDL/vi4Fp3fhlRErYVRK1sybGSufD7kJ0jP1lXvrgM1kUvZ7vc3teQLOsBKvfwNjIqIGrFtJPd+QLWbcN1pddpN7mmMIQktSvkbKTws4flhQbLyWdl38zH0xVcuRZcw88cZr0SRERENA3BK8zkqJqDxl4ON/fenbnvZwNnuwOssMMjcPUe13Hz5sin2VNbHYH96mp0PG/dZofn57SDo1E7uaOGQ3di68y04RZGKVBjVPUfVPUfy7zmiLYK01fu3uP0ly5K4mU+kiz1thK/fhOiL77VI5980ccmgeNolFwYzAA9CSp3GuXaAzOBW/Ra8+KT/LwVo9ESBoOoTGurG6Mvqmed74OjETBYi5/PBmAhGcoTo9E+rNmx7+qqdc78KvW6rq4CzvIVtC4OhwB+N/5lexycx+fLu30k6r337Xh7+lyaF8zQspViNRwN3Vu5brJbALyxxOMhNgwGju9JuC3IlpWZ6omIqK/2en6etqQOZd6/zfJsG64rSGmcldfba65+1MSoudHoXKytvh96aCO2DSvsIK5v+TszwnvB86TqusMh1owRh6569ETUQRfxjAJYXQVGz3A+ZQf6o9E+rOHVGI1+F1H84ZZKhGdOFzaD+dH8z5Xvchm+z35WAOBnROR24+H3qmrQMPkqFqxH/mjP0PqV1O/2/OP0a7LJOcxWuvRz2+PHVpAsfWa3hkXD7lcQBX1LmATx2RbB9Hz6pXG5B4NN+Uu0DYeTwGt1dTzMv6yQufXJ8V293GbZQhsNir+QriX7DM7khf5t7XINBtl15CN5c5Qmr43+t17v2X78XgPXkHedm73IVjDsz6IwgG4iCctwiF3w3/R3uY5LRETUkXm4J7W/UlCZbcoF1MGjLV11FGf57N7n/CH0Pql6Y855SMqfrvOlz0G5RMT+5ah958o5Fz5VZg6tn4KrVfUY418qiBeRg/E8ePvfq6ocbMEC+eODhkq7MoNPgn1zPnuR9Bcm79jR/pdz559n58gb8oIv87mci1DRBSYp/2i0rzAQdz3v2n/R/Pqw9VCLl59Llgy015EvKmPU0OIqY3hywqK/OfPGOz5vnt59e45/SH4C+7OwKyt5Q+7GDUABkv3uAgobA5IA3/U3wWH3REREWSH3R1e9oE5PevUpgfn1JF8m9aROVFT3SDVapMpUJWDPBrhBc9IddeqqUzLXVg+P/0Wiuu0kOM9vGPGer9RIAg6t75qqblDVezr+vazK/hYskHfzzZEHokQRdo98xAoenb2oZtCdXNDS87Sj/83h8iuILkI7jOfttebTxx+Xv0SikdJz1a3kbekAbEfm2KGtjv512t0B6i6g8H2m9pnatvgClj0vvkaC4qVaogagnYVzwMy59P7zFv+NlJwf7+Ma2j5mnLMyDTZJg0CdCkNeLz4REVEfVJ1z3gTXvdssTxOrASXHKNXDX2I037bhukxyuOBjGfUg9wjFbD3Z/L24/pQO6r35qKy6aPOjIbLJnJOydzl8nPqFfwnIXvTMtc9l9LtxL6h/OLrvopBefmMl/smVhGMpvpBtd2wP+Iba+7LIOznmz5eVlHkw2GQFeMvFF3BHoL9hMBi/B/viZC+zlpFawz609TWdn8AlCaQn22wvf1M03utodG7qPbreT9j+4ws61jAYbEqdJ3OfVSoXruH4CV/DQmFDkONvbZfn57ztiIiI+qZvw/DN8gQ19BfUB1MN6sY86+T+nKkDWJ1ZRWUwnzeXBA4SlyU/mHWNBnDVFf2jBlwJizEcRqv2GOW1y56uvy+lc1XlyDZKbM0eP+D1Y856OYfW95mI/ImI3A3gvgDeJiLfLHrNQgXyJ5xwZNB2rizd2aXmiodWT4L1JFv9HscQ/ejnZMj3JHt9so9JsB79m6zHmWrNjC+gSeA1vrBYF+vQOewZnou+HXTl9sRbF5WDo9F4yJDzguxbt7SgUSI1TylnSFHexdEcMRGSIDFvH7lSS975t2+ihd3m7fm2PifvzTKwYcisYNh/Y++c8jr1REREdXXZI2/y3cfzVuQJkdTt6o7+C+VbHSePP5heQlTftjPkuzqIkhGx2VGWSf3Urn+FTkNN799dbvtxM7GgXe7BYGfueXFmrXf9TL2lqi9V1SNUVVR1vaoeV/SahQrkI+aXNR2Mj9fHtnqHg9dJt0yC9kkW+slwa3uJO3M+9nbjmDvi31eMxHj2ccoFedlGiQBF66KXuEhU6nG1WxZTv4cOl4qYyUCSC7KvTKPRuZ7zWzxMP1k6sOjzcc4/s1q3x7362Nb+jTVOVFd0I3cuP+fQxJB7IiKivphmj7wrQe0uz3PTKIczmFxddfYAJysr+biSR/sC2TFHfTNdpuV43+6RtO46jbnM9IpjnzHvaAD//PXMtgUJjyfbp0cQRNn+K9T/GMTPtYUK5A8cuAvpntT0F8/+Epk9u9kLkfHa3IyQyXz3yfJz0XDrlXFAnwTp0XZbkR2Sn6wzn15jPkl8Zn6xxz2e5nreJb/EzhuDZx92cObq1XddxFPb1b7I5A+tN3vmfcPb/eVyj7xI9fb7Xh8wlN+UnwwxGkJvBs+uC3rVYDlorfmA+W8HR6OgZHchZSAiIqL6zHpdpXpCUT3NzhMVkJDY7MhKmFNbQ6STw5nH84+aTdcBQ0bXuufwp+t7S0ZdL93Rk5Rv3JPvqR/53nPVlabGPI0sNB8WKpAvGlq/tno4NWTG/NKmg2urdTD3S7IVZtBvDq1Prx2fPLc9DvLzlslbNspnNByYZcj50ibL0CUXjaAWXc/+QluDvcP2Pevem78XJ+aLzkFq+TZ7n8NhJrFK4UiGnFEI5nQGn+i1e4IT+pnHmrzn4puMfc5qB8TxZ5252Rvvd8NggDVs8++DLcBERESNmsbItkZ6+QsCR3vEqzsgt1mdNrlz8vdkt/dumy+1pJtVDwLsAH+SrNqW6WizZGMOuwFke3BG/5SCJY1pti1UIB/1yE+4hpi7e5RXrN/3BQ1PTwdq5hdyO9JD63fC98WPjr2UKkNRAOrM7G787uuRDr145wZwHkVD2H0XJefyJMZFKXpdwFqlxk3F2RDj4esld34Gw2GlJfZcn8eGwSDVkJCUI2mUMM+X+XrX+uz2Od/seDz1mvjc5v09HByNMudtLyafs6/xhYnsiIiIWhRPj/Np6j6c18mSrddUSLKWCT7jenRS9/DU3Sb183S9281ff7R74pNOMFu6/podfVA833/SYTMarWSWGc7bN9FCBfJFPfL+L9tkmIwdWI05WrsmyemA5CISfTm3jocUmcP2k+H16TlFyxgMVozH9niDS1/COPNiOw40jfJusf53spPNVTEcZo9RmFhtR/ZxYwSEmYhwfDHNWR4ktV2OyTYBjQQe4Q0+K+PtXftYWz2cm5/gkpGMf267td53496b83yZuYR9ywRMREQEdDP9ay+y9/WQcmwBmhtOndvZEZpDyj3cvGyOp1RHkjWUP6l/uOvIviDYP+qxXNn8Se2ceZAKuI+dnTOf2Z9d5+Ww+rm3UIG83SNvy1tGLneOvEeUnO7c8T7M/yeZ7IF0S+VyZt5Qdn6M1bDgWA5jrIEvsKv3tZytqX2UCTaL1mBvX/HQ9jx2srzRaN/4ZjN5fNn63TT52xjP77c+izdar9iMgOXhHK8xFfWsA5PGlWRbcx95WV03DAbegJ3z5ImIqO9m/V4VUkfIy66eKLN8bpCiTqPV1UnHjnc6afUOmDy+zr7s0HpL4LD2ZITptuG6wI6g7an9u+qHHFY//xYqkG/CpKXP+rIWBLpmMB59Oc0AcRnJEnRFSUHMjPfp8rhtG67LBFWp4UEFX3Dn2qTmRQPW/KECviFdvgukvc78+PipofUTB0ejzI3AnosVsqzJRH52+qIEdeZxk8eyQW7ekDPP8XM+t7xebV/lo0xPuJlB37tf4/uQPGc2DjCTPRERUb6mGgy891pHXcpeQz6pMyWPbxuuqzQ8v/4yuv458tntQhsP/HW8Mgn3AN+8doeKgbW5DF0kOlboCkI0nxYqkHcNrXct52APhzF7yL09xJkv5pL1vzm0HvFw+U2Z5eei55IRAEuIMtbvHD82yXC/lCqPGRzmrSuaUaKn3W4FrbIMhlk251x+y2CwCbsQ1hLqarRIyhkNwQ+7iaSPV3RRTt8EzHOcLCVoHzf7OfhvJKnXDodB+QmauPEH9eg7/nbsqRuum72rR77K0EEiIqKm9PG+04fGbjvpsFn38w2t900VHPPV/XLrpFu9PfbV5+T7t7P3WVTnTep85e2BPfrTVW+cLEOdxAoVlpKmudNZIC8i9xSRT4rIZ0XkehG5NH78/4rIv4vI50TkfSJyP8/rzxGR/xCRG0TkpVXLkfoiWBeW5EvsCwDdX2ozA30SBG6HPbTeHHKf9Orax5nMxzcviNmgLzRAd82PryQnkZ5b8YUt7wKZ3MhcQWFhY0LcmuzaLqQhouhCmdc44JoeUbR+6ZjnZjZueQ1ogLm0YD67y4bBYPz3ZDe6ZKYEOD73ZJvQof1drIVLRERU1l7Pz9O0C/WD+2fnTH0zhYxeDOsg2Yqyye7cx95eYum2/NGUIds562tW3ilTenWrbN0xb8ph3jTSwWAnNgwGPZhqSn3UZY/8nQCerKo/DuAxAM4RkbMAfBjAo1X1vwH4TwC/Z79QRNYD+FNE17NHAniWiDyySiFcQ6Pzhnm7li5zzksZ24NoPnx6nvtgsNMI4FeMXngY/6/EF4OtxjF3jF+TyLs4AMiWrcHEF4UJVeJl3wrLWLQfz7b2sPmi7fzrnKZNRmOslC5T8r+rTObf1uQmYdxICs7BeJ68o+wvCi9p2Odh2BK/JuR1dSsZTHhHREQUxmwI99WFyt7zU4wVecz7+4bBIHU8c4h3NsBfLuwUy9S9XVnrHSswbRuuS43I9C3dBrjOj3/UpSsWODgaFZzLyf6csYSzjreUW9e0Y4PcxhPj/LgbHNrJH0Dd6SyQ18j34l+PjP+pqn5IVe+OH/8EgJMcLz8TwA2q+iVV/SGA9wA4r+iY7mR3Ra12k1bEJMs8UBTgma/ZmWqZi4bGrMRJ0FaMx/ZhEqRHAbvd+pZkrY8aBiavNS8Mu2AMWffNg88JZvMuUN4ebGtdTeecfAfzhuAbwmRedMfb5wW7niz4zoz2HulANP+il/o7yCw/t9W44PpuIuXmjTmTvFiSoDtPaI957n7yRn2U1Ifhg0REtLj62Ihsj1bzTUubTAsoWMPcUml+dareuCNTF9gFV11nR/Fwe4NvqTfvtql9rji2MjvETP6Exq66a7I0sMvkuGa90dh/zrJ5hb3t8Wvs5Mm+7cZlNR9n9vq51OkceRFZLyKfAXAAwIdV9Vprk1+De9TtJgA3Gr/fFD/mOsaFIrJbRHbf+97fcWyRvuhtGAwKh1xHAf3K+Pe87Uejc63sk8vGc+kkaOlGhT2pbdLH2I5JpvMVd89yhS9sleHNdYZEm6/1Zdw3L1rj7Y3kK84lTAJ6tUPLVTy0fiXn2cmUgiQhYGYkB8ISFgIoXFYPCA+kNwwGrQTPdmVhCyYVDVdFwjdtoo8VKiIior4x7+VJnSQ3B1GF0Y/+4eQrhbtI6lGDwaZM/Su0dzniH1qfFjqs3lantzqq79l1xsz5cX4my8GjP7Nxw0Ru3dZIEh2+ZCDNgk4DeVU9pKqPQdTrfqaIPDp5TkReBuBuAO9yvFQcj6nnGFeo6hmqesZRRx0/fnxyYVnxls+1BuTa6uHMlyU7fMa8iCzFw+Ync+KjY6az1kdrhW+CGfyZifC2DdelgkFXRvQUz5ITqaXkysyV92xbGAyaS4XEinr98+by28dzDlU3Xmdmqh+N9pXOD2Cf39zA3rrBJJ9RccPQStB2AIKS3Znz2W3meu8hjTCu/VRJcuhjloHBOxERkVvS6x7ageIdeWfVg0LuvUm9LDl27Y4AX0Ces1zaYLBp8txwmLtkdLanvUoSuoh5nKL58eY0WnM6bki+Ad82do4tX4JuAAF13HpLKlP/9CJrvap+B8BVAM4BABF5HoCnA/hVVXUF6DcBONn4/SQANxcd58CBySbJly27RvtE9KVaTs3D3jZcB1m/f7xNcVCTtPAlQ6tX4pa3PUbr5FbI+v1Gmezs9RFZf9n4+VSCvIIWyiR4H8/tqdKDbz3vyw7vUjfwc83Nsvedf0E3fi6Yz589Tnb+lOtvZhvW0tMZMBmNkX5tYEtoqvV0cjxzGJyrgcR1k6kaIBdWFgIbRez9+G6EfcwYTERE1Cd2Xaj0yMjV1dRrfPfeorpb6BS91FRQg6uHPmQ/LulM+iuOTrqt8XNmj/ZO+HrvR6Nzc+eb+4bzm509Zv1zbfVwTp1pK3yjAULes5krIET9ZQCpT7rMWn98kpFeRI4C8LMA/l1EzgHwuwDOVdU7PC//FIDTRORUEbkHgGcCKFyH4YQTTsw8luphteaQJPPWJ1/YaBi+HtpY8uKzD8kyclEAvxI/vhJvsWT0xu9wfsmiHvuVuMyb0vswLg6uYHfDYOBNImJenHJbWPOCtpLD+EMv/ib3+Z60LGben6NMZYcTlVtvPkwyqgIoboTwlcf3Pt5pnNeyc9XrBNH258kM9ERENG/KJJRtS60G75zRmK7VfXyJdRNmPcNXr4v2aa7mNNl3UZJi22CwklvfnJRhj7XvpdTw/kReR56rHHl1QtcqU/aoWrdkKenwpeSKlsULq7uyZ35edNkjvxHAlSLyOUSB+YdV9e8BvBHAvQF8WEQ+IyKXA4CInCgiHwCAOBneiwB8EMAXAfyVql5f7vBLWFs9nPtFdmXd9PJe7LYbQ25WrP2vpP5PEtyZFwIz8HOXMb1PVxCVXNx8a3oDAIZD5/O5N43kNTnLceQJWe8+L8gdDFbGN5+87VLz6OPPKeRC57rJRPtacg9tciYwKdnyWZBJ3xxab79v83zmfR4hFYEyDQG+bfeiOKjncHoiIqJi5v3SV38y6wRlGtVDOhTG+7N69IGiOoN7WHvhHG+rTpX0avvqW+kymEmnowTTUZ1/JaecUUAdlcNdZtc59dUn9dDG7NLDnqz1viWSqyw51+T0R5queFn2O0Xk+yJys4g8uOg1XWat/5yqPlZV/5uqPlpVL4sff6iqnqyqj4n/XRQ/frOqPs14/QdU9WGqullVX1W+BMkwFn+rVNSatmJ8SbeOh9dnrK56sn9O1pK3GwKSfU2GYC/H2ewnF7dkGL95zLyeZTuzuznn3HXhD+6RNy4+VYJ2ADi4fj2AmsugGEajff5lS3yM81LEH4TnJEQpOQe/SHQh3zl5nznryCc3mL2YnOPNKA7cQ1v4D45Gzs8+ecysZNif8RbrfyIiIqpml/W/S+Z+W6d+srqaSl6b/B8y0tGV5Dd5bZWRj67XbBuus+onk3paVK925cXKmzdfsIycwewQNOexbxuuq5kw2T1qwFV/ddbL4ym15u/VEwHSlLwXwH1U9SgAXwPw/4pe0Is58tNy4MANmcfyMkqac9STntjyktdk51on84OiJeo2xf92FvbI5yVRMzO7Y3U1NW97F5A7191MYhKSxK4sO7grbC0uOMZgsCmVr8B8nffCa895Ss5RFaurBSMGdpYezu8yGp0bsL5qeI+8zQzA7deZn5lvHfkNg0GmZz3Zj2+qR8JsRNgL9tATEREltqBksO5R2IHiqFOkepGr1pOGw1SvdPRzkuG93Bx5W/ic8EldLH8d+aWckZh5JrGB+frw95YNricjSXfm76egnpxaLm84hG95QuoHVf0TVb0z/vUqAA8oes0RrZaox6JWspAh2WaytBUASU9w/pD36IKVPp5rSI897zkJ6O3XTrZZSs27SRwcjbAh/rKOL+xGdk9grV5vaNwgIOv345sVXmcLSqQW0FgQnQfjcwx8XQj7M5wIb9BJyudjfm5j1g1zfCGPP8eyXMHxhsEAW0YjvDFnG195Ekmwnvy/Ge7PNe/vzj7u5qKyEBERLaiQepxv5NyGQ4fgqdTkKxHEj0b7vHXEpL5r99Cn6uGO+lvZYD+qb6ezx0cB+/sRBbKvAIZDDAZrmdMx6Twr03E3mZOvhzZC1ltlH5YqfspotIK11VcUbjdeOrvwWPPfI9/t8nrfAYCfEZHbjQffq6rPqbCz5yPqoc+1UD3ypswH7VgrU9ZfZiWuSA9xCWsN3BNnmT830/ufzHFOAnNzPo3rGNm15qN9jMtcJhu98bg59N7bkxtvX3rO9+rqeEh9Lk/ylTzei3uFxHzlGjnC1ho1lx4BrPcTjxpIzr39XFVFeQ7yAuXktZns9znlcQ2h951LV4+AXTYiIqI+sO9JTU0LrGNX/M+8z7ruuVuQHVGXp3AUX8DqSPbUUGA59bqkzpYbaJVoNEhnqt83fo/mUHoA49Gu4zKl+IbXx/W8uPwbBgOMRudiC6L6ml0/dSW1C8/FtCP1fnzLDE+Wqc6R9zk11MlFha5W1WOMf6kgXkQOisgPHP9eZWzzIUS9gBcXHWxhA/miL0N0UVvO3S6slXAJ6WR321PzuqM5NJMLgD2fxr5QRdtuTT0+vkC7vqTGRTHZzrxg272qttq9o8Nh5ri+uTy+1x8cjbwXd2dylHjIe97nU35eltk6G7YeaTK6IhHcqlzQA15H2XXki44/XtKwQMix2BNPRERd6WNjcsi9095mF/zL0YZyNQ54y+Kps/iSNZvTQ8v2tqfek3Fc81h2j3xyrIg9zdX83eqkyVl+Lm1SPzTfj/O9Oc9VXufQ5LmQKaOZn426dRsrMVF5qrpBVe/p+PcyABCRKwD8BIAf8yzBnrKwn2pei6D5x+76IuZn2rSH40y+hIPBCgaDTfH+k3Xl91m9/uly5X3xZP0zACC/Rx4IWgO+NXayDZ/AJU7MG4mrVdTcT965C7p5eMu0o3D/0byw8OE9IeUp+tw2DAaZm+8WVA+QtwDOkRtAtvd+s/G4mWjP/LxC/g4YzBMRUR810Zheh6+hwXXfz3SOFM2lPnQIgHuVI/N9F93TQ+oyyTRTX+LooPqgtY2Z7K4oM33akufn7amy2PUv18pFeugVqffkzOFkKTvK1VmvND/bgFG41F8i8jIAzwPwOFU9GPKahQ3knS2F8RfWHg4dnHQiIwrWzeFEqaXQMOm1tR+3t7efs6USWiSSINpqocvr4XYxL9xVEpP4AtDKc/YdQ7VS4vdmtvYmPycXWdcNJHNT8lz49FDxfKVou+I8ConQltKQ82/f7EN6GVzbJEsLJnwrHCTJ7vbCXaGwW/G7rgwRERGV9cbiTVqX3GPN+2rQ6LrQUY2BUscsGSTmZmpP5XYqZ8NgEL9uGeFz3N294a76th56f+6eklWoJrJJrt2yozxddULv0HpfjzzNoksArAfw6XgJusKl1RcwkM9P9JAEncn/9jAZWX9ZiQtf+ktsB+mTn9NJOcyg3mzRs4chZZa1cHyBkwC/TmbQVDZ0x3x375Jkw6HzYpScW+fNx3gPRWUOeU9m4O4caZF30StzQRwO09vHiQEL9x2wHJ6ZOdacigEAlxqfh2sZOJeipHR5GecBZM6L/fmb5Sg7fL+PQxuJiGj+zcKIsOB7qqP+4sxX5BjFGJSMuOBY4/3Fz5nBe3o1KA9Xz7zRSWMb16lXV+MOspXMNnadLG+9eJtZzzE7hbL7q2JrXL5nBO8rc/ykMcX+32v+k97NIlW9h6oeoapHxf8eVfSaBQzkPay5JMmXtok5JWZmerOHPwnaB4Odzmyeo9FKnMF+BYBnmI4VEBYZZy61HgOiALvoAp47vNsxH9/1+oOjkT9IDHwfIctxhF5ozfdfpiwhyfa8ve5VhjlVaGkNySJfKqFPnIMgVNBShoZZqEgRERFNS1P3xbIN65WM6ynxMmeO+kLQcPKcqaLjupSnLjIarTjXX7eXXov24+41dw1hz4sHnFM9G2buv9z0AZpnCx3I5wVWZo+8/eUs+rKmh1RvT/WwR736+8dZ6s3gPLr4RMG+Hnr/uEVx8v+mTEI8b7IxRxb+sRpLtLkS5ZXdzmwwGK/lnpQrJFiNtwnJap8s25YJuo0GEO/69pnW34KWW6slNDeXQpXhTwFJ/ELVWoowR15FIe85BvBERERpzvnvhsx9tWyyXKMuaGZ+tyX1LXtaXd7+8vh6tb0K6kxmfcs3dN+1cpSPHtqYqSu7EtnVnSqYdOb5xfXOuB6bHDczxdOeksAh9gtjoQP5FM9w4aQH3Wxtc3357QuSrH8GBoOdqWA9aUHTQxvH+7TnUSe/T3rxXa2KE77EH6HyhrnvNbcJGUrlSIy2tno4M3/fvPClbgSObZxJVso2QhQMX7ePNb5R5fTsO1nnJDleMlxqGj3yyTky5/LZQXJhq3xR2YyVCOxtzTnxm63HE32YZ0hERDRL9lr/O62uVl4lJgmG7cYCV8CemnLp6VDyZXD3drAkXHUQO3Gy0QEUzU3f13r+HdfUhOh9R8PUJ2vJv7/egYz3P26gCK0zFiQLpPmzoIG8o2c1eBj1clAmSmAShE8S261g23AdZP3+1Nxte4iMb63N0ejcca994uBoVOriZV9sC+dDw9PiGHpRSZLrNWBcxpx5UkB6XrzrcddFLi9xTG4PeMAFs/CiXuKi62tU2Izw1Qjs9WV9qgzDm8rQPSIiopa1NXKtDHsqZBEz2Ay5zxet0mSqcz5KDzu3p/GV6JH3sTvGCsvkqOe6zmk0BXZfqgyp0bMlO27KjgIes6faVp3WQDNlAQP5Hf6sj/GXQA9tdCa7S54r80WQ9ftTgbeddTJZssI8jqx/BkajfePeeTMBnh56Rer1uWvIW1xJyXw98qHJTny99m20jBaVKW/ExFhcxsIl+zL7XfZnoS95kXbdCHwXarPR6OBolEp85yp76BD13M8n3m/uTdtoDZ/qcoZERESLomLvqt3Jk6wusxnAO63EbQmzHpK6/1dKmJzOBh88TdWcalnE2GY8LSD3delM9tn3lLeeu1+0n63Ozje7nGnb09t59523D4eg4fU7cp6jWbKAgXxYpsaDo1EqYE4CqrKtiq7AfzQ6d/zlNIfsJz32yevMn+1yANEXPDcpnzmXPGc4tM0OzIoCtV0B+0w4h2AFXKAaaxgoKKe9Tn0uX66BuFGoaJ15s0z+m+QkEUvR51D1HGWC/3honm+UQt5xtjh+tvdFRERE5YSuI19KSNDnyV9Ups5h1ocKO10ca8Sb+Yxca7j7fjeXjc5d9s7HXkc+pw5p1tWL5767816Zkvr+2urh4Dq2t96Z+fyYtX5eLGAgP1E0/zxhLvmVt255ZPLlSH85tzvXp19bPZzJZp9wtZTajQK+CxuA8RffXJYjlD3/ySxD3YDS+3zOjSSkF7vscnWhPcm5medduRU8md1DWrSLEgjK+v3O85R3I6+ypJudbT6T4Cbns8obus+AnoiIqDm++6rvcVd9wVf3KKrPlRmhateBzOXpxowOEruOFzrNM5uzKslTtS93u2QaZGr6bI055+Nps54cUcloW1/dPzm3yXkKndabYjTCNJEomfpnIQP5yZd5ybuNGYgUtf75l8A4F7J+vzGcPr3MxeQisgOj0b7UlzSZS+8qu3n8omXykveRugBWHAJfd65407yZ6O2fbXkZ/WOuhhXAavxxHKP0MPPC87Y03i6aK7fD+ffWaK93Qct8aqUBD/PcMiM9ERFReea91AzAzfuqryHfHh5fJKnz2Cv3uOxCYH3HCCLtnvjcHvnVVecScOMcU0bZUr39WEttH01fTXrK3UvNZVnbVUhOHCWzfkXmcfOc+RpBnA0cppznfL339nmh+bFggfzRAHYYX2rP0BLHl8S37Ff+F277eOiML6EdEA33GQw2jZenS7jmZJuPuZKUpC7cFYZCbYm3KR0UOjLWp0wj0DcvXgEX3qIkMq7GkaKhUgCqt346zlEyFGzyufnncBWtD5+wP9tkO/Nzy/v8NwwGzuytvmNUGRFARERExVwrxfjkNaxvG64LWqYOmNQ3Cus51vJ2ufu1piumRsLG9SO7ntxO3bJgqeEaDnryE5hq95x7Ypi217mnbizYp3oHgEmAVpS8zE5AN36t8SXJfuHMBBJbxw0ArpY539Icye/m3BlzTr3/2IYaa8VXSl5WsHZppfnbxrz+zOtdx3OsL2/+7BuWXub9OqdjeN57pSytcF/oJ40OS5ntE3bw7bphu270rnVh89aqNcvn+lzLNAKxt56IiMjN7HAoGnkXej+16zyuteqL1qfP5NDx1DezI0u3px+z8gWZ/9uB/4bBwN0YYPFOh7QC9HQd2uwk2Zp+bcjyyzllSNj1JV8dcbL8dPF79b02pWIsQLNhwQJ5AFgubu1yBITJ7845Ptb+J/PZd8ZD5J8RX7jcrXzJsPq11cOZi565hv1gsDPTsx/yPvLmMLmC2KYzzm8YDMKD5fiC4w3gSyoa4VDMnn6Rv3RhSGurzf4bMs9V8lxRDzgQlvAmbwhekuXWlZDQFezbP9u/cz48ERFRDQFBo3l/Tu67ZepdyTD5ovqlub+kzmDWX9JL7bqnriajT8fsINN4v3bd1U5CnYjqWjvGP/vnkqeHzKe380+1LVoGr05Pt/1aMzlfUmctM+qhOI9XchwuQzcvFiyQPxqA40tn916vrqaX+oq5WsfyvmBm7+1gsMkIJJcm2eqHw/Fzsn5/Kti0jxcda4/7PeQICSiDsp62OTze0WJ4cDQat0aX6TXPzL8ys8jntEyGrR/vWLKj5nlJho3ZNx/zb3Dy/v2ZRu1zlJfhtvRyg1a5Ugpae7dY/xMREfXNrE8DS8r/7JzpjZvh7yDJjByNV7Cx7/FFHRYbBoPsvuLjexsLzDXQ7Sz5Rub4JDm0Kao7RXUjMzm1r3wJXzBrj4TN1PFWVzMrSOmh93tHg/rqiL5Ed8lrk5HAKa7RAUV1UMco4yq9/dRPCxbIR0J75E166P2l1hG3LwTmxce8wCUJKOyLT5QoY7KOfPKYi3Oud9wY4X2d54ufFzDbF/+qPa65QblRLrNXvmrP/Dh4T5Z4y8kbEBJouqZItDFsyfV+x38T8Xu41OilT27croqIa7idayhdKLOl3y5nSA4GIiKivsmbUtaVaSSODb0v597fPSNZbeMl4Oxs8I7s8PaKSwdHI+ihjblTWotHzaIw8M1MoSzIv+QaCl9mVawJz6iADpJJ0+xYsED+jrDNHEtfJEPknawvWbKknLkP8+Ij6y8zlp5bcbbKma9PXhtts318jCKZpenMteQNyc2qTsBcxV6ELXlSami+aTjMTYpiX+DNm3bR+c1tbfUtV1LiYmy/39QIEU/DQXLOzGC+7I0/5DwX/Z24KgUM4ImIiMopms8OhDU4XGrcs/NG5CXD7EuPpPNMMYyC7O3x8zvSvdzJa1wrDq2uTjq3kh75ggTFibrJ4nxJjXeltgnr9S8yiQue4d9ffJ7szkTn8nzxubJXqhqPAqa5s2Cf6tGlX5H7h+/suXf32pv7GbdIxj9HjQSXGfNi3h8Ptb8sNUfe3n9q3rQjSA1dc9NUKWD2sJOiufbtO9748WS5swYl521t9XDwvu3PNXcJwrKtpwHbh9zAknNmBu92D33eDb9s70OZ+XdlticiIpq2N3ZdgABBye6MEZllOVc+ykuePBymXpNNNLecGcJuT3v0dX6YPfKh2fSBgqDYeE1w1vi4bFus34MUbJuOMTyrErk6i5Bdpz6vjuVbeYv6RUQ+JiLfj/99U0QeW/SaBQvkJ0Japsw/fFfW+Lx966GNqaQV5tB6c1+j0b70XJXUF3bypR6Nzi1sUcu7cG8YDPytdS3x9aSnju1qkbW3cfxemjn/KkCtlkvjGKnVDgq2taXOnd1iXXOoVamg3TiWs0HGKkvezWQWKkpERERd2wzgnUbdZzPye8jHDfeeet6LAo6Zun976ifmNnl1s0n9Nz3MfFwfcg1ZL6ijOXNcARgPry9RN/KOsrX3vbqKdybLMjsaNfwJ/4p5g+vVVYyTK3vqyc6pnub2vt+pz56lqkep6lEArgLwzqIXLFwgH5QF0pOV0vsFdfTGRkH6uZD1l42Pm2TTTALyKEHGxvTa8FjLDOk3GxOcDQp5raVxS6evR9y0y/q/qlJBd+BF11f24IDbdX6Gw/F7bWLu2fh9G6MIkr8ZbybRwGUCzX3bihL0hPbKmxWENhp6pjltg4iIqI6up4TZ9ZLQ8iTBf0hSW9d92VnfyFsO2OBass2uO6fqQzn1H3+G+hye/TUxrPzZg8GkNx/bxo8nK0+Zc/Xt4flFS81lDIeT2MBXT67QocOe+X5TVTML4b0AaNFrFi6Qz/vSjFkXgmRpuPFSYMlFrGDJBz30/tQw+shkbXnXcPvR6NzUc0FDfxwXrrXVw5Pgd3V13CN/0LjA+3rLi24WoQFZXnbzkMA55DihS234VL5RO3r4zfOdJ/O+QpYJNIfWW/v3nUvf41tQr4KSlL9MYG5WIGY9MzAREc2/PiS7K8O8528YDBrpoAjtfc9YXTWyr/uWgwvbT26dblwfilf0SS1fNwmmawWv1vSBrK1x0D1ZVciVjd7FW4ct2YtufzbeEZ2x+V5+bkeH/64BgJ8RkduNf39RpvQi8nERuRvA2QB+qWj7hQvkk8zlmYA+oFUwCcBze7Ydc28Gg53OC9kkycX+3C99UEtiTjb2vIvCQU/LrUsS/JfJbF9m/60oGIZeu1zWsPPksaLh5y7JFAvnzdL1NxtLlpOxX1cUMLtu8r4btZ0MB4C3dZ4970RENOvayhJfhl2GJupSruXpXA30rnu5rxMoYdZdzfXdnVxJ7mJmz/7BZFg7/I0C48C0aE11x7EAQAffCusEcm6TswZ9XKawxgxjP4GrAJhcnx3rY524WlWPMf49x3xSRA6KyA8c/14FAKr6U6p6BKKh9ZcXHWzhAnmvnC9wUa+v64uWJLCbzA3a6t1/USZKX+INW3JxdWU8dwkJ2sraMBhkXp83LLyK0hemJuYHlSy7czRCUctyLPP5rV8flEyvTjK5sp/5Lkzeo31c376Sx7serkhERNR3rmlxs3D/3DAYAMNhPLV02ajjLqc3tOd+G/Uc3zrn7oTSy+VWGvIxRhHYiupXucvcmcPkQ+XVW0vUAe3HXEvl0XSp6gZVvafj38usTS8DcFbR/hYzkE/WFLce80la0srOsdFDr0glvLP59pfMpQ/d3snqFU691vFeqwynD22tLhMkhgTpRUOGMhzbJFMNtqCofJMbT5nz77zoxyMjfDcEc6hTavm9goz1yecQ2sDhmzeXdx6Sv4/C5IUFxyIiIqJq7HvwXut/oHywn7t9QEeIt65pkPWXFQezxghKsz5U3Elh9PpbnWxF01Tt4yeZ4MuuWOXNju9YzrqM0ejc4s+A68zPDRH5WePXlwD4ZtFrFjOQD1jjOx2ARBeJvJ5xO8FHMs/dztaZMIfTu77gURK894+fHwx2RvvK+cJmhtVYX35XUGUHcXWTv+XO0ynJLK9vuLnz50TAEiy+8rkuyiE3gqTMecctKlNmqLq5zKDDZkymPNRprXc1ahRNjagSqDNzPRERUTmu+7t3Cl3JkYhJL/r4Z982yKnDDIeOelLg0Hora33Q0nNjRk+/NbS+7Nz4JBN8anor1krtI8WICVyPu45tGgx21g/UmbV+lrw9Hmb/fQBPBHBe0QtEtTAh3twQkW8A+GrX5ejAcQho1aGp4mfSL/w8+oefSb/w8+gffib9ws+jf/iZ+D1YVY/vuhBNEpHbgUuO7q4E1wL4xzer6gXTOuIR0zpQH8zbH2woEdmtqmd0XQ6a4GfSL/w8+oefSb/w8+gffib9ws+jf/iZ0LxbzKH1RERERERERDOKgTwRERERERHRDGEgvxiu6LoAlMHPpF/4efQPP5N+4efRP/xM+oWfR//wM6G5tlDJ7oiIiIiIiGi+LGKyO/bIExEREREREc0QBvJEREREREREM4SB/AwTka+IyOdF5DMisjt+7P4i8mER+a/4/2ON7X9PRG4Qkf8Qkacaj58e7+cGEVkTEeni/cwaEXmLiBwQkS8YjzV2/kXkR0Tk/8WPXysip0z1Dc4gz2eyIiL74u/JZ0TkacZz/ExaJCIni8iVIvJFEbleRF4cP87vSQdyPg9+RzoiIvcUkU+KyGfjz+TS+HF+RzqQ83nwO9IhEVkvIp8Wkb+Pf+f3gwgM5OfBk1T1McY6mS8F8E+qehqAf4p/h4g8EsAzATwKwDkA/kxE1sev2Q7gQgCnxf/OmWL5Z9nbkD1XTZ7/8wF8W1UfCuD1AF7d2juZH2+D++/39fH35DGq+gGAn8mU3A3gN1X1EQDOAnBxfN75PemG7/MA+B3pyp0AnqyqPw7gMQDOEZGzwO9IV3yfB8DvSJdeDOCLxu/8fhCBgfw8Og/A2+Of3w7gGcbj71HVO1X1ywBuAHCmiGwEcB9V/VeNMh++w3gN5VDVjwH4lvVwk+ff3NffAHhK0oJMbp7PxIefSctUdb+q7ol//i6iitgm8HvSiZzPw4efR8s08r341yPjfwp+RzqR83n48PNomYicBOC/A3iT8TC/H0RgID/rFMCHROQ6EbkwfuwBqrofiCptAE6IH98E4EbjtTfFj22Kf7Yfp2qaPP/j16jq3QBuBbChtZLPtxeJyOckGnqfDMHjZzJF8XDFxyJK68rvSceszwPgd6Qz8bDhzwA4AODDqsrvSIc8nwfA70hXVgH8DoDDxmP8fhCBgfyse4KqLgHYgmiI5E/nbOtqXdScx6lZVc4/P5tmbAewGdEwyf0AXhs/zs9kSkTkXgD+FsBQVW/L29TxGD+Thjk+D35HOqSqh1T1MQBOQtR7+OiczfmZtMzzefA70gEReTqAA6p6XehLHI/x86C5xUB+hqnqzfH/BwC8D8CZAL4eDyFC/P+BePObAJxsvPwkADfHj5/keJyqafL8j18jIkcAuC/Ch41TTFW/HlfMDgPYgeh7AvAzmQoRORJR0PguVX1v/DC/Jx1xfR78jvSDqn4HwFWI5u7yO9Ix8/Pgd6QzTwBwroh8BcB7ADxZRN4Jfj+IADCQn1kicoyI3Dv5GcDPA/gCgJ0Anhdv9jwAfxf/vBPAM+PsnKciSvTxyXhI0ndF5Kx4TtBzjddQeU2ef3NfvwTgo/HcLiohudnHfhHR9wTgZ9K6+Py9GcAXVfV1xlP8nnTA93nwO9IdETleRO4X/3wUgJ8F8O/gd6QTvs+D35FuqOrvqepJqnoKoiR2H1XVZ4PfDyIAwBFdF4AqewCA98X5OI4A8Jeq+o8i8ikAfyUi5wP4GoBfBgBVvV5E/grAvyHKXHyxqh6K97UVUbbvowDsiv9RARF5N4CzARwnIjcBuATAn6C58/9mAH8hIjcgah1+5hTe1kzzfCZni8hjEA2V+wqAFwL8TKbkCQCeA+Dz8ZxTAPh98HvSFd/n8Sx+RzqzEcDbJcqsvQ7AX6nq34vIv4LfkS74Po+/4HekV3gPIQIgbHQiIiIiIiKiWSUitwOXHN1dCa4F8I9vVtUL6uxFRP4/AE8H8HBV/c+8bTm0noiIiIiIiKhDInImgJ8AcKhoW4CBPBEREREREc22Q8BnkV6pcFpuBbA3+aGO9yKaBhKEc+SJiIiIiIholp0JfP6LwEcRrRa5Ce7VBZv0fQD/hSh+Pw0AToiG+I+9V1WfE7InEflDAN9Q1b+Ocz4Vv4Zz5ImIiIiIiGjG6YEDB/CAB/wEgIOIAvoT0XxA/wNEAfx3ADwUhw5di3Xr1qHoQCJyEMAxjqdeC+DFAB6hqjeKyN0AHlk0R56BPBEREREREc26cWB7yy23YOPGJyAK6B+KaFGKugH9DwAkCxw8FIcOfTIJ4BOVDiAi/wPA32AyL2A9onnyj1XVz3tfx0CeiIioHhF5G4DnqWrb4/iIiIjILRPY7t+/Hyee+AQA30bUQ18loL8TUQAfNQo4AvhEI3WA0B55zpEnIiKyiEiZVu5TWysIERERVbZx40aofgn79u3DSSf9FKKkdA8F8EAUx91mAL8Zd9/9n1i/fn27BS6BPfJEREQWEXm29dATAVwI4AoA/2w99z4APwSwXlV/MIXiERERUVZhYHvjjTfiQQ96IoDbEAX0D0A2oL8TUcD/DUQB/KdCA/ipjspjIE9ERFRARJ4P4K0AXqCqb+u2NEREROQQHNh+7Wtfw4Mf/NOIAvrTAJwA4C5EAfwBAA/BXXd9CkccUWoA+1QDea4jT0REVJOIvM0ejp88JiIb4p+/KSLfFZH3i8gD420uFJEvisgPROTfReQ8z/5/RUQ+Hr/+DhG5VkR+aRrvjYiIaN486EEPgupX8OUv7wFwC6LBdv8K4F64666DUP102SB+6hjIExERtesfAdwXwCsA7ADwdADvE5HfBvDbAN4O4KUA7gHgb0QkNec+Xlv2PQC+C+Dl8bZ3APhrEbl4Wm+CiIio56Tsv1NOOUVUvyrArY8Gbjta9dNyxBFHlN4PptwbDzDZHRERUds+qarjgFtEAOAlADYBeLSq3hY//lEAn0U0F//34seWALwMwB+r6u8b+1wTkfcD+GMReYeqfncab4SIiGgeqer1XZehLPbIExERtWvV+j1JlveOJIgHAFX9HCaT9RK/imjO39tF5DjzH4CdAO4N4CdaKzkRERH1EnvkiYiI2vUl6/dvx/9/2bHttwFsMH5/BKLhev+es/8HVC8aERERzSIG8kRERC1S1UOep3yPi/WzAtiSs/3MDQckIiKieji0noiIZo6IHBtnelfHmu/z5MuIgvlXAfgrALsAvAvAbwA4CcBVqrpfRD4hIneKyNH2DkTkg/F5eqXjuZ+InxuJyFXxzyH/nt/quyYiIqJc7JEnIqJZ9KuIsrx/GcD5AN7ZbXGaJyIPBfDf418fBOBPAHwD0WK3P4toXfszALwIwJUAHg/gJwF8xNjHEfFjdwN4kuMwZ8f/X4lozv2bjOeOA/B6RHP6r7Bed021d0VERERNYCBPRESz6HxEweffAVgVkc2qurfjMkFE7qWq32tgP0cB+HsAJyJaeu6ZAJ4D4K8B3AzgYwCOBHARJoH8SxEF5h8xdvU4APdCFPQ/W0SOVtU7jOfPRjR0/2pVPWiV4RREgfyXVHXuGkqIiIhmGYfWExHRTImXZHsMovXX3wXgLgAv8GyrIvK2eAj51SJyu4h8U0TeJCL3cmz/MyLyryLyfRG5RUTeICKPQhQIm9udnQwxj9dyf0b81G+JyE4RuR1RoG3v/0xEQXeRCwA8HMBrVfVZiNaevxnAEMCfIlqi7vsABvH2H4/Pg93rfjaA7wF4XVyeJxhlSXrrP28H8URERNRv7JEnIqJZcz6A2wH8rareLiL/AOB5IvIKVT3s2P4xiHq33wrgLxEFt+cDOIwoIAYAiMhPAfgQoszxfwLgOwD+FybB76Wq+jZr30NEWeZfB+AWADcC2A3gFwB8TFV/1dr+1+LjnqKqN9oFVdVT4rJcHT90Rfz4PwD4B+fZiJ6/Q0Q+CeBMETlGVW+PnzobwL+o6hdE5Ovx7x+On0t660MaFoiIiKhHGMgTEdHMEJF7AngWgL8xgtW3A/hFAE9FlAzO9t8A/KSqfiL+/c9F5D4AXiAiv2EMhX8domHmP6mqX4qP92cArsop0oMA/KiqHjDKuB5RQH8+gD83Hj86LvsHXUG85dEAvpuUI9CViBodngDgQ0aP+6vi569Gusf+7Pj/q0ocg4iIiHqAQ+uJiGiW/A8AxyIK3hP/AOAAot5ul381gvjERxE1Zp8CACLyAEQ91H9nBs+qeheAN+SU5x1mEB+/5hCAtwB4nIj8mPHULwG4D4A35+wvcR8AtwVsZ0p61s+O/0963JPe/asBnCEixxjbHUY0356IiIhmCAN5IiKaJecjytx+k4g8NM7sfgqi4eLnishxjte4erWTOeEb4v9Pjf//D8e2rscS/+l5/M2I1n0/33jsfEQNDjtz9pe4DcC9A7YzXQPgTkx63c8GcAeiof5AFMgfCeCnjN76z6nqt0oeh4iIiDrGQJ6IiGaCiJyKKEg9HlEA/V/Gv2Q5Otea8ofydmv9X9YdrgfjofP/iChT/D3iBoefRtSDf1fAfr8A4D4i8pDQgqjqDwB8AlGv+70QBfLXGMf7NwDfjB/n/HgiIqIZxkCeiIhmxQsQBdzLAH7Z8e8/kO4BLyPptX+44znXYyGuQNTj/wxMyhUyrB4A/jb+/4KSx7wS0ZSBsxHNlU+G1UNVFdEw+ichvX48ERERzRgmuyMiot4TkXUAno9oqbQ3ebZ5FIAVEXmcqn6qzP5V9esishvAeSLyECPZ3ZEAXlyx2P8AYB+AFwJ4BKLs8f8e+No3Afh1RMvZXauqf2dvICKnA3i8qv6Z8fCVAFYA/DaAY2AE8rGrAbwW0SgFzo8nIiKaUeyRJyKiWfDzAE7GpKfaJXmuaq/8byG6L14jIq8QkRcjyuh+j/h5LbOzOOndWwE8GcBGRMF56GvvQLR2/JcBvF9EPigivyUiLxCR3xGRXQA+hShrvukTiNaX/2kAPwDwSev5qxE14v8kgE+r6q1l3hMRERH1AwN5IiKaBUlw/l7fBqr6BURz558pIkeVPYCqXg3gHABfAfD78b/dAF4Ub/L9svtEFLwfBvBdAH9dsjw3AHgsgN9A1Lv+MkTD9X8z3ufz4sfM1/wQUdI7APiEqt5p7fZzAJLkdleVKQ8RERH1h0RT5oiIiMhFRP4ngL8B8CxVfU/J125EtKb8m1X1hW2Uj4iIiBYPe+SJiIgASOSe1mNHIuoRvxvVerC3AliPqCediIiIqBG9THYnIucAeAOiys+bVPVPrOfPBvB3iOYOAsB7VfWyaZaRiIjmzo8A+KqIvAtRBvwNAH4FwH8D8GpVvSV0RyLyTETz138bwAdV9boWyktEREQLqneBvIisB/CnAH4OwE0APiUiO1X136xN/1lVnz71AhIR0by6C1Gm+fMQJacTRAH9xVZm+BDvRpRs7p9RPfkeERERkVPvAnkAZwK4wVj65z2IKlV2IE9ERNSYOMv8rzW0L2liP0REREQufQzkNyFKDJS4CcDjHdv9hIh8FsDNAH5LVa937UxELgRwIQAcCZx+XMOFpflxTwD3iX8+4oQTUs9968AB/GDqJQqTlPs2YFxGs/T2ewGAmw8caL9gREREPXJPRPfJJBFGcu9M3P+EE3C3cX903T8BACefPPn5xhvTv+e58UbciJMzm994o7HbwP3daNSU8zZPdpc6huN51z6DihK/p0xZHC829286GZNtfe/L9z5Sh4mfTMpjbm+/L9/v430bBzKP6X0PgefLdb7t9+nbt4/r8wOAAwfuwumnH4nrrrsLJ5xwZGr766677puqenx+aanv+hjIu3ox7NT6ewA8WFW/JyJPA/B+AKe5dqaqVyBOMnSiCFMGk9dmAFvinzf8yq+knnvnaIS9Uy9RmKTcu4BxGV9kPG+/FwC4dDRqv2BEREQ9shnRfXJz/Hty70w8+1d+BQeN+6Pr/gkAWF2d/Dwcpn/P49l22zDKPb22ejjaxj6GQ/Ka8etytltbPZw+huN51z7N57yGQ2zDWrYsjvdq7t+0hm2pbV1lLXof42MC4/KY27vel73P1HswPgfzmN73EHq+DL736du3j+vzA4DRaB92f3IjZP1+/MqvbEptL+vXfzW4oNRbfcxafxMAsz3rJES97mOqepuqfi/++QMAjhQRdrYTERERUbuSII+mJjdAbvDzKBOIl9nW9/qifdQ5xmCwqXgjmml9DOQ/BeA0ETlVRO4B4JkAdpobiMgDRUTin89E9D4OTr2kRERERDSTdhVv0mt1A8l5Vfa8hATURH3Uu0BeVe9GNDL4gwC+COCvVPV6EblIRC6KN/slAF+I58ivAXimqtrD74kodpBD6YmIiACgl1Pl+hRIdlaWMj3rDfTC9+mct4k98/Ord4E8EA2XV9WHqepmVX1V/Njlqnp5/PMbVfVRqvrjqnqWql7TbYlp3jDwJSIiomBtB6Eczl9Jo8H6FD+DRWlkoHp6GcgTdWXWh9kRERFRNXYjfulG/YqBXl+CtlQ57PfSQENFpffJBgwiLwbyRERERDT3QofUL1KjfhONCH1piOiNhhoffOeV55sSDOSJiIiIiKpqo9e4o57oWQgS+1DGVsoQf+ah++7DeaBuMZAnmnOc709ERFROo73yVYPygOHtjQVzbTYcTKlRIrS+03kAXOF8dF5m6iUG8kRERES0sPqYxb6U4TA/OFyEeeZTeo92QB0cYC/650OtYCBPREREROQwt6PaWsiyv7Z6uNy2844BOrWMgTyRZR6S3Ljew9xWRoiIiBZJD4dmL0RgTtQzDOSJAvR92J2v8WEeGiWIiIja1pf7fNON7s4Au4le87KNCTnbF77nafdsW8djIwX1FQN5ohnXl8oHERHRPPIGmh0OnQ4KLmdgaHetIDnn/VXZ71QDdk/Z62SsX1s9zEaHBcNAnoiIiIgIxSPZKveYhwTVLQfebQR5bU3baz0gnYFGDhcG6mRiIE9EREREVCAJWhc250yDw+nrGn8GrmOEHreh8jWSub6OgP2yAWA+MZAnIiIiooVSe1paUfDUVNA2oz3HjZjGe5/38zvv72/BMZAnKrCwLe9ERETUmJmpT5jBX91AsGziuL4FnkZ5ks9v/B6aPE8Bx6/aq87e+PnFQJ4oNm9J45ixnoiIqLpG7qO+AK/DYdZ9OVYqwJzCCIepBLR2OauUezhsZmUBmnsM5IkcGAQTERFRaUVBWNXAri+mMe89B5PgEU0wkCcyzFuvPBEREdXX2rD4LhPI1VnbnQoFncOWGg58y9PRfGEgTzTndoEjDIiIiELtxYw37Hfcq9xkI0ArDQp1hr8n21Z5TYHMey0zLYMjCRYSA3kiy0zfvImIiCiYec93NXqzIbxBcbBZu2fYE7R2/Vmxx5umjYE8kQeHlREREc2vphvug3tU7ecDk5vl7f/gaNRdr+wMjADofZDNHnWqgIE8EREREVFFB0ejqTb+15p7nTes3NOgMJXh7YY6QXeqrDWHoE/rfRcep2KQ3/vGC6qNgTzRnOCUACIioublDdluK4BvbL/DYaa33rXvRo7HXuVy6pwvnmsCA3mihcMpA0RERN0JvQ+b27UaaDex1n28ra+cpctfN1BtOND19m77etinNbKBFhoDeSIiIiKinigb8DUdIE474CxKUucqT5uJ7UrnOugYGwgWFwN5IiIiIqISygRP5hz6xoP0LoLMFo5ZNNy/7Pk2Bc8VT6YhlDye+brQMjWiwufAefPzhYE80RzifHkiIqJ2dL3MGYDe9BLXPhc9eR+ltFxm9rBTKAbyRHMgJHDvRcWDiIhoTix6wNWH99/liIWiY4ckSZx67gCaK70M5EXkLSJyQES+4HleRGRNRG4Qkc+JyNK0y0hERERE82Wv5+dZUDk4LLn/Nl9nb7twnRANB+p9aGyh9vQykAfwNgDn5Dy/BcBp8b8LAWyfQpmIiIiIiKjANALIaTQsdGUWykjd62Ugr6ofA/CtnE3OA/AOjXwCwP1EZON0Skc0O2atN4GIiKiPptEzzOBtxnl60/m5Ult6GcgH2ATgRuP3m+LHMkTkQhHZLSK775hK0WgemAHwwg3rIiIiWkBFjd+h9YEqWerztmsqe3sZyXu191H7fZnBbofzvZPPqMw52oVmpi8UZeh3Ph5yrnzbDIeTfzRXZjWQF8dj6tpQVa9Q1TNU9YyjWy4UzactXReAiIiI5s6010cPOf6sqvJeNgwGk19aCnLn6RxT/8xqIH8TgJON308CcHNHZSHqNQ6vJyIiWixNr2teJSD1vqarnmHruCHvqctAvNax2fu+EGY1kN8J4Llx9vqzANyqqvu7LhQRERERUZEmhr13XQ5qVp3P1fwc11YP52/MIH9u9DKQF5F3A/hXAA8XkZtE5HwRuUhELoo3+QCALwG4AcAOAL/eUVGJiIiIiADMZ2DcVMNB1bn+ROTWy0BeVZ+lqhtV9UhVPUlV36yql6vq5fHzqqoXq+pmVf0xVd3ddZlp/phJTYiIiIi6ZAfUjQ53b0Bj+26xx7hMormm9l+0bdmGktQx2Lu+0HoZyBMRERERzYMuV7/pokOi7ffLThaeA4owkCciIiIimoKqvepllr4r8/hMqbqEWsVe674sP1xqCTpaKAzkiYiIiIg6YgfZfQkgF1Vb55+fKzWNgTwREREREQUlpGt7nvkimEpQzx78ucdAnoiIiIioRfPQG+t7D0VBfBfvPSlT3xLwFZWndnkZvC8UBvJEc2qv5/F5qEwQERH13TR6qQ+ORo3f11lPqI8jFGgaGMgTEREREVXUZY+zacNgUGtffQs+657XNpdpK1s2No5QGxjIExERERGV0HZgtmsKx+ha3xoOZtW8/52QHwN5IiIiIqIA8xA09ek9MJifHp7r+cNAnoiIiIhoBvRlabTQEQN9ajRoCwNk6goDeSIiIiIiD1/y2FnWlwaBrvZJNA+O6LoARNS+vQA2d10IIiIiKmUXgC3WY31qWKhSlpAe7LK93LsCyhKyz1lqNOBIAGKPPBERERFRjtCAtW4g2KcgfRZMI/DOC5jrBtOh5WfQTi4M5IkWBCsHRERE5RTdO/MCsVno3Z2FMrapyvvvY1C96J/jomIgT0REREQUyBfcz1MwVaXx337/Vddar9MDXvUzODgapfa9y/q/S2YZQhsRvNsNh7XLQ/3BQJ6oQB8u4kRERNQvs1I/6KKcrmO2NXqhymu7/OyKjj0rf1fUPQbyREREREQLYJfn5zbVmdrXxLTAPg6FJ2oCA3kiIiIiogJNJ7wrG0iXCWpd+2ZAW07VRoSQz5V5i6gJDOSJiIiIiKagagDXp8Bv1oayd2kX/O89ZKpB1fO2YTCo+EqaJQzkiYiIiIhmXNLj3lbQnNeYUHYZtUUN7LvAkRjzi4E80QLhxZyIiKh5ZXtdmxp+XTdTfBO6OGafRii0Je9vhw0hBDCQJyIiIiJq3bSDr7bm6jetbFBeprxdvbdpHjc5f+POGi4xtzCOKLOxiBwN4OEATgCgAL4B4D9U9Y4WykZEREREtFC67G3ua2ND34+5C8CzA/bNpeeoSYU98iJyrIi8RESuAfBtALsBfADR39puAN8WkWtEZCgix7ZbXCIiIiKi2dVUsNZ00NfGOu9NNUrsQv70QNdxiqYdtJ20r6n3vgjTCKgabyAvIvcVkdcA2AfgtQCOBfAuAK8AcDGAF8U//2X83OsA7BOR/ysi92274EREREREfVQ2SGyrJ7Zov3WGtfteWyfwrHsekmPPwvB7U1efP822vKH1ewH8AMAfA3inqn45b0ci8hAAzwFwIYAXADiuqUISEREREc2bXQC29Gg/s6RMIkEm+53guZgfeUPrXwlgs6q+siiIBwBV/ZKqXgrgIfFrKxGRk0XkShH5oohcLyIvdmwjIrImIjeIyOdEZKnq8YiIiIiIutbH3tO25pP3RZPD1qsGyH0oA80mbyCvqm9Q1TvL7lBV71TVN9Qo090AflNVHwHgLAAXi8gjrW22ADgt/nchgO01jkdERERE1Et9CnxDzdq87lk4xwzSyda75edUdb+q7ol//i6ALwLYZG12HoB3aOQTAO4nIhunXFQiIiIiornSZhDe54B5WmXrMocAzZfgQF5EzhSRZeux80Tk8yKyT0T+qOnCicgpAB4L4FrrqU0AbjR+vwnZYD/Zx4UisltEdnONPCprHi+Ys9ZKTkRE1BdV76FNZzBvun6SVz7Xc13VJbqsl9V9z9M8Z3bvPXvz51OZHvlLAJyb/CIiDwLwbgAPBHArgN8VkRc0VTARuReAvwUwVNXb7KcdL1HXflT1ClU9Q1XPOLqpwhERERERtWzWGt/bLq+d0K/r8zOPHT40O8oE8j8O4F+M35+JKKB+jKo+EsCHEM1Xr01EjkQUxL9LVd/r2OQmACcbv58E4OYmjk1ERERENC3zGgzaQXZo0N23Xvcy2fF9+yBqQ5lAfgOAW4zfnwrgY6q6L/59J6Lkc7WIiAB4M4AvqurrPJvtBPDcOHv9WQBuVdX9dY9NRERERFSkjTXUqyp7zL0VXtMUs0e9qYC9ynspek2fg/HQ6RUcTj//8taRt30HwAMAQER+BFFGeXNevAI4qoEyPQHRevSfF5HPxI/9PoAHAYCqXg7gAwCeBuAGAHcgWreeiIiIiIgC+ILVzTnPNX2saQtpPOiqrHsRnfuqr6XFUyaQ/wyAC0TkIwB+EcA9AXzQeP5UAF+vWyBV/Tjcc+DNbRTAxXWPRUREREREWRw67lc26C47AiDZP8815SkztP6VADYC+CSiHvKPqOpu4/mnI5tdnoiIiIhoLoVkdJ9mMMbAr31l58wTtSW4R15VrxGRJURz428F8J7kORHZgCjZ3fsaLyFRx3hTJCIiojx1hkXXPW4f9jHNY4f0brf1WVTpifdtP43zzjrsfAvqkReRo0TkuQCOVdWRqr5DVX+YPK+qB1X1Jar6sdZKSkREREQ047pINle3t3iv9X8fTDNhXWjiuKIRGl2eP44YmD+hQ+vvBPAmAI9tsSxERERERDOhb5nPuwrUygT5oWW0t2vjXDbVOOF6T3X2WfW1HPK/eIICeVU9DOBrAO7TbnGIiIiIiGZPyHz5aWiyxz90P3WPl/f6LoLiPmir7Azs50eZZHdvB/CceOk5IppBvHgTERG1r68BZF9GEfTt/LQxV79Necfm+vGLo8zyc9cA+B8APiMifwbgvxCt4Z7CefJERERERN2qmvStb0F2U+ZpSbeynys7cuZTmUD+w8bPbwCg1vMSP7a+bqGIiIiIiOZZV5nu+8o+H30YUh/6GXX1WTJAX2xlAvkXtFYKIiIiIiIij10AtnRdCEuXyw6yEYjKrCP/9jYLQkREREQ0r5oe0t33/c0a3/vvw3kJbcToY2MHtadMsjuihdKHCzcREREthj4MJSei2VFmaD0AQEQeAOAMAMfC0RCgqu9ooFxERERERESNmfUGj1kvPzUrOJAXkXUA/hTABcjvyWcgT0RERETUgLo99fM0l5rJ3Ygmygyt/y0ALwTwbgDPQ5Sl/qUALka0FN1uAD/XdAGJiIiIiPqqi17SWe6Z7cta9lX1vXxA1ODBRo/5VyaQfx6AD6rqczH527hOVS8HcDqA4+L/iYiIiIioJ2Yh+CwyD++hSTwfVCaQfwgmAfzh+P8jAUBVbwfwVkTD7omIiIiIiBZGE4F1m8E5A//5UyaQ/z6Au+KfvwdAAZxgPH8LgJMbKhcRERER0VxjcDU/5ikXAc2GMoH8VxH/jarqXQBuAHCO8fzPAvh6c0UjIiIiIiIiIluZQP6jAH7R+P0vADxLRK4UkasA/DKAv2qwbETUMLb8ExERETWPdSyatjLryL8GwIdE5EdU9U4Af4xoaP2zARwCcAWAS5ovIhERERERVTFLAeYslZWoa8GBvKruB7Df+P0QgG3xPyIiIiIimqLNmM/gdx7fU11cTo5sZYbWExERERERdYIBPtFEqUBeRO4tIq8QkY+LyH+JyE/Ejx8XP/6j7RSTiIiIiIjmBYPyZoWcz4OjUevloOkJHlovIscD+Dii9eRviP8/CgBU9Zsi8jwA9wPwG80Xk4iIiIiIiFy4/N3iKZPs7g8BPBDA4wF8DcAB6/m/A/CUhspFRERERERERA5lhtY/HcCfqeoeAOp4/ksATm6kVEREREREVNui99Q2kSSOieaoj8oE8schGlLvcxjAPesVh4iIiIiIypqFOed1y7jojRJEpjKB/C3I//48FtGQ+0aIyHoR+bSI/L3jORGRNRG5QUQ+JyJLTR2XiIiIiGhezEKAT9PDv4f5USaQ/wCA80Vko/2EiDwewHMRzZNvyosBfNHz3BYAp8X/LgSwvcHjEhERERER9QpHJJCpTCB/KYC7AXwawB8jmif/PBF5N4CPAbgZwKubKJSInATgvwN4k2eT8wC8QyOfAHA/VwMDEREREVHfsZeU6uLf0OIJDuRV9RYAZwG4FsCvARAAzwHwvwB8CMATVfVbDZVrFcDvIJp377IJwI3G7zfFj2WIyIUisltEdt/RUOGIiIiIiObZlq4LQES5yiw/B1W9EcB5InIfAA9HFMzf0GAADxF5OoADqnqdiJzt28xVPNeGqnoFgCsA4EQR5zZERERERF3Yi2jINHtUiaiM4B55ETkq+VlVb1PVT6nqJ5sM4mNPAHCuiHwFwHsAPFlE3mltcxPSS92dhGhoPxERERER9dy8zfeexvthYw+ZysyR3y8i20XkjNZKA0BVf09VT1LVUwA8E8BHVfXZ1mY7ATw3zl5/FoBbVXV/m+UiIiIiIloUfVw7nYEs0USZQP4aABcAuFZEPiMiLxKR+7VTrCwRuUhELop//QCALyFa134HgF+fVjmIiIiIiIi6xoaNxRY8R15VnyYiJwJ4AYDnA1gD8H9E5H0A3qSqVzZdOFW9CsBV8c+XG48rgIubPh4RERER0TzqYw87EVVXpkceqnqzqr5KVU8D8BQA7wXwDAAfEZG9IvL7cbBPREREREQ9wSz0s4s97+RSKpA3qeqV8dz1EwG8C8CpAF4J4Csi8j4RObOhMhIRERERkYUBHoXg38l8qhzIi8hxIvISAP8C4NkAbgfwVkRz1p8M4BoRWW6klEREREREREQEoGQgH2eJP0dE/hrREnCvBXAnomRzJ6rqBap6MYAHIZrb/vKGy0tERERERDOOvcRE9QQnuxORyxAluduEqPf97QCuUNXr7G1V9VYReTuAtzVTTCIiIiIiWmSbUa0BoM1Ef2yQoK4EB/IA/gDAdYjmwf+lqt5esP0eAJdVLRgRERERETWDWeuJ5kuZQH5JVT8TurGqXg/g+tIlIiIiIiKi2qr2YFO4vp1jNtgsjuA58mWCeCIiIiIionkQEqj3KZg39bVcVJ83kBeR80WkdFZ7EVkvIhfUKxYRERERERFVwQB+/uUF6q8D8O8i8iIROa5oRyLygHg5uv8A8H+bKiAREREREVEdm7suQE1lAnMG8Yshb478aQD+EMDrAbxWRHYD+CSiv41vARAA94+3OwvAY+LXvRnAK1oqLxEREREREZXE+fPzxRvIq+oBABeKyKUALgLwSwBe7NoUwL8hCvp3qOr+NgpKRERERERE+fqWgI/aUZi1XlX3AXg5gJeLyAkAHgngeEQB/DcAXK+q32y1lERERERERBW1FdhOK2BmcE62MsvPJb30B1oqCxEREREREVkYxJOtdFZ6IiIiIiIiIuoOA3miHGz9JCIiIiqvL1nit3RdgB7huZgvDOSJiIiIiDrEAIuIymIgT0RERERERDRDGMgTEREREc05ThesLm+aQF+mEJj4WS8GBvJERERERDTX2gq4+xY0c5rG4mAgT0RERERERDRDvOvIi8hHK+xPVfUpNcpDRERERERERDm8gTyAhwBQ67FjABwX//wdAALgvvHv3wTwvSYLR0RERERE09e3IeNAtTLt6ui4RG3zDq1X1VNU9dTkH4CnAPg+gDcAOFFV76+qxwI4EcAagDvibYiIiIiIiDrHOeM0r8rMkX89gGtU9SWqekvyoKreoqpDAJ+ItyEiIiIioo71sSd52lnem+iRnyWL9n4XWZlA/mwAV+c8fxWAJ9UpDBERERERzb4+NiIQzZMygbwCeETO849Cdk59JSLyEhG5XkS+ICLvFpF7Ws+LiKyJyA0i8jkRWWriuERERERERPOIvfXzpUwg/yEAW0XkuSIiyYNxUP08AC+Mt6lFRDYB2AbgDFV9NID1AJ5pbbYFwGnxvwsBbK97XCIiIiKiLjDAateijA5YlPdJkbys9bbfAPA4AG8F8Cci8l+IeuAfBuABAG6Mt2mqXEeJyF0AjgZws/X8eQDeoaoK4BMicj8R2aiq+xs6PhERERERNYzBJlEzgnvkVfUmAI8B8GoA3wZwJoDHxz+/GsBj4m1qUdV9AF4D4GsA9gO4VVXtnv5NiBoOEjfFj2WIyIUisltEdt9Rt3BEREREREREHSsztB6qequq/r6qPkpVj4r/PSp+7DtNFEhEjkXU434qoqXtjhGRZ9ubuYrnKfMVqnqGqp5xdBMFJCIiIiKimcKRADRvSgXyU/KzAL6sqt9Q1bsAvBfAT1rb3ATgZOP3k5Adfk9ERERE1HttBZnTXuqNiKanVCAvIseIyKVxpvjvxf8+JyIrInJMQ2X6GoCzROToOKneUwB80dpmJ4Dnxon2zkI0/J7z44mIiIiIiGjuBSe7E5H7A/hnREvQfRPAp+OnHgbgFQB+WUSeqKrfqlMgVb1WRP4GwB4Ad8fHuUJELoqfvxzABwA8DcANAO4A8II6xyRy2QwOwyIiIiIiov4pk7X+MgA/CuBFAP5cVQ8BgIisR7QE3AjACqKl42pR1UsAXGI9fLnxvAK4uO5xiPIwiCciIiKiebEFwBu7LgQ1pszQ+nPx/7d398G2lXUdwL8/LmpmpqVICky+RCZSYSpRjo2a5b1kWZNOmJSNFOaYaVOWaOVoL9rLpGO+FBkD2guhiZoDKqVmTSaggYqgopXSNW+UJeaogb/+2Ovo8XDuuedw98tZe38+M3vOXs9aa5/f3ueZe/d3PWs9K3l5d790LcQnSXff1N0vS3JOkh+ccn0AAAC3yL5FFwAzspMgf3S+dDr9Zt49bAMAAMAucvGiC2CqdhLkP5Hkflusv9+wDQAAwMKthddVmcHfpaGrYydB/q+SnFFVT6yqL+5XVUdU1ZlJnpDJbPKwNFblH30AAGA8djLZ3a8m+Z4kL03ynKr6wNB+7yRHZTKD/MYJ6mC0hHgAAGA32vaIfHf/Z5IHJHl+kv9M8sDhcX2S5yV54LANAAAAMCM7GZFPd38qybOGBwAAADBnO7lGHlaOCUMAgDFzqSAsp4OOyFfVdyVJd799/fKhrG0PAAAslkEJWE5bnVr/tiRdVbft7s+vLW+xfQ3r90ytOlgg//EBAGN3r/hOs0r8vVfHVkH+CZkE8//bsAwAAMCI7Evy4kUXwdQcNMh397lbLQMAAADzt63J7qrqq6rqLVV1xqwLAgAApsNp1rCcthXku/vTmdwzHgAAGIEPx6z1sKx2cvu5K5LcZ0Z1AAAAU2ZEfsLnwLLZSZB/dpKfqqqHzqoY2E0cwQYAxs73mQmfA8tmq1nrNzo9yUeT/HVVXZnkg0k+s2Gb7m7X0bMUHLkFAGBZXLzoApiqnQT5n1j3/KThsVEnEeQBAICbcZ/zxXH7ueWy7SDf3Ts5DR8AAFggp5N/iYMHRuSXjXAOAAAAI7LjIF9Vt6uqh1fV46rq6FkUBbuBo9gAwNjttpHoedXjexzLbkdBvqqelOTfkrw5ySuS3HdoP6qqPltVZ06/RFgc/wkAAGO2qt9lpnnAYFk+w32LLoCp2naQr6ofTvKSJG9N8pNJam1dd/9HkjcmedS0C4RF2m1HsQEAdsJ3mYnDCeM+Q3ajnYzIPz3JW7v7h5K8bpP1lyc5cSpVAQAAh21ZRpM5NH/r1bKTIP/NSS7cYv3Hk9zl8MoBAACmxWjyhM/BrPXLZidB/qZDbH+3JP97eOUAAADTYpR2wufAstlJkL8yySM2W1FVRyR5TJLLtvtiVXVOVR2oqvdtaH9KVX2gqq6qqt8+yL57h22urapn7OA9AADASjAK/SU+C5bNToL8i5Psq6pfS/K1a/tX1b2TvCqTGexftIPXOzfJ3vUNVfXQTCbM+5buvm+S3924U1XtyWTSvX1JTkjy2Ko6YQe/F7bFP/gAwNj5PgPL6cjtbtjdf1FV35zkWUnOGprfmMns9ZXk2d297UsvuvvtVXX3Dc1PSvL87v7csM2BTXY9Ocm13f2RJKmq8zMJ/+/f7u8GAACW39qBjHvFQQ2Wy7aDfJJ09y9X1WuSPC7JN2US4D+U5JXdffkU6vnGJA+uqt9I8tkkv9DdG0/XPybJx9YtX5fk2w/2gsO97c9MkjtMoUAAAGBchPgJcwUsj20F+ao6Ksk9k1zf3e9O8u4Z1vM1SU5J8sAkF1TVPbu715ezyX69SdtkRffZSc5OkrtVHXQ72MiRWwCA6fL9anH2xcz1y2TLa+Sr6oiq+oNMbi33D0k+WFV/PwT7WbguyWt64tIkX0hy5022OW7d8rFJ9s+oHgAAYEqEeJiOQ0129zOZnJb+70lek+S9Sb4zyR/OqJ7XJnlYklTVNya5dZLrN2xzWZLjq+oeVXXrJKclef2M6gEAABg9o/HL5VBB/seTXJ3kPt39mO4+KckfJ/n+qrrj4fziqvrzJO9Icu+quq6qzkhyTpJ7DrekOz/J47u7q+puVXVRknT3jZkcYHjTUNsF3X3V4dQCm3HEGABYBq6LHjd/PzZzqGvk753kud19w7q2309yRiYT0116S39xdz/2IKtO32Tb/UlOXbd8UZKLbunvBgAA2IlFXd9vcInNHGpE/na5+fXn+9etAwAAdimjuatl36ILYG4OFeSTm88Iv7a82ezxAAAAS8fIOLvJdm4/d2pVfd265a/MJMw/pqpO2rBtd/cLplUcLJLbowAAMCZbTWjn9nPLZTtB/keHx0ZP3KStkwjyAACwSxiYGDeDS2zmUEH+oXOpAnYh/2ACADAmvr+uji2DfHf/7bwKAQAA2K3MWs9usp3J7gAAAFbaGAK1uxSsDkEeAAAARkSQBwCAJTWGUWSmx997dQjyAACwpJxqDctJkAcAgCW120ZoHViYnd32t2a2BHkAAGAuhM3ZOdRBkovnUgXzIsgDAAAsAWc8rA5BHgAAYMmd/pSnLLoEpkiQBwCAFTevkdwxjxiPuXaWjyAPAADMhWvkZ2vLz/eFL5xTFcyDIA8AAMyFUW2YDkEeAABWnJHyQ1vUZ7STgx8OlKwOQR4AAJiLfYsuYMk5ILM6BHkAAGAu3MscpkOQBwAA2KW2O8puNH61CPIAAMBcCJswHYI8AAAAjIggDwAAsAWzwbPbCPIAAMBSEsBZVoI8AACwlFyTz7IS5AEAgKU0rRH5RR4QcFYBm1lYkK+qr6iqS6vqyqq6qqqeM7T/TlVdU1XvqaoLq+qOB9l/b1V9oKqurapnzLV4AAAYgVUPgcswIr+T97Dqf+9VssgR+c8leVh3f2uSk5LsrapTklyS5MTu/pYkH0xy1sYdq2pPkpck2ZfkhCSPraoT5lU4AAAALMrCgnxPfHpYvNXw6O5+c3ffOLT/Y5JjN9n95CTXdvdHuvvzSc5P8qiZFw0AACOyDCPSwM0t9Br5qtpTVVckOZDkku5+54ZNnpDk4k12PSbJx9YtXze0bfY7zqyqy6vq8s9MoWYAAOCWceo3TMdCg3x339TdJ2Uy6n5yVZ24tq6qnpXkxiR/usmutdnLHeR3nN3dD+juB3zlFGoGAADGYdUOHDgDY3Xsilnru/u/k7wtyd4kqarHJ3lkksd192YB/bokx61bPjbJ/tlWCQAAHI55B03BlmW1yFnrj1qbkb6qbpvk4Umuqaq9SX4pyQ9098HOhr8syfFVdY+qunWS05K8fg5lAwAAt9CqjZDDrBy5wN991yTnDTPQH5Hkgu5+Q1Vdm+Q2SS6pqiT5x+7+6aq6W5KXd/ep3X1jVf1Mkjcl2ZPknO6+akHvAwAA2IYxjpDfK+Osm+W2sCDf3e9Jcr9N2r/hINvvT3LquuWLklw0swIBAICVJ8SzG+2Ka+QBAACmxSn8LDtBHgAAWEoCPctKkAcAAJaK0+FZdoI8AACwlFYp0Dv7YLUI8gAAADAigjwAACwhI7SrZZXOPkCQBwAAgFER5AEAYAkZoYXlJcgDAADAiAjyAAAAMCKCPAAAAIyIIA8AAAAjIsgDAADAiAjyAAAAMCKCPAAAAIyIIA8AAAAjIsgDAADAiAjyAAAAS+xeiy6AqRPkAQCAhREyYecEeQAAYGE+vOgCYIQEeQAAgCXhDIfVIMgDAAAsiY1nOAj2y0mQBwAAgBER5AEAAGBEBHkAAIARctr86hLkAQAARsiM/6tLkAcAABghI/KrS5AHAAAYISPyq0uQBwAAgBGp7l50DXNTVf+R5F8XXQcLdeck1y+6CFaW/sei6Hsskv7HIul/N/f13X3Uoovg8KxUkIequry7H7DoOlhN+h+Lou+xSPofi6T/saycWg8AAAAjIsgDAADAiAjyrJqzF10AK03/Y1H0PRZJ/2OR9D+WkmvkAQAAYESMyAMAAMCICPIAAAAwIoI8o1NV51TVgap637q2r62qS6rqQ8PPr1m37qyquraqPlBVj1jXfv+qeu+w7kVVVUP7barqL4b2d1bV3ef6BtnVquq4qnprVV1dVVdV1VOHdn2Qmaqqr6iqS6vqyqHvPWdo1/eYm6raU1X/VFVvGJb1P2auqv5l6DNXVNXlQ5u+x0oT5Bmjc5Ps3dD2jCR/093HJ/mbYTlVdUKS05Lcd9jnpVW1Z9jnZUnOTHL88Fh7zTOSfLK7vyHJC5L81szeCWN0Y5Kf7+77JDklyZOHfqYPMmufS/Kw7v7WJCcl2VtVp0TfY76emuTqdcv6H/Py0O4+ad094fU9Vpogz+h099uT/NeG5kclOW94fl6SH1zXfn53f667/znJtUlOrqq7Jvnq7n5HT2Z8fMWGfdZe69VJvnvtiC1098e7+93D8xsy+UJ7TPRBZqwnPj0s3mp4dPQ95qSqjk3yfUlevq5Z/2NR9D1WmiDPsji6uz+eTIJWkrsM7cck+di67a4b2o4Znm9s/7J9uvvGJP+T5E4zq5zRGk69u1+Sd0YfZA6G05qvSHIgySXdre8xTy9M8otJvrCuTf9jHjrJm6vqXVV15tCm77HSjlx0ATBjmx1N7S3at9oHvqiqvirJXyZ5Wnd/aosD9/ogU9PdNyU5qarumOTCqjpxi831Paamqh6Z5EB3v6uqHrKdXTZp0/+4pR7U3fur6i5JLqmqa7bYVt9jJRiRZ1l8YjhlKsPPA0P7dUmOW7fdsUn2D+3HbtL+ZftU1ZFJ7pCbn8rPCquqW2US4v+0u18zNOuDzE13/3eSt2Vyfae+xzw8KMkPVNW/JDk/ycOq6k+i/zEH3b1/+HkgyYVJTo6+x4oT5FkWr0/y+OH545O8bl37acNspPfIZGKTS4dTsG6oqlOGa6B+fMM+a6/16CRvGa6lggz95Y+TXN3dv7dulT7ITFXVUcNIfKrqtkkenuSa6HvMQXef1d3HdvfdM5lI7C3dfXr0P2asqm5XVbdfe57ke5O8L/oeK86p9YxOVf15kockuXNVXZfk2Umen+SCqjojyUeTPCZJuvuqqrogyfszmW38ycOpqUnypExmwL9tkouHRzIJaa+sqmszORp72hzeFuPxoCQ/luS9w7XKSfLM6IPM3l2TnDfMvnxEkgu6+w1V9Y7oeyyOf/uYtaMzuZQomWSXP+vuN1bVZdH3WGHlYBMAAACMh1PrAQAAYEQEeQAAABgRQR4AAABGRJAHAACAERHkAQAAYEQEeQA4TFV1blW5DQwAMBfuIw8AG+wwlN9jZoUAAGzCfeQBYIOqOn1D04OTnJnk7CR/t2HdhUk+n2RPd392DuUBACvOiDwAbNDdf7J+uaqOzCTIv2PjunX+b+aFAQDENfIAcNg2u0Z+ra2q7jQ8v76qbqiq11bV1w3bnFlVV1fVZ6vqmqp61EFe/0eq6u+H/T9TVe+sqkfP470BALuPIA8As/XGJHdI8qtJ/ijJI5NcWFVPT/L0JOcleUaSWyd5dVV92TX3VfXrSc5PckOSXxm2/UySV1XVk+f1JgCA3cOp9QAwW5d29xcDd1Ulyc8lOSbJid39qaH9LUmuzOQU/rOGtm9L8qwkz+vuZ657zRdV1WuTPK+qXtHdN8zjjQAAu4MReQCYrRduWF6bLO8VayE+Sbr7PUk+leT4dds+LkknOa+q7rz+keT1SW6f5DtmVjkAsCsZkQeA2frIhuVPDj//eZNtP5nkTuuW75OkklyzxesffctLAwDGSJAHgBnq7psOsupg7bXheSfZt8X2V93C0gCAkRLkAWD3+lCSvUk+2t1XL7oYAGB3cI08AOxerxx+/mZV7dm4sqruMud6AIBdwIg8AOxS3X1ZVT07yXOSXFFVr0qyP8ldk9w/yamZ3LYOAFghgjwA7GLd/dyqeleSn03ytCS3S3IgyfuSPHWBpQEAC1LdvegaAAAAgG1yjTwAAACMiCAPAAAAIyLIAwAAwIgI8gAAADAigjwAAACMiCAPAAAAIyLIAwAAwIgI8gAAADAigjwAAACMyP8DxCEli6NCNu0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(nrows=2, ncols=1, figsize=(15, 10))\n", + "plt.subplot(2, 1, 1)\n", + "wavelet = 'cmor' # 'db2'\n", + "coefficients, frequencies, time = cwt (HappySignal, wavelet)\n", + "plot_cwt(coefficients, frequencies, \"Happy CWT\", time, ax[0])\n", + "\n", + "plt.subplot(2, 1, 2)\n", + "coefficients, frequencies, time = cwt (AngrySignal, wavelet)\n", + "plot_cwt(coefficients, frequencies, \"Angry CWT\", time, ax[1])\n", + "plt.show()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "9687e40f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1.2358689534472845e-27\n", + "6.787497196283978e-26\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4IAAAI/CAYAAAAiKmd+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3xUVdrA8d+5M5OEVHovoXcIoaMiioKKBdsqYFewt1XXsr6KBburq7v2gg2RtTfsIiK9hN4h9F6SkDoz97x/zGSSycwkk2RKSJ7v5xO999xzz33CBDJnTnmU1hohhBBCCCGEEHWHEe0AhBBCCCGEEEJElnQEhRBCCCGEEKKOkY6gEEIIIYQQQtQx0hEUQgghhBBCiDpGOoJCCCGEEEIIUcdIR1AIIYQQQggh6hhrtAMIl8aNG+vU1NRohyGEEEIIIYQQUbFkyZKDWusm/q7V2o5gamoqixcvjnYYQgghhBBCCBEVSqltga6FdWqoUqqNUup3pdRapdRqpdTt7vKGSqmflVIb3f9vUOqe+5VSm5RS65VSo0uV91dKrXRfe0kppcIZuxBCCCGEEELUVuFeI+gA7tJadweGADcrpXoA9wG/aq07A7+6z3FfuxToCZwBvKKUsrjbehWYBHR2f50R5tiFEEIIIYQQolYKa0dQa71Ha73UfZwDrAVaAecB77mrvQeMdR+fB0zXWhdqrbcCm4BBSqkWQLLWep7WWgPvl7pHCCGEEEIIIUQlRGyNoFIqFegHLACaaa33gKuzqJRq6q7WCphf6rad7jK7+7hseaXY7XZ27txJQUFB5b8BIWq5uLg4Wrdujc1mi3YoQgghhBAizCLSEVRKJQKfAXdorbPLWd7n74Iup7zscybhmj5K27ZtfW7YuXMnSUlJpKamIksMhSihtebQoUPs3LmT9u3bRzscIYQQQggRZmHPI6iUsuHqBH6ktf7cXbzPPd0T9//3u8t3Am1K3d4a2O0ub+2n3IvW+g2t9QCt9YAmTXx3SS0oKKBRo0bSCRSiDKUUjRo1ktFyIYQQQog6Ity7hirgbWCt1vpfpS59DVzpPr4S+KpU+aVKqVilVHtcm8IsdE8jzVFKDXG3eUWpeyobU1VuE6LWk78bQgghhBB1R7hHBE8ALgdOVUpluL/OAp4CTldKbQROd5+jtV4NzADWAD8AN2utne62bgTewrWBzGZgZphjj5jrrruONWvWhLzdxMTEkLcphBBCCCGEOP6FdY2g1noO/tf3AYwMcM8UYIqf8sVAr9BFV3O89dZb0Q5BCCFEHbFv52astlgaNWtdcWUhhBC1VtjXCApvubm5jBkzhr59+9KrVy8++eQTRowYweLFiwF4++236dKlCyNGjGDixInccsstAFx11VXcdtttDBs2jA4dOvDpp58CcOzYMUaOHEl6ejq9e/fmq6+qNGNWCCFEHdHsrXQSXknzKT+wOxMmp7Bi1mcRj0kIIUTkSUcwwn744QdatmzJ8uXLWbVqFWeccYbn2u7du3nssceYP38+P//8M+vWrfO6d8+ePcyZM4dvv/2W++67D3Bt+f/FF1+wdOlSfv/9d+666y5cqRaFEEIIX6vMVP40e/uU71j5JwDOhW9HOiQhhBBRELE8gjXNI9+sZs3u7JC22aNlMg+f07PcOr179+buu+/m3nvv5eyzz+akk07yXFu4cCEnn3wyDRs2BODiiy9mw4YNnutjx47FMAx69OjBvn37ANe2/w888ACzZ8/GMAx27drFvn37aN68eUi/NyGEELWHgabHfZ/x9rXDGNq5BQB5iakALEkYTr8oxiaEECIyZEQwwrp06cKSJUvo3bs3999/P48++qjnWkUjebGxsT51P/roIw4cOMCSJUvIyMigWbNmkgJACCFEQL2MTEZalrEm7hpW/viep1wr11sCp7JEKzQhhBARVGdHBCsauQuX3bt307BhQy677DISExOZOnWq59qgQYO48847OXLkCElJSXz22Wf07u07fae0rKwsmjZtis1m4/fff2fbtm1h/g6EEELURrEFBwFoV+iaiXI0r4g4m4XdR/Pp0ER2oRZCiNqmznYEo2XlypXcc889GIaBzWbj1Vdf5e677wagVatWPPDAAwwePJiWLVvSo0cPUlJSym1vwoQJnHPOOQwYMIC0tDS6desWiW9DCCFELTAo93fAtea8MK4xADtjOgJw7+NT2KmbslqnMvP2k+jeIjlaYQohhAgD6QhG2OjRoxk9erRX2axZszzH48ePZ9KkSTgcDs4//3xGjRoF4DVyCK7dQgEaN27MvHnz/D6ruI4QQghRbIXZnj7GVgAUZskF5cr2pJVCmybP2l5nl27MEZ3EwV2vQou0KEQrhBAiXGSNYA0zefJk0tLS6NWrF+3bt2fs2LHRDkkIIUQtkkSe3/LYQtfU0In7n0A92oBklU93YwfDLGtIzFofyRCFEEJEgIwI1jDPPfdctEMQQghRi7U39nmOd9na09d9bCsKvJO2krREQghR68iIoBBCCFGHrDJT2WS2BGBnTAdPeem+3jEdF+mwhBBCRJh0BIUQQog6Jpc4ZjoHcsjS2FOWl9jOc5yoyqQhUpGKTAghRKTI1FAhhBCiDullZALQly1sc54W1D2migljREIIIaJBRgSFEEKIOmrj3mzu/CQDgJjCQ17X8nQsS8zOfOE8gWMpXaIQnRBCiHCSjmAd9MQTT4SsraNHj/LKK69U+r7Jkyf73Rhn8uTJtGrVirS0NDp37swFF1zAmjVrAPjqq6+8dlF98skn6dSpk+f8m2++4dxzz2Xw4MGkpaXRtm1bmjRpQlpaGmlpaWRmZno9a8SIESxevNhznpmZSa9evSr9vYTL119/zVNPPRXydq+66io+/fTTkLcrhDj+PG/9Lw+tGQNAQb2mABzUyWTreiwyu/KVcxh32m+mqF6TaIYphBAiDKQjGCVaa0zTrLhiGATqCFYlpqp2BMtz5513kpGRwcaNG7nkkks49dRTOXDgAMOGDfPKmThv3jySk5PZv38/AHPnzuWEE05gwYIFZGRk8Oijj3LJJZeQkZFBRkYGqampIY0z3M4991zuu+++aIchhKhlMsyOXudJ5JGbc5SsjfMBMDAx0PQzNnG55Re+inmQuNyd0QhVCCFEGElHMIIyMzPp3r07N910E+np6ezYsYNnn32WgQMH0qdPHx5++GFP3ffff58+ffrQt29fLr/8cgC2bdvGyJEj6dOnDyNHjmT79u2Aa4TntttuY9iwYXTo0MEz2rNnzx6GDx/uyUv4559/ct9995Gfn09aWhoTJkzwG1NiYqInjk8//ZSrrroKgH379nH++efTt29f+vbty9y5c7nvvvvYvHkzaWlp3HPPPQABv6cpU6bQtWtXTjvtNNavDy4n1SWXXMKoUaOYNm0aTZo0ISUlhU2bNgGwa9cuLrzwQubOnQu4OoLDhg2rykvjIzMzk5NOOon09HTS09M9z5g1axbDhw/n/PPPp0ePHtxwww2eznNiYiJ33XUX6enpjBw5kgMHDrB582bS09M97W7cuJH+/fv7PO+ll16iR48e9OnTh0svvRSAqVOncssttwCwefNmhgwZwsCBA3nooYc8r9GsWbMYMWIEF110Ed26dWPChAlo99Z/jz76KAMHDqRXr15MmjTJUy6EqJsWTH8SJqfQXB32Krcqk42vXMI5Wx4BoKE6RqIqIFnl0dnYRV9jCwlZG6MRshBCiDCSjmCErV+/niuuuIJly5axfv16Nm7cyMKFC8nIyGDJkiXMnj2b1atXM2XKFH777TeWL1/Ov//9bwBuueUWrrjiClasWMGECRO47bbbPO3u2bOHOXPm8O2333pGkaZNm8bo0aPJyMhg+fLlpKWl8dRTT1GvXj0yMjL46KOPfGJq166db9But912GyeffDLLly9n6dKl9OzZk6eeeoqOHTuSkZHBs88+y08//eT3e1qyZAnTp09n2bJlfP755yxatCjoP7P09HTWrVsHwLBhw5g7dy7r16+nc+fODBkyhLlz5+JwOFixYgUDBw6s1OsxYcIEz9TRs846y1PetGlTfv75Z5YuXconn3zi9We9cOFCnn/+eVauXMnmzZv5/PPPAcjNzSU9PZ2lS5dy8skn88gjj9CxY0dSUlLIyMgA4N133/V0rEt76qmnWLZsGStWrOC1117zuX777bdz++23s2jRIlq2bOl1bdmyZbz44ousWbOGLVu28NdffwGun5dFixaxatUq8vPz+fbbbyv1ZyOEqF16rX0RgObqiM+1lnnryr1XNg0VQojap27vGvruGN+ynmNh0EQoyoOPLva9njYe+k2A3EMw4wrva1d/V+Ej27Vrx5AhQwD46aef+Omnn+jXrx8Ax44dY+PGjSxfvpyLLrqIxo1d23o3bNgQcE2FLO50XH755fzjH//wtDt27FgMw6BHjx7s2+dKFjxw4ECuueYa7HY7Y8eOJS0trcKYyvPbb7/x/vvvA2CxWEhJSeHIEe83FIG+p5ycHM4//3zi4+MB17THYJUeyTrhhBOYO3cuTqeToUOHMmjQIB599FGWLVtG165diYurXO6rjz76iAEDBgCuUcCzzz4bALvdzi233EJGRgYWi4UNGzZ47hk0aBAdOrhyb40bN445c+Zw0UUXYRgGl1xyCQCXXXYZF1xwAQDXXXcd7777Lv/617/45JNPWLhwoU8cffr0YcKECYwdO9ZrHWSxefPm8eWXXwIwfvx47r77bq94WrduDeBZC3niiSfy+++/88wzz5CXl8fhw4fp2bMn55xzTqX+fIQQtUcGXTiBFWw2W+DAQlejZLpnto6nqTrqOc/VsSSowihEKYQQIlJkRDDCEhISPMdaa+6//37PGrZNmzZx7bXXorVGqYo/fy1dJzY21qtdgOHDhzN79mxatWrF5Zdf7unElRdT2XYLCgrKVi9XoO+pbLuVsWzZMrp37w6UjAjOnTuXoUOHkpSUREFBAbNmzeKEE06oUvv+vPDCCzRr1ozly5ezePFiioqKPNfKfh+Bvq/i8gsvvJCZM2fy7bff0r9/fxo1auRT97vvvuPmm29myZIl9O/fH4fDEXSspV97i8WCw+GgoKCAm266iU8//ZSVK1cyceLESr+WQojaZZHuAYATg3ximOksmUHRydjtVVc6gUIIUfvV7Y7g1d/5fg2a6LoWE+//er8JrusJjXyvVdLo0aN55513OHbsGOBa87Z//35GjhzJjBkzOHTItZX34cOu9RzDhg1j+vTpgGsk68QTTyy3/W3bttG0aVMmTpzItddey9KlSwGw2WzY7faA9zVr1oy1a9dimiZffPGFp3zkyJG8+uqrADidTrKzs0lKSiInJ6fC72n48OF88cUX5Ofnk5OTwzfffBPUn9Fnn33GTz/9xLhx4wDo0aMHu3fv5s8///SMOqalpfHaa6+FbH0gQFZWFi1atMAwDD744AOcTqfn2sKFC9m6dSumafLJJ594XgfTND3rM6dNm+Ypj4uLY/To0dx4441cffXVPs8yTZMdO3Zwyimn8Mwzz3D06FHPn1+xIUOG8NlnnwF4fgbKU9zpa9y4MceOHZNdQoUQrFepTHeMoIuxizRjC2daFrHFbI6pK/6QzmmJrbCOEEKI40vdnhoaZaNGjWLt2rUMHToUcG028uGHH9KzZ0/++c9/cvLJJ2OxWOjXrx9Tp07lpZde4pprruHZZ5+lSZMmvPvuu+W2P2vWLJ599llsNhuJiYmeEcFJkybRp08f0tPTmTJlis99Tz31FGeffTZt2rShV69enk7Jv//9byZNmsTbb7+NxWLh1VdfZejQoZxwwgn06tWLM888k2effdbv95Sens4ll1xCWloa7dq146STTgoY9wsvvMCHH35Ibm4uvXr14rfffqNJE9fW5UopBg8eTFZWFjabDYChQ4fyxhtvhLQjeNNNN3HhhRfyv//9j1NOOcVr1HTo0KHcd999rFy50rNxDLhGVlevXk3//v1JSUnhk08+8dwzYcIEPv/8c0aNGuXzLKfTyWWXXUZWVhZaa+68807q16/vVefFF1/ksssu4/nnn2fMmDGkpKSUG3/9+vWZOHEivXv3JjU1tdJrJ4UQtU8XtnOpdZZX2UFSOKyTGaA2+NQv1DaWmp3ZrFtwMLsZji2HGNzBd0aDEEKI45OqrTsJDhgwQJfOEQewdu1azxRDIapi1qxZPPfcc343XklMTPQZySv23HPPkZWVxWOPPVal5+bl5VGvXj2UUkyfPp2PP/6Yr776qkptlUf+jghRe7368LXcqHxnBxRqK7GqZDr6EZ2IgUmG2YlfzX687xxNG+Vae/7nk9dELF4hhBDVp5RaorUe4O+ajAgKEWbnn38+mzdv5rfffqtyG0uWLOGWW25Ba039+vV55513QhihEKIuuBzXEob1ZmuvjWIMvD8QjqOIWOz0NTbTTu3jKsuPNFVH2aqbA9IRFEKI2iKsHUGl1DvA2cB+rXUvd9lkYCJwwF3tAa319+5r9wPXAk7gNq31j+7y/sBUoB7wPXC7rq1DmaJGGzFiBCNGjPB7LdBoYOl1llV10kknsXz58mq3I4Sou4p/aaa6R/eK2ZTT67yecm2OVZ9c6qtcT3lvlRnO8IQQQkRYuDeLmQqc4af8Ba11mvuruBPYA7gU6Om+5xWllMVd/1VgEtDZ/eWvTSGEEEL4sfSHqSSpfABiVeDNwoQQQtQdYe0Iaq1nA4eDrH4eMF1rXai13gpsAgYppVoAyVrree5RwPeBsdWIqaq3ClGryd8NIWqnHRuXkz7/ds/5FrM5a8025d6Tp2WXUCGEqO2ilT7iFqXUCqXUO0qpBu6yVsCOUnV2ustauY/LlldaXFwchw4dkje8QpShtebQoUPExcVFOxQhRIgV5nlPW3dgobBMHsGy4gPkEdy8cn5IYxNCCBE90dgs5lXgMVzLFR4Dnse1+txfIiNdTrkPpdQkXFNIadu2rc/11q1bs3PnTg4cOOBzTYi6Li4ujtatW0c7DCFEiGmj5Ff9dMcITwqJNDaz2WxBR2NP0G0d3b4Keg8JdYhCCCGiIOIdQa21Z5W6UupNoHgf/p1A6bkqrYHd7vLWfsr9tf0G8Aa40keUvW6z2Wjfvn11whdCCCGOK0UpHbi06EFON5ZwrXWm17WjJLLQ7MogY73vfdrCfLMHa3Q7RhjL6WbsIDfB90NWIYQQx6eITw11r/krdj6wyn38NXCpUipWKdUe16YwC7XWe4AcpdQQpZQCrgBCn0BNCCGEqIW0JYb5Zg/y8F3319/YSD+1yaf8iE5krtmLX810nnKM50fTNY3UaZG1g0IIUVuEO33Ex8AIoLFSaifwMDBCKZWGa3pnJnA9gNZ6tVJqBrAGcAA3a62L97S+kZL0ETPdX0IIIYSogPXYHjLjxnvO15lt6GbsKOcOaKCO0cfYTDdjO/+wTifBvWZQG7awxiqEECJywtoR1FqP81P8djn1pwBT/JQvBnqFMDQhhBCi1tvxSHfamIe9VtuX7QSWzSNYrKHyzY1qmEUhjU8IIUT0RGvXUCGEEEKEmTKLiCF0eQMNp+QgFEKI2kI6gkIIIUQtdVAnc4Qkr7KtZjNWm+3KvS9fx/gtj88rf0qpEEKI44d0BIUQQohaKs3YQlN11KvMjpUibOXmEaynZAqoEELUdtHIIyiEEEKIKCidRxBgvdmarsbO6AUkhBAiamREUAghhKjlzi58nFcd53h1AgFyiWOB2c3vPU6t+MXZz7t+QvlTSoUQQhw/pCMohBCiRlkw/UkO7t0e7TBCpqiwAIc9OlMtl5mdmO3szSrdwe/1dGMT/dRGn/JDOok/zL7MMXt7lZuG/7WDQgghjj/SERRCCFFjbN+4gsHrnqLxa71Z9syZ0Q4nJGKebMbeJ3pXXDEMNNBKHSQzbjw3Wr8BYK3ZpsL7Gqkc+hhbuNP6qXd7hiUcYdZo9qJC1sz/Iai637/+APMfHhbmiIQQIjRkjaAQQogaw3SUpCfolzc3ipGEVmu9NyrPTTc2+ZR1L5NHMCZAHsHGKtunzHAWhiaw48iSd+5kyN6PWGV/n4SGzWnfc3DAukd3rGWAZVcEoxNCiKqTEUEhhBA1hmlL8BwHWrt2vNi6YQVMTgHgR+eAqMSwyWxJjq4XsvYszoKQtXW8WG5vDUDHX66j/f9GRTkaIYQIHekICiGEqDGccQ15xn4J2SHsvETLqk2ZnmONikoMucSRT6xX2VazGSvM9uXeV6htfsvr5e0OWWzHg8+X7mT1nmMAmEG8huOtv/mk6xBCiJpKOoJCCCFqDsPKX2ZPklU+g4110Y4mZM6wLIrKc/sGyCPowFJuHsFYZfdb/u5fmSzZdiSUIYbduoU/s31DRpXuTf7iMl6K+S8Aa3U7CgJ0kIUQ4ngkHUEhhBA1hlFwiK9iH4p2GCFRP3er5/gvZ88oRuJi1xY+dpxCF2MX6cYmzqxC5/Qh2/v8+OtPYYgufLp9fxFtp51cpXutmJ7j5uowcQE6yEIIcTySjqAQQogaw1KY5TleZHaJYiRV57AXYTqdxDhzPWUFBJd2IePX6RTkHfOca9Nk0/K/qh3TKYXP8x/HWMZZf6/UfWVHDZupo/TIXVjteCLtqE6ouJIfIyzLPcet1cEK6x/v61qFEHWLdASFEELUSJ1UyXq0+R8/wYalf0QxmuBZpzRh6YsXQ6k1ZSMtyyq8b8OaDNL+vJ5fP3jCU7b461fp9MVZLPvpwyrFstjswhxnT7bqFsSr4Dd6OaCT+cXZj0V+OjZtCzdUKZZo2Wy28MmHGC5bzeYc1oks/vYNtGlWfIMQQkSRpI8QQghRY5TejqOBKhkZG7L+aVgPpGf53FMTDcj5le92JFfqnpwiV8chM79koxznvrUAFOxZW6U4NNBO7Sczbnyl7muisjnNsozTgujA1nQdjT1km1UbEaysOFVEQ3WMhovvYWVyE3oPPz8izxVCiKqQjqAQQogaJDq7a4bDmNwvKlXfKP7WtS4pVJ7CKsUw0Di+Ru/CpZ+ffIrhkKPjPcfHZDmhEKKGk6mhQgghagxnTJLneL7Z3evaPGePSIdTKVtXL2DnI/7XiK0x2zH/lYnlTheMzdsHwKl5P3jKlja7iAftV7Ou2TlVimm12Y79un6V7g2nnKzD7N2+MSLP2mI25yvnsCrdO9tZ9SmlhbGNqnyvEEJEgnQEhRBC1BhmXAMesl9JVqmRFYBbi27hCUflpjdG2rxZ39Na7+EL5wk+13oY2xiyfwa7tqwJeL8yin8ll4z+HYttxofO08mNaVylmExUUPnvKmNZ4vBqt3H0xRNo/s4A1u3N5lihIwRRhVZO1mGYnMIJxiqfax8t2Eahw+n3vsutv3iOlZY1gkKImk06gkIIIWoOpdikW5Gi8hhilKyLO0gKeWUSo9c0uYZrNPN8y1/86ezFvx2VWx/mjK0PwB5LS09Zi9w1fBnzII1yqpZTsbeRSXMVurx/z9gvYVXCkGq300a7NgI648U/+ecXK6vdXnk6GHs5zzI3qLrzpz3OukW/sHfragAsyndK7v99sYKXf6l4NDOmoOJdRoUQIpqkIyiEEKLGsOQfYlrMEz7lH8dM4X7rtChEFLwm9l2eY43igJ8pmdoaF/B+R70mAGy2dvKUdTo8mzRjC6mH51Q7vjxd/Y70jdavaVq0s9rtfOQYyQGdTEbsRNqtea3a7VVXYUEeG5b+wZANz7Ln60fRlsB/VlviLqPVnh8CXve0KVNDhRA1nHQEhRBC1BhGUclOoUvMzl7XKrODZUF+bsTWoBVrV7DeczzcspLHbe96zuc5e5BW8DqOhGYB7y/eLMaiS02VLN4sRldts5higwr+y0uVHKH0J0nl0zMvNHkEY7FTX+VymfoxJO2V54AufwfX5a9PpMvX5wKQqZtjxqaUW7/DMf8/i385e3qOlfY/fVQIIWoK6QgKIYSokXqpzCrfu/bli2n+zgCcjpqx/myoZQ1xFFWwWcxeAFo4S/Inqmqu71tgdmOeswf7aUBjFZrUG60Lq74Dp9aa9+ZmMtYyh2SVD0Ayxyq4q3rWm6395kMsrVF2ydrN7sZ2zJgkHrNfVqnn/N+Xq9itS0YB4/Zn1JifPyGE8Ec6gkIIUY4juUXszw4+EbcInVhV9f33e+XOB8A0Izcqs7GwfrnX58fdivXY7sAVrK7piPm52Sz89wSvS3EHV7L42zeqFFd7Yw+ZceO5zjqzSveH0pJtR3j469V85TyBYzrwNNlQ6mrspIPaU24dXarDPcRYi3Lkc4f1s0o957ylV3OxdbbnfPDqx7A83ojVW3ZULmAhhIiQsHYElVLvKKX2K6VWlSprqJT6WSm10f3/BqWu3a+U2qSUWq+UGl2qvL9SaqX72ktKqdqTaEoIUaP1e+xnBj3xa7TDCNq6vdl8s7yczkYNp0P0z/sP5iDXgYrc551D7BVPmczaWV5ieNf0zwsscxh05Ft3ievPo1/eXAYsvqfSMQ021oV0sxh3UFVmHFxPZtx4xlt/C108Qehm7GDD0lkc3r+LjRl/+lx/IuE+biq6zXM+a80uktwjln75maqbqvb6rfq/t5+pfMBCCBEB4f4NORU4o0zZfcCvWuvOwK/uc5RSPYBLgZ7ue15RSlnc97wKTAI6u7/KtimEECE1e8MBUu/7jpssX/Gw9b1ohxO0+/79Lj988mq0w6iy0muzyuYN3KsbsG5x+Z3yrEP7WDNvJp7eSoQ+N1z204e0NQ5UWC/rWG7Aa4Y9z3NcqG2udlv8jUlFd1Y5rlVmKrt1wyrf74/p+dVceTH5+z3Hico10r6G9tWOqTxbzWbs0Q3p8vV5NHylB52/PNunzl5LC743XbuhFmkL9Ra+XG6bh2Na+JQ1Vtl+695l/V8VohZCiPALa0dQaz0bOFym+Dyg+F3Ve8DYUuXTtdaFWuutwCZgkFKqBZCstZ6ntdbA+6XuEUKIsJjx5Rdkxo3nH7ZPuNoa/s0sQuVCy2wesU2NdhhVZsamcFfRDRzWiV4DT9cU3U1zdYRu317g974FM56BySmkvNyFHj9eyjmW+Uyxj6/uHitB6zf3Zs/xTh0451/ukX1s35DhU774uzc59Nc7nvPiabEFMQ34yRzIJ44RHNUJoQu4GlaGIH1EsV+c/XjH9O2YhZpDB+68bn20L88eupk/Y24HIEY5ucr6U7ntrag/EoBjhQ6+W1H+tFOvkcXJKcx/7aYgoxZCiPCKxhrBZlrrPQDu/zd1l7cCSk+k3+kua+U+LlsuhBBhc0HR19EOoUout/4ScGTieKDQZBNPQ3WMYZbAydfLOrRmlk/ZP23TIApJvVurg3znHES+jvG5NnrTY7SddjIA896+iyXfu3YWHbDoboYc/MKnfovs5cyNvYWGKocVZoegY8jKt7N0+xF6GZm0VGU/j626h+1Xsiyh6gnly47PXme/h5/0oOoFVYH2xj7auEdrN5ityNH1vK+bmfQ0tnnqBCPb5kr1cd9nK7h52lLW7gn+79yQvR8FXVcIIcKpJm0W42/+ji6n3LcBpSYppRYrpRYfOBD8P+hCCFFWZ+fmCuvkZB1m3tt34bAXRSCiusGSf4g3Y/4FgKkVBXnHWPyvC3kn5rly79tAO7/lqjoL2irhS+cwr/MmKot6yv/PxY/OAQAM3fEW/RfewSPfrA7YburR+bRUh+msdrJMdwpYr6xrpy7igleCS6JeGY/Y3qPF/j9C0tYe3ZC1sVdxh/FJSNoLRhejZO3f4f27WPrDVA7ppEq30/vo767/7/4fmXHj2T27/OnjWflV3/hICCHCJRodwX3u6Z64/1+8YGAn0KZUvdbAbnd5az/lPrTWb2itB2itBzRp0iTkgQsh6g6DinebTHqhPUN3vEXGzHcqrCuCVGqd3HLdkRU/vsuA7F88ZT8701n1UF+f25qUWoXwiP1yz7GuZvqFYP3p7ON1PshYH6Am7Hcnmt+pG7PY7IJ1/n9Ya7bxqnNUJ3Djh0tYsdOV8iHV2MeFFt9NTgJJ3z2NRbE3Bl2/Mu4/9lSV7zWtJYnaEyignipivCp/Gma47H/jQtLn304jlVPpezvkLgXg5AJXh3Dk2gfLrd/3kZ8osDs5oJN53n5R5YMVQogwiEZH8GvgSvfxlcBXpcovVUrFKqXa49oUZqF7+miOUmqIe7fQK0rdI4QQYVF2JGlPVuAdBL9bvpMfVpW/TkhUXj/DN1/dWt2WHmqbT/nZlHSSeqhtOHRkf70llLfDZBlDjJKdQ3uqTP5pm0YzdYRcHetV789VW9D2ktQlrdXBoJ9xtzGNJiqLRWYXFppdg74v3HIa96NfwWsAJCtXpz+eQgrs4UvzsdZs63WepeMB+MkcUO22gx1xvsnyJQUFBQwsfI2Xnf7XuQohRKSFO33Ex8A8oKtSaqdS6lrgKeB0pdRG4HT3OVrr1cAMYA3wA3Cz1rr4N8ONwFu4NpDZDEQ/GZIQolYru7nEt3/MD1j3Jsf7tJsxisX/ujDcYVWoeNrh8ars+F1uvZZe57dZv/S5Z8VTp5FCyW6cF1tnY1WRWRuYdWgf2jS9OncV6WzsAlwdu+Lpow3VMRyU/MzVV7msiruOG6zfVDEy5flvJ7Wrim2EgWHhCMl84hjhWasXoxyc9dA75OSFJ19nd2O753iT2dIzSmxG8LPwf9hmoIqOcZYxnx4qM2LPFUKI8oR719BxWusWWmub1rq11vptrfUhrfVIrXVn9/8Pl6o/RWvdUWvdVWs9s1T5Yq11L/e1W9y7hwohRNhMN8Z4nbfY+qnnWGvNv37e4DlvorLobmz3msIYLT84B/KB47RohxEyhxv0ZkzhFK8yQ3n/CijKywrcQBjzCO7aspqUl7uwYPoUzrJUnEOw2LuO0X7LU1Se33Ivk1NY+OK4CqsVd3YGGBtoqI4FHVu41Tu6kcy48VxineVV/lvs3WQdDd2mNgA/rt5L78neO/52MnZTX7k+NBigV3rKv3UO5sLChz3n28ymlKtKb0M0r8S8xPexD1ThXiGECL2atFmMEELUGD+rYdxjn+Q5P/vIhyz/bToAmQeymfXbD9EKrVy7dWNW6OB3l6xJcgsdLDlQMia4wmzP0aVf0cBPR2bl7JIdNrPdU/38CmNH8PAO1zrAhG3l5zYMZLPpm4vOn/MKH/U633/oUKWesUs3qlRc4WQrKJneWjZhuzIdIX3W7K/f5SXnFA7oFEztPda86IVLOFEv9Zzv1w1Yokum0M43vXNYlnUo1rV1wTEjEYDri+6oMB75CFsIUdNIR1AIIfxop3fyrO0Nr7Lsfe61abkH+Tr2/6IQVcXOsczlH9bp0Q6jSh746A/e+H4+NxXdxgGdQh9jK9fue5wPY57kZ2d/r7q9f7vK0zE/1ZLht72pjlGYZvjWnhXFuTYl6124zKt8k9nSX3WP4ryUBsFNX12uO/GuYzTZOp6jOoED7s1myrPZnWVJobEE+ZzKWPL8+SFp52vnUM+xcgS/zjIYvZ1rOcWynGRy2Y2rM2x3T/kemOX9Qc411h9YH3uF57zsiGVZGSmuUfd/x17PjUW383rMixUHJD1BIUQNIx1BIYTw4zrzfz5lB2JdKQqMIv+7DKYWTAtrTMG4zPorTVQ2C166nH07K06BUZN03P01P8TeR0OVQxPlPd1zuLHCp37hYb8bSHtcZf2Jj78L346UTkuc3/JOxm6mO0ZUeH97Y19Qz9kUexlN1REWmV2pr3I50VhV4T3PmBN41XEOHYy9NFdHgnpOZfTP+S0k7dxjv569ukFI2irrJKdrXW+scng22tmmmwWsH6uCH5E8ZqkPwPs5E3k15t9VD1IIIaJIOoJCCOFHD73Fp+yCFdeXe08iQazxCoPCgjxW/fUNiz4veUM6+PDXbHlnIqt2lbN+roY5xTkPgMdt7/pci1W+ediOJFe8G2bB5r+qH5gfW9csou03FzPX6X8KYS8jM+C93zoHe53/23EBfzj7cECn+K1vVSaDjXVs1K5Rvs7GLpY9O4aDu313Ty02n9487ah4LWEkZfw6ncL5JalWdurGZMROCktHFfwnIe5k+H54cEz779CXp1d25XIp/s8xHKetnCnMQggRBdIRFEKIMpY+dw7JKtfvNXtRYcD7VsVdx6q/vkGbkdmxsljGmzfS6+fLGLjiIa/yQruDs1+eE9FYqqOJrnjt2xazuedYKysAvzj7edVZbZYkl082w9MRzvrmQZqrIwyzrHGdl1mnWF5HMFvHM+LZ39mn67PUdCWJX6E7MNfs6alzUCeTWjCNf7lzzjVW2Yw2Fnmu98udw+/ffxzwGRPVV2TGja/09xWsQm2t9D1pf17vNZKYRJ5n11QAHfKOUuCpmKU7f4mq8ruVjtv5GPMePTXo+vc4bgBLLGvNNjxiv5ytqxdU+plCCBFq0hEUQogy0o/NDnjN9kRTDm/znppX/GYeoNfPl7H461fDFps/iTn+p4COsCxnZsy9EY0l3GaZaQD85kzDbnV1HMomjV9tpnqOBxYFv5tnZaTle6cTCWrHT7fx1t+5KOtd4imkp9rG7dbPucryIyOMDK96TTlCUql22xv72KsbsMF0jQweszUO+IyblWuX2wVmNzLMjkHHFqzKTKMsq0vBe4Dvn5m21qtWTGVlqyQAjuoEr/JDOqlKnb+yejiDTxnyiPVdtGnnzKKnaaaO0v5/o9i2PqPaMQghRHVIR1AIIcqYb3Yv93rmtq1e5+llEp8fyvOdxhhOmbZOPmUjC58FoLuxI6KxhNs1VtcmH6daMsjPPoxpak63LPWq8zdr5abtRcMt1q9IUvmeKa9JKt8rr11jlc3CuJuZaP3e6z6N8iRiTyo6ELB97ckjqGtMHsEfnANZZ7ahCBufOU/y5BEEeMkxFpS/yZxV953FtaFL/VKj+5vNFiSHaAp3ZTr/V1p/Rhdkc5HlD662uH6Gs764m/mvTKrgTiGECB/pCAohRBmqnCllAPady8q9PmODk2Xbw7PuyZ+Vsf1Za7b1KksitDswRsIiS5rf8gsKJ/st/37BKl76bSN/OXv6vQ7gLJWkPZS+dw4KeZv+0mSU1UId9qypa5u/OmC94imXg4z1IRn9Kqsq6+o26xY4sJAZN54LLX96XbvN+iWqKLT5DudZ0rmq6B6vso7GHmzKdyfZz5wnckbhU57zAzo5pLEAYDp5zva6p/Pfp2ARQ/Z/EvrnCCFEkKQjKIQQZQw21gFwY9Htfq8fofw3iS/pZ5jx+mMhjyuQdTG9uMF+h1fZl7EP+a9cgy0xerNT+0537GH43xRlaswzOJb/DzuB16v9FXtiyOIrzUZoc96VZ1jBS/4vBJGOwNSKfB0T4oiqtq7OjpVGKttzXjaPIM7Q/pn2NtcxNebZoOoe0Ums0yUfpmzVweV4FEKI45l0BIUQIoBA28KfoMsfEUxUBXRRO8MRkl+DC+fwR+zfI/a8cFli9Oa2olu4qugfXuWP297lG+cQv/cMLprPCMvygG3mqfDs1Fh2Omo47aYxrznOpkDbyNWxLDC7AbCjXvlTmAEMpb02ZImmTmo3LdRhr7JpjlNKTpyhjbOv6TtiWqhtfuteZ53ptbnOIGN9SGMBQPtuIlV2JF8IISJJOoJCCFFJ5e0IWaw4aXgk9C+YX3Gl48Bo5x98HjuZLsp3XeM5Fv/f40mFgTf2AcgjtBuQVEaRDs201My48bRQh/ndTCNBFXpGrO05B5j/0aMheUYknO3nNXzOcQmHdJL7LLQJ1wc5M3zKdulGIX1GZfgbwH3RcUHkAxFCCDfpCAohxHGunuk/1cVO3ZhRhU9HOJqqG+l05fx7wBY4LUJlNTQjt1aztD+dvYjxsxYtkBVmew7rxIDXzzAWsadMJ+bSnKkM2fg8Rw/u9am/xOwcfLBV4NTV39hlq9mMWbF30kjlhCCi4HQwfP+sIsVp8319exjboxCJEEK4SEdQCCGOe/7flDckhw26TYRjqboG+miFddaUyhEYSK6OLWnTrDg3YSiUnXJ4kmVVgJrwo3MAZxU+4bVrpolijtnbc75P1ye1YBrP2S8GIFbZOdFY6bc9rXx/lfc3NlYq/sqyqOqP3jVRWSSXWidoxqZUu81gHdCRexbAPGcPWrzSkTllNja63vJNROMQQojSpCMohBDHOR1g2/14VcjC2JsiHE14LTc7ALBf1w9YJ0EVeo772ctfzxkqxTtBBmO0ZTEXW/7w2iwlzdjCCYZ357GD2u21uUoXw5UGYo9uCMCvzn4A6OPsV3lqwTTAd8MZ0xbaabwHVcOA15qorGq3X5lNeIZa1gAwyX6XV3qauEr83AghRKgdX789hBDiOPG6Y0zEnrU1pkvAa03VUTJ+Cd1Uy/CqeLrhOOvvgOv7AvjQMTKcAYWNvzWkMaV2Im2mjvJb7N1+6yW6U4N0deeI1H42IamJfnams8pMBeAL5wk+eQSVGfxU2mB8bzk1pO2VVZVNeK6y/MgQI/hE9EIIEU7SERRCiDDYoZtG5DkL/z0e65HNLDIDdwbT5tzAwi9ejkg81fGXZYDf8jMLn/Rbfk3R3fxp9i4351t5qSWqIxxTC33SKVRQr7U6CIC2+N8JM5w2mK0qfc9qnUoucWTGjed8y19eKThus36Jyj9czt2VN8/SP+i6HztO4cTCF0P6fH/+Yas4b+Dmx9LY8PjAsMcihBDSERRCiDCIJTJb9g868h1jLAuZbL+y3HqbMzMjEk91LDF6+y0/xfA/vfOdmOd4PeZFmpSaPlnWr7HhGTEsnqJaHQ4d3K/grgVTvc7LJnPXKvIdwScd44PKY1iaBZMeqiQnZNlpkSrEI5vDnIuDrptDPDsj9OFNRTo6t9LFsSHaYQgh6gDpCAohRBi0V5HdnfC72H+We/2oJfB6qZpiXYCNbf5hm1HlNosITydpu25W7TasKriOTyExvOwY6zmfa3pvOOIoyKEg3//OseHybsyz6Ep2BFurAz6jnh+XyiOoQzw1tI8Z/BTMSdbvvPIIRspmUxLXCyGiRzqCQggRBpdZfw1Lu9MXbufXtfs859vNJkHd19i+l6LCgoorBulY9hEO7t5WccVKOM2cG9L2AIpU8Bt6VMYllt9D1lZqwTT2lbP5TWbceCZZvvWcj7Is8bq+79Wz2frk4JDFE6zKdgTPt/zlU3ayZXmowvGR5iehfE1SqK085rjMp3yeswd/OPtEISIhRF0jHUEhhDiO3Pf5Sq59r2TKW1vjQFD3XZzzPjFPVn8Uq1j2C4Np/EZo36yebvp2FKqrsfNgyNvcvXWd186k1VGorUyPeYw9uhG5OtYrCX3pzVRilcPf7S7axCzz63yle1OWmmyz2YKWqvS6wNAmlK/pYpWDIcY6n/Jx9ge50n5fFCISQtQ10hEUQojjSGbc+GpNYVv67NlsWDqr2nEUOKufULysFI5VWGep2anCOqU7U03M4DrKlZH3YeX+/EvHU2x44Que3INDjLXE4OAPs68nCf1O3ZjehW/zjP2SgO1m63gADDS6zI6r68y2lYqxKio7IlhWR2OP17kzPrjR7VDYrWvGVOkbrL55BIcZqzjJWBGFaIQQdY10BIUQ4ji2VzeoVP303D859O0j1X7uIrNbSN9MZx05SFMq3jUy3dgEwGGdGLBOcWcKoLcjcGL3qrLqyuV+Kx1PsVssXxKr7J6Rvh7GNoYaa7zq9FZbaK58/0yKRwp/Nl27YvYxttLLyPSqc7F1dqVirIqqdgRL59ErzbSENo/gHhV4BLylnz/XaNm6ZhH7dm72nE+LeYIPYp6KYkRCiLpCOoJCCFHKjsN5IWnnXcfokLRTkebqSNB183QsAIus/ar93LZqf0jfTO9+5ZxK1W+oXKOHL5XaRMWfRDObLasWVDUsv/6wnVjtNv5m/cOnrIEqGRFtrQ7yTeyDXGH92ade8YYrA9T6asdRLapqbyH85dF7yTEW5QjdGlaAmcYpfsvHFZW/sVKktZ9xGo43T492GEKIOihqHUGlVKZSaqVSKkMptdhd1lAp9bNSaqP7/w1K1b9fKbVJKbVeKRWZd1hCiDrlq4xdnPRMaDYBySIhJO2E0lbd3H1U/WmdQy1rKq5UCSlF+yquVMbEor+zzWxebp2mHKbDp6OqGpZfS61pIW2vqtoZ+6P27Afs16JV8D9HizPL/9DgNuuX7N6ZyeYDFU8PDtacAHkpn7a+EbJnhMJWsxmLza7RDkMIUQdFe0TwFK11mta6+F/r+4BftdadgV/d5yilegCXAj2BM4BXlFK+iy6EEKIadq5bxJPWN0PSVmOyyCmo3BTCcOtpuHb5PNf+AwX26m3VX7y+LVRpC6abp1X6njdj/sXzMa+F5PmVka/iKq4UhGDzCH7vHOR1vks38hw7teIL5wlkmqHbCCgYOboe2hncz9DsBYtY99Z1FdZ78MuVjHzed6S0qs5w+m8r2A2WIqW9sa+ObZMjhKgpot0RLOs84D338XvA2FLl07XWhVrrrcAmYJDv7UIIUXUD9n/OOGtoRgQvtvzBfR+G7k1tKNnMfG54+EmycqreiYt1JwM/sGNjSGIqu9lJTdbbEZq0BMV5BEvvDurP/jKpJf5y9vIcW5QmnkIMQpuMvSIvx/wHdHAdwSP7dwSVTuUd2zO8Y3umuqF59DKjPHW2EsZaQp86RQghKhLNjqAGflJKLVFKTXKXNdNa7wFw/7+pu7wVsKPUvTvdZUIIETK2gkMhaytWORi57QW0Gdo36KkF00gtmFatNvJ1LFNjnuXQkeqv8Wsz7WQWf/1qtduZaHxV7TYi5eyiH0LaXu/Ct9lgBv6VdpX1J6/zsusLTzeWRGWUS+vgfrat9uCme7Y39nGqJaMaEXnraW4IWVvhcEz7H1me6RzI587qr0MVQoiKRLMjeILWOh04E7hZKTW8nLr+Pir2mUmhlJqklFqslFp84EDNmvohhKj50vPmhLS9CyxzsD/SmHlv3o7TUU4euErRVDffWr3iHHjV3P6/WNKS6ncEk90boITLRwu24XCGplOuQjyR75uYB8gnFoc2PBv6AEFP99ymm7LU7MTSHz9g03LXz/Bqs11IY/Qn2F1DGx6r2R2yaElUJZvjmLrkbc6N9jv5u/2maIQkhKhjotYR1Frvdv9/P/AFrqme+5RSLQDc/y9eCb8TaFPq9tbAbj9tvqG1HqC1HtCkSeTyEQkhRCAxysnQXVNZ8Wv1RvGKZcZNIDNuQrXaaKVcI5+WgqqPCK43W3uOU9mNGeR6sWjJ+Po/zPh9YVSefVT7bhzUv6Ck89zbyCSeQn4z+xHv7qRvM5syougFnrJfGrDdzWYLoCSPYPq8W+j0xRiyDh8gU0dgzWCwHyQEOXJYl/1ipnPkwB5ysg4zwsjgDCM6P6tCiLolKh1BpVSCUiqp+BgYBawCvgaudFe7EiieK/Q1cKlSKlYp1R7oDMi/kkKIkKporVZ1FBgJ1U7AXZMco+TPKlbZWfnH/6IYTcWetb1BzJFNUXl2feW7FnN6zONe552NXQwy1nmVDTVW01YF3hl0ttkHcO0e2t8oWauZ8lInxlhqzq/IaP3YZxqtK65UQ9RXx2jw327oF3oyNeYZXot5MdohCSHqgGiNCDYD5iilluPq0H2ntf4BeAo4XSm1ETjdfY7WejUwA1gD/ADcrHWQq9SFECJIt9tvBuB/jvJmqlfNY7/t5W+vzwt5uw/br6y4UiBVGKmZ/9/rYHKKV8cDoJDQ7KQZTk3zQtMR/Ms2pNptdDZ2+ZSV7jC2M/bzccwUxlt/C9jG6ZYl1Y6jOrQltuJKwO6kPhXWeckxlmVmJ58dUqvjR8vJIWsr3AYZro1tSk8NFkKIcItKR1BrvUVr3df91VNrPcVdfkhrPVJr3dn9/8Ol7pmite6ote6qtZ4ZjbiFELXbQPebsYuts4HQjhA+YXuL5tu/C1l76xf/Rn5uDpdZfgn6no3uDUkO6SQAtLXybzqHHPA/8lcY18hveU1iM0OzDnGh1X9+usoqTsFRVa3VQZ+ylxxjq9VmsH529g86obwZxJDgbdYvUWhust/hvw2nE4e9qDIhMsc4/jYXX2x2iXYIQog6pKaljxBCiKi50fqN13lSCDcwSTO2uLbcD5Gu357P2lfH+x1ZCqS4biOVA8DedQsq/dyAHY3jYdprJRKglydfhW8KsT/ljZLl6Vg+cowEYInZma3udYPhp9HO4Dpmpg5upCvN2MwLtv/6vbb26ZOxTqnc2v+LnN9Wqn5N0E3tqLiSEEKEiHQEhRAiTOzaEtb2m+euq7hSOTYcCl3C+1d/q14skaBC9Cuvp2NtSNopzsU4sOCVcutlldls5nXHGM9xvCokxT2ltL+xkdusn4cktoqcblmKdhQGVVdph2cTnIqcb/nLb3nPopVBx1ashxmaHJeR1Mnw2QdPCCHCRjqCQgjhNovQTPkrZlOhXcpcNidhSx14I5Fg5FtTKn3PYMN/h697QUa1YomEPSl9Q9LOeUWhHWm62DKr3CmB46y/e51fb/WeYny2Zb7nuL2xL6SxhUK9oiNReW5nc2tUnhusIzrRb/lBncxbjjMjHI0Qoi6SjqAQQriNYHG0Q/BxMDuPM5/5ni37jrL4m9dC2nZD+95K3zPf7O63/P9sH1U3nLBabHYhPzY06xhDPQn2H7YZNCQb8F6XutTsFNT9ZdeyphW8zkPV2UQoSEHnEcyp/mjxfxznBf3ncbxooI55nRcnmFdoHndcHo2QhBB1jHQEhRCiBls473dm5o1jzg+f4Di0LaRtty7aEtL2Fn7xks+oZU3xrXMIThUT7TA8PnV670wboxz87Ez3rEvdbLbgmqJ7ym1jnrMHAFa8R54z4q5nhLE8hNH6t3FfTlD19h6t/lrb5xyXcEHRo9VupyYrTjDfSOVwsWVWVGMRQtQN0hEUQgi3fxlXh63tLWZzrqrgjT2Aw17Eos//jdPh8CrXwC5HUkhjSux2aqXv+Zvlj4DXBi3/P9Yt+rk6IYXNZNv7NMyrOVMFL7LM9jpvrQ56dq0F6Gjs4ZOYx8ptY6HuBkA95btpy6mWjOoHWYHH3vksqHqdnN5pO6Y6RlX6WTdYvuY+68eVumeD0aHSz6kpnrW9Ee0QhBB1gHQEhRC1Tk6BnSnfraHQUbk1eo4Y15qdZSGcgvaLsx+pBdM4tehfGGgWvFwyZa/s6NmSbUf44u0nGbjiIRbNeBKAlGOuzsuVW//BRbufDVlcAHuzC9i0/1jFFUtpoQ6Xe92eX7n2Iql+/vaQtLPQ2j8k7ZRVNvF8V2NnufWjPWp0t3UGeUWOCuuts3T1Or/K+lPAutMcp/gtv882nRvK7OpbkZ+MEytVv6bZvbXmb8AkhDi+SUdQCFHrvPLjCn6cM59P51cugXgP01W/nxGaxOMAp1mW0Unt5AnrW7wT8xyDD30JuKZRqkcbsH9XySjVha/OZeOOPa6TLFeqh1DlvvPnvbmZnPavwCN8VaGN6uXGCyeLDs0uqX9Zh4aknUCCzS/Y0k+n/Bdnv1CHE9AwyxpOfS6In59KpO14wDHR63zT8r9gcuU3NQKYYwys0n01Rcv3Bkc7BCFELScdQSFErdP10M/Mjr2TJoeC3/xlwYxnOLtoZlji+SX2H4y3/gZArjufWuLaGQAc2FaSiuDXmLt4wOaa/mY3XBtHsGtpWGICeNX2Ih/bHg+6/u/zK/7z3HS0BucTrESHRJtmwATmeSo+VBH5VZxWorK2ms3IJbI5Dk84VjK6N+/tu1k152ufOi1zg0+38b7tSa/zpSsqv9Zx7YIfObh3B9c5Pqn0vTVNTkHoUrwIIURZ0hEUQtQ6LfJca62S84KfCjh4zZRwhePFcO85mV/gzqtmlOQa7Gi4RgPHFf2TRU0vAmBHTMeQx/CDcyCP2C8nSeUz1LIm6Pt2b6r4TXnbxcF3LCMv+I7gzDf/SdHjrf1e6+EMTR7BYk/bLw1J/fbGPs6zzA1FSEF7PqZkJ9uhO96k1y++u102UMFtKgMw3LKStQt+JOuQKw2GoSu3+dCaeTPpPvNvNH6tF1305krdWxP1nhx4Gq0QQlSXdASFELVWJQaAIqZ4Y4//Os5li9kcM7GFT515Zk9ybQ0BmLkz9DtdnmFZxIPWDyt9n0X7HyErrSHBv+mPtFe3t6mwzt7JHVn+9Ols3bETG/7Xv11Q5DvqVV2VmdJ5r216yJ8fTvt0g0rV7z7zb2x57RIAGhRUbl3nwYUzPMcd9I5K3VsTzYh5JNohCCFqMekICiFqLV1qBEhrTVZe4GlW7zjOiERIABzcux3q1ef/HFdz8MsHWP7bDK/rmXHj6XT0LwDeink+LDFYVOWncKbmLKuwTlN1lN2Z6yusFw2X5E/HdJa/gVBzDtI3fyEQ+nyBgdxrm05n5VoTWjx1+HhVNi0GQAKFlW7n1zzXhk2JRQcA17TXDLPiXUD/3B/nOa6BnwMFLbVgGvt1fQYZ6zmWfSTa4QghainpCAohai1V6q38m39uoe+jP7HzSJ7fuo86ruCmotvCHtMBnULWK6N4x/kgH8U8ySmOP+k7e6JPvfbZi1j01Sthj6e0g3u3s2PTymq1kaTyaTl1ELu2rGXBf65xdQonp7D6r+8wTc2gKb/w5lO3kbm2ZL1h6eNwOsuykG1Tyh95W2u25SdnfyZaviNGVW7X2eqop4r42dmfBFX5TlO0vTprM+/NzeQdxxnMcJzsde3g7m30MDIr3aZZ/PZEu16Dt51nMbao4mnH3YySEcQavFq1Qplx42mqjgKw7T/nUGB38vKvGyly1Mw8nUKI45N0BIUQtc6+ONfIweB1T3HkwB52bVnL5ow/udf6Mfv27fN7T2u1n+Yq9J+857lHeNaY7dijG9KAHA7jmw9wzZQTfMoaL3kx5PGUp/6rfWnzYeAt9wN1ov2Z8/FTDD74GRu+fRGAgnlvUORw0jF3KRML3qPJ9LPYuC+HhT99TOonI6sbetDam9vKva5RKCi3E6jDMNbUVB1loHF8pgv48Ic/+eSb77jG+gMzYh9j6bNne0ax9rx2Likq+J+bYuMsrs2VljQ4C4BbrV9wp/V/Fd53oWWO57gxRyv93JpoXX4Kn3/zDf1mXcnM336LdjhCiFpEOoJCiFpnVf2SjsWP/7mN3KkXcnnO29xo/Yb4bP+pIb6PuZ+HbB8AsNn0XbdXVb+ZrjyCZxU9SQt1GKsyseHbyehhX8UCsxsznSVb3v9uRiYVgDZN5k99AKsqf7RBFQTfUU4ucE11HHFwGgCJ2Zs4un87H8e4NuU5QhIr/jOOr/5YWMWoq+agTg54LevQPnoY2zjdsqTcNpZbeoc6LMA3j+Dx4I6im/gr7na+j33AU5ae+ydLf3Ht2Nm7kqOBHzpcf3fbGK4poUXK9UFKM3WU261fVHh/QZCpN44n2ToBI/8QJ1pWYxbU3DW4Qojjj3QEhRC1jqlK/mmzOAtIUAVYca8P1P4njCWrknx9xbt3hsLZlvmkqU1kxo33lKUZJbsZnlv4GGcVPgHA+45RrDZTPdfiqrC2KhgH3J2hzWYLHNpgzlt3MyTzvwBka1dqhAUvX8m8N271uq/0aEtFzrQs8jr/xUyn+VslHdvW6iAXWv5kiu2dKn0PVRVD4HWia39626dM+/l5+SXGf9LzuujFGP/Tl7MT2lW6rQsKJ/OI40oA5jh7ctljr9F8989edb7J2MXOI3l8MC+TPzceYNlPH3p2GAUopPZ1BK+2/kiTQ66/Tyn5rg1wth/K46JX5/LWn1s89bIL7CzYcigqMQohjk/WaAcghBCh1udIyZbrbY39tFKHWE8TV0EUthL9MvahgNeaqqMc1QkA/DfmJU+5aS9kvPX3sMTzmzOdS6yzPB3ek3a7OkBF2kIucSQDzv0bQjoFck2pDm40le7wl1UQ09Cn7MiBPTRs2tKrLJfw5hGsDXQVPmd+M+Z5Duj6HNApbNfN+NB5L5QZJL1t+lIaJsQxw34r23Qz+lkyWLuoByn/nAdQpWmox4ORh135ResVuTp617/7JxcffYdOu3dRMOBHYmLiuPb56STkbqPXw/eRECtv74QQFZN/KYQQtU6z/JIRt8HF667cAzvZu9YDp0c+qAD87Qp6TuHjfHPkwbA9Mw//O1MaaOaaPWjzxUvEKAcOLH7rVUXpTm7UTU5hx2VzaNPJe4pnbpzvlOANsz6i/bALaNa6JJ9jL2fwuRfD4TH7BP7P9pHfa8d0HImqIMIR+WpyJAMYXal7GqkcGrlzDo63+l8LtzXuMr4tGkxHyx464vog45A9FntRIRaLtdZPcyr+HOum/Nc5x/qr6+Rp1wcV/wOIgazC2/jzi9dptP5jejy8NCpxCiGOD7X930whhACgq8PVIRy8/J9RjqTEX86efstX6oq3ya+Oq60/+i23KpMLLXMYtPz/GGBsYIgR2sTpNUnMh+f5lP25NcunbMiax2n2Vjp7s1ydq0KHk7EFX4Y7vHIF6gQCNaITCN7Ts0PtbMsCr/ONuhW2J5piPOY7olvbOJVr6utA5/KAdQztYO2qZbQzd0YqLCHEcUo6gkKIWkfp8jc9ObzftZHJwk//xfxpri3pp9jHl3dLWMxwlmy1b+qSaZil1xOK8GjGIexOk8O5RZ6ynN0bA9Z/+Oknmf74Fdz4/iJkB/+K5cS1rLhSJa02/a87PIO5IX9WTZVpNmPagu3l1nns2zUYmGiU3zWuQghRTDqCQohap8uh8rdYb/hKD/ZsW8+gVY8wZMOz5GQd5k3n2fzP4ZsMO5z+XWqjDaMKCd4j4cvX/g9t1s6eT+d/ziT9sZ/Jyrez/VBeudNXX495kUsdX3HalqfpaoRnpOUnZ/+wtBsNeuufMDklpG2OK/I/mt9CHQ7pc2qyQ+vnkP/NP2jOwYB1jDVfcJ11JomqgDd/XcmCLYdwOE2WfPcWOzYuJ7/Iyb9+Wi85CYUQqNr6adGAAQP04sWRSVIshKhZPv+/MVxQwQ6Xvzj7cZplGQBfN7qa3/bU45+2D2misiMR4nHl/c4vccWEK0P+xr6m2HbVMt6Ys40pm8ZGNY4jOpEG6lhUY6hpDukkz7pB4dpN9UTL6krf97q+gOvV5xRpCy8Nm8d/ft/Eo+f15IqhqaEPUghRoyillmitB/i7JiOCQoha53dnWoV1ijuBAOceepcXY14Jaydwn65fYZ0MswMrzPZhi6HKjpY/Fe14125qv6h3AgHpBPoRqBPYv+DVCEdSM1SlEwhwvfocgBjlJHnB82TGjafJ/CfIe7gp+ye3Z/3i32ByilcqDiFE7XdcdQSVUmcopdYrpTYppe6LdjxCiJopVe0NSTuZZrOQtAOuhNgVWWW2p4+xNWTPDJVL9v+bdSsim/hdiED6FbyGFSebTd9dXkXFJpmfAHBm1ifEq0KacphW34wDYMMHt5Obc9Szjrose1EhptMZsViFEOF13HQElVIW4L/AmUAPYJxSqkd0oxKi9nGamn3ZNWPnwaoaa/krJO2kGpH9dPyy4u3go2SR2cVveayy0+3zmpNyQ9Rt+cSyIO4WTx5MUTUbzVae4+LdZgcenUnC8+1o+EoPzr//RZicwg9PXAyTU5g/7TFsTzQl45HB5OfmsGfbekynk6wjBwN2Dp0OB58/O4nsrLqzjlOI48lxs0ZQKTUUmKy1Hu0+vx9Aa/2kv/qyRrBqSm8KUfpnQxdvBW463eWlfm6UBas1cL4xrTVag2H4Jqc2TY1SoMKQ5NvhNLEYqsK2tWliur9vizU8qTW1aaKMmve5i8NehNUW4znP3Lye1A8GAbD52rV0bNMSbZpsO5DNlkN59EjMpUHTVsTGxbPvaC5JMZr4+ETPz41pmlisVrRpUlRUQGxc4MTbDnsRFosVZRgUOUyshsIwFNo0cTodGIYFw2Lxqqu1xrBYWPXXd/QceiZaa0wUhXnZOIoKSWnUjNVPnETPohVh/FMTIroetl/JI7b3oh2GEH5toznt8J6VkWk2Y/uIF4hbOY0sM5Yu591LUfZ+HA4HcfWbM/n7jUw+txcZf37H4HOuw8jeSWFeDkcKnLRs3oKmzVuze+s64hs2J7egiJZNGmO3F+HAQnysjeyjh0hITOFQvgObYRBj5pGXcxQdl8zhTUto3qE3R44eIbZRO3I2z6dZag8csSn8OXcufVrUY86BBE7qmELDxDgO7tpEh15D2bt9Iy3adUEZBqapPe9hnA4Hx/KLSE6sx6F9O6jfqDkOh53Y2HqgVMD3O+B6z+N0FOF02ImLT/SUB/t+JZDi91nadIbkfYzrd7q7TZTrHZ/WGArP72Vx/ChvjeDx1BG8CDhDa32d+/xyYLDW+hZ/9WtiR3DBlkPMn3o/E9WXaKD0X/cTzNfJJ4671Edcrn6AMtd7Oz8ADZONt7jImOUudb12udRjoP1NAP5leZmzjPnu+13X99GAE4v+gwbesj7LKUYGULJL4WazBSOLXEmtP4l5tCQBt9tyswPnFbm22P825gF6GZle1/fp+gwufIWTY9bzinraU57g/oRxUMF/2U8DFsbeRFN1lFwd57l2vv1xlpupfGe7n+7GDtf3o+MA2E1jxurniS86yKK4mzG1ooAYnBhoZfATQ5liXI9Sim+cNxFLERpFE44AcGnRg8w3e3CT5StusX6JgYmBqxObRxz9it5Ea/iP7SXOtsz3xJ2r4/idAdzPbaDge24lhWPuO12vyo/qRJ42rkMB3zsnYcXp+RPXKL4xTuXRvAu53fIZd9o+AyBfx2BisIyuXK8fAOB/6l6fX5hz6Mvf9d8B+E7d4fl+iv3EYB7UNwHwu7qBBPK9rn/FyUzR1wCwUF1JWdMYzYt6PM3t2/k19h6KtJU8FYeJQUO818jZtQWb8v9J75VF9/JezNNeZW85zuRpxzg2xl3hVb7E7MzlPEZ9cvlZ3QyU/HwA9Cl4k/ZqD1/FPuR131VF/2BqzDNeZb86+zGy1Pq+zWYLGRkQQog64APHaVxu/cVz/pFjJJrQz6Z4wj6OB2wfl1tnYMErLIq7yatss9mCJx3jeSvmebJIwMRCjC4iQRVwY9HtzDQHe9IDHSGJBrjWwA4reIndNOaF2NcZhXeezIPU5yz9bwB+UjfRSh2iQNsw3F20H8yB3Gq/DShJPZSnY1Hu68+YE/hQn0FHvYuvrPdS/E6m+D3iPx3XMcMcQZraxBcx3r+DAW4uuo3vzCHcYvmCu23/87yXKX4/dA4vclA14Bq+5Fq+AkqGCjSKs9Qr5Kt63KhncLH+0ef6GZa30MrgNvN9zjL/8LSrUeQTy8kFz9NW7WNWzN/JJ9Yrtg84i5f1JSRzjF/c7y1Ke01fwDucR3MO8rW6y+f6v/R4pjOaDuxkuvLdlfhxfQ1fczK92MQ76jGf6/frm/mVQQxiFf9Rz/KUvpKrb32IDk0SfepGU3kdwfAMf4SHv49JvHqxSqlJwCSAtm3bRiKmSmmWHEfTbkNYkeUeGVKuv4oAl7bugGnEUP/IcJYdK70zn6vONW1dG0jUOzySJbktPVc0CqcRw/Vt3AmoD57ForyupW5X2C3x3NyqEwBF+89jYUG657JWigJrCre37AzA0X0XM6+o9HQ4RW5MY+5s3gWlYN+eCeTYD7mfDYl7FzA/twUXpremg2Fl5YHzPXcmHVnFseQuXNCyI9NWZLMkfjgN40DbEuiw70eacpjR6Z05IbE9H2Vczs35r7MnoSdFia7pKvmWZMa1bIvpbMHPG86hQ8FqDjQeBNp0fTJVryvnNGqJqTXbdg7HYhahtElu1gqSzCx0fCOu6duefgeas6LoIvf3awGlMI1YbmnbyfXp26GxzMvrS8ft/2N7cjqOeo1xxnXiosat0Royd40ixswHrd0/cBpLfE/OatgcrWHLzhEY2onnczOtqZfQEzbBct2RfTSisT7M8uYXApAT25JxTV0/n3v3nEm246jXz4k9LpVxTVzXt+0ew15nrtd1Fd+FcY1c1zfuPAeLtntdj03owbiGrusrd5xPWSmJaYxr0BZV1IC85bGsaHouSjtBmww+9KWnXr6OIaPVOJRhZcjOt73aWJBwCvsKG7DA7Ob54GCzpQOxDjt2rOzUjWmtDnKIFBqRRZZKYfzAdlidBazc7Yqp0cFFNHbuw+7+Z+ig9t6R8jn7xRzws8HKm84xXh3BD52n8bDxgU+944mpFQdJoWkQ6wiFEKI2W2R2YaCxIcC1rlxOSUfwGHGsNTpxGSUdwQJtI065fi8uNrswoFRb85w9GGpZA7g250oztvh9zjyzp9f5SjOV3kYmq2P60LNoBRvMVvTr3gXcS7ozjbY0ch7gSvt9dFI7WdhgDNpaD0wHaJPknE10i7OzyBHL7LgzGH7sBzY0Pp3krPXk1mtBUkwKY1JboOwjWJnnnYOz0JLAuJau3+mr1p7AzlgwY5NBGaAMVEInbmvSGUPBhnmdyI1tSmFSO9d1oH2DIVydnEqCPYUle4tz1CpQCgX0ajiMpkmdSCpMYt6+69xvS5X7PSoMaXQCXRM7ErvrZPZv+ZUtzUfjefutYXTL9hRaEmlydABrsu2eDibugaYzWrXGrmJJOprG+mMOVJkBqNNbNUejiD3Shy25JlqXfKxuxwZ7oEk9xXcNrqaJ1fuD7/pJ6Yyr39brvUVpzZMHMy6lLXGO+qzc43u9Xf0BjEtqS4I9gZV7fa93bpDOuMS2pBTaWLnf93qvRn1pGt+WhgWw8sD5dGyQTlKczadeTXY8jQjK1FAhwsxhL8L5eEtilZ28e3YSn5AU7ZCqZOmUEaTbl1VcMUo2mq3obPjfjKGmKn4jJERNtqKGbrh0vFtodmWQsd6r7FrL47SyHeOwTuSSvOmkjPw7zdPPIiHWxtK1G5g2YzpXnTeKwTPHsHTwi3QcdBYpjUK3AZcQIji1ZWqoFdgAjAR2AYuA8Vprv3spS0dQiLrrq6ev5rz8z6MdRq1xQKfQ+OFM1KMNoh2KEOVaa7bxLDMQVTO72eUM3+eaZfF5yhU0PLycvvf9QvwzLVna/CLanH4LrTv18tQvcphk5dtpkuQ9bS+vyEF8zPE08UyI2qlWTA3VWjuUUrcAPwIW4J1AnUAhRN22Lq5PjesIHtTJND5Ok9U3UVlQAzc7EnXX2MJHeT/mKZJVntc6YekElm/BsDcYPHeSV9md9V/ihaO3katjSXhkP8OBDUsvolm77lxQegTvkYMM9dNmjNXw6QQC0gkU4jhwXP1m11p/r7XuorXuqLWeEu14hBA1Uwuz5iVFDqYTmKd930yF0+IA6SKKzXG61skc0/UiEU7E/eAcCMDaM2dEOZLaJTfMP8fvOM7gy9iHSFZ5ANxov4MsHXiHYlEipX0/AL5zDmLvLZvJvDqDF+64kvmtryVz9FRPvS7pI2QapxB1wHHVERRCiGA0cwbeRXSPbsjtRTcFvB5N8aowos8bEGBDhmJDjTX8NPo3LP/YCLh2EK5NvnEOZe5lm+k+eDQLut8f7XBqjYQw/xwn2byXtAwwNvCL2T+szzwe7dKNANdmVBn1hgDQpUNH5l2+hZEP/UDzxo1JbefaiG7Idf+i57CzoharECI6pCMohKh1cmKb+5QtrzcYgH3Dn+Tm2x9gUZprUsG81tfwi7NfROMD+Fvh//Gg/eqIP7cyLErTxpZNPfemQRvM1lGOKLTuvepChnVqDMDgS+4L6p75yWeEM6SgPGC/NtohRFUnvKd/Xmv5ngstf/rUO1BmJ+LaYoHZLeC1nFKj9ztUS84tfIxfzppFt1s/Y9cVczEsFoZ2bEScTXLBCSGkIyiEqIXMpr18yuwqBnAl+ejSLImBY2+ByVkMve4FMrVvxzHc1up2rKiBI2wvJt7pda4wPccXW2dHOpywatslrdL3HO0+vuJKlbTSTK1U/Sdsb1dcKcpOL3yGme6pt6HWQOV4nQfKI9pEZYXl+dHWhKMBryWpku31i4bdyddP3saowWnExSfSqkPPgPcJIeomWckrhKh1kgtL3hi+5jibnboJe5qM4/f1+3mzhe+b02Fx28ARufjSC15jZdx1kXtgJdxx92SY/ILfaxn1hpCWPz+yAYWJ/YH9VCbb08Lej2DEJeBwOkMeS21My/HW3Zexb3U7+O2SkLddaMSDCUd1Ah86TyM9OZtheb+H/Dk11cFG/elw5LsK61nrt4lANEKI45mMCAohap2UwpIcfX3VFs6xzEMrAxPDkyS3tJwGPSIZHnlEdlOYytpstig5USW/JgpaDYtCNKG1dOh/WDfmM2wxwb0GM079g4V9H2PQhXcwYMxE0nrKqEow2jVKoCi2YVjazra40pisG/g4F93zBr0mvc26sz5lTOEU3nOcHpZn1gSfOU9k8cDn6DPxDeZ3vReADx0j2Wy2YNcVrg9o5qXe6KlvdeZFJU4hxPFDOoJCiFptqGUNg411jMqaQWbceBKPrPGp0/ikyK65WhdX89YGLqx/FvObXAxAfXXMU27GJHuO+/8tuHV0pWUTz7oxn1U/wBBJH3053Qae5vfagkZjsWsL89rf7Cn72/A0Bp1/m+e8SQsZZQlWXL2q7+R5euEzpBZ85Pfa/ORR7NUNKEhOpXlKHMn1G9Ft0OmcOHwkDztq3t+tUMkf8woDxkwkLj6RIeMegMlZPGlMYmTR87Tq0N011f2qp1hqdgIgLX1IlCMWQtR00hEUQtQ6O5PSAPiy1389Zd0LMgCIK/BNLdGxzzCYHP71RGvMdmF/RpVMzmLQHR8z5Oa3ANjS736m2MfzoWMkloTGnmrBjqKVljx5D90GnsbPznSv8tnO3hykfrXCDrXBt76H7ZHDDL3yiYB1rNaYCEZU8y1zdzpKK17zOKBPL95PvKZK7b48vj9rHj3DZ6fa3VcuIK73+Qwp/C/123v/TN1/ZncynxpTpecdDy4b4vvvx+/3jOC72070Kkt/dAlMziImNi5SoQkhjlPSERRC1DqmYfP836kVTu07HTQadugmAa89aR9Hn4I3S+pOCN/GLAd0crnXB469mSvvfp59w5+kS/u2VXpG2Y7f6ZalXufDH5vDxqFPVantSMi5cyvZd2zxKbdYZWl9ac84LuFR++We87uKbuAue8n0xCvu9r/eNJBtZlMA4pq0Jz7GSl+j5DU4SH1atu/GtSe256c7h5PWpn71gj9OzHQOZN3Zn/u91jQpjp4ta+fuqEKI8JOOoBCi1mlouHbOq2/Jx37vTuz37qTe6Q+yj0ak9vM/LTASRlsW86j9chanP+1zzYKT1yae6jlv07lv2OK43X5LhXVaN4jnrlFdUX7WVFbk+qI7OKST2asb+L3+aYOJABTGt/B7vSZISmlIcv1G0Q6jxruwTS5j6y3znE+YcDVfPTKxyu21M/YDYNjq+Vyz4NqoxzBcO//WFf3//indBoyMdhhCiFpIOoJCiFrnlPOuZEHP/+PkMZcRF59IXHwiXdJPptnkLaQ0aFxxA2FkxcGAc29gUMF/udc+kTztmm75D9sMhnWMTGwTLL+Qq8O3Yc1NN97Jkt4PMdLxkqdsdUxvz3GfE13T9wzD9SvIrCEjttFS2e//HvukMEVSeamF6zBtiZ7zOGWnXkz1c9RZHMd8yqyR3Nq3BmnaoH60QxBC1FLSERRC1DpWWwyDL767Rk7je8D2MQBXjh7CXt2QeFXodf30xM/oWjAVgHcdo8MSwxjLQhLKPDdUPnacQt829Xn2kv6snnKup7zL3b8CkKdj6dL/FACaxhQBYCgdlliOF5X9/p+1vRGmSCovz0ii7dXvYNeuzl/DxNCsS7Pac3zKtungRpDntbqKtZauIYlDCCFqM+kICiFEFNx8SifOa7jdp/yLW0fw14NnARDf6YSwxrBbNWPzBTND2mar9DP8lttiYjm/8BFGF5WsC+w28DTWjJ7Of+vdENIYwm2WM/TTduc5e7DQrH7n5UsV2anPO+t1oWHTVhj/t589Vy+kedvOIWnXYvh+iDPTHBzUvUMn/psO98wKSRxCCFGbSUdQCCGipGtRSSqLIveISmKslcaJrmmbqTlL/d4XKi0f3uDaMbUS8iqYUpoQG3gU1tlqANeefYpXWY+hZ7IltlulYoi2/ef6T2tQHUMtaxhkrK92OweN8OTuC0TjmtZqsVpp0S50o3CGezR/9aiP2TD2O4YXvsD6NhcHfX9sXMWpK1aY7ascX2V96wyuE1vWwr6PhTgSIYQoUfPmTQkhRB2h3RuxzOtwGx1HXkPTMteVdob8mT87+3O6ZUmV7y87ldVHOZvLfH3LiX7Lz+2WCPOrHFLE/W1gG/gu2lEEoCL7+W77vJVhaddwjwj2HOYaHX+1aW/aNUoI6TP6GFtD2l55zrYsqPQ9z6fcz12lclgKIUSoyYigEEJEiKkVXzuHes6PGK5dKet1PommrXxHJxqcFPpNQarTCYSS7f1DKcFxJORtHg/mm935y9kzpG2e6vwrpO1VZEPiwLC0qwzvDWd6tkwhsZzR5toowcyNdghCiFpOOoJCCBEh63RbMkol4F4f6+oEFMW38lu/c7/hYUl0n6tj+dE5oEr3NlLZ5V4/llz5NWLNulZt2tzxYFLRnQGvXVr0fyzV1V9TN81RMt12S/3KTfWtLqeyhaytBWY3RhQ+z4jC5zHq1Z30EKV9qEvW2J5c8GsUIxFC1AXSERRCiAjpYWwjh5L8aMWJ7g1CPwW0PAmqEEXVdupMVAUBr3UqeB9b8x6VbrNN574UaBuvO8bwumNMleIqzwazFS85xvKRI/K52E4xMgJem2T5hlutX1b7Gd+Yw8jSrjVxJ056kW2X/l7tNoPVvGBzper/4uwX8NpgYx191FZyE1OJj42pbmjHJSfVT70hhBDBko6gEEKESY+Cd3zKOqo9nuOT/3Yb17b8gl7du0cyLABGVXGK6LIE/+v8AP4zYSDDOlUtF+Ijjis401jI9dbQL75brdvTgGM0UL4pCaoqtWAaC8yKN7kZZ/XtlBWnWihOJfI/x3AAsnXFG5z483HMFPZq1yYxhXYH7bqlV6mdqmiUklhxpVL6GxvLvf6i7b8s+udpWIy6mVuyk5npOT6mKvdnK4QQlSUdQSGECJM1cdf4lN1g/cZz3K1VY96edCpxMaGbXhdu/e4J3FEb1TO4PG/+3HrPFNoaB6p8f3nmNrmEHsY2+hhbQtZmR7WLwca6oOr+y36R1/kM5wiv8yJsdC2Yyn3266ocTzu1jxMK/g2W8nd1DaUfWt7EoEsfrNQ9DZRvovjS6lpOyXztPfL5nTmEB+zXArAsLjzrL4UQoph0BIUQwm1+pzvYS9VGtI4385yVn8JZEaMaozgt69eruFIVaVwjUa3VwZC1+WvsPUHXneoc7TlOLZiGDQcbzZJ1oROsv3K15Qcut/xS5XgKieG1W84nJSFyHcGGTVpgWCqeyvim46wIRHN8qqeKvM5HxqzhF6drRLc4NYcQQoSLdASFEMJtyGWPcOTMV8LWfp6OZf3ZX4St/cowq/Em8+gt1c93F05fOE/wOj8n7/MoReLyacxkAGY4TgZgjGU+nY1dXnXus01nqGVN2VvLNdM5kM+drqm6Bia9W6dUP9hKUDq40bvzrXMByNHh6+wfz+Z3KflQoRtbWBh3MwDxsmuoECLMpCMohBClqDB+Cv9z18l0HXBq2NqvjBMsq6t8b/3GzUMYSegtKrN2L6Yo9DuvViS7VKeni7vT9zfrH2TGjSeholyM5SjeYAjgTvtNTLFPAMCC6VVvixn+1yjYHUPtuOolqXzAdzpkaVk6dLkCl5Xaobcm6znmJlbEDaBIWzhwwiOe8ixL/egFJYSoE6QjKIQQpThjQzeqknHiayw0u3rOcy1Va3u+dSCmDl0HNcPsyPyu94asPYAv+74e0vaq4wnb217nQ82lEY+hHkUV1vnKOYw5lcwjuF2X5HGcYPmVcyzzAJilvTeIaRjCjXECyU7qEFQ9x2VfMK/llZ7zstMhiy03O/BwzF0hiQ3gW+eQkLUVTkkpDelz36/EPHKY3iMuLik3w/8aCiHqtoh3BJVSk5VSu5RSGe6vs0pdu18ptUkptV4pNbpUeX+l1Er3tZeUUjJxXggRFkUNQjeKkHbaOAYZJdMoE+yHqtTOkAd/Ifu2DZW652n7pQGvbWp7MUPGPVClWAIxOgyvdhuDC/5DoQ590vDPOYW/nD29OuXhZlOulCDXFQXu2Nxuv4VVOrjOVLH2xj7P8f/ZPmSy7X2mOkbxrfbOH1hf1ZxphW069abfZU+UWye1YBrnFT3OAiMtZM8tvTFTTfWt0zuHpmGUvC0bVDA30uEIIeqYaI0IvqC1TnN/fQ+glOoBXAr0BM4AXlFKFa9CfxWYBHR2f53hp00hhKg2ZYQnj9ey+BM4adSFVb5fB7EbZOkk8ffapges17lj9ZOYf+UcRq4uiclWULVObmn7aMgsM63a7ZRV0KAb05wj+cBxesjbrshbMc8HvPag9YOQdFbmmL3ZUGrzmUjYYjanZ58BFVd0U+4OzhLT/8/eR7YpvGd7ipOcC0ISH0ATVbkpwcvNynXKQ+GrMutZlWFw+CbXWtHcvldFPB4hRN1Sk6aGngdM11oXaq23ApuAQUqpFkCy1nqe1loD7wNjoxinEKIWq3fENYJXpEPbIez3j+9p2DS8b9avt/89qHrNOwdO6h2sEfd/zXunlIxYNNlf/dGL123/YrRlcbXbKauxfQ8jLUs51xK6EZbUgmksreYatOusMwH43jmIbB3PdrOJTx1/I6THdJzX6OZbMc9zhgpdByoYHYy9tGoa/A67SrnebgTKI3iCZTUnW1Zwt+PNkMRXFX2rmF4kW8ez2ax66pSyGjZtBZOzGHD2pJC1KYQQ/kSrI3iLUmqFUuodpVQDd1krYEepOjvdZa3cx2XLhRAi5AzTtX4pxj21r7oquwYsINNeYZXMuPEVtzM5i2atO1Y7nJR4GzeNKOkIKaqf/y0cnUCAQ81PoqfKpLexNWRtpqlNpBubgqr7T7t3Psl3HaM5qJM951acDCx8hScdvq9fLnE+ZRt0azaZrdh9XQb7rnOtf/y7ZUZlwo+40lMea5ts4ulo7KnSvacZkV+/KoQQxcLyL7NS6hel1Co/X+fhmubZEUgD9gDF82b8rfvT5ZT7e+4kpdRipdTiAwfCk5hYCFG7hXoJ8t32GxhZ+Gy120lISAyq3tuOMyM6TbB4ql9C85q7Q6NWiq7GTpqrIyFr88vYh4Ku+4U7xQO4RhKTVD4FlOycOcqyhPVxV/Gk7S2fe1ebqT5l6cYmxlt/o0nTljRt2R6o+YnYDcMa1PrPLc3PjEA0oVWd/JSXWGeFLhAhhKik0K/KB7TWpwVTTyn1JvCt+3Qn0KbU5dbAbnd5az/l/p77BvAGwIABA2r2b0UhRM2kQvv52Cs3ncO+rIJqtxMTG8faM2fQfebfyq13rXu6YVnfOgczx+zNU9WOxNtysyP9jY10GxjUP/sRMcNxMn+z/uE5b567LorRwOzYOwDXuspYihhlLCZZ5fnU87fBy0mWVQHbVUqhDIM1tl4U9J9IesCa0acMxR7diFS1L2CdY3/PZFBCcsDrlbXA7MZgI7qvvT9HdCIN1LFohyGEEFHZNbT0RPrzgeLfcl8DlyqlYpVS7XFtCrNQa70HyFFKDXHvFnoF8FVEgxZC1BkqQEfwMXe+topkms28ztPbNuDM3qFZP9R98OiKKwXw34YP0Pvc20ISR2kGJgU6uHxykbJOt/U6j09IYtP537P+7C8iFkPp0a/GKhuA8yxzWR93ld9OYLCWmx2Y6+wBlPys9vjnX6SfcZVXvY1hHhXeZjatuFIpSilSjcCdQIDE5AYYltCtzX3Ufjn32GveOjvpBAohaoqwjAhW4BmlVBqu6Z2ZwPUAWuvVSqkZwBrAAdystS5epHMjMBWoB8x0fwkhRMjp2CS/5f9n+yio++1Y+bfjAk4yVtSoEZqPruhFw0bBb+4RrKusP4W8zep6yPaB53jlKe8y6MTzQtrBCEasclRY5w3HGLqp7Qy3rAy63WbqCF/1fZX2AzrQwhr4V3gbtT/oNqtiD41oF8L2XnGcy00hbA/ggWsvZeW3r8DREDcshBC1RMRHBLXWl2ute2ut+2itz3WP+BVfm6K17qi17qq1nlmqfLHWupf72i3u3UOFECLknEmtuaHoDjLMjj5J3I/oitfpWa0WmnKElqr66RSqo1eB93oz0171Uajy2EO4u2qfgjcYU1h+vrnK6n3yBRHvBAbrCccEtulmfq+V3WCmWHN1hDa5q2nRrvyciHGq4s2FquMdR+iyOL3sGMszjsB5L6vqhE6N6dqp+hsjBavsvxdlTXWM8in7zHlSuMIRQogK1d5tvIQQogqUYfCDOYhvnUP4wRzodW1A4avBtICBRvvd5yq8Snf+VsVd53UtJi4hLM88cNVcVox4JyRtZZNIFuGJsyZ62fYSl1t/8SnfajajZZkNSEpPv22QH7rdT6vqEsusSt9TGGAK8ZWWH5lqe7p6AQVgWusFXfdDx8hKtf2I/XKv8+cc5a/f7d7Ce/3jArObdASFEFElHUEhhCjFemQLmXHjedD2EaMM73QGn8U8TJ72n9h9huNkAH6zncwl1lm0UIfDHmtZx4gPeC0ppWFYntmyfTf6jLgwJG29b3uSObG3h6StcPvVWf1cjOdY5gOuDsEBncxasw3bzKa0N/Zxs/VrAFaYrl1B33aeyRS7K72EMkOT2qQ6RlqWVfqeWD+jlI/YLydZ5TPCsjwUYfmwOoIfCb/M+mvQdXfpRuxrdw7gWo+51mzLP2yfBKyfabTlaExzoCRHaSOyaUbodrIVQojKko6gEEKUcmhfSTpTqzK9rqUZW4hXhX7vi3G/yc03AnfGQqE4kfgv3R5jQYr3VvuZceMDJrY2zZo/o74ya+WCMaTg5ZC2V1qKnx0+A7ml6Fav8zcdZ3ml+LDhYHThM7zuOIe/zF5eddsoVyqkm61fc4/V3dHQ0e8Ihsq7zvCmi4grDM8U7VbqEE9c0BeAuWYPuhvby61/zNaQvfFdgJIcpZ2M3ZxpWRiW+IQQIhjSERRCiFJMFdwOmKcWPud13rhxM0YUPk+joRPYc/VCNpz7dTjC44BOAaBhShK6nu8o3xyzl2dXydK0WfHmJbXN/LhbK65URQOMDUHX/dns7zlOLZhGA3WMJirLU5ZubGJp3A08apvKhZbZXvfu1o08x8UdCKW9P6A4XmTreJ91dJ/FPBzWZxbGNAhb2/UbN2fvtUto5N4VtjzfJl4Mput1ez/hak/5KMuSsMUnhBAVkY6gEEKUYmj/m2z823G+13nzMlM/bTYrs568jnHD+9CiXVe6pJ8clvh6jX+KzZb2dBp6LvvifZO4X2n9mWGWNV5le65eiNUW41P3ePaEfRw/Ogf4HfX72jk0ChEFtj7uKgB+dvanIdmMNJb6TSGQrPJ8dhvtaWzzqbc1oW9Y4gy3ZJXnk/i+v7ExrM/MTWjjUxbK1BrN23TibMuCgNe7FkylfcGHrKw3AJvpyidaL87/9HIhhIg06QgKIUQpSXG+Hab/OM7jtzJrwqbFeO9uuTFpSFjjKtaue386/l8GyfUbkWereN3f/CYXV7jD5PHoAdvHxFPAxzGP+1wrO72ypjjdsoSlcTdUK4/cTUW3sT2x4o7gerN1lZ8RjHWmbwerJiq7ZdMNRXdwrf1uUgum8WTzF/iyzb0+98x29map6fshS1Wsj7uK+60f06FwHZ7BUKurI1ikrWy75LeQPEcIIapCOoJCCFFKi06+b7JvsX7FV7EPRSGa8sXbA280kaXj+fPMnxhy81sB6xzvTrKson2ZJOWLBzzL07Y3w/7s1Wb1s+g9Zp/A707fn7fFZpeAO2w2HXIp1581rMK2uxo7qx1feXbq0Oak/K/j3JC2V6zh0VWe45WnTuW1mBf5l+1VXra9RGrbdnTs7rvpz3DLSiyEbvrtJOt3jM35mCb5rtHdJs3asKDbfeTfvo523ftXcLcQQoSPdASFEKIUHZPIVMcov5uujC18NOB9Skd+DV6/IaeQq+P8vinvW/gWLTv0jHhM1dG1YCqnFD5fpXtDsYtnZWzWLavdxtvOMRwm2af81qJbedhxpU/5CrM9k8/tSUp8cOtYw2l6p2dD1tYD9mt5Ngx5BAFy40tep97DXdO7BxgbOMcyn9SDs+g97ExWnvo+x3Sc1319jS2Vf1aAHYUB4sx8UuyuDy3q2Q8x+NL7SWnYpNLPEEKIUJKOoBBClKIsMUx2XMVzjr/xtsN7R8MM3YkxDv9vgHUU/jlt2yWNhEf2kaPj2WC2on3Bh55rKyePomOTxIjHVB2PXTgARxX/HD3pOlTJZMBDOikUYfnVgJxqt/FJzKNcaPnTp/xR21R6q5JcgRlmR/509mJtg1Oq/cxQeevKgRVXKmOv9r9xyxO2t5lm853iGwoOqysv5bVFdwWs03v4eSF51u32W8q93vXSJ1lY/yz6nH1zSJ4nhBDVZY12AEIIUaOYdp63vUJ7tZd0YxOmVp4NLjLjxvNevSvYaO9MZ4f3Jhexzqqv+6qu4q3rmyTVA/deN0lx0R81qqy/DWxDyoH6UGpH/VXWnvRyrK7w3h7uTVWK3/gD9C98ncwQx1gsl+ATlQcy2FgHwCazJTHYOUgKcdg5vdROkvOcPViku3Dro++ijOP7s9s4inzKbiq6jVdiXvLZ4ChUbHbXjp5vxzwPPMSSxBE4rfEMOvo9iakDPPW+dw7mb9Y/gm73gE6meDzv/MJHsGPh0vRm4P5RXWB287y+xeo3bs6gOz6uzrcjhBAhdXz/VhFCiBBTjnwutMwh3dgE4LPL4QlFf/Fz7Gif+9oeC09C7GDsn5jBvuuWsvCfp/GkfRyP2C+PWizVVf9Y1XeR/LfjArLrl0yH7aTCt06uqQo+EfiVRd4bkrzpOIsFZjfPeaLKZ7z9n3ziPIUturlX3R5GJrdZvzzuO4EAhy76nNdirvIq+94M7yZL9Qr3e533v/srBt3xMQdvWOU1EtjR2F2pdpuUShmxTHdmle5Akv2gp2ywsc5r91qtym5bI4QQ0Xf8/2YRQogQUhW8YVNofow/i74Fb3iVx3Y/I5xhlatpq/Y0a90RgGVtrmRzxyuiFkv1ef/5z7MNDvrOFxwXURhXsu7ql9h/hCyqsoo/KAAYXPCfcuv+Zbo6p06tSC2YRgq5DFDrPdebqyPMib2Df1o/8klFkIv32rXjWcfeQ3DEe6+LmxN7W1ifabel+C1v3Nx719PqpLH4wPYE/7W9SNNc79yS51rmcWvRLSwyu/BV0rgqty+EEOEiHUEhhCglNi7epyxb12Oy3dW5Upgkm9n0KbOZRNppNeON3owbhvL+NYOiHUbImBbvDTg+GPYjXzW4ksEF/6FrwVQ6F7zvuZYZN57E7I1cWvRgRGO83fp5udc3xbl+duaaPWmj9nGqZRmWMiPN4MqzV1bLMvkqj3cJOtfrvLU6GKBmaOTHNQ2q3sLek5ljKfl7s91swrKhLwV170mWVYyxLORAfEefa7+a6Vxc9DBr4yK7mZEQQgRD1ggKIUQpMbFxHLl5HQ3+WzJ1L1nls8DsDrjGq/6Z9QjdYtZ6rq8x29Ej0oHWWt4jgomxVii1/PLyUUNg1BCG5RRyJK/IVfvVkuvJOZtoSDaRcm3RXe71ZxU7ybKKPy13hjkil/Vm67CnkKiKQhXZZOpGkGkgBl14J/NTh8M3p/KDcyCzzT48MfpKmOd/xDJb1/PZ77XQ6rs50Zq4a/ifYzgriy4Ggh/dFkKISJARQSGEKKNBkxYsNzt4lc2MvR+Ag6qhz3qf4o1KRPUdaJDmdZ5vJPit1yQpli7NkujcLIllpZJ/KxSvxAQ3klMd3zoHs9FsRX1yK64cwG1FN/OzMx2H9v5VPM/Zg/26frXiq4mdQIAkp28n/ZiO42XH2LA8Lzlna8WVius6DgFwhmUR7dRewLUpTGlP2MexwWxFssr3lO2hCRutnYm3H/Xb7sXW2ZyXI5vECCFqHukICiGEH/PN7j5JvU8vfIZn4u+i7KiVCJ1CWwNec5wNwJfOYWj3n3WhtvGz03/y7fOLHuUK94YsLXudFJlAgc7GLp6Pea3K939tnoAdK1blPWp1l/0GnnX8rbrh1UhphYsAmNfuRtbaXGsnn3ZcyvNh+n5zElODrtt94GnM73ovW81mXGCZA/j+Tb/d+jldjF1eZS0mb6Lzg4tpmJ8ZsG2btgcdhxBCRIp0BIUQwo9FZjfed56OXVs8ZRt1a3IM3wTgm8zqJxcXLhazgPruuaBjLXPpnzsbgJvttzHR7j8XXGt1gCM6CSZn0bxtZ0/5BrNV2OJUCSVrz+Z3qNqGJ7/H3MlZloU+5W9cPYShJ43ynK83W1ep/ZqoIO0qADqfeTNHU1zTrR+zTeXjMOURVLGu6Zq3FpWf4w9AGQZDxj1Ae2MfTVQWAI2V9whmgioMeP/exMATxHOb+f8QQwghokk6gkII4Ud3tY2J1u+xKaenLDNuPNfmveOTPF7LCGHIxBcd5FLrLAAyjbYUtXRt4BGLnbZqn997vop5kG9ifTeIGVX0bNjiPOsf77PHnUmu7UkTqtRGe8P1/Ww3m7DebM0cZ08WmV1okBhPfKxrNPo3Zxq/mZXfaGRG6qNViikY280mFVcKoP9Z18LkLBo3b8Osppd7UmsMDVMewUT31N0RDau2Kc2q0z8kS/tuIHVYJ/qUFVlKymY7e3uOM056ncFXPFGl5wshRDhJR1AIIfzwt4MjwEDHEn5KGEO+jvGUdS4zVUxUXf0c1zb+i5JOo8U/FjB4/EPsvmoh/415idmx/jdaaaRy/JYPNSpORF9VyjAouPgjFjQ6z2sU0p+xhd6dstcdY5jpHOg5b6aOcrv9Fn4wB5Gr62HaEokrcuUpHGSsY6Llu0rHV9/mqPQ9wdqoQzNCmW1txB9m35C0FUjjRo0AaNW4UZXu73XCOaT4+begoTrmU5ZoP+A5Hm5ZyZfOYQA06dgfw2LxqS+EENEmHUEhhPBjovX7AFc08+qNIK2wJI/gRkunAHVF5blGV01bPLFx8SjDoGVq1yq19HHMlFAG5qN9z8EMvvV9DIuFEYWBdw5drjuQo+tRqG2kFkwjmTzOtCzyXI9Vdn6IvY+/W//HCMtylHbitLryB1owfdYQBiPG7r9zXBUzHCd7necTE6Bm5XTJmsv6WFdqjcM+e3CGRvseA9lx2RwGXf5YldtYaaYGVa9tm7ae4/md7+KNhOsZXfgUzoRmVX62EEKEk3QEhRCiAh86RnJ+4SNsMVLJHfk0jcwDnGosA+BLfTKd/29JlCOs27Zc9BOL+j3pOT+7MDzrzcrTR20JeG1r3GUkqXxW6VR6qS2cZvH/81I8yqTyDlHcIa6niqoUz4HEqnWey1pntuFv1j+8ymIJzcYnPbNnE6scLOz1EA0eCt/Ou2069a7UiNz3zkFe60t/NdN96uiHjviU9R5+Ptl3bIHJWQyZ8BBFxHBYJ6EMeaslhKiZJI+gEEJUIEnls0x3psNDywG4+Y/h9IxxHZ/O/GiGVutoZXH/P/g3zx16DaZDr5Icbd2N7SGPqyIvxfy3wjr9jY1862ctY1lKO0nIq176B9909VXTzdjhU5YaYK1mpWnXSKdSlhrVWfrEeQopHKM4CUkCBV7XpzpGcVWAeJPrl0xB/bv9Dc6K+51d+ScBvmsKhRAi2mrOv7xCCFGDzHWW7AB4nmUumXHjPeel8wi+p8+KaFy13aEUV0qBjYkDK6gZ2LO2NyquVANcWvQgM50DydXeSdY1GqsZeHfKYLTIWVWt+8sTqjWx8f0vBaB535EhaS9Ubrv+Rs67/HbPeelp4o/ZL2Oy46qg2kkzXRvgKLv/9cZCCBFtYesIKqUuVkqtVkqZSqkBZa7dr5TapJRar5QaXaq8v1JqpfvaS0q53m0ppWKVUp+4yxcopVLDFbcQQgAs0oGn1h1LKblWqGViRSgVxDbmeftF7I9p51U+19mDT53DoxRVaK2O6c3bXd9kvtmDOIp8UhJoraq9E23nkVexSzXja+fQarUTTr1OOg8mZ9GmU++KK0dQ/3YNGNm9ZF3fZ86S3JT/Z/uQv1tnBNlSqMZlhRAiPMI5IrgKuACYXbpQKdUDuBToCZwBvKKUKp68/yowCejs/jrDXX4tcERr3Ql4AXg6jHELIQQ7G53Ao/bLcWrfN+T9r3uZVad/BMAwtTLSodVqNmc+XY2dxGjv6Xjj7Q9yt/2GSrU1zxk4r1s0HUvqSMc2zVkTezWnWJb7XDdtCWTX7wZAvo6pUrqG5m070+rhDfzorPrIqnDJLpM+4jbrl0HdV3jRhyxoeC7N23YJQ1RCCFF9YfsoW2u9FkApnzdR5wHTtdaFwFal1CZgkFIqE0jWWs9z3/c+MBaY6b5nsvv+T4H/KKWU1lo+bhNChMWD11/F5oPHsLzzAQDL6w2meKN7W0wsPYeeBT+DbpEWtRhro7iiQ5xumc+Hhd5Tbn++czj1Yiq3Bf84+4NkhjC20NEkZW8k3j0SuF/XZ5duzEGdgg0H7S02T80/zd5s0S2oXBe4xABjPXk61vOsUNhiNqdDyFqr+YYYVctx2L7nYNr3HFxxRSGEiJJorBFsBZRefb7TXdbKfVy23OserbUDyAKqlhRICCGCkBJvI71tA89533t/8rquDAP90BEGX/9qpEOr1VJyNgHQ5dhCr/LOzZJo3cA3sXd5fvl7zZhKOrKwJLH9AZ3CquQRUGoznKbqKI/bJzDf7E6CysdE0SzFtblIb2Mr4y2/VvnZsRSFtBMIsFW3CGl7NV13PxvmCCFEbVCtjqBS6hel1Co/X+eVd5ufMl1OeXn3lI1nklJqsVJq8YEDB/zcIoQQlfeZ80S/5cowatRuh7VL9SZ8fOY8kU5Nk0IUS8UGFrwS8Npm3YpduhF5OpaBha9iTz3ZZ7bMZ7GPcIP1GwYaG1Cmg15pg9h8wUwyzeYkq/wqxzXe+nuV7y32muMcr/PlZsdqt3k8WWZKnlAhRO1UrXcwWuvTtNa9/Hx9Vc5tO4E2pc5bA7vd5a39lHvdo5SyAinAYT/xvKG1HqC1HtCkSeXXVAghhD87ddNoh1B3+C4nqLRTCp/nSfuEEAQTvEC5AQEy48bTSh1itW7He9cMYuJJ3hMrl8WfAEATlQWAUeDKUdexzzCGWqo2LTGUbrB+43XefeRlUYokOuaaNXOtqRBCVFc0Psr+GrjUvRNoe1ybwizUWu8BcpRSQ9y7hV4BfFXqnivdxxcBv8n6QCFEpHRTkc9LV1eZyrV03aFsFdQMbISRQZcIT+d70vZ2hXUGGhs4uUsTLIbyTA1dFn8C3W/9n3dFd349gEyjbUjjDIXmjtCkjzheNCDH6/xtx5lRikQIIUIrnOkjzldK7QSGAt8ppX4E0FqvBmYAa4AfgJu11k73bTcCbwGbgM24NooBeBto5N5Y5u/AfeGKWwghymrQuHm0Q6gzspJdOyxuqEYewYdtH/Cg9aNQhRQWB1qczKmFz/Fu03u9yue1vII2nfp4zpv+fQ4Hb6h6TsA1pisNx27dsMptlJXcvC5tFQNd65d87jzZfgWvxl0XxWiEECJ0wrlr6BfAFwGuTQGm+ClfDPTyU14AXBzqGIUQoiIF9+5mQExctMOoM5yJLXjMfhnJSZ2r1U4PY1uIIgoPbcSyRbeko5FA8TL4Im1l6KSXverFJ6YQn5hS5efMMXvRTu2lpfJeTZGt61Vp7eGOCbPp2LlvxRVrkd63fsIXM7/m/IyJNGvZlt+uPTnaIQkhREjILgdCCFGOuHoJGJbKpS0QVTd6UG/qn3oH1507MtqhVMry4W9WWGerWZKkPDF7I5lx4xmS8zMYrp+vH/WgkMe10mzPl6U2O+pb8AafOodXeQOaNnWsEwgQExtHbIKrM54YX4/kuKpPWxZCiJpEOoJCCCFqDIuhuHVkZxJiqz5hZcmgF9k+/o8QRlWxvqf+rcI6utQG2AnHXCOW/XNnowyDOc6ezDbTQh5XmrGZcyxzPeffxT7AQLUu5M+p7ZTDlYLDYcjsACFE7SEdQSGEELVK/7Oupm2XtGiH4TG44D8AdDD2esp0qf/bLFYud/yT3mOuD/mzk8klWeWzzXTtfNtaHaSdsb/cexaY3UIex/FOu18xQ8k+dUKI2kM6gkIIIUQY7aMh68w2ZOt6nrK2vU4CwDLoOgxDsfXJMVwxNDXkz77YOrvS9/ziTGfxwOc858/bLwplSMel+tkbAOhwbFmUIxFCiNAJ22YxQgghhHDlEQRYYbaneD/Qxi3bweQs+gS+LST20oTmHPA7Chhow5jTLUuxtrjKc36X7dNwhnhciHGvEbQmNIhyJEIIEToyIiiEEEJEQB9ja8SfGXPTH2w87xt26UY+12ab/ruh7Y19aEtMuEM7rvQ/6zqWDHyegeMfjnYoQggRMtIRFEIIIWqphk1b0bnfcK+Napxaka3r0d/YGPA+e1zo8g7WBsow6D/mOqw26SALIWoPmRoqhBBC1HKt1UEAPnacQg7xtFCHOMcyP2B9a1F2pEITQggRJTIiKIQQQkTAZrNFtEPgfsdEYiniBGNVwDqHqY+18GjkghJCCBEVMiIohBBCREDp6ZnRkhE7kXxiaaiO+b2+1WzGZ7ZRnGf3f10IIUTtISOCQgghRBhkmB35X/1r6FXwFgCdjN1Ri2W72QSA+iqXFuqw3zprzTacUvQCXxqjakCXVQghRLhJR1AIIYQIg0aWfNqc+yDHiGeh2ZXDOjHaIXnJ0vFe50kqn5kx93GG+YdX+dP2SyMZlhBCiAiRqaFCCCFECO29dgnadFK/fhOObFztySO4zmxDtPbibGsc8Ft+QKfQRGUB7g1lFFxszqSo3nmeOvfapkckRiGEEJElI4JCCCFECMxrfzMHqU/zNp1o0a4rSSkNvXbf7GbsiFps2y75jYOTVsDkLBaY3QCYY/biNcc5pBZM86rbTB9CG7ZohCmEECKCZERQCCGECIGhVz4BPOFVVhM2iAFo172/53i1mUp3tZ2BxgYKiKG58xAznQMZbqwgQRUC4IxJiVaoQgghIkRGBIUQQogwKe4GbjXasn9iRjRD8dioW/G7mUZTdZQLLXOYH3crZ1oWeXVZrfacqMUnhBAiMqQjKIQQQoRZviWZpq3aRzsMALqp7ZxkrPApj3ePBu5TjSWPoBBC1AHSERRCCCHCxGlLAGCfNfrJ5Is1U0cD5hFcZabymTEaw5EX4aiEEEJEmnQEhRBCiDDJb9SL1IKPeCX5zmiH4nGGZZHf8nVmG84ueoKZlhG07JTmKX/LcWaEIhNCCBFJslmMEEIIESb92jXgwvQ23Hpqp2iH4uOoTqC+yvWcJ6p8/oi5gw+cF1G/8WmcUvg8Nhwc1Cn0MjIZYqyNYrRCCCFCTUYEhRBCiDCxWQye/1tfUhsnRDsUv3bpRp7j1uog7Yz9XGT+AMALN13EpUM7szTuBrqoHeTrmGiFKYQQIgykIyiEEELUIXOcPQGYZ/bgLcdZPnkEG+qjAKS1qU//ZNdxHnFMsv89kmEKIYQIM+kICiGEEHXIRt2aozqBgcZ6ehlb6ah28bMznVwdG/Ceg7Ftee6+mrPOUQghRPWFrSOolLpYKbVaKWUqpQaUKk9VSuUrpTLcX6+VutZfKbVSKbVJKfWSUkq5y2OVUp+4yxcopVLDFbcQQghRm23QrfnD7Etjlc2Fljn8GnsPp1uWeq5rr4yCLoahaJYcF8kwhRBChFk4RwRXARcAs/1c26y1TnN/3VCq/FVgEtDZ/XWGu/xa4IjWuhPwAvB0+MIWQgghaq+uagfD/eQRTHDnEdylmnvKlNYRi0sIIURkha0jqLVeq7VeH2x9pVQLIFlrPU9rrYH3gbHuy+cB77mPPwVGFo8WCiGEECJ4bdQBGgTII7jA7MbnltGe86LYFAC2xXSOSGxCCCEiJ1prBNsrpZYppf5QSp3kLmsF7CxVZ6e7rPjaDgCttQPIAhohhBBCiEoZaVnmdb5k4PPMdA5kvdmaS4oeIiH9b55r+Ylt+bfjfBbEj4hwlEIIIcKtWnkElVK/AM39XPqn1vqrALftAdpqrQ8ppfoDXyqleoKfRQlQPCelvGul45mEa2opbdu2rSh8IYQQos7ZaOlEZ+cmDutEvnEO5cox1/H9/E8AWPXIaOJtFk/d3p3ac62+hPdHDYpWuEIIIcKkWh1BrfVpVbinECh0Hy9RSm0GuuAaAWxdqmprYLf7eCfQBtiplLICKcBhP22/AbwBMGDAAFnYIIQQQpTR+u+zOJhzBOerJ2G6JwadZVnouhjr/bagfnwMG6acGekQhRBCREDEp4YqpZoopSzu4w64NoXZorXeA+QopYa41/9dARSPKn4NXOk+vgj4zb2OUAghhBCVUC8hicbN2/Joly9IHPt8tMMRQggRJdUaESyPUup84GWgCfCdUipDaz0aGA48qpRyAE7gBq118ejejcBUoB4w0/0F8DbwgVJqE66RwEvDFbcQQghRF/x3Qrrn+DvnIDqrXXSJYjxCCCEiK2wdQa31F8AXfso/Az4LcM9ioJef8gLg4lDHKIQQQgghhBB1Udg6gkIIIYQ4PowpXiMohBCizpCOoBBCCFHHLez1MM4j2xga7UCEEEJEjHQEhRBCiDpu0EV/j3YIQgghIixaCeWFEEIIIYQQQkSJdASFEEIIIYQQoo6RjqAQQgghhBBC1DHSERRCCCGEEEKIOkY6gkIIIYQQQghRx0hHUAghhBBCCCHqGOkICiGEEEIIIUQdIx1BIYQQQgghhKhjpCMohBBCCCGEEHWM0lpHO4awUEodALZFOw4/GgMHox2ECAl5LWsHeR1rB3kdawd5HWsPeS1rB3kdj3/ttNZN/F2otR3BmkoptVhrPSDacYjqk9eydpDXsXaQ17F2kNex9pDXsnaQ17F2k6mhQgghhBBCCFHHSEdQCCGEEEIIIeoY6QhG3hvRDkCEjLyWtYO8jrWDvI61g7yOtYe8lrWDvI61mKwRFEIIIYQQQog6RkYEhRBCCCGEEKKOkY5gBCmlzlBKrVdKbVJK3RfteAQopdoopX5XSq1VSq1WSt3uLp+slNqllMpwf51V6p773a/heqXU6FLl/ZVSK93XXlJKKXd5rFLqE3f5AqVUasS/0TpAKZXp/vPPUEotdpc1VEr9rJTa6P5/g1L15XWsYZRSXUv9nctQSmUrpe6Qv481n1LqHaXUfqXUqlJlEfn7p5S60v2MjUqpKyP0LddaAV7LZ5VS65RSK5RSXyil6rvLU5VS+aX+br5W6h55LaMowOsYkX9L5XU8jmit5SsCX4AF2Ax0AGKA5UCPaMdV17+AFkC6+zgJ2AD0ACYDd/up38P92sUC7d2vqcV9bSEwFFDATOBMd/lNwGvu40uBT6L9fdfGLyATaFym7BngPvfxfcDT8joeH1/ufzP3Au3k72PN/wKGA+nAqlJlYf/7BzQEtrj/38B93CDafx7H81eA13IUYHUfP13qtUwtXa9MO/Ja1rzXMez/lsrreHx9yYhg5AwCNmmtt2iti4DpwHlRjqnO01rv0VovdR/nAGuBVuXcch4wXWtdqLXeCmwCBimlWgDJ/9/efcc3VfV/AP+crO4WKGWVTcseBUopQ7bgQJYLFzhx66OPeyL+9FEfJw58cKAogooiKiqgIKDsUSjTsimjlBZKC3QkOb8/koaGZucmN20+79err96ce+653zZpmu89554jpVwlLe+EMwGMqXLM59btuQCGVl5Ro4Cr+rv/HPbPCZ/H0DYUwB4p5QEXdfg8hggp5XIAhRcUB+PvbwSAxVLKQinlSQCLAVyi9M8XThw9l1LKRVJKo/XhagBNXbXB51J9Tv4mneHfZJhiIhg8yQAOVXmcC9cJBwWZdVhDdwBrrEX3WYfBfFplSJOz5zHZun1hud0x1n+kRQASA/EzhDkJYJEQYoMQYpK1rKGU8ihgSfoBNLCW83kMfeMBzK7ymH+PNU8w/v74vzX4boWlZ6hSKyHEJiHEMiHERdYyPpehK9DvpXweaxAmgsHj6Iozp2wNEUKIWADfAfiXlPI0gGkA2gBIA3AUwBuVVR0cLl2UuzqGlNVPStkDwKUA7hVCDHBRl89jCBNCGACMAvCttYh/j7WLks8bn88gEkI8DcAIYJa16CiA5lLK7gAeBvCVECIefC5DVTDeS/k81iBMBIMnF0CzKo+bAjiiUixUhRBCD0sSOEtK+T0ASCnzpJQmKaUZwEewDO0FnD+PubAfKlP1+bUdI4TQAUiA58M1yENSyiPW78cBzIPlOcuzDm2pHKp03Fqdz2NouxTARillHsC/xxosGH9//N8aJNZJP0YCuME6TBDWoYQF1u0NsNxb1hZ8LkNSkN5L+TzWIEwEg2cdgFQhRCvr1e7xAH5UOaawZx3P/gmAHVLKN6uUN65SbSyAylm3fgQw3jpbVisAqQDWWoc9FQshMq1tTgAwv8oxlbNmXQVgSeU/UVKGECJGCBFXuQ3LxAZbYf+7nwj754TPY+i6DlWGhfLvscYKxt/fQgDDhRB1rcPchlvLSEFCiEsAPA5glJTybJXyJCGE1rrdGpbnci+fy9AUpPdSPo81idqz1YTTF4DLYJmVcg+Ap9WOh18SAPrDMmRhC4As69dlAL4AkG0t/xFA4yrHPG19DnfBOnuWtTwdljfVPQDeAyCs5ZGwDHHbDcvsW63V/rlr2xcss/Futn5tq/z7guV+hT8A5Fi/1+PzGNpfAKIBFABIqFLGv8cQ/4IlcT8KoAKWHoHbgvX3B8s9a7utX7eo/buo6V9OnsvdsNz3Vfl/snK2yCut77mbAWwEcAWfy9D4cvI8BuW9lM9jzfmqfDKJiIiIiIgoTHBoKBERERERUZhhIkhERERERBRmmAgSERERERGFGSaCREREREREYYaJIBERERERUZhhIkhERERERBRmmAgSERERERGFGSaCREREREREYYaJIBERERERUZhhIkhERERERBRmmAgSERERERGFGSaCREREREREYYaJIBERERERUZhhIkhERERERBRmmAgSERERERGFGSaCREREREREYYaJIBERERERUZhhIkhERERERBRmmAgSERERERGFGSaCREREREREYYaJIBERERERUZhhIkhERERERBRmmAgSERERERGFGSaCREREREREYYaJIBERERERUZhhIkhERERERBRmmAgSERERERGFGSaCREREREREYYaJIBERERERUZhhIkhERERERBRm/E4EhRDNhBBLhRA7hBDbhBAPWsvrCSEWCyFyrN/rVjnmSSHEbiHELiHEiCrlPYUQ2dZ9U4UQwloeIYT42lq+RgjR0t+4iYiIiIiIwpUSPYJGAP+WUnYAkAngXiFERwBPAPhDSpkK4A/rY1j3jQfQCcAlAD4QQmitbU0DMAlAqvXrEmv5bQBOSilTALwF4FUF4iYiIiIiIgpLfieCUsqjUsqN1u1iADsAJAMYDeBza7XPAYyxbo8GMEdKWSal3AdgN4AMIURjAPFSylVSSglg5gXHVLY1F8DQyt5CIiIiIiIi8o6i9whah2x2B7AGQEMp5VHAkiwCaGCtlgzgUJXDcq1lydbtC8vtjpFSGgEUAUhUMnYiIiIiIqJwoVOqISFELIDvAPxLSnnaRYedox3SRbmrYy6MYRIsQ0sRExPTs3379u7CJiIiIiIiqpU2bNhwQkqZ5GifIomgEEIPSxI4S0r5vbU4TwjRWEp51Drs87i1PBdAsyqHNwVwxFre1EF51WNyhRA6AAkACi+MQ0o5HcB0AEhPT5fr169X4scjIiIiIiKqcYQQB5ztU2LWUAHgEwA7pJRvVtn1I4CJ1u2JAOZXKR9vnQm0FSyTwqy1Dh8tFkJkWtuccMExlW1dBWCJ9T5CIiIiIiIi8pISPYL9ANwEIFsIkWUtewrAKwC+EULcBuAggKsBQEq5TQjxDYDtsMw4eq+U0mQ97m4AnwGIAvCr9QuwJJpfCCF2w9ITOF6BuImIiIiIiMKSqK0daxwaSkRERERE4UwIsUFKme5on2KTxdQEFRUVyM3NRWlpqdqhEIWEyMhING3aFHq9Xu1QiIiIiCiIwioRzM3NRVxcHFq2bAkuQ0jhTkqJgoIC5ObmolWrVmqHQ0RERERBpOg6gqGutLQUiYmJTAKJAAghkJiYyB5yIiIiojAUVokgACaBRFXw74GIiIgoPIVdIhiKbr/9dmzfvl3xdmNjYxVvk4iIiIiIaj4mgiHg448/RseOHdUOg4iILnDi2CEcnNIROVkr1A6FiIhIUUwEg+zMmTO4/PLL0a1bN3Tu3Blff/01Bg0ahMqlLj755BO0bdsWgwYNwh133IH77rsPAHDzzTfjgQceQN++fdG6dWvMnTsXAFBSUoKhQ4eiR48e6NKlC+bPn6/az0ZEVNvk/PwWmpsPI/WHkWqHQkREpKiwmjW0qhd+2obtR04r2mbHJvF4/opOLuv89ttvaNKkCRYsWAAAKCoqwrRp0wAAR44cwYsvvoiNGzciLi4OQ4YMQbdu3WzHHj16FH/99Rd27tyJUaNG4aqrrkJkZCTmzZuH+Ph4nDhxApmZmRg1ahTv/SIiUkC5Ntq2Lc1mCA2vnxIRUe3A/2hB1qVLF/z+++94/PHHsWLFCiQkJNj2rV27FgMHDkS9evWg1+tx9dVX2x07ZswYaDQadOzYEXl5eQAsSwA89dRT6Nq1K4YNG4bDhw/b9hERkX/yYjvYtsWUuipGQkREpKyw7RF013MXKG3btsWGDRvwyy+/4Mknn8Tw4cNt+6SULo+NiIioVnfWrFnIz8/Hhg0boNfr0bJlSy4HQESkkDP6emqHQEREFBDsEQyyI0eOIDo6GjfeeCMeeeQRbNy40bYvIyMDy5Ytw8mTJ2E0GvHdd9+5ba+oqAgNGjSAXq/H0qVLceDAgUCGT0QUVvQmXlgjIqLaKWx7BNWSnZ2NRx99FBqNBnq9HtOmTcMjjzwCAEhOTsZTTz2F3r17o0mTJujYsaPd0FFHbrjhBlxxxRVIT09HWloa2rdvH4wfg4goLBjMZ9UOgYiIKCCYCAbZiBEjMGLECLuyP//807Z9/fXXY9KkSTAajRg7dqxt6Ohnn31md0xJSQkAoH79+li1apXDc1XWISIi3zQt2ui+EhERUQ3EoaEhZvLkyUhLS0Pnzp3RqlUrjBkzRu2QiIjCloBZ7RCIiIgCgj2CIeb1119XOwQiIiIiIqrl2CNIRETkRJkuzu5x3mlOHkNERLUDE0EiIiIn8mPa2j3u/fIfKkVCRESkLCaCRERETpQYGtg9fkn3iUqREBERKYuJIBERkRM5a3+ze3yDjj2CRERUOzARDEMvv/yyYm2dOnUKH3zwgdfHTZ482eHEOJMnT0ZycjLS0tKQmpqKcePGYfv27QCA+fPn282i+p///AcpKSm2xz/99BNGjRqF3r17Iy0tDc2bN0dSUhLS0tKQlpaG/fv3Vztffn4+9Ho9/ve//3n9MwTK7bffbvuZlRQbG6t4m0S13ct69gASEVHtxERQJVJKmM3qTEvuLBH0JSZfE0FXHnroIWRlZSEnJwfXXnsthgwZgvz8fPTt29duzcRVq1YhPj4ex48fBwCsXLkS/fr1w5o1a5CVlYUpU6bg2muvRVZWFrKystCyZctq5/r222+RmZmJ2bNnKxa/yWTy6/iPP/4YHTt2VCgaIiIiIqLqmAgG0f79+9GhQwfcc8896NGjBw4dOoT//ve/6NWrF7p27Yrnn3/eVnfmzJno2rUrunXrhptuugkAcODAAQwdOhRdu3bF0KFDcfDgQQDAzTffjAceeAB9+/ZF69atMXfuXADA0aNHMWDAANu6hCtWrMATTzyBc+fOIS0tDTfccIPDmKr2HM2dOxc333wzACAvLw9jx45Ft27d0K1bN6xcuRJPPPEE9uzZg7S0NDz66KMA4PRneumll9CuXTsMGzYMu3bt8uh3du2112L48OH46quvkJSUhISEBOzevRsAcPjwYVx55ZVYuXIlAEsi2LdvX6+ek9mzZ+ONN95Abm4uDh8+bCuPjY3F008/jW7duiEzMxN5eXkAgD179iAzMxO9evXCc889Z/td/fnnnxg8eDCuv/56dOnSBc8++yzeeecdW3tPP/00pk6danfuM2fO4PLLL0e3bt3QuXNnfP311wCAQYMGYf369QCATz75BG3btsWgQYNwxx134L777gPg/DkvKSnB0KFD0aNHD3Tp0gXz58/36vdBRO5t+3uB2iEQERH5LbzXEZxxefWyTmOAjDuA8rPArKur70+7Huh+A3CmAPhmgv2+W9x/ONi1axdmzJiBDz74AIsWLUJOTg7Wrl0LKSVGjRqF5cuXIzExES+99BL+/vtv1K9fH4WFhQCA++67DxMmTMDEiRPx6aef4oEHHsAPP/wAwJL0/fXXX9i5cydGjRqFq666Cl999RVGjBiBp59+GiaTCWfPnsVFF12E9957D1lZWQAsyWnVmFx54IEHMHDgQMybNw8mkwklJSV45ZVXsHXrVlt7zn6mmJgYzJkzB5s2bYLRaESPHj3Qs2dPt78vAOjRowd27twJAOjbty9WrlwJk8mE1NRUZGZmYuHChRg5ciS2bNmCXr16edQmABw6dAjHjh1DRkYGrrnmGnz99dd4+OGHAViStMzMTLz00kt47LHH8NFHH+GZZ57Bgw8+iAcffBDXXXcdPvzwQ7v21q5di61bt6JVq1bYv38/xo0bhwcffBBmsxlz5szB2rVr7er/9ttvaNKkCRYssLxuioqK7PYfOXIEL774IjZu3Ii4uDgMGTIE3bp1s+139JxHRkZi3rx5iI+Px4kTJ5CZmYlRo0ZBCOHx74WIXOu0+HqgX5H7ikRERCGMPYJB1qJFC2RmZgKwJE2LFi1C9+7dbclOTk4OlixZgquuugr169cHANSrVw+AZSjk9ddfDwC46aab8Ndff9naHTNmDDQaDTp27GjrverVqxdmzJiByZMnIzs7G3Fx9uthOYrJlSVLluDuu+8GAGi1WiQkJFSr4+xnWrFiBcaOHYvo6GjEx8dj1KhRnv7KIKW0bffr1w8rV67EypUr0adPH2RkZGDNmjXYtGkT2rVrh8jISI/bnTNnDq655hoAwPjx4+2GhxoMBowcORIA0LNnT9v9hatWrcLVV1suEFQ+F5UyMjLQqlUrAEDLli2RmJiITZs22X4fiYmJdvW7dOmC33//HY8//jhWrFhR7fe5du1aDBw4EPXq1YNer7edt5Kj51xKiaeeegpdu3bFsGHDcPjwYds+IiIiIqJK4d0j6KoHzxDten9Mokc9gNUOi4mxbUsp8eSTT+LOO++0qzN16lSPenCq1omIiLBrFwAGDBiA5cuXY8GCBbjpppvw6KOPYsKECdXaqRrThe2Wlnq3eLKzn+ntt9/2uVdq06ZNSE9PB2DpEXz33XdhMplwxx13IC4uDqWlpfjzzz/Rr18/r9qdPXs28vLyMGvWLACWHricnBykpqZCr9fb4tVqtTAajW7bu/D3ePvtt+Ozzz7DsWPHcOutt1ar37ZtW2zYsAG//PILnnzySQwfPhzPPfecbX/VBNgRR8/5rFmzkJ+fjw0bNkCv16Nly5ZeP4dERDXFgV1ZKCk4gk59L1M7FCKiGoc9gioaMWIEPv30U5SUlACw3PN2/PhxDB06FN988w0KCgoAwDY0tG/fvpgzZw4Aywf+/v37u2z/wIEDaNCgAe644w7cdttt2LhxIwBAr9ejoqLC6XENGzbEjh07YDabMW/ePFv50KFDMW3aNACWCVFOnz6NuLg4FBcXu/2ZBgwYgHnz5uHcuXMoLi7GTz/95NHv6LvvvsOiRYtw3XXXAQA6duyII0eOYMWKFejevTsAIC0tDR9++KFX9wfu2rULZ86cweHDh7F//37s378fTz75pO3360xmZia+++47AHBbd+zYsfjtt9+wbt06jBgxotr+I0eOIDo6GjfeeCMeeeQR2/NTKSMjA8uWLcPJkydhNBpt53WlqKgIDRo0gF6vx9KlS3HgwAG3xxCRc6dltNohkAstZg9Ep0XXqR0GEVGNpEgiKIT4VAhxXAixtUrZZCHEYSFElvXrsir7nhRC7BZC7BJCjKhS3lMIkW3dN1VYu2SEEBFCiK+t5WuEEC2ViFttw4cPx/XXX48+ffqgS5cuuOqqq1BcXIxOnTrh6aefxsCBA9GtWzfbfWtTp07FjBkz0LVrV3zxxRd2k5E48ueffyItLQ3du3fHd999hwcffBAAMGnSJHTt2hU33HCDw+NeeeUVjBw5EkOGDEHjxo1t5e+88w6WLl2KLl26oGfPnti2bRsSExPRr18/dO7cGY8++qjTn6lHjx649tprkZaWhiuvvBIXXXSR07jfeust2/IRX375JZYsWYKkpCQAlt7K3r17o379+tDr9QCAPn36YO/evV4lgrNnz8bYsWPtyq688kq3s4e+/fbbePPNN5GRkYGjR486HB5byWAwYPDgwbjmmmug1Wqr7c/OzkZGRgbS0tLw0ksv4ZlnnrHbn5ycjKeeegq9e/fGsGHD0LFjR5fnA4AbbrgB69evR3p6OmbNmoX27du7rE9Erp1G9UTwxQrH750UfAXS8S0PRETknnA3/MyjRoQYAKAEwEwpZWdr2WQAJVLK1y+o2xHAbAAZAJoA+B1AWymlSQixFsCDAFYD+AXAVCnlr0KIewB0lVLeJYQYD2CslPJaVzGlp6fLypkXK+3YsQMdOnTw++el8HX27FlERUVBCIE5c+Zg9uzZTmfmNJvN6NGjB7799lukpqb6dL6SkhLExsbCaDRi7NixuPXWW6slsP7i3wWRC5OdXHyZzMliQsH3z16OnuIftJiSo3YoREQhSQixQUqZ7mifIj2CUsrlAAo9rD4awBwpZZmUch+A3QAyhBCNAcRLKVdJS3Y6E8CYKsd8bt2eC2BoZW8hUTBt2LABaWlp6Nq1Kz744AO88cYbDutt374dKSkpGDp0qM9JIABMnjzZtvxHq1atMGbMGJ/bIiKqbRqhEC00x9UOg4ioRgr0ZDH3CSEmAFgP4N9SypMAkmHp8auUay2rsG5fWA7r90MAIKU0CiGKACQCOBHY8InsXXTRRdi8ebPbeh07dsTevXv9Pt/rr7/uvhIRUZjqq92udghERDVWICeLmQagDYA0AEcBVHadOOrJky7KXR1jRwgxSQixXgixPj8/3+uAiYiIqOaYZ+qH/eaGaodBRFQjBSwRlFLmSSlNUkozgI9guScQsPT0NatStSmAI9bypg7K7Y4RQugAJMDBUFQp5XQpZbqUMr1ychEHdXz+mYhqG/49EPmGfztERFTTBSwRtN7zV2ksgMoZRX8EMN46E2grAKkA1kopjwIoFkJkWu//mwBgfpVjJlq3rwKwRPrwXzgyMhIFBQX8B04EywfZgoICREZGqh0KUUgqL3O+BueUH7c63UfBcab4FMZq/0ZLTR5MHqz1SkRE9hS5R1AIMRvAIAD1hRC5AJ4HMEgIkQbLEM79AO4EACnlNiHENwC2AzACuFdKabI2dTeAzwBEAfjV+gUAnwD4QgixG5aewPG+xNm0aVPk5uaCw0aJLCIjI9G0aVP3FYnC0NoZj8HZaq0J694ERs8Iajxkb8v3/0Uf6/b6Dyeh932fqhoPEVFNo0giKKV0tJrrJy7qvwTgJQfl6wF0dlBeCuBqf2IELAupt2rVyt9miIgoDGwzNXWaCP5L9z0AJoKBJs1mmM1maHXVP66cjD7//7z9id+CGRYRUa0QyMliiIiIaq3TxafVDqHWW/P1K9D+XyIK8nKr7SvVn1/jcY/d1ANEROQJJoJEREQOpJa6uQ9Q8F9ooNXdMw8AUHhkDw7lbLZLCCMqzifiWcaWKCrkbR9ERN7gfzEiInKo9NwZ5GxarnYYqqljcrNUre32dgqUxRHDAQAV0Y3QbNYAxHyQ5rDerbrfoH+nUxAjIyKq+ZgIEhGRQ9kf3ozU+Vcg/8h+tUNRxT+R3VxXMHGmymCLFBW27TJdvN2+aFEW7HCIiGo0JoJERORQw9PbAADnSk6pG4hKirT1XO4/fOpskCIJX62MewEAJ5Z+UG1fpPGk3eNjsm5QYiIiqi2YCBIRkUP7NC0AAFIboXIk6jhxZK/L/R0+6wxpNgcpmvDxzA/ZaPnEAgDAXl1rAMCAY5/hlvJHMaZsiq1e3bMH7I47IBvi6IFdwQuUiKiGYyJIREQOLdFfhLXmdjBHxLuvXAs9rf/KbZ0DuzYGIZLwkrz+VWyJuK1a+VJzd2TJFKfH9dbsROMZGYEMjYioVlFkHUEiIqo9Dh/aj8/X5eGvovr4Xj6KHwzhmQh6wmyIUzuEWidFHEG8OAcA6F2+BgBQJKPxtWEKNpvbALgcAFAY00atEImIagUmgkREZCf5k254CsBT1hGh+0q3AGDC40i4DpsNpIu1G2zbdc2FAIAEcRa9xU701uy07SvTV79Asc/cEK2qlRIRkSMcGkpERC5pSk+pHULIEibOVKmk8rJSu8cV0DutG1V+0uk+IiJyj4kgERG5JqXaEVCYWPzRk7bt7UdOY0nEEKd1TbnV789spckLSFxERLURE0EiInLprcX/qB1C0JWeO+NRPakxBDiS8JKTf862/dp7U13WHVnkfjIfIiJyjokgERG5dOvxl9UOIegiX23iUT2NuTzAkYSv4ZoNtnUEiYhIeUwEiYjIpTooUTuEoCqtMHlcV1MeXr+bQLsJC2zb1+uWYI/u/Mygs4xDMbjsDXy3IReHCs+qER4RUa3CRJCIiFxqrslXO4SguumjlWqHELYiUOF03w26P7BfNsTi7z7CQ+/NcVove9n3gQiNiKjWYSJIREQ287MOqx2C6kYeecfjuiauI6iYooI8xIpzdmUXlf9l93hf5I340PA2RpX/4rSdjct/Ckh8RES1DRNBIiKymfNNeE/AIc1mTNQt9rh+3lnOqKqUwzlZ1crizacd1p3g4jk6herrCxIRUXVMBImIyOY2rfOelnCwa+dWr+ovnfNWgCIJP2ZdlN3jH0x9cdLofB1BZ9pKTjBDROQJJoJERGQzWLPJYbk0m4MciTqMwrvEo7/Gu8SRHJNmM0qFfSK43dwCiSjyuq1e5i1KhUVEVKsxESQiIrfKSj1bV6+mEybvloPoqmHvkxKWzpyC9J+G2ZUdlYlcIJ6IKICYCBIREVnpSgu8ql9HhEeCHGjZhwqrlV2tXea0/tfGQU73/aQZokRIRES1HhNBIiJyT/DfBQXXAG223eOlpm627Wt1fzo9rgTRgQqJiKhW4X92IiICAJScPgmtcDILpi4yuMGoxBSRoHYIYWmEeYXbOoO1mz1qq4Pc4284RERhgYkgEREBAKLfaOV0X97p0iBGoh6p97436eA/WcoHEmYS5UnF2tqHZMXaIiKqzZgIEhERspfPh8ZZbyCAD3/fFsRo1CNMFV4fk5t/SvlAwkhxaQXKpFax9uIrTijWFhFRbcZEkIgozJlNJnRZMsFlnYvzPwtOMCrbeNC7yWIAwKzxfq07Om/H4ZNYbOqpWHvdNBwaSkTkCUUSQSHEp0KI40KIrVXK6gkhFgshcqzf61bZ96QQYrcQYpcQYkSV8p5CiGzrvqlCCGEtjxBCfG0tXyOEaKlE3EREBGzbvc9tnV753wchEvVNW3bA62P0FacDEEn4iCnIxi26hYq1115zSLG2iIhqM6V6BD8DcMkFZU8A+ENKmQrgD+tjCCE6AhgPoJP1mA+EEJVjQqYBmAQg1fpV2eZtAE5KKVMAvAXgVYXiJiIKe5u/eMxtnThxLgiRqO/vyAe9PsZQVn3pA/Lc1EXb1Q6BiCgsKZIISimXA7jwP+FoAJ9btz8HMKZK+RwpZZmUch+A3QAyhBCNAcRLKVdJKSWAmRccU9nWXABDK3sLiYjIPzfq/lA7hBqtwsCZRn117NBuvF7xktfH5Uvnv/Nd5qb+hEREFDYCeY9gQynlUQCwfm9gLU8GUHXcRq61LNm6fWG53TFSSiOAIgCJAYuciChMfL3uoNoh1HjlEfx35CvTp5d53Nv8vam/bTtJFDmtd0zW8zsuIqJwoMZkMY568qSLclfH2DcsxCQhxHohxPr8/Hw/QiQiCg+Pf5ftvhK5JKRZ7RBqrLrmUx7XHaf9y6N6LUSej9EQEYWXQCaCedbhnrB+P24tzwXQrEq9pgCOWMubOii3O0YIoQOQgOpDUSGlnC6lTJdSpiclJSn4oxAR1U77I69XO4SQYTb5ltDFlHg/wQxZHEAjxdvcIFMVb5OIqDYKZCL4I4CJ1u2JAOZXKR9vnQm0FSyTwqy1Dh8tFkJkWu//m3DBMZVtXQVgifU+QiIiCoK9ZuU/sIeaXdlrfDruXAzvSfOFNJsx19jffUUvXan9C2vnvql4u0REtY1Sy0fMBrAKQDshRK4Q4jYArwC4WAiRA+Bi62NIKbcB+AbAdgC/AbhXSmmyNnU3gI9hmUBmD4BfreWfAEgUQuwG8DCsM5ASEVFwtNYcUzuEgGs2b4xPx53O26tsIGFi+6pf8ax+VkDaztj6QkDaJSKqTXRKNCKlvM7JrqFO6r8EoNo0YVLK9QA6OygvBXC1PzESEZG9XzcfwqVqBxFCYkWpT8eN2Pwgzg2/ElExcQpHVLudKytXOwQiorCmxmQxREQUAop2/ql2CLXGot9/UzuEGqc0qoH7Sj7abG4dsLaJiGoLJoJERGFo++rfMHj7M2qHETLW/zzdr+PN/HcaUg7KwCWZRES1Bf9zERGFoY6/XYuG4pTaYYSM9PWP+nV83LnDCkUSPnTGs17V/9mU6XHdK7SrUVTIZaSIiFxhIkhEFCaO7NsJTE7AjGeuwa+mXmqHU6vElh13X4nsGPWxXtUfqV3tVf2/Zr/iVX0ionDDRJCIKEwUfX4tAOAW3UK0FbleH3+mzKh0SBTGNKaygLZ/RNM4oO0TEdV0TASJiMJAXu4edMB+2+M2mqNet/HNi7Vz8fljB3P8buOsIVGBSMJL1BnvL0Z4QycrAto+EVFNx0SQiCgM5G5e6ncbt+gWKhBJ6NF8OtzvNk5HcVH5UNPtzEq1QyAiCmlMBImIwoAUWrVDCFkNUOh3G2OyblcgkvDi7T2CRESkLCaCRERhoDiO66o5k21uqXYIYak8sn5A2/8nKi2g7RMR1XRMBImIwsDZmBYwSr7lO/LvirvVDiEsGUtLAtp+sa6OYm1VlJdh1UcPouT0ScXaJCJSGz8VEBGFAW3xIeiE2e92zCaTAtGEln9kM7VDCEsDl13rVf1lpq5e1a9XkedVfVc2/TQNfQ5/hq1fPq5Ym0REamMiSERUy2358ztcsnSkIm39/PWHirQTSt7Uf+B3G69WjFcgEnJloHaLV/Ujzd4tWH+h1bNewLaXL4LJaIQ0lgIAhKncrzaJiEIJE0EioppgcgJW/e9erw87sm8nuv55q2JhHDx8WLG2QsU47V9+t9FHs02BSEhJxysisHnptz4d++8v/0JmzpvoVL4FqzdswPItewAAB2O7KRkiEZGqmAgSEdUQx3L3eX1MwZy7FI1BK2vXovJ5Rw8p0s4AbbYi7ZBybin5GN2W+Taba/ud79u2my+4AY/qvwEAFB7+R5HYiIhCARNBIqIaoFhGoUDGe33cyujBisYxvGyxou2p7WyFVDuEsPVWxZVqh+DUTdrzr/Nmmnzb9p3Gr9QIh4goIJgIEhHVAHHiHDI1O7w+7s6Tbyoah8ns/4QzRADwkP47tUNwKlJUqB0CpJSY8fc+nCmrXb3wRBQ6dGoHQEREnums2a92CIg3F6kdgqK0ZVwOgELTii3/4NAv7+JfS9rh0r7d0bVLGlIaxKodFhHVIuwRJCIijy0xpakdQsgqLlW/F4mqM5tr5vBfWZyP5/Rf4CPTM+i+7FYMe3OZ2iERUS3DRJCISEXrfngPWX/McVvvrIzAdOPlOFBwJghRORclatf0+VIbqVhbr81fp1hbpJzFW5WZECjYos8ctG230uThU/1rKkZDRLURE0EiIhX1ynoajZY/4bZetCjDJN0CnC08ioP/ZCF7+Xy3x0ipfE+IDrVrQXmzPlqxtlJOLFGsLVKOLn+7V/VliNwHqzGX2T0eos1SJxAiqrWYCBIRqWibuQWyza2d7pdmM1ZPO78EhP5sHpp/NRBdlkwIRnjVlEqDKucNHOWS5a5nVynWFikn7rR3Sz6smfNygCIhIgotTASJiFTUSXMAHTQHnO7PO7wPmXmzHe7bue53140HoEfQIGrXDIZ5639SOwQKMOHl30FJ/kH3lYJAqB0AEdV6TASJiFTWVJywe7xz3e8oKz1reSDs36ZPHTi/cPnZglyX7QYgD8RgTZbyjarEWFGOzM1PKdhi4D+6Zx06hXPltWt4bqB5O0T6YFQHl/tXf3iPP+F47ExM82plFabQGLZKRLUDE0EiohByaHc22i+4ElnT7wQASIP9dPHpGx+3bZcZ6rlsa9EG7+6N8sRR6fqcNUlNm0syv7gMY97/G4/M3ax2KDWK5sAKRdvLPDZLsbaKTp5A6dkSAIDJLPHKrzuRX2y5N/CdX7Oq1X//57WKnZuIiIkgEdUIJadPApMTkLX4K7VDCZhVnz6KZl/2BwDUPb0TACA1Wqf1y6Iaumwvd9Ni5YKzqiNKFG+ztjgYkRrQ9s8VncDWiFuRst/xUGFyLP20myHUF2hzLtvl/i+Mw/wJx07CO21w9PW+AIA12/fA/NfbeHeOZbjy24YPqtWPOrRcsXMTEQU8ERRC7BdCZAshsoQQ661l9YQQi4UQOdbvdavUf1IIsVsIsUsIMaJKeU9rO7uFEFOFEBw+TxRGcg8fBgBs3fhXwM6x6bXLsGnRlwFr350+B6fbtgs1lp43DZwPBTsX3dhle/qyQmUCq+J3U0/F21SDNJtxtviUom1uih2gaHsXEuWnEStKMapiYUDPE+5yYoL7Gm9lttwjrCk9iaf0s9Gk1DK5zYVDxgEgtWxLUGMjototWD2Cg6WUaVLKdOvjJwD8IaVMBfCH9TGEEB0BjAfQCcAlAD4QQlReDp8GYBKAVOvXJUGKnYhCgNToAQAnz183Ulz3s3+j+8p7A9a+K6tmPos9Zkti96nxEnwffbVlh9n5/WAxxftctjmxcKpi8VWKFecAAPlH9qO8rFTx9oNlzVcvIGGqsj14xbrAvTYB2F4Lkai5v3c1HJaJXtVPPPiby/036bzrYXQlV9bHXJPlAkJ08X4AQJ8zzpchSTTmVSvLyVqBVZ8rea8rEYULtYaGjgbwuXX7cwBjqpTPkVKWSSn3AdgNIEMI0RhAvJRylbTc9T2zyjFEFAa0ZsuH38jTe1WOJDDK9/6Nv82dUSDjMMU4Abv0lgkrRMVZp8csWb0hWOHZCEiUl5UiaXo3GP7TEGdLioIegxIa7P1B8TbTSgLXWw1UnfSEA2K8ccDsegj1hcZqXA+//M3Uy59wbPZkr3bY6wcAxUWOe/O1puoXAVJ/GIk++95XJCYiCi/BSAQlgEVCiA1CiEnWsoZSyqMAYP3ewFqeDOBQlWNzrWXJ1u0Ly4koTGjKTgMA7tD9giVT71C07dKzJVj91YsAgKWmboq27SmdqRRHZSIKZTxWR9yLAaVLAbj+yH9x0dzgBFfFORmB8rJztsfHDu3xu02T0YjTpwr8bscbu7XO1270VeezaxRv015Nm94mNPTVKjtpUp6so0g7bb6z3P1yldY+8RSQ2PrD6w6P6Vy+BSeOOF9uhojIG8FIBPtJKXsAuBTAvUIIVzdROPrMI12U2x8sxCQhxHohxPr8/HzfoiWi0FRlGYUhhd8o1qw0mxH5WjIy/3kdj1TcidsqHlWsbW8UIB6NRQFSNYfRSJzEyHPz3R7TT7vN6b6cTYGZVOJa3Z+QGp3tsSkiwe821394B+Lfbn1+yYwgaF6Wo3ibMsA9dW9/ZXlN7NW0COh5aqO/dzvuefNFpmaHIu3kyvoAgDnGQQCAvScsr/+TZ8pRFFV96YhK+SdP2j3+zDhckXiIKPwEPBGUUh6xfj8OYB6ADAB51uGesH4/bq2eC6BZlcObAjhiLW/qoPzCc02XUqZLKdOTkpKU/lGISEUV0d4N7/LEnuzVOPR/nW2PO4t9SBGHUZDnen2+QBilXWX3uF7FMcuGcD5rqCup86/wNySnCvIO27ZLCo753V7H/F8BAOWl59zUVE57zSH3lULIkVPnMMpomQX2J33Nv0U+ryh4zzUAbNu5S7G22mlysXbum9i71b8e4I1myz2qlRcQ3ttoGfa5wNwb/xQ6vzf4VIH9fYJ/mHvgfeMov2IhovAU0ERQCBEjhIir3AYwHMBWAD8CmGitNhFA5aXvHwGMF0JECCFawTIpzFrr8NFiIUSmdbbQCVWOIaIwcHjDL7btIhmtSJttvhuB5ubzSc3NukVYFPE4Eqd1UqR9b03QnV/uIUlYhsLKiBhVYnGl5Re9bdvdF1zmd3v5sEyy8n8LduBESZnf7blzYOfGgJ9DaX1fWQIzBPaaG2G9vofa4fht3d/KL23iSpe8eYq2l7H1BbSe619PXIqwXM++TmcZBr7A8DQA4DX9R3jgmPPJX/osuca2vSInHyZoUCKjsfVwzbxfl4jUE+gewYYA/hJCbAawFsACKeVvAF4BcLEQIgfAxdbHkFJuA/ANgO0AfgNwr5Sy8rLY3QA+hmUCmT0Afg1w7EQUQobtfPb8dpnj+2e8sX6/8ksrBITQua/jwCkZnARyl7mp+0puzJaWD9TF2xbigVnr/W7PlaKTJ9BizuCAtN2jZFlA2j1dWoFFhkcxRJuF1ppjePTU/wXkPMEkZHDvd+xz6KOgns8THTX29/pFiAqPj73P+ney4++f8JXhZTyun4MfP3hc0fiIqPYLaCIopdwrpexm/eokpXzJWl4gpRwqpUy1fi+scsxLUso2Usp2Uspfq5Svl1J2tu67T8og/xchoqAzVpRj618/Yv3P0+3KmziYae/0qQKvljOYMtv5FO2lUu95kAFWWupbD1kdcUbhSBwrg/+/q69wKTaYU/GBYSoyD013f4Afdv7+WUDbD4RpX8xBW835nutLtetw/2c1e2HxuiX/qB2C334w9fXr+G+MA30+9r2codi5djGSys4PcR6hDexFFCKqfdRaPoKIyK3FX7+Lzr/fhPT19hO4zI94zi7p+3v3CcS/3Ro5bwzzuO2HK5wnHHkywOvBWR0scD45ygqT5d7FB+eE9oe7rhrXaxl6YiyWoqfGMnnLA7of/G7PlXMR9QPafiDEnq6eNN2w9zGsXxB6vVyeEqcOqh2CQyeOeX7v6EI/l5GovDdwnqmfT8e3/+UqjD36pu1x5d8QEZGnmAgSUcg6XOJ8FsZF330MADhbWoqszx4CAHQqz0buCc/uk0k17QYAPFBefQH5FprjTtfxUlLWtq1O922RluUNRhd+FvA41HZLEG/5LjxebZ6xkJdRsrRaWaZmB9LXPaJCNMroc3Sm2iE4dGr6SI/r+nvB6FrdnwAsy0UQEamBiSARhayko86HbxZYOwQryspxr+5HW/ne98e5bbeg+BzqogQAMNXgeCHmhTMCfx9W3dM7ne7rLPYDAG7SBndSDTW00RwN2rnG5b4asLbXmNsHpN1eMtth+W5zk4CcL5z9Vu75OqLDtMpMOjRGu1KRdoiIvMVEkIhCUlHhcYwWK5zun3jQMsPe7DX2QxMHSPdDKbPn/gfRwvW9d0fPBf7tMaLMea/jQO0W7Nu+Djph9qitivIyrP7iuaCuxQcAm83KL8weKPu2rwto+701zhP7QNDDGNTzKWmpyfOEK1TdU+UClLeMFeW27S+NQ2GsKMeTFbf5HVP2fwajcHIz9xWJiMBEkIhCVKkHn3FnTn8dBcs+rFZ+8ZP/Q37+MWByAjYvmVNt/6AD77htu/3ZDR7F6Q93y4/nbfjJ47Y2znsLmXvewc/TnsSOo6f9C8wLNWlYm+m7O4N6vt3bNwKTE5CzKTATu7TQHEdO1gqs/vAenDgWmvfcOVMMZZaAUdpoTXB659Z9eX4WZAmBPa/0xX/0n/jV5lpzO3Qp24h6CN7fPxHVbEwEiSg0eTAx8IQjL+Jp/VfVyhdHPIak99sBALotvxNH9ll6aoqLCvHLijUeLXlwsXYjDuVs9jJo79Tf5vqDX8Lenz1u60iEpWcutnAr3n/3Nb/i8oYSk8VcaO8e5Rb/rqpMRASkXWe+nmWZzCWQM5Wm/jASmcdmYfn7d9uVS7PZ9roPRakiV+0QHGqmyQ/KebSnz//8N+l+RzuT7xO9lEnLEjMmqcVCUzp2mNkjSESeYSJIRCFJY1ZuYfEmn/fGuTPFiHurFS77YzjaaTz7ELp96ybFYnCkldl1L04HucdtG0f27cTRA7tgPLAWgGUK+fcM7yoSX7D8bupu97jc5KSin/4wDAlMw1UUFZ5PJC7SWO7t05YX+9TWkVPn0O1Z1xPpzDUNAAD8ZZ1lttKar/+DJp/3xqbXLvXp3BeSZjM2LfwcJqP/w1G37DuGDhrPZ+cMpsrfp6dWffoYTp8q8Po8e/KVW94lQliek39kMuJxFvWEb683Igo/TASJKCQVHVf2g+LmH71Pjkr1wVlGwh8VZWfReEYGrj5ZM5cSMJtMGKa1T7iF2fOFtb1xQNsiIO1WlTA1xbbdTWNJ5H3tiVy4cQ82ayd4VPdNw4c4dmg3dqxZCADQH7ZcGOh+1rOhjv9s/NPlOpyrl/6E7qsewB/fVR+K7a3cnMBeYHFm93HXCdKBKZ1wlda7Ybx9Dv4PO2b+y+tYtspWXh/jTj/NNvTRbkdDcQprn8uA2XT+isrZEs9mUyai8MJEkIhCUsq8yxRtr3yv9/f+GIzBWZTdL5F1kG1uqXYUPtu4aFa1MlmSF5BzxcjgTqSzXzYCAOzV+JaA7vjjM7d1qiYudT/ORIdfr8HqaXehwOD5jKKrPnkEbX8cDcN/GuJM8SmHdfqssCSknba/aTfRiS8MxuA+D5WGvek6yWth9m246klNolf1pdmMl/Sf+nQuV1I055dGydDsgubFeig5fRIbf/sM0a83x+7Nfyl+TiKq2ZgIElFYiC877PUxsSc2+f2hN9CEzoBss/K9C95YvMr3iXUKDY2rlZ3KzXHZO+ULs8mEKSXPK9qmIytMnWE0mfHot5vRXBwHACSbfVseY7LOu7X2jsh6AIDMvNkYXmi5d9Ys3U1JBPQ5dL43efvS6pMr7Vz/h207WRRg19pFXsV1obgz+/063lcz9MouHZJjTgYAHItq49Vxh3ODN7HPxuxtMO6yLEFTkLM2aOclopqBiSARhZwTRw4o3maaZq/Xx1yUOx26l5J8ugcoaPTRaK/y/Vbxv97j87GlBdVjz8x6HFunXuVPSNWUlwWnF6ocemw5kI+krPdQV1jWqqwrT3rdztp577pd4uRCf5rTqpVphIQ0e7YECQAUx1ZfDqT9zxeszWn28yZO4T45DYTBWmUnf0rVWC4u6eDZ73f7ql+x9T8DUR7Ej15Tft52fnpiDybgIqLwwkSQiEJO8cdXqB2CnZK3eyvephKTbgCAxlSKHprdirTlq96anSg87n2Pq9ks0Wmr4xlOo4r3+xmVPSl0irbnTJw4i9OLX8Fj+m9sZc1Nng05PLx3GwDgxLGDyNj8jNfnrutkkpB1794IwDIksajg/LDb1evX4dTkZPvK0j7JKzeacUba3+N4Ru/dUMgLqZMGWqyedpdif3uVDPAsYa+/8B50LsvC6ePB6xH8PeIxZBT+jHKpRV5ietDOS0Q1AxNBIvLbyTPlmLlqP6RCV5y3hdj0502Qj2OHlE221izzfGkIV3QKzq7qD+MH/b0+5utfFqKNxvGwycXmnv6GZE8E599dhmYXkg8vtCvL1SY7qX3exsVfIXlmX2z642ucOPSPT+ceo3V8H2zGyQUAgH9e7oOEd9viUM5mzM86jPY/jUYdlNjVjTxjuc/sXLkJLy3YjtHvLkdMlZ7Jc9KAf/2wB2aT572MFzob2dDnY/2VmTcbqxdWX3IGAMql1qc2T6KOR/W2CMuSNtqK4N97PMN0CU5Ht6xWnpO1Ars3/43SsyXVDyKiWo+JIBH57eFvsvDc/G3YdkSZhYxzREtF2lHSgey/FW3vjIhVpB2tCI3hXg1QaDdLoSdO73M+e6RG4YXqd749StH2XKkcMljplIh3e8yeU5bvOSfNqIiqr2g8u8xNcWh3NtoZLesK7tyxFaN/6Ig6onpC0nfjwwCAOX9uwvG/v8AzhU/Z7Y8S5VgZ+YCHgyEdK9e7/30E0rsrT8BklpifdRhms+V1djL/KAzCtyGvct8yj+ptF5YZZc3a4K5nCQB36hag/oLbqt3znPrDSKTMuwymV1vj8KlzQY+LiNTFRJCI/HZx/mfYH3k9xEllFhdvCO/vqQq03msfQOrTv+CB2ZtwqPAspJT4eMVeFJR41yNXePwwdv5fJsrzvb9n0RGh8a0XIxDMXt47dmfBK0733adzvX6et7qXrla0PW9ESfcT3whrQm/O3Yj8Pcrey/a3uTOM5edjOFbg+u/LbDKhzpk9eMfwAfpptzmsI6XvqeCbf6q7mPwc/Qs4+kIKln8zFd+ttfT0F37o+3qLd+k8693XwTIk9cS2P30+lz8u0a5D9kZLr7E0myHNZuRKy0UHA4y4+9WauQQNEfmOiSAReW3jwi/shkr2KrfMRqcvP6VI+22xX5F2lJajvw5Tdw3C6NfmY82O/Xh1QTYe/sa7D+27fvsQ7Y07cNH25xSJ6eQ5Ze938odSQ4MBYI25vWJteTNZSiCY3PyrLS8rRb2zloso409Nx5BNDyh6/ixzCg4t+9z2uFWu6yR718Y/MXbzJJd1zCbf13r8LeIJn49VSlNxAm8YPoQhbzNyslagjUmZi1iuDDNalq8YeuCtgJ+rqspkDwDyDuVg038vh5hSF3tf6oliGQUA0AsTXtB/7qwJIqqlmAgSkdd6rLoPuk+GArDMbhhntPQwaBS6D2tzRXNF2gmUjZF3IfObNORETsBlBb59eIoXygzDumH6KkXaUUJxcTH2T+mMPVu8X7PxQr01OxWIyGLN1857HoNhdMWvOLx3h8N90myG4T8NMWTvfwN2/qmG9zAg7wvb4/4m18sIdFgwzuV+wPfk2tk6hWppcGYnUn8Y6Xc7ZaXuZ6Vtq/F+QiUlNBUnbNuXbH0E3c9Y1hNsY9qLDlVmHO6u2Y0Rb7lea5GIahcmgkTkk/o4haMHdiFj8zNoBMsHjZMHNmP7ql/9bvs2nf9tBMvVJdUXRHfGaDJjUX4dRc+/NvJeRdvzVba5JfasW4iW5kMo/vUFtcOxI/IdJ2HBtGLuVIflNXVGf18TwYNTL1M4Ej9VKHNBJuKVxjh+OPC9ioFmOq7+3woRBQ8TQSLyWWnJKbvHvbKeQceF49UJRiUaIbH1rx+ByQk4me964fBnv9uIn/Mb4ebyR4MUXfB00eyHMFXeh6bmAgH2pJQ4gXpqh4ET2qRqZXlF5zDzI0tPYOVi8DVF1ftBV330LxRO9mym3w4Vju85VEuffe8p1lbF9KFO95WcDr37nh35PeIxtH/2/IU4o8mMDQcKVYyIiAIpOAsrEVGtFKjZ78qkHhHC93uQgq3z7zcBALb98Dr63/GGwzrnyk0YkP0E/hO5LpihBdWJPMskIHsN7ZCmbig2Xy7fhssKvlM9NzWdPGT3ePfmv7H826m4VfcbAKCJqFkftk/lH8O5M6dRv1FzJB/6GfU0ns0YPNs4GNfplgY4OnWUSgMOnzoHnUagYXyk3b79749BZ5Xi8taN5p+w8b/vo6xhd2SdTULBoZ2IvOUxdEppqXZoRKQw9ggSkc/azBlYrSxP1sG679/BrvVLfG63JiWBVfU//DFOHDmAsvJyFBdZPtiXl5Xi0O5sPPnme7hUW3uTQAC45OCbAIB5cdcp0t5Nn6zB6VL/Xgtns75HopOF1oPpQd33AIB929bgxJEDSJl3mS0JrGl2mpsheWZvGKZlAADmm/vBJD3LtM8h+EsnBIsWZrz336fxn1dewOy19ovGJ5cquw5pID2jn4UeZ1agz96puPvYs3hGPwuH/9mAe7/aiL93n3DfABHVGOwRDHOFZ8oRqdcg2uD8pWAyGmE0liMiMhr5R/ajvPQcklt3CGKUVJM0FKfQcMtzOLfZAKTn49TZckQbdDDowuO607Rvf0bT/GW4RbcQpY8fQeSrTdAMwNtqBxZEsQf+AJCJnE3L0aJjBgwRkW6PcWR9Ti7mZzXCTZktfI6lvvGYz8cqraCkDK2+Ha52GH5rb51gpHLCIz2M0AoJs8kMjdb13/kOGdoTQfmjpSYP/9F8Ytn+vj/aNoxFQUk5hndqhNmmIbhH96PKEfpu+Npb8VfFRPyz/Rjqj7kL7dKHqB0SESkgPD6ZhQkpJXLyql/5PpSzGSeOHaxW/vDXWXjqpZdw7wuv4ly55X6Pn7ccQcsnFuDkGcuis+t/+h+0/5eIiFcaAwCSpndD8sxMbPhlBkzG0Jm2noKn8Ey5+0qwLDw99+WJGDhlHu6aOtfj9tWe6t9feXlHcYtuIQBg6X+V6RmraaZpX8PWlwcidf4V2PTRPT63syPyVoz8tW+1RbC90aw4y+djlZb4egO1Q1Bc7tE82zp6v6zZ4rZ+EooCHVJI2B95PW6cthRPfmEZGVGTk8BKU/Sf4xbdQiT8dKvaoRCRQoSS6z6FkvT0dLl+/Xq1wwiaooI8zNl8Eof++BAjJz6GzLZNzu+cnAAAOHbrepwpKsABTVMczjuOOkufxBVayyLL/zNejjt1C2yH7JWNYR73MVLmXW4r231PLlI+aGp7vD5uKFImfoA69RsF+KcjZ86dKYZOb4DeELzhVsfzjqDBNB96hCe7/wC4+sN70PzorzXufilybpeuHdo942S5Aut7kzur+s9An2HulzTw5xzkm0IZi3qi5HyBk7/zJTvz8OLnP2FpxL+DFFkImVxUq16H7xlH477/m6l2GETkISHEBilluqN9HBpaA32z7hCiNBVIq3MO52Kb49SKj5Cx9QXcCQB64JuZe5H+wg/IPlwEzZ7f0c16XKNPLa+BNpUNac+3WTUJBIDW4ihQJQkEgIPvjkRKlWPSi/8A3muHzVeuQFKsAfn7s1GWPR/dJk1HRGS0kj8yORH136bYqe+I9k8Hby05c9kZn477acV6tBJH0Ln/KMftmkzIPDZL9Uk9SFkC/l9sbLviATyzdDmef/5V7Fq3CGfPlaL5isdwuPczaDfwWqxeswrDhlxc7bjfF3yNYX6fnVyxSwIBZK1dhkmLK7DqyaHQas7/MR/48n4sjVgY7PAoAO7TzUf28vnoMmA09m1bA11ENJqldFE7LCLyAXsEQ9je/BLUN5Rj19KvsEZ0g27dh7jr/2Yh9/k2tgVipxmvwN26n1SOtLq16a8jdeANOLh+AboNvhpF5yqg0wjERPDag1J2b/4bKfMsa3KdebIgaL/bw3t3IHlmps/Hb+j1BioOrEHr47+jweTz626t+/4d9NrynBIhUgh5oPxeTLzzEfRs4WB5BD97SUqlHpHWiYXWoBNky0HIvPll2/5Hn34U/9VP9+sc5L0jsh5eqPMS/vfQ9ecLa1GPmLc2RfdF97Mr1Q5DUQUyDnWe3Q/t/yVaCjwY8UFE6nDVI1ijEkEhxCUA3oGlL+tjKeUrzurWhEQwv7AQqChFYlJjmKVEaXk5/skrQbemdbBt9x7snvUw6qMIA7TZtmMmlj+Ozw2vqhi157aZW6CT5gBWtn0Mz2YnYbAmC11G3ALN0U0YefXtEBoNsnbtgVETifTUZNtxWYu/QmneP8i8cTIAoOhsBcqMJjSI923CiVqrygerUqlHDpqhywubAn7afdvXodU3yvSz5Mr6ODVpI0qWvoXM3W8p0iaFnmcqbsETujkwQoNx5S/g1TuvRK+W9QKSHHQq/QTbIm/Du8YxuF/3g+Ltk+fWdHwG4shGZPxrdlgnguFgXdcpMPS8HvvzTmF0RiqKTp6AwRABo7ECMbEJ0Gi17hshooCoFYmgEEIL4B8AFwPIBbAOwHVSyu2O6odqIrh62p3odux7lCAKSYJX0Kr6xZSBGJRioPb8hAObB3yERxafxEHZAPfofsRlmjXIazIU0EWgf+5HOCVjEP3UXmh0BujczFZXm2zcfxw9PkutVr5Lm4J2z24I6Ln/2fgn2v44OqDnoNrtyYrb8PKLr0NMqat2KBQEr3RZgCeyL3dfkWqco7IeGl9wT/d+TTO0NB/COWmwTBoWdTWuevxjlSIkotqSCPYBMFlKOcL6+EkAkFL+x1H9UEwEK8rLoH+59s0aV9P8bMpEQrQBGmnGkaT+SD80A600eTgto5BlToFI7gFD6XFURDfG1xX9cZlpKeo1bIo2A6/HocO5METEoHmzZohLcDDUzQdnS4pQYdZgZ14xxNc3Qm8uRUPTMTQRBT63OR+DMBp/4ldTLzTSnEZR86EYdJvDPxWvZW/ZgC7fc+pwonB0WkbZlo0g8tZecyMISOyTjVFqqIdmA29GdJ0ktOnaV+3QiGqt2pIIXgXgEinl7dbHNwHoLaW8z1H9UEwEV71zI/qcDL37+Siwhpb9F41FIe5NKYDQ6ACNDhISffa+q3Zobk1v8Tq2Rqbjmu33opGhFCeSMi0TuhAREQXJjeVPQguz3a0xO83NcFfka/iz3H6ZnuvKn0adjkMxRLsJTc9su6AlDVY2nwQASClYigZndtntNWkMWNPUsjxGuxOLkHh2r93+cm0s1iffCADoePxn1CnNtdt/Tl8XmxpfCwDokvcD4srs1zEtMTTAlkaWGZDTjn6L6Ar7C75FkU2xrcFIAEDPI7MQYbRfEqwwqiV2Jl0CAMjI/Qw6c6nd/vyYtshJtFyo7XPoIwhpstt/LLYT9ta7CEKa0OfQR7jQ4fg0HKiTCZ2pFBmHP6u2/2BCBnITeiDCWIyeR6p/FthXty+OxnVFdHkB0o59W23/7noDcTy2A+LK8tAlb161/bsSL0ZBTBvUOXcIHfMXVNu/PekynIpqjnpn96L9iUXV9mc3GI3iyMZoULILKYVLq+3f3OgqnDHUR6PirWh98q9q+zc2vg6l+gQkF21Ei6Lqs12vTZ4IozYKLU6tQfLp6rfirG56Oyb0T0FibPBmcvdEbZk11NFcgnZZrBBiEoBJANC8eegtWnu4PFbtEEgFfTTb0VScQJ+DNfAiwJ6l+NHYBFMjtwEmIPnoIc7qSUREQdVJ7EcrcdSurL3mEMpP5wMXTB9wuWY1ntnaCRm6xcjQ2s9Ua4QWN+yxJEqv6H5FhmaZ3f7TiMGEnAEAgKm6n5GhWWO3/ygSccs/lsnSPtXNR4bGfu3M3bIpbt/ZEwDwtf479BD/2O3Pkil4f0dXAMBP+m/QXtiv8fy37Iz3t7UHACwxzEEzHLfbv9icjve3pgAAJhq+RF3YJ4o/mPvjfaPl8+89hs9hQIXd/lnmYXjf2Bg6GPGgYQYuNN10Bd431Uc8SnCfg/1/7y/BB6Z4NMEJ3O1g/6L9RnxuikaqyMUkffX98/bpMNesR5rIwW0O9n+5Lxa/miX6i2zc7GD///YmYbksx3DNOkzQVd//5t5m2CDbYYxmJa53sP/FvanYKVvgRs0KjNd9Vm3/E3u64BAa4k7tn7ha+3W1/ffvyUAh4vGw9g+M1c6vtv+WPQNwRY8WIZcIulKTegRr/NDQXTu3ot2cfmqHQQHyv7j70d60E6Z2I2GQ5Uho2BxtuvRBRHQ8pJTQQMJorICxogxGoxGlZaXYuexbDNj+fNBi/MvcCea2l8OY2A7lBQeQ3KYzYuo3Q3LLtjBoNSgzSSzadgyXd24IjUaDM2UVOHHGiDoGMxJiYyA0GhzOPYDkj7sGLWYiIqq9PjFeimaJcTjWZAj6ZGRCnD4Mc9020JWdRExUBApycxCT3BFa0zmYy89BaLSIia+HqJgECEMUTBVl0MIMjVYHIQQ0Wh0gNHbLlxCFs9oyNFQHy2QxQwEchmWymOullBf2+wMIzUQQAK7+YAWuPvJfXKNb5r4y+WRDdH/Uv2IK4hIbYdfP76DTuMcRFR2LYyUmROg1aBBnf/mw5PRJmCrKkZDYUKWIz5NSouhcBepEG3D0wC40apYKCYHdu3ehQb06OJl3AFtOCIxeWn3NtErFMgpxLxxzut9fubuz0fTL/gFrn8LDgTt2osVH7dUOg4LkgWbfY+qhcWqHQQFilgIaYfk8udGcgh6a3Xb7Nw/4CN2GXIO1c99EYru+aNPF9yWIiMg7tSIRBAAhxGUA3oZl+YhPpZQvOasbqomg2SxhNEsYdBqs+uMH4OQ+9Nk62a5O9pDP0GXJzWqEF1Tft30N4/55DOVSi8UDf0C9o8vQJ+d1AMDKQXPQuXtv7JpxD9rf8oFtYpat/+Rg+ddvYdDFo7Bh9xH0v+RatKofAwAoKz0Lnc4Ara4mjXj2TXlZKQz/sU9c999zCIYzRxBTpz4S6tYP2LmP7NuJJp/3Vqy9MXXm4odTVynWHoWmh8rvxluGaQCA9eM3I719Sy4pUMvNTLgLQ0/NhbxpPpqmdObzXYvl35uDU7k7Uf+H67F/4jrUKz+Khi3aIfLVJtg6dCY6X8SZponUUmsSQW+EaiLordwX2qOpPIrCe3ag5HQhmn8ZmkNLz8gIxIgy2+MFvb/E1h078Pjpl/BuncdwyaABOLlsGtLv+wIH/9mEE3s3If3yO1SMuOYrf74eDMJyI/j9iR/h3fuvCd7JffxAd2f5Q2gvDmLU9Xfj1G8vo6JJL2Re9xQAYOXUW9C38Hslo6QQsSrhMvR5aDZembMY4wb1RttG8ZYdCiQG5VILgzDBLAXykYCG4hSO3LIeTWY4/J9HwXThIuNMBGuVH0x98Y+5Ga4Yey06pA9VOxwicoKJYA12+lQBSk6dQJOW7WxlG3+dAUN8fXTudwVMZok2T/2C/ZHX2x2XJ+tga8JgDD1dfVYmJf2YNh0pG1/Cj71m4okNAwEAq1s/gMwJLwb0vATkHz2IpP91wWkZhbjJRyFEEO+H8OED3apmd6DPba873V96tgSRryX7ExWFoFWDvkKfQU7WkFMgMdh67SoUr5qBzJtfhdDYryWau3srmoboxbPabKeuPZLu+A6JDZva7wjTRPC5iomYov9c7TAU17L0KwDAvv9cFtz/P0TkFSaCYWDtvHehi66DHqvuw5Gb19oSx3XzP4C59DSitn+LrmI3crQpKKifjsy8OfhD0xdDzSsdtvdz3RvRtmAp2moO28peafAanjj+mH3FKld8d65djPrN26N+o2bK/4Dk0M71fyCxSRskNWkZ3BP78oHuwt4BJ/ZO6YbW5v3etx9iJpU/hJQ2KXjs0L1qh6Kqwvv3oF6ik6HKHr6OVjW9FfsO5+GFc1fjuj6peG5kB5w8cRQV5aVo1CzF5bF7n2uH1prA3TNLltf6dMNbAIA19ceh933VZ+sDgO+fvRzjtNWnbK/t1nR4Er13KLOOq5qWN78XH+2OR1/NViw3d8WMF/4Ns5SINtT+2zGIarLasnwEuZAx9n7Lxoib0KRKea/R9wAASs/dj6KzJUhNbIgGhfnYMW0LOt74NmYt/R037LcMzWtZ+hV2RkzEZ6YRuOvB9wEAxopyHN67HccWvYVH7rgFm976Ad3PrsRiUw80GHIPulU5V/sM5xOYUGC0r4XDcQRq/sWpTdF98c5TzyJSr8FtT+/F47o5dhdVwokGZr+OXzJmPYakpSLDLHFq+R5M7NMSGq22em+TEye0DdBaMhEMpAdvvhH46i38ZMrEiDumOa3X+OaZaPnRanxneB49NTlBjFBdPcY+hA3b5tb4nznzhufQosSER+duwZ7jJYjUa9UOiYj8pHFfhWqDyKgY26yYCfWS0OHpVWjcoh1uuPlerO/1Or5r9wY+uKEHIkUF6qLEdpxOb0CLdmnoff/n0OkNiL/0eRwSTZDx8LfoNvhqtX4cqgE2aTsDAPabvZuN9VizSwMRTtCs6fE6uj/2K6IMWggh8MnLz2Fp4nXuD6xlTty1FevT/4s6iQ38amdIWioAQKsRuGdQCmIivLt+2XTix36dn1xbaeqIlOaWy4+FqANDRKTTun3aJCIZ+cgx1/4h4IcnWNaf2xg7AHpDBObHBPEeboV8bzo/O3RW/w9hiIhEi8QYfHNnH2x4lhd+iWoDJoKE9MvvwJXX3Y7LujTGhrghaDvAeYLXpksmmj2/I6CzUlLtUNqwBwDAdNVnHg8LBYDMiTVvCNU5aQAA/Gjqg96jqk+ClNmlXbWy2myvpiXqN2qG9JGT/GpnOhRYbkCEzr+51Y1uUDsExXxuvBjtS2dg+/BZiIiMxuqmt6HvOPfDoP+OfBDjdX8GPkCVJbdujz3jfkX7u74EAKQNqFmzZi5LGI1nxf1YaLKMJksbFn4Xs4jCAYeGkp2e/w7s5DJUu/yjbYu2pn+qlW80p6DXLW/gn+yr0LZrX6/aFBoNzshIxIhSpcIMuChRDgC44oVfHO7vNuQabBYC3ZbdHsywVBN509eKtFMa4f8FJ6mLUiAS/31ivBS33fUB9k35C63MB9QOx28TdYvxe+TFuP2i1gCAzNvfVDki9e0xN0YbzVFs13VCRwBtqrz39W5oUi8wHwx8aCY2VJhQeLovikQZwnOaH6LaL3QulRJRjaMf957D8l8wADq9AW17DPSp3ZI7HE9iFKrOyAgAqDZrZVWBGkp9e/m/A9KuPxq3aKtIO+2H3eJ3G7rIaBTKWAWi8U/vSyy9gcmPr8W5R3OxqtV9+MlkWVT765TX1AzNZ9Mqnlc7hJBxyJyE+8yPAACKU65QORrHvkr6F1Y1uBY79R2d1jki6+HYbRsAAJF6LZokxiOhXlKwQiSiIGMiSEReMz9biOKH9iEusbFd+SFpuR9sePfWfrWvj6pZ1583m9tgnVmZ5MdbL+s/UeW8jqxu8yDWdnvRZULsqTXm9hjey/kHVk81TKyHP0w9/G7HXy26WJaxMEREIiomDn0mvoRDiZaylM4ZaobmtW+NAwAAkShzU7O6VU1vVTocnxw0K5vcrDR3QmJCDIof2oeMax53UEO95RVerRiPmyuewHV3P48+90xH+6dX2e1faErHLl17AMDBRiPczsRLRLUHh4YSkdc0Wi3iEuqhrMz+g+CR3s8gKm0QMpq08Kt9fWQ0dpqbob3mkF/tBEt3zW7b8NBgayBOqXJeRzJvmuJV/UWmnhiu3eBw36MRz2G5EkEBOB7XETinVGveOyLroUlCvWrljdJG4JZFGryU3By/XbwYO3+dhn/pvlchQuc2mlPQQ7Pb9vi68qexytwJV+uWY1dEF3Tysr16aZcDuZ8qG6QPmmvyFW3vWt2fiC83IC4h9O6l6z54HO7uP8TpBZq9sjFGPGO5lzEzmIERkerYI0hEPpO6SJRLLYxSg/mtJ6P3ZRNR388kEAD0ej1Wmf3vDQqGDRlveZwEbo7qjU0x/d1XDBOPah51um/5004WofeBARWKteWLJqLQYfnYgRn4cMqTaJKUiBF9e6HLDa8EOTL3Ii743c02vISxmhU4dMNytLz/R6/bM+vjlQpNEScVHDacYt7nfKeKkxalNKqD+Eh9tfI9ZsuIjpu1C4MdEhGFCCaCROSzmNg4tC37Av/X8y+MnvCQYu3qtRrcoqsZH06EzoCcMT9j50j3PTndHl+E7o8uwOqGoddroIYeUUeDcp7B5X8G5TzOrDI5vqghhECETmvbHtrBu6VWgqGTpvrENm8ZpqFZajfExNXxuj1jYjssN3VRIDLfjSubbNvelXKbYu2WRDgfbmqKTsJas2X24AN2q/0GXuvOvauV7R67AGsGzwYA1UYzEJH6mAgSkc+iDTpsfn44nh2pbO+dVhu6CxX/Zupl91jqopCadhHapw/1uI3Muz/EgWuXKBpXZum7irYXDBMrvgnKeU6n3x+U8zizp9V4Vc8fSjo1icef5jRVY9gpm+Pg9cuw75rfIaVUpM017Z9A69tnOt2fWCceT1TcgbvLH8TPumGKnPNCXxkH46kK+8R25+XfOayb0q0/rh/cHQCwJbJnQOIhotDHRJCI/JIQpYdWo95ECMF2iXadbfvO8odQlNTLRW3nGrfurFRIAIBB2s2KthcMbZwso/Bp8ouKnqfHpf7PPuqPuETPe4AeLr8rgJG419f0P2wcEbj7FDUagRYN6wasfU88GLMYzdumoVXHXmja5yoAwKbofj63t9zUBb3HP+lyds2YCB1GRW3BNMM7qJCBudClgYQxvqldWfterpPOM/8+gA4P/xqQeIgo9DERJCLywbzoq/E7MpDWupGPLSjTE/F6xdXYbG6NV/QfK9JeMBUZGjgsb595qeLn+vOi2Yq36Sm98Py5PtR8NFJLnfcs+WJm0iMe11354nj06DMUHUqdT+hy8t6dfsXTpCLXr+P9NdZ0fth5s9RuwOQixI193ef2ymDwqN4os2UUQHSzrj6fy5Xxuj/RvZ536xXGxNWB3hARkHiIKPQxESSikDS38wdqh+DS2Mc+xp6XL0O9GM8+BF5ImTQQOCgbokSqv2h6sQ8xNJv0DX6pc3218r5dUpUIyU5UnHpLktQr+cfjut/e1Rc5r4xW9PxR8qxH9SonDwGA3x69xGm9ukmNne7zxM6obn4d7y/pYCkHGev7fXtDNBs9qhePEgDAmOHD8KnR+e/XH63PbLJt59+1LSDnIKLag4kgEYWkzDR1PyxWlS/tZzosldVn4POWVOjtd4p+Bvppz3/gU2vx9DhxzutjEhIbIqbntQGIprpmSYlBOc+3cTdWK4tq5P26bK565LyViCK7x68Y7nVY74GK8/dStkiMwVlZvador9nXHvDz1BpI/oVxGI6hPo70rb7MSUqjBJyW0V63uanPVOwcPsujuvvTn0axjEKdxAZoKY55fS535pv6Ylfc+QUgYlW8+EFENQMTQSIKSU1TOmOGcYTaYQAAfq53M+4s/xcm1fsEp/+1F6ZHdrs/yC1l+gTriDN2j+uJEkXa9VbljIje6t4tOAl/k1btMd/UN+DnaVXlA/6Oy+Zi99gF6DbE+8liHr+iB8aWvaBITNF1kjALl9ke3/HA85hpvLhavWdH2z8X/crewYfGkXZlV5ZP9juelLLtfrfhi2hRikaT96D78OrJuhACD0d5tw4mAHQfMRGd+nm21En6yEmIe+EYDBGRGKLN8vpc7kjAtkzFgowvEBUTp/g5iKh2YSJIRORGx+YNkdznWjx742WIr5Po07T5F5JG5ads3xKZjmOor3i77nzc/DV0enqlT8fGxwdv4pAMbU7AzxHd53a8A8vyII3bZyKlm2/rRt7crxV69BvudzxmKdDzmqfQOdKygPq6LpORGBsBDcx29cqkHnH1k+3K3rh5CL7XX2FXtuDO7n7H1NB42O82fHGl9i+X+7tL/+599MZ+s/JLhYzRrkSj0r0AgDhjgeLtE1Htw0SQiEJW2bCXMKn8Iawb7ngK9ED7wmiZcc9oiMdzV3REs3reDx1zxhChzH19v8Zfg1xpSf72NhsH04QfscjUE0tMaYq074nYSB1iInRBO5+v9HctwRtiQkDP0bHPpdgYOwg3lz8Gjc6/IcRPXdYBG4f6N8nNCSRAb4iwDcc01LPMKnmj7g+7endXPIiGjezvkxvSviE+vNa+pzci2v+hx0oNi1ZaD1PwZt5da26veJvZQ2aiQbsMAEDT1sou6UNEtVNovhsTEQG4a1Aqpr88Gb36BmbdLVeOyzooaZgOADgbneymtve0OmUSp7pdL8H8QQvRsvQr7EociuTWnTDgucUoHf6aIu17omnJ1qCdyx/1GzXHmLGBX9PvtUljMPrqiYiPjvSrHa1GoMdFl+G1imt8bmOZyTJDpcy4HQCQ3MGyuHj2kJlYkzgGSzpaluq4stkZ1I+tfk9gtDXxW2zqgTWDZyOxYdNqdbyVFXuR320EQrL5aNDO1UgUKt5mlwGjkTZ0PMzPFjpcRJ6I6EJMBImoRvjFlBHU831hHAbRog/+VX4PIhObB/Xc3mjZtisiKk5huGYdoissHy4j9VpESu8nb/GVzlwWtHP5L/BTlTSMj8TY7v4nTJU+MPk+i2ipdWmDbkPGA5OLUL+R5bXcZcBo9L7/c7TvZRl+2qbnUIfHN2qeim3DZ6Pf4z+g98DLHNbxltQEZh09dz5LfNjlfkezibpyyOx83UB32moDl3RqtOr8fomo5mEiSEQ1wvZmge/JqWpInaO49bIBGH7dA+jfxftZHz2x1OT/RCmNmqei9YllmG54Cx1OLLKVx5bs97ttT+XG+bcuWuXQ1mAwRaq7mLkv9kfe4POxw7SulzZo0qo9MLkI7TOqTx5TqVPfyxAdq9wMlMlR3q11pxQZEe96v5ftzTYN8TmWqAdW42OjcutlHpd1FGuLiMIHE0EiqhH2xfo/SYU3hJQw6DS4rEtjCBGYXqRfdI57YbwVVWGZGCK24vwEERqz8pPROFOu8e9+x380gUm0HdKE/r2MSorHGfeVgmzo+AdVOW+k2fXvYol+oFfttdUc8jmWhHpJuEn7u8/HX6guihVri4jCBxNBIqoRWpTtQoEM5nToSi357lyfFq57KNx5oeImAIAm0tJO1R6PLsOqT5EfKAll/g1z6yJ32bb/MAU24Y+rxWurzTJWv7BQcscqFSJxTW+I8GnNPn+d1br+eyvQeDfUs4vY5084iBAVDsvLpOuLFeekAQtN6XZleqFOLysR1WxMBImoRuhXtACJInhXvU9p6gX8HOU6/z4MD4iyfBDtOe5hrG73GHqOf9a2LyIyGu83fNGv9j0VZSxyX8lD8Yn+L1juSuOGDfBGxVUBPYdajsjEamUNm7ZRIRL3/jZ3UjuEajpeeqdXFyLaaAJzn1+EMLrcHyXKMUK7HgBQiHhgcpHli4jIS0wEiahGMMjgDXUEgB1RaQE/h1n4N0wxIcLyFq7TG5B53dMwRNjPUpncItWv9j2VF93Wr+M3iPNJQafb/+dvOG5lt5kU8HOoYbx+OUofP2J7PChKnWVXPNE4ALNmutOteJnL/Zd3bYzN5tBMnJ25cD1IIiJvBCwRFEJMFkIcFkJkWb8uq7LvSSHEbiHELiHEiCrlPYUQ2dZ9U4X1xhwhRIQQ4mtr+RohRMtAxU1EocncpGdQz5cd2Svg50gsdX2PUZ6bCSCyYl0vVt6xVROX+xXj5z2UO4Tlw3f+vTmKTkrizLQb091XCiFnZPVlHRz5QTMUkVExAICzMgLf3hOayzQAQJpmj9ohOPSwfq7aIXhlR4vgDQEnoton0D2Cb0kp06xfvwCAEKIjgPEAOgG4BMAHQojKuY6nAZgEINX6dYm1/DYAJ6WUKQDeAvBqgOMmohCTcfWjyBnzc9DO1+Gc69kWlZAgT7vc31CccrnfDNfTxJfHt/QyIt80P+3f7ypelli3An9fJgBEGWrW9PqdymZ4VE9af33ZQ2bi9G1/IynOswQyXLj7e1GTr0tR9LmFH4eIyHdqDA0dDWCOlLJMSrkPwG4AGUKIxgDipZSrpJQSwEwAY6oc87l1ey6AoSJQ0/gRUUgSGg1S0y7C6raPIE/WwbiyyQE9X8vyfwLaPgCkXT/F7vG7xjFeHd+sLMdtnf/6sRi5KyPKXrFttxpxr19tVVQOkQ3i+nIl0r/F3oNJD6NtYiBX+sjNACxrBDZqHpxhwb76zuS6NzsQtsb2VbQ9f5c9OVgl+cvH+Z7wxVGerdeYj5q3FAoRhZZAJ4L3CSG2CCE+FUJUvmMlA6g6HirXWpZs3b6w3O4YKaURQBGA6nfFE1Gtl3n9s4h+cje+mHx/QM/TqmyX+0p+ioyOtXv8o6b6rI/fXPSb0+PbDr/dZfsRhbvwqP4b34Jz4w7dLwCA942j0KRlO7/aKpWWRc8hgndtckPCsKCdy185kRPwvP4Lt/VEXMMgRKMMA1xPiFITfBR5q1/H32B83rb9Zb0HbNsyxnXv4D+jfsTZRw4i7vFtfp2fiMiv/7pCiN+FEFsdfI2GZZhnGwBpAI4CeKPyMAdNSRflro65MJ5JQoj1Qoj1+fn53v44RFRDxEXqEROhwx5tq4Cdo6RO+4C17chyUxd88uBVWHLpErvyCPM5p8e06uj6PkZhdjw9vRKu0i4HALSN8/8DfQ+5HQCgMQVvQqCd9S9xX6mG6XLvl2qH4LErtKuDfs7WzZS9Z7Zhk2Z+Hf/FrT1s2+NbnQUAHJaJaDTY9WRGbXsMRHRsgu1+UCIiX/mVCEoph0kpOzv4mi+lzJNSmqSUZgAfAciwHpYLoOq7Z1MAR6zlTR2U2x0jhNABSABQbcoxKeV0KWW6lDI9Kcm38fZEVHNsrntxQNrdfsnX6HnbOwFp25lG172P5onRqGc4PwvgcVkHEUbHS2aUy9C436nfvR/63UZbHAAACBm8tdD0rfvj4rLXFG1zpjEwr0dPRUQGf20+Xx2VgV+e5UKDLlV2mPTwS8f5dbyoKLVta3V6VEgtDqXehORGzpdQuaf8Aaf7iIi8FchZQxtXeTgWwFbr9o8AxltnAm0Fy6Qwa6WURwEUCyEyrff/TQAwv8oxE63bVwFYYr2PkIjC2HFdU/eVfJDacwj0huBOtCH1lnvW9OfOj2YwQYO6xY6HqG6u50GPVgBvpd6vsVzPU2KWz/Lrv8OqFnehbv3G7isr5Oa+LTHl5pGKtmkK0L/UnZfNxdrOz7uskz1kZkDOHSjrzP4NJ/bWSlNHj+rNN3l+H2FKg1j3lVyQmvPLx6SNuBn6FwqReeMLSEysj1Ut73Z4zLa6Q/w6JxFRVYG8IeM161IQWwAMBvAQAEgptwH4BsB2AL8BuFdK22XguwF8DMsEMnsA/Got/wRAohBiN4CHATwRwLiJqIbIiewSmIZVuM7kaBineeIv0Bgc9/KYm/RwWB4s5VfPUmwR6+Zt09DnllchNMG7R1CjEejTLhmrmkx0X9lDt+gWKtZWVe0zLkbGVQ9jdYPqPVonUAeHbvwLXQaMDsi5A6WVCMxi7M58bhruUb0NdS8NcCTnmSItUye8F3EHtDr7NUV73/QSlpm6Vjtm4b8GBCU2IgoPAfuvK6W8SUrZRUrZVUo5ytrjV7nvJSllGyllOynlr1XK11uHlraRUt5X2esnpSyVUl4tpUyRUmZIKfcGKm4iqjnan9sQkHalChMqa8ssSVXVPrzk1h3QY+RdmGvy7cOfyRCvQGRO2tbUnFk3XekzaaraIXgs856PbNvLWliGCGbXGYJmKQG6IBJAXTT7g3q+N/SeDWG+qqdn9/3tN/s/MU/lwCbpoOdeo9Wivya7WnmkPjSGhBNR7aDG8hFERIpoXarsrHkbzJYp980q9AiaohtYNi74UKjV6ZAywsEwMQ9ilHWa47ibRel9ZYioHYlgTbOpz1SsqT8OppSLUSb12BNVvdeoJjh+R1ZQzxcrSt1XAlCc2M2jeqPKX/QnHABAtLCMAuiqP+xwf87l3/p9DiIiV5gIElGNVc/ofHbgf25Y53V7xsoFp83Bn9q+shfSGFV9bTKDrvpbtSeparuGcZhhDMzsmG1atghIuzXZqwb/1lP0RPcRE9H7vhmo17Ir2pV9DnSsWUNCKzVIDtyMv/4wR8ThPaP732m8OOv3uZq0SEFW/w/R4/b3HO5vn2E/+VBNWvuSiGoGJoJEVGPJLlc73deiZSuPPtCNKTu/qHsjjfWeN2l2UjtwtBUlAICK2OpT3AsHQ8cONnI/Q6UQApEGvs0HS/MuFwXtXGnN6uD3hwfitv6hmVDVVBFn83Cfbr7ben9F/EuR86UNuw5xCe5nUL2y7Hl0LvtUkXMSEVXiJwQiqrF6XHKzw/LXYh5FhF6P7IieLo//yHgZPnziTqwxt0eBjEP5dd8je/CMagu9B4OosPQwpLVugl3mpvjFlGHbV3V2QQDYZE5Bh9aeJQADZWDuo6TqWpxcFdTzpTSIdXiRgHwXVbRH7RDsbMx8Bzmjf8L0p+/F7w9zohgiUhYTQSKqdepE6wEAj955q8t6y8zd0CghEjF3LsJrXX5Bm9QO6DLQv7XBfGWOsEzsotUIfGS6HN+bzvcuVUTar4t6QDZAl6aeLdtQVr9ztbIpFTf5ESlQJnXuK9UgW80tFWlHo8KQYqrdelxyM1K7D0BibARSGsSpHQ4R1TJMBImo1hlxsWUKeHcfnL40/AcA0Dk5Aa9e1RUaTfB7V97XTbBsaA22sstvegT33nW/7XFFTCP8Yepue9xJHPC4/fS7pmN9/DDb442930artv5NMPI/k7Lr76ltecIohVri8rahao25vWJtXVf+NA5cu0Sx9oiI1MJEkIhqnRZVEp2P0n9WMRL36mvPAACEqcxWNrh9A3RvXtf2WFd2EkO1m2yPUzWOZxl0RKvTIf3h72yPe1x6C6JT+mF8+TM+x5xlTvH52FAUJT2bUZJqrhcrbvSsogfXgprVjUGLDq6HnRMR1QRMBImoVutc9CeA0B3OmF6xEQCgKS92WkdfdtK2vbrBNdg88GO/zjmub0eMGel7L9i/73vAr/OHmj5lKxRpx6iJUKQdUt4rI1sq1tYtpZ8r1hYRkZqYCBJRjbY27SWP6s0yDcMyU1fkmJMDHJF3fo0YAQAwRic5rVM5oyhgWVS822Dns6U680zFLVhqsqyRJoTAyDTPFs52pFMTz+5PrClOaBoo0s6BxP6KtEPKa93Ns4lWiut3d1snUpa5rUNEVBMwESSiGs3YJN3u8ZK2z9k9NtS1JH4dOlgmTSlBFJa1exbZg2fA9ExBcIJ0QcrKsWjOx6RFJ1RfW9Bb65PG4ZaKx22PIyIisd7c1q7OV8bBfp+nJtoc4f7DvydORbdUpJ1wsaT5/e4rXcCbe/0mV0wAJhcBk4sQHevZxQuzLhrvGMe6rJNXP8PlfiKimiI0x0oREXnpL1Mn9NduQ0xb+yv/PS65GZuj4tB7wDhoXnzdUnjdIypE6FgX01YA9r1+F2reNs3v83x7Vx+cKCm3PdZrNYgY9gywZIKt7L/mG3A9lvp9rnCUL+NRr3gXgNp1/2QgHY9p677SBf4y9Edv406P6ubJuu4rXSDi7BE8qJvnsk76He973S4RUShijyAR1WitWqbgjvKHsREdAAAROvueNaHRoNvgq6HRarGm/ji7GTRDQXPTIQCAxuR6wpI9Vy7E2m7/5/N54iL1aFU/xq6sy4DRdo+/uLmHz+3XZD2xw+82ksRptCz8S4FoyJV7/z3F47qN67tfqP1CUaf3ua2j0xvc1iEiqgnYI0hENVrjBvXx0cvPo7ioEGsWtkdGV+fJTO/7ZgQxMs+s0vdG67L9MEW4HrrWpksm2nTJDGgsjeLD8wNup9s+BN5q5Xc7QpoViCZ8pNaP9Kr+mo5Po3dUjPuKVm2MOd6G5NaO0T9bLzkREdV87BEkolohLqEeel/zKISmZr2tFQpLr4XU6FU5/9qh3wIAFpl6on4j3yeQqcniErzvOXIkNrWfIu2Ei55Dr8Fvpl5O9xul/d9y72se86r9ThVbvY6pYZtuLvc3SG7tdZtERKGqZn1iIiKqZZLNljUBNUZ11rJLbNgYAGCK9CwZWpB0eyDDqdE691dqYfrwYYTW6b6njLf51XaUPOf1MUlNWuJt4zin+4WU/oRERBRSmAgSEamoaTvLUNb6SQ1VOX9MpGV4XlKUZ/UL9E0CGE3NtSHGs+UJyN6lmjVO972m/8hh+T6zZ38rFT7e/TJJu8Cn44iIahomgkREKsq48iFgchES6vq/RIQvGjVPxc7Lv0Pnuz7zqP7xiBaBDUgl85Lu9uv48v7eDVski7ybV3t9zBTjBPeVABzU+vZa3SldDJHWRfjUJhFRKGIiSEQU5tr3GobI6FiP6iZU5Ac4GnU09nOiHCk495ovmrTyfF3ASjcMTvOo3n6db4ngCnNXp/uk4McmIqo9+I5GREQeizafVjuEgOh+9RN+HZ9Yz/s168hzWeY2tu2mdT0bx3yuvuuJX5wxoMJh+TMVtyDGw4XpiYhqAiaCRERk80WjJ13ub1uyLkiRBFdEZLRPx91ffh/2X/sH2rX1vmeLLLIjurut80JFleGgGs96X1PapPgUzzjdSofljerGIdLAnl8iqj2YCBIRkY0uoZHaIahmc1Rvr4+5+Jq70LJDegCiCR+Nb/nCbZ0Hupps2xVRSR61m3gq26d45G2LsNNc/T7BgaVLfWqPiChUMREkIiKblqdrZ4+fJ7o9vgjTjZd7XL9caqExlgUwovDgbP3KM/L8xCyxEeeXmdDHJsIshdt2DeWnfIqnUbMUnGxV/XUQ6cNyFEREoYyJIBER2RREtnK5/2gEF9SuZBAm1CvcpHYYtcIac/WhtXdU/Nth3fbNGmK6aaTbNv1Z8S8/pl21skWRw/1okYgo9DARJCIimxJ9osv9hXp11jsMlkk679aQM5SfDFAk4SXCwQQt97U5Yds+mdDJbl8pPJjl1Y/F34sjqw+R9qQXkoioJmEiSERENpGmYpf78wzNgxSJOooQ41V9jVYfoEjCS5pmT7WyqGZVZv28IKfro9nmtk1/egQv6jcIe832yWBn41Y/WiQiCj1MBImIyKbRmZ0u99erOBakSNRx7tZlXtXvdvFNAYokvFQODT0tz8/e2qz7+aGYQtr3GLbW5Nk9XqAdWq3NgoTOPsfTPDEarTXnX+tnZARajn7a5/aIiEKRX4mgEOJqIcQ2IYRZCJF+wb4nhRC7hRC7hBAjqpT3FEJkW/dNFUIIa3mEEOJra/kaIUTLKsdMFELkWL8m+hMzERE5dzKyqcv9ccbaPRSyUfNUr+prdVxOQAkSlmGXy6os5i415yeIkUJrV7/i5oV2j9te9bzd41nGodAl+7aOYKU8WIZJrzJ1xC7ZDK06eT+rLBFRKPO3R3ArgHEAllctFEJ0BDAeQCcAlwD4QAjbu/g0AJMApFq/LrGW3wbgpJQyBcBbAF61tlUPwPMAegPIAPC8EIIr9xIRBcDJiOqJ4AFzA9t2ytmsIEajjtalX6odQtjJ1OwAAHQUB2xlwnx+yQitLLer36Tl+clcdpibQR9r/7FguHYdhnf0737WqH+tw+2Jn6OPdjt6aHb71RYRUSjyKxGUUu6QUu5ysGs0gDlSyjIp5T4AuwFkCCEaA4iXUq6SUkoAMwGMqXLM59btuQCGWnsLRwBYLKUslFKeBLAY55NHIiJSkE5Wn7Sjhea4bVv4dedVzfCNYYraIYSdfFgSuT1tqiwcbz7/Wowvrn4P4XkCMJvtSpLEaVgHHPksvk4iPr5/jF9tEBGFskDdI5gM4FCVx7nWsmTr9oXldsdIKY0AigAkumiLiIgU1qyYyyGka/7xqN5qc4cARxI+6jy1C+VP5qHx4En41jgAACD1UVhT5zKnx6xLexkA0EFzEJry03b7NpuVW+bkjIxUrC0iolDiNhEUQvwuhNjq4Gu0q8MclEkX5b4ec2Gsk4QQ64UQ6/Pz812ER0REjhyPTnG5/0BE9fXVwtXD5XerHUKtoTdEwBARCV1pIa7Wnb/bxGy9q0SK6h9Xeo2517bduEU7nK4y4+tOs3Kz22qf2IvSxw4r1h4RUahwmwhKKYdJKTs7+Jrv4rBcAM2qPG4K4Ii1vKmDcrtjhBA6AAkACl205SjW6VLKdCllelJSkrsfjYiILnBWX8fl/pN6vrdW+sTwutoh1DraslO2bVFxDjtjMwEAp+KrLzgPANv1nXEa0dAbInB87De28g6aAw7r+yIyKgaR0bGKtUdEFCoCNTT0RwDjrTOBtoJlUpi1UsqjAIqFEJnW+/8mAJhf5ZjKGUGvArDEeh/hQgDDhRB1rZPEDLeWERGRwqIrilzuP25o5nJ/OOmgOah2CLWOMJ2fFCYuwf28cB2f/hvxk48CAEyR9WzlXTX7lA+OiKiW8Xf5iLFCiFwAfQAsEEIsBAAp5TYA3wDYDuA3APdKKSun/7obwMewTCCzB8Cv1vJPACQKIXYDeBjAE9a2CgG8CGCd9WuKtYyIiBTWJE7rcn9See0fIveH7iK1Qwhb9ZPbAADWdHgSEZHRaJ9qWc6jdQv3Qz2l5vxSHpX3GRIRkXN+LYAkpZwHYJ6TfS8BeMlB+XoA1VZ5lVKWArjaSVufAvjUn1iJiMi99FH34PCmN5EsChzuTzCeCHJEwfefiIcw1LgCAPBqxXg8rp+jckTho25SY2ByESpX7OszYATKe+chJcL9hC2JSY1t2xVwfUGDiIgCNzSUiIhqIKHRIMvcxq5sl/n8rd2tz20NdkhBp4MRAFAg41An2fnkOfuv+T1YIYU1gwdJIAAk1YnDO8ZxAIBR2lWBDImIqFZgIkhERHYKZILd43aa86v+VCT3vrB6rfNE2TsAgBzZFAmy2Gm9lh17BSsk8lKsKFU7BCKikMdEkIiI7NQTpx2Wf2gcid7XPhHkaIKvjcky0UgzcRw6We6mNoWSJJwCAKw1c5kTIiJ3mAgSEZGdDsLxbJgjNOsgNLX/34ZJWG6fPxGdipM6LpdRk+TD0pu919zYTU0iIqr9/9GJiMgrbTRHHZa30uQFORJ16G+cg1VNJqDro78iwcRJqmuSLsLSm9tds1vlSIiIQh8TQSIisrNLd35Y3ZYR36oYiTqSW3dCn0nvQmg0SDm3xWGdf5XfE+SoyBNDtFkAgDPxbVxXJCIiJoJERGSv+b+X27ajIj2bsbG2anLNmw7L6/e4IsiRkDd6/Hu+2iEQEYU8JoJERGRHaIRtu03XfipGor5GzVMdlk/o53xZCVLPhUufEBGRc0wEiYjIjoAZALBemwaNVosXK25UOSJ1bTG3qlYmzJxNNBQtNaUBAKSU6gZCRFQDMBEkIiI7ERFR2Nj7bbS47XMAwLB4yyyiZ2WEmmGpZpm5W/VCIxPBUKQVJusWE0EiIneYCBIRUTU9Lr0FSU1aAgA6TpqB2cbBGFf+grpBqWSs9q9qZcJ4ToVIyJ14nFU7BCKiGoOJIBERuZRQtz7aanLxlG6W2qGooqk4oXYI5KGTMg4AIKVwU5OIiHRqB0BERKGvpyZH7RCI3OqhrXydcmgoEZE77BEkIiLykoyIUzsEcqC/yLZscLIYIiK3mAgSERG5MKfdO9ULhTb4gZBbuy6dg7V1R0Jo+PGGiMgdDg0lIiK3Cu/ZDo1GizpqB6ICobX8q7ym7Fl8E/EiAEBq9GqGRE50zLwEyLxE7TCIiGoEJoJERORWvQbJaoegmvpn9wIArmlxBjhmKeM6gkREVNNx7AQREZELHQZdi2NIQv/LrreVCWOZihERERH5jz2CRERELjRp2Q6YvNuuTJhKVYqGiIhIGewRJCIi8lJC/SZqh0BEROQXJoJEREReio2vq3YIREREfmEiSERE5IUcXaraIRAREfmN9wgSERF56NCNf6Fxg6Zqh0FEROQ3JoJEREQeapbSRe0QiIiIFMGhoURERERERGHGr0RQCHG1EGKbEMIshEivUt5SCHFOCJFl/fqwyr6eQohsIcRuIcRUIYSwlkcIIb62lq8RQrSscsxEIUSO9WuiPzETERERERGFO397BLcCGAdguYN9e6SUHdqSqQAABp5JREFUadavu6qUTwMwCUCq9esSa/ltAE5KKVMAvAXgVQAQQtQD8DyA3gAyADwvhOB0bURERERERD7yKxGUUu6QUu7ytL4QojGAeCnlKimlBDATwBjr7tEAPrduzwUw1NpbOALAYilloZTyJIDFOJ88EhERERERkZcCeY9gKyHEJiHEMiHERdayZAC5VerkWssq9x0CACmlEUARgMSq5Q6OISIiIiIiIi+5nTVUCPE7gEYOdj0tpZzv5LCjAJpLKQuEED0B/CCE6ARAOKgrK0/lZJ+rYy6MdRIsw07RvHlzJ6ERERERERGFN7eJoJRymLeNSinLAJRZtzcIIfYAaAtLb17VBZiaAjhi3c4F0AxArhBCByABQKG1fNAFx/zp5LzTAUwHgPT0dIfJIhERERERUbgLyNBQIUSSEEJr3W4Ny6Qwe6WURwEUCyEyrff/TQBQ2av4I4DKGUGvArDEeh/hQgDDhRB1rZPEDLeWERERERERkQ/8WlBeCDEWwLsAkgAsEEJkSSlHABgAYIoQwgjABOAuKWWh9bC7AXwGIArAr9YvAPgEwBdCiN2w9ASOBwApZaEQ4kUA66z1plRpi4iIiIiIiLwkLJ1utY8QIh/AAbXjcKA+gBNqB0GkML6uqbbha5pqG76mqTbi69q9FlLKJEc7am0iGKqEEOullOlqx0GkJL6uqbbha5pqG76mqTbi69o/gVw+goiIiIiIiEIQE0EiIiIiIqIww0Qw+KarHQBRAPB1TbUNX9NU2/A1TbURX9d+4D2CREREREREYYY9gkRERERERGGGiWAQCSEuEULsEkLsFkI8oXY8RBcSQuwXQmQLIbKEEOutZfWEEIuFEDnW73Wr1H/S+nreJYQYUaW8p7Wd3UKIqUIIYS2PEEJ8bS1fI4RoGfQfkmo1IcSnQojjQoitVcqC8hoWQky0niNHCDExSD8y1XJOXtOThRCHre/VWUKIy6rs42uaQpoQopkQYqkQYocQYpsQ4kFrOd+rg4yJYJAIIbQA3gdwKYCOAK4TQnRUNyoihwZLKdOqTMf8BIA/pJSpAP6wPob19TseQCcAlwD4wPo6B4BpACYBSLV+XWItvw3ASSllCoC3ALwahJ+HwstnOP96qxTw17AQoh6A5wH0BpAB4PmqH2KI/PAZqr+mAeAt63t1mpTyF4CvaaoxjAD+LaXsACATwL3W1y7fq4OMiWDwZADYLaXcK6UsBzAHwGiVYyLyxGgAn1u3Pwcwpkr5HCllmZRyH4DdADKEEI0BxEspV0nLTcgzLzimsq25AIZWXr0jUoKUcjmAwguKg/EaHgFgsZSyUEp5EsBiOP7wTuQVJ69pZ/iappAnpTwqpdxo3S4GsANAMvheHXRMBIMnGcChKo9zrWVEoUQCWCSE2CCEmGQtayilPApY3rwBNLCWO3tNJ1u3Lyy3O0ZKaQRQBCAxAD8HUVXBeA3zPZ6C7T4hxBbr0NHKHg2+pqlGsQ7Z7A5gDfheHXRMBIPHUa8Hp2ylUNNPStkDliHM9wohBrio6+w17eq1zr8DCiVKvob52qZgmgagDYA0AEcBvGEt52uaagwhRCyA7wD8S0p52lVVB2V8XSuAiWDw5AJoVuVxUwBHVIqFyCEp5RHr9+MA5sEypDnPOvwC1u/HrdWdvaZzrdsXltsdI4TQAUiA50OeiHwVjNcw3+MpaKSUeVJKk5TSDOAjWN6rAb6mqYYQQuhhSQJnSSm/txbzvTrImAgGzzoAqUKIVkIIAyw3vf6ockxENkKIGCFEXOU2gOEAtsLyOq2cVWsigPnW7R8BjLfOzNUKlpu011qHcxQLITKt4/EnXHBMZVtXAVgiuZgpBV4wXsMLAQwXQtS1DtMbbi0jUlzlh2WrsbC8VwN8TVMNYH0NfgJgh5TyzSq7+F4dZDq1AwgXUkqjEOI+WF5sWgCfSim3qRwWUVUNAcyzzt2iA/CVlPI3IcQ6AN8IIW4DcBDA1QAgpdwmhPgGwHZYZgC7V0ppsrZ1Nywz3UUB+NX6BVje+L8QQuyG5crc+GD8YBQ+hBCzAQwCUF8IkQvL7HCvIMCvYSlloRDiRVgu+gHAFCkle7vJb05e04OEEGmwDGnbD+BOgK9pqjH6AbgJQLYQIsta9hT4Xh10ghfjiYiIiIiIwguHhhIREREREYUZJoJERERERERhhokgERERERFRmGEiSEREREREFGaYCBIREREREYUZJoJERERERERhhokgERERERFRmGEiSEREREREFGb+HzrPdy8bfoAKAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# We cannot reconstruct from continous signal wavelet decomposition, \n", + "# We will do the discrete wavelet transform, \n", + "\n", + "(cA1, cD1) = pywt.dwt(HappySignal, 'db2', 'smooth')\n", + "h_reconstructed_DWT = pywt.idwt(cA1, cD1, 'db2', 'smooth')\n", + "h_reconstructed_DWT = np.resize(h_reconstructed_DWT, HappySignal.shape)\n", + "dwt_HappyReconError = np.square(np.subtract(HappySignal,h_reconstructed_DWT)).mean()\n", + "print (dwt_HappyReconError)\n", + "fig, ax = plt.subplots(nrows=2, ncols=1, figsize=(15, 10))\n", + "plt.subplot(2, 1, 1)\n", + "ax[0].plot(HappySignal, label='signal')\n", + "ax[0].plot(h_reconstructed_DWT, label='reconstructed DWT Happy signal', linestyle='--')\n", + "ax[0].legend(loc='upper left')\n", + "\n", + "\n", + "(cA1, cD1) = pywt.dwt(AngrySignal, 'db2', 'smooth')\n", + "a_reconstructed_DWT = pywt.idwt(cA1, cD1, 'db2', 'smooth')\n", + "a_reconstructed_DWT = np.resize(a_reconstructed_DWT, AngrySignal.shape)\n", + "dwt_AngryReconError = np.square(np.subtract(AngrySignal,a_reconstructed_DWT)).mean()\n", + "print (dwt_AngryReconError)\n", + "plt.subplot(2, 1, 2)\n", + "ax[1].plot(AngrySignal, label='signal')\n", + "ax[1].plot(a_reconstructed_DWT, label='reconstructed DWT Angry signal', linestyle='--')\n", + "ax[1].legend(loc='upper left')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "f5578c24", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(104906,)" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cA1.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3e5bd6b4", + "metadata": {}, + "outputs": [], + "source": [ + "sd.play(h_reconstructed_DWT, h_samplerate)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "35563134", + "metadata": {}, + "outputs": [], + "source": [ + "sd.play(a_reconstructed_DWT, a_samplerate)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "c99af11f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJwAAAEWCAYAAAAjPY3FAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABC1UlEQVR4nO3debxd47348c83A4mZJFwSJFpqSiSawZCrMVRjVqKmaybcNvyqqGh7K9dtS0tb11RTCa2S1hCqbqtUBA0iBI2EKgkRNQSpqKjE9/fHWufYOc6wk+yTk8jn/Xrtl72etdbzfNdae21nf/M8z4rMRJIkSZIkSaqVdm0dgCRJkiRJkj5dTDhJkiRJkiSppkw4SZIkSZIkqaZMOEmSJEmSJKmmTDhJkiRJkiSppkw4SZIkSZIkqaZMOEmSVIqIwyPi7raOY0XzaT/vEfHliHg5IuZGRL+l1Oa3IuLqpmKIiM9FxBMR8W5EnLI0YpIaioh/j4hn2zoOSVLrMOEkSaq5iDgsIh4rf9y+GhH/FxGD2zqulmTmDZm5e2vUHRHTI+L98pz8PSJGR8RqrdHWkoqIjIjPtlLdPcv6O9SVtdZ5j4ghEfFRec4rX9vXuq0WXACMyMzVMvOJJa0sIsZFxLwyWfSPiJgUESMjYuW6bTLzB5l5fDMxfBMYl5mrZ+ZFSxrTIsY/KiJ+2cI2lfdL3WuDJWx3ekTstiR1LGJ7oyLiwzL2dyLiz23w2Ws15f01cxH3Wei7JTMfyMzP1T46SdKywISTJKmmIuIbwIXAD4D1gI2Ay4D92jCsFlUmQFrRPpm5GtAX6AectRTarLmldK5qZVaZZKl8TWi4URTaNShbpONsZvuNgSmLUldFne2bWDUiM1cH1gdOAw4B7oqIqDKGJYlpaV3/fRpct1lLqd1GLeZxjynv+a7AfcBvahtV459dSZKWBf7PSZJUMxGxJnAO8LXMvDUz38vMDzPzt5l5RrnNyhFxYUTMKl8X1vXMqPsX84j4ZkS8XvaO2j8i9oyI5yLirYj4VkV7oyLi5ogYU/b2eDwitqlYPzIi/laueyYivlyx7uiIeCgifhoRbwGjyrIHK7bJiDgpIv4aEW9HxKV1P+gjon1E/Dgi3oyIFyNiRMOeO03JzL8Df6BIPNW1tV3ZA+KdiHgyIoZUrFsnIq4tz9fbETG2Yt0JEfF8eW7uqOwF0kL8n42I+yNiTnkMY8ry8eXuT5Y9Mw6uuC5nRsTfgWsbnquK9j5bvu9cnp8ZZRsPRkRnoK7+d8r6t2/kvO8QERPL/SZGxA4V68ZFxP+U1+7diLg7Irq2dM4bU9b1/Yh4CPgnsEl5DF+LiL8Cf63yHC+0fcW6lSNiLtC+PJ9/K8u3KNt+JyKmRMS+FfuMjoifRcRdEfEesHNzx1DeY+OAfYHtgb3KekZFxC8biyEi/lTWe0l5DTYrt7sgIl6KiNci4vLyelXel5XXv118fH/NjohfR8Q65fZ1vdiOKut7MyK+Xa4bCnwLOLhs+8lFvGZrRsTPo/hueCUivhdlUi4iPhMRfyrjeTMiboiItcp1v6BIfv+2bPeb0UgPnajoBRUff7/8MiL+ARzdXPstXKf5wA1A94joVsWx1H0/XVzeB9MiYteKOBv77G4eEX8sP6fPRsRXKrbfM4rvwHfLtk6vWLd3REyOj3th9WlwPk6PiKfKOMZERKeIWBX4P2CDqOiBFhEDI2JCWderEXFJRKxU1tXkd0tFey3dG5dGxO/K43gkIj5TrosovstfL+N8KiK2bum6SJJalwknSVItbQ90Am5rZptvA9tRJFu2AQYC36lY/29lHd2B7wJXAf8BfB74d+C7EbFJxfb7UfQaWAf4FTA2IjqW6/5W7rMm8N/ALyNi/Yp9BwEvAOsC328i3r2BAWWsXwG+VJafAOxRHse2wP7NHPNCIqJHue/z5XJ34HfA98rjOB24pe6HKfALYBVgqzLWn5b77QKcW8a1PjADuKnK+P8HuBtYG+gBXAyQmTuV67cpe5WMKZf/rYxtY2B4FYd5AcU126Hc75vAR0Bd/Ws11tuoTFr8DrgI6AL8BPhdRHSp2Oww4JjyXKxEcb4W1xEUx7M6xfmD4loOAras8hzXb19ZmJkflL1boDifnyk/m7+lOPfrAicDN0RE5bCiwyg+j6sDCyX1mpKZLwGPUXzem40hM3cBHuDjIXbPAT8ENqP4PH+Wj++/Og2v/ynlcX8B2AB4G7i0QViDgc8Bu1Lct1tk5u8pej+OKdvehkVzHTC/jLEfsDtQN3QwKK7VBsAWwIbAqPI8HAG8xMe9pn5UZXv7ATcDa1EkjJprv0ll0uVIYDbFuWrpWODj76euwNnAreX9Uafys/sG8EeK78B1gUOByyJiq3LbnwMnlr3itgb+VMa1LXANcCLF/XYFcEdUDM+k+OwPBXoBfYCjM/M9iu+wyh6Es4AFwKllzNtTXPuvQrPfLXXnqJp741CK7/K1Kb4/6763d6f4btmM4lodXJ5rSVIbMuEkSaqlLsCb5b/mN+Vw4JzMfD0z36D48XBExfoPge9n5ocUP+y7Av+bme9m5hSKYUB9KraflJk3l9v/hCJZtR1AZv4mM2dl5kflj5u/UiS46szKzIszc35mvt9EvOdl5jvlD/r7+LhX0lfKuGZm5tvAec2fGqBIhr0LvAy8TvEjEoqE2l2ZeVcZ6x8pkgd7lgmyPYCTMvPtssfY/RXn8prMfDwzP6AYord9RPSsIv4PKZIHG2TmvMxsKbHxEXB2mcBo6lwBEMXwnmOB/5eZr2Tmgsz8cxljS/YC/pqZvyivy43ANGCfim2uzcznyjh+XXFMjdmg7C1R+Vq1Yv3ozJxStvVhWXZuZr5V1l/NOa7cviXbAatRXJd/ZeafgDspfkjXuT0zHyo/C/OqqLPOLIqk0CKJiKBIoJ5aHse7FEmhQyo2a3j9TwS+XX7+P6BI7AyLhXv4/Xdmvp+ZTwJPUiQ9F8XYims2NiLWo7gXvl727HqdIvl6CEBmPp+ZfyxjfIPi++ALi9hmQxMyc2xmfgSs0Vz7TfhKRLwDvE9xjodl5vyWjqX0OnBhec+PAZ6l7MFWqv/sUiSEpmfmteVn+XHgFmBYue2HFAnUNcrvkcfL8hOAKzLzkfI+vQ74gPI7tHRR+T36FkVCqG9TB5uZkzLz4TKG6RQJrGqvQTX3xq2Z+Wh+3GOsLpYPKRJvmwORmVMz89Uq25UktRITTpKkWpoNdI3mh5VtwMc9SSjfV04GPDszF5Tv637Av1ax/n2KHyV1Xq57U/4onFlXX0QcWTFU5B2Kf9nv2ti+zfh7xft/VrS9QYP9q6lr/7KHwRCKH0Z1sWwMHFSZFKHoHbI+RS+Nt8qkVkMLncvMnEtxDbpXEf83KXqEPFoOXTm2hdjfWITkR1eKxN/fqty+UsPPB+VyNcfUmFmZuVaD13sV6xu7bpVl1Zzjaq59ZX0vl5/VOg2Pb1Hqq9QdeGsx9utG0YNuUsXn7/dleZ2G139j4LaK7adS9G5Zr2KbRblOjdm/4prtX7bZEXi1ot0rKHrDEBHrRsRN5ZCxfwC/ZOH7fXFUXotm22/CrzNzLYrz8heKXn/V1vVKZmbFcsPvyoaxDWrwHXI4Rc80gAOBPYEZUQyl3b5iv9Ma7Ldhg3aqvo5RDM+8M4oHI/yDInFZ7TWo5t5oNJYyOXUJRS+71yLiyohYo8p2JUmtxISTJKmWJgDzaH542SyKHzl1NirLFteGdW/KnjU9gFkRsTHFcLwRQJfyR99fKJIsdSp/zC2qV8u2PhFHS8oeSqMphp1B8cPxFw2SIqtm5nnlunWinIumgYXOZdlzpwvwShUx/D0zT8jMDSh6q1wWzT+ZruG5eo8iSVHX9r9VrHuT4nPwmSrqaajh5wOKz0iLx7SYGounsqyac7won6NZwIax8CTPDY9vkT+XEbEhRTLjgUXdl+J6vQ9sVfH5WzM/HorXWEwvA3s0+Mx2ysxqrtPi3ncvU/S+6VrR5hqZWTds7Nyy7j6ZuQZFz8Hm7veGn+H2LJxka7hPS+03KTPfpLjPRpW9Fqupq3vZ+6xOw+/KhrHd3+B6rJaZ/1m2PzEz96NIaI2l6BlYt9/3G+y3ShY9C1s8rEbKfkbRI3HT8hp8i4WvQXOquTeaDibzosz8PMXQ482AM6psV5LUSkw4SZJqJjPnUMz7cmkUk32vEhEdI2KPiKibM+VG4DsR0S2KyZ6/S9ETYXF9PiIOKHtVfZ3iR9zDwKoUP4jeAIiIYyh6ONXKr4H/FxHdy2TQmYu4/4XAFyOiL8Xx7xMRX4piMvJOUUym26McFvJ/FAmhtcvzWTcXyq+AYyKibznnyg+AR8qhLM2KiIPKuaSgmFMmKXqoQNGjbJNGd/zYk8BWZdudKOfKgfqeZtcAP4liIuH2UUwOvjLF9fiomfrvAjaLiMMiokNEHEwxN9KdLR1TK1nsc9yERygSHd8sr+UQiuGCDeeFqkp5j30BuB14lOL8LZLyel0F/DQi6noLdY+ILzWz2+XA98vELuX9XO2TKF8DesYiPlmtvBfuBn4cEWtEMXH5Z8rjh2JI1VyKCem788mEQ8PP9XNAp4jYK4r5g74DrEwTqmi/pfinUTws4JtV1rUucEr5OTmIYl6qpq7vnRT3zRHl9h0jYkAUk3CvFBGHR8SaWQwb/Qcf3+tXASdFxKAorFqej9WrOKTXgC5RPCyizupl/XMjYnPgPxvZp6l7f7HvjfJYB5XX8T2KhPeCFnaTJLUyE06SpJrKzJ8A36D48fYGxb+gj6D4V3UoJsZ+DHgKeBp4vCxbXLdTTBD7NsVcUAeUc548A/yYotfVa0Bv4KElaKehqyh+MD4FPEHxQ3A+Vf7IKeeYuR74r8x8mWJy4m/x8Tk7g4//P30ExRwl0yjmdfl6Wce9wH9RzNXyKkWPoubmk6k0AHgkiieY3UEx39KL5bpRwHXlEJuvNLZzFhNNnwPcQzE3VsM5oE6nuL4TKYZ5/RBol5n/pJjo96Gy/sq5YsjM2RQTnZ9GMXTtm8DeZQ+RxVH5FK2614HV7ryE57ix+v5F8US5PSh6Fl0GHFkmIxbFJVHMB/YaRfLyFmBog+FIi+JMikmYHy6HQt1DMeF3U/6X4nNzdxnHwxSTXFfjN+V/Z0fE481u+UlHUkwU/wzFPX8zxdBTKOaD2xaYQzHx/K0N9j2XItn9TkScXibIvwpcTdGL5j2KIbmL2341zgeGl4m9lup6BNiU4nPyfYr5nxqdCDuLebd2p/hszqIYevZDPk6gHQFML6/tSRS9v8jMxyjmcbqkjOF54OhqDqT8zN4IvFCe0w0o7vvDgHcpviPHNNhtFE18tyzhvbFG2d7bFMPwZvNxD1JJUhuJhYeGS5K0/IiIUcBnM/M/loFY9gAuz8yGw8EkaZFExNHA8Zk5uK1jkSRpcdnDSZKkxRARnSNiz3LYV3eKJ87d1tZxSZIkScsCE06SJC2eoBjC8zbFkLqpFPNRSZIkSSs8h9RJkiRJkiSppuzhJEmSJEmSpJrq0NYBLA1du3bNnj17tnUYkiRJkiRJnxqTJk16MzO7NbZuuUw4RcS/A4dTxL9lZu7Q3PY9e/bkscceWyqxSZIkSZIkrQgiYkZT65b6kLqIuCYiXo+IvzQoHxoRz0bE8xExsrk6MvOBzDwJuBO4rjXjlSRJkiRJ0qJpix5Oo4FLgOvrCiKiPXAp8EVgJjAxIu4A2gPnNtj/2Mx8vXx/GHB8awcsSZIkSZKk6i31hFNmjo+Ing2KBwLPZ+YLABFxE7BfZp4L7N1YPRGxETAnM//RmvFKkiRJkiRp0Swrczh1B16uWJ4JDGphn+OAa5taGRHDgeEAG2200ZLGJ0mSJEn6lPrwww+ZOXMm8+bNa+tQpGVSp06d6NGjBx07dqx6n2Ul4RSNlGVzO2Tm2S2svxK4EqB///7N1iVJkiRJWnHNnDmT1VdfnZ49exLR2M9TacWVmcyePZuZM2fSq1evqvdb6pOGN2EmsGHFcg9gVhvFIkmSJElagcybN48uXbqYbJIaERF06dJlkXsALisJp4nAphHRKyJWAg4B7mjjmCRJkiRJKwiTTVLTFuf+WOoJp4i4EZgAfC4iZkbEcZk5HxgB/AGYCvw6M6cs7dgkSZIkSZK05NriKXWHNlF+F3DXUg5HklYMo9Zs6wiWHaPmtHUEkiRpGddz5O9qWt/08/ZqcZvVVluNuXPn1i+PHj2axx57jEsuuaSmsVRj7ty5nHbaadxzzz106tSJLl26cP755zNo0KBPxFkro0eP5owzzqB79+7MmzePE088kVNPPbXm7VTrwgsvZPjw4ayyyio1qe8HP/gB3/rWt+qXd9hhB/785z8vcb1HH300999/P2uuWfy9v8oqq9Sk3lpYVobUSZIkSZKkZcDxxx/POuusw1//+lemTJnC6NGjefPNN1u93YMPPpjJkyfz0EMP8f3vf5+XX3655Z1ayYUXXsg///nPRtctWLBgkev7wQ9+sNByLZNC559/PpMnT2by5MmN1jt//vxml5tS7XZNMeEkSZIkSdIy7Le//S2DBg2iX79+7Lbbbrz22msAjBo1iiOOOIJddtmFTTfdlKuuugqAcePGsdNOO/HlL3+ZLbfckpNOOomPPvqIn//85wv1Grrqqqv4xje+sVBbf/vb33jkkUf43ve+R7t2Rcpgk002Ya+9Fu6lNXfuXHbddVe23XZbevfuze233w7Ae++9x1577cU222zD1ltvzZgxYwAYOXIkW265JX369OH0009v9ni7dOnCZz/7WV599VUAfvnLXzJw4ED69u3LiSeeWJ/w+f3vf8+2227LNttsw6677grAW2+9xf7770+fPn3YbrvteOqpp+rP1bHHHsuQIUPYZJNNuOiii5qM96KLLmLWrFnsvPPO7LzzzkDRA+273/0ugwYNYsKECfTs2bM+CffYY48xZMiQ+vNyzDHH0Lt3b/r06cMtt9zCyJEjef/99+nbty+HH354fX1QPAHujDPOYOutt6Z3797152vcuHEMGTKEYcOGsfnmm3P44YeTmc2et0qjRo1i+PDh7L777hx55JGfWJ4xYwa77rorffr0Ydddd+Wll14Cih5T3/jGN9h5550588wzq26vMUt9SJ0kSZIkSVpYXUKizltvvcW+++4LwODBg3n44YeJCK6++mp+9KMf8eMf/xiAp556iocffpj33nuPfv361SeGHn30UZ555hk23nhjhg4dyq233sohhxxCnz59+NGPfkTHjh259tprueKKKxaKY8qUKfTt25f27ds3G2+nTp247bbbWGONNXjzzTfZbrvt2Hffffn973/PBhtswO9+VwxLnDNnDm+99Ra33XYb06ZNIyJ45513mq37pZdeYt68efTp04epU6cyZswYHnroITp27MhXv/pVbrjhBvbYYw9OOOEExo8fT69evXjrrbcAOPvss+nXrx9jx47lT3/6E0ceeSSTJ08GYNq0adx33328++67fO5zn+M///M/G413zTXX5Cc/+Qn33XcfXbt2BYrE1NZbb80555zTbOz/8z//w5prrsnTTz8NwNtvv82BBx7IJZdcUh9HpVtvvZXJkyfz5JNP8uabbzJgwAB22mknAJ544gmmTJnCBhtswI477shDDz3E4MGDP1HHGWecwfe+9z0AttpqK2644QYAJk2axIMPPkjnzp0ZNWrUQsv77LMPRx55JEcddRTXXHMNp5xyCmPHjgXgueee45577mnxM9ASE06SJEmSJLWxzp07L5SQqJvDCWDmzJkcfPDBvPrqq/zrX/+iV69e9dvtt99+dO7cmc6dO7Pzzjvz6KOPstZaazFw4EA22WQTAA499FAefPBBhg0bxi677MKdd97JFltswYcffkjv3r0XK97M5Fvf+hbjx4+nXbt2vPLKK7z22mv07t2b008/nTPPPJO9996bf//3f2f+/Pl06tSJ448/nr322ou999670TrHjBnDfffdx7PPPstVV11Fp06duPfee5k0aRIDBgwAisTcuuuuy8MPP8xOO+1Ufy7WWWcdAB588EFuueUWAHbZZRdmz57NnDnFHJ577bUXK6+8MiuvvDLrrrtuk/E2pn379hx44IEtnpd77rmHm266qX557bXXbnb7Bx98kEMPPZT27duz3nrr8YUvfIGJEyeyxhprMHDgQHr06AFA3759mT59eqMJp/PPP59hw4Z9onzfffelc+fOjS5PmDCBW2+9FYAjjjiCb37zm/XbHXTQQUucbAKH1EmSJEmStEw7+eSTGTFiBE8//TRXXHEF8+bNq1/X8HH1dctNlR9//PGMHj2aa6+9lmOOOeYTbW211VY8+eSTfPTRR83GdMMNN/DGG28wadIkJk+ezHrrrce8efPYbLPNmDRpEr179+ass87inHPOoUOHDjz66KMceOCBjB07lqFDhzZa58EHH8yUKVN44IEHOO200/j73/9OZnLUUUfVz1H07LPPMmrUKDLzE8cINDrsrG67lVdeub6sffv2zJ8/v9F4G9OpU6eFkjAdOnSoP0eV16OpuJrS3DC5xuJdFKuuumqzy5UqY25uu0VhwkmSJEmSpGXYnDlz6N69OwDXXXfdQutuv/125s2bx+zZsxk3blx9T6BHH32UF198kY8++ogxY8bU94wZNGgQL7/8Mr/61a849NBPPkT+M5/5DP379+fss8+uT4b89a9/rZ+jqTKmddddl44dO3LfffcxY8YMAGbNmsUqq6zCf/zHf3D66afz+OOPM3fuXObMmcOee+7JhRde2OjQskrbb789RxxxBP/7v//Lrrvuys0338zrr78OFEMNZ8yYwfbbb8/999/Piy++WF8OsNNOO9UPKRs3bhxdu3ZljTXWaLKtxuIFWH311Xn33Xeb3K9nz55MmjQJoL5HFcDuu+++0JMF3377bQA6duzIhx9++Il6dtppJ8aMGcOCBQt44403GD9+PAMHDmz2/NTCDjvsUN8T64Ybbmi059SSckidJEmSJEkVpp+3V8sbLUWjRo3ioIMOonv37my33Xb1SRaAgQMHstdee/HSSy/xX//1X2ywwQY899xzbL/99owcOZKnn366fgLxOl/5yleYPHlyk8O9rr76ak477TQ++9nPssoqq9ClSxfOP//8hbY5/PDD2Weffejfvz99+/Zl8803B+Dpp5/mjDPOoF27dnTs2JGf/exnvPvuu+y3337MmzePzOSnP/1pi8d85plnsu222/Ktb32L733ve+y+++589NFHdOzYkUsvvZTtttuOK6+8kgMOOICPPvqIddddlz/+8Y+MGjWKY445hj59+rDKKqt8IkHXUGPxAgwfPpw99tiD9ddfn/vuu+8T+5199tkcd9xx/OAHP2DQoEH15d/5znf42te+xtZbb0379u05++yzOeCAAxg+fDh9+vRh2223rU+IAXz5y19mwoQJbLPNNkQEP/rRj/i3f/s3pk2b1uI5qlM5hxMUycaWXHTRRRx77LGcf/75dOvWjWuvvbbq9qoVizLL+fKqf//+WTf2VZJWSKPWbOsIlh2j5rR1BJIkaRkzdepUtthii7YOY5GNGjWK1VZb7RNPfRs3bhwXXHABd955Z6P77b333px66qn1T3aTqtHYfRIRkzKzf2PbO6ROkiRJkqQVwDvvvMNmm21G586dTTap1TmkTpIkSZKk5dCoUaMaLR8yZAhDhgz5RPlaa63Fc88917pBSSV7OEmSJEmSJKmmTDhJkiRJkiSppkw4SZIkSZIkqaZMOEmSJEmSJKmmnDRckiRJkqRKo9ascX1zqtrstttu44ADDmDq1KlsvvnmNWt+8uTJzJo1iz333LPR9Y8++iinn346r732GhHB4MGDueiii/j1r3/NY489xiWXXFKzWOoMGTKEV199lU6dOrHSSitx1VVX0bdv35q3U43p06fz5z//mcMOO6wm9TU833fccQfPPPMMI0eOXOK627dvT+/eveuXDznkkJrU2xrs4SRJkiRJ0jLgxhtvZPDgwdx00001q3P+/PlMnjyZu+66q9H1r732GgcddBA//OEPefbZZ5k6dSpDhw7l3XffrVkMTbnhhht48skn+epXv8oZZ5zR6u01Zfr06fzqV79qdN38+fMXub6G53vfffetWVKoc+fOTJ48uf7VWL0LFixodrkp1W5XLRNOkiRJkiS1sblz5/LQQw/x85//fKGE07hx4xgyZAjDhg1j88035/DDDyczAbjrrrvYfPPNGTx4MKeccgp77703AKNGjWL48OHsvvvuHHnkkXz3u99lzJgx9O3blzFjxizU7qWXXspRRx3F9ttvD0BEMGzYMNZbb72Ftvvtb3/LoEGD6NevH7vtthuvvfYaAPfffz99+/alb9++9OvXj3fffZdXX32VnXbaib59+7L11lvzwAMPNHvs22+/Pa+88goA7733HsceeywDBgygX79+3H777UCRDDn99NPp3bs3ffr04eKLLwbg3nvvpV+/fvTu3Ztjjz2WDz74AICePXty9tlns+2229K7d2+mTZvWZLwjR47kgQceoG/fvvz0pz9l9OjRHHTQQeyzzz7svvvujBs3rv7cAowYMYLRo0cDMHHiRHbYYQe22WYbBg4cyJw5cz5xvkePHs2IESMAmDFjBrvuuit9+vRh11135aWXXgLg6KOP5pRTTmGHHXZgk0024eabb27+A9NAz549Oeeccxg8eDC/+c1vPrF844030rt3b7beemvOPPPM+v1WW201vvvd7zJo0CAmTJiwSG22xCF1y5meI3/X1iEsU6aft1dbhyBJkiRJS2zs2LEMHTqUzTbbjHXWWYfHH3+cbbfdFoAnnniCKVOmsMEGG7Djjjvy0EMP0b9/f0488UTGjx9Pr169OPTQQxeqb9KkSTz44IN07tyZ0aNHNzk07i9/+QtHHXVUi/ENHjyYhx9+mIjg6quv5kc/+hE//vGPueCCC7j00kvZcccdmTt3Lp06deLKK6/kS1/6Et/+9rdZsGAB//znP5ut+/e//z37778/AN///vfZZZdduOaaa3jnnXcYOHAgu+22G9dffz0vvvgiTzzxBB06dOCtt95i3rx5HH300dx7771sttlmHHnkkfzsZz/j61//OgBdu3bl8ccf57LLLuOCCy7g6quvbjTe8847jwsuuIA777wTgNGjRzNhwgSeeuop1llnHcaNG9do3P/61784+OCDGTNmDAMGDOAf//gHq6yyCuecc85C57suOQVFsurII4/kqKOO4pprruGUU05h7NixALz66qs8+OCDTJs2jX333Zdhw4Z9os33339/oaGHZ511FgcffDAAnTp14sEHHwRg5MiR9cuzZs1iu+22Y9KkSay99trsvvvujB07lv3335/33nuPrbfemnPOOafZa7Q47OEkSZIkSVIbu/HGGznkkEOAYl6eG2+8sX7dwIED6dGjB+3ataNv375Mnz6dadOmsckmm9CrVy+ATySc9t13Xzp37lyz+GbOnMmXvvQlevfuzfnnn8+UKVMA2HHHHfnGN77BRRddxDvvvEOHDh0YMGAA1157LaNGjeLpp59m9dVXb7TOww8/nB49evDDH/6Qk08+GYC7776b8847j759+zJkyBDmzZvHSy+9xD333MNJJ51Ehw5Fv5l11lmHZ599ll69erHZZpsBcNRRRzF+/Pj6+g844AAAPv/5zzN9+vQm423MF7/4RdZZZ51mz8mzzz7L+uuvz4ABAwBYY401mqyvzoQJE+rnijriiCPqE0QA+++/P+3atWPLLbes70HWUMMhdXXJJmCh95XLEydOZMiQIXTr1o0OHTpw+OGH15+n9u3bc+CBBzYb8+Iy4SRJkiRJUhuaPXs2f/rTnzj++OPp2bMn559/PmPGjKkfOrfyyivXb9u+fXvmz59fv64pq666alVtb7XVVkyaNKnF7U4++WRGjBjB008/zRVXXMG8efOAoifN1Vdfzfvvv892223HtGnT2GmnnRg/fjzdu3fniCOO4Prrr2+0zhtuuIEXX3yRww47jK997WsAZCa33HJLfULlpZdeYosttiAziYiF9m/pHNSdt7pz1lS8jak8fx06dOCjjz6qX6479sZiWlSV+1de55aOrTENr3ndcnN1derUifbt2y9yW9Uw4SRJkiRJUhu6+eabOfLII5kxYwbTp0/n5ZdfplevXgv1fmlo880354UXXqjvudNwbqZKq6++epOTgI8YMYLrrruORx55pL7sl7/8JX//+98X2m7OnDl0794dgOuuu66+/G9/+xu9e/fmzDPPpH///kybNo0ZM2aw7rrrcsIJJ3Dcccfx+OOPNxlbx44d+d73vsfDDz/M1KlT+dKXvsTFF19cnyR54oknANh99925/PLL6xNHb731FptvvjnTp0/n+eefB+AXv/gFX/jCF5psq6l4mzs/ABtvvDHPPPMMH3zwAXPmzOHee+8Fimswa9YsJk6cCMC7777L/Pnzm61vhx12qJ+j64YbbmDw4MHNxlsLgwYN4v777+fNN99kwYIF3HjjjS2ep1pY5udwiohNgG8Da2bmsLJsVeAy4F/AuMy8oQ1DlCRJkiR9moyas1Sbu/HGGz/xtLEDDzyQX/3qV58YJlWnc+fOXHbZZQwdOpSuXbsycODAJuvfeeed64epVc75A7Deeutx0003cfrpp/P666/Trl07dtppp/rhaHVGjRrFQQcdRPfu3dluu+148cUXAbjwwgu57777aN++PVtuuSV77LEHN910E+effz4dO3ZktdVWa7KHU+WxnHbaaVxwwQVccsklfP3rX6dPnz5kJj179uTOO+/k+OOP57nnnqNPnz507NiRE044gREjRnDttddy0EEHMX/+fAYMGMBJJ53UbFuNxduuXTs6dOjANttsw9FHH83aa6+90D4bbrghX/nKV+jTpw+bbrop/fr1A2CllVZizJgxnHzyybz//vt07tyZe+655xPnu9JFF13Esccey/nnn0+3bt249tprm423oYZzOA0dOpTzzjuv2X3WX399zj33XHbeeWcykz333JP99ttvkdpdHLE43bSqrjziGmBv4PXM3LqifCjwv0B74OrMbP7sFPvcXJFwOgJ4JzN/GxFjMrPxO7DUv3//fOyxx5bkUJYZThq+MCcNl6o0as22jmDZsZT/gJQkScu+qVOnssUWW7R1GIts7ty5rLbaamQmX/va19h000059dRT2zosfUo1dp9ExKTM7N/Y9q09pG40MLRBMO2BS4E9gC2BQyNiy4joHRF3Nnit20S9PYCXy/cLWil2SZIkSZKWWVdddRV9+/Zlq622Ys6cOZx44oltHZJUr1WH1GXm+Ijo2aB4IPB8Zr4AEBE3Aftl5rkUvaGqMZMi6TSZJpJmETEcGA6w0UYbLXLskiRJkiQty0499VR7NGmZ1RaThnfn495JUCSPuje1cUR0iYjLgX4RUTf48VbgwIj4GfDbxvbLzCszs39m9u/WrVuNQpckSZIkfRq15nQz0vJuce6Ptpg0vLFnBjYZeWbOBk5qUPYecEyN45IkSZIkrYA6derE7Nmz6dKlyxI/5l76tMlMZs+eTadOnRZpv7ZIOM0ENqxY7gHMaoM4JEmSJEmiR48ezJw5kzfeeKOtQ5GWSZ06daJHjx6LtE9bJJwmAptGRC/gFeAQ4LA2iEOSJEmSJDp27EivXr3aOgzpU6VV53CKiBuBCcDnImJmRByXmfOBEcAfgKnArzNzSmvGIUmSJEmSpKWntZ9Sd2gT5XcBd7Vm25IkSZIkSWobbfGUOkmSJEmSJH2KmXCSJEmSJElSTZlwkiRJkiRJUk2ZcJIkSZIkSVJNmXCSJEmSJElSTZlwkiRJkiRJUk2ZcJIkSZIkSVJNmXCSJEmSJElSTZlwkiRJkiRJUk2ZcJIkSZIkSVJNmXCSJEmSJElSTZlwkiRJkiRJUk2ZcJIkSZIkSVJNmXCSJEmSJElSTZlwkiRJkiRJUk2ZcJIkSZIkSVJNmXCSJEmSJElSTZlwkiRJkiRJUk01m3CKiHYR8ZelFYwkSZIkSZKWf80mnDLzI+DJiNhoKcUjSZIkSZKk5VyHKrZZH5gSEY8C79UVZua+rRaVJEmSJEmSllvVJJz+u9WjaEZEbAJ8G1gzM4eVZVsA/w/oCtybmT9rwxAlSZIkSZJUocVJwzPzfmAasHr5mlqWtSgiromI1xvOAxURQyPi2Yh4PiJGttD+C5l5XIOyqZl5EvAVoH81sUiSJEmSJGnpaDHhFBFfAR4FDqJI8DwSEcOqrH80MLRBfe2BS4E9gC2BQyNiy4joHRF3Nnit20xc+wIPAvdWGYskSZIkSZKWgmqG1H0bGJCZrwNERDfgHuDmlnbMzPER0bNB8UDg+cx8oazvJmC/zDwX2LvawDPzDuCOiPgd8KuG6yNiODAcYKONnPNckiRJkiRpaWmxhxPQri7ZVJpd5X5N6Q68XLE8syxrVER0iYjLgX4RcVZZNiQiLoqIK4C7GtsvM6/MzP6Z2b9bt25LEK4kSZIkSZIWRTU9nH4fEX8AbiyXD6aJJE+VopGybGrjzJwNnNSgbBwwbglikCRJkiRJUitpNuEUEQFcBAwABlMki67MzNuWoM2ZwIYVyz2AWUtQnyRJkiRJkpYhzSacMjMjYmxmfh64tUZtTgQ2jYhewCvAIcBhNapbkiRJkiRJbayauZgejogBi1N5RNwITAA+FxEzI+K4zJwPjAD+AEwFfp2ZUxanfkmSJEmSJC17qpnDaWfgxIiYAbxHMawuM7NPSztm5qFNlN/Fks0DJUmSJEmSpGVUNXM4nQTMWDrhSJIkSZIkaXlXzRxOPy3ncJIkSZIkSZJa1KpzOEmSJEmSJGnF06pzOEmSJEmSJGnFU03CaY9Wj0KSJEmSJEmfGk0OqYuIXQAycwbQLjNn1L0A53SSJEmSJElSo5qbw+mCive3NFj3nVaIRZIkSZIkSZ8CzSWcoon3jS1LkiRJkiRJQPMJp2zifWPLkiRJkiRJEtD8pOGbRMQdFL2Z6t5TLvdq9cgkSZIkSZK0XGou4bRfxfsLGqxruCxJkiRJkiQBzSScMvP+pRmIJEmSJEmSPh2am8NJkiRJkiRJWmQmnCRJkiRJklRTJpwkSZIkSZJUU81NGg5ARGwGnAFsXLl9Zu7SinFJkiRJkiRpOdViwgn4DXA5cBWwoHXDkSRJkiRJ0vKumoTT/Mz8WatHIkmSJEmSpE+FauZw+m1EfDUi1o+IdeperR6ZJEmSJEmSlkvV9HA6qvzvGRVlCWxS+3AkSZIkSZK0vGsx4ZSZvZZGIE2JiE2AbwNrZuawsqwd8D/AGsBjmXldG4YoSZIkSZKkCi0OqYuIjhFxSkTcXL5GRETHaiqPiGsi4vWI+EuD8qER8WxEPB8RI5urIzNfyMzjGhTvB3QHPgRmVhOLJEmSJEmSlo5qhtT9DOgIXFYuH1GWHV/FvqOBS4Dr6woioj1wKfBFimTRxIi4A2gPnNtg/2Mz8/VG6v0cMCEzr4iIm4F7q4hFkiRJkiRJS0E1CacBmblNxfKfIuLJairPzPER0bNB8UDg+cx8ASAibgL2y8xzgb2rqZciUfWv8v2CxjaIiOHAcICNNtqoymolSZIkSZK0pKp5St2CiPhM3UI5p1KjSZ4qdQderlieWZY1KiK6RMTlQL+IOKssvhX4UkRcDIxvbL/MvDIz+2dm/27dui1BuJIkSZIkSVoU1fRwOgO4LyJeAALYGDhmCdqMRsqyqY0zczZwUoOyfwIN53WSJEmSJEnSMqCap9TdGxGbUsybFMC0zPxgCdqcCWxYsdwDmLUE9UmSJEmSJGkZ0mTCKSJ2ycw/RcQBDVZ9JiLIzFsXs82JwKYR0Qt4BTgEOGwx65IkSZIkSdIyprkeTl8A/gTs08i6pJhHqVkRcSMwBOgaETOBszPz5xExAvgDxZPprsnMKYsauCRJkiRJkpZNTSacMvPs8u05mfli5bqyd1KLMvPQJsrvAu6qNkhJkiRJkiQtP6p5St0tjZTdXOtAJEmSJEmS9OnQ3BxOmwNbAWs2mMdpDaBTawcmSZIkSZKk5VNzczh9DtgbWIuF53F6FzihFWOSJEmSJEnScqy5OZxuB26PiO0zc8JSjEmSJEmSJEnLsWrmcDopItaqW4iItSPimtYLSZIkSZIkScuzahJOfTLznbqFzHwb6NdqEUmSJEmSJGm5Vk3CqV1ErF23EBHr0PzcT5IkSZIkSVqBVZM4+jHw54i4uVw+CPh+64UkSZIkSZKk5VmLCafMvD4iHgN2AQI4IDOfafXIJEmSJEmStFxqMeEUERsBc4E7Kssy86XWDEySJEmSJEnLp2qG1P0OyPJ9Z6AX8CywVWsFJUmSJEmSpOVXNUPqelcuR8S2wImtFpEkSZIkSZKWa9U8pW4hmfk4MKAVYpEkSZIkSdKnQDVzOH2jYrEdsC3wRqtFJEmSJEmSpOVaNXM4rV7xfj7FnE63tE44kiRJkiRJWt41m3CKiPbAapl5xlKKR5IkSZIkScu5ZudwyswFFEPoJEmSJEmSpKpUM6RuckTcAfwGeK+uMDNvbbWoJEmSJEmStNyqJuG0DjAb2KWiLAETTpIkSZIkSfqEahJOV2fmQ5UFEbFjK8UjSZIkSZKk5VyzcziVLq6yTJIkSZIkSWq6h1NEbA/sAHSLiG9UrFoDaN/agVXEsQnwbWDNzBxWlm0JjKIY6ndvZt68tOKRJEmSJElS85rr4bQSsBpFUmr1itc/gGHVVB4R10TE6xHxlwblQyPi2Yh4PiJGNldHZr6Qmcc1KN4DuDgz/xM4sppYJEmSJEmStHQ02cMpM+8H7o+I0Zk5AyAi2gGrZeY/qqx/NHAJcH1dQUS0By4FvgjMBCaWT8FrD5zbYP9jM/P1Rur9BXB2ROwLdKkyFkmSJEmSJC0F1Uwafm5EnAQsACYBa0bETzLz/JZ2zMzxEdGzQfFA4PnMfAEgIm4C9svMc4G9qwm6TEJ9rUxeNfq0vIgYDgwH2GijjaqpVpIkSZIkSTVQzaThW5Y9mvYH7gI2Ao5Ygja7Ay9XLM8syxoVEV0i4nKgX0ScVZb1jIgrKXpONZr4yswrM7N/Zvbv1q3bEoQrSZIkSZKkRVFND6eOEdGRIuF0SWZ+GBG5BG1GI2VN1peZs4GTGpRNp+y9JEmSJEmSpGVLNT2crgCmA6sC4yNiY4qJwxfXTGDDiuUewKwlqE+SJEmSJEnLkBYTTpl5UWZ2z8w9szAD2HkJ2pwIbBoRvSJiJeAQ4I4lqE+SJEmSJEnLkBaH1EXEysCBQM8G259Txb43AkOArhExEzg7M38eESOAP1A8me6azJyy6KFLkiRJkiRpWVTNHE63A3MonlD3waJUnpmHNlF+F8UE5JIkSZIkSfqUqSbh1CMzh7Z6JJIkSZIkSfpUqGbS8D9HRO9Wj0SSJEmSJEmfCtX0cBoMHB0RL1IMqQsgM7NPq0YmSZIkSZKk5VI1Cac9Wj0KSZIkSZIkfWq0OKQuM2cAawH7lK+1yjJJkiRJkiTpE1pMOEXE/wNuANYtX7+MiJNbOzBJkiRJkiQtn6oZUnccMCgz3wOIiB8CE4CLWzMwSZIkSZIkLZ+qeUpdAAsqlheUZZIkSZIkSdInVNPD6VrgkYi4rVzeH/h5q0UkSZIkSZKk5VqLCafM/ElEjAMGU/RsOiYzn2jtwCRJkiRJkrR8ajHhFBHbAVMy8/FyefWIGJSZj7R6dJIkSZIkSVruVDOH08+AuRXL75VlkiRJkiRJ0idUNWl4ZmbdQmZ+RHVzP0mSJEmSJGkFVE3C6YWIOCUiOpav/we80NqBSZIkSZIkaflUTcLpJGAH4BVgJjAIGN6aQUmSJEmSJGn5Vc1T6l4HDlkKsUiSJEmSJOlToMUeThGxWUTcGxF/KZf7RMR3Wj80SZIkSZIkLY+qGVJ3FXAW8CFAZj6FPZ4kSZIkSZLUhGoSTqtk5qMNyua3RjCSJEmSJEla/lWTcHozIj4DJEBEDANebdWoJEmSJEmStNxqcdJw4GvAlcDmEfEK8CJweKtGJUmSJEmSpOVWNU+pewHYLSJWpegR9T5wMDCjlWOrFxH7A3sB6wKXZubdjZUtrXgkSZIkSZLUtCaH1EXEGhFxVkRcEhFfBP4JHAU8D3yl2gYi4pqIeL3uKXcV5UMj4tmIeD4iRjZXR2aOzcwTgKMpkl2NlkmSJEmSJKntNdfD6RfA28AE4ATgm8BKwP6ZOXkR2hgNXAJcX1cQEe2BS4EvAjOBiRFxB9AeOLfB/sdm5uvl+++U+1VqrEySJEmSJEltpLmE0yaZ2RsgIq4G3gQ2ysx3F6WBzBwfET0bFA8Eni+H6xERNwH7Zea5wN4N64iIAM4D/i8zH2+qrME+w4HhABtttNGihCxJkiRJkqQl0NxT6j6se5OZC4AXFzXZ1IzuwMsVyzPLsqacDOwGDIuIk5opq5eZV2Zm/8zs361btxqFLUmSJEmSpJY018Npm4j4R/k+gM7lcgCZmWssQbvRSFk2tXFmXgRc1FKZJEmSJEmS2l6TCafMbN+K7c4ENqxY7gHMasX2JEmSJEmStJQ0N6SuNU0ENo2IXhGxEnAIcEcbxSJJkiRJkqQaavWEU0TcSPGku89FxMyIOC4z5wMjgD8AU4FfZ+aU1o5FkiRJkiRJra+5OZxqIjMPbaL8LuCu1m5fkiRJkiRJS1dbDamTJEmSJEnSp5QJJ0mSJEmSJNWUCSdJkiRJkiTVlAknSZIkSZIk1ZQJJ0mSJEmSJNWUCSdJkiRJkiTVlAknSZIkSZIk1ZQJJ0mSJEmSJNWUCSdJkiRJkiTVlAknSZIkSZIk1ZQJJ0mSJEmSJNWUCSdJkiRJkiTVlAknSZIkSZIk1ZQJJ0mSJEmSJNWUCSdJkiRJkiTVlAknSZIkSZIk1ZQJJ0mSJEmSJNWUCSdJkiRJkiTVlAknSZIkSZIk1ZQJJ0mSJEmSJNXUMp9wioj9I+KqiLg9InYvy4ZExAMRcXlEDGnbCCVJkiRJklSpVRNOEXFNRLweEX9pUD40Ip6NiOcjYmRzdWTm2Mw8ATgaOLiuGJgLdAJmtkLokiRJkiRJWkwdWrn+0cAlwPV1BRHRHrgU+CJFsmhiRNwBtAfObbD/sZn5evn+O+V+AA9k5v0RsR7wE+DwVjsCSZIkSZIkLZJWTThl5viI6NmgeCDwfGa+ABARNwH7Zea5wN4N64iIAM4D/i8zHy/r/ahc/TawcmNtR8RwYDjARhtttOQHI0mSJEmSpKq0dg+nxnQHXq5YngkMamb7k4HdgDUj4rOZeXlEHAB8CViLogfVJ2TmlcCVAP37988axC1JkiRJkqQqtEXCKRopazIhlJkXARc1KLsVuLXGcUmSJEmSpNYwas22jmDZMmpOW0fQ6triKXUzgQ0rlnsAs9ogDkmSJEmSJLWCtkg4TQQ2jYheEbEScAhwRxvEIUmSJEmSpFbQqgmniLgRmAB8LiJmRsRxmTkfGAH8AZgK/Dozp7RmHJIkSZIkSVp6WvspdYc2UX4XcFdrti1JkiRJkqS20RZD6iRJkiRJkvQpZsJJkiRJkiRJNWXCSZIkSZIkSTVlwkmSJEmSJEk1ZcJJkiRJkiRJNWXCSZIkSZIkSTVlwkmSJEmSJEk1ZcJJkiRJkiRJNWXCSZIkSZIkSTVlwkmSJEmSJEk1ZcJJkiRJkiRJNWXCSZIkSZIkSTVlwkmSJEmSJEk11aGtA5AkSZK0/Og58ndtHcIyZfp5e7V1CJK0TLKHkyRJkiRJkmrKhJMkSZIkSZJqyoSTJEmSJEmSasqEkyRJkiRJkmrKhJMkSZIkSZJqyoSTJEmSJEmSasqEkyRJkiRJkmrKhJMkSZIkSZJqyoSTJEmSJEmSaioys61jaHUR8QYwo63jkFYQXYE32zoISZIkrdD8m1RaOjbOzG6NrVghEk6Slp6IeCwz+7d1HJIkSVpx+Tep1PYcUidJkiRJkqSaMuEkSZIkSZKkmjLhJKnWrmzrACRJkrTC829SqY05h5MkSZIkSZJqyh5OkiRJkiRJqikTTpIkSZIkSaqpDm0dgKTlQ0R8GzgMWAB8BLwNrA2sBnQDXiw3/SrwA2B94P2y7BbgwPL9RsCc8vVmZu62NOKXJEnS8i0iFgBPAx2B+cB1wIWZ+VFEPAEck5mTI6IDxd+aJ2bmL8t9JwG/Ao4oq9sSeJbib9vfZ+bIpXs00qefczhJalFEbA/8BBiSmR9ERFdgpcycFRFDgNMzc++K7ceVZY81Utdo4M7MvHlpxC5JkqRPh4iYm5mrle/XpUggPZSZZ0fEpcCUzLwsIj4PXAU8nJlfjYhVgZlA18xcUO4/HeifmW+2ycFIKwCH1EmqxvoUvZE+AMjMNzNzVhvHJEmSpBVUZr4ODAdGREQADwE7lKt3AC4H+pbLA4HH65JNkpYOE06SqnE3sGFEPBcRl0XEF6rY54aImFy+urR2gJIkSVqxZOYLFL9p1wX+zMIJp/HABxGxern8UJsEKa3ATDhJalFmzgU+T/GvSG8AYyLi6BZ2Ozwz+5av2a0doyRJklZIAZCZ04GVIuLfgM0p5meaCAyiSDj9ua0ClFZUThouqSplF+RxwLiIeBo4ChjdljFJkiRpxRURm1BM+v16WTQBGAa8mpkZEQ8DO1IMqXu4baKUVlz2cJLUooj4XERsWlHUF5jRRuFIkiRpBRcR3SjmabokP34S1kPAqRSJJ8r/Hgn8PTPfWepBSis4ezhJqsZqwMURsRbFI2ifpxheJ0mSJC0tnSNiMtCR4m/SX1A8SbnOQ8BPKRNOmflqRLTH4XRSm4iPk8GSJEmSJEnSknNInSRJkiRJkmrKhJMkSZIkSZJqyoSTJEmSJEmSasqEkyRJkiRJkmrKhJMkSZIkSZJqyoSTJElqNRGxICImV7x6LkYd+0fElq0QHhHRMyLeL2N7JiKuj4iOrdFWrUXE0RGxwaJuFxFX1+J8lvVmROxaUfblsmzYIsY0PSK6LkEsS7S/JEmqPRNOkiSpNb2fmX0rXtMXo479gUVKkEREh0XY/G+Z2RfoDfQAvrIobdWg/cV1NNBiwqnhdpl5fGY+U6MYngYOrVg+BHhyUWOSJEmfPiacJEnSUhURn4+I+yNiUkT8ISLWL8tPiIiJEfFkRNwSEatExA7AvsD5ZS+kz0TEuIjoX+7TNSKml++PjojfRMRvgbsjYtWIuKas84mI2K+5uDJzAfAo0L2FOMdFxIUR8eeI+EtEDCzLR0XElRFxN3B9RHQrj2Ni+dqx3O4LFT2+noiI1cvyM8rtnoqI/y7LekbE1Ii4KiKmRMTdEdG57EHUH7ihrKdzRHy33P8vZRzRxHaV5+/QiHi63OeHFddobkR8v7wWD0fEek2ctgeAgRHRMSJWAz4LTG7uWjcWU7n5yRHxeBnP5uX+60TE2PKcPBwRfcryLuW5eCIirgCiuWsrSZKWPhNOkiSpNXWuSK7cFsVwtYuBYZn5eeAa4Pvltrdm5oDM3AaYChyXmX8G7gDOKHtI/a2F9rYHjsrMXYBvA3/KzAHAzhRJq1Wb2jEiOgGDgN+3ECfAqpm5A/DVcl2dzwP7ZeZhwP8CPy3bPxC4utzmdOBrZa+qfwfej4jdgU2BgUBf4PMRsVO5/abApZm5FfAOcGBm3gw8Bhxenpf3gUvK87c10BnYu4nt6o53A+CHwC5lmwMiYv+64wMeLq/FeOCEJk5bAvcAXwL2o7hWdfU3eg6bienNzNwW+Fl5jgD+G3giM/sA3wKuL8vPBh7MzH5lmxs1EZ8kSWojS6O7tyRJWnG9XyZWAIiIrYGtgT9GBEB74NVy9dYR8T1gLWA14A+L0d4fM/Ot8v3uwL4RUZe86ESRmJjaYJ/PRMRkisTOzZn5VAtxAtwIkJnjI2KNiFirLL+jIoGyG7BluT/AGmVvpoeAn0TEDRRJtpllwml34Ily29XKeF4CXszMyWX5JKBnE8e+c0R8E1gFWAeYAvy2iW0BBgDjMvMNgDKenYCxwL+AOyva/GIz9dwEnAKsCZxGkRgC+BzNn8OGbq1o74Dy/WCKZB2Z+aeyZ9OaZZwHlOW/i4i3m6lXkiS1ARNOkiRpaQpgSmZu38i60cD+mflkRBwNDGmijvl83Eu7U4N17zVo68DMfLaFmP6WmX3LIXPjImJf4MVm4oSiZ09jy5XttwO2r+xVVDovIn4H7Ak8HBG7lbGem5lXVG4YxSTrH1QULaDovUSD7ToBlwH9M/PliBjFJ8/NJ3ZrZt2HmVl3TAto5m/GzHy0TNC9n5nPVSTYmrvWjak7zsr2GosxG/xXkiQtgxxSJ0mSlqZngW4RsT0Uw64iYqty3erAq+VQrMMr9nm3XFdnOsXQNYDmnob2B4p5gaJsq19zgWXmq8BI4KwW4gQ4uCwfDMzJzDmNVHk3MKJuISL6lv/9TGY+nZk/pBhatnkZ67HlPEhERPeIWLe5eFn4vNQll94s6xjWxHaVHgG+EMU8WO0pJv++v4U2m3IWH/dsqtPcOWwqpobGU34WImIIxbC7fzQo3wNYezHjliRJrcSEkyRJWmoy818UyZAfRsSTFBNM71Cu/i+KJMgfgWkVu90EnFFOEP0Z4ALgPyPiz0DXZpr7H6Aj8FRE/KVcbslYiiFpg5qJE+Dtsv3LgeOaqOsUoH854fUzwEll+dfLSbqfBN4H/i8z7wZ+BUyIiKeBm2k5ITMauLwcDvgBcBXFU+PGAhMb265igu66BNtZwH0UT5Z7PDNvb6HNRmXm/2XmfQ3KmrvWjcbUiFGU5xA4DziqLP9vYKeIeJxiKOJLixO3JElqPfFxb2lJkiS1JCLGAadn5mNtHYskSdKyyh5OkiRJkiRJqil7OEmSJEmSJKmm7OEkSZIkSZKkmjLhJEmSJEmSpJoy4SRJkiRJkqSaMuEkSZIkSZKkmjLhJEmSJEmSpJr6/37PQkm5++CdAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "FeatureRepMethod = [\"STFT\", \"DWT\"]\n", + "HappyReconError = [stft_HappyReconError, dwt_HappyReconError]\n", + "AngryReconError = [stft_AngryReconError, dwt_AngryReconError]\n", + "\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "x_pos = np.arange(len(FeatureRepMethod))\n", + "\n", + "fig, axes = plt.subplots(figsize=(20,4))\n", + "plt.bar(x_pos-0.2, HappyReconError, 0.1, label = 'Happy Class Reconstruction Error')\n", + "plt.bar(x_pos+0.2, AngryReconError, 0.1, label = 'Angrt Class Reconstruction Error')\n", + "\n", + " \n", + "plt.xticks(x_pos, FeatureRepMethod)\n", + "plt.xlabel(\"Feature Representation Method\")\n", + "plt.ylabel(\"Reconstruction Error\")\n", + "axes.set_yscale(\"log\") #the log transformation\n", + "plt.title(\"Comparing Reconstruction Error for Different Feature Representations\") # Stft has much worse reconstruction error\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "59f73dfa", + "metadata": {}, + "source": [ + "## There are other Audio encoding that usually \n", + "## captrue more suitable audio file representations\n", + "## such as:\n", + "discrete cosine transform (DCT) \n", + "Mel Spectrograms : \n", + "Spectrogram with consecutive Fourier transforms: scipy.signal.spectrogram\n", + "Mel-Frequency Cepstral Coefficients\n", + "Chromagram\n", + "\n", + "Other forms of optimisation, like removing noise, or sometimes adding noise for regularisaition, can all contribute to better performance. To keep code simpler, we will attempt classification using the STFT and DWT only and compare performance." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "0e4b34ba", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Defaulting to user installation because normal site-packages is not writeable\n", + "Collecting sklearn\n", + " Downloading sklearn-0.0.tar.gz (1.1 kB)\n", + " Preparing metadata (setup.py) ... \u001b[?25ldone\n", + "\u001b[?25hCollecting scikit-learn\n", + " Downloading scikit_learn-1.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.2 MB)\n", + "\u001b[2K \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m31.2/31.2 MB\u001b[0m \u001b[31m5.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0mm eta \u001b[36m0:00:01\u001b[0m[36m0:00:01\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: numpy>=1.17.3 in /home/manal/.local/lib/python3.8/site-packages (from scikit-learn->sklearn) (1.23.3)\n", + "Requirement already satisfied: scipy>=1.3.2 in /home/manal/.local/lib/python3.8/site-packages (from scikit-learn->sklearn) (1.9.1)\n", + "Collecting threadpoolctl>=2.0.0\n", + " Downloading threadpoolctl-3.1.0-py3-none-any.whl (14 kB)\n", + "Collecting joblib>=1.0.0\n", + " Downloading joblib-1.2.0-py3-none-any.whl (297 kB)\n", + "\u001b[2K \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m298.0/298.0 kB\u001b[0m \u001b[31m4.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m[31m7.4 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\n", + "\u001b[?25hBuilding wheels for collected packages: sklearn\n", + " Building wheel for sklearn (setup.py) ... \u001b[?25ldone\n", + "\u001b[?25h Created wheel for sklearn: filename=sklearn-0.0-py2.py3-none-any.whl size=1315 sha256=b7b93b0db4d3c641d3d03b01c0e298a73c6fbb042a64540009bd3e0106be96af\n", + " Stored in directory: /home/manal/.cache/pip/wheels/22/0b/40/fd3f795caaa1fb4c6cb738bc1f56100be1e57da95849bfc897\n", + "Successfully built sklearn\n", + "Installing collected packages: threadpoolctl, joblib, scikit-learn, sklearn\n", + "Successfully installed joblib-1.2.0 scikit-learn-1.1.2 sklearn-0.0 threadpoolctl-3.1.0\n" + ] + } + ], + "source": [ + "#!pip install sklearn" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "197f6414", + "metadata": {}, + "outputs": [], + "source": [ + "from scipy.io import wavfile\n", + "from scipy import signal\n", + "import numpy as np\n", + "import pywt\n", + "\n", + "#Emotions in the RAVDESS dataset\n", + "emotions ={\n", + " '01':'neutral',\n", + " '02':'calm',\n", + " '03':'happy',\n", + " '04':'sad',\n", + " '05':'angry',\n", + " '06':'fearful',\n", + " '07':'disgust',\n", + " '08':'surprised'\n", + "}\n", + "\n", + "def get_features(file):\n", + " # load an individual soundfile\n", + " sample_rate, waveform = wavfile.read(file)\n", + " h_f, h_t, h_Zxx = signal.stft(waveform, sample_rate)\n", + " #h_Zxx = h_Zxx.flatten()\n", + " (cA1, cD1) = pywt.dwt(waveform, 'db2', 'smooth')\n", + " #cA1 = cA1.flatten()\n", + " #cD1 = cD1.flatten() \n", + " \n", + " feature_stft=np.array([])\n", + " # use np.hstack to stack our feature arrays horizontally to create a feature matrix\n", + " feature_stft = np.hstack(h_Zxx.flatten())\n", + " feature_cA1=np.array([])\n", + " feature_cA1 = np.hstack(cA1.flatten())\n", + " feature_cD1=np.array([])\n", + " feature_cD1 = np.hstack(cD1.flatten()) \n", + " return feature_stft, feature_cA1, feature_cD1" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "28d1de88", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_9593/646808383.py:20: WavFileWarning: Chunk (non-data) not understood, skipping it.\n", + " sample_rate, waveform = wavfile.read(file)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Processed 215/1440 audio samples " + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/manal/.local/lib/python3.8/site-packages/scipy/signal/_spectral_py.py:1999: UserWarning: nperseg = 256 is greater than input length = 2, using nperseg = 2\n", + " warnings.warn('nperseg = {0:d} is greater than input length '\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Processed 1440/1440 audio samples " + ] + } + ], + "source": [ + "import os, glob\n", + "\n", + "def load_data():\n", + " X_stft, X_dwtC,X_dwtDC, y=[],[],[],[]\n", + " count = 0\n", + " for file in glob.glob(\"data/Actor_*//*.wav\"):\n", + " file_name=os.path.basename(file)\n", + " emotion=emotions[file_name.split(\"-\")[2]]\n", + " features1, features2, features3 = get_features(file)\n", + " X_stft.append(features1) # Stft features only\n", + " X_dwtC.append(features2) # DWT features cofficients only\n", + " X_dwtDC.append(features3) # DWT features deep cofficients only\n", + " y.append(emotion)\n", + " count += 1\n", + " # '\\r' + end='' results in printing over same line\n", + " print('\\r' + f' Processed {count}/{1440} audio samples',end=' ')\n", + " # Return arrays to plug into sklearn's cross-validation algorithms\n", + " return X_stft, X_dwtC, X_dwtDC, y\n", + "\n", + "X_stft, X_dwtC, X_dwtDC, y = load_data()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "815a2fa5", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAEQCAYAAAAgQ8X9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAAsTAAALEwEAmpwYAAAnl0lEQVR4nO3debgkZXn38e+PVVAQUFSi4qC4RDSijsZdRBFXNO5GTcQF1CSiRvNCjIoKYjRq1IiKGxpI3BIRxCBRFtGAsqoQRVFGJKKADMo6bPf7x1OHaXr6nOkzc+qcOdPfz3X11d3VT1XfVV1dffezVKWqkCRJ0uTYYKEDkCRJ0vwyAZQkSZowJoCSJEkTxgRQkiRpwpgASpIkTRgTQEmSpAnTWwKY5DlJ/iPJL5Nck+TcJAcl2WKo3NZJPpnk0iRXJflmkvuPWN6tkrw3yUXd8k5O8pi+4pckSVpfpa/zACY5BbgA+CpwIfBAYH/gJ8AjquqmJAFOApYAbwKWA/sBOwE7V9WFA8s7HHhqV+4XwF8BTwYeXlVn9bISkiRJ66E+E8Btq+qSoWl/AXwWeHxVHZfkGcARwK5VdXxX5rbA+cBhVfXabtoDgLOAl1XVZ7ppGwHnAOdW1R69rIQkSdJ6qLcm4OHkr3Nqd3/n7n4P4NdTyV833++Bo4BnDMy3B3A98IWBcjcAnwd2T7LpHIYuSZK0Xttont/vsd39j7v7nYCzR5Q7B/iLJLepqiu7cudX1dUjym0C7Ng9ntHtb3/7WrJkyZrELUmStKicfvrpl1bVtqNem7cEMMmdgXcA36yq07rJ2wDLRhS/rLvfGriyK7d8hnLbjBPDkiVLOO2001ZfUJIkaZFL8svpXpuX08AkuQ1tMMgNwJ7z8Z4D771XktOSnHbJJaNapSVJkiZL7wlgks1offruDuw+OLKXVqu39YjZthl4fZxyl414DYCqOqSqllbV0m23HVkLKkmSNFF6TQCTbAx8GVgKPKWqfjRU5Bxa/75h9wUu6Pr/TZXbIcnmI8pdB5w3d1FLkiSt3/o8EfQGwOHArsAzq+qUEcWOBO6c5LED820JPL17bcpRwMbAcwfKbQQ8Hzi2qlbM/RpIkiStn/ocBPIRWsJ2IHBVkocNvHZh1xR8JHAycFiSwRNBB3jPVOGqOjPJF4B/7moVzwdeDewAvKjHdZAkSVrv9NkE/OTu/s20JG/w9gqAqroJeBrw38DBwFeAG4HHVdWvhpa3J/AZ4ADgaOCuwJOq6owe10GSJGm909uVQNZFS5cuLU8DI0mSJkGS06tq6ajX5uU0MJIkSVp3mABKkiRNmPm+FNxEWLLv0Qsdwpxb9u6nrtF8bouV3BYruS1Wclto2Pq4T8Ca7Rdui/5YAyhJkjRhTAAlSZImjAmgJEnShDEBlCRJmjAmgJIkSRPGBFCSJGnCmABKkiRNGBNASZKkCWMCKEmSNGFMACVJkiaMCaAkSdKEMQGUJEmaMCaAkiRJE8YEUJIkacKYAEqSJE0YE0BJkqQJYwIoSZI0YUwAJUmSJowJoCRJ0oQxAZQkSZowJoCSJEkTxgRQkiRpwpgASpIkTRgTQEmSpAljAihJkjRhTAAlSZImjAmgJEnShDEBlCRJmjAmgJIkSRPGBFCSJGnCmABKkiRNGBNASZKkCWMCKEmSNGFMACVJkiaMCaAkSdKEMQGUJEmaMCaAkiRJE8YEUJIkacL0mgAmuUuSDyc5OcnVSSrJkhHlaprbzkPlNkiyX5JlSa5N8oMkz+5zHSRJktY3fdcA7gg8D1gOnLSasocCDx+6/XSozDuB/YF/AZ4MnAJ8KclT5ixiSZKk9dxGPS//21V1R4AkrwCeOEPZ/6uqU6Z7MckdgDcC766qf+omH59kR+DdwNfnKGZJkqT1Wq81gFV10xwubndgE+CwoemHAfdPssMcvpckSdJ6a10aBPLqJCu6voLHJXn00Os7ASuA84amn9Pd37f3CCVJktYD60oCeBjwGuAJwF7A7YDjkuwyUGYb4PKqqqF5Lxt4XZIkSavRdx/AsVTVSwaenpTkq8DZwAHAo9Zm2Un2oiWVbL/99muzKEmSpPXCulIDeAtVdQVwNPCQgcnLga2SZKj4VM3fZYxQVYdU1dKqWrrtttvOfbCSJEmLzDqZAA4YbO49B9gUuMdQmam+f/87LxFJkiQtcutkAphkS+BpwPcHJh8DXA+8aKj4i4Gzq+r8eQpPkiRpUeu9D2CS53QPH9zdPznJJcAlVXVikjcC9waOB34N3I12vr87MZDsVdXFSd4P7JfkCuAM4PnArsAefa+HJEnS+mK1CWCSfYDPAFcAnwQeCOxbVceO+R5fGnp+cHd/IrALcC7wZ93ttsAfgO8CL6+q7w/N+2bgSmAfWoJ4LvC8qvramLFIkiRNvHFqAF9WVR9MsjuwNfAS4F+BsRLAqhoetDH8+lHAUWMu60bayOADxikvSZKkVY3TB3AqgXsK8K9Vdc7ANEmSJC0y4ySApyc5lpYAfiPJFsBcXuJNkiRJ82icJuCXAzsDv6iqq5PcDtiz16gkSZLUm3FqAIt2rr3Xds9vDdyqt4gkSZLUq3ESwIOBhwMv7J5fAXykt4gkSZLUq3GagP+0qh6U5EyAqlqeZJOe45IkSVJPxqkBvD7JhnSXZUuyLQ4CkSRJWrTGSQA/BHwFuEOSA4HvAO/qNSpJkiT1ZrVNwFV1eJLTgcfTzv/3zKr6ce+RSZIkqRfTJoBJthl4ejHw74OvVdVlfQYmSZKkfsxUA3g6rd/fqKt+FHD3XiKSJElSr6ZNAKtqh/kMRJIkSfNjnNPAkORZwKNoNX8nVdURfQYlSZKk/qx2FHCSg4FXAT8CzgZelcQTQUuSJC1S49QA7gr8cVVNnQfws8A5vUYlSZKk3oxzHsDzgO0Hnt+1myZJkqRFaJwawC2AHyf5fvf8IcBpSY4EqKo9+gpOkiRJc2+cBPCtvUchSZKkeTPOlUBOBEiy5WB5TwQtSZK0OK02AUyyF/AO4FrgJtqJoT0RtCRJ0iI1ThPwm4D7VdWlfQcjSZKk/o0zCvjnwNV9ByJJkqT5MU4N4H7A/yT5HrBiamJVvba3qCRJktSbcRLAjwPH0a4EclO/4UiSJKlv4ySAG1fVG3qPRJIkSfNinD6A/5VkryTbJdlm6tZ7ZJIkSerFODWAL+zu9xuY5mlgJEmSFqlxTgS9w3wEIkmSpPkxTg0gSe4H3Be41dS0qvpcX0FJkiSpP+NcCeRtwC60BPDrwJOB7wAmgJIkSYvQOINAngM8HvhNVe0JPAC4ba9RSZIkqTfjJIDXVNVNwA1JtgQuBu7ab1iSJEnqyzh9AE9LshXwCeB04Erg5D6DkiRJUn/GGQX8mu7hx5IcA2xZVT/sNyxJkiT1ZdoEMMndgMur6vfd88cBzwR+meQnVXXd/IQoSZKkuTRTH8AvArcGSLIz8CXgAtogkIN7j0ySJEm9mKkJeLOq+nX3+MXAp6vqfUk2AM7qPTJJkiT1YqYawAw83hX4FkA3IliSJEmL1Ew1gMcl+SJwEbA1cBxAku0A+/9JkiQtUjMlgK8Dng9sBzyqqq7vpt8JeHPPcUmSJKkn0yaAVVXA50dMP7PXiCRJktSrca4EssaS3CXJh5OcnOTqJJVkyYhyt0ry3iQXJbmmK/+YEeU2SLJfkmVJrk3ygyTP7nMdJEmS1je9JoDAjsDzgOXASTOU+xTwSuCtwNNo/Q6/0Z1+ZtA7gf2BfwGeDJwCfCnJU+Y0akmSpPXYtAlgkm919/+4Fsv/dlXdsaqeQjuP4Kj3eQDw58Drq+oTVfUtWtJ4AfCOgXJ3AN4IvLuq/qmqjq+qvYHjgXevRYySJEkTZaYawO2SPALYI8kDkzxo8DbOwsc8ZcwewPXAFwbmu4HW/3D3JJt2k3cHNgEOG5r/MOD+SXYYJyZJkqRJN9Mo4LcCbwHuArx/6LWinRtwLuwEnF9VVw9NP4eW8O3YPd4JWAGcN6IcwH2B8+coJkmSpPXWTKOAvwx8OclbquqdPcawDa2P4LDLBl6fur+8G508UzlJkiTNYKYaQACq6p1J9gCmRuWeUFVf6zesuZNkL2AvgO23336Bo5EkSVp4qx0FnOQgYB/gf7vbPkneNYcxLKddaWTYVI3eZQPltkqS1ZS7hao6pKqWVtXSbbfddq2DlSRJWuzGOQ3MU4HdqurTVfVp4Em0U7XMlXOAHZJsPjT9vrRLzp03UG5T4B4jykFLTiVJkrQa454HcKuBx7ed4xiOAjYGnjs1IclGtMvQHVtVK7rJx9BGC79oaP4XA2dXlQNAJEmSxrDaPoDAQcCZSY4HQusLuO+4b5DkOd3DB3f3T05yCXBJVZ1YVWcm+QLwz0k2po3kfTWwAwPJXlVdnOT9wH5JrgDOoCWJu9JOJSNJWsSW7Hv0Qocw55a9+6kLHYI00jiDQP49yQnAQ7pJ/6+qfjOL9xg+AfTB3f2JwC7d4z2BA4EDaLWNPwCeVFVnDM37ZuBKWp/EOwHnAs9bTINSJEmSFto4NYBU1UXAkWvyBlU1PGhjVJlrgDd0t5nK3UhLEg9Yk1gkSZLU/7WAJUmStI4xAZQkSZowMyaASTZM8pP5CkaSJEn9mzEB7PrcnZvES2hIkiStJ8YZBLI1cE6S7wNXTU2sKk+9IkmStAiNkwC+pfcoJEmSNG/GOQ/giUnuBtyzqr7ZXbJtw/5DkyRJUh9WOwo4ySuBLwMf7ybdGTiix5gkSZLUo3FOA/NXwCOBPwBU1c+AO/QZlCRJkvozTgK4oqqum3qSZCOg+gtJkiRJfRonATwxyd8DmyXZjXZt36P6DUuSJEl9GScB3Be4BPgRsDfwdeAf+gxKkiRJ/RlnFPBNST4LfI/W9HtuVdkELEmStEitNgFM8lTgY8DPgQA7JNm7qv6r7+AkSZI098Y5EfT7gMdV1XkASe4BHA2YAEqSJC1C4/QBvGIq+ev8Ariip3gkSZLUs2lrAJM8q3t4WpKvA1+k9QF8LnDqPMQmSZKkHszUBPz0gce/BR7bPb4E2Ky3iCRJktSraRPAqtpzPgORJEnS/BhnFPAOwN8ASwbLV9Ue/YUlSZKkvowzCvgI4FO0q3/c1Gs0kiRJ6t04CeC1VfWh3iORJEnSvBgnAfxgkrcBxwIrpiZW1Rm9RSVJkqTejJMA3h94CbArK5uAq3suSZKkRWacBPC5wN2r6rq+g5EkSVL/xrkSyNnAVj3HIUmSpHkyTg3gVsBPkpzKLfsAehoYSZKkRWicBPBtvUchSZKkebPaBLCqTpyPQCRJkjQ/xrkSyBW0Ub8AmwAbA1dV1ZZ9BiZJkqR+jFMDuMXU4yQBngE8rM+gJEmS1J9xRgHfrJojgN37CUeSJEl9G6cJ+FkDTzcAlgLX9haRJEmSejXOKOCnDzy+AVhGawaWJEnSIjROH8A95yMQSZIkzY9pE8Akb51hvqqqd/YQjyRJkno2Uw3gVSOm3Rp4OXA7wARQkiRpEZo2Aayq9009TrIFsA+wJ/B54H3TzSdJkqR124x9AJNsA7wBeBHwWeBBVbV8PgKTJElSP2bqA/he4FnAIcD9q+rKeYtKkiRJvZnpRNB/C/wR8A/Ar5P8obtdkeQP8xOeJEmS5tq0CWBVbVBVm1XVFlW15cBti7m+DnCSXZLUiNvlQ+W2TvLJJJcmuSrJN5Pcfy5jkSRJWt+NcyLo+fRa4NSB5zdMPeiuQ3wUsAT4G2A5sB9wfJKdq+rCeYxTkiRp0VrXEsAfV9Up07y2B/BIYNeqOh4gycnA+cDf0ZJHSZIkrcZMfQDXNXsAv55K/gCq6ve0WkEvTSdJkjSmdS0BPDzJjUl+l+Tfkmw/8NpOwNkj5jkH2D7JbeYnREmSpMVtXWkC/j3t5NInAn8AHgj8PXBykgdW1cXANsCyEfNe1t1vDXiqGkmSpNVYJxLAqjoTOHNg0olJvg18n9a37x/WdNlJ9gL2Ath+++1XU1qSJGn9t641Ad+sqs4Afgo8pJu0nFbLN2ybgddHLeeQqlpaVUu33XbbuQ9UkiRpkVlnE8AB1d2fQ+sHOOy+wAVeqUSSJGk862wCmGQpcG9aMzDAkcCdkzx2oMyWwNO71yRJkjSGdaIPYJLDaefzOwO4nDYIZD/g/4APdcWOBE4GDkvyJlaeCDrAe+Y5ZEmSpEVrnUgAaad3eSHtCh+bA78B/hN4W1VdClBVNyV5GvBPwMHArWgJ4eOq6lcLErUkSdIitE4kgFV1EHDQGOUuA17W3SRJkrQG1tk+gJIkSeqHCaAkSdKEMQGUJEmaMCaAkiRJE8YEUJIkacKYAEqSJE0YE0BJkqQJYwIoSZI0YUwAJUmSJowJoCRJ0oQxAZQkSZowJoCSJEkTxgRQkiRpwpgASpIkTRgTQEmSpAljAihJkjRhTAAlSZImjAmgJEnShDEBlCRJmjAmgJIkSRPGBFCSJGnCmABKkiRNGBNASZKkCWMCKEmSNGFMACVJkiaMCaAkSdKEMQGUJEmaMCaAkiRJE8YEUJIkacKYAEqSJE0YE0BJkqQJYwIoSZI0YUwAJUmSJowJoCRJ0oQxAZQkSZowJoCSJEkTxgRQkiRpwpgASpIkTRgTQEmSpAljAihJkjRhTAAlSZImzKJLAJPcNcmXk/w+yR+S/GeS7Rc6LkmSpMViUSWASTYHjgPuA/wl8BLgnsDxSW69kLFJkiQtFhstdACz9Erg7sC9q+o8gCQ/BH4G7A28fwFjkyRJWhQWVQ0gsAdwylTyB1BV5wPfBZ6xYFFJkiQtIostAdwJOHvE9HOA+85zLJIkSYvSYksAtwGWj5h+GbD1PMciSZK0KKWqFjqGsSW5Dnh/Ve07NP0AYN+qWqVPY5K9gL26p/cGzu090Pl1e+DShQ5iHeG2aNwOK7ktVnJbrOS2WMltsdL6uC3uVlXbjnphsQ0CWc7omr7pagapqkOAQ/oMaiElOa2qli50HOsCt0XjdljJbbGS22Ilt8VKbouVJm1bLLYm4HNo/QCH3Rf433mORZIkaVFabAngkcDDktx9akKSJcAju9ckSZK0GostAfwEsAz4apJnJNkD+CrwK+DjCxnYAlpvm7fXgNuicTus5LZYyW2xkttiJbfFShO1LRbVIBCA7rJvHwB2AwJ8C3hdVS1byLgkSZIWi0WXAEqSJGntLLYmYGlaSZYlOXSh45iNJCckOaF7vEuSSrLLgga1Gklel+RZc7i8lyX5WZLrklw+V8sd872fnuRHSa7ttv1Ws5h3/yRz+g96aplJFtsZGhalJEu6bX731Zee9bIXxfd5NpIcmmTZQscxnxbic5yv3zITQGndcQbw8O5+XfY6YE4SwCR/ROt38z/ArsAT5mK5Y773RsDhwP8BT6Rt+yvm6/21TlgCvI12jXlplMVyXJ41/2VOmCQbAzeUbf/rnKr6A3DKQscxz+4JbAh8tqq+Mx9vOPUdAO4MbAF8saq+PR/vrcUrSYCNq+q6hY5FM0uyIa2L2w1zsIz19rhsDeA8SLJjkn9Ncn6Sa5L8IslHk2w9VO7QJBcmeWCSk5Jc3TWNvWrEMp+Q5Myu6eq8JK8Yrp7vmjcqyWuSvCfJr4EVwIO66c8YsdypGDbsYVNMK8kDknwlye+6bXRukv26156Y5OtJLuq2ydlJ/nZ1MSZ5abeej0jyxSRXJPntwHKf1G3Dq5KcmuTBPa/jC5L8JMmKJOck+bOh11dpakiye5L/SfL7JFd22+WtQ/O9sFvutV1z5h6DTctD22LJ0LyrNGMm2SfJj7vPYXmS06Zi7favuwEv6pZXa9pU0c03FeO3BpeVZK8kP+jW6dIkn0qyzdD8f53k5CSXJbk8ySlJnjpUZrrvwD/TzigA8KmuzAlT6zhqnboy+6/Juq6BHZIc3X3mv0zy1iQbdHHcKskHuu/BlUl+k+SoJPcZinfqM39MkiO6sr9L8pEkmw2UG9xG709ycfc9+9rg/tK9x5nDgSbZIclNGXGcmo2sbP6+53Tr3pXbNsnHkvxf9136SdoVn1ZZ1oj3uPkY2X3Pju9e+u+B/XmX7vVlSQ5L66LwE+A64Knda29PckaSP3T753FJHrY26z9Xktwr7Vh6cff9uSDJl5JsNO6+0y3n8d06Xpvk50n2nudYZ3PMqiQHJtk3yfm0z+r+WXlMfXb32S/vPrPDk9xulsvYZaDsOMflByQ5snvPa5J8N8mjR2yDfbp97dq0Y+0qZfpiDeD8+CPaqWpeR7tiyd2Bvwe+TqtaHrQl8G+0H6h3AHsCH01yblUdD5DkvsDRwPeBFwCbAG8BbgvcNOL93wycSrsk3oa0k2afCuxNO40O3XK3Ap4HvKeqblyrNZ6FJA+lJQLnAa8HLqTVDP1JV+TutNHeHwauBZYC+wPbAvuyep8FPkdranwu8K5uXZ8CHAhcCbwHOCLJPfr4h5/kCbTP9Wjgb7vYPwhszDSXJ0zrl3Qk8GXavnAdbbsMngdzN1oz5pHAG7rl/jNwK+CnaxDni4D3de93ErAZ7XOYSr7+jLbf/oD2GQBcMtv36bwTOB34EPBXtCaWS5K8m7aNPgS8iVZTdwBwvySPGNg3lwCfpCVyGwFPB76W5MlVdczQew1/B87o1u9L3bKPBv6whuvRh68An6Gd8eDpwNtpx5DPAJvSai4PAC6ifTavAU5O8sdV9ZuhZR0GfBE4GHgo8Fbg1sBLh8rtB5xFO+bcAXgXcGySnarqeuCjwNFJHlpV3x+Yby/gKtp+OBemXfckWwLfoe2X+wPnA7vTjpGbVtWHZ/E+Z9D2u48Ar6XtH3DLiwo8Dti5i+FiVv5puHMX34W0bfli4NtJHlxVP5pFDH04mvY782raZc3uTDvWbcCY+06SP6Z9z0+j/cZsStvetwHm8rdhplhn66XAL4A30vbHX9N+E6EdE78JvJB2DH0X7Xf5cbNYBjD2cflBtOPLmcArgauBVwHf7I5hp3flXt7FdijwBWBH4N9pn1H/qsrbPN9oP1aPAgp44MD0Q7tpjxuYtinwO+CQgWn/RvvR3Xxg2na05GjZwLQl3fLOoBvxPfDaS2lf5LsNTHstrWnsLvO8Pb5NO8BvPkbZdNvvzbQDxwYDry0DDh1axwLeOrTtLwauB3YYmL5HV/axPa3jd2k/LIPxPqx7zxO657t0z3fpnj+ne77lDMv9H+Dswc8XePDgcoe2xZKh+fdvh4Gbn/8LcMZq1mUZcNgcbZcnDK3zkm6/fOtQuUd25Z45zXI26D7bY4Gvjvkd2LF77aUj1u/QEe9RwP7Tbbs52h77d++z59D0HwHHTjPPhsDmtP6Lrx/xmX9sqPybu218r6FtNLx/Tm3zlw9s458DnxooszHwm+H36GvdaX90rwXuOVTmE7QEYqOZPhvaMXbZwPNduvd8wjT7+dXAnVYT94bdvncu8MERy95lLveR1cRy++499xiz/HT7zuHd9rz1wLS70pKdZfMRK2Mes7ppRUvWNhuaPvUZHDM0/UXd9MfPYhm7dM/HOS5/C/gxsMnQtv4xcET3fAPa795wbM/vln9o3/uLTcDzIMkmSf6+a6q4hpZ8nNS9fO+h4ldXV9MHUFUraDU52w+UeRjw9aq6eqDcRbRkYJQjqtuzBnweuJz272TK3sDRVXXheGu29pJsTvuhOXxwfYbKbJfk40l+STsAXU/7B7sVraZidf5r6kG1PiHnAT+tqvMHyvyku7/rrFdiNdKaqh8CfLmqbq6hrapTWFmjMMpZtHX9fJLnJLnFunbLXQr8x+DnW+3f5eC6zcapwM5JPpzWzWDzNVzOmtqNdmA8vGsG2ihtsMb3aD9Sj5kqmOTBac2Uv6X9cbm+m3/4OwWjvwPrsqOHnp/NwDEgyfOSfC9t1PQNtNqK2zB63b849PzztG380KHpw/vnd2k1XA/vnt9EO+H+C5JM1Yo8E7gjc3si/pnW/Um0feH8of3jG8DtaJcFnUun1Ko1qlNdcI5P8jtW7nv3YvT2n0+/o9VgvTvJK5Pcc7jAmPvOw2m/MVdNTaiqX9H+yM5brLN0TFVdM81rw9+BL9Fay4Zb4GZaxpSzmPm4vBnw2Kn3GNhHQ6uFnDqG3aW7Dcf2H7TPpXcmgPPjINq/lsNofUgeyspRlLcaKrt8xPwrhsptR6vFGvbbad7/ouEJVXUtrZnlZd0O+mjawfNj0yyjL1vT9sORSWda358jgafRkr5dacnUgV2R4e03yvA2vW6aaeMub7ZuT6spGfX5TPeZUVXn0Zq3NgD+FfhNWj+3xw4tdzb7wup8jtYc86e0H9XLkvzncD+cHk0dTM+jHWQHb1vQfuRJclfav+xtgL8BHkHbL45h9Ge4yndgHXfZ0PObjwFJnk5rLvox8Oe0z+ohtFaBUes+vC9MPb/zaspNTRss9ylaTcZLuuevAr5fVWdOtyJrYNp1p+0fj2HVfeNL3eu3Y26tst90zXtfp3UdeTntD/lDaN0i+jh+jK37k7Mbren2IOCnaX3OXw2z2ne2Y5bHq7mOdQ3M9B2/RdzVuvksZ9XvwGqPE2Mcl7ehfUfewqr76V8DW3e/a9tNE9sNtOS4d/YBnB8vAD5XVQdMTUhym7VY3kWMrvm64zTlp6v5+Cit39gzaH27ltF+9OfTcto/seEv4pR70Gq5XlJVh01N7A5ki8WltC//qM/njsAvp5uxqw0+PsmmtJrSd9D6YS0ZWO50+8IFA8+v7e43GSp3ix/M7qD8ceDjaYOUnkjrE/gF2o9F36YOfE9k9J+hqdefROub87zBGusZaixnU/t3LUPbabjD+AJ7AXBeVb10akLayOZtpil/R+CcoefQTn8zXG7UvGdNPamq3yX5IrB3km/Q+lC9YjbBr6Xf0f7w7DPN61P9aa+F1vpSt+zTO9vPcdR+82xaDc2zqvWNpHuvrWmtKguqqn4B/EWSAA+gJR0Hpw1+GXffuYjp94f5inWsY9bg4mZ4q1vEnWQTWuXD8HdgrOPEao7Ll9N+0z5C+0M9av6bkkwlm8OxbcTc/5EZyRrA+bE57Yd60J5rsbxTgKcM/tgl2Y62I46tqn5O6zP1Jlq/hk8MNgHNh67Z9zvAizMwMnHA1DoOHmg3pvXhWBSqDVo4FXhObjma8U9p/a/GWcaKqjqONljl1rT+izfS/j0/uzuATi33wcAOQ4uYSjLvN1BuI1qiNd17Lq+qL9CaKO438NIKWif8Pvw37eC5fVWdNuI21bQ9ar+4F7P8Dkzjl9xyfaEb/bmO2JxVm4heQqt1GOV5Q89fQNvG3xuaPrx/PpLWRHXyULmDadvnk8DvaU3K8+UY4D7ABdPsH1PncRy1v29FqyketKK7n83+vDmtD+XNyUKSXbllN50FV81ZtD/50LbFuPvOybTfmFtPTehq3efi+zVurLM+Zs1g+DvwXFr+M7xvz8o0x+WraF28HkDrT73KftrNfiGtD+BwbM9mnirnrAGcH8cAf5nkR7SmrWex6oFoNg6gJWzfSPJPtIEib6FVJc82gTuYNhL4elrzzkJ4I3AibSTa+2hfjLvTRt/9Le1AcGCSG7s4X79Aca6Nt9GS7SOSfJw2WvfttA70I6WdVuMxtOamX9GafPejdVQ+e2i5X0lySFdm/265g/vCqbQO/O/tfuRX0Eb/bTr0nofQ+tqdTKtpuRftB+LYgWL/Czw6ydO697m05uha3FX18yT/CPxLknvT9otraX0zdwM+2f37/ibth+xz3T6zHW17XsDa/7H9PPDpJB8AvkY7kL90LZc5l44BnjkQ31JaM/jl05R/SpL30j7Dh9L2mc9V1c+Gym3BLffPg4CfMVSLUVWnpJ0O5jHAh6fru9uTD9A6yZ/Urf+5tB/e+wCPrqpndOX+i5acfiLJ22j7+d/Rmm0H/ZS2H70syWW078W5A4nkKMfQzuhwaJLP0L4jb2HV2qR5l+RPaGcX+ALtt2ZD2r57A3AcbaT7OPvOAbQk6dhu39mEdlyZsybgMWL9AWMcs8a0U/dZfZ72eR1IGyT3rTWIe5zj8htogxu/keRTtBrV2wMPAjasqn27WsC3A58ciG1H2pkt5ueMBH2PMvF282inz9OatJbTRlg9hKERiLQRaheOmP8EBkZ0dtN2ozXNrKB1pN2bdvqEMwfKLOne4xUzxLYhbaTblxZ4Gz0QOIp2ILqGNijj/3Wv7UyrJbyalhy+g9bsdIsRYkw/CnjHEdvzO0PTVrut5mAdX0j7wVpBa5L7s8HPllVHmz2clpz/qpvnIlpfp3sPLffPRyz3TOArQ+V26t7vSlqi9AZWHQX8l12Zi7vlnU/70d1yoMx9aP9wr2YtR6sxNAp4YPpLaDXdV3Xx/pg2QvkuA2We1+0n13br/QJWHeU57efK9KOAN6CdKuWX3Tp+g9YVoZi/UcAbDU2/eb26+A6g/eBcTUuSH8j0+/9juv3oSlr/uo8wMNJxYBu9Bng/rT/Y1bTBGDtME+d+3Tw7zee6d8+37vbJ82l9dy/u9sfXDc33KNofn6tpid6Lh5fVldubdgy9gVt+/5YxzWh3WtJ0Pu1YdWq3H5/ALUfe78KIfbvPG607yGe79b26+7xPBHafzb4z8N08k1v+xqyy/fqKtSuz2mNWV66AA0a8x9Rn8Kwu9stpf3D/Dbj9LJcxtV+Me1z+Y9rv/tSx9EJaf/anDJXbh3asuZbWovOoUZ9HH7d0AWiR6/oUnkcbxfvyWcy3G61m4Am1Bv+GtO5JchfavnBgVb1zoePRwkjyUtpAr3tW67g+XbkltGTmlVX1yTGX/V3gpqqat5PWSrOVlSf73q2qvrmw0ax7bAJepJJ8mHbal1/TTmi5D+2f8QfHnP8etGbWD9D6KZj8LUJdv8n305pEL6V9pn9H+0c91o+5NI6uw/uDaDVDj6ANHpO0SJkALl63Av6RNoLoOtpVQZ5QVT8cc/630JpEfgD8RS8Raj7cCNyJ1jx6O1qT6UnAc6udG1KaK9vR/nReDryrqo5c2HAkrQ2bgCVJkiaMp4GRJEmaMCaAkiRJE8YEUJIkacKYAErSkCQ3Jjlr4LbvHCxzSZI/H3i+NMmH1na5krQmHAQiSUOSXFlVa3O97lHL3AV4Y1U9bS6XK0lrwhpASRpTkmVJDupqBU9L8qAk30jy8+4SUaR5b5Kzk/woyfO72d9Nu4TeWUlen2SXJF/r5tkmyRFJfpjklO4yWSTZP8mnk5yQ5BdJXrsway5pfeN5ACVpVZslOWvg+UFV9YXu8QVVtXN3PdVDgUfSzst5NvAx2mWndqZdQ/j2wKlJvk27xufNNYBdjeCUt9Mu4/jMJLvSrr+7c/fafYDH0a7Ve26Sj1bV9XO5spImjwmgJK3qmqraeZrXpk6A/CPgNlV1BXBFkhVJtqJdy/Pfq+pG4LdJTqRd+3umC7w/Cng2QFUdl+R2SbbsXju6qlYAK5JcTDv5+4VrsW6SZBOwJM3Siu7+poHHU8/7+FM9+B439vQekiaMCaAkza2TgOcn2TDJtsBjaJdqvILWjDvdPC+Cm5uGL62qmWoMJWmt+E9SklY13AfwmKoa91QwXwEeTrvOdgF/V1W/SfI74MYkP6D1HTxzYJ79gU8n+SFwNfCXaxe+JM3M08BIkiRNGJuAJUmSJowJoCRJ0oQxAZQkSZowJoCSJEkTxgRQkiRpwpgASpIkTRgTQEmSpAljAihJkjRh/j9fWcyLGOViIQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# plot emotions\n", + "plt.figure(figsize=(35,4))\n", + "plt.subplot(1,3,1)\n", + "#np.unique returns ordered list of unique elements and count of each element\n", + "emotion_list, count = np.unique(y, return_counts=True)\n", + "plt.bar(x=range(8), height=count)\n", + "plt.xticks(ticks=range(8), labels = [emotion for emotion in emotion_list],fontsize=10)\n", + "plt.xlabel('Emotion')\n", + "plt.tick_params(labelsize=16)\n", + "plt.ylabel('Number of Samples')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "b85c3976", + "metadata": {}, + "outputs": [], + "source": [ + "def matriciseFeatures (X):\n", + " max = 0\n", + " for i in range (len(X)):\n", + " if X[i].shape[0] > max:\n", + " max = X[i].shape[0]\n", + " XX= []\n", + " for i in range (len(X)):\n", + " s = np.array (X[i])\n", + " s = np.resize(s, max)\n", + " XX.append(s)\n", + " XX = np.array (XX)\n", + " print (XX.shape)\n", + " return XX" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "1a69fe03", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1440, 1258854)\n", + "(1440, 419618)\n", + "(1440, 419618)\n" + ] + } + ], + "source": [ + "X_stft = matriciseFeatures (X_stft)\n", + "X_dwtC = matriciseFeatures (X_dwtC)\n", + "X_dwtDC = matriciseFeatures (X_dwtDC)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "dbc742dc", + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import StandardScaler\n", + "\n", + "scaler = StandardScaler()\n", + "\n", + "X_stft = scaler.fit_transform(X_stft.real)\n", + "X_dwtC = scaler.fit_transform(X_dwtC)\n", + "X_dwtDC = scaler.fit_transform(X_dwtDC)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "71a60176", + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from sklearn.neural_network import MLPClassifier\n", + "from sklearn.neighbors import KNeighborsClassifier\n", + "from sklearn.svm import SVC\n", + "from sklearn.gaussian_process import GaussianProcessClassifier\n", + "from sklearn.gaussian_process.kernels import RBF\n", + "from sklearn.tree import DecisionTreeClassifier\n", + "from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\n", + "from sklearn.naive_bayes import GaussianNB\n", + "from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis\n", + "\n", + "from time import time\n", + "\n", + "# the dataset has 1440 audio file, all feature extraction mathods generate many values for every file as seen in shape printing in matrcisaition\n", + "# the following classifiers are all set on the lowest parameters, increasing iterations, layers and depth, number of estimators, \n", + "# regularisation parameters, other setting should increase the accuracy achieved. \n", + "# consider automatic fine tuning of parameters\n", + "\n", + "# the following only show how performance changes when features are extracted using different representation\n", + "# others concatenate all these different feature extraction methods (stft, dwt, spectrogram, mfcc, .... etc)\n", + "# horiazontally to enable classifiers finding the most discriminating features among all. These might differ from \n", + "# one dataset to another, and from one classification algorithm to another\n", + "\n", + "names = [\n", + " \"Nearest Neighbors\",\n", + " \"Linear SVM\",\n", + " \"RBF SVM\",\n", + " \"Gaussian Process\", # this is very slow, consider commenting out if not on a fast computer\n", + " \"Decision Tree\",\n", + " \"Random Forest\",\n", + " \"Neural Net\",\n", + " \"AdaBoost\", # this is the second slowest, consider commenting out if not on a fast computer\n", + " \"Naive Bayes\",\n", + " \"QDA\",\n", + "]\n", + "\n", + "classifiers = [\n", + " KNeighborsClassifier(3),\n", + " SVC(kernel=\"linear\", C=0.025),\n", + " SVC(gamma=2, C=1),\n", + " GaussianProcessClassifier(1.0 * RBF(1.0)), # this is very slow, consider commenting out if not on a fast computer\n", + " DecisionTreeClassifier(max_depth=2),\n", + " RandomForestClassifier(max_depth=2, n_estimators=2, max_features=1),\n", + " MLPClassifier(alpha=1, max_iter=2),\n", + " AdaBoostClassifier(), # this is second slowest, consider commenting out if not on a fast computer\n", + " GaussianNB(),\n", + " QuadraticDiscriminantAnalysis(),\n", + "]\n", + "\n", + "def compareModels (X, y):\n", + " X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2, random_state=69)\n", + " learnTime, score = [], []\n", + " for name, clf in zip(names, classifiers):\n", + " start= time()\n", + " clf.fit(X_train, y_train)\n", + " learnTime.append(time()-start)\n", + " print (\" clf: \" + name + \" learnTime = \" +str(learnTime[len(learnTime)-1]))\n", + " start= time()\n", + " score1 = clf.score(X_test, y_test) \n", + " print (\" score = \" + str(score1) + \" in \" + str(time()-start) )\n", + " score.append(score1)\n", + " \n", + " return score, learnTime" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "708d6621", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " clf: Nearest Neighbors learnTime = 6.523072957992554\n", + " score = 0.13194444444444445 in 789.330155134201\n", + " clf: Linear SVM learnTime = 2239.9565012454987\n", + " score = 0.13541666666666666 in 233.9917562007904\n", + " clf: RBF SVM learnTime = 1845.867311000824\n", + " score = 0.11805555555555555 in 2809.182865858078\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\gaussian_process\\kernels.py:420: ConvergenceWarning: The optimal value found for dimension 0 of parameter k1__constant_value is close to the specified lower bound 1e-05. Decreasing the bound and calling fit again may find a better value.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " clf: Gaussian Process learnTime = 12998.663620710373\n", + " score = 0.11805555555555555 in 1559.7494747638702\n", + " clf: Decision Tree learnTime = 269.72395491600037\n", + " score = 0.1423611111111111 in 0.2526736259460449\n", + " clf: Random Forest learnTime = 1.0748169422149658\n", + " score = 0.12152777777777778 in 0.2685856819152832\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\neural_network\\_multilayer_perceptron.py:702: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (2) reached and the optimization hasn't converged yet.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " clf: Neural Net learnTime = 31.200265645980835\n", + " score = 0.19791666666666666 in 0.5775916576385498\n", + " clf: AdaBoost learnTime = 6637.967088460922\n", + " score = 0.19791666666666666 in 12.978172063827515\n", + " clf: Naive Bayes learnTime = 7.24346923828125\n", + " score = 0.2465277777777778 in 18.289345026016235\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\discriminant_analysis.py:887: UserWarning: Variables are collinear\n", + " warnings.warn(\"Variables are collinear\")\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " clf: QDA learnTime = 306.20986557006836\n", + " score = 0.13541666666666666 in 7.932264089584351\n" + ] + } + ], + "source": [ + "stft_score, stft_learnTime = compareModels (X_stft, y)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "fcef07df", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/manal/.local/lib/python3.8/site-packages/sklearn/gaussian_process/kernels.py:420: ConvergenceWarning: The optimal value found for dimension 0 of parameter k1__constant_value is close to the specified lower bound 1e-05. Decreasing the bound and calling fit again may find a better value.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " clf: Gaussian Process learnTime = 2723.0790464878082\n", + " score = 0.12152777777777778 in 458.4064860343933\n", + " clf: Decision Tree learnTime = 81.19836735725403\n", + " score = 0.1597222222222222 in 0.15889668464660645\n", + " clf: Random Forest learnTime = 0.8245458602905273\n", + " score = 0.1527777777777778 in 0.15880417823791504\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/manal/.local/lib/python3.8/site-packages/sklearn/neural_network/_multilayer_perceptron.py:702: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (2) reached and the optimization hasn't converged yet.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " clf: Neural Net learnTime = 17.42845582962036\n", + " score = 0.10069444444444445 in 0.3424232006072998\n", + " clf: AdaBoost learnTime = 2100.7681033611298\n", + " score = 0.2222222222222222 in 7.885491371154785\n", + " clf: Naive Bayes learnTime = 6.829381227493286\n", + " score = 0.3298611111111111 in 5.026338815689087\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/manal/.local/lib/python3.8/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear\n", + " warnings.warn(\"Variables are collinear\")\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " clf: QDA learnTime = 105.56209802627563\n", + " score = 0.14583333333333334 in 5.473020792007446\n" + ] + } + ], + "source": [ + "dwtC_score, dwtC_learnTime = compareModels (X_dwtC, y)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "bc63cd32", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/manal/.local/lib/python3.8/site-packages/sklearn/gaussian_process/kernels.py:420: ConvergenceWarning: The optimal value found for dimension 0 of parameter k1__constant_value is close to the specified lower bound 1e-05. Decreasing the bound and calling fit again may find a better value.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " clf: Gaussian Process learnTime = 11750.665244340897\n", + " score = 0.11805555555555555 in 459.52876019477844\n", + " clf: Decision Tree learnTime = 67.40228509902954\n", + " score = 0.14930555555555555 in 0.1542825698852539\n", + " clf: Random Forest learnTime = 0.8243024349212646\n", + " score = 0.1423611111111111 in 0.1545271873474121\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/manal/.local/lib/python3.8/site-packages/sklearn/neural_network/_multilayer_perceptron.py:702: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (2) reached and the optimization hasn't converged yet.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " clf: Neural Net learnTime = 17.055216312408447\n", + " score = 0.10069444444444445 in 0.3132355213165283\n", + " clf: AdaBoost learnTime = 1733.8889164924622\n", + " score = 0.2465277777777778 in 10.246487379074097\n", + " clf: Naive Bayes learnTime = 6.380509376525879\n", + " score = 0.2604166666666667 in 4.947436809539795\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/manal/.local/lib/python3.8/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear\n", + " warnings.warn(\"Variables are collinear\")\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " clf: QDA learnTime = 104.62977313995361\n", + " score = 0.13194444444444445 in 5.144797325134277\n" + ] + } + ], + "source": [ + "dwtDC_score, dwtDC_learnTime = compareModels (X_dwtDC, y)\n" + ] + }, + { + "cell_type": "markdown", + "id": "603a69cf", + "metadata": {}, + "source": [ + "### The following comparison chart shows an example of basic models against each feature extraction representation method:\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "In case, your computer can not run all these models in the previous three cells (it took make several rounds to collect the mterics below), a sample collected metrics can be including by turning the cell below into code cell and run it to rerun the graph\n", + "\n", + "### It is obvious that STFT because it generates more features this makes learning time in red bars are always higher for all models. The model complexity itself affect the learning time, and the slowest is Gaussian Proccesses and ADABOOST. The accuracy of some models are better for STFT representation (blue bars), but other models are better with DWT coff (orange). The DWT deep coffs (green) seem comparable to the first group of DWT coffs, and could be concatented together for better representation. All models accuracy are obviously very low, because of the very low parameterisation of these models to learn faster on a normal computer ( i7-1185G7 @ 3.00GHz + Nvidia/Quadro T500 + 64 GB RAM). More iterations, slower learning rate, deeper layers, and other parameters can increase the accuracy.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "752724f8", + "metadata": {}, + "source": [ + "stft_score, stft_learnTime = [], []\n", + "\n", + "stft_learnTime.append(6.523072957992554)\n", + "stft_score.append(0.13194444444444445)\n", + "\n", + "stft_learnTime.append(2239.9565012454987)\n", + "stft_score.append(0.13541666666666666)\n", + "stft_learnTime.append(1845.867311000824)\n", + "stft_score.append(0.11805555555555555)\n", + "\n", + "\n", + "stft_learnTime.append(12998.663620710373)\n", + "stft_score.append(0.11805555555555555)\n", + "stft_learnTime.append(269.72395491600037)\n", + "stft_score.append(0.1423611111111111)\n", + "stft_learnTime.append(1.0748169422149658)\n", + "stft_score.append(0.12152777777777778)\n", + "\n", + "\n", + "stft_learnTime.append(31.200265645980835)\n", + "stft_score.append(0.19791666666666666)\n", + "stft_learnTime.append(6637.967088460922)\n", + "stft_score.append(0.19791666666666666)\n", + "stft_learnTime.append(7.24346923828125)\n", + "stft_score.append(0.2465277777777778)\n", + "\n", + "\n", + "stft_learnTime.append(306.20986557006836)\n", + "stft_score.append(0.13541666666666666)\n", + "\n", + "dwtC_score, dwtC_learnTime = [],[]\n", + "\n", + "dwtC_learnTime.append(0.27277231216430664)\n", + "dwtC_score.append(0.10069444444444445)\n", + "dwtC_learnTime.append(280.72698950767517)\n", + "dwtC_score.append(0.125)\n", + "dwtC_learnTime.append(301.32664680480957)\n", + "dwtC_score.append(0.10069444444444445)\n", + "dwtC_learnTime.append(2723.0790464878082)\n", + "dwtC_score.append(0.12152777777777778)\n", + "dwtC_learnTime.append(81.19836735725403)\n", + "dwtC_score.append(0.1597222222222222)\n", + "dwtC_learnTime.append(0.8245458602905273)\n", + "dwtC_score.append(0.1527777777777778)\n", + "dwtC_learnTime.append(17.42845582962036)\n", + "dwtC_score.append(0.10069444444444445)\n", + "dwtC_learnTime.append(2100.7681033611298)\n", + "dwtC_score.append(0.2222222222222222)\n", + "dwtC_learnTime.append(6.829381227493286)\n", + "dwtC_score.append(0.3298611111111111)\n", + "dwtC_learnTime.append(105.56209802627563)\n", + "dwtC_score.append(0.14583333333333334)\n", + "\n", + "dwtDC_score, dwtDC_learnTime = [],[]\n", + "\n", + "dwtDC_learnTime.append(0.26615381240844727)\n", + "dwtDC_score.append(0.10416666666666667)\n", + "dwtDC_learnTime.append(319.6564145088196)\n", + "dwtDC_score.append(0.10069444444444445)\n", + "dwtDC_learnTime.append(320.5957622528076)\n", + "dwtDC_score.append(0.10069444444444445)\n", + "\n", + "dwtDC_learnTime.append(11750.665244340897)\n", + "dwtDC_score.append(0.11805555555555555)\n", + "dwtDC_learnTime.append(67.40228509902954)\n", + "dwtDC_score.append(0.14930555555555555)\n", + "dwtDC_learnTime.append(0.8243024349212646)\n", + "dwtDC_score.append(0.1423611111111111)\n", + "\n", + "dwtDC_learnTime.append(17.055216312408447)\n", + "dwtDC_score.append(0.10069444444444445)\n", + "dwtDC_learnTime.append(1733.8889164924622)\n", + "dwtDC_score.append(0.2465277777777778)\n", + "dwtDC_learnTime.append(6.380509376525879)\n", + "dwtDC_score.append(0.2604166666666667)\n", + "\n", + "dwtDC_learnTime.append(104.62977313995361)\n", + "dwtDC_score.append(0.13194444444444445)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "6e7bd25f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAAEWCAYAAADiusdpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAAsTAAALEwEAmpwYAABogUlEQVR4nO3de5xN9f7H8ddnZsRIRhEphVKS22DGNXKIdNBNjnKvqClU4nQ51cGpzk+ny3FER+q4ldyjqE41yamM3DIuuSRSlBCFcYkZ398fa822jbnsMbct7+fj4WHv71rruz7rOnt/9vf7XeacQ0REREREREREzmwRRR2AiIiIiIiIiIgUPSWJRERERERERERESSIREREREREREVGSSEREREREREREUJJIRERERERERERQkkhERERERERERFCSSERE8sjMFphZH/91NzP7sIDWM9TM3iiIuv36vzKzlv5rM7PxZvaLmS0xs+ZmtqEA1nmJmaWYWWR+150XfkyXFnUcwcxsjJk9mc30AjlGRcHMnJlVC2G+lma2rTBiCucYpOgV5L1fREQKl5JEIiJnKD+584uZFc+vOp1zk51zbfMQU1czW+YnKbab2ftmdnV+xZcd51xN59wC/+3VQBugknOuoXPuM+dc9byuw8y2mNm1Qev83jlXyjmXlte6M6ynip9oiMpQPsHMns5peT+mzfkc023+9luG8igz22lmHXKIKcE591Q20/PlGOWGfw05M6uboXy2X96yMOMJR/5+OOBf0ylm9ms+1ZljEi2/+NfNET/+PWb2kZldWVjrL2hm1tvMPs/F/CfdX/J67xcRkfChJJGIyBnIzKoAzQEH3FC00XjM7CFgBPB3oAJwCfAycGMRhFMZ2OKcO1AE6/69mgOUAa7JUN4O7zz876lWnDEZVsi+BnoGxVIWaALsKrKIwk9dP/FYyjlXpqiDOcWWe/9wzpUCLgJ+AP6Tv1EV+XksIiICKEkkInKm6gl8AUwAegVPCO4+5r8/4VdmM2tjZuvNbK+ZjQIsm3mbmtlSf96lZtY0s2DMLAb4G9DPOfeWc+6Ac+6oc26uc+7PWSwzw8x+8uv+1MxqBk37o5mtNbP9ZvaDmQ32y8uZ2Twz+9VvEfCZmUX407aY2bVmdhfwGtDEbzkwLGOXGjO72MzeMrNdZrbb3w+Y2WVmNt8v+9nMJptZGX/a63iJr7l+vQ9n/EXezC40s3f82L4xs75B6xxqZtPNbJK/XV+ZWVxm+yYUZlbNzP7n77+fzWxa0LRASw2/FcVoM3vXX+9iM7ssaN62ZrbBr+dlv84+GdfnnDsMTCcooeLrCbzpnEvN4ZgGWkGlHw8ze8TMfgLGZ3KMavjn8q/+vrohaFqW57h5/mle66Z9ZrbazGplsysnA12CEg+3A7OBI0H1FzezEWb2o/9vhAW14DOzP5vXcu5HM7szw3EqbmbPm9n3ZrbDvG530ZkF4u+PH/zjtMHMWmcxX3szW+Fv31YzGxo0Lf2c7OWv82czezxoerR/LH4xs7VAfDb7Jkv+uT7Lv4a+NbP7g6Y1NLNF/rHbbmajzOwsf9qn/mwr/euoi2XSEiaTc/jfZvaemR0A/pDd+rPjnDuEdx7HhrgtQ81spplN84/LlxbU8sy8+84jZrYKOGBey7rGZpbkb/9KC2qR5m/rZr+ub82sW9C0O81snX9sPjCzyhn2R4KZbfTrHe2f6zWAMRy/3/3qz5/lOQKkH4Nf/WWaZDwGls2937zr7ykzW+hvx4dmVs6fVsLM3jDvHvqrv2yFUI6NiIjkDyWJRETOTD3xvtxOBq4L9UO4/0H+LeAJoBywCWiWxbznAe8CI4GywIvAu+a1tMioCVAC78t1qN4HLgfKA1/625LuP8A9zrlzgFrAfL98ELANOB+vtdJf8FqxBDjn/gMkAIv8lg9DMmxXJDAP+A6ogteyYGr6ZOD/gAuBGsDFwFC/3h7A90BHv95/ZLJNU/34LgRuBf5uZq2Cpt/gz1MGeAcYlfXuydFTwIfAuUAl4KVs5r0NGObP+w3wDATOh5nAY3jHeAOQaSLQNxG4NT3JYV5ysKNfDtkf04wuAM7Da/V1d/AEMysGzPW3rzwwAJhsZqF0R2sLtACuAGKAPwG7s5n/R2Ctvxx419akDPM8DjTGSyzUBRriXUOYWTtgMF73xsuBazMsO9yPJRaohne+/TVjEP629Qfi/fP+OmBLFjEf8OMsA7QH7jWzmzLMczVQHWgN/NVPJgAMAS7z/11HhiRzKMxLzM4FVvrb0xp40Myu82dJAwbi3WOa+NPvA3DOtfDnSW+dNI3QdMU7b88BknJYf3axn42XCPwmxG0BrzXkDLzz9U1gjn+Oprsd7ziUwbsvvQs87c8/GJhlZuf76x4JXO8f46ZAsh/HjXj3s1vw7m+fAVMyhN8BL6lXB++8vs45t44T73dl/HmzO0fSj0EZf5lFGfZRKPf+rsAdeNfnWf52gnc+xeDdO8v6sR1CREQKjZJEIiJnGPPG+KkMTHfOLcdL9HQNcfE/Al8552Y6547idQ/7KYt52wMbnXOvO+dSnXNTgPV4SYGMygI/O+dSQ90O59w459x+59xveImYun7SAeAocJWZlXbO/eKc+zKovCJQ2W+p9Jlzzp1ce7Ya4iVx/uy3eDrsnPvcj+kb59xHzrnfnHO78L4cZexelSkzuxgv4faIX2cyXoum4JY3nzvn3vPHMHodL+Fwqo7inQcXBm9DFmY755b4x2cyx1tRpJ8Pb/nTRpL1+YBzbiGwA7jZL/oT8LW/rTkd04yOAUP8fZ3xS2RjoBQw3Dl3xDk3Hy+xd3s225juKF4i4UrAnHPrnHPbc1hmEtDTvHFqymT80gx0A/7mnNvpnxfDgB7+tD8B451za/zujUPTFzIzw0uADXTO7XHO7cfrjnlbJjGkAcXxzvtizrktzrlNmQXrnFvgnFvtnDvmnFuFl0zIeJ4Oc84dcs6txEuApJ9rfwKe8ePZinfMc/Kl3yrkVzMbiZeoON859zf/+GwGXk3fLufccufcF/59YwvwSibx5dbbzrmFzrljQO3s1p+FwX4rm/14CbT045fttviWB90zX8RLiDcOmj7SObfVP4+7A+/51/kx59xHwDK8aw28876WmUU757Y7577yyxOA//PP11S88yQ2uDUR3vXwq3Pue+ATglpDZRTiOZKVUO79451zX2fSMuso3t+Das65NP9c2BfiekVEJB8oSSQicubpBXzonPvZf/8mobcGuBDYmv7GT7BszWbe7zKUfYf3a3tGu4FyFuKYHGYWaWbDzWyTme3jeIuJcv7/nfC+VH1nXvenJn75c3gtAD70u2w8Gsr6MrgY+C6zhJaZVTCzqeZ1+dkHvBEUU04uBNITAeky7q/gBMxBoEQW+yw9tmIZyovhfQkDeBiv5dMS87pj3UnWMq63VFDMGc+HnJ50NYnjia8e/vtQjmlGu5zXhS0zFwJb/YRAuqzOvRP4CaVRwGhgp5mNNbPSOSz2FtAKryXP61nEE3wtfOeXBWLNMC3d+UBJYHl6kgVv7KbzM4n7G+BBvCTTTv88vDDjfABm1sjMPjGve9RevARDxv0c0jHn5Gs8M/Wdc2X8f/fjJyeDEke/4rWCqeDHd4V53UJ/8s+Fv2cSX24Fx5zt+rPwvN/Kpgpey5b0Vmmh1BV8jRzjeGvBrGLrnKG+q4GKfhKxC97x2m5eF9Arg5b7V9Aye/Cu7+zuH6XIQojnSFZCufdnFcvrwAfAVPO6X/4jQ6srEREpYEoSiYicQfxuPn8CrvG/gP2E162jrh0fJ+MA3hfTdBcEvd6OlyRJr8+C32fwI94Xl2CX4A36mtEi4DfgptC2hK54XTiuxeuaUCU9JADn3FLn3I14XRnm4P1Sjd9KZZBz7lK8rlsPWRbjtmRjK3BJFsmZv+N1X6vtnCuN1yog+Gle2bVa+hE4z8zOCSrLan/lZDteMqhKhvKq+F/enHM/Oef6OucuBO4BXrbcPzFqO15XNSBwPlTKenbA+xLY2k/cNeZ4l7Jsj2kmctqXF/tdgdIF78vsznGccyOdcw2Aq/C6emU6LlbQ/AfxusrdS+ZJoozXwiV+GWS4pvxp6X7GS0jUDEqyxDhvAOXM4njTOZfeUtABz2YR8pt43RUvds7F4I1Jk9V+zii7eEO1Ffg2aJvKOOfOcc6lt5b5N17Lk8v96+gvOcR3wvE0swsymSf4fMlp/VnyW+E8gJeQiQ6xruB7ZgTeNfJjcLUZYns9Q31nO+eG++v/wDnXBq9F5Hq8Vkvpy92TYblo51xSTttE5tdSdudITq0vc3PvPzEQr4XnMOfcVXjd6Tpw8jhmIiJSgJQkEhE5s9yE1y3lKrzm/bF4Y+d8xvEP4snALWZW0k8a3BW0/LtATTO7xU+S3E+GL9hB3gOuMO+x9lFm1sVf77yMMzrn9uKNszLazG7y113MzK43s8zG7jkHL6m0G+/L4d/TJ5jZWWbWzcxi/O4d+/C6aGBmHcwbsNmAvf6+OHZS7dlbgvdFebiZnW3eQKvp4zKdA6QAe83sIk5OLuwALs2sUr/rThLwf36ddfD2/Ru5jA/ndUebBTxjZmX9fXk73v5/H8DMOptZekLnF7wvfrndF+8Ctf1jFgX0I+vzIT22LcDneN1XPnLOpbcoyPKYnoLFeK0THva3vSVeV5f0saOSyeIcN7N4vxVFMbzkw2FC2y9/Aa7xty+jKcAT5o0rUw7vXE8/rtOB3mZ2lZmVxBvzBwi0OnkV+KeZlffju8gyGTvHzKqbWSvzBsQ+jJdcyiruc/BarR02s4aE3t00Pd7HzOxc//wZkItl0y0B9ps3YHO034qslpmlD4J9Dt51m+K3lLk3w/IZr6OVePelWDMrQVCXvVNcf7b8LmA/4nUFDKWuBkH3zAfxzvMvsqj+DaCjmV3n11XCvEHZK5nXUvFG88Ym+g3vXpN+jMfgHZea4I33ZWadQ9kevP1ZyfzBwX3ZnSO7/PVmei8jF/f+jMzsD2ZW27yx3/bhJbtze18SEZE8UJJIROTM0gtvLIjv/ZYkP/lf0kcB3fwvMf/EezLTDrwBhQODB/td1DrjDaa7G2+g3YWZrcg5txvvV+BB/rwPAx2CurllnP8F4CG8AX134f0y3h+vJVBGk/BaxPyAN2hwxi9cPYAt5nVVScAbEwY/3kS8L1eLgJedc59kFk9W/ARMR7xBhL/H6zrSxZ88DKiPl4B6F68bUrD/w0sW/Gr+E9cyuB2vBc2PeIN4D3HOJeYmviD34XU5WQXsxNuX7Z1zO/zp8cBiM0vBazHwgD+eSsiCzod/4B3jq/DGT/kth0Un4rU0CB7gOadjmpu4juAdo+vxWuO8DPR0zq33Z8nyHAdK4yVmfvHj2Y3XTTGndf7osh7X6Wm8/bIKWI03KPfT/nLv443tNR+vK+T8DMs+4pd/4Z/PiRzv6hSsON51+TNeV57yeAOKZ+Y+4G9mth8vYTU9p+0LMgxvv3yLNzB4Zi2nsuVfQx3wktTf+jG/hteCDLxBjLvijf/zKpBxcOqhwET/OvqTc+5rvKcjJgIb8ZKQeVl/KJ7Du6dFhVDX23j3iF/w7k23+AnszGLbitei7i8cvw/+Ge8zewTePfJHvGv7GvwEmnNuNl7Lsan+ebIG7/wPxXzgK+AnM0u/P2d5jvgt554BFvrHIHh8pVzf+zO4AG8w/H3AOuB/nMI5JiIip85crsfrFBERETmZ35VmG9Att8k3kd8j8x4dX805172oYxEREQmFWhKJiIjIKfO7xZTxuzmljx1zyq2ARERERKToKEkkIiIiedEE2ITXzaYjcJM7+ZH0IiIiInIaUHczERERERERERFRSyIREREREREREfGeyBC2ypUr56pUqVLUYYiIiIiIiIiI/G4sX778Z+fc+RnLwzpJVKVKFZYtW1bUYYiIiIiIiIiI/G6Y2XeZlau7mYiIiIiIiIiIhGeSyMw6mtnYvXv3FnUoIiIiIiIiIiJnhLBMEjnn5jrn7o6JiSnqUEREREREREREzghhPSZRZo4ePcq2bds4fPhwUYciElZKlChBpUqVKFasWFGHIiIiIiIiIqeh0y5JtG3bNs455xyqVKmCmRV1OCJhwTnH7t272bZtG1WrVi3qcEREREREROQ0FJbdzbJz+PBhypYtqwSRSBAzo2zZsmphJyIiIiIiIqfstEsSAUoQiWRC14WIiIiIiIjkxWmZJBIRERERERERkfx12o1JlFGVR9/N1/q2DG+f4zzPPPMMb775JpGRkURERPDKK68wfPhwvv32W1JSUti1a1dgXJiXX36Zv/zlL2zfvp3o6GgAOnXqxKxZswD4/vvviYmJISYmhnLlypGYmHjS+ubMmcPNN9/MunXruPLKK/NxawvesWPHePDBB5k/fz5mRokSJZg+fbrGzRGRIrfuyhohzVdj/boCjkREREREJDwUapLIzM4G/gcMdc7NK8x155dFixYxb948vvzyS4oXL87PP//MkSNHmD17NgALFizg+eefZ968Ezdv8uTJxMXFBd4/+eSTAPTu3ZsOHTpw6623ZrnOKVOmcPXVVzNlyhSGDRtWAFvlSUtLIzIyMl/rnDZtGj/++COrVq0iIiKCbdu2cfbZZ+epztTUVKKiTvv8poiIiIiIiEhYyVN3MzMbZ2Y7zWxNhvJ2ZrbBzL4xs0eDJj0CTM/LOova9u3bKVeuHMWLFwegXLlyXHjhhQW2vpSUFD7//HP+85//MHXq1EB5WloagwcPplatWtSpU4eXXnoJgKVLl9K0aVPq1q1Lw4YN2b9/PxMmTKB///6BZTt06MCCBQsAKFWqFIMGDaJu3bosWrSIv/3tb8THx1OrVi3uvvtunHMAfPPNN1x77bXUrVuX+vXrs2nTJnr27MmcOXMC9Xbr1o233377hPi3b99OxYoViYjwTrVKlSpx7rnnAvDf//6X+vXrU7duXVq3bg3Anj17uOmmm6hTpw6NGzdm1apVAAwdOpQePXrQrFkzevTowa5du+jUqRPx8fHEx8ezcOHCfNzrIiIF64UuHUL6JyIiIiJSmPI6JtEEoF1wgZlFAqOB64GrgNvN7CozawOsBXbmcZ1Fqm3btmzdupUrrriC++67j//9738hLdetWzdiY2OJjY1l9+7dIa/v7bffpl27dlxxxRWULVuW5cuXAzB27Fi2bNlCcnIyq1atolu3bhw5coQuXbrwr3/9i5UrV5KYmBjo4paVAwcO0KhRI1auXMnVV19N//79Wbp0KWvWrOHQoUOBFlHdunWjX79+rFy5kqSkJCpWrMhdd93FhAkTANi7dy9JSUm0b39id70//elPzJ07l9jYWAYNGsSKFSsA2LVrF3379mXWrFmsXLmSGTNmADBkyBDq1avHqlWr+Pvf/07Pnj0Dda1du5bExESmTJnCAw88wMCBA1m6dCmzZs2iT58+Ie9TERERERERETlZnvrsOOc+NbMqGYobAt845zYDmNlU4EagFHA2XuLokJm955w7lpf1F4VSpUqxfPlyPvvsMz755BO6dOnC8OHD6d27d7bLZexuFqr0hAjAbbfdxpQpU2jQoAGJiYkkJCQEul2dd955rF69mooVKxIfHw9A6dKlc6w/MjKSTp06Bd5/8skn/OMf/+DgwYPs2bOHmjVr0rJlS3744QduvvlmAEqUKAHANddcw3333ceuXbuYNWsWnTp1OqkbWKVKldiwYQPz589n/vz5tG7dmhkzZnDw4EFatGgRGJvovPPOA+Dzzz8PjNfUqlUrdu/ezb59+wC44YYbAkmvxMRE1q5dG1jPvn37SElJoVSpUrnZvSIiIiIiIiLiK4iBXS4Ctga93wY0cs71BzCz3sDPWSWIzOxu4G6ASy65pADCy7vIyEhatmxJy5YtqV27NhMnTswxSXQq9uzZw/z581m9ejVmRlpaGmbGc889l6t6oqKiOHbs+O4+fPhw4HWJEiUC4xAdPnyY++67j2XLlnHxxRczdOjQE+bNTM+ePXnjjTeYOnUq48ePz3Se4sWLc/3113P99ddToUIF5syZQ9u2bXO1DcAJYxkdO3aML774IpCwEhEREREREZG8yWt3s1xzzk3IbtBq59xYYBjw5VlnnVV4gYVow4YNbNy4MfA+OTmZypUrF8i6Zs6cSY8ePfjuu+/YsmULW7dupWrVqnz22We0adOGV155hdTUVMBLKFWvXp3t27ezdOlSAPbv309qaipVqlQhOTmZY8eOsXXrVpYsWZLp+tITQuXKlSMlJYWZM2cCcM4551CpUqXA+EO//fYbBw8eBLyBt0eMGAHAVVdddVKdX375JT/++CPgJXZWrVpF5cqVady4MZ9++inffvttIH6A5s2bM3nyZMAbBLxcuXKZtohq27ZtYBwm8I6DiIiIiIiIiJy6gmhJ9ANwcdD7Sn5ZyJxzc4G5cXFxfXOaN5RH1uenlJQUBgwYwK+//kpUVBTVqlVj7NixBbKuKVOm8Mgjj5xQ1qlTJ6ZMmcJLL73E119/TZ06dShWrBh9+/alf//+TJs2jQEDBnDo0CGio6NJTEykWbNmVK1alauuuooaNWpQv379TNdXpkwZ+vbtS61atbjgggsC3dYAXn/9de655x7++te/UqxYMWbMmMGll15KhQoVqFGjBjfddFOmde7cuZO+ffvy22+/AdCwYUP69+9PiRIlGDt2LLfccgvHjh2jfPnyfPTRRwwdOpQ777yTOnXqULJkSSZOnJhpvSNHjqRfv37UqVOH1NRUWrRowZgxY05hL4uIiIiIiIgIgKU/veqUK/DGJJrnnKvlv48CvgZa4yWHlgJdnXNf5aLOjkDHatWq9Q1utQOwbt06atSokaeYJf8cPHiQ2rVr8+WXXxITE1PU4ZzxdH2IhG7dlaFdKzXWr8v3dYf65LJB07JseCsiIiIicsrMbLlz7qSBk/PU3czMpgCLgOpmts3M7nLOpQL9gQ+AdcD03CSIwGtJ5Jy7W0mH8JaYmEiNGjUYMGCAEkQiIiIiIiIip7m8Pt3s9izK3wPey0vdEv6uvfZavvvuu6IOQ0RERERERETyQaEPXB0KM+toZmP37t1b1KGIiIiIiIiIiJwRCmLg6jzLzcDVIiIiIiIi4aYox74TETlVakkkIiIiIiIiIiLhmSTSwNUiIiIiIiIiIoUrLLub5crQfE4kDc259VJkZCS1a9fm6NGjREVF0bNnTwYOHEhERAT16tVj/PjxxMbGkpqaSpkyZRgzZgzdu3cHoEGDBnTt2pXXX38dgLVr11K9enUiIyNp164dw4cPP2FdS5YsYfDgwezYsYOSJUvSoEEDRo4cScmSJTON7bfffqN9+/b8/PPPPPbYY1x44YUkJCRQrFgxFi1aRHR0dK53SWxsLFdeeSVTp07N9bJF7YsvvuCBBx7gt99+47fffqNLly4MHTq0qMMSERERERERCTthmSQys45Ax2rVqhV1KJmKjo4mOTkZgJ07d9K1a1f27dvHsGHDaNasGUlJScTGxrJy5UquuOIKkpKS6N69OwcOHGDTpk08+OCDDBo0CIAqVarwySefUK5cuZPWs2PHDjp37szUqVNp0qQJADNnzmT//v1ZJolWrFgBEIgvISGBxx57LJCkyq1169aRlpbGZ599xoEDBzj77LNPqZ6cpKamEhWV/6djr169mD59OnXr1iUtLY0NGzbkuc60tDQiIyPzIToRERERERGR8KHuZnlUvnx5xo4dy6hRo3DO0bRpU5KSkgBISkoiISEhkLBZsmQJDRo0CDnBMHr0aHr16hVIEAHceuutVKhQgT179nDTTTdRp04dGjduzKpVq9i5cyfdu3dn6dKlxMbG8sorrzB9+nSefPJJunXrxvbt22nRogWxsbHUqlWLzz77LMcYpkyZQo8ePWjbti1vv/12oHzp0qU0bdqUunXr0rBhQ/bv309aWhqDBw+mVq1a1KlTh5deegnwEmE///wzAMuWLaNly5YADB06lB49etCsWTN69OjBli1baN68OfXr16d+/fqB/Qjw7LPPUrt2berWrcujjz7Kpk2bqF+/fmD6xo0bT3ifbufOnVSsWBHwWoBdddVVAKSkpHDHHXdQu3Zt6tSpw6xZswLbW7t2bWrVqsUjjzwSqKdUqVIMGjSIunXrsmjRIt544w0aNmxIbGws99xzD2lpaTnuSxEREREREZFwFpZJotPNpZdeSlpaGjt37gy0JAIvSdSiRQuKFy/O/v37SUpKomnTpiHXu2bNGho0aJDptCFDhlCvXj1WrVrF3//+d3r27En58uV57bXXaN68OcnJydxzzz3ccMMNPPfcc0yePJk333yT6667juTkZFauXElsbGyOMUybNo3bbruN22+/nSlTpgBw5MgRunTpwr/+9S9WrlxJYmIi0dHRjB07li1btpCcnMyqVavo1q1bjvWvXbuWxMREpkyZQvny5fnoo4/48ssvmTZtGvfffz8A77//Pm+//TaLFy9m5cqVPPzww1x22WXExMQEEnDjx4/njjvuOKn+gQMHUr16dW6++WZeeeUVDh8+DMBTTz1FTEwMq1evZtWqVbRq1Yoff/yRRx55hPnz55OcnMzSpUuZM2cOAAcOHKBRo0asXLmSsmXLMm3aNBYuXEhycjKRkZFMnjw5x20VERERERERCWdKEuWzypUrc+TIEX766SfWr19P9erViY+PZ/HixSQlJdGsWbN8Wc/nn39Ojx49AGjVqhW7d+9m37592S4THx/P+PHjGTp0KKtXr+acc87Jdv5ly5ZRrlw5LrnkElq3bs2KFSvYs2cPGzZsoGLFisTHxwNQunRpoqKiSExM5J577gl0GzvvvPNy3I4bbrghME7S0aNH6du3L7Vr16Zz586sXbsWgMTERO64445AF7v0evv06cP48eNJS0tj2rRpdO3a9aT6//rXv7Js2TLatm3Lm2++Sbt27QJ19uvXLzDfueeey9KlS2nZsiXnn38+UVFRdOvWjU8//RTwWiF16tQJgI8//pjly5cTHx9PbGwsH3/8MZs3b85xW0VERERERETCWVgmicyso5mN3bs350Gkw8HmzZuJjIykfPnyADRt2pQZM2ZQsWJFzIzGjRuzcOFClixZckLXsZzUrFmT5cuX51ucLVq04NNPP+Wiiy6id+/eTJo0Kdv5p0yZwvr166lSpQqXXXYZ+/btC3TLyo2oqCiOHTsGEGjJky54jKN//vOfVKhQgZUrV7Js2TKOHDmSbb2dOnXi/fffZ968eTRo0ICyZctmOt9ll13Gvffey8cff8zKlSvZvXt3rrehRIkSgW6Czjl69epFcnIyycnJbNiwQYNhi4iIiIiIyGkvLJNEp9OYRLt27SIhIYH+/ftjZoCXJBoxYkQgIdSkSRMmTZrEBRdcQG62qX///kycOJHFixcHyt566y127NhB8+bNA12cFixYQLly5ShdunS29X333XdUqFCBvn370qdPH7788sss5z127BjTp09n9erVbNmyhS1btvD2228zZcoUqlevzvbt21m6dCkA+/fvJzU1lTZt2vDKK6+QmpoKwJ49ewBvTKL0ZFd2Saa9e/dSsWJFIiIieP311wPj/LRp04bx48dz8ODBE+otUaIE1113Hffee2+mXc0A3n33XZxzgDduUWRkJGXKlKFNmzaMHj06MN8vv/xCw4YN+d///sfPP/9MWloaU6ZM4ZprrjmpztatWzNz5kx27twZiOe7777LcrtERERERERETgdh+XSzXAnhkfX57dChQ8TGxnL06FGioqLo0aMHDz30UGB6s2bNGDhwYCBJVLFiRdLS0nI1HhFAhQoVmDp1KoMHD2bnzp1ERETQokUL2rVrx9ChQ7nzzjupU6cOJUuWZOLEiTnWt2DBAp577jmKFStGqVKlAi2J+vTpQ0JCAnFxcYF5P/vsMy666CIuvPDCQFmLFi1Yu3Ytu3fvZtq0aQwYMIBDhw4RHR1NYmIiffr04euvv6ZOnToUK1aMvn370r9/f4YMGcJdd93Fk08+GRi0OjP33XcfnTp1YtKkSbRr1y7Qyqhdu3YkJycTFxfHWWedxR//+Ef+/ve/A9CtWzdmz55N27ZtM63z9ddfZ+DAgZQsWZKoqCgmT55MZGQkTzzxBP369aNWrVpERkYyZMgQbrnlFoYPH84f/vAHnHO0b9+eG2+88aQ6r7rqKp5++mnatm3LsWPHKFasGKNHj6Zy5co5HgMRERERERGRcGXprSzCUVxcnFu2bNkJZevWraNGjRpFFJGEm+eff569e/fy1FNPFXUoYUHXh0jo1l0Z2rVSY/26fF/3C106hDTfoGnz8n3dIiJSOIry74yISE7MbLlzLi5j+enfkkjOWDfffDObNm1i/vz5RR2KiIiIiIiIyGkvLJNEZtYR6FitWrWiDkXC2OzZs4s6BBEREREREZHfjbBMEjnn5gJz4+Li+hZ1LCIicmYbnRB6a8V+Y1oVYCQiIiIiIgUrLJ9uJiIiIiIiIiIihUtJIhERERERERERUZJIRERERERERETCdEyi3Kg9sXa+1re61+oc54mMjKR27docPXqUqKgoevbsycCBA4mIiKBevXqMHz+e2NhYUlNTKVOmDGPGjKF79+4ANGjQgK5du/L6668DsHbtWqpXr05kZCTt2rVj+PDhgfUsWLCAG2+8kUsvvZSDBw9SoUIFHn74YTp0CO3RyacqJSWFQYMGkZiYSJkyZTjnnHN49tlnadSoUZbLjBw5kn//+9/Ur1+fcePG0b59e37++Wcee+wxunTpkusYRowYwaOPPsqOHTuIiYnJy+YUuoMHD9K3b19WrVqFc44yZcrw3//+l1KlShXoeg+tWcPRHTtYd/Mt2c6nx6yKiIiIiIhIZk77JFFRiI6OJjk5GYCdO3fStWtX9u3bx7Bhw2jWrBlJSUnExsaycuVKrrjiCpKSkujevTsHDhxg06ZNPPjggwwaNAiAKlWq8Mknn1CuXLlM19W8eXPmzZsHQHJyMjfddBPR0dG0bt26wLavT58+VK1alY0bNxIREcG3337L2rVrs13m5ZdfJjExkUqVKvHFF18E4j1VU6ZMIT4+nrfeeos77rjjlOvJjnMO5xwREfnboO5f//oXFSpUYPVqL+G4YcMGihUrlqc6U1NTiYrS5SoiIiLye6MHJIhIOAnL7mZm1tHMxu7du7eoQ8lR+fLlGTt2LKNGjcI5R9OmTUlKSgIgKSmJhISEQLJkyZIlNGjQgMjIyFNaV2xsLH/9618ZNWoUALt27aJTp07Ex8cTHx/PwoULAThw4AB33nknDRs2pF69erz99tsATJgwgRtvvJGWLVty+eWXM2zYsJPWsWnTJhYvXszTTz8dSJ5UrVqV9u3bA/Diiy9Sq1YtatWqxYgRIwBISEhg8+bNXH/99Tz77LN0796dpUuXEhsby6ZNm3j00Ue56qqrqFOnDoMHD85xOzdt2kRKSgpPP/00U6ZMCZSnpKRwxx13ULt2berUqcOsWbMA+O9//0v9+vWpW7duIHk2dOhQnn/++cCytWrVYsuWLWzZsoXq1avTs2dPatWqxdatW7n33nuJi4ujZs2aDBkyJLDM0qVLadq0KXXr1qVhw4bs37+fFi1anJD8uvrqq1m5cuUJ8W/fvp2LLroo8L569eoUL14cgEmTJlGnTh3q1q1Ljx49ANiyZQutWrWiTp06tG7dmu+//x6A3r17k5CQQKNGjXj44YfZtGkT7dq1o0GDBjRv3pz169fnuC9FREREREREQhWWTROcc3OBuXFxcX2LOpZQXHrppaSlpbFz506aNWvGE088AXhJoiFDhjBlyhT2799PUlISTZs2zdO66tevz3PPPQfAAw88wMCBA7n66qv5/vvvue6661i3bh3PPPMMrVq1Yty4cfz66680bNiQa6+9FvASVWvWrKFkyZLEx8fTvn174uLiAvV/9dVXxMbGZprIWr58OePHj2fx4sU452jUqBHXXHMNY8aM4b///W+gRVSjRo14/vnnmTdvHrt372b27NmsX78eM+PXX3/NcRunTp3KbbfdRvPmzdmwYQM7duygQoUKPPXUU8TExARa6Pzyyy/s2rWLvn378umnn1K1alX27NmTY/0bN25k4sSJNG7cGIBnnnmG8847j7S0NFq3bs2qVau48sor6dKlC9OmTSM+Pp59+/YRHR3NXXfdxYQJExgxYgRff/01hw8fpm7duifUf+edd9K2bVtmzpxJ69at6dWrF5dffjlfffUVTz/9NElJSZQrVy4Q64ABA+jVqxe9evVi3Lhx3H///cyZMweAbdu2kZSURGRkJK1bt2bMmDFcfvnlLF68mPvuu4/580P/5UmKzrora4Q0n7oCioiIiIhIUQrLJNHprHLlyhw5coSffvqJ9evXU716deLj41m8eDFJSUkMGDAgT/U75wKvExMTT+gGtm/fPlJSUvjwww955513Ai1pDh8+HGid0qZNG8qWLQvALbfcwueff35Ckig7n3/+OTfffDNnn312YPnPPvuMevXqZblMTEwMJUqU4K677qJDhw4hjac0ZcoUZs+eTUREBJ06dWLGjBn079+fxMREpk6dGpjv3HPPZe7cubRo0YKqVasCcN555+VYf+XKlQMJIoDp06czduxYUlNT2b59O2vXrsXMqFixIvHx8QCULl0agM6dO/PUU0/x3HPPMW7cOHr37n1S/bGxsWzevJkPP/yQxMRE4uPjWbRoEfPnz6dz586BroXpsS5atIi33noLgB49evDwww8H6urcuTORkZGkpKSQlJRE586dA9N+++23HLdVRERERM48L3QJbQzTQdPmFXAkInK6UZIoH2zevJnIyEjKly8PQNOmTZkxYwYVK1bEzGjcuDELFy5kyZIlNGnSJE/rWrFiBTVqeK0Sjh07xhdffEGJEiVOmMc5x6xZs6hevfoJ5YsXL8bMTijL+L5mzZqsXLmStLS0U+4WFywqKoolS5bw8ccfM3PmTEaNGpVt65fVq1ezceNG2rRpA8CRI0eoWrUq/fv3z/V6jx07Fnh/+PDhwOv0JBfAt99+y/PPP8/SpUs599xz6d279wnzZlSyZEnatGnD22+/zfTp01m+fHmm85UqVYpbbrmFW265hYiICN577z3OOuusXG1DcKzHjh2jTJkyeRrnSURERERERCQ7YTkm0elk165dJCQk0L9//0DCpWnTpowYMSKQEGrSpAmTJk3iggsuyNOTulatWsVTTz1Fv379AGjbti0vvfRSYHp6AuG6667jpZdeCrQ6WrFiRWCejz76iD179nDo0CHmzJlDs2bNTljHZZddRlxcHEOGDAksv2XLFt59912aN2/OnDlzOHjwIAcOHGD27Nk0b94825hTUlLYu3cvf/zjH/nnP/950vg9GU2ZMoWhQ4cGxg/68ccf+fHHH/nuu+9o06YNo0ePDsz7yy+/0LhxYz799FO+/fZbgEAXripVqvDll18C8OWXXwamZ7Rv3z7OPvtsYmJi2LFjB++//z7gjSO0fft2li5dCsD+/ftJTU0FvIG977//fuLj4zn33HNPqnPhwoX88ssvgJfkWrt2LZUrV6ZVq1bMmDGD3bt3nxBr06ZNAy2kJk+enOk+LV26NFWrVmXGjBmAlwjMaV+KiIiIiIiI5MZp35IolEfW57dDhw4RGxvL0aNHiYqKokePHjz00EOB6c2aNWPgwIGBJFHFihVJS0s7pfGI0rtzHTx4kPLlyzNy5MjA4MwjR46kX79+1KlTh9TUVFq0aMGYMWN48sknefDBB6lTpw7Hjh2jatWqgSekNWzYkE6dOrFt2za6d++eaVez1157jUGDBlGtWjWio6MpV64czz33HPXr16d37940bNgQ8JIl2XU1Ay+5cuONN3L48GGcc7z44osAvPPOOyxbtoy//e1vJ8w/depU3nvvvRPKbr75ZqZOncoTTzxBv379qFWrFpGRkQwZMoRbbrmFsWPHcsstt3Ds2DHKly/PRx99RKdOnZg0aRI1a9akUaNGXHHFFZnGV7duXerVq8eVV17JxRdfHEianXXWWUybNo0BAwZw6NAhoqOjSUxMpFSpUjRo0IDSpUtn+dS1TZs2ce+99+Kc49ixY7Rv355OnTphZjz++ONcc801REZGUq9ePSZMmMBLL73EHXfcwXPPPcf555/P+PHjM6138uTJ3HvvvTz99NMcPXqU22677aTxkEREREREREROlQWPcRNu4uLi3LJly04oW7duXaC7leTOhAkTWLZsWeDpaHJqfvzxR1q2bMn69esDT4ALB4fWrGHjjh0U65d91zwNjlz4NHB1eAr1uMxvOTrnmXyhPppYY0WIiPz+6e+MiIQzM1vunDup1Uj4fMMVOQ1MmjSJRo0a8cwzz4RVgkhEREREREQkrwqtu5mZ1QAeAMoBHzvn/l1Y6xZP7969M30al4SuZ8+e9OzZs6jDEBEREREREcl3eWoKYWbjzGynma3JUN7OzDaY2Tdm9iiAc26dcy4B+BPQLLP6RERERERERESkaOS1v8wEoF1wgZlFAqOB64GrgNvN7Cp/2g3Au8CJIxOLiIiIiIiIiEiRylOSyDn3KbAnQ3FD4Bvn3Gbn3BFgKnCjP/87zrnrgW5Z1Wlmd5vZMjNbtmvXrryEJyIiIiIiIiIiISqIMYkuArYGvd8GNDKzlsAtQHGyaUnknBsLjAXv6WYFEJ+IiIiIiIiIiGRQaANXO+cWAAtCmdfMOgIdq1WrluO8oT5aMlShPIL6mWee4c033yQyMpKIiAheeeUVhg8fzrfffktKSgq7du2iatWqALz88sv85S9/Yfv27URHRwPQqVMnZs2aBcD3339PTEwMMTExlCtXjsTExBPWVapUKVJSUvJ1G0PRqFEjfvvtN/bs2cOhQ4e46KKLAG97XnzxRWbOnFnoMYmIiIiIiIhIwSmIJNEPwMVB7yv5ZSFzzs0F5sbFxfXNz8Dyw6JFi5g3bx5ffvklxYsX5+eff+bIkSPMnj0bgAULFvD8888zb968E5abPHkycXFxgfdPPvkk4D1xrEOHDtx6662FEn9qaipRUTkf9sWLFwMwYcIEli1bxqhRowLTmjZtWmDxiYiIiIiIiEjRKIgk0VLgcjOripccug3ompsKctOSqLBt376dcuXKUbx4cQDKlStX6DFs2rSJfv36sWvXLkqWLMmrr77KlVdeydy5c3n66ac5cuQIZcuWZfLkyVSoUIGhQ4eyadMmNm/ezCWXXEL16tX5/vvv2bx5M99//z0PPvgg999/f0jr3rJlCx06dGDNmjVMmDCBOXPmcODAATZu3MjgwYM5cuQIr7/+OsWLF+e9997jvPPOyzJeEREREREREQkfeRq42symAIuA6ma2zczucs6lAv2BD4B1wHTn3Fe5qdc5N9c5d3dMTExewisQbdu2ZevWrVxxxRXcd999/O9//wtpuW7duhEbG0tsbCy7d+/OUwx33303L730EsuXL+f555/nvvvuA+Dqq6/miy++YMWKFdx222384x//CCyzdu1aEhMTmTJlCgDr16/ngw8+YMmSJQwbNoyjR4+eUixr1qzhrbfeYunSpTz++OOULFmSFStW0KRJEyZNmpRtvCIiIiIiIiISPvLUksg5d3sW5e+Rh8fch3NLolKlSrF8+XI+++wzPvnkE7p06cLw4cPp3bt3tstl7G52qlJSUkhKSqJz586Bst9++w2Abdu20aVLF7Zv386RI0cC4yIB3HDDDYExkQDat29P8eLFKV68OOXLl2fHjh1UqlQp1/H84Q9/4JxzzuGcc84hJiaGjh07AlC7dm1WrVqVbbwiIiIiIiIiEj4KbeDq3AjnMYkAIiMjadmyJS1btqR27dpMnDgxxyRRfjl27BhlypQhOTn5pGkDBgzgoYce4oYbbmDBggUMHTo0MO3ss88+Yd707nLgbU9qauopxRNcT0REROB9REQEqamp2cYrIiIiIiIiIuEjT93NzkQbNmxg48aNgffJyclUrly50NZfunRpqlatyowZMwBwzrFy5UoA9u7dG3gK2cSJEwstpuxkF6+IiIiIiIiIhI+wbEmUm+5moTyyPj+lpKQwYMAAfv31V6KioqhWrRpjx44tsPUdPHjwhG5gDz30EJMnT+bee+/l6aef5ujRo9x2223UrVuXoUOH0rlzZ84991xatWrFt99+W2Bx5UZW8YqIiIiIiIhI+DDnXFHHkKW4uDi3bNmyE8rWrVtHjRo1iigikfB1aM0aNu7YQbF+/bOdr7ATqwLrrgztnqVjU7hCPS7zW44Ouc5+Y1qFNN8LXTqENN+gafNCXreIiIQX/Z0RkXBmZsudcycNnKzuZiIiIiIiIiIiEp5JIjPraGZj9+7dW9ShiIiIiIiIiIicEcIySeScm+ucuzsmJqaoQxEREREREREROSOEZZJIREREREREREQKl5JEIiIiIiIiIiISnkkijUkkIiIiIiIiIlK4ooo6gMw45+YCc+Pi4vrmNO/ohPn5uu5QHisZGRlJ7dq1OXr0KFFRUfTs2ZOBAwcSERFBvXr1GD9+PLGxsaSmplKmTBnGjBlD9+7dAWjQoAFdu3bl9ddfB2Dt2rVUr16dyMhI2rVrx/Dhw09Y15IlSxg8eDA7duygZMmSNGjQgJEjR1KyZMlMY/vtt99o3749P//8M4899hgXXnghCQkJFCtWjEWLFhEdHR3yvhg6dCilSpVi8ODBIS+TH8aPH8+//vUv4OT9c9ZZZ9GiRQuuvfbaQo1JRERERERE5PcuLJNE4S46Oprk5GQAdu7cSdeuXdm3bx/Dhg2jWbNmJCUlERsby8qVK7niiitISkqie/fuHDhwgE2bNvHggw8yaNAgAKpUqcInn3xCuXLlTlrPjh076Ny5M1OnTqVJkyYAzJw5k/3792eZJFqxYgVAIL6EhAQee+yxQJKqqKWlpREZGZntPHfccQd33HEHkP3+EREREREREZH8oyRRHpUvX56xY8cSHx/P0KFDadq0Ke+99x733XcfSUlJJCQkMGHCBMBrFdSgQYMckyTpRo8eTa9evQIJIoBbb70VgD179nDnnXeyefNmSpYsydixY7ngggvo3r07u3btIjY2lnvvvZfp06fzwQcf8P777/P888/TpUsX9u3bR2pqKv/+979p3rx5rrf5ueeeY/r06fz222/cfPPNDBs2DICbbrqJrVu3cvjwYR544AHuvvtuAEqVKsU999xDYmIio0ePpl27djzwwAPMmzeP6Oho3n77bSpUqBDSunv37k2HDh249dZbqVKlCrfffjvvv/8+UVFRjB07lscee4xvvvmGP//5zyQkJGQbr+SfF7p0CGm+QdPmFXAkEizU4wI6NiIiIiIioiRRvrj00ktJS0tj586dNGvWjCeeeAKApKQkhgwZwpQpU9i/fz9JSUk0bdo05HrXrFlDr169Mp02ZMgQ6tWrx5w5c5g/fz49e/YkOTmZ1157jeeff55587wvfIsWLQokVV544QWuu+46Hn/8cdLS0jh48GCut/XDDz9k48aNLFmyBOccN9xwA59++iktWrRg3LhxnHfeeRw6dIj4+Hg6depE2bJlOXDgAI0aNeKFF14A4MCBAzRu3JhnnnmGhx9+mFdffTWwz3LrkksuITk5mYEDB9K7d28WLlzI4cOHqVWrFgkJCdnGKxJuQu0+G0q3WBERERGR08m6K2uENF+N9esKOJIzW1gmicysI9CxWrVqRR1KrlWuXJkjR47w008/sX79eqpXr058fDyLFy8mKSmJAQMG5Mt6Pv/8c2bNmgVAq1at2L17N/v27ct2mfj4eO68806OHj3KTTfdRGxsbK7X++GHH/Lhhx9Sr149AFJSUti4cSMtWrRg5MiRzJ49G4CtW7eyceNGypYtS2RkJJ06dQrUcdZZZ9Ghg9fCoUGDBnz00Ue5jiPdDTfcAEDt2rVJSUnhnHPO4ZxzzqF48eL8+uuv2cYrIiIiIiIiIseFZZIoNwNXh4PNmzcTGRlJ+fLlAWjatCkzZsygYsWKmBmNGzdm4cKFLFmy5ISuYzmpWbMmy5cv58Ybb8yXOFu0aMGnn37Ku+++S+/evXnooYfo2bNnrupwzvHYY49xzz33nFC+YMECEhMTWbRoESVLlqRly5YcPnwYgBIlSpzQxa5YsWKYGeANAp6amnrK21S8eHEAIiIiAq/T36empmYZ75ksN4O9q8WKiBQF/ZIoIiIiUjQiijqA092uXbtISEigf//+gcRH06ZNGTFiRCAh1KRJEyZNmsQFF1xATExMyHX379+fiRMnsnjx4kDZW2+9xY4dO2jevDmTJ08GvARNuXLlKF26dLb1fffdd1SoUIG+ffvSp08fvvzyy9xuLtdddx3jxo0jJSUFgB9++IGdO3eyd+9ezj33XEqWLMn69ev54osvcl13QcgqXhERERERERE5UVi2JMqNomjpcOjQIWJjYzl69ChRUVH06NGDhx56KDC9WbNmDBw4MJAkqlixImlpabkajwigQoUKTJ06lcGDB7Nz504iIiJo0aIF7dq1Y+jQodx5553UqVOHkiVLMnHixBzrW7BgAc899xzFihWjVKlSTJo0CYA+ffqQkJBAXFzcScs8/fTTjBgxIvB+27ZtrFu3LrBtpUqV4o033qBdu3aMGTOGGjVqUL16dRo3bpyrbS0obdu2zTTe9FZfIiIiIiIiIuIx51xRx5CluLg4t2zZshPK1q1bR40aoTVDFzmTHFqzho07dlCsX/9s55vfcnTIdYaahNXTzbIXateZUI9Nfh8XODOPTX4fF9A1k1/U3UxEfg/0d0Ykd/T3v3CZ2XLn3EktRdTdTEREREREREREwjNJZGYdzWzs3r17izoUEREREREREZEzQlgmiZxzc51zd+dmkGcRERERERERETl1YZkkEhERERERERGRwqUkkYiIiIiIiIiIKEkkIiIiIiIiIiIQVdQB5FVuHvEcilAeAxkZGUnt2rU5evQoUVFR9OzZk4EDBxIREUG9evUYP348sbGxpKamUqZMGcaMGUP37t0BaNCgAV27duX1118HYO3atVSvXp3IyEjatWvH8OHDA+tZsGABN954I5deeikHDx6kQoUKPPzww3TokL/bnFFKSgqDBg0iMTGRMmXKcM455/Dss8/SqFGjLJcZOXIk//73v6lfvz7jxo2jffv2/Pzzzzz22GN06dIl5HVv2bKFDh06sGbNmvzYlJDt3r2b1q1bA/DTTz8RGRnJ+eefD8DYsWN54403GDlyZKHGJCIiIiIiIlKYTvskUVGIjo4mOTkZgJ07d9K1a1f27dvHsGHDaNasGUlJScTGxrJy5UquuOIKkpKS6N69OwcOHGDTpk08+OCDDBo0CIAqVarwySefUK5cuUzX1bx5c+bN8xJXycnJ3HTTTURHRwcSGgWhT58+VK1alY0bNxIREcG3337L2rVrs13m5ZdfJjExkUqVKvHFF18E4g0HqampREVlf6qXLVs2EO/QoUMpVaoUgwcPDkxv2LBhQYYoIiIiIiIiUuTU3SyPypcvz9ixYxk1ahTOOZo2bUpSUhIASUlJJCQkBJIPS5YsoUGDBkRGRp7SumJjY/nrX//KqFGjANi1axedOnUiPj6e+Ph4Fi5cCMCBAwe48847adiwIfXq1ePtt98GYMKECdx44420bNmSyy+/nGHDhp20jk2bNrF48WKefvppIiK806Nq1aq0b98egBdffJFatWpRq1YtRowYAUBCQgKbN2/m+uuv59lnn6V79+4sXbqU2NhYNm3axKOPPspVV11FnTp1Tki85Mby5cu55ppraNCgAddddx3bt28H4NVXXyU+Pp66devSqVMnDh48CEDv3r1JSEigUaNGPPzww/Tu3Zv777+fpk2bcumllzJz5syQ171gwYJA662hQ4fSq1cvmjdvTuXKlXnrrbd4+OGHqV27Nu3atePo0aPZxisiIiIiIiISrpQkygeXXnopaWlp7Ny5M9CSCLwkUYsWLShevDj79+8nKSmJpk2b5mld9evXZ/369QA88MADDBw4kKVLlzJr1iz69OkDwDPPPEOrVq1YsmQJn3zyCX/+8585cOAA4CWqZs2axapVq5gxYwbLli07of6vvvqK2NjYTBNZy5cvZ/z48SxevJgvvviCV199lRUrVjBmzBguvPBCPvnkEx555BFee+01mjdvTnJyMmXKlGH27Nl89dVXrFq1iieeeCLX23z06FEGDBjAzJkzWb58OXfeeSePP/44ALfccgtLly5l5cqV1KhRg//85z+B5bZt20ZSUhIvvvgiANu3b+fzzz9n3rx5PProo7mOI92mTZuYP38+77zzDt27d+cPf/gDq1evJjo6mnfffTfbeEVERERERETCVaF1NzOzm4D2QGngP865Dwtr3YWpcuXKHDlyhJ9++on169dTvXp14uPjWbx4MUlJSQwYMCBP9TvnAq8TExNP6Aa2b98+UlJS+PDDD3nnnXd4/vnnATh8+DDff/89AG3atKFs2bKAl2D5/PPPiYuLC2ndn3/+OTfffDNnn312YPnPPvuMevXqZblMTEwMJUqU4K677qJDhw6nNJ7Shg0bWLNmDW3atAEgLS2NihUrArBmzRqeeOIJfv31V1JSUrjuuusCy3Xu3PmEZNdNN91EREQEV111FTt27Mh1HOmuv/56ihUrRu3atUlLS6Ndu3YA1K5dmy1btmQbr4iIiIiIiEi4ylOSyMzGAR2Anc65WkHl7YB/AZHAa8654c65OcAcMzsXeB743SSJNm/eTGRkJOXLlwegadOmzJgxg4oVK2JmNG7cmIULF7JkyRKaNGmSp3WtWLGCGjVqAHDs2DG++OILSpQoccI8zjlmzZpF9erVTyhfvHgxZnZCWcb3NWvWZOXKlaSlpZ1yt7hgUVFRLFmyhI8//piZM2cyatQo5s+fn6s6nHPUrFmTRYsWnTStd+/ezJkzh7p16zJhwgQWLFgQmJaezEpXvHjxE+o8Ven1REREUKxYscA+jIiIIDU1Ndt4RURERERERMJVXlsSTQBGAZPSC8wsEhgNtAG2AUvN7B3nXHqTlyf86b8Lu3btIiEhgf79+weSBU2bNmXEiBH07t0bgCZNmvDnP/+ZCy64gJiYmFNe16pVq3jqqad47bXXAGjbti0vvfQSf/7znwFvoOjY2Fiuu+46XnrpJV566SXMjBUrVgRa+3z00Ufs2bOH6Oho5syZw7hx405Yx2WXXUZcXBxDhgzhqaeewszYsmULX331Fc2bN6d37948+uijOOeYPXt24CltWUlJSeHgwYP88Y9/pFmzZlx66aW53u7q1auza9cuFi1aRJMmTTh69Chff/01NWvWZP/+/VSsWJGjR48yefJkLrroolzXn9+yi1dERERERERO3eiE0Bod9BvTKuQ6Q31qeihPQz/d5SlJ5Jz71MyqZChuCHzjnNsMYGZTgRvNbB0wHHjfOfdlVnWa2d3A3QCXXHJJjjEUxUE6dOgQsbGxHD16lKioKHr06MFDDz0UmN6sWTMGDhwYaDVUsWJF0tLSTmk8ovTuXAcPHqR8+fKMHDky8GSzkSNH0q9fP+rUqUNqaiotWrRgzJgxPPnkkzz44IPUqVOHY8eOUbVq1cAT0ho2bEinTp3Ytm0b3bt3z7Sr2WuvvcagQYOoVq0a0dHRlCtXjueee4769evTu3fvwJO++vTpk21XM4D9+/dz4403cvjwYZxzgfGB3nnnHZYtW8bf/va3k5bZsGEDlSpVCrz/5z//ycyZM7n//vvZu3cvqampPPjgg9SsWZOnnnqKRo0acf7559OoUSP279+f632c384666ws4xUREREREREJVwUxJtFFwNag99uARsAA4FogxsyqOefGZLawc24sMBYgLi7u1PsEFaC0tLRsp8fHx5/UnWnLli2ZzptVOUDLli3Zu3dvltPLlSvHtGnTTiqPjo7mlVdeyXSZSpUqMWfOnCzrBChdujSvvvpqptMeeuihExJi6YK3o2XLlrRs2RLwEmRLliw5af4bbriBG2644aTyKlWqBJ4QltGnn356Utm9997Lvffee1L5hAkTsn2fkpKS6TrAe4JZsODtyTgtuJ7gabGxsZnGKyIiIiIiIhKuCm3gaufcSGBkKPOaWUegY7Vq1Qo2KBERERERERERASCiAOr8Abg46H0lvyxkzrm5zrm78zJ+j5ysd+/ejBo1qqjDEBEREREREZEwVBAtiZYCl5tZVbzk0G1A19xUkFNLIufcSU/lEjnTOefg2LGiDkNEpNAUxMCVIiIiImeyPLUkMrMpwCKgupltM7O7nHOpQH/gA2AdMN0591Vu6s2uJVGJEiXYvXt3nh5hLvJ745zj16NHsa1bc55ZREREREREJBN5fbrZ7VmUvwe8d6r1ZteSqFKlSmzbto1du3adavUiv0upyclEjsl8wHIRERERERGRnBTawNW54ZybC8yNi4vrm3FasWLFqFq1ahFEJRLe1t18S1GHICJyWnuhS4eQ5x00bV4BRiIiIiJSNApi4GoRERERERERETnNhGWSyMw6mtnYvXv3FnUoIiIiIiIiIiJnhLBMEmU3cLWIiIiIiIiIiOS/sEwSiYiIiIiIiIhI4QrLJJG6m4mIiIiIiIiIFK6wTBKpu5mIiIiIiIiISOEKyySRiIiIiIiIiIgUrrBMEqm7mYiIiIiIiIhI4QrLJJG6m4mIiIiIiIiIFK6wTBKJiIiIiIiIiEjhUpJIRERERERERESUJBIREREREREREYgq6gAyY2YdgY7VqlUr6lBERERERMLauitrhDRfjfXrCjgSERE53YVlSyINXC0iIiIiIiIiUrjCMkkkIiIiIiIiIiKFS0kiERERERERERFRkkhERERERERERJQkEhERERERERERlCQSERERERERERHCNElkZh3NbOzevXuLOhQRERERERERkTNCWCaJnHNznXN3x8TEFHUoIiIiIiIiIiJnhKiiDkBERERERAre6IT5Ic3Xb0yrAo5ERETClZJEIiIiIiKSay906RDyvIOmzSvASEREJL+EZXczEREREREREREpXEoSiYiIiIiIiIiIkkQiIiIiIiIiIqIkkYiIiIiIiIiIUIhJIjO71Mz+Y2YzC2udIiIiIiIiIiISmjwlicxsnJntNLM1GcrbmdkGM/vGzB4FcM5tds7dlZf1iYiIiIiIiIhIwchrS6IJQLvgAjOLBEYD1wNXAbeb2VV5XI+IiIiIiIiIiBSgPCWJnHOfAnsyFDcEvvFbDh0BpgI35mU9IiIiIiIiIiJSsApiTKKLgK1B77cBF5lZWTMbA9Qzs8eyWtjM7jazZWa2bNeuXQUQnoiIiIiIiIiIZBRVWCtyzu0GEkKYb6yZbQc6nnXWWQ0KPjIRERERERERESmIlkQ/ABcHva/kl4XMOTfXOXd3TExMvgYmIiIiIiIiIiKZK4gk0VLgcjOramZnAbcB7+SmAjPraGZj9+7dWwDhiYiIiIiIiIhIRnlKEpnZFGARUN3MtpnZXc65VKA/8AGwDpjunPsqN/WqJZGIiIiIiIiISOHK05hEzrnbsyh/D3gvL3WLiIiIiIiI5Kd1V9YIed4a69cVYCQi4anQBq7ODTPrCHSsVq1aUYciIiIiIiIiZ6DRCfNDmq/fmFYFHIlI4QnLJJFzbi4wNy4urm9RxyInCzX7rsy7iIiIiIiI54UuHUKab9C0eQUciUjWCmLg6jzTwNUiIiIiIiIiIoUrLJNEGrhaRERERERERKRwhWWSSERERERERERECldYJonU3UxEREREREREpHCFZZJI3c1ERERERERERApXWCaJRERERERERESkcClJJCIiIiIiIiIi4Zkk0phEIiIiIiIiIiKFKyyTRBqTSERERERERESkcIVlkkhERERERERERAqXkkQiIiIiIiIiIqIkkYiIiIiIiIiIhGmSSANXi4iIiIiIiIgUrrBMEmngahERERERERGRwhWWSSIRERERERERESlcShKJiIiIiIiIiIiSRCIiIiIiIiIioiSRiIiIiIiIiIigJJGIiIiIiIiIiBCmSSIz62hmY/fu3VvUoYiIiIiIiIiInBHCMknknJvrnLs7JiamqEMRERERERERETkjhGWSSERERERERERECpeSRCIiIiIiIiIioiSRiIiIiIiIiIgoSSQiIiIiIiIiIihJJCIiIiIiIiIiKEkkIiIiIiIiIiJAVGGtyMzOBl4GjgALnHOTC2vdIiIiIiIiIiKSvTy1JDKzcWa208zWZChvZ2YbzOwbM3vUL74FmOmc6wvckJf1ioiIiIiIiIhI/sprS6IJwChgUnqBmUUCo4E2wDZgqZm9A1QCVvuzpeVxvSIiIiJSiNZdWSOk+WqsX1fAkYiIiEhByVNLIufcp8CeDMUNgW+cc5udc0eAqcCNeAmjSjmt18zuNrNlZrZs165deQlPRERERERERERCVBADV18EbA16v80vewvoZGb/BuZmtbBzbqxzLs45F3f++ecXQHgiIiIiIiIiIpJRoQ1c7Zw7ANwRyrxm1hHoWK1atYINSkREREREREREgIJpSfQDcHHQ+0p+Wcicc3Odc3fHxMTka2AiIiIiIiIiIpK5gmhJtBS43Myq4iWHbgO65qYCtSQSEREROT2NTpgf8rz9xrQKab4XunQIab5B0+aFvG4RERE5WZ5aEpnZFGARUN3MtpnZXc65VKA/8AGwDpjunPsqN/WqJZGIiIiIiIiISOHKU0si59ztWZS/B7x3qvWqJZGIiIiIiIiISOEqiDGJ8kwtiURERERERERECldYJolERERERERERKRwhWWSyMw6mtnYvXv3FnUoIiIiIiIiIiJnhLBMEqm7mYiIiIiIiIhI4QrLJJGIiIiIiIiIiBSusEwSqbuZiIiIiIiIiEjhCsskkbqbiYiIiIiIiIgUrrBMEomIiIiIiIiISOFSkkhERERERERERMIzSaQxiURERERERERECldYJok0JpGIiIiIiIiISOEKyySRiIiIiIiIiIgUrqiiDkBERERERER+J4aG2BtkqIYWEQlHakkkIiIiIiIiIiLhmSTSwNUiIiIiIiIiIoUrLLubOefmAnPj4uL6FnUscupGJ8wPab5+Y1oVcCQiIiIiIiIikpOwTBKJZOaFLh1CnnfQtHkFGImIiIiIiBSG2hNrhzTf6l6rCzgSkTODkkQiIiIiInLGUzIia1UefTfkebeUKMBARKTAheWYRCIiIiIiIiIiUrjUkkhERERERE4vesy6iEiBCMuWRHq6mYiIiIiIiIhI4QrLlkR6upmIiIiIFJRcja8yvH0BRiIZhXpsNO6NiEjBCMuWRCIiIiIiIiIiUriUJBIRERERERERkfDsbiYiIiIFRIO9ioiIiEgWlCQSERGRU1Z7Yu2Q5lvda3UBR3KaU/JOREREwoCSRCIiIqe5XA3Cq8FezxhK4ImISIB+jJAQKUlUCPQEjfAV8hM0dFxERERERCTMFNUTAUP9IQL0Y8TpRkkikVAo8y4iIiIiIiK/c4WWJDKzS4HHgRjn3K2FtV4ROf2o9V34Cv3Xqq6hVZiLxKq6zsjpqKh+4RURERE5FRGhzGRm48xsp5mtyVDezsw2mNk3ZvZodnU45zY75+7KS7AiIiIiIiIiIlIwQm1JNAEYBUxKLzCzSGA00AbYBiw1s3eASOD/Mix/p3NuZ56jlVzTL+8iIiIiIiIiEoqQkkTOuU/NrEqG4obAN865zQBmNhW40Tn3f0CHUw3IzO4G7ga45JJLTrWa05fGvjljKIGXT/L5mtFxERGRE+jvjIiInEFC6m6WhYuArUHvt/llmTKzsmY2BqhnZo9lNZ9zbqxzLs45F3f++efnITwREREREREREQlVoQ1c7ZzbDSSEMq+ZdQQ6VqtWrWCDEhERERERERERIG8tiX4ALg56X8kvyzPn3Fzn3N0xMSE27xURERERERERkTzJS5JoKXC5mVU1s7OA24B38iMoM+toZmP37tW4OyIiIiIiIiIihSGkJJGZTQEWAdXNbJuZ3eWcSwX6Ax8A64Dpzrmv8iMotSQSERERERERESlcoT7d7PYsyt8D3svXiNCYRCIiIiIiIiIihS0v3c0KjFoSiYiIiIiIiIgUrrBMEomIiIiIiIiISOEKyySRBq4WERERERERESlc5pwr6hiyZGa7gO+KOg4JSTng56IOQk6i4xK+dGzCk45L+NKxCU86LuFLxyY86biELx2b8KTjUnAqO+fOz1gY1kkiOX2Y2TLnXFxRxyEn0nEJXzo24UnHJXzp2IQnHZfwpWMTnnRcwpeOTXjScSl8YdndTERERERERERECpeSRCIiIiIiIiIioiSR5JuxRR2AZErHJXzp2IQnHZfwpWMTnnRcwpeOTXjScQlfOjbhScelkGlMIhERERERERERUUsiERERERERERFRkkhERERERERERFCSKOyYmTOzF4LeDzazoUUQRxkzuy+b6bmO08xuMLNHc5inpZnNy2LaFjMrl0PoYc/MUjIpSzCznoUcRwczW2FmK81srZndY2bXmNmiDPNFmdkOM7vQzCaY2UEzOydo+gj/fDjtj01WzCzNzJLNbI2ZzTWzMn55FTM75E9baWZJZlbdn9bSzPb605LNLDGTeiuY2bygY/CeX745vZ6geUeY2SN+vc7M+gRNi/XLBhfojsgDf1vf9LdtuZktMrObC2G9cWY2Mp/qWmBmG/zjtTDjMfo9C7oGvvK3f5CZndJnCDP7m5ldm830PN8Pzax20LW3x8y+zeo6PN1kdT/Kh3p7m9mo/KgrQ73p10368bg1v9fhr6eKmXUtiLrzW1F91vOPxUmPkfbLlwW9jzOzBTnUddrs77wws5v843VlFtMz3aeZzJN+Dawzs7vzOcbeZnZhftZZ1E7lGrEQvmeEuO7eZrYr6G/eTDMrmdd65WRmVsnM3jazjf7nw1FmVjzoM/QK/9r51Mw6ZFg2yj9Ow4sq/t8zJYnCz2/ALZbPX7jNLCqXi5QBskwScQpxOufecc4VyYV8CttfqJxzY5xzkwqqfvNEBL0vhjcIXEfnXF2gHrAA+AyoZGaVgxa/FvjKOfej//4b4Ea/ngigFfBDQcUeJg4552Kdc7WAPUC/oGmb/Gl1gYnAX4KmfeZPi3XOZfal+G/AR865us65q4D0DzdTgdvSZ/L3861+OcAa4E9B9dwOrMzD9hUoMzNgDvCpc+5S51wDvO2rVNDrds4tc87dn49Vdgs61s9lnGhmkfm4rnCSfg3UBNoA1wNDTqUi59xfnXNZJmvy437onFudfu0B7wB/zngdhvvfhWxkdz8KV92C7oUzQ1ngFI5PFeB0SVoU1Ge9E/7W51J5M7s+F/NX4fTZ33lxO/C5/39edPPvR82AZ83srLwGFqQ38LtKElH03zOmBf3NOwJ0yad6xed/NnwLmOOcuxy4HIgG/uHP8plzrp5zrjpwPzDKzFoHVdEG+Bro7Ncl+UhJovCTivflfWDGCWZ2vpnNMrOl/r9mfnlD836VX2EntmTobWbvmNl84GMzO9vMxpnZEn/e9C/6Nf2yZDNbZWaXA8OBy/yyk74InWKcgV8pzewyM/vCzFab2dN2YuuaUn7Wfr2ZTc5w4T/sL7PEzKr5dVUxs/l+7B+b2SV++QQzG2Nmi4F/mNdKJv2XzBUW1BqmqJnZUPNbgfi/OD3rb+PXZtbcL480s+f8fbrKzO7xy0v52/2lv2/Sj2sVP/s+CS+pcHHQKs8BooDdAM6535xzG5xzx4DpBCUo/NdTgt5P5fgfy5bAQrzz4UyxCLgoi2mlgV9yUVdFYFv6G+fcKv/lFE78QNIC+M45953//jughHmtcwxoB7yfi/UWtlbAEefcmPQC59x3zrmXIHCufuafw1+aWVO//ISWheb9wtTbfz3cvNZXq8zseb+ss3mtK1aa2acZ68jhXvmWmf3XvF+z0j+gZOdTIP0elGJmL5jZSqCJmT3kx7HGzB4Mir+nH+9KM3vdL8vqfnnS/crMKpr3a1p6K5Lmp3Y48sY5txO4G+hvnkzvTf52POLfl1aa/2uff2++1X+d2XEMvh/G+n8rVpnZbDM71y/P9D6ZE3+5Eea1mnjAzBqY2f/Ma932gZlV9Oe7zD8flvvnZqatCMJA4H50Kue3md3h778leF9e08uz+7v6b/+YbPavr3HmtY6YEGrQZnaemc3x6//CzOr45UPN7HUzWwi8npvrA+9zS3O/7KTPJmHmVD5DBa4L//0a/zid9LfeP0bLzGsFMSzEmJ4DHs8knqyu79Npf58SMysFXA3chf+5yMyizWyqf87PxvtSmz5/KPu9FHAASPOXud2/R64xs2eD6jqp3D8WE/yy1WY20L+XxgGT/WMRndlKT0PZXSMdzWyxf+0nmlkFv7y3eZ8TYszsO/MTpuZ9/9lqZsVye283L1l9Nv5nu8zWbWYR/r31fH+eCDP7xr+Wc3MPO9O0Ag4758YDOOfS8I53T7zrJMA5l4z3w2r/oOLbgX8B3wNNCiHeM4tzTv/C6B+QgvdFcwsQAwwGhvrT3gSu9l9fAqzzX5cGovzX1wKz/Ne98b6Anue//zvQ3X9dBi/7ejbwEt4vHABn4f3BqwKsyec4ewOj/NfzgNv91wlAiv+6JbAXr4VBBN4H4PS6tgCP+697AvP813OBXv7rO/Ey0gAT/PVEBs3XzH9dKn2fFcUxzqRsKDDYf70AeMF//Ucg0X99N/CE/7o4sAyoipfsKe2Xl8Nr6WP+MTwGNM4ijteAnXgJiW5AhF8eB6wIWs/OoHNoAl6Lli+Ac4FXgWv8Y1OuqK+fgj5mQCQwA2jnv68CHAKSgU3AduCSDOdysv/v8UzqvQ74FfgE78P5hUHT1gB1/ddjgP5B9c7D+1WlP94Xu/HB51C4/fNj/Wc200sCJfzXlwPLgrc1aL5RePeRssAGjj+hs4z//2rgogxlgTrI/l65Ge9eVgIvCXdxJnEuAOL813/G+6URwAF/8l838OM4G+8+8xVeS72aePfccv586ddUVvfLk+5XwCCO3wMjgXMK+xrIUPYrUIGs703XA0lAyQzbPAHvPpLVcQycy8Aq4Br/9d+AEUHH4qT7ZBaxTwBuDVruZf91MT++8/33XYBx/uuPgcv9142A+UV9HWU8Fpx8P8rV+Y2XpP4eOB/vb/9Cjv+Nzu7v6lS8vzE3AvuA2nh/r5cDsVlcNxs4fi8si/e5Y4g/vRWQHHTslwPRp3B9tCTofhHO/zi1z1BDCbrH4/2NqEImf+s5fq1F+vu/TtCxiMviGMUB84E/+K8X+NOyur5Pm/2dh+PUDfiP/zoJ7/7+EMfvE3Xwkhnpfxey2+8b8O5nh4B7/PILOX4NRvn7/6ZsyhvgtT5Oj69Mdsf1dP6XwzVyLsf/bvTh+N+C3hy/h70N/MF/3QV4zX+d473dr2cX3v1qB14r+8gc1j0EeNB/3Zbj99+Q72FFvc+L4Bhn+tkQWAE8mPH+AsQG7b8SwI9431nvBl4q6u35vf07XZta/6455/b5vwjdj/fHJN21wFV2vGFNaf9XjhhgonktgBzeB990Hznn9viv2wI3BP0SVQLvhrUIeNzMKgFvOec2Wgit9k4hzmBN8P7ggXcDfT5o2hLn3DYAM0vG+wD0uT9tStD//wyq6xb/9escb6YIMMN5mWnwPgC/aGaT/e3cRvh6y/9/Od72g3f86tjx8Rxi8L5QbwP+bmYt8D4oXoT3xQ281idfZLYC51wfM6uNd7wG4zXb7O2cW2Ze66TqQA1gcdA5FBzfbXh/YO/h9y/aPxcvAtYBHwVN2+S8JuSYWRe8X77a+dM+c86d0Ic6mHPuAzO71J//emCFmdVyzu3CO8dvM7Ov8K6VIRkWnw5MA670522alw0sTGY2Gu/X2SPOuXi8e9YoM4vF+3X1ihyq2AscBv5jXiuh9NZGC4EJZjad49dQsOzulR875/b68a0FKgNbM6ljspkdwvvgOsAvSwNm+a+vBmY75w74db0FNPfXN8M59zNA0DWV1f3ypPuVmS0FxpnXXXSO835ZCwdZ3ZuuBcY75w7CCducLqvjCICZxeB9CfqfXzQRLymSLrP7ZCim+f9XB2oBH/n7PxLY7u//psCMoONSPBf1F7Ss7ke5Pb/L4SUCdvnl0zh+7WX3d3Wuc86Z2Wpgh3Nutb/8V3jHITmTmLs554LHvLka6ATgnJtvZmXNrLQ/+R3nXPpnitxcH9nssvCTx89QGWX8W/8n88a9icJLBl6Fl6DIydPAE8AjQWVZXd9HQqjvdJfeUgG85OjteC1IR4LX+tfMgvdrdvu9m//56nwgycz+i/elN/ganIzXcthlUf4UcKmZvQS8C3xYIFsdJrK5RioB08xr+XkW8G0mi0/DSw59gvd59eVc3tunOef6mzfjaLwfhoZns+5xeImpEXiJ9fF+ecj3sJz3yBkv+CbfAfjEOXfIzGYBT5rZg0Hf+SSP1N0sfI3Aa956dlBZBN4vRbH+v4uccyl4fzQ+cd74BB3xkj/pDgS9NqBT0PKXOOfWOefeBG7AuwG/Z2atCijOUP0W9DoNTkhmuixeZyWw/c7rp9wHL+u8MKcmpkUsfR8Eb78BA4L2a1Xn3Id4v3SdDzTwkxU7OH4OBB//kzhv3I5/4iWIOgVNmoL3RzVjV7N00/DOu4+c10Xt9+6Qv28r4x2HrMYAeQfvg1zInHN7nHNvOud6AEuDlp+KN+7QtcAq59yODMv9BBzFO3Yf52adReAroH76G+dcP6A13nkLXvPiHUBdvF+w08dqSOXEv1Ml/OVTgYbATLwPCv/1yxPwvuBcDCw3s7IZ4sjuXpndfSdY+tgqNznn0pNIh/PwwSTT+2Vm9yvn3Kd458cPeMmwQh3sPpif3EzDa2mY1b0pW1kdx1zI7D4ZivT7ouGNt5Yed23nXFu8Y/JrUHmsc65GLmMrSFndj/Lj/A5Fel3HMtR7LI/1pgv+uxXy9ZEP6y0KIwj9M1Sm90NfYJ+ZWVW8H35aO+fq4CUTgufNknNuPt4+bRxUfErX9+nOzM7Da+X2mpltwUsS/IkTv6gGzx/SfvcTP1/i/ciWK865X/D+Ti7Aa4X/Wm7rOA2N4ORr5CW8FkO18X6ozOz8fgdo5x/HBnitsXJ9b3fOObxWP+mfzTJdt/95YIf/Haohx4cA+L3fw/JiLd6xCfB/LLgAr+VdRvXwfhgBL2F7rX9tLsdroZqb76+SAyWJwpT/i+t0vBtjug85/ss1/q/u4P2qkz5wcO9sqv0AGOBnxTGzev7/lwKbnXMj8bLgdYD9eOPW5Gecwb7geFLitkymZ6VL0P/pT+FKCqqjG16z0JOY2WV+UuRZvC/jp9sN+QPgXr8VAWZ2hZmdjXf8dzrnjprZH/C+OGTLbynUMqgoFq8LQropQHe8G+7bGZd33tg4jwMvn9KWnKb8FhH3A4Ms80FVr8brdhYSM2tl/hMz/P7ol+E1Mcc5twn4Ge+Xq8wSdQB/BR45DX45mY83htK9QWXBTwqJAbb7CcceeC06wDsnrzLvSRdl8BJL6eNExDjn3sNLMNX1yy9zzi12zv0Vr6l48Dhc6esJ5V6ZF58BN5lZSf/6vNkvm483uGJZP9bz/PkzvV9mdr8yb0D5Hc65V/G+HAQSb4XJ/yV8DN4HZUfW96aPgDuCzvHzMtST6XFM57yWL7/Y8fGGegD/I/9sAM43syZ+PMXMrKZzbh/wrZl19svNzOpmV1FRyOR+lNvzezFwjd+KpxjQOWhaSH9X8+Azv178v0U/+/s9o5CvD0L83BJOcvkZagv+NW9m9fG6fGWmNF7SaK95Y7XkZjBq8FoTPRz0Pqvr+7Tb37l0K/C6c66yc66Kc+5ivFYjy/EH7DazWnifmSHE/e7fD+vhfVZYgncNljPvoQe3493jMi03bxDnCOfcLLwfRNL/Bvxuj0UW10jwva5XFsul4N0b/oXXbSktD/f24M922a37NeANTuzFkJt72JnmY6Bk+g9e/rn+At7QAsEtxzBv3LongdF+Iqk53vAOVZxzVfB+LMnr4PISREmi8PYCXnPwdPcDceYNHLgW71cE8JqB/5+ZrSD7X/Gewmt+vsq8ZuFP+eV/AtaY13y9FjDJObcbL7O9xjIfuPpU4gz2IPCQ30y3Gl63g1Cc6y/zAMcHsxuA90VkFd6XiAeyWPZBf3tW4bXAKKqBfkua2bagfw+FuNxreFn3L81sDfAK3vGejLe/V+ON1bQ+hLoMbxDwDf5xH0bQlwrn3Dq8Dzvznd9tJiPn3Ct+IuOM4pxbgdd8PP2PUfoA7yvxxv3qk+XCJ2sALPPPyUV4feaXBk2fgvfBIbOuUzjnkpxzc3K5CYXOTyTchPeh91vzBsmdyPEuDS8Dvfx9eCX+r+L+L3PT8cbemI7XTx28D8Pz/P32Od4YEQDPmT/QJ96X3IxPfAv1XnnKnHNf4o3bsgTvS/hrzrkVzrmvgGfwPuivBF70F8nqfpnZ/aolsNKPvwvHu0EUhmj/PP8KSMT74Js+MGum9ybn3H/xfs1d5t9nBmeoM6vjGKwX3nFdhZfM/lt+bZBz7gjeF8Fn/WOSzPFum92Au/zyr/Cf6BhuMtyPcnV+O+e2441zswiv68O6oMmh/l09VUOBBn79w8niix65uz5WAWnmDZJ+Og2kHOpnqFnAef412B9vjLOTOOdW4t0r1+N151+Ym2D8pO2uoKKsPnucrvs7VLcDszOUzcJLzpUys3V496PlENJ+n+zfB5cDE5xzy/1r8FG8LlErgeXOubezKsfrYrrAr+cN4DG/7gnAGPt9DVwdLOM1MhSvy9hyvB/TsjIN7wfPaUFlod7bu/j7cxVeUi/9O1N2634Hb3yh8UFlubmHnVH8z4Y3A7ea2Ua8h+kcc84948/S3LxBvTfgdfm73zn3sb/MfOdccEvWt4GOZhZOXcNPa+kDb4kUKv+XlEPOOWdmt+ENYh2WH8JFRERERESyYmZxeAMxF8mTR0935j3Zdgpws/+DmxQhDVwtRaUB3kC1hveEnDuLNhwREREREZHcMbNHgXvxu9FK7jnnkghhyAwpHGpJJCIiIiIiIiIiGpNIRERERERERESUJBIREREREREREZQkEhERERERERERlCQSEREROYGZOTN7I+h9lJntMrN5uaxni5mVy+s8IiIiIoVFSSIRERGREx0AaplZtP++DfBDEcYjIiIiUiiUJBIRERE52XtAe//17cCU9Almdp6ZzTGzVWb2hZnV8cvLmtmHZvaVmb0GWNAy3c1siZklm9krZhZZmBsjIiIiEgoliURERERONhW4zcxKAHWAxUHThgErnHN1gL8Ak/zyIcDnzrmawGzgEgAzqwF0AZo552KBNKBbYWyEiIiISG5EFXUAIiIiIuHGObfKzKrgtSJ6L8Pkq4FO/nzz/RZEpYEWwC1++btm9os/f2ugAbDUzACigZ0FvhEiIiIiuaQkkYiIiEjm3gGeB1oCZfNQjwETnXOP5UdQIiIiIgVF3c1EREREMjcOGOacW52h/DP87mJm1hL42Tm3D/gU6OqXXw+c68//MXCrmZX3p51nZpULPHoRERGRXFJLIhEREZFMOOe2ASMzmTQUGGdmq4CDQC+/fBgwxcy+ApKA7/161prZE8CHZhYBHAX6Ad8V7BaIiIiI5I4554o6BhERERERERERKWLqbiYiIiIiIiIiIkoSiYiIiIiIiIiIkkQiIiIiIiIiIoKSRCIiIiIiIiIigpJEIiIiIiIiIiKCkkQiIiIiIiIiIoKSRCIiIiIiIiIiAvw/z6g/52GFYvsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "x_pos = np.arange(len(names))\n", + "\n", + "fig, axes = plt.subplots(figsize=(20,4))\n", + "plt.bar(x_pos - 0.5, stft_score, 0.1, label = 'STFT Accuracy Score')\n", + "plt.bar(x_pos - 0.4, dwtC_score, 0.1, label = 'DWT Coffs. Accuracy Score')\n", + "plt.bar(x_pos - 0.2, dwtDC_score, 0.1, label = 'DWT Deep Coffs. Accuracy Score')\n", + "plt.bar(x_pos, stft_learnTime, 0.1, label = 'STFT Learn Time')\n", + "plt.bar(x_pos+0.1, dwtC_learnTime, 0.1, label = 'DWT Coffs. Learn Time')\n", + "plt.bar(x_pos+0.3, dwtDC_learnTime, 0.1, label = 'DWT Deep Coffs. Learn Time')\n", + " \n", + "plt.xticks(x_pos, names)\n", + "plt.xlabel(\"Model\")\n", + "axes.set_yscale(\"log\") #the log transformation\n", + "plt.title(\"Audio Classification Using Vairious Models and Feature Representations\")\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "40263d30", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "10" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(stft_score)" + ] + }, + { + "cell_type": "markdown", + "id": "d1eaf892", + "metadata": {}, + "source": [ + "### 5.1.2 Laplace on functions and graphs\n", + "\n", + "The Laplace operator can act as a digital filter that, when applied to an image, can be used for edge detection. \n", + "\n", + "### Image Edge Detection\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 119, + "id": "d74476f8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 119, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD8CAYAAABXe05zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9WbAtW3aeh31jNtmstfbe55x7bld1q7moQsdCRxAECIANSMIgaTJM0xZl2Q+2bEcwwg6/+Ml8dPiJ745whBm2wnqRLZm0LDFE0Q1Ny3DQlknJlMKiCAIUIVQVUHWbc87eezWZOZvhhzFzrXUuqkBSFOyL4J0RdWuf1WTmypxzzDH+8Y9/iKry2fhsfDY+G5+N3znD/f/7Aj4bn43Pxmfjs/FPNj4z3J+Nz8Zn47PxO2x8Zrg/G5+Nz8Zn43fY+MxwfzY+G5+Nz8bvsPGZ4f5sfDY+G5+N32HjM8P92fhsfDY+G7/Dxm+b4RaRPy4ivyQivyIif/636zyfjc/GZ+Oz8c/akN8OHreIeODvA/8F4BvA3wL+66r6d/9zP9ln47Px2fhs/DM2frs87p8EfkVV/xNVXYD/DfCnf5vO9dn4bHw2Phv/TI3w23TczwNfv/r3N4Cf+m4fdiLqnfzWRxQQZP2z/QfQq79f//hrY40r5PxlPR/v+v3Lu5cDy2vva3tNXju9Xs7w2qcF4TvFNK9/6jtf9/VP/E2fkav32kV4oHdCJ+BQvBecCFoVrXYUJ3YPRKT9r92T9przDr26uPV70N53DtVKyRVV+66qsgZu3ttxAVTE7rITEKhFKaWCKqgiYNenkFVxzlGrfUYA5+zeabuHa3ToAO8hBme/wQmIs+to1+rWp1LtOlGlVr38dtd+tCpopVYQL7/prst5rnC+BhF7terlt6/PROTq76tJJ6892PXhaftNYvfq6r6IgHiHiAPnXpsXWts9XNfEer+rUrUirOdTSrHr815wzp5NVajt3K59Xz+xHkBBXLvGy/y2OeOuPqWv/d7Lnbr67VfP7rJi5HyrFfvt59+93hteH9ouyTn32jGkzaFaFahX1yio1k+cQy824Or+idgcQsA5jzibTzVnVOvFYoi09+qVUeH8nGqpV+/p+dhyPsd3sXPtdRF3/sg3PnjJi/vDd/zCb5fh/k4ne+05iMifA/4cmDF5su0BxbULv4Zw1h/tnC10J4JvD+vaZDrXJp+AE3c14S5G2IkgOPvsOuFtvQD16vIv78u6qNrfYMajXr22LoT1s9fftXPoZXLr+kDX89opHWKGldX4VcTJZXHrJxaE2hUHUb5w0/E9neNOCqMqwQlD59gNnrIUjsdEdEofYbsb2N31bKKn1EzoOugjuVSyKpqV4AUthfmwUFS4ud0QIixLJk8zonaduShFlarCOEZi59EQmYuQROjHkRAd++OJ0/6EnGbSkgkI3gspK/tFmQvEviOKshwSVQt0EfWOeUo8HhfAczPA597a8NYbGyQ44mZAFaZFqcUMYN8HIpkyTcynhVoqOSvLlPBOCN4TOoePHbVW0mmBUlAHcbB5WGvFiSMEe9ZpqagWfPTUqiypklNFUJwoznt89HjvcCiUggdiEOLYUUVIS6YWwXceL0othZJB+y2z7zjuj7jpwK4ThjHi+kAcB5wL1LyAVnKpSKk476labJ74wLIUltNC8I6uC6gq85xYlkrfCduxA3EspdoGFgLihGlSSimMQ7BnV6XNa0HFo6KUpMypgqt0wdl8kUjKGUh0MdoGVgrOeZzzbf2AikJVtCias60wH1FxqAOVYOerlT4owTtqzaSlUksB53EihLD+zyFhRHxEnKPiKBVy26ACSoge1w2UUlimmVKyXZOA1IKI4mPE+4DzwdZSiGiMhNjRdT0uCCUX8nyCCqUoKSfEB/tsydRa8N7jQkS8w3UdtSq1QqlALuAU7x0+OLs3IRBCIHQdEgdqgVoTVYVaM06wexwjf/J/+D/7bvb1t81wfwP4wtW/3wN+/foDqvoXgb8IEL1TtL62G71m8LjaiVk/pheTresGd7WLqwIOtLZP6dlHVhTVK2/7NZz/u73evqm2uWj76OpVCauH+Z1zBq95+s3bOx//HE1chQ8CoteW/XIO+9s+fxMDX731fLETNlqQXIgieFVcVvJss6h3lWETuNl1bLcd4xiotdBtNgw3G06nmbwUai0sUz4vulIFFx3H08J8nxmjsuk8eamcpkxB8NGx23S4GCkhUsRTm+cyz5nHxwmpib5kxAmhC9QCWeGwJPZTJRfFAwQHTlAC6j1958lF6CNsovL2k8jbzzZI9IS+J83KtCSKBjR4uuhJKVOnCc0JUfDOUZ3SD4GSM0pFcOR5RpzgRKkihOARlKoFreB7QbQyzRlRJQTzqKalUhW6aAbYiT2XYp4C3gvBC04czgm1VkpVKC0CSFBQ1EP1jn0uHOcFtyzcDZ7YBRTFKeg8M+cToPjgzWHImZwTfhyoRVkOE04c2yGiQEqZZS54B3c3A10fmJfMdFpQlBgCVGVaKkWVYQg4Z0bbeQcFSs7gBBccYQyEwZPTZJtSdVQKntIMn0droWqFDC4K3ju0ZrQUFIfmAgguBKq4ZuA8qhXnlBjMgau1UtWhVHJx1JwYu0AXO7xz5+hGnGPJymmeKbnQR0/oeqoqpSpSM1RtG3UgeA9ASqtjFEAtCqwoQiGGQHAezZk8z6gWW+vOU0uxyFUzVFBtkbQoNc246hHAx0joPFUd9H3bYCtaEhWHVzPkcRzw3S3LMlOmQs2ZWiuIol5es0/fafx2Ge6/BXyviLwPfBP4F4D/xm/9FWnh0bXXezHg63BchWTXdk70HO7J6jG0R8LqdaujniNh+4xovTq6vhYGwrohrKZfQYUqdr71fbnypgWhcgmB4Tp0vURQa4i5ht2KhUlOWtRgL5wvdQVcnAoqFS/w7q7nB590bPOCr5nOm5GKFIIAVZAqxM5x99aWrvcMfUQ0kXOGGPCx43RazJNOBWpFl0T//E18hPTRPfOiHGvmyejZDVDnwmlKVAn0Y2AYOwgD2UXUgVDxOB4PE2la2HRKdEI39NSUefWYmItyTJXDbJ7SZuhwfWBWKC5TSyVoRYtDHLz7LPL8JhKihxAREfYPE6elUIvSDQafzMcJXzJ1ybbxUREBjzDnjPOeoe9QrQSBkiviHNHb/fYORD3eCSVXUkq2mKXas6/mEfkQkGpeuHiHFsVrxZVK8J4YA+IcOVdqafPS2VxRVVSEWoUFWJYFlyu7wPl73hvMlFJBi80v75Ss5s354FGJLFrAKzFYBLZMhVwqMQrj2BH7gZQrc1Zc8PRRKFlZ5gXE0wWLIKoWOglogZwztVgY6p3iglCphBAQrVSpdk9qQEuyCBaLZNeNUEtBRZuBFPAWTbpAg3McWQvihc63daig4nA+EHCoJmIY6aJHFVJWfAhUhTQnpqTkXO2ZNahMsEgxzwaRdd4RYrANLTeoDA8q5JKoUlAJRJdxBCgLtSpaZmp1aDAnT0syG+M8ikFStSZUHS5422Sb3XLO410E72zz7jpyUsq0h5JYnTfnVyfFNqIYe8Q7Sk1oSgaJfZfx22K4VTWLyP8A+D9g0Ou/pKr/0Xf9PAY7uLNXauMCN1x9uHmnev362c6JOd16gUn07I6bZdXazKkDoTQYymGgw+WAqhXEmUctq5duXvwF19UzntZ8aDuKyNk4n+33GfNqk0tXCKjhvCuS26IJg1RWDK95Cc1L773jq7cdX3s6sKkLQkay0uFQqXROCc4RHGx2kd2TLRLsvL4LaK50mxH1HucFXYTjvBC7SNnPuL7n6dvPON6/QAVyLbx913HTeY7HmWmu4Du2u55u7FEfmNRRmtEqtXK/P1GmmUEgFiW4QE6F/SGxT5XTUpnmQvDC87fuSM4xzYU6T7hS6GLbxGrm83eRTQAfHXHTg3qWuTBPCzkrnXeU44l8tHhnxcZLKkC1xZBBXES8B+fwCCVlXAyGrZcKJePFE7ywJPPWuxDOUFjRindCDHafizasqoBTg0yC94gY/k2pqFTDZFXQrGf8tFCa8+Hoo6OLBacVHwJdF20t+IbT5oTWzJwqvu/wzpPmxOF+T4yBIJ55rtSU8M6x3Xi6LlLFcZoyy1JwDroYqKWy5GyQgwvMKYMzY5mzQi3MubZ1p5Sy2DoQi17xnhCCRZfz0vDmCrUYTOR8w4TFfnNd4xuDN0UNInKq9N6cFql2XxGhALUudCFwM25Q8UxLJmWDgZw4UhZOyaKeGHy7TQo1Iz6wci66LhBbzqaUiqrifaRUSMtCpSIh4rvOjOUys+a21lyLZYvMOahq6xfnKCWhJeG6gVohUc3Q1oKXjjAanKQ1ISjDMJColPlIKUpOGeUIpRJDBx2Ij1CVsigpHS2C+S7jt8vjRlX/KvBX/3E/f+1ZXye9pGXOzgk0pe3k7TP2DagtjNILUq2rwbYznFEHlWphYUtGXGCUC55t510N6eUY5+tiNbY0c70a79dAHM6QyAqHqOGwcjbIzZPmsiGtHtmKAV0b7ieD40tbz/sbxzOdiRRUzcsvKeMqEGCz8Tx7PrK5GTgcMmWuFK2EGPF9B07ogqDqWGpiOzo0FTbPNmzGjtP9hxxePtI75Y3nI06E43FhSoIMPbsxEoeR5HvmXFlqJjghLQv744mAsomOsiwss3A8zbw8JLJE1EWKzojAMPakqizLjC4FV7SFtsJ29Dx5MrIahthFUsqkVG0hB+F21yKGOTWvT6neIquaFbQQABFv3pwIKRlk0283eA/kzHxIeN829ZSIzkMXaW4yghLVPisiECNSMmVJpDk1XDLQxUtUZ8lQQWt73sFjhqDinKemSucdEUGLoxsa9rlir13AhY66nMinR0IwSCIvBr103qNFOCwz1MrYezYbyzOkAqcpMy9KFwUngWky+CP2A4JFAt47ShVyrmRqm+6O4JVSLZoQsMgCyy9RC6hiULZD6xolVqqaI1NysoSvgGgB5wBHqWrevANNhVIVJwXXedR5SjFIqo8eEcdSClUNO1eEOdsGSrvOXEFLIbpCdR5UCV3H0Ed86NBqv0NrtWt3LRleLUk79J4YPHXJ5GXG4SB4wOOCrcWqSsUcEpwi1SJ4ccFgHXVozrgQDP4qxRLoXY9qR11mRDN937Og1LJQK4b9K4S+ww9b0pyYjy+hVnMkrogBnxy/bYb7n3g0z9SMJmePFC74ttA8avlE8q85y6JmQn8TYi1tH9XV8J6BcHRFRlrSU9fkYYNNVnjkwgy4wmfOZpfzbiOvZRz1/DvOTv9VRHH+3ZdPo3o5xoVFI3Te8d5Nz1dGeKKZJ6EyACkpaSl4rQQM09vtAs/fumG8HdnvjxTMaHh1kAsuWmi7LBnvhG3nOc2VzZu3DMGxnGYeXh0QYDcG0lKZk5IqdJuBcTfgQseicGwhXXSekmb2j3vqVHGqLKLMS6bi2GdYiMQ+Mnoh+45abfM77U9oVgxWstD8ye3Izc0IPoL3aFlY5oVlqeQKm01EtJKmmYCgTvCNBbHe7JITfddCWyykTrkgztN5ZwusVPKcQNVYIg2L1QIh2CbrYiCMETcndIGqgsrKbIC+j3RDxLUIZp0VkjM5KYpbny6hEyBQcyH4YBtMqXQ9hCjgGlRRM973FK1U7wnbG/LhyHE/I1S2u4GcK/cPMzVl7m56brc91XkOp4V5NuPWdx2ocpoKODGYSISqFRccmg02q+IQlK7v7H6WxRJv3q7du3ZvSzGYpuHNqgZH1sYKoVRSzmjJiHOEhvNrKaRScY0pU0shz4mUbRNdUgVJxOgJYSCnZFBKtGReypDzJYLyzhhOYjs0mhK4hHcDYxwIwdm90waVefOiLbqvhOjxLuCdInlBSiXXgtYF10V8EAjeEo2lWpTmuuZhCUikVEugGhsrgmDP33nKknBhwvkegsd7D6HHKZRpMTis6wFvvoE4FEeaZ5xUak6fsGSvj0+N4X6dKePOGPLqcZ8/hzFG3Mr0aHj3inGjcvZ4PY2G0wz++TBtYTcUpHnOVzS4KxqUWVvD35xzVDU3v6K2YzrOSdHVg75EAqvXvk7s14322ZmXC0Ol7V4XL9vBk7Hjdz0b+ELI9CmxDcLgIeVKSRVRM0pdcOxuIs/efkItlRf3JzY3OyTNlFII4hh6x5wKUxE2nZCnBMPA3ZMNfd9z/+IFp/0M2Tys/T5xmgtx6NhsB/pxoIaeU4XTsgBCdMLpcGQ+HlmOM1oU1wUzHs7Rb3o2fsTnxE0sDOPIfqkcH47UKUGq5mV1Ee+Ut97eErwnqZgxFIM6llTIS2G7HUgpMU/NE/dC58S8IXHGsFgWovdUVYbOcOPjXIjDSOh7KJm6TOa9qVJqpe8CInCaCloqIsmglCDIMlNLoVbFuUBKlTzPdMHTD4EwbsB5qCBkalqoueJjRH2klkzXmdFKUyItFjl0XaTrPQ5BM2ieGmjmOB0mllLx25HNdkvKtqltuh4JPSklvEzc7hy7baRq5XgsnOZM8ND1HSrKKVUSjs4LpTEhQgzUXA2/bU7LEB1O89k7vbC5Wh5GjJGjzYFx4lsit1ikUpSUF2het+WajH0DxrzRaglItHndYvNRCgx9QFRYFrvvYYjgAnMqaMl4ZzCXIs2QGjhZ5hm0EF1gcA6plbTMqHibPziq8xR15LZ5xGgbfSmFmhIlV2On1IwHgirUQMG+IyrETnAhUvRCOaxqiWsRsY3OWaRQKjDNhJhxMeLHHeJHikKpGdSorC70RgiYJ2paAEhpaXmz715m86kw3MJqtM3QiTT2hnPt/Qt31sxtRZurrM0wmo/MGU5pUdHZAJpRbia9wXX2Zm1HVWQ9Zm3eM9f0PvMwrlkeqxd/yTw28EQueP0KwrjmRZ9hEq7gk8tPt2hC7XXnhfduO3738w1PdYHTQu9gDGKTqVYC5jl1vePps4Gbp1vSXHl8mPFdJGelqCdGYRsd83EmV0AK+wXGzUDv4fjqkZfTC/KcEFXSAnOuVO/oNwM3t1t813EqnsOUqaXQBQNz718+QM587r23KGnh/qNXvLpfwHtu7m5YnJDnmdGD6zacijAdTsi8ELUSN5G+99xsA/1mBG/eklRHyYVSzTvzbbE/Ph4pYlTECEQBdcb2KSVTK4QQ8M42KnGerOAD5JQs5FXonT1FUWUcA847UioND7Vkm3egOVGWQs4FFzpKTixLssgtdLhxREOjxNVETYmaSsudKMGDi56aC8ucmE5LSyB6gmQkl4bNmsdWijJNE7UouWRO04IrmcFD13uKAikx9I6bfkugMi+Vaa5UMfaM85GkFaP3BFJW6pzRVOn7gKhhuPYcHdE7nJYWeSg1G1Zr2HyxiDQEKhgEokrN0xnGyKWyTJmqieDDFZ6tiDf63dnZamtWnDldzju6zhMaAwcXDPfFaI6aCyE4vHMsuQCe6BvDphaLZEQtyYlS5oUiiosRgCqVXDwqARcwb52MFrV8g0K6glNKUeaScb5aTkQErYlcbE7lLJSacN4Tux7EI2IbOqpoyVALRgitdMEjztZ96CO+e9Ow/5qp84lSCyUt1LQYbdHH86b53canwnADv+kiX0tMNgPnzhCJvXddcHFJAuoZuxZnD9JdGXZpyIe6BmmcaTeWOT/DGmsWkxXqqGfIxGhBdkRtSce25VyAlNWWf+J3Xnja6wXxCVjEzjdEx/c+2fD9N8LbIVOXQhXDjWtOhrMVpescm9vI8ze3eOeYT4nHx4lcHV0fEaf0wSM5kRfjsOIC26c3VmxzPHH/4T3zYovWC+TqSCh0ge2mY9x0EDoONfA4JUotDEFZTon5ODNGz3h3Qx88h6lwnMxKqg/cz5n9aSLNmaKBblAGKbiUiOLwQ2DsPLd3luicGzNB1JFSMm52SXTRIzlT1NF5o7dFL0hVigukCq70bHcbou+Q0BNiT67gNhs6H1gW4xPnmhmCw2lC6kwXAM3keaHUAy4ulDRTJVDAsHexRW60LQM/XB9x/Wic5FKoeaZM5mmLeMR5ohfjbKeFkirLqaBUtqNHcFBtztWUiNHhXGRZFptb3iCENM+4XvC7jiKRMs90bmbbWwLscCw8PC6E4Bi3Pa7zpOLxKoh4g9JcgQRLUZxreZFS8CLmXaZEFU8uSk7JqIeaoPHZFSXXisQOUEqaEFVciDbvnQNXccXYCJoTqVgkFRoXey2UUXVULZRstMmxC4BYck8c4j0pZ1LKOJSu6xEn5GTFLU4qmgxDDyL0Y0ToUMRol43pQ6nMNVOqQ50QhohzArlY3UU13lkVRWKAIu0YQkqLMbT6aBFaaN73Uigp451dpzhnHG4B8R71sdEHwTXcu1RzXFzv8N2A8x0lF5bpQJqPlOWIqDMKJpXYDzgJvwVQ8iky3JdxMaSrkXZcDB6sRlob7e6SLLxAEdoSVa3gpn23rFlPVoiF8+fN81ptafOiz8nM1devDUI514uxAi3QPP0VdvnEr1EMaln3J2m4J6yJyEuk8Hwz8CPPB951mVEXdFKCWiSe5oUxAg5iF9jdDtw8HQBhWSqPh0QSx7N37+g7T5kndM4Muy1SKzUMPHt2x7K/p5bMy/2RshS6YOH6ccpU7+i2kXHocF0kiZAJ7KeJnAqiyv6YCCTeeOOOoIaffvThC/b7zGmqLEthKgtLganA1Dyvpyi9MxqXergdPJvRkwWUxuAoqcESFa2Kd+ZZBR8YYsdxUdx2i799k6df+DK752/T3T5n9+wp/d0T4u6WbhzMy4vRNitxiFur6fRCyyvF8NRlIR2PpOOR6X7P/OpD5lff4vjBNzl98E309DGunPCu4j2oA98N0HmQSp1n0uFkxix2qHP46HBiYb42fnGMjjF6tDRuN+YIxM6ivlqFYbfhdMocp5ngHDfbDp8L6ZihE/oAQwjUpExp4XAsVCpd11nirVQriinClDNOPGPXkcVCdO9tvsXgjd5XCqXCUispFYLzeHEGgVShYEU7lihNxm+mOVclQ4gEMc53KYU0L5aw9GIee1ujtViF6pLMg4+9N252gx1dNAOe5oxSrOCmH1BVcjL4yjlLhqZS6QOMY4e4YEyNbMwOgzCgFmGpBeeN5unkvOLQSqNWFvPHQoeGnpoSOS1mK7JtpqJnzhelGlPIxwFx0SKEmu2ZV8P8xRtEZcnx9j0VY8/4QMWT5gfKdIQ8Q1GKmscfumD1EFNCS/muVvJTZbhfZ5bYpHZiHjNSm7GzcUk0XBWn61oZSeOTOiynUlvhjCVl0NfNbuP82f/an2sF5oVO2BZZw9QvIV/7bPve2bvXFbcXoJ5LsC/pxvWi11esWvGLdwM/8mzgqWT8MjNIRXPlNCldB7vBEVvYdbONOJS8KFMqLLnSbTqe7HqiL+TDAXGBzbZHQsAPAz4l5lcveHjxQJoz3juGMZLnwmExetS46xn6joLnVIWpFtCFAEwpkZfE6GEzduy2kbzAw8PE6ZCYj5llqqSlcipKdULXRViSeUtLZkEJnWO3C9w+Ge2u+HhOYumSSUs23D52ZAb87bvcfPH7ePKl72H79ufZvv0u22dP8N0GLel8//VcMvzJMPOSVBZd4St7vh6hVwWKUfkkmsdTF6iJNE3sP/qY6cNvs3z069x/4x8wfes/ReoDjkKdH9G5FWuIUBG6LuBrNo81RFQ8XWf4bp6XNocFcUYBrKUY79dDdRHXOTZaiV4o88ySKp0I4+DoYsd8yuwfT+RSiJuBvh+w/G5m221QYE4Z0UoQY0TEzllCWAsxOJxCzUJVYSmNy+0d4rQ5GUJJ5p3KugZdKzjKhVyzJS9bXqimyjxbIrhza/Gbv6wrxBKXWumHnhiMRQIQgvGw58WSxH0UYgyUquRiuRRnySBEhT56NoPHh44qDi0VqzR2FDxzUUpJOGf5MIdYpOocVY3KWYpVyKoT8M0zchaR9FgSOhUo84KrCiGAOHy3QXzEebufVStVLSIJ1X6rODH4TBz4DsQSnWnaU6qwHB5gmRBv1ZQ15Zang7wkDq8+4LcSAPx0GO6zgeNMxXPuAo1Iu/Fm+ow5UlticuVNX0MUThoxTGubqPa3sTVWo9nAcDhDIKwOOXziptnOZ9lz+wuMrXNdXEO7LrneCGjRwCeYIhd/317pnfD+3cD7vXCzHBlcxdVCTubtbAbPk40lz2q1aresQs5CepgpWnn6bEffeaRUlsOJbuwIzqoYN0FYHvfc3+85HhZSLoxjxKNMJ+Puig+Mu4F+jEzFcyjCnBPBCYHK4TARnW0YVOX2buDw6pH7VzPTZBBCyZXgIAWh77yVX9fCKMACm9Gx2w5stx396KnOOMcURdOCZjgdlfDkPZ595Qe4+eIP8O7v+iHGZ2/g+8G8MoltsywGablwda+boRAHEtpivJocazJh3aC1QWCrB14LosmSTnijz20iT790g3zxy5aMy4maFqaXL/nwl/8e0zf+Pvtf+2Xyx9+AejC+MQVxSl0KRQTf9VSnlDlbeL5UCO5M8fMxoOI4HBZwmaH3BKkspbAkZeg825uB2AVOp8z9qxPLnNje9IQYWBRccGzGQK3GTBGqJQPVGB4iHgnQ4QxuaOXZqSjeQxDzwEVWQ4olBGs1o+QqPnrSvBilDwwnxgpS5kXBC0McDOMtSsmKd8YcqWqFS9EpooX5lBAf6TcDRZXpuKAqDJsO7yBn20ykUQFrzvjgGIahMXAcqdijdl7wPpJVqLniQmc+ci2gCS0miVAxb90SiuHMM/dqEbVgfHRadfNS1WAsVbwKoQ84F1Ayos6462Ket2vzrtTGNImOOAz4fqAWIe0PlHzCh4ATD7E/R3+x66jFU3Li+PAROR1xrdrzO41Ph+G+Gp8UP7Lbd2Xu1IzjSnG8Zmp4cWe2zjksumaHtOPrtZU/L+BrcEOv/h/Anb32M9f6NyFQ6+bxmxMKa1r12sC3aY8Ad13gqzvPO75wR+FJ9HiFx2PFodz0nqEzHM1F46p2d1vKYgVEw2hl0n1nXNn5NBm7Yp8pA3RFePX4iuOxkFOmqrJ7usMhnA5Ly24HdndbfBeYiDzmymlJRusrC4/TzFYqnRNc6NjejBweTpwOicfHRG2GAwfFVWLvCaqkJVGrMkbH8/e2jJuIhAgKGStmoRTyIrB5h90P/BDf+6M/wbMvvc9w9wQXhsYBvno8GBiG64wu6DyIMUeuVLQuEwiu1RAueZH1kNew2Zqz0MbXbaGw1mQUt5rAO0IcudncsfvcF9D6R0mz8vitD3jxH/9tDr/y/6K+/Ifk0wt79lVY5oyIGQy06ZUEmoMSyeo4HReqwnYjSErMp8IyK10X2OwizsHhkHj18gSq3D4ZwQfmDHGMdFHIuSXgJZh3nxXXKjb9OUekqESyFuZS8CEiAoVKFzqCiO2H3vQ6ijpCo7TnlMi5Usq6KpW6JGg1Al1nRiwXNV0PcUabmxOh7+hiIC0Lh2MiemG7GZC+g6SEoIToCF0kLQXVbGu1ZBSIXhg6T4jOiKO13T/FPGkRarEKUe/b718SVKXiWIowz4mqiRgC3kN13mqbc8ZTz0yXvEIpWJJZfMS3AhnNiSqV6gUnxiRREdK8IGp5A1wwB9IbLJZOJ3KazzmSfrACqJoaiycY42jeP0JeuHvjDXz47ub5U2u4V4jErZ54+68xfbV91r6zwhOXT34S0rCxFsKsK3j1grUdbE12XlMNuTr7+RrN0l82GC7X8brZvhh6UT3TqMxbNOz2vZuBrz3peM5C15IxUiGnwpNtxxgxPQwHwyYSNx3DdkMuiVQzfYyEMRrnuGTzSlwkVWXYgmQ4Pswcp8UEmKKj73uKOuZkoj/d2LHddEjsmfE8zAvLnPEop9PCtD+yrRU6h9/2aIFXLx9ZlszjY2HKytDFVqggFg2kiiiEYOHn07uefoxk7Ld5sTLzaRm5+9Lv4os//tO8+X2/i82zZ2bYxZ/vnd1Ao4bhA4TRkk/OtUlgtEBKRnM6e+JSLCy/5DTOpVlA+z7BEmtiHqkpmTk7VwjmtdO8N8WSicW0J7QsUBZEKt1Gef5938vzH/gay+Of4fStX+XD/+D/zv5X/j2Ov/4rhDohWBGUjwHvrBIUlONhYVpM7XA7OrTCYaoojs1dZOyM6fDRi4XptBCdMPSBOZuh2j7pCDEYBFMViZdCJUqh4okh2NQXC1IUcJ2n9wM55VaQ1dFFh3eemqvxu1F8MKqb5R0sV5Szrc95Mc9+M0a6YAeurfLGR2/wVzXPvfOORQtzARcCXefNCSqVro/00bDps9FXoSQrNe+6ji54fPAW6YrgnXnwKoY9l1IaXOrRmg1+sEdGyokpGzwSnCVC1QEuNrW/Yrz+4HHB4apDU8Y5oe9GQuzA232py8kKdWLA4+iDQ6JnKpXTtKC1MmxGqJ40zeRlTy0Tod8Qhg2IRTo2f2xOLsdH0jJDndnd3LC5ufst7eSnxHC/Tn1Z4QczhBcGxmoAz59Zv2AR2hXkcjbt7e21EGbFN688ar1MZlZce2WMNPjkGjW5OHOXMGaNCtZ/nKmLQlNLkbPHt35uGwPfdxf5vpvIE1mQlFmyOY+UzJNtYDv4s75C9I5h7Oluxqb1oGxuBxNXKuZFBxc4Ho+Erme79XhV7vdHTlMChDGa4Z7nzEwi9h032y3d0DNVz1yEaTmRF4MPDseZfDgRSmJzt+HmbsNhKhyOiWVamJJ5Ms4rc8qoE257oZaKxwR3hsExjB390CFOKKkSfSTevsWzH/wpPv+jP8GzL38PYRgBB+Lb03MNwRogjmZE1/LqUmA5ng0ndWkJwAI1rw+zwR/1ytOuV0/rah4I5k7SEpjNYxLX2UbhOyQMEHt7QF1AiMDGytpLhmVBywnSidhVui9/hbsvfoH58U9y/w//Ph/8+7/I4R/8bTi9RFzFReOoH08zy1LYDBEfAqfTjKqVzu9uB6J3HB5OvHg1USrc7DqcOPbHBL7y5NmGIBVNi9EhqeSTJdccQJNyNYprQasjFcVFo0yKGI7u17LRdv9VFPHeSsZrMXepOmouSAWpldOSAeVmGwleSHOy3JILZuhrwflIN3ZQhVwKIp7dZjRMvBov3qvaZiEm8OSkolSKJoL39H2gi72pMmbDgvvOzqlaWLI9Se+94fJVyTlTakarkKsZdqfgvD/DY0ZuqLYZO/vtOZtDJU7ouh6cI67qh4DzjqKRtCyUqoSqeDnRbbZsbm+ZUuW0f2kiW6FnPjwyP7ygi47dE4VBCbFDxVsCMs+UWsnphBNh3AwMY4+0CP+7jU+J4b6MdUmtJeCwVhPCWiGz1rzAOefB+q9VfMrKxi/mW1hD4iZG1Qy0sHraFyhjff0191l4bTOx1y5wypUjz4qhGwvFTiy6wiXKm0Pkh28j743Ksy0cXmWDGkSIVJ5tIrtd80ZEqBlOi5KPC50LdMEgFOPOzHaOYmXlfR8Ye+W0n3g4JpbFElFDdKSsTEkgeProGTcjrhuZEO6n2aKUauyU+TSjS2LTCW+++QzvPS/3if2UOR0TUw2MY0dfE6f91O67kpOjCyDBM9z2jNvBQu6qVAKbt77IOz/yM3zux3+S3Vvv4Jp3bU9v3fA6NIxItIVDXWB5hHyyApWSoKamtd1w7lotGVaNUmVzoF4ZcYuSLuJfbesWo8yJXBlwEfP4mwd+1sR2HeJ7iD0SRzQ2edEuWnl83ZrHv0xomQCl221464d/lOc/9KMcvv0b/Pq/9//g4f/zN1nuf418PFBKZrfp8cFxOGVSqWy7wG4bcaK8+GjPBx+fcF54/nQEJzwcmibJGKxsHCUOW0BJrRzeiVr4jSnVOWcVg0ol9r1Fta2CUCRa7qhW058WIXQdxpJs0rNaEc2UUsipmEZMbIUszubWshRC8IRo2i0hOIY+oiImpOUc49iD9yzFQfUWOYkV3UjTHRdVkxt2EH0gBN+8/ISqmg57rSxpYi6egphHjKO2ZKqqkKon5WIy0CGYdO9VpafJFzijc1aooUUVSyYOgb7v8cOI1kbJRCxa6gZmN3OaJjicEM3ELjDsbnBDz2POTGUhnGZO+z3luKe7vaFkpR6P0FckdCzTxHJ8xImyud3R9wNCafkAfd3+fGJ8Kgz36p2eucxy5RFf+UacoYaLFywNFikYOwBWgy3nDynSMG93ec2sIhex1/bfhkGamb0YdHGu0f3ANd6eqNU3rNenyrnKTFav8WyOlN7B9z3p+JEnPV2e2QVHWBLSQrzd4LgdI7vbgZwqsXfosjDnQj/2JC2U/QmNVrCg2YoEylLRlZWRKsc5W6m5WnZeUB4eMwTHuPOMux4fe7JEDhUOs5VRd17YzwvT/oRPifd/4MtIemRKiVcv99zvE1Nx1L4niCNSWU4LOVVC5xhiMBvcBXZjRxw6gjNRINm+yZd+38/z3k/8DNs3nhsU0SAKu/MOcwM3VoBQZ3R+iaQjNZ9AM1oLVKvUo9jftSaTFK3FZERrbmI/5o2dN/N1nKExkCYYJtKgEtcq/sSD8zgfENeMujfYxMkFShEXIQzQbZBuhLgxPnB3g9YbyAt6eoS8xznHzbtf4Pv/1OeZ/8if4Rt/6xf51i/+Ffr7f4CWmWUuOOd4cjMydI68ZD78+MQHL08E53iyNez4OFdC59kMHcdTIhblbrNDtVBypSbTnu6CN4fBCepbJZ/6xhU3ipt30iIMd9bzwNESbjZv1FvytCR7P5fCUjKbcaTvpH2viRWIZ0qKy4mbTSCGnpyracOI0Q9VbTPwYom+3HSunQ9EUdPszongArEPCI5UE7UkbGoZd3rOlblYbUPoB6oEUzzUBOqYq5CKVWB7bx60VmfwkRh3W9UhTSTDsHKTVvUCHaYNLs5bVOkWgrfCJryj2+5Irw7sX3wbmRPutEC/x/eV3W4gTY75sCc9vjCxq64n9INVTqpn2e/Zv3zJfHjkyc1Axw4vFT8M4LeUnK4xhd80PhWGG1bjrecs0pnvLBfoRPWiRWLY5+u70sWYX8ASK7/Vs3e8Qte2ObjXvqes+PrVv9eLUM4FPevF6SrBei3dWhU9dyxpjBIV7nrhJ9+94f0uEzB1to0oy2lh05nYzc1Nx7gZ2D9OaK6krMQ+cjtGvDfYJM2FipIFfHAsSyUGz+AcS62cjguoFebE4Dgelf1xIXSR7a7j9umOOI6cqrA/LExlZggeyfDq/kA+zQxUuiGw3L/E9dY5Zi7g757Q4dl0Qn24Zz4saDUxqHHT02964iYSug6nCrmS/R1v/vjP8pU/9EfYvfk5XOjNWKtr9KeGJ7vebnPaw2mPlrkZ6NVgJ5PaLKbxXJs6W82JUkrTfTajXgtXkVfhjJOBPfPVSRBLRPnWMMA1FTxxzkJq503wyUVcCIgzPFzcioV7JJ1gfjQGgO+Qbov0t0gcoOuQ+AbUp9T5hCwHRGf6XcdXfu6P8t7v/nF+/d/9RX7jF/9twvR17nbmZR8ej3z08czhlLjd9mw2gXmp1Kzstj1SYX9aQB19CCyn1O4pBKe4YBjzmtNdJtOLib0HNc65UygiSNOwTktCgif2sSUzTX3vdJooyYzpPJlh2/QdQ7D5fTH6bbY7Nelg75iWhFSTo0VgWcBVIXaBGIXSVqp3wSRpj0c0ZWIQumjl6kkNqvGYtIEZ7cxi2rZ4f1W8gzFklpRJ1RFCILpLUc2UlFSMQ67iqZgipIin8wEvtsEEZ/i65qVFAY7grIrWeUzil8x216P1ljrPTCkh+wN9LoQQ8bVS5yPUTPAjLpjRr+qYjnumxwdO9x/RY3K6Uk/EYcP4zveSs3D44B+uVu47jk+V4bYV1ZKLK/54zk41XVwaBt285dfgiTaM/ndJYCqrMuDqwa8skcrq0Z8rNdHmrDdps3YNZ+z8jDs1vHX15+TqNlc9Qzke5XMbx0+/u+G9zsKwIQqdWueap29uoRa67QAC82k5l3b3m55uCLjgWE7JmiKoNSIQZwmi7cY42A+HhdJ4pUME1Az2cYIwDDx9NnLzdAch8Jjh8bSgWrmJnmVKvHh1YJlOPH/zjrffuOWjb36EkimzsJ+Vo3RUzfR1we+t8nEqEDrPdoxsb60hg+86BJhnZfP+D/PVP/wnePbl93H9xrxVGizSwiyTEsiw7M/G2CxvRvOC5oWSF8MC80TN2cqDa6WWTM2l6WWsxVht0z7v4lYQtUIluFax2DZgJ47a4JFzVe5aAyDNI3Wte4mPFiqHoUE8XTP0C9WZVy7LAZleIb6D7gYZbg1a2WyhH9FlhmWPsNDfPuHLf/S/yDu/+6f49t/6Gxz+o7/B6cXX+fjVwill3nga6LrQJAsCm02AnDgdEkMMBLEqx5odYegJrkmnOkXEFCuXlClJUWcFO75rXm+79+l0YlZLBg7eG5XRNb3qlJmTskwFTbZWNr1tLqVBNFUCtZoqZOw8m+0GVCk5E6KjH3pMMdc8yBBt45tPCyrJtD8qnJZEmU+MXnB4q3At2crffTxHrbMKMw7fd7g4kuYJUsJ5JVeY5sanDkIwiT5K00M5pmQQTOxM6rcUw+wdlpR0lkzFGaUypUzQCd+N9p6Y/KyKZ05GMRxjR8ZBSeQ54+sEsbAsM1ILfb/FNxinlEzOwv1HHzE9fkSXj9w9vSM07ZkwbvH9yFzmMx3xu41PjeG+mO6Lr8r5r+Y9cS38xNlSGnwhV99dNUY4Y5rXUMvKATdYxcSoaBPd+EDnj5698HMhjq6bgO3w0gB5d3VNSmvl5ZTv2Xl+6Dbwpi64RakpMy/C9rbj7qYjNC9iWmbyYnKfwxiRIIgzdbbTKfPw8kiIHbc3nXlH3rHdBLQUpiVxPCld7+mjY5kLqSpJHd1N4PmbT+i3A4sKj8fC/rQQPXQOHu4n7l89AJUvfvEdOlFeffCSlDJThcl1pGHAO6WbDnS5Mp9Mp6MfTQho2A10m57Qynt1fJP3//Af473f/RN0uxvDi5tug8FYHhof2ji2jfpVEpQFLQs1nahppiyTJYJSouTFjHWxggctjYtswez5OZ8Fylbt9HOUVBv8XdueLJSmVSON+98mE5wNOheKqltwiyDuiPcRt32b4fnnqA+/DnlGSjYvPWfEJ1hmZHqF63bIcAfdCOOIdgM6T8jygDgYn7/Fl37hz7D/oZ/gl/6tv4Q8/E3e3s14p8xzJvbCGGk0T7i9NSbIdDQ9ct+0y5XKkpW+ax1mAO+DwUdOTTbAe+gGBMjzRPEwjDeEaMk+jyWXc1O96xrLIvYBJ1jZ/lKMwYFYSsCZvG7sHFOu5LmYxngwql1Ro5v2MaDOVClzLlbBWQs5W1OL7aYniOmV5JoJGuiD6X/MRVmyolGI/QZ13uZ4LphELaQs1JLpvccHgylVnOnatFyHbxCYa8lui5QrPjjEmxaLUSpNWEo1I96qdmmVkYRADCMlK6Xs7bWcqVXINZukrYIV3RRKSdS8MO8rh4cH0sNHbF1luLml290RtzcQN6Qpoy9+g2We8XG4ihJ/8/gUGe4rY93ajV08YW0629fJpUtxjr/Gwc/wiZwX8Pnltd3QBWw5e8tg4eFKG7lO6No569mjs0Vez5g22pQFqyU+HPBWL3zttuPznfLUVUYEa0hVub3tudk68pLQGNBi8pN9cLgu4HtPNwTyoty/mjjNC/1ux83TDa8+vMdTuA2RnCrzvGb2PbVYO6qsIDHw5GZkeztQQ+Q+Kcc5s6TCEASy8vL+yHw48eTZDc/veqaHA7/+8og6R9aAbnZU5xi0ELJpPudcUFX6sae/GXny5h2otsUW2XzlJ/jen/9TPHn/a0iZDXM8Y1+tyq5OLbmY0bJYaW+ZqflETRN5OZHnA2VeSCmZ6HwuVM1ngSjapiztAVa5eNGXB3qlN9MEgJB6FV0Jqz46ugqEtdwFrZ+jNHYLpsVRRRDJFEnI8muk/bfx4nHR4UNnC85XXDUjrsWhaUbmByRukfEJ0m/QzQh9j05HZDmCF27ee58f+xf/+3z7P/wZvv7X/zLzt3+JfuzxHo4Ho5ltb0drh5YrqCN0Qghq2H+LNOe54ELA98Y7dr5RELuI3+zAeabDIzV4+n4gxMG87FqttdsavZRMdMpwYyyHvCwsdc0ReOZUCC7z9MYiw8NUOM3Gz66qnE4ZghD7iHeRacnkORNC35KFiaqVMVqLOu87FjU9Ge+cleQDx5StpsBbQZlSKdkgMEEoxYSirBmLGByUEi521GpzJmKRpwKEYM9RK9J5QhyIvXnFy5I5lpmQlGHoqWLaMTUoIoUONXXBzZaw6TiIQipUlnO1qcm8BtRHlvlIfnikzCfiZoOrhZ1XNtuBbnuLHzYQOqpASoW8vwcJzcT9DoBKlFUDpPlNV7hk5VJGvhpnkQvz5KLiV8+76AqLrKHzNU5+fewz1NLaXNl3DLNeoRS9YiOsPv1aANTyOVSpODHFufc3nh+7i7zZVUZW1bJM5z3PbrZstpHjYbFEUzENiyEEhGqoexWO+8R8ShxT4a0vvMW4Hfngoxekapn2Za6kXOh7Tx8ih2NmPynSRcbbjpubntgNzOJ4dUwcpwXvPKNXjseFx/s9UTPP7gZ2g+flt15yPGbCbgu7HXOujNuB5eGBUK0QpzY7OG4i2zdvePOdJziB6ZhZwhu89/v+GF/8yZ+lu3sL0Qy1Ya+OJhqfrZilLFbQkrNh2flEWU6U+UiaDizTRE5z87LrWQZ07TrkXjPOaw6kWvjf8harnO86D2zirOXwF22blZtzCbOuMS8FzWa8aYqBYmpxQjFWRC4UB7I4g1LCqTWrGJHhXaQmXJnRuiBlRpYDdBvc5in0W9ju0G6AaY+WE37Y8bnf94e4e//7+fW/8a9z/3f/HR5ffohDjJFRC0vO1AKx98S+M0XEJrxfa8UPHT4GpOaG99uc1+BAlDQfyLUQuo6KmABWaR1cnAddufaV2EVbFyr4riNUBS+cTlYUsx0D4oVjUqp4bradNXtojYOHwfIDy2ki5UwMvbWSKNkEorqOrrOVnIrxYX3sjHYHHKaFnLM1G3CRXKxZSBcCSkd1iZSteXUjMl7Wda1UtU5GTjwhRnOwvKcCCUdwag2ZY2+9StWaAFcEckVcteRsdTaHy0QUhwsTcRPYjAMyz2ho81BNNkEapp1L5v7xQ/pD5o0o7HZ3ZCbiZoPf3KC+o2QFX8BlfLX7Xer8O4QO2HaY1aF2V2HC2aifWSBXPAGtXPq2yblZwuW48to6NA/ZjPHqnV/SVqbbYKUP9XwWrdJsvZwjgItNsGvzojwLwg/eeL66cTzrC7sgVspdKsMQCc6xZFgekyVBopWtI0IqhW6wRMv9/cRxSjx5uuVL738OpfLRhy+RrIxdhLzgg3BzO1ATPB4SD6cKwfPsychm11Fc4Ejg4bhwmprUJoWPXhw4PpwYg/LO5+44PZ74ja9/jPOB4faW0vfsTxPzaSY/PjJ48DFQWqNfFyM379zx9I0b8mkmqYen38MP/Px/hTe++n24bjBvGjN4JkRkOiVmsDOUyTzouEHSA8v+Q8vATzNpnijLYgnHqheIan2ASDvulVJks7Vu9ehl3ar18rXr758hN67stAMt65TB3Idm/Nd8iQJSzvGaaEXJlrBszQFqztY8Nk3E/ind+ISyP1hnolJRn5G6UJcTMuyQ8SnajcjuCTqNML9Camb75nO+8l/+b/KNz32V+a//b+mnb+J0aVCQtIJR4147760r0FIJMeCkaV+0nyTR4ccRwbMcDlQtBJxBOgppmc1bjT2smtUOnG/PvbFsCo0RsSz0Ubjb9ijCrBDGkc45ytwMrRf6jTGdSlqaBnjXvPlC9LDpI+JaM5Bq6ovBWY/RVCrWAlVxXgjiKGVBaiV2I0WVJdm8CiHYfLE9hSgCviM1nrhIK67FEtE4B8ETQouwmpysiGnMOBIBq1T2/WB2pxpuX0VRn6iHyZooOMc4RGTogErNph4oruVUaqGKEQh8TpTTI67r8cMt+N70/QFKQWpEa6WW+XrSfsfxT2W4ReRXgUdMzCOr6k+IyDPgXwW+DPwq8M+r6st/1LHOuST5zSQYvVp4F7aJLdoW5TYP3LUeCOelxRkjp/3z/OelKGbdLNZSDTuH0f/Wvm+rB9eW/UWHW00L+Au944fvIu+N8CzCbtNRamVZKqG3hNwsQtFKJ46xi6YPohC9Zxw8ZcnWsUaUp2/f8c67b/D4eODx4UA+VVyAzgtDF9mMnmnKPO4LU1Hi0HFz19NFzzHBSRxTWqhaePrWO5Q88/E3foPTywOeyjAE7j94ZH9YiOOG3dMbTlr5+NUjx/1EFOsyHvvIEjO9OA5L4fbtJzx5uiUvmSUH+vd/nO/7hT/N7p0vWEKuwUi0HoVn77rkMzNE00TNC/X4EdP9h0z7R9J0Ii+LGb/yevGBc+uzXh+gXs2LBk41qGSFO5qf2Z6Tfc4gsPIJb1yb361XrzVxk1YLcNa4Wb311divJYhajAusvnV0d/haKd/6JVLs8KHDdT0hDqARVyvqTBNF0hHX38F4hww9hOfo6R7KCdeNfPGn/yDPvvhF/tO/9q+Qvv7vI2IMEZxFACCWZEOQGCgKeTF8XKojDB3d7pZSK+k0geYm/t96X+ZCWdtuZVMxdNFbs2JtYm6SUY3MU2KZE33sGIJFikWVeHtjsMS8Mpqax1ysGfPa+Li0svKuD6YJDsxz4ZQq3nk2XaP6FSGrFcD5YHj9khbjUXur3DRdbsPwa87W69M5BMPiq1pVaa3SNGGsDZy4lrz1waouwfpq1oRzgeAwJhFq0rYCVbyxmVwg5YW6ZFI5sByr1TJsbqx5NAU3jkxTYjnuyadHRGeeP33SmlQku+bxFkJv+HupoAkJAyK+yQM38a7fYvzn4XH/YVX96Orffx7466r6F0Tkz7d//4/+UQe5AjeuPNv2XvOAVv2RFd+2vy6hrkEb6w/W1wy+recrLHw9p67Jx1ZV15gGZ5xdLuX0K2bucOfTjF74nsHz/SN8cRRuBwjezrJS91SVKVfGTcft6BnHSF6U+bhwd9MxROXxxcz+kHC95wufe4Ow6fnog1dMh6N1UvGRKMrNRpBcuH/InCYlOcew6djterTrOFXPMRVO89EKHrYDw65n/+EDy/5kSaAhsn+YqThun90w3uw4lcLH9ydevDpQlsqTseNmE9iOkZoyL5ZKjZ6bLjBPmVQ6nvzIH+Grf+SPMT570yh9DW5SsZDRYJEZrS3pmCfrOjPtmU8PLIdH5uORPE9WXp2tBJ8GVQnemmlUDK8+H59mUI0hok19cU1Mausu0p68ieyuCctm7FS0ie+ujTKacKf4qzzIOn3WTYEzvALCVQrFXNtaAY+qKcYVMfU75zM+JWqcrV1V1+O8dZq3/oIJSQdkfAbDDbJ7ik4dzA+ID9x84Xv43n/+v8fX/8//Bse/9zesWpRKFccyJ3L1uCj4qrhqkIl46Dcd8eaWUh01naDaPdYWzs+nBW2FMnlJpijQe5PVVcXHDonmBc5zIqWF7da4+dNhotbKeDMQ+pHltOCLFXspkItFJs6H1iig4rXSjdZPNC2FJSWqOmKIxC5SUabjZAa771HxLMtkbd6cUL2jLAohEbuA855SDPNeJQtKblCHGs2wQissKlSXCL5rG3HDONUgIXERnKNUjwRtcE9F58nK4n0PWkmlgitEH0nLRCBZw+ZG+dOaKGliPh1wWnmyvUHnvbV7kx5Ch3rbYCnFGoaAwTC1NvVS6wf6/2uM+08DP9f+/peB/yv/OIZbmu42cjaKlyI3ueCQq1elnCl3VdeufusiBG1h88owWfeB9VZcl2XYeaQ5ZZcFurZDc+3s0njbzglB4I0g/MDW88VeeNorg1drR+Wj0bKCWCFBhM0mcHvXEaNwmmDKlTeeD0StpJN1VNk96Xn6xi2nqfLBxx/jihWaOG8Uv9tdZDllHh4Lp2QUppvbkc2mI0tg0sBxWZiWRHQR7yrT4yNp/8C0nyhzRqpwf59wXeTNd54hfcfjaeI4WSJw2wVCdNxtHO+8c0MplYc50rnIOARubkbmHHjr9/1JvvIH/yjd7kmj9GnDfrmIMtVklL6yoOlImfek0yPL8cB83LMcDyyzFVesRszmwloY06oiEc7FTNcb+gpaKI2+qc3zbh6/M2aOYPS2MzXwEx67c2vl5gqQ2IyrqBntq0gNVsjk8g2bsA1mgQYHVJBMqbFxyzM1L/i84JeF0A/4bmwLNiG1IGVB0gkZnyLjzuRATy9REv3dc778J/9rfOvZc7797/5VdLlnmZcLh71YLgUnSHT0Q0C6YNTKNENrpYYqvgqlWJMEUUdasjVSDrDMJwTwvZV5i/OUUnBauNl0KI4lWWl7xFrKlcOEp+K8SdqW2hpJYJoupdSmrxJx4plOmSlB9LDdRFz0zLkyLdXalClIti5XdZnpPJQQSMksRO8Mbsmp/V7nqMV0YPKSLF6KJjrmoTGJLIKqxZ5xqQnyCs/4xsppT7Dx+hEhqyBVcWLJYe/UOhd5h4s9mmcoCz7swHU8vnzBw0ffos5HbrdbmDO6nMBvka5Hm5KlaqXUineBELcoxXRZnG+646/rLH1y/NMabgX+j2Ku6P9cVf8i8Laq/oYtDP0NEXnrH3UQEc6NEtxrK+RiaNfltmKeCpdkZbuScwi78qiVs3/kqpzD3lVsSHFn2qB9v162CFlrH9c1a9QnL8LohPcH4Yfveu7IjM5oUqfcxHb6gKNytwv00dN5kwZ1Eki5siwzYwz4XDjsZ+YFdm/cMYw9Lx8WHvcnymlh7DwhwN1tYIye6Vh4PBSWIow3HbvdBj9Eknj2c+E4HYlOuO0jSzK95qiVeckEHINzHFNi83THO597yn4pfPvFIykX4tBT6szWC7fbjrubwOG4ULqO7Rs3PBt6NkGZcs87f+BP8JWf+TnCeNNyCBeDqJqbh52awZ7Q5UCeH5mPDyz7R+bjgWU6khdrmLDa5nWzXL3fayO7zhNDS5p/rW2SrFQ/3NVkN+oftVJdU3hzHnUrq6Rt9WICQ6yJzatWdGd6IHA1oc6vvYaji2sGfdWNbxGCFtOWqRbF1VpaQ4FCKJnQbxDtsIo/hfoK8oSMz2HYgn8Oh3u0HC1x+ft/Abe95Vf+7X+VOn8LrxXRQklKjo7dTY/zTRckFVQn0lxZUjX8GJNbpYLHtE2qCsEb1xofcN6MV1ahLAtehDh05FJJCaKPVOB0mAkkNp3JsNZs8IZzq8hTwjnPGD1dtJU0pUrK1iKs6zvAsz8k5mI9KUMX2R8TUxMgkZTovFJ1wYXAuNlYteVhQbAGBtU5SlbbKJyzx17qGQTDOyTE9p6g2cgESCIQ7HMuWLNo4QpyMUdAtVBTBoG+G6w4SBSNAVgQ8dQqTNPEw4sXLKcjm+BwJTHnuUGIHoe3PELXWcI9ZZyX1kXIN3tXW9S5wr3fefzTGu6fVdVfb8b5/yQif+8f94si8ueAPwfWA+6yHqyC7cL6u8arbWgztmcfXNU6mbNij+f/4M5QSntt/Z7IefGfceurhWoedmMeyOpXCU8dfO3W8aPPe54GZT4qKSm5CndPN2yjZYRun47sto7lkMhFKFlYxLQgSi4EryyzoD4wPh1Y8Hz8wYFlWgjeWi31vfD82UhdMo8PM4e5oD7w5PkNu9stWSJHrTwcTuSlsOkDnYeHx5m8JPpiOslvPN3x6uWeOTjeeesN+s3APmU+3s8sBWI/Mh/2DAJ3u57bbccpF2Y8Q+jY9J6b0bGfA+/89J/iyz/zc/hhy2Vba1vqWf7UxJ80ndD5wDI9sBxecXq8Zz4cWOalVUA2LRFxr0VUq4ifinl8YB712dtuMFaru7yaG+vzu+Q+VshMqWdxpLMn3ppCn+eZXOzzWd9g3bYbs+Q8f6/AvUvRWHuvXV/biiy5JSbKoNU6uGgr1y8l0b/xPsQn6PEDnJ4MyigJV57C+BR2T+HgoOxxMfD27/kpahz4pb/8vyLsvw7FqG1D54nBcZoWsiodznpsliYoZV0aIGSOR/NOQ+dbci/joyV9nY+UhoEPXcRRWVJGvSeIkKeZPFs5/dAHglPSkgGh60wPfamGbQ+dWJf2VKzzjfdsdwM+Goz0eFqYlkLXd8TOs+RCcMrWeXJVjrPh2QpIhuITuhTDymPAq8d1ELxv0IgpAK7qnrbPGxxaKtSc7FF7uyem2Q81C4jVB4gL1oCB0rrSt5ZHGN/bgzF2xPDwnAvLq1ccH/eU4wO3uw3RBUumdhuDUFxsjJmmOrks1sBBFFhwPrTCnwruMu+/2/inMtyq+uvt/z8QkX8d+Eng2yLybvO23wU++C7f/YvAXwTog9emZd+YY2vS6CI1tS7AteSd9gnzmpr3faldBy7Y+LXRb9+w+/Uar/v1dmPX8IqgRJQvDJaAfH/neWsUqDDlTKqerrfMdnGZ221k8JVpn5lO2XoTih3ntCzsdj1pznS7kYhwf0gcphN1TkSU7RC52US2g5Cnyv6YOCXoxp67uy1xGFjUcSzK48FoVttxADKvHo6QCz5b6PrGsxtevTwgfeBzb+6oLnLIMKWCD55xVJhOeKk8fzoQvOOYCn4Y2A0dz55u0CVxv1c+/wf+FF/6fX8Q12+uNrSW2qsZSjJBqDyhaSLPD+TjA/PejPZ0ODQvu1HP1NpMtcoGLr3jpMkGtCcsDQpr2DeIVUCqnJ+XjbWYBi7Uv/OMazx9ExQyukU5y3pK0zlw6LXTzZr7WOGztVDrPNfOzv6qA3nlrV+dm8ZMgHKhNVZrx1U//jWGZyBlOfspqgVOFVcWZPscdnfoEXRZ8GHD53/0Jwmx45f/0r+E3P8q28EW+v3DkYoQO8eSE4LHBY+2dl7gOBbhVFpxSq54b4m5mhWvFbzxwPtgRtg8ZIOP5rQwnyaCKJveWs0djwtaEuPQIdKhAsMQieIRVabFxLOC9/Sj4dlzqZwmM5rjGEGgJMuLbHuHiuc4V3ZDRIjMapHmolCq0jkzXlozsQrixSRna8L7YN3oMS1wnG+VkkaXBHBq383VoDLvA0UNspNoz7WWQueEsMo0FFNgpFYr+nLWEWeZJ3KFOu/ZDY5h6FE8JQkhRqQbmlPQ+Pd1NtqmD/gY0VIRslXo+t4qRv8R4z+z4RaRLeBU9bH9/QvA/wT4N4H/FvAX2v//G/+oY61eMxhS6M6WuV5CaBpMcknpnwPV1epfQeLN01mLBbQ5VHIWhWI959oth7bYGlZ67nepwjYIXxkc3zM43pCKy5Vptq7UsesQ54lDYBuUu9HjxbrKlKrQBfqho5IRF3j69Jb7xxPBeXIrlnFO2To4oOw2ged3HcG1dmCnAs6xu+nY3YwQOu4TPC6V43Sg5sLN2HE6nJiXiZ0zIZ3b2448Zz764J7N7Y5nt1uOWdifFk6HiaSCc0qXEt7BeDNymhe6vqfbjAzbjqd3N6TpxONJeO9n/zhf+L2/HzfsOCfwDJcCXT3tubFGTtTpnrR/wbx/4PjwkuloUYH10dOz12x3+VKpdi71VTPYtZYreOT8cNvzXp9aaJDNlWH/5HxFWpR1SXwbslFQLZbQdB6RcJkNYnPr2giLimlViMEqq3bNShe99vpXupOs1NP1F5dV/CpQNKP1gTn9Er4bCP0WpxXRcA6ZpRZk+yayeYKKR5cHCJ63fvBruD/73+Hrf+V/QXrxTbRWYjdY9CiKDwoSUXVGy1M4HjNFlW4cOC2FQEKxCsRalVGEKBk0MJ1mFOssg/OWj0iF7RCRRpctFZyLCFYtXGsiBmuSnLMyT4lcrTnCMEbECfvTiZSx5HnT5E5LwVEIYuyuqWlpD2OwuCpPDNJb4wOtRAmomt57Fz1rT89czEDGILjgqam1KyzSKK2Nulmt0EicOQm5Wqm8F4vKrAlwaFFbgWw5G/ErRVSsQUKaCV3kydNnpC7C/IBWE71TEQpWd4GukUACMXbMqjtfa7VyAZ1xQUyf5+ykfOfxT+Nxvw38620RBOBfUdW/JiJ/C/jXROS/C/wa8Gf/cQ5W6wWqqG0xrAtopd/ZRF7/00x543evi31N9Z/Rocv6YcW7VR1rYU5rVWrG/ewzNbRdlLc7+OGt57mv3ERl13miV6LDqq184SbA7c4zBMd0KOTBm3peZ53W07ww7EZKrhxOM31w5LmSaZ0viiXmnt32PH+2oebCNC0UhG7s2GwCsY/kOHJQx6tp4XBaGKKnC8LHHz/gcuGuc0jIvPFsw+Fh5uGk7J49YbPbsp8W9vPCw+ORaa6M0RFqxUtld3fD4XCiqCNue569sWPXRU7HA6e58NYP/zxf+uk/hN/csHKotWEKVQvS4BGtCU0TZXpkObxienjJ4f6e+Xi0cvW8MkPKOaehjSIlrV8jpcEa62bb8GuhFb6sHW6QpmznqU7b6649f7166Otr6+ZuHrPt/6uRVWu6UAtFzAMTb97mdSOPc7QmsLbYs9fX38XVnqHnY1+GnI9iCczUmhabk1GrFRuFrifoaEdRAQ7oviK7N2Hc2SHTAy5uefMHfhjJ/yK//L//X9Knj9rRGwWvFeSI11aObaXeslSmXKxbS6v8dQ66IGzGAFqZTjN+6IlDz1SEPBckZ8beONXLYr0brbWZOSmdd3Te4bSwLNYUWFWIQ6TvA1phfzCK6jAOhOhIKZMXuw4fnMGOKWGUAGfsiuDo4hbAOs0rrRGC1V20wmZA8KGpZFaFouTSGixg3XRUCuKiMTm14NRDgEptNkiBhA8OFzu8N5GpNXehuVJFqTmTlwmcmJZ6nakkUgvBXOgIfgTXorN2kc4HfNeT5hO+JOpCE7xS6jIRgslZ1FxWy/Qdx39mw62q/wnwo9/h9Y+BP/pPfkA5z32gdaG58pybhyVn74Zz9eK6OK5Fp64BFQTjSHI5zvqJc4d4WcNb8+w2ovzAjecro+fGKYPzjF7wVDbR42MElF0PNzc9miqPjzP9zQheGG9HpBQeHk7c3W2sm/iU0VSo6tjcDqQlM0+mMbzbBbZD5HRYyNlK73e3PcPYU9Ux18CheF4dJ9KSeNKbl/Hi1QP1NHG76bm92eCDKQROBG7fvkW848XjkcNpoovGSrnpPLE2oaKbGw5FIUSePd3y7jtvEMkc9k24/0s/zvt/6Bfobt9ouNua7a4GN9TSvG3Toa7TA8vhY04PLznev2A6HG0hNjzbtuPWBq4hIyZj1+CxtqFekoHNC28frmWlftniNabIWp5u2LUJBbkGgbSWZroa+vXJr765MUAseDC8sVYx3LjJeMpKEUWbZwmrhV7n25lifj315OqN88Ssr31OazbD3aBA1amJbGmrBLT77RTYfwCbN5FxZ3crPSLdlje+9mOk07/Ar/1b/zIuv8J7b11t1CpKTeXW0/WtCKQoW7GeiGTrDtP3ge1Nh1bH6bRY3woqOZkGt8uFQDFVwUJrtRWYT6bW2PeOPpjLUxBUHN3giZ0nxsicKo+HmZQKm02HEzidEjUXk2r1npRMnjd0AVVHylg+KFiThLSYAJkPhgcvRcmnCc2GHVeMMuwlglpn+HnOlGp9JNe55Trjn5dqkYlrmt15mSharaQ92HWLgJalJbcDKSXSPFOWI6qF27sbPJV6emzMFo9WwTmHjx2+i6TjEbDO8D546wqlxinX5phozm1tYdW4ran5dxufispJg5v1qjCCi7Feq9bWz7ZFc514Oi/EVSdbro+9Hrd5W6uxWIX1mylRFXAQqLy38fzY044vjYIuhW0fmE4L01R58+nQev8t7G46trueNGUe9gtx6HC5shl7pv3Efp9xAo+vjGK1TBnfd3S7nnlK3N9PjL3n6W2PF9OjqBWkJXDG0TMtMIWeh1R49fiAKIwxMM8Lx1ePDChvf/E5vhZOx4n7KRGf3LF7tuOwZI6HieUwkVPCVWUnELSwudng+p65teJ6/vYtbz+/RXNmPyWKKnX7Nl/4g3+c8fnb5sV88qnVgnWfKUjNlGXPcvyY6f4Fx/uXzIcDeVrOJeuOlSu9PlfrySdrtKTN26a9t9JIritmr6EyMVrVRa1gbUFlc2TVzrZmstGM8Jps4vq4F6EpG624JSeKZpwL1jBh9fRXw31JgjSOv2KF1461qGdlu3CG4YTzj+Xyp2qmeuz31AsjIqjgol6468cPEZrx1gxlxnU73v7x38f88Ipv/+L/jro8GCOi6lkFMHYONCNeGYeOvBi7JenCZuzY3AyUWpkX64zkvOHDWgtRhZJnsiqinm7sCR6meUbUjH7fmcCTisPHnhist0ToItNsLb185xi2O0rKHI8LaLEeleKYG4zW91Yin4tBeeqktUyzNe5iNAhDwJXaXK1KToVUDUcvBYpWUnUNL1Zq9WeYhFLPsbZWKClR8wmnVgnpnVjiU8RUKVUJMVJxpGXmeLinC47tEOmdzZMcejKOXM0JcCkDJgpGk4Y1v6Gi2bjf5kwKpVREKuPdHbiR04ffXJUHvuv4VBju1Xd5Tfzn6rJtnayh7ho6X4emF+/nyjnj3NWk4aWKYejmydfm0LXSZlUGge+/jfyep5G3N475uNjZ0sLQKZvbyDBYRdams8n54qMDFUcRuLkbCE54fDWRqmNK1ql9FmsOO44jNWdevjhQSmW7Cbz5bEuaZ5bZ6FD9tmOzHRFRDvPCIUceTjPHw4noHX0M3O+P1NOJnYdN9ARN7A+Jhwz9G0/x/ciL/Ynj4QRLQqsSFZb7ic3NyM0bN5xq5XA4Mgbh8++9wW50TPs9S67UpZCl5wt/8Od58uXvQXxsnsH6QK5x7aVxkReW00vmx1cc71+wHE+tG3i+eNpSmxCXhatnVseZrdFghLUY5uJz2iaxQhMri6NBY68hgetGvsIZpVAqVpEms5WJO4/30TYN51kLB1Z99UusVqE4qmYoGReiwSjiz/djJaWspxZpCddWxLUGDec/1nm8as+zRhhAzuBtjsoys6biPZVrjoEeP0B4Cxnu0OMLBMUNd7z3M3+Y48ff4vHv/jum9VIytRQsx1gIRCR4BCXnSi2FYQzE6Hk8LORU2GwsEVcUq/gUo7qqD/hoHdadd+TphAOe3A04F5mmhaUW8+q90kWDtY7HzHEq1sZu21EKTKcFESV2kaV6DgcrZR+GQCoNBhF/Lhuf55mkMAxba8+WDNbyTuj7gIuRORXIZrwrtXnUNq+8N3ZN9R4fOko2iNLHzhj4yWoNYoxsukgXI76LVuae7HXBs6SZVApe4GbT0Xe2mRuuTqv4tFJ5cqVIASbEe1zsbN4URaU2uDazKmXGLjLudoTtuyyHI5LuX8MPPjk+FYYb4BzFXkMcbVyQwQtOLVcG+zqkuJS/y+qsXY6mciljX6ERNUPwLMLXbiM//DTwtBMolWfbzhTEguPp7cAyWZ8577FO1QuI89w8Hbh9uiMvM/tXC1N2JKn00Wof5qVyN3YtgVIZoufmScd2jMzTQloE8Z5xF9juBlQd+wWSj9YlfZl5Mg6cUubFqz35cOSmU3bjyHTK7D88kGPH9s1nZIQPP37guD9R50yohbttx3wqaBfYPLvltCSm04FxHPjKV9+mQ7l/8UBKxumdToXnP/x7eedHfwLXbRAJV0/iApFY9UWmLntLRD6+5Hj/ivk0kebFeMG1SaiqngWm8J3hhShSlUo5G7kzHxuHSDYMeCV7yoo3yvn5mY30DT4pzWtuLBFZE6CNXkqlZBBpZcXikNYRXHy088rqHbdf3DxXgLrMqA+mxe0Ml78kOq/L6O33CjQDL6ysmbVQ6RoXvMDiar0zUZqfeJmjtO2lzXs9fYxsniPDEzh9jPiecPMm3/Pzf5q/88G3mb/xHzL0PfO0UEqiI7IsBVKiVLvO2Ak4zykJc1Y6H1Ax/ZxAJljfBXJJ+OjZ3u5wPjBPM7jAuHFE5zieEksudF1nfVE70FI5niqnOdMPHcMQybmQ55khKjBwzMohW9Q0RpN/pSrVO3IVtJpi3jJn42ovGbdURFs84pzpkgRLTksILKkVsogVAgUf8OJoNbmUvGCcaqXVK0HNeC9ses8wDkiIpp2dZutoJYGcMzh4493Pk+9fEHWitrZwRUKTGnaoBBO2EgUXyKUiNZ21YCSY1rdmi2a8N5prKTDvHyg1EPpIqcNvaS8/NYb7kty5EKqACx59jixfN+j2GtdLpmGSck1Aoapamam+/u3eKV/der4yOr6wEZ51HueF3ilDB/iB4zHx4YuTfd7bjjr0kW6MPHm+o4rw6v5A5wLJB4qHd5/fsH9I3D++4sm2Q6qVsY6j43bsQJV5ypTqiBvPzW3PMHbsT9agIEsk1QWphc57Xj0eOB1ngipv3PY8udvw4sMHMkJ3t8MPWw5L4fDwyPFhBlWGKGxDb4yBEOjubvjwfo/PC0+fbvn8u29CLjxMC7VVyE2HCT+8yRd++ufobp58gk+qoI2FUZMZ4nQinR5YDvecHl4xn04mFJWaPomhHkZ1S8dmZCNVp/Mm+loBzLkz0YrvXm3WDZ64ftbaqiEv7xm+baL4BsXgTCTfDL6FyaLFGEapUJeE+MlYJaGzDuPXxVnrdFGBmsmpNCXAzsLgczRi5tXISnpVEr9OPGkbkb22znNdjfq5sMjK4KFwpsS2oiEnpiEpckKOH8P2LWuVtphsbP/8Pb73T/xX+eW/9DHsf4M+gHcd6jw5VQ4J3DgwvPGcuVpJ+rNnbzPdf0S6/4iiGe89viTSZHmO2Br+1irGonDQjREtC8ucUAq7m55x6AhdZFmSyTEUk/+NXUfKttF3TlEfORRHqhNj1+Pj2J5xvDQ9mGcjJBTFilM8aVlAlCFGW085M6lAsW4+17ZjveOlFoJ0xDg0bezF3i1WFu+cELRYd5vmYTuxSkx7UI55OpFTYjMIvc5IUNJcycVohqqAt76W6hRtvSxBLNKrGUqlNOhOnSAVgiVqLDGP53RIdOWFQXzBXyin32F8egz3JaY8ey7awuALjm3vXnvjXoQqLYHDmmTUtlOaZ1OxReSlMVYQvCifGz0/sA282zmedbD11uhAKoxPt0ynmeU4sT8YDgiKF2E7eLZvjNw92/H46kCuynYceHlMbG4j795s+eijBx4eF26ix1elG4S+9+xG0z1WMU2Ezgd2twPeex4fZw4aWKonpxNSldOc+fj+QJ4SY++NDeIdh6WSxw3d3S0IHA8T0+FELYVx8Lz1dMfpYNfuNwOb2xuOp4W6LHzu88944+mOkhfSUqlL5vTxC8qLEzILn/uz/xy3X3zfKr6uw7W6NuZddUhO5HlPOt4zPd6zHA6k04myJINImuKalExdDmg6IXGHSLLnu/Kw5cztgaYzoiu3e22yzMr6eR37k4Yja6uS0kb2V/EUucylSxeb0JKOHpFqCwmBBGAeqTgTIPIhWv/LNWg9ewqGU5bWxZwQrGJQoMV6Vwb69bm9ho/Skq9rpyU9Oy7a2nCZpnVhOX/PVPrWRCkok3nbm7egbqDOSH/Hs/e/n/d+5k/w7f/bv4ZMjyw5Q9+zDDd8cFzobm95+vxNCCM+dMzbgbS9Ibz5HvF0IP3GrzBNiZQy2+3AsA1khGV/sAYcYwelNihRGXcjw2ZAa2F/XEizFa5sthEVxzJnPIlxGJiS43icUYGxD4QYSNkkU0u1+oIlN9ZNrdZMGCvdD6LEaNCOFItHliJIrg1UssIVH62Bg5RCDHaO4AOqQhIlpYRTa74RvWng56JM04mQEzFn/LDBh0jOM6VmOlFcEQ4ff5OsjqId6sE3KrIg1mXeK+o2UBs7Jpu4mlTIoaCyNNaSQIyNJapWmOOjbT5q3vpvNT5FhtuGzevX/eqVftUgTdZinXUtuFZm6Rpn1rnrELYdpWGLTiCgfO3pwA/fRHYUeqc82Xoiat5GbIuaigvCm29tkKqMrQvI07du6TaRhxcP1AK5OmYKN0OAKnzzm6+oc6LPiRg9N7vA7S5YIgZpzQAU7zzb7UhZFl6cJg4pkpxS0kT0jv1+4uXLR9Ip0XlPaB5orkLBE5/ekIpyejxRTxPzNLMdOobouX+55/GUkXGDDz3Tqz2BxHuff86T2w1pmfG5UO/3LB88II8TMlfiV3+Mz//s78f1I9dG23ilDdvW1v9xOZIn87anw6rwNzUho4q0LuxarfUYilXF1nzBge3hsPKrLSFdz5GSwb96Zv1caHhN1+Rs6O3Dtgk07PzaeFYlS0bSDCK4tYO7F7zrmmdunja1UEqmpBkXuqYP7Rs7xZ3nkuk9Gz7rYrgkWNak9zpPz/NQ2zVzfuNMKVw3nTUZ3zwW87ybQyJN9tQsP1oFsofp3vDu02zQ3vicd3/PT/P4q7/Ew9/7m9RhJL/1Je5Thl6JmxEXHLd3IyqmGS29hzHw7Ktfpv7gT/Jr/5e/zHj6FqHrWIpBGEPnCMGTi7K03MlmDAyDp1TlsLfXhjHiG288LQuOQoyBuWSOczX8vDW2MCVIR8rJ2qxVpR9uiP3AdDyQlwWPso1CPwRc7FkKVKwXaMozkqxgpaI4V4ldZ3YBK6IpORHEGRXPKaUuBDIxRkKIBnmQsE5N5iVrMqlbEaykn0wqcHw8os6b3jaCc6sgmuK04kMgaaXUbBW04qhi+iOkxcr8IgZX1Yp4T3C9TR1fca6zLj7bHS5239VOfmoM97lzRLsJZmTd2WADlw42zYI358qCyQaNeOcuFr15aU5aYQ/K4ISvjI4fGYUbFja9581nI7uoDNsN08kakXrN7HYd3nliL/TBstVd55iOM/PxhFdhKoqGyOAy+4cTL/YLT7aRTSdoDOy2HXe31jw35wrBQvlxsyEGz+HxxGNy3M+e07QQvNA5z6vDxP3LR8pxJjhHH4wuFbdbws2OvCy8+ugV83Gh00qu1RrHTon7Bwv7FU86TozLkedv7Hj3c+8iKpTTEX84kj94wfJyoWYlZSGNN/zgn/xTjM/fso4xF/C1YdD1XCGp2ShR6bhn3j+STkeDSLIlxEwQwoSXKAUk4vrQELEzYsu5tFwvtM/mhrQKxtVFlXNDWMO3VzPYvG1thk9WcV7z2laq4WuMovXfbX4kmQzvbi2tfOjMM1dPqZWarbuJiz0+9Jw7v9MofCVZyBuKSYe2CELVr5P1CraT1+bnNRZztU2ef4+FywuFVvJvkx3vrLpQZEHTvbFe4hadXyL9E8KTz/G5n/sv8fVf+SUeygFP4CRKHIVujIbZasH7yPbmOafjIyVPPD684P0fep+7L/+P+Qf/67/AtP+QUJVdZ95uKoV5StRarDpyCExT5rRYl/pha8U4y+mEqtJ31v3mNCsP00ytQnAGOVmit+Uw1ArvBMOhfewJMVDnic4rm7Ej9gMZR5lmSzCHgA/KfHzECXRdb/ZAwXmDiIqCYj1mXZvDAWuVJmpYfK7Zsio+4IMVxCyPBxDYbAYohVyLUf1oeYCilOUEOyFEQXJCg6fOmZItr+N8RKI3GdhlQnJBm7Z9xairMTQsWwtkpWgBqXjf438LaddPh+EWWqGDnl1pa4rQdIL0stzWz6teqHwr3W813uL0jGsLtk46Ud7oPD+yC3w+Vp70ytB5bu9GbnozGiUXckrWscZbuWpVq86alkRJSkrWO7Gkgut6JHjS8ciUC3MWngyBjbPd9MmTge3GOLWLetQJwTk2m02rICu8SoHjqTCnhSAm3POthxM5Z6Yp8c4bW7abjof7E+ocE479qz11WagnExJagJtnG05LZn9M+KFnO25IhwPb4Hjr3ae88WRj4f39Hl49IlMlHTKnWdEQuPnqF3jrZ3+Ot3/vz+DGJ1xw2Yu3rdrajeWMLhN52jPv703pb77ia9dsXvVqcIXW3Z1zWHk2ZKynatROzc2wuVacUjARH/2Evavnr57DsNWQtn8K0tgoa1k9GGXQoiltALxIE/Yps3WDcbNFbTHgQ28iQOJNdtabNKuPPYiH1rPShIiMthZCD76dk7Wi051N82vSDHJB9M9dltYihXVJVKU0GMeihYATj56TskKdX+KG5yDRKiv7p9x+4X0+9wf+OPv/+P/JszffBjFmhHdK8I447BDJxKiUYWCZrR/kN3/pb/Pln/3neOsX/tt89Ff+p+xY6KLlQDRVOi902wHxnsf9xDRl+tG60Ys45nmy6MCbEZ2myuGYSMuCEiB6hsHTDT1g+iGlZLxUfB+Z1DGdDkQqN5tI5w0eSotyqpXjrDi30McBFww+8s7TdR1Zi3XJwVnjarXkp2UEZ+Mp+UgpCa+tXVhOdF0Tjirl3AYtotaFKZlUrB96xmdvk7KSHl41gTTbsAQhL7MlPzHOtzpnHH2xjj/4YHoqztotBm/l/6gnp9nmd5ur6XhAV8fnO4xPheFePaQ1XF4X6DlkRl4Ln8/h5fX8v4JirfCgSbAKjA6+sg380E3giS883UQThNoOvHrxyLJ4jlMCX3njSYcgvHx5oBthMxqJfplmnMI8zSgOH4TT3vozLrkSnGd0tkFEL9w+6RmHwLxkq+5yEIfIpkEjrx4q++x4PCakKlHgxcOBb33wiFPY3PR8z1feJI4duSpv7gZyKuwfZzZDpOs6Pjoc0BB4+vk3OU4Tjw8LGntyhXI6cLuLvPW5p2w3kemjF9THhXe/8n3M7pt86+9+k4xn95Uv8vmf+HFuv/AO8u730T3/knXzmF6dEeU1YaZrv8eaKenAcjSjnSbrWlOLaT3rqnTXtByc7+0Yn4BIzI4393k9x9ktNoPddmk4GzYueHDDiC+PvskM4tux7NhS2/cRFKMnng8rqz2v5+sxLrWgOZFkwgdjkoTQQzCZ1pImXBwJsQPnL3UFJZFrwTcGgWGW18h8qzdod9Z+zzrLufr958lsC1it32VJmMfv5IJ3i0MkofM9Em+oyyscBRme8JWf+CmO0wvm+UDfC7EbGLqR2Pd03pHmA9P+FSFEiJ4pFx5e7nn45i/zhZ/6E6T/4K/Bt/8+SylosTxR3xs99NX9ifm0sL3p2Ox6ypKZphOxE0L05CVzWizFGrywGTqqd2f2ifeOeWpNllFCDEjfoYs9yzHA2EcKjmmupApFC+qUXJSQEsFHtts7pCaDHcSxaLKko/fMOKbDI2hl6K2ysrRq0apY4lArEEx6t1bisGHob9DlgDpB1VMFPJ4QHCpK10VEhSjmjBV11LJY5OC9wUHFCqk0lQbnWrVlGEdr7CCKUxOOK3NtglbmrKRptsj1u4xPheGGS6B4xjJp8EdbmKvRbmu4edLWf9DJxdu+TmAFgfc2nh+5C3yuh57K7Ri5uekR7/j4xZ6chOOSiJ0wBDicrJ3Tze3I7a1JZC7TQp6Uac6E6FHv2O9nalWGMTBGYTsEYrD2Vbe3HV1wTEshF9P83d5uCUHY3x/Yz45jcRymmSFaU4avf/ueFy/Nc//Br77D59/e8nDMZK0823XsX848vNjjFFJaOBJ4lQQ6wR+P3H/8yOmwMA4dvSibpwNvvLFF9g8cfmPm+ee/SLyBD/7O3+FwKAzvfZEv/NgP8vaX3mL+6Bt88MtH3vtdfwjHjM7zJfJp9702CqAI1HQknw4sh4dL55rcGglohXotEKZnvFaaFvGKVV8MtjMdCDEPxc7a2CZroU7Tu149czlXMtZz8hmtjQVjYgamGNG+g3muZ0+8nV/VIgOtV+5Dq35Y+dc1ZWrJ5HnGh2g9JUO0fphpsoq42DdYpkWIacZpMeaJhLY7rAU40gx6M95nD+SKFXHez7SpYZrXJqLU5KjeW2LUJRPkqh7KDD7i/IAue2R4yvD0c3zxe7/Gr/69/zeqlS72dOOAiOM0GYa8zLPpTaty2N8j5cS3/8Hf5o0f+uPEJ2+x/8bfJaB0QQjS8OzjRF4ym9EzDgPznDgdZhAINZAmq4p0PhL6gVxMSiBGh2ta2WVZmlyqQ7xVwZZlphehH4TQmEApwykVtCRCcAwxMGki54ngHNU7go/42FGpdIp1bY+Bms0ZMEfONrzoAho8UjLBYdKwavBGN3Q4Z5IMtSU0EcF3AyqwHF7h+g3DdotOB4JfW3hYVa84Z7kScdRa0Na5J/YRH23eeQxRKGlhqQsSNwZBSsAFb8nUYXPNcv5N41NjuL1b8Ry1rCqy+uCcY0oxY33maWNNDdzZQzdDrsAAfN9N4Cfe6njvLnI7BO5fnHBd5DDD6X4mdIE5Z6bTwvPBWgmlOfH0buR2G1iWxJxh/zBxmArjpmOeM4eUefKkZ4gOKQVBiB7G0dGHSCqV05QheGveu+0QCg8PhX3qOGTQmrjbeKap8PUPDnzrowNP7iI/9bUvs9mMfPjyEaf/X+r+NFi3bb3rw36jm83brW73+/S3V3eFJFQIAYYiQEiEDcRxMI4TXMSkKo2/2s6X5IurnKo4SaWcchWpAkxRseMkxBCDgxEYBEJISEJC0u3vafbZZ/ere7vZjC4fnjHfta+4F6mMcV3PW/vus9d613rXms0znvF//o3nuJ1z8WrDfrNnPq/pxkSPphsiyVm01XRXHSokKpVZmczJcc3psoHnr6hNzen9t3j5tffZbTuau/d473f9Fk7fPGX36Gs8/uu/yPWLPXf/6L9GfXImUAU3c4KcE0wQSfEiCeMW320ZuzKMLGndORcmwETNmnBgbky7JluCG1fAyCTASaUzPgQzTMySSSb+LRi1qB5yWc0PLn5Jla4lMTE08usukFOaTfl+kx4g3/zjpls/GAJHhDuYZdscRsnftB22qohhwPoGU0norFaGTDwEF8jGo+wepuMAi4iEXiOnPU+Q0YRzv/76lEhREdWI8kZoi1r+zrqkyodO0lrSKCyT2S1O3/wsj7/xVbrhnGUzR6uEMZouBGKhrhlrZCEKHqsU/fUlm6/8NXbPPyCHhHWRylrGoOiGSEZzcjyHnBn3I4FEbQX7jz6hTcY2lfCWC5atQOwIUmLc94L7akNVOXQIhBikg7VF/JISMRrGiHC8Ee+VrDSVqzBGKJ9aleAGBZV1pOL2mHLCjh3GQlXN0MVr3Gor4R1xPMy/xhSYO0tbwpfRBqwhjmLCZQq8p4GqacmqZvR7MorgB5KSpCA9ibOUJsVBdmZaoWxNXbeFOCEeQcHUpBRQsYRolwAK6yyuaWUR+A7Hd03hhhI/VR72iU4lDJLJBbB02QgmrlAYJSdi4vumlFlZxfcsDT98r+LBrYp7p3PxunYV88ox7AeuuoAZIqta86l3TzAxyNfeXqJipOtGos9cXXckDPNZRfSeqnGc3a+4fTpjv+5ZXwleOl9UzGeOsY/4IjWuGstsVjP2IxfbSNYNQWkWM4VNmRcvrnnycsc+RD737gnvvHOb7RB4cb1hXhvCPvH0yUtao3FoNiME6+g2veDSRzXdtsfHyKKG1VHLSVth+w79aIfymS6PfOPJr2IXC+792I9x/wvv4C8+5pO//rNsn62JQyafvsnp930R7VpAMPzXANZCsRPsOoY9Ydgz7DeMfUcYJ1y7eJFM8XGHtbbQ2w5+JFGKd+lkZBhZho75ZrE4sEQOKkMOhUzBjTXr60NHbRGeuXTskytZOhTJqRu/GQSWXompxRV4OR4WlpynAakpZ6R8LCtS6iUswPTEqsP6FlM1mHqGthVkiGVIa1xTFKjlXbM+wH03rckNnDIl6nzreQFSEuWf9kQjSlBtLRgrkIryAkUpC8MWNbtFdXSfh5/9Id7/1b8pxT0Ljda6mrGX3ZVzlrrW5Hyb/e6KbFpeffQY+h1NbTAKfJDkJqMVbeVIOTH04n3S1ApbaWJSJO1ksKYK1TJFdBI/kJgEHolDB1rhXCWF0Wqsqco1yYSsGMeEDwNZCwU2JIhKFgdtrbA2/IA2WrxTcoRUakNOkh6VBHIzWguNsNQXrRVBack+tZpF00rafKFmKiWdOFHE8Vqlog0w5H5LVB1oTcj5sEDnMm9QIZJCB3HAGouyTvKJNeiqIfmR0O9AV9hKwlCUzoz7PSl05LzA9/v/dmDcWuubrYG6wbSnB3W6qaetpEICGKQeKBSJRise1IbvWVk+dep47+0Tlg2cP9tyOVrmc0MdRta7nplRrOaWmYM6eYzNNHXF9qpj8EIp7EIi24qZ0ww+UzWG+/fmzGrNfjPS9xFbaY6OV1Qms92NjGMmGcVsMcO1NV0ngb7JNNRtxaK2hK7no8cXPH6xZXXc8r3v3MWgeHm15/h0yXw249XzC54+uaBxNcEp1rtIrA2zqmJ5dsRu39NtOnKI3J4rbi9nVONIfnmFHrKkyftMqgxnn/8UD3/wC+T9S57+nb9B/2rDcD2Qi3Dh6Ht/kNmdeyjzukISchIHOaY/0ZPHHt8JiySOQ8G1C4Ycw6Gblg5YmBsT73iqsGoa2OWpcL9WlYGpA59cHw/hzxPFrwwYcwqyQ0gJ9MQ5LyUw3RRjigXpaxu30lEruXfUTUHWqgQ36GL1qoBDok0RCCnp4lVWJLGqI4aIHwZcVWOHAdfOMFWLMq6o6nqMS2LlWaAgNe1ApjXyNez+9aUlTQtplt9LIRQ35S3ajGhbkY0vXHUNKYDRcv3CCG7JrTfe4vqT2wQ888UpkJlrSTAPw5aqmhGTZ7laonTi5N5D6BWNCtja4cfM4MVHxlXi0T12HqUS88Zhnbg7qtqSdYUfIxlJiE/jSCbh0Xiv8WNCS848IQJZwnFrZwlJAoRHr9iOiThKYjzWoK07cOxjjIzDiFGJCid7IyW/uq2EFRQmT5IUiMMARoyetNGkBAOA0sxrTeXKzMDWKCQnU6WI1uJMqpRGFdW0igFXVyhd0Xed0BALoSLljO+25NDR1g1V02CbBSoVF0wNuIbUB3TqMLOaen5KSh7jGpIfUHVDNv+tUU5Ow6rCDKB4W7z2sMnfUx5hKeYZjM7crw3fd1zxwCluLzRvvnXCooKnH695uY300WOzdGStg6OjhvlMLFerxqFz5mrj2XVJLFezp53V1DYTySyPLfdutRituLgYGMZAXRuOj1q0VnQhsh8zpjI0bUVWmcvrkXEIaFvRNIZFo7k4v+bJ42s2feDNt0/49JtnXLy85HKI3H1wG60MTx6/Yrveo0zFJirGQbrYxogncrcf0CEwJ1DP4O5xS73eEV51ZA+7mElaU58uuPfFz9NWiVc/99N0LzdEL2buIYihTqxnHH3f92DaeXHPm4rmhAFPvGolD8C4xe83MpD0kmKTU0TiRWCyURWmzzQ4fA3wmvxJcryBBOAAYch733T8k33sBIccOvQUyWMvrBNb2ANp+r7pNax8Wg20JKsnkUof3lNRIBfZph6YSwkmPrbg8wK9TIKgCW4Rq+0Cy4SET5HoR8K4xzYzXLvAOOHERz9gckbbpmAjk6S9hHgc/q9cgwnOKYvORGkkIZCJLx236w/ezllZlBKBFEqT/Ro1u4Obn3B69y2ePv4qfthSNTPaeUPKS7ZRBFFV3YAy3JrPsK5lePExLouj3xi1xGyliB9GQjK4ymGVeIuL054GUUOQdUYlJYkzxhJ8ZNd5Mol6XqOSlnR2ZEeTY2LMgTFlOi+2LSllshb+t8kR1xSvFWPBe3QKaK1IIRJDFHTDVagsDNRU0nRUVlJwlRhIKWvpuoGQEovW4Ex5L4XI6bUR1a8CrSXhPYyBQyIWCU1PtBVogV6MNZAzQ7dDJc/i6PhGrVscDScxka0lbCL7PcY4jDNYU4OuGfdbxm6DUZYDZfbbHN8VhVtgEMEYM0wVXFa6/LpP99R9H3pC5kbxxdOa7z2umOuEiZnFYkEaPY+ebPjk3JOUprKJo8ox7DzzuaN1mhATzbIhDJHL7YBRhnEU/+K7Rw0hZ0xdszqqOZlbLl9sWXcyXT9a1ixWjm4/MgQP1mIaEdnEoLlad0RVUVcGYxSV0Tz+6CWPn2xQzvH2e7c4nWtePH6Kdpals7x8cUXfjUQfaeqaED3rvUcXs/jYDyQycwdnc8V8tWJGxH90QdhGhjETVMbUFcvVjHpm6T/4BtcXG/yQbs5xcVpLETi5zemnPyv+G6/dKEqpkikxDQPFiD70PWPfE7wMJHMO8icK7U7pif5WYBY1uf9NGHJmYk5M9qhCNSyDzYNXSCmhecK3002CTPJkL4IebEPWEmybw3j4uik0uqwWKJUgSCiFSCrV4fc8WFzpqQgL1KO0UBIP50xPw9ObIajcjNNIXEFSpCxc9jD2hH5PNVtSzVZk64h+RGXQzpEO3Xz8lgWBm+WjPPjc7GoKbJRzKAJWT/QebT3GVDJszSJuUUofYuRojlk9+BSXrx6TIuy3e5o2YY1mcXSGVsJlNq5l6HekbsC/fELa9xCFPmiMYRgiMUJdS0za6DWJQN3MIWsihck4baS0xSdFHyRIpCohCxgFtgQwRAlkyAk6nxm6kZSyZEdrSYG31mCsIxHJIQsjoxhBhSSNgs7C+Ag5MQw9adgxry2uqXBNA9oQgRgjCUVlBACLMZGtASzejyKucWJCRlKEvif6LdoaxqLyJCfaxRF6XtNfvKSyGTs7YtxeM5/NaGZiHif1Kx12ooehqWoFR8+Z2O2oFkdQteTeMw4XmLjh5s78x4/visIN03N0GCEBN0NIeYC12IJOQw4y9xpx8ntjbiREoGCaV+c7nj8dyVax6UbOlhXv3JszqxSVrZnPGi7Xgagyu90eVxnu3l7x4umGqrbcvTXj1blgcEczRaMUjz+8ZvQR2xhunbZoEpfXHSGIhWTb1NhKs916dvuMcjVTKocJiQ/ff8nF2tMnxWceLlmpwIvHW9pWvLyfXe+IJKySrL3gZUp9fDInRhE0zFvL0VxTKTg9rnHrjv2HV4RR4ZMiVprZvMZZjTEZf7GhH0IhekwGR3kifpDIHL3zaarjoyKxleKhDraruTA7Ijl05HHH2G8KX9WTU5SCdmiQ81QnS8GcpNmlTZygjjSBYNLB5gJnHAp2vmGQ3MAexe40duBHkZi7uaRmpyjc8kPHXnD1adY48fxz6aq0PvyukwmU0roMh0qgg1KQRV05tdZSxAt2O6WnHMC8cudO5yELVBPKziQMHfXyGFPNCTmjc0C7RojOB/ymYPGHeI8JPnoNCJ/w7pTJKhGDR/uR7AawNRgr0JGaoB4tHjH1MfXqNsvVHa4vP6JeHDMMA81sRfQdxmTAsLu+QBuF0Zbh6oImQWXk9xwG6czbtkXlzBhkdlE1R9i6JiWP3/f4UTy8jXOEDD4GdE64upLuO0W0thgtu+boRxlGll2TVpacxmICldHWiJ+2yqRhAEQsFcvioHIWSMMatK2J2eCHjRAHtKVyCqMSw9gTVI12joUdsQtHSEbqMMWfRGsqYzC6FO4MTd0Qq6L0zBKErK2wXpyz0MwgdKh+w7ypwRqGTuYfVe1uBuBBUn60MVTNjLHb4vut7HK1xiqHtgZVN2gmBtK3P74rCrf8XhMGWXBQrW52ueXmnWTslc58flXz+ZmmzgGVNXkMjL3Hx0xIkXu35hAjVdK89caSRVOUcUrx+Lzn5VXPrVWDQ3PndMH1pmc9Bu7cXvByG3i+GThtLduryPVFh9Ga41XN6Z0FcRg5Px/pQ6SqLfPjBVZr1lc92x7MrIEk7oD9rufVumezC/Qx8ta9OXnX8dF2ZPCQr3a42hKSdGvZwnw1h6phWPf0+56hG1jWmtO24uh0wVHl6L/5CdvnPaPPBKupVi3L4xlGAX4g7EbCEMhRhnMTTBGmrhMIxjH/zKewTVPk2nKeBWqghN4qKZphJPhecO1xJAeRN99QltRhUZXrJTfeYTZxYJ1MA5cphSbBRMXL4YAPHG6FJAo/Kdri4ZxNffBkJo7EOEKMB6hchoyHlp5pCJrJRdRVCuRhUGXJ2hZP+CJt14qsLDmVgZY2pDIIF7g5S3K7UgfPa6ZkoAnXA3KWDnHYe4LvqWdH0l0hmLyuRMgz2SIdTGqnzrp8q9cDJqZzlpRCR0+KVmwGYiwy/IBIPCJgUGGAJqPqIxa3H3L+4iNU39POjsTwv7KF8tiTcqapW7pXl7jYM2sbgg8SYpAjbe1Eaj4MMtPQmuRHhhhFwBJ8iWaDEPLB3iFlaUiUhpQ1IUdUTrjiFZOSqAYFw09iPaHFBGtImZwDtTU468prYfCCQ1caKbRawgnM2FMTcI2lrcU+eLfbkbVhtmxQcY+OPaaeAZXEqJmCUSf5WbTOEBMpBmxd41bHpKwYvRf2CIow9NRaUdUNfuzIYcS4SoIblCgxdWHs2Kopvt8RFUfsvKVZvcnm+TPG/QXeX+NixNYL6todMlC/0/FdUbinY/KqkPSb0nVMnV/pmG7Vmh84anjDZeZiZYv1so2eLy2ro4bQjey2Axm4f3uJzpFdl3GrJefbnuebEWc06IwyjlebAWc0Z8uWi/M9ylW0VrbFnYd5a5nPDMuTlt22Z9d5RgzVvGJ1MoeUOD/vCNpRLR2ZROMU3W7Pej1yce2JIbKcW3znebUPxKTofcI0NbHPWDwrYzDG0PvI0G+4uOqplOKkNdw6W/DuZ+6hN9dc/eoj+kvPkIBFS7OYUZmMyYG42ZFChiQWpSGJj0MuvGGBgUtvupyzfOuhMCBu2uRvGRhOXOocxV42jqN4G4eiGsviPTEN3KZOWgq4FH59gDqSuAqiOHCbSzee07TPykUqL6EIOXlyGAVzBNRkCRvFfTClWFgvNx28wMYT/U699vPow7+ZCvkkpU/F+Er5QzKJNoIblyQG+VMUi1qbG/aJ0mQVX9MSHCptua+FThhGTwwXjN2O2fEJplkBCe1mZQEoZzHn17785rzkw/WRf+uYSDrJeYgjOQ6o5CBV8mBkW3Bv8V/BzWmPTmnbGVGL2tNah2uWDFtFt98RQ2DoIsPzxyx1pus84+hxOuOsnPdQwhacdvjBE/seKOuv0gdqXi4MI5UV2pTdigajDcMwCH09yLMQkuwED4No5JLGJPOMyllZnKOwRBRTQlDCOYfWmug7uj7gtKapBXf2ITAMkTCMnNw6oTGZftfjUeTKCmU3eXkGtCX6JLbPk2YhRcLQI+N2g1YKWwnEk3OQ/64Mfif3A0GcHeu6RrcSSGGNkR3BfC47v+CJfSc+OI2jv86kfk+InvmxETGUtYcd67c7vqsKt8gmVMEdy4UsF9FpeFgrfttZxV2XmNeW49Zxve7Ybj1jo3l4tiQMI2MfqIyhrjXaKdrjIwYML689F+cbzpYNp0cNy9pw3Y0cndTQDZzvIyxmmJSwGKraYVXiaF5ha8eLTaQ+vodeZPzFc1bLhnGIXK0HsA2oTAyexcwwDjCkiov9FuM0WVv2WZOxUCn8GJndPSHnTNp3nMxmdNcdw95zdHyC3/dYBpyGOw+O+NS7dwnPn3H1pRfst5E+ZPRyzurhbfQ4kDY7+sueOEi2Xsq5qKZlmxtjPogMcinOab5gefuuFNHXrsJk2jRBFGTx0Q5exDbR+1LQb2iYhyJY3qPYRr0GHUzf/wamuGGJwLRg5ByLOVWAKOZU024BZaRgZ3VTsCnb5eKlPUFuOUscVArizcyUVRiSJIJHGc4qJ12a4NYazJQeb8hxkC7aaJRyAkNoB1lCflEGXYrUJCY4JOq81vlPgiGF0CbDENide+pFR7U4weQsDJRCo1SvQUe/nriYS0xbzpqsksRlxYgJgRh6dGogB4F5cpLuXGmIAeVa7OyE2eKU9fYl+/0W6xS1a2jmS3xM1Bh8N5CvX3J+fkm3HZnXhvZsKY2A73GVxVVGWBs5YHRR/AG+XBtlLdZo8JmkZDiXUIQQiUlk5M4YYZmmUGDjsttWBp+C8LCtKbheIowj3ktnb6yl0RltK+q6QZEZ+j05ZazT1LVhDHC96zGuZlkbXOzwu5EQM9ma4vouxnK2wDrpMCMXwVC2wp0PvScy4qyWgqst4PD9lpQUxklkWfIjFBMqY+WeTSmiisWtaeZo15JjZNysCX1frnVCpYjv1rhmDrnitYfmHzt+w8KtlPozwE8AL3LO31c+dgr8P4B3gA+BfynnfFk+928DfxIhov4bOee/9hu9x3RjTkOwA8ZdHoOlgS8sKr4wV9ybKeaV4Whu8cOIyol2aZg3luvzDacnS3ZpwNaGo7srzu6fsOk0u83Idv2KW3PDw1sty6MZj55ecvLglLjbc9Fb/KJG7Tq22x23VjPqSrNqRHJ7mWrU6RljZdhdnWOVpFhvh0yuZzIY8x5XVQz7kXWX+PDJtXj0Zhhzoq0qnNVsAlSnx4y7Lcb3NEazXwe6IcGs5vxqRxg65k5z796CO/OK9a98k/H5jq6L7CO0Jwvmt46wBNLYkcdRONVyj0vVKAU8qzI1R/jlZMHUmlu3qZdLKL4wh+Fh6Xqma5Fzko7b90Tfi3S95CJOUKxS0302tZmFoVKw9ZRFbHNw9ztAJqXbPnCvIzmMxLFjMhubOMopi6o1jB5shUL8ltMoKTyq2K1mBWn0DFd7shcD/KkhODwLOaOsRjstdPCcUFph2wqzaMXlLUYU4KqK7KwM02wlvGltULoiqeL1ncvCoYUHL/PNST16M3SccMsYPP3mijAOzI5uSRGp5mVnKVOcaTeSXhvHQ1mACsMm50gKvvyJYohl6yJikw5WOttRsFjbMDu5y2b9ElvXsmjrCj9cCyzgFP3lSP/qFakbmFeK+cxKfJgKtLOaqrGS3j4GgVqsRSnwoy8BARlb7j+nM1iNz0n4/lH41U4bJBBJAg1A4cs9l2IoOzMjsu+UGHKShTvFElAtux2lIIcRZQ11ZbC1wGjj2NH5jHaWVa1otSL6IKwfxCogpSiD6sJtl9tfDK+yv9kJaFPJwh8lxDhZWQiNc7h6jk/gu70oHqsFgMQYWicio5yx2pGGPbay2OqImEQJq1XEOlBVjbGGnDJjP6JMuDFV+zbHb6bj/nPAvw/8+dc+9m8BfyPn/O8qpf6t8u9/Uyn1PcAfA74XeAD8pFLqs/kwbfrORy5yX7nfBK80Ct5uFD94VHHHJFotQb1zq+m3I/s+0CwaVouKfr0Hpbk836Cc5f6n73DnzoLzS2F99BfPeedWxd1bS6q24ZPn19Snc5aLBR9ej3g9Uncbrq56jLL40bOsKnb7yDWa6u6KXQw8PDnG1Jb1Bz2vrgKzRYvfbokhYK1GE3n2cseLVx3ZWSqlGAcxrgmDJ81WVE3i8tU1cehYVobrPtBUhlg7TO1I0dNWhgcPz1jFke2XP0FtIz7CoDXtqmV155jcdYT9IGkzvSfGqdFTcmO8xogooSdF8KGIWbO49wa6alDKFkz5tYHIxLEunXGKI9GPxLGkuU+imYk+kL+V+jexSg7fJ8PBOElNxXqq+JMPSiAPHWnc4/sRW1do4wo1S5EHT7/eMFxt0bMahcLvO/zOT4iymJUZMaGPRTxBVpKAosrvJT8CSkeUCgXDFhVuGDrYdBhjyTmhyQxGYWuHqSt04zDtDF034CLKOjIOpQs/O020waLQzJM3y2uQDQpKiO/Y7UnxGW3oqZdgqtlNjS7NzGFwoBSTv7z8bKW7TZoQR0wMxamwPPR6yu8EkgwAMQva1bEUvpywribnRN/vBcKZnzA+f0wTdszmhTOdIskPtMsZ1hr8GAn+Zk4w7bRCEAqiMUAMxJSKS2VhKCVRIBojfG0fJOFIGX0Q2qUYST6IyM5ZQkh4IIeMUwnnlEBAZFKKaJ/JRoR4dtaiXM12u2e/H5gvl5xUBhMHUIaQIMQR7RqhUaIl1iwnxmEAUxaKjCg0fZCgEgfWGKEUGk3yspNRWlg9xohzoa1kMc9xlHvRGiq7BALO1fjdBvKGlEQWT/JYW5FrETVlYyRUKopU/p9UNn/Dwp1z/iml1Du/7sP/AvC7y3//h8DfAv7N8vH/OOc8AB8opb4B/CjwM7/R+7w+VScrWp35/Mzwg8eOEwveK+paY8lsdx4fEq6qGXvFq2FHDpn9kGiXNT/4o5/m1mnNB1/9hK9+dMXxwnF/5njjrdvEnLm42nLvrTtUWvPR45dUKNo4cn7VkVHUVrZrVzuPripUZXn+4orm3ikxGvHrNRpHIu63OCVccjM/4vLikt21eJAoYOw8YwTd1LS3ThhDh7OGZtFw0Y/oIbKa1+TKYbQh58TxsuZsWWG2W3aPXmJGsY9NxlJXhqbS+Msr1BgJYyD6iEDAwoZIpbNWCuLr263X6JaJTHV8jGqOoF6hYldeVNgdhx16CU0InlTc/3KMBSopTnsHSLd0QXLjlMWgFHDSIeFFGB/Fq6NYwKahIw178jiIn0TliP1It7vCNTW+G9mfbwlDQCkLm7HAOfLA5ywsHG1Ld55Sgb3z67/+YcB98DpRHGASmdmKqi7qIIQSLUUnhRE7JPK2Q7s9tnGo2uEWS3Q7RxkR2wgWrouCT5DRXBYrpSe2iHTUqkSyhXFgf3VODJH2+A62mTPRC79lRDXBvxN1EmGgUHj0OZaCHRPYyUpgclVU5DCgnMO2RzTVnFSoqrFItbWruL68Ir98xKLKaKNkV2tgebJAuZq+68vGSMQ1IcHYjYgVqRF/EYR1o7MipJvJR0KjnCOMnnHsZUHXmhwyPkPyATNx/5W43djayoDdj1glYq4EsuNTkj1Q1Va0E8ay95H9MNLOGhatRcUo94GRATRBQh5cXZW1UKGyJozSteeUiRGCl5kHGnmWTIs2Tn5vItYq0RhHj7EVSoHVMjCPOUkgS2Wolkd4b0VYo5QkxOcrbF0VTxMLWfBxrSyZXoakMX7Lvfvrj/+qGPfdnPNTeT7zU6XUnfLxh8Dff+11j8vH/rFDKfWngD8FYA9pNWJGftvBF1eOz6wsrUpURnPr9pLTmeHRB+fEbCTFOSQygft3F+w3PanJ/Mjv/AKnR44Pf+0jfumrL7l1tuRkabl375TrLrLr99y5dwLB8/4H5yTvifvAxW5gdTzjllH4oNh7T9NUuNoR0gj7jnRleNnvmBNx3qOip1aabT/SjZnx6glKK06OW7kRteXpi2tM3bK8dUQatjSLFbbV9PsrxpQ4WzWopiZbiwme1iRmKsLFNenZGuOhS6BqR20NRsvFVCERRonRyqkM5FISJZqSNI5UtpNTxibTwCtDyKBnM3Eky9OjdXNoZclqkEKTIykKXzjFsbjVFThFboICaxWp+8EyFSZP6ZwFHskTJJNLZmUY6S9fkboeWzvGfiSNkgnZX3cQQWnZssZQqIypqDWVKt4VhhiLqGhKTUK+LhbYSBYVeVtXWZmnlOGTUSKXnqzcjRVudSGXYJyWAhc81hqBJQaPMopwvcUuZth5i5mtUNUcbWuyNkSlil1xEejkBBRM/FuG7pI03q2vIGbas7voesahwL8+qJx+OczhgqacSEkisiar0UOnXQZtaIRdYhr08oz56UO8P0drS8zy/FXNnPXzT2jCDu0qvI+gFe2yAaXpdx0+RGKxONA6l+sS0c7RNBVGye8jrAhdPIgUSStUUhA9KgdMcU7MOeFDxiThZqsi5NHWYK0iKi1MFQPERBg9Wkmaka0MdVPRziu0rdh2Pd2uZ1lrFjMDQXahMSRIIzQO0y6wWuCZjHTMIvZTImkHpgSiHIPg9NGTosGoGp0CyhhCyITY0VTiUZP8CCqIMUJhp+Qc0YiwqV9fCFMJJR25qrDVnL7vCfsNSkVsW/QBxpYl+7+54eS347B822Uj5/yngT8N0FQ26wxOJd5rLV9cau7NNPMafJ8YgfnYc91LFzWbGdp5jakNtTNsrvfcfecW3/fmLWYu8PSbL3hx3lPVNW/eXXB2MufZizWbbuDdz9yl23S8fH5NYxVD1DzbRIyrqJRiGAKdF7/hxekCy0g/GJatxuREHQO522Fipu89A5q9z1xddUQUb33uISkn1hc7rq72rO7cIvqRXbfnzXffYvAd56+uGYaI0wptDGnco2PFqlFYwK079OUOHWBUhvp0BsOI0klW6hQJIRGjFMVYhn8xT3JwinkQZWh4c96FDZHEw7i2EHsI+4JJ34AdWVtymMY3siVPQaKYhOGhy1ZOiiJ5omtKbzVxkYVaKG2XCHGksBBGxusLxu0OUqZf79hfdGiUuKhp6aIjEMeSSh5ElBFCIlHodyoTo78ZTmpVsG9IYdoK5MIDlu4veum6CmhCsZpAxRIgmyImi52C0Uok61ahjSJFX+w3hUKmfcb3W+z1Djtf446W2MURqlqBTqQSfVbGCocFR6nX/cBv5gj97oqsErOTO5hmwc2KW9znD0/Ta6rSJLugFD05DQcmkJogqjK3UHEQawDfoRC/DNsuyb5jtjhivdmzf/mEJZ7gKozLOKMJMdJvOpJSjGXHZZQkp4eQsFWNMgKhqMpgjQElQz+VJJVdGwPek8rOQyt5DUkWxoQXZomRou+sGI2pJD71vc8k73HOUtUOZ5WQB5qGlGHwieADqwYap4gxEoJ4F8WUZTg4V2BqiL0MSaMshEkZctbSGJQNkTIFyphwdL8nK5mDZO2kYSDjh5GULnDGiCo3B8CBFlm9321lrqTFHVOVBiaOAaX2ZO+JvpeMUm9RpibbMiv5Z8Djfq6Uul+67fvAi/Lxx8Cbr73uDeDJb/TNVM6c6sSnas17reK4GKenrNgOmcGPKBS3VhWrY8XRUUO7kIv36mLHG597yJufvk+/vmJzvWcYxJj9s28dM5/PeXXe8ejFmrffPOPy6TVD3zFvKq6uOp5deGazitbBrvPErHFtza2Ht2nrzObCswuwPD0h+p643VFVEt7bZ4VzhpfXW8YEb3z6TXxds+9HLnYjmyHQXexYHM958M49jIPQixthHXpurwyNy1SmwppMYzVu57EXexSKQSnq4wU2DGIZiSb2PSlm6SK0Ai3QQEzCySloyWsYtTwIOQvOLVtMJQ5qzhaE6sa9DzJZGbSuDoZfZOGzRj8KG0PpQ0hFngoEBSpB+vCckYKSEpSEE5In9jti1xG2okTz25Hueg8p4oxBOy0Pm0+EkBgDxJgLJ3iSpYiXskSmKGRyX2TiQTr/mOWh1cX6N6RUnOnKGpWl4xb45ka9mMprDBmdEIl6AuUjlS2ybyueFTpmYQiiRKIdeuJuxC02uONbmOURmXlJEyrnd0KhisnWlACTy3YgRRg210CmPQFTzQ+8+8NcoZztXCSKKokT3gQR5VjEUXm6HhmVvVAeC53SuAYdR2zToKslw/4Koyriyxek9SXNyRF21hKTJiVNTL3A91qjrMOPQsVEO1FLBjG/SmSqSuHqGlM5sW3NTjppsjQqZGyWTjgH8c6e6L7aiKTdx0g/+JLvKNCFs4raaqyzVK3DVRVjygxjwtjMoq0xWawHBAbRYCth1FCsWpVmDEAaMKYi5czoO7StCT5itEOrjNWKVIKyp3tIRFWy4NuqLvi+xioD0eODWOOqymCqShZ+q1GuJXpJe5fuXhaIYbcTJW2ZyQQv1+7gbPDPACr5y8D/FPh3y99/6bWP/9+VUv9HZDj5GeDnfqNvVin44bnmloWZVYIZ50ClK1atpTNy4/mguHOn5eisxXcBnxTvfP4tTu8csb86J0dFv+lZ7wP337lPU2k+eXpJv/esqpaLZ2tap5kvHet95nKQIUEOgaAs9dExx8cz9LinUj37dWTdKYyzjNtrcko4MudXe8yioVWax892qMWS7/3Mm1ysN7x8dsGwGwg+M3eOum04Ol0x7jYMIbFbr2G3F0HNqmY2b/H9iFOZejeiLrakqNgncLMa5Xs0piRryNY+JnDHK3LwjJu+sEhuLvJEP3tt2gtwwxzJGWUk0bz01699fZauzM1R48XhW+RUOLQlz1NYJaWY5F/3vvAaDlt8ulPGb664+NIH+K443FUa6wxOQSoZhcEnwpjwUUyNYpLOMuQidAGBRkIkhcJLR9Sh6IIMpFhgkoQp2oApxUxldfPfIF4TRrq7BNSVxVgpJJOEWhcsOXpRwboMKcoMwRhhVmit0DkTvfhupPEZZnuNXZ3A8gzlKlKSQpB0ZuI7T9dFGDylzKbAsF2jtKY5Al3NmFLDb6ASbuYFWrjoKZW4uJxeu+7SdWddFqgUyCpjmhq/3aFSpq4tOlp2z95nvn3B8XLBsF4LO8fWxJwl59SLfUS5nCILz7qkt2iysvgyELZKCVacNQHB3jOKJKopjFUw+cYUtlFWsmjnHIgZumTpfKA2Gls3ZTabD3/2w0BUhnYl7CqXIsFbElEiwLTGVA6SRU/vH2UmpBB2Siyhz2RFkXbITkHBiAjGbNWitCFSCMtZrjVJaMqEgZw9IQgm7gpEpkF82l2DtkPpXzJKO7mng9gHFCMVEecYSbYfxn/KIAWl1H+EDCJvKaUeA/9bpGD/J0qpPwk8Av6H8uDmX1NK/SfAl4AA/C9/M4ySmVG8OVMsK8Oy0cwqRa0UF7uBmTMcLWsaZ5gva1bLms35juZsxYP7d8gpcPXyBTobnn1yQZ8Up/duU+XEJx+9YrvbY6NisJbl0pJi4rxTNKdn5O0TdI6EqKhqTTNzVGqkWtSsd54xO0Y83fWOhdXk0bNVcOvdB2yv1rw43/Lg7dvcOlvx4sUlT59e0VqH9YFZTjLUWToUI+Pes3l1RR4989pROUtWmhgTJ8dz9Pklw/NrcrYMWWErw6yxKC/BuxmE0YHGrVY084rrp1tCmBSDUng0+gZ/LtCApMSoItHmZgtWOrjXvehEIdFCVZF3r7n6pZsuRpVvMY3Z5N1S6bylQ88xFrVkce9Lgf7ZOcNakkogi80lYsOaMoxjIkbFMEZiViQ0SYnzSVSKGOS1GenGp4I8DTqlKAubREWRpPsknbdC3oOyxdWUKC7EC94UHnYKAWMUxioZOFuwVhgnB5/4kDAKlMqYVF5nhAKnVGYcxCLYDonUddh+gz25i65XMrxMN6EflAVWEtDkpGalySExrK/Q2lAtwNTFcvdbTLfKDiRndCqqyXjDbz9cO/ktyaoWt0cUxtWYlLFWkfpLllXPq4tv0jaGYb+lXS7o1td42zLqiuAD/egFj7aGuqnFO2T0pJgwldgYG+PQVUufpOjFLLvDMBYxFhnxZxW7hJRSgY1EgJRRhJjxKJJRNNkwb+R66KSYzQ1Kafb7PdnUNK2jVgFT1/hhZOhlSK2M4N6uqlAhEoeRsR/Iyotz4OjxQ4/RVq4/AePmBygLPFUlP0vKAqtoY3B1S8aQwkDlNNVsJgSBwR+ol3nsQQeoZ6QU0LGjaiwxCpwy7bZMisLDz6oshhEN+AihHyde77c9fjOskn/5O3zq936H1/87wL/zG33f14/KwJ2ZwQCL2tJWin4f0EqSZeq5ZXXckEPi5eWONz7/FrfuLtmdr4nRU7mGr3/lE6rZnDfevkva73j56Jz95Y5kYHU6o7Ka9bontAsWt1bsXj6j8h7tNHVTsVg12ORxuqLbRy42iZ3v8X3PcWtlaGY087MjXj0/Z1SGdz7/DjpFPvn4FV0fWChF2u6I+55UVRzfO6U9WnB5fs5wvactgy5rwZTt0q3TJerZC/aPr0lBMyDbq0ZD3HVoI4VYnkUrE2c/cvVkQxhTyWLMAptMHTUUnUsxxJErIwU3F5EBqrBDSqGlyK6lspeW1ElXWCSXKcv2e1KWSYEwRaZc3jsnsX/N07ZPoqFyt6W73GCtbDmtFQOnFBUhJIZRFtAYE3svIbYJJPYNwbXLKI/DysGkypRnIcYChyDeyVZpOQUmT21tWYMEZrAHCKLQ1YrwyPuED9J5aQ/OCZ5trcJnoYZpwGZZsHLK5DSJZ/Ih3CNEuT45rGEcqW7fg/aUrBxo6ejJWZiDFB3D5FyoIMVIv75CuxqUFuHGAS7JN/89wUSxWAqkSRyVOdAyKUPSFMlEtK0xKJr0kswVqv0Ul89f8dk/8kfYf+URu3/415kdH5EuN4wqsveWbjtinKWuFNrKHCEkhM+eyv1mDAFkaBlDWSg1gYzOGVVw4ugl4Ugryo5FFrCYFKOXdKmZNbQNmEZBVrhaItE2uxGy4fhojskJ3+3IKTH6kbH3KDKuFijFaok7izHI9UChTCJ6oROiNBolARimLN7JY0wjA3+l0M0MVEMc1mLfag05GyotEE1yS/rBQxrQMeDDCKoWiqgGpxBaK4DWxKJmVraW9PmsiWii12V+ANgpaPrbH98VykmVYb+TAUbtMn430KfM6siyPGs4Pp6x3/TktuW9z79FYxQvP3qKHyL9mLm+3tMeLXj4xl2G6y1PvvGM683Ieszcvz9Dh8irjac6PeH49pJ0fUE1JLwytJXi+M6Ko5OWsRu4vuo530bOh0TlNKdNRbfrwDlGH3n8/kuqWc0Xvu9T+H7Ho0cv8PuR2I3kYYSYuXf3lKO7J1x1PR9+8zEmA0EsJFeLiqQ0brbg9Nac9Owl/uMrhgF8gmYl2KMCtBVmSJog4hzJUTNsO8G/cgE6lHTCWkn3dfC0yOnA1gHIZdCmkgwbJ/8JKYelcBRgAKWhWqHSDpF9A9PWvGzJFab4oJQOH7npRaAjHiOgSb6jf3kNYzx40EihBe8TIStS0viQhL5ojIRRACGUlCNrDgyNEIROmJMUgde/pzFi06lNCU8rPGNUGVIVb2WQ7pxUsEQl3F0yaCs7IU1CZUMYCvRi5GfJDrETVaATVLawaYShhtEZpSLGSIccYiTnDtIzzMmAWd5BgvQSWrkbWEPy1+Q65ETW4H1Hf31Bq2WHprXj4OGtJnWr7KrE9KvkfhaFJbq4PiqE1ZGTFFBjhY1Uz4i55eL5hq///Pt84bf/GPd+/x/mhbVc/+z/j9XZCflqQx/2pKYiExl8IvtyP6aELWZRKUaySofFXZLkASQ9hzAWjEVClrXS6KK+FQqlwqeAdhWNAqcV1shirHUFqS91wrFazalUJCvQbk7wnjgEdEpYazFKoQiEIRG9L7TDyOiDsD9MJQp8a9GuQhmF0jITMcoSkYCEbJyIepoVcRepmprkPcpmMBq/22CWlma5IvQ7su8FT7c1cRwheQwZVZUnpGSXhhDACHvLWYeyjn6nGfdbIL32RH3747uicGujMW3Dq6sepXoe3m45mVua1tA4w3rTc/vdhxyfztmeX3C+H1HZcH7Rswuet957wPGy4uVHr3j26IKLi4F9htWy4fJyJBnL8u4ptUvsHz2h2w1Ya5jXitXpklv3jllf73n2qqMbEz4r7hy35K5jvRtoFzUvn23Ya8Wbn3qTprY8ffQJl1drYjdSx4zxkRwVs+M5Rw9use93XJ5fEX1k7jRVrTg9W6GMxjQN83nN+PgpfHJFHBVDTLjWUdlMChlbieJSFFbysUxRCpZanDMoo4STqoqiEC1mP5P3Ry6OdzmJ6CTLcCTFSOh7cbkrjnMTYJJyxoBAGtoyeU+QNYdcyZwPIoKpmSVD9mNZZaSbSd2a4XzN9unlQbk42WpOHVuIkahEORdfK6raQLuoZTAUE30ntq1aKaFLW4Up5kAadRjyGFejSyiEKNisYPoacsoCL6UMMRCGQBhGYoqla85lYKhIUX6pFEQsE7OCydXTGpQV6taYkpyzCLa47BHKsNAkTCqD4tBhRk8VPWZ5C+olCY/KkwOhJiPD41y8vxUK33fY3TWV0iQr/joZDrbHsmsqatT8elYnoFzZ9eSDX83ENNpebbBPLlj3mQ+/8gnd4xdc/8zfZn72gDv/nX8eVTdc/p2/xPHtE4zdc7Ed2GLJ1jKMipgGqsKA0JUjm4qYMqQgkFUZSFqr0TqBEVqnHzykhDWKIpGS3VSK1FahtcOQ0FbUt6auSSHRjYqqqTg5PYYUGHa74gViUboGVTy0jSEnz9AV1lUSGE6eD0VEhFNV1QjMpCLW1SgEAotGE/Y9GI1WDXH0WDaibk1eUmqUJpXrpfoe52bUx6eE4IndhqqZARnfnSPISUJZjVEKXVucqQgRQt8Bifb0Nu5kyfXHX0GHntHvvvujy0JMfHi+4+7ScvtWzeK0oqqdpERXjjc+cwfnKp5/+AylYbcP7LtEbhq+8O7bWEYuPn7J+sWabszMzlrOKkfXRcLimOXZDH9xzvWzvSisnOH0rOX4dEm9OOHFi3M+eromGIdViqOZZX99ia4di1XL5fUOfbLic2/eoaorLl6cc/HsHBMRV8KYqZ2lMwntHI8ev8CliNqP3JlZ7t5eoI1mTIp2UaHJ7J88wT5Zk7xiFxLaGGZNJdipNdJBpCz+B0m2bCFKB11II5JfZ7SITohUTUVOUwEXA54MItctxV4VmCTmyLjdCJzxLVuyXOTGoJIEJaiDlLusFq/Zjh6Mj0BYC0lkwUpr8rBneHXJ+uMrtJIHKGeBP3ySjiKpTC6FleSlSAK2Fg/y4CWMImWFq6zMcbIML6vaYK2lmtdUs5bZ8ZKTe/dZnKywrcPVMyRsOmOqGqUzRlu6bk8MCWcd+/2W2Ed26y0Xz58zbnu6iyv22510p0DwQDalKJXkmhAJJEwW86lRyVmJSlEpIMk5MsgimimOaArGF+dUfkSfvYGq5oXWF2+EMjkVpguHncWwXcuCpLR8xjgmuORQuLNnSv6ZLP/J4bBbmq6XQoFW+BAZ+pGslnz0pa/hdgMf/I1fxDjL3d/3L3Lnd/0BlDJc/63/lKN7R2hrYNezU1mwW4QuaFuHsg0FwxLKZgyMPlA5i0YTYxCfGK3RVobQfWEdOS1zk8ppbPHYzl5CnHVVk7TGq8zy7DatGXEqELRBWUcYBmLckdVA7H1hMgXSKIKvbGpCTgQ/kHMqaUwZFUd0XaFROKtkwVWGHJJ4j1iLc46sFfgRo2VI7rutLAbYwtnWxBAgd1gDdd3ik8yltFFku2D0AZeD+LbkLDs02wjMaSpSDhAHXD2nWa5IsSYoK/DRdzi+Owp3hntzzXv3WlZnDY1TXF13rB6e8eZbtxm6PReXl9SzlvVFzz7C8d0lR7OW4fKSzdBx/WrHq03ALmrmjWHdQZjVGJMYn73Eb3rBpyrF/YdLVqsl0VgePXrGy81IsBUGmNlMd3XNbDlj3XvW3cjs+ITGaC6vt+wvrkjbETUKfU3ikZSopExNt99Rh0jlDNZmTo5bmlnFfky080qEAN2IeXJNGmDvQVeOxkDs9mDNwSVNRHBCgQgxSCOb0oGmJxBBwbgRiXAcC7XMaHQZ1uWJusdNF2fQ7C+vixdy+havEp17cpwENZmsjXSsOZROX/IbE4J9T5J2gUdkccihZ//kKZvHa5wplK6QBcOMmayV8M615uTBG6wvXtF3HoXCGcHf+0E6JKvBOo02EimntGMxrzh5cJdbb79Ju5pRVxV+d82w2+Avt+yfDQSfSMNAGAaUFZm0Rvjq49gxW63QtaGeLVkdLXj4qR+kWd1ifXVFv96xPb/kyVe+Snd1DSkTfCT6woDI4r+SonikCI1Nk8iMMZGyxoreRoJ2YhKy5BhlMWSL089QJ/dQ1YLDaly6aHSavlCKQ/QM+zW1EUaCZqLFUFbDCbuPRVA1rZJeZNiH/dQEpSX8OIoTXa745Fe/wmeVYuzgw//iFwhDz4P//h/n9o//bmLOXP7t/zdn775N1lfE6w3BzpDEIBhHhSGVSLECkaCKNeskeS9xAkHk7E6Lh7zsHgWCslZJanvuyVZyJceY6Ls1y8UcxyhDxmBIBJL3UIafSkeZm2ihhopToRNmyzBgCpHe2AqnpKkxRDHIKpxrpZXE/aWIc0bwdyM7w+QHeR4mr3ptJcXeahRGRFT9FqsyRmeGMaBjwrgK7Wqq2RI/9OS0I8dE9ENJoJd5yLDboUZPvZyT1BlBnQv3/Tsc3xWF2yl4eNpwdG/BsrVsu8ybX3zIojZcPj2nXs5YzJc8e7Zh1Ip3371D2A189SufcPukJfnAo1d7XCUimtG2qLmC9TX5ciAbw2zmOLkz5/ioAe243kcuNnv2Mg2kiRH2e7oQmJ8s2I+ZXTKsTlo26459F9B+oI5JVho0Wz9ZpmquxsByaYj7QDt3nJ7MMHVFAvqsWZ3MGfadMFw+fInxmq2P6Moyay06BIiK0McDvpVJpCzJM9OAuezW5TUFHxx7j3GKkDxEDkn3qRB6VOGhyqBPimwmcfnkCaHr4DgiQvkCmWQveKQ2Ao9qizbtgQ0yuTdOTBMo3XmRspMC4eqazdM11siuIAyZYRT5cSjsDO0Mxlkunz1h6EdRrqlMCgGSDHGtlgLgrKaaz2iOWm69+ZDZ6QK/3ZA3L3n16Ipht2PoZPegS+iBKp3/FKUGIu1OBUte7/doZTD1OfOTU0IfWLy1YHb/Uyzv9tz5VOC9H/ki1y9e8vL9D3nxzQ8Y1xuCF4VijKIaVGWbnxQYo0uKW5H1azhYjqsMIaMwhC7A+SWkiLn1Bso2r2GaRc06eZ4U2MMPHdptcY0WL25Tkn8KJVNlcxguyzpw6Lvl3smyyEx8vuhH6rri1flAeHlBNRO5934T+egnf4kcAw9/4o9z78d/D7nbc/Gz/zmnn/40MUTWvWdQTggiY8AARlmGbkSlgK0rKmcODUPKiBIzJWyxGLDWAOLSR/G4JgU0luwMHlD1jFUzw6WeOIjTX8wZP/SonDC2gphk/mH1ge+Pk8UqR2kmDtFq0WOMwprCcBHXMlCWfuhIUZourcDqhHEaHU1hwQR8jGQMagpqphJGitZo68T2NpQGK8t50a4CnanaBcbOaW/dJ6SafvOScUj4/hqjG3SWc2Grima+EPOy73B8VxRuaxVvvHeMSpkhKd74zF2Gbcf5ZYdKie1lz/VmT3s84727R1y93PDJxy9ZNC2XLzp2OfLwzVNevNgRbSu+0Vc7+q2nrQ2r05Z7byyZzSu2m8T5JtGPiX4QdRWjx6/XVNowv32LUFn62FHpyLDt8Z2nHQdMEOl4spqIIgUYxszR3QWrmSNsttxaWO7eO+LoaMHVpsM1NU0tW7qmcnRfe4bqFX0E6oq2NahBONoxSVZi2fmSsirMCg6sjZSnjvs1NV5KJK/IRlO3FWmQjDzp2NJBMHNw5gPIictPHtOvr5nfnSTk0yOeJPTP1DLc0k626bq6eU3JjLxhp6VSvCVQePf0HBUT2hkGH/FB6IoRUNairIhofO9JWQRXcRzJMvPB1kW5aA3WaZa3jrj7qTch9QybC549el/EQAUl1Vozb41IrjWHEGm0BCVAERahi9+eEnc6FElF0vqc/faCzftfIlvL0cP3qB9+D+NwzVuf/Tynb9zncz/+O/noV36eF1/5OvtXFxIwMJRdCWWhLJYDUK4dYq+qinjloORLEIeIWq9R9gnq+GGxKJ+UlLJNVmUAqbQ40sWhx9i6+KBMJ18GzEIXioXnbNHTogplWS7QGUU4lGG/3/Iz/8Xfp+r3mHlFCgltDUOXefQ3f40c/gJv/KF/mbu/5/eRho6LX/ob3PrC95IfPSZ0AlkYY1G2YuwHQhhojaUq5NScEjFHFBLbFcdE0ho7X0rBLaEDTMHU1oCu2I8eV1mWi5rcd8QetKtRTkycUjlPKSVx99Nll1buNR0DTuXCWEGoQSmTY8JWBts4ckhoJcPw4HvI0FYOozMxBYb9SJUTupqRSfgQ8UmYMVbLvSRmXQFbz1C2JmZRLpvUHXYk5MS4vUYlTb1sUHmkXZ5g6wcM+479xRS6HclDwviX4nvyLRDmr6uZ/3Ql97+eo64t3XrALOcctS2ffHjBbCYr3eUu4xl5+MYZZuz56q8+RmWwQXPxbI2dWZat43obcacnmLHHdgNXmxFtNQ/eXnL3zoqmnXGx8ZzvEtttRz8EUtXAbsP1yzVaG8KyZUyZcHXOuE+Hm2MWM01lCFYzVi21ge58TU6Zs7vHNK0pMvjI6u4p2Tmu9p66baSzGTzOVQwfP0NdD+yHRNSGkwfHqN2WqChukpqJ9CaDSSkx0wV83e1vkmznUuynieW4H2UKXznxoi4DxTwVlxiLYCMTtjuunj7h9N1PQ9WiKKEBOUPswB2DbVF+h64qjBOGQk5BGAmHDi6XoViCGOhfXeKqmmBHycEs0uOsEG/rUsBEoi7pRdF78QUxBmsylZNhY7OoObp7Qhz2XH7zG+gsHXWtNcYpCWmdHlBbHtJJYJQzReMi21wNpGKqVPxx0uRqOGHuEbKKDM/ep3/2PrqZ8+j6nPpoyekbb/G5H/9x3vqBL/L8q1/jk1/5VbYvXoq3ShJ6HNMCqJBte4GgEkok1maCTUqR7hXqcoO257C6jVIVIv6R9BpIN+KcrAh+wIx9SY8vIp58wwrKyPsejFfUJOznxsiRLL71uzVdF/n4y+9zVubOIcg8xFrL2Ec++ltfInV/ljf/6B/j7u/+/Ty6eMXV+1/hzhe+n/S1r3MxBKJSqBAwccRqS2UtKifiKAEiWUNVWcIQGIcR11RUWih4aegKVFfEXcbiFbRtS6UzcbcWoysyTkngh0Kw8JAUaQxoFUhogd+UMJ2MUgUasaiqFngqjYDCVhplDCkEcZkdJFLM2QqnpTkbh4EUPK52xHFg8KJKjUHYQklriBFbV9TzBtMs8MHjZnMsFX4dDxMFrUXoF4aR/eUlOYw0pztUPUPFSNU0knWZNOSArhrQM2LZ0X+747uicIeQsKs5rq642HQcH7fE7cBVl2nnlk+9cUJ/veb5qw5nLd16T0Bx750TfOd5ciU0JHO9Jo4DuzFy+86M23dabt9ZEqLj41cju85zfbmmy5nFaoHabHn+4oo+WrQWM/qq26FG8GNCBY/OGbdoGY0mtjU5erqrPSDm6ddXa9xg0VZz+80zjDUkBU1TE0cvnMwM28fPUI8vSR6iMizvntC4RO/9TTAq6sAGSYcHsZRyLRxPrWVFTxMVTr5Ksi21kYttDaYy1MsZYT8SC9uEafuulOwchpGX33ift374R9HNEnQ6fI44Ahqla7KxmHqGq9vy8E/Oc4W2VhYGpQzj9Zb1xxcYFMMQGYu6MSlIWmO0zAWErpcYeoncslrjDFSVwTmFtprZqqJyjrS9EopfJViocRJAfAilUaCNLQZTqkSQKWFdWCMVSauC4kQs+lsSbBTCAVfF52UKoJBw4I704uvszx3d469z+u5nWL71Kd778d/BvS98P5/8o1/i6T/6RYarDSGK+CPFUkGLuddkdKXK75yyUPNUkfYrHQjXF1jnYHYqVL08jfpes9wtW/849mjrBB5Qk8GXdN4iypyi1G6GW+pA2xTGSRx6Ut+zud5z/sHHvF3JEHTMQhk0WgaYwcPjn30ft/rPuP+H/wRv/Uv/Oh/8h/9nNu9/jVvvfQb/5V/jst+SrcNYyUxMJEI/EFPG1TUqB0LvGafh4eAJ+zWmdpisSH4ohoqGbrunbhy2yoReZPXayKLlvadxFVgnixuRbE3xoc/C8sgyE6kqV/zGE6nrUdFLCIKxhzGtMrK4pXHAGhFRpRQZgyfmhGsq4jgStTCKVBGVkTLWWprZjGo2E7w7AdqKGRmg61qe10piDLMS4VWOnuAjvh9Jo4Q5u7bBtsd4n/GbS1CebtgIz/w7HN8VhVtpRd+PRAtv3F3w6sWeTTdwdlrTGnj16CVDFgex7VXH7GTGrDFcX/Zc9MKTtaMko0QFd+4vefjwCGMMl5vM5X5g6APrzR7VNhy3Gv/yFZcvByIOa+D26ZyUYb0e5MEKCaO1+CE0DQm4uliTYuTurRO2Q48ZPYu6ol603H3jlL4fyMqymFeEMdMsV6gwMpxfkh9fYZOliwFTaczY0+9GkhfmyLSlQhUIcirZeeIsC0aXyQd4gow8oAUAjzEKvp3yQT5r2wrlDPhA8J5cElZVVmgCT778dX5gv6NanQLu5qLkCNGDrkFVKLfAzuconaGY+adCC8wFj82+Z/PoBToWTLPQeBMKyqAqxiA+HwrGrvBujWyjq0pRV4a60VQziYeqjEjjlU5YZ0XjUYrK5OUsC5guXXQu76EPHO5k9WH2Z8oWVGtIqbAvtMaCDBqL78kk3Z8k2CkF0r7n8iu/wPqjr3Dr+34r8zc+zad+/Ldz/PAeT37pF7j+6EPCEPBDUdpN2ZXFHyWR5T0LpVBFgS+iV6j9iN5cYqoG1FzYDGSyEshBHaTtiugHTKhQxqJ0Kci6DD+0FmhIWaYotddZJdP18l1P6CPf+PL72H1HdTLpABIhKvrB01ROKHwenvz9r5LVn+eNf/F/zlv/g/8Z3/iz/x721WPufubzpK99iZ0SGp9WGd+L97cGVAxixIQihoAzSobVfQ9hwNQN1omcPCpo53NqnQQjTpIMr6wjp4DOkImy20iWOAzSNChF8JmYPc45bK1xbQO6pl+/khBh5RDLGCVwZAhQFuuqqmlbSzI1+43wqF3dQkwMoUfpIPdPDGhtqduK2WpJ1c5BO7wfMDqiqlaeMW1QtibHHcYqlJ0RfEaNI6ZpiSoz7rbEvEeR0CZTNS2mPaa7XrN9+pisbdEtfPvju6Jw5wQnd05YNJaPn2x4dd3x3v0G3QfO9z3KGYyCl6/2nN49wpF4/HhPMJbr7Y55ljSJCNy/t+KdT99Ca8fTFz0XO08aPbv1jrGqWcaR4fEVKmhs22B8ZF46oTAK53rbCcVPz1tC7djvOjbXHfNZxcP3HjCGgWVMzBvL0YO7rI5bLi+uUbbBaM3oE6ujFb7f44h0z84xQdGNCayhaQ0MoxjzxII0IEUiMQ0ep/+bIsCUYHRMD2PhCEw83nIes1GEEER+rRP10ZKmrUlhYHh1TdyXAl6YJM8/+JD+4pzZrXsoW8uDXWK2cugl8cXUUM+olsdYVxG6PSADwFyCA1SKdE9fErpRJvFjwXKNAatKwE1RyqHwg5dBTCOCmaa1uEpTtwbXWJHDq8Lxt6osGMLRPdzQWoQwqtDJxOBQhkQTd11qpykzAmFqyMKXJCyh0CS1KguCApQIZ2RbrA+D4BSER6/6Ha9+8W+z/vovc/uLP8bdz32eo7v3efTzP831175Mv90z9lFMlIBIvun0lEDRekKes4iictDEbYduzlErN4H0oldRFFZIgU1iIIZBrhe58H0lw1OEJJKVKfCK5uBBnsUEipzYX76i73d88PEVxwYqow/aALT4jPjgqbQFrdlfDjz+W7+Mm/8F7v73/lXe+MN/gsf/0f+Fu7MFt9/5DPnj9+liYBwj5HjA9H0/4kOQSLiUcVXG6CTDTGOLB4giRE9ba6rGMXadsHeU7DxyzLiqBiDkhDOVJDJlU5SymRxKYR891BqjIllHsSKoNKZakH1XhtaKPMrA31aWqpafIxR6otHg/cA4ii2r1Z6cwBhFMxfaqapnZGWRG0YYJinuQYGppMlSORT7Mk1OPVXj0NWCkC3bZ59A6DE6Us8a0jgShgvGvmfY7ZgdHX330wGtVcS952moiI3jYfZsPtmw85nlwrK+6KCpuXNvxfmzKzoagnF0my26Gxm0WL2+82DFrbMFu03iyeWa/RgYuoHtVkz3535DzomhV+yDIqnAqtU0BsYok+hujPQp0ylDihm33aFD4v7tI+pVw36/YVUZ6mXL/HRJ01a8enVN5Rpizuim4eT4mP3VC5q2JTx6hVoHglIEq5gfWaqcSX0qKTVl6p7EllVg0gN5D+BAt6OEHExFPeupg+TAFhEXQUUKgZQjTdUwf+MNwrCBmNjuz0lZirvWlvXlFa8ePeL4vc+gU5RuQd5VLF9tBdqhTE21vE01P2JYXxZWSRmK5URYn7N7co5zhjCKT3NCKItmyg3U8hCmlKiMwdaIR0ylqRpD01hMbcSASFGGjkbStaBoVApcok3JqkwH5aQudqITlj2pKjVT/qK0n8poJpm/2HAii6JBeL5Kk2LCaQcqS2HNCOtlwn1UJnUbnv/cT7J6+0OOP/tDfPp3/W7OHzzk2S/8DN3VJaGP+DEU21gR8ZApHtWUEan8yGkMgtFerVH1UoyItDp0iLIQRVSWv5P3JDeiVA0oYdIAxjqUqwrGLcNp0Ac9Ti62ut3lJftux4sPXnLfyqKlzXSeMiQYRc9OVYnAadxn3v8rfw9TWW7/gX+N8Ef+FM//4v+Vhz/6Q4TwFucXz7geEzqnouwtcERQqJxwFhnqybaJpDR9TDgUrVE4An63Y/SRjMK4MqDVoKuqNBygvCelIDuXpMhao2srEXZ5ctHckXWPc46qcrQnK2I+Zf/qOTp5jLGiktRi9DSGkZQ1ylpSjgedgc4JZS1aiT9LtVoRAJOQKL3ynOZkSAiUSdqjTUVKmjT0MAZU9JjaYZuaqj1jt91jx4G0e4Kxhn4/0m8vib5HV62Yqv2TauY/bdH9r+MYg2K3OMN0V6wfveRizMxrS4qZT55tmZ/Mqck8+uCCztRkRmyM6GFksXDMas0b754yXy15eTHybN2z23bklFlf7dEhMK8Vp/OGboBdEExt2RpqA2PWXIVElxN+H1BGM3dabhClqJsW22qc8jy4f0YEZrOa7XbLpgvMj07wfc9idUztFNdPH7E8O6Mhc/74FSlD7yOL+7c5XmZ2H1/JIDLLDRpzJh0EKtJl5zx1UocnrgxmZMutp618nJgCUrzEuIhiaWrIw8C4vaKaNxIFZjWMsgBoY6EbefwrX+LtH/1RTDNHZXfYWqskkl20IyuHnZ3QnJywe/GxbDVBHpTo8VdrnFXEoMRFzWoqY2WIUwaAYQxoo2gcWA2zmZNUo0pRzSohsChVBq+glEjNtSn0Ni2FVZftvy47D/F3RpzmlBK+uZWO72DjkmTYKfgtxCzvRRa1pXZmOrNwwJdlIGwnRzwMutgQphhBSUHfffw+xMDp9/92zt59j6ppePaLf5fu5SuCV3gvcEhKmRBLoEMWTxNMLsNLSD6hxkjeXqKqVmCqXCCOacQ47a5CJAePUrZ8WAa9pmpQpkFpgzJT4KwshHkaIoeO9dNn7PtI9/KKti5QkxGGfylZRO/xXrjOuBIvtodv/tWfprl1j7Pf+ofYf/IHefaLf4UHv/P3QmUZPv6EYYiy+9OFlll2MsYZoskkV5FQIkyxirqWzMd+EJdH7SzZNGitcFUlHblPwtvWJTwjweBlUFjPFrKz8bUIa/T0rGQUEZ0jedxh2yPq+Zw89LgcSDEQwkjwoq6WHZoTmCtHrDPyc1hoZwuwhiARN5BHlNXkrIUSmfY458QqFsHKk4+4ymHnx/jdFqugPT4jtm8RPnrMsP4Yhg51fo6uFihlqeta5llhqgXf/viuKNzKaPKrx7z//iXbEc7mFV1SuHnD2XHLsydXZOUw8wV+16HiiFKwnFtu3Z5x/40zsA1PrnqevNzQ9Ylx8MR+ZKYCq+Oa1hiu156LztP5xKIxNM5xPWS2UYZT4+BZthanFNshyIRdK1KluX/rhMVRTdI1TsP19ZbZ6hiLbCmXRwv6zZrN+hpXVayfPuH5155x+/Z9uvUTlNHYfstuMxbDdrmtlDHk8BrcoUQ0o6ZhWn7NK7sYU+WsC70r3wygDtSBQ79MSpHNkxfEYcA2Gn+9J3sp2qYkizRW8/iXv8zu+TOqozOMrRDDKU0mQOgPkVy6WtKe3sO4r4r/QxLLU399TdzshdZdttpaSM3SCWtDHAOVleFjVSmamaGqNa62GKdxrvhpqFwIEdIx6oLdGiOdphYt/qF4o9RheEUZyils6VYNOcRDxy+LmpWFoaTxSN5mYYGUrTll0JsVqABkjXZlgBwnpoA5wFQZT/f0Q150O06+8FtZPXyTlH6Ui1/9BfavnuMCxDERYiJ4ddhVaa1QlADlnIk6w5gwuz1mdk02t2T3UGYaB8gDhNkTPdlWxZw/CaxUzcFalKlQdkH2O7KaFs9cYG7NxaOPub6+xvmBem4Lp7lg/tOQ10g4bwyp4PVyDoaLwId/+a/ymVv3efB7/yAffPIB11/5Rxz/4O9if3HFy/6ydKxZ5hdNxegj66yI2ZC8wsaRpdPMK1lwxjGSfMY5IwtQCQyRgbqRhQixPhhCT9/3GJXENhWFsgpnG1RyWOvkmqPx/RXZWgkd2W9wtQPbkv2e4DN+AK1dUQbr4kWvyEEDgWrW4ox04jFnaqPQrsH3PdErxiJAM+XaxBiISbp2ca6NJMBHhQ5rjDPo5R2efvIR6fIjZsYR9UsWpwo3X1Avj6lwkob0Tzi+Kwp39iOvnqxBa1Zzw2A0s6XF5sTzVx2qnRNUFo/iUXimdQNvvHnC8njOLhqevtpwcb5lt/d0QyLudxxrxdlphYqJ5y971j7jyRwtak6OKvohcrH3kBPzSuMai3IVQ86gI+3ccv/uEpMyQz9wdGtF9p6L9UBb16hxwKNYLJas15f4GEsO5h5zuaN+8/sx9oohRhaLFhMifhBJbSzxSCl5gUqiSL2Z1JBoYrFjvQntBQrGLeZR01b6ZmU+cH7L3D2FwO7lVRHh6MJ9FraKHyP1rOXZRx/y4hvf5Oitd9GuFTx5WhDSHvRKcFM3ozl9QHNyiu/3KCSPcjw/F0FJlm47RsG2dYE2CBFLpq01zcxStxrXCp1Pa3BWoV1JpDFCn5rWIUm+EgaJ0g6lEkY72ZaqIq7Rk9CmnIQp/BhQjWC/2RhUChgjsXfKCLNEGBs3KtRDOIGS/E9diVIxqywYahBJekZLajklUSgl0uaC9df+AfM3P8fqwZvUVcuLX/p79JfPyLUEUIvPknh25Kwk61FLBz3NEOPgMbsNpj0mYxEwvwTUTlL4AnmkFNGpDFjrGlO30oVjyLHjYCJDLp7dI92rZ7x8/0OurnrmRuEmphGycMqXCOU0yWhFmF9OHbxa1h9v+Pg//X/x7v/kjDf++f8xH/zZ/z3Vo3/E6ae/wH799/BJhsn1csbaK87HPcMoO4om9zyYKxZNDarE0iWY4EHrHNpq6bKLAEnpTDaGbu8Zxk4gkNkMpRtCCBg0trUQS0Ok5F5y7QqrMtbZong0aFcTcgk8rmZU7ZwQA9EP5NBjDaimReuG+ekxpj5i7HaYICrjNI4MAbqhJ+bEfLFEkYnjSAAJI1YiworeEDdbdufP2fbX2MrA6Zr7D8/oj5bsnn4IYSD5Ae8dOr22y/quH05m2R5Z47A2cjS3DGPg+Tbg6or1xZ7WwlEF1bJhvqi4f28B2fLkOrLznsuLrWz9hoDd7zkxmbtnSy4ud/RjZj3CoA0rl1nW4ndy3UeyD6wWNbZ25KZlt+sxBM6OHPfvrER23cyYrVq2m56QoW5ayV60CpU0188+wTUzxpQZU8Bljd8mzt6uePoLH9EcLZkvLf5id2CMqNJZxyz+BdNQcuqpMlm64jx9XIoUvNadM7FNbs6lYN5RcO6Jux2ENZxUofAVyl/OYtKU48DXf/Yf8NYP/zBmtpTEFq1FeZcSOY+gHFk73OIuy3vvsnv5jNhn0n7DeL0jJ83oAzEL1IEBa7S8d/K0c0u7rKgbI8Miq1BWo8vripIIVBGHqCkeTBdY5KYwq4Jx89qOQ5VFIoN0T0U1mlWWfydE+KM1evJfUZTkGdnNCGjqpfNUcu50ae1TLIujMyTxxRXRR1bopMlGFtC4vWb/5H2O5gtmd25x63t/C8//4U+Tuh3aVDgbiYAf4k1RUoCRISVZYIDUddhxh2orMoGMLYO1KHAOSPcfi7FSVeOaJaqag7ZAkJGILvmFWfBtwsjVo0esX7xisx5YWSVeIYVaOsFuSiP7rsL5l+YCodRpgX1e/conuL/4F3jrX/lfcPv3/Y94/hf/A978A29z9tanSR99nd4YLjvPizHRRYUNkUX03JspFnVd5jrSUbuqRqmqMIOkwYhpWkyDpCX5TIyJylWv0fBiYRBpcsz4vpfE9AT1bCVwRxhE0KQgx0CIgYAm6RpTJXI9g9FDSXiKSlE7S7NcCp2PRH20wDVHbC8u6LfX4pk9BmE9xUG844MnaYfDS8D1GBmv16i8Jg6eNCQuP37CMYZPffHHuL4aOW8a8ualYOshilePStTt7Lt/OJkzfLxOPLidOXOGZy/3bLNmtWrx2x1tpZhXlqbV3Ls94/T2is4rnl4FXl137HYDXZ/odz1LAscVjNny+FUnAxcHKgcWBpaNYT8kvILKKGanMzwGVnNcjCxbeHDnGOUjl+ue2WpOu2jYbXfUsxWNle5nvjpie3nBftuxWh0xKIXWYie5e/8Zs13kxc/9AllZHJHcyZZThpFSgUQVmUuBVWW4KCvtlMgi5yeXbgumMp7LqjyllU9VzdYVMYykOCnuClNicgCcksazKv7VmsYpPvzFX+Pyo4+oT2+jTQWvJbTkMKKNMBWoFszvv03z6Cv43TV+sxM1olJYK0EV2klRJAk3vp1b5kcO1xiMlqm7tkLPElhEkHvtxIVQZUTxaC2ZhNG2dNQyozelC0cVXmE5VMmCFAZJSXwpi59At7ng4Y7phaoYR8k5TyJbLo6Kmik8IWMqQ0oKcpQcyqLun5JbVJbdDkTC9Qv2H32F+ae+yOzufVbvfIbth18hDb0oGqPYfMakbjrirMmm7IhyJPlE7jfoZgG6KQW+FHqKtCN7FK0s8s5SzU/QthVyO9OCXu6V5IXWGHqef/Ur7LY7hn3P3FLO59RMJEzxQRFNQT6wWqZNnyrGV2GE5//gG6ze/f9y9s/9K1x/5Xfw4qf/Jnd//x9lf/GSi+2WcwXROdJ+x5HyvHHicM4SsyVGhQ+eupbFXDtLzoowjnLNM4RxxIdIyqPAD64qnijCXLHG4JyIzXy3Y+w62qZGuxado1xfII6DkAeMZRxll6u1lUUuRfK4gdijjaFqWtxsBqZi6HtIe2p9REwjpq2Zzd+k36zR6ho17ojBH7j/MSlMHDH1MdnN2F1d4q+eU9U1ZNhtR/LTp6j2y0Qqlien9M4QwiC7uAzNrD7Qf7/T8Z0/89/gkYD37tXMB8+zZzv2Q4QhMlxucRlmrWF13HLn9hG3Hj6gV3M+vhh5dbnh/HzPxfVI3O25rSLHBpKr6bRiKPLirOD2omZVGy62nufXIyGC5IEGkh9Jmw21y3z+s/eorOU6JO6+eY/ZomLf98yWK4yGlEZWR0d0VxcoXfHg3U8LB1lbrDF0z6+wW4kX631kftJQWRi2A95Pukjpuimsh6yKdzQlRGyCPqbnGvXa2ZpoWxPIm8sDJWU+FEHPhInebIHle8cSniDvp/ExsjppuHzxjPd/7ufx22tSDBwGYkqVLjAW7xKLO77P6o23sdYR1tvSGcgCZIwWmbrRmBSZLQzzY0ezsFStwdUWW9e4SotfhAFbGUxRPdqqMEucKd24eCXLW5fQ34mvbISrrJXCGicdesHFdfm4sCjEH9w4KWi6pLirFEunXrIFjUVbi6ldsQvVh/OryBirMUZ+TuPE/F8ri3FG7GWLYFGrxHj5nO7J11Bk5g/eojm9I19jwFqNq4ykt9QW6yym0ofzUEjmpH2HSuNrC3Y+8LIVipw8Kns0inq2xMyPBduWEzRNQQqs4iEGxs01H/3yrxBSQkWodfHsKPed+NwUx8HyPqCwxootQcqi6M3SdPg+8cnf/FmGD36GN//gTzDY22y+9LPc+aHfxspJMfb7nlvK89ZJTT2roJ2RbE0uMngJBwkkHwmjJ2UtNNngyX5g3O3xQ4c1FusqwfKNxblKxig5EIOcJ6NVEdNoQt/hu57oB0JMopKMgK2J2hCTxJCl/RUqBrS1tIs5zdERphLvmBRkBzR2A9vrK+LYY6zB1Q22boimYhwjMSWisuQwSiKQTtz9zGe49yO/H9WeoUgoa0jAfu+5fPyY/vI5/fULFLHscgXfny0X2PltvjVj9FuP74rC7YyiO9/y8rIjxsTMKGYuM2scprbcPl3y4M3b3HnzPpd95qPna549u+bpy57NdqDZd6yCUIHM8QLTOmyGo9ZSq0zygYxiiJl2UXP3bE6Micudx1Y1TmfOzma8+9YtLs437LPhzv1bbPs9ew+L2Vw8eU3GxMDV48eYasn8+Jirpx+xPr/k6uKCtL2muriiNhKZBQrdj+TOk5MWmbg2N8XaTknO06OZDkPJnMWHO8bX4I2Cb+sp93H6g4ZiIJWnNJRS8LW6+X4KYVKorJhC3X3vuX17hbXw5b/3s6w/+UgSraMk18h7Z8ji+Ia2qOqY1RvfQ7M6Jg0l9KHQ/mxtqSqLyZn5qmF5UjNbOSnY1qCdOP0Zp9G2FAQjhVqKocjejZMhk3YW46TjNlqjimucuPEJU8FUTmAXLerEwzDXCHPGOgvGFqaODKGEjaGk3TRieCVtsy+DTi3Xw8rqqXTZnGqRSytjUE7+6EK/M86Vn9Wi0sh4/oTh5Qc08xmz2/ep2hnWifdKVVnICWsFfnBWCretrRTvnEnDiBm3Nzh+jnLtkI2GlGWPsorm+BRdL8i6cIvLjmOKj8spksLA9aOPePH+x/iQqGKS+YLRRYVZNJi5aAoKk0lr+XmmtTxlDgrTGDLrx2s++c/+Cja84t7v+UNcfPkjKrPl9nvfz3J9zVn03F84jLVk2xB1RVRCPmiWy8IbTwz7gegDIUZ8tyEOewngTWIZobUqi1CQxc/JTi0WC1ijMnVTlQVVjKVG7xmjdMIpJkIYxTJhcYZuF6jkpdloGqrFkmqxEpWjCA/KoMVK4Y+avhvp1+eQA2MKYp+gFK6ZMT85w9SNQDFDh3Was/vvMbv9tkS+VS22biX+TCm0dUSlGL0XnyKgHzwXL1+xv/zkn1gzfzOZk38G+AngRc75+8rH/nfAvw68LC/73+Sc/2r53L8N/EnEbuffyDn/td/oPbxPqNpRZfGwCEAzr7FWc/veCQ/feUjVznn8+AUfPHrB9eWO7T6y3/WsiFgSs7MFRmUurzv6MbKc1WgS1hrq2tGliLKizNvsPD5mmsoxhJGzW0sW84bHLy5ZnR5RqczlhZihO6Px3mONYdzt0ViO33yH0G24fPoJm50kN6+WNfHlOWoXydoSQmC2bMAH/Cir/QRGR604+9znGLaX7F5ckHbjAVucUEYp0jedttDHytZ8asiVPhhQCZljEpeAYOGSkH4ztGNiFaIpdpJjAquZzyqevv8x3/z7P8/qjbdoXI3WqYg55GFWuRRu7XDHDzl573u5/KVfpj+/kMQRI0VJ5YyqNe2Ro66Ep2+cEZ8ODEpPrBkZzE0kbV2ofShZCISeVdgmRgptMZMtw0XZeSgtg0JjHJMJlsSpaSIBZWyJipPBY8qFb6sdk3Q/a4VRhlwUh8RMKh2QCpJwb6uGHEdRMALGSaBB9vFAYUxJbD1Bk31Pun6FWh7T3r5L2l/TP39E9KOIP6wqw1fJM4yJ4myoBRjLmTx0qJkXAUvphoWyN11nRTNfUh3dR9kSOjEV4TJkJAfB7sc93/j5f8j2ak0YAzMD9jUWUk7F8oB8GPzCAVU63Jm57GIn/nyKildf+oT2r/9/uP8Tf4LLz/wwL37673DvJ/5VxqcfsfEdm36kUo48RMa4x9UG6xpSEpOvEONNDN0o0WUhIxS7qiWGEjicItZkdA6k0TOW3EjrKlyli6BJhramqtG5IYbxwKOPwRNjpEoeiyFpsFWNrpxQT6sZ3X5A+z1ayW4gxJ5satDiDNjtOqwZMLZm9JeQBjSJPkT22x0hBUzT8vSrv4oyXyX1nXTjvhN+fvSYVOFHEfl4H5EMD+mjXeWorT40Yd/u+M1g3H8O+PeBP//rPv5/yjn/H17/gFLqe4A/BnwvkvL+k0qpz/5GgcHGahpj2BPxylLNLUcnS+6+eZtbd0/Z7we+8bVHfPjhc7brAe8zYbvldmWk83KOYQzseuHYLttK7jlj2I0Bo2AIMKTMuh85Xc3Q48DDN85Yziu2PpFdxb2TJdvtjiEbbp0ds77akHE0bUu/XTNbiNH57uIZ/dWWnde0bc18uaDbbRmfrWmzYYxQzWfMZoa48TfKyCg+wdX9Nzj6ge9nvHrGOP4KYzcKE4MCk0wskulBmbjDKR9UghM0cvDcQHMIK5WvKg5yuXhtU3b9Cp2njg1SyAwbz6KtuLjc8ss/+VO8+yM/wO3ZUrbcrnSnIPSsSU5drVh96oe49QNf4unP/DQ5eOmkrYHR42aauhZYQBtRcWprS+GGgzGUUQWb1od9h7JF7afszceMJmeJrTr8MvlGmq4mCEVJBiZakXKQAiQ2fYLflqzLHLzg2Rox3I/FQ8QIG4eJElfgIlNVkuBWFIkqRsjmQFlTxUNclbgylQVS8NsLqvU5dnUXM5vjmgaVAzFEdG2LDNwU/3TIVn6fkCVUIvYDJnVQ5g4TfJZTEuaOtTRnDzCzE9DlNbIsF2qjJ8dAGjuuP/wSX/6pv4vVsBsjx86I8EZPHXc51/nwViiVym5uuhflfKSM/LwF9w4DPPvpX2Pxzt/m/u/5fXzw575C/81/yK0f/O0MP/83qKwTUVZIAnE5R6YiEYQRU1UCM3jx3A4xYurm8NoEhKGjdTO0bei3W5QWhpFWGWOQ62Qq+k4YalXbyI7NK1Ic8EkoMSl4solkLd25qYrrIHItdUmsL9NMEcqlgRxE0+ATjPt9SXKXu8R7T9/Der2ncZIudf7xnpxi8XCpUCRSCjJYT4n9ZsPoswRCBEVMHqMyldFFVzCd9X/8+M2EBf+UUuqd3+h15fgXgP845zwAHyilvgH8KPAz/6QvijHz/NxjrGa2qrl//5g79+9QzSwvXu748MkFH3zwjP12REVJUL+9cCyWFT6K+1w/JiqrMcqSEKnzRe8JOdMayzaIl4nRBt1qPvOph1hj2Q+exdGctq0YhkjTLjFKs91sqOZzUggMfuD0/gP8MLB9+ZRu59mHTGUFr96GxMInVB8Zo1i2rmY1lVIMWpMQ97hQKFa2cYzXF+SYqWc1nRWVZkIekonid6OdvGmZc0EuJ98SUS/ezLhSwSm/ld9dOOElCUe2/vJ455zYXO2pa4uxiqcffMyX/8u/y+rBG3JDGw3aCnUuRenelHSr5ugBt3/kd7N/9pjdo49QTktCDYq6tVSNlTqvZXB7kKSrXDBqKZDG3MBAB79RJfRAcYybZpBVKaQTBCBqyZxjKSBlUYuStyjskuKlIoCSGP+gyXYa0soikTWCKycNqphPqal0T8PLMhBFmo0YgrxHuTzKVUIVTNJxGw0pjgznn1DZCltVhKbBxkGKocpF8CGD56ynoYac6xSlq3S+I7vl4T4Qr8GEVpZmeUp76y2Um6O1u6m4U8cubSZp2PL4V7/Eq8cvWDnJ92wbLRF10/2D9Ay6/N7mAMXJTuJbZy036EkikwN0V56P/vJf43P/689y+mP/XZ79nf8nb//xz7M4e4B/9YQuCiRkGoerW5JWqGxwNuNDh+9HKYRaYZTAYZPvTN06qGq0SvhOOlXnMq4S2qm4XurCo04oH8jNiKnnKIVkT2YkCFhrsqqETOCsPFF+EA2Fz+gkakmVk8TcIU6CSitMYzFuznBxxbh5SdM26PqIMYLPGVdVNCYU8VIihUhIHXXV4JxME2JW7OL2EOGHcoxZiTfSrEEbJV4pv+58v37802Dc/yul1D9SSv0ZpdRJ+dhD4OPXXvO4fOwfO5RSf0op9fNKqZ9f+0R2mrN7S9577xYPHpwwhsD7H53zC7/8AV/76lO6zUCbPbdtZFUpyWQ0pkzaYeEU81pzvDTUJFFlVRZXOQZg3lbcO2v4/Pfe5dOfvksIgc3gOTlboYFdF1ie3qKdNQxDx/GdeyKrtYazO/fwviPFwBgUg08s5w1jTOjZknv37sPzV6isGXxCqURjFP2mK5716rB4KmuImw27J0/YPv6ENKTi+CdlWoQDr18zVdrjIsTJN58UDxN5wLSSJByjbgaccSr+hbkyQS+TH/W0FfY+s1wuaKwmhsgv/+Tf5dmv/hphvybF8VCs1WsewRkFpqV98/u5+9v+Odq7t6lai1WZqtHUM4erBcs21pS/rQz3yrZf8HpTRCaTW1sW50BTAoKL+EEpRImnS35hgVBSTgK5YA83s1IZYiD7WHYZGeWEPqGUsIIUFL67eGvoaYagb4a5hyugjSwJOZZhaIGuTGHBKBAiRkarYhmLKFc1mbBbM148x1iwTYOpalwjTnKCeRuUEgGNqB8tri5OezGTSi7hNA2ZFIGmrpjfexu7uI0yVVGOmgMbSHiFwiTZvnjEr/3U3yf7UURJMVFpygD3Rn07FeryG0MuwQSqXCN1c24OsHdZcFKA3bM9Fz/zt7j9g5/HHL/N9c/9l5z90I/TGg6WBq5upRBGwa7jGMSFL4yyK3IVrqrQRphKOkVMDFibCSSGUaBFbSyaYnQWRsIwICZUAimFocPv9+z7QNfJjEbXLbiWiAyKTVURfKRb7whjkibFiP4hhMAQJEHnQEtMCe13OBPQSsKcr6/X7Ndr6rDjqDVYJ66Cgn0ZhjGy7XYMg2ez6Xj66oLz8w37LrLZDez2Pb7b48c9fhiIQy/NyD+Dwv0fAJ8CfhB4Cvx70z3+bV77bfv9nPOfzjn/SM75R1aV5uHDBZ/+7H2Ojpe83HQ8u7ji0ftPuXq1QY0Dpy5yZwbzhSMqy7NdRr31BeplTdsYFkdzjm+v6EYPlRVzdK0xbcXDd+7w1nsnfP8Pf5rj4xkvLzZUs4azsyX7biTiaGdz9tsNnU/cfvst/HDF6e3bnN4+YRi6YpTuUNZw9803qJcrlme30Bm+/lM/w/Byh49SUNrGELsOQib44pFRnvDoA/3lFdff/Ijdk+eM230J280HmtV0Kie8sfzrhr+dY7mw8ulUrEJBldQTuRLSSd3wn2++k4SWmrIgXF/sCUpzctaiFZw/e8Uv/qX/nPWTT0jjKMPdLDe1wCblllIGXZ9w9IXfwe3f8lup5zOMVTQzR9VIgTa2kuFPmQMqlSTk1xrx1TDSeevKlgfVMCXWTwpKBTIURFEU6QX3dkwZg6QbDFTZCowMNLMSj3ERuMj5zNJ6UXTZ5BhJBUOdHAcpgQxS3NVhoVBaizeGsSgjxVzbiQcti7C49sl7KeMwtkLrTB734riuZOdjnOD9xhiM0ZL2o4UZ4eoKVzuxBR56TAqlcKbDbmJ2+wHt3fdQ1eywwxK+kCmdvyfHkdivefqlL/PNX3mfZdvQD5HGTtcDKbppGmBPEnVZjQ4sp3wD5eWSu0mWYALSjRbBD4nHf/PnGR/9Qx7+gT/E5Zc+QocXzB58npoR287EbiB5TE4olQkpHnB+MTiTobJRCU3AOhE5dbsdfuixVjObi6ugPCeabKyEKmQgZZwxpAS7zYbgR+LYk8KIbZoD5z4lwziO9GNgzEZ2OKEnK/Ax0/US7OFcRTOf4epaCuY4ouJIdjVXVzv2mw0qedLQ03dbUgyoLNcxZRGK5RAIfmRIkb3PnG86rtbX9P0ISeZtjauxShMGz/X5KyEIfIfjv1Lhzjk/zznHLHvQ/xsCh4B02G++9tI3gCe/0fdrGsf3/NDncLXhuvNcvLziw68/49VVRx567tawcopZ09D1ioshoCpF//E3SENAO8uY4fnzK+pZi0fRKYcGZhXcvzvjzq0Vj59c8PTZltlsRtO0DMNIVTfUteP64hW2ajlaztm8esHi5A4QCP2IaxbkZNAxslgs6fweW1X0m2u2z19SXXXkoBmjdCPtvMaV2LIDT7tIjlNM+MEzbHYM13v6q52kXmfByzjwmnN5kIpWbloSZTL32oPKQWgl6TmlPE/CDiaZPOTpf0Up6LS85/+fuT8L0ixN7/uw37uc5dtyrcraq6url5npnhUYDIYYgiRIShYlkQraYYmyTckRVCjkUEhhyxeSfM8IhS8UYftOtiJIBSVKkEgJpEiBIEgMSMwAmH2mp7ea7qrq7toyKyu3bznLu/niec+XNeDMAJZ10Qeo6cwvM7/lnPc87/P8n//z//sQOJ33XH/xEnUp2Oidb7/B+//0a3THT0muIflGsldlSc8tm6QNZuMa25/9FWa3X6eoR5i6QBeSLZuBDaKFvWAKm+lcgklrLdQubZ4biDGZuTHwkZMEEfk4gw65bHRaOJp5I8kTcykHXQYFQ3HmIUMeWg+VmgJEwF9nvHigaCqlGVzTyUNAKak8UJQkKOYpS2IQgSNtJOMd2Dhamo/KalK3zIM/yOaUaZPGaIwRgSeF6GBLZaKwOaArEkQnEIngFpSzLTZuvo4ZX0SpzLHPxh/koE3oCf2c5dMHfP8f/S5d01OSaDov114NlYEa9qVcUejhPn8OOiF/Jv3cYsz9AVhL6sYAzbHjwT/4TUaTSH37sxx99TfY/blfolLijBPbhugTzXyBa5YyKaktRVVTVCUUYsmmExRaNFP61kMQFcOqslSVoaxGmKJcT8GuDScwxBDoXcT7bJ5tLdgKhacajanGI0ISvRNbWCabE4q6IkZF2zq6zklfpO8gtKgUhOWUknw9mqDHWzhKrFYQHElB33na5RLft3RdS9/06OSxyN+NasvG7haTzS2aLuF6j0qOcWUojEKlQAge3zlh9fyU439W4FZKXXnu278I/DB//XeAv6SUqpRSLwKvAN/4w56vrEqWx8ccPDnj8YdPePzghKOThpEKXKgNwSf6ZHl22rMKgSsXxuxVoLuOgGXeetrOUZaWNkK5MWVvt+TSxSmfeP0FSq158PCYrgtsb03QStE3PVsXr6CNoel7Lt28zerkgOXZGePZJv3yjLZpWM1XPL13j9XhAU/39zk+XbJx4SqHBweU4xFTkxj5iI+i9meMRvmAW3UyCKhyZkLmUedOZYqCn4UQs9NNWvOPB9BRFOGGAE5mWORylSEaD7KvSLcoo45wfuM9x1NZsw9Titg8LacRMaxiOuHi3hRUZLVq+f1f+4c8eesN3PKE1Hek0GZsOmOpQ/FuKsqLr7Lzc3+WyYuvYEcl2lopc43wpoXDbNbUPlXYTO0z55tNpjkOOtYonRXrUs62pfEmMq0529IaXVTiem4EzlH5vemiEA54WWLqCmWK3NxVOdtOkonnhptCoAVxRJDsLWWIJEaBVNbGFjnj1MqijF0P7hCFA6/W9DogBfCO2C8xVjYIW5aZ1gnGqpw9Co6sdYaJbE6Jo0LHXmAYxN1o84XXKXdvibRrFtcaGpNiI+dIviGszvjgW9/hrW/9kEmVXcx9ZGx0Dt56vcELTz1DJ9k9XsQWM4xEfovrbIEMIeTJylzxkRTHPzrg9O1vcfmX/xSLh6dwdp/RrS+glqciuRo8yQf8colGGCDGChXSWkO1OaMcj0BpurbH9S0pOFSUteCDmDUPFMYYfO5neCErBEXX9fTO0fU9RT2ink4w1lCNalRZ5/licV0viwKMxcdEH4LczykSlGh993OhJ3bLOUobkq1QITAeVRRVLTIGIWCzrs/pyjFfdsTohSGljPDHKdEkJhub1JOZeLJm/0/vemIUQ25xjv/pMfMPDdxKqb+JNBc/oZR6oJT6K8D/XSn1hlLqB8CvAP+XHCjeBH4VeAv4deDf/cMYJQCudzx+csThoyMePphzdNJxaWLZm5aMKoNLcNp7fGHYmZXU0TEdCcVr1XVYraGo6MoaOyopjePqzT1e/tQNVqdznnx0SFXWbG1O8b5HacvG7gWe7h8QTEmhEw/ffZOqnlJWI6JrUdrg+kRSho3tbVrXs3PtBUazCffffputS9cZj0f0j5+hk8Jl1kJVa3RK4vunZWHJsMLgjDKwRvSPB9XnaFlkHPH55mRMiZAdMVK+WSR2pzUsMoxaDp6Ua8bFQJFb49NAhkoGrNn3jpPDhusvX6EqJYA+/vAB3/xbf5+TD+/j2xWxb6R8MzWYmvOxIU2yY+rrn2Xni/8c9aVbubGp1hm2lPdpDREYI+P2awzcnGfl4hOYx84HrrUWB2+trdCmMhsC5HGltTA9Bjee9aSlQqlC4nEfGXRM0KLbbcpKNoEgsAkDvzsT3SXDHSZajRgaPBfYQhCOtLxFoUSqTI1UhnNDB6tJvoPkMzxkRCY2Q0UqZ9qCdQuPXcSzIDknaxLRWJldfpHxzddR1aZQGpXJzVSdB446om8J/ZLThx/w7b//VdpVx8iKmJMiCb49RAAFdmgGp7ReL7kRsG5AivS6VBlrQC/jcoMe1PAvdIonv/N7FOaM8cuf5vSN32Xnl/8ixoxIAWLUKAzReXzbQoqY0uRrH7EGolK0zhOz1VxRqDxRO1RiMueQUjbO0KLi6CJ0IaFNJQJbCmFrZF33vu+IuiT4QHRDwIeAYdEHOi8bswsJU1RikBAirmvxPtC2MnUaV2fYLJvro8YHQEWiFZOLoTgJMRGVYtX2tG1L8k4wcNdiiYQYWHSO3os2S4jS4P5ZAzh/FFbJv/4THv7Pf8bv/1Xgr/5hz/v84UPk7NmKR4/nJBKXNoq14P6yi6ySYjwu0VHU1YpSxNdtWTJSid5FXOsYTSpMirz4yVvY6Hh0/zEhKSazMS4qms6xubWBMQUH+48Zb+xycviMelRy6/XXOTt4guuzo0aE0cYGrmsJvWPv1gs82z+gXXZcvf0qq9PHuP1DwmmL95reR8rCMtsY4c4WUlbHREhRxPNjVvrTOWAHYS6IPCiiS6LyGHrO0gXbHWbX9HkgT2S4IGPgSQLc4O6eYO0Gf17V5iYl59i3UcNNKpH/wXsP+aU//8e4fO2A+3ePiBHe/t3vsHttj1/4S1NmV1+UIGlqVDGVrDM0OVHUUM6ob34RhWf19ldJRw9gYIbkwJaUzhgy0kTLAX3wnxyqAY3Jgn/Cy00qSUbMgLAnYp+zW204V75LUrZqQAvjRBlF23acnnVcvrS1ph/GAWLRZJ3riMq63APNQmQDDFYrwcZzM5wsGStEIBnQib4X7W8l1ydFZNMZyPW5wZeCA2RYyOpCniMFCegpghZKojIaW5mc+QZQmmr3KhuvfhEzuYTSVYbNlNDXUiLFnhQ6om/ozp7xzm9/nbffeJ/NcYkOkYULGKUoBwpgUtjn2CNDdbjGs4emaNZuSblBvu6+SNwCBv0XSTKI0DxpOfjqP2Dvi3+WB//jr3KhTtQv/yncO7/BKg166grfdVRliTIF2gq1NXjhN3snbDFbWkIyYAvKaoRPQOhElS+IGbZPWoqbkK9ZUeREQaNsgfPgnKJvzphs19jSYpUhxkTfdgRViH5M3pxt1n7XxhJjJWtTl/TNgqLqsHWNqsYcPzukXa0ojYLKMqoLTCG0VDOagi5pVjLU1q+WlN5hCsG+V01D7z01ontOagVajf68qvkJx8dCq8S7wIMHp2xNLCNraBqPrkoWSeMKze5IMKuVC+hC0SfDzqym7Q1RK8oqMA6e6e6YGy9eZTk/5fBwTlSGyWxE3/eYomA2mXC2mDPZ3GL3wg7Hzw7ZvnSV3a0xT+6+h61nIqred1TjEU3bobRm9+o1Hn1wj9F0m8nEs//wPuNRje4jlTI0MWLLgvGspCgUfe7Ei4FszME0IpZVzwXbIW9RKltkidSoiFDBwCRJQ2maA7PE9XxTre8gRdKiOMfwO/JVZtcNFEN5rpg1N0qt6FEoH2nnDYuF59XPvsxHH3yDmBR9H/nG//hbbF6+zGv/wpjxBQ3aoPVFVDGT9x+6oconVdsUN3+RsTJ07/424fghWgWBMchQ0EAiJ1cm+QYW2zDxuoxRNrZEIPoekwdwEqCiJ2YWiuJ8UCEFT0ryvcaSkuDayUXGdUFdaMBlSEN+L6pMES1LgncikZoHNpIaYAKZzjOmICqhRCpydy+dY+8C3eTGXsxMHKXEaSc3kbW2FGVJCuK2QkK434B3Plcmiqg01hioDL6Xor7eusTWK1+i2L6FsrVsHkpn2dZ8swcnGV23ZP+tH/L1v//bhJTYqA1p1dN7cXwymcyvTTalSHn4JmnWTjt56CtTR4ROmbOCrBQrGHiGlBJ5MCcnAq5PHL5xn40X76PGuxz9+v+bC3/636d99x+jQo8LEU3CVlogMyUj8JiCbrEkxkhRWowSSVWU9AJsadEY+mVLytxwjJyzkDdLgaCkcjN1DVXNounwbYcJDkKHtlbgib4Xbe+qoCpHNIs8Pm8hOEfXthTWgi6pSostt+ibhnoyRo22aL0m9T2xb2VWIzqq6RSfpG+BsaiiwkTP5sYWoV0Q+gaFwSdDbALBL2isYTqqcTFQleZnxsz/f+iA/4sdIURuXh6zPbNZbxdOW6HjzAqDCQ4DVBamm2Ou3LiAH03p64q2adAKrrx4kWuXJuw/eMDBUUM5mzKeVMwXc4qyYGNrk7PjI6aTTeJqxfz0jBc/8wU2Ks/hRx+iipqTswXFaMTmzg5nx8dUVYVOcPfNt9na3iM0S54+fkxVWJbHJzSPjokBfIToPYWC1dGC4MUBxg83wzpXHoJnnhCEdYQdaHsDm4LnArJkVKyx7XVjLmPCQ4OIOOTbzyEysMZb16X/gKEbTWE0JmdYMSU+evMus90JWxslaAgqcnq24mu/+nf58FvfpDt9SmhPiM0zee5yC+w4B1klZXu1S3Xzy4xe+xXMhZuZTieBYi0KpTKDOA0wTyDFXgZaohM8OfWkFCRoDx9qCA7a5F7Bc1i/Ec9MrRUokT2VRmISaysllQYhZuxRJhUzOktRjwiUtA5MOaYoa5S1z+H6KcM5wqzBp/wa8lpSHbjMRRaoRukM9ZBFjUCGmLR8BmXLfH0FIoEB9lDYwlIUFcZoio1dtl79RapLr6DsZH3+Uq4AJGj3QvdzK1ZPn/B7v/YP+eDDfS5tjlDZANSFRJVhMqPArNdVriie64/oLHVLHrNXaiCoJTmvaWi+S+COQ6mnhPftu0B37Dj4znfY+9IXOfvB97F1pLz9ZWodUKXFjGuK0USYRPmcaGOxowm2ENw7JnlvRisKowiupyytaIXESB8CrQcXpZFs6opytoGqK3xQuN7Ttx2+d5Q6UpQlq+WCvne4zq3hRt+20K0wMVAaqTSa1YoYJCN3rhEeeKEZTaeYoibFSFVaynqELmuSKZgvGhZnC7rO0/cO5Vtmk5qNrR3KvPv57Gw/ri2mLPBdZLnqmTcOlEwn/wyI++MRuEurmE0KtJamwnizZmezpIqBkU1sTkegEheubLO1O2N/GZmvOppnJ4zqmlc+eZVCwaMnZ3SxYHNrA1Ki6z1bW1skHzk9esa4rjl9+gQzHnP9pZd4/KPv0/SKjYsXmZ+csrW7g9WG48NDZpMZTx48ZLVYsrW9w/77d4jNivFkRtd5RkmhW9FASSlRFgWFghSiiLbngBQZAqiWBZgDZxogBHWOb7P+2QCDDNE7rbUpJPgkAU5yc0bnRia5PB+E+UkJa4TBsG62xXUejlFKsMQ8xAOJxx8+IqgJt169LGV73hQePzjgd/7G3+LRG9/HnR0R2mPi6kD2lWobVcwE+hCcgFRtYa9/mdHr/wLm8ifBlnmkWSRmySwPSbaHYRkJgEmd642oXG0Irh8YGgMpiI5EJObzcL75xRjO8e2Ba20UqshTl8ZibSGVSAz0y5Z+uSB1DYXpGU8raWzWG9h6A2UqUSqMolIkVY/AP7bISorGklTC2OwXqfPovBbXHdbUQnlr2hhRQ7QyiSl4t0JnOQCTZQJsWWK3L7H9+X+O6tpnUeVGnl4V2p9MHslIewwtwS1pjh7z/V//Db7+T7/LbFqxUReELop+TkqUJvtr5iOR1tmCnG4pnyRm58Qh14cxDbm1bHpyTYUiOARy2Yzl+qUQObu7T2FWFLMrHPzW32D3y38Rmp5RaammU1RRyQYQPb7viF1LUVWUVYXSSvTTtTCS0FpwYBQ+aloX6JzD9SKupmyR9WmMbOQGlosl88OnaL+iLETrplksaVYNXdYJUZkSiXdUVizLXNvi+44UOnkfIeJ6J4NXKRJcC76hKDSjyZjRdMJ4axcz3qVpelxzRuha2tUC5eZcuXGZrRdfRY02iUlTGs1kVDDb2aGczrKIl8d1jtWqEXrjTzk+FoFbJTg9bvjosIFxwbiyqOC5cnnGZDaCUnP5xh7jrRmrWOCWc3TT8uLty3zu01foThr2n3UU9YjZxoS+c4zGY7a3N/AxsXn1GruXL9ArzUtf/gqznRn3P3zE5PonWHUNd96+y/aFPcJqTugCKWr2nx6ydeEChbUcPHjAaDQleDFoGFlDPDmBkPAhYoxmXBuS86K9kD0CRcshG8Ym6VKDNCpTkoApYj7nfojDxGQcglEkB9znM+jcOEMwvYG/nGI6h0RyJiWPy+uhBjw2B5CUKHPmpXLgC53jve+/x2tf+Xm2NisZ4skvfP+du/zuf/m3OXj7Ddz8GbE5JC4PZG+ptiT7VqL/rJRC19sU17/E6NN/Dnvjs6Rykt/7APPkqcfgJdtGoaw5D3hIQE86gc60PHhOZIs8Mv+cV6KWcjqRBr3StUxA7DrwvQznRNmUsAXleCRC+3k0HC+NJz9/Rj8/gRBQtsDUY0w5QpuShEbbck0VFD0i6VMIlCQMGj1wpKPK1EdpukoVJFWDKazw3XUWz8pytMoa9NYFdr/8Fxjf/gp6fBFtx5k5M7i2iOhS8g2xX9KfPeXuN36ff/Q//Ba9c7x4bYNu2aJSonGRUmvsMPO01kKQgZU4bH5rOiqQsf84wHXrNPCcRniuxjhIwKb1RhqTJjTw7NvfYfP2LVbf/Tp2B6rLn8M2S3SQSsgUBu+dCEF1Hb6ZS+NXLjhojes7QtcTo8N1DV1UOB/RqkQrg7VyzlEygh5iJCAwVaU8liCKhj7hPTSLOb2PLBdLUt+BdzmhSHgf0doQgkKXFXa6Lc5V3uO7jrZrCa7HECi0x1Y20xoDm3t7FJMdcI7gZQjn9HjOw/ffJfqWYrpBNCU+JQgJlaLg+8aikiEqTfxDQvPHAuMOEY6c4sKFCTYEQghs70zovKewluQ0zw7PaL3Ppp0lL7y4y6yE/SendBFmO5sorXFRs7G1gWvndG3H3o0XWCxO8CFw45WXOTs7xhcbXPrEJZ7ef5vHH+4zG804OnzGbGuLgycPsdWYVz/1aR5/9AF4x2w2y/52CmMKJpszju90aDRLHygrS2Gl0RNys3HYLWPuKEvsO28urvNeJaPP6xtiwDhyCTxwOQUfRoKeUqwd3+WH8jsKaeyp88CmjCK6wPBrOr/+gGEWRmMHCCZrUjx4+z63X7/FC7cucvS9h4R8I8cId77zJsr8d/zyv6G4+KnXqZDmmJ5cgXpTRuO7U4hZOMtOMBdfpyrHuNEF3IPvQvNMSvMhg87ay5Egzb0MHYkw0JAN5mCfcmZkB52QISMMMsIv1pEMO1UikoIEVTUEcnIGn4Qap7TB5HFpFXPFQG4IxiTDlcnlCU75mbAYpBGpdR7wSZI5k4JMMeZraYxIdpJlAwZNdJUEY47B5wQ6SwNYSzIWtXmV0at/kvL6z6PGFxFd7gDYXIzJphd9S3Ir3OKYR2++wf/013+Nex884Rc+fZnJqGLeHVErxaoPbBV6zeEeBn8GIbyMgDCgeGKY8FzWN+iO59j+/DRuyj+HoXWcxGiCBEFxeucR472rsOjofvCP2fzyn+fZ3/4memebPkG36tBFwdoSzsuUqrEyzNQ1PsOIiuBaXPCkclP8IXXE2ErUKRVgC5KR3kAIkVGpsWaKiwrfRVyM9F5odzYJqUBF8U7tXCKlJbooSbaiGk9QQOgatBUSQux7tIa6rvB9Ly5EVlFOamGqtCdMKkvnxlgbsdWIvoOjpwuOT9+hqKdELz0cFxO11Wxsb1DWlrbrSHmidA2n/oTjYxG4o4KLmyWx6QkJXPT4aKiMYrloaJWlnE2wIVGNCy5uj3Gd58kyYkdjdqYVi0XHaDpjOp7w7MkjYkhUZcmD+++zuXeVSa347nd/SCorLI5+saQqR0zKEd71bG1t8uzZCduXrrG7O+Xh+3fQuhQRmJQYTyqIDu8Tzz56gD91WCUMl9JoVIx4H9cQCUhjkoG9sI6wKjeCxJE7pnODBJVhkgFTTFnwBjWMJp+PvYd0Pt5+/swDAp5Z4zGJuSlr6HF9ow1NzSrjhlqG10hAv+p45/ff4VM//woPPnzGk8NGGC9AHyJvf/MHpAR//N+IXHrt05QIDKOnlyGbnqb+hBRa8XbUNXrzFcpXZujJDv2H3yae3hf6XhhgHeEUp+F8pPNseahHiDEHwIGLneNXjEID1Bk6iDCoD8bYS/WDTH5KUzAIrJMihRVrMu96jDUCG/lePs/wOt5BYUguiFFEWaJ1Ic9jDLockUwWm8ryBXItAgM2llBCJdSIj6XSgDQoVRBXdGUUOPkc5uJL1C/9ccq916HaQZlRpiDKs8ln7kk5aPeLY5689X1+46/9Ld545wOu70149ZPXeO97HyBWlgEfoTJQqHNhKVknkmAM2uayPvQ6QA/rbqCgqiErz4mFzglIxpBkEzCJsjCQzUP6U8/Z23co6wnP/smvcePf+y84+HuXoO9wBqSdLNOLxlpQRoJ2Eiu8FDXRi/FC7zyta5heqLDVCJNaylEtMI/3ouTiPUZrJqOa6EUPKZDVMomMp1Oi85Q6ynSqj0TXyhoBOudJfaIoNEU9w/lehKW0JmXYsw0NuugpijLPEShGownBe2KpcH2LoiP5nqq09L2mbx1tc0RpBnchxDIta3hPN2e4poV8T/2042MRuI1SnD1rZDEVmulsBC7iK8N0b4fNesxi1TMZWera0jjotWW6WWKtYdkGJtu7bG1v8uT+PUw1oV0u6KLl1muf5Wj/CQ8fH1Nozf6jfQqreeHWDbr5Kd4FqsKymp9x4/Ytom959KN3GY+nLBeNbAC1yRommtGsZup6TnLwTEmapoLD5kATB561yuJHOTfOmtlr26ycnbMm6WkQj3TR7lZqXc6uu/nk65m54kO3cYBYztug6jx5z0F/IO6mGNZB3FqojWZBWOObSike33/EC595kc9++VXO/uEbLPqQ/zaSkubdb/0AFSN/7P/Qc/n1z1BFKTP19CqUI5EH6BYkdyrj6Nqgxlcpbs4w00u4B9/A778DzWlutmaX9SgVxYDRS8MzKyGaQtgmWWM6RwoGXOh5/82hS6CR6mPAJeUzJFEBTJo+DFm3xihZf5DwXQuqyBokEHongRUlzciU8nVWWCK6KABpNKIGPrRUD2T+cyZ/SNnfOYrsLK9tkc2LExRj7PXPUb/8J1Dbt8GOZbOKPm+sUTaX3IyM/Qo3P+HxD7/Lb/y1/5avf+Nt6kLzy7/8KjEpVicrLJGlTxglgVvnTDjGmC3g8vJbzwQMLJW4Pq9qWKNr2dxzaumAoui8VpViLVCVcuAnKZZPTth+ZYI7eEb70e+w8fofxz36XbwRrRajIzFEUnDYqgQFru8hOIhittx3jogVDZeuYTrdILqMzyvRuHbLFdF7uTFtmf1cjTjqdJ1MpY4qdPISmCebzJ8eE4I0wrW22KRIwVMWtVBHXU8KkUKLXnWKQeznevCjEVGJEJsmrhlDk+kIZSY0ragdKmMgBPrWUVQKW5cyqdk4knLCPvEL4dQ/p2/0k46PReD2QdwhCquZjAtCgtHFbcazGc9OV/SrjgvbE1QILNpIMR6xNSrp25Y+wmxzhu87Ht19H2tLjk5O2bt+hXFZcOd7P6CebjAdj5nPn3Hl6h5b44Kzo0OGTrguSq7eus7x4w/xXWQ822S5WFJUhmpcYsuCpuspRlNKk3jy3kNG1tKsOul1YZGqPw2VO1pnKmDU581H4LnIKzg2RiAKpVAqYmclRWFpTxpSVOuSdMjIY8oZ3bq5lM6xb/k2d+hlwiJmN3OTtZMTgUFHeWiM1oXBtoE1yoAEqje//gO+8he+zAu3H/LuO4f4lFm9CZxPvPWtN2i7hq/86yuuff4LjHYcJjr09BpqNIXxJqorSd0pKjayaVWb6Eufp5xdxmzdxD/8HvHsESp6QuhluGIYNBqalNoILr3uBCBQRPaBTAgeKT+PorKY+dRJD5m7yZreYIIY7/oIUdUUhcNYQ/IuVyIBY0uUFomCvosimGWsyMDmi6yzW41QFrMf4ngGUeiDtiyFf27y1UkQvUPFKE1IEkoXEpStJdVb1Ne/iL35C6jpVZStUCqbFZM3suTXtL/oVrjFEY/f/A6//p//N3ztG+8QSXzpM9e49MJVvvdP3iR0jgI46QNbVmfOtkB5KScZawGzIcgS17RSUjqnnK7hp7Rew6Cy0Jd8RKOHWhFwfk0hjBF8GzIXvubo7/516j/9b9G/+5swnYljfd7IjFIk5/BeWEXeOUIAjyFiMcZI41JJk7npOpxr0WUFzpOcXwdQ5xpSgj7ItUx9w7zraArNhZ1tUpB+UTQVPmoRJjNgrcWWBdZoQtfSu4DrVhTJ0EeRiggx4tD0/RJTFdR19s2savziVFgvusZFmeC01mKKkhgWBNeQrEIX1doZqzSGQmvhrWeBtZ92fCwCd4yJ00XHzkZFNJa96zskNPceHjLZGHNxZ0LT9HQBtrYmYApWTc9ousXFvV32P3rA9OJl6s0ZH733Ia98/gvE9owP3nmfzYuXUKnDdT23b93k9OiI1WJFPZlydHTGxcuXmEwLHt79ERuTMX1SLNqeja1NuqYFrehdT13XNPMTmtWSuHL0XrDWohBZyRACIZDpY0kwrHX/XeVGIeffazE3lQRGymaUZnT9Ep/68qf54d/6xyzOWkS/Wq0n2gYDYK30udjPkPskJTu1guBDblQOsEiS4PR8lA8y9FEXmsIoupRQkcxhVpwenHD/rUe8/Nnb7H90wrO5NIsGgf4Y4e4P3sOtfpVf+tdaXvjFn2N8IWBCiwnXUJNdqEWci+4M+oVsHKZGb76MGl9E77yEf/Bt0rO3YflMsvOsXmiszQ1Xcx64giclv6b+pRRR2maIRYuutT7vJQz1jgT2IUcU5bWqMsQglZ6YF+Sf56EYjMIkD7VaB3SlCtkA8hSjwkggRRNjT/ANupys9T4IHUqXkni7npAsKTrKPMqPUlCMYecW1Y1fRO99CqpN1I9pa6vMPXeQ/NoVvJsfcvDuD/iH/8Xf5p/+/jt0JF7ernn9cy9ydrjk6OERJiW6JJOEdSkMLmkk5qpvOFUxDLiI9FNQ6/UTY1qze2TPkvetyayfHKztYPYQ/braVFblgkkq0rMnB0yv7tHeu89Gcw/vKnSzRI/HFAbQtTQh+16mdAuF8wEXjDR1IxSVpZhORB61aWjalhQ8NQlVVATvMFoE3aJzhAiL1qNiT10lFm2LP+mYlQXFZEJzsI/rhcKbQo8pJPimFGUNlmMsDf3KsFh2tJ2nqkqZZhYck4oAZQEhYehJxmRYJlBWFa53YoqhFNZqfNB0nUMry7isiMg0qy3FIu450s9PPD4WgVtrxcWdMbOtGbtXt1msOk6algsXN5kUllXnUWXNxc0ZPgQWyyU7l64xqgz7Dx6we+Uyzx5+QNt5PvHZz/Hk3h0W85bZ5g7HBweMShkeeG//LuPxlKosaZzn5u1bNKtTlqcdO9s7PH16xGRzF903LBctSYucUmFL5kcnbG5OcE2DvnwLExva+0+YbtRYFQjNAGnE3NAZ4ItcnqdzyCTJ9cz2SvGcjx0TJ+98xLfvPSG0DpPR7wF3XKc+koDnjYF1I3P4+YBBxnwTSnZoB6QVSPjg1yVzVRgqq1gNZg5IKeyS58533uYLX/kkt16+yOKNJ3ReXjxGYRRE4MHdR/z2X/vv+NLpGS//6T/N1osXCPMHaLdCzS5DUYHZRdkxqjsjhUZubruN3v0M5eQS4fA24fEbhMMfod1CgiTIwAt5Q0yJqHOtmgNnyup+6ylRpaWBZyx4v8ayoxo2u0w3jMIN1sZmzNit4QKlM6wUhetuMvyRcjVD9AKLkcDKAIh3LbaSoC6iViGf//yaCP9bu5ADPqJfMbmIvfo5zNXPCsxkx0iKPgxgRAZFPqIj+o7Ut3TzQ/bf+j6/+Tf+e776tTdoUmK71Lx0Y5NyOuL9b93DLVtGSnHYRQyKSudAmysTxVCl5OWTWDcHYxKRJ22yHMA65Rj6Cgj9lHhue6aG9aWHBZrXbW5PJGmUjzZ3WR2c0Nx9k/rVL7F84+9gxjXWVhKku5Cbfh6lasmEYwQVpIrJRtdRaRaLFX2zZFQY+mWkpc09oEhSeXw8a64XRYFXDmtLNrdrUIbgA6aw1Bd2aeZj2pMDklb4ECnrEq80KgZm0wmKSOvg7OkzYggYY7BAXY0wKoHz+HZJslbeM56yMIxGFaao6M5OcasFRkW8MvRJoXtx5BkXBTFEqu0ZFFOak2eymf6U42MRuK1RXLq5w3g6Y//wlGQLruxu4rzntHVMpmMm0ymLeYOpK25/8pM8e3CXRTdhtr3Fo/vvs3PxErtlwcN3vkdVT5jVFU8ePmLvymVWqzPOOs/lq9dYrJbYccXudMyDe/eZjiZEFEfOM55M6ZtTkoegDFs724KD94GN3S0652kPTzBLLU0hpVDRy4Rd3mEjZP0EwWrXzcI0tA/XfR0G+GPImBNgUMRW5ByVMmvGSYznMIzViqjUmlRBSuubZ7hZEvkxUtb7DmAKEYd3Ho1ec3C1UYxKw2kf89h83mISdIuGO9/7gBdfv8jVpws+ejTHRfAkYegpgV8Onjzla//t/0SxcY166yJGO4p+gfYNenoZNdok1SMoKlS3IvVnpNhJIBztYa7O0Js3MUfv4fd/SDz6EPwcFfIuJU4HolWicgY4DPbYIg+EiHC9SgkVA2STBZDfDylkgaokmX+eYhXMW4TzE0o+VIzyvUKgLG2IXqZNMbKlxmy4G1HYcSXYt48sFi3oEePKYbWYraUoU5Ex5OA4mqEuvEJx7fPo7ZdR1Ua2TZMse9j4GTwjgyP5jtAv6Y4PefD9b/Gb/9Wv8XvfusMiRGZGc3lS8uKnbnJ60vPo7hN0lOB23AU2rcJq0U45n+Y6TwSyzYScC/L2nyBm4wmGdZvOZxRSiqLRooaKQMkYpSJvbMJSUflfCgm/iBy9+x5awdl3vsnev/aLxPubdNHTNR4fFISA7wOxsBS6RGmPUXF974QYoOlwPpB6R11WKCJ922NMIcyuJNc4Kuj6nsm4opxu0rcNFzbEnLfznuBayrIAdSYc7KLAdyu5B7QVmLJtCaqTQb4r11CmpludQHCMS4u1pUyrJpnh8FHEyKpS1ARj6KmLmvHeJbrllOXpCaroCd6jU2IyKRjPtjl9uo/vWqrpDtPNix9/VkkxqrDjMR/tn7KxOWFzZFl0PR1C7bNGcXQkjI/JuODBu28z3tgGBSdnc25//os0R4/Yf/iEa594jY/u3KVtOi5f2cP5nqIes1mKP93la9dR9Dy5/wEbmxdIscegKJQYD5hyjB0pRpMNjg4eUVcV9bhmuVhhdUFzvKJcBZqFZFhkrDCRwObxcqUIKWXDgpwZ5yAp98xz+hXA+iZV52M3QhmLOUAJDmcz6yFkjFtpIOQm5fAcJCm3jCa6sOaDayUDHqEbRpsTprRiLZZgbDWlDBUy+B2C3KinR3NO9qfcfOUSXeM4OG5FVCu/d2IClzg9mfPuV/8BR/d+wM0vvM6lT77GaLfDuBWmu4ia7EFZkcZTKEfofg79UvQ1dIWaXceML6B3XyIcvU88fJ9w9D6pOZER8ly+q8GNZb0DxhzXJUOW7lECfO4vSLPNFAJxJA/KmLWWtBqIzX7IEs9lAjAGogE8ujA5w5Thmq5rWDUlBY5xYXDOk7pAZQzOr9AxCzTFLGmgNHo0w158meLKp9A7L0O1u3ZmVwz6HTnDHoK270m+w7cLFgcf8f7vfp3f/NV/wLfffUAfI7VV7FSKl1/cYevKJb7/O2/RLTvGSjF3kTbCVTvI+Eqglux4CMi5OoxDJ9XkPkjeINX5WhigEmGkqHPTYi2BnJSt4chBO2cSCWGfRB/pz1aUsxH+pEXt30FPtrE64oLDdy3eR6JR+AAmBApb4NplboxbfDLiLuM6RqUhWItbiRGDToJJJiIuQecilYFSK2LTYL0DlWh9R4iRejQiOM/i6Jiyd5SVDNIARN/jeo/Vlt55VID+yUN06hlPJlRGSYKgLLoqWDrHso9UOmGNxbUyRGNsOio8twABAABJREFUAXEBtqKwitn2NuPoOVk0tCcnGB2xVYmqJizmDavlB9RV1hT4KcfHInCHEDlpPDdvbJMcnC1XpKpmb2+PxdEzTl3i+osvEd2cxw8OuHjtBqfHR2zs7nF17zJP7r9DQnPl1ovce+tdfIDJbMJytaKezmjmC4wO7F7cYf70EX3XsL2zRdu068GLYrJJHz2VMYxGNWfPDpmMpygFvm9RwdGendCftoyLEm1L6rrAqEjySYbjjMb3/rzxl7OWHAskuAysBkVeyufj5oMuSQJ0lspEZZ6vUngv/00gQSfbnA2NJYVM8oVMqTKFZC/DkIg2ipDfV0yJ6BLKaoJ3TCpLbR2dj2gE7x1eP/jI/keHTGZXePETV+h/8JCjlSNE2ezWsNDK8aPv3eHJ+/e4960f8Pqv/DFe/GO/wOaNFyj8CtMvMOM91Hgz6yNvQTFF9UtwS4g9mDFqcgM7ukTa/RTm7EPis/fxR/dg8RRiI5xqdY79E4WLHEIjN661yBSm8IGlx6CkJ6AQzDxJ01AbnQOOonMJlIj9KGuHcgJwMoptRQYghUQMAZcKzuKMvXKB1oqyKqQ6CrI5q9yV07YWT8jtFykufRKzdRNV7ZDsCHGbT6TBRCxFqRKyQUTyHcm1uNUxxx/d5Y3f+G3+4d/9Ku89PsGryMRqtgrN3mbNtZeusP/gGYcfHYpuNHDQBqxKVBqsBqul0rJZdxxgbRKchctU3jyGNSy/NMAkao2BM9BTVVr3V9Y9FNZ7am5cqkyLVYQgUJyJhsUPvo3euIrfv0va3MUHmX5MPqGDJ3Ytpq6xCuKgVOh6QghYBc4rQuhASeM1+g4NdADKsDmtib0j9I7WtaRspuCSpixKYf8nDxiaswVpEjDFJkVZ4Ykk52jaVhymjILgmYxGmKJCa0XbrIiuR41qQoCuW0kvXQdSiui2xVQ1JE0qEvjAaDZhsrVNuXWFbuOYGDyLNtB2jkKLHEHXCvX0px0fi8ANcO3ihHbhOOkcs73LXLh4gacPPsQny7WbV3j25CM2r1zj+icucvDwI6596tPQnXHnm1/j4oufIMWGt7/1PSbbO4SmIWnN1oVdnj5+wnhjm1FlePLRQ2bTMePxFGML6kqkG5VRPH34mMnWJtoqmqZha2uH5fKM8XjC8vQUXVrMKrGMir73KGMYTWvMaolHst7gg+g2ZGlRmaPR60xEjnwxhq49Ikh1rtudf0txzkZ5juo2ZOYgmc6gNijPlAjOgxbBf1NYbGmy04oiOcnk1m7qSUZ4dXZnn1SeRdehk1DHGDYeHXF94OjJnBuvXOGFlzr6OwectV4m6pS0EwOJ1aKhXa44OVpy+Df/Hg/euMPrf+5PcPn1TzG5cA3bzzHtLnpyAeoZlBZVbKLcFNyK5Jak0EmmO5mgx5cwu69jVk+Ix/eIJx8QTj6C7hRiK1i5iihk6nDtWRklM49agmgiwyFxPbwteDQBZQq8T6ArlCYP4oBoVGV/x1pYJ9LplwBUFZprRYMtxQhWKZMlXoUVQDVDTS9jdm5hdm/BxjVUuQlZ1W/oPwierfNm49cmCNE3hG5Fe3LAkzff4Hf/7j/mt//pDzhYdqATVilmRrNRal7/wm1GO9t8+I07uN5RkOiiZu4Su4VitM64cyIx6LhnGqtcbbUO1sPqjEN6oYVaqY0aUunz9THEdn2evUvzck1EyZWQVKDRZVaUNfSnZ2y88nnO7r9Ja5f0WJSPpBCwpc2iWR0uIZIRLmvQBI+pLa0XDr8GYp5CTFrTd4HKCO3Tap37GAFTFhR1SakKVk1L6D2VzUmAEpZZ3/VZfTARfMTHgHI9VS1tbWsqEoneOSEvJGiWHW3v8F1HLA2qVBhbEl1L03R5BMHJbEVmyxg7oi4Uq6RQITHe3KA0lq6Zs1gsPv6B2xrFyWlLF+Hyyy8zGZd8+OZbjDYuMS4iH31wnxdf/zTN8QEHR8+4/tJLPHjrDdo2cOMzP8eDd97g2dNTrrxwi+bskPHmBkVZcHxywu7lyyznZ6yWsLE5JSSZGGvP5sS+Zd4mVn3Hpb0LBBdgNOXS3i59u2Rr5wLz4wOM8uhC50UsGZcZWUwJacm5bViSzDkO2PYg1p8bXjpnumRcewjWkpCkdX9xwBtDjHmEGBETyqWpNPgzZStDISjRsk4hYo2Vkt4akgFTiT9n7BuUEaXFclIjCsRqPXq/MS05Wnb0MWHzDeqiBMFEolt1HB8ec+HGNov5ivhozrwLMrqb8U8ZpIHQB3ofeeObb/Lo/od86pc+zyf+xC+x/dIrjLYXmH6OqbdR4x2oJqTCiN6JH6P6juTPhL+rKhhvYibX0bufhvaAOH9MPL1PPPmQuHgE7RmpXxG9YbmCugyUJmfNkcyDzkM6ZF2UCLlMkkWYIoWR8fOkCmFFRMFCyVWOxKfsW0mgyEE8uqwZU5ZgZ6jJBcz2dcz2C6jZddRoF2VHwlYZArU6hxDIBgwp5XF83wORfn7EyaP7vPe13+erv/ZV3nj/MYsgKpNWKSZKY1Pk2tUZm5dm7H/0hMXpAnyi0pqPGqFQTozFIFQ9ye0zyyl3uYcMG1mW66b1GjJS2RBNk+GU3BtQ0nDMteU6UA8bAhmOGYxAxOpNPrdbOWyh6A4XpMMP0WmEdT19Va6rjdAHCqNAGekvdY5xlaVWK/HYLLT0Inx+DR8VfScCYs57rEuUhUbbmrIusEVBXVtWrXjSjrQV3riVeywET9936BBkYy9LUoR6lPXiEU1z507xKKwthF/ee5qmRadAUhatS4LStIJ4kYInLJZymq2hb1eYwlLVI7AlKkVKo3DtgmaxEimH52nEfzBm/s+Otv8LHj4kqDe5/cptFkcH7L//mK2LVzmbn1Ft7fDqzevs37/D5sWrjOqaN7/2T9m79QqXXtjkza//DrYYs3dxD7c85vLVqxzuP6VJir2r13hw93129y5Dv2J+NqcoSpbtisJWHC97RuMJu7MR+8cnvPjyy0w3N7CFRoeOw4cfYlOSZpLS9HPxyXMBkg8UpaVHmk0hyQLSSmUtknVtKct6bbg6RF75WUKvR4yfn0hbc7WS/HzQIWGAxrPmx/D86yLWaHSpMWVBOa1QlZgFmMLy7OCIGIQ2511PWdl1YyqFREFiXFgaL+JZZSENucEsNqVIc7qiKC17N3fpOo8/WLF0UYwictYdo2woNspk2P6TE07+zj/lg+//iNd/5Rd58ctfZOP6LaqNi5juGFVuokc7pHoqo+x2DLFGOQd9Q4wtolY3hckEM76J3n6V1B6SmiekxSFxcYBa7DNKI3h2BxUXpOwioo0lIr6ZSgkdLyWyLreceaUUKgWBoAoRwU+6yFdlmG6Vcy/QowJT0McSRhsUs13MzhXM5nX07DK63hWa38AQGYjOKtubASkFVBQZUIIjepc1RxqIjoff/ya/9z/8Jr/zte/z6GRFGC47UKEYqcSFzYpXPvsizdKzeLZkddphc2P2yEGhFbVJFGtBM8mK5XkyBxvF4LYk72td9wkskjPWmGUWUgry2AC1hGxGbXKVqM6nLNGSCQsdU4aMCm2IvUcVFYRIWDUUkynd6ohqa5eQbbtCXuexj4TghXIXDC6GrOkiE5IhiIxAFxK+d8zGAmn5kNUctfxNURTYwtA2HTEI3q9VJBojLCSQxnYW0I9EiqKgKAtIHm0Kut4RmhatLZ1zLJteho20ZjyqCa5HGbuWuVCAD47oBbrTSaZpu77H+oBNCjOSpnFUlsaJXMJGZbNRyE8+PhaB2xQlN166yZP336YcbbJz9TKPPtrnyiuv4lfHPH20z41Pf5HDe29zdHjGy1/+k4TmhDvf+SbbW1u0qw5TKKaTHR49eMj2pesUOvLh2z+kmm5zeniIArQtqTa22K4Njx8dcP3lF4kx0LSOT75wC786ZfH4AVobzp48pCxLkpbJqN3Ll+g+OGCJIsSAiVHoZFbj+0GQf8BckcU7JNd5IpKBQqak654yCDjQ+lKS8jfGKM+lFEoPlD65iIKFZx9CtHBbkYWjlcaMLaPdKaaqqHe2MFVF7B39fCnBL2t2lKMxttSEVpTPUhDT282J5azzdDFiS0OtLK3z6wncEBPLs4btS1tcur7DatET5o4+KqLKTL2c1SUlXHcVE00M3Hv/EQeP/h53v/UGn/pTX+b6z32ejcs3KaYLdHuGrqbo0Q6qnpKKglRVqLJChwC+hTwaTIpgRjC6ghrtojd7jF9h3ZKyW5KuvUZqnpKaU1JzTOqWKLfE+F4srlyz1sJOKU+vForoRN9bJ53pZAatjGDduhDnn3KCKkboyS5mchE7voAZ76LLKXq0C3aUed5WGqqxBWWE+qctCgsEUuiJvoPQydeuFVhkfsTxB3d592vf4nf+0e/zzv19VkFMdZWCpBQlijGK7bHms1+6TVKW5fGck6dzQucYGVjWI1ahY9cmRkatsVNNdrrJPVvigHMMjchzLFrBubQrmWmSWUqQGEbwh1UeQsLoYWBHZSU/2SCCCxgrm1foA6mQ4TCA5f4B5fYeYX9JWK3oo9A0Y4h0TrLvkZV2Tdf32XzaYI3C9RIQYzZ6nlRW3NdjxFpDSpomIIbOyrBYNFRVIe7yrs+GJgmnFMvOY0iUheixT2abjCqLD4p26YlZnCwS6VxH77JzvDXUtSVR0iM9oRAb0AWFtpgCkjFQjGiWK3zTYMqCaEqasMR0DbowFJtbjGcTCr2FjS7L/P7k42MRuLWG/ft3me5cpu9WLNrAzU++wqMfvcnswjV2L+1y5+v/hMnOJS5ev86bv/c72KTZ2tphvlhy5fYtXLvk8Okxu1dusDw+4OToiLqecPLsiHoyxYxHXLx1gzg/5uhkwd7NF5ifHDLe3OHapSnLowPCfM7pszNU8oxmU6rJCDPbZnfvAk/e/B7HT57K0k2gU6I7Ey1wU1pSShgXSC6tM2xlpImospHrmgmbseyh7Ix5YGSdbBvJfkxuJA2TkynlWYd846UcxAfbL2U1xbRGT0rqrQvU21voosKHQD+/i0la5kq0kY75wABQiXprTEyRrdIwd5GDk47gAlVdEhE/Te+zcJaPzI/mbF7a4vrLAffOExados9ytiKzmkeqORfRCiGxWPW884P3eXTvES9+6w1e/aUvceWzn2X3tT9JaOfE1TG6nqKqTVS9KSwUa6CYoKoxKkTRDgkt+I6UDKgS9AhVbsM4oLduQXSiOOgbkmvAr8C3maGxyhN2reDp0eXrI7RMNcim2kL0sm2NKsaoYgLFWL62IzDidSlKfSXYEUNAU4Njn6lywJaeQgyNvCcvKnepb/Dtkvb0KUcf3ePed37It37727zz3kOeNb1shAOejKJMiSmK3WnJn/0Lv0AykdXpnMXJisXxipLEbHvC3TPZb8Y649tGnG60GrIJfU5aSOeCZVopoVFmmG4AiYaeDSTBshkat3LkemLdbyFTC3VOYFBCadU2QwcefB8oygJ3fMbG7kVMhK5dkspJzk4ThIhWkRA188ZTWIUxMozWLVeMCssqBlwvUseihR8JSZqxjkQ9qRjNpoRkRZMEhU6estQyCu8d1kR6I+fYuyBqgqlHM86bkOXk7EwqFZ0hHyWa6WVZifKj1nin6JomN78dXiXKwmJNSSo1NoxpmxaDJ1qZS2i9JS1aNrXh4rVrBC+mF/pnTOH8oYFbKXUD+C+Ay0gu+Z+llP4fSqkd4L8BbgH3gX81pXSc/+Y/Bv4KkoD9+ymlf/CzXiMlxfbV65w+O2Kys4tyHY/e/iGXbr/C/NlT3r1/j73LV2mc4/DuPS5duUJ7esKyT7z0hS9y9OE7YKdcu32L/XvvY7QmacOqdZR1iTGwvb3Js0eP6FzE1FMOjs64fPM2qj2jOT2iUAWnyyXjac1oNqGPidkLL1LhePjW99i6eBHiHVTmE6uUUCGJYlyhcY1MaInk8dCRz53wlDInMzcX09B4HDr4stDzcmfIYAbMfKjTNXmIJOMlSoPOjRVTGcrNMcVsymhnFzsuMUUJVjHauMDq7nsZqxVYQ0fhdg+O5q7rhRGDYm93zHzVs+wTvfeMqoKm83Stpx4FdGHpe8/qZMH23ibNacuDByc5EMSh/Qp5wfDcZxZnoMTxyYrF773Bh+98wCf/+AG/+Fdewj19i/HmBtXWBex4C12OMdUMVW1APSOVJaowUFhItSi6+SAGAqEXN+4YhHViR5JBVjFnmDbDFkKxU4P5b+gy9n2O3a4vipIsTTCAzK/OkrrnV4ScUctgDkokV9FlPgGyWRC9DM94R4w9yXW45ozm6JBn997jvW9+mx9+4y3u3H3CcdszqJXnKw1IIKuBSQmvf/YK9caI04NntPOeJx8eCafZwsYrL/Lst96iUIpppnmaDLOJAYfCZH/GlB2a1lVSiOJCo3mu6xhzXyBXixm2U+r8lMkAlFpH73PO9/AJhmaoWq/n5CLRRlSErmsli/YeXxmC7zEpMSotyzbSNA2aRGENXYTY9JRK4bQlpiCwx7DJhIQpDckUYtNW16QAIfQkDCFKsuicE4pmVKjeMzZSXda1pSxHQs1bNZhyTBcH3XuyDiWUZUlVW8qyJiWF66QaqCcbNIsFwfUUhSEmYbzMZhtsXBhTVIbu9ISUAtEHNBGjNVXfU4eeoCxz14lh8E85/igZtwf+ryml7yilZsC3lVL/EPg/Av8opfSfKKX+I+A/Av5DpdRrwF8CXgeuAr+plHr1Z5kGa61xUbF9cZf99+8wmu5w9aXb3L/zDtXsIrc/9RoP7t3F9YGbL96mOd5nvLPH7mzCvXfe4NLVG4xGFXffeotRWeNcwMw2GJWO8eYmMTj295+we/kK7vCAJ+8+YOfqVd5/84fcuLSNOz2mWa7Y3NzBVCW90Vz5xCvMH97l2f4+F194mW5+St/0FIj7iVZIl9waKf1CLr3JwWqASrTcHOSu9sBwkJthoKmp9XkYuNhDCnNeikq6HYZNQYG1BdVGhSoN1eaUanOKqWvKyZioDb5fQhqxefUmj//Jb5JQFKW4kQcXUFoGaYwtsvt3Ah0xVcGV61u8f/cY14k3XlVami6wWPSY0lBoS7PsUcawd3ObZtXy9FkLTuNJP7bhZO+GLJIkTdqUFV2PT+a883u/Q/QnuNNjNvcucu3zn2Tn5i3GF69QTbbR1QRdjXMWvoWux8I6MTprbheoNJEnDB7lRcuD4GX5Jr+uciR4i8B+IqG0Y9A4kTes15h2Wuebep31MsBWOZgrXYDKsq2DilTspRoILak/JYVOAmTmKffLE+b7Dzl470fc/e5b/PDb7/L+hwecORkYeV5faDh3CRgBWyPDFz53nesvX+b02THJB549OaVdtoxU4sZrL3Ay3iB5R01kYjSFUiKglSRTHdbpGsvOtD5FNmse2isgomkh5qlKOQfn6IrAKhpIVtZycAGT5V21NkLJzHLB60G0XDoOSQwo2uNjimJEO2/RY4/zgcJKgz/FwLSUvsMyALqkxOOcp0yJuixJqgMUvfPEIAlCNSrpmha3aggK0AWlkuva9x19HyEF6skYawqUUozGFqUNDk00FcpEVl2gy3BVXRbYaopbtZASOml85+h7h+9WaG2w5UiWYi8j97pKUATaJRjfMJ5OKIqS5vSI6CM1gbI0jEh0J09JtlzPCvy0449iFvwYeJy/niul3gauAf8K8Kfyr/114KvAf5gf/69TSh1wTyn1HvAlxCn+Jx9KU1eRw/v3ufH6F3DNMR/cucPeCy8T+o6njx4wnWwwuVhw/OAD9l54gZOnTzjtOm6/+jKP33uPpyvHZLbD4dMDirLG4rh4+QonZydQjvnUz7/Mkx+9xWw85tYf/xIHTx4xKmesnj7FVGMuvHiJujA00fDi7Rd49MPvEdqO0cYuBx/cx89XpJAzIKXRVm7tGEJ2b1cZqw7rm44k/O51gM5sETVYjaUBIskZdswZOcPvS2Yz3BwDLVAbLR16Dd57xnubjC7uUYxriqqia1bEdo7rW6oLV1H1iHbRCmUxis8fAyUwCGapjKaPHWhDd9ax98oeh4dLjk57Vm1PPaooC4PzgWbVi/QmkeXJkqK2XLy2hY8nHD1rUEFlUX7ZaIZebO7GErOQUAyR2GoOnxxTvnGHbrGg//Y7TH/n21x58To3PvMKV177FNOrNxhtX6DauEyaH2BshSpnqGqCKkdQ1HmIJmPRtoA0Yv3CKUFuBEokFJ609B3OZXWH/6isG6MykyfXx0jGbZ77fmCEBAgtKQgMk3z+etDK7hv6dk57+oyTjz7k4Vvv8O633+HO2x/w+HjJKqZzSETJW4zkDBlQKlEl2BtZfukrr3Lt9mWW8zkpRp7un3LydEGRYHNrxmf/zb/M3/j//PfokBgXmtpk2d61kuR5RSHPrUGJSuAwDi+fM0N653iKaJboddQGJZm7rF0YxKoigpfrzKhKA1wSkU0xZ/8DhILWqCZgCgNNT60TXoMLwmqxWqZ7e59QUVFpmY41hUa5jtnuDn1rmJ/M6bqArQuKUcVyuSJ2nsZ5gvdUdUEqKkJIOO9IKOqqFN/NsmA0m6HLmrbtiM0CWxasWsf8rAWTGFeWvvFov8Iak/VQAiFIpVoVJaYs5O9jEJd4Bdp7orb0TQddjylLlCkZzTZJyyXat5gsudDPlyjTUG/uZrXFn3z8/4RxK6VuAV8Afh+4lIM6KaXHSqm9/GvXgN977s8e5Mf+4HP928C/DXBpo+b44ITbP/+LPLn3Ps/2T7n+yU/z7KP7nJ02XHvpNn51hk9w6dYLHDx6wKWXPgkEHr13h26+YtFEjk4f4j3U0w129y5wcLDP1ZdfJXZz3vv2N7h4+Tq+bzl+/FBsxvqGzQu7lJsXQXuwFdsjywff+Ro6FoRkWTw5oJqMCJ1DJUsgL3JEqCN0gZQDcwhuPVwzoIM8/7/DDZOdVkXFRK1/Z53V5RJT5bJUDBSkcWZKgTYCkXKjpt7ZZLK7g6kNWsNi/xFu1ZG8aDXYzQCLM/pFh9J2vRgUSTLz6PF9T+g8uihoFg3RK1aHLZ/4/C2+9bUf0bpE0zjqcUlpNa51uKKnnIjlVNd4xtMR2xcnuBA5OxXe6pVbVzk+PuH4aJEr6HMQZV1+JZlk/Oj9B2LqYDXeLzg7u8PdN99j5+I3uPbJ29z44s/z2r/8v2O1/55Mmo2m6KpGFzXainwmVY0qRKFNNiaL+Dtq0IakLc8nMbld8PwVyGlmOv+NISvMwV9oha1g6K6VrDpDNfJP9ESCa/Dtgub0Gcv9pxzcvce9N+7w/g/v8cGjZ5z0DheHrBZMzvP9sNnkYKcReOTSpODP/fkvsX19j6NHjyAl2lXLydMzQtczMYrP/m/+Vbj6GR689/+kUDAyiULl3urA1dMD1DOMqUds1k7J4J004IZsPA4x/Dw7X58mctKh01DUMJjqDNh2lv5a/0ArCcY692Vipq96H9CxRblE7Hu8A0WgqipE6RzRbleRpk2UWuzpisKAjqTRNqunSyKKjbpk5SM6v5dV22fd+YQuYIWCHlSKFGWBLUYkFKumpQqRcT3CqRH9oqMLHV0rcFp3hjDOCsNkVFKOakojhsPEKNFUidmHMoYYwRhJjEJwNL6nLi0uJVxylAiENZqMIXR0PmGLktIqjGt+rIfwB48/cuBWSk2BvwX8n1NKZz8jjf9JP/hn3kJK6T8D/jOA129eTDc+8Qnu/+D76HrChYubfPDd72DHU26+dJuz40MuvvAiy6MDDp8ecvsXvsLjt74NVJiYaJpe3LPRXLl+BR9bnhwccOnKdQ7u3cV7z61Pvc7xh/dxbY8tYDQZUU22QGuWp0/ZvnCB+ZO7rJyjtGPm8xMUsL07wwUHo0FsSKNUFHmemCG7XPYZa4i9mASnjGerobmYhjHgJF6Ock5/7MTIjcC6UAeFMchgR84MtS3QpWG6M6EYjym3N7GzihQV3WJOe3RCd7IS6AOFmmyxuPcjkvMYXYj2RLbFcqsVwSWoLLayeOcy7zmxOppz4VMvcOuTp7z7w8d4L+e5rgusUfStx1Ti7ZcSNIsGWxRc3NvAmgVnZy3PnjzF+SBMmSSO6jFnagOSIpsXBBRJdFaJxjOa1nQu8OThU+bzBY2D0ZXP8Phrf5ey1Gxcu8Ts2hVGW5uU001sNcGUFbqswYjRgdKFjJMbm+EMTcqwhvQcJHtOz6Hyg+Y1Gd4iD8ScGxmLqbGYBEdicPLPtfh2hVvOaY6fMj/Y5/CDhzy4c5cP3nvIg0cnHK86Wh9x+YV0DnCss1LhPYe8XxQKRiiubo/5lX/us4x2phw++AiFiCytThr6laMkcvn2K3zu3/oP+Oav/z2aszkTnRgbs3a70eQZgBSzy1CCGM4hkpw0KGStisj/YBjM+R6WYRVJUCLELA2bzsXQ5FmSOPqE9NxjMtBjcrNTSotc1SQRvtEJnh0tUeMRo7oSJpSxYvjrA8mW2CQ0T2uFGHB6tGAVGrRVjOqas6UDowSiiYGtaY21ClUqXARTGirKfB96utBjzTjLrCRcdGBLyrFm5MBXLV3T47wH79GdIqlAHzzBGKwt6FvHqRPN9qoqsEXFbGOM7x3eB/EWdcJgCVEw/6ASddbI8UHigxkVGG0Izv20+Ar8EQO3UqpAgvZ/mVL62/nhfaXUlZxtXwEO8uMPgBvP/fl14NHPfIEU+dE3vsHe7Zc5ffQRD/aPuHL7FZSBUI25/InXOLh7h/HOVV773C9w7xtfxZ2t8HFFu1ox295EFRWb25ucHB1jZpvc2Ku59+6PuHD1Che2pzy68y4KTT0es7E9wxYG7xOt6xlVNUcfvc9kNCKqgsXRCeNxyXhzAxcVuztXOFi8hVLgvViYSRIspq5Ja4rpiO54IR9n0CH5sc0tnd8guWRd437rsnTw8TvPASXOJTGXtRZloJhU6ElNtbNJOZkBDrda4s/muNOG/qzD9U4kKYNicXBAiuIspJTQsKrSiMZxiIRFi9IaOy0xoxK/7CF5Hr35Aa//yS9w+OSU/f0G7zxNgqqyKB3xvSikCWQk/3ShmW1UWKM4O+vFE5AhWOfhnAFvzjdzGKAgwAVpVrF0YjShFSwVzbNDvvk3/l8c3HtAM2+xhWbrwia7V3bZunKBrUt7bFzZY7SzQzndEJfwqsaUIk+glBXe9trEV+dGoh4uj7zHoUsxWHYlMu9bJvZi8OI72K/wbUO/WtKenrB4esjxoyc8/fAxj+4/5HD/lGcnS85aRxsibhiUyn0/GXKRl1Hr15WAFlFUStgjL17d5Jf+zGvU0ylnR0dynhL0i57DR6e4ZcvWeMyX/73/mPGlq7z9+7+PipFSk2GSgYlEdlMSql9KDKD1uqAYqKoDvUmtFyA8zyKRGD/AXsMvcr6mM5auAusgv25I5iHiFBJJicbMUImlIOdmREBVhhC6PAwVsZWlqCvJzIF6VJF0JBCJaCZlIo4mzLuE65ZYHzHWoKyYY7QhEb1oqldGozdr0fkxmqSEEWILRdM5/HJFOZpIN2ZdjQQyCIRSgRgMfXBoFRiNwaWET2CNxhYFprQQRYrWpYKgFH3X0i57rAlsb4ypRzU6RfrOC8U3OGzyKFsQgsq9sZ98/FFYJQr4z4G3U0r/6XM/+jvAvwn8J/m/v/bc4/+VUuo/RZqTrwDf+Fmv4fueiy/cYv/eXbo+8NLnP83p4RPqnSskAvfuvMX1m6/gmlPe/Md/nwLLYrHE1lOqidygtio4W3VsXH0B7Vfsf3ifq9dvoml5dOc9vPPs7F3ElpqYIstFR9SG5HtW86dYazg7WVAUmmuf+iTBtYTg0UrhvaJZdusssRjVFCViq+QTelwwvXGJ0Lc0qz6v6efGh1WGR+J5uH7u/OYlf56VPIdAyldaYwsLhabarKm2Nhhd2MbUJb5b0p/OiV3H4skxbt5l2t4gJRs4Ozhc60gYa4lEXOtFCCu7nIToSSvWzJiYIu3+M44enfKFX/kcX/0732TZBJyXLLP3CZ8x0KKyeYQ+EF1EW0s9kWEgY3uWyx7vJXvzKcnocv7UwyyLyudGGreKtusZQAzvA+9+5x10IcavPuu4HB6dcefdBxiTGJcF09mYzQubbOxtsLGzzXRni3pjg3pjSjEqKMcTyvEYVRhMMZKArrNnpgYBLGQTjUE439EFvOsJXYNrGvrlgtXpgvmzZ5weHHJ8MOfo4ISjozPmi5Zl5+hCJCYZRgpDSP4xlsY5vqv1+fkY1tdYJSZa89L1KV/65U+hjGVxdCx4vLG4pufpR8+YHy2pSbzyJ/8UL/3Lf5Hm9ITHd97EpMTYaGoNhREcehi6GVbZ8w3jYdYL9bwklDp/PIGykhWvs+58bYZEZHjvQ/W5fqY0bBQpb5Ipu7kNBiNKXndsUQE0jmlpceMxJ2dLrJbGamGFbqqipxxbdGlAl3R9pLAGbRKLCN4U+KgwOmWcObLsPBHNqFCMRiUiFWHpEZ54aRI+9TiXcF1g1TpGnQNdcXa2gBCprKauROs7xsi8CYTQM6kL0DXl2LIx3qbzDuUDOpKlk2FSVyxdoqfBO9i2hoIE3rNoO5TzbIxKoBCYM0IyhXjL/pTjj5JxfwX4y8AbSqnv5cf+b0jA/lWl1F8BPgT+t3Kh0ptKqV8F3kIYKf/uz2KUABhruf/GG2zfeIndScHZ0TGXX32dxbNHzE9bXrz9MgcffsDq8BBdjTlenlBPN6jrivHmlvBgg2Jre8rTB3dQbce0rFjsPxAjz+TYu3iBSAdqynzVMtvYYHX4lKLQTHZ2OXv6FG00ey+9Qr88IyUt8p0Jzg4fk1oHSotLdNNJAywnIbosKLe2Kcf7oJrBFoHBbT13IuUWVqCSytOI6bnsRWAEY8+FepQWGqE0cxST2ZRYJopJLU4arsU1K9zZnOakoVu0meIlUSHERFitiItG4AECzjspa41BWyPTcInsUNKTlEYZ0Snuvefdr/+Qr/zlf5FP/fwB3/vduzgvwlK+dfTO0XWO6bRiOq3FqCF/bq0Uo3GFUYrCGJbLnq53DHKfPtMGBzW8MGSBAyaaIKlEJBEiOOdRblhGKX8ewfp9SrSu4+mqQ+8fo38oXPXCIJ6gpaUoC+pxxXg2oqgsk9GU8c6YmBQxSuWEsmtHGNd52uWSbtmKiUfT0rU9TdOxanqWbU/bR0JSeHVOA5U1ca5x/WNH5kLHDJEo9fxGKZN8I2XYqDWvfWKPT3zmpkzhdq3wqjUE5zneP+Xw8SkmRcaTgi/+n/4DilHNve/c5dH7d7EqMdGK0g4iZMAgqZDXEnnKVw/XK1d5EtZzWM7rdhAyCwO8leEW+Rt1rio46HAPf5viejMYNMWVRZqR+brHbPGnokJXBabr6Ton/phlTVII3NCKOuN0o6RRFU+Pz9ioS7TSLLxn1XTURUH0LdFHTKUojEYriwsBRaBUBSYFUjbeSBGaVUsbHLPK0nhYnC6pRgWx3iB4j4lS7VaVFkG1ssD1CRMSvu/QJhFCoNQDJl/TuobVfMGotpJwJeknVFXNzkQzLUticCznC3xM1FqqTqMhFYVUZ9E953L1zx5/FFbJ7/CTcWuAP/NT/uavAn/1D3vu4XB9z41PvEa3OqNtIxdvXufw7luoaoud3R0++MH3KIDQ9+hqxIXLV6g2ZtC1PN1/zMbuJXZ2Z9z7/rfZ3NhhfGHC6fGcoixJoWV7+yLJllSjEctly9bWNs3pIZPxGN93PHv8hMnuNhsXLjA/3JcRrXJKCbgQqDe2ONUfyghN7lUpY2TEvVCo0YhqZ1OygNzIGYLQ2uB3YCDkrFprlSEVwSCDCusSViYlhR5oqwJdKUxVomcl5cYYW1VgFHHpCMuO7qyhPVkSstazqS2xF46oOzrBrxaCbWqLsV529JQIvRcjVmBgSsQYCEH0R/oI0Tu++1vf4TN/4nUOHjzjww9OCNn8XFTyPMEnXB+ZTivqUSlUryi3cT2p8pAQnM0jsU3ZzUcTIGfgmX2wzuMGNCnDCdL/yj+RTSkGn5kXae3UQspyukrhg6MJkHoniGveGAe4pi4Ns1lFs/Ks2j5T1s6vT0KmPodiNWQII+VMmvw7ieFayyMRsktR1qxZUydkl085rA8bXEgKg6LWiqlV3Lq+yWufe4HZ5kg+X4gMo+IpKBbPzjjdP5FAnhKf+TO/wIWXbxNT4sMffpvY9IwUjAyURtQAz4PnAHNkfXae18N4/uzz3GfKTcYMUSSyew6Cyw8p+UBz1UOmrQA0em3ecN7Pkc+dMuYuol+h6WQjUBq/cvjlQvjSRUkEbFkxqg22LtB6zLRpGZWaVRuJpsYYD1E8Ids1LqPxIRB8oq4MLni6ZUvSAmfEqCiix4VE0/b0LlEYqbpWi4bCaAolkgSrxsugmy1IWlEVhqK2oCJ9HwjOyRyEtahCKrnoHV7BshG/0A2rqYikZs7pSvS7R7WmrGrBs1TEjMZQTnCuf15o4Z85PhaTk9V4xLPHH3Hh1ktoP+fg3j32Xvwk3eIpj956kxAirUts7O5ixmN2r17j4O4dPvxwn0988QssD5/y4KP7XL/xIk3XEcuaatKRkqYe7aynB0+OzqgqSzc/oTIW51pMXXHl1VfxMdCtWsrxJsYYvFuhbUGKkQsvvsL8/oecpGfI9FueVEySdRSzCcXGFFtbCcL5ZlYqrctEGIrUQeCH/J18bbQ59+5DMmJlFaY0mFlFOa4oZxOKyZQYPcvHj3GnK/yio180qGiEJxwSyqn19GV3tsBoubm8c0SVsq2WZDtxaBoFuZGjEiii9YHeB3xI3H3zPUa7G3zuV36O+f/wdQ6ftfnKKWJIdG3Ax5amc2xujplOS9FeSAmtYTQrKCqTP1vLqpGurlbZOCJ7Kg6ZKkOh/RwdKuTm1zpYQpaUTYJV5gaXnO+4fn8qP4dUOLIhBhKrLrDqVxlnzpOBDAHnfAMdcsnEc7+z/nfepwCpEBKs0VD5/yGDHRrVokA3rAiTJDu+OC156fYmr37hFarplOXJyRpei050VtpFz+JoRddIeb21W3Prj72GX3xEtBt88MZ3ZROwUGklQXsYSx8qmjRgtio324fR9sF/Mn9qfX4tBphD5AHyKE0637DUusbM3+eNW05Kvg76/HwNo/VoTVRBkGOjRawriXqgd9Ks9G2LKQz1pKSoanxSGOfYnI3Fq1F5KiLjWqCFxgdKLxuoQ6qnutSi5GdKTKWl0e46rLGSuKTEokmUNuJCQjcJbQNtHPT0oXeB0gRqpbK0BYwKgyoKzpZubZOGKdF0FFXJYhXpujNWjePiVkU9m2CKktP5iuWqo6oMuIQpPEoXBO9xiyWqCqiizJXMTz4+FoG7bzt2L1/j+MP3GW/tsHvjJk/ef5P26SFN4xnvXWU2rmidZzaqeff3v0Ysprz0hS/y5MMfUSXY2Jxx8PADynqKBqabF2iaJbYes1jOqayhMJFCJWxd07Ud1XSDemNGs1yibcF4c4vge5rlknI8xkxmXLm0x9P7P+Jk/4goVjeSRQzCT5Mp05u3KCYzqu0pSj9BhawLoRUunGuUnOcjUSYwtdw04nQW81SksFOMFQnNFBP4hClKTGmIXUN7eoY7a+hOG1zbZ60UI+yT3AiK2SILJBsemofoIcAIp1tlTYiUZAQlJCRLSdBHRR8TLiq+/btvcuEv/Rl+/n/1c3z973yTs7nwYEOSwIeXAaPjoyWuc8y26jy1mgWNjGazmKKtJhyuaLqwFhIKKa6z7OdnBf8gjTUMWbdSa2giqSGoDoEJ1ka3Q5Nt2DwVgz3iOd0t846HbDrloDvABHK1Uual//hGEvPmnGXycqCG8+yVocMnG0ZU+PzZdIJSwazQ3Ly8wSufvMLW7pQQAsuTI5QSGYUYxCatX/W084az4wXtosVaxY1ffJ2TJrDz4Q/R3YQ73/keOnlGWlEaIGPNBiOMD53Wn08+d37bSsbR5fwP0gq5KoisnViSek7nZAjXGdJCC9wRh2vHkN5rzuWIkSoqIpQZJdRWpTR2MkY5L3TA4CSpiBFrQRcFrhfDZtCUlcX3hpiW1JOapo/0fSQ46YuMRxZjCkodSFS0fSD1nt4FCjzj0YhFLzRY30uFiTLEkDA52VJRuOIYLVrsyRD6TgShioK+aUm6xEdPbWU6cli0ofccnczpg6bznlIllNP0fU/0idZHbHRUMVKhsdGSnGdFCV6h/ApT9c+XPf/M8bEI3EZrHn/4kOufeBXfnHD/e99B9Z7OweVPfJK+b1CFZVZpPrpzh+1rL1GUhsO7bzOZbWCtwXUNo+mUja1tVGHxEaY7m/RNx2xjhmt7ZtsbRO8IrqOeTYgpyokd19iypDs5xrmOEC3jC1cox2M+fPstqtEGPmZZ1phIOmuE2ARVTbW7h61rbDXKNb7gZ1EJPJKUkQX6XPmpjCzgdaY5YKNKgopJimJcY2qLmVQU00mevvMZGI34XjwVVQ7wKePb8TnJWN/0Urpnb8vBxHUNBwz6IzmIOhR90jTeswqJLoCL0Mxbvv7bP+Bf+d//aX6hafn6r/+AxTKPiqeIcwptEyFF3FlH2we2tiKTjVrE+7WiqBRpawxKsVh2nJ46ml6kAtZEHAa1OgniA99isGED5IbKwUc+71Den7fW1tCEYBK55/Bj+bz8VYYyYg5oa10Yhsfz86d1KM7wyPAcQ1n+HCySHxLYJAfK/KqlUhQkaq25uFny2mtXuXxjD3SSOYDg0VlqNjiP7zx90+OanuOnc5ZnjWD2Fza4c3BK+8N3KMqSxRvvEZYLaqOYGUVpspmvUrkZKKFWZZqfOt9a8lYpBhrDhRhMqdVg/JEbDwNUqOUjy/MYgZmSZi1dbPQwbDac6POKRfKJKFi0Eh5/YS1906MQGS7lAuWsRNUWilpYYL1DlyV91PQhMJptyORhaDhD7AbHpWVUV4QQ6TqH85G60DCd0LQdrmkpjaIyhkUHTeNQ0WMLS7U5IXQ9pEBKIn9sDUynE05P5jQx0fVST/UhErqeworqoSgEKnofWSxlirOuNFtbm1jfMaoLmpjom46RTYxmBaTESAut8enC0XpP0JaxCRStElbVTzk+FoG773uUKTl69IDm2VNS9PTBcvnllzg73Ge8cwG/WLB0jtuf/QzPHnzE6bHn6o3r7H/0gKKusTqy98KL9O2CmCyeRFj2GAKx91SjKX3XE5Vi9+o1VqdHaAqi1tQbWzRH+9Sb27QnZ+zdepnV0WPuff8BUZUsTz/AO58Xd27QBEUgoH3AFCPJSiwYq2WUVktg0cay5nQjAT+m4aIIB3ro9g+GBPq5ktyOSmxdQuxJWX41rByhl0AdfMgZJwxc7wy0QwIfY24IKrwfgrdk+QklCn4p4qL8azysQqIPiaWTYN4jePeddx7y+79/l1/6yhdolj3f/K23BWNEglkIoILGaPC+Z9U4JqctG5s1s1kh+J/SzLbG1JOCRXOCb2XTiDnbNQrKQq+Hj3yUz3Jum5Vrlvx5JSYMEAoZyM1BNW+Ua2wVyeKHKUXZYlXezM6pbEMTGXgu+2b9WMqPZ6RhDX8MOK7gvzAYChdKbHmNUhRKsVFZrlya8vIn95jtbBB8L+Y/RXZ0j5G+c3SrhnbZ4VrH4mQlLBKrmV6/wDcPF1QfnTCabfCD77+FUWPa0zm1VkxKjV1raus1LJFys3CAMYb3qpSWMfWhCNFKlC8z2yaRWyAByayF05mb0ALHKFgnC+IqFXguyV5XnXpI0we4UGmICjdfiuuNBmMM01lJN65JpsCWJQYoS0vbe5xbocsKF2BcVxSlIVqDNobORRrvSF4YULPpGJcSURlMABVWBO9p+kDXQ9uLbk2ZILqOuq5oWzFFKLUmhkCzXGCMzq/vIARGdSUGJclTjSeEPtI1DavOC4MKGFWKiUlEbWidZ2N7SigS0yJiRyV+uWRcahbB0pIIydEuG8pakTDr9faTjo9F4C6rkhRX+FWSMdHRjLHVnDy+j1KWx/fvc/1Tr3FhZHjwzttsXXuBS7s7PHjrTWxhGU9qdq9eYjVfYIqarumwtkT1Pbao6FYNx/v3qLd2ufjCTU4OHzKe7UBZoJznZH+fyfYuy7Mj9m69xJM7b2HHG0w2Zpwdn3L11kvc/VBo6klJBz46B1Zs16qtXXTdowrhnK6zvWzmq8RxFm3EMoskQwWCM4PJQlRDZmmMpZiUmFowNFPVxCQdQT9f0c47+lUn2CzCQXW+XwcuCWIiXBO9BDijtOhOrCtYJUE/qRy0wSVFFwIrL5l2nxIeMVPwiE73b/z673Hp2i6v/vLP0axavvv19+ldbsYlJTlqFOyaqFjNHe2qY35aMJvVjMc1ttK0TWDehowHD59fYa1iNKqoKjH1XSwdq8YJnp2hCY3KiOoQoHPg/jGPvqHJKMd5Jj2kgGpNyUuDMNYfqEzPf1udN6UZMvfzaK4zHhzWrkZKjMgUmAQmJYzS1FaztVFw64Vtrr54GVNA9D5vPgkweB/pVo7Tp2ccHS7wvaNvPMTA1rhg6/omX9vveHLaU1lP9d5DbnTbXNq6THNyxFYJI5uzYp1ZPjFlOEAwdSV9sHUmDlGMr5+LFErrNeNkyAPO6Yzn2ibrUcm8K8oGHuThAUaBdSU5XBeSEuNinTfLEKVqNIrpxS3a0mKnMlcRg4OkWTatjJrbCtd1VFMZGgveUebehTKGECMYGE0nBCPYva0KiqrEKcXZsqHPFapFURQaYzXNqhMTBmMZWY0tLc5F2s5TVoWMsy89OgTMhkHbisKU6KKiaxb5XBmisUwsTApD07Qse4F84uN9LmyO0dagk6Uc1Zz1noUXlcGqLFBqhS0Upir4GRD3xyNwBx8YVTVnp3O2Ll/F9UvRRNYGnxKf+NznWDy4x5NHLTc+8/N0q2Me/ug9qskGW3u7GKvoWhHbny+WVGWJb04YjyYcPnzE4nTF7gs32NzeYPHsAFOMUfWI0JySdI2djPAxsHf7VT743jdxTWR1umC8tcnG9iYPf/QOyXuGpk5C5SAcSKpk46UvQCObiNYSvOKQSqespDZgsgx6D89NVg65kURuBhzclAWm0Pi+I/Y9xER3vKBfOYLLI/PK4EJcMzOGzUCpKJODgyO6Yq0EF4M0mmISPNuFuM6ymwidV/RJqG4hJVzU9CmBNsyXHX/zv/4q/86/8y/xmT/9izTLlje/+5EIZeUmY8y6FaRI1IpRaSmV5uxowfJkxXhScbzoCSFmSadhs0l0Do7mPWWrmFSFqLy1HheGIAF6UGhU57DEGhnPMVUy3iHzZc2AWFckz/3V+eCNHMPfDFiuGkJ4ft4/SK8duN86ZZsvJRuXTsIeKo1ic1Kwu1Vx+douWxdna1MeNeDwWtE1PYf7cw4enXB6uiIEUbyzCi7vjLl8e4+Hvube/h3+3C9+iuPTM/aPTmkWK07aQ4oYmBZVzn7ze8usHUPWds5UQGPNULYwpNXnvJ4MRxklyUfekOX51PmaTYgX4yBZvD7Z6RyiyXVNTLKRiEtTyK7vgQiMZzNSL87oChkQE2uzCu1Fl3rZS4U6b+T7qh7hgyRJdWlwwbA4OUPZgtGoInlFQNP3DmsUY6vAaJZoulYs6OR2S6gUscYQg6LtHEoHNjdHeCfVqnOJlHrKumQ8LmTS0QVUcoQ+UviIT5EmyKa0PbYY7+m8Y9FJlavziFnTtBAMMSp6ZWiDonMtbdOhQmRUFxSFonPuvA/zE46PReBGac7OVsx2L9AvzyjGI9EHqMbceuEaD3/4XbSquf76p9n/8D20MhSVZfvyFXrXYIpNXNOjyjG1aimrEZvbMx7/6H2aruPSrVuk1OHaJaqqGW1ssHj6mOneHvsP9tm5cpOwOuXO735dJpl6z8UXXqCbn/Dkg0eMN3bp61NC6gDhXKZhFNgnHFsU9UTGrRVrDHkNjUSZqFozG8iZTA7mSp0HnhQSyYhc64DhphQJvcc3Hb4X/m3QGhViHr1O6+dcU9qUoqgKvPf4lNAhnWepKcmkV4i4mAN2gC7KkENQER/BpUBIGg/0KbL0kT4pPnxyyF//m1/lr/zlP8vn//k/RtM67rx9IFlcOseYIxC8WG1dvjYjODg8XPB03rJsPUaTu/SaVScbkU/Qx0jXwrwT7FA+z3nwFLg1W1gNr5YhkOfx2zQ0HrMiHgwwxhB5B8bFeUkf17+YCEMmmTPLczqdvKeYkjjOK8mw187nGfIZVYbpxDIblYzHJRcvzdje20TZPHmbhUiDDxwdLnh4/4jDwyW9D1kLO2KVxlrYvbbDUQ9f/c67BKX5J2/cY7OyVKVmYzbj9KNTRkaL8/hac5s1g2nYoKIX9b5hxH7NmR+qCyU9p5CCdGAT0iRHD+0bee+CkOR1nP02U1gH/pjy+8gnWIFs5CEzWELGwVOkW6yopxNoPClp4qKjn/UYW2I19L2D6Fk0gdIacWbK/pFlnlJcnHVgCupCM7IGXVoWyzb3i8AWhkXnKUc10RpSiGijKKzC9Rq/dKKVo0XatV11VHWJ62Wdai0yAaNxjetcvtayZpumxeXPe2VWEGNiNfd0XgJx5yFFT1SwbAKLxlN7DVXNyaqlcwlNoFSR4CJHjTRJBwGvn3R8TAK3Yjobs5ifMduYsjpruPDCDaoi8eEPvsts9xKTrS0eP/qQC1evMD8+4cK1mzTzE+rZNocPP2Tz4lXC8oTRZEpRj3j45hu4PnDpxi1617F56RLFZIPkVyxPjqg3d3h09z71aIeP3nqDnYu7InpjRly+scezD+9DSkw2tli0K5QZJs9y5pqyelxSmNEeNk4wkwk2417rUWokWIQgN87zmdAQNOQB+VplMSDfeUzX5wUfcIsOv/IE5/9AqZ6x3ijEviFTFHPSQUc6yLRhvotDillsXtFHaT76mGhdJBrhc4cQSEnTB5F+7WPEJwgKfITvvfsBf+2/+i3+8r/6Fb70L30F+DrvvPVYKIDqfDIyJFjMHWfHHcoqHi0dh42nLC2ayPZsgusaYgr4IGL/vU8EJc09lzGM5/JeNscl867DZaMGmQNJ6DTovEggeh6a/rFT/RyfPmMfsknmDCepgfmRm5rrdyCZqIQxKbNR0pB7vtVnjWJSG3a3KjZmNfW4YOfCBqNJlSFn2ZCdDzw7WPDg/iHPThqa1pNiEv0XrVBas7O7xd52xcKU/ODb9zluHV1paOew7D0bo4LeJ2InPpviQCPnRAZ8Qjbj0JjhsyQxlTYoTJ46DC6t17cfTGrVOW490CrTkIw8534jfqnxvHrIjBWeq3LW534QrVL5PCdIPkNGMZKCIgboVy2j2OGDKPf1TWS1mFPNRhgU5WiELSrmK8fRokV5z8a0Ztl73LKjNgrXtlngCZbHpwSlCbqmHk2IfkVdVhADve0JzmONoe0dOgWcExZWUWpGkxoXE8H1+CiSFyGKTkvTBrrOM64MV3cnVKXh+Kxj6T0oQ6kUuhA9kwpH7w1NF3CNx2rRb0++BWsICDnAVBUTm3fGn3J8LAK3VrBcdWjg7NkJ119+meiWHD58xoUXX5FMdLrFS5/8BM38jL0LVyA6TLnHox/dweqCxcEDNra28M2KR+/fYzrbpHQdhVVEpwirU86ePGbj6k3MaELTw/alKxzef8DFy3s8e/yYneu3KWl58v57pAQuwPL0jM2LO0wvX+Dg/plQ9lKk73vqcYH3ATf3jK9coBxPKMYl+lQmBGPM2J2SJszzZgrpOVhkYJQlEikEggbVKVzriL0nOEdyYokUs4/jGrONA3ab/y+Pgydt5He0DIK44fGMpfsg2a1kuYmoJLP2udHmQsInhUsy/hoiGTqJa57yN3/4PiF4/tL/+pf4hX/xl1D6d3jzh49FZ0GdwxIqRh4+OaOalBx2jod9RAXH2Bgu7V3g5INHJG0orOLixW0OD45penHdccj7CNlVBwXzzjEMUaYcsHXSaOIa/1aQwYF1kZ8D+TnhMD332HNRnEGXwwyUuCEJH6gUnGf1Q7PUKIUtFLWVKbvNacHG9pjLN3YpSptZMXLt2s5z9HTOw8enHBwsaDovUJeGaDUnRNoA3sN82XIcHP27+7LJap2nW8FaacIfPjvGzFtmRmWtDAvOZRUPqUzOE4mh0auIKqEKRGhM7kSipNEZkybDfNIjkeRAr3ndAlVJVj5wuyV2yzio0uY8URlqDDUEf9bnTylhI2mtJdnwgYQWtdzg6drIyBqK7SkpOIyC2PccHM9pnSJpxaSsaLuekAx952hDT20SbePEvMPD6aKlCyd5fF1jCo1WhtFkxGq+wrlIOS7xzrNaNUxrTfJJ1DOVJUSwCorKEKLm9KwjtD0FikkJoXccLzpcitQbU5YrR9sHdJHoO3DB40OiS6ADmEVHTGCIhKCw1uKcZ7OUwbefEbc/HoE7hojrOy7cuMW1l25w8P67RAy3v/Rl2tUZdvMKk5klqpKtm3ssjw7wS8/x47uM6oJ+tWLn2sv41SGHD5+wfeUa3ek+9XiDdtVQ1wWLkwWb127SnB1RTTdx8xOe7T+imsw4erLPlZdepTt7yunxEdsXL/PRR09QsWNnb5fWORZPz+h8FPppEuaH7x1Bdcz3H7Lz2k3KzU3MqBjSCSBKIxOew5jPS8eBX5zUkIXlKxUgaWGPxOFnKaPBSTi3Q9BeGxMPz6ch5YGSdtURosYHj/M5nKnM4sAQcibtUPRBIAofhInik5YgTsKliMtfhzTACcLx/vqbH3B2Mudf/FOv8ek//jnKuuL733sgusgZO1ZJkXzi2VnPfhNZpYQPiVMSp299RIlnYjU3Lmxz81Mv8fTwW0xHsvH0XaALwmrxSJOwe44mtR6yVgPWnCGq50oZowbdjXNYZaCysf5bzul86789D9rk35eQIsyK0ipKI1K701HBZGwZ1SXjSUE5qhiNi+yzKMa1y3nH/pM5T5+ecXy2ovMRl2RQxGvoERGzkDPWwhYQI6dPlxRRcRwD3hhKI03wPogXy6gyNF1HXRjquia6DoU0i30O0jolcYZZfzCh8bkuZNf3dYQF0torUiuRXRiaw3o44QnJtAfD6nQ+eamQOQZIOYCfb57DdLyxYkKcfBDsWxeE0JJMkOiYhKK5agNGG7QKTEcFxWiDECMnJyv6LhBdQpfQR0t0gRg7iqLCoone0Tc9ptAsu0DjIpZIaS195ylLT9SGSKQYjfCpQwdHWWiK2QSj5d7sXGLZrmSSeVLgQhQZhj4yUontkaIwkdPjBV6Rm4wCj/qYMCQ6J+YlpVGMrGy+KSW2xpqm18x7cZUfVyN88DIwdL4M/5njYxG4E3D78z9HPTY8vnePnVe/wNb2iPmzQ3ZeeZ2yqkl2gm9OaI8POD18RlkV1FvXONp/hCkn7H9wF9d1TLZ2OHrwPrONDZrVGSkk2q5jdmGPsyePUdry8N7bpKgYVRZTjrjx4ivs33uTejRjevkmH/3ofQpTsHP9BseHx7gE1169xXvv7aO8lI0+R2OVIt3JIWr8Kna2RTGuQZ2sP1iSOvW8q54zcaVAc86hXgvupPx9SNB7ylEFKhI6x5ozjOgYD1ElpZTpfZIlhayn7NsekAwvRATuSQKZhJjoQ6CP0PrAKmh8kuzb5aDtY1prgQSls8u3jKBHISngE7z58Ijjv/17/OKnrvHlX7jNZGPCt3/vPU7nPUPPqkuKZ70M9kjJLtnsou2BxKmOnB0sOPruXXzQ3H7hKoVrOHz4FKMTNiTaoLI2c0YXk0z/TSojFMJhA8uYePBxzaKR5FATgqi4hbCOP8+hJefhXuvnRJZylmiNxmpNXSnGtWVUWaraYkvNZFxhKyvsA2tAgyksMcDR0xUPH55w8GzOfNUTUqJX0OXznfJA0fBeEwq0ojKKfrGSjAyYo6jKUvwN0Vhr6IJnuVxRJk9ZGZIK1KNSRrszPDbg2eQs+hw6PV9PP87I0QODUNZj5soPsXg4Z4NDvKzB/MP1hpiGE8mA5g/ZtUJBzKbbWa4guWE0SaELi0sQVp1UoMFTjEt8SigMrQskbSitpTYJdKTthFVlosafzUkqMaoED1/1wo0fVRoV3f+Xuf+Msa1L8/uw3wo7nVi56uZ73xw6TafJM0weRogUbcuUYdqGDVMQaBgG/MGWAMNBIAwYlgR9sCXQMAQLokBSJE0JM8MZcYacaU3PdJh+O735vjenylUn7rSCP6y1T1VzulsD0DL6dF+8t+qeuM/ez3rW//kHcIHlo114nuW8wZg5SkpSrUmVQPvgKjivoSmDN/ayNiHFKlV4LxgXmvVUojQsG6icASVIvaNIM4wzeOvBOHLlsVKTSc+ytUDDeNSjNZbmkgagxWOdwDn5kz+czAd9zPKYhVvn9k//MiLVyCTj6p1PI9Oc9vyA5fSEvChweEYbQ06fP+e7X/8+aZLTSx2bm9voFJ58+CHr21sMtndZnBxRtw1Kw+JwHycU9fQFshZUDq68/CZZYnn2/ndYv36HWVny8bffZWtrm5tvvsXy5BlaOrZvvsTB3bsYJKm0OOOxxuCzFOlq2vMDvMxRvRHpoBcwRQdCqtVUX8bgVBfx1YATWi6jryEiK9CijLdoobBt4MN6FzomD4FCZeN03wVIoSvWdlW4485ARpjEXciuwdMSZk+NdbGbDdaU4TwLnZGN3bZ1F6yL4F+1Ki8goPLwSdlivv+YZ0+O+ekv3eHLv/QG3/36JxwelXFB8SReMhSQeE9NGHgGGm/ovqaLkumiRAlYvjhjlEiWLaSEIaaWnTw9HDVJtIRVmvVxRhID2Z0Tq/doXVggnQ8+yDgwxtO0lsY62kiXvHCvI3bTilSBUhKpINGCLEvJUkWSapJMoRNNooNdrFIKKX30nADvJbNpw4MHxzzfn7BoHTUO6yUNRKgnio3isZVCBqGJCwEIujW01sWuGSokG70cVAzEkJLjuUHqHsJPSXRC2wbdQrdYxeUcCEwG2a2khHNYy9A+iBU2wiq7UfhOURmGrXK1GbloRoALDNxf7GI6Rs4KjFptcy4V9SiVDzOj7loIdMK6MYiqIc80WZbg0wzvJUen5+Q6DCDTIgcCA2N+uqRtW4ZFSus959OSQT/nbFaBcPR6BXkCeE2WhN2cFwKdSqRNkcahRPDLrhqDVJK2VdRlyCZViSYVnkXT0JaGzb5md7OHxVOVNTpLWOsVmNYiXUtT1QgTzLhM6xkUEYJsQqze2lpBbSzni5ZEK/qDoObWeUFeZFjX/Nia+RNRuJuypNi8xdYrL3P+4jGkfbZe+QwvPnoHaR1pmuBFjhOOejbh+aMnPLz/mGXZYMnY297gZP8pom25evsGxXDA4dOnZFkPkab0R0PmZ2ekCtKdPeR8yc2bt1ievuB0MkHnY97//kecnM156fY1RJbz3je+yu6VXdau3OCjP/wmy0mF8YK+EIDE6UB3ktLQTJ9jRUEy3iHfGKN0wApdnMBL2eXcxDFXRz9bURpEoH7J6FUS8WhrYlK6Vngf/UVsSP4QAoxxqyIdlfEYG61ao+LNSxfwwjhc0lKGx7i4Tfehi7Ud/S8aKxm6wh2ciK2PNq6X8GAZeYaOQIW633rc+ZLF73zAq3d2uf36NYR9hpnVSC8YS0uLpPGCiXFMnaLx0B+leJGyP5kGzrgXvDiZ8JzA1EhlcFAbSIHEYVxQACYBiGFSNgipGOah85ZAkkIaHRylDFmE2ju01KsFzLoA2QT73kgPk6CUQEmN0hKtgu+LjhYESapRSq/Svj0S7wRNY3HeUVaGxbLh5GzB6bRiVrVUztMKEYU6UT3YQTsEkYuQ4bWsECjr0M5TuxB9pRCUHnym2NoZI0xLP8/wQjKpK84nS3YgnnOBv29jo0A447Deo3xcWCJFlQjJCN/BHUE96S531qITFckVnCQEq3lNV4O73YmP7ArXEeM7IZCLYb5OrnYwMgniGxEZWt1GwLUWlEM0JWlWIGVCbSzLRY2SGukdbbVEWI3OC8rGs2ihrS8CgRdeM500tI0nU55ENeRaI6VHSXDWU9WOVBqUUrhEIQU00SHTNC0qcaTSk2SaySIsJt57eolgmErKckHtNUmaokR0vGyDc6htW4SHqmnJ0wS0wLSO2gqG/RxjHFWrqC30xwVCaXxZkXqHMjUyTX7yWSU6zSgXZ3zzn/wa23deZ/tKj8ff+A0OHj1iuPcS/aTiydN92jaok7I85+xsQT1vMPOKE93ymZ96m9P9Q5xxTI6PyHs9SFPGa2MWx0cUw3EYBuqErVu3OHv6EIlg8/YrHD89YHuUc+v6DkdHJ9hqyp1XX+bs+JSDJx+Q93ucT2u8JKa8G1SSk2/1sGcTzNE53knkYIdiaxOkjdPzC7Oiy3tM4TvqVRxYxULS5fY5QghpUF7KCx5y7CadtXjvQgiCi57PPjBXwuAy8HJtNF3qOvFOYo+ILnqETriDSISQARYhFAEbMe0uOsp1WDDhIjU+DrgIF+7Me56YUMrrT/bZf5pwZ6hJ02CWZH3U9yrJ6bJhZjy7r7/CK597k3/ya7/DOSHKSScKYz1LE0x/Ggel8LSpIJWKxloSLyiER3qBNXA4LTmegZYCLYJ6U3e+MhdQdsS7A29XiiD4SVOFUgItBYlWiBiY6+LuQzhP0xgQHqUsjiYsmt6HQr1oqI0NQ0bnGfYyjhclM+No4hZJRuFQlxzm/IVIKtWKLNXoLGUyW6DwVC4s/FoE4682TXjl5i57G33GgwHDXopBMrct5ckxUkrKKmzVnTQkQmG9jaKriFl7kFElKjoieddIXB44Ah0Xu/v3zrh7JazphGadv5T1McIvenYjLpprIVbsFPAoFVN5Uo1ddsIxQMug8MSipKOXBnivrFqM9yRak6nQrDTG0tYe1SxwMqHfy2mEYFHXlI3BIEikJs3CccBDogARHANdN2i3IKSLgjqBlxrrPRaJFlD0EqrKUzUN07KllyTsDRXCeybzoJA21mKkIMszpFI467A2NGFpqnC2pTU6CG+ynHlrgr2yEoy31lE62ChnRQ8IA9m8yDE/6SZTzhrK02Nmz58yO5/y4KMCJx3VomRgn5ALx6PHL5guKkb9AefHT3GLhkJ7br71MjdfusrRyTlNGy6E3voGyWCNBMvJg/skRYGThvHWBkWvx/Gje6BSrBDs33tIf9SnGK4zOThiMBhy4+03ePrxuywnC4TSnJ1N6eWaqQzYrheCZllSLxXCOCZ3v4eZl6T5gHxrm6xIsLVZKZ+CiGZFgwj/uZCtrW4+pqQI0U3uk+hQaMiHeZhuL8LFiQ3YpfXBZNTFwaeJzy8D6oKzQU2mpaCuDcTi3UQIxFhoCMpJ4yPlL/K8m0ubgm7L2/l0dABP90fFi3TiPM9j9tYNa+g3LhgeqTA0tVictWylkjUFHB1w97dPSCcz9pRgKYO73tRZEhF8up0PNWZWe6QK0IHwnrGWJAhkJJxI4dHOo4RFCRDCxvcnEL5jfIc/EhEHlGFHJGOhV5IVX1sAjsDksTGOrqMNOndhSWt9kOlrrSnGfZJBn2ZZQYR3VqxtIZAiJHpvbwzxzoVEpSQhyzNOT+ekxoQOPVYzIUAN+1zdGbM56qGlwjpD3UBRFHzhzTs8+DgjOTzCVws8Id9QAFpEDjvRjkAQP5HAWBtwZwARRpYrg6hu3tIteDIcFO9CW7yaBPiuWw/nw4oG2hXsVScfO3UZqZveg5KYqg6LZ6LjLlFgrcU6T94rcNYzndRUFnqJZrw5pGk9rXF4pTG2ZVm1aBlYL7UHdIIiQJPWWJxxjDJNqqFsLSDRIkB0uVZ4Z0kTRYPDuRAXpKXE+sjRtoKFsahMs1lk+KrFGcfcyeirHiBMgSLFkPVSytKCCp299pbKADZQBrUT1EahckE+GuCsoKlqnGnJtAwDW5FycDRbkQ5+2O0nonALIRFpxltf/hzP7j3g4f4xvY0xzksmxyfcP5kymy3oa8HhizO0twwGBa+/9QpJnjAvDUma0y8GbF3d4+z4nPMXj7FVyWBtDdNaNre2MNWcF08fgO6znMxQwrF99QqLsqScTOmP1ik2N/n+1/6AougzX7ZUdcPOlT2skhw8OaNtHYkMFDTbOFKpENVzjt5/zI1PrVPsXSMbFSzO53QTdt8Jby5VO+8uOpqAJ3qIBbvrULwPXN98kJH0E9JCYrzDtdDUZlW0uVTcoOsUWdnLKinIEk1ZBWpUKPghf68hQCy+g0lWHXjnIicvlbt4u6jmEHFnRbhAnYCp9dxWgls9zTiLWOlqkBreX+YITIqqRHrP7Z5kaT0zJzhvAo1tDpQi2nMG4DjQFOMAbGkdhYgGR16ivEdLiUYEA3wRipfyHo+9JHQKx2bV6lkffDhE7EC7zxq74ovPHYq97T5HfHivSMgyjfOCybLmeF7iEORpghQepTR5ohn0EjY2etx+aY+dK5vsXL/C8+dnfPOr32F+XmLmy2iaFT2/pUAUGb5XUFnPvKwDdc4k+ADYkqY5t+/s4hNo7k7JE4WPQ9xgiuaCtJwOponnVliyYOU0EwZ23SGRMhRRGTt2YseOZxVgHWrzRRFfzXMuDT0D9B0piBaEDgKlIP5RYc6jVDCckh6Zptg2pFMta09ja4wTJLnEGhPodYSQBKsUIkkxtmVRtiwmFf1eilbB/72JkGKRSlrjqCqDlgKRSXSMspMSyip4u7fWkiUSF3ceZWloon9QkaT0hKFNBbUNn9VKQS4kOE/RgyRNqG3QTfh4XqZaU9YtSZHiVYIRBounnyeMBznzeROahmg3W1cG40JUWwd1/bDbT0Th9t6zsXeF+WzCK5//AtnD+3xy7xmT6QInEibTBcvjGeujlEJ5NnY3efn1axzsH9HbeJ22LOkNtujv7PDow/eoFkvKWcXG1gZpr8/22honTx8inEMkA6pySZErBms7LGZT2qZmvLNNuazYf/SA3d2rPPnkHm3dsrm9xaLyfPLJAxbLlg0Lynna1oYuJtWkbcP5u9/h5hf+LHrjKtl6H/l0ibAueIK0LpoSRSxPdJor6ApSx78Ov+nkwoq8lwfPYi+CUtIEbqoxDmtC+IKxHc4t438v3PCCjLxFaRG3zJLWOwxiVdytu2A1xPldoP7R+X103XZ8v52MHo90rDINVYQXehLe7im2ssCMuDDB8ivEyDgfhnAyDEl7SAYeRq1nLARnrefECKbOM0fQiDDKU8KTOIFKA8+3cjGMWHhaBNI5UiGDsZPzGBHsRyXBcbETklxcEhEOgNUW/2KJihmD8W6XU9g7FWq/kIxHOf1eiveOop9RNp7T0xm9ImFrY8Bw2I/ziOA9fe/xMfN5SbF3i7NZxf/0f/9/5u/8rf8Dhy8EToQFFCEoBgU2TTkrG46WFbV1ZHmKtA7dWvyypG1bhFBkWyOS802q4xMSEQqS9QEjt7H79TGotku7CS5+rHBx/MXs0XbKRkHoKDvxme8663gcI27esUU6E7bVuhgPpxBhyCu1WAVfOBdFO0oi0gSinWvHaMqKBOmhEJK2MbRVg3DQ1g3oJHhWmzaGJAjW+jkCh3QhME5rSWM8y0Ud8lAleOswJorQvCfTwR+mqhzDfojgsyZAY7Mm6DXGeYo0LT6JYdc4lNYY4zGNYdSTGOtoZiXCeQb9AuegrCyJFhRFgveCqqqRScL29g6ibagWS0QLo0yATqkrx2I2RyaaQSYjpfKH334iCjeAzwdcvXaHtpwwmy2pZhW+dhxPJ5TTJZtpQjIouH11jUGRMD8/J8sy5sfPGd94lbKqOP34PtdffYsX9+4yOV8w2tplMJA8eO97DEcDWiuQ0jBaX0NIxXQ2I0tTBhtbHL14hnSO4WDI0w8+pN8vYDTm4OiMk6Mp+IRKaKZtRS+RCOdYTpckwxRfN0y/87vU/9qvoAdb9Hc2Ef4Y6IyMorQ4Qi3OeojdxopT0HG6ASJuLbxBlIZiqFmezpFS0tYt1rY0JvK3nb+g6XFReLtC2cE1TRP4gtbZgJl6T21jF+Y8zslVN7kKWIhb3y7eTIqLUtaVtlAUI++YIAP+QiZ5bZiQ6y4ai9X7WyXby8sJKIGeaLwgTQSJkGTS05OeUwMnVjDznoqwG4iup2Go6sLPjrj40C1QjkRIdNw5CBGKrvSXKGndVp5OGMVqQhb3QfGHcN/OTSNaaTEoFDubPfa2huxeHbN1ZYsv/Ok/RWsFT+/fZ34+RwjNcjHn6cPHq/nMoqw5nNY8/s9/k89/8U1e+RN/lV95ep8X/5d/n+pszqCX0S9yWiFYtJ7KtJTGsTycsqgNL++uI6WmbRuMNgipOS0rdtfXMIenEfaJ6tfY3dpou6CUDAk2sQAF64BQbleF1nmUUmG3EQu9iDCRjIPOzoBKRj8eCEwp79pwLoeQTboSL1a7twhRxS5BaoE3Lc47lNSQaZK0xxyFa0Lh03mKMQnTaQXeYFEs5zXWOPJEY60AmaK0IJOK2bRC4ciLjNoGv23hAuasVHDYbE1DmmWcLVskhvEop+glWCdZTpfUTlK3hpFW9KWjci6IvHSQvudpQp6Dqeuw2BpHXwl0qnBNTebBa7C+RQvNorHoRDDspwjXgLMkUgYcXwq8VAhKEi3IM8Gol6DUv0ThFkLcAP4TYC9ee3/be/8fCCH+j8D/AjiKd/23vfe/Hh/zbwH/83ht/a+897/5Y19EKiaHhzz9+D7vfft7lMZj6xJRO7alYePqIORBXtkgSSVCJTS1ZevqVcqqYnG6T29zl7W1gu/97j8DL7j+yquoxPH8/hM29q5TL2coYUl6fYxUtIsZSheQpJydnDAYDJmdnnB4/2PGW5tkozEffvAQZx3bu5s8OZrxfFIyVp7dJDrtGRcYHtIw/+ib1PuHpONthjdvIcS7iE67F/eVLtJMPPLS8CfcXDSACoEGAYfEWRbzOWUpyDJFmhUx4DcWPN+ZM4WLKUAdHeUwbHF1omiMozKBJ2sIVqmNg9q7yCKJ/GjvIwTQFcFL1kviog/tLsXuwpSxACbADS344kiznqnA0bWeji7W+ZF3viOyG1gJgRUBl1R4pArdsdaQiLCdN1aAkIzHOQezksoE4ZAAtOsGkOH9WwQVQaqfiSjA4QIm6cDtWH7CwG4FxkZMnAtky/sYQ8aFkCRVgu21lEGhmM4qOJDc/szb3Pjcn0Tvvc1rOlvBDqZc8uJ7v8Pdb/w27333PU6OnnP4/IR2Mue127s083Nu/dSf5MYb/yU33QKf5nz9/eeczUu0lFwb9pg1Leel4fnZgtmyZmtYcHVjRKYErS05m85Z9DJuDHq08wW+sWSyE2510EYIx1WJRgpiElL0WInfRceBdy7gwFJ2MxOFtSH8QikZY/w6SqqPG0cbU9FFhE6Cp4+HlQQf7/E2LpbSoYoEb0PH773F1A1l3udkumS8phB5hvWCZd3S66W0rcQsG0zZxExNjbWSIpPkwzWW52fIaKBWtz6I2qyL2LqkaiFJoJclGGcQePqFYjBIab1kuqg4bzxV1bKeeDZ7CdZ7ahOusVQKUhSpdCgtaXWONYY8VSRZRtUYXF2hUh0cOZEgPMWgj2tbymWNyiBFkroQSSeVJNGSWgh6vZQ0URBtcX/U7Y/TcRvgf+O9f0cIMQS+JYT4p/Hf/n3v/f/t8p2FEG8Bfw14m5Dy/ltCiNd+XGCwbRu+/3u/z/npAqUU1npEWfHSzU2Gg5QsT9E6QfTWyFI4OzrFqQTrQsfqygXTh3d5OJmze+MaL7/1OvvPnvDk/gt2dnc4ef4clRes7+1h2xpMi8yGIBRtVTEcr3N2+ILZ6ZTdl+5QNZa7Hz2inyf01sfce3zA8dk5hQz849a7gLF5G/Lnehl2fsz07kcMf/Z1BrdeQmUhAsl07BIRnPzcasjFavjQufb52OUGznGYJjkXmBWmNSzmdehcbaB9hYzFCyrfhfC9Y5L4yAMPnbcPcBy1C7CCtUGNaOMJYld4ZLhYBWEAh4/PG0HirqiFYhB+UsBAwM8NFDc2C/qFolqYUCNVWISQ3VBTIKNpRWfeIzuqX3jmuDAFCGigYCkUv/zLb9Ebav7+r38v5GUKF/xJujnaSsgQlpY2/jfzXFJPxncfd0LdTqDDCLpr5bJb6cVuKDAmpIQslSwqi0w9B6czivMK+XvfYbT1D7nz2eesXX+TdLzBcl7y4de+zTd/8+/z4O57nEynHO6fY6cl/VQwOZ/yz/7T/5APv/ceSENR9Ll5axcvU373O3c5nJZUxjLINdu9lEndUjUth6eW+bQk1YpAHbWcnc24+fZLuLv3sW0TbAwcQCjCimAlbJxD6+D3LIn4VreYhms4Uv5ir+zCOQes/NwRnXGavSjIHaYdD3En85ehukcDtSAekyLyxRsLRUyh9+F1jg5fkG1uULaOclKhZEk+KPAC8uEA3AQtUk6mDb6uSVKNqyryGwXpeIRuPO2yCiHDxuCFoDYGpYiGTwLvAizTy4Ola9C7BathaS1XB5JMSxpnA23WCRIF/UzQ1qFhq+qGNEsDfCah8cFnJ0kTGufROlwXTiY4a0i1CrBm2UY1qaGxLbnMcN6TJglpvP5Fqi+3TX/k9scJC34BvIh/nwkhPgCu/ZiH/GXg73rva+CBEOIT4MvAH/yoBzRlxdXdLW5d36GcnNM2jq2d6yAsvdEarTVkxZD58TGzyRJjYOfGbU6fPcYZz3BzzGRyzvWX77B78zrf/+Y36A3HbK6Pef7JPTau3mC0tcn04AVCeLL+kMVkSlFkgOX5/XvkqeLWG69y+OIFZwenXL+2R+ktz56fUJWGvfGIcxa0y5LGSXIlSJOEujTITKKE5cUffpWrX3qddOcm2WaP6kmDVF1XEsQi4eYicyT+1H1ZUoQhlw1DSeuIPsUOQyeG6Ipa1xV3FrIXQ9AghQ9PfpErGTjLHZfY+KDGa12gPoUCFby0OxghdIyXTx8f+eQErm5cLKQP3fbnepo3Rgn9fspoe0z76BScCSIbwgWv4uIhOxrh6pmjF7m8tHgRvKzzVPGpO1dQqeS3vvGY89KsHutix9exQZy/YIvg4y5CelLvgyFVXNg6TBtYKS659F6Iuw9Wdb4r8p61NGWtn3G8qDkpZ0ipcK3l/Y9f8OJv/z2uXf9n7F27BjLl9HTK6fEhx2cTqtZz/9kxQ2B3d50br+wxFZ7f/81/jHeORGv2T2ZYPG++fJVeJvnq9x/z6OiM+SK4+mXCk+vARcc6amdBhM/WOMFX7+3zV376Zzn5+h+At7hu3yTUKiyim2Wobl4eh+QyLsyqW6BlVFTGEGnolraw8/CdXNdfiHGkjB49hAquwskSnk8EfFtJucLNhfRgwbUtMlE4A0WacdZ6vDMAjPoJtmowWUFfGfrra0xmFX42wbQNqYJZZWH/lPHuDro/ZHG+QEtItMJ5yJMEa4P2QKrQ1CgETeOQ0tLahtp6MhxbQ4UUIUBYaIUh0ka1BxfmDJXpTLUciRb0BgMOpi3ltCJPBGt9TWsdtQ3HJE/TFYQV7GINaU9HdpiirBqwTbCXlTCr2n/pjnt1E0LcBn4K+Drw88D/UgjxPwb+kNCVnxGK+tcuPewpP77Qk+YZWSKolwvWNwYIJLro0+sXGOdQSU41naKlpMlHbK1vcPbsEYNBj7JqqJqWa69/ClsvePrhu7zyqc9w/vwpTz55wu7tO6SZ5NmH71H0+xSjEWeHB4w2t2mqhvnJKds7m8g05cnDkHRz87WXOTxbsP/kgEJK+utFcA/zBc/KllnbMgjfQnAG6+WIxLL8+HvUkznp1i2GN/aYPX0UDOoThTdu5S0iOqyPaBEbO1eVSsY760xPznF4nLGRJhUvih9gj/iL3wlWwg7vLjDuMJAK97Rx4m98ZPF4GzvsUHy7FHPilvqSC0i49EXXhf+gWZOMxftOIvjcWLFWKNp5zdHiENsGSbNSgWbl48mulUDKcCI767GNw9toGxe3lk4KhA2ClP7OmBNn+ebvfMDprEIi0B2yERtG6bsUmkt4OqGjDLuei06cWLrDOnfpQXTgT2TBXJpTOgLEIxFsjVLu3Njg8KN9Wu/p63C0mtZyfr6gLhseP9inAarWcO36NsZL7j46YHdvjTdf3qMxDWdVRZYo1teH9AZjnj56RKYTTs5mLJYPyfOCO1sjfGuYzEvKqPb0zq7k+WFX5CLVULE/nfMbH97lL/7sLzL55h/g6grfFdNYjF18jI6QXSeDF3GlsnExJp5HEsIAke6QXAi8ZFSKBsO0wI6S3YSTrmB3C0SApUCgtI+5q5FJFQnuzgumdYtJooeKlNStBeNIhaFJMubTCikFvVzRKk1dWpSE6emMcrZACsHmzpBl2dKWNYkKDUGWJ7RNQ107tIQ0U8GCtXZUbUWeCjYLzXCQcjgpQWm0khRYrAjq2bDzBCcV2gWetioKFk1ImDeZZpApUA5Th+68X3i0CpYJ4GJXDYhQC6xp6RUaRA9rPSenE3pZ0rVTP/T2xy7cQogB8A+B/7X3fiqE+A+Bfyee2v8O8O8C/zMumqjLtz/yDoQQfwP4GwC7oxA9tnX7KsvFkt5onbJc0BgTQjl9WN2rusUYOC+f8vIXv8jB/XvkgzWGvYLTZ4/pb25y7dZtnn/vOyyXNbs3rlCdvGBSLtm+cROZacrZgq0bt2jmM6ZHL9i9epW6qjl+/pjN7U3SwZDDF0ccPnzCMEvI+hn9QUZTG957/pAPZg39BLZTEeStIkyEpTfU+w+YPXrC9udeYfzGW7z4xiOEUOgsQaUelh5jgrrRE7tiEZw7skKjEoUzFikUnpg9KG3YZkZMm1Xp6bb98XhycVLhXQw01lhjLz1GRGtWT56lLBbNqrMNbIYYahA7zHDFiYvXW7XHgg4kEUIwlvC5oebKIEXELMHu8b3NAZsv75H0M2zdYpvgHy6koJovMNOK6f40CogiV0NIVOZwVuKGGc8rx7efHDIp21VIs/Jixc6xQqDiGdYN4lddc7xI2lhyQsGP/GYh/sjJKi4fX1h1qd2yJaLuu7WWTAvqJswW0kSSF5q18YjjyZw0VQjhef3WFR6+WPD4+ZSf/elPk+SOxXKG8KFItW1Qbb7xU7/Mi+d/F3BIpTidVpjDKXVrQkal1mGe0rRU1tB2cwOIw0YiU0nwydN9/sGy5X/487/C0T//NaS3KO+jT0z4zNaC1yoUD+/D4NBFZ0AZOe8uQh0xU1KsNAIiZkvGyDIZOnIpAhMiDLy72Y5HyFCwu3mB92H46USgb3arhLeW0kElBHmWhnxH29IoybCX4hFMzmeMxwVVWdPvaapGg61wNuDrxkGiBOWyYrC1RTWZ4+oyHCvXMuhlWNfibMuydHjvsB60h808oZ9LzhYlSoGWCcumBSDVgkQGzraUgr4USB8SqpoWFBZb16RaYHH4NpAGepkGa8mVx7sGrxQOQyolbeMxyzm9QpPqlMPzivPplCLNGaYXwrEfdvtjFW4hREIo2n/He/+PwjXhDy79+/8T+NX441PgxqWHXwee/4vP6b3/28DfBnjz+qa//vbrHO2fsHn7NtOzCflwxGKyIOmNQEh0As2LAza318jzlLvvvMPuzTso2XJ+cszG3hVcs+DZd7+NSHL6m9vYtiXt9bjy2sss5wuE0Kzv7XH85BGJEGxf2eP8bAIS9m7dIu2P+eS9D5B1yY2rayAlSVZgleYPP3rE/dOGRes415LGQa4EWiuauqGXJei24vzD99h46yU2X/80We83aSqPKjRZJhHCIRuNW7a0NrJCJGitGGwMaNoW6y1OQtNYTJRRR5eRf2Hr1BVYVh1iWAxiQY+LHfFxAfMOF1XrHakErSVV61ZpMZ3fRNddR1QXJ36waPsOIwYyAW8VitvjhN1bW0z2zykXNV5Af6PPa3/pl9n89Nsk/VE4V5IUlfdD4svhE55/5b+m+q/+ENvWSBUGQEIL1jbWOHwxYd86vnc246QyqwGklLHbo4N1Lg8SV6rui98RuvI2zhoUF930xecKv+sacOIw8qKMixVUUlvHW6/dJityvvfRPtYFdkOSaKZ1jdSSnbUMnWV868N9Dk8X/Ilf+CxaNyyX9cpnJtECieT45Jzf+83/nExLvIO6tTjruL63hhCeTx6dsawMrQmK3EQoJHZlUBXwd0kYegcO/JOjY/6Tr3yFX7n9MvbRXawIi50L02eEhKptyaPoI+gGokCGC41B4JVH2IRQ1CMxHyHi8DKa/gcrARmGnTI0AiKqNL1zP5ACZawlzZLQZdsgO7dAaUDmAxa1IZWK2jnSuqVKFNWiYTDMmE/mDPo5TWnIJCTrA+bTJfWyDipdIWiqFo5PSNKMdNCnqWrKylCaNu44BLOqxTSWG5spoyLBOM/xpKFqDWmqKDGYtiVLNYpoLOch84E8MF+22LKhN+hB9BKqyhrdD+HgeRqOay9LAyVXyOhBLmgImGGSpiRZTmMcMlVsbm6y1Vd4Z36gMfsXb38cVokA/l/AB977f+/S769E/BvgXwXejX//L4H/TAjx7xGGk68C3/hxr5H0elTJCJM0TBcGqRNm0znF2oi2aUnTnMXJIVdeeonl5ITZZMbttz7F6ekJ1WzJtTsvc/rwE9qmojce03goFxM2dq/QHw85evaUzb3ryEQzP3rO+vY2Ksk4ePQYhGR9d4+qFTx99136GIY76ww3xiAEBwenfPu9Z5yeV4xSxUhlLNqWhbWMEhWSaRoPPY1wDYff+wY3/8yfpLj+GoMrI04+mSCQZGu9AAGc1chGhqmxgDTXZIOEJE/w2mEaS7WogllQ9DsJPq8XBaoL1u0k646LItXxIXyETzp2iOvYKNFH4nzRYkW3j+3k7xHrpAuRurhdnEQ+dnehlF1LBG+PEoZaMT8tqWuDkEEAMbq2x+jlV8k2riJ7fWQyQPbWEcMbIFrU8GM2T494/LV3mU+C0lAqgfGCg9OKJ7Xj+9OGo9pdWrQEHSlReqJFt1iBO13x7rrRrgiFDjz4kwgZbE5jH3mBtXvowCBBBzN1O4/w6s7DtGr59vfv8lNvX6cpS05nDa2QbKz1UUoyHKQ0Tcu0cczqlk+/dQ0hKhrrqZsWCYyHPQbDIafHRxS9jFSnLMsKZFjgq6ZlOq/pD3oopYMNAkEx2ksCWm9c8I+xPuyYGueCzQGQKsH+9Jxff1DxF69fI3vxIuLdF3xH58NAWsYfugVOiguL4Y75FNCMcByE63jsYb4QbAXERbZlh413FgvexAF9sBJQMbjYuzBTCYEf4bjPXEhkWtaWGS39LHz25ayi1y9oWkOiFJPpkiwNQcLWCrJE0N8ZMZ+VAa7RmuWyoo8nSXOSQYERJWeTigRCZJgTjFPBegZl2/DsrEEqjQCUd6AUUissgsmyZZgr+mnwyVmUQXo/GGTM5xW9RJFgGaz1wg7Wmvi+ggunkpq6aaE1eDyJdjgvUDph0bbUSQIqYehLVKo5nrgfjl3E2x+n4/554K8D3xdCfCf+7t8G/nUhxOfi6f4Q+DfCF+zfE0L8feB9AiPlb/44RgnAcjbld37rq9y+c4dekVM3ntH1W4yvXIVmzumzF+zduc2L+w/oDQeMNoc8+fB9euNt1ra2+OBb7zAa9ti9fg0jEsR0RjZ0WFNyur9ga/cq5WKJLWf0RyPmy4rl/IjB+hr5aIPT42PKsyPWM0mW9yjG63gpmSwrHu+fop1jO1dsFwPefXrO/UXLbZWyK8LF1FQ1jVMo5WmePGT69DFbr15j7dU7nHzybZplTU/0ydd62NbRxi7XIYJIYGEo+lDNa5ZnJXUdOquOP90ZO/nYZUOk7F2UmNXF1XHBf6DOdV7aBJGO9TZ0D0oR5Gwh3skBWaJoovUpPkz/bSxenU0oIgwXR1LwuYFmJ9d4JyinSzrlp5SK2f4pR+/fA5XRv3IdvbEOvV1Yv4av57jlO0xfHFLO64B1uhBaW7aWR8uG9+YtB3WgLHafRXTMBUKBCZv6bpB4UaBXAI+4tKCJi4UNxKrbXoEh4tIgNi4KXdGW/uI6mpct9/ZnbN2wvPLGDW698gr/xa/9Hifzil6WoKRjvDbmmx8dcXVnjPeWo9M5xrSkStIrMvIiB5nSK3ISpUgTgZIZVW2ZL1pmy4p5WSEPJizLZvV+NgrFn/nSW2T9Pl/91nucLCoWjY9b+kB9tN4Fgy3nOZgv+M3Hlj+7t8bo5BRpQ0GQSqGRWBvk4hKCb3p3NnUYumDVfQcUzq2OW8c+cT60EcENM6gtA488Bi8Q9ysuLLjWeJJERvl8oAd6CU4KzmrDSVOR9wuccVStxwlHnojAkHICnzjSvKBpPZODU7SE/mgAOqXIG0xrI49c0zrQtaHXU/h+Qbo0lLXlbF6ylmiGhWZhJKfzCp2omCafIFONN3U0akvC7kgKRJJgpaByhrXxACkcRV8xnS5YH/aojEGLsLAWKSvLicaGQa5UklR4vLegNF5YmiSlyHqwXGCM4fxsQZEk/3JBCt773+OH1/5f/zGP+VvA3/pveu7u1jSG3miTvRs3yHsZqmnZefVtTDvj3gfvcX44Jbdzrt26QbuYc/DkKVdfeol6OeXgkw/YvHqTq6/c4ezgCNcs6Q36VLMz0Dnr2yNODw/RUjHevcHR4QHOe4YbmwgpOXnxGF+WjHNNfzwOJjFa8uxgwuT0nI1RwcC3vGgq3j1Y8nBW0TjPYeu4ZSx9KfBtS7Xw7F7dYvL0lKNvfZfxnStsvPEWD37ru6GjdaCSFNVLSOpAVLM+OI+licaUNdW0CqnsEGiDrrtcQqZf1xkL0QlbOoMgF7vleDH5iwIfhlgXBSl03wE+CX4VAJLxIEVrRes8k9owr9oLQRDigsscn0gLwWu55NYwQcuQdo+O9D48eE99PuPur/5zDt/9hOs//yWufPHLpGR4p7CTJ8ze+xaPv/o9qmkd4FQlEGnCtKz5aN7yvHaswllWZ2C3LEV2S2SROBG6URk/rYsc447WFz9F2JrH57t8UgcDsRWS/QNdeNeDOxE61MoLzk4rPv6vvkfRyxisP+bk9IyegF944wql1fzed5+yNiwCTcx4PC1KCq5d36JpDNPJlDyrApNGS0ZrQ/CW5bKlqg1ZkoAP2La1Flt5Ui1Riebe/gmlOeFkXlFHN8gu7ccS8PvKtqRSI4Xk+bLmG3PDL41HqOkUIcKw2jiHUCKqKcMwutMcdDBSBxd1kIiQlwTtApAeLZPQFniQ6DAAtQ4p1cpFUNhQgMMOiJhtGb5GEaPyjNS4JAsJStZRJJI8CbBL3RjMokZLTz7uYeoabz29foGQHqUVddVgDAivaJsGj8AYh08dy6rm+VlLVbZ4ZxnnCZuZJC0ki8YhtQYBiVRYAYtFjVYCYz1ZasjzlKqp6eWKycSGVCZrQUlcY+hlCWezkn6i0KmgSINDaJJpqtaRagmpQieKclmS5DkB98oZpgWZ8piioF605KkO9Mt/WYz7v+2b84Jnh+d86+/8GsN+zu1XXqX/7vscPnuKmS5JjOGtz7zJ0aNHDEZ9rty5w9nxEUWieetnfpplZXj/W+8wHAxZG/c4ePKE7Rs3SKTg+Oljer0xLk958MkHKN1j98Ye1XxKfT5Dti1Fv0c+HJAVPXxW8OzhY0xV0+/njFLPIt3kwcdnLI3j5Y0hj85LHtWW15uEXgFITbo+Ittbo6gqzt5/h+b8F+ndfIlsnDI9arEtWFODk6g0IVMa01iUTgAop0tsExznVok2od1dpWV0NcjamEEjo1hnBTnHEi2Coq2N9/PxDl0DKUQcRnbDTiEoeinb45yPn50zr9vIQrnEce4wCAAv2NKCN8YJPa2iAVMs3jLgp2GXIGjnJUfvfsz5w6ec3X3ItZ/+LDpJmO8/5dkffJujD58EyqIPhlJlZXm4MDxqHPUlnFrAqgsMXXX8xCLkYHYF+oJH7GN5F91HXNEEo+vtyhjr8hWyerzwq6JlfYhws7GwWxH8UqwXLGc1p8sXwdtDCH7/kwPOKsfNK2sMckndtGSpCm6EHvau3uHw4AW1s0gNearJi5w8z+n1crycMVi2jAcF82WD9x6tBUmi8AIa77m7f0pTt4Em6qC1ljjOCNJ+ZPCp6WimAj46Ome0t84X0wTZtiubV+8vOPNSqHicfRxWegKLs0P6wwH0PjC+hRSoxMfE9gtvExG1C1IFoZoXXSZqHFx6h45GZcHsKzCPqizj/HxBkhQkEtYGGXXbUBlLmuXYOvCfqypYBwhvyEYDdJqQatBpj/MzAwqkyJDG4KVkvjRMW8HzWU3hPFsprPc1OMuyNvT6OctpjdIahw0uf9riWoPGk2rNMFUkvRzrBUpp1jJF3stoFksG/ZSmAaU02htGo4LzswVpEsKZ8T7sFKRkXltUMWTR1CRZSuYcyiwxTmBdCMNorce39uJ6+yG3n4jCvSxrvv/uxwwHBYqGJx99h2rZsJwuubnR5+a1NdqzY258+nWU9rx4/JwiT8n7A54+eEzd1Ny4cZ1iNOTRh+/R649ol3PqasH6lZtYa3j+4CFpr+DqK6+yOD1gcXzM2sYGqSZ0qKlm6WH/3kPm53OGoz7DvuLocMJX37kHTrBdKN4/WHBcGxYIToxlV6YAtNMpZwcerTWiPmV29y4bb+wyvLHN6YtHLE7nFOtFpFUJTNmgskC8L6cLqkUTvKGdizmSsWgpGcU2F5S/YDkqLgp2xL+duBhYdrCAW3WcoVvuCrJY3S/EW704L5nWDbMqcGc7BaeN9+m6bhAkwGt9xW4/QbiQFh+eUOKsQXqJ4mJ7LRDYxYIn//yrHPzh95CFpl2UVLMArRgXOrnWefaXNXcXDbP4xuNbX223Q/G4wPuFjzZQ4sJXRcKKkmYi3i19oBeuiIIOUBclewVB+e7vMnx2Hzxbgtzd4Tr6G0SVZ7emeSoHk/Ml42GPaxt9GhsuvkQLvvj5z/B8/5i7H7xHr0jIe30SDOO1AXmWMF4fUy1LkjQJeL3yZImirhsG/R5palgsa+rWUkea5biXsyhbSimpvCXENYbFHxeEWWHmKrACvndwzq0bm1y153ReicYFfnig4oXBZmdwJoVHyi4RXcfiLnDehpxP6ZHRDCUoLFdTBpSWoAK+ZCqDcOE7UDJCJypI5IPtrCPpF0zlAJE2KO/pKUeWepa1J5ESKVqyYYoQQeSSyWAMVp/PkP2CKstQmaU3HtGUJVpIzqcLzLKlto6DZcuoKFjXkPmGRd2ipAIlOTxe4CPM0xuG2LGqalDOsTVOUIkgKzSTaYmUOgR2KImtKpIk4ey8RKkQvlHkCeWypChS2jrEqFlX07QNxoeIO5l6fFqQA4kzQBBQJaliuQwzM6Uv5gs/7PYTUbilEGz2ctCaQisoDe18yeu7Q7bHGf3xkOsv3WC5mFNNz9je3cEKzdlkTpJqrt68xvHz5xw/ecrerZcpq4qi0KTbe8wmZ0yPTumvb7B+9Rr7T5/gFmdsbu8wHPfBGebLmmVpOX7xgGpZs7W1xs5Lr/DoyT4fP7zLW69cxRj4nXcesTSOnUyzaC2PG8dt4xkqS7tsaBvHYGvE/PkpJ+9/l961X2Tt1k0ef/MR5fmCtNC0dY0pg2mUWTRBINBcYNSdI5hdFe/OvQ06f++u6wm3i2EkhC5cRLFPeEy4mKSMA764ANh4/zDAFCxqQ9m0OC+o4yt3C0C3GAQWqmesJLf7ikxqTOdNETF4QRR4xBG8lJJECWQUcZSTKX4SPpfzwWvEx/dRWceLynJgPIYO+gnvpcN4V6LzWKiFCCKPxgf2moz1ovusq+Ny6XiF4VNkoQkRISnoKCWdv4ePO5Pu7yvDKS4wbxf/WA+VcxipuH1ljfPlAikVmZZcv7ZL4xxVXZMkgiLP0YlkbbzOzs4Gm9sb9PprVKXh0aN7FEVCmiY406JkjrWWtV5OIiRn8yXeO/Ik4dXb1/j44SHNbEGqJFJ5pNDUpkHgMZeooBKovOeDsmEn75HUi9XZZeOAM4kFvNvmeAKrJDBKghNlkiQYG+4gtQDRhYYYOuGWUhIvZRi4t2F+YjyrXEqlVXSS9SRFjl2ULDQ8enGKSjMyJXBKYHTCaC3FmrBrUTrjZFaC9KRpAsajnGCxrMiamlwNsUKjdfD0GQx7HFZzni8aZq0lk03YhcjObMwxXziGhaJ1gl4hGfYL5pVhNEiQXjAvF6QiZ3pWokXgWWVK0jaW2jrqukJF6LIodJDvCxDeUPQz5k2DUioM6/sDHAYjNWtJiqkqjDNkmWS0tsl8usAJA9JR9PIfXzN/7L/+/+kmvGdvoPjMlSHFsqTXVnzm2hrDIuHqSzfYvXmVo+cH2LZm4/otFkZyfHRKpiWj9THTkyOSRDMajzh4cB/akqosefzJXebnczav3WL31k1OnjwiVYrecER/1CfrFcxbxfODc/YfPSYVljffeoX+xhbf/P1vcvfb3+fN129Q5Dnf+fApeM/tURbCCyw8rywnlQkWqM5RT2t8kqAzwfH732Xy/JSNtz5FbyPHLBvqaYUpDaa21MsGaxxVVVPVNcYEcNvZSzQ/HxSSInZBqwk/dPUaIjtC0gkgunvEn2MH2ulbROQvEx56SeYOjRMYQv0K/h4Xr9cNSRWCG6lknETvirjVDR4qbpUq4+LWWHgf1Z8X1DUXO0FWnyngrNPa8bSyVNH7ooNIxOp/0BXewCgJhULH92w81NZjCAuTlQHvtSJQGp28KOQOsUr8McTHxOewcWHrlswLpD8uHv5iMUMEGGXuYClgrZ+RCceybjDWsLk95o3PfZkX+/uYtqbXG9BfW2dzd4sr16+yc/Uqt175FDdeeYv1nR16oyGjUcFo1AMc1tSsj/Ju0xOKhACL4jsfPuJ0tmA9l2wNM1IlSDRoHzwyFKFb9QTrAuMdHx+eMyv6WE9I3RGxd+t2LD+gGVgNByImLUIAAAKpQ+kIUngfmCFSILVHJQFGkYnCxCxJLS/L6F387iWmbXAY+ls3mZYtnfjKCSirFplqil6BThOs8ygtGA97WBMDG6SiX2QgJdWyQmuBUIK00JTWcd5aKgfWCaaN4Wxpwq7SOhaLllQGf5xcBu3D4dGUclbi6hrbVugkI08TsjzBOUcvkSHko245mzfU1oVB/SANrBEEdWPRaRDnEf99a3uEzARO9+hpgRIGEQfI4/UxpRO0beDUp2nCoqz/f6ec/G/rNhoW/JW/9hf4w9/6Xfq9hK21NZRreent1zHCcfBin+s3riPSlLK1LJcLNnd3w0BFawabAw4eP0B7uHLzJjWG588OWR+PWdtcZ3l+zPGjE5LeCNFWDEcjdJLz9PELJidTzHLJ3t4mW9eucnBwzMd3n7IxSHntpz/Ns6cHfHz3Kdc3+qznDR++mDPUgej/pLY8qQ27eYKxjqQ1NK0gGRXMH5/z4p3vMPzzP8/OmzeYfOVjylmFTjXeC0xrwDmKLIuzPIH3NqRmX4IZ8NHeviuw4sKdz9HFhxHoVUTFXxQ7IOXKDbC7KEOHGBeEDhv2HWc5Zk36UOjC7cKPGw+pgN0scAXM6j2JqIADfEjncc6Ddwil8IiAf6uwaAgXIQnCAAsBVW15WhmOTHz/8XN3w9YOxJbeRxFJ5KdHCX1KKLSGeCxjfxy664ui332QLjQALvxJ/sX/Eo/0ik546eZjoa8dLPEYACf4pc/eRDZT5nXOxnhIlmZ8+P57WOMY9nv0+jk3b1/nzbfeYLh1hTQfMNq5STLYwqg/pP/sOUod0s8zruyMGfYTrly7xv7+CR998gxdBde8umxIE0Vfa/JUsKwtvSRhUrZoEVJkAsXThd2OD6KYJY7HVcumVuH6EQGvNjYm06xi3AnflRQgHN4KnGRl4RC49PaC9x553ULquBMKjYdUEitsgFNiMyC7bl7Ewi8k9+7eZ45grBMMnrzIyCUkBOuHclGT6oy1PFi5Nt5R1Q4hDE3caeWpxNQ1Kk1Z1J7prGKgJNkwpRZg2mCHnGuFsS2b4xydeBpjqWqLWZb0s4SmNggpMM5RpB5agzCGfqqZL0uclzStAS9RUjPoh0WlXyS0rSPLJfNFC0jSRDJaG1AbR2kVyjRoKfAyo63mbK4PaK2iniww5ZJESKpFE+iUP+kYd5Io3v+9/5o8y3np9hDpLNdeeYPJ2QnOCW7euYmxnnKxoJ8nrN+6zXw2wRqDFIIX9+6SpIpsuMZiueB4/4DxzhWGGyMe33/IeNijGIygqejlCUIqPn7vY0xdkSrHlWub9Hev8/zojAd3H/PKq3fY2dnku9/6HpPTGZ967SonJ3P2j2ds9lJms5oza7ESHtSOVxtLIgQsaubHU7Zvj0mPJpx+57ucvvEyw1s30OldmsqRpIToMRvCWpfGY4yLQzMRrF+9j74jHaM6Fsdue36p5XYr5knXnYYuM6TNdI6DHcwtg51mh+d2dMOIAxOHRy4WpVCw/Q8UrVxCT0mMBZVKtE6wbSiZEgKFyV2kfzvr8MLFoVVcKSTBq0IIpFYYYzlpHPdLx9x2asAOy44/rxScF4yPTjDUCMi8oE8YcBLvHyiAFz7oHTeb7mj9AJTCahbQSeeFvzhWNnordRYCDkHlPWVcwKSAnfURazn86V/5DN9594BHzxYs5iWmPsJ7w3B9yHDY5xf//L/C5us/h0yHrIyuATXcQypNkmUUwx4vv/oSP/uv/HV627e5/7XfYPYP/jPq9oBp2QTzsTbQ+g6nNYNEkacJHoXxJdaE2UXYVbnVUFoKydN5wxe3RiS2DB2hCwPNi6gyudoZORc6bREhJescIgnH1YdOYTX4lfHxMRoGV7lg9RCTnbr4s04erwg7VSs0+4uWWsC8bBikCuXDsFsozdn5AmEtLm1wlSNB4K1FyuC1YyxkqaBGgJWcH86ZlQ3aOnoatseDENDcaup5S2tasiShNDDOVFDb41gb5yQ6oVEVZW0RSrNoPK005LnmaNGS64SyrhnmKY0x9BKPcDWDfi9oLwBXhx2FU4rh2oDDaYkQkr52JInHoGnLis3NIcZalErIshRqRVlWCCHoZ/LH2rr+REAlpjG8/vkvcPX6FleuXeXlz36WkxePGfQGXH/pFvOqoqpr1teGZL0+y8UEGc3YF6cnjDbXKTa3mM2WLOczdm/cIO8XfPLeh8xOZxzvn9E0hp2b1/G9AQ/u3addzFkfJdx87WV2XnuLj9+/y8fffo8333iZ8do6H33nXfqZ5O23b+GdZTpbsD4qOFzW7FctWWQ4PKkdx62ldg7TtCz2z1lMDcmowE6Oef6N75COdynWMrAuGEg1DdZ6rHFB4RWR2859roMRcKueL0ymxb9YTP0KT7gMrRC76QsrzYgLx6LUoSyClar5QsQTi1d89hXoAuF9jZUilQFaEElKOipI+ilS61XnLZVEaBU6flgFDTvvY+hDeGNeSLJRisg1T2rLvgnp83SZhERcX4KXocvQnhBUAwhkwCyBVngK6elHOXIqQQvQ0ehIEoq5JjyPwkcGBiG9R1zAMYHTzOoYuHh8Ojpg42HhPCU/6ImyXmhGuWXrpS/w83/pf4CzLbPZlKpqSKRDJp71tR69jevIYh2hE4RSgU8vJf2NPfKij0Mis4L++iZODOlt7vHal/8kv/wrf4Hx2mbwmtaSIkspq5pce4aFZrpsWDZt2P3JWBi7U2RVxD0LK5gj6A36SCFJMkWaqVUnHY6tR2t1ESrsQ/MgBFjjMDHCq8P/u5uQAjRBjNM0uMaEhKHVs4LUEqklXkm8VNRoHpwvKY0A5xj1ssDGwFFWFqECA6iuDd466qaNp7SPMxtYmsAeaRrP2fkSV7X0tGA4zqmdC6rUtkULS5GE3WFrLI0Nu8FBP0UkAQY1gEyDj0qqoJcmLOYG0JwtWpTQJFoxKDQSG6iCZYNpQ1gGaUJpgtL1aLLEtB5V12TC4NDBBdU7qtai0hzbGqQIwRE6y9FS0VrijOKH334iCrdOEx7d+4Te2hoIwcn+E26++jr9nV2miwqlEra2t0CnWOvIij6m9SRKsra9jtM96mWFMCXj0RrT4wOef++7mLNzcg2jtRG3P/9T+LxgcnqGbGvW1gp2X36dJl3n9//p7+Kblp/703+C2aLk/e98l/WtEdduXGU2K8F71jdGHJcGoTVbkaifSKgFfFQ7Zk3gZbdlzfnjU9oqDEAmH35IVQp23riDlA5TGZRXl8Q1/qJ7idCAUjJM6eOQvvPcjveIfOPLft7+AgXg4iryK8Jy7Dg7Cl285wouuNx1dmU9wiUXHXm4eIYydGetU7z8V//7vPLn/yJykJEMcnSWBmhEqCCAkBKhgqGWi9h3az1V02JckN7PFobnS8uD0rHwHicDvS8UbkEaF8iOmqjohoJxZxE/SxYfowkmR4kUIQpLghQxFktFlZ8k+lGzCoKQ/tLFEI9HGGSFbntVtF2wxW0EkXUCOcHS9ua6ZncLMtXw+qc/z8Y4xzlPljp2tgb08iyY+sfvwF9+OSEYbF1n76VPUzaWyXTC46eP+Mqv/sd84x/8R5w8v0faH1H0c25uDXnt2gbCWzIteWlvwPb6ACHCsS20YtTPiE+74noE7VSQp9ssIR8V5MOctJ/RX+vRWy/I+iGQQCqJkiHZPpghCYSLGJcQOOOiDauPXXW3jQszDeGCcZggepvEAyyIs5CoILRSsF+1nAqF0JIiVeAtQktkluG8I1cSknSVb5n2CxoEbetJdQh6FtZiGsfR8YS+luxu9NB5SosGqZjPKzQa34aCaryndo5p2ZDkOSJJaZuG83lNWVucV/SyhHGhsbZBKIv3Fq0EmXJgbRg+Z1lg5SQpjbUIpTg5m9PLUsqmxVjIMfQyCUrRLEt6ucZ2TB1nKYpgtytUBkhaG8RGWv/o8vwTAZXY1nDrlVeoZmc0y5rtK3s0JNSLOb0sY2N3l3K5ZDmZoKTi7OCQ3mgMQnJ8dIarapSCjd1dzg6PMPMFO1evkOYJjS64/rmf4uzpQ84e3MWXS7a3x6zdfIknTw+4+9493njzJcbrYz769jukWcKnP/0SdeN49ugpWkny0Yh7L55gjGWUJUzLhmGqaWvDxDjulo7XU8EokeBr/PEpmB5pT7M8n3Dw/gN279xAFh/i6kCx0lLSWrNy8vPEE1tGrwccWId3ofPsuh4bh0adDGKViBj5uh2zI9DmXFeDV34kcKmzdnHA1H0RoktYFPH/F0Y33geTnb4KW3BnFH64x/TwPlZIslEPl9XUS4mp2jjkCsZEkiiH9g7jQgK2DNpqZqXl3WnLQRusayEM4DItMAbubBQ8PitZ+GgRIEIc1UoJSiyciBU1sLMeVaLrBiP+vlogWcECvjs4q21IVJ5GXLsr2MaHuLVWhMXaE7r/HEhl8Pn4mc+/zrXdBdfe/FkGV95mON4kPZrzc59/hdffepmjoylGKF7c/Q539t5ApvkPwFAikZhkQGsd80XFojnm6PuPGH7re1y/doOHj5/x/P5DxoUmzTTOeRIlmC4c/cLRyzWNdeRpEoy3hET4MBxThBAN6wRl2zLcukm9PCIfZgjXkPXTQM+rDfVc4NrgBy+9x5kAaRADh4OaUEbRU2gQRIyoEwR4LHC7w78L1Z1whAQZQKca4xytgCeTisHaiMm0oskMctyLToaQ9zLaCjIURnpUTyFETio8ZRnPp9YiBZRtGKPkiSAvUlyS4D2cnc1wZU1PSgbDnKp2uKZh0EvJtSfTIWC+RZIkCWUFvTwJsYHOYGqHTDTOWXIpQjSeciBCStCs8Rgn0YmmLA3rw5zGe5RO6fmWQV8jdULb2hhFGDyOjDVolbGcL6jqhnK6CCHj1tIfZLTtj5ZO/kQU7iRLWU5P6Y832Ht5m0f3H5ClDUUCo/Uhzx48oC0rhNQUvZzh1i4CmB4f4o1lOOrjZMazBw/BWHrjNfrrY4Y7V0i3dvj4619j/+FTCt+wd3WLtZdf58nD58xPzvjpX/4ibbXk/kcfsbu9ztr2NrPZlMnxGZubayyqmsWkZJAoRN2yWAaxw9w4KhMSMc5ay/0a9jLJWEpM9NIe767RLo85fe8j1q5+kbWrmxzdOydVnRdGgASMvfiCvHfBPdBf2oRHr2kJ0W21C34lYt8/OE4Lu8iuoIvYekf+rLiEGUd6xAXJTay6MumC21yHd4IIjnxEfrAp+f3/4N8lSaDoJ4w3hiS9gjxNaKsWW7W42uCNwQmHEzHAOHpiWO9pDRyWhieVZeHjsJXgAVG3Au0FRhc4s0B6QSqgyDVNTDH33pNL6IvQiVsuoFTfbSVEh/F3HHDijiXsiLqCDpd8vMOBw4quYENNKNo23if3kAkR0+QFaM24MGTDNZLhLicHRwyylGvbI97+3Gd465d+hcnxhPvf/yanB0+4fnZAun1jpSz0HlzTcHq0T1UbjE8o5y1n5xMmCN6//4JyUaK8o2xaThctpY2ugd6zPuxxdF4iCFay/aKIi7BDxwAFRwhUSKXEtDXtYsnazS2U6GHLBXk/pM3oxJGuabJ+wfJkjm1bqtkSVktiWCSFF6tmQCKwxkQCvVh9Ji+6rM/4dagO0rMIIZnUjme1ZUpD07acTAPMs7O7Djr45Y7Xh5jGoMcFrbNoJJPS0djQDCzrFq00hXLkqaJ1jnJRsrGRcjJdsD3s8byqmbcW5y29LGWtlyOdIVOePIFl61g0ntQLNgroj/s01jFvBZWFbJCjbE3uLXkqSHOFsZ6TuaE2lvVBTmtDDMhpK3AqZ+AqMhVnTR50kmABrRO09Og0ZXo+D4tGWSJd0E0oCQen80uU3z96+4ko3M4a1ravovKED777HYo0Zbw+om48R4+fsJzVoBPG/YK812M+n1OXIfvRSUnZWHx9Qq5A9sZkowH93V2Qlnd/47/gxeNTlFJc/dJn6W+uce+Du5Tzmtc+8ybtYsbkxXNeee0OaZby4vEzvG3ZvrpD40JAQK+1DEc91voppXc8qBbU3tHXgoUJApKPKs/LuWGgM7wJyR3LUUE2zLAn55x8/JTN2zc4fXhCa+LI0QV2bPf1BFjiBzbQ8fcXU7QOsogNOXi3KlLd9nsFeXiAMM2X3l+U51D1EFyoBztKoEKsoJGOa9KxWJIIRxgkifJYUwbFnGlwxlMMCrIiIR3kpEWKLVvMsqapW5wxGCPCAJawI5i18LTynLoLB/Cu6BrnkF7Rk5YkSqiLRLNs7Ao2ypWn6AqxiOwRf4HNd3+6+UC3FHZzAghdXdi+iwscGzACWh+Uih0sIoDCE4KIZTxWMrybXEkWZc183ufk/a/z4IP7fO7zL7H/Yo22rRDZBuuvf57rjeGjb32NF+//Af0rx+QbV0iyHFeV7N/7Lu998yscn58zX9TMFyW5Tmlaw7KqqZxHC0GWJBiVIVJFIQ1/4vO3GW7v0raWs3sVbeuodIA1dJTatHRiHMjShHoRXAqbZcNorYdrMppZTVs2pKlAZQnlfB4SZJqQB2mFXZ0bXQ7nCq5zfpV4Qzdch7Dwd+elBJVn2LoGJK2Hh9OW56WnLpfk0a1yvmxJjqdcvbaJ9pLKWJIkobWeTCcoJUlHI1QzZToNi9Wwp/GtpXFBoLSeCk4PTlkbpeAq9oqM5bKk0IKtNQ3OkJKQpIImSTk+mpBpQaIVQijq6Yy5EcH6wRi0E4yLlMIFLxTnYNl6lo1DqeAQujXOcFnO1GYwn9FPoUFgl46i8CSZBJWynM4ZDXSwK2gdy2oR4VGJ0nB6ViGwP/kCHKUTTk9PmU0njIZjNvf2WJ4eU07n5P0eKnFoqfFecXJwRDObsnPrKmma8Ozxc4o0wVZL8rxgvLeDGg4oq4Yn776DrEruvLTHzS/9LIu65On9e4w313jp1R2OnzxC2JLbr93BWZidnbC1PcZngb6TYlCyYHZyjrMGpxWPZwuGSiGc4NwYWg8qkZxax71Ksp16RioMIM+enjEYaVQqmdx7SH/9NfqbfaYHS4RwMXMxFGYX9qCXhoE/CFNcjBO7i6ADoC97Sgs6r+zOPnNFp4tdZyf8C7186HJFLH6d9mI1/rzUjQLRDwO8VAzWCxbTBU1rSRxYV9LULcWwYOvVN7j5mTc4/fC7lKcnqOmC5aQMHsUimEa1Dg5rx3PjWMb3LjpPQs/Kg+TgfInAszfKmFYtTRsK6ZKQalN5QRq7Oh0PQagrnou5QHzOjjq5Wqw6y9tQmFsRhqMGT+MCtdCJsP3OgFSImA5zcZS6b2Q4zJFKsn84552v/BZpkfCFX/5ziPwBk/MzXFOi2iXjjU2Uhrvv/yHbZ8fIJKNuWsplycHTxxztP2O5bFhWLa0XaBw4SyoFjRDkiWQ46DGrLEpJ3n5ph7/wb/5NFkdL7t19zjA75rCtmS2ruJuQWMIx73ZavcGQYT6gPD1gWOVMDxfUkwVKQp4psqKHQGFri6kNrm4hmp7J1S7lAjYREcbrFnjZbXOIcwUClJJt9KOeIFDtSp9w93zGUeMZJIJ5YymUoraOyliePzvGCc+VK9sMBmG35b2ncZIsz0jzjGJRMRgWOA+lkMwWC66tD1i2NQqFcAakosg1/TRHK4lvLIOis1VNWNaGtVSRa8vSSs4nLUUekuaLVGOlYuwbskTQtAHGOF+2HEwrZJ4xHBRs5OGYnMwsqjljracCV956Ei2xraFuLZluKQpNVTksFUJAokOGZ4NiMi/pFxqRZMHo7UfcfiIKt7WW87MzvE7ob2wzjaZQMgsx94NBQWs8s8kpyjVce/VV6nrJvQ/vkRc5wrYU/QGj3T2sTjl8+JDl6QnDNGftpZdJ1rf55KO7HD99xhtf+hKJaLn/7XcY9HNuvvUKk+MzqmXJ9q1bqDRncn7OeDxkfnrK2fEh23ubtG2Dlorbo5z9ectR3SJV6L5a62k9vFdabqUt/b4OtphNQ1OpIK1tKs6enDC+ts78pMLUFyc+sOoURWSTdEPBUHwhxEd5LqNeKlZh58JFcpkmCAEr7qCJMLgLQgwJaBG6/paLoo2/MHMNTXxku0Qss8sbtEqxdmWTZdVQ1xbrbPS9sDiRsP3SX2H3L/0ixy/+r+TFkHRzQnPvGSIOcBtnmbWWg8ZybqMEH79aUITrBmqOsqrY7hfoVHI8a/B4lg6W0jPzYeCqRDiRJR5N6Ia1C3xhdel4SB8WwQ4bd95jYrEOzomsWBICyAjHLJEBEgFWjoyrnt0HuGo8GqNVD5Tn4GzCF179EqoYc/3VT/Hdr/wTju6/x9relGYxIy36nE3PefLoHkonOOc5OTrg7PSc/YMTnu6f0DiBkAkD0QXKCjIleWVrRK9X8KiesDkU/IVf+TlOHr7gyScHzE/OA3PJQeNM3Fm4bnaNRpJ62O0luGWJwDM/K/GtRePxElqrWCqBThKc6RSwwchMyiD1xhK6ahvab2c9UoZmQemQ9oQLHG5cYAQFRa/A1Q0ARgqenlY8rBwOSWMFqQoy+gRQXjJbGvIs5ejFMctMMd7sI/tFeC/OM97os7E14PBoShWT3V+9uUFV1YzygrY2CO/JUk1jBN4qvHSYIKEgSxSLNpwjeapoasPCtjTWoo0m0wrhBWMlGCRAIvAiYVYbKgH59g7bmWUtF5ydLfEyJa1LikLSOkcCyFThvCcRkr60JFoxX5o4NPYheMRa0n7G8ckSpQVpP6fxnZfQD7/9RBRuYy2jjTVM1XD29DG93oCqqbHOUqyNWc5LTN0yGGQk+Sb37z9GtAt6SqJMG+hTow0O9o+oJmdkvmIwHLJ263WcFtx793208Hz2p7/I2dkZH3/9m9y6vsvmzVs8uXsPBYy2dzg/PArGL4MxJ89fYMsZ1+7cZrFYAor1QvHw0NI4xzjRzIxlEcdhtfDsG89HlWM79WwkAcqoq5bBMEcpT/n8kN7aNXpDjWkMPpqzdgPKrtd2/qKLkbILLogdzCUxSCj8F1ht5xR4aV5JF3GlpCchxHgp75Hd3t+K0J36DnIQK/x41b12LJb4xHVtODicsKxNvIaD0xxOkviWp7/+H3Pyh/+c2fMP+eLf/JvU7/0m8+oRi7qlaS1lYzgxcOJgSXi7gZ4nVkVGEC6oUZqwOS74eP98tekYArkXtNHsyfhgPdsKqPArO0zR7Rj8xcbhgs0hLuAhTxzgBddDLUDTWcbGgt89j+iMvFbjhuBKaFqOjxekmWdza0jaG3B+fMRo6xpHZ3N+77d/m5dfewWd5jx9ts/J2RyBp8g0tm2xTnJ6dsbhyQSnNIOdPZrzGQMpOJ7MKWtLXzvGPdjZWYfllE9d3eDgww85/qe/y/npDDdrItbvsLgVK0i48N33ZAi8vX11i+l775LjWLYVWgi8ciilaatAuRO6ivTVjlYayZI+zGHkJUhNqgvFrrNuFXWmEhX1CMF9r17UqCRQSSsr+eC8opaSodYI51grErbX+xRaoYSgh8LblsGwIEsk0/MSUVnSvGDQS0DCrK5JegXlskELwcmkwhlHngU3RSM8wnjqqqZIg77YesuitNQ2Y1E3bIxynFY0VWAXbYx74TOYhoGG9X5C7RwqOj2m0tEfDtCDdZLyCGssUifYpmY81CFTAI9MJdZYnBNkmUHlBbNlgzeW/rBHs2ww0Z7j/HxBoaC3NmRaGg7PZ+jkR5fnn4jCneUFxjjqqmFrfY352TlISW99nflshkCwfWUTa1o+/OAjyApGgwHaLMnyHkYqXjx/Sl/DxuaAJNtDDMacnZ9x9PQhm9tb9AcjHnz3Hdqy4jNf+hzj3Q2effQxRdFDphlOKvJBSj5Y58Xje/R7I/pXX+Pw2TMW56eM1wYU/Qkb/TlKSh7PaogDtSZ2pHj4qHLcTCzDJCXxnrZ11LWh39OotubkwRGj7XXK2QuoBTayRlZMax9EEmGIFqxdV3v92L5chlBCkQsF3cZCJRAId5FiEvi8F9ijEgItY/GOrym6In8JYhdc7ATgYsGwxnJyOAm/UYEypuMAdV61JNVHTI4/wpHw/j/+NfzsIUf757TW0RrH3DpODZy7GNrqw/ZaxAVLAKmEzUJzY2vAvaMZxrog0Y7SeQ0URB8RxIovvuqmuRAtQeyi43N3H0T6UJRW4bjxd6LjCIsOj19th+jYO52ox8Zjl6Sa8dYms8khxfoaVha8/+57jNb32T9Z8PjpEZNli7eOfr9HtVgGMZYqmE8nTKYLlosaYxx6tMEXfuWv8Y1/9J+SqwprDQmWz97c5K/99f8R3/29rzIYanaUoT44xs4XuMbgnacRIg56w95Ae4V2gkLBVi9ntmzxZYlsDU4Hubf3AcroMBDbOKSJgRMi2hL4rmmwEcb2q/sHFWnIVBSrs4WVOZrUEmc8Qjq8CDj2i0WggEqpKZTARuqo9Z40V/TyDFHWeNfirWVhg6y+njXYxtGWiixXIZXdCYpUUS5KeonCJ4G6OJ035L0M4Vp6qaDfyzg/naESzaxx5FKRS5jPK+q2QSSend3tkIO6mDHoK/r9FGMd9dJhJiZQKa1h4A1nLx5Sm2BrlktHr0io2sDiscaS6KAizVKBTiSz2RLhBL1eTlO1uHrJYJhxPq3xzrGxM2RWtizrmuHGJoqjH1kzfyIKd7mYc7h/zPWtNSb7L6gqS397h7KuGQ369POU5azk+PkztvoZ0rckjaO3vk6bDrj70V32Ntbp9zXZYIzqjznYf44Uktc+9SYgeXrvHuNRwc0vf4nzs1Puv/seO9euUlcVUgdvhbL2TE4fsr61i9ApTz76mOHGOoMbN3ly/xGDImF73OfFfErlHI0Pyi3pY1eG58Q43q8Ne5VktwiOalXdkg8SZKpoZkuaQY5OEuq6iRhrKAadYg9W1TImbXfb846RGwdsUVQhhfwBi1YirCGIMvCuIHqJEtEuSHSdVOh0JUQr0K5gd5hz53Ad4p5sdCVsjEcrQZGn6FQxXh+ipWd5OmM+XWKdQMiWx9//Ci6m+RgXBn5zC+cWqnjsfHx9CMyVTMOVfsKN3TEf7Z+zaAxpnjEeDDk6OQmSdudWhRXCiey4cEO8vOCIuMCt1iR/6e9cuCausP543FZYLtDRMeHCKjYVgprghTIYjHB1yXQ24aWf/iLLieXb3/mA+aKiKSvSNOHx42dIIRitrXHrxm2qxQltU5HqhLX1dY4mNS2e1z/702zf+DwbxT+kz5y1IuP6To//yb/xb3Lzl/51zj/8hGr2HNu0lNOSqjIsWscnVcvdecvSeiSSRPhgqSp8yDisK16/cZXMGVy1hH4az7FAl/TO4aUCERS5AhebiLgbitmQKg6LRQfVec+ydYxUtILt5ibxj9LB8lVrhTFQGsWH53PmCHKtgjYjlSRa4lqDryW6l+JTQaIzJtMqBDNACJpONMJ5FpMlbSvBGhCWtUKR5RIlQ0EfjfMQapGCVorlMoQlzFuHSzLWxwWnxyc0jWV9XOASgluoEMhcMtoecnayJEsCs2pjnDFZtGipab2jNGBMwNFVT9PUliRTeCfQKqWqPP1MkCaK2ji09+hE4qylWixCiMOywhpDf1RQ1pbD0wV6OGKUJjFc+IfffiIEOEopNoqE2dEROk3JBj1aUzHoF6RpytnJOZOjfQZFRk8HT4Dx1assasPTu5+wpkH7hrW9K7RpwbOHD0mk4NqtG1gSDh89ZO/qDjvXrvHJe+9z+OQFr375F2nTHosWstEmrQ28352b1zEIzk9O2Lp2ncHaOif7L8izhLXNAS2OQaGQIhRE5QXaE82MwgV/t/LcrR2L6JDnrWMxqUizkGa/ODgl7WUBm5Wh4wtDnQv01BOsTr1zFwyPqFxb8bEvQSIB2ZBRugxd8feuK0ahYxfxAVpEyCSOlFZh3XFhkLCa4nUOg60PgzuwGOtpjA9DNAuD7W3e+lO/xKd++Quk/V7sgAWV8cytY+k8DZ7KexYOFt5HVszFSSiBVHlujQp+5qfu8GxaM60MqQRvGs7OT6Jdq4vDMR8V4z6Gu3oSCanwaBkYQQkeLS5wcE045jp22hfilG7v4jtEZrUudIxLwQWU1O1Suvd+eLTPW2+9wmc//ynWr36WXn+Ppmw52j9hNi9Z1jVSJyS9PmmvT1kvqVpDay11XQf1nBSMRn3e/sLPMHn+jL2B581XbjBOHZ9+9Rq3f+GvMH9wl3r/Ht4YZrOKRW04bR3fn7e8O2k6tTlSBoaE94JCCra1ZjfTjDPPfP+YPJGrBYkIkwWnSBfFYYJOqisI2HM2zEjyDBEZEERbEwWsFYrV3NaHbl3gkUmMlUslXgSu9P6i4v7SorUOi6GUtBZGiWa9n5FqjWtbvBIYNIlKaZxg2Ri8l0jrAvXOCxIZivlwmDEcZEglmZcGLaEnDcNc0CsybOtoWouUYa4z0JpqsQDrWRtlQW2KJMMimpL+Wp+ZSfECysawPiqY1+G8n9WOs0bSiJzUG7bWEoyxYZdrLIMiWZ2TZWuCeZQL9r5Jomnbhn6RYozD1pbhIEEkmrN5gxeKnUFOX8eL90fcfiI6bm8tiYDxzgalEeRak6QZOMfJ/jGmLOkXPWQzY7h9BZslHDx9jl1WbPYTxlev0d/aoaxK9u99wmhji8HGmGf37lFOp+zcuoXSioN7HzHs9Wl0nw++9S0GowFbe1c4PnjGoCi49tprzI7D643WhpTzBYePHjPe20alKWpwSnLvkOt31nD5KWcPTgJDwnd0tuCUN3eed0vHngr+vtZaZCtwXpEUGr9ssZUhTUM8UYcZBiqaX0m6u9G9v+SW12Hhq448YrGIOHRzcboviB4RYgXjiFjMRXyk76ADWHVKHRTQvTx0C4Wgdo7KQz96dTsbY9B8zYOPXjC+9hq56oGUDNb6jMYFT5+EAAoIO4oq4tplVI4GiCQMTzPluTZIuXl1ja99dMDB6SzwpFnB26g46HKd7W1Y8VbH4vJ7F75jfshLi9yFCGdFsaSrQd2rxB1Oh5asFr7uYRfwVtfVTxYz0uEav/Ln/lXuP3qKnzekiUAqKIoMECzLmnGaUC+nVNKDMTR1EyxtyyVaCnZ39njplc8wffQVvvDmLV5+eQ/RLFjrJTRHRzz87X/E8vSMuqqZLi0nDby/8Lw/bWmsZ3OQMq0thfSUTUsPzxUt2Uoko6Hm1Zev8fT3v49OxIXYS8CFmVk3WwnHohvKikRijcG1wWtHiqBwjNU/prqHAymJocMyagqcQ2mN9YJ5C3enDedCYnxwDcyEQitHoiW9QcZo1ENKqJYtbRn43UpLlIPEW0xtESoYaxVa0M8EgzxBRGVyP1NkWXBK9FJwfL4EL2OQsGe7kJTLJY1MSFNF6yRN00aseYrSKdPDJUWvpVmWZFoznVdkaYpAYTRUrcLNpyQDwem0YpgpdCKQXuAsFKlGCOgNRjjv0JmiamA6WVDokNaksPTWerQYFrXBWcfuZo9EmJDwc7EF/yO3/8aOWwiRCyG+IYT4rhDiPSHE/yn+fkMI8U+FEHfjf9cvPebfEkJ8IoT4SAjxZ/+bXkNpxdbVXUSSU/T69PI+Smn2n73ANSX9XEK9YHzjDqY34ORkCtawPu4x2tmhFTmP7j3gxSefcP32TYphwfGjByTesHvjKtV0wuHDe4x395BpjqtnXL+2QZIoHn9yn+2bL3Hzs1/kbH+f2fEhw50ddG+AFIad29dIhyN8kjBvLM9mNV//aJ97L2boWCWEkKtEj44d8bQxfFRbJiZsRZ3zLGYlxdaIfJhiygZrw5Q51Ai/GqKtur0V+hG6we7vnVz7opB3rxuSbzqsWsZwVhmxSgjYthIiGkGFF+i42t3rSuJj6bw7QktvERy3NqryAo5snaNtG2Znp3zz136dd37razSNZfvl21z/zGthWyvUKpi29sEX2riwKEnCMLAnBW/vjbmzN+Kd+wccHE8iU6TDnsN79T5GlMVtuAzK+tV7Xwk9whfDytkvgveXubGrwyouIfji4j/dseg6UiJPvHsGsxp0esrK8+73P2Rt7xU2i5y93U36gwF5mtLLU9bHfbJE0u8VSKkRzpIoR64FiVQkScKon/HpT32WUW/Emi/50l/673L1Z/411nXK0Fe8+Orf4+CDP6CsDfvTlqel4XsTw/dP5iyMZa0ITAgpCNxn59lWkg2lyBPBZz//Ki9enNPzhkSrwEoiMBukknFnF4+nvBiUQ5C4myrQnaRUdJE74f4yNBgd7TRKtUVklUgV3Akb53k+NzxqwMoubE2AtxgnODgvqcsaJT1pqtA6YV6G2DBiLqaWoUlalIZRGhZ74QWzZYOzlvVRwtowQQpBZSSzWUPbWrSE0jha49EqDE3LxjKvLXUT4sImiwapU47nlkXVUFV12Ik4TyITamNYOIIDYDNncyDBOhI8eaHp792gjdCnF46kyChbQ5ImyCwPgrEixRM8TbwkhEIvgm/J1sYag1RTzZcgAh3xR93+OFBJDfwp7/1ngc8Bf04I8TPA/w74be/9q8Bvx58RQrwF/DXgbeDPAf8PIYT6YU/c3dK8YF621E1Df1Bg25rD+/fppwm9RKGBrVdfxyjNydExopqzvjZkcOUGtUw4P9onF5aX3n6bVsCLT+6ytjZm75U3qJbBrHx85RrWK3qDPps7W8xOZ9jlgtsvv8L52YI/+NVf5eTxY9auXce0jtMnT+kNN+ivb5LlKcvZjHe+/QnLWYUva7BB5RS8MAI2rCIw6kUwqnmvtNxfNlQRODZty+lhyejqejD1IXSAiZKrwnnRARGvoq4aeS4mhzGd5FIRV0JEKpxfmTN1JcbDyk9ZIZE+3F8RGAAqvqb0YQsmYufdnSDdW/DCc2o9p87FxSBcet55nLG0Vc1iPqc1hmf3nvPu1++zLNturBr8sp2ndFEM46P/SSL48itb/Jk//SmeLiyVcaTxuEofZwgR/xaxiAof1Z/+otMWl46FlBddcljkBJeLt7h0nCXdzkWsBqVKBIZJ141fTBfCYzrDLwg72rINvONn3/86u9fusPXmLzDsj0IXKgR5ptndWmdvZ4s8kSTCMhoUjEcjtjfGvHLzFlvDEZ/9zGfJypLtZMbOmz9HdTxHTE+Rref+136fo2dHPD1e8PFZxTePK753PKM2js1cs9tP0YTBmLKWLSnYURIpHDvbfUTe4+DhPsOYNHHhpR1TliDaBsfzOG7VBX5FGQ2UUL+yd12dK3FhVYkKQ9t4fISWYfCpJJVM+eh8wZENx1N5H5wJhWeoYZCG2YVpDPNpw/nRGeM0DAOddSQ6fMeN9RSJYKgFAy1x3jBbNixrG2YfUnK+aKnmDYVW9PKE+bKiLVvqyrFcGE5Ky7Q2qAizpLlC5wXPTprAEiHsXp3wpLnGOM+ilrSNRzYt40LRmODJUmiJXTScP3qINwapgv9SYyxpnlA7z3JWkwBtVYf0KsB4ycnMUDeWYZaSCk81q2jKlkdHM340UPLHCwv2wDz+mMQ/HvjLwJ+Iv/9/A78D/G/j7/+u974GHgghPgG+DPzBj3qNxXzBZDrnpdde5ujRY86ePac/6LNeCJyzJMMNDo4mmLIklxWbVzfw6Yjj0znL0zN2r1+hv7vD+f5zFkfH3H7jbYab63z8zrfxzrF94zqz03PWNkY0bcNy2bJxZY+i3+PwyWPOnh7w0tuvkgzGPHvwmDTLuPbmWxTjMaI3ZnZ6xPN3vseoSLmxuYaxE/anNX0XOkDrLApBIwL2KgkczBMH319aRsrycl/jjIHZkkbssPv6DgcfHVKXFhuLqiNaWYoQI/UDtmuwovuJS91NJ8CJzfklvUxM2I7DxK7ua+lJBbRWBOmzhepyly9CoVSIlW+J94F9IIAWwePKkfYkazrsJBoXsNEQrxesaH15BjLIxY0PAQu1FZQI6nihaxlsNT97c5NPff4Ov/HVj3l8cB48RgjudogOee62GIF9YuMuJXQefrXQdQPFi4IeeOKSkGYT7hPhpBUU0kG9fgWxQBSVrIq0Xx3jOIFY/T1WOt6/+5Cv/fY/4Rf+9J+BSckwk2wOM47Ol/T6Gb1+Aa5hd3udzcEArSXTk1Ou33kZsk2u3rjGW7/w3+Gjr3yLmzsKqTSnH38N35QcHpUsypb9Rc37ZyWP5i2nTYv1MMo1u/0cLQT7dY20jm0Be0oGeqMU6CTjw4dT8nKB6ocuWPioBeiu9dWhi0HWUl2CiMJujtUc5tLxWh3LOKuJuDMimEtJKfCb6zx5tOBe5aiRJM4zyhSe4D+TKRj3CxrrmM5b6kXLMJM0bROYV8rhSbAONtPw/F6Abw3KO7ZGIXQZJJNZg7aeQRGSdpraBjfFvsQ4yf5ZhdMJhZb0egnLZcugl3D/+Rm5StkZZeRaYKxlMOzRtMHz2wlJ7i0qVUzmFXUryEVQ9Dpv6PdzGhfiC41xJFmKs45qXuNMixYh/aes6mDLKyROJGwNC7RsmU7n1IuahQCRZmj9o/vdPxbGHTvmbwGvAP937/3XhRC73vsXAN77F0KInXj3a8DXLj38afzdj34TUrJ77TqffPddFgfHrI/7rEUYJN26yuT0CP9in1GhGAy3Ka3gxd2HZEpx6/WXsUrx4v59ikRy6603qSvDN37jt0nylHQ45NnjZ2zv7YR4K6/Yub5J1h+wPJ/hLbz+cz9D07bsP35GmvW49VNfIMkzklTxnd/7He598IBqMkEj2VzLeHosGKSKxlpSFzygF86vBno+mvrg4UFt2dEt66lkN43e00+nfP6/90tI9TWevbuPqz3G20DVi3a1SIXz7sJ3w4eLZwUFCBEx4gh2eGKR8rGYi+5fVgNHRLBXJVqdChFeT3aqOgG2g0zojO87jDtcoJaQ9vLJ0vByL2EnkyQ2DJe89xhrL+h4UUhEFAG1sVvyAhIlyDXkWvL0bMm7v/ptFnUwmSdipGFuFY6j7+qjiAXYX0j4PVwmmERohItdQyysqyWu+7eLqSMdFAUihkh0XjAXWLa//ILdKhn/7vEcny95ePcTpPNcf+kVZDPj6riPIjAJzs6nZHqLTFne/MznOT87YvfmG9z6hb/Koz/8A65/7pfQxRrLx99ilJ7y7J/9Pe7+839MvWhY1i2HRvDtk5L705DuHmAxzzBRpFpxUDbMlzVbwrOjFDkSRZC4Z9s7fOfrd/m09qRKoqUMRl8uOihKeYFnC7mKZiNu/YUXSOuiQjLuSjqAzjukDrscZzwoj0oCFU5qFWYjao3v7z+jVCmp9vRVGG4OtKZIApRXNS3OSny75OrOgKYxJEhk29ArNLOlYZQp+pnGOmiMobKW0bhP2dSMU8lkUtM2LVIpjmctQgUnTunCIHuybGkIC1oqHCdnS3IFU2vYGWSsDVMGmcI0NXk/Y17WNEayqA3aOopRTr0oKbIQYBFyTC06SShbi05SZrOK8biHE4EGmShBVVvINYfTEowj7ycMsj6uqvCmZjqvmDUwqQyjrRFXN9YQ/tmPrpk/rqCuLgTvLfA5IcQa8P8RQnzqx9xd/JDf/RGwRgjxN4C/AbAzKnjn977OWHs2x70gZx8OmTSSo++8Sy4t6z2NynKevjhhuVxy5cYVtnb3OD454eDpc26+dIPhYMT+4ycc3n/E1ZvXKK2h6BWM1waUdehg169cQSUpJ08eI5qS0fYmZ4eHLKcTNq/fYuvOKyAdSZHz+L13+Ojdu9im5fYrN0FlPL3/kJtbA9z+FNMqlq3DicBmaL2Igo7YEQtB5eHdyrKhGnrrBX0s9dkZD771iDuffZvZ4Tnn+2XcadpA1fNdIQ2HMpg9hWJsIxd7NXFE0RWlP7p1vXARDD+J7tgj8REuCX4WTlw8xhMNsHwokjJ23SIuHALBzMEHi4ZJq7jW0wzzYIY1XxqCkZxfufWFmDCJ8T4qNQOrJUVSN5ZJNQ/mTXHAGnYswVnQR9qZdxd+F93Z5LkQD4UjFnjCXVd9ScPPCsW++Jg/cFZ2g8nLZqv+0r9eauNX9798Unugah3Gw/Onj5jMTsmcIcVx+9oGSx9YHtV8wuuf+zLbX/7LNO/8LtgaWaxTCEn1+D3q05qzu98kWVPc/ea3efr0OdOq5em04pNJyaQNC/EgVUH5aj29XsrzWclZ2TAUsKskuVBI4UmV4M7rL/HgcEmvXLC+rtFSgrVxsRPhG/IRMJIXO5WLmYEA51ZLnxAClakAr7QOEf3T8Q4lIlyiFMLZuNNSfPvb7/GwajFKM8wU3geKYqolpbUkUgWvdetYyxMWixrvPWVZszHKmZYt6/0CfINVgW1VFAk6y2jalkJJnHFUVcOwn3G+bNBaUDtPvTQMM8nhWUXrBUmWMMwErjUMC0GWpTTOsj0sQCpmkyVCeuaTCifgvPQMhUVpxfnZko3x/5e5/4y1bUvT87BnjDHzinvtfNI95+Zb91bu7mp2zuxusgNltpgkEpIsCrQMQ5B/yf5hygJtGDYtGLBggARFtSiLRmc22V1sdqWu7srp5nzPOffEHVdeM48x/GPMuda+xaoiBQHCncA5e++15pp5veMb7/d+7xeSZzndSOAHktoqV84eeVSlRimFtpbFfEUn9JF1xdbegPPxgiTwUL5hZ39AOl1Q2pr5UpAVmvPKsL0/4spun8VsiRIXn7D3Lv+TVCXW2qkQ4nM47vpYCHHYRNuHwEmz2j3g6oWPXQEefIdt/QPgHwBcHyV2JGt6UcRwf494Z5/ZbE6Rz+kpTX/YQfoJR/ePUEry5LNPoeKIs7MJs6MjHnv6aaoi57WvfhPKksPHHmcxmxL2hySDLrP5jE6nR9zvks3mLM6OSTodRG9IUdWEvuTguQ/h94dURcnOIzd48OarvPbVlxB5weHlAyaTBd2kYLgVc3x0zuEwIitqIiWbSN6gbGO630wb2yBuZuD1QrO1Knm856HqmrMXXyXZ/n6u/vCHKf/46zCr3NSpcgRgW57tSF25qQYUF4D42+QfDtpbVYhcR5zrqNK2Ebjjlj0LnhT4lgZs2yi94SDZVAe2hvyt+gXruOpbueG8rrgSSg46IWGoCIG8dH4ftvElKZqfm3JznEGXdRF47Huu9ZO2rPLS2dkK1wjBE67IqT2Vi5TFBksvciWbKf9mstJQLS0Y2Qsc9Zr2YF2k0+ztPe+1e1mbeq2F3u7deZpzNE65dmnI2c0jtjsBg55PEnp4MsAKSzcM8cKEujCk0xm+KTl94SuM3/oCW7t7vP7FrzCbHWG0z9sPx9yaFdyd5dxbFqzqmo4fkPjOaGqlNbXR3J9mVEVFX8BlJZ1bojB0fMlwe4Duj3jry1/kE7FyyVDPafqFME139qbYBoForGABjAYayaVs8gYIR4UgnHpCNNSgNS5oCULXFKKdZdnQ58FU8MJ5Qe0HdEMfgaUX+sS+chantYuAlRQMYx9Ta6yuWVWaUSfAVCUHww51UdKJFMZolHINk7WGeWnJS4PvGbaGCSezDCUkWirms4JRoqgqjUahlGIYuWBnaxBR1DVFXuEFEiMks/ECP/CZpyVKKmorGfjuHBfLDCUEi6Wh3wtRosYGAcWqoJuEjlqMArS2zCY5USCxdUnY7zKbps4pUHhEUlMsF2S561tpkOSez9ZWh4NRn6zU9DqhKyD7Lsu/japkt4m0EULEwM8ArwO/D/ytZrW/Bfyz5vffB/6qECIUQtwAngC++r324QnYGXXYvnGdMoh5/ZV3OLt3H7uYkXS71PgcPTghSUKe+PAzhP0eD965TTk755EnH2dx/JC3v/4NtoYxw8sHaFsxOthDmZyTu3cIghAviRk/vM/y9B6DnRGq1ydIEkY7I7YvXaasKtLliu1rj3Hn9Rf42qc+TZ7XHDxylSrPuPbIobOLTSKeuL6DJyyhJ13jT5yfRVuOLoST2mnhSqct8HZheDUzHKc1Vkqocx5+5UUqtrj+556i0wvwlcJrprGekC6ZKJ26Y/2leQ/cNLjextJ2o8MWTUQuBAi5UY60Ui1fNlpuwBfGlXmLdhvtdoFG663EmnChDcLaOrlpbXgj1XzjPON2qil9H6M8SgOZhsI4Xru0TXWjERRWuAFPupLpnUHCD3/fx52XiDFoa5Gehxf4/NAnPs7h7qiZldjGNKuF1pYqEutIeg3s5kIdn2iuiRUXPrcxolqf2Prd9Urropz1O+v/LkbloLXlzdunRGEEvkSHIfFgwJMf+AD7B3v4YUCWVZzcu8vZ85/i5I2vc3LrJd741H/P2fE9vv6lL/OVr32Be5MFL9w55au3T/jm0YK7y4LSWkaxT+Q7o6tVpZnlFWlZ0sPwiYMhj3iCgXT+4GEokVHElQ89zZ985WW20WyH7r550oGnEmpd9eVsgi2sE5JttL25LKbpZ+cnIdqY5vlqV3CVrbqlT4SgRnA6r/jG/TOOmguVFRWBcGZZrkGzxRjXp7QXeQw7AZ3Io7Ka0SCktjV7WyFZmhIqsNagsCRJCMKuG0Bb44p4JpmmNgqEZL4o8YCicve5nwTs93yEgNDHOVkGAUk3wHqKcpGRxCFZVtLpJxRBiBJO+ZMWNd3IZ9gP6XUDpJJ4nQ65EQx2hs74wpOUubPA3e762LpyM7CHE6hrrAZZ59TGMJlUjMcFRQm5lPS3hxyOelSmJrJOr3TR7vlfw8zv+s5mOQR+veG5JfAb1tp/IYT4EvAbQoj/CLgD/BqAtfYVIcRvAK/iDNb+04Zq+a6LEOCNdnjn9hHpYsnB/pDRVkLUG1EiyJcrdve22X/sBovpgpuvvMz2zhajw0sc3b5LNp1w7bln3PdMRiS9hOXknNpYDq5dQQYRD2/fpd9P6F66hrECpRRhGFFogULRv3IZ6YW88Jk/4PYbb2EqsFJS5RnXn3iUuizoSk3tdanKitFWzN1ZCcojCaAs6vUDX7a8snV9CT1cBP1yWrElFZGSXO0GFNMx73z2eT76V3+aR4zl1hdeh1RRV1Cjm2q2pkt7k7Vvq/fWYNTo1Wxzc5yOu+F1ZRuhbiJRr6EPLK4wJcAleTzpImJHKbfc9iZQbVuJtTQK1mKlaHpeWiojGFvLbFVzJ53TVYqmNSEWp3VPsVSIjY4aCJTkmUcPuLK7zfl0RVGVa8WGtgYVxlx58ileefsmupnGt5KUCzh8gbpoqR1D2xRh7bvdfA82EsoLx3JhOxcpE/fZjQzwPTGQ2NBRrbfL8XjOMq3Z3RmQrlIqC1c+/CNckpav/vE/581bbzAfT7l96wGmWuDJkDRdkOaat+6ccnw+I1BwvMg5XpRktUZJSceTjJKQRWU4TwsKbfCM4UDCR0YJYaOLdD5ggrGGH/m+D/H5V++Tno35SF8R+xKlJLWpkY11ALh8jFpr+l2HHGstQjVySt2oiJREBRLrqs9coGKsM5nym+ACNxAbLKlWvHK04F5hGA66zjfbQmkN41w33c5lM3OxBBh8aZgDcSdECEsSKNJVReQrytK4eo8kQAmNEU6mmGcF21sdVkWNtFAbTb7QdCMP4YHnOVpHKacS6UYeQRSwygrXlqwwVHlN1PFZZRWVCpilmkHg0YkjikZjr5RrcVZqMEjS0hDHIXlR04kCpvOCYpYSRz5pVhDGAbNFTs+TTgqbVQRKME5LxvMCL/RZSsn21hZ7vYSqLvCxaFuymlffCzL/rVQlLwIf/Q6vnwM//V0+8/eAv/dv2na7qCDk4XjBajZje6vLzmhAtL3NeLbCFimXrl8jSLq8+fKbFNMJl65dQXge5w+PCJTBG/Y5enCOP9hi+7DPZDaGuqaztc1iVVKfjtnb38YLY/I8R/k+/d0Rxw+O6G3tcPjEc9y79RrPf/bPWJ1PGOzuMk6nPPbEDTqdDtbWHFw9IFuuWE2n+HLB2WSFFLAVKBZFiXI1464sFxfJFtY2AOOm+rmFb2U1QyUIhWUUeNTnx7z+mRf48K/8IMVizrvfvL9OCBmzqRA0FyogW+dtVyrvpFyCTcm8lC5qbY1/ZPPFvAjwrX+JJ12Fo2ecckQJ4exMm33JC1GsbJoqtMlKA+sycducZyUc17+snNbaa6Iyy9pUzkFjc+xRmPDnfuLn+MRP/Ci/8Y/+AWVt1pGurjVx4EOxoCgKlyQ0LZe/SUiusVd8O0u9eX3Na1/kSNic27e/0PK87SCmN+9eAHn3f0utCCAtar74zTf4tb/4Cb7vBz5MEMaM79/mkY/8OE8+80FIV9x/cMKrr71F6EE3iZGBz+k45d75HFNprIaydk58XeVhG9nmeVaxKmrqumaIZccT7PoKkxbIsGa3H3CUac5KzU//xMd55d1jXn/9Jh8MYC908zLP9503u3HJ8DYxicW1mTOaukmS17XBk2uFP9KTeHFAuSodSDdRt5KgQoUMFLbWWGEpKsE745xvTQumno9ZFHSjAKUMNZJANoYKwpL4ir3E58puj3mWsTuKyNOKfiAolhmdJEBYDYGkO4iwxqClQhpDtsrZ2+6yKg11YamMJlGWZCcirQyVNsS+pDaK81XJfk+CJzme5ez2I85nK+cA2EtYLpbUQlJ6MSMFni7IK03kKaSQJF1v3R9UWk1/EDNflPjCMpsXUJZ0+q6Z+FYUsVqmeFaghSDPDLNliedBqi2ZChBByM72gMNuCEITSIuwGisUQcd/T4Dz7cv7onKyyAuyswlXd3tsXzogN5J7r91ia9TjiY98kCwreO0bLwDw9EeeZXZyxnw8Zbi1xSqFNFuwuztkusi49cpbDPcGdJMu9+/co5/E7F+9hLaCqq4IAp/ewSF333qDveuPMdo/ZPzwXW5/5UvY1Yprjz3CyfE5H/jgB5hPxpRZwRMffg5rSxAK6fmcnky4tDvA9zPeeDhnJw6oVwWlcsZNjgZwkbaxbasr18zgpBK8kBpiaYg9i29dX8rX+12e/emfoVj8ISdvnGJM41EinTWrajhVKy54ZgjplCc0wCobLtq2XHQDYsIBpTSbhgASgZIG30Jdu0g8kK4M3X2mjV8dSrUpUIMzhUI4iGy7sVvrlCRyPVV2neJrxKaCsQHONmdosUznK/7bX/8d/ulvfYp8dY6uNxG/wbIoNF9+6Q6rvHLRfaNwELIlqjeJYGdL68J8c+HY19WgVlw4juYctVhH7ms6ZE1yb47jX6dKaJK3rA2swJ3zm3fPeeveil/6O/8eUkS8/vnfZOvONzm8ekgxexRtJJ61pGXNdJGSTTJOZilVZRgkEXlVO2OiylAZQ1E6R0qMoQcMPcmWJ+kHrivQRz98mQ//0q/yW//k95m+fY+f+8lPcDTXfPmlt9nH8misXPNkCUk3opxnGLHJiVxU2EipwBqsdb1PW7oMq/G7EXVRu6fAtqOhQQYeKgrQeYmQTmp6kmqeP005s5K8ds2Ni7rCaFxCWUp2OyGxgK0Q+knA8SxlZxCS55pASaqiJI49Al8hhGS4FbHIKoSxaCSzeUG3H1LXFaGnWKLRumZ7lKA910KiG0vXCq7UDOOQuONTGoCKaaoRNXS7iryqKa0kFz5+WaLRCCmcpFAbVKSwKAwKbcD3vIbHVhydLgisJumEzBclvU5Etqro9AInlUVQGVfPkCPQnQSrLXujIfuBgDpHCQ+lBMulxosDJvPiPcVi3768L4BbCLh+ZZudq4+wyDOObt7j4MoB1z/yEcZnY26/+CKHVw8Z7e0zPjlhfnzK6MpVxtMplbbsX36Exdkxppiz1ekwm8yZnVbs7Wyxd7DDcrFC+CH7V66Spin3b9/iysd+COv7vPPmGyzvvElZ1Fx68jGEznjmg09RlhVXH71Kd7TD+fEZnjT4SrA4P+exp24wn05IX77DVuKRzzVdT+FLw9ga0JawAae6ieBk45dRW3izMPRUTaDgsS1F15Scff2bvBl3efznf5K6/Fec3ZyCVdS1bfwnZMPRGrRto2vHr5smymyBE8QaqFwhxYbuaA2rnFLFWZp6DeAbAbqhBlqu3jRfUotFWicZa6kXIVpQa9UgDWXRfH5dRd/GpnYTJQNraVmeLSizxfrY1nlEI5jNFrz4/LfeoyZBtFTshmOWAEJitEu0cUEGbzfhdvO8bf5uI/S2i8579tEeeSs/vECXmGZwovnIxX6elbb84ae/wvf9+J/y83/z7xDvP803v/hJnv3Y93PjqSfwqDg4GHD/eI6+eZu7J6fcO09ZrkrGy5K66eIijcUXkDT5iq4UdCV0PEk3hEcuDRhsD/n4f/if84Uvv8xrd0/4a7/2c7z0xhF/+PmvExnNU4liOxR4yvmUV5mLlqVti4xkQ4s1D4BsB3aDtC4FpqQg6odYPExRuLPUTVMFQIQedV6CsFRWcJ5qvnW05N3aUkrPFUBJXGGV73plesbQt5qOr1BSsig0B6MOWVa6cnBf0O8F6LIgqwr297pkZQlC0t9OuH9/QRgFrPIC31fUtavqSmKPeW7Jq4w48BFKMM0NsjRkdYGQGmU0Rms8DElXUltXwWiikEBDXjuKKvEgKz2EsEhr8ISFqkYIy3JW4VnLYlYjtMFPQsbTnCTwwDjzNSsVATV5bZqOboLUOuDf39/isg/WFNgKggBSEzAuCmbHYyKh3v89J6MwYP+ZZzmfzCkWGc9+/0fo7O5yfO8+t7/1Io996Dn6oz63Xn2DvKrZPbzELMsoKkOv3+Pk/gOS2GPv4JCTyRxZpQQohoeXKKoVVVVw+Mh1Tu+9y3iy4tmf/XmO3nmVr/3xp9kdjrhy4wq9vUOSbp98OmY1W7B//RH8wOfe668xOryCF3oUiwn9XpfZIgUr2OpHnEwytiOLtR5HaYmnIBKCunQgeLGTeMuDaiyv5YZE1ChR8IGdBFmVPPzSFwgGP8lTv/rziH/2R5y+M3EPjXF9KR3QOkVAbZ1hPjhANk0S0WAbnrpVRIimRNyVHUvbHBdi7UroCUeNGOnkhsa65EQbUbcJUCmc70fdRtpN27TWAKsNpYUAbcQ6aocLtMXFv8SmqMU1bGgle05pIlvkbbmKbw9AhF3b3pomqm835iid9ng2+wPeE16vBxJ7kfteszVsom73xlrX3VTLOtBu9y/W+YPxPOfv/1//7+TzFT/5S7+Aym+TTY+wRYcgTujioe+doI2iLDWiKIjqmp6UrKqajgUlLDuxTy9ImE4WSBx1kXiCYSdCdXq8/GDO5/7u/4XQE/za3/gVvvz5l/jM117E1jWPBpLrsWyMzCSe52OqGiWcBau0NLI/iW26L7kBW25mccI2NEhAscjWtokCp9GWkYe1Aq8XUGYVy5Xm9fOMV1LNBEnYPO9ZZfA9gdWWRAoGgG9rfF8R72yTzpYs0oJu6FHXNdpa8qLC9yT9XsAiqxFS4PkB796dk+aasnINCTxVo2tnp1poRVHXxIGi1pqs8gmtYJAo8lqTYIgSHxHGFFYxW2XM0pLSKgZotDEkoY+Shm7sUwuBFwi08jFWorVhtViRJD6zeUVROI8Vs6qcra2weIFkvKzwigrP9ygKTV5pCqnQgcf2sMOOAHSNtpBEitOlZpHOqbVmd5RQWhq1wHde3hfAjfJ54637DCLYv3wJE/U5fXBMNRvzoR/5c4jA5+4rLyOspT8coq0llCDikNnJEf2tISIKmSxWdLsd9kZ9aqOYnZ3iK9h/7CkW0zFVVfHcj/44b3/z67z0xS+xt7PN4x/5EF7glByzo4dYY7ny1FNUZcFyMmH74ApZDSZbElFT6Zo4ltSVoNdPuLxVoc2KSaWJfUVdWQqNs9ME/DUfTUN3OHCdWsNLBfiyIl5UXO95iHzJnU9/gTD5eZ781T+P+Gd/zPnNMXlhsFY2umgX46pGKmguAJPFNjIvx2Qb23h6SOfVbYXjv1vAlk2M7MsW6MBId3y1caoPi6V1lQAXJbtElgPdi7VdRqy/1w333bzREMO24RnWUW7ztr3wsx1whLXNdL6hmS48w600cm2S1XQGcttsGVka0LbvAeR1lN4eiwvV13JHKy5QLOLCACAaWuTCebbjhLWb5s1rtYu1vHt0yq//439EPr3Hj/70DyGqKb29XR68/Qovvfgq79w64eh0xngyJ9aGLeWkmUlTGKWERNaaokrxJSgpCZUiBR5MSk6Ob+NLyc/88EfYv/44v/tbn+e1W7cxxvKIgg92FV1fEkrXSENYC0a7Ypn2IjWDo1NEGafEkRKNUx15gSToRWSzDNEU7AhnhIMIPbS2KN9irEeWW25OK56flax8H78ZUYV0DprWgJI1W0FA7MPSSk7PM/b0qfvuCEleuIShany/u8MOealZrAoIA07ujOl1Q46XFUp4BLamG/v4vqSoDLqyDHshq7zGSA/PGCJlCULYP9giSzPiOODhrOLoeEKcBESjPez5hKqs6MUdqFaEgcJ6rsRolRq0LJBeQJVmhL7P7aMlEZJBrFzTcN8lLwe9gExbKHNy5bOaZSgpmVcG040Y9LvsBQLqlEooOv2IRW5YlRppXYu+HMHhQY+t/f3vCpnvC+DO05RBEnDj2Sc4f3jE8csvM+r5JJ0ud966iS6WxGGMCUOy5ZKoNsxmEwI/4PpTT1GiObn/kMCTDPt9KqMRFq5cPsBoQbaYIvC48Ykf4+uf+le89JXneebDz/L4h56hLjT5YsHi5JTe1oDh4T4n9++TJCFRd0BZ5ngmhygk7nWJBh0WkxVWKlbnc6KOj5xKhr5HWVkWVbX29vBwmfZaW/ymArCGtZPgTFtezw3RLMezPle7PnY1450//GO8v/zLPPNXfoU3f+efc/zWOSI31Fpj68aZruFVJRuglAisaqJQLJ4U1LqlUNxKbSf1tWNgQyP40n2upTeQIIxLNK7pDtu67zUl6Y0PuFoTNaLF6KZydKOBNpY1+L6XpNhEuG7TG2tVa1uVy4ZWeY+17QVtNlyMkm1DTzVbb95vJ56biYBA6+YTouXPAWld4wljGw67ia7bgYmL0XWL1Zu/10ORhVdu3uOf/va/pEoXPPXsY9y9f8z27i7PffQ5ivQrvHv3IV5zH7XWCOPayu0NIgIPdrZ7zBYld4/npFozAZa1YaUlH336cX7gJ36E1167zR/8499julohgB0JH+4qRqGrUHXWp467bgc05blhu+1Y086YWhW7pySeDyoKyOcFom5mVo0ZlYoCtDEEsU9Z5KxOU+4tK755XnBqBbWFThyQ5YWjsZQDQSUEvhTkVjJflfR8QZVXSK3RwhB3QxLfJUy9KCDNK2Zpxc3TiixLSSKf83GJlootaeiHPr4Uzm5YSnqhpKpKjBUkvqTjuRqL0Xaf+bKA2nI0SVlkIH2F6fQ5PZnRsxVRqNB1hic9stqQ+LWzJchqgkCRzRcMk5AH4wwhffqJwmDoepLYh14nIDcgKkOcBNw7L9HGIgNFEXrsjnrseoJQGrTyCZXHdFEzTUt0XbPT9ZiVFbHnUS9XZJPxd8XM9wVwB1HIYx/9MOOj+5zfe8j+5X26gz6zszP8QLC9f5mjh2cEunK94eqSrb0Rvd0rLLMFs+Nzer2YpJ+Q5zVCKXYvXSLPc5aTMaNL1+hcfoQv/v7vcPf1t/jxX/gpdi5fYnpywuLsnCpbcfDINTw/4P5bbzM6uIwXB9RlhlQS6Yckox2C/jb33nwFZeDgygGB75G9cpPZbMUihVobFApfuYx9qVuKo03QuUjVtcVy8He3sshME+B47CtdD70Y8/bv/SHq1/4ST/27v4r63X/B0avHZJlxUixj8YRaR6i1af1NLGb9ahtJ4cCwxbjWQpaGo2yTUkCgmh6TVhDYTUcZRyNsQl4HqJtCH22Ni7ybAaRtaLDWTTfrO+wXTeLQNtaoDX8s3gvkpqFd2ki2BZR/rSDy4oyjpUva2UGDpO1A0To3mnWRjV3PAtqovDVHcgk0mhHFJZguAra7Thv7V9ZH36zT3m0Dr966z6///p/x7wU+j17u8aWXX+Z8vGR/b4fv+5jgnbcf8u79MavU4mnDVuhz5dFd+r2Ygxs3ePW1W1C5Ti+Xu4qPPPc4Jtwjja7w27/5B9y+c4ui1igr6Ev4WKK4EgsC4YqXkE79Lw34vmoGV3fcSjV5AdqiL+cj3bYb03kNld7IAwHhS4QvkbXB1DVlCcermm+cZbxTQ6085zGvDd0o4myVoahdsVfgcVpqrC4ZxD5SKAIsvjX0AkkkLEVZEndjlsuKrKiYrjShB/Fuh8UyY9BPGPoeoa1IAsWyNpSVYdiPHFeNx6jrEXoC4wz8OB6nBFZT1HA0KQgSn96wR5oWZMsVhyOfTiiJQp+q1iwy51g4nZYo5SMwqMDnaJ6SJBFdz8NWGYNOhK5rok6A8X3S8QptBdO54/YqJUilYLQzYCv08SjJSkMcKKqqIs01oqoYdiLmRYGoDb2dmMk4w1TfXRL4vgBuLwh58PY76HzF5cceZZUuOL5/hi81cX/A2XjJcGuErSsWy5zB7g5BknB+9ACdpXiej7YwPl3QH3bo7+0zPTtDKMXB408xnS/5o//3f0On2+XHfukXCJOE81vvcP7gId3RDo9+/MPkacb44QN2L+2wXE5RqSXqbRF3Y+KtPbSpefFz/5KDJ5/l2pMfo0rnVPo1Hrme8uChS5IGUrg2TLWibL6+Sm78PgQCvy3SwckFa2G5UxoCBEqWKCU4iDzK8Smv/+bvYf/yr3Dj538SxGc4evWYPANRNwlKY5syNtfVpmnv52BbbACllc/JdSUmrhigXaeJJAXWNS1owm4rLdYICi7E083660jTkaKuYKaJ3m3D7SPE2h/8Pd19mqWhp2H9vtjopr/tGWmjcNGAbHsNnQKk2cca0Df7WEfkF7RVmzuw+dF+yorN+ZlmJGoTpu0gZNYrX4TrZhvNIPTt23/33gP+X//w9/grf/Xf5cc/+hN03vwiL7z2Gg/PVkgh+djHnuRbbx8zG4955ANX+eFf/HGOH9zn+Tff5WyZ0enHPLq/TRSGTIqIr//ZN7n14A+YFTnCuIYeXQEfihSPJi6q9aSz9Q18ia0NvpJOwicExpjGDrcpc28pE+kGe89T6MLdISWdeklKgYoEtulTJz1BWRvOVjXPj3Nezg0rqQiMxUiL0JrSWgLfoyxruqFHjiCUkq3AIwoUAw8SBZ3Iw/csvi/wlOTsfEnS7fPOgwmLSvPsc1fxugO6p2P2EsUqLThPNVZIdO3UOEhLZS07/ZjBMOH44YQgCJgtUkadiKK2LHJDpxsivAi9WOHVmkcGCt8TLEtDjlmrphar0kn58pLdYciqrEi6XfZ7ofNSR5GVFd3YIy9r9LJmnNXosibwnSFWEfhsbfXZ7Qb0PMsitURKYa0kLzKEkMSBZJmtiKOATrfDyXhJx1cXajb+9eV9AdxllqGzGUlvwMnxMbPpksMrl8mylGy6RNY5+VJT1obLT97g7dfeJurESKsJ+n1WyxUUKYPhiO5wm+Nb7xLGCVc++hHu33ydL//Bp7l24yr7N65SZxmL+/dYLZdsX73B4RNPc//W25h0zv6VR1gtpgy3R4RRSI0k6m0xPT/DVjkf+ZlfICsNr33zeXZGPcJOHxGEdDsR252MQEj0oiStSyIpCCTOm0NAXbUY5zTZdQPsQWMIdafS+JlFWIPYitmPFNXkhLd+959h/52/wFN/9a/h//Pf497Xb1OkgrKpqmqB0UkA26IKuW5uK5uS+dY3pG2B67juxpLWClzsK0A20Zd2UkTbgDy4hCiikSUi1n0ynamVRIsmHWpASxelNxJhV/DR8g0t2LXJyBZYG8ATNDp2NiX3wLqYp2VA7AUEXxthremMdvBqi3DEGpjbgo915MmGZtn81RzJuj5evGcdK1pnwmZMuJCYbWcIFxXlAku6Svnv/vF/z+/97hY/92M/yLM/8qt8eH6P5fk9rj79QXRynzdf/hans5RvfuMlHv/Acxh9h+5wRLYqeO2tc84nKcfjGVlVr89ZIUkEfDCSPNVVBModm5TgBwpbN4OqdfMGKQBtEdJF376nsNr5E6gmOWF07QIP93ShlGh8EnyEtCglKGsYrzQvjgu+sawZW4hlQ59pWNUaqPF9H6UEq9IQ+pZh6Luq46aIKgkFezsJZZ5hsRRVyTTVHI3PSZRgOOwS9mJ6YYBJJFVZUdcahZvV9gJFbiFPDaHyXCLweIrWhmy1ZK8fM1tmlEYgowDlBYRVgQwlNlJ4gUQiOT5fsrMV4EvJapU6ukhZDvsRWmsu7XbRpcXkKcpTGANJICiMQBrLOK9YlU5AoLXluKjYHg3YjkNCXbPKa3qxa4xsACN8PFtjbM0w9BkMYs7OV/jWsiqq71nWLuz3QPX/pZYPXN2xv/df/g1O3r1HmVck20Nm5xOUr+gNeuR5Trfbo7t3wPHRQ6b37xKGEVHcYX4+wQrJY889iUVxdv8uw4OrbF25wlc++yec3bnHMx98mqgbUhfOA8HUJaODA4xUPLz5DgGC3StXqOocZQxBnKBlwOBgj8V0Tm/YozPaYXJ6xunNt9h75FG0qZgeP0QXBYuTI1576TbfeOOU+7OS1BgK7RzHioaL1Zp1pNhectVUNprm9VDCYz48Gwc8NQq51PGgBm97lyd+9Ve49ETMvT/+JPe+epPVoqYsa7SG2jjXNmvd7xbH67XwZK3jbJvcEkZA3QBpm0w01pUf6+b32lpy7aLtQhvytkQd9680G/DW1vmcWOEUBLV1XuW6QVhjm3O3FyWC7bVoQbx5GBokX4MsF0FZvCdyXgNyS1W0XLawm21wAei/w7PXxvGtJhtYNy1eH04bedvW6vbbqKPm/zbx3CYzL5gH0hZOiTXvbgmjmOFwyMBXhD74vkevE7Jaruh2YkBydjphsciYpyllrdGtjMa2ntbQkfBspPhAR9L1nRjBU5LAU6iGlvMau8XWv11KhWwicqwrV28LsMAlbVXTt1RJUJHvZjTGEHZ9aqM4Ps944XjFn80KbtcQKYUnXUSpoWlgbYl81yxECkEkLNuRx24nJBCWnm+5vBfRiXziQFFowfk0Y7aqGOeWxBd0D4dsDQdEVcl8laIL10BYKMVw0CVbZizymn7k0cpRy7rGU5CETo44W5ZY5SN9H98YPOlaxencNfJuFKT4gc9sWVBqjS88PAx+qAiDAE+4dn1CWfJlRT+SHK8yND6rvKYsDUXtrDBWwhKN+uz2ushsCXXFVi+hNsZpy/0AYRTT2RJlLVv9iKKowRgKrfH9kP/ij97m7fP02yefwPsk4pZKcfTuXRSWqNfl7MExfujjJX2mi4xeJ0KrDq++8Aq+slx9/AmsEEyPjtjd32a4PSLNS2ZnZxw+9UGEH/CNz3wKkRf8wI98HI1A1gVp5qodu1tbGCy3X/oGw/6I3sEVrKihzPCSIcoTRL0+dZHT7SbEwxHz44ek52dce/pZFosFxw8fkgSSuNMjvhby4P4Jg9Aji2pU7m6gsoIAJ79DQVW7yNZTcg1kG17WlZzfLAFRY8cGz+9wGHvU4yPe+u3fof4Lv8jln/4FwuGfcftzLzM7M676rQUs66gZjUUaN70FXLJQiKYlOZuGuM1LpgET0US+si3xFgLVdIuXxiK169dXWVewo9cgKkG45hEtSSAb6eM6thUArWTRLXZNRdj152i05tAWxlwA6iZBeZHpsK2aQzjAXmtK2ui3KcZ5Dyfy7UujYFnH2+tJQUszbRLCrSRcsLlvoj1HHB31HiXkelttnmFjJ5DnK06Pc04vzBYkm5LzNll6EfjbNmrCuk73fSn4YCR4squIlQNor0kAuk5HbXf2jb2tm3AYZ7srG2BuBxprnHugEE59olyC3QqLrlwz3Kq2nM8zXjpZ8tVZyW1t0RJKq1H4TYWsuyL9wCPVmkAqhqHPfsdH2JraaLY7in7oI6ygrjQVltxYloVhWhrmZcXB5X12t0ZU0wkPF5mb+QhFUdUc7PXQpevgHihHl6rm9idJTKk1VldUSIQXEAQeSSBYrWqEkOhaE4WuO9OyqIg6McfTjGDQxZc+Zp5iKFBCYEyF8SSVryAt2NlOyKsSLw8pK+P87aOQWMKq1GyN+vQGXYqsxBce2x1FpWu63Yh5ltPzQ+ZVTZ6W7I0i0mVO7EtSawmUIu51+F5B9fsCuIuipLezw8npOZN7D9jdGWGU5eT4mEuHO+RlzuTobbZ3trj85NM8vHeP8wf3uX79Ov3RFud371BbydWP/CBnD24xvvUmB1s95qlHjaKbBMwnOWG3QydSnI/nCF1x4/EnWCxTwiikO9ii7MRI5ePFHaqyIo4i/KTH8uwEP/C48tTTjI/uM753jyRMCMKITifk5N13SeKAp6710bcty9IQKVe4UmlYWWdAJMSG89bWPdxtBKtw4Fphebswrnv8WQ47CfudkGJ8ypu//Xvkkx/nyZ/5ReLRFm998kuc311Caai1RaiGq7TOvAnjEoebqLX58q+d9ja+Jg1O4SGabu8CrwVf6yQmVtnGu/vbolk20kBHFbgNtrr1jSRvjbZr8HOLWHPXzZ/N326Ni3w9bCLxi79bNjztOsK+sJ64EFG/Z7EXsPXCum0ytd1CIASVbRo4tKDebqJR27Sry2bAaQeiNaUi3jvDaOWY60NpjtGaC9Ww69u1OTdpXeJxV8GzseJaIomlG8CVVM48rLmpsrn+60EZsb6eUjadk6Sr6nX1Ng7JlRT4oUSEDiJ0qfE8iZGS83nJq8cZX51VvF66FllSOvsEIaDULlkdhYpKWzyp8LFsxR62sXrtBR5JHJFWNX5pGPZipDSwrLl9nkIS8eSzh/QCn9X5BF2WdDyQnsREEQMVUZcllDVJ32c5z7HCwzPa8eWBoEwNq9IiPUkn8elEglVaEkce6Ipu4mxYCw1Hc81injIcxdx47BEWJyuK2ZSdvS55rjFFyZ2y4vDgMnGUMV2lZPPS5WmMs8+1WEorCYZdRsMeVVUS+Yqhr7Ba04sC0tKSZwZrcxbLkq1+QpEVhIHHqtJIaSmEYjlefK9Q49/sDvi/xOIHPkcPTnn5qy8z2N7DHw6ZnUwZ9PpMs4r5dMmVS5cYHV7inVde5ujtt7hx4wZeFHDz9dfwOz2uf/BDHL/1IiKb84FP/CDdg0tcunYIuuT4+JQiL+j1uhzdPybwPXYP95C+z/bhIUEcUlaWcDACJVlOzlyHDeWRLmYEYYTfHTI+PmV2NqPTG9Lr96mNxxuv3AIhODzcpT+MCQKfbqjoeoK+L/CVy2o7a0zHb7cVZ67IZQMuLZVRWcvt0vCNRcnzxyvuLipEJ0TkC+5/+lO8+s+/Svz0j/LcX/+LXH56myTx8D3pnASF4yWdDScXXP1s83dbEOQiO1/Jptu8WLdCU02/Sdm8HkpLIiWRkITStUjzaKMbx5pLnN5b4ABpTQnQ/myhaJPkFLYFpW+jS77tkX1vAlCsaQzH7W9+X4ObbY+jmV00wKrWV+Li5trPueNrpXFr3vrCu20uoTntzdk13L5sfiKbSF02xyDa9V0TXiHc9ZLCNrSMuzeOXm6JF7t2aWyvgutM5KLsJ33B93cU12OIVav7bu5fExy098WNWgYlJV6jTZbCNVlQjUrJNr+HkcTzJcoXyEC6RgTWnYsWMM40L5zkfGFS8mphWRnn9igRdDwPayyVcaqJtCkaiwXshIJYaGoLsXLP3XTprFOjwKeoNXeOVpQiYInhcL/PpcNDpqdLxtMFmNo1WzDQSUJGvQ5FqQlCH+radfPRFZ3II0piiqIiUB7SDxgOOxzsdZksMjf7qEv6gwThKVdmnpaclRV0Q7Yv7eNHEXuPXGMwSFx/SQ8IPfq9EWFVkC4WFLmhFoJpVjPLa3aGEb1+gtcJCMOQxXJJICxDk1LnK5S0zEtDtshBSJbzkq1OQFVljoIpK3yrSQZ9qtpjt+O//0ve01XG8198gY/9yEfxAp/xrdv0t7a4f3LCcKvPo49fRyufu2/fIvQFH/y+j1GWFavzU64/+SRSedx59UWiuEN/NCDNKvp7l6myJcenr9Pv9jBI7rx1k72dESruYAjobyUsFyuUqhkcXuPs/l2WZ6fs3niceNChSlcEQYAUitX5GdPjh5ja0BuMqLKSO89/jaC/RdI9JDWwd+2QK2cpRVHiIzjPa5ZG0PUMKbopbnAl0bVt/EIAGtmdbqfewoH67UI7OsKCFh2ubwXILOPo858lX8x59i/9HE/9jQHRH/5L7r90zzmK1WtyAm2dmb42DhBa607RxHoCFwXKZvy20tDksBwVYlxSU8gWsBoaBYsyltQ6uZtpMLmtXGyIDqR1aheHcOu4c7NjYNNrbTOEtVQC2I3ypPnMxSh9s64LSy9G4e8ZCwTr5KRoZgKidcBrkqJrDvrCddmommm8Y1zpsr54/O+hSzaA3hYg2ZZvt/Y9Ubnbj10PDm014mYIaikk97dnBbGAXQmXfbgaOZ/oUDX9Q4VLIAYN9SGaknY32DQDiW3UJELiqQ3vLaTTbQe9AKSHLUtk6IFUmKpGICg1jDPDC8cZX5nkvF7Cwjb3WTj/b2Fl04gXZrWm53nUFrYUJL5Ca8sg9uh4HsYa4lCwP/TpRZZFVvPuScHkqKQ/7LLf63D87kOydMXeqEciKhalxvMllbEslylxHJAWGiUsW50QYQ1hrJguVmjpgRR0kghRVxwfp9S1IjOaXhIxTwt0ZQmBJPHY8kO6B3vkpeWdl97g0b0haVXT9QSVHxCJkp6qOD8v8DBgJON5Ronl8qVd6qIkswWD3oBVVeMJn06ZEsYBhoBCehydpGz3QtJFSi/2qbV2ro7ChRRSGrJVycgDXayaQrrvvLwvgFvXNXuXdrj7zm2Ggz7JVpfpbMKjl3cYHlyiRjA5OebS1X0GOzvcffMmvX6XK089TV3VzMbnjPb2KbVmtczobu1x79372Lpi/5EnefuV19DzCc986APgCXRtCZOYsjR0eh28aMCDN1/Hlkvi3hAVBpTzGUEcU+maokg5e3gfzxi6/R7FaoUwhsc/9EHC/jbRcERw9gBT5hzudqkrzf15zXyc4i8KrAKhJTmWrLZUbWJJNFrp74BhAqc3vlNZqlVJcSywss+zjx8iphNm3/oK3xpPefIv/TyP/a/+Mp29T3P7C68zO8soS+cs2FZsth4lG3g069fW/ShpS+cb6uRi4wYLCqchDxtLQNFU/gjaCkux/rsFibYUfgOpzdLyz6zj7zUQSrFBXOuCV7dGE7XaC1H6Buq4gPtNopFNSfp6UBE0VAFr0LbNDORif89WeigbLrlNurb8slwD8uYTbVTfHk8bmbf7tu5yuZ9r4L64z3Zos2tqROEqDmPhfLZ3FRwGgu3A2bwGchNpt6IPKZvBtlEJNYWhF+Y+zbpNZtwTrmNNMIiwKEyVM3zmgGKuyU+nSGHJC8M4rXnxNOUrk5I3Kte+bj1oNfe/tBBaV9sbNU6SXU9RGydf7foSaQ1BFOALwyCB7YGPkoL75yWpJ4mDgCuDLirLmZ/N6XR8wlCibUidZly+MmJZ+VibIsqCKPEIlaAoNUZXdOMIWRi0FUjlkRU5wndWyl5sMF6AqQ1hGLKqK8q6ZqUNg9EQTwk6uqLf8VjNlnR8ySzXmMWcw90us3mG1IYSQV1XDLo+vdGARVpS1yU7e7tM8xrjJ6j5FN0RpHlF7YecHk3pxRGrNGN3K2CRQ7XIMZ5E64JuJ2K+Kjnc9cisoli4hPF3W94XwK18j24vYHs0YFVphBA89eyTBHGHNC8pshWXrj+K8n1e/cbz7OzucfDY41RVwWoxI+x0qcucbLogLzV333qbTicm6Az56h9/hsPtAY9+9FkqJMoLSDo+xgi8OKQuCqZ3b9IJJZNFSS5KtmyF3x9xev8BcadDnc7pBgptfErTGOVUBVGvh/UV9998nfnJCV4+JYhjZjLjldMZVeXkVaGS5EZTNB4avnBUQt249a3NkNjEpZsvteWuNqTLnPJIEV97gp/8tb/I0Sd/h8nNN3jpv51w4xd+lms/9St0Lh9y84++xNm7c7K0AgOVMM1o3lAGTedc3fA3bcS5Tus1kauWjaWrdaXQQsh1dCYAsZFg0Oq0ZbuNNuRtQmfxnoFjU/C+Se6172yiZ3sxIm+UOZuY/AIvTBO02lamaDfctuU9uux1yG02LoYbkqTdphshWlw2zS+GFrTFOvHalr6LCwfTRrgSx0W3220LoVyHJLv2Ptnsf3PfFe6L2RGCjoS+lGwp2PZhFHjEnlnz2Eo4A6lAuWm/bbwNWgZorWSxDT0mXMLRNgoT4bknrlwUqFjyxF//WcIbH+fN/+G3wI7JSs3p0vDC6YqvzUteryxp4yCpGuqm7U1K0zoukoJASbpKECrohx6J71rX1drgFyUHA59uIJgtcrIC7i0KOqMuh2FA4knun85YFRWdYcyq0nT7Ef0o5vgsIwihKAyJUvQSn7rIsFI5q+d5TVFDNwmojaHXi9jpRUwnS4yBsrZIJFUpSLOSEsNga4CRoLIVW8KQZisAqiBmlWV0PMnpOEXhKpFLXRIGHr1un7QylEXOaLTNKivQYYdumtGJLLqoKaUknc+4dm2Ls/GS3U7sQo46c4ZtAnwlWa0KRgMfEXgUZxn9fkxVffc2Bu8P4BaCw6uXmS1W9LpdLl25RO0FLFcLbFFwcPUa89mc+y+9xLUb1xleuspkfEo1nyCET55pPFVRVjllXrC/P6QqDUdvv8KzT16jf3DIqqwZbg9dlGucFGg+ntDrhvS3+njxgFHcJd46pNKGF//0CxwcHiLrnDiWeNtbzM7G1FmFFwWE3RFGKmyZE4mM3n4HqfqcvHyb2WTJoS+wvmKcWca5WWumUQ7ktNlUAaoWJFqSYc2tNl9wKzg18OXFivTLLyLDLodBB687p54e8dZv/zbL4x/nqV/8YZ7du8StT/4x956/Q74yUDuJn9bORF7IpgS+8SxpzfDXQ0UrB2t02a6Rg4tuvXadtUm3QAiD0HZtEKXXU/6GqxWbqMGu/xfr6LNF2DZpKmidD9t9sL4Wa1Ki4aDfC5j2glqljXrbgp71Sptw9+LnafdxcXtNdE/LF19YT1wYnJpzbM9HNjdVwroISTTn+O2DcgvW7evKPR4EAkIEibB0lWTLs4x8QUdJIs9F2V7DnyspCDyFRKAr7XTXTRFNuxcpnU5Z2pZbdw0XgkAhPIloImItPBbjgKOX/oT66B6lsTxY1HzraMXzS81blWXRzFJUQ1tJ2VIlze0yrjlG1wNpNXtxgFQCpMWz0A09Lm0pblztcu/hgrfuLimB0aURVzshoqx45+6YbuLT64Roz2Nrf8hge5f5ZInRU1bLGZ3AJ/QleWGIPEVeVZgahJR0ogBb12gh8CvNapWDDKiqkjLPEcrDp8bzFUHSwZeWqqrZjqAunZ3rrLSIPGM7CciyGoWgKGs8z3m5+EnAsrAslyu2hh2yuiD3OwTLlJ7IiUKw3YRq5hoLr5Ypg9DD6pqiLAj9gFVZ05XOAz30JVIJjk4WdJOI6aJovpffeXlfALfn+2RZxqjfY7i/T1pVyCpFCcX2Y0+wGJ9QTCc88dyH8OKAxfiUTieg6nZYpgWegnyZoSRcunKZfLWkLhc89oEPQBBS6ZpeN6YqMvA9Z04kJZcu75MuU05OxvQGkmRrh7MH93h46xaDQQ9P5iSdPjJIWE7H2LIi9sCqEC/wqcsMz9ZEQQjxFtb3GQ6P+b4nRszHK169v+SkqPGkdVIt4eQ+eX0BtHHaX9OEjhfBpL1tbUXgXMO3FgvyT3+ODw0CbowiDnoRIs14+LlPsXjwkKd++Wd58q/9dfrXP8O7f/Iik6OUqrTUGGoNtWh46gtJqdZNUNiWDgApGyRSAmkl2jThazOoGGnwTaNtbgYDZ0zVRrESazUbl0Jojazek2xcR6Vt+XiLqGITwbLhoVuQFxdWXRtTtVvZsC2Nw+CmZL29wBdg98J+WMv9WpZ5kyC0a28YRz80WmfRRLLWqXEqy1rO6ECTNWUh20gc1o2g3aAg1tRZAITSEgsYKBj5ko6C0HMtybwm8amEdL4fnqts1FVTMKNcUlpau6ZNpHVAv57EYPF8id+L0EWJChVUhjqruPsHf0AQSPLScG9R87WHK55f1tyqLIVlbd8gm3sMBqUEtRCMPA8fGIZu7rU37GCqilxbfCT92GO37xN7gnsPltw/ztBKsrW3Td8a6tmS81lOV0FW1fQHXfYOezzy2KMYoZiNJ6RpTigFnVC6Rr15QScJKYRHJ/SohSJWrj9kF4OpSqIg5Oh84RKjYUBeWlAWG4TUtSUVgl3fUtbGyRKtR52u2NuKybKCOHSgLxXOA1kb5pnFmpzRdo9pWmJ6PZJKM/ArbFkSdLvMphXb3YBZXtMNPLxOwumDKaIyyMglaZWSZIUmjizjSQkC5lWKQOC9390BrdbsbPXwki7z8SlKefRHWxAkjI+PQFu2rz1KnqZk04y40yEvSvJlAUKTTWf0hgOE9BpTG8HO1asslxlhGBBFIVWRE4Qx1mrqqmZrd0hWlJwfPWTv4DIyClnNJhzdv8fO/h5x7HPpCddM4fT2LdAZ24eXWU4mnNy8zc7OkG4vgcAjGu6wmC9YjQv6u3uIusKPJoTnGb1UEIc+S2WYl4ZVVTm9rrRrO9YGL98DElK5KXXpsKqpYIMUeCkvyOqCeVoy3Up4bDciMDWL157nxZNjHvn5n+PGj/07DJ94nFuf/BMevPSAbOnsrVwHmbaQxAGaEM7gSAqB1xTlOGrA4CnlSuvXfb8aPEc0fh5uBlE6rVsDDg0YN+f1XjlqQ4W0934NvqKhVZp1WI8R6+1tul62YMs6im5nK+3nbBOFt1zJxUTPWmYIbIhwNtSF3UTsThXS6swb+aRsB13n/ujjQNXiJIN5M5ToNVdtG/rE8dbtOSohUNZRUp503tsdIRh6goGSRApiBZFy7n6ekjSTNnwlnELEWDCuzbMUzWzNGCcNxeIpr6HD3N++EHihIuxH6KLCCxQi9BCyQvoWoyGtNXcWmi/fX/F8qrlTO41++4x6tqkLUNZpvnH3LdOaYRJRmJpR6JOVFcZalrUlUYbd3YDD/Q6v3xyjPJ8zXXPp6h5JbfCrnJPpijAM6G3FlLml2++we+0p7t5/yA/+7E9jhI+tXkLVNXVe4hlFaQSL3NAdbGN1jW8MWVk1z5wh6UQcT1bUxoBUaOWxyDMqUyFEzWCYsKMkaZbRTQJyYyjKmsevDciWBV4UU5saP/TRaY4RilL5eEKQBAGLoiINEvxpRscv6fY8gp1tjs4W9IKAeVHSDwUq8phO5sSJjza+m2UryyKv2emFCCXwdIHwBYusIlTfW/D3bwRuIUQEfB4Im/V/y1r7fxJC/F3gPwZOm1X/D9baP2w+818A/xGOwv3fWWv/6Hvtww99VLfH8nxMb2vI1uWrnB+fYqsVSSeh0gZja3SVI5RE6xJRVyxnK4JQsn/tCkL5TM/OGQz7+GHEfHzGYNCjqip0VSGUoq4rdF3TGY7I6wprDaODK5TaIrRgPl9wcOkS29sDhB/w4J23OblzB19KLt24gpVw/vAOw+6IXjdAdWKi7QPKImcrDknmSypdsLs3Yjz+IsM4QPRhkdfoZckM7aR3Cmzj3HexcLCZWaOUe90AwYUYvI0sCwtv1DBblcy1JS0113ZCdro+ZnrMzd/6Tc5e/TAf+Mu/zAf+14+x9elPcvMzLzE9XSEr56ft/K0l6/IX6bwRWg67DU+N1lyAvPU037n0NYk664pyKsQ62WrXRS3QtphpGyy0mxfte5vNb6JmxHoQa6/OGrYb6UZ7nO3UvR00WkZkXXHZvGrWXPl74vP2ZNfyxPY+rKV8DfCvZX3Ne76FUEAoBF7DH2Nd67cSl8OobDvkNUDdFCsp6wDdExAKS1cJep6gI6DjOXWI39gmeKKJyq3bR+ArfF8iNI2fhTOGkraJtEXTFBqxTlRa6/Ta0TBCBj5VWrhuN1K6yi/raK5lZXljXPK1k4yXi5r7tV3fNzdraK6oAKmcvXDiSaSwRFKyKCuGnqNwjHFP7CCUjAJBtxfxzr0pGsFJWXN4aZctoymritNZiRKSZHebWw8nDHs+J4Xlzpfe4s7d25zPcn7+F38Kaw2Le+9ST6bosiSJYkpdERRLok6POs9c+7UiJ9lKuPlgQVHVbHcTTlclRw9neJGgO+gT+z49WZGlOd1AoHVNpTXDQYeyqAiTkMksI5CCVV5RV5YkknihT4JHWRd4vS6dVcUosiShTzgIuX1/xm7kURiDbzT9rRF3HkwYxDFCWMrS9b9cFZKOJwh917Cku5VwllmCUNHxzf9sr5IC+Clr7VII4QN/JoT4ZPPef22t/X9cXFkI8QHgrwLPApeATwkhnvxeDYPr2jA/GzMc9OjuXeXeuw8ZHRwQd32yVUqoFKLKiXsdsJKssNx5+008LXn02SfJM8tsfI/dK1cI4g6L6Tn9vT2W8ylhFBFEMWWeki9WyLBLYRWq1ggEi9mCoNtjfPs2tsjobg1YTpeURUo+PWN3GBMOd9AqRqcztnf2ieMAGXUwQZe6rgmTLtXK0N3ZYzab8fw3XyKII65f6vHw4ZKsNARKMPAU2lrS2pI2XRBc+TFrS1VLWx7vuEwETf/HZsptnRytBh4YWGUVK6NZlBU3tiMuDUKCqmD2wlf52r0H3Pilv8iNX/z32frAN7n9h5/mwUv3WCxqKtcH7D2qkoYEWcsDkU7uJ+2GUqkb3bHLyklKLJmB3GzkjNhNabzB8dGmoWVad8B1MEzjR2IbSsVeiHDX+rmLzxfvea2V3znvkPbNC47fYn1IDqytvUBzr0cWdw2Eo0MuDqKIpplE86KyDrw8K/AE+MJVxwZCXtBsu/3XDfeicc1iHfPkeGZfWkIpiIRrvBEqQaQEYRNNhxIH7NKBopICX3n4niD0feqqxmjnWS2Eq5YUgvVP2exbCoGSCuXB6JmrGGJWt991yWacf7UxltLAJDe8epryrVnF66XhpL4wi2GTImjvo9XOqyMSjutWAg47ActKMy41kZT0fMt+J6CqNA+OFoSxz5muuLE/oufVnE8K0kyTCM1gt8PUSCaLHK8XUy1r3rl7i1BZTu/f5/TohNXZHJOX5HVNnhXI3BlTJbsxQS+GOGB8PGZrkHA+XWHqmm6gSIuCO+cLuknI1euHeDIkXM4oyhpTVsg4YjZb0ev2WE5XeIOA80lG7Dv5rmcsUexT+x4D6YGtqQZbhEXJVuSsjXvDDueTnMNhQl6UUJVcvrrNvQdzQgR+IEmzAqE85qsUKRRCWeapYTAMuDtJ0UZxEEkqo/keuP1v1SzYAsvmT7/59z02ya8A/z9rbQHcEkK8DfwA8KXvvg9DsrWLP+hx+uA+ncE2QbdDaQxh0sVUUGrN9PiIh7fuMJ/P2NkfceWxG+g8RWB59KMfxQiFtbB3cJ26XFFXHrU2FMucyBN0RjtURmN0SVlWLLKM3mCLo1s3kemcyzeuUZUluljiGc3hU89ilc/4+JiuXeBbzfDKZYqipJI+nU6C8pzjWtwfUNUaky+JdM721Wtce2Sf5JXbHM9u0w0lQrhelLmp8a3TdAvrfEO0bUGpiQfFBdmaaGkDpyVuOQR3YwQv5IaFyVlWNZNVxfWdHsPIUJ/d4Y1/8t8xfuOHefwXf5hn/jfPcvCtP+XtP/g8Z29PyEvtEovWUlsBxrmtuYFCIK1x/t1i4+7nAMEVrlfaUhgH3FVDu0AL2JvmBhfw/AIAtAqUDeUhmmsgWl12u0Lz4XXS9kI9ucN2e6EG8du56s0i1+x6C9sXKkBFu0UXdrfxvZSNLJBWUeKqS70GsH1r8aXEF6yLavymV6Npuva0EX6bsBQ4l8hACAJl8ZBOj40lVNI1TRBt5Ozc9SJfoTwFxlKVFVizfkak5UKnJZrPNYlDKQg7inh/yPI0o56fIK1G+u6ilqWlUh73FxXPH2e8kVa8WlrmzXPYqmFcx0U3oxKSdZMOH1y/R12zHXiUdU3dBCHSM+z3AvYGIZNpyqAf86DSPLo/omsrJqc5x9PMmVDFktMlVHbOzl6HYTfhztEKXRZ0+wGXd/o8fOsmYb3CUCLCDjGWOq2IPMVkPGU7SihmCzqdiLOjFdmqIPJ90srwYJoy2u6xeziitgo5Oae0Bqlrev2YIqs43B5wNlmQdCJuPlzQizxWmaarJChF5gliodC2ZKki+mXJ0K9ZLHMOr464f5rS8yHsRCxnKZevjTiZ5ATKgueTLTIK4VGWZaMsc0ZfSSSYpDWx5zNIPIw2VLnP98hN/ttx3EIIBXwDeBz4b6y1XxFC/ALwvxVC/E3g68D/3lo7AS4DX77w8XvNa991UZ5PZSW333yHOIoxymd8/hBb1JRZzunxmG4gUdJSFRk3blymM9qmqg3JwSHbjz/H2f076CJjsZhTFne4+cabnJ6M2dse8n0/8BGMH4H08GSN0YbxcoZUEbdffZHQwuH16wjPw0MTBjF1ZcmXS86Pj4mjBD+KCPtDChkhk4BIeZh0jggigt42dV2TL6YIJE9/6AOURlFj2blW88ws5/bdMTdPUzSWjpIkyiUp0ybq3Uzz7SZqs2YNL6aReGnpChDaqkUDWN/jljbMspppZVnlhsNhxOW+T6RzTr74KcavvsyVn/p5nvjFX+bjz36MB5/6A25+9kXmxxlVbaHWWCUxxq5lbG11Xd0O/bY5JutK9ksrSLXj4Stas6k2erZrwHcMhdtmKwt8j+YZ1hr2dXk2F6PXCwMYFwkbuxkEGspA4KRu9gJFuJH2sebohXCzHCHaIpf1yHmBlGnpAbcfJYST4AGBhUBaAgSBsA2d0baqM+7+qHaetInilXBfulC6yHo07JHPVigJnpR4wjSabFfZGoUeWwc9TCVYnC2cn7pwqUFPSWQzXG4AWzTJZ/d5L5R4cUR6unLdb1TT+FlY/H4HMdrh1Vfu8o37K17LNe9WhuyCnNBdAwfi2rrzxILvQYQg9hyvvxMEGGswVtD3JXHoE3uSSlvm84xeEnB7kbMz6BHrgsUyp9Dw1H6H01KjhE8USeSwy3a3x+n9MSeTKYNY8TOfuM6jzzzBrTceUq6WdLa2WeUrFBLjCx6MM/a3QjCGzlaf8+NzZF3jS5/CQFpVHOz18bb6mFygVjMMBVEUoIQPVcVoEJAXJd1uzLww7HQDjO9RTxeoqMOyqEn8CM8TTERMVGhGvYKsgL29DuNVRSwNYSdhcj5ne7fL0TjFFpowVCyXGhkG5MucYTcEAatVyajnk2MRpWHUCahtxbzUpCXrWorvtPxbAXdDc3xECDEEflcI8Rzw/wH+K3cb+a+Avw/8h/xrcU7zDfu2RQjxt4G/DbDXj3n4xitcf/waqjPECxUmNczSh5ydnDDodACL7wdcunEVpTyCTkI0GNHZu8LX/uUfkC3nVHXBweVDTu7f4eTuCbu7fS4d7lKUGdMHD4jjhChJWM2n1GVJlU+4vL9DbziiMk7qo/yIPK/IqgLPaLa6IXEnxEsS8gqiXohSznDUCwKq0nJ+dETciUBXDHa2yVcLjm7exfMDrK453O8wmSzwz2En8alqQ167jjaBAOtBUV8wZrKsp/pSuuSlRFA2jYJbwI6aikbXVNRyH5jUmqnOmZQ101XAtVHCKLHY+QNu/sav8+Dr3+Dpv/yrXP6Vv83ux7/JvU99nne/8gbT8xSjHcBoLKr5utq67TvZEMDWUmEpDKy0m2K3xSmWTbQNAm3F2vmwdaZrHwSnKNyAdPNMOG/oC4+QaJ6epl8L0Pa7bLbTbNvRPbZ52DbKkrWO+0Jkvy6ecdU9DQ/cRPK25XFbasPZpjr6QTQJRkMgHbcdCNexRsk26m2b8DYNlK37krVGTmsDKFzLOIqiqX60eLLRWUtntRrFHp1elzKzZOO5S3BKNy0XQqCac5LCFdS06hQpXBWl9FzOokoL8ARex8MWrp9j78Yhs2TE5//sFq88mPJGbjiqNVUziG2qUTeDpC/dBTXSzTr6gcfKQlcIvKYpaOwposDNf64OQyazlGQQcG9V8chWh63QoCvBLDeEQpAHkmEQOpXLoEfgeZiq5IX7J8gAPvHcIQdXLzNPA4pVSrfTQUlLtxuSLkrypQFtWC5zuumMwZMf4OxkgpWKZZaxMNDpxXR7HWbTnJ3QUAeGSCqsMXjCMBg6LjuKEsZpCbUhrS1K1+zu9pgsSuIkIvQF8xrKtOCgZ8lyQxz7TDMNec7WMGE8XdHrx6zKGpPmDLa7jM8zaqupS8HOThfwmJxP6AQSLQR1WdOPPZKeZLIMGC+W2Nriqe8EpW75n6QqsdZOhRCfA37+IrcthPiHwL9o/rwHXL3wsSvAg++wrX8A/AOAx/f79oM/+AnSvKaqSgJpqGqDn/TZv+qzmM4oMs2V6wfUlUYoQXd7F6MiXv3iZ6GyeJ7iqY98PyYd88pXj4i6Ha498RhPPPMMy8k5W72EstbUZQrWYIuMR558HM/zWEwmdJIAL4jcOlYTKIO0MLz+OKuiYrFc0em45IKpLWG/z2o+o8hLrPKo5jO6O7uUVYHwArYGXfKi4NqTTzA77XI6ybm2MhxPVkyyiqqGni8xlabQFr9pIVPVTYcY20TVVuB7klw7OJTWyb8C5XC0Mq4PpQsYJXMs36w0R8bydG1Y5DVXtiIujSLiUFPefoFv/v23uPP9n+DpX/7zPP4ff5hLP/UCd/74U9z68lvMJ6UbGKx1EsCGrmm+x4BrxZaaFrRZJ69a0NaiNdFiHeG2Usc1QLKhPi5Q0c06dg2y7est9SEtjdHVhfXFBb7abqL01nPkYil+O4is+XPbbscNPutqQ1j7tbSRvqMkLIEQhLhsvS8cndLap65tVK3ARwgp+k4AAEy7SURBVDg1iHAqMl80uuumn2ToKzwp6G9vU6RzfC+gLkqnPKgM1Ib58bzxQHHRvvOTcY2bJe1A4QbwdvBQClQgQAm8MKAuKgRQFzV1XWN6HW7dr/j6q9/kzazgZq5Z6FZhdIHXbichuCR0jQOMSMGW71NJWGqNsI7q2Y48kJJlYTBWY3RANwl447zi6f0el3qSs2XN8TjHaPC6PmE8dMUonQ5hpVkUmi+9c4xQHh846PDI9cvMxkuW0wfUqxWFF3Dl6afJi4qbb7zFaDemns9YLQvGJzO6hyuS0QGnRxPmGrr9mN1ehDY113c8KgORthhdYoqaTi8iKw1KKu6Pl9SVoTIQeoad7S5lZQn8AGkNqVHUBvZ6zrxt1I9Y1gZlDGEn4uQ8pRP7pKWlWBYMBiHnk5y61mRCEnoBWaVYTqd0fIEIFKu8JlSCnb0uk2XFYr7CaIsva8T/HOAWQuwCVQPaMfAzwP9NCHForX3YrPaXgJeb338f+B+FEP9PXHLyCeCr32sfYRRz/52bzCZTrj12nUVWU5XuIctWOVIorjxywHQ8I4oCutt7PLx9i8nplNLWLFcpT37ww7z78is8fO1FHnv8MfaefIb+7j7jBw/IFyuE76OiiHy1RJia6889R12XLI7v0+kkTjJoJUqU2CLFtwavO2A5m3J+es5gtEe+WBCEu4SDHbJ0gVUR08mYniwZPP4YVipsnlLnBWEU093Z4+7RnOk449KlHbLpiqJ07Yh6YcC70xRhLV2lyK2h1C7a8ZokWYsqVW3XCglPCmLf8ae6tmv3vyZOAmupheBubVnomrE2zLXmfFVxebvDqBMS1gWTr36WL7/8Ivs/+KM88Us/yzP/6Q9y7ee+xK1/8a+41fh9F8asE47tdLkGCgyldbYoGtae3DWusMjpujfx73siaNkkEYWFdf0iLgm4Xrut2mw+QxNFN6R5awS1Vn6sEd5JFDe+JGLjFSJYZ+nbPbfYLTajkmv11YC8FI2XDC1VAh52HWn7wvUSFaIxeGqohKCJrkUTpfpiUzDjS+EidAF+U3dZrFJ0baAqUBjKVTsQu4FC0Tj4iXZWYJpZgFgX4Sgp8APl7oZS+AMfqyV17p632jhf9amRvPH2hDemR9wsLQ9KQ92crxYtsdNeo81MRQrpshYCEimQwtF4PSmJpXBulkpiLAx9wSgK2Nvp89qDCR1fga25dVSRppVTBSUB8cAVrnTDiKioOJos+NM7E3q9hEsdn6eubhMFCd4gYrVIqaqCUXfI6cmYqBOw+8gNjt98iyKrCYQgUZLjt29RiphZqTk8GLLdCZgtV8SexAqXI9BVQSgFySihzEvQlqo2VGXNJK0Z9Z0/+GSZEyqJEpLUQuyF7AWarKzpJz7TCqq0ZmsrZjbJ6MYeBYYHD8Zc2etydFYwjAUPyxoRxRghKBcrup4lDH2mq4JYCrYPusyWFfPzBaY0KCy7jcHVd1v+jY0UhBAfAn6dproV+A1r7f9ZCPFPgI809/g28J+0QC6E+D/iaJMa+M+stZ/8DpteL09d2rL/6O/8LPvXH2E+m2Nqw2o2oaotoRIgFJiKbjdGRR2yLCMMBZ4Xk85n7Fx7hHR6yuJszNUPPIduqqSy6RzPh0ILVBBSLJcMeh06O3ukizl1ntFLfDCGrAI/8tFFTqAMyACiGFMW5IsVZWXZvbJDZRR10CNdFrz7tc/z+BNXGR3eYJ4LwsRDZ2eIqgAZ8uDOXe7fukV/MISq4K03brGYV5xNct49d5F3Vhvmdc3cQlVZZ2bUTIURjbmRwAG0dOoDqx2QmbXB08aMaV09aBubVSzbSvBU6HE19Bh1fK6MEgaegaLGaIno7XP5R3+Sx/7CTzM4VMyf/yy3PvlZbn3rFrNpQVE5xVhunCY3FYJUO116pqG0lhIorEtSVkKgTQOUTZR+UUp3MZpuQfpibNEWeCgp3XsNkrTl52tJYgPyLf8smh4/0DotirX3iUFgLihPbLsdF4JDA7wbCeCGL1FNEtlrqI5IOJleIFxiUmLxhEAJ00j4ZDMAi/V7vpRIYdxrLe0inIGXbAcwcZHqAGFaqwLrHBuFG81UU40qcdSS70t8X+IFHro2zhbWd1F9ZTSVEWRGcHte8do442ahuV1ZlrW7ElbwHp32RUhoJ0WedYZWkfKotGYQePjCshcHzGrDIPQxpuZKN+BKz8N6ikVeEvk+89wSYyhrjRWW7VGX3FgGWwmHWz30YskyTfnUzRnSDznoKH7gyV26nZggjhlnFYEuOHxkl7C7xWtv3SUEIusKls5PTumEHr6U3JumyKTD3s4WHb0kr2pqK7BaEwU+Wgh0VjLoBBRF5kA5r7DGcmepMUXFfj9ES4WwltgXzPIKL+6wFxm01Qw6PqfLijrXbA0SJrPUOf1pw3xZ0IkDJsuSUeyxMjWTOiBAOctZagbDgGlRoSs43ArwYo/5qmI5zalqCAKP1MLf/ewd7szy7xh2v2864Pzu3/sPOHlw5h4+XbGczzg42GZydE4URgx3tzHCkhUVcZIg0GTzFYO9A4xOqZYZyXDEcr5gtcgJPAjiiLyqWeYVvX6Xvf1tsumEylhEVZD0B3hxiK4N5WqF7ym01gSDIaaqXFcQYTC6JtneR0YJ9x6uuPXOQ3r5fZ7+8JN4cYxJl7z5+T/Del32nnyaaNQnm52C1ljruOzJZEo+HjM9OeOtW2fcP14xzy1Hy5yjoqbAoDUUtbsfbaJPONIXaw2R52G1WZtDCSkaM0An0att01ke4RJFuCYOFkiE4LKSPBYqDkOPy6OEUaLo+kBRIQiwyR6HP/ZTPP6LP8ZgVzF/5c+4+Uef5ubX3mEyKcmRnCxKxrWhsoJSSNLKkGkH3Lm1lFg0bVKyfbY2lAPYJlIWiAuzBRc5N+vScME0/HGD8maDpRcguo2H22GrAeaGOoKNuqWh1V1UvikjdD9a/bNwYKZoo03h+OfmeELpim0iaR2/jVNuODrERdZek8AUuJmK3/DWAveekxw2xTxiU1Lv+j2Khhbhgj2tXUf1QjbvA8pzvSGlL0BIvNB1gDFljbEuqZxqOMk1b57nvLOquF3DkTbU1nW80c0cpxKsTbXaqyrXd8TNMDqBJKsNXU8x9D0GgSTXlhWGoSd5bBByYzvgPK9JlxW+pyDwKLOaWAqEAhkH9BPF6PI2eQ5DXWCqin/19impCNkJLD/y7B7bO9uURe0aca8ynvvwNW586OO88/a7zO4fkZiMIisp8gopDFmmQQhWRc3e3oDtvR1m5+fovKQwBlNpkk7MapWzM+iwSlcIXboovNKu9Zn1CYRlXJYkUURXGYrakAufvUA5F9FeRA7Mz9Oma01FIKD2PaYnC7qxzzKv6SUBla94cLJg0E0o8orIk+wNfOaVoSwMO4nHYCdhMlmitaUoDcJaRtt93j1b8V9++l3e/S7A/b6onJRKcXrnFnUlyVeCuBvy6NNPcXrnDn4QMjzYxfN8JuMxURIjPYWwkr1HrrCcp/hS0d/bwyqfsK5A51gvIqssVVaQBB67B3vUVcVivkDVOaPL1xBJh3SZUS7nJKHntMZSUqdOYhj0BsSjHbzekAd3z3jpT77A6Vtv8EM/+UNcvvFxx+cWFdoIHv2BD0G54o1vfYOV6PLcJz6EoqbWmtnJCSYt6O/sUyF4RHr48owXb02wQuIrgW8UBQY8Z4TTcsZY05RDK0xDHFucURDWAYwRLcg33DJ2zTW3FMrSWt6qNcfacr3STGrDQeRzsNvhcDTAq0o8e8q9P/gfuPMnf8zlH/0pHv2ZH+JD/9kP8fjtF3j3M5/jja+8yfLmmPnSUmhDaa2TfuEq69aOfN8Wsa210U3BjlNptIkvsaE+aCrzROvX4fhkv8FlbcS6l2ZbRt9a1TZ7A1wbNZrotAX5tps8zfGsfbCaKLxtfNB6diuc+x7COnAWrhl0JMQavJUEvxlYnebaKUNaSsWy4aJbWmcD1KLRh7vr4EmXuxDO2rAppKFxcaRJWkqnl/Zc6bsKfJACFQaYuqYuHA1R1k6iOSk0N2clNxcV9yrDu9oyM+5aqPVVc6X6bf6ipbh94QqmpHS0TkcJcm0IBHQVDALh6gkE7AQeh7Hiif2YmYY8yxl1XBXiZFm6JByGKInoeJZk1MNTAYlNuXuWcnuSMssNj2zB933oGr1+h0UGd2+dIJXh4NF9yqDPw4dzTFoRVhlCQVHWJKHCSI9F5kygPF+hEVR1znBnh+N79ylWBdILmC9XbPdj8jp3s1QVki5yN6P1A/qRYlVpAt+nH0imuUZbweVhgNIVSexTeR6z4yndbpfzyZJOqCiUYDXPCTxJVtQE0mACj4dHCy7vdFisCrDON32yKliUloGC/jBhOsvQtQsy/MhnEEkKAZGn8NR3x8z3BXDXVUkQJRTlkq3DS2zt73H7hRfIzqY8+v2fYPDUcxx/9TP0tgaAJO71yQs4O50SRD7J3j7Sk+TTKWCohEeZl2SLFYknkPjM50umd94h1BmVVRTWh+kEZWqGvQAjJKWG7mAIdY4VkmT/Omb7KV790h/yp7/5T7n2yFV++a/8IuFg5NonTc+oUlexVTEkqwOufvApTO06gBjpYYqcbq9D1O+SphmcSYySbO102RunZLXGlx4Yy0QKykpDY4wkcBGdbaIh23y51uQsDpo0rduH+0KuO6ZfeF1Yl7iaW8tLpeVeVfBooXmk0mQi4MYzT/HRv/mfMP78b/DWJz/Lrd/7J7zzqT9i/2M/yFO/8JM8+bf+cx795Xd48jOf4rO/+QXevLegrqFqueWGrjFWbKpBmwh2E2VvEmoXwUs2pyWN44Yj4XoTxg1f3CbnrLDraHnjMNhQI2wSj+ukqHRRul5X+si1rLBZtUmauuGj1UI7ftqsE39tNB0AsXQ0hpMFtoUvblawbgEmLhhKCbmO5MX63Ntou9F1C9GoQlh7qyjZRLvW7cvzJMpzGwliRe9wm3yeo9OCOi+xxlAby0obpoXh9rzi3WXF/dpwt7KcG0u5jt3c9Sxx11baRrlo7froSmsJG5WLQpLXGl9Kup6g50tK4xoG93xBR1quDhVLC/myZBB5blitLYkvWRU1QTdiOwp49LEd5lpRZyXTac6Xb57hRQGPbHf4ke+7yiNPPsPtl1/n5DTl/mTBjSd20arL2TsPmJtbDLc6BGFImlV4nqRGMJ1nSKmohUJay/hsRTcQ7D17g+OTCWGgma8K9ne6TKYpUeBjjcLWzn6iUB6J7+OFHoESjLyK8TKHIOSRrR46XRIGApvELCYpUdJlOlkSe4JuFDBZ5gjrPMYDH5J+j3sPF1zb65LVNSDZ6Up8z+NsUbAVSq5dHrDMDfmqwpOO5Ov2FIQB83FBrQ3fneF+nwC3EJLlImPn6mN0t3q8/LnPQVXzxMe/H7F1hbPXXyQaDpFhSH9vn+N332V5fMLVZz5A2B9S5jnp/WO0MagwQgQ1vs4IYoHOcxYnKcvJmE5gXQdoA9XNWxzs9wiSwKXhvZDEC/GiCCVCvME+hVa88jv/EFHN+cVf/ikuPf4UGteOaXl+hpIVvdEO2liq5YzJ2YJLl3fwPai1gKrAjxJsFDmDKiHZ3t/B2Jpxobly0MVay/Es5zSrqXXTZRvXKssKp5H1paCtOxXNF6xVfjS/Yi2u1RhNIq+NSBugU6JRfTTl52fAuKi5U2ke5Cc8mCuOlp/k8i7UwyFJmFKuTnn4ud/lzuf/mN7TH+bRn/4JbvzMX+eHS838//s5HkxKtBXUDT2ibds4oRlYxAZaBa36rqU+RDMwbTxanDOeA+xY4rrtCBBWrruPW+t43TbByBrAac5dNE1qHW3SViy2VlffiRhsC3NajnnT3cdF/21yMJCioT0csDp6x6xbtklJw1m374k1HdIOYJuEZ2MIpZRL/FVmMytpQV6A8pyZUhB7eKHCG3SoK0ORGapFjkWjkaxqOEs195Yld5YVD2vLQ205bnT2NW3uwD0LVTMzs01RkcLdR2+dhgZfOuLKGEuiBD1P0fPdnKTjeyShawH2xHaACgNW85xYSgLP4+40Z5bXBJ6gM+zgKY+j2ZKPX/s+ZKn40z/6EufTJZWnGCQRex2PK5cOGO5d5v70Ne6eTNja3aJcgk7vsjOKCDseYWsSZVNqK0hTDcJDN3ayua4IqCnmS+688hJXH3+ah6++wNU4oqYklIZQgrE1mTXEkUcUBAglkZ6i5xkEHn4QsttNMHWJ5wn8QZfVvCQKfWazjCTyGHQCTsdLhDGgLKXWdIYxR+cZ24MIGQgmk4L9bsRgELBclOz2PS7txeTK5+zuGZ41EPgkoaU76vPOvQXLyZLdUeRm2N9leV8At9aaZDCkqkq++S//iDiIGF69wsnDB/SLlE6vhwwCou1LvPCFL6NXC579ge8nHAxJz0+ZPnhAf3uLqLfNyf37lKsV1x89ZHrvXebTlEgJlPCZr2q8MMGrC0JlSLaGoHy8MEEFvvvChRFe3KdIV5y89VUO9iJ6gwP83ohCW0xdYqoUZXM6gx2ydEmdVwgL/dgSJQF5miGsxfNDkIp0OcVoSPojou1dPGUJpIenDHEcsnr9IWdZTeApwrpGKkElJFndqBYa/taK1te6Kci5oLzYcMQOgHTzVpv4ayNN2UTwbdu0h8Zylhfcun+Ht0/+R653QkahYpD49JKYTmxRWc7k5T/jM9/4InLvClc+cMAP/vmP8/aLb3Hz9pyjRYXVAiNc7X5NazbVHE+TAJQIPGTTvLbVIjsw83C+H4FwHtRhwxOrhm5YK6PE5hzbl9bRbRNhCxqbWeMGN9Hw46380FxIhraDSmspu2751mhcpHB8uyfa/ozO5dE1jzEbuaCg6ZoukEI6/r653hujKtE0oBBNKbqrugWNarKCqqFMlC+IOj5+4v55nYRyUVBOc2xZYaXABpJ5ZjlZldyZFtxZVpwbONGWEw1Le8HMiya6t1A6rslx5oKmx6gr59fC0W+BkgQCSm3pKAikdFQYlq4vGQaCUBqiSBF2YrJljqcks8Iwm2YUpSEHtkcDBmFIVRf09rdIi5KTbId3jmcYaRnEAVc6cPnSiIfnOS/f/xa37x0RRCFeVrHXqdja6WBDHy+JyYuSNM8ptGA2X+GpAOFLkjhB5yv6ocBPIk7HKSNj0Tsn7F09ZHV25ipGPZ/pJAWcv4sIFBpLqBQSQ1FVSAR7wwirDVAjEp/VIsNXksUyJxCGJJKczzKk9AhDqGtL1AkZT0uSAHo7XW7eHLMVBezvRMwWJVZJRoMQ0e3y1ksP8CpLEApqW9HbHvDwdMXp6ZxhoMiKzXf7Oy3vC+BWnsdqsWT++mtcvrRLYWGV5hxeuwwIosGQPM24+fUvsjMIufQDP4oKY9KzB6yOT+mOtihRPHj7HWan53z8R7+f1WyBiYcMdytMWTFZarq7O9jFFD+JCIfbhNsHWGPxlEIIhVQSEXWoyoJ8PmOwe0jS6yCCBCMU6JrapngqIewOQEo8XbkvmvDo7x0wm82htoRxgK5rfE8SdxJWszlVVnJ2/5TBziFxr0+cKB7IU67tDVhmEzAlHc/nJKuprCXxYFU7LwmB8w0RFmrh5F9tVNkqSCSCWrS+1E1k23LALc/c0i1sIvUaw5HWnGvD7armmi+4uvQYhj7dwGerH5Bsh6iiZjq+y5ufuU2Ox+BwwI2nLvFIWXD7zjkPFzXTAmok2h3COgK/aNjkbFDdvRc0peO4BGokLbGUeKL1jm6m82ITVyvRxsgu2pZtIlI4AHKgatfe5xt6u6VV3ltY0jbQdSoT0xzvJiHYVjI67fwF5YlwMjkpaJKGLYfdKj8apciF85dKoRTOUlc7gseT7jO+JwkSj2grprs/JNweks8LsuMF6bvnbru+RxUoFpnm/jTl3qzkflZxri3HWnBmLJm2VE1m0zYNJrzmZmuEcz1skp+60bTLJhnuNcejsJTGEnsSX0qUdQCeKMtO7BF6ikBaBt2I+bJwMxXpcX+2wGgnd7uyHXOtF3Cal9RRwvGioH71Ac+/8U38UNFPfK73I7r9mKPzlKPslPPzOZcu71Gen/H0fkzncIeihtDWZEXddB+xCG3Y7iSsypowDPBEjfQVRWFYnK/wfclkltM5OmLr2qNUlaXW8OB0jid9ktiwNeiT1jVSg7GGdFk6GrMXUlWGRBm8rR7LecrOIGaRa8LQI1Yek2VFZaETKaqiJokU01mG1Jbedo+7D2ZEnuCxaz1yzyebFMTC0N3b5vU3H2JLN4UutWRnELPUgvsP5nSUYGfU4eHJAl9eiH6+bXlfAHddVpTnJ1x97AaVqYmEx2gwoKoqRgcHLCdnTE/OuPH000Tbu9S1YXH8AJ0u8Qc9rPKw+RKvWvLMR55jMZ4ye/iQncMdKhMzzwS1LfDSjFBYKiOI4y5ChQgqjIUgiiEIqfOcKl2ipCEZ7WGFIlstENLD5Cs3vQ0jtJXURcViMmcw2sPUJel0QZmtXAl2XhE0HbLr2hL1+/jSY9fbJRkMqKsBGEu2qjlIa1ZpRSfIuTVPCT2JMJZppZ0MDtHcqLV1ErVpjFlFSzcIauv6SrqouoGlRua2LqJpCYOmokXS+ErgvrjH2nKmLbfKkst5zWW/ZDcr6MYBnSSivx3SqytWi4zZg3POapCdkNH+DruHmuk043yaM80qcsPGQrWhaFoNCKLtnuJAOxKCWFliKfCbsu814LVcuBDrVmKC9lzctiSb84Nmw1ZipWti0RaTtEnNlopoDbxaIylh5RqU2+a7EvBUq8V26ynZatDl+pzWx0hb/i6bCLvVZxgXiRu5bt6rFESJIEg8eocjrOchvIiiFMxePUYvFq7oSwoqI5gsKo7nBfdmNQ/zmjNjODdwZiwL0wxuLYdP6/PdFiK5DjweLrp29b+bxYFvO5y5RKsAhLZ0A0nfl2wnHsNIkZY13SjAViWmtkilOJpkDOOQaVXT3+lwY6fDMk8J4hhdWwQexw9POOgaAtXh0naHzHgUpuCJD97g7ZsnbI965JNzfuL7r6GTBFsJ+mGCXc5Yjqf4oaIqNZGAXBiS2EdFEt/CIjPkaUncCanqiq1eQFVbivEZg8sHfPNrb1CWGs8X9PshpbBUFfieZbYqkIFPN4mptKHj+djAY5U5JYmRCuqKfjdhNpmTphVR6LNaFfS7PsusxhpBt+tzNskIDFzbDzFxzMNb58i65MqTe7z59kOm53NkDWHkE/mCeJjw1u0JdVry6CN9HoxTbFXj+e9z4JZSsv/IZYqqwg8DUAFlUbJ1cOj8nuuSw+uP4g93KbKM9OyEwFfk0qPWgjhUdPpD+nsHzMdj6uWM3Ut7+FFAzZCeKPHNA3xPYumQ5Zr+7jZCl2itifojqspQTRdAhR9G+P0RZVlgbI0QEpMt8KMQKzzKosBqTZ0XDHb2yOdzlqcPKNOCZLSNF3j4niafpwglMUWOSLbo7faQZU3QG6GqgqGELF2RZzm2rli+fkyUKlalITOWSAg83yXXLGC0oTaNP0kTRfoNzaubabHXgpndFFE05MEatEUTobdgvjF3deCqheXYCMal4d3Ksl9qruSanWVBPw6JQ4/eoMvhSJBnBfN5xuTdJVr5aKXY2e6xV1esipo0ryhKjTZgzUbJINuZgrAEEiLpEn9hczxKCef1bE0ji9v4Z7RUi1NQgxcIdNmqS1xp/NrrxUJ7wm0GoNVMO+QSazml00WLtfplU8regHZjHiWabbTRdYuUqtmWUtI5v+GSe8Y4+kFKkJ7Tc0dxSLQV0T3contphyLVVJXP9K1b6Pk5whq0cM50mbacpzUnac2DVc1JqZloy7mFibak1imLLngiuutlwW9yEDWbAqJ2eHPlOgLVmIbJZrByhlJO2SMsdH3BwBMcJD7bvYCyqtkZBFhtKaQkLyvGeYXWlm6g2R91OBh1OU9Tev0OfS/iwXiFNZp+EtDxImLfWcCGMRxeu8RsmRH4CrKUj3/sMlc+/gkmJzPmR3fQ6YIqK4lDRaU13VCRFTVC+c5nP+lg6xqMIYk9ylLTTSLiQJCuMpbKo0ihtoIgkPRCSZIEFFpQILBVjcWVxivtZrp4kukyZ7sXs8pr6iIllhZdabRV9DshdVVxsNdlsahR2uAFwnWSDwKGkYfX7/Hqa6eoIuXJR3e4/3DF/HzhZKM+hAFcuTLg7iRjOk25OopZ5DUmL7m8G1G/76kSpVzllRAUuUb5JVF/QGkMqijYuXadyijS2TnkS6SSlBZ0rekOuyT9AVUF0/EJejFjtDNCK0VuFVYEeKpieHBInmnKdMHo8BJR0sFgiLYvkc3HUFcoP0B5MUFnQJGtaL2KbVURxglaG7QuGoCriXtd7r31BmGo0PmC6byivzNyEa5RGF0S93YpbUVVVKjePpEum47hgmUG3eEuw/0UpOLxvKawkFZLaiMIRPPlbUra24iqLRxRXARDp8AwjTMbYsPjru+/3bjotcm4/397bxYr25alZ31zztXHinb3p7vn3CbTmZVUlUslXMLIMgiBMQjz6AeQH5AQbyAeUFmWkHiEB8QzAiRLNH4BC8tPVWUbjCWDK8vZ37w3b3POvafZZ3fRr1jdbHiYa+19KpWZrkyVfc652kMK7YgVsSPWWHvHmGP+4x//uNbp6EWsBNch0QIr51i0li9by14guVO1nEQB441iNEhIU8nh0ZT37x6TH+/xk3/8HV6ebmgdqFAxzSKGRwnCeXGvumyp6hatHVGoSEJJaCy0Fmn9SLU+VxT9OeJTZs8+kR3sc5PpYn0h7drNPoTJnubXZZyiz0H99ZSq+yzXQyVcq/dJ4VkTfRv5NWzSLSA939uzdXq6I9Dh3ApHGHbNOVGADAVxFpKfjBk/OEblE7QNWT+bc/qjS+r5JUI7rPUNI42FZaWZl5qX25az0rAwlrmDC+vZQY29gX36hRrhd07KdTKe4oarzfXfvBuEgfchlI62g1QkjrjHdRxMY8UklLwzijieRawqSOKQAMGTdU2lLdvWEAjJMBEMhxGPDid8cnnF++8cMwgDqtbRmJb9aUamLGmgeHJZcHxnyIP33mG1KTFOE7UVx3shg9ke64tT2p0mQKDbFqdrT4MMAsqqJUki5tuKNM3Ybvzw7tZYjDZM0sj3fOxqgljx4uWaOG949HBGLi1loykqQ21qouGIyAVMIoGNDXE6QRcFJorJHBgsbdMQR4ptUeBURJAEVOsd41GMQdKUFYNQUFhBqWEoDAePZnz+bMV2ueb9k5yLecHFfIeVYZcQGA4Pc85rydPna2ZZRDBKOH2x5M4gQGQJZfWGz5zU1iCEpG1KdGOQ0RRrLaGwjI7vslvvWDx/Shp5ip1RIYECFSQk6YDV1ZK22FDOzzl+931UGrM4n5NlMWno0C6mtQIR18z27jGY7uOaLdH0mPmTj3GmJRtPieIBIhlRl0WHKRtMsSIeT9FNgzWlz1SC0Ivll1uOT2bUtcVKS7lbEscxu+0GrSIGB3exbUU63meYj7BWAwZrLOVqTmhbVq1EpRMmM0d8tuD+4RijLfNtQ6UN68bQWMHWeE3vptv22w4aUe5mm+9Hg910CzpeDeKvhvEeFugbYbgO2oYb2l4f4KUTlAKetYaXWjBqLIeB4KRs2I8DJoOE5M4dTHCHh9+sycOfsF4V7GpN2zSszhpEqMgnA2YHA+4+PCCJHB/8K3+Ovff+DLptWX34XeafP+bis2csTpc0lcFp5yf22J537boCmV+UvLZGN6agwzeuxecd1+yTa+ZNf6DLrPvdyKuT5Xvt614JUHbDJpS8Cc6+WUZc652ESvrnpRcGUoEgHsaM7o4JBynjBycE032cSNlebrn4/CXFtz/BbOZI4WlfGigrw661rFvLvPIMkbVxrLRj3sEha6Cxnu3icF2m7R0OnPc/QBDhO0WN68fjddfM+YWqL0IGeFhfdvWBSIhuAIZjGipGCu4MFPvjiHnjaGtLoTWNDNjVmsqBs4LRQDIepcQq5IvLBe8+OGIySJhfbmhDybsPj5CNZhzAy9WaBw/3USrkxdMrhJC4XcnhOGJ4OGZ2/xHDw/ssnr9gtSlodU2WZUDFrtQopVBhSJbBdr1DYgmDgLLVZHGAlGB1SxSHbHcN4zzGSsOdwzHz+ZKmtTS6xaYxQinyULApK2yUMNq7S7N7jKp3RFFA01rCOGS52iIJCIKAalcx28vZNYbiYkMWS2ol2RaGVAge3R9zsdqx29QcjyIIFaurksudJQ4NkWvZ308opeLjj84ZSMfdkxEfPVsxCWE4HfCdpxv0mz5zUuC8Rm0oMUIipGAyHTK++5Dl5QvWTx8TxxlN6wgHqQ9gxZbJ8X3m55e0TcUwSzj69d+g0ZbzZ89wKiRQEmSAUjFplnu2QBASDUagUurdjmycI4wlme2hRYDeLlGhHzYqsaT7h7RNja530DTI0IsstcWaMFS4IEboijDNyIc11lmEa3EmwiFJRhPCNEdECUJIdOOod5fkecRn3/mIXdkyGcfsIkGehZSDkN/8xgmL1YYvnq+JC83ZtiKTAmclQlpaB7XtWsU7HPamocRfUegKdOKGDuefudHoUHANQ2gcWvgvf4eYXEuw9u3gPb1u4RyrxvFFaxnWhuNdw5N/+HtMoohxEhEFhkwFDOMAUh8U6qqlXm5YzOH8izkyCnn8JOTOryUcfuM3uPdb/wm/+R/eQS0/oj79kN2zz9g8ecLmxSXb8wXFVUGxrmiq1rNFrAXntcPBBx9HLyerMNZPfbm+Bs4HLdV1MCL7BatfyJxvghBdk4uSnqPd4dpK+uuhupFhCJABJFlAlEZk04x0f0h2sEc0mRJN9qlNxOb5gsuzFcX3PqV4eYasd1irMdqrLFbGUbSGZWVZVparumWpHRsDc2tZO8HCdtow+KYX8IH+1fZ95cR19u0FoV6VC/Yt6/0C3g9DkH3W3TFqYukXb+UcR3FIJi17eUyjLY8Xmottxf4g4WnRYo1moPw1OcoCTqZDlnXDxhR847077OUZ1XrLTrfMZmNSJUijiKdnC9LpmEGcsNWGcrEhd5YsE0TZkMn9r/H973/KQfgTkiyjtQaJxLQFxknCMKGtd0gjMXVDKLyvKpIMg5ymKDBYz/WualwQYgPB3mTMfLFlsaiQAgoVok3A1BhKDPPaEdJSnD8jwBAEXY+CgLoxyDBEaEFZVIwHESoK2VztmAxClhpevNwyDgTf/NoRq6KhKjR7mSSIQs7OCzaVZpKGKCGYZinDOxO+//EViRK8c2fEl8ua1FqOj3NWreNqUfILapNvSOAWklYbVJYySCTjwyMGRw+4evmc5dOnjGdTLi6WTO/cwWiLEJLp/Qfsih3rqwXT2YjxyT2uLi/ZLS6ptxXj0YAgiJFpfk3JUnFMMhzhRMjm8oIwipDWEe/fpW4tu6uXJIMMaxowBpnvYayhqZYIYxAqwMkI22yIwrATlQ9QYYKMJHGe0TY1VltW8zNkNiTKhpTFjpDAj/gqC5LhDBVFvPdnDZdfvsDGI+4/uMvdrz/lw2//ECFUpxb3GPv5gl0bsGt9Q8RGO7T2Yka227Lf7JPpqG/Xw79e0bHuFfP6TLujCYqus1BAaEU/ZeyVae3c7MG5CQQWr03SGN/c8UnbMq5aDood+0owDSQDJQmkJAkVcRwyiHyDBM5hdIt+9mOeP/2Y8z8I+STNkYNj8uMDjr7+iOHhPqNH7/HuX5gQBi2uWuHKNWa3oZovKC6u2L64YDtfU60KdKWx2qK1wRlBUxms1jjng6xx/hZc7064hjxETwGUikAJZIAfwqsCwkQSRoogVoRpTDRMGeyPiSdjgtGIMB/hZEq1aSnXFZtFweazc+qLD7G7AtNU2NZ30GrrqIyh0rBrPcSwqC1XtWFrHFsDG+dYWFhaR+lcR+sUXVdqVwSFTpHR8/iDbvGRzi/i9hWFP0k/j9MHd3Bd05T/w/aLeCo9V10Dg0ASCsd+5iGEbat4vq5IQsWHiwKHIBUSowR7Wcgwj3m23jLdz3l4cMAkDGiLHbWAo4MxSRAQyIDvffqUB+/dYRwqVmWDWLfcSwzpdIIOBGqQ8OVnX9BeXiKOc3Sh0cWOWDmKrfUzJTOJkAGb7Y5ASlwEjQuIs5xtURKGAa3R1JuaJFWstzUHewO+PF1S1ZrpOKEKJEE0YFiW6NZyvqhIk4TDJEJWG5wzFI2AwOLaGiciokDhpCYf5KhAcn6+Jo0k61rz5dmOaQLvvjPhoqhYzyvGiSIdpSyXO4wTDJIIhWU4CDm4M+LzFwW2bDk5zFm2mvXllvf2UrJpzhdfbnxT3i+wNyJwO2vRdUs0HrJ35wSZ77M6O2X94kuy8ZSrqxXD2T7Li0uyPCPOp1ycnnP+5DF333nI9ME7/Ph7H1JXG0ahI1caJWJsEBOoCHSLCCTx+ATCgOrqFOE0UZAg4z1a3VKvL0myFCUlYZJgrEBbTbueszk/Y3Z8RFvtsLsVQRSCCkFr6rpChSlxPiYXAcVqw+hgj/X5KeWmYDCbks2OqIoN5XpFlObIKAVrCIYnHP+ZMU3Vom1AlE0ZjRKkTNgqyfvv38VpsF8u2e40l7XXPO7HWmlx86Xssy+LQxiPfYPnQvflKNN1N14HbbgudL7KA++zsX4b3mtm9NPm+/e8xsqBynl97kvti6qDwDIVgpkSjJVgWApiKfxYLqUIAz/VJZSWSGikXuLmc7ZzQfHRP0IFEUIFBNmQZDZjuDcjHqWEoyGT4wcMPvh1Rr8VEiUCJQzSNGAanGux1Ra92VFvNuiyAAS21Zim9V2G2uAwBFGCioNuVyGRQYAMJFGWIIOYYDAgyDJEkGCR6MpSFRXVomK5LqifLinnX1DPV9ii076whrY111oxlbbU2rFtDZvGsWoMm9ZRGEdpYGstK+tYOth0mi9td82t6AvR3XCLbjF9tTgd4PnVfTt9X6Lt531e10Tw1Mwe7+5hbCykQVesdJAFkrESHA0iEgWEirNFSShg1WisUF4hMZDEkaRxjsu64eBoyLsnMxJjaNY7dBowzRJmecjFuuajFy+5e/eAaRxS44i1IVI1LgrZast0PEGqgETvGL1/hExzRN0QYNludhijUQLqqvKUyiSmrjoIxQUsVwVD5XCBpGoFGsOLq5rZNOd8VVHqgLrViFIzPJiRWYtTjtoYIhVwMErRrSYOJEUFujWo0JIMR4jWYpqKJJLEg4xiuWFvb8jVckdRNqSZYniQsw1yFhcXJM4SZQPONxVlaZEY8mFKIEP29xKeXu4o5ltOxiFJHvDFF0seTFP2jxOezXcs5juy8Abc/Fn2RgRuISSzgxnH773PtmyoXp5BvYJAUpYF+WTE088eMz2YEaUJly/PMOWOd3/tG8TDCX/4+3+fKISjownDSFK0kvjkEQiL0DtsA9H4mLbaUV/MsbpleHgIBOx2JaYuUVGECkOEjNhtd9i2Qkqfr8zuP6DerGjXV1S7hsFknzCRNOWOzWLFcD+iLHaYomRztSIav8/swX3mFxcEydfZbTega0JqLp9ccvzwPjKOSEb7yOgIUSzQVcXWwJ2v/zrVZoG6kATWwXuayWTAH/7wBfPWMgwVjbG0RrI1Buv64Cww8ga/llb44C26gN4VJlUfsR0Y6TfaConrxpSJ6y/8TdDuVU+vsz26YQnCT4XXr2zJjYASWBs4dZaodeRCMFWCkRTMAslAGFIJqVKEyut+hFKQBJIk8M0urq08v7beYlZnlI9vFp8wTgmTGGRAlCbYIEKqiCBLiUYD0umIeJiRDA+JEt8R5313CG398GgcSnn5f6cNtjVY3dJuSlhY9GZFvT3FtA7aGmlKTF3Tlg2uLhHO4oyltYamK/9r4zVctq2l1I6tNmway0Z7SKS2gp21bB0UzrGzsHOww9G4rmuxKxBa4QO3cxBYcT15RgNIfx0Ury7c3e7JXZdsvS4McFOe7jJzRDdqDaKwowE6wSAQDEPFnTxEYSlaQ7EwDMOARkBbGy8UJWCYh4wDQRRIhvsD7k1zDgcRzbrADkKyNGAYw8V8w9W25P79Pe7OBswrQ73YcjJLWBSw3hTM4gTdlHztaw8ZnvxLXJzP2a3WYAxFsSNQAhv5CfdNY4myhG1pUXGMcZJ2vSWPA6wxtK3FSEVZtQwHMWfLHUpCOhrRWoMIAu4fzHj59CmJtSTDjNpY1qstw0FEVTkGccBGN76grVtCKRjkMWkas14UZIlibjxnPFZQW8mzsy2/tn/AaBiTJjEX8x1VZai6ebNtazg8GfDkqqRcluznEXv7GT/4smAaSu7dydiGEWfnF0jnC8RS/PzQ/UYEbhUqDj/4BlcXl5x9/hnj8RARJySTfeqy4fMffsTs6IgoTTh9+gzb1tx58BCVDfn2P/i/CQPBw4d3UKZgsSoJ8z2q5YLpyQlxZBGToVesa2uSYUaY5DR1y2ZxSiBDoihAKgVCURULXNsQZwNklCDClPPHn5BnIfFggNYQDwaoJAJq2p0gihQyCknDEVIYcIbJvUcMjhx1uUV2/OowzsjCCzbzC6bvfB05mFAtrwiiHOlgeO9dLj76AU3pGM6mBIHzrcTmBcPsgvvW0VSaRam5sJpUgjM+cJpuUo7rtr/+G9sd64Nu98+gjd9Oq+sv+TUZ8Lr0pzqYhf6t4FqAqN++S+gafjpYpmOimK4JKOgglhIoNZwKR2wNkXPkAnJpyaVgKL3GcyJ8h16gvMhRKP3jJPL4q+p0S2xT0DY7AiHQa08dxDlqBAWOlfTtSDIMfCszzovSX+O8rktbHUbrTsjJ0bd6K1/FQ8geA/Y5rXVet9lgaY2HiUpt2HUF5KI17AyU2jev7ByUDkrrqOD6cW3ddcs5QtLiA2cPhdBl2uCIOoaPh7VumqiCniXibsiefQdkX894paqBE35h6BuIpPCdqr65yGtZDxVME8mqacHCQaJonGNrLPPWofGNUMfThK/d3afa1SSDkJM84iAVbJcVzgmmI8WuNmzKmqbR5NMhI6VY7mrKeUmmGp5etuxaydFkjBDWM4wOT0iP3ydYfIhtLim3O5y2aFriJOXiaksWSnZNSxin6KKi1hV54q/GelcjnARa7h6POLvaEuEYD2Nqs2McC/aHIV98/ph7J1NCp1nvWtCWQSBxVrM3GXpdlsBDR7at0QiODmZcvJwTh4KVlbx8cs4kURBElNsdJQoR59Ryx+Jyg9aWqm5BSOJYcO8o52Kn2S4KBpFiby/lk8sdYtfw7tdGMMx48uMrdKVJAkXZ6Dc/45ZByNnjT1h8+QX7d09QgxFWKs4++4y62PDwg4e0zlGvr4jbloNHD9BO8eQH3yWLFYd3T4iTGKIhs2FLnO8RDwaEaYa2XiFQOkecDVBhyuLyAl0VJGkIpgtuUtLsCpSKiPIJ4IcCbJ9/TkSLjCdUbcvw4BiCEG0lIhoSZA4VZ754JbxGSSQDRDLGNEv06oKqMdi6Ik4SmsYi9RpnvUiVUpIgyXFINpfPGU9SqsvntC4mGh3SLJ4QS8tvfuseu9WGL75cUr0smLoAbS1b4WdXmg7LVqIvUvViUz7gBd03XluP6QbdVtvhqYDyOuh2RLxXcHDbg+PdL/RUOM9A6VkLltB1LdOub1fvX9sFTRyNFdROsLIOhB8BlgjP386FJBUtAylIECTKsxzCnZcV7VvfI+VnYfppMhAFkkDIrjHGEQjjmTZN3TXAdIvWdUu6l9B1eI61989iTAckdZBDa6DRFo2ltoKytTTGN/TUFkqD17t2ghZoHJTOUTpB7WDrLI0TtP2koB7GgK7FXHZDd33Ha19zoMukQ3vDE+8Xlp7nKeCVEWt9PcNe73x6uItX4RPnFQyF812gfqKNJBcwDATDWNG0htbBXuxV9koLq9bTBZUUpHFAnoRUrSPJAo7zhPt7GbUBV65wRnA6b3HSZ9zhMONgNmK+qoi3DUd5wOm6YVVqpqMMW9WMH97h+fkV7sdPOL6sULKlWhdkAdShBBeyLSqSNGbjDKayzMIK05Rez0YFlK0lUIJ0EJHECReF58XePRhQtprxICEIYLGpyYQlH0+5nG8QtmI8Tric75jEAY0QLFalZ+WE0JaO8WHO/GJOnipUlvLpxxdM0hBpai7LlmEeMg0Szj/8hG1ZMy9a8iSkcTCKLB+8s8dKCw/1hpI7s4zPFxV6WfOtd4aYNOQHP56zXpWknZhYYzzz6efZGxG4dd2wPX/B3oOH2CSlWO9oNis/D+7ePba7Bl1XzCZDBvf32GlLXayY7e9RNprZvQdIJZEqJIljomyEiiPq3Y66mOO0JpnuATB/9qkn6ucD3yatHE4EgCBOU/pvRbFcYuuCOAqxSYq1GtVuKVtLPOgmrdsGbIOSFtvWCKWI8xSHRtcVSgXILGI3f0YYR+zmc1QQYsKciy8+5/D991DZmLqsqBcvGU32aNsBxx/A5vKSzWpHlg84eHAPozVtWRCGT3HO8fSiYFGBlhKjDFgfLK0VaOmDaqB8hhaKDt/smnfCAIy5UfS7mX7e0cO6IC7FDfPEuRu1a9ll6qLPXnsuuPCZo+qKof3sSfrssnuffnSYUoLWeG2TDYIrDM5BHICw1o8IE745JxOCVPjpMwlew6XnSwei7RgiXvrUNyHZmwaZLqP2DSaeNeJZJj4Q3+D17roz01jfYds663nVzlPrrJNY4ai7IF25m2y6do6Wm0k74K+P6pkc3Xn0sJMT7vpaX9cSBGhhPaYtfHDtptrRz7y09JIBN9BHe13J8Ne3Xzx9bUJcX/Og46eL7tWpgmEkmaYBOF/XeDBQaIeHfJDUzqECQRQEZJHCWBjEkoNRyiSUXFwVtM4wHqTMtxWDQcQoi9i2mtl0wqqqSbUlk5qrnaZFMsxjtpuWwUnC4OQ+4WJD/eRLFstT8sO7RIEAo0mTiItVyXbXYEI/rGAvDmjKkiyS6FZTlg3aOtJBShBIrlY1pqqZTHMulwWDQQw4NqUjEZbRNOXs5UsOjo8oVMvLixWjJMC4gNOXa/JYEKYR9a5hPAopypaB0Iz3x/zwJ5dYY4glnFcWF0hGaULYGjZNicIxyyR5GhBKwcPjhI2MePL4nFDA4Szjk6stm5XmWycZK6c5/7zEaUfoLKNBysWqBBFh33Q6oLOGaDChRbJ8cUq9WnN8Zx8Z56w3OxIB+7Mh6eyA0xfn6NaQDwdgDLOjO0SDMbouEFIiw4xgOGN78Zz1xQVpqggluKamKOakwxFxFuOsxTnlMUHraU22rXFItosNEkM6HOJUBK1GSAhmR8QyJIhinHU0m0tGB0fIIEIGEUGW4RA0tUYqv31r2pjJw0dQrIgHKSrJCJIQlY6J0gH1Zsn6/DnpYIiMYqIgIEw+IB7vEb18yridcfH0Kev5krJq2DuaekxWW6qLHY0zpAgCJdDG+synb+Omx4VttzX3MxCNoVPy61rdhQ/KCkHTFbqCLugZd8MT9kGhCxfCQyEWT6mzXbXsRhGvTwf7KEXXzeibbAS+DV8qge12PQifcTZ+IjI1jq3zI9pcV2jtBxME0gfvGL+bCPFBKcAQdMdE9/r+nDwH23Zz0f0594HTa7b4z23w16t1vpjXOD/lRztBg7mm2dX0iMuN8qBAdItfp5HefW4/YV52HGrHDS4duptCseE6/KK7bs6mk5jtF1XVvV6KGwTbdrsg6Ty7RHUYNp1+uequTyj7L71fFMeBZJJEVK0llI57eUgWSzbdHMblpiZSCqECJAaBIneGw4HkcJISCEikpaw1tWg5Ph4jnKGoGibDAbU2DOuaRGkWdUOY54Qm4vmXlxhXsz885OXFmrTSZKqg3cUUTz9DJQnWwsW64HTjm2mOZxHHk4TVomSSKOrWoFtD4wxJHBAox7KoEc4x3RuwLRv2JynaWopdSRxFyCTixbxhfyCJs5DzS8UkiQjTiNPzLUmskGFGuamZTTNqB6rR7N8Zc7rQ1DvNIITTnWVTW/bSkFwaFk3DsrRM8wCRhGRRwr1ZRJXGfPS9U5Rteed4yFnVsNlovnGcMjke8IPPFtjWYrUliRSbokFaybptrusXP8veiMAtggATxLTbNZGrOfnGI6yKuHp5RoRjMh2THt7h6uVz0DXjLCUOID24TzAYYXWF0C3Ggjo55sWTx+wunjLbn5HkCTLKaBtNnOcopag2BVaGODRhFGPbiihIcEpSXF2QJAkqzkEGPsuJQ2SSUi0rBCkqyjHFFVKEWBXhUIRZ7iEKFSCcD38yCFGhIkqHqOkMoWKstchkhMrGVOslLz//MbGtkCHocoCME6QKkeP7zNIZn/+/f8ByVbG3f0QSKBaXc4ajlAf3prTG8XJddwUwP2vQOT89O1ASbWHXTauR0gdY0ynm+ZZxvxGXXXbWCxMF0OmbvFrZ7v6JxB/fvvsuF9dJld5MejHOhyb/uZ7l4rNwz8H2xz1U4al5PqAb0wtF+XOx5uYMWrgWQ3IGLzYkbt7/+v9J9EVX0S0GPnh5/FqgpG+FN84r+jrrdypeNsBggaZ7L99n2etre5hEdRw60WX213JVAgLba4N0OLPw2HMPPWl5IwrmgAiv5KgF17sf4URXg+ha+7vs2vXcve6zTPc3tP0iSPeFlv3n++fiQGCNh5ZC4QvRmRRMQ8FeFqG7KU33RwmZEqwby8JIzsuGPFIMlWRpNWkccihavvVgn3t39nDOspmvvThTYJklQ5x2zIuWcRpirGVYFmRK83LT0AQh3/zt3+bv/d4fUduWuw+P2RUW9/IjplFNpRXD2NdOIiF4cbnh+dkCkogPHh6xnydcnF2QBY6q9h3IjZCEoe/YXJeGOBTs7405O1uSJDEoydVlQZonFNYQqJjhKCYaRjz+/JQH7z5g8ewFy+2OUBmGeUJbV0xGMTvrCIRkNslYVIrVxZJcCS4qON/W3BtlPBgqdtqxrJzXwkdAZTiaBpg85cMfnDIMFXdnGVsBL85L3psm3Lk34ourmrB1aOG/b1b72seyNag0IIl+fniWP/eZf4FmjKXcbnyBbu+EVsZcvDgllo7JZITIx6wWy67NdMBkPycY5R5rrjY0yzm78zOGByc8+97/w7Pv/GOk1sRpjAtT2tYilSJMMnS5Q0hHW+1wxiCcJc5zrAop1wvycU44yEFFqCglGu0jk5xyUxIP94nzAaYpcRiauiZIh4T5EOscuqo8BBA4JBonFdneHYLhASKZ4sIBVqWodEq7WbB++ZhqcUZVGlQUYtvSB8Yo8yPKhOTk3Xd4/9EBxekXOCOI44R8ssdoPODByYT7eznT1FO38kCQxcpTtYSnBhJAFEAiPUZpuy236nSjQ+m7AHXXSZfJTsOiy4Bt1zLdJ86B7MSX6NXz3E1aCTdj1W7Cmd/yCTrBJ9tl3MLjzN2iIiXXgyIcAm19vcAPiejfiQ6e6V/njzXOwwEGH9S19boUNZ6mWFpoET0gj5UCLf3vtLZrbOm+dE4IGnHTRdrgawD+UvoGHQ9PeOthEPAMG6/N7VkhbRdc/bzLfuiEu56yE3Wgtj9vd9MQ5XrOdQc5iT/O7FEdZGIENMJPOuolc3vIBXxBMu5gESl9ti2FYyAFwwAOsxCJo2oM94fR9cT6051mVfkGtMM08V2vecbYaL71zoj7j47JR0MaLagbQykd2XhEIARXRc04lGSDhLGzDIKWUij+6fMt4f4BZ0vLpthyeDyjrSzx/JJJYrCE5GmM0w1CwNlqx2qzI0oj7u6PmMSS9XJLqhRR6FBKYYVllCgOJglt7RtcTu7OuFptSbOAotI8v6qY7xoqGSNUQJ75OZZPny1QdYNuGyqtSJVkPBmyvqpIIsW6srRFxcFsxKa2XLy4QhlD6SzPVxvuToe8d5DQOMOzeUXTOoI4AgLePxmRHI/4wYeXyKbhnf0BO6F4+nTNw1HC17425XRrKK92SKXQrWOQBISRotYWGQdMk+SPJSM/bW9Exm20IRaCMA7R0lFdnRMqydH9u1TaDz8oiy1BIBmf3EUjQFvqYgNNyXCUML7zTYrVOZFsuHvvgOndB7gopak1QaAwdQ3GY2EORZSECIkfIlw3tLsFg+khSEm53qBUQDw9wjnB6uyMfDKh3GxJ85xwkGG2JVIIyqIhjiOc0zTVjjQJIR0gosRnSjIAobBGY6whycc426LbHYNBjB6EYFp2qzWjkwky8NNwqt0OozXp4QfMggAVKOYvF2BrTFOTDSLaNsc6gTEWIWHTGFyrSUJFawVaOWgNVvjAa61ACOMLdlYgVDdpxTpCfHegD7RcB3lfuAQkBMon2Fb78WD9sAFne8zWB/y+O9HaPiP27eDOCoLAZ5/WOaSU13iwuc68X9n6vxKAempb32Akumy6h3JuZuF0WLK4KbZ6WEGgO7giFX4oQis8XEQPl5ibYcv9e3koyfliVY/9I66LjX68nIeN+lpSPzW9Pz/FDf+6z557NUdw9PwBK/xCoDrYqWfn9AXg3uf+mnXu+AxVev1xnEMoh3aOqBPFCqDTIneMlCRXglEkCZSgqA13cj9IwFjBFzvHXDtCaTlII1plMSIkrQr+3DePGc5GlNuGeCDY1Q2tNezPRggMlYVMWVQakzQV0tU0IuAPfnRF2UoIhnz80U84PMyxpSGrNkymAZUWTAYxSkKSppwtSrZFQ2Udeag4yAPmiw2jMGJbVSglaQ1kccRwPGCx3Hj4LIt5frYhRaCtYFM2mFpzMhmgdMUwDcDUrDaak0lKpOD8yQsGWYIMIjZFxdGdEZtdgzSWaR4zXxYsLpbEUlC0mvNdzb3piPujkMpoLtYWZxxpBINYcPcgxQxivv/xHFvueP/OEJMGfPnpOfemMY8eTDkrBedPr5DCUTaaKFaUSObbmkY4poOEVLo/Viv5aXsjAncYSNLRCA3U2x0hiqOH77AtK4y26M2SRDgm9x5gRMh2MafVFmU1+8fHyOGU9WqDKRakyZDocIoLvUQr1mGaHbr1k5qbqkaGIeEgJ0pSivk5pmmI85ztukA4jRABo/vvUqyuuPjsYyYH+xTzU4IwRYUxdVEhnOLlizOSiWV8cMLy4iXD0YAgjn2AEgkyiXCIjg8eEmdDRBiAhWhwAOkAs5lzfrpl/84jgmyCUAq9W9NuL4mzCc5FhHsfkFtJsS0xekgy3SO4usDaS4RuEAwIloK8bjkRKfNKU2lBWzUYbTDO0RqHFX6wreyy8b7rMgz89t1Yh9Y3EEYPBoiuoOWQWONLabID0a3ptVL8dtwXHX3WmXSv08IvGq4TwUJ4iKKrEPpjPSzjbhaAHuJQXdCW/XF85qjpcWzoA7yDjoFB1yHqmRQOTy001vlmrCggMIay1d0i4lu9sTcYtcBn6gqfQfeLhONGywU8Ri3EDZ2y363gHLHzr+zP1Z+vh0J0j4x3b+TrDJ2G+SuYueoWNIQXPRJdxi2FQ1oIlfdT40BKtLNkSiIsxEp0k+L9rMhECfJYMU1CysaSx4raCDIJT2rNWW0ZBopHo4QX25IojMibit/5YMav/c63uHy+pN5e8fTlnG2hGUUxTaORScR+FrFwIWJbEaSwXLf8o8crvphveefuHt/+3me8+/AYSsHEVOT7AZXxTJ/GOJQKuVqWtFWDFYJBKDkaR2zLFukEy+WaKAponUTRkuUJ89WOEMFwNuHzZ3OGkSLNEz76ckESKvbHMVESEIcBrXMUheZOrkgyxXxRYZuKaDZitagIw4BV5Ruo9ocxu9Zw8fQ5QiiqNOVs3bI/GfHONKLUNRdXhqp2OOMYxIL7+wl2nPGjj89RTvDoaIDKU37wyRUnieLRvSGXteb02YbGWqw2SClojR9yXFjLZJQzFBDEvxgMeSMCt5CKRvuSUZ4kDA/2WC63mKqkKQqmkxHRaIgNYmzTMD99ySAJOfrg66hsRLFcgNYM8pwgSiBMUIGirQy2aQkjCSKgXC67tuYEFQ4oFlfUqyXp7ABdN6SDAWG8RzA6ZHd5zvrFZ4zGQ7COwWQfIVNsXRFFMZeff0pgNUlgWXz2ITjDWjuUDEmytBM06iKVtEg1QAjB9vwK01a0uiVMMwb7x+RXP2F1umL/0Qjb+h1Imk9wIvS82yAmGp9w8E5LMV6ACBhPR2RhTL03ZHm55P1Hh2x2NRerii9fbPnyco3SfgJ11cEjSQczWHwGDB2k4bxwkTY+q9a2p/F5U0oipcMYizVdYVGIXmQPYUEoh1QOa/zAB6n8PEbTB+AuCOP8e2G9VKqWdJrdDtcFuZ4BIV/hkUvpg7btcV0nroWWeg56H/S93oaHMALhiKXnutfaEik/WWiahSxqjbb+M60TWGG9IiAeWtD6hlFT4zq2SjdIwdFJKfgAq1/ZFfiWdF/gVTjaTmdAvRL46XFsOoU/9wpfvvu7aAHCeq1Geriqg4TCbiEJuvmXxvqFoFf3E/jhxoGE1lnGSnI8iMAJHowjirJhEiuWrQ9UhZNc1posjLiXRxTGMBgkBFXDv/Ybx0weHhAPD2jsijYcIjcVEzRSWIRUZMJRVI60qsmkY7Nr+dFZw+PLggfHU9IsoaoMyy8vOAka7n7jkFpm1NuSPA1RreZyvsI5y84qIuBgf8B226BESysCrFBsGsgTST4dcrmuSJxgejjm/LJgkgQMhymnlxvuzUZkscAFiiSEykK5tdyfJERpyOViB9qh0pT5+YL7X/+Ajz58jNENx3cOqHTNarGgahwH04grAuIk42QUU7uWyxWUpcEISJTk/kFCleY8/2xJogIO84BomPCTL9bsSXj/0ZQF8PLpCmP9QGcBYPGNOlKTT4ZMlCQJDLvK4X7B0EnhfkE6/i/KhBAXQAFcvu5z+edg+9z69bbZV9W3W7/eLnvHOXfws554IwI3gBDi2865337d5/Gnbbd+vX32VfXt1q+vjr0RrJJbu7Vbu7Vb+5PbbeC+tVu7tVt7y+xNCtz//es+gX9OduvX22dfVd9u/fqK2BuDcd/ard3ard3an8zepIz71m7t1m7t1v4E9toDtxDiLwkhPhZCfCqE+N3XfT6/rAkh/ichxLkQ4oevHJsJIX5fCPFJ93P6ynN/vfP1YyHEv/V6zvqfbUKI+0KIfyCE+LEQ4kdCiP+0O/5W+yaESIQQ/0QI8b3Or/+qO/5W+9WbEEIJIb4jhPi73eOvil9PhBA/EEJ8Vwjx7e7YV8K3X8n8ZPDXc8M3in0GvAtEwPeAb77Oc/oVfPgLwG8BP3zl2H8D/G53/3eB/7q7/83Oxxh41PmuXrcPP8evE+C3uvtD4Cfd+b/VvuH7W/Lufgj8f8DvvO1+veLffw78r8Df/ar8L3bn+wTY/6ljXwnffpXb6864/2XgU+fc5865BvhbwF95zef0S5lz7h8C8586/FeAv9nd/5vAv//K8b/lnKudc4+BT/HX4I0z59ypc+6fdvc3wI+Bu7zlvjlv2+5h2N0cb7lfAEKIe8C/A/wPrxx+6/36BfZV9u0X2usO3HeBp688ftYde9vtyDl3Cj4AAofd8bfSXyHEQ+DP4rPTt963Dk74LnAO/L5z7ivhF/DfAf8FN1pZ8NXwC/zi+ntCiD8SQvzH3bGvim+/tL1urRLxM459lWkub52/Qogc+N+B/8w5txY/f4DpW+Obc84AvymEmAB/WwjxrV/w8rfCLyHEvwucO+f+SAjxF/8kv/Izjr1xfr1if94590IIcQj8vhDio1/w2rfNt1/aXnfG/Qy4/8rje8CL13Quf5p2JoQ4Aeh+nnfH3yp/hRAhPmj/L865/6M7/JXwDcA5twT+L+Av8fb79eeBf08I8QQPOf7rQoj/mbffLwCccy+6n+fA38ZDH18J334Ve92B+w+BD4QQj4QQEfBXgb/zms/pT8P+DvDXuvt/Dfg/Xzn+V4UQsRDiEfAB8E9ew/n9M0341Pp/BH7snPtvX3nqrfZNCHHQZdoIIVLg3wA+4i33yzn3151z95xzD/Hfo7/vnPsPeMv9AhBCDIQQw/4+8G8CP+Qr4NuvbK+7Ogr8ZTxj4TPgb7zu8/kVzv9/A07xk7WeAf8RsAf8PeCT7ufsldf/jc7Xj4F/+3Wf/y/w61/Fby+/D3y3u/3lt9034NeB73R+/RD4L7vjb7VfP+XjX+SGVfLW+4VnnX2vu/2ojxNfBd9+1dtt5+St3dqt3dpbZq8bKrm1W7u1W7u1X9JuA/et3dqt3dpbZreB+9Zu7dZu7S2z28B9a7d2a7f2ltlt4L61W7u1W3vL7DZw39qt3dqtvWV2G7hv7dZu7dbeMrsN3Ld2a7d2a2+Z/f9gJPObKLalRAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from skimage import data\n", + "from skimage.color import rgb2gray\n", + "\n", + "from skimage import img_as_ubyte,img_as_float\n", + "coffee_image = img_as_float(data.coffee()) \n", + "plt.imshow(coffee_image)" + ] + }, + { + "cell_type": "code", + "execution_count": 121, + "id": "fdb09725", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD8CAYAAABXe05zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9SbBtSXYdiK3tftrbv+63ERmRmUgkMgEQIJlCAgQpgiLFqmKVWY2KYmnCAc0wkUxDFTXSqMxqpJEmwqAk1YCqokwqI40iCZGgUUWKBAEi0TCRyDaa37/+9veext012Hv7Off9H5kgwCxFGv8xC4v337v33HPPcd++fe211qYQAt4eb4+3x9vj7fGjc5j/f1/A2+Pt8fZ4e7w9/u2Ot4H77fH2eHu8PX7EjreB++3x9nh7vD1+xI63gfvt8fZ4e7w9fsSOt4H77fH2eHu8PX7EjreB++3x9nh7vD1+xI4fWuAmov+QiL5FRN8lor/5w/qct8fb4+3x9vj37aAfBo+biCyAbwP4nwN4BuA3AfznIYRv/Dv/sLfH2+Pt8fb49+z4YWXcPwfguyGED0IINYD/FsB/+kP6rLfH2+Pt8fb49+pIfkjnfQzgae/fzwB89ZNenFEeChryP3QDQL2f8Ybf0Z2/BQBEQAjd38IPOE///3c/W395d0dCd178h92wkHzYD3r9m77jm65ff08AkQFSeZTOAc4D1gA+AIYQnOPX6GEM/0fg1+j31e8a/OGHkAG8BwwBiXxO2wLOg3dsAWQTwFrAtYAPCCGAiPg9IL6etkXw8vv+tYTA/1nLn2342oNz/HX1er3ny0pTBEOgqunuqw8I3gEgfr2MheAdiG8Sfxv5jhTPp2OGuvfo9fTGQbxmfb1cd/D+4O/9HSzp6+VZ6Gv7D5Ws5fsbvNwHeSMRP8f4vEgfNt/7ELphkiT8d+flPHoOOa+x3b3Tn73cZ8h39b3zEcWxEeRk+iyD8yCi3vcMh2OH6OD56jg4uKc6V/v3AdTd0/49JEKQ8UiJ5b873z0zAGSomyPynYJz3fxA9+x0vL5+Db3nrOPcB0DGFILvxm5ieez3nicBQJYCTdvNrYD4vu56Q/dd4ngC4BzfK/kuIQTswwZ12N+NdAB+eIH7TR92EH6I6JcB/DIAFDTEz+d/hS/eH0YpksADCTxkZIL0fqeTnQzF98fX+fDae/Tf8cJ674mfHzxPqjd9Vu9nSmz8DH5AMqiMfeN1HFxP2x5+1ySJ56As4yAsky84B7K2+7tcmxmPQdMxDxgAYbWG3+0BQyBrYaYThH0VAycVBfxyBTOdAMYgbDZ8T/IMoWkQ6oYnNQAYAzMccEAFgDRBWK1BZYmw3yPs9ghtC7KWr905wDg+b9OCihxmNESYjICLa4S65u9liK9JPiPUNUye88AnviY+VwAVOcga0PERfz/Lk5tahzBf8O93e7ibWw5gAKgsQGkKv1h2zw+AKQv43Z7vY9OCypR/1usCEOoasJbvQ/CgPO/GQV2DipwDB8D3rKp53DYtyBogTYGm4clrLcK+gpmO+XutVvx3HXf7iu/RbIowKICLaz7/vkKoKoSm5fc6j1DJ/bISeJ3rFrM0BRGB9FkHj1DV/LvJmBfMquYxAPD52haUZ4DzoCKHX674mqpKFmAHyhIeo9bCjIZA0yLUdbf4EcliG/j7p0lcEOK/9bvWtSww/LxlcvA4JToYM3AujveD82UpXw85wNo47mCIn6sEZpPnoEGJsN1xMEwSvp91zWPdGviqAiUpn7Nuus8D+Jr0WvcVKEv5flvL940IyPge9eewKQZw7Ybvu7yfkoTvmS6qelgLUxYITdsFdXmmfl8BBPxG+Mf4pOOHFbifAXi39+93ALzovyCE8CsAfgUAJnQc9KbyH7svGLyRjM8BpguSGoDjjdNFVQM9Xg+cd/99EOitlVXay8/de9DPVnuBPzgJCiEAJuEHH6iXKVL3Hot4/uDN4UM03QJBSQoE4mynbSUTNN130IXBWtizU/57VfMDny/44QfP3997+PUGNCiB6Ri02iDsdjwQs5QzijxHeHgKPL9E2O35ciZjIEkQ9vzvsFrz60cDUCXBqm5AgwGMNQhNA79cd4ta24KSJC4GmC+BJOHA1rZAE+KgRvCg0RA0GsLfzBF2u7hQUJrAnBwh3Mw5aOQpaLsHshRhsQLNpgjLFQcpaznIZxnCbge/3QHed5k/AHie1HqvEQJP+JQDlN9XfJ40hSkLzrys5c/WTG9fgcqSz7HbI1RVF/QlEwYAilkt8X3VjAqQZyDv2Vfw8wVoXwFJAr/edBkxgLDd8UI0KBHWGz63fAcYQqgbfr5ty0G7qfl7TsYIErApz4Dtjl/nHHy15fdLMAn7KgaheF0alMjADAb8Ow1A8tm6wFGRAxKMKcs4cYjzhfge6T3TBVsSErIZPycZt36zBaUJB79ByUnCdgtAFlxdSCYT/r0h0HjM9w+SobctsN/zM6trXkjTVBKOCqFtYfKcFyDn4gITnIMdDfm+aVyRBMjXDe/SnIPXBFASKZOlgLXw2238bnrvYC0nQEUOv9l1Uz7PQbMpMF9IkhBAwwFABCPjFu0nI9k/LIz7NwF8gYg+S0QZgL8G4O9+4qtlW6eBjpJUgiBvVfoZcgzatrfVQD9g8/tBJgZeDdKUpAg+xADYz65DDHhyWj1/73P71xF86K5DBktom/h7QAa/bvn13PKd4iprbP9D4uv0u8SdRpLygLYWZjiEfXAPSCzCqERoXRe0++8ZDkBFwQFNB8doxINJ/h1Wa9DHLxH2e84u8xzN5x5g9xMPEB7f4yBdFsBswkHTyIQbjzjT2WwR6gZmNIQZDDg7LkuYk+O4wKDigEJ5zhl/VQFNw1lYWQLHM6B1HOyzLAbY4BwHq7Lg/6828Nc3vJAY4oAO8ARPkphl+40EbefjPYmBQzInIoGQdNJqhmiIJzogW2We/GHXTbpQ113GK88f4KCl44ayjP/TseG8nK97vvofWcOLaVV12bbCBTq+dvuYeTIs4kDTCcgaDu5pygujtXy/2pYX0KEE9RB4JyMBSbPIUDcxi6Y858+Se6TZKYAY8Hh3K1ly4B0RmoaDuHMxmw7Owe8rDkqy8wh1zWNYFmyQfB+91zpus0wgD3Bw1nncy/TDZsPPIEkQ1hu+v8YcwixJ0i3azgFN090jCcJyQk4SyiI+3/5iH79TXXMsSXjXpPOxg4EkhvV3+M7x7haAmY5hjmeyM0sQ0kR2uzzvoNm3Md01f8LxQ8m4QwgtEf2vAfwqOPX9r0MIv//Jb+hgivjFHWK2yVAF9TJk12V3ZEBWslIK3d/RZbwH7wMOs11+gbyml00rvkUkWTBvLzXrPzgvGUm/A4AOSqEk5YkZFxswXkfmtWsgxXfleuDrw1vkHMgkDI0UOeA8/PEY5nION1/EbbpmNKYsQCOpG+hWv+oGZPAe2O1AwyHQtrwVBhBmY/jcYn+aIrs2DHWMSs46iwy4XXQTfCvZu+wOQl3DjIY88RILKkv42zkP3tMTwBpeKCQYmeMjvmdZimAMIBm+KTm4m8GAF4jdnoN9XXN2pcFKYBy/WIKI4Fdrfl7WyEQmwEv2I8E2OM8BOk05U/KBs1zJrKDbdtli+16WS2nCgUgDbpbx50vWDkC2vv4g64xbbZ4cPM7RTUq/2wMC4ShMFqEXeW5wjr+77rgAYLuD3+15y+189/r1BmY8QkgSXtwUclC4TCGeOLh4gdL7Y8qiy0YHJd9XCJQnUIRm+3COs1EJ3FTk/BnWxgUGvpcfajbZXxRCiD9r0IPAMGQMwmbbwTd9aCtNeUGXGoDe+wCAfMI7C6nzKJTY/wwzHnNQNnwtcRETTJoS3onF6zOJQEgZyDlQWSC4TYToGDoViGQ0jFBYkF2aX65AgwH/vFiC+jsTMMSntZaDOtAbjh8WVIIQwt8H8Pf/0K+XgR28AVwPA9P/R5DfH2xTuve6XgA+zLTlH92AJ52k5hC+QA8eCb57Xe/3dzH3eMTiVe8aetkzJXeCtQZ3hWj0PvgAhKZ7nSweZjDgQFw38LdzUFmCNlvG6hRbbDjzpUHJE2Q0gBtmSJ5f83Z1MoK/mQt2Tt3nty3gU54MrUP2fIH8gxohz4A0AVUNgiEO2mXJ2WfbcqZrTMSSzWjIgXCxhDmaIRbyFAcdFMBmi1BVMOMRZx2bLWi9ZZhEgislCcxkwhMsBA4yRDywmxohJAwdaJZOBJQFTwSZ2GhbADYuAqHme6oLDbxn+KYsYJIEYSMT0FqEnWCjWdrh4lnG5xXMlfI8Zq/25Bhoas70QwclEBF83QA1uuy+ruNCbjJzgPlTkkTMlrOwjOsDt0uuc223fA8AvnfORxiDspTxaWNhjmZ8z6oKyHOgqmScybU1++5+6CIXPELLgcdXVQxQYb1hqGBfxQRA/x7nl7wX4IXLjIbwuz0vPv16kg8Ihv9PadKNex+AIuNnI7CSwj9+I/CDYOOUcJaq0GrEpuU64uc4x4vXdhezekqTuIhRWcTAbGZThMWSv3t/EW7bru5miMf33kfcm+tBssAJxMIDwvKucTYVbJ13G6Ftgc0G5mgG2u3iNfrVmnfQzvMipef4PsH7hxa4/0hHP2P1LuLW6Gepd/FezboloAaHg6DaD6B9WEIz8H6mfYB7vwm20IJjP+j73nZLFpP+whFfbwihPiwwHnxGUwPGRpy8PyjtyRHDFfsKKHLG0to2YoMacMha4GQWt5a+TJFcLmMADZtth/dZw4PUZxwEH5zApxZwAdQ4hkVu5sBwALSOJ39RICyWHCTTlAejFI2Q5xyoNls+32bDEMp0wp9d5qBdBbdYcfZCBuHmlifZbs+LQJ4BswmQpaDlhoulN3MOPm0LP1/wwpSmXPV3FfzlFQfb+YKfgwQFM2aM1ysGrQXELGO8frVG2O46bFgggiBBKWLbzoGyFHQ0BZYrxqOThD9fi2xty1ivNTH4KdZripwDhRRZQz/zUwZFzUwEDe6hFrZMkoA2OyDPQIMC4XbBOxCFuKwBBiOEQYFwecNwUNvyc05kcWuamAmTJhzOAdZ1hWEJ/jzGmYMR9pWM7yDfzcbFKEIWEa4UKDJTvNrD5DljwXL0s2sExvApSWLgQtPwc9FzSsYf39O0/P285wDnHMhKMPaBaxODQa94mCJsd7zgBB93v1CoabuDl5/9zS1/x4znhdZFSHBpMj7urPizzGEiEEKsP/i6gQG4tgPwLidwomDk+sKgAK0YVgtVLbsCw4Xi2YRrQndRgTvHpydwk0EfZjhYbXqBWAN0LOKREWz5zmv67JQ72bFmPBETT5NuQpFBhGJC6BUp7B12Cg+WAHR4nQb+HhskYu2yiziAYPq7AWMProMsYLIU5sE9nmCJZajh/IoHlRQFdbJQljF04AOa+1Okz65hz+cMb8yXMXs1RzMAgF9vGE4pch40jUN9MkD++0877FMLr/dPQSvDeKMU78JeMqPhgCecMfDDEu5zD5DcboHn51zkFCyRmhb+Zg4zGQEPzoCqRnh5wYWb0ZCzXOdhmhZBtsVBCozGGgTveeJqwadpePFSFgckkCRK16MYHDhLo1iUpeGAdy7bbWSAaIanz4CyDH614u+bZQgyuUFGcN2as6y1FHzHzN5Q5k7Ybg/wX4Bxdhoaho+EqaE/K0zRUTIDFxqHJbCvEMYTYLlGWG85EAmzB9MxaL4CpPCGqmJ2SV3zIipsBS08xx1DWcZCn2Kx/LEhZqw6Pk2WRhqg1kd0cQrOAYq66Lnqukt25P5pTQFVhVi8C4EXwrKM0Euoa4FDONjTdAJIUFSICuDinmLVZA0Xdlfr7prWNUM4ikPLIkRFHndOlCYc2BVOASKTJNaB5DvoTpAmQw7yRuZwkXdzpXfPgvNdMTlNuAA/HPCu1XkEWaDNaIhgDfz5ZUyAFOJ7jYrcOz49gRvdCn6Xftet7EKlom5gHdDk+ufqwxV3AjcHWN9BJL6NnxUcDjP0O0H2ANZoBdvzvYzfH35Wdy29XYQsAkGyQ82QoRm84S0+TSdA6+BPhjCLDWcLeQbkGWcpzjHmnVj+vTFwJ2Mk12uEknFoXN/KPUh4e7/fc/Hw7IRfs94i5BlosUax2jJuuNvzNk6CPG4WfA8GA4TFkqGaLAMVBZBnCIMC7axEPcuAACTfecEDME3hTqcw+xp4dcUB9PSYg8d8CZJMzy9XvGUd8MKD+RJuvuh2Dqt1DKihbZlF0wi1i6jjH5cFB6TpCCHh5+CGGcjzLsJnCUJi4FMD+3AGapzwwR1oK5n2fBm34wAinQuZbOW7h8p/AyQTdLGwGbw/yBhJilC6ONFwyFvtDRfVNKONOK+1vPuoGy7EHk2ByxuGqLRwVTecAS/XsfiHtmWW0Hbb4c+C+1KWRXgn1AKjKO1TYBG/3XLgg4Oxacysu+Ql6T6/X7w3zIIiHSO7HS++QIedK92tV4CMFNLgETaVYMlWgj3vqsJ2F+E8ynNgt0OAMDAAXpCKgu+/FCC1PkHWd/izztl91UEh/WKpXJPWNAAc7I6oLOX8bUcNrGuEpWbqh5CnQimakYMYq/e7Pejymj/TuY6G6RzCuu5qHUB3r99wfHoCt3cI4ZAx0sewY/HDdEXK1yh9WkTsY9t8ooNzxqJlXBBMXCz4b/J7axFqfwCN3F1cOijG9vBt88YFgyELf5DtK5tBgxLlOezpCcKwjMwPs9oxnCCiDKWgERFoPOTMZViCqhrmyTlwMkPIEpj5OmZVpPS+4xlCmsDnKUJukWx2oKrmrLlumJ2iDANhIoA4o0Fzh+9KBD8ZgLYV0g8W8F96jPRmx5OoaRGCh10kCLcLwAoufHXDuLZkKvBc9DVHR6A8g7++6TiuPa43rAVJZkRFDoyHaO5PsXmnQDU12LxDCCYgvyW0JVBPAmCA9qwGbRLAA5g2sKlHmlXYr3MEx8M/PU+R3/KYcNlDkAeCAaYfeIw/3sHsWpjbFcJiFccLLNMvg9QYQt1lpFTkHFCUg+w8Qs07FHNyzM99s4mca4AnelzEFdsX6MSPB6AX57HYrIEmVDVQ5AjLFQd33WJLsIwZoUBBCF6y/I7RQ7JbiUwSa2GEAx0pfkkirBjf7Vw0qIhYKnKslWkizy4YCZC57Ox6Gb3Ce8ExFEEKZwFAQ4esij7dTiiMvCAKw0QWIV83XHQWSKavM9B6S/++KxSkhdTQ8i7WDAYcmBUmUjaQ3LfIRRcNidJYiYihyKzTCATngdWKF5Qi552o9xGWo/EYYbnsoKAQmDRwWLs8OD41gTsORuUvG/sapt3nRSs+DXQFvoPArqt7H7Jou+p3f4E4OEf/c/rn0NfIOeL7JFC/tlj03nPAFtGJGrdvDqHm35nhEOaecLMTC+wEwwV4AvpwqJBMEsbqHpzALLeMgc4mcGUKqhz8aADTCBdcs6o8w/b9CYYfzIG9DD4fgGrP0EuRd1nSdseZ824vu5EeXbLIEUYD5lbvOctJ/vnXI04ZnAO1jCVSkQvmyBgh0hRIM8ahVyseoE0Nv993nF6FytIUZjqBuz/D5jMj7GcGq88C1T2e1JNvWrgc2D8QiMklSLZAsiP4LCA5Z16ycYBrMrg0wLsCxgPUEigAyZZADvApUB97uGkLs05QXxGe//khtu+1SOYTpCtCeRkwftqifLoCvbzoxoL3LHbZV1ysJdOj3ElRrSwjEyfUjXCDKeLaQbb25uyEi2WCzZvvPRX4iCd7sJZ3O1nK0IkXQVLdcMZd72M2G+o6wn5+s4t8ZwBdACMRNWmAqxvmtKsQxVrGvZ2HKk71Ongsc5E1VBUHMGF8aIYanGPsvWkj3x4AJwJWab9eoCXJcnWcN23MbrXYS9YKA8PExdzv9lDmlgZv5bvH4C2Qz5uSuyho6/O7R0NAmUr6/ZRtsu0VETVuUACs3LOmBQ0l+MuuAtZywbLIEF5dds9hK5CW5ySRTo7ke/8IZNx3VYQADuCSmN363qSGFvqaXraM+AC1uhscwxqfdN5+MI3slTufE6lNeh13s2mBWZjj2YNT+tsnQwzF9H4ft2k5K+jgPfzRGLTedYW3tmXYQoJC5ByLcMTcrriwMRoirLewyuYQloW/uWVBxnQMqmoMv3fLr29a+OtbmOGAg3aaclHFOQ7YwXPwVnxP2RtlyRl008LlFiZNOjzQOWai2Aw0GUmwqYHdjheaJAGdzPjZLJlmhjQV/JHpUJTn8O8/wPozA2zvGazfA8gB+TVh+8gjvzbIri3qY4f1ZzxGTw3Oft2imDvk1zskqwq0q5m77iUDDYG/myYFykUuCwRrEIYF2lmB6ijFfpaiOiLsj4F2FGDXBoNzQj0FVu8DoASvfv4Y6foYw5ceyT5g9PEW4aNXHLgiDt5wsNNsU+5P2HFANVnawQNZFwRDmgBpFnHy0FScpQl2T6MhwnbPdLTEAlc3CPMFw1vWgMYj/q6CF4Oo439D5oXQB4ODUN34+g6okUEETMoM6kvwldlV1wxVCW6snOXIjhD9BCnToiw4oDUN/3+767JXKTIiTeKORYMonINXPYY1PKaaJo5FAB31TsRBsV4h31/pqsgykPeCgVNcXM2I8euwr+CaFkaTQWUaadBfreLuSkVyfXgj8vxlbBtdnIj4b3UdFcnu6prrIlkWsfpgDVAMgHN84vGpCdwHRw9SODi0iNfLjgF0FWN0+HVwjrMEfY2umHc52KHpigB9MUy/GBmx7B4d8Y4iE+hl0f2v0ntdH45ROCX4AHs07ZgPdQO6XUTRhilLnqDzJQdLobCFzZYLjELBc/dnsOdzxru3O8l6vQyKFOFoAtqz4tGfTBCGOezLGw4uVR1VdWFfdUU3rbRnKWg47ChzIhJw0yGyp9c8oYucB3pdwy3XMEWOcFUzV1sViEdT0K7ibEIyKYCVmqFuEB6eYP5TM1x8hbPgZEMAAXYLtEOmks2+RRi+bFG+3MBeLDiTE9YL0qRbXNuW8WfNWlKeGEGCdqSmrdZ8jy4CUkNIrcU4TblmoItRWaB+fIT9aYbtmUE9Jfg0wCeE9WODdgDcfGmMdjhC+Ypw+nsV8t/7CKFpYCYjhobKgrPeJW/x1YqAnJPisjAqkoQhD8kSQ93AnB7zOZIEODkClmsOUsOS2TfCgOEg30QGDYBD2pwRCbtw3GNmmmVM8RPIo5Ol2w7+EXyfRkOG0wx1EnKBJijLEL1UJDM3SptU/UDbdjAKVAyUcYAuCw6y+z1U1KbwDRnDBcme0hPGMHyic64R3J+SWMiM/HZN/vSz21YWAaHdaZKnxdG2iQsGjYb8874CTBJpgxH2UXuEpNsNhxAYRksSpmfu91zULQuE+QLeyes1HhF1tS4iNPdGwPd+BDLuvk9HV03tbc37ApngD4uPocO9+6yTWMBU9dPdBUEzbf1sPaLs/RBSeY2qZw7Pd7dAevD9DAGU9oK3B2VcJFT+Jm9rQ8yujDBG/HwRdyRmNASOZzDKp3YOYbWC2e2AouAg1tSc2RYFwnrN1/fqCiFJQIMC5naNMB4wRW88Zm60nl+ytdC2rCQTGhhPJiOBwSOcTmEv53CXV8y5lm1kCCIBJmEJLJYMIaQp0DoONnXDu4fbOczD+1j+7APcftGiHQSQIwyfA9VxQLDA6GnA9Hs7ZM9EMdm0DMeEcGh+k6WcsSfCNAiBs1EAKmoIQJd1OsZrI6YoWXk86qbL0JsG6WqD1DuMk4QzRUNozyZYf6bE6jMGuwcepibUM+DlL+RI/uQXkWwDTr6xR/rN53ztatTlPReAJfCZYck7HB9416M7upR4UdvuOGvPM65HyCJA8xXjpIqLy8KvW3u/3vACrnzq3k4xjunxmAvWkvXHbFF3oglrBLzwucNiecg6MSxYUk40UUeVU+k4yT1DCJwgADwm1OtmKJCEDwjVnndBAn3E+SMLR1DoRD1V0INRFSdvW5jxmN8oBV3Kc9kNpkyTvJlDaYmaOet1xyCvi5EPQo/0kYYbrwUQyTsvgPp91VvGHM0Y0rqd8y65dTwvezsSfg6sa0AI8GWG7NsvY4H9jfHkh+HH/W97TOg4fNX+Zf7HXWVh9DSwr2e3bfNaVt6Xvuvr+LRdpt0/Dhgs3nUE/37m3LumPr59l7XyJirgXT8U/b0ZDZmzGQKzOja7qDKksux8PhrhImvmMxoCx1PmWSthXwf1YtlRpAZl9O2IMErNGTcsK7vQOoQyR3j+SuToOYLv0Zg0QIxHCGnCOOpyxTuTtoXfbmGVXqgDEYh8ZWWKqOEPRPFoJmO4x6e4+ekJFj8GIADFFWF/GpAtCdMPHMbfWoDOrzmT1qCTpRFzVclwyHnbSzvBbmsxeFI+M9C933SZVVQ/przAxUMzMCKEnBcgUpqe93zPqop3KSqWKQr4sxnmX55g8XkDl3FhNL8muJyx89l3PGbfWICevOIs0QemRqo2oGA2CIRtEANNkiAUGagVvLjMWRClIpC2ZdwZOBBvRDFTvwis8IhkigdFRqVUZlmEKvy+4iJx23bZoGC1+n4aDTlQrdZyXh+DagzmukgI7k5lwXDY7bwbM4o/S9KgxXGlafbdIqO5k7WdNYLy6O9wzLW+EIMw0BW9hVYJ2fWo2payrNM7CIOr/14zLA9UlvbkuMu4ByUnYYslU12PZnz/daERkkBfbEZFzomWGK2FNUNk/+Ll38KiPn+jCufTEbjNcfj55D8AcFiEjEFQRS59KONOkU8D+10Odz+Y3v25H/S1UBi3O6rWfAM1MeLTvc/Uaz+4th7LBSICgKFOFegcaDLmB73eRNoYDAcO9d7Qz7NHM4TjKXB5y2KUyYg/TjIFMxrypF2vQeMx/HTEBbQsO8zEk4RpfMt1x/ZQ/w9hD9BgwN/j5Ah+UsJsa4TUwry6hrudw0wmvLjs9/DCtqBUKIe7nWzb28iU0Eyr+ewD3PzUAPsTQroGakmMRs8Djn9vAfr4JdPShCdMuWy/8wxB6Xjeg9ZbdLL2IDaz7uA7xEO2rhpIosAGiBBVpPr1d2NKC2zbWGAFEUJiOZCGwHz0Su5rzpPbPTjC9vEAq8cJqhMAATAN0A6A4YuA09/dwH7vpbBPdrIVl2vW4GQtQpnDTwewN2vGvb1nuEu+E5JErHI9Pz/Z5ShmHRlL/URGAoVfb6IaVAtyChNEmp5jObsepsgjH1qVhFQUsjA4HseScUYTsd78Okh6FIYQPrnSH51k9urQp/PNTMbw600XiCUp0ADYZcf+QBwThDceM3Ypkupcj4wZTegEh/eSMet3icFdFhUzGbOZmSg99V4gTeGPx6DnF/zd1hvg4RloVyHczrsERBYuvS/m+Ii9h+YLqMfOr2//Hhb++o2B+9MBlQS82QkPEhz78ElP8t5/Xd/JT534DoqVd36OXG6gE5qgWywoFRJ8z98kwi9vYqD0ru1N16c0KXN6zFmbZFchT4GOOsrZaVV1xTRRXEW3vhd7zhgMReMfNlhKJDg3oOMjhJtbmLZlJoO40YWWizqhqoHNltkApfiZSBWf6wIeOJ2hPRrAVLwddOMcyTlDNvb4iAdzloISC9O2zFjI8+j9gCRh/vRwCKQJ6ndPcPPlAi4jJLsAuwdcBtz7Wo3BN8/hz7nKHiwLU6gseTcg3se02gCbXczAAxAHeFSGOidCD9+p/HRSSoYdA7Ni4WqDesdqVINTnLg1McapCkAtQOasPEUI/PcQYD4+x+gpYUwEf+8Iyy9OMf8xy985Jzz9iyOkX/0Cph+1GP+bC4SbW9BoxHNgPAQWaw4ooxL2Zg0/HYK2FUj8YqhhoU/Ybvm7q0MgGcAJL1gx7l7AjD8LnnpgnqRFwH4iJJBTd79kW5+lvBtzHu6q4ySb2RROBEWhbngXN5DArAuAGkxVosjUBUKgkgOxj2LtQrcjKVyrOtILG4OtGtqOcy/XGOqmy6iN4SxaC6Cy+wqqwhR7hOgMKLueCB3ufbRu4EWxAQ2HnExd3/L9nI7hBzns7YrrDm3LwqA8hbmesx3AbMq7TyDSXtG0nWOkxosD7/bXj09Hxt2DSg4gkDsZ7l0I5a7/9iEXuzveSNV7E98b6IoU/YKknv9NIh+9thA6Yc0brsMcHQFnR6B9zWrGy1te9RWXdZ4HgwREVhmybJvKAv7ymj9TOMKdwtJExaRWx3WLxwsI84ipyBmqmC8iLSsGqDThax8Uwo9N0bx7is07BSbfWsDcroHEws1GoBBgXl1HaTvzUEec8Qkkg7YVShyBPvMI53/uFNuHhPI8wBUcuM/+9RLme8+ijzKM6YqgZc6wzG4fhSaRZdCnJPa3xhqk9ZlL8InZp2aK8j6IZP8Ar+1RRmMAvxPwTZZGp0FYlinzLkYKi4JTohFL1UKUcHWD+vMPcPUnBlh/JiDZEkISUJ4TTn93i+zjK84mjeHCaAhA6+AeHsNsKtDt8iCrRGJZiCQc4yDJQORtawatGbb4rag7XtgxZRCpyPer6sB2VDnSNBiIn3fFwVp2T1p4c9e3B8/C5DlTEjcbfr3Aan1oihOPTgFLw4FktOEg01XnvejWJ9S7uFuylqEFcU5E5KT7zr8H4OsSzxnF+4MG8H7Ny1AnS99XIGvEb6Q+yOxNngPvPgQt1nBnMw7UN3Ne6IfDCOWEqga98wB0u4TfbGGGg/h/LRL79x/BvrqO/HCEwEybqsKv7/9fWLRXn2KohI7DV+kvIvp99KGIfoFQYQfgjbh3/3gj6+NNSkvN5u8aSt3BqKP3d/QT8Ye/193CHdYJyMCeHiMcT+GzBHaxYUGKfvbZCQep9RY0GrAR06tL/pw8iyb4VAgmKFtQVbnRcMgLQJZxpqxURiCq2HA8438vZTs9HvLWbbWKRUzNJP3RmDHU1IKqlpWXstUMgwK0r+FPJqCXV2LkhE6uLRCL4vPLP/dZLD5rkS0DmhEh2Qac/dYa9ttPeNsrGRYVuVyDcGIr5h4H6SbSt9lUfDaq9foeGJolS0EOoUfF891z7sMRBwVJ7QqjW2KBEqLnsnwOZdmBAEQpbJFGCchCaVmZudlxsJIA3753Dxd/aoTqBEiXQHUSUFwRHv+9FwzDbPfM9S1ymOs5onCkzCNExL4ordQsbMw+4yIFdGIQpaEBHYQh1xuE6cAFsw3cYtlh0nnOLIiq5gShKLqApLBT03SiF63BtC0vDBnz9cO+EyMB6Gh8YPohpUlcFPpNNqjII/yiRVarIqRByXUVVUr2MW1RZSpTRvFnhTkULlHf73jPJMtWlgiAKKFX6qOOGzOZcKKz3sSEINo2zKYdZfHhGfDykiGpsxP+rOWKY8V0xIv081f8HMYjVD/5Luy+RfpqgX/x4f8ZC/fmwP3pgEr0UL8PrfLqz84B4Q4kEcJBNsy/7gLua1m6rqp9T5H++V8T+ugCogIa2322SfpU7cNMOwTEpg7KzSZCSAzLrl+84qxJs5d9zQ//9Igx3Oev4uQPyxVntQ9OgdWWGSC6MDixl8xShC1vtaKJkt6D7Ra4dyKfsUU4mnBw3eyiWIMGJcMRWYrmdACXW+yPEhz9qxfM4EgS6YwDrthXNYwqKMuSGxlI1xhzNAOsgTue4PzPTBEskOwAbwn3f2OH9Bsfwy/XcI4FCZRlkYfrN9suuAJddiWGPwfCCWVKSCFWIRJYigUyDujmQB9AwkaIz/iOdkADtAaioPdYgnMsEovPBYktQVgsO6Wk8yJnd/xzngEFB0DUDcJuB/udZ3j4PYvw+AznvzCFqQjZIuDqFx/CtAGjZxWSVQVzOe+ojlnKviVJAjQ7hKaOCxuFw51GXNg0Cx2Pu+8uxcEgXtnmeMZjrGbOOcQLhnqLmhGDf1jLBVDvOwdFIpgihzk5RuwQtHFdAdMafm9fFZqUcRdFQkeED2yQtlhHnD7Kz+O5bFercMwZ9ze3zCFXXF2K7Gja3kLO9rvxe/QtdwVKCQ03PujL1KOJmu0thgqdVVUUjGkmHp/BvhOz+e98FOsBWkw3ziGMBvBlCvO95x2bBUA9TTBY1+zG+X2OT1fgvnuIDP6NHiZyvGazGgJYVSBf/IClYg/fA8TfAegKK/pZ0MXgDs+7V+x5rSAqGbmZjjmL1ODz4oqJ+9MJ08luFzxhDPGgu10wFczajj+sWcyuQvPuKZKrFWOFdcPBIMtilxoaj4HVqrsxScJyeO3LeHYEWm05Ay+4uwuVBdA61O+foC0sKADUeky/teTMT7biZC0XIYUzqzBMaBrm3krGByIs//QjLN63KK8C6glh+mGD4deewl3dwEvmo9tYXzdwi2WHa6rJveCtIQTuJANI8cjCZDbS6hSvPcCygQ631K2wBnqi157Xa7CaBHMtysWtdZ8eZ9gjBSdHmP/MKWb/fB9NnMK+6vBKhaPUdkD9Z6o6NrB4+Ooa7Wfu4fpnRqjHBJcTbr9U4DO/GmAWqXCiieGE7V52XwVT+DxznyEwCBxrFyjvioscbDdQ6qMRL3V2K5RCpLgkUpLwNl7ta1N22It9RiGQlPQAVbm8yshZKeq7OZLnHcxgWRCDhBkrfRl5hOyubqKHtZpjaZFcuwixaZeJxVD1hteWdMqbPyg+A7LYpgcUxVBVXWFU7Fz9vgKFpIsfSndU90hVj0LgIYDZI5EOSR0uL4s4ZRnvfpdrmCyDuzeFfXULc9Uecty3O4z/+QegxPLc+pHwKgHi9iR40wVJ8RvoFy77kMZdC9a7vR71dQfsk5gZU3c+xTT5zUDP3xsqXOizWtDh3jGDI/abUHMmJd3HgkmRA9MxF5NGQ4YqgLjV8lXnDYF7J5zZAGhPx4AhuKMh7O0G1LrYJYTSNOKAfB7HFqREwHaHMBowne3iOmbZSCy08Wr7+BjNiAuJybLlYNB6BJUl64JSNxE+QJFHf5MwGoBuFqB37+PFnz2GrQNMC2weEd79h3OEP/ge3J1CbrwfppsMgMAdvW1qNDKyLMCI+Kb3MfONuHbwvTryndqFDwf9D/kc7QF01nuorLoFDoN/tPj1QLtjSGhXYfq7V90Ek+ehlDgOGuwBgzSw14l0CKKTI3b9kwz83scpdj/7GVz/VAZbEc5/bgByAzz6B6+AJfgceQZyNkrJkXLQVbWmLlJRjVvkvMD2uvfQdBIbYig/n+sswj3ecTD2dQOK2a2IXTbb2CWGaaKyA5T2ZWFfgQZFN7e0cYNQDKNpm/D9QwhRraiqQaSSzVPXaAFtG1kccaxstjHj17EEMPTCLn1yPzSbNsRmZrIjiZTDpmGhlmTZRimnRhYDuI6IILsGNWAL0xHw9CUo551juLmF111c0zJNNcu6ukPbIoyHMLvOEwgC1fB7GvheW7vvV6D89ATuvlLxLm59J2DGwlOfNtgLxAfQBhAnX6TvCU1PP+s1sykcQicADkU6dwQ8+jumBOUHBZRu9eXJZnZVxIhpNoW/vu3wt6KIlWja7IAsxfYLp7CVRzuwGHxnCXI+PnT1NaE0YYx8OuGMpG54Io4GjFevVsxagEzm1sEfjxGshb1awY5SZIsaPjGwmwqwBHO1QPWFB8iubjqXNCfigZx5xe39GSgA1bvvYv75lLHsITD9sMXo9y/YUMoJxVKgDq/0LLHbJBFA8L1quuAj+Kyq1+J20rmD4mosLMp2Wl4kn2u68RIIPlbsDxlE8bl619n0HoyHXiIgcI3f7YHopocOO1fb1CwDffZdDrAXV/DLdcy+wnrDjJxByc9jt0fY7lD+y2/j3W/N8OKvvIN2ABTzgKtfvI9iforxb72Av7iS6/RxnDEdj2sAIRBn1GUB0jZozjNtVCEU7xFeXUa4gXyAr3s7Ncu+JMqP7mO7djKKgZOShGsyt3MOwje3DMEs19FsSsdytEUt8pisUKbYe9M5IWrTA2FbBOd5YcnSTq9Q7/h+W8uFxE2PkoXeDkl3zOIVQknKO5EeRZKshW9bqbMUPK9SsVZtxJJAWVsAP9cy5frMag1MR6xqvb7tEhsNxBagR/fZg/7hMeAC7MUt/KiEOb/huZjnsYlxLNDnvfjxfeqPn47ATYcB+DUlI9BBHr4HYQAdH5v6WLc5OFefS82fcwcuMZ1ENmbf8bWum8B9yEU53uDtmBkNZRu4iys6ZAtPxnR4bF2DnnIxQn0ayJrYNxGjAUJisfvsMdK5yHMtYfDhnItWbcucT+8ZzgB4EM0mHRc4EbhF1aL3zxDmS84Gm4a7qgCo7g9Q7mtk8wpUt0ivdvDjEuZmhbDdIf/uOWde2vPRWtCwRLAG7uEx7GKH2z99iv2RQXHr0eaEB/+fK/gPnjCObdmL2feMjXTRpCwDPvsYZrWDP7+Ue2/4WQjbIBaD7kBkXBC+I766K87S7DtCXnc4+3yig3PCZt157zTyYE8Pll8rXBNa3y1qUZEpNLKjGeqjEu0oRfHsJS8y0omHipy/w3rLOx8J4GG9QVhv8PD//h00X3yM868OkK4Drr+UwDQPMfytRrJGznK561EbbQjMoGQYQlSAIYjIJ2oTAtzVdQxulGUIApvAh8ifBxADh7rbGcneiULsqhPWW7ES6PBfX21j93jOeD38YsXZqvMdi8g59rQBpJmAl0IvwzAKfYCkO1CW8XcT2TuI+Bq02YVAMf0u8cqqUjGPV4xfkgYv9sWxjZjCHFrwzNgIDVUlnXE6W1+/3cI8e4Vgu1ZqEbrTxU52hT61SBYrhseqSnYTthszQGdspVCcxItPOv5YrBIi+gjACrxJbUMIXyGiYwD/HYD3AXwE4K+GEG6/33mUDviJwhvq9X3sB/Qep/suphnVVTELD+j7nGgGzuc3r0Ey/ez/gOmiC4Vciyl4kobtrqOP7SuY05OufZRWylVJ1bad+5t0d6HhAEgs/GwEV6bwuUV1nGL4ZAN7PhestKcQGw+Zz9u0HKhbJ9X7EC0mzXiEcDRBfX+MZFHBvrxizxJRXfrjMXyRwq6UTtXy36zwm4VTHFYrHkzvPARCYMhmtcerXzpFsmM+dnnjMf1Xz+EuLjuJdRzApsuK0QVAenQftFhFnD5yi7Upbq/Q/Jozo1D3XgvovSD/JgrnG3/fZyjdNR5LUv6cPt1TmQqyyKsV6F26oTk95tPPl4esD6VyamEueN5tDUrOvnWhOzvG+V+4h0BAsge8Be7/42ey0HX4cAxw/UJskjA+bCQw100UsACcmSpThsoyWqbGZ6NBTKAfxuxN7JSOpo4Lc9wxrde9hazb/msQ1O45RIzZc9/TPdNJZewiScSn3B0IcFRCrgV5AMymWa47ho3ARLHNnOzC/XbLCl6hIkaYpN+UV4vhasWru4z793jB3e7iNWlmbU5P2Ju+t7s2jx4wFVSEczFApxnfMxnnKtsPzsEMBnyNQlhQNsy/cr/6iXTATw7pf/jjL4QQfjaE8BX5998E8GshhC8A+DX59x/q6BsxddtVipP39SycqW8xq+oVDRmztt3E7jE/4oTT14deC7CeeOYgKPQKpHqN9mjKg26z4YFvLD8g7RDjpXeetTAP73fb6eMpFylPjoCjCfDoHkLTwJ2MOTMoLFxuMPntV9zFZl/FXpFU5Dxpr27jVircLnhLKdACFcxmCW0LWu+wejdnxsWIcdmQJgyV5Cnspmab0O0euL5FGA9Y8EEErDbQLiT06D78lN9v9g2e/+UzpGvAJ8D0owaTf/pdtM9fdgIHnQhADNqkbAXvmUXy8oKLV9JMIOhi23+G+v6+BUJUl3Z/jxj2nUW3fxzYeN7h9b+WhceC9J3aij2E9O4qayGOemFfwT17Cff0ebcLU5jBmpiB+9WK/9Y0XVu42UQK1ks8+LsfYvKkRT3mz7z8pXd4AVXlorVxR6Nj1JRFJ0oZlLxIL1fxOgBEGqYGEKXQ6Vb9NbfO0HH09X1c7HPse6PfUQp+mrnqIkBJwlCH91y0lL6lMMQ7Rr3XDUMbZjKBOT46ULpqJ6PINjGWfV4AnmMj9qYPu128/tigA4gNnNU6mrK029k5F2X3yjBRdaNfrXkXJYKceH8TG7UWfreXbkxtVzwfDIDH9+P9C3vO3EMrLLBefYWs6kfk+95NUu8c/y4y7q+EEK56v/sWgF8KIbwkoocA/mkI4Yvf7zxv8ip5o3T9rhjmjmHUXWrf3az5ANe+Q8J/k4y9KzoeepcoawTEtCCl9gEQt7peRiXFQ0pTLtYYwz0c25abJRgD2u7hzmYg59BOCqQXK37413PGu7Wh63QUJc+hECn41S1PCM0GVH6tcl8V32iWUjdw75zBDRLYDTcBTi6XrP4Sjwru/5gzHPKqWyDgPcLxFC//wgnsLsCnwOnvbmF/77tRWtzH/Q/Mf/TZ9CCrvl8ynz+88RkdjLn+9lK3w32uvWbnkb+bRtbCgZq2Ny76z/7uhInXcMcOQc/V/9y716Jslkh9FIXhwZzrb+kVjhDnPyzWfD/aFu1PfhaXPzNAMffwCeH4a7fAh0+jECZiotriTa+/yLnLihQYdQcEw3i4324POtjruSK/WuEXLcyFblehtYY4N/S76RyU3UB0PtTXON8F2arm7FtM1lSReVBnECjCb7eMvfeaGSgsoayk2OSgl0UfeLTIOItWAP3CuT4v4LAzlXia8E5K7Ha19djZSSeWm41B13OE6RghT0DnN8B4CGod3Mvzg+cNoPOB6Sl/eQHhHcOvN7+KZbj5ofC4A4D/NxEFAP+nEMKvALgfQngJABK87/3As/SwxHjiT9riOuZW961RI1zSF9UAB38/wLk1a4Prttv9xUIwza5w1QVtk6XMGhF1m98zpogk4SANsIw3l+aw4qqHlNkFYbMVJzimbqEsECZDkHNww5yD9u0SOJ3x1lSVd1nK/tVEDHesuR8jxHUtOMfXAMQsSmX2KLnRLIJHeP8xAKAtLOyyht01jJWrebsGpyyFWQh90FhgOkIYFrj4+RmSDQft+7++AL75QWwIcOdhgSw6ZoDyXVXMooVHoMvCXW+r/4aF+mARfYMA626xMS7WDq/XL/T5v6G4eeBjE8SJMvSvxx9c3yGzqQenOPHDhgQECSYxOAjOrG5+bOYkvtlNwza42z2C80i++QQP52e4+DPHyBcBz//yMY7/YIzyf/gGtHchAC5W7naRp03KUhB/EgCRjtlJ3ptoJNVfXGM3GtM5/gGIO1NzNOOsuaq7gqQuREXOyYNAP5HhIkKTIOOBcjFCE/Vm5NbnjPnTaMi1miBURiAGeqRphBW4mCmQivp4a7EweITQMciCqzu7235ykWWHTooypox0hEfwPWql1OL2vHD6ownjF+Mhs7bOb+Bv5rACD8W6giyMUVRUVbFhcvfZ31/uDvzxA/cvhhBeSHD+R0T0zT/sG4nolwH8MgAUGOBQ9IJO/Xcny+mCLoDQdK+1GTTAHmRcPepgtIbt4aVatIo4uVyHHjGTShNWRIlqDkMbBQ7Be5gJb50IGUJTg4Yl3MkY9vkV/GrNmY21HVVwJUIQoR7B5Ehf3rKZUCvCirKEn45gFmtWzE2EGbLassIyiICnktZQ1gBJjrBY8RZxNESYjVkFWUq38V0NtAkG37iN9CTac3EoDIpuDZ0vWbwjRj7ueITzr46RrQJ8Atz7F7fAB0869zfdtcQd02G/P63OGymERbOfnqgmZsw6gVTd16f3GQKZJG5ngTdAaHc+84A5pDWQXrbNXhU4/Jzedd3FwKO9sIw9Sjt1nY41HVM6hqLPDVyvM7nw1j//Lnb3Byh/50kHiWUZ76YmIxamzJfA05e4/2sVzv/CQ2SLgIuvpLhnvozBb3zE3F+BLaA2ranSzSjaspJ2eLHSRWe/jw2Tfb2Li1u/SElZCr9mM6ooMQ8hMpi4U8yKxyZ4+lCWRhYLTSdcTM1SFgvV0kRBs+HREGG5ZhWw1oS2uwh/mcm4s5e9vmGuunjG62Lot1vOioXTzfe/0wUcYPraULg/LhxzxO/aJJi0w8JDr8juteenPHdzPedesNMhzPVS4KeUIaqmB9uMx6z6vJ13i6V4lxhx4wQk7r2ht4wefyyMO4TwQv5/AeC/B/BzAM4FIoH8/+IT3vsrIYSvhBC+koLbch0wRYztaIBvKEBFio8WZnoY5UF2pufVbD54hKbXcR29zKx/fcrPtkxNMrMptG0TKcTRtDAnx1wE3Gw5Yw2BcW7nGWYoizgAaSDGSfKgaDrmwuJizRamrWMMuqpAizXCZAizWPNWcDwErTag9ZYz8eWacekQQKNB51yng7YogLKAm5aARwzyVNWgZy/hL6+Y5H99K4ZXlsU9RJwBBQ9arOCPx2g/9xCvfmGMfBEQCLj3L64RvvXBgUn/ocmX8uLFF0O6wKhjIPfyqw/ghYP36hi48zwAdHTAPu6tz/ANmPhrGbkepsvAlDd7MGbuwCo6dljgJYXsfpekO+Onfy797JjJK4aprCfvkd1WcVz4umEGhBaxdxX3lBSxzf1few6fAfkNcPVTKbY/9z57wzQ1aL3r5N5SDPWbXedjo9c3KAVKSjr4I0njtYYQYI5mXFBUpaG1gPMwZyf8vgUHqLBasceMOvdp0Tx4LrpXVeR0I0lAE+nQAwDewV/d8Hk2m85PZFDGoBY2W7hXF7G5cuzJ2bNq1fvK8ndzwE4BACudeeAFw9aYYHhhi+NU9Qtq7qZMFyCOZ4AXpshpF2GROxrDXC0QnRvFXsAMyy5OVVVsEAwIXCLXwwKisVgF9BpTv+H4IwduIhoS0Vh/BvCXAXwdwN8F8NflZX8dwN/5wSeT/79hsgFAaJsum9O33ClA9TOl/ta6HxR6F//G89wtSpIhXiGLPAodwn6PsNkBN3Pmb253seKsDwZNzYUmNepPEt5ulSXIyaQ3xAKM5YoHtGLeiWVPA2s4eI8HPDjFzAchMKtAuoTAGpasE3EGUnEHG8zGCNaAXAASg5Cxr3NYrbkAo2IX01GughoA+QCaTuDvHyNkCV7+4hD5PMBb4Ow3bhA+eMKS6zvPRO+9wjvRk1uLOVK86luF9hdULQRG73FxgzNFHrtxU5Zx1i6B2mQp//tNz7r3nPuwxsHE7V+/MAAOAnhT9yC47v9qCXpQV+lBbofjzRyMz/51+NUK9PwC9oMX/FLL3wnOwW+4W3tYrTl4H08RvEeYL/DwHzxHtgrIFgGrxwnqn/+SOEhW3A5LCowkgYd9RwT7Vmx3veEkQcapvXcKM53w/ZYioAZYxZZhCOFm3hUIRQTlr5nvz0V64nqJQkJlybUXYu/ysJWFINqvZnEBUxpvWG/YYsAaEe8w5zuaRekYUjWoQjuaZafsYGjKQvxvqk41aXvQqT4irSVpwwR0Yp6wrzqTLYDPLTsWEufO+v0z2KsF/HzBKuHFiiX2QFeU1gRBOlnBOWkKImNCYSLF9emTw/MfByq5D+C/F+VSAuBvhRD+IRH9JoC/TUR/A8ATAP/ZDz5Vl/0Ad7asZADq/EO6t7yJCeC7LKeHUx8oHPu0Lyj22WXdimlTmsCensiD20v/QANYD3h5iLJtpLKAGc3Ep1k6aSguHQJvT4+mwL6Gv7rhFVWDihf+5oQVle5kzP7L8yUXCRfrTmQgvgo0HDBOmFhQw5aZQd0AZ1PO6q2FHzBrxGcJ7Ktr+MUS5uQYNADcqwveDQxKCfAe7ekYdrXhbWyRg+oWL/+nRxi+9HA54fS35vDf/UgmsH0taCsGCSf2qkYGq6HobfFa8bi/VVXGTrCHvwc6YYM+Mzm//lvHgSllO6w4rirt7rSfUy4/gE7Qo9cu8nH+293POGSj8GdRhwtH3F5fcldd2+ueJHi3NheOdNJeQPH7CqYA2/AqtEXMxDj9J09w+Rc/g2CAq5/O8WD9CPbbTyIDIwj/mK8xjYZZJD1CqcjZjle7pa/WXJvJWITCcAUzJbRAqFJ20oKgYNlIkpgFajcZMxkz5LDfR69yANGETBlZ8T6OhiBtzis4cNhXnYmU4PJRDq8K0eFA5l3Nu4seRh0NupSWKkXKCM9JJszPWNggGlT10CKntEzTXpZQ06rNBun1pnM9VJsFobnqgse2s2wHS9IVJ3rZS69Qr0Xa/jh7w/HpcQc0f+nNgVuOqI4E0Je/yxsO/w1029iDYtTrmbq+P27Rk4Tpb1LdDrudGPD05PIAFxS0D+DZMaiqY7aKtoV//xEAwN4sOQhu9/CXV9LBZsYZ9e0S6mcAkkCv+KE8eBoNufjjfGe7KtSqULDsvZ0WSC6WUaZOTYtQZqCarSNpveUBZYgD/PWtME8Yl0cI3FJsV6G5P0VyswHmS2x+7n00AwOfAONnFZJ//W14XUTUJRFdUFNhg27JX6Nh9SdDjwd9928Hi3boshWtuuvfVExxtzuL8oUPurwIn/igk0p/7PSK3ADiVluD/93ay2sukXfgttcKq3fu1cH3BLqFqg/rSaDx2v1duwkNS+Dyhu/h0QwXv/QItg7YnRk8/GcL0B98yKfqNc41kwlfq3p+6Lbfe7EurYT5ZMXre8cZr7oAyoJrRsMua/WBces0FQzdRJ60fh8zGnKzEKHUhTKPNgoAeAerxlziuBgLuUDHHpHiamSVyKJjpmOeb2pJG3xkK5G2QFO2iw8RCokdhOTexgYgykvP0tgou8+7V9sHMxwgnMyAFxdA8Af2xPxipgPSUNqkAZ2Y6XjG5/Y+4txmWLJ6c7WOc+jXq3/wI+AO2BNa3M2WD16mqkrvDqTwBxTBg9MSVPUW2gZ9BV1/ggAcHMzZCf8pSzmorTccyFNpIfXinIPqZARjLTNC9jUX9lrHPsTTCcxm37nwLdcI1sA8uMdZjWDe7p0zmPkG2AkeKf4fMAbYVzzg50vQdMwdV4Q7q37PjGsHuCJBkmeAAdpJgWS+52418zXcy3OePONRVFZqwRGJZfgkT0F1i+bBFMn1BuHZS+AL72FzzyJfBZTXDunvfQSnWKfaE2hQTRkK0nZOyiqIXhL6DHvxEkCXydyFxuJz7BX8evgsL+wCiTVdBSe+Vi1ZIYG+j4d6D4IEjboBlC0i5mRBx4XhlmhM5eyMsULbk1NrEA6+O8+dIyYhPVaTZv53O4QzRpz2mCesJtXv6dcbGIBdGk9mXLBerXH2/73AxZ+/h+FLj8s/PcH99SOEj591C6mTxh1ARzdr2yisCW3LTYj3lUB8PcdFFcwIZAgA2ENcCmvx3FnLeOrw8tjabDAQhahkx6J0DMrtThJQgl6D4QAaDOCXSz6P+pP0dmSkLn+KdYsXyQGMYojnbpFLF3qBW0Wcpri1Ov+RIYaSNLHb7mQx6by9qSy4scTxDGG+QvjoWQy8umtRSia7WW4O+rny8zbwN3OoSCuag41GfK/feww/yGA+eomw/+Sk+tMTuIFDTujBH5g9EE2hDPG8vpMlHRw97xMAkfb3mvINiL4HNBkhbPdxgNJizXQ77zlo7yoEkftSVSOMJKMcl2inJWg2QHqecZf15ZqtGTUrMYJFNy1ouWG2yK5BGOQc4CXjCet9x0UVGlTY7WOfSfVkRpIANwugbZGMZEIZw9zsIoF9dslSXhEthM2Oce88Q3s2QbLYIRChnZUw2wZIDNIPz1kJ9t47eP5LM4yfObiUMPidJ3DrjdzvHgYsz8rORrzNe/GKL0Mc2oL6x9wtApMBYKOCjPAGE58877JQoOMhOweTUGQLaHAF0LkEAlEKHXFzFej0OOkqsac7AVmDQdBrJt/LpAS6EzycGTI9b/Y3FLwP7RlEiRkHZugmv47/1sdzKNVS/+a3W5jAJlthNGCzqMsbnP1mjsuvTGErYPEzp5he3TAcIqZJYbEUCfyEmTBqXSqZJ233XdAS1WEIIbresfe3kAaUMZIkCBtuvWaaloun2x38eg0zEPfK7bbTMkgtBiryEd91Nbny2j2nYkhCmxoYgdvIZ5wJV3XsZhP2Vdz9sid86CAnKaZqncWLRB6eDbrUiiJU7JUe1ps4PmJXe23hF7hQqkI0c7tAbGkWF95G+OE+3kvdCShdsdtRmYNkxC+WwOffxe1PTXD0bxZck/g+cMmnI3Br3UbBecFPuyArA73PGAHkJgs9y1owYbfzOukXjSIbRbnd8QFlMNOJYHFV7AMYrm+EEcIV3uZkiPQVN2YNacbZcZHDjQvYTQ1TtbCLHf9e3scKroa3VbsdC29K5tka7xHKHGavzoFsMEXjEWOKatQv1xh84Ia96y3a9+7BLnaM6xmCXewQcnltCDDPr3mxePcR34/lmid5YtEelUgWO/hhjkBAPUuR+YD0yS1XwacT3HzlFNkiYD8zuPcvb7gdVV8Qodx2wbX9YgXMF1ALADRt3Jp61/PFcA6UdcKJaK5PxJCOtUBCnBGHECeCer6gh3VqZoM0ZaOqaLXZ7QJit3Hd7vbEJ4oBR2+IsowWsqri1PcCkOsz8dy6SLzGjNGEwBBCreIaK0VOHEJMGqwbWaB1HIduEenEPaHLvN0G5DyMMcB4xHznl1eYfbfA4nM5dseE8Jd+HLNf+w602BuM4e/X1JFxhKbl7LHM4AYZkvOFBBaeGxrkzaBkTFq9069uYu2CEsMLxOkxwophNDubCWxlOCPf7DizXW/4M+OCJ1n/eAx/c4uoTJWCvnqrK5vGVxVILGLVDAtCCohQmM6X3S5i1QfQmS7gzkE7vFOSRI9uI+wTv1wxRXTPxX6Scdo8niF7chPVocEHEAX4puooxX1BnIw9LrRyEhB6C3O/1RpeXuG4boHL244X/wnHpyNw69HzCQm+3/Cg18OxbQBY3HUT7DjEffXcYWU/Dn5vAAIXHzXAKtm/ZVw4EvInI1BVI3ty1XXjSBLAcpYSToZwwwzJixumBE5GCIMC9b0h0ustaFuxJL1uQNRyYUc8kMN8AUThRA4/G4NeXnSmOhrgQgD12j3Z2y2ae2PYIoOpmo4W2DA22X72AQf21ZZZAVnGgqGmRXqzRX02RDrfA5Yw+GCO8OwVb5WNQf2FB1h9xmD4ImD0okH46Nnh/evjuooHyv0yOZsdqSiChA1AMjlit23qIA4ysmU0HZaoWDWCj2KK2HJLVaniHqgUNAAHwgXmecsOTVkLQCfQ6Eu6vY+TGCEcdPEG7kAiismH3vdTnxARHan4JiYWDoiWpqo56NdV0gxa2AztnV0kGSC0YE5nJ+6hRtgm00mEz/LvXSA/eYxqarA7NZg+OgO++wRB1ZTWcKCWpsNhvUY4HmPzuQmKiwp+XPJ3ko4sUIWgZNdoW4S9MDO0pdl+zxn0csXXcf+UdwEQSfyOM3m/2cb7xHUH4iRlt+dCOcDy9STh67NsAgVDoN1eWq8x9OLnC/5ZGg27y6vI/49dbdT0yYg9q8rQ1YfbOYZPwMmBF9l/9PIObFEQPVJOj3kMN54XEcG0FVpjfQJ7zMcmxorzDwe8Q1AMnExMROJ43VcwRyXCs1fibW+6Xd4bjk9V4FaRQt+vRLHu/tEXQrypMHkAnfSLT/IeOxqyUtD72OlcTeNpmgJnxzBNi3B9CwJj0fblDRc9xiOACH5cwo24gS5VDa+wgxLueIL9wwHKJytuEKrtxIBYcAzCqY0WjsczZoi8uuTzlAVfS1nwQtQ0IKSsfkxZzp6eL+HHBeNhIQCvrpgdkiQw+xbb92cYfBBASxZltJMCyWLHkvqrLUJuYZ5ccEB8cAast/D3j/HRf5xj9BRwBTD4/Zdw6qimnPkoYGm7gBU8oIukBs/gO3m1BU+a0Uj448LxTTqmQ3xW0QwMHV/fWvheZqv3jx+26XjdQI/XS7GbSezwva+Ehz8A+a6ruSruSJ+R0rfyPGZF2pEJoYkLUZRM98bbm/x0yGqCcedPPa54nwd/8H/lWvd1Dpa78RhjgMUSdHrMBezdDpM/uMXNnzxGceux+NIMsxeXzN7QHoyJBa0qrs2EALpeIj0bwi4rmNUG7nSC+he/hEBA+WQBvLxgFkhVAxkLXLToDGsAK37jJzPOuG8XHFB3O04apI7BvVGHLPhR6mrDPtvUszyInPGygBEKoBcxC3fX2YiboecAJ3Bb7LkKHOyWlKdPWQpsXCfrB3r+NjJ2BiUvRtp82Xl+toZxaTQNku2W6aw+AKntziFWuxRCNOyKdMwk4euSxtT6bBWT19f6m9uDXrIwnxyePx2BOyAWeMgQQsuZSp8JwviQ4t935M59BglwGAj6rAUyzCk+mvJAJgI2UrRppLlB67ijuDFM0XMO5jtPECTjIFegff8+XJkge74A5stuog8HgCWULzYwK/FcrsWovSh48Oz3CDsXGQIocmDFrm2qzDLDYaQZUVkyvKLe1lnKOPdiDSoz5mc/eSGttIb8PRqHwXevY0EzpBamcWiOB1y4LBLYqyXC8ZQxd4FwLn5uimQHtCVw719v4a+uoXLu/ta9eyacxUS3NWHDxA4+fXl6lsYuK0APg9bnpIdg6J0yEgfKw8jQ6NNBveNTqAWo7gpasfysqm5LbLnOEBQz1+KjOsoBUItRQCZfkYPA5l5qYKTS/UDCrujh6F3iIdz+A6bIYaGSZYasNAV6PjmRVthTbkqdJu4o1Tp0sWR5vPfAaovZt3Pc/sQIwQDzv/QFzH77Cs2DMZLbHej5BX8GwAyPi2vkv/kdXoAnYyx+fIzbLxEQCKfjY0yu5myAVXVBJ7QtKPjoFEijIRfYjQF6XZngPO9g8zxizREqMXwed3N7kNjQYMBBK894MRX3TG0eYSZj7givdRAdh+gt2k3TURUty+z9UjrrpBIUXXrQ+zLy2rWpgzVx50Pi2oiy5O+62cYkwOTciDkEB9QGZjLh5EybW6Q2QkIdfCZj567Xi7XcOm+355aHN592qITQm+SHF3vo4vYGe1cyOBDwvCn7Dh6U5IxViQCAtNmAtVKlNmh//DHSF7cIt3N+aHnGme94xFBDxUyM5PkN7HoTiyBUFByAdQDVLW+5AITdnq1c12vuUQcwj3NQdNQ8wcFiX8IyB3mGFPzxmP2xnYMZs7dyO8yQbBPQ8wv+ncjo0TRSuJEq9noLzMZwwwxm18JnFiG3fH1ZKuIdLmyuvjjDzZ9ymP5+gnwekPzBE3h3KGbiW8yYnjJH0DT8/YGD4gsXG4lryrkoJpt1Ry3To8eyiJ8Roa4O2jpYOMjEAh9vh7uASaqEg2R6cdEPMUCE0PMHL8tuzGiPRtvDoYVLrDCVZpt9jFNbr2kvShUf9SmD/aDcG9yxXnCwIPaLmYbvYbRv1WeQJJz5CXZKFbezQ9PCXi2Rr0qsH1pc/yzgsjOc/trHbII0HsFfXgPlMcLzV3y9ZyegmznCaIDxRztc/ckBxj9xjdv9Ccrzd5D+mw9kMTNxZ6ke7TQaCr9axTRpNyd922HsgiNHQ6g71FEdv8hS+P2eoQd1K6wbLnJKoxBKeQHWfp9mNETYiZ+K1juUA673uw9pWdMFd6EKBllkzGjIzzvNoC6Onb4gcIcouX5zcswU337T6KbuqIxFzjFkvRH73hCFY6oiBtAVIZ1DaFhkFEJAyH4UMm7fm8w9ihSAw+wDb9iOQgP84d/73GxzdorY5HRfsVBlIHL0EICmRnK7PcjckaZA2nAGsd/HgRHN2msOpqFpOCsIAfQHt0zjO5qCdpyN+OvbSL3irurif3Bx1bFOkoQnQdMirDYIJzPsvnCK4qUIEh7dh88z0OUN7Fx2CdYiWAM/m8GstqCNE9+IjUzSIdykBPmAdsaLQTvm7Vz2wRqhzLH+0glWjxMku4DH/9hjcx84+vqSVWN31GUH91stOhWHk3Zi3kn3bPQCbZ8iJc+nC9Ld8+s/t7ssjcOxIOcWiXY/Y7/L9Y6MJL1ua+DrztkPO+moIuNEpcaRmqqwiGRNXre/Yg4FNWjqYZIRc5fdRtyy94N2jxHF2PYhNTC+VncZ2pXJEODbKEoJzjHeGgIX1kQRO/xojf10iqNvEJoB0HzmDHZVAcIppqrm+oqOv+kEYbVBAuD+bxQ4f6dE+7kGL0OJ975bRtUrJYkobg3XRdbsm6PUQaQJN7lW98AsY27yaMg4cd1EnngIgb2od/tIj9OxFTasn/DbHe9a2hbu4pKH/fERolcKwPh7nnfFRN1Z9Rr5Kryk/ilamwk1uxNGwdVedmc57xyUO27GI16sRyVTArOUabQ9XrivKlZaqwp0z8pPKktm4qw3MCfHvIA1bAVrz0669oaygPD7A6h5A8NOjk9H4AYOBu2Bv4RsQ+O/NatSDFyzqP4WU2lolHLT3smYKXrWCs4U4E8mqM+GKL59HlfzUAtWPZuwJ/Vyy/BJmnDBRYMvkWBwBn654vZF4lVCYhTDMIVBWKx4UA8GbAR0PAWWG/iXzAc3synzumXVbd6/h3qWIr+ukN9UXJNqGoSjEf8MIGQp/LiAWa1BzmP3eIjiwsDOlzyoANByA6QJmlmB/UmK4qpBPUsw/4LF4GWAffgONg8NAgHbRx6zbxGGT7Zw6ZDpcYYQmkNqm7JG+vhu37+hz6mOuKPKd3uGUwfZe6+N3MEzRy94og8/9MaGqiH7gfruoVxzxcb7zRjks0yWRm+QiLdqANV+gXeoWX7LRayYHe12LHjR4phir3LdB+NTFxSBB+P3F0WfFjAPqLGyy4jwQO9ec6Gt5oA5HgHGwCw2mH03Q3Wcwe4c0vMFwoq9QMywZIbTdAxabeCJWLMwHbMHjgPMhyX+6l/5l/hHX/sFNk+6uukgL/XWdg7+dMqmSmUOLNdx88sZK9P/tF1bEKMrAECe832XQqNazprRUBrlCgRXFoCxCLe3UMpo2GyZadKylsHPF10Qv9PIl9IEphD71PUGAcLp17GhOLIylIZDvv9tywuO+iBJcTEoB3wt3jING2bFZyT1EFVJqpjIDAc8z3da4+ocNWk0BBaOFxYgUnjRftoDN3VZFoA3Zlpxy97j+na4YecPQUk3wM3JMd/s1UaMbqRQcTRF2NXIv3bOWykipjhZC0wnQF0xXS/PEAaF4NViv5kkQJGzr0ea8GBYrrtrcZ7v6r6KA4yKEZ8rBODqNgpEaDpheXqZwdyssP/CfWwepcjWHvU0Q3G+hdns4B6fwuzbTgSw3iI8WwD3ThESi8HTFbcAe3QGulkhTIb8nQYZ7N4hXRks38tYgt4C1z8bkM0N2jKAPr+BPy+xvWdwlCeY/f4c9ORlF3SADvqwlgNDVSHsmsgFVo+JKGToBVM19NLn1Ic4XhNX6ft64irFt1WME7PjnpT8YAxYe8BOieIrDZyt0NB64i3mm/P2PpouOQcvdgIAet1qJCmQBUTbfZnBIAbwoNcjE90kBK+Z+QEb6hMWGqLD7j7976GMJ+qMsCLlzAcYayM+m8wLpovuW+zfP0H+r2/4fFIkx2bDC1eecYYbPML9U5g2oDwn/NzwA/yz259H8/gY5uU5KGFnRzQ1wp6AnMcthKaKIgcqkWtLbSBivTqWipyhtSxlnx6l/Aldz2ktRwJk2O0RDZ8gEFUIbJ0MMBVVdy9ZZxXMSmMuNkK8b9RywdiulySPlX3s9IOmjm3TVNgT6gakismrWz5fkoDIw9c1w5rSZSj2ndQxKnHHnV9Gvx21W9a+m36+4F0cEZBa+NWauyd9Mo3730kHnH8nx10ctfeH7ndiJHM3aMf/y+/seMwqxbZlUv9sjPC5d/jmJgmw3XUue5Mx2i++y1ixtfBHo4MGB+Z2yau4Wi7mGZpHR5xxXM+7okOvlZSfL5g66BwXNRxzWrFc8wLi2cQpjAcIRYpgDK7+wrtoxhbJPsBlBuVHc1Dj4E7GMOuKubLbPfsb7/b8PUIA3SyAb33IiwQRy+CbFs3xAGZTIRCwfD9BWxLmXwpoSwCe4H5qjWRDmP79IWbvz5Hsge3DHPT8Am65PsQeNSgGz5mTVMejCXwPnlDzpK71GB1mq/0C8h0GRYTEkiQuABEO6T3feE13g38vaN81nIq0NtNRSaMJWS+zjVabvQw5tFyci8ZKgbuTa8eY4KQJsucGASSNdpU7DGO67uF37mlcEIUuqdl4/7vFn+/cg4P3y7X6FfcLRfCgxRqmatEOU6zezVD/qR9j0yVilSCNRjxeL66iH05IDAZPVsiWAf/bv/+/xO7UICQkzIysgxsAbp3nPcJyxT4hVzdw0pADQbruSME94siOvX/C7Tw2/OCuTty5iYocdjSUxUrGj2TjyiYK+wp+seL60bAUJpCYao2GiKrPqgJEcQox09K+lNHITBhHZjqRzy9i4DUFG3NFF8CGA3OYjeHffcBzGuB7LhANyb014xEv6LMp/yzspuh+mIkHjNZ88hw0HovRmRFx36ddgIPeIBSupSrGlPLHVXWmVsVJf1fenmXciWI0EKx4DXrnIfbvH6H4eM4B+GgIbHbszSGFPHI+imZ8ngr3es6fcSpB+uqWtzTOI7laY//+EcoNk/xDmcPsKv7cmwVvuYROhNkY2FUcdGX7TNMJ3MkYVDWo7g3RjizKqxauMChfVSJZTwBLMPMNU9dWG+kMncVtKURYYE6O+eFv9nDHIyQXC2TfeQHuNJKjLQn1FEi2hP0X9yi+XWD6dwZIdg4uJ9x+4xiDFhg+l36H3iGgYzMAOFQxWhupc6ru6z/H/mIb/UiCR+zNKLhtZCn0F2LczUS7vwUHKF0wfl7Prx3oYB39OY6VyPO/00+0x+CIEIYWBOO4VCYHDno2KrfcDEterKQZsBmWsNmE4RRdvAAutFVVLEgCiPf6TTa2KirrdqK+w7utZSirV/iMPzvHmW+ew672aGY5ioXD8r0cp7/DYifuPFOCjo9AVc2CkzQFzddoHh1j+r09yusUwXhk37uAq9mzPfrH+8DF78DwYddOTDJUNYqSXUg0BUszDqIi6lFmBRf2REQjGHXEzRWTlmdE1kRBl5eCpxGf8aCtwRR2yPPIO6cs6xZga9lLW/pt+tu5uPVl4mZYgYZD+OUyesP7ugEtVmyNDEh3Ksu7cQnq2puT6bxlZ2UrrCUzGR0sZgrhoqlBsym3Mry8Yf3E98m4PzWBG+hhn70ilvwhZksHVoy9h2mOZx0d6OIaGA7QfPUnEAyh/L2nvLKJ2CVMRyxf33JfyOTZNft2lDnMes/ZuNCEwnzFDJDjKXwmKj4ilN+96hr1GsP/v75l7m9iEbwH7jG/lrHuJWg0QvOZUw7ERLj9qSMUCw9TByRbh+JyD5dbtCcl0qstmkmJbL6OCwDta4Qig58NYddbXoAmI4QQ4GdDmG3NQqD1GkgzuM8+wPLHhkg3AasvtihepLj/DzIMX+6RbBqYJ+e4/Cufx/A5IVggfX4D71znBxOxWeFpSxas5kMAYiZEhqIIgTHELuCoGRQpdU6OvgJT6X4Hz7Zv4BRf3+1sGGNPDttVkeky756KERFqcIjBTceVwB99t0ANgrG42acfyu8ixq5NIsZj8Rpv2DFyPIq8YACdo516VxzQVtMuQemzYXrz4hMmTbxHqsiLz2XPIpHsOoNpcpBDV5RfcU3GzxecFYq6l5IEpm5RTUq0BWH83TWPp3itshC2LScRrUcQcU0s3Crv2wlNN02FmcNZcHAO2O74GkOIwZnGY1Df0bDM2aVwtYo7IcWlVchDaQInSt2+RNyMx7ELlBHrVQi7KBIB5P5p3AhV1TV9ALj21SM4xJ6vdd05hyo00qOTUp4jnB0DF9cIe26e4C+voJ2ElH5KkzHC7ZwXj8US4fKaPy/P2Tzr2Sc/9k9V4NbjwFdEJ+ObXucDzHAQu2lzazBeTXc//Q5cbjD6nRc8OM6OES6upfg4leLMCLTZwZ9OQY1jPnSeAWXJHWaub7mQOWaxgs8T+MwivVix/FzUedS08Fc3XGh0zImmpkW4uuVMo6pB0wn2n7+HdLFHsAb7hwXypcfuyGD6YQ27bdCOUjTDBMUFO4dl330ZzXuw28XFxKwZKvFHI7ZvLRIk8y1oueHJKtxvnydYvm9ADnj4TyzyeY3i5Rr0/IIXnbLA5jEhvwFGLxzCfHGYPfezV/W2EMtJDVh9D2EAh23MNPgBHU3QdUKaGGD7fP1esO8/5wgbJCm0qzfleacwFcOiqKzssYzQSwBU2Rgzfw0uve+gxmQHUvMetNMvgkeqoRMRj/QmDHUTC1dU2ojVAojKuqB+6HKvor1DXFB6O5K7IjTp6KKc8sjx1owc4GCZJKDGwW4a2E2D9U89wOj3z5khczbjWs5oAJxfcuESAM0XwNlPoLhuYbZVxHr5XqotQB2pkiqIiYpBDXyyK+GsNOX5QYRwc8uLU1ky9OZEqLXZxPOTNfDbLcJ6w025ieAXKw54wyHPc1EgmyKPzzC0rfjcdEZZGuRVgWtmU/65yLnzDlGXjPRqGrHVm2bWZcnPNMv4833ocHQfeDEgw1CRFCWjsEaZR00Lmo7ZYjk55h1IWYD2FdfeFkuOQdKX9pOOT0fgDjgcnCEAdDcj6SaNbmfNbMo3DmATKB0wj+8DPmD09XPmQS+38KmFmU4YA15tOYtYBoT7p0Drub2XYN7BGjaRalvGL0cZqqMcg48XsK2DHxYwmz380QjmovMVYOXluMOa93u4xQr23imax8fIbnbYPRoim9dI1w5taXH6NWaCmNsVbJEjr0QqbQwH7DHzZHE952p7kTFn1xrUZ5w15C+W3INS8LWw24GMQXq+xOnvpchWDeyyhnlxCT9fcNHNEPDF9+DygHpKuP+b24NK912nRTMecUd2KbZwwFLowYs3SH0Q1DQovSYokecXlZVAryCFTrRzhxbIuDfTxkwvS9JiodqY9rP0OH70M4Sq2PUA7OkCNIuXAK/34TVK4t1dgPqMGPEdV8x6PI40V3ZndL0GAfbOtcm4B1hpqaycvkJYfHj0fbGuAnRZY28h1IKfWe2YutY4mFaKq3kGs9ggtA7hxTmoKGDIAPdOYJZr5NdqL8w0RyLiMSDe2mHHyl4i4jlT1YwpC1UO0s2HL0MW4/2eA5w2ZQg+7oZC28TFQeEEI4uy8ujNRH18hJkxX/S+q++aMTsHVAH2+Ahhs2Wa3mgIFAX8bscdaASKCbtddOkL+4rpoQp5yDil0ZDvyw03SjDDAes6jIGXLvNmu2d3zau10HGPQYsMJL0/+UXCnFMNgDRq8JsNaDiEOxrCes/tzy5u8f2OT0fg1kPwstD0t8qdXJ1fYmCKJNqvomGnL7TChU15AGeLGmgdmqMSKcC9FkVA4+7PYIWAzxVig3acI3nnIXyRoJ7lzJ++mcMcz9CUCYrLHXyewjgPs5FK98Utn2M2YcpRkQGbHT/U1Q6hqmHvnyFMhizsGZbI5jV8zpN29I2L2MRAi6Fhu418brZd5QlHOfNhsd6Ajo+w/8J9+NSgeLHioK3cUqnKw7CCcfQ7exb/bHbwPewXwWPxhSEG54S2AOyrW7i+/Lx/EJvhBylGxcfVo+b5Xj8+nkw+ZtXKMlCTLzKe8dlegS6eU2EC7QWa9kztBTM1aspfs1gm1HUnrukt9v2fKUl5gSFC6AVmPS9ZRKc3Derqf9FnqehiEheSu/qB4Duxj+MMEar+M5b5zMo+ULMqVXgqRIUOS+8vQFq8PFCcWrYfiDCRUAy7jF064NQDhCxBuqxRvXeM/OMbzuq8CGqEEYKqRpiMsH1cwjQBw2+s4BXXl8DrN+LvLr40ti1l92qZnaU0Pi8Okb3mB/CBWRviokeCD8fnLwZrOhYAIPY1dYYTtf2en5PnDDpynyEmUcpIGpYIyxVTNsUNUnnjaFrEkSxFT224jEY9RjgoU1EgXM+hTZVDJR5Cht0pcX4FpCmSby05EO8rtiI4O+F5U7Pni5lM2F6XDOz9ewydDArQxTXCdgt7s+bF+dU179A+/e6AvYp5r2CkE0ODt8lF/Tgc8KTVFXYj7ZKOZ/CjEn6QwmxZgZhdrOHLFCjEupII9mqJ9jP3YD98Bdru0dxn4YKb5LDLCvmVZw8QaxHWG2TPUoRBDnN+g+bzD2EXe5j1Nnoio3Wsdmy4Q0l4ecHcTe1z9/KS7WFbB1O1SBaCo/vAfN3bRdd8YMwmVe3RAOmrBcxyC3c0Bh6fwiwGcMcjbB6VGDzdsCtAK1mLTbjgOS5ZabnirMJdXnUijl6WZwYDrN5lGKW4DtGv+a5SEkBnVak7AS0kReZIl/UoI0KDB1FAQI8PrpmkYNuxEKm+NOh2X1GlKdelTn5RsZeKFacW77Spgl5HSnEbDKBzlUvTDg811LWrkms74Ia7roHGgc0Cusz7wMmvld1iyx2TqG0BzfgMAa1sr5uGr93amBnrPeoC8+s7zk/irEelalRjykKiW/9djWAM/CjF/iRF9jsLZlWlrPoMkjSYJMH2y0cAgGTrEBLL3Gq1hshSmDRly+A05b9VNbDfw+sOwAcWCWlDBR+AIut4zYYQjb2Ajo6pc7+q4vczI2kgTASknLzEmoKwPQjgrLos2JdlseKdwsU1d+HRe5ywsMborh3oPETk/9FhUKiXlKXijMjqaKoqpoDudhyHBI4CEXfDEhFXqGv2FhLDLDMedXOprkGzCXafP0X5AdfjYIgJEXku7QXdQWJ09/h0BG6g8xt5g6gGYGzTHM34JgmMwfLXlDEhIoQ0QXV/gPJDxqapboDVBnabsWjlZAKqW7jTCWe5nkUy2YcXvL2rG4ZcNjsgS+G2W9jjI/hXl5zxPjqD2TfRRpTmK/izGdB6mO2eM5b1RrI63YZlXSHkZgG7TnmH4Dz88RjU+khTDKsVb9tWW6SVSN/nK5h9DT/IcP4/e4DyxmP4ZAuqXGxbBvEhpl3DzYUXy05sJIfRBg0Q7HE6AQjIVgHDV70CGt5cDGNVpDswzYnOjX28WkUlvaMvpFEe6102xN2gqEXFaDSvRlF101XjgdcyNljGp/W9lGewapBvbNdtyLG8WFt46XVpBxcKkkn3gnnE+/uLWs+IP9INcacQ2rTwyzUX09QNMk15kV5vIo0sfB9M82Dn0b+G/mf3WTKRdWUjvGESi/TawWUjHu9VBRQFKDfwl9ccpIoM6aYF3XqkWrQHYmEtOmcOhzJm151LpATlaLLUx9tlV0RFDjMcMFVQ6wN3x5tCFDKHYrMHaUoQTaO87DIXS4FIPBMxDDFsmSTRF57eecBMmDwBbcR9r6qY/iede5Cm7LoosJtRsdFuL66SITJrYlHyeMrdpl5dxwzZSMefSFFMk4iDw0pP2brhXb1w2GkyZu1H00SaKbWfzNb+dARu1fCjC9YxaBP3ETRjGWxAN8DvnyJc3HCTgbqBH2QoP7hhfHq7B4Zi4tRKkNvu0bx3hvTFLdxshPD4Huh2zSyT7V6KASxLD8t1V/gSbwZvLZppATPIkD3Z8TZnveNA7D0HgiAZ1WjAwX1X8aDd7aXzTcqrdJoyFuoC44yPz0AvGRvffe4Y5bMV0LRwj07QjDNc/Ykcoxceg+d72I3i4IT68RHS2x3Ch09B6w1/XyByq+M2/05Q8Ecj1LMAuyMUr7aHXOY7maTpUcCQJW+caB280D1DpQYeqB8ryR6p13uR0sOgaDNeKHpObkE70Mvi4IWiRVa8ZrQVm1LVpK1byMVvu2oYHwU48Oh2V5WxUlAyO548yrdXMQ5bdrqOpeJDVMDdPQ4ohvqdgo8NAqA7MaDzrLAiwVZlp94TZbX0dk2czeOgyKs7kz42HrNKobyG1CIYA9MEVkk2JQfbuoE5OeZFpHUIhpBsKoQyh5sNYLMUZrHioJKmvBAURWwk3K8z9EVSJqHOEgFAgPCwiXrUyLYL3kqX7S3yIXS+3VHO7hxCLWO8rvnatztO4KS2YiZj3kVNR8CLc+DVFZ9T4bCdUAJVMTscRCohhBdP47EUIZkpFfncAP/ctsDF9WF7N21O3LaHzYvlO9Kg5IYqqzXC9274eUwnHLR3uy6+aaD/hOMHBm4i+q8B/CcALkIIPyW/Owbw3wF4H8BHAP5qCOFW/va/A/A3eLThfxNC+NUf9BmaaR8UlADGgk6PEfvgLdeyLTFMtWsdaFhyBn4zh1mugAdncMMCOJ0ARHBlyk0ONjXqsyGSFWeh1f0BXEEoLnL2KNntEUYDkGS60ExoNORFgAj24hbUTNCcDeDOprBXS86yAYRWilqJYWXlIIcb5kg/2vC1K11J+hi6+zNuCnzFajZztUCYjkF1g+L5Gj5L4CcFN/EdWNz77R3suoa93XChabVFGJawmwak9rHOoT2/PCgwRlMm3c5L5lbdGyJdEnwK2MUGbR+jVtii/0x04Als0i+MdTxs+5qEXZkZrx3Bd1mjIUCw7+jWBnCw0QXHsaOiOWXKHY5nUp+QRUEwV4aguM9mmLBNgFltpODc8OulDhGahpvw5hnCeMgZd1XzZBuNENZrkE1AxZivZ7uLPOVQ1yD0HPveBKFoYVPpjq00aLi8ZjbUcMB4OxmGLcS4SReLvi/LQXEWvYKqKjQhSkpx2ITN4uJCzki3mQCzr2H3CZqHE6S//T1Oho6moBXDT7sfv4d2YNCWYww+WiA5n8cxrp4hNJ1whq4iMEmo1KNaZfkAYiariURUpkrzaIB3LTAGwXduedGt0Zg7uznxN1GTNx+Ygy1jJDYjUf+TpmXm1WolMJ4YPElwDEDnDVIWB7TSsN3G2gMU9lFqo47Jk+OOEuwc+6tIyzTK89gk2d3OeYdVN/D3jmCIOFi3bdz5KbNF60WhV0+6e/xhMu7/C4D/I4D/pve7vwng10II/xUR/U35939BRF8G8NcA/CSARwD+MRH9eAjB4QccSi8DAEozzrKPZnxTWt4GKZxBwwE7m43HcKdTuFGGdLECiFtx1bMULjNoBoTpd7hbSHV/hOyGaXbNoyMgBDQDi3C/wOTVggNr1bBP8XwFt95wU880Ae4dw2VMq2pOBzC1h9k1UkBMxCEvZ8w15y2cL1Kkr3hAhbqBOZ51xjfBwmxrhISLbTRgHqfJUoQ0gZmv4E+nqI8zIADD70mF+WbBA2k4QP3Ze8i++xL09AW8DCjlv/JNFK6x4Mkxg5ZBuT9JMf3AYz8j5uHeYX5E0Ydm2yJYiI0TlGN9hyrXFZE7AUmfCdRXWN6lG2pzVypyVpYuV/z5pRR+feAgMhtLqy32owiDXDzReRsfNlsOVMsVTxRtQNu7vgglkHDsrzgQUcawGlP5hrE/qPLxIZQymkjW7F30v9HPuMu/DsKB7/PF/WbLnZBOjrmJxmIJGo84y5NuQneLt8FLV6ADHJwQWinO9Z5JLFb259iujtewvZ9jmufsZieil5Cn2B8lyFbCPrm4Bgr2Yoly/7aFv5lHmT2A6BtvBswFZ+8UofuJPL3fWACNmFRFda7pRF1KByTixVheH43dVAkpr6HJkBdSacGG2YQLj/eOQOe8+9aiM1nLO+f1Jj5/ytnw7YDWKmSIyC7R+oYWZWMCIz1mh0OEWhpKAJy5b3ZMOxRHUPv4IYIh0HoL89EL2TWwWCusN8yUGg0ZUjPieb78YxQnQwj/AxG9f+fX/ymAX5Kf/68A/imA/0J+/98G9s38kIi+C+DnAPzLH/Q5vH0WaGQ0BE1GXPXWzO54yhPnpfRSzFKE9QZmMoR9vgFmE6x+5j5cxl3J148Mzn6nwupzQ4w/2iJdVtg9HiJdt6DGIyQE0wLDj6SSW+QyYUVxKX0isauAqoEpMvhJiXqaYPBkw/j2cgV1IIO1qL/6E8iutwipRfLyFv76BjQcwpwcwY/Yq9sstwjjQSwamZMjbu0kn02OH1YzK5BfVzDbmvnZ213E9dG2SL/dKcCiS58hzgKdO2RN9At/Esh3pwbpOsCnxGKBm3lHxZPCHgDGDcl0Bvc9GiACN1+mXmDswySHBT0HMkk3YXQ7nOcwx0dcHBWWAU3G8KMCGDE8ZfY1aM3QVEgscDWXTMkCt3P22VCISDjUWgRTDFqNmTqRl+ugHMXone8yM0MgxUd1p0TEQSpnzw7GWa0o7bhAF/H2XhCNuxbTiYr08Nc3vJOYTtgL3vIu013dQLs9HTBvZGcTlYLynZR/f7jbkgDkPLDdMt/ZGthNjWAK7kC+crw72e+BfYLxhyNWWn5w3T3v8bArML44j7BALBYLA0K9rKNtgATY4Nvo2EdlwbuaogDlOXO1nQdaURpqwbJn9hWcA0mwN5oVGxMzZYgVKhUFuxWOBuyhkmVsP+HEEjkE5tnv9qAJqyJjI4QkERMsg+AgRVd29ws9F0wdV1EkBPC4GHFTZIaRcg7Ct3OY+2ccx2R86JMPUrfpvMRT7iCksTBN3lhr0uOPinHfDyG8BIAQwksiuie/fwzg13uveya/e+0gol8G8MsAUGAQt0dWC5CtiwwCJAnqL9zH/jjFBGD/kJINdAIRwqiAGxeohwb1mBASwr3frjD/sQz3/tUCCAH16QDUBpjKoTrKQW3A8NkOZlsBrWNO9i1bndKg5C3LYgmAH6I7OkLy8hbj51c8GMQkBsbC397CFDnyV2yaQ6+uGfZ4/x3OUlZb+FEGnxikuxrN6QjpyzkH3UrMmpz4MWx3MKfHyJ7PBZsVPrngX7EWsN11+GpPqEFpAjKC96rBD6SvoSyMZFgC3w4IyQaclVgDXzURO9einzJC4paRzAFuieBjRgIAZNFNXuAAKohbd1GOmdEwPkfCgO99K/4s8w1n0o3jnYYPLNyoGygNrt8cGM5FebM2Ag6yFQYQA4cZlrylhy5Qsuj43vfWrbL0mYyMGh8ij93kOV93mkptwzP04Tyo5ayQmyPIYthqAfb1gpPfbkHOMS67r0DDAezJEdz1bbfAQIOyBP9eg2KgYytEGqXukuLnU/TV2T8YIls65guHwFBgmiHcPwE5j3RZw3/8nPnU3gOLNTAeIjx/1flsCK5rZEfENZxwkMj0sfYgdrNa1Asqb5fnppS8eO/Ra5SgQ01rAVb8PJxjv5IJN6vmxsUDXoicFyqeiLN0l7heC6QkNsS7fbcIays8a2JBPLYRDAylwDZRdGSmE4SmgXt4DPPhC/aIUXpnLY6HaQJ/NoU9n3fMnFS6ST28B1zdMBzrPdN9Dcni1PyxoZJ/m+NNS8QbEfYQwq8A+BUAmNBxMEXONz8EplDFLboBJRbp9RbZ8wbNvTHS8ysu8D04Rcgttu8MUZ7vUdw6FHNg+I0LNI+OUF4x5Wj73gTkAkwbUB3lSPYOpnIwu5YJ8oMCtJfC4mbH1qvOM3QhwdverBFGJXBVRbFD9B8Yj+E/9wj7BwMkGwc7LZG8mnMX9eMhwukIzSRBMIT0kpB+42POvo6nXVNTcDDmncQ24oYg4u2fsCjMcMBCmHofsUHGxCR46qTRtlFA13+RTFTbAYArgMnHHuHVZeTKstVqwsq1ve9MeXa7KAqi4GMrMaDL7rqi5htgFBFImGEp1pk98ch6y+ZdDyew6xpmsUV4dRkpe8pz1iyPsqL7HRBVnW6x7BaQNOkCuTIOirwL9CoC6qsC9Xo0k9Qikw/CMpHDOe56v94wP3c2jd1gtBmvFd49L649yXzPYydqFIAOGx1I9g7wVnuzkd1MjwZ4J2vX5xDrCwpL9fjmcI7H12SE8uM5Fj91DDweYXiz4vcWOap7Q5APyC433Dt1s+38phddjYTSpIPlrI2NdtXTgwU2h+6R2tuV7QZ4ATEixNHmvvpd1ImRO8sLi8RyLaBf8wDA0nAy8Ne3PDfmS36umhHLs6TJiGthzrOj546hNsg164Icvda1WArEXZcGXr4Wir7i5rvPePFVMgMR/HLNBcyrG5irG2A4PCzU1jXMci27QdMteAIHUZZx7eMTjj9q4D4nooeSbT8EcCG/fwbg3d7r3gHw4gedjJKEB+x2FwcuAUCwwGwCNx7AztcI1iB7es1V6ekIzdEAuwcFXEq4/eIQx7+3hL24BdIEbWkxeFWhPh1i8HSN6t4AdueQ3+4Yq/UBocw467icAwC7AkqnG3c6hk8tsi1TA8OwAG0rLn6os5/zCGmC/eMRqlmCpPJwhUU6Z4zLH40BAsgHmCbAp5CsxzKu+eKcH/KaW6WZB7Jx2bK6i/IsCjYgfGQvXVbs6QnCZiOZnVicKjShwUhpVdbGYqNXjJTANq9eBiUkAAtTg/2Uq0hXgmU+L0KAW8qk7an5XvPOhmbp4kFiLczD+5yBiI2tPxqxqk+ypOxbYk9QVV1bLh0jWXawjVaVpMqRfVUdZJ9xYRClHpQdAkSY4aARhGK2hqJohE/GsJHJc+aD9znbnqEKfzOPmRKNRpFtYY5m/LM0lw1O39cL2Lr4tQ2w48lrjmZdCy1tWNGTxEdTJnkfWQDevPaajvPNnh7QBCFLkK08dicW2WdOkb64hR+X2D6QRgYuIJsXwNFUfOiDuF2KH7eKqozh8ScB2oyGnR91KoV9wW/hZTEn2YGRMDEky9Xdgd/tYbKhwGkm9q2MfSz3zNdGnrOH0O2CqXRVxQulBGCIOCcGxZq7Q9Gg5PEAdLi32Lt2jBV59qnYvxqDYO0hbAYwVAowpVIFQJosiDiJueVjjhs9aCSEwHPcWi6uCnMFujiph8snHH/UwP13Afx1AP+V/P/v9H7/t4jo/wAuTn4BwG/8wLMR8y7hPbAj6d1oeRXebGB3FQ9g4Wq3P/4ONzfdtSiua+zOMpz92lOEYYn28Ql8ZkEeaEYJyg9ugOUaxUsAswlDD5sdr5oN95LjKnABP2Mfa/P0JZI9m/QgTdlp7dU1Z3yTEdyZeJvkKar7A1RTi2ZAKK8c8qdz0GqD4B3Mk5ewWYZwNEH60VqakBYIZ0cI51ecIYwGoOs5aDKKxQu/2bKsFoC/uGJ6YZZGD146PkJzf4r0XCS1bXs4UaOwxXGylyagQDFwUJaCPBAbM/SCEWUZd0QZDwV3Fn69ZNthseyZMMmzk6ya4S7LWLZz7H0t57Znp3DHI+wfDJBfV2jfP0N6Ld4UqzWc9BHkRUCUsur7If39FCahPO/ENjqhlIYmGHxQeXgIMQj6uoERRoHXAKAKWj2vnO/g97bLpJDnUSCiuwz1GPdOaKdFzjsq9bA4PYZZrmKvxMh/F4ZP39ALDVsRm6MZf06SgDKxRNXMXXc4dwqQyn4IvjOeis/FGvGkN6B9A58S1u8azL7JLKr2qEQ9IviEcPzPLtmrR4qSGrQBdFmqZsRadJXFhYoc2EmmKpJu9mShw2K0dGiPft2a4QZuAqxiLXM0g19vInPEDKXPZcp6jki/U1m9iH+04QeAaO9MBT+72BxDx0uedQmO6Rp/RNsCTUSAyJCJHjfCZInZshWtgBNFb5oxYWG343uoEBEQv6M6GcbFxkoT4v0fI+Mmov8buBB5SkTPAPzvwQH7bxPR3wDwBMB/BgAhhN8nor8N4BsAWgD/qz8Mo4StD3k7BUMcpI0B9oxBUd3wKnl2jOb+BPUsg5lkSHYt0os1sg+YS10/msBlBumygakd8icLzpQBVk1VjUAPY+w+e4ziQ5b9mtGQB8lyx51rxkIFGw67FbxtgeMZqscz7E9T5Ldsw2oqD59aHH17B1M7ljPLto9mUxkcPn5uMAbh6UtoNx3a12i+/B7MvoFZ7WNXjbDdgY5nwGrND1cWNoVp6qMM6TlE8t0wlU4Lgj3/jQO/6f4k53oh/5wmXVAUE34/GYAWuUw6E1uVRRVi3wQMPfxVAxEASrO4dfenU8AYpMsW9hsfwapplXgSR2wZ4KIwIG2ker4bhkDEwdiI5zWAA8k7AL5eCfTcOoozbAN0nFs90hRkWKZMkiXFhgUKO+gE6/lOkEVvYah7GXDL3cSd5+5LBeO/lCSwRzMWnjQtF4J7xVI9lFrplyuGSkQBS0XO4hCBbtAzzOLvLHi/sImMmCp1yk/PeDAAjAZohgbtIGB/f4DhN86xOz0CeWD7KGD+C+9g8o157Muq5ycNSlq3GA4R5gtQnvB9A6Izortd3Pluyn83nYGT7JiCCsjShBdB5yJbK+wkobOifkwzceCUoDznjJse3gMWK5bbaxIjjoMKlSl8YkbDeF+8uFvGXZgWl52D325Zpi5Ni81AFI57H+EU0o73wcNvdoKlh273ttmw2lJ2a8FzxyW1pY3Fa2s7Wwu1DPjk2uQfilXyn3/Cn/7iJ7z+vwTwX/6g8x5eRcIr62LJMMRoALpZsPGNbnvGQzQnI6zfLRAs4BPC6W8sgKbF7ksPsD9OkK49XEFI9g7p1z9GeHwPbpiB8gRm28AfZdyjMbMov/GSg0IiK6OxwKBgjrQMnDAaAIOCva8TFmm4wsI0Ac3Iohka5LfA8W9cMj3RWmA6Qf0nPw9TOVDrUZ0VGHyX4RtcXiM2lX14D35UYvd4iOymhlntQct1bG7qqwpmsYrYpNKsqG1hDGH4NebBqk1kNEeSghgsd16JsuNekSvUDcgBPgW8pa45hfb9bFsuCiaJULmaqFIDcEDvIyDylWMWDB2QBoA0Fd5WQJkh/egVZ1R10m1j9f/CTDDDMlK+tAhnhoPYlJeIDaqiE6HixtZyUiqG9bGIp5JyxT6FzsX3gjNpI2b+WiPQzA5AzLC4Uz3Foqh+frQT9sK/5pvEz22746JjCCARW/jlihOSXtHxAGryAdhX8De3zP11nqEbbctlKGb5EDFT9LvuFSwPFjPJdP1uD7vjBhvkCOmSHQNf/lmCH7T4mZ94gq/nn8P888d49x+vQEUK4z0H/AdnwMWV7BzLOF4OTJm8UARFqBT9tnWR851Kl8RPvt+KzZRlbFfml8tORi5wHQ0KXkTThB31ipyf+zUXrrUhCqReRIllj22lG4uQB2kai6rcZqyjK1KWcbatc2FQMgV5WAKXt9DGDgw/WVZbG+JCLRBdD+GkH6jI891yzYuT0Cq172Qcw851dZ3qECp8LWR+4l/+xzwky9bWQ7Sr4B6dsMBlPIUfFXCDBM0wQbpl/+rBB7egxQrunTPUEwtbB+yPLMqbFnZZS4utFtYYuGGGUDBmtH1ngPK8Yo7wcCDCiwGa+xNkz2+Bbcuc4funUNm8mtm4YQ5XEEwVsHmQIN0GDD5egKS1mcIogQj7eznKV3vk19JEocwF/tnz4CLC+nNjZPMWyWIHWnJmzRhpC6MsAcW7gPhww24fpdl3D75W/vnAYlXfHxgj9wkAppS/LnwCmNWjBZ4sRfCSwRBJ373O05q7ubsueOgey3JPzTAdsf9zCDGD5Av0nTKxx+/WSj4Artyrl7NipPKdYrAFQDZjqpnImU3OvPpoYl/mbNjVelHJsuSd2pbvp06aPt5pOmvQ6MessJFqDiSD71MfNRBHYRIRb8+l64o5moEsawXe6GYIdIE5SRiz7rXsu2uFi+ARAnVCHB848zMESvJo6hSLbXLtpgFuv1hieOEQbMCf/vKHyIzD/Z8+x/ofPsDH/9EYD3+9Rm4MtzeToA1rGTNWCEbug99u+d7dGZf6GmW1qBOf0hkhPkRKudTnoVm4jqXIDrGsfIU0QsGgKyTG3SnAeorlShgiWceIUVhj0cQ6Dc8V5foH3ikFL9nvEO5sCvPRSyZQ7Pf8fmNkRzzpqMtak0gS8XXh3Sx5dLUJ29lRGCn+so6B7Zjd85e8UH8yxP3pCNy+SJijOxsBdQu8vIDdst1iOxugHafwKWE/s5h8sEP6kle9+sceYvO4gE+BQITpB+yS1xwXzJl+egEUJwiG2NZ132L8exfwRyPg/il8mYFcwPInZhi8qpjNYQ3IJfDE2aQflqDEYvfeEfanKcgFJGuHe//kGbNRtnu4m1vAOdjhAGa+we7zI4ye7mCv1wiDjl9MoyFzSMcjbL5wguHHa1DloruYdtHuMyMi5c92smadvJHyJYU7spbZDsFzsap39IU4IIJxvB60BfFkMoQQJENSaa9mTIBkk7JFVOc6hR2UOWItF3Ik8Ol5aFchjEqEj5/3ijPuIMNRT4r+uZHnQM4BGdodXKxleVvL21EzHgGzCfx4gP3DAXxGCIZQjQ3ypUdbEqop47fJLiDdBgQC8qWHywguI6Q7j2TtkF9uYa8W8LfzzqFP6Fn6HDpBh/5b8Ge+0Yj+LfwGDuzrlltYKTuhLGDzHH65jFnqXXOv4Bz81bXYw4YD3nb/NSS70tCb6bwN5wKh6bFjAHAw8kB1FHDvay2o9Shf5bjeD3H7dx9j826A+1N7FN8q8OLPprj3tRGGHwGmaYHFkq+rbbkYuRdoSeHB3gJDJunGqHaQ6VHtuBEGQ2y+bmCGg66mAUkY2hZmMmGh0OkRLxhpAlqsuqbF3oNmE2C+5AxajcV815gitC1MWTD8MRrGnYBi1hpAI6MjsQiNtEq8voFZrXjs2p1wu4W5laXcMCFL+Rpah7BaHYq3buZdPUAaTcTFjAwoz9C+f5+toz+4ZarsdAI8/x+PDvhHOqjxqB+MkV1sgJsF6GiGMCjgxjnacYp6bGGrwEH7xQ3gA5rHx6hOM4CAbO0x/q0XsYtN+nQbO6dXJwM0Y4vy5Q6mapjhsd6Dtnu0Z2NsHhcoblruq5dYFkEQcbd074HUMp/YA4GAempQXgW2jHz6EkH6DEb60b7G0b94xoPv7Ai02aN9eIREeJw0HMJPBhh8tOBgdHHNisv9nido35tByflx8GmH8i7jJUhBT6CUiG0CUYwD3xOeiO+xqYFkFzjzTjOAdtDgQ0nCEvGyBKhXxEmTjkfrusAbTZZkcpBklWEyAjY7Xvwub7osFIjwDpUlwweAeDyL5N0Q2xmo/LtpoB4QsBbm3UfwkxL70wLNyGB7ZpFuAtbvEvYPHULqcfRgjsvLMcwqAU72IAMkaYv6cgCzJ7hjB3ObIuQB5bMExbVF8zM5svkMoPcwetli8MEcNF91HGJjIuYZ3RINxQYPkfYn9yVi0Q1TxwIRQycN121ULdd5lMiWRWoIvm5gtltenKqag89uzx3S617HeqXXtS1C27CKsWUfkr7LXBwHhjPuYIHbH8/hcuDFrz/CbB4w+6DF+VcK1F/eIf1WiZc/b3HfjjFKDKwhhJs5onWt2AlTnnMjBMuCMHKmY5VIoGejrztqzsi9Z49qmkxAel7H9ScalghzVniG7Z7rUNaypz4Z+OubuLuDc3C387hDgvTKVEhGbXZJaZWbfbx3bFjFGbpqOBRfZ7jQw1/vpFmG5e+kDTKcYwGNFD7DvuL53NSxwbYRV1Ou3VjpOcnEC3u7RVJI02XhuX+/41MSuFtkL5ZMRp9OEPIUy5+YwdYBLicUVw2SdQ2qW/ijMZpZAZcbeEsYf7RF8vKWFXNiFBTKnNkjTYP8fI38WQs/LOAHGcKkgF3s4B6dwOcWo4+3oMbDvBAu84SDp/p8k2N6WppazK63zPcWLwwIXSnsK97S73agwYAxL89FS7Pdw+xFjl03LGte7VgBeD3nwaKy3N0OYbc/bAjQE1IgkeJtDAgyaVWVNhryNlG9DvqdwuPNZjx0cOHRlIR22GUAoUVsHoGm5Wp70/B9GJTS65I6Qx1dWDQDdCz/NqMh1wdCgHt4DPviumNU9JkFQgO9/cV3MXxRIf3Gx1E+Dms6o3xhDVCeAe89Rn1viP1pimZAuP7ZAFMR2mmLZG4x/jhg/LFBPbXYvjrGcENIV4BtCjRDQjMCxmvAtIB/kiNbBSQ7IF80WLyfYn8WMHwRsDszWD9MsPzMKUx9itkHFbJnc2C+4nuiwVAmbV/ZqFh89GiRv6kHBaVJZKdQWcIQwd3M+bWifu1ztf1uL+KP7pmHEGLwBtCpXr2InQTX99vtIdYt48GnhHbscf2lFOsfb0CFw/v/DaH4+BaXf+4+jr7pcZUXqD5XIf8gx6s/QzgejTH9IEVyNIb54FmXYAgnmi1QVfbvEVbr+P1jhglEGISvu6u/EBHgu8UZ1jJ0NSyB+YJdO60RGp0IpChAnQv9ciXnCIc0T2mRFgBe0Nab7vn1qImUyeLbS5pgJImztqMJNg0rd4kOCAMA4K9uOubJhqmSfr4AvfcYgQg+S2CvFgKdGpg5Q4fh4hrZ1Q133/rMI9DLC3y/41MRuGEsqG7gPveYg3MpdLUATL5xi+rhGG6YgjKLZpIxvrzxSNccHJtHx2jHKcpvX3DQGpTwsxH7abcOSCxMzYPMDzKE1MI+vYAF4spGWQaMR8zrvl0xpU/6TJoXF7Cti+2EQtMwPqnV/pLpehQC/HQEI7awZrmFv7zmLWaecWY9Efnw1U3sX6fyWD9f8O3QLaJkz2G36+HCPeqdYZc1pe2pVJ8Xg16XFXTbcM3ihi9rPPulAukGCEXW0akUHlDMTge4Zc+Y6IHuHEBakOxZmzoPOplxwwoVIlXc/ipmqToJjAF2e8x+56r7bgAHQ8Vz1Xb1nQfwRYbmuMDtFzLs7hOGzwPKlwbFVcDgCmiGAemWIY/RC4C+HpDOZSfUOPgsAYXAhVfv4YesfgzWIH01x+B7KS7+7BkuvwJkc2DzDlBc8e5k8zDD/HP3Ud6eYfz1K1YR1k3kFCslTE2UmENM3b0C4qLlNztmuIxG0WnPlEV3n2LBteNjBzEuigwWySYBWTh96KxGgSjzP2QUuS5oBiCMWvhfWGOWOMxvhiieLhBenOPsX6V48RdP8OA3Wlz+bA73pQ2ybwxx++UA8gUGFxZl/QD46BkvIGJLTMYAiTS3kIWI+zEmXUsxHUtAV6cRXjgzcjqbAUoFbltueNGTQA7vGULzvd2E6dUhNABbE4VCqkZE6BXDlTLKFyqJ1ZjnoTR1ofEoiqMgJlVKPwUQm0TznOkaYij7JkJs4lBqbyrUP/4Q1HikrxZ8r8YDfu9+z1BgannXcWd30j8+FYE7WIP2bBJZCrv7BYbPtrAXcw4eD8eojlKYOmB/bDH5uILZOyRXKzT3JzD7FvmK2xuhLADvYRYb5ltXDbdoGhRoj4fcEPf6FiHPOipdwSbpwRrG2+/NYF9cg+YrWO8RgmQVUcIrwo80QXjvEbwx3H7sesm86ixFezJE+vSat7jGIGy2cF94B2Zbc6MDQLbZlhuF9t32FI9s2+h9HU2Dwh3cy4k1QAgwScI+28s1lFvrdbACEXsla5FeblEfpchvLPzRCPRCiiZqKbnbi9pNelgmjI0rVY8Ssdjtd+kG82ypauBHJRtpLVadP7N6WWiRTwucT0Wj1Rc3yGQwkxFoNIQb5nj1ZyYYXHgMrjwmH3tQAI7/oIHZNrCXc5Yza9Gsp7qEuu+BM9XgOotUk6UMXYyHaM5GoAAMnxhkK27pdvTtBi9+kaGj3VlA9juExc+cgv7EKcbfXADPz7uJq0FA+LwAOixcA6gEXb/eMM11zIIdMxnDL8QPXH1G0GHY0Wta7rXfcYFMF/dIjxThRiyaxmy759sdPJoRgL3FthpiawPSa96m+7YFPnyKh/+EcP7njjD7lsflqET4EytkXxvj5icDgBTABGV4DHz8nJ+rwHU0HHYJiIiWqM+YEcqdOTmGV0aRZMVq8kXW8g6vbjgBU4Fc3XSUQynexyDsuwQn+qFovUiycG5ykAH15sAeoZO6W4E0+LNV0k55BhIeto6nIPUiMyz53ztpHagcbDIMg4jdLW7m3DAhS0G1R3Wag9oxTO3YGVQtFTYbmCcvJc58csz8lARuAgUpohJh+NEK5mrBA/zBCXxCoBYwtcfomUP+0RVAhObBjKXsqy0XwKYjFgest6h/7CF8ZpB/vIa7N4PLLbKPLplNUhSgQYHm0TGSyyV3XV8xr9SmCWjJwhAv7nLahSM4ofENCw4UIk32gxTJ1RrudAo7XwNNi+RbNxzUBkwNar/8HpL5LrZPw4Mz1EclM1mifNt2LnZyHDbvRef9kWWxYKUFvVDXCJfXkUNqBgMYlW5LP0jlj5rbJZL1EQBg+6jE8Ju28yMJ4i0+HkqVfxd7JiLPDnBcaOMEaxnfPj4CQuDdxotX3BVF+dBCz+OBH4BQd7YBaprU40SbyQSUZ6g/c4r0fIn7v2HYK/p2C1zecPNYcWlzvfvSF17EnYqaRAldz6i3e1XBXVYI55ewHyc4+zpn0P7de9g9HMDlBp/7f65gn1/h5pfex/lXgeLSYvZdj+WXpqAvTjH5g1uED550n6n0PP3uyjZJuwxYxTZYLNlPer/nQOFuOYvTgi8QA7nf7aOHzEEg1GxbFawi21aqWRf8meNPRQGXE/KTHaz1aL49wfHXQ2fOBYA+fo4HzuHVnz/F9DvAejdC9RN7mKsMV38KGD3JcNpOkLdSXBd6W5gvpOgnnPiMvdUj9S7P2IMjS2HuncK9eMWv0dpGnjNcIv0r6eOXXG8ZDsRSgFkoXm2X1U9E7Fr9ZtcxUYJn2qLWSfZVR6s00o1enodm5Np0mqSJLzZbeJXKB7EdFsMrGrLCE87DnJ5w8D4S7cbVTQzk2u4MIcB/9hGS5R7JN590c7yqOHnQeT4eoXr/FOE300+MmZ+KwG1aD7Op4MsUwRJ8noK2RfRabsYW5asK6QVLTMOwhBvnCJlBerkB5kvhJjuE8RDunTNkz26AEFC9f4r0Zov0wxfMvf3xz/CHSrHCz4awN2uQNOUNF9cdbjgYwNwbwJ9fggYlzGwIXzAkAu0XCMBsGzRnI6S3u4576RwPQmtBswmSyxV3ynh6DUwn8AVzwrGvOuVUhBvcAcwBcdMjKxk3pRFXpdBxqoPzPRpYwgOzqhjXk6JRqGtQnsNdXSNbvg+fA5sHFqNBCVJsXCvuqkism1i9D2XeTQwg8qzhW+Bz9+CEupn+7gc8yKNXiGPxDMCiF6JOLZdlMcNWwyeW3jPtLnt6Dewr2MsbhhN8L/ORicwZpu9BAT3PDufgm1bog7JwKLcbiFlxqGv2YNnsgJs5yn/DDakxHaN99wxJFXDyOwbbB8DLXwSKC4vjbzksfvIIg5Mh0m8+Q7i9jdvpKDhRaKMXtLumyoIFC3xkxiM2MVMMWKX1co+jy57e/x4PWhWlXCfw8bPkRJEmirJAOwCOxlu8N7nF1+oEs/8Hw4AH8NqTF3j4qzVe/MePcf9ft3j6yODsy5d49fwI63cTmCbHMY6QJxbhyYsIHbENbApKOGiGzbaDJZzQUS+uQINB11GplaYDx9PIDome3tsqipCimZhAaMF1tgV+0zUo1h0dJww8F4MwTth2toliG21vFpzw6+ua60VXN4d2tABj2tOJFBm5MElpIkKhIA07GrjdvvMl1wLnbs9mU7VYBJOJODis5cVsPAKcR3q1RbCfdh536+DLFG6UoRkksLWHmQ1BOy4Ejr+zZC9ha9AeDdAO+LLL71zAn18enCrcOwLVLdr7U9jFDtnvP+UbTAQ8vg+f8dYpme+46/XtmosNx1PGoQYDhP2tSHtrAAPQ++8gZAlckaCeZkhXDeg5G0FR3QJ5yg2Aq5oz+tFQvBSkoNc65hA/v4h9Ek1do3iG14qRwCGvWvHuoJX2fucY4CA4xay24cw1YrAicweAsOuys+HzgNV7hGpGwHgIWixjAKWMu8mHPGe7UnAR2R2NumxVFxgysCdHaMcFfJkgfSXUKfhDDnaZdzisFJKZEyxy8n4vSLFB0IkTmRwStFVx18fW+W3ETCC1daWeu1yvqzz/goN4FIcopVEXubZla97FEvYix3hxhuT9GSikyJaE3T3g8mcNTn8voJ6lqL/6WYy+XrLhkeCruiOITBwVSSmEAnRdyH0AsqTXHSYcBtw7HtEwTJ2L/TiDjxYHPDTkXtqsW+iNh58M0JYBr14e4dVHJzB7A3v9kmESkfirNNufX+LhP0ox/9lTnPxLi8V/WCId1fCDFtX1APPPZ5hhgvxmwUZoMl5C03KQVj58XXN2LBxto4pDIEIlSBLu5So7pT4EFeoayDOuDwxLxN6nKpJSdW9guMk8esCZeut4kUil/qA7WDVhc447t8+mMGcnvMjs9jxOlLIoNQsqSoZVNWEbDjooruFx6m9upbWaZOw+wKgBmexe1UpAFdnq7bL76ccoP7jhBO/ZOXv+f8LxqQjcIWWaFdUeWV2jPspgcotk18BczuFPZghlhvp0gEBAsm15u1w3cfWjyQjtwyOYXYPNZ8egFhg9u4ZbLvlGDgfAvgb5krspX1wxT1usO3EtBjI5Y2zIeEsZigwhMWxSVXFbp2AIOGLOZn1/jGaUYPDRkpkmhXhGT8e8Kmc8cM1qJ7i2BRy3MusENl3TXC1gdd2+m04W22cv9FWSmpFFxSJTBs1s2mV/8roonDEGR3+wwsWfGWD4cQJ3PIJ5abvPr5imxHzWhlkeWQqfGtiiOGjaQNbAPzgBNR62qRFenHeZUWBHOIAD1GGmncaGuaFlvnjMorw/9DzWeoS9E3h7PwcfhAufxu/rXduJVLTDvA8wNoUXQ6b+QhihAs3YlNkhboDFxwnKdx9h88VTFDcGbUk4/yqQXyU4/TctNl++j8HHJfDqMtLzlC7adQpCJ4ZRGENFR3XDMmph7fQVkgf2BYLtxgW/bUH5hP1IIKwOZSXpAmA4kDbHJZItwX6QoTrxOPoGcdbfMAvJCzeb6Y2E8PEzzAzh+X9whtHfGyP7a+d4/sEp/M+ssP/tMRYuw8y9g+x3P0RYrQ6aEgTDuwiIEjY+rqrino9lGWl/IIqd2fVZsLGZQBTqeTIcAltmYMVCYbxeGR91A5QibhHvGFMUzG6S+xcpg4YVnCTCnRACsN8fjDUaj3lsxu42GScWSlGVuXtQICUCioxpygq7GgJNJ2geHcNua/hHx0ieXwOtiz0o23GOlKjbvb/h+FQEbnIeZr6BdR6hyJDMuXM6Oc9+zalFSA2CJSSrBulTxtSQpmzuPizgLcFer+GnAww/WsPcrmIHFRqUzC5Zb5E0rEQMqVB4Gqb1+fmCvcCrOm6xePXdgU6Pkd1WMJsKSWJAu1p6+LFVa/l8A3M9R5iO0R4P4coE2c0Oy58+xejJFtR6fnAP78FsdvAXW8SedMogAGRS24OgHF3/ksPAHg9DUtjp+5MITHB2hPp4gO2jAoPzCtkHl6DRkM37hwOEbQ2zGyGbB6w+O8TsO9KJu5Ui0HbHW0bnYdY7+KMR7LpCOJkBt/O4YNizU4SqQXs6Qvq73+OJL+wWpS0G9AqGTcuBp3LCRe4VZiOVUSa/FOZC23TGRnq/9D6p/J4CELR5gmCScn8pMQd4JoQNETPzJOHJLv7ioZchx8+UjDd8+ATlR88wevcRlj97H+/9/RaLz2a4/skEZ7/boHowQu49wsfPeQHSji3aIaXno34ATbQtZ3QAY7qL5UFBOmLUvV1E7NAiuHaEtVbrbjxFuiYH9N1pimwJmDbA1gbT71UdfATJ1KUeEiGs73yIR6nF079yjObvPcCf/l98G7/1rfcx/J8ssPzWBIPrBOnj+zDzFdxlxxKiJOmagEjhmMdNGwU2saj4/6Puz2JuzdL7Puy31jvtefjGM9c5NXVVz82pSUoUJUuxZSu2IigxlABGAhhQLhwEAXJhOUiQ3AhxEMRBbpJAiYMkgBNZjmWJkTVREimJksgm2exmjzV0nTrz+eY97/1Oa+XiWWu973e6iiQkW6hsoFDnfOfb0zs861n/5z+kKer0PGRHys+1nNNOR/IfQYafdd2Iuahl1+a8gWxeYC+vhIrnFkTz1k2Zh0WRPN+YhsXjI850I/4RNXfqduDOtnazkfPigo790D04DLYH0I7MYF00nj4+DAtSeWef+HKNTWPRsLx+TPr0UkgLRUHqowHbNM5XHp/ON/mX+DBpzPJLh6zfOZQfuGBfjKGe9lFljSoNnSdzkpeOPVBV4iuylQNddxNWnz8genEJHzySi14r9MEe9sa+hIYe7QWqnN2Jl4X3G1ZK4qQ83Y2ykI54u0OVFVSOh/3iArXNMcOu8M/P12IlC1QHA4q9lHhVsL4/YP5GRL6XoS9mYlB1a8DyK8chIFanScNEoNVtV42XNsYzBVrFun0zl9V1H+bwWho1XxHPdvRe5Oz2U7GiXbpuxt1IvZeaYqJY33Sexe5zmJ0zxXEmXHa5dF0eVONO8KLQ3Y44yV3OSR+eyo3uOnZzcemwdydfHg6dkZijVfmBqRf7+EGOdTuINrbo+dxB3NIYYvli2+DauumW/FAu0gFS8OG24edt46kggnGPYJVqAhvFLxT1sxeM/unH6MIw+rigc2FZ3o6pU0016cFbrzUQie/MPCvHMQ+EntbkWFJVsu3WrpAl8fXi7jntLagIfFeprlEQ9WDQvL9/aEU+0pgU0UE8MnQ+OAmdelj8nR++dmk/RBG8/zG3/8GScgDv/dLb/OTnPmZ90YMHay7ejan2u9hRX3YariAGVkcUNZjyeCgGXG5w6Qftnj9tV2speA4Tt9udFNtY5kraRbzp8RDd7RBNJ058YxoztjgWEsJ4JAKXl1eoQkRQWOsCFIxLzsmartnNVpQ3uXKLhVd0mvOLRvHrYbVIAqslaKTBtIljaZDuHEvtSBLsnWPOvtqjHgv+r9c70o9OsFczqVmF2AAH2uOnPD4ThVvVhu6LHSZVlHs9uJpLce1m0m1njoftEqlJUgk4rUTNtzvuUQ4TBh/MwmtKSoXDo9IYO+gKgX+7g6P9YH4fuJZaSy6kbQqGunkEb71GPe5jOjFm2IPpiPp4IrzgYVcEOsZIcO8qp3O6I35yRuckBwP5JMYcTlBlRfc7Txl+62UzpHJY17Vhn7EhLQalw3bJd94/RgeEsJ22VYv6V1XOmawg+eFThv/oQ3j6sun2ihLmK6bvV1RdsBGUt/euTeRRShY4j9eWNcoY6m4sLBNj0Yf7cqw6mVzUHmv3/7kiIDaczme7LOXGcV0WEDBlX6B1Jwu831AAoqhRKPrj0JoNBMHKLpcBs8OvvSDGevaFt2Z1RTAIiqAx3PLfAxpFowuikDdxApfZnOQHj4lyw/ijgtGTktlbMvOwSQRv3gsWoTgfFnB4u0/yiaJmBuGPgTM3al0YzR+do13o8Opa7omqDvQzlaZyPfuH321Mxixfh92+pXduiAqL3Wwa10cIkIxxqef+eJiiRP/gYw6+XZIsLd/51bf43BvPKZcZmzcLPv5THcr9Pty5IQWxJUyR49qwflS3GxZDlWVu4dGNdN7bGq9ckIS14rftKHmq3w3BK3azbYbgzlZX9XsSZ2es8LCvZqJ0dj7v4Xoaj+TYGdvg8FbSbvTNY/nd1CXb93qimhwPg/+Jh9O89D8wWAqxhbZlSd1LpJaNBizeGjL7yYIf/dk+Jz8/Jb8zaQQ/WsHRPubGvjz3X2ICzj/XQ9WG+GxBf5mhXp7JCel1MP2M6GojRk9pIsOysRg0mV4qK2gak84L4kensr3aOM+LW0fiN5IXsrIuNgEGUZtdoO6pQV9W3O1WoBF3YeiDPYqbE2ykyB5doEY9qC02TdDzjUyPhz1srDF3DsUQayscbaxle7PD5rYh31d0rgZ0np8JPtYV5ztfIMVToa2QrJsLOk6u2Z2CNzFqukDptlUzxIoaSmG9WKG9k1sUYWsZhGo/xZ6O6H+0IP+TI/rPI1b3ukze7zapJD7FxNHbxCZgRLIoxNt8ucKMetg0JlqsZKvdFlNAkImrTke6OmPBT8uNlW0uhHCL4NpXN2IRqx1M4BSFIQHHDSlDWpC3MfXF3HefrxjS+2FvGPzWLRMi3SyUeHtU1923szXDa1mLXa5IvvMR3L6B6aXc/Ecbrr44oneqSRYF+s378OiZ5CqmKcYXJ0/pdJxg5f2dHeVSOcjDGnstUg1aA2yPX/c6zqc6keu4LDHnlw1DSL4UjIdEGwUKxt86pTySuLRrFgamcZ30NgresMxut/R+62Oq/uuA5oPnRxzfvsJYxflqn2d/pMveD1NGzs7BPrgtOooXJ/K541g0E262oUwrDm7QD0ZcquOCo6Gh3jnc2Rd128KkFTLwVoVuJOedTLzErQ1BxiQJem+CObto8cejYCVga2d4VRvY7tBHB7KjPHEQjoNVvG+9juOgnv4xBkpdA4kQIWrD+u19+s923P9PE5Z3Yfi0oupFmKMp9vwSOhnq4kquhX4PtWm91iuPz0TH7QG7IP/sZqhdIUG5m52YOa3F2pRTAfJNGkFt0e89Inr4Uqhcy5UMwJwnQD2Uji06mQm+VhTyGnmBfnoa5PF2vZFp+GQkFo43DkU+by26qGXYWFv0eiuqyNMLKRJVLTsC5fDgzQ6bJdQ3D0jnFdmFZvQjSK9yqrfuhPimMGA09hpFrB24G9gi/saMX2EKgCxUVRmKuNzsqZjIRy5k1h0X2zLxJ3HQijFgYPBRTD5RrI817E+bEFb/HjsZAnmMTi+2VPt96ba1lsVrsUR3O4EOZusaPRw2QbibjeCmPtS3fQyMbfjqxkhhc8dGUlCaYhlwV++T7b27vadz6zgFr2c3gPJZl/7frWc9OFqhanuxgGDgXlHakkj7EOIGOxZBDS/PiC5k4e6dVuymItyp9rvB890zKlScNAuysRinIvRUNRULq0J3Oy12SEutV8kiY6uyCboGkYi7oXcz2HafNYrYvr4HGqIdqKKUMIvW8NoLk/xQ0y/C7QXNzOaM/vFDdAW9b3XpxBVnL8a8/aUn7N7KWd6JKO6IRkCfXILrRnWvJ3DcLhcc2hU7W9cCS/hjkOdCifRS9bIiWA7HsaTMr7cNBOUYVKrbFUZXXYvishYvnLAgOrgmwDCexeTVr1p8ZNRwIPepszZQ8xUqScjfOpZFp+s6+slIdjixi/fz8wYX4qDHI+nSrxaYswt6H1wSz3f03jtl/iZcfi6h/945apO7yLdUYKLlKkA6n/b4bBRuoD4YUt49gIMp6srxOCtHxZktxat70JffnfaIljvUyYVslVcS4aUP9oQHe34BsyXxRy/g5Jz67Dz42yp/Ay2XcmKc1SQHU6rDEcWDI4o7E2w3JVqXRIsc23VbPm91erRPfXOP6mDA7rhHdLUWlkiv4xSgkFzueO2XLjn8rTn68QnJ47NrXQ3Q8FQds+DHTPX9tp3WFrqFwbaLlO8w9aAfqGFhi17X1+ED53tNFGE7McPHht2hwcawvT9xzI4WdLAT10KzWhPNt5hhB2UsZtxH5SXRfBuGrcFr2RvNjySUAmgxKZwwxf1nq7Jhfji6W1Cf2VZSuluIAtbdwrt9h35NLWitYwBkTXdbNrJw36l7rFJFEgKs/Fba29i6LXh7AWn8Whr82KzWmJenWK3JTjd0ripWdzokpyvM4SRQ/oJTHM3OIvC6najKGiPXbJI2+H47ecjBTLrbDYwMr2pF62Yxj8R5j1rCAq7eSkiWkC7FKE1dLQKWqhKBlXzsXZsx0c64VJEYOx3/gxfoGq7+1i3+9Ne+xXuPbhB3ShZfKrh6O8O8fU8WvCRBH+6jxkPsYiVF2RVpPRk3ismeGI556ER5fB0HfaZJA4ms11LcokjCDopCjKGm48CZpjXI94PEcP/4gOLNViBYx/4RlfM6FGFzcSWMqqIgPXENUCb1wJ6cS9PnogWF8dKTQt7rgdYU9w9Z/sw9+ewvz2RudzDi/t/acetXLrFZKrbQPiIQN8R2iV+f9viMFG6L3lXosnbmTa64XVxJcY0jcdaylt1X72MjjT69klXYS5ezDHs1lxNw40hOfNtPOdKCbSYx9eFEDrCxqG2Omk6ER96NKSYpJlJUwwybaFRRoi8WaKesNMd77O7vYRKNTTReCaEO9qj3+kTrXDyfP3yMnq/DoMQnQIcbvdVpt/2b2x1PKOae6ubSQa7d6P413DGrzy9DR3pNdel8SgC8GZFsvRXds5J6VBPlsLifwOF+g+X64ZnnX5+cYdJIIKxNTj12N3/oHuVG0Vkm293VOmzFpTNqshz9TkLFSXPOfVdZFLKbCKZFr+DO7e+ilQx6PYOkXXic4b1yWKXAUKbp1hOXx2hN0/35h/aDTj+MatHNlG541q5rVw6m0k/FICi92BLnhvJIhr5Mx0EsEzjdfvjon1+VIdFH93uyje8L1u0XM5XEjrrnBmHdjsx7uh3Z2bSDmP0iBHB8QDmEYgyTD8XL2uPGKN3QU9vXmPuO/nqQlBppKOonz7n5j+ZEW8v/9x/+FAeHS9K0JupVXH3JsL7Xl9DhTioMLE/vdA2YyPSF9mk2G8zFpdg/5C2puFZERweiLPTF2F1nqidUQpzITEUatSuanZVfcH0yUNhZOLqe351stzIMjGMZwju7WOn0DfZqLpDLo2cScdiRfw+aA89KSlLUeBSgnOVP3+HFz3cp+24n2+uitsJOSx9doE+v0OdXsvPr98KsbfeTr1N86bWwm/ykx2ejcEcRerZy0V07kZp7l7j9CbbfpXxwg90bRySLgvjDVv6wVnJAhgP58vdvU97ek67BbWH0/p7gUJU4/kWzlWxh3A1hRj3ygy7FOCadl6RXO6Jdhd6UwlqJRVwDYGMtFq9aYSJN74PLQNSPrjbYKEKfz8NgSV8Kr9X4/L3aEO1N0G/cJ9qbEo1HeL/iVwu175jkjd3N6G5c+2oR8zQ2V+zCjffqdssPL60k2tedmMt3MgYfJuwOoOopitsTGR61oAAAkgSz3hJfbShuiv/1xRf7YfDnB7vBIrOqQtqIdRQnpVRYDKDFDmlTnzxTwk/tfbFqXS++cHql5TUoQzUwhlKqKUpFiU8M90NS90tu8OmEOFWzWPjkG+8n3U6E97sAzyH2Rv1mNkefXKJqy+B755SDWCih/Y7I+F1h0f1u09G73VhQWWrRFNiqpcB1TI/QtftzMuqFYm2LsvGn8VRGt/vavr6HLsBqJNC60/bEJiym7WFvaCrcTibsOty1p3/0lM6VZfJDRW0U61mXW/tz1LTg/MsRZ3/4WHas55fSvMSxy/Zs1KUqiYMi1Kt7zXzpBoMuBMOdq0CtTFNUkgQanodUzMVl0AigtPMKur6zxVghDEzH0mHnBWY2l9BnkK6+pRr2kI2/BvWjlwKTuuvdrNYQx2x/8r4sUm4AnY8isj98TnZVY0ZdOVcvTzEfPcacXWCnDmrJ84aGqBTd907EibK6Pk9pP37fwq2U+r8ppU6VUt9t/ex/pZR6ppT6lvvv32j923+glPpQKfWeUupf+/1eH8AqCQG2T19gl0vZsqQJ5sEtTJaweHfK+Vd7xJuS+GzhprjiqkaSihvgwRg7HaFWW6L5TlbIzcYd+LJF4NcCa4z6QvafDFHbgs7TJf0na6Jtid6WwqDIizCFJkupD0bUg5TdgWxjsidX2E6C6SZUN6fS+e0KuUAnI7nQ5otmiFJV6L0Ju594wOaNqVw8g74bhjSdXltk0y5ivouk1WED17rEpjts0quvn1BNCBcuS+puBAr2v1NSDgzp3HL1uUxM4WnYLAEySWJ4cYqJFcV+ByzYWwdCIXSqsNCBuAJjt9uAs15TOHqKnZNBW4d3h52HXzxa8EB4rpa4MZXETeFpU/9auxtPMQwGV51MqHKet9ti+QBNgXRDSxVFRNNJ0x2bpuBoz1CRg+WYGCX1+WUwR0qvCsrDPnq+bj6bg6uMGwL6wac/3h5OkJALz/O3De3RQzuTMWotMB0uGeka5OYwe72/x+lPiH99skJM1DZizBYgOT8U989vCcH834MlgzsvZrVm+muPURbML+/zC+++z8lsyN5kTfyVGboCvdxKN5omMqD22HOn4+h7VkgC7rOGwbJfjM8voRAjLtWCD/xsyguYsDY0THa1lobJe6f479SVZBv18TPZoUfOasD/fDpBDQYNTOGbJ0eJtMuVQFhxhLp7E9XrEu1Nsbsd3Q/PZXDZ70FZsP93fsTBX+zQ+62P0bO17CicmllFEWq1bXZ53n98OJDB7Wz5401X6/EH6bj/78Cf/ISf/++ttV91//1NAKXU54E/B3zBPef/qJSKPuG51x7KWpF5pqnwMbsdGPaphimXXx4R7ww3/9pDomWLa3rvpiiSlkvs+aWIYra5UP4ePpFtlVICsVSVDNascLHJUup+yu7mgGrUQS3XqF0uw9BdJdutyhWYNMX2u5hxn7qbUCea0Q9nJOcrVFnJzeh+t5r0ZJKe57II+Ti2smxkz/sTqp7m8b+umb87EZrieNQ6GDrAGmHwqJotelA+uuPgB12+2IVO3eHFmBZtrG0OBdi8IF6V9F/U6NIwfl+xOVZYBbvXDwTu8F0gBE62WW/pPFtQTGKGT0vm746Jjg8byMMtCna9vhaz5T1EXlWbBR9p3yXHScCYgWsF2/OzwwVvGpuA4Abn3BL9IiUp8TbAHr7LlyFf2RqM2pBlGWAZF5DsbUkDP9nxbI2TRwcpuvssWCNUSq2JrzaUvVgG3lEkw2EIjA0PZyjHiw+Lr3ZF3vO2X+l2SWJxdixkiGacMMQfQyAsSvWtfbrnlu0Nw/T9CrM/EWO2ulHbysLZgnDS9PoOsH0NthbY6sUJR//kAmXgn/7aF7g5XTDpbtltUy6+Yll98Thw1fGhvLXTSnhfFRf4YKuKaDwiOjyQjlspZwrXlcas30Pv70mNAMmlbKUmqUFfqKr+evGZlHXdgix1wNg9vk63Q7AuhiBFv6YLKKvAoZdBZyWYty+wpxeYcQ/T64TdfnS1kZSjq7ncQl33b33xBQ+2xWnS7ByKArNYXFukXn38voXbWvuPgMvf7/fc408Df9lam1trHwIfAj/z+z6rlHBae/dYtg91TX5vj2IcM/lwS++DS+pb+83vJolAEGkS8CRenmGvZtLhVo7LmSQBr1L7U+ydm+R3p5ihw9gqSzzfCjbYy1DrrRhVaRVk+IFLHkWkz2d0fyRTYM5n2Nkc2++SH/UoJhm6rKGsZBDT64VV1Namwax3Bf2PFtz6h9A9L1GrbbBvlQNuWuY4jfCm3eUEBknU8nPwAzY/1Atde+umhMAW8Hh7PN+RzSqi0nDwu2vpyDZw+U4Gd28GBZ326d6+43t2QnZZyeJYWjZfvCU3iTGgowbP9EXMy7eVboqKL1AeBgmFoRHVBOjAWMFDXREN9DkvA/cpJE4EES766JW+wRjsdiu89Ehf49H7OYgOik9Ju8FYYUH4rtQXnvZre864Z81EYter5ksoKzpnMuPw/PFr7n4QQhba/tTBu7wWoVhYtNxOgOMD1LYQ1tVq28An/jpy10k0nXD+5QEYiDaKzql7L5ed6L+r3BTufDkIyjOV5LppLBcCt92pP+2jZ+z9ICe7VPSSgh89PeTd2y/pvTlncS+mfnBDzlFZiNAkDIZ1SOvxMnGJenMiu6JolJeXTjG5WgcOdeCKa4krs9uddMN+mH1HumJ/v3h/EVubgG+rNAlKRzObO2WkcfeOxgdaB/uCu8d4rxjV62KHfaHv9bpELy5Rz05kxnQ5wz59IYps78vjT4/H1h3LxR9TM5uLpuS1O0I9/JTHvwjG/T9SSv2ug1Km7me3gSet33nqfvZjD6XUn1dK/ZZS6rcKu8V0UvRqh00iyjv7JMuC4a8/EmloLxPDlZdn2PVGMCXris/eRFbLNEFNJ+j9PTGwqSXuSuKwOlTHY+pxh3IYsb03ROcV6ZlLEs8E+ti9eUQ97ko+YhJRHg2p9gfYWBPN1+IWlibS5cQR5q17zL68x4ufT4nymujZeYhMYzIU18Jd3vhNAOblKTx8xugHM7JvPXRwThE61aAis0asJT+hy2ljuPIFWkR9zwlvF3f/s/bvewXfaoOuDJujFJXXHHynYnVHkawt8y9MZWJf107x6LDCqsJsNnTef0ndUXQuSsq+EzC1gnQDY8cbY8VNpxn43n7o2BrE+E7HOJtR6aSdrN0XjLYhVBRJp2JtQ/+DEI+GVs432Xf0MSH011EIPY0R2+DlQVJd10IP87af7vOHQmlNgGFCx+s/12aLHXTR8w2247xZ3Hf0HGsPFQGhqFtHwySWZHPV6YRZgooi9MEe1aQrthBay1DNL6oQFn+VJtR3Dqn6iu2RYvgYoo23AW6opN7zI+x6/ILbTpPXLeaTex8viLJVRfbthwyeWh793fv8zJsfc7bpk8U15R+fc/7lfkis9ypZkhR946iZR3Q6IT3GY9m+A7XbnTRiiedSl8IUcWZYfndIUWJdLiYgquXtjmh/GiICbVE0lL0D1xAe7QdGVhiiO1hN9XqoNJE4vrKUpnGxkkUZULsCu3EhCG63Zjcuv9Z12AQxmSRVefw+3IfdrtSurjvXnU+3dIV//sL9fwLeAL4KvAD+d+7nn9TbfyJQY639S9ban7LW/lQ0HGM6McXtKTaNST56SXQ2h54oG/XVUjx/HX6kIk19Y8rzf80NPqoKJiPKGxMZJPqVyhd3a1F5zeU7gn9ll3mAVmgxL2ykqHoJ1SBFzzegIb5cE50vZAB0tI8Zdqg7oobUqx1Rbjn43ZrkatcMIOdL2RoVpduONaEDtq6lAzi/klXYU/P8BdpiUdiyaDon2+ra24M6uAaRNLzu1mFvdUphyOWfu9mhCrkJd7d6dF9uSRdQDhSbI035+TsBgw9bRO0YLGfn9D9cUA5iBo83bN45Rt29eW0ACjQ4tTUBz/WPV9khvtCHAuS7dV+QW74uoXB69kgLy/Qm+f67mtW6CRn2NqB+IASB0x3Owas7m9awWPkiYWzo0sN7umPsYRyz3aE+foZarkWIEixPnaLTKSjDENUNAD0sE7bucdOtqU5GcWePeLal3hugFmvMetswklqiLTXoc/mFIfHasr1VM/kgRxVVsPBt0xDbDcA1yKWFcweIpAXXeWjJrjfs/c4VyRp+47tvoJXlrekZSlkWb8Dy669JCG6kQ6yZ7WauGEdBXu4FYJ6lozqSnGQXy1ZgdIH3uqaunfd3As4+QXUyOZ5O7GQHsjNX3a4U+UxSn+xaMh5VJYueWS6DfD14v+R5SCuiNo13ibWYo6mcG3+9uHmKvw6oKqEn+2ObJhKMfvtI0AK3SJv5AnN2LjVivYaHz67fw688/rkKt7X2xFpbW2sN8H+hgUOeAndbv3oHeP7q8199RLlh/pYcWL1wBzqOsHEkwpuNW23v3JBCfHSA3hQc/u4WvdjIQGabk5zMA4al9qaYB7fYffU+6y/eoDjsMv64oPtiS3wieBPGOB+Smvywhy4NVS8iuZSTmT65gpMz6sOx0AP7HUwWS/gBgLEMPphLWvtHTxtHuVtHqNHwGjsh/L923FEvJ3ZJJqHwtArGj/E4VYPvhiLmu07b+FYEsULoiuIGWy4rucgjea7d7dC7imKouXg3oRokHP72mmII3XPD1Vsd1MEe3lFQKRVoYras4NEzsouccpQS72oW704hSZvvWjadZcBpPfThOusg+PFQjHv9ACe0pPxhEXAQinhy9OUmde/l+eohGajbcbOARpWJ9lQ8HbbkvpP2UEk4hrqh1Nk8b3xFPGvHDdv8dwgwg19EilJYEZ4lUVbXaJEB8w+Ls25oeRsXvlE3n0PdPMKkGqs1elNgLq+uzy7cXEGlCfbmAflUskVHH0TiGV8bwbd3eQNdOXaMX9ivqU/9NQkNJdF152Gx8H4vD58wflgxfD9BAb/x0X0GnZyDL59y9Tmh4gKyeGWpUEkdFbNerBq8OstEdt7JgjbA0wbDYpdljZbB7Vzk+5fNwNkvzrOFYNLbrXTeedFcg1UlzZa/v3xyfV0392BVScMSCQtFdTLRnFQmDCxtWcnOv2UvG4KBXWNGVQklcLnF7o1luJyKCZX3TLHuc7ZTsV59/HMVbqXUzdZf/wzgGSe/BPw5pVSmlHoAvAV84/d7vboTsfftGfG3PpRC3e9iew4vTWLpGMtStiSdVDrls0vib36IXW/Rk7FgU47HbXc74agmEcUkphhEqMqSXmxFLKMUtpuSPzgQNkuWUozF6S9dliF93Z5fovam1J2Y5MWM7S0Zelz83A1Wb4wpbo2oRxl6sRXutOtG1cVMEnVaOGBz8JrBiPCMy+vUvjj+cRzRDxVts1UO4oI2dc5jx7rpqq8JJ1pwSRh0GUP04pz+y4q6g1DXrGX/+xXzBxpdwfxrxyFB2w97PJZrt9uGnllbklVN+bnb1zH7NgXRD/Z8IYg0PpHE09YCPu2/r8cxVbOtDN2/O4baYcDaUfcaml7UdIyOPub567jXDhQxVyCsbbrrwOzx3bbzXbk28ddaOvqqbChn0BIcuY52lzfOd95zI9LSAboUmPBd24XIWrn+I+F053cmpOcbTC+Bs6tGXOKuHw8r6dGQqy+OSBeW1T3D4Tc36NkKVdVucKquzROuqVjdkNzvEpumwDYLd6sxMQ52sUXJ4DcfEe3gxQ+OePfuS7528IxRmrO5Ybj60ki44070IjBR0kSWuWAFNRIvHNXtSAGfTtwMpVkcrxmSObEURdkU0cjx9IcDeY+DPYG7xiPhyKfNTpj2LtTtlOWarsO5EN8ekeab/Qlq5pAAf57yXGCa7Q7V78ucy10fdrtrGozlivLGGHU5F7y/LAVXb9npXmPzfMLj9/UqUUr9v4E/ChwopZ4C/0vgjyqlvorAIB8D/0N3gX1PKfVXgO8DFfDvWWvrT3jZa49oU6JPrxx+PJIw37NZgDyU8xkQx78Ia2o3te24yKRCfmezQd06xo66bPe7bPdjho+kg49PF6iyEgHO/pBinJLOC2wvo9zvkY81nQtL+uRKtk9x7JReS5JEBpxoxItbQdlTlP2U0cOdZDwaKxQ6ayVQwVs+tk2bIPBXryn/ymZwKDanUVO0QkFLQkcmr9OiTXn6nLc4NTXWJ+NAoBu9ejF4aKC+mgH3SBdw+W7MHh2G33zO8s49qg6U/Yj0S3fJfuN9bG3CQultUc1sTuf7z8jfuUV2mVP1E3jjLurhM4mK8oM8YyWyDJqia638TligHJziCq9Oo2ZhCx2sdEvKzRMCHOJtOpM4dO+2FvmzFMaO86NxHXdHMhHbYpjQKfuhaBQBTUcZOuwWHGHrukns8RmIuvG1BlHuKeeV4SmLpqgDVxi/+0icFDtr5NN22IfLGarbwdy7SbwpMVlMfLagdnQ3v6C34ZrijRtsjjQmgeFDRfp81nh4eFGUnxd4JpJvDPz1qhWopFl8a6/yNXKN+eGkL+hVSX1xxeE315i0z8U7PZ4vRvyR2z+i/1M5383f5ODwQNTMGwnVtruq4ZN7KNBBYzZ38X/OoCyoXV2uJCDMMX+MsywIp4L3tgsvUV1nOrcWe1Y17KPKSuZOTvUYZam4hJbC9qDbkR2Ky1zFWOgkgp37Rq2TiD+4V/pGEZSF7MKGQ8fUkQUbl+oUny7c89017Tpzv6PRUYTa/IuxSv671tqb1trEWnvHWvsfW2v/HWvtl6y1X7bW/lvW2het3/+L1to3rLWfs9b+rd/v9UFgEToZ5sEtiDXRi3NZgdYCgxBHwac4KJuMlaJdFAL8jweo2zfI702ZvTskn8R0rmr0tiJ5dimpyZFTy1UGXVvqLGLxzoT5gwxVQ7wusVdz5+HdkbDh0ZDi1ojNgzF1pqn6MVFuGf9ow/R3Z8JAmS+CE1u9P5TP6ehEbf8R5RSIQUXoPpNqd5se54Wms/H4Y4sWaHZ5A0fU19fGa1axHjNuwy6OsdLOd+z/8IxsZlm9UbLdkwHxzb/7kt2+Il1a5m+k2Dfvha1sNJXv62+k+uyc7KMz6l5MerrCdBLMu/ebpJM2huoxXc+ecD8LxcEXcs9+8QuOh1J8QXZ+E2azESxZqYZr7ZgRMoSMsIMe+Wt78jotW9k2q8KrKwNjxZtrOWFOoOkp1aIjttgsrij7dBbtKV4eHnLP1aNRo9j0xd8rY/33d5i7mS9EEm0t7AsHQG9LonWBOT0PMMu1Tk1pohtHXHyxS7q07A4sx7/uujtjm6Loz4luFvkw2Pb3pjvWQYzki7qHWF6hmPpjFP/wMeOHFctfPSZLKuZll6+Mn1FOa67+0N2QNSrdqRv+OZ90s1pjLq/knPYlhCJI3atKum/XuOlux9E9/YyiDNeIp1nay5kU+byQ4r0/wXZScSG9nMlAdLtrMGU38LR+5zEayHt44VCayA5rsRQ4qpvBrSNJ0el2JArNOC/uTgZ7E/kOpcziVL8vyILXovidoU/18Y3B7/H4bCgnrWX71iHRxVJoTdbKQfIhvRsxmFK9HvrWDTiQCzgMMZTC9jLyOxNWt1J6pxX9J1uykw06L7FJTHk8xgxkWltOxWtjda9DPlJUXcXwaYGerYVfORCfgTqLKG+MWbyWUaeasqcwiaL30ocEp6QPT+Ukr9ZiH5nGAWO7Zo7k/Zehuejh2uCnzSf2v+c7mmtdke/w/Gv6be0r7JG2SOfVC8EnZPsOwZycoUsLRnH5JcvqXhf77CV3/sGa1R0p3hdfG6Hv3mpSvEdDKWhuV1E/PyH9+Jxq0kVvRGVo7t9yHhDq2vcPzA3vzuesPn137eXpeAz7E/jEtqrkJvNsG5cY7iXocmlJcjaXM9Lf/rBJLfHb0lSEIWrQF6jCw1Ceu+toYD42TUXCw/b0ywBnOCaCSlM3cC6COVMwr/KGWMuldHRKNYo8v6vy7+F3ZkUBnYz6jdsyePMwz/NTF6hrwqLsC7geD5l9/Ta6htUdxd53IbpcOTaWEYvTqrq2EIXz0mYuBf79dR1AUFbWDQc8sJ7cAlTPFwx/+zm9E8vJBwf82kdv8MH6iH/9J3+Xq89p8STp9ySoIy8C00RlmeC+w4GkrS+XrskoBdP2n7XbCVx85QzhAjPJ2xuALKxZhjo+CC6E+HQZf3xLl6SVxJKA5RgnKnYsFCfDtxux41DLtXzGfo/8rRuo2qBmyzA3whi4eYSays5UbfPAL5fZwk5oy96NcDIW9XfHLULdjuy49Kd33J8JW1eAzpM5NtIwX8F0hFo6l6yyaqKrBl1sFFEPM6L4ALXJqQ6GLo0mwmron5SklzuJJ7PWeWZHVP0Yvasg1myOE1CwvKsZPDUMnlUksx31/gCTjYkWBfQyynFCnWqyuUFZS1Qo4nVNcrlx1rAj7EKUnqonsuP4/SeOLaJDqrc1FsK13xSgV8UNzbCnOS7ez8FzoIGGMkjzmtdkylGTZyhdrW0ohlGjwNSRlq7CCB1s8Dxn9F6X5dd2VJ1MqFrf/oCDgy9y8fmY7pnl8meP2d8V1CdnRLeO0dOJXJwuV69+fkKilGM97KgmHczn7xO//1RkzLbJIQQwnhJnraQNJY3i0hd4M19c+66enXLtZ77zU1ow3xY3OahfrWChuivUuiB5127xG/WwfkE8vQhqPFsK/VF5bxB3vGxZEQ36gvFud3jRkI9cC/a5tsXE8EW2bhbgwMv26ryqctF2YgS2/vyRJC3VBhtpoocvZUjXGuAKZCYNQvGl17h6S5OswSSWve8Jl1xnmZyntucH7ec3dEJblddnJi34SAbTRWAXuQuvOR/eJ2S5pP+iZPdxSnWrYlfH3O+t2d0pmf3cHca//EN56noj6TPuOOjBWOZAXvDimVB17VJqdtCbwEUTDhyonj4nsttBDeKAP6u6xUI6aRJ6/Of1KTx2s5WhqdJSPB2LxV8/ZrEUVpjbraXPZsJ2ac1m7GSIulqEa8zMF9J8xJEoXEd91OkFZrFCpZWYVnU7EqU4m8N8AY4y+GmPz0THrYqKatLD9juCO21EceYVUCiNvXtDONZZJE57wPKLh+yOM1b3+9SdiPRiR/Z8hZ7J1tL2OujVjvLGkOxcTvLs7T51qiiGingLUQm7/YjNHfECtlqhV1t0XpKsKnRl6Z7sSGfSxSeLHJPGVMdj9MZ1VUkinYFSjS/vK4PD61+4GURem9C3B1twDVrwhR0Iij9/4wMBFw7sB/fe3mo1fI4WL9xDKH7XkvzwGenCEiWG9W3F1c8Ii6f/j9+j99JS9RR1oph//Q7R0YEMg9PEbQ1NeJ/62UvSR+fUw4zkcoMuasp374UJui96HqoJA0nHMLGv7lackjQUQtXIxht6nm4Mpbrdxte7Fc6g0iTgu4EBpLWYkqWJeDTPFnA+E7Og126jD/eJRgM5Rp2sSUupPT4tN7B31WtncaKdiMoP3Ly4xNnxtq1Tg6Oj3wV4vPNLb7GbRqSLkmqYET85w1xdXbcy8N8vy1D373D1dsbgmWXxTsWNb/g5ios0c4wVpVpmV95Iy1+LDgK5RodsnRPVgvKAIFMPil/3e2a9pff9lyQrKZA/OD3mm1d3+aNf/iHP/xULB3uNW6cbjiqlpLPdGwcoyUNTPvw5uPG586l63evGUt5Uyp0flaXCUivKAEFJUrxj9ng6p7M+lgGndMaqNcT0VrHedtWu1m44WUOeY9YbaeDKSuL9XICw6nWx/S4n/407vPzFA6pJr7FzSBPMnszScKKwsHP4PQaUn4nCjYL4fEndT50s2HVKcST+BL0udT8l38+wkcYcTqhGHeJNTdXR9E5yol0tBXcjN47pd/HRZ7PXxdFrd6PH9lATlZayryj7QkWMCsguCuLZhuRig5n0Wb09kcT5bY3JItKzNcmLK9ly9hKUU0li3LTZWMz5ReAKB0tVN1QL7nytwY+ngDXH4fqQCC9CaZ/ANp/bc3A9Htw+pO7G9wyW6/8m7yNbbafcK0rMxSWdmUE96nLnjz/GxKBuHWPWWw7/3iN5roGyp1n8zF3IMsz5JXQ76L2pdPF9uSDr0zOSF1eU+31UZYjnW6o3b6FuHQe+daApeuEMBAP/sI33Q1i/4HiPE89ocAyAa2KZoggDQj/wCQ54wfSqbiCQzdYpJJ30ereTRen0Qv7uzKPC8UtTKZLOKY8kuYbXh8XTccJVFMlNr/W1Ls8Pp4JFrH/e1nlYvPuA3WGX0Y+2WKXIHl8K3OHOfdvBUcUx+viQ85/eJ8ph/gb0HsXo3KKXuyAdtz4L0TbsEElgabD2cE22iraKG/dF62cPvsloP/eV68ycnTN6VBJ9Y0RZRuxlG/pRQedgy+wnj7EbocPqXq9ZFL0L5XYnC3lLgRwcHxcrZ/8qAcBmu5OgaBfhZpeuECaxUPBcFGLbOE2Pho2HjbOIVd1OkNMD2CyFo33suw9cAk4nnCMgJLkL37wDceNFHhYmwEwHjB8WZAtLtCmEJaQkpFk9O5WGZiSRbJ7//YmqGPf4bBRu1/nE8x1czrGLlZDaL2bSOY8H6KIm2hnqvghk6kwTFYbB420zgNw57Hk6oNrvUg87rB4MMAlU/YRyGHH47R3pwlD1IZtZdGEZ/84pydkKm8ZcfXnC5naX3Tiic76j83hG9uGpqDZnYu84e6tLPUjhaiE0uViivEIsk+usrmHWbcyw1T1D0x1fK+KmbjowX/TdcwN+67nPrYGSFKQmlIBEAlPDcNMLJiCoEtvvPfrmC3ovFO8/PiafaFZfOBD13ek5t/76Y+oOoKDqKlY//wDV68pUPtLogz0RTDl6m3l5SvrhC7HB1Jr4bEF1PIbX74nM2XdGgf7o4A3/ndq7ECfE8ddLGER56MWaa9S+MBj2hdxxha21gosXZbMI7JzqzW+nneLWbrbU55eyGK83rc/rxUANo+XVTjlYzLrYNzObNzBJ2Xy2ILxxXbDJcylIr92hGmV0TjfYVJM+F7qrGPxXQbjhFwB9eMDlz96g6sL6pqI4qOk/t9RdLVt0VxDtZtsUr9YcwMMkjU+KXyAbr/Rr16rnzXsIyDaJ8226oLWW3nefs/+9kuTbA775/A7nRZ9BN+fFHzOY+zek+4wbq9pgPOUgNVsUQXin0jTklpqDseyqR6OgEbBFiR6NROXoF/eqasQ9/lxkqUSb1XVjueyuC9oL0+k5vDwnenmFnS+ahdPPjDyn3wpZgqome+85PD8V2nKeS+rQ6YxktmPvn71APT93KlDhfKvhALM/gbng5KojaTyffVtX5w6oNjtRKY0GohiLNOZ4j/zGEL3Oyb77hOyDE+LFjux8S3K1k2IP1Idj8jeO2N3fxyqIVgW6qMmHGhMrTKywGuJViUkV/aeW0ccVvQ/OUbWh2uuTH/fZHmo2hxH9k4rodNas1N5vN0nY/50ZVTeWwWlV4UNKw4DMf60WQ8QPFdu0J93rhe7JF6hGsdYSizQveO0mCq/vcfTW9jZg3n472D7cYVusQ9ekswxrLPWzl0zfK5j8ZsbsCxW7SYR9+z5YQ/3ylBt/+yn5WL5TMdCsfvY+ejwSw3lA7U8bvnO/h5kviH74CFVU1AdDsTDoxFTv3CPanzZDSNd5huw9aEQ5fsvu+NMe5giDMg8TKNV4frjiH3Y9vrD6hcqLZ/y/e6hHKbmhuq28R4/Bu+f5RiOERvS6jYjH74La3bR7mM3m2mIcjn23E95P37tN/dW3sFlMcrHBJhHpowu4uBImQ/t6cEUzunnM1c/foeooohy2t2r2vxmxeF0RbUVs43dWofC3H27XFtS37eH4tQunMUAL30E1MIsv4P7a9KIkczUjvSy48Y2c7t8d8qOrA/7C23+baCgunAFadAXZHyvlh5Wj0bVhv8pSzMEYtXPHP44c5dOFD1iDdX7daig+3uK06NKU/HucnodFE3Ce2G0qb4Iayo7frjeCQwdNgZzber6Q66XXFWpjRyLNOJhKlFpXhvz2ao56/zF2tgBTY65mbl5iMRdX4m9iLHY0EFqzUo1q9hMen43CbQx6tRGGQr8nhXDUx944BKWItqI2Us5VTT05Qa226NkKqxR6V7K51WX2Vka8KtB5RTnusLkzYHegiApLdrql/3TH8kGfOlH0zmuyK3eTR5piL6XsR3QuLP0XNd1HM/Hc7bjsxV4XNexz+Qt3mX1+TOfl2vlwS5dmXREPyr3w3ZqbINysHssrigZrdb8THRwQHexfLxzu30JB8MMaNyySL2EaRoaHBzznOGkgm7Adr+vGX1qra451vW8/IV1aVK1YvA7zd4ZEhwfYuqZ68pzbv/REireS4r38+j0RJZycCXy0P5HBTuk4uLXBfvSY+OUMM+igNwJLlW/cxL4thd/vSvziFgyk2kKd1vG0uRcrRM3x98k6OIjFDbd8MlBgUiQN7GFXEpChEu9R4VKRbGMyFDr5WuAx6zBWHzhtV+smtSWKQvcNNFzdFn0OrdDDYcD7zXYnzIa7t9i8vd8M25OI6MNnmNNz6qv5tfPr2TPRjSNmP3OLsifX+fxt6D+KWN9SJGsk03G9CZoHvwA2l1WL7dMemru/tw3KXqWdhmPo8W1Pa/ONgbPHNbuc+P0nJPOc/knN+ZMJ/+cnv0icVKzvD4RZsnHWv3420+uJk6DDmo2n62nBuFVlBC6pRGrv3fz0cCD3RyeT7trTCtNUYNdEdsdm6v6cJlQ/8Tbq/h1hsji823vW2M1GjOaqqhlcOo49kQt4qetAWbTPXgrtsKxkZuLTcrySsqqcICgO1xy4BqsswPufOJn/pz0+G4W7coD/fImtaux4wO72iM2DEQDxYicFtN8V/NutrPV0iBnIgakzzehRiSoN6/tDNjcSipEmXViyhRVMGkiWNaOP1vR/eE78cobtd6j3B6yPYrKrksn7awbfeSG0xOUK5itZyY3BxhEmlhtEL5xarS0Kaf0dCNQqP0iUD1o3z6kbpzlP46of3GD9E/eov/R6U2RbuKOnnYkXh23oW9Y2tC1o6Eym2Qb7LXrY2npYwYfhus9Vn18w/tGG8fcj9OeXmERRvHEjYKrV46fc/GsPKQZKBr19zewX7qNvHmPOLyTFqNuR4XJRysXe7WLOLtAfv8RkCfWwQ3y+wmYR1dt3JeWk5ckchEiuW0a31KPOQS9wkP3C5yh12lHFAk+6dje3w3KNi1ILJj/uJgxq1jwPCedeKQfI5wre2y6Ls3IdnDWhO/M3tB/6euw7fC7vEug+gx4P4Z3XKe5M6D5ZYpVClTX6o+eiMiyKa9AaWkmW583jULRtBKvbmtFH0H9p2N3PmXxYE288tOEG524I6I9X+9r6sSE6NDi3L+ieMlg1s5fwPH+9umvMrNYCnaUSYKzXOTZS9B7H/OjpIUlSc/lODKOB8KF3LvnGQ40LxybyqkhjxGQuz7EfP5Xv080C5zp8ju0OczkTmqtj+1hrRViDdNZ64by8k5hqkEhIcV7IAlELP9/M5pjFCvtUZCrq+MDdw253EJoyFa4x1e+LYMol2mNdfF6nI/8/PhALgyRtEumzVCIX167m+F37K55E7cdno3DHERwfwI0D2BtTTbouacaZJZWVSNgHEj2muh3qaZ/djR6L13tsXhuRjxSzNxLOf2LE+RdjiqEiWRu654Z4a1BFyfp2B11bSWRPE/IHB2zuDqm7MZMPtmTvPSd+ehGoh6rfEzik1xEL2aJk73euKAZahqjTsZy8smy8mOOYyN3oAZt+ZTvZlqy3ObQozeydAff+F+9RjNOm03v10Va7+b/7hx9u+gCJV26q8BKRE2zkeRABtCmJ0Xc+on9So39rxMWXID9IhUPvYIvq5Iybf+0jULA90FgNV1+/ib55LPSp7U44sU404gdHdrdDP3kpu6KjISqviWcbqtv72Hs30ONhsFr1IiPvfe0l6rrXC9hw2L20hEq1xyEDRSxtcFx//N1QDpAC4Hy1w8O9lxeEeAw0KDZb8WCAdIdF4brv1HlhmAZm8YW3xTWmrlHHB5Tv3sMqRXK1oxp3JSzk4TPZhvvv768n973U/pT5T94gH0ki0+5AceM3dnQuDYsHmtHvZujCkj65kPdLYsxyGcInXo1p87BTYO7Qahja19krVMxXd3pB/eevM7fzs25A2D3JGT4xWKMoy4h8z5LfnYZr1NshS/p63OSFekzfhfLqAyemOrtyu6JEBs29bphjoJWjftbofg+9P0VlGfW4z/JLRwF+6X33uYSmjAbiK98R2qTu9URUcyjRabhu3d67IcNN5+SnpxPZNXi/mdWG+vSsUXsr8QXXh/vSiS+WAgk7fr/KMrletHI8fu08+j/rPG6lUIu167QHpFc7srzCZI5Y713+DNhexu6oj40UujR0Liz5NAaFxImlls6lpf+ypnuywyQR0aZAVTXpsia92EoC/PGYOouICkP6conppNhBTwIdyjoMOtX+FJvEmCyh2O+wuJ9SZ4oXf+KI499YoJMYvdzIwMNto63Nr+HNgcStVRBZXIv7AvndqqL/vODZ//wtsuXOFRn3OpHjYxOFwmGrZpjkN1W+K341b5JWxxRk976jjCPstpCfu1AIu90y+u4FUb4nXRFQ3J6SXF5JQVGa6vScw7+6Y/mvvMPibsTko4rFV28Q5Uf0f+cJ9vJKutBBXyiT223Dtnl2SnrZpT4aU017xGdLSBPKL9wjvtoSnc2oL6+aRHMHnQSDJr8IagVRgu5GDRTi5wXez7qs8Ok73islfH+QXYdns+jGCjYwB/ww1DMQXJhCWwCmnF9JgPrcc41LWm8gE7eY9Hri6WIhuVhjeilUlvSjk5CUIgUzanYYRgyzuHnE5U8cYCNItpbVLc2dvzOn7idEuSXfM+x/z5KsK+x66/jI9bVj0ThWFvI22kNo11NwVJYFimNjWcuPsX1CAQ87QANWXVsczPkl+nDM5lgWlvznCva/eMb5syNuf09SiexWBoUqyxqvD1MHplEIpM5lYGm3WzjcF4hCKbi8ahhFfv6hlfCv3XA7ulwwyB0+3pGiWb12SLTcYQYTdMuyAg9lHO+jXp5hbhxS7nXJDvcxlzN0pAWvdkwyGUI7ncR41Cy8zgoDJ/a69kgTSfi5f1csOXoJ0frHZ1Ptx2eicJs0or65RzlK0bUFA3q9RSuFzWLJa9Oaqp9gtWJ9K6V7XpEsSoppKlv2TNG5NFgF6doQr2t2Bx2iXU28tNgsoXMqF0Xx5jH5NEHnluxii7paEHUyMQFabTDHe1RTuWjiuWBrOi/RVUa2sGz3JCVblTVczDCbreu6EyfLbcm3vXDGGmwpxdMU9TXOq+9yzXJJ9hvvS5HwdpSVxFnpWEEShQBTL+yg1e0EzCwSubWPxQpRW5HD27xtaRRJR1I12Dmu+NmqxHz8hO6oy0HVYfFaTHZeYF+7hf6gDD4cZrVm+Pd+QPzzn+PlzyZ0zmHxuuKtF/vop6eYi0v0eCSJ4m7LbNabkAykn54RdTvU0yHEmuR0hU0iirdvEs+mRBcLUfp51Zt7eCMlIDAPMBZiFdgZcnG5rtHoazBWcLMzNsAq3oYgHDO/OCDeOHrg5NduQfAwkI/E8zJsoSE6Fznv6hcLJVHdOqae9jHdmGhRoKzF9DPRHpxdUPsBpO9gw01iZY7wxm0uvjREGWTGMFTc+buX6MWG1es3Wd6N6D8FE9WkT67kOCexDMVq52JY18gLgK0aTrYwROTtwqAyb/xWpDDX2LLp/j3cIgyn6jr7qQWdeLuH6HLF3b+6pLg95cl0QP0TOfHO7ZpWK0JSUaeDXa9l8L1yC4dbKG1diw+JFpGMKivZ8bQ4+7Y28t21JjrYF2/+433U2aVQEL0DZKQgz4lPF+R3p2SPL53PSEcYI7Xz1n5aoMYjzn56yuE/OcWcX4rXTeBuF+GzoxQU0vyo4RCzWKL396hvTIkuhKYYHomk8hRfuIsuJIkq3+/QzavfE+P+TBRuFJTDFBspkstdwKNtFmOjiN1RDzQUg4g6EwgkO99hspjFvZh8qkjnYDVsjjTd71XEm4rsfCuvZW3AoxZvDjARDB/nxIud5PWVsoJ7Axh9taQa7FMNEqKF4G7q7BK13ydd1Iy/dUm910fPVnIBGaHY6ZTWVvi6XN13MdfUbt40Smm8QZRZrUA1qdpeTRZc1HzRhoBx+47ed5MqTSHL0BsZ+FrqZgjqBm/KRSt58QGVbfyH/U7BWPSHT8nMLYa6x/K1DtPvFag7N1GPngZc32x3dH/zRxyrN+h9dMXkwZT8qEvx5usMP1xhPnwMiyXKyYRVlgkLx20P7XKFXq5Qg76oUSNNcraG2lDcP0S9diimPFdzd7ydZN4XZceJJVLNxe757dAwSaJGxahwXWNdADpER6kIea3UPadyGLXvHKNInpumspPQGvo9MdbvSViDnS+CJJtIzKy4fYPyoIeJNcnljjiX61dtSvSzM+xyeS3kN1wrLqFeTyfk79xi8VpGujJsjuQauPX3z+H5CfVb94h3hsW7hjt/W5PNShETZc7Leuv8uj19zytpW0EIKk6uLWD+WKGa4aNt0f6glU8JITczMGdUkzEaCur5JUQRKZDOe5y/GPPa44r65gHRy4uQBmM3m4DL637P+W/rJmDBDyKrSkzdikI6WUfD9eZdejR076/QVwtXiLfyfTqZ8L0BrKXzwYkLWejIQDTPZYfj5kCs1hz96nM5LloLWaKsUHGEtXHw9vdxZNJtRyKyubwi8tdmlsl5no7ZvTal82yBiRXpyQa1zem/vAreLJ/2+GwUbosoErMYNJQHPZQVEygTK/KxyNklWR16z3fkBx3KQcRuX5HNoO5CYRT9l4ZkWRLPtjL0TBPqUQddGapBQrw1ZJcl6eNz7GqNWa2l63ztFnq2giiivDkhOVuRPq9k4OAGJumTC8rPH6OKkvjFVViRA26qGy8Hpa/jz747CZS/tqtaxCvQijsstbuxlMLaurn5dNUwMFrcW58E0nh7t1R7zuXM5nnTDRkbEqbVeCRb/qIIgzNb19TzBfHLLh0DqB7bW33Sq4Rkc0D98sQxaQrMak3vR5cyNM4Ui9cSRo8q5u8OyW68Q/+Hp5jTcxEx9DpC+axl2OQ/r50v0IsVaiRTfxtr8Y8uSqqDIeb2xNkN5HAxkwiyomXr6nHmlo9xkEADwY2w9Wfvj01RCid/2wwcg5m+v4nctjckK1kD/X5zwy7l+jHbHaqu0ZMx9rVbVP0ULMRXW9CaupsQbQri55fCevCdfhSBbbpznbqif7jP4ouHrI81gxc18/sx3QvD/q8+wZxfoG/dIN/L2E0jjv6JIioqso/OhOoYRwLhecZN5IN1Ddp5wwQ4x3Pd/Wd5ZdCuIhoZPE1RCcyU9hDd2JCEFOYpVpSl2nWzw8c1dZpw8SUYDQZMLhfYuTCRvFTd0zZ9PqTu9aSgZplkNtZGvEKSWI6/83oJ/jDdjtD+/EI+HUuTtt3JQt3tCoxyeiEmXpsKqyPUZIxO0gYycVCYrmvBtQd9YYxsRCylRkOZxW23YOSa9nRf61OKXFOmspTizduUw4TsQrJxO7/9EeaN20Qb4Zl7H5tPe3wmCrcuDSaNMKmmGPfIxxFlTzF6UmISRdlTpCuLSSzJBopJysuvJ7Lbs1BnYGLQJfReljL4Ouyjc1E91okmyg16VzM4WUmo561DtFLoo33qsUvaKUqKNw+IVoXEEnUy7OEeaiOsFtNLSZZViFGyowF6lwsLwUeUtQdcwQyp8TduPxoalW7Mlhxk0f67rUzDHAEsUVgYvN2rrWuUNwGyUpDDAE1r2db3e8I1vbiUn6WJ458bsWidL8Qe1zMe3PbZLJZEcURvueHi52+QrCvMwZioqqjPL4KazTx6iu71GO5ystkBZ1/uEm8s8U5z8fM3GT6aiiDHbTNVr4eajFDOJsB6pdx8gdrs0FmKHQ+o9wdEy5z4UjyW83t7RMdjouWOeLnFrjayAPmua7OVLWziukQIx069MlSUHU0iXVKeywBKq0D5o9tB97rUzonvmkK1rGC5ku2uS9zR0zHq9rGwZZLIDV+32FhT9zOiTUHy8CVmNqd251hnbepXg2mrfo/6jdtcfmFAnFuSNVx9Lubgd0u6v/GhiHW6XfLX9ljeS9jtK+7+jUuhEq7WwVHTLJwBkk5bDJXox79Pe26glcBLNNg21gRPGn99NNexoxL667HNBW/x8m1dC6zRzRg82rC6NWTxbsXwsRZqphfgOCsG77ceaHM7l3STZbLzAXk9J7BRnUxIDf78XlwFWT8Ai5UcF98keeOvqoLZQhJw0lSyMZ3qlSiSZuLkTJSN2jFQzi6aXerVLBjjmdXa7QC1SNmNadkA19i8IH0+E7toP3/qdYmenmGOpuhKWC0q/3SHwM9E4Zath2JznGJiKPsKXUKU1+ymMSZF1I9dBRls9xPKkSG71NSZxaSK7qll8sEO7YaaJtZEmwqrFHU3ovNiJcbnSkG3C7kwVYr7ByhriS+2mKMpJtUk6x3EMWbcF5L/Zkt9NGJ32KH7YiNbrcMeppcRZZKBp6G1xZShEhDkwr7babrzOHQofpAYOnBaghpwLBILtmEYCAZKs7WO3Q3iO0U32FGR+BKrvjgeUorLmj7cDx2kWa6kWE4nIhPOMofbKikqxsggZjRk73fnXH1hxP6TK+ywj97tMOutfA7XoavNhvjkjNsfH3LxC7dZ3o7onxjWtzusbz9g/N4CnrzEnJ3L8NKlXHtc0xal8I+rCtYb4smI6nhM1esTbSuyk5WjVMVUhyPsjQm6ksUfJG5OP34eFr+w5XfQg/d6CZCUt3mtDQq31fXH2QfQuhsspOF49WQkjCjbE1fA7TQj2ooRGcudRN0NMqL5lvjFBXa9pvZ0Tu1gNI/N+iF0mmI//zrbgy7LuzHZzLC+Kd/tzt+dYb/3Icbh5uUXXhP6YA23f3WFMgY934HH2qHx76C5XsKtF5qDEqx8JqGQNpa/ARpRcv0E5pJp7Sah1UzELiRBCpWKE9kx+vfabFB5TnQ1Z3zrTXQVU/Qt5sEtoheXmKuZwBjuvtD9npguAcYVYbNYSIbldof1tEFAmdiFr1gR8C1XYcdsFgvp9g/2xMzOXbNBYblcygygLINQJzRMi5WokC+vgiWtXGyxdNlRFvy+MbaB2vzx327R0wnendDOF7IIOmjIuF2d7nbEiMqFwnza4zNRuOtOzPp2h91EEe+gf1LTOc2pejHFQBFvoOooVCXFe3PbYroGqzWdc0XvxLD3z55T3ZhQTjJ0YdgeJBSjmM55wW4a0e2lRCtZPetxH73cULx5jKot8TJn/oUJydqgK8vsa4f0TgrSF4sQCIqxFENNskzJ+j3q/SHlKCU6FyiDzDRb/qp1k1hhf6B0U5Bt2VAC69ZWUysZhEVR+L/vUvzWNUiK/YS/JVLBNI5mqtfBLlbY0qC6HfLP3RKY4cmJbCOLUrZuYfBkpHsEuQA9k8czM3Y5dVGgq4q9bUFxd0pytkZNJ6hd3gxcPXMhiqiePGf6X1xivvQGpz8xQNeW3qnh6gsjkteHDN6fw+PnmLWY3KvhQF7PURnDhbvdET3cEiuFHQ+p9vqgOmKDsC6k8wV0EqNmS4oHR+jh6ygLRkH87CJ8F5vn0qVVleClvuOyVhgCnvfrCoQy7t9GI+lakwSzP6IaSKHO9xNUDemiJFqXdJ4uMP2MepihN0qk0uu141C3BEKJ2MkGxgxAkqEP9iju7fHw38wYfyDX/uzNiOkHNeNf+5jq9Nx91wzevEcxScnHmuHTkuiDp3C0L4tulkrox9W8UUpqBTWhq/bDam9TYIJNrNBN29xtlahrQ+1gU+CvP//7EYHNo+QX5PeceVgzPBS1a7yqMWmMLqHY6xAnh8TLlRQ0f252O8GFHb+6nXbT9jRX3W4IXSCOhI3iF1ncXKLTER8aV9i9Z4hygQd2u5NFwzn7+cQnHERil0tRdXo5/mYjkJuxTofiWDu9nly/kQsHthZrDGy34VpQW4FJQuOS9pv7rvr/h+EkwgVO1pZsbrBasbrbBQU2lptvfUuJ90JHYJForRk8tuz9YI0qa8yox/bYGcAMIsq+pI8rYxk8c9usXofyaICJNFEvoezHdE63VOOMeCfWrdnFjt20z+pOyt5ZRPnGTcpBzOXnU5KFFHm8QKIwchLW60Z+TTMUC11x+2GNO4mtztoa+T3TmsQbK/Q/x5ttS9d9pxMe4cLK5ITHLvFj5NwVc8de6CToIPxI4OhAxAVK/IvtZisX0HgkGGMkEAuefuiDU1cbrB5h+hkqjdHVAfb0zBUIxzzwnzXPUb/1fW7+aMrua69x8W4q53lhmH1pQvLGiOG3XsikPy+wxg1hh30pyFUlw+OqwmYZzBbEl3O5KTsdGfz0uxBrOa77I5KLdYi5s1lCfTTFZpGILBTUXbnsdV5jE43Oa1RlyAcpylpUaTBZhFWga9kN2kihC0PkfMajvEblAstVgxSd19T9BFUZ9Hwji483P/IDO6euDF4qu1xu8m4X9icUd6Ys7mdEhWX/24rVXUXUh3t/awYfPKLa7qTgxjHmi2+wud0j2hkGzwuyD05gOBDb02GPaq9PfLVprFpbXXbgWUeCfwvURiN4egXaUFoYUVK00+tYdk1Y6EIRrz0mLj/XfoFyg9AQIacV2fmW7mlC2VcUo4ju+6dYt+sIeLjHz11CvNlsxA+n15WinjjxjmcSRbpheUBQIduiEFOoqhIFi2cVDfrYzUa44VpCi/Xhvuzqup3GXjpxgi1HURWr1lgKsOvyzXojn7ksmmPuZmGqI8dcH+xLAlDtnA93uRR67eGiFtf/Ux6ficKta8vgeU2ylM6gHMbs9hTKgIkU9QCxYC0gWVvquWLygaFzUZLvZ+SjiM5lRdnTxDtL7+mG7gtN8vQC282IATPqcvZzB/RPKuK1bH+UAZPF1FlE7+ma6HJFeWtK77QkXgvTZH1rwuK1iKNv5uR7MdHJTD7z2Yzkae7M0OvGL9jja76YxrF0MteKeSMYkQ61brbONa2uzMEUzsVPJY7O52+S1k3mJb0hLDmWpA61K6juHVGMEjrbKnTq5uTsmjeKHh2gRkPxL19uUdOx8LB7XSnobce0PCf97hPWX39AvKlJAb1aC78bruVm+q6tPj8n/YcL7nz/gNXXbjN7M6Z7Jot0ce+Alz/b5favLNAPRS2o0iSYDylvLeAKuIcs7HoNS4uaLaQwDgbB89iMetg0luKbV6iNFGeUIlq4Y2YMNnYdYWXQuxIMQi9rQSM2E2WdzSJBrBAKqwb0pqRzvgzQjbcGNV46nyRN+LD2tr8OhhoP4XCP7b2xeMQDycayOdDUHTj8nZL+t55Qnzn/aAdPRDePmb/e5+odzc1/WpN9fCHv3etgugnFnjAh4jNPi0sDt9kbk6nIJaAHXxvfhb8C3bjrzXfhQDAxa3aNr7AfWjBeO2wi+MO4UBQKUC/OGQ4zNjcz0kUtwjYI8IUfRKpeV3YR263b4WbhdYNHTMt33UNd3mxKxGxDGUo6r3PVyYTiWZZSvBer4HuDsZCl1PtDosrVi35XvlNROpuCKsxl/CKhOxn66EDUm7N5E48HKNWByYjycERSi1+JtRadxNhbB6jTK8z9mxKYfnH1Y6K59uP3LdxKqbvA/xO4ARjgL1lr/w9KqT3gPwXuI7mT/7a19so95z8A/l2kDP2PrbV/5/d8j8oweChS381rfdY3nAlMpKTjKRS9U0O6qtlNI5KVZfBky9nX+pQDRbKyKBtTp4rOVU18OpcTmLipulKs7/aJckv36YrdjT7JbMf8zR7DXU3n6YLV2xP6tSV+7wlJHGOOplx+/Zj1LU06t1y+kzH5yMELnlDvJKs6HQoJP2oFGHiqXmuy7nmw6OuH3Re6gCVaCzpqMguVBpxTW5vL7GK2yDJUvytJ1SAX8WYbtuBXnx9Q9hTdl8iW2CfLuwvcFiX2aiZ0vVp8zDEGNR5J5+5MlDwzReATRe/piu1tJya4cYCuKicnj651ecEytCionr+kdzWj/8NjFl855PLdCF12if/wJfU3upRfeQBA9myOPb3AFkvZSg76qLTnVLRlk6BTl0Jxsxbc1J7VWpgG1ogxmFO+ej2AjZQU4kihaiveIL6AG4tVGbpwUvZKdmJ6k6NmpQhZKpfC7YIOTEjG8cZgpsHsayODLp+HmSZEx4fUN/dY3u2xm2h0CcnGsD6O2BwpJh/VjH7zGdWzF9T+/LsiGN27w+Irx0SFpXMK3Q/OBL8ddrFJxPL1ARdfVIw/gO57OcG9z58D34V2ZLjni5/v5P3jVV+ScG16empZhV3hq4u0H062PU/8PaEijTE25EPazYbkdEQyijGJojocktQGzi+lWx+N3LVTCu3Op6aXElmoOh05175xcmpIjBGTs4tLCQSpDdYlN6mgHi0FvihKSNzudm8S2Cm20yG6XFGfnsniN1/KcUwTtNdg9LoChbihqqpriWJ0eZhtGMrcvcH2Tp/++5cuM9cNUpUOjDarFbaTCCNl+S/WcVfA/9Ra+02l1BD4baXULwP/A+DvW2v/Q6XUXwD+AvDvK6U+D/w54AvALeDvKaXe/j1Dg62l2O9S9SI2hxFVT3Dr7aEiWrkuOxXlZLy1pPOK7XGHOhUM0EaKog+Tj3JxVFtvUT0pMuWtCXUvZnOosRFs7g45+1rM0W8rBs8KsseXFLenlD3ZarM/Jb814vJzGdnckl1alIXtEexmEV1nnhMCRaOI+vIqdGfhK/ktKo3hkNIxNm/DI02BU4njC1uLzVv4NX744wq/x78Bn/SBqeVCqWuR5HazoFSsPneXs5+v6D0UD/Egv3Z0QSk4Tmyy3qJqQ30wppx2iHY94vc3wrf26ewxQofbbFFPT+jaI3Y3B/TeP0PtTQgJMF5A4jrXtnOcLUrsw8cMnzxn8O4bXH55xPh/2+Hiix06M0uUWzY3Doh3+/Seb4lfXIn3RE/S3e1ogPJdkOtslVdC1ibQ8+TqrWT7WVZEKxnYBogiEc8biZprzSXAKR2dwCQX/2TrKJ/eetZv9+l0hK+bpQ5Gq8THZNe40ql+H3W0x+7mgPXNFJNAurIkayuOlDcj9r5fMfjWM+qTM6qW+lAoZBnqtdssPjdFGTlGt/76E+ygJzLqLObyiwMWb0B5N6d+lIWorRDGDEEvQFkSnBgdtOEtEqQIGkJ0m4d6PMTyalFPWukvHpc1VejGw2LhAobbHjIqilBlReflhmqYoSrZhZFlqKJwsIZj+Thqp+p2hW7n+NaeZx/mPh1xilSOw23XWxmIOjWttzxQw4E0Jc6jXHW7YbgYZixxLIV3s2niFCcjuLhCKYESpdBb1HTsFvsaG2n5XUfBVXGM+tETBi+6YiebiNuodVoLrubYqiL29rvrDdT/AsNJFwT8wv15qZT6AXAb+NNI+jvA/wP4VeDfdz//y9baHHiolPoQ+Bngn33ae9TdmOXdlO2REvN+A3WqSBaWbGnpnhYU45h0XhBvhTaYjyJQoEtL99IweLQRSmEvRd05QpU19SjDJprVzYTtoSKbAwp6zy29j+eSETnsYlJN56LCdBMufmrC9kgxfmjoP8tle60VR786Y/25w7DdE3FFJt23V7p57mUY6rRyJbVqeMAeIglYoZu8ezSllZno2Q5yMkyD26WpxIZNR+j5SnYWkyHFfp/00bkUmptHzN7ucfveCcvv3UCfzzE+rssPkHpdGWZ2OrKbcGn2i/sp/Rea6NYh6uPn8r1zSRPxmLhZrohOYnoXC8zeEH25RO9N4excBkWDPt6sx27ddF7R0CZrg35+xl4kU/+993Iu3u1gUkgXlnhrWd/uom51Gb7XE/bEbCm4fBzLjdTrYDvi0BZoYLb1/8qZTMF1qCVK5O9eIejpf74w13VTdNMkuLwBAVu3Woky0t9oy5Vsw11nrUdDOD6kvDFkc5yRjxXxxpKuDMVQM3tTkyxh//s5ne8/oz47l4IdqKMNz9+++4DzLw+Jcgso9n/rsYRoFyW21yE/7HDxRwr+2Dvv8Svf+ALZsnGja3P+5ZpCdn1VJQPttjLS86ZrZ7cADTXQH6v2YNLXCTeICxmQ0BTtNsbu4Sdj0Z1Mfp4X6IUWSLOTYKYD1POTIGIJlHE/x3Hn1szmAnHcOkQvt3A1E7isrsWsbrGUBsZa9PGhnKPNVl4ziUXB6DNFATsdYXop0S4XjcB6Kzvq8UhMnbwmYLZwi2ns8nBlyMh6I9j86XnYgYlrpbMC0BXKWpjN0c4TxS6XTVqT3wX3ujLYXf5XNJxUSt0Hvgb8BnDs092ttS+UUkfu124Dv9562lP3s1df688Dfx4gHk9Z31SYRLDseCPskSi3VJl4aSfLmmqQsJvGJBuD1dKJ739njd5V4vbljKesUtgYgV6ONMVYkawQTvG65ugfnokXSRKjTq9IYo1NIlRtMSkcfruk82IDkUSZRRcb6nGfZOVu+kK6FR+zJAq3ZqADEGKTPBWQplD7raYf2shZM+ECDf7ASdrcRI6xobvOEOpwDzY76TgdNEKvQ/rsCrtcCjd7uQam3BnO+F5yQwqzHHt5/9s3sFoLnuYpUes1qhzRuTLM30gohxMmVyu5SdJEum83yNRZJni0G6z4m0EfHkASc/pHbzL94YZ4uZJdgfIyaSevLmvqswsiY1HDPtHTHTd/Z4vam7J+55DZG5IN2j03XH51yuLPrLj3v55QP5BLLblYw9UC1hu5eVy8GLgi7YZcpEmTXOJ3MUHRJ+dYQTA1s5HIlpUTr3h2gyrdpN8JhyhKzHYbhE+kCfpwHzMZkB/2yPcSyq5CV1Kss5lidSdiHcPwseHe37hCPTnBrNZULdy4Pf/Q3YTqa28xf6PL9kjETQ/+s3MXmRcLTNKJefRvwa0bV9zpXtG/u2T4gWMEhV1aJINEz732uLX7c0hU8ok9ztvFq449TBfocUphjQ5KU6ua4F4vcQ/Qoe/QfTOilNBT/fvvxIc/2uzg1j4qd4uo6/x9sLXZ+iSfTM6Pe416kFFNu8KLdrMGNlvsUrIs9d5UOuAkgY4VSXuSCMWwFt9us1yhT87RxooS1lsVKIXtdaTgGiP2EMbKAN4aKc6eLrpao/ZS0UIsl+i9iezadjvZIXQ7AV4LSttEOOlsdyIqWq6kgwd+rwScP3DhVkoNgP8c+J9YaxeBwvQJv/oJP/uxpcNa+5eAvwTQuXPXVgNL77ng1SaFsie4dv95Tj5N2e5LVzB/C1QdM33PMPlgi97KSTaDjpjOXxZsb7qMxVomSaoCXUP/pEIXQvOy3Uy6qV2O3lXUkaaYZow/Kuk+vMKMupgkIv7ohdhOlm64BXiFme+2dZpcM23yAQDXnPn8QDFKGxOkutWJtHxLwha9rlE6Dq8fPLiteBHb3Q5VVSKvThJYbaCqhRtdluSvH1Jn8Bs/eJ3JjmDY5D1KOL+Si99zvD3e+fgF6UGf9dc1oNE/dZvhr7mUa+2Sxr303nFq1W4nN0KvK3SrW0dM3t8Sz3euk2vx2j1t0C1k9cUl6uqq8fOoDf26pveNDeb+Tc6/MqQcKOpac/GVPt2LGmVgc2OKifekMC5q0quc6HLVBAdsd+Ij0/q8KnF+IkphK9dVOlgg7Jb8n0EWaT8o8451qSRwi6pxDzvqko8ydgcJZU8Rby1RIRSxbGlZ3olY39Jkl5bDb+3IPjqTNJX1Vm5+f+O0d2FKOv3i6+8wezPFJIrBU8Pooy1qvpJMw7nskE5+dszo+Io/fPwRf+fZu2y3KdHZGQak2/ZCEn8t+mszornm3L8pWkXWGlSUii1AW1NAowC2lcFWhGL/YzmJxjadeNR09aquhf3h5kWym8uIzhchlMTm4ldvtjui0QB9dCh2Av7zu11R8vBEIENrZcCoVeBHq15XILXlWnDlSGNNJAItv7B5F00fTlxVwSAKwDx9IaHWrikQEkAFtfy+HvTlWE0n4V4GZOYUx+IWucvxyToqCG9kFiJiKffaPsxhl39KKZXHH6hwK6USpGj/J9bav+p+fKKUuum67ZvAqfv5U+Bu6+l3gOe/5xsY6Jy6D6kgnyq6J5b+0x1VP2Y3jSjGimIE9esbhr/WY/Asl6IQKfT5HDsZOgqXEqvL2ikqE0WyFtZK53SHfvgc9qfYboq+lANrugmqNqRnW0wnZvPGHp2zrYQSxzHnP3dM77QiWZZysalYtqjOkEllGXoykg5ssWyyBh3fWvkkbWhtH8tWN47QrWiGR9cUmNBI2NMk0MlwQ1SVV1K0tRJKVByjBn2qToQuIHuWMnxahcGSclFrdrfDzBcOu46FgpcXmN2O7OWSwcf7bP/4En5lSPetW8Tf/1i231EkXNluVyCWopBhnZPXU9fw7CXpRUeoibzS6QUIILpmaiRYoPNouZrLTfSDhxyf71PemqL/Uc3F12D+QNwg440lm1uStaHqRZTDHtztYWKFsohatrDE25p4XUonl4u3BVWN8l7cuF2O7yTLurESHQ9loNZJMZ0Ym2rySYJJxIvcRIqoFIZSVEh+6epmJLS8CLIry+G3t6SPLzHnlzJ3aC/qHsbw597IIheNRxRfeUDVE9uHeGPZ+8YZXM5g0Jed0qDH9sGU9R9eE1cR//bkG/yDZ2+TvNfDLpbXBowBKmkNiq8NxKlR3s1POaMt3IC8ZSj16rWp4uTa5/ciHC/iQWmUbYaUvrhbh4Er43YaSlGfXxDdugEHU3QsDB2T59K41EaalHAdGdhJFJ3dbuXzxaI2tTtn4pTIDtEPie16EXy/VbcjcxpnNqbSBNXvBy0DVtJoVFHCQoI4QtrU2lH2tELhKJBZho0jWSCqSii1vjP33iUgtgrGBGpiiOArK2miImdtqxTkr9B+W48/CKtEAf8x8ANr7X/U+qdfAv77wH/o/v/XWz//fyml/iNkOPkW8I3f6z2iQjDNuuM67ZfSsZSjhNkbKbqy6NLSfw7DR12m35+jdxVqtnSS15Ry2kXnNat7PcqeYv8HO3Z7SUhpt1oJzUZpOL0QKpZWmMkAk0Ykzy4p7h2Q7yVsDiK6zyrZsqQJ6dKQjyPSmaPlDbpC8zk7l5O9N+bipw+Y/GBJpBT12fk14YLvOoLwIIoa/LuNP3pss0XFCje4cXLjzVak1Qd72MwtPggEoFLBn81yhV2tyW5MuHo7YfDYkl2Jgx1RJBN9LyF2BvM6TUQl6LaEnF6QzfdY/WjA/J0aXfU4Pt2Dpy8IdCtjwDi1l+tWzOmZLAw6lqHeeuMCXF+hnznusIdQ/He1VQk7pBNVOsAB0aZErXcc/pdncmMM+pS391jfEXVh2ZfYLt/tJmsrGaVdzWaUEpUuBKKj0KUMnK0iuOyZSDjeVsnfsYg/TqTAQlRa+X0r/5YuaqzSVB1F2VeYVKGMBHeMHlX0Pp6jLsUUy+Y5VQsXFqe8ZuGW4unOfZIRHR2y+cJNAMqB5vDbG5IfvZCFrN8Tp8W6ph53ef4LMcaW/JtvfJe/t/oCl7M+N79bh/R5n8cpxfZ68b1O2XMeO16y3u7SXfePteAKvldShusZ8BoG31n7ov5JrBORlZeY2qD70gBoJ4UvDvvocYfksULNrVP7ulCCfl/c9kZDiCNJmUlcXFheyCwiL6RoFwXRdCJqRx9tFsfYai2LgJFQDtXvC/OnKKUAD3qo9VbEd72u82U32KJZ+FS/L42Ox8k3W6Gi1jKHUkph1kJrDd17HGP2R8Ig2eVCTTRG3DPdIFsUo57WeN2eof34g3Tcfwj4d4DvKKW+5X72P0MK9l9RSv27wGPgv+MKwfeUUn8F+D7CSPn3fk9GCXKzmASSNfRfFtSZZvZGTLLWJBtL1YHJB4V0UGVNftij+2QBWUr+2h7xsmB3lGFiRdFXTD4qSZ/OSF9G1OMu0XwLL89dt6yFo+xogjaNqTsx9v4BJtZYrUg2FpVXbvXOGX7vnOUXD9wRExzNK7tUr0M17rI91Iw+itHdrNl+tqxcMZ4HW4fVOkzCvS2rgwraN4Ot6xDHhLHBKY0oEg/iXq9Z1ZVylqkpNs/Rm4JkY+nMDMnZWqhPXlJd18JhddzrkKTtugO72TL5zozd/h79/+YZFxc3WHz1iJEzdwrxUEUpcNF45IZ9LsqtqoTSZIx09ZlwZs16e51q5nFvkOOibEsVagRDfvpC9nFJHHjx9mqOfvaCwa9bhkkstLGjPcqDHtsDUROubkWYhOBpE+8sqgLbkyLfvayoupoqU+hKfs/GoCsRedWpn5XIn8V6QdJm1jc10c7SPzV0TnPB289nktpiLMZT4qL27qLFsIgaOAwnvdeTMeWDG6xud0hnFdUgYvLNM+yLU4zjF5vDPVGqTgfYWJN+fs6N0ZJvnL/GxbrHTz94xPzD4+becrbAnqfddhy8BtWFJ3jqXn2NJeXtEuS8tFwurQnXsryfY6ZE1+XybYVjAw+6677bFagjE7e9ZLbDJpFI33s9CeSIZRCoDvbg9TuUvZT4g6dyrxhHwTtfYWe1cLfXaxkUrjdB6CJvreW6dPRHDz/aUrjg5tYh0dlMOONJ3EAssWfnuJAMawRaMabJhiwrOJiItUaWwnrT4Phu2BlVFXZvLMyj9ZqQnbpaC+xiDWoydvbBn14z/yCskl/j08GWP/4pz/mLwF/8/V67/cjm0inVqabORHxT9jVRYRl/uCM5WWC7KfUgQ5eG85/aI9kY4p1lc5xS9qQz6swMnedLGSTVhuhKKGPmtZuoopLAhixBXS3cVrjL9jAhXdV0TrZ0PjylvLPvPH7lgilujtiNNd0XfptXB5MbP7gqhogN7DoLgxnhkzretr8JWt7cQCNiMDbYUbZlxEJ18jLjWnDtLKM6GhGXjceCeEVLbp/KUgebVOx/eyWDmflK6GxOMoxxWYRuAISDKvCS5KKADx5ysN/lNL5B9Efm5I9H5D/xOumv//Ba9BZKibFOpMURz/mN2ML5GvuBlrFuQFM0BaXVgQsvzV2tDhPHWndTRddMvK5RJY2lPj+Hi0siregby8Dj2cOBbIuzlGqvTzlKqDsiZe+cbFm+PqDsK29PjY1Al1K8450l2RrijUEXhnieo1db1DbHrlaBtWGNbbzy2jsnaBapV7qnsDg5NaGeTth+4TbFJKboa7JLGHz3DPNEUEallLB0Xp6hkoSorHjxZ+5SfM9y+ZWKXZGwezLkd6uIBydnGOdZ44+htyJQEaHbbS+gbTEWIFS7lleGd6ZsH3v5Wpbgw91yvOQVy9fgzucLfbuJKCQtSJWpDAKLCv3yAqPbIiDX0BQl0CW+lJxPXZQy31msqPNcrt2y5TXjGyJvbxCLEtj7oFhvE+uopfpjd1y6HVSVSCOkFFZ3pCOOosC2sRvXJFVCl7XPTwRTHwjkqBwl0G42MlhNYlmMCtkREMtgU/V6oiY1Bg73Mb3MWW38V8Qq+a/toSBd1aKiG2lRS2ZQ9BXTD3dEuWyn9eUSmyW8/LmMsg91R9N7KeyT4eNKsMxljp6vhcubJjIEAVThOL5VBWeX0mEO+ygL/ec50aYgulpDXpB8fCor9mRMcf+QH/23UzqniukPafi/dY3NoT4YUfcS2UIbi02FyhdS2gt3wXEdv24bRAXzIusuftd5X+t4qgqVJJiDKWq+Iv74RPA9J1OXfD/fLTmmw3pLdDmXTsKJCsQ4p3lta+31ouKGpBJjFZF87zHJ229TfnPM+U9XoFKmu7fQv/WDJh7N8WZxPttqMIDdTt7TD16iSBaKQV+2rKu1E/OYUMD9tdDcrK3OvAWpwPVt9zXfFv/vde1glzx0fVorMrft9+yH0XuakTOM8gPJMHjXGp9W5F+zpgVffdJW1u2erqkLwz+pazssogg9GmFvH1J1YtKLHct7I1QNnR88oz6/lPfwu5tdLlvyYUTx4BBlYPI+bC8P+Mqf/QG/vn6A+u0RZvmwSenxx9hTUR0byrStb32j0DqubW/wBmpxdga2gfMajBy3Y3K/56Ew36gYHfBvEbE0eZ92W8j3MxY2G7hxKB34Yhn8PlBuKLhaScpNHENPOnWzWEoRHw6kG66b3YIktK/D7pkkDrqKULydvW+IsrMWO5tLRF6aYLc7tPOzt55n7eX4fmeRJDCMBP6YL8Vuoihkgbx7A/30RL770b40Ud1MCn2aSDMWaenST87lef0e/8LDyf+6H1FhUZUl3xff7TqD6fsVJlZsjlJ6p6AXCrM/YvVaT3BIDZ0LxeBZLcX3+y/JHxxispjINJl1drkUus1606TEO1YBuwK9jtGLLWq9xeyPYNQTv+deh9U7B2z3Im79qmFzaDGdyAkCRJhAlmGVSPR1CfG6ou7FRO4m0Fkmk/1Xt8jQCB980bHXT5L3E9Yus9G8PBWP4OU6+Cl7Dwaltfhah22xvI8pL2RI4tNj3FAkOBYmkci+/WdyfFNALsq6xsyXHP2TC17+4j7b1yyrewobdTlcv4H93odum7eSkN4oki7C7QoiH5hQVShj0ft7cnPEsSxCi2WIxWpbhPrPLze+OyC+SLaxfz8feHWQG+YETdfbLra2KMOOoT0c9I8fp0CZxofaiWJCsXrl0byPDDrDZ2tBJyBdr7pzk/zuJLxppBRHf/+pDIid50Xw6wCZJ4yGmBv71Jlm/LBCF4ZkE3GQrYiTmv4LG/xJbNVSMKpmwX51F/Bj3je+sWg5WIbGQsfXv3sUScftHAGxJgxYA0wSPLzBloXQXN05MT5h5+YRnF4IDz6NidZWdmva3XN1ga2c8Knfd+6DRrxzHM1OxZ3AEgqfTSn5fa2bMOJuRzBmT5Wsa5dR6RapsgyiGz+krq9m6OFAFo9uhjq7wBYl5uQMPRq0rFxlhqQPpnCwh8li595oQkQZRrj/YVdgDMbRBX2yvdLNgv9Jj89E4caAriyr25rBU8P0gx0YKAcxVU9MgMyoy/puj/WNiNgNjYePawYfr/Bqp+zxJTbS2E4qQ5RhT04QoLqSbxg9v5CtUiSDOp6+DD7Var2jPhhS3OizPo6ZfQ7u/XLO4rUMXUG0dtsy52WtjFDXqo4i2oGuDMUwIXbMCuOc30zr5gndT9oSdHissDWUlG1kErZy+uaxeAtXVWMkVRTYzRbjsxH96/lO1CoRhbiCLB1Yg7EHt7fmic4EyTSFDbAfP2X4+oSqm3D8p55w+jfucv61MYflA8z7D6VAaiVexnHsPJvFs5z9CbqqhRrlBC5mNheRQRKjbXbNZjVQJsFxj70vSxL+HJLtVbN1DwMwv713RTMwImgtCtq0inVL8PJjSr/GzjS8d2WbY+gMwzx9E2jMmkBgHv+9osZDXU/G2DvHlIOUOtOUfU3/eU78wVPq5Up+14UJ+KKtJmOoDdXNKdEqp/ftJ9S3D0Ap0ivFr/zlnyZTMHokw7IwRzFOmu7HCE5lSOt6vLZoOs2B3JevLE5+0cFJOPBUtQAA7rpJREFUy40GUzUxef54uaItx9VdX/5688eqRtJtBn3UaEA56ZGsXFyfBnNxJcXU4eW+0wVQboai3D2skiTYGFs3uA66hN0uxM2pLJPOe76Q//vAEf+9DvZEtNNt8c3jGPPmHaInp0J1XSyhk8qu0kONbhjpvd11r4d9eSbzqIMp+vlLmfmMBtg0gfUWrubBalnVtXTbzo9Huebn9zKZ+nS+yb/Eh41AGcvRb+cMnufEF1uSizXlMKL/bIuNNMv7PXZjd0Are+2T621JdXuP8ngsK9tMmBbqaoGKBeOqjydUw4zy9RuUNyeobY4qStR0LDeAUzqZLGJ1KyZdG4Yfg0k03fOa4ZOS6HLVpKEUJXbQY/VgIHjppUVvCnQhcIT32LZ1c2MExViWNZ3XK9iiNTbYT1JLzJLdbDEnZ/L73a7cAE5uS1k2U373CMpLj1XLC7t/S5rP47tAv4hoFdgIQLigzS6n/88+JCrg0TfuMP6TL0DB2c/soV+7fY01YIoyxEuRpY00fTKS31mv0Qd71A9uyE7IwQrXOlGXdKJHA/FibplpNeET0bWC04Yk5IeOWuctSmvZ5mPqhvrn//NPKauGZ946Rj+GV3uoQ13HkZv5hTvmrcXDuwBGt29i7t/ExhpVW5JlxeSfPiH+3kPh88ZxSA1Xva4Llx2A1tQ3ppg0Yv3GhOrekRhjrXP0rmT8sGbw1JA+m7sFUgXtgEriEM0mH9U2ugI3YwjHtd0duwLvPUo8zdUX0/B7VdUU6igSRWT738vmmroGrWglysLFivj9J9IRO7tUPR6h9/datgkGPRoGQZW/N9SgLw5+84UIbyKNnS9kgO71DdY21rb+uyyWssB1O/J7va50wnsTuVd8tB+gP3yKdcEJNi/g/NJ16/J8NR3L98zz4H2vOh1sXqDXLiA7TSjv7MsAs9vB3L0hYh6tQ9HGWpiMJGAk0g30+QmPz0THrSykz+aobU59PMEMUuKXMya/9ZLi1oTZ213xLSmEfaJzBQbqTJEf9shONqiyJr6Qgu0HgtYY7PEeppeyvt0lyi3xpiY7EYoW40FY1WwSs7s7ZnE3EZn9WUHvudh7nvxkyvihoWdswJVNnhPdvsniNeFKD17U2CSi6kUkUaNCC4pBd0MEtaRquiLfWXrppNlsZBWua7kIBn25qQd97Eb8gnFxYfgbxWGx3g9ZtRgY4Lopjxc6/xS7lew9s8ub33f+FtdsZwGzWnP0WyueTAY8/84x/IktB/9lh4ufu8FBXlI9e3GtGzbzBcrbVR5O5RhsdqjxiPpgRLTYyWdYrkLx8BhwdOuGYIBao8+vMK/sAJoLRzfd8yuJ4gGmaDE3rsEuvmD78+87dRckcC301r+Pab1GG+pyBbytKmyGdDTOjcM+JkvR65zd3TGdJ3Pso2fUXiJ/sC+JP2lMdHolny2KsP0upifneH27T50pdtMBqrZMvr/EdGMuvhDRPbOiJPX8dDe4DTRUrZprz18TtKGllpGZX3Ba56X9ncLz/DFqQVl+JxeOowuMCHMd9946i13Hq+XaVAqVdonOF/L53ZDdJ+7g5zFVJWpI520trKpCWBy1aQRTz164zEjTDAqLQiiFznDKrtbyvSJROOKaHrvbhdlRiP6rEGpfmghnOy+gNpheJ1xPSilZNOpa3uf8UnaXaUry/Arz4gTSVPY0bpEJ19PhPswWsjPW7VSkH398JjpuvS7gckZ9PMHGGr2roKrZvHXA+naHzbF4mMQbi4kkYf3guyXDJznJskTnJdHpHKoaM+ihej3MnUPM3SOqaZf5mz3irUHVluxkJUnur4nc2yYRqqxZfGmfs6+kDJ5X4uNdWda3O5hIce9vXtE9K4VyZEQEEx0eYLsZu0NL9K+K7aZ1EvngXdK+sD39z2/hqiavUn7QYLfCG7VuCi5RXpSVqMIg3NDXuhpvCuREFioTIxsvb1cuXsuWVRDMyNu6i8MLYK69Zqv7NJbo+x9z+K2K7qmm3sac/CFDsjVc/JE7RHuTVwqnFix5uYTTCzCG4s4e9d6I6MWlsHr8zerjwhxty15coeYr9GqDHfSabpZWsXDHLCTctApvu9O9hue28XEt/10TltB+aXut8PuOPRyPVsd6jeHiihRANOgT7e+hD/cFj50t5WbXmu53nmI+eizWA4M+6v4dyrsHUmTqWjzEu1mANfRqy/lXR1y9oyl7cPWucNLrfoJNNP0XlnRpA0YrysMGx/ffyRtj6V4vHPdwLFv0xcaIzLFk4qTZafjr2wdNu+d6E7R20Q4LhsPdVZahux35mdcNTEZu7uQK+C7H7o2pD0bi7pjKfyTOcbEoMU5BiamD4Iz9iaS+O41BMJNKU4El4kjmQWPxqbd5C+fO0mbekqXC0vIJPMNBKKJ2uxVx2LOXmMuZND+PhfmjB315n7Jy1/5K4JLNFjNfYF6cBJtXe34pw3twvG0tKTtOCY2Txn/a4zPRcZteihoOZKUFsJb6eMLqdhI6bVVDtIP+C8vgeUl6uUMVlayUtZGBwXqLXq4pXjsI/r4m0ez99oXggwcD8hsDshdWnPI68vWLSUYx0Oz9oCLKDVVfOueokAt4e3uArqx0Bp5V4nwsqhsF1gqzRZU1dUc13VdNKA5KqWtDr8aulaZTwwQPbk+VUkphM8mD9M5mgTHg1ZkOm/QpNOE9XICpbmOExhX1VkFrc4r9e0pRbXBlnMy//2vvsT34PJCy++qGFz/f4eg3Yf7H3mT8Kx+KoZTrgAFUt4/qdpl/fo/ueYF+eiqJN+4zqMRZ5EaOJwsykNNKhBXODjUUYI95+q13m3bpi7VpMTuUln/zD1u7zM4WVt6iILbtd4MIKGqlGnG9U20Gf9epdYFxUBaYy10QkJAm8PJMvuNwgL19RDHtksx2xPOtBCDMtqjnL+Wz709ZvT1leTsm3lr2fmDovcjpn6Ski4p4tuPkF6akS0vnopZ7oW4CpFWkWzRT05hB+bmH4/T7xV2lqQys89wxi2SmY71HOTSmT76YtXnqHpJoHSd/nVmjZZiYps1CnCZiURBFLiu0Qt2/w+b+iGhn6ETiKw9gB114sQxDQBzGbW8eoE8uYbGWoe7Bnsyxnr5oLB7GI+xyDXtj1K5ADQeY2gdGO9KCs2al3w8dt93lgpP7eMHhVEQ/1so5dQVWQWOA1e3CYimqT7eTxb9HmhKNR+J2GYnSkywTAkEhC4MajyTJaP3pffVnouO2kXIubob6cMzujSPmbw+xWop178Qw+VFFVFr2vrciPdvKgast1SSjPBxItt+tfTbv3mD2dpeqo0Epus/WcDmn3uuzPe5QDiORuFcGk8Xo5Y6qHzF5b0OyrtClYTeJiHJD57yg8/EV/R+ckiycmslhfF7Ao2LDvfEMkyjUtgArBdNfwCqJW5xdRxH8BEaCSlLXpRZBwCKYoqTOoLUYGflBW91wZq/R4dy2XWWpJMN0W9s4hx97nDLANQ6qiMaj0DW0vZkDDlobzGrN4d/+iGRh6XyzB4c5Jz8v8MDVv/oW0cF+w/jw3PA4YvDximgh3FZRvcWoXpf6ndfkBvGdZydDj4eY9RYzm2M2m0ZZiiuKRwehmwoJL94LxePtZSHXSNiqK4f9RtcWzVe3owELf+VnyjEU/GcIw2T3OrqTodNEjuHeJHiY29rI3wd9gY2evJDC9eY9ynfvYboJ0a4SOb3WJI/O4MkLmaFsNlT7ffJRRDGG4bOS4QdLkh88ZvQ7L+h8eIoZpOz2Fdt9TTovQqhAOK9VJXMCdx7l2EhHGJhLrgv23h/B5Ew3ToE4Z8owX2ntZtodtZ8j+EUtLCCxC5QAR0v1zUDZFEZH0aSqwSCZsXkh7KkoojwayIynrgX2uH0k2oCTS7lPlARBsHPzq56zaS1LaseHrw4G2MVS+NmDvqMBCgTqOd8qdqn0zjxKDYeilIzj4Pxn/fypKFDjoYQJH02p7xzK9z3YE6EPbgbQ6Yj5lDFiMJWl0lg5+McWhVzr1op3ymLVsGM+4fGZ6LhVbbGDLvnNEVdvp3SuxH+77ij2v5cTb2vqToQuZQAokEhGedDDJJrO6ZpyKiep7iiyuaH3Ykfy+BzbSVFaEy12cLNLOqtQZc327oi6qxnM5HVnb/fIp4rh05rueUV2usFGit29CeUwps4Uk99xKixrUdscMx1hNjHff3FM73bE8J+siHJxxvMnVynHi211GiERW19XSQJiLl85epW114JrjTfjbw/LvCzcd3z+36oKYi1bw8Dvbg0x2xCCjtGpExj4mKe6xbyw5tpnrM8vuPFfWE7+9Buo3+my/oktJ/8ty/7f7nL5xx6w9+sd6qcvwNSCn1/NiJyzni1LwRFNjR0PePlzA+486aOVxrx+C5PFJA9PrlldKmpQTZq9ubhq4Ato1IltHrdtKTJf+fzXIJ0WIyQUY92o/uTHtsFofacYOSGG276H2DjnJUNZCkZ6/yZ2V6E2Em9Vv/MadS8h2pREqwLTjYlnW7iYYVdrjC8gkUbdvEm0yNn7ds74w4zk4Us5jdudFLRIo4d9Jh8YkfyvC2eilcn8ww8jndJVTh7Nd0VgAc9c8j8Pal+4lnR+7Zoxnp9tw/FtzwBUHDdq3LqWRKb2NQXNZyor6MZQWbSL29O1W4DzPORypu89b0yptlvUpsntpDYibXeLkV1v5Rgl3itHo4Z94vOVLOhp0ojPpiMR9mx30gF3MhgN4Klg5B5HNy7tKtrvE/lwkcRJ7a1FLyRI3KzWEgzsjpMtCsHU26IopYWT3hq8Y6x4mXiq4+/BKvlsFO7KcPHTB5gIdgdiXZmsLN0zQ7yt0UVNfL7CZjGrN8f0H63Q8w3FfpfsubjBrb48JdkaTCxeFMmLmZwg1/maLCFZViSXG3Y3BygL2VUpA8WuxmrxufBeFSExfF2RXuxAw+61CZ2Ts2Bioy8Mqhgz6OVcfSnj9n8mn934iKM2DU39OLQBUUsSTTM8qpvMRk+F8nh48Dr2FK8WhS0MRCPxadYnl9IRpOJIaDab8JphMOrVme5hNptAA7vmYRHRQA9WPLZv/NJHXPyJB0T/rMv2CE7/WM7oWxn6p28yGvXghx9hy4p6sUK73D09GolIoRZR0u2/eSp45HjI/HNDFn92yZ3/zaFQKo0R065da8BaF40Kzx8jB+/4mxalQkp9SExpX29u6BoWh7ZDnnuftqxbae8eqIJ9q+q4nYwXbWw2IjDqOiZImqKiSNzueh3KW1OsgmhbSlhArInmW/THzzGrdeNdgqt9kUbNl9K5L9fEZdHw7a1PLipQZUXZV6Qri9pKd+pNl0zbb8Q09sDhe5aV2J9ar3tImkbCC3+UvS4E88+9tstzn9sfZuvhGjej8d240k2oiFsMvMmTbvnZqOWaaDvCZBGx9xGpjdijvnZLBvzzhVgzQ5gDqCgSeM1a2aW64T6qCMwUtdoIr7rblXNWVehtLjBM5BJ2PMfbLaJ2s0H1eoFnreJIzsFQyA3mpfjraWSBsNbKLqINP3n+eC3IAmXhhFUuDGI4ROV5EOQQx/BZV07W3YhioKg7YjhlIxg+LQVCAagMtpOgNjn9hwuqcRez36UcRCS9BGUt3bOS9GJHftSlGMcCZaycXHXQE8HOoytIYvJpTP9Fjs5rir0uu4kmKqGKFMVQS7ef9UgXFSbRFHc6zF+POPrt3F0YRpwAi5Jkpvn5r3/MP+U+dDvoymIGaVNYfQF3Az6sSxJpQRzgOsu2l7HHm7MGQqFVZK0GpVxX4/my/v8tLjg6wtryerHz/3efx1olYcJttRw0f35lkfGLUHV6zt4vbSl+4k0W6wweppz9Yk7dzTDRmHHyFvq9RzLQqZ0Z1WYj8EkUwdMXophz1KtsXjP6z4fYZMfLf+MuAMf/n/fkHHpxh+d2u4VOYCHnwe0M8QP/OMsa6XYrYb0dPdf2sfDHLBBHXEpJULVVtcw2nFdNkP13O9J1d7uOIeGoc4d7VJMOujKosoYkwqQx6bMrzOk5xlNLcR28O/9eAo7SUqxK5+w4HIq1rocaANPLGD/MibYVzJfSXY5H2LOL5hz6IV17ZwZhTnJtx2GNuCPGze/6Drwt5vHXmyzmNjz/VZpgGxYMcx8vHqtrscqNImFLxeJbUl9eEV9NIJLADjoZ9vJKFsRtEcIQRIIukIbfpQaOd78H05GwbKzBbmWgqXs9OedOhBeCRDY70YBstrLrtVZCQVyos91sZCZRVWC12/FI0xRSdNxQ0eel2lyMq7yJleDhugnxNi7sYpfLcNX5cZPE8rufdajExELzi3YQ5ZZkaylGEatbEVUv4davbUlezsnvTcFC1YtAwXaqiXYd0kiLerHKWNxPyOaWq58+YvK9DLXYwNWcqKyoD0biBLg2bI4zNgcSLjx4XrG8G1N3ABRWweUXFMe/GZPOK2ZvJu7fkJPc60oSdZ4T5YrcxAwywcB1aSkmGVm7S9HOkB3beBN7JkKLanVN8KCc3DovwlZX97tyoj0vtUXjAn5sIWC9kULySXzQNougrJqhUhjwNQOnHxsGtrots92R/Pr3OXh2i+0b+0S/nLC8B2c/BdmiS0fdR33/o+sFww3E5OS7YzJb0P+BohdpbJYyfJqAQToab1TvYYq4WVhUmorr2p0jdF7KjbPeSnGuKvHcjmNsLV2bh6C8gk77ou39ueNIOj8fXZXnGGsdG8Th5UaSWFSv69R2bnBdG2yaYKdDqnFGnWjSix2mlxBtdqhHJ5jLGXV7cYRmbhFk6u7r5XlD8+xkMBmKI8Bmgxcz1f2E7WHK8KPCMYhK7KIV3eb4/O1B+I8Nxt3vNdYD5seLtDvfr0IuwU3wleslLAZORRmeD6CSxi7WaRpUpF2Qstshxhq1klxPu9lIEXWJRp7SqDLxNtFJEnxDpGveYSdDmRPsjVGbTGyPkR2lHg7FwTNN0ftT7HoLuzwoJQPzy5lJKVeQjfP4ZjICazH7I1lITs4bGf1GKIrGhQj7wadce7rlqW+hyFGDnjRntSzstqrEcnm9/cSdjn98Jgo3Cqo+5FPL3b9XsjlKmL+hiXK4/Q/XJE8u2L11zOlPZhx+q2Dw3ZfUByM6Z5pikrF6rUu6qNkeJgyfVqjK0jnZoNY7Cb7tZrARJVJ8tqQcJlTTiHRp0bWl+2TJ9mDK5gaMHteUXfFAqbqKsp9w8J2KZFWRnq2lG0oTuUnimHgD//jR6/zE7aecvvaAZF2RT5KGQwuysmoC5tU4p7mL2/OAfapJGwdEtu46VtcKu+/OoCmsgY/rCqpqc59bQzQZwLU40J90StpURvf3a3imLwZeofnsJd3LGd2DPdLFHuvjiMt3Em693Ii5Tp5j104JmCaw2aL3pqy/fAuTKoa/8VjCBVZrdLdDf7MTqCR3En3bFO7gRueGb2LAPw/B0D4ow4ynqLLGJBF6Lsb5tpdhYy3GW8aKodFc+PAh4UYp1KB3PQnHZQmaXgaxhsqABpPGYsgPQgVViqobkaxK9FYKQPLRS+rzS+mGHeQSPr87t8FpMYrAFk3kmONV68mYan9ApBR60BM/8X6P3VHG4PEGtXOQoJNeh2xFzxaKEJFoqyNu77DC77ZpkEaH6yv8m2kNLlvQS7tYX4OaWmZPHtLTqcTDqX7PmUJVjeEZCHxgDFzNA9XPrtZSqB13W4+GAqskYiClxkNZ5M8v5XXOLqE20t1WtYNb6sYZ0FEA7WzeWB17Fpff/S6XkCQy3HXMD7vZigBHadSTE2kQ3GtRlKEI2+1O6LXdTmj2PP3VW8FiLWbYFWy8k0qnvdvJ9xkOYPbp3JHPROGOchg8tXRFHEjdgQf/yXOe/albXH2uR/cwI9oZbvzGFgxUNybEJ3NsN2P9uT75RCLKDr6zE1m6sai8pDocUY5TOi/XqHmF3hSYcY98GtO9qNC5YXskUEvvrCLZakysyKeSYpJsDNlVSXK6ktU/c9il1tjJkPzmiN5Lw+ZJn7tvXfHo8HMMH67ZvN1h0OtRO3K9SlTImgSuMRJCR2ttuDGam0C6Je2YIWbrzGhaGHSbbSFYYuOgF7ojY6VDLMuGMwrNwM09VKSvb29bnWFQ3dU0eHyLbSCfaQdPntO/uCJ7+w420kTPzqlXjfE8WYYa9jHzJXbY4+SnEu784hO2q9t0v/cMpTbSQb88DR1ogEQc3cqs1s1w16n5dL8rW1In6VZFSXTmVIQ+ydsnoXilmqOaebqZIsZ2UmwSQe3mI94JLolQVY3eFZheClpmM/Fqje0kmCwmP+hQZ0INTRYF8ZMzzGpN7Z31rKTFRMOhwBmZUOE85KL3HNXM7UIAYXzcOKI+HMsiNJIhfNVPyPcSop2RpKaVC3U2FmtbfOpPWJh98bSvdOL+nAv+nDZCmprAErnWiUet68ZagVTa84S2fP7ajk2gHu3ghBBPBo1qcFc20FNeCKzU+nx+F2pdJ41SWCde8YIes96itltnAaDCTq/hrsvOVbmhoJ0v5H0c5dTzv+12K9fW0T76atEM+2tZEPBsMeffj1YyZHTwiLUW5dSYflehD/YgjtBXDhqZC4fbx7Rx6Ey4PuXxmSjcOq+Zfn/J0z8+ItolDJ5WWK04+K4EICSzHSqvZcs534pvyTtHVH2Nrix9l5ZT92J0pIlmK+ZfPaTKFMOnuXRHLmxhd5Qx/uECG2uqYUq6NGAM6Syn6nWxClb3DJMfKDqnOXpbYfoZujaYYQd1co4ig7Iie3KFshPMf2/JQbKk6CtMIoNO1QqX1cOB80toUci0asnRVejEPVtC4o10MH8P/gVxLF2CcqG26Ia+FTljJmvElN51bXo8dMnUM1E06mZrG7a0qlW025/TdV7BfhOuDe1CAAA0AprVmvgDCRiunULNsxXscik+xIBarLnzD/pU37gBkXUGWEam9JHwuk3hbngIWC9KozsyvBTqZEk9dxBJm8fuHd98ALDfBXnJuxb1mw3DvhLlUlEk89B18NaGQk8pDYB3DiSOpIAvlwyeX2L2hqzeHBM/PhWBhevyVK+LHfYp7kxYHqV4ID1d1vR/cEa9N0Avd46NsXXXg0sK3+Xo+QbbSdCrHXa9Id3uSO/eZHNvhEk09eEY3c3QLwlU0tAstGcVruCG3Z1fUNrNQIs5E7xXAlbeogO64ad3IPSq4HZxD9eLg1nagdrm8grV74tIRSkZjJcl3LmJN2KiKBvmzqAnmYzbHRQOrup0MOu17ILHQ+l0l6sAJXpBTHD2c/eXtVagxCSRRdRT8cCpLT1HXRoTs1hK6pUXDZXyucScqhToNEvFPG0j0It3xVQ+ZLiV+G43Owm6Xi7DHMWs88aG2NlSf9rjM1G4lQUbazoXlv5Jyfo4ofehIv3+U6HbpAk2S4geXlA/uMHqfh9lLOmsYnCxQ+cl+Y0hdaa5+EKf7mkXGyn6L0uy919S3j8ivzUgmeV0X+zQFwuqm1NZaUuxYtXbkmSRkN9JGX0I0/e26NJQjTN2+wmL+yNu/7Jsw7ynrhr0yR5dMluO+L9+7w+hHsDocYyqwe6N4fRcbo6qakJCPbOktK9c2OYa3oixWGoUAruY4z3UrkTNl0QH+4K3lTIgDSIJN/zxN1PYlmaZdJVRK2HHW28G+MXTEpsuLIhZ2libLwDWy6cVbVMii3Qv3lLUu6wFNzhvRlTX1CenJOs1cW0cluu+v3dqoyka4v1ShgLgWTbX1H7uM4Qt+7YJbXjVaMp/v2vslCRumBumJYuPorAA+PxKD0Xo8Sh4VavpGJsl9J5usHtjNGAHPWwnE1VtrCnGMfM3NFgY/sIpF796RNU9RpeW3lOLelo0fOJBH5+cwnwJjxeYyME2ZQkPn9CrblHclOJd3hyRnc+E3mcNNqg6fWvcfFdrLMqFVkgBr5pFWhuUiiGNoWjdqC3KZTBoaqlOjYuea3Zx15W0IabLLQK2rtFu8KuUgjwX2X/k5OSVeOLbOILtNiyikqgUCXSxE0hN7XLqown6wyUYgeSsG2Dq6cR1x9rNMirxvvasls2mod3666SqMNstaiNhCLrfRcURZt0k52DFXMo3V0xGUmyvTEP9dR4o1lhUx/3e3hi12VEfjNDrjcxRXHwaRixlg0bhUx6ficINgg92ZoblnYRkLTxpuh1HxjdUe32SxZpylNK5KFndTumeGEwnhlizuJ+iS1BuR5VsDN33TqjuHrB40KH/oiQ+W8jWatBD72SAEynF7uaAeF0RryvGDw2rWxkmjRwWqrCRYvSoxnQSorqWgpQkwlYpSuLvDSje2TL+2gX5706pO4pq3EU53wYblQ1dqa6b7q619Xy1AAldLkINh1I0Ns6S0kUy+RVfI4MP74bWmPg0W0K7k3RskxetwusxTEIn9klBBeFhrMN/aQ2yrnOlARk2dbJGUu93Fe3XbW2zA+zhedHaJbO001mUBls21Ell0eOhpIYU5fVj1uZeu+e2j/OrxxzjhFUt9eM1I6RPvFhlu64m44bSNexz+dNH1KkiHytWr/UZ/eiAw2+u0UVF3UupepGL4JPU92dvTOh9fU7xiwXz3zlgPB1x8LSPVgo77AvdrSzFMS5NUYcH2GFP/Jy9692LU9KTM7Zff0vIHQcT1HIpOLppzKOAZkjeCkgI55Zm0AhcZ+JEEdCa2XwC1Ic1zfNbrCTr+d41YREIfvP+7Yd99NVCim1eUN/ZJ5or2WUtV2EAzXYX/q96Cfb4ALVco24cSYf7nQ8wtQmGWqrbkQ58sQx2D35YGHjpLrJPH+7L72221IsVKomJxiNh8iyX8l19pFiSYPOcaDwS1tZmIwK62QIGffThgcPfE+n+nWAoHLtYGgH9o6fCUosidE/0E/61PXX30x6fjcJtLbvDjBd/WMHBjlt/VYB6G0eY/SHFfpd4KZS27OUa2004+Ohc+NIaqlEHXUExUhQTsFrYIvZnblEMNenSEO1qKdpaYZNYlFnLHcpY/n/U/WewbFl23wf+9j4+fV7//Cvb1b4bttEASBAAAVI0EBkynJBEKkSRIiXNSCGGNJLmgzQzwQhNiENpnCYEmRlqQhCHAh0GhiLhTTcajW60qerq8vXs9femzzxu7/mw9jl58r5X1a1BkFFzIirqvftuZp48eXLttf/rb4wfodxNWQaavK1YbfskZ7nEKCkkVWe6kGxH5/uhxjNsnpMcW1YvKNphznxLoJL5zZhuGG4wNqwb7FTOgVXn23TXaw6LVOV2lkTScRWFfLBVakeF74YBtmSTL9vk67p4sdqL2/Nku9z8woLIuusB0ya+9l5DzLrrduesd7acEVYsKTHlenu+Zh+w0Qk38fImhLNRYJWLnAoEJ6yxw8ZgtnZJrIqIO+8anzdPWZSu+h5XuGyjk6wXVLvuwnW3SxX1Vn7oFsuDmHBqePBjis67HvGpxoRw9skWWV8xfyGj9VbI4M2S7oOM6MGI+cE+W//0Cf+PF3+KH/+df4+LjxuCxbP0vjFCT+eSYZhlArM40y1VluIbTw91/1DOr98jeeucxQs7mDhExxFKaRm4VZ7aCNSkex2UCSldYlFNU63f/prfXrNRrlJJq2ujFRue8h4bwpv10HNtLyBKVmH2aEe7U8fnwlj2fcztPeY3E3qTlUAc1bB5PhcKn/tMa3aQS7dRDvJQxknYXUdNtk76aYq6dLcjMAyI++JiKTBFrwuPj1BJshYnVc2J0wrY0uB1u9QCmYo3DtjRGNVuC3Zf4/IW5fJeldbYs0ssruHKFzRZSRXCoHUbZu+Ncb/3v1Q3rVK3lFK/opR6VSn1ilLq33I//4+VUo+UUl9x//1Tjcf8B0qpN5VSrymlfvxbvYYJPXRhCS804RsJxleU213ygz5FLyK8WBEcjYQsP1ug334kHNzIQ08WhI8uaZ0UpFtgNSz3LelQ0t7bh4V4HZ9M1p4E86VslbTGO58SH4qaKhuGTO6EhFPLakvSvNMdpyQMPLK7u+4DjaTbUeJbsvc7Y6IkJ/FzpnchPjdMbz2p1Gt2dJX/x9U/45z9bCmqQzudwfml3EDDvmTopSkmy+sFwaSpdMtXi7ZyGKkRqXozeb7+rJoqzPUPN4dMzS9ro6C5D7v+UmvXVdj53MmKl+uC3IA1rg49NxauxmvUIg2t8D70LPM/8BLlCzdR1/fXFqPuujVl8VUnuAE9VTavply/ZrM4N+TZ9cLpjJXq33G8+Jo3fnOf7FPPAOAtDdMbHn/lR36eu3/ybYZ/8IjkD5/wB/7CF/kbf+k/51//zK+weD6jjBTh2QJ8j9UO3Dve5nGR8PE//Bo7XwZ/YZg/1yN9ZpdypycdchKhlin6fCS+PoURGtq1PdTWULb/rYhgmst9vbezNlByBVMsAGQHWJkpyc5GxCs6DOqdRO0o2NAaqPrfXQFyBmY6DOrFF9xCfmW3Ui+mFfd8uazZGxQue1Gr9a7RSPMlrAzXiVaME62FqeF7qJkreqUR58Xru7LbS6LaLsJmomqsuuVaEBMEMhQ0VjptZ2ZmJ1OxfOg5znYYUCXeVBF/NVRWBzE7+KXXlfMNfIEKnYwfR9M044mwUlwjVUOCnniW1HOxem7w+xPgFMBfsdZ+WSnVBb6klPpH7t/+M2vtX2v+slLqI8CfAT6KpLz/olLqxfcLDDa+Ynw3AA29tyzhuGD6TJvOvQX+u5f1pLX40C2Kto8/G6LTAutpcRCrTrRt0RkUHYO/9IimFhMqFgcR7bKD3eniX8yxx6ey8nVkQr+61pFBWqQlNNaKA2F8kZH1ApKjpRtAyUTYpqmj1Lnh1HzF6mKbN45uYA9yFmch6ZbkK5py/sSN2xzWVMW0LlJugFNNsyvRACBbMWPWUt1mh1oNEsuy3p4qXwQFpsrKCxzjotraNmAV962or+WaZ11iTcWFvoJ/1w9TNSZrJzPZdnZa6KPTDek1VlJZlOfVnRiet6Haq66PPK90v97uDuOPbPHoRy1eX/P8f5rIFy/L1xDHVdrilWPDdtVa1ie/foywf4K6k1y/z+rWlYIlW/pUPLUL8cyxvqgX/9v/0x+niBWzZwzJ7Sn/4K0P8zOf/06CsWbrPgxfHmOSgPkLPdoPLfqdmD97798EDdcmJcnhnAc/3qfzwCOcBfjbt0neFPdJwgD9tpN99zsbIbVqlWO3W5x/eoCXWgZJiHrtnQbF1HW9TlGqtL+mJFaagAo+cHg0FSWxLOsUpVq2bk0tVKnuO+Wv4ZONa6/FrrVaaHVVjLXzA0EKcrlcob75Lkn4PHouyUl2Ol1nM3Y7knBfCI1P9d133/exYUDRjygGewQXS9RoUsMsJk3Rw6FAGnEsLJXJVKCUhRR/bazkRCaJ0GkvRmsTqVIsWlXLufZVaVN5LsPqnS03V7DisZ3NhIXCvFZg1pmXTvRji0IgoP0dsUMojaTsRJF8PmGAnf4+hpPW2kPg0P15qpR6FbjxPg/5CeBvWmtT4B2l1JvA9wCff8/X0NB5XNK7b2ndmyCpHj7+yVgKVRxhhl2sEgn64npMGSiCpcFbrt9c67FiuS84rCpBGctq6LHcVawGbfrvZuhVhLpz3U22gVhhIk3a8zCBIpqI74POAQPt1y8EWjm7FD8DtwKrMJTtW5LAfEH39QNWuxZ2VmSDACxw4wBee0ugDLvuYurteEPNVtPdNrocoS+ZipFSrm1h16yPnCoxZiOA2OVX2iyri4+i0UU3B6VXB3Y0Fhe9NsbaGAJW5+AMmfRwIBCGVpS7fS4/0mXnH47WuLQrwhsqvqpT8a4EAVfsGmPxWhF22JPF9MKj++UEk1i0E3A8cS9Vxblp7VpdU6VR4Vq12nT2q+wC6sExgMtYbBpYedt9+az6HnaR4T06w+Y57YcB6hM3yToBykDvDU161se0LO2RIrqw7HxlyvT5LmWgCKeG9nFJ5/ce0Tm8Rt7x6Lx8TLHfZ/erOSefCkjONIM3CsygjXd4UZsaURSoVJoI4xgaKgwI4gDzXMTZd1rS/oCD1U3s2/fXVLzqPtiIXqsgqgY11M0ZKibRev6gsWV1P7HGqb212rSGWWgs/tVwt8bLWTOE3LnbubNa0JrgwdnGQF8pEcHU1MGtPmo4cC8i8nKV5fjjlNFHurS1Isq2UGcjKcylhGxX6UtVl1t9x8xsjjk9F1ZI9X4c79pmzu9kPpf/KjO0ipeeZShjsbcOUOM55vo23sPTzTlCZYtQidwqVlMUweW43qV4W0NslX+aNqfCTx7/szBupdRd4NPAF4DvB/5NpdSfBX4X6covkaL+242HPeT9Cz1+agnmJcEkQx2ei6l8GMjqukwph230/RPCdiJF9NoueUfROpZQhMWdHsttH51ZOvdh8qxM7bO2JpwZljueMFcU4CkWN7p4mcFbFOS9AOM7EYGxZB3BqL3MUrQ8wsVKAkyhphvJzZKi2uJvoJKYrVdzHtzyMMsA9kqiY5/Jhwd033JbPN8XWl9VfF2HrJS/TtvwfbKP3SF640i2j67rMfMFlY/JmrblsD7nQwJV0W1u952xT8NjRIqXsFCeOqiqjkpeXg8OeRJLlptCzOW1Y6oA+vX77Bx1IY5EANGKyLYSirYzCssNwcUKbzTDXo6cQ9y6ECtvTd9T/Z7MMDLLjV/J0IXFf/U+ZWMQ2YSGavvVqqvWV27xqohXAzPW/PR66NqEnLx1OlAVUUVZcvYjdxi+MkE/XtbQQ+tlTXzYo+gnwrFOpWnov12SnGYcfbZHOLb4K0tyOEdPRLodjFImtzt4H9mj/aX7eJM+tx8HLG4Le0rfO8a4AXPNjrF2jSU7qpt68z7dax3mN0JGHyvR5S67SYh9+fWnDmflY7Zr9WPlbVLtfLJ18ajvWbfgU/Hyy3ItiW/AVfVrWIPNyrUbZfW81a7LQxYEx6pQcYxtJ3Axrl0jbZYJL9p3XiLHp9DpSDG2Vh7z6Ahvb4etL65QRSkpV/0E//CS8tGhfG4OgqwyKysFo/K0PL8xAk3euibkiCzfmA9U92VtAhe52Vieow7PsEWBlwn8oZwuQ1XOjFBj6tUuQ3c7oETDoToJZquL9Tz0fIU6v3yfqOBvA+OuDqVUB/jbwL9trZ0A/3fgOeBTSEf+f6x+9SkPf2LvqpT6i0qp31VK/W5WzPHSEj3LJC1FazFTf/chGIN3Oa+xq3xfUrAXB4rpLeFmm1Dhp1YScnxF720IJ+CvLF5q0Tm0TkuiM0cpUrDc8VntRigDwbTEBIpgbvFySzQxWA3RhfgIpJ98hos/8iI2DDC394U5UeFjrRjTimm9eYH1LWrmMbw+xvqWyxcknZtAUsVV4MufK8m3ksIqVpXSjYSnbvDoeMN10b7KELCNVdzRmuTCyheqeq2aAXGF36ydpeVVrLcJl9Sv0/iv7lQd1KJbrXVosZshmDTFjCfk14fMPrxN0QnRuVzT+YHPxUsR55/uMf6OA+zta6i7NwVjrbqgJBHTnU4bG4foZU7r3Qnx/RHB73xT1IFXBpobO4HGwLH2OGkwHSpoqsKx6/+qeUNjkavfe1XMHJundZwzfbYD1/clRNbx5st2hLfI6Lw5Zu9z54RjmO97nH0sIRxbWmcFw889RL3yliR6JzHnn+jQ+mePsEpJp3V4ip4uSA6XBJdL2bKbRreaZbX82hpbd682y4g/9xo7XyuJzjzmPzbj8mM9vJ3txsdp19BWkoi5U2OmoDy9OXOoCnR1L1TDbbeQNecI9bW7MhzfYB4ZW9sL15LwigpalqgopOwnsNUXfnNlSxz4NcasOh3ZdcRVNJnMq8zJGebeQ+zFJXqRk/dCrDP8qobo+mBPTqVSQeZFjUsT+HBjHx4dYc8u5JwdB1sFvvu9ylWwlKFor7veTa/SerZg5guhMbvEHdx7VZGYaalWSzD4wTqOzYY++TAW6m41mH2P49vquJVSAVK0/3tr7d8BsNYeN/79vwJ+1v31IXCr8fCbwOOrz2mt/UngJwE627es8dzEvB3hTR3u1O1gL0awv0Oxv431FCbysB7C5NhRDN6weEtDnmiChXQz/demAEye71LEis6hwUvF6KfoRpKEMy6JjxaiiEtL4rbH5LZP/90cb2lEXJPllHcPmN4O8VJLenNAMEmdb4bb5p9e1PLd1kMPfwHTnYRooki3LeztoBcr6SJOzqHM686mcrNTg55Qn2YL1MVYcDKoY5Wa+Hg9TW90nJSlBBJXcvnGpH+j2FcdT1Gg4p7IpperzZCAJu+5IdaoP+tK1FENJLvS+diDXU6/d8je3/mmfDGv7bHak4CK0fMtgqklvjT4S0sZwXJPkbc9wrEMNONjF+Iahqheh9nHr9H6tVfRvi+0uKKgPLuoC/XG/dk07ao67ebEv6IxPu161PhssIHP1qyUDRjJLZadhHv/lM/wFUV8rUtUlHA5QWmNfzFndWeAtyxRpcFLLfObivZDS+9+Svi1d7HGKfWc0VXncUHyVyLU6lSYIEqh0zZlK2C1n9C5mDr/lKz67tTDQVVZGLhhrJ0v6P7Sq1jvw8wuuqjSYPaGeIulMEkqaKw0YLO6Y1dh6JJz1sPe2hztKqPI7ew2QhNq5kZjyOt+XoluBIoya/l7pRJUyvGhQ2wS4c0zmecg3WlF61NxJAKuhSfQXJpJ4d/qo04vUZ0W5uwCu0rxLiYkpyMp8MOB7GCVFjfEagfdSmBniJo4W9u8EEGW0thsiTk9k04cXMFV0t0vFqgkRic9l0Dv3nunDTtD7PGZ7Axc2HFFYqjuJGXlvjOzufiGuwBjLy/wHuaYnaFQoSe/j+GkEuu0/wZ41Vr71xs/v+bwb4A/Bbzs/vwzwE8ppf46Mpx8Afid93uNvG+Y3g4JJhF6NCe/tY3VivDBOfS7ZNd6FIlHmWji80xiyIymDCEbhIyfDYhGhvbDjOitEygKlh+/iZ8a8pYmGpWUoSY96BCMxKJ1uRuSDWPKxEMVFi819O4V+IuS8GROOWyzvJaQHK8YvLEEYwmORrITaE7afR/Vlc6we99w8RFFMQ4xH18SvpmweH6L1utnlMMW3tlFjQeqirdZiHF8uT+QbVbgw0pSPkxpNuCJ5jZ0g3lRHY3Os/YyafK1q4lbltUQRWXedBUvrmXRRbMbb3Reym0vHZyjHh2z+wUcz1aCLuLTjMc/ELP1smXr5anLEjRkd3dZ7YZM7nhcfCRi+Jokkqi5ON+Z41M6Wq+zJj0Pc36xHvJWApzqaAw/61OtQm8bP2tyu4H1ELLJHGleB2vYyAy1YvyvlOLOL5ScfSygaHmUz28RH8ZijLTMCU+XqLxET+f0OgHD10usp4jePau3z+nz+xQtj/bXD2l96d5aGYsUAJtE6LSk2HVpSyDb+lvXKXY7lC2f5M0zCZGuF1InckpTer/0Ou0XblK2AubP9OhOFnja2dxWu5CStZqxss5191sNyVSBIE04qsa9nbLyCne+7p6bYRzN+zhz0vxGSLRutVD9HqYViXcHoHxP2CVZjsoLKXxOx2CXS9mpdlvS7I2r2ZMMue1kJtcxzURh2e9hFxUTTOBJylIova0YVYg/vBrPnHmYgvkCMxpLgHO3I3+uYtQ8T3bEF1PpnudzcYmcL+XcK1/wzLkZJra+dyqaonILVjXktOOJFGzf+bj8Pjvu7wf+JeDrSqmvuJ/9h8D/Qin1KQQGeRf41+Tesq8opf4W8A2EkfJvvB+jBMAfa86+w+AvO/RfLcgGIcnjOSc/fBNdgJdb8kQGh1YpTCBwh7+CyW2f2W2LVZrOQygPhnhHl8T3RiyfGVJEEI4yrFbYQEsS+yylDPr484K85+NnBi8tiR9O4HwE3TZ2kBCfyeP8sxmcXZB97A7B0RS7v4V6cCRy28lUtkBZTv+1gPOP9wjPPOJrU/I84fLFgOR+hF7mcvMcnUghchNvvbNFfjDAm8rWTfU6wmd16rfqC1EPHKubovklgScLb/WFc2yVeqtfdWdZLtvvausbR+hBX4Y3uZP2lptFu0mX03HkaJFLVBhSji9Qb993/stGIuSe3+bgty3Gh9VuQpLLOVy+GIOG1pEhviwpEy3YolNL2rygfPAI3e2KUnU0Xg9Hczcj0N7mglZR/uoLYNbvtxpW1v/mtvRN+qFVjeu85rPXdEfXmbNK0dMF2B6rPcvhtsef/+O/yD/4d3+I6Hgh/OvSMPvUDaLLmPjtc/GhyDPstT1oJ8L9jjRlpEW1t1zJVrkaCKYZZquNP1nR/9pctvtKSaRW5HPvjyXkBxkf+d/ZtStdsfa4UaFwkL17x6jruwSXS7KbWwRRCA8P6x1bdQ1qb5PGwLZ5DTfgo+qeqm6LCl4pDVVjoJSS+6AK7W1ww5Vq3LdNr55MgiFs4GwGlqv1+w58gQ4ck6tWlXoeph05wy9371TBwlqsF+xyKY6At65jb+zCu4/kvQz7MJpKYa/w7rMLyjSVTMyOWK8qY4Vl4lLhVb8rr7MUnrke9LFpKnMe35cAB4dhk4saU8ItYhmETqY1vl6ZbGFsTU1UYQiHZ++pm6iOb4dV8ps8Hbf++fd5zF8F/uq3eu7q0Lml94bH4Q/nnH1ySP8NOPqXPayd0/nlNuGJJZgZFrseJgixGpIzQzBTjJ/X+HNItyHr+wRnC0y/Q9mNxJFPIa5tnmJ+LUQVHcIH50SnC0zk03l9jE0C9GQpcUFhKAOCRS7pJGcz8YhIEoKjKWU/QS+coKWy3WzFYrGZBFgP/LlCuxt0tW3rQGLrr4uo7rSdmfsSfxKLwbunZavXZI5UXbJWMuRRWoyo6kFeQ6wSqDVjoIHrbuRdugGcXaXrzrktng82Dp2AZom6GMlneUWcUbEsKhmx6rTrpGrhC0s3V55fEp/sMH22I1YsoeLkMwNapwYTglWK7kUuC+PCiL+1tehnb6NH05p3a6azNfPkys1cM0Wq7rBaZ7RXF3cpOOuE8id4605UU4t9qkJSQQXK1ruWqusuT06Jt7ocfL7H6DmPn/pv/jD+HUvPJmTPd/Ayiy4s3nQlyTZucSu22oxeSOjez4gfzVDH57IAtdviQFiUtcrVu1wITcz3MCdndVHV0yW7vzdgNQzJrw3wTs6kEDd3E7lYkCpPo15/F565RRl7qO02/nmMdQshVB7wtmaU1PYLTUip+fnbtXisZqEEAUqXazFP4GYVleNlAw+XP+s6xsw4SqfqtKUQvvlAbAe0cKeF2ZI7Xx7EFTDPBUYMQ7wjF30GkDkIZTKtvzOq05Ydbl6gzsbggia4GNWLsghhcoGpXMo7vihiKde+JtopNG23DYkr/LmYl9ksg3Yii0C12w3cwlPRMItCoMVK6VztjtstWbjnizUc1kwlesrxgVBOWk8RXximC4+ibQFF/JtdrAdWW+b7msHbOcFS46WCV8ZnGXnHJ7rUFC3IO5bFrkf7HUj32qRbgcM3wUSe5FPGitHzMe3ePsnDGd50hQ089Bv3ATB3bzC/06Hzxgi9yvBOLll96BpnH4/ov9uj9XCOKg16PJPuZyFfSDVbUN7Y4eyTLXa/bDj/GIwe9VAHJd5cs7zZJnk4ly+q6xrEJSwXy8j50g02spqhANLp1N212w5fxWc3uqBynYSzpggWQmuqhlJVkauKXiUWuLbN9MU+/d89rNNj6jzHZreq1DrD0PcF5nHp88pWQclI5/fKWwxOdph81w3Gd32Sc8NqoOk8LgknBVYp0i2P/m/do6yM8FOnZgsCyvNLOdd6IVOoYO3l/QT3uzpP0yjKSkshv1KI1gWc9e9WiknbEEVVO52GYIiyxH79dTqvBfR2dzDDjghilELfGjC5E9J5XMjP3PxD9XvMr0dcfBR0ERB/41JEMZ5XhwrYa9voy5ksqmcXG7TQarBnzy8Z/EYq3jXzFVSsImPq9yI4dSlqPGtRDw+J9DXpZreHqOVKfD4qlszGPZVTMZPqeQqs+f+O/91UWFY00DVOvl5gVZII7Ldc1UPRypyp9nsZ9LHXtsUiN+vBWw9kN7q7LWk0Lpm+soqo8G58XwqsciK5TiLQyniCqqTo9WBSY/e3BcOeTEX5WhRCv9vqw+HJOmShldQGT3axlECO7a01b/5itGa/jEtU28X+LVOsMdib18RFcDqrIwuVNVKcHe9dtVsCjWWlLDRhIK9lTL2b+MC7AypjCeeGuz9bkg58okvZSs6v+QxfXeCfTph9bJfVQBFNIJgbvEWGKgydx5oiFlvXrA/zZ3skRyusr1kNRZGZ9X2MB9HEML3pAT5Wd+l8/Qg1yiiXK/St6xSdkHBcMPnwkPaDBYsPb+HPS5SFvK3RSzHqx/ewQQTzuZO3pniHF1z/mRGm32G5vUXryEf92Dn8/BbzA4/2qwtUt+1cwKQbIgil2KxSqpxCYN1dVtv5pwzkmvJ2Ocp1oW8MhK4ONzdsLRuHHs/pvVLWhvJrIUajYLlz030ZythOC/v4uHaFk99rqBeLguLRIe2TU7rP3+Xyk0P8pUUZSIcB/ryk//kHFMenNSZojk7EuCkXJegTdMXG9n2jQDi8Vf7ylHuswVevC0jzWrpzRl2RzVc4eMOfozoHk+WYh4/gkVNahgFhEtI3FquUdGQHu9jY590/2aXzAJ79e0uxJLZWhmYTsbflYoyerZyaTqHaHczRiYhMylK+4I6GqgE1b5HeHhJpLfQ4QLeTzSGtksGfXaWox6fYOweUwxb+pIsZC9Zcf17Na1Bdr0qWXpYCA6QpKpRFRplqqOuuo7t/K+c/W4odcb0waIVyVrGKdTI6Lgty9kyPvK0ZfGMiTJLqvo4jlAswNq7LrnYYdjZHDXq19auaiTukyTL09lAe7/juut9DnV1KQXQe3lVzoi4n0OnI8y6W6wQdQBlRVJrdAfpsLI6PFYtkMhW1sLEyfJxM5X0dnmC1J4KpMJAZkO9DEte7AVuZZoEoLXvdmi5YUyXf5/hAFG6dFnReH0FpiB5YbBJSDGL2fvUUjGH17C5FrEnOjWxDM4EfgsNL0FvMr0dEI0s4Nejc4k1WBFqRd2L8pSFve/hLQxkqug9K/KWh/eoJptNCtWI8wLRjypbP9EYACg5/sI0/V8RnHtGFZTXQ5LttgrMF9vFJHbmF1rX1pO20SK938BcWXcDpRYdOS1G0wbYiWOXywRkjttmemPfY1UqCSPNNCGTTz6MxmKyOpwwVlVJYpWs/lKsYd23y5NwIbV5gStlJqEtFWUmlKxpYY4srX9RIhmWeRhUlxnWgUHXxthbUVMwZpRT2rXsM3n0oA81AlHBmNJbZYE0DFJGFzXOM6+JrW1WQLWm1QODVg8Pa8P+qeOgKtVEF6/dTmXzV17eByVbXth7guaP5eWzQKB0nXAcJxtfoVYl/OoE0ZXWjg5cZ+m9AODP4o6XsKuJo3cEdnYlGIAqwp+dOXi54p53OZCfS7bh8SMmIVKMpx3/6gBvTBH8cSxNQFLJpqEKlq0Qda2E2R48XmG6L8sYOepVuxpZdOayxKEpholSimuo6Ofig4pVb7T4TV6CsBh1EddSXXa6ksDstgC3y2qdE37lJ2UvwVkY0FL4rwkrJsHC+XM+D9nepfD3UbEFZuXRe24OgBWeXdWdOXsCgi328kOLqaczlTDp1Jek5eF4dRoy1qCTGPH8T72SEnc5dEHEpCTzVbRGGtd+3XCcDzlCq9tGxtrZFkPvGCGtsNKnhVT3oy/Ua9rGBTznsoCv8G2TBnr03q+Tb5nH/4zxWuwGPfmyH0ad2KActVFYQvnmM6bWYf3if+fUAL7UkZznxSUo4zsgGEViL//oj2o9WRBND596ctO+xuNvHm6T4SynkRawYPefTuTen++aE9pfvY1sxq5tdyk6E2R4wv9uthTjpUOEtFHnPgAXrQeeohNIKdajyPOm0a2qRzTJs5GN8RfukYHGgiN6OmH5EMKv0oINaCLWppl/5vlhaVjzoJowBDsZY/6zpmazeY1VuSpKfyqiQv9SUvqogm9lM7FcbFK86hLUeAjpBQerw5/PL9e87TrSunNmq4FsnDrFOCVccHlPcf0R5WsFGcl66SgqJpKOqvUZc17hxaK/2DQFqCMgaW/tobF4Udx2qYvuUYrXO7lSNh9n6OtX4vnHD0UoxmiRrBsv1fbkU8xQz7GBeuMVy1+edP28ZvDGnfX/mvKE1+Y0tsjs7mGdviJFYO0EtVlJklMJOZpgXbzP/sY+hqu4RMbdSSkFRcPtnz+U8hz0xRHJskTqXtCxrVzxbGrgcU/Qj0p1knXvojppXXdNA19e29oXBdYqVuq8RgFAv3kWxtjqNo3oBavp3o/R6N3h+CaXl7JMhwdIK88gYYVdM51innCYMJHfSWvlzntdKS7VM10U7jlEtYWSoohSL4U4bG4UieDGuW14sBWappP3LFXa+xDu8EGOqxUKc/VYrCT3wRO4vKTyr2hWSilqpG0HI7XbtO6LaLXSnLRS/ancSyPmrJMG2E8ywIwPW0qyhzXEjsOEpxwei40ZB/48ecvpb1wjmCZ2zKdkze6x2I7Ku4Nr+oiS4XKFmS7KbQ4JJJuklgw7zGzHJWY6ervDSNpPbPibs0X53xvJaW3y5J2IoZV3y9PijQ9oPZWs1f76HPyu5+EhE92HJatcjnEi3LdJ5iE8zggvH/wxDKdgdMWlXrQQzmaJPR3Czi7eSgh+fwSd//G1e/9KHWOz6JLC2R01i8SxoxVg3fIJ1t/ikNLkBD9in04Su+o5IQdMbkMlVZWCTk139m3idOBvVahfghpIqCOSGms1dWKvbGZhGQkn9uqpW2UnX3sDk65gos5m2rpy5kG54oVSvYddQB1oGsZW6s5Ju19BS6eK6PE8uSVWQjcAhzY5ccOuGxLiKL3MY+qaBlVr/e0X3ciybxZ0+yx2faFLiz0vCyxVbXzonOe3jH19gRxOKD9/GW+RYT1O0PGyg8e8ccPapHsPXW4SPLuWz8j3mt9rM9zWth8JkKDoh0b3zOvVFjab4I8Q9EgRimi+cMdd6wF3trsxkhj9OUWUohSyJa/vQCjJpQmkVjq0qlW+1KylL6Shd8V7PEtyOxlp5jFK1M2Xz/gZq3jnG4F1MOPhcQNERRS9lWUvedactsJN7LxQCbZhVim4nslOdzhxEI7Mjvb8r9LrFss6A1L2OYOvOGMpmOSxWtQe2quC/2Uyk6FaaALtYYC/H0rBoJQXfqTUr86jq/eDYWXa1kq68ukadFnq2oJxMZPGofs9pO7xOW4p/ryPCH+2h+i3U9PcpwPnHfagCzn7zGt0HlvY7Y5bP77Dc8QkWxlmyGvx5IUnZgM4NOjeo0kBeogyUoQxiei+fs/rBXeZ7HkXco//qGOtroqMSG4dkB12Mp4hGBXk3wHoKVcLlSxF5B84/6qFzWO5LCo4yosCsE+eNWVN3ZgtoJXVyBnFEdJEyeqHN/u+uOPremN/58guEB877JPBl8GGNrPBFAaOJfCGqxPErbJGK9XBV+FKzH66KUa5KmqsvZNHEz1kX6Oq1YN3hyhPVz2mNFSaJiw5juVr7p3geSvtr+XxFnWswY5pMjbqbK0sZrFV5jatUvhxOCXjVG6UJT8hQraHaq96DWvtB17a1LiCgttismATNRe7K+0UhC1VjNoAK1rzjqmBX76/I8fZ3sZ4kLh1+X4z1fIavBQy+8IjWy3NsRxznpncSxs+3wULvHUP7KAcD8dhgQk2x08V/fIENA9oPF5z/Cxb/z5xz9l/dAQXeooe/SkWQs1gKa8I5ydlWLDOUo5MGnl/NQaRQevMVq2stVNnBNwZ9puoAaio6ZKUsdS549T2Q5cJCQRbe9/OMNosF2rohfIPDXUN1FYQTiGI2OJ8TPsowJ2c1TU7FsYT+FiUqF4wbrda5mm7HZh2rQ7da6xzLJJLXKkuZyYSB66rnqFbipOoZtGIZFEaBsHCSGHtxWWP3uteT+8dljsr3V/xRJOA3rHcE5mJEncoEaCXGeHpVoC6ngvm7xc9OZuvvTGlkJ2OtDCare7WRonX1+GAU7hKCGWy9MmP+TJ/pTY9gIQU9nOfi9pWXQo9apfhuG8RyBXFI960pJvQc9lTSfVhw+UJAcpqR7rdJ+x7+SlzcgmlBtiXQS/v1c84/s8fpdxvCC0hvZMQPQqyC7jsasEQTS3KS4U/d1LjTkgijpfhMqK0BTGey+i6WeNMYf5WIb3cJ3bc8Ji8VJCc++bUBwYPz2u3MVunl1TCsKhLNTldpxA2LJ6lsjW5qg1t7tZt0xf+9CP1NGXuN7TZd3qqBVbVFDXx44QWy7YToeI6+mIqL24rN6Kqrn3PFkHGUMBUGlB9+AQD/9QfC/pg7Klfd+TcFROvuu47Ucucn57o5eN3YUaj14zd2Hk+xzhRP6StUuCbv2A0pa3qc0pjtHotdj8n3efy5P/FL/NSb38Vpq0f3jR7e5VS6tTjC+Arjw8Fv5yS/9kq9AHTz58n225TtAK5v4V3MsAqyex3m/Smjn5gTfqFL6ySi6N4gunchvjedhLIb442XIv7Ic7ydbcqz88Z8oml9K+/XH4sXPYM+9vzSJdFEwuM3Fvx1A2EbOaiVz4hAJrZevG1e1IHOFfvDLFdr1lKF3YZhvVupu/A4pOgnBPdl+KiSRCL2fINy1FCrlAhdFgtxZ8yL2vmworuqKMT22uLamBaClXfaMidA8Oiq8NaWrrP5erA66Ml33NEDVadd55za6VR2jxWLJ4nX92nuft+Ja/SgLwtEFOI/OJOir5UQGXptSfh5dIy9GAnrpFzb5ZJKQrwXBOudxlOODwTGrQxEl5Z0O8aEit69gs6jjHCU4U9SbCAKKvICopBy2JbBThzVBHz/dIKNAsrtDv6yIL40zA8CykijDBx9jydd/NEYf2kIxzkP//g+Fx8DlJyDfxagCvAy6D4oCaeW/ssXBJcyAbZhgEozzNmFeCNUxbcqnMsVajyj+/aMYJqx9+UUf2FRcUnRgsW1WMQkaSP2yQ1r5ELoNdbYYEHQKBRPYNVP65KbRRvWRds9h7z2pu9JjWE3lJQ1dgtuECifgQoCxh/qcvKXlrz+L/cxw04tHlFJ4pz/Knl9Xn95n/Bpzgv88VJu3Eo6X6lF/QCv00a3WoJ/s1646vCFuhuvYKGGJwbU77XyIHkaE0VVzJ6r96Qf1Nd7k40SrM+l7u49VgdtvNyic8X/85XPcKM/Jt8pmHyoS35tiA08Fs8Omd10uy8Qv3WH/6uHh4yfDVltBcxvtcivDfCPRzz3Py7I/8sD0lnE7OMp/rwgmGQU+3255quMohsyf2FLhnZJLLLx6wfS4QXrkGrli1AsvJRCaFqxJMd47v5aLIU11GlL0XJBIDTfq78Wf1Wq2425SAVDVPRFV+jX95GpFbu2KNBbA0wSoLMCczlyWLgThzl3PkCgiWFP8Gsj8WW61xMfEDfvKc8vURdj9Hgu+aMgNQNq+KX2Up8vausKwkAaqcfi4qH7PWE4jaUhqYKJK762SVNhq8wXmPFUrlWSyKIQRZjtnpxvEEhnXgl8HINFHZ+v/cV9H3WwWxuqAev51/scH4jCrQ3ElyVFS5N1NPHZivB0jj9aUSYB4xc75DtuCxT45L2QcqeP9T1UVmBaAendbfnyTFZQWjqPMgbfmLLc9nj8Q9A6Vgy/MaXY6xFMci4+LKk55X6KP9X4C+i9A61jiz+35C1FfFHIoEJrGZoAta9CEouUVmvZ0lVbyjTDu5jhnYyIjmdYD1qvRsyeKyhi5cydAvnwqwGQ70JWy1KGHJXZu9cwqHddcdMgqVmYmsZAVahCPaRTmwWv8k+oB25XYZGmeMeZLwm2ux6WGF/xif3HmG6BjQIZ4FTm+u49VgNLOX8H+1SDRMfssPce4b31CNJs/SUNfElqabfIvvel2i8Cz4UYVAM0VzhMI75s432wHuo2C/aGNPtpg8pGoa4x+eYiVw2Kq3PQiuWuz+Su3Ef5yucv3/5VsHD6acXkuYSLTw4JZgWtY8v2KyVZz8PbGqyv51KSlhZ7GuMrvFWBXawYP9+iDBUf+i9WXPs5n9nNGJWX5B0f1RYBV/z6Me3XzkTAM50JhGfMmu7WLJxaM3qxxcn3DyV0wfdluz/ooXtddK9b49mqlawtTKEuthvXsmIPVfdjHS6wnptYV7iqbNRKaak8Dxv4qFKGjHpvR4rW9kDOA1ewcynqygXsqm6ntmqVvEixTKgWeDubC8Oj23ZdeYCthrFao4JAsi2XK8x4ChXXutuRe7KdoPd38Xa2JKiinnnI8FYnsUugl0UOZyMg3jMZ+nwi8M14gpk4Xn6FtzuvFDufy3c6jmA0le/jfCHGX522DKt/n0EK/9gPlVv8pWE19FnuKlonMa3Xp5huwnI/Ir4o0VmJ3R6gxjPC8xUm9tFzjcpLvEWKCXvkWwFBPyF89xQbh0w/scfp95ZsfcXDKsvJd3cJ5rDcVUSXFmOg9WpMfG4pYogvbR0grDNL6+XH2Pkcb74E3xcO7LvHzqlMuNJmPBEVIQiOVhQyPNrqM3uhT//tnOnNgKzvoYwlv7uP/+bj9eDPDTCwLvVmuUQ1upQmPnwVMqgMe9ZhDFWXe4VFUR3VnzcwZ7XxRduAS1gPS2tsdyWdSus45+3/4kPs+goKx0nd20bNlrLdrjjAtTFSNYxyWGqDc44S3LIa9Ck86cq2BphQYAhd+UR02pjTM0xZ1HLrJ6AdqJ97PQto4PkNVs16btCATUyJtWajID1NwFP9XIceZSjQWDiybO1M+d987Sfwph5lYhg/55F/aIH/dyOChWV2zcPLLLMfeI7227uoRUq502V6V5qH+LLAe3ACUUj/9TnKgol84ouC6EgKc/LwGLs1gFbM4naf6HgB/Rbe8Ug6xGEPFivwVuv7Jxfamwll4c232+hejF958HTbEtJbyhwnfeGA6C2hvprJtM73VFrVoc+1ERWgcGHQFXxh7Xr+YaVLltzHUP7eSrAtCVLWl44f7fuo6ULYVmEgYpp+D6ZT6XjHE9Sgj+p0nDHbTNgZDQMutCcDyxt76FUmw1vPqTNL46AQ6aK94UDoraWodwHUZEZxZw/vTBqWShBjxxNH99M1pa+CQQDxO+l1YJnKeXbawrlvJUIDdE2TSkSRyaBX7wzMxGknXJCDmi2eNPdqHB+Mwm0tq6FPkcgwcHLbJzrrYEKP3tdOKYdt/AenoDWrl67hz3N0XsL5paym1hKMpnjzPbzDM1CK2cd2WW5rtn8XLj9uUbkimCk4sahC3OniM/kzRoIcTCDbWJ1ZkgduFSzFxN20Yvx7J6xDFESiXXOCW4lg7lEEeYZKM/yZMAuynkf/Tc34WU04jfC/WchUPInrKX01UIOK5dAY5FXHVcMjx7WtO+4Nqfwal21ivTUeXrMkdI2vvwelV37NSY+ttZjJjPhzr5FU3VUQyo1Z2dbevi4dn7Go0UTeSyWeMGb95XZ+y83hjAMjBTN0PGdVWqGWVUY8UHe61fHEoLI51GwMcuthXSMkmKZxVYMSWLMqKDe48E9cG2cY1nlkiSYl55/bIZhB71xcK8GSzVqcfcKy/bIlHcLNX5Yike22SYd98pbm+m8VmEDhzyVdRQHeW49QSYIH+POFzHGcolFN5xz+xDMEc1gNuwy/co4ZdtDGiMNk9T6avtrthDJQRCMZ7ntnU/LrQ/zXHwqtzn0ulIbom48cQ6Lx3q/MHFB6Q0mpGrMB+RzMmvMdxxAYYWRp8QuRRPdSHPXAecV7Yu+6P0C3YphK0roZjd1LarACMbGz5YJORthsgdrfEfuIeYq+kNkClxMZRHY6cl3jSFSVnpy72R1gfY1+kEvBzzK8by5lJ+J7EtxwMZbveeB8uJWLlCuN3JetGKVyTL+F1ho1i8Si1xiozMPaQvXE97DzpdAdqyScspRBrVZuR2Fq9ebTjg9E4baeIj7PKToerRNL0dKYwBPmyGyBN5pi5nPUjQPyrsfsRkg4M+iD52l/81T8IG7tg6/Jnzkg3YlqYF9ZGHxDMf6hJatpQP9Nj7wDulBEEytBMR74K4N3aVDWEr0rlCuzvy1hCfMlerGEOKLc7aPfPaq3f8r3MY7mY61F+x42tdjliuSNEyhKBhczpp/cJx34EmY66MF4si7arKGQDdpb6G8q2t7Dq6vChJvb1mYVbg7WMOWGf3eNecO6kFWPa8APtixrz2w96MOgJ9abaYqZTGpv5eyF60zvRCz2NTtfTYlHE2EjxJHg1w5z1Ekswys36KpZKE56bosCO5qQvKllJzPsw8m55Gs2hEp1Zp/Hml5YMRZMoxu/MhtomlRtepOsE3GU4x7XCUZXh8aOMsn+DsqIwCY6z9n/Ysn4uZCzTymCiSLrW9qPofMQlLH07hmyQUj7Kw8IkpjoSO5XPVvU+ZLW993noeT6ZLnABxUeXxom33eHMlZ897/ye7w52UX9BYVaCuPBjsbrXUcNqRmyvTarPZjfVMQXIcGDXAbmva5s1T2NGfYk7Wm5xonrAuPgl/U92fA1cVBJxaqo0o6wBqII2+9KIZtLpJfpJOKiuFhhjBH8uiiglHhAD8hv7aDbEXok9FEuRnU3Szuh3GrjPzyXBa3fo9jpEuTF+twdJxuAiRsSl+Ua+/Z91KNTtCefu97dBpBEHM/DzsWe1SwlQYcgFBM6IL82IHx0KZciy6WpWm0qiJXnyaA1DOX9WakNZjJxqlJxP9SVZ3rgS+5lp/3/B5L33KAstO7NWR206L4+Rp+OZJqsPez+NnocYZIQ4ynyFnipqunMKgqhtEzvtMjamtZJQdnSBHNLGSrSLUXwWgv7/JKT79N4c0X3XWGZrLY1/hIwUMaa1ZZH9I5l+R13SAc+ZaToPkgJH45QWY738FRuklYi+Fh1FA0+d1dWdjtxiRejMeFom/aRZrntk/TbTqhyBcbwwnrabp1QoNkR12kuNbSxhgKax5MF3FsX5AoqKDYHm02qYf256HVHCsg2MRD/40c/tsvNn5bg4orWpKwlGwScf0Lxt/+5v84//9/+O7TvPsfOV6bo1+9DnkvBdsUXpMMSmpdTQjYNn4oCvcowcYTtt/BmC+xsXhsU2QYGWKkfmzLu6tqo4MrwsUFPq957cxBbfzZarfnpV2GnxjC07EZkXSXxY28uSZ/psffbI9LBkPlLKfoyIJgKrdQEiq3fu6yDbs2x7CS5c0NYEKVh9cI+3rLAWwheai5Hci/4HmbQoWyFWE9RRIrJSwW//fgu2VeG3DqYi/WwEVOjKhu1uTClAxnAxxOFlzmWSHOYaCxqNhfnx9JIwXLCpkriXtMyy7WSVP6vG6kyHsY59ek4knlQXmCnc4EZDvawsyU2CaVQeZ50t3lWWwVTlgTvHmOHPcywI4pGEBhtNheikGlh4xC8RHw+nMe5ardlsFg6lWKWC9PD9+X9ep4bSjriQe6KeSK0SlkwnQ2slYQqFQRCLMgLyq0e3kyunRl0Jch5MhUO+XIFrcTRKzW6+h5pBakIh+qE+2ow3GtjogA9W6J6XcpBB3v23uX5A1G4TaixCvR0QWuVoarggU4L24rIhwleK0BZ8FJL91FJOMoJjsayLSoKym5EOCrw5xrrK1onGZcvRBRtReeBwWrFLEtY7Rn03Tn6DTHwD6eWYGlo3Z9Q9GOCqSZ9Zoei7bEaKlFRZiHR68IesVt91OVEtkFVt+F5mPkSL45rObAELeRSrHa2xYvZ22V+LcDEPv7uDuXJqXSFIDBJg16l1LpQbAzL5A8NTrHjeja67nWHeSVXsYnvwkbBv8q4qDFh5xSnfbV+nTRn/3dc+KlxiSbIF6r9+gWdW3v8qb/3b6NfWhB/dsK96wc8ez6E80sZylYLk177QCutsDTUoFoi0Ww7odgWZ8bKr7rCV6tigrFY1s6Elcd0bTfqtvEo6Rat+xLV7nbuC1abEVWD1JJ6AWnuhKyhtkOxZYkqDPGFoffuChtJFN7yeofdr+ZknyowJqD7sCC8WGESgTlMv40qElRpsNd3KDsR6v4C88ItipZH0faILhR64pKTru1x9tkDkvOCYFZQBpr+GzO8vM1ye0DvtMQfLcRSoRK3NGYXlQ2vspbVfkn3TY/oaCbsCId92yxDO456FW6rWy1ZWBv3ZlW0myyeehHM3H2pzBoKrDIX5wtpsopE3v8qR19M193scinQx/FZHUKgwlAUpeB45IG8RqeNDQPhvPfa4qu9WuFXmPZ0Lo83VpoLNzC38/makloUqG5HzmW+ksVUK8Gdk3g9f6oWkkgaKzuZoaOQxQtbtEcz2TE4Nz87nqxFYE6boXe25TNpxRKcEEfYnQF6Mhd8Pc1gmUISYHoJeroCTwlE+B7HB6Jw513F5E6Iv+hhPY23jPDOZRhBIZ1Quh1TxhqdW1r3p+KM5nnMv+M27VdP0LOMsDAS3trrkN7ok1wYJh2PeFSic4sJAvK+Qr/aYbkHnceG7htT1CJF5QWerxm/1KeIFdFUdgH9tw3RqCB7fp/gTLokW3E2qw/U3bh2sUR1u0ILbMnEXyWJ/L6nCc8WKJOw2o3pnMiE2uRpjbHWXwjYwKk3+MjWSFfiWCGqoZRsdtCVX0jl41EdVUK8UBC9K/jlmjYoT9kQA+mKw6wwp+foR4eYBmVJ6FldWKVc+7Vzdr+acPFSwrTXoj2zawvSml5XorS/luhX2LJjNOjdHWwcku91xR8mDtD9Hh5QjidUDnY2Fy5vZe5f/YwnhEjlhu8KphESXJbYUm8M2qDBM66v/RVmiiuMJvRI+5rDz7bovyP5kpfPx/Qe5HivtknGkHUt8VGJyg2cXmJv76FKK3auywx/maFaCYubbY6+zyN8cUL77/bYeXiOvXOdwz84ZPJCiQ0Uu5+PaZ0W6HlK7ytz+stU8N9OWwZzNnf3TEXr9KUI7QxZbnm07ymGr+dwdCpFsyxrpo6ZTuvhYQUnVNe3Sf1r7lBqa4YG7Ce7RI2OIhHqOMZEJcPXkwWmm2AfT9YLYmnQqwy1s4X1Pcw79+Xc2y35TlgLrQQdBIJrX44FI7+U51BBINi1cVS8Qa9u7ChEwaiMDCFVvydMpuUKNRqL4ddWX55nmQo05wR2lcVD5S2jeh2YL2m9cSE/N0aajOVSBpxBIA6agZFmQymZOVyMBccH8aupBDZxJJbPIPbSWY5+MF3DOU85PhB0QG8FugDrafxpiol87GyBnS+Fl5mVBNOc5CSl8/VDKdpAekMkxrOP7aPKEu/oErM7YPH8kKLt4aWW3v2StOeJCGdpMR5gRfDjpQZ9PqnJ+HqyIL4sBGoJhCUAULQ8MKDOR3ByLuost9VpsjFqS1bPc14EsdzwRrZf+mKKN8/xF0JrVKHLoqw4w82O92nDyeZWvSriVzDyGla5yhRxv9Okc9VMg4rfXXFLm+KZK0rNOlsvF0mycn4U1Q2c3d7BBh7+199m72fe5Nqvjtn58gT/9YcywGy8h6aApt7OhyHqmVuUB0PSW0PheS/kui5e2q85uzIUdkwC54GxsZNosHKsU2PW16Zxva6qUW0u3h61GVVV/DeuvaNlOqqkDTSzu5bie6Yc/Ftv8fizCeHMcvh9Idd+O2P/i3P6Xz1Dj+ek+2JsVnQjwV+dN3S+J/j1yXf4lKHlL7/068xuKuxiRbrfFovjyPAf/dDfw8st7W8cy0Du4aEks8TSHaowkAFfcyjtZOSml5B3FKsdiy5tzaKoYTlX5OtrUN0Hxki37uk6V7R5Xynfr8N264Gou+YmTWXRCALHnrJS1KxFT5fSAFXeKllGrQB1jCu9vSWL0Xi65nd7WgJPKjl9HEnxq5LRA18gjSx3XkCOJvj4WGCnKMJGAemLB9j9Lbi+L0yw85EUZ2sxnYT0QzJkt9MZtvLdDwMJaOh3RIh3OZYZQJrJ3CSOZAA/nW3OmRYLSNOam261EkglL6RoT2Z4l3OK3a4k9biMzPc6PhAdt7+ybL08ka3Z2Rh9VECnhem1KFohweNL+TAnc2wSYfotFjda0n2fFBhfkV7rUT47oAw1WVejSkva10Rjgy5gNdREY0vvLcj6MLtliS5D/Ok2JvEpb/UJL1b4sxy9LIguPeY3EtKeJpyW+NMUkpjiuvA69bJAP1YiqMkcNlsIjqZ7XUnGSWI3WS9RsyU2ifCPR3gzp95qbDWbUvT6aBZf2CjswMYwTX59PWisceJGYboq6tnoRq+yBZqHNaJ0TFxKC44n7umaUVN86BZv/Cs+rbdCbvyqwb91DXU+Qj84giynnMo8QDq1st5K1udVlmLYdOOA5Z0Bj3/Q5+YvZejZCnN4jLqMSB46mqDniadJ1dltbNllh6Eaaffrt9EQ0ujNhPtm2PKGwVX9C2vKYNMiQGmFP1phvYiy0Hz1t16gfGlF3o2Iz8Eq8M8lW5DSCMW0nRA+HsugLRP2SHA0hjAg3S248/wJ/9dXfojVszmrT97m4R8KCCbwFz7z6/zvf/eP0Rtq6Rbn8/V9AMLSOHPDssph0CXGWGsxoY8/t2y9AvGDMcZBQjVMVkEI1ULqCrjMCQL0/q4U+6oBcMpRWwbgmCLKFe8Nj51AEp2s5+H1e3Vx5vGxFOsgkICEopCdna9Rq7RmW1RsEt3v1oI3oFZO2okwwFRTIm4cpz1JMP0O6uFh/RrKWe6GLpBXuWBuAIoSc3aBbsXo2JdkpkC6fuv+XXXach+mmag1W7EMXF3DoN0uGyXxfnY2l8FkmqKSUN7z2QU2Elm+mi2g3ZJmzljYGQglcvz0ryN8QAq38ZVEe83dVsPT4GnKdohOC2wUypd/d0AxkAl8fJpiPU1wPmd1vcvliyHJhWU1kGIUX1r8pdDLvMyirEKXlq1vZmR9n+ktH10aJs+3KUNF3lL4q4Dtr8/QWYE6HdHydlltJfiLktV+i8XH+wy/OeP4e7v038lp3V+zQiqnOrNKpWBHkWzDuh1ZWYsCbAilka2Yw7+aEWTV9nYtNV/T/p52SKG+8sOncLDro8LOHQOg2bHXRarqvq92po1zVXGEnYngQOU5amtAuhWC83hZ7sf4vRB/p0VwOIGTszUfujnQarw3r9OWhO2ipIwVu182+ItcfDeKAjPJn/q4jff5fotcVUxMibWbgbbAWpLdhH9q/nxjsfMaEWcOgtLHF4SXQ1Y7HlxPufazIcazZD1QFhhNZNu+SqEw0qnNFmsaaZajVhn5nV38mccP7L3Fl4NbfPPwFoefDWg/hHQAD9Mh3oOY5MxgxhNZ7AZ9weg7rZobbS5H8rwuZcWkKbrXQxeGrK/ov1vC4YmbAVA3CBtQkbs/akikLNc8Zt3gxCPDyBoHr+4Z91w2L7Ch69gDX4qcMWLXmuXr3cBkit4aYKMQtcqF7QGY+QJve7iO/AKxeVVKYMk0xaQp3u6OpAc17FQZ9Fya1QqTF5L9qJXAKEWJfXwsn/ewX2dQ4tgtarrAvxgLvDObCfxZ3TNpLhF0UYg6H0nhTxLp+hfLmgUEoLpiKctWXxbvzOVLZpkU6UTEe6osIfDxDy+pzaveh8f9LaESpVSslPodpdRXlVKvKKX+t+7nW0qpf6SUesP9f9h4zH+glHpTKfWaUurHv9VrWAXFsOWw1wK2hxT7fVQhyewqy8luDUn3W2IQdThBLwvCNx5DUaJLi5dB2lMEc3fzaEU4M/TfXBCfprROSjrvzAhPpUtpHZcEC8NiX3P2acvoOzPyjmL0Ypv5s32yu7v4lwt2vzjGH6fowmI1LA8Shq9ntN6dUAWi1uwNZ/tpJjMIA7lZ40i2blkGoynpC/uUWx1xBaw+3Eri3ihqTUpfcyi5vmiuU6rk8khnU3VMOgw2oAhgPbRy/6+GcdVr1ZBAszBWxd35VNTMgarrdBaUyeM5z/x0yQv//ZzkJOXyhYD7/7owIZq4e9XtUvOqFd72Fsvve5HFswOKnS6te3N6L5+jv/YmZrncgCtsnq1tVauC08CzN6Tv1bWrZgeVApQKt35yK7rx3M3vQfU8zQXP/Y6ZTMGCzTz+tU//BkWkmN4WBaQJHH3uYowNA9nqW7sWbbRbMg/JcyZ3YzDwhfO7vP54n9bNGR/6kbdY7cDgLcNv/s3vYPtrlsHvnQpNsduRrnQosyEux7VVaeWBXVEu85ducu+PdtE5hOOGb4i7P1Tg1zOMpk93vZtzJk+2kqG7AXkNt1EVbGdvWtk3BD5m7nDmIJROuigpHx2u7WKdKtF02wKLlSXl7gCzvyX0vFYiQQhJUofs6u0t+a45VpOEG7jPzGHSqhQ6MYAeDsRcKgwlesxBODKLWklxdtRShj1sT8gLdrl0vihljWHbxRI1maPGM4FE0gyzPeDye66hnBUGynmTzBdr6u1kKoXdERjMYoF1uwkRphlxPHXJ9nVI9FOOb6fjToEfttbOlFIB8JtKqV8A/jTwS9ba/0Qp9e8D/z7wv1ZKfQT4M8BHkZT3X1RKvfh+gcFlgjj1PbeH8Q/w5zll7BE/PMeGgSgodwLCqSF+PKUYtvDmGfPvvE10nlK0BM9Oh5q8rUi3IJhblnse0WVAOEppv7WSOKFem/gkJe8FqNKSnGjmN6FUUEaAEgGQuuGx94UcVZZMXxrgLwzxWEQ6rftzeHSEmS83O8jqZs4z7HQm+XfjiWBqszl60Mef5Syvt4lPPfzllqSXV1LvqsMrqdNXalVkk3Ncm7ivi2v9Jayw2QaGW4UwNI+axXEVPvE3oZcmpGKyHM8JYSoetjUWM1+iXn2HCKRjabc4WF2j/IrsMMxi4aAHW6fPK5d36O1ss/j4DSZ3fIo/OqL33/XovnyGefveJv58ddeh13YAOE51fd1oDNTwNu1ZNxY/V7wrWmFVyBs2uNX1rYahzc8a6+x3jaF3zxBOA35y/iNsa/iX/sV/xE/9138YEyjZfc3nYC3pS9fxloU4xj04ki9qX4yHTr8bTFxyt3NB+2bGqvT52lfvoruG3pszhp8fYwYdODp1XxxROGItXI5rZWDtq1EITq0P9sh7PuluSXKiid86pZwva6VtvQNznzFQJ9Q0HRkpZWdUzXKa0XEb95ZSEEhIAUqj2y2BDHrtmk5X0eN0FNU+4vrS2UoEvkAubkBqs2wNj1hb0/uq11JhiO20ZGawWqF6XRd04onWYD5HDSSwgMkMTs/rAAOKEmUtNuhgWpE0irNl7amiIudl42LmrKP92iQSaCjNZLegFIOvG1GfOpEY4IRrAo3UXT2iY8D3RT1ZCo5OtwUn51AaimcO4PC9++pv2XFbOVwcCYH7zwI/AfwN9/O/AfzT7s8/AfxNa21qrX0HeBP4nvd7DVXC2ccCHn82oYw02SAiOpxCUZLdHKDSgtZhSjDJKHsxZeIzf6ZL2ve4+HCbItYULUX7qMRLLUXLcvYpRXJiKDoey2st8LXg460QFEQnS8rYIxobrIL2ayHxmRWfiNQSjyzzZzq8/c8NefwjJf6ipPPqBb0vPkI9Olkb7ZgGM6HR/WKM3LieJyt0S6KQKu759E6L5YcPak+G2rfEa1DiGjDGhr+GCxLYcAGsUrCbasIrxa5mQrCJhzf52k3xSdV9bzBVGsEJuteTzt51a9Uwyq5S9MNTglfvY+89pJmXWS9Evl+rMfO2ZvSDK9QvDwlmJfbwpD7XmtlSy6u9ejjYvG5YSxXAgDPvqq+X823ZMKEyjd0SUDvWXeGy1/mV64tYP2+TPjh4bU58YfjQT16gLPzkV36AwdsFydGK5YevwY0DTLdF+FjoYtbXlC/c5PEfPeD800MOf6hP65Hmoy894Bdf+TBvXWzzb9/+RYKxZvCawju8kK35O49Eqr09FNx1OofjM7mWznKBMNjYZpfbXRa7Pt23PdonBnN+KYWjcq1z1MkNLxzVwLorAY/nOUm5C0rQmzsWpUXabq0VA62Kx7yzxfGP32J1o4vpS4GtfUWKQmh6btBoF0vUTNxA9XgurpNVio4LDbYLsVWwy5UsVoEvBlGV6tBawbfzog6MsBcj2Y20WwJ/rFKYzjGdlgwkA59st03ZF8m5XSwlNWdHZlpEwuOWPMoSzi5RaSasoFK6cXUxhtMLCVLouI69wuqH/Zo/riqvE0CtZCCr2i3p4h37x3padlHvcXxbGLdSygO+BDwP/N+stV9QSu1baw8BrLWHSqk99+s3gN9uPPyh+9n7v4aB5MQyveWz++UZnI9IP3KTx98fs/VqQO/rZwCkNwekQ5+8pSnkvbPc1nQfOfwrEPZIGUOwtHRevWD+wpb4bsubAQvT5zu0H65AweC1FqpwWGtqaZ2W6NQweiFk+E1L+jjg8kVLLxmS3Juiui3UeIZqMDR0FEm3UsVpFYV03b0eGOEqU5Z4l3PYS0j/xQvS/8823vI6/nRWF/nq9zYm0g0v7WbnV8MDvjBcJIjgSTy8CSOs+dlqY7vfZKDUNLLGLqLqQM1yJZxgzwONE1LMBce3tv4S2vOLTezZGlABlQ2tvJZsD3uvXhKfd7A6Jfzi65LJWZ2r0iKgqSmDEhNW7z6yTNgdLlILU9Y7iep9beDzeh3QUL/vyjmxMazcGFw2F4enHLYs8S5nBIsWNvTxUsvuP4hIHk/xHp3hDXuYdiQ+IlHA5Lk26UDRPhb+d/LnDln+wxtg4Ud3X+X1wz2Wb/b5y8d/jv6JYvvr0jfZ2A3xWpIOYy4uZUsdBthBFzWaQhRiq6DhssTb32N2kLDcVbQfG7rfvMRkmRSIitfeuEeq91PdC3UQRUV9rD4bgLqgu+ZBrbM3rXL2qEGA9TR5V2Aj7/G5MDvA3a/KKSxTGei7BcFqLR2/k35XyVGVrYTKMvlZZcVa7RTywjVN8h7NaFzj7Wq2FPvWNBPYw1p0ty20vLMR8cqxlKJQho7dtuDjqxQ9TNY7gaIUcdNovH7dshRYKgxQnZacw0I8681ojN4eitVzEmMGHWwhoeN2NpcF2AU4FM9ew5um6MXa8uFpx7dVuB3M8Sml1AD4u0qpj73Prz+Nw/LEHa+U+ovAXwQIOkOSU0v7MCM6XUhgwo680e59SzCXLaH1FCbUrIaa+NKQdeULVbRgVvqgIJhZ8o5i++slvS89xgw6BLMCPZPCuNqXrt7LpHPwTyZsvaI4+0SLaGxITnOi0wVn3zlA5+LWdvCFBcu9iNXAo/WuRY1n9YCmEhnUog3Y7Jgd+d+OJ6iDvZraVvziDtOPGjqHAf7zt1GvvbPxHMAGJXDDXrTqlAMXK7VRlBpfuivDuibjpP73K14mVTpMzUpx51AN9pTvY1Ypnu/LzT0XrrrqtKlMgJrhCDVnu9pWNzt4t41U5yOii7GoTav318SYK0VfVfSrXUaRu07b1OeOalwfb3NnUUvWG3CT7CosvBeSVxX1ChKrhpdNGEVpGE0IZtssbnVoP04JzmbC1fU81DJFn42wwPxT1/Fyyx/6V3+HX/x/fQYs3G1NmYwt2UDxf/7lH0flir0vW/yVwlvl4ukchSLICHy4nGBWLqO0pTC3DtCz5ZqqVg1ao4jFx65z/F0+/kKG9Jyc1wPLmlNfMXM2OP2OjdJIKKqETMr3pWg6z+3K/qG+xpXIxIlS1GzBjX9wStlPnIeKYMn13aldlJ8zX7KTGToVaEJvD6W4VXBTdW6JKBM5H2GKQgQ7RhYxlEK789Fd13EvnAQ+CMQ7JAjQvo89PEHtbKGiENOWTlCfXWL7XUmEX64E8oxDGUJWOHq1k3Y888pbBqXFLTCORAlagNrfwbRjyflcrlC+x+ruFvHphROhrVD9Hvn1LXRhKHsR3ix9+v3ojv9ZrBJr7Ugp9avAHwGOlVLXXLd9DThxv/YQuNV42E3g8VOe6yeBnwToxwd28NpMsJ7A4+w7Bux+7pT49WOCiz74mmyvLWntviK+NJLteFyyGmqyvmK5J45/4cqy8/WSIlFkd3dIhwGtR0tMJ6LoReQtjb+0tO5PUMcX0OvgzzJ6D0LytsaEmoc/PsSfQRmLshJr8VaG+KwQY/dBF04uRK5dSYLdBF5EL43BnsPnVLslg4goovONE/L2AXlHc/hZxb7fo7u8gX373sY12nAF3CjorL9s7nUq46n1g6/kJ5abRaxZp5rnW3Xc1c8rIQ9AM+OxnM3RRSFf4DzHZhZ6HSni3S52OhUsUyvHz22IearXXS7lC5umsDXEbO/hnY4x55d1Z6fv3BD1WxzC42MZkNXn22CWNHcP9kkRkSw8jdmAamD7TzvqiLLN7erTXltpJQVTK8pIUSYe+TMDWu+MIA6F+x+IvDp5OKfshbw126WMIJxYvvxrH2JnYvGX0L2v0LklHBfEj6dwci5dXWtH+MFnFyL42NmS11yu8MZzTCdGTecyGK+uwwvPMH4mINsqiS48+l87l2JTWQZka6EOziwKqJk3GztAqE3CNjw0tKr1XRKUYeqBI56H+egz5LGPt8jx3nxUD7ZVGEiRNVYsTp0nDLDOzhwOhOrnEtPtpbsPs0zgjjSVgaPVEAvkaNoJaFCpL8O9LIfRVBoX123j++jEzULarXq2UeHqtRVFxefPRQFtu22xpUgF1lHdjizkkVyXusivVk5JnKHCkLLbwhvP1zFnl2MS17WrTsfJ+w3B4aU0mg+dDcLvx6tEKbUL5K5oJ8CPAv8H4GeAPwf8J+7/f9895GeAn1JK/XVkOPkC8Dvv+yLG4l3MuPjefbzMEiwsi2eHxKdLvIsZ5VCK9mrgkXfkIgczizLi5pccWxbXJICh9eV7qHaL1d1tVG4oYk3eC8WuNTMEC0PycIZ6cCw3x0zSyv2thNXA48GPegxftZSRYvhGgb+QuzJYFBJfFoXygWolToDzpUuDLtZ2qY3uVFRbwgAQlZpIsAcvX6KLASffqRk95wE7dI0RfDfLn+Ao24ZhEqyL+lVctlmoavOpGmZQm1Ll5ud8hbnyNBFOsxPHytBRuW23UKjmEIUU+wN8rWC+rCGOpi9I8zVVFFG8dJvF9ZjDH1Dc+bmQeDpDlyLRXj27zaM/GLD9dctwusBOZjUctTGgbJyrdMdP32Gsr09zp+EKvdnsqm1RrK+ZVlLMqs/Vroea1og3SHw0J3tBqKm7X57XnOTldz9LfLIQVZy1WKV49TeepX9kGb42Z/f3wDufoYqSxYf2iI/mFB0Zitnru+iTS+xout7RxdHagvTaHtm1AUXLI6nuad+H5+9y9j1DLj9V0v+Gz+DNHI4dG6XTrhlCsoCXG0NGFYSyWDeHudU90GmLTPzsQrrc6t6qhDSVwpZAvLxPJqitDqowUkQDEfuopCcsC1fclO/Xob48eCyKRWcBSxLXqeuVl3zTOU8liXwvSyMiOaewJM2cOCaVOUxRrPnaVQxfXoix12Ils4I4hlaMrSIKe22BoHwfc+h60zB0cxPp7ivVYzXHUonAKjjqpDLG+c3n8j7jSAIs2oLP4wlcZ8MAfXzhXiNYz9Gecnw7Hfc14G84nFsDf8ta+7NKqc8Df0sp9eeB+8A/C2CtfUUp9beAbwAF8G+8H6MEwIYS6+WnliJSDL4xRc9XFDsdVCfGhD46tcyvK8IRWB90LgZS8cjgZYZ4pInOhUaTXR+gc/En8VeGMtKgILlYkkxX6MlC0mxcWohpR4xeCJk8B60jjc4sW99YUEYeJlAEywLvSLoaq5VgjVks255qsAJrLBf35W+4p5nJFN3rUl6OZBB0MSYadei/GTL9I1OmWRfr7dEbz7Dp5YafdPPLU8d/AVAp+9aeKbYs11akeOstfhP+cH4m1bEx6KtiqnRFC8s34JT16zssvyxlcORiqnS3g/8gF//matDZ4F5vWKa6oj19JmG1pdn6mhX/bccJVt0Oi12f6KMjpqMhgziktp918EblbyLMmWpBWr9vgZrWO4x1FqZa/761gDgGPkGDM2uGSQWx1MZNRUFtRQuoR6eo57uo0lImPpcvbbHaVsw+kqJmHe78XIvDz/p07sGzf/NSvtDHZ2LgPxpj7t5AFQZ9fIFfDADQUzHfJ/Cx1/ZkG79aCSPB90UToCHrebQGPdRyibp1ndHHBlx+1BIf+oRjS/v3HtR4pc0yoelV923jaNocqCQRi4PFQj6/KqXd3d/lfFGHflT8Z1KxK1ZxBPs74nw3mq/vLyfqqXBuPE8aoEFXzu9iXHPbbZpKSInjj+vKO3uVYpYzqpQcc2MPrEWP52uaqqdF5FKnz1iUj3xnPRfgMHfwUuBJAfX9GmevoZuiFHe/bkcWrSonMivXOaljEdvZwBemysk5qggEPjQGtcqlRlSJ9Z6H7bbg9AKSSHy8OzGcjSSrs9uRRa5hx3v1+JaF21r7NeDTT/n5OfAj7/GYvwr81W/13NVRxlqkzTshg9fn5MOY9NkO/sKQ30zIE0XREpk6GgZv5fjzEn/ubrzCsLzZRi9yZh8/oPPKCcVejzL20blLiB9JMk6+00INE9JBQNbRtE4LHv9AIIY+mQUDw1dn5L2Q0fMhnaMSneaUWx25AQOfsh2xuN2j/fYItVyh2r4MJpTCFqYeyDULl80y7GolzoGzObY0RC8/oJXcZfU7XTr/1BHznz2AP/AsvV97U/ihquHRXXWsFce24l83FouKhdFUJNYF1/mqND1P3C/Vz197e5flhq9yDZ9UX96q0DvT+vp3sozyYiRPG/gb6e3VOdfdr7WgNf5owcVPWP69T/xD/tr/8KcZvpatrUjDkKwnnW58bkW4UnXIzdAD9/81vPFkjFl1PSyN860WMjZ3IHVxd46FT+DuzsGwdjR0hxmNaT1aYVWM9RT+0hKOof/liMl3rQCPm7+cgoLz7xzSu58Snl5KklOnQxl6xA/GYvZ0dimcX2cpq/ICfT4SzNklLtnZHNXrMrsRkXUU5XYXdnocfqbL+KMFg6/5+EvLzueOBVtWGm9nS2YPlf2A54nK9OqQ2v3fOEpflb2otBYJeJqu2UG+Xz+fLQqXntOCxUoMnO4fbewWazaK1lLMPA2LFfntXfzRFNXrSmBvu12HHICD1pLECY0kdZ1eB7XMZJDncPGKw22yTIq9+5ltxaizC+mq0wzbF/y7nh2AQCIg0NZ0LrsSt0CgPSxWBp++D9f3sCcXwiwBmMzk5522PH8UoJYpajyVgjwc1O9BrTJ5nflSKISXE0c1bImR3Xy5hqqecnwglJPKwOz5Pu17M8pOSDbwmd720KmHicB4wvX2F+AtAQvKWvQiw/oaqzXhZYZpBdKJ99usdmLyjiaYi9WjHs1E9OIpFjshly9pdAbpICQ+g6wH7Uew87UFeS/ERJr5DSgTn7y1Rf/Vqajb9vssDiKSs0zMbXpdSeFobuGu8n+1wqYiYNCDviRkL1eoOKb92hnLnX0m/+iAwZ84ZPKz1/C/+1lan39dvmCFqQt4xe5oStOb9L0N9ojDxmXqD01/YNuAdKpFRn5n3Z3Xn00D+qmLdPOzq9kprqCaSrDxdLilWehslpHvd2n9Rsxf/+qfpvvI4k1STLVILRZ0H5acfGVA975LFdHSKV91TKyKr/IamPYVeKT+/YqD3YRtakFRcyi6xnzXxcarZwHKD2TRaMwY/DcesvrEi8yue/yVv/y3+I9/+ycIHoX0vhRz8WG48fOX5AddoonBn+WwtyWsiMkUvywpb+6ivR2YLwXftes4MFsIa6Z0Xtuq3ebRP/Ms409mvPjMEY96tykjSF9awlww3O2vTeBYGFl4HmZviHp4LN1qw6Pl6ueONdRhGJ6TbsehmP83BqBoDaHAIuZCVH+q15WwgDBAn40xlQeJgxh1EkuXXZaCOQcizw+ORtB2gSRGXP1IHQ5dFEKpK0QkhDECj1Sh4a1EGCxdgSuE4udw9DQTteUiwl7bEwhmsappgGo8q+1dVRiuyQZFgbW6HtqKqMkFQ4SBQKaDrtAwsxxVhlR+2yqJZTbjaIW2cOEYrZZAM0UpUIvWUrwr+XxpMFEgqVsfeD/u0hJd5ow/1CVYGEbPeSSnlssPQ+uxomxDdAHKWPrvFOQdjS48vCSg6ITkHZ/22yNWN3sCl1iLLizxWY4JNWWgya8NGb3YAie0Wd3O8JKC7s9L9mQ4Vuz++mNMO0GvPEzkE8wCjAf+0qLnK7lB04Jw6pO3fULPa6TOqHqoAtQKRpyjWo2bVtzTNBVfk06LnS9ecPQHtjj/1Wvk3z8jmLfhsy/S+p23MRcj8Uyo1GoOt97oGN9L/m2FOlcX6wZeW1Hr3IOeKHBNWGMNT1xJivGq9yhQQ9Poqfk8G91W89/SFP+3Xub6a1uCOS5XLp1cumczmdF+9ZS7DxL0+YTSCT823m+DjrnmVTdk/NZgi2oYWZ3D5mIHrAew70X5qxZFz5OiX6x3NU2bAjMas/ulKa/9xYT/9NUf4z///v+Bv/LFf4740zPyv7fL4Y/uMXwjw0sNWT8knq2EseCSXLzDi3rnoIcDqmg3u1xiLi/lZDwPvb/L4kN7hFPLn/70l/l4+yH/1Y+GLNKQ9K0Bvfua3a8u0O8eUqeyex7q/pFAUdV9avTGZ1pfU2tq3nSl/kVrYf44n5061SbLpai5/NUKR1ZpRnlyJvdNGNbDS3ldUTqqinuexNSCG+N2AnEsWL5S2Bv76MUKG/ikzw2J3zmXAjiayjknEWqxlGbKJQTVn6Tn1cwQPZrKotJtSQGfSKgDuQtGabdk+BkGYgRlrFAwnZWFzXIZohpJIALEdbA08ryjiVw73w1H3cBVKSULTCBdOL4n1M3lSq5NHAmlM80pOyF4fcz5e5fnbynA+SdxqNIyuR3Vjnztx4asp+i9BZOP5ahSGB7eClRh6Lw1k+QaLaGq/lJu7vB8iXc+Fec1IN0KyDuSmHPxsRbLPcXoJZj8wSXepc/ucMr8mqb/zQm7v3HI7KP7LG93WV5vYz1N757BX4IJFPl+DwDv4SnJa8dSVC9Ha2tGl7FYwwFVV9vASq1xMtexJOYoX1wQKUr2Pz8mGll4p83kx+fMrvnMP/McXr9XG9LXw8qrAzn3b/Ufm/hu4NcQCqw76No1r0EzbJ5nVdTqf2+m41yV3jdEQ7WIo14c1FOLdv3wPKM4PKJ45x7F0XGDpmexeUb55juYr75KeXgk0uPGggIIh9vzpENqFu36F7QT7awHrM2CvQH7vEfR3rhuTuat/LW9wMa1Nxb1jbfZ/zWP1TLk3/mZP8unbz/g5K1t2scl+789Ju17LPZ84sMZNvRrjx6V5dLlrVLMeCJzgk6L8uYuVZiBDFEtNgwYPRdQhvDrh8/zW+MXCLRh/sqQ3tuavd9d4L/+qBaHSDCErvFqGvdBfR2qnUTz82y3RLqtlfipVxS/Sozj1JnsbTv7WPEVsoHvPL0bzUDDzZE8k6K2PWT+6VtgDOXDQ+FHV48rS9SwD+VaVVkO28TvnIvvyOMTSfvJc2F7OX42eV6bYZmLkUA7s9kaMplLd206klVpOy1ZON3OANcpi9Of0BdVu4WKY2GxJAnsbon83RhhrVyOpTD7PmrQF+y8cvlL01pwY/O8FviY80thVOV5nepufY/geMJqLyHbes/b8YPRcRctjTIQLNx23sD+78xQhWG106NMLMPXDeG0JH40wbQj/EUpPsg7oXgvWCse3nlBcDQmsBb/oM/4+QQvtZhQkW5ZuDunPE/Q11LSv79H77xkea0N19viKmihiBWqsAx+74xeNybvR3greY3y1h7eycjdsBpzer7+IsO6SLov9BNe0aXghl4VA5Wmkl6dF+z+no8q21wMYi5/aIX65Rj12edpf+k+5aV7zSZtC1xB2ixWG5S7K56+Sm+qIevfb/ii1F/oK1h4RQ3cMIxyr/9kOO96aFpDDu9jU7lx1HDEmnrXZMhsdPW1r8pTxERXVY+6wTK5ejTk7hVG/lRrXRrXtzqXKwuZWaVs/dyroD7MYl/z8P/yAvq7FDovOPwDfYoEdAYnn9li90tjyq0e+p2HlBcjSQ0H6XT7PeH/TpZr0UmvjQpD8q02i2sW9eIMtYz4+vk1zl7ZZfAO7PzuGH3/0NkfmA2e9Yb9rRs0bzBKXAFXvssPDQKxML0Y197dKknk/FTk7vEYE0foKJTCuT2UnMeGiKmCZlQYbi6unqb1pXuY2bzOuqwzGK0VaXkkPy+2O+hVgWnFaLdoqCjCXI7qjlh1ugJXrlZrm+KWGECVvQRvMsPc3MMbzSj2tgmzIfkwIXzzUK5H4HYARbH24Q587HgqIp4gwMYhxW6XIMsxJ2fSiVcL2M6WhGIURs4xL0QEdOMAxlOn7chQWj5f205gtpDz1wrj7A8Wuz6D1uLJ+9QdH4jCXUaQDhTLPY/2oWE10ESTiNa7E6ILSzS2tB8t0TPxtvaOLhn/4C1MoDA+FLHG6i7huS9JFllOfmOL1W5E+0huntELAf2Pn5EVHs987JhvfO5ZdCmLhc4N6ZYk7BhfoBEvMzIQeucxcb+HacVkt7coEp9k0ZIVtZeg336MjkIprFBP2K3zjFANfwL5BSkExk3f8TzM+QWqleCXJduepoxajD9hWfzxCfxcD/tdd2j/dkFZmfnUfOw1jesJip/nyXauKp7NYt2gBtZd6hVTpZpp0fxdu1bW1Vh7NRRsdO7Njl06s0rk8j686fr6VEUTef3mKbkAiQ3+tlVPPu97kZhMufE2bXMA2xQiVdBR6G2oWGXh2nRUbF7H5jUuxxO2fuF1/B96gbyteebviwBk+Drc+xOi3i2OfazfZ/haStRuo42V4dXtGxD4zO/0mB/4dB/mRHGAWvYot9pMnm1x9CMFkPPh3XNef7zP8nN7XLtX0vvio7W3h7FrHxwlfPpK3l7jtrZBO3U7NFtlTGqnKj08FbMvt6uRDtFJtuNYTLYmU2FqDfqCg6dig6wanO7KP0U1RDEqTWX202pJIVss1kPfOBIZue+T39wGhaS2R1I8VeYGplHkKH+Clds4RAVDyY10lrbF9SHePIMkxrucYpcrgvMF1lN4y1ygmjwXKXxpBIOHWrouWoyuFPTAR6cSzoBSa8fErQFqPEWPJnLtKhdFBxFV6T22zOqAabGp0KK2VAob+uhlTu9eyuSi/fT7mA9I4faXkA2g944h7SvaJyWroYc/b9N9WOJlBm8sYL3KcggDWic5y52A+NIQTAunqvTwJ0Zy+WIfZS2zaz6LA0X/MyeURtOJU1775ecwHUvnUUEZa6Y3fLqPCnRuydse8VlGGWnxgdAe+bUBk7sx4+c0wRz6rQHBTL68yeMI6zyPK/ZIRbNSVwZgVXcqPFdPbthu10EmYkIUPIRhxwcVMvmuCP9PjlB/d4D9gefofvGhwDM19tzomK50x1c77asYNrDJAb96rqzx7JpKV3WXpvLpUI1OtdppNKxoraEWw7w/I/TKNWIDd1+bYNF4j00IprEreAqM9IR1beP5m9ei+XtPWyRkJ7DJpKnzPKvna+wUyvMLer/6BpM/9ALTuzFFJFCdygw2NpSxZbWtUIXBDrrY7R4qL7n81DbRqCSY5Fz+sIe/9IkfGWwSstqJOfrhgsHOjG6c8vqXb9N7U7H3267LDgLZfvu++Hm4xdM4bNZaB+NpvaY2VjOT2lpBy5DW82popM6SrAKZAZxOQUQokXTMaUZ5egZKoz1vnb+a5eucRd93Q8O09le3ZYk9Fw6zCgOJMBtNUElCeTCk6AZ4y5J8r4M3ywTvTlPp7gddtLNKJsvrBadWNc5mBG8fyRzFWsq9Ad7jAla52Ed3Y7Tv1WZVVXJ7JaqhLKWQBz5mp4++nKJdmo3udWWx7cqQ0jg3QFvbBZSo4QBWmTMEM2J4NZ3Ja+SS1kNeYOMQE8q9FZ7MCCe/T8n7P/bDwvXfXGE8hSoDyZV8Y4Ja5fgtyckrBi2KbkD0WFH2IorEo//ahLIVEByOKHd6lJGHTSIWt7tYDcZTTO8qsmdW+FnA5HGXzrs+QQn7Xyw4/WRAMHOugA8BY+m8NQbA7LZRXcG65zdilnsa/ckx09M26dCj9djj4HMjzPZAJgUH23B0vqZJObc+8cmovtBrrLlSnJnZHN3riPfwbI4XhrS+cYTV1yijmMlzPuq7DHu/rRl9/20Gv4Ub4LmcRBrDtVqcs4Y8NkQz7lCBL/zcLAeTrQNgoRaYQGNrfYUL/gS7pIYroOlEuClzf0pn3Dhq0Yd7vnqBqJ6uKtRq7Yl9FRrZ6PKb2G1DtFRjrtViV/29ulYVQ6Y6mrCNKZ98nQ1Pk0qFuH64mczo/eqbTH/weS5fUuibC37wmbd5+ewaF0mbfBDw+Adb9N4V0yVdWKJxyfgvTQn+zpBbv1gQTDKspzj7jgFZT6EnBr6yxTiA628XdH7rLSkwrVZtn2qn0/pz1+1EnCxd0Qbq5COU3Ecma+gFtBYvkzx3A8mGzavS6HZSF17Vbq+HgIGPOTmjcoI00ymarrsXRGiiSonzMmfnMrBDBssy/HSeIr4PswXZS7co2j7LHR8vh3LPZ/DKtI4fw0WT4XtScAGsxbQTFs/06PxeLkPA/V0ZGrrhtn7tnuwOtAZP4785lkXEWOm6S4PqdTCjqexOdrZkDtGSAarpt9EgGHbgoYYDESSdX9S7CaW1C4kIRYhTMWCCULxQ0lD47KOxvP/9HVRp8GYpaikW0E2R0dXjA1G4rQfpIKDz9oS82yNvacpOhA48vPMppt8GrVju+Cx2B0RjQ/vtEdaXvL/82gBlLCb0mHx4wGqgKRLF+NMZrCytdkr+pSH7bxsG3xiTD2Mmd0Lah5aLj1mSI42Xikug9TxUXvG+S4pr0l13H1jOXumhhgZ/odj73SkqkxU+P+jjj2QQoTwPwrCe4td5fhVXuFlwQDDR2VxUZmVZC3Xarx6jzB7+MmTyvGHrX73P4d++S/mHbrP9WwHGqeCu+n8ATjyzCVdUr1XxtW0Nm6x/R5R03uYicGW4eHVB+JY0QRq46vt03bXviMJ1rlfEIQ0/kauoTv282t9g0Mg/VWpIt4iUPIl9b5z4FfikYpE0CvqGCrTx3p/Y+QDgYaYzOv/wZZKTF7j3R1r82ulHUMOMvZ0JrWs5D0Y3+IF/9wv89Fe/g/ZrEd17iuDvDLn48SXd/9rj4iMtgkWC1dB9VNI+ViSnKfGbJ5RHJxIW0OuK1NpBF9adq4oiwU+rMGSvcR9qJbs23RgiO65+xQQRN0qF8kIHvzmKYBjKQM2xRFSnJeEQVQcPa8OoKhC61UJF/lpSrrUIW5TCDnvCZS5NTfULjieEpaH1miG7tY0JNPqtB/JYx3KhLKVr77RgIbQ67Xt0vr6os15xHuH1eXQ7ImLKc+wid2rJhPTuNsH5Aj0T9kqlfNazhfv9NnpZylCyLCU/QCuIQ1GjOmqitRY16JN96Drh6Vz+PpnLgNT3JQw9y9ZNQxSh8gIz6KAvp/LZdNsw+v0pJ/+xH15mWW5r4ouY+CKjDGRyXnRDVNFGn09Y3LzOYk/TfVCy3PaIz2K88xnLvQFlKPFnVisWu5r5TUs+LPDjAhMoen+7S3KWCevkdATeEOuHGAX9N2QQGYxT9CKTVa4sMZ2uDA6QbMrV0BOWy7MeqoS8F+Ifj0ApvHmOOjqFrQF6thDMzw0RrbHr1Jnq7+7PdWEvSyneSQxK10qt1htnKLuD8UNejW9y8MeOSX9mj8vvvcbgyz48OsIu1srGusBWXVVD3r45EGrYs16hgDWHbWLjmqGCcGNxqHHz6mgU7w1uuG4wPaquG57eedeDyCb88G3CK9XRKJpXPUVsntV2uDQXnfc7KjqlVpu7B3uF+thcOK8Km8oSCrH41V94mWe/lmA++gzH39Ph9HaEt1SEc8XP/4/fx86xpYghmpTkLc32LyQUrVLcKgtL916Of7mA00vMZEKJYNeq3a6pkJVitQ5RrnYEFVuI8on7pGI0XL2WlatixRnHSJFU7RbWOWTayjdkthAL1monWA1FVzQGvtoFbK9qP3ddwW1nI+FwJ5F0m2kmJk+dFiorxbRrmYpuYrmU5zm9wO5tw/Fpnftol44NEkfSRVfNlKel+BoDhdzPJpOiLee5Inzk5OdZDhMnmkligT88DSdnsrvwfWGJWCu/v3QdddtDFcJDt50Ef5qKK+kik259NhMcPnev206Erw3YKESfjmQR0gp67d+35P2fyNF5VJC3/RqvDh6cUVx3fBitMKEMIucHHtHIML+R0PI0/tIQzMUE6uJDEekA8mFJdOwTvuETXVgGX7tEnV5gru8Kf9NadA5FDLtfnokTV17IpPj+GYQB3qUkuutFThmJb/dyx2P4mmGxpyVsdZVibu0xeqnD1mxJOWzjz+RxytNYqzZtVq8IXSrTo+rPxizR/a4U9CzH9jTxgzFDfwAEnE32iH9sjP65Puffu0fv3R7BV98Sh7ayFJXlBr+78gi54k/SFJ40BnK25InOHe2t8d7ml75+AgeBVIKU5qKhlXRryFCvwoeV757zaYejASrfF1HNtyqu9bleWThgc3GBtQryaXTKxutv/LmS1WtTX1OBcNYLVFXcm8KoTVtZqHB4M53CF77Ota9IEK7tdzCtkDL2JWuxMChjCWZa6K7zHP/RuRTkLKN0fP5Kaq7iuF447VIUufXiUe0M3AKutFoPJaudmDU1zlwxRqrdYmWZa8sSKil2LpxrNZ45n/lEOtB0TVkVv9+r6khPYIFr+1LMHeXQzBc1ZILvSbHutjHtmMXtNu13JmS3hkTffCwmT1GIUorixhb+8VgYGVEEJ2c1i8ZMpsLoCMSetbYcVkpUjZUvtufJLsV5bJteInMyY1GAFwRSkCucvyhkkex36vxJ6yLgVByv4aBWItc3L9EXUyfTX0CnIwveYkW508PEAbrfwju6RI2nsrg5f/BsmDyd9uuOD0ThtlpJBmQBUaLJ25pwvI3ViiL00PEQ4ytax5bLj8JyX9F+qICI+YFHcm4wA4+8C+EUikuPna+VJMcp3jKnGCYEWRd8TXqtRzBJGX5zLh22QT6AVkTwQEj9thWhz8ZyI7UiwrM5Xjcm68b03lkQTmPCR2OK564xu5Uw+OYMrMW7d1znCJqpeChX3YdSSib4SqPjaM3NhkYBKDHjKbqdiIrq9By1NSR5NMOEXVA+PBqw9y+8y7u/fJciiel2P0T79x4IJapspL4XT9nGw2bn3JRxy4nU57PBc9b+xuObUntRZ14Nklj7WdTnVA2lmufyXocTMwn2vv5Z7Q9+teirKvw3d8/PUyALdzi/7m/7qEIbqt0RbC4S1WLZvN7VdXHnVPmoN33ITZpiDo/h8aE0CJVDXfPauutWVKEGrvMH0K2WdHuVUnW+LtpNI7DmwLaGya7sFGoYBQROUM40yg/EttgKO8WmGWpnyykeUxGNpKlww6vO3BcIo3b6qwI+kljS3Zcr+QwXc9SNA9TUqTB3t7BFiekkLG63CScFeVuT7baJDmXRMvcuZeDY60o2o+cELkkklLzxVDI43f2hWrFg2S5JXQWBqDsRu1dbGmw2R/d72J2hDAaVYvSpHdpHKXnLJ3k8k/e1yrC9Nulem/BIVNRkIo+3ZfWdcOyqOMB0Y/Sb4g+j2m1Z5LaH2EAWDO98CsMu3ngu3P2icN24DP3DR5ebsN2V4wMhwMk7sNpWnH1PyfSmh1WQDSKw4M8yVjsykbcaBq8KJq4LEcYAFJFidlPjrcCfW3a+Yum8O8NbFejxgqLlsXx2i8WNhNW2z/KghX80Qt0/RJ9dgjHo6ZL85ja2FWFDX4rHbC7GNVrsXgffGKOXOZ2vPGZ1e8DJd7aZ3tF4D0/lCx4EcH0PFUUycChLbGnqtA+8tel8U/AA1INLW+QySMpzN2SaoycLOm+M2fvdJbqEBz9/l7s//C6XHzfMD3xGP3AHff1gvUIrXRecDUEMbHbezcFlg69cf4mv0g+VpvbpqF6nel9VqKxtCHiqtJSKFnnlECOub8Ht1l4toHlPG9ar59QUCrnHV54atTWt5z0Vm7/62lVIQzMRBmhI+6sOOKyfV4XhGrpqnrc7n2ZOqUTUra9fpb6VXdD6cfVnFPhSTNNUOkdjJTg4y9ZFO/A3oJvaaVKrOrT3CYZRGMpA0u2SrNs1EviytVdKKLBxuPbHrvylq8+wWnyci58UxlzYKwu5p22euxBjF5rsLE1t4GFbEYvbbVBQxB7T245a2YtBe+goEun9sEe52xdXPmMknqw0LlNSGClmLk6SapWB1qzubol3SBhKke93UU6qj6dZ3O7hj5b4lwtWW4rH35+QHM7RU2dE5Trl4GKJmkrupF2tUNf2ULevi++JdpTL2QL94GQtmgp8ONiVa/P4VKwMVine2dgFGGtUp43ZHlAeDIU37jcahaccH4iOW5VgQui/4hPMLdtfHWNCj/ELbZLzkGAmWPVqqNEF7HzFkJzl5G2f6FJofK0Tjc4NwSzHPxox/dQBqgBvEDG/FhCNjeRFHqfopXAw7c1r4nXia84/0cUqCJYJyVlB4G3jfeNdzOExWh0QnY7I7+5hFXi+CHUWNyzxqcLsDFHGSGbdKpft1RTZdmaZqCWrL5TnrfPymoWyYVFqixwznqCHQ+mGJlOUtQTWsvNVePgjCe/+4l12PnvKWa/L7i9GXHzvAYOvx+j7j0Uo0eAoX1VG1n92hlEbHdhVIU4TVvE8RwtrLDhQMzTqFKArP28OS+vXuXIuG0fT67rOjmzsEPSVrMwrwcHrB69x5qsS/uZ5PHE0zaOswWTlk7uT6hysch23aUAPlXvg+nNuCpPq927t5i6hwuOrQWij066KNuDYCoEriIuNWYbSamMAXr9Oda0ce2I9uEaENnGMaifiu+FpcaqbTKRIu+AEccKbQactAbvL5cbnrQjkvFZpPRytPwfPE18SN9tRnTa2nUjSOUBpSffbxKfy/cy2Y6791lJ2smdTwa3d+anJHG+6EM8UFx4BCBXQRQGKXN4pMPOCeDIVrxOtMNMZWmmh7GkPipLWG2dyXmlG68Sw/Y2MshWg5hrTCvHOJtK1O+sLVRSUz97ABFo8SZTCLyTY3IzG4kliLUp70kWHgZx7EEga/GiyFvpEkQQgn12KDH4yk2v91EwaOT4Qhdtbwd2/d8nyRodwlKFmS7LndwjnRhRIaUkRh5gAsr4iutREYy3FbJrjn82wSYha5ag04/J7rztf74KzT0asti3RhcfWazneokDPU3HqG0H6wj5Z3yecGvyVpfPKCWW/jU5z2NuWibKnKW7vCtvkeIRdpYSvL3nh9T7T77jOgz++ReeBofM4I/z6iYQD376OOj6XL5nnCdZtHIc2jkSG3GR8sDlQs0WBubwUU6ogEP/e0lDc6tE6tFx8qsT/5V3sCwXmnz8n/7ltLj81oLPTInz5Xs3hvQqFbOC/pgTtr+EP9zvYhj/zU+TqVw2c6gLQ/J368Vbc5668P+DbYnfUMuSqO/bENKsWFzkvj+Z5PuE57s51s2jmjY72KUNTRwOsQyXKRjFudt5qPeRsWsY24aCm7UH9f7OGTdwvyUOrCDa3MDR3KpVJk1Kqpq2hJOC5+V6bGaBPOCKWyC7CGSPJ6SrY6pNe73H28Rh/btl6tUVwP5Tu0HG07XgiBWk8ESpbltdsJONsWOsFxqmJbZpKV1t99mGA6nQwF5foizHmYJt0r0V0siCYpOjRHFWURI6tosdzbBRiuwHFIKGMffm9Byf1udvARdcNemQHfYLT2ZrWujVALVYCJbooQeV5QvWtEtvDAKZzwabHU/pflvvBdBPJrVzmQgG8nLrADA+KAu98SnljiNUWb1W4zE8nqAkDERPlGXbQFQXswxNoJ5SDDp5j59jxRBalNKO8sSPvuZ1gfI29DHiv4wMBlfhLCQYNxzl6WWC6LfxZjrc0BJMMFGQ9xewWrLYtxofZ9QCdGoIH5wDo0Uy4lmFA1lEUiWK5GzC9a9C5ov9OSevtkdwYF2NUu4UZdAkuhdsZTkrSvubiMwek+y0mHxm6bY6YpfunE7y3HslqqJTcjFoS33e+nmMChT/LZQs56LK62UW1HERSiWQcVipOZN9CEAPCEhiLBwNJjNnqcv6xkB/9S5+n846PMtB+x2f8tW12/5kHTO5oprcj5t/3HN7N62tMtAEfNL1IqiJRS9hNo5A1IYfqcUXuKGTrgeTGMLC8skhUA7ErHboKwqdCJ+tfUBvQjDzdmn99lRFT/3stDFrbx9Y0wwYH+6n+KRWsIm92/fqmXP/noI1amJRnT5fVX4VrnrL41bBNFX7cgI3q16iGbVku9qoVm8X9bOOaOjMoW6klq8Wr+hwq+KRm+bgBeiFwhVqsmB+EzD+z4Ef+zc8zv5nUJknK07Uy0S6XmOVq7dFdlq6zXOsT6kWrYk6517Rliep2Mds91I0DedxsSTDJKLqR4L6A6bTQ4zlFLxYYJQ6EHrwsCM/mMsCNIxk8JjIUNFPJqQ0fXqBSxyDqdlB5QX57F93v1TFmyvfXPPDr+zLLUkq6YHD3i0GlhdACj8/Rp6P1vel7Ij5KIvzLJf4sQ09X0jHnzpZ4tRL6YxxjBm3KtruOYYBepOLzPRILX3s5ll26UpjIl51DWojd7HscH4iO22pFfm2IykuKCtue5/izjOX1NnlbLFhREJ1LtFP/3ZUo0DrJOgS016HY7rD1zSVF2+fyxZDtr1haZwWtd9Yfil2JmXqxneCfL2m/OWF5q0vv7SVH39dm9Lx4p/ReEbwP36Pod/Avx7C3DZOZcES1xhvPiTX4i4jzj3UYxD7TOxGdh5lYUFbqMu2vTdihUfQ2zaFqiXg9/LOU44n0TN2EcGL5mb/7WfZeLei8csL8w7ucfTzg8S/c5tk//g6vvHWDnd8MmP/hG+x8uYt+44F8yZTe3LpXw8e6QOZPbOk3mBGu06yL5hX14FVr0KtmVdVRMU1s9u0qKVVdiDck6XZ9bk3OeP3+8kw6TaWppPsbQ8QrMEm9c3BipI3UmyaEoTa78o0dUxOTbFAGKyvaJqNDfLCv+K5Ui+uVrr5WpF7hxss5qNpWQTV8yKsUoPrx9QbKPYcn8WHaybLtKiWcGsqziH/w332W7QuRfis3q1EVBLJc1rugevGteN1QS8xtlsmgsJLaO5jNZhkm8jn/7gF7v6FJb/YxviI6WbJ8bgdvVaILMZUK75+J698yI99vE0wyvEdjsZctJRAYJyrSO1v1/WKdlz1lCYFP8M7R2n5CKWyuarm9ardrCp4YWpWSo9qKZQFwCTpmPq+HjLSArQFWKfAU+mws3bunMcsV3rV96b6VgvEU73wqHbb7e3WewpxCMO1Vip4s0SA2AcUVIdjVr4V9n3/8J3X02jfsd3/nv46XlqTbMdHpAu9sQn5ji8X1mOiyYLUdoEpLMCtJHkxYXe8S3x+Jl3EnQaXiSJbvdQVeKURQ481S6cQXq9oMnsDHasX8pV2Klkbnlu7Lp6S3h0xvhpQxdB6XtN8eY0Kfshei0xI9y7COtlUmPuHX3q39dYudDmefaLH3pRl6kYldpKflg18sxfXMUbnqY0Nx2BBAvAddT3c62A/dEcvZwxGUJeVuHxN6HH2mjQlh/mLGjesXjH7lgHBs6RyVdL9wv2adXMWXn2CQNPnIT+NFm01o4ir1rnm+TXrgE3hydd81F4Cr92LlW/JenOsm06RoYOvuvK8GTTzxPBWV8Spm7s6nPv/mY64MNJ/wiGnK/Zs7gqcU+OZnXnWltRCqoq9BrXi8ClHVxlFhWKscK0FMU9FZXxMArWpGiopj56YnQi774Wco2wHeLMO7mLm0GmlQbJZJ3meabsxj6vsg8OsM1krarne2xJnPheoKTCLYtg0a10Mp9GwpIpS+hE5X3aZJArJBRN7z8VZG7JrfuZDQgiCQ6zLoYuIQPV0IgySO5Ds/m8G1PcGoL+Q8xIJ26TBkdw9ked252zRFdTsU+338o5EU0LKUxSd2Q2Fr5bV9HzPooscz2Z0sV+L698ItoQI6YoMNxGa22Onin07kczs8kabQURbtbCYKzdQNb8OAzz3+Kcbp0VOB7g9Ex21CjS5EMRVMMtLdFnFa4o9XtN2XqTtO0ctcJK5ZTqS1KJDynHxvF2+S4Z2OCE6g2OmIecz5DC5G0OsK1gRifN6KJHxhlFG0YryVodzuEFyssHdC9n/lhHKrzYM/uk3nkaF1kpO3fIobCfN9Dy+z9O7nsDWAVYbKC7x5xt4XCpS1mCRA55F8OaD2hKiMn6h8DIyIVKoOD2U38Wb3+4LlCgdYv/wmwaAvQ6Aswzu6hIMh139jytknOugs5Oh8nz/4p77Gr3zpo1jfZ7HzDDu/N0G9ft+FM6yVkRsOeA2GiwxTFSoUjiuVH7jZ7Kzl1+1Gp1dzmmsOd/6eBXit6nyKKMZh/e95VKZFFUuDxgJTY9rNDrV0nU6w5plXXXBZOoMwW7Nz1sk9mwtVc5hbaYRqOX3pOv7CrBc5+TCfWLyucuzr4WPlCVIpHd3uRVfZptV94TpYu5TCWO+GGgtV/dyeFuzVxYKpViIdq7HrxJlX3yFIYvH/cMIYVXmBV54dahNqqsU2ZQm5ki7bMU3MyRm2KPCGA8qbu9Is3WrR++YIdXhG9uGbAjNMlnB2ibm1L4EnnRZWKZa3ujz4cY+Dz4H6V06Y/fQ+nccFXI5lB5DnElZdGnSaS2qM76MmQs9Vw4Fct8lSFrRuGzNoy6AxiURxej6COBa2SxTK4tNroZe5DD09gVEE1tIi0PO0DBFnc7R1FrCdNrQS+b4HnlCNnYDIdGP0LMU/m8LluM6staVBd0IJc9gayi5iOhWxU/H+O9Jv2XErpWLg14EIKfQ/ba39j5RS/zHwF4BT96v/obX2591j/gPgz7tvzf/KWvs/vd9r9Lo37Hd+5n+JKmWlnd2K6DxI0XmJ/+6xfEBxLPaS0wW228JEAaqUQcDiVgdlLMmjOVYpyk4oVMDLmUx8J9M6bkgNenJTLiQyCGcKnx908UcrynbIcj/Gywz+ouTiQxGtM0PnniTjjJ8J2X55LufV62BbEWq2xLZj9Mkl48/eYfS8x41fmaJKg37jgXyJKl5yUWCchWN1PNFJqYaAoeZlF3UB0WEgyi2XjILnwaCHDXxWN7ucfTwABXs/9pBAlzz6hTuoEroPSgZfPKR8dPQEtECTjdDoApudY522U/Gzi3ydLt/sbK8sBpuslUan3SjSVUbnVY72hocJPH37eHW4+LS/V1iv62bdferOdxODf2KoC0/slK7+rOkS2NyF6DCQ53/K9a2uYzVMrGYhlUNfff0qGblWa6MmpQT3rhb9xnnUp1l19mGIt7NNfnsXb5FJ+LALG64WLpOmeLs765BbJ2e387lb7NchFc0Fr3bDdBarquJWKy3sijgSuu3eDssXdqVbttb9jpIC5aiB5U6P1UGL+GQl1slaM/ruazz+YUPy0Gd5O+fO34f2Vx8L9znNpHN2dYCyFMVkabC9Nib0BcqYLAXHXqbk1wboXO5DPU+lnrRiKeyhCzmwVp6jFUtSTrWL6bVFrVntIKKoXrjkHvYoD7YpeyH+OAVjMK2QvBcSXqbo2QpcGLhqJfVgtIqio98VO9w0hTDg8+c/zbg8+/+5406BH7bWzpRSAfCbSqlfcP/2n1lr/9rG/a3UR4A/A3wUSXn/RaXUi+8XGKwKI9jWKmf6bEcyJts+4UgGH+zvUHQiVnsJRWsL44lntp9a4vOCyW0fLCQPROiS93x0XmK6LfKtmGDSRb/9CLaH2PHUdSc5qijJDwbieeJp6fS//oDuWRebhIxf6hPOxPAKIDwv2T1fot59JF3yfCEdBmBbEWZ/C+sp2o8t3lQS3ZWLW7KTqXzR3JerwgJxnS3QkMQbMaaCNUa6QRcsMOMJXq8jJjYA55eoQY/4SHPzseHoB7d4/Os3WR0U/KU/+4/4L3/th/Eyj9mfusnWq/u0vnIfMxrLVi7L1pbeVQdc4haPtTy+7jarQtf4IldDwKoAV0PJTQilIWO/0nk/gR+DqAErSmF9PFk01zdS8wnNE1h2NSBbP//md+IJvLlZoOvdiN2EcKpCXO2mGs8j18WFP9iq2LEu2o7nXomxhI3B+nnczkhHUU0jtWWJ7nXFVqHxXusFlEbBrop9t4PZ6XP+iRZWtbj2Py2wl6ON7l0P+mLWNFu4WK5ctv2ObijP12gsHE5vnWVDvVDvbcPJuSwuceR40h42DknePMNO55g7+zKsywz+6w+k+IcBelWAgbNPdNj9Yg5K0Xq84vbPhUzugC4CgonwqvE9GPZkgZstsL02+U4Hf7xEX84gzdCphDVUBlGLF3fxUkOZ+HjLAu942dgRXTl8T4q25wbk1sLJ+fqSZxm63ZIFUCtxMby+DUBwJuEo2bUeZewRXqxQy1ygp0wIDCqOBUJ14h3lS4Axgy6cOnHPe9FV+fbCgi0wc38N3H/v16b/BPA3rbUp8I5S6k3ge4DPv9cDTOixOIjw0pDuuwv8g4TFno+Xlsz+wDMUsXAlvcwyu6bJhtB/09B5JJzPIgnxMlje7OIvS46+16eMfHa/bFkNFQe/Pl0HhKapFJtYEt4XNyS5HSA5zdZbyaIkbw0wIZK0PZ7IQCIJxXN4lYpCshOjji+wnkfZDkhOM84/GpNvt1lci+i+PSPbTkhePcKcXzgZsb/u8hpb9Wa3VnVawJNSdCUQSzmZoeNItlaeB9M5eplihj0OfmvE9Pkup6HH3/h//2Ha3znie77nHX7p1z+JCQL8Z59j/4tT1DffdS/nhn8NO1hVVfOrg7YKEmjgrBgLahOqaEIvUOHI73mjyRutxRzrbn9zKOn4zVf8Qp4wv3paYb+CO1/lkT+Bc9dwgEftRd4c2jZ3I1WIststVe6LSq9T7nHnZUvn+REIxFPBIvUMxK4XRm97q1Y2VnmIZjyRa9As0I331Ay68JI2qtel6ET038okLSqT+DHvxjV5nuozz4uaQWKXK4FHqs/GXfP60nh6nepSFM7utUSdXUgRdo5/tp2Q77QIHo3kcWGAWhUEU+lk84/cITgcoWaSAJT4GnSH1bUOJvz/tvfmsbZl+V3fZ609n/nO976hXo1d5erR3U6bBmxaxoANCAiEiCgklhKJ/JFIQUSKQEhIkaIgIoH4J4rkjAhCACkMtqXINg4GO7S7Xd1tV1d3dXUNr95453vOPfOe1sofv7X32fe+V4Xd2Kn3SndJV/e+8+45d689/NZv/X7fQWM9wMLOVyeYQOMfT2rJVRZLx97MUGmONxeyjY2CGh9uT0eQxOS7faKTBWUS4J/nePsn8r5BT0osgPU8rFMwzHcHBAcjIcI4D8yqFwDUjVa0wj57ncVOC1VadGlRnRBVWIrEIxznIkl9dg4gdnRKiW6KOx82iVDGykIBEMdO3//fEsetlPKArwMvAv+DtfarSqmfBP4LpdR/DLwG/FfW2iFwHfi1xtvvu9c+cJhAsdjQJGeGMvZpv3eOfamPP05R6wGLbcX6mwXBpKCMIja/lRPtj8l2usyvt5i+WNB7y6eMNLqwXP+XGQ/+QMjZJxXBVDF/ro+37BIez4Rk4GvUqTjpzLc0OofNr4/Rkzn2dFh3eTe/HjP5RF8c3s+GMJqg564h4hwvVGlhcw09meMNS2zgsz1rkw8i0oEm6UYkr98TlbF+T+brTGBt7gSoqmzNlKJv4jKly8ypmsTTaG7Zyh/Pba1t4KP2xdey92ZJ507I4Re7TN/q84sPP8Of+bGv8vrwOvf+xTPc/SNduq98io2vHWPvPayJLnU2fSmwVXTxCg1RBfomvbo+1gqOZvP633Uj0HuMVkkTi12xSCtnedMIoDSCp9I03X9WetNZYxFs4uQbjVc5gRdKHI/Dp9NEsFTH8BhESnVcUIqolPt8OTAFplFmcH9DD/rYvU14+44E8gaWXoVOy/r6FpPnurQezPHuHEqJwHEDmln+heMD2cVVJRBrCR4O8T2N3T+SzO7TLzF6vsPkhub6Lw3Rp2Op8zqNbDNfua9cgG7W6BwjpUqQ7NyTGrBdphAY2W062dVwKpR422vD2VAkUYsCjCUIfMmYrRWG5jxlOejTf3tGuhGT9jzSvubBl9s8+7M5upMIEsbTYoKcKuzNHdTREPptTOyjTYQ6Hkk27FQEg6MJppc4jLdxMqsFdjIV5AxI4LQWfI/g8BzTa6FyKWGpliR4uuo9VOW2OMYC4XmGyss68KvCkEzdTirNsFqhtMZs9lFZISKYLnmsKfmLTHZV8/nK8OIDxm8Jx22tLa21nwNuAF9USn0K+B+BF4DPAfvA36wu7eM+4vILSqm/oJR6TSn1Wp7NmF9TFJHChMJUat2f4z08xWpY/25O6/aI8MGQwVszooMJajShaHucvurRuuNjAjj+nMfJp0NMoEkOFbtfLVh/s6BINFnfRy0E7aEWGeXeOsvtmPaBYfBuKivww8OV80WrhXp4THKQSqDv9xwdWNciUEJNdZ3805FkLFmOnudYBds/8y7h4UQaHL0udr3vjFotOolXVPjqga40MIp8VZ6osLgV/hjk374vN5zSQpF32+iauDI8h8MT9HjBzq+ds/drJd5U849/+Ye5c7rGn//3f4nikzNm1xW3/9w2x//hZ9Evv1ArFFbBs9ZRcVC5y4YDqwuqV9klVZlg1QRtkm7k9arh430gUqP6vAvH4ejbgFwPa1ZlFy3bdZ0kUic2K2/NC5/nPfr3HkGHNLLtCr73uFE1FOtRMU+rz6zKCpff53ZaejhBb23gX9tFD/roVgvdTtBRJJyAwCOYlSKElqZSbza2drhpnoe6yQ2rRd9YzMkZ5vBY6rcAm+vc//EeB1+C1qHBhlI6JBO5hWbQrt1rmotqGK5KII0ejFJSMlCtBNVpU+w4OGAcUW5KSZGdLQma3baUBU5HmMlUIHwba+TX+vipJd2KKVqa9n6OLi2tfSHceUdDgcuVRrDU3TYmDjC7G+RrMQ9/tEPZjcUKbWNNSjd5gUolsKIVqihFfTAIROmwJQqBtpMIpX+2kKx9njrKvJIdd1FgxhNUryvvDUXqVk0XeBNRF/WPx/J3lMJqvULPFAX4PmUnouxKwMa6LNvpk9heGxWF6J0tcUHyPjiv/m2hSqy1I6XULwM/0axtK6X+J+Dn3D/vAzcbb7sBPHzMZ/008NMAyd5NaxWkA83gexneyViaFp5H781zyn7M5AfW8VJD/HBOsdZi/IPr5B3FjV8WNb4y9rn9U5bCt6TrMckBLNZ9pjcU1395RnD3WPCa7QQbhUyfbYv+iado301FpSyJpda0cNCfQZfZjZhgZujcdz58eY7td2vZxXwtwZ/lqJs7kJeyMCxTkvcLGPQ4+AObtE7W6f3KbdR8UYvO0Fi1VwGwvNDsE5abjw5D2ba6LLzCzNbnsnpICwXTmXS4tZKt4MkZ3rxFC3juyGf4Sosz1eZ/u/1jrH3qhD/753+V/+lbv5+ZbfPOf7TO4LvrbH7lGHvn/gUnc2AVvCpiyiUkR5NBWZUrJIA3yw8fgNCQN7nfCRr63I1GY6O2XGeBjXJJvWOoyhVV1n7hZFU7g3K1g3DNWe0FNYX7ESGsRpnjwudcYkXW17L5uzQzda+hDW4gzUh/4DrhvSHEodRRN9dheI5NUzGnvo9A8RaLx173qn6uVKVKaVHKeUZGofQylEi+qiTGrHXo3Df037V035/j3ZOGmZnOLu6EmrC/S2Sr6nwr552qHJvQTCbojXXSF7bRaSnwvtKChnSnQ1ThsKuglcSOTRxj4oC87aMLiyos0aigjDS7P/+Acq1LutMif2aL0cst/IWl/1aIHs/xH55B4OPHPv48Yr4b0RvuUXQidFYKVHh4LkJeWS48jsrtxiVbZjIVEaz5AlqxBN2WjzqbSGbuXHFUuy2wvzTDXt9BlaVo+Jfydyrijlqm8nzkTpZgmaJ6XXRaoJaFW3xcohVH5Lt9gsMx5uQUvbsNQYQNPjiv/jcGbqXUFpC7oJ0APw78DaXUnrV23/3avwu84X7+GeDvK6X+FtKcfAn42of9DZ0J7T1dBz3PhMGklWwf4xC/LIncJPQ8xSQ+KAjHltn1mPmWJjo3aD/lud0THrx5k+jcslxXbLxZiOtGmqKiiOzGOtlaiCqh996CohtgAw/PaRxQlrC3XXeKe29NWF4T3Gu52UNPU9H2DX0W19uMb/oE84jkpCA6WeIdnIiou1aMX11nuaVYfyvH7m6gziaiRFZ1w7VChaVkURW6oG4EmlpPuRL8qSnOYbB6j7dCfFSUaDs6l8zH92WxKid4RYFe67H5tZTB2wlHX0gYqk1++lt/mL0fPOCn/oOf57977SeZzhKGr2yx8cYm6187xj44qLe1FSpCHHQqUaRLhgcuENb63lXsatauH3ujrfDAsKrb1hl2Q0sbU0ijt7ETuRgkkeZuo5RysQxiLny+lDAafYfHHOMFw4qm/nijefoIpr0yiq7Mb+sPM6Ke50pu4f2RPPS5U5s7PJHrnRfCCKwgis1mcHUtqh2ZI4NUiBN1Yw+1SClPTrHG4nXEoZxWgnc6Ye1bBXoslG9zPnZuSI/CJWtN7nq34khYrllaJxKJOLxrrw9ZTrg/ZvLqBp3bOXoyxdoW8dGhlC4yC8sUW9G+00xYjHlJ1vPo3Fngj+ZYz2P2Yo+TH73O2rfGzHZ94lix/ptj5rfazG906Lx2il3rQSEItN25LDzz5/q03jrB9EXGWbVbguOu7sUq6Vg4J3alYLHEbK6hJ45djSyYMken4aKV6I5si9KfPltCItfftGLwNfkgJrw/lMU0L0SnfymEPO/BiXtMPHA9MhsJdl7lheiY+B5qtkClHwyF/a1k3HvA33F1bg38I2vtzyml/q5S6nNIGeR94D8DsNZ+Wyn1j4DvAAXwn38YogRAWUhOqq201MZsGKCzHBw2M/A8bBLA2Tle4NN7F/zRnGK9zWI9ITo3xK8n3H54gySD/jtz1sepnNzpQkoVgY+3yMluxgRzg3++ILgn7Ky6YaAcPnyZQreNdzoiMeukz20RjJbYyGf46QF5RzH8pKH/lpA4ptd98k6b3nKHshPhny9JjjLspxN0ZlDzlOzWJsFwgTodubPvYxfLOgDXlPEqM1NKakxluao1KWFnKdcsssVqa97UxLCzuTQuW4m8ZzhCzURT2ddw/Rdm5Ftt9r+UcO+9Lf76G3+Kl37wHn/6h77JX//VP8b58wFnn9ym98422792hr370DHgwhrbatJ05VfYzMa0cn6b+hHCzmUo3SPElCpIPa6L2WiePg63XVPRG/jt1WlzCJkKDdGw44JLzUVWu4Fm07iWam3Kwl4K8pVgmC1LyYRBrqNbROregJPyZI7sxBykrv68ahF3wbPSe7kglKUCac5lmRBeWi2xE/N97P4Rxi243taGQM2yvG7sKWfoW2m54/DqFwwjmrsDJfKvuFKUzTIplzgLM4oCel1R/GvFqGVK77UHwrQsjWha93tYT8PJEPa2ZGFZ7+AdDLFRSL7ZovfOFD1xbvJHp3RPRyS3tsm2Eta+M2W5nTB7tkNyuJRGZRRK5p7lkrmutwjO5rTeG6EWKXo0Xom6baxJTfl8KscNdXKjux0xJ3aKi9Wiop1ZcFUvV2GI6bZBicetV5cALarMUdOccLoQGHKopfzhmp/S49FybaczUXocz4VleTYSeGEcCyMTHl90rm67J4E52Vm7YV/+03+J7r2M+O6I+QvrWF/hz0qC8yX6fI7tiOOEenAE2xuUvVhw32kurs+eQqUlZS9kvhPRe+scfTbBdluku13Coxn5Vovw3lDEmnak5uadzYR9uUyxs5lYQG0MUNM55myE7vdYvrzL+XMh4xcBA2Vi8aeK9gPo3i/x5yXv/yeG8O2EjTdKdGnp/vp97HxB+dINYYMOU7zxEjUc16al9my0ajSVpaAQqge2CfFqZKM2y2rkwCPBrcrIqkyvysZiZ+TaCIyVXZNNIpZ7HQ5+T0T68gJrFV984X2+vPYWf+OrP0GwH2I1dO4p9n5+352rZf0wSOZ/qXzwuKy1ieFuULObv18373g84uPix62w1vWi1UCyXIbrXThfj2OEXhqPYNtpIDYcm7LWF28iWy7DFx9zLprHcoG12phbU37gEZ9MWGG9q2vt+6huVwSfHMxTRZGUzRrn3S4WsvV3Tu61ENWl0tCFRmlF3nGY9PrvxVFtvkAYQGkorq2jLOjzORyfOaJPKoHKoVBUFJK9uEf4cAR5QX5zg7wXEowzVCGY9+VmTOvuGD1ZcPalPXRuOfyi5hP/+5mgvpq08LKUGj2Id+MiJXtmXcpPiyXWCEyYyJVHZgtwUEG0qG9WhsBK69oRqIoJqt2WxSmKsDsb2CQQgo21tVCXbceovBToYTuh6CfoXI7PO51gR+dyL93cWy00xlDc3BINpGUqO5eNAeV6B//eMf/66B9ynh993zju3/VhtaJ/OxXt7WcGTK/5LLYV/dtyk0aLHOs1SBTzJbafkK2HJO/N0MOpZMj9Dt7+CeH3FGZjgI1D1PmUUGuOf3iNZGiI3hZBdFVaAQsohVnvom6PJbgB6nREubeJjkLS633u/XhIcS3Fjwpe3TvkzV95no03LL13p3jH59goZOdnt8jbltNPeljf0vl2jNIabzQntlB0AvRcw3pfFpn9U7nJhueuhlaKzrKDkFmjLxBcmvoZTUjeBc2RalQPfFVnXSxEC6HThlDYX2YylYaN6RIda/a+Au/d9PnCq7d562Sbr77+Il/6zNt89ofu8w9vf56JWufuv7cHwPZrKfFr78g5b7AFm96MlbnCI02+x+G3kfJGxQx8bDBt1IxV4IMpLgTER/RXLrz10VLKI4G/CSUEOef5xaCqLu0EHpFT/ZDPqrP2sqS5/1wxR82Kwk5ZL8DgMvZGgqXbiQSRkUDMvN0dIZnNZlJvDUNpplsrmbAnkqp2uRRBptmigfoxF3sQIDuGekExWKtqY4QqAVCuVKKUkmx06VG8ekuo3vNMsvpIyDlY66y+DGxvCmzVOSLZToLOStK+R9pPaD8Uu69omLG42cVbtuncXWJ9TfdOjPUUuihFBzyJse5vyA4ig+Mh1hr8YcLy2Q3Cs4VoieQCJsCYlVFwBXf0fefL6UEc1yAE1U4EhbZYovo9aWLGzmczFeihWmbY2Rw1dCiwbherhQletgO8sdN1GfQxp0P0eIZZl99RZYl/dC59L8+TUkzgo3Ijz5b5t8Bx//8xvNQQnMxJr3UYfiJkdsMSnMPRFxSDt0Imf3CDjW9ZBr95ikpils9vkQ2EdJPeXMOf55SJT/T+qTQZ41i8HzstOBuhyja9eznBKMW2YvL1Fnk/oP3msWBBp1pu+GpbtEyxkcfJZ7Y5/fEltsz4M5/+Jv/ku5/lvZ95gbUDQ/f2DO/BSQ26bz9M0WlB52GMztxNmWUimD6e4nmeZDytGD0Teq1VSmpvw/Nau7suOzSww1BtjRuZYhOGJ2fRZbWNB7EmoMh343SLda8jcy0K7GKJ1pr5q33+9A99jZ99+1O0/nUH7xnDV954ka/Yl/jkK/f4I3/81/j18S1+5fWXObIR2/olol/9jtxgrpZdQxVrhbxGIK0gfh+Ah7aFwZYXmYiXR/1aM0ttZupN42JVyQk0YI2mEv26JLalLlnK8fhMuPl6tWtQvi/nsTGfC1DCS7jxy9jzKnO2xkFDq8XElYV0GNQ1cjXoS2mk0+L8k2sMvvYQc3AkQbsspbkeC1KpbtQWxSrAZll9vYBVA9jNp6nbcsHiTFlXttGrDLMi3rRbonMN+MM5ajzDnA0l07ZOfGp9ACPR1J68ukH7/QhvOMe0Eyav9Om8O6X/7RHzZ3vc+WMxL/w9QY5Mbm0SF5a8ExKd5fTuFOLLWJn1FoV4PAa+LExFgbIG89wN0LD/pYjtb2ha8xTTHaBKS9kK8N9+KOQWhwyjFoJrCTxwfSCUeK2xkYc+9yj7om3inYyFWdpKsIEWAwWHya4QaaYTUiYSWnWa1yxMPehjOwkm8inbAcHpXD4rL8TAuOXq3QenH0q+gSckcGMtZS9i+FLI+Q+UJPc9/AWEdxTpGlz7VxnRWYrpxDz8o1sEU4vxFd37Bem6j/UVXlpSbPXQ/TbqdCw40uMzcZYIPJJv3ZfMwPNQGx2i46VA5qoT5Puin2uE8ZUNImbXFN79mHCk+PnXv0QcwvY3loQPx5T9BLvWE02D0McfLzl/pU/vvZloIVTbL4DOQMwQYkehDQMoUqG3Vi4jIA8GoJ0YVt0YCsM6qK9qsOZiILDmoq7HJcJE9T5b5JTDcwkI3S4qiSn7bYpY8U9/5Yt039Nc/2f3KDd7ZBsJBz8c8O3wOm/e38XzDP/tl/8xf631JzguE7bLHyB+9xhzfCpwxAbDsv7bpsS6gCqM0YbGsBZPTlusMtJqcXqsOmE1jxobDpUP5gWkSUWdr2rrVZ1drwL1hWz7kuHBqqZtV+e4UuyrSzmuIVVpUj/OQFl+aBx3k4jkIIZKSQliUV7MusMQ3Uoc5EyLANNmn7wbERxPaR2mVM4pyulls1hKn8apBdrFsoYdmgbDsb5GFXqnMd/6GlTnIVArhUt3vLWzU78riYdyMNnTkfzNW9fFsX2tJ5nlTNiOR3/oJif/Tkl8MGDv/02J747ofWcIQNFPmG95XPv8PrOvbBOOC9a+eUoxaBHvp+jJgvCuETf4MIDZvGZAk7pnwxhUu4WeLcH3GLxjOH8hIBx38Q/PUXlB0d0U5NiykGOfzeuFrbon7WKJqvRiTCznOS/RR0M5t57ndEhi8QCIYxGJ2ljDBD6qtPiTjDL2yTfahBVtPs9RqU+x1yPveQRDvSo9BT6zVzZJ7s8or22gFznMf4fggL9rQyvmezEmgPBU0zq09N7PsFqA7fr9A/KXr3P4xRbTZ0usb7n+zxV5W9N+mJF3fPxJztmnOmDBX/aIzkta75yRb3YI9kcixLPWx46n+OMlZTeC7Q3BbhuDUsIYw/Ow27tEh3M6D3pE3ynpfusI4xouaiEPTLnXQ89zwW3PFtjAx3p9TKCliz6bywVPnA7CxhrZtsALe+/O0OdCo6edQLctIPyDI8HuNlh1dqXHSSXV2czaLkDx/Iart3KC9jWJpBHErcEsl5Cm6HkLL80YvB0QjSNaB7J4eYcjotLyzM8tKAYRJ59OmP7wgr/2f/9ZvKVidtNwPgoxwQ7B9XX8ozH24HiV0bmMF72C7dViTnXNFpeZN4k2K/RGVVq5QABpZtVUU63KMg4N4SEaJw1ESjVvqDLti0bKdVOzypA9T8oxFTLmQtC+SISqX6uCn+etmsnNxdYXTWacMQYg9V/3HuWya9XvUm71ISuwpSXfamG1ElnThSwy/ulCYHXxBgzHQlVvxbB0jXWnKV0ulqvjLkuwbnGtdG6sRWRvA7lejR1MbcjgEDz41efIeTSTKXqtL/Tz4zP53FYCaS7iSu0IlZeYtS56MmftzTknXwpZXss5/XTE9X0fipJiswPW0n2QM/u7exQ70L49FhGowqD2TwVmuLcjuOrSSQZsDFCjiZgD93swna5q3aWh994Mq9uUsUeQi9GBN3UljigUPHmeoyrtlGqxXSxrrRallHxfpFKKcfpGapGK+p8S2K3NC/R0Dq0Y0wpItxK8pcGrIJHv3YfdLbIbAxZbAe2DFDV3BJ1nrpNe6xMfL8nXY8JTR8X/EFu/JyJwW0+hS4u3tGy+bujcnpJuJiT3xqjzKYvPPkO65uMvLJ3bHvGpxfiW7u0FZcun850jTK/Fcl2x3LREI03wpkGlGf5b98SxwvMo9tbwtcYeneHPEhaf2CY5n9Syq3ie3ACjKbYVs/mr+7JlSiLBaeaFZDTGEt0+FnigQ4goIDnKpbnieVJjzHIpSaQZdq1LcDgm7Afo0Qw217H39yUTDQPsoCtbqfkC1XYwPnfjSCNppbBX1z8fR5Wvhimx2cXGXF1/rlxWQFAFaUowmxO2RLjKzuayAJwN0UlMOFtjKzdsv2ZZ7IrsgJeBLmC266O2fTqxR9AXppk+PMOMzsXyqwpmlQ5JgwkJ1LjvC1lfEzHSMBcALsLhXCZta+gfF36n+lz5O64G7zLdqizxKHLELYS1rdtFklF9zHUzNJcykdcoVZWsAvZlFqYW+dNKmKl2h9newHRbqHlKvtlh8kzMbE/TvVeSHOfC+s1LyAtMv4VeivlBRUQhyzAnZytqfJY1cO0rZIjI1zWkZ4HaQs0hX+qdR7WDiqK6pKI8D9UJ62upFqmUaooCdWMP60nZUQ/H6JMzuL6LyiTh0XnJ8//AcPSFiLW3ROnTdCWwesuS6HCG8Tu07oxZXu8SHUxRi1zOVxwJScfp+9iiQC2XWN817KdTqaM7cpydTCl3bxGNSvKuR9Rpoc6n6MrLMQpXrMVCsm/mC1lUPU+uT6+DjQPUbInptkRTuyEJYV3WjzWiB+6JwJbKDeEww/qa5WaI7gW08j0WN3tMrwWsfXdOcHiOPTlDbaxhwoCi5cnifLak6EeywHwIbuSJCNwAWFj7Xia2RNOU0DGOymsb5D2f6TWP/p2CPNFE45L44Ryd5vjvjVwXuEU4sbSOwF8a0r5Ha6uPZ4RKa7fX8SZSTzLPbINS+LNCVl1r0b4vNabhuZRX4hCtlDRCxxMJEGt9gRVOpnWtL33lmlDzS0vy9pHUs4yVbnQUSSMky9HjOaYVk9yZSAd6kUk2njs67GgiDagoEq88aDSrAFsxKI3TtTA1O+9y9r06py6bqowOGoYANa3ePcDldAaTiTD22i2n7ZLKziHLCc4nsN4nAVoPRcUx64dkfR9/YVhsBZJJPEjx9Ca628afCvFAHMJXmeUFDHJDl6M+bNf8qpu0VWZcMwR1XS+vBPrrRQxWNVpzSWGvauw2G5UNmF8VuKpja57PR1A87m/W2Xq5+r1m07KuoQerrFflBXpzHdMV13BvUZANQuY7Pp2HOXnHI28rNl9P8WeFPOS+NK9UafAentbIBzM6XxE5XGnNTKeN609dNlpJ71a1e++C6mQ97yaGG8RLslLI0w5lUpWgKumHViLHNxxDvysZ97UNcbVxYkre/WO8fY+bd2M4PiX9wRfI2z5lpJhvhez+yoLW9044+EO76Bw2RgHeaE65vYZ3YFZNxDjAjs4dVDZDdzuij+0yZzuegO8T3j3DbyfMn+1x9HvXWfteSwSgYmnsqsLtJkoDsRO0y3LJvhfSyFXTuaiS5uJqQ9KvkSPMZtj1AWo8FWZlEKKMQRcheIoi8sjbmmSWs7zRY7El11fnZV1fLze6LHZbRGep8EtMhDfPSTcTcZ3/gPFEBG5VWNrvT1AHp9Lt1Ro/Lyg2u6jcEJ3lbB+lZIOQwbdG4Guhoy5SCJ3mgJKadzjKhZ2Ul8LYcs4T1teiBZBETF7oEp/mRA/HlFtOO+B8JhjObgcqYff5UoTgrZVMvGrMTGciNKUUReLhLTz0Ykmxt4b39n25udpt2BwIVvXGFkUnwFsU0nEvnB3TyzcJ3t132F8Nm2tOL8EIvrsivtSByK6y0KpmXa5qvEDdkLxgInC50WFdllk/wKvX6xJKFAmM0Mlm2skUpjO8u6C7HcoborTWeX9KmQQMXwowARgvIjnxCAONjkL0fAlxiF5mouOwzGoGoIpE8tNm2SrLb94XTti+WR8GVoxHp5+tkxgzW6wWNatq0kiTIHRBq+SykUO1SFphejYXlzo7dcEaVhm5vKmx4/E8VAPiqAKFTmJxT+m1KfsJ4xsJpTO/NiHMd0O678N8T9Heh/btKZ13jTiM54Xbmi+xRSllCRDfx8o02AXsCqb4yKjIS9Wui1Vpp5bTbbxe/3/g18qEeI0SUiqyr6rTxsaRZJ6eFRXMbhvTjSk6If4sx7Ri7FpbpFWLEnN0gjYGu7NFGXnowhINM7pvL1HTOeV6j87Dkgdf1rQPEjoPz9DHZ2IKXC1SeSA7Tt+XOnUUStA9PpV6dwVVtBZ9PqX9VkY46skz2ArRxkCwAZUEgDPyZTqTEornQbslzu7DsXxVz9r5VNxwZnPUxhrFelvuykrnRSvRKokD0rWAcGKwnsJqRe/dBd4sRd07xLrzl24mErT7YoouLFOFl5oPFSR5MgJ3VqAeHEkNKQyEJjos8EEw2usxOrN0vn1YZ7+q28H0O6g0I9/ZpIw9/FlJ0fYJ8hLv5FzKDe5G12cTbBSQ7/Zp31tI17comV9v0Xowx46n8qCuDaR2eDyUbU+/hzJGMk9rpJlgV42ltO8RDhXLa10mz4RsjTdRx0OUw3KqVojxNcuNgGioiPeHdf1K5SVmZ11A+IGPOp9KUFvry4M2na3Yab6Pxa5cz6tAdilo1DrOjvZ9wV398miIWikP6WQ7CUuzXMJyiQpCdFv0J3CNlNKReYI4hs0B3umE5U8m9D93wuIXtohHCpW7DC2JyLbbqNyQrYUEk4L5Tkg6UMyuKYq2wXrgTxXdO7D29lKU5IbnojfRyKjlZtFwic91AUvelL+9nDFXv2+0wBWLBgmnJu6wyk4bqB6amiMNFIqwSBtU8zCU3cp6H9OKmD/TxnoiojbfVgQzGL9coAzYJKP77ZC1N6F7P2P7q0tJGLJc5rxYyjmompTG1AJlMlftCC5uN1UTN9TF+6Kp8VJl1o1GsApcvVs1pGGNrZEoFYbbvHBDMmilMDvrQgc/HTr/VQ2TGbbfJVuPKRKNCTWhtcKIvD4g/PY9uX8HXebPDVBGSm3rx3P0cIpZ64Cvad2fceOX2kSnab2TUL7on9jclXSKQs5zUcL4TBYW5YwiKmq7I9GU19fxx0uCo4nsCuZL7HwJrbg+z5WNWLm3iTdyJZkj2dlUDkQ4BJHudaHlMOlpKWTBMIQkodwagIbFXpv2/Tmzmy3CUYm3yCVpOzqVRGzQZf7CBllXYz0J2mXk4S1KVFqSb8YXbr/L44kI3CgEceHMEuz791E39ij7LZZbMWWsSZZue+GCdrkumXHZjfCcP+X+jwxITg1Zz6M3WWLvH6wsiqzFtiKCszlqMifQCjPooEqY3WzTO2hh81zopsOxBDGlpC5+MoE0xUzmUJZ4mxviEv/Ofdamm1CU5L11dA7ZTodo7ISkFjlqtsQzlv7dY8n+fV+2XNZgNrrk/YggEElYnbbxbh8IyqTXQS2WELhdQ4WbxRMx/Yqe3agZKxo1ZW3E17FmLF4qozSQHs369+Vh84xylNWiVqrVktJNUUiGcfseanOD6FRxetYhbkFyZ7JSjtMaf5RiWgHGV+Rdn8MfhvhYYV6ecnPjnC9t3ubXz25xO77B+Y9Zymyd4P4u8YmidWRIjnKio5ksvsulc25xi4xyDceqEQt1dqwo62B0GVvdrJ/LB+hVvb3xxDQbkWLwK6iCqlygBsIGNP0Wy+0WWd9juabIeor2vmXyjGL50hI/KljvzTl8sEbrvYDWgSU5s0Snc/zxUhbv2cJ9rsIaYUAqJR6KpiLb5IX0RCqVwOY1q2rYNBaq6tpWzkW+h3X4/xoCmRdu/rpG+OhEyCkYA1qTf+o5cTJfLCXQLTK5B4pCslNHZjHdGH+S480VJvIwgYcuLcHJXD6/vw5KkTyUmn3rLbH7soOeaHwUhsMf2eDs8wXXfyGm904KSVz3oKg0yTfXJWgHvgRrrUUgajyVXbvnOYKOwT8YUa51GX+2z+C1A8zxqeyAhud1cma7LbKXdhm+HLHzqwXq7FxEt1LHEA0CSd7CANvvYnpil6izQo5p0AWg6EeowtB+b0TZiei+NaIYJOg7h7DWQwUBxc0tVGkoY4UyUnHIugG6kKQp20rEOP0yvr4xnpDArSST9sSN2j53ExP7nHy2w9p3F/gLjT+cu7KH3ExFL6IMNfHBjLIV4p9O6Tws8TJLcn8mRr1xLJ9dlKhIo08FyWHbjoV5cEr74BTVSiiurYv5wYND6HbcNj2ToO1u7Kp5aEsjuMuzEZyMUGFAOEzxMiOu8Z7Du7rus+216/qk9T1IpERw8Ht7KAPr34HgfMnJ53q0N58l2Z+hz+dyQ50NxZHeUWRlS9yoCytb1yNrI9xqWMsFjezLp73Z5Lt0PR4J4kqLatx8jnZNINVK0K0E207YfCOjdzek9/qhmDpU9OZAoZcZOitoZyV5N2Tnq5rZNZifxfzBV7/Gvzx+icTP+dk/+zf59eUz/O3v/UGyno9RlsO7Pdr3IrK1kCIZoDNFfKIIx5bk1BCf5gTDBTorBHFQlNjJRLJMly1iDErrWjO6wtirMFnNF2q9a+W57DrwpXbaSrBRQDFoUSYiH7xc90jXNKq0eCmYAM4/YSm7JVj4xIv7BF7JyTduoU5D4gcxHLa4MbckBzOha5+N5G8XRR2Y8WJqNuBiWZdDlDHSpC5LgQ5Wo+kk1LiOTcPp5mjWu+uGpFvoKuZu1dxUYVgvAMHxVHaFSSwNvMlM0Bzra5JAbUgdON2ICcaSYEV3zsivD/D2J6LL/dwuelng7Z/AxgDSjHKjCxviE6sWGftf3mTtnYy1twzROw8lYCex2IhpLSXISrTJ96XxX13fuesvmVLQWmlWcxVUv033tiRUKgxEOjUM5TOcWUJwMmf33SPM6Zlk164/dUHca2MgBLbQQ1tLEfsoI5KvykKReMRHKWo4xj/XEAYE0zl0Wpj9I+kfWRi/2KX9YIkylrwbEE5yVG7w5jneIseEvgAdPmA8EZT3frhtv9T5E4IN3drAJhHHX1wnmFvCaSmWZL7GBKKTy2LJ6PffAqAMFcHCsljTDN5NCR+ei51Y9SCXpayUpRHyQoUtzQsJMN0O+bU1sl5AOMrEkaPbkaZiXmDaCerwVB6KspSVuhADYIwRjQPPkxW3KFHnsgCNfu9N2g+W+COpU6ppwyrK90if3cSfZpjAo+gGHH4hJJjC3r8astxtS+3vzploMcwWmIMjAKy1q3IIrHC4VTbWLBOYEuUcch6rfy0fePHlD7AQq8k8tai+k3l1YlYqCmWRdPKgVcChLCVTH/Rk0apGGDB9qc/Zyz6zWwWdvSlKWaZ3ewyeHbHdmXL3bI0feeZdfl/vbWKd80+PP89rd5+hOI0Jt+dkywD/YUR8rChiUFYCqJeC1YJ68RbgpRZlQZUQzC06t5hAYTx5jzBoV4dWBgrry2dg5fN0aVmuaxY7ljKy6EKRb+e8eOuQfrjgWw+vkQ1jCAytd0La+xbjQzS2RGc5wTjDPxzJFj3PVr0L46Bojn5OWdZCUbWQU5U1V3os7trUlHunj3LZCLkumcGqVFJdv6q5qBvMT1deUxUuG0SpztXZ7WJRK1MK/tkF9811sutrePMMlUrzVaVuEU0ibDtmudNisemz/o1TeRad36VNInGbmcyhKMhe2OX00wm7//xQSDutWMqYtQ6OJ0G300a5UpHqdjEbPfRoijk6kd6J76N8r0aPmLareb+/L2UPz6vnbm5so+cp6nwijOJAbMmodGeWTjullYgfJ2BaEd7JOWajx+Jam3CUYUKP4GyODX30LBVS3/6R/D1nCkwYMPnMNjqTpCo+mFN2QrJuQHIwZ/ZMm943DwD41/f/Lufp4WMLJk9G4I537ed/5C8S3R1iegnL3RbJvQn5RovwYIKJQ7KNGGXBn4g+riotd36yi5dC3rW0Hir6d3JBbSSBnMT9kTS/3Ba0vLlN1g+JH4xl9T4dYbttbCTdYDWeSeZ/Y7fWLs73Bsz3YnpvnMJo7PRLus7xOUN1Wtg4JN3rER7N0LMFk8/sMLnh038/p/X2GflOj+DgvNb2Lbf6ePsSlMuNLnqWYtoRJvRI10Pa753X7tIEviBc7h8JUsX3V8JAsGqCNQkUrLLsC69Xwb4pf3rJwbx+/+NMeptiUZffV7m5VLVw936hEuuVkmGloRGFEtidqL0NfAoHg0sHUmrIBpZ8o8Abe3TuSNDUL0/57LUHHM67jJcRN3vnvNA55uXWAbv+iOOix78cfYJv7N9k/rBDdOwCUwE2AONJELcVwbKotqtgIosJId/OCVoZt7aGvNw7Irea07TN/qzH4Wkf7ZXki4DW9yJah5blhsJLoX1gCCYlwbwgOJ5JMMpzWcyMrYkWdc2+aihW6I2KaAU0fTBX2PyL51/5/mqBjqIaotgk1dRuS+AUN7PVZ8AFcTLldrwqipwaocI8uye12cMTd+/kKxSLll2oWeuIhk83EtG2diKZ6umQ4tPPg7VMbyYCazydC5GlOgeeJ89cEkO/S3pzQHgyh9IKvvpkKKa8zq5NheGqFOaYzrU+vqcxJ2d145KdTUma5kuyZ7fwJ0LkoSzl+VJKiDPbm/I5Z6MVWqjTFqx9HAkYIY6x3ZYsiPMl+d4awcMz8DwxWplnzG/1CeYF3kxgwereweq6urLN8vPPEYwzilaAtyzI+iFeZojuDsmv9fHmBXq6xN59yK/Nf+7fynPyd31Y38N6isMf26F/O6f9+j42ywjTguxaj7wtcMDOfkkZxcTHS5abMcEUFruWcKTQhSU+mKOnc+zhAvOJ67WeQPncLv7xGD2aoXoSZIPhEq5v4p1OBBY0nYtmQL9H2QpRgYeeLMTJ4iRDLVPM1jrZZ58h+c6+4Ebbbaaf3KHznSPi79zHbK5x/KPXiMaG5MQwfDFA52tikOp7ZM9uMd8NGXzlvtw0WsD9nI7QxxbP9/CPWphOgnfuGiSlIbvZJ87W0bMEcyQP0IpcU8G2vLpksoLSrdAR0pBjpTgIj6JN4LHb6+b/1bVTvSo7YKUJZLKF1LbdA6mTGNWX2h9pJkEsE7ICk0mtMoiWuq5/ErH+XljvAmy3Db5H2Y1Jt2Kic5/5eZc3s1dQBpab8PraGr/ZuYkOSswsIDzxCCaK5ZaBrYxyc0EUFShl6cUphdEssgBPG/rJEl8bplnIdBmRziLUQUT4MCA6CznQHe63b2I9i7dQhBPYOjVYDV5miU9TWaznS0HMOL0M60TzbVlK5ub7dekMY7F5elHm1ZVzan/HJg1d6VWzsQqy1U6qajJqf4U4oromgryhqTj4AZj/Gl2CZPGq35Vadlmibz+U7NW5qoPLwmFVDrx3KKShfiwZcKWP8uw1/OGcop8weP2U5fWe3PeDLsWghX82c9NUmH4HmwRMboZsvXUgTON+TwJ6lmOGoxrdoro97FRgqkShnPuiAFzyMOhLMjZbUGz3MTs9vEWOWmSYbsLwU30G352Ix2UrluvWaQks0J0DSodGc8YnKIUNPNQyx3RaWF/L7qko8Kxl9so2edcjPnLEu/0TQdt0uyIq52mK7R7+RBbx6HDK/FZPNJgyWD63ThkKdJAz0WL/sKT6iQjcAGevhJgAxrcCooMO+mjI9KV1ZrseRUuRHBu81GC1YvJsCy+X7MhbKFr7lrXvzlGlZfbJHQngS5GXrB1hAh+GY4JeQrbhOsKlQ1CcDlFRuGpkKoWaLSn7bRbXEvxpWWcR/jQXfYJeG6O1QHiq5mHgsfnaGRhDttule6cQBcPpHDvoUiYevbcnjtQTkm22iQ6nrumlmXz+Gq0Hc/J+BHqAKgxlO8R4ivmzPVrv4xpj3kp7ooTLJrs11KtGDrgarlJUmt6rX66aVs4xpqp7NrfeVc3blLWGgvIDV2coV1tsz1tl82VJWWlRG1szBpVDKKwMcZ3rfVUWaG7VZ64ZHEW0bvu0gA2ZoASS9T4mFN0HZcHqnHQDikjTOlSoMgIiTCA9zKUn5ZPYlUemGopEFv3IQHtp8VJLMC+lrHIuTEWVFQInLSUDrLG+Vb08L6RppbQEFl1pldt6gaoCtVksL7jm2NJImaTKqrVHTZOvRlPd0DFBLzgBgTRWLysw1gs5F3ZjteVZ9XmeVxN3KpU/FUfCwKyc5N3irFriEjN9aSCM4sNjKdPNFgTvH2GVwva7qPkSVRhMFBC8f4g1hrg00jeYzEW7B+B06EgviqMvdBh92rD51Raq6kM4fLje2ZIG5HSOOTkTFc8sh3wmuwytIA5RRUK50cXEAf7ZDL3M8UZz1GSG2RqgsoL4rKTshOjxQpI2Y6SU2Uoo99aFIHd0KouuM/zObq5JDVrrGl+tPA2tjojZGcv4GU1rPyR8MJTz3m7JeQwD8u2uizkGb5qyvNYFK6bn4chw/nzM+nemQnUH9KCPOvtgPOATEbitr1j/TsrwlYjkxGADj/SV6xQtjfHFMKF7d4l3vmT6Uh9/IQSQzW/lLAceG185kA7xxoDkjrxfT5wuSZrhDWdiV9ROyAcxxhMonjo4djrJyAprLHY+x9Na0CVlSXSaUyae1K0WqTSVrBU88npXauq+CKZ7wwn5tTW8uTQa/H3ZEpbXN9GzlOTNA7fy9sl7IfHdETYMKG5tiX734RIT+Sw2A6K7Q8qNDv7xBGU69SKjN9elLnh44rS8G2SPS8SPy9Kpl40XatGnGnnSYFqyanCpC9l1A43RFESq/SqbsDQnum9KbOkJvtVzeuK+77a9gsOmUbuvkQ4VocQFduWQC5Ql1ssES2stQWMhCKxjEpZGFoEgqBvUgGSgIMYalXWcsfKeNF3VUiuavcPSqzAQQhVQOxE1oGJVhmpdVo01K6cip8NcY6Wz7PGlqOpcVkxMVmUSi3tNNdAxjYzsEQy8w59f+N4M9g4qqitpU5CAXl3j1PUqlunKFNhamC9QvQ7xiWSv6synfOWWBJwHRy6B8SWTnS3wxjOKW9v4d47Ez3VnU9Q4S4vKcsqbu8xvtcHC9msTencTsp0uXj/Be+eBmKp4WnZsraQm+4hHp6BgVBwJjroqD5YuKYgC1HQBJ2cQi66IDQOCecH0ekSn7ElzeZagTsdSCw89dBTK3yiNyGKUJcGDEbYdk+60ie+P8W4fSBO020YtM5J3T7n5nsK2IvK9Af75GHY2ydZbLLcj/LkhPpihhxOWL2yL5SHQ2k8pY0n4TOjDwbEs3q7080HjiQjcelmgLGx9fUa6IaYGOjckRxmd93NM6GFCjZ9m+POSYFoQPDjD9Fok95WcqChAjWdwPoVrm+R7A4KjiRBHtjcEwO/YmLq06NFEAkirJRfdd+LmFRXWiUEF+yOCkzOIIpafvIm3LAjunkjAOZ+RPr9F+MY9sUSbTPGPxL0iuJPW+r/pZkLrdEL2/BYqEzxz1vVI3s4o19t4c9ly6mlG2Y9Z+/UDaXzOM9Qixbs9pXjxGvPrAzpvHMs8kwRdlpjZom5yXaB521zSygvaG4JIqTUoKlZfjXFushMvKtk1m1q1Cp4vIkWPBKGGkFETdmeLHFs25E2LYrV9D3z5ciUG3XbBIi9QZSXG03DbyQvnSKIFZVHNoSxhmbqH2bpdRCE1dVgF5uozoggopWHosk2bZdKrrHRUtBEIogviZrFcoXpgtRjalSCY8sK6fv2IPdsjiJ1Vs7AO1B8W2Bt0/w+Uy23cD00Mu2pk/zoMVju4JHYCa3HtrYhTr6yRTHkuu6b5Ev87Q1ncglB0apzJAr2O9Ityd642+/j3Tx3+WqGWcm6tpyk3uhx/ocv4BXjhH45RaUl8vBQ88zsPZPHdXJNsuJrDxkDYmRoq2Vp7PpbMPC8giVHTBX5eCl47icA16Dk6QW1tEOznrO3D4rk1kvdHFJsdEYuaLfCPxsKmTmLB06cZtp1QtkMW1xKi01wSw9iRx5BSr5rMRK4CCPo9Of/zJeWNHmWgCAqDVYr8+rrcppEiOZQSW/LOMXaxxFMKu70hcORqEf2A8UQE7go6ZNsxXjfg9DNd1t5aEIyWqDTHUwrTCpl/YkN2kdZKtrnWJduICc8zODgRJEinxfnLfdoPlhTrbYL5UuRTT0fYnXWi/QkmCWTLlsSyagN4WmBDUYhJAnRRwqF0qG0UoZKY6P5ILlYSScYdhQTHcwn2s4U0cu4fS13OGOlG97u0vnsIQPDwHI5P8a/vwrM95j+wS/xwItoOkzlms0/wcCgOIuOZ7Dxe3CG6cwrG0vneSB4IJ3zD1gY6mGDG4wvBFljZT1Vb6Ip1aE2t4lcFkaaE5CMNzuq9urFVr7QvasjZpUZlA0PcZHHaYvV+rLnQTKt2CxXkzZhFHWR1EsuWtaJaV007p+cCyPeKRQhYt6CtMvhcgk+F5Kh2CakTe2oyId1nV6SaqtRjc+rafYWoqJuJdeYt0DHjdhpyLfzV/Iw7X5fRHNYIG1SrxyyE6pFr2KSw1zunZm28un4AOKJQ8/2eJ5m025XU5LcwABWiiqJ2Pzejc3GcXy5Rgz753hre6++gNtdEvuHgVKRNHYTOeko4CEksZSZXGzc3d8k2YqKTBUU3YrET0j4siYca73Ak3Ig4RsehXO9eBxOFgkrZbRPvC5VfOZkKO5vLot8KJSFRxaqB6FBcNvDQ1aLi+6hFSn5TmpHpwEff6KPTknLQQnVjcd/Jcil/WCuZfhSS90KiYY63FKx5ud0HpYSQ5IhRentTLNmyDDzN8oUt5ts+wcxiPUW2EeOlhjLWtG+PmXyiT/v+wvlSigtS7Uu7PoD5E055t1qhUrfidSLCiUe6FtIeLaTQP1swe2WN+DRDLwq8790VtwpjCEcperzA3tqjbAUcf66Nl1vCcUDy3pn8ARfs9OGZeO45vC/Wys2yuy2r+/qAshuj0hKOTqTGpzSq2xbqbuxDaYW+fT5G0YPToSwMQSCuH4DpOZcNt521kymq1cL2QqFDu8AZjlKKtQRVSGNS3z/COLF7u7fF/Eabk0/7RJ+8zvp3U7y5JzU556jNaCKQJ6iFk5QTi6+FhlyjqOnkAi5g8Kjof41EaBo6NN97mYUHj2TitQiWa4hWwfmy/kddG3cCUjX6RKu6HGGNpczGFzN+h34AVsgUh9PGMQzrf1fnJgpr4pA85PI3xAxCXzRgdu8nX2X4daMoTTHVOSvNilLvju8RjRMHr6zrzJ5XL0i1bGwl0fsYhmuTkl5DNJtQvyZ5qnEdHjGVaDBPKxamXSwEb5/nsLlWl0jsXHoLVI41cSSw1CAgv7aGP5yTf/4TBAfn6MMz7MZAzllp5L6PQmGzjieCOtlapxjEnH0y4fxHl6z9Up/Ow4LWQ4HLWl8LJNBxJ5jNMc9fwzsZs7jZFQLPOGO525YkyDWAbUWOiSO3Q1KYKMAkPsFCjAhMEkjWnma1sUOwP6TY7tN7d8rk+Q793xjJe1tSj9ajSe3CLvePFmVGV3I13YSyFcqOPnY9nHbblftyipdvooxlsRXgpZb4TK7bcj0kG0D3nQnzWz1aD5Z4J2KAoVoJdjrDpCne3g7W9zDREx64VeWGsUwJ7p4QJTuYQAsr8vYBdr1P551z0t0O4XvHEMcSvLICdXBK9uoNzp+NpPE0NBx/Abp3rdS18xzOx9gklnrUdC4Pu4M74XmYfhsb+lAYqb0tUycYY7F7GwJNynK5+EUpdbfAJ7+5gU77Yk00mWLOhqLxsciEBALimxmG2MVClMlaCSYMSO5PxZbph3dp72eUgw56OJLaaa+LPR3R9jXRWYIqDecvtNi4fy4XeX0NO5lhJxNsENTCUOXZsA461lqHozarjLEJ6K+CuZONbbIDKyq4IFEatmDwCHzsQiZY18rzlQh/lRW67zoMXBbryguVAl1ljFyWF811K72Qoqh3EVJmyS827Tyv/r/6vmrU+Gu3HqqPbSwg1eJWjepznLFAXctvliW0/3gESPW3XRZcSfE2j7UWdrpwzh7jRAPu3FeLq3tLpWneWExrxmQliXCpbwGsrrnbnVQa3mpzHapyhJOWtYvFajcDmH679nPMtzukawHeooWXF3ViBGA6LSmVrPXhXGC3i2e6jG/5qBJ4KPLN8cOJPHOlQY9nK4eelsgreEMh3LS/e4QNfEwvIfnGQ9EJcb0J3e9J4AQJqL0W6U6L5N5YstjFAv+Bobi+jj+ZyT2wuSbZ71qEv3QN434L72CIt0wpN3vSwyoNxd4aWT+k9fYJvuOEmH6bdLdD8uYB+Y0NgnsnMvdOS3RYtjexnubs1Zh4ZFAlFLGHPy/xMoM/Lxn9QI/WUS6ompOz2vpNVRKxUzkfenGJS9EYT0TgNnHjMHyReDSBpox9/HbLPSwIuuLVXaKjhWiRGEt5awerFfHIkBwu8aYpvXcDgeskkZyYdsuhFETn1maZbP86bdjZFJjPQnR5i36MDjzotigGEelaQOv+HFX62MDDPzyX7ERrggNpTNokQimFruBfhycrN53RuaMpO4JKmgqhpy8axGuvDzEt2ZapTkdsxpIIs7Yh58NalLGsvz4SwlC7LfCnOJKHsoKeFaV0osNQMiaQ2iQSsKy1F+jbkg03Hm5wGXBlSuCCg1ayxa5Fk/w6WFeLwSqwlzWeG89D+2oFdUvzOgBTZZ1NSJyxjqbOysi3ggUWq9LO5YWkyv7V46j9LlOtqd0lq+NTLtg71cJaSbA6D8pyAd3RrNtXqnqPGc0Gcf2+Go/trOgqAlPQqLs3z8Ultb56uDJULVvbEIeq+wYVOcvVsmUh9GTuSkHg1ZR9FcdYvxA504o8FYfCOswyzHAkzMj1AZNP9Om8P0NPl3ihjx9oSVhasXAenJ2X8jxXJkxRUcjs03sULU08tExuaDZ/wxCPSjCglgVqPK3vBxXHMOhJuWEyg0FXrMl8LbwH35OkZTZHDXpy23Rb6Kyg7PrYyCM6FdMCGwVyTqIQ7919KYemqahwbg0khpzPCA58kXZNIiEFKSX6RlmOXhb4vpbnzS1sqjDE9yVx80+nUg4FWYAGfYqdPkXLo/9eRrrmE8xKsq5HmWg63xsxe2GAl4vRAqdDuS8WUhu33bYkTpW6Y9m4/y6NJyJw62UOm6I5UG50heVmLOHhROQSt8WgM3k4pejF6Lv7mL1tio1ESifLku69EbYVoY+GIqrVSgRp4rbUNokkAwdUmskW7saWAOWzAnVwLOWO2Gd+s03e0vhLS94SwSST+KQbEa2FgOvnt3osNn02Xjsl2+6gc0NQiVrFzjV+OpMGaEWlznLstS1MHKDnOfObXaLTJeMX2wQzQycvpfQxW5A/s04wXBIejURU31rs7hbW15RJgF4W6KXoJWAt5WYPq8B77+GK3VaJUdW7ZHUhk7WFaWyp3csuEDaRDcrTmMxljrCCt+mqVNLYnlfNxgp6aJ1JgAsmNk1RuLpvpQ9izaUMunK7abA7VSNQNdAvTfU/uZncRIyUFurgSCMDN/KQAZRZTmUgcLHh6K3kT1XAxVHyyKje5xq29XHbclWjrlQZlYhcrWr15YUFp9kTaDImoawp69Y4dxq3qF4wm7iUYSvPq0tI9TVNkhVEcTaX5h7y3FGW4tgex9hem9nzA5KDlHt/qMf6W23a9+bEX38POm3pxSQRnIwxz17DOxqKxESn7ajkkLU1G98c0n6QgAadlmK4+/6BwPg6LQn6rViC9nwpmiq+6HrXCU9VumklgmgpDN75jHK9Qxn72ECjCosJ21it8M8X6KOh3Af9HlYrzNYAE/tSDjVGNEeyQmrhY8SYvC1CVWqR4QWeLB5AsdklOBiJM/0yEwcra+uMOd/tk25EhOMcVVhaByXLzRAvE7bu/FafcJgRHI4FnugUQHUkCot2ayD3ymyOXu/B5ElvThYlZv9QmFi9NtkgovX2iWyRnr+OdzRC5wUqLwgnC8Z/4CVUadGFxfM18e1TgSktBMmB6waLolckHfLpDLWxVrMo7dY63tmUxQubREdOO7so0NMUf56QHCwZP9ei+/4S72yMDgP80xlqPKW8vkl4npMOPHFzzkryXojfaQn+0xpUR/ROdLdDjRjIxeas6ITQDYmGKdlahFWQ7C/gZCi+kFoTfeMdyaSzHNVtU/YilBEY5PiFBF1AMDOYQBEfZ5x+MsZfQGvzeVrfO5HjgFXp41J2Bqx0uaHO1JRS4K+afJSlBNiqpuwyV5TGLNOLtOmKFNQsSeRFXQ7Rvlo5aFfH1Ai89fsvl0Dc1t+WZW0oXGX/Te3olSelQ1xUGPI4gkpvoixRa2uS3Uzn6HZCOZ5K8IYVQicMoFCrc1DVoB9HUHKYaZnvY7a3zV1AZaPWLC/Zx2fv1X2jvMa8qv+qyh4NXe2Vz6VFB9HqnBgjjcbtDTg5w97cRZ2cSwYL9S5N9boiwLSzKVlomoLqslzz8BceXoo8d+euIT+ZyH2zlGatN5oKkWX/CAuYWzvMt33W3ppRdiK8pcgapzsdlhs+cfcZom/dFbLMWk/6TpkYJ9gkouwn+FMxuraVsa+1ggRTSsohvghZ+WPBjefrLbxpCqXFJoFc5+oatRJM4GF8TXAyAa3xjkYsXtrm/IWQnV8VxIgNPPR0KaXRLKAYxOTdLq0759gkwjs6lx1Cp4U5FPie2VsnXY8Ihxnh+8egFNmtTYFNhpoi8cCKabj/zUNwOjC1eJan0dOl252mMFXSKP6A8URQ3pVSx8AMOPmoj+V3YWxyNa+nbXxc53Y1r6dr3LLWbj3uP56IwA2glHrNWvtDH/Vx/E6Pq3k9fePjOrereX18xgdTc67G1bgaV+NqPJHjKnBfjatxNa7GUzaepMD90x/1Afwujat5PX3j4zq3q3l9TMYTU+O+GlfjalyNq/FbG09Sxn01rsbVuBpX47cwPvLArZT6CaXUW0qpd5RSf/mjPp7f7lBK/a9KqSOl1BuN19aVUr+olHrbfV9r/N9fcXN9Syn1Rz6ao/43D6XUTaXUv1BKvamU+rZS6r90rz/Vc1NKxUqprymlftPN679xrz/V86qGUspTSn1TKfVz7t8fl3m9r5T6llLqN5RSr7nXPhZz+76GtfYj+0JYCO8CzwMh8JvAqx/lMX0fc/hR4PPAG43X/nvgL7uf/zLwN9zPr7o5RsBzbu7eRz2HD5jXHvB593MX+J47/qd6boiqR8f9HABfBX7P0z6vxvz+EvD3gZ/7uNyL7njfBzYvvfaxmNv38/VRZ9xfBN6x1r5nrc2AfwD8yY/4mH5bw1r7r4CzSy//SeDvuJ//DvCnGq//A2ttaq29DbyDnIMnblhr962133A/T4A3ges85XOzMpwYBIH7sjzl8wJQSt0A/hjwPzdefurn9SHj4zy3Dx0fdeC+Dtxr/Pu+e+1pHzvW2n2QAAg4k76nc75KqWeBH0Sy06d+bq6c8BvAEfCL1tqPxbyAvw3811z0Pvs4zAtkcf0FpdTXlVJ/wb32cZnbb3t81FoljwoQs/Ky/RiOp26+SqkO8H8Bf9FaO641rh/zq4957Ymcm7W2BD6nlBoA/0Qp9akP+fWnYl5KqT8OHFlrv66U+vJv5S2Pee2Jm1dj/D5r7UOl1Dbwi0qp737I7z5tc/ttj486474P3Gz8+wbw8CM6lt/JcaiU2gNw34/c60/VfJVSARK0/w9r7T92L38s5gZgrR0Bvwz8BE//vH4f8CeUUu8jJccfU0r9PZ7+eQFgrX3ovh8B/wQpfXws5vb9jI86cP868JJS6jmlVAj8OeBnPuJj+p0YPwP8lPv5p4B/1nj9zymlIqXUc8BLwNc+guP7Nw4lqfX/Arxprf1bjf96quemlNpymTZKqQT4ceC7POXzstb+FWvtDWvts8hz9P9Ya/88T/m8AJRSbaVUt/oZ+MPAG3wM5vZ9j4+6Owr8UQSx8C7wVz/q4/k+jv//BPaBHFnp/1NgA/gl4G33fb3x+3/VzfUt4Cc/6uP/kHn9fmR7+TrwG+7rjz7tcwM+A3zTzesN4K+515/qeV2a45dZoUqe+nkhqLPfdF/fruLEx2Fu3+/XFXPyalyNq3E1nrLxUZdKrsbVuBpX42r8NsdV4L4aV+NqXI2nbFwF7qtxNa7G1XjKxlXgvhpX42pcjadsXAXuq3E1rsbVeMrGVeC+GlfjalyNp2xcBe6rcTWuxtV4ysZV4L4aV+NqXI2nbPx/jWj+oh47EMMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import cv2 as cv\n", + "\n", + "# [variables]\n", + "# Declare the variables we are going to use\n", + " \n", + "ddepth = cv.CV_16S\n", + "kernel_size = 3\n", + "\n", + "src = data.coffee() \n", + "# Check if image is loaded fine\n", + "if src is None:\n", + " print ('Error opening image')\n", + "else:\n", + " # Remove noise by blurring with a Gaussian filter\n", + " src = cv.GaussianBlur(src, (3, 3), 0)\n", + " # Convert the image to grayscale\n", + " src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)\n", + " # Apply Laplace function\n", + " dst = cv.Laplacian(src_gray, ddepth, ksize=kernel_size)\n", + " # converting back to uint8\n", + " abs_dst = cv.convertScaleAbs(dst)\n", + " plt.imshow(abs_dst)\n", + " \n" + ] + }, + { + "cell_type": "markdown", + "id": "0596c844", + "metadata": {}, + "source": [ + "### Spectral Clustering\n", + "Another example of using the Laplacian operator is Spectral clustering that is carried out by applying some standard clustering method (such as k-means) on the eigenvectors of the Laplacian matrix, hence partitioning the graph nodes (or the data points) into subsets.\n", + "\n", + "Adopted from https://juanitorduz.github.io/spectral_clustering/\n", + "\n", + "This example uses unsupervised clustering algorithms and how they benefit from better representation. The creation of the dataset already know the circle (y) a datapoint belong to. However, the clustering models estimate the cluster membership from the data coordinates only (X), and we are using y only for colouring. Even metrics in unsupervised ML algorithms are not the accuracy measures, but cluster coherency measures and other distance based metrics." + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "id": "1fc95fdf", + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn import datasets\n", + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.cluster import KMeans, AgglomerativeClustering, SpectralClustering\n", + "import seaborn as sns\n", + "\n", + "n_samples = 1500\n", + "noisy_circles = datasets.make_circles(n_samples=n_samples, factor=0.5, noise=0.05)\n", + "X, y = noisy_circles\n", + "# normalize dataset for easier parameter selection\n", + "X = StandardScaler().fit_transform(X)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "id": "4e19e6cc", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n", + " warnings.warn(\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADZnUlEQVR4nOydZXRUVxeGnzM+E/dAIAkkQHB3d3cpLS2lRp0adaFGlX4tdaNCqVIqFC3u7gGCO4S4Z/x8P84QCAmUtikkMM9aLCZzfTLZ99x93v1uIaXEixcvXrxc/Wiu9Al48eLFi5fLgzfge/Hixcs1gjfge/Hixcs1gjfge/Hixcs1gjfge/Hixcs1gjfge/Hixcs1gjfge/Hixcs1gjfge6mwCCEOCyG6XYbjPC+EmHYJ51IohMgVQmQJIVYLIe4SQlzS35gQIlYIIYUQurI5ay9eSuIN+F68lB39pZR+QAzwGvA4MOXKnpIXL2fxBnwvVwVCiDFCiJVCiElCiEwhxCEhRO9zli8VQrwqhFgvhMgWQvwuhAj2LOskhDh+3v4OCyG6CSF6AU8B1wkh8oQQ2/7qXKSU2VLKmcB1wM1CiHqeffYVQmwRQuQIIY4JIZ4/Z7Plnv+zPMdpLYSIE0IsFkKkCyHShBDfCiEC/83n5OXaxhvwvVxNtAT2AKHAG8AUIYQ4Z/lo4FagMuAE3v2rHUop5wGvAD9KKX2llA0v9WSklOuB40B7z1v5nnMIBPoCdwshBnmWdfD8H+g5zhpAAK96zrc2UBV4/lKP78XL+XgDvperiSNSys+klC7ga6ASEHHO8m+klIlSynzgWWCEEEL7H5/TSSAYQEq5VEq5Q0rpllJuB74HOl5oQynlfinlAimlTUqZCvzvYut78fJXeCeIvFxNJJ95IaUs8Azufc9Zfuyc10cAPepp4L8kCsgAEEK0ROX26wEGwAhMv9CGQohw1FNIe8APNUDL/I/P18tVjHeE7+Vaouo5r6MBB5CGSrVYzizwjPrDzln3H1nKCiGaowL+Ss9b3wEzgapSygDgY1Ta5kLHeNXzfgMppT9w4znre/Hyt/EGfC/XEjcKIeoIISzAi8DPnvTPXsDkmVTVA8+gRt9nOA3E/g2Jpb8Qoh/wAzBNSrnDs8gPyJBSWoUQLYAbztksFXAD1c95zw/IQ03kRgGP/t0L9uLlXLwB38u1xDfAV6jUjwkYB0pVA9wDfA6cQI34z1XtnEm7pAshNl9k/38IIXJRqaOnUTn3W85Zfg/womed54CfziyQUhYAE4FVHh1/K+AFoAmQDcwGfvn7l+zFy1mEtwGKl2sBIcRS1Gj78yt9Ll68XCm8I3wvXrx4uUbwBnwvXrx4uUbwpnS8ePHi5RrBO8L34sWLl2uEcl14FRoaKmNjY6/0aXjx4sVLhWHTpk1pUsqw0paV64AfGxvLxo0br/RpePHixUuFQQhx5ELLvCkdL168eLlG8AZ8L168eLlG8AZ8L168eLlG8AZ8L168eLlG8AZ8L168eLlG8AZ8L168eLlG+NcBXwhRVQixRAixWwixUwjxQCnrCCHEu0KI/UKI7UKIJv/2uF68lFdOH0klaf1+XC7XlT4VL16KURYjfCfwiJSyNtAKuFcIUee8dXoDNTz/xgIflcFxvXgpd5w+kspjXV/g/lZPMvvThVf6dLx4Kca/DvhSylNSys2e17nAblSXn3MZCEyVirVAoBCi0r89thcv5Y2M5CxOHjwNwLGkE1f4bLx4KU6ZVtoKIWKBxsC68xZFUbyf6HHPe6dK2cdY1FMA0dHRZXl6Xrz859RsVp3737+NY3tO0vv2blf6dLx4KUaZBXwhhC8wA3hQSplz/uJSNinVplNK+SnwKUCzZs28Vp5eKhRarZYB9/S60qfhxUuplIlKx9MHdAbwrZSytDZsxyneQLoKcLIsju3FixcvXi6NslDpCGAKsFtK+b8LrDYTGO1R67QCsqWUJdI5Xrz8l6SfymTq8z/x89uzKCywXunT8eLlslMWKZ22wE3ADiHEVs97TwHRAFLKj4E5QB9gP1BA8cbOXrxcFpZ8v5JvXlT9yCNjw2g3uOV/cpy8rHy0Oi1mX9N/sn8vXv4p/zrgSylXUnqO/tx1JHDvvz2Wl2uTvZsOsnb2Jmq3iKd5r8alrmPNt+J0OPEN9L3gfiJiw2jWsxFCIwiuFFj0vt1qZ/qkmRzYdpihD/Wnbpta//hcd6xM4uURbxEYEcCzPz5MlZqV//G+vHgpa8q1H76Xa4v0Uxn89t5cdHotg8b1JSDEDykl74+bwu41ewkM8+fRr++jxXlB/9TBZF4e+Tanj6TxzI8P0ahTvVL3bzAa2Dh/KwCRseGsm7OFkY8N4vDOo3z13I8ABIQF/KuAn7hiFxnJWWQkZ7F/y2FvwPdSrvAGfC/lhpW/rOeH134DoHJcJN1Hd0IIgV+QGrX7BPqwb9OBEgE/cWUSezceBGDbsp0XDPi2QlvR61MHkvnjo2006liHmLrR1G5Zgz0bDlCnVc2/dc4LvllG4ordNO3REINJz9HdJ+hyQ1vyswup267kjUNKid3qwGg2/K3jXIyCnAJmvDOb7LQc+oztxoHNh/AJ8KH1gGaoKbZLI/lIKtLlplL1iDI7Ny/lC2/A91JuiKpRCZ1eh0aroVJcZNH7d066ichqYRTm2WjStQEADruDX9+dw8HtR6neIIa6bROw5lmpEn/her5W/Zvx6Jf3cnD7EZb/vIZK1SPQmw0EhPrxypynycnIo3LcpQe7E/tO8eaYD5BSknw4hQNbj5CdlkP1hjE07daAsKiQonVdLhfppzL58fXfWD59LeM+uIP2Qy8+h5CbkcvqmRuJjA2nYae6F1xv65KdTH3+J3Uch4tZnywA4PU/n6VJtwaXdC271+3jqV4v47A7eXn2kxe8aXqp2HgDvpdyQ7MeDflo0xto9Bqia50t1o5OqML9791ebN2D24/y2WPTAHCPbMuh7UfwC/Yhuk6VC+7fYNTT4+ZOTLrtQyrHRZKdlsvXz/5I7VY1uXXi9aSdzOD0kRRy0vOY+eF8qtSsRIfhrSnIKSSuYWyJ/fmF+BJbvyqHth/FJ9AH/xBfstNy8A3woX6Hs+4iO1Ym8fv7c1n163pa9m1CXmY+iat3s3nRNqITqjDgnp4U5ls5fTiVKjUrYTQbAfj9g3l8PeEn9AYdH2x4jWr1Y0q9rqBKAfiH+pGXmV9sbsJmdfzlZ36Go7uPk5ddAMCRxGPegH+V4g34Xi4LtkIbUoLJYix67+TB05zan0ydNrWKFC2x9apeaBfFCKsSQq0W8exZv59GXerR787u+Ab5Ur1B6UHxXLqOas+Mt2fhH+LHtqU7OZx4lLiGMbxyw2T8Q/1oO6g5875YDEDS+v2s+nU9j351L1kp2Sz6dgXXPzGYjiPa4B/sx7PTH2bF9LVsXZpI424NqFo7iqj4SFr3b1Z0vK1LdrD69w04HU4O7jhCbP2q5KTnsXDqMkBV5/78v1ms/GUd1z0+iNtfHUVmShYnD6YA4HZL3O4L1yCeOnCaeu1qU5hTwKGdxxjx6AAOJx5j1id/0qhT3UtSC7Xo3Zhhj/THaXPQekCzv1zfS8XEG/C9/Occ3nmUL5/5nhP7knli2jgqV4/gxzd/Z/+Ww2SlZNOidyNufmHk39pncGQgE2c/RXZqNlVrRf2tXHXjLvVp3KU+c6cs4vSRVPrf1YOje07gdrvJSskmMjYcIQRRNSuRfCgFKSX7tx7m13dmI6Vk+lsz6TiiDQBVa0Rxw1NDGTyuL6+NfpfVv23gzkmjix0vMiacln0ac3D7UYY/OoBuN3ZgwdSlLJy6jKoJlfEJ8GHdrE0AbJy/ldtfHcWWhYkkrd1Lk24NaNS5bqlPGFJKFk1bwc7VSThtDrYsTqRm8zhwS9bP3YJGqyEvO/+SAn5QRCB3vjn6L9fzUrHxBnwvFyUvO595UxYjhKD3bV2w+Fv+1vZZqdl8/MhUDu84SnyTaiSuTGL/lkN8N1EVZDfuUo/Th1P/0bkFhPih1Wmw2+ws/WE1v06eTd+x3el/d89L2r73bV3pfVtXAI7vPUlOai4BYX70v6cnrfo3w+xnZOkPq6ndqiZhUcG0GdgMo8VIQssaJfZl9jXx+Ff3kZ6cVWIeoPvojtRtm4B/iA/WfDv7txyi200dSGhRg6DIQEIrB/PIF/ewaf5WOo1sB0B0nSjyswtIPbaHkY8PKvX8D+04yhtj3kdKSbebOnLjM0NpO6QVuRm5+AT40LBz3WLzCHabg8zTWYRGBaPVai/62Ugpyc3MwzfQB43G2zbjasEb8K8RHHYH86YsJislm163dSWsSshfbwSsnLGOT8ZPBcA/1I/uN3X8W8c9nHiMTX9uA6C2qRbRtSuz6reNBEUEkJ2WS0KrGnQc3qbUbV0uFztX7cE/xJfYuiWN9LYs2sHE698muk4VtFotB7Yd4fMnv6PzDe3wDfC5pPOzFtr48pkf2DhvK2PfvImWfVSrBp+66sZ23WODSFy5m4c7TgCg313diU6ogtPhRKdXfz5ZqdlsmLuFvZsOcizpBGMn3Uz1+sXPt3JcBNnpuTw74DX2bznEmBevY9Qzw4qWd7m+HYW5haz4ZS16o47GXerz4aY3cDqcRESHlTjvVb+tZ+Wv6+g6qh0Lp60gtm4VrntsUNHyxl3qF1vf6XDy4QNfMPvThdw68Xquf3LIRT+Xnyb9zjfPT2fYI/0ZdH9v9EY9Pn/zZu+l/OEN+NcI25bu4t17PwdAaDXceE6wuRgB4f5F6ZLAsIBiy3Iz8/ji6e84tOMot792I/XaJpTYPqZuFeq1S+D0kTR8Aiy8f/+XnNh7ih5jOlEpLpwbnhxatG5BbiHZqTlEVlMplYVTlzPlqe+o1TyOOm1qMfDeXljzbXz66FRSj6VTvVEs2Wm57Fi+mxueGsL2Zbto2bcxh7YfpW7bWpc0Mj2edJJf3p4FwPKf1xQF/DPs2bCfo3tOEFWjEqFRwcz/cil/fPQnD31yJ33uUG6YU5+fzh8fzSc0Khi/YF82zN1SIuAD5GXkcXDbEQAO7zpebNmRXcdZ88cmctJyWG3eQOMu9QmpFFTqORfkFvDOXZ+SlZJNSOUg/rfsRWo1jytaLqWkMM+Kxc/MpgXbsRXaqNUsjnlfLAFg0XcrLhrwnQ4nv707F1uhnYPbj3BLrXGEVgnh+RmPElXj4q7mO1bsoiCnkKY9GhbdEL2UH7y/kWuEoPAAzD4mCvOt+Ab5sG7OZhZMXUbtVjUYdH/vCz7it+7XjLeWvYAQokRA37fpILM+VhLAlb+sKzXgB4UH0nZgc2Z/toig8IAij3h7oZ2Ow9sWrZeXnc/E699h47ytPPDRWPrd2Z3TR1OJaxjD2lmbWDtrE0HhAfgG+bDo2xUANO3RgJpNq1O5RiU6j2xL4uokpEsyceTb1G2XwIMfjcUv+MKVtwCV4iLoMLw162dvpnnPRsWWFeQU8NJ1/+P04VRGPD4Q/yBfti5JBCAzJatovayUbAByM/Ko1jCWum2Ka/l3rdnDng37ad67MY9+dS9J6/bR9cYOxdbJSM5k/ZzNAERWu7g0NO1EBtEJUWSlZFOreTyHE49g8TcT1zAWl9PFF09/x5zPFnHD00P4+rkfsRXauf31Udwz+RaWfL+SQff35tTBZHau3kvtljVKBHGdXseNzw7jx9d/IzgykLysAvKyCji47UipAb8gtxCTj5EN87fy3IDXcbvc3P/B7Qy4xNSal8uHN+BfI8Q1iuWdVS+zZ8N+pjz5LdUbxrJl0Q6W/bSapt0aXlQdU79dbUClWI4lnSSkUhB2q52czDxqt6rJoe1HqBwfecHthzzUj87Xt8PkY0Rv1HFi3ymGPdyfqHO2STuRwcZ5WwE1Sux3Z3e6j+6I0+5koyclZLQYsQSaiW9cjdOHUwiNCuaF3x8ntHIw1nwrBqOerNQc0k9lsnz6Ggbe15sG7Wtf9HPx8bfwxDf3U5hnxT/Yr/hCjSgqkDqSeIwXfn0Mv2BfslKy6XFzp6LVbnxuONUbxhDfKJY6bRLwP+cmk5WazXOD3iA7NYcOq5J49sdH6HZesAeIrRtNnTa12LN+P20GNb/oOQdHBhIcGUD7oa1wuVy8e+8U4htX4901E8lOzeWnN2cCcPJAMrZCOwDbl+/mgQ/vYMDdPXG73TzR82W2LNpB7VY1mLTkBQxGfbFj9B3bnd63d+Xg9iMkH0ohKDKIOucUku1YsQspIeN0Fit/Xsv+bYfpdF0b3C63OvY+rzdiecQb8K8hqjeIYdVv68lOy8XH3wxAw051CYlSqQOXy0XSuv0EhPlTpZSR3G/vzeXjh7+mYed6VKkRyexPF9Lvzu5oNIIPx31JtfrRxNSugn9I8cCp0WgIqRwMwOgJIwBY+8dGPnzwS9oMbM6QB/tStWZlbn/9RnYs30XPW7oAsPzntfzyzmwG3d+bJt0bkLR2H9/d8Asdhrem43VteH/cF8TUrsprfz6Dj7+FJ799gHWzNnFi30nqtE2gWt1Lk3jqDXr0wfoS71t8zTzz48PsWb+fBh3roNVp6VNKU5Pq9aNLTeGcuXaDSe3bYLxwdW1wZCCvzn2K/OzCv5xf8Q30ZdzHY5nz2SKWfLeC9kNbkXEqEyEEQZEBjHpmKPOmLCahRTwuh5uUo6mkHEkjNyOP8KqhSLeakAX1VCIvIPnUaDTEN6rGa/OfLfb+ujmbebb/awCMfvE61vyxCbvVztpZmxhwT09SjqbRom/Ti16DlyuDUL5m5ZNmzZrJjRs3XunTuKo4vPMY37/2K+HRIXQY2ppK1cOLDMfmfLaQt+/8hMDwAN5e/mKRD0xORi4FOQV89vi3LJ++BoCeYzox/6ultO7flDV/bEKr09JxRGs2zN3ChBmPFlWGnj6ayrKfVhMZEw5CEB4dSkKLeJ7s9XLRyH3qgfepVEoa45FOE9i+fBdCCL49+iFP9prIkZ3HMZgM1G5Vg8pxESyatoKv979H6LlqFKsdnUFXbtQl+7ceYv/mQzTuVr/UCdh/QkZyFtdXvRO3y01svao8/8t4ouLP+vbY7Q4MBj1Hdh1n4bTlxNatStdR7YuW79tykC2LEqnXLoGN87dyLOkEQx/uT0Lz+GLHObH/FIu+XUH1BjFF7qILpi7ljTEf4Bfky7BH+nNg22HSjmcQEOaH2+WmVot4hj/cH5OP1y30SiCE2CSlLLWYwjvCv8rJSM7ixL5TxDeuhtnXRGzdqjz5zbii5W63m7lTFnFk13F8ApQKIyslm4xTmVSpWZmUY2l88+J0Du84StshLdHqNNRrW5uazasTERtOvba1aD+0FYX5Nj4Y9wVul5vEVbuLAv7v789j+qSZaLQaGnasw+61+3h/w2u06t+MjX9uo+ctnQmKCMDtdrN5wXYAmnRvgEajYcSjA7AEmGnRqwmhlUO447UbmfXpAkwWI24JVWtXodP1bfn8ye8Y9dQQqiao6lyD6e/71GSmZDHzg/m43W46XteW6vXKrr1mfKNqxDeqVuw9u82B3Wq/ZDXR+fiH+NL7ti7M/nQh3W7qWCzY52blMffzxZw+koIABt7Xh6q1ipu41WhcnRqNq7N9+S6+eUFZRgdFBJYI+N++/DMLpi5Ho9XwwcbXiG9YjbaDW3J3Zj5ZKTl8+cz3BIT603ZIC+Z4mrb7BPhQmGe9pIB/Yn8yX0/4EZ1ey80vXldmN0QvpeMN+BUUu9WORqu5qBKiILeQl0a8ReLKJIaPH8DYN24qsc7+LYf43x0fA9Drti70HduNKrUqU8fjGHn6SCprZ24kKzWH5EMpVIqLoOOwNiQ0r0FC87N69PRTGexas4fM5CxanvM4fyZ1ZLIYcNid2K0O7IV2BtzTkxqNq/HDG78x6daPaDe4JROvfxuA5395lLaDWtCyb9Ni+2rZtyn129cmaeMBKlULZ8/6/XzqkYxa8600696Qfnf1+Eef5/o5W9i3+SDrZm9mw9ytvLl4wn8mQ0xPzuTNm99n36aDPPntAzQ7b7L4UtDpddwz+VZGPTOM5MMpfDtxBs17NaZm0+qsnbmJTQu2Fd1ALf4Wbp14Q6n7qVQ9griGsRzacbTU+gKXU+XkfQIs2PKV+ZzFz8yQB/oy/S01V5CdlkP1+jFodVr8Q/1o0acxQRGBl3QdG+ZtYcn3KwGo1y6h1JSZl7LDG/ArGMf3nWLX6iR+eE0pKB754p5S0yEAhbmFJK3bD6jAXhoBYQGEx4SRciQVp8PJvCnL6TiiNbqH+gMQ3yiWJt0bsvi7FdRtm8DmhdvZvGg7Wr2W/Ox8jBYDh3Yco+OI1jwxdVyJ/Q8a14ew6FAObjtCYJg/wx7uT40m1QHYs3E/a2aqlN256o/C3At3o7L4W2ji0Zjb8m2ER4eSk5aLw+rg40e+psOI1ph8TGi1GrS6ixcXnUt07Shy0nMBOLDtMPlZ+f9ZwD+SeIxNnmC8acH2fxTwQXkDWfzNTBz5DuknM1g/dzPvrHiZsJgQomtX4cCWw2Sn5RQ9+ZxBSsnWpYk4rE6adm/A6wufIz+roFTjuPZDW2ErsBHfuFrR7w0gP6eAnLQcOgxrRXyT6vS5oytNutXH7Gsqll77K2o2iyMg1B+dQUt84+p/vYGXf0WZBHwhxBdAPyBFSlnCdUkI0Qn4HTgTdX6RUr5YFse+lshMyeLp3hMJiw7l2J6THNtzkj3r918w4IdUDubJb8exffnuIiuA84mIDmXSogmcOniaD8ZNAeDIrhO4XC60Wi1mXzOPTLmb658YxJwvFhNSOZj4xtV4dsBrNOxUl52r9uB0OEk9ns7Dn95VYv8+/hbW/L6Blb+ux+xr4qu97xYtS2hRg+DIQPQmPa0HNCO8qgoUbYe2uKTPI7ZeNO+vf5VlP67mgwe+ZND9vTm5P5k3b/mAkMpBPPL5PUTEXFqKoHbLmlz/5BBW/76BJt0aEP4fphbiGlej66j2HNh2pJjnzj9Bq9MSGhVE+skMQiKDEELQsENd/nfbR1SOi6BG0+q06N2oaP3czDymvTyD3ybPwe1289jX99H9po4EnDfRfoZ2g1vSekCzItnuztV72L58F5XjIvjh9d8BCK4UhN6gp2qtqFL3cS6FBVbmTVmM0+6k161d0Gg0PPntOOIaxRIYFqBSXYW2izay8fLPKasR/lfA+8DUi6yzQkrZr4yOd01izbeRciydsOhQqtSsRGiVkFIfw8+lw7DWdBjW+qLrVKoeQaXqEdz77m1sXrSDln2bFtPlG4x6YutFc8//xuB68ya2LdkJqCeIgDB/0k9mEBBaesAA8A/zByA4Mgid4exXrnarmny2438IjfK8Pz9/fCkEhQfS/56etB3cksBwf356cyZHd5/g6O4TJK3fd8kBH6B1/2b/OgBfCgEhfjzxzbiim+q/wWQx8uR3D7J/88GiNJwQgsEP9OXr535k8Lje+J0jNz2ceIwjiUdxu1WqJj+r4C+PceYcC3ILmHj926QeSyehRTzthrZiw5zNNOp86c6asz5eUJSGK8y18u3EGUi35IVfHyOhVTxvjvmA3Wv38fjU+2nVT6XzMk5nkZuRR0ztCzuherk0yiTgSymXCyFiy2JfXi5MpWoRPDf9YfZsPEDH69oQnRB1wYCRk5GLxc9cLMfvsDuY/+USctJz6XlLl6JKzt3r9mIwGWjSrUGp/unZ6blsmLeFqPhK1G5Zg8Zd6/P8r4+Sn1lAtQbRpBxNo0GnOiW2O8OYF6+jabcGVKsfXULrfr6E85+g1WqLpIxNutZn0bQVhFQOotY/uIFcTv5tsD9DVFwkUXHF6yAG39+HHjd3wuJnLmYsF1O3CiFRQbQd1Jzo2lXoemP783fHsT0n2bf5IPXaJRBeNfTs+eq0BEUEknosHd8gX+56+2Ye+PD2EhXYFyM7NRuNRqNuOIIi3X76qQyO7jrBBk8txuaF22nVrymnj6TyVJ+JHEs6yWNf30fG6Sz0eh29bu+C2eJVAf1dykyW6Qn4sy6S0pkBHAdOAuOllDsvsJ+xwFiA6OjopkeOHCmT87uWWPTtCt658xPaDm7BAx+NLXJLXD93C0/3fQWAO968iYBgXzbM30ZhbiFbFu3g9YUTqN+uZLXsF09/x/ev/orZ18THm9+8aJFVecBus6PVav9WDv9awuVy4bA5MJUSMAvyCnmo3bMc3H6E9kNb8tz08cWWn9h/ijlTFrFp/jZ0Bh2vzHmqZMHaRVg/bwtzPltIeHQowx/pz9Kf1uByOOl7RzcQgk/GT2XvhgPcM/kWrAU2ktbt49uXZwDQ764ezPr4TwCe/uEhOl0gTXmtUx5kmZuBGCllnhCiD/AbUGouQkr5KfApKB3+ZTq/q4aCnAKWT1+DtcDGom9XMPLxwUVVtAGhfuiNemo1j8PHz8L/7vgEt9tNQot4dAYd62ZvolbzuBJVl3ZPIw2HzYnT4bzs1/R3uViBkxf1ZKG1lH4zdDlcRVYROWm5JZZHxVfi9KFUDmw9jBCC3PS8ooBfkFtI4sokKsdHllq4B9CiV2MadKiN3qhHq9Uy/OH+xZaPn3IPbrebjOQsRsfdh1+QD91u6oBOryO+USygCsIulkL0cmEuS8CXUuac83qOEOJDIUSolDLtchz/WmLBN8sQGkHluEiadK9P5fizE7q1msfz8h9P8Mqoyfzw+q8ktIpn1+q9xNStin+oH0u+X0mHoa2o2Syu2D6HPtSP8OhQohOiiPbmUa9q/IJ8efanh0lcnUTznsV7Bx/cfphvX55BlYTK9BnbjbqtaxVTV01/aybTXvyZyGphvLNyYgnzN5fTxb7NBwmpFESYJ1VUWGDlu4m/sH/zQW54ehj12yWg0WgwWYw07FSHrJQcfAN9uHfyrUgpqVKrMjqDjrqt/3mj+WuZyxLwhRCRwGkppRRCtAA0QPrlOHZFw+12M+PtWSz9cTXXPTaIDsNalVjn1MFkPn74a+w2J3e/fTPRCWeDsM6gZ9Vv64mICaPTdW1LFCH5BFjITs0hOzWHuu0SGPPiSNJPZvHGze+pnG1M6PmHI6xKCEMe6Fv2F+ulXFKvXW3qtSvpQbRixjqW/7wWgBd+e5w253XGSj+ZCUDK0XQKcgtLBPxZHy/g/XFTCI8JpeeYznQd1Z41f2zicOJR/EP8WPTNMqrVr4pvgA+5mfnkZeWTdjyd5r3VjUcIQcOOF+7tez5r/tjIkV3H6Tii9QWVbNcaZSXL/B7oBIQKIY4DEwA9gJTyY2AYcLcQwgkUAiNlefZ0uIKkn8zk00e/AWDG23/QYVgrjiad4Piek9TvWBu/QF+2Ld3Fao9+ffOCJsUCfrcb2+MTYEGr0xIYXnwyLflwCvs2H2T4owPYv/kQp/YlExDmR+Mu9anbtiZ+wb7/uPLTy9VPQssa6I16ImPDiKldUoI55IG+BEUEEN+4OlVrVi6x/MhuZQmdciSN3Mx8PnzwK5x2JxqNwK6zs/i7lcQ1iqX/3T05uO1wUQ1J0tq9tOjVuMT+Lsbhncd4YegkXE4XmcmZ3P32Lf/giq8+ykqlc/1fLH8fJdv08hcEhPnT69YuzP9yCZ1GtiXjVCZP9ZnI6cOp3PjsMDbM20KLPo2JaxhDbkYetVsVnwoxmo2EVA7iiR4vI91uXp79FE26qkKlbyfOYN6UxfgEWtQf1dbD/PDqbzw+9X7ST2Qw5cnviG8cy5AH+5XI43vx0rJPE77a+x4mi6FUdVVs3arc8tLZULBjxW5W/LKWRp3q0WZgc/rc0Y3CPCsuh5NtixOp2y6BuZ8vwuV00es2ZZjnE6gGHJXiI+l2Ywc0Wk2xautLxWg2YPE3k5uRh493EFOEt9K2nGEw6hn34e2Meek6giODOHXwNOknMrH4W9i0YBt7Nhxgz4YDTNn5NsGVgvANLPllPrkvGbtV2eKe2HuyKOBrtcpMTKfXcWTXcdbP3YJvoA/WAhsLvlnGsp9Ws+yn1TTu2oBa5+XxvXgBiorjLoUpT37LztV7mP3JQqYd/pD4RrE8/vV9ZKVms3b2JrYsSsTldAFnexQ37a5kwct+WsXCacsRQjDgnp44HU6yU3PwC/XD7XRjshgveuxK1SN4Y+FznDpwmsbd6l903WsJb8Avh+gNekIqKTvhynGRTPh5PPu2HMRgNpC0bj/dbupARGwYRnPJL31uVh5H95yg+82dqFQtnFb9mpK4KomQykGMemYYNZvFU71BNNlpuQSE+NGybxN8/C3UblmTuZ8vpnarGoRHl8zje7l2KMgpYP28rUTEhFK7Zc2/3uACxDeOZefqPSS0iMPsc/a7GhgWQK8xXehyfXsadqhNXnYhPcd0IiDUv2idM99tvVGP0WLgs8en8evkOXQf3ZEdK3Yx7oM7LmhJIaUkIzmLmDpVSpjWXet47ZHLmFOHTjP380WEVA6mzx1d0RtUaiQvOx+Xw1XsS/13SFq/j11r9pDQogbxTapfMOXy2/tz+WDcFwB0vbEDjTrX4a3bPiayWhiTlrxIxDnBXErJb+/NYe7nixnx2EBqt6yBf6gffkHesvZrme9e/YUvn/4eo9nABxteJ6bOP1Nm5ecUsH/zQaokRBESWXq7xgvx/au/sHXJTkKjgrn5+RHcWudBbIV2ImLCEBpBq/5NufedW0vd9vcP5vHhA1/S67bO3PvubddcevJiOvzyYRh+FfHnV0v5/tVfef/+KSSuSALUBNL9LZ7ktroPkbgq6W/vsyC3gIk3TOajh77ms8emoTdc+MFMuiVCCDQaDX5BPpzYlwxA8qFUslOzi62bnZ7LZ49N41DiUaa99DOV4yO9wd4L1jxlXuewOYtSg/8EH38LDTvV+9vBHlQv4c0Lt7Nw2nLcUnL3O2PoMaYjHYa3AilL9B4+lyU/rMTtdjPns0VkndOK0os3pVPmnPFu8Q20EBQZCCinyuOelm+71+4ttffrxdBotUU2w2Y/U7FS+fNp0bcxu9ftJT+rgMZd61GpWgR2m4OYhCrENy7+eOsX5MOAe3vy67tz6X1714vu18u1w4B7exEQ6kel6pHFHDIvJyMeHUhoVAh129TC7Zb88NqvnD6cxvgv72XMSyOLnpzPxeV0Ybc5GPJAP6x5Vjrf0O5vOXdeC3hTOmWMy+Vi15q9BIT4FRUppRxL4/PHp1GQU8jtr99IbN2quN1uCvOsJSx4HXZHqV/mo0nH2bPhAPXaJRTTFCeu3M28LxZTs1k8/e7qjkajITczD1uhnVBPW8GLnq/TRU56LgFh/uWmQ5SXaxtroY0Z/5tF6rE0Bt7Xm+zUHB7t+gIAHUe0IScth4iYMIaNH1BkqJadnsvkuz7lwNZDjPtoLNXqR7Nw2nKCIwLpckO7a+q7XR6sFa4ZtFptUdPvM4RXDeWp7x4s+tlhd/DZ49P486ul3PW/m+l1SxcK86x8Mn4qG+Zt4b73bivh2hidUIXohCpkns5i5ofzqFQ9kua9GjH7s4Us/GY5879aSsOOdYipWxW/IF/8LvEp+owhlhcv5YWdq/bw1bM/AOAb5MPoCSO4/bVRHE48xqmDp9m5eg+NOtdj6+LEooB/ZOcxTh5IJigyiG9f/pkWfZow5YlvAVU4eKYD27XOtXPbK0dknMzk18lzyM8uYOG05QAc23uS2Z8uIOVoGokrdvPqjZP55sXpnD6aykcPfcnkuz/l1KEUfntvLu/dN4VnB7zGwe1HqNFEpWnqtK5JoCeFdGT3cRZ9u4LU495iZi8Vj0rVwomsFoZGoyGuQSwGk4HrHhvE9U8NJuN0FiaLkeDIQOq0PqsgqlavKjWaVmfnqiR2LN9N2vEMfAN9lB4/wHwFr6Z84R3hXyZcLhdrZm7EYXPSsl9jRj45mAVfL6P3bV0BqBIfSddR7Vk/dwvZabks/k61fTNaDPwyeQ4AVWtVRqtXplcarQaNTsPA+3rTsHM9QioFERDiR352AS8MeZNje07SeWTbYk8WXrxUBCrHRfL2ipfJz8wnpm7VovfzswrodUtnajWPp3arGlj8zqZD/YL9GPJAX3Ys301hrpWElvEc2HqIZj0bMe/zRZzullrUhP1axhvw/2PW/rGRpdPXENcwlrlTFpFxKpN7Hbdy28QbGD1heFG+3uJv4eEpd+OyOVk3ZzNr/9hIaJUQajSuhn+IH/ZCO9UbxhLXMIZK1SKIrBZGbB31xxDXILboeGdy8gB5WfmX/Xq9eCkLQisHF5uDKsgr5JVRk0k+lELtljV4Z9XLJbapVi+aCTPGs+ib5fw0aSa1W9Rg9cwN7N1wgHlfLuXbox8R+A9l0VcL3oD/H+J2u/l4/FRO7DvFql/X07BTHYIiAorUMHqDHiklf3w8nzUzN+Ef7Evrgc1ZP28LsfWjGf38CBp0qMPHW97E5XQRGRuOtdBGy76N8Q8p/YvrH+LHhF8eY/eaPUWmU168VHSSD6VgtCgjQJ8gn6JJ2B0rdnF87yla9W9KUHggx3YfZ/XMDRzbc5KjO48z5qXr2LvhgGruPmsjXUa2K2EoeC3hzeH/h2g0mqI2bfXbJbBn/X62L9tVrO3e6SOpvHfvFDbO38rJA8lsX76LBV8vY9vSnWxbqnrEhFUJITI2nMzTWTw34HVGxd7Lmj8urF6q3y6BEY8OpFq96P/2Ar1cEOnOxZ0zEXf6aKR905U+nQrPulmbMPuYaNS5Ht09XbqO7TnBEz0n8r87Pi5Ke8Y1qU7ddgkIIWjQoTbRtaMY++ZN5KTn8tatH7F+7pYreRlXHG/A/4+55eWRfLptEv3u6QlAp+vaEFu/Kku+X8n4LhPYtGAbbQYpRU5Y1VBqNYsjrmEsvoEW6p3Xfero7uNsWbQDa76VLYt2XPZr8XJhpGM30rYSKT2FSo6dUPA1ONYiC+df2ZO7CqjVPJ4jO49j9jcTEB7I6pkb+eOjPzkjK5eeHr1RcZHc9Pxwxn14O73v6EqjrvUJrRzM0aQTaLSaomYtGclZfDtxBr+/P/dfFZdVNLw6/MtIYV4hBrMBJNwUdx9B4f74h/hx56SbEFoNgeH+BIQEUJBbgMPmLGHDkJedz2ePT2P/poOMnTT6b3mDe/nvkI49yIzrQBaA/wQ0llFI12lk1gPgSEQEvo0wdb/Sp1nh2bokkeeHvklhrpWuozqwaNpymvZsQLMejeg4ok0x//0Zb//BJ+O/oddtXbj7nTHsXr0Xk8VY1Oh9+qSZfPqYsiF/8ffHL0vz+suFV4dfTjD7npWHDbyvJ3M/W8TeTQcJfDOAx7++H1B5f6PZWEyBcAbfAB8e+vjOy3a+Xi4Rma2CPYBLSWGFNgKCpqj3pRVp3wL6Bghx8T670rEHhBmh86bjzicnPZf8LPU560063G43/sF+9LurRwm/nCU/rEJKybwpi7n5+RE06dag2PJgz81Bb9ARGH7tTOSWVQOUL4B+QMoFmpgLYDLQBygAxkgpN5fFscsbSev38c0L06nWIIaRTwwq1lDk2J6TLPp2OTG1q9Dz5s788NpvgGoIAapByTt3fkJ2ei4PfXInNZt6LYr/K6Q7G+ybQVcNoYv96/Ud+wGJ0JfSilnfFPxfBfdphGlw0dtC44N0ZiAzbgT3KfB7GeEz4sLHsC5CZt0HwgJBXyMMJf6UrmmadG/ATc8PpyC7gAF392T4w/0JrRJcqjnaiEcHMX3S73Qa2bYouJ9L5+vbElYlGLOf+W/ZR6SfzODwzmPUbBqHX3DF850qqxH+V6gGJ1MvsLw3qml5DaAl8JHn/6uO5T+vRaPVsHnBdqTbzS0vX49Orz7mn978nXlfLEYIwUeb3+DZnx5hx/JdtOqvJnZ3r93HpgXbAdi8cLs34P+HyLz3oGAqaGKRQe8hdNURonRXRWlbj8y8FZAQ9BnC2KbYciG0CMvQ0g/kTlXBXlMJHGtwp09H+D6CMJZsXSmdBwEXyFxwHQO8AR9g7pRF7Fixmx43d2L0cxe+YZ7BbnMQFR/Jq/OexjeweFC2W+0YTAY0Gg0NLiElKqVk9e8byE7NoVX/prwyajLbl+2i5y2dGT/lnn98TVeKsup4tVwIEXuRVQYCUz1tDdcKIQKFEJWklKfK4vjlifrtEtizYT/7Nh9EaARJ6/ZRr11tCvMKyc3IA5R00uxrIq5hbFFzEoCazeOo07om2Wm53vz8JSKlHVnwI7jTEObrELqSrfVKbuMEx0H1g/sk5LyINDRB+D1S+vquo4Ca2JPOIyUCfrF1HXuR+V+ANgLhcwfoG4DfBHClQsGHah3r3FIDvjD1QbrTQPiBse1fXse1wKlDp3l77CdIKclOy6FR57++Cf7w2q9888J0mvduxHM/PYLJxwSoJuvTJ/3B9U8OYvC4S+vRvGPFbp4f8iYAt2XcwIEthwE4tOPoP7ugK8zlyuFHAcfO+fm4570SAV8IMRYYCxAdXf7zmC6Xi5kfzufgtiP0uaMbrQc0J/VYOm6XmxN7T/FY95d44ddHady1PhGxYbQf2pKYOlWoHBdZYl9RcZHc9b8xuJxOElqWkjrwUhLbesh9CQCJAeF3LwBu20qwbwNdPDj3IgzNEMbWahup7H8xdAGhBdsicB3DbRoMtuUIQwOE4Rz7XX0zsNwCQo8wdbvo6UjrbLD+4tmuMcLUCfS1kLpYcLYH+zqEoXWp2wpdFFhuBncyCK8dAEBAqB+Nu9Rj86Idl+wye0bOvGn+dnIz89m78SDblu9k7meLyDydxfev/kbfsd0vSY+v1WrQaDRFc2tPff8gWxbvoM3AFv/quq4Ulyvgl+a7W6o8SEr5KfApKJXOf3lSZcHB7Uf48IEvadq9Ab9Ono3r3l4MuLcXOZm5JK5U3vdbliQSU6cKf3z0Jw6bA/0FGjJsXridJ3tNRErJhF/G07aCfqkuK9pQEL4g80BbCQDpPApZD6nJVGN/cKchHTuR2lg0ukoIjS/ScgM4k0CYwF0AlqGQ+ybYFyFFCITOQWiDkO4CyHkOHGvBcitCG1bqaUhnMshshL4eEh1oKoMuBnf+z+DYos7PchMi4A2EtnTLXulMRmaOAddh8H0S4ettvG3xs/DMjw+TcjytyCjtXArzrKyZuZHA8ACaeFoZXv/UYCJiwmjUuR5hVUJ4ddRkgiICiIgJpV67BKJrVyk12DvsDnIz8gmODGTdnM1kpWTTbkhLXpn7FFmpObQZ0Byzr4kWFbig8XIF/ONA1XN+rgKcvEzHLjN2rNhNYZ6Vpt0boNUptUVo5WDaDGrOvk2HSD2Wxv6th/hk6yQCwwJo3qsRToeLOq1qojfpCa4UyOnDqQSGB5S6/8yUbNwePXFmcnap63gpjtAnQPCPKrjrPaNydz7IHM8aVnCsUS+dI0BXSd0Q8t4C11EwjwTsCG0MUmMGTThgUiN/AJkPDk/hlGNb0XGlPRFpW4DQNwVdLDLjVnAfg4A3IeADkBlI50nIfQ5wgrEzOI+ArviTm3TsB+dBMLYAd4YK9gCuQ//Bp1Ux8Qv2veAE6dwpi/jooa/QaDS8vfIlgiIC+emNmeSk5TLwvl4ANOxcj+XT13B093E02n088NEdJfZjK7Qx+e7PWPTtCm6deD1TnvwOKSU5GXkMf7j/f3p9l5PLFfBnAvcJIX5ATdZml/f8fcqxNJb+uJoqNSrRZmBzti/fxaNdX8DtcvPYV/fRfXRHAIIiAhn3we28duN7pB5Lo1L1CLQ6LV1uaI/OoMMv2Jc2A5ojhGDirCc5uusEDTqXnp9vM6A5d/9vDE6nk44jSn/svxaR0gaAEBdoXK2rruSP7gykzEMYaiP9J4IjEbS1wLYUNFURuni1vvOwCqzGDmpSFQ3SugK0NUHsBcsoZME3SNdJhGU0BLwK9vUIU3+k8yjSeQIKZ4BMQ9o3gM+94PbkdJ3HIf8DwAGWuwCn5yLcYF+DLPwG6fcCGlNbpCtFTQa7k8HnDoTvePCfCM49CHPxSWBpW4d0bEUYuxRTCkn7RmTu+6Cvg/C9F6Hx8RwuC9w5V7280+lQTdCllLgcTnav3VtUlLhl8Q5qNYtn+CP9yUrJ5uju4zTqUo8aTUuqco7vPcmCqcsA2LhgGyYfI4V51lJTExWZspJlfg90AkKFEMeBCYAeQEr5MTAHJcncj5Jllvtn1d/fn8tPb85Eo9HwwcbXyM8uwO1So++8rLyi9QpyC8nNyOehz+/i8I6j1GxaHY1Gg8XPTK9buhTbZ0ydqsTUqUppSClxOV0MefDSJpOuFaQjCZn9OCAg4A2EvnhTbekuQOa+BNYFYOgNpCI1lRCWWxCWYbjzp4KhhfqnjVIbGRqD74OQ9y7gAENnEMGQPwGQUPiDR12ThsQM9hXgPo00doWMMaCLAfsqz766ACbwuV9to6sNhmbgOgWaEPB7GVwHAAsUfABowDYbTG3VXILbY2HtzkIIgbAML/kZuFKRWfeAzEU6EiHgJbDvAF08snAOOFarf6YuSOGDtM5Xx7f+jgx4A6GrBa7jYGhVdEO4Wuh9WxcsfmaCIwKp1642pw6mULdtAtmp2TTsqCZ4LX5mbnh6CI061yWmTjSxdUumhvas30/rAc04sS+ZFr2aMPzh/mSeVimdS0FKSU56Lr5BPmi1F6+1uJKUlUrn+r9YLoF7y+JYlwuLpxOV0WLAaDHSrGdDHvn8LvJzCul0fTsSVyXhG2jht/fncvpQKuExYdz++ij8Av++NtftdvP1cz/y23tzuWXi9Qy6r3dZX06FRdo3gXO3eu3YUiLg4zquRttoQBsAzmNgnYMUFtCNB/sWcGdB3vtIbS3QV0PoqiH1zUATplQ6uMG1AwytwL4ODB3AOsuzz/Cz6RXnQXCfABnu2TYddHGQ86CaZA2cAjlPgmM9mO+AvEkgfBHBXyCdp8HYS90EhPqOCF00BH6AdO5CmHpd+DNwZSitvxCgqYnMeQWsv4GuMfjcCIU/KjWQthoy6xEV/IUf6OuB4zAyZyLITPB5EOFX8aSEF8MvyJd+d56tYq4cF8Gbi57D7ZIYzWfz9GFRIXQcXlJdteyn1ezbcpDqDauxZeEOWg1oRsrRVBp3qUeL3hfum3s+M96exRdPf8/QB/tyy8Try22HLW+l7QUYfH9vqtaqTERsOFVrKqlfr1uVd/2czxby9p2fEBDmT6Mu9dj4p8rt1mubUJTq+TvkZOQxfdJMHHYnv78/l4H39vL2l/UgDC2QukYgBMJQvFpcOk8ibSvA5y6VHy/4EnCAsRNoI5CFM1Wg01QCn16QMx6pCYOQnxCGBkjzcBWcXQdBEwqOI+D7NDhOqFG6OwPQqDy/Ow1hbIfUhoNtBWijwX0anAdAV9PzFJAKzl1qwtZ9FLCBtKl1HHtBZoHbAeazD7jC1AlBp7PX5DqBdKaDfSHoaqAx9wfbQrAvVSuYIsC5R7127UUY2kLoYtD4qkIvbSg4UDcWbV3Q14ECz3yQdCBtq0BfD6EpfR7paqC0FqGlcSzpBK/cMBm3202PMZ2YOPtJnh34BgU5BZw+nMKLvz9xwW2TD6ewbPoaohOiaNWvKX98NB+HzcEvk+cwfHz/C7rZXmm8Af8CWPwtdBhWeh791KHTBIT6o9NpqVorCo1Gg0arIbhS4D86VkCIH6NfGMHv789j+PgBV3Wwl87TKvDpal7wOt2Fv0PBL2AZgsY8EBk8FdCBELjzvwfXIYR5OLLwZ0+Q10PA62Cbq3agjUNYRiJz3vHssVCN5PUNwLEV3DaELgDpczPkWUEbB9IH9LFg/RO0Qep/Yx8wtEJjuL3o3IS+FhID0r7KM1I3AQ7wnQDaEDB0BE0AOLaDoQ0If6S+NRR8B46NgAFEBG7XXoS+PsLQ8OxnY12g/HcM7TwBXuCWDpU+MvYC+1qVHtIEgbEXwjIMoS3et1j4PY40dlZPNoXfgzYEEfAO0nUSrPORBR+A+TpEwEv//pdZgUnasJ8Zb80krGoIp4+k4na6ebTbi3S7sQN/fr2UsOizaiy3211ixP7ru3P45Z3ZaLQaPtkyieufGsL3r/xC/7t74ucxaCuPeAP+P6BKzco06FSHtOMZrP5tPX3u7EbVmqobVW5WXqlpnbzsfBZ8tRSdUU/3mztiMp+dgBRCMPLxwQx7uH9RVe7ViHSeQGbeoiZM/V9DWIao9wvnI13HEaa+oPGHnFfUyDx3D25tFch+RuWrzddD7gS1DS4QoWDspwKsJgEst4IrGfRtkPaNQAHYV4PwAW010DUA823Igk+RjgMqj1/4vVL0aMLBNBS0VSFvokqhuNLQeOwNpPOkKvDCCuYbQFtdjfTzX1MXp6+DcKcjbbNBWwd00eo6tSEIoUXqaquAr62qVEPuQ8i8dyFkJkIXiZQSaV0GOM+KmDXhUDhHbSd8IHAaOLeBcwfCPLxYrYCUUs0BaMPA0BKZ/RjgAOsSCGivbk6uyWpl576z21kXI23LEcbuCNPZYi/pPKlujvp6V8XEr9PhVF3iPIF7/ZzNLP1pDbWaxzPkwT78/NYs3C43hXlWXvz9ceq2rUV+TgGfPDKVnauTuGfyrTQ9x4/Hx5PytfiZMFgM9LqlCz3HdC73g7WrN7qUMbZCe1FO8I+P5uMX7It/iC8OXxNGs4HkQyns33IIg9nAgx+NLbH9sh9X8+FDXwFKZtZpRMl84tUc7AE1yj4jO3QcwV3wu9LCuw6CbaVSlggfMLYB62wwDQLrStBVVbJLV7Ind54K6JRk0jZLec9oqkDBF4AWhBGsv4LRMxci80FTBeF7Pdg3Iws8DiDWBmAeAAXTwDQAjf9DuPO+BWMPsP4O5qFFgVTaVqqCKvdpdQznHvW/rjk4NysF0JmqWne6mlvQ1gAEMv9j8LkDDM3BsUvJN517QBOGLPwRKQtAE6W0+vrmIKLA52GEuSey8FdwLAfzYIShNsKoFF7SnYd0HEDKPLAngn0pUl9fKXW0oUj/l8G+HPTtkBk3AG7wfRzcqUXOndKdqybEZTbSvgaMc9TNSUpkzgtgX6LmCUKmXlghVQFY+tNqPnt0KvFNqlMpLoLRE0bQqHM9Zn38Jxqthlb9mpGXXcj62ZvoeUtnWvZRN9LEVUnMnbIIgNW/rS8W8Ic81JfYulWpFB9B5eoRAOU+2IM34F8SC6ct55PxU+l3Vw8s/mYad6lPTkYucz5TX4aQykEs+2kNNZtVJzw6jC2Ld9C4S/1i+zjzmCeEwC/o6lJKXAzpLlB6d2006BuC72PqZ41WTTzaVwEaNWGKGwqnga4u+DwHukgVvLM+B2wqqBs6K28a6QY8LRylzRMsW6kJXtdx9b7riEqFaKMRvqMRQofUVlcjfWcS6GsgzD3AMga0nspnUw/I+Fidi3UO+D2hJkB1lTw5fcB1WuXsAXyfQxifR+hrIKVD/W/PUtcGYGgNBTMRhrYIcy8w98KdP0PtS1tLafxdJ1Sgt80B9CACEL63InRVwfd+MA9XVg1CU/SZyuxHPFLP9aCvq54C7KuQxq4IQ100lsFgGYy7cD7oG6njCIHG//GzvxxhUjch20IwND3HydMN7jTPyxSQrtJLJysIC6YuJeVYOinH0mnYqS5Hdh2jQYc6fJE0Gb1Bh9FsZPRzwxn9XHGFVNWEKNoMaMa2Zbto1qNRsWW+AT50GF7xpNPegF8KToeTtOMZWAusRNWoxPyvlpCVks3uNXuKzM0emXI3C75ehsPuRLolGo1ASlj83QrWzNzAV3vfJTjyrEtfuyEteP3PZ9EZdDToUOdKXdplRUqJzH0FCn8C83CE/8sIn5uQjqOe3PuZAGMA0xDQxqs0gn2pGrXnz1ZyR20lEDoVpJ1J4HM7wjwAKc0gDIBFrW/oBP4vINwpSOsfgFGtb/sTfG5SQVNXCen/BhR8DDlPgcaCMJ2Vz2p0Ybh9H4T8r8EyEqHxQ0o3wtAS6f+auqHom4BjAwgTwtiiSBcvC36C3BfA0BMVuI3qGnUJoKt29oNxnwJHkqo1d6xV1g1SB6aB4DoJlutVsAdw5ymljzinMlRmgm2JmiPABhpPClEbDdqIos8e+3rIHq8+O59HwL4Ht3U0wv9ZhL6GMovznwiu24oVhAmhBf/nkfaVCENLhKakVXdFotOItiSu3ENCizhCooKpUkOJMM51si2NgBA/nvnpYWwFdnwDr45Bmjfgn4fT4eSjh75i1icLaDOwObH1qtJjdCcObjtCdO0qbFqwHY1WQ1SNyry5aAIZyVlUjosgLDqUY0knAFWMpTOojzb9ZAbppzKJaxRbwpP7akM6DyDzPgVNEMLnTtCYwbZYLbQtVgqRnAkqgOvqq0BkGgq6BDSWAUjnMaRjg1rffUwFcZmDCPoEWfAbFHzkWZYGjt2gjfUUUZ0AbbCa1NT6q8lMY0vceR9C4QaPHPKsKkXIE0jPCFzaNxUL+AAay1BltQBIVxoy+zlw7VM3LIuqupTGFoAGoTlnvsblKR63L4DAjxC6OMAAGnMxVYwwD0JigsIvPdudAMsdCK1fMSWStO9AZt6t5JiBH4GuGtK+HUQl8HtRpYcsdZTCSN9e3SwLfsTtPAyu/Wpkf0YpJAvApjx+pG110U1KaINA27TE71IY6iMM9Uu8X9FYP3cLv7w7m1FPDaHLTe0JCPG7ZBUPKMXPuevbbQ6ku7jksyLhDfjnkZ2Ww6yPF+B2uzm6+wQ+AWZcDhe3vnI93W7qQLMeDTH7W6jfLoEN87ZQkFdIZPUIbn35ejKSs+g4vA3VGkTjH+xH+skMnuj1MocTj3Hfu7cy8CrX10vrApU7B2UcZu4Jfs8jbQsRxq5I+2oVyN3H1OSlc6uSUBo9OWXHAZV3dx0CfQvQxCIsoxC6WKQzSSlg3JkghUppGAeoPDOAtrUa4TuScBfORWPurdwqTT1BE4kQprMnqm8IlpvAeRhhUq0npTtHeeoIPWj8z1olO3YpiSR4JjdVIY7QlJTdCctwJAJ0VRHGDhdsdiJ0VRB+tyP18Ujbn6Bvj8bcueTn6dgBMgUkSGeimmuw/gKmfqpQzNAMjJ0R2JA5zyoTOBsqPebcqSqQTf1AE6E0+abrwF2AMJz1gpHSXZQquhpZ+uMq9m8+xP7Nh2jasyGhlc6qmqz5VvJzCot1yroQ25ftZNfavaz8dT15mfk8PvV+aldAg0NvwD+PoIhAbn99FPO/XEzTHg2xFdj4/lUVxKrVj6GFZ0Jn5+o9PN33VaSU5KbnMezh/gRHBtLpurOTsRnJWRxOVCahhxKPlTzYVYbQ1UFiUBpwnfLyF+YeKk8OoAlEWueqEb5zm5IYOqsiNB5nSPtilX4R/qCJBEMbZP4XSH09NelpnQfm0ZD3ilpfFoKuqbImMPaE3OfV+66jSGMbNarWlewpIDT+CP9ni36WzlPIrHvVTci2UKVWAp5TNwl9bXUjce5DGNv/xfXHIvzHX/oHJq1Q+CvYViMNCYhz0z6AMLZFOjyDBEMryP/cs8AfXHvVddvWI22/g8896mnK2B3wUzdH6VBpH31TyLpVTTgbuiO1USDtKgWVPwXpMwaNz83qlGQh2DeBtsolNYYp7zTr0ZClP6yiZb+mRFYLL3o/MyWLiSPfYdfqPTwxbdwFJdigFHYvj3ybmDpV2bN+PwDbliV6A/7VgEajYfgjAxj+yAAAfn1vDgABYf4EhJyjrz2nF/CF+gJXbxjD/e/fxqHEo/S+7eK2uuWFM6qUf4IwdYDQeSCMpbtK6qorGaU7DVw2j1yyMhI9AhCmrkjbMhW07GtUnl1fD3J+QITMRgQ8o85R+zrSvg5haAX6WiCd4NihRtdITzXr38g7uw4ppZDQoKSMP4PvXaCLVtcR9CFIx9kbUxkhnYc8k9VapOOIqgAuXIAs+AJMPRGW0WgCJxet7/YdD4XzwLlfFYwhwPKAsoqQIMKWIa1LVLWwXfnCoI1RI/8zFg7kQ85EpKYK2GYoxVPe+0jzMFW4lfc55L8Hmkhk8LdozswlVFC63NCeJt0bYPG3FOuMdWJfcpGN8ro5WwiPDiWhRekBXG/QUal6JPnZBSS0rIHT5qBRx3oU5BRw6nAKVWpUwuiRWR/edYyC7EKqNYwm+WAKlaqFF/nxlwe8Af88pJTM+WwhiauS6DG6E/3u7E5svWhCKgURWS2chdOWk5uRS9dRHXjpjyfITM6i3dCWJK7czedPfUdcgxhumXg9vgHKU2PAPRcumS9vuAt+g/z3kebrED63/a1Hfek8hiyYBppghOWm0tfJn6Ikhrom6oapi1dKGusvSFNv0DdDhC1A2jdD5mjPRlbQ1QHN2Udx5Vd/znyIMOCWKCtkYQbLbRfsXlUq+vqqmlY61CSpuS9ozzZSEUKn5hvKHPtZTx6zGmDIgi+VosaxSaWjPJbPAJozKp/sF1TA19VV6TH7WhABIEZB3hse11CjcvyU+WBfqeZKsIOuFuS9Dob2KrVlXwXmYeDORjq2gisN0KjPwrFNSWL/AulxJxXnnGt5IjCsZFVxXMNYhj7Uj6S1+8g4mcEDbZ/htXnP0Lhr8XkLt9vNpj+30+3Gdmj1Opp0r8eib1cx86N55GUWsOaPjQwfP4Cxb9zE3s0HGd9xAghoP7Qlf369jF63duHBT8aWG3+dazbgOx1OhBBFNsdnOHUwhXfu+hSAvKx8GnetT902NdFoNGxeuIPXR78HgMslGfZQv6LtVvyyjp0rk9i5Mol2Q1rRuEsFbE+X/5mSTOb9D8yDldf8RZDuLDXa1NVEWmd6lDcoqwFTyZw0uNX6mMHYTClo3CngzkemdgZdHUTgewhdLaSxLzi3g7GvCraOjUhN9wvfhGwLwTYTAGHuB8Re8mULjR/C/8Jl9P8VQt8IiR6EP0LrcfI09VASS9OgYje5YmiilNzTlaM6aQHgVvJRy2jI/wJ8x6vmK879SMc2pRLSN1RPVaYRSmbpKlApMvNIZNZd6vdhuk7dABw7lAfRXyBdmcish8CxFhnwGhrzoH/9uVwOzL4m7nrrZuZ/uZhJtykxQObpkpbkG+dvZcLgNwBo0bsxAaF+zP1sEaFRwezbrDyW1s/dzB2v30j6iQwK85Wyb8viRABW/bqeu98eg8WvfDS0uSYD/v6th/jf7R9jtBh45PO7qVLz7GguMNyPJt0asHnhduq1S2D3un1MuuUDAsP9GTZ+ABqtBrfLjY9/8V9go051mfXxAmo2q0507b9us1cusVwHuW+AZRRoAovelu4sZP5nym7X53aELgYpncjsZ8E2X6VgjH0BASIAKQLBugipiURoIwCHCmqWW5GaGFX1mfeqGlnrGnnSDXZwn0I61iEM7cE0DPKS1GhU3wBpX40I+koVZZWCMLZFWn9VQa2UvP2VRko3svAPcKcgzIMQ2jCEqSOEzgKMRa0ZhWW0Z6I5+ILFTsLYDOnYqGoZLEPB3QFhbK9Scb4PqLoCTaD6WRcDuurI9FEg08DvNZW+cmwEEQL+cxAUIJ0HzpwpFP4O2KDga9zG7lDwtfIystyCOH8Q4DqhzNpAyUArSMA/Q+sBzbnt1Wz0Bj2tByiFVEZyFge2HSa+caxSSHlwuyV2u4v0k5mkncig39hu5OUU0um6NgghaNytPne+dTO5mblE14pi/dwttBnQvNwEewBxofxzeaBZs2Zy48aNZb7fGe/M4uOHvwZg/Bf30HNM8dFoXmYeqScyiE6IYvqkmUx56jsAnv7hIYIjAsnLzqdZz0bFcoKgGpiYfYzlKmf3d5BSKhWMJqCYwkQWzkNmP6AqUF0nwDwUYR6MTOuqgrU2Shl1+dyD0Poh897yyADXgCYWDPVB2lUBUeFXah+m3soS2DQAsCtPd20QWGcqLxlDV8h7QZ2AoQ3Y1yCCvkEYL9wFTLqzQZiLa9bLCdK2DpnpSXX5PIjmX7pWSmeKur9qwy+8jjtPzWU4NnuqbQHzXeDcqAK+pjIidCZC44+0/oksnK98elz7lSWF+Xo1QVzwidrWfyKa8+ybpbQh8z4D+waE7z1FKqaKisvpYsLgN8jNyMNgMhARG0ajznXZv+UwIZUC6X1HN9b8voG9mw7Sc0xn4htX++udXmaEEJuklM1KW3ZNjvAbdKxDtfrRmHyM1Gldq8Ry3yBffIOUvrpR1/pUq1eVgPAAajWPo1I1VdiSlZqDw+go8tSw5luxFdgIDCufLnmXghBC6dnPR1cdtPU8NghHIHcPUjrANBKciWoU5NiD0MciXZnKRlgTBNhAX1VNgupqKOtim6pOxl4JEfAa0joLoQmGoPch42bPsnXg+4Snj6wRtDURllsvGuyB8u0AKfwAA2BXNs7/dne6Cwd6AHfhTMh5SckyTf3A5wnlGWTqBAUZStZpHlwkLxWmHqBvjCz8Bax/gKGlJ59/wnPe2hIqIuk8hMx7XxWGBU66YPvHioTD7uTQjqNUjotk6xKVlmnWoyF3vaW+m7vX7uW9e6dgtzkqZKvDazLg12hcnffXv4oQ4i+LMBKax/PBxtfRaDVFEy+bFmzjxWFvUal6BM/9PJ7AcH9ev+k9Vs/cwP3v31ahJmovBaGvCUEfIgt/hPz3wdQH8j9Urpc+49Xjvs+9CI1FFVdpApUlsaEHuD15Ued+Zdqlb6mqVPW1kYW/Q94rqges5UZVHGXoDOa+aAw1wfDklbzsMkUY6kDwd+qJyNj2rzf4t1jnK/8hXJB1u5ogN3RA6BtCQEPApSajzz1HbRj4jAVdLZXiKZiivIvMgzy/x+LqLWldpG4OAIamRRPPFRmTxcg974xh+Yy1tBnYnLQTGVRvEFO0/MSBZArzrQBsXZJIdlouNZpU44tnvkej0TD2jRupVD3ySp3+X1JWHa96AZNRtfKfSylfO295J+B34Eyjzl+klC+WxbH/KQZjycf+U4dO88vbszD7mek2ugOrfl1PcEQQ3UZ3KDbLnrgqiYLcQg5sO8yhHUeJrhPF6pmqQnTLoh1XXcAHELoI8L0XLCNUQw7bSpR9gAZhaHTW5ldXDdAqkzThr/xajD2VsVjeu6q3q6GZ0pT7jvPs3F8pQhxbAC0i4Ip+Nf4ziimL/iOkY7e66Ro6KotmV4ZS6ji2KYsH50GEPg7pTMXtPADOA6ovsCZIyWN1sWqyV3YAXYwK/HlvqX3raiAMZ6tyhb4+Uvio35+ulprEt28GXXyFdthM2nCAxd+uBGDi7CeJPqd5eotejbnx2aFkns5m/dyt/PTmTK5/cjCnDijL9C2LE6/ugC9UsvcDoDuqWfkGIcRMKeWu81ZdIaXsV2IH5YiVM9by2/vzAMhKyWbuFGULkH4qg2EP9y/qdB8RE0b99rWJrB5O3bY18Qv2ZeybN7F54Xb6ju1+wf1XdITQgjYSoY3EHfyz0nrnvoM0tkHmT0VYhqIxdsRt6qtsebVhKgXk9wRCG47U+IDzBBTMUxOGxg6quEcEquYc1j/A2Bo0wUjrUjWX4KkKldIF0lbhfV3+S6R0I3MmKIsFTTSEzFKB3rVPpeXcErQhuAsXQMFUZeFsnYOUTjDfCLZfkYbOnqIzM5i6gbMu0r5eqbcMxSfMhbElhMwFoUdoQ3DnvAQF3yhPpJDvy3eK7SKccb8MDA+gkuc1qHSORqvh5hdGsnrmBmZ/qiqwrflWrAU2jizfVe57UZfFCL8FsF9KeRDA06h8IHB+wC/3xNaNRqfXYfIx4rSr5tMGk4GtixOp374O9dvXZu+mA/zv9o8JrhRI0x4NizS+5xZr/RXbl+0kPTmLVn2bYvYt/xO80roA6UhCmPsidNVxu62qxN++TqlECr4E3Ej3aYSxIxrLMKQuFlk4C2EephqDuNMQZk8nTFNvFcx1VUGfcPZAmgBw7TtrQoZOpUF0sUoR5NgCARMRxr/fVezaQKjRNih7CI0RYeqA29AK4TwA2nCEJhBZOB0c69Q/Q2tw7FSdutwZYJ0BPreD3lMprauE9HkA8t6H/M+Q2iiE7qzeXujOGc26Tnn+PwZuazH/oopEz1s6E1OnCgFhAUTFq+tbN3sTzw18AwS8MudpWvZtwnWPD+TA1iM47E5OHTgNwL7NB6/kqf8lZRHwo4BzfQOOA6VN1bcWQmwDTgLjpZQ7S9uZEGIsMBYgOvryPhY2792Yu/53M4u+XUHKsXTGvnkTG+ZuISslh/DoEH54/TeW/LCSkU8MIuN0FrZ829+uTN2z8QCPdX8Jl9PF2EmjGf5w///wiv490nkAmTUOcCHdqSrdUjDNU40Z4snVd1SeNoZ2RdsJQzOkFEjbctVwu/BL8JuAxucGMJSsUZDOZGTmbcoJ0nRGCeIEd67K/dvmq/Wsy7wB/wIIIcB/grox6usX+QdpNAYw1D67oqG1ciTVNwd9B9SNwle1ZjT1RBZMQ+oSEOaeCE2gKpZz7VZNaGxLELobSj++z31IXU2EobFKAVZQNBpNMTFHbkYe6+dswe12A5BxKhOtVsvAe3uzcsZa3G43rfo1xZpvo1479Tm73W4yk7M4sus4O5bvovWA5tRsduXlwmUR8EuLdudrPTcDMVLKPCFEH+A3oNQ6Zinlp8CnoGSZZXB+f4u+Y7tRq0U8YVVDCIkMokWfJvgH+2IvtDPlyW8JjQpmz/r9bF++mzYDm5FyLI2I6EtXJzhtDtwud9Hr8o+Pp+lIsgrw4GkCgpqANDRCmAeq5iS6aKQrQ6VmhK+SWNrXeKpfx4BtOVJfS+WVTe2LG5rhVFW1oEaGfk+oVI+xtcpBm/qDfTPCWNzZ0stZpHQrOayhLUIbUvo67iyV5jF0UK0OTe2Quelg3wB+T0H2/YBUPkYyA+F7N8LQCmnfrVxA7WuQ+toIQ2OkbRXSdQqMHdFowxCGOmpy+tzj2TcjrYuUzbKpw3//IfwHJK5KYuOf22jWoyGR1cJpM6g5AGFVQhj8QF9shTYCwwMxmPW0GdAcl9PFD6//xtfP/UjjbvXZt+kgu9bu5fU/n7vCV1I2Af84cG79dRXUKL4IKWXOOa/nCCE+FEKESinTyuD4ZYpOryOheXzRzzGeCRu71U7PWzqTciSVzYt2AJCdlsuJvacIiggsocm/EHXbJvDcz4+QfjKzmNFaecSdPxUKfgDf+xGaEDAoWaSwXKeUNbpqyt3SuQe0MQhhwF04A/LeVBO1eKpihQ849oD5BmTGaMAB7ucQPjcWHUvoqkDQpyp1ZOpy1g8elG1AwCTAUS419uUFWfC9SoXpGkDQxyWLpACchzyNVgBtZYS5O8L/MaR0IK1/em7uKarPgOs0UjrV05phkwr4uJHSDvZdyMw7ACcYOuM291MN188/p9zXwbEFWfg96BcjtIH/5UfwnxBdOwqNVrBt2S4GjetTJMU+g9FspOsoZazndDj57pVfWPztCqSUbF+6i1ot4omIubiM9nJRFgF/A1BDCFENJdodCRR75hNCRAKnpZRSCKGMxCG9xJ6uIFuX7mTRN8uo374OPcZ0KrHcYDLwwEd3kJmSzbzPF7H8l3VExIbxeI+XuOedWxg8rs8lH6vd4PJfnCJd2UqdIQsh70MIW3i2/Z0zBfQtEKa2yNy3lP+LvhUy8H21saE1oPOkCIYADuWRrw1C4nmqkXkljimMLS9YuKPSZt5gf1Gcnmkz53ZwpZRujaGrCeZRYF+PMHqsoe3blGmdbYFyDDUNUSor5wH1+xUmVVhn6Ao4wZUOOh+KHuSFH1gX4rYtQfjcgdCfkz7SVVcpJl1NVVNRAYmKr8TkVS9jLbATXvXidiM56bl89/IvtB3cHIPZQLcbO+AbZCE4MvhfGROWFf864EspnUKI+4D5KFnmF1LKnUKIuzzLPwaGAXcLIZxAITBSXsES37zsfMy+JjYv2M6amRtp0acxMz/8kw3ztjD/q6U06FSHoIgA1s/Zgm+gT5Ghkt6gx+xrQmg1NOlSj+3LdgOQmZpN4qokqiZEFXfUrCBI23rVhcnY+azPu8ZPecbnf6E6P3kqb2Xee5D/ARg6qfaFDtUBDMcmsC5Urf/cVrC0g9xXVGrH7wmEqTNgQAT8D+lOQ5jKtWCrQiLMw5WaSV8b9DVLX0fjgwiYcLZXrzNZjdRlofLvOdN4xjYPzLeAc69qsFIwVT3h2deDsRXC0AcZ+LGyZHblgH0uAFJbtVjAF76PqboNbY0ydxu9nPiH+ON/Tpbs8M5jpBxNpUGnupjMRhJX7mb1zI006lKPW14ZyfwvlnDLy9ej0Wl4fvCbALz8x5O07NvkAke4PJSJDl9KOQeYc957H5/z+n3g/bI41r9l4bTlvHffFDqOaM2h7UdIWr+fFTPWMurZYWyYt4WGneviH+LLgqnLmHz3Z2g0GiYteZ767dWXePOf25k64ScAOo1sQ3hMKMkHTvNQ+2dpO7A5z/z0cIVqRi4dScjMWwAH+D6E8L3bs8AKpsGqUKrwT9yFv6MxDwTrn4BUkkxjNzDfpJqGCD/lymhfC9oqoIlAhPyqpJT6c6ZrzP0qcnvUco2qh2h0aesWjTQl4FKFU9af1M/a6hA8G7LuUqkd5x6QuSrPb7nDY4cBGlNH3G4XiG2guwecW0AUbyaiOmpdvI9ARePkgWTGd55Adlout782ihGPDuSjh79m78YDzPlsId8c/IAR4wcihGD+V0uKtsvNLPlUe7mpOJGpjFj123oKcgqY+/kirn9yMEnr91O/Qx163tKZOm1qEREThsXPgq3QDqjZdsc5k6uV4yLxDbBQmG8jKr4SleIi+OG13wDYtmwX1gIbvgEV6GOVTsDtee1QuVx3LuS8rKxztVXAuQNsPyMNrcHUHWxuFRRcmWBpAbn7gALQe0rNXSmgq4bQRV2pq/JyiQhdJQj6BOnYD459IFNVrYU+GqkJ9DhoDlI3eFNvhM9N4EpFOvcitdXA9rNyKtXWANyQ9wbS1LX4HEwF5uCOo2xdtIN67RKKVDb52QXkpKvgnXk6GyEE1epFs3fjAeIaxWIw64tuqA0712HwA33Q6XW06HPlrRgqUGQqGzqPbMvejQfoOKINQx7sS8u+TYlOiMLsY6Jmk+pF6/W4uRN6g46QykHUa39WK16jaXU+2Pg6dquD2LrqSx1aOYTVv6+nWc9Gf9kY+XIi3XnIgu/UKNtyfamTeMJQDwI/QrpOgKEdMvMB5bVuaKHy7GcCvrEDaPyVZNKVDcIO9tUI35HIgFeVoyJGMA1FmLp7g30FQhiaIQzNcOtqqApq6UTaDyICJ4FjO1JbW1VKY0M6kyHzJmWr4TteqYJAFXcZWqEknuXnb+Df4Ha7ee+ez0hclURUfCTvrnuVpLX7CAwP4Mlp4zi29yRdRynl0R1v3kSn69uSfiKDV0e9S/fRnWg7sDmrftnAr5NV8qNeuwTaDGh+JS/p2gv4HYa1pu2gFiQfSWXj/G0kH05h/ZxNDH6gb7FGCX5BvoRVDeXNWz6gUed6jHlhBFsWJ1KtfjQNOtYtts+m3RvQtHs5bFBuWwp5kwCQmqBiqphzEaZOyMIlKh/r2KRMtqQbjO1UWsfndtWGL+N2MF8H1m8BCaZBymlRugGHkmD6PlyiKTiAdKWpQi1dzeIpHi/lB/s6sC9XzV/sm5GWkQhtnHLWPNM+0u8JFez1jdQTgbYmGIOUXYa2GkIXjSjNgK8CIoTA4GlWbvQxsmbmRibd8gF6o563lj1PpbgIAsPVnFdAiB/xjWJ5tt9rOB1Oju89SduBzQmpHEjzXo0QQuBfDub3rrmAD2ArtPHSsLc4sO0wDTvVZc/6/YREheC0OwmKDKTj8NZoNBrWz91CbkYeK2aspUrNSnz/6q+YfUx8umMSkbEVoLBEGwnoAddFuxG57bshf5IqcDINUeZmwoLwexChi8ZduEh5nssMleYxdAXXHtDVQNo3QfZDgFM13TAPKfUYMu9dKPxBNe8I+UXldr2UL2yL1NOcM1EpeWyLkNYZYL4ZVW4jlG2C3zvgWKIqapFgHo7GVLrEWLpzkIUzAA3C00axoiCEYNyHt7NjxW4SWtZg3ezN6A2qEv/nSX+w/Oe19Li5E+O/uAchBD4BFjpd14aF05YXKfH0JgMb5m0FoMv17ajXNuEiR/zvuSYDvsPm5PThFAAKcwuxBFjIzy7gC4/vfUhkIA061qXtwOZs+nMbdVrXQGiUplyr16DRXHrrvyuJMDSD4J8Bx18Yd9k9nahQBVT+7yO0AaCNwJ3/g+qAJbPA0BO0sWCdrNrraashnUdRE38OdZO40OjuTCmGzFLe+F6uCFJK9RSHruQEr6k35O0AYycQoeBYrFRWriPKR0eYlXWDPhJyH1TbGIzgSIILBfzCRWBbotbRBFS4BilR8ZWIiq9E0vp9bPpzG+2GtqTtoBZ8ME51d9u8cDsOm4Pty3eRejSN2165gRueHkpkNU8x5jlaxDOVuleSazLgB4T689yM8SSuTKJW83giq4ez+U8lL9TqtBgtSi8cHhNGUGQA6+Zs4cGPxzJ+yj1E16lC+N+orL3SiHNL6i+AxtAQt88DSi8t/MCVCIaBSPtWcO4EbOp9ITzdjVxK6134o+paZWgOuoYIU9cLn4fv/UhdHYS+QYUuu6/w2BYgs+4DtBD0JcLYCuk8ohrH+NwC5t5I+z4o+NzTEtFXzeMUTlNyTZ9xCF0kUt9CzfVoosCZiDv7FdDFISxDi9suO7cq5ZahozLMq6Cs/HUdWzwFlz1Gd+KhT+9k9cwNNO5SjyO7jvN031dxu9yMeek6Rj09rGi7ln2b8OAnY9m6JJHCPOsV1+JfEwH/aNJxPntsGkIjGDa+Pw3a1aFxl/o07qL09QW5heRl5dHr1i4069mQSI9D3qkDyexesw+Tj5HDO49x8/PXXcnLKHOkbZ2amDW2R+jrIfPfUQv0DZFZj6lHfPNI0DdTqhzrDDB0Um0JtREgXVA4XVktGJqAtCIL54GhSYlOTEIXh/C98l4i1zrSdaa43QXudKR1MTLrftCEIoKnIHTxyIKnVDB3rFcTsfY1YLkN9K3QGDwpiaCPkAW/gW2FMscr/AqEL1ITgjB3U6kcRxJYlfsszh0qz19Bqd+uNr9Onkts3SpUrR2FTqdl2ss/8+eXS3nok7HnBPHiwVyn15G4cg9Lf1jN0h9W07BjXWLqXjkF0zUR8DfM28raWZsAcNqdhLwbXOSCB7B1cSJfe7T1KUfTmPbyz7z0+xPUaZvAoHG92bvxQLG+t1cD0r4BmXkz4Ab/VxDmQeBzj8dO97gqv9dW8zzGB6uqTd8nlDOmzFFNyg3tIPthNfLTNVEma87dYOqPCHzrSl+il1IQ5j5Imaf09cbOqkoahyq8cxxWjVJMncGxRlVMOw8p3x1NBOS9jtv6C8L/OeXVY+6JlOlqHUA1Utcj7buQ1rlQ8C2Y+4K7EIQRaZunJvqvcLXpP6Fl36Z8c/ADjBYDPv4WElclsXeD6gN86nAKbQY1RwAt+pQsrIprFMPCb6Bm8zgCI66sg+g1EfBrt6pJQJg/Or2OglwreZ4CiKN7TiDdkszTWfgG+VCQXYjRbODwjmOc2JdMZLWwIkmVX7AvXW+4igpI3AWc1d/nI4QO6TquJmU1e8F8q5qYdW5TIzwb4PssuDzNru3b0PjejQyejnQeRjU98VgouZIv//V4uSSEJhDhO/bsG6ZeSNdJ1ZLSeMYraTQYuyE1vpD3GRT+BO6jqtetaz84h6liKukENKr+QhsP2ioIjQ8yYzjgBGNHZaBnGgyF34F1OmhrwXkGaxWF4MjAotfxTapx04ThHNpxFLfLzYqf1wLQdnALapzX53bw/X1o2KkuoVEhBIRe2Rao10TAr9OqJm8sfI7NC7YRGB5IzWZxbFqwjWf7v4beqKdWi3hialehx5hObF2yk5FPDKJ2qxoIIWg3pCUrf1lHsx6NrvRl/Guk8zRofBAaX9Vmz/9NNVo3tEI6DyEsI1UzDG1VQAfuLI/SR6hcLUKZpbmOqypbUJK9rHFqtK9vADhA3+6C5+ClfCF0cYiAicXfExqkOxPhTkNqI1WrRE0kaIJBUxV0yjpYFk5XNhuACJqKMLbCnfeZenrQJoCIQgS8o7pmAWgqIV1HkO5qCJkBmpDzHFMrDiazkdETRgBwYNthdq7ag1+Ib6kqHK1OS43G1Uu8fyWoGHKTMqB6/RiGPTyAbjd2QAjBkd0ncNidFOQWArBz9R4CwwN46tsHuO2VUVj8zJh9Tdz51k2MemYo25fv5FDi0St8Ff8caV2ATOuCzBiDdJ5GCB0ay0CEvilk3IhM64e0rvDk6n+Hgg9AVwfcTvB9Wvne570I0oUmdAYaHzUxJZ17UdbGOap5uWMHwlD/yl6sl3+FtK1FZlyHzBipHDVDZoO+DZivB78nz87PaDyKLOGDFIHqtfOkmqB1HQRtgJLt6uqowYW2EmQ/AHnvIVM7I7MeR56xxK7AxDWM5YGPx6LTaZny1Hekn8q44LrWAisn9p3C5XRdxjM8yzUxwj+ftJMZpB1Po9etXQiPCSW2blWGPNi31C70u9fs59uXZwBQo0l1qtWreL06pW2N+sPTBHmcFA/BGaWM67BqOgIeRcVmMA4EeRSEFoxtVHcrt+dLfF7+VZj6IF2pHsndCITQq2bYXiou7tOA6viGKwVh6lqiWE66C0AaPG0PnSDTkK5MMLZS8zo4wDobpE2ldQLeAMdmzz49nbFsc8H1KOiqUFEoLLCy5veN+If4FnvqX/PHBpb/vJbW/ZvxaNcXadajAbe8cgNmy9knGLvNwTt3fsqib1cw5qWRjHp66GU//2sy4C/7aQ3TJ/0BwFPfPUj7Ia0uuG71hjFExVciOzWb2i1rkn4yg8RVScQ1iqVKjfI/kSvtmzzmaG7liaIJRupqgPOwqqg0tgHzaHCfVH+I2jggXUnp2AyBHyjbXX1jMLRUlrmudOWm6dgBmkg0AROu6DV6KWOMXcD3UcCJMPUqels6TwN2cJ1AZj+m5JoyFzThkDUOKQIg8BPwuVcV2RnaQeH3atJX39jjlJqlnhbdGWDqor6D5RhrvhWtXoveoPpdLPhqKe/dNwUhBG8tfZ767dV8RN3WtfAP8cM/1I+QPCtbFiXSLelkMbuWvMx8lvywClAyT2/A/4/JSM5i25JE/IIsaDQadAYdETEXH43G1K7Ce+tewelwERQewCujJrPk+5XE1q/K5JUvY/Er5021pZ2iyVl9AsIyGpkzQeVffe5G4/cQ0tQLcp5VTcd1TVSlJahHdl2Cehy3r1f70lZWAb9wJuS9CpoYCJ5arM+plwqOO11VZusbF1VES0cSMuM2lc83D1Md0NzJKt0ncwEHYES4diP87kH63gHuHDB1BV0CQmNEGtqo3rhyE8L/mXJvsbFjxW7euPk9wmPCeezre4mIDsPpUKkYKSUHth3h6wk/0nF4G2yFdp7/7VE+fugr9m48SOMu9agcV7zeJDgykOufHMzWxYnUaFKdgtxCLH6X1zL6mgr437w4nVkf/0nl+AgmLZmAf4g/MXX++nHSL8i36HXW6WwAMk5m4bRfmTzc38LQUk2cuXNAE4J0nADrIjUxa52N9H0AgQ2p9Xw5ZYF6DDf2B8tINLoI0A3ErYuHM+oLEaTSPQDuI+DOBLwB/2pAShsya7xK/Rk6QtCnSkbpPKCcNEG1ntTGgbY6wtwPmfWgaogufJB+T4A7X1koaENAe84Evn29KuAC1fu2nAf8LYt3kHw4leTDqezbdJCI6DB6jOmEyWLEN8iHL57+HrfLzYy3Z3FifzIdhrci9Zjq65SfXVBqMD+4/Qh7Nx1k5+o9DBrXu2IGfCFEL2AyqgHK51LK185bLjzL+wAFwBgp5eayOPbfIT9bOftlJmdTqXokoVF/3+Rp7KSbWDd7M/XaJZQLM6S/QggN0tQNMu9SfvXGnmDsAY6VYB6jluvrqkIqx17Q+apHdGlTf9hFeDzvZSZgRVhuQwqD6mSk/+tqXi8VBOk6O1/jzkB5AwikthYYugP5YF8NQVMR2lDVREVXRQV8TWXIn4qU6UhjN4R5oPLRcexWHkv6eKXycachdOXQbPA8mvVoxIoZa4mMCaeWp+2pb4APfe7oRuKqJOq2qUVhvpWT+5UMOTM5myenPcD2Fbto0KE2y39eS7V6VYmpc7bQauC9vdBoNTTqXI9K1S9/xbn4t42nhGqFtBfojupvuwG4Xkq565x1+gD3owJ+S2CylPIv+/w1a9ZMbty48V+dH0BmSja/vDMLg9mAAOq1q02jzvX+9X4rCtJdgEzroXqVauNQedhjYB6KJuBVzzpZSOcxsK6CgsmAC0yjEP4PIDSBSFcaMusJEA7QVkMT8PyVvCQv/yHSvhVpX48wtEUY6iIde5EZd4I+TnU0M3ZCBE4uklRKV5pKEVrXgNPTAEfXHHxuhoxBaqfm4WgCJqqJXWmvMPYaTocTrU5brFisMN/K2PoPk3w4leoNYnhi2v3s23QInV7HL5Nn0fXGDuxavYelP64mIjaM99e9RmDY5dPfCyE2SSlLLWsuixF+C2C/lPKg52A/AAOBXeesMxCY6mlruFYIESiEqCSlPFUGx/9L1s/eXNSk5P4Pbi8R7POy81ny/UosfhbCqgbjdkkadqpbISsCS0NoLBDwOtK2Rckn3UdBUxVh6Ah4bghZD6snAPMNqK+FC9xHkQXzwdxeaab97vbsIwNp34YwNLyi1+Xlv6FE5yznEZAnwOlU9teW64rr5zX+UDgHzrQw1ESpCVn7GtBGgeuEMt2DCueSWlr3Oq1OS2iVEJIPpxJWNYTYutFUqxfDI50msGfDAfxC/LB7GihlpWTjtDtK7ONKURYBPwo4ds7Px1Gj+L9aJwooEfCFEGOBsQDR0WUjgbQEmGnctT4Gk6GYRcL+bYfIOJnJiX2n+PDBrwBo1qMhG//cxvO/PErbQS3K5PjlAWFsC0hk5q3qDcutCLNHgSFz1R8nKGsFYxfAoKps5XFkaidVLWkcAgVfKAmefR2ETEeIa6aU49rF2FLZbrizEKYegBbpSlf2CoAQBqRlOBT+Ab6PgGkoGl0o7vTrlFJHOgGLx6lzB9KxBWFsi9DFX9HL+ickrd/Hga2HufOt0aQcSSehZXzRwLD9sFbsWLGb2DpVSTmWSodhrWjVvxmhURc2jbNb7Wj1WrRabdF7+zYdJCsth0ad6xapg8qKsgj4pQ2Dz88TXco66k0pPwU+BZXS+Xenppj54Xy2Lk7EN8iHx766F4Aju47zSIcJFOQWMvLxQeokhSjSmedm5JbFocsX2mjQxoDrOEJ/dnQutBHIgNfAulSZqdnmgu/jCMt1yLzX1UrW31S1pb4miKaA7oLBXlpXIa0/g76VanUo88HYDiHK9svr5TIh/BCWUaAJBNdJZMY4cJ9E+t6FMLRC2WvvAX0j5XmvDVGpG11tlUZ0HQfrDKSxBWTdD+5TSFtbRPCXV/rK/hYZp7N4pv9rZKfm0POWzoyfck+x5QPv7UW7wS1xudw8N/B1Dm47TJNuF56r2LJ4B2/d9hFxjWJ58JOxBIUHsn/rIR5s/yx2q50HPrqDfnf2KNNrKIuAfxw41/6tCnDyH6zznxFSWT1GhlcNRWdQd9K8rPyiKluDxcDzvzyK3qTn9KEUmvdqRPthrUvsJ/lwCgaTnuDIivVYegahi4bg70HmInTF/T405oG4CVCmaT53gWkgaEMQljuQBV+DobG6Ibh2A3oIma288DUBCE1xQyhZ8DXYl4I7G3JXI3GD/+sIy+DLdq1eyg5Z8A3kvgrGrqriVp4EjR7s65D5X4J5hCrYk1lIQ12EeRDSOk/554AyYTN0UCKAolRQBbRUkBLpVmNQt7vkWFQIQWhUMHs2HuDgtsMA7N96qGj56aNpZKdmE9+4GhqNhg3ztnD6SCqnj6TS/+6eNOsRSF5GHnarJx2UmlPml1AWAX8DUEMIUQ04AYwEbjhvnZnAfZ78fksg+3Ll7wHueOMm2g5oQfVGMUW6+dqtavDE1Ps4vjeZUwdOU7tljYv65ayfu4Xnh7xJUEQAr8x5qtjMe0VC9bUt2dsWUOZWtgVg7AXpfZHmAQi/R9GYe6iJOXcGFO5WPjr2tUjbMhB+SPOg4h2PjC1VwNdU5qxBW95/fGVeygopHcjCmSCzEabB4Nipeh5gV1XarkNKmqvTqQprnGf7H7vSke5ssG9UvW2lXT1Z2ncjyIPA95COHQhDxUuXBkcG8fIfT7BvyyGa97pwQ/K4hjHc+dZoju0+QVhUCHc2Gk//u3vy45u/kXwwhYc+vYs+t3elRe8mrJixjuoNYohrFANA/Q51eOTzu8lIzqLHmE5lfg3/OuBLKZ1CiPuA+ShZ5hdSyp1CiLs8yz8G5qAUOvtRssxb/u1x/w4hkUG0H6aqaTNTstgwdytVE6Jo2qsx/xt7N3arnQPbjlw04O/bfBCHzUHK0TSOJZ2ssAH/DNKdjyz8FZAI8xClmzZ0VFpp1wklvyz4GnzGgDZK3Sj8J4BlDNKxA3KeBENnsP0GttnI4B9VQ3RAWG4GQyekJlg9GcgChHnAlbxcL38H22r1+wUkZnDsBleSkuX69laOl7qaYFWW4gg/ZcfgPg0iHGnqodKC+gYqrVM4A7CCKxVhbIHQ17xy1/Yvqd2qJoERAfz+/hz8gn0ZPK5vCS29Tq9j2EP9yUnPYWSVu3DYHPw06XekSz0VHN19HIBGnesxZefb6Ay6oi56Wp2WXreW7AldVpSJDl9KOQcV1M997+NzXkvg3rI41r9l+qQ/mD5pJj7+Zj7Y9DpNezRgzcyNNOpcvDF54qokvn35Z+IbVWPUM0NpN6QlJ/cn4x/qR4NOFc/eVbrSVYGULk5pp60LIPdFtUz4gKk76KqDviloQpU/uqG90uR7EMKI1ISp5ugAnGlV6Cg2ghdCB/o4NXFjufzl417+JRo/VGhwqn4I+gQV8E39VFMUy81q1K+tBa696nvjrKJsEkx90eiqIgPeQTq2KjsOoVdqnfNbKnqQUoLrKGiCEZryX9uy9IdVzHh7NgDV6sXQZmBzAA7vPMbWxYnUbl2DWs3i8Qn0YcA9Pfl18hx639oFk6+JE/tO0fOWzkX7MpgMl/Xcr6lKW1C62sAwf2o2i2P9nK2M+/AORj09lOi6xStul/ywko3zt7Fx/jaqJETR8+ZOPPplubhnXTLSXYi0bwONr7JOcO5UzU4swxCaUKQmBNzp4M5SShxjV7AvBrTg8xjCMhAce3A7dyMM7ZR9gjtFPdIb2qrRm6G1uikYml/py/VSRghDEwieBu4cpC7GM1nfFfJfVgV6toXKYsE4UBXdFUwFv+cQliFFE/nC3ANh7oGUbpXicZ9WAw5tSf29LPgRcp9TRmyBk0vMCZU3qtSqjEajwSfQQkSssmaZO2Uhc6csZvfafYRXDeGTbW/hG+jDHa/fyIhHBxIY7l8uemFfcwF/6EP98A3w4ZsXp7N+7hZ8Asz0GN2paPnWJYn8+fVSYutWRavTEhUfybKfVtHtxvZotVpcTheZp7MJighAq9Ne+EDlAFkwTTU0cexUreqcO8GRiHS2QRZ8p3Krvs+BI1FZLbiOgb6lGmmZewFuZOZYJcM0D1e+6bp4MF+nttFVg/xvVIckXKiMnperAWFoohrbZNykgrV5jLLOlplq4lVmA4XgtnlaWgaUrtpybIac8QBIaUX43V/KOp7iSvtqcJ32zAuUX9oPacVHm9/A5GOkclwkdruD6ZP+wNdjwaI16IukmlqdlsSVSezZtB+zxUTVWpVpP6zVFQv+V/6WU8bkZuQy78vFbPY0HD6fiOgw4pucVagc2HKIjx/5mqxU5ZEz/a2ZLJi6jPVzt9Dzls64XG78gnzRarVIKfnq2R+4vuqdTH1x+mW5nn+FO0/9EclspbU3DVcl7o6NYF+ompa7D6l+pO5UMLRBBH+OJmiyxwxNokyxAFca0nkEIbRofG5CmPqD9Q/1qJ//ETgrbq8ALxfAneqxSkZ9f4RRuaaaRoBxOIhwcGxXfRAMJVVtgGqCjlG91pRebSrMQ5UQwO9xlR4q5+zZsJ9pL01n3heLKcgtxGDQ0/PWLmi1GgaP682Enx/BJ0CJQ9JPZfDqqMnkpOSSuHI3f05dxpbFiVfs3K+6Ef7Mj+bz1bM/otVpeX/dK8SX0mmmcbf6vPj74+zdeIBda/bicrrYOG8b3W7qQP12Cayfs4Xw6FC2L9tFWJWQIs8La76V2Z8tBGDOpwu54ckhGM2XNwf3tzD1BPdxsK9Tpe3mvgBIp59HI52lpJM41B+3dKl/nqoJoQ1D+j4Atj/BnYK0LUPoRqt92FeACAD0arJX6zVPq8hIaVO9abVRRXl06SpQvku4Va8DjS/SeRyy7wTLrao2Q1cd8EO6cwGh2ltqAjxqMBD6BAj+DtxpYCz9piCMrREXWFaeyEzJYvlPa8hIzmLtrM04bOto3LU+jbvUZ8T4AfS9oxs+AZZiFfoWPwt1WtckLyefTQu2A9BmwJVLf151Af+MNZCUkvNtgnasTGLLwm3sXrefqrUqM/PD+bicLhp0rEOMJ4ffZ2x3Dmw/SsqxdKJqRJJ2PJ0mXVUHJ7OvmTtev5FZnyxgwN09y3ewBzSGOmB4CyntCHH2XIWumtLj4wJXMtJ1AqQVbLNBXxfM3c/ZSagyVcMB4uwITRg7IXNeAssYsIxRKh8vFRaZ9z7kf6LM9QInIYQRHKvVzR4QlpsQ+sYg/JGG1mpU785Q/3yfg/Q+SG1VQIB0IAM/VwZ9jj0I81CEqfPFT6ACMOvjP5n6/HQ0Gg2DxvVm3+aDmHyMnDyQzLalO6lWP5qEFsUdQM2+Jp758SGW/7yGTfO30bR7A4wWPS6Xq1h17eXiqgv4/e/uSVBEIBExYdQ4p/lAyrE0nu33Cvk5hTTp1oAti3dQpVYljuw8Tq3m8UXrCiHYsXwX6SczadWvKR9tfrPYHTuuUSz12ydgPkeK5XK6ynU+/9xgX/SexuPjr/EDU39k9jilyNBGFl/RnaFy/UKCdT5YBiGdp5DOg+A/0eOR4kS6TiNKmZDzUkGwrfT8v1ilArVGhLEr0rYWDLWLHFGFLgKCPkUW/AbO3aBvpJ4SZT44k9RckX2tmi/KeQYAiR1heOnKXFcZcsbmQKvTcPLAKZr3asy41k/ToGMdkg+lUJhn5ZOtkwirUtxKISgikIH39sbsa+bNWz5g5a/r0RsNdBx++Z9qrrqAHxDiR987upV4XwiBxhOUdQYtkTFh3PzySHLT86jVPJ4ti3Yw9YWfqNe+Ns9Mf4Sk1Xto2rNRUbDPTMniowe/4sju4wSE+PHbe/Oo2fxdln6/kpkf/slNE4bT+7aul/Vaywph7gna6SAsCP15/ia6eqBZDRSoSTtAFnwJ1lmga+TJ8ZqQzk1I/4lovDLMConwewhZOAuMbc965BhbQOhvpZgIapQJn6ELwtwfhB7pWKvSeiIQfFuDvo5yZnUdKPreVHQG3NOT9ORMjiedJDgymK1LVC5++7Jd9Lq1M6nH0zmy81ixgO9yudi6OBGTxVgsI2DNvzK9fK+6gH8hwqqE8Mqcpzi4/Qix9aKpmhCFX+DZNMTiH1aSuDKJxJVJtB/ckmGPFC8USlq3v6g9WaPO9ajeIBrc8NVzP+Fyupj+1h8VNuADCEPpnh9CnkLa1WM9fmeuTwO6Bmri98yIDtQEsTfgV0iEsQPC2AEpVW2FdB5H2teDrj7oo9Wo31PHgfMA5L2p1sOKJvB1RMg3JfYpg75QXbH0V4cVucXfgsliwulwsfr3DYx4bADS7aZBx7rs27ifTX9uZ/+Wwzz86V1F2vylP6zitZveQ6PV8Nq8Z3jk87twuyQdhl+4rep/yTUT8AESWtRg15q9PNDmaZr1bMizPz1cZLXQuHM9Fny9jMZd6xFZ/Wyxkd1mx2A0UL1hDHXb1uJ40gm63dSBJt0aEFwpkOGPDmDm+/MYcE/PK3VZZYqU8rwRnUnl7vUNODObK3xuQ1pXgLAoIY9puHq8Nw1EujKU9wpuhGV00WjRS/lFSjdCaHAX/gG5byDNg8GZrBRY6JEyG/RNwLlfpXa0dVSBnmMzGJpccL9K6aUm86V9AzLvc9DXRfiOLW6vXA7JTs+hMNdKZGx4sfejakTyw2u/EhUfyfLpazmw5RBGsxGjRSmRNBoN302cQa0WcYRUCiYnXZkwul1uCvKs9Lr1yg4Kr6mAD7B92U4ANs7fRsaprKKA3+WG9jTsXBefAB9MFiO2QhufP/EtK35eyz2Tb6HDsNa8/uezOGxOfM95Mrj15eu57tGBxd6riEhXJjL3FTUZ5/+0Kr4BMHZQZmp5b4B9NW7hr5QXhubg2Aq2H5Rax9AGnMeQ7jTI/0DtUxuFsIy4chfl5aK4XdmQ/wU49yoLjYKfVIou/2PV2F4GKIUXqHSNxh8KPXJkY3/w7QTOVKQrs4TPvXQeAMceMLRAaEORhX+AfYn6Z+wI5biXwqlDp3m2/2uc2JfMMz88RNvBZ31/eo7pTI0m1TFZjEy6/UMcdiexdavS987u+AX7cnTXcRx2B2ZfdUPrMqoDTocbi5+J5r0aXaErOss1F/AH3NsbrV5Hgw61qRxffIIypNLZlofJh1P57b25ACz/eS0dhrVWd3Kzsdg2QogKH+wBVUhl/R0AaV1UFPCFEMii0ZgbrL8gczZAwGvgPqHeltmgiYC8V8D3IWXJgABN2fQz8PIfYf1/e+cdHlXRxeF3tqd3UoBAEhJqKKH3XkQpoohiLyj2Liqf2AvYe0csqKiISJPepPcSOoSEJIQQ0sv2+f6YJRBSCD3Ivs+TJ7t75947d5I9d+6Zc35nKhR/DppQpGUVeAwF+w6lfqmLBpxgDAX7JlXBypkLrFQ3eGcaWI+BdSVSF4bwvL70sNKZh8wZDY5k8BiB8HsVDK2h5DcVx6+tfYkuuHqk7c0geYfSu9m5dk8Zgy+EIKZFfQDG/fYkafsziGlZHw9PE6Peupm9G5OoExdeOpH0C/Jh+JODLvo1VMYVZ/ATeseXhllWRWj9EK4Z3Zdlv6+m67AObJi/Ba1eS4vul18lLKV+OBNkEcJjMOKUBBgpHUjnMeWXdxx0aZyfQHgMQmIHRxaY/wAsIF1+fBwgDCpDEkATpLJ7caokLzc1F7tLodx5BLS10XhehzT1c2XYDgecYBoEaKD4EwicDsYuSl7DfghsqwA94IUz73+ACbzvQyBU3D2U1sfVeAxBGtqA8ENovC/6pVYXm9XGoV2p9BrZBUuJle43dKq0bUCoP17+Xvzz7UJyM/O5alRvfIO8Ky70UUO44gx+dTF5GHn4k3u4d8KtrPtnM8/2fw0hBK/PfI62V1UujVojsfwL+WMAkAiE181lt1tXqUd1bV1V4lAThDN3DOgiEV53qS+v44jSVDHdrHz3thWqkpF1pTqG5x2gGYzQeCj9e1Sd3Mvr1nhlITyvR2IFbYTSTQKVdKXxUk91slit3ziSVUSWJkBp3Jf8oUTRfF5FaAxI82w1e4fSUpj4f4a0bUEYTyg/iho+swdI2pbCZ49NQgjB1ff1IbaCxM2T2bJ4Ox8/9C0AJUUlTH1vFuHRobw173+ER9W8MOUr0uDnHSvAXGQmNDKkynYajQYPbw+K8ooBtaBZ6Hp9WSE8UAuuUhnrU5DSqSoWyXWgCUQ6doN5mtqob4O0LFalDQEROEW1yeoLhr4u9w1gTwNdEyRe4P0MYEC4MnsBpP0wyHyEvuGFvVY31UboGyH8Xin/uS4aAn4ERxrS0ElVPsP/hHS2sTdYFiB8TAh9DNJ6Un0Fl/vvcsietVltzPh8HpkpWQwc1YfIRrUJqRtM4/ax7Fyzl7iEmNMewz/UD6OHAUuJlcP7M5FSkr4/g8zkrFKD73Q6yTuaj1/IpRdQu+IMfsbBTF4Y/Bapuw/z+Nf3lRFOq4zuwztiNdsoyisiceUuivOLGTiqDztX7yXnSC6t+7fAdIpvvyYhjB0g4HuVHGPsVn67thbyuLyxEK4wOo2Kn9bWUTN/UH56TZBKzvK6V7kELEtAEwied4IuEnLvVofx/xRpWaZK3WlDoOB1cB5F+k1A4zHk4ly4mwqR0oEsmQqOw6oWgq4u0n5IaSzpmyN0MQhDPBCvpgmOA5D/JDgPqTBL4Qdej4NO/V8IzxFIZz7Y94KuIdKyAoRX2ULoNZAdK/fw+eOTANAZdNzz5s0E1PLjtVnPkZeZT52Gqv613WanOL8Y36DyWkCxraJ5e9GLTJkwneL8Ejpc05qmnRvSuMOJjNufXvmDn9/4k5HPD+O2ly5tEMMVZ/BT9xzm4HZVT33+90vJy8qnTd+WRMWrBcb8YwXojfrSVXZQ8bdDHhzAqyPeY9nvqth3eEwo/7v6TWxWO/e+fSvDT4nbr2kIY+Vxv0LfCPw+QDr2I4yDEPpIpL6J8rdqg0E7Qmmia4KVcXfkovF5Cqc9Wz3yyzwo+Qk8TtS1kdZE9Zm+HegbqBhuVBFrTjH40p6mIkX0LRDaQNxcOJzmxWqsC98FlIIlPs8g818C63JlsH1fRWNoqbKpHZlI21Zw7AB9C7BmgKkPwvsehHBllzsyoOhDwAkyT8Xv44DAHxGG1pfoSk9PUO1AgsL9OXY4lzqxJ7SgfAN98A1UekLmIjMfPfg1S39bzWNfjKJvBRPExu3juO6xq9m2fCdtB7Qqk+FvLjaXSrjM+HwuNzwzBJPnpZscnpPBF0IEAlOA+sBB4AYpZU4F7Q4CBSgNXbuUss25nPdcaNwhlmtG9yM58RBOh5N1szcx7cPZfLp+PElbknn1hneJaBDG/6Y8SXhULeZMXETiil3Ed2tMaD3lAorv2hiHw4HNagcgxbWif7ki7YdBGFwFqNVjqNDFIJ0lOAu/BOcxhMfNgAGZfYeKuff/CIFEmqeoUnYeSlQN79dAHlOJOsaeKvLHugg8bgTHYRXOd/K5nUXI3EfBvhU8rkP4vXlxL/4KQlrXQe5oJXVs6KoMvzMfWfSTKwIH9bvwC5z6eLCuU3o63s+DriGIIAj4CaFvdsLYgwrX1DUH+2ZXBI4VkC5hvppLndhw3l/+GnlZBcS1qdhXn5mSxfwflgGwbOoaGneIo06cmvk7HA42zN2C0Aha92tBfNfyhZFMnibueHUEf344m2GPDkSr07BvUxIhkcH4BV38Yi/nOsN/FlgopXxLCPGs6/2YStr2lFJmneP5zhkvX09GvXUzUz+cxb6NSeQcyaMwpwib2cbaORspzC1mz/oDJG1Lwelw8NkjEzEXWziWnkNxQTGDH+jPbS+PwG6z0eumLuRl5bN300HyswtKZwWXE1LakPnPqcVXQ08I+PyErrl19YmZoPBVoZp2pfgnretA4w841JfcMkMt7nk/B8XfgcwF0/Gi5U7QNQLvh6D4Z5z5LyB8HkWYequap44DqplbYvnCIh3KRWfboP6OxqtcC++LVaSVoSNoG4B9u5qxa+upH2cGIvAXFaIrLWCeh0QDpn4IoVdRXwGfgiMVqQlTLkCNr4roqeGER4eWquFWRFh0KDc+dy3L/1iFVqvhmT6v8P6/rxEaGczKv9bxynD1/Xj5r2cqVcG85r5+XHNfPwB+efNPJo79hRY9m/HytKfx8i2/pnYhOVeDPwTo4Xr9PbCEyg1+jcHT15NbXxhO0rYU5v+4lI6DW7NhwVaOpefQ+5au6PU6GrWLITczD4NJj7nYgtHDwO51+wipE8zU92aSfTibgDA/Fv3yL616x1/Sx7RzQtpViB0og40dcGl+aOuoYtUyVyls6uNVeTv7AYRpAIhAlWilqQWF76h97PtOHFvjDz7PKaOui1Kzx6JP1GlLpiFMvVXCjt9HSNs6hPHylaaoiUjHMVU6UN8IITxUZI3XM5D/uGrgSFV/U6eP8r9rm6hoHNtmJZiniwZdW4RHb2XsLcuQlrWum74EaT8R3aMNAW2IisryHnVpLvgCYDDqufv1kWg1gsmv/0lko9r8/vZ0JBB7Ul0NS5Gl9PWe9fsxehmp17hOuePtXL0XgK1LEsnPKrjoBl/IUzWEz2RnIXKllP4nvc+RUgZU0C4JcDlx+VJK+VUVx7wXuBcgMjKydXJy8ln373QsnLyct279CIBB9/djxudKM+bZyY9wNOUYE5//mdtfvgG9SU+DlvVJ3pGGp58H79z5GQAjnx9Gm/4tqdsoAv+QE1V6pJTs3XgAb38vImLCyp+4hiGt65CWFQhjF4ShrLdN2lPAWYgwVF7HV0oHsmiSmjlqaqvHf2wIY3eQxcjsm5Sf3/dNFQJqng2+ryrhLWeWWgy2rEDatyFM/RG6BpWey031kM4iZM59qgat131ofJ4s3eYs+QvM/6qaCMbOgFD1jR3J6knM0B0cu12hlh6I4GkIXTTO7EfAkagqo2nrgaE3wuehGh1Xf7Yc2pPGv3+uoUGraNr2b0nyzlT+nbaG4rxifnv7bwDufftWvHw9ERpBr5FdMHoYWf7nal4d/h4mTyNvL3qRhm3L/i9vWZrI/B+W0qxzowtWrFwIsaEyt/lpZ/hCiAVARVZr7Bn0obOUMl0IUQuYL4TYJaVcVlFD183gK4A2bdpc0BwGk9eJWblfiFqB1+l1RESF8tPLvyOlZPJrU/k59UuyDmXRqlc8Or2W0PohZKVm07BtA+K7Ni533IWTlzP+to/xr+XHu4tfIrKCO31NQhjaIiqpSSt0kUhpV4uw2lpqJndqG6EFbTjSaoOS71UYaOCfYD+AdKS6pHWd4EhG+L2hZv0af2TB61D8E3iOVr8pRNoPIvzfrnbfpXUz0roZYepy2d8opP2wSmrSN0EIffntUqokKU2A0quv8mAFSusGwHoAad2q4u21wQh9e6RlCdhWI0zdVPilbZ1rx2i1eKs57uawIZ1WNXPXx4PzoPpY+INlMXjfCtRsg1+QU8imBduIiAujQYuo0+8ATBk/nbnfLUZv1PPq32No3bcFC35YQkF2EZ6+ntitdmJaRJHQ50QSZ2bKUdbO3oSUkpIiM5mHssoZ/Bbdm9Kie9Pzen1nwmkNvpSyvNawCyHEESFEuJTysBAiHMis5Bjprt+ZQohpQDugQoN/MekwqDWvz3wOgPjuTYhNiMYvyIfGHeK4Zdxwpr43g3539GT32n2MGzIerU7L+Pkv8NHK1ykptFC7QcWz99Q9KoMxNzOPzEPHarzBPx2y+GcoeE3NCAO+BeGBLHwXLOsRvs8ijJ2UMTDPdu1gBdseZNE3oNEqF4EmHHxeVtr82iCkIxeK/1DtLbNAGweOjYADZ94rCK97ELqIqvvlyEXmPAjyKNLaExH45YUchguKdGQic+4Gxz7wfh7hfUf5NsWToeBVMA0Bv1eqFCAT2jCk3wSw7QWNH7LoK5AWpNddCOeR0r+VLIkFz9tU4RP7XtBEIExXIUumKX0kYQBnHs7i38HUXUXq2LerJzN93GWRTPXHezP4+fU/8Qv25dN1b5UGX1RFSO1AWvdtjsnbxJ8fziKmVRTFBSXM+XYhTTrG0faqVrTo2YRlf6zCXGSh6/AOLJ+6ht3r9tG6b3NC69eiVa/TZ/RfbM7Vh/83cDvwluv39FMbCCG8AI2UssD1uh9QPtvjEqDVamk38ITa38mLLr1HdqX3SJVUNP3Tf3A6nDgdTjKSMonvomb1SdtT2LRgG0YvA1lp2fS6qSt1G0bQ99bumIssBIUH0Lxb+SeAyw77btfvneDMQjrzXDNykMVTkbpGaHR1kT7PKoOgbQDWJSAzQdddGXwMCG0o0rICad2lBLR8nlcJXqarwdBZFVgxTwdHElIXjdDdUnW/hEY9TUhUvdXLGccxZexBacifgnQcg5JZgFSlBX0eRWJS0VWaE8EC0p6GLPkdtLVA1woKxit5A9NgsCwFoQPvJ5TOkcxX2jklU8HvfSiZpmLxNT6gi4Wiz1Q0T/EUsM4EXQtE0GSEqV25/tVkil3JkkV5xVjM1mrt4xXgVVqScND9/SjKLaLPLd3ZuyGJlJ2p3DpuOOvmbObVG95T5ygo4WhaNod2pZORlInTKTmSfLTG6Wydq8F/C/hNCHE3kAIMBxBCRADfSCkHAqHANJf+jA74WUr5zzme96LS7foOZB/JwWA00GGQiiu2WqyMv+1j9m8+SP1mkRTmFJJ3tIBHPr2H2rHhjH739kvc6/OH8LgBiQBdY6QIhuKvlDFx7AJKIPcBZMCXaHR1wHuU0lLPu09Fa9jzVQq+obmKt89/FbTBUPIdeD2k5Bos8wEDwtgJWTxRFWLRxZ2+X67oEGnbjjC0v+DjUB2ktIB1PWhCyxeTqQp9Q/B9RSlMGvshrZuUlLCrWpk0/wPaIKAhGLoibcmQ9xBoIiDgM5frTSKLp0DxF+qY3s+fKELuPAIeI8CRjiz5E7wfgOLJLmkMvZq1F4x1XYNNLdh73gYlf6pFedP1ILOR9kMI/ekzUGsSwx67mqDaQUQ1iySyYfWeSI6LJAohOLz/CKv+Xs/1Twzi7cUvYjPb8Pb3Zu0/m0rbF+QUsnHBVq59dCA7Vu0hPyuf4No1L6fknAy+lPIYUC60wuXCGeh6fQCouVqo1SAg1J87X7mp3OcOu9P1Si01BIb5lWvzX0AYWiBccrbSugVpmQnGwaCPc8nlOsFxFDSu69fWAs/7wTIHnEmgf0At8uWNU9m7VlUIHschsCwErOC0ILx+Q/q+rnR79GUNviyZi7QsRBj7Ijz64rSlQMkU0PgiPG+pMTV1ZdHPUPgmiEAImoLQ1avWfkJoEJ43Ih3HkDl3IO27wftphCviRWjrIC3LVG6DvpXyz8tCcOxRNwldJLL4e/UeVG6EI1PlRzj2qSchyxxVrN4eDNp2qjyhxk9lT2siVISOfbOSRyj+EgzdQOaAIwe0ASpMVxsJ+ucvyNhdKMKjw7hxzNAz2qfv7d2xWW1smLeFzYsS6XmTCjE1mowYTepm0KZfC16ZPgZzkYWo+EiSEw8xb9JiopvXI7JRDH7B5TNzLzVXXKbt6bDb7Cz+ZQUlhWZ63dwFb7+KDYnBaODJb0Yzb9IS/MP8CK0XQvuBl5mo2hkiLf8ii38Cj1vBlgq6emDoAcYOKuzShRAGpDYEHAfVB4UfILWRgFXpqhv6KneMvoWK6LFvA328WhjOewxwIClCeN+vzussRha8CM5sFVHkTAHLarAuVcfXRpctvF5R36XVFRFUCyEu4L/98Rm1zD67xCNnjkqIAlVZ6ji6aPB+GgpfB8sC8H1bJbMJX6TwVmNXPBucB1RBGsdBKPkGvJ5WN+Div1QRE8tcdSxtCMLnMXUuXRRC448M+BKcmUjzCkC6/lY9QBsBFpVhjiMFaV6mFnv/w5g8jAx75Goat4vl2kcGVuiP12g0RDQIw1pipX7Tujz+5Wg2L97O/i0H6TSkZrq93Ab/FNb9s5kJd3xS+r6qSlaN2sXSqF0sxzJyeP+eL/h+3BSemvggtRuE4VfLt0br65wNsvhnVeQalCEo+hjh9w7Co7yshDC0Q+riUVLK2eAoUpLKwgDkAWEghVqA1N6vhLbsSScO4DiM07IBbOvA0AWMvZRKo8dQKPwSDK0AocTgtOFI2z6QNoSh/JqJlA5kwXgo/hG8HkL4PHL+B+f4dXveqJQmtfXUQvYZIK1bkCV/gdf9YD8MxgHqc3saMm+c6wnK6fopBPMc1yw/TS18ez0I5gI1Q3emq0V2xyE0/q8gve4CaUba7wCpRehjERovpL4FmOfgdGYjTNcocTtdNJg6gzYMofHDWfAZGNqAMxxsm5G6hv8Zg38sI4fNC7cTFV+X6Ob1y21v3KFy1+Ludft4utfLWEqsvPD7E3S5tj2dh7aj89CaaezBbfDLYfIyujIKZRk9napI2pLMmtkqBG7BT0uZ//1Sut/Qiae+e+C/ZfT1LdXsUtcKHOkq8kYXW2FToY9TNU3zPwDrdBXxoUsAy2TlyhGeKvTPsR30LREefcDQDGm8BuRRcFgh7yVw7gb9QvCfhPC8DbSRyqAWTQLvZ5XhcRYg88aCxoQ09ELjrdZPlE97IhT/ruLLEVAyDen9wAWb5QtdfTVzPgtk8Q9gngEIVSvY/Ad49EDa94FjLzj91exd4wcYVW4DqBsqgLSB33jI/xAwqAL0rtoGQuhAeJfXtrGuReapRCwpLWC6CmzrkLpGCPtupCYS4XUzsmQx2JygMyKM/c7q+moiP73yBzO/mEdI3SA+XfcWAbX8q71vZkoWJa5i5On7j1ygHp5f3Ab/FFr1iueteS9gLrLQdkD1lh5iWtWny7XtSNqegn+ILy17NiN1Tzq5GXmERdU6/QEuF4y9VOKUIxlMIxCew6sUO9No/ZD+Y5GO+xEyT/mZZYrSVNd3UNEm8qjyIR/HEA+WZeBYp1Q2NXEgAtFovUDbCADhfR/Sc2RpdIosmQkaT1V4xboWpyxUcg0et0DBOygJJy0YeoPHVRfWpeNCOnLU+sLJmjOn4/jNU1tX+dqdyWoBVVpVfD6Zyn9v3wGirprRO9JAGwPahmrhNfsr8H4KjM+CdQ+YZ+K0b0N4P1hxgpQwAVrAARpfZP7rYF0Ixv5Iyz+ga4YInIjGaygw9FyHpcZRnO+K4MktwmFTa3IHtqWwbdkO4rs2KjfrX/TzcvZvTabPLd1o3a8Fd71xE8X5Znre2Plid/2suKIN/o5Vu1nw0zIatYul3+09Sj9P6B3Pga0H+ea5yUQ1jaROXDjfPDuZmJb1ufP1m/D288LpdLJ3YxL+Ib6E1gth3B9PYS4yM6b/a+xctYf4ro0JrlvzVunPBY2+AdLrHqT9gFo8rYaypRA6hK4W4Lrx+T6H9Lge0EHO8bBLPdKyGmHsgPC8FenIAOsy9STg/SxognEW/giOvQiPG11ZvxJn3otgTwSvx1RUCSj1TutSlzxANHjeqqJRPIej8bqjWtcpbbuUa0XfEI3HtadtfyrOop+h4A3wHAE+Y0ojbSo8l3kB0rISYRqA8LoTDO2Rtr0qhNKrv0rAMrZFet4F0qnKEsoCFVapq+1a9F6hZva5k9RBrWtA10RVqXLsB9kW7AfB0Kzc+YWhJQRMUtpHxu7IklmAHpzHVAP7TiWEp/E/43GoSRTmFZGcmEpk49r4BJy48d0ybjgxLaNo2CaG4NqB2G123rvnM3av20+DlvX5cNUbGIwqCS5pewpv3foxUkqK84p59PN7uenZy6uq2xVt8P/8cDZLf1vJzC/m07RTQ2qfJJE644t5zPxiPgC3vjicxJW7SVy5m27XdaBFz2bM/W4x7436glr1Qnhn0YuER4Wi0WrJz1JV6gtzi5DOmlzs7OwQxs4I49nNZqR1K9K2FWHshNBFIwMmuSQZNiMtiyB4PkLrrwyPea5Lf6cYCp9yafEHIIVeGXz7TjD/o2SbrRsQPmPUfsIEeS8CRoS+ORg7gtd9Sta5qr5JGzjzEdogtVZR8isgkLom1S7aIi0rlV6QeQFgda0ZjFL1Aypq7ziGzH0csChZiYBJgB7hcRXC64RuutD4I3yfxWlZCyWTXDsfBVu+Mv4UKJ16n5fUExh2KPpAPSWogVcL7KV/h0RkyXQwxKPxGIQwnhTS6jsWaflXLdRaGyMMCQjd5Z04CPD5Y5OY9/0Sug3vyPOTH0WrU09edeMiqPvUiTUoq9lGeEwYXn5e+AV7c3I1U+8AL0LrB5ORdJRakcFljr9/y0EW/rycuIRoeoyoubP9K9rgR7eox9LfVtKwbQN8gso+7h4vcB4RE0ZUs0iMHgYato2hTmMVx5uyUxXwzkw+SlZqNuFRoRg9DDwz6SE2L95Gq97N0RvKp8dfqais2AdAZiItvZCG9oAdNN7gSFIx/s4CZTTt28H3BYSxKzLvGXUAZzYY+4CmjspKtW5XxVzM01UhFq+bEKY+qmBH0G8gLScydbVB5fsj7cjiX5WAmMcwKP5B+fd9XjjxtKCJVBICJ+9nP4i0rFI3E10dED4IoUFaNyBz7gKcypXkTFfa8lJfrsyjlCVg3YrUhKrIGfsu0HdA5r8I5r9VkpTfeECCZSVoPBGGNghDAtJztIrAcWSogjOGDoAGdA3RGOKRumhkzm2AFjzvVQXINeGu6/1bhVnaD0HJD1CiQeqbqgpXLoQ+DnE8JNZjwLn8yWsMlhIrW5YkArBlcSJWsxUPb4/S7VuWJLJr7V46DGrDsbRslvy6AlDx+yd/h0NqBzF+7gtkHMyiSeeyi7l/fjiLeZOWoNFoiGkZRd2GVWeJXyquaIN//RODaNUrnlr1gstJGw996CoatYulVt0gstJzePHPp2nSMRYvXy/S9h7GL8SHfnf0IKZFPaKa18Vhd6DVaWnSMY4mHU+fNHTFIQQIvStlwQlFHymftekm8ApUM/CCD4EMVUqv+HsIngued6vIHhGkxLy0ddRsvOidE+UVnclIxxFAgCxAlsxA6GKgAmkGpb2zUh2vwJXw7cgEClXsunkWIvAbpDYWbP+qylBetyEtC8C6E6QZzL8oGWBNKBhag89TasHUVcsXx0HQxYF1FQJH+T4UTYTCD0HfWcW6GzqC+U+QLsVFyzKQJUjzfFctYq2rmEgbpMxXC+eGdmrtwzxH+dld1acwtAXf8ar2gPVflTmLAGM/yH9KtfEYqX5ro1X1qv84mxZuJSo+kvDoUNr0b1nG2Gdn5PDi0PEU5Zewd8MB7nj1RkLqBJGVlk1cm/IJZhENwoloEF7u87D6ymUZEROKl//FVcA8E65og28w6mncvuIoE71BT3yXxiSu2s2T3V/EYXfw5Lf3M+DOXkz7eDbTP/kHjVZDm36PcF/zp+h5c1cyk7MQGsFt44aXcQ8dx1xiYeeqvYRH1yr9Bzkdx9VMhTh1nnh5ITR+EPAZ0rbNZWRsYNsCha+p8EXrSjD2Ben6MmrrqIxbUaiMrmEA6NsCViXpDCpKyNhXGa7Cn5HW6WAaBOZpKjNYG1MapimtG1Xt3vwXlF9bWxe08eDYpo5pWQLGgS7hMiPSsVe5ZACpCYaCFwCpEp/Up4AFiieB193KAHs9oK7JkQMe3RCeN7nWL07huO6/Jkxp0TtS1c1P6EA2RXgMQWi8lXEHwAFO12vTdcqfrgkGj2sRpgFIKZD5byA1EeB5GxrPa3HmvazkJgwdwNADoQ1AHl+c1cchPH4ETV1EBU8/x5HSCrZdpaJrlyt6o560vYeJaBBG6p50jiQfLdXT0el1eAd6U5RfgpefJ55+njw3+VG8/D2Jjq9e0hzA9U8NommnRoTH1CIw1P8CXcm5c0Ub/OpQlFuMw65maQXZRQClGXR+wb7sWLmb2nER7Fm3j00LtwMQ2yqK658YVO5YU9+bwaQXplC3YQTvLHn5tP8Y6fsz+OShbykpNPPwZ6OIdpVhvGzRhiOEB0JXH6cjSUXVAKUzY10CyGNg6I4wdUNoA5Xh1rd1aeZkKB+1JhAR8KO6EVjUOguGjigtf9e6iQhCOlKQR8eAqZ/S4dcEqfh4ByoTVtsEtD6ACYS3mr07lPCd0EWpIh/CC3T1QRulIn9EAHg9ArJEJUZ5X4W0JaqsX0Nn8LgDoYtA6GOR0oqzcKIrkUoPWn+E1wMIz9uRGn/AAyxTXf1toWLq7Wlg6qE+8hiirkaaVdlAbTjYt7g0bnqoG4OhFbLwC1cdgr1gXY70e10JoBW+rwy+UyWBicAfVTKYsWuVC8nHkUVfu55EEiDgKyVlcZngdDpZ+tsqjqUdo+fIrvS5rTvfjf0FAIfdwW0vDicsKhTfIB9enfEsSVuTqR9fjzH9XuHgtkM88fXoMzL4Hp6mMsqZNRW3wT8NCX3iefKb+ynIKaTvbSrZ5LrHr6FBy/qEx4SRcySXnMw8co7k4hfsi81iI7a18onabXamf/IPyTsOcfV9fTl8QImJpu3NoDCn8LQGf/u/u1g3dzOgHksvZ4OvFigfBNsmpO/rCNNgpCMdkCpG3zQcCl5Si5BeoxA6da1CG+B6MkiFHNdCpm0zwn+8qrlq/ktFpOg7K2Mmjx/veqUI6dgFtkDAqRYxjUNVe5kPZmUAMPQE0zA18xcmpCxBmPpC4DRlcK0rlESBda6r7msUWDeAx+0IXUPlG8eiktL07ZG29UhxA8KZAYVvqfNp64MtFWlLRGNsgzA0wVnwOeibu6Qkmqmbmc+DpdLHQuOvFqKzrgIcSEcmHC8aZ12i9tP4IHRNkZpVrgVbkJbVaLzvQBh/wZlzP1gWIosNiOCF5eodVIktsXS8ceapKlaXCYkrdvHGyA8AMBdbaNGjKSYvEw67g+L8YrYs3cmBrSm06tOMqKaRRDWNZOfqPRzcpooB7dt8sPRYO9fsJWlbMm0HtCKkjnoiKikswehpRKPRXOxLOyfcBv80ZGfkEB4TSo92nUuTqDx9POg4uC02qw2nw0Gb/i2xWawYPY00ahdLZCO1sLtvUxJfPPk9ADqDjqEPD8Q3yIcGLesT2ajqyIf87ALi2sYQ3aIeJYVmmnVudGEv9ELjOHxCn922CeF5PcLvhGiqtB9QvnkADEjbXqRlKULf2BUZ5IfTZ6xapDVdr1wW+ELAFIQuUkXX6Bsic0eDCED4xCGxup4ATOBxs0pUktmARoUzGvup7FyvO5CWNa44/hVqVmzqgTA0Rhb/CYUTlMEWPuqmIdqDrgFY5iNLJoLnKChZqm5WslDJDDuzwPtB0EQpF4xltnpasO9F6hshNN4IjwGuZKfaCM8hpbo5ZRA+rqeLfeo4zkJ1k9C1Uk8egDB1VdFJzlxwlpQ16sfli7X1QVO9RMLSU3vdhdQEgT7hxBrBZYLJ24TeoMNmtePt70V81ybcO+EWtq3YhZefB18+OYmCnCJGjb+FG55WVbvCYkK5/slBHEvLpt/t3QE4mnqMsVe/QUF2IYMfHMDDH9/Nst9X8eEDX9NpSFse/PBOTF5nNq6XErfBr4K8rDz+d81bJG1L4baXbuDWccNLt9msNiaO/Zm8zALm/6g0Xcb++hjLp67GL8iH/nf1JLhOEFHxkSRtS6FByygatKxPg5b1T3vef75bxKcPT6T3rd14Z9FLaPVaPE9aaLos0cephCDbDoRH+dhloYuGwO9UhS1DN2TRh2DfgbRtBm0DhC4UjddI8BqJs/BbKJms9jPEAHWUy8PQGgJnKclgfR2EPg6nrinkvwbisEsWQqOiaDzuBn09hKmvcm84jyn3kfBVUg2uBVShCVauHWcWeA5RNwlbIujbQ4nrCcGRqdYlZIHym0vXQq0zDxE4CVn4kesqdaqyV8kU8B2rCs/4PlblsAltEAR8pTRsnKinEhGB8LqxTAKZxtgWaZgC0onQnFg0FN4PK2kKXYxaRzkDVGTQGTwR1CBiW0Xz7pKXyT6SS5t+KoFy0P396XpdB5ISU5j1hRLwy88uBGDD/K2s/Hstf386F6C0Bq2UEqfLpeuwqbWjlTPWk3+sgH8mLmLYowOJOgPXz6XGbfCroDC3mOTEVOBEUZPj5GcVsGbmRuo2OiG3emBLMr+8OQ2AWvVCaHdVK96a9wK5mXlENau+O2bpbysxF1uY9eV8bnhqCBExlRdZvlwQwoDwvrfqNobWCENrFfpY8qv6UK9X0T0nt9M1QmIA4YXU1Ifcx1UpP4+RSrXTsRfp9zpoAlSYo+dwNetmEWjqqKcN+1yE5x+lvmzhcY1rFuyNdOZD1rWADvwnIAJ/RZqXqMLehp7gPAwUgNfjYFsGzjQwDVX6/+jBVA8s85CAxv9N8H5MzZSdx1xPADuQ1rXKpVUyBzwGo/EYWG48pHQii39RT0amm8A8UUXwGLqptYRyY2zi1BhQofErXRO40qhIB8e/lh+tasXz/C+PcTjpCL1u6kJW2jFeunYCzVzV6zQaDRqdctXUqhvM67Oe58DWZNpdrWpndLm2PVsWb6fD4DaEXWbfTbfBr4LaDcJ59qeH2b1uH71cxVCOExgewNX39SXjQCYDR/UhuHZgaey+3qjHL8SXA9uS0QjNGS3+AFx1d2/S9h6m58iu1IqsPIriv4a071c68LrmYOgF1kVg7FUuo1eYOkPwLMAAQq+eAgBsO1VMv8xFlsxWoaCuQi0E/KH09i3/QvHXal/KFsMQrkxUmT/hRDES8z8In8eQ5oWuViUqbh5UJJGuhcr21UVCvkt0z9BZZa4Kl9KqfYtaMPYYBIWfgC4e9F0g9x7lZrInIk19yi+kOlKg4GVX54LVugFWsG9CoikX3++m+vS4oVPp6/xj+TTp1BBvf08G3d+PtgNbYSm2sHfjAWITomnauRFNT3Kpdrm2He2uboXhMsyzOSeDL4QYDrwENAbaSSnXV9JuAPAhSrTjGynlW+dy3otJzxu70PPGLuU+F0Jw3WPXAMrP9/UzP7J73T7G/vIYtePCyc8qYOzVb6LRCN74Zywte5RPa6+Mbtd3pMuw9pfdgtC5IKUFmfu0SrrStwX/LxEy50QS1CmU0Zn3fx9pWQ2G9lD0BTg9VBSNrrnarglDaIMQuuagDUVqfBC6JghdXaR1h/LrG9qfqCOra6B+0KqQT1D9MA5QkTLWzUpXyJkFwoLw/xCkBWnoBrbtqlyjRwTYD+G0boLchwEJ8kGE35uqfKBtlxIqK/kVTFdXHDWjCVI3Ptsa0IUreWTLDDBeg0brf55G3o1vkC8tezZloiuKxy/Yl59e/QODycAHK14ltlV0uX0uR2MP5z7D3w4MAyotJiqUetSnQF8gFVgnhPhbSrnjHM9dY1g9cz2LXdl5wXWC6HpdB/6ZuAiH3YEDyEjKhB7l98vJzEOr1eAb5FNu25Vk7BUSMLteWhEaEzhNYP5HLXKepLd/KsLUF2Hqi5RmpGUtOJNVRInHdWo/bThCVxvpLAI0CK9RCKFF2nYis29U5/V9FeE5Qh3PYzBSEwhSo54mUNFC0vIPoAW/z1QSmNU16zcNQJh6QcBnIK1KtqD4J/C8HSG8kOgBq3JBmeeourQAphFqLUHXCWleDMYOCHHSWo3zGKXKmcYeaHT1wev68zfkbkqJbl4PjVaDVqfFWqKe/KxmKwXHCi9xz84v51rxaiecNimoHbDPVfkKIcSvwBDgsjb4SdtTWD1zA006xFGvcV0CwvyxlljJOHCEX8f/xcBRfchMzUKj0dDxpFq5x9m+YhfjhozHw9vEK9PHENOifrk2lhILezYcIDw6lOCI/5YQ26kIYQLft5G29QhDe4TQ4Sx4W4Vdahuo6lGa8jfGU48hKVLiadalCI9hSmcfkM4SZN6zqgCIzxjwHIk0z6P0JuPIUjcA6waEoR2aU/3exr6IgB9VchQGpHACOpUhfDxaRhjUgrHXzUjPmxDCddMO/FFJIRi7gfVfV6aAUGsB1mUgC5GWeeB1H8L7rtJTSsuKEzcVY4/S87ipPg67g82Lt+Ph40Hj9rFkJh/FL8S3TGRNSUEJrfu14NO1b6LT6/EO9MLL35OAUH9a9Gh6CXt//rkYPvzawKGT3qcClRYgFULcC9wLEBlZc+POJz7/M6tnbsDb35Pvdn3Esz89wvfjprBh/lZyM/PofUs3hj8xGG9/L+ZOWsyUCdMZdH8/rn1YLc7tXrePguxCCrILObD5YDmDfzjpCL+8OY053ywkpmV9xs8fh18FTwL/JYShKcJw0hfM6Yo5d2a6pAuqQanEcGxZ2WWZrYw9gHmZchsV/6gMqfAD01Bk3v1g34XUtYSgn8tEwQghwCUyJqUDDN1V7Ly+UxktmhPtTzyhCcOJSmjS2BcRMAlpXQ9Fk5UEg3AZH2du2WPomysJBwRCV32XIIC0H1YL3xp/hOeNZZ8crhCK8ouZ/c1CvnrqB7Q6Lfe9exufPfodHQa15rkfH8HT15OVf6/ln4mLMRj1PPzZqNLv2Mjnr7vEvb8wnNbgCyEWABXJ/Y2VUk6vxjkqmv5XKiMppfwK+AqgTZs2NVZu8rjYmn8tP3QGHQm94jm8LwMPLyNt+rfkjtiHiWlRj5enP8OPL//OkeSjTHzuZ3rf3A3fQG/aDWzFjlW7MXoYadGr/Jd5yZQVpO09DEDS1hQKcwr/8wb/VITP00hLW4Q+oVpSzADC61YwJCBFINI8E+ksUq4aTQT4vAiWZQjPm9Qiq74lWP4FvwkIXbBLegAQWir+t3VtFlqE18izuyahAWMnkE6kYYcSZ9M1Aa9AhGlI2baGeAieoV6fYUilNP8NRZ+rN9p6YOp1Vv29nPlmzE8cPqAKkzjsDg7tUoKHq2dsICstG1NeEV898xOhkSEEhgeyY9UeOl7TuqpDXvac1uBLKfuc4zlSgZOzNuoA6ZW0vWy4+42RtBuQQFTzSLz9VTRGeEwYnYa0JXlHKg67gz0bDpC+9wjXjO7HpBd+ZfCD/fF2CSvVjavNC1OeLHPMjINHQGgIqxdCndgINi3YRkLf5nQe0pbaFQg2/dcR+sYIffmShRUhnYWlRbaFoSWUzEUWvKm2abzQeN2J8LoZvG4+sZP/x+AsOKF34zcBaduo4s/PpHDJWSBMXcDYDtBX6RI9U0Nfup+2tppVCU/Q/IeK8LhI35/Bb+/8jaePByPGDC03GZJSsmPVbiwlNtpd1Yp2AxOoHRtO+r4MWvWJp3ZsOLvW7KVWnSC2LdvBxgVbKThWgN6gpU2/lpfmoi4CF8Olsw6IFUJEAWnAjcDZTY9qEEHhgfQYcSK0K31/Bi8Megur2crI54fReWhbIhvXIa5NNFEtIuk2vCOh9YIrXYzd9u9Oxg58A41G8PqcsXS9rgMRDcLw8DEREV2xnrqbE8iiSUqBUwRB0B+qcDd6wIbQVBwrLTQeoDnh6hD6WIS+YjG9C0F19GzOGtPVCG1tEN4X9ZouFv/+uYZZXyodpdiEqHKRdEII2l/dhp2r9+BXy5feN3fF29+rNAkLILZNDK36xLNp0XbXTnBwe4rb4FeGEOJa4GMgBJglhNgspewvhIhAhV8OlFLahRAPAXNRYZkTpZSJ59zzGoZGp8Vg0mE1W7FZbbz0p9JxT96ZysvXvU1RbjHj/niKpp0qLqZxcHsKJYVqATF5+yGadmxY4UKum0qQOa7fuSCLlN888HegRIl/XWEIIVyF3v+bRLeoR5dh7SnKLaa4oKTCNknbDrJ58XYMJgN3v3Fz6ZP4cQxGPSOeGYpGo2Hjgm0c3JZSY3XszxfnGqUzDZhWwefpwMCT3s8GZp/LuWo6YfVCeHPuCxzalUbbAS1LP9+74QCHdikPVuLK3ZUa/Db9W3H7KyMoOFZQmtHnpvoIz1uRmkCELra0gIcqhejmv0jzHk159+7PyUrLZt/mJHrd2AUPnxNPa4f2pOET6EOfW7vTbXgHgsLLZyaDCn9u2bMZ34+bgs1qJ7j2fzvR0Z1pex5p1LYBjdo2KPNZ826N6Xpde4weRjJTjvLlU99z/ZODCAo/sQh5OOkIb9z0AZmHjjH258f+8yGYFwKhq4/wfvBSd8PNBSQrPRuTpxFvfy8MBj0dB7dlxudz6Ty0HUYvY5m2/05dw/wflMZVx0FVL8Q2bNuAd5e+TMGxQlpdBhLH54Lb4F9gakWGMO73p5j11QI+GK3y0+rERdD71m7M/moBxQUl1G0Ywa61KpV/67JEmncvOzMtKTTz18ezyc3MY+gjAwmPurz0O9y4ORcOJx1hyvi/yM8uxNPbg8xDR7np2WHcMu56+t/Zg3qN65RbG4tpGYXeoMM32KeM3lVlNG5/ZVSpcxv8i4TepMfkaURKSWj9Wqz/ZzOfPz4JgLveGEnXYe3JSMnC6Gkibd/hMlE5mxZtK037NhdZePyr0ac9n91mZ9WM9WiEhg6DWpcWbXbj5nKgKL+Y/ZsPUrdhBDM+n8esr5S6ZUKf5mxauJ2YllF89th3HEvP5sWpT5dLkGp3VSu+3fE+epOhyidmm9VGYW4RAbX8L+Tl1BjcBv8CsnbOJia/9gdt+rfEXGIpLYxiMOrw8PYv1ev28vcktk00QbUD+PqZH0lOTOGpiSfcE0HhAXj6emIuNFOQW4S52ILJ01jZaQFY8ddaXhvxPgB9bu1G674t6HNLtwt3sW7cnAPp+zNY/89m4trG0KhdLN8+9zMzPp9Lq97xtOmvIms8fT0JjAhACIGXrycHE1U+545VuyvMiA0/TXTbrnX7+Pa5yWi1Gnre1IX+d/Sssv1/AbfBv4DM/3EpO1btYceqPYz77UkW/biMxh0bUq9pXfyCfflw1euYCy38OmEaWq2W5MRU+t/ZE9Mp/siGbRtwz1s3s3nRdlr2anZaYw/gsDlLX+ceyWPi8z/T88bO7pm+mxrJpBd+YfGvK/Gv5cfX295lz3rl4tyxcjfP/vQIepOBtN3pHEnJ4oEP76Trde1J3XuYvMw82g08uyCH5b+vYrMrJDOkbrDb4Ls5N1r3ac6y31bRcUgbWvdrznd7PkJv1LNn/QF+eOk3GrWLpe9t3Vk9Yz2/vfM3AL7BPrw6fQwAVouNnCO5BEcE0rJnUzKSMtFoBLO+msein1cw5KGr6HZ9hwrP3WVYO8b88BD7Nh1kwY/LGPxAf7exd1MjkVISFBFI8+5NyM7IJTkxldtfvoE1szfRqnc8gaH+xHdpxBePTcLpdFKvSR2CwgN59oeHyx1r78YDLP9zDU07NqT9aaLdmvdoyvRP/8E/1I+EPs0v1OXVKISUNVa9gDZt2sj16ytUXL5syErLxjvQq7Q8IsDrIz9gz7r9hNYL5trHriY6vh6Txv3K0t9Wcf97dxDTqj7/Tl1DzpFcFvy0jFtfHE5JoZk/3lVp9gl9m7Nx/lai4uvx1ZZ3qjy/3WYn50gegeH+aLVug++m5rHk1xW8PvIDjJ4Gbnh6CD++/DsRMWFMWDCO0Hohpe1WTl9H2t7D9Lixc2lt2dUzN7BuzkY6Dm5Lm/4tGTd0PKv+Xo/eqOeH/Z+cNuItKz0bo4cBnwDvC3qNFxMhxAYpZYWlytwz/AtMcO3y/3BRzepSlFvEun82s3P1Xj7fOIGnvn2A0e/ejl+wL68Mf4es1GyStqUAMO/7JbTp3xKAoHB/4lpHs3H+Vnrd1KncsU9Fp9eVfjncuDlfHEw8xBdPTMLD24PR799OaGTI6XeqhIzkowBYiq0c3K788un7MziWnl1q8B12B1lp2WSlZ3NgSzJ2mx3/EF/evfszco/mU5BbzMYFW/ELUVIUtWPDcDqcZKYcpVYVfbvSQqDdBv8ScP0Tgzh2OBcAm9WOzWpHq9PiF+wLQP34eqyesYFeN3cldXc6geEBLP9jNbe9PIKeN3amVmQw14zuV+HNpDLysvIpLihxh3S6OS+sn7uZDfO3AtBpaFv63tr9rI/V++auHNh6kKLcYqxmK1fd3Yvo5vVo2LYBTqeTGZ/PZdOi7dgsdtbO3kjSthRSdqby9sIXie/WhEO709m8eDs5Gbm06NmMl/8aQ3DtAF65/l32bUriucmP0n14x/N16Zc1boN/CTCYDNz07FBqx4ZTNy68XL3bEU8PJqF3POFRtbBZ7bww5C3MRRbiWkdTJ1aFa55uRnUw8RB/fTyboNqB9LihE6/c8C4pO9IY+8vjlfr93bipLk06NSQoIgBPHw/iWpeXhz4TQuoE0f/OXvz65p/Ed23C8GcGYzDq0Wq1HNqTzicPTwSgefem6PQ6TJ5GjqXnkJ2Rx+Nf3kfKrjR+fmMqa2dvwj/Yh46DWrNt2Q52r1MLv4krdrkNvgu3D7+GMHfSYmZ/vYCB9/Sh/51lowUKc4uwlFgrTQ+viIljfy4tqP7Yl/fywX1fATD8qcHcO+HW0nZF+cVsWbKDOnHhRFYjQcWNm+MU5BSi0Wrw8lUKsMX5xaTuy6BuXAQe3qbT7K0oLihh44Kt1KoXQlxCNMk7Unn/3i8AePyr0QTVDuDV4e+xccFW7n7rZuo1qk3iqj0Ehvkz6P5+6F2lBnOO5JK0LYXoFvXwD/GjpNDMz29M5eD2Q9z0/DCaVFDQ/L+K24dfwzEXW/hmzE/kHs0nbW8G3Ud0KhN66e3vVU746Tgr/lrLz2/8SdfrOjD8qUGlC7MxLeqj0WgIiQyiaadGjBw7jPS9GfQY0Znco3nM+noBBpOegmNF/PLmnwRFBPLqjDGYCy3EJkSVqQhUGZYSCwXZRWfkWnLz3+HkhU6n08knj0xk/g9Lueqe3jz+5X3lZJ+llMz8Yh47V+9hwF29aN69KdM+ms2kF37F28+Tj9e+ydZlO0hcuRuArct2MGh0P174/QmyD+dQOzYcrVZbYQW5gFB/AkL9S997eJu4+42by7W70nEb/BqAydNI/7t6MmX8dAbc1bNacfbHmf7pP+xZv5896/fT/YaOpT767jd0on58JEeSjzLphV+IbhnFU989gNHDyPRP5jDpf78C0GukkpXNzcxjyS8r+O2dvxkxZgj3vHlLlectLijhnbs+Y8W0tTz+1X0MuOvKK7BxpbFm9kaOpWfTdVh7fALL6s9bSqysm7MJgHVzNmGz2jAYy8o/p+45zEcPfgOA1WKnefemFOYWodFqaNGrGTlHconv0ojoFqpA/XGhQW8/L7z9Kp7wuDkz3Aa/hnDnqzcx5IEBBIT5n9F+XYe1Z+uSHdzwzGC0+rJhl/Ua12Hah7NY8dc6Vvy1jjZ9W9CkYxyBEYEIIdBoNbTu2xxriQ2NTsP+LQcRQrBvY9Jpz3s09RjLp64GYMO8LW6D/x9n55o9jBs8HqfTSf6xAm4cc22Z7R5eJh778j5Wz1hPow5x/PrWNDpc04a41jFIKTEXmQmo5UuL7k3YsWoPsQlRrJi+jsH398M/1JcVU9fyVI+Xuf/DO/ho1esAGE3Vn/i4qR5ug18D2L1+H0lbU2jdrwU6/Zn9Sa4Z3Q+/Wr68dcvHLPhpOVeP6k3/O3sSXDuI1N3pWIqtaDQaGiREERalKh91Hdae95e/itVs5a1bPiI7I5drRvej3cAE6sRF0H1E5wrPlXMkFw9vEyYvE7UbhHH7KyNYO3sTfW87+wgNN5cHQmhKqz5qtBUX8ek8tB3xXRtze9zDFOYUsXlRIq/PGcucr+ezZUki4dFh3D3+Flb8uYZvn/sZKSVPffsAdoudnWv2ArBmxgZiE6Jp2rFiGXE354bb4F9isjNyeHHo29SJCyf9wBHueu2mM9pfCEHKzjRsFhtHD2WxZUkiJi8j1z0+iAPbkln620qad29Ch0GtCTzp6aFpp4bs3XiA7IxcwqND8Qn0pP/tPeh/e49y58jPLmDdP5t49+4vaNKpIWN/eZSAWv7c8r/rueV/15/jCLi5HGjUrgFvzhlLVlo2nYYqH7rVYmP+90ux2+207d+CiJhwco/m4RfkQ2FOEY3ax/LOnZ+ydtZG2l7Vij8/mIV0SpJ3HOJ4sEhJYQkJvZuTujudg4mphNQJYsW0NZgLLST0ia+y/KObM6fiW3U1EUIMF0IkCiGcQogKV4Vd7Q4KIbYJITYLIa6MsJtq4nRImnSMZfu/u1g0eRnp+w6f8TG6DmtP9+EdaXdVS7LSs4lwKW3Gd21M71u74eFtpFWv8jrfDVpF8ehno9DqNWxdspPlU1dzJPkof3/2D6tnbgAgKTGFB9uOYe53S7BZbGxZvJ20PWX7KKVk2sezGZ3wNIt+WV5lX7MzcinKKzrja3Rz6Uno05x+t/co9advmLeFNbM38Pljk3hh0HiOpBxFr9fhX8uPHiM6k5V2jGW/r8JcbOHw/gwCQv2o17QO+zYl0WloW+587UZ639qNxh3iuPed2wgI9ScrPZvf35nBs/1fZe3sTZf4iv97nOsMfzswDPiyGm17SimzzvF8/zmCawcSFB6Aw+7gSHIWqfuOlBrs6lKvSV3+N+UJUnalYjXbaNAyClCRC09+fX+l+wkhyM8uIHX3YVI5jMnbxJrZG5n73WLiuzYmuHYgyTtSMZiMhEeFUtSmmMYdYtEZdXzz3E80bNOArtd1IO9oPt+MmUy7ga2Y+90SvPy8aF+BoNWa2Rt5dfi71I4N56VpzxAedX6KaxfmFqHVaasdCujm7MlMOcrUD2Zh9DDQpm8LnHYnDruDlF1ppO05TEKf5tz95kjS9h5m15q9dBzUhgNbk+l/Vy/iuzQmpmV94rs0xuBhKCObEFDLn+cmP8KCn5ax7p/NgJr9uzm/nGuJw52A+7HrHBk4qi/FBWaC6wTSrPPZ+y4jG9U5431a9YpnboMleHiZMHoa2bZ8JwB71u8HBI3bx2Iw6Zj9zQKuGtUb7wBP/vpoDuvnbmHPugNEt6hHWP1a3PLCdfz48u/YrHZyMnIrNPiJK3djKbFyYGsyKTtTKzX4UkpyjuThE+hVGmddGduW7+S1Ee8REObPC1OeoHbsmd0s3ZwZy6eu4c8PZgEqh0Nn1DH4wf54envQqL0qlh7ftQnxXZvQeVh7Dm47RN3GEfgH+5Ueo7KCJD4B3gy4sxc6vRatTkvHwZU6DdycJRfLhy+BeUIICXwppfyqsoZCiHuBewEiIyMra/afIio+kqe/u/jl+Q7uOERJoZl3l7zM7rX7qBUZTPr+DBb+tIxWvZvToFV9MpKPcmCL0vQ5uO0QRg8jtRtGkJ2Ry6aF25g3aQndbujI4IcHkJWeQ9qedELqBlOcX4ynKyHnOF2GtmP/piTComrRuEMsNquNaR/NJmVnGoNG96OhqzzkjM/m8ulj39Hv9h48/MndGEyGcn0/zvZ/d5KdkUt2Ri57NyVddgY/+0guORm5RMVHlqvaVBGZh7LQG3RlYs4vJvWa1kFv0GHwMFCcW8yKaWvx8DbxU9KneJ5UUxbAx9+b+K6Nz+j4Ht4mBo3ufz677OYkTptpK4RYAFRUSWCslHK6q80S4CkpZYX+eSFEhJQyXQhRC5gPPCylXHa6zl1JmbYXm9Q96TzSaSwF2YU88MGdXPvIwErbLvhxKevmbSGqWV26XtcBg0nPHXGPYjVbCYuqhXRKbv7fdRxJPsrk16YC8Mpfz1SYIHMyO1bt4dHOYwEY/EB/Hv7kHgCe6D6u9Enjp4OflZGRKMovxmFz4Buk4sD3bjzA549Pwj/Uj/vfv4OQy6gI9bH0bMb0f5XkxFTufO1GRj5/XZXtNy7cxktDJ+Ad6MVrM58jOr5ehe2cTie/v/s3839Yys1jr6PnjV3Oa79TdqVRXFDMnG8WcfjAEQLC/HngwzvwC/St1v7L/ljFz2/8Sc+bOjP8ycHVutG5qT7nlGkrpexzrh2QUqa7fmcKIaYB7YDTGnw3F478Y4UUZBcCSsK5Kvrc2p0+p4hj3ffObcz7fjG1IkNYMW0t6+dtoeuw9mi0GgJC/QiPqbraEECtesFExUeStC2ltBoYwNCHB1JcUEKPEZ3KZPEe2p3GS8PeJu9oPg99cjc9buhMbEI07y195Uwuvcawc81ekhNTAdi1Zh/ZGTkEhlUun7F6xnpKisyUFJnZt+kgu9bsJa51DA1aRZVpd+xwDt+MmQzA1PdnktC3BUYPQ7US+iwlFn585Q82LdzGna/dRJt+Lcq1OS7BMeOL+WxauA2AIQ8OwK+DMvjmIjNCKyqNo5/20Wz2bz7I/s0H6Tmic5Vqlm7OLxfcpSOE8AI0UsoC1+t+wOX5Df0P0ah9A56a+AAZSZn0u/3M4uiLC0qo2yiCcb8/yW/v/E2Lnk3JyVAx+t9sew+Tt6lakszBEYGMnz+O/KP51G4Yzq61+wgI9aPb9R0qFHjbuzGJlJ1pAMz+agG+QT4k9L48C1fkHyvAXGim4+A2mIssBNcJQmeo/OtoLrZwMPEQLXo0xTvAi1XT1/LvtLUE1wnk8w1v4x9yYnbtH+LLoPv7MfvrhbQbmMCt9e+n9y3dcEonXYd1LDXiJcVm1szYgG+QLwl9VBRXyq40poz/C4DFv/5bocE/TlxCFPO+W0xInSACQpWPfvf6fbx1y0d4eJt49qdHKlxX6jGiMztW7qHfHT3wr+VXbrubC8c5GXwhxLXAx0AIMEsIsVlK2V8IEQF8I6UcCIQC01wLuzrgZynlP+fYbzfniEajOeOSbsX5xcz7fgmH9qSzYto6gsL9ufG5a5n91QJC64dQJy6C2rHhFOYWYimxYPQwkrbvMEt/W4nBZGDQ/f0wepSd9QXU8iOglh8zv5jHhw98TVhUCO8seonQeuUXdOO7NqbDoDZkH87BarGTlVr1k0lNZd/mJF4cOoHwBmFEN6tLSZGVniM743uKXAFAbmYuDoeTwLAA6jery4zP5nH9k4NKs6FtZju71u6lw9WtS/fRG/Q88MGd3PbiDUx5+y8iGoSzfOoa8rLy2bRguyrubdAz77slfPLwt2g0Gt5d+jLNOjciLKoWHQe3Yd2czbSupAqUw+FgwQ9LMRdZeHXGs9gsdgpziiAKti3fRaorbHf3mn0VGvzBD/Sny7D2+AZ5n3ZR3s355VyjdKYB0yr4PB0Y6Hp9AKh8muDmsmHZH6v49NHvAGjdtzlbluygUdsGTNrzEUZPI7lH8/ltwnTWzNmIl78nd756I39/No9Vf6+naac46jeLrHTGmLxLuTYyko6SeegYS39fhbnIwqDR/UoXKEPqBPHUxAeYN2kRdpuDjkMqj+KwWW04HRKjR+ULvpeKfRuTVAY0MP2TuYx6+xbiO5df3Ny3OYn/XfMmliILr/z9LPe8dQtDHhxASN1gFk5eRlCEP0V5JWgryHzVueLhOw1ux8HEVHyDfdi0cBvxXRuVGlmb2QYon7/dql77+Hsz9tfHKM4vIaCWf4X93758F+/c/TkA1z46kGkfzsboYeDDla+T0LsZjTvEYvIy0aRLI5xOJ4W5xfgGnhBaE0KckfKrm/OHO9PWDaC0cf76eDYGDwNDH7qKbct2YrPa6XxtOwxGZSB8AtQMVAhBbOsYrr6vHyF1gwHYvW4fP778B5YSC1uX7gCgWedGzP56AU6HkwNbU6qMux94Tx+QUDs2nKzUbL5+5id1Tn8vrn306tJ2fkE+DH9ySJXXkrbvMBNu/4SC7EKe+eFhGrmif84HWWnHSN6RRlyb6LMui9eqTzxDHx7Ajy//gdPpZP73S7n+8UHl2h3Yksyx9BwA9m44QHzXxtRuoLJZp74/i+TEQ1wzum85/SWH3UH+sQL8QnyJ79qYN7uqxfnkXanUb1q3tF3/u3pi8jLiG+xDix7NSj83moxV6tj4BHrj4WWipMiMzWwHlHhaUW4Rzbs35f3lr6LRaMjOyOXdez4n90genYa24+pR57wc6OYccRt8NwAs+2M1v72tCqkbPIxMfE4t+o354WH63NINgI5D2jB+3gtodVpa9GhaZv8jyUdx2O0YPdXioH+YH817NGXEM0OY/ulcBo7qXWXIZFSzSB788C4Atq/Yhd6gw25zEBIZXK3+71y9B4fDSbPOjdi9dh/JO1KRTsmWxYnnzeCbi8y8fuP7bF+xm4H39uHxL+5j8+LtpOxMo9OQNgRXI0Iobe9hElfuxi/Ej05D2pCyK51+LjkLh8PBst9Xk5eVT6+bupDQJ56Bo/pgKbHS/poTeQ0FOUUccq1lpO4+zLihE/hs3Xj8Q3xxOp18+/xkpr4/izteGcFNzw0DlJFu1qlRmb74BHhzzeh+pe+dTid7NxzAN9i3zM358IEM5v+wlPDoUHrf0o3o5vV4f/mr5GTmUScunIAwPzy8TNRrrm4mxyW6l/y2knmTlgAq3NJt8C89boPvBoA6ceFodVoMRj2BJy2kSaez9LVGoyGhEr9ug1ZRNOvWGLvVTu+bu9KiR1MCwwJo2DqGG54Zckbyts06N+LjNW9iNVtp3P70hSs2LtjKcwNeR0rJbS8NpzCvmOjm9RACYltH43Q62bokEaOXsVrHqwxzsZV9mw4CkLz9EKl7D/P8wDewWWyk789g9Lu3V7m/w+Hg3VFfsG3ZDnre1IWVf6/HL9iX8Gglab1lcSJvjPwAALvFzvVPDuLxL+8rd5y6cRE88/1D/PvnavKPFVKcX8zqGesJCPOncYc4Znw2D6fDyayvFnDDM0OqXbx+7neLeW/UF4TUCeKdxS8SEaNu0DO/XMBvb08HoE5cBI07xBHTsj6gXGd71u9nzayNJO9I5amJD5zoZ8MINFoNGo3mjOPx3VwY3AbfDQDtBybw+cYJ6Aw6IqJDMXmbsFvtdL2u/Wn3XfbHKt68+SMatW/A/357gqCTQguFEGelZR7Ton65zw7tTsNutRN1Svx5zpE8nK4b0+51B/AO8MLoaWTzou1kphxl6ZSVvHHzh2h1Wt5e9CLxXc7O+PiH+DJ2yuNsXZpI56Ht0QiBTqfFZrGh1Z3eqEqnxFxoBkAgue3lG4iIqkX7q9Xs3ehpRKPR4HQ6MXpVHULZ++auNGwbw5rZG2k7oCWLfl6Ow+nk/nfv4J7xNzPrywVc/8Q11TL225bvwOmQHNqdDij3XlZaDt7+XpiLbQRFqL+nT6A3PoFl3ViWEis7V+0BlISyw+EoPWe7Aa34dO2bIESp3IebS4u7xKGbc+aTRyYy/ZM5ALy39JWzms0lrtzNtuU7aN2vBbGtVEz++rmb+e2dv0no05z4ro14rv/raPVarn/yGnIycul/Zy9iE6IpLihhzjcLKCk0czT1GLO/XohGo6Hr8A6MfH4YWxZt57PHJwHw4tSn6XJtu/N27YkrdnFodzrtr0mocJFz55q9rJqxnhbdm9K6b3P2bT7IztW7WfX3erb/u4umnRvx2sxnS43kliWJFGQX0vaqluUimmxWG4t/WUFxfjE9buyMRqth/+aDzPxiHiWFZnat3ccr05+h2UkLwMk7UjEXm2nYpmK31ro5mxh7zZtIKXn2p0fYvXYfYVG1SOjbnJevfZsjKVm88PsTGIwGgiICyqwBHGfNrA2sn7+FToPa0qp3eZE+NxcXd4lDNxeU7jd0ImVnKjEt65dLAqoOxfklvH7jexxNzWbl3+v58N/XEELwz3eL2bRwG5sWbuOhj++ipMhMq17NmPTCFABsNgePf3Efnj4eXOda9Pz5zT8B5Y/ue2t3ouPrERQegNVqw8PLRPPujfjxld/ISDpKvzt7sOD7peRl5XPnayOJiq9cyiP3aB77NycT3SKyjGFv2rkRTTs3ImlbMg67k+CIsuUev3z6BxL/3cWKv9YyYd44GrSsj9HTwJJfVxIVH4neqMdhd5Ya/FPXRk5mw9wtvH3np4TUDWbTwu1sXLCVLsPas+yP1dSKDCYg1A+/kzRrdq/bx9O9XsZcbOGF356g63XlcxvyswtLpYptZisPfHAnACv/XkfqXhVeuXfDfm57cUSFfTp2OJtWveNpf1JYqJuai9vguzln4rs0YsL8cWe9v0anISAsgKOp2fiH+JaK8TXr3JBlv6+iy7B2aHVaBo3uh0+QN4cPZJJxMJM6cRFljpOyK5XaMWHc9cZNpO3N4IcXpxAQ6kdc6xhGPD0UgE2LtvHDS7+X7jPv+yUANO4QV6nBdzqdfHDfl6z4ax2dhrRl3B9Plhpom9XG0ikrmXDHp4RHh/LW/P9xeF8mhTmFtL8mgdoxodhKrNhsDp7s+SJjvn+IpO2H2LpMRTLd9uINpVFQFZG8I5WfX5+Kb7APHa5ujUajoXaDMFb+vQ6A3KP5aDQa6jaMYNhjg6jb8MSYHE09RkmRciEdTjpS4fE7DWnLgx/eicPhpOv1HQEV5dOsSyOGPTqQY+k5dLm2/I0CYOZX8/n4gW/oPqIjT3w9GpOnW620puM2+G4uOSZPI89PfpQ9Gw7QtNOJRdVd6/fTokdTPH09+fD+rzGYDPS5tRte/p606h1PwzbRHE46QnhUKPnZBYwbPIG0fYe5ZnRf5n63GIDNixOJax1Teszw6FDCokLITD6Gd6AXHQe1Rkpo2K7ySB671c6+zQcBSl0o9ZrUxWq28tEDX9OwXQOklKTvz2D78l28fcenSCl55LNRjJpwK3O/W8w3z6qop81LEmk7oCW16oXgsNpoe1XLKsdmxfS1LPrlX0Alnk1YMI6SIgsNWkexavp6+t/Rg+ufGERMy3r4h5TNWm3dtwWjxt9CUV5xpXo6Ht4mhj58Qkdp2sez+f3tv7nhmSHc//6dVfZt9Yz1OJ1OFv+ygttfHkHtM5T1dnPxcRt8N1VSkFPI3g0HqNekDkGnuCvOJ7Vjw8uFbWalHmPL4kTaXdUKAKvZSmi9YJZPXU2dhhFM+t+v7Fyzj3G/P0Gjdg3IzlAx6whB8+5NKMwpomXPZmWOGVa/Fgl9WpC+L4P0vRmlhV4qKtMopSTvaD4+gd488fX9rPtnEzaLjU8enqjcSE9cw5HkLILrBHPzC9fhsDlI2ZFKRIMw0vYexm6x4R/iR/cbOrFx4Tbyj+aT0CeeBi2j+GLDeKSkVASuIqSUNGwdg8FkICDMj/pN6xLZWGWudrg6gVFv3VKl8JiHt4kbnq44Z8HpdDLry/ns3ZjEVXf3onGHOIryi/nplT/IP1bA5NemctXdvatMXBs4qg+5mXl0GtKWsPrnp7aBmwuL2+C7qZJvnpvM7K8W0KxrY96cM7ZaAlzni9Hv3s7a2ZuITYiiUftY/EN8GXB3L4Y+PJBt/+7if1e/AcDu9fvpOLgtL017ht1r99JhUBsiG9XGbncw8/O5vHfPZ4wYM7R0ljv04atYPXMDXr4erJm1Eb1RT0jdsjH0x9KzWTxlJVPG/0W36zvQoFUUXYa1Z+5E9eQQGO5PXOsY/EN8iWsdzaGd6Sz7YxWg6gwPGt2PPi6NorD6tXhzzlicDmdpzWKfCmQUjpOZcpRPHp5IblY+D398N9/t/hC9UU/AKboz56IymZx4iI8e/AZQ4aKNO8Sxb+MBmnZuyOZF2+k+vONps5Q7DW5Lp9MoorqpWbgNvpsqObhNaeErOQBLtQ1+zpFcVvy1jogGYSScZeRGg5ZR5Gbmk5lylCEPDSjVmtEb9EiHg3YDE7CWWKkTp54MEnrHlzlXXlYBXz39E06nk1/f+qvU4DvsTpb9vhIvPyUzXCsyiPpNIzEXmclMycLkbeJ/17xJ0rYUOg1py8wv59O0U0OStibz3rJXad2vOVHxkUQ2qsMP+z9hweRlHNqVhkarwelwkpl8FL9gH3z8T4QwajSaahvoxJV7WDVDRadtmL+FG8dce1bjVxUBYf7EtYlmz/oDpTH1Hj4ebFu2g7qNahPdvGLpZTeXN26D76ZKRo2/hX//Wkurns3wC66e3jkoCdxf3pyG3qDjsw3jqd/0zIvZ7Nmwn7FXv4HT4STnSC43jz1RML0or4S1szei0Wroc2u3Cvf3DfLmmtF9mfnF/DIum61LEksTqPrc2o12V7XCbrPz0QNfM//HZdz5+k0kuW50VouNq0f1Zv6Py9HpNHj4GNHqtKycvo6p782kz63dSejVnLWzN3PVPb1x2Oz8++da2g5odcbXe5y41tHEtYkh50gu8V2bnLa91Wxl44JtBIT6lRaROR3+IX68NuM5stKzS3X141rH8MY//yMvM5+EvpenCqmbqnEbfDdV0qxLY5qdRaKSOC7oJQTiLF0PQojSiB0hyh6j07VtefTzUTgdzgrDDUEJiN3//h2MHHsdgSfpzTTv3oQGCVHEtKzPod3ppOxKwz/Eh6W/rwZg6e8refzL+9i3OYn+d/YkMCyAmJZRRMXXY+fqvSz6+V/WzNqofPxZ+bz05zO8On0MoATPug3vVGV4ZUUU5BTisDvwD/Gjdmw47y55GafdUa5qWEXM+XYRnzz8LXqjno9Wvl7t0NiAUP9ylbMat4s9o367ubxwG3w3F4RhjwwkPKoWETFh1Gt85rV2AWITonlzzlgyU7LodIoypoeniX539GTbsh1kpmRVmBAEyuifqszYoFUUz3z/EPe3egaH3UFRXjGPfX4vj30xitUzN9BrZFc6Dy2bnHX1vX0BSN+fgd6gJ7JJbZITU4k9KQIIOKuM0qTEFF4aMoHCvGJemvYM8V0andFaSUF2AQA2i43i/OIzPr+bKwe3wXdzQfAL9mXAnb3O+ThVZW7O+nI+nz32HT4BXny48nXqNqy4OHZF+Ph7ERDqR1ZadmnxkL639aDvbT3IzcrHarFVGB8fVDuA5X+uJrJxHW56/lqGPzW4zHZLiRWDSV/6ZFId9m86SPoBFSe/a80e4rs0Os0eZbnqnj7oTQaCwgNo5tascVMF51RMUgjxthBilxBiqxBimhDCv5J2A4QQu4UQ+4QQz57LOd24Oc6xdFUApSCniILsojPaN7h2EG/N/R+v/PVMGaO96Jd/GVl3NG/d8hGFeeWP2aBFFD1u7ExJQTHxXRqXuSmsmrGe2xs8xDt3fXZGM+0WPZvS+5audBzchnZXJZx+h1MICg9gxNND6HNLN3d9WDdVck5aOkKIfsAiKaVdCDEeQEo55pQ2WmAP0BdIBdYBN0kpd5zu+G4tHTdVcfhABvN+WEpY/VD63nZ+jN2EOz5h/g9LAfh844QKXTSqYIgdg6ls2OK7oz7nn28XAfDJ2rdo2Cam3L5u3FxoLpiWjpRy3klvVwPXV9CsHbDPVfkKIcSvwBDgtAbfjZuqCI8O4/aXKtZ4OVt6jOjEvo1JtOnfooxMwcloNJpyxh5UXPq62Zto3a8FdV2hoge2pbB29gaadGhI8+6nj7hx4+ZCcj59+HcBUyr4vDZw6KT3qUClmrtCiHuBewEiI888lM+Nm3Oh3VUJZ+VWAeg4qA0JfZqX8eFPfG4ya2ZvxCfQm+92fXhGoa1u3JxvTmvwhRALgLAKNo2VUk53tRkL2IHJFR2igs8q9SNJKb8CvgLl0jld/9y4qUmcmp3qHahqAfgF+6DVV68QiRs3F4rTGnwpZZV1yYQQtwPXAL1lxQsCqcDJMXN1gPQz6aQbN5cro966hfYDWxPTst5ZFYJx4+Z8ck4uHSHEAGAM0F1KWVlYwjogVggRBaQBNwIjz+W8btxcLgRFBNLzxs6Xuhtu3ADnGJYJfAL4APOFEJuFEF8ACCEihBCzAaSUduAhYC6wE/hNSpl4jud148aNGzdnyLlG6VQo3CGlTAcGnvR+NjD7XM7lxo0bN27ODXeWhhs3btxcIbgNvhs3btxcIbgNvhs3btxcIbgNvhs3btxcIbgNvhs3btxcIZyTeNqFRghxFEg+g12CgawL1J1zoab2C2pu32pqv6Dm9q2m9gtqbt9qar/g7PtWT0oZUtGGGm3wzxQhxPrKVOIuJTW1X1Bz+1ZT+wU1t281tV9Qc/tWU/sFF6ZvbpeOGzdu3FwhuA2+Gzdu3Fwh/NcM/leXugOVUFP7BTW3bzW1X1Bz+1ZT+wU1t281tV9wAfr2n/Lhu3Hjxo2byvmvzfDduHHjxk0luA2+Gzdu3FwhXLYGXwjxthBilxBiqxBimhDCv5J2A4QQu4UQ+4QQz16kvg0XQiQKIZxCiErDqoQQB4UQ21zS0helWvsZ9O2ijpsQIlAIMV8Isdf1O6CSdhdlzE53/ULxkWv7ViHE2dVFvDB96yGEyHON0WYhxLiL1K+JQohMIcT2SrZfkjGrRr8u1XjVFUIsFkLsdH0nH62gzfkdMynlZfkD9AN0rtfjgfEVtNEC+4FowABsAZpchL41BhoCS4A2VbQ7CARf5HE7bd8uxbgBE4BnXa+frejvebHGrDrXj5L/noMq4dkBWHOR/n7V6VsPYObF/L9ynbcbkABsr2T7pRqz0/XrUo1XOJDgeu0D7LnQ/2eX7QxfSjlPquIqAKtRpRNPpR2wT0p5QEppBX4FhlyEvu2UUu6+0Oc5G6rZt0sxbkOA712vvweGXuDzVUV1rn8I8INUrAb8hRDhNaRvlwQp5TIgu4oml2TMqtGvS4KU8rCUcqPrdQGqQFTtU5qd1zG7bA3+KdyFugueSm3g0EnvUyk/oJcSCcwTQmwQQtx7qTtzEpdi3EKllIdBfRGAWpW0uxhjVp3rv1T/W9U9b0chxBYhxBwhRNOL0K/qUJO/j5d0vIQQ9YFWwJpTNp3XMTunilcXGiHEAiCsgk1jpZTTXW3GAnZgckWHqOCz8xKHWp2+VYPOUsp0IUQtVJnIXa7ZyKXu2wUZt6r6dQaHuSBjdgrVuf4L9r91Gqpz3o0oPZVCIcRA4C8g9kJ3rBpcqjE7HZd0vIQQ3sBU4DEpZf6pmyvY5azHrEYbfClln6q2CyFuB64BekuXw+sUUoG6J72vA6RfjL5V8xjprt+ZQohpqMf1czZe56FvF2TcquqXEOKIECJcSnnY9ciaWckxLsiYnUJ1rv+C/W+dhtOe92SjIaWcLYT4TAgRLKW81CJhl2rMquRSjpcQQo8y9pOllH9W0OS8jtll69IRQgwAxgCDpZTFlTRbB8QKIaKEEAbgRuDvi9XHqhBCeAkhfI6/Ri1CVxhFcAm4FOP2N3C76/XtQLknkYs4ZtW5/r+B21xRFB2AvOMuqQvMafsmhAgTQgjX63ao7/mxi9C303GpxqxKLtV4uc75LbBTSvleJc3O75hd7JXp8/UD7EP5tja7fr5wfR4BzD6p3UDU6vd+lEvjYvTtWtSd2QIcAeae2jdUlMUW109iTerbpRg3IAhYCOx1/Q68lGNW0fUDo4HRrtcC+NS1fRtVRGNdgr495BqfLaiAhk4XqV+/AIcBm+t/7O6aMGbV6NelGq8uKPfM1pPs2MALOWZuaQU3bty4uUK4bF06bty4cePmzHAbfDdu3Li5QnAbfDdu3Li5QnAbfDdu3Li5QnAbfDdu3Li5QnAbfDdu3Li5QnAbfDdu3Li5Qvg/h3nSz1jkFF8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from itertools import cycle, islice\n", + "\n", + "# Plot the input data.\n", + "fig, ax = plt.subplots()\n", + "\n", + "sns.scatterplot(X[:, 0], X[:, 1], s=10, c=y, ax=ax)\n", + "ax.set(title='Input Data');" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "id": "9bc2d854", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAGDCAYAAACbcTyoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA4KklEQVR4nO3deZSc9X3n+8+31t731tLaJcQiwIBohLCBeIkNxk4gmUmGnJtAiO9l4uOZcSbxndg5Z262ySQzkzhzcnPtxLGNxSQxIV7GxMHYxAYDRiAa2UZIAmtHolvqXb1XdVV/7x/1tNRqtVot6Kqnuur9OqdOVf3qeaq/D4jWh9/2mLsLAAAAxScSdgEAAACYG0ENAACgSBHUAAAAihRBDQAAoEgR1AAAAIoUQQ0AAKBIEdQAlAUz+ysz+89h1wEAl4KgBiAUZnbUzH46T9/9q2b23Mw2d/91d//Dt/h959RqZvea2YCZ/dQcx7qZnTKz2Iy2mJl1mxkbVwK4JAQ1ACVlZkDK0/ffL+n/k/Qhd//+BQ4blPTBGe/vkjSQz7oAlCaCGoDQTfeAmdmfBj1VR8zsgzM+rzezL5hZl5m9aWb/xcyiM879gZn9uZn1S/oHSX8l6RYzGzGzweC4L5nZfwleN5rZN82sJ/h53zSz1Quo80FJfybpDnd/fp5D/5ek+2a8v0/Sw7O+a75r2mRm3zOzPjPrNbO/M7OGGeceNbNPmNkrZnbazP7BzCqCz1qC6xk0s34ze9bM+F0PLFH8xwugWNws6XVJLZL+u6QvmJkFn+2QlJF0maQbJH1A0v8569zDkpZJ+mVJvy5pp7vXuHvDHD8rIukhSeskrZU0LukvL1LfRyX9oaT3uXvHRY7935JuN7OGIGDdJukbs46Z75pM0h9LapN0laQ1kn5v1vm/KOlOSRskvUPSrwbtvyXphKRWScsl/Y4khlyBJSqvQwQAcAmOufvfSJKZ7ZD0GUnLg3ldH5TU4O7jkkbN7M8lPSjpr4NzO939/w1eZ87mu7m5e5+kr06/N7M/kvTURep7f3DMngVcy4Skf5L0b5QLXY8FbdM/b/l81+TuByUdDA7vMbNPS/rdWT/jL9y9M/i+f5J0fdA+KWmlpHXB9zy7gHoBFCl61AAUi5PTL9x9LHhZo1yvV1xSVzCcN6hcQFs249zjl/KDzKzKzP7azI6Z2ZCkZyQ1TA89XsCvS7pc0uene/rMbG8wvDpiZrfNOv5h5YY8zxv2vNg1mdkyM3skGBIdkvS3yvU0znRyxusx5f5ZSdL/UC7kfcfMDpvZJy/yjwNAESOoASh2xyWlJLW4e0PwqHP3q2ccM3to72JDfb8l6QpJN7t7naTbg/b5uuK6Jb1PuWHMz0iSu18dDK/WuPvsnqtnlevZWi7puVmfXeya/ji4hncE9f3yRWo7w92H3f233H2jpJ+R9Jtm9r6FnAug+BDUABQ1d++S9B1Jf2ZmdWYWCSbbn7c1xgynJK02s8QFPq9Vbl7aoJk16fxhxQvV0inpvZLuDIYq5zvWlQtKPxu8vpRrqpU0EtS3StL/vZD6JMnMPmxmlwW9fkOSssEDwBJEUAOwFNwnKSFpn3LbXHxFud6qC/mepL2STppZ7xyf/09JlZJ6Jb0g6YmFFuLux5ULa//azP74Isfudfe9F/h4vmv6fUlbJZ2W9M+SvrbQ+iRtlvQvygW9nZI+4+5PX8L5AIqIzfofPQAAABQJetQAAACKFEENAACgSBHUAAAAihRBDQAAoEgR1AAAAIpUyd5CqqWlxdevXx92GQAAABf18ssv97p76+z2kg1q69evV0fHxe6bDAAAED4zOzZXO0OfAAAARYqgBgAAUKQIagAAAEWKoAYAAFCkCGoAAABFiqAGAABQpAhqAAAARYqgBgAAUKRKdsPbfElnsuodSevZAz3a1zmsLW21um1zq1pqEkrEomGXBwAASkjegpqZVUh6RlIy+DlfcfffNbMmSf8gab2ko5J+0d0HgnM+JekjkrKS/oO7fztov1HSlyRVSnpc0sfd3fNV+4WkM1ntPjao+x/apVRm6kx7MhbRjge2aeu6BsIaAABYNPkc+kxJeq+7Xyfpekl3mtl2SZ+U9F133yzpu8F7mdkWSfdKulrSnZI+Y2bTqeezkh6UtDl43JnHui+odyR9XkiTpFRmSvc/tEu9I+kwygIAACUqb0HNc0aCt/Hg4ZLulrQjaN8h6Z7g9d2SHnH3lLsfkXRQ0jYzWympzt13Br1oD884p6CePdBzXkiblspM6bmDvQWuCAAAlLK8LiYws6iZ/UhSt6Qn3f1FScvdvUuSgudlweGrJB2fcfqJoG1V8Hp2+1w/70Ez6zCzjp6enkW9Fkna1zk87+f7O4cW/WcCAIDyldeg5u5Zd79e0mrleseumedwm+sr5mmf6+d9zt3b3b29tbX1kuu9mC1ttfN+flVb3aL/TAAAUL4Ksj2Huw9Kelq5uWWnguFMBc/dwWEnJK2ZcdpqSZ1B++o52gvuts2tSsbm/keWjEV062UtBa4IAACUsrwFNTNrNbOG4HWlpJ+W9JqkxyTdHxx2v6RvBK8fk3SvmSXNbINyiwZ2BcOjw2a23cxM0n0zzimolpqEdjyw7bywFo+advzaNrXUJMIoCwAAlKh87qO2UtKOYOVmRNKj7v5NM9sp6VEz+4ikNyT9giS5+14ze1TSPkkZSR9z92zwXR/V2e05vhU8Ci4Ri2rrugY99Yl367mDvdrfOaTxyawaqxO6pq2OrTkAAMCishC2IyuI9vZ27+joyPvPOTU0ob9/8Q3dsqlZ2zc25/3nAQCA0mNmL7t7++x2biH1Ni2vq9CmZTXa/caAJiazFz8BAABggQhqi+CWjc1KTU5p97GBsEsBAAAlhKC2CFprk7p8ea1+eHxQ42l61QAAwOIgqC2S7RubNJmdUsex/rBLAQAAJYKgtkiaa5K6ckWtfnx8UKOpTNjlAACAEkBQW0TbNzYrOyXtOkqvGgAAePsIaouooSqhLW112nPitIYmJsMuBwAALHEEtUW2bUOTJOmlI/SqAQCAt4egtsjqK+O6ZlWdXn1zSKfH6FUDAABvHUEtD25a36SISS8e6Qu7FAAAsIQR1PKgtiKua1fXa3/XsAZG02GXAwAAliiCWp7ctL5J0Yj0wmF61QAAwFtDUMuT6mRM161p0OunhtU7kgq7HAAAsAQR1PKofV2T4tEIvWoAAOAtIajlUWUiqhvWNujAqRF1D0+EXQ4AAFhiCGp5tnVto5LxiHYeolcNAABcGoJanlXEo7pxbaMO94zq5Gl61QAAwMIR1Arg+rUNqkxEtfNwb9ilAACAJYSgVgDJWFTt6xp1tHdMbw6Oh10OAABYIghqBXLdmgZVJ6N6/iC9agAAYGEIagUSj0Z00/omnRgY1/H+sbDLAQAASwBBrYCuXVWv2oqYnj/UK3cPuxwAAFDkCGoFFItGtG1DkzoHJ3S0j141AAAwP4JagV3dVq+6yrh2HuqjVw0AAMyLoFZg0Yjp5g1NOjU0oUM9o2GXAwAAihhBLQRbVtapsSqunYfpVQMAABdGUAtBJGK6eWOzeodTOtA9EnY5AACgSBHUQnLF8lo11yS081CfpqboVQMAAOcjqIUkEjHdsrFZ/aNpvXZyOOxyAABAESKoheiyZTVqrU3qxSN9ytKrBgAAZiGohcjMdMumZg2OTWp/11DY5QAAgCJDUAvZxpZqraiv0AuH+5TJToVdDgAAKCIEtZCZ5eaqDU9ktLeTXjUAAHAWQa0IrGuu0qqGSu060q9JetUAAECAoFYEpueqjaQy2vPm6bDLAQAARYKgViTWNFVpTVOVXjrSr3SGXjUAAEBQKyrv3NSssXRWPz4xGHYpAACgCBDUikhbQ6U2tFSr4+iAUpls2OUAAICQEdSKzC2bmjUxmdUP3xgMuxQAABAyglqRWV5XoU3LarT7jQFNTNKrBgBAOSOoFaFbNjYrNTml3ccGwi4FAACEiKBWhFprk7p8ea1+eHxQY+lM2OUAAICQENSK1PaNTZrMTqnjKL1qAACUK4JakWquSerKFbV65cSgRlP0qgEAUI4IakVs+8ZmZaekXUf7wy4FAACEgKBWxBqqEtrSVqc9J05raGIy7HIAAECBEdSK3LYNTZKkl47QqwYAQLkhqBW5+sq4rllVp1ffHNLpMXrVAAAoJ3kLama2xsyeMrP9ZrbXzD4etP+emb1pZj8KHnfNOOdTZnbQzF43sztmtN9oZnuCz/7CzCxfdRejm9Y3KWLSi0f6wi4FAAAUUD571DKSfsvdr5K0XdLHzGxL8Nmfu/v1weNxSQo+u1fS1ZLulPQZM4sGx39W0oOSNgePO/NYd9GprYjr2tX12tc1pIHRdNjlAACAAslbUHP3LnffHbwelrRf0qp5Trlb0iPunnL3I5IOStpmZisl1bn7Tnd3SQ9LuidfdRerm9Y3KRYxvXCYXjUAAMpFQeaomdl6STdIejFo+ndm9oqZfdHMGoO2VZKOzzjtRNC2Kng9u32un/OgmXWYWUdPT89iXkLoqpMxXb+mUa+fGlbvSCrscgAAQAHkPaiZWY2kr0r6DXcfUm4Yc5Ok6yV1Sfqz6UPnON3naT+/0f1z7t7u7u2tra1vt/Sic+O6RsWjEXrVAAAoE3kNamYWVy6k/Z27f02S3P2Uu2fdfUrS30jaFhx+QtKaGaevltQZtK+eo73sVCaiumFtgw6cGlH38ETY5QAAgDzL56pPk/QFSfvd/dMz2lfOOOznJL0avH5M0r1mljSzDcotGtjl7l2Shs1se/Cd90n6Rr7qLnZb1zYqGY9o5yF61QAAKHWxPH73uyT9iqQ9ZvajoO13JP2SmV2v3PDlUUn/VpLcfa+ZPSppn3IrRj/m7tngvI9K+pKkSknfCh5lqSIe1Y1rG/X8oT6dPD2hFfUVYZcEAADyxHILKUtPe3u7d3R0hF1GXqQyWT30g6NaVpvUz29dffETAABAUTOzl929fXY7dyZYgpKxqNrXNepY35jeHBwPuxwAAJAnBLUl6ro1DapORvX8wd6wSwEAAHlCUFui4tGIblrfpBMD4zrePxZ2OQAAIA8IakvYtavqVVsR0/OHelWqcw0BAChnBLUlLBaNaNuGJnUOTuhoH71qAACUGoLaEnd1W73qKuPaeaiPXjUAAEoMQW2Ji0ZMN29o0qmhCR3qGQ27HAAAsIgIaiVgy8o6NVbFtfMwvWoAAJQSgloJiERM2zc1q3c4pQPdI2GXAwAAFglBrURcvqxWzTUJ7TzUp6kpetUAACgFBLUSEYmYbtnYrP7RtF47ORx2OQAAYBEQ1ErIZctq1Fqb1ItH+pSlVw0AgCWPoFZCzEy3bGrW4Nik9ncNhV0OAAB4mwhqJWZjS7VW1FfohcN9ymSnwi4HAAC8DQS1EmOWm6s2PJHR3k561QAAWMoIaiVoXXOVVjVUateRfk3SqwYAwJJFUCtB03PVRlIZvXLidNjlAACAt4igVqLWNFVpTVOVOo72K52hVw0AgKWIoFbC3rmpWWPprH58YjDsUgAAwFtAUCthbQ2V2tBSrY6jA0plsmGXAwAALhFBrcTdsqlZE5NZ/fCNwbBLAQAAl4igVuKW11Vo07Ia7X5jQBOT9KoBALCUENTKwC0bm5WanNLuYwNhlwIAAC4BQa0MtNYmdfnyWv3w+KDG0pmwywEAAAtEUCsT2zc2aTI7pY6j9KoBALBUENTKRHNNUleuqNMrJwY1mqJXDQCApYCgVka2b2xSdkradbQ/7FIAAMACENTKSENVQlva6rTnxGkNTUyGXQ4AALgIglqZ2bahSZL00hF61QAAKHYEtTJTXxnXNavq9OqbQzo9Rq8aAADFjKBWhm5a36SISS8c6Qu7FAAAMA+CWhmqrYjr2tX12t81pIHRdNjlAACACyColamb1jcpFjG9cJheNQAAihVBrUxVJ2O6fk2jXj81rN6RVNjlAACAORDUytiN6xoVj0boVQMAoEgR1MpYZSKqG9Y26MCpEXUPT4RdDgAAmIWgVua2rm1UMh7RzkP0qgEAUGwIamWuIh7VjWsbdbhnVF2nx8MuBwAAzEBQg65f26DKRJReNQAAigxBDUrGorppfaOO9Y3pzUF61QAAKBYENUiS3rG6QdXJqJ4/2Ct3D7scAAAgghoC8WhEN61v0omBcR3vp1cNAIBiQFDDGdeuqldtRUw7D9OrBgBAMSCo4YxYNKJtG5rUOTiho31jYZcDAEDZI6jhHFe31auuMq6dh/roVQMAIGQENZwjGjHdvKFJp4YmdKhnNOxyAAAoawQ1nGfLyjo1VsW18zC9agAAhClvQc3M1pjZU2a238z2mtnHg/YmM3vSzA4Ez40zzvmUmR00s9fN7I4Z7Tea2Z7gs78wM8tX3ZAiEdP2Tc3qHU7pQPdI2OUAAFC28tmjlpH0W+5+laTtkj5mZlskfVLSd919s6TvBu8VfHavpKsl3SnpM2YWDb7rs5IelLQ5eNyZx7oh6fJltWquSWjnoT5NTdGrBgBAGPIW1Ny9y913B6+HJe2XtErS3ZJ2BIftkHRP8PpuSY+4e8rdj0g6KGmbma2UVOfuOz03DvfwjHOQJ5GI6ZaNzeofTeu1k8NhlwMAQFkqyBw1M1sv6QZJL0pa7u5dUi7MSVoWHLZK0vEZp50I2lYFr2e3I88uW1aj1tqkXjzSpyy9agAAFFzeg5qZ1Uj6qqTfcPeh+Q6do83naZ/rZz1oZh1m1tHT03PpxeIcZqZbNjVrcGxS+7vm+1cHAADyIa9BzcziyoW0v3P3rwXNp4LhTAXP3UH7CUlrZpy+WlJn0L56jvbzuPvn3L3d3dtbW1sX70LK2MaWaq2or9ALh/uUyU6FXQ4AAGUln6s+TdIXJO1390/P+OgxSfcHr++X9I0Z7feaWdLMNii3aGBXMDw6bGbbg++8b8Y5yDMz0zs3NWt4IqO9nfSqAQBQSPnsUXuXpF+R9F4z+1HwuEvSn0h6v5kdkPT+4L3cfa+kRyXtk/SEpI+5ezb4ro9K+rxyCwwOSfpWHuvGLGubqrSqoVK7jvRrkl41AAAKxkp1Q9P29nbv6OgIu4yScbx/TF95+YRuv7xVN65rvPgJAABgwczsZXdvn93OnQmwIGuaqrSmqUodR/uVztCrBgBAIcTCLgBLx03rGrRj5zF9+snXNZ6e0pa2Wt22uVUtNQklYtGLfwEAALgkBDUsSDqTVdfplB7eeUyZGXuqJWMR7Xhgm7auayCsAQCwyBj6xIL0jqR1/0O7zglpkpTKTOn+h3apdyQdUmUAAJQughoW5NkDPUpdYG5aKjOl5w72FrgiAABKH0ENC7Kvc/77fe5njzUAABYdQQ0LsqWtdt7Pr2qrK1AlAACUD4IaFuS2za1Kxub+45KImm69rKXAFQEAUPoIaliQlpqEdjyw7bywFo2YfunmtaqrYAExAACLjb9dsSCJWFRb1zXoqU+8W88d7NX+ziFd1Vany1pr9PTr3XrmQK8+eM0K5W7HCgAAFgNBDQuWiEXV1lCpX2xfc057Zsr1g4O9WtNYpWtX14dUHQAApYehT7xtN61v1LrmKj39erd6R1JhlwMAQMkgqOFtMzPdcfUKJeMRPb6ni3uBAgCwSAhqWBTVyZjuvHql+kfTevr17rDLAQCgJBDUsGjWNldp2/om7e0c0msn2QAXAIC3i6CGRbV9Y7NWNVTqu/u7NTDK/T8BAHg7FhzUzOxDZvafzOz/mX7kszAsTZGI6c5rVyhipsdf7VImy3w1AADeqgUFNTP7K0n/RtK/l2SSfkHSujzWhSWsriKuD1y9XN1DKT3LzdoBAHjLFtqj9k53v0/SgLv/vqRbJK25yDkoY5taa3TD2gb96I1BHeweCbscAACWpIUGtfHgeczM2iRNStqQn5JQKm69rEXL6yr0nX0ndXp8MuxyAABYchYa1L5pZg2S/oek3ZKOSnokTzWhRMSiEd117Qq5S0+82qXslIddEgAAS8qCgpq7/6G7D7r7V5Wbm3alu//n/JaGUtBQldBPX7VcnYMT2nmoL+xyAABYUua916eZvdfdv2dmPz/HZ3L3r+WvNJSKK1bU6nj/mF462q/VjZVa31IddkkAACwJF7sp+09J+p6kn5njM5dEUMOC/NQVreo6Pa5v7z2p/2P7OtUkL/ZHDwAAzPu3pbv/bvDyD9z9yMzPzIzFBFiweDSiu65dqS/vekNPvHpSP3/DKkUiFnZZAAAUtYUuJvjqHG1fWcxCUPqaa5J69xXLdLx/TLuO9oddDgAARe9ic9SulHS1pPpZ89TqJFXkszCUpqvb6nRiYEwvHO7T6sZKrW6sCrskAACK1sV61K6Q9GFJDcrNU5t+bJX0f+W1MpQkM9N7rlymhsq4nnj1pMbT2bBLAgCgaF1sjto3zOybkn7b3f9rgWpCiUvGorrr2pV65KXj+s6+k/rZ69pkxnw1AABmu+gcNXfPSnp/AWpBGVlWV6HbNrfocM+odr8xGHY5AAAUpYXukfC8mf2lpH+QNDrd6O6781IVysL1axp0fGBcPzjYq1UNlVpRz7RHAABmWvBN2ZVbVPAHkv4sePxpvopCeTAzfWDLclUlonp8T5cmJpmvBgDATAvqUXP39+S7EJSninhuvto/dpzQd/d3665rVzBfDQCAwIJ61MxsuZl9wcy+FbzfYmYfyW9pKBdtDZV652XN+smpYe1583TY5QAAUDQWOvT5JUnfltQWvP+JpN/IQz0oU+3rGrW+pUrff71HPcOpsMsBAKAoLDSotbj7o5KmJMndM5KYUIRFY2a64+oVSsYjenxPl9KZqbBLAgAgdAsNaqNm1qzcjdhlZtslMUaFRVWViOmD16zUwFhaT73eHXY5AACEbqHbc/ympMckbTKzH0hqlfSv81YVytaapipt29CkFw/3a01jlba01YVdEgAAoVnoqs/dZvZTyt1SyiS97u6Tea0MZWv7hmadGBjXU693a0V9hZqqE2GXBABAKBY69ClJ2yRdp9x9Pn/JzO7LT0kod5GI6YPXrFA0Ynp8T5cyWearAQDK00K35/hfym1we6ukm4JHex7rQpmrrYjrA1uWq2c4pWcP9IZdDgAAoVjoHLV2SVvc3fNZDDDTxtYabV3XqN3HBrS6sVKbl9eGXRIAAAW10KHPVyWtyGchwFxuvaxFK+or9OT+Uzo9zrRIAEB5WfA+apL2mdm3zeyx6Uc+CwMkKRox3XXNSrlL39rTpewUnboAgPKx0KHP38tnEcB86qviev+W5frnV7r0/KFe3ba5NeySAAAoiIVuz/H9fBcCzOfy5bU6vnpMHUcHtLqxShtaqsMuCQCAvJt36NPMngueh81saMZj2MyGClMikHP75a1qqU3q23tPaiSVCbscAADybt6g5u63Bs+17l4341Hr7mwZj4KKRyP60LUrlclO6Vt7ujTFfDUAQIm7lA1vL4mZfdHMus3s1Rltv2dmb5rZj4LHXTM++5SZHTSz183sjhntN5rZnuCzvzAzy1fNKH5N1Qm958plOjEwrheP9IddDgAAeZW3oCbpS5LunKP9z939+uDxuCSZ2RZJ90q6OjjnM2YWDY7/rKQHJW0OHnN9J8rI1W31umplnV480qfj/WNhlwMAQN7kLai5+zOSFtrlcbekR9w95e5HJB2UtM3MVkqqc/edwWa7D0u6Jy8FY0l575XL1FAZ1xOvntRYmvlqAIDSlM8etQv5d2b2SjA02hi0rZJ0fMYxJ4K2VcHr2e1zMrMHzazDzDp6enoWu24UkUQsorvesVITk1l9Z+8pcdMMAEApKnRQ+6ykTZKul9Ql6c+C9rnmnfk87XNy98+5e7u7t7e2stdWqVtWW6HbL2/Vkd5R7X5jIOxyAABYdAUNau5+yt2z7j4l6W8kbQs+OiFpzYxDV0vqDNpXz9EOSJLesbpem5fX6LkDfeo6PR52OQAALKqCBrVgztm0n1PuHqKS9Jike80saWYblFs0sMvduyQNm9n2YLXnfZK+UciaUdzMTD991XLVVMT0+J6TmpjMhl0SAACLJp/bc3xZ0k5JV5jZCTP7iKT/Hmy18Yqk90j6j5Lk7nslPSppn6QnJH3M3af/xv2opM8rt8DgkKRv5atmLE0V8ajuunaFRiYy+pf9zFcDAJQOK9W/1Nrb272joyPsMlBAHUf79eyBXr33ymW6bk1D2OUAALBgZvayu7fPbg9j1SeQFzeua9SGlmo985MedQ9PhF0OAABvG0ENJcPM9IGrl6siHtXjr3QpnZkKuyQAAN4WghpKSlUipjuvWaHB8Ul977XusMsBAOBtIaih5KxpqtLNG5q1v2tIeztPh10OAABvGUENJenmDU1a3Vipp17rVv9oOuxyAAB4SwhqKEmRiOmD165ULBrRP+/p0mSW+WoAgKWHoIaSVZOM6Y6rV6h3OKVnfsK9XwEASw9BDSVtQ0u12tc36pUTp/WTU8NhlwMAwCUhqKHkvXNTi1bWV+jJfad0emwy7HIAAFgwghpKXjSYr2YmPf5ql7JTpXk3DgBA6SGooSzUV8b1/quW6+TpCf3gYG/Y5QAAsCAENZSNzctrdd2aer18bECHe0bCLgcAgIsiqKGs3L65Va21SX1n3ykNTzBfDQBQ3AhqKCuxaER3XbtS2SnXt149qSnmqwEAihhBDWWnqTqh91yxTG8OjOuFI31hlwMAwAUR1FCWtrTVaUtbnXYd6dfx/rGwywEAYE4ENZSt91yxTI1VCX3r1S6NpTNhlwMAwHkIaihbiVhuvlpqckrf3ntS7sxXAwAUF4IaylprbVI/dUWrjvaO6eVjA2GXAwDAOQhqKHvXrqrX5ctr9YODfeocHA+7HAAAziCooeyZmd531TLVVsT0+J4uTUxmwy4JAABJBDVAklQRj+qua1dqNJXVk/tOMV8NAFAUCGpAYEV9hW7d3KKD3SP68YnTYZcDAABBDZhp69oGbWyt1jM/6VH30ETY5QAAyhxBDZjBzPSBLStUlYjq8T1dSmWYrwYACA9BDZilMhHVndes0OD4pJ56rZv5agCA0BDUgDmsbqzS9o3N2t81rL2dQ2GXAwAoUwQ14AK2rW/SmqYqPf16t/pGUmGXAwAoQwQ14AIiEdOd16xQPBrR43u6NJmdCrskAECZIagB86hJxnTH1SvUO5LW91/vCbscAECZiYVdAFDs1rdU66b1TXrhcK+S8Yg6B8e1r3NYW9pqddvmVrXUJJSIRcMuEwBQgghqwALcuK5Bz/ykR7/60EvKTp1dBZqMRbTjgW3auq6BsAYAWHQMfQILMDA2qS89f+SckCZJqcyU7n9ol3pH0iFVBgAoZQQ1YAGePdCjdHbu/dRSmSk9d7C3wBUBAMoBQQ1YgH2dw/N+vp+91gAAeUBQAxZgS1vtvJ8vq0sWqBIAQDkhqAELcNvmViVjc//nEo2YeoZT+udXujQ8MVngygAApYygBixAS01COx7Ydl5YS8YievjXtum9Vy7T4Z4RPbzzmDqO9p+36AAAgLfCSvWG0+3t7d7R0RF2GSgh6UxWvSNpPXewV/s7h3RVW51uvazlzD5qp8cm9fRPunW4Z1RN1Qm954plWttcFXbZAIAlwMxedvf289oJasDiOtwzoqdf79Hp8UldvrxWt1/eotqKeNhlAQCK2IWCGhveAotsY2uN1jZVqePYgF460q+jfaO6eUOTbljbqGjEwi4PALCEENSAPIhFI9q+sVlXrajT0z/p1rMHerW3c4jhUADAJWExAZBH9VVx3X39Kt19fZuyU66v7j7B6lAAwILRowYUAMOhAIC3gqAGFAjDoQCAS8XQJ1BgDIcCABaKHjUgJAyHAgAuJm89amb2RTPrNrNXZ7Q1mdmTZnYgeG6c8dmnzOygmb1uZnfMaL/RzPYEn/2FmfE3GErG9HDofbes1+rGSj17oFd/+8IxvdE3FnZpAIAikM+hzy9JunNW2yclfdfdN0v6bvBeZrZF0r2Srg7O+YyZRYNzPivpQUmbg8fs7wSWPIZDAQBzyVtQc/dnJPXPar5b0o7g9Q5J98xof8TdU+5+RNJBSdvMbKWkOnff6blbKDw84xyg5GxsrdF9t6zTLZuauXcoAKDgc9SWu3uXJLl7l5ktC9pXSXphxnEngrbJ4PXsdqBkzVwd+v0DPawOBYAyViyrPuead+bztM/9JWYPmlmHmXX09PQsWnFAGOqr4vrZ69p0zw2rNOUMhwJAOSp0UDsVDGcqeO4O2k9IWjPjuNWSOoP21XO0z8ndP+fu7e7e3trauqiFA2HZ0FKtX9l+7nDoSwyHAkBZKHRQe0zS/cHr+yV9Y0b7vWaWNLMNyi0a2BUMkw6b2fZgted9M84BysbM1aFrmqr0HKtDAaAs5HN7ji9L2inpCjM7YWYfkfQnkt5vZgckvT94L3ffK+lRSfskPSHpY+6eDb7qo5I+r9wCg0OSvpWvmoFid6Hh0CGGQwGgJFluMWXpaW9v946OjrDLAPImk53Sy8cGtOtIv8ykmzc2ayub5QLAkmRmL7t7++x27kwALFGxaEQ3b2zWlSvr9P2f9Oi5A73ax+pQACgpxbLqE8BbVF/JcCgAlCp61IASsaGlWmsa150ZDj3SO8JwKAAscQQ1oIRcaDj03Ve0al1zddjlAQAuEUOfQAmaPRz6td1v6puvdDIcCgBLDD1qQAmbORz60tF+He0dZTgUAJYQghpQ4hgOBYCli6FPoEwwHAoASw89akCZYTgUAJYOghpQhuYaDt375mm958plDIcCQBFh6BMoYzOHQ11iOBQAigw9agAYDgWAIkVQAyDp3OHQZ2YNh66sr1DvSFrPHujRvs5hbWmr1W2bW9VSk1AiFg27dAAoWQQ1AOeor4zrZ65r05HeUT39erf+seO4ohbRZ79/UOmsnzkuGYtoxwPbtHVdA2ENAPKEOWoA5rShpVq/sn2drlpZp798+tyQJkmpzJTuf2iXekfSIVUIAKWPoAbggmLRiEZSGWWnfM7PU5kpPXewt8BVAUD5IKgBmNe+zuF5P//Oqyd1tHdUmexUgSoCgPLBHDUA89rSVjvv57FoRF//4ZtKxCLa0FKtTa01WtdcpYo489YA4O0iqAGY122bW5WMRZTKnN9jloxF9DsfulLZKelQ94gO9Yzo9ZPDikZMa5oqtam1Rhtba1ST5FcNALwV5j733JOlrr293Ts6OsIuA1jy0pmsdh8b1P0P7TonrCVjEe34tW3auvbsqs+pKdfJoQkd6hnRoe4RDYzlNs5dUV+hTa012tRareaaZCjXAQDFzMxedvf289oJagAuJp3JqnckrecO9mp/55CuaqvTrZe1zLuPmrurfzStQz2jOtQzopOnJyRJjVVxbVpWo02tNVpZXyEzNtQFAIIagFANT0zqcBDajvePa8pd1cmoNrbUaNOyGq1prFQsyvomAOXpQkGNiSMACqK2Iq7r1jToujUNmpjM6mjfqA51j+r1U8Pa8+ZpJWIRrW+u1qZl1VrfXM1iBAAQQQ1ACCriUV25ok5XrqhTJjul4wPjOtQ9osO9I/rJqdxihNWN04sRqlVbEQ+7ZAAIBUENQKhi0dy2HhtaquW+TF2nzy5G+N5r3frea+cuRmiqTjCvDUDZIKgBKBpmpraGSrU1VOq2za3BYoRcaPvBwV794GAvixEAlBWCGoCi1VSdUFN1k25a36SRVEaHe3J7tf3wjUF1HB1gMQKAkkdQA7Ak1CRjesfqBr1jdW4xwrG+sdwGuyxGAFDCCGoAlpyKeFRXrKjVFStqlclO6cTAeG6ItCe3GCFiwWKEZbl5bSxGALBUsY8agJLhHtwZoTu3X1v/aFqStLyuQptaq7VpWY2aWYwAoAixjxqAkmdmWllfqZX1lbp1c8s5ixGeP9Sn5w/1qaEqnltBuqxGK+sqFIkQ2gAUL4IagJJ1ocUIPzo+qJePDagqEdXGYNuPtU1VLEYAUHQIagDKwszFCKlMVkd7x87MaXs1WIywrrlKm1prtKHl3MUI0/c6ffZAj/Z1DmtLW61u29w6771OAWAxENQAlJ1k7OxihOyU68TAWDBEOqoDp0bOWYywprFCB06N6v6HdimVmZrxHRHteGCbtq5rIKwByBsWEwBAwN11aih1ZgVp30hawxOTenjnMWWmzv9dmYxF9NQn3q22hsoQqgVQSi60mIAJGQAQMDOtqK/Quy5r0X23rNf971yvZCwyZ0iTpFRmSo/9uFPj6WyBKwVQLhj6BIALaKpOaCw9Ne8xT+zp0ng6q+pkVC01STXXJNVcnVBrbVJN1QnFWaAA4G0gqAHAPLa01c77+R3XrNC2DU3qHUmrbyStV44PnumBM5PqK+NBgEuopSaplpqkGirjbAsCYEEIagAwj9s2tyoZi5yzkGBaMhbR3devOmeO2tSU6/T4pPpGU+oZTqtvNKW+kdx+btNTgmMRU2P1dHBL5HrhahKqTcbYjBfAOQhqADCPlpqEdjywbe5Vn7+2TS01iXOOjwQhrLE6ocuWnW2fzE5pYDSd63kbTal3JKUTA2Pa3zV09jvjEbVUn+19m37mvqVA+WLVJwBcxPQ+as8d7NX+ziFd1VanWy9rWZR91CYms+odyfW69Y2m1DucVu9oSqnJs6GwtiKm5pqEmquTZ3rhmqoTbNALlBBuIQUAb1EiFlVbQ6V+sX3Non93RTyq1Y1VWt1YdabN3TWSygTz3lLqHUnneuD6z53/1liVOBPgWmtzz/XMfwNKCkENAIqMmam2Iq7airg2tFSfaZ+acg2OT6p3JHWmF65nOKWD3Wfnv8WjpqYzw6eJMytRqxNR5r8BSxBBDQCWiEjEgvuXJnT58rOrUSezU+ofzYW2vtFcL9yxvlHt6zw7/60iHp0R3HLPTdWJi85/4/ZZQLgIagCwxMWjES2vq9Dyuopz2sfTwfy30bR6h1PqG01pX9eQ0plz57+11ibVHPTCNdck1FSVm/+WzmS1+9ggt88CQkRQA4ASVZmIak1TldY0nTv/bWgio74ZAa53NK1jfWPKBvPfImZqrI4rYqbf/6e9msyeu+gslZnS/Q/t4vZZQAEQ1ACgjJiZ6ivjqq+Ma2Pr2fbslGtgLLdpb99ISj0jKf3LvlPnhbRpqcyUHvrBEX34HW2qqYiptiKm2mRcFfEIc+GARURQAwAoGrEzd06QcvPfdh8bnPecjqMDqkqc+9dIPGqqScZUWxE/J8DVVsTOvE8yXAosWChBzcyOShqWlJWUcfd2M2uS9A+S1ks6KukX3X0gOP5Tkj4SHP8f3P3bIZQNAGXlYrfPunfbGn3oHW0amchoeGJSw6mMhicyZ94f7x/TSCqj2dt1JmIR1U0Ht+TcgY57pAI5Yfaovcfde2e8/6Sk77r7n5jZJ4P3v21mWyTdK+lqSW2S/sXMLnf3bOFLBoDycbHbZ922uVU1yZhqkjGtqK+Y4xtyQ6qj6VyAG56YDEJcJgh1k+oeSmksff6v88pENOiZm37Ez74Pwl2U/eJQBopp6PNuSe8OXu+Q9LSk3w7aH3H3lKQjZnZQ0jZJO0OoEQDKxqXePmsu0YipriKuuoq4pLkXHmSyUxpJTYe5INAF74cmMnpzcPycOzVIuQ1/qxLRcwPcrEBXnYi97c1/2Z4EYQsrqLmk75iZS/prd/+cpOXu3iVJ7t5lZtN3yVsl6YUZ554I2s5jZg9KelCS1q5dm6/aAaAsJGJRbV3XoKc+8e683D5rWiwaUUNVQg1VFw5+6czUOQFuZqDrH03rjf6xc7YdkXKrV6uT0fN75Ga8r5pnI2C2J0ExCCuovcvdO4Mw9qSZvTbPsXP9FzTnMqQg8H1Oyt3r8+2XCQDlLZ+3z7q0OiJqDu6yMBd3VyozdV6P3PT7U0MTOjSROXMLrmnRiF2wR240ldF9X3xRabYnQYhCCWru3hk8d5vZ15UbyjxlZiuD3rSVkrqDw09ImvkbYrWkzoIWDAAoamaminhUFfGoWmsvHObGJ7NzDrGOTGR0YmBco6kRTQWrH/Z2nj4vpE1LZab0aMdx3XP9KlUlo6pOxFQZj3KfVSy6ggc1M6uWFHH34eD1ByT9gaTHJN0v6U+C528Epzwm6e/N7NPKLSbYLGlXoesGACxtZqaqRExViZiW1819zFSw+GEkldEfPz467/c9/Vr3OStap+fNVSViqk4Gz4nYmSBXlYiqOhhuTcbYbw4LE0aP2nJJXw/+gMYk/b27P2FmL0l61Mw+IukNSb8gSe6+18welbRPUkbSx1jxCQDIh0jEVFsRV21FXO+6rFmP/fjCAzj3bF2lD2xZobF0RqOprEbTGY1NP6ez6hsZ01g6e+aODzNFI3ZOcJsZ6GaHPLYqKW8FD2rufljSdXO090l63wXO+SNJf5Tn0gAAOONi25N8YMuKi85Rm547N5rKhbfRINSNzXgemsjo5OkJjU9mz9tzTsrNz6tORFWVnLuHbvqzynh0UbcsYcVrcSim7TkAACgai7E9ycy5c80XOXZqKjeHbnbP3JmQl8qodySl0f7MeduV5H6WVBmPnj/8Oscw7MVu9cWK1+JhPld8LwHt7e3e0dERdhkAgCVsulcpn9uTvBWZ7JRG0+f2zJ15Tmc1ljr7PHulq3R26PXcIDfdaxfV8ERG935u55yLKZKxCCte88DMXnb39tnt9KgBAHABxbI9yWyxaET1lRHVV8bnPc7dlc5OXbCHbiyd1Ugqc+YOEQtd8frF547ojmtWqDIeVWUi14tXGfQcslBicRHUAAAoUWamZCyqZCyqxur5h2qnty8ZTWX1Xx/fP++xu98YUHVy7ggRjVgutCWiqgqCXOWM56pELtBNB7yKGNuazIegBgAAztm+ZPvGJn39h29e8Nh7t63VPdev0vhkVhOTWY2lsxpPZzU+efZ5LJ3RxGRW3UOTGpvMzjmvLvdzpWRsRq/czIA3HfKmA17wPt8rYYtpIQVBDQAAnONiK15vvaxFiVhEidjFh1+nZaf8TKibmJwOc9PBLqPx9JTGJ7M6PZbWycmsxtNTZ4ZiZ0vEIrleuRk9dFWJ83vvpl9fynBssS2kIKgBAIBzLMaK19miEcttJ3KBIdPZprc2OdtDN6P3bvJswBtLZ9U3mtZ4OqPJC8yrmzkcOx3upufUzQ54g2Pporp1GEENAACcIxGLauu6Bj31iXeHtuJ15tYmjQs8ZzI7dTbEpc+GupkBbyKdVffQhMYnpzQxef7++RdbSPHcwd6CLi4hqAEAgPMU64rX+cSjEcWjEdVVLGw4dnrvuplz6w52j8x7zv7OocUodcEIagAAoCxF5hiOvf3yFv3znq4LnnNV2wVuFJsn3EAMAAAgML2QYi7TCykKiaAGAAAQmF5IMTusvZ2FFG8HQ58AAACBYlhIMRNBDQAAYIZiWkjB0CcAAECRIqgBAAAUKYIaAABAkSKoAQAAFCmCGgAAQJEiqAEAABQpghoAAECRIqgBAAAUKYIaAABAkTJ3D7uGvDCzHknH8vxjWiT15vlnFKtyvnapvK+/nK9dKu/rL+drl8r7+rn2/Fvn7q2zG0s2qBWCmXW4e3vYdYShnK9dKu/rL+drl8r7+sv52qXyvn6uPbxrZ+gTAACgSBHUAAAAihRB7e35XNgFhKicr10q7+sv52uXyvv6y/napfK+fq49JMxRAwAAKFL0qAEAABQpgtpbYGZfNLNuM3s17FoKzczWmNlTZrbfzPaa2cfDrqlQzKzCzHaZ2Y+Da//9sGsKg5lFzeyHZvbNsGspJDM7amZ7zOxHZtYRdj2FZmYNZvYVM3st+O//lrBrKgQzuyL4dz79GDKz3wi7rkIxs/8Y/L571cy+bGYVYddUSGb28eDa94b1752hz7fAzG6XNCLpYXe/Jux6CsnMVkpa6e67zaxW0suS7nH3fSGXlndmZpKq3X3EzOKSnpP0cXd/IeTSCsrMflNSu6Q6d/9w2PUUipkdldTu7mW5l5SZ7ZD0rLt/3swSkqrcfTDksgrKzKKS3pR0s7vne5/O0JnZKuV+z21x93Eze1TS4+7+pXArKwwzu0bSI5K2SUpLekLSR939QCHroEftLXD3ZyT1h11HGNy9y913B6+HJe2XtCrcqgrDc0aCt/HgUVb/p2NmqyV9SNLnw64FhWNmdZJul/QFSXL3dLmFtMD7JB0qh5A2Q0xSpZnFJFVJ6gy5nkK6StIL7j7m7hlJ35f0c4UugqCGt8zM1ku6QdKLIZdSMMGw348kdUt60t3L5toD/1PSf5I0FXIdYXBJ3zGzl83swbCLKbCNknokPRQMe3/ezKrDLioE90r6cthFFIq7vynpTyW9IalL0ml3/064VRXUq5JuN7NmM6uSdJekNYUugqCGt8TMaiR9VdJvuPtQ2PUUirtn3f16SaslbQu6xsuCmX1YUre7vxx2LSF5l7tvlfRBSR8LpkCUi5ikrZI+6+43SBqV9MlwSyqsYLj3ZyX9Y9i1FIqZNUq6W9IGSW2Sqs3sl8OtqnDcfb+k/ybpSeWGPX8sKVPoOghquGTB/KyvSvo7d/9a2PWEIRj2eVrSneFWUlDvkvSzwVytRyS918z+NtySCsfdO4PnbklfV27eSrk4IenEjB7krygX3MrJByXtdvdTYRdSQD8t6Yi797j7pKSvSXpnyDUVlLt/wd23uvvtyk15Kuj8NImghksUTKj/gqT97v7psOspJDNrNbOG4HWlcr/EXgu1qAJy90+5+2p3X6/cEND33L0s/u/azKqDxTMKhvw+oNywSFlw95OSjpvZFUHT+ySV/AKiWX5JZTTsGXhD0nYzqwp+979PuXnJZcPMlgXPayX9vEL4MxAr9A8sBWb2ZUnvltRiZick/a67fyHcqgrmXZJ+RdKeYK6WJP2Ouz8eXkkFs1LSjmDlV0TSo+5eVltUlLHlkr6e+7tKMUl/7+5PhFtSwf17SX8XDAEelvRAyPUUTDA/6f2S/m3YtRSSu79oZl+RtFu5Ib8fqvzuUPBVM2uWNCnpY+4+UOgC2J4DAACgSDH0CQAAUKQIagAAAEWKoAYAAFCkCGoAAABFiqAGAABQpAhqALAAZrbezMpm7zQAxYGgBgAAUKQIagBwicxsY3Bz8pvCrgVAaSOoAcAlCG6j9FVJD7j7S2HXA6C0cQspAFi4VknfkPSv3H1v2MUAKH30qAHAwp2WdFy5e94CQN7RowYAC5eWdI+kb5vZiLv/fcj1AChxBDUAuATuPmpmH5b0pJmNuvs3wq4JQOkydw+7BgAAAMyBOWoAAABFiqAGAABQpAhqAAAARYqgBgAAUKQIagAAAEWKoAYAAFCkCGoAAABFiqAGAABQpP5/p4asKMKciH4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "inertias = []\n", + "\n", + "k_candidates = range(1, 10)\n", + "\n", + "# Inertia measures how well a dataset was clustered by K-Means. It is calculated by measuring the distance between each data point and its centroid, \n", + "# squaring this distance, and summing these squares across one cluster.\n", + "\n", + "for k in k_candidates:\n", + " k_means = KMeans(random_state=42, n_clusters=k)\n", + " k_means.fit(X)\n", + " inertias.append(k_means.inertia_) \n", + " \n", + "## the Elbow method; find the point where the decrease in inertia begins to slow. K=3 is the “elbow” of this graph, we know it is two cluster data, we will try both\n", + "fig, ax = plt.subplots(figsize=(10, 6))\n", + "sns.scatterplot(x=k_candidates, y = inertias, s=80, ax=ax)\n", + "sns.lineplot(x=k_candidates, y = inertias, alpha=0.5, ax=ax)\n", + "ax.set(title='Inertia K-Means', ylabel='inertia', xlabel='k');\n" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "id": "746d8a0e", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\manifold\\_spectral_embedding.py:259: UserWarning: Graph is not fully connected, spectral embedding may not work as expected.\n", + " warnings.warn(\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABAwAAAFsCAYAAABILyuLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyddZgVVRvAf+/c3GTpbkHBwEAFEYVP7O5W7O5uLFQsVGws7O5GCRUDDLq7e/vurTnfH2fu3VsLC+wudX7Ps8/uzsw5c2bmzJn3vOcNUUphMBgMBoPBYDAYDAaDwZCItbkbYDAYDAaDwWAwGAwGg2HLwygMDAaDwWAwGAwGg8FgMKRhFAYGg8FgMBgMBoPBYDAY0jAKA4PBYDAYDAaDwWAwGAxpGIWBwWAwGAwGg8FgMBgMhjSMwsBgMBgMBoPBYDAYDAZDGptNYSAi80RkZB2eT4nI63V1vpo+v4i8LiImB6Zhi0FE+jj9uv8m1FGn44Ch5hCRkSIyb3O3Y1PZ1LG1Jt4Dw5ZDTcsKZpw0GAyGdGpThhCR/s6426c26q9rtoRvQI0qDESkg4i8JCLTRKRcRNaKyBQReUNE+tbkubYUnA751eZuhyEzIlJfRCqc53TW5m7P1kCCgHvj5m7LtoaIZIvItSLyi4isEZGwiCwXkW+cD5x7c7exrhCR40RkQC3W/7rTjxvV1jkM1UNEDnOexf0Z9vV09gVFJDvD/u9FxN7SnqMZJw1Vsa6+ISIHikiRiCwVkd02R/u2dETELyIXicjnzkQpICJzRORdEemyudu3MWxN8yOn/w4QkYLN3ZZUROQgEflARBY634wSEflbRB4UkVaboT21KsdsSdSYcCoi3YFRQBgYBkwGsoDOwNFACTAiociOwPa0Yp4FRDd3I7ZDzgS8wFzgAuCtzducbYrR6H4d3twN2RoQkR2Ar9Fj4nDgIWAV0AToB7wGdAVu3lxtrGOOA84FBmzeZnARcOlmbsO2zq9ABMgkGPdx9nmB/dDvBgCOAm0/YJJSalXtN7NWMOOkAQAROQr4EFgGHKyUmrWZm7Sl0g54CT1uvAIsAToAlwEniMhhSqkRVRffstiI+dHmpg9wD/A6ULg5GxJDRCzgReBCYD7wDjAT/d3YC7gC/S1vUsdNO466kWM2+5y5Jlez7gGygT2UUv8l7hCRK4FmiduUUsEaPPcWj1KqYnO3YTvlAvRA/DkwWEQ6KqVmb46GiIgAOUqp0s1x/ppGKWUDpl9XAxHJAr5CCz0nKqU+STnkERHZG9i7zhu3naOUCmMmc7WKUqpURMYC+4hItlKqPGF3H+BHYHfn7+EJ+/YGcoGRNdEO5z0MK6UiNVFfdTDjpAFARM4A3gBmoJUFSzZzk7ZkVpJ5LvE28C/wKNB9M7RrY9mg+dHWhoh4AFctz3MGoJUF7wL9lVKhlDbcgL7P2wyJ93VLmDPXpEtCJ2B16ssA+oOZOjhm8seIbRORnUTka8fUpEhEPhKRtBdKRHYTkR9EpExEVjumPY1kA3wQRaSfU0ehY7o+QURqfLUpU5ti2xyTzFHOdawSkaEikluNOrMck62Q8zHCuXfPichk5/6VO+Y6F1VRxwbdQxE5VUR+Taj7TxE5aePuSu0iInuihdA3gLfRk4LzEva7RGSxiPxTRflLnPtwXMI2n4jc7tzfCqfffCkie6SUjfutisgVIjIFLTTe6Ozfx3n2M5z7WCIiv4nI8VW05UAR+V20ad4yEXlKRHZ2zjEg5VgRkcuc5x6re4TUsNmbZPDNTbnu85z7FBSR+SJSrZVzEWkvItNFZIk4JpsicoiIvC/aLDHg3PcfROTAKuo4UUTGO89ogYjc47zrab7E1X2mm8iFaA3x4xmUBQAopcYqpZ5LadtxTr8odX5+E5FjM1xvbOzsJiLDnWNXiMhjIuIWbeL5mNPfK0RktKSYdkqlz18/0eaI851nN0FETqvuhYpIJxF5U7TJbchp26MikpNwzEi0Vj42DsZ++icc01xEnneeX8jpDy+JSI2uIEiGGAZS6c5Qz2nDCue+/SYi+1az3nNFu5x85PQxS0TucO79MueaFjj1N8xQPltEnnDuY7mI/CHaHDNjzIXq3PfNzAjAA/SKbZBKC4JR6JX41DGqT0LZDRo3E55hYxF5VUSWA2VAK2f/ziLynehv3xoReaum+5ZzHjNObueIyGXAm8A/wAGJ8nBCP23o/L3K6defiSP3isjFIjLVue/TJMM3wDmuWvKZc9wXzjMPOuf8TDK4SMgGyOUi0kBEnhSR2U5bV4uWQ27akPullKpqLjEFmATssiH1bQFs6PwoNjfo54z75VIp96WN56K/U4+IyCznea4U7b7RIcOxXhG5WUT+c+otEpFxohUXiJb7YxPvuVL5bR7g7B/g/L+z6O/TIrRs28PZX+2+VV2ccfkmtGXB+anKAuc+FiqlrltPPbG2t8uwL9Oc9EjRc7NVzni6QEQ+EZHOzv6R1JAcU437utnnzDVpYTAb2FFETqhKIK4mLdGrCZ+iO0g34BIgHzgkdpCIdAJ+QSs9ngYWA0cA31b3RCJyMfAC8AfwIFqYOBh4XvRK9AYNchvJ7uiVx9fQJjZ90KviNnBxVYVEC5hfogfOI5RSsVWZPsABTp1zgRzgZOAlEWmklHoooY4Nuoci8gBwB/AdcJfTxuOBD0XkSqXUsxt68bXMBehn+rFSqkxEvgbOFZG7nUE6KlpjfZOI7KKUmpRS/hy0yfjXENf2fYcWcN8EhgD10GZQv4nIAUqpcSl1XAs0BF5GmyEudLYfD+wEfIAeBBuiB55PRORMpdQ7sQpEZH/gB2At8DDaROwUEgTvFN4ETgc+QvcrH9o140fn/fxivXdu07kUaIo2JywEzkKvoi9KvLZURCt5vkFfa0+l1HxnV3+gAdqcbxF6nLgQ+ElE+iqlfkmo41S0Fno2cC/a3PlctOlf6vk25pluDDGh7aXqFhCRy4FngWnAA2hztP7AZyJyiVIqta5W6JXa99HP/hDgBrQr1M5oE8iHgUZoxdVnItLFWQFN5BH0uPG8c87zgHdFxK+Uen09bd4L+Bn9zF9EjyndgKuBXiJyoLOi/yB63OkNnJ1QxRinnjbA72hzw1fQz3IHtElqXxHprpQqWldbaojv0atd96Hf0euBb0SknVKqpKpCInI7+hqfBa5WStki4kd/0z5GWzyVoVfQLwD2F5G9UgShD9Hj8WfoVff26O/i3Aznq+5935yMAG6n0qIAKi0IRgHFwFMikqOUKnP290H3wVHO/9UeNxP4ET323o/u16Ui0h797fOh3/mF6PHhuxq61upixsltHBG5DRiIfj+PXYeF4XfoZ3Y3eqy7GvhURD5By4KvoCcQVwMfiUhnpVR8LNhA+exKYA36e7QM6Oic4zcR2VMpNTOlbdWSy9Fj1gHoMWg8elV9J/R7/Oh6btV6EW2W3hxYvql11TEbMz/aEy03vIx+n/uin/0uInJw7LstIvXQ3802wKtod4fmwOXAn863cr5zrBf9TeuDlinfQvepXYET0O/1i+jnejxwHVoGBpiQ0r63gQDwOHqMXups39C+VR2OBPzAsLqy1hatZP0CmIh2Hy0EWqDdR3dAWwrVhhxT1X2tijqbM6OUqpEfoCcQci5wBrrjXgZ0qeL4ecDIDNsUcErK9med7TslbPvA2dYr5dj3ne2vp2xP2oZ+oSqAdzK07Sm0kN2xGtetgK+qeVymNtlAj5TtX6NXw3MTtr2uH5cC7d81Dd2R9kgpm5Ph3JbToYoAz8bcQ/TgpYCBGer/DC3s5dVUf6qB/uhHD1qJ13Cscw2HJ2zb2dk2KKV8R2f70wnbrnO2HZpybD6wILE/UynorgGaZGhfpueUDUwHpqRs/8vpqx0StnmA35xzDEjYfryz7eKUOtzAOPRkQ9Zz72Jtv7Gax/XPsG0JUJBybSuB31PqmBe7b2hlXTF6sG1YjfvVFP0x+yblOhejBYr6CdtzgTkZ2lvtZ7qJ/XE1ULwBx9cHSoFZQH5Ku2ajfR4T7+885zpOTqnnb/QY83nic0cLHknXjZ5sKPRErF7C9nrOtjVAVsL2kcC8lPONR49NeSnbY/0y8d6/jjOmZbj+z4EVQKuU7d3RE5sBmcqlHPu6c85G1TmuirLPpWw/2dl+Sab3AD3Wxr5Xt6eUlcT7l7D9AlK+e+gPuQJeTjk2tj21vdW+75vrB62wCgJjErbd5vRzN9DFaeshzj6308//Szh+Q8bN2DN8K0OZd5x9fVOez6dk+FZXcT2x527GyRoaJ7eVn4TnO9v5/Sngq+LYWD99NmX7E872BSR/A3Zztj+UsG2D5LMq+kkX5/1MHfPmUQ25HP2dSBsza/i+XuGc477N/Yw3sN0bOj9Szs9xKdufcraflrItAHRLObat89xfT9h28zr6iZXw9wDnuHYZjovtGwm4M+zfkL41khQZoor7EZs8n7AB97y/U6ZPNa9rHskyfOz9S5PfU8q9Tg3IMdW4r0ntS9i23nfT2bZBc+ZMPzXmkqCU+h0deOIN9MBxHvAcMEV0RPA005gqWKKU+iBl28/O7x1Am5KjBae/lFK/pRz7eDXPcxJ6deEVxyQj/oNeubeAg6pZ16bwu1Lqj5RtP6M/6O1SDxaR3dGCggD7KaX+TdyvKldmEG2G3BC94vAD+uO+k7NvQ+/hmehO9UaG+/UFkIceFLcUTkBPut5I2PY1+uU9P7ZBKTUZPak609FexzjH+Z1Y/iy0UP53yvV70atY+4v2kU1kmFJqRWrjUp5TtvOcstHPvouI5Dv7mqJX4T5XSs1JKB9GfyhSOQstZH+W0sYCdL9uhzaPq21eU0oVxv5R2mf5j6rOLTqDxdfoVciDlFKrE/en3K9c535FgT+BRBPxvdBa4NeVUmsTypeirYlS2ZhnujHkoz/e1eVg9Gro00qpeDnn72fQgn2/lDKLlVIfpmz7FT1WPKOcr4NDbKUx0/N4XiVovZ2/X0C/T32qarCI7IoWZt8BfCn381f0ivohVZVPqKcecBR6XKlIqWceWomy3npqiCdT/o99izLdNz/asuNi9GRrYOJOpQlA3B2qwLmmWJ2J/Ti2yvtESh3fAFMTt9XUfa9tnGv/E+gulWa1fYDflFIRpdRU9Pjcx9kXsz4YkVBHtcbNFB5L/McZ548GxqmEwGnO+zFoU65xIzDj5LZNc+f3HLV+H+TBKf/HxuhhKd+ACehvSWIf2SD5LNZPRJPvHLcSrXjL5HK1XrkcPWkNAvtKBpPvTUVE9kPLphPQFhtbDRs5P5qulPosZdvDzu/jQT8/9LMfDSxOee5l6LEkcew/E22VdF+GNqZaGq6PwSpDLJiN6FvVITaub4gMtanEZKATZSOyV22CHJPxvq6Dupoz16hLAkqpiWitDiLSFjgQbQ7XG/g8g8llJuZk2Bb7KMb8PBujhenpGY7NtC0TMf/d4es4pmk169oUqnO9iYxGr8j0UhmiRouOfTAAbbLeOkP5+s7vDb2HXdATj2kZ9sWoi/tVXS5AD1KLREenj/EjcLJo94zY/RuGnnz3QytWQAtIk5VSfyeU7YJeJVu5jvM2otLtALQ2OQ3R/ksPoK0eMvnNFqAHx/bO/xvynPJYt8le06raVYNU1a8z9em90GaM36M1yGnZRESkI9r861D0vUkkcSK8MfdrQ5/pxlCMfi7VJXYdkzPsi7nOpAoZczMcu7aKfbHtmZ7H1AzbplRxzkRiY+q9zk8mqjNG7IhW2F7g/GQiU/+qDZLOo5RarWW0jPdtEPoZV2Uaj4icgnYT2QNtJZRI/YS/26MtQzJFUZ9O5b2GmrvvdcEItDywv4j8hDZxfyhhf2Icgz7O75GxnRswbiaSOtY1QSsiMn3LpmTYVpuYcXLb5mG0HHy9iKCUumEdx6b2harG7ti+xD6yQfKZ6LgT96PfsVSf+EznW6+cqpQKici1aFlqrui4TT8DnymlflpHu9aLaJerr9EWOUeorTCI+EbMj9K+w0qppSJSSOV3uDH6/h9C1e9moiKgE9piqybuX1Wy7Yb2reoQG9M3RIbaVIagvzPPod3EfkW7+7yrlFrXOBhjY+WYDZXN62rOXLMKg0SU9pkZJiJvojWlvYB90Cse62JdqQcl5XfGU1ezibE6zqFqH5G6EEqrc72JvIP2T7kG7aeWaf9RaP+h0Wgz4ghau3QdlYEuN/QeirP98HW0OdPkps4R7Z/aF93mql6+s6jU6L+DXoU6B/hBRHqjB+RbUqtG+zNdv47Tpw4k5akHOFrhH9Af+aeBsWhtZhSteT6D6j2nTIjThjPWcUxqrIbaYENSiM5Eu+D0BQ7DiRkRw1GCjUYPeIPRz6AE/SG8Dfhf4uEb2M6NeaYbwyTgABHpkGgpsp52bSjruudV7ct0nqre//URO+ZxqvYFX1vF9kz1vEWyhU8igWrUs8lkmpQ5ZLofnwEnomOifJ+6+isiJ6DN//5Cj98L0a5GLvT9SrRwitVfne9ZTd33umAE2ke7D1oIjMUviDEKeNJ55/ug3/HRsMHjZhyVnJEBNuze1jZmnNy2KUfLY1+ilQaWqiIw2zrGmuqMQdWWz0T7VY9Gv3/3oycMZU75weh3srptSGqHUuoFEfkc7XN+INqS90oReV8pVe3AuUmV63gdP6Lf9b5KqcUbU8+WRDXnR1WNT6nPHfTC5yPVPf0GNHVdZJJtN6ZvVYeYzLoH2r1nY1nXtSfNh53Fgb3RCp2D0craJ4F7ReQIx2pkXWysHJN2X9dDXc2Za09hEEMppUTkT/QL0bKGql2B7oQ7Zti3UzXriAXeWKUqAwZuDVyGFhruFBGPUurW2A4RKUB/nN5USiVlehCRVPPlDb2HM9FCygLHdHRL5jz0C3IRmXPIPoDW+A0GUEqtEpFvgOMdoesctJD1Vkq5mWhN3c8bYb6VyG7owCT3KaXuSdwhIhemHBubXGZ6Tpm2zUTn9v1DbT3pG4uBY9CTnU9E5BSl1OcJ+w9Cm8+er5R6LbGg6EBPicQ02Btyv2rima6Pj9EfnAvRgd/WRyz1585A6upMV+d3bSk0u6LN6BKJrWKv65yxMTVazTG1qg/VLGefdysbm39GBzb6GhghIv1S3JHORisI+iZOYkUk03g7Fz357UT6SlNqP97Q+745+R3nHqDf+wB64h9jFFou6YOWGf5LMJnfkHFzXaxAW+l1ybCva4ZtWwrbwzi5zaGUCojI0egx9VoREaXUtTV8mg2Rz45HT9yOSXTJgXgw7U1K36aUWgoMBYY6ptBvAqeLyONKqbHrLp2Ms1r9I1rx1VdVBvfcJljP/ChtLBKR5miXhth3eCVaxs2v5tg/A+265VuPi8zGKhVqq299jf5unC0iD1bDvacq1ji/G6DdAmJt86Pdh5Is+hwl3kjnB9GZHv4G7kQrxWDrkGNqYs5cczEMROTgTH4ejl9bzE+jRsz9nIf4LTqnc2qk+HWZfCXyAbrz3pvJ9050mhLfprW05nH8YK9Ca7puEZFEH9eYpilJm+QMMkkC1Ubcwzed3wOdj0ASUgvpqDYG0f6p/YGJSqmhSqmPUn/QkaF3cbSHMd5A+8KehQ5s9qNKz5M8DJ0vN+Mqi+h4A9Whque0C45vWgyl1HJ0sMJjE/3cREetviZD3cPQ7/VDGfZtSBvrFMdH8xC0r+2HInJiwu6q7tchpPvEjUNbDPUXkfoJx+aiI5KnUlPPdH0MRWvbb5SqU2LtJTozAmghqQy4SkTyEo7JA65CT3h+TK+lRrjM8b+LnbMe+t4VkrwanMq/6JWASzP5ZIpO79ggYVOpsz1xG87K/DfACSLSI0M9IiKNq385dYdSahRacG8HjJTk1EZRtAAR/+46q+Z3ZqjqS+d30mqkiBxB+kR3Q+/7ZsMR9GL+vEehY/gkmuFOQptT3oReKR+ZsK/a4+Z62hBFZxHqLgmpZp1nUa2UhpuL7WCc3CZx4nccgx6zrxGRp2v4FBsin1XVTy5CP+ONQnRMkezEbc67Fouuv0FjkKMsGI7+DvZVCRkhtjY2cn60oySk9HaIWb1+BvG4A2+j5fiM6c1Tnv3baNe3tG+OM/7FiC02beh3o1b6lqN4fxT9XR0qOttDEqLjJaTGHEolZnGcuoCaaH0dq69RhvLT0ErurUqOqaE5c41aGDwJNBSRWBqKcrQP/RnoFc9hjg9PTXEn2k/vOxEZgk5HcyRaCw7r0ZAppRaJzo07FJjqmAbNd8rvChyH1vDNq0ZbdhCRTEIfwJOJgYhqCqXU9SISQisN3Eqpq5VSJSLyA3CWiMRWbtqiXRjmku4XWe17qJQaKyL3oH1k/xORD9H+ZM3Rwt8R6ABIm5tD0P3ulXUc8zE6zsMFVK5ufY0WVB9BB1jJZEL0FNo06VER+R96RbEYnc7mICpXztbHVLR54M3OB3Y6+h25BC0w75ly/I1oQWOMiDyHNs07hcr7nficPhKR19BmgHuiBeNV6JR7PdFBUKobgPQgR/OayiqlVKbAWJuEUqpURA5DT5beE5GzlFLvo830lgGPiw6mtAidjvRs9Fiza0IdERG5Ef1h/EtEXkG75PRHP9/2JI8NNfVM13dt5SJyFLqffea8pz86bWrsnONQnKBrSqlC0fnYn0WnRnrdqao/+hleomovreAq55yvoj/856Hvx4UZzLvjOKslZ6Pv4QSn/GS0Im4HdCDS29BRhUEHZLoSeE50ytMw8KcjGF6Gfu6jRWQYelJsofvusegJzIBqXs/1IpKp3T8rpcZUs45qo5T61ZmkfYdWGvzPUT5+hHZZ+Nm5Jg/6O5OdoZpv0L7qFzmCSyyt4sVoATye03oj7vvmZgS6v+9HZb5vIH4tv6DvS+zYGBs6bq6LO9Hm21+JyDPoMeVoKr99G4IZJ2tonNyWcSwNjkFHTr9KtHvClTVU94bIZ9+i5fM3HblvLXqF+wi0ZdvGzgs6A6NE5FP0+7gWrdy8DC1//rKOskmI9vH/ET25fRrYT3TQw0Q+rQ3ZupbYmPnRROAtEXkZbUHSF+3iMQrt2hbjDvTz+0BEPkB/V0No2f8I9Ip4f+fYp9Dj3J2iF8x+QL+7O6NXn2MT6Vgg9kdEpx6vACap9NTjqdRW3wL9vY8tfu4vIu+hV/G96HHuZPR1Z3T5cRiOnvTfJ9riYS6wP9CDyvSRMV4WkVboezQfHcPlVHQchWEJx9WVHLOpbNKcWR9Rc2lDDkELt+PRNz6C/vCMQEelt1KOn0fmFBEjM9Tdx7mY/inbd0d3gHK0qckwKj90qek7MqaNQHfmT9EmGyH0IDsCrXXxV+O61Xp+mlV1/nW0qT/p6UBeJ0PqDrSfkELnTBd04KGhznVUoAedizLVuaH30Dn+SLQguwZtobEQPUhcVlN9aRP74YdO23ddz3HT0SumiWninnHKFpEh/ZlzjBudkm4sWvNdhh7M38ZJB7auPpuwv63T1pXOvf8LvUo2wCnXLuX4/6EHpgp0QMOn0KtGCrg5Q/1noz/QxU6ZecAnwKnVuIextlf1M62qa1zXdWfqw2QeB7KcPhYBznK27YaegK1FmyeORPuWpdXpHH8KemIVRKeluofKFHOpKWiq9UxrqH9moz9ovzrXEnae59fOM3OlHH88OitKrF1jSEm1VNV9dLZX1Z/aOdsHJGzr72zrhxY8Fzj3bxJwRoa6R5IhJRK6b7/gtCmE/g78jbZ6aZ1wnIWOHbKIytX3xL7UCL2qMAPdhwvR49lTQNdq3OvXWXc/vnUd/TJjv3L2JY3bVP196o4eJ2fGrhs9Fk9xrmcpOtZMg9Q6nWNjvujL0asaf6LHgY+A8o2975v7By2gxZ7BgRn2X+vsi5CQ3jPhGqs1bq7rGTr7d0ULg2XOc3obHRAx43c5Q/nYczfjZA2Pk1v7T8LzTUu5ic6m8p2z/1n04kSmZ7OuPpLWH5zt1ZLP0O5xvzp9pBD9/dmFzKlyqzpXUvvQC1JPAv85dQbQE7rBQPONvH/r+mm3uZ/zBlzPhs6PlPPO9kOP+wH0d+AZMqQvR8sVd6G/jwHnuU4FXgb2zdD/7kArX2Pf1bHA5SnH3Yx2fQiTICuwjtSEG9G30rZV4172Q38DFqG/cyXo79z9if2Mquc8ndHvX7nTvg/Q7iBJ/RytaP/COU8Q/c0ZBZyYUl+NyDHVuK9J7duQdzNh++5swHwv9UecSrYZREdTHQfcppR6eH3HG9Ix93DrwDFH/Qg4XSn13uZuz5aOiNyAHth7qvRUpts9ItIfeA1t/jly87bGUBUiMhHwKKWq7XtoMFQXM04aDJsXEVHAG0qp/pu7LYZtmw2Z79VYDIPNgaTEHkjxQawt/95tCnMPt3wcXyd/yjYP2p80QrKf73aPiHhT/Tgd39wr0Fr9fzZLwwyGDSB1bHa2HYlerTFjs2GTMOOkwWAwbD9s6nyv1rMk1DL/icjPaPOOHLRvTm/gfaXU35u1ZVsP5h5u+fiA+Y4v2XS06d+paPPTR5RSyzZn47ZAOgDfOj5uc9F+b+eiTa8uU8lB1gyGLZW7RQf+GoF2k9odbb4ai7ViMGwKZpw01ClOkLe0oIwplKqtJ8OTwbA1sUnzva1dYfA5+oLPRl/LXLQfjxGmqo+5h1s+YbQf2LFooU7QioMrlFLPbc6GbaGsRMd7OBPtkxxBD5C3KqU+2JwNMxg2gFh+7pvQqbTWoAO23qWUWrQ5G2bYJjDjpKGuiQXiXhf3UneB4AyG7YlNmu9tczEMDAaDwWAwGAwGw5aDk9ItzdUqhTlKqTl10R6DwVB9jMLAYDAYDAaDwWAwGAwGQxob5JLQqFEj1a5du1pqimFb5u+//16llNqYHNcbjemvho3F9FfD1kZd91nTXw2bgumvhq0JIxMYtiZqo79ukMKgXbt2jBs3ribPb9hOEJH5dX1O018NG4vpr4atjbrus6a/GjYF018NWxNGJjBsTdRGf92q0yoaDAaDwWAwGAwGg8FgqB2MwsBgMBgMBoPBYDAYDAZDGkZhYDAYDAaDwWAwGAwGgyENozAwGAwGg8FgMBgMBoPBkIZRGBgMBoPBYDAYDAaDwWBIwygMDAaDwWAwGAwGg8FgMKRhFAYGg8FgMBgMBoPBYDAY0jAKA4PBYDAYDAaDwWAwGAxpGIWBwWAwGAwGg8FgMBgMhjSMwsBgMBgMBoPBYDAYDAZDGkZhYDAYDAaDwWAwGAwGgyENozAwGAwGg8FgMBgMBoPBkIZRGBgMBoPBYDAYDAaDwWBIwygMDAaDwWAwGAwGg8FgMKRhFAYGg8FgMBgMBoPBYDAY0jAKA4PBYDAYDAaDwWAwGAxpGIWBwWAwGAwGg8FgMBgMhjSMwsBgMBgMBoPBYDAYDAZDGkZhYDAYDAaDwWAwGAwGgyENozAwGAwGg8FgMBgMBoPBkIZRGBgMBoPBYDAYDAaDwWBIwygMDAaDwWAwGAwGg8FgMKRhFAYGg8FgMBgMBoPBYDAY0jAKA4PBYDAYDAaDwWAwGAxpGIWBwWAwGAwGg8FgMBgMhjSMwsBgMBgMBoPBYDAYDAZDGkZhYDAYDAaDwWAwGAwGgyENozDYTJQWlhEMBDd3MwyGahEoq6CsuHxzN8NgqBZKhVD22s3dDIOhWkSjUQpXFmHb9uZuisGwXpRSKHsNSkU2d1MMhmqh7EKUCm3uZmzVGIXBZmDI1a9wctMLOKHhefzy8R+buzkGwzr5ZuhwTmh4Hic1Pp9h936wuZtjMKwTFRqLWrEPasX+2GuvQCkzCTNsuSydu5wzWl/KGW0u5ZLdbzSKWcMWjbLLUKuPQ604ALWyNyoyf3M3yWCoEqUU9tprUSt6oVbsjQqaOdfGYhQGm8h/IyZxSvMLOb5hf35+95f1Hr941lK+feVnIuEooYowT17yYh200mDQLJqxhPO6XMMx+Wfz2t3vrfd427YZctUrREIRIuEo7z70KcWrS+qgpQYDKLsIe/Xp2Mu6Ya+9CqXC6y9TPABUORCG0G8QGlvbzTQYAG0p8PDZT3NU7llc1fN2ilYVr7fMm/d+yNoVRYSDERbPWsb3r42og5YaDBq79Hns5XtgrzwIFZ65/gIVn0NkLhACey2q9Mlab6PBEMMO/IC9fB/sFT1QwdHrLxD+F0IjgTCoAKr4rtpu4jaLURhsAkopBpzwKGuXF1G6tozHzn9+vasDlssCpeL/u1zmERjqjkH9h7B4xhICpRV88uRXTPtr3QKCiCBWch8VS2qziQZDHFX6NIQnAAEIjoLAJ9Uo5U7+V1y10TSDIY0R7/7Gb5/9RbA8yKx/5jD01rfXW8blcWGJHlMtEVxu018NdYMKT4PS50GVQXQhquiGapRK7Z+e2miawZCGUkEougFUIdhrUGuvrIYFoStpzpUmHxiqjZmtbiIVZYlxCBShwLp9ZJq3b8rJNx6Dy23hz/Zx87CrareBBkMCpYVl8bFTLKG0cN0KLhHhptcux+P34HK7uOiRs8irn1sHLTUYALsIiPnJRkGt37pF6j0AUg+wwH8EePaqzRYaDHHKisqxo1qAjYSj1bLGOvfeU2narjEiwg57tufQ8/rWdjMNBo0qAUmYBtjrt4gh6zjw7AYIuFogedfXVusMhmRUCIgmbAin/J8Bz26QdSxggeQh9R6qvfZt4xhVyyYgIpx77ym8df9HIMJBZ+xP/aYF8f1KKf746m/WLi9i/+P3Ib9hHgD97zuNs+46CctlYVlGZ2OoOy4edA4PnPoEYgntdm5Ntz5dk/ZP+m0acycuoPsh3WjeoSkAfU7pRe8Te4DCrH4Z6hTJuQQVHAHYILngPz5pv4rM0i4Hnl0Qz666jGdXaPIXEEbEW/eNNmy39D29Fx8+9gXFq0sQEc6+++Sk/auXruWPL8fRtF0Tuh/SDYBGLRrwxswhhENhPF6zWmuoQzx7gHsXCE8EbMi7JWm3ssuh4jsQH/gPQ8SFiA9p+BZKhcz4aqhTxMpDZZ8B5R8ACnLOR6RyzFQqCsEfwC4H/6GIlautZOvdh8q/E/AgYixkNxajMKgmtm1nnNyfftsJ/O+M3oRDEVru0Cxp38u3vMmXz/+AUoo37/uAV6cMJis3CwC3x9x6Q+1RVX/tcdRevDn3OQpXFNGmS0tcrkoFwIj3fuPxC59DKe0q8/w/g2i5Q3OApOMMhppGKRuR9P4qnk7QeBREF4G7HSL+yjLhKajVpwOOyUz95xDf/rqcCGCEWUPtoBwzrVThM79BHq9Oe4pF05fQpE0jcgty4vuKVhVzcbcbCJYFEUs46+6TOfWmY+P7jbLAUFtU1V9F3NBgGERmg1WAuBonlImi1pwKkQUgQMX3SP2nE8qa8dVQe1QlE1j5d6KyzwEEcbdOLlN0CwR/1CJB2VBo9KXu45j+WhOY5e31sHLRavrveBWHeU/jjqMeIhJOTyPTtG1jWnVqnjYY/zhsFBVlQYLlIcqLA8z6d14dtdqwvRIMBLmx7z0c5jmNi3a7nsKVRWnH1G9Sj/a7tElTAnz7yk8Ey0OEAiGikShjv/uvjlpt2F5RSmEX3Yla3hV7xX6o8PS0Y8TKRTw7JSkLAFTFT0BF/EcFPq2TNhu2bz579luOyDqDY/LP5vcvx6Xt9/o8dNitbZKyAGDSr9OIBCMEAyEqyoJ898pPddVkw3aMCv6GWrEnavnO2KVD0/aLWIinU5KyAIDoYojMBwKgAnoiZjDUMioyG3tFby0TFN6UMUaBuNukKQsAbQ2jAkAA7CUQXVD7Dd6OMAqD9fDyLW+xdM4KlK0YP3IyP7/zK6BNC3/55E8Wz1paZdl2u7TB7dGTMjti07xDkzpps2H75duhPzP1z5kopVg4bQlv3vcRAOUlAcZ8PpaZ/8ypsmznvTrgy9JaWLEs2u2cYUA2GGqS8Dio+AqwwV6FKr4DAKUiqOAoVPCP+OpYKuLpDMSUCH7w7FwnTTZsvxSvLuGlG4cRCUWoKAvy0JlP6Zz0SjHxl6n88dXfhIKZM3m02rEF0aj2t/X43HTco31dNt2wnaIKr9dBDYlA6VOo6DK9PTwdVfEDyk5fVADA1RgkZglrgatNnbTXsH2jigeAvQKwtZIqpLPPqehiVMX3qOiSqgu72lIZlNMCy8y5ahJjF78eQhUhlB3TcCnCwTBLZi/jsr1uBiAasRn4ze3sdkDXtLJ3vX89z9/wBqsWrebMO06kUcuGddhyw/aI7q96gmXbNqHyIIHSABd3u4Hi1SXYUcUlj53N0Zcemlb23PtOxbYV0/6ayaH9+7J7313quvmG7Q0VTPtfKYVaewGEx+tt/iOQegPTy/oOgbxlUPE9eHsg2efWfnsN2zWpFoaRiFYAvHzLW3z5/PeIJbTZqSVPjXkwzYKrbZdW3PHudXz85Fe07NycSx49p87abdieSVFgqTB24Gsouk1nkJFsaPQVYtVPOkwkCxq8hSp5HCQbyb+tDtts2G5RQeJuhgAqhApPRq05A60MsKHBe4hnp7Si0uAVVPFDoEqQvGsRywTorkmMwmA9nHf/aUwYNYVgeZAWHZvxvzP257NnviNYFiTqREP+/NnvMioM8hvmccvrV9Z1kw3bMYdd8D++fnk4qxevISvPzxl3nsiE0VMpWV1KoKQCgI8e/zKjwsDj9XDxoLPrusmG7RlvDx14KzQWxI3k3wX2cgj9DTgZZwKfoPIfzOB/K0jOuZBjFAWGuqFBs/ocd+XhfPrMtwhwxeDzEBG+fP77eMak+VMWsXDakowWWj2P7k7Po7vXcasN2zV5d0PxnYCCrBMQd2tU4dVAhZ6XKQXBXyHr6LSi4umKNHilrlts2I6RvNtRa88DFQF3V/AdiCoe6LgaaFTgU8STrsASVzOk/lN12dztCqMwWA9tu7bmvcUvUbiiiEYtG2BZFs3aN8Hj9xAtC+LN8tJ6xxbVqmv62Fk8fuHzRCNRrn7uIrodaExoDTVLfoM8Xp06mNVL1lK/aT08Xg/Bch2TAHSWg+Ydm62nFs2Khat4+KynWbloNWfddRKH9jfpvgw1i4gb6r+qlQSSj1jZKBXQprDKURhYDasV2VjZZaiiW3XEb/9RSN4NJiKyoca5+NFzOOXmY3F73PE4BY1aNWTxjKVx94T6Teuttx7btnnp5jf55aM/6NpzR2545TL82b7abr5hO8PKPg7lPwhUEHE10hvd7SAyA219oMDVslp12eXvQ+mLOp1iweOIq2ltNduwnSLe3aHJGJ1S2WqKiKDc7dDuhxX6t6tttepSwTGo4vtAfEi9gYhxW9wkTAyD9fDvzxN56aZhTPp1Wlz47HPqfpxw3VG06tycvqf34ow7TkwrFygNcPvhD3Jc/XO5/5THKS0u55ZD7mfuxAUsmLqYO496uEpfR4NhY5k7aQEv3jiMXz/5M95f2+3cmmteuJg2XVqy1yHduGXYVWnlbNvmqctf5rj653LN/neweska7jv5cSb/No1lc1fwzBVDWTBtcV1fjmEbR0VXokofR5W/D2hzb5EspP7L4O4Cnt2R+q9lLGuXDcNevjf2ykOww9NRJQ9DcIQOdlT+JgS/r8MrMWwPVJQHeffhT3h/0OeUrC2Nb3/wq9vYtXcX2u/ahns+vol6jfLTyo79/j9Oa3Uxp7a4iL++/ZdvXh7OVy/8yIoFq/jt8790emaDoQZRysYuex9V8pQOYugg+QPA1xdcHSDvZsS7Z3rZyCzslYfpMbbsdezQv1D8INiLIPw3quimOrwSw/aCqvgJVfwohCfHZVjJPguyTwJXO8g+Fck+Nb2cvQZ79enYy/fCLroTO7oatfZSiM6ByFTUmgvq+Eq2PYyFwTqYPGY6dx39MMFAiO9eHUGgNMCRFx3M6I9/57OnvyFQWoECrtr3Nnoe251z7jkFy7IoKyrjxRuGMe7H8Shb8cvHfzD6oz+S6g5VhFg0YwktOjZj1aLVNGvfxKRaNGwSq5eu5Zr97iBQWoE3y8u8yQu5/qVLmT1+LkNvfZu1ywoJlFZwc7972XHvHbji6fPJyvETDAT56qXhfDN0OHbEZsqYGZze9lJUtNKPLGrbTPp1Ki06NmXZ3BU0bNmArBz/OlpjMKwbpSKo1Sdr6wIsVHAk0uhT7OhqKLoXojNBClCF16FcLZF69yGuZigVRgX/gJKHgChEi2D1sUBiNOUQKvg7+A6F6EKw6iHW+ld9DYZ1cd/Jj/PfiElEQxF+eH0kb819FpfHzbPXvMqk36bh8XkYestbvDPwY64YfD477NEe27ZZMmsZdx/7MJGQtvS646iBSW664Yow40dNRinFqsVrsFwWDZvXr6IVBkP1UKXPQNmrQAAV+BAafQKuDqiSIVq5ioLy97ADHyO5VyD+gwCwI8tg9cWgFumKSh4iqcMShfB0lArqgIp2GbhaGYsuwyahKn5CFV6Hznr0ERQ8ifgPQpV/COUfA0EI/ooKHo/KPg4r53wA7OhaKLoVwn/rigIfQuCDlMrXYkdX6WxL9ipwtUbEpAvfEMwMdR1MHD0lHuQoWB5k1Pu/02G3djx46uB45O7FM3SWhMWzltG8fVMst8Wj/Z+NB54D7SKWirIV1/W+CxEhGomS3zCPk284muYdm7HP4XuYgdewwcz+bx5i6X4TCoT448txFK8p4Yp9biMa1oLqyoWrWblwNYtnLsPjdXNI/75c3+duIsHkYF6JygKASDDCs9e8xpv3fUTp2lJcbhen3Xo8Tds2Zv8T9jE5xA0bjr1a/xDVP5HJ2NEwrDoK1Gp9jFoL0bUQnY1aewXUfxa16hhQhamVpfwf1bEPQuO0wgCFyrkAcbUG/8GIlb4CbDCsj4m/TCVcoS0DK8oqWDBtMa/c9jb//jQJ0HLCnAnzAbjxoAG8M/95rt3/LuZOTEnvlUEmmPPfPK7Y51bmTVoIwCHnHkjnvTqy1yHdaNq2cXoBg2F9BEcBMd/vKCr0J0S+hMAblcdEdSpbVXgdquFXUDoYgl+lVJRJiC1FrTq20nLBszfKfyji3RXxpMf0MhjWhwr+hnY7AK00+B6FQMk9lQdFZ+vfpU+h3B1Q4TlQ+gjJfTRTZiWBVUdqJRcKXC1QOWchro6Ir0dtXM42h1EYJLBqyRoAGrVowOiPfmfSmOSc4BN/ncKdRw3MmOYrWB5kwdRFfPnCj0nKgqpQSiX5lleUBXnhxjdwuVwccm4frnn+4hq4IsO2TPGaEsoKy2nWvglT/pjB8LdGEwyE4vuLVpVwQ58BcWVBIuFgmLmTFvDC9a+nKQuqIlwRYs3StdhOsM/X7nwXt9fFZ898w+BfHzBKLsM6UXYZ2CvB1UqnRip7BfAAsUwJAoUXVCoLkrAhOh9V9noGZUFVBB3hwlEmlD2PwgulT6AafY9lIigb1kE4FGb5vJU0bt2QUEWY9x/5jPyGeVSUaoE2VBHmqcteYuY/czOWD5aF+Pnd35g/ZVG1zheqCDPz78q0t1+/NJwfs0YhYvHs2Idp26XVpl+UYZtFKduxpmoA4keVvYqeOFnoMTAEJc9VMb6iMyaE/4Lgd9U8Y1ibe8f//RXCf+k4ivUGY2X125TLMWwH6BSJXrAaogKfOP0p1l/RfbEq10IVdZQFg8isIEjFBlVUWXd0NhQ/iMKFyrkYKy/dVdeQzHavMPj65R/5+sXh2LbN/CmLEBG69enKuO/Hpx1r24qSNaVp2/05OlBR39P355uhP63zfC63CwSi4WhcWRAjGraJhm2+evFHOnfvyOEXHLQJV2bYFvln+AReu+s97KjN3InzsSyLHfZqz5QxM9IUVXbUZt6kBWl1eLO8iMDxVx3BVy/9uO4Tis6eEA6GUQpUtHIl147ahAI2U36fweBLX+K6Fy+pkWs0bDuoyCxU8f06gFHEmVhZTcBeTCxmQcLRWmBNw6ODIGadmpAXfF14qEwllmh5oICgVlqsOR3V8FMddNFgcChcWcRTl73M0jnLWbloNaFACI/fA4qM3/6Zf6crCyyXhS/Ly077diK/YV7GBYZEXB5XRqUuQCig+/G1+9/JGzOeIb9h3kZclWFbRamQjiAf/hfsYsdiS8DVJm45kFxgLdqiKxEByQKrADy7kG6tlYoHPXZn6tfOgkXR1Sj3p4hnxw26HsO2jVIKVfYyVHwDKgxRbY2FZy8I/56hhE1aWlAAsrSCy98PSh9j3X3W4+yPZjguon/KhqA8XRC/UXKti2066GGoIsTAM5/itFaXMPjSF9Mm6BN/mcoL17/BzH/mMPu/eURCEcLBcEZlAeg0XqnffrGEnsfszYv/PcYOu7fn2hcyWwaIJezaeyeuHHJ+fIV2Xbx257vVu0jDNoNSitfuepfTW1/CHUc9RGlhWdL+NcvWcvdxg5j250xmjJtNOBghGAgx7Y+ZGa1a3J50/ywR6LRnex4fcS8HnrIf1zx3UebGCDTv2JR7PrmJaDSzMJvI96/pGB+G7Yvhb43izHaXceW+t7F41tKkfUop1JqzIfQHRKagTWMDVSgLAKqwULGaQ73BSN6NSM4FQBWR5CUf6g1BCwjrIbpAZ1MwbFdM+m0a53e5hvO6XMOE0VPS9j94+mB+/2Iss/+bR/GqEirKgpSsKc2oLACw3OkiVHaen8ue7M/Ab26n13F706RNo4xlPT43lz91Hs3bN1lvu4PlQUZ9mEmgNmzLqMgC7NUnYa/og13+cfr+kqch8AlEpjrjagUQyKwsADJPrCzIuQxp+AWWZyfw9qmirAVZZ4HvINa/ohtBlb+6nmMM2xrKLsFecwn2it7YxY+lK0uDP0DZs1oeiM5EK5hCVSgLQPfXDH0t+wSk0TdY7jaQc30VZS3w9IGcK1m/EkyhSp5YzzGGbVph8N6gz/nt0z9ZvWQNw98azfevjUjav2jGEuxquA+AnvD3OHJPXCmTMGUrRr73G7cd9gC/fzGW378YR37j5FUAy2Vx+ZP9eWLU/fz26dhquSyYlYTtjz+//odPBn/NqsVr+Gf4BF68cVjS/pULV2O50idV0SoUUO12aYPLm9JfFUwZM4M7jhzID8NG8tmQb2nZKTnNoljCkRf147VpTzFz3JzMQThScHtceHwmjsH2xNK5y3nykpdYsWAVM8bN5v6TUz+4YbDXkv7Br8IFRuqBtEnfbi+EwmtRpc+jyt4E1w7px3i6I41H6VWHjCsSKSgFJgjidkU0GuWOIwaycPoSFk1fwp1HPZS2iLBw2hKikZTxVGlFayqWy2Lfo/ZK215aWM5Tl73EU5e/zPevj8ioMGjcuiHDZg3hf6fvz6IZS9P2p+Jyu6jXyMgE2xuq8FoIT9KZX4rvRUXmJx8QmU6lz3cimYK5CfhPJl3sj2o3rbVXYQd+QI+fqeV90OBjJP82CP5WjZZ7wcqsKDNsu6iSQRD6VQcyDrwFwRSL68hcUMEMJTMtFljgO4KMhvDl76DWXIhd8TNEJgCp7oUuqPcY0uBFqPiO9Su4BFwN13OMYZtWGKxcsJKQE6AoXBFm5aJk3629D9s9ycQ6kY7d2mG5BBEtLPiyvFz86Dl07dE57VilFEtmL+ee4x/lp7d/oXhlSdL+zt07ctxVRzDm87GMHzmp6gYL+HP9tNmpJXd9cD1zJy3gi+e+Z+Y/c6ouY9hmWL1kTVwjGwlFWDZvRdL+9ru1jbu/JKFgtz5dtbuLgy/Ly/kDz+C0W45PP1wpilaV8Pj5z/HViz+weOaypP25BTlc8/zFLJ65jI8e/wI7WsVgK+DL8dGoZQPu+eQm1i4v4ssXfuDvHzNb6Bi2LQpXFONy6U+IUorVTgyYGCJe8HTPXNi1O8mWAlmQcwEUDMpwsAICUDYEyp6D6OT0Q+q/on8X3cq6FQY+kPqQdxNYTVDlH6IC36DU+q1oDFs34WCEivJKYTVUEU6K+QJw8DkHZizbvEMTsvOzAG1p6M3yst8xe3PdC5ndsKIRmx+HjeLpy4YycfTUpH0ut8Utw66iUcuG3HroA1Ua1gCIS8itn0O/sw+k5zHdGfHeb3z36s/Gmmt7wV5OfHVULB3dPZGs08jcgfwgsUCZFuDRuevzbwO8GY5XEP4Diq6G0C8kuy1YkHsVlndnVPE9QFmG8gnHSi54eyA5l6OCv6DK30VFV6yjjGGbIbqY+PdXRZ3+m4D/4CoKKrDao/uyoPtRDuTfClbrzMdHZ0DhZU7MjRQLMN9BWFlH6XTN0VnraLBzHncXpN7DqPBEVPnbqMi6ymy/bNMOnMdecTijPvgdsQQR4eBzDiQUDDNj3GzmTVpAu51bU795fVbMX5lWds7E+doXMdtDoLQCl9tFRVmQlp2bM/GXqRnORkZfRV+2lz6n7gfAPz9NJJwQYK75Dk1ZOqvyhdrn8D0IByNEQhFmjJvDU5e/jFI2IsL9X9xKh93a8sRFL7B41jJOvflYDj47s3Bj2Drpdfw+DBvwAS63i2jE5vRbjycajTJ/8iKm/jGD+s0K6LJvZ8Z8Pjat7ISRU/D6PXj8HoJlFUQjUcLBMK13bFHl+WxbQYq1izfLyz5H7IFSiul/zcJyVeoU8xrmatNcp0jrnVrSdqeWrFi0mrXLChl4xmBCFWEsS+h//2kcc/mhPHft60wYNZn9T+xB/3tPNYERtyE67dme1ju1ZOH0xdhRm9PvOAGlFMvmrmDC6Cl4vG72O+RAvIwjzSQw+h9acPWhBYwKUDa4Wq7jjFGSVwoEcIO7o45FEJlJsvWCoFfKYtvyIeswvWKnKlCrTgR7mdYIB3+Ceo+hyl6BwMfg2RWpdy8iWZtwhwxbEv5sHwefcyCjPhgDwP4n7Et2XhZrlhcyfuRkguUhdtpnB3zZXoLlyYqEJbNX4HK7tMWW0gsQlkuo1ygPy2VldDNMjUsgliBAdn42bXduTTQaZda/yTEQcguyKS0sB7QFw/HXHMH4EZNxe1w8eMZg/v5+PErBJ099zfP/DGLM5+N4894PaNSyAdcPvYxGLRrU4B0zbHZyLoOSQdpyytUWPLui7BJUaCxEV4KnK8ljXIwyUAFnXyywrB/BRkkOqExWCVWZbXvB20v/GRyTcJyA1RLshKCe2f0hNBYkG1U2FMpf1eO6PAmNv4PoYlTxfbp0/r0mm8I2huRcjAr9rfur+MB3KEoFUKHxEJmHeHcGyQaVwcXLno9WbvmBcsCDqADK3RJCmQPLZrYc8Ot0ygCh0SQtIFgdwE5YgPUeAWoZiBcVHAPF9xMPFNrwXbAaoIpuB3slknsd4v/fBt+TbQlZX0CeRLp3767GjRtXi82peVYvXcu8SQvYYY/2lJcEuHKf2yheXQICXr+XnfbegUm/TatWXIGd99+JfY7Yg9fvfC/uVlDQpB4la0szBi1q06Uli2ctQwT6nLY/vY/flwEnPBpXLLi9biKhyoHel+UlVBHS1rKWJLlLHHZeXwpXFjPu+/+IhKP4sr08PWYgHXZru6m3qE4Qkb+VUlUsN9YOW2N/LSsuZ/pfs2jZqTn5DXO5uucdzJ+yEKXA6/fQpUdnJo+ZFs/nvS7y6udy/dBLGXj6YMJOPytomk/JmrKM/bVFx6ZxK5z2u7Xlhpcv5bK9bom/GyKCy2PFz+3P8REJRYiEo2lCc7tdWnPgKb1476FPCAZC+HN8XPvCJRx0Zu9Nvkd1gemv1SMcCjNlzAzyG+XRbufW3H/KE/z66Z8oW+H2uum0R1Oe/GQ4IqH1V4ZHWwoUXp2QCSEPLTxk6O/SGFQ5ENHuBQ2GwarjqUwjBkkRlxG0gqKC5MCIAF6k/hBU4TWOoO2D7NOw8u+o/s3YzNR1n90a+6tSiql/zgSl6NKjM+8M/IRhAz7Ajtq43C7yG+YSKAvGMyGsi6xcPzcMvYw37/+Q+ZP1pMntc6NshR2x0xYQsvOz8Po9lBWW4/a5eeSHuxnUfwiLpi+pPEiIy8Aujwu320XQCbwYS+cIeiFi4Ld3cPthDxIMhLBcFl327cTgXx/Y5HtUV5j+Wj1UeKYOZujdE1UxGoquQY9dFuADKz99JTcjPsi9CkJ/QyjmnivoCVqI9DHWDVYzrVTFgvwH9QSs4suEY7zEAx3iozJInZskBa/kQP5DUHwHKMcCV+ohTf5EZOswdDYyQfVQ0SXa9cCzm1YQrTkdVBm6r3nBvSNEJrJ+NwELvIeAqwUEEuNhFKAtCjK4Nro66PhECGSfC67WySkZ8VGZlQkq+2/MsiFBVsi5EoIjITLZ2e5HGn+PuJpX70ZsZmqjv24db+om0LB5ffY6uBv1GuXzwaOfU7zGGayUzlVfXhIgtyC7WnXNn7yQdx74OK4s8Po9lJcEcGUIfASwYOpiouEokVCUXz76nYYt66MSXpJEZYHH5yYYCMXdxVNjK3TYvR2LZi4l4kz0XC5Xmsm6YesnJz+bPfvtRtO2jRn14R8smb0s3idiabfa7JS+Cptp4b68LMBDZz5FOBRBLMHlcREoqagyPsbSOSsIByOEgxEWTFnEvEkLycqrXGFVSsWVBS63Cztqx/tjqsKtbdfWLJq+OG7yGwqEWDIn2fXBsPXj8Xro1mdn2u/Shln/zmXsd//Gx8dIKMKs/5ZTWnFAhpKZLE3CsPZiR1lgOT9Rxxc2w/FqFVqZENQCdfkH4Nkp5aDEfumh0t83xW3B1RwiC/VqGOg6jVniNoeI0LVHZ7r23JFwMMyb934YH7uikSgV5UH6ntarWnUFK0I8ecmLLJy2BMsSJ6OMm9yCHNzedB/y8uIARStLCIciBEoqeOGGN+h13D7JB6WkEo+Nr4nKAtCxk8IV4XjQRTtqs2R2dSaNhq0N8XRCfD20i1fJ/SRngAmBrw/r9GuJE4ayNyCUEINAsjMLDwBEHOuBiD5PyX3gO5jkoLKJimBFpdFyShYFVaEnfipBmatKSZ68GbYFxNUC8fVCrDxU6WBHWQDxLEVWHlpJtT5sCI+FwDsJ2/zob3gVC7zROei+F4byN8C9M8n9NbG/+ahUkqmUOhW4O0N0UeV2cUF0+x5jt3mFQSL+HD8uV+WH3HJZzJu8kOLVyeYxO+27A3n1cwDIyqvs2GWF5UmmiqGKMKFAiGh4/dYJylbkFuSQlZP+omTXy+KAk3vS6/h9yMr1Zxz7O+7ejhOvOwqP34Pb48Jyu9i1d6pwbNiW8GV5ESv5FY1Go8yZkJwqsX7TejTvqAMXJsY4sMN2PIaHshXRcJRgeYi1ywszni95RUzw+L00bZseCMbjc9Otz86ceP1R+HN8SW4LMbrs24mjLjkYb5YXt9eNy+Nmv2PqVDlvqGO8Wd40RacvyybLPTzlSA+4946VStkXm9Dbzk+5kyosUxCvxHNZ2gTSnSmNl4C7K+TdjhY4MvjwujvpFE14nR8XZKXH/zBsO1guK23sClWE+TZDauT/nbW/jovltuKxYuyITVlROXbU1v1eQaCkgkBJoMq1s9gYKyL4s7103L1dxuNa7NCUq569EK/fgy8rvb/m1s9l195daNCsPh6fB5fHRd/Tq6foMGzFSKr8aEHgA9JWa73Ho8fMmFUV6Dz0K0ma5KuY68L6ZVjEC+4upMeIsbS1V+7VTiDZTAtwUcSzK/h6O+1xg2dP4/K1rSNZJE8z3TprEikxWDz7U9lvEvqPWkNyUM8KMgf5rAJ3JmsA0QGW/SeAZ3cy91e0TJBzNrq/ekByUe4u1T/3Nsg2rTCIRqO89/CnPHLuM4z7YTxn3H4CbbpUrs7aUTtplR+g7c6tuOm1K+KxBmLm1pA5RgHoCVRieW+WF4/Pg+Wy9MfcbXHSDUfz8s1vpgVZAtjzoN24ddjV3PXB9dw87Er8KUoFl9tF/Sb16Hl0d1wui2jEJhwM8d4jn2/cjTFssfz45igGnjGY718fQe8T92WvQ3ZL2p/qW5tTL5unfx9IWVE5YklSf66qv7oShOT6zQrw+Nx4szxYlmiFg8A+R+zB+FGTWDQ9PYJ341YNGfjN7Zz/wBk88NVtNO/YNGm/5bJo1KohXXp0pl7DPGxbCyOpWR8MWz///jyRgWcO5r1Bn9GiY1NOvvGYJIXnfa/PxJ2UPMOCBh+AhKl0C1jfZyhKpfmhH+2m4EMLxM7H3r2TTqtY8U2G8n6kwetYOWcgDT8Ab8/0Q9zttamhdzfiwnfJYyhVHVcKw9bCgmmLGHTeEF6+9S3KSwLcMuzKpGCxdiTd9eWuD68nt14OPr+XaAZXg1QioQjKGfMsl0Xj1g3xZmk5ILYg0LhNI/53Rm9eyjAmiiXc++ktHHlRP16e+ARHXpIeKKxV5+Z4/V4OOKmH026bb4f+xIoF6fGYDFsvdnQNdtG92EX3oCLzkYLHdFDBOGHSlAXZF4G/B1rxGVs5XV+4soQAtK7O6HHW42y3QPIg90YoujJTKyH/Nqzci5FGX0LuDRmOqafjF2Wd7LQpAuGJqOAf62mXYWvCtkPYxYOxC29Fhf5G8m7RcS7iREhzffF0h7zrqFRaRai0CqhqrE2YI7l2onIhwIXu6x7IuQ6KbiLddUFB1jFYBfciDd6Aeg+Q/n64Ease4j/C+T8MdjEEtu9099uswsC2bS7pdiOv3P4Ow98czV1HP8TciQvo2jM9y0EcgVveuIoFUxfHTf1ipoBiSdqxMSrKKs1cFs9YyjXPXYRSCjtqY7mEk288hvKicv769t+MsRL+/PofVi9dS9HKYv786h+C5clmWpc9eS6td2wZD0KnlCJYHuK3T//cwLti2JJ55NwhDDp3CCPe+40nL36Br174gb6nrnvV6NInzkXZioqyIMpWcRPWVJPYxHzhiWnDyovLuWXYVYBgK0U0EmXPg3aj59Hd+f7VEXELhUTWLi/in+ETqCgPMu2PmSxOSQt26Hl96H3ivqxYuIriNSXYEZtwMMz4kVPWK2wbth6+fPEHbu53HyPe/Y1Xb3uHx85/joPPPiDpG//49S0JlCcMlv5jsLw7Q3gylcKuE8U7icTxNqFCsSDvRu23C0AArKaQfx+UPgWqOENLI6jy91HKRoWnQygl57NrNyTncv13aKzTrqiuK7ogtTLDVsq0sTO5cOfr+fGNUXww6HOu3f8uep/YIym1Yurw1GrH5hxwYk8mjJwSV/a7Pa6MLgcxGcG2VdzqUIDeJ/agY7f2iAiB0gr82T4e+fEunrlyKKsWr0mrRynFq3doM9yF0xcz8r3kNHYNmhdw8+t64vbHl38TDob1uCowecyMjbs5hi0OFV0JKw+AwNsQeBe1+jiU1RZUhkxJcbxI3rUQ/pPKVdwMSgWgcoxVJK3aWnkQnygFAS8UvABlzztpHDNQ8pj+HV0EFZ+l7PQhDYY61Y2g0sKhAhUcvY5rMWxNKBWClf+D8ueg4hPUmnNQ0UKwMqRKjiNIvUeQSGLmo1g8jXW52ZRX/mkvhdzr0P04Cngg9xaIjIfQX2Ts++Xv6vbaK520i4nzMoF6gxBXQ0ceiLUjABXfrqNN2z5bfZaEtSuKePD0J5kzXuenbdyqIbcMuwrbtlmYEEwoEo5yx1EPUVGWbs7SoHkBoYowO+3bib+++5cDT+6pcy9boiPWhyNarHVb2M5kK7bSn4rL42L10sr0eMHyEP+NmEz9pvXiVgt6RUMllFcEA0Gu2e8OClckC7xur5vDLzwIgPa7tYlPCAGyco0519ZGKBjm8QueY9wP47GjNrkFOVz59PnsdUg3fnqr8uMZjdi8cvs7SWnAYjRp05CyogBturZi8cyl7N53Fwoa5+u0diLY0SiRcBSv3xOf8LtcFm63K00BEFMyKNvW0b+DEab9NZM9++2WlNHDl+WNC8xKgcvj5sb/DWD62HQ/79NvOx7LsmjYogG+bF/cKiI7PyseXMywdaCU4o0B7/PNS8MJhyL4s32cdMPRnHjtUQy75/2k40Z9+Dsj3v01qfziOT5GftGVw0+br31YrXxUeAp4e0DoT/QHPuZ+EMuYYKM/8i7SViMU2pzQTlhJtddq30VxJcgGXqdsFLAQ8aKKB0Dgw/Q6c85CLO2ChqcrhMfrE6kgSrKr5R1s2HL46Z1feOXWtwmUVeDxuul13D5cOeQCht3zQZLCcuG0xRzuOz2tfEGTfEIVYfIb5bHbATsz7ofx9DphH5bNW0EwECIciqCUwu1xgVRadSk7XTC1XBbZ+Vksmr4k/u22XBYz/56Ttnjg8bkJByNYInj9Hr595SeevvzlpG8+wD5H7EnTtjpl3m59urJguo6VVFEajKd+NGw9qNC/qMJbQTmuV55uSMHjUPE5ye4D5bCyJ+kuAT7HVcGrx9WKr8DbDwLfoBUBscCvsUWDdbkfWDquQWR2wnkiSGQCyk5MS54YqwAQDyr0H2rNWcltBrDaId5u+m/P3hBIuC7jkrDVoSKLUEXXQXiuVuC72yD1ntDKdZWY9jMMa04howuBNASi4NkTVTEcfD2pDDzoptIqICEKbNLfiXX5wF6SUCagU4RGlyds81Apa+i6VHQVrDqK9DShOZWWBZ5dks+ZZN2z/bHVWxgMvuRFJo6eSsmaUkrWlDJnwnzuPPohcuplp1kFVJRWZOxvlw8+D3+2j3+HT+Dt+z/iiQtfYMhfD3HWnSdi27ZedVCAUnj8HnzZPuo1ztdR490u3F43bo+LrFw/1zx/Me8O/DQehd7lttj/+H3YaZ9O8cBz2flZXPfypfiyvbg9Ls4feCYrF64mkCEycyQU4blrXwegefumtO5cmSZvwbTFTPtrJrZts2DaYtauKKqp22qoJT558it+/eRPileVULq2jGVzV3D/KU9QXhJIcm0BtKVJhv7a9/T96bRXB2b9M5cPHv2Ca/a7gydH38fZA04hr34OdlQ5EysteGbl+vHn+omEI3E3mVhsgTPvPIlh934QVw6ICN0P6Uabrq0ArSTzZXm59qVLKGhSD7GEA0/pSac92zPznzkZ2zfgeL3a4PV52O/YvePvYagixPev6ejMy+atYHmGdKaGLYtxP4zn4ye+Yu3yIkrXlrFq8Rpeu/M9pv01k/pNCpKOtaPRtBVaEH79fi8inlO1QFE+TEdNzrsNybsJXJ2o/IjbWvCVHLSrgYt4JPDY//6DnLzLCWO7q7kObqRi1gpevcLgdvI6e3aB7NOclYQM2RaKE6IoZ51M0mexdAgAKroKFZljLGS2cFYsXMUTFz7PykWrKV1bxtrlRfz45ii+f20kjVqlpxzMZPGXUy+bS5/oz9plhXzz8nAGHD+IXXrtxDXPX8w+h++hXbqcgIS+LC/+XD9ev4fs/CwsS+JxB8QSOu3VAbfbRXlJ5YqYUoou++5A/aZ6PPX43Bxz+aHs/r9dERGatmvMxYPO5sc3R6UpCwC+e+VnggGtSD78goPiZhGJlgmlhWXMm7yQSDhDJHHDFoNSCrX2QrDnaosmtRZCv6FKHtaK0SQRXZGuLADEA/UG6ewDwS9RRQMgOhep/xz4T0KPozHXBD+V5tv10eOox/mxdFpb/1FOZPj4CVCevXUcmNjxnj0g+2xdRvKReoNQwZ9JUxYA2NOxQxP13/7DSRqDy4aiVBSlKlDhmSi7PL28YYtCKwsmAMU6QHF4IqowFr8idUqZKd6ABfUeREeeHwmlT0Dpc0jDd7U7TTy7hqIyBocfrMZUKhScH6mnYxOVv0elMOoG3yFOfALneKsh5N1FPEZR/oNIZDwZMy1Qiip7GQDx7AxW/cpdoT9RkQUoFUFFZqHswg25dVs9W73CYOXCVWkf/cIVRTRv35TLnuyPP8eHPyWQoNvrTvr/wdMHs3rZWic2QITJY6bTeseW9Dlt/7hFAYCIxbN/PcwRFx1E6doylFKIJZx998l8G3yPL4rfpGGLBkmBlPy5fv4ePoHX7nwXZStU1GanfXbg0HP78mXJW3wdeIeTrjuKVp1bVPlxX+WkulNKsWpJpQmj5RLWLi/itsMe5PLut3BWu8sZ/dHvGeswbBmsWLSacDBllR8oKyrn/i9uJb9BLl6/B8ttxSdfljs5ONeHj33Jfz9PIhwMY0dtAqUVBMqCHHv5oZSsqQzgads2d75/HRcOOotgeQg7qhAnPsHXZW/zbcW7HHlxP1bMr9QKK6XIa5jL3cc+TDQSxY7Y5DbIpd+ZB/DhsqF8G3yXG1+5nJx62eQW5GS8xqKVlVYyi2YsSYiaH6VoVQkv3TSMC7pey/ldruH1u9/b1FtqqEXWLF2bts1yCauXrOXOD66nefsmuL0uvFmeygQD6GjxMSaOnsDHT35HpfBgIZHpkH2WE4QrRlSnMioYrP8mBChwtUSa/o3VbCpWweNOlO+YcOABX19YfSTaTNEGBMk+GqvRN0jTKVgN39XBtdw7VHGVCVY8kTlUKjCiEF2NXf45amVf1KrjUIWXotS6VugMm5PiVSVYKRZM4Yowqxat4sKHz2KnfTvh9rqTghlDsgvXktnLGXLl0LhlVDAQYvyIyfQ76wBCFaGkSfyeh+zGE6PuxePzUF4cwLYVlsvF+0tf5ofIBzz124P89e2/cWtCl9vFgSfvx8W73ciKBavjY+PB5xzIwK9v59vQuwyb9SxN2jSma4+q3SdjiwuLZy5NUtIVry5h6p8zOaPNpVzV83Yu7nYj5SWBKmoxbH7CCVHkE7ZFF+ugq77D0JOcdaxsqlIovIKkFdbgz4hvf50WMVHJIA2RRp86Y2ER8YlZg/exmk3DavwTRGaQNJHydIfCK3XE+tgkzn8MVv5tSNPJSJOxiHcPPbmqyh4r6lj72mtJtnAIoaJLUCsPQq05BbWyDypi3MC2aKIrSEvnYi/XQS1zrkArpFJlw8TFMBsKL3eyZNhAEEK/I56uTlDMxP5hQaOvwH8I2IXE+1/+vVjNpmA1HYukxuiwGkP5WxB4s7Kd3p5YOWciTScgTSdgZR+ngxpmUsBBvL8qFXXOG8OFsleiVp+MWn0iauWBqOD2M+fa6hUGZ911sp5guSxEBF+2lxOvOwqAYy8/jC9L3qJrj05J/bugST5uT2UH0xN5fYDLY9Fyh2YsnbOcn94enTT+ddy9He13aUPxqpK4aXc0Ek3ygWy3c6u4AsPr99CweX0mjpoS32/bikWOz7eIYDlR8GPpHzPR/75TARj1wRjKiys//tl52WTlZTHljxkEy4OEKkImsNwWztGXHkJWbpZWWgG+bB+79e5Cs3ZN2LPfbny86jVOu/X4JCWYy+2ioEl+/P8kBZloE9eyonL+GT4Rl6dS8PX5vfQ4qrtWejlSZTRiE0gQIHPr51C/aT1cLh39u2HLBgx/c3TS+7Jm6dr4ymosy4hlWZxwzZEZr7H/A9rMd+6kBcwYOzvhOiz2P3FfPnn6G51hpCLMuw9/SihYxaBt2Oz0PKY7uQU5ePw6xoAvy0tB43rs2W9X2uzUkmGzn+W+z24hGkpeCW27S+v438GAYtHshIFUhVHYWjC0SxJKKST7DESyQdzxbagiRBImgZ490EK06Mjd5e+QtGolLkeoIblc7hVk/OT5T9FnssucoEaVJpCSezmUPoxWKlRA8A+ITF3nPTNsPtrv1oaOu7WNZxbw+j1k5WXR7+wDyW+QxzO/D+TdhS8kxR0C2KV3l3h6ZGWrJNctj09bFYZDYSaOTn72x11xOC06NktydQxVhJIUvHv02xVftvY7d3tc/PzOL0nWhJbbYvFMnXI2MYvTabdlztLRdufWFDSuB8Drd72X9D04684Tef2u9wiUVlBRWsHKhasY/ZEJLLelIuKFrFOpDOLmBrKQnIsRcWPVH4zVbBJpExv33iSPZREqJ/k+cLVE2SWONVYCOSch7o4QXUp8zBQfklC/eLsntCcLInPBTkyJHHLS1+nxVZy0jOI/1LEOSyUL8ffRf5YOIkmo9h8JgU/BXuNkbChClb2SoQ7DFkPulcSDYSKAH3IuBcDKuwKr2QTtfpiIKzWOgU3lN9sL7nao6DKo+CT5MO8BWO62jntBzHrFhSQptLom1OV3XGoSLWQizkKAXvQV0e+NuHfQwZIzkXMRAKr8LZJkC1dLiK6C6FydXUQFUCWDMtexDbLVxzDY79i9GTrpSZbOWU40GmX2f/Nwud2sWLCSuRMX8P6gz5n658ykMqsWpQcaiqOEVUvWcPFuN3DsVYdr3+3yEF6/h17H6VRgh194EL9++md8sh+LVAzQoFl9nhh9H58/+x1N2zRiwfQlLJi6OL7f7XFx1KWHZDz1ERf2469v/k3a5s/18dWLP3LF0+ezYNripCj4O/fakdyC7HhEZoDSonKm/D6drj0zpRczbG7a79KG12c8zdxJCwHFvEkLCQZCzB4/D4Cht7zF9HGzkybs4Yowa5YWZqzP6/MQiUS56aABnHBt5QTe5XGx24FdERF6Ht2d1+96D5fbhW3bHHvl4ZXHuVw8PeZB3nvkMyyXRYNm9Xnz3g/j+y2XRe8Te8SFgkT2P34f3rjn/STfXZfbYsznf9Hz6L1YMmsZLo8bHOG7cauGNHCUEzGXHaUUYz7/iz6nmJRgWyL5DfJ4depgpv01CxFh8axlFC4vYuofM2nTtRXPXfMa08fOIppi5TXrn7mAIjvXxo7CEWfFxlw/oKD4TvAdTqXwKGC1QKxslGdXsBqA7ax+ZZ+ZVLcUPI0qewnsVeDdW7sUJGYzcLV03BGSEU83FF7SzCSjM1CRWYCPJDMJBDydHSE45r8bRAW+B3eXuOBh2HJwuVw8NmIAU36fgR21WbNsLYtnLmP62NkUNMnn5ZvfYsIvU9PiDfz306SM9WnFruKDRz9n7Hf/Ur9ZASsX6r7gy/bRsVtbcvKz2bPfbkz8dRoAu/fZOSl98tl3n0y9hnnM+ncevU/qwYDjH006h9fnYc9+u6adO7deDi07NYsrE2KIwD/DJ7Bnv91YNq/SQsfj99C5+w78M3wilsvCjuq0un98OY4+p+6HP3tdwfIMmwvJHwDZJ6GiJXoSEpkK0QXY9u5Q/jpU/ERy/nggMraq2oAoVAxHhf5wcsnPQysT/Iivtz4s+3Qof00fbzV2Jl1ODf6DUPUegeBI8O4HJQ+lnMOHZB2V+fS+g5zYC4nUQwU+Q7JPdawXYmOsX9cfLURPRZyJWfg/VHQF4mpSxTUaNidW9sko7156gq/CEJmCYKOiq1HB3yDwDkRnJxdyFEyZiUJ4FmrV4eA/Hq2MCAJ+xO9kiMk+G4rGo11g3ODrEy8t7g7Q4DVU4EPt4lgxCkg8v0dbM2Yi61QouSdlYz6Uv43Ku8kJ8pmgrPPunx7HwF6OCk9DPNt+mnvZEJ/M7t27q3HjxtViczaNobe9zedDvo0HfIuEo4QypDGsChEBqQxe1OfUXtRvWo/fvxxHt747c81zF+Hx6pW2+VMXMfvfuXTdb0eatat6YJv5zxxu6HMPYgl21Ob6oZdVGfl+xPu/MfD0wWnbLZeFWELLHZqxfN5KEImbtXv9Hg48uSc/vjU67j7hz/ExdNKT8cBIWwIi8rdSqntdnnNL76+jP/qdQf2HEAlFcXlcuFxWxjgWVSGW4PV54sEIW3ZqzvFXH84ng7+hZafm3PzGFfGVqFVL1jBh5GTa7tyajt3aVVnn2hVFXNLtRoKBIOFgmLPuOplTbzk2aeUrxvSxs7i61x1JbjuxdokIDZvXp6Jc1xMJRbS5riUccm4fhr89mlBA92Ffto/7PruZPfvtlnaOzYXpr+nMnbSAq3vcTjgUwe11U69RHqsWr8noB65RXPvoIrr1KqVFu8rVgUqNvQsKXtQCqZWD1HtYa/0BZZdCcBS4GiPefapsk1Ih1OrTtECiwuA/Fsm/E7HScyur6HLUyiOAkvSKYrmZJU8HH1MJqRx9B0FwLBBzz8iC3Cuxci9a1+2qc+q6z27p/bVkbSn9d7ya8uIAbo+Lpm0bs2TO8njmo+ogUpk5wZft4/Z3r+GdBz6moizIZU/2j1sFRiNR/vz6HxDY98g9M46XMQadN4RfPvoDO2rTpUcnbn/nWho0q592XKgixOV738L8yYsyNAz82X7adGnBgqmLUUrpdI4KOnfvSFlRGQunabNaj89Dj6P24u4PM6W723yY/pqMUgq1+li9oo+A1US7bKkNcSlJGF8lW8dyCQ6H6HzIPh8r54zK8wX/BHs1+A6sDPqaAbvsTSh5lLhyof7zWJ5OmdtfeBMEv8hQixP7wL2TozQQ4ivGVjOdei/yV+U1uFphNf5xA6679jEyQTp24S2VsYEkx+mr1Zdh0wIZZp0Hqki7v/gOQvJujSvmVXiKDsbp3XedyiQV/B219lIdkBEX1HsSy987c/vL3oSS+zPsccq6Ozrvo0VcaSc54DvASeHsuEhIDtL4Z8Qq2IBrr11qo79u9RYGifz09ui4qaHLZa03urXLbdG4TWPKCsuIhCIccFJPRn4whmB5EG+Wl1adm3Puvady+eDz0sq27dKKtl1arbdNnfbswOsznmbhtCV06NaWvPpV+6I9ceHzGbfbURuiOsjhvkfuyY7dd+C9hz8lVBGmoizI+JGTadKqEcvmaTNcy2Uxb9KCLUphYEjnu9dGxP1kbdsmmpq6MxWB3IJsfFk+StaWsd8xezPmC/2RdbldtOjYlGOvOJxjrzg8rWijFg343xmZB81E6jepx2vTn2LWP3NpsUMzGrdqWOWxT1/+ckqMD9FCg61QKFYuWk2LHZpx2i3H8dRlL2FH9WrzD2+MZJ8j9mTM53qVJBwMM+2vWVuUwsCQzpjPxxIKhbEjNtFIlFWLQtgZIsNXIrzzdBsOOrUIWAKevSD8D3GB1mqI5T8A/Aekl7RyISuzy0vSceKFhu/pzAZWQ73aUAWq9HnSIyLH9+oATqoc8h/USgzlWEUEf9FBE8vfQq82BJwMD1uWwsCQzLQ/ZxIsDxEJRYiEIiyauTRu2VQVHr+btl1aM3/qIlp1ak55SYAV81c5LlmKXfbbiSF/PpxWzuV2sd+xe1erXTe9egXHXn4YiNB5rw4ZrbcARrz3G0vnrMhciYKKsgrmTVrIpY+fy3evjWDmP3NQtmLepAUce8VhfLX0R8qKygkHw0z5vYp0eIYtBmWvgcgs4opKuzq+/D5tRRCZqYPOuTo4sQYioBTi6YLkpGcCARDfvtVql5VzNsq3n44/4OmGSGoKXIfIVAhVNclXQAgi0yDnEj3xC/6Izm+/DLw9IfIv8ZS20YUoFdLju2HLJfg98fSdqjr5hLzaPSG6TGtjvf9z6qgA/IinPZJ9WsaS4umaZAlTFeLrCY2/g8gC8OysZYkMKBXMYD0Tw8ncFJkB/mN14MPyd3Q7VQlEF2pLA1VCXOERXQBbkMKgNtiqFQZrlxfy8zu/Uq9xPjn1spMCdCml8OfoYIfBQCgtmruI0PuEHlz/ymX4s338OGwUcybOp/eJ+zLl9xns2rsLp1fhQ7ihNGhWP+MKQhoJgoPLbYFIsoCjtHl6z6O78/6gZLOv/Y7fm8+e/hY7alNeEtCBHg1bFBXlQX4cNgplK7r06MR/P02M73N7XDRp05jVS9YQqghnXLXttGcH7vv8Fhq1aMDY7/7l7+ETOeKifoz77j+ad2jGTa9fUSPtzMnPplufndd/YEJ/9WZ7dTTw4uTVkNLCMg46szdPX/5y0vb9T9yXP7/+RwdWjNpxn2PDloNt24x87zfWLCtkn8P34NOnv4kriNw+Nx12acOCaYsJhyIZJ2IFTevxwFd34W/VFhWeggp8CZ4uEBwNVjaS/2CNtFPEq10Tqne089sN0gjUspT9EcR/MKp0cPI3w5OqzEq3YDBsfsb9MJ7Z/81j78O6MWzABzrTDFqJ3q5raxbPWuoEN063MnB73dz76S3sfejurFi4iq9e+IFIOMqkX6ZSXhLgksfOIb9h3ia3UUTYce+qAnAmY8WUyALN2jVh2dxkBUIkEqXjHu1p/ON4nbXGoUmbxkkZPfw5fh2kuQrlhGHzoMKTITgGvN0g8C1JwQalccKEJD29MliQeyOScw6oMu1vbRc6MVwWQva5iHf3GmmnuDtW78AkObuAysCKMUKIqzFK/I7CIIbP8Q+f5/zvBxXRMWoMWwwqulhbFLhaoqLlKdYvot0FlFBldoSsE5H8OwAXBD5ARebroMWRKeA70MlStOmIq7nOnrRBZEo7aoNYiK8XKvBeclf29obgt+jFhvLtIgXzVuuEGSgNcOkeN/HSLW8y6Nwh3H/KEzqdHPoje+yVh/PShMfovHfmgU4pRYPmBWTl+Hln4Cc8fcVQPn7iK375+E/u/+JWbnzlcn56+xcu7nYDD54xmLKiqlamao4bhl6Kx+fG5XZxys3H4s9J9zk8866T6Lh7O7r0qDQJ63fOgezSq0tlfntFkh+6YcvglkPu4/nrXmPIVa9wdU9t2h2j636defG/R+lzWq8qTbwty6JRiwb89e2/3HvSY3z8xJd8O/QnLhp0NgO/uZ25Exdw+d63cMsh97F07vJav56rn7uI3IJsLJfFPofvkdE154RrjsDr93J8QoDEvQ7pxi69dkrUN/DuQ5/WensNG8az17zK4xe9wEs3DePCXa9PiraeXz+XwWMe4NSbj6uyfLA8RPtd26Ii83UqxfJXtJbefwhWww9BXNirz8JefRIq9E+tX4/kXu4IES4dIdmbwTXM20u7M+TdSFy54GoE3oOTjwv9tN2lVNrS+f6NEdxz/CCG3vYWl+5xEzP+SfSbVTz5y32OW2HmdRIR6NitLRXlQa7Y+1beH/Q5nw/5ltwGuQyd9CSdu3dkwImPcskeNzLivd9q/Xr6ntaLTnt2iMeWOe7qdMuxeo3z2XHvjpx7/2nx779YFr2O35uGLSrTSK5avJqJv5hgnVsSKjwBtfo0VOljqDVnQ+DthL0W1H8WGgzV8VwyIdmIR1uoqLXn6xSw5cMgMgdp9C2SfQp20QDslUdilz5b+ylh3V0g6xjABZIFeddmOgj8R+hV5HiARIHsI8DTjUqFbgQCH9Vuew0bhIquRq06FlXyKKrwGii5i8oZtAtyr4OGn2oz/oxTZwtxt0bEiyp+AFX8EJS/CqHRSIO3kLw7UGWv6f5adLu2AKhFRHyQdwfxtKI515NpDV1yLtSxNqxY4EbRsRa8e6NdgAAUlD5Xq+3dEthqFQZzJy6gvCSAHbFRSukVg4T4WUWrSvj57V+Y/ldyADkR7ePvy/bR57T9Afjjq7/jKxEiMGXMdKb+OZNnr3mNuRMX8Osnf/L0FUNr/Zr6nNKLO9+7jo67t+Ovb/5Ni79wys3HsFvvroz7YTz//VwZpOm9Rz4jHAwnRcg3+cK3LCrKg0z9YybhYET7myasyIol2BHFuB/GM+LddEHUl63761GX6knL3z+Or0z5VR5i7Lf/Ury6hHuOfYSZf8/hv58ncdfR6WazNc2O3Tsy6Kd76NqzM8vmrmDRzKVJ+/f43y6ccfuJLJqxhI+f/Cq+/d+fJjFv0sKkSOKmv255/PLRH4QCIZTScV3ivt8CvmwvU/+YyXuPfJZsXSA6k4I/x0e/sx1Xg/B/VA7OOuUXgFpznjafDU9Arb0AtUG+uhuOuJpA/Xf1yoByQTBFSSXNkPrP6ejixQnCUHQFVHxFuhBk+uyWxIh3ftXfTKXjDiS6S/myfEwfN5sXb3ozSfFluSw8Pg/+HB+d9uxA/aYFLJ29jGAgGA8aOGGUjrg9qP+z/PnV38wZP5/HL3yO+VMW1ur1eP1eBn57B/3OPoCGzQt44+73U/Z7GPLHQESEB08bHA+IXFFWwTsDP4lnfQCtREgN9GjYzAR/QVsOxHLOpxCeBaXPgJ2o/LeIZVJAssGzh07zGh6PjgkQ0RkH7JWo0hch8AlEZ0LpS1Dxba1ejogg+fdBzsXgag9lL6Vcl0DBq4iVjyq+X7uAgW5zySPoyVeCEG/G1y2L8L86ThA2+tkkWmnp1IqUv6vdY5KenYXur15tTQAQGk2lFYJAeIoOsln6jO6vgS9RJU/W9hVh5ZwJ+fdrt56KL0iy8AHIvQNxd0SVfwrRac5GVRnTI65g2D7661brktBih2bpK7HO87KjihHv/EL95gVJk+5GrRpw7QuXsGbpWrr27Ezbrjr1116H7MbciQsIlgdRSrHTvp2YM35e3BwwEoqwYGqGwEM1zLJ5Kxh45lMEy0M6cJyz3XJZHHhyTy56+GxAR9JPJBKM8NCZT+HL9uJyu8jO82eMu2DYfPiyvDRoVsDqJel57ZWtmDxmOgunLU42I832cdPrV1BeHKDVji3YpZeOwrp73134+qUfCZaH8GX72LPfbqxZVhj/1tq2isezqE2ikSi39LuPkrXp1jetd2zBoOE6+uxHT3yZ9K6GKkIMOGEQbo8by2Xh9ri4/uVLa729hg2j89478OdXf6fvULB0zgruOGJgpck02rLrymcuwJ/jJ69BLvseuafe4dm1MnIcfvDur4VcOyGfs4qAXQSurFq9JoquhPAkklIlAeCFxj8j4kYFviA5N3oQSu5Av2COUJt7JWJVw83MUGfs3GtH/hk+MaPyMVBawe2HP5jmOnPslYey835diEai7H/8PogIzTo0xeP1UGEFcXvcdOnRGYBF0xfHFb0ul4tlc1fEZYja4qWb32Tke7/pNI8J+iqPz80L/z1Gk9aNmT5uNotmLInvU7bi65eGo2wbt9eNshX7HL4Hux7QpVbbathA3F1JDgKbiA0l92kT77iJtIC3B2Sfg9iF4O8b989W7q6VGQisfLAaOfEQYpOykA58WNtUfAZlr6P92mNp9xTgg/xHsPw99MpxRUpgxPAkCE9Ep8uNgrsDZJ1U++01VB93Z9Im1HFsKH/bsYZJzFjUDvLuQOwVOlih21ml9/aAwEp0/7TBsxNUfE/luxB0+m/tosKToXiA047E9XM3ZJ2LlXuu/rcsVXlRDiUD0Fmf3GDVR3Kvq/X2bm62WoVBQeN6DPz2Tm495L6k1doY4VCEssJyfNk6X7cA939+KzvskZ5u65x7TqFBs/rMnTCfg846gHY7t6agSb5TVk/ATri2ijQyNcjyeSvj0ZWVrXD7PEjUpvVOLbjwkTP5b+QkVi1cTagic+aHcDDCfsd0584PrseyLMqKy8nOyzJ+i1sAIsJTYx7ksj1vomRN+gTbjtoUrynBn+1HnD573cuXcsBJPdOO7Xl0d25982rGff8fe/bbjd4n9iAaidKqcwsWz1yKUorDLzio1q+pvCSQltXB7XFRr1E+t719DdPHzWLe5IWsXJyextSOKkLRMM07NuWVyU/i9rgpKy4nK9cfT1dq2Lzc/vY1XLv/ncydWEXwLUvIcnyjAY685GCOvuzQtMN02qM3UIFPwL0Dkn0mIhbKfwwEf9AHubuC1bS2LqWSyDyS8j/H/C7zByH2AuzgRL2yl7ZaECvjgSZjsKx6KLscxIvIVvsZ3aY4444TmTdpIaM/+iPjfqWgZefm8bSIO+69A5c9cV7a9zErx8+QPx/ik6e+Jrd+DqfceAwAx19zJENvfRvLErLrZbNL79qfgM+dMF8rCwCP143b4yYSjnDWXSfhz/Yx8oPfWLu8kGgkWQaKKUbcHuGxUffRZd9OcbnB6zd+4VsC4u+Lyrkcyp6p4ogKsHYAe4nuvFYBUvBcxgww0uANVNlQUBVIzvk6MGH26ajgCLSLAOA/rDYvBwAVmU08CB62ExiuAvwHg68ndsVPYGfyb09QiuTfi2SdBERQdnnG6zXUPeJug6r3JBRdTbKff4ygVvzjKP3FQuoPrVQSJNaVPwDl6gDRBUj2qYirOcrXT1sY4AEVRXLOrsWrcYjM1zE/FOhrygJC4NkFci/ADv4K0TVgZ7pegAhknYLk3w042Z0kZ5udc23Vkk63A7ty9BWH8engr9N3CnTp0ZkLHz6T6X/NYpfeXWizU8uM9ViWxTEpgm5B43q8Mnkw//40kRY7NKPTnlVH364pOu/dkbwGudjKBgWn3HQsZ999MpFwhGt63RmPglwVyraJhKOsXV7Etb3uZNXiNbTt2oonRt9HTr4ZdDc3Tds05sqnL+DxC5+PC4GJNGrZgMdG3Mu/P02i3c6t6Npzxyrr2v/4fdn/+Mooxy63i6d+e4C/vv2XnHrZ7N53l1q5hkRyC3LY9YCuTPtzJgqdf/z+L24F4PELn+eHYSPTUi6mEglFULbiugPuYtqfM8lvmM+Tv9xHyx02NGCNoabJzsvizvev49I9bs4YJE5FbJ4YfR+Tfp1GQeN89jlizyrrEu/uaQG4pN7DEDoaVFCn9qqLj2zWKTrbgei0ZdLoS0R82GVvo1ZdQ9UrKDFswIdddIc29xUvFLygIzMbNisul4s737+eQz2nZvxOKtvmmucuZs2yQpRS9D5x3yr7XPMOTbniqfOTth135eHsuPcOrFiwir0O3q1OvqnHXnEYM/+Zg4jg9rh5acLjNG7VkPEjJ3Nup6syvpeJWC4Ll9vis2e/5cXr3wDgsif7c8zltT95NKwfK+8q7MAnYC/OtBeyzkA8rSG6Cvz9qpw8i5WP5F2fvM3XAxp9CuGp4N1LB4KrZcR/BKr8TZz85Ej9lxBvd1RkIWplPzKntE2qQS/vhcag1l4OhFBZJyH5922zk7CtCSvrEOyKfpWK/iQEfL2Q7DMhMh28+yHuzJnkRDxI7gXJ29ytoNE3EBoH7s5IhtSdNY6vB+Aj7haUdxtWzmkouxy16lgnU8m6XA2cbArR+ag1Z+igo549oMHr22SGj61GYTDr37m8euc7ZOdlcenj59KoZUNCwTAL1uFH+PeP49njoF3jKwQbSn7DPA48Zb+NbfIGk5Xj58X/HuXPr/+hQfP68Unf9LGzmTd5YUYhSET7uNtRG6/fy/kDz+CdBz9m1aLVRKM2C6cv4ZuXhnPyRt4Dw8axavFqXrjhDcpLApz/wBnssEd7lFLM+HtORmUBwMpFaxh661vc9f7G5cv2+r1JSoTaRkQY+M3t/P7l31iW0OPovQAdkPSHN0ZWGbzRl+0lGrWxLIurhlzIiPd+Y/Z/84hGbApXFvHyLW8x4OOb6uw6DBAoq+DlW95i4bTFnHjtUfQ4Sj/LaWNnVfkcQ8Ewdx/zCEMnP7lRwpyIBb71p/qsSSTvRoilCPP10YGPAMqGULWywEM833LuVUh0NqriKyAKKoAqvh1pPKJO2m/Q2LbNuw99yj/DJ9D7hH059srDERGm/D4Df7YvzfJJl1Hcc/wg3pr7LLkFVac3Xhdd9u1El33rQJB16HNqL5p3bMaCqYvY46BdaeQEMnx74MdVKgtcbguxLMQS9jliT9p2bcU1+90Rt8R8/rrXOeyCg/D6qkiPZ6gV7PLPIfAheHZF8q7Twd8ii0BVlepTQelAVMOPsXwHbtQ5xd3RCUJXN4inKzT8QqfP9eyKuHU2EBX4lKqVBS70VETA3Rb8R6BWHUHcUiHwBWSfoTPsGOoMFRqLKn0OrMZI/m2IVV+voEfXEVC74nOUdz+s7FM26pzialqtdMo1hVgNoPE3Op6Iqw3i3UPvCP2m031mVBYI2hVBgZWD5F6CKn5Axw5BQWQyVHwNWTWTZW9LYqtQGATKKrix7wDKisuxXBbzJi1k6KQn+eLZ75g4uorIv0oHUnvltrc58uJ+W80Ke069HP53RrIQXdAkv0rLgkPP68vlz1zAvz/qQIgv3jiM0rWlJojcZubWwx5k4bTF2FGbyb9N571FLzLtr1l8/VJVeYq1G8roj/5g9vh5dOzWru4auwm4PW56n5CspPD6vXh87nhgxkS69OzMw9/dwcy/5/Dvz5P48vnviUaipr9uZp669CVGf/QH4WCYqX/MYMifD5PfMJenLnkpzdw5hrIVC6Yt5oc3RnJo/7513OKNQ0SvgqRhNQJ7dYYCDfUqXXStTgcZ+g8V+hdUohLFrHzVNZ8/+x3vPvQpwfIgM8bNpn6z+hxwUg/uOvqhjMoC0P21rKicwZe+xJ3vXZ/xmC2RHbt3ZMfuyZO+xq0aIpIQGsTB4/Pw+Ih7aNC8Ab99PpbJv01j4JlPmYCHmxkVGusEUq3QQV4Byb8FVXQzqKriDSkgAoVXQePhddfYTUTcbfXEP3GbqwkKN+lKWQvyHwb/ARD4CcJ/otZek5Kuz/TdukZFV6LWXug8BzcquhRp+Caq9BmdAjFzKf2r+E5U1lFbjaueWA0g69jkjVbjqo6G7Isg53JHHvgdVXj3OpQL2xZbxROdMmY6gXItBNhROx6Nfe3ywqTUdJkQS1i9ZO1WozDIRMsdmnPlM+fz0k1vUl5cDmhTw7PuOpkTrjuSS7vdwJJZyVo/l8eFJYo2O7XkiIv7bY5mb7cUrSrWEbRjQdYjNmuWFVK0sni9K7GWZbFw2uKtRmGQCZfbxQNf3sbDZz3NmuWFKFthuSz6nNqLm167nAEnPpYWTM/lthCBgib1uHhQHfiuGeKEgmHG/TA+vmLpcrlYOG0xbXdujVQjnsTCaZnMabcupOBpbQIbnYs2M7TAvSvUf1WnKit7KqVELKCXH8kfWOft3Z5RSjHq/THxzEYVZUHmTJhP7xP3TcqAUBXL562s7SbWOpc+fi7L561k0m/TiIajiCU0bFGfR3+6h4XTlnDN/nclKQnEEsQSLJfFFU+fb6wL6hhV8S2VUeUrnAB/gL2KzP7gCWRSZG5tZJ0Eof+cbDMh4pHzC4YgrsaoFb1JCpYHxMfYrOPBvVMdN3j7RgV/ceIRAEScgJqAvZLk7AiZiIAqBSmovQbWMuLdHZV7lZMqsZx4RoS825GsI7R7jVqVUsoJUOreFfx1ZyVRl2zxCoPi1SXcf8oTcV9osYTGLRty93GPcOh5fcl5+SfKSwNJvtL5jfIoWVOKZQktd2hGyx2aJdU5b/JCpv01i1167Uirzi3q9Ho2liMu7McRF/ZDKcWyuSvIa5BLbkEO378+Ik1ZADrokTfLQ5uurbZqZcnWhlKKa3vfhSAoR2Pg9Xt45spXOPS8vjRoVsCKhauTzElzCrIpLw4gImTnZdEtJf7AqsWr+fvHCbTp0qpOzWE3hd377sJ7i18CdPtdbhf1mxYwe/w8/vw6PfJ+NGLjzfJQ0CSfxq0b1nVzt2sGnfsMpQmZLiLhCJ8P+Y79jt+bXXt3YcKoyUluNG6vi6gz3nq8bnqnBOYsKy7n9y/GUa9RHt0P3X2r8D0Vd3uksU47puy1oMrBagFEUGnKAtBCvhfw16nJrwE+fPxLZvw9J/6/y+Pi358mEgmFOfG6o/hsyHdpKYldbgvbVrg9Lo65Itl/PxqJMubzsdhRm/2O2xuPd8ufTOfVz+WxnwcAOvjs2uWFNGvfBJfLxXW9706zKFC2wuVx4fa46LSX6a91iQqOgfIPqQyc6gZVil10m16tLLkPnV4xEb+zzZ2WLUApBaExevLm64tY9Wr9GjYVETdS8DDwMEqFILoEXC0Q8WKvuZB0ZQHoFRcPePbaKr4h2woquhiK76VSMWCBVYC99krIOgaCI/T3MWlFvR5QDLjAsztIcp9U4ckQnga+Hogrcyy5LQ0r92LIvRilohBdBFZDxMrFLn0xg7IAtPWMHzy7bJPxCyA5j8QWyfwpi0jsmAKsXLSa378YxyPnPMPz/wzi2MsPS8rpXlZYhsvt0oFlXRbBQOVgPOnXqVy57608e/UrXLbnzcz4e3YdXs2mIyI079CU3IIcAOZOqiKCORAKhBn1wRgqylM/RobaorwkwNLZy5NM7IPlQf7+YTyPX/A8N79xJZc+cS5ujyu+v6K0Al+WFxHB5XZRVlQ5eVu5aDUX7XoDQ656hZsOupef3vmlTq+nJmjUsiH1mxYA6L5YheVWKBBm2ZwVzEyYDBhqn/9+nhR3O3B5XCilGD9qMq/e/i59T+/F3R/fiMdXqVu2Iza5BTk6m4VA8apK39RQRYjLu9/CU5e9xH0nP86LN75R59ezqYhVH3G1RER0+scqCQEBCG495sLbAn99809c4Wq5LVAw9Y8ZfDbkOyrKgzzzx0Dy6ucklclrkIdlCXZUUVqYnKXmnuMHMaj/EB678DluPfSBrc49Kjsvi5Y7NI9nWCpek9lXPBqOEiwP8eVz39Vl87Z7VOgvkhUCtjbrDnwOFR8ijb8D984ppTxoaTcK0UBSn1RlQ1CFl6OK7kGtOgZlp2dd2pIR8SLudpWTqnBV6fMUEISyF+qqaQbQKS7FlbBBdErO4I9QdCc0+g58R5M8fSx3/rdBKZSqXGBQFT+hVp+OKrkPteooVKQO0nvWICIuxN02nsJUp2Wuigoof7NO2rU52OIVBm27tkKnvtIrtWJJkk/tvz9NpKykPCkwVzRiEwlFsKM28yYt5JLdbyIS1uY1PwwbRbA8REVZkIryICPfH1PXl1Rtxo+czAOnPcmb931IOJTZDGjSr9PWWYflEi1UOcTug6F2yM7LonmHJrg8LlweFx6fJ746a1kwftQUFk1fgp0gAEQjNhVlQaKRKEWrirl0j5tZu7wQgLHf/Uc4FKaiLEiwPMiXz3+/OS6rWiyYtphB/Ycw5OpXqhRaf/987DrrCAaCZOVlxf838Q1qn93/twtev0cPsyKEg3qMCJYHmTh6KlPGTMeX44sfb9uKkjWlRCNRQoEwdx79UFzxOnfiAtYuL9Tja1mQ718fuTkuqVooew120b3YRbdULcSERq2nlhCKytUEpaLrUTIYNpV9jtgTX7buj5YluBzlaygQYsqY6Yz97j/qNUle4SpcUUQ0YhONRHnu2tcY/vZoXSYY5q9v/9X9tTTIlDHTKVlTWrcXVE1CFSFev+c9Hjx9MJN+zRy7aeWiVevMTCMiuBMsKJRSVcYoMdQM4t0HbTEA2iopdv8jEJ4OwT9A6qeUKiEegT34Aar4wcpd5R84vuUBUMUQnlC7F7CRKKWwy97GXns1diBDJrP4gesIogeQNL4mT0YNtYBnFyqtYXzO3zY6MFxA99dY34wTrjwu8jesOS0ut6nyd4EKXVaFIfhzXV3JBqMqftb9tfQVbVmQiZg7UZX4kxV821B/3eJdEvIb5vHMHwP56sUfadC8gDkTFjDms7+IhCNEI1GeuuyluHlsVaxZVsi8SQvZYY/2dNitLb5sL8HyEP5sH+13Sc8RuiWwYNpi7jjqIYLlQXxZXtauKOLqIRfG9y+etZTHznuO6X9VpZ3ViGXx/Ss/c+h5fbn9yIFMGDmFZu2b8PjIe2ncyph+1zQiwuBfH+DjJ78CIDs/i7cf+JhIOEKoIsIb97wfz5FdFdFIlL++/ZdD+/elzU4tdJohtMKswxYa2yBQVsE1ve6grLAcl9ti+tjZPPN7pW93ydpSnrz4BX779K911iNi8eFjX3DTa1fw9BVD+ebl4WTnZ/HQt3ew0z5bhzvG1sbNb1zFp09/zZqlhXTaswODL3mRaDSKHbUZ8d6vhCrC6wyaZkdtvnttBJ336kjj1g2xo/pYl9vaol2+1Jr+EJkFRFEVI6HJ6HjWBKUiqJKHofz99dRiQ/lrkH0idtk7UPIAYKHqDcTKMplpaoOTbziaeg3zmPnvXHY7oAuPX/A8tldbFC6bt5LX73qPyLpiGyn45Mmv6XfmAXi8bgoa16NwRRFKKbJy/WTnZ1VddjPy9BVDGfGufh9//3IcL41/jBYdK90tP3n6a95+4ON11qGU4ud3f+Hywf2ZPGY69xw3iGAgxKk3H8v5D55R25ewXSK+/aD+EFTFCPDuCaVPQHQlMbcmVXw36/ULD3wA9e7Uf7s7Qmg12lc8Cq7WtXsBG4kqfw9KBqGtsEahrFwkIduDqhiBKr6fyslpFURnoyJzAAu15mywV6B8fZGCIVtNYL2tCXG1hAbvogKfgKsdBH/SWS9UBLCg+DbWm344Mh3s5eBqBu4uEPoLqNCWC1uoC58K/YMqvBao0P2VIJJ7eeX+8FRU0e1gL1lPTWEI/oDy7odacw5EpqDcnZEGbyJWQS1eQe2zVbxtrXdsyWVP9AcgGo3y8RNtee3O9wgFMg+yMfeEuNWBUjRoXgDA0ZcdwtrlhYz7YTz7Hd2dfmcfUNvN3yhm/zcPy6UnisFAiImjkyOT3n74gyyZna6Z9WZ5iUai8UlpuCLMgulLGP7maCb/Nl3HQJi3glfveIdb3riq9i9kO6Reo/wk4atVp+Y8fM4zBAOhjOb4YgneLC/BMm226HJbcUFwl/27cPnT5/H1S8PptEd7Lnl0ywwIuGLBKiJhbQ0QCUeZ/d+8pP1PXvwiY74Yh50y8XR7XIjLIhKKoGy92jV/6iKmj53FD6+PwI7alK4t49Hzn+OVSU/W4RVtP3h9Hk696bj4/613bME9xw+icEVRxkwXAHkNcylZrVdivX4PrXfUioEGzepz/xe38MY971O/aQFXDbkgY/ktgsgM4qskKgDRFeDWwrcqe02v5KX5FlvoVZeE4HrRxdosuOQB4oJU0e0o/5FIkmmnoSYQEQ49ry+Hnqczc3TaswMDzxjMrP/mJcXiSCS/YS7FTn91uV203qlFvK7HRgzguWtfIxqJctkT/XF7tkyxaNKv0+LWai63xdyJC+LfiX+GT+C1O96loiylv4q2eisvruyvkVCEkrVlPHzW0/GMEh8/+RWHnNtni1bwbc2I7wDEp2VN5euNKrrXyWVfVEUJL0l+/Ql+31LwBKr4PoguRXIvrzLX/WYn/BeV42QFKjQhrjBQ0aWowmuATBlNctAm7o6sIG6ILkKVva4noQDBMdoVzH9YhvKGTUU8XXWKTEBln4IqGQLlr5D03UvCcUeorACc2BqSdxWKgA56mXVc/D3Y4ghPovIaAhD6E9AKA6Vs1JpzQRVmKJiFlhNiZSMQWYAKz4TINHSqxVmosleQvI1Lmb6lsGV+GdeBy+UityCHaDRFKymA0gLAASf35IKBZ/DERc9TvKqUCx46gwbN6sfLn3f/6Zx3/+l13/gNYOdeOyLoqMZen4cDT04OLLZiYebIud367kyzto35/rUR2h/ZVhx89gF89sy38VUXZStWVlHeUPM069CUSCiapCzQ/tEKBNrv0oaHf7iL5659jbkT5nP0ZYewa+/KnMOHn38Qh59/0GZoefVp3qEp+Q1yiYQiWC6LvfrtlrR/wbRFGS0rWuzQjH2O3JNvXv4JFbWxbZsTrjmSeZMWJgXaK1xRlWBlqGk67dWB1UvWJm90xlfQQWWfHfswnw/5lr++/Y+9D+nGMZcfGj90j//tyh7/27XuGryxeHtCaBxgg6sxuJpX7ovOJrMw64Oc83RucOXkXc46BWWvIXnVZdsxQ9zSad6hKcvmrazSqsDr93D/l7cxe/w8Ph/yLe26tubqZyut9drs1JKHv7uzrpq70fQ+cV8+e+bb+Li4U0IA3CWzl6cpY0Evnhxz+aFMGDWF2RPmY4nQuXtH6jetR+HK4vhx4WCYyHos3ww1g1gFznhR1RjhgvwHdKrXkkHgKkDyH0go3wApGFwXTd00fIdBxU9oxYcX8SWkC48u06vNaV3WpwPr2at12jpx6QB6nr0gfEvCcRUou8gktK0DRLwoy0PV/VUg+1wk+2RU4Z1ACMm/E5GseHnJ3/LHV7w9ARfxRQH/EQk7g6Ayudla4OsDkgsVXwBuJ3nSIVB0N5XWM1Hd57dytjqFQSQcYdKYaUkmsvmN87j4kbPpcfRehCvCNGqpTe0H/XjP5mrmJtOkdSOeHfswoz78nVadmnNAgsJAKcUeB+3Kfz9Pwo5G4y4Zbq+Lf4dPxOv3YLkszr77FHodtzctOjbTq9sJtNtlyzRj29ZQSunUVwl+om6vm/73ncphFx5EoDhAkzaNsCyLO965dvM1dBPx+jw8O/Zhfnh9JFl5WRx2ft+k/T2P6s7imcsQIe4jb7kslsxezjcvDicSiXLclYfR59RedNqzA58+/Q1iSfw9N+4zdcf0seluTifdeAwnXXskwUCYxq0a4PF6uOTRc7nk0XM3QwtrBqn/AgQ+AlUBWScmm7d6e0HgS7TwkLhqG4HyN0DZ4P8fknUKeHtAeByKRKEqy1gX1BGrlqyhZG1y3IEDT+nJOQNOwev3Uq9xPlk5frr26MzRlxyymVq56Zz/4Bm036UNy+atpM+p+9GweaXf+077dERE8Po9SYpWbMVnz3wLInTYtQ2n3XI8+xyxB4HSimQ/WzDZaeoIZRdBZG7yRtfukH+LzhxgZVdmPvDvX+ftqymsrENRVi6Ex4O3F+LtFt+nXG1Bsh0z9xCVmoMIBD7RVgVWA8i7HvH1RawcnV2hsnZwbZnuxNsaSgUh+G/yRmkB+beCd28EG3E11psbvbcZWlgziKcTNHwXgqPAvRPiT5RhvTowaWQaWgmQkPEkOBzEq60qcq9H/P0QVzOUSllwcHWomwupRbYqhUHxmhLO2/FqilOCEhWvLOGFG96g9Y4t6Npzx83UupqnVecWnHnHiWnbn7/udSaMmgwCHr8Hn1hEwhHqNytgeWylRaC0sDRustjzmO788dXfhAIhvFke9j9+37q+nO0OpRQXd7uBeZMXJm2PhCK8MeADGraoT7+zDqyi9NZHQeN6nHLTsWnbf3xzFJ8+862OUm7b5DXIpaK0goYtG7BmaWE8d/r0sbO56BHtcrFr7y54/R6C5SF8WV4OOqt3Wr2GmuehswYz4t30QLCfPPEVLhEufPiszdCq2kHEB9lnpm1X4Qk6GjQW2mqgIVCsBVi7GJRj9h4cgxRoNxnl3gHEr4M64QV/37R6DTXPh098ycs3v5kWY2P0h38QLA9xz8c3brEuBhuKiPC/M9LHwbXLC7n54PsBRTRq06B5ASWrS8mul0Xx6tK4m8KMcXPo1ndn3B43LreLlp2as2T2MgRosUNzsvO2zNgN2xJ2xW9QeCHJfvsC0f+gZADS4I2tIk1idRFfL/D1StqmVBjWnAV2KdosuKFevRWP/l+VgdJ9VlzNEStPF/Ttr/3pCQE5cZN5Q+1hR5bA6iOcNIoJqKVQch9S/w090d5GEE9XyNCvVOH1EJmJNh/IJh7g0aqn3WRUGPAhKMTlxJXxHwKlU9GWij7k/+ydZ3hURRuG7znb00PvvUgVUMTeBRS7ovJhQSxYQCxYUBRUFMSCiGAHGwpIFQFREBDpvfdek5CebD9nvh9ns8lmk5BsNgQC93VxQXbP7kyW2Tkz77zv81ivPU2/RdlxRt9Jd63dy8/vTiG2SgyPD+/Jh4+O8dch+vGlymalZvPho2MYv+Ozcunr6WTe94v8tcU5Zwlmm5nq9auSmpCO26Fvsmo2yhVEurHn1ZgtJjb/t4NOt3Sg3XWty6HnFZvEwyf5buAEPC4vjw59gNV/buDAlsMFXutxevj48S+59v4rKsyCtjBmfTEPVx5rz8yULAxGvbQop9TAZMmtgwdo0r4hw/8cxJKpK2jSvtEZqzVyNmPPdDDujV84vi+R+wbcTmRsBP/8srTAazVVY8boudz08DXUb1mxs5OkYzaBtZq+8i2Z9yRMAUNu7bBQ4qHyFKR9EijVEJEVJ7BypqCqKpM+mMHmJdu5/n9XcfntFxcYLEDowdoNC7fw75QVXN/j7D2lLQ7rF2zG6/b61wQpx9MAcGS5iIi2kZ2uL/atkRasPncJIQSj/hvKtFG6ev3d/bud97ovAzT7TD1V2dwBEfkUpPWjUJE/715k1leImIGntY+nHe8Bn3Ccb47N8bSXvjlV3Ytuz6eCkruGFXEfIrN/Ai0JEfFAhQqsnClI9ypk1rdgqIOIfhHSng0OFuRsurRkZMZbiMq/lkdXTxtSSnD9Se69P2cta9WzXLRU9CBWvjVBZG8wVEJ6tiGsXRGmFpztnLE7lczULAZcPwRHphOjycChHUeCBH0MRgWTxeR/3FOUMnIFom7zmuxet8+vRg66pVREtI3OD1/DugWbqVK7En//uIiJw6fR5uqW9Bv9GFffexlX33tZEe98ntIw4PohJBxIQmq6j31BC1WD0eAvT9Atgiq+ZWDjCxuwd8OBgFRZ1auSkZzJg29158/vFhAVF0ni4ZP0at6P2k1rMWDcM7S+sgWtrzz7J9kzlQ8fHcPK2WvxuLxsXLSVJ4b3DNAqAIiKj8wVkhPinJhjhbEZEitBGgYyFWI/g6zRem2tUhMtqQsocRAzFMXUFBHzWnl0+Zzgt49m8cv703W7zyU78Lo9CAQyz4Ct3qAqCQeS/D8X6ZZQQajdrFaB+gVCETw35nGmfjobR5aTBq3r0qfdyxiMCo8P70nHru3p9c4D5dDjcwPpWgoZb6ELqK1GYgDyiXKKqvq8ghf9dL1gkdkKhaFaIU9oYLsX3P+CegSUJsjUfnpKfOT/UCIfQkSdwSK6ZzlSPYpMeQI9kGNGagmgncx3lcWnPZEjSlnxx6sQAqnU8gW58s6zTr3MwFBTL7tR6iAzv0JmDAPrNYjoVxG2uxC2u8qr62FHKe8OFEbATd+jsn/TIXq8FvjBC0XQ9KJGGM1GLDYz/cc+cbq7WS68PeNV2lzVEqEEngjc2e9m+n/xJFVqVWLLfzvYtHgbR3ef4M/v/uG9Hp+WT2fPEVRV5cS+BDRVQ0qJI8vJpbdeRF5VHqEI2l3fGqPZiNFs5PHhPTHl8cSuqPT5+BFu6BmcStutz43c//IddLqlA3s3HmTVnPUc3X2CVXPW0a9TBT9lOQPYtWavX0/CYDQQWy0GsyVwPNZuXAOz1YTJbOSqezrR+Ay19Qwrtrsh6imC4unmy1BsXfXnvPvB/Reo+8GzHpLv0p0SzlNmbF++y5+p5HV7SUvMoErdSgHXuBxuouMjMVlN1G9Zh2vuq/gB8uYXN+bFb/oQFRcR8HhUbARXd7+MF77uQ+LBJJZMWcHBbYfZt+kgg24dxsFtBWe/nSdMeLeTmwPq1OcJ842B18gkMNQCLKBURkT1Oc2dPP0IJRYR/x0otfM9IxG22/QyLy0VPAtA3QbaXsgciuaYUy79PWfw7tODAQC4ddeAiMfzXaSC0hQwg4hERL95mjtZPohKP+gaBgFbZoGIvA8R+yFgAs8yUNeBdgDsPyAz3iufzpYhZ2zAoF6L2kRXisJsNWGNtHDF3Z249v4raNgmV+jE61YRiuCXQ18yJWkcHbu2L8cenz4q14znha/7YMqzuK/ZqBoX3XQhUko2/7c911LSx9ZlO093N88pDAYDHW5siyXCgsVmpm7zWrS/oQ039ryKnExPqUn2bz7IT/vG8NuJb7n3hdvKt9OnCWuEhf5fPIklwux/zGQx0v0l3ad++aw1eFyBCrwJB5POieyL8uT6/12JNdKCyWLEaNbH75MfPYzBlHtb2Lf5EF+sG8Evh7/k1R/6nRNpy0IIlKhn8vlFmyDap/TsWkCw3aIH1FP5M5+nNNzw4FVYIsyYzEZMZiOdul3Em5NeChiv6UkZvPnbS/y0dwyjVwzDYrOUY49PH9f3uIor7rwEo0lf8JssJh4b1hOjycimxdtQ860HNE2yd+PB8ujquYP5KsCEbpFoA+sdEPsBQYFI26OIqvMRVRfl1j9XcIT5Il9wxOp7xAAR3RGGKuDZQYBFHwBSt1I8T9lhakvgeL0VJeoREHkzQrxgrIeouhBRbQXC3K5cunq6EcZ6iJi3QOTcTwQY2yBMbUCmg3qQIMsPd8Ubr2dsSYLZauaLtSNY+OtSouMjueb+ywEYNOkFHmv5gv+6rUt38vM7v5GakMa9L95WoUQPi6J2k5o88UFPfhzyGzGVoxg89WVArzWu37KOLrSXZ/xeemsH/79TTqSScjyNBq3rVvj6+dPJu7NeY8GE//C6vdzQ80oURaHfmCdY/NsK/4bYkeXkp7d/Iy0hnet7XhVkl1lRMRgNDJn2Ch8+OgYpJS99+zQmswkpJc07NiHh0MkA28UGrer6N6fZ6dkc3XOCus1rYYs6L8wVLnq/9z+ad2xC0uFkrrr3UmIqRXPbU52ZPGImiYdyUhElvw6bjj3dQZtrWnB3/24oyhkbZw4rIm4kMrWvbvEV9QxKjriToTUwn4B0TGEDY33Apyrt3e1TPK8U9L7nCY2r772MuGqx7Fm3nw43taVBK11L4+LO7Vg5ex2gB2V/eX8a0XGR1GxUnYeG3Oev26/oPDHiIY7uPsH+LYe4pvtl/qyuei3roOTLRlQMCq2v0NdKmqaxf/MhoitFUa1uldPe74qKMDWHylPAvRRMrRDmjgBokU9D9uf4F2j2b5De9brSetTziEJT9isYtnvAvUK3TzRdiIjSPeqlobauXxB0fVf/P6V3HyARAUHd85QGocRClVng/BMM1cHic5SJHQFpj+Ifr67ZyMwoIB0in9bH+TmAMLdDRj4O2T+AoWau4DFWEJVAJgS+wNrN/0+pntCzZozNzmr3JFGSU7yLL75Yrlmzpgy7UzS71+3j1S7vkplH+NBgNCAUgdftxRppYdz2UeesBVvKiVT6Xfo6aYnpKEYDkbE2pCq57n9X0ufDhxFCsGruet659yOEQaFWo+p8tvy903IKI4RYK6W8uMwbykN5j9fk46kMuG4IR3blnjwaTAYMBgW304Mlwsx7f7zOhde2Krc+lidul4dXbnybXWv3gZTEV4/D7XTT+qoWDPzpOcxWM4d2HOW5y15HahKz1cTYtSNOy/f7XByvbqebQbcNY/2CLf7HTFYTUpN43V4sERYeffcB7nnh1nLrY3kipURmvAmO6ejq3jUAOxgaQPxnKIZqSC0DmXynTwhJIuLHIcwdinzfcHG6x2x5j1cpJZ8/9x2zxv7lz0YyWUxoqobqVTFbTVxxVyden9C/3PpY3vw+9k++fPEHNE1SqZY+v8ZVjePl8c/Q/OImqKrKwK7vsX3FLjRV47mxT9Cl1+lx+DjXxiuAlv0rZL6LrlkAuu+7QD9RF2BogFJ1brn1r7yRrhXItD663aKI0feowgYxA1BstwCgZQwH+y/6CyLuQ4kZdFr6di6uCaRrBTL1KSCv8GFOZrMHRBSi6uJcJ4tzDOk9hEy+D2SWnn0grSAERPREiX4a8AmfZvhcl0xtEJW+D7RwLiPKYryeVUdFHz46JiBYACCUXGEjg8HA4R1Hy6NrZwRj+o8n8fBJ3E4PziwnycdSSTmRxrSRs1k0WU+PGff6BFwON84sJ8f3JbD2r03l3OuKy/hBv3J874mAx3KCBaAL/+1au688unZGMP2z2exYuRuP04PH5SXp8EnSEjP4b+pKvn9rEgBTR/6BPcOBPdNBRkoWc79bUM69rrj89eNiti3bFfCYVDW8Hn1+ddldbP5ve3l07YxAetaAYyp6XbIX5BGQKeBdB+kDkFLVT2fUkz5rMDsya3R5d7vCsmPVHuaNXxRQuuT1eP0lCm6nh23Lz91SvOwMO2P6j8fj9qJ6VZIOJZOemMnBrYd5+56PyErLZs+6/WxfuRtntgu308N3AyeUd7crLFLLhsyh5AYLQA8U5PxRQd2HlPnT8c8NpFSRaS+AdAAekMlAsj7Ppr+G9O7Ts7fsP6AL0jrB/st57ZgyRKYPIDBYALrLR04JqQT13N1zybRX9TUAbt0alJMgEyF7FNL1n35R1kfoJYwO8G4Bz+by63ApOaPz0VVV5df3p7Hm700kHTqZJ002F69bT10yGBUMJoWmFzU63d08I9i6bCdLp68MLKPx/VtKySdPfMF1919BTJUYhCKQmq7QH10pqlz6W1H5+6fFzBu/kOTjqRzZGVzTnBMsEIrAYDRy0U1tT3cXzwhSE9L4cfBkVG/u4ihvstPUT//g3hdvJbZKNEazEY/Lg9FsJKbyuRnJLis2Lt7Kr8OmkXI8nQNbDwVZ1Hl9ZSJCEZitZq67/4qC3qbCI6UGqc9TqCWaew24l+u+zH6lUyOcL0kIK0d2HePbgRNIOJjEwa2H/aKdOUhN4nZ4EEJgiTCfMyVfBTH0/pFBWkY5JB1OZvbXf3PFXZ0CromOP78eCCdSS0VmfgCePbpQKp78V5C7aLOCuT1CnFXneGFDZn3u23wVhBOZ8SEifjT6CXfOPGwAUfGFo08XUrqRmZ+CZy14j+qb3yBy5gujngVibHgae3jmIJ0LwLsh/6O+vzVk+iBEtUX6mkDzlStIDZSY09fJMHNGBgySjiTz1cs/sn/TQY7tS8Cbb1FQEDFVYhizavg5e8PbtWZvkGtCXpxZLv4c9w8vfvMUg+8cQcLBJG57ujNtrjpvW1daHFkOvn1tAttW7OLA1sPFGq8Go8KopUNp1Lb+aejhmceh7UcxmgwBVot50bwa3781kac/6cWuNXvZvnI3HW5sS7cnbyzw+vMUH03T+PX9aaz6cz07V+8N0I4oDKlJBk97mY6dLzwNPTwDkZk++7PC8CIzR0Cl38B2Bzj/AGMTRPTrp62LFZn5E/7lz+/+YcfK3bgcp7byklLywGt38r/X7zkNvTsz2bl6T5HP/zp8Ol0evY7Hh/fkxyGTia0czaBJLxT5mvMUD+lejcz6QhfwkykEi/gVgOVyRNyoMu/bGYt7JUHCcQHPLwTvHkT858j0gYBExL6PEObCX3OeYiG9B5CZH4JnJ2gnKJZdolIXUeVXhDg3NGLyIz0bKPQAAUA7huaYj4gdiUx7FrQUiHrmrNbdOCMDBq92fpeju48XGh0vjHNVuwCg3XWtMBiNqF4Ns8XExV3bsXT6qoBrRvb5ihnpP/DVho/KqZcVk5F9vua/aSuDlP6LQlPluWFRVwiN2zXAaDb6MoOMtL++NavmrA9IL/7rh8Xc0fcWhv056JxQ5z9dzBg9l1+Hz/Bb1BWXFpc0KaMenQWIGN01wbtf/1lpBNpOAha43l3g/BMRMwQR+065dLMisnHxVj7t83WJx2utJjXP6Xmj060XsWSKLrgbFR+J1+XFnunwP5+dZmfSiJk8Pqwnd/W7pRx7WrGQagIy5XF0P/sSoFQ+ZzdfAFhvBs9W9PRtMxjqg5q3pEhDpg9GVP4JpdrScupkxUNKDZnyP13ct6iATX6E8ZwW9RWWq5HZP6AHV0xgvgLc/wRelP4yVF+JUvWv8uhi2DmjAgZHdh/n3fs+DkmH4MG37i2DHp0a6d2DzBqji39Ev1BuX6CGberz6ZJ3WfHHWhpdWB/Vo7Js5uqAFGNN1bgj5mGaXdyYD+e/dV5xvpRkpmYx9P6RbFi4pcTBret6XFlGvSqatKR0xg+aiD3TwYNv3kv9FnXKpR9RcZF8sXYECyb8R3yNOFpe1pQ18zagenPHq+pRebr9y1SpU4lPFr9DjQbniHp0GaF6VUb2+Yp/flkSlMp9Kuq3qktUXGQZ9axwpHQhM0eDuh8R8SDCUj4p5kIIqPQrOCYDCtJ6NyRdSlA9csYryMwhEP8Nwnxa9bEqJJNGzGDCe1NxFyOrIC8RMTYuu+30f/5SSmZ+Ppf1C7Zwxd2X0Pnha097H3IY8O3TtLmyBelJGdz08NW8dN2QgIAB6BoxM0bPpf/YJ+ja+/py6mnFQXP8DRlvotfYlwQFIp8oiy6dEumcj3RM1QXZIp88LYJsBSEiHtTV+b17wHI9MntcvoAB4N2ITGiLjHgYJeZ89lZpkZ5tyNTnQQsu9z4lUc+HuzvFYueavUweMYNKtSrR6537iYyJKJd+CHNHqDRed/owtQf1ADJ/wAC7Pl7NlyPiv0Kc5eUzZ1TAYOh9n7B/U643sGJU0LwaRpMBs83M9T2vQjEozBo7L2AjXK9FHW5/qstp76+UDmRyD5AZgAHp2YKoMv209yOHJu0b0qS9Xk+kaRptr27BxkXb/M/naBfs23SQud/+w93Pdyvsrc5TDL5++Sc2Ld7qDxbkHa9CCK68uxNNOjTk21d/DqjPN1mMvPZjv3Lp88Cu77F/8yE0VWPtvA38cvircrMdq1avKj0G3uX/+Y6+NzPt09n+nxWDgqZqJB9N4dvXfmbQxBfLo5sVhnnjF7Jo0lJ/sCBnPjAY9ZrZDje0oeMtHRj3xq84s3IXvIqi8N7sgeXSZ5nxNjhmAS5dRKjKDEQ51UwKJQoie+v/BrSY4ZDxMrmnMkL/t8xGpg9EVP27XPpZUdixajc/vTMlILNACIEQgBA0u7gR19x7GTPH/MmJA0n+axSjwoDvnimXeW3213/z7cBfcNldrJ2/iai4SC6/veNp7wfoDlK3PH6D/+dBE1/guctf9+s+AX4HlFFPf8OND1193ma5FEgtA9JfRD8hz0FBnx8UMNQB6+3gWg7efMr3tsdRjA1OW19zkO71yLQXASe4liKlBxFdPq4iQgiwdgZ8dn7RryBdi0Cm5bnKdzBjn4i0dUfkWN2eJyRkap/c+npAd+1Q0fUJosFyJ5ACzlkElNWYOqLYbjqdXQUgNTGdl68fgiPLidFs5Oiu47w/p/wCR8J8EZgvAkDKi8H+K3jzC+1q4F6rCyLbbjv9nQwjZ5S6Smpiun9jZfBtvkAX3lK9Gm2vaknnh6/FaA68qUVXOv0nXwCoJ0C60W8I3gIGSvlwcNth9m08yMvf9+XDf4bw+i/P07RDQ3+QRWoStYQn4ucJJvlYil8UTsk3Xr1elSp1KnHHs11RDIG+q2Zr+dXc7d98CNWrIqXE7fSQfKwwkaHTR8LBJLat2EX3Abcxcsk7vP5Lf67/35X+QIyUBIgjnic0UhPTC8wsUL0aqlfDnuXkrn63EJ0vk0AxCMyWcoqMu9cRsAD37ir00tOF1FKQ7nVg7gSVpkDMSIjsm++q8+O1tKQmpKMYcksKhCKQUqJpEk3VOLLzOPe+dDsNWtcLeJ1iUIgsh2wYgK1Ld/oDHC67i52r95ZLP/LiyHKwddlOYqtEM3bNCN787SVe+u6pXG1OQCIpicX2eQpAZhXwoIa+PlRBPYaI7AnWqwlceisIYzmldnu3kRvwdIJ7VVFXnxak9CDdG5HSDpUmQdxXEPMxkD8AeGrtnfOcAi09zw+C3M/UC9KFsF2LsHUj6Gy5nDKpj+465tdq87q9p9RpOR1IKfVMDe9+RNwXEP+9Pl6VOuR+t3xzwFnOGRVOfuTt+xjTfzwGg+LbJOSecmmqSlR8JM0uasRVd3fin1//A6mf1j485P7y6bChju7r6L/PGpDSiRDW8ukP8N3rE5j+2Ry8bi+aqmE0G7n92a4c3HrEf40Qglsev55pn81m8oe/U71+FQZNfPGc1oAIhR4D72bzku3+k3CnN/AkLKZyNBabhd7v9+Db1yboARsBvd59oNz6XL9lHfb5snjcTg/lvUZcNGkpH/Yei9Q0PC4vJouRy267mOV/rPVfI6Wk17v3s2ruekb3/Raz1cQrP/Sj+cVnr3hMeXDTQ1cz7dM/UL0qbpcXKWWAQGdcVV29t/+XTzLk7g/9drU3PnwN8dXjyqPLYLoI1BzrUQdSapRnVbr0bEGmPKSrHeMALGBsBJqDgPrPyL5Izy5k+kugZUL0ayi2ruXU67OT9je0oVrdKiQePonX7UXKXAtlgMg4PRX1sWE92bxkO9npuv1X43YNaHddq3Lr8/yf//X/7MjKb0l2eklNSOOp9i/jyHLiyHJishiJjI2k5WXNcvJhAOjyyHVkpdl574GRHNl1jNue7kLPN85dwciQUGqC5Wpw/+ebH/JrbgjAioh4AOn4DdTDvoerIK13l8u8Jk0XEyBwJ0taShFepHTrWbvqXp+9oqL729u6ExCENTZCGhoi017SU8LNVyJih571Kd+nnainIOtL3z5GI7CUxqsr/BubgbkjuHN0I2wQ+VQ5dBYaXdggQCtM0zRUVcWQ71DudCIzBoJjLuBCIgETRPQCLTfrDWFCWroiM0eB4zddEDluJEKJL6deh8YZlWFwy+M38vXGjxg+bxDXPXA5RktuPMMWZWX/Fn2jM/Dn/jS/uAlGsy7y98HDo/G4iy84Fy6EMIHM+xEadJXRckLTNCZ/+DsuuxvVqyEleFxepo+ag8GU+4WKqRLF8X2JjHv9F5KPprB9+W7e73kOq/OGSJurWjB+52e898dAnhjxIGZbbuaA0Wwk8VASXo+X+wbcwS1P3KA/L+G7gRNIPJRUxDuXHZY8abomq5FNi7cVcXXZM/7Nibgdbv/Jt8flZfkfa9G8udFYoQhiq8Tw9r0fcWJ/Ioe2H2Vg16Hl1eWzlmr1qvLD7s959/eBvD39FZQ8rioGg4KmSjJTs+h0Swf6jXkci288L/zlPzYs3FI+nRb5LIjc5St2JbO/BZlNrqCZC7z7QOatAbUhTE2QqU/pWWfaMUgfgFSTy6HHZy/WCAtj147g/Tlv8Nny9zGaAheFlWvGc2TXMRq0qsuwP9/wz78HNh9m2qjZBb1lmWOymALuAxv+2Vou/chh4cSlZKZm4/CVGHlcXtKTMtizbp8/WGy2mbmgUxNGPfUVW/7bQfKxVH55bxobF5dv3882hBCIuNGISj8hKk8FpRYBaRyGOkjPRoQSB5Umg4jSn5fpkPl2OfXZAOTJeCzvDC73Oj1ALO34T2WlHRzzCEyJbwv278H5l74xc85GZv9SPn0+i1GinkFUmYaI/wHMlxFwhixike6tuqZF3HdgqOt73gPpL5VLRpItyurP6gVwO9wkHS6/+6rU0nwlkw5ys4ncYP8R8mqBKLURnjVgHwdaIrhXItOHlEeXS8UZFTAAqN2kJi0va87Tnz7Ktfdf4U9JzEjO4puXf2bCe9MA2L1un/8U3Z5h5+SRckqtNjVDr/tBvzcYckXkpJRo9uloaa+gOf5Geg8htaKsuUqHEAJbdHB2g2IQNLqwPtZIC2abmceH9STlRFpuiYKUbF++k+z07DLrW0WlSq1KtL6yBbf26Uz3AbdjidQ35G6Hm1lf/M2btw8HYMPCrX7hLsWgsGvtvkLfsyy5oFMTTL5AnBAKDVoFih6uW7CJDx8dw8wxf5J45CQnj5btZBxfLTboMc2rce39V2CJMGOxmbm7fze8HjVAWDIzJYuD248EvfY8RRMVF0mbq1rQsUs7XviqD/HV9c9fVTWWz1rDE21eAmDDgs1++zqX011umwdhbkVuKqoVjIEnx5pnF1r6m2iZo9HU4/ocW5YLGaUq/vnejxesd/j6aQNzOzC29KlO5+BGuiqGUvLpxGwx0fqKC2jSriHvz3mDOs1q+p/btnwXj7d5EbfLw85Ve8nZAbvsLlbNXlcu/a3fso6/HyaLiWb5sqBSTqTy5Us/MPb58Rzbd4Iju47h9ZRMgLQkxFWNIb9RhJSS9je2xRppISLaRqUacVx1z6UkHjqJ6gvUup1u/vjy/HgtKUIoCFNbhKkZotIPYMxjQ6vug9RH0Dy7EP6sKQm49FPy8kCpASJnPjPo2VJ5kJodLfNztPRBaG497VrKEro/lKg/8SAL+D4Y6+jBYxEFIhoR+bBeEuzP4nCDfULZ9asCI4xNEOYLEXEjwHId/iCXTILMN9DsUxFkg3ocXeTXC+pBX1DnNPdVCGo1ruEvSzBZTf41DOiHpr9/MY8RvT5n7fyNHN1znKy0MtzXCCvB6wEAKxhqgYgErIiYl/RAgX9sq+BaiJQlc/4pb86okoS82CKtNG5bn/k/BS7+/vp+IQ8OuocWnZqya+1eNK9GZGwEVeqc/poaKT2gZuCvTVFqgRKvDwLvXqR9Ejh+1Z9zzkBiAIzI2A9QbOG3MRJCMHTWQF696Z0Af/snPniIO/p2Zd/Gg8RWiaZavaq4HK6AhbViUFj79yauvrd8VMjPdhRFoe3VLZk4fFrA4xsW6hutjl3acfJIMi67G03VaHZRo4LepsxJT8rA40vrNZgUGrSuh6ZpHNx6mK1LdzLq2W9Awl8/LGLMc+Mwmo3c+9Jt9B7ao0z68+qP/Xju8tdJS8zwP3bFXZfw6o/9eGDbXQhFUL9FHaSUVKoZR+LB3JPcBT//S+/3/lcm/ToXuKhzOzJ6jw14LPlYCh63h0tuac+y39fgsruw2MxceE35pHjrp/I5KbMePTUSn2+0dz+kPY3/5Cl7NBILWC6FuK8QIvzxcBHVH+leCd4duQ8a6iFi3oTIx/TTQuMFCGFAmi8LtFmyz4KIsvkenQu0uaoFKQlpAY+pHpUtS7bT6orm/kWkNcLCJd06lEMPIf1khl9vxePycHHXdgAkHUkm4WAir3UZisuuj+fpn83BEmGmat0qfL5yWJmofV/7wBUsnbmaf39b7n/MFmXlmU8f5bFhPUk8mESD1nWx2Cxc98CV7F6333/d2r82hb0/5xLCWB9Z0BzkmA5RT6JvzARgBvOlp7l3PrRUXyo6gAomvR9SS0V6j0Jqf5C+0gnHZCRWfZNUeTKiDEQahak5Mup5yPog76MQO1x3IPPuBWNDhBKDjLgXHHmCBNphpJaBUGLyv+15ioFQYpGGvHX3PhyTwXa3fhiq+g5pDPVBnH53Ake2E5fd5T/sbNS2HmarGUe2k6O7jvPzu1NYOkPX4fj7x8UYTApGk4l3ZrxChxvbhr0/Qlgh/jNk6tMEaBTEvYOwXK9nGCrVEYZqSC0dyCvQKMGzEcyXhL1fZcUZFzBYN38TY58fjyXCTLvr2uhCR2ruAG7YRhc4en/uG0z7dDaObCd39bsZk7lsa5ekloXMfA+8+xGRvRHWzr5009wbLOoepP1XyP4OZKovdTUvqv4n410og4ABQOsrLmD8zs945cZ3SDiYRNOLGnHZ7R15975P2LxkOxde04rXf+2PxWbh4s4XsnLOejRVQzEYqFavSpn0qSJzcPsRPnx0DI4MBzc9ci2KwYDqyT0Jr1QjDoCnPnmEOs1qcmzPCTr3uo5q9aqWab9UVeXHIZNZv2AzV91zKfe+eBset5eFPu0PAHu6gy9eGM/xfYnsXL0HZ3ZgtFNKicflYdIHM+gx8C5skeHX5qjZqDo/7h3DG7e8z/aVu6latzI9B93DVwN+ZP7P/1KnaQ2GTH+FuKqx3PrETfz4zm943V4sEebzNoshkH4ygxGPfM7hnce4OY+Ceg4GkwGjyciND16DyWJm85LtXHrrRbS7rnWZ923Ot/OZN34hzTs24fEPHtSFFrO/IncBo0JaPzTzleCYiH7akV9c0AWuFeDZpJ/0hxmhREHlmci0geD6Qz/xin5Vr0nO/AyUGIgbiTBdgIh8EOleqvcJI5gahL0/FR2P28Nnz3zLhoVbuPTWi1CUfBswAbWa1qBG/WoMmzuIf6euoFmHRtz40NVl3rd18zfx87tTqFy7Es+OepS4qrH89vHv/lN6gA8f+RxntovRz3yD5nMkyIvL7ubEvgQW/rqUW/uEX3VcURTenPQiUzrN4oe3JiEMCg+9dS87Vu1hZJ+vUD0qfUf35vLbO3LN/Zcz/s2Jeo2w4Px6IES0rC99dcoX5NmM58HUVq9drjwFaZ8ISjVE5ENl3i/p3YPMGAaAiBmIMDYB5xwC6tYdP6CZL9bdX4Jq2tF/lk5k1peIuOFl0k8l6jE0Y1PdcUK6wHoXSBcy+UFd0T/ycUTUYwhjCyRRgE9sUlhBnLcKLyma40/I+gSUymAoQBfK2Ep3sKg8EZn9PSAQkb30x8qQtKR0xvQfT/LRFB58qzsdbmjD5n+3k5qQK9S4ZckO5k9YwtcDfsTtcAfZxqoeDdXjYuwL4/l288gy6aewXIusPAtSe4OWAqaOYGyFTOmji4pab0JGv4OixCKNrcC7BX1NI0CpXiZ9KitESdI3L774YrlmzZpTXxgi2Rl27q/1pF9luHKteCrXqsSuNXsRQtCkQ0M+XDA4bJF4qaUh054Hz3ZdWAUFIvugRAafAmmp/cH1N/oi1eqrUYtGJl1L4KI1x5akKCwoNTaH5XcoiCkj/+DrAT/4axQjYmw4spz+qJxQBB8vfJt6LWoz4pHPObLrGHf178adfW8usz4JIdZKKU+rMXZZj1eAhxo9S8LBRKQEi81Mp24d+HeKnl5YtW5lPl70NjUbhmdSUL0qnzz5JStnr/OVFQiuvqcTfT5+JGgh/dvHv/P9W5NwO9xYIy0M+O4Zru5+GbdFPehPNQd9g6h6Tq3eOjPjRyKiyuZmvG7BZgZ2HeovOTBajLqTR55+9f/iSbo8ei2jnvmGjQu3cumtF/HUJ4+UmdhNRR2vQ+4ewYo/1qF6VSwRFrr2vo7ffTa1kbERvDPzVdpe3TJs7f06fDrTR832OYVILujUlFd/6Ist31ha/89m3rx9OC67G7PNzO3PdKHPhw+jJXUDdXeeKxWK5UAQNw7FemXYfo+8SO9h5Mmbyc18MKCfFObZDFrvR8S+g8z+yr95ELEf6AGHMuJ0j9nTMV4nDp/OT+9Owe1wY4kw07X39cz+ej5etxeTxcQznz3KrU+Eb6O9ZNpKvnhhPKpXRQhBjYbVeX3Cc0EB3qQjyfRq3g+3w4PBZKDV5c35eOHbfPrM18z+suR2mg+8dhePvV822VJOu4uHGj3jz+JSDApCEQHza4tLm/HRwiGsmLWG8YMmElcthld+6Bu2e1dBVMTxKl3/IdOe9Qn2mcByLbhWAemAAWz3I2IGh22zJT1bkGkDdLV7YQQlBhHzPsJ8YeB1UkMmXAakAgJEPKLaMr32P/2lPFfmlcIsAtPFKJXLTjNAS34APDllRQKIAjJzLxBVEFV+B+0YMv1NQEPEvI0wl11mUUVcE0j1ODKpC3pgSAFjY9BU0PYBAkydEJW+RYjwOHudPJrMu/d/wtFdxzHbzBhNRh57/39cc9/lQde+eO1bbF22E82rYY2wMH7nKDJTsujT/mX/XgZy7aGLIrpyFNOSxofldygILWMY2PO+fwz6eM3plwlR+Tc9Az3tZV/gqx9KxO1l1qeyGK9nVIZBZkpWQJp8yok0vt81GkURmCymsEe0ZMb7PhsZb+7/a+YwpLk9wnRB7nVqErjmk7sgVEDdjzB1Rka+CNkf43Pm5kywzpj91V8B6vf2jMCom9Qkr3Z5lykJ3/He7PLzMK0IpJxI9X/WXq/KXf278epPz2EyG8M+Xud8M5/Fk5YFbPjnfLOAZhc34YaeV/kfc7s8TPl4ll8zwZnt4sC2w1wjLmfwtAEMunW4/j2TFCtYYDQZsKfbyyxg8PePiwL0CVSPGnQDGPXM17S+8gIGfPtMmfThXOH4vkT/CajqVanRoBpzHL8gFBH24MvWZTuZMHSqPwAMsGrOOsa98SvPjurtf0xKyc/vTvGnarsdbvbkpEbHfwEnbyP4pKsojAhRhvOw+18gr8huAW05JyHNF6JEPaUrUZ8nJI7tS/DPYy67m8yULP7I/hlN1cKeVZiRnMnwB0cFlPOlnEjjvR6fMmrpewHXzhg9B7dDv071qBzy6an0+fBhVs1ez8kjyQhFLxMsjiWsLarsnJX2rN9PVlpuvbGmakFDdvuKXYztP47nv+xzviyxNKjH8uy3PbogarWVCOFBiPy2gKVHpj4Jmq9MTwJaAjL1Mai2OmD9IV1L0IMFvgtluh7UsN4K9kngWU2xg7HgO2ArG6SWDZ4NeR8hIFgAIE8iU59EVJ6KUmVmmfWlwqMl5XF608B7BFF9DaCVyXj9sPdYdqzcE7DeG/HoGFpe3jzApe3Y3hNs+W9HwCHniQNJtL7iAu7qdwvTPpuNEHqg4FTBAgCjsYxdFBzT8z2Qke9nDzL5EUT1/1Aq/1y2fSlDzijRw+r1q9Li0qZ5hGUlL17jizKpxZzISoJ6goBTIdAFYLTEgIdk1igCF4iAuSNSSpToJxFVFyPivwOKedMXlZDqiVB7fUqatG/EqTx6PE4Pnz71dZn14Vzhjr5d/af7qkdlyN0fsuavjTizw29PlHw8NcBSBsDj9pJ0JFCYcP5P/5KenHuDVQwKV97VCSklHbu0Z0ridwyb+wb1WtQuVruKQSEjOfPUF4ZIk/YNUQy5U1GBNwAJQ+7+sMz6cK5w/6t3YvDdPL1uL9+/OZF/fllCxsnw//+mnEgLcGIAXaX9xIHA+XXXmr1sX5FHnVvArX1uQkqJMNRFVF+NiP8erDdTvAWtitRcyILSgcOBoQnFirVnvKMvfs8TMrf2uQmTJTcw8O+UFUz+8PcyUcbOTM0KCvJKTQa15chyMO3TQBeGzo9cC+j6CRMOjGXkknfp8frdxW5bSg13vrk9XNRoWK1Ywet54xeyf8uhMunDOYPlBsh7GqsegszBeu19WaClBz8mswhar2a8EfizqQ1CiQRAqfwzovLvEP0OxT5DFHFIrYzWBMIW7I5TEN5t4CwfN5QKg7GFz/0gBxcy9QnwbCoT8eDkoylBeznFoJCWGDiOx/QfH7AONFmNNGnfECklT4/sxY97PmforIEB68aiiK0WS2o+/ZuwYmxajIvSkZmflF0fTgNnVMBACEH/sU/4FwhSg91r9/HWnSN4qsPLLPt9NZoWvkWgiHoasOG3lRERoFTzC2uBnrKDO5/isrEJMuNdZEILtMTrkFmfI52zKfTjVOoRsIOXx5FJN6I5ykaF+IWv+3DTg9cQEWMLUkjOy76NB8qk/XOJJz54KGAxlp6UwbD/fcojTfsx7/uFOO2uIl5dMrr0uo6ImAisPicGa5QVW7SV6x64wn9NVlo2a//eGJA5YIu2snL2Wm6x9uCuSo8w7vVf+Punf4PeP4eouEhM1txFutvp4dlLBvLDkMlh+13ycme/m7n/1TuIqxbjFy4riISD5WNFWZG4vseVVKufW5vscrj57JlvebhJPyZ/NJPUxAIWoCFycee2VKoZh9WnfWGJMGOJsND9pdw0PI/bw9r5m/y2mqDPlFd0y0ImtkcmtEGmD0Y6poE3q5CWDEBcnp8lpPdHpj1TJoseYekE0W+DUucUV8p8TgnnKSnNLmrMpbflphl73V5+HDKZJ9q8yDev/MSR3cfD1latxjVoe00rLBFmhNCtcS02M/97I3fjL6Vk/T9bAqy9AFpf1ZL7aj3BzZYHeLf7x/zx1V8k7E8sMLvAbDPr+gB5profh0zmqfYv4yiDQHOVWpV4f87rNLqwfpHXGUxGjobx8zwXEYbKEPU0kHP/9IDjN2Ty/WhpLyI9YRaSjHwM/aBKAQz6Ztt2T0AKufRs1Wur82K+AS3pFn0Ne/IBZPZ4Xfclf6AB9PfPX9vumo1MugHpPRze3wef00TliWC6mNzPsSA0pLd83KYqCkKYIHoQuYedGriXIVMeR6b00EtswngPfWjwfVhsZoxmA0LomVUNWtahUdvcuenY3hPs3bg/4HWtrriAt+/5kC6m++ndoj+/DpvO0pmrkAUcIAhB0GHYgc2HeLDRs2xcVDZuTyJ+NFg6o+8ni8CzvUzaP12cURoGoNv5dK/5BPb0YMsOc4SZq+++lFd/7Be29jTPPsh8T7cMsdyAiH5WV74E3UIm+W5deCVvJoKhmR45Lm6arOlKULcHLx6VBrpdjHs5GJsjKo3TlWDDxLg3fmHyh4EiTHlpeXlzRv13evzsK2L9Vw592g9g38aDQY+brSbqNK/F2NUf+E91S0tqUjpfvvg9e9YdoFnHxvT58CHiquq2MtkZdh5v/aLuhJDntCoqPhKXw43HWbwTrLjqsTRsXY/1/2wOKGdUDAq3P9OFWV/8RXyNOIbNfYMGreoW/kYlZMnUFYx4dAzOrIK/VzGVo5mS+F2Zi+1AxR6vHz/xBfPGLwzK5DCYDETFRfLd1pHEVgmP0rTL4eLHIZNZOXsd1RtUo89HD1PvAv1mLqXkpWsHs2vtvoCyBaEIZu7egcVW3M2TASJ6gf0HAjPGrBD5pC6cKEyIuJEIyzVh+b3A59Rw8jZyrb0K6FfV5SiGuLC1WRQVsSYcYO64BXza5+sCTqYEZquZkf++S5P2DcPSlqZpzBw7j7nfzici2sYj7zxA+zyCn2NfGM/cbxcECMQazUaq1q3M8b0JxWrDZDXy0Fv38cv70wLmOluUlXtevI2Zn8/Fme2k9/s9ufeFW8Pye+X8bt0iegYJL+bl06VDaXVZ87C1WRQVdbxKz1Zk8r0UXJ5qg9j3UWzdwtae5vgbsr/U24t4BGG703+P1OwzIeNN9DkqZ75XwNAW1M2F9DE/BojqB1lfEDjXKWC7D1z/gXYcbHfq+glhvD9rSbeAuqfwC6LfQIl8JGztFUVFXRNILRWZeDUF38dsENETJeaVsLW3c80evnnlZ9JPZnBdjyvp/tJt/vKynav3MOD6IbidnoD5vsWlTdm74UBAuVhRdH7kGhZOXBaUkdvqiuZoqsbO1XtpdXlz3ps9MEhPqTRoaa+CcyaFZkKau6BUGh229oqiLMbrGZVhAOhKwoWk5rntbv759b/wNpg9Btwr9UnJ/oNec5aD80+feE3eG6zRlwZWgpMA9YQvjTUvAqTq899VwbsTmfl5yL9GQdzVvxvV6lXBZNEXNDFVogOeP7g1/NHhc5H8yqw5uJ0eju05wdE94Ss/WfTrfyydvppD24+wZMoKVv+5wf/cliXbyU7LDpgkFYNC5VqVih0sAPB6vFSpUynoxm+NtDDnm/moXpWTR5L56LGxhbxDaFx2+8U079gYo9lIZFwEDVoGBiOyM+ykn8xfG3aeklKYL7HqUXE73axfED5B1p2r9zJzzDwObjvChn82M3PMXP9zJ4+msHP1noBgAQJu+l+VEgQLfC+SOcKDeVEheyzgApmFTHs+rKclwtgAIu5DT+O1gLFjviss4CmbE41ziazU7KDSFgBNlTizXSyatDRsbaUlpvPdaxPYv+kQO1buZvzrgcJuc75ZEOQmU7lmXLGDBaCX5Tgy7UHZf5qmMW3UbDJTsvC4vIx7fUJQuVlpUBSF58Y+jtFsxGgy0OGmQJsxxaiwdenOsLV3zqJlUHhqvwPs4athllJC5lu68rp3G2S+T0AQwD4efa2ad96LAHUrxdfbUsF7EJT4fI8bwbUMtCP6NY454F4S+i9TACL2bZ99nxFM7QnasrhXhbW9cxLpoXChS4cu2htGvn1tAluW7uDAlsP88t5Uko+l+p/7c/xCnNmugGCB0aJnPhU3WABwZNdxv6NeDjmltTtX70VTNbav3MWMz/8s/S+UBxHVV3ebwASGBkBk4AXqlrC2d7o54wIGjiwnWiEiFkIRVM+TThsWvLvwq10LBenegPQeQFNTkTJHyDAfsviLAwC0PeBZGfy4EkNuMEIFeTL4mlIQXy2W73d9xi+HvuTn/WO545kuAc9np9vpf+UbuBwu7JkOtq/cTWZqYWm/5ymMzOQiPjMh/NaK4WD/lsP+DZbL7mLX2r0c3HaYrPRs3E5PUAmEECUPDGWlZPP3j4uDTqCbdmgYMGmnJYUvfR3AaDLy4fzBTDzyFVMSvuPpT3sF7AFVj8qzHV8j8fBJPG4PO1fv4eSxlELf7zwFk3w0tVChIE3VqN20ZtjaOrLzGDmLEbfTw+51+zmw9TDZGXZOHklGzXdqXKexg+eGLqBk+3ovOL4mKJ3WcAEBwV5ZcGCvNCgxbyKqrdB1FuKGo5dH5GCHtL76PUVKpGc70nsg7H2o6Jw8mhJUApCDJcJC/Zbhy3JKPHQSxaBPOqpX4/CuYxzcdpiMlEwObj9CdKVgl4uEgyW8b0v4ddgMHJmBQbGouEjsGbmZlapXw+105391qbi59w1MSx7PlKRxvDPjFWzRuadrmlfju9cnMP/nxQAc2X2cvRsPlElZT4VGK6p0zgLGcGZwuEFLxb/hk3Y9w0FNQnqPgIgt4DUFaBycCud00Ao4+NDyjn0nUgvODC4NwtwRUW0VotoylMqTCiiN+BstQ9c2kuoJpGcTUob3O1Ph0dIofCtoAGODsDZ3eMdRf8mswWhg+4pdHN+fQGpiOhZbcAmK1DQyilpjF8C25bvYtSZQN0RKiapKfzDC61aLXruHgDDWRVT9F1FtCaLKPLB2DbxAPYqW+gRSepFaOtK9EamdPXuuM8olAfRN7gUdm7Bl6Y6Ax+teUIvq9avS7/PHw9ug7X+QORz9lArIfB+ZqREkhuin8HS+kiFBDfwd9Zqt8KIoij9lffmstUHP711/gKmf/MHUUbPxur0IBKOWDQ3rIqyic88L3fhxSGAUtmrdylSrV4XHh/UkKi6ykFeWnM4PX8M/vyxBKAqaV2XO1/OZ8/X8QqOvxVHoLpAC1oib/t0W8HPLTs1Ce+8iEEL40+H/m7EqqB8nj6bw3cAJ7N14kMSDSWiqxpuTX6RTt4vC3peKyoNv3ssb3d4PeCwyLpLaTapz9/O30rRDo7C11fHm9phe/RkhBJom2b/5IP0uHRh0SptD0lELBqMsUnul2KibCVD+VmqXSTmLUPTxKt2r0fVw8gYmspFpA8HURHdXkBoyqi9KVJ+w96Oi0u3Jm5g+ak7AxtVoMtCgVT0uv7MjNz50ddjaatS2PpWqx5Gs6adeQhH07TRQD8SW8b45+VgqRpPBHxwxGBVqNa4R9nZsPk2RPev3Bz2neTU+eeIrEg6e5Jf3p6Eogo43t+fNSS+ellKwCoHlOoKznYReymq+EBHzatiaEsKCtFyjZ8lKdPeClAeRuCnzAYubXGtZ9PbM4b8PC2EGYUZKb8HlCfYf0Yx1IeN9XbTcUBsqT/GXFp/nFBibgKE6qPnKag1NwNgAETMkrM3d8sSN/PbR74C+3vvw0TGoqoZWyFpV9YRHt05qkhP7cg97hYAWlxVHrLBkCGEAoZeWS/ey4Avcq5H2nyHrM98DZqgyHWEI30FNWXFGZBhIKfnx7cn0bPA0b94+nIu6tA26puWlzRg2d1DYb6BKZA9dOyB2sO8RN+ELCpwKSa6oixVhCfYiDSdtrmoRVEvvcXuYO+4fslKzsWc4sGfamfrpeeXZU/HPxP94uElfnrv8dWo3rRW0PrBF2/h0yVBaX9kirO22vrIFY1YNp+9nvanTvBZup6dEqVqlQoLJrMcYLRFmripj+63WlzcPUEgH/QR80+JtnNiXgCPLicvhZtwbv5ZpPyoC21bs4ok2L/JYq+cRBcz6zmwnY1Z9wA3/uyr4yVJQtU5lvtn8Mf0+f5zLbr8Yl91daLAAwGjSSphdcCpyvpgWsN4SzjcOxnQBBWakaQng+seX4eCCrPCWnlVEEg4m8fyVg3io8bNsX7ELa37bQSF4a8pLPPRW97BuZM1WM2PXjuD5L/tw29NdcDt84/U0HbLnZNwYTQbaXNWyTDfpNRpWK9BMyeP28NPbv/l/95V/rCXxUHizHysaUstCS30WLfEaZNZXoOQ7CUdBRPdDiR2KEOG1JxZxYxCxH+g6AzlzzOkasAj0bYQApSpCqXyqF4TekjCCoSDhTi9kfgI4QWaDehRc4StTqohIqaFlDNXHa/oAXWctP9auKPFjEYZqYW374cH38faMV+n3+eM4shx4XN5CgwXhRtM0jP41rIWWZa3XYmpH0DZbuiD7e32syiyQ6Uj71LLtR5g4IzIMVv+5gd8++h1ntovkoyms+CPwJNxgMtD+huAgQrgQ5ouAi5CZH0OYU6qKRgNbD92719wO1ONIQyNEQSv6MPDEiAf564dFZOcRlNRUyYn9uTZnRrOR+GoFpbGdJ4fEQ0l8/NgXuB1uTuxPZNjKUQH3Z6EILrqx7MZr/ZZ1qd+yLosnL2P/5kPF8qENB1LCjQ9dTcqJNBq0roeiCJx2F9aIsvFkvq7HlUz+6Hf2bjgQ8PjJo7llCIoiiKt+frwWhaZpvH7ze/7v/es3vx90TYtLwh9pz6FK7cp0fuRaThxIxGgyBDgi5Ef1Co7sNVOvqTs8WQbma0BIUGqC6QKkmqwrmZcBwtQSabsDHPndRPKlHCrRnKdo3r3/E3at2YvUJB8/9kVQWnxkbASVa4dPIDgvEdE2buh5FbZoK7O+mFcmbRRGvRa1qdu8FrZIK+1uaMOxvSfKJMsA9BKIJz58iNHPfhsoKCkJEEqW6E475ykcmfkRuBYBHrB/R7A+gBGMLcukbSGMYO0C3sPIrE/LpI3CiQLr9fomyNwJvNvB1KrsmosbDcm3ExgQUUGm5f4oNVDiyq4PFQHnDLD/BjjAOZfg8Wry7YvKhg43tEHTNEY/+21YncSKQ9fe15N8LIVWV1zA4R1HqVQjrswCsyJ2GDJxPoEHCSpox/L8bEIY8uuDnJmcERkGJ4+m+BcE+WtahUEgBGSmlp0PvL+tuNFARJm3E4CWpgdps79CpvVDpj1fJs1kJGfy5u0f4CzEtkkxKFgjLbS/oQ0PDLyrTPpQUUhNSMfg83+VUgYFC4QQOO3OMq/97P/Fk1SrU3YR/YLYsHALzTs2Yebnc/ng4dH0veS1MvEP93q8fPzEFxzZdazQa8w2M43bNeSlb54Ke/sVCa/bi6MQ5wmEb8waRJnfuLu/dBvNLs5/8haI027gyWtbMPTJ+qxfEln6bAP3ErB2B8c0yBiEPHkzUi2hBk0x0bK+AmdRG0wTGOog4r4ok/YrEiePJPsDofnnUaEIImNtpJWlrzZw6a0XcW0ey9rTwcGtR7jruW78N30VY54bR58LB7B95e4yaWvJtJVMGDolyH0iB8WgEFctlgHjniGm0vkgV5GoR8jVBci/+RK63aFWtlkawlgXogcQXA5RlmSCpRt41kHWR8jkHmhldFoqPVsg7QWKzJ4QMRD5WJludisEagK55ST5x6tu0SnzW3GGGUVReGvKS0FZpGWKhKj4CNIS05nw7hTevH04Y/qPK5um1BPI1McpXFxUAREJ1ht0t5GzgDMiYHD5HRcTER1BRHRwqpZUJV63ytev/MzJo6ErBkvp0QVR1MJ9hoW5PSVyPyAaRClr/V1LwbUEpF3/4/oLKcPvxfz5c+PYuHBLoTXtRpOBcdtH8d4fr/trHM9TMI3bNaBO81rY8qfJotdJaarGwonLWPPXxpDbkFKyb9NBDu88Wug11etXxVUCUSzFKGjcrmgv7lNxYn8SM0bPxZntwpHlJPHwyaAMgHAw68u/WPjrUlz2gn8/g8nAsLlvMHbNB1SrVzXs7VckzFYzNz50NdZIS3AkXepjdsfKPcwYPadU7Rzdc5w96/ejaQXPMbYoGxHFtDD6b3YcI56rj8N9EaVbAHvAPg5/uqp0gmthKd6vYKR7NWSNBVmYEKgC0a+gVP0HYb4w7O1XNHoMvAtLhBmDKdiOVq9FTWRM//GlaiP5eCo7Vu0uNOCpKApN2jco0Xu2uqI5BlPpllXTP5uDI9uJPcOB0+5iztd/l+r9CiI1MZ3hD37GySOFbwque+AKfjvxLdc/UEC68nkCEJGPo3uwF7R2kiDTSn0YJLUMn0haEYdnli6UqBxBuQAIFvIsEY4ffHNrNuCE7DLagKU8XrTFoqExSvU1KNHPlUn7FQrrrfpmVRSkr6UBTkgfiCyFULDb6WbHqt2knEgt9JqLu7QLsj4siko146lSp3Sn8YsnL2ffpoM4spw4s13M+WZ+qd6vMGT6K3ogrTCLRWFDVP0XJW4kQpzGoEkpOCMCBnFVYxm/41Mu7tqu0GsUIXAWsnk4FVK6kcndkSkPI5O6oDn0UyDpWoKW2AXtRDPfnzYU+p+LmUAFbIBM3TEhsjQTlAvIm9KtIdNe1QVewkjiwaRClaar1qvCyCXvUvU0n1afrRhNRkYtHcp9r9xR6DUCcBRit1gchj80mucuf4OnO7zCD0MmAbB/80H6X/EGnQ33cZPSnVtsPUhLLNhm0GgyBNf/eyUHthzh/lfvDLlfUkriqsf608UdmU4+e+absLtrJB1OLlQhPCLayusT+tP26rJJ8ayIDPjuGQaMe0ZPzy8A1atizwh9vE4Z+QdPXjiAF65+k7fu+AApJSknUnn77g/pYrqfm5TudLXcz+p5Gwp8vcGoYMlT2tL1f8n8sHw7ZmUDWG9Gn39DRNjI1YpxIrNGI717i3pFyVETKLyGwgiRzyEiHg5vmxWYO569meHzBmG25ltI+T5iTZOF2oMWhzV/beSRpn155aZ36NNuAI4sBy6Hi8+f+45uEf/jJqU7nY338Xm/gjc/BqNSYJr+tmW7aNy2AbWbhF5G4HS4MFtzx/vCSctYN39TyO9XEBnJmYgCrCoBENCl9/W8+O3TYW2zIiMsl0KVmaBUL/yiUmy+pHc/Mul6ZOqj+t/eQ0gp0TK/RTvR0b+G5eT1hbyDgh7QyO/luQMUG5i7hdw31GTdItz/8z607PBZR0JOJmcRrkymyxCVfyn8+fMEoKv5/wXGokpnpc9yseRkp2fzeOsXeeWmd3i4ST82LNTtBBf/tpwHGz7DTUp3blK60y2iZyEd1DNIFUPgFjXleCpZqXZ6vB56FnR2uj0gc9Hj9jLqmW/CnxGsHqfQ/aShEVSaijjLyhPPiIABwJHdJ1gxa03AY9XqVcFoMWKyGLnirk6h34TdK3QFUGkHnJD1CdK7B5n6DGh5lYKLSsl1g+1eEPlPM93gmkvugrSkOHwL2jwDx7UInKU77cvP/964B0uEGVuUVf8SCrBGW3nrt5eYsH8sDVrXO/WbnMePM9vFpOEzAh6zRJgx28xYbGbqNKvJpbeGlhaXfDyVJVOX47K7cDnc/Pr+NOxZDl64+i22Ld/ln9iKqgX3elSaXdSIdte3Dnhc9apMHfkHNRuHLmRzYn8i1erl2pse2HKIn94Or1fvzY9dT0S0jYgYG4pBQSgCo9lI72E9mJ76A5feFn5HkYqMEIJvXv0Zmef+ZTAqRMbZsEZaiKsaw21Pdyn8DU7Bj0Mm+UXSNizcwuGdxxjY9T3+m7HKn/JclNqx6tWIqxrD3c93QyiCJwcfw2yVGE0qOP8BcynEGN0rdcXnHLSTyPTXQ3+/grBcAyIORBR6YFlP68R0O1TbhIgKs7vPOcDkD3/HmZV7TzaaDFStU1m/j0VbeWxYIYvNYvD9mxNx2d04Mp0kH01h5ex1fPbMt8waO88vIis1WehhrerVEIrgqU8exmDMXUZJKTm08xiXdOsQct82LNhCs465pTsuu4t3un8c8vsVRN3mtWjesTG2KCtGsxHFqCAMgpaXN2dq0jj6j30cYwHZHecpAudc0PJmBCqgNEI/ELJAdOhzjsz+GWSmTyQtE+mYhLT/Atkjgbwb6cLWBBrggah3CFr2aylQGoV2dRcYW+V5XxUyPwhr6ZcQAiIeQg96WMg9vKsHleciKn2nlyOcp/h4tvhOwPOg1Effy5gh4iG/A1BJWTZzDakJaTgynbjsLn4cMpktS3cwotfnJBzMtR0tNLtA6hkKPV6/K0jw1pntYvuK3SEnHmaczNTvI5Fmf1vzf1oc9qAskX0Bq29/lzNe4yD+e0SVOQhjnfC2dxoo94CB2+VhRK/Pea3LuwEn4Gariay0bARQp3ktXvi6T+jCFEo8uStlBZTK4N1LcMbAKXBM0ifs/GhOiCrFAlSeBPKmmWkFt1MKLrm5Pd9s/oSqdSvrC3gJzkwns776i7sq9+K2yJ6M6PX5ec/lUyCl5Kd3fqN3y/6B5QBCt6aTUmKLtvLW1AEBp0QlwRZlDRjrEdE2Uo6nBQhRFYety3ZyaNuRoMcVRfDsZ71D6huA2+EO8B5XvVqpTvsKom7z2ny/azTtrmuNRCI1idftZd64RTzSrB+3RvbkucvfOO2COWcjCycu5cFGz5BwINAfvHrDargd+g37jYnPlyrDKCouN61VapKouAgObg8ee0WRcDCJZTNX+xYLeW9NHoi4l9CDsm5Qt+f5WUJRab0hIJRoRJU5ENETfSWjASp4/4Hk/yET2iKTrkOqhWtynEdn24pdPN76RVbNWZd7PxK6qn9qQjqqV+PJDx+m5aWh27rGV4/1n15JKYmpEsOOVbvRSiAga093MOH9aUExBa/bS9W6lalSO7TUWa/by5Z/twc85nK4w3pvVhSFEX+/xTOjHgUkmldDqpIdq3bzyeNfcGtET+6q1Itty3eGrc2KilSPop3soZck5d2wK9VBOwSoYLsHJaLwjMRTYqhM7vxnAlEFPBvJ1U0oDl7IGkyBlo/yJJhCtSfVwLuWwNNUoZd/hREl5nWI/wb/3ArAIcj+Up9fE9qi2WeEtc2KiO7o0ReZ+jwB40dEgeYTQDe1RUQPCLmNmCq5B6AGo4H46rHs33SwZHOYhAnvTsXrCQyCCSHITrPz8JDQ6/6P7j6OKzt3/S6EKFWGZUEoEXcgqsxAPwzOGa9pkP0LMrEDMuFCtIwRYW2zrCnXgMHGxVvp12kgf/+0mKzU7ADxHaPZiD1Dt9w4vjeBJVNWhNyOMLWBqKdAxIKxGSL2A6RnN4F+2cWlgNdoCeD8DeKngqGx/sUTVcDSFQxtSt6EoQbS1BHpXluqGqL81GxYnbSkwBT29fM3k51mR9MkS6auYPXc9WxZuoOM5LIXmTzbOLzzKK91HcpP7/xGWkJGgDuBJcJMWmI6HqeHjOQspn7yR8jtRETbeO3n/lSqEUe1+lV55/fXOLzzWJEZBYWRciIt6DFN1fiw11i+2zaSlpc3IzI2gpjK0Vx4XSuu6n5piduIjIvg1qc7s+W/7WEdN/HVYnE63Eg193M+uvs4J/YlIjXJ3o0H+OOrv9i2fCeJh8/bfuUn/WQGH/Yew7AHRwUFCwxGhaTDyXhcXpzZLr55pXQppG9Pf5laTWoQVzWG/l8+SXpSRkgBsxP7E5FSMvTJ+qSnGFBVAAnpL0L8RL1GV8Tof4wtIeJRSn7UYIHoF/X5tQhNm5IilAiEiCBg0yCzQN0AaKCdQGZ8hPRsDn9JRAXA7fLww5BJvHD1mxzcdjhIb+fYvhN43V68bi9fv/xTqdrq/+WTNL2oEdHxkdzZ92YatK6Ly1HyksfMk1lBlmCqV+X7Nyfy1Ce9uP+VO4ipHE1kbAR1mtfiocHdSzxcDSYDjw59gJ2r93BoR+GaNiXFYDQQVzUWLc/8qnk1ls5YjaZJ7BkOPnpsLAe3HWbX2r3nDxPyIaVEy/4VefJO34Y5X/BaS0CfC7zgmIJUE4PfpJiIyN5guUqf9yzXQkR33V2rxOTdbOfgBeefYGoBMcNAqaqvYZXavvm1pELgClg7IzUn0rMlrONGP5XNl6nmnIn+OXsg4w0072Gkez1ShlbCXJGRzoXI5LvA9Re6e09edxSJvr/xgHcbuJeF3M4lN7enW5+biIqPpNnFjXn2s97s33q48IyCInai3nzrXiklB7cdYet/O/ho4RBqNq6OLdpG5drx3PjQ1dRuWsJsGQF1mtWkfuu6bF22M6wi3sLYCGQ+DQf3X75sdxXsP6O51+trES28h8RlQbnZKh7cdpg3ug3DVcgJYf5oj8lSuq4qUU9DlF6TJz3bIftrwudV6wbvXoSxKqLq3IBntLRXQN2c55Gc1UJhbUfq2QrJ9yCFQbeHqTwz5NSg/Nz82A1M+mBGgc9JKXmvx6e+WlzJZ8veo37LUoo6VhDsmQ6eu+wNstKzC/yvc2Xn2sApiij1eL3q7k5cdXcnABzZTu6t9liJMwwKw+tR8bg8nNifxKj/3gt47vcv5rFsxmrUvHoX+nAolA8XvMXL17+DJiVIyegVw6h3Qe2w9PXu/t1YV4h4pKZpTPpgBi6HB82rMmjSiyGXgVREXr7hbQ5uP1Kg7abq1fwbMiEotVJx0w6N+GHXaP/PDzftWyoNjy0rI+l1aQu++28Hlap5QboRnmWI+NEB12mudWD/haLLyfIR+y1kDkJqJ/Xa2/jPEJZrQ+5rANabIetTCv7CSPCsQqb8A1JDRj2DEnXe4SOHT/t8xeLJywr25Ja6BksOpU2Xr1KrEp+vGOb/+e17PyLpcCGiyqeY//IjNYnb4eHvHxczdNZAHh/+oP85e6aDCe9NLZHv+CNv38+6+Zv56e0pSE3jocHduf+VO4vfoSJoe01LzFYTzuyCvz+pCek82/E1hCLo2LU9b05+scwsyM42pH0CZH5I4QdP+f6PRehrAiGsiPhcdxUt61tfhkG4cIJzBkq1JRBxT8AzmvP3ktmNm68BUQ1SuiMRerlW3KjwjBulJhjqgbq/kAtUONlNXzsbakPlKQhxXsQbQLrXINP6U7iwe54sUQml0Q0SQvDUR4/w1EePALBu/ib+/mGR/r4FzafFnw4BvVxh3YLNvDvrNX7c/XnAc6/c9A5Hd+ceBAhFFGk9XqVWJe558Vae6fAKikGhRsNqfL5yWMgZwkFYuoCrsANEDVJ66eMVE1SZgShNeVAZU24ZBrvW7itcdMeHyWpCCEH7G9pw1T0lP/ksFC0FRJjr84QVlEBfaM0+HZz5BoqIpMgvolIL0vvgV/VWU8AVPhXPx4f15IaHclPPjGYjRpPBVx9aBWe2E3uGHUemgxmj5xbxTucWJ/YnoqpqkQtHxWBACEG9FnV44LXwWVM6s5zIQpTnQ0X1atRpFjgxbVu+k29f+zkgWGC2mjAaC1/o1GtZh6c7vEpWWjb2dDv2TAe/jwnfuOl0c3ueHtnL/7NiVDBZTBjNRipVj/PVITtwOdx8/9bEsLV7tqNpGge2HD71xkToysP9v3girO2n58tkKil3PpHEZ3N268ECQPcxD0xBl+oxSHuewGBBjn5AIYjqkN7Lp2mjq3rLzNGFX19ChLEBxP1AbrmbQE8lNuoZblpaHi2dsWFrtyKw+d/tfv2AglCMCopBwRZlZeDP4VVCP3k0pVB7wVDOFYxmI83z6BAAOO0uXuvybsB3UiiCiJjCnUOsEWZ+fX8qa//aiDPbicvhZsLQ8NnWRUTb+HrTxwECjopBwWDUbZbtvrnVme1i5ey1JB0J3amqwuFeQdFZqgr+7370AES+9WGp0BLJtcULBwoYWwQ8IqVES3sVtLz/5wJEPIWnySjg3gKOb9E3pg5w/ZOb6l5KhBBQeToY8tZ/G3x/TCAqkbt2Pgqu5WFpt0Lg2UjhFn85WAAFbLeAuVPYmk5NyKOzEaZz2iq1K2M0Ba5Np3zyOxsXbc19QEBUXCRGc+H7PVuUleEPjsblcOPIcnLiQCIbFm4t9PqSIuI+BnNepxkT+ng1gqEW4PBpk2Qg7dPD1m5ZUG4ZBq2vvACk9Ecdg9KWBPT9rDdde1+PooQvriG1TKRnM/qm3UPpJ10FDPUh9n1k2gtI7z6I7IWwdYeMQeSmpyp6m1Kif2ktBJ2KWe4G1+wCmqgS/FgpeO2Hftzy2A3888sSmrRvyE2PXENqQjrTPp3D7K+ScDs9GC0mKtUsnX1JRaJ20xrYomy4HR79RlrA4rJr7+t4buwTYR2vqldl6YzVVK9flRMHkvC6S+eeoRgUouMjefn7vkz99A/Wzd/MZbddxOPDH+Tjx7/EkalHn00WE9YoM163iqZ6sESYgywOr7irI6v/3BDwmNlionKtMC6M0LMMOnZtx4zP5xJfPY67n++GPcPBspmr+HrAT/7fq/L58epHURRaXdGcXWv24vWoBY7XJhc15PMVwzAYwhc8lVLy37SVNGnfgK3LdqGpWpHR/cJof2UWVWu50aSCIkwQPRCp7kcmfQCmFoiYd5GZI0HmLEQtQGUgFX1+NQL5TsWUVqBtJ/A4wwCG8NpyKtZLkdWWIrO/07VzInrrAWrPVkjLozyvxIa13bOdy++4mDnfLMDldBc4ZmxRFn7aN5ao2MiwnnJvXrKd6vWrsHvdPpCULpNL6N+9257qTMO2DXii7YvEV49lwHfPsHzWWvZuPKhfpghqNKyqa9N4VKyRlqBT/pgq0diirSTsDywniq5UShu8fNRsWJ0pieOYNvIPEo8kc/vTXahcK56kI8m8dO1gslJzTx4Lsr4+Z7F01i2xCw0aKHp2qLERQoRxDevdC5qHXE2D0q5hBZivg8jeaMndQaqImMGAB1zz8lxXGV1ry4W+fvYSuAE1gvlScC8Nfv8C7ftCQ1EikFUWIB1TwLMJYb0ZTG2RapJeuuZNQdcB04IO8c5pzJehb1Rz1pD551iBiBsFlmvDOl5TE9M5vOsoikHBZDXhKSIoXBwUg0KjC+vT7/PHef2W90k6ksxDb3Xnopva8t3rv/rXOopRD3x6PV6QAqPFGFTe0PmRa/jn18DxqqkacdXCJ6AphEBUGod0LUI6F4DpYrB2AS1Jz0ZUj6LvRU0Iw5ntVFcuAQN7poPlv6/hzr63IBTYv/kQq+auD/iPvrVPZ255/MawtiulRKb8D7x7OHWkLR9Kbag0AZJv9dnjGMHUHhHZEyyd9VQf1yL0Oqr3kcaCBJnypAKZOoJnfeBjrmn5rjdAxIOlUwgvhLZXt/Tb0p08mkzfSwbidrpRPSqRsRG0u6413QfcHvZ2z0ZUr8rCicvo+uh1eD1eMlOz+euHRf6TeKEIWl/Zgn5jHg9rsADgo8fGsnjyshLrFwghmJn5I0+2eYnkoykIRVCtflXuG3A7Nz18DdNGzWHeuIW4HG5+P3ySus1rB2UxuOwe3L663lpNa5JwICmghGjp9NVB7XbqdhH3vHBrCL9p0dRtXpt+o3WlebfTzRu3vM/xfQl4PF4iom3Ub1mHF77uE/Z2z1aW/b6a9te3oeVlzVBVjRmj5+S6FAg9Ov/JonfCGiwAmDnmT7597eeg4NKpiIi28dGiIfzw1iQ2/LOFYc804bZHHfQeeici6h7wbEWmPg04QD2CFJEEbvwlkIRfxEkYQRoJ0BPQCjg1MLVGxLxTor4WB6FUQkS/nNt02vPgWqj3WUSAUg0R90nY2z1b2bZ8JzGVY7j92a6YLEZ++3iWf+4BsERYGL1iONFx4d0sb/p3GwNvHuoX/ywutigrfUc/xvF9CUz5ZBYuhxuT2cQ9L97KzY9dj8lspFez53A53BzcdoTBd31Il17XkePnJYDje3NPXU0WI5VrVyL5aIr/sYyTmWScDNSEqVavCm/PeCX0X7gQzBZTQFbc5I9m8uPgyUgpsUSYiYqL5NnPHiMqLnwbv7MZ6T2A0I4jIx4EzOCckc8hwQixo1FMTQp5hxDbVU8gk+/1ZUeVkIiHwHSZvqnGrffRdjciojsYWyMTO4FM09tJfRTixuR7g3RALw9DROoZCZ4NeZ73gvu/wJeIaETshwglvN9bIYTeb7rr/XUthtR+6N8soz7HRvZGmC8Ma7tnK1JLAfdyiHwYpAE8a8Gzhtx7qAGi+iGshdlyhobH7aHvJa+RdCS5xAcHzS5uzCvfP0vfTgP1Q0yzgYtuupDbnupMx67teeHqN9m2fJdPk+tzRi55N+D1UpN4nF48Ti8Go4H217Vhw4LNAeL6f/2wOOA1RrORhwbfR7OLArPDwoGwXOsvfZTevcjk+3xi/NKnTXID2O4p8j3Km9MeMJBS8uI1b3HYJ95T94LapCdlBJyARUTbqF6/CjJPBkJ4Gs8KLViABSxXoxhrISvP0C0PDXXA2i03Q0LdT+5iVUGox5Exb0HGO4DUN/3u5egBAguY2oFnc4Gt+TF1QIl5uehrwsD8n5eQnZbt/yJdcksHXp/Qv8zbPVsY2ecrFk1ahtfjJSougtpNagak7ZvMRhq0qoOmamHfgK2YtfbUwYJ8NWEGo0LTDo2wRVgZs3o488Yvwhphpkvv6zH7atWP7DrmF/ly2d0c23uC/l8+yaDbhuNxemh1RXO2r9ilv5/JQN3mtVC9Kkd3FS4SF1Mlmrd+e6lUv29x2LhoK8f3J+DI0oNtlWrG89ny98u83bOF37+Yxzev/ITb6cFsNXHZbRcFCEcqiqBph4a4HW5skeGt71w0edkpgwVBNYUCzDYTdZrVYvDUAcwbvwhHpoPOva7FGKNH+qWa13HBDd59iNjhSPcK0FLB2BC8eepalSpgaAjuwAVBUF8q/YIQpdNvOBVSTQDnfPwngVIiqsw7XwvuY8t/23mt61A8Li8mi5FufTrjdgaOoUYX1g8pU+VUrJ638dTBggJqbqWUtLy8OTc9fA0NWtXl2N4Errr3Uur4BLd2rt6T68KgSRIOJtHl0Wv5c/w/HNx6hNiq0bgdHjJTdaErxaBw3QNXMOXjWYV2QzEovDVlAE3aNQz11y02P78zxX9/sESYGTF/cNh0ac529E37XT4XADPY7gAt731RgFILoZRULLAYeDaADOWE1oqwXIWwXItUvtYPq8ydEGbd/lNKN8g8ZWTSCcYLdD0C198gLHomrXcH+um9CpabfGnuhX0vBUS9FPZNaEHIzM/wH76JCETMYIStW5m3ezYgpRuZfA+oiehWvx3A4/t/zEHE6mKXYSbh4EnSEtNLPHdbbGYuu+0i6resy2fL32f572to0Koul9/R0X/N8X0JeQ6ZDdgzHDz01r38+PZvCCFod31rNi7aisfpwWQx0vaqFmxctKVIY5Gr772M+18uhZtJMZHZE3xOeBK9BOQ+lJjwB4LDzWkPGGSn29m/5ZC/jm/vhgNB12SlZvPT279Rp1ktLr+9Y9DzoSK1TEqsrgGgxCNi3gRAGOvpjgv5iXgMMt7SU09FJFiuQFFikbbb9VMFYUJmDAbXf2C+3Bc8OIUqpjmMug0FkGNpufKPtX47KZPFSOVa51O787Js5mr/yXp6UibpSYGnPm6nh3nfLyKmSjS93n4gbO2qXrV4yt1BmWWCD/5+C4CYStF0f+m2oJd0e+JGFv76H4qiIKXkhp5X06BVXaYnj8dldxEZG8mvw6cz64t51GtRh0o14lg6fVWR3WjSoVFxf7WQkFLy/eBJzPx8rj99V1EE8dXPp3bnZdHEpf7Px5ntYuHEQLVjTZWsnrue4Q+NZtjcN8Ladt4T0sIIWjxI+Gjh2/7gxa19bgp+keU6EB8Dip4yG9lbn4ur/qv7k4tYpPNvyPpAj9Zb79D/XRSiUpkHCzT775D5Pvntq84HC3JZOXe9P8jksruZNjJYIGrHil28ctM7TDz8VVjbPrq7GErzBax1n/+qjz84cM19lwc93+jC+lRvUJWEg0lITXJnv5uxRdn4Yu0IMlOziIyNYO+GA3zUeyxup4cer93JyKe+LrIbiiKo0SD8i/q8SPd6ZPoAomJjcGTpy8Mcm9Tz+PCsz1Na6gBHfu0cCdohZNpTUHVhWLULpHqSkEoQrLf7TzeF5VKwBK4thTAjLV3BvUh/wNwJxRAP8aOQWobuJa8lI9Ne0lOoI3v7BB+L3ggKU6uS97UESPUoMrUveHeSG9mTunX6eXTUo6Amo9+DPOApwP1ApkDGUKSxCcLcPmxN2zPsRerSFEatJjXoOeheABq2rkfD1vWCrrn7+Vv5cchkFEVQqUYcF3RqwoXXtuKu525BMShomuSjR8ewfcVurry7E3+OX4jHWfThW9trWpa4ryVBalnItOfBvZLc8Woqk2BNWXDaAwYRMTasEZZTel563V6O7jrOvk0H2bV2H62vvMB/gw4Voe5GiogQ0rmsiFMo3CoRdyJNzUE9DOZLEUoMmn0qOCaBsSUiZiBKbO4pqHai3ambzR6LZp8C8aNRzG1L2OdTM+uLeSz/fQ1uh67wbzAZqNmoup46eR4/NRtWIzOl4OBOzmmp2+HmwOZDJB5KYt2CLTRsXZfmHUuXjpiamE4o+wohTl1r2rxjE77e9DF71u2n+SVNqFa3ChsWbuHHIZOJrx5L39GP0eO1u+jhS1Pt0/7UnrybFm7lriq9eH7sE1xz3xUl7/gp2LhoK9NG/pEbLDAoVKoZx/2vlH1E+GyiQZt6bF6yvcDncsar16NyeMdRstKyWT5rDXHVYrm484Wl3simJZZc7FAIccpUZ2GoClXngns1GBohTE2R3n3IjPcADRE9EMXWGWydAdAy3uaUmWQyQ5+HIx9Hie5b4n6fCqmehIw3yNWqEfpJTtSzYW/rbKbxhQ1OeY2UkHIsFZfTxYpZ6wC44s6OQaJXJeXEvtDE2GIqRxf5vMls4vOVw1j79yZiq8TQ6vLmZCRn8vlz40g6dJL/DbqHjl3a8fXGjwFYOmNVoDNNAaiqxv/qP8UVd1zCqz/1C3s2G4BM7QMyjfcnmPnp45psW1uVx4Zeej4omxdjc4pnyS2Q3hMgt+rCgZYbEErR4+aUhGrHWgzldRH3ie8gSwXzFfrJdOaHelaD9W6UyB6IyhMAPcVdZg49xTvqJcDS2Briv0YxhH8MybRXwJtXl8YCpkuQprYlNtutsBhqULyDUgHqAaRb0TOxLZchDLVK1fSBLYexRFgKdcMrjOhKpw6q3zfgdtpc1YLUE2m0v7ENZquZqZ/+weLJy2h7TSseffcB3pycm/E6c+yfp2x3dN9vmPzRTN6d8Sr1WtQ55fUlRWZ97hNLdeMXRDY2BmvXsLdVFpz2gIGiKFSrV5UDWw4V+LzBaMBs1U99Th5PoW+n1zAY9RvjqKXv0aht/ZDala4VyPSBIQQLBMQMKt6Vpha6ly0g3at95QgO8GxGuv5FRg8AxzQ9GioifWrZRaGCPA4p96IZO4D5IkR0X4QIj/BQ6ok0f+qnlKB6VA5tP8oTbV6kSfsGjJg/mOj48NaenY006dCQXWv3FficEAJrlAVVVanTrBa9Wz6PQCCRvPJ9X66+97KQ2jyy6xiD7xqBx+1FCH/pa7Ho9U7xshxqNqxOzYbVAUg5kcqg24bjsrsQimDdgs30evt+9m0+yMrZ67FFWU75fl6Pl6wUL0Mf+JRfh02n+SVNeeTt+6hUIzwZK/mV9zVV4+SRFAbdNpxKNeP56J/B1G1+Pm22aYeGGIxKkI99DrYoK5om6dStA72aP4cz24UQcGe/m3ns/Z4htZmZmsWQuz/E43Kf0sYoP5ffeUmxBCuFUkkXCyJHj+ZBn4K3RCbfhYzoDUoU2CfoPuKnxOeRnv0ZmmMKmDsgIp9EmC4odt+LRKYTqCYu9RrhzPfQMj9BxH+BsASfTp9r1GlaE5PFWHDplQBrhAWEoO3VLejX6XWO7U1ACMHcb5sxfN6bIbWpelU+6j2WA1sPlXi81mlWkwuvPfXJqcVmCciQfK/Hp2xavBWvR2XQrcO45v7L6XRzB34YPKlYNrw5do0LJy5l1dz1tLu+Nd2evImOXdoVu+9Fvr+UerYOUK+Zmze+OggcBNYgE75ARg9CiQxtfqhQGOpR9Mm6FYQCSnXI+gzpXoYujv0ZVJkd8vpNy/oSnNMosc8nkYiIe095lRAKWHID/VrGp2CfBDjBswXNOUevgc8a5dPxUjj1RtQD3vWQdDma+TKwdkbYuocvw0o7ma8PLr0MLbE9mq2HXppwjmdzCWFDKrG6yF6BmPx/pGsDON/UM6UzDVBlFsIQ2prqv+kr+fKlH0ocLFCMSoAVbVG06NTU/+8l01Yy/s2JuLJd7Fqzl+WzVtPrnQeYMXoux/cmEBFtJSu16D2X6tE4tvsEj7d+kTZXXUC769vQY+BdpQ5M+9GSyM0Qkujfj21w8ho0UydEpW/OaBvQcrFVvKhzWwymgpuue0Etnvr4Eeo0q8nMz+bicXlxZrtw2d0smbYipPaklMi0p32TyylQGuinQESD9V6I/Rjh3YH0FHxiVyjefeRO6ipoRyD9JXAvAy3Bd2MuwY3Duw7s3yPTXitZP4rgliduLNRrdN/mQ/w6LL8I47lJhxvaYjQXPGGYI0z0+egRLrutI1M/nY3L7sZp18frH1/9HXKbwx8azaEdR5GaLDJYULVOJeKqxmCLttLhprYMnjoAKWHdglPoY+Qj8dBJDHlqbrNSs/lywI/M+34RycdSSDh0kpgqxT8d2bvxIH+O+4eXrh1Son4UxSW3tC/0JDrleCojnwxvuvLZygUdm/jrp/MjNcnjH/Tkjme7MPe7BaQnZeCyu3Bmu/hz3D8htzl+0ES2Ld+J6i3aFSEqPpLKteKJiLbRpH0DBk16gZaXNmXhxKXBTjlF4tbtcf1zrAfs43TVYe2E7tNdkrRU7Rg4/9BPxLTSWUL6MTTS60ULxOHzxD5PzUbVMJoLLw2554Vb6TnoHjYs3Mr+zYd849XJhoVbcGQV56Q3mAUTlrBk2ko8Lm+R49VoNlK9QVVs0VZqNqrGgHFPc+tTXfjr+0VBOgun4sDWw36dIE3VWDxpGR88PJrj+xI4tP1okfaK+clOt7N0+irevudD9m48UKJ+FIYQAiKfLORZFTKHIdXztopCGEEpQkfCehtEvqTPT+5/0Gvr7brWimdbSG1KzzbI+sK3UT/FPGloBEQBVSDqNYh+BZxzdOG7kuDdRq4otwqelZDWF7y79ExaDBRur5gfD7j/hYz3gq3GS0PU84X0QYJjuu809zyYOlHods/YAaIHgiEenJMAtz7OpMcn5F5yHNlOhvUcVWhmbl7qXlCLqPhIoipFcvcL3Xjp26fZtHgbR3YVo1wsD4e2H8HjK+FVvRqHth1l6P2fsOW/7SQdScbt8GAsRmAW9D3jpn+3M3H4dL5++acS9aMoRORjFHpO71kH9jPbGrxcXBIcmU6EUFAM+k0qr43RwW1H+OzZbwGJmkcI0RJhpn6IKSJSTfRNtKdCgbhRCFNzhFDQHH9A+htIPJA1BipP1LMIioPlKhAmkC5yJ/icujcfUQN8dbbFXXh48qnSlo5ajWvQb/RjjO77bVCdkVQl9gxnIa88t8jO0KOSikFBCAJObl1Zbkb3+xbNqwVseEwWU7FSbQvCke0k4VDSqQ8RBDw18lEuu+0iTGYTezbs5/kr38Tr9mI0Gxnw3dNce3/xSgMata1PbJVoXD6nDCDAwtHj9HB9jyvZ9O82ju9NKNZ7aqrG0d3HUL2qP0uoNNiibLz7+6s8d/kgPK7gurhQNw8VDXumExAoBl2fIv+G6Ivnv0cxKAEnuopBoW6IomaqqrJv00G87lOLyd7xbBceeO1urBEWMpIz6dX8ORxZTowmA7vW7qXPhw8Xq00hLEjzlXnS+0Cv0cxZFKl6wMB0acFWtYUi9cWwUvraWyEEMv4LSOxIgXO8LNnJS0XFnunUS+KMet1pwHiVMGnETAwGJcA1ASAqPgpLxKkznwpi19p9eNynrq298NpWDJr4AlFxkWiaxpMXDuD43hMIIVg0eSkfLRhS7Da7PnY9Uz+e5delyW916nF5eeHrPiUKfAoh2LN+f8j3mvwo0S+gOWdBgMiovzWCrKDPQaR0gcixbtUIOmV3TkPfTOd/oQohntZKz9bgdgpC1EBUmuC3Z9PSXgTnAiQqZI+Hqn8V/wTTdr9eApbXyStgUaJA3Od6EKHYGQ8OpHstwhasqxQKiu1mNOfvvo1tvvuPEMVc958LZJM7JgUBn5V3NWSuJShjRChgCM0t4NieE8WypzWaDbz7+2vUalwDIQRTP/2D0c9+i8ftZcLQKXy96WNqNKhWrDYvv6MjE4dPx2l3+YejlLmaSQaTgec/f4yPHvvCr6F3KtxOT6HlnaEgTC2RUc9B1ucErwk0pJZ9RpfSlEuGwd8/LsLr9qKpGkIQcHorNYnqVQM2ZUazkQffvLdAcaFTIdUE3QoxaAK3+P6YgQhfxFhAyh3IxEvQ1DRwzkKvVfOiR0jz+8sWjjDUQlT5A6zdfG0Y0dN+zHq6rBIN1mt1JdpiYwZr5xJcH0xqQhp/jl/IxsW6xVjnXtfSude1BZ5IXn1f2Youni1MHzXHP16NJiNGc+5YklL6Nti5N0whBDc9cg2PDi25AKLbpdvQZKcFls4oBgVrlBWLzYzJYqJWk+pYIsy82/1jbo9+iF1r9rJm3ka8bq8ulmh3sfDX4o9Xs9XMF+tG0P2l2zCajSgGBbPVhDXSQmRsBLYoK7c/04VWlzcvdoqfwajQ6soLShUscNpdLJiwhKUzVqFpGk3aN6LPRw/5y5bycu0DV4bcTkXiz+8W4HF50FT9tF8x+r7bvv82r0fF6/aiKPoDQhG0u65VQL1fSXjvgZHsWRdcsmOL1ser0Wigev2qxFaLYcLQadwe8xB//bCInav3oHr1vjizXfz72/IStSviv9BPRrCgz+82ENE+z28rRD4L5vYU/xTM5xduDF28U0oN6fwb6fgdKR0oig0R/yVQgK+z5bxWDMDK2etQPao/O8VgMiCE78Rb6IFLl9Ptv0cJRVC/VV0+XjgkJBvbX4dP589xC4I27EazEZPVhGJUqFwrnhoNq7H2r43cVakXY/qPIzUhnWN7T+B2enA53GxatBVVLb7jUq+37+eNSS8QXTkKo9mIJcJCfPVYbFFWLBEWur90G3UvqI1QSrZkzLFHDhXpXoW0T/UJ6oGI/xqUAg5nDLVBqVGqtioEnu2+Uigv+gbLQOD6UkXfDOQEpBRQquglSIaSf37StdhX3po/wKWgrymNICqB0ghkAjLpMrTkHvoBhusf9DWsW89q9RZcWlkQiq0zovLPYGiCvoa1gIhDL7mIAPMlYGgKlMRq04Kwls4uXXp2IO2/IX2uOCL2PTAWFOAVSHP4RNPPVqR0gmsx+vjJCXDlXT9p6GM57wbWBtGv6wKZJeTIrmO8ePVbQY+brCZMFhMmi5HIGBt1L6iFpkp6NXuOHnX64HZ5+GfCEpzZLlSPipSwaXHxM3Iatq7HF+s+pGPXdpitJn2OtZkxW01ERNuIrxZH22taUatR9WK/p9lq4tr7S1c2KNVjSPsUpHsjACKyt26hGLT9llDK70ZZUy4ZBtXqVuHYvgSkJjGajTzyzv3s33iQBb/8549KGYwG6resQ1RcJC983Yc6zUouviHVxDy6BTmnaSbfv82gVALrNRDxLJy8AX/UTWZAxmAwXQyuFegTrqmQSalwhKEmIu4TpHMhqHv1QSLM4D0Apgt1X3FvEV8IpSFoh/B/waPf9HnPhkb6yQyeaPuSv6bohp5XE1s1GnumI2gTKKVk8B0j+GbzJ8WO8FVU6rWozZHdx/UTdyF44oOH2LfxAKvnbSDleBqgb7jrNq8FQvDUx48Uq8Y1P45sJ1+99APH9pzwp64qBoGmScw2E7GVo2lzVQseGnIfQ+//hGN79JN+r0fl3fs/4YWv+mA0G1C9KpYIC62ubF6i9iNjI3ns/Z5cfsclbFq8TRcabVaTPev306B1PaaOnMW/vy0vNHU8tmoMWWnZaF4NoQjuf+VO/vfG3SX+HHJQVZX+V7zBsT0nAF3Btkn7RnhcngIzDL4f9CvNL25Mu+tah9xmRaBeyzpYIsy47G4sERbue/l2Th5JZtfafezbdFCfdy0m6javhdfj5d4Xb6ProyW3vtI0jZlj/mTJtJW58TLfNGKxmomMjaDxhQ343xv3sGjSUqaPmgPoQeGRfb7i+52f+SP9JouJCy4pmUioECZEZE+k5UpwzQdDA6T5MoRnAxhq6adymR9R+OmXyddh31iy3IqIGVgqjRiZ/io4/9LfNmss0noz+vxdwMmsax5a9o8okcXLqqio1GpSw3//MVlNXNP9MiJibBzecYytS3fgdnpQFIXaTfXrLr+jI48O7RFSsGDpjFVMGDrV78pgNBlRNS8Gg5HYKtHUbFSde1+8FWuUldc654q6zRg9l15DHyAyxka6L9hWo2H1EgkPCiG47NaL+X7HZ8z/+V8iYyO4rscV7Fy1F2ukBYPRwHOXv15kiURkbAT2TAdIaHVFc57/qg81S7AAzo+W/QNkfqKP1wwLMrKnfhJekHWfuh+Z/hoibkTI7VUIDDX0z0j/AYwt9Np/z15w/4f/RF6poju2mFojYt4OyWZRujcg0weTO3/kBCe8IOLBUA2s9+jaLievyn2hZy3S/a/eN88m9DlO6HbgJUCY2kKVGXp6v3SB7W5QD4K0Iw1N4ORNFOn2pdTUS3CRutVk3AhEKTbx0rUCmfokOToOMvJRn8BTAd8ZmQ0pPZGVp51StLxiY9bHoUzTfxTREPEUqDt0i/i8eyNDQzBUQ8S+H1Jw6/i+BD7sPRZ7lsP/X2KymFA9XqwRZuKqxXHFnR257+Xbua/mk/6gbfLxVMYNnEDrKy/gwLYjuB1upJQ0urBkmnV1mtbkvT9e598pK0g8dJJrul+K2+Ul8dBJWl7WjL6dXuNYERmydS+oxbE9J9BUiTXKwovfPM013UPTIQOQ3iPI5Nt984WGjHgAiPBlF+bXANEg5UFk1XlhdVYJJ+XyLRr25yCGPfgZmSmZPD2yF5fcrNd5trqqBZ89/Q0geWrkI9z57M0htyGlF5l0M5DXAs8E1tvBNUePtmqZYP8R7JMJTLsCZDYi8jEkAjxrwXorwhLawBHW64A8p0m+tDTpWU/ulzU/sYAdfxBDmBHGurowTYhsWrwNt9PjV5mf/c3fRWaSed1els1Yzd3Pn9t+ti98/RRu12gObDnM3c93465+twCw+b/tvN71PVxON9f3vIoXvupTKoGdF656M8BmVCiCJu0akpWWzbG9CTizkkg4mMTCSUuDFLXdDjcdbmzLS98+w6KJS2l91QXc88KtIfWjRaemAWIyF910IQCr524o1CLHYDLQuF0D1v29Sf/ZYCC6UhQWW2gpwwAn9idydPdx/+J+1Zz1rJqzvtDrvR6VP776+5wPGNzdvxvH9yWwas56OnXrwENv6SJTCQeTeO6y10lNTKdp+4aMmP9WoRomxWFkn6+YN25hwBwSGRNBu+tbs3zmak4eSeHkkRRW/7kh6DRXUzWq16/KsHmDmDpyFjUbVeehwfeF1A9hrA/Gx/R/A/iEBGX2VwTN634UsN0Djt/I/QVcCEOVkPrgxzkH8Piqz/ZB9lgKn2Q1/f5zjgcMOtzQhl5DdXGqBq3r8tzYJ7BFWnFkO3n+yjfZv+kgVepUYsTfb1Glduh2aXO/+4eRfb4M2JArBsHdL9zB9FFzSD6WSvKxVLYt34ViCJ7HVY/KqKXv8cPgyZgtRh55NzQL3ZjK0dzdP/ee2uYqvcxx9teFa94IRXBz7+tZNHmZv/8nj6SEXKbpxz4RyFncOyH7CwpPfZfg/B0pPzinheSEoQYy7jPdLlXEQdwoFGNNn1ZWf3DNAxGJiBuLMF8YcjuaZyuk9CAw1d4EkU9B9pcgk8GbDFnvQ9bI4DdQsxDxXyIzR4KWioh6CqEUkOl0CoQwQ8T9uQ/klGu5NyKLKpMwXa3rHuRcox0D00Ulbj8v0jGdgDk9+yuKLNXwHgTvfjA1LfyaCo4QClT6CZn+ih4IjH0PxWedqGU2huxRgAFiP0CxhbZmBMhKz+bxNi/gduSuEc1WE7c93YVZX8wjMyWbzJRsJn1wlBmj5waUvIJemtZvzGNExkWyd8MBuj15E03aFaEVUujvK4I2+XWa1sTlcHF4+1G/hXx+ajauTtLhZH92u5RQv0Xt0s117n99wVdfwM/+I0VuuqQbXEshTCU74aZcShK2LtvBvk0HSDmexidPfEnSkWQ8bg8zPpuDyWrEYDL6NwmhIh1/EBgsAPCAll1A9LyARWX0K7rOQtTjKPFfoNjCu2mW0lN4tNfYASpPAGMT/DEd6dE9PL17Qm6zTrOaaL4USqGIAsdt3tIEo9lIVOUoVs1dT8qJ1JDbPds5uvs4G/7ZQkZyJuPf+JVtK3YBMGvsPKQAi82MPSM4S6MknDiQGBAsAF/tlSI4cTBQ3bYg+62nP+0FwHUPXMHbM16h+0u3h3QCVxhSSmo3rZGb3p6H+q3r8s7MV2l2cWMsNn0DajQZsERY2LlmL5pWvHqx/FSqEZc7Hgv5aPOm71psZmo1rs7qP9dzdM/xkNqsCKSfzODfKSvITM1i3viFzP/5XwD+nbKcrPRsLBFmXZejFONV9ar89f2ioGwTk9XE7nX7A27K+YMFALc9rbsdtL7iAgZPeZknRzyMLTLM6sBKHQqMiYuaEP0WwnIleqotgBUMtZHudUhZinuPoQ6Bt9WianuNYGiIdC3VRc3OUTxuD399v4j0kxmsX7CZCe9OQdM0ti7dydFdx7BGWXBkOUs1XgHGvTGhwNP73ev2BWQsaaoWpMfR6ML6xFSKplbjGgz8+Tle+u4ZqtQK7ylQfM04f2ZZXqLiIrnn+W7c/cKt/rnfaDJQq2kNtvy3nez0kjo/5cF0AbnfAUnRdfJCV/73rEe6VyNlaPN6hcD5O2iJoO6CjDf1OUM96MswiABZtN97scgcTrA1rFvfBAeUJ2joNep5iULYZsdrwQABAABJREFUbkIosSixQ1DiRxVff6uYSCWukN/TDJZuEDdC1/ECQAFRDTzrdE2xUDFdAOS9T+Qfg4KAxYIAqaUjXf/p2hPnKNK9VA+caMch/VU0NQ2pZYFzMvrnqRScVVQCpo+aExAsAF0DID05M2CdICX+Q8schCJ4+O3umMwmHh58H29Pf4VLbm5fqv4URHyNuKDHhBC0v7ENI/5+i1qNa/jXnFLTSD6WyrG9J0Jv0NCY3PVAYe4mgWtqiRXpWozU0kJvt4wolwyDSSNm+gMC9kwHDzfpS+/3enDiQCLOLH0gTfnod+5/uRT+6jnpN/lxn8qL0wLxX6GYmoXedjGQac+DWogKqLpTjyxLD/oAqw7GqpDxil4jG/UUStQzJW6zYZv6vPpDP34YMpmDWw8HPW+2muj/5ZMsnb6SY/sS6HBDWz5/9lsUg0BqMHrlMOqFKIx2NvPHl38FTHDPXzmIh4fcx+Lflvs3Q/9NW4k900FEdGjpzImHTqIYlKDN1a7VRfsuK0aFZ0f15tr7iiduGCoTh09n7V+bkGrwhJewP5F37v0Io9mI2+Uhpko0jdrW56uXfkAogos6X8jgKQNKHFCxRdkY8fdbjH3+e3au3hP02ZgsJh588x5O7E9k24pdtOjUjD/H/cPMMX+ielXenPQinbqV7kTjbGTZzDU4s5x+cbUPe33Oqjnr2LBwq/+GnnAwiV1r9tL6itAsBJ3ZzgJLU9IS0ot8naIIbnniRvp+1jukdouLdC0u/PRJJkPm+0hi0IPFkWBsA/ZfkY7JYKgFlaeGZG8kKo1DZrwNruUElyEYwXozGBqA808wNgTvEWRaX5AqMupZlKg+JW7zbGf3uv0c35egBwXQ1wdr/tpITKUo/xg2W00sm7Ga25/pEnI7+RezoC9o188v3FFGGAQtLmnKJ/++E3K7xeHI7uMM+9+oAr9T9kwHv4+dx+LfluNxeTHbzDRu14Dty3fxxq3DMJqNfLHmA6rVq1ridkXMu0isehlN0AELYGwO1v/p6ulKNIg4ZKrvu2u+EhH/eYnbPNuR0uHLJPLNLe5/kYlX69mr0u5/XNp/LlWGAVpBFnAauKYX8SIBojpUmalnBpQRUsuGlP8RHNAAcOvaCclrfJ+HCZT6IFN95QQqxH+HMF9c4nZFxMP6RsoxzVfqkP+CWIh+ExwTAI9++JbaGykMenlElekIEXrW41lL9neA05f5lg1JVyGjngUtDT2TGf1+GXFXyE0UJjo9/8fFRb7OFm3lo4VvU6VW6NljxeGVm94hMzU4uCqlZMeK3bp2WKYDIaB6g6pYIiy80/1jVFXj2VGPcsvjJdcXEJZOyJhBkP2t7twUhBVihulCqWoiWK6G9AH6eMUIVX4PqTSkrCiXDIPq9asi8qT8ed1eJo+Y6U93Foqgar3SpYYKa2efF3fhdk1BmDohqq9CmC9Dy/wM7eRtaBlD9WyAcONaRKHpsjJbL5nAiT4hJ4B3q2/ydeq1sSWyIMvlqnsupVr+z1bo9efdnryRUU9/w/oFW4iOj8Zld+PIcpKd7sCe5WDe+NBt185mqjWoismSO46kJvnpnd8w5Dltt0SY/afrodC8Y2OqN6iKqRD7xoKIqxHH1MRx3P50F+b/vJinOrzMu/d9TGbqqa1sSsr8n5fgtLsKHHc5tqfZaXakJsk4mcmGf7bgcrhxZrtYOXsdJ/aHdqpwwSVN6dQt2JrOaDFyd/9bmPDeNBb/thxHppPG7RrgyHJiz3Dgsrv5dfiMkNo826latzKSwIj+8llr9ci5b9rVvBqVa8WH3EZkbCSX3Nw+4HtxKgwmA9/v/pz+XzzJlv+20/fSgbxy09sc2R3+bBDpmI0+fxZ0Cur2/TmJvoLKBu8K/XqZDd7DSOeCkNoVhtoIWw8Iqpk16KrjzsVgH6+f9FhvBe2AT2PHCdnfhNTm2U6VWvFBJ+tHdh0n5USaf45VDErwfauE3PPirZgsphKJCn60YDCf/jeUhANJvNr5HfpeOpBN/4Y/G2T9/E1omixQvVtTNdxOD0mHk9E0DbfDzfblu/xzXVZKFjPHzgupXaFEIaKfI1ixWwFzV9CckD1CF8uLeAhcf+vrEGkH18Iz8hSs7LEQZIktU32OLYbca4wlq7/Oj4h6mlxB12IS/Qai2kKEMKClPY928nY0e1EBhhDx7vQ5EBS2Nnb4NvSafo22Rz/Ek1kgHXqZRAgIYUCJfgG0/IFpAxjb6wGuzDd1+0rLTXp5SM68rh0Hd+EljRUaJb/OiQvsk/QUeEDPdqtXqiY6P3Id1ghLgCj4qbj2/suZkvAdjdvW58sXv+fJC19i/FsTQ85KLQxHtpMdK/cEOe34n89ykn4yE6/Li+rVSDiQxOEdR3FkOXE73Ix7/ZeQ21YiukOQLpICSm19DZAxENxrwNgAvLvRS8Sy9DnWeaoD7tPLaQ8YHNx2mC3/7UDk23ekJWX4lZEbtq7H4CkDQm5Deg8gs74C270QMxREcSZuBSxX64JXzt/1iJx3J9gnI7PHhdyXQjE2puAEj8K+bHk/MDcyPfTPp1q9yn5nCqPZSNdHr+elb5/m97F/4XboQYLda/dishgx+zbBFquZ6vXPPfHDjJRM/hq/yF/KkYNuo6gHt6rUjmfYn4NCdgPISM7kh8GTuOjGtjw7+jEuvb14kfcLLm5MVFwkezce4NOnvmbvhgMsm7majx//IqR+FEWLS5sW6ExQUIlCfrxuL4Pu+CDkm0DlmvH+janBZKDd9a15f/brzPl2AW6HG3uGg/STmSQcyA1KGM1GajY698ar6lWZ8smsAJcZAJfdRWZKFooQRETbeOm7Z6jZMDSxNI/bw6/DplGpRhxPfNCT+14pXiZYfLVYajashj3TwcCb32Pnqj1s+Gcrr9/8Xkj9KBJTe4IW9cXGCelvoqkZob3cUBX86dpCX4jFfw/ulUCGbzGQDa4FecTTRAGLunODaZ/ORuabG9xON8f2nkBK/bvc/aXbCwwcFgcpJXPHLSDp0El6vXM/fUcXM7tFQKvLL0AIwcCb32P9P1vYuWoPb3R7v3RlAAXQuF2DkEvaNE0y9ZM/2LvpYGiNi+h8P0dA3Nfom77DuQGtrLG+Q5ic60z6tecY0jGT4ACLBHU3+gZZAcuNiMgnQ2/DtQTpWgCRT0D0CIoXNDAjzB0RwoBMHwTOv8G7AzKGhL/kyVCPYtk8BpBnDeVZg2afFXr7AaJwBogerOsjeFYFHKxhqIV/myNVfW4+x5Du9eDdS1Bdp3YUfV8hwNgWETss5Db2bjzAjNFzuO2ZLgz47hliq0Wf8jVGs5GOXdtjtpqZOvIP/vjqb/ZvPsTUT/5gwc9LQu5LQVgjLFSqGVdgsLiwAHLe8rX0k5l89fKPoXfAUIPc77AJInpB1ABwTkE/2HDoh8hKZXJLxAy+1505nPaAwYT3pmHPsBcoPOF1q0gpaXlZM6rXD+2LLbUsZHJ3cEwE+y/65l8WkvofgAaeLbpwjfcguaf/TiiFbkBhiPhxYC7IssRMsbIinLPQPLtDavuJ4Q9y0U1tqVwrnrueu4WHBnfnvR6fBvimaqpGvRa1iYyNwBpp4boeV9DtyTPb8qMs+GfCf6ScSA3agOXYfUlNElsllpaXhl7C8vINbzNt1BzmfLuAn9/5jX0bDxTrdcf3JeB2ujm+LwHFp9bt9agc2n405L4URr/PH+O6HlcGTa5miwlTAYGE/BzaepjfQzwFu+mRa7jpoaupXCuey2/vyJDpr/Bej0/JTMmbSSGpWrcKlWrGY4kw0/qqFjzz6aMhtXc2s3XZTnau2lOgzoXH5UHz2dZe90DoJSyf9vman4dOZe53/zDujYns33Ko6Bf4hozT7uLk0WTSkzL887+UksTDJ0PuS6FNRjwAkX0Inkut6HNsQbe+vIvyLMh4LbS2Ta0h+gU9AGDqgKj0M2SN0kUQ/Zj0xYGxhd4nY1NE/NiQ2jubyUrLZuaYP4MyDKQm8bh0K1vFoNC193Uhb6hnffkXY54bz5/jF/Lj25M5eoqMlpw5zmg0sNtnF5p0+KR/ASmlJDUxxGBSIbS8rDkvj3+GqLhAizrFqPgtwvJjMOWOV9WrMuTOD0JqWyhRiPjRuv6GoSmi0gTdQtq9jNxNoaJb95kvBWyg1EDEf12mae9nLJnDKfhkXdX/iAiE7faQPxvpXotMfRYcU/WDK3UPBaf+55DzvfAgPbq+kr5m9fVRKKCeYo4uIcJQBRH/Ayh1C+hLjl15UUjIGBiyXoyI/0rPJlBqQ+wohBIFjp8JOFgTsWC6UA9qiThdt8bYOKT2zmZk5sfoTm8FZSV7AYGwXoMwhFYSkHw8lReuepPZX89n5udzWf3nBtITCyhvyiHH3tntZc96fX49tOOov/zM5XBxeFd417BCCD5dMpSWlwWv0802MybLqTN7p3w8i6QjyaG1HzNUD2gp1SGqP8J2l55ZkB9jc58tdCTYeoAl9BK8suC0Bwwc2Y4ixYssERYaty+5MqYf9RD6l0ACbvCso/C0qXy4F4F3O8J2iy+FRPfzFhGhqXcXhTBUKcQTN+eLnf8zCv4yC3fJfMtziIyNZOisgUw88jVPjniI4/sSAtLrhSJ4YOBdfDXgR1JPpKF6NTwub8gn6GczWWnZwcEC8M+9ZquJpheF7tuuqir7Nh1E9ahoqkZGcibpSaeebAFOHEhi4cSlXHhtK2xRVp+ft5m7+98Scn8Kw2KzkJmSFSQa5sx2oXpVfyaKv5sGQWRs4AnvxkVbQ2rbYDDQ/4snmXjka9767SWkqpGVFnjCd9PD1/DD4Ekc23MCj8tL6vFUouOjCnnHioszy4m7AMvJHAxGhToXlNyiNi8bFm3xp/YZjIIjO4oOyOZs9OwZDn55fxrVG1SlUdv62KKsWCMtdH7k2lL1p7A2hWIm+BTMV+YlClgcKfkWE57QxiuAEtkLpdoSlMq/6jWI3j2BfTFdqJ8oeDfpfVKPgXLunX65HQWXOeXFZDESVy025DbW/r3RbyXsdXvZsapoXZgcvB6V0c9+C0DnXtdijbRgi7LSoFVdajUOfzZIRExEQNAe9Ew2j8dL5VpxQddf0jVQFCzhUOiBN2G5FqXqPyhVZyNMrcCzhYB1k1ITlP+zd95hTlRvG77PTMpme6H3jlTpiCBFrNhApYjYUQG7omBHUWwoRVAUC/xEsSAIgg1FRUUR6QLSe91e0+d8f8y2bJItSXbJwndfl5ds5uy8u5vJzDnved/nichvpbTqvc8i8Jam6oos1JUqbZBLLy8OFOcmityzrHrypvSARf/Pfkb/Z9StQET+YtniZ3MqSNS6PnQE8ufd+Pi8Gi8o8YIb3N5aWuVBGFuj1PgapdbPKJZLkK5deLb4RoPlCshbqFd0YUeoUX7OduYipcy38CsNMxgCd5HYv/VQoVCgw+Zk08//lvFDFf1z+Ts/knwklcvvGIg50owlJoKISDMDhodek6t245rs3+qdOLPn2gs33IpTv1Vdj6+FItj2x38BxRZqDZSkBfqcIPouffNAFI+pQtRY3e1EpqPPUUTYudFUqejhN+/9yN8rNvpUKlaNKs3PbUyfa8/jijuD2MlWm6BnOG2AqpfQSd9iHF5IAIEwtICk5fqN29gWYQh8QVgqfr1hfSnPZuKpsmkGY2js41p1bZY/WdEQAq655zIat2lQ6DHttDvZvdGXYMeZzfY/d7Jg8hc+EwYGk4H6LerQaUB7Rr8yKuAYqqrSpmdL9mzaj9utYTQbyc30JXaUj9TzbTL//4qiEJMQzdytr7Nh5RZqN6nlYYkYSgxG1afQq+bScLg8dwqkW2LNKXpQGc0GOg/sEJKfIyouknbnt2bXP/rEv815rbjuoatY+T/dDUBzaxzdHYSybTUl5VgaL4yY5rO6AKBOk1qc07MFY964Nag4PQd14Yf5v2DPc+CwOTlxsHz6FELoveiKovD6L8/x9zcbMEea6XZJEMJgpVLgWV7y7+EGmew9XCu+kFTAFLj/sheWwWD9XP/gKgmIxPeQJ7tSmESQLtCSdXGwswSnw8kDfZ72nZBFtx9s3aMFo1+6MSj7z15XdWP9D1uw59kRilJYNeCXYgkMkT8RfuCtu+gz5DysOTZ6DuocUgeaAlSD6jN5It2Skwe8kwGbfik2MRfQpF3J3d4gsAzPTxpIECoi8SNk+p0UluILVZ/0nmV2dTL9Xv+C2pj0iqLoOxCGIDa9TN3Rp+YuwJzvilBe8jU/IochDa3BfQTM5yOU+MB/Hr+U1j7r4/7q3OT5tYjUE1EhQERcisydV/R1wmykdTGFSQRpRTp3IiICt2qvjsjct8DlT9RVAcO5YLkaERH4mqtF5yaAnqT3VQlVFkIRtDu/NW+vf4XdG/bT5ryWAbdLlkVxF7jiFCSUi5N8OAUhROE92Wgy0LRjiJ7Ppp7o1Y/5m2oxDyGEsZj2lC3//hteVGnC4LsPVnkpnatGFYNBpXaTmsxcMyXoXWyhREKNJcjsmfnWNz5uXB5E5i+CbGC5Fgy6argwNABDkB7HZf2scS8j0+5Et8TxZ7lRQPEkgoqIn4YwBdbTWRJLtIV3Nr3Gmq/WkVA7jh6DunDiwCnsNn1yoKhKpewChjurv/zLazKrqEqhZeBrPz1LQu34oOO8/MPTLHx5MUumf1OoFO4XBeJqxpGVnEXrHi3oP0L3nI9NjKF/JWRli3Pnqzfx3997OHUopezLlSI7PaEIbnj8Wq4ac0lIfg4hBC999xS/LfoLoQguuK4noCcl9EWBCLjfuTqz+edtOEt4GyPAaDKiqApPffYQrbu3CDrOPTNvp1Gbhix4/nNyMvN8OmcUp17zOhzfe4LaTWox8olrAb2Vpc+QnkH/LKViGa6rmTs3l/MbCpJeKpgvRsQ9F7IfRcQ8ru/yaWkQcTFCWJCGVuDajq5zUMu/ze4ZypFdx0k97m3XazQbUFSVMW/cwsU39Qs6zmW3XUhUXBQfPvkJx/efwmkrveKwaYdGHNh2hKjYSB58W+9DF0JUYmJLp/OF7elzbU9+/Gh1ucZbs/VnhRCCll2b8cJyHyWuAaJEXo001NcrY0y9EYYGSFNXsBZLqpm6hyxedUBKCY6ffRwxAgaIvB4l9umg4whjR0j8EJn1Brg2oW8WlYLSRNeaQIXYorYU3aGh8q5ZoSYhox+EnNcpvWWigGKVk0otROI8fb4eip/F2A5qLNbF44wdEca2SPcRfQ2ABIyIiItDEqtaYV2Md5WdATCCsQ0icWHQu9jxNeOYtfYl5j3zKX8sWUfqsdIt2GOSorHn2nG53Nzw+JBCe9qGrevTsHXlurBNmH8fk4e9rgvslzGHLe6qY4owMvnrx2ncJjTPaKEkQo3lesWW2hBh7oXm3IrHHMRyfUhihZIqTRi07t6CHX959t3XaVqLEY8Npu/QXiEreRdqXWSBOmupREH0GDD1RBjbVnk/njB1g9obkNKmW2pYv9AVtMv6uUVkUBnBkqSfymT9D5tp3K4BO//Zy5CkW0GjMLOmqAqmCqihnym07NwMoQqPBZEpwsjdU2/hvCu7hCRZABAZY6FWgxpoUvr0rC9AURWuf/hKzh3QnnP7tcVsqVp7oDpNavHxgbdxOpykHc9gw09beHPce96L1BIYDCpX3HVRyMqrbHl21i5fT0xSNIqqMLLRGBw2Jw5bUZVDRdT7zxQat2vgsTtawB1TRtLl4o40bR+cCnIBqqrSsktTHDan32qGAi6+tR89Lu1Mj0FdsERHVGmJnVAiEUlf6GXEWjrStRsyxpWj4syIiBweMvstKTWw/6r36xo7QMq1SC2VohJaCVJBiLOr5atmgyQU1ft6uP6Rq+l2ybl07Ns2ZLG6XdKRF0e84beaoYCuF3eg/4gL6HlFZ+JrxlXt9SoEE+bfxyPvjSU3y8qJ/SeZPPQNTh5KLnViq6gK/YedT0IQbRslkY5/kK5jepVNxkP6Z6d4ybd0egogngUIIZBKI9BKlDVHDNJducyhm5MJU1ekto8y54JKC4i6Ccx9EGq9Kr+HKNGjkVG3IjUraMcgczK41lNmAsF4rl7JGyKkc5cu7GjqBdmvIx2/5QvKFnxwBJyNdoqGdt5tH4Z2iKiREHFFyO5vDVrVIys1B5ez9LlgXM1Ybnh8MJ0GdKBRm/oYTVU7Tzvvyq58nbMg33UmhUVvLOeH+b/gKmMOm1g3gS4hqpAFkO7jSPta3c7ZvhKZcU+Je7walvOBKk0Y3PnqTfyx9G+SDxUJR5w8mMxlt18Y+mCGRpS9DZqr94xggoSZYO4f+p+jDIQQujOD0hiM49EMrfU+NFmKCnPE4JDFTz+Vyc0t7sVWys625tbITA2tyFN14MKRffj5s99Zu3xD4Wu2XDtX3h36THWtxjWRpSQLQH8fvpj6NUtnf8fIJ65l5BPXhfznKA9Gk5HajWty+e0DadCyHi/fNJPkI6k+W40AmnduSmKd0PS7upwu7j73EY7t9eHBnI/U5Fl5vbbo1JS7X7+F2fcXc3WR0P3yTjQ6J7S710n1EspMFAGsnPcrv372J90v68SkLx8N6c9QXoQwgloLodZCJn2FzBiv29T6U/kWZjCdH7L4MuMe3Ze81GdRKbolZyjR8VFMXfUc9/X03BmPjLWENFkAurCVyWLGml16smj9yq1sWb2D2o1r8e6WqVU+oQUwGA3EJcUQlxTDW/+8wht3zWHNsnV+K3k0TePKMaF7Jmk570LOG5Sugq/plmxnmeihSPoImdwfj8+y63jl7F4r9UArQ2RN2wPZkyEnEmqsALXqnVaEMCDUGFBbI5M+QGZPhbz/Uer1E3VHyOJrtt8h405KTVIIgw8rxjMfETcFeWoNUGw+5D6gi+6FmPot67Jx1dZSH3OZyVm8++gCjGYDr/74bFBi4YGiKAoRkWYatq7Pg3Puovm5jXnn0f95VBSU5Mq7Q1MdCyBdh5Apg/B2WimOABl+12uVih6azEZ6DvIsFXbZXYzrNoGd60LrRCCi7gSlPJNkDbAh874MafxAUSKvQtT8GW/RwwLMCFNotAsAFr2+rNRkgSUmgpjEaAaNPvscEoQQ3DDR+8Z6S8t7Wb0oMMFJf/S4XN+FLQspJfY8B9++vyqk8QOlwwVtmLdrpn+BQQGtu4dOmXjNsn9KTRaYLSYioszc/GzohUqrAxff1NfrtYf7PsPClxaXKS5XEeo0qcVNzw4t11iH1cGapetC7q0cCMLQFJG0CIyd/A8yBG5xVxLNdUy3T/Q7izIAZoh+JCTxqhvndG/h5byy4PkveOOuOTgd5RQrLgeqqjJpcfkSVk67i9RjaRzZWR53pcolNimGSV8+ypD7/PdeW6IisEQHaiHqidRyIGc2/hd7AoiAyBG6Mv1ZhlDr6or7xXH9g5Z2F1JLC22shDcpn52iS6/4cKwNafxAEMKEEvtEfmuEv3uoCaGGpvRcSreeMCm1oiFS32k3Vm5LUTgilGhvrTOZiZY6DBli97e7Xh1FbFLZdoqaW8Oe52D1F2tCGj8QhBBcPe4y3t3yht/L1RxpolnH0FRnAsjsGZSaLBBRum1oxBUhixkqqtwloc+13n2ruzfs48ELnsblKnvHqrwIYYKkL4H4cow2grFdyGIHi7T/hf8JZgTS1D8kcX5bvJbFM1b4PR4Za2Hqqkl8tHcWtRrWCEnM6kYrHz3fx/ae5MUR0zi0M3TWL0IInvniEZqfW7aoilAEzTs1CVnsYDm4/Qg56b4rYlSDyqW3DghJnAPbDvPqzW/6Pa6oCi8sf5wF+9+ife9zQhKzuhEVF6WLUxYjMyWbD5/6lJ8++T2ksUY+fi0X3+ydoPBFnSY1K0UoLiC0NHCWonYceUtIwkgtC1LL2MmJeRFR8weUyPDrV6wqajb0dKzQE6I/8fZD80Map8vADoyddmu5x9doEJjNWKiR0knrtt8QEVmwiC+aGxiMGk8tCI0CvpQSmXYjulOTHyJHI2osQYl9JiQxqyWmHiVe0MDxCzI1dLvmAEKtBwnzKN80XUI4WQbaf8TvHNbYBZRaIQkjs54CdymikMZeiKSFiMT/IfyKjJ/hRPiw5nNuQqYMD2kYS7SFt9e/SkR02a0fRrORZh2bhDR+MKz7doPfyzUuKYYOfduEJI6W+zHYv/M/QKmFSPwIUfP7ShIqDY4qmcHZ8uzs23IQa46VLgM70qqb943N5XCx/ofyilOVD6GdpPSyD/RsTtStiKjRIY0dFDmvlXIwC9LvDEmY3xb9icvhPzPrsrtIqB0fst2L6oLb5Wb/v4fISs3GaDRwxV0DvcZomuTrt74PadystBxyfZXMFst8GkwG+g87n0c/GBfS2MHwyYuL/e4eu51uHr/8Raw55XQqKYVNq/4tdZdc5PdDx9WIDTpWdUJKyeGdRws9gu998w4v51opJYunfR3SuE6Hk7QTpZfNCUVwbv92vPrjsyGNHRS2pZT6XMh8AukKgSuM6z9K70FWgXR91/Is49ShZI7sPo6UkicXPuStXi3hpwXlE/8rL1JKTh0uo8Rb6KKHL//wdPjYsjrWccGgPfS6NAMhPO9/BqOkRtwHSJsvMb4KIrPBtbuUAQLcR85OL3stTe+Tl26IfQ7wIdbn3q7rlIQS1zHKVBdW6kLcy7rwXxggtbT8Fiw/ONcjc2eHJpjtJ0ptfXAfQxjbhGU/eGUitRyk8z+ktOm28IqvHfJspHNXSOMmH04tU9coJjGamycN5eKbgxe0DRXzn/nc7zHdfWp6aALZvqHUOYGWA2oThIgITbwQU+kJg1OHU7ip2T08eMFTjGo6jmN7TzBr7UvM3/2mh1WSYlBw2kNXYQAg08cC/izqBFjuQNTagBLzaHhlH0Vp4kUSXFuRMvi/VYe+bTBHFmUDRUkBKgWO7T277OnsVjvjuk/g/l5PMLLxGDb8tJUH54zhs2PvUqepp096RHRoP9QzxrzDiX0+LOry5wvnDmjHiryPeeKTB4mKCx9P4dgaMSgG/7cSe56DI7uOBx2nVbdmHuXLokRIzaX59Nk9k5FSMmXkdMZ2eYxbW93HV7O+4Yq7LubLlA/pMcjTp734Zz0UfDXz21KTvEl1E/jWtpCpqyZRp0lodpRCgoij9FJfCY4NpRwvJ2ozSu8Dd4NzS/BxqhmfvbaU2855gDGdxvP66Ldpe14rlmb+j5ue8ayyKO2eEghbft3GklIq6owRRj49+i7vbn79tPTW+kWJQ1XcDLoxjfgaLgozyEJSu6GDBs2ykPZfg48jokEprZJQgnNb8HGqGdL+C/JUf2TaUGTacIQSjai9DuI+KDFS6LoOoYqrpUP2E/hPGKiQ8DFKrV9RLINCFjd4zPhvRwBwgu3H0IQydkR3qfCDdiikrXjVAenag0zuj0y7AZl8EWhpiJorIXEFnks+g54kDCFPXjnF7zpOURXGTr+VxSkfMmLCkCoVlC2LyDj/bh2aW7JpVYgsDk09KLRSBLyX4G7QwnfNVekJg2/e/ZGs1Gys2Tay03JZPGMFQgiWvfW9rh6dT4OW9eh+WaeQxZWu/aAdKW0E2BZTZva2CpFaDlraHeDaWcZII+XrbSudK+++hPOu7FoUv4SokhAKLbs0CzpOdeLvbzdxfO9JbLl27HkO3p+4AIBNP28j7XhG4bio+EiuHuuj1CtArLk21q4ofZGydfWOsm0XqxBN05g+5h1+/Gg1Winq47Y8W0h2/dv2as2tk0cUfi19hAzlPaQ6cGzvCdYs+we71YHD5uT9xxcCcOpQCpt+LprcG4wqd74yKqSxS2tnAkg9ns7hECSKQomWOw+ZNQUo6btcfPJiR4qyezHLQqg1IP5dSps8C8vgoONUJ6SUzHv6Uxw2J3arg1Wf/E7KsTScdidLZn5bOE4ogjFvhKY1pIBPX11aqguN0+ZkzZK/QxozWKT9F2T63YCNDr1y+d/fOxgwJA1FhUYtbMxcsQfVQEjEB4VQEEmfoS/4/OCrvPkMR2a9Cth0dxXXXnD8CRgg50U8ptCWUSHVdZB5iyi9N98N1oUhixcKpHMnMvU6yqzsDcH8FUDETwdRSuuQsVNYLUyrApk7V08EyFy9/c66WP8b5L2Nx9/dcG5IdR3++3s3uRn+Nmh17YJls0NblRss6acyeajv06QeLV1/xGgKzYayiL4XDB2LvVLieSQiQS27Lfl0UekJg6iEop5ag8lQWOa39psNhZko1aiSmZLF1DvexpZXciIXGNLxD2XelGR2ftloeCBzpoPjL7xKVrxuiM7SXRTKiRCCI7v89+E/Nv8eImPOrnaEqLjIwoy0UAQx+SIua7/ZoHu35iOl5JVb3iTlWGiEjo7uOu4l/lUSieT3xadf2KiAnxf+wU8f/4a9xGc2IsqMwVT02TOajZw6nBKSmKVVKlw15mIatKoXkjjVBUt0hIc7RWSMXvWy9bcdHhaLqkFl5j3vsWdjCErtAbfbTUoZD1mAZbO/LXNMVSGdOyH7DbwdCVQ8tW5UhEwOTVAtDb9JabU14jQ485xOhBBERHkuSM0WEwf+PeyxgaAogoVTlrBm6bqQxd636UCZY1a8G6KdzxAgpQ2Zfj9oetWZEGAySx6cepTuF8fx6qJ9RboGIRLck6IG3sm0AqIg+uGQxKlWKHEUJv2kBiJGn3+5D+Ax4bf9iJbzfujiOsohrGxbGbp4IUBm3Avufd4HlEZ4LDe00LgYCSUa/N6rBcSHqPWhOiHiKDLAM4CSn/y2/0HR2sIA7oPIrOdCUq0MsH7l5tILS4AT+0+RcrSMtrAqZPZ977Pjr924XZ6JuaT6iR5tcnnZ/hMhFUEIFbRS5mDxb+muTmFKpScMrhl3KZ0HdsAcaaZd79YMf+waALpc1AGzRc+Ku51uMpOz+GPJWj56/ovQBM55B8/srK83QYSXl7A7GZ/9LV72GirSnYaWdida6ihkEGWtrbr698I1R5xdlkkAnS9sz6DRA4mIMtOoTQMenHMXAF0v7uhR0p2XaWXr6u28fNPMkMT95KUvPUq5LDHe7Q4GVSUy1n/pVFWTmZzldaMFcNgcHtoYTpuT2MQoXrnlTe4//wl++/KvgGO27+NfzNAUFZ59X5VJYp0E7n3zdqLiIkmqn8gzi8YD0LZXK48ElN3qYO+mA0y87IWQlGh+9aancI8xwjsDLxRBVHz4tM6gpYPPXlYNKH6PdSNFLFrWa2gp16PlvBf436y0vuJwaoOrQiZ9+SgJdeKJjo/ioXfvJiYhmsZtGxTltwS4XRpHdx/nxZHTST+ZEXTMLau3k3ai6Dz+2h1iksJoPiBt+NphjrBoPP/BXyTULD7Rj0LLXahfr1mTA+6lV5RSqhcFKMrZ1QsOIOJeArWpvvsXeRPC1EXXvlIboC/MCpIJxyBnJtIRfJWK5k4ukTDwsxILp/kr6PdYn6+fwCO5oliQ9t/RUkegpT8QnMOESPR/6Cyz/YT8XWzjuYAFzBeAJb/Vy9SDouohF8gUsH6FzPs46JiaprF4xjdFuXHh3TIKgBL61shgSD2e7nMOm5mc6VGNZo40s//fQ0y4ZDITLp3Mwe2HAw+q+m93C6vWeB9UesLAFGHiha8fZ3nOAl778dlCAb1x027jthdG0LRDkRiH0+5i93of2ckKollXgla8l1kAviauGjJvXtDxQoWIvlN/KFFy4VMyA+iC1GvB8Rs4/0am3YrUAsuA1WlWy++z6Lcw2s2uKoQQjJ12G19nL+C9rW8U9l5ffFM/Hn73bjoP7FA4VnNLDm4L4saRz+GdR/nty6K/tVAEdZt6+ym7XG6WzFjh8wZ3OhhwQ29iEqK9dgw1H37hj10ymZ8//YMdf+3mlVtmcSDAv1tMfJS3QFo+f69YH9A5qzuDRl/EV+nz+fTwO7Q7vzUArbo258XlTzDwxgs8xmamZAVtb2jNtfHehI88XvOVeJRS8tOC1WSmhGY3KWhMXfSJPyWrpiRepYGZU3QvcdcWyH0TbIFVSgjs+C3xDrGtVXXh3P7t+PzYXJakzePim3Thq9ikGGb+OYWr77nUo4TY5XCRfjJ4P+opI6d7fF2veW2MZu/J2a51e9m3pRTV9SpEKPEQcSX69VryIV0iIWBbCtlT9Os173Nk9hsBxZRaJogEPwdzkTJ48drqhjA0Qan5HUrtTSixekJWCIFI/DTfUaX43NKGdIXg+smciGeyKAqfm14yGxkqPYBQEH0/+vy1ZGKpxPXq2qm32jg3gH2lXkkTAFK68xM3Po8inTsCOm91RiixKEmfoNTZjJIwuzBpIuKnQvQ4UBoWG22HEPyNFr2xnKyUYpV7Uq9q9EKTLAuxWHgw3PTsMMyRZq8Nj5Ji8NZsG/f3eoKNP21h449beGTApMDnUWoT/C26pP2XwM5ZRVS5z9XOf/by+GUv8NKoGfQb3tvLoz2qFPGJcuMqKcRlhOixeL9Jbsj7DOkOjxIZYWyPqLkKkTgPaq6n9JaKLAonudIJWmC/w4Lnv/BbMZtxKviJWnXn1OEUnh/6Ok9cMYVGbRswYERvjwmtyRJ8Bnvf5oOoxRfBEoY9do3XLpjUJHs27mfzL+EhPJVQO555u2byyg9P8/mJ96jVyL9gVurR9EL1XEURHN0dWG/7e49/4rcPOTc9NGVj1Zm8bCvTxrzD+AsnYc2xMezRqz0SLKqqoqrB7RImH06lpA3DoNEDvXcOJGSczGTl/0IgyBYChDAhkj7TLbZqrALTJaWMTqWwNFtaka69AcWUuR/gv5/X7lGGfzbidrv533Of83C/Z9j401bGTb/No8VGapKYxOB3UdOLVRcAdLvkXOJreosL52VbWTA5RFWOIUDEvazbwiV9DdFPlzIyj6JWAnvgrZa2b0Hm+DlohFAshqs5Wt6XaKkjkbnvIWIeAqXEfU+EoKrKfcDza0NzMHbzMdCBzJ4SfLwQoUTdjKixTNfCSPqllJGSompaF7gDu7/i/Bfc/jS/FHCHl4bO6UDa/0JLvQWZ+TQi8gZQSzgmhECvZ/cGz43eqPhIho2/xmuc26Xx0XOf43KGVuA+ULoM7MC8XTOZ+tMkvs75qNSxtlw7UuqdntlpOditFa/iktIKtoX4XXT5q9AJE6qk/kFKyfcf/sy/f/zHL5/9gT3PgaIqHP7vGIPuugjTwt9xWJ2YzEY6hsDvUpj7IXPnoz9AFYh9CmEZhsz7BLSSDzwBInxKZBAJoMr83EZ5xVqcyJxZEPdChftfImMsZNp9K6X2vKJLhc51JvH3txv5c9k61ixdR0ZyFppbY8efu3jmi4cxWYzY8xyoBpX2vf2XyJeXtue3xmQxYc2xoSgKF9/Ul4EjL+D3xWu9NAs0TcMSRroSlmgLDVrXw2g2eln5+cOaY2PJm9/Qvs85FRZDjKsRg1CEx6KigI79w8NW6nSwZ+N+vnn/J7b98R+H/zuK0+7iv7938/L3T2Mwqjjykyz1WnhXrlSUus1qkVgnnpSjaUgpaXZuYy65pT+ZyVm8+5jnQ1eoIqx0UIQwIg3NAa38t1cA2zdIy+UIg/8WLp8oCeg7gz4mF2oThM+6zTOf5COpfDltOfu2HGD7ml3YrQ52b9hHUr1EEmrHFVYVmCxGYkPQJtDl4o5s+nkbbqebqPhIRr8yit5DevLowOc85m6KKsLKgUYIoV+vMpcK7e84dyHtfyDMvSsWUInXk4E+57MGUBv6OnDGI7VcZO774NoF9tWADZz/IlHB0Dpfe0oDTAhDy+ADRlwBuR+iz2GNEPeaXn2aMgBvjaswa0tQG4CWAe4KqL1rVrTchShRN1QslhLjW/04H2Hq4PfYmYyUbn2949wCtu/QKwkMSO0UmDqCcx36MykCYeoUdLy+1/dizVd/47A5UVSFRz+8l56DOvPtez+RXmLj0WA0+K0SPR0k1olHVRXysqz6nKAc3YdCEcx7aiF3v34LilKR38WAPh/wXSVc4ft1FVMl79riGSuY/cAHfP/hz9jz9ImT5tY4vPMYV951MZffMZB6Lepw2egLuXrcZUHHE6buEDMR/Y2RkLcEmfGIj2QBEPN0SJVtg0FKBzJtFDL5AjjVHe9WBH9oYPsambugwjEnLXmMmg2TMFk8Ew1CCPoPD++Lt7LY/Ms2nr9+KsvfWUnaiYzCHW2Xw0W9FnW5Y8qN1G9Zl/Ou6sp9s0YHHa9mgyQmLXmUyBgLmqax9ff/mHX/+z4FDvtc25M2PUMwIQkRM++Zy7A6o7km9mZOHiy/sOGWX7fz5j3vVTjeI++PpUm7hl672apR5dLb+lf4fGcCpw6n8FDfp/n6re/Zv+VgkZisQSUrJZtnFo2ncdsGdLigDZOXTQw6ntFk5I1fnyOxbjxSSpIPpzL7wQ94/wnvXsgGrepx8S3h47es5X2KPNUDeao72CtQyuvei0wbW+F4ImosmLrj07fdcl2Fz3cm4HQ4ubfn4yyZ+Q2bVm0r3Kmx5zk48O8hXv7+aVr3aEGzcxvz0rdPYbYEn9B/9svxNMtvf3Tanbz94DxeGDbNa3IYHR/F7VNGBh0vVEjH38iTPZCnekHOCxX4xhRk+piKtxCYL4GIq9BL4EtMD009EEr4JFOqEpkxFnLfBftKoMCpyAaufxFxr4Gpt26jGjsZYQz++SyiHwLzQPT3QELOTEgfjbfGlUGPHyZI12Fkcl9kch9IG1qB78yD7Bd1YdoKIAzNIOZhELF47X8qNRGG5j6/70xHZr8O2a/prUqFlUcucO1ERN+jtzqpjSHqNogI3pLzgmt7MuLxIagGBSk1vn7rO567fqpXsgDgyU8fquAiu/Kw5lgZ2/Uxbmh4Nzc0vLvcpnlup5vl76zkl0//qFA8IYyIhDfz7Wu9q5NFxMUVOl9VUyUVBuu+3YgtN/+iFWAwqBhMBnoP7oFqULl35h2hD5ozh8Kbq2uj/p8XBoTlqtDHDhT7z3qJVbkTBcVxgWt3hb+rfe9z+OTgHDRN46Zm95ByNA0hBHWb1yY6nATLqpCtv+3wcERQVAWj2Ui95rWp2TCJIfcPYsj9ofU9Xjx9hZ7hBI7tOcHSWd95jTGaDQy5L3z8lo/sPs73837BXYqloj+kJgPqFa7btDbvbn4dgMcvf5GNq7bidrmJiDTTsvPZZQFawJ6N+wsz9lLmq6lHmDCYDLTr3Zq4GrH0HBTaaqFfPl9D6tF0kJCVks1XM717/FWDwjX3XI7RFB6qv1JqkDWZovtrBYUMtWMVjimUaETih/q3Z0+D3PfQn0sRCPMFpX7vmUra8QxyM3M9RaUsJoQQ9Lq6G806NmbWXy+FNOaOv3azd/NBpJTY8xx+3RB6D+lJQi3vVoXThcycBBQs+iuqXeMALQfU8lf4CKEg4l6AuBfQbD9Bxn3on5eIfD2FsxTHRjyrhEyAApahCLUmIjGE7ggAMh3s36FXLWhgX+57nKElwtg6tLGDQObMym+PDUQk1pnvCFKx30eJuhWibkVzHYSUKyjYOT8bLUALcfxGUWJLAAZdZDdiMEKYEfEvhzzk568tK5wLrl/pW4jdZDF5WLmfbn78aDVH/jsW0BzWYXNybN+pCn+fMPdD1FqDptkhuY/u1ocKxo5lfu/ppkoSBudd1Y1tf+zElmfHFGFk2PhraNqhEb2H9MDpcPL9h7+Qk57DJbf2J7GOH8GdCqA5toI8WcYoATETEUr4qM7rmgXlvdEWvHXFkgtBTEAVRWHOxtf4ata32HMdbP9zJ4MTbqHnFV2ZMP9e3wImZyjn9m+HKcKI3erAZDFx6W0DaNW1Of2G9UJRFH794k+O7DxG7yE9aNIu+BLN3Mxc/l6xocxxA2/sS6tu4ZMxVw0KspzCL6pRJSLSTG5mkc5A10uC8wCevGwCy97+npQjaRzfd5Kbmt9Ds46Nee6rx4hNDL4vr7rQskuzwhYNs8VEl4s70uPyLpx/TTfiasSy+ddtbF29gw5923Buv+DbNjRN4+PJX5bpHNCqWwsuGhVOi2KBfo/14URTeLzgdzLopb4yo+iwIbj2IxH9IBhaIJ3bdV2EtJuRSg1EwuyzaicsqV4CsUkxpDnSUVSFBq3qcdXYS+nYry2N2zTgwLbD/LHkbxq0rkff688LiY/6nEfmlykWm1Q/kZufrciuaBVQ7hZDFUQESCuF2kYiOn8nKzCUiIHIhPfzhbgMkPMyWs5riLhXwr50NuSYuoPjb8Ct93xH34swtkOYuiLdyWBdAkosWK4NiTK/zH4HLyFWLyyI2OeDjhVSyq3yrqBXADvx+D1N3QMOrRgaI5MWI61L9DZj23K0k0sh+kGUqBsDPm+1xDwgX2/EBpgheizC0BrMA/Sqo7wvACdYrkcowSdI165Yjy3HVuoYRVV45P2xIbmfhwrVoCLLueYyGFVcTs9nSNdLAl/kK4oZWWOF7lIhNXD8gXayC0Rcg4h9Jqz+TgVUScLgmnsuIzYxml3r99JnSE/a9ynSKZhyw3TWrtigK8DP/Ib5e2YREaztRt7/Sj+e9A3C0Cj8LFfMA8DUBxwFux8Kvh8aCsS/D86/Ifd9dEnShoiIi4IKHxUXSUSkmS9eW4Y1/8O/ZunffD/vFwaNHhjUuasTHS5ow+SvJ7J2xXranX8OF1x3XuGxz179igWTF2G3Ovj0lSW8u/l16jYLri98zbJ/KG3t9dRnD9Lzim7Bfy5CTN2mtRk+YYguEib1BIKvTK3BpHLzpOE0aFWPV/JtKE0WEyOfDK4k22A0UKN+Ep+/upTUY7pYzI61u3lv4sc8/O6YoM5dnajZIIkZa17kh/m/UK9ZbQbddVGhsOH6lZt5dvCrOGxOTBYjkxY/RrcgEzWH/ztaeH/wxWW3D2DcjNuxhJnNpRACGfcKZD6MvltrwLOaq5gnVMSlEHkXpI/If1lDxD0XfHy1IeS8WyTU5c5GZjyCqPFVUOeuThiMBmatfYmvZn2HOdLEkPsGFepcHN93kvvOewKH1Y4pwsTxfScYMWFIUPE0TWPfZv/VTE3aN2TmmheJiIoIu0maiHsRmXoTkIue7PKT9FCbQeL7unuSlquPi3k2+N9HbQDOPeD8rfAlmTEOam08q/Q3RMJsZO5HILMQkTci1LqALmImU4eAlgYYwP6HXnIcLLYlpRy0IGr/BZjD7j0Q0Q8g7X/kV2P5m78CRELN7yF9bH5lrAaRwxEiyGeGWge0TLAtLoqd/TLS3BdhOHv0N0T0g6A2QLr2ISxXI4xtC49pqaN1bQMk5H0ONb5B+LQbLj+fvbas1OOfHJ5DQq04DMbwsg286Ka+rPx4Nf+u3pGvwSV8b4QImLNpKl9OW86qT35HSkmrrs04p3sFNY1KoiToJ8+bR2HriHUxmPtARPituark3RNCcOHICzi86xiPDJgEQExCFLlZVlyOogmbLdfOkV3HaNGpaXABSxWdSURoR4Dwu3kIoSIS30LTsnVhnczH8HvDzf0AJWkumnSBY21+32Fwb+cXU5fx4VOfeuzEOO0ustP8qSafuXS+sAPZ6Tm8NGomk4e9QWyNGHIz89BcWjE7FcHW33YEnTCo1bCGrjPl6z6lCowmEw6bI+wSBgC3TBrGyCeGsP6HLbx573ucOuStY+Byulkx90c+2DaNcTNu57sPV9GhzzlExwdX3bPhxy28dOMMj3uI2+k+K909mrZvxCW39OehC57mzXvfIyo+CnueA03TCt0p7HkO/vp6XdAJg9gk/8KToCfcslKywy5hAKBYLkdGXIp0rNd7kh2+HBwk2H5GxExAxr8NObNAqV+KfVf5kK4jyLSbKOopzY+lZQR13upIYp0Eho6/irFdHmPe059iiY5Ac2m4XRoul0t/C/LsrP7ir6ATBoqiEBFlLmqLLMH5g3tw4kAyTds38nn8dCKM7aH2BqTrP7B+AXl+dIrcBxDuo8iEjyF7MmBEmIIrcZXSgUwdCjKtxAE7eqItzDZcKhEhLGiWOxh/4XNs+/0BDGYVg9GA5nIyfrqDvle5AFd+KXgIUOqBO8P3MWNPcG4HY/iJUgu1FqLWL2iuw2D7HnJe9TPSCrYfIfFDyHxKT7iYg28h0K0aS9ori/yy77MHIRSIHIbMfBaZei0SAUSju6kUq7BzHwMtBdTg5rBN2zdg6+rtPo/VbV6bA/8eJnFgfFAxKgNThIlpvzxPZkoW61fq80lfKIrCote/5qF378ZoMrBn0wGuvPuSoBOyMvtVyPsIz3WeW096hSFVlp48tvcEC55fhObW0NwamSnZHhN9KPCfrxV0LBF1G5gG+DmahkwfizzZDS3rjbC0tVKUGETEhfjPzmrg/BUt8wXI+wBcmyB3KtL6VUDx7FY7qxb+zs+f/uFVtqm5NdJPZgR03uqMy+nixRHTcdqdSCnJTM7C5XB5eK9KqdGyS5DJLfQWiOETfU+KpVvy/NDXGVpnNC/eOB1rbullX6cDo8lIzyu6oLn97H5JOLn/FG8/NI83753Ljj93sXTWd8x5ZH5A8TRNY82ydax4d6VPe57cjDzc/n6WM5jHLnqe3Mw8pISc9FycdmdhsgDAHGn2qO4KlITa8Ty+4AEv288CXr9zDjc1v4eH+z1D8pHwsKwtjhAKirk7nv7pJclDZj4H6WPA+Q/Yv0Gm3xVwTOlYh8ydh09rBqkhtbNrQgsw+frXOXkgGaTuc223OvTPc34eyhRhomP/tqWfpJxMXTUJS4zvBNbCKYu5u9N4bmvzALvWB2jvVokIIVCMbcpoiXEiMx6H9FvAsQYcvyBThyNlxa2/AKRzFzL3f34sFk3gPhrQeaszn77yFf/+tgMpJU6bK/+adfPq/Q1xOkDTDGBoH5JYIvFtPWngC+cvyLQbkSd7I20VEG6tQhRDQzCdV8oIN2RPgfS7dSFJ51pIH410HQoonnSfQOZ9Cc6tPo7aw8Y6vSrRHBvAuhB9HeEGMvFsxxO6y4SSGHSs0a/cRNvzW/k8dnzvSZ668iWGJN7KF68vK7OV8XQQVyOWbpf630jR3BrffbCK6Xe/wzfv/cT2NTuZdvc7rPt+U0DxpJajr9dsP+G9znMgtTQf33X6qbKEQVkTx6T6iUz//YWQWBrpSpQzIW4Gvnfd3YAd8t5H5oWP57IH1hWU6ftl/YjCG4C0grPsPviSaJrGQ32fYdpdc9i31XfZ5rK3viflWHhewJWFLdfuIcpVEpPFxPNLJ9K0Q+OQxLtt8gim/fY8kbHeAlVulxvNpfHr52uY/cAHIYkXanZv2EdmaumLnuXvrsTlyN/ttjr497fAvMKn3fUOL42ayZpl63xKfuzesI8NfkR3zmSK60P4YtyMW0PmfDJgRG/mrH+VRm29d901l4bUJFt/28HTV4deXCkUSGkHx/elD3L8RJFwlBOcOwKKpeV+gkwbDdZPi52v+A+TisxbGNC5qzOlzQlUVeHS2wdw58ujQhKrdfcWvLNpKr2u6opQPJ+rUpNITXJk5zEeHfgcDrs/jYvTTM7s0o9rB0A7gT4BlfqcQEuucBjpWIdMvV5X5vdlB4pd3xk7yzi2x7dNoNMu+GlxEocO9EUkvB2SWEKti0j6EiJHo7eilEQDUpAZDyFd+0MSM+TkzipjgF1Pxha2hSkBCXdL93FkyhXIrOfwfb1KyHq6wuet9pSV1FObIBI/r7AVuy8sURG8/N1TPPjO3T71zjS3hjXHxrynPuXPZf8EHa8yWPHuj2Uuub774OfCjW671c7Ov/dUOI6UdmTqNcjMZ/0LKee8oc9Rwowqayhp07Ml8bXjyDjpu9Ri8D2XBy0gp+X+D3LfAVETZJauNIvAv7mmU/fVDUN0O6SyMnHFjxsDsuQ4eTCZQ9uPFFpblR3n7CA6Pop2vVuz7Q/fNj+dL2xPl4HBefyu+24jM8bORVEVEurEs2/zQdxuN6pB9SnQJd2S/aX04p5OtPykRqkUu4xUg0L/4ecHFOunj3/DWcqkXgKEWS9yVXDV2EtYPH2Fz2M1GyUx6I7gNE4ObDvMiyOmkZ2eyzk9mvPPD5tBCIwRRpw23+/Hkd3Hg4pZWeiVZRW5rwkw9w0smPUTipTu/Zz7LOTW54fz4g3TfbZiKQaV0S/fGJTYbkZyJpOHvcGhHUdp37s1677bpDvemIw4bL6fdw6rk+y0HJLqBi++HHoq6J6k1gal4qXGeqViaZVsBXOqs4uh46/mx49WF20kFE4rBdMebsA7myYilMDFdqV0IDMnguNPUM/RK0cl6Pt6/irmBLgPgyH4SseQo1XQ0hMBxgDa5eyrQTop/Zo9+xDm/kgRBTLX94DIuxGGwNvspJT877nPWT5nJXWa1eLkgWTseXavhGxxHHYnh/47yvnXBC5uWVlYs8u+XotXRxiNhlKrEvzi/C9f86Sin4/TT5UlDEwRJhbsm82vn/9JZEwES978li2/FvW8LHlzBSMmDg74/NK5C7Knot80UtDv5kW95r5REZarA45ZWUgtG7JnUSEbJctNiAAmtPG14vyWFoOubDpiwmBO7D9F6tE0WnVrHnbCUJXFG78+z5ql68hJzyH5cAr/e25R4bG/v92I2+UOeEJrt9p57rqphYma4/vKcvXQS1OvvueygOJVJlJKZt77foWsac7p2ZIRftowyqJus1oc2XkMzUcPvVAE3S45l/haujtA+97nnDUOH2PfuJXzr+7OgW2HSayXwPPXTS08lnIkjYPbD9O4beBJ2UnXvsrR3fou2x9fla/i6NJb+gccr1LJnkyFEgYiHhE/PbBYhtbgOoDv3S8BhmZg6qOLhRk7nTVe9/2G9aZR2wZs+nkbrXu04IFeTxYec9qdrF2+gQEjAq+ImXXv+2z74z/cLo0/vlpXNNkr5fHVpENDEuvEBxyzstByP82fZJYXFZG0CFFu1fpiGFoDEfhdgCmJEHmnfr0azkGoSRWPUQ1p0rYhC/bPZs3SdbTu0ZJH+j3jYb+8/J2V3D/7zoDPL3M/BttKwA7an5TtkgBgDkstA+lYn189UAGSPkaoAbh6GJpR6odaWCD2Wf16VRsiDOGnVVIZCCUGav6GtH2jJw6zXwL3vqIBeR9A1LUBn3/zL9tY9PrX2HLtZKZkIYQotSoXdLes3oPDL1mQciyNr2Z9W6EpwZ2v3Mg5PUrTy/ODWk93RfCLAWImgnMzUsQgjMG3kYaKSm9JyM3K4/HLXuC6mrcx674PGDjqAtJOZrKlhECGqwzLozLRUqFQ6VPi+c4X/FsFpW7+v/O9SSuata8KnP8CFREaNCJMFb+ocjJyST6cysvfPUW73t7et0IVIOCTl5Yw4eLJjL9wEm89+GGF41QnNE1j2t3vcF3N23j8shfpNKA9tRrV5JOXv/IYJzUZVC+WLdeOu4ybK0B8rdjCjK1iUMKy/ys7LYd9mw5U6Htadm1W4cST3Wrn4I4jPLfkUXpc3sUrk60YFIxmI2uWreP+Xk/y9FUv8+jA5854PYPFM5YztPYd3N1pPDUaJNJ5YAdmjn3HY4zUpM8ES0XITC7WcuLnrTOaDBhM+iJFURUUNbxUvAuxfkeFZgdK/QqXbkrpQrr2QvR4sFwFlBQtVYBIcO2EtOuQGfchUwYhtawKxalurP1mAzc0uptRTceRlZrDwBsvYOa497zGldey1R8pR9OKkpiCovtFsbfdYDIUOjQIRejii+W4L1c51sVUaAMBU4Xt0qSUSNdBXXwu6jbAV5VFlD7XSh+Zf71ehHRVvCy3OrF/60HuaPsgw+qOZv3KLVx5t17J5ShRVeW0BzmX1E5RlFTUKGhFcLsF7vxTS8wgChI0Ql8M+7WJPX1I609U7OcyIAKwAJXuE/oCLPZpEL52y80gbZBxDzLjXmTKlUjbzxWOU52Q7lS01BvQTvZE5sxGWIbqa4riyQIg2LVP+snMwjmcx3y42NzAYFKp2SCp8HWj2ehlTRgObF29w2/VmS9MFiMN21R880VqabouTPxboPqyuM53Fsl+GZk2Gpk6HC0nNG1OoaDSZ3P/e/ZzNv+yjazUHFYt/J05j8znrQc+9Jqr3fR0kP7Hpq6gNgIRhZ519eX/bYCocei/tgTsyKxJwcWtDAxNKd/NVgCResbf3L9CIbb+toPh9e7kjnYP8uAFT5Ob4d3/LN1SV652unHYHNhy7Sx763sP4b8zjV8+/YNVn/xGVmoOW37dxtQ73uKpq1/GVWIy0Htwj6AsYuJqxNL3+l5ERJkxR5roenFH7yp6AffOGo2i6B9Tt9PNrPvDT8MgKj4SSilDK0AIsMREEBlj4Yo7K9Y+c/JgMiMbjuHODg9z2zkPcvJwilfyRHNpOKwONJeGy+HCmmNj94Z9HNpx5gp07d96kA+eWEhGchb7tx7imcGv8uyQV8k45aknUbtJzaBbvm586jrMFhOW6AhadGqCMcJ7AX3PzNsLF1yaW2PZ7O/ITAnDBbASXY5BArAAEYiYeyp0eqnlIVOuRqZcASn9wL4O73u6hm6XJwG3PpHQMsH+S4ViVSfsVjuTh75OypE0Th5M5skrXmLmuLns3ejZh20wGehzXWmiaWUz6pmhmCNNRMZYSKgTR1wN73Lxi0b1JTper+iQmmTbHzvZ9PO/QcWtFJTytEgIdOeCCIi+u0Knl1Ii0+9DplwGKRdA3meAL02aEterzEXmfV6hWNWN566fyqH/jpJ+MpOZ4+by3uMf8/PC373G3fbCiKDiiMjhIKL1/4ji2OFzSE828OuyODaviSI92cCmP88tVrYvQZ4IT/0TQ83yDgQRqc9fK5gw0HLeRiYPQCYPgKznQPrSRLGjX6+u/NJ8GzL3rQrFqW7IrOfBuVlvyc77WNcb8aUnETMhqDg9BnUmvmYslhgLpggjHfvmC9QWm5ZZoiK4aly+m4AEW46Ndx4pw/b+NNC4bQPczrLXNUIRRESbqd24Fh0uKE2E1htpW4U8dQEy5VLIGK23zXuh5f/nQq/wskHu3ArFqUwqvSUh9UQ6znyRCIfVwddvfe9VuiwUQecLg1OXFcIESV8gHRshZzo4V/sYZYfsSXiUeoWh2q9Q6yBFrJ8LqhgxTyIMzcF4LqJcE+Ai3pu4oDBDLqXkwLbD5fq+6PiowgXsmUhGclahfoDL6WbN0nU+7eP6Du0VdKyJH93HrvX7WDxjOT9/8rt3L6+EF4a/4XEDtueFnxCKqqq07t6C7Wt86z0UcMmt/ek/vA/NOjYisU7FeoSXzPyGrGL2nvu3HizXBrHm1nwuFM4UMlOyC1uKpJQc3nHUZxVKnyE9g24luv7hq+gxqAs/fvQrn7+21GcLyvQx73p8rWmSjFOZxNWIDSp2yIkYlO99XMokwdARoh9AGBoiDBUUN7X/BO6DRefXDuFbvKwkWkB959UFu9XhUVllz7Pz6xd/eo1r3LYBJnNwYlzdLjmXD3bM4M+l63jv8Y992ip+98Eqj0olza2xf+shul4cnPVoyLFck2/ZV8quoEiEuJcRak0P3/Vy4doNjl8orGKQaZRvP8ms7/CewWSlFj13nHYXi6d568SYI80VfqaVRBiaQM0fOb77H8Zf8gXJh9OBkruQdh57cx8XXltMpscRhgku0wDgNUrfxTZC3AyEGgfGrhV6PknpgpwZFN2/yzsvUkGtX+441RItmaK/uy3/OVdyV19BGIOzXY2KjeTdrW+w9bcdvDdxAZt/2eY1Jjs9l/nPfu4xJzm4o3xrjaqkSfuGGEwGL+e+kjz64T0k1Uuk3fmtMFsqZnMus6dQtGngBq2cf4cAKm8qi0pf+Q0bfzWW6CI7I1+TzFbdmhMVH1zfpnSnIHNmQ/brPnxYi1PigxOkt3aokVIircvBfAF6H2EpZL8Opp4VThYAXmr8qkHBFGHEZPHvrSwUwVOfPVThWNWJASN6E5MQXVhK7StZEJsUTfNOTYKKY7fa+fy1pXz8wiJWfewjWVBAiddNEeHnfb1x1VaatG9Y5sL850/XUKdprYAmVpGxFo8KDEVRMJgMRESX8hkRcPNzw4OeyIUz7Xq3puE59TEY9cWor2SBalA4/+puQVUGaZrGt+//xKLXl7HwpSXl1qtQVIWouMiA41YG0rkLkMXa0/zg2oUgt+LJAtB3zbwyWioQSan9tub+CHPPiserJsQmxnDhyD4YzcX2Knzc+65/5Kqg3Qr+Wr6eL6YuY874//lMFhSGL3aPV40qjdqE2ZzAfQqce8DQooyBWeBcX/FkAeSXtpf8TOfv/pY2TVTrIyJvrHi8asTNk4ZiLJa88nUfHfrIleRmle5SUxY71+1hzvilPNDv0/xkgW/mPFubI3sL5gECjKGxcgwVUlr1hKmxK6UvMVxgXYAwdUeIii5FFKBkQjG/xQsjfu+xIhIR+0wFY1UvRPS9eK4dfLQAmPoHHefEgVN89PwXzH3sI/aVIsbtLtGCEGylY6jRNI0f5v3CeVd2KWyn9Mfcxz6iy8AOFU4WAPnV78VR0N8nM6Xp7BE/o+KxKolKTxi06tqc/+2dRVL9okm7alA8Iu/bcpBbWt7Hqk+9y7zKg5Qu3QYod66uLFsuBIgERFx42X7JvA+QmU+CLT+LbeyF/50pB4H2rz3w9l1e4k4PzLmL8e+PY+CNF2AwGTBGGDFGFH2ALNERRMaG1+Q/1CTUjmferpl0uKBNYdLAZDGhGosu2NwsK+O6TeC9iQsCjvPc9a8zf9Ln5baYEYrAFGHkiY8fCDhmZbDhp608fdXLfPPuj9jy7Fw48gK/N11VVchJr4g2RxHXP3wVLToXKUFrbo3bXriBh965m5ufHYYhv3e++DUdYTETm1jxZFp1wmgyMuP3F7hyzMUY8//uRrMRc7HEn9QkT175Ek8OmhJw0mD+pM+Z/cCHfPv+qnKNVw0KqkHhlueGUaN++IiiSdcRZNowfddFpoF5EHoZt8/RoGUEFsg8ACIu9Xwt4mpE3AsQMyl/gWYCpcTitIJ959WR8e+PY9z02zBZ9Am/oipYYopNcAXMGDuXOzs8HPAibM2ydbww4g2+evPbMneNAFSDilAEF1zbMzDl60pCt+C6FvLmgGs/GLrkL+J94dL1BQJAGBpC9EN4NiC3hdgpEPsKup6BOb/6pfh7ZQ6JLVs4M/jeQbz207MYTEXzsIJrFwABi6atYFTTcRzZ5ccmrQwO/XeURwZMYvH0FWScKr2yNCvNwINXt9YDG9ohom4OKGZlIdPuhJxp+Rt3NUGphe8FkQz8ehUKxL+JZ5F0EsS9BHGvgtocMIOIw0M7RjoRSmJAMasLwnw+1PgBPXlSQIk1hGMNMvlCpD2wNVdetpV7ekxk0dRl7N96qHw/lxDUaJDIfbNGBxSzspg7YQGz7n+fP5asw2BUad29uV/tpRwfrdvlRcS9BhSvtDRC3BSIewVMfdHnISVt1Y0V1qKpTKqktjy+ZhwvLn+CBq3qEV8zlgfm3EVUTNHF7LQ5cVgdvDchwAWYlpKvIFxeEQ8z1NqCqPVXYNn4ysS2Eg+7jYhLIeo+vLOpAiJvRIiSF1j5qNOkFg+/NxZzpH4zdbs0ls9ZyYARvZn40f0sPDyHL0+9T58h52GONGEwqkREmmnU5gwv5wIs0Rae+OQBWvdoQUxiNFeNvYSWnZsVPvPcTjcOq4MvXv864F2wLb9u92tFVxLFoDBv50y+zllA78E9AopXWaz/YVOh04M9z4EpwsAzix7xecNt0aUpLbs2CyhOZIyF576agKHYzuQnL3zJhTf04aZnh7Lo5Ht8fnwuwx67hogosx5fwLn9fQnLnFkYjAbufPVmel7ZleiEKLpf1omLb+lXOMHVNIkt186/f/zH3gqKUxbw94oN5W6HURTBM4seYUXeJ4x84rqA4lUazk0g8/3QpBXcexA1luJ9fwWUWIgIzJVECAUlfhoeEwDbMjD1RIm6AVFrLaLmL4i4KegLMH23IRBr3OqGEIIr7rqYa++/gpjEaFp1a85tL9yAOTI/cZPf65p2PJ3fvlwbUIx/vt+EPa/8IlbDHruGb6yf8OTCh8Kr5c59WNcKwAXYwfUvosZ3oPjapTMjIm8NOJQSfaenEJd7F0KJQ4m8BlH7d0TNnyDxk3xxaVVPekVcHnC86kS781vz0LtjiK8VR/0WdXj0w3uKqjHzr9fcjDy+9GNrWxbb/9xVISfg5p06IGpvRamxOKAK00rF+Q/6ZpYLRBbEzwWTL00xFRH9cMBhlIj+EDGMomVMJkI7hmK5AlFjuX691vw5X//DCEQEbo1bzVAMdRCJ74FSH5SaEDcVT9FdG2BFZk/1c4bSObr7OC6Hq9xCynE1Y/nG9gmfHJxDveZ1AopZWfy5bB32PAdSShRVYdij1zD4vkH6xnYxhCK46ZnrA44jjK0QsU9QlHB1gO1bFMsgRMK7+nyg9lownZc/xgRqnbBqUawyW8XGbRtw75u3ExkbSatuzZh+97teY4xm3R+5wmXXShIo8fm9O+VQ4LQMRVECKCmpCsy9wbmDgqSBMHUGQ1OkdRFoR4rGKQ1RYp8KOpw/z9T4mnpWa8L8e/lh/i9kp+Vw0U19sUSV0SZxhpBQO567X7sZh81Bx35tue2cB7xKZ1WDSl62NaBe23a9W7N19fZyKSu37NIs7G6yBXS4oC1LZ3+HPc+BOdJM5ws7cN4VXel5ZRf+XFpUPWEwGXj1x2dR1eAsDv31OUbF6eVe1z5wBXWa1OLg9iP0Htw9bP9uocZkNnLzpGFcfsdAOvRtw+u3v4XL4XkvdLvcXsre5aXbpedyeOfRci3CIuMi6XVV9/C0XzW2o6j0OgJMvRCG5sjo+yHn9WIDFUj8X/DZ/XyxJx1Z7OUIUCNArQGJH4LjbzB1Q5jCz3KqMhBCcOWYS2jf5xxadW/Bqo9/83In0DRZIeXq4nS5qCM/zP+13Emu6x66MigR20pDrY++82QFDGDsgFDrQOxTyIwxFF1TCsS+gDAGYPNVnOKfWVn8ejWCWgsByKQvwfYDGJrojgpnCedd0ZW4pBgatWnAiQOnvBYUqlHF7XIjpazwva/NeS39tyX6YNTT1+u6XeGIoa3u/IJbbwEwNofYiciUNXhs6kWMREQMCC6Wx9+5+PWqFF2vNb4C6xJdTNISuI1gtcPYHhH3nN4Dr9ZFerUc6U5xUjorXCVUr0WdwqosX227Jbk+XO+vQKcB7Uk+kqYLZrs1WnVrTueBHfhxwa9kpRQJv7bu1pwbHg/F9eN9bxBC6HMBgIS5YF0E0g6W6xAiuDlzKKmSd1DTNMZfOIl9mw8ipWTI/YO4/uGr+HL6co/+ltRjadx17njeXv8Klujy75wLYdQFD3PngesQOH7Ft+d14XcE+qtUOiJqHFLEgWs7IuIahLENWt5SbwFELQWpZSOUGKTUAFHhh1S3S8+lZv1EDu88Vvh1SVSDyuV3DAz016m2zLr/fX6Y9wtCCNr1Podbnh/O67e9VSjgCXop7W2t7+etda9Qt1nFsoCTFj/Kl9OWc/i/o/y+eC0upwvN7fvGq4WxLeB5V3blsXn38teK9XQZ2JELR17AltXbffS0SQ7/d5Sm7RuhaRpCVPx6rdkgifOu6FK469jeh0qtEILeg3uEXSVGZfPdh6uYdd/7KKpKfM1Yxn8wjr9WrNerP4pdVhMumczkZRPofGGHCp3/1skjqNmwBjvX7eWPr9bisDr8Jrscdmd4JgsAYWgKiR8irV+A2gwRdRvSdUBfAJFfeaCPRLh2gqFZvi6EDKDPFt2VJyd/F0epoye2S/5Mpq66y89ZxPY/dzLhksm69aai8NJ3TxIVG0VmalbhBNTldDHnkflobo3B91ZsJ7vPkJ5M/EivNFi/cjNpxzP8JssUVcEZpF5CZSGEBZIWIXPfByUGEXU3UsvQr18PJLi2A1frX0ktsOs15kFIH62fD4E0nOM1WxKGZhA9puLnrsakHE3l7k7jcTnduF0az345nvot67Jv84HC57bb5WbVJ3ria/z74yp0/sZtGvDqyqf58ePf2LV+L/s2H8Bp831/VY1q2F6vACLxQ2TOHJBWRJRefi5zP8Vrx8X9X+E/A75eo+4A6xfo83030tjF+3pVEvVxZxFS2pEp14J2HKQbYsZDxBVg+5qiTVUJrl3I1BGQ9GmFkgZRsZHMWvsSX735LUf2HGfTqq1+r1eACpXPVDH3zLydOk1qcXTPca6462JqN67J0tnf4bB6riGP7z+Jy+nCYDSgaVpglWiWK3XtOWkFpM/KGyHMEKa6MFVSe3d45zH2bjqANceGLdfOkhnfMOR+7wmAPc9B2vF01n23qcIxhFobJXYCSuJsvcRU9ddqoCAiw6xMthhCqChRN6PEvYww90I61kHW074dE9wH0bKmIE+2RZ7qiXRsrlCsnPRcju8/Vfj1p6985VM07WxDSsnyOSux5dqx5tjY8us2OvRpgyHCM79mz7OTm5nHt+//VOEYlqgIRj11PY8veIB5u96k//DefscOf3Rwhc9flfS9vhePfXgvF43qS+rxdJ4YNIWTB5I9xggh2LluL999sIoro27kyqgbA9Is2fRzkRLvxlX/cnzfyaB//jOBT19agj3PgTXbSmZyFtZsK43Oqe8xR3PaXdjz7CyYvKjC51dVlavHXsqjH4xjwb63uHnScL9jr7knsDL+qkKYuqDEvaSXYKMg00aCayueE1o30v4X0rEOeaob8mQ7tOw3Kh7M/mvRv2Uq2M9sD/DysuTNb7Hl2snLspKXbWXDj1s5f3B3T8cCl4bT5uSj50oujstHnyE9eXDO3by/fQZPLnzQ77h257ciqW74CqMKQyOUuOdQYsbrGwQZD+iich7XqwTHn0jXYbRTA5An26Clj9PV5CuC4y+K+p0dkPdRaH6Jas5vX64tvF7teXaWzPyGq8ddhmoomhNITWLPc/DjgtXkZORWOEbbXq25f9Zo3lwzhVd/eManbS1AfI0Y2l/QJuDfpbIRSpw+F4+bhDA0QGbPBOtCvKp/nVuRWg5a6jD9ek25BllBzRjh3EzRvqeW75zw/+DcnJ8s0K0kyZ0LkbfhveSzgXuf3qpXQeo1r8O46bcxZfkTvPnnS9Rq7FvN32g20C8ErmKVhdFkZMTEITzy3jjO6dGS3xevZe6EBV5CuXnZNlKOpfHKzW9ymWkEIxrcxcEdR/yc1Q/uwyCL2dXmVq/rtYo0DGI9ylbcUuPGJuO81DMBXC4Xm3/dxn9/7w44njA0B3+lnZY7wBC+N1svXLvwLWxoQmr2fL9kDWQGMrNivqol2xEKdgWdDifppzLP2uSBEIK4mkXiJE6Hk9ta3481y+Y1VjEoHP7vGH9/uzHgeDUbJNFzUBcPYcUCOg9sT+8h1We3/Pi+k0gfwnpCCFp2acrMcXNx2l04bE6m3ja70MKyvHhcs1IiFIHb7Sb9ZAbuMK7EqGxqN61VWCJrzbXx0qgZ7N6w33ugAGuOjR8XrA747xUdH8V5V3YtFFksTkKdeEaGpGyvipDWfP2bkhgQ5v7IjEfzH/BuyJ2HdO2t2PmFgmdFm6I74bhTkTKwcvszgXrNa2MqXBBJvpy+nG/m/ojmw33DYFT5es4P5GVbvY6VB5PZSM8ruiJU710uRVV4bN69YVsR4xPnf/h04Ii4SLfu0o7rxx1r8itnKkLxZ5CgIHkgtQykFpwLQHWmZsOkQl0eoQh2/r2HN0a/7XOnXwjBdx+sIuVooIJ+gvZ92pDkx93nmS/HV6/WUNcWvOewAky9kHmfgHM7+m73bmSud6tyqQi12O21+PWag9TKsCU/k1Fq6ZUFBWg5kDYYn2sJ6UDaf0E6S7fFLo3m5zahdffmPo+NfvnGClfgnk72bT3oVV0AkFA7joPbjvD7V38jNUna8XRmjJ1bwbMreN67Cyyx7Uif85DwokoSBnE1Ynny04cKH9hOq9OrX7EAt8PNt3N/YvyASWxctTXwoP68ga0LkNmvBn7eKkRKO9K5D5+6DMII2EuU+lRsAhqbGMPtL96AalAxmg2M/2AcezcdYGid0dzYeAwP9X06aGur6spL3z5JRLSucyE1/Jazak6Ntd+sZ/Kw1/ly+vKA49VuUgvN5Z2g2b5mFxMve6FaJG+klOxavxeX08euliLQ3Bpasd9D02SFf68J8+/DbDGhGBSuf+QqzBYTt7a8nxubjOOWFveRejz8b7qVwYT591Kjge5GIDVJbqbvxZUADmw7zIyx7/LKzbMCjhdfK9bne5eTlsPdncZjzQlscVflOP7Gt32tzBd3K/65FyArdj8UMc+ASAAUfYJs6o1MG4VM7oc81QvNsSXwn70aM/KJa2nTU++319zSo1e0JDkZubzzyHzuP//JgJNciqoQk+AtDiel5O5Oj3Js74mAzlvVSOe/+Q4bXkdAM+l9r4W9ypKKzglE1O2gNgEUMDRFRN2MljkJeep85KkeaHmBifpVd3oP7sElt/YH9PtrVqr/61UI+ODJhdx17ngyUwJftBZ3FivOYxc9z/qVFasmPV1I93HPhWshAqTB+3rVyqc5Uoj5IjB2BxRQkhCxT6DlfapX3J7qhZY1LbhfoJoiDE0g9tlir+Ti078WAE1PhqcOQzq3BxyzVkPfFQYfPPkpX7y+LODzViV52VZOlaiOBfT8ltmIPc9emJ+SEpwV1NgRhqYQeTN6YsuCiHsF6fg7/3q9AC19TH6LeXhSZXLAtRvXQPrp0S6OpkmcDhd2q4PVi/4KPKDrXz8HrGD9PPDzViEy/T6wfuznYAq4jub3wJiACETspArHGPrI1SzPXcDSzP+xZ+N+HrzgKXIz8nDaXWz7YyfX17qD/Vv9e6yeqTRsXQ9bTtkPLyklTrsLW66dlf/7tczx/ti9YZ+nN3k+dquDbX/sLHWCEi589PwXvDv+fz61GBx5DpbO/o6bnhlaaIE4+uUbKyyE0+PyzizN+h/LcxZQp0ktRrd/mBMHT+G0Ozl5MJmRjcayZtm6UP1K1YbEOgmkHvPv3V2A/pBzYsu1s2bp3wHHO7TjaKHDSnGcDhc5GbnsWLsn4HNXFZr1R2TGPYCvnVM3MmuKboGIGTBBxCVgaF2hGMLYElHrT0TtzYjImyFlUL7dmEOvXEi7Hi3nnaB/l+qG2WLm1JHy7cA6bE7sVgfH954o1zXui7ysPHJ9WGJJTeKwO1mzNPzvGZpzv95vrPmy7tMg701EzKMgYgGzbi1XQZcPoSSg1PxGv17jZyLTbssvJ3cBDsh6CC394bCe1FYGQghy08tXYeG0u3Danbhdbnb8FXil7OH/fFs02vMcrHhnZcDnrSqcdhu2o4Nx29bhcsLxgyYyUlT0AkQNnD/q16daB4jQF/zRd1YohhAGlMS5iNqbIWm5rvqf9Qx6otcJeW+jJV+D1AKzc67W+LVfLYkb/e9l92yhqyA+KxrRW3eXvfV9wOetKqSUPHbR86z8aLWPg3B0zwlMFhMtuzbDGGHEEmNh7PTbKhxHiX1Uv15rrUXaftDvsTIPcIJ9lZ6cdR0O/heqBKpMtvLAtor1ekREmjmnR4uAYkn3UTB2yrcoLFlGroDaOKDzViVa1ovg+KWUERKkHSXhTaQ7GUQUQinvDcITg9HA9/N+Zums77xU0K3ZVh696Hm+OPFe9SrbDJKUoxXbqTZZTLQ5r1VAsdJPZVKrUQ2/f19zpImouMDe26ri+/k/s2DyolIVc3Mycrnxyeu4auwlCCF87viVB1VV2bvpALMf+NBLBV1zazx33VS+zv6o4m4r1Zzy+M0XoBpVmrRvFFCc3Kw8VKOKP+1Yt9NN3aa1Ajp3VSEdmyDzfkq14pU2FMvFSPNfuoCX6nsHpSyEEEjNgUwfg4dlbgE5r6OZeqOY2gd0/upKdmr5J/FCCMyRZuJrVdy1wmFzkHwklXrNa3Nkz3GvjQuDUaVBKz8ViWGCdJ+A1OspvWJAQxjbQK01epuNUiswITl04S0tbTRoR/HambQvR+Z1QkTdHNC5qyvHD5wqe1Ax3C53QDbUbrebo7tP0LFfW/5avt7rvm6ymGjSIbB7d1XhsDl4/LJHeXF+BppbsOjtmhw7YOLiYWl07KUnXtwuiUGtDzVW6g5nSlKF1foLEMKMzHrQ94LXvQOZ+TQi4SyrNqho+xxmCMBmXkrJ8X0nObdfO/77e49XOb9qUGnUpkGFz1vVTBk5nZ3r/G90SE2iGlWmrppE6vF0YhKiMFsCc9sTwoTMnQPWr/BqE5FpyLQ7ELUq2k5W+VRZhUHHvm08vNkVg//QDVrV5bYXb+CSW/pXOI6WNQWZfAlkvwIGHws4Yw9EwlsVPm9VImU5xYYcawAQas2AkwWgu1isXvSnXwuqrNRsdm/YF/D5qyM1GyYRGVtU+ikUgb+5V1zNWAbfexlj37ilwnFWLviVkY3G8OKIaTRoXc8radCoTQOm/jQpbC1pCpj/zGdl2uvs2bAfKSWxiTEBJwsKWP3lWt+tD+hJg1WfVFxQsbrTvFMTj68NRt92PKYIIxeN6ssLX0+scIz//t7NiPp3MeGi54lOiPa6XhNqx/HEwgfDvmdR5s6h1GQBgJaKpmUjlKiAkwWF8ex/UupiL/fDoM5fHek79DyPrxUfGgMF9Lm2B9N+m1xhC9uUY2nc2GQc9/Z8nIxTmZhLJBFNFhO3Th7BeVeGuUuFdRm+K2GK40Zz7EQIE0KtE3CyAEC6jvhOFhSQOz/gc1dXrhxzcbnHduzXlsnLJlbY1tdhc3BP94mM7fIof3+7kaR6nm0JQggGjR7IDY8PqdB5q5rNv2xjz6Z0jh80MW18Az6ZUZsfPkviqVHNOXnEiNMu2LE+il8/34AQav71GliyAEBq2eDYgN97uj38d7hDTsSleGb1S7HnM7SG2GcQ5n4VCiGl5KVRMxjd/iEWvryExu28EwM9r+jChPn3Vui8VU3q8XT++Krsisu1y/9BCEGNeokBJwsAXYzW54Z2PtohpNt3hdHppMpWITXqJzFnw6t89NwXxNeK48JRfXjqipfJy7J69MJGxlp4bdUkatRLrHAMzXUU8uYVveDaiv4rFruJmC/UfYzDGgP6h7uMsj/Hj2iZT6HEvRBUtI+eX8SmVf5aOPApbnamYzQZ+XDnTN6buACXw8XQR65m0nWvkXIkDU3TCudRBqPK80sn0DaA6gK3y80bd7yNK1/88+C2I6gGpfBrgFbdmtKic9OQ/E6VSXmukZMHk7mn50Rm/vFiUAmQv5av56sZKzxEU4UqCncO9d3vs6capoCZa17kw6cWcnzfSa4ffzXvTVjAf2v3eAhLKqrg/rfv5NJbAvO/fn7o64XqwcmHUxDCw66d+Fpx9BzUJajfo2ooz+TUDskXImt+r1tzBYh07YfMR/HUolE9v1aCS6BVRx6cczf1W9Rl6287uOTW/vzz/Wa+n/ez5+daEVw97lLunRmYLdqMce+ScSoT0Eu5I6I99SoUVeGy2y8M/JeoIiQmypwPICFtMDJpsV5pEGgsLQ+Zeh2eyQLh+bWICfj81ZWLR/XDaDLw44Lf6DSgHSazkbcfnu9VAdDu/Na89tOzAdmufTltOXs3HSj8OjutRBWOgMvuuBCjKfDFdVUQGReJLdfJQ1e3REpw2PS/hd0qWPZBDWrWd/DR1DrkZM7AYDbSZ0jPoOLJtFt9O4kVcvbNYRVjS7TETyFnLhgagbEPZN2Tb+lXDFEDkfgxQon1faJS2LbmP35e+Efh1/s2HUQowmPzqO/QXsQmhff9IiLKjNuPrl5xls76npjEGG4pxSWqPMisSeAqTWSypFhyeFCln6KmHRrzzKLxhV9/cfI9ju89yfxnP+PwzmP0uro71z14ReAXl81XX5cFKNb/nfMK0tAIERHGkwR3BXbzrV+gWa5FMQU+Sf/7mw0+Rf1Ug4KmSS6+uR8tuzQL+PzVlcTa8Tz2YVFm9H97ZpFyNI3PX13K1t920Lp7C2586jrqNAms/HrHX7s8FnMup4sm7RpyYFtR/9JPH/9GveZ1uemZoYH/IpWMw+4k+Uj5Wjj2rN/P0tnfcd2DVwYcb/2PW7CXKHuTbonBpOJ2abQ5ryUXjuwT8PmrK6YIE3dPLapymbZ6MuknM/h+3i/8+vkaajVM4qZnh9Kyi28147LIzcojuVjfuebS6DywAxt/KhKn3b/1EJOue43JSytevVClOP8rewyAzERmvYiIfz2IWJv1BJbHZq0bPWkgQa2HiK6Yb/uZgBCCYY9ew7BHrwHggmvP444pI1n/4xYWvf41EVFmhj16DT0u7xxwjI0/eSbCW3VtxpZfi4S9bDk2xnWbwNytb1S4eqFKKbftmRuZ8RDU+DbwFkL3QbyrYQouXgFEIeInB3buak7/Yb3pP6zIAvmim/qx85+9fDTpcxw2B1fcfQkX39Q3MI924Ncv/vT4OjYphrysogWe1CQPXfA072+bTs18kdtwZNe6vSAgN6vkrrZg0RzP+dLLN81kSdq8gJMgUmr5m4O+EIAB4l4O6NzVHcXUGRKLKqplxN9I1z7Inq67qZgHIaJGIQJMWP+2aK1nPFWgGgwe64nXbptN7cY1ad/7nIBiVAV7Nu5HURS0MpOysGDyIi67bQC1GwfRdmn/A98Vh/lzgqi7EGrdwM9fSZzWtJvRZKRRmwY8/fkjITmfUJOQGCnsCTGeB65kT99L3Mi8T8M7YaBloF845VHklpDxCNQK3N+7x6AuHPj3kFfSYOCovtw3azQRPsTNzkZUVaV2o5rcN2t0SM4XnRCNwWTAadd3KBLqxtPpovYeCQOpwTdzfwzrhIHT7iy3ermUkg+fXMglt/QPuC2hy8AOfPvej156G3Wa1uatdS9jifalIn72IYQgsU4CN0wcwg0Tgy9hNZoMGM1GnPn3CUVVuH781R4JA9ArQJwOZ3jvgnk8E8rA9g3SeQcigP5OAIwdPcswChGIWv+AiDyr9GFKIzYphgHDezNgeO+yB5eDpDoJhQ4IQhHc9vxwHur3rMeYlGNpHPj3EK26BpZIqxK0NPyrnJfAfQBpXYqIHBxYLLUxupBybokDBkhaijA0D6rd4UwiMsZC5wHt6TwgNPoj9VvWYe/mA7pJixAMG381M+99z+Ott1sdrP9hc1hXxmQmZ/l1QiuJPc/BO+P/F3AVkRAK0tAeXDvwquKKex0RcXFQ7Q5nEkKY9eqjxNAI7dZqXAPVoODOt8PtN7w3677b6LGWcDvd/LRgdVgnDLJSc/Tq3vKYHkiYPHwas/56KfCA5t5gXYLXGi/qbkT0WIQIzzXXmXXXjxgEpvPzvxCgNgV5wHtcEOV6VYLxXEpPFpSYXGrHkBW0+yrA6XASmxhNpwvbE5NUtIAzGFWuHnvp/ycLKpEm7Roy5MErEIr+fjbv2JjffDiDNG7XsKp/tAoRFRtJXImqoBr1HExZuJeP12+jYQvPu7BQFU7sr5iAVAFSSqw5NnoM6kLd5kV98oqqMPKJa/8/WVCJmCJMPPrhPXrLB9DwnHosnuZtJRpfMzbsNTcwlLb4L/lYNIFzR+Cx3Cfz1cCLP3cEWEbo+gj/nyyoNJ76/CEs+W0IcTVi+PnzNV5jNJdGTT+WYGGD+fxSDpa8XjVwbgw8lvuwPpcydMJjrmFsjzC0+P9kQSVyz4zbCysHDGYDGSlZXnkiqWk0PKfiYopVSfdBnf3mt3zd7v79vZwVXz5IOZbG53OHsGPrBWjuYs8dJR5h7vv/yYJK5Kqxl9Kqm55oVVSFhNqxZJ7ybg1p2jG8hea7XtLRq2q1NA78eyjgWFLLA6URGHsCUcWOmBGWa8I2WQCnscIgL9vK6kV/ERkTQZ9rewZcwlUcIdRiPqISbJ94D1IaI6LvCTpW5WLAM1Pq67jIH2MA47kB3xRfHjWTv1ZswOVwEZMQxYSP7iPjZCZ52VZWzP0Rp91J+z5hnmCpAtxuN79/uRa71cEF15+HJcqXd3vF2bvxQOHu4z/fe3srmyxGnvj4gZDEqkxK9lqOfuoYXfvpr7325R7uHtiJnAwXQhFEx0UGPOH5/LWlLHh+EbY8OxFRZh6bfy+px9NRVYUtq7djMhvpN6y0yfXZwz8/bObkgVP0urobiXV8e3pXlEM7jhRO+A5uO8LBku43Al77aVL4L4LLbPuKBXIAoc9wTT0CCiPtfyDTx6KLG0VA9NNAHggLOHei5c5HRI5CiFIEqc4Sdq3fy851ezm3fzsahWhBdOpQiq45A2ScymLZbG/xswn/u4+EANwXqpRS/dElEAdkoScPjIiISwIKI12HkWnD822+LGC5GdR6gAquvcicGRB1J0KJKutUZzzH951k/cotNO3QiHbnV8xu1R8Om7NQc8Npc/K/Z70twK998MqQxass9qwv5f4qdK0ya7YNBJgjTAy4IbAWQrvVzj3dJpCZkoVqUOl04Q1M/qwVebkuvpxlIzfrC4aOvzqs2zeqCqml623bSk0w9w/JM9poMrB3s267rrk1vnjta68xbc5ryZV3l18w9HSQm5FXagGXyWLE7dSQUmI0GznvysBbwGX6aHBuATRQakHUJCAd3KnI3A8g8obAqxkrmSpPGNjy7Ey7aw6rv/gTiX7B/bl8PRPmBaeiKaVEZk0EmVz6wIhrECK87daEEEjMgG/XAo/qA1N/RML0gGP988OWQhsUh91J7UY1WPXxb2z86V9cTherPvmNWWtfpkmY73JXFlJK5j3zKYtnfIPT5sBgMvLl9OW89c8rqGpwk/xF075m/crNpd6omrZrFPaCMQC1m9Tk6O4T+V9Jug/QS76lhC/eTiIzxQ4IGp1Tn6m/PBdw5cofX/2NLd/NQ0qJw+og81QWS978BrfTzc8L/0AxqFxwbXAiStWZlR/9yjuPzCc7PReDSeWDpxby4Y4ZQV9Hf3+7kYVTlnjobpTEFGGsHvcKYxew+1Mh1tAXX+jibomfIgyB/U7S/htFSsg2cP0Hps75XuEusEUg3acQsY8GdP4zga2/7eDVW2dx8mAyBpMBVVWY/vsLND+3SVDnPbj9MK/eMsurdakk/Yb2CipOlWA+H+zf+Tkogcz8fwuIn4YwB9jS4dxEUVWBFRx/QuzzkH4r+nVsQjo3IRLnBXb+M4Bje0/w4g3T2b1hH6pBRTWojH9/LP2DbKPJSstmwsXPF7Yo+uOaey4LKk5V0LG//wWP1CAvU9dlEEJw0zPDGDr+qoDiHNt7EmuODbdLw+3S2PjTDlLTx3HfeY+TfjITKSWrF/3JxwfeRjWcnUlZqWUhMx4Fx2r0BLgRLKOCfua4XW6eGfyql41iSa6557KQbAhXJol141FUxW8bjcOav+YS0G9YLx5+d0xAcaSU4FxP4aRfS9Ur3rOfAue/gAtp+xpqfBeW4vxV/i7+b9JnrF70Fy6nG7fTjS3XzmofZYIVxvkPWMthneJYHXysqiBpMajNQNSiVDsU9/6gSlja9WqFIV/h3ppt44lBU1j33SYPy7rSvEnPdFZ/8SeLp6/Alv9QsufZObrrOMmHU8v+5lLITs/h/cc/KbMt9dDOo0HFqSreXPsSbXu1JqleAo/NPER0nH7jFQJueexk4bije08EtZvX+aKOmCx6ws+e5+Dth+axuJhjgj3PzsZV/gSQznwObj/MjDHvkpmSjebWcFiduByuoEo+C3jt1lmlJgug2IM13Il7DcyXgqiJZ1lgCaQtqPurMHUDin2/bQlkPU2Rc48NHH/4+M6zA7vVzhODpnBi/ymkJnHanNjzHPy57J+gzz3r/g/Iy7aWOa6sazocUCJHQOTd+ddr6buloiy70NIwtgNZ7O/h3g3pN1KU9HIE1+5wBvD01S+z65+9SE3icriw59n57oNVQZ/3yzeWc/JQSpnjqoPFddP2jXls3r3UaJDoZQ1ZHCkledl5Ae9212lSs3D+CnqL7S0t7yP1WDqaW0Nqkuz0XNJPZgR0/jMBmfVc/rrHDbh0lwTbkqDPu2bZP2z5dVs5xq0LOlZlo6oq0357nnot6pBULwHF4GdpLOHkgeSAk09CCDC0oWiv3g5pQ/MTtQX3bUXfWAhDqjxhcGTXcQ8bGiEE9VuGQg1SUrbtEODahpb3ZQjiVTKOP0HE519c/iY0Qt+tCoKnv3iYhq3rFX5dYJlWgD3PwaevfuUhxHc2ceJAMs4StkkGk4GE2sGVsEqfImje2HJszJ3wUbnHny6iIv5m2tL9fLJFMPD6DI9jstjHMthS45ufHUrPK7qgqAU2TQ6vrPDvi9ey7ruzc1J76lBKocZAAW6XmwbFPuOBopW4BoXqe5I36drXcNjK3w94WnDtAS1b95/2qVacjzCDWjPgMCLiIogaQ1HS14Xn/VyA6xBa7kcBx6jO5GTkeS3YTZGmkOi2SE16OgH6me080OcpUo+nBx2vMtHcqeDap+syidLmOQoYWgQcRxiaQcJsiqoMJF7zD+lGy3xOV6c/Cym5WWCMMNKya/AuUm63hiyHUOBbD85jz6b9QcerTJwOJ9vW/EedJrWISfQvbmwwqkE5cFmiLcz8cwrm/E0EpC7CXByXw8X0MXPJzcoLOE61xnUALzFIQ8ugT6u5tXIJW65dsYE1S8M7aSClZMPKrcTXiqNRm/poLt+/l6IqtD2/4hbqxRGJ8/RWhEJKJLVlDjJ7OtJVot0zDKjyhMGQ+wdhjjRhjjKjGhR6DOrMlG+fDP7Exm5gOq8cA52Q9QzSfbLsoacJLed9yH4BXBvA+WuJoxYwXwWGcyDyFkTssz7PUV4s0RZadmlWKLxXQPGE75H/jvH01WenLU3foecREWkmItqMoii07tGCqasmYbYEJ0wSmxjDjU9dV+Y4KWHxjBVs+HFLUPEqE82xATLGgGsdODzdOiQKm9aPonmnpgy4oTev/PB0ULFUVaXzhR0wGP1neNNPZPDc9VOx5pS9u3im0f6CNsTViNWvV1Whfss6PPXpwyHpCX/onbs9doL87Qn9+fU6vpr1bdDxKguppUHaYHCuAefveAnMmi8Hw7lg6oNI/BQhghPSFObzwW8bnARyIHtqMf2ds4fEOvF07NeWiCgzqlEloXYco6eMpM+QwDQjijPmjVswmot2HwuSjCXZtW4vM++ZG3S8ykJKDVIuBcdKcP0NskRyw9gDDD3A2AWR8A7CEJzbgzB2xne3qsj/zwHWxWBbGlSc6srg+y4nItKM0WwgIjqCa8Zdys2ThgV93useupLYGkVtY4rB9x029Wgazw5+Neh4lclDfZ9hxbs/8u/v/3HgX8/Npgat69JzUBdadWvGfbNH03twcJ/1Bi3rEhkX6fW6UAQIfWG74cfNfPCED02zs4Go0UBE/n8GiLgUET8j6NOef003mnRoVPi1vyIRe56DycPfKGwlDUfeemge85/9jO1rdnpZ8UYnRNFvaC+adWrCDU9cyy2ThgcVSyjxYPCVJCv2B3T9h8x8MKg4lUGVaxh0vrADczZO5dD2I7Q5ryUJteNDcl4hFETiu2i5CyFnFihR4D6E76oDZ76tVm0fx8IAm7fyeBHxiOi7wNAqZMJitzw/nJUfeSYm2vZuze5/9hfuFBYI8Zxt1G1amw92TGfHX7tp0r4h9VuEzht11FPXc06PFswY+x5up4vczFzysm1e41wON6nHM0IWN+TYfvB7SKBw3jXX0Ov6tggRmtvNxTf3470JCzyse5qd25j9Ww/pu4qA5pbkZlnPOtcES1QE72x6jU0/b6NG/cSgdm9K0mdIT+b++wZTbpxB+vF0DCaDz9YczS3ZvzV8K5KkYzulispahiNMnRCK9yQ0IIydQG0Erp1Fr4na6OWh+X8/oYBWhv7OGYgQgheXP86Gn7ZiNBk4t3+7kD3XWnRqyqdH3+XF4dPYs3k/cUmxHN7pW7ei5KImrNDSQXorjxcScRXCcjFCSQxJOKFEIy1DwFpccC8S1IbgLriGneAOzOmmunP7iyPpeUVXcjJy6TywAyZzaFT4E2rFsfDIO7xx59v8/c1GEmrH+70u006Ed0XMnlLaJjpf1JERjw2mVgidScZNv5UXR0wv/Foogo5927JtzU5cDhdOu4uTB8+++yuAYrkcaWgB7oNg6o5QQiPwajQZmfXXSyx8aTFfvfktsUkxHNzue1fc5XThsDrC1nVtzVd/+z1Wp2ktbn5ueMiEeAFE7BPIlEGeLxp75IshWgEtLO+vp0WJokHLupx/TfeQJQuKo0TdgKi1Oj8h4K9cRgU1jD2XS1XkPo5MHYbMCkFVRj61GtYoXGgVcOVdF9PmvJZYoiMwR5oY9tg1IYtX3Uisk0DvwT1CmiwooNslnfho7yzqNq+NrRRxrm6XdAx57JBhuqCUgy5IG4VMuyFg68+SRESavSpiWnZpxrX3D8IcaSYiOoLul3UiqW5onAGqG5ZoC72u6hbSZEEBjds04J0NrzFwVF8yfNgnFXD+1d1CHjtUCGMZJYUZdyJTLkG6g9MpKYwnBFAicaXEQMxEIAJEFCi1A3ZiqO6oBpXul3ai04D2IXfXiE2M4ZWVz3D/rDs5ddh/f/h5V3YNadyQosRT6t5O9rPI5IGhrVARJXU9NETcCyAidSFQEQWWwITqzgTand+anoO6hCxZUIDBYOCxD+/jtZ8mcXyf/yrYxm3DW1g2vpS5/dezv+e2cx7g1y/+DFm8mATPtgepSSYuuJ/ouEgiYy1ERJkZ9ujZO4cVxpaIiItCliwoPK8QjHziOubtepPkI/6flxGR5rAW727eqYnfY3s27Gdc18f48OmFoQuo+rCZjHkADI3z770REDUudPFCRFhIV0opmTvhI4bXv4snBk0hJyM3yBNmgVZKRj7qnvC2/bLcSKlCh1jBugSphW7XP75WrMfXM8e9x+GdR7njpRuZ8ceL3PT00JDFOhP49oOfGNloDOO6T+DonuNBn2/floN++8G6XXpuyGzxKgNh6giitN0tGzi3IR3rQxazVVfPhN/qRX/x/fxfGPrIVbz07ZM8++X48P6MVzGbf93Gra3u49bW97NldfALix1/7fLqFS0gqV4CfcLZpUJJAEOHUgY4QUtGhrLk2lTCNsx9ArInQcRVEP8WosbSoFsfziSO7D7OuG4TGNl4DN/P+7nsbyiD3Rv2+XVLMJgM3Dp5RNAxKg8FIq4t5bgGMheZ/WboQprOx7PpSCDTbgZDZ4ibhqi5EqEGr4typpCdnsMTl7/I8Pp3MXfigqA1hw78e7hUZfkJ8+8L6vyVzU3PXF/qcYfVwbvj/xeyeI3bNvBoOVKNKre1vp+EuvE8Nu9e3t8+nY59w9Oq7nQgpQst80m0U73R0u9HSu/K1oqQfCS1VD2De2bcHtT5K5uRT17rtQlVHLvVwacvLSm06A0eA3qLSDHSRuvr1ugnEDUWo0SF3zPptCUMcjNzua/XE1xqHM4NDe9myZvfknY8nY2rtvLuo0EKQIl4vcffa9EdDVEP6iX9YYp0HYbUa/DfIVyAO6QJg6k/P0ezcxsTVysOBFhzbKQdz2DWfe/z0eRFZCSfnS0JBbjdbqaMnM5lpuFcX+t2Zo6dS/KRVPZs2M8Lw6cFff6+1/fCWGK3QjWqDLpzIE9+9nDQ568spLQiU64CmVPGSBe4D4Qs7pOfPkjngR2IrxWLEAJrtpWc9FwWTF7EexMXcGRX8Emc6s4nU77k8ogbuDruJiZe8gJH95zg6O7jPHXlS7jdwSnDX3JLf0yWErtrAnpe2YWZa6aEbbJGSolMvxNcu8oaCY5/yxhTfkTMGIgYDKIG+mQhB2Qu2L6AzGchhMm06srvS9ZydexNDIocyf29nmDPxv0kH07lzXveK3W3tTycf033ImG0YrTu3pxpvz2PJSrCx3eFBzJ7avn0AlyhczNSIvpB1H3FXESs+n/OPyDjUaRtZchiVVf2bNzP8Pp3cplpBHd1fIQNP20l7Xg6y2Z/x59fB+fy0bFfW5+aG3Wb12bS4kdp3K5BUOevTH79fA1vPfhhqQswgPQQtrnWqJ/E4x8/QM1GScTWiCl0YNu/5RBTRk5nxbsrg37mVXekOxkt+Qq0E+cgky8E61K9Dc7+MzLn3aDOXa95bRLrJni953E1Yrh35u1cdFPfoM5fmezdfIDxAyaVaf2oaRJ7GRaS5UUIgUhakO+EV+B6kwfaMch+CpkzF6mVNaeuek5bwuCz15axZ+N+NLdG6rF0nPn9yC6Hq9TSwfJQ9GYUz4CbQFgg903kyV5IZ3jaVkjbj0AelGmNZESUFOsKgH9+2MxtbR7g2cGvkpmcpXuqlkiO/7lsHS+OCH5RXJ1Zs/Qf/vx6PW6XRmZKNq58Gz8pZUgUth94+066Xuy565lUJ57vPviZYbXvCFuVWenYCtpJSlWaB8CAEMGXpB3cfph7ekzgnh4TOb7vJE6702s3Z9sfO3mk/zNh7yxRmRzdc5yPX1yMy+HCmm3zsEl12Bxlen2XxaDRF3HtA1dgMBUlZeNqxLLu203c3PJePpkSpk40Mkd3oKEcAkxK8Bo3UktDS7sdmXwxODaDdOJ1b9cOINPHhLUQb2Xjdrt56cYZWHNsOG1OstNyCj+/iqoEvbho26s1j82/18NBRDWq7N18gAf7PM3zw14P3/tF3kLKd70GX4UmpQMtYyLaqf5gW5F/vZZUl0+HrBeQDv99v2cDr9zyJmnHM3C73KQcTSt0+5CaJC1IzaGkugnM2fiax76RwaSSfjKdycPfYGzXx8JW1Pfz15fhsDq92lxLUlyQNFCklHz8wiJGNRvHgue/wJ7nIC/T83p12Jx8OW0FS2d9F3S86ozMmQrufYAG2gmK5mx20ILbYDGajMz++2WPtgNzpAkJvP3IfG5oOIbj+8Pz+fbjgl+x5znKtNdVDWrhOjUYNOu3aMkXITMe0ysKZMnPsQTbcmTWM0HHCjWnJWFwbO8J1q7Y4DGJLSAi0swNE4cEH8R9AtxpxV5wgExGF7vKRmY8rqtlhwlSy0VLvx9yZ+O1YvdCgPkCPTsVBHnZViZd+ypHdh7j6O7jpB5Lx+rDt1pzaX7FTM4GstNz+GH+Lz5LsE0WE6OeLr38rjzkZVk5uOOox2unDutlXk67i9dunx1Woj1SamhZL0HGQ5QqIFeA2gjM/YOO+9RVL7Prn32cPJDMif2nyM30PWnKSs0JWTa4uuF0OPn6re9x+7i/miKMXHxz/6DFh9xuN3s3H8TlKHrvM5Oz0Nwabqeb+c9+xn9/7w4qRqjRcj9Fpgym7PsrQCwiamTQMWXm0+D4S5+QafsBPwtfoYLbtyDfmY6UkpXzf/WZxDKaDTRq24BWIbCt27vlIG5n0fXqdrpxOdy4nW7+XPYP37z3U1glDaT9D7TkQUB5WjRNiJhHgo+Z+6GeKNCOgXsvkIHvz4sE196g41VX1q/czKmD3htbqkElKj6KPtcGr0ey85+9Hn96l8ONLceB2+nmwL+HmPfsZzgdodEFCgUHdxzh3vMeZ9/mg2WOVQ0qd7x0Y9Ax16/cwqevfMXJA8kc3H6ErGKbOcWx59nZu+lA0PGqK9K5E+z/4D1XEyAiEZE3BR3j2N4T5BWzrrTnOchKycbtdJNxKpOZ4+aSmxlku3kIyUzJ4skrprDinR/LHizgklv6Ba3DIN3HIXOCLsjv3gcyBe+ELIATwnBTu8oTBnnZVu7t+Tj7Nh/weg4pisKcTVM5t3+7oOPIrGcp9UHr3o5MvhjpKvvmVhXI7NfAvqp0NeQCRG1E/FtBl/3mpOf49RstjjnSxGV3XBhUrOrMowOfY913G31mICd9OZ6rx14adIzPXlvKyQP+EwI56bnc3vZB1q/cHHSskGD7CvI+zU/ClYWApKUIpaSQVsVJK0c1hynCROeBHcJWkbeymTFuLsvm/IDbx2d72GPX8PDcMUHHWPPVOjat8l+yr7klD/d/hkXTSnN8qTqkcztkTwGtPGr4Jkj8AGEIgbCY+xBlV4uZ9N1hY5vg41VDVry7kln3f+BzsX5u//ZM/20yBmNwu5FHdh/ni6nL/B53OVzMvv99Xrk5hDoAQSC1HGT6OHDvoewElxlinkSYQ6Ab4j5C2dUMBhAGMIdvmXFlsv3PnTw7+FXyfGyuJNVP4IMd04mvGZy4nNvtLvVa1NySZbO/477zngibpMFTV77ErnV7cDnKrl679Lb+IZk3JR9O8ZkgKI5QBCaLkUtu6R90vOqIdCcj00b4efYZIOkHhDF4fYdXb51dauXi+h+3cGvr+8PG4WPa3e+wfuUWrDll6zc069iEh94Nft6ElkL5NiwiIPKG4OOFmCpPGBzfd9Ijy18cidRL4kOBLOuhJ0FmI61hUjrrPkjZZd0ABjC2QYjg37qaDWt4SSWYLCZiEosUZxVVofvlnbltcvhdvFWBpmns23zQ5zUrFMEpH7ZygeC0OcsUVHFYHXz8Ynhcr9J1jHKVySJAqYuihGbxnlTPs+zWGGEkJjHKI3lWu0lNXvh6YkjiVUc2/fRvYemconp+wFOPpodEX8Bhc/r1XS7AaXPxyQvhcb3iPq7v4pdK/i8kVITBh4pxIChNSrxgQu8JL/7HUxFJSxEifPvoK5N132/CXuDRXeKaSj6aGnSyAMBpd5Z53TvtLn7+7I/gRZdDgczEv8tTAQW/j4IwBb/JAvhwj1IBM55vjITEjxFq6GzGqhPb/tjpt3w5KyWbyJgQiJdKytzMcTncHN55lB1/hUclV9qJDEor0CnobzdHmmnTswynmnLSrGNjzwSF0KvojBFF+joGo8q9M24PyUZktcS1C/+aaE4I0dzMaSt9/SLdkqzUHFZ/8VdI4gXL8b0nS29DyP+TGc1GzunRIiTzJqm2xHudZwaKVy4YIPJ6lKjgqz5CTZUnDOq1qIMpwoiiKpgijFhiiiZJUpMsefOb0AQyli/7LdQ6oYkXJCJqNLpqpr8Pb8FkNgkR/0rQ8Y7uOc7bD83zyM4aTAae+vQhhtw/qHCSJoSgXtPaYStiVtkoikLr7s0xmgyoBhVLtOf1unT2tyGJ0673OShliAQBxCSGhzWNsFylW2zhr2qg4HcxQ/x7QceTWgZa9hvccP9eEmrqi2FzpImbnhnKw++OwRxV9LmJqxkbkkVGdaX75Z11gTcBaom/w88Lfw+J+FOzcxt5TMr8EREdJlUepp66PZ2XXVxJFIidGrT9lJQOtJz383eICxAQcSUkfYaeOCh42YRQwuNzfTrodVU3zPnVQEaz0WNue3TnsZD0vibWTSCpfmlOLjoC/b5y2lHqgalL/j22DCy3IYzB2e5KKdHyloD9B6DY59pwDtT4Gc95iYJQg9f3qK507NcW1aAnH80WE4qhaBrttLtYu2JD0DE0TaNjv7Irjpx2Fwm1Q2uVFyjX3HMZEVFm/O9l6dmETgPaccmt/YOOt37lZha+tMRDRyc6Por3t0+n0TlFySyD0UDd5uExzz8tGM7J/4dAX2MUT2gJyA3erUJKSY9Bncscp7k1r02f08WIiUMwR5o8rp9CRNFjqHaTmox545ag40nnf3qVo0eFgQqJC8AyiCKRfhWhNgo6XmVQ5QkDS1QEN08aSv2Wdel1TXdGPX29hxBRcpCChwDS9jPkvVW+sdmv6qJUmq8+kqpDmHsjanwNfrP2+ReZPIlMGxdUr2VuVh739Xycr978FiEEiiKIiDLTZWAHzruyK4Pvu5z6reqgGBTqNK3F0EevDjjWmcCtL4ygQet6dOjbhkfn34up2EIpsxQv+vJyZPdxXho1A81d9nu6YeVm7u40nlOHTq+egTA0RtT4HkwX+BlR8LvYIG0kmhZc2aRMuwly3+fi6w8wc8UeouIiqFE/icH3Xkava7rTqX87VINCTGI09715R1CxqjvXPXQFzTo2olXXZry44nEPtW2H3Rm04KHdaueRfpPIzSj7npmdlsPIxmPY/ldZrgSVi1CiEUnLIaq0a0MCGmTeh+Y6FVQ8mfk05EzPF5kCiAIRg4i+B8XYCqJupXD3NvaloGJVdy647jw69G1Dk/YNGf/BOGLii5I6RrORjBDcY58c9CLH95woc5zBZGRE/btYtfC3oGMGgxACkfA+xDyF/93B/Hus9S00e3CiuDLvY8iaBM5/ACf6osKCiJmAYqgBcS+iJ7kMEH0fQik7+XKm0qJzU/qP6E2jc+oz8olradOzZeExg0kl9Vjw2lhvPfAhm37ZVuY4g8nAvT0f58NnPg06ZrDc+cooJi15zG+yXuYXTKxdsSHojcF/f9/Bs0Ne5Y+v/sbt0jCYDJgtJm59fjh1mtTiwTl3ERUXiWpQ6HlFFzr2O3stFYWaBJGj9Wo381X5tu0F9xQZtOAhwHcfruLrOWU7pwhV8Npts3l+2Os+NeyqkgEjevPmX1OITYr1PigprJY5svMYr99RvvWkP6T7pN4WYv0U/bmvAhawDEYxnYuIvgeUOvrrhuZgCU8b+yrfhpvzyHy+zO9rPbLzGK27NScmIRqHzYHbpTFiQvCCh9K5EcrrICDzwPEnMuUaZNQIRORtISn3DwglBtzl6LF1/YPMfh0ROz6gMEd3H8ft1nSLMbckIsrMKz88zTk9WyKEICYhmrlb3sCaY8MSHXHWVheAbvX13HVTC79OqpdA47YNOLL7OJpL48anrgs6xr7NB8os7y7Almtn/7+HGNd9Ipfc0o+bJw0/bb36Qq2JdP5RjpEZkHYT1AhsUiOlM7+sTqIoULO+5MXlY2nRpStmi/67T142EWuuTd/xKcMe50zm5KFkbjvngcK1xOz7PuDCkX34ffFaAPoNOz/o6yX5SBp2W3naUfTr1ZZr59ELJzFgRG9unzKSxDqnZ4dBKFFI++pyjNQg5Upk7V8RIsDy4uJODCIKou5BRF6PUOIBUGIeQUbfA6gIUXalxpmKy+VieL07sefpZZrT7prDqGeG8tGzn6OoCo3a1Kdll6ZBx9m9YX+5xtnz7Njz7Lxy8yx+/WwNt04eQdMOIWpPqSBCGJCu3ZSr5zX9JmTNnwJvE3D8hm6dCGAAyzWI6LEItS4AiuUqZMSlgESIMKkaOk3c3vZBjuUnn/733Oc8/N449mw8gGpQiIg003tI8IKHm3/djizHBoLT5sRpc/LZK1+x+ed/ufGp6+l+aaeg4weCEILMU5ll2ikCzHloPi3ObRpwm8C/v/9X2IogNck5PVrw0LtjCisLzunRki9TPsBhc4a1ZWpVoKU/APb8Slj7AYh5HkQMesuThogcFXSMLb9s99tqXhzpllhzbPy5dB1juz7G4Psu54o7Lw46fqAIoZSrBe3Xz/+kfZ9vGXzv5YEFcv1H0f68G5SaiIQ5YGiv/xxqHai5SrdaFlFhu+aq0oSB3WovTBaAXsby+1drmbdzBjv/2UeDlnWo1ahm0HGE+QJk7ruU3QNYgBu0g5AzE4kJcbp6R4QFPfNUjmRH3ucQYMKgQat6GIwGFEVgMBnoPLADNeon8tjFz5N6NI0bn7qOi0b1C00vXjWnpPDQn1//w6KT77N9zS7ia8XSuG3wwmhtzmuF5i7vtao/IDOTs1g66zvST2YyYf59Qf8MAaMkgju77HGuzUgtO6DSayGMSEMbyJ88C0Nt2pzXHrInoGVvBcuViOgHz/qJAcBz177msb44uP0Ic7e+wVVjL0UIwTk9WgQdo3bjGliiLTis5a8acdic/LjgN3b+s5e5W94I+mcIGKUu8C9lCxHmgfNfMHUPLI65D1iXU5g0iLgamfMO0vYDGDsj4qectZoFxfnouS8KkwUAthw7va7sRs/Lu5CZkkW781uHpL2ofe/WbFm9o9zjNbfGmmX/sPnX7Sw8PAdL9Gl6Fiq10dsByqHJZFsFgc5dTAPA/hd60sCAsFyHtK9G5r4PSn2Ie02vNDjL2bJ6e2GyAMDt0nA7Xby/bRpH95ygdffmRMWWo42kDHpd1Y3D/x0te2DBz+F0s+2PnTx33VRm//1SSOYlgZBQJ77cCftv3vsx4IRBx35tMRgNuF0OzJFmLrmlP6nH0pg87HWMZiOPvDeW5uc2wRJVlm7NmY10pxYlC/RXwLEWUfMHcO4AQyuEGvyaq/eQHvz08epSNSyK43K6OfDvYeY8NJ+YhGj6Xt8r6J8hEGKTosselM/SWUEkDAxt0SdmAjCD+UIQkci04Uh3NsQ+ihJxIYjy/zyngyrdistO987kHNp2hPEDn8PtcmPLc+DwYV1XYYzdAvs+aQXnpuDjB4gQFkTC7Py2hDJ2nYxNAo4TGWNh9rqXGTr+am55fjhPffoQz13/Opt/3saRXcd55eZZzJ24IODzn0nY8jwnag6rg7FdHuP4/pMIRQmJF3LNBkkk1a14iafD5uS/tadX8EjEvwWG1ui9caUNjC5fP66/b0/8CKLGQtRdiKRFkDMNbN/qyr+5byPTbggrS7TTxcmSVl8Cbm/zAGu/WU9MQhRZqeVI7pSB0WSkQ59zyh5YArfLzaEd5Z8EVwYi7lkwdc3XMigtiy9ArRd4nNjnIeZRiLwdkbQI4VwDefP069W+DHmqH1KWrc58prNr/T6v156+8iW+eH0ZCbXjyDjlx4aygvS6pnspvdX+cbvcpBw9ffbLImoURFwKIpbSp2smMAReiSEihyPipkDkbYjE90AYIet5cB8A5x+Q0hfpLrul40zn4DbvCtCPXljE9LFzia8ZQ2ZyVkieQz0GdfbdW10Gqqpw4N/yOMFUDp0v7MDQ8VcTX8tHmXcxjGYDTdoHntRo26s1L654guseuoJHPxhH36G9ePKKKRz49zC71+9jTOdH2XGa50ZhgeZD/8XxJzJtDBKzLvwug28N6DSgPSKAyk5bnp3dPp4BVUVinQQeeX8sNRoklVoZo6gKjds2CDiOUGsikr6AyNsh5jFE7LPItNH6elPbCxlj0HLDf81VpRUGSXUTMFlMHk4IORl57Nmwnycuf5GIKDOxSTG89c8rxNUo/YZTGkIIpLDo5R3+R+FZ6mcADIiIKwKOGyhSy0VmTwX7ShBmfWHkPgG5s0qMNOl+9obGiNjngopZp0ktRr9cVIp0cLvnQ+aLqcu48cnrzvoqg0at63OoWKbf5XBzcPsRXr/jbUwWE0aTgTd+fZ5mHYMrW02oE8/Jg+XXJVCNKkaTgQE39AkqbiBI6UbmzAXrZyBdYLkaos6DzJL94WY9+aUkIWKfQpSpUu8focQgYu4t+hmc6/H4/Do3gnMLmM4NOMaZQK+ru/L9h78UvSDhyK7jfPLCYj5/dRmKqvD4gvvpMyQ4C7aGberDkvKNFUKgGlVUg0KnAe2DihsomvVryJkDWhqYzofEpZBashTSoPcRKgmI6HuDUoEXwuBRqablLsTDA1umgvUriBwRcIwzgQEjevPPd5s8Xju27yTH9p3kx49WoxpVbpg4hJueCa6ns0HLeoU91GWhKAKhKqiqQkKtOOo0rRVU7ECQjnXIrNd0W05Da0haCimDKGobyEckgloHLEMQ5sCfBUIIsFyBsOjzH826Es9KRxcy+w1E/KsBxzgT6Hqp9/Ml+WAKyQdT+Oe7jZgsJrpf1olnF40Pqqy4VsMa5SrxLkBRFV2rRkC73q0DjhsoR3Yf560HP2T3+r3UqJ/E5GUTee322Rza7pkgNpgMNGpTn84D2jP0keC0sc7t366wQuHkwWQvbZ5XbprJvF3hYZN62jC0RK9aLvHscaVC+kgkFjA0gMTPg7K9tkRHoCgCrbRLttiSSwhQDSqqUeW8qwLc4A2CrNRs5jwyj39+2EJUjIWxb9zC2m828MO8XzzGGYwqDc6pT5N2Dbl/9uigYgpDC0TshMKvpXbMc0D2i8jIG8O2HQGqOGEghOClb5/gkf6TfB635dpxOd38MO8Xho4PUmhPaQHusjzrzSAUMA9CGFuAsSMi0BLUIJAZD4Lj16IXsiaD6mMBGnU7SszD+vdoOUgtN6gPucvpYua4ufzz/WYioswepaFSk2Xa/J0NvLLyaUY1HefT095hdeCwOvjo+c95dtGjQcXpclGHMqsFzBYTQhG06NyM3oO7U6dpLXoPDr5fsqLInHcgdwaFd/+8D8Hoo9zX3BcRP11vKZA2pJaFUAJPBAJoOe9C3sd477ZJpMwtdc/4bOD+2XeyZuk/ZKfleB0r6Pl855H/BZ0wOH9wTxZO8Z8xEIrAaDIghCC2RgzXPnAF0fFRXHRT1Xu3S/tvkPkYhZMm+/J827oSO4FKC0SNeQglESmdSC0NREJQD3DNuhJyXsZXNYN0p5311+vFN/Xjqze/9bnLpLk1NLfGxy8s4obHhwTVmtDzii5ljjGY8tv0jAZufPp6TGYjA0ddgNFUtRoT0nUYmXYrhQt255+QPgavZAEJiKQFCEMLpNTyr9e4oBKz0vkvMnOiXm1ZEndwQqBnAvWa1eHKMZewfM4PPo87rA7W/7CZfVsO0vzcJgHHqdusNkJVkKVYKyqqgsGoIhTBDY9fi9lioveQHtSonxRw3EBw2J3c22MiuZm6CG7GqSwmXDLZyyJdNao8/9VjdL+sM1JKslKziYqLDOpznXI0lSk3zuDkwWQUVXgIR4eFPeppRggjMm4qZD7kZ4QVXEd0dxRL4PpxqkElqV6Cd4Vj8Z8FgTHCgKIqDLrzImrUS6Rj/3a07lbSyrXymXjpC+zeoD9z0k9k8PLNbxJfs8TcVMDoV0Zx3YNXAvr1ZMuzB6UBJaUVmTFR3+AiGihe8anryv1/wqAYLbs2RygCqfku21INCpZQ7GorsR5JNW+MiNiJeo+geeDpfZOc/5R8Qa8wKIGIfhAALectyJkFCGTMUyhRNwQU9us5P7Dqk9+xWx1eFmmqUeXb936iY7/T84EOF2rUTyIqPoqsFN+l3KpBISou8KRNAeYybkJCEdwyeQRxSTEMuKF3lU9iPbCvxHOx5QKXt6iYiJmAEEZ90ZT5MKAhLdejxAVWHSMd6yBnNgV9tp6ZcwG2n5DCAMauQU2aqzOmCBPN/4+98w6PourC+O/ObE2v9N6kS0exgiJiw4oFFcXyCVYUsSGiggiIioqiiGAXEbuCBVSKoIL0jvSeXrfO3O+P2WyyyW5I2QQIvM/DQzI7O/dk986dc09539ObsPq39SHPscdUfn115x+lnF7AVQ9dSu1GyZw38ExijqEcqHQtJ/BhIMETRLUh+l4jWODZZKhySAeYO0HCTIQov9Se1NJ8896FETAwEcCd4F6OdJ1ucBoole97PhEhhKDnpV1KLUtVzaYApY+KwOUorn1dEuff0IvTurWg5yVdqNvsGMoGerdTgsdI213yPNslRrBAT0emXQfaYVBrGdlCtWJ8AzL9TpAFLRgKATxQ3u1I1xIwtz2pVRK69+vET7MW4nEGL+XWNRkgv1xRmC0mXN7Q87ZFl6b0vfk82vZqRauux85HyzySRX52YIDJkesoUdHToFU9ul/cGa/Hy+MXj2XD0i1YIyy8tGAMLTpXrJ3mxVtfZ8PSLeia7pO3LPRLcjLyWP79Spq0b0idJtVfJXS8QJhPR2KmVG60o8oNHx0RR+HuiI6P5JYxA2nQqh7dLjq2laA71u4K+F16dbJSAtV4zBaTP1gw9cH3+H7azyiqwuMfPsA515xRoXFlzhvgWojhExT3+VVwzEFaOiHM1V8lVBZUO534+iWbg27OFZOC2WqiywUd6Xf7+ZUfyHoGpcdD3GBqb2Q+j/REP3IO0v135cetCEzFJ4cOBJeSknq2b9PkBTyQMxYpK6arfmRPqt+R8jg9xCQWOvW6pjPr6c945PxnePeJjyt0/ZqAfVsP4MwNvjkyWVSadmjMHeMHVXqc1t1bBMg1FofUJVFxETRsXZ/BLe/nqsTbmDdjQaXHrRAsQQhqZElpHil9D6jspzEWSA84vkJ6/6vYuNphCjO1Xl9fbxE4PkVm3I3MuPOk5TPIy85nz6Z9QV8zW83UapTE4x9UniSzbrM6pc9XTXJ4Vwo9L+nMo32eZUDsrUx7eNax+V6Cztcg2VIfp4DMGQ8yG/CAZwM4f63YuDKDwkes9P1cJJDl+RuZeR8y7XKkXrIi5GSAruv8+8vaoK9Z7Gai4iMZ9dnwSiufWGxmouNLd4o3Lt3CRbedz2v3TueKmFt4esAE3M6jBxrCDnPHIAeDkB76lkKZ9z5oBwE3aIeQ+TMrNKyUOsjMIkcUAnwomYLMfACZ0hfp3VOhMWoCVv++LmiwwBppxRphZfBzA6nXvE6lx2neqfRN9O71e+k7+DzmzVjIFbG3Mqz7Y6QdzKj0uOVFYr14zNZAXzvYMm/yyacv+24lW/75D6/bS15mPm8Or9h8BUjZk+YnjLbYzChF+tB1TeeFQa9yZ/uH+ffX4GvMyQDpWknw7KkZsIDtYrBeWOlxOvVpX2pgNyczj659O7J/2wGuSriNW5oN82f5qxvF28y8mobbWSyg4tun7t9+kB+n/4rXY5zzyv/ervjA+n4K13KtGMmhZrQlpF2Hnjer4mNUIao9YPDJ2LlBGeGtdgv2KDundW8eluypiLwN7DdQWtBAOn6ArCeMh6R+GJkxrNLjVghx00EpIIAJVekgkHomJb8yUcp7SsfFQ/oQEW0nIjYCe5SNpAaFpWxSl7idHlz5Lr589YcKXb8mYN6MBUF1681WE7ZIG43bNiAmofLMpl0u7Mgd428qlTPix+m/8uw1k0jZm0ZuRh5v3D/jmDgIInoEmAsirAXzsfg9LUDz9WgFZPslFS5ssp4LSqwvGm4zsr8B1/X6ZFJXghZ801zT8fePq3AECXApqoLVZqZO01okNah8djC5QSJPf/4IifVCSyT+9f1KXr3nHXat30N+joMfpv/KqgXrKj12eaHYzgb7rQSulUFKffWCOWMqPE9QbP6WA2ozMLfzkX3awHJhsXF1g2dHT/fJMJ582LvlAP+tKZk9F6rAbLGQWDee+i3rVnocRVGYuOAZGrcLTbR2YMdhPhk3lzW/b8CR6+TfX9bwzdT5lR67vBBqIsSMIyC4FExa0VvAO1RkviKKva8c4woFIgYBdmPOmroSOF8lyFyQuUjH1xUa40SHlJJv3vipxPGCFqyYxChaHGWjX1aMnvNIqZwvbpeHb6bO59cPF+HIcbBjzS6mPvBeWMYuD1RVZeKvo7FFFsmYBpmumUeykFKimgp92IJe9oripqeMVgx7tI2kegmYLIG+hSPHiSvfxWcTvq7wGCc88qcS1D/DamxYzZ3CIiU/ZNxN9Lnx7JBBA6lLFnyymHce/YjczDwO7Urh+euPjWLSS7+NIaGuz3cpTmfng+bR8Hq8Jf4etRLVbiLiNkMNT0QZfqyILfKqBJzGv7xKBCWqENUeMEhulOSPNIJRWRCVEIkjx0l2Wg6fjP8qLOymQphRYkcjaq8GS1+C/qkym4CZIvOPSQZMUaMRyfPAdDpBZy4Yx1P6g7BA9OMYToIFYsdX+GZv3KYBs7a+xqjPhjNr62tkHs4Met7RGG9rMpIaJAa0awhFEFcrBl2T5GbksfjL5cx/b2FYxrr6wcv4OvN9bnnmuoCHagG8bi2g9E8IgSOn8ioN5YUQCiLhfbBdR2jpUgmZd6N7DyBiJxZKhkbehjBVjCBSKDGIpB8QcW8gkr4jdImdNAILJyES6saVWMNikqJRTAq5WfmsX7qZdx79MCxjnXFZVz7b9w5jvhwRdL4iICs1B93XfiaECKqUUx1QYkdB9AuUqmmfOwXdtQQRMwqUJEAByxlgvaBCYxr3yQeIuGmIxM8QllbBT5ReUI9hCfwxRExCVIn2xKi4SBRFIS8rj90b9zHuhlfCMlaLTk15d93LzNj4SsjqGEeOE6/byMZ5PVpYVEUqAiXiOoj/iFI3/55F6DnvICIHg6k5IMDUFBE5pMLjiuhRxpyNnw6Rg0Mo25gM3fCTEEKIEpUqtkgrQghyM/JI2ZvGM1dNRNMqVvVZFIl145m04Bm+ODKDpIYleQmkLn3EiMb9o3l1slKDV6ZWNdr1as07aycTGRu6LD3tQAbPXTeZnpd2oWvfjj5fKpb7Xi9Ollx29LutN1NXTGDM3Ed5/tvH/FnhohCKoO4xIC49bqDWJnD/YwIigFyj/ShnHNIbpOWpnLBFWHnsg/v5JusDOpzbJqjqQH62E0UtPJ6XmV/pcSuCpHqJzNw8hYat64d0CXRN5452w6nTpBYDHx2AalKwRVgZWYkKTWHphEiaj4h7zZC21ENwPijHpz9Q7RwG9065nT0b9/Hf2l0gjS/FmVdYbudxeUjZl0abni3DMp4QFqTQCJ5RyjAiPTLTeF3URWr7EKaq17DVHT+D4xNQmxoZLPdq8B4t+5aBzP8cJfIWZMSNgKh0r3Z87Ti69+uElJImHRqRmZIVQBwjFMHY756o1BgnMi6/5yLW/rGRJV/+BRgP6bysfDSv4RC4HR72bStZjl9RCCGw2q1BS/psUVZik6JxOVyYzJIz+jmp1/gAUHH5t7JCetYic143IqKmeuBZB+7lR3mXBjnjEfGvQ61VgIYQlaseEkoUWM8ybDK19mVmizlnMWMrTa54ouL089px/WNX8v4zs/0Pwuy0HP/PulcvoYhSWVjsVix2C46cwMqGqNhIPC4PiiqQ0iBZdeZVj5Sg1A4gsyeAdIO5PXg3gqsMLTxZTyNq/QbJSwBPhbgLikIIk689DnTvfxiOW9H5KsB+NSJoGXrNR3ztOB774D7G3/yan5QzP9eBLEK4e6gc6jFlQWRsZND1VTWp7Fq/B0UVmC1gi/By2S0HqoWISuq5yJxJoO01glSeLeD6iaMQMUHeFET03Yikb5HSHYb5KvxKM9Kzybh/isPUDuzXVGqcExnjfniSx/uN9ZPqeT1aQNWsM8+F1+1FtYeHRyc2KYa8IIFWoQg2/70NXTf693VNxx5tw+V0Y7VVbh4cDZqm8fHYuaxfspkO57Th8K4jrPh5jZ/4MBSWfPkXbqeHMXMfxeP2YDKbKn1vNW7TgMZtGpCTmYs9yma0ERW5v+NqxXL3pFtCX6CGQ8RONDh5tII2ooJMdgG8SC2twomc4rBFWHE53CUCwUIIDu44hGpWDZ9Ah6T6CWQcySS+VlxYxi4N82cuZOEnS2jasTFuh5sNSzezd0vpMs8Hth/i73mrGPzs9QwadY2hRlLJ9jih1gW1riFnaWoB3k0E7k/NiLjXKjVGVaHaKwxik2IY+OgVmK2+jYMEb5GSbykleeFmNzV3IWik3v2bj+DH92XJvZB6IXrue1VaaSA96yFrBLj/NIIG+R+Cdy2lZr/8MLKqQpjCSuz22YSvWb9kc0CwAODMK7pVWjLwRIbJbGLws9djKfIALt6ikBvmrGmTDg2DRmfXL97MoV0pKKrOfS/s5omp6yDjJvSs0chgjl2YIPVMZPpgQ8nD9Z1RLuVeylGdWaCA5E0IpdLBggCbXEuM+6a4DUp9hL2SCisnOG584qpAJ6zYslJ8Y19Z1G9RJ+jSlbIvjZ3r9qBrEqlLPC4vLw15k+HnPk12etVmbmX6zcaGy73AUPRw/ULoapiiKJivotKbrwB7vHsgaxQl7xkLIubkDcgCnHvtmSQXaZPRvXoAYZrXVQpZVwUQFR9JfO3YEmus5tFYu2gTmlenfrM8Pl29juT46ciU89DDkIErDTJrJDjmgnsJ5L5krLOUZU0v/KDCOl+lEzKGULKKS0DcxJOWVBbgtO4t6Nq3MMBXEOgqgKKIo26cywMpJaf1aOEj9StyXJf8/eMq3A4PulcHCX99/y/XJg9hzR8bwjZ+MHw+8Rs+n/QNqxas44Mxn/PTrN9JO1C29siCKkmzxRzWQNyoS8cbe4diz6J7Jg8OCzH1iQqh1kVE3EzhHkijBAmwDO/zuP1ZrUtUHUopWf7dSvIy8w2fQEp2rN3NDfX/x/yZv4V1/OL456fVTL3/PVYtWMeXr37PD2//ws51e8q05XI7jIS2yWyqdLCgKGTOeB/BbTG/xD4QYWoUtnHCiWoPGICxCS1toYiKC9/NLd1/Q+4Uyra5AZCQOwGZPTpsNpSAZ2uR0ilJ2QIFADaE/epKDe12upkw+HVubXEfbz/6AV6v8bD77q2fS8jgAFUeqT4R0LhtAxLrh+7Vjq8TF7axjuxNZex1LxulhiFuESEkF1ybWTiFHJ8h026sMPnlUVHARQCUb74KiAol51M2SCnRc6agp1yAnvEgumY82GTeJwQlAkM9rmVpqgOqqnLWVaHlNuNqha9dw+3y8PD5z/grB4o7tcGwfslmbm/9YJUFDaT0grafsgUIiiF6VKXH1/O/QU+5CD39FnRfn7l0zqekLB6AGyEqz6h+ouOqBy4J+ZolzM+gpy9/kdR9aUhdBg3MAtz88OHC9VU/BKmXIoMpa4QLng2ULUBQDBGDKz20dK9ET70cPXUAunu1ccyz0eDWKLHW2xBl9qVqLq5//MrQLwpRope+Mpjx5MesW7TRCAqUAc48FyP7PsfSr6uOxHvzX9sDZLjLitY9WpBQSX/p4M7DDD/3aW5v/SB/fP4nUkq8Hi8bl23F6wmcm7ZIawAR4kmLoyRRwqnSs3jucr6ZOj+oFHkw6JrOy3e9xQfPfh42G4pjx5rdeDy+wJ6kzAnh6IQoelxydEne0iD1HPSMew0fNuetwrEdXxOczPb4VUw6JgEDe5SdHv07B31NNan0urJ72MaS+d9TqpxI8HeB44uqqzKwnokR7SuPnqeA5D8QSixSutBz30bPeg7p3V6uoT8eN5dFc5ZxcMdhvpj8HZdH3sxvny0hdV/JXhqL3ULPy7qW6/o1EUIIrhjWL+Tr1z8avoz2ukWbcOb7FpFSpl+JQKd3G2i7wmZHAEzNQYkHbJRryUj4EsXcytj0588xKiFcR2tjKAbXr5D/nlGq65oHKd3Qc6aAd3WQk61g61O+69dQDBh2cUhH6dZnB4ZtnIP/HSLjYIa/xLusTq0rz8WqX6uGAFEIE1jO9vFmhHLcg3w2USNR7MZ9Ll2/o2eNRs//rlzPAendZaiCaLvA/RekXoCecR8EnfdmMHcr87VrMs4b2Cs4DwZwzfDLwjaOlJJVC9b5eTVCyTtHxRbfFLuRzm/DZkcJ2K/0zddyVGGZz0WJeRwA6dmAnjUGPW9moTpNGSClG5lxJ3i3GKWx6QPRUweAazElH0AClChQG5TdxhqKlp2bYY8OHug7rUeLsMrI/jTztzJvvgqge3W+ePm7sNlQHBfeeh7WCEsJdYTSkFQ/gSl/jkMIwZG9qUx75H1mPv0peVnlq9Acc9Uk1i/dzL6tBxh7wytcX+8uFny8OGTwr3WY2ptPZAglwWglCorIsD6Hfnz3Vx+3RtkhdcnXr/0YNhuKo+elXTBbTOWaryaLiY92vYnVbiU/x8H7Y2bz5vCZHNoVRGGpFMicF8D1u+HD5r2CPNwR3TnfIJAtASvC2qtc169OVDuHQQHan9fG3xdeFA1Pq8eR3anh00E21T/6OUoz0IvJe4jkSmcqpZTGRNEPg7WvwX4MBjN2xCDQcwzCK2ewyFpx6k4rimpkuWXWY+BcALiQzq8h+dcy6yIf2H44QD7E69F4acibKGYVzR14k19y5wVccNM5Zf1zazRa92gR9Hhscgy7NuyjXa/w6KY2anM0PgLJsPGqbzMoA44bRG2Vg3T/aziOll4Ik4/tWc8B+3Xg3W2QseRPo6QzWUxjHgVhMtjNZf57kPMa4DDYtRM/Rpg7lM0g7SDIYuVzee/6nNZiQS5ze0T0Y2X8S2s2GpxWz78pKgqz1VTm0tGyILlhUtB+8KKISYrCkevCU2Td0aWkdpPkSo+/Z/N+Vi9cT8uuzfy8N1I6wNoblESjRzB3MsHna9GNlQqm1sb7XcuQGQ8ATnB8g8SDiChjZZd+xOCkKTqcewmYgwTIRbRBLncKRMVHYY2wltBzB0PuT9f1sJSDCiGwRVlx5garTjJQp7Gk3ZnmYiElM0KtfJmo1FKN9hi1LljOQwhhyBmqLcB2KaiNIPctSlajFF9fAWs33zX3I9NvAukAbEjvbkTsmDIa5ABZ7LPwbg9BuqVAwhcIUZ5ER81Fg5b1gsrC1W1WC2e+C1tEeD6nhLrxZB4phcxQQJ0myRzaWcj1IRTDl64snPkufp/9JxariXOvOxOT2dgy2KNs9LutNxExEfz1w0qjvLuoSYooEYxr2r4hiqLgcXu4v+cTZKZko6gK//66jteXvVBmm1L2pQWsr5lHsvlu2s8IUWyVF/DMFyOo0+QkJjwsCnNXX+tz8eMtQU8BNTyfU+3GR3+uN2pTjz2bDgQcqx2G70nXdZZ8+Re5mfmcd90Z/lYUj8vD5ff0w+PxkHYgg8VfBAngF3OpoxOiiIgyVMuevuJFNi3fiubRWPjJEj7a+WbZ72/vbgJ9DRdkjSk5IEDUMISPo+t4xDGpMACYPf6roMd3b9zHA2c9Fbbsvoi8HZRkjIy+CSyXgloQafNJEBUPFgBEDkJKiXQtRTp/rVCPuMweY+gWZ4/zaW3nIL27kGnXQt4McHwFpiYgSjLgFk4kXyWCuQN6zqtGWaT7LwJKWcpRZTDgvoux2gNLPHVdcvndF5U4N752XJmvW9PxyQvB52tWSjYj+z5HRgiFifKiZZfmtD+7NYpJQTWrtOrWnLOu6mEErwRcfnsml9ywmhILjaWXUX3iWYt0zkfqWeUeW8+bg0y/FZk9Hpl2FdK7HannIdMGQO5UcM4zynPVYARtXoz7SQEsoDZE5r6PdC3zZasKHGAd3KvKbpTtIl/mrSgERNwc5GT1pO6tLYo/Zv8Z9LjH5WXSbVNZv2RTWMaJiLZz5QP9DTIgk0JC3Tjjd1+2WDUrZKflBgQLwAi0te7Rkn3bDvLH539yZE/5ie02/72Ne7o8yrRH3ufRC8aw7LsVAAbfRs5EcM4Hx49guzbIuz0Yc1XByOpGgHsp0vE90vUPheurA9yLy26U+XRQ6hDwaJWAJZgT4AlrKeiJjI1/biE/hOLLp+O/Dqu84fC370E1KYbUaKSVQU9djcX3TKzVAN6YtwWVzBLvk7YBSC0F6fixQu0JupaGTO1n+AMZDyLzphrXzX4eckaB41vInQmRDwV5txfDFyiQTbSCdhiZ9xHSvZbC/mSnj1+mbBBKrBFcC8gd6aDWp2QFpIZQKy/JWhOQnZbD9tU7g762aM4yXr7zrbCNNXLWvZgsJlSTgsls4sYnriImyahgUM0qJrMpIFgAgISrHrgUR56TxV/+VaH1XtM0hnYdyWvDpvPK/97m2WteAuCnWb8x5upJ/Dj9V7567QcGjhxQIrtftN1HMSlY7GZia8Xy6YtfsXvjPvKyHeiajtftZeuK/8pl17UPXxbQ8iGlxGRWS2w4Bcam7xR8cHwa/LhnDTL91rANc+eEm4mMi0BRFUwWlUvv6Uv9VkbySFGMY8WDBWC0pWmaxl8//stfP/5bIaWR566dzIRbX+fNB99jWLfH8bg9bPlnO8PPfZovX/uBee8uoMsFHbAHky/3udSqScFqt9Cyc1M+GDObA/8dYtPybXhcXnRd4na4OVwOIl4ReRdQvK1OA0tJ9SWhBNsLHj84ZgGDqLjgN7LUJZmHs/jnp9VhGUcICyLpF4i4D1AMokNtLyR8AhF3EZLbQM9EZj+NzLwXmfUoMv0WIxNQRkjXYt8N6jL+SQd41iKdP4F0YjgADsid6CNeDPFVKLXBer7BSp/3FjJ9IJg6YZSH+3TFTWUvuWp/Vmve3fAK5153JopqbErrNElm3nvFGMQF9Lnp7DJft6ajtL47t8PN55O+CdtYk39/lhEzhmGxmdmzeR//zFvFiJnDmJ97N/eN2xf8TXoaev5sZNrNyKwnkKmXIvWySyxJ7y7IGY3RR+s2sk6uRUjPOkNNBDfgAOdXoK0leOmsBCzGBk07BPlvITP+B2rjIpt+BSxlL38Tah1E8k9gvwvDqTUZWbicF0ueHFn5ft6agrjaoXkKPC4P0x//OGxjDXvldib88jQJdeLJy3bww9u/csPjV/LJnrcMEtUgsd/c9FzWL93MPZ0f5eW7pnFn+4fLpd6Qn+PgiYvH4XF68Lg8uPLd/Pz+7+haHnjW4Ncz1jaCcw7B279867l9EOCB/BnIrKdAphY53waW88tslxBWRNJXEP2k8V5MoCZB7quUaIOoJB9NTUJcrdhQlC14XB4+eu4LvzJNZdHnxrOZtuolWnZthtR05kz+np6XduHb7A/48O9NRMcFqz7QQNuJTO2PzH4KmXYt0ll2OV0pJaTf5iMX862l+V8aLzq+9lUHuIEMyBtP8OJPDTCD7UrAZnDX5EwwEg9+vg4bWM8rs10AIu51iH0ZRLwxrogFx5eU8I1Mp5+qLvDBGmEJWYHqdWv8MWdZ2CQOm5/elPe3vc7ZV58JAr6c8gNJ9RP57MA71GlSqwTpIoBQFI7sTWVY18eYdNsbPNF/HB89P6dc475x37vs23IAj8uDM8/FXz/8i67rfPvmfFz5LrweDVe+mwm3vB5MzRCpS1SzSveLOlGnSS3++PxPPhgzm7HXv0JUfASqScFsNdHmjBBysyFw05PX8NJvY2h4Wj1Uk4ot0srujftJ258ecF5kXCTNOzUp17VrNESo4IkO2g5DFSUMiIqN5KMdb3LdI5cDsOCjReRn5TNt9SR633iWX7a2OLLTcnj2mpcYd8MrjLvhFX+AqqxY8Mliln79N26nB5fDTfqhDPZuPsCvHy/Gle9G883XKUOn48xzhmxhadi6AR3Obcvq39fz8di5DOv2GK17tMBsNaOoCrZIG3XKUR0pbL0NGXDzWRiBXbPxXZRIRChgu7Bcf3N145gFDMZ9/wT2qNBkT99P+zlsY0nPKsifgvFAzgeyIf1WcPwU8j3C3t94aMp8o4XAswm0wM2alE70rGfQU69Dz58b+FrejGJGuI1qAudPlCTjKoVITj8I7pUYDrAEBNj6QvQjEHEHInEuQglNyBcMifXi2bNpHxabGSkl+7YeDCCwiYyN4NmvRp4q5SqCYa/eTp1moT+P30NkdCuCw7tTmHzHWzhynDhzXbidHibf8Rav3fctIYncIgZB3kzAacxXmeerRCmElBI990301GuNapUiATDp+I6SDmIrcP5CiVJYZJBjBXAaagr+DK0ThBURMxYibkckzEKY25bhUyiEUBJA348RpBCgbSWQLMYCUSNQbH3Ldd2ajN43nEXXi0JL9W1ctgWvJ9R3WD448108d93LpO5Lw5XnwuPy8Om4L3nsorEhe8TPurIHP7zzC658F/k5Dpx5Lv6Ys6zEeb99tpQHej3JS3e+GZCBXrVgHW5X4ZolBLTq2gzci0JYGaoEXQfnD0V+d4BnEyJ+mjFf415CiRhwlE8gEELYQHow7hOTT87KjX/9RgXbAET0k+W6bk1Gk3YNudbnYAaDI8/JjrXhUSqQUjL5rrfY8vd23E4PbqebxV8s5/bW95OTESIooTYA9wojkCrzACcy//2S13b/i542CD1jKFIrIrer7QOtWEba3Abp/Y/gZJih7k23UemFB2O9doFnBSLhc8MfiHkSEV0+1Q0hFIQSafg6mEFm+GwqUjVm6gQJH5XrujUZVruVke/fF/J1oQiWfbcybOPNfeV7/vh8KV63F1e+mx1rdnFby/s5tONw0PPNVhOqWSXtYDqOXCfOPFfQKp2DOw7z1GXjGdFnDFuKZfqLM9cnNUjA6/ayY21g+wFgBIaD7L80j8a/v65lz6b9eFxevG6NI3tSeOHHp7j+sSu5ZfR1jJ9X/nUwNimG1P3pmC0mnPkucjNy/a22QgjqNqvF26sm+VsoTgFIeJfSOFJk/uywDfX3vFXMnvgNXreGM9dFxuEs7uvxBKt+C85bJISgU+92/P3jvzhynThynb6fA9fG3Mw8Jgx+nQd6PVmC1POzFwOrgHVNJ7lhIn8GIf+Uugzpm+zZtJdNy7ca6iO+c6579AoGPzuQ60cOYOo/L2K1lzNwqiT71n8LoPn82SJqVSIe4j8sc2v5scIxu5vqNqvNt9kf8s9Pq3jq0vEBX57JolKveZ2wjCP1dMh8IMgrXpAlFz4AlMbgWmZE2qWPKVgIKPZlyuwXfZF4F2RvRZoaIwqyp2oj4B/8pa+R9yLU+oFORODVgNpA8QeABJmGkfFygdQQlo4IU/Ce+rJg2787ObTzCM68kk60alKZvu5lkhsc36Ux1Y2IaDsfbp/KzvV7GH7u0+RlFpFNElCnaXiCK26nmzFXTSqRTdM1naTk1UhJkGh+BOhpIGwYEUzN6PsvTk7l/Bpy3wYc4N2GVJIQkUZpv1DrIrFhLGLC6K+1no3MezeEpRJELZBBCGD0FPzzFRvC0g1huwhhD70hKA1SOkrXJI+fgWLtWaFr11QoisKL858m43Amj5z/DHu3BJYARsdFoZoq374hpeSN+2eQk5ZT7Dgc2B58rRNC0KhNAzYu34rFZsbt9GCxW0qs+dv+3cHkO9/Ele9m+6pdaG6Nxz64H4DkhokBGb66Leow8NEB4HiL0Gyh0UBuyddlNoEZ2jMR1l6VIx/Kn0HwIIWEyAdRou+p+LVrKO6eeCu3Pns9z187mRU/rwnQthdCEF9K1Ux58MM7v7B5+bYSx5Nqp2KLDBGQtV7k08sumHNWgx+jCKSejcwY4tt4K8j0PYhkXzBKiSMwP2NHxE5Aulf6jgcbt6BlpnjwwLexRxj/mzshzK0Q5orzt8i89wg5X60XosRPrfC1ayouuOkcet9wFm8/+iFfv/5jAOGr2WKiVqPKcwqB0Xr15as/lDgezH8rQK8re7B6wTp/9YGiKtRtVtKnfuyi5zi0KwWpS0Ze+CyzD0z392Yn1I3nyG6DJ0hRBM9/9zi5mXnooUrFJUTE2snPCtzkedxeLDYzmldHSklsUgyN2zbg9udvLNPfHwy/fbYEZ54raOtynWa1mLl5Cqp6qj2xKBRzW6izAT3/G8geSXGONNSGYRkndX8ak24vuV543V4yDgZvlW3ZrRl/z1+N2WZByzU20vZou79VrAAv3fEmf/3wL163l/E3T2HqPxNo3Mbwc+s2q82ezfvRvTpCEdz/xp1Ex0eRmRK60iexTjxphwI5nXRN4sxz+X0TzavTskszzrysEsSQ7r+KBGKLwwZJP6Oo4VOvqiocswqDAnTu06EEmVH7s9vQ95ZzK31tqechUwcQWmM0VFZ/NzL3FR+LZT3ABNKNzHkxcIHybiKQS6CQC0FEjwRrH+MmjLoPETXUuFFlYNlUIFIIrqVnhcj7wXYVImFGpYIFy79fyewJXwWVUATQvBp3tB8esp/0ZEfT9o2IKdoXJ6BR6/rc9OTVYeHdeLzfWHZtCB7Iuv7ew0FL/yAfcl8G739AMkYU043MHovUCwMbRt9twffqMJixC2C/GiKuB6WBMc/iX0O614D7n9DGyiMEX0J8coq2ARA7HmEryY9RVkjPemTmM4TUmATIuM1oqTiFEoivHUeT9o3880YIQwb0npdvDUuFwbSHZ/HrR8Gz+qGYvaWUfPDs5/z7yxpsUTZsUTbcTjcfj/0igMtg39aD/meDx+UJyDC36tqc/710K3Wb1abrRafz6uKxpB1I59+fvsbjDjVXcgg+jxSIHGaUekcPR0Q9WIa/PDikdhA9azSU1r6W9zLSFaoS4uSGzW6l8wUdAhQT7FE2bn762uB9p+XErx8v4s3hs4K+NuCOg5jMIdbw/Jm+0n8FiAM84Pge6ZMhBAzCS79PofsqSwwIJRoR/yaozcHUHpHoKw/PmUzoagKd4D6KCvZrjX+RtyPiXgvx/qND6rnoOZMMctlQcP2CnvN6hceoyVAUhZ79OwfIT6tmlQtvPY+m7Su/Adu68j8e6T0m6GuhSqoBfv9sKXMmGyoJ8XXjANixdhcLPiksg5ZScnh3qj9Z5/VoZBXZXL3ww5Oc1r05DVvXY+z3T9C0fSOmPTzLqCYIAVewIIaANme04ophF3Hp3Rfy2rIXKryZ17wac176lhXzV4c85+B/h3nsoucrdP2TAcJ2DiVyxZazjf1KJZFxJIu7Tx8RtE0GQUgfees///H+6NloHo3khomoJhVnrpP3RwdWPexct6dIEExl/7bCdevh6ffQ9cKO1G1Wm3un3M7FQ/rw+eRvQu51ADJSggcwYhKjuP7xq+h3e29e/uNZkupVPPOv53+LzP+0JLmsH05IvaRCPHnVDVGeTU63bt3kihUrwm7EnMnfMnPUp0hpsL2m7E1Dl5KbR13DTU9eU+HrSvcKZMbdBMpX+PpHZD6hy1SLoiiTpYqIfwthPR+p5yPzZkLe276UrwKm9oAHEf0owhIoR6g7F0PmnYQMUoSEioifhihnX2IwrFu8iccvHlvqDQRgMquM/f4JuvY9vdJjFkAIsVJKWa0aYlU1X/+et4rnrn0JXTeY3g/tOoKqKnS/uDOj5zxSYXWN/BwHVyfeFrDREoogLjkGiyWfGYtXYC6vJHnkAyjR9yGlF+n8EbJGGRTKUgdLd4OfIOI2lIhAaUhdOwwp5xOY1VcJmeUviugnUCJvL6ehJSG1w8jUfr57tXSI6McQkXdUekz/9WrQfN29cS/Dzx2N2+EmJimazCNZqGaV2o1r8cZf4yvF5n1t7TsCnEyAhLpxuPLd5GUd/Xsrji59OzLhp6eRUrJ+ySZGD5iI1+NFSmh/dmuyU3M4c0A3bh51bcB95nZ5GNR4KGM/+JuWHY0MhS5NKKIMQRHbFYjYiQhRufi5lF5kSm9DFedosF6IEv9mpcYrjuqes1U1X3Mycrm/5xNGybHNjMftQREKZpuZt1ZMoFajiqtrjOgzhjW/bwg4Flc7Fql7eeKNtXQ6OzdEUDYERCJKbaOVRvfsNp7xWorhNphaG06iuR0i5ilEEfJWKSUybSB41xS7YKhqgyJQ2yASP0YolSd009NvB/dyjrqui9ootctB/lkG1JT5qnk1nrpsPOsWbUQoAluEFZfTg9R1Xpw/ivZnt6nwtd9/ZjYfPf9FwLGo+EgURZCdFkyWrXSoJpWv0mdij7KTcTiTiYPfYP3SLSAgqV48kXGRJNaN54E37yKxbmCr6+v3z+DbN+cHuLCqST0qt0hcrVheX/5CWFpcZzz5MV+++kOA0lcozPd8FtYqg5rkE+jZEyH/fUD4KkVTAR1iRqNEVFx2efGXfzHp9qk4iiQcrREWQwEnKx9vGeQWhcCvvKSaVKb8OY7TujUnLzuf95+ZzY/TFyAEWGxmGrVtiKoqDH3lNpqf3iTgOj+//xuThrwZMF+DqXcUh9lqZuKvo2l/Vusy/92hIJ0/IzNHENB+EHxUROIXCHPF14riqIr5elw0+Fz3yBX0u603m//ZxlOXjPcf//DZOSz8dCmHd6dw+T19uWvCLeXbjKmNKHwQmsDUCZH4scGGnXFnGS9SdHJpSD0HtCPItCt95IUCIu6A/Nng+RuQyIw7kPbrjf5vJdY4T9tJuYMFIgKR8BHC3L587wuBzX9tw+sOXGiL3pwFMMrXwiRrWQPRo39nPj/0LlkpWdza8n6QRo5o2XcreOicp9mxZhedL+jAqNkPY7GWXVfbFmklJjGGTF/UMyYxms/2v43KAWRq/4oZq+01tLbTrvfNQR1s1xnEcO4/AQ2yR6Fru8H5jUFOKHXQ9lPSiTzaYm+C2JdQ7JdUzNbi8G4vOTmDSdFgAbVpeMasgWjctiGf7X+HjEMZ3NP5UTwuLx6Xl/3bD/DMVRPZ+OcWGrWpz/PfPk5CnfLxoTTr2Jh1izbi9WhY7Gbe2zSFmIQobm52b4VsPbzLqDCYOPgNFn+5HF2T9Ly0MyaziaVf/43H5WXP5v14nB6WfbcCr0fDFmElZW8qWak5fDMjmfvG70PXBRabF6XUJ5wCkf9DiR5eIVtLQM8CvbQKsgKY/BKOp1AS0fFRzNj4Kqn70xl7/WQ2/230Vjtynbzyv7fZuGwrMQlRjPlqZAkn8Who3aMFm/7ahtvhxmwz8/w3j9Hlwo6+zXv5N2AF1Yt63ixftYCPhNjcDRwfAR6j/Us6kdpe0FJBxBnVCDJYYKm0YIGvVSx+WqWDW3541nD0dV2AOTyywTURqkll/LynSN2fzmcvfsW3bxZyY73xwHuk7k9HSskj04fSa0D3cl27WcfGWCOsuPJdmG1mo4/60St56+FZQdsUjgZN0/C4vGz4cw1jrpqIUATRiVFccscFfDxuLl63hmpSGD0gjcR6CexYs5u42jFkpeRwaGfJ9sOjBQsanFaPN5a/4Je3qyzW/L4hMFgQzB3A4Ok61ZIQGkrMSGTkHUjn75BThPMkeyJ63ttGIinyHpSou8t13UZt6vtbVkwWE2de0ZXRn49gwSeLefHmslVCFXX5NK+GI8fBvm0Huf+MJ9A1HdWkcP3IAcye8I2h/iGNQPB5A89kxfw1xCZHk5/jZN/WAyW7D48SLIiOj+K1ZeNo0KrykqSAr+XsaMECABXU43/PdUwDBvNnLuS3z5bS4ezW3Pjk1SwqRnqleXX2btqHrku+e+tnel7aldPPaxfiaiUh1FoQ/y4y901Q6xga7dKBzP+Mo0bxg0JB2PpC3vugZ+InBcr/CGRm4WnSC/mfAC7QQ7Dah1rpir6etAChhodL4MjeVA7sPAwycNx6LeoGlPXEJkfzyLvDwsYhUZOwauE65rz0LXWb1eaO8YNY/dvGgK9Q82hsXfEfXreXlb+s4Ye3f+GqB8q+eVYUhVcWP8f0xwxyqTtfvBldk3iy5gfleC8TIm8zAgParsJMvfNrX9VNgfEC8qYRqBVbXgiIfxelMn3fRSD1XIOstLhNSpJvU1bgqFggegTCVvlyupqG3Zv2MXPUp5itZu6acDPZabnkFsn6e10a6xdvwu308N/q3bz18Ps89clD5Rpj1OzhvPPoh6TuT2fQU9eQVC+B5T+sxOuqWLvDNcMvI3V/Gn/MWYbHZXz3f36zwsjI+h72rnwXn0/6Nqiz+sucBHKzVe546iANmh+lgixyBEp0WQPHpcOo4PkZiACKljkWOK1FbI0YhIg6xWFQHJkpWUx/7COyU3O4efR1NG7XgC3/BBKxrVqwDs2rk5/tYOz1rzBz85RyjTH4uesRQrD57+30G9KbLhd2JCtlP9H6htKankLDcrHxf+6r+CsWvVvAu5HC79wNzp99r0ug7GogAbBehIh7rcIVbMUhnb8YEqBaUVnmAu6ZIrD0QcS9EJYxaxLcTjezRs9mx9rdXDG0Hz0v68KiYvruO9bu9q9b4258ha8z38dsKXsS4eyre5JxOJPFc/+iU5/2XPfIFWSn5/DLB39UyOb6LesSkxjNe099gqtIpemn47/ys9drXp0da/ewY61R/l0eCbmiqNu8Nu+ufzlsG/cNf27BFmkLcJ2tditmq4ncjDz/ec07N2HUp2EKAtcgSCkNolbXH4aSiv1WcH1X7Kw80HwVg7lvIG19ytUC3bhNA57+/BHmvvI9jVrX544XB5GXnc93b4UmmC8NVruFDue04c3hM8nLzEdKiaIqzHnpu4C26fxsB7+8/wdup6fC81Wogk/3vx3QXlQZSO9On8JY0T2XMNp+9SLPAFEHETfpuCc8hGMYMPhn/ireuP89XPkuNizdzB9zlrFn0/6Ac6LiI8lJN6L+QoiARaGsEJbuiISZAOj5syH7OQo1jcsp0yR8UVIlFuOj8xr/F+dIUOLKkGk6WrWBKSwlhwB52fkM7TqS3Iw8FJMAXcFkUhGKQq8ru/Pt1Pm48t1YIywMGnUt3fqdzoKPF6PrOucN7FWuLHlNxcGdh3n6iglGpN9q4t9f13KwGENxdEIkOb456nVr5GSUP2NVv0Vdxsx9FIC1izYytMtI2vdI55n3JJZyRw3MRhmsiKMwQKaUnK9CAWmmcgEDNawLnky/2agwQGLcq76Mmn0g5L2HwcVgBtvFiIjBhsSZngq2vuVWDamJ8Lg9PHzu0+Sk5yIUhVUL1hkP2CLLjtlqQvg4AjSvRnYx4sKyICYhmhEzhgHGPXJTo3vITs9B85Q/IKuaFJIbJBpOYREUDRYU2F1aH+09z+2ndgPPUUrLFYQpPKRkADJ7NDi+x9hsFZDVCbBfV0SiTgG1GUrMU0j3SqR3K1jOQpgahc2OExlPXzGBbf/uQPNorFqwDrPVHJBtEkJgspjQvMZGJy+r/P6A2WLmjvGDAHDkOhjadST7tuzloxUQHReMULY0KGD2Ecv62xzB8AuKzn8TlKaEVObhaoUtWKDnfQY54zHWUV9LJSpYuoJni49oGaPKMf4V0PYhnfPB3B5h7hAWG050TBvxAT/N/A23w83aRRuJS44JaM8qzjGgaTpet7dcAQMhBFcMu5grhl2MruuMu/FV/vzmHyNYerScUxAUtAXEJsWgKAJdl3g9GrpeOF8VVSE2KZq0AxmhLlMmxCZFhzVY8Fjf53A53CgmBaRR2RFfO5bajZNZv2QzmlfDarfwxIcPYI+288M7v1C7SS26XRS+1toTGs6vIecVwGEovuTPLqbcIgzibOlbV4UC5ZDmLkDPS7rQ85IuAHzywlw+fHYOmqYjVIEs5bkdDJFxEQhFEJMYjcliwuPyoKgKrvwiQU0BifUTSNmTWm5bi8Jmt4ZtryO1I8i0a3zPBBPG88AEwgyWswx5clyAHRHzOJg7IPO/BGE1fFpxfFbHHDPSw/9W78LryyC58t3sWr83gBU5Oj6S+14fgjXCgi3SSr0Wdeh+cacKjyel7gsWFMhdVUDTWXoNfXn7NWDtbTgJ5tMJiLuIZIidRGFmqYKIHhU2zePdG/fhdXvRNR2vW0NRBVJKhCL46/uV9Lu9Nw1Oq0f/Oy7giqH9eKL/OF69521eGzadxy96Pixkfic69m4+4Cfi8ri87Nt6MIBrwGQxcd/rdxAVF0lEtJ2YxGguufOCSo05Zeg7OPOcrPgtgunPN0TXy+ksCit4NyMsnYy2GRFlkG6JRArJ3ywQ93ZhMKwEyrhEWC9GmMNTZi2lE7ybMaToNPDL0ZmNap7Iu0FtBtY+iJjRyJyJyKzhBslj6hVIvfwbiZqGrNQcH4u0obCRlZKNp1gp5x0vDiKpXjz2KBv2KBuDx1S8dxHggzGfk3Eky1/WarKWLx6teXU2/bWNqLhIHp11L7FJ0SQ3SKR19xaoZmM9NVlURsy8l9O6Nw+6uVNNglr1jxYsAERDsF1WLvtKhet3CqVvzYX/HF9B9INgOg3M3RDx09Ad3yPTb0dmj0emDUB6wyMXeKJj14a9aL4eV5fDTW5m4H18yd0X0uHsNlgjrFhsZu6ccHOlxvvlg0Xs3XIAl0NjxNUtSE8pjaU62ITSDccbEHFTQalnBGctvcFfE2aGyHsMQs2g1yjrmm5HRIeW8Ss3XD9RSICrAlHG/+6VEHETmDuBqS0i/l3w7kCmXuObr4OQrvByGZyo2OJrbQHwOD2k7E0L8JXanNGS60ZcgcVmxmIzc+W9F2OPqjhx58ZlW/n7R4MhXuoSc2mbmxDTattKg5h7+Nt307RjYyJiIjjj0q6YLcZarZpVzri8KwMfG4BSCqliWfCIL5AcDqxasM7fiqB7daITohCKIONwJrUbJ9H1otNp1LYBD73zP+JqxXL36Y/w1vBZPHvNJGZP/DpsdpzIkO51FN7zLtD+IyCwqSRD1FMYa5cdTB19+5uKIS8rjw+f+wKvRytVxrA0ZKXk4MhxMPDRAXQ6vx0R0XY6ntvWH4wTiqBhq3rc99oQTOYQe64yTuOR798XtoAsngL5SB1jz2nHULzTQNts+B5qU4gcgrRehEy/Hpn9LDLrSWTm8Vsdc8wqDHpe2oWPx81FuL1BiTCc+W62rtjBRzvfJONQJo3aNKikDFhBFL0ABVGfUJmwgvBtwfsUUBNArYcQZkR8YSmknve+L3JnBVM7yLg9yHVVEHXB1Bw8ZSknC98mvUHLusYPvj/J6zI+b4/LS8q+NM68vDv3v26U5jrynKxbtMkfvNm4bCv52flh60E7UdG6ZwvMFjNmq9dfKl0Umlfju7d+5uNdb3Fwx2Hqt6xbKTI5wL9JAvh5djJ3P5OJooSK+hdUzBSd59Jw/AAl+gGINuRFdeefkPWgEQCz9oaM2whk6i64RiyYe4JnXhmsLUufVlnhk/jR9lJ4j7qNf9KMUGyI5EJNaen8GqTvQShVoxzYUr5e0ZqGhDpxNGxdn31bD+DKD0JyKuHj5+fy6b632b/1IEkNEohJiK7UmCaTihACiUQ1qdRtXptd64OXXxfwboKRRcNHYlQQFO59/Vn0vv4sAA7tOsLD544mOz2Xrhd1ZPKQNwP6WIUiEAJskTZO79OOhV/tJT7ZSYt2DmITQ6zvwokQYXz8mbuC6zeMeVqspNv9L0pSYemnzH4a//0ireBaBKZbwmfLCYpzrunJ4i+W43K4gzqXv3zwB7O2TCEvy0FUfGSlmKvBqGgp8A/3brez+q8OXHD5khBnF7dHAaxgM7hlhOV0RK3fAdB1J6TdYDjkpnaQ9wGGQocs9n4LmE4H73rgaEFOV3grpyy9wP0vxgbCS0AbjeNLlFq/+X81FBIKgmEgHV8jrOeEz5YTFBfddj57Nu/H7fQEJLsKsGPNbm577gYuvetCpJTUb1G3UuMV938T68VxaEfZyq8VVcFsNXHG5QYZd61GyUz7dxJgVHA9e+1L/DN/FckNk9m1YS/Lvl0RcA8a1T0qTdo1JD/Hwf5th0odTygirJWpbc5oicVu9j/LilZy/PrRYn50fOL/fJZ+/Tdet9ffcjH/vYVcP/LKsNlyokLY+yMdX2Dc70FaBvVskFmI5AUGH4+peaW4UkQx9TuT2RRcPaHEG0FVVRRVoVGb+kTERCCE4IV5T/lPmTn6M+a+/B2RMRHE14nn2WteKnEPqmaVOk1qkVQ/njW/b6zw31EhmE4zggN+FKk29m5FxIxBmA2+Pund60sa+HwC1y/VZmZ5ccwqDJp2aMzry8dzwxNXoVpKBgI8Lg/7tx8kLjmWph0aV1ozXAgBsS9iSM6ZIOJ2St+UyyL/+yZi9DOFr3o2oh/pjX7odMgZh6GNnAGe3wkehNBA7itjsEBBqJV7uBRFTGI0ry4ZS1SQTb8jx8mbD75HxhHDYbBFWIlNikEIgRCC6ITIsMhZneiISYjm7TUvcdeEQVgjS/Y4SV1yeHcKEdF2mp/epNLBAoBHpg/1MyL3vvFMzObSSgQLFqci1TMRQ0FJMEq6tSPoqVehH+oImUNAZgF54Pqe4LJeGpBexmABYSVxE0IgEj4JQWToQeZOQ3qKSEKaWuGPfUo9bHrCJzIMPoznGfrybdRtGpydOi8zD0URNOvYuNLBAjD6w2s3SUYIQcuuzUqoJxRFUdVBKSVCCM64rBute7RA13XcTjdPD5jAZVGDuP20B0nZl4Yr38WfX/8TlCFb1yT52Q6Wfb2CSfc34KkbmzFtTH20UP6JqXkl/9pAiLiJYDmToI9U1+/ozoVFxm4PFLRdKAZJ3inwyLtDGf7OPbQ/u7VRdlwMiqqQeSSbJu0aVjpYAND31vNo1bU5QghqNUri7EvL824BpkZgv9bgr5ASPftF9MOd4EgP0DYCLvD+C2RT0tfQASd4/+LowQIgzG1WIvIOsN9I0EpI/QB67ruF55pbUThfbWAuO49UTcaAe/sz+osR9L7hLH+GvjgO706lXvM6lQ4WgEHY2eemc1AUhci4CHpeUgoBehDX1h5p447xg/D4iK/nv7eQqxJu44rYW1j61d+4HR72bz3AgW2HSgTspJR4XF62/bvzqMECMO7V6ITwtNQCdO17Og9PHxo0W6xrOpPvfMvfVtHgtHp+fhuz1UTzzqcIkcHXnp34CUQMxqiAKw4naHsQai2EuWWliVUjou3cM3kwqlnFZDFxzfAyVvRJkLqOoggefOsuv/zz2kUbub7+XVweczOfjJ2LK99N+qFM1v6xIWjATvNo7N92sEzBAsWkkBiGZ0oBhKkBIuEDCtfNIpD5yKzRSN0XRFCTwJ+8UHxk/ccnjgtZxekjP2TO5O/85VyqWUURgrHfP0GXCzuGdSwpfSXOeqohgVWu1gQr4DaiR3peIHFFOGE5FxE/PXzlMT48cv4zrFuyyXgYFOl/U00KF93Wm/vfuAPVpHLgv8O8M+IDpJTcPekWGp5Wv9Jj1yRJmkVzlzN24Mv++aqoCoqqcPu4Gxn4yBVHeXf5IKXE6/FiMpuQhztjBKbKCt+CrySCqQ24l1KhVpyjDtMAkTwvbC00BdBzJhoEo3go0bBpaoNI/BLQQeYhs8eDdggRNRRhPaPSY9ek+bpv2wHubDe8sIVGgNli4swruvP07IfDPp7H7cFsMXP/GU+w+e/tR3+DD4qqIJFYbRb63nIeP836Hbez4trEFpvOtAVbqN+0+DXsiORfEWrF5fmCQTp+RGY/GUIG1Aa1ViN8Mo8y51WDod5+NUpExaWDi6KmyNQ5ch3c2Oge8jILP0ez1UTd5nV4Z/VLlU4eFEfBfNWzx/mkxsoKC/7kgP1GcM4tkwRs+SEQid+EreWrANL7HzL1KoJXh1kh8QeEqQ5gRuZ/BM75YD0DETksLD22NWW+6rrO/zqNCKimMltN2CJtvLfpVeKSS2t1KT88bg8ms4nfPl3C+DIyz4OxKVJNKprbS+8bz+aPL5ZVmJy2VAh4ZPo9XDykci2ZxeH1eBkQe2vQgLEtysoTHz1It36dMFtM/P3jv8yZ/B0NTqvL3RNvJSIMSa+a5BPoGSN8hIcFPpUZEJDwGYolPKpsBSjg29izcR//6/xo2VsTBFhtFtxOD+3Pbs3ODXvITa+CdlMB/W7vzYh3w9dCUwA95WLQdgR5xQyR//ORH5vBuwmZM9ngjIl5MiwJ46qYr8eswqAobFGBURhd01FMCnNf+T7sYwmhIoQJodaB6OcoX1eGj+XYu7mKggV2ELGI2HFhDxZIKRk06hrqNKmFLdLK6ee3w+SLiuuazvqlm7ks6mauiLmVgzsO89w3j/H8t4+HJVhQ06CqCvbowjmra0Y09Pu3fq7UBicYhBCYLWZjPsS/B5SnNcRXzq+ngHsR4Q8WGL1uIu7lsAcLALBdZQTnsPpaK4qsE9oR5OHTjX+Or1HiJqAkvh+WYEFNg8lswmQuss5JY16t+Gk1R/ZWjigoGApIvZ76bDhJDcoetdc1HalJnHkuvptW+XtJ88AnrxStrjADdogZHfZgAYC09ATzGYAN1NMIzN56IKU78nBHZPYziOhHURI/DluwoCbBHmXH7Si2KZBwaOcRNi7bGvbx/CR0kQ8aLQJlhht/ea/jwyoIFihABNhvCnuwwLh8HYNElghQ6hscN34IyLjZmK/pNyAirjPma9T9xy0h17GCopR0o3VN4nK4S6gmhAMF/sD5N5xF7xvPKvP7dK+Ox+lB1yULPl5cJcECe5SNdmeexkW39Q77taWU3PHiIKLio4hJjKZRm0LfVOqSdx/7iMsiB3FLs3tp2rExLy0cw0Nv/S8swYIaB2GhuGQ8KOD4OOxDqSYVVVVp2qExQ8bdiKKWcW8jDS4bKSXrFm+qkmCBLdJKUr0E7nlpcNivLaWEqOEg6hgcYaYeFG65veD82Vhfj3QD6UZJmIES/3pYq8vDjWMeMFjy1V98+uKXhlyGrwxR6hJXvpsVP61m6Tf/VIhtvjRI6URPuwVyRhllz+aiQZiKfCRmDDmtSmyazGdCzLMQ9yqIiIpfJwReuXsaowdMIHV/Go3bNvTL/wEgBId2HEb36rjyXUwc/EbYx68p2L5qJ5Pveov8bAeKWjhX3E4PGUey+O6tn0nZlxbWMaWU6FlPQ8ZNoNjBdh2Bm5EKOHAimqDlUmVGEsS+AHEvg9qgEtcJDj3vY0i7GrzbDBkaz14CMmEyC7/DnjMJWQE235MB6YcyeKL/OFwOt9Hr7yMLcjs9eD0ac176lt2bQkm/VhxfT53H7a0fJDcjj4EjB2AvEhQOVm5+NMQkRmONKLvckdmq0a5nHv8bUyAZq0LMJIgdj7D0LPf4R4N0LYfUPuBZbhDfyXwCAnQixqdOooNzHnj+DbsNNQFul4fH+z2Px+VBCOFfYz1uL26Hm0/Gf8mmv7aFfVzpWgqp54B3g0EQW5lnOYBIwFhfKxH4j5lo+AQRN4WdeFh69xgVls65GPxKkT6pXR9ElBFoRgfPJnDMDev4NQVSSqY++B67NhgJpILqF82r4Xa4+WLyd6xauC6oBGxlsHfLfm5uMozfZ/9Jn5vOxmIrUmJegSkXkxiNxW7xEztXBLeMvo77Xh/CPa8MrhDBXWlw5Dr4X6dHmTXqM9xON3Wa1mLf1kI5cNWkcmRPKlKXpOxLY+aoT8M6fk2Cnv+5j6UfChOmvhYpx7dI1+KwE0fnZuYxrNtjvPfkp7Tq1oJGbQt9xqJ+dFlRQIZvtlWcJ+Pc687k/jfu5PGPHgjgCwsHpNSRmfdA1kiQ6aC2AO9aCtvVVdD2GL/LHGTWE2Edv6pwTEgP//zmHyYNmWoEBhwuv/6r7tUxW014XF4QoOuSCbe+htVu5Z01LxFfOy48BuTPAc9qQBqyIqYLfbJIHoL3cx8NHoxAw1F0v0PCDPb+kPMi4EaiQOIchCk8vVcZhzP59aNFxucKbPknsEzYeEgUPmWKSuycAvy3ZhejB0wgKyWbiFg7OWmFjlVkbASOXCe6puPMdfL+M7OZNfozXv7jOVp2aRYeAzwrwPkdRrVAqsHAqtTyabx6CE3cWQqkk4rLKKpgvwLy3gFtr6FAEj81vERYuZPx30/6f8VetFLyPj2l5FGAjMOZPHnJC+zeuI/E+vEc2W1UEQgBkXGROHKceN1e3E43P767gHnvLuCRGcPofUPZs1WlITs9h3dGfIDX7cXr9vLNG/No3qkJ21ftwuvxVsiZdOQ4/L2MZYGqwoAhqUTE+Bx1U1dwzQfX70gkMvphlMjby21HKMjcyYXEm+SXYTqeWmML4HZ5eP66yaz8ZS2J9eJJP2RwtUgkkTF2XPluPC4vQhGsXriedYs2ccWwftw9MXxEkTLrkUI5sfyPwHYROH+icJ0p5/clHRgBzYquS3GgH4DcqYBA2i5CxL1UwWsFMS//A5DZ+P8urbikalEZSFmMwOvkhpSSd0Z+yLdv/kRMQhTZ6TkB7Z1CgNejoagKh3en8MyVE2ndsyUTfn46bJWjr937Lqn705FSsuzbFfQb0of5Mxai6zpSl0F7ukuDI9dYu4oqP5UHZquJ+i3r8MrdbyNUhQat6jJl6biwER8u/fofUvam4swzfIKtKwJ9As2rF85WKSv8d9RU6PlzIWcsYPYFrgvuZ580PF6MPYAXmfmAwZmS+G3YpN1nT/qGnev2IKXkv9U7uWDQORzelYKu6RUKprmdRhuZJ0h7SllgtpnoeWkX3nxwJlJKrHYrb66cEBZuHMBIdLmX41el8K4pdoJGII/EiTFfq73CQNM0xt34CrkZeeRl5fuDBQXQNR1bpJWoOKP02pHjJD8nnynDpvPVaz/iclR0U14Ubgq/IB2USEStpT4SoIo+GCtiVxSojSHyLvAeNLKmMteIOOXNqqAdJZGTkRtUicIPaWx8wYjUDn/7f2EbuyZg/M2vcWRPKi6Hm8zDhZlsXdPJy85HKILE+sZC48h14sxz8fp97/LJ+C/JOJxZeQNksdJsoSGSf4Hop6i4vndFFlphzFfb5WBpD969vkyq0+i/ChOknhfIilcCXlAKiA0ViByKUMLbJ3oi453HPmLnuj14XB5S9qT6nUddk+Sk5aJrOrUaJWEyq7gdblwON9NHfsiHz80JS7VBcWdN8+q8/MdzvPjzKB+hUfnnq8ftpTxJVme+yti7m5J2pBlYzoaYR4pIH7og59Vy2xAKUmpBNlxFoRgl3wjjn/lMQ1XhFAD46b2FrFqwDo/Lw5E9qYWVbxJyM/L981UowmA/z3fx1ZQfeH/MbNYuChP7tQxcD0XUg4jkXzGqtyrizDkq9j6lPpg6IBLfh9zXMfwKJzjnI7Wjk82VGd4jR7Gjju8HAWp9sF8dvrFPcGz4cwvfT/sZt8NN6oF0fyIGjI2MBBLqxhmVgZqOI9fJ+iWbeXP4LP6Ysyws1SJuX6l2ATr36cCne6dRp0lyuYMFYChmeSrQolCrURKN2jRg9JwRfPbi17gcbpy5TvZvO8iqX9eW+3qhkHYgHXcQdaoCxNeJQ+o6CIiKi+T2528I29gnOqSeBdnPGAFRmUnQPY6IplD6Lw/0dIOYL/8zpKxoYqkQRitMoR+SWC+Bzw9Op9eAbhWar1KXFWpZjE6Kon7LutzxwiDW/LaB/Ox88rMdZKfl8POs345+gTLblwGytD2hj3zf97OIeS5sY1clqj1goGs63iIRJUVRAsqgNK+Ox+WlaYdCpnO3w8Oyb1fw7uMf8dRl4ytvhP1a4yGI1VcqqiNzXgGl8kzh5YL1bJTkX1CiHwI1nsIJZAYlPJEuTdN4vN/Y0A8pXyVHpk8lQVEVEuqGl5H5RIcjx+H/2Ww1B5b/SbBFWOjcp0PAezb9vY0PxnzOsG6PVZ7XwHKGb4NhAWEHUztk9vMgzFRrZFJpZMzXuIkIJalIUYoStvkKGBHuUgMaZtB3+X5WEWpS2MauCcjLzPNH7RWTij3KFpDZMplVevTvHBCsTdmfxofPzuH+nk9weHfZpLpCIb5WLFc9cCkmiwmzxcRZV/XglbumkXk4K+yl1aVBNaskd/geJeE9hNqIgMBamDInADL3NdD3l3JGJGjrC8dXYyvNQF2TkJ/jRPM5jVKX2KPtAX2umlenZddmAY6l16Px0XNf8GT/caxauK7ENcuN6NEYTpwZzN2QeVORrr+oULtXZZAwCyVpLsLcxmgTKAoRnl5s6fwV3L8T+tkRDdoG3+sSMIUt01gT4Mh1Fq6n0uiDDvBhPRoR0faAcmmPy8PXr/3IS0OmhoWb656Xb8MebcdiM1O3eW2Wf/sPP838zc9LVV24Z/JgZmx4hTMu60pMUrS/5U3qkqj48MyZPZv38+Fzc9BDVA1Y7GYO7ThsBDwkuJ3ucnHn1HiU2LgqBK5rXiPxo9Qr8p58cP2IzH4BmTWy0iZc+/BlJNSJw2q3EFcrhiN7UvnkhbnYIivTFlt+XDjoXGZteY1rHrqM2OQY//1iMqtEh0EpCnwJr8z7Cb2+KhhJ6yJJBrV2WMaualS712K2mLnpyWsw24yN17WPXM6cwzOo3SQZ1WQED5IbJrLhz0ByI13TcTs9rP1jY6WdTqHEIpLmQdJ8gy/A+a1Rhuj4BkRVbpYVArpAtAOFNkXcBNZzDSfB0gMReWdYRsxOyzWCAUE+stZntKT3jWcHOGK6rpOyJ/xEaCcy7pk8GIvdgtVuoeO5bfj88Ay69++M2WZGCCMZvn7JpsA36YbjkJeVz8Edhys1vhAqIv5dQx/X3MPogXZ8DtnPg6ltpa59dBRZImSReWHpCfZBRiuPqRUidmz4hvSsImjAQNSByLuLveZBauHvwT+RceuYgUTE2LFFWqnVIJEP/nuDgSMHYPVJfQohSgYFpI+kRxgZtMrirgk38+neaVz78GUs/24lP836nQm3vM7ZV4WfPyAkpCAn3WgfEmqi0Q8u4kCph4ibGr5x3H8SvMLMClGPEMhCL8G7J3xj1wD0u/184mvHYouyERUXwatLxvLYBw9gtRucFdYIKxFRtqDPMJfDzT/zV1XaBiViAKLWcogdD56V4PgKskeDLbyqNyVRlJfDjtAKyZRF/JtGpl/EG9wbYaqiku5/CK6MAESOpITMYzgrG2oAOvdpT7PTG2ONsGKNsPD07Id5dclY//pqtVto2rExbkfJRIEzz8XiuZUnQmzTsyVzDk1nws9Ps2/rQX7+4A8+GPM5Tdo1qlBPeFlRNAiimpQA32bEjGE0btOAiJgIrh5+Ge16nRaWMbet3BGUWBJgwP39iU2KCTjmdXn9rQunAEKt5asQsgIWiB4Jyb/79joKYDb8yBKtnz5eA9eiStuQVD+RD3dMZdrqSbhdHn79aBFzX/mBXev3YIusAsJsH1ST6g9iARzeVej3DBp1De3Oao092k7PS7vQ/44+4RlU20/I1nbzuWDpRYmHmVa5PUJ14ZhwGAweM5BL7rwAqevUamSwVb+6+Hk+HvclZovKDY9fxfX17i7xPtWs0qRdw7D0gQmhghKF1I/gL9HR90GtvyHrOXDNo0xl26IeyANHP884GaNvxQuooBYyeAthQcSH0Yn1ITYpmlqNkoJq546YMYzfZy9FNatovpYFa4SVrheVhym65uOca86g43ltycnIo36LOgghePrz4Xw89kuyUrO5+sFLefCsp0q8TwiByaxSq3HlGdmFEKDWRnpW49+cCGFkxtxLIG8G/n6pUi/UAGRpG2xr4fWxY8zVAjm+uAB7RMyjEPNo+f6QssByFrh+oUSENvoRhBKFxExhWZ2KsF8ZfhtOYLTo1JRP975N6v506jWvjcls4vaxNxCbFM2u9Xu4YNC5zBr9WdD36ppOizDpVsclx7JuyWZc+cZ8kkDnCzrQa0B3pj0yi6yU0sr4DcTXjSPjUGbIrpvI2Ajysgx2ekUVmMwmv+yWoogAZ0SJuBoiqqC02toXPBso4STYByBslyBzA0lkReRd4bfhBEZcciyztr7OoZ1HSG6YiD3SRpO2xnP+r3kr6dynA/+t2RX0vdYIK+16hUdBQChRSO9WCjfTDhAeSPgUMkeWURkpynhfyNbGSAxpXN+EFnaQBWusNHqHC+yxdEPUqryzXhzCei4y/2OMLFcRqK0RUUOQ+a8X4eMAIsPPIH4iw2Q28fIfz3Fg+yFikqKJ8WUmX/jxSebPWECjtg1p0q4Bi4MoJFgjLHTqEx7ZOqvdStqBDEwmFTdG8GzX+j188N9Unr1mEtv+3XHUbkXVrGKxmnHkBg8gKSYFRVH8bUJmswl0icftxWQxE5tcuFmv26w209e9HJa/rSja9moVtGzdHmVj6MuD2bBkMyl7C4mmO57fjugwVTfUFCixzyEj7wZhMQIIgJ4wG/KmgxoLEUMgpVeQd1rAHJ79gMlsQuoSj8vgMfK6vfy3Zjdfpc9k7A2v8M/81SGrSAoghNF+kn4wM+Q5iirQNWPia5qGLcKKM8+FyWIisUj1dGRMBJN+fSYsf1sATI0wfOfixJEKIm4cMvd1jEBNEb/a0in8dlQBjlldZHKDRH+wYNNf27ij3XDmvbuA1AMZxNWKpU7TWgHnJ9aL54ph/Zj4y+jwGSFijJ5szMY/Uysjwu/6hbL1eCsgDx79ND9sYL8eRCyY2yNixlTE6nJBURQmLRxDQIxFwKjZw2ncpgEDHx1Alws6You00qZnS2ZtmeLnjziFQsQmxdCgZV2EEKTsS+POdg/zxeTv2LZiB7UaJdGjf5eA8y12M/1uO5/Xlr2APZxlV9azMdi3fdUqaj1j0S9LsACA9KO8XjQy74XIYaAkgtqkSgJawSDiJhcrv1XAfitKxACw9gH7NUZlkNoEEr9EmFpUi10nEiKi7TRqXR+T2YTL4eLh80Yz44lPWPHTGuo0rcVFgwNlr4SA8647kxd+fIpGrcMnpXrWVT2wFals6HhuG2aO+rRMwQIAd767VKe3IFgAoCgq1z56BbWbJJNYL54nP3kIe1TVS2qJyLtALUZwau6JiHkWYWoI0Y8bPaJKMsS9ibCFX3LsRIfFaqZR6/rYI21IKXnpjjeZcOtrLP3yb+o0rsVFt54f+AYB3fp14uHp93DWlT3CZoewFKyvADaE9QJjfdXLmhQ4WmYzj8IJbQLrhYZ0rIiHqPsQ5nYVMbtcENazwHZp4EGlLiLxU4RQEHFvgpJkzNmox1Ci769ym040KIpCg1b1/MGCL6f8wGN9n+O3z5YSFRfB6b3boyiBia3WPVsy+NnruXXMwLDZ0bpnS39lmDXCyplXdGPhx4vYvWFvmaiNpCZLJbnWvbo/WCAUQbPTG9HxvLZEJ0Rx3sAzufCWc8P1p4RE3aa1uePFQQHtFha7hXc3vIKqqjzx8YM0PK0e9igbl9x1IS/+NKrKbToRIUwN/MEC6VoCaQPA+SXoeQgl0dgPFYXSECIHI+JeC5sNtZvUIjLGjmpSsNjMdDyvLesWbWLNbxsCgwUhcsKqWSUrpXRFrIJgAUB8nVjOv+EsohOi6HBOG4a8cFM4/oxSIYQN4t+iRD4+/lOEWhsR/QiYOxs+ruVMSP6pamTJqwDHpMKgOKYMfYf8bGPD88/81az+bQOvLXuBx/s9z97N+2nWsTHjfniyROlRZSGEgMTPkPmfAIrRFuD5F4RSRh658hLOOcGzDFFrKUKUXSKsskiql0Cjtg3Yv/UgEqjdOJlzrjmD3Mw8dm/cx+Mf3k9MYjXzN5zA+Oj5L0jdn46u6ezZvJ/5MxYycta9OHKdrFqwjoS6cWHfeBVAxE4A8+dIPQ0RcS0gkGWeg6KcWuFeyP8AkfR9lejWh4IQFqT1Ah9LuRtEBCJ6GFK6wLMREfU/RGwVRIZrKBZ+soT/Vu9G82pkHMlixhMfM2r2w+zZvI8f3/kVS4SFJz56kO79OoV97GseuozEugnsWLubs6/uSeO2Df1tAmVBXnbZ56vX42Xu5O+Y/NuznNa9+oJIQghkxHWQ8zJG4M6GiBkJCKRnPcJ6JiJyZbXZc6Jj68od/PH5n2heHc3rYvJdb/HBtjd4+N17mPbw+0hdMvi5gVzz0OVhH1tYz4D4d5DuJUaG33o+Mvdtyk6G7KXsPoHXUL+JGWcEQ6sRIuIapHMeRjWFHaIeRCiRSO92UOIQyUvDxuhf0+HMdzF95Id+Yuk3HniPi4f04aXfxvDstZNx5Drpc9NZDH/7npCl9RVF7cbJvLbsBRZ+upj6LerS99bzePOhmaUSBBaFLnVc+WXjWJK6ZPPf/zHg3ot58aenK2N2uXHWlT2Y+dSneN1erHYLF93em1oNkziyJ4XczDzeXvMSZkt4FBlOBsisJ/EnmRxfQcRNiKRvkGm3gX4QLJ0RcdMQSniThxarmTdXTOD7d34hMjqCy+7pyx+fLwtiYPD3ez1aubZc2Sk5HPzvMHNT3qvW9UyY2yKVREPVDAXMbVGsnZF6Onh3IeKnn5C8MMdFwKDoF6l7NXRNI75WLG+vCp+MUMixlVhE1FD/79JyhkGI6P2P0p0EQfnZ6TXwbjd0jS1VW/YvpWTryh14XB7antmKl/94ji9f/QFd07n6oUs5vDuFe7s95iebeu3PcTRu2/AoVz0FIKBaQ9d13E43FpuFcd9XvZaqEBaIvNkfgJVSGll31wKOXhVT3vkqQWYinQsRkdeX39jyjubdYfRyWbogYl9AmtqCfggRcT1gQ6ZeAfoRQ+IrbsqpTG25IP3/uRxuhBAMe+V2hr0SPmnBYBBC0PuGswIkG2988mo+HPM5HneIPr+C9yqi3IoKrnw3X0+dx2Ozqj4rKrVDxnPC3A4RcSsosUj3OoT9YjC1N3SY3X8ZpLpRw1Ci7qlym2oiCjKc/YdcQP8hF1T5eMJ6hhE4KPg96j4fEevRqgeKlJmWGW7IewOqIWAg9WxDktfUDGHpAfFvGWu7pSvY+qPnTPG1tgmwnmessaeCBuWHb8nqcE5bvjg8o8qHa9KuIUPGFmZOLx/aj18++MOfhAsFofiSDeVYYr1uL1+/MY97Jld9m4rb5WHjn1uIrxNH4zYNeHXJWObPXEjdZrW5Ymg/Fs9dzou3vo6qKtRukswbf43Haj8xMrXHHkXvax2JRFHrI2r9UuUjJ9SJ59bRhVU2vQZ05/0xs3E73OilPO+FoFxKSWAQ5q5bvInDu1Oo06TW0d9QCUgpwbMaI0DQEZH4hSFfix0ReRvSswmZfhP+1vSkrxFq3Sq1KdwQ5SEQ7Natm1yxYkXYjdjyz3YeOnuUX7s2JimaOk2TSdmThmpSeejt/9HhnDbsWr+HOk1rEZdctRJqUroNJuGsMUCm72hFAgQh3hP3BortokpYeHS8NXwmP0xfgFAEXS7swJi5Rq/57Ilfs/iL5Shmla1/b0fXJUIILv1fXx58s+p6a4UQK6WU3apsgCCoqvmauj+Nu08fQU56LkIRWCOsNGnXkMzDmbicHm568mouH3oRO9bsJiYxmtph4DAoDVJKg8gq+2nQdlbyakHmrP0WlNiqzSjo+V8bJGNCBaUOIukrhLChO+ZD3rsgrODdUFghYWqLkvR1ldlTk+ar2+nmvh5PsHP9HhBGL2GLzk3IzcwnOy2H8wb24r7XhrB3s8H0Xx2Bw10b9jDtkfdZ+XPlpLeCBRWadmjEO2vCJ/MZDNK9BplxKwbbtIpI+gah1jOO50wABHjWUrjJtKHUCZ/MWDBU95ytqvkqpeSFm6bw++ylgEFc1axTYzxOD+mHMmndowVPfTqc7LQcctJzaXZ6Y1S1atUMpHYAmTsNHMG5P8qOYEGFqp8bUjuMTB0AuEFqiIQZCEs3pLYfmfWsoc3uWU1hksSKSP65Sh3amjJfAb545TvefuQDwOj7b9iqHha7mcO706jTOImn5zyCNcLK4V1HaNqhUZVvbLPTcvjhnV+YNXp2hWTrChAqaPt93kdV+je4XR7u7/kEB3ceRvfqDH31Ni69qy952flMfeA99mzaT+qBdNL2Gy2W9mgbT33yED0vrTq52prkE+jOpZB5B8ZapIJSC5TaoO0zZOZjJ4KppREQNzWpctlqZ76LRXOW8cb9Mwr5NCqw5Qo1X9/4ezyndavaqkM9czi4fjOiGvYBBm+E1JA5r4J7KeAF72bf2SZE1P0Byepwoyrm63FRYdCwTX1/OZeu6WQeziLzcJb/9TFXTSQ2OYa8zHx0XefFn54OGwNrMAhhQdgvQdr6I9OHgGdpwSuUewbbB4Hj4yIHFIReeg9OZbF3y36+en2e/8b5Z94q0g9lsm7RRj4eOxdnngvVrCAUBXQNs9VEQp24KrWpJiE2OQZ7lI2c9FykLnHmOtn81zb/69Mf+4if3/+dvZv3o2s6D7x5F/1uq7psuBACYe0ByT+hZ78E+e9QsQAXYOkN7j8IrK6pvA5vaZDaEch9CXAaJuuHwP03UqkDWSON4wEyQIrRD34KZYJqVqnTrJYRMJBGlmjzX9v9r//03kIObD/E+sWG0kf/Oy/g3ilDqtSmJu0a8eL8p/l99lJeGDTFiM5XYLrWaVqL/BwHWUeKrKlVnBSVeg4yZ1IRYjgTOL5HRgxCZtxm6FgXv/+UuKo1qoahafuGLJ6r+NoSNLat2OF/beXPa3juusmsW7QRRVVo1a05E38dXaVBA6HWQ8Q+h24fBOnXYKyJFVFrEmDqCt6iLSpVK40rpdtoq5A5FKzlMu9dI2CQfgdou4LbUFzW8RRCol7zOtgiDXI13auze2MhsXB2WjbPXDmRA/8dQlEUohIimfbvpCol5otJjObGJ67msqEXcXurB8hOy0ECAlEulTFVVbjojt78OP1X/zGTWSUrNYdaDasmYCClZP6MBezfftDfLvHx2C+59K6+TBk6nSVfLsfj8iIUYbSDSYmuyQACxlM4CkxNKHxQakYbgu7jY9NSkRl3gjQZpK8ACbMR5pZVZo4twspFg8/nwlvO5d7uj7N99U4EwuiiLcd8FQKufPASvpryo/+YyayScSirlHdVHrp7JTjn4/ebHZ8jY0Yh8z+F/Pcp9GFNGG1rprBKkVcXjrkY9A/v/MI1SaU7p26Xh6yUbPJzHDjzXHw89otqsU0IAd71vt/Ky1fge49aByIfxJgoFkOGznpOWO0sioWfLmZol5EBN5nH5WVQk6F8//YvfrkZzaOTWD+emMQouvXrxMBHq1o+qmZgzR8buDppCCl7U0NuTDxOD7s37MWZ58Lt9PDeU59Wn4Gef30/VFB6VABxUzHmqxmwIexXhcW0YJCedcjUi0BPK3IwH5lxNzLrGQodWc0g4RLxYO6AiH2+ymyqSTi44zA3NbyHv374N+R8dTs9/PvrWlwONy6Hm+/e+glnfvXIUvmZvCs4XT0uD1OWjsNqt6CaVax2C1fe1z+sNhaF1FKN+eopKuWnI3MnG+WGsqAf2HDPUZJ9hKFvVZlNNQmOXAdDu47kg2c/RwvBmK15ddb8vgG304Mzz8XWlTvYWiSgUJUQ2nYQJio8YQHipxkZPUwYRMhVoNzhg5RuZNpAcMyhMPCrgGsh+pE+oO2hcI21gFLXsC12MkI5tQE7GnRd5/nrX+a5ayeHlvKTsGfzfpx5LiO4mZLNojlB+rarABmHsnDmu41Sblm+zVcBLrnrQtr2Og2TWcVit9CiSzOS6lfdZmfi4Dd459EP/cECg2g6lasSb2PDks14XD7FBquZOk2TiU2KYdBTV9O6R9VtaGsS9Nw3IbUvpbZcyxwgC2QuyDxk/qxqsU0IwY61u/1ztbzzVQLNOjTm8qEXoZpVzFYzMYnRtD87PEo6waDnzYL02wn8PHXk4S6Q/yOFqjsaqHUNVQTbxQZ59wmGY1phoGkabzzwnr9HEQIlMfyQ+PtdTWaVuNpVWx4TACUJtGwq5iDEISIGIpR4pPVs0P4Dy1kItXa4rfTjw+e+wOXT/y3QH5W6RPNorP1jQ8C5QyffxtlXV6Mueg3AlHvewVlEgshsMZXoxZZS+qXdgOollFTrgqcgilneKgMTImo4wnwaMukHcK8CS8cqVSGQebOKETGqGAuvBO9qAhZh+5UoMU9WmS01EbNGzybjSJa/2shkNeF1leQOKFrGZ7KYMFuq59GQ3DAJs82M2+EOvvYfBQ9MvYv6zevw4Y6prPhpDfVa1KnS6jOc80DPpXDzpeKPeHi3EjBfTaejJH1edbbUQPw0y6jMKggWqCYlaOBA8xZ+zrqmE51QTQRSaq0ijbQF+ZZyVAhEPYCixiKTfgbXQiOLbz0/zEYWgWcNaLspbI0pSsBTTF5XRCCSFyDEcVF4ekJgw9It/D1vVeF8DPHI1TyavwdbCEFMmAm8QyE6ISpg01XePvBu/TvTqmszXln0HMu/W4nb6abXgO5hJ28sQF5WHr99tjTg/i6wPzcjj9zMQqk6zePltWUvVHmLck2C1LMhdyqBEsBH8xPN1ZYNF0IQkxBF5lGUEEKhVoMkzru+FxcP6cN5A3txZE8qPS/pUrXKb7lvURgUKPpZukFbFXhu7CQUS6Ci2omEY1phIIQoQaqja5KImCBSWNLoZWzdsyX/m3RrNVmIISVnagtKPbBegqFTbwNTe4wMbCgooDZBZj2Dnv0CmJoj7FdXabAADLlKRTW+VovNQmSRz7Log8IWZcMaeYogprxQTIG3jMftDdB6LwqhCBq1rs+ozx6qBst8Y8aMAssZRj+a9VLAasi3qE2B0pQ5BIhEZO676FmPgbAhIq6ueslCta5hIwB2n8xpAYpGbFW/JNAplB2KSQm48b0uLyaLCVUNvvTH14ljzJcjUU1V2xNegMv+15feN5xFYr14ul/cmYgYOxHRduJqxWCNKF1JxhZpZek3//D89S+Tsi+NvreeV7XBAjA2jP7HptmQxCta2lkUSmLV2lIDoaoKepH5qnl1hCIw2wKftVKXCAGRsRHcNeFmGrSsHvIoYekOUcOM9dXc2cjGi0ggAsTRnGozaPvRM4aBeznCfhnC1rtqiQWVJIMk1vgF1IYUykYWg7CdChaUE0bPdJGAkW/q2qICP2ND+lBgjbDQ99bzOOvK7tViX3ytWB7/4H5qN0mmaYdGtOzaDFukFYvNTMJS2XYAAJCtSURBVMPW9fxJpWAwmVWiYiMYc9UkvnvrJ868ohvnX38WFlvVKXxZ7BbM1sI5aIu0Bt77RXxYrToDhTUGwb5vCYT6HM1g6YmIrD7C3nE/Pknjdg2o26wWZ17RDYvdgsVmplW35pjMof0SxaTQqE19Jtz6OjNHfUqbM1rR95bzqj5hpyZT+LlaCJmHFxGG5OIJjGNOevjrx4uYcMvrgUYpguSGiSTWjWf7vzv9Gdy4WrFM+OVpmnVoHOxS1QLp3Qe4kUoTyJ8JuZMJjNYFgwWsZ6PET6ty+1L3pzH2hlc5tOsIA0dcTlztOF66/U08xWR2hBD0v/MC/jf5ViKqQ6u8hhDGbFy+lYfOHlWCWCU6IYpmHRuzfulmNB8fh1AEkxY8Q8dz2x4ztmmppRrl/qYWSNciyLwfKE1GSRj/lDqI5N+q3G4pHcjMkUaJt/UCsF8JGUN8VQfF1ibLBRDzJIqp6kn5asp8PbI3lSFtHsJVrMXAbDXR4Zw2/Ltgnf9jForgwTfv4uIhfaotYFAcedn5HNp5hAat6nJoVwrDz3ma3IzcoFkxRVVAGFrh9igbH/z3RjUQ4kpkzkRDDs/UFqIfh4xbfS01xQIGpo7GfK2mjEJNIJFzOVzc2f5hDu08EnBcCGh3dmt2rttDXqZRkaSaVC4fehF3vDgI2zFiR5fSBd4dhrKS9CAzBh9FYamggsqOSPgAUcVqSQB6/hzIfd0IdsVMgKzHwLuREn6LUg+iH0OxV11LT1HUhPkqpeSpy8bzz7zATKKiKDTt2Ij8bAcHdxz2H+/evzMj37+PuGqqMCgOXTf4FWISo4mKi+CFm6bw94+r8HqC+7AFJHK2CCvDptxO/zuqXqVkze8beOXuaQhV4ZHp9zDvvd9Y+PEiP89ZAezRNm577gaueuCSavGvaopPoOe+7du3FIUCagMQMT5iPt98UBpBwgwU07Hbc+3bdhBFEdRpWouZoz7li8nflZgLxWGxW7jw5nMY/nbVBzqkdycy8xHDB4h6GGQW5EygJPeXAhGDIephFKXqn1dVMV+PecAA4OkrXuTv+avQi5UeWiMsfhmwADv6nc64H56ssrKo8kC6FiGznjaI2gI2OAWlqr6/SUlCqfVntdq2e9M+Xr7zLTb9tRUZomoyKj6SuSnvVflnWVMWW4CPnpvDxy/MxesOXLSsEVai4yNI3Z8RcLxO02SmrXqJyJiIsNtSXkjPJmTWU+DdRKFT6xdpLHKmgqi9CiGqPpjkt01PR2aN9klE6gQvk1MheRGKWrWkhzVpvi7/fgXPXje5RCuCNcJK/Ra12bF2T8BxW5SVt1ZOqrasbWlIPZDOlHve4Z/5q0st+42IsTN+3lO0PbOKKwyKQEoXMnuijzlfI2RpevwHKEVk+qoKNWEDBgZp7z1dHsXtCHS4zBYTjdo24L/VuwKOK6rC+Pmj6HJBh7DbUl5IPR+Z8zI4PqTk+lVUIcGGiHkCEXFj9dkmpdEClvs6hgZ7CKc76hGUqP9VuT01Zb7m5zi4rdX9ZBQh6gZjs51UP5GUfamBU0HAvVOGVCnXSlmh6zpfvvoDM578JKA1GAyyXK3Ixqzv4PMYOfO+arXvz2//4fX73iXtQHpIH/aMy7ry/LePV7ktNcUnkFIavCbedZR4ZokIHw9PsQCS7UpE7ITjQmb1j8//5PX7Z5BVrG1BNatIXfpVQRq3bcC761+pVtukZz0y60lfe2KICavUQ6n1e5XbUhXz9djvuIFn5o7g7om3EBkbuKFSTWrQEpSVv6xl1cL1JY4fCwjruYiE9w0yNqygNATbpWC7BojBaFuwg7VqZRQLsPCzJVxf/y4Gt7yP+3s+wcZloYMFYPSFHdmdUi221RQMevpanvz4IZIbJgUsoLqmBZUaOrQzhe+nVb2+bVkgzG0QCR/4WhSsQBxYLwPbAFCb42+5MXeslmCBdK9GT7kQ/cg5yNQrwfUzfg6DoNCMPvJTKDPOuKwbLy14hlbdmqEUKUF15buC9oc7c11Me3hWNVoYGkn1Enj265H0uKQzZqsJi93CBTedw3kDe9Hjks5GyarFhNVupUn7RlVuj9T2o6dejX64JzL1OnB8hJFJKGWRzf849GunUAINT6vPtH8nceYV3QIC2R63l4xDmViKtSfoms7E296objODQigRKLGjIHIYxrPfBNaLwdoPrFca7WGoRsmEpeqDSFLPQ0+/G/1wD2TatZA7CcilVMKz/Gok6a0BiIi28/aayVw+tB9qEX9V6pLU/WmYzMVKlCVMffC9kFn96oSiKFz78OU8/uEDWGxmzBYTXS7syDnXnkH/Oy/AYjOjmlSsERbOu65Xlduj6zqv3/8u1yQPYWjXkYy9/mVS94UOFgD889PqKrerJkEIgUj8ECLvB8ro4zm/9W2Cjz3OG9iL8fOeIjI2AovNTJP2DTlvoMFbYI0wyI9tkVZ633BWtdij532EfuRM9JSLkWk3+So0Spmw+gGkdIZ+/TjGcdGwZjKbuOahyxhw78W8fv8MFn68GF2X2CJttOzSjL/n/RtQAi51Seq+tFKuWL0QpiZQaxHo6aDUQgjDyZHafeD8wegjtF1e5XZkHMli8pA3Awj3ikI1KzRsXZ9d6/YW2i4goW58ldtWkyCE4JxrzuCsq3rw/du/8M6jHyB1iaKqnHF5V75+Y35AZB4M3fnjBUKJgqTvQT8CSgJCGD2JUs8Dx5eAgIjqYXCVGf8DmRHiVTOYmpeM1pqPfSbxREO7Xq2Z+vcE/v11LaOvnGD0gCuC868/i09e+LJEy9KB7YeOkaUloSgKz341kvRDmUTGRmCLMIJymqax8OMlZKZkc8Ggs4mIroYAV+Zj4N0ASNCKz1sTqC1A20khyRxgbl/ldtU0NDytPs99/Rj7th3ggTOewuV0oyiC3jedzffTfi5xfk5azjGwMjSU6AeRkbcCaoDagHT2A+82sPVBmJpWuR0y702fBrgHvJklT1Cb+OZxkey42rzK7appiK8VywNT72TICzfyQK+nOLI7FSGgU5/2bFq2lazUYvPTR354vOC8686k+8WdcDncxNcqbOvqN/h8Vi9cT9tep9Hx3LZVbsfiuX/x08zfceW7yA5yT8clx2C2mUnZW+j/xx6j9o4TGULYENH3IqPuQmYOB9dSQPdxssSDtxhZHzpS5la1YnGZ0bJLMz4/OJ3stBwS6yX476WBI65g8dy/qNe8drUQukvvf5AzEYP0MNie1ARKY9D/K3JMpZC368TCcREwKIDJbOKht+6mZ/8upB3MoMuFHVg8dzlul5vVC9f7gwaKqlQ9uVU5IYTFkFAsekytA5F3VJsNeZl5pfb23DL6OgY9dS1LvvqLyXcaMl8PT7+nSklsajIUReGKof1o2r4RO9buplPvdqxbvInu/U5n1cINhX3jArpeVPW9quWBEErJ+apEQuQt1WaDlNLo9woF8xmIhHeR3q2QcSfoORB1N4qlc7XZWNPQ5cKOTP37RVb/toGWXZuRtj+ds6/uweqF6wNKajv1Ob42uUIIEosFNlVVpe+t51WvIdo+Qla/KLUQSXOQugPSbzLOtfaplvLumooGLevxzrrJLPvmH2o1TsYeZcOR42TN7+vZv60wqNWobYNjaGVwCKVkIF7YegO9q88I7x5K9tIWwIpI+BCUJEN33b0STC0hfmr12VfDEBUbydS/xvP77D+x2i006dCIn2f9ztpFG9m2slD60x5tO2Y8MaEQEW0vEXRt3aNltcoVph1Mx+UIIU8pDEK8Vl2bM/XB95j33kLik2N56fcx1WZfTYMQFoh7DZzzQeYizWcY1QSYwft3kTMVhOn4CiRabBaS6gcSC9drXofrRw6oPiP0DEKvr0DMOJSIq9DzP4ecFwEzxL12XAULy4PjKmAAhmPYa0B3dF3n7o6PcOC/wwgBjdo0IGVvKq58F9c/diUNWtU71qYed6jfsq7BehskZiAUQa2GSQCcfVVPzr7qlJxiuNDhnDZ0OKcN4256lWXf/oPXoxEVF0l0fCRpBzLodWV3el9fPeVRJxKEEEillo//ozgUMDUwyufMp0GtxdVuX01F47YNady2IXMmf8sHYz7H7XBjsVlo0r4RuzfsoVnHJtw+tvp6q08omFqD+0Dw15S6gIKixkHyj9VpVY1GUr0ELh/aj1UL1/Fk/3G4XR4sNjMdzm3D+sWbSagbxxMfPXiszTw+YW4Prp+Cv6bEgbAjhIpImFmtZtVk2KPs9L/jAg7tOsLdHR/B5XBjsZnpfGFH1v6+AbPNzOg5I461mcclWnUNvSm1WM1Exxts/vdOGcK9U4ZUl1k1GkKoYL/UIHBNudColEYF0+ng3QJ4IfpxhBJ3jC09DmE+ndDtXcKnqgRKxECIGFhtZlUVjgsOg2DISsnmwH+H8Lg8uJ0e9mzcyxdHZjB1xQQ2Ld/Goxc+y851u4+1mccVhBC0OaNV0NekLpky7N0Axt5TCC/+/vFfXPluNI+Gx+nh2a9HMs/5BqPf3YvIutFQKTiFQNj6E1zqRwfHV0jX79Vs0MmDRV8sx5nnQtclCLjmoUv5JvsD2p51Go9f9Dzfvjn/WJt43EHYL8coKQwC73pk3jvVas/JhOXfrcDlcCN1iSvfTeO2DfjR9QlXPXAJE255jXdGfhig334KIKy9CSn/rKchMx+tVntOJqxfshkwODaceS6yU7P5wfExI94bxqzRn/HiLa+Rm5l3jK08vtCsY2N/y1lxuF0eHuk9pnoNOpng3QUyFyNj7gTvFkTtNZDwCTjno6ffifQeP621xwOEMIMI1VomIfNepB6q5fbEw3EbMIhJjCY6IRpFEagmlfot66KaVB7r+zyrF65j9cL1jOjzLJp2ykEoiqseCM28q5oU9m07WI3WnFxo1a05ZosJ4VMmrNusNiL7YXD9Cp7VyIz7kFqI7OTJCttlhHRo8YJnW3Vac1Kh47ltDCUajPaQFl2a8sGYOfw08ze2rtzB9Mc+YuUva46xlccXpLmrj+A2GFzgOT7IeGsi2p3VGqtvM2GNsNL+rDYs/fJvPnr+C7au3MG3b87ni5e/O8ZWHmdQGxhVMUHh9RF0nUJVoEXnpui6wb1jtVvoeG5b9m4+wKTb3mDL39v5Y84yf2voKRiwRVo568oewUu2JaTuSzsVFKwqqPUxguECMIO5HUgHZNwOnhXgXoLMOFXVUQJRg0p5UYBWc/Zcx11LQgFUk8prf47jo7FfYDKr3DL6OlwONzlpOX5N7tzMPJy5TiJjI4+tsccJ1i7ayMRbg7NFm60mFFVh8RfLOLD9IJfdcxGqenz10J3oGPPlo3z43ByyUrIZ+OgAouOj0A9vo1CiRkd69yHUU+00AFI7BBm3AO4gr5oAFendhsx5AxF5u8GxcAphw5BxNxEVH8l/q3fT/44+tOjUlLcemoXbJ2PrdnrYuX4vXfseX/wbxwpSeiD9OpDpQV5VMeasBT17AiJysMFhcwphw7nXnonL4Wb59yvp1u90+tx0NjNHfYrTxxXjynez+e/tx9jK4wsy894QQQEBWEBthp71LCJiIMLcprrNq9Fo0q4hz3/7OD9O/5Um7Rtx/cgB/PntP37/1ev2BvAanALMHPUpi79cTjC5d4vNTINW9XjjgffoNaA73ft1qn4DazCEEgWJnyFzp4MSi4i6D6mngizo0dd9HD6nUADp/AlyJoV41QoiApn/KdLcGWG/6oTlLijAcRswAKjdOJlHpg8FjAzY6CsnGuWzPkgpObQrheann9pIAKxbtAmXs8jmS4CiCMxWMy6HG4/Ly7wZC7FGWEnZl86d40uLjJ1CeREZE8E9Lw32/67nTAGZWeQMj2/B7VHdph2f8GyEEo6BwNh8aYAXnF8DFqRnBSJhVjUbWLOhmlRufPxq/++L5i5j/ZJN/t91TWfXqbavQugpoGdSUjKpICvjAtd8QEE6v4Pk34ySxVMIG/rech59bzGILnes3cXcV78P4KDct+VUBVcA3CsoScplBGPBDZ4/wbMU6fwKkuYh1LrVb2MNRuc+Hejcx1D1ycnIZeqD7/kDsgCZKVlomnYqeePDXz/8i9tRZL4KUFUFi82CI8/JjrW72bF2N7+8/zvjfnyS089rd+yMrYEQphaIuAkASKlD5l0EJnQEUjtwKunlg3QtIUARCShUQXAYPoNjNji+RcocROTgkhc5gXBctSQ4ch288r+3GX7u0yz9upCh8+COw9zT5VGWf7ci4HxrhOWUg1AEifXjAwm8Jeia0e9Z9Lgr38WSr/6qdvtqGnRd54NnP+ehc0YxZ/K3/qi41LPRM+6DvKmU+EK0UxmFAki1KeAofhSjIqPo5+YG9z/VZldNxi8f/sFD5zzNW8Nn4vZJKXo9XqY98j7PX/dyQEAWYP9xJK94zKEkU1gtVBRakePS+F3PQGqn+GIqizV/bGBEnzG8MGgKmSmGioeUkm/f+omhXUcGbi6A1APBqj9OYoioIAe9GE6uxL/OSg3pWV1tZtVU7Nt6gFGXj+fJS19g96bCbOyKn9cwqMlQ0g9kBpyveXTysvKr2crjF7FJ0YEHJGheHUeeM9CHdbr5Z15x6b9TKC+knoGeOQI97Rak68/C456tyJQLg8gr2sC7l1PwQakV5KAG5BPowzrAOa96bKpCHFcVBlOGTmfRF8vxuDxs/nsbd024hcuGXsRDZ48i/VBmifPNFjMdzzO0YU9FaSGhTjwWuyUggi0U4ZejLIpDOw6zbvEmOpxzqgyxovjmjXl8PukbXPlutq74j8O7Urhj/E1Y3feBe3mQd9gQtosAkFIz2GlPYgglAomJ4Juw4tDQ8z5Bibypqs2qsVi7aCNThk7Hle9iy4rt7Nm0nxEz7+XLV7/nq9dKsvqbrWb633kBYKyviqKc8CV1lYEQZiQWSga5BCWlFr2Q+wbEvVg9xtVApB3M4KlLx+PKd6GYFLau3M5zXz/OrvV7eGv4LHQt8DM3WUxcePO5AP7ecUU5rnIi1Q+lNmjF9cELKriKwgU5U5HWfobk7imUG1JKHj7vGTKPZCGlZP2STYz74UliEqIYPeBFPK7A55yiCk7r0Zzo+CiklOi6ftL7sI3a1Gf1bxsCjqkmFV3XA9sUJPzwzi9c/9iVfuWEUyg/ZOZDvmSMF5nxLzJmLFgvhPQbQeaUfIMSaXAbcMqHBRCm+j6foGgVRrD1FfCsRXq2IszBielPBBxXT4btq3biKch6uTXeffxjnrx4HOmHM0ucW69FHd5ZOxldl9ze+kH6W27gkd7PhNZwPQnQuG0DImMjsEZYsNiNYMpZV/bAZCl5U2tenT/mLDsGVtYcbF+1y6jeADwuLz+88wv39hiJdK8McrYVEr4AU2v09MHIw23RU/oaffwnKaSIAVMrjPItK6htwdoPiA5ytg6OL6rXwBqG3Rv3+VtAvC4v//66ljvbD2fBx4vRtWJl9gLGfDmCvrecx+v3v8sltpu4JmkIW/45eXvEpdTB2gewAHZQGoD1IuP/kmf72hNOoaI4vOsIqmq4KLpXZ//WQwzr9hifv/QtXnfJIOPdE25m2Ku388M7v3BpxCAui7qZ32YvrW6zjy/Y+mGQykYCscb8NYXgJNF2GyW0p1AhuBxuslKz/RtbR46TJ/qN5e0RH+AJMl8vuetCJv76DGt+38CVcYO5xHYTM5/+tLrNPq7Q5YKOmK1mbFE2rBEWevTvTPeLTw/Sugi6Ltn81ylS5ErBW5RjywPZoyHzQZBB1DvUzoik70BPQz9yruHDZgxDypOXhFKa2oKwAXbACuZeYL2A4EpKOpzgql/HVcDgkrsvxGq3+H/3uDys+X1DyeQNcOC/Q0RE25l42xvs33YQKWHz39v5edbv1WfwMUZ2Wg5jrpnEXR0f5qNxXzC41f1kHsnC4/Yy6Klrmfzbs3S5oAMEyQpaI6y07BxKDuQUyoILbzk3YL56PRqpew+Rm1W8xxmMEtA8ZM5rvoiuBG0fMueV6jL3mENKD3rWs+gp/dGzJ8CRs8G7CfCCtQ8i6StE5O0E17W1Gprip1BhdL+4E6pJ9VcJ6LrEkeMk7WAQ2R8Juzfs4485f/Lj9AXomk5ORi6ThkytZquPLfS8Gegpl6BnjESmXgquHwENlPqQNB8ROxH0YG1xKqihNcVP4ehodnoTohIiUUyFboor38XWEEGr9Uu3cHDnYV679128bi8ep4dJt009qZSUpPNX9NTL0dPvRE+/F/JexVhPVUj6DiV+GugheEmEDZRQCiCncDTYIqx06t0es6WwcNflcPPP/NVBfdiVP69B13SeveYl8nMc6JrOFy9/f1IpWW37dwcP9HqKB3o9xbQR7/PstZPxerxoHo3x80Yx7ocncTs9weIFaF6NBq1O9dJXCrarAFuRAy7wLKEkTw+grUdiR2Y8APphQIL7T3D9Uj22HgeQ2iFjbU29HD3nTUi7yleJ4YGYp1ESZ4HpNEL7sCdudQEcZwGDqx+4lGfmjsDi24QJIYJLtANIuDJhMP/+stYf0fW6vUEjuTUVk+98i7++X8mu9Xt5f/RsNI+G1CW6V2fhp4sByDiSibdYKZw9ysatYwZy0W3nHwOraw469+nAq0vHktwwEaEYE1XqOqopWMAASL8B8t+hMKKrGbI1Jwlk3gxwzAXtP8ifCeTg7/l2LUAIgdTzMPq/ikKBiBsQMU9Wu801CXWa1OLtNS/RrlcrTD6nVtf0oM4swDsjP2Tcja8GZHOL94zXZEjXIsh9DbTt4PrOmLd+joKdCJmOlA5KfoDCCIDFv139Rtcg2CKsTPt3EhfcdA5mqzFfFVUJunkAWPTFMm5rdX9AtUxp87umQWr7kZkPg3cLuJeA+xeMP14H8hDaZkPpQw9C0mXqiEj4BCEsJS98CmXG2O8f56ZR1/jXV9WkoqjB3eyDO44wIO5WcjMLs7lSl2iek8OH1TSNkX2fY9PyrWxavpW5L3+PlBKpSzwuD+uXGOoeGUeyAt8ooG7z2oz5ciR1m9U+BpbXHIjoERAzjkJpa4XQ20IPHOkM2iYKuU88IE+O+QogM+831lbvliLBWB/vlsPX1hlMOl3EQcyTCOv51WVqleC4ChgAdL+4M1OWjOX089vR5cIOJNdPRFGCRw1ksR5GXdP9Os0nA/ZuOYDX44tkFXOKEmrH4fV4+ej5uQHHFVWhW79ODBxxxUndjxwutOjUlNf+HMeZl3ej3Vmn8fzsOCIiQzGjB/FcxckzX/H+Bzh9vxQvgfe1IWQ9XPJ9agOUmKcQwlbytVMoF+o0qcUL80fR99bzaNWtOb0GdA+okimBYlO2YON2UkDbC7JgngbJGChxkHkvJbMxVkTsRISaVLX2nQSIjo9ixHvDuP6xq2jVtRnnXncGZlvoOSiLfRUmiymoRFuNhHYI/D3FxeekBmoDZM7LQG6x18yI2OcR5pZVb2MNh9li5uZR1/Lw9Hto1b05va7sXuqaqXsDvyevx+tPmNV0uPLdOHJCJ0zqNq/F8h9WsnPtnoDjVruVW0ZfR7eLTsn9VhZCCJSIyw0FKnMXsJwDIobQmdriz0EPUkRUrZHHE7x7CVp9AaDUQdcywTm32AtmsF+OEnF9FRtX9Tguvb8WnZvy0sIxAGSn5zD/3YWsXbyRgzsOs3fLgaAkfgXYs+nk0Qm9ZvilvDX8fRTVuLkduYVMsod3p7Jn074Sn1W7s1rz4Ft3VbepNRpJ9RN59quRAEjpBsdcpOtvQxHB+x+BhCjF4N1VLTYeDxARNyCdP4NQfFFpN4WR6nyDz0EWyyYo9RHx06rb1BoNe6SNh9+5BzCIuhbNWcaKn9ewc/0e9m7aT34pTlzq/pOIhd56AYhXAZNPi1ojwGHybAJP8R7aSET8GwjllNRvuKAoCoPHDGTwmIEArP5tPcu+XcGWFdvZt/UAWSlByLl80DWNnIw84mvFVpe5xw7m9gZrt34E/H3FBQFagXSvhhL8OipEP44wnyI/DieKyn/uXL+H3z5dwsblWzmw/RApe4uTUBbCHmXjwPZD1G1a8zPnEdF2elzShdUL1yOlRDWpAYoRa37fSES0vcT7Lr3rAi4YdE51mlrjISzdEYmfASC1w8j8L8Gzwgiaa7sJXaalILSd1WbnMUfkLZD7js+HVTCqZH3wbgPP+pLvsZyDiAqSCDsBcdxVGBRHTEI0A0cO4Lbnb+DQrpSQwQLVrGCNsHDONWdUs4XHDpfe1ZfJvz/LiBnDuOnJqwPu6SN7U0g/nIXZVpjtjk2K4eXfnyU2KeYYWHtyQAgLIuJGROwzoO0jdLBABexgv6YarTu2EJauiKRvELEvQOykYq+6wLUAlKI9iSokfYswtahOM08qCCE4b2AvHp5+D3lZ+ThySwYLhDAqk6wRFs67rtcxsPLYQKh1EEnzjPkaP5NAp0lD5n8C1h5F3wEJMxHWs6rZ0pMLnXq3Z+grt5FUP4HcjJKSdEIRKKrAYrfQpH0j4pJPjuedEFZE4leI2BcRCTMJJN6ShqNr60tA9jD6sVPKM1WMpu0bMWTcTfTo34XMI9klXheKQCgCs9WMxWbmtO4nz/PumbkjGDX7YZ7+/BEatKob8NqP7/5K9/6dAlo6zr3uTIa+cvsp9ZMqhFBro0QPRUTeAdpBQgcLTEaFrOXc6jTvmEKJuheR8B4i9kWwXx34orYJhJ2APLzSGCVhWo1JIJwwd93mv7Yj9ZKlIKpJwWwzU79FXV5dMpb2Z7U+BtZVH9xOd0DP22ndmnPutWeSmxnoOOmapEHLukxZMpaufTty9jVnMG118U3aKVQZvDsJXrqkABajBD9uCkrkDdVsWPVCSg9Sz/CXBQtTE4StPwKdEg6t2sCIclv7GWyzCV+gKMEUE04h3HA53BzYfqhkf7gA1axiMqvcPWkwD7199zGxr7qg6zpZqdl+WT6hJhnzVU2kBPOxqRki9iWw3QDmrhD3FoqlU7XbfLJi7R8b0bwlW0VUk4Kiqlx1f39e/uO5Gt16Z/R8ZxjcBBhStcLWzygvLi7/aapvbAIi7wdTF4h6CiXytmq3+WTFv7+s8auAFYWqKJjMJnpd2Z131kwmKq5mbC5CIS8rz69mpqoqPfp3pkf/ziV82OiEKDqd355HZw6j/Vmtufbhy3nioweOhcknJzyrMMi6i0MFLGBqh0j8ssa3MknpQOqFbVzC0tVYY2VJsmhhbulr7+gJtisQSXOq0dKqx3HZkhAM7c9ujQgSVdS8OppXZ8+m/TRp1/AYWFZ9+PPbfxh3w6vomsbFQ/rwwJt3IYTA5XDhyHEYerXSIHn636RbqdOkFnWa1OLFn54+1qaffDC1IPjtpQNukCaEWquajapeSM8WZPrNIPPBfDokzEIIC1LqSO0ABtGODkiwXYmwGiWcIv71Y2n2SQlbhJUm7Ruyc+2eEnrXXreG1a5itZtrdGYnKzWbB3o9xZE9qSTWjee1ZeNIqGOwxkvPNhCxINMACab/t3fe4VUU3x9+Z/fW9ELvvYpIEwFRQFQQUBRUBMGGXRRsWL+ACnb0pygWFKUoCIqIgiAKWOhI77339HLrzu+PvbnJzU0QFBJC5n2ePORumZ1dTubOnjnncy5CRN5jRhTFvVS8HS+ltOrSjF8n/44/fx64x3QiZGW4cFzAmkZSepHJA8Gz0qxwkDABEaiRjnedWaXDvxMwQCsLsW8hhIaIfgSiHynWvpdG2lzfknW/b8KbT4Ta5/ODz8/BbYeJLx9XPJ0rIsY+/gU/fPAzmq7x9IRBXNm7DQBH9hyjbNVEDu08gpQSu9PGq3OeB6Dz7VfS+fYri7PbpRNba8yS1/mdBoHUPN82hOXCrgRkZH1rlppEIiPvR4t+DABppGNGaumYc1gNYl9DaDFguxSROLH4On0OKTGzvxqNqzJ64Qiu6teeei1qhe0vUzkBi7XE+D/+Fe/e/zEelwef188vExcF9RrevPMD5nz2K36fH4uu8/GaN7lpcLdi7m3pRmjRiMQZ4OwLlosILV0DpghVxYJOvWCQ6a8FNAm84N0Ernnm9szxkPk+5gqYBjGj0eJeL86uKoDRC0dw23M3Uv/SOsTmC+P2+fxUb1SlmHpWNHz//hyO7j2Oz+PjxMGTTHt7FgDSvQRSnwZ5ArCA8160Mt8pRfliZsgn9/PA23dw0eUNqFi7fEikvaZpF37ZYPdC8K4FvCDTkWmvACD9h5DJA8C/HdDA2hZR9g80PbE4e1vquf6hLjz9xSO0uLYp1RpVQbeETr/rtbywX74O7z7Kjx/Nw+f143F5efd+s4qMz+vj0TbPs3bBBoQQlKtahu9OfkHdZuHzfEXRIWwtEQmfgb0L6A0Je13UL+zxVUoJacMAL+CDzE+QhqnhJJMfANdPmM4TO5T5Dc15fTH2tmgoMQ4DgPqt6vDMxEe557V+Ids1TfDitCd4484xPNt1JBsXby2mHp4b0k6ms/6PzaGhldIs2QOw7o/NQa+11+Pjq5HfFUc3FfkQliposcMh7n1CtQwExLyCzPgE4+QAjOyfiqmH5wYps5GelZjlIwM2K8hV8HYtzlNO0geZ7yHzy5sripzI2Ejuevk2Ri8cgTs7VHuj56CubFqylSc7DWfK6zOCIfsXAn6/n83LtpORkpk7xgqBnpM7611Lbni3F7InB1YYFMWJxWqh56DreOf3l7E5bCGpthe1b0BsmRievvolPnjsc1xZBYXWllykdwvSn1fgOWe1C/BuzVMuwgfeJeDfh6J4EULQ4dZ2vDbnBRq2rhsSGZNYKZ5r7riS57uNYlS//+Pk4fBw55LM4V1H2bF6d0g2fI42QfLRVNKS0pDSrHR2bN8J1i4oQDxOUeQI26Vo8e9BxF2EpthaIXYURspgjKT7kd4txdXFc4L0H0d6VhD+ihyYH3jXklse3QVZE4quc8VIiVuSP7b/BMNvDM3Fv7Rbcz59eiKbl27H7/Oz4c/NTNz1AXFlS74y8r4tB3n0sudASPw+M1TL6/HR89HrqFKvEicOniQlX53a36cv5ekvvVhthZX3UxQVUmZD8h2EDLaiPPg2QNYUwA2pa5B6ZcQFkP8sjTTkyRvASDGV5UUMyHSwXQr2q80qEr7VoSf5D4FvC1gbFUufFblIKXmlzzu4MlzBbZquUbd5Ld6572PcWW62LN9BVHwU3e+7uhh7enbw+/08c80rbFmxA8PnJ7ZMNEmHU6hSryK3PHUDADJ7Tr6zvOD6BSJuCm9QUeRMf+dH9m7cH/wsNEHvJ65nZJ/RuLM8bPxrC9mZLp4c91Ax9vLsYaSNCnx3AFo8SBeIeETMMACkexGhYcQSmfmlKcSrKHZWzF3D3C8WBD8LIbj9fzfzbNeRZKe70HWNfZsP8NHfF4bm1PxJi3jn/k/QdY2ouEhST6RhtVkY+uUgANb/uRm/N9QBPf7FKbTq0qw4uqvIh/TtgPTnQzc6b4HUIYEKCgYyaRWU+/OCKH0tPWuRyXdgOgssgA0wIPoJhBaP4d1GmJh59lcQM7TI+1rUlKgIA4CJL03DlekK2Zad4WLr8h1BASTDkBzdc7zQNpKPpXJkz7ESUZ951ti5ZKZnkZmajTvLTdeBV9Htvs7sXLuHVb+s5YsXp4RVjtAtGrpFx+/zF6h6rihCsn8w62OH4AH3AnIndT7wbSu0CWmkI317kDJc4Ou8w/0b+JNBZgIe0GpC5CMgvcjsGcjsuYTXAfeCiDa1DYyMEvF3eaGydcUO/p6/PnSjgMUzV+AOrNK6s9xsXbGj0Dbc2W4ObDuEpwCBr/ONPRv2s2X5dlwZLjwuL+4sD49/9iCJlRKY8d5s/K7tpvpxCH6kiAkIzmWo6JhiJDvTxWfPTArZJg3JpiVbcWeZkzqPy8vWZYXbq9/n58D2w6csJ3q+IKUPsiZilkt0gXECYt8Fa2Nk1kSzDnj21+EnClM8VhqZZhuKYmP0wLEh0TBSSo7vP4kr0xxf/X5Tk6swpJQc3n2U1BPhFRfOR77431Q82R6yM1y4Ml0M+fh+WnVpxrwvF3B491HGPjY+7JyccorubHeJ+B65kJFpr2OG5efBSAd/HmFv6QKj8HKh0n/ULJtdApCZn5q6WzID8EDkA+C4HtxLzdK0gdSvUExHiZRec5HwAqXERRhommbW+crzUnF411G8ntwvQa/LS5kqicz9YgFWu5XW3ZoTGRMBmKVaxjz6OQK48pa2PDX+4fNaRTmxYjxWmwWv24eUkp8++SWYfvD3L2tpcU3TsHP8PoN1izYxrOcbuLPdXHlLO56ZOOi8vs8LF42Q5FoAmQL+vPXsfUhLPcj+yRxs7O3RdLMOs/SsMIWtpARLXUj8+vzOndYSCYmm8K+HzDXm754lYL+mgJMMpH8/JPU1v3QsDSFhIkKLKIIOK/IiNI38w4TVZmH57L9DtlWrX5nlc1ZzbN9xLr6yMVXrV0IIwZE9xxjU+llc2R4iY5yMWf4aZSolFOEdnBkxidEY/lx7zUjNZPQ9Y5FS8vf8daQcXsuglwShpaUMMJKQJ3uDb7Np84lTEHrlIu+/AvIbrD3CxsKpf4Vsq1SnApuXbWfnmt3UalqD+q1qo+s62ZkuHmv7PId2HkXTBW/OH3ael7XTQUSYUVsAeCH1MYL26VqK+X2Tz+nqO4aR8qSZdyscED8OYWtRdN1W5FLANGzl3DUhCz/x5WI4sO0QaxduonyNMjTt0BirzYqUkpdveZtls1eDlDzx2YN0uq19EXb+zIkvH8fRvcdBQna6i3fu+zg45i6fsxpnZLgwafKxVL55ayafP/81QggGj72Pa+/qWNRdVwAFGqwvvxNdIqUFmTkNtGiE/Yrg/M3I+BAyPjSPirgDLeapc9zf/4hWDvPV2Ad4IHMsOQ4TmfQHWMLfuZBZSPdCZPIgwIeM6I8W81zR9bmIEGeymteyZUu5cuXKc9idf+bEwZM82uZ5jh8wvVk2p42IWCcpR3LD8i02Hd2iB1cYNF3jmUmP0vHWdlwf25/sdFfw3E/XvU2l2hWK/kZOE4/Lw0Mth7J304EC92sWDcMXvsLliLQHPdaOKAevznm+WEtOCiFWSSlbFuU1zwd7ldKNTLoDvDkvXDYQZUHmW0EQ5UAey/kAkfehRT+BcbK3qXgNQAQi7g2Eo6CX7vMDKSUy+VHwzC3kCI0Cy02KxIACPYADETMUEdEv/LgiovTaq+Sd+z9mzme/mjopukZUQhSpx0NXs2pdXJ3dG/YFJ7ktu1zCK7Oe4aPHv+SHD37GMCS6RaPPMzdy50vnd+nQaaNn8cmTBecgCk0wa9d6rLZ80T2iXEAEMaCQ7OiBFle8IcRFbbPng70CfP/BHD58bHzQFvN+9+XQpH0DNvy5JbjOULF2ecaufJ3FM1fy3sOfBo9vdlUT3vjlf0Xa/zPFcC+H5P4UXh/dgRmBkJc4II3g2KvXRiubP9WmaCmt9vr3/HW80OPV4MJPTpppXsdltUZV2L/lYNCmI2IiGLNsFB6Xl8GXvxC017hyMUw78lnR38QZcHjXUe5t8niYLk4OVocVryt0Bdti1/F7jGC0ocVm4aesycVapafUzgl8u5EnbzUXugBzfLECeXV8ojHHnJz/Rwsi/lOwXYo8ejGmOGBge7nlCC2qKLr+r5BGBvLEdWAUFhGR40zIj5Xc+3cgysxEWIpPGPJc2GuJizAoUzmRyXvHsmP1bpbMWkml2hUYMyh0wJSSoLMATCGV9x76lI63tsPutAUdBkiJzXl+rtau+Hk1O9fupXW35rTqcgl7Nx8ocH6gCYFms+DzhBpwyIRJhXgXG0LYEYlTMHwHIHsWQotEZs8CX16HgZbHWQAgIfNzZORdICIJvmQLAp/PP6R3PbiXgLUpwnkN0rOQgmv4GpjiXPlewGTecDZlr8WFEILHP3mAga/145cJi3Bnezh5KIkfPgh1AO1atzfk87pFm1j/+2ac0U40i47h8aFZdCJinEXZ/dPmyJ5j/D5tCeVrlKPlNU0ZX8CkFczwdqEV4OAK+XuFAldhFEVCz4e70vWeq1jw9Z8c23eCag2rMLLPOyHHrP8jVJTr2N4TzB2/kLJVcysHaLp23tqrNNIge4YZHeC4ngKjCILkdxYApJyzvinOjOadL2ZWxiSWzV7N9pU7adqhEU9dFVqadV+++V5WWhZfDpvKnS/fhpEnEsEReX7mjPu8Pn6ZsIjsdBedB1xBYuUEDu0o+AUsJ5U45Hx3CUi/LCUIS00otwzpXQ3uPxHW+siUIfmOyiJ0TudDpg1DlJmL+ZqZs08Dcf69dkopwT0PfPvAcS3YmoNrdiFHaxS88JV3/iC5EOcE59//3GkghKBu81rUbV6Lw7uO4soK/YL0e8MHG4/Lw+t3vE+Xuzsx+9P5uLO9DHyt73kZLjvn81/54NHx+Dw+Jr8ynRHfP8300T8WeKyma0REO0k5Xng+W7uel9K4bf1z1V3FaaBZqkD0g2a+c/ob+fY6gcx823zIlBfA0gx8B0xvp+N6sLUtoh6fPtKzFpnUH3PAtELs64Q5BII4QKsIxu7CG9SrgVMJyhUnMQnR9BrcHYCBTR4P2RcZF0lmSqi9+rw+Jr00jUbt6lP74ursXLuXxm3rc/1DXYqsz6dL0pFkHmj2FO4sNxabhV5DuhObGM2Jg0lhx9qdNtataEXzNiso9AVNRCMC9ZkVxYPdYaPLXZ0AeOueD0P22Rw2PG5PyH+fYRjMm7iIFp2bcEnHi1g5by2VapfnoXfvKspunxZS+sz0F/8hQDMFN20dwPNbAUdbQasExn4KjOQCwIKIHXnO+qv4Z3Rdp22PlrTt0ZKfPvklJMtWCNBtethL89blO5nx3mw6334F8yf9TmRMBM99NbjoO38avHLrO6yctwbDbzDjvdn0eqIHHwwKj4QQmiAi2okrw4WvgHl7DkM+vr9YowtKO0IIhK052JojPWsJ/y4sYKzxJyNTX4CI/qZIq5AQ8/J5KYwoM8dC5semUHfmWFMX5pQOgwjCtbjyENEPYalx1vtZ3JRIh0FestKzsdqs+L25q5n5JA4A8GR7mT/xd6x2Kz0HdeG+NwYUcU9PnwVf/xUUGNMtGrvX7w87pt1NlxIdG0mnfu35e/46prz2fYFtxZWL5ZmJj57L7irOCD/hL9MFrQhJ8MwHzwKwtkQr92sR9O3fId2/Y0YTSMBvemqFM0+eLWBpYmow2NoANkh7htxSdXnRIWEKQpyfK32lEXc+kVl3Vri9Gj6DtYs2se73TSRWSmBm6pdmqbvzkE1LtiGlxOf14/P6WfjNYspVKxPiMEisFE/La5pSrVFVLul6EaTcQMERM0DCV0q/4DwiMzXUmWUYRtj8VhqSnat3s3P1bpxRDr7Y+h7lq5ctwl6eAf5DAeHcQNSk5y+IvD+fw8AKjp6gxyMi70cea03uJD5fNEL0y+bkX3FekJWWjWbRgwtdQtMKXGE/sucYP3zwMzaHlVd+fJZmnZoUdVdPm+Vz/g6mXKScSMNq1cOO6XZfZ3SLzs1PXs+zXV7hwLbDgDnnzVtysnP/K7jmjg5F0m/FaSAzzEgnmTPOFhbtlA6ubwE7RA9Bi7y76Pp4pmT/lKfUtwT/AcLuy94TNCvCeQsy60twFbyIi1YLLeaZc9vfYqLEu+xqNqlGs6uaYHPmlhA8VQS+1+3lr+9XFEHP/j2N2zXAHmFOtoUmmPlBqKcrpkw0lWqVp8s9V9GsUxPqNq+FI8IUjrFH2Gh57SXEV4ijfqvafLL2rSLvv6JwhLBC5INAXqGfU4Xf+cG74ryuHCCsF5GjEgtO8O4MdRZgA8slCEcntIgbELa65A7ENrA2B60C6DUhYRqaHl2k/VecmvveugOb04bQzBA7n6dwe5USMlOzOLzraFF174yp2aRacEJqc1hxRNjZvGx7cL/QBM2uakLDy+rRa0g3dFsFEDnfLxpolUGvYUbKxL6DZq1b9DehKJTbX7yZiBgnlsBLSv50vfxIKdm4eGtRdO3foZcHYcecwFpAVIDMT/McIMDWDizVEZEPIrRocywl8JImnKBfBFoZiHwMLbJX0d+DolCuvuNKEirEYXOYY0xeLYOC8Li8rPh59SmPKW5qNqmGxaojhLmA9+nTeSqZCKh/aR3iysdy27M3UqFGOepfWger3bx/i9VC0w6NiSsXQ+f+V/Dk5xdGOdQLBtulYKlP7hz2n+ambnAVpml1nmBrRvB+pA8yxhJyX1pFsJRDRNyOsDUFazPMyGDMf23tTfFj66WQOL1o+16ElNgIA3e2m+2rdlGuellGzHiavZsO8HCrZ/C4ChZWycFis9DkioZF1Mt/x+0v9sJmt7Duj80c3nWUgwHPKwACXJkupr01ix8+mMujY++j5bVNueKWNqyat5ZmnZrw5PiH0PVwj66i+JDSD94NoEWhRT+KjOhtiiH69/7DmRpY6p/XFS6EoyMyZoTpcZVu8C4LP8g1Eemahoy8D+HsCVEPQ9Ykc2Ib9yGafv6K4JRWdq/fi9fj4/IbL2Xyng95e+BHrPh5dYEpX3mxWHXKna+rtUDlOhUZ+eOzfPvOLIRFY/GMUAey1WZh/qTf+ePbpaz7fRO3PXsT1Wq9CumvgYiC+DFolurF1HtFYRzefZSkwynUa1mLr/Z9xDdvzmT66B/xFCK2loOUkjrNik+c6p8Qwg6JU5Dp7xGM4ArBCZ4/wbMY6ZoDsa9A7BuQ+iRID8S+jGY//1LZSjvJR1M4sO0wtZpW54tt77Pom8X834OfBqNLC8PmtNG4bfEJWJ8Oo2Y/z+fPf03SkWRWzF2DP4+T2RFpZ/e6vWxftYsfP/qFYdOf4O5R/Ti04wgnDiRx23M30uOBa4ux94qCkEaGWR1Br4FI+ArpXQNJAwhGPhWKDWyXFUEP/z0i5n9IkQC+jeDdAjLvgocORjJkfoLMnIiMewPs14FnKXjXgr0LIub583qOfrYoMQ6DvZsPMHPMHBIqxnPdvZ0Z3O4FUo+n4ff5Gfbtk7Tq0oznpwzm7Xs+JO1kwbkliZXjuXpAB/q9cP562F1Zbia9PI3v358TItwYRJrpFQDubA/v3P8RSDPHyOv28se3S+lyTyeaXtm4iHuuyIs0kpAZnwIGRNwDaU+Ddw1IAxn1KFrUQGTs+5DyEBgFV8CAKHB0h+hBRdjzM0NKA5k5GTI/zCdcmJccMRgXZI4x88WQgA+MNHBNh8g7i6S/ioLxuDxMHz2L4weSuOHhLvwyYREzP5iDEILLurfg+a+H8Pin9/NC91fZtmpXwQKsFo32vS6j3/O9cJ6nYlwAf85YxmfPTebA1sMF7jf8Zgi7O8vDb1//yV/fL6fTTScY/MYhwAYZ70OcitwqTqSUzB43n63Ld9Chz+WkHEth9MCP0CwaFWuW5/2lo7j9xd7sXreX5T+vKdjJJaDF1RfT+/EeVGtw/qaUSM9aZNqr4Pu7kCOycn/1bUSe7Etu6psG6SORth9LxYT2fGbpj6v4a+Zyml7ZmKoNKvFUpxEITWC1W/no7ze4uv+V7N6wj5lj5gTnePmp36o23e6/hnY9Ly3i3p8+h3cf5eMnJrD4hxUhpSJzcGXkOkRSj6fxXNdRGFIiDQOfx8/nz31Nxz6XExV3fgo8lxakdwMyayro1c15aNJNIF2AgYj/As3WHCPmJUh7hYLz+QVQFSJvgsj7irbzZ4A00pBpo8E1jVDhwhzyphFnQ8qT5IoauiH7G4joDdbz24l3NigRDoO0pHQea/s8mWlZ2OxWFs9cQfKxVFwZZi7thOHfEFMmhjfuGIM7y43QRIED1cmDyUx5dQbzvljAs5Me4/sxZlmh+97of96UVhzW83X+nr/+lMfo1tx8N587NNzS4/KybtEm5TAoRqSUyJN9AnlQgGsOGCkEtQoyP0A6r4eU+8EIF1rLJQNcU8A1EyPuXXDPBf9xRNSDCFuRVvcpFJnxnuksOCUauQOuQahATja4FyqHQTHz+oD3WfrjKrxuL79N/oPsTFdwDP3r++Uc3XuMUf3eY/f6fQgEsgCPgeEzWDR1MX98u5RHxwzk8K6jbF25k673dDpvaoUvm72Kl25+C3mKqF9/3pDggONg3pRo7nlOIzrObeaQK4qVb976gYkjpuHOcvPbV38SnRAdLNt2ePdR1izcyJ/fLWPF3LWFh3hLWDVvHat+WUfPQV2pUrcif363nOadm3Dr0J7nhcia9O1DJt1GwWW8chCBn5z7zKsN4wffLjM/V0Scq24q/oG/f13PK31G487ysGDKX1RvVIXswPzVYvXw21d/Yo+wM+P/ZmP4jULnsFtX7GTryrEs+PpPej7ShZkf/EzVBpW559V+54WT1uPy8MAlT5GVXpA+UQABFoseFDl05YuoMAyDfZsP0KiNEuouLqT/IDKpXyCv3wHu+ebiTiCaQGZ+AvJ2SB+B+ZJdQOUrJLAPMt+F7O8wYl+BzM9Bi0JED0Xo5YvwjgpHJvUF37Z/OCpvycQCIoC8q5XD4Hxh/5ZDZg63NF+ID24/HBQqEJpgz8b9PHXV8GC5RE0T6FYdw5AITWD4jZDBN+lwCs93G2WKsghYPX89Pp+fqLhIRsx4igaXnrucVL/Pj6ZrhXr71/2++Z8bkdC0Y2M2Ld6G1+1FaAIhzPu0Oaw0aX9+p1xc8Mhs8O8nOIAaJwiRC5Ee5PHu5NbFzpnwaeQKreSdIGZDymOBbT5k0jIkNvPQmJfRnN3O3a1IPyAQopDJc2HCLyHoZm6XdznhXypOsF/x3zqp+M+s+30znkBZQaEJHBH24ITW5/Xz8KXPkpWWFRSyEkKgW0171YTA4871zBs+g/976FOsdiuebA+bFm9l7JAvyUrP5panrueO4bees/uQUmIYRqEpWb99/dcpnQVgpq3Vb1mbLcu2Bye1ukVid0jAHhDuVBQnq+atDYZuG4bEatfRNIFhSNxZbt4YMIaMlIwQ8TSr3YLhl2gWgdeVZ3yVMGvsPHSLjifbw+al25g1di4px9O4rEdLnv9qMLrl3KT4mdo0fkQhpcakZzmndhYA6KamhpEC8kRgW57vE726qWOgKDY2/Lk56NByZ7rJSs3CarfgdfuQUjLl9e/JSM4M0Sqy2C0YPgPdogXHXQAkrF+0ifV/bMbn8bH+jy389f0KUo+nUrtpDUb+9BwxiedOB8jv8xf693Bs/8lTOwsAJEQnRhOdEMXBbYfw+wxzTqwJ/D4/QgiqnscRP6UC7yaCGii4wL8PhB6ILNTAsxTp/pNcwW6B+VKdM5/1E1qWZh8k30OOc0G6/0LKLNDKIhI+QVjqnLNbkdJX6PgKgG974fvyYmkBvvWYTpOcuXpgPmu95D/1saRQ/C7006B6oyroFnNCYHPaaNW1GTcN6U50gpn37Mp0B50FAFqewcxqs1C5Tnj0gMflNVeCDUlWejaebA9Jh5MZedu7IcdtXLyV1/q/x8SXp+Fxe9myfDu313qIXmXvZu6XCwrt8/EDJ1m7aGNw8JRS8s59H9HVcRu9y9/D9r93FXheYqX4f3wemiZ4/ushdLuvM5FxEdRvVYdHxtxDjwevYdh3T3FJx4v+sQ3FOUQ4wVIbcwC1mmUCo0eCKIv5J+fFrIudM5nNsVfD3G9tWkCjLnInjh4gw1SrTR2KlLm2L337MFKfx0h7GWkkI/2HMU70xDjaAiPtzULFE6WRivQsR/pz0wqMzAnIo02QR5tiZP9c8L3qp+FVFVZE1H0Q/T8QceYENmYUOPtCzP8QEedfKbPSRstrmgaFDYUQvPjN41SqXQGr3fyiTT2eluss0ARCgOGX6BaNSzqFjzfSkMHcca/bR8qxVDzZHqa99QM71uSW1ExPzmDs41/w9j0fcmDbIbIzXTzXbRQ3xA1g+E1vhjgi8uJxeVj/x2YO787NNVz1y1puiB1AN2dfJr48rcDzGlz6zxMTaUja3nApo+Y8T5nKCcRXiOOFr+/EFn87RD2KiH3tH9tQnFvaXt8yKPSraYKH37ubOs1rYY+wIYQg9URaiLPAXDiQWKw69VuG24Df6w/aqzvbw/EDSXjdPpbP/pvfvvozeJyUXoyMsRgpTyA9phitkTrCHF9P9Eb6jxfYXykNpGcN0psrrih9O5HH2yOPNsZIfjTgnM2H9XSU8H1gqYVInAR6bRCxEPkwRN4NkfcgEr9S6QjFTLNOTbAHqsbYI+zc8tQNNLvqYpzRpiMnPSkj5LtZCMAwx9fESglYbKEvPD6fH7/PtBev28uJAyfxun1s+3sXXw6fGjxOSsmcz35lVN93+e1r045/GDuXm8rcxR31BrFz7Z5C+7x7/V42Ld1mVhnBHKsfaPYUXe19eKjl0LBqJADlq5cJiuOeCrvTxrt/vEzjdg2IjIvgqn7tGTDsZm4cdB1jlr1KdLzSNCpWrE3IfeF3mDn7jhuBWHOTzCC0ulfOq6Qw57+iIA2jnO9yP8hkwA3GAWRqaEUB6f4TI2UIRsY4pPQj3X9hHLsc41gbDFfh1cKkb39gTDb7JaUfI/lhc3w9dgXSt6fgE8XpONcMSBgPjq7m8dZLIfo5cPZFJHyOsJaORVpxJurrLVu2lCtXrjyH3Smcw7uPMmfcr8SVj6XHA9dgtVnZuXYPgy9/AVemudKQ86XojHaQlZYd/L3HA9fwzZs/hLWp6Rq6Vcfryp2URsQ4mZkyAYDv35/N2CFfYBgSm9PKVf2uYPnsvzl5KDl4/rDpT9D2htB8srULN/J891fRLRqOSAefrH2L/VsO8mzXkcG+1mlWg7Gr3gzr06FdR83BOCWTynUr0ODSuvw6+Y/gfqEJrht4FYM/uv9fP8viQAixSkpZpHH0xWmv0khDZk4EJCKyP0KLNQe/o40JDckX5ku0TM7d5LwNsqdQsPqsg9CBWiDKrURo0RjupXm8uBZTyVZLBM8fgbYsEPkgIuqRkAmk9O1HnryJHK+wSPgK9ErIY23JHeQdiPJrwyaehpEFJ643PcjEmBUgMl8P7bK1GSJhklkhooRQ2uzV5/Xx48e/cPJQEl3vuSqYonV7rYc4usd8CdJ0DWkYRMZF4s72BMfNRm3qsWvt3rDQUjCrEHjyjK+6rvHGr8O4+IpGHN51lIcvfYaM5EwQEBUXSbf7r2b627PweXxousblN7XmucmPhaxoZWe6eKjFUE4eTsbw+Rk6YRDte13GzRUGknIsNXjdzza9S4Ua5UL6I6Xkma4j+XveWiw2C49+MJDR934UckxipXg+Wv0mcWVjz8KTLTqK2maLdXyVkoVTF7P9711cfuOlwfDlEb3e5M8ZywHzuxJJsIJSjiZQZFwEZSonsndjeLlii82C3+fPjUgUcP+bA+j9eA9zTD/ZB/y7MMdwB0Q/A+mvY6YBCNDrIxInm5UK8vRVpjwAnmUgDYi8By36MYykO8GzBFOEKAIROxrh6BTWJyP1Tcj+FNDAORiy/4/QSC0nIvFrhLXRf3iiRU9psleANQs2sHzOai5q14C2N7QCYNrbs/j8+a+ClTyEJtB1LRjZBKZNXn7jpSycujisTYtVN4sZ5zm+7Q2tGDHjaXxeHyN6v8Wyn/5GGhJ7hJ0H37mDDx/7IigOHp0QxdhVb4SVFP1y+FSmvfkDQtdoemUjXv7hGb743xS+eeMHfF4fFpuFvs/dRP//3RzWp9++/pPXB7yP4Tfo1K8da37bSNLhlOB+3arz/FeDad/r/BbCy09pmxNI73Zk9gyEpTo4eyNEIDIg5ZF8JRUFYCM4LxVR4LgZsscX0Koe+Mmjz6ZVQiu3EAAj/R3I/Jjg+Bp5N2SNz1PyUIeEyWj5ysIa2fNMkVehm1ELid+D5w9k6lCQWWYfbe3REsaF9cjwboSTfYFs0C4CPRa8edMONYh8EC36sdN/eOcB58JeS0SEAUDFmuW5e2Rfbnq0G1abOQGocVFVajaphjPKgT3CTv9hNzPH8zVX9WuPzWl6c10ZLr579ycSKsWFtRlfPpbu91+Npue+BOV4Rzct2crHT03ECEwcPNle1v++ifSkXHEPw2/wSp93Wf1bqObAV6O+w53lJistm8yUTP78bhk+rz/kZctbSGmylGOpZAeiEg7tPMqh3UdC9ne5u1OJcxaURoQWgxb9MFr0IwjNfPEQQgdn74AHNgLsnaDcRogemidkVDNFVETFAlq1QMRAzAE6eCVAMyMDku8j9wXfB74tgfrdMndb5kfIrNCBXGbPMMsgygyQmcisCYSnDhRsr0JmgXEs8CktMAHOM6zoDRAJX5UoZ0FpxGK10PORrtwzql+InkufZ27E7rThjHZQqU4Fvk+dwOvzXkQLjJOarrF52XaiEwteEbr5yeuDkWBgWqJu0ZBS8niH/wVX1qQh8Xp8HNp5JDh5NvwGf363jNfvGBPS5t+/rOPk4SSy07NxZ3uYMOIbgOCKGwBChH4O4Pf52b/Z1BbxeXz8PP43HJG5JU6d0U4m7BhT4pwFpQ0hBB37tOO+N/qH5DrfNLg7jgg7ETFOImMjmLDjfSbvHRtMUdF0jay0bFKOpxbY7rV3daBWk9AKGDlzApnyOPh3kOvw1cC7ldycVgn+LciTtyLz5r34D4B7cWDi6sotiSg9hDqFC46mwb+ZoEaBawqh4z9Q9rcS5ywojVzS8SLue6N/0FkAcOUtbXBGmvZqj7Dz5q/D+DFrMhVrlUe3mKmrPq+PpT+tCpZdDGnzqia07hb68qTp5vfv5Fe+Zfns1UHnlzvLzabF2/D7c8fF9KQMHmj+FGkn00PamPr6TNzZHlwZLtb8toEju4/hc/uCdi0Nic9bcKrM/q0Hc/VvZqwkMy03RUHoguEzni5xzoLSiLDWRYt5GhFxqzl3BbC1AK0ciEjAAVHDEeU3gr09ptMAcx6ZPQkoIFpaqx6IVMgzRwy8F0nXb5A5jtzx1WVWIpB5FyL8kHQn0rsptN3M98zjZSYYx02dIenLM7xKCq3m4D9GcAw3NgU+5yHigRLnLDhXlBiHQUHous7bC0cw7NsneXvhCPr/72Z0XefBd+7klqeuJ7ZMNFKaObgpx9LCzj95OJmfPvkFw5/7pR0RCBHbvX5fcFIM5qTh8htbU6ZKYkgbXreXZbNDa+KWqZKAbjEfrUQSXz6OJlc0pGnHxlhsFhyRDgaNuSfkHJ/Xx1/fL+e9hz4NijRJQ3Jk5zHsgdBLe4SNTrdd/m8fl+I8QMS8jIj/HBH3MSLuQzTNgnDeCFFDzTxUwAzZOkr4n6cPsj4hdJKpg9ACAov5jre1Bku9fG14TRHGvH3SyxEc7LGAKI/QEiByIMG0ipgXQ6MSpES6FyPTRxIS8eBdmqctJ0TckPtloyhxdL/vat5fOooXv3mCsaveICLKSb0WtXnxmydo0LpuUJzrxMGkAkNRp74xk/TkXCer1W41tQ1cHpIOJYccGxnjpFHrUHs1/AbLfgpVh4+vEBccs4UmSKgYB8CjHw7EardisVm49s4OVK4T6nTb/vcuprz+Pcf356bdbFqcK3Zkc1hpfV1zbA4bipJJk/YN+XTDaJ77ajBfbH2PCjXLE5sYw9sLR9D6OvPFShqS1ALmAwBzxv3KrvV7g+/kdqeNyJiAWKAvv76QAfarCI0Yw8z3NfLYthYTul/EBP55LhAOawNLY7B3DDlM+vZhZM00SybmjPnyEBCDOdZbQK+FpofOSRQlh3JVyzB+63s899Vgxm0YTdMrG6PrOqMXjaBz/yvNdylpVhbIG6mVw6p5a1n209/B72bdohFbxrSvzcu2hwh+Wqw6Vw+4EsMXaq9+n58dq3eHbIvJ4wA2DIPIuAhuGtKdxEoJ2BxWylZJpOeg60LOSTmeym9f/8nUN2YG0yvcWW4SysditVsQAiIinVzUVokZllSEcCDKfI+Iew+ROA0t6jaE0BGxb0JEfyDHbnLSbvNh7AbXDELmsCLgnPdtIVSvRQ+kAOQbP/EGFqbyoFUgOP+VPtDKgOPqgBChDUQ0Ijpf6oN0IV0/Q9oIcsdwA8jEjOQFcCCcqsRnDiVC9PBUWG1WWlwdmvOdkZzJsh9XhZRXtFh1vH4ZmsOdp0ShEOCIcjD0S7OEXfOrL8ZitSANiWFIrr7jSu4e1Zej+05weOeRHM1FrHYLjfMNgPe/NYAVc1aTfDQVv9fPrnV7aXtDK176figpx9OIjHGGTEqTj6Xw4vWvs3fj/gJzdvs805MDWw9xRe82Sp+ghCOEML20IXjB87s50QwOXBIzdCu/QluOl1SY+2NeRAgn0loPtFgwAiVgrE0R8R9D1lSkey65q1cWsLYObdLZG7K+Ad8GgqtkUqJFD0FG3g3oCC3PKrGRgUwbAa55FKiMGzXYnFxbL0FE9D3DJ6Q436jZpDo186y6SilZt2gjO1bvDq7iS0Nic9rCat7nRAsAaJrGtXd1oG7zWgghaHJlI7Ys3Y7fZxBfIZYxy19j/5aDIe0IIajfqnZIm40uq8eVt7Rh3hcLEcDRvSdwZbnpcEs7WndrgdflDRH98nq8TH97FpNe+ZaCUrn7D7+FvRv2U75GWfoM7fnfHpai2KlQo1xYKsrOdXtYu2hj2AuUL1+5xbyLB0IIGl5Wj079AhU+HNdD1leYY6kVEiYhLJVNAdqQENs4cyzOaUeLRUY9DRmvBLa4kf6DCOtFUG6JqT6uJQZf+qSUSNccSH3GDLHNj7ObGZ0gbIioh87w6SjON2LLxASdWTkc2X2MZbP/Dka4Arl6yHmQhsRv+IPO2oq1yjNguJkm0OWujmz4cwt+rw8JPPHZQ1zS8SJiEqNIPZEbUSD9kmqNqoS0++zkxxh6zcsYgfF978YDNGnfkAk7x5ByLI24cjEhwrJblm/n2a4j8Xv9ISm+AJXrVKTtDa3ITM2i9+M9VLnEEo4QzkBEQR6Mk+BeQGh5xZzKAnmNNmelP5DKIGIRsSPNXfYOkPFx7jkRAxERA5Du+WY6VxAdrBeHXj/mJTjZw4yUxYf0bUOzNYOEr03RcS0WIXLfuQzfIUi+C4yjedId8vQ78h7wH0A4byo1+gSnQ4l3GBTEp89MYte6fUHngG7V8Xn8ZimwvINuzu8CajWtwU2Du3HxlWZoX8Wa5Rn79xssn7OaGo2rBl/UH3znTo7sOcrONXspUzmBfi/0ov1NoS9grkw3malmbWS/z2DyyG+5/cXeCCGILxca6rr+j80MvfblsEE2h+RjqUx9/Xu+2PY+iRX/WRBRUQLJnm6GrIaJIEKukWqEOg/KQOTdCOdN5lHCCWW+B9fPoMWD/RqE0JARfcCzAty/m7llEbchoh4IubwQFqRvR+CT3+yLfz9YqgXTKXKQ/oPIEzeAzLtCl/ePygsZoyF+PJq9FYoLj01LtvHDh3ND8m41TWD4/UEz1XQR8vJlsenc+nRPbnqsW/DFaNTs51k45S8Mv0HH29phd9qJLxdLr8Hd+P6Dn7FYdNr3as19bw4I68OutXsBUyE/6VAyK35eQ/ubWuOMdISUF3NluXmwxdMc2HYoaKJCF8g8ffvihSnc9+bt9HwkdMVMcWGQnpzB/z3wKd48znjdouUWEjDMzyEiiQJ6PHgNNz7WDZvdDAUX0U+DrbkZ8mq/FhFY2ZcxIyFtJOAFW2tE7Ivhqtz+nPFVBtK+vkFEDzEnsXqZ4GFSSmTyg+BZaHasIBmb7CnguA4t9uX/+mgU5ykv3zKalKO5aTNmGpe52o8krOyiEIK2PS+l95DuJFQw54kdbm1HYqUEdq7dQ8trmlKlXiUARnw/lFF93yX1RBp1mtXkwdF3UqZSQsj1D+86htVmweX143X7mDD8G978dRi6rofNQye+NI1JL08vtHzp6t/Wk3QkhY/XvHVWno3i/EOmDQP/njxbrJjRAvlftvKgt4CoAQirWQJeWBtB4nQzesB6McJ2iXlczKvI5IfM9vWq5rhpC51bCpmEDEYn+CH9HYi41Zxr6KH6HNL1K6Q8SqEpYMY+yJoEZRciNOXcyssF6TDISM4MrnzZHFba3tCKZbP/DqmkEGK/Enau2cN7D40j+UgKtz7dkxOHkvjoiS9JPprKXS/3CZ4WXy6W9/4aVeB105LSmTD8G1KPp4UM5s5IO9Pe+oG4crF06nd50DObnZHNs11eCXMWxJaNQQjMNAppOiAGtXmO95eOZNeavTijHDRu10ApH18oGJnkrtQLsF4G3pWE1nvN/2V8HDLfRfrWIuLfQ8psZPqb4N0MEX3QAmUQhbAh4t8v8LJSepAZH4N/JwgHBKstGOYKl4gA503BQVNKA5l0Rz5nAYANrA3Buybw2QPJAzESvkGQZrZra3Pq0jaKEkNWenbI2FOxVnmO7z+RW/pLELoyBvg8fqa8NoNF3yzm883/Z5YSe20GS35YaUZzBVTAhRDcPbIvd48Mj0yRUvLTp/NZ/et6/D5fsIyeYRhsX7WTI7uO0rHv5SGT3zfvHMOBrYdC2rHZbbS5viWLvllsaie4vYwd/AXlqpWlfPWyHNt3gqYdGgfT0xQlGzOUO9cedatOpVrl2R+wC80S6twCs2rzDx/O5dfJf/Dl9veJLRODzP4Bsr4ASx2E4/rgsVrEDRBxQ4HXlu5FyKzvzJKHWAhGJxjJ5thr74Cw5kYoyqwp4PktXysOcHQB11xMcUUvuGZiZNRDOLqAb6s5wdbLobgwyM7MnavaHFYuueoilv+UJ/U137uX4Tf467tlrPx5NaMXvUS9FrVZ/8dmxj0ziai4SNr0yNU+a9y2PpP3jC3wujvW7GbaW7NwZbqCUbS6RUe36kx5bQYNWtcNiXLdvWEfE4Z/E9KGxabT8ppLWDlvLT6PD7/PYNe6vbw+4H3uffN2tizdQbWGlYMODMUFgMwpEQ7gBEcncM0nRN8l9ATwr4TUjRjShRbRE+nbi0x/FWQ2Ik+lMGGpgigbLloPIP1HkRljzCitvFVmRCQy41PQK4Oja270lpFkijaGRMYK0GqCcQgzvVaCTIWTt2IkfInwrgM9EZE/qqEUUmKqJJwJO9bs5okOwzD8BgkV4nl+6mAev2IY7ix32MpXfirXq0BWmouM5Ey8Hm9AZdnGxJ1jWPbT30wY8Q3x5eN4/uvBVK5TkZ1r9zDp5WlExUWxY/Vudm/Yh+EzsEfYsEfYsDpsuNJduDJd6FYLnW5rx+OfPgjAl8OmMunl6SHXtzqsjF4wnBnvzwkp5wTmwJ1T5qzbfVfzwNt3nOUnd+4obQqzZ4I0kpAnbjQHKayQMAGS7gh8DohdFUoE6IngP445GfUDDkTCZyANZNrzgEDEjkLYWpkDbProgHNAA/evmIOkzYxMMDygReUKGVrqIBK/QwiBdM0PDLb5qjzEvGb2Nf1VQr8YNLNdoYGlCSJhQolxcil7LRyf18eTHYezY80eQDJs+pN8OWwqO9fsCQvxzo9u1anesAqHdx3F7fJg+AxsDisDX+tHq67NGdnnHVKOp3LHiFvpclcnsjNdfPHiFA7tOEK1hlWY+cHPuLPc2Jw2EivGk56cQfnqZTmw/TB+j4/IuEi+3PYekbGRHN51lDvrPxq28nXzEz1o3a0FT1/9Uug+YZbhtdosRCVE8cnat3Pz10sApU11/kx494GP+WXCIqSEu17pw6EdR5g3YVFYCk1+nNFOqjeszMEdB2l91REef3sPusUKji6ImP8hU4aYL+yOnojoJwGJzPwMPMvN0mSZ4zDHVwdo5UEmgVbNdNLiBWyIMt8iLHVMh+zRiwkT57JdCTHD4cQ1hK6KBdLShBlRIxK/RVhqnp0HVgQoey2cHz+ex4eDv0DTBO1ubM0lnRrzwaPjcRdQiSYvulWnwaV12LvpAJmpWebClYBqDSrzydq3efeBT1g++28uurwBT3/5CHannQVT/mL+xEXUalqDmWPmkJ3hwmqzEF8hjsy0LMpWSeTQzqP4PD6sdgvPTR4cFG68r+kT7F6/L6QPletU4P+WjOTuhoNJOxEqpmix6ticNvw+P8OmP0mrLs3O7oM7h6g5QeFIz3Jk8r2BYly1IOYFSLoLc+zLHx2bD71hIDUgjVwNgwhEucXIrK9MJ61eFRH3LkIvj/SsQmaOA60iuH8zz0WaEbRSgBZtjrPSg5lecBda9GAAjNTnzIjeECKhzHRIHQ7eZfn2WUFYTQ9y1CC0qIH/7UEVIefCXi9IhwGYq2DHD5ykUu3yWG1W1i7ayKSXprFt1a5gycWC0HStwNCq+q1qs2P1nmDkgqZrPDHuAd5/5DNcmW4zH9LnD74vOaIcfLD8NdJOpvN8t1HBa8YkRvPt8c8xDIMXr3+d5bNDBb00XeOaOzpw+/9uZuBFg3FlFPwFYbVbmZ391b95NMWCGmxPjZQeU8NAq4TQIpC+Xcj0t8CzGuTJU5ypU2AFA71OIEQsj4hM5CDI/g6MwwRzcXIGchGJiBkJ9iuRx1rmadOCKLfMLNuYNjogupjv78PSAOInw8mbwNhbSD8diDI/ISxV/+FJnB8oez01hmFwcPthYsvGEJMQTeqJNMY9M5k1C0xF7cLQLBrSkCERWAAJFePwefwhat2XdW+BYRj8/cs6fF5/2NjcZ2hP7nm1HzdXuCcoahsR4+TlH57h4isa8fv0JYzq+39h1RKcUQ6mHv6Ul28dzYo5qwsM+3ZGO3lmwqAQRfPzHfUCdmoO7z6K1WahTOVEPG4vk16axuKZy9m76WDhJwmzgojP48PuNHjwpYN07ZcEOEAvHxCbDdiXXgvsnc0JLoHJKhB8ybe2QEv8GuPkgIA4LIAdEf00IrI/hu8AnLiKcIN0QOIPkD0Nsj6j4Mm3BpEPo0UP+hdPpnhQ9npqko4k48p0U7FWeQBmjZ3Lz58vYOfaPYWG/0N4Kdsc6rWsxe71+4KRYNEJUdw9qi8fPjYer9uL1WE1qx8EUs2i4iOZcfILvhw+lUkv5b5kdep7Oc9OeozM1EwG1BkUVmHBHmHjucmD8Xo8jLzt/8LG+hyad27C6/P+d2YPpRhRc4JTI400M11Lr2GWYHQtQGZ+Ct4NhJYCz4+FULHDnM2XgG8juU5SK8SMgrQXMCMX8mnHYEWU+ws8y5Gpz5jVGgD0Gmhl5yGlF3nyNvCty3chmynwbe8OSdcX3BcALRGt3JKC952HnAt7vWBjhC1WPTiBbXRZPYZOeITtq3af0lkAFDoQb12xM+y4N+/+MPjdnrOypls0hKYRkxhFxVrliE6ICg6YukWj5kXmC9ML17/GinzVFXLa3bZqJwMbDzadZkKQ36kjhFkrXHEhYUVmTYPsb5B6ZVOw0LcXZPI/nFfIim4wZzYPmR/mOz5HGyGArbmZhqCVAyNQzlPEgYjESP8AskLr1QfxHYITnQMe3QJy1cyGzAgGxQWBpmls+GsLnzw1EWekgxemDsHr8XLiYNIpz8uv0J1D3jrdOayctwZfnvKzhmEERQttDhutupqrU/Vb1WHVL2vxefz4vX6q1KvIyrlrePnW0QWaoivLzcOtnuH4/hMh42uwfJ4hMfx+ylUrE36yosRybN8JXu33f3hcXh5+727iK8RxZM+JU58kc4U7fV5ITcqZMrnAn8856t8DWZ8SoucCmGOiAxwBjQx7q0D6lgswkJaGSO9+OHkthY6dac8FJt4F7EMCdoSl8qnvRVGiyM5w8b8b3uDEgZPc8EgXWnVpxr4tB0/pLAAKdBYAbFu5K+RzelIG7z/0aTB9LCc1VtM1rHZrMI2hQas62CPsuLPcWGwW6rWqgyvLTf/aj4SUGc/B8Bv8+Mk81i7chKZr+I3wOYrVbqWySkm4wBDI1GHg24C0tYfoZwIv/KdyFkChL+i+Nfk2eCHtaXLHyBxngW7+WGqaFRcs9cxKCYAp8m1qJMiTtwaEvfPjAfdyyPyc3AW4/OOwZqY3lHIuWIfBD2Pn8vcva/G4vKz/YzOTX/k2pP4smKtaBU1UIVxUpkAK2O33GSRWimXQ+wOx2qzEl4vlwXfv5N37P0Fogs3LdzD1je/DnAXOaDOs0J3pCQp6AdicVspUSiQzLYsm7RtyYOshImKcPPGZUke+oPAsNcWsZDb4diBTXwT/bkJqfotEkMcLaUDDNMhT2WxBzgXDLFsT+SBCrwCAjHsPkvqabck0ZNprkP1NvvNiQPgDqQ1p+TIRqoDMDAzcLiAbEf1cSKUFRckm+WgK7z/yGV6Xl4zkTEb0eovI2Ijgy5Vm0YiJjyLlRFqBJim0wIv6KczV7803MQ4cbnPauOr2K7jo8gYAPPn5Q9zV4DGyjWwMw2DMo5+zf8vBkLad0U5z9cznw+fxmfsDxJWLQUpIrJxAbJloju87Qe8nelCnWckJ71b8MyN6vRV8wXl74FjadG8REuIdFR+Jx+UJVk4KQUBUrMFVvU7lwC3sRU6ArRXC2cv8FPkQMnt2IAJMmKlcehXCSooFIxRcAU2bHCwB56sTrPXAt92MbHD0PEXfFCWNt+7+kP1bDiKlZMZ7s/G4vUgj18bsEXasDgsZSZn/+hr5tWbAfOGvWr8Sd750KwCtu7WgVddmLP5+OULA9Ld/IPVoSpizwOqwolt03FluVsxZE9xuseokVIzH7/Nz8RWN2LZqJ3Wb1+be1/r9634rzj9kxgfgXQ14wb0o8IKdV8BbD6S9FuakLWyxKeQqBWzzm2UVo4ebKa+WGsiohyDjXbNN90KMjHEFOAucmPPmbPDlHV8doJUFmWWWJvdtAb0cIvb1f+jbhU/+Qu8XDBlJmcFVf5/Hh2EYlKmciN1pwxFp54qb2zD0y0HYIgquuX3dfZ3DttmdNuo0q/GP1z55KJmRt71D8jFT5XbVL+sw/AY+jx9PtofxL04JO+eJcQ/S+/EeWB3WkO3SkBzff4LU42ms+Hk1d7x0K//310iqNVDergsKmWbmXwFgmCJZ9k6Yg5oD9JqQ+C25k8h82LsSPpg6wXIaOYIyDTLeQ3oCTizvaszB2wd4IHsCpthWHiJ6Q/RwwocQqxmdIJPBuxbsbdDK/Iiwt/3nfihKDPmFD7PSs7n6jg44Iu3YHFYiop18sn50oRoA1RpWRreEloyzOazUvqRG7kp/IZMHT7aH3yb/wexP5wOwb/PBoLiW1+3jj2+Xsm9zaJh5jcZVGDXnOYTZcC7CFMlNT8pg/+aDaEIwfst7dLv36jN7IIrznuyMPCtdEtpc38rUGbJbsUfYeW3ui9RpVqvAcx0RdsYvSaJspbzOBIupS1DYmBzEAM8yZHqgqoHMDjgL/IAHfOvB/Uu+cyIQid8EFL4L+DswUsA4CN4NiDKz0WKGIsQFO50rlaQnZYREP1VtYI6ZNodpr4+NvZdrBnSgsP/2Zp2bhHwWwlyYik78Z8f9rnV7efGG3BekdQs3YPjN8fXEgSSmv/Nj2DmfrH2LJgWIcfsNg5TjaZw8lMzSH1fx1m/Def7rwTijlKjsBYVMJtfp6TOjVUUEYAecENEXEf1s4HMB2HsXsNFhChL+E8ZBSLkPmSPc7f4d04HrNRevMt4JPyd+HET0Inz89psaXvIkuH9DxL6MljABoVf8535c4Fyw3zDX3deZmMQonNFOouIi6DWkB2OWv8oDo+9k8Ef389zkx6h/aR0KkmATmuBgPmVtTdcYPuOpU+c75j1e0zi29zgHth9mycwVIfv8Xj9Cz3NlAWkn06l5UTX8vjx1y3WNqvUr4w2s2rmzPKycu/b0HoCiZGG/EixVAwOsAxH9hCnyEvsSIuY5ROI0hF7e9KQWhF7AoBr9XECd+zTxbUca6ZD5GaG5YQZh6QtGOlgvIbxUTi0I1rt1mZ5mxQVHpdoVuKx7C+wRNmwOK3eNvI0+Q3vywpQh3PtGfz5Z+zbx5WJpdlWTAs+/onebMG2B6wZ2pnrjqrmRXadYbHBludm2aheGYTBh2FRcmXm0XqS5SqZbcu1VSkm9lrUx8qV3Va5TAYvNEpgMe9nw55YzexCKEsMdI24xX7acNjrc2pbOt1/BG/OHce/rt/Pe4pHUb1mb9jddWuC57XpeQmTUkdCNtrYQcReFlucKwR1MKZAZYwmP9vIRshqnOUBLJCwIVCQGzg0I3BopZt6w4oLj3tdvDy5wVa1fmav7X8mHq97g3tf7M/LHZ7m6/5Vc1qMFsoDAloq1yrHxr9CxrHyNcjzx2UNkpmT947UNv8GBrYcBWDD1L9LzRTEEK+IEsDttZKe7iEmMCkmZcEY5iE2IDoqLCk2w/e/dp3X/ipKFiLzXFB4UkaDFIyL6IMr8gIh5BhH3OiL6BaTtUgqOdLWCd1W+bQ6I/wCM/afXAekF4yTSuyFPxa4cvIS+7mrgPxGYN+e1ZQvo1cit7uABT8nQkCgKLtiUhHJVyzBh5wcc3H6YSrUrBEtkdb8/d+Vo+ezVITmyec+t1bQGaxZsDG6r36o2jds1wOctJN8mH/YIGzUuqsqYRz8vMKdM+iVCwxzsJXz42Hjuea1fSC3oynUrcNXtV3Bw+FTcWR7sETZaXNM0rC1FyUcIByR+B74doJdHaIHScM7ccl3StyNXWyAEHax1CAnpEjGIiJuRGadb+9gP9nbgmn0KJ4OdYKSB60ewtci3PwGcvfJ4cx1ga3+a11eUJIQQvDBlCPu2HMQZaadcNbPWcetuuTZhGAaL8zlLwXSENmxdD03LFTHUdI3b/9ebl25++7Sur+kaV/Vtz7aVO9maLzc3B4vNgmF4kYZkz4b9zP5kPpoQwemKzWmlc/8rzXDfbA+6VadR2/oFtqUo+fQZeiMdbm2Hx+Wlan0zf7rRZfVodFm94DGzPsq/0m/aeuvurYDxhDgHogaDe8FpXl2AozdSZkPW54UcIzFXu7xgJCHTPwAjNbQN+3XgW21WZsAALdYMn1VccLTu1oKJuz4g+Wgq1RtVQbfoVKlbkSp1c1c6Z3/6a4HnXtajJUt+WBkiQHvT4G5YrRYM49QaCDm06WGO5R8/8WWYjlYO9ggb7iwP7mwP7z7wCfZ8EbtNO11EVGwEf0xfijvbgzSkSvW6QBGWOlB2Ifj3g6UmQgQiSCLypJ645iILchhYGpgpDO483+X29gi9ZqGRhmHoFUCrYOooFKiLYJBbscGA9Ocg4jZCUsn0+mZJyMxxmHNdG9iKVOfyvOaCdRgAOCMd1LmkJlJKfvjwZ9Ys2MgVvS+jw63tAIhJjELTBf48tuWMcvDA6Ds4sP0wDS+ry74tB6nXojbPfvUoJw6cpP1Nl/H79HClzPyaB5d1b4HdaScyNgKLzRLM7c1Lfs/wtpW7QtrYv+UQE0d8w2Nj72Pzsu00v6oJl9/Y+j8+FcX5ihBWsDYEQLp+Q2Z/D9amiMg7EUIHEV3AWTrEvGLmhVnbm55VvSLEjTE1ECLug8w3C7oaIUu4eg2EXhkpIik88CiveI0E/y7z+sHBOcl0FsS8AN5NYKmLiOhzJo9AUYIQQlC9YRUAtq7cybfv/EjZKgnc/r+bcUY6EELgiLSHCc3e9uyNHD9wko5927FizmocEQ6GTjTVtm9+sgfrft/0j6mMFpuFph0as3fT/pC83rx4XJ7gGGsYkqQjKVjt1uDqmCfby5TXvqfP0BvISMkiOj6Sm4Z0/28PRXFeU6FGOQCO7T/BxJemIYRgwLCbKVM5EYC4crEc2hHqlG3XsxXtu2eAvw9k/wwYEP0kQotBOjpA5lgKFe4KYkE4uxAU6CpMTyY4eZWAJ1Bal9xtrqlgv9aMSJNuROQd5veG4oIkvnwc8eXjyErPZuJL00g6nMzNT15PnUvMl+6E8nFhwtjVG1flko4XYY+w8/u0JaSdTKf7/VdzRe82ZKRkElc2lpRjqYVdEjB1YjoP6ACYc+LCcGflRiJKwwjRhgFY/uMqqjeuyt2j+nJo51G63tOJslUSz/QxKEoIQosGrRFS+jEyPjFTpiJ6IexXmgdocYTOGQERD1EPgW8b+PaZDgd7G4h5CWmkmGm1voJW+fPOYQU4rjerM2jRnHqMDSAN8G4kZLLh3wiZeyFmGHjXIRydEbaSUynpXHNBOwxymPXRPD4dOglXppvlc/4mMjaCVl2a0bzzxfQcdB0zP/gZi1Xn5ievp2OfdjzY/Gm8Hh+6Reehd++kZpPq3FFnENKQlK9RjhsHd+OHMXMAghEB0pDBsl/2CDuXdGrCom8Ws2vtHuLKxpByPA1pGCERBHmJKx+L1W4Jemxz0HSNynUqcHX/K8/9g1KcF0jP38iUweSE9Es8iKgHzRq0MS9B+khTBdbeFWKegZM9zJUooYGzByLqEeTJXkiZCdghaihkjA607iNXHDFnwHWAvY153ewfzLxZ/5HA/rxlPfMMrEIH33HzX5l34JYIfIjYYefyESnOI5KOJPNUp+Fm/W67hQPbDjNixtMIIXhl1rO8fMvbZKRk0rhdA16YMoThvd5k+6rdgKR646qMXjiCIVf8j32bDyIEPPrhQD59ehI+jy8s9BVMZ0G9FrU4vOsoE1+eTsXaFTi04wiaRYSUoc27KOb3+jm04wg2hw1XpjsY2eDOcnN41zGeGv/wOX5KivMFwzB4rN3zQcHj1fPXM2HnGIQQDP3yEV7o8SqHdx2lct2KDJv+JJUrfmGuRuE3a3wnzoX0l5FpwwEJkY9D9sSAmFfeaEIR+AFENBILpL1iisH6dmFOXgtTEDfMPFpLXfDtzNOuB3yb0eJPLxJHcWHwyi2jWbNwA163jyWzVjJx5wfElolhwPCb2bFmN5uWbCO2TDRPffkwyUdSg+VkLVadMctfY8XPa+hf+2EE0Klfe/ZtOsDWFTtNIfDAOKlbNBACv9ePpgmq1q/El8OmEpMYTVRCGp4sT6EVGAB0q079VnVZ/dv6YAqCYUj2bznETY91K4KnpDhfkBnvQ+Z4IBvpXgiJkxDWi8HRDdyLwfUTCDtEPo6wNzXLHeIHdETcOyBsyOMdzMasjcB+I7h/wDTWvE7VHMeAA2FrhpE1FfzHQCSATAnsKySiRi8LohymTljeRQ0/wtYSEXHTWX0mFwKlwmGw/vdNwRxXT7aXLct30KpLM4QQ3PdGf+57o3/w2B8//iUgUGiqaf8yYRFWm4XsdPOL/cjuY5SpFM/kvWPZvX4fL938NtKQeFxeal1cjYQK8bTt2YqyVRJ5tusr5su/ICT8tiBOHEhi0TdLuHpAB7au2MGutXtACJxRDmpeXP2cPh/FeYZ3A7mDXDZ4lgEPAqBF9AoItZhIzxqkzALc5vjpmovUEsFIwhwsXabKa9k/zJrhyYMCA6kH9OpmNIK1GTh7I092NQW5gMI9tDkXzgT3T2C9FLRIcM8P7BBga3e2noSiBLB/yyG0gFCh1+1j09JtwX1N2jfkm8Pjgp/d2W42Ld4WHAt3rd3Lom+WcGDroaBi/Y9jf2HCjjEkH03lvYc+Zcfq3Xg9PuLLxVK1QWWqNqjEgOG3cH/TJzl5ODlQfjZQkCMveR0GPj9/zlhG2aqJ9Ozble/fn42UYLVZ6Hjb5efmwSjOSzJTs0g5mhq0wWP7T+DO9uCIsFOpdgU+3/R/Iccbx2YTnFBKN7gXgutngs7UrPehzK8ImYLMnATZ3wF+c0KsNwZLeUTUIGTqk4Gx/PTSGvH8DkRA5IOBKAY/YAWnmsiWNras2BF0ngohOLj9MLFlYoiMjeTtBSNCjn2myyvBsVQIWDVvLZ89OzkY5frrxN95969XiIqLZPmc1Yx7ZpKZpiChXsvaxFeIo9fg7sz94je+fefH3Koh/6B4tmXZDmxOK/2e78W0t2aRlZ6NbtWD5RkVpQjPckJewr0bwXoxQuiIuNeA14K7ZMYHmJpZpkihdM0yK7/kOFN9WyD6ZogeYgrEpjyB6Yj1gKWhmZLlvN6ck6aPyjOHzUk/KAT/PvAfh4jbwTUfjH3mOVpF0FXJz4K4YEUP89K+12XYI+xomsBqt5ByLJUlswoWsqjVtHpuzowwUw0iYiPQdPNRubPcjH9hCi9e/zpN2jdkzLLXkFJiGAZ7Nh4gKz2bbvdeza51e/EHqjTkiHAVRI4ieE7bx/Yd5+je40jD/JNo2qExzsjCQ8IUFyC2yzBf2DXAASIOmfUdUhYw0dSrgszzYi/sQAS5AlqGqTdwsgdCL4co+xNoMeYu/x7wbjajF4xDeao0QMHOAhHoU85xHvDvNAfenG16ZbNPilJD7UtqoFst6BYde4SdqvUq8f2YOWSmhYtr2Rw2EivFh2yzO60hIbW7N+xjQO1HyM5w8eavw6jXsjYCwYmDSWxeuo1bnrwBi9Ucx3OG6kJSbMmramv4DY7tPU56cgYWq+krt9qtNGxd5z/dv6JkERUXSbVGVbA6rNgcVsrXKMussfM4tr+Qcl+WRgTHU5kJwkGIN0pmw/EOSM96RMwwcPYGBMgM8K1FOG9EWKqbaVqn6yzIQQjTSYFOjviscHQ4szYUJR5TYNaOxaojNMGq+evZsaZg8cBGbephdZjjm8/jxzAM7M5cbQGvx8dj7V7ghw/n0vORrjz8f3eDYTp7d6zeQ4NWdbioXQM2Ld4WWmL0NKQPNE3DleXB4/Zi+A2kIbny5jb/6d4VJRDHdSByyhZKpG8f0v1XwcdaGgE59inML3MRRfDLW2ZB2jBIewZh7wjxX2LOT/1mGoOwoTm7Ib2b8zgL4LQMlmwwToI8lnu8oyNClIq19DOmVDgMrujdhhEznqLXkO4ITWP2p/MZ1fddpr8zK+xYUwSpvlkaRsL2lbu4oncbqjWsHCwX4/P42L/1IEt+WInX7TWdCdLcvnXlTia/8i1lqiQUmn4ApqpsjcZVeW3uC+YXgc2cbDe4tG6wDKTP62fVL+vO2XNRnJ8Iaz1E4tcQ+bA56LrnI9NGIFOfCj9WT4SI/gT/lI1UEH6wtcrdht8U0cqcYFZhMI4RDNWS6cj0d8xcsVNiAxEHCV+BiDU/4wT7Neagjc9s07/bnFQrSg1RcZGM/fsN7nzpVspXL8PWlTv49OmJPNbuhTCBLSEED//f3UEHrDQkC79ZwtV3dDAnw8LUgsnOcPHp0xOxWC0c2XMsKDYrhODLYVNZOmslNS6qVmifLFYdR6SdV39+gZpNqmFz2rBH2Gja8SKW//Q3HpcphiilZPf6fefu4SjOO4QQvPP7ywwc1Y9GbeuTdDiZz5//igeaPUXqibTwE2KG5/kgIeN1iH4WyOvI90D6KHOOYBwht8qMF5n5BTJrMtivOkWvAs7h6JfA0R0zTNYOIgY8f5ObuiDAvfTf3biixPLEuAd55L27ueLmNnhdXia/PJ3Bl7/IjtXhToN+z/fCajV1LaSUfPHiVIZ++QgxZXI1kHweHzM/+Jm0k+lkJGcGHbbuLDfzJ/3ON2/OpO0NheduCyGwR9i5/qFrGfh6PxyRdiw2C0IIMlOzgikJPo+PxT+EC98qLmy0yNsRsW+Ds6+5IetLZPJDGFk/hB0rHB3BkhNFLU0h2ciBoFchZHHKuwY8KxFk5anE5QHPUrPyjKVeWNuhOMDaEmLHmr9jMf8NRhNIwHsGQralj1LjRmlxdVOSDqegaeD2+vF5/fz21Z/0HtIj7Fif1xccQCXgynTz6brRPNdtFCt/Xo2Upl6GPcJOhZrlMPI4BnweHxOGT0XoWoHqnuVrlOHeNwaAhNbdmuOIsPP+kpGsnLeOus1rUr1xVaa9Zf5RWe1WGl72T38EigsRYW0ECGTW5wQnn+7fCjkYcle83OA/jJYwHiN9TCCUNVBSRkSYB2uVzLq1YO7L+gyyJlDw6lcUxAw3J8K2tgg9EVnmBzMkVy+PtF1r1hA3jpqHa+XNsjqKUkW5qmW45ekb+Pz5r4Nj5+GdR0g6kkKZSgkhx/o8PrMMV4YLv8/PoZ1HGDb9SVpdewkjb3sXd5YbIQhWtqnZuCrH9pqrv9kZLuZP+p1F05YUGLWlWTQeeucuouIiadC6DpXrVKTxX68wf+Lv6FYLnftfwUs3v83fv6zD6zadBpXrqfDD0kZEtJObBnfju//7KagZ5Pf52bpiJ5d2bRZyrMCNxEYwxNZ/DC2yH9LRAXn8WnKdA4H64pbGeVK0/OD5C+lZQkjZxJDO3IuwNgBLDYS1CVLeDPYfTeevszsy6yvI2BC4vgBrwaVKFRcuukWny92dWPLjylwdASlZOXdNWNUB3aLjzs6j5WIY1Gpag+lHP6N71O3Bl3mQ6FadWk2rhyxu7dtykPEvTkGzFLye2OaGlnS67XJiEqJpdlUThBDUaFyN/VsOclmPlhzcdoi54xfgznLjiLRz8RWNzuqzUJQMhKMz+PcGqiL4zB/XjxBxffjBMk8Zb6Ej0BBlf8U4fgP4NweOMUA4kXqF0PxDmY7M+D8KHV+1+hD9kCkcbu+IEFakPhG8K00HghaHzPwscLBdVUU4BaXGYQBmuoERqEJgd9poXEgJrVueuoHtf+9C0zRsThttrjcNqHHbeqz8eTVghrc2aF2HYT3fwJ2da+zSCLgJZK6YTA6xZaNBCrLTs+lyV6fg9ppNqlOzSa5OwehFLzF99CwSKyVw+4u9UJRS9MrkelitZr5WAQhnT3MFC0AaiIhbA6c0JTe1wA+2NsiMd/M4C3IIKHKHEQlalFnCK/rJYISN0CtA5J3m74BMnBLIQwMR9XDwOEXpQtM0KtetyOFdRzAMiTPaSVzZmLDjWlzTlMjYCMAcR299uicANS+uht+XmwrTsssl/PHtUpbNWR1yvjRknklvnuvrgoTycaz/YxNPjX8Yu9N8gXNGOenx4LXB457/6jEmvfwtJw8l0fvxHsSXi/3P964omTS4rC5JR1Lwur0YPoNqDSuHH6TXMKvX+LaYk9acMmFaGdM5mjPZtV+K9G6FzA/yNXCKNARR3lw5ixyA0Mubm4QeUk6XyAeROMG3HuHsibCp0sqllYvaNWDVvHW4s9xY7FbqtqhV4HHX3Xc1v3y5EIAGretSrloZ88X+oqpsW7ETgEq1K+Dz+k0drjw5XYbPwMAocEqQWCmeI7uPUblOReo2z7126+ua0/q65gBUqVuRJ8Y9yF/fL+eSjo3pes+pImsUFzSWRpilYn2As4BS3AEi74W0l0zhbhEHtkA1ONslkL0FU6hIR+q1IelmQsfUvCKI+SkDIgshrKYDI4CwNYW842jCOGTW16DXRETd/69utTRQqhwGtZvW4H/TnuTHj+dRq2l1+j0f/jKecjyV36cvQQJulwd7hA1Ptoeje48z7a1ZwVxZi1Vn1bx1ZgmwAtA0YToncuQQhCDtRAapMp33H/mMi9o1oEohK1t1mtXkmYmPno1bVpRghBYDCZPNcCstHhE9JOwYKT3IrBkgrUAaYAPpQhoZZjWF4GBqgGcBZM8o5GoWQst6gZnflQlZk8zB1XFNwf3UKyBiX/63t6m4gHjzt2F88cLXeNw+Bgy/JagVkIOUkvkTF6FbNLKzXOiahjvbjd/n54NBnwcdBlLC79OWYI+wFzgPsNh0/D4jpAytlHDiYBKLf1jJ5JHfcvcrfQvsozPKyb2v3372blpRYnli3IOUrZLI4Z1H6TWke7DsYgjuheDPCuTHakEHgUz/MLTsofsPsNShYAdBISKy8ih4TyBThyISviiwj0LoiKh7zuzGFBckvYZ0R0rJhj+20KFPW1pcHe482rZqJ3s27DMjEQRIv8Tv8/P3/HVBZwHAoR1HWDVvbYElvyEgn5Fv7D15KJmTh5J5vtuoEDHb/HTs046OfZT4cWlH2NsgY0eBaxZYmyMiw8cx6T8M7kWA36z+JQA8SN8OyP6WkAmAZ5FZdrHgqxE+WThhNpsyBMotQmgJBZ2IsLVS5RNPg1LlMAC4tGuzsJDDvLzQ4zW2r9wVzL1NPZ7GpFems3r+ejJTc0W8/H4/1RtVIa5sLMlHU3Ib0KDxZfW54ZGu/D59CavmrUVKaVZdCIgg6haNpCMphToMFIochLUhIv69QvfLtJGQPZ3cslsuZNpLZl6Wf2+eI+0ISx2kpQ54ThAysOq1wXkb+A6Aawam+rcgV+XWCJRZVChOTZlKCTz5eeElCud9sZBxz0wORmX5DYMxj3xG0uEUVv2yLugAsFh1ajetgTPKwdqFG/B5cl+2EirE0fXeq4hNjGbKa9+TkZKJxZ5bycbr8nJk9/FzeJeKCwVnpIP73xxQ6H7pXZ9b4hYAP2R/g2FtBFnjyXWwCrDUBEttzNSEvOVoHeDsZerKpL8d0JCxBtrM0X45fJbvTHEhomkatzx5A7c8eUOB+9NOpvNkR7PEbQ7bVu3k5/EL+OjxL0OOdUY5qNWkWlhEoKZrtO/Vmk592zPxpWns33wQzarhynAHx+fUE+lIKVU0oeIf0ZzdwFl4WU2Z1M+s4JWDcQSZMQGyvyIkzEX6wdLA1C/Im8KAZgqFO/tC9hTwrDIjFWQ2ueOzBkYyFOIwUJwepc5h8E/sXr8vRKhLaBoWq4Vj+3IVlIWAB96+k7rNa/H2wuF8OHg8ezbsxxHloNt9nYO6CB37tGPfloM83HJo0FlgtVuoWKs8DVrXLdobU1yYeFcTWvsbc0D1biR3RUsDR1dw3ICwX4lMfQW8qwLbOyGin0YERGSk8Sjy+FV5Vs4sZtito0vR3I/igmbzsm0hKVxg5txuXrINrzvXjuu2qMXA129Ht2h43V6W/rQKd5aHxu0a8OgHA4lJNAW8bny0Gw+1HMruDXuRhkRoArvTxk2PXVek96W4QPFuIaTUBgDSFHfNO+5qZRBxY8wSX9GPQ9Z0MFLAUgcROxxhCeSZO6/DSH0esn8gNxLBDpEPnes7UZQCDu8+FvYSL4HkIynoeTQJbA4rby0YQY2LqvHc14OZ/Mq3nDh4ksRKCdz3Rn8u6XgRAG2vb8WPn/zC2CFfBJ0FNoeNHg9crZwFiv+MlB7w50+R1QBfvooHQNy7aNbayISJyLRXzSpfIhoiB5rlxgGc1yA9q5FJd5DrLLCD9WLQQ7U+FGeOchjko02Pliz9cRWebA9SSqrUrciA4bdwcPshNi3ZDkiqNaxC9/uvBqBq/cq8OueFQttbt2hTSH5Y5boVeW/JKKa9OZOfP19A7Uuq89T4h4mMVUJxin+B4wbI2Iu5omWAiEPEvIzMngVZkwPbIhExL5hf8CIeEf924e35dmBOhHMGWxui7Fyk+y9kxjugJSJi30BYCleoVygK44rebZg/8Xe8Hh+G38Bqt/DMpEfxurysWbgRw+9Ht+g8Me5BHBGmBsEDo+/kgdF3FtieO9vNzjW7g9o0QgjeWzISd5aH+y95EsMweGzsfVzUrkFR3aLiQsLWOhCbnZNSICBqkOl4zZwY2KZB9HCEbqYziMi7IPKuwtt0LyQ3AsEJMcMQ9lYYJ/uZ4rGRg9AiCl5BVihORfVGVYiIceJxe4OpBm16tKTHQ9fy/Zg52BxWNF3jpsHdqHWxqZvV9vpWtL2+8HDsP79bFtSM0a06PR64hgEjbublW95m68qddO5/BXcMv1U5EBRnjBA2pLUVeNdhjokS9AYQeZ+ZfuDba46/1pZoDlP3TVgbIxInFd6oZzEhkQnWphD/GTL9daRrHthaImJfQQj7uby1CxLlMMjHs5Me5dfJf5CVlk2HPm2JK2sKYr3y43P89tWfGD4/nfq1P+3BsX6r2sEFCnuEnctvuox1Czcy5fXvcWW6OXEoiY+fnMDjnz54rm5JcQEjIu82Q2H9e5C2TghLddM2LQ1M3QH/UXB0NfUQTgdLjZyWAasZRiszIfUZwAX+/ciUQYgyM8/NDSkuaJp3vpg35v+PjX9tpfHlDWjYum5wLI2vEMeO1btpcfXFVG9U9bTaszlsVKhVnqN7jiEllKmcQNUGleld9p5gCtlzXUfy3cnxYXoKCsU/ISzVIHEGuH9D6rUR9vamKCFA4jTwLAFrY8SZKGtbmwdKd3lACIS9PTLlQfBuAAxIexFpuwQRLDWmUJwejgg7Y/9+gwVf/0V0QhRX3NIGm80ssfjxmrf489tllK2aeMqSiflp1ukiNvy5xRRatOpccfNlfPbsVyyZtRKv28e3o3+kXvPaZ9SmQpGDSPgMsr8H/Eh7dzTdnKvKhCmm9gE2cHY//Qatl5jn4AKc4OiGcP+EzJoCZIPrBFKvjIgefHZvpBSgZlD50C06NS6qytIfV7Fp8bbgIGizW+lyV8czbq9u81q89P1QfpmwiDrNa9JzUFfmfr4gGHXg8/g4tPPoWb0HRelBCIG01kd6NyO8y8FSFTDr2eO49h/PD2tPi4OEKcis8WaYbeQDZtSB0AKyB0rPQPHfqN6oChv/2sqmxVup0bhqsHzixVc0OuMSXEII3v3jZSaP/BbDb9D3uZvwe/0hObwel9ec7MaqrzvFv0CvaqZleTeBtQHoFQAQ1npgPfOyxyLuTWTGR2AcRkTcgdDLIv1HCEZ1CT2gc6AcBoozJ7ZMDGUqJ7B7wz72bTpAnUvMUOwylRLoOajrGbd385PXY4+ws2XZdjr1bU+jNvWZ9PJ0vG4zgsHvN0JSdhWKM0EIO9JSC+leivCtB90UyxRaJET0OfP27O2QsW+Dey7YWiGct0DmR+RGHbjBv+/s3UApQs2g8rF7/V4ev3IY7mw3dqedB9+5g273Xv2f2mze+WKad744+LnNDa0Y/+IUdIuO3+fnlqdU+KHi3yGNVOSJniAzkFjBuxYRO/I/tSms9RCxr+Zew9rILC3m32sKz0QO/G+dVpRapJQMueJ/HNh2CBD89vWffLji9f/UZnz5OB55L1R9uVPfy/nzu2UgBJd2baZSvhT/Gpn6LLjmAl5k1pdQ9leEFvWv2xPCEb66FXmvKYgodLOcrlWVTlT8O2aOmcO4577Ck+Vh2ps/MGbFa1RvWOVft6dpGj0f6QqP5Dobej9xPet+34xu0bDYLFzeq/XZ6LqiFCI9y5FJAwE3MtMOce8gHP+tFKfmvBqcue9t0tENMsdhrnr5ERGFC90qCkc5DPKx+rcNGH4/SHBnufl9+tL/7DDIT3y5WD7f/C6blmyjSr2KVK5T8ay2ryhFeLdg5tEGftwLzvolhLBC4jfgWW6Wd7Q2PuvXUJQOMlIy2b/lYFAEdueaPbiy3EG9grPF0188wnUDO2MYBk3aNzyrbStKGe6F5FZJ8IJvO9gKr7T0b9Ai70DaWoFxEmyXBkVoFYoz5ffpS3FnmhoZhpSsW7TpPzkMCqL5VU34dN3b7NtykIaX1SUmIfqstq8oPUj3H+SOry6k+5f/7DDIj7BUgzLzwLceLPUQuqpQ929QDoN8NLi0DppuqsnaI+xBtdizTXR8FK2va35O2laUIiy1CVWDPbsT2RyEsIH98nPStqL0EBkbQULFeE4cTEIIQblqZbA7z/7LkRBCOQoUZwfrJaZWAR5A5tF5ObsI65ml4ygUBdG040VsW7ULd5YbIaBey9rn5DoVa5WnYq3y56RtRelBWJshcRDUHLBeem6uoyeC3uGctF1aUA6DfDRqU58Xpz7Or5P/oEHruv8q50uhKCqEXgYSvkJmfgl6eUSUEs9UnL9omsa7f77C5Fe+RdMF/V7ordS1Fec1Iu5dZOaH4D+BiLwLocUXd5cUikK5/cVeREQ72LF6N537X0n9c+QwUCjOBsLRCRn7Krjng60twnljcXdJUQjKYVAArbu1oHW3FsXdDYXitBDWRoi4/5YHrlAUFWWrJDL4o/uKuxsKxWkhtEhE9FPF3Q2F4rTQdZ2bn7i+uLuhUJw2mrMbOLsVdzcU/4BW3B1QKBQKhUKhUCgUCoVCcf6hHAYKhUKhUCgUCoVCoVAowlAOA4VCoVAoFAqFQqFQKBRhKIeBQqFQKBQKhUKhUCgUijCUw0ChUCgUCoVCoVAoFApFGMphoFAoFAqFQqFQKBQKhSIM5TBQKBQKhUKhUCgUCoVCEYZyGCgUCoVCoVAoFAqFQqEIQzkMFAqFQqFQKBQKhUKhUIShHAYKhUKhUCgUCoVCoVAowlAOA4VCoVAoFAqFQqFQKBRhKIeBQqFQKBQKhUKhUCgUijCUw0ChUCgUCoVCoVAoFApFGMphoFAoFAqFQqFQKBQKhSIM5TBQKBQKhUKhUCgUCoVCEYZyGJRyZs6cSZMmTXA4HDRq1IipU6eG7Pd4PDz11FO0b98ep9OJEKKYeqpQ/LO9bty4kS5dulCpUiXsdjvVqlVj4MCBHD58uJh6rCjNKHtVlCT+yV7zYhgGLVq0QAjBjz/+WIS9VChM/sleV6xYwV133UWdOnWIiIigfv36jBgxApfLVUw9VpRmhg0bRpMmTYiJiSE6OpqWLVsWOMauXLmSa665hsTERBISEujcuTPLli0rhh6HohwGpZg///yTXr160bFjR+bMmUO3bt247bbbmDdvXvCYrKwsxo0bR0REBG3bti3G3ipKO6djr6mpqdSsWZO33nqLuXPnMmLECObPn891112Hz+crxt4rShvKXhUlidOx17yMGzeOgwcPFnEvFQqT07HXqVOnsnPnToYOHcrs2bN5+OGHGT16NP369SvGnitKK2lpadx5551MnTqVb7/9lubNm9OnTx+mT58ePGb//v107twZn8/HhAkTmDhxIj6fj2uuuYa9e/cWY+8BKeVp/7Ro0UIqLhyuueYa2bFjx5BtXbt2le3atQvZZhiGlFLK999/X5omc+YAK+UZ2NrZ+FH2emFxuvaan3nz5klArlq16rSvpexV8V8pSnuVsuhtVtnrhcWZ2GtSUpIsU6aMHDdunATkrFmzzvh6yl4V/4XTsddjx46Fnffxxx9LQO7Zs+eMrqfmBIpzQdu2bWWPHj2Cn8eOHSs1TZPJycnBbUlJSVLTNPnhhx+edrvnwl5VhEEpxe12s2DBAm655ZaQ7X369GHJkiWkpqYGt51OGsIPP/xAixYtiIyMJD4+ntatW7No0aKz3m9F6eRM7DU/iYmJgJlek4OyV8W5RNmroiRxpvb64osv0q5dO6666qoC21P2qjiXnK69li1bNuzcZs2aAXDs2LHgNmWviuIiMTEx5Lve6/VisViIiooKbouKisJisWD6AUyKw2aVw6CUsnPnTrxeLw0aNAjZ3rBhQwzDYNu2bWfUVu/evenUqROzZs1i8uTJdO/enaSkpLPdbUUp5Uzt1TAMPB4PW7du5ZlnnqFVq1ZceumlwbaUvSrOJcpeFSWJM7HXdevWMX78eN56661C21L2qjiX/Jf56+LFi9E0jfr16wfbUvaqKEp8Ph8pKSlMnjyZefPm8cADDwT39erVi4iICJ544gmOHTvGsWPHGDJkCPHx8dx8881A8dms5Zy2rjhvSU5OBiAuLi5ke3x8fMj+02H16tVER0fz5ptvBrddd911/72TCkWAM7XX6667jrlz5wLQokULZs+ejaaZ/lFlr4pzjbJXRUniTOx10KBBPPzww9SpU4c9e/aEtaXsVXGu+bfz1yNHjjBy5Ej69+9PTEwMoOxVUbQsXbqUNm3aAGCxWBgzZgw9e/YM7q9UqRILFiyge/fuvPfeewBUrFiRuXPnBiNmistmVYRBKSd/ukFOyMuZVENo0qQJqamp3HHHHcybN4/MzMyz2keFIofTtdf333+fpUuXMnHiRDIyMujatWtQGVnZq6KoUPaqKEn8k71OmTKFrVu38sILLxTahrJXRVFxJvNXj8fDLbfcQlRUFO+8805wu7JXRVHSpEkTVqxYwS+//MIjjzzCI488wtdffx3cf/jwYXr37k2LFi2YM2cOc+bMoUWLFnTr1o19+/YF2ygOm1UOg1JKjic2JSUlZHvO5/ye21NRv359Zs6cya5du7juuusoU6YMffv25fjx42ept4rSzpnaa926dWndujW33347c+fOZfXq1Xz11VeAslfFuUfZq6IkcTr26vV6eeqppxg6dCiGYZCSkkJaWhoAmZmZpKenA8peFeeeMx1fpZQMGDCAjRs3Mnv27OD5oOxVUbRERkbSsmVLOnfuzDvvvEP//v0ZOnRocP+bb76Jz+dj+vTpdOnShS5duvDtt9+i63owDay4bFY5DEoptWvXxmq1smXLlpDtW7ZsQdM06tWrd0btdevWjT/++IOTJ0/y2WefMX/+fAYNGnQ2u6woxfwXe61evToJCQns2rUruE3Zq+JcouxVUZI4HXvNzMzkwIEDPP7448THxxMfH0/Tpk0BU2wuR0wOlL0qzi1nOr4OGTKEmTNnMnPmzDDdA1D2qig+mjdvzv79+/F6vYBpw40bN8ZqtQaPsdlsNG7cmJ07dwa3FYfNKodBKcVut9OxY0emTZsWsn3q1Km0adOG2NjYf9VubGwsffv25cYbb2TTpk1no6sKxX+y161bt3Ly5Elq1qwZtk/Zq+JcoOxVUZI4HXuNiopiwYIFIT85obSjRo1i8uTJYe0qe1WcC85kfH311Vd5//33mTRpEpdffvkp21X2qihq/vrrL6pUqRJ0EFSvXp0NGzaEVE5wu91s2LCBGjVqhJ1flDarRA9LERMmTODuu+9m586dVK9enRdffJEOHTowePBgevbsyezZs5k9ezY///xzyHlz5swhMzOTNWvWADB9+nQAWrVqRfXq1fn4449ZsmQJXbp0oVKlSmzfvp1p06YxYMCAor5FxQXEv7HXJ598EovFQuvWrYmLi2Pz5s288cYb1K5dmz59+gAoe1WcE5S9KkoSZ2qvFouFDh06hLSRI3rYpEkTWrduDSh7VZwb/s34+tVXX/Hcc89x5513UrlyZZYuXRrcV7t2bcqWLavsVXHOyGuzAHfddRd9+/alVq1aZGRkMGPGDKZMmcLYsWOD5wwcOJBx48Zx44038tBDDyGl5IMPPuDw4cPcd999QDGOsVLK0/5p0aKFVJRcxo8fLwG5e/fu4LYZM2bIxo0bS5vNJuvXry+//vrrsPOqV68ugbCf8ePHSymlXLx4sbzuuutkxYoVpd1ulzVq1JBPP/20dLlcwTaAlfIMbO1s/Ch7Ldn8G3v9+uuvZdu2bWV8fLx0Op2yfv368vHHH5fHjx8PHqPsVXEuKE57lbLobVbZa8nm384H8rJ7924JyFmzZgW3KXtVnAv+jb3ecccdBc5dz3T+KqWaEyjOnLw2m5KSIvv16yerV68u7Xa7LF++vOzYsaP86aefws6bP3++bN++vYyPj5fx8fHyiiuukAsWLAjuL645rDDbPT1atmwpV65ceRbcFIrShhBilZSyZVFeU9mr4t+i7FVR0ihqm1X2qvgvKHtVlCTUnEBRkjgX9qo0DBQKhUKhUCgUCoVCoVCEoRwGCoVCoVAoFAqFQqFQKMI4o5QEIcRxYO+5647iAqa6lLJsUV5Q2aviP6DsVVHSKFKbVfaq+I8oe1WUJNScQFGSOOv2ekYOA4VCoVAoFAqFQqFQKBSlA5WSoFAoFAqFQqFQKBQKhSIM5TBQKBQKhUKhUCgUCoVCEYZyGCgUCoVCoVAoFAqFQqEIQzkMFAqFQqFQKBQKhUKhUIShHAYKhUKhUCgUCoVCoVAowlAOA4VCoVAoFAqFQqFQKBRhKIeBQqFQKBQKhUKhUCgUijCUw0ChUCgUCoVCoVAoFApFGMphoFAoFAqFQqFQKBQKhSKM/wfKh3Q33uZfSgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import time\n", + "# ============\n", + "# Create cluster objects\n", + "# ============\n", + "\n", + "params = {\"n_neighbors\": 10, \"n_clusters\": 2} \n", + " \n", + "ward = AgglomerativeClustering(n_clusters=params[\"n_clusters\"], linkage=\"ward\")\n", + "complete = AgglomerativeClustering(n_clusters=params[\"n_clusters\"], linkage=\"complete\")\n", + "average = AgglomerativeClustering(n_clusters=params[\"n_clusters\"], linkage=\"average\")\n", + "single = AgglomerativeClustering(n_clusters=params[\"n_clusters\"], linkage=\"single\")\n", + "k_means_2 = KMeans(random_state=42, n_clusters=params[\"n_clusters\"])\n", + "spec_cl = SpectralClustering(\n", + " n_clusters=params[\"n_clusters\"], \n", + " random_state=25, \n", + " n_neighbors=params[\"n_neighbors\"], \n", + " affinity='nearest_neighbors'\n", + ")\n", + "\n", + "clustering_algorithms = (\n", + " (\"Single Linkage\", single),\n", + " (\"Average Linkage\", average),\n", + " (\"Complete Linkage\", complete),\n", + " (\"Ward Linkage\", ward), \n", + " (\"Kmeans_2\", k_means_2), \n", + " (\"Spectral Clustering\", spec_cl), ) # this is using eigenvectors of the Laplacian matrix, we will do in details below\n", + "plot_num = 1\n", + "plt.figure(figsize=(18, 6))\n", + "for name, algorithm in clustering_algorithms:\n", + " t0 = time.time()\n", + " algorithm.fit(X)\n", + " t1 = time.time()\n", + " if hasattr(algorithm, \"labels_\"):\n", + " y_pred = algorithm.labels_.astype(int)\n", + " else:\n", + " y_pred = algorithm.predict(X)\n", + "\n", + " plt.subplot(1, len(clustering_algorithms), plot_num)\n", + " plt.title(name, size=18)\n", + "\n", + " plt.scatter(X[:, 0], X[:, 1], s=10, c=y_pred)\n", + "\n", + " plt.xlim(-2.5, 2.5)\n", + " plt.ylim(-2.5, 2.5)\n", + " plt.xticks(())\n", + " plt.yticks(())\n", + " plt.text(\n", + " 0.99,\n", + " 0.01,\n", + " (\"%.2fs\" % (t1 - t0)).lstrip(\"0\"),\n", + " transform=plt.gca().transAxes,\n", + " size=15,\n", + " horizontalalignment=\"right\",)\n", + " plot_num += 1\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "id": "d4851b8a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHxCAYAAAB3WFbeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABzt0lEQVR4nO29edwdRZX///7kYRMRN0CBkElQogJigJhxxgFXBB0HhMGRRUFRMQjIMoIwjIrOlxkENUEYQGRRRgMiy4AbiI7gzxmUNQmERRLAEIig4IKCaML5/dF1Tefm3ue59/ZW3X3ez6tfT9/q6qrq7qpTp7ZTMjMcx3Ecx3HqyKSqE+A4juM4jjMqrsg4juM4jlNbXJFxHMdxHKe2uCLjOI7jOE5tcUXGcRzHcZza4oqM4ziO4zi1xRUZx2kQkk6U9NWK0/B6SctyCGeRpNdnT5HjOE3GFRnHKRBJ+0j6qaQ/SHo0nH9YkqpOG4Akk/TSqtPRCzPbxsyuqzodjuPEjSsyjlMQkv4ZOA04FXgx8CJgNvBaYJ0+94yVlkDHcZwG4IqM4xSApOcCnwY+bGaXmtkTlnCbme1vZk8Hf1+WdJak70j6A/AGSX8v6TZJv5P0oKQTU+FODb0oB0t6WNLyoDClWUfShZKeCMMzM0dI/0sk/Y+kxyT9StLXJD0vdf0BScdLulPSryVdIGm9PmEdJ2lJSM+dkvbsuv5BSXelru+QiuPN4XyWpBsk/SY88xmS1kmFYZJmS7o3pOc/Y+n1chynWFyRcZxi+BtgXeDKAfzuB5wEPAf4MfAH4ADgecDfA4dIekfXPW8AtgLeAhzXqfADuwMXh/uvAs4YIf0C/gPYDHgFsAVwYpef/YFdgZcA04F/7RPWEmAn4LnAp4CvStoUQNI7Q7gHABuGtD/WI4yVwFHARiTv9k3Ah7v8vB14NfAq4J9C2hzHaTiuyDhOMWwE/MrMVnQcJP1f6FF4StLOKb9Xmtn/mtkzZvZHM7vOzG4PvxcCFwGv6wr/U2b2BzO7HbgA2Dd17cdm9h0zWwn8F0nFPhRmttjMrjWzp83sl8Dne6ThDDN70MweJ1HE9l0joCSsb5jZw+F5vg7cC8wKlz8AnGJmN4Ueq8Vm9vMeYdxiZj8xsxVm9gDwxR7pOdnMfmNmS4EfAjOGfW7HcerHWlUnwHEaymPARpLW6igzZva3AGFFT7oR8WD6Rkl/DZwMbEsyl2Zd4Btd4afv+TnwytTvX6TOnwTWS6djECRtAnyBpCflOSG9v54gDZv1CesA4GhganDagETRg6SnZ8kA6ZlOokzNBNYnkV23dHnrfu4NJgrXcZz64z0yjlMMNwBPA3sM4Ld7C/p5JENCW5jZc4GzSYZ60myROp8CPDxiOvvxHyFd25nZhsC7R0mDpL8CvgQcBrzQzJ4H3JEK60GSoamJOAu4G9gqpOdfeqTHcZwW4oqM4xSAmf2GZD7ImZL2lrSBpEmSZgDPnuD25wCPm9kfJc0imUPTzcclrS9pG+B9wNczJHcdSeuljrGQht8Dv5G0OXBMj/sOlTRZ0gtIFIteaXg2iUL0SwBJ7yPpaepwLvBRSTsq4aVB+enmOcDvgN9LejlwyIjP6jhOw3BFxnEKwsxOIRlSORZ4FHiEZG7Hx4D/G+fWDwOflvQE8Angkh5+rgcWAz8APmtm38uQ1EXAU6njfSRK2A7Ab4FvA5f3uG8e8D3gvnD8v24PZnYn8DmSHqpHSIbA/jd1/Rsk82vmAU8A/w28oEdcHyVR6J4g6eHJorg5jtMgZNbdq+04TqxImgrcD6w9zJyXAtLxAPABM/t+VWlwHMeBCnpkJO0m6R5JiyUdV3b8juM4juM0h1IVmTD2/p/AW4GtgX0lbV1mGhzHcRzHqR5J54etW+5IuZ0q6W5JCyVdkTbE2Y+ye2RmAYvN7D4z+xOJ0a5BVnU4jgOY2QNmpiqHlUI6pvqwkuM4GfkysFuX27XAtma2HfAz4PiJAilbkdmc1W1PLAtujuM4juO0CDP7EfB4l9v3Ug21nwCTJwqnbIN4vew+jDvb+NalU3w2suM4TsuYsc56zP/TH6tORiXsMGVpqTaSdpn0zkLq2e/bpR8CDk45nWNm5wwRxEEMsEKx7B6ZZaxuRGsyvY1oHSzpZkk3Xz7v96UlznGyMmOdnvsmOo4zJG1VYpqEmZ1jZjNTx8BKjKQTgBXA1ybyW7YicxOwlaRpYefafUgsmK5G+uH32i9fK+ObjVU6tcDpQxYFYKJ7y/zmLnwdJ8GV+hqhScUcoyZHOpBkE9j9bQAbMaUqMmHc6zDgGuAu4BIzW1RmGh5e6dtLVU0vxSKLAjDRvf7NHad8epVLV26ciZC0G4nR0N3N7MlB7indjkzYlXe6mb3EzE4qO36neopSLNJCclCB6YK1Orx3tH10Kzde/uJ4B5qkQo4J45UuIrH6/TJJyyS9HziDZEuSayXNl3T2ROF4U9UphM3GVpTeE5IWkoP28FQxFFTFu6mK8Z61Le/A6U8dh2LznoRcx3eQF2a2bw/n84YNp5AembDx3I2SFkhaJOlTwf1ESQ8FLWu+pLcVEX8MxKBlV4lXUv2p47sZNT/X8VnbiPeODU4jFY/I5sgMS1FS5mngjWb2e0lrAz+W9N1wbY6ZfXaUQOu0HK8u6SyaOn0zpz9FfcM29U7FjH+DdjPIMFDMFKIyWUJn3fTa4ci8Tt0rxPrh38wZj6wVaNaeT++JqJ6291472Sms70fSmKT5wKPAtWb203DpsLCHwvmSnl9U/I7jNIPxKrqsinIsPRFlV+ZlxzeewuiNnQio+dBSYTGZ2Uozm0Fi9G6WpG2Bs4CXADOA5cDniorfcWLCew5Gpw0VXdnPWHZ8sSiMRdHm8hkDhatMZvYb4DpgNzN7JCg4zwBfItlEcg3aYtm3TV2qbS/oTek5iJW25y9nePLMM7Uvn5NUzFFW8osIVNLGna23JT0LeDNwt6RNU972BO7ocXuhln1jIq9WUR0UotoXdCdqeuWvQSoqV4Cqpyr55TIphVTMURJFfclNga9IGiNRli4xs29J+i9JM0gm/j4AfKig+FtFG7reHWdYBqmoYqvM2riKy+WXk5VCSoyZLQS27+H+nrzj8uW9juM0hVGUmDYqP73wumB0NKl0I/+5En3qJ+p2rGPG9e5sx3HyYjwlpk2TzOtYFzj5EL0i0y9z1qmAdeOtp3ZS5zzr1BOfZO4MRM3nyBQ12fdlqW0I5kv6naQjJb1A0rWS7g3/R7Yj0/QCVocJvE2lqHff9DzrDM4oSq3LhLip9TedNKmYo6zkFxGomd1jZjOCHZkdgSeBK4DjgB+Y2VbAD8JvxxmJono4vIvaKZpNxuq9GjOG3sVolIBA3b9pnSlDZXoTsMTMfg7sAXwluH8FeEcJ8deSNi3NHhXv4XDqyijlOyYFO4ayF9P7gJp/Ux9ampB9gIvC+YvMbDlA+L9JCfGvxl7Xf7jsKCslmoIyAVlaeBPdG0Pr0XHahpc7pywKVWQkrQPsDnxjyPsKs+x7+evOzDW8bprcA1IkD69ca+R3N1HrMIbWo+O0DS93NcIt+47LW4FbzeyR8PuRjnXf8P/RXjeVYdn3gNOPKiTcuvSAxIi/u3biLfd64o02JxaKVmT2ZdWwEsBVwIHh/EDgyoLj78uFh8/hQyceWVX0juMEYmi5e6U8PDE1PFwZzoY0qZCjLAqLSdL6wC7A5Snnk4FdJN0brp1cVPyD8MUT53LMew8Z2L8LO8cZnTIqm1HjiKlSbjujyNkYlOFa40NLvTGzJ83shWb225TbY2b2JjPbKvx/vKj4B+XUL581cM9MG4Rdk1o2rnjGRRmVjVdo9ScWOevyoz5Eb9m3DL544tyqkxANTaoIYhGITjHErHR7JVh/WiU/2rz8WtL5kh6VdEfKraf1XklTJT2VsvZ7dtbEj0o/IfOuecVMAB4GF4COMxhlKd2jlMlWVYKOUzFZe2S+DOzW5Tae9d4lHYu/ZjY7Y9wj00/IfH2/6icAuwB0BiHm3oim4WWyuQyjpDa6kdnmHhkz+xHQPc+l1tZ7v3jiXPY7r/qemaw0utA5jRoCLBIvB06HXsr/MEpqoxVa32tpDcaz3jtN0m2Srpe0UwFx58K898/hsGOO6Hs9i3AsS7BWWei88nBiodGVjzMUrvw3lzIn+y4HppjZ9sDRwDxJG/byWKRl3350a+tnnHpaX79ZhGOMgjVvxaOIZ4x1KMWVtuKI9ZvHguc9JzfaPLTUh57We83saTN7LJzfAiwBpvcKoAzLvt3009arnjNTBuMpHmULy37xxdqailExbQqxfvNY8LznOAlFKDI9rfdK2ljSWDjfEtgKuC9LRGW02Nq+NLtsYZklvrQS5K3V+PFv5DiRlIM298hIugi4AXiZpGWS3k9/6707AwslLQAuBWZnMYg3Y531vMXWYLIuefXWavx0f6NOw8SHlJw20JFxUciqNisyZravmW1qZmub2WQzO6+f9V4zu8zMtjGzV5nZDmb2zSxx5/Xxh6kwx5sA7ORLFIXbyZWJFJROwyRLAyWK1q2TibZ8Q5dx+dF6y77DZKbxJgA7DuQjhJsqyB9euVbhz+aVQ/3xb1gBbd5rqZdl39S1j0oySRul3I6XtFjSPZJ2zRJ30YwncA86pf52ZoqkDUMD/Z4xDyHcZEHe5Gdz6kNTGwttpQjLvkjagmR+zNKU29bAPsA24Z4zO5N/Y2Q8gXv+sXNKTEn9GHRoYFCFJ0ah4/OzmkeM+aypVN3YcYW6i5bPkell2RdgDnAsYCm3PYCLwzLs+4HFwKws8Tv1ZlBlwIWOUwaez8rDGwKRoUnFHCWRe0ySdgceMrMFXZc2Bx5M/V4W3DLhrSjHcdqMy8CEiXp5qu4FcoojV0VG0vrACcAnel3u4WY93Iay7OutKMfJDxf29WM8GZj1e9ZJSZqol8d7gcahzZN9e/ASYBqwQNIDwGTgVkkvJumB2SLldzLwcK9AqrDs6ziOC/smkFY+sn7PIhuKrjQ7eZGrImNmt5vZJmY21cymkigvO5jZL0gs/u4jaV1J00gs+96YZ/xONbhAcpx4qEsvtSvNEdHmyb59LPv2xMwWAZcAdwJXA4ea2cos8Tu9Kbs7OO9VSnUltuer07BATMTw3mJIg+PUBZn1nKYSDbcunRJ3Ah3HqYTNxlZ4q95pJDtMWVpedwbw1ukfK6Se/e7PPlPKczTSsq+3ZhwnP2ItT67EOE5OtHxoaQ3LvpK+Lml+OB6QND+4T5X0VOra2RnT3pe6jBE7Th2IuTzFqmQ5gxPbkKxTP7I2ab4MnAFc2HEws3d1ziV9Dvhtyv8SM5uRMc5cmLHOelEL6Lbg38HJgued6shraM971iKgxKXSRVCUZV8kCfgn4KIscRSFC8A48O/gxIT38AxOngqIv3d/B1koco7MTsAjZnZvym2apNskXS9ppwLjdhxnBNouTF2xrgZ/7xW/gzbPkZmAfVm9N2Y5MMXMtgeOBuZJ2rDXjcNY9nWcMmjLOL5XKM4oxF4+Yk9f1ZhUyFEWhQxOSloL2AvYseNmZk8DT4fzWyQtAaYDN3ffb2bnAOeAL7+uCl/aujr+LpxRaUNZiv35Yk+fk42iemTeDNxtZss6DpI2ljQWzrcksex7X0HxOxnxgp8fVQzXeAs0HkYtS/4Ny6XV73tSQUeJyR+ZcSz77sOak3x3BhZKWgBcCsw2s54ThZtA2+caOKuoYrgmb0W01UK+IrwxUS7+vutLpi9nZvv2cX9vD7fLgMuyxFcnfK6B0yS6hXyMy+ZjTFPdaMMwmNODEuezFEEjLfs6jlMMnZ6ZPBWGvHovXYnJTpFKjPfqRUxbVy1J2kLSDyXdJWmRpCOC+zvD72ckzey653hJiyXdI2nXrIl3BmfUysKFj5OmiIrOFZA4KHo43Ht6nKLI0iOzAvhnM3sF8BrgUElbA3eQrFj6UdpzuLYPsA2wG3BmZ/Kvk3DYMUcUFnavymLGOutNKLxc+NQDn5NVPE1/x65Qtpi29siY2XIzuzWcPwHcBWxuZneZ2T09btkDuNjMnjaz+4HFwKxR428iZ5x6Wqnxzf/TH114NYS8vmPTK+sstLGseH5w6kAuc2QkTQW2B346jrfNgQdTv5cFN6eLA04/quokOC2ljZV1nRhGschDCfH80A7qbhAvsyIjaQOS1UhHmtnvxvPaw62nsbsYLfuWOVfkwsPnlBaX4zj1YRjFwpUQpy1ktSOzNokS8zUzu3wC78uALVK/JwMP9/JoZueY2Uwzm7nXfhtkSWJuFD1XpFfr6aBTvGemjnh3vNOh7ZPl61AWJkpjHZ4hM201iBd2tz4PuMvMPj/ALVcB+0haV9I0Esu+N44af9Po1Xo6/9g57HX9hytIjZMFbwk7Hdo2Wb5bcatDWZgojRNdb4Sy2tbJvsBrgfcAb5Q0Pxxvk7SnpGXA3wDflnQNgJktAi4B7gSuBg41s5UZ0994Ln/dmex3Xtw9M61osTgD4/mhvbRNcYN2PnNeSDpf0qOS7ki5vUDStZLuDf+fP2E4ZnHvyeibRibsfcWRXLrn3KqT4ZSEW6l1nPayw5SlpZra3fXVnyqknr3mpk+O+xySdgZ+D1xoZtsGt1OAx83sZEnHAc83s4+NF45b9q0Jl+45l2Pee0jVychMXVrrVafTlZhqqfr7O04bMLMfAd17Lu4BfCWcfwV4x0Th5G7ZN3X9o5JM0kbh91RJT6WGoc4eNe62cuqXz2Kfmz5YdTIyUZcKui7pdIqhqd+/EfM5nNwpavl1egVyOA4eIDkvMrPlkNirAzaZ6IYiLPsiaQtgF2Bp1z1LzGxGOGZniLs25N2yu/jVX+JDJx6Za5htxFvcTpvo5Hefz+H0pKBVS+kVyOE4p6jkj0Q/y77h8hzgWPrYiWkTRbTsvnji3NzDHIU6KwNNbXE7Ti+amt/rLIOcvjwiaVOA8P/RiW7I3bKvpN2Bh8xsQQ+v0yTdJul6STvlEXebqXo1U1OFo+M4w1PFsJXLoJyIa/n1VcCB4fxA4MqJbsjVsi/JcNMJwCd6eF0OTDGz7YGjgXmSNswafxvpCIx573cLwE6z8DkcxVDGey1r2MrzSHOQdBFwA/AyScskvR84GdhF0r0kU1ROniicvC37vgSYBiyQ9ACJ9d5bJb04bBb5GICZ3QIsAab3CbeyLQrq0FXp49xOHfLpKHjeLoYmvdc8n6Xsvatipaq9lsxsXzPb1MzWNrPJZnaemT1mZm8ys63C/+5VTWuQq2VfM7vdzDYxs6lmNpVkW4IdzOwXkjaWNBbu3ZLEsu99fR6usi0KvKvSqQOeT+OiyZXcsNTpXfQqR/3S3+gyp4KOksjdsu84/ncGFkpaAFwKzB5E03JWpy3dqnUShk4+1Pmb16WSK+Md1+Vd9KPu6W8jWVYt/djMZGbbpZZUf6fLz1Qz+1U4v8zMtjGzV5nZDmb2zayJL5oYlYaJulWbsjS7CmFS54q0CZT1zYcp1zHKgCx4Jd2b1pf9uCb7Do1b9h2HmMaVBxWosSzNriPDdDM79WWYch2TDHCKoygFz+VHObgiUxNcoFZDR8DFIJBiSIPj9KLIvJlH2FWVnbr0gNmkYo6yyH2LAkkzJP0kzJm5WdKs1D3HS1os6R5Ju+bxAHnhlYQzHv0EUplDD3URinnhZbI+FJk38wi7bWWnbRSxRcEpwKfMbAaJPZlTAMK1fYBtgN2AMzurmGLAM/pwxFrJlJ0u7ykrDi+TjlMSbZ0jM84WBQZ0DN09F3g4nO8BXBzsydwPLAZmURGxVsR1IdZKJtZ0OU7TcBnaHEzFHGWR+xYFJBZ+T5X0IPBZ4PjgbXPgwdRty1i1N1PpeIXn1JEiKo+mrcxxymFQGeoKj1M0uW5RYGa/Aw4BjjKzLYCjSIzmQW/zOD03lazSsq+T4MInTopQwH14rFjaXpa80VgD2jq0BD23KIBkk6fO+TdYNXy0DNgidftkVg07rUYWy75tFxp54cLHaQtFy4yYy5LLS6cJ5LpFQeBh4HXh/I3AveH8KmAfSetKmkayRcGNo8bfj5iFhuNURZnDR3WrHNssM9r87E6Kmm9RkKVPubNFwe2S5ge3fwE+CJwmaS3gj8DBAGa2SNIlwJ0kK54ONbOVGeKvlBnrrDeSEBj1vjqR9Rk3G1sRxXBHk75Vme+zKe/McdrCIBs8xszI0s3Mfkx/nWvHPvecBJw0apwxMaqwboOQz/qMMSgx0I5vNQy9FMxYlE7HqQObja1gk7ENXLbkjFv2dRxnIHopLK7EOHVllOHWrMOmD69cK04lZlJBR4nJHwlJ60m6UdKCYNn3U8H9neH3M5JmpvxPlfRUaqfss/N4AMdpE3Wbf+I4sebZUZTwKJUQJ9McmaeBN5rZ78PqpR9L+i5wB7AX8MUe9ywJFn+dBpL3MIMPW6yJC1KnbniejZ+6z5HJYtnXzKxj5GXtcJiZ3WVm9+SSOqdW5K10uBLjgBvsK4Kye0li7ZVxAjVftZTVjsxYWLH0KHCtmf10glumSbpN0vWSdsoSt5MPLmCaQZO/oyu0+VN2L0lTemVcqY6TTIqMma0MQ0WTgVmSth3H+3JgipltDxwNzJO0YS+Pbtm3PJoiYNpOnt8xb6XIhb9TFybK+01Vqn2vJcDMfgNcR7KrdT8/T5vZY+H8FmAJML2P35Et+1ZBU1vDB51yVNVJcFLkrRD0Cy9v5bapwr8qmipvYsAbdvUky6qljSU9L5w/C3gzcPcE/sfC+ZYkln3vGzX+WGiS0bRuzj92TtVJqA1lVC4+B2lwmlzZxyRvvLetIbR4r6VNgR9KWgjcRDJH5luS9pS0DPgb4NuSrgn+dwYWSloAXArMNrPHsyQ+BmISKk51DJMP2iT8i1Yo+oXvOzOXQ5OV4X54nomPLJZ9FwLb93C/Ariih/tlJBtMOjXkyMMOZ+4Zp1edjEbQJuFftKKfNfy6N0Sa3CMcK01832XOZykCt+wbCbG30kdRYmJ/pqJo63M7a9LmnbWdGtHW5dfjWPY9UdJDKQu+b0vdc7ykxZLukbRrHg8QC1krr7q00o/b+wMD+63LM+VNW597UNrUNd8GRaNN39OJkyIs+wLMMbPPpj1L2hrYB9gG2Az4vqTpdd4BO01bKq+TLz236iRkIo+ueLc4nI28K3f/HtVSlLLmw2YlMqneY0u5W/Yd55Y9gIvDMuz7gcXArFHjd1an7FbRkYcdXmp8gzLRe8hDMHqlGRf+PZqJKzHOoBRl2fcwSQslnS/p+cFtc+DB1O3LgpuTA2UX+rlnnM6HTjyy1DgHwYWf47QHH9bKh1YbxOtj2fcs4CXADBJrvp8L3ns9Vs8enJgt+/pEzlV88cS5HHC6G81zHKcavOGSE22d7JsmbdnXzB4JCs4zwJdYNXy0DNgiddtk4OE+4UVr2beKbuyYWx0XHj6Hva84supkOI7jOC0ld8u+kjZNedsTuCOcXwXsI2ldSdNILPveOGr8bSL2Vsele87lXfO8Z2YUYlZSs+K9l05ReN7KlzYPLfW07AucIun24P4G4CgAM1sEXALcCVwNHNqUFUsOfH2/Ob430wjErqRmwSfhOkXhectJI7PxFhpVz61Lp8SdQGc1DjrlKN+jqUH4Etg48O9QD/L6TjtMWVrqeuid9vxsIfXs/3fFR0t5Drfs6+SKKzFxM2yXvFeexTDKd/DhlLjZbGxFbctLa4eWxrHsO0PST4JV35slzQruUyU9lbL4e3ZeD+HEhw8z9afKCsm75ONglO/g3y5u/PtURxGWfT8NfMrMvhu2JzgFeH24Z0lYrj00delarUs6i2aUnpm2vDsXeI7jREW9DfsWYtnXgA2D+3Pps8R6WOb/6Y+1WOHRhop4GE7Y7d0D+/V31z7qUKYdx4mbIiz7HgmcKulB4LPA8albpkm6TdL1knYaNr4qKrqihwFiF+RZn/+kq79aanxOvXDl1YmZtsij1s6Rgb6WfQ8BjjKzLUiWXp8XvC8HppjZ9sDRwDxJG/YItq9l3yoq/aKHAWIX5Fmff9hv5sMu7SJ2Rd5pNy6P6kHuln2BA4HLw6VvECz7hs0iHwvntwBLgOl9wutp2XeiSr8M7dkF73DErqg51eL5w3EiQCrmKIncLfuSzIl5XfD2RuDelP+xcL4liWXf+0ZOeQ/K0J5d8DqO4+RLW4ZwYqXuQ0tZav5Nga8E5WQScImZfUvSb4DTJK0F/BE4OPjfGfi0pBXASmC2mT2eIf7G0JbVOo7TNDYbW1FoA6otsqH7HbbluZ18GLkEmtlCYPse7j8Gduzhfhlw2ajxjcooBaLsQuQF1nGKoeiy3PY5dEXR1ueujLYuv64LoxQIL0ROXfE5XKvjZdlxmk9mRSYswb5N0rfC71Ml3S1poaQrOvNowrXjJS2WdI+kXbPG7ThVE5vi0KSKO7Z36zhNxSYVc5RFHlEdAdyV+n0tsK2ZbQf8jGBHRtLWwD7ANiSrm87sTP51nDLJs4Ksq+JQByWh6ndbh3fkOLmggo6SyGoQbzLw98C5HTcz+56Zdaag/4TExgzAHsDFYRn2/cBiwtJsxymTqivIYSiqMq3TO6iKur2jIlf+1HFVUR0V0TqmOQay9sjMBY4Fnulz/SDgu+F8c+DB1LVlwa0V5CUI6ihQyqCp76VulWmsNDV/pCly4nEdDcPVsexUlea6L7/OYkfm7cCjwbhdr+snACuAr3WcenizPvf2tOxbZ/ISBHUUKGXQtvfiLbfhqFP+aIPSVUf8u8RLlh6Z1wK7S3oAuBh4o6SvAkg6EHg7sL+ZdZSVZcAWqfsn02dDyX6WfZ3i8IqxXtSxtVk1WfJ4meUji9Ll5bg46qQMD01bLfua2fFmNtnMppJM4v0fM3u3pN2AjwG7m9mTqVuuAvaRtK6kaSSWfW/MkHYnkIfw8orRaRrd5SKdx4dtXdelfNQlnXniPSXZqfvQUhEq5hnAusC1SjSyn5jZbDNbJOkS4E6SIadDzWxlAfG3is3GVrRSeDnORIxXLhrdum4Z/i2dXHKAmV1HsmkkZvbScfydBJyUR5xOghfi4SjapHyVuFl3x8mHJsuJnrhlX8eJn073c5OFkysxTlG0be5Nk+VEEynCsu+Jkh6SND8cbwvuUyU9lXI/O2vcTm/aJnQGoY2CyfPBaMQw5yK2b+dK8uDEkH+Gpe5zZIqw7Aswx8xmhOM7KfclKffZOcTt9GAUoROb4HSy45XP6gyax3spvWWXj1G/XRHprGPFXCVtbDRVTe6WfZ3R6CUsyhSeXunlhwv+OMmSx+tSPopIZ9OXg0+UxlaU5zZvUUB/y76HhU0jz5f0/JT7tDAMdb2knTLG3Sh6CYu6CM9ByFugnbDbu3MNL0/ybpHVoTJwnF7UQYZNlMY29LBUNbQk6ShJiyTdIekiSSMJuyIs+54FvASYASwHPhfclwNTzGx74GhgnqQN+4TdOMu+VRFLJZi3QDvp6q/mGl7M1KEycBzHGQZJmwMfAWaa2bbAGIlNuqHJ3bKvmT1iZivN7BngS4SNIcNmkY+F81uAJcD0XgHXzbJvLMpCL5peCcbcMxM7regyd5wuYpbXlVHd0NJawLMkrQWsTx9r/xNRhGXfTVPe9gTuAJC0saSxcL4liWXf+0aNPyaarizETJt6ZvKmDV3mabIobl75NQeX1+WRHl0Jx8Gda2b2EPBZYCnJiM1vzex7o8RThCQ7RdIMkg0hHwA+FNx3Bj4taQWwEphtZo8XEL9TEW6QzYmZLIqb52unyRS1VNrMzgHO6XUtzJ/dA5gG/Ab4hqR3m9nQrdNcDOKZ2XVm9vZw/h4ze6WZbWdmu5vZ8uB+mZltY2avMrMdzOybecTtxEPVwv6wY474y3ksLehY0hEjPrRVDTHlyZjS0mqqGVp6M3C/mf3SzP4MXA787SjJd8u+NcUrgTU549TT/nJetVLVIZZ0xEgM9lraQvq9xpQn3eZVq1kKvEbS+ko2ZnwTa9qkG4giLPu+StINkm6X9M30yiRJx0taLOkeSbtmjbtoYi4wbZvfMAzHvPeQqpNQKTHn24mIqZKFeN9lU3fvHoS6PEuseacXJhVyjBun2U+BS4FbgdtJ9JGew1ATUYRl33OB48zslcAVwDEAkrYmmRS8DbAbcGZn8m+s1KXAOAkdwXHql89qtTJTl3xbB0Ef67tsupG6JhBr3okJM/ukmb3czLYN01KeHiWcIiz7vgz4UTi/FvjHcL4HcHFYhn0/sJiwNLtqvGA3g7TgOPXLZ/GhE4+sLjHOhLigz49hZJi/98FoVb3gln3XsOx7B7B7OH8nsEU43xx4MOVvWXCrHC/YzeSLJ85l7yuO7Hu9aEFVp3lMdUqrsyYuw/KnTe+0tZtGjmPZ9yDgUEm3AM8B/tS5pUcwNmr8TjvIWsFeuufcvteKFlR1msdUp7QWTZFKXZ1a+a7cOnWhCMu+d5vZW8xsR+AiEgu+kPTAbJG6fzJ9rPj5FgVOh7wq2PF6ZhwnTZFKXZ1a+a7ctoi2Di2NY9l3EwBJk4B/Bc4Ot1wF7CNpXUnTSCz73tgn7FptUTAodWqNNY1L95zb6gnATnx4j0e9cXkeD0XYkdlX0s+Au0l6XC4AMLNFwCXAncDVwKFmtrKA+KOlTq2xJgrZU798VtVJKB0XttXTryx5j0e9qZM8n5C29sik6bLse5qZTQ/HcWZmKX8nmdlLzOxlZvbdPOJ2iqHJQrZNq5n6CdsmKqp5k5cSWGRZckXVcdyyb650KgcXLnHzxRPnVp2EXBklvzVZUc2LOrS465DGtlFH+d/aVUvOmnQqBxcu8TCeUHnXvKNKTElx5JHfvIfGcfKhlvK/zUNLkh4IWxHMl3RzcDtV0t2SFkq6QtLzgvtUSU8Fv/MlnT1u4M5qjKrl17F1kCfjCZWv7zenxJQMR9nfzXtoHMepK3n0yLzBzGaY2czw+1pgWzPbDvgZcHzK75Lgd4aZzc4hbqAdlfWoWn4tWwcFULceB/9uTkzUrfw4w+FDS12Y2ffMrJPrf0JiL8Zx+lKGIuo9Dk7TaUODznF6kVWRMeB7km6RdHCP6wcB6dVJ08JO2ddL2ilj3H/BW6/1xr9fOTSpVe2V9poUWY68IdBw2jxHBnitme0AvJVkW4KdOxcknQCsAL4WnJYDU8xse+BoYJ6kDXsF6pZ9nTxoUsWdB92VUZ3fjyu/q+OKnZOFVg8tmdnD4f+jwBWE3awlHQi8Hdi/Y0cm7Hr9WDi/hWTrgul9wm2kZV+nXPJsRcZQUeSteHgruzlUrdjFUD7GI/b0OdnIsmnksyU9p3MOvAW4Q9JuwMeA3c3syZT/jSWNhfMtSbYouC9L4p3yaatAqLqigGIVjzJ7Z9qah5rKjHXWi6J8jEfs6aucFg8tvQj4saQFJHsmfdvMrgbOINn1+tquZdY7AwuD/0uB2Wb2eIb4XSBWQNMEguehhDJ7Zzp5yN99MxhWJvh3Xx1/H9kZWXqZ2X3Aq3q4v7SP/8uAy0aNrxdNq1Sd8qkqD202tqL1QzteftvJMN+9Dr09WYni+UrsPSkCt+zbIFyzrw/DKDF1npTrOFmIopJvAa2e7NvLsm9wP1zSPZIWSTol5X68pMXh2q5Z4nbWpF+hdwWn3rjS02ya+M2qlDku79pHHn3bbzCzX3V+SHoDsAewnZk9LWmT4L41sA+wDbAZ8H1J081sZQ5pcMbBWzXNpNfwVNETgts+HFYETXynVcqcmOVdR8mKLo0+tLQGhwAnm9nT8Jel2ZAoNxeHZdj3A4sJy7WLoFsrdy3daRplV4D94vOy1Tz8myaM2lvW7/3N/9Mf41NiGkARln2nAztJ+mmw4Pvq4L458GDq3mXBrRC6M4tnnnJwAdgsBhHkXraah3/ThFEbC3V7f1bQURZFWPZdC3g+8BrgGOASSf1Wlfd81rZa9i1bCSgivroV4KZQVN5p4rDHqLiS7jSWFtuR6WfZdxlwuSXcCDwDbBTct0jdPhl4uE+40Vv2bYISEKvSEUuFEUs6BiHWb9kk/B07TpzkbtkX+G/gjcF9OrAO8CvgKmAfSetKmkZi2ffGTKmvEBdqxRHLu53/pz/WSplxnLYTW3mNLT19qXmPTJZ+4xcBVySjRqwFzDOzqyWtA5wv6Q7gT8CBYb+lRZIuAe4k2UzyUF+x5MROLEqV44yHryhLyLO85vFOXX6UQxGWff8EvLvPPScBJ40ap+PESBusjzpxUyclpi5KVx3SmBdlGq8rArfs6zgZcSXGcQanTQqCUw65W/aV9CpJNwT3b0raMLhPlfRU8JveTNJxnAiJYXw/hjQMShMt9DotoeZzZPLokXmDmc0ws5nh97nAcWb2SpKVTMek/C4JfmeY2ewc4nZGoE6Vg1MdMfQ0xZCGQfGehvJxWZYPrd5rqQ8vA34Uzq8F/rGAOEpnlAITayGrU+WQlSpbyQedctTAfmPNK44zKmWUvTbJMqc/RVj2vQPYPZy/k9Vtx0yTdFuw+LtTxrhLZZQC44WseqpsJZ9/7JyB/dYlr9RR4fIhn2roLnt1zDutoeVDS70s+x4Uzm8BnkOyBBtgOTDFzLYHjgbmdebPdNNWy75l4QLFGZW6KFxpfMgnDvLIOy67nF7kbtnXzO42s7eY2Y7ARcCS4OdpM3ssnN8S3Kf3CTd6y751po6VUd3Z+4ojM93vvQqOE6/sqn35bGuPTD/LvpI2CW6TgH8Fzg6/N5Y0Fs63JLHse1+25DtVU/sCXBKX7jk30/3eq+A48VL38tnmyb4vAn4saQHJVgPfNrOrgX0l/Qy4m2QvpQuC/52BhcH/pcBsM3s8Q/xOyfTq1q17AYZyu6sPOH3wCcDOaPjwg+O0CyW7B8TLrUunxJ1Apyd1sd5ZBfvc9EEufvWXqk5GKRSdD7KG7/nUiZEdpiwt1dbu1ifMKaSevfOko0p5Drfs6xSCVw79ufjVX+K4vT9QdTJKoeh8kDV8z6dx09TeNR+Sz5esln2fJ+lSSXdLukvS30j6N0kLg/Xe70naLOX/eEmLJd0jaddR4/VM4NSdky89lw+deGTVyXCcqElP7m2SUhOdAt3Wyb6B04CrzezlJBtI3gWcambbmdkM4FvAJwAkbQ3sA2wD7Aac2Zn8OyzRZQLHGYEvnji36iQ4AW8cxU+sK5aaQGsn+wYbMDsD50Gy67WZ/cbMfpfy9mwSo3kAewAXh2XY9wOLgVmjxh8LLgCdrGRdmu1kpw2NoyJkVezyL/b0OfmQpUdmS+CXwAXBWu+5YRk2kk6S9CCwP6FHBtgceDB1/7LgVmvaIACdYsm6NDtPmtR976zOKLJqovwQu/yLPX3R0OKhpbWAHYCzgrXePwDHAZjZCWa2BfA14LDgv9dj9Zwp7ZZ9nTYyzN5MRVFk930ZSpK3wPPFh3OcOpBFkVkGLDOzn4bfl5IoNmnmsWrTyGWsvu/SZBI7M2uQt2VfF25OHTj/2DmNXc00Y531SqkUB22Be89Tc2jat6zieVo7R8bMfgE8KOllwelNwJ2Stkp5253EMB7AVcA+ktaVNI3Esu+No8Y/DHXuXqxTIa1TWmPl5EvPrToJhRBbyz629Dij07Rv2bTnKYOsq5YOB74maSEwA/h34GRJdwS3twBHAJjZIuAS4E7gauBQM1uZMf7G08nUdVASvADmh1sAdhynNGo+R8Yt+zpOTShreMaJmxjzQZEWkmN83qIp27Lvyz9VjGXfuz/pln0dx0kRmzCvQy9hE4ktH0Cxw/cxPq8TF7lb9g3uhwfrvYsknRLcpkp6Klj8nS/p7DwewHEGxSd954tXMI7TDOo+2TerGt2x7Lu3pHWA9SW9gcT43XZm9rSkTVL+lwSLv45TOnWe9B07bez+zwN/b8Xg77Vd5G7ZFzgEONnMng7uj+aQTsdxSmKUIaPxKg0fguqPV7bFMOp7bW1erflk3yIs+04HdpL0U0nXS3p16p5pwe/1knbKkvAyqONQRGsLYg7U8XsXQd6Va2yV9TBlxPNEO+jkidjyqjMYRVj2XQt4PvAa4BjgEkkClgNTgt+jgXmhV2cNYrHsW8ehCC+Io1PH7+0MzzBlxPNEO3C5WW+KsOy7DLjcEm4EngE2CptFPgZgZrcAS0h6b9Ygb8u+seC9JdXirWvHcfKiSfK87pN9c7fsC/w38EYASdOBdYBfSdpY0lhw35LEsu99oye9frjWXy1tal270lZ/mlRR1oFh3/ew8ty/Z3Fklewdy77rkCgl7yMZYjpf0h3An4ADzcwk7Qx8WtIKYCUw28wezxi/0wB8hUH+tElpK5My8+qw8RRplK4NFP1do5ZxpZrfy59Mud7M5gMze1x6dw+/lwGXZYnPaSZRF3AnGspQIiZSBmLOq3VWYlwJq5iaKzK1sOzr3eTl4F2fTszEtHu2ky9VvnevX6qjn1HdYcliR+ZlKSu98yX9TtKRkl4g6VpJ94b/z0/dc7ykxcHq766DxuXCpRxibm06zaZbic5DqY61gvIGQ1x4/VLpZN+OUd2XA68C7hol/Vkm+95jZjOCpd4dgSeBK0iWYP/AzLYCfhB+I2lrYB9gG2A34MzO5F/H6YcL/XbQrUTnoVTHWEHVaT5YXcteXdPdNsYxqjs0eQ0tvYlk+4Gfk2xP8JXg/hXgHeF8D+DisAz7fmAxMCun+FtJGwpsP6Efa2vbccajLkoM1Cutaeqa7kopyLJv2iZcOA5OxdrPqO7Q5KXI7ANcFM5fZGbLAcL/zl5LmwMPpu5ZFtwaTREV7qBWKJtc2WdtbbdBCXScDp7fnSpI24QLxzmpy/2M6g5NZkUmLL3eHfjGRF57uFnW+GOnU+HmpVRsNrZi4BZHXl3rdVCIirYB4Th1pu75vQ4yqM5UNEemn1HdocmjR+atwK1m9kj4/YikTQHC/86mkcuALVL3TQYe7hVgLFsU5EleSkUV4/5FxplXS7HugtpxnP5klUFVKkK16A2rYNPIcYzqDk0eisy+rBpWArgKODCcHwhcmXLfR9K6kqaRWPa9sVeATd2iwFmTYRSQPARCLGE4+eHfw5mIKid+eyNrXDpGdRcCM4B/HyWQTF9X0vrALsCHUs4nk2wU+X5gKfBOADNbJOkSEo1rBXComa3MEr/TLvIQCLGE4eSHf4/6UKdVW61C1czyGMeo7lBktez7JPDCLrfHSLqIevk/CTgpS5xlUkdrky4oHMeJFZdNThHUwrJvVdRNiQEXFM7o+BDNcGR9X/6+nQ5VT2Zu7e7X41j2/TdJC4Pb9yRtFvxPlfRUyv/Z+T2G4wxO1UIjBk547Z5ruLkSvDoT5ZOs72uQ+9uq7LTtuStvNFcw2TdPRn57ZnYPyeQcgoXeh0gs+/7azD4e3D8CfAKYHW5bEiwBO05lVC40IuCk/72i0PCbMMQZQz6p+zsclbY+tzMauVv2NbPfpdyfTQtsxdSFtrVynITxvvuHTjyykDi9IqonLiNaSs17ZIqw7IukkyQ9COxP0iPTYVowRXy9pJ1yitsZEK9c2sl43/2LJ84tTJlx6ofLiMFwhS8uCrHsa2YnmNkWwNeAw4LzcmBKMEV8NDAvbBpVKzwDO03jiyfOrToJjlMrmqbwtXayb4puy75p5gH/CBA2i3wsnN8CLAGm9wowZsu+TcvAjtPhoFOOqjoJtcIbNU5eVJ6XfGhpdcu+krZKXdsduDu4bxwmBSNpSxLLvvf1CtAt+zpO+Zx/7BwfZhoCb9Q4eeF5KRuZFJmUZd/LU84nS7ojmBx+C3BEcN8ZWChpAcnmULPN7PEs8TuOky9FzJmpvLXpOAPSWtMMbe6RMbMnzeyFZvbblNs/mtm2Zradmf2DmT0U3C8zs23M7FVmtoOZfTNr4p388UrHyVuZ8damUxdiWHLvDI9b9m0IebUkvNJxIFFmDjvmiIk9FkydFOvWtuad+iMr5iiJ2igydRJoVRBLS8K/U3M449TTKldm6qRYx1IGHadtFLFFwddTbg9Imp+653hJiyXdI2nXYeKrk0BrM/6dmsUZp55WdRKix3tinDyoshHY2uXXZnaPmc0IWw7sCDwJXGFm70q5X0aYCCxpaxLDedsAuwFndlYxNRHvmagXMVZGMeWhXnszOQlN6ImJMf+3DW8Ejk7uWxR0HCQJ+CdWLc3eA7g42JO5H1gMzMop/nGpopDGmiljqhxjIsbKKKY8lHVvpjbmuzo9c4z533EGpZAtCgI7AY+Y2b3h9+bAg6nry4Jb4XghXUVMlWPTqFPFVTZ1yncxTJz3HhKnVNq8/Bp6b1EQWM1QHr0fq+e05pgt+6bxistJU1ZlXXW+O/KwwyuNv2gGafgU/Q288eU4g5NHaVljiwJJawF7kcyd6bAM2CL1ezLwcK8Azewc4ByAW5dOiXb37JhbmZuNrXBh2FCqzndzzzi90vhjoOpvkMbL+mDMWGe9qL5bTJQ5MbcIct+iIPBm4G4zW5ZyuwrYR9K6kqaRbFFwYw7xOz1wwdY+qu6pcarBy/pgDKPEtG5or812ZPpsUQA95syY2SLgEuBO4GrgUDNbmSX+thB7oYo9fW0hltam5wen7rhyWC8yfS0zexJ4YQ/39/bxfxJwUpY420jshSr29Dnl4vkhX2IZEoklHU4B+NCS0wtvlTpNwvNzNrIM+5WhPAySPldinFjJOrR0lKRFYbfriyStJ+kFkq6VdG/4//zgd6qkp1JWf8/O5xHixFulToyMWqF6fs5GtxIwimJYpDLpSkp2aq3st3X5taTNgY8AM81sW2CMZG7MccAPzGwr4Afhd4clHau/ZjY7Q7pbR60LiTM0RU3c9QorDkZRDF2ZjJtaf5+2KjKBtYBnheXW65Msp94D+Eq4/hXgHRnjcCi3kMSsNMWctjxxhcNxHGcwsuy19BDwWWApsBz4rZl9D3iRmS0PfpYDm6RumybpNknXS9opQ7qdAom5ZRFz2qA9ipbjNJ1WmTNo6/LrMPdlD2AasBnwbEnvHueW5cAUM9seOBqYJ2nDPmHXwrJvm4m1kFetSMSuaDmOMxjeK1ofsgwtvRm438x+aWZ/JrEl87fAI5I2BQj/HwUIm0U+Fs5vAZYA03sFbGbnmNlMM5u5134bZEiiUxSxFnJXJJpHnspprAp4lemK9Z04JdLiOTJLgddIWj/sdP0m4C4SC74HBj8HAlcCSNpY0lg435LEsu99GeJ3GkBWIVp1D4xTPHkqp7Eq4FWmK9Z3UhRlK26uKBbPyBLCzH4q6VLgVmAFcBvJ/kgbAJdIej+JsvPOcMvOwKclrQBWArPN7PEsiXfqT1YhGlsPjBsNc5y4Kbt81kEe1H2vpayWfT8JfLLL+WmS3pluv5cBl2WJz6kOr6AHoy7vyDcabAZeLp1cKHFibhG4ZV9nIFxYNgtXYpqBl8vRGWXIx4ey4yR3y76pax+VZJI2SrkdL2mxpHsk7Zol7rIoenwz9oJRdvpifx+O4zSDUZTAQRsAtZNjbZ3sO45lXyRtQbIr9tKU/63D9W2A3YAzO5N/Y6boFk/WlnHRilbZLXfvKXAcp+64HCuXIiz7AswBjgXSA297ABeHZdj3A4uBWRnjbxzDavLetey0GV/15jjZkYo5yiJ3y76SdgceMrMFXbdsDjyY+r0suDkpXJN3nMHJY9Vb3r2adVKO6pRWp0Dcsu9qln0PAE4APtHrlh5uPZ/ULfs6daLNFWETyLtXs06NkTql1XH6kSUX/8WyL4Cky4H3kSg2CxIbeUwGbpU0i6QHZovU/ZNZNRS1GmZ2DolNGm5dOiWqdWG+bHV1fPlnuytCx3EaQM3tyORt2fdyM9vEzKaa2VQS5WUHM/sFicXffSStK2kaiWXfGzOmv3TaWsn06yVouxJTNkVM7vYeIMdx6kyWOTI/BTqWfW8PYZ0zjv9FwCXAncDVwKFmtnLU+MfDTULnT9kKnFeuvSlCcYxFOe9883fNO6rilDhOy6j58muZRTVyswa3Lp1iPpxTDj5M5DiOUz07TFla6mDP1AtPLkQReOCA40p5jlpY9i1DialbL04RPRauxDgxcdgxR1SdBMdxakDuln0lfV3S/HA8IGl+8DtV0lOpa2fn8gQ5UbdK3HuonKKpWrk/49TTOOiU+gwzVf2+HGdkaj60lLtlXzN7l5nNMLMZJJtEXp66bUnnmpnNzpJwx3GKJQbl/vxj53DkYYdXnYyByPK+ylaCXOlymkRRln0JK5n+CbgoYxyO47SYuWeczgmv3bPqZPyFIpSAspXGGJRUJx4kK+Qoi9wt+6a87AQ8Ymb3ptymSbpN0vWSdho1bsdx2sVJ/3sF+523+jBTVb0KgygBvurOccojb8u+70552ZfVe2OWA1PMbHvgaGCepA37hJ2LZV/vPq0Xgwr/qr6r56dqmff+OavNmYm5V8HnsDm1oq1zZEhZ9jWzP5PMhflbgDDUtBfw9Y7nsFnkY+H8FmAJML1XwGZ2jpnNNLOZe+23wcgJjFnQOWsyqPCv6rt6fqqe84+dwwGn12cCsOP0I6Zeu9YOLdHbsu9d4dqbgbvNbFnHs6SNJY2F8y1JLPvelyF+x3GGINYepWEF+oWHuzLj1B/vtcuPoiz77sOak3x3BhZKWhDum21mj48av+M4wxFrj9KgAj2tiF14+JyoLQDH1Np2nAmp+dBSLSz7Vp0Gp724VWnHqQ+xlddR01O2Zd8tL/r3QurZ+/b9F7fs6zhpqhga6SWEYh2iaStuAdjpEJMSA/Glpx9SMUdZZLXse0Sw6rtI0pHB7Z3h9zOSZnb5P17SYkn3SNo1S9x1p+qu56rjH4VYhkZiSYeTcMapp1WdBKfFNKJhIyvmKIksy6+3BT4IzAJeBbxd0lbAHSQrln7U5X9rkrkz2wC7AWd2Jv/mSV0yVdWaetXxO04s1EVmOPHhG+3GQZYemVcAPzGzJ81sBXA9sKeZ3WVm9/TwvwdwcViGfT+wmEQJypVhM9UwPRMu8JwiqWMv2TCUUX5GmQDsFVFc1KkcNCXvtHn59R3AzpJeKGl94G3AFuP43xx4MPV7WXCrlGF6JpqSaetKHgIuj8q0qAq56b1kRZWf9Pf4+n5zConDKY9OOaiTQuNUS5bl13cBnwGuBa4GFgDj5bxeU396qmx5WfZ1mkUeFX0elakrtGtSZW9lnb+H9/L2p+mKfUy0erKvmZ1nZjuY2c7A48C943hfxuo9NpNJbTLZFW4uln3bjgtJpyxiViZibtnH/N7yxuVRvFQ5tCRpLOzB+K1R05911dIm4f8Ukgm+4+10fRWwj6R1JU0jsex7Y5b4nfFpk5B0ysErI8dxcuYIVu0KMBJZ7chcJulO4JvAoWb2a0l7SloG/A3wbUnXAJjZIuAS4E6SoahDzWxlxvidyPGKr1nkrRyXkT98iCIOvGEVMRVZ9pU0Gfh74Nwsyc9Uws1spx5uVwBX9PF/EnBSljjbTGxWKwehW3jV8Rmc4vDKLT7qWEbrmOY2IOlg4OCU0zlmdk7q91zgWOA5WeLxL18j8iqoeRX6UWwouLBxnLipUxntyLI6pTlGiloqHZSWc3pdk/R24FEzu0XS67PEk7tl39S1j0oySRuF31MlPSVpfjjOzhK3Mzp5FXpvTTuOUyWuwNSa1wK7S3oAuBh4o6SvjhJQEZZ9kbQFsAuwtOu2JWY2IxyzR407CzGvYGgzWeZKTHSvz9NxnPLxclcfqpgiY2bHm9lkM5tKYvX/f8zs3aOkP3fLvuHaHJJxr+h2rnYNPk6y9O5MdK/3HNUPrwTrz6DlzhuX1eOWfbss+0raHXjIzBb0uGdaWC9+vaQ1Jgo79SbvyscFXHtx5bM9eOPSMbPrzOzto94/cg4ys7skdSz7/p5Vln1PAN7S45blwBQze0zSjsB/S9rGzH43ahrKxmfGj0/elU/b3nXTN6Ar4/ma/g4dpwjK7D0pgrwt+z4ATAMWhAk8k4FbJb04bBb5WLjvFmAJML1XuLFuUdC2itVJKKtnqIy9iKqkaAVjs7EVrsRkxHtBnTqSt2XfC81sEzObGibwLAN2MLNfSNpY0ljwvyWJZd/7eoXbhC0KYqk8nMEY73tVpcDmlYfyqNzrkJ+9oZEdf4ftpO57LWXNtZdJeiHwZ4Jl33H87gx8WtIKYCUw28wezxj/X4ht2MdbhvUixu8VU5piSovjOPkyqeZDS7lb9u26PjV1fhlwWZb4xiMmJcZpFj7voh7E8p1ia1Q5xeHfOg6y7rVUGXXo6naaQV6Vo+fZYolBiQFvVLWJLN86JnnQ5uXXPS37Spoh6SfBeu/Nkmal/B8vabGkeyTtmiXujtDyyWlOXYilonWaTV1kYt4VeUyKwSC4PMiPIiz7ngJ8ysxmAJ8Iv5G0NYn1vm2A3YAzO5N/s+CtH8cphhgqhhjSMCixKBB1kYl5V+SuGIxOm3tk+ln2NWDD4Oe5wMPhfA/g4rAM+35gMYkSlCt1EnyOEzMxVAxlpCEvBaQuCkQal5cO1H/VUu6WfYEjgVMlPQh8Fjg++N8ceDB1/7LgNi7DFrQYhO9EtE14xNJSdZxe1FEBGZSJZE0d5GWRDCqbXIbFzciKjJndBXQs+17NKsu+hwBHmdkWwFHAeeGWXvrZhH1PTSxoVT9T2YpUkysKx4mZqmVN3uQtuwaVTU2XYZNkhRylpT/LzT0s+94LHAhcHrx8g1XDR8tIemw6TGbVsNNqxGrZtynEJty8tePUhb2vOLLqJLSa2GSXEwd5W/a9iEQ5eV3w8kYS5QbgKmAfSetKmkZi2ffGXuE2wbKvMzhNb+04zeHSPedWnYTa0bah9DrS5sm+kFj2vRP4Jqss+34Q+JykBcC/AwcDmNki4BLgTpKhqEPNbGXG+CvFC+jo+LsbnarfXdXxx8BhxxyRe5hN7Zn0XhSnaGQWt2niW5dOiTuBjtMQYrGMWxf2O+8o5r1/zsj3+/t2OnTnhR2mLC1xzQ+8+rv/Ukg9e9Nb/72U56itZV/HcfLFK9XhmPf+OZnmzAzyvpvaSzMRbXvuqstem5dfO47jtJpL95zLkYcdXlj4bZ0/ludz12UotC7pjJEJFRlJ50t6VNIdKbcXSLpW0r3h//OD+wsl/VDS7yWd0RXOdWFrgvnh2CT/x3EcxymXuWeczjHvPaTqZERDbL0pWXs7ylIwquyVacPy6y+TbCmQ5jjgB2a2FfCD8Bvgj8DHgY/2CWt/M5sRjkdHSK/jOCURQ4VUl1bqqV8+i3fNO6rqZERB03qRqh72cSZmQkXGzH5EYiMmzR7AV8L5V4B3BL9/MLMfkyg0juPUmBgqpDpVIl/fbw4HneLKjFM/2rr8+kVmthwg/B90mOiCMKz0canMqUCO4zjFc/6xc9jr6uLmzDhOEbRhaCkv9jezVwI7heM9/Ty6ZV/HcbrpHuoaZeirjOGyy3c7vVY9MzEMITpOFkZVZB6RtClA+D/hfBczeyj8fwKYxzg7X7tl32Koy3wDJ1/G++51yhPdQ12jDH2VNVx2/rGj25cpmxiGEJ1qaevQ0lUkeyoR/l85nmdJa0naKJyvDbydZPdsJ9CrQsm7pVSn+QZ1JjblYLzv7nmiWD504pFVJ6FSYisLo+A9VvEzyPLri4AbgJdJWibp/cDJwC6S7gV2Cb87/h8APg+8N/jfGlgXuEbSQmA+8BDwpZyfJXrGK9S9KhRvKeVLG5ZROuUxSAX3xRPn9r3WhEp+IppQFvrJ4SZ9v7rPkZmwpjSzfftcelMf/1P7+N9xwDQ1liYU6jqTx/tvg1n5vJ+xqe8sa0Ojie+kTTTp+02i3jsBuWXfQJu7D5vUsiiaJgmvfuT9jLG+s7rn+/HS32Z55rSPvC37TpX0VMp679mpe3aUdLukxZK+ENvy6zYN43QLwFErGheWTp2JVcEalPHS3xZ55jIoH9ow2ffLDG7ZF2BJynrv7JT7WcDBwFbh6A7TKYm8BHhbhGVWqhC2de9taAJZv7t/w4lp455Mzprkatm3H2GJ9oZmdoOZGXDhRPe0CS9AzaYKha/uvQ11YTxlJY85NG2VDVUo/20uM3Wf7FuEZd9pkm6TdL2knYLb5sCylJ9lwc2h3QXIKZ4iKoUYK9gq0lS0klq2bIjlu3pvb7m0VZHpx3JgipltDxwNzJO0IdBrPkzfp3TLvk7diaVCgGyVQr/niFH5jjFNdcPfoVNHRpVwj0ja1MyWpy37mtnTwNPh/BZJS4DpJD0wk1P3TwYe7he4mZ0DnANw69Ip9V4XNgFNXZradpryTZvyHI4zCpuNrRipITDqfVVRZu9JEeRq2VfSxpLGwvmWJJN67wvDT09Iek1YrXQAE1gDLppYWsxeUTh1IpZy41RPG/LCqMpInZSYJpC3Zd+dgYWSFgCXArPNrDNR+BDgXGAxsAT4bl4PMUqBcgXCcYbHy834tKFy7+B5oTnUfY5MrpZ9zewy4LI+4dwMbDtU6gakLgXKh5Gqxd+/UzSev9qDy5N4cMu+JeKZvlr8/dcTN3qWP2X3HDWxp6pJ8mQSVshRXvonYEjLvmtL+kqw4HuXpONT91wn6Z6U1d9NesXnOE6cVFUZdc83cMUmO2VXwk2q9JtI3YeW8rbs+05gXTN7JckmkR+SNDV13/4pq7+PZkq5kzteQTjjUWVllFaiqp5I2cTeBcepM3lb9jXg2ZLWAp4F/An4XS4pdQqn6gqiTXhlOBwxtehjSkvTaWo5ia3R2IYemV70s+x7KfAHEsN4S4HPplYtAVwQhpU+HtumkVmJLWMWRVMFS9m0uTL0PBQno36XIr9nU8uJNxrzJe/JvrOAlcBmwDTgn4M9GUiGlV4J7BSO9/QLpI6WfduSMbMKlrYofE5/mlo5lUGR5afzXYZVTGL4nq4cZ6OtPTKPBIu+nQ0hO/Nd9gOuNrM/hzkw/wvMBDCzh8L/J4B5JEpPT8zsHDObaWYz99pvgxGT6MRIWxQ+xymCMnZ7jkExGZY6pjkm2qrI9LTsSzKc9EYlPBt4DXC3pLUkbQTJyibg7cAdNARvDVSHv/vR8XfXbtpa+Xu+bx55W/b9T2ADEiXlJuACM1sIrAtcI2khMB94CPhSzs9SGW0VCDGQ97tvk5DzfOvkzYx11ou+DE2U72NPfxHU3Y5M3pZ9f0+yBLvb/Q8ky7FrSRssOLbhGQfB34HjjE4Tyk8TnqFtuGXfAWhDxm5TK6VJz+K0m4NOOarqJDgNoPFzZPpY9n2npEWSnpE0M+W+i6RbgmXfWyS9MXVtx+C+WNIXmrb8uuk0QZnrrPhowrM4DsD5x86pOglOA5ikZwo5Skv/AH6+zJqWfe8A9gJ+1OX+K+AfwjLrA4H/Sl07CzgY2Coc3WE6TqH4iikndppunsB7Q50iGMmyr5ndZWb39PB7m5k9HH4uAtaTtG5Yor2hmd1gZgZcyCprwJnxwlFv/Ps5TkIWZfuE3d6dY0pWJ68yWmZvaNOVwjxp/NBSBv4RuM3MngY2B5alri0LbrngQwX1pk7frwilywWukwcnXf3Vca9nybt1KqMdHl65lpetllCIIiNpG+AzwIc6Tj289VXX6mjZ12kHRQh0H/Jy8uTIww7v6d6dd6uu5MvoifWyNRh1X36duyIjaTJwBXCAmS0JzsuAySlvk4GHu+/t4JZ9y6UOQztVC13HiY1+5XbuGaez33kTr2aqupKvYy+PEye5KjKSngd8GzjezP634x42lnxC0mvCaqUDWGUN2OmibMWiDgKlaqHrODGQlg3jldt575/DYccckTmOuuANnWw0fo5ML8u+kvaUtAz4G+Dbkq4J3g8DXgp8POxyPV9SZ2fsQ4BzgcXAEuC7gySwjRm0DoqF4zjlM4xsOOPU0/jQiUdmiqMuSo03dLJR9+XXShYRxcutS6fEnUCntbg15NXx9zE+Vb2fw445gjNOPa30eOvIZmMrolCKdpiytFQ7a++76X2F1LMXvPqCUp7DLfsWTBE9SnVpJTUdr7RXJ4/30eS8XVV+OePU09wC8IDEoMRUwZiskKMs8rbsO1XSU6lhpbNT166TdE+PIadaM5GiUkTB8Aq0WbRx+LQfnreL4fxj57gy4zSWvC37AiwxsxnhmN11bf/UtUeHT258lK3Bt6XSa3LLvJu2tgK7adM3r4Lzjx19ArDTbKpYfi1pC0k/lHRX6BgZOXPmatnXKZ62VHqjtMzTFWEslWIs6YiRbqXce2OK54xTT+trZ8ZpLxVN9l0B/LOZvQJ4DXCopK1HSv8oN03ANEm3Sbpe0k5d1y4Iw0ofz7JppFcOTi/SFeEwlWKR+ckr5/60RSmPjblnnF51EhwHM1tuZreG8yeAuxjR4n/eisxyYIqZbQ8cDcyTtGG4tn/YTHKncLynXyATWfb1ysHJE89PTpMYdPh5r6u9Z8ZJKMqOTLouD8fBveKXNBXYHvjpKOnPtUkU9lV6OpzfImkJMB242cweCu5PSJoHzCLZPLJXOOcA54Avv3YcxxmGTcY24OGVEyvnl+/mPTNOsaTr8n5I2gC4DDjSzH43Sjx5W/bdWNJYON8S2Aq4T9JakjYK7msDbyeZMOw4f8GHDJ2iaUMeG7aHsS0LCJz+jGGFHBMR9IHLgK+Z2eWjpn/CHplg2ff1wEbBmu8nSSb/ng5sTGLZd76Z7QrsDHxa0gpgJTDbzB6X9GzgmpDoMeD7wJdGTbTTTOo6xBOLEa26UcV7q2seKxLPu06ZVng7hHmy5wF3mdnns4Q1YQ42s337XLqih9/LSLSrbvc/ADsOnbpxcCuiTiwMWhG4wrM6o74LL/tOXUnLAM/HvJZkruztkuYHt38xs+8MG1BtpeqgGcArj+LxdzwY/o7yYdgVaS2vLJyISMuAmPJlmRs8djCzHwO5bGGQt2XfdSRdIOl2SQskvT51bcfgvljSF7Isvx4GrzyKx9+xEysxVRaD4PNVHGd48rbs+0GAsMx6F+BzkjpxnAUcTDIBeKseYTqO47QabxQ4VdD4vZaGtOy7NfCD4OdR4DfATEmbAhua2Q2WbLd9IfCObEl3HKcqYuw5aMOKJMdx1iRvg3gLgD3CcutpJBN8tyCx1rcs5W8ZI1rwazJlC2IX/M6oxNhzUPQwkpcXfwdNZRLPFHKURd7S6HzgFcDNwM+B/yPZT6HXfBg3dNdF2eP5dZs/4DhVMl55acuk4jY8YzdtWMxQxWTfPMm1R8bMVpjZUWF36z2A5wH3kvTATE55nQw83C+cibYocBzHiYlHV7qcaipNV2KaQN6WfdcPxu+QtAuwwszuNLPlwBOSXhNWKx0AXNkvHDM7x8xmmtnMvfbbwLsza4p/t+LxdxwHXtk5dWaMZwo5ymKQ5dcXATcAL5O0TNL7Je0ZrPz+DYll32uC902AWyXdBXyM1TeGPAQ4F1gMLAG+O2gi29id2QQm6oqvM7FMdvWy0RzqXiYcpyrytuz7APCyPuHcDGw7TOKc5lL3Cthb4E7e1L1MOPXF58g4juPUmLx712LprXOKpym9aGN6ppCjLEa17HuqpLslLZR0haTnBfddJN0SLPjeIumNqXuuk3SPpPnh2CRLwl1YOHXD82w+5P0e8+5d89669jBsL1pa8WmKEhQDo1r2vRbY1sy2A34GHB/cfwX8Q7DseyDwX1337R9WNM0IBvNGJjZhEXumjD19bSC2PFtX/D06dSWt+MQ0lDgJK+QoL/0T0Mey7/fMrNMs+glhabWZ3WZmnWXVi4D1JK2bY3qjJaZM2YvY0+fERwzKbwxpGJQ6pdVxmkQec2QOovcKpH8EbjOzp1NuF4RhpY+XtWmkU098GKZ6qlJ+0wpBrzTEqjB4Y8GpK42fIzMekk4gsdz7tS73bYDPAB9KOe8fhpx2Ckd6afZQxCrInPzw4YP2MpFC4ApDM/HGS3VM0jOFHKWlf9QbJR0IvJ1EQbGU+2SSpdkHmNmSjruZPRT+PwHMA2aNE/a4ln1dkDlOfnjDwCmSQfNXnRovrnTFxUg5R9JuJAbvXmdmT6bcnwd8GzjezP435b4W8Dwz+5WktUkUoO/3C9/MzgHOAbh16ZR6L3B3nMjxhkGcNGWPn7rkr2He9yjfJeb9uMZqvvXhSJZ9gTOA5wDXhjkvZwfvhwEvBT7etcx6XeAaSQuB+cBDwJfyf5yJGVWTHqXV6lp7OcTao+Df38lC3ZWY4/b+QNVJGIqi33esSkwTUGpUKEq8R8Zx4ifm1mbM+Hsrhrr3Zu0wZWmpi2E+e9euhdSzH33FNaU8h1v2dZyWUGTPVdmVcay9cMPiSkwx1FmJcYbHFRnHaQlNqjSb9CxVULYieNApR5UanzMcY1ghR1nkukVBuLadpBskLQpbFawX3HcMvxdL+kJd7Mg0peU3KmU/f9vft+OUQdmK4PnHzik1Pmc42rD8+ssMuEVBWJ30VWC2mW0DvB74c7jnLOBgYKtwdIcZJW1v+ZX9/G1/3067afoE8Q+deGTVSXAaSK5bFABvARaa2YLg7zEzWylpU2BDM7sh2Jy5EHhHTs/Qepou/Jzm090Tl0fPXKy9e+Olq+lzO7544tyqk+D0YIxnCjnKIu8tCqYDJukaSbdKOja4bw4sS92zLLg5OdB04ec0n+6euDx65mLt3Ys1XWWy9xVHVp0Ep0HkvUXBWsDfAfuH/3tKehPQaz5M35lAE1n2dRzHcXoTa09Umkv3nMt+5+U7AbgOzx0rk2SFHKWlf9Qb+2xRsAy43sx+FSz+fgfYIbhPTt0+GXiYPpjZOWY208xm7rXfBqMm0YmcQYfEBhVQMQqyGNPkNJu69PjMe/+cXOfM1OW5Y6SVQ0upLQp2T29RAFwDbCdp/TDx93XAnWa2HHhC0mvCaqUDgCszpt0J1LWyHHRIbFABFaMgizFNzirqWnaawhdPnMsBp/vSbCcbuW5RYGa/Bj4P3ESyFcGtZvbtENQhwLnAYmAJq+bVOBnxyrJ+eAUaB152qufCw/svzW5qOYltgcaYninkKAvfosAZmrqb/3YcJz72uv7DXP66M6tORhSUvUXBuT/bqZB69gPT/z/fosCJE1diqqepLVWnvVz+ujMLtwAcW09ILEzCCjnKS/8EDGPZV9I6ki4IFnwXSHp96p7rJN3TtSt2K/DC0xxi+ZZFDonkrSS50uUMStEWgL0R1pu6Dy3latkX+CCAmb0S2AX4nKR0HPub2YxwPJop5TXCC09zaMq3HE+5yFtJavI8lKIV27Yqgce895Cqk+DUiLwt+24N/CD4eRT4DTAzr8Q6TlMYr4Iqo9enycpFmRSt2Lb1O5365bOqTkKhxKagTuKZQo7y0p+dtGXfBcAektaSNA3YEdgi5feCMKz08bpsGuk4ZdOUXh/HyUpT92Zqq4JaFHlb9j2fxPjdzcBc4P/CdUiGlV4J7BSO94wTrlv2HYBY5ms4w5NVkPm3by6xtdYHpYj9sXxvpnIYkxVylEWuln3NbIWZHRXmwOwBPA+4N1x7KPx/ApgHzOoXtlv2HQxvubeXNn37tiltZbTWi1CWxkv3oPF5T4UzCrla9g0WfZ8dzncBVpjZnWGoaaPgvjaJAnRHj6CdyKlra9GpL21S2soiT4VhEJngCkrc1H2LggklRLDs+3pgI0nLgE+SrFJal8SyL8BPzGw2sAlwjaRngIdYNXy0bnBfGxgDvg98Kd9HccrABZLjrM6MddZrdblo87PnSZX5aFKJS6WLYEJFxsz27eF8Xh+/DwAv6+H+B5KJv47jOI3CK3InDzwfjY5b9nUqo4lzH3zobXz8/ThOfNR9aGlUy77/Fqz6zpf0PUmbBfdZKcu9CyTtmbpnx2Dxd7GkL/jya6eJcx+qbFXVQUnwVqdTB5rYyGoyo1r2PdXMtjOzGcC3gE8E9zuAmcF9N+CLkjq11VnAwcBW4egO03FqRWyKgysJcVNVfoktn9aBJjayxqPxy6/7WPb9Xerns4HO8usnUxZ/1+u4S9oU2NDMbghLtS8E3pE59QXjAqCelPXdYlUcPN/mR57vsqr8Ems+bTp1Koettewr6SRJDwL7s6pHBkl/LWkRcDswOyg2m5MYyuuwLLhFjQuAetL279b2588Tf5fNZZTho2Hu8bxTHiMrMmZ2gpltQWLV97CU+0/NbBvg1cDxktYDes2H6dvvFItlXx8nrSejtoTq1IIaD8+34zPM+2lKnnDWJD18NOh3HmbIqU55pw27X0/EPOAfux3N7C7gD8C2JD0wk1OXJwMP9wswFsu+bRsnbQqjtoSa0oKKLd/GplgN836akifaSpUWhT3vlMeoln23Sv3cHbg7uE/rTO6V9FckNmUeMLPlwBOSXhNWKx0AXJkp5Y4TqFPLp43Eplg55RBDuXRlYjDqvvx6VMu+b5P0MuAZ4OfA7OD974DjJP05XPuwmf0qXDuEZAXUs0h2y+7smO0MyWZjK7xySDGKsPJ3GCf+XYqhivfqSkR9mNR/pkctUNjvMVpuXTol7gQ6rcIrWqeutH0rhTqxw5SlpdpZu/b+VxRSz+4y7a5SnsMlslMoTav4m/QsTrtwJcbpR5kTc4sgV8u+4dp2km6QtChY8l0vuF8n6Z6U5d9NinmkuChinDi2yZPj4RV/O5ko38cwf8JxnGaQq2XfMNH3qyT2Y7YhmVvz59R9+5vZjHA8mjHttaCIVlBRyoFXLk5eTJTvvXfAceJhDCvkKItcLfsCbwEWmtmC4O8xM1uZU1pXo069EnUhpsrFlar20fnmXraLw8uV00Tytuw7HTBJ10i6VdKxXbddEIaVPp5100gfsmi2UIpJqXLKofPN2162i1TkiixXTZZHTae1WxT0sey7FskS7P3D/z0lvSlc29/MXgnsFI739As7Fsu+/YilwHplXx2x5AGnedRVkauTPDrysMOrTkJUuGXf1S37LgOuN7NfmdmTwHeAHQDM7KHw/4lwz6x+AU5k2bfqSqROBbYIvOvf84Dj5E2ZcmXuGaeXFpdTPLla9gWuAbaTtH6Y+Ps64E5Ja0naKNy7NvB24A5GpO7do3VXBOraYnQcJ16qkCv7nXfUwH6rbkAXSeMn+wbLvjcAL5O0TNL7gZMl3SFpIckE3yMAzOzXwOeBm4D5wK1m9m1gXeCa4H8+8BDwpfwfJztltLRHLbB1V4DqhL/r+tLkCsfJl3nvnzOwX++FzR9JuwWzLIslHTdyOE2z7Ns0A2yO4zhF4fIyTsq27HvT0qmFKAKvnvJA3+eQNAb8DNiFZFrKTcC+ZnbnsPHkMUcmKrxQOo73SjSBMr6hy8tVHPPeQ6pOQmVUtGnkLGCxmd1nZn8CLgb2GCX9I1n2TV37qCTrzH8JbseHbqJ7JO2act8xWPpdLOkLWZdfO47Tn/G6wV3JqQc+lFEup375rKqT0DjSK5DDcXDq8ubAg6nfy4Lb0Ixq2RdJW5B0CS1NuW0N7ANsE+45M3QfAZwFHAxsFY41wnScqmlDJe8VpFMUm42tqH0ZauPS7KIm+6ZXIIfjnFS0vTozRhriGsmyb2AOcGxXxHsAF5vZ02Z2P7AYmCVpU2BDM7vBkkk5FwLvGCXBjlMkXsk7zug8vHKt2pehuWeczkGnDL6ayRmZZcAWqd+TgYdHCWjU5de7Aw91tiJI0a+raPNw3u0eBXVvQTi98e/qOM4onH/sHA475oiqk1Eak2SFHBNwE7CVpGmS1iEZzblqpPQPe4Ok9YETWLUtwWqXe7jZOO794shs2bd7+ex4lVqVLQhf5lscdW8Z1gVXGJ0mcsapp42szNStTFRhR8bMVpDsCnANcBdwiZktGiX9o0xZfwkwDVgQ5utOBm6VNIv+XUXLwnm3e0/CONo5MPzy6w7ds/FjrdR81YBTd2ItWzExY531ontPvvR6Ys449bSR7ovtW8eKmX2HZAeATAzdI2Nmt5vZJmY21cymkigpO5jZL0i6hfaRtK6kaSSTem80s+XAE5JeE1YrHQBcOUh8TeyxaOIzjUfdWieOkzcxVmxtVGJGlUV7X3FkvgmJjLZa9u1J6Ba6BLgTuBo41MxWhsuHAOeSTABeAnx3kATGUthGKQD97onlmcqirUN3w+QZV/acphFjg21UWXTpnnPzTYiTK42z7Os4ZRHjcIETL3kO5QwTlg8h1Y+yLfveu2yzQurZrSY/XMpzNM6yr+OUhSsxE9OEnqa8ehbyVCaGCcuVmHxp02qmupCrZV9JsyTND8cCSXum/F4XrP12rm+S76M4jhMbTVD2JlIEmqCsNZm8v8+oE4AnosqhuMbPkWEIy77AHcBMM5sR7vmipLQU2N/MZoTj0ZFTXVNc4FWLv3+nCEZV1jw/lkNRynTeFoCr7DmbVNBRZvrHZRjLvmb2ZFgbDrAeI5obbirdBcoFWbk0oXfA6U2ME0snwvNjtWTNM3PPOD2nlDhZyduyL5L+WtIi4HZgdkqxAbggDCt9POumkU1QAlyQtYsm5NlY8XkgzrBUkWfSylNMyveYijnKIm/LvpjZT81sG+DVwPGSOtJ7fzN7JbBTON4zWpITXAmIG6+018TzrOO0m7Ty5Mp3fozSI5O27PsAqyz7vjjtyczuAv4AbBt+PxT+PwHMA2b1iyCPLQrSxKT5tgWvtEejrQpg2WW0yvfs8ihfmlZmqnieMVTIURYD2ZGRNBX4lplt2+PaAyQTfH8VrPk+aGYrJP0ViSG97YDfAM8LftYGLgK+b2ZnTxR3XezIxG6rwW2eOI4zHi4j4qFsOzK/eKgYOzIv3jwSOzLDWPYF/o6kp2Y+cAXwYTP7FbAucI2khcB84CHgSxnTHhUxKzHgPSROf5rWonVGoygZ0cT81cRnqjNu2ddxHMeJjjb3EJXdI/PLhzcvpJ7deLOH4uiRcZxY8VaRU1fqnnfLSP9ESkzd3yGsOV/K50+NRusUmSZk/iYySgEetLXmwsGJjWF6GmLJv+l0xNBTEkMastI9JaGqKQqTUCFHeemfgCG3KNg/tQXBfEnPSJoRru0o6XZJiyV9IasdmVFpQuZvIkUW4BjmL2WtjFwBby8x5F+IJx0xUvfyWfdVS7luUWBmX+tsQUBiJ+YBM5sfLp8FHAxsFY41wnScppK1EnAFfHjGUx5j6eVwshPDt8yzfMbwPHUj1y0KutiXZJk1kjYFNjSzGyyZXXwh8I5REuzUDy+YThWMpzx670J5FN1b0bRvWcXzNH5oqRfjbVGQ4l0ERQbYHFiWurYsuDktIBZB4wpV/tS9S90pnqb2Jro8iYfctygIfv4aeNLMOvNqeqlmfZd75W3Zt0pc0MdDLApVk/Cdn5220iR5MiYVcpTFKF8ivUUBrNqiYJaZ/SL42YdVvTGQ9MBMTv2eDDzcLwIzOwc4B+pvR6aprZGqiN2CsjMYXi4cx8mLoXtkzOx2M9vEzKaa2VQSJWWHjhIjaRLwTuDi1D3LgSckvSasVjoAuDKPB3DaRdU71jrORHh+aQ9N6VmcVNBfeemfgCG3KADYGVhmZvd1uR8CnAssBpYA3x0hvbWmKZm+roz6/r0HyBmGQfOLy4N60yTLw3Wf7OtbFDhR0yRh4Th1Ghqta9mra7rTlL1FwdPLtyyknl130/t8iwLHqbtAgmpa3t7aj5NhlJiqv2Fdy55PQB+eMU0q5CgLV2QaQpsLYZoY30MVFUIeccbwLts836SuikRd8fddX1yRaQheCBPq/h5iUB46xPAuixqGiek9O9lo2rc87JgjSo+z7pN9MbOoD+DgPP3VJUx/nvaF6c8Td5hNex5/R3HH7cfgR+UJGOCj35ynv7qE6c/TvjD9eeIOs2nP4+8o7rj9GPzwoSXHcRzHcWqLKzKO4ziO49SWOigy5+Tsry5h+vO0L0x/nrjDbNrzFBGmP0++YToDEL1BPMdxHMdxnH7UoUfGcRzHcRynJ67IOI7jOI5TW1yRcRzHcRyntkS1e5mklwN7AJsDBjwMXGVmd1WaMMdxHMdxoiSayb6SPgbsC1wMLAvOk4F9gIvN7OSq0lYGkgTMYnUl7kab4ANJ2gCYDtxnZr/JGuZ44RURZizP3eYw/ZvnG6bjOCVTtUW+zgH8DFi7h/s6wL1dbrulzp8LnAcsBOYBL+q6djJwN/BYOO4Kbs+bID0bADv08wcI+GtgL2DPcK5RwgTeAiwGvgucG46rg9tbuvyemTr/O2Ap8EPgQeBtw4Y5aHhFhFnlc7c5TP/m+Ybphx9+VHtUnoC/JCRRNv6qh/tfAfd0ud2aOj8X+H/B31HAf6euXQN8DHhxyu3Fwe3arjCrFO53AVN7PPs04K5xnv2HwA7hfEtSpq8HDXPQ8IoIs8rnbnOY/s1zD3Ojrt/vBr4AHExX4wbYFTgLuAq4Mpzv1iOeVoY5THh1CXPQd+nH6EdMc2SOBH4g6V6Sih5gCvBS4LBx7ptpZjPC+RxJB6auTTWzz6Q9m9kvgM9IOqgrnNekzv8NeIeZ3SppS+AS4Dup66cBbzazB9IBSJoW/L1iyDDXYtVwWpqHgLV7uHfY0MxuDc91n6Sx1LVRwhwvvCLCjOW52xymf/PsYX6PpKcVSf8K7ETSO/x2EllwVLg2l2QY60JWHz7/iKS3mtkRHuZg4dUlzCHfpTMi0SgyZna1pOmsGpMWyYe/ycxWdnnfRNLRwc+GkmRB9WX1lVg/l3Qs8BUzewRA0ouA97JKWepF2cL9fOAmSRen0rUFyfyg87rCebmkhSTPPlXS883s15ImdcU9aJiDhldEmFU+d9YwpwDvqkE66/DN6/wuCWF12AvYycz+IGkecGvq2tvMbHrXvUj6OsnQerpSa2uYg4ZXlzCHeZfOiESjyACY2TPATwbw+iXgOeH8K8BGwC8lvRiYn/L3LuA44PqgwBjwCEkX3z91hZlVuPcSxgOFaWb/Iem/SVZs/Q2rlLj9zezOrrhf0fX79+H/C4BPdIV5JbD7BGEOFN6Q6ewO8w8Z01hWmOO9y0Geu6x0Zg1zoPBSYf43+X7zQcLrFWYR3ydr+QF4lqTtSRpRY2b2hxDGnyWlG2F/lDTLzG7suv/VwB89zKHCq0uYw7xLZ0SiWbU0LJJmAWZmN0naGtgNuNvMvpPy8xHgCjMbr/el4/evupyWm9mfJG0E7Gxml3f5fwWrlop3hNxVaSHXI8yHQ0bvGeaoSNrEzB7NIyxnMCS90Mwea2v8eVJ1/s0av6QfdjntZ2bLJb0QuMbMZgZ/O5DMj3gOq3p0twB+B3zYzG5pe5iDhleXMCXtCJw5yLt0MmARTNQZ9gA+SdJzczPwH8D/kLSmfgSckPL3W5Ilk/8fcAhdE7RyTtMmBYX73a7fL+g6Xgg8ADwfeEHK30ySyYxfJSk41wK/AW4Cth8x7u7VYufSe7VYr7h/2x03sGH4fv8F7NsV15njxP08+q9U2wD4NLAoxPnLkFfe2+P50vHv1y9+klVuG4XzHYH7gHuBnwOv67pvoPhJJp2fBfxn+IYnhue5BNi0y286/pkh/sXd8TPgKr0+cd/eJ+5bgX8Ftpwgrwwad3f+fQE98m9X3C+pafkZA9bv4f7ikI9mklqI4GEOH17GMCcVEGbu79KPAd571QkYKdGJ0B0D1ifRbDcM7s8CFqb83RYy61tIKr5fkqwuOhB4TleYAwni4HcgYTyoICaZNNbr2JGkZyjt9xng/q7jz+H/fSl/NwJvJbHN8yCwd3B/E3DDiHEPulps0LgvC+/3HSTDfZcB63bHNWTcV5LMgZoMHA18HNiKZAjy37vCHCh+4PbU+Q+BV4fz6ay5ymeg+Eny4eEkQ58LSVbSTQluV3bn90Hip/8qveNIrdIbMu77gc+SrLi7MbzvzXrk4YFWCDJg/h0y7srKzwCy6uXjXJvIxMOUzjVgKrA3sG0fv71MV4zbcBsg/pkkpiX+YbznGCR+EjMaSv1+A/DP9Fm9M2jcJPJ9UiqOHVhTIe4X91v7hDmQaY0B495u0Lzix+hH5QkYKdFwW6/z8Ht+6ry7MlybZMz7IuCXXdeGWao9qDAcVBCvJOlV+mGP46kuvx8lqYhemY5ngne0dJxrw8Sdrtznd12bP0Lc3WGcAPwvSSt5PEVmvLgXdF27KfyfRDL02PO+8eInUW7XCuc/6brn9q7fA8U/wTvqTtdA8dNlpqDL3z0jxp1+DzuRdJP/IuSPg0eIe6D8O2TclZWfiY70vQxn4uE4EvlxN/CB8P88kp6+o1P+3kAyZPFLkpU0U3u9v2HiB15H0tv9feDXwLdCubgO2KIrzIHiBxYAzw/nxwD/R9LIuxb4jxHjfgfJnMflJMP8Pw35YBnwDwPGfXJXmIOa1hg07pXh3n8Dth403/gx3FF5AkZKdJJp1g/nk1Luz+0qPLeNE8azun4PJIjD70GF4aCC+A5gqz5xP9jDbTLwDeDzJGOv9/Xwc0MolO8kGYJ4R3B/Hau34geOOxTSo0laM/exeitn4Qhx35X+fsHtQBJh/fMR4/4/4O/C+T+QjFf3+44DxU/SU/E94I0kwzBzgZ2BTwH/1XX/QPGTUniA/9cVxsKu3wPFH/wcy+pDbS8iUca/P2Lca5Qhkt7Q3YALho170PzbXX4miHvU8jOnX/yD5uHg9oU+x+nA73o9DxPb71lE0sP8QuAJYOPg/mzgjpS/m4BtwvneJEOer+n17QaNn6QnuxPfNJJ5hgC7AN/rCnOg+LvSfDNB/pIsOOnuRR807ttIGpvTSHrmXxbc/6rreQaK21bJhKk98kO33aRB474N2BY4iUShWUCipK4Rhx+jH5UnYKREh+7/Hu4bsbpyMX2IMAcWxOHaIMrEoIJ4705B6OH/HeOk+R9I5l/8ose1V5H0Mn0XeDmJ7ZvfkAjIvx0lbpK5SemjI3BeDFw4Qdy/DnG/NuXvFBJ7PN3x7saa1pyHiftGkvkpP04JmI2Bj3SFOUz8rwe+HgTT7SQ2gA6mq0s9Ff9vQvzTe8VPMo9mgx5xvxS4tIf7hPGTDG1+hqT1/mvgcRLB/BlWH/IcOG6S7UEGKT8Dxd11z+798u+QcZdVftbIw8HvE+FbHNjj+FXKX1qRuKUrjNu6fi8M/8eAR1m9wZaumLt7ALcB7iEZEhmvV7Nv/KyuWIx13beo676B4idR8LcN51ezqodkva7nGSbudJrv6Lo2dNzB7V5C72eX+zrA4hHi7v4Gs0jqjAeB/xskf/sx8VF5AmI5WF0QP87qgvj549w3njAcSBAHvy8nGX/foMu9lzXNv/glabVt28svyVLTCcMMhasz72Jrkp6Pt/VJ50B+ScaVO/62IelJ6Rlm130XTuRnWL9D+Pu78DzjmqAn6V3754n8jRdmeD/puV2fAr4Z8ttzx/G7Poki8q1uv8BH6Op+75OmgfwNGeY6JBX3m8Pv/UkmEx/K6srWOsABKX/vIemSX81fuLZul9/9gDP6+H0JSU/pacDngNnd77GP38+T9Hit4ZdEsTsmFeYhffz9D6nGQde1+1PnT5LMSbqdRPnpVKiTWLMy/DLJRPYrSYbC/yu80/OAS1L+bqZr8ihJI2s+8ESX+0Dxk5iXOC+8768Dn0/lve7h2YHiB7Yj6Y24MBxLQjw3k5poP2Tct7FqjsqslPtY1/MMFHfwe3wI92MhDfuR9KDcBhw/Qty39ckXomuhgB+jH7Vdfl0mkt5nZheMc/1ZJBN675jIb68wwzLxQ0kUpxnAEWZ2Zbh2q5ntkLpvIL/B34dJFLPx/H2SZFLjWiRjxn9NMh79ZpJhkZNScQ/kt4e/WcD1Pfxd1f1aSMbc/wfAzHZPxd3tF5KhltX8Duov+L3RzGaF8w+G93oFyZDCNy1sVNrl7wPB3393++vj97A+YS4CXmVmKySdQ1LJXEqieL7KzPZKhdnt9w8kE5NX8yvpt+HaEpJK8Btm9qvul9Hl76Lg75c93tvAfiV9jeR7P4ukN+zZ4bnfRDIMeGCXv/VJeq16+uvjdwPg8h5hfoTEouqPgLeRVKK/JukV+LCZXZcK8yMkjY/rx/M7ZJgvAP5oZk/2eocpf3/V5dTXxIOktUiGtYwkX/w1ycTjpcB/WrBbIunNJPP9FnTF9VzgsK7y2x1/T3MQktYGPkjSUFkAnG9mK4Oc28TMfp4Kc5j4x0jKwXRWGRW9xlKbdQ4Z96tJ5oitZo9F0lSS4d2vDhN3yu8gpjUGilvSfmY2rzsOJ2eq1qTqcNA12S8Pv6w+CfB2Qq8JyeqEm0kUD1izy3kgv0P6m3AF2DB+h/B3G8ny1teTzD14Pcnkudex5rLmgfwOG2bq/CZWn4dw+7D+hgyz5z5F4ff8rt8D+WXAVXqD+hsyzM5QyFokkyDHwm91ffOB/A0Z5u2pa+sD14XzKfQuPxP6HSZMP5p9MKBpjbz9+TH4MQkHAEkL+xy3k8yVGdrvEGGOmdnvASzZv+n1wFslfZ7VTWEP43dQfyvMbKUlrcklZva7cM9TJKuzGMHvoP52BG4hWS30W0tauU+Z2fVmdn1X3IP6HSbMSZKeH4xYyUJPgyWt3RUj+BvG7x2S3hfOF0jqGNCaTrICjhH8mpk9Y2bfM7P3A5uRTDDfjWSC9LD+hvE7SdI6JPPF1ieZeA/J8NDaI/gb1u9aqWvPCQlf2sPfMH4H8ifpuZJOlnS3pMfCcVdwe96w/nr4fXw8v/2Q9N1B/A3jt9ufpA0l/Yek/5K0X9e1M7v8nRz87TuBvwnDC79fLOksSf8p6YWSTpR0u6RLJG06gb+F3f6C3xd0H8CNoUy/YBx/L8ziz8lGVFsUVMyLSHYp/XWXu0gmi43id1B/v5A0w8zmA5jZ7yW9nWQc95Vd9w7qd1B/f5K0flA6dvxLApOu4W5FZlC/A/mzZEuKOZK+Ef4/Qp88OajfYcIkqRhvIfkeJunFZvYLSRuwurI3qL9h/H4AOE3JhnO/Am6Q9CDJJMAPdIU5qN/V0mJmfyaxj3OVkq75Yf0N4/c8kmHMMRIl8huS7iPZOPXiEfwN4/dcki1DfkKymuszAJI2Jpnrxgh+hwnzEpKhy9dbsiktSrZLOZBkQcAuQ/obz+97036VWKLthUiGlFc5DOh3mDCBC0gmyF4GHCTpH0nmnTzN6pvmdvvbe0B//cKDZB7Rt0l6O38IfA34e5JhobPD/37+3t7DHyTl6+eszuYkNsGMZIVXEf6cLFTdJRTLQSI0/67PtXmj+B3C32T6WHtkzRUSA/kdwt9AK8CG8TtMmF3X/54uo3VZ/Q4TZuqe9YFpefkbzy9JS/9VJArfiyYIY1y/DLhKb1B/I/jdjGAnicT68t6kJkIO62/IMLcJ18Y13DaM3yH8DWpDZxgTD4OGOYwNnYH8Dhnm/K7f/Wwx5eovXLstdd7XHtKg/sLvQU1r5OrPj2xH5Qnwww8//KjzweD2e4axtTNomMPYgRrI75BhDmqLKVd/wX08e0i3D+sv5TaonaNc/fkx+uFzZBzHcbLxLpIeg+vDfJbHSVbzvYBk5dGw/obxeyL0leOHd/0e1O8wYX6TZFXgXzCzr5CYJ/hTgf4ArgxDtpjZv3YcJb2UxJbNsP468S0zs3eS9EBdS9KbugZ5+3NGx5dfO47jFIRGMMfgYcYTtwY0rZG3P2c4XJFxHMcpCElLzWxKXv7aHGabn8cZH1+15DiOkwFJC/tdosscwyD+2hxmm5/HGR1XZBzHcbKRtzmGNofZ5udxRsQVGcdxnGx8i8SK9vzuC5KuG8Ffm8Ns8/M4I+JzZBzHcRzHqS2+/NpxHMdxnNriiozjOI7jOLXFFRnHcRzHcWqLKzKO4ziO49SW/x9LPlhuDCgQKAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "## Step 1: Compute Graph Laplacian\n", + "\n", + "from sklearn.neighbors import kneighbors_graph\n", + "from scipy import sparse\n", + "\n", + "def generate_graph_laplacian(df, nn):\n", + " \"\"\"Generate graph Laplacian from data.\"\"\"\n", + " # Adjacency Matrix.\n", + " connectivity = kneighbors_graph(X=df, n_neighbors=nn, mode='connectivity')\n", + " adjacency_matrix_s = (1/2)*(connectivity + connectivity.T)\n", + " # Graph Laplacian.\n", + " graph_laplacian_s = sparse.csgraph.laplacian(csgraph=adjacency_matrix_s, normed=False)\n", + " graph_laplacian = graph_laplacian_s.toarray()\n", + " return graph_laplacian \n", + " \n", + "graph_laplacian = generate_graph_laplacian(df=X, nn=8)\n", + "\n", + "# Plot the graph Laplacian as heat map.\n", + "fig, ax = plt.subplots(figsize=(10, 8))\n", + "sns.heatmap(graph_laplacian, ax=ax, cmap='viridis_r')\n", + "ax.set(title='Graph Laplacian');" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "id": "f74b64a5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.])" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "## Step 2: Compute Spectrum of the Graph Laplacian\n", + "\n", + "from scipy import linalg\n", + "\n", + "eigenvals, eigenvcts = linalg.eig(graph_laplacian)\n", + "np.unique(np.imag(eigenvals)) # The eigenvalues are represented by complex numbers. Since Laplacian graph is symmetric, the eigenvalues must be real." + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "id": "ee0435d4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Min Norm: 0.9999999999999996\n", + "Max Norm: 1.0000000000000004\n" + ] + } + ], + "source": [ + "# We project onto the real numbers. \n", + "def compute_spectrum_graph_laplacian(graph_laplacian):\n", + " \"\"\"Compute eigenvalues and eigenvectors and project \n", + " them onto the real numbers.\n", + " \"\"\"\n", + " eigenvals, eigenvcts = linalg.eig(graph_laplacian)\n", + " eigenvals = np.real(eigenvals)\n", + " eigenvcts = np.real(eigenvcts)\n", + " return eigenvals, eigenvcts\n", + "\n", + "eigenvals, eigenvcts = compute_spectrum_graph_laplacian(graph_laplacian)\n", + "eigenvcts_norms = np.apply_along_axis(\n", + " lambda v: np.linalg.norm(v, ord=2), \n", + " axis=0, \n", + " arr=eigenvcts\n", + ")\n", + "\n", + "print('Min Norm: ' + str(eigenvcts_norms.min()))\n", + "print('Max Norm: ' + str(eigenvcts_norms.max()))" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "id": "84592794", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmAAAAGDCAYAAACMU6xhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA700lEQVR4nO3dd3gc1b3G8e9PkiXZkiVZkpssy5J7xxhXwKZ3AoQbAoRek5AASUgh7UK4aZfkphdCdUIzhN5LaMa44yr3JqvY6sWS1aVz/9gxyEbGTdqRdt/P8+zj3Znd2d+clbSvzzkzY845RERERCR4IvwuQERERCTcKICJiIiIBJkCmIiIiEiQKYCJiIiIBJkCmIiIiEiQKYCJiIiIBJkCmEgYMLP3zezGI3xtjZkN7eiaOoqZXWtm8/2uo7N1hf00s0wzc2YWdZTbed3MrumoukS6IwUwkU5gZiea2QIzqzKzcjP7yMymHuG2OuRL73O2f7eZNXlBa++tcu9651y8c25bZ7x3d2ZmZ5jZe2ZWbWZlZrbSzH5gZrF+1wZgZjlmdrrfdbTHOXeOc+6fftch4icFMJEOZmYJwCvAn4FkYBDwM6DhCLbVKaGrHU95QWvvLSlI79stmdklwDPAE8AQ51wKcCmQDgw+wGuC9VmKSDegACbS8UYCOOeedM61OOfqnHNvOedWA5hZhJn9xMx2mFmxmf3LzBK9dXt7u24ws1zgXWCet91Kr3dqpvfc681svZlVmNmbZjZkbwFe78wGrwfuL4Ad6c549Qz37qeY2ctmttvMlprZz9sOi5nZaDN72+v122hmX26zbo6Z/dXMXvV6jRab2TBv3X1m9tv93vdFM/uOd/9OM9vqvW6dmX3xALV+prdw/+HXA7WbBfze+0yqzGy1mY1v5z0M+B1wj3PuAedcOYBzbqNz7lbn3GbveXeb2TNm9piZ7QauNbNpZrbQzCrNbJeZ/cXMovdr69vMbJuZlZrZb8wsYr/3/61X+3YzO+egH+Bn6+9jZq+YWYm3nVfMLH2/9vqVmS3x2uFFM0s+wLau89qy2qv5q/utv9DrGdztfX5n7/+ZmNkwM3vXAr2IpWb2uJkltdlGjpl91/s8qszsKesivYwiR0MBTKTjbQJazOyfZnaOmfXZb/213u0UYCgQD/xlv+ecBIwBzgJme8uSvN6phWZ2EfAj4GKgL/Ah8CSAmaUCzwI/AVKBrcAJHbRvfwX2AAOAa7wb3vvGAW8T6BXqB1wO/M3MxrV5/eUEegP7AFuAX3jLnwAu9cINXpudCcz11m8FZgGJ3usfM7OBh1v857Wb936zCQToJAI9WmXtbGYUgZ6uZw/hLS8k0FOWBDwOtADfJvC5zAROA27Z7zVfBKYAk73XX99m3XRgo/f6e4GH9rbZYYgAHgGGABlAHZ/9+bvae980oBn40wG2VQycDyQA1wG/N7PJAGY2DfgX8D0C+z8byGlnGwb8ynuvMQR6EO/e7zlfBs4GsoCJBH5/RLo355xuuunWwTcCXyRzgHwCX2AvAf29de8At7R57iigCYgCMgEHDG2zfu+yqDbLXgduaPM4Aqgl8KV6NbCozTrz6rjxALXeDTQClW1u77VZ74DhQKRX56g2634OzPfuXwp8uN+2/wHc5d2fAzzYZt25wIY2NeYCs73HNwHvfk77rgQu9O5f26aG9trq/b37fpB2O5VAeJ4BRHzOe5/ovUdsm2VzvXarBa5q067zDvJz8i3g+f3a+uw2j28B3mmzn1varOvlPX/AAbadA5x+CD+rk4CK/drr120ej/V+PiLba9/9tvUCcHubz/73B3jeJ59JO+suAlbstx9Xtnl8L3BfR/2u6qabXzf1gIl0Aufceufctc65dGA8gf/d/8FbnQbsaPP0HQTCV/82y/IO8hZDgD96Q1mVQDmBEDPI2/4nr3fOuUPY3tPOuaQ2t1PaeU5fr86222p7fwgwfW9NXl1XEOgt26uwzf1aAr1/e2ucS6CHDOArBHqMADCzq72hrL3bHU+gF+hwHbDdnHPvEugJ+itQZGb3W2A+3/729op90gPnnLvMBebNLScQVPbap93NbKQ35FfoDUv+sp39aPuaHQQ+z70+aT/nXK13N/5z9vczzKyXmf3DAkPguwkMcSeZ2YHq3gH0aKdOvB7eRRYYcq4kEKr3Pm8wgZ7Lg9XTz8zmmlmBV89j7bxXuz83It2ZAphIJ3PObSDQ+7N3PtFOAkFgrwwCvWRFbV92gPt75QFf3S809XTOLQB20WYiuDdE1e7E8MNU4tWZ3mZZ2+3mAR/sV1O8c+7rh7j9J4EveXOypuMN8XmPHwC+CaR4QSeb9ue17fH+7dVmWdsA+HnthnPuT86544BxBIYiv9fOe2wACggMYx7M/p/d373Xj3DOJRAYDt1/P9q2aQaBn5eOdAeBXtfpXg17h7jb1rF/DU1AaduNmFkMgc/otwR6d5OA19psJw8Ydgj1/IpAO0306rmS9j9bkZCiACbSwSwwEf2OvRObzWwwgZ6dRd5TngS+bWZZZhZPoBfkKedc8wE2WQK0Epgvttd9wA/3zq8ys0QLHJkH8CowzswutsBk9NvYN4QcEedcC/AccLfXizKawHDnXq8AI83sKjPr4d2mmtmYQ9z+CgL7+iDwpnOu0lsVR+ALugQCE7/5NMzuv40SAuHoSjOLNLPr2TcEHLDdvFqnm1kPAkGunsCcrf3fwxEIMXeZ2U3epHYzsxHs24vZnt7AbqDGa7/2wun3vG0OBm4HnjrINj9PDzOLbXOL8mqoI3BQRzJwVzuvu9LMxppZL+Ae4Bnv828rGojBC+YWOCDgzDbrHwKuM7PTLHDgySBvn/fXG6jx6hlE+6FXJOQogIl0vGoCPTiLzWwPgeCVTeBLG+Bh4FECQz/bCXzR33qgjXlDTb8APvKGzmY4554H/heY6w3bZAPneM8vBS4Bfk1guGwE8NFBar7U9j0PWI2Z9Wvned8kMBG+0NuHJ/FOr+GcqybwBXwZgV6bQq/GmIO8d1tPAqcTmJS/d//XAf8HLCTQSzjhIPtzE4Ev8TICPVkL2mzrgO1GYCL5A0AFgWG3MgK9O5/hnHuKwMTwKwn09JQCTwP3A//+nNq+S2B4tdp7r/bC1YvAxwTmub1KIMgcqdcIhK29t7sJDIX39GpeBLzRzuseJdBrWwjEEgjx+/A+79sI7HcFgf16qc36JXgT84Eq4AP27fnd62cEDjioIrC/zx3eLop0Txb4z5yIyOEzs/8lMAlcZzXvAGbmCAxPbvGxhveBx5xzD/pVg0g4UA+YiBwyb3h1ojfkNg24AXje77pERLobnZlZRA5HbwLDhGkEzgH1fwSGzERE5DBoCFJEREQkyDQEKSIiIhJkCmAiIiIiQdat5oClpqa6zMxMv8sQEREROaiPP/641DnXt7113SqAZWZmsmzZMr/LEBERETkoM9txoHUaghQREREJMgUwERERkSBTABMREREJMgUwERERkSBTABMREREJMgUwERERkSBTABMREREJMgUwERERkSBTABMREREJMgUwERERkSBTABMREREJMgUwERERCRvOOV5etZO6xhZf61AAExERkbCxeHs5tz65gpdX7/S1DgUwERERCRtvrS0itkcEX5iY5msdCmAiIiISFlpbHfM2lzCyf296Rkf6WosCmIiIiISFZ5fns6W4hjPH9ve7FAUwERERCQ9rd+4mLjqSb5wy3O9SFMBEREQkPJTvaSS1dwxm5ncpCmAiIiISHipqG0nqFe13GYACmIiIiISJitpGknv18LsMQAFMREREwkDFnkY2F9WQ3qeX36UACmAiIiISBpbmlNPQ3MqFk/w9/9deCmAiIiIS8p5amkeEwdi0BL9LARTAREREJMQ1tbTy4eZSzpuYRq/oKL/LARTAREREJMQty6mgsaWV08f087uUTyiAiYiISMgqq2ngjqdXkhofzSmjFcBEREREOpVzjjufW8POqnq+OnsYCbFd4xQUoAAmIiIiIeo/64t5e10RXztpGDfNHup3OftQABMREZGQk1tWy/efWUVqfDTfPmOE3+V8Rtc4FEBERESkg7S0Om5+dBmtDp68cToxUZF+l/QZCmAiIiISUr7+2MdsKKzmz5cfy+gBXeO8X/vTEKSIiIiEjNX5lby1rogzxvbn/IkD/S7ngBTAREREJCQUV9dzxQOLiY6M4Adnj8bM/C7pgDQEKSIiIt2ac47c8lp+8kI21Q3NPPv1mQzvF+93WZ9LAUxERES6pfc2FvPc8gKWbC+jaHcDAKeP6cdxQ5J9ruzgFMBERESkW3HO8djiXP77xWxS42OYMTSFaZl9OGlkPzJSevld3iFRABMREZFu5Wcvr2POghxmjUjl/qum0DO6651m4mA6fRK+mT1sZsVmlt1m2W/MbIOZrTaz580sqbPrEBERke7vvY3FzFmQw6VTBvPP66Z1y/AFwTkKcg5w9n7L3gbGO+cmApuAHwahDhEREenGahubeeSjHCIM7r5gHBERXfcox4Pp9ADmnJsHlO+37C3nXLP3cBGQ3tl1iIiISPeVU7qHM343j3mbSvjScendtudrr64wB+x64KkDrTSzm4GbATIyMoJVk4iIiHQBLa2OZz/O5943N9DS6rjvysmcOXaA32UdNV8DmJn9GGgGHj/Qc5xz9wP3A0yZMsUFqTQRERHxWXNLK7fPXcmra3ZxTHoiv73kGEb07+13WR3CtwBmZtcA5wOnOecUrERERASA+qYWNhRW8/qaXby6ZhfXHp/JXV8Y26XPbH+4fAlgZnY28APgJOdcrR81iIiISNfhnOPDzaU88OE2lmwvp6G5FYALjkkLufAFQQhgZvYkcDKQamb5wF0EjnqMAd72GnSRc+5rnV2LiIiIdC2VtY3c88o65m0qobSmkdT4GC6flsHMYSlkJPdi9IDeIRe+IAgBzDl3eTuLH+rs9xUREZGuyznHuxuK+ekL2ZTUNHDehIFMy0rhnPED6BMX7Xd5na4rHAUpIiIiYWTBllJ++PwadpTVkpUaxzNfO55jBif5XVZQKYCJiIhIp6tpaObh+dtZsr2cBVtLyUqN454Lx3Hx5HTiY8IvjoTfHouIiEhQNDS38PKqXTy3PJ+lOeU0tTjGD0rgiulDuPOc0cSFYfDaK3z3XERERDrN79/exP3ztlHX1ELf3jFcMX0IXzx2UNgNNR6IApiIiIh0mJLqBn7z5gaeXpbP9KxkvnHKcE4YnkpkN75uY2dQABMREZGj4pyjtKaRt9cV8df3tlBQWcd1J2Tyg7NHE9uje1+zsbMogImIiMgReXj+dl7P3kVOWS0l1Q0AjEtL4PeXTmJaVrLP1XVtCmAiIiJyyOqbWli4tYw/v7uZ5bmV9Osdw6wRqYzq35tJg5OYlpUckidO7WgKYCIiIvK5mltaeXZ5Po8vzmXdzt00tzoGJfXklpOH8Y1Thof10YxHSi0mIiIi7WpuaeWNtYX84tX17KqqZ/SA3nz1pKEck57ErBF96Rmt+V1HSgFMREREPuGcY3V+Fe9sKObJJbmUVDcwOLknf7h0Ehcck0aEjmbsEApgIiIiQlVdE79+fQPvbiiiaHdgQv2po/tx6dTBnDKqH9FRET5XGFoUwERERMJYc0sr/1lfzP+8so6CyjrOHjeA08b044ThqaQl9fS7vJClACYiIhJG6hpbeGtdIfkVdeyqquPd9cXsrKonvU9PHrpmCqeN6e93iWFBAUxERCQMFFTW8eLKAuYuySO3vBaAhNgoJqYncdcF4zhtdD+iIjXMGCwKYCIiIiFqa0kN2QVVzFmQw4rcSgCmDOnDneeM5tTR/XSWeh8pgImIiISIzUXV/GvhDl5YWUBNQzPOBZb3jo3i+2eP4rwJAxmSEudvkQIogImIiHRb9U0tLNxWxuq8Kt7dUMSq/CoAZgxNZlpmMnExUZw4IpWs1Dh6ResrvyvRpyEiItLNZBdUsWBrKX99bytVdU2YwTHpSXzvrFFccEwa6X166nJAXZwCmIiISDfxyuqd/HNBDktzKgAYOzCBP1w6iQnpiaTGx/hcnRwOBTAREZEuKr+ilg82lfDiip1sKamhfE8jmSm9uOOMkVw4aRDpfXrqzPTdlAKYiIhIF5JbVsuji3J4bU0hBZV1AIzsH8+ZY/szakBvrpoxRKeLCAEKYCIiIj4rq2ngd29vIrugitUFgYn0xw9L4YYTs5g5LIXRA3prTleIUQATERHxQWFVPfM2lfDOhiLmbSqlsaWVaZnJfOPk4Vw1cwj9E2L9LlE6kQKYiIhIEDjnmLe5lA83lfDh5lI2FlUDgXN0nT9xIDfMymL0gASfq5RgUQATERHpJMXV9bywooCcslo+3FxCXnkd0ZERTM3qw8WTRzN7ZF8NL4YpBTAREZEO5JxjW+ke/vTOZl5bs4umFkdyXDQj+8dz26kj+MIxaboEkCiAiYiIdJTX1uzirpfWUlLdQExUBFfNyOTKGRkM7Rvvd2nSxSiAiYiIHIUdZXt4ceVOnvk4n9zyWoamxvHV2UOZPbIvI/v39rs86aIUwERERA5RXWML720sZsn2crILqthYVE11fTMAkzOSuHFWFl86Ll3XXZSD0k+IiIjIAdQ0NLN0ezkLt5Xxzvoi8srraGxppWePSMalJXDhpDQG9+nFaWP6M7yfhhnl0CmAiYiI7Ce7oIoVeZX8+Z3NFFc30CPSmDE0hdPH9uekkX2Zlpmss9HLUVEAExERAbYU1/DYoh2s27WbJdvLARiQEMt9Vx7HSSP70jNaRy5Kx1EAExGRsFXX2MJzK/J5c20RH24uISYqgqGp8XzvrFFcOCmNtERd7Fo6hwKYiIiEFecc2QW7eXD+Nt5ZX0xNQzMDEmK5/oQsbp49VJcAkqBQABMRkbCwOr+SF1bsZOG2Mtbv2k3vmCimZyVz5cwhnDyyr85GL0HV6QHMzB4GzgeKnXPjvWXJwFNAJpADfNk5V9HZtYiISPjYXd/E22uLWJFXwZr8KlblV2EG49IS+NG5o7nkuMH0iYv2u0wJU8HoAZsD/AX4V5tldwLvOOd+bWZ3eo9/EIRaREQkRDW1tLI0p5wVuZWsyK3goy1l1DW1EB8TxegBvfn26SP5yvQM+vaO8btUkc4PYM65eWaWud/iC4GTvfv/BN5HAUxERA5TVV0TC7eW8np2IUu2l7Orqh6AzJRenDmuPxdOSuOkkf2I1ER66WL8mgPW3zm3C8A5t8vM+h3oiWZ2M3AzQEZGRpDKExGRrqippZUPNpbw2ppdrMirZHvpHgBS4qI5bkgffnr+WCYNTiItqafPlYp8vi4/Cd85dz9wP8CUKVOcz+WIiEiQVdY28ud3tzBvUwk7K+vY09hCQmwU07KSuWRKOmMHJjBjaAqxPXSeLuk+/ApgRWY20Ov9GggU+1SHiIh0Mc0trby7oZj5W0pZnV/FyrxKIHCtxYsnpzNrRCqzR/ZV4JJuza8A9hJwDfBr798XfapDRES6gIbmFh6Yt41lOypYvK2cuqYWYqIimDAokdtOG8H0rGROGJ7qd5kiHSYYp6F4ksCE+1QzywfuIhC8njazG4Bc4JLOrkNERLqOllbHitwKXs8uZFNRNStyK6lpaCYzpReXTElnxtAUTh3dT71cErKCcRTk5QdYdVpnv7eIiHQdNQ3NLN5WxtyleSzLKaeitomoCGPMwATOGT+A08b05+zxA/wuUyQouvwkfBER6X5aWh3ZBVXklO1hRW4l63buZnluBc2tjv4JMZw6uj+njO7LzKEppMTrvFwSfhTARETkqDW3tLI8t5K31haysaiaJdvLaWhuBSC2RwRjByZww4lZTM1MZvbIvkRHRfhcsYi/FMBEROSw1Te1MH9zKdk7q1i/azcf76iktKaB6KgIhqbGcda4AZw2ph9jBiaQkdxLc7lE9qMAJiIih6S2sZkPN5eyMq+Sfy/Lo7SmETPISolj5rAUzhrXn5NH9SM+Rl8tIgej3xIREWlXfVML8zaVkFteS2lNI898nE9pTQMAJw5P5foTM5melUKcApfIYdNvjYiIAOCc++QEqAu2lLG9bA+N3jwus72hayJTM5PVyyVylPQbJCIS5gqr6lmSU84jH21nRW4lEQYzhqYwa0Qq04emMDWzD3ExUfSI1MR5kY6iACYiEobK9zTy0ZZS3t1QzKurd9HY0krf3jHc+18TuejYQTpKUaSTKYCJiISo8j2NbCmuoaymgZyyWraV1LCtdA/bS/dQvqcRgD69enDBpDSumjGEsWkJ6uUSCRIFMBGRENDc0sranbt5fPEONhZWU7ankfyKun2e07d3DFmpcZw1rj9ZqXEcN6QPkwb3ITLCfKpaJHwpgImIdEMtrY71u3azcGsZC7eVsWR7OTUNzcT2iGBaVgrpfXpxyXGDOWZwIqnxMWSk9CIhtoffZYuIRwFMRKQbcM6RW17LspwKNhfX8PSyvE+GEbNS47hgUhrTMpM5flgK/RJifa5WRA5GAUxEpAtqbmnl4x0VvLuxmFV5lazJr2JPY8sn6yemJ/LT88cwc2gqAxIVuES6GwUwEZEuoKahmbUFVRRVN/D+xmIWbCmjcHc9PSKNsQMT+K/j0hnZvzfTspJ1aR+REKAAJiLio11VdTy5OJcnluRSWhMYUoyOjGD2yFS+c8ZIzp4wQHO3REKQApiISBCVVDewdmcVH24uZe3OKj7eUUGrgwmDEvnRuWMYl5ZIWlIsvRW6REKaApiISCdxzrG5uIbX1xSyOr+SnLLAObhaXaCXa8zA3lx3QhZXzxxCep9efpcrIkGkACYi0oGq65v42/tbeW9DMQWVdVTXNwMwekBvhvWN59wJA5k0OInJGX3oExftc7Ui4hcFMBGRDrAqr5Jnl+czd0kejS2tzB7Zl2lZyYwflMjxw1LUwyUi+1AAExE5QmU1DSzaVs4zH+fx/qYSnINzxg/g6ycPY2J6kt/liUgXpgAmInKIquubWJZTQXZBFQu3Bc5A7xwMTIzlxhOz+OapI0jsqcnzInJwCmAiIp+jYk8jS3LKWbdzN48vzqW0pgGA1PgYbp49lJNH9uO4IX2IjtJFrEXk0CmAiYjsp6S6gSXby3nko+0s21EBgBkcOziJX35xPDOHpeg0ESJyVBTARESAnZV1LNxaxhtrC3l7XREAPSKN60/I4sxx/RkzMEHDiyLSYRTARCQsOedYtqOCJdvLeXnVTjYUVgOQ1KsHN83K4gvHpDEkJU6hS0Q6hQKYiISFot31zNtUwsq8SjYUVpNXXktxdWA+1+gBvfnJeWM4flgqowf0JiLCfK5WREKdApiIhJSmllbqmlrY09DM8h2VLNxWysKtZWwt2QNAXHQkE9ITOWF4KpMzkjh/YppOiCoiQacAJiLdXmVtI6vyq1iTX8nf3t9KbWPLJ+vioiOZmpXMl6cMZtaIvozoH0+PSB2xKCL+UgATkW6nuaWV5bmVvLOhiHmbStlUVE1LqwNgxtBkTh/Tn5gekYxPS2D8oEQFLhHpchTARKTLa25pZUd5LU8vzWN9YTXZBVWU72kkwmBqZjJfP2kYJwxPZWjfOPr1jsFMc7hEpGtTABORLqe+qYV1u3bz3oZiVuZVsjSnnPqmVgDGpSUwe0QqZ4wdwIkjUnWUooh0SwpgIuI75xybi2uYsyCHj3Mq2FJSQ0urIzLCGJoax2VTMxjeL56Zw1IY1jfe73JFRI6aApiI+KK2sZl31hfz3oZiFm4rY1dVPZERxqwRqZwxNnDiU/VwiUioUgATkaDZWVnHG9mFLNhayvsbS2hudaTERTMtK5lbT+3LyaP6kpbU0+8yRUQ6nQKYiHSqllbHnAU5PL5oB9tKA+fiGpgYy1Uzh3DWuAFMzUwmUic+FZEw42sAM7NvAzcCDlgDXOecq/ezJhE5OhV7GtlUVM3i7eUs21HBtpIa8ivqGD2gN3eeM5qTR/Vl9IAEv8sUEfGVbwHMzAYBtwFjnXN1ZvY0cBkwx6+aROTwFVbVszKvgvc3lrC1pIalORWfrBveL57RAxK4/oQsrj0+U5f4ERHx+D0EGQX0NLMmoBew0+d6ROQgmlpaeX5FAR9tKWVZTgUFlXUAxMdEMbJ/PLeeOpzJQ/owYVAiqfExPlcrItI1+RbAnHMFZvZbIBeoA95yzr3lVz0icmB55bW8ubaQ+VtKWbK9nNrGFlLjo5mamcz1J2YxaXAS49ISiO0R6XepIiLdgp9DkH2AC4EsoBL4t5ld6Zx7bL/n3QzcDJCRkRHsMkXCknOOrSV7WLC1lPmbS/nP+iJaHQzrG8fFkwdx4vBUzho3QGecFxE5Qn4OQZ4ObHfOlQCY2XPA8cA+Acw5dz9wP8CUKVNcsIsUCRfOOdYUVPHO+mJeWFnAjrJaANL79OTqmZlcd0ImQ1LifK5SRCQ0+BnAcoEZZtaLwBDkacAyH+sRCTsr8yqZuySXxdvL2VlZR0NzK2ZwXEYfbpo1lNkj+pKR0svvMkVEQo6fc8AWm9kzwHKgGViB19MlIp2npdXx+OIdPL+igNX5VQCcODxw9vnByb04f8JA+sRF+1yliEho8/UoSOfcXcBdftYgEk6yC6p4fPEOnlySx/hBCXztpKHcPHuYLvcjIhJkfp+GQkSC4L2Nxfz9/a0s2V4OwHkTBvLXKyb7XJWISPhSABMJUc453llfzKOLdvDBphLSEmP5yXljuOjYQTo/l4iIzxTARELM3lNHvLO+mI1F1ST27MHXTx7Gd84YSY/ICL/LExERFMBEur2WVseGwt0s2lbOf9YVsXBbGQDHDenDXV8Yy5Uzhih4iYh0MQpgIt1UbWMzb60t4v/e3kheeeByQBnJvbjt1OHcOHsoCbGaWC8i0lUpgIl0MytyK/j5q+tZlVdJc6tjYGIsv7p4ArNH9mVQUk+/yxMRkUOgACbSDazftZsPN5fw4eZS5m8ppV/vGG6ePZSZw1KYlpVMTJSuwSgi0p0ogIl0Qa2tjnW7dgcm1G8pY96mEgBG9IvnGycP52snDyM+Rr++IiLdlf6Ci3Qx1fVN3PncGl5dvQsIXAD7lpOHce3xmfRLiPW5OhER6QgKYCI+a2115JTt4fXsQl5dvYt1u3YDcOmUwdxx5kiFLhGREKQAJuKTwqp67n1jAy+v3klTiwNgckYSd5wxkvGDEpk9si+REeZzlSIi0hkUwESCrKq2icXby/jJC9lU1DZy0aRBTBycxGmj+5GmoxhFRMKCAphIkDjn+P4zq3l2eT6tDlLionniphlMzUz2uzQREQkyBTCRTuSc47U1hczbVML8LaUUVNbxpePSuWjSIKZk9iG2h04fISISjhTARDrJ8twKfv/2Jj7cXErvmChmDEvh9tNHcMlx6ZhpbpeISDhTABPpQM0trby5toh/f5zHvE0lJMdF8/WTh/HdM0dpQr2IiHxCAUykAzjneHNtEfd9sJWVeZUMSurJ1TMzuePMkfTWNRlFRGQ/CmAiRym3rJY//GcTz60oICrC+OUXJ3Dp1MHq8RIRkQNSABM5AsXV9WwqrGHOghz+s76IqAjj1lOH841ThmtivYiIHJQCmMhheiN7F197bDkAvaIj+ersoVw5YwiDk3v5XJmIiHQXCmAih6CqrolHPtrO/M2ln8zx+uXFE5g0OInEnprjJSIih0cBTORztLQ65m0u4b9fzCavvI5j0hO5afZQLjkunaF94/0uT0REuikFMJF2VNY2MndpHo8t2kF+RR2p8THcf9VxnDlugN+liYhICFAAE2mjYk8jr67Zxf++sYHq+mamZvbhznNGc8bY/sREaXK9iIh0DAUwEaCppZV/fLCVP/xnM82tjuH94nng6vHMGJrid2kiIhKCDiuAmdlgYBwwHpgAjHPOTemMwkSCoXxPI/9ckMPcpbkU7W5g1ohUvn/WaMYPStDlgkREpNMcNICZ2VeBa4CxQAzwKpANvAT8olOrE+lEu6rquH7OMtbv2s2sEan8+uKJnDSyLxE6gaqIiHSyQ+kB+yFwKVAK/BroCTzsnMvtzMJEOktrq2POghzueWUdkRHG7758DBdPTve7LBERCSOHEsDOd85le/cvMbOzgZfNbA7wR+dca6dVJ9KBnHO8nl3IL15dT0FlHePSEvifi8YzOaOP36WJiEiYOWgAaxO+9j5+w8zeA34CfATM7KTaRDpMXnkt335qJct2VJCWGMt/nz+WK2Zk6MhGERHxxREdBemcawB+amaPdnA9Ih1qZV4lc5fk8vyKAqIjI/jZBeP4yvQMekRG+F2aiIiEsaM6DYVzblNHFSLSkXZW1vH397fy2OIdREUYZ44bwA/OGk1Giq7XKCIi/tN5wCTkVNU28fXHl7Mmv5KLJg3i7i+MI7GXrtcoIiJdhwKYhIzG5lb++M4mHvkoh9rGFn5+0XiunDHE77JEREQ+QwFMQsLanVXc8fQqNhRWc8qovtx62giOHZzkd1kiIiLtUgCTbq2xuZW5S3P5xavriYow/vKVYzl/YprfZYmIiHwuXwOYmSUBDxK4tJEDrnfOLfSzJukenHM8sSSX37y5kcraJsYMTOBvV0wmKzXO79JEREQOyu8esD8CbzjnvmRm0YAOUZND8rOX1zFnQQ4zhiZzzcxMThvTn+gonVpCRES6B98CmJklALOBawGcc41Ao1/1SPfQ0NzCd/+9mpdX7eTyaYP55Rcn6KLZIiLS7fjZAzYUKAEeMbNjgI+B251ze3ysSbqwij2NXPXwYrILdnPBMWncceYohS8REemW/ByziQImA393zh0L7AHu3P9JZnazmS0zs2UlJSXBrlG6gOaWVu58djXTfvkfsgt286NzR/Ony48lNT7G79JERESOiJ89YPlAvnNusff4GdoJYM65+4H7AaZMmeKCV550Bc457nllHXOX5nHF9Awun5bB+EGJfpclIiJyVHwLYM65QjPLM7NRzrmNwGnAOr/qka7pkY9y+NfCHdw8eyg/OneM3+WIiIh0CL+PgrwVeNw7AnIbcJ3P9UgXUd/Uwm/e3MhD87dz1rj+3Hn2aL9LEhER6TC+BjDn3Epgip81SNf0kxeyeebjfL547CB++cUJRERosr2IiIQOv3vARPZR09DM2+sKeX5FAdcen8ndF4zzuyQREZEOpwAmXcY764v45hMrqGtqIS0xlq+dNMzvkkRERDqFAph0CdtKavjGE8uJj4liznVTmTykDz0idWZ7EREJTQpg4qtdVXV879+rWbStjKhIY85103SaCRERCXkKYOKbrSU1/Oi5NSzPreDm2UO5auYQBib29LssERGRTqcAJr54Z30R35q7kobmVn5+0XgunZrhd0kiIiJBowAmQffYoh385IVsslLjmHPdVIakxPldkoiISFApgElQbSjczc9eXsuJw1N58JopxPaI9LskERGRoNNhZhI0VbVN3PSvZcTHRPGny49V+BIRkbClHjAJmgfnbyOvvI45100lOS7a73JERER8owAmna65pZUH52/nz+9u4dwJAzh5VD+/SxIREfGVAph0up+9vI5HF+1g1ohUfnzeWL/LERER8Z0CmHSqZTnlPLpoh67rKCIi0oYm4UunyS6o4ltPraRPrx5876xRfpcjIiLSZSiASafIr6jl8gcW0dLqeOS6acTFqLNVRERkL30rSodzznHPy+uorm/mH1cdx6TBSX6XJCIi0qUogEmH2lG2h38t3MFb64q47dThHD8s1e+SREREuhwFMOkwOyvrOPePH7KnsYWLJw/iW6eP9LskERGRLkkBTDpEQ3ML33xiOXsaW3juluOZnNHH75JERES6LE3Cl6NWVdvE5fcvYnluJeeMH6DwJSIichDqAZOj9szyfJbnVnLbqcP5zpk63YSIiMjBKIDJEatvauFv72/lb+9tYWJ6osKXiIjIIVIAkyNSWtPAl/+xkG0le/jCMWn8/KLxfpckIiLSbSiAyRF5d30x20r28MDVUzhjbH+/yxEREelWNAlfjsi20j30iDROGdXX71JERES6HQUwOSJbiqsZkhJHVKR+hERERA6Xvj3lsJVUN/Dh5lImpif6XYqIiEi3pAAmh+1Xr62n1TmumJ7hdykiIiLdkgKYHJaVeZU8t6KAm2YN5bghyX6XIyIi0i3pKEg5JM0trcxZkMP/vbWJ1PgYbjlluN8liYiIdFsKYHJIvvvvVbywcieTM5K458LxxMfoR0dERORI6VtUDuqlVTt5adVOzhk/gD9dfiw9dOSjiIjIUdE3qXyuV1bv5LYnVzAuLZF7vzRR4UtERKQD6NtUPteqvEoAnrhpOr1je/hbjIiISIhQAJMDem55Ps+v2MmYgQkKXyIiIh1IAUza9UZ2Id95ehXNra1845RhfpcjIiISUnyfhG9mkcAyoMA5d77f9Qjsrm/i+8+sIiUumnfuOImkXtF+lyQiIhJSukIP2O3Aer+LkE/d8/I6dtc385evTFb4EhER6QS+BjAzSwfOAx70sw75lHOOd9YXMTAxlulZOtO9iIhIZ/C7B+wPwPeB1gM9wcxuNrNlZraspKQkaIWFq5V5lVTUNnH7aSOIiDC/yxEREQlJvgUwMzsfKHbOffx5z3PO3e+cm+Kcm9K3b98gVReeahub+f4zq0mNj+a8iQP9LkdERCRk+dkDdgJwgZnlAHOBU83sMR/rCXt/f38rW0pq+P2lk3TaCRERkU7kWwBzzv3QOZfunMsELgPedc5d6Vc94a6gso77PtjKGWP6M2uEehpFREQ6k99zwKQLcM7xw+fW0NTiuPXUEX6XIyIiEvJ8Pw8YgHPufeB9n8sIWy+sLGDephJuODGLCemJfpcjIiIS8tQDFuZeX7OL37yxkRH94vnxuWP8LkdERCQsKICFsQVbS/n648vpFRPFry6eoNNOiIiIBEmXGIKU4HPO8fiiXBJio3jl1hOJ7RHpd0kiIiJhQz1gYaihuYU7n13Dq2t2cdm0DIUvERGRIFMAC0O/eWMjTy3L46ZZWdx59mi/yxEREQk7GoIMM0tzynn4o+1cOCmNH5831u9yREREwpJ6wMLMT1/IJi2pJ/dcMN7vUkRERMKWAlgYKa6uZ0NhNdfMzCSxly41JCIi4hcFsDDy8qpdAEzNSva5EhERkfCmABYmNhVV86vX1jM9K5ljdLZ7ERERXymAhYn73t9KZIRx35XHYaYTroqIiPhJASwMLN5WxnMrCrhyxhD6xEX7XY6IiEjYUwALca+v2cXlDyyiR6Rx+bTBfpcjIiIi6DxgIW1nZR3femolAxN78szXZzIwsaffJYmIiAjqAQtpr2cX0tDcysPXTlX4EhER6UIUwEJUU0srL64sICs1jlEDevtdjoiIiLShABaifvnaelbnV3H1zCF+lyIiIiL7UQALUR9uLmXWiFSuPT7T71JERERkPwpgIai2sZmtJTVMzuijc36JiIh0QQpgISi7YDfOwfhBOuO9iIhIV6QAFoIemr+N2B4RHJuR5HcpIiIi0g4FsBDS2ur4n1fW8fa6Iq6ZmUlqfIzfJYmIiEg7FMBCyEPzt/PQ/O2MH5TILScP97scEREROQCdCT9ErMit4Fevr2f2yL48cu1UIiM0+V5ERKSrUg9YCFi4tYzb5q4gKiKC314yUeFLRESki1MACwE/e3kteeV1fP/sUfTrHet3OSIiInIQCmDd3LMf57OhsJpvnDKMG2cN9bscEREROQQKYN3YyrxKfvjcGlLiovnCMWl+lyMiIiKHSJPwu6mdlXVc9dBiUuKjee6W4xmY2NPvkkREROQQKYB1Uw/P305dYwtP3jRD4UtERKSb0RBkN5RbVsuTS3I5e/wAXW5IRESkG1IA62b2NDRzwz+XEmGmk62KiIh0UxqC7EYenr+de15ZB8CvL57A2LQEnysSERGRI6EA1k3UNDTzf29t5JjBSdxxxkhmjUj1uyQRERE5Qgpg3cSTi3PZ09jC3V8Yy7EZffwuR0RERI6C5oB1A2+tLeRXr6/n5FF9mTQ4ye9yRERE5Cj5FsDMbLCZvWdm681srZnd7lctXVl1fRM/e3kdI/v35q9fmYyZrvMoIiLS3fk5BNkM3OGcW25mvYGPzext59w6H2vqcu6ft42Cyjoev3E6cTEaMRYREQkFvvWAOed2OeeWe/ergfXAIL/q6YoWbCnlz+9uISs1jplDU/wuR0RERDpIl5gDZmaZwLHA4nbW3Wxmy8xsWUlJSdBr80tzSyvffnolEQbP33I8EREaehQREQkVvgcwM4sHngW+5Zzbvf9659z9zrkpzrkpffv2DX6BPqiub+LmRz+maHcD3ztrNEm9ov0uSURERDqQrwHMzHoQCF+PO+ee87OWruS7/17FB5tKuGlWFl87aajf5YiIiEgH821WtwUO53sIWO+c+51fdXQlTS2tPPDhNt5cW8Rtp43gO2eM9LskERER6QR+9oCdAFwFnGpmK73buT7W47uXV+3k3jc2MjAxlsunDfa7HBEREekkvvWAOefmA5pZ7nHO8a+FO0iNj+GjH5yqSfciIiIhzPdJ+BKwubiGlXmVfPOUYQpfIiIiIU4BrIt4bnkBAOdMGOhzJSIiItLZFMC6gDeyC7nvg63MGpFK/4RYv8sRERGRTqYA5rPd9U18/5lVREdG8MfLjvW7HBEREQkCXVzQZ3c+u5rd9c08esM0kuN0wlUREZFwoB4wHxVW1fPamkKmZvZh1ojwOMu/iIiIKID56r4PtgLw0/PH+lyJiIiIBJOGIH1Q39TCvW9sZM6CHM6fOJAJgxL9LklERESCSD1gPnjm43we/mg7Z48bwK8unkDgqkwiIiISLtQDFmSNza28snonvaIj+fuVkxW+REREwpB6wILsqaW5LNpWznUnZCp8iYiIhCkFsCBqaXW8snoXyXHRfPfMUX6XIyIiIj5RAAuiZ5fns3h7ObefNkK9XyIiImFMASyI3lpbSN/eMVw9c4jfpYiIiIiPFMCC5KMtpfxnfTFfPHaQer9ERETCnI6CDIJ/L8vj56+uJ71PT75zxki/yxERERGfqQeskznnuPfNjfSIjOCha6YS2yPS75JERETEZwpgnWxHWS0l1Q3cftpwRg3o7Xc5IiIi0gUogHWi0poGvv/MagBOGtnP52pERESkq9AcsE6yMq+Sbz6xnKLd9fzkvDFkpPTyuyQRERHpIhTAOsHibWV85cHFpMRFM/fmGRw3JNnvkkRERKQLUQDrYPM3l3L9nKX0jY/htdtnkRwX7XdJIiIi0sVoDlgHKq6u51tPrWRAYiyv3naiwpeIiIi0SwGsgzjn+PVrG6isbeTeL00kJT7G75JERESki1IA6yB/e38rz60o4KbZQ5kxNMXvckRERKQLUwDrAPVNLfzjg61Mz0rWme5FRETkoBTAOsDv3t7E7vpmvnnqcHpEqklFRETk8yktHKWNhdU8NH87yXHRHD8s1e9yREREpBtQADtKd7+0loTYKF697UQiI8zvckRERKQbUAA7CvM2lbBwWxm3nDycgYk9/S5HREREugkFsCO0IreCG/+1jN6xUVw2bbDf5YiIiEg3ogB2BGobm7nOO9v9nOum0ju2h98liYiISDeiSxEdpuLd9Vzx4GIqa5v4y+WTdZ1HEREROWzqATtMf3t/K5uLa/jDpZM4cYSOehQREZHDpx6wQ+Sc4/a5K3lp1U7+a3I6Fx07yO+SREREpJtSADsExdX13PXiWl7PLuSmWVncceYov0sSERGRbszXIUgzO9vMNprZFjO7089aDmR5bgVf/OsCXs8u5PJpg/neWaOJ7RHpd1kiIiLSjfnWA2ZmkcBfgTOAfGCpmb3knFvnV017OedYsr2cRz7K4Y21hfTsEckDV0/hjLH9/S5NREREQoCfQ5DTgC3OuW0AZjYXuBDwLYC9tGon98/bSkFFHRW1TcRERXDZ1MH84OzR9ImL9qssERERCTF+BrBBQF6bx/nA9P2fZGY3AzcDZGRkdGpBMVERpMbHMGFQIuPSErlgUhoJOseXiIiIdDA/A1h7F050n1ng3P3A/QBTpkz5zPqOdNa4AZw1bkBnvoWIiIiIr5Pw84G21/BJB3b6VIuIiIhI0PgZwJYCI8wsy8yigcuAl3ysR0RERCQofBuCdM41m9k3gTeBSOBh59xav+oRERERCRZfT8TqnHsNeM3PGkRERESCTdeCFBEREQkyBTARERGRIFMAExEREQkyBTARERGRIFMAExEREQkyBTARERGRIFMAExEREQkyBTARERGRIFMAExEREQkyc875XcMhM7MSYEcnv00qUNrJ79GdqD0+pbbYl9pjX2qPT6kt9qX22Fc4tccQ51zf9lZ0qwAWDGa2zDk3xe86ugq1x6fUFvtSe+xL7fEptcW+1B77UnsEaAhSREREJMgUwERERESCTAHss+73u4AuRu3xKbXFvtQe+1J7fEptsS+1x77UHmgOmIiIiEjQqQdMREREJMgUwDxmdraZbTSzLWZ2p9/1BIOZDTaz98xsvZmtNbPbveXJZva2mW32/u3T5jU/9Npoo5md5V/1ncPMIs1shZm94j0O57ZIMrNnzGyD9zMyM8zb49ve70m2mT1pZrHh1B5m9rCZFZtZdptlh73/Znacma3x1v3JzCzY+3K0DtAWv/F+V1ab2fNmltRmXci2BbTfHm3WfdfMnJmltlkW0u1xyJxzYX8DIoGtwFAgGlgFjPW7riDs90Bgsne/N7AJGAvcC9zpLb8T+F/v/livbWKALK/NIv3ejw5uk+8ATwCveI/DuS3+Cdzo3Y8GksK1PYBBwHagp/f4aeDacGoPYDYwGchus+yw9x9YAswEDHgdOMfvfeugtjgTiPLu/2+4tMWB2sNbPhh4k8D5O1PDpT0O9aYesIBpwBbn3DbnXCMwF7jQ55o6nXNul3NuuXe/GlhP4IvmQgJfvnj/XuTdvxCY65xrcM5tB7YQaLuQYGbpwHnAg20Wh2tbJBD4o/oQgHOu0TlXSZi2hycK6GlmUUAvYCdh1B7OuXlA+X6LD2v/zWwgkOCcW+gC37j/avOabqO9tnDOveWca/YeLgLSvfsh3RZwwJ8NgN8D3wfaTjYP+fY4VApgAYOAvDaP871lYcPMMoFjgcVAf+fcLgiENKCf97RQb6c/EPhj0dpmWbi2xVCgBHjEG5J90MziCNP2cM4VAL8FcoFdQJVz7i3CtD3aONz9H+Td3395qLmeQA8OhGlbmNkFQIFzbtV+q8KyPdqjABbQ3jhz2BweambxwLPAt5xzuz/vqe0sC4l2MrPzgWLn3MeH+pJ2loVEW3iiCAwp/N05dyywh8AQ04GEdHt4c5suJDBkkgbEmdmVn/eSdpaFTHscggPtf8i3i5n9GGgGHt+7qJ2nhXRbmFkv4MfAf7e3up1lId0eB6IAFpBPYKx6r3QCwwshz8x6EAhfjzvnnvMWF3ndwXj/FnvLQ7mdTgAuMLMcAkPQp5rZY4RnW0Bg//Kdc4u9x88QCGTh2h6nA9udcyXOuSbgOeB4wrc99jrc/c/n06G5tstDgpldA5wPXOENo0F4tsUwAv9ZWeX9TU0HlpvZAMKzPdqlABawFBhhZllmFg1cBrzkc02dzjvC5CFgvXPud21WvQRc492/BnixzfLLzCzGzLKAEQQmTXZ7zrkfOufSnXOZBD7/d51zVxKGbQHgnCsE8sxslLfoNGAdYdoeBIYeZ5hZL+/35jQCcybDtT32Oqz994Ypq81shteOV7d5TbdmZmcDPwAucM7VtlkVdm3hnFvjnOvnnMv0/qbmEzjgq5AwbI8D8vsogK5yA84lcBTgVuDHftcTpH0+kUAX72pgpXc7F0gB3gE2e/8mt3nNj7022kiIHqECnMynR0GGbVsAk4Bl3s/HC0CfMG+PnwEbgGzgUQJHcYVNewBPEpj/1kTgC/WGI9l/YIrXhluBv+CdELw73Q7QFlsIzG3a+7f0vnBoiwO1x37rc/COggyH9jjUm86ELyIiIhJkGoIUERERCTIFMBEREZEgUwATERERCTIFMBEREZEgUwATERERCTIFMBEJKWa24DCff7KZvdJZ9YiItEcBTERCinPueL9rEBE5GAUwEQkpZlbj/Xuymb1vZs+Y2QYze9w7wzZmdra3bD5wcZvXxpnZw2a21LsI+YXe8j+Z2X97988ys3lmpr+fInLEovwuQESkEx0LjCNwTbmPgBPMbBnwAHAqgbOXP9Xm+T8mcBmq680sCVhiZv8hcCHypWb2IfAn4FznXGvwdkNEQo3+BycioWyJcy7fC0srgUxgNIELa292gUuBPNbm+WcCd5rZSuB9IBbIcIFr+90EvA38xTm3NWh7ICIhST1gIhLKGtrcb+HTv3kHugabAf/lnNvYzroJQBmQ1nHliUi4Ug+YiISbDUCWmQ3zHl/eZt2bwK1t5ood6/07BLiDwJDmOWY2PYj1ikgIUgATkbDinKsHbgZe9Sbh72iz+n+AHsBqM8sG/scLYw8B33XO7QRuAB40s9ggly4iIcQCUyBEREREJFjUAyYiIiISZApgIiIiIkGmACYiIiISZApgIiIiIkGmACYiIiISZApgIiIiIkGmACYiIiISZApgIiIiIkH2/w0EK+FvNGcyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# We then sort the eigenvalues in ascending order.\n", + "eigenvals_sorted_indices = np.argsort(eigenvals)\n", + "eigenvals_sorted = eigenvals[eigenvals_sorted_indices]\n", + "# Let us plot the sorted eigenvalues.\n", + "fig, ax = plt.subplots(figsize=(10, 6))\n", + "sns.lineplot(x=range(1, eigenvals_sorted_indices.size + 1), y=eigenvals_sorted, ax=ax)\n", + "ax.set(title='Sorted Eigenvalues Graph Laplacian', xlabel='index', ylabel=r'$\\lambda$');" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "id": "f7bcb799", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAGDCAYAAACr/S2JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABLiElEQVR4nO3deXyV5Z3//9cne0ISQkgCJOwSdmQRQYu2qLVFf+2gtlqdsVrtd7Sd7jOdqTOdsa3f+uvyczpTp46ObVH82lqr1kot39q67wsKguyLQEJYkkA2sp3l+v1x34mHEEICyblzct7PxyOPnHNv53Ofk5A313Xf12XOOUREREQkcaQEXYCIiIiI9I0CnIiIiEiCUYATERERSTAKcCIiIiIJRgFOREREJMEowImIiIgkGAU4kQRjZs+b2f86xX2bzGxyf9fUX8zsc2b2ctB1DLTBcJ5mNtHMnJmlneZx/q+ZXd9fdXU5drGZbTWzrJNst9HMlg5EDafDzM40s1eDrkOGJgU4kZMws/PM7FUzqzezw2b2ipmdfYrH6pc/mj0c/7tmFvKDWsdXXcd651yuc27XQLx2IjOzi83sOTNrNLNaM1tnZt86WXCIFzPbbWYfDbqO7jjnLnHOrRygw98C3Oeca4XO/7y0dvn5Ptc5N8s593xfD96b30czm21mT5lZjZkdN3CqmRWa2eNmdtTM9pjZX3esc86tB+rM7JN9rU3kZBTgRHpgZvnAk8B/AYVAGfA9oO0UjjUgoa0bD/tBreOrIE6vm5DM7ErgUeDXwATn3EjgM8BYYNwJ9onXZ5m0zCwTuB54sMuqL3f5+X7tJMc53c8qBPwW+PwJ1t8FtAOjgL8B7jazWTHrfwXcfJo1iBxHAU6kZ1MBnHMPOecizrkW59yf/f9ZY2YpZvav/v+8D5nZA2Y23F/X8b/7z5vZXuBZ4EX/uHUdrQf+tjea2WYzO+L/b39CRwF+69AWvwXwZ4Cd6sn49UzxH480sz+YWYOZvWVm34/t1jOz6Wb2F7/VcauZXRWz7n4zu8vM/ui3Wr1hZmf46+4xszu6vO4TZvb3/uNbzGynv98mM7v8BLUe1zrStfv4RO+bef7D/0zqzWy9mc3u5jUM+Alwm3Pu5865wwDOua3Oua8457b7233XzB41swfNrAH4nJktMrPXzKzOzPab2c/MLKPLe/1VM9vlt978f2aW0uX17/Brf9/MLjnpB3h8/SPM7Ekzq/aP86SZje3yfv3AzN7034cnzKzwBMe6wX8vG/2ab+6yfrl5LZMN/ue3rOtnYmZnmNmz5rVi1pjZr8ysIOYYu83sm/7nUW9mD9uJWzkXA3XOucpevA+dLZQ9fFZr/NoPmtlP/F27/X2M5f8s/BLY2M3rDgM+Bfybc67JOfcysAr4bMxmzwMXmRdIRfqNApxIz7YBETNbaWaXmNmILus/539dAEwGcoGfddnmI8AM4OPAh/1lBR2tB2Z2GfAvwBVAMfAS8BCAmRUBjwH/ChQBO4El/XRudwFHgdF4LR2d1zH5f5j+gtcqVQJcA/y3HduycA1ea+QIYAdwu7/818Bn/HCE/559DPiNv34ncD4w3N//QTMb09fie3rf/Nf7MF4AL8BrUavt5jDT8FraHuvFSy7Ha6krwGtViQDfwPtczgUuAv6uyz6XAwuBBf7+N8asWwxs9ff/MfDLjvesD1KA+4AJwHigheN//q7zX7cUCAN3nuBYh4BPAPnADcB/mNkCADNbBDwA/CPe+X8Y2N3NMQz4gf9aM/BaML/bZZurgGXAJOBMvN+f7szBe39ORdfP6qfAT51z+cAZeC1q0M3vYx9fZyoQcc5ti1n2LtD5e+Kc24fXijetrych0hMFOJEeOOcagPMAB/wcqDazVWY2yt/kb4CfOOd2OeeagH8GrrZju22+65w76pxrOcHL3Az8wDm32TkXBv5fYJ7fmnQpsMk596hzLgT8J3DgJGVf5bcKdXw913UDM0vFazn4jnOu2Tm3CYi9jukTwG7n3H3OubBz7h28kPPpmG1+55x706/5V8A8f/lL/vt1vv/808BrzrkqAOfcI865Kudc1Dn3MLAdWHSSc+pOT+9bCMgDpgPmb7O/m2MU+d8731Mz+43/vjWbWWxLymvOud/7dbc45952zr3uvz+7gf/BC+uxfuScO+yc24v32V0Ts26P3+oXwXvvx+B1w/Wac67WOfeY/xk24oXorjX8H+fce865o8C/4f18pHZzrD8653Y6zwvAn/ngM/w8sMI59xf//Pc557Z0c4wd/jZtzrlqvNbNrvXc6X/+h4E/8MHPTVcFQGM3y++M+dl+5wT7HvNZ4f08TDGzIr+l7PUT7NdXuUB9l2X1eD97sRrxzkek3yjAiZyE/8f/c865scBsvNaF//RXlwJ7YjbfA6Rx7B/iipO8xATgpx1/lIDDeC0ZZf7xO/d3zrleHO+3zrmCmK8Lutmm2K8z9lixjycAi2ODIF5YHR2zTWyQbMb7Y9ZR42/4IKz8NV7AA8DMrvO74jqOO5sPglRfnPB9c849i9cSdRdw0MzuNe96xq46WuU6WwCdc1f71w2+A8QGnWPedzOb6ndZHvC76v7fbs4jdp89eJ9nh873zznX7D/M7eF8j2NmOWb2P+Z14TfgdQkWdAloXWtI76ZO/Bbm183rMq/D+89Dx3bj8FpOT1ZPiR+A9/n1PNjNa3X7c9ONIxwfhAC+GvOzveAE+3b9Hfk8XmvZFvMuF/hEz2fSa014LZax8jk+eOYBdf30miKAApxIn/itDvfjhQ6AKrwg0WE8XjfVwdjdTvC4QwVwc5fQle2cexXYT8yF9H4XW7cX1vdRtV/n2JhlscetAF7oUlOuc+6LvTz+Q8Cn/dawxfhdlP7znwNfBkb6Qek9ur+u76j/PSdmWWyA7Ol9wzl3p3PuLLzurKl43X9dbQH24XXDnkzXz+5uf/9yv2vuX7o5j9j3dDzez0t/+ge8rrnFfg0dXYKxdXStIQTUxB7Evz7rMeAOYJT/uayOOU4FXtfjyfwA730606/nWrr/bHtjPf41qKfgmM/KObfdOXcN3uUAPwIe9S8T6O73sS+2AWlmVh6zbC4x18uZWSmQwal3B4t0SwFOpAfmXcj/D+ZfGG5m4/Baljq6YB4CvmFmk8wsF68V5mG/S6871UAU73q5DvcA/9xxfZmZDTfvzkiAPwKzzOwKv1v2qxwbYk6J3233O+C7fivOdLxrpTo8CUw1s8+aWbr/dbaZzejl8dfinesvgKecc3X+qo4/mtXgXTjPB2G46zGq8cLVtWaWamY3cmyIOOH75te62MzS8YJgK941a11fw+GFoO+Y2d+ad1OA+X+QT9admQc0AE3++9dduP1H/5jjgK8BD5/kmD1JN7OsmK80v4YWvIvwC4HvdLPftWY208xygNuAR/3PP1YGkIkf7M27oeJjMet/CdxgZheZd+NOmX/OXeXhtUrVmVkZ3Yfm3noTrzWx7DSOAYCZXWtmxc65KB+0hEXo/vex675m3o0WGf7zLD/w4ndL/w64zcyGmdkSvOvv/k/MIZYCzzrn+nznukhPFOBEetaI14L0hpkdxQtu7+H90QdYgfeP9YvA+3hB4SsnOpjfVXY78Irf9XeOc+5xvFaB3/jdTu8Bl/jb1wBXAj/E6+4rB145Sc2fsWPHyWoys5Jutvsy3o0EB/xzeAh/eBT/eqqPAVfjtRod8Gvsy510DwEfxbupoeP8NwH/DryG10o55yTn87d4IaAWryWtc1DUnt43vG6sn+N1w+3x9z/mztiY4zyMd2H9tXgtTTV4F7nfCzzSQ23fxOsebvRfq7tw9gTwNrAOL4z/sofjncxqvLDW8fVdvK78bL/m14E/dbPf/8FrNT4AZOH9J+AY/uf9VbzzPoJ3Xqti1r+Jf2MD3jVeL3Bsy3OH7+HdsFGPd76/69spHlNTu1/3tad6jBjLgI1m1oR3Q8PVzrnW7n4fu9l3At773dGq1sKxrWl/h/cZHML7mf+icy72jtW/wfvPhki/Mu8/oCKS7MzsR8Bo59yAjKqfbMwb9LXcObcjwBqeBx50zv0iqBpOh5l13F083534JqBBy8zmAPc6544bnkTkdGkwSpEk5XeBZQAbgLPxLvQ+pSm6RAaC343eXVdtQnDObcAbYkak3ynAiSSvPLwun1K87p9/x+vyExGRQU5dqCIiIiIJRjcxiIiIiCQYBTgRERGRBJNU18AVFRW5iRMnBl2GDGYdlxT0eUpKERGR/vX222/XOOeKu1uXVAFu4sSJrFmzJugyRERERE7KzPacaJ26UEVi7F/9J/av7m4sVBERkcFDAU4kRs0rr1Lzyqsn31BERCRACnAiIiIiCSaproHrTigUorKyktbW1qBLkQGQlZXF2LFjSU9PD7oUERGRfpP0Aa6yspK8vDwmTpyI6c7DIcU5R21tLZWVlUyaNCnockRERPpN0nehtra2MnLkSIW3IcjMGDlypFpXRURkyEn6FjhA4W0I6+tnO+f22waoEhERkf6T9C1wyezWW2/l6aefDroMJk6cSE1NTdBliIiIJAy1wCWwSCRCamrqKe9/221qbepq3+NPAFB2+fKAKxERkcGmPRyhpqmdl7ZXs6mqkZmleZxfXkxRbgYZaaf+9/hUqAUuYPfccw/z5s1j3rx5TJo0iQsuuACAP//5z5x77rksWLCAK6+8kqamJsBrrbrttts477zzeOSRR3jooYeYM2cOs2fP5lvf+la3r/H222/zkY98hLPOOouPf/zj7N+/H4DPfe5zPProowCsXr2a6dOnc9555/HVr36VT3ziEwAcPXqUG2+8kbPPPpv58+fzxBNewLn//vu54oorWLZsGeXl5fzTP/0TAHfffXfn447tvvKVrwBw2WWXcdZZZzFr1izuvffe4+rcvXs3s2fP7nx+xx138N3vfheAnTt3smzZMs466yzOP/98tmzZAsAjjzzC7NmzmTt3Lh/+8IdP4RM41uE1b3N4zdunfRwRERla2sMR3tlTxwV3PM+3HtvAytd2863HNnDBHc/zzp462sORuNajFrguNnz71uOWFS35EGMuXUakrY1Nt91+3PqSC5cy6qILCTU0sOVHdxyz7mTXVH3hC1/gC1/4AqFQiAsvvJC///u/p6amhu9///s8/fTTDBs2jB/96Ef85Cc/4dZbvdqysrJ4+eWXqaqq4pxzzuHtt99mxIgRfOxjH+P3v/89l112WefxQ6EQX/nKV3jiiScoLi7m4Ycf5tvf/jYrVqzo3Ka1tZWbb76ZF198kUmTJnHNNdd0rrv99tu58MILWbFiBXV1dSxatIiPfvSjAKxbt461a9eSmZnJtGnT+MpXvsKnP/1pzj33XH784x8DdL4ewIoVKygsLKSlpYWzzz6bT33qU4wcObLH96fDTTfdxD333EN5eTlvvPEGf/d3f8ezzz7LbbfdxlNPPUVZWRl1dXW9OpaIiEhf1TS1c/19b9IWjh6zvC0c5fr73uS5by6ltCA7bvUowA0SX/va17jwwgv55Cc/yZNPPsmmTZtYsmQJAO3t7Zx77rmd237mM58B4K233mLp0qUUF3vz3P7N3/wNL7744jEBbuvWrbz33ntcfPHFgNftOmbMmGNee8uWLUyePLlzqI1rrrmms4Xsz3/+M6tWreKOO7xg2trayt69ewG46KKLGD58OAAzZ85kz549nHfeeUyePJnXX3+d8vJytm7d2nked955J48//jgAFRUVbN++vVcBrqmpiVdffZUrr7yyc1lbWxsAS5Ys4XOf+xxXXXUVV1xxxUmPJSIicipe2l59XHjr0BaO8vKOGq5aOC5u9SjAddFTi1lqZmaP69Pz80/pLsb777+fPXv28LOf/Qzwxi+7+OKLeeihh7rdftiwYZ3bnYxzjlmzZvHaa6/1uE1P6x577DGmTZt2zPI33niDzMzMzuepqamEw2HAC5i//e1vmT59OpdffjlmxvPPP8/TTz/Na6+9Rk5ODkuXLj1ueI+0tDSi0Q9+OTrWR6NRCgoKWLdu3XH13XPPPbzxxhv88Y9/ZN68eaxbt67XrXoiIiIn0xqKUFXXwl82Hepxu81VDXGqyKNr4AL29ttvc8cdd/Dggw+SkuJ9HOeccw6vvPIKO3bsAKC5uZlt27Ydt+/ixYt54YUXqKmpIRKJ8NBDD/GRj3zkmG2mTZtGdXV1Z4ALhUJs3LjxmG2mT5/Orl272L17N+B1e3b4+Mc/zn/91391hry1a9ee9JyuuOIKfv/73/PQQw91thbW19czYsQIcnJy2LJlC6+//vpx+40aNYpDhw5RW1tLW1sbTz75JAD5+flMmjSJRx55BPBC5bvvvgt418YtXryY2267jaKiIioqKk5aX09SMjJIycg4rWOIiEjiag1F2FndxAvbqvn1G3u554WdPLGuCrOeG01mlObHqUKPWuAC9rOf/YzDhw933rywcOFCfvGLX3D//fdzzTXXdHYVfv/732fq1KnH7DtmzBh+8IMfcMEFF+Cc49JLL2X58mPvnszIyODRRx/lq1/9KvX19YTDYb7+9a8za9aszm2ys7P57//+b5YtW0ZRURGLFi3qXPdv//ZvfP3rX+fMM8/EOcfEiRM7g9WJjBgxgpkzZ7Jp06bOYy1btox77rmHM888k2nTpnHOOecct196ejq33norixcvZtKkSUyfPr1z3a9+9Su++MUv8v3vf59QKMTVV1/N3Llz+cd//Ee2b9+Oc46LLrqIuXPn9uZtP6FZ3/nX09pfREQSS2soQuWRFvbVtVB5pJnqxjacg7QUY/TwLBZPGsnYEdk4V8aL22q67UbNTEvhvClFca3betMNN1QsXLjQrVmz5phlmzdvZsaMGQFVNHg0NTWRm5uLc44vfelLlJeX841vfCPosvqFPmMREenQ0h5hX10zlUdaqDzSQk3TB4FtTEE2Y0dkU1aQzZjhWaSlftBR2XEXatcbGTLTUlh54yIWjC/o96FEzOxt59zC7tapBU4A+PnPf87KlStpb29n/vz53HzzzUGXFIiKh71u2nGfufIkW4qISCLoCGwVHYGt0evZSk81xgzP5tzJIykbkc3o/GMDW1cZaaksmFDAc99cyss7athc1cCM0nzOm1IUyDhwCnACwDe+8Y0h0+J2OurWbwAU4EREElVze5h9flirPNJMTVM74AW20oJspp4xkrGFOYzOzyI1pW/TLWakpVJakB3Xu01PRAFOREREEtbRtnDn9WuVR1qo9QNbRloKY4ZnMW10PmNHZDPqFALbYKYAh3dXoya0H5qS6RpPEZFkcLQt3Nm6VnmkhcNHPwhspQVZzBjjBbaSvKEV2LpK+gCXlZVFbW0tI0eOVIgbYpxz1NbWkpWVFXQpIiJyiprawl5YO+zdKRob2MoKsplVms/YETmU5GWSMoQDW1dJH+DGjh1LZWUl1dXVQZciAyArK4uxY8f2evv0vNwBrEZERE6msTXkDevht7IdaQ4BXmAbOyKb2WX5lBUkX2DrKumHEREREZHT1x6OUNPUzkvbq9lU1cjM0jzOLy8+6R2aDa2hzta1yiPN1PmBLTPda2EbOyKHsSOyKc5NvsCmYURERERkwPQ4RtoNi1gw4YMx0upbQp2ta5VHWqhv8QJbVnoqZSOyOXNsAeNGZFOUhIGtLxTgRGLsfuBBACZed23AlYiIJI6apvbjwht4k7xft+IN7r1uIW3hKJVHWmjoEtjmjS/obGHTtei9pwAnEqNx6/FzzoqISM9e2l7d7RRTAO0Rx4Ov72HhxELKCrJZML6AsSNyKMrNUGA7DQpwIiIiclo2VTX2uL5oWCY3f3iyAls/OvGcEf3IzJaZ2VYz22Fmt3Sz3szsTn/9ejNb4C/PMrM3zexdM9toZt+L2afQzP5iZtv97yPicS4iIiJyrJmleT2uXzBxhMJbPxvwAGdmqcBdwCXATOAaM5vZZbNLgHL/6ybgbn95G3Chc24uMA9YZmbn+OtuAZ5xzpUDz/jPRUREJM7OLy8mM637SJGZlsJ5U4riXNHQF48WuEXADufcLudcO/AbYHmXbZYDDzjP60CBmY3xnzf526T7Xy5mn5X+45XAZQN5EpIcMkeOJHPkyKDLEBFJKEW5Gdx3/dnHzXyQmZbCyhsXUZSbEVBlQ1c8roErAypinlcCi3uxTRmw32/BexuYAtzlnHvD32aUc24/gHNuv5mVdPfiZnYTXqse48ePP81TkaFu6t9/LegSREQSTkZaKsNz0rj+3AkU5mZQ29jOjNJ8zptSdNJx4OTUxCPAddfp3XX04BNu45yLAPPMrAB43MxmO+fe6+2LO+fuBe4FbyDf3u4nIiIivbexqpFxhTl87kMTdb1bHMSjC7USGBfzfCxQ1ddtnHN1wPPAMn/RQTMbA+B/P9RvFUvS2vWLFez6xYqgyxARSSgHG1rZV9fC3HEFCm9xEo8A9xZQbmaTzCwDuBpY1WWbVcB1/t2o5wD1frdosd/yhpllAx8FtsTsc73/+HrgiQE+D0kCR9/fzdH3dwddhohIQlm7t46MtBRmjskPupSkMeBdqM65sJl9GXgKSAVWOOc2mtkX/PX3AKuBS4EdQDNwg7/7GGClfx1cCvBb59yT/rofAr81s88De4ErB/pcRERE5FhH28JsO9jInLLhZKXrWrd4ictAvs651XghLXbZPTGPHfClbvZbD8w/wTFrgYv6t1IRERHpiw376olEHXPHFQRdSlKJy0C+IiIiMvREoo71lXVMLMqhcJiGCoknTaUlEiO7dEzQJYiIJIzthxo52hbh4pmaDCneFOBEYkz50heDLkFEJGGs21vHiJx0Jo7MCbqUpKMuVBEREemz/fUt7K9vZd54zXMaBAU4kRg77rqbHXfdffINRUSS3Dp/6JAZY3qeyF4GhrpQRWK0VO0PugQRkUGvqS3MtoNNzB03nExNkxUItcCJiIhIn6yvrMPhmKehQwKjACciIiK9Fo5E2VBZz6SiYRTkaOiQoCjAiYiISK9tO9hEc3tErW8B0zVwIjGGTZoYdAkiIoOWc451FXWMzM1gfKGGDgmSApxIjMn/68agSxARGbSq6ls52NDKRTNKNHRIwNSFKiIiIr2ybm8dmekpTB+dH3QpSU8BTiTGtp/8lG0/+WnQZYiIDDqNrSF2HGpidulwMtIUH4KmLlSRGG21tUGXICIyKK2vrMfhmKubFwYFRWgRERHpUSgSZcO+eiYX5zI8Oz3ocgQFOBERETmJrQcaaWmPMF+tb4OGApyIiIicUMfQIUV5mYwdkR10OeLTNXAiMfKmTQ26BBGRQaXySAvVjW1cPHOUhg4ZRBTgRGJMvO7aoEsQERlU1lXUkZWeyrTReUGXIjHUhSoiIiLdqm8JsbO6iTllw0lPVWQYTPRpiMTY8sMfs+WHPw66DBGRQWF9ZR2Gcea44UGXIl2oC1UkRqixKegSREQGhfawN3TIGSXDyM/S0CGDjVrgRERE5DhbDzTSFooyf/yIoEuRbijAiYiIyDG8oUOOUJKfSenwrKDLkW4owImIiMgxKg63UNPUzrxxBRo6ZJDSNXAiMQrOnBN0CSIigVtbcYScjFSmjdLQIYOVApxIjHGfuTLoEkREAlXfHOL9mqMsmlhImoYOGbT0yYiIiEindZ1DhxQEXYr0QAFOJMbG732fjd/7ftBliIgEoj0c5b199UwdlUtupjrpBjN9OiIxou3tQZcgIhKYzfsbaA9HmTe+IOhS5CTUAiciIiL+0CF1jB6exeh8DR0y2CnAiYiICHtqmzl8VEOHJAoFOBEREWFdRR3DMlOZqqFDEoKugROJUbjwrKBLEBGJuyNH23m/5ijnTB5Jaopa3xKBApxIjLLLlwddgohI3K2rrCM1xThz7PCgS5FeUheqiIhIEmsLR9hU1cDUUXkM09AhCUMBTiTGhm/fyoZv3xp0GSIicbOpyh86RAP3JpS4BDgzW2ZmW81sh5nd0s16M7M7/fXrzWyBv3ycmT1nZpvNbKOZfS1mn++a2T4zW+d/XRqPcxERERkqOoYOKS3IYvRwDR2SSAa8rdTMUoG7gIuBSuAtM1vlnNsUs9klQLn/tRi42/8eBv7BOfeOmeUBb5vZX2L2/Q/n3B0DfQ4iIiJD0fs1R6lrDvGhM4qCLkX6KB4tcIuAHc65Xc65duA3QNcrxZcDDzjP60CBmY1xzu13zr0D4JxrBDYDZXGoWUREZMhbV1FHbmYaU0pygy5F+igeAa4MqIh5XsnxIeyk25jZRGA+8EbM4i/7Xa4rzGxEv1UsIiIyxNU2tbGntpkzxw7X0CEJKB4BrrufCteXbcwsF3gM+LpzrsFffDdwBjAP2A/8e7cvbnaTma0xszXV1dV9LF2STdGSD1G05ENBlyEiMuDerawjLcWYo6FDElI87heuBMbFPB8LVPV2GzNLxwtvv3LO/a5jA+fcwY7HZvZz4MnuXtw5dy9wL8DChQu7BkeRY4y5dFnQJYiIDLjWkDd0yLTReeRkaOiQRBSPFri3gHIzm2RmGcDVwKou26wCrvPvRj0HqHfO7TdvMrZfApudcz+J3cHMxsQ8vRx4b+BOQZJFpK2NSFtb0GWIiAyojVUNhCJOQ4cksAGP3c65sJl9GXgKSAVWOOc2mtkX/PX3AKuBS4EdQDNwg7/7EuCzwAYzW+cv+xfn3Grgx2Y2D6+rdTdw80Cfiwx9m267HYA5t98WcCUiIgMjGvWGDikbkU1JvoYOSVRxaTf1A9fqLsvuiXnsgC91s9/LdH99HM65z/ZzmSIiIkPerpqjNLSE+HC5hg5JZJqJQUREJImsq6gjLyuNM4o1dEgiU4ATERFJEtWNbVQcbmbuuAJSNHRIQlOAExERSRLvVtSRnmrMKdPQIYlO9w6LxCi5cGnQJYiIDIiW9ghbDjQwfXQ+WempQZcjp0kBTiTGqIsuDLoEEZEB8V5VPaGIY66GDhkS1IUqEiPU0ECooeHkG4qIJJBo1PFuRR3jCnMozssMuhzpBwpwIjG2/OgOtvzojqDLEBHpVzurm2hsDWvg3iFEAU5ERGSIW1tRR352OpOLhgVdivQTBTgREZEh7FBjK/uOtDBv3HANHTKEKMCJiIgMYev2ekOHzCrV0CFDiQKciIjIENXcHmbrgUZmlmrokKFGw4iIxBi97ONBlyAi0m82VNYTjjrmji0IuhTpZwpwIjGKz18SdAkiIv0iEnWsr6xnwsgcRuZq6JChRl2oIjHaqmtoq64JugwRkdO241ATTW0aOmSoUoATibHtP+9k23/eGXQZIiKnbV3FEQpy0pmkoUOGJAU4ERGRIeZgQytVda3MG1eAmYYOGYoU4ERERIaYtXvryEhLYWZpftClyABRgBMRERlCjraF2XbQGzokM01DhwxVCnAiIiJDyPrKeiJRxzwNHTKkaRgRkRhlyz8ZdAkiIqcsEnVs2FfHpKJhjBiWEXQ5MoAU4ERiFC46O+gSRERO2baDjRxtizBvZkHQpcgAUxeqSIzmyn00V+4LugwRkT5zzrGuoo7CYRlMGJkTdDkywBTgRGLsvPt/2Hn3/wRdhohInx1oaOVAvYYOSRYKcCIiIkPAOn/okBljNHRIMlCAExERSXBNbWG2HWxidtlwMtL0pz0Z6FMWERFJcOsr6nBo6JBkogAnIiKSwMKRKBv21TOpaBjDc9KDLkfiRMOIiMQYd+Wngi5BRKRPth5spLk9wvxxI4IuReJIAU4kRsG8uUGXICLSax1DhxTlZjCuMDvociSO1IUqEqNp1/s07Xo/6DJERHqlqr6VQw1tzBs3QkOHJBkFOJEY7//yPt7/5X1BlyEi0ivr9taRlZ7KtNF5QZcicaYAJyIikoAaWkPsONTE7LJ8DR2ShPSJi4iIJKD1FfU4HGdq6JCkpAAnIiKSYEL+0CFnFOcyPFtDhyQjBTgREZEEs/VAI62hCPPGFQRdigREw4iIxJhw7V8HXYKISI+cc6ytqKM4L5OxIzR0SLJSgBOJkT9jetAliIj0qPJICzWNbVw8c5SGDkli6kIVidGweQsNm7cEXYaIyAmtq6gjO0NDhyS7uAQ4M1tmZlvNbIeZ3dLNejOzO/31681sgb98nJk9Z2abzWyjmX0tZp9CM/uLmW33v2sOETltex78NXse/HXQZYiIdKu+JcTO6ibmlA0nPVVtMMlswD99M0sF7gIuAWYC15jZzC6bXQKU+183AXf7y8PAPzjnZgDnAF+K2fcW4BnnXDnwjP9cRERkyHq3og7DOHPs8KBLkYDFI74vAnY453Y559qB3wDLu2yzHHjAeV4HCsxsjHNuv3PuHQDnXCOwGSiL2Wel/3glcNkAn4eIiEhg2sNR3quqZ0pJLnlZGjok2cUjwJUBFTHPK/kghPV6GzObCMwH3vAXjXLO7Qfwv5d09+JmdpOZrTGzNdXV1ad6DiIiIoHacqCBtlCUeeMLgi5FBoF4BLjubpFxfdnGzHKBx4CvO+ca+vLizrl7nXMLnXMLi4uL+7KriIjIoOCcY11FHaPysygdnhV0OTIIxGMYkUpgXMzzsUBVb7cxs3S88PYr59zvYrY52NHNamZjgEP9XrkknUmfvyHoEkREjlNxuIXapnY+Pmu0hg4RID4tcG8B5WY2ycwygKuBVV22WQVc59+Neg5Q7wczA34JbHbO/aSbfa73H18PPDFwpyDJInfyJHInTwq6DBGRY6ytOEJORipTR+UGXYoMEgPeAuecC5vZl4GngFRghXNuo5l9wV9/D7AauBTYATQDHc0gS4DPAhvMbJ2/7F+cc6uBHwK/NbPPA3uBKwf6XGToq1v3LgAF8+YGXImIiKeuuZ33a46yaFIhaRo6RHxxmYnBD1yruyy7J+axA77UzX4v0/31cTjnaoGL+rdSSXYVjzwGKMCJyOCxrnPokIKgS5FBRFFeRERkkGoLR9hY1cDUUbnkZmr2S/mAApyIiMggtXl/I+3hKPPHa7IhOZYCnIiIyCDknGPd3iOMGZ7FaA0dIl0owImIiAxCe2qbOdIc0sC90i11qIvEOOOLNwddgogI4N28kJuZRnlJXtClyCCkACcSI2ds11neRETi7/BRb+iQc88YSWqKBu6V46kLVSTG4Tff4vCbbwVdhogkuXcr6khNMeaUDQ+6FBmk1AInEmPfE38AoHDR2QFXIiLJqjUUYdP+BqaOymOYhg6RE1ALnIiIyCCyaX+DP3RIQdClyCCmACciIjJIRKOOdXvrKCvIZlS+hg6RE1OAExERGSR21x6lvkVDh8jJKcCJiIgMEmv31pGXlcYZxblBlyKDnK6OFIkx9etfDboEEUlStU1t7D3czJIpRRo6RE5KAU4kRmZxUdAliEiSWldRR5qGDpFeUheqSIzql16h+qVXgi5DRJJMayjC5v0NTBudR3ZGatDlSAJQC5xIjAN/egqA4vOXBFyJiCSTjVX1hCJONy9Ir6kFTkREJEDRqGNdRT1jR2RTkqehQ6R3FOBEREQCtKvmKA0tIQ3cK32iACciIhKgtXuPkJ+dzuQiDR0ivacAJyIiEpDqxjYqj7Qwd+xwUjR0iPSBbmIQiTH9W98MugQRSSLrKupITzVma+gQ6SMFOJEY6fn5QZcgIkmipT3Clv0NzCzNJytdQ4dI36gLVSTGwWee5eAzzwZdhogkgfeq6glHHXPHFQRdiiQgBTiRGIeefZ5Dzz4fdBkiMsRFo453K+oYX5hDUW5m0OVIAlIXqoiISBy0hyPUNLXz0vZqXt1Ry9H2MJ8/bxLt4QgZaepClb5RgBMRERlg7eEI7+yp4/r73qQtHO1c/uK2ah64cTELJhQoxEmfqAtVRERkgNU0tR8X3gDaI47r73uTmqb2gCqTRKUAJyIiMsBe2l59XHjr0BaO8vKOmjhXJIlOXagiMWbe+u2gSxCRIaDNv97tYEMrhxra+N07+3rcfnNVQ5wqk6FCAU4kRmqm7gYTkb5pDUWobmzjUKMX1g41tnGkuR3nvPW5mWlMKhrGG+8fPuExZpRqDErpGwU4kRj7V/8JgDGXLgu4EhEZjFraI15Qa2zzw1ordc2hzvV5WWmU5GcxbXQeJXmZlORnkZuZRlVdC4+v3ddtN2pmWgrnTSmK52nIENCnAGdm44BZwGxgDjDLObdwIAoTCULNK68CCnAiAkfbwn5Q8wLbwYZWGlvDneuHZ6dTkp/JrNLhfljLJCej+z+rRbkZrLxh0XE3MmSmpbDyxkUU5WYM+PnI0HLSAGdmNwPXAzOBTOCPwHvAKuD2Aa1ORERkgDnnaOoMax90hTa1fRDWRuSkU1qQTUleJqPysyjOy+zT9FcZaaksmFDAc99cyss7athc1cCM0nzOm1JEUW6GhhCRPutNC9w/A58BaoAfAtnACufc3oEsTEREpL8552hoDVPd2MrBmLDW3B4BwAwKh2UwrjCbkvwsSvIyKc7LJLMfAlZGWiqlBdlctXDcaR9LpDcB7hPOuff8x1ea2TLgD2Z2P/BT51z390WLiIgEyDlHfUvomKB2qLGN1pAX1lLMKMzNYFLRsM6wVpSbSUaaRtiSwe+kAS4mvHU8/5OZPQf8K/AKcO4A1SYiIkkidpqpTVWNzCzN4/zy4l53L0ajjiPN7V43aMx1a+3+9WapKUZRbiblJbmU5GdSkpdFUW4GaakKa5KYzHXc53wqO5tNdc5t68d6BtTChQvdmjVrgi5DRERinGiaqcy0FFbesOi4aaaiUUft0fbOu0GrG9qobvogrKWlGMX+TQUleV7L2sjcTFJTLO7nJnI6zOztE90selrDiPQ2vPndrj8FUoFfOOd+2GW9+esvBZqBzznn3vHXrQA+ARxyzs2O2ee7wN8C1f6if3HOrT6d8xERkfg70TRTbeEo1614g0e/+CFSzDq7Qasb2whHvcaHjLQUinMzmVma790JmpfFyGEZpCisyRA34OPAmVkqcBdwMVAJvGVmq5xzm2I2uwQo978WA3f73wHuB34GPNDN4f/DOXfHAJUuSWjf408AUHb58oArEUkePU0z1R5x3PnMdmaVDicjLYWSvEzOHFfQeTdoQXa6wpokpXgM5LsI2OGc2wVgZr8BlgOxAW458IDz+nNfN7MCMxvjnNvvnHvRzCbGoU4RDq95G1CAE4mnTVWNPa7PzUjjhiUTGZ6djtdhIyLxuHqzDKiIeV7pL+vrNt35spmtN7MVZjbi9MoUEZEgzCzN63H9h8qLKMjJUHgTiRGPANfdb1zXOyd6s01XdwNnAPOA/cC/d/viZjeZ2RozW1NdXd3dJiIiEqDzy4tJT+0+nGmaKZHuxSPAVQKxoxaOBapOYZtjOOcOOuci/jh0P8frqu1uu3udcwudcwuLi4v7XLyIiAys6sZW/mpuKWldrmXTNFMiJxaPa+DeAsrNbBKwD7ga+Osu26zC6w79Dd7NC/XOuf09HbTjGjn/6eV403uJnJaUDP2hEImn92uO8vzWGhZNKuRrHy3n9V2HNc2USC8MeIBzzoXN7MvAU3jDiKxwzm00sy/46+8BVuMNIbIDbxiRGzr2N7OHgKVAkZlVAt9xzv0S+LGZzcPrat0N3DzQ5yJD36zv/GvQJYgkjf31LfxxfRXFeZlcNr+MzLRUxhcOC7oskYRwWgP5JhoN5CsiMjjUNrXx2zWVZKWn8Jmzx5GTEY8OIZHE0tNAvppDRCRGxcOPUPHwI0GXITKkNbaGeHztPlJT4Ir5YxXeRE6BApxIjLr1G6hbvyHoMkSGrNZQhN+v3UdbOMpl88sYnpMedEkiCUkBTkRE4iIUibJqXRVHmkP81dxSSvKygi5JJGEpwImIyICLRh2rN+ynqr6FS2aPZlxhTtAliSQ0BTgRERlQzjme2XKIXdVHuWBaCeWjep55QUROTleOisRIz8sNugSRIee1nbW8t6+exZMLmTuuIOhyRIYEBTiRGNNv+aegSxAZUtbuPcIb7x9mTtlwzp08MuhyRIYMdaGKiMiA2HqgkRe2VTOlJJcLp5doMnqRfqQAJxJj9wMPsvuBB4MuQyTh7a1t5qmNBygtyOaS2aNJSVF4E+lP6kIVidG4dVvQJYgkvIMNrfxhfRUjhmV4k9Snqq1ApL/pt0pERPrNkaPt/H7tPrLSU7l8fhlZ6ZqIXmQgKMCJiEi/ONoW5vG1+3DAFfPLyM1UJ4/IQFGAExGR09YaivD42n20hCJcNq+MEcMygi5JZEjTf49EYmSO1DAHIn0VjkT5w7tV1Da1s3xeKaOHa4oskYGmACcSY+rffy3oEkQSSjTq+NPGA1QeaWHZ7NFMLBoWdEkiSUFdqCIickqcczy/7RDbDzbx4anFzBiTH3RJIklDAU4kxq5frGDXL1YEXYZIQnjj/cO8W1HPwokjOGvCiKDLEUkq6kIViXH0/d1BlyCSEDZU1vPazlpmluZz3pSioMsRSTpqgRMRkT7ZcaiRZ7YcZFLRMD46Y5SmyBIJgAKciIj0WuWRZv7vhgOMzs/i0jljSNUUWSKBUIATEZFeqW5sY9W7VeRnp7N8XhkZafoTIhIUXQMnEiO7dEzQJYgMSvUtIX6/dh8ZqSlcvqCM7AxNkSUSJAU4kRhTvvTFoEsQGXSa28M8/k4loWiUqxaOIz8rPeiSRJKe2r9FROSE2sNRnlhXRWNrmOXzyijKzQy6JBFBAU7kGDvuupsdd90ddBkig0Ik6nhyfRWHGtq49MwxlBVkB12SiPjUhSoSo6Vqf9AliAwKzjn+sukAe2qbuXjmKM4ozg26JBGJoRY4ERE5hnOOF7fXsHl/I0umFDG7bHjQJYlIFwpwIiJyjLf3HOGdPUeYN76AsydqiiyRwUgBTkREOm2squel7TVMG53H0qnFmmVBZJDSNXAiMYZNmhh0CSKB2VXdxNObDjG+MIePzdQUWSKDmQKcSIzJ/+vGoEsQCcT++hZWb9hPcV4mn5g7hrRUddCIDGb6DRURSXK1TW38fm0VwzLTuGx+KZlpmmVBZLBTgBOJse0nP2XbT34adBkicdPYGuLxtftITYEr5o8lJ0MdMyKJQL+pIjHaamuDLkEkblpDER5fu4+2cJQrF45leI6myBJJFGqBExFJQqFIlFXrqqhrDvFXc0spycsKuiQR6QMFOBGRJBONOlZv2E9VfQuXzB7NuMKcoEsSkT5SgBMRSSLOOZ7efJBd1Ue5YFoJ5aPygi5JRE6BroETiZE3bWrQJYgMqFd31rKxqoHFkwuZO64g6HJE5BTFpQXOzJaZ2VYz22Fmt3Sz3szsTn/9ejNbELNuhZkdMrP3uuxTaGZ/MbPt/nfN9yKnbeJ11zLxumuDLkNkQKzde4Q33z/MnLLhnDt5ZNDliMhpGPAAZ2apwF3AJcBM4Bozm9lls0uAcv/rJuDumHX3A8u6OfQtwDPOuXLgGf+5iIh0Y+uBRl7YVs2UklwunF6iWRZEElw8WuAWATucc7ucc+3Ab4DlXbZZDjzgPK8DBWY2BsA59yJwuJvjLgdW+o9XApcNRPGSXLb88Mds+eGPgy5DpF/trW3mqY0HKC3I5pLZo0lJUXgTSXTxCHBlQEXM80p/WV+36WqUc24/gP+9pLuNzOwmM1tjZmuqq6v7VLgkn1BjE6HGpqDLEOk3Bxta+cP6KkYMy+Cv5pZqiiyRISIev8nd/VfPncI2p8Q5d69zbqFzbmFxcXF/HFJEJCEcOdrO79fuIys9lcvnl5GVrimyRIaKeAS4SmBczPOxQNUpbNPVwY5uVv/7odOsU0RkyDjaFubxtftwwBXzy8jN1KADIkNJPALcW0C5mU0yswzgamBVl21WAdf5d6OeA9R3dI/2YBVwvf/4euCJ/ixaRCRRdUyR1RKKcNm8MkYMywi6JBHpZwP+XzLnXNjMvgw8BaQCK5xzG83sC/76e4DVwKXADqAZuKFjfzN7CFgKFJlZJfAd59wvgR8CvzWzzwN7gSsH+lxk6Cs4c07QJYiclnAkyh/eraK2qZ3L5pcyerimyBIZisy5frnULCEsXLjQrVmzJugyREQGRDTqWP3efrYfbOKSOaOZPjo/6JJE5DSY2dvOuYXdrdPtSCIiQ4Bzjue2HmL7wSY+Mq1Y4U1kiFOAE4mx8XvfZ+P3vh90GSJ99sb7h1lfWc/ZEwtZMF4T04gMdbotSSRGtL096BJE+mx9ZR2v7axlZmk+S6ZoiiyRZKAWOBGRBLbjUCPPbjnE5OJhfHTGKE2RJZIkFOBERBJUxeFm/u+GA4zOz+LSOWNI1RRZIklDXagiIgmgPRyhpqmdl7ZXs6mqkXGFWdQ0tVOSl8nyeWWka4oskaSiACcSo3DhWUGXIHKc9nCEd/bUcf19b9IWjnYuT00xfv7Zs1B2E0k++rUXiVF2+XLKLl8edBkix6hpaj8uvAFEoo4v/uodapp0841IslELnIjIIBGORGlqC9PQEqahNURDS4iG1jBPbz5wXHjr0BaO8vKOGq5aOK7b9SIyNCnAicTY8O1bAZhz+20BVyJDUSgSpbE1TENLyPveGdJCNLSEOdoeJnZyHDPIzUyjqq61x+NurmoY4MpFZLBRgBMR6Sft4SgNraHOkNYRzLxlIY62RY7ZPsWMvKw08rPTmTAyh7ysdPKz08jPSic/O53czDRSU7xtXt1Ze8LXnVGqWRdEko0CnIhIL7WGIl1azsI0xoS0lvZjA1pqipHvB7SiotzOx/nZ6eRlpZGbkUZKL4b+OL+8mMy0lG67UTPTUjhvSlG/naOIJAYFOBEZEroOszGzNI/zy4spys0gIy31pPs752gLRztbzupb/HAW05rWFjo2QKWnWmer2aj8XC+cZaV3tqoNy0jtl4F1i3IzWHnDouNuZMhMS2HljYsoys047dcQkcSiACciCe9Ew2xkpqWw8oZFLJhQQHpqCi2hCA2dwSx03M0C7V1auDLSUjpbzcoKsjuDWb4f2rLT+yegnUxGWioLJhTw3DeX8vKOGjZXNTCjNJ/zphT1OqCKyNCiACcSo2jJh4IuQU7BiYbZaAtHufaXb/C1i8oxg1DEHbM+Mz2F/Kx0hudkMLYwx3sccw1aZlrKoJmaKiMtldKCbN1tKiKAApzIMcZcuizoEuQUvLS9+oTDbISjjv0NrXx81ujO1rS8LC+kZaWr5UpEEpMCnEiMSFsbAKmZmQFXIr0VjTpe2FrT4zaZqSl8ZGpxnCoSERl4CnAiMTbddjugceASReWRZp7bWk17JNLjdhpmQ0SGGk2lJSIJp6ktzJ/e288jayppC0W4cckkMlK7v1ZNw2yIyFCkFjgRSRiRqGNdxRFe33WYSNSxeFIhZ08qxDnHAzcu1jAbIpI0FOBEJCHsrW3m+W2HqG1qZ3LxMD4ytZiCnA+CmYbZEJFkogAnIoNaQ2uIl7bVsO1gI8Oz01k+r5TJxbnHbadhNkQkmSjAicQouXBp0CWILxyJ8s7eOt58vxbn4NwzRrJwwgjSUnXproiIApxIjFEXXRh0CQK8X3OU57ceoq45xJSSXD48tZjh2elBlyUiMmgowInECDU0AJCer2EnglDfHOKF7dXsPNTEiJx0Lp9fxsSiYUGXJSIy6CjAicTY8qM7AI0DF2+hSJQ1u4+wZvdhUlKM88qLWDB+BKkpg2MaKxGRwUYBTkQC45xjZ/VRXthWTUNLiGmj8zi/vIi8LHWXioj0RAFORAJx5Gg7L2yr5v2ao4zMzeDTZ41lXGFO0GWJiCQEBTgRiav2cJS3dh/m7T1HSE0xPjy1mHnjCtRdKiLSBwpwIhIXzjl2HGrihW3VNLaGmTEmn/PLixiWqX+GRET6Sv9yisQYvezjQZcwJNU2tfH81mr2Hm6mOC+TS+aMoawgO+iyREQSlgKcSIzi85cEXcKQ0haO8Mauw6zdW0d6mnHB9BLOLBtOirpLRUROiwKcSIy26hoAMouLAq4ksTnn2HqwkZe21dDUFmZ22XCWTBlJTob+yRER6Q/611Qkxrb/vBPQOHCno7qxjee2HmLfkRZG5WfxybmljB6eFXRZIiJDigKciPSL1lCE13bVsr6insz0FD46YxSzSvPVXSoiMgAU4ETktDjn2LS/gZe319ASinDm2OF86IwistJTgy5NRGTIUoATkVN2qKGV57YeoqquldKCLC6fVkZJvrpLRUQGWko8XsTMlpnZVjPbYWa3dLPezOxOf/16M1twsn3N7Ltmts/M1vlfl8bjXETE6y59ZvNBfv3mXuqaQ3xs1iiuWjhO4U1EJE4GvAXOzFKBu4CLgUrgLTNb5ZzbFLPZJUC5/7UYuBtY3It9/8M5d8dAn4Mkj7Llnwy6hEEtGnVsrGrglZ01tIWizBtXwDmTR6q7VEQkzuLRhboI2OGc2wVgZr8BlgOxAW458IBzzgGvm1mBmY0BJvZiX5F+U7jo7KBLGLT217fw3JZqDja0UjYimwumlVCclxl0WSIiSSkeAa4MqIh5XonXynaybcp6se+Xzew6YA3wD865I/1VtCSn5sp9AOSMLQu4ksGjuT3My9tr2FjVQG5mGpfMGc20UXmY6e5SEZGgxOMauO7+lXe93Kanfe8GzgDmAfuBf+/2xc1uMrM1Zramurq6VwVL8tp59/+w8+7/CbqMQSEadayrqOP+V3ezeX8jCyeO4LoPTWD66HyFNxGRgMWjBa4SGBfzfCxQ1cttMk60r3PuYMdCM/s58GR3L+6cuxe4F2DhwoVdg6OIdGNfXQvPbTlEdWMb4wtzuGB6CYXDMoIuS0REfPEIcG8B5WY2CdgHXA38dZdtVuF1h/4Gr4u03jm338yqT7SvmY1xzu33978ceG/gT0VkaGtqC/Py9mo2728kLyuNT5w5hikluWpxExEZZAY8wDnnwmb2ZeApIBVY4ZzbaGZf8NffA6wGLgV2AM3ADT3t6x/6x2Y2D69LdTdw80Cfi8hQFfG7S1/fVUsk6lg8qZCFEwvJSIvLSEMiItJHcRnI1zm3Gi+kxS67J+axA77U23395Z/t5zJFhqz2cISapnZe2l7NpqpGZpbmcX55MUW5GRxs8OYurW1qZ1LRMJZOK6YgR92lIiKDmWZiEIkx7spPBV1Cv2sPR3hnTx3X3/cmbeFo5/KMVOPvlk4hHI1SOCyTv5pXyuSiYeouFRFJAApwIsS0UIVGeC1Uob2dLVQZaYk9SG1NU/tx4Q2gPeL4r+d2cOfV8/jYrNGkp6q7VEQkUSjASdKLbaEa3eQNNbMyaySZaSmsvGERCyYUDJoQF406wlFHKBIlHHGEov73SNRbFrMuHI0Sijj+sunAceGtQyTqONoeUXgTEUkwCnCS9GJbqK49+AYAt0+4lLZwlOvve5PnvrmU0oLskx7HOS9chSOO9kiUcDeBqj38QbCKXd/xPBT1l/vhLBTu2OaD7fvq7T11Pa7fXNXQ52OKiEiwFOAk6b20vfqELVRt4Sj3vriLcyaP9Fu4OsJWRyCL+qHNW95XKWakpxnpKSmkpRppqSmkpxjpqSlkpqeRnpNCmv88LdX7np5qpKXEPu+yTcy6tBSjtCCLdRV1J6xhRml+n+sWEZFgKcBJ0ttU1djj+vf21TO+MMcLTn4oyslIJS01rc+BKvYY6akppKYM/A0D55cXk5mW0m1IzUxL4bwpRQNeg4iI9C8FOEl6RbnpPa6/6uxxXLVwXI/bDGZFuRmsvGHRcTcyZKalsPLGRRTlasgQEZFEowAnSauxNcTzW6s50hwiLcW6vb5sKLRQZaSlsmBCAc99cykv76hhc1UDM0rzOW9K0ZC4y1ZEJBkpwEnScc6xvrKel3fUEI06PjpjFB+dPoobVr7Fb4vP6txuKLVQZaSlUlqQndAtiSIi8gEFOEkqNU1tPLP5IFV1rYwvzOGiGSUU5GTQHo4c00L1t2qhEhGRQUwBTpJCKBLlzfcPs2b3ETLTU/j4rNHMGJPXOetARwvVsmFHWVaeSv4MtVSJiMjgpQAnQ17F4Wae3nyQuuYQM0vz+XB5MdkZ3beq7Xnw1wDMuf22eJYoIiLSJwpwMmS1tEd4cXs1m6oaKMhJ51MLxjJ+ZE7QZYmIiJw2BTgZcpxzbDnQyAvbqmkLRVk0qZBFkwo1XZSIiAwZCnAypNQ3h3hmy0H21DYzZngWFy0YRXFeZtBliYiI9CsFOBkSIlHH2r1HeH1XLWbGBdNLOLNsOClxmOlAREQk3hTgJOEdqG/l6c0HqW5s44ySXC6YVkxeVs+zK5zIpM/f0M/ViYiI9D8FOElYbeEIr+2sZV1FHcMy0vjk3DFMKck7rWPmTp7UT9WJiIgMHAU4SUg7q5t4bsshmtrCnDl2OB86o4is9NMfcLdu3bsAFMybe9rHEhERGSgKcJJQmtrCPL/1ENsPNlGUm8Glc8ZRWpDdb8eveOQxQAFOREQGNwU4SQjOOTbs8+YvjUQcS6YUcdaEEaTqJgUREUlCCnAy6NU2tfHM5kPsq2thXGEOF00vYcSwxJ9gXkRE5FQpwMmgFY5EeXO3N39pemoKH5s1iplj8jvnLxUREUlWCnAyKFUcbuaZzQc50hxixpg8Pjy1mJwM/biKiIiAApwMMq2hCC9tr+G9ffUMz07nigVlTBg5LG6vf8YXb47ba4mIiJwqBTgZFJxzbDvYxPNbD9EairJw4gjOmTwy7vOX5owti+vriYiInAoFOAlcfUuIZ7ccZHdNM6OHZ3H5ghJK8rICqeXwm28BULjo7EBeX0REpDcU4CQw0ahjbcURXtvpzV+6dFoxc8cWBDp/6b4n/gAowImIyOCmACeBONjgzV96qKGNycXDuGB6CfmnOH+piIhIslGAk7hqD0d5bVcta/ceIScjlU+cOYYpJbkaGkRERKQPFOAkbt6vOcozmw/S2OrNX7pkSv/MXyoiIpJsFOBkwB1tC/PCtmq2HmhkZG4GV509jrJ+nL9UREQk2SjAyYBxzrGxqoEXt1cTjjjOPWMkCyeMIC3OQ4P0xdSvfzXoEkRERE5KAU4GxOGj7Ty9+SD7jrRQNiKbj84YRWECzF+aWVwUdAkiIiInpQAn/SocifLW7iO8tfswaanGxTNHMas0ceYvrX7pFQCKz18ScCUiIiInpgAn/abySDPPbD7E4aPtTB/tzV86LDOxfsQO/OkpQAFOREQGt8T66yqDUmsowsvba9iwr5787HQum1/GpKL4zV8qIiKSbBTg+kF7OEJNUzsvba9mU1UjM0vzOL+8mKLcDDLShsYwGd2d43lTiqhrbueVnbU0t0c4a4I3f2lG2uC9SUFERGQoiEuAM7NlwE+BVOAXzrkfdllv/vpLgWbgc865d3ra18wKgYeBicBu4Crn3JF4nE+s9nCEd/bUcf19b9IWjnYuz0xLYeUNi1gwoSDhQ9yJzjEtxVg+r5S5Y4dz2bwySvKDmb9UREQk2Qx4U4mZpQJ3AZcAM4FrzGxml80uAcr9r5uAu3ux7y3AM865cuAZ/3nc1TS1HxdsANrCUa6/701qmtqDKKtfnegcw1HHqneruHDGKIU3ERGROIpHC9wiYIdzbheAmf0GWA5sitlmOfCAc84Br5tZgZmNwWtdO9G+y4Gl/v4rgeeBbw30yXT10vbq44JNh7ZwlH//y1bOnlAY56r611u7D5/wHEMRx6s7a7lqYU6cqxoY07/1zaBLEBEROal4BLgyoCLmeSWwuBfblJ1k31HOuf0Azrn9ZlbS3Yub2U14rXqMHz/+FE/hxDZVNfa4/lB9W8JfE3awoa3H9ZurGuJUycBLz88PugQREZGTikeA624AMNfLbXqzb4+cc/cC9wIsXLiwT/v2xszSvB7Xf3JeKVcsGNvfLxtXoUiUl3fUnHD9jNKhE3oOPvMsAKMuujDgSkRERE4sHk1DlcC4mOdjgapebtPTvgf9blb874f6seZeO7+8mMwTtLBlpqVw3pTEH9k/Gc6xw6Fnn+fQs88HXYaIiEiP4hHg3gLKzWySmWUAVwOrumyzCrjOPOcA9X73aE/7rgKu9x9fDzwx0CfSnaLcDFbesOi4gJOZlsLKGxdRlDv4p486mWQ4RxERkUQy4F2ozrmwmX0ZeApvKJAVzrmNZvYFf/09wGq8IUR24A0jckNP+/qH/iHwWzP7PLAXuHKgz6U7GWmpLJhQwHPfXMrLO2rYXNXAjNJ8zptSNGTGgUuGcxQREUkk5t34mRwWLlzo1qxZE3QZMoht+PatAMy5/baAKxERkWRnZm875xZ2ty6xb48UERERSUKaSkskxsxbvx10CSIiIielACcSIzUzM+gSRERETkpdqCIx9q/+E/tX/ynoMkRERHqkACcSo+aVV6l55dWgyxAREemRApyIiIhIglGAExEREUkwCnAiIiIiCUYBTkRERCTBJNVMDGZWDewJuo4hoAioCboIOWX6/BKfPsPEp88w8cXjM5zgnCvubkVSBTjpH2a25kRTe8jgp88v8ekzTHz6DBNf0J+hulBFREREEowCnIiIiEiCUYCTU3Fv0AXIadHnl/j0GSY+fYaJL9DPUNfAiYiIiCQYtcCJiIiIJBgFOOkVMxtnZs+Z2WYz22hmXwu6Jjk1ZpZqZmvN7Mmga5G+M7MCM3vUzLb4v4/nBl2T9J6ZfcP/N/Q9M3vIzLKCrkl6ZmYrzOyQmb0Xs6zQzP5iZtv97yPiXZcCnPRWGPgH59wM4BzgS2Y2M+Ca5NR8DdgcdBFyyn4K/Mk5Nx2Yiz7LhGFmZcBXgYXOudlAKnB1sFVJL9wPLOuy7BbgGedcOfCM/zyuFOCkV5xz+51z7/iPG/H+aJQFW5X0lZmNBf4f4BdB1yJ9Z2b5wIeBXwI459qdc3WBFiV9lQZkm1kakANUBVyPnIRz7kXgcJfFy4GV/uOVwGXxrAkU4OQUmNlEYD7wRsClSN/9J/BPQDTgOuTUTAaqgfv8bvBfmNmwoIuS3nHO7QPuAPYC+4F659yfg61KTtEo59x+8Bo4gJJ4F6AAJ31iZrnAY8DXnXMNQdcjvWdmnwAOOefeDroWOWVpwALgbufcfOAoAXTdyKnxr5NaDkwCSoFhZnZtsFVJolKAk14zs3S88PYr59zvgq5H+mwJ8Fdmthv4DXChmT0YbEnSR5VApXOuo/X7UbxAJ4nho8D7zrlq51wI+B3woYBrklNz0MzGAPjfD8W7AAU46RUzM7zrbjY7534SdD3Sd865f3bOjXXOTcS7cPpZ55z+959AnHMHgAozm+YvugjYFGBJ0jd7gXPMLMf/N/UidBNKoloFXO8/vh54It4FpMX7BSVhLQE+C2wws3X+sn9xzq0OriSRpPQV4FdmlgHsAm4IuB7pJefcG2b2KPAO3p39a9GMDIOemT0ELAWKzKwS+A7wQ+C3ZvZ5vGB+Zdzr0kwMIiIiIolFXagiIiIiCUYBTkRERCTBKMCJiIiIJBgFOBEREZEEowAnIiIikmAU4EREYpjZq33cfqmZPTlQ9YiIdEcBTkQkhnNOI+OLyKCnACciEsPMmvzvS83seTN71My2mNmv/NHzMbNl/rKXgSti9h1mZivM7C1/svnl/vI7zexW//HHzexFM9O/vyJyyjQTg4jIic0HZgFVwCvAEjNbA/wcuBDYATwcs/238aYou9HMCoA3zexpvAnn3zKzl4A7gUudc9H4nYaIDDX6H6CIyIm96Zyr9MPWOmAiMB1vQvLtzpvK5sGY7T8G3OJPN/c8kAWMd841A38L/AX4mXNuZ9zOQESGJLXAiYicWFvM4wgf/Jt5ojkIDfiUc25rN+vmALVAaf+VJyLJSi1wIiJ9swWYZGZn+M+viVn3FPCVmGvl5vvfJwD/gNcle4mZLY5jvSIyBCnAiYj0gXOuFbgJ+KN/E8OemNX/G0gH1pvZe8D/9sPcL4FvOueqgM8DvzCzrDiXLiJDiHmXcIiIiIhIolALnIiIiEiCUYATERERSTAKcCIiIiIJRgFOREREJMEowImIiIgkGAU4ERERkQSjACciIiKSYBTgRERERBLM/w/ipewIx1oQFQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Step 3: Find the Small Eigenvalues\n", + "index_lim = 10\n", + "\n", + "fig, ax = plt.subplots(figsize=(10, 6))\n", + "sns.scatterplot(x=range(1, eigenvals_sorted_indices[: index_lim].size + 1), y=eigenvals_sorted[: index_lim], s=80, ax=ax)\n", + "sns.lineplot(x=range(1, eigenvals_sorted_indices[: index_lim].size + 1), y=eigenvals_sorted[: index_lim], alpha=0.5, ax=ax)\n", + "ax.axvline(x=3, color=sns_c[3], label='zero eigenvalues', linestyle='--')\n", + "ax.legend()\n", + "ax.set(title=f'Sorted Eigenvalues Graph Laplacian (First {index_lim})', xlabel='index', ylabel=r'$\\lambda$');\n", + "## From the plot we see see that the first 2 eigenvalues (sorted) are essentially zero." + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "id": "eccc4b5c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1.80047446e-15],\n", + " [9.03912054e-16]])" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "zero_eigenvals_index = np.argwhere(abs(eigenvals) < 1e-5)\n", + "eigenvals[zero_eigenvals_index]" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "id": "1aa023f8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
v_0v_1
00.004073-0.035858
10.0362870.006895
20.004073-0.035858
30.0362870.006895
40.0362870.006895
\n", + "
" + ], + "text/plain": [ + " v_0 v_1\n", + "0 0.004073 -0.035858\n", + "1 0.036287 0.006895\n", + "2 0.004073 -0.035858\n", + "3 0.036287 0.006895\n", + "4 0.036287 0.006895" + ] + }, + "execution_count": 90, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "## for these small eigenvalues, we consider their corresponding eigenvectors.\n", + "import pandas as pd\n", + "\n", + "proj_df = pd.DataFrame(eigenvcts[:, zero_eigenvals_index.squeeze()])\n", + "proj_df.columns = ['v_' + str(c) for c in proj_df.columns]\n", + "proj_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "id": "3c5d81f7", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHjCAYAAADCEQCRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABYp0lEQVR4nO3de5zcVX3/8dc7AUGQqxKFJJhQE5SgjSQEbCtSBURqCV5iQeSi1BgLilYrpGi1CC1qK+LlB0ZFRAWkRhQFjEAb0UqAIKCEiyRcZEOEQrgKRhM+vz/OWfhmmN2Z3ZnvnF3yfj4e89iZ7/d8LzuZ3T35nM/5HEUEZmZmZhuyMaVvwMzMzKw0d4jMzMxsg+cOkZmZmW3w3CEyMzOzDZ47RGZmZrbBc4fIzMzMNnjuEBUg6VBJPyl9H1Y/Sa+WdGsPrxeSXtKr6/WCpDsl7TPMY0+SdL+k37XZ/hOSvjWca40EkvaW1DcC7qPjz6GkMyR9rFv3ZNaKO0Q1yb/En5D0WOXxRYCI+HZE7Ff6HodD0pGSft7D6z1H0r9IulXS7yWtlHSJpBH5/jX+IYiIn0XEzjVda7Gkv6/p3JPy97JRfi1JX5B0i6TxdVyz2yRNBD4E7BIRL2qyv/bOg6SZkn4k6UFJD0m6SdLJkrap87rtqvMz1KmImBcRnyx9H7bhcIeoXn8bEc+rPI4pfUOl9f+BHYLvArOBw4FtgMnAacDfdPnWWhrGvT8rSBLwZWBv4DURsXKIx4+t477a8GLggYi4r8TFJf0FsBj4X+ClEbE1sD+wFvjzAY7ZID9jZiNCRPhRwwO4E9hngH1HAj+vvN4PuBV4GPh/wE+Bv6/sfxdwM/AgsAh4cWVfAPOA2/L+LwECNgEeAnattN0OeAIYl1+/Ebg+t/sF8IpK24nA94D/Ax4Avgi8DPgDsA54DHgot90KODu3vQv4KDCm8r3+L3AqsBo4CXhJ/h4fBu4HvjPA+7RPvt8JLd7rHYCF+fp3AO+v7PsEcH6+v0eBZcDMIRz7XeBbwCPA3wOzgCvze7Yqvy/Pye2vyP8ev8/vz9+ROhF9DZ+LDwO/yt//d4BNK/s/ks97T75eAC9p8j2fnP8d/pCv9cXBPg/tfJYazj8pn2sT4BvAL4HnV/a/FLg0/5veCrytsu8s4HTg4vxe7NPG9z3YZ/FOBv5ZavrZq3x2nszvz1kNx23esP+x/Fn4BMP8vDS5t58DX2jx2T2SZ/58/Bnw36Sfu/uBbwNbN7wf84Gb8r/j1/vfS/LnjRQZuy9/lt45yPUXU/ld07Dvv4Df5X+vK4BpDf/GZ+TPwKOkn+fG30svyc//BriO9DN0N/CJhuv8Vf43fyjvP7JyjZPy822AH+X3/cH8fELD9/HJ/F4+CvwEeEEnv8P92PAexW/g2fpo8Uv8SHKHCHhB/kXxZmAj4FjgT/2/pICDgOWkzshGpF/4v6icK/Ivh62BHfMvjP3zvjOBkyttjwZ+nJ/vln9h7gGMBY7I97xJfn1D/iW9ObAp8FeN914579nAD4AtSH9IfwMcVWm/Fnhfvv/nAucCJ5D+cD117ibv0ynA4hbv8xjgWuBfgOcAOwG3A6/P+z9B6jQckL+vfweWDOHYP+V/gzH53mcAe+bvZRKpc/GBhn+Pl1Re780zO0RXk/6wbpuPn5f37U/6AzQN2Az4ZuP5Gr73xTT8MWvxeTiIQT5LDeeZlM/1XeAq1v+DvDnpD9c783l2I/3hnpb3n0X6I/qXlX/jwb7vAT+LbfwsDfbZW++9b3LsM/bTweel4Tybkzqse7f4/B7JM38+XgLsS/pZ3I7UGflcw2foRtJ/WrYldQJOqnxPa4ETgY3z9/E4sE27n6HKvnfl93UT4HPA9ZV9Z5E6Hnvl/aex/n/yqh2ivYGX5/fvFcC9wEF53475PIfk+30+ML1yjf7v6/nAW0g/F1uQOmvfb/g+VgBT83u4GDilm7/T/Xj2P4rfwLP1kX9pPUb6X0//491535E83SE6HLiycpxIf2z6O0SXkH/B59dj8i+4F+fXQaVDQfrf7fH5+T7A7ZV9/wscnp+fDnyy4Z5vBV4DvIr0h3SjJt/XU/eeX48F1pDyNPq3vYfckcntf9twjrOBBbSO/HwVOK/yetv8Pj4M/CFv26PJ+ecDX8/PPwFcVtm3C/DEEI69osU9fgC4oPK6nQ7ROyqvPw2ckZ+fCfx7Zd9LGs/XcO3FNO8QDfR5GPSz1HCeSflcjwAfatj3d8DPGrZ9Gfh4fn4WcHaTn4eBvu8BP4uVY5/RIWrjs7fee9/k+Gfs7+Tz0rB9Qn7/XtrwPT9Eipp9dKCfjybnOgi4ruG9nFd5fQCwovI9PUHlZ5fU2dyz3c/QAO22zt/PVpV/4+rP5vNIHcCJzX4OGs71OeDUyvt3wQDtziJ3iJrsmw482PB9fLTy+h/I//nzw492H84hqtdBEbF15fGVJm12IHWAAIiIIIW8+70YOC0nZD5ECqsLqCa2VmfQPE765QQp7P5cSXtIejHpl8gFlfN+qP+8+dwT8/1MBO6KiLVtfI8vIP1v+a7Ktrsa7u9u1veR/D1cLWmZpHcNcO4HgO37X0TE6kh5GDNI/yvt/z52aPg+/hl4YeU8je/PpjlXo51j17t3SVNzkuzvJD0C/Ft+D4ZioH+v9T4Ljdfuwvnb+Sw1eiPw8YZ/oxcDezS8b4cC1cTlZvc+2H0N9FkcTDufveHo5PPS70HScFz18/uR/Pm9gBQN6tf4GRsn6bw8geAR0pBt42esesxdrP9ePdDws1t9r9siaaykUyStyPdwZ95VvY/q763HSJ+nZ/yb5d8//yPp/yQ9TBrS7T/PRFJkp9X9bCbpy5LuyvdzBbB1Q37aQJ8vs7a4Q1TeKtL/JoGnElgnVPbfDbynoWP13Ij4RasTR8STpAjBIcDbgR9FxKOV857ccN7NIuLcvG/HARI8o+H1/aRhpRdXtu0IVBNv1zsmIn4XEe+OiB1I/6P/fwNM0b0c2F3ShCb7+t0N3NHwfWwREQcMcsxQjm38fk8HbgGmRMSWpD+IauNa7Vjvs0D6YzGYxntrZTifpV8Af0vqSL29cp6fNpzneRHx3mHe22CfxcG089kbzHDev7Y+axHxe9JQ45uHcR//nre9In/G3sEzP2PVz8aOpJyzbno7aTLDPqQ8rUl5e/U+nroHSc8jRXCb3cc5wIWk6NFWpNyj/vPcTcqZauVDwM7AHvk92avJ/Zh1xB2i8i4CXi7poNwBOZr1/6d9BjBf0jQASVtJmjOE859DGuI4ND/v9xVgXv7fmyRtLulvJG1ByvVYBZySt28q6S/zcfcCEyQ9ByAi1pE6XSdL2iJHov6R9L/apiTNqXRyHiT98l/X2C4ifgL8D/D9fJ/PkbQxKYen39XAI5KOk/Tc/D/bXSXt3sZ7M5xjtyANIz0m6aXAexv230vKLRmO84F3SnqZpM1IuSqDGeq1hvVZioifkv6wL5D0VlKO0lRJh0naOD92l/SyIdxL1WCfxcHua8ifvQb3As+XtFWb7Yf6efkI8C5Jx0saB5A/95NbXGcL8nC7UomDf2rS5mhJEyRtS+qUf6fN76GZjfLPeP9j43wPa0hR2s1IkdBGB0j6q/y74JPAVRHRLDK4BbA6Iv4gaRaps9Xv28A+kt4maSNJz5c0fYBzPEF6T7YFPj7cb9ZsIO4Q1euHWr8O0QWNDSLifmAOKb/gAVLOwlLSLyMi4gLgU8B5OVR8I/CGdm8gIq4i5SzsQMoh6d++FHg3aZbUg6Rk2yPzvnWkqMBLgN+ShvD+Lh/636SZN7+TdH/e9r58jdtJM2vOIeXDDGR34CpJj5H+53hsRNwxQNs3k/4Af4uUf3EHqXO3f8O9Ts/77iflHrX8IzfMYz9M+oX+KOkPeeMfok8A38hDKm9rdQ8N93MJ8HlSJ3A5aTYb5M9CE6cBb1WqcfP5Ns4/7M9SRFxK+gycRcpT2Q84mBQR+F0+7yYDHN7q3AN+Ftsw1M9e9bq3kBL8b8//XoMO0Q318xIRPwdeS4pm/CYPsf2YlO/yhUEu9a+kRPOHSf9h+l6TNueQZlLdnh8nDXbvLZxO6mz0P75OyvO7ixRtuwlYMsA9fJw0VDaD9HPZzD8AJ0p6lNTJP79/R0T8lpQD9aF8nutpXpLgc6Rk6fvzvfy4/W/PrD1KKSs2UkgaQ+qAHBoR/1P6fqycHHG5kTTbqp18LtsASLqTlAh9WcF7OIuUkP7RUvdg1m09jxBJ2l+p6vByScf3+vojkaTXS9pa0iY8nZPS7H9k9iwn6U15aHAbUtTlh+4MmZnVr6cdojwj4EukMP0uwCGSdunlPYxQryLNtLifFJI/KCKeKHtLVsh7SCUPVpDyqhpzlMzMrAY9HTKT9CpSldLX59fzASLi33t2E2ZmZmYNej1kNp7162f00XnNEDMzM7OO9LpD1KxmhLO6zczMrKher6zcx/oFxSbQpJCXpLnAXICXstuMCRpuWRczG66V8/+i9C2YbZBuOvmDPS04ue+YObUEJi598r9GVeHMXneIrgGmSJpMqm9xMOsX6QIgIhaQ1rpi6kmnxl2NDcysdrf8/emlb8FsA/XB0jewQepphygi1ko6BlhEWpjxzIhYNtgxL/6XlitUmFkNdn3CE9zMSrjp5B5fUK7RDL2PEBERFwMXt9v+rhMdtjcrwREis1J6GyHSmFE1slUbdwvNzMxsg1dLhygvEHi1pBskLZP0r3n7JyStlHR9frSzIrmZmZnVRWPqeYwydQ2ZrQFeGxGP5ZWTfy6pf2HRUyPiP2q6rpmZmdmQ1dIhilT++rH8cuP8cL0hMzOzEcY5REltSdV53bJrgZcAX4qIqyS9AThG0uHAUuBDEfHgYOfxLDOzMjzLzKyMns8yM6DGpOqIWBcR00nFF2dJ2hU4HfgzYDqwCvjPuq5vZmZmbXAOEdCDWWYR8RCwGNg/Iu7NHaUnga8As5odI2mupKWSlvbF7XXfopmZ2YZrjOp5jDJ1zTLbTtLW+flzgX2AWyRtX2n2JuDGZsdHxIKImBkRM71sh5mZmdWtrhyi7YFv5DyiMcD5EfEjSd+UNJ2UYH0n8J5WJ3JhRrMyXJjRrJQeL92h0RfNqUNds8x+BbyyyfbD6riemZmZWSd6vnTHUHmWmVkZnmVmVkavZ5lpzOhLgK7DiO8QmZmZWY08ZAbUl1S9c2V5juslPSLpA5K2lXSppNvy123quL6ZmZnZUNSVQ3QrqdZQf4HGlcAFwPHA5RFxiqTj8+vjBjuXk6rNynBStVkpPU6q9pAZ0Jshs9cBKyLiLkmzgb3z9m+Q6hMN2iFyDpFZGc4hMivDlarL6EWH6GDg3Pz8hRGxCiAiVkka14Prm5mZ2UCcQwTU3CGS9BzgQGD+EI+bC8wFGHfgHLba/VU13J2ZDcZDZmal9HrIzB0iqD9C9AbglxFxb359r6Ttc3Roe+C+ZgdFxAJgAcC+Y+YEP/SwmVmvecjMrAwPmZVRdybVITw9XAZwIXBEfn4E8IOar29mZmaDkMbU8hhtartjSZsB+wLfq2w+BdhX0m153yl1Xd/MzMysXbUNmUXE48DzG7Y9QJp11jZPuzcrwzlEZqU4h6gEV6o2MzPbkHmWGdBhh0jSmcAbgfsiYte8bVvgO8Ak0or2b4uIByVNAm4Gbs2HL4mIea2u4TpEZmU4qdqsDCdVl9FpDtFZwP4N2/qrUU8BLs+v+62IiOn50bIzZGZmZjWT6nmMMh11iCLiCmB1w+bZpCrU5K8HdXINMzMzs7rVkUM0WDXqyZKuAx4BPhoRP6vh+mZmZtYur2UG9DapehWwY0Q8IGkG8H1J0yLikcEO8iwzszI8y8yslB7PMjOgnjpE9+Yq1FSrUUfEmjztnoi4FlgBTG12AklzJS2VtPTha66s4RbNzMwMcA5RVkeHqGk1aknbSRqbn+8ETAFub3aCiFgQETMjYqbXMTMzM6uRO0RA59PuzwX2Bl4gqQ/4OKn69PmSjgJ+C8zJzfcCTpS0FlgHzIuIxoRsMzMzs57rqEMUEYcMsOsZ1agjYiGwcKjXcB0iszJch8isjJ7XISoUzZG0P3AaMBb4akSc0rBfef8BwOPAkRHxS0mbAlcAm5D6Md+NiI93ej8jvlK1k6rNynBStVkpz/6k6pxC8yXSuqZ9wDWSLoyImyrN3kBKr5kC7AGcnr+uAV4bEY9J2hj4uaRLImJJJ/fUUQ6RpDMl3Sfpxib7PiwpJL2gsm2+pOWSbpX0+k6ubWZmZl0wRvU8BjcLWB4Rt0fEH4HzSHUMq2YDZ0eyBNha0vb59WO5zcb5ER2/DR0efxbPrFSNpImkXt9vK9t2AQ4GpuVj/l9/krWZmZkVUiapejxwd+V1X97WVhtJYyVdT5rJfmlEXNXJWwD1VKoGOBX4COv32GYD5+Xp93cAy0k9RDMzM3uWqZbQyY+51d1NDmmM8gzYJiLWRcR0YAIwS9Kund5v13OIJB0IrIyIG7R+D3E8UB3fa9YbfAYnVZuV4aRqszJ6n1RdT6XqiFgALBhgdx8wsfJ6AnDPUNtExEOSFpNGnp6RvjMUXe0QSdoMOAHYr9nuJttajvk5qdqsDCdVm5Xy7E+qBq4BpkiaDKwkpdS8vaHNhcAxks4jJVM/nJcE2w74U+4MPRfYB/hUpzfU7QjRnwGTgf7o0ATgl5Jm0V5vEEhhNmAuwEvZjQnaqcu3aWatOEJkVkbPI0StE6C7LiLWSjoGWESadn9mRCyTNC/vPwO4mDTlfjlp2v078+HbA9/IechjgPMj4ked3pMiOkvMljQJ+FFEPGP8TtKdwMyIuF/SNOAcUt7QDsDlwJSIWDfY+aeedGrHmeNmNnSOEJmVMeZFv+lpD+UNUz5Sy9/ZS2779KgqV93ptPtzgSuBnSX15erUTUXEMuB84Cbgx8DRrTpDZmZmZr1QV6Xq/v2TGl6fDAwpGOikarMyPGRmVsaGUql6pHGlajNrykNmZqVsEEnVI06ni7ueCbwRuK8/h0jSd4Cdc5OtgYciYnrONboZuDXvWxIR81pdwxEiszIcITIrwxGiMjqNEJ0FfBE4u39DRPxd/3NJ/wk8XGm/IhdSMjMzMxsxOs0huiJHfp4hr1L7NuC1nVzDQ2ZmZXjIzKyUHg+ZFZh2PxLVU54yeTVwb0TcVtk2WdJ1kn4q6dU1XtvMzMzaUWYtsxGnzqTqQ4BzK69XATtGxAOSZgDflzQtIh6p8R7MzMzMWqqlQyRpI+DNwIz+bRGxBliTn18raQUwFVja5HhXqjYrzEnVZmX0Oqk6RmE0pw51RYj2AW6JiL7+DXntkdURsU7STsAU4PZmB1cXhJt60qlxV003aWYDcw6RWSmedl9CXZWqD2b94TKAvYBfSboB+C4wLyJWd3J9MzMz69CYmh6jTC2VqiPiyCbbFgILO7memZmZdZmHzIBR2YczMzMz665hd4gkTZT0P5JulrRM0rF5+5z8+klJMxuOmS9puaRbJb2+05s3MzOzDnnaPdDZkNla4EMR8UtJWwDXSroUuJE0w+zL1caSdiHlFk0DdgAukzTVK96bmZlZacPuEEXEKlJtISLiUUk3A+Mj4lIAPbN3OBs4L0+/v0PScmAWKSl7QF7LzKwMT7s3K8NrmZXRlWn3efmOVwJXDdJsPLCk8rovbxuUl+4wK8PT7s1K6e20e9chSjruEEl6Hmn22AdaVJ1u9o5Hq/M7QmRWhiNEZmX0PEJkQIcdIkkbkzpD346I77Vo3gdMrLyeANwzwHmfqlQ97sA5bLX7qzq5TTMbBkeIzErp9eKuvb3cSDXsDlFezf5rwM0R8dk2DrkQOEfSZ0lJ1VOAq5s1rFaq3nfMnOCHjhKZ9ZojRGZlOEJURicRor8EDgN+Len6vO2fgU2ALwDbARdJuj4iXh8RyySdD9xEmqF2dDszzJxDZFaGI0RmpfQ4QuQcIqCzWWY/p3leEMAFAxxzMjCkvq9ziMzKcITIrAxHiMqoa3HXrnGEyKwMR4jMSnGEqIROcogmAmcDLwKeBBZExGmV/R8GPgNsFxH356n5NwO35iZLImJeq+s4QmRWhiNEZmX0OkLkafdJ1ytVR8RNubO0L/DbhmNWRMT0oVzEESKzMhwhMiulxxEiA2qoVE1Kmj4V+Ajwg05v0BEiszIcITIro+c5RJ52D9RQqVrSgcDKiLihyfIdkyVdBzwCfDQiftbq3I4QmZXhCJFZKY4QldDVStWkYbQTgP2aNF0F7BgRD0iaAXxf0rQW1a0dITIrxBEiszK8llkZXa1ULenlwGSgPzo0AfilpFkR8TtgDUBEXCtpBTAVWNrkvK5UbVaYI0RmpXgtsxK6Wqk6In4NjKu0uROYmWeZbQesjoh1knYiVaq+vdm5XanarDxHiMzKcB2iMrpeqToiLh6g/V7AiZLWAuuAeRGxuoPrm5mZWaccIALqq1Td32ZS5flC0vDakDip2qwMD5mZleKk6hJGfKVqJ1WbleEhM7MynFRdxojvEDlCZFaGI0RmpfQ4qdp1iIAOyjFJmijpfyTdLGmZpGPz9umSlki6XtJSSbMqx8yXtFzSrZJe341vwMzMzKxTXV+6A/g08K8RcYmkA/LrvSXtAhwMTAN2AC6TNDUi1nX4PZiZmdlwecgMqGfpjgC2zM22Au7Jz2cD50XEGuAOScuBWcCVg13HOURmZTiHyKwMT7svo+tLd5AqVi+S9B+kIbn+JKDxwJLKYX1526CcQ2RWhnOIzErpdWHGnl5uxOo4laq6dEdehuO9wAcjYiLpX/Vr/U2bHB4DnHNuzj9a+vA1gwaQzMzMzDrWUYeocemOvPkIoP/5f5GGxSBFhCZWDp/A08Np64mIBRExMyJmetkOMzOzGkn1PEaZTmaZPWPpjuwe4DX5+WuB2/LzC4GDJW0iaTJp6Y6rh3t9MzMz6wLV9Bhlur50B/Bu4DRJGwF/IC/SGhHLJJ0P3ESaoXa0Z5iZmZnZSFDX0h0zBjjmZMD582ZmZiOEV7tPXJ/SzMzMNnjDjhBJ2hS4Atgkn+e7EfFxSXOATwAvA2ZFxNLcfhJwM3BrPsWSiJjX6jquQ2RWhusQmZXR8zpEDo0AneUQrQFeGxGP5dlmP5d0CXAj8Gbgy02OWRER0zu4ppmZmXWRh8ySTnKIAngsv9w4PyIibgZQl95gF2Y0K8OFGc1K6W1hRks6qlQtaSxwLfAS4EsRcVWLQyZLug54BPhoRPys1TU8ZGZWhofMzMro+ZCZA0RAhyOHEbEuD4FNAGZJ2nWQ5quAHSPilcA/AudI2rJZw2ql6r64vZNbNDMzM2upK6lUEfEQsBjYf5A2ayLigfz8WmAFMHWAtk9Vqp6gnbpxi2ZmZtZEqJ7HaNPJLLPtgD9FxEOSngvsA3yqRfvVEbFO0k6kStUtwz/OITIrwzlEZqX0OIfISdVAZzlE2wPfyHlEY4DzI+JHkt4EfAHYDrhI0vUR8XpgL+BESWuBdcC8iFjd6iLOITIrwzlEZmX0PIeoEEn7A6cBY4GvRsQpDfuV9x8APA4cGRG/lDQROBt4EfAksCAiTuv0fjqZZfYr4JVNtl8AXNBk+0LSQrBD4giRWRmOEJmV0tsIUYnhrRxM+RKwL2nx92skXRgRN1WavYE0mjQF2AM4PX9dC3wod462AK6VdGnDsUPW0SyzXnCEyKwMR4jMythAIkSzgOURaeaUpPOA2aT1TvvNBs7OZX6WSNpa0vYRsYo0UYuIeFTSzcD4hmOHrI5K1Z8gLfD6f7npP0fExfmY+cBRpCGz90fEolbXcYTIrAxHiMxK6XUOUW8vl40H7q687iNFf1q1GU/uDMFTq2C8EmhV9qelOipVA5waEf9RbSxpF+BgYBqwA3CZpKle8d7MzOzZR9JcYG5l04KIWNC/u8kh0XiKwdpIeh4pFecDEfFIJ/cKNVSqHuSQ2cB5EbEGuEPSclLI7MrBruMhM7MyPGRmVkbv1zKrJ0SUOz8LBtjdB0ysvJ4A3NNumxyIWQh8OyK+14377XqlaklvAI6RdDiwlJT49CApzLWkcnh/6GtQHjIzK8NDZmalPPuTqoFrgCmSJgMrSSNIb29ocyGpP3EeaTjt4YhYlWeffQ24OSI+260b6qhDlIe7pkvaGrggV6o+HfgkKVr0SeA/gXfRXnjsGRwhMivDESKzMjaEpOqIWCvpGGARadr9mRGxTNK8vP8M4GLSlPvlpGn378yH/yVwGPBrSdfnbU/lKw9XV2aZ5eKMi4H9q7lDkr4C/Ci/bCc81n/cU+OOL2U3XK3azMysJoXqMuYOzMUN286oPA/g6CbH/Zwa7nrYS3dI2i5HhqhUqr5F0vaVZm8CbszPLwQOlrRJDpFNAa5udm4v3WFmZma9VEel6m9Kmk4aDrsTeA9ADoWdT6oTsBY42jPMzMzMyhqN647VoY5K1YcNcszJwAYwOmpmZjZKeC0zYBRUqvYsM7MyPMvMrJQeF2Y0oJ5K1dOBM4BNSUNj/xARV+dqkjcDt+ZTLImIea2u41lmZmV4lplZGb2eZeYhs6SOStUnAv8aEZdIOgD4NLB3PmZFREwfykUcITIrwxEis1IcISqhjkrVAWyZt2/FAFPrzczMbARwhAiop1L1B4BFkv6DNPusGuKZLOk64BHgoxHxs06ub2ZmZp3xkFlSR6XqucAHI2KhpLeRymvvQ1qddseIeEDSDOD7kqa1WpDNOURmZTiHyKyMDaFS9Ug07MKMVRHxELAY2B84AuhfaO2/SAu4EhFrIuKB/PxaYAUwtdn5JM2VtFTS0r64vRu3aGZmZs1I9TxGmU5mmW0H/Ckv29FfqfpTpJyh15A6SK8Fbqu0Xx0R6yTtRKpU3bS3U10hd+pJp8Zdw71JMxs2J1WbleKk6hLqqFT9EHCapI2AP5DXJAP2Ak6UtBZYB8yLiNWtLuIhM7MyPGRmVoan3ZdRR6XqnwMzmmxfCCwc7vXMzMzM6jLiK1WbmZlZjRwhArqQVC1prKTrJP0ov/6MpFsk/UrSBXkGWn/b+ZKWS7pV0us7vbaZmZl1JsbU8xhtuhEhOpa0JEd/McZLgfkRsVbSp4D5wHGSdgEOBqYBOwCXSZraasV7V6o2K8NJ1WalOKm6hE4LM04A/oa0gv0/AkTETypNlgBvzc9nA+dFxBrgDknLSVPyrxzsGk6qNivDSdVmZfS8DpGHzIDOh8w+B3wEeHKA/e8CLsnPxwN3V/b15W1mZmZmRQ27QyTpjcB9uchis/0nkFa7/3b/pibNYrjXNzMzs86F6nmMNp1EiP4SOFDSncB5wGslfQtA0hHAG4FD8yKwkCJCEyvHT2CAhV9dqdrMzKxHXKka6KBDFBHzI2JCREwiJUv/d0S8Q9L+wHHAgRHxeOWQC4GDJW0iaTKpUvXVA5x7QUTMjIiZE7TTcG/RzMzMrC111CH6IrAJcKlSD3FJRMyLiGWSzgduIg2lHd1qhhl4lplZKZ5lZlZKb2eZjcbhrTp0pUMUEYtJa5cRES8ZpN3JpBlpbfMsM7MyPMvMrAyvdl+GK1WbmZltyBwhAuqpVP0JSSslXZ8fB+TtkyQ9Udl+RqfXNjMzs854lllSR6VqgFMj4j+atF0REdO7cE0zMzOzrukoQlSpVP3V7tyOmZmZ9ZRqeowydVWqPiYv7nqmpG0q2yfn4bWfSnp1h9c2MzMz64o6KlWfDvwZMB1YBfxn3r4K2DEiXkla9+wcSVtiZmZmxTiHKOl6peqIuDci1kXEk8BXSAu4EhFrIuKB/PxaYAUwtdmJXanazMzMeqmOStXbV5q9CbgRQNJ2ksbm5zuRKlU37e24UrWZmVmPOIcIqKcO0aclTSct3Hon8J68fS/gRElrgXXAvIhYXcP1zczMrE2jcXirDnVUqj5sgDYLgYVDPbeX7jArw0t3mJXS26U7LBnxlaq9dIdZGV66w6yMni/d4QgR0IUOUc4LWgqsjIg3Svpz4AzgeaQhs0Mj4pHcdj5wFGnI7P0RsajV+R0hMivDESKzUhwhKqGOStVfBT4cET+V9C7gn4CPSdqFlHw9DdgBuEzS1FYr3jtCZFaGI0RmZfQ6QhRyiAjqqVS9M3BFfn4p8Jb8fDZwXp5+fwewnDwl38zMzArxLDOg8wjR50iVqreobLsROBD4ATAHmJi3jweWVNr15W2D8pCZWRkeMjMrxUNmJdRRqfpdwNGSriV1lP7Yf0iT08Rwr29mZmadc6XqpJMIUX+l6gOATYEtc6XqdwD7AUiaShpSgxQRmlg5fgJwT7MTS5oLzAV4Kbvh4oxmveccIrMyej7LzIB6KlWPA5A0BvgoacYZwIXAwZI2kTSZVKn66gHO7UrVZmZmveAcIqCeOkSHSDo6P/8e8HWAiFgm6XzgJmAtcHSrGWbgHCKzUpxDZFZKj3OIRmHnpQ51VKo+DThtgHYnAw4GmpmZ2YjiStVm1pRziMzK6H0dot5eb6TqqA6RmZmZ2bNBRxEiSXcCj5KW4lgbETMlfQb4W9J0+xXAOyPiIUmTSBWtb82HL4mIeZ1c38zMzDrkCBHQnSGzv46I+yuvLwXmR8RaSZ8C5gPH5X0rImJ6F65pZmZm1jVdzyGKiJ9UXi4B3trJ+TzLzKwMzzIzK6W3s8ycQ5R0mkMUwE8kXZuLKTZ6F3BJ5fVkSddJ+qmkV3d4bTMzM+uU6xABnXeI/jIidgPeQFquY6/+HZJOINUb+nbetArYMSJeCfwjcI6kLZudVNJcSUslLX34mis7vEUzMzOzwXXUIYqIe/LX+4ALyKvXSzoCeCNwaEREbrMmIh7Iz68lJVxPHeC8T1Wq3mr3V3Vyi2ZmZjYIr2WWDDuHSNLmwJiIeDQ/3w84UdL+pCTq10TE45X22wGrI2KdpJ1IS3fc3uo6rkNkVobrEJmV4bXMyugkQvRC4OeSbiCtSXZRRPwY+CJplftLJV0vqX8ts72AX+X23wXmRcTqDq5vZmZmnSqUQyRpf0m3Slou6fgm+yXp83n/ryTtVtl3pqT7JN047O+7wbAjRBFxO/DnTba/ZID2C4GFw72emZmZ1aDA8JakscCXgH2BPuAaSRdGxE2VZm8gjSZNAfYATs9fAc4iBWDO7tY9jfilOzzt3qwMT7s3K6XHi7uWMQtYnoMrSDoPmE1aAL7fbODsnIu8RNLWkraPiFURcUUu+Nw1Xa9Unbe/DziGNMvsooj4SN4+Hzgqt39/RCxqdQ3nEJmV4RwiszKeLWuZ5XI81ZI8CyJiQX4+Hri7sq+Pp6M/DNJmPGnWetd1vVK1pL8m9epeERFrJI3L23cBDgamATsAl0maGhHrunAPZmZmNoLkzs+CAXY364bFMNp0TR1DZu8FTomINfDUlHxInaTz8vY7JC0nhcwGLTTkITOzMjxkZlZKj4fMykyR7wMmVl5PAO4ZRpuuqaNS9VTg1ZKuyhWpd8/bBwp9mZmZWSFR06OFa4ApkiZLeg5pBOnChjYXAofn2WZ7Ag9HRC3DZdB5hOgvI+KePCx2qaRb8jm3AfYEdgfOz3WHhhX6cg6RWRnOITIrY0OoQ5QXgD8GWASMBc6MiGWS5uX9ZwAXAwcAy4HHgXf2Hy/pXGBv4AWS+oCPR8TXOrmnjjpE1UrVkvorVfcB38tZ4VdLehJ4AUMIfVUTscYdOAdXqzbrPQ+ZmZWyQQyZEREXkzo91W1nVJ4HcPQAxx7S7fvpeqVq4DHgtcBiSVOB5wD3k0Jf50j6LCmpegqpoOMzVBOx9h0zJ/iho0RmveYIkVkZG0KEaCTqJEL0QuACSf3nOScifpzHAs/M1SP/CByRe3nLJJ1PqjGwFjjaM8zMzMwKG4XrjtWhjkrVfwTeMcAxJwPu+5qZmY0Qo3Eh1jp0OsvMzMzMbNTreqVqSX8OnAE8D7gTODQiHskltm8Gbs2HL4mIeZ1c38zMzDrkCBFQQ6Vq4KvAhyPip5LeBfwT8LG8b0VETB/KyV2Y0awMzzIzK2WDWMtsxKljyGxn4Ir8/FLgLTVcw8zMzLogVM9jtOk0QtRfqTqAL+fp8jcCBwI/AOawfu2hyZKuAx4BPhoRP2t1ARdmNCvD0+7NyvC0+zLqqFT9LuDzkv6FVHvoj7ntKmDHiHhA0gzg+5KmRcQjHd6DmZmZDdcojObUoaMhs2qlauACYFZE3BIR+0XEDOBcYEVusyYiHsjPr83bpzY7r6S5kpZKWtoXt3dyi2ZmZjYY1fQYZYbdIZK0uaQt+p+TKlXfmKNFSBoDfJQ04wxJ20kam5/vRKpU3bS3ExELImJmRMycoJ2Ge4tmZmZmbamjUvWxkvrXHvke8PX8fC/gRElrSdP050XE6g6ub2ZmZh0ajQnQdaijUvVpwGlNti8EFg73emZmZmZ16UYdolq5DpFZGa5DZFbKhrHa/UjTaaXqrUmFGHclTcF/F3AAMBt4ErgPOLI/+VrSfOAo0pDZ+yNiUatreNq9WRmedm9WRs+n3btDBHQeIToN+HFEvDWvcr8ZsCwiPgYg6f3AvwDzJO0CHAxMA3YALpM0tdWK944QmZXhCJFZKa5UXcKwO0SStiQlSh8JT61y/8eGZpuTIkeQokbnRcQa4A5Jy4FZwJWDXccRIrMyHCEyK6PXESInVSedRIh2Av4P+Hpe0PVa4NiI+L2kk4HDgYeBv87txwNLKsf35W2DcoTIrAxHiMxKcYSohE4KM24E7AacHhGvBH4PHA8QESdExETg28AxuX2zPmg02WZmZma94sKMQGcRoj6gLyKuyq+/S+4QVZwDXAR8PLevrms2Abin2YklzQXmAryU3XBxRrPe85CZWRkeMiujkzpEv5N0t6SdI+JW4HXATZKmRMRtudmBwC35+YXAOZI+S0qqngJcPcC5FwALAKaedGrcNdybNLNh85CZWSkeMiuh01lm7wO+nWeY3Q68E/iqpJ1J0+7vAuYBRMQySecDNwFrgaNbzTADJ1WbleIIkVkZnnZfRkcdooi4HpjZsPktg7Q/GRjSP7WTqs3KcITIrBRHiEoY8ZWqHSEyK8MRIrMyHCEqo+uVqiPiSknvI80uWwtcFBEfkTQJuBm4NR++JCLmtbqGI0RmZThCZFaKI0QldL1StaS/JhVhfEVErJE0rtJ+RURMH8oFHCEyK8MRIrMyPMusjK5Xqpb0XuCUXJGaiLivC/dpZmZmdXCHCKihUjUwFXh1rlb9B+DDEXFNPmaypOuAR4CPRsTPWl3EQ2ZmZXjIzKwUD5mV0EmHqL9S9fsi4ipJp5EKM24EbAPsCewOnC9pJ2AVsGNEPCBpBvB9SdMi4pHBLuIhM7MyPGRmVkbPk6oNqKdSdR/wvYgI4GpJTwIviIj/A/qH0a6VtIIUTVraeOJqpepxB85hq91f1cFtmtlwOEJkVoojRCV0vVI1sAJ4LbBY0lTgOcD9krYDVkfEuhwxmkIq5tjs3E9Vqt53zJzgh44SmfWaI0RmZTipuow6KlX/HjhT0o3AH4EjIiIk7QWcKGktsA6YFxGrW13AOURmZThCZFZKjyNE7hAB9VSqBnhHk7YLgYWdXM/MzMysDiO+UrWZmZnVyBEiAMYM90BJO0u6vvJ4RNIHJG0r6VJJt+Wv21SOmS9puaRbJb2+O9+CmZmZWWc6Saq+FZgOIGkssBK4gDTT7PKIOEXS8fn1cZJ2AQ4GpgE7AJdJmtpqxXtPuzcrw0nVZmU4qbqMbg2ZvY60LMddkmYDe+ft3wAWA8eRlvM4L1ewvkPScmAWcOVgJ3ZStVkZTqo2K8VJ1SUMe8iswcHAufn5CyNiFUD+2r+W2Xjg7soxfXmbmZmZWVEdR4jylPsDgfmtmjbZFq3O7yEzszI8ZGZWhofMyuhGhOgNwC8j4t78+l5J2wPkr/2Lu/YBEyvHTQDuaXZCSXMlLZW0tC+a1m40MzMz65pudIgO4enhMoALgSPy8yOAH1S2HyxpE0mTSZWqr252wohYEBEzI2LmBO3UhVs0MzOzplTTY5TpaMhM0mbAvsB7KptPIS3oehTwW2AOQEQsk3Q+aXmPtcDRrWaYmZmZmfVCp5WqHwee37DtAdKss2btTwaGNDrqWWZmZXiWmVkpvZ5l1jKdd4Mw4itVO6narAwnVZuV4aTqMobdIZK0M/CdyqadgH8hRYxmA0+SEqqPjIh7JE0CbgZuze2XRMS84V7fzMzMrFvqqFT9YER8LG9/P6mT1N/xWRER0zu4XzMzM+smR4iAGipVN2zfnDZqDZmZmZmV1K0OUbVSNZJOBg4HHgb+utJusqTrgEeAj0bEz7p0fTMzMxsOR4iAmipVR8QJwAmS5gPHAB8HVgE7RsQDkmYA35c0LSIeGez8nmVmVoZnmZmV0ttZZk6qTroRIWqsVF11DnAR8PG8qOsagIi4VtIKYCqwtPEgSXOBuQAvZTdcnNGs9zzLzKyMXs8ys6TrlaolTansOxC4JW/fLidfI2knUqXqputyuFK1mZlZj7hSNVBTpeo8Jf9J4C6enmG2F3CipLXAOmBeRKxudQ0PmZmV4SEzs1J6XJixEEn7A6cBY4GvRsQpDfuV9x8APE4q4/PLdo4djjoqVb9lgLYLgYWdXM/MzMy6rEA0J48YfYkUVOkDrpF0YUTcVGn2BtJo0hRgD+B0YI82jx0yV6o2s6acQ2RWRs9ziMos3TELWB4RtwNIOo9U1LnaqZkNnB0RASyRtLWk7YFJbRw7ZN3IITIzMzMbivHA3ZXXfXlbO23aOXbI6li641XAznnb1sBD/dWp8zT8o0g5RO+PiEWtruMcIrMynENkVsqzY9p9dcZ4tiAiFvTvbnYrjacYoE07xw5Z15fuiIjP9beR9J+k4oxI2oVUwHEasANwmaSpEbFuuPdgZmZmI1Pu/CwYYHcfMLHyegJwT5ttntPGsUPWrSGzZyzdkbPD38bTU/JnA+dFxJqIuANYThpDNDMzsw3LNcAUSZNzgeeDgQsb2lwIHK5kT+DhiFjV5rFDVsvSHdmrgXsj4rb8ejywpLK/K2N+ZmZmNrpExFpJxwCLSFPnz4yIZZLm5f1nABeTptwvJ027f+dgx3Z6T7Us3ZGtV7CRIYz5uVK1WXmeZWZWRu9nmfX4ellEXEzq9FS3nVF5HsDR7R7bqVqW7pC0EfBmYEalXTvjhcD6445TTzr16XE4M+sZJ1WblfLsSKoebbrRIWqMBAHsA9wSEX2VbRcC50j6LCmpegpwdauTuw6RWRmOEJmV4bXMyqhj6Q5oklOUxwbPJxVOWgsc3c4MM0+7NyvDESKzUnq8dEeZwowjTteX7sjbjxyg/cnAkPq+jhCZleEIkVkZjhCVMeKX7jAzM7MaOYcI6LAOkaQPSlom6UZJ50raVNK2ki6VdFv+uk1uO0nSE5Kuz48zWp3fzMzMaqaaHqNMJ0t3jAfeD+wSEU/k/KCDgV2AyyPiFEnHA8cDx+XDVvQv49Eu5xCZleEcIrNSepxDZEDnQ2YbAc+V9CdgM9I0+vnA3nn/N4DFPN0hGjLnEJmV4RwiszI2lDpEI00na5mtlPQfwG+BJ4CfRMRPJL0wl9YmIlZJGlc5bLKk64BHgI9GxM9aXccRIrMyHCEyK8URohI6GTLbhrQ+2WTgIeC/JL1jkENWATtGxAOSZgDflzQtIh4Z7DqOEJmV4QiRWRm9jxB52j10NmS2D3BHRPwfgKTvAX8B3Ctp+xwd2h64DyAi1gBr8vNrJa0ApgJLG09cXbpj3IFz2Gr3V3Vwm2Y2HI4QmZXS6zpEvb3cSNXJLLPfAntK2iyvbP864GZSReojcpsjgB8ASNpO0tj8fCdSperbm504IhZExMyImOnOkJmZmdWtkxyiqyR9F/glqfL0daT1x54HnC/pKFKnaU4+ZC/gRElrgXXAvIhY3cnNm5mZWWe8llnSaaXqjwMfb9i8hhQtamy7EFg41Gs4h8isDOcQmZXhStVluFK1mZnZhsxJ1UDni7t+EPh7IIBfA++MiD/kfR8GPgNsFxH3523zgaNIQ2bvj4hFra7hafdmZTip2qwUT7svoY5K1WdJmgjsS8oh6m+/S94/DdgBuEzS1FYr3nvIzKwMD5mZleHCjGV0tJYZT1eq3oinK1UDnAp8hBQ56jcbOC8i1kTEHcByYFaH1zczM7MOSPU8Rps6KlUfCKyMiBu0/jsyHlhSed2Xtw3KQ2ZmZXjIzKwUD5mV0O1K1YcDRwP7NTukybaWmVweMjMrw0NmZmW4UnUZ3a5U/U5SB6k/OjQB+KWkWaSI0MTK8RN4eohtPa5UbVaeI0RmpThCVEK3K1V/LyLGRcSkiJhE6gTtFhG/I1WwPljSJpImkypVX93sxK5UbWZm1iOq6THK1FGpeqD2y/JMtJty+6NbzTADD5mZleIhM7MyPMusDEWM7LHDqSedOrJv0OxZykNmZmWMedFvetpFmXT2p2r5O3vn4ceNqq7WiK9U7QiRWRmOEJmV0fulOxx3gA7rEEn6oKRlkm6UdK6kTSV9R9L1+XGnpOtz20mSnqjsO6Mr34GZmZlZh7peqToi/q7S5j+BhyuHrYiI6cO9ppmZmXXZqBrYqk+nQ2b9lar/xPqVqskzz94GvLbDa5iZmVlN5DpEQAdDZhGxEuivVL0KeDgiflJp8mrg3oi4rbJtsqTrJP1U0quHe20zMzOzbhp2h6ihUvUOwOaS3lFpcghwbuX1KmDHiHgl8I/AOZK2HO71zczMrAtchwjofqXqvwC+lRd7fTMwo79xRKwB1uTn10paAUwFljae2JWqzcrztHuzUlypuoRuV6q+Oe/bB7glIvr6G0vaTtLY/HwnUqXq25ud2JWqzczMekOKWh6jTV2Vqg9m/eEygL2AEyWtBdYB8yJidavruA6RWRmuQ2RWRu/rEBm4UrWZDcBDZmZl9LpS9U7n/lstf2dvP+SfR1UmkStVm1lTjhCZldHrCJFGVbelPh11iCQdC7yblE/+lYj4nKQ5wCeAlwGzImJppf184CjSkNn7I2JRq2vcdeJfdHKLZjZMjhCZleKk6hI6qVS9K6kzNAv4I/BjSRcBN5JmmH25of0upNyiaaRp+pdJmtrOivdmZmZWk1GYAF2HTiJELwOWRMTjAJJ+CrwpIj6dXze2nw2cl6ff3yFpOakzdeVgF/GQmVkZHjIzK8NJ1WV0Mu3+RmAvSc+XtBlwADBxkPbjgbsrr/vyNjMzMyvE0+6TTqbd3yzpU8ClwGPADaTp9wNplrY1+t4xMzOzZxEnVSedRIiIiK9FxG4RsRewGrhtkOZ9rB9BmkBlMdgqSXMlLZW0tC+a1m40MzMz65pOZ5mNi4j7JO1ISqQerKz0haT1yz5LSqqeAlzdrGFELCAXeZx60qlxVyc3aWbD4llmZqX0dpbZaBzeqkOndYgWSno+8Cfg6Ih4UNKbgC8A2wEXSbo+Il4fEcsknQ/cRBpaO7qdGWZOqjYrw0nVZmU4qbqMjjpEEfHqJtsuAC4YoP3JgP+pzczMRgrnEAGjoFK1mZmZ1cdDZknXK1VX9n0Y+AywXUTcL2kScDNwa26yJCLmtbqGK1WbleEcIrNSXKm6hK5Xqo6I2yRNBPYFfttw2IqImD6U6ziHyKwM5xCZldHztcx6e7kRq+uVqoFPA6cCHwF+0OkNOkJkVoYjRGalOEJUQicdohuBk/MssydIlaqXSjoQWBkRNzRZvmOypOuAR4CPRsTPWl3EESKzMhwhMiuj96vdO4cI6qlUfQKwX5NDVgE7RsQDkmYA35c0LSIeGew6jhCZleEIkVkpjhCV0O1K1XcCk4EbJN1Jqkb9S0kviog1EfFAPu5aYAUwtdl5q5WqH75m0LVfzczMrANeyyzpqEMkaVz+2l+p+uyIGBcRkyJiEmm5jt0i4neStpM0NrffiVSpuum6HBGxICJmRsTMrXYfrPi1mZmZdUKq59HZPWlbSZdKui1/3WaAdvtLulXScknHV7bPkbRM0pOSZrZzza5Xqh6k7V7AiZLWAuuAeRGxutUFnENkVoZziMzKcKVqAI4HLo+IU3JH53jguGqDHGT5EmlWex9wjaQLI+ImUp7zm4Evt3vBrleqbtg/qfJ8IbCwk+uZmZlZd40ZmcNbs4G98/NvAItp6BCRyv4sj0irwEs6Lx93U0TcnLe1fcGOhszMzMzMavDCiFgFkL+Oa9JmPHB35XVf3jYsXa9ULWk6cAawKWnW2T9ExNW5/XzgKNKQ2fsjYlGra3iWmVkZnmVmVsqzY7V7SXOBuZVNCyJiQWX/ZcCLmhx6QruXaLJt2N9M1ytVkwoz/mtEXCLpgPx6b0m7AAcD04AdgMskTW1nxXszMzOrR10dotz5WTDI/n0GvifdK2n7iFglaXvgvibN+oCJldcTgHuGe7+dDJk9Vak6ItYC/ZWqA9gyt9mqcnOzgfPy9Ps7gOWkzpSZmZlZ1YXAEfn5ETRf+eIaYIqkyZKeQwq6XDjcC3a9UjXwAWCRpP8gdbj6x7zGA0sqx7c11udZZmZleJaZWRm9r1Td2+u16RTgfElHkdZFnQMgaQfgqxFxQESslXQMsAgYC5wZEctyuzcBXwC2Ay6SdH1EvH6wC9ZRqfq9wAcjYqGktwFfA/ahy2N9ZmZm9uyUCzm/rsn2e0gBmP7XFwMXN2l3AXDBUK7Z6bT7r5E6PEj6N1LU59+BY3OT/wK+mp+3PdZXTcQad+AcXJzRrPecVG1WSm+TqkfotPue63SW2biIuK9SqfpVwPuA15BqBrwWuC03vxA4R9JnSUnVU4Crm523moi175g5wQ89bGbWax4yMyvDi7uW0fVK1ZLeDZwmaSPgD+RIT0Qsk3Q+cBNpaO3odmaYedq9WRmOEJmV4sVdS+h6peqI+DkwY4D2JwND6vs6qdqsDEeIzMrodYRojNN5gc4jRLVzhMisDEeIzEpxhKiEEd8hMjMzs/qM0Gn3PdeyMKOkMyXdJ+nGyrZtJV0q6bb8dZu8/fmS/kfSY5K+2HCexZJulXR9fjRbl8TMzMys59qJEJ0FfBE4u7LteODyiDhF0vH59XGkJOqPAbvmR6NDI2LpUG7QOURmZTiHyKyMnucQeZYZ0EaEKCKuAFY3bJ4NfCM//wZwUG77+5xU/Ycu3qOZmZnVRIpaHqPNcHOIXhgRqwDywmvtDn99XdI6YCFwUkS0fMecVG1WhpOqzUpxUnUJvUyqPjQiVkragtQhOoz1h+GeUq1U/VJ2Y4J26t1dmhngITOzUjxkVsZwO0T3Sto+R4e2B+5rdUBErMxfH5V0Dmml+6Ydomql6qknnRp3DfMmzWz4HCEyK8URohKG2yG6EDiCtBrtEcAPBmucq1ZvHRH3S9oYeCNwWTsXclK1WRmOEJmV4aU7ymjZIZJ0LrA38AJJfcDHSR2h8yUdBfwWmFNpfyewJfAcSQcB+wF3AYtyZ2gsqTP0lW5+I2ZmZjZ0HjJLWnaIIuKQAXa9boD2kwZo33Q5DzMzM7PSRnylas8yMyvDOURmpfQ2h8hrmSXtDJmdScr5uS8ids3btgW+A0wC7gTelle6nwTcDNyaD18SEfPyMTNIRR6fC1wMHNvOtHvnEJmV4RwiszJ6nUNkScvCjKROzP4N2/orVU8BLs+v+62IiOn5Ma+y/XTSVPop+dF4TjMzM+sxF2ZM2skhuiJHfqpmkxKtIVWqXkxauqOpPDV/y4i4Mr8+m1Td+pJW1/eQmVkZHjIzK6XHQ2ajsPNSh3YiRM2sV6kaqFaqnizpOkk/lfTqvG080Fdp05e3mZmZmRXX7aTqVcCOEfFAzhn6vqRpgJq0batL6hwiszKcQ2RWhitVl9HVStURsQZYk59fK2kFMJUUEZpQOX4CcM9AJ68u3THuwDlstfurhnmbZjZcHjIzK8WVqkvoaqVqSdsBqyNinaSdSMnTt0fEakmPStoTuAo4HPjCQCevLt2x75g5wQ8dJTLrNUeIzMpwhKiMbleq3gs4UdJaYB0wLyJW533v5elp95fQRkI1OKnarBRHiMxKcVJ1CV2tVB0RC0kr2Tc7z1Jg1yHdnZmZmVkPjPhK1WZmZlYfV6pOul2pemPgq8Bu+dxnR8S/52MWA9sDT+RT7xcR97W6vmeZmZXhHCKzMlypuox2IkRnAV8Ezq5s669UfYqk4/Pr40i5RJtExMslbQbcJOnciLgzH3doHjprm3OIzMpwDpFZKc4hKqFlYcaIuAJY3bB5NqlCNfnrQf3Ngc0lbURKnv4j8EhX7tTMzMysJsPNIVqvUrWk/krV3yV1llYBmwEfrMwyA/i6pHWkxOuTvLir2cjlITOzMjztvoxuJ1XPIk233wHYBviZpMsi4nbScNlKSVuQOkSHsf4wnJmZmfWYO0TJcNcyuzdXqKZaqRp4O/DjiPhTTpj+X2AmQESszF8fBc4hdZ6akjRX0lJJS/vi9mHeopmZmVl7ulqpmlSk8bWSvkUaMtsT+FzOKdo6Iu7PM9HeCFw20MmrlaqnnnRq3DXMmzSz4XNStVkpTqouoduVqr8EfB24kbSg69cj4leSNgcW5c7QWFJn6Cvt3KBziMzKcA6RWRmedl9GtytVP8bTnaPq9t8DM4Z8d3javVkpjhCZldLjCJELMwKjoFK1I0RmZThCZFaGZ5mV0TKpWtKZku6TdGNl2xxJyyQ9KWlmZfu+kq6V9Ov89bWVfTPy9uWSPi9J3f92zMzMzIaunVlmZwH7N2y7EXgzcEXD9vuBv42Il5OSrb9Z2Xc6MBeYkh+N5zQzM7MeG6Mna3mMNu3kEF0haVLDtpsBGoM8EXFd5eUyYFNJmwDbAltGxJX5uLNJ1a0vaXV95xCZleEcIrNSeptDZEmdOURvAa6LiDWSxgN9lX19wPgar21mZmZtcA5RUkuHSNI04FPAfv2bmjTzv4CZmVlhnmWWDLdS9YAkTQAuAA6PiBV5cx8wodJsAnDPIOd4qlL1w9dc2e1bNDMzM1tPVztEkrYGLgLmR8T/9m/PC8E+KmnPPLvscJ6ubv0MEbEgImZGxMytdn9VN2/RzMzMKsYoanmMNsOtVL0a+AKwHXCRpOsj4vXAMcBLgI9J+lg+xX55XbP3kmasPZeUTN0yoRpch8isFNchMivDlarL6KRS9QVN2p4EnDTAeZYCuw7p7szMzKxWo3GKfB1GfKVqT7s3K8PT7s1K8bT7EtoZMjuTtDr9fRGxa942B/gE8DJgVo7+kOsV3Qzcmg9fEhHz8r7FwPbAE3lf/1DaoDxkZlaGh8zMyuj1kNnYUZjvU4d2IkRnAV8Ezq5s669U/eUm7VdExPQBznVof+fJzMzMyvO0+6SrlarNzMzMRqOu1yECJku6TtJPJb26Yd/XJV0v6WNe3NXMzKw8r2WWdDupehWwY0Q8IGkG8H1J0yLiEdJw2UpJWwALgcNYfxjOzMzMrIiuRogiYk1EPJCfXwusAKbm1yvz10eBc4BZA52nWqm6L27v5i2amZlZxUgszChpW0mXSrotf91mgHb7S7pV0nJJx1e2f0bSLZJ+JemCXDh68Pehozt+5o1tJ2lsfr4TMAW4XdJGkl6Qt29MmrV240DnqVaqnqCdunmLZmZmVjGWqOXRoeOByyNiCnB5fr2e3N/4EvAGYBfgEEm75N2XArtGxCuA3wDzW12w25Wq9wJOlLQWWAfMi4jVkjYHFuXO0FjgMuArra4NrkNkVorrEJmV4jpEwGxS3wPgG8Bi4LiGNrOA5RFpKEnSefm4myLiJ5V2S4C3trpgtytVLyTlBzVu/z0wo9W1mnEdIrMyXIfIrIxe1yEaoQnQL8zroBIRqySNa9JmPHB35XUfsEeTdu8CvtPqgq5UbWZNOUJkVsqzI0IkaS4wt7JpQUQsqOy/DHhRk0NPaPcSTbatN1Yn6QRgLfDtVifrdqXq55CKNc4EngSOjYjFed8Mnl7c9eK8r+UgoyNEZmU4QmRWRu8jRPUUZsydnwWD7N9noH2S7pW0fY4ObQ80W9miD5hYeT0BuKdyjiNI/ZfXtdPf6Hal6ncDRMTLc3jrEkm7R8STwOmknuISUodof9pY8d4RIrMyHCEyK6W3EaIRunTHhcARwCn56w+atLkGmCJpMrASOBh4O6TZZ6Sco9dExOPtXLDblap3IWWDExH3SXoImCnpbmDLiLgyH3c2cBBtdIgcITIrwxEiszJ6HSEaoU4Bzpd0FPBbYA6ApB2Ar0bEARGxVtIxwCLShK0zI2JZPv6LwCbApbmv8tTaqgPpdg7RDcDsnOk9kZRIPZE0fNZXaddHSoYyMzOzgsYw8pKqc03D1zXZfg9wQOX1xaRRp8Z2LxnqNbvdITqTlFe0FLgL+AUpmall4pOZmZlZKV3tEEXEWiqDn5J+AdwGPEhKduq3XuJTo2pm+rgD57DV7q/q5m2aWRucQ2RWSm9ziOpKqh5tutohkrQZoIj4vaR9gbURcVPe96ikPYGrgMNJhR2bqmam7ztmTvBD5xGZ9ZpziMzKcA5RGd2uVD2OVJH6SVLG92GVU72Xp6fdX0IbCdXgWWZmpThCZFZKj2eZjcAcohK6Xan6TmDnAc6zFNh1KDdnZmZm9fKQWTLiK1V72r1ZGR4yMyvDQ2ZlDLdS9WeAvwX+CKwA3hkRD+W8oVOA5+R9/xQR/52PWQxsDzyRT71fRDSrPLkeD5mZleEhM7NSel2Y0UNmAGPaaHMWqap01aXArhHxCuA3wPy8/X7gbyPi5aTKkt9sOO7QiJieHy07Q2ZmZma9MNxK1T+pvFwCvDVvv66yfRmwqaRNImLNcG/QQ2ZmZXjIzKyMnq9l5rKAQHdyiN4FfKfJ9rcA1zV0hr4uaR2wEDipncXWzMzMrD4eMks66hBJOoFUifrbDdunAZ8C9qtsPjQiVkragtQhOoz1F4xtyjlEZmU4h8islN7mEFnSTg5RU5KOICVbH1qN9EiaQJqSf3hErOjfHhEr89dHgXOAWYOce66kpZKWPnzNlcO9RTMzM2thjJ6s5THaDKtDJGl/4DjgwIh4vLJ9a+AiYH5E/G9l+0aSXpCfb0zqSN040PkjYkFEzIyImV62w8zMzOo23ErV84FNgEslASyJiHnAMcBLgI9J+lg+xX7A70kVrDcGxgKXAV9p5wadVG1WhpOqzcrodVL1WCdVA8OvVP21AdqeBJw0wKlmDOG+zMzMrAdG4/BWHUZ8pWonVZuV4aRqs1KcVF3CiO8QecjMrAwPmZmV4SGzMlomVUs6U9J9km6sbPuMpFsk/UrSBTmZun/fKyRdKWmZpF9L2jRvn5FfL5f0eeXkIzMzM7PSurp0h6SNgG8B8yJiGikZ+0/5mNOBucCU/Gg8p5mZmfWYp90nXV26gzSj7FcRcUNu9wCApO2BLSPiyvz6bOAg4JJW13cOkVkZziEyK8U5RCV0e+mOqUBIWgRsB5wXEZ8GxgN9lWP68raWnENkVoZziMzK6H0O0eiL5tSh20t3bAT8FbA78DhwuaRrgUeaHD5gFpekuaThNcYdOAcXZzTrPUeIzErpbYRojJxUDR10iCpLd7yusnRHH/DTiLg/t7kY2I2UVzShcvgE4J6Bzh0RC4AFAPuOmRP80FEis15zhMisjF5HiCwZVoeosnTHa6pLdwCLgI9I2gz4I/Aa4NSIWCXpUUl7AlcBhwNfaOdaziEyK8MRIrNSehsh8pBZ0s60+3OBK4GdJfVJOgr4IrAFaemO6yWdARARDwKfBa4Brgd+GREX5VO9F/gqsBxYQRsJ1WZmZma90NWlO3L7b5GGyBq3LwV2HdLd4aRqs1I8ZGZWRs+TqkfhFPk6jPhK1WZmZlafMa5UDbS32v2ZpOTp+yJi17ztM8DfkvKEVgDvjIiHJD0H+DIwE3gSODYiFudjFgPbA0/kU+8XEfe1ur5ziMzKcA6RWSmuQ1RCOxGis0g5Q2dXtl0KzI+ItZI+RapUfRzwboCIeLmkccAlknaPiP543KF56KxtHjIzK8NDZmZleMisjG5Xqt4FuDy3uU/SQ6Ro0dXDvUFHiMzKcITIrBRHiEpoZy2zVt7F0zPGbgBmS9pI0mRgBjCx0vbreVbax7y4q5mZWXljeLKWx2jT7UrVZwIvA5YCdwG/yPshDZetlLQFsBA4jPWH4ZrykJlZGR4yMyuj90NmTqqGLleqjoi1VGJ9kn4B3Jb3rcxfH5V0DjCLATpEXrrDrDwPmZmV4iGzEoY1ZFapVH1gtVK1pM0kbZ6f7wusjYib8hDaC/L2jUkdqRsHOn9ELIiImREx050hMzOz+ozlyVoeo0070+7PBfYGXiCpD/g4aVbZJqRK1QBLImIeMA5YJOlJYCVpWIzcdlHuDI0FLgO+0s4NesjMrAwPmZmV4bXMyuhqpeqIuBPYucn235MSrM3MzGwEGeNp98AoqFTtafdmZTiHyKwU5xCVMNxK1Z8EZpOqUd8HHBkR90iaBSzoPxT4RERckI+ZQSry+FzgYlIV65ap7R4yMyvDQ2ZmZfR8ltkozPepg1r1SSTtBTwGnF3pEG0ZEY/k5+8HdomIeZI2A/6YK1hvT6pLtEN+fTVwLKmQ48XA5yOi5Yr3U0861fMBzQpwhMisjDEv+k1P6/T94Pbptfydnb3T9aOq3uBwK1U/Unm5OdA/7f7xyvZN+7fnztGWEXFlfn02cBBPF3QckCNEZmU4QmRWhpOqy+ikDtHJwOHAw8BfV7bvQSrQ+GLgsBwdGg/0VQ7vA8a3cx3nEJmV4QiRWSm9zSEajVWl6zDsDlFEnACcIGk+cAxpOj4RcRUwTdLLgG9IuoSUT/SMU7RzHUeIzMpwhMisDEeIyujGLLNzgIvIHaJ+EXGzpN8Du5IiQhMquycA9wx0QleqNivPESKzUnobIfJq98mwOkSSpkTEbfnlgcAteftk4O48TPZiUk2iOyPifkmPStoTuIo01PaFgc4fEQvIs9X2HTMn+KGjRGa95giRWRmeZVbGcCtVHyBpZ9K0+7uAebn5XwHHS/pT3vcPEXF/3vdenp52fwltJFSbmZmZ9UK3K1V/E/jmAPuWkobPzMzMbIQY015K77OeK1WbWVPOITIrxZWqS+hqpeq87xXAl4Et8/7dI+IPkhYD2wNP5FPvFxH3tbq+Z5mZleEcIrMyep5D5KRqAMa00eYsYP+GbZ+JiFdExHTgR8C/AEjaCPgWMC8ippFyj/5UOe7QiJieHy07Q2ZmZlavsUQtj9GmZYcoIq4AVjdsa1qpGtgP+FVE3JDbPRAR67p0r2ZmZma16Hal6qlASFoEbAecFxGfrhz2dUnrgIXASe0s7uocIrMynENkVoorVZfQ7UrVG5Gm3u8OPA5cLunaiLicNFy2UtIWpA7RYcDZra7jHCKzMpxDZFaGK1WX0U4OUSvnAG/Jz/uAn0bE/Xmh14uB3QAiYmX++mg+ZtZAJ5Q0V9JSSUv74vYu3KKZmZk1M1ZP1vLohKRtJV0q6bb8dZsB2u0v6VZJyyUdX9n+SUm/knS9pJ9I2qHlNdsYtSKvdv+jyiyzpypVS3of8JqIeGu+4ctJUaI/Aj8GTgUWAVvnitUbA+cCl0XEGa2uPfWkU0dfZpbZs4CHzMzKGPOi3zRb/7M2v7hrp1r+zv7Fi28f9vch6dPA6og4JXd0tomI4xrajAV+A+xLCshcAxwSETdJ2rI/31nS+4FdImIeg+hqpeqIeFDSZ/NNBXBxRFwkaXNgUe4MjQUuA77SzpviITOzMjxkZlZG75fuGJFxh9mkvgfAN4DFwHENbWYByyPSUJKk8/JxNw0y+WtAXa1Undt/izT1vrrt98CMVtdqxknVZmU4QmRWSo+TqjUiO0QvjIhVABGxStK4Jm3GA3dXXvcBe/S/GGDy14C6kUNkZmZmtp5qPnB+zG3Yf5mkG5s8Zrd7iSbbnurdRcQJETER+DZp8teghlWpurLvw8BngO36F3HNs86OAtYB74+IRXn7DJ5e3PVi4Nh2pt2bmZlZfepa7T4iFgALBtm/z0D7JN0rafscHdqetCpGoz5gYuX1BOCeJu3OAS4ipfwMqJ1p92cBX6RhirykiaREpt9Wtu0CHAxMA3YALpM0NRdnPB2YCywhdYj2p40V751DZFaGc4jMyvC0ewAuBI4ATslff9CkzTXAFEmTgZWk/sfbYf3JX8CBwC2tLjisStXZqcBHWD9RaTapGOOaiLgDWA7Myr27LSPiyhwVOhs4qNW1zczMrF4jdOmOU4B9Jd1GCr6cAiBpB0kXA0TEWtJQ2CLgZuD8iFjWf3wefvsVaRWNY1tdcFiFGSUdCKyMiBuk9YbwxpMiQP368rY/5eeN283MzKygkZhUHREPAK9rsv0e4IDK64tJo06N7d7SuK2VIXeIJG0GnEDqcT1jd5NtMch2MzMzs+KGEyH6M2Ay0B8dmgD8UtIsBk5w6svPG7c3lTPR5wK8lN2YoJ2GcZtmZmbWygitQ9RzQ552HxG/johxETEpIiaROju7RcTvSElQB0vaJCc5TQGuzrUEHpW0p1Iv6nCaJ0j1X2NBRMyMiJnuDJmZmVndhlWpOiKaFmaMiGWSzgduAtYCR+cZZgDv5elp95fQxgwzcGFGs1JcmNGslN4WZnSEKGlrLbOS9h0zZ2TfoNmz1Mr5/s+IWQk3nfzBnq5ldlvfDrX8nZ0y4Z6efh+dcqVqMzMz2+C17BBJOlPSfZJubLLvw5JC0gvy61mSrs+PGyS9qdJ2saRbK/ubrUtiZmZmPTRC6xD1XFcrVQM3AjMjYm0uxniDpB/m4kkAh0bE0qHcoHOIzMpwDpFZKb3NIbKkq5WqI+LxSudnU1xryMzMbEQbU9NjtOl2pWok7QGcCbwYOKzSQQL4uqR1wELgpHYWd/VaZmZleC0zszK8llkZ3a5UTURcBUyT9DLgG5IuiYg/kIbLVkragtQhOoyGYTgzMzPrrbGjai5YfYYT1apWqr6TpytVv6jaKCJuBn4P7Jpfr8xfHwXOAWYNdAFJcyUtlbS0L24fxi2amZlZO8aiWh6jTVcrVUuaLGkjAEkvBnYG7pS0UWUm2sbAG0kJ2ANdw5WqzczMrGe6Wqka+CvgeEl/Ap4E/iEi7pe0ObAod4bGApcBX+nGN2BmZmbDNxoToOsw4itVTz3p1JF9g2bPUp52b1bGmBf9pqfjTb9bWU+l6heNH12Vqoc1y8zMzMyeHcZqVPVbajPiO0Sedm9Whqfdm5XR62n3Y0ZhAnQdur10x6GVpTmul/SkpOl53wxJv5a0XNLn1VjAyMzMzKyQljlEkvYCHgPOjohdK9snAl8FXgrMiIj7G457OfCDiNgpv74aOBZYAlwMfD4iLml1g84hMivDOURmZfQ6h+iheybW8nd26x3uHlWBj64u3dHgEOBcgLyu2ZYRcWWuTn02cNBwbtjMzMys27q+dEfF3wGz8/PxpHpF/fryNjMzMyvIOUTJkMsPVJbu+JdB2uwBPB4R/XlHzd7tAUN01UrVD19z5VBv0czMzNo0VqrlMdoMJ0JUXboDnl66Y1ZE/C63OZg8XJb15Xb9JgD3DHSBiFgALADYd8yc4IeeaWbWa55lZlaGF3ctY8gdooj4NTCu/3Vez2xmf1K1pDHAHGCvyjGrJD0qaU/gKuBw4AvtXO+uE/9iqLdoZl3gpGqzUj7Y06uNca1qoPtLd0DqCPVFPGNV1vcCZwHPBS7Jj5Zch8isDEeIzMpwhKiMlh2iiDikxf5JDa8XA3s2abcU2LVxu5mZmZXjpOpkxFeq9pCZWRkeMjMrpbdDZmPlITMYBR0iD5mZleEhM7MyPGRWxojvEDlCZFaGI0RmpTipuoQR3yFyhMisDEeIzMpwhKiMlmuZmQ2XpLm5ppSZ9Zh//syGxnEyq9Pc0jdgtgHzz5/ZELhDZGZmZhs8d4jMzMxsg+cOkdXJ+Qtm5fjnz2wInFRtZmZmGzxHiMzMzGyD5w6RmZmZbfDcIbKekHSEpNvy44jS92O2oZD0Y0kPSfpR6XsxG8mcQ2S1k7QtsBSYCQRwLTAjIh4semNmGwBJrwM2A94TEW8sfT9mI5UjRDZskj4l6R8qrz8h6UNNmr4euDQiVudO0KXA/r26T7NnmyH87BERlwOP9uzmzEYpd4isE+cBf1d5/Tbgv5q0Gw/cXXndl7eZ2fC0+7NnZm0a8Yu72sgVEddJGidpB2A74MGI+G2Tpmp2eL13Z/bsNYSfPTNrkztE1qnvAm8FXkT6X2szfcDeldcTgMW13pXZs187P3tm1iZ3iKxT5wFfAV4AvGaANouAf5O0TX69HzC/B/dm9mzWzs+embXJHSLrSEQsk7QFsDIiVg3QZrWkTwLX5E0nRsTqnt2k2bNQOz97AJJ+BrwUeJ6kPuCoiFjUq/s0Gy087d7MzMw2eJ5lZmZmZhs8D5lZ10h6OfDNhs1rImKPEvdjtqHwz55Z5zxkZmZmZhs8D5mZmZnZBs8dIjMzM9vguUNkZmZmGzx3iMzMzGyD5w6RmZmZbfD+PzuChdsJV03fAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Let us visualize this data frame as a heat map:\n", + "fig, ax = plt.subplots(figsize=(10, 8))\n", + "sns.heatmap(proj_df, ax=ax, cmap='viridis_r')\n", + "ax.set(title='Eigenvectors Generating the Kernel of the Graph Laplacian');" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "id": "e882b804", + "metadata": {}, + "outputs": [], + "source": [ + "def project_and_transpose(eigenvals, eigenvcts, num_ev):\n", + " \"\"\"Select the eigenvectors corresponding to the first \n", + " (sorted) num_ev eigenvalues as columns in a data frame.\n", + " \"\"\"\n", + " eigenvals_sorted_indices = np.argsort(eigenvals)\n", + " indices = eigenvals_sorted_indices[: num_ev]\n", + "\n", + " proj_df = pd.DataFrame(eigenvcts[:, indices.squeeze()])\n", + " proj_df.columns = ['v_' + str(c) for c in proj_df.columns]\n", + " return proj_df" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "id": "eb3c83ef", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\DELLPR~1\\AppData\\Local\\Temp/ipykernel_7984/1902041793.py:8: ConvergenceWarning: Number of distinct clusters (3) found smaller than n_clusters (5). Possibly due to duplicate points in X.\n", + " k_means.fit(proj_df)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAGDCAYAAABjkcdfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAo/0lEQVR4nO3de3hc913n8c9Xd8m6jG3JF0njSxLHiZ1Ycta4pTRt2kJJ2tKwbLeb7ELawG42LN0HHgrbLs8DBQrL7nYLXWhLyKaXhFvoQwsN3bShS6FNKCVxEtmO7dpxE8eS5YsUe3TxRTd/9485ShVFl7GtM7+Zc96v59FjzZyj0ffkF9sfnzn6HHN3AQAAoLgqQg8AAACQRoQwAACAAAhhAAAAARDCAAAAAiCEAQAABEAIAwAACIAQBqDsmdl9ZvaroecAgEtBCAOw5MzsiJn9cEyv/X4ze2Lmc+5+r7t/9DJf71WzmtkdZnbGzN48x75uZifNrGrGc1VmdsrMKF0EcEkIYQDKxszwE9Prv0/SpyS9092/Oc9uOUm3zXj8Dkln4pwLQDIRwgDEavrMlZn9r+gM04tmdtuM7S1m9hkzO25mx8zst8yscsbX/qOZ/Z6ZnZb0F5Luk/SDZjZqZrlov8+b2W9Fny83s6+Y2UD0/b5iZp0FzHmPpI9L+lF3//YCu/6xpLtmPL5L0kOzXmuhY7razL5hZi+b2aCZ/amZZWZ87REz+yUz22NmQ2b2F2ZWF21rjY4nZ2anzexxM+PPcaBM8ZsXQDG8TtJBSa2S/qekz5iZRdselDQp6RpJ2yW9XdK/n/W1L0haJeknJd0r6Z/cvdHdM3N8rwpJn5O0XtI6SeclfXKR+X5W0kclvc3ddy2y719LepOZZaLwdLOkL8/aZ6FjMkm/I6ld0vWSspJ+fdbXv1fSrZI2Stom6f3R8x+U1CepTdJqSb8iibdBgTIV66l9AIi85O7/R5LM7EFJn5a0OrqO6jZJGXc/L+msmf2epHsk/VH0tf3u/gfR55Pfz25zc/eXJX1x+rGZ/bakv19kvh+J9tlbwLFckPQ3kv6N8oHqkei56e+3eqFjcvfDkg5Huw+Y2e9K+sis7/H77t4fvd7fSOqOnp+QtFbS+uh1Hi9gXgAlijNhAIrhxPQn7n4u+rRR+bNV1ZKOR2+x5ZQPX6tmfG3vpXwjM2swsz8ys5fMbFjStyRlpt8OnMe9kq6V9MD0GToz2xe95TlqZjfP2v8h5d+GfM1bkYsdk5mtMrOHo7cphyX9ifJnCGc6MePzc8r/t5Kkjykf4P7WzF4wsw8v8p8DQAkjhAEIqVfSmKRWd89EH83uvnXGPrPfblvs7bcPStos6XXu3izpTdHzC51COyXpbcq/tfhpSXL3rdFbno3uPvuM0+PKn5FaLemJWdsWO6bfiY5hWzTfTy4y2yvcfcTdP+juV0n6MUm/aGZvK+RrAZQeQhiAYNz9uKS/lfRxM2s2s4rowvXX1EPMcFJSp5nVzLO9SfnrwHJmtkKvfatvvln6Jb1V0q3R24cL7evKh6B3R59fyjE1SRqN5uuQ9MuFzCdJZvYuM7smOls3LGkq+gBQhghhAEK7S1KNpP3KVz38pfJnmebzDUn7JJ0ws8E5tn9CUr2kQUnfkfS1Qgdx917lg9h7zOx3Ftl3n7vvm2fzQsf0G5JukjQk6f9K+lKh80naJOn/KR/i/knSp939Hy7h6wGUEJv1jzgAAAAUAWfCAAAAAiCEAQAABEAIAwAACIAQBgAAEAAhDAAAIICyu21Ra2urb9iwIfQYAAAAi3r66acH3b1trm1lF8I2bNigXbsWu78uAABAeGb20nzbeDsSAAAgAEIYAABAAIQwAACAAAhhAAAAARDCAAAAAiCEAQAABEAIAwAACIAQBgAAEEDZlbXGaXxySoOj43r8+QHt7x/RlvYm3bypTa2NNaqpqgw9HgAASBBCWGR8ckrPvJTT+z73pMYmL77yfG1VhR68e6duWp8hiAEAgCXD25GRwdHx1wQwSRqbvKj3fe5JDY6OB5oMAAAkESEs8vjzA68JYNPGJi/qicODRZ4IAAAkGSEssr9/ZMHtB/qHizQJAABIA0JYZEt704Lbr29vLtIkAAAgDQhhkZs3tam2au7/HLVVFXrjNa1FnggAACQZISzS2lijB+/e+ZogVltVoQd/eqdaG2sCTQYAAJKIiopITVWlblqf0d//0i164vCg/m7/SV2U9Mtv36wNrQ3UUwAAgCXFmbAZaqoq1Z6p13t3ZPWx93Zpa3uzTo2MEcAAAMCSI4TNo7muWle3NWrvsSFNTM1dXQEAAHC5CGEL6M5mdGFiSgdPLFxfAQAAcKkIYQvoXF6v1qZa9fTm5O6hxwEAAAlCCFuAmWl7NqOBkTEdy50PPQ4AAEgQQtgiNq9pUl11pXp6c6FHAQAACUIIW0R1ZYVu6GjW906d1fCFidDjAACAhCCEFWBbZ0Yu196+odCjAACAhCCEFaClnroKAACwtAhhBerOZnR+nLoKAACwNAhhBepcXq/WxhrqKgAAwJIghBXIzNSdXa6BkTH1D10IPQ4AAChzhLBL8EpdxdFc6FEAAECZiy2EmdlnzeyUmT03z3Yzs983s8NmtsfMboprlqVSU1Whre3NOnxqVCPUVQAAgCsQ55mwz0u6dYHtt0naFH3cI+kPY5xlyXRl83UVe6irAAAAVyC2EObu35J0eoFdbpf0kOd9R1LGzNbGNc9Saamv1lVRXcUkdRUAAOAyhbwmrENS74zHfdFzr2Fm95jZLjPbNTAwUJThFrJ9uq7iJHUVAADg8oQMYTbHc3N2P7j7/e6+w913tLW1xTzW4qirAAAAVypkCOuTlJ3xuFNSf6BZLomZqSub0alh6ioAAMDlCRnCHpF0V/RTkq+XNOTuxwPOc0muW9Os2uoK7e7NhR4FAACUoaq4XtjM/lzSLZJazaxP0kckVUuSu98n6VFJ75B0WNI5SXfHNUscaqoqdEN7i549mtPIpgk11VWHHgkAAJSR2EKYu9+5yHaX9HNxff9i6OrM6JmjZ7S3b0hvuKY19DgAAKCM0Jh/BVoaqrWxdRl1FQAA4JIRwq7Q9uxynRuf0qGTo6FHAQAAZYQQdoWyK+q1kroKAABwiQhhV8jM1NWZ0cnhCzpOXQUAACgQIWwJXL82X1fRQ10FAAAoECFsCdRUVWhre4uePzmq0bHJ0OMAAIAyQAhbIl2dLXK59vTlQo8CAADKACFsiWQaavJ1FX3UVQAAgMURwpZQdzZDXQUAACgIIWwJrVvRoBXLqKsAAACLI4QtITNTdzZfV3FimLoKAAAwP0LYErt+bbNqqirUczQXehQAAFDCCGFLLF9X0axD1FUAAIAFEMJi0J3NyOXa2zcUehQAAFCiCGExyDTUaMPKZdp7LKepi1ygDwAAXosQFpPubEZnx6Z06ORI6FEAAEAJIoTFZP3KBi1vqOZ+kgAAYE6EsJiYmbrXLdeJoQs6PnQ+9DgAAKDEEMJidP3aJtVUVWg3Z8MAAMAshLAY1VZVaktUV3GWugoAADADISxm3Z0ZTV107aGuAgAAzEAIi9nyZTXa2EpdBQAAeDVCWBF0RXUVz5+irgIAAOQRwopgw3RdBfeTBAAAEUJYEZiZurIZHR+6oBNDF0KPAwAASgAhrEi2tDerpqqC8lYAACCJEFY0tVWV2rK2WYdOjlBXAQAACGHF1JXN11XsPUZdBQAAaUcIK6IVy2q0obVBe/uGqKsAACDlCGFF1p1drtGxSR0+NRp6FAAAEBAhrMg2rGxQpqFaPb1nQo8CAAACIoQV2XRdRX/ugk4OU1cBAEBaEcIC2LKWugoAANKOEBZAXXW+ruLgiRGdG6euAgCANCKEBfJKXUUfdRUAAKQRISyQFctqtH5lg/ZQVwEAQCoRwgLqzmY0Ojap7w1QVwEAQNoQwgLa2LosX1dxNBd6FAAAUGSEsIDMTNs6MzqWO69T1FUAAJAqhLDAtrbn6yqepa4CAIBUIYQFVlddqevXNukQdRUAAKQKIawEdHVmNHnR9dyx4dCjAACAIiGElYCVjbVat6JBe/py1FUAAJAShLAS0b0uo5EL1FUAAJAWhLASsXHlMrXUV3M/SQAAUoIQViIqKkxd2YyOnTmvUyPUVQAAkHSxhjAzu9XMDprZYTP78BzbW8zsb8xst5ntM7O745yn1G1tb1Z1pVHeCgBACsQWwsysUtKnJN0maYukO81sy6zdfk7SfnfvknSLpI+bWU1cM5W6fF1Fsw6eGNH58anQ4wAAgBjFeSZsp6TD7v6Cu49LeljS7bP2cUlNZmaSGiWdlpTqsqyubFRX0T8UehQAABCjOENYh6TeGY/7oudm+qSk6yX1S9or6efd/eLsFzKze8xsl5ntGhgYiGvektAa1VXs7s3pInUVAAAkVpwhzOZ4bnaq+FFJPZLaJXVL+qSZNb/mi9zvd/cd7r6jra1tqecsOV1Z6ioAAEi6OENYn6TsjMedyp/xmuluSV/yvMOSXpR0XYwzlYWrWpepub6a+0kCAJBgcYawpyRtMrON0cX2d0h6ZNY+RyW9TZLMbLWkzZJeiHGmslBRYerOtlBXAQBAgsUWwtx9UtIHJD0m6YCkL7j7PjO718zujXb7qKQ3mNleSX8n6UPuPhjXTOVka3uLqitNu3u5QB8AgCSqivPF3f1RSY/Oeu6+GZ/3S3p7nDOUq7rqSl23plkHjg/rjde0qr6mMvRIAABgCdGYX8K611FXAQBAUhHCSlhrY62y1FUAAJBIhLAS1x3VVbwwSF0FAABJQggrca/UVXA/SQAAEoUQVuIqKkxdnS3qO3NeAyNjoccBAABLhBBWBm7omK6ryIUeBQAALBFCWBmYrqv47olhXZiYCj0OAABYAoSwMtGVzWhiyvXcMeoqAABIAkJYmWhrqlXn8nrt7huirgIAgAQghJWR7esyGj4/oRcGz4YeBQAAXCFCWBm5qrVRTXVV6uECfQAAyh4hrIxUVJi6shn1nj6nwVHqKgAAKGeEsDJzQ3uLqipMPZS3AgBQ1ghhZaa+plLXraWuAgCAckcIK0Nd2RZNTLn29VNXAQBAuSKElaFVTXXqWF6vnl7qKgAAKFeEsDK1PUtdBQAA5YwQVqaubsvXVXA/SQAAyhMhrExN11Ucpa4CAICyRAgrY9N1FZwNAwCg/BDCylh9TaU2r2nSgePUVQAAUG4IYWWuO5uJ6iqGQ48CAAAuASGszK1qrlNHpl67e3PUVQAAUEYIYQnQvS6jofMTevFl6ioAACgXhLAEmK6r4H6SAACUD0JYAlRWmLZ15usqXqauAgCAskAIS4gbOprzdRV9udCjAACAAhDCEqKhpkrXrmnSgeMj1FUAAFAGCGEJsj2b0fjkReoqAAAoA4SwBKGuAgCA8kEIS5iubL6u4gh1FQAAlDRCWMJcs6pRjbVV6uF+kgAAlDRCWMLk6ypa9NLL53T67HjocQAAwDwIYQl0Y2eLKitMuzkbBgBAySKEJVBDTZWuXd2k/ceHqasAAKBEEcISavu6fF3F/uPUVQAAUIoIYQm1urlO7Zk67e7NyZ26CgAASg0hLMG6s8uVOzehIy+fCz0KAACYhRCWYN+vqzgTehQAADALISzBKitMN3a26MggdRUAAJQaQljC3dgR1VX05UKPAgAAZiCEJdyy2qiuon9YY5PUVQAAUCoIYSnQnY3qKvqpqwAAoFQQwlJgTUud1rZQVwEAQCkhhKVE97qMzpyb0EvUVQAAUBIIYSmxaVWTltVWqof7SQIAUBJiDWFmdquZHTSzw2b24Xn2ucXMesxsn5l9M8550qyywnRjR0YvDp7VGeoqAAAILrYQZmaVkj4l6TZJWyTdaWZbZu2TkfRpSe92962S/nVc80Da1pmvq+ihrgIAgODiPBO2U9Jhd3/B3cclPSzp9ln7/FtJX3L3o5Lk7qdinCf18nUVjdRVAABQAuIMYR2Semc87ouem+laScvN7B/M7Gkzu2uuFzKze8xsl5ntGhgYiGncdOjOLtf45EUdOD4SehQAAFItzhBmczw3ux+hStK/kPROST8q6VfN7NrXfJH7/e6+w913tLW1Lf2kKbKmpU5rqKsAACC4OENYn6TsjMedkvrn2Odr7n7W3QclfUtSV4wzQfny1tNnx6mrAAAgoDhD2FOSNpnZRjOrkXSHpEdm7fNlSTebWZWZNUh6naQDMc4ESdeuztdVcD9JAADCqSp0RzN7p6Stkuqmn3P335xvf3efNLMPSHpMUqWkz7r7PjO7N9p+n7sfMLOvSdoj6aKkB9z9ucs7FBRquq7in198Wblz48o01IQeCQCA1CkohJnZfZIaJL1F0gOS3iPpycW+zt0flfTorOfum/X4Y5I+VuC8WCI3drboyRdPq6c3p1s2rwo9DgAAqVPo25FvcPe7JJ1x99+Q9IN69fVeKDONUV3Fvv5hjU9eDD0OAACpU2gIOx/9es7M2iVNSNoYz0golu51maiuYjj0KAAApE6hIewrUbv9xyQ9I+mI8uWrKGNrmvN1FT3UVQAAUHQFhTB3/6i759z9i5LWS7rO3X813tEQNzNTV2e+ruLoaeoqAAAopgUvzDezt7r7N8zsJ+bYJnf/UnyjoRiuXd2ox5+vVE9vTutXLgs9DgAAqbHYT0e+WdI3JP3YHNtcEiGszFVVVrzyk5LUVQAAUDwLhjB3/0j06W+6+4szt5kZF+YnxLbOjJ568Yx29w3pzddyWygAAIqh0AvzvzjHc3+5lIMgnMbaKm1a3ah9/UPUVQAAUCSLXRN2nfIt+S2zrgtr1ozmfJS/7mxGB0+M6MDxYXVlM6HHAQAg8Ra7JmyzpHdJyujV14WNSPoPMc2EANa21Gl1c5129+W0rbNFZhZ6JAAAEm2xa8K+bGZfkfQhd/9vRZoJAZiZurMZPbbvhHpPn9e6lQ2hRwIAINEWvSbM3ack/UgRZkFg165uVENNpZ7tPRN6FAAAEq+gG3hL+raZfVLSX0g6O/2kuz8Ty1QIoqqyQjd2tOjJI6c1dG5CLQ3VoUcCACCxCg1hb4h+/c0Zz7mkty7tOAjtxs4WPXXkjHb35fQm6ioAAIhNQSHM3d8S9yAoDU111dq0ulHP9Q/p9VetVE1VoS0mAADgUhT0N6yZrTazz5jZV6PHW8zsZ+IdDaF0ZTMam7io754YDj0KAACJVehpjs9LekxSe/T4kKRfiGEelID2ljqtaq7V7t6c3D30OAAAJFKhIazV3b8g6aIkufukpKnYpkJQ03UVg6Pj6jtzPvQ4AAAkUqEh7KyZrVT+YnyZ2eslDcU2FYLbvLpJ9TWVerY3F3oUAAASqdCfjvxFSY9IutrM/lFSm6T3xDYVgpuuq3iKugoAAGJR0JmwqA/szcpXVfxHSVvdfU+cgyG8bZ0tMpl29+VCjwIAQOJcSv/ATkldkm6SdKeZ3RXPSCgVTXXVumZVvq5ifPJi6HEAAEiUgt6ONLM/lnS1pB59/4J8l/RQPGOhVHSvy+jQyREdPDGiGztbQo8DAEBiFHpN2A5JW5y+gtRpb6lTW1OtenrP6IaOZplZ6JEAAEiEQt+OfE7SmjgHQWmirgIAgHgUeiasVdJ+M3tS0tj0k+7+7limQknZvKZJTxweVE9vTtkVDaHHAQAgEQoNYb8e5xAobdUz6yrOT6ilnroKAACuVKE38P5m3IOgtN3Y2aJdR85oT19ON29qCz0OAABlb8FrwszsiejXETMbnvExYmbc3TlFmuuqdfWqZXru2LAmpqirAADgSi0Ywtz9jdGvTe7ePOOjyd2bizMiSkV3NqMLE1M6eGIk9CgAAJS9SylrRcp1ZOrV2lSrZ3tzoq0EAIArQwhDwcxM27MZDY6MUVcBAMAVIoThkmxe06S66kr19OZCjwIAQFkjhOGSTNdVfG9gVMMXJkKPAwBA2SKE4ZJN30NyT+9Q4EkAAChfhDBcspb6al3d1qi9x4aoqwAA4DIRwnBZqKsAAODKEMJwWTqX5+sqeqirAADgshDCcFnMTN2dGQ2MjOlYjroKAAAuFSEMl+26tdRVAABwuQhhuGzVlRW6oaNZ3zt1lroKAAAuESEMV2RbZ0Yu194+6ioAALgUhDBckZb6al1FXQUAAJeMEIYrtj2b0flx6ioAALgUhDBcsc7l9WptrKGuAgCAS0AIwxUzM3Vnl2tgZEz9QxdCjwMAQFmINYSZ2a1mdtDMDpvZhxfY7wfMbMrM3hPnPIjP5jVNqq2uUM/RXOhRAAAoC7GFMDOrlPQpSbdJ2iLpTjPbMs9+/0PSY3HNgvjVVFXohvYWHT41qhHqKgAAWFScZ8J2Sjrs7i+4+7ikhyXdPsd+/1nSFyWdinEWFEEXdRUAABQszhDWIal3xuO+6LlXmFmHpH8p6b4Y50CRtDTk6yr2HBvSJHUVAAAsKM4QZnM8N/tH5z4h6UPuPrXgC5ndY2a7zGzXwMDAUs2HGHR3RnUVJ6mrAABgIXGGsD5J2RmPOyX1z9pnh6SHzeyIpPdI+rSZ/fjsF3L3+919h7vvaGtri2lcLIXsinqtpK4CAIBFxRnCnpK0ycw2mlmNpDskPTJzB3ff6O4b3H2DpL+U9J/c/a9jnAkxy9dVZHRqeEzHqasAAGBesYUwd5+U9AHlf+rxgKQvuPs+M7vXzO6N6/sivOvWNOfrKnpzoUcBAKBkVcX54u7+qKRHZz0350X47v7+OGdB8dRUVWhre4t6juY0smlCTXXVoUcCAKDk0JiPWHRTVwEAwIIIYYhFS0O1NrYu017qKgAAmBMhDLHZnl2uc+NTOnRyNPQoAACUHEIYYkNdBQAA8yOEITZmpq7OjE4OX6CuAgCAWQhhiNX1a/N1FbupqwAA4FUIYYjVdF3FoZOjGh2bDD0OAAAlgxCG2HV1tsjl2tOXCz0KAAAlgxCG2GUaavJ1FX3UVQAAMI0QhqLozmZ0bnxKz5+irgIAAIkQhiJZt6JBK5bVcD9JAAAihDAUhZmpK5vRiaELOj50PvQ4AAAERwhD0Vy/tkk1VRXqOZoLPQoAAMERwlA0tVWV2trerOdPUVcBAAAhDEXVnc3oorv29g2FHgUAgKAIYSiqTEONNqxcpr3Hcpq6yP0kAQDpRQhD0XVnMzo7NqVDJ0dCjwIAQDCEMBTd+pUNWt5Qzf0kAQCpRghD0ZmZutct1/GhCzoxdCH0OAAABEEIQxCv1FX0ngk9CgAAQRDCEERtVaW2tDfr0MlRnaWuAgCQQoQwBNPdmdHURdfeY9RVAADShxCGYJYvq9HG1mXa00ddBQAgfQhhCKorqqt4/hR1FQCAdCGEIagNUV0F95MEAKQNIQxBmZm6shnqKgAAqUMIQ3Bb2pujuopc6FEAACgaQhiCq62q1Ja1zTp0coS6CgBAahDCUBK6stRVAADShRCGkrBiWY02tDZob98QdRUAgFQghKFkdGeXa3RsUodPjYYeBQCA2BHCUDI2rGxQpqGa+0kCAFKBEIaSMV1X0Z+7oJPD1FUAAJKNEIaSsmUtdRUAgHQghKGk1FXn6yoOnhjRuXHqKgAAyUUIQ8l5pa6ij7oKAEByEcJQclYsq9H6lQ3aQ10FACDBCGEoSd3ZjEbHJvW9AeoqAADJRAhDSdrYuixfV3E0F3oUAABiQQhDSTIzbevM6FjuvE5RVwEASCBCGErW1vZmVVeanqWuAgCQQIQwlKy66kptaW/WIeoqAAAJRAhDSevqzGjyouu5Y8OhRwEAYEkRwlDSVjbWat2KBu3py1FXAQBIFEIYSl73uoxGLlBXAQBIFkIYSt7GlcvUUl/N/SQBAIkSawgzs1vN7KCZHTazD8+x/d+Z2Z7o49tm1hXnPChPFRWmrmyLjp05r1Mj1FUAAJIhthBmZpWSPiXpNklbJN1pZltm7faipDe7+zZJH5V0f1zzoLxtbW9RdaVR3goASIw4z4TtlHTY3V9w93FJD0u6feYO7v5tdz8TPfyOpM4Y50EZq6uu1PVrm3XwxIjOj0+FHgcAgCsWZwjrkNQ743Ff9Nx8fkbSV2OcB2WuKxvVVfQPhR4FAIArFmcIszmem7NjwMzeonwI+9A82+8xs11mtmtgYGAJR0Q5aW2sVXZFg3b35nSRugoAQJmLM4T1ScrOeNwpqX/2Tma2TdIDkm5395fneiF3v9/dd7j7jra2tliGRXnozlJXAQBIhjhD2FOSNpnZRjOrkXSHpEdm7mBm6yR9SdJPufuhGGdBQlzVukzN9dXcTxIAUPZiC2HuPinpA5Iek3RA0hfcfZ+Z3Wtm90a7/ZqklZI+bWY9ZrYrrnmQDBUVpm7qKgAACWDu5XVtzY4dO3zXLrJaml2YmNIDj7+gzWua9SNbVoceBwCAeZnZ0+6+Y65tNOaj7NRVV+q6Nc367vFh6ioAAGWLEIayNF1XsY+6CgBAmSKEoSy1NeXrKnqoqwAAlClCGMpWd7ZFIxcm9cIgdRUAgPJDCEPZuqq1MV9Xwf0kAQBliBCGslVRYerqbFHfmfMaGBkLPQ4AAJeEEIaydkNHi6orTbspbwUAlBlCGMpaXXWlNq9p1ndPDOvCBHUVAIDyQQhD2evOZjQx5XruGHUVAIDyQQhD2WtrqlXn8nrt7huirgIAUDYIYUiE7esyGj4/oRcGz4YeBQCAghDCkAhXtTaqqa5KPVygDwAoE4QwJEJFhakrm1Hv6XMaHKWuAgBQ+ghhSIwb2ltUVUFdBQCgPBDCkBj1NZW6bm2zDhynrgIAUPoIYUiUrmyLJqZc+/qpqwAAlDZCGBJlVVOdOpbXq6eXugoAQGkjhCFxtmfzdRUvvkxdBQCgdBHCkDhXt0V1FUdzoUcBAGBehDAkTkWFaVtnRkdPn9PL1FUAAEoUIQyJdGNHvq6C8lYAQKkihCGR6msqtXlNE3UVAICSRQhDYnVnM1FdxXDoUQAAeA1CGBJrVXOdOjL12t2bo64CAFByCGFItO51GQ1RVwEAKEGEMCTadF0F95MEAJQaQhgSrTKqq3jpZeoqAAClhRCGxLuho1lVFabdfbnQowAA8ApCGBKvoaZK165p0oHjI9RVAABKBiEMqbA9m9H45EXtP05dBQCgNBDCkAoz6yrcqasAAIRHCENqdGUzyp2b0IuD1FUAAMIjhCE1rlnVqMbaKu4nCQAoCYQwpEa+rqJFL718TqfPjoceBwCQcoQwpMqNnS2qrDDKWwEAwRHCkCoNNVW6dnWT9h8fpq4CABAUIQyps30ddRUAgPAIYUid1c11as/UUVcBAAiKEIZU6s4uV+7chI68fC70KACAlCKEIZW+X1dxJvQoAICUIoQhlSorTDd2tujIIHUVAIAwCGFIrRs7orqKvlzoUQAAKUQIQ2otq43qKvqHNTZJXQUAoLgIYUi17mxUV9FPXQUAoLgIYUi1NS11WttCXQUAoPgIYUi97nUZnTk3oZeoqwAAFFFV6AGA0NavaNDURdd93zys2qoqbWlv0s2b2tTaWKOaqsrQ4yFG45NTGhwd1+PPD2h//whrnyKsfXqV0trHGsLM7FZJ/1tSpaQH3P2/z9pu0fZ3SDon6f3u/kycMwEzjU9OaXfvkP7om9/TxMXvvx1ZW1WhB+/eqZvWZ/gDOaHGJ6f0zEs5ve9zT2ps8uIrz7P2ycfap1eprX1sb0eaWaWkT0m6TdIWSXea2ZZZu90maVP0cY+kP4xrHmAug6Pjet/nnnxVAJOkscmLet/nntTgKB1iSTW99jP/IJZY+zRg7dOr1NY+zjNhOyUddvcXJMnMHpZ0u6T9M/a5XdJDnr8i+jtmljGzte5+PMa5gFc8/vzAa34zThubvKiPf/2gfmD9iiJPhWJ46shp1j6lWPv0Wmztnzg8qPfuyBZtnjhDWIek3hmP+yS9roB9OiS9KoSZ2T3KnynTunXrlnxQpNf+/pEFt58aGlNNFT+/kkQnh8cW3M7aJxdrn16Lrf2BItcVxRnCbI7nZncAFLKP3P1+SfdL0o4dO+gRwJLZ0t604PYf627XT9zUWaRpUEwTU/l/9c6HtU8u1j69Flv769ubizhNvBUVfZJmntPrlNR/GfsAsbl5U5tq5/kXb21Vhd54TWuRJ0KxsPbpxdqnV6mtfZwh7ClJm8xso5nVSLpD0iOz9nlE0l2W93pJQ1wPhmJqbazRg3fvfM1vytqqCj340zvV2lgTaDLEjbVPL9Y+vUpt7S3OlnAze4ekTyhfUfFZd/9tM7tXktz9vqii4pOSblW+ouJud9+10Gvu2LHDd+1acBfgkkx3xjxxeFAH+od1fXuz3nhNK31BKcDapxdrn17FXnsze9rdd8y5rdxu1UIIAwAA5WKhEMaPfwAAAARACAMAAAiAEAYAABAAIQwAACAAQhgAAEAAhDAAAIAACGEAAAABEMIAAAACIIQBAAAEUHaN+WY2IOmlInyrVknz32o92Tj29Erz8af52KV0Hz/Hnl7FOP717t4214ayC2HFYma75rvNQNJx7Ok8dindx5/mY5fSffwcezqPXQp//LwdCQAAEAAhDAAAIABC2PzuDz1AQBx7eqX5+NN87FK6j59jT6+gx881YQAAAAFwJgwAACCAVIcwM/usmZ0ys+fm2W5m9vtmdtjM9pjZTcWeMS4FHPstZjZkZj3Rx68Ve8a4mFnWzP7ezA6Y2T4z+/k59kny2hdy/IlcfzOrM7MnzWx3dOy/Mcc+iVz7Ao89kes+zcwqzexZM/vKHNsSue4zLXL8SV/7I2a2Nzq2XXNsD7L+VcX4JiXs85I+KemhebbfJmlT9PE6SX8Y/ZoEn9fCxy5Jj7v7u4ozTlFNSvqguz9jZk2Snjazr7v7/hn7JHntCzl+KZnrPybpre4+ambVkp4ws6+6+3dm7JPUtS/k2KVkrvu0n5d0QFLzHNuSuu4zLXT8UrLXXpLe4u7zdYIFWf9Unwlz929JOr3ALrdLesjzviMpY2ZrizNdvAo49sRy9+Pu/kz0+Yjyfyh1zNotyWtfyPEnUrSeo9HD6uhj9oWxiVz7Ao89scysU9I7JT0wzy6JXPdpBRx/2gVZ/1SHsAJ0SOqd8bhPKfnLKvKD0VsXXzWzraGHiYOZbZC0XdI/z9qUirVf4PilhK5/9JZMj6RTkr7u7qlZ+wKOXUroukv6hKT/IuniPNsTu+6RT2jh45eSu/ZS/h8cf2tmT5vZPXNsD7L+hLCF2RzPpeVfjs8of6uFLkl/IOmvw46z9MysUdIXJf2Cuw/P3jzHlyRq7Rc5/sSuv7tPuXu3pE5JO83shlm7JHbtCzj2RK67mb1L0il3f3qh3eZ4LhHrXuDxJ3LtZ/ghd79J+bcdf87M3jRre5D1J4QtrE9SdsbjTkn9gWYpKncfnn7rwt0flVRtZq2Bx1oy0TUxX5T0p+7+pTl2SfTaL3b8SV9/SXL3nKR/kHTrrE2JXntp/mNP8Lr/kKR3m9kRSQ9LequZ/cmsfZK87osef4LXXpLk7v3Rr6ck/ZWknbN2CbL+hLCFPSLpruinJl4vacjdj4ceqhjMbI2ZWfT5TuX/X3k57FRLIzquz0g64O6/O89uiV37Qo4/qetvZm1mlok+r5f0w5K+O2u3RK59Icee1HV39//q7p3uvkHSHZK+4e4/OWu3RK67VNjxJ3XtJcnMlkU/hCQzWybp7ZJmNwMEWf9U/3Skmf25pFsktZpZn6SPKH+xqtz9PkmPSnqHpMOSzkm6O8ykS6+AY3+PpJ81s0lJ5yXd4clp9v0hST8laW90fYwk/YqkdVLy116FHX9S13+tpAfNrFL5v2S+4O5fMbN7pcSvfSHHntR1n1NK1n1eKVr71ZL+KsqYVZL+zN2/VgrrT2M+AABAALwdCQAAEAAhDAAAIABCGAAAQACEMAAAgAAIYQAAAAEQwgCkmpltMLPZnUEAEDtCGAAAQACEMACImNlVZvasmf1A6FkAJB8hDAAkmdlm5e+nebe7PxV6HgDJl+rbFgFApE3SlyX9K3ffF3oYAOnAmTAAkIYk9Sp/X00AKArOhAGANC7pxyU9Zmaj7v5ngecBkAKEMACQ5O5nzexdkr5uZmfd/cuhZwKQbObuoWcAAABIHa4JAwAACIAQBgAAEAAhDAAAIABCGAAAQACEMAAAgAAIYQAAAAEQwgAAAAIghAEAAATw/wFaYim4PFOWpAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "## Step 4: Run K-Means Clustering\n", + "inertias = []\n", + "\n", + "k_candidates = range(1, 6)\n", + "\n", + "for k in k_candidates:\n", + " k_means = KMeans(random_state=42, n_clusters=k)\n", + " k_means.fit(proj_df)\n", + " inertias.append(k_means.inertia_)\n", + " \n", + "fig, ax = plt.subplots(figsize=(10, 6))\n", + "sns.scatterplot(x=k_candidates, y = inertias, s=80, ax=ax)\n", + "sns.lineplot(x=k_candidates, y = inertias, alpha=0.5, ax=ax)\n", + "ax.set(title='Inertia K-Means', ylabel='inertia', xlabel='k');\n", + "\n", + "## Now k=2 in the elbow method as well" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "id": "523f4e2c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEICAYAAABS0fM3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAU10lEQVR4nO3dfbRldX3f8ffH4SEqGEAGmGGGB2XUTCil9Aqki6ZJhArUCml8gD44okJpy2qyYtOQ0BiiSavN4zKSWCQ0Y6ogqWZBlSxAqtLEigyKCEVkBMyMDDBC5MEnBL79Y++Lh8u5T3PumXvv/N6vtc46Z+/92/t89++e2Z/92/scSFUhSWrX8xa7AEnS4jIIJKlxBoEkNc4gkKTGGQSS1DiDQJIat0sHQZLDklSS3frpTyd52w5u6/EkL1nYCtuT5M1J/mqx65D0Q4sSBElOSPLZJI8keTjJXyd55WLUMlDThUl+0B/wJx/fmlxeVXtV1d2LWOIO68PwiJ34fq9OckOSx5JsT/KZJK9d4PfYqfsk7cp2ehAkeRHwceAPgf2Ag4HfAL6/s2sZ4iP9AX/ysc9iF7TYJkdT82j/OuDPgQ8Ca4ADgXcA/3Thq9sx890naVe3GCOClwFU1WVV9VRVfbeqrq2qW+GZSwd/neT3k3wryd1J/kE/f0uSB5NsmNxYkn+S5ItJHu2XXziOogfPQJO8OMn/6t/zpiS/OXi5I8krklzXj3buTPKGgWV/muSiJJ/oz5hvTPLSftn7k/zOlPe9Mskv9q9XJ/lof5Z9T5J/P9BuRZJfTfK1frs3J1mb5Ia+yZf6Uc4b+/ZnJ9nc13hVktVT9vXfJbkLuCud3+/7/pEktyY5ckgfBfg94F1VdUlVPVJVT1fVZ6rq7CHtn3Xprp/3zOW7JEf0o4lHknwzyUf6+dPt02uS3NJ/bj6b5KiB7d6b5JeT3Ap8O8lu/fQ3+v66M8mrZvoMSLusqtqpD+BFwEPARuAUYN8py98MPAmcBawAfhP4G+AiYE/gHwOPAXv17X8K+Dt0oXYU8ABwer/sMKCA3frpTwNvm6auC4H/MUPdBRzRv768f7wAWA9sAf6qX/bCfvosYDfgGOCbwI/3y/8UeBg4tl/+IeDyftlP9uumn94X+C6wut+/m+nOrvcAXgLcDby6b/tLwJeBlwMB/i7w4qm199M/09d0TN+nfwjcMGVfr6MbsT0feHX/3vv02/4xYNWQPnpFv+7hM/Tjmwf66ll/n6l/I+Ay4IJ+338EOGHY36OfPgZ4EDiO7nOzAbgX2LNffi9wC7C236eX9329eqCWl+7sfw8+fCyFx04fEVTVo8AJdP+QPwBs789IDxxodk9V/feqegr4CN0/3ndW1fer6lrgCeCIfnufrqovV3fmeSvdweMf7WB5b+jPJicfn5raIMkK4OeAX6+q71TV/6MLtUmvAe7t63+yqr4AfBR43UCbj1XV56vqSbogOLqf/3/6fvmH/fTrgP9bVfcBrwRWVtU7q+qJ6u5XfAA4o2/7NuA/VdWd1flSVT00zX7+C+DSqvpCVX0f+BXgJ5IcNtDmv1TVw1X1XeAHwN50B/pU1R1VtW3Idl/cPw9btiN+ABxKd7D+XlXNdJP5bOC/VdWN1Y00N9Jdbjx+oM17q2pLv09P0YXg+iS7V9W9VfW1BapbWlYW5WZxfyB5c1WtAY6kO+P9g4EmDwy8/m6/ztR5ewEkOS7Jp/rLJY8A5wL772BpV1TVPgOPnx7SZiXdmfyWgXmDrw8FjhsMFLoD70EDbe4feP2dyX2pqqIbaZzZL/vndEExud3VU7b7q3TX4KELy7keyFYDX5+cqKrH6UZpBw/bp6r638D76EZlDyS5uL/XM9Vk8KyaYx2z+Y90I5DPJ7k9yVtmaHso8PYp/bOWbl8nDe7TZuAX6EaCDya5fPDymNSSRf/6aFV9he5yyXOuOc/Rh4GrgLVV9aPA++kOHuOyne7S1ZqBeWsHXm8BPjMlUPaqqn8zx+1fBrwuyaF0lzk+OrDde6Zsd++qOnVg+Uvn+B730R04AUjyQrqz+W8MtHnWf5a2qt5bVX8f+HG6+zy/NGS7d/Z1/Nwc6/h2//yCgXnPBGZV3V9VZ1fVauBfA3+U6b8ptAX4rSn984KqumyGffpwVZ1A1xcFvGeOdUu7lMX41tArkrw9yZp+ei3dGfDndnCTewMPV9X3khxLdxY9Nv3lqo8BFyZ5QZJXAG8aaPJx4GVJ/lWS3fvHK5P82By3/0W6sLkEuKaqvtUv+jzwaH+D8/n9zeEj88Ov3V4CvCvJuv7m7lFJJi/VPEB3T2HSh4GzkhydZE/gPwM3VtW9w2rq6z8uye50B+/v0V1amVp7Ab8I/FqSs5K8KMnz0n1d+OIh7bfThc+/7PfnLQyEWZLXT35OgL+lO1hPvu/UffoAcG5fZ5K8MN0XCfaeZp9enuRn+v3/Ht0o8zn7JLVgMUYEj9Gd6d6Y5Nt0AXAb8PYd3N6/Bd6Z5DG6G6lXjFDbG/Ps3xE8nuSAIe3OA36U7hLPn9GdxX8foKoeo7uhfQbdmff9dGeae86jjsuAE+kO2PTbfYruK5hHA/fQ3ey9pK8Dum/rXAFcCzwK/AndTVHoLn9s7C+ZvKGqrgd+jW60sY3u4Dt5r2GYF9EdaP+W7pLSQ8DvDGtYVf8TeCPwFrr9f4Duhv+V02z7bLrRxUN0o43PDix7Jd3n5HG6Ud/PV9U90+zTpn5b7+vr3Ex3Y3o6ewLvpuvH+4ED6C61Sc2Z/HaKRpDkPcBBVbVh1saStMQs+j2C5ai/vHVUfwniWOCtwF8sdl2StCP8heWO2Zvu8s1quu+u/y7TX/qQpCXNS0OS1DgvDUlS45blpaH999+/DjvssMUuQ5KWlZtvvvmbVbVy6vxlGQSHHXYYmzZtWuwyJGlZSfL1YfO9NCRJjTMIJKlxBoEkNc4gkKTGLcubxZLUmqfvf9kzr5930FcXdNsGgSQtYYMBMHXeQgWCl4YkqXEGgSQtU8NGCzvCIJCkxhkEkrRMeY9AkrQgDAJJWsKmO+tfyK+Q+vVRSVriFvp3A8/Z/li3Lkla8gwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhq3IEGQ5OQkdybZnOT8IcuT5L398luTHDPXdSVJ4zVyECRZAVwEnAKsB85Msn5Ks1OAdf3jHOCP57GuJGmMFmJEcCywuarurqongMuB06a0OQ34YHU+B+yTZNUc15UkjdFCBMHBwJaB6a39vLm0mcu6ACQ5J8mmJJu2b98+ctGSpM5CBEGGzKs5tpnLut3MqouraqKqJlauXDnPEiVJ09ltAbaxFVg7ML0GuG+ObfaYw7qSpDFaiBHBTcC6JIcn2QM4A7hqSpurgDf13x46HnikqrbNcV1J0hiNPCKoqieTnAdcA6wALq2q25Oc2y9/P3A1cCqwGfgOcNZM645akyRp7lI19JL8kjYxMVGbNm1a7DIkaVlJcnNVTUyd7y+LJalxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGjdSECTZL8l1Se7qn/edpt3JSe5MsjnJ+QPzX5/k9iRPJ5kYpRZJ0o4ZdURwPnB9Va0Dru+nnyXJCuAi4BRgPXBmkvX94tuAfwbcMGIdkqQdNGoQnAZs7F9vBE4f0uZYYHNV3V1VTwCX9+tRVXdU1Z0j1iBJGsGoQXBgVW0D6J8PGNLmYGDLwPTWft68JDknyaYkm7Zv375DxUqSnmu32Rok+SRw0JBFF8zxPTJkXs1x3R+uUHUxcDHAxMTEvNeXJA03axBU1YnTLUvyQJJVVbUtySrgwSHNtgJrB6bXAPfNu1JJ0liMemnoKmBD/3oDcOWQNjcB65IcnmQP4Ix+PUnSEjBqELwbOCnJXcBJ/TRJVie5GqCqngTOA64B7gCuqKrb+3Y/m2Qr8BPAJ5JcM2I9kqR5StXyu9w+MTFRmzZtWuwyJGlZSXJzVT3nN1v+sliSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxIwVBkv2SXJfkrv5532nanZzkziSbk5w/MP+3k3wlya1J/iLJPqPUI0mav1FHBOcD11fVOuD6fvpZkqwALgJOAdYDZyZZ3y++Djiyqo4Cvgr8yoj1SJLmadQgOA3Y2L/eCJw+pM2xwOaquruqngAu79ejqq6tqif7dp8D1oxYjyRpnkYNggOrahtA/3zAkDYHA1sGprf286Z6C/CXI9YjSZqn3WZrkOSTwEFDFl0wx/fIkHk15T0uAJ4EPjRDHecA5wAccsghc3xrSdJsZg2CqjpxumVJHkiyqqq2JVkFPDik2VZg7cD0GuC+gW1sAF4DvKqqimlU1cXAxQATExPTtpMkzc+ol4auAjb0rzcAVw5pcxOwLsnhSfYAzujXI8nJwC8Dr62q74xYiyRpB4waBO8GTkpyF3BSP02S1UmuBuhvBp8HXAPcAVxRVbf3678P2Bu4LsktSd4/Yj2SpHma9dLQTKrqIeBVQ+bfB5w6MH01cPWQdkeM8v6SpNH5y2JJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1LiRgiDJfkmuS3JX/7zvNO1OTnJnks1Jzh+Y/64ktya5Jcm1SVaPUo8kaf5GHRGcD1xfVeuA6/vpZ0myArgIOAVYD5yZZH2/+Ler6qiqOhr4OPCOEeuRJM3TqEFwGrCxf70ROH1Im2OBzVV1d1U9AVzer0dVPTrQ7oVAjViPJGmedhtx/QOrahtAVW1LcsCQNgcDWwamtwLHTU4k+S3gTcAjwE9P90ZJzgHOATjkkENGLFuSNGnWEUGSTya5bcjjtDm+R4bMe+bMv6ouqKq1wIeA86bbSFVdXFUTVTWxcuXKOb61JGk2s44IqurE6ZYleSDJqn40sAp4cEizrcDagek1wH1D2n0Y+ATw67PVJElaOKPeI7gK2NC/3gBcOaTNTcC6JIcn2QM4o1+PJOsG2r0W+MqI9UiS5mnUewTvBq5I8lbgb4DXA/RfA72kqk6tqieTnAdcA6wALq2q2yfXT/Jy4Gng68C5I9YjSZqnVC2/L+pMTEzUpk2bFrsMSVpWktxcVRNT5/vLYklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWrcqP+rymXjpOe9/jnzrnv6zxehEklaWpoYEQwLgZnmS1JLdvkg8GAvSTPb5YNAkjQzg0CSGmcQSFLjdvkgmOmbQX5rSJIaCAIYfsA3BCSp08zvCDzwS9JwTYwIJEnTMwgkqXEGgSQ1ziCQpMYZBJLUuFTVYtcwb0m2A18f41vsD3xzjNsfJ2tfPMu5fmtfHDu79kOrauXUmcsyCMYtyaaqmljsOnaEtS+e5Vy/tS+OpVK7l4YkqXEGgSQ1ziAY7uLFLmAE1r54lnP91r44lkTt3iOQpMY5IpCkxhkEktS4XT4Ikpyc5M4km5OcP2R5kry3X35rkmNmWzfJhUm+keSW/nHqEqz90iQPJrltyjr7JbkuyV39877jqH2M9S/pvk+yNsmnktyR5PYkPz+wzk7p+zHVvtT7/UeSfD7Jl/raf2NgnSX/mZ+l/vH3fVXtsg9gBfA14CXAHsCXgPVT2pwK/CUQ4HjgxtnWBS4E/sNSrb1f9pPAMcBtU9b5r8D5/evzgfcss/qXdN8Dq4Bj+td7A18d+NyMve/HWPtS7/cAe/WvdwduBI5fLp/5Weofe9/v6iOCY4HNVXV3VT0BXA6cNqXNacAHq/M5YJ8kq+a47lKtnaq6AXh4yHZPAzb2rzcCp4+jeMZX/86ww7VX1baq+gJAVT0G3AEcPLDOuPt+XLXvDKPUXlX1eN9m9/5RA+ss6c/8LPWP3a4eBAcDWwamt/LcD/Z0bWZb97x+aHfpmIaao9Q+kwOrahtA/3zAiHVOZ1z1wzLp+ySHAX+P7uwOdk7fj6t2WOL9nmRFkluAB4Hrqmpn9vuMtc2lzQz1w5j7flcPggyZNzVlp2sz07p/DLwUOBrYBvzuDtY3k1FqXwrGVf+y6PskewEfBX6hqh5dwNpmM67al3y/V9VTVXU0sAY4NsmRC1verMZV/9j7flcPgq3A2oHpNcB9c2wz7bpV9UD/R3sa+ADdkHChjVL7TB6YvPzSPz84Yp3TGUv9y6Hvk+xOdyD9UFV9bKDNzuj7sdS+HPp9oNZvAZ8GTu5nLavP/NT6d0bf7+pBcBOwLsnhSfYAzgCumtLmKuBN/d3844FH+uHjtOtOfqh6PwvcxsIbpfaZXAVs6F9vAK5cyKIHjKX+pd73SQL8CXBHVf3ekHXG3fdjqX0Z9PvKJPv0tT4fOBH4ysA6S/ozP1P9O6XvF/ru81J70N2l/yrd3fwL+nnnAufWD+/WX9Qv/zIwMdO6/fw/69ve2v9hVy3B2i+jG0b+gO4s5K39/BcD1wN39c/7LdG+n67+Jd33wAl0Q/1bgVv6x6k7s+/HVPtS7/ejgC/29d0GvGNgm0v+Mz9L/WPve/8TE5LUuF390pAkaRYGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWrc/wcfrbkBLZwspwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "k_means = KMeans(random_state=25, n_clusters=2)\n", + "k_means.fit(proj_df)\n", + "y_pred = k_means.predict(proj_df)\n", + "from mpl_toolkits.mplot3d import Axes3D\n", + "\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot(111)\n", + "ax.scatter(x=proj_df['v_0'], y=proj_df['v_1'], c=y_pred)\n", + "ax.set_title('Small Eigenvectors Clusters', x=0.2);" + ] + }, + { + "cell_type": "code", + "execution_count": 109, + "id": "ab004583", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n", + " warnings.warn(\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADaRklEQVR4nOyddXgUVxeH37u+cSfEgyeBECC4S6Foi9VoqbfU3fsV6k7dqFFaKKUFWtyKu7tDCIQgIW7r9/vjLoFAkLZBAvs+Dw/ZmTszd3aTs3eO/I6QUuLBgwcPHq58NJd6Ah48ePDg4eLgMfgePHjwcJXgMfgePHjwcJXgMfgePHjwcJXgMfgePHjwcJXgMfgePHjwcJXgMfgePLgRQowUQrzxH46XQohalTmnfzmPF4UQ313qeXi4/PAYfA+VjhCijRBiqRAiXwiRI4RYIoRoeoGvuU8I0eUCX6O6EOJ7IcQhIUShEGK7EOJVIYR3JV7jP33pAEgp35JS3lNZc/Jw5eAx+B4qFSGEHzAF+AwIAiKBVwHrJZ6X7j8eHwQsA8xASymlL3ANEADU/M8TrCT+6316uLLxGHwPlU0dACnlr1JKp5SyVEo5S0q5EUAIcYd7xf+Z+wlguxCi8/GDhRD+J62iDwoh3hBCaE/af68QYpt7hb1VCNFYCPEzEANMFkIUCSGeFULEuV0sdwsh9gNz3cf/LoQ47L72QiFE0nne15NAIXCrlHKf+x4PSCkfO35vJyOEmC+EuOek13cIIRa7fxZCiI+EEEfd89gohKgvhLgPGAQ8676Pye7xEUKI8UKILCFEmhDi0ZPOO0wI8YcQ4hchRAFwh3vbL+79x9+H24UQ+4UQx4QQL510vFkI8ZMQItf9vj4rhMg4z/fEQxXDY/A9VDY7AafbiHQXQgRWMKY5sBcIAYYCE9wraICfAAdQC2gEdAXuARBCDASGAYMBP6APkC2lvA3YD/SWUvpIKd876VrtgQSgm/v1dKA2EAasBUaf5311ASZIKV3nOf5sdAXaob4cA4AbUfcxwj2f99z30VsIoQEmAxtQT0udgceFEN1OOt91wB/uc53pftoAdd3HvyKESHBvHwrEATVQTyy3VsL9ebhM8Rh8D5WKlLIAZVwk8C2QJYSYJISodtKwo8DHUkq7lPI3YAfQ0z2mO/C4lLJYSnkU+Ai4yX3cPShjuEoqdksp088xpWHuc5W65/eDlLJQSmlFfXk0FEL4n8etBQOHzuc9OA/sgC9QDxBSym1SyjOduykQKqV8TUppk1LuRb2vN500ZpmU8k8ppev4fVbAq+6nrQ2oL4+G7u03AG9JKXOllBnAp//15jxcvngMvodKx23A7pBSRgH1gQjg45OGHJTlVfvS3WNiAT1wSAiRJ4TIA75BrcYBooE9/3A6B47/IITQCiHeEULscbs/9rl3hZzHebKB6v/w2hUipZwLfA58ARwRQoxwxz4qIhaIOP5+uN+TF4GTv0APVHhkeQ6f9HMJ4OP+OeKU48/nXB6qKB6D7+GCIqXcDoxEGf7jRAohxEmvY4BMlLGxAiFSygD3Pz8p5XE/+wHOHCA9k+zrydtvQbk/ugD+KFcGgODczAH6ul0s50Mx4HXS6/Byk5LyUyllEyAJ5dp5poL5grrntJPejwAppa+UssfJpzvPOVXEISDqpNfR/+FcHi5zPAbfQ6UihKgnhHhKCBHlfh0N3AwsP2lYGPCoEELv9ssnANPcbo1ZwIdCCD8hhEYIUVMI0d593HfA00KIJu7AZy0hRKx73xGUH/ps+KK+ULJRxvitf3Brw1Fxg5+OX1MIESmEGC6ESK5g/HqgnxDCS6jc/LuP7xBCNBVCNBdC6FFfDBbAeYb7WAkUCCGecwdYte4Ab2WluY4DXhBCBAohIoGHK+m8Hi5DPAbfQ2VTiArKrhBCFKMM/WbgqZPGrEAFTo8BbwIDpJTZ7n2DAQOwFchFBSOrA0gpf3ePH+O+zp+o1E+At4GX3W6Pp88wt1Eo99FB9/mXn2HcaUgpc4BWKP/7CiFEIfA3kA/sruCQjwAbyoD/RPlgqh/KD5/rnk828IF73/dAovs+/pRSOoHeQAqQhnrPvkM9oVQGrwEZ7nPPQb3flzSF1sOFQ3gaoHi4mAgh7gDukVK2udRz8XA6QogHgJuklO3POdhDlcOzwvfg4SpGqOrh1m73WV3Uk9jESz0vDxcGT1WeBw9XNwZUJlQ8kAeMBb68lBPycOHwuHQ8ePDg4SrB49Lx4MGDh6uEy9qlExISIuPi4i71NDx48OChyrBmzZpjUsrQivZd1gY/Li6O1atXX+ppePDgwUOVQQhxRrkRj0vHgwcPHq4SPAbfgwcPHq4SPAbfgwcPHq4SPAbfgwcPHq4SPAbfgwcPHq4SPAbfgwcPHq4S/rPBF0JECyHmufthbhFCPFbBGCGE+FQIsdvdv7Pxf72uBw9XM3s3prN/+8FLPQ0PVYzKWOE7gKeklAlAC+AhIUTiKWO6o+RwawP3AV9VwnU9eLio7Nu8n6V/raK4oOSSzmPF1DU80ORZHkp9jm3Ld17SuXioWvxngy+lPCSlXOv+uRDYhmq2fDLXAaPcfUiXAwFCiEppF+fBw8Xg6P5jPNf1dYb2fY8/hk++pHPJ3H0Yl9OFpcTKobSjl3QuHqoWlVppK4SIAxqhGlycTCTle2VmuLed1rhZCHEf6imAmJiYypyeBw//GkuJhbysAgAKjhVe0rm0HdCCnMN5GLwMNO2ecknn4qFqUWkGXwjhA4wHHpdSFpy6u4JDKpTplFKOAEYApKameqQ8PVwWxNSL4pXfnyJtczodbmj9n8+3adFWFk1YQaOO9WnZ5591KwyJDObutwf95zl4uPqoFIPv7s05HhgtpZxQwZAMyjdHjkI1rfbg4YKwZekOVs9YR6MuySS3OzWk9O9ofX0zWl/frFLONeKZn9m+cjfTv/2bX/Z9iX+IX6Wc14OHs1EZWToC1Ydzm5Ry+BmGTQIGu7N1WgD57obVHjxUOnabneH3fs0vb4znvds/x1JsOe9jc4/ksXTSqgvuG6/VOB6Aus1qYfQyXtBrefBwnMpY4bcGbgM2CSHWu7e9CMQASCm/BqYBPVDNnkuAOyvhuh48VIhWpyWiRjX2b8sgsnY4OsP5/5p//dRPzB2zmLrNavHB30MxeZsuyBzvfnsQHW5oRXS9KEweg+/hIvGfDb6UcjEV++hPHiOBh/7rtTx4OB80Gg2Pf3MfO1bvoXbjGuj05/9rfiQ9C4BDuw9jszoweV+YOfr4e9OwQ/1zjrNZ7SyfvBqdQUfzno3RarUXZkIergouaz18Dx7+KVuX72TPujRSr21Eq38YDAW47/3BbFm6g5oN4/AL8qn0+a37exOrZq6nbtOatB/Y6rT92Zk5SAkhkUEALPx9Ge8O/gyA1/56npa9m1T6nDxcPXgMvocrhpzDufyv9zsUZBdyze0dePbH83uotFlsTPhkKkV5xSwYtxQhBK/8/nTZ/jVzNvLLa7/TsEMSt7zYD4PJcM5z7ly7l0O7DxNUPZC8o/k06doQL18z88YuYePCrWxduoO4pGgCwwPQaDX4+Hsz66f5zB2zGLOPiQFP9iKpdT2cdmfZOaV0MXvUAjJ2ZtJlcDui65xa7gKlxaWsmLKOwHB/GrZPOq/793D14DH4HqokJYWlHEo7QvX4MLx8vdRGIRAa5V0MCPXl2S6v0aZfM3o/0A2VW1CeI+lHGfHMLxTnF1NSaMHsa+JwmnLpbFuxk1qNVGB13phFbF68nc2Lt9Omb/Oy7Wcic+9hnuvyKvENYtm1Ng1LsYVBL/XjjtdvxuRjJCg8gC1LdrB58XZ+GjoOs4+Jl8Y+zncvjCb3cB6h0SEc3H2YpNb1aH9jK4RWoNPrCAoPYOj17wFQWmzhwY9OD4VNG/E3Xz/1E1qdlk+WvkHd1FqAcg39/sEktizZwQ3P9CG5fSJSSo+L6CrDY/A9XBIKcwqZOXI+Zm8T19zevmzVbCm28OP/xrJ58XbueXsQjTo3OO1Yh93B8Hu/YsG4ZbS+vim3vXIDNVPisJbYuP6R7vgF+zDzh3nsXLOXDfO30LpvM4KrB512ngW/L2PhH8sA6HRLG3QGHQnNa2PyMdGo04nrNuxYn9k/L6RJ12TC4ypsFVoOm8VOaZEVnUGHrdQGwL6tGRxKO8qGeZs5sD2T7vd0wm5zkHskj9wjkLZ5P4kt6rDkz5XEJUWR3EGlkpq8jHQd3AGAQ2lHCAoPIOdwHkazEZvVzoSPp7Jj1W76PtqT5HYJ2Kx2AJwOJ9ZSO8smrcY/zA+DUc/I/40FIC4pip9f+x1riY0nv72fGslx5/mpeajqeAy+h7Oy7u9NjHh2FPXbJHDXm7dg9qmcrJV5Y5fwzdOj0Gg1hMYE06y70tPbvHQHEz6eCsCC35dWaPBLCktZPnkNAGmbDrB95S5qpsQx5s3xzPhhLj4BXtzx+s3sXLOXzre2xTfIt8I52C12QiKDsFnsJLWpx5SvZnEsI4fUaxviHeDFjy+PASHo+2gPRu/7suzaPoEV+/adDielRRbiEqN5deKz7N+eQXTdCA7tPUpIZBDTv5vD3o37ATB5qy+V5j0bY/IyktKxPi17p9L/iV7E1Y/Gt4JrhMWEcPtrNzL/t6XM/HEeNRvG8v0LowHw8fciuV0CzXs05sD2g/gEeHFgWwYfDxmBTq/j/XlDadS5PuvnbkFn1LNxwVYA1s/d4jH4VxEeg+/hrCz4Yxm71+1j97p9dLypDYkt61TKeX2DfNHqtLS6rilfPf4jmXuOEJ8cy8RPptLltvasnL6WmIQo/vxsOk27NyKyVnjZsX5Bvgz56A6WjF9BUGQgdVJrAqDRqbISrU5Hq+ub0rxHYwLD/TEY9RXOIaFFHVbNWE+LPql89+wv+Ab5kNC8Fq36NGXpn6sY89ZEAMLjwmjYPpGXe7/D4bSjvPLH07ToVT54WlxQwidDRrBy+jqe/O4B2vVvQfOejdm9fh9rZm/gu+d+ITw+jM6D2lKYW0T7G1oRmxjFG5NfKHeeBm0TTptnUX4x3zz1E5uX7KDHvV1Y9/cmAEzeRhq0TWDz4u0ktqoLwKoZ65g9agEAN7/QF1BPRA6bk2ETnqUwuxCrxcaaWRuwFFto0O7065W7dl4xTofTUxh2heAx+B7OSpNrkpn90wJSOtUnss7Z9e6cDidZGdkEhQeg1WvZsmQHvoE+xDc4XROp3cAWBEcE8NYtn5KdmcOPL4/luoe7Yiu1A5L6beqxbcUuFvy2lE4rd/H8z4+WHZt7NI+0TfupXjec6x7oRmyCKuK+9eUBhMeGkn+skMUTV3Ddg9ei0Zy5trBxl2TqpNZkzFvjKS2yUFpkodsdHelwY2vWzd2E3qADIYisFc6BHZkc2KGKw7ev3EWDdgkU5hYTHqtcPLvWpVGYW0xCizpsW7qddv1bAFArJQ6DSc+49/7icNpRBr3Un2vv6oTNaufI/ixCIoLQ6s7uR9+3aT8zfpgHwN71+xgy/HZCIoNp2r0R9dvUI/9YIZG11GdTLTYUjVaDydtETEIU938wmMDwAJLbJaDRaPDyNQPw1HdDWD5lLUV5xWe+7pYDDOv7PoW5RQyb+CwN2tQ76zxBFa7N/nkBgWEBdBrUxhMjuMzwGHwPZ6VtvxY02J+I2ceI0XT2AqGx7/7JyP+N5dq7OtGwfSLv3v45Zm8Twxe/Rq2G5QOdWq2W5HZJ9HmoG7+8+jt9H+mO3eZg/bzNJLdPImPHQZwOF/ENYtDpyxuNDfO2MOmLGQCERQWXGfzQqGD2bz/InJ8XAtCoYwPikqKpiN3r9/H36IXUbhRP18Ht2bclAy9fM50GtWHVjPVYS618tuItdAY9sQlRFOYWMeDJXsrl060h/+v9DluW7OCZkQ/R5dZ27NuYzuqZ6wGo36YeB3cd4o+PpuAb6M3Ap/vwyZI3yD9WSL3mtXA6nYx4+if++mImtw27gcGvDDzr+xqdEEWrPqlsXLgNm8XOqunrefHXx9iyZAfr5mykSdeGZQbfL9iXhu0TsVns7Nmwj/vfH1zhOX9950/mj12C2dvED9s/KUsDzT2Sx5RvZpN3NB+zr5mDu1VB/LblO8/L4M/4cS4/vPgrAMGRQTSuwCXn4dLhMfgezknAeT7Ozx+7BIDZoxaUSQeUFlvIO3Kqlp5ixg9z2bd5P3e+eTMhEUH8+fl0ADYu2ELDDkkEhgfQvHsjktuX18KJS4omNDoYvyBfqseHY7fZ0RuU26Zu01rM+Xkh9dvUw2axMazf+xi9jNz91s2ExZwIuP71+XRm/DAXIQTfbh7OW1NfBGD1rPW82ONNAJ796WGuua09AL6BPtz/we0AbFuxi23Ld+Fyudi8eBtdbm1HTEI0eoMOrU5LSockFv6xjClfzwKgduMatO3fgii3N6wgp7BsxT5n1Hxufbn/WZ9E/IN9eXnck/zy2h9sXrydAzsy2bRoO18/OZLDaUdZ8Mcyvln/AXqDnvjkGLehPszgaxud8Zw+AaqizC/Ut1wl8uSvZvHza79j8jLSum8zktslotVrad7jzOc6meOxhxrJseh0noZ6lxseg+/hjORm5VOQVUDapgPEJEZSo0HsWcffNnQgU76ZTbsBLUAI2vRvQe1G8QSEnh40zTqYzUf3fYPL5WL/1oNkHTjGkI9uR2gEbfo2J7ljIlG1IspcECcTVz+G4Qtf48O7vuSNG4dz55s3c8sL/QDo82A3UjrWJ6h6ALNHLWDJnysBSL0mmWtu7wAof/txv35U7er4Bp4op7VZ7GU/H047yvTv/6ZN/+b4BpwIopYWlZLSuT7B4YF0uqUdAI27NODr9R+g0WqIql2dorwSdHodfsE+RNapzoHtB9m+ajf1W9eleo1wHvj4DuaOXkyvIV3PaOwXjFtKxu5DdLq5LdXjw6jXvDZj3lLahJsXbyWiZjh2i526qbUYfu/X9HusJ7Ub1+CVP57CYXNiNJ+5XmDw0IE0bJ9IbP1oAkLVF/rkr2axcvpa2vZvwcpp68g6kM3O1Xu4/fUbiU2s+EnpVLre0RG/ED9GDf2N57u9UWG8w8Olw2Pwr0CspVbyjhYQGh1cZkyyDmbj4+993lk2aVv280rvd4hOiGTV9PUERwTy5ep3CQoPLDcu90gexzJyqNEwlnYDWtJuQEtKC0sZFPcgKZ3q89Mrv7F58TZe+f2pcro0vkE+tOzThCV/riIsNgS/IB9a9mnKNbd1OL+blLBhvso02bJke9lmjUZDeI0wdq7eS0xCJP6hfph9TNRsfMKltPSvVSz5cyWNOtWn/Y2tyt1Ts+6NeP6XR8naf4xJX84kKyObwtwibnj6urIxf49exOoZ6wHo+2iPsu0x9U4UQjXv2ZhvN32I0cuIX7APj7f5H7vXpdG0WwpvTnuRnvdeQ897rznj7e1au5c3b/4YKSVFucXc//5gktsn0uW2dqz7ezMN29en32O9WDl9HR/f/w2g3Dm1G9dAq9WiNZ/Zd24psbJ8ispyMvuYGPPWeEzeJn7/YBL5xwqpXqMaz//6KPZSG/lZLeh40/nLQRuMekxeRtK3ZgCwbu4mUjrXx2T26AVdDngM/hWGpdTKR/d+zdwxi3nw4zvo+2hP/h69kPfu+IKUjvV5ccxj55Vxkb45g6P7s6leoxoAhTnF5Va/APnH8nm5zzvsXLWH+z8czIAnegNg8jHR64EubJy/DZfLxaoZ68nOzCXvWAFmbxM1kmMxmY08O/JhDu87itPhJCw2DB9/b7IysvnplbHYrHZuH3YjkbUrDhSHx4XxxLf3s3nx9jK3y3Emfz2LEU+NolajeD5d9ha+AV7lUjNDIoPJyyog90g+/R7vVe7Yo/uzCI8Lo1psKD++rPLWTw08Jraoy6yR82nQNoGQ6OAzvofeAV788vp4dHoNRfkqOFqUX4yUssJCsOMU5haRczgPb38zRXkl+AWruXv7efHsyIexW+1ldQtNr21IXFI0+7cdpK47W+lcLJ6wguH3fo3eoKP3A92Y8IlKg+1+T2cKjhWyYNwy9qzfxy0v9+f6h7uf1zlPJqFlbfo93pN9m/aze10anz/yPU98ff85g9MeLjweg3+FkX8kn7ljFgOw5K9V9H20Jxvmb8XldLF2zkYO78s6L4Of0imJ3g92RaPVkNiqDvXbJBIeFwbA4X1HGfP2RCxFpbgcLgD2bkgvO1YIwe2v3sTcMYtx2B20ur5Z2YrVYDLwwfxh1GgQw9q/N+MT4EVk7er4u43a2jkbmTlyPgD1mirDcSa639WZ7nd1LntdUlDC9y+OYePCrTTr3ojVMzeAlKfl4TfqVJ9Pl72J0+kioVntsu2Zew7xZPuhZGfm8vjX9/HmtBfIPZxP6+vLa/L0uLczKR2T8A/1xSfgzHo7JweX73l3EBqNhsZdkk9z4RQXlDB71AL0Rj2dB7Xli0d/4O/Ri+j7aA9SOibRuEtyuff2ZGmHsOhQ3vt7KEW5xUTXjTjjXE7G5K1W2027NyoLyuoNOmwWGy7pQkrJgR2ZpG3af17nO5WS/BKiakdQmFPE7FEL2LFyN/e9dxt+Z6iHOM7ejen8/uEkQiKDuOn5vnj7ef2r63s4Mx6Df4URGhPCAx/dwZI/V9LvMWUsO93ShkN7D5PYqi5xSVHndZ6AUH8eGH4HGq2m3GrU5XIx7ds57NuYTkA1fxp1bkCN5FjaDWzJ/u3KF9+gbQIGk4FajeJp2acpkbWrk+VWobRZbGQfzGXHit188dgP6PQ6kjsk0nVwezoPakfNlDhCIoOwltqo01StWA/uOcyOFbuo17w2ETXDK5wvwN7N+5n05UwAoupE8NzPD59xfJ0mp6+Gcw7nk52Zq6656xA976vY5SKEOOOTx8nEJkUTFhNCYXYRtRvXPGPGyvzflvDFoz8A4OVrYsvSHe7tS7nzzZvPKdEcGOZPYJj/OedznJZ9UnlzygssHL+cReNX0PPezuRnF5G+JYMWvZpgtzoICPWjefdG2Kx2HHYHXj6nx1LOxK9vT2TqiDl4B3jR99Hu1GpU45zGHmD+uKVlGVYN2iTQrEfj876mh/PDY/CvMDQaDf0e61lm7AFSOtYnpaOS4pVSMu3bOWxbsYuud3Q8Y6rd5sXb+OSBb4moFc5jX91HUHgAoJp5//q2KkhKbFmH+q3rMfnLmSyeuIKUjvVZ+tcq7nvvNgY+3YeJn0xl+vdz0Wg1fLL4DW57ZSBe/maadEtmorua1mF3IICNC7fSeVA7aqXE89Xa93G5XARVC8Bhd/DBnV+wefF2GnZI5N3Zr5wxtzu6TgRNu6ewacE2Og9qS5u+zf/Re5fQvDaPfnEPh9KOcO1JTw7/lvj6MXy+6h0cVjuhUSFnHOfjr4LGQgh8g3x47Mt7WTZlNc2ubYT5Aujxa7Va6jStyeF9WZQUlmK3O1k8QbWhrtOkBv8b+wRefl4c3Z/FC9e+yaE9h3nu50fKxNhKSyysm7OJ0Ohgajeqcdr5jy8QNBoNNzx7PSERKuWzIKeQ5ZPXEB4fVmEXsrqpNdHqtITHhRFVpzrr521m1LBxJLSsw62vDMDsdWF6E1xNVFaLwx+AXsBRKeVpIt9CiA7AX0Cae9MEKeVrlXFtD+dPVsYxcg/n85E7yGcpspzR4K+csZ59Ww6wb8sBetzTmeY9VaaFb6A3LfuksmzSaoKqB/Ljy2NJaFGbTYu2YfY10ahTfYoLSgAIiVL+7bCYYEJjQhg87Iay83e/pzN6o578YwWkb8mg0y1ty/YdzxoB9URRkK2ahhdkF+Fyus5o8P1D/Bg2/hksxRb8gv95ZahWp6X3A93+8XFnIzD03CvvNv2b8/b0l9EZtGVfzKndUip1Hqcy4eOp/Pr2REzeJl4Y/Sg7Vu4hNDqYgc9ch5fblbJ7/T42LtgCwNalO1g7eyMSlaX056fT8fI189mKt8sFqwFueak/tRrHUyM5rszYA/z52XR+fvV39AYdX6x+l/j65QvyWl/fjB+3f4zJx0xgmD/jPpjEpkXb2LRoG236NieheW08/Dcqa4U/EvgcGHWWMYuklL3Ost/Dv2TH6t3sWLmbJtc0JDw+DKERp/mJ183dxNDr3qNW43hVDbp8J7XPEuRr3KUBs3+aT3S9SOIbxpVtH//xVPZtPsDNL/Tlr89n0KxHI+IbxJDUph7ZmTmsm7uZPRvS6XV/VwY+1YeEFnWIqFmN4Orls3sCwwIY+FSfctu2LtvJ5sXbSO3WsEzfxWA08MzIh9kwbwspnZLK8u1PxelwggCDyXBe8sWXE1qtltRuDS/qNZ1OFXtx2h1E1a7OV2vfRavTlvu9qdu0Jr2GdKUkv4SsjGwmf6XqCnrdr1xdpUUWSgtLTzt3aFRwhRlITqeSena5JC739U+leo0TLriUjvWZ8YPSDJr89UwCQn3L7ffwz6kUgy+lXCiEiKuMc3n4ZxTmFvJqvw/Iysim94Pd2LFiF94B3jz+9X3l/Nc7V++ltNjCpkXbeGHMYzzyxd2ERAZTUlRaoX82pUN9ftj+CdtX7uZ/vd4msXVd7nvnVhZPWMmhvUeYOXI+b01/kbj6MWXBtY+HqCcHu9WO0+nE7GOi6XmuVIsLSnjjxg/Jyshh2eQ1DF/waplroF7TWtRrWuuMx+7duI/h936DwWzgyRH3E1Xn/IKXVzP9HuupXCd1I7DbHJQUlJ4WzHe5JOv+3sTBXYfo+5hKP/UJ8KYov4T+T/SiXvPa1D3L53Iy6+dtJjAsgB73duFYRjbblu2i5kkLiYrocGNrSopK+fXNicz+aQEN2yd5DP5/5GL68FsKITYAmcDTUsotF/HaVzAnNOALc4rYuWYvAPN+XUxsYjQtejdBp9fR6rqm5B7N49iBbOylNiyFFu5JeoKQyCBe+eOpstL8kzF7m1j4+1L2bkxn78Z0ugxqx+2v3cjMH+fSsncqSa3Ku4Nuer4vsYnR1GwYR7WYc8sIn4xWq8E3yJesjBx8A73PmrZ4KuvnbWHHqt0AbF6y3WPwz4Pg6oH0HtKV8R9P4esnfyKpVV1em/RcueBq3tF8Du5SWTwareCt6S+pOEOg93kbeoBDe4/wcq+3sZbalI6Qxc6+LemnjVs9cz1blu2g9fXNqZUSB6Ce9ATE1Y+mXrPzv6aHirlYBn8tECulLBJC9AD+BCp0yAkh7gPuA4iJOV10y0N5fAN9GDbxGXau2kNYTAh71qVh8jayfMoaRr7yG6/8/hRt+7cgum4EuYfzWPD7MhaNX8H9wwdTkF1IQXYhe9bvq9DgAzS5piFzfl5EcvtEoupGkNSqLq2vq7h1YHhcWLlCpH+CydvEy2OfYMfqPTRoe27NlpNp0C6BuKRoDGYDCS0qR83zamHn6j0AbFm6g9wj+eUMfs2GcTzxzf2kbd5Pl1s7lBnhU9m6bCd6o47I2tXZtmwnEbXCCQjzp6RQVRuvmLoGnUGHEIKjB46xft5m0jalc+srAwlwxziOZeYwtO/72Cw20jbuZ9iEZwD1dPfNuvcRGk2FRYMlhaVkZWQTWSv8H/Uuvlq5KO+QlLLgpJ+nCSG+FEKESCmPVTB2BDACIDU1VV6M+V1O5GUV4LDZCYk8c0HPqdRuVIPajWpweN9Rnvr+QY5l5vDGDcMB1Rbv718WYrc5iHOrVsYmRVG3aW0adkgkqm4kmXuPMOGzaSS3SSA+OaZcULRN3+Ykpydi8jadUWa4soiuF0l0vdPb9p2L2o1q8PnKdxAa5fP3cP70GtINnUFHvWa1T8vj12g09Li3y1mPX/LnSl7t/wFanZY+D3ZlwifTiKoTQb0WtZn/6xJufWUAI/83lkadG5DSMYm0LQcAMJgN5eIFBpOeanGhHNh+kODI8s1qvM6Qj28ttfLhPV+x8PdlDB52A7edQ4TOw0Uy+EKIcOCIlFIKIZoBGiD7Yly7KpG+LYP/9Xqb3CP5DJ34DKnXnH8g78j+YzzTeRiH07J45Iu7ee7nRxBC4LS7eMfdBPvxb+7ng3nDqF4jjLDoUD6Y+ypzxyzmuxdGExQewFeP/ci9791aTkYAOK8c6kvN2XRjPJyZBm3qnZcK5pnIyshGSonL5eJoRg6gXDjBEYE47I4ySemNC7Zy6/8G0PnWdjTpnEytRvFlFcSgfsden/Qc+zbvJ6lNAqVFpZi8TezZsA/fIB+K8ooJiQwuK9ADKMotZvF4lU66ctpaj8E/DyorLfNXoAMQIoTIAIYCegAp5dfAAOABIYQDKAVuklJedav3ipBSsnzqGvKPFuDlZ+ZQ2lEAdq7a/Y8Mft7R/LJ+rPu3HeThT+/GYXfwzdMnEqdMXobTGlsHVPMnqnY46+ZuBmDV9HWnGXwPHs5E+xtaUZxXjMFsoH6bekTWqkatlHh2r09DSkmPuzvR897OGEyGMr//tXd1Ou08UkqWT17Dng1prJyxnkV/LOf6h7sz+o3xtLuhJfPHLqFB2wRe+/PZso5jxQUl3PPOILav3l3WBtLD2RGXs91NTU2Vq1evvtTTuKBsWrSVpzoMQ0rJXW/dQnZmDvlZBQx6eUCZlnthThFj35lIXlYBA5/pQ1wFyoUul4sZ388lfVsG3e7sRI0GMRTmFnFXwmPUalSDarEh+Ph7ERIVQq8h15Tzd25bsZN1f29m8+JttL+xFd1u7/if72v55DXs3rCX9gNa/Ss3jYeri0N7DvPLm+MxeZmY/NVMpJTEN4gm/1gRNVPicFjtZGfmMuzPZ4muE8H+bRk83uZlCnOLeeKb+8/perqaEEKskVKmVrTPE+W41IgTfkyjycDDn9592pANC7Yw7oNJAITXCKvQ4Gs0Gtrf2IqMnZlljbZ9A324+YV+rJ+/BS8/MzvX7GX9/K3UblKDJHdLPICE5nXYsGAr6+duZsP8reQdzWff5gP0e7xnhZWU5+Lg7sO8OuADHHYHR/dn8+SIIf/4HB4uDwrziti7fh8xiVEEhgVckGsc2KGa1qyesR6dXke7gS3YMH8r197VmYydmRi9jPzx4WTqpNYscwPlHS2gMLeY+AYxHNiZSeaeI0TUrHZB5ncl4TH4l5gGberxxpTnyc8qPE2k6zgxCVFUiwslJzOXOo1VsdSWpTtI25RO855NCI0Kxul08umD3zJ3zGK639OZJ0cMIT+7gFFDxxGbFMX6uZsoLbTQqFMDgiICT7tGaVEpdpsDIQRrZ29i7ZyN+If6/SuDb/QyEBjuT9aBbPxDPb1QqzIjnh7FjB/mkdq1Ia/++ex/LmrbsnQHq2esI6VzAxq2T+JQ2lGe6TSMnMP59HmwG/u3HySpVV0e+OjOsmK94zGonav3kHckD/9gX5Ja1+XpHx5k3tgl/PHhZDYt3MoH817F5HVuGWaXy8WUr2exadE2ut/duZw43ZWOx+BfBjTrfnaRqJh6kXy27C2spTbC48I4uv8YL/V8i+L8Evo8dIBHPrsbW4lNqUMCa2dvwG6zYzQZiEmIxG51YPYxU1poISw2hOpu1cuT6T2kG74BvviH+vDH8CloNBrqpf67vOeQiCDenv4SB3YeomGH0zVTPFQNpJTsXK3qOrYt34W11PafDL7T4eSTB0aQtmk/M39awHdbhlOUW0T2oTxSuzZk+vdzkS4XNz3ft1xlds/7uqDVaqjTtGaZe1Cr09L19g5M+3YOAFkHsnHYHcC5Df7utWl89vD3AFhLbR6D7+HyIyDMv6wYaefavUiXir1YS6wAmH3NPDHiflZMW0vr65qhN+jRG/S89NsTpG06gE+AmcNpWTTqdJrUEaCM9IAnlfJFardGFOcV/6cCptjE6PPukuTh8kQIwQMf38HSP1fRuEtyWfvCf0NRXjEIqF6jGmmb9hNZqxo6vY5ajeJ5btTD7Fy9l9Wz1ILl4M7McsqiDdokEF03gvEfTWXEM6Po/0RvQqOCEULw0Kd3sXL6OpLbJZaJ0J2LHav3ULNhHHs27CM28fzUY68UPAb/Mqa0xMK80YtYOH4F1mIrD312F7VS4sk9lEu95rWRLhcpHU9k3TRom8D2lbtYN3cTNRrGEhYdQrWY0LKq1/qtE87ruv9UbtfDlUtKh/qkdKh4kXC+bF+5i9cGfIjRbODpHx+i252dqNUoDoNRz+71aRxJz6JZj0aYfYw4nZJW1zc77Ryrpq9n7DtKpbVa7IkCvzpNalYodX02QiKDsBRbSO3WkBa9K4xtXrF4DP5F5OCuQ/z5+XQCwvzp/3jPc+qcLxm/gnljl7J+nkqZnPnjPAKf96fdwJYU5BahN+ho1eeE33/V9PX89u5fAFSLDS0nkezBw6Vi67KdZGWospsD2w9y7V2dOJR2hLm/Lmb1zA3MHjUf3yAfRu74tFxu/slE1a2O2ceEw+Y466rc6XBWKB54Mi17pxISGYTepK8wAeJKxmPwLyJzf13En59NB6BmShwtep69ubPJx4Sl2EJkrXBKCi2kb81g7Ht/ce/bgxj0Yv/TxkfVjcDbz4zNYr/qHlU9XL406dqQ1G4pGMx6GnZMwul0Mvzer1k/dzO1m9QgJDIInyBvdIYzt0BMaF6Hr9e9j9PhJLpuJC6Xi4mfTGXRhBUMfKoPwRGBTP/+b7Yu30lAqD9PfjuE6vFnztqp3fifJyNcCXgM/kUkNiEajUaDX4hvWbvAs9HquqYYzQZsVjsTPpnKpoXbiKkbwa3xD9H/yV7c+Ez5Aql6zWrx1br3cdqdHgExD5cNsQlRvD39pbLXdpud/KP5AFiKrTzy5d3E1IvCy/fsLQ1PVn/Nysjm66dUUaFWO5Xkjklk7j7Cvk0HgANsW7bzrAb/asVTeHWR2bspHS9f83kZfLvNzp4N6YRGB3Nw5yEy9xxm5MtjyT6Ui7e/F6PTvzqt76fNYmPKN7PJOZRLz/uv8fzSe7gs2bFqN+vmbSKlQ33qNTu/xib7thyg4FghSW3q4rA5+HjICOb8vJAHP7qD6jXDmfjZNA7tPkxANX+eG/XIGQUBK8Jhd7Du7814B3iRWMUF+DyFV5cRNRrEnvfYiZ9O49tnf6FOag3emvYSye0SKcorZswbE7hmcHtcrtObSGxcuI2vnhgJKIGqwUNvOG2MBw+XmrpNa523xPL+bRkU5ZfwUvc3Kcov4clvh9D97s488c393PXmLZQWWfjzs2nUaVKDW17oy8Fdh9Hqzuweqog5vyziw7u/RKvT8uGCV0lqWffcB1VBPAb/ErB7XRq716XRqHN9qsWGcWR/Fmkb0wmsHsC8MUsIiwmh9wNd2bflAI06N0CjEeRm5eMf4kdCizqExYQwdcRsQqKCaNAmgTmjFxESGcjAp5Uv0yfAi6K8EsI9q3sPVZxZP83ng7u+pMNNrSnKV60zj+5XIrsGk4HQqGB+fv13Jn81C71BR2mRhcXjV7B7fRqPfH4Pdpv9vBRUC3NUG02nw0lxXsmFu6FLjMfgXyAK84qY/OVM7FYHfR7sRmC1AAAKsgt55fp3yTqQTadb2vLEiPt56+ZP2LpsB817NmbTwm2UFJZSs2Ecza5txLuDP8dhd5C2cT9xCSqjIG3TflwuF0IIpn3/N9O/+xuAkKgQugxqy6fL3qYot4i6noYRHqo4u9bsQUrJmlkbuPONm7CW2uh2Z3mtpxoNYtFoNbQd0IIpX8+mQbsEdEYdQ/u+z971aTz+zf3n7BHc5bb2gOrZ3LhLg7OOrcp4DH4lIKVk8+JtGMwG6rqrU1dOXcePL48FVNHUdQ9dC4BLSmwWO0IIHDY7DpudjB0HAcg5nIfRy4jZx0hwRCCFucXu6kHIycxVwa6sAh754m6spTZMXsZyTSHMPqrK8FRdcw+Vg3QcAGFCaP9ZNy8P/54ug9tTXFBKdL1I+j/Rq8KeDK2vb8Z3m4bz4/9+xelwsn7uZiJrhbNs0ioAlk1ZXc7gW0utLJ+yBi9fL1K7NUQIQWCY/2k9lq9EPAa/Elj0x3Jev3E4Wp2W9+cOpUGbBMJigtEbdDidLsLjQinMK+LovmP4h/rRbkBLCrML6f1gN3wCfHj5tydZP38zzXo0RqPREBDqR/Ua1QiJDuahT++ipKCEToPasPD35bxz26cAtO3fnEXjV9DnoW4MGX47QdUDy+Xke6hcpGUeMu9h0IRB0HcI3T8r9vHw76ibWotnRz58znHR9SLpentHMvccoVajOHav20ejTg04sD2D5j3Kpz/PHb2I4fep/svvzv4fjTt7pBU8/AOyD+UCyv+Xd0SlmzVom8gXq97BYXcSkxjJmzd9zLJJq+n/ZG8mfzUTgFpNapDcLpFGnRvQqPPpj5Ems5HrH+5e9tpmsZX9fDy5Kv9oAY98ds+FujUPbqR9M2AH10Gkba3H4F8iivKL2bZsJ1F1I8oy0JxOJztW7iYmIZKv175PaYmFgzsOEV4jFJ1eXyaoVlpkYex7f5KTmVt2PofNeV7XLcguwDvAu1w3uKqIx+BXAh1uao2lxIrZy0hq95Sy7fHujJzsQ7msnLYOgIKsAgKr+VOUV0LNhnEUF5RQmFtMeOy53QQdbmwFgN6oJyYxgtjEKPZvP8iaWRto0vX8m6V4+OcI07VI+yZAQulkpKkHQnN+2i0eKo9f35zAuA8mEZcUzWuTnmPZX6spzC3il9f/IDgikOELXiWiZnVqNYo/7djtK3Yx5o3xhEaHcN3D3WnQph5Nup57dT/pixl888zP9H7gGu5559Yq3Tu3sjpe/QD0Ao5KKU8T3hBK9esToAdQAtwhpVxbGde+HAgM8+fm5/uecX9w9UCe/uEB1v69mU43t6H3g11ZP28L2Qez+fbZFezflkHja5K59eUBZ72O2cdM97s7A3A4PYsxb05ASklRbrHH4F9ghL42UtrBvgQ0UcDpKbH/BCkdYN+FFAaEMCJ0UafstwDGMsE8D4rD+1RHuIydh1gzawNfPTmy7Ok4OzOX7Mw8ImpWnH8fUSucuKRo9m8/SIO2CbQf2PK8rjn9h7nYLDYmfjIdk5eRbnd2pHqN8HMfeBlSWV9VI4HPgVFn2N8dqO3+1xz4yv3/FYfD7kCj1Zym5dHl1vZ0uVVlAnz5+I9M/HQabfs1Z//2g6RvzWDL0h30uKcLQeEB53WdgBBfmvVoxIqpa2nc+b+JW3k4N66SCYAdTP1BEwyOfWA4ezaHlKVg3wLaaIS2fIqsLPkVHDvAMgsprRA4AmFUfxLSMhtZ8BoY24LvS54niZO46YW+RNQKJ6F5HfKy8gCwFFvoNeQa4pNiSGx55qKpkEgl222z2stV7Z6L/k/0YtTQ34hPjmXip9MJDA8sS8KoalSKwZdSLhRCxJ1lyHXAKHcf2+VCiAAhRHUp5aHKuP7lwvZVu/no3q8JrObPE98OKVOpPJXweFVle/TAMRJb1SF9awYtejfBJ+DspeUnY/I28cLox8jKyCa6CsooSEcauEoQhqSTtmWCKwf0SRdkZStLZyOLvwZTN4T33QjxD/yxtuUgtGAZr84l8xCnGHzpPAr2TaBLROiqI4u+heLPQZesAr2aAPe4Y1DyC2jDQeapbbYVSPt6hKEl0roGdHHgOoa070UYr9w0wX9K7UY1ypryZB3Mof8TvdAb9eB0ciwzh5KCUnyDTpdxzs7M4cN7vsJuc5DYsg61G9UgJDoYa7GV5PaJZ/1963JrO+LqRzH0+vfR6rXUany6u6iqcLGcUZHAgZNeZ7i3nWbwhRD3AfcBxMTEXJTJVRbr5mxk78Z0ADYv2U7OoTwialbDP6R816feD3SlVqN4QiIDCY0OYcATvQmNDvnHzSW8/bzwTjz/L4nLBWnbjMwdDLIEAj5FmLoiHQeQOYPBdRD83kZ4nS4O96+vZ5mPdGwFx35wbIKiTWDuCdrz77UrzNcjS/4EbQ1w7gVdeTkAKSUyfxjY5oChOQR+D46daqdjC7gKwW3wcR0DZxqgAeO1oPED+3awzUFqa4OxI9hWgPAHc3ZlvAVXJEsmrmD8R1MAaNwlmbVzNlIzJb5CV82utXtZNWM9zXs0Yv/WDLYt20lk7epM+WY2z458CKPZSIP2CWds41grpQafr3gbKSVB4ad3jKsqXCyDX9HXZ4UiPlLKEcAIUFo6F3JSlU1yhyQia4UTVD2AzN2HeWfQpzTuksyrfz5blimQfSiHfZszqNU4Hn+3FGxMwlWmbOk8BLIIAOnYp345XIeVsQdw7K60S0nHfmTeQ4AdjNeAphoYWim3zJmOceaAMJZzpQhjK4SxFdJ5BJxHQX9qbwEnONPdP5aAdCC870FqqoGhEdK6DJn/MsLrFjBdA77DwLENYb4B9AnInDvUsZpA0KeoLwLngRPnBKRtK2i8ELq4Snhnqj7B7ladWp0WrU6Lf6gfUXWqk7nnMKNeHYdOp2XwqzcSFh1C7SY1aNGzCZF1qzPho6koZ4OgTpMa/DT0N46kH6P3A1159It7z3i948WTVZmLZfAzgJOFp6OAzIt07YtGUsu6fL3+A7Q6Da9c/x6NOtUn/1gBxfklmLyM2Cw23r39c9bN2USX29rx3E+PALBh/hY2LdpKsx6N/3EzhyqJsRX4PAWufDD2VKt7bR3weQFcBxDmfv/61NKyCOnYgjB1RehqAEa1snZlgbSC7wsIUxeEqPhpSloWIvMfA20tCPgEoYtAOnNB44O0TFOuHX0zhCxBGpqVuQKE0CF19cDQBGyrkIVvgvfjoAkF2zqwrwfHJmTRMTTmbgjvW8pf2P9tNUafAtpIZNHbyuAX7UWargf7CmTeoyC8IfAnhOHMcRvp2Ku+lAyNz3ifVwJt+jbno0WvYzDp8fI1YzAbCIsO4c/PpvP3L4sAqN8mgWvv6kRw9SBe/etZjhw4xtrZG0nbtJ/gyECa9mjEz0PHAZDllmy4krlYBn8S8LAQYiwqWJt/pfnvj3N8JZ/QvDY/v/o78ckx5B3J5cD2g8QlRbF7TRoAaRvTcblcFOeX8PoNH5J/rJA1szfy0cLXL+X0LwpC443wuR8AV/EoZOEbYOyK8H8Pofn3LirpyEDmPQDYkI69SGkDJHg/BNaZ4DyC0MaeZgRd1q0IjQYc6UjLdMCg3DCO3bhsS6BgGHjdDyVfAw6wb0U6DyP8XwNTN3Vt6QJdvDLazj1Qugd0jcC+FFzZoE1Q7iRTT1yFnyKMncoZbaGLBl20erqwTAPzDVD0IZj7qy8bxxHQJah5OTOBig2+y74XCj8AxzrwHoLwvv1fv5+XO0II6reud9r22k1q4Bvkg96go0bDE2KFGo2G6rFh3PxCP2b88DcOm4M2fZthLbGyccFWCnOLSdu8n/j6VcuV/E+orLTMX4EOQIgQIgMYCugBpJRfA9NQKZm7UWmZd1bGdS9njqRnAZC2cT+/vDGBDfO3cN3D13LHGzdy7GAOTbuloNFo0Ol1hMWEkn+skODIoEs860uAdbH7/1ngehY05f/YpDNX+bx1NRHiROaTy3kM4cwCfc2TDLjevZo/qlwjtkUgAgAzwucxEL4gfHBZloHGB6Gvjyz6DCwTkYZWIAJB469W2ZpApC4BCkYBdrBMAENLdU5tNXDsVsbZsReEP9IyA4o/BVM/tQrXN1NuKtty5fc3pILXbZB3J8gipG0lBP1ULnAspQNZ9CGU/q7m4vcBmLqCdSEUvaPcUF6PITXVKvaRSgcUf+GOI7QD55HK+5yqEEmt6vLd5uFoNIKACnzyHW9qTUrHJGw2B28MHM72lbto07cZGTsy8fb3InPPYca+MxGj2cBNL/Yj+Bw++8P7srAUWYirf/l3z6qsLJ2bz7FfAg9VxrUuFw7szMQvyOe0gOxxet3fFZ1ei9nHzLRv51C/TT1+ee0PAF776zkatE0EwOxj4uXfnmTPhn0ktjw/XfArCeE9CIlLpSBqT8lFd+Ygc4eAYz34DlVjpR1Z+CFYJiP1jUGfijT3gJKxgBOMPcC5Q62Cj8cCzAMRhsZIx2FkwTB3EPUI0u8DlS0j85RxtE9XsQVDW7BMQHjfhTQPBGEGTU3QhoKuAUgLGJzgOoo81h10iWDqpYLAlong+w6Y2kLBK+r6zn1gXQDODNC3UNfTRoB9Ixganbhh63JwuuMYshhKfwNNENK2Ub03zjRwrISSL5FBoxCGUzqmyWKw/u2+Zhr4vlyZH1WV4lyB1cBqAexcs4ftK3cBoDPo6f9EL7av2EV2Zi7Tv58LQJ3UmlwzuAOgAvOnZvPs3ZTOs11eozCniP+Ne4o2fU/vx3s5UXVLxi4hs0ct4P07v6BmShyvT3qekJNW5uvnb2b55DUktarDE98MYfg9X5LSqT6+gScCgHarvdz5ImpWI6Lm1SllLIztEcb2Fe90HVXGHsCh+vpK52Eo+REV8zdC6URlOHGBdSp4DQbbMjAPAhEE2hgQGqSrWKV8YgGXe+VrmaV87tYloI0D20r3haUK8Gqrg22NcgcZWkHpUrXbeK3KwBHeaqw2EoreB11DMLWEojdB3u0O2oaAqwQohpIRyqevjQHbMqS5f7mVusQGriIw9lTjbVuhdBbIg2BoBlwLrr1gaIa07wR9g3LuKaHxR/q9CpY5CFNvhD5OnVdaVRDZk89fjhrJsdz73q3sWb+PqDoRfP3UTwghePHXx6gWG4rdZgch+O29P4lPjmP0678TEhnMgx/fQXCE+ps/vPco+VkFAKRvPeAx+Fci21ftRkrJ7nVpHEk/Wmbwsw/nMuGTaexdv48VU9fiFeDDzS8NYPXM9dRMiSW5XRIFOYVsXbYTjVZDm75XZO1Z5aGrDb4vqeIlY39chZ+CY6taTdsPgsYLdJFgnQLaeLXSNrRTmS/a6irYWfAk5D+D9H0e4XUHGHurSlmZr1xF9u3g/SAILzD1UG4Y00CEuSNCmJDi+J+IEzABFtD4KveOK1P9L12AS/nN9YkgC8FxAClMCL8XwbZBFVqBCh4brwHHDoQrr9ztClmC1PiCtCkDL8LUl5NtiTq/zwtQOtM92oCUOQif8g/OGvN1YD7R+lI60pB5T4MrDwI+RBhSKvczqoLsXLOXReOXkdSyHjc8rd6r0W+q+gqj2cC2ZTuJqB3OTc/15eVeb2O32ul0S1u2LlNpth1ubEXb/i0ASOmYxG3DBlJ4rKhM+uRyxmPw/wXX3NaOotwiYpOiqd24BnlH8/EO8OL7F8aw7K9VJLdPRGfQcTQ9iyadG9B7SFdANWK+P+UZ0jalM3XEHJLTE/EL8r3Ed/PvkNIB1kWADoxtzrtQSkoJsqRstemyrgEcaI5XmUoHSAtC4wPOQwhdbTAPQFoXg32NWr0D+L6piqCEDyBVbrz/Z2hM7U5cTDiRzgz3he0IoUF498dVXOwufIoAfQOwr1SBVZ/n3UFjG9jWIg0tEObrQOOLxAuMWcoAew2E4pFg+RN0TUAXo1w92urgzAHvh8HyF9jXIF2FCH0jMN+GkmOwqaCsaQDSvg201RGGZKR1hXpvNJHqS0d4q3iBoYUy/tKhvpQMLcFVAEKCfZf7PXMColyMowz7JhUsBqRtFcKQgrTvAOGL0FW9gr3K4JfXf2fZpNXojXpG7f6MkMhg2g9syaaF23A5nexet49ty3eSfVt7fAK8yD2ST0StagSE+VMtNoRajeLKzuXl58XgV6pOVzmPwf8X1GtWmxd+eQyASV/O4MvHR3LtXZ3YtXoPABk7Mrl16ABa9CrvYxVCkNSmLmmb0knpmITJ23TauasMlpnI/CcAEAEjwNThnIeooORHUPIb0vdZZcDynwWhx+XzEsJ8LTL/FbAtQfoNhaIvwblbZdkYOylfOkZl5PX1lTGT2WDoANpo0NbCZT8EtlUgHAhNIAR8Ds5jCPMJ1VFh7oPEqQqbXAVgnaFy4mURuJzIvLsBiQj4DGHqBqZrTwuSSq9bkBofIACKhoKxu/Lt22aBTa+CtOih+HMkWkTQeKSxLRS4m3k708C2AOncBwxC5t4OuMDvTTRebyBdeUjXYSj+So033wDaELCtVgFpQztwpuMqHqsCyhjA/3WE7pQqUH1jMHQEVzbC0BpZOk19biIUgkcidFdfk5zjle6RdcLL/gaDwgNo3qsx+dkFHEnLorighDpNavL2jJfZv+0gjbs0oP/jvdAZdGWZeFURj8E/T7av3M3qWetJ6ZCEb6APAdX88A/x5+/Ri3A6nEwdMZtXJz7LsimradU7lZanaNP/PWYRyyatpk3fZlxza3si61SvsJlDVUHKk9vAWc7vIFc2FH+rfi75TQVHcajVq3M3ONLAOk3tty5xV6MCzgw0hga4eBRMA0GfpFw7roPKjWPbCI6ZUDpO+e6du8G2EKmtCd4PovG+GekqRroKEBo/hCYA4X2nWlUXDAWhA697VADVtoLjNYHSmadqBexbVJbQSXo4QheJ8HkAlzNXBVJdeaA5LtrlAGMvcO0H20JAA0KDMPdWKZZSB0VKjx1dPNKZTZkYm+MQrvxhKqZg7guWmeBMV8bavg0l0XxUuaOs00DmqFRQQNrWADqkba06nyNNvYfCqOoPDIm4Cmer+5NHwZEJV6HBv23oQFKvaUhMYhQ+AepJ87f3/mL8R1No0685h/dl0f/JXqRvPUB8g1g63tS63PHr521m7pjFNOyQSOdB7Sq6xGWLx+BXwP7tB5n103yi6kTQ9XYVUPzsoW8xmA0c3X+M6d/9Te0mNXhj8gu07J1K/rFCEprX4tjhHPyDfYk7pVF5UX4xnz74HSUFJWxbvpNRuz//x02WLzeEqYfKPRd6tfo+C9K2Hln0OWgTwXsIlI4Hr0Ggb6L84DhBm4zUxoChMzi3gy4G4f8R0r4ZYeoFgMaQCCTiKp0JpX+ALAXHdtDowKFUFFW1rgt0SSALoOAFXFih+Hu3lMNnCIOSxJWOnYBVFWTpaiG0Ibj0KWAerM5hbIcsfF99keibQeC3CI253L1ptIFI/+HqPK5ipD4RoQ1HmLqoVbo2HqGNQOjd+eKm7ghA6uuD6wDoGiCL/wBDe9SXXwGUjlHvsSEZgkaDLFTVtY49SOcBlY1z/AtChIK2purEZUhBFn+vnlps89VTkG25e5w3GJuopxuZ5644Pr1hjpSlYFkM2tAr1t/vG+BDsx6Ny207djCHus1qMe/XJbhcLkoKSsg9ko9vkA+fLn2z7IsBlEtow/ytzBw5j4Yd6pdL2jjO4X1H2b5iN/Wa1yI8LuyC39P54jH4FTD1m1lM+EStNOPrR1O3aS1CooIpKSjl8F6V4bFrzV6OHcxmx+rdWEuszP9tGccO5rJ+3mZMPqZyUsdmHxPtBrRgxg9zadOveZU39uAunvK+8bzGSst090p3ISJwFPg8jBAGpKsUiQT7VpUOKSxgX6Vy6S2zlR6NbYVyA/k8ijAkIR2HIP9JwA76VECC133Kh45DGT/7RpX7XuoWb7WtUsVQgLStKzP4CF/lDtIEgKGN2madX3acMDRHOnao7Y4tymVDeYMPuOMXJtCaEN63nvQeBSC8zlA17NiJdB1D6Ooh9BHI4kWAAXzcgT9NLGjCENpgQMlACF1N8BqAzBkEmiDwegDhPQiEL9J5DGndoOIKwkfdP1p3jEOvagcAoYtH+A098dnYViMd6QhjR4Q2CFkyDgrfVMcEjSsnbnclM+Cp3iz5axVB4QHM/20pdVJrMnvUAuwWG7ZTsuqSWtdjw/ytpHSsX6HgodPh5MO7v2L9vM2kdKrPOzNevmz+5j0GvwLC3M1IgqsH4BeigqoPf3Y3f49exNrZG0jt2pAaybEYTHqsJTaqxYaS0rkBe9buBSjrxHMcrVbLg5/eyYCnelM9/vL5tr9QSNt6wIkwNEG6SkFXD9CDrh5SahDOHNCFg2OXCm4C6BuBZQYYO4DLhjD3BPs6KB2tzmlNUAYfCZpwtTrWhILXQIS2GrJwKjgzld/deyguyxIVYJX5bvdKgQoWG0/KpCgdU+YOEb5Pqv+1kUi0gAa0wQjf55GWWQhDC4S24txuaV2GtO9Qkg2n6NpX/P6sRebdB0ikKw+Nz90QNAGEAXQ1VGBWE4y0r0TmPgheA9B4D3a/T/XB+xFw7kGYOiO06vdJFv4IlslKuM26DMw3qewh8+2ADVHRat6xF1n4CQgt0pGB8HtMpYUCYAdKz3kvVwrx9WOIrx+DzWLj3ndvpTCviOo1wkhsWZegUzR0bnmxH62ua0Z4fBgmbxNFecUUF5SUqeM6nU5yDquuWrmH83A6XR6Df7kgpWTR+BXkHs6lw02t8Q/xo8+D3aiVEkdwRFCZ8Q6qHsCNz15HZO1wRr8+nnEfTCKidjhB1QPZtGgbXQa356Znr6e02ELd1NP1cMxeJmKvApE0aVmMzH8cZCHSfwRYp6tVp8+zoAmBvFuRxm5IbazKgTd0dKcd2t1PAYDf+whzN6Rjv9K0cR5A6N2P4M79oA1Ux2qqg4hw+6qVyJi0b0SYOqExtQbTSb5Xc9vTJ2u6Xj1deN2oVsyAMHWAoD9A6BF6pa1+WoHTyffrOIDMvQ+wIp37EP7D/tX7JgyJJ14Y6quMndxPlZ5O4ftIU2+ENhAhzAjfR04/gbYaIMCeBv7DIf9Btd3YCeE7DIRQBVy62kjbOlXZrKnmfnIpUrEQQHjdgNSYEZpw5XK7yjCYDITFhBIWE0rN5IplkI1mY9nfeFZGNsP6vseeDem8OOZx2g1ogcFo4OkfHmT9XLXCv5xidVe9wd+0aBuv3/AhMfUiEVoNfR7oRs6hXPyCffEP82P2qPnoDHr+GD4ZvyAfej/UjT0b9gFqAfXYV/dy15u38PfohTzR9n/c8Ox11Gt69QXCwC0RbF/lzpiJVP5oyzTABaVjVQ688AXXIVXMVOoNwdOVe6f4F5Q0QjA4M5HShbQtB2MLML6KMDZFWuaDdS7oUlRFqywEx1ak6ToVdHUdQZjOvzGFxvsWpKk7aHwR4sSfwj9zY+hU9pC0quDoeSAMjSFgBNKVjTBdU/EYIZDmG6DoI/C6RUkonwFX8R9Q/KWKA5hvB3lMuaoc2wGXSk0t+BZs89TK37ZJfTbGNkpGwrEXtxIKQhuK8L7rH9z/1UNRfjFbluwgum5EWQOVg7sOsXONerLfumwH7Qao/PyE5nVIaH7mZiyXiqve4OuNOpLa1OPYgWzGvvMn1WJDGX7PV+QdLaDvYz0Y/9EUGnWqT+buw/g1q8WRtCzemv4iRbkltLwuFb1Bj7e/F+Pen0RhbhHj3v+L6x7qhtnndF/vcYoLSsjcc5joepGYzFU3xes0XEeg+GuOZ7kIU3ukeE1lmmiqq2wYU3+1agXQpYJlipIQ1jVQRgqLMuT27VDglgaQTqQ2/ITMsfkWFYAFlJjZSjT+r/2rKZ/JTXPex+uqQ+APKjPoeBzgHEjLYhWINXU/LQhc7tze94K5H2gCz96sxTJZBbCtM1RFcOGrgBPMN6pYgDYSbG7NIvsaJcIm86HUXQxmvr1s7tKRjnTlgX0/yMMI8/UgvP+TqN2Vwq9vTWDc+5OIrhvBhwtfxWF1UiM5lpueu5792w/SqFN9dq3dS+3GNS71VM9IBZUaVxcJzevQvEdjjqRnkXXgGLvXpZFzOA+Xy0VpkUo3FBoNjbs0YPWsDXz5+I9IlxJgOm6sjWYDNz1/PQFh/tz8Qt/TjP2udXtZ8PsyCvOKsNvsDL/3ax5s8hw/vvTrRb/fykTa1uDKfQRX0VdIaUO67Ep2AMDcC6HxQ2O+XrkOLFPAsRHsa9Vq1dBC5ZUXvQcFLyr5AGNL0FRHGDsoF4s2Tp1LGw/CpFxCoPzxPo+DeSCI0LIsnkuFMNRHmK9HaEPOOVbaViHz7kbmP4ksdXfPsm/HVfgR0jKn/HmFBqENBUcarvxXcBV9jnSVnH5SUyeltWPsoFJcy1I8j4EwqBoC863u9zwSHBtAW4eyNhWuQ1D6E67C75DZN0DOQLBNhaLhyOIfkFkdcBW8h6tkCtKRiZR2XCXjcBV9rbp8XSUcPaCa0RxNz2LGD/O4JWYI3zw9ituGDmTw0Bt459ZPeajp8yz8Yzl/j1nE421fZuq3sy/xrMtz1a/wQWnZtO7bDP9gX3exlCT3SD7d7uxAnSY1CAgLYO6YRWXjLcXWcscfcKvsvTfnldOkVQ/tPcJz17xOYU4Rg/43gH6P9WDlVNW/fc2sDRUKMlUVZOmfyjVjnYnUN4SC15U/2Pd1hNfAEwMNTVQ++HFhL2FWfndjnPu1BlxH0bgDp2UEjlRVp/oGCKGHoO/BvheMzcraBZabj+MAsuRnEIEI78GXp3aMdEBZ7x+n2lT8HVgmIdFDyAwllXzyIZYpyiUGql2iqXzut/AahNREqycj4zWgMYJlKmjMUPSGek/M14HLT6V0et2h0mk1D4PjANjmqqcvTTzI3OMXBU2Y+sxkHpT8BPpkpGWa0vJ3P31JQPgMuSBv1eXGTc9dT/Ua1ajfui5j3poAwKyf5nPH6zdxdP8xSgotSCnJzcrj9/cmcSQ9iz3r02k/sFW5tM5LyVVv8Ivyivn0gW8pyCmiVqN4aiTHUrNhXNn+2o1qkpWRzU9Dx5LatSFRdSNp0ftEMMtus/P+nZ+zbfkuklrX48N5w8pF5G1WOyUFKtuhpKAEvyBfnvr+QVbNXEe7AS2rlLGXjn3Iwg9AaBE+T6vMmtJx6n9hKkt9xLEZIU6kbGrMvXHp6it9d+tslYtu6oGUdrdvWiCMXcpdy1U8GmxrwdQVjcHtX9bVOmuhkLRMgZKR6oW+Dpg6V+btVw6GFoiAz5Cu/BPxBq27obY2QlUfn4LQ1UOiUdlJp3wZgGq+IsyqFkLaNiK1CWBygdUt9uZKV09H+jYghJKAzn9U7TP1AVxg6AT2zSqQLUxg7ILAhXRmqr68xt5KwE7mI4U/YABsZ+0cVlUoLigha382kXXC0RvOHGCt2TCuzDbYLA6k/It2A1pSmFvEvN8W02lQGyJqViM4PJDEVnU4kp7FtXd1pCCnEKfDgX+I/0W6ozNz1Rt8vUlHXIMYNi7YSmxiVIUGODQqmGd+fIj0bRmkdm1YLuouJVhLbABYS6y4XC60nDD4sQlRDJvwDOnbDtBugEoJ7HBjqyohtOSybgD7WoSpPUJXA2ldorI7AGlohcbrRqShicpjF35IvzeUKJhJ9aOVliVI6zyEsYM63tgOvG4r080RAH5Pl11PSgey5Cfliij9AVURegxpbK20dc6B0MYrwyj8/lG/2ouJEEI1UT95m/f9qqZAF+/Ouz/lGHN30NVRvnRd+BnPLS0LkHn3AwIR+J0KZssiZeyLPgJNKCJ4NNK2ARWktYO0g7aBCoTraoC+IRrjiRROAbi0EZD3sAq4+7+DxtAAGTRWxQEMVVsA0FJi4d3Bn7Fs0mrueP0mBr1UvpdyXlY+SyaupFpcGKldGwLgcrlwWO20H9CKjre0ZsrXs5n36xIAhk14hoXjl7Nq+noadkiiduN47qr3ONF1I3h98vOXvAjrqjf4RpORJ0bcx8JxywmOCMRmsVXYTLx24xoVBmOspVa63dGRowey6HhLmwpXCC16NTlNV+dyx1X0PZT+Arok1TIw4AOEvgFSRLrFvMDlsqLRnagqFl4nRKSktCILXgbXQaR1ARiSVXBRUx0Z/BdovFRVqH0rwvsOlfro3A+F76pOUdpYpSMvAqHCdh+nI8zXgnYiaLwRuqrTtUhofM+pRST0Z299KaVLae+4/ffSeVTl9WtjwbFHuWqcxeCyIIwtkd73Ky0ifQeEX4ezB68dOwEbyGyELFbzOUuLxapEYU4xK6accLGeavAnfTGTn1/7Ha1OS+8h19CiVyp6o443b/kYUH//dZvWQm/UExoZRExCJCkdk5g3ZjEmLyNpm/fjdDjZt+UAGbsOXRkGXwhxLfAJoAW+k1K+c8r+DsBfgFschQlSyn+XVnEBWDdnMz/+T/lIvf29adK1IZO/mklJUSm9h3QjuPqZ/xjm/bqEr54cCUCDtonUrVp2vUKkq1hl28h8lW5oUlXDwpCM9P8f5D0I1olKxsD3SaRjt2r7p20AFEHJOHdP1dZKT0bEK5EzUNK/uFSA0rZcpWCW/qUMviYMjB3BOg98XgesYGj2j3zxwnBqc/ErG+kqUvIPtlXg+xT4PAFo1RNDwUuqctncX6lrmvojdO6iQJ+HVD6+ZQrSYgWvG8qpbUr7dqR1PsKQijB1RTr2nZCFLnf9UmTJSHAeRnjditBXrSY+oVHBPP7Nfaybu5mug5WMSvq2DCZ8PJXAav4n9SwWpG/N4FhmLjc93xedXofD7sDsY6ZZ90aM3PEJBrORgFA/oupEkNw2gaDqgWTsPMSxg7lUjw8jscXpaZqWYgvjPpjE4bSj9Hu8J7VSKs79ryz+s8EXKl/sC+AaVLPyVUKISVLKracMXSSlvLTpFKdgs9jYt+UA3u6AihACL38za2ZvYOaP89i//SC+AT70f6L8tA/sOMie9ek0aJ+At5/XiWN9z5xiV5UQGm+k92AoGgGm3qp8/zgn67g4D+Oy74Dch5VvWPgqKV5jV3DtUUbesRG86iO87kAamiL0ySoImP88YFECavoU93V9VNGQKwe0FbvXyqbhOIQs/UNVw5oHXNHNus+KY9eJ9ErrgrL0VFfRz2B36+g4M8GZhTCeKEQTQou0/KW6agHok+Gk4i9Z/BO4MlXxm7GrkquQFuXzP/lpwL5GuYsAKXxBdgU0VeoJoPvdnel+94l4z/zfljDtW5UxNWziszz+9X3s2ZDO1BGzeeDjO6ibWpMP5g4l92gBqdcqN0+Yu8oW4Nd3JjL27Ync9EJfbnmhHy+NefyM1962fBc/v/o7AAFh/pe/wQeaAbullHsB3I3KrwNONfiXHWPf/ZOfX/2dxl2SeWv6ixiMBmo3jufjB76lpNBCv8d6UK1GaLljivKLGXr9exzYkUnX2zvw5LdD8A3ywehloGH7qqk7Im2bkaW/ga42wusWFQT0fkhpuGv8yxteXTMlLubcowJ2BUOVu0CXdEKrXharjA/78dzvTaB9Bo23+mWW9p0cz1BB1xAhfJDOXFVJqvGG81jRS8tEKP5MvdDEgOn8cuCvOHTxYOwCtmUIYztVTes8oiqPjZ3AmQWGDm4ZhhCk44ASWtOGqipmUP+flFIqnXnqs3RlqtqI0p9BVxesk5H29eUL07RRoIlQqZ2aIFV1bGiILI1CeN95XlITlxs1U+LR6rQEVQ8gum4Era9rSklhKf2f6En1GuoJKemk5um71u5lzJvjCYsN5YZnrmPCR1MpLbIw4aOp9HusByavimXQi/KL8Q/1JSYhioydmdSpoEK/sqkMgx8JHDjpdQZQUSSnpRBiA5AJPC2l3FLRyYQQ9wH3AcTEVL4fVkrJob1HCQjzY/Pi7QCsn7uZp74bQlhMKNtX7Wber4tp1qMx0779m7V/byK+fiyR7so6h81J7uE8APKzCtDqtDTr3uhMl6sSyNLfT1rpNQJDA/V4rw0oP86ZqVaUlKKc+MUqr97QGrT1wLuFki02NEW5Feq6qzityNLfy3z8Ql8HAr5BOg9C8VfIkkzwuhPh98L5T1pzXK/IVCaLcDUiNAEQ8LEqvHIeQWYPACzg8xygUy0ai94FQwLSshOZ97BynQV9p3oE62JAU61MkwdAygJwHU/PLFV6Q8aOYOiKMLYof31dHASNRTVmXwf6esolB0iNP8L30YvwLlQuba5vxrebh2P2NhISqYLoXr7mMz7BLxq/nMUTVXvMJtc0ZNDL/Rn3/l/c8Mx1ZzT2mXuOMLTfuxzafYTnfn6E+PoxRNW58A1pKsPgV/TcLU95vRaIlVIWCSF6AH8CFTr7pJQjgBEAqampp57nPzPlm1l8+uB39Ly/C37BvjTqXJ+WvVPLHsmi60bQ5da25B0twFJiZd/mA6RvOVBm8ANC/Rg68Rm2LdtJ855XgMMe1OoNQFtbGQNA2rYCrrJHc1k6HZn/lMoWwaja+Rn9VIWmJgTM1yKch5AIKHwD0LsNv1Qa89ow4ERQV5jagOMgsvB1teG4gTlPhPl69+rS/4T08FWKEAYQBqQjDXDXiMgC0EWoOAyAMwvpTEPp6R9UmjuOdHf2jT8y6EfQhCIts5TevqG5qpdw5ahzOna7t5WXeJCuImTJD2DfCd73KRedfaPKDtJW3Y5a0f/A+Ca2qIveqCeyVjjR9SJo1r0RfR7sdlbBtH1bDrBvk1on712/j7b9WpxxbGVSGQY/Azg5OTgKtYovQ0pZcNLP04QQXwohQqSUxyrh+v+IjQuUp+ngzsNsWbqDFr2asOSv1YRGhdCmX3O8/bx4ZuTD7Fi1G61eS2hUMEmt6pY7R0qH+qR0qDo+ynMhvG5SfnRtCEIbphqD5N4FuJD+7ykZA8chNca+Rv3h65LcMsbLVFAw9wGkPKakE4Ayl402Coy+CPPpMsFCFwkBXyIdm1RnqX8yZ6EFY9VOCaxshCEF/D9BujIQxl4g9EhXkTuvvj3CVUf55DXBYGzq7rPrcMda0pGOWSrnHq1bdXOpasIifAE7lI5GGpqDqQtC6JCuEmTpSbUPtrpo/F5AGturOI2+aj/5ni8tejfhp12fYfI24huo0oe1Oi25R/PJz8onNjG6nFvU5XKRseMgqV0b4nS6aHURG59XhsFfBdQWQsQDB4GbgFtOHiCECAeOSCmlEKIZStIhuxKu/Y+59u7OWIqtNO6STO3UGmxZsgOj2cDiiSto3bcZQgg0Gg0JzevwxuR/4GKowgihKR+wc2ai5HEBy9/KR2/fpHK2zbcABrAvAM0hFcRzFZ1YSWoCwPdFNUYbofy7toXgsqmyfHfLPuH9AEIXgTC1Q1C1ugZdzghz+XaMwvfBEy80tRAB7554beqOdB5RhVjGlmoVrwaCvrUSwZMOpalvm6c0eCzTVa2E/1vI0plgnap6EDj3Iwyp6pr6K188cO+m/cwZNR9rqY1W1zWlyTUNy+3POZTDDy+PJWNHJsntE7nzjZvLjH5BdiE/vjwWISA2KeqCB2pP5j8bfCmlQwjxMDATlZb5g5RyixBiiHv/18AA4AEhhAPlAL5JSlnp7przoUmXZJp0UQ0w5oxeyMGdh1j61yoAWvdtVvZotWvtXlZOX0v9tok0bJd4xvNdiQhTJ6TrCZBOsG9TG+VxnXSzKsPXR4BtgdpkaAPG1qoBt+k6KHxLZYh4DwHX31D6GxKjShl0xwqkLgmhu+ni35yHMoQuFuF/ohkK3oOQ2mrKwDt2nojrGFqB9z0gAqDwf6Bvgiwe7c7K2qG0jgJ/QRiv7BV95p7D7Fm3j4SWtZk3ZhFpm/azepbK6Htt0vM07tygbGzWwRz2b81g24pdbFm6g+73dC6TWvcL9uWmF67nr89n0P3uzhe12r5S8vCllNOAaads+/qknz8HPq+Ma1UmHW5oxY5ValUTEOaP2edEgGXM2xOxldqYOuJv7nj9RroO7nCJZnnxERp/hM8DALisq5Tuja4hyh+/ClwZYL7LrWMvlV9fWx1h7qdcCMclFmwbVBAPlHHQ1VZGA656v/vliNAEqLaPJSPBy925S3gr2QXhrszVd1AuoNJRIELA539qu22u0tG/Qj9XS4mVt275mB2r9tB2QAvaD2zJgZ2HAOW+WTBuSTmDX7NhHMkdEtm2YhcNOySRk5lTZvA1Gg23D7uRG57uc1ZV3QvBFVdpay21MuPHeZQWWrj2ro4EhJ5Zv0Kn13Hb/wYSUaMaIVHBpHZNwelwkrnnCHVSa/DDC6q36Lwxi68qgw/uyk3rQih8TxVfaSPAvgL0DZVrB4uS1dUEgLEdSAfSMhdKRqnqTvONCEMLpX2jr696xuoTkLrJACcKgDxcNkhpB4uSzqB0DgR8rxq3O7Yh859R2/2HK7lrxybQBKrVf05vwIF0HkYEvH/J5n8hcdgdHN2vQo7HMnJo0q0h3gHeGEw68rMKcdpdZWOdDic/v/Y7C39fzsCne7Pw9+VM+24uSa3LFwVebGMPV6DBXz1zA58//D0ABpOefo/1POt4v2Bf+j56Yswfwyfz3fOjadUnlesf7s6sn+bT4ZSu9VcDsuRn1dtUl6hSII+v2l15YOoF9g3Kr2vsovLhhQlMPZUhANBUQ+ri0Gibgbl32Xk9hv7yQdq3Ii0zEPqGCFNnVT9h7q+6YGmCEYYGJ1b9boQwgu8LYLoG9ElIfNTvh+sgV6A5KcPH35uXf3uSjQu3ktw+gZd7vM3WZTu5bdhAOtwQR0JLlXS4c80eJn05k6LcYizFFlbP3ICl2ErNRnGX9gbcXHGfkF+IL1qdFqfDSeApvSjPh1Uz1gGwbPIaRu35jNtfuxGfAG/2bTnAr29PICDMn0Ev98cvyLeSZ3554HIWqS5VVne7QcdW8HkSdLeBfR3C2A5haIqr4C2wgVJNdLorcPUq0IdB9Zwt/ABp6q6kjT1cdsjiEWCZpmSZQ2epmgn76hMFdIa2YL4WTN1Avg9owdhRdQfT9VHnsO1SKbe6GHAcPPc1pQRZpPSDqhjJ7RJJbpfI2tkb2bJUNbfftnwXt/3vhBT4jB/mMvNHVYfQ497O1GoUT2KLusQ1OF3l9FJwxRn8Bm0S+Gjx61iLrSS3/+fB1hueuQ7fIF+aXJNMtdiwsoDKrJ/mMXeMqhxt0DaBNn2vvJRAV8kfUPyVysYQBlVlaWyL8BqkMnlMncrGCt8nkLok1a/W0Fo1FLctBAwqNbP4PfB5ElkyGin8Eebe5doIergM0LhzzbUxgJdqiqKJBlarfHuduzLauloF4oUGKYxIWaRW/vpGqhG8pprK1zc2x+U4irCvBW30aa0ipZQqS6v4W6TPw2i8776491sJuFwuso/kcu1dnUjflkGLk2pxsg5mE+GuxA2PD2PHyj0YzQZ63ncNGs3l0WvqivwLTGh2bgGntXM2kXXwGK36NC3LnQVo1r0xzbo3Pm28y+FCb9TjF+SDX9C5pXqrGlI6oegL9WjuylY+d+/HVYFUBQhhBkMysvhLcB4C74fBtshdjt8MzH+DZbYyFKCKs0wVNBL3cMkQPkPcNRXxJ9Qy/V9Geg1CaAJPSDFbF6jUXIn6jEt/Qxo7Qelk0PiomI59C9hXgisbWTpGBemDJ4LzANKRrmI/tiVg26zqOop/RHrdVuU0kLYs2cF7gz9Ho9Ew+LWB9HlQ1Y9k7j3CC11fpzC3iEe+uJv5vy5l76Z0/EP9OLr/2CVXyTzOFWnwj7Nm9kY2L9lGqz5Ny0kb71q7lxe6v4HL6eKut27m5udPLwo6Fe8ALxKa18Y32JvYpKqnD3IuhNAivQZB0ceqCYauiRI7O9sxungIGou0LYGCN0BXE8wdVNtC1zHVVg8A7Xnp43i4uAiNH1KfCM50pCtU9deVLoS+XtmTrbQsBmcGGHuqdE1NJOjqqeY0MlcV1hmuBebiPkAV6AkvZPGvqiOaKwNMPdwN7Q0q68fYGikFsmQC2JYgvAYgjC3PNNXLBp8AL4xmA9ZSG96+J36nj+w7SubeIzS5JpkvHxtJ7we74bA78AnwIiDszA3oLzZXrMHPPZLHq/3fp7TIwvYVu3l7+ktl+1yuExF16aro6NMZ+Mx1JLdPIqJGtcuic82FQHjfjTR2Ue3sioaBKw3pdQvSvlV1qtJUA/MNYFsJ9uWqsYmpC9K2GmQO2HNAF6tWegDkIwK+Bo0fwnD6U5OHS4t0FSHzHlF6SN73I7U1oPAd1Q7R92m1+pY5QJGqutVUg8CxyhVknQy2+aBvCl6DlIwDgL6J+v2xTACWqhoNWwYq1oP60vB7SVV0FwxTrRgNbZElY6uEwY9vEMtHC18n90geKZ1OVNsntqzD3W/dTG5WAWtmb2TWj/O47/3b6Hxr2zPq6VwKrliDrzfqqRYfyr5NBwiLKd9FqG5qLd6Y/DxZGdnn5YsvLbGwc+VuwmtUIzT63I2qqyqydDKUTgD7UjD1A1chsuhzpYToFsTCVQS22epR3TIdDPMQxi5I2yLlC9YmKs10ZxbC0AZhaHj2i3q4dMhClW0FYN8Hto1q1V4yErwGgy4KjJ2hdLp7fAlgR+jCkLq7lUtIVwtZ9CWU/AC6JIS5DxjbIS1/gqY6eN2msrr0TRDGtqCtgdBFKeG8UiULjPOgakhfRajd5PRGSEazkZue74fdZic+KYaivGLaDmhRztinbd7P0j9XUrdZLVK7plzEGZ9AXKKC1/MiNTVVrl69+l8ff3DPYdI3HyCxVR0CQv1xOpzkHslHZ9Celp+ffSgXvVFXln3jdDjLxI9+fm0co4b9TlxSNB/MG3pFrvDVau8J5aPFpR7bXXmqibj5bnDuUOJqjk2qgMo6H/SNEQHvIYQeKe1l2ThSOgFnlfPPXo3I0qlI22qEuRfSmaFW+KbrEb5PlH1+ruLRYHUL4AkNlPwCmhCE/9sIY2tcOferFF30EDACQTFSE10+DnDqdaUDWfQFlP4J3kMQXgPLNWCpythtdmaPWkhRXjFNr23ItO/mYjTpyNx7lEV/LMdoNvDjjk8Ijbowi0chxBopZWpF+67YFT5AZM3wMpXLwpwiPrj7C7Yu3UlyhyT6PdazTBRtzeyNvNrvfUKignj1r+fYMHczY96eSL/HezDgid4c3H0EgP3bDlKUW3JFGnyEF2hrgNGkNNT1DaB0tNonC8C2GFiuArKWSWBoB9pqKJE0PTgP4iqdjNDVQJh7qi8Q+x7Q1/QY/ssYYe6JMKs6FEETpKkbQpxYlUrbRrBvBa2v0sVHD+YbwbYMaVsJhlYInweRljhVcJd3HxI7eN0N5uuBig2+EDrweQSpiVCtL7Wh5bLAqjJrZ2/ko/uU0MCxjGz+/HQaGq2GzoNU0kJQ9UA2LtxKUqt6Fz2Ye0Ub/JNJ35bB0r/U00LBsUJ2rNpdZvC3LttBabGFAzsySduYzq/vTKQot4jxw6dw7V2d6PdYTwJC/ajbtCaRtatfytu4YAihAb+nkPYM0PojZCnS0Fg99jsPu0c5QRMOxhiwTlNfBKY+YEhEloyBkpFIhHpct28H6xTwfgTh+8glvTcP5085Y+84gsy9F7TVQZcMSNV7wLZE9Rsu/g6pT1GaPD4PIws+B0Nj5aJx7EAWDEUGjkTIQtVwBZSAXsFb6nfH50EoVLE1WSwQVcjgSymZ8MlUpo6Yw83P9+Uad3vE0uJSMnZlltUCRdaujtFsQG/Q0e3OjjS9NoWF45bxzq2f0aZvc4aOf/qizvuqMfixSVF0vLkNW5dup0bDGJp2Tynb1/r6puxZv4/A8ACCI4Ko3aQGWq0GoRFkH8ylTpMa1KnAb1fVkK4CZPEPIAsRXncgdKcUgzgPQP4jSps+8DM05u7qOGcOUuOOgxR9ozJudLXUH//xjkbH9ws/sM5RWuoAtn/vkvNwaZBSgnUB0nkMRJiqsdB4q9Rb4a2kNoo/Ux218p9FCj8I+ES1tbStUHILLrcefsFQpOUvpO9QNN43I23LwOaWb7A1Vdk/1qlVbnWfn13I98+Pxm5zMPrN8XS5rR1CCFZOXceIZ34hpWN9mvdqzIJxS6nbtBbd7+lMw/ZJFOYW8c3TowAoLbZc9HlfcQbf6XSyfeVuAsP8iah54nHSN8CHF0c/hs1mx2A4Uflps9opzithyIe3ozfpmPHDPEryS8g+lEdw9QDWzNpAbOIVkoZpXQrFXwIgNeEIn3vL77dvBacSk5O2dQhDKlJaQBOIMLRAWiaDPKy8ON7vIsw9VKk9ILwGIzGBdZaS2fV5Sj3i6xOQUl5URUAP/xHrUmT+s0oDydxVBWRtC8D3RTTed+Aqma6yc6TD3ei+BESgWjCAStn0fUcpqua4m95Y54D3zYBRpXLKEhB6RMBb4HpaBXirEL6B3lz/SHcmfjqdHvd2QQjBscwcJEpMbe2cjTTt3ohNi5TabHS9CLrc2g7fQB+G/vE0W5btJKllHZZPWU18g1iqxaonIJfLxcI/lpN7OJeON7c5qxbYv+GKM/jTv5vLJw+MILh6AB/Mf42o2tWRUlJSWIq3n1c5Yw8w6YsZfPP0KEKjg2nQNoE1szeSn1VA856NcTmdJLQ4dxFXlUEbq9QqZRFCV8F96VNVvrQzFxC4iseoLwhTTyj5GfQt1R+6NgxhbFVm7AGExozwuR1pbA7CB2mdDaVjoVQgNREIU/uLdpse/isOFcOxLVKxG0Nb9bM0Iy1/K6lsTSSQC14PqtW/dTp4PwSWieopwLkV4dUV6fMkWGYizEoKW+jrIAkFjRWhjVUFfNrIS3u7Z2He2CVsXryN5r0ak77lIHFJUTS9thFarZa73xnEDc9ch3+oHwd2HOT5bm9w7GAO3e/uxOG0o9itNm4bOpCMHZlUiwvj9w8n0/WODiS0qENCizq8f+fnzPppAXWb1eKDv4di8jaxedE23rxJNYW3lNi4+fm+lXo/V5zBz9yj/M3Zh/LIPZxHZK1wfn7tdyZ8PJXbhg6k/+O9yo0/6B6fdSAbs68ZS5F6zPIL9mXI8NuvKM0cYUiA4AkgrQi9apjssm1XhlkWInweRBPwMa6851XxlKGlanfn2A44wL4IvB4CXTzSZUOWfOsuqumGxthKXcMtjytLjzczk+6+th6DX2UwtlENb2yL3K/bI7wGICXIPCWbXfYlYPSDkj/VNt9XVY0GdjDfhSx8EzRhiKAxqqgLdz/jwA/VouMyl1I+sj+Ld277FJfTRc7hPBZPWIHeoOObDR8QXTcSrVZLQJhagWfuOVKmpllaZEWr09LkmhTqNKnB0kmrGHr9ewBodZoyQcdMdzJIxvZMivJKmPfrEgpziwiJDOLYwRzM3pWfv3/FGfzud3cGKQmvUY3ElnUoyivm9w8mYym2MPGTaVz/SHe02hO9Jnvc05nsgzkEhQeQvmU/A57qjdAIutzaDr8gX/KPFbBs8moiaoaTXEUboUjHXtXOTlMN4X1rWWDOVTIOLFPAtlyN09VB+NRUOjoAmjjQ5ihtHbwAM7iOQNFvYOwPzo1KaMuxHWloUm7Fj74lGLYBWtDGXcS79fBPkdKqGpq4jiG8blaxHe+7kdpwlWpr6q4yrUqnnWhWLbzU/9oglBlxAC7lynNlq59L3FleuiQwnehqJnRVw0Xq7e9FvWa12LpsJ15+6gvL6G0kfWsG1WJDMZhOZJ81aJvArf8bQM7hPPo+1oO4xBPxMZ8AbzRaDS6nC9+TZFnu+2AwyyavpmH7JNbP28xwd2bP/cNvJzwmlNST4oyVRaXk4QshrgU+QXW8+k5K+c4p+4V7fw+gBLhDSrn2XOf9r3n4oAJQ497/i4mfTmfQS/3o/cDpvVOPpGexa81ezH4mXuv/ITaLnTenvkDjLsmMfGUso98Yj96o58s175b7IKsKrsKPlCgaIAJ/QBiVPo4r91FwZYEzHWQJIuArhLElLnu6Usu0zgFKwXcYwpmu0vAc21SHI019sI5WPn/hjQiZh9AGlLuutG0CnKrXqofLFmlZhMxzC5l5P4TG97GKx0kbsnQaIEGfgpBZyNJ54NwOmFTZun0e6OqC171Q8AyIUETwTwhdzYt2P5VJzuE8MvccplpcKEv/WsXySatZPWsDD358J30f7XHe59myZDulxRYadWpQYXPzxRNX8Gr/DwAYNvEZWl/37/vcXtA8fCGEFvgCuAbV0HyVEGKSlHLrScO6A7Xd/5oDX7n/v+A4HU4SW9Wldd9mRNWuuBN9tdhQqsWGMnPkPEoKSwE4tO8o1lIb0qW+EKVLgkt9gexel4ZfsG9ZoOWyR+fOMBIhKsXuOIY2qo2dsRto406Utpf+qmSR7Wrlj20pmDorgSxHuirFN0m18tfVU7ncpxh7AGFocNo2D5ch2nB3bCfvrE9jQhgQXteftCUeZCmycB3oY92NcRqCCFa/T8GTQPgidBX/3VUFgsIDCAoPAFQXqy8f+5HkdonYrLZ/dJ6k1md3X7Xsk8qbU18AIUjteuGq0yvDpdMM2C2l3AsghBgLXAecbPCvA0a5+9guF0IECCGqSykPVcL1z8qUr2bxxeM/EhYbyvD5w6gWe+ZChxa9mnDLS/3Q6XVsX76TUa/8xoOf3sljX91HRM1w4upHM3PkPD6460vCYkN5f84r5TKBLleEqY9qNK3xL5eKqQqkcsB1CGE6qcmLMx1kqVrJSxtow5HZfVU6nrGtqrJ1ZSkfrtftqnmGhyqL0NeG4N/AVaiCtedA2jYiS0aphYT5RjA2g+KvlZvHeK3S0XGkQcgExHmI5kn7LlXvoU+5rKttE1vW4e63b+HHl8ZiKbbQ+ZZ2hEQGVcq5tVpthSq9lU1lGPxI4MBJrzM4ffVe0ZhI4DSDL4S4D7gPICYm5j9PLnOvCowcTc8i90gBRXkl+AX7Ehql8satpVZWTF2HRifYv+0gkbWqU7NRHENSVEu3Rb8vZ9D/BvD986OZNWoekbXCy86XlZFTzuBnZWTj5WvC2//yUoYUQoCh/unbNd4I3yGnH2DsArb1oA9Uqz/bareOCoCfEsvSNwNDRzC2uKBz93BxEG7t+/NBlv6lqq1BpWBq3E+60n4i/iNOd1tUeC7bVmTuLer3y+99hNd1/2TaFxWNRsOxgzk47A52rtnLwV2ZlWbwLxaVYfArSrA+NTBwPmPURilHACNA+fD/29Sgx31d0Oq0xCZGsmHBZvZvO4hGq+GWF/tSPT6cWT8t4NMHv0Wj0dCoc33W/b2Zd+f8j253dmDF1HU4nS7mjlnMimkq5HDve7fS9c4ORNWOILHlidTGReOX89Ytn1CjYSzDJjxT9oVSJdGEgOUvQILfuyrLxtRHSd+iQXjdBcKMzH8aij9A+g+vUlWSHv4ZUtrAMgeJBmHqAoYGUCpUPr0rTz35+byM0NVESofy5QtvcGaC5hxpza6jJxYTrswLfi//lQ43tObgrkPEJUVTu8m54xKrZ67nry9n0LhzA657WBUyFueX4BPgfUlqUyrj+SkDODmSGQWc+smdz5gLQlxiNPd/MJiAagF899xoZo2cz7GMHLYt3wWAzaJ8cS6XCyEEbfo1Y+h175FzOJ8aDeNYMnElsYlRNOvZmA43tiLnUC6H9x5lw/wtHN2fXXadLUt3qG/+1XvI2HnBPVUXFtdRwAJYVWGN12AlqWBbCc6d6tHdsUf59mUJ0rr0Us/YQyUjnTnI0klI22awzETmPw75jyLzX0cYWkLgDKWkKQxg7ILGZzAYW0LJ92AZB/alSPu2c1/I2BJ8XwTvBxGm6y/0bf1nElvW4c0pL3Lvu7fh5Vu+CfmutXt5beCHfPvczxQXqC+xv76cwfLJa/jy8ZFk7j7MT8PGcUvMA4waNq4shfxiUhkr/FVAbSFEPHAQuAm45ZQxk4CH3f795kD+xfDfn8zJuvdCQ5krpusdHTCYDHj7e+EX4svsUQsoKSxl1fR1PDD8dq69syO5R/NYOVWt8Hs/2I2NC1R4YvXM9UTWuhaA9je0ImNnJjEJUdRtWjUyEqR1PtK2EWHqhtDXLdsujB2Q3veClMqnm/egUs00dgLrXKTzMEKfoLTx7VsQpq6X8C48XAhk8XdQ8p0K5vo8dWKHq0jts/4NuvpgXwO6uOM7VatDAFc+WBbg0oYjDE3PuJoVwojwvuMC3smFxWaxcSjtKGGxISz4fSmLxqtEh0adk0nt2pDGnRuwfPIaWvZJxehtYPyHk7GW2pg9agEbFmzmxTFPEBJx8dxC/9ngSykdQoiHgZmotMwfpJRbhBBD3Pu/BqahUjJ3o9Iy7/yv1/2nNOuewvO/PMrhtCM0aJdIPXcbRN8AH3oPOWGwnHYnO1buJrVrMj3u7YLJ28SUb2YDyhdeq1EcAWH+SOkqp6+T0Lw2b0x+4eLe1L9ESgeyZCwUvg3Ykc59iIDhZfuFNhThq2IY0rYe6Tq+EtGCsTtYFoLPIIT5evB5EqGtWn5MD2dHylJVbwHK3WJoCj4vKH+9NhJKvgGketLThKimJygFTOk1GOzrVcczUQi5dyG970M6j4I2EOF9X5VsYH4mfnjpV8Z/pEQWW13XFJ1+KuHxYWRlHGP0m+NJ6VSfkTs/JbBaAGYfE7e/diN/fjadOqk1WfrXKopyiy+qwb+i9fD/LU6ns1xxlrXUyoopa/EO8KLJNQ3Jy8pHSggMq5oyydKRrjoduXLVH7bXXWj8nq94rHQiS/9Q6peYgTxwWZWcbckPYGiHCPzSI4F8BSFLZyOLv1DieIYWaHzuA8DlLIScu5RUsn0NeD+KMHVB6GLVcY49yGO9VPaONgFsf4MsVu5AYVTZX96PqSpb800IfeylvM3/jNPh5Pbaj3AkPQsvPy9Gp3/JpC9msG7uZnIyc9m//SDVa4QxYsOHmE6qmk3fmsHsXxYQXz+GzrdUfp/nq1YP/99ysrEH1c2m3cAT7dcqW9DooqMJVSmXwqj61xo7nDZEukpBCIQwIbxuxFU8Cqxzld8eVF9SAPs6lcLpMfhXDtoQ0NZRshmOHbgch9HowtFofXEZU91B/JsQhtYIXSzStkq5erT1lHF37ALTANDXU7Idpv4qbVMTAbaFYF+HFCaEvuICr8sdS6mVgqwCQqNDGPLh7cwft5RWfVLx8fdGSsm+TfupFq/Sv4MjgtCcUmgVmxjFPW8NuhRT9xj8kyktsrBnfRqRtasTWC3gUk/ngiClE4QBEfAusvg3KPoQSn9BBk9EuH2x0rZFZeAIPdJwrep2JYtBE6bkj2UBGBqBNkqJqGmq+Begh3IIQyNk8c9gXw12QNcIfFRDemFsibQtB10c0pWLtCyCovdVoN/nWUTQD+A4gNQlIOxLkb7vIjQSaWgK6CFPPS2grXoV6wCWEgsf3PUlC8Yt45HP7qbPQ9fSpt+JLPR+j/WiZsN4fAK8yD6US53UmhiMSrBx35YD7N+WQcMOSfiHXJrG5le1wV8xbS3zf1tCarcUOt/SllGvjuOPDyfTsH0ir09+AbPP5dN8uDKQjnRk/kvunOc3wLkHsIDUKanb4+Psq937UNW0VndPU1N/d6ereIT3vZd1kYyH/4g+BawzlaZ9uYB+OzC0QOY+CiW3g9f9qghPGwMui8rn18Uji75FFr0Pxk5I61wQgYjgXyF4rAro6pMv3b39B3IO5bFg3DJA2Y9eD3Rl19o0AkL9qBYbitnHRIteKqZRmFPIgnHL8A/zI6l1XV7q+RZH9x+j3+M9eWD4HZdk/le1wf/++dGkbd7PgnHLSO3WkJ2rlZHbsnQnJYUlV5zBx74W7CvVz5Ypyh1jaAnGbgh9rbJhwtACqW8ECCWDqwlVXxKuo6q6VlsH4feIapRhWwlChzA0uTT35KHSka4ilZGlrw8iAI3hRHKCdOxBlvzpduHplZKqK1v98zm5s5nTfYC7yYfMBecxhPHfa8RcDlSLC+Xe925jxZQ19H6gGzO+n8tH939DeHwo780ZSvX4amVjp/84j2+f+RmAV/98lryjBQAUZhcCqonKrtV7iasffdEKuK5qg9+0ewppm/fT6rpUzD5mbn/1Rhb8vpSG7esTXP0KzDzRp4AuRemZa6PBsUNtN5XX3Bb6uhD0K7JkMhQ+r/a7HIBb8tjUDZdtl1r529eq4hufZ8rLM3iokkj7LmTuQ6r+wtwPTAPL7y/+xd3rWAM+ryjD79gLhhTESat24XUTUgSCxk+lb2ojVPvDKo5Wq+WGp/tww9N9APj6qZ8AOJyWxdzRi/EJ8qb73Z0xGPVlvTc0Gg3+oX68+ucz7Fy9p8wF9O0zPzNz5Dzqt03g7ekvYfIyVnzRSuSqNviDh91Ap0FtCY8Lw2DUk9wuscpKIJ8PQhcPwb8AEqQDiQMQCNM1ZWOkYy+ydKLS3nEVAE6w/AHme0BWB4MenPlQ9La7sTmqpZ3MuRS35KGycWwB174TPxftRQZ+BuiQpX+qJz1dgsrusi0DQ3NE6HRAjxAC6dgDziNgaILG+0Z1HnerzCuRbnd2xGF34nK5mPDJVAqyCwmqFkDb/i3odlcHAsL88AvxI6mlcouldk0pO3bflv0ApG1Ix2axeQz+hcZoNlIzOe4fH2ez2Ni2YhdhMSHlHuGqAmXpk8KI8L7ttP2y5FcoUasWAn8GnlB/5NZF4NzqboqSrsrphY96WtAlq6pLD1UffTP1WTqzlHCeYxPSmY1wHYYCd+qusZfqWWybCRpvZLFTNU0RemT2rSCzwecphM/9l/ZeLgLx9WN4+NO7+Ozh7yjILkSr06LRqiIzs7eZDje2xlJqZcuS7Ri9jYTHheEToLS2hgy/g2WTVpPSMemiNVq6qg1+RbhcLuaOXszRA8focls7wqJDyNiZibe/V1nmzoRPpvH9C6OJrFWdD+YPu6iFExccjfsLTISBNkwFby2TlE9XmMHQAnR1VHqmoR3ok9yyypdvPYeHcyPt25CFX6n2lb7DwLkHaZmi3IC5DyO97wDhq1QtNWZw6cDoFjorehtKI5E+byhjD2DfhJSuqyaw37Z/c1wuSUTNMJr3LB/P+uXV3/ntvb+IrhtBVJ3qPPLlvYRGBmP2MRGfHEONhhevHsFj8E9h67KdvHv7Z4BaycclRfP2oE+JT45h2IRnCI8L45BbgTNzz2EKswuvKIMvvG9D6uop444J7BuUkXdJRNDXZSmY0tAUHAeRshhZ/D2UjEP6PoLGfPmqHXpQSGnjuAumbJt1mXpyc6xB6uLReA8CTRCy6AuQR1QNhv/nYFsCwh8CngHLNCWVjcvdwNwBxh5KV1/a1WuurPqMPRv2Mf27OUTVjaT3kK5lzUzyjhZiLbURXff/7Z11eFRHF4ffWY8rkAQIJMGCBUII7u7SUqhBDajrV3d3qJcaLRVaaCm0RYq7B3cIHiPuWZ/vj1kCIQlSHPZ9njzZ7J1779zZzblzz5zzOzXQ6U+Y1YR/N5UWMk9OTCMgxJ/UxDR0ei0v9H+bzORs+o/twSNfjrkk/b/uDf7B7UeY/slsqtQIYtgTA/Dy88TDy0RJkRm/IF/2bTpI+6HxZBzNYvU/CQx5qC+DHuiFl68HEU3CiWhydWcLnooQRqRjLxS8A8Yb1YKbZRbomyMtqxEevVXlo7wXVMKVdTngofz4xb+Ay+BL83KkfS/C1LOMBr+by4u0rEXmv6CqUvm+gtAGqw3CU1UzA1XkBkBXS2njONPVd8D7QTS+/ztxMK9bcDqzAYtSx9RVVYu1lhUIY4drMvt6zncL+evzuQDUi4uiYet6FOYWMm70l5QUmtmxcjfxfZuj0agnm13rEjF5mWjVP5awiBA8fD2w2x047E5KXMWWSlx1tC8F173BX/TrCuZ8uxBQejhxvZrx4bJXyUnLo1mXRhzemcRT3V9Do9WwZfEO/Kv60WFoK8a8P/Iy9/wiYlbjgW0ZCNfTi30PFH+H1NVG4uuK9KkO+vZK/FrmgWEwTssaKJ4KFINtJ9KRhPB7+XJdiZtTkJalSuLAcRjsw0GrUvuFqTvStlPNzoUfTkceQmMEXR2w7wV9I5WZffKxHNkq7NK6FpAIr/sRxtaIa7hGQrXaSvu/So0gDu84SsPW9TB5mWg9II7Fv64gvs8JYw/QfmgrkvamEBjiT0jtqnz28ER+e2c645a8ymt/Pc3ehP20HlChCsJF4bo3+HWa1Uaj0VCtVjBhUcp/Xbf5ibjjqGa16XZbB5L3pbFyxjpWzljHC1Mep9NJUgvXCtK2B2lZrtLitREq5E7fCsz/gHCAdataqC2ZoSJ0hLcK2yv5Xs3w7RtVqKZwqCxNQxvQeJY9h7NIxe2Lix+R4KY8wthB+eZ10a7i9CBtiUhHslLAlBlg0kHWYKQmADzvAGcR6JsjtGEqU9u+D2ndCkWfgmmEaqOtCfp6l/XaLiRSSlb/k0DusTw63NganwBVfLxBfB2ad2tCYU4RR/cohXedXsejX45m+JODCKtXtgJeRONwnv1ZSUj8Me4fAJwOJyVFFuJ6xtC0U6NLeFXXscEvyi9m86JtbF+5hxHPDaHLiPaE1Qkt106j0TDmvdtZ8PMyEuZuBtSX4VpE5r+p6tgae4FlHmoh1gn2LaCLAq+7XUk2LvVMWawe+/Udla9f5oE+DkQIGHqDPkIZhOPHt6xF5j2h6qb6vY/QqfGW0grOPIT2KqkRfBUjjG0g+F8lryF0SOt2ZM5tyj1n7KR88tIJzmT140hC+L2GcN24nUWToOBNFbarj4Xij5U7x9gJWVSCxIrQRSNMXS7vhZ4n21fs4pUh7yOlpCi/mGFPqLj76Fb1aDOgBWkH0+l954lr9PT1JKpZ7dMes+eozmh1GnwCfWjerXwFukvBdWnwi/KLmfTybyz4cRkFOUW07N2M0NpVqd2wRoXtDSYDPUZ2Ki140G5wy0vZ3UuH8Fa+XU0wYATM6rUwgW0bmIYgs29Rj/meo1Q1I+kJHiOgcI8y+MJXlT0seAGsgDYcqRsE1gSkbbNKw3emK3+xLhTpLEHmvwTmmUjfV9F43nR5x+A6QJz81OVIO1FxSlsbvB5WhtzhqkhqmaeEzrzvUn/bU9UivvCktJCdLFLJd45jUPIjEh0EzyrVZroa0Wi1Kq9AyjJiijq9jiEP9yvX3mq2sm72JrwDvGjWpWJj7hvkU+G+l5Lr0uBnp+RgszgwF6tqV9IpqV73xKNY0t5Uso/lsGv1HnwCfeg5qjN6g57Ow1UmaXZqDkUFJdSsF3ZZ+n+xEL7Pu+Lwv3G5Y2qowtYBP6vwOtsOJDZlrE23gGWGKmNn6g9+H4N9N8LYGex7SoM0hfBUCTv5zwEmFcON9USxbOcxVzlFwLwI3Ab/0mJsB95PgTMf4Xlz6VOXU3hD3pNgaAiyCKfTikZjUMlYtrWAAQKmgLaaejqQnqpYClLJKuNxmpNe+TRqW5+35jxHbno+bQedeYK34KeljB/7NdXrhNC4fTTmYgs3PzuEqJjaF7+z58B5GXwhRCAwBagNHAJuklLmVNDuEFCAEtiwV6bVfKkIqxtCzQZhtOjRFINJT53mEXzywHc89Nnd6PRanu39JuYiC/F9m7Nm5gaqhgeXZsgl7Uvl2d6vk34kixemPE6Hk5TyrnaErjqYuiBLZqNm+BawLANtTaQzFfQtwfcdlYErbMpPD2o2mP+Mel9fH4ydEf4TUWF6HaDoK9cZzOAxGI3pJA1wbXXwfgRK5iE8b7y0F3ydIK0JyOLflcCZNsIlWdwJ4XkHQuOB8L6n3D4aY1OcHoOhaPzxd5DeY5Sf3rYWdA0Q+toI44miP9KZB/pI0EUgdFdXQmJFtOgRU+Zvh93B0T0pBNcIxNvPq8y24kILAFVqBjP3h8UABFcPJOrD2pekr2fL+c7wnwEWSinfEUI84/r76UradpFSZp7n+S4IWq2WoQ/3o1HbBuxN2M/3L/xKQXYhmxdvJzMpm2JXuJTR00itRjXxOSkLLiUxjbSDGQAkbjpwTRl8AGFogfS+BwpeUW+YBoF9u1q4NaaCZSaYBoDXA+opwL5PuYEsc0B4I217EfrGCFP7Ewc1DVXrHtqgchEcQugR3g+A9wOX7iKvM2TxL2Cepf4w3aTWaWxrwNhdrcGc3NaR6crBcIDjpCqkto3I4ikI70dVJq42EqEpa/SExg88ype7lNb1SOs6hKEjwtDkAl/dpeOPcf/w7TO/0KpvLM//9lgZccVed3Qm42gm5mIrqQePkZ2SQ/rhDI7sTia8QfUyx7FabGi1mtIY/kvJ+Rr8QUBn1+tJwBIqN/hXFHabnRXT1rBz9V5qNaxJ8t5k6rWIZN4PS2jZuxl6o560g8foP7YH9eNO1Kht3L4Bt714I1kp2XQZ0f40Z7h6EdoaJ/Jm9S1cETke4Dig3jP/g/B5AgImgrQo7XR9K+UDNk9D2naA30ulcdhCF4LwKW/QpXUbsuQvMDRxJ2xdTPSNlcHXRgFK0Atjb9BUUVFTMhehrY40L0LmPgK6huB1H1gXgaGTeipw7AFHtipPaGx71qeWzgJk7uPgPIbUL4HAqZXWt73S2bx4OwDr5mwiLzO/jMH3CfBm9Lu3cXhHEkGhfmxZvJOVM9Yz5NF+wAmDvychkQ/v/hLfIG+e+PY+QiNDTj3NReV8DX6148XIpZSpQoiqlbSTwDwhhAS+klJ+fZ7nPW8yk7P57d0ZAHS4sTVvzHyG3Ix8BtzXk40Lt2HQCo4dzqRx+wZl9tu+YhfL/1xDXK9mhERWdrlXOcYOCP/vAIuKvtA1APSqdJ3wA2NHZOFkEFaE592AXbkLHEfAvl9VPXLkgu704yOLf1BPDiUapD7mql7ku5IRnqOQmkhwJIKuEXiNADSAXRljWYzURYPGD7CAfRMgQNcApMGljmkDRw7S1h9p2wTaOmiMMac9rzq5HjShaq1GVL1qjT3AjY8PwDvAm2adG1GtVvmIMp1eR1Sz2syZuBCdQUebwS2pXieU7LRcfnjxN/KzCmjcvgEHtynRtF1r9l15Bl8IsQCoqFfPn8N52kkpU1w3hPlCiN1SymWVnG8MMAYgPDz8HE5xbgSFBTDkkb7Mn7SUVn1jObTjKM/2egOH3cl7i14isKofOoOeKjWCSvfJSc9l6/JdVKkexJGdSRzZmVymkPm1ghACTvKzC2MzMDYr/dtZ/AcUvguA1EYrn7AuQrkJQBVTqSDEUkozWLeAtjpCV0PdQAB09ZDOfLCsAUMcQlyXsQT/CWk/CM7Ccq4SKa1gSwRtKEIbgPDoAnRB2o8is+8G51GkzysqoU7jAyU/gSYcjANBGwr5j6ssa2M3IF2F3erqKCXV4kmg8cbp/y0aw+nVZYUwgf+HYNupdHmuYlr0iCnn1z+ZgpxCco7lYrPa2LhgK1VqBqHVaVg7ayNzvlPJjDXrhxEeXR2/YF8atLr0eQtn/M+SUnavbJsQ4pgQItQ1uw8F0is5Rorrd7oQYjoQD1Ro8F2z/69BFTE/8yX8N/QGPfeNu4M7XhuBp48H/05cREmhmbieMXz+wHfUi69D33u6YzDp8Qv25c+PZ7Fm5gZCalchYd4WAHre2fmaNPiVIZ25YN3oCtX0UvHa2ppKKdGyFIz9wL4V9I2R+a8jtRGAATRGla2JHoq/BG0kBP6E8LobDK2QUkDOHUhZCD4vIe27VRvPWxD2RNAElUaPuDmBtO1CZt+msp79xiE8ToT8yaLvVflKXRzS732EYzvSfgQwnSR/vBs87z7h39cEgKkXlPwFhhYqJt/YBUSwCr2VBvX5YganWT0xcGY5caGrCde4vEZWSjavDx/HjpV7GPvhSJ747j7qNI/A6XCSMH8zwdUDKc4voUXPGG5/ZRgajaaM5s6l4nzP+DcwCnjH9fuvUxsIIbwAjZSywPW6J/DaeZ73giCEKI2tb9UvlmH/G0j64QwS5m1h36aDJO1JwWF38sAnd/Dds5Oxmq30uVsV79ZoNARU8b+Mvb/0yMLP1UKeLACfFxCGOFXE2hANHreqOqcl81TRFGNXKPlVGRFdY1XxSONy8TgOnki0MsSBZa0y9gDWBLDMdp1Rhyx8AzS1IHASQndthcGeN4409VkA0nGYMs4Sm5qUYN8Axb8hHTtQIZONVNF6aQZ9NBrPm5CmbqqwuDYSskcAVtDVVX5880xl5IW3yswVfmDoBdoAhOHaKXhjt9n58+PZ7Fqzl8EP9SGmUyPysgpISUwlonE4Jq/Kq985HA7+mTCPHStVQaFdq/dy28vD8PH3IjM5m8WTVxLRJJzed3WtNEb/UnG+Bv8dYKoQ4m7gCDAMQAgRBnwrpewLVAOmu3x3OmCylPLf8zzvBSegmj9j3rudmV/PJ2lvKmF1QwgOC+TA1sNMefdvGrSpw9bFO7FZ7dz11s00bFMfk7eJ7LRcAkP8L3f3Lw1SKrVEWQSOJPBQIlJC4wUG9UWWlLjalgAOcGaixLU81AKwNhz00Qh9HaRtP2j81WzS9w2VxetwRfVqo1RCkDZKSTQ704Fry+BLZz4IL4Q4t2gNlZlcoBKgvJ8EZw7CNLBMG+F5B1ICQqOKzltXAU7wigVaqCQ5RybSkX1iBi4tSGMXVcvW0B6Nz2M4bfvUATUhYByAMLU7ZzE86TiGLPhA9dPnSVVR7Qrj8K4kvnlKlSP08DbRoFUd3h35CevnbGboI325b/ydle5bnF/CnImLaDc4HkuxhZDIarw/6jMObD3C05Me5N5xoziw5TDxfZpfqsuplPMy+FLKLKBc5QuXC6ev6/UB4CxWdy4/dpudGR/PpmZ0dZb/sYa4XjFsWbIDgIEP9KbtgDiCwoJo3S+Wv7+cyzdP/Uy9FpE8/MUY6sTWLpORd01iGqoMvXURGLuV+tql/ShofBEaP4THEKTwUn584VJi1IaAoS3C2LI0csdZ/CfkPwvauoiAb9B43oQz5z5XFaXOoK0BReNA3xw8X1ORJmdA2g8BXNGLv9KZC450pG07FLyuQlx9nz9rbSHpLELmvaiMsu8baLxHn7K9EJCqdqzGB1k4QbnUcKoGGn/1ZFD8rWov9Ajv0Uh7MrLwI0AL/hNP1Cj2GAwUgbMYYYguY+ylIxtsW0FX7/RPX9aE0uQ6aWl5RRr8KjWCiOnSmC2Lt9OoXQNKCsxsXqT+97ev2F3hPkV5RZQUmgmuHsSdr41g6e+r8K/mz971+9m38SAA25bv4uEvRle4/+XAvTp2ElqdlpoNwjAXqSSKoLBAvPw80el1ZCVnc/9Hd5CVnE1Wam7pSvveDQf49pmfaTMwjqGPXN606YuNxtgQqR/nWijMw2lerlLq859UbpuAL0E6EcITDA0RXhUnUkl7CphdWj2Ovcii75Aab5XZK4uV+8fmigG37UL4f3nGhVxpTVCLkTgh4FuE8cLmR0hpOW/BN+ksQOY84ioe31w9KZX8pjSKTomHr7gPJciir1U5SX1jsC5FGtsji34FZwpKlz4fHPvA/2OEoTEi4GMlX6FVM3j0rcDyDupf365cNYC0rDiR8WyIA9kQaU5A6GNAF660d3Rl16tkwTtgnqHqJAdOQmgqya7VN1BrMs5sxBVa19Y30IdX/vwfeen5hNVRMSpj3ruNXWv30WNkp3Ltd63Zy6cPfcehbUd4fspj9L6rK73v6sqPr0xl86JttO4fi7nIQucRV5bby23wT0IIwcNfjGbvhv20G9KSWtHhxHRuyKYF24jr3YwDWw7zTK83KCk08/jXY9FqtRTmFrFh3hZ8g32uaYMvnSWqLKLGU/np7QlgWw+G9sqva9+qDHnRBLAuBF0LCPqhnJGUjgxk8Y8qBNDQVfn4LbOV68f/B3BkgtCqH0NHhCEGoT1RYEZKh4pK0fqVPa79ILjcSdJ+4IIZfCktyIL3wDwH6fM8Go/z+IydmWBbrV5r64HmCHj0U1ExZ9MXyzp1s7AfVpmupoFK7ti+QT0ZgasE5VGVbKV5CLTBKpvWVc5SOovUGBpagS4GDJ2Q0q5m/ZogtRCvb4gseFOFzOpbIQK/UdE2p+Jw6eY7DoK0UpmcgtBFQdBUkPYyn+WVhrefV2kG7cYFW/n8ke8BCKsTwtFdyXQf2QmfAG+WTFnJ7G8WsG+DyktZP2cTRg8jMV0aMex/A4hqVpvgGoHUj6tz2a6lMtwG/xQCqvnTqu+JEmVNOjSgx+2dAVj86wrys9QiWc6xPB7/9l7+mTAPo6eBPveoYKac9DwMJj1evp7ljn21Is0LkPkvqiQc3xfUbPK4uJZ9t9LS0QaAvi44XTNzZzJIByevJDqL/wTrOjD/qd4w9lGheuYZyrWjq4U0xCilTlkIpgEI04nMTSmtalZZMg3p/TQar1tKtwljZ6TXaHVOQ2ucxdPAcQRh6oc4H9leRzIUK98u5jnKQP9XtLXB5xWwbUCYuoPv02f35GLbA4Z2UPwdWNeAoQN4DEKYuoJ1k/LVawKVtIUmHHSF4ExHFoxXobI+LyA8egGu9ZaAj5HWXao0YfE3SN/3VDa1JkTdaO3JYNuvOmDfq4x5BQZf+DyLtCxC6FuVuwGXa6vx/Q8DdmnYumwnVrON5t0al7plj+tsAexes4+EeVvQ6LQMeqA3u9ftI/VAOi17N8NmsZOSmMazvd+gx8hOZCVn8/CXo6legfLulYDb4J8DsT2aMvypQZQUlNB+aDwajYZB9/dm0P29cTgcLJy8nJkT5lGcX8LL054s1dc/ldzMfJDgX+XK/Sc4GWlZqBZUzX+C520Ir+FIcwg4U5VBPUkKV/q+grSuQBhaqacBaQHzIqS0QcGraqHR0AFwgOkGNB4dkcY2ql6q8xg4Dim/sCbAleKvXCE4c9UCpG0n6GPAug6npiYaD1e+gMYX4TECKfygcByU/A7YkI5UhP97Z3+tjmyw7wRdfRVFpA0Dz1uhZDaY+pRvbz+ILJ4K2hAlPlZJlScp7SDNrpvULWXeP9XoK9fNr2qh2rpByVN7PaxeA8h8NB59ARCG5uD3ulq/sB9SkVCOTMAJluN+838RHr2Qtr1IS4K6CWsC1c0alCCavgkUfab+9jAj/F5AmhcjDG0qNdbC0AxhaHYWo3rlsnHhVp7t9SZOp5OHPrubhLlbiOnckP739eLpHx/i2OF05ny7CKC0+Hjd2CgO70rGL9iH2o3D+faZXwDISctl48JtbFu+y23wrybMJRbSD2cSUrsKBtOJf2C/YF/ueee2CveZ8+1CPr7vG4JCAwiuEcShHUcqNPi71+3j5cHvIQS89vcz1GsRVcHRriyEsbvy8Ro7KGEsjRfCULH+3alGQJb841LKxLXom6VcQZhBWws8OiJ0KsHO6Tis3ANYlfG3H0M6spC5D4FtI/i87orkOawifmwrwKMDUtqR+W9AyRTwuhdsu9TCr2OPKsR+Dsj811U5P0N7CJigXBk+L4H3k6WywtKagLQsRRjaq3Ep/k7trKuvpKFPPaazAJn3kpKo8Htbze4BaV6FzH8LaWwNujCEaTBCG4g0L4bCd9TOho7qtzMb4fch0roaTL1xWreDLkpJ+Fo3qugpZ4FLyVILplvB6AnWlQhjD6S0IfPHg3O/uqka2oGxp7qRmnog9I2Q2nCQFoSp72k/46sZh91BSZG51HVTlFuM0+lEo9Ww7t/NrJ25gdX/JBDfJ5but6mxb9KhIZZiC7HdmwIQVqca+xL2k5dZwNDH+vHohDHkpOexcf5WoprVJvoyJFSdLW6DfwoOh4MvH/2B2d8s4IbH+nPvh6NKt9msNjKTsgmqHsjehP3M/2kp0fF16X1XV5L2KldGVmoO3W/vSMM2FX/oexP2k52WC8C+DQeuDoNv6qaSqzBUmhovLUuQ5hUIUzdVZKN0g+3Ea2MnwAvyN6o4cFmkmkirStyyHwJNBOg1oPEFjZdyqRxX5bRvUS4bcMWRx6vXzgIoma5em+eqG0vReLWQfFIBljOhqjm5Zr22XS5XhuuahcvYS5uKknHsVzpAx0XfRJCSCq4I+0F1E0GDtKw6YfAtC0FXRWW5ItXCsPd9rp1MgFnJG5h6KeExXTUwdUXmPAjWJWAahDS0UUqloBLfXGOKcy9gBN+XEB591ROGxgMcBa7tueBMBBwIbSRCGBCeg896rK5GCvOK+Pjer1n/72ae+O4+OgxtTXzf5jw6YQzWEisIwdqZG4jr3QyhETgcDrRaLU07lk0u8wv2pThfrRdZiiz0G9MDgBse649GIzB6lF/cLyk0k5KYRvW6IaeN6b/YuA3+KZQUmlk6dRUAy/9Ywz3v3FqaEffDi78x9f2/GfpIX7JSc1k6dRVzvllIkw7RdB7RloKcQrRaDYMe6I1/lYp9mi17N6PLiLYgNMSeJk37SuN0ESpKIOspkLlI60oInlkaWy48BqrQP+EJpp7K9WAaqITY7LtwFnwO2iDIfwkQamZtWw+mIWrGrK+v5JNt2xEeg8FjONK6XhVaKZmCxIHw6In0fQlKZiE8b0ZaV6AqdW1FyCyg4sI25a9RC76vIi2LEYZ2CI13Ba10qvqXY7/6bRqE0DUAjT/CFWkjpQNs29UiqLa6audxu1q0tasyksLYQZUbLE5Vx8RW6icXxg5Iz7vUzc7QAY3pxAK0dGSr2Tyoc2hrn+iapoYSRZMW0FQDe6K6kXr0B7RqoVhbFexHlbvM0MG1KH56//u1QvK+VJZMUf/b62ZvpMPQ1mQmZVOneQT1XAKJcb2bseCnZdzZ4BFGvXoTt704rNxxwqJCeHXGU+zfcogON5x4ovOoxJBLKfni0e/5d+Ii+tzTjce+GnvZNIXcBv8UvP28eOize1g5Yy2dR7QvNfZWq42FPy8HYM3MDXS9RfmOo1vXxTfYh11r9zHvhyUARMbUZvCD5f29AKGRITw3+bGLfyGXEmFU8fLWxWBoWiaRSGi8yujcS8tSlR16PKpEswFk9PGtLtXNBuDYrTJ19VFovB9AmlcgLatUBq+2FhT/ALa1qki6R09VKcvzJhXn7sxSLgt9c3XDOKdLiUcY45G2fSoqxtCibGKUZZlKHvMcq9rLQoSh7I1blvwO+a+AcYASIvO4CTyGQ3Z/1/aqyuCbOoMhTqmL2g8AWpzZD4I+EuFzPzgL1IK52Q7GOJW85DgGHkPV04emmtK1MXRVVaqkTT2hOI4AevAaizA0Vfo5+a+AM1tly1rnq74H/oQwXFvy3qcjvEEN+t/bgw3zt9J+aGsO7TzKE51eJj+rgKcmPUiP2zvhX8WXPz9SUhP/TlzMzc8N5eDWI+RnFRDTuVGppHHL3s1p2fvsEqksJVbWztoIwJp/NmD92IbRo+K1nouN2+BXQLdbO9Dt1g5l3jMY9Iz5YCRLp67EN8iXmRPmcctzQxn0YG98ArwJjaiKwWTAYXdcP5m3LoQwgN9bLjXGBqdv7ExToYWmQcqtYNuuDKLPq8qIOYtUHL5V3VylpT3QC5l7H2BRpRata5UKo6F9qSCXLJmNdBxU+xd/CyIQ4ftimXBCKSWYZykZAtPASjNGpW0vMnuEihTyfQPhqsIl7cnI3AcAqwprtG5QkUkeJ7JcpT0VLOtAU0VJEjiOQOF4CO6jdGksS1ToJCCtm5CWRSqEtegLtW7hcQvYtiKticowF32JRA8B36ixsu9SuQqmwQhDE6R9G8hc9cRhXa/Gw3EIDPFg6ofQRyjBM9d4qptgS9A3UsqZ1xEe3iYe+WIMDrsDrU5LwrwtpVF3KYmqTrNPgDdjP7id+T8uZeD9vTm49QiPtHsBq9nKY1+Ppe89lUqLVYrJ08hDn9/D6r/X03ZQ/GUz9uA2+GeFzWojNz2fTje1of0NrRgZ+SC5Gfn88+U8Rjw9GIBG7Rrw+t9P88+Xcxl3zwR8Arxp3u3qLfZwrghtkHLNVIB0lqgSerpqCM9bkMIDRCA4MsDY0eXTdiIzB6ubhrGPK0vXjtA3Vk8Q2urKDaTxBqSawTuzQROKs/AHFWKoqQoGl1a7zFfZvii/O7bdSFkMeU8AEunIQPi9gnQWIou+AWcGwvMupDMDzKtU8pFte9kiIMKoDLkzGTAqETld2bUaaf4bnElKi0ZbB0pSlKG3pyL8xoPMQVoTcOZ9oG4YWiM4ipS7Rx+nYt81fqrQzPFygc5CNbPXt3Y9CRQr94+xq1qzMP+tFrUNrZUaqWkwOK0nisLrm6qZvbMQ4TEYYWh6gT71q4+SQjOHdhylet0QmnaMZuwHI8lOy6X77SeSq/qP7Un/sT2xWW3Mm7QUq1mFaB5fezuVtEPpTHp5ClJKRr06gtCI8oECHYa2uiKKJbkNPqpsYVZKDo3a1iunYOewO5jwxI/8/fm/3PH6CG59/gbu/XAkC39ZTs9RnfHwOZFskpuRx4rp6wDYt/FAGYO/d8N+ti7ZQUzXxtRtfn0pbMrcJ8C6Gun3DhqPgQif8i4tKR1KUtmRCDILgmYgBAhtVaRtn1J1xKmKc+iaQtHnLqNuUVmnhp6uBCaby+0TiSz6FakLBAxKOdLYR2WWygJwpuA0L0PggKIvVR80kWBdoGbI2mjwuBk0vkhHjpIY1gZD4DdgO6CUQK2LkYWfgeetJxaqRYBaOLXvUZFC+oYuHRstwjQeaU+HvKdUdqqxLRR/DmIL+L6tqocJA6CB4onqeJ53qBubeZaKs/e4TYWNeo5ECC3S2EEJnGnrqRuQZzzC1Ae0VUvXIIQuCgJ/A6QKlbWsRTqOIIzdruhEqIvBxOcmM+OzObQZGMcLvz3GjY8PAODI7iTevvVj/Kr4UKNeGId3JlGjbig/vf4HbQa1JLxBdXrd0bnCYyb8u5kFPynx30ZtGzDg3vJVv64UrnuDn3rgGP/r/BJZqbnc//GdDHmob5nthblFzPlWaVnP/3Eptzw3lM7D22HyMvH5w9+xccFWxrw/Eg9vE827NmHQg70pzi+hzaATIW1Wi5WPxn5N4qaDRDatxadr30Jv0JduL8ovJu1AOtXrh2KqYIX/qsaedMKdYF1bxv1xMmrB9E0Vg69vgnAVT5HOIhWW6Tig4u9FAPi+pWbZxT+CoaU6viZEGXP7OpXcxSI14y2crMIPQZVh9HpCZbvadoF+D1KYwNhD+b+LvwPMyu2hCVKKk9ZlSGdhacUuoauDFEFgWaluIkikMCKMbVSmsW2LKvhh6ATolJ9dk+l6MkEV+jYOUH0omajaWZeqG0Txd4AJPEepEE6EKihjXa6uReaAZQF4j0ajV1mcGo9BOLV1VZSS4zDCqwdCXz7y67jsgbQlInPuAmxIr2SEz6Pn+QFfHezbeACDh4Gty3YBsHH+VtKPZnJ4x1ECwwLYsngHi35dQfOujZn+yRwA2g9tRUF2Iav/Ws+wx/tTpUZwmWPabXZS9qeBEPhX8wMJdWMjLvm1nQvXvcHPzcgjKzUXgGOHMspt9wv25d5xo1j48zIGPdindHV95fS1pB3KYOZX8+kzujv1YiMJqObPg5/cXe4Ye9bvp25sBI3a1Uer01KQXVTq57dZbXw09iuWTFnF0Mf6c99JYaDXBPo6KjbemoAwlc1Slc5cpHkeQhOCMHV0FUU5NaLGgVLeRIVk2jcjnMng8xR4jlILmfY9gCsbVVsP2KJyBmy7lNqmsTdgA3RQMh/0YcoVI0KUlDM2tY5gzVLnEX7q5lSJvo0snqgWb01DlTtF30IZUusmdVORharf9n+Ve8fYh+OyA0LrrxLNLH+rg2mC1fg4i11Ht4KxF8IQh8QJxZNV7QFdY8BbHVsbXaY/GkNDOEMhkhM4T76Ss9zn6mb13wm8MvR99EYdj341hu0rdhPfJ5bPH/6ehLmbadSuAZ1uaouHlwkhoFbjmhzefpS6sZFExdSmSo0gGrU7sTZVlF/MhMd/YMuSnTTpEM28SUsY+EBvbn/xRvyrXtkRT9e9wa/fsg6Pf30vSYmp9L6za4VtBt7Xi4H39SrzXqt+LVg5Yz3xfZtTo87py5QlzN3M3B+W4LA76H1XVz598FtenPo4Go2GkkILa/5RGZTr52zi3g9GXtVl4E5FCBPC5/EKt8niX6FwPBKNqnVagW9ZaHzB/1O1uOnIAENXJBqEswChq4k0tFOzXl0jsO1GE/AO0vtBNaN2pCAdaZD7gBLv0kWAqZVa7EWopwlDRxA6kBrlNnJmqG3ODDDercIuS+PmVyMdyWBZqxZPHUkQMAm01ZBZN6kFU+EyyngoVwyA8ChT01cYOyI9bgGZp9xRBa+qxW6vBxH6RgijUgYVoG4OTjOycJxyNwGCgv/+eejrQcA3SMdRhLGc0O01ScqBYzidTiwlVhw2J0YvI+lHM0k5oBZqs1NzyE3PY+Luj9AadNitdjKPZlEnNqLMk/hxDu9I4t+JiwFKhdYObTuM31WQOX/dG3yNRkOfe87+i5+cmMryaWuIaFKLnw99gdHTcEZZZA9vDxx2lTBUmFPIvo0HsVvtGEwGfAO9efzbe1n/72Y6DmtzTRn7M3N83ARQ+XULQ9PSm4Gz6GfIvgGpawIBX4Gph9L1MS8Cz5auHUwqckhXW4VyolW+cfMM0McgfB4Gy2Jk0QfqqcDiimv3/h8a36dVYW+fJxDaEzdyad2JzHHV7zUNA/tmNXN3HFU+em2QEo3zfEC5YZxJ4DEMnEfU7FyYcBZ9D45MhOcINH6vqHDJ4qkq38C+G+HzHOibllHmFMIEWhMYuyAtC1SEj+781oCEse1pRvvao9NNbcjLyMPkZSRx80FmfKpcNk/98AAbF24jMCSAdoPjCa5+IuigSvWKAxAAatYPpcONrdmyeAcdh7WhRY+mtOjR9Kr4373uDf658se4mcycMA+9Qcc328edlWbGoId6g4D8zHyMHgYG3NerjGRDlxHt6TKi/cXs9hWJ8ByB1FRBaKuWq8laKfadrt/bXOqTu6Bksiq1iA5n0U9Q+CnSayTC6wElqmY/BtZ5aj9Hioqvl8ddG5JSqWCNSrcXGi/AS2naFH6hyjp6jKDUBaINAe/nVS5B/rOAU4WZaoLAuhkMTcGyDyz/qlBL6zqkLgIK3lZnFB7gPVolq9k3KCPuM04tTuc9p6KN/N8tTeQClF6RYYHrZqb5z2N+PRIcFshdbyr9or+/UEV7qoYH07hDND1Gdj7j/smJqWi0GkIjVCa1T6APz09+FGuJtUzQxtXAeRl8IcQw4BUgGoiXUiZU0q438DFqSvetlPKd8znv5cTbX6XYewd4sWPlbg7tOErbgS1L7+5OpxOH3VHmUVCv19G6fwuq1Ai6plQ0zxeh8UV4Djm3fTxuQiJd0Tp1EY5UVR7Rvkv5wws+VnHphV+Bx20IXRjC7zGcBQalM6OtD7l3g74j+H+OQCj3imUVWPfh1O1GY3D5a217oegr9Vob4nIFSbXIWzwRKAQMgFm5hayrlcSCfowKD7XvVIuvuhgVzil8VWSRtqZaj3Amq2M788G2Tj0NOJPAmYQ0L0R433XKeLm/OxXhdDpZO2sjlhIrbQfGlZlMnUq/Md2p0zyCgBD/0vDJgpxCtDoNnj7lx3fz4u083+9t9AYtb//7AtGtVRiuVqe96ow9nP8MfzswFPiqsgZCpSl+DvQAkoD1Qoi/pZQ7z/Pcl4Wb/jeIus0jyUzJ5v07vwDgg0WvENO5EZnJWYwf+xU2i516LSLx8DEx4L5ezPhkDj+99jttBsbx3ORHMXlWHImzYvpa9qxLpNNNbanT/Mpe7b9clBNnM3ZGBCj5YmGMx+m4W6k+Gnsgi6eD13CExhPhdRfY2yALPlY72laCuAthbIss+BTMk10nsIPhDRUd5CwBY381U8egommEJ0LjhdQ3AUsxeP8Poa2C1NZX2a72Q1DyLeClbjAyB0yD0BjqIYOmKuOuj1ETBP8Pkda1CEMHZOGXKtdAG6VkD+yJl3JYrzqcTicajXrSSfh3My8NeheA/028n153dKl0P61OW0bnaseqPbx6wwf4Bnnz4u9PUCu6bNDA4R1HsZqtWM1wZHdyqcG/WjnfEoe7gDP5ruKBRFepQ4QQvwGDgKvG4M/9YTEbF2yl220die/dnI7D2jDjU1VoWwiBRqu+eHvW72fd7E3Edm/KlPeUNK3QaFg7Sy3KrvlnA3mZ+ZjCq5Q7R9rBdN4YPh6H3UHa4Qyen/zopbm4qxwhBBjjS//WeN2KEy0UvAlYVNSPRw8VlmiIBe8HkMV+gANy7kcGTVFPC5jUQq8rM1cWvKuqURl6QNACNRvXhqoMW6FxHd8JlCACv1MLrI6dyOJvVEdMA5SxB5cCKOUqRglDS4TBte7g+xTSshacJUorx1Q2PNiNIi8zny8fn8ShbYd54JO7aNKhIQ7Hicgjp/3E630bDzD3+8VENatN77u6lrNTUkq2LdtJVEwtdq7eS+LGg+UMftvB8aTsT0Nn0BHf9/LXpD1fLoUPvzpw9KS/k4BKU86EEGOAMQDh4eEXt2dnQVZKNuNGT8DpcJJ6MJ1jh9I5vDOJ3nd35ZlfHkZv0ONfVa3O120RSbOujfEN9Ear0yKlRAhBUFggTb1MNOvamGrhVSjKL2bym9NIO5jOiGeGUDc2Eg8fIzXrh3Fox1FCape/Ibg5e4TGD4lVKVxqy0ZQCWO8khgu+hzQgrSh8eiGU/Mt2I8ijC1VEphVJdBhW60SwXLHqugbjZ+SJdC3AiFBf5IyqCYQ0ABOlSns/UhpduupnKqDL3SRCF0k0qM/ONLPquTh9ci+TQdZ+LNKclr9zwaadGhIfJ/mvDDlMSzFVjoMOyFmNnPCPGa7cmjqx9chsoka023Ld5F+NBOTp5HvnlNPdgPu60mTDuVlQarUCDptAfOrjTMafCHEAqCiuMPnpZR/ncU5Kpr+VxoALKX8GvgaIC4u7rIHCnsFeNG6fwtW/bWehm3q8fnD3+OwOzCY9LTs3Zzn+76F0Gh4Z94LNGkfzat/PcX+TYcY+EAvjJ5GfAK9ST+SSfW6ofS/V8mo7lq9l6nvqzjs4BpBRMbUwifQhxemPkZmcg7R8VdeabSrCeHRR7lHhCdCX34shectSE0gQlsDYVAhkBpjfJknBXyeQ1rmIwwdALtaJwBwZCE03kjPWyHvUbBtQxpbKtVJY1sI/A1pmQ/FP4O0I4LnlOr9H8dZ9JvSyPEaicarbN6G0PiAxudCDsc1RUTjmjTv2pjETYeIdWWya3VaOg1rW65tjQaqsHqthjVKiw0d2HqYp3u8hs1qLyNwWDc2kqquJ+/igmKERlOp+uXVzBkNvpTy3NWCypIEnKxSVQNIOc9jXjJMHkaemvQg6UcyMRj1LP9jDelHMgmvX52kvanYrEqvJXlvCk3aR/PXJ3OY+PyvRLeqy5uzn8MnwJtHTqlaX6N+GLUb1SRpbyqp+4/xx4d/U5BdxF+f/cvIV4dzYPMhSgpL6De2B0Gh11fq+4XidHoxQlultMZrpW1MHREmVQBDSif4vg/OZIRpkGrgSAHsSq/HcQSIcZ23mQqflCUgqgKn1PSVdpdQWhoUfob0uBGhubKTda4kgkIDeWPms1jNttIKVCeza+0+MpOyiOvVjNDaVRn6aD+iW9cjMCQAALvVjsPl9slJz6Vl72ZUrxdKp2HqSW3ej0v48eWphDeswciXh9Egvu6lu7hLwKVw6awH6gohIoBkYAQn13i7CvDy9SSisZqljVv6KrkZBdSNjSDnWB7HDqej0Who1V9JKezfogo7716XSH5WAT4B5TXVQ2pX5bW/nmL82K9ZO3sjepOeldPX4bA7mPPdQoQATx8PgmoE0e8/qPO5ubAIoUF4Dir7nqkX0nnMJWJWVllVeN2jYu91kapoSZlj6ZBeo6DwM/C8U0XuuDkrigtK+OXNaSTtSeHmZ4eUM8aHdhzh2d5vUC8uivQjGfz2zgxyM/IJqLaSNgPiMHoYqBcXxat/PcWBrYdZMW0NiZsO0euOLni6oufW/LOBY4czOHY4g5a9m7kN/skIIYYAnwJVgFlCiM1Syl5CiDBU+GVfKaVdCPEgMBcVljlRSrnjvHt+mahWqyrVaqlwrqDQAO55u2zJwyGP9MUnwIvo1vUqjNE3F1uwW22ERobQ8cbW2Cw2Ot7YhrqxEcycMJ+4XjH89em/OJ1OBj9Usaa+m8uP0IUifJ+ueJvGHzx6V76v513gcSMI36siWedKYc/6RKa6giGMngYe+vQefAJPTKgsxVYat2/A+jmb2blqD0Mf7cevb0+n3ZCWZSSJW/drQet+Leh4Q2tKCs3UjT2xmB7ftzmbFm6jbmwEjdufQer7KkRIednd5JUSFxcnExIqDO2/Kkk7lM5bN39ESmIqz095nOZdyyYbORwONi/ezmcPfUd06/o88PGd7rh9N25cpB/N5Lm+b5G0J4X4vs1pNygejU5DTKeGVA2vwp6E/cz7YXFpctXTPz6IpdhKQIg/bQbEnfXNtSC3CA8vYznl3KsFIcQGKWWFBYndBv8Ssurv9bw8+D0AbnvxRka9OrzCdsdraR7n8K4kZn+7gOpRofQb07206o4bN9cb6+Zs5I8PZ2IpNpOXVUjyvlQ63tiGsR+MZGyzJwiuEUyd5rWoWa86VcODeXfUZwC8/e8LxPW8ekqKng+nM/juHO1LSIP4unQe0Y7oVnWJ7xtbabtTtXnmfLuQP8fP4tMHv2Xbil0Xu5tu3FxxOJ1OZnw2h/k/LWPwQ7159Jv7SguJFxeUYLPZCAoL5ND2I3j5eXHL8zdgLrGW7m93BVccR0pJVmoONqvtkl7H5ebqfGa5SgkM8T+rhKrcjDzSDqQz5/tFhEZUIyxKLfz5V/Vj/exNNGkf7Z7lu7muSNqbwucPq6IwVrONV/98kpen/Y9dq/dQJzaCd2//FLvdwdgPR5ZWlup2Swd0Og0Ou5Oda/eQfiSDfmN6oNVp+WfCPD5/aCI9RnXi4c/vOa0cw7WE2+BfABx2B/9OXERmSja97+xKtVrnlji1N2E/a2ZtoEmHaKwlVqZ/Mocq4UH8+90iAD5Y+DIdb2xNxtEsZn69gJufG1phSJobN9cqgSH+NGxbn52r9qDRCLat2E2T9g1o1LY+C39Zzq41+wCVaXs8qMLD20Tvu7rx9VM/8fsHKu8lomktmrSPZtnvq3A6ncz9fjEtejYluHoQTdpHV3r+awW3wb8AbFu+i4/u/Vr9IWHUq8M5vDOJRZOXExlTq8KkEICs1By8/Dz5+skf2bJ0Jw3io/Cr4seG+Vto2KYegSH+GDwMVK1dha63dmTZ76sY8kjfMxr7ovxiNi3aTvU6IaXhpG7cXM14+3vT9eb2GIx6Ni3Yxo1PDCjd1rBNXZp1bUxhbhHNujUus19xQQl2m524njEUFxSXFh4a9GBfCnOLady+AR+N/Qab2crn698hosm1neHsNvgXAL8qvnj6eFBcUEJQdZUoNf2TWcz6egEajYbajWpSq2HNMvss+nUF7436jFb9mhNUPYhmXRpTmFeE1WwlvEF1MpOzie0ZA1Iy/8eltBkYx7M/P1JpH0qKzRw7kEFIVFV+//Affnn9DwJD/Pl07dtUrRlc6X5u3FwucjPySJi7hZoNqlM/rnxZxoykLFbOWEdKYhqFuUXc/OwQvHw9uempQTRqU7+0XWhkCO/OexHplOVcnQnzNjP9Y6V7Neb925ny7gy8A7wZ/vRgOgx9nx9fm0pxfjEajaY0ifJaxm3wLwARjcP5aOUb5GXk06SDeiw8bviDawRWGFq5efF2HHYHq/5K4P1Fr7B06kpmTpgPwPCnB+Pl58msr+ajN+pZ8NMyVvy5ls/WvU1yYhqLflmBl78nA+7tiZevJ06nky8f/YE53y5kwH290BnUlz4vs4CivCJwG3w3VyC/f/A3U9//G+8AL77c+D4hp7hCJ730G3N/WEJANX8CQ/3ZuXpvpUqYGo2mTAiKlJK/v5jLsj9W0+Xm9qycvo6slGzmuNyk9VtG0WlYWwaM7YlvoA8htatSr0X5m861htvgXyBOdZ0Me3wA9VvWJSyyKsE1ylfP6TK8HUd2JtGkQzQNWtXBaXewdMoqatQLY8B9PfHy9aB+fB0mvTQF9oKntwkhBD+88Cur/kqgQXwdwuuH0XZQPJYSKyunK7GvVTPWccfrw2netTFGTyPpRzKJaHxtP6a6uTqxuqJoLMVWHLbys+uSIrPabrbSZmBLUvankXogjdDI05cUBdiyeDvTP55FcmIaeqOe9+a/RElhCX9/MQ/fIG/CGyhVzIBq/mU0da513Ab/ImHyMhHfu1ml25t3a0LzbicSr2K7N+WHfZ9hMOrISc/jhQHvkpWcxd3v3EZ4dHWsJVYObjvMoR1JAKTsP0awa+bu4WVi9Hu3sWHeFjre2IaSIjObFm1Hq9My/OnBF/My3bj5z9z4xABCIqoR0SS8wqz0Ua8Ox2A0kHMsl61LdnBg62GK8op58JO7KzhaWQpyiqjZoDrJiWm0HRhHdOu6aHVavtv5EQaTnqDQgItxSVc8boN/BeHrShPfl7CJHSt3A7Bz1Z7SaJ2Q2lV55IvRLPtjNTGdG+Ht68GWJTvIOZbD+NFfUS8uioZt6+FfxY+Aav54+nqU8XW6cXOxcdgdpB/NJDDEH6NHxYV+jlOtVlVueKx/pdurhldh44KtZKflEhQWSGBoAJ5nWWWqVb9YzEVm2g2Jp83AuFLf/vEqV9crboN/BdKgdV1a9mlGTmouLfs0Z/fafSTtTSGmcyNiuzcltntTjh3J4PGOL5F+JJN+Y3vgdDrZvW4fqQfTCQoNpGWvZpf7Mtxch0x+609+fGUqfe7uysNfjD5neYKMpCymfzILvVHP0Ef78+hXY1kzM4FG7RpgNBmI7X52tY8NJsNZ1au93nAb/CuQqjWDeXPmczgdTrQ6LU3aN8BqsZc+AexJSOTfiYtIP5IJgNPuoP3QVkQ0Dq+0NGJGchZHdiZTr2UkPv7lFTzduDkX7DZ7hcZ88W8rAVjw0zLuevtW/IPPTQ10/dxNrJ21CavZSnGBGb9gH+568xb8zvE4birGbfCvUIQQpY+hJi8TWSmpfPPUT3j6mPCv6suCn5bTZmAcvsG+3PDYAGo1rFHpsYoLS3jthg/YvS6RAff14uHP77lUl+HmGsNmtfHjy1NZNHkFo9+7jc7D25XZfsdrw5n9zQI63tjmnIz9scMZzJwwj5V/r8dSaKFln2bM+ESFUwZU9aPfmB4X9DquV9wG/yph5Yx1/DtR+fLvfvtWkJJD24/SomfMaY19QW4hy35fzcFtRwBVlPlic2jHUZL2KBfUyfK1bq5+Mo5m8du7MwCYN2kpdZpHYrVYS8sHdryxDR1vbIPVYmP+T0vZtGg7rfsrKeLTsW7OJnavS+TormQAjJ5GmndtjNBq0BnObKZyM/JI3HyIqKa1CKjmf17XeC3jNvhXCXWaR2D0MODt70nTTg3ZuboJyXtTyU7JrnSfkkIzb93yMdZiK7Hdm1JSaGbIIxUXx04/mkFmcg571iWyd8N++o7uTsaRLLLTcuh2a4ez/ifKSs3hub5vknE0i5ueGsTod247805urhqCqwcy4L6eLPxlBW0HxXF/3FNYSqy8+tdTtOoTWypBPP2T2cz8ch5ph9JZ808CRXlFzJwwnz53d6X/2J7ljhsZU4vFv66gXlwk0gkOh5NNi7bjG+xDfJ/yxcOLC0vIy8hHq9NSpUYQnz34HUt/X0183+a8Ov2pq1ba+GLjHpWrhNjuTflu50foDDqCQgO47cUb2b12Hy16VCz5euxwOkumrCLh3820GRhHZnI27Qa3rPCfJyMpi6e7v05wjSA2L94OgF+wL9PGzwTAarZyy3M3nFU/rSUWco/lAZCXkf9fLtXNZcTpdLJt2S6MHnoatKpXbrvBZODBT+/mrrduIWHuFkoKzbTsFcOyKatZ8NMyuoxoT7tBLVk5fR2hUdVIO5RO91s78OPLU8lMziZpbyqdR7TD26+sPEijNvUJi6pGVmouyftS8AnwommnhqQkppXLUj+8K4nXhn1IYXYhkU1rccsLN7B/yyEA9m8+hM1a8fqCm/OveDUMeAWIBuKllBWK1wshDgEFgAOwV6bV7Ob0nCzKVq9F1GkzA+f/tIxp42bSbnA8mcnZ9LmnGwPG9qQgu5DNi7dTs34YtV3JYrnpeSQnplEnNpJut7Zn3ezNhERUwcPLSINWdfENUm6ZXWv2sm7OJmK6NCKqaS3mTlqKydNAj5GdSkPwQiNDePnPJ0ncdJAON7S6iKPh5mKwfNoa3hg+Ho1Ww3sLXiKmU6NybTQaDd5+XsT1imH0e7exfNoa1s/dQmCIPwFV/Wg3qCW3PD+UtbM20OmmNnQZ3g7vQG9+fu0P+o3pVmloZYcbWvPv94vpcXtnfnx1KiYvI8/8+HA5Hfu96xM5slPlo4RH12D32n08OmEsa2dvJK5nzDVZfPxCcb63we3AUOCrs2jbRUqZeZ7nc3OWhEZUpTC3iC2LtzNu+eulmcBT3v+LKe/OILh6IJ+ufZvgsECimtXmwc/u4uv//YSlxMq9H45i4P290RsNfHL/N+xN2E/dFlF8+uC37Nt4kFnfLGDEM4P56olJgHoa6HCSj7ZV31hanUbv382VS47r6czpcJKfWVBhm+T9aWxbtpPw6Br0H9ODrUt3Asrv3qiteio4XkYwOy0Hm9XOrS/cQL/R3fGv6qdkECqgVb8WtOrXgslv/QmAuciC3qQv165Jx4a06hdLXmYBdWIjaDuwJdXrhhLTufzNyU1ZzsvgSyl3Ae66nJeB4oJictPzCY2sVuH4d72lA6GRIXj7exIefWJRNz9TuVnyMvJLU9uT9qaSl1mAxfV3SZEZjUajdHgkRLepT8LcLdRpHsG+jQepXicE3yAfwDXbq6BQu5urky43t8dSbME70JvGHcrLBf/+4d9MGz+L6NZ1WfDzMgqyCrl33Cg63dSG8AY1qN+yTmnbrUt38NKgd/EO9Ob1v58pIz+Sm5GP0+EgMKR8xmur/rFkpWRTpWYwzbqUN+Ihtavyxj/PXqArvr64VI4uCcwTQkjgKynl15U1FEKMAcYAhIdfX9K+2Wm5zP1hEb5BvvQc1Qm9ofzsBlTkzVs3f0TC3C08/MU9DLi3V7k2Qggatjnhg3U6nexeu48eozoTElmNqJjahEUpTZJp42eyfNoaWvWPJbJJLXqNUgJVnYa1xWq28cvr00iYu5nbXx7GqzOeIqpZbXQGLS9OeZyA0ABCagWzZ30idWIjylXrOhmH3eEu3HIFcnhXEnO/X0xIRFV639UFTx8PZnwymx9fnsrzkx+laaeGAJQUlvDr29MpyC5kx8o9RLeuw5GdyaQkphHTuRHBLsHA4+xam0hRfglF+SUc3Hq41OAf2HaYFwe8Q3FeMa/+9TRNOzYss9/vH/zNwp+XUzc2kkEPVF4M3s25c0aDL4RYAFSkVvS8lPKvszxPOyllihCiKjBfCLFbSrmsooaum8HXoGranuXxrwnm/7iEic/9CkDVmkG07F1+gRUgKyWHhLlbANi6bFcZg39kdzI5x/Jo3K5+GeM69/vFjBs9Af+qfoxb+io161cv3eYX7EtBdiFWs42+o7tTpaYSe6tWqwqt+sby06u/l7ZtO7AlOcdyea7vWyRuOsjNzwxh2bQ1JO9L5aHP72HgfeVvPk6nk9/emc7MrxZwx2s30XNUecXDbSt2U5BdQFzPmOum+tCVwrTxM5nz7UI0Gg0GDwPLp63h0HYVvrtl6Y5Sg+/h7UGbgXGsmLaWmM4NCY+ujkarISMpizsbPELn4e148vv7Sz+/NgNbsG/Dfjx9PYk5aaZ+YMvh0qTBPesTyxn8jCNZAKQdPIbNaufsxBTcnA1nNPhSyu7nexIpZYrrd7oQYjoQD1Ro8K9n/Kv4AaA36PAJ9Km0Xc16YYz9YCRbl+6k793dSt8/uieZxzq8SH5WAQ9/PpoB950If0vZnwaoBdrs1JwyBn/YkwOoFlGFn16ZyhvDx/Hc5MdKyyrWjY3ktb+e5tihDDrcqBZhs1JzSNx0EID92w6TvC8VgEPbj/LH+JmUFJTQb0yP0mITuen5THppKk6nk2njZ5Uz+LvX7uWtm8djMBnI/t+ACsP2zhZzkZkN87dStWYwdVtEnrH9/i2HWP33eqLb1KdF96b/+bynw+l0knEkE79qfpjOoC9z6n5zJy4mKTGV3nd2pWb9sIvSPx+XS8432IfMlCyimkdgKbFiKbHS8hQBwNyMPGrUC2Xbit2kJKZxxxs389MrUwFY9vtqxn4wsnSmH96gBi9Mebzc+Zp3bUzfe7pRXGimVb8W5baP/XAka2ZuoGnHhqXZ5W4uDBfdpSOE8AI0UsoC1+uewGsX+7xXI91v70hwzSC8/b0qLAhxHK1Oy42PD+DGxweUeT83PZ/8LLXQduxIRpltve/sisPuoErNYBq1a1Bmm4+/N7nHcslKySErJYfETQdKDX5hXhHhDaqXWYSNaBLOiGcGs2ddItWjQuh9V1dKCs3UaliDFX+uxelwYvI2MuzxgQD4Bftww+P9mTlhHv1Gl58/5KTn41/Vj8LcIoryi89hxBTHDmcw+9sFBIYEUFJYwnfPTsbD28Sna9+mVnTlSWmgNNfzs4vYuXofNeuHkZKYxoFtR2g7MI6Q2hdGaOvvL+by+cMT6XRTG/438X5MnmcXRbJnfSLjxkwAwGFzcO+Hoy5If07l1hduIDAkAKvVRp1mtYnp1JDcjHwCQvzQ68u6FQc/1Je53y/GO8CbTQu3oTfouOX5ocz+diGt+sWWc+tURFBYII99fW+l288Ugebmv3O+YZlDgE+BKsAsIcRmKWUvIUQY8K2Usi9QDZjuWljUAZOllP+eZ7+vSbQ67XnNMhu2rcejE8Zw7HAGve4sO4uuXjeUMe+NrHTflr2bs3bWJgJD/Il2+f5zM/J4fdiHbFu+mye+u6+0+IRWq+WO10ewc/VeFv2ynH8nLiIqpjbblu8iOzWHyKa1yErNIS+rAL8gH7Q6Lfe8cytDH+nLxgVbWTljHW0HtSxdbLZZbKVPDMV5Jed83fN/XMLkN1Vkx3GXkrnIgrnQfMZ9azeuxayv55OfVcCqGev57tlfMBdbSN6TzEOfjz7nvlTE2lkbAFg6dTV3v3UroZFnZ/D9gn0JCvUnKzWXarXPrU7yueDp48Gxw+nM/mYB/tX8eG3G00Q2rbiGgl6vY+P8rdRrEcntrwyjWRdVUrB1f3ek9dXA+UbpTAemV/B+CtDX9foAUHF2kJsLilar/c+aI1ExtRnySF9y0/PQ6ZXvP/1IJluX7QJgx8o9ZaoNabVavPw8qdeyDtrvFlG1VjAarSA7NQdvfy8WT15B52Ft8Tspmmf5tLV88ej3ALy/8CWadVHKh/Xj6xDbvQnpRzKJ/w/hnFVcdQE8fTzoNLwtVcKDCY2sViZipDJa9GrKr2+rm0VhXhF6kx5zsQXdBVxHGPxgXzz9PPH28+LXt/9k6GP9qX1KMlFFhEWF8MGS18hKySkNdzwX7DY7xQUl+Lrcgxvmb+X7FybTtFMjRr56Uxn3UkZSFpYSK8cOZXB4VxKRTWuRcuAYOWm5NIivU7oe1Lh9A+5642bSkzLpflunc+6Tm8uLOx3NDQCbF+/grZs/AsBSYmXEU4Op3TicO98Ywe61iXS/vWOZ9mtmbuDlIe/h6ePBO/NepE6z2uRl5rP6nwR2r02kbotIMpKy0Bl01GmmFDwNJh2t+7fAUmKl6KSZvM1so8PQ1kTE1PpP+v3dbutIWFQIPkHe1G5Ys9wi4Olo2qEhT016kKS9KXS+qS1xvZpxZGdSOd/1+dCqXyxSSl4c+A4AQWEB1H51xFntW6NuKDXqli8OcjoKcgqwltj44tEfWDd7Iw99cQ89R3ZmyZQV7Fm/nz3r99PppjbUjztxQzzulguuHkhs96akHkznyS4vk340i/vGjSI0KoTajWoSGlmN/vf+9zUWN5cXt8F3A4CXnyc6vQ67zY5vgEp7Nxj1lUoqJO9LwelwUphbRO6xPLz9vfD29+LGx9S6wi9vTuOfL+biG+xDbI+mpCYeI6JpLdbMVO6N+i2jaDc4nkPbj/DT63+w7PfV+AR68+2O8QRWoNuTkZxFSmIa9eOiMJ2USTnzq3n8MW4mQx/tV2GEUEUc2Z2MpdhC3dhIhBD0uL3sTLVBJU8GGUlZeHib8Pb3qnD7kqmrWDR5OZ1uaku3WzqU2Va9bghVw4PJSskhqll5Ceuc9Dz++mwOQiMY/FDf0iejc2VPQiKvDv0AkIRGhmAutrDyz7X0HNmZenFRLPhpOS16NiXslDKBpybLJe9LJf2oipbZuWYfXz4+idqNa/LMzw+z8s+11GoUTqdhbcocIzcjj/k/LsMn0Ivut3V0yxtcgbg/ETcANIivw7ilr5KfVUBsjzOvI3Qc1pbs1FxM3iZa9GrK9pW7sZZYada1MRqNhn0b9rNpkdLlyc8sYNOi7dz6wlCq1AgiIymL8OgaLPtjNe+N/IyG7dSs3uhpLM3ClFKW+vgLc4t4ZfB77N1wgBHPDObut24F1JPIvElLCYuqxtqZG4jt3rR0Nux0OtmxcjcmbxN1m5+I1tmTsJ8nu76CpdjKi1MfxzvQiz3r9tN2YBw1G5yIXDqO1WylpNDMtuW7eHPER0Q2DeflP5+k6imF4a0WKxMe+4Gs1By2r9hN2wFxeJwkIVCzfnU+Wf0WJQUl1KhXPtpm1Yx1/PLGNACqhQfT+65u5dpURkFOIcX5JVSrVYU96xLJSFKGuknHhoRFhVC3RRRLpqzk84e/J65XDHe9ectpVUzNRWYimtbikS9Hk7Q3tbS2bEriMdb8k8BPr/2BRqMhvEEYEU1O+Prn/7iUr5/8CUAV4bmAT0luLgxug++mlOjWyk9stdiY8v4MkvemMuD+XmUM5nGq1Ahi9Hu3A7B58Xae7vE6TqeT5yY/SpcR7WjYpj4rZ6wnIqYWx5MpPLw9GL/idQqyCwmo5s9XT0zCYraSl5HPqNeG07p/C6wlFiY88QP7txwmMMSf0e/ehsPhZP+WwwAcdmmoABg9DDRsU5dp42cBEN8nttTgL5myirdv/Ri9QceHS18l2iUEln44gxLXYm5Oeh7v3fEZJYVmEjcf5PnJj5a5xvzsAt6/43M2LthGlxFtsdvs7N1wgOS9KRRkF7Lgp6WERYXSd3Q3DEYDnUe0ZdbXC+lyczuMXuXDL4NCA6CSWqqhkSHo9DpCIqpgtzlITkytsM7rqWQkZ/HTy1NJ3HyI5t2b0OvOLqUL4vF9mtO0YzRtBsYz86t5OOwO1s7ayID7epUuyppLLOSk5VI1PBitVsv2lbt5d+SnVA0P5snvH6D/2J7s23iAgKp+NGxTn30b9wMQUM0XLz/PMn3xcT0ZanVavPzLbnNzZeA2+G7KsS9hP98+/QsARi9jhQb/ZAqyC3E6na7XKiz0hsf706JnDIGhARTlFZNxJJNG7epjMBmoFl6FFdPXkpyYRoseTalRL4wbHu2P1Wxl4gu/YrfaQcKiySto2bs53W/ryLO/PMKOVbvpMqJ9mXN3vLEtc75bhM1iJ/VgGhsWbKVF96ZkJSvZaJvVTk5aXmn7Fj1juOutWyjOK6ZJx2h8Ar0oKTRj8jKSl5lfprJSSmJaqQvKv5ofjds1IKh6IAYPA9+/8CtrZ20EoHbjmjTpEE1s9xgObjtKlRrBSKeEiiVjKiS2exO+SHiHud8v4eP7viEsKoSPVr5OQFV/ti7byaaF22jZuxkNT1njSNt/jMO7kti38QD7Nh6g7z3deHX6U+WO3+3WDhTlFeNf1Y+mndUah6XEwvjRE1g0eQVj3r+dYU8MZPPi7aQdTCftYDr7NhwgpHZV6sZGUjdWfQeadozG5O1B7rFcju5NpWr4ieih7rd3IjA0EC9/Txq2PvdFZjcXH7fBd1OOquHB1GpYgyO7kksXXE9HfN/mPPLlaMxFFrqMUBWQtFotUTG1AVWx6NSFx7CoqqUZvSB5afC7dL+tIxlHMln/72a8/DxpPaBF6TE6DWtTzmcMoDNo6TS8Lcl7Uvnzo9kc2HqEFt2b0u22jljNVrz8PGnR84SLytPHg5ufGQJAzrFcolvXJywqH61Wwwd3f0H9uDrE921OvRZR1G5UkyGP9GXL4h0k700jcfMhdq7ZS70WUaXuJt8gbwKq+ZGcmMa/ExeyccFWNi7YStuBcWU0jE5HbkYeMyfMQ6vXkevSOjp2OIOSAjMmLzNzJy1Bq9Ew8+sF1IuLKuMbrxsXSaO29dm5ei/9xnRn0eQVRMXUou2g+DLnqF4nlPvG3VHmvezUXHKO5dGoXQNWzljHsCcG0qJHDMv/WEOVmkHUjy+/lmEusTLx2clYzVYS5m6mxYb3T3wWel2F8tturhzcBt9NOarUDOa9BS+Rl1lA7UZnDh80ehjPOTt2z/oDrJy+DoDm3ZqwedF2Yrs3RW9UiT5Ws407XhtORJPT6ynpjXq2Lt2JydOIlLJUMTEwxJ9bX7jxtPvmZuSzdOoqAHyCvEk/nMmafzaw4OdlfLnxPTy8TNw//k5y0vP486NZbJi/hYjG4TTr1oikfSkMvK8XHYa1JnlfGq8MfZ+ONyrF0Nb9zy4B6Tgr/lzHpJdVtupjX42hWq1g6rWIIiwqhNSDaWxesJX0o1l0HNaGovySMgu6Jk8To9+7nR6jOvP35//y4ytT0Wg1fLP1wzPecFb8uZZNC7fhF+zDw1+onANriZXOw9vSZmDLcusUAB7eRpp3a8zaWRvPKRrKzZWB2+C7qZDAkIAKlQxBxatPGz+TwuwihjzSt1SE7VyoXicEvVGPdEqCqwfi6eNBvRZRtB8aT3SbetRtHkFUTPmniw3zt7B16U5aD4gjulVdIhqH8+TEB8hIyqJa7SrUaVa73D6bF2+jMLeY+D7Ny+j01G5Uk8e+uZfda/bhX9W31A1k8jSi0ZxQIF0xbQ2/vTOd6Nb1uPGxftSLjeLxr09kgk5+axp2m51Vf63nxd8fp2Wv5nh4V55cVVJoxuFwlBYBqVYrGI1Wg0ajIaxuKH1Hn8ilSNqTVhotU5RbTH5mPtIp8a9ywvW0ccFWXrvxw9InGd8gH0yuNYTiQhX+6uldXpEm01UtLS+zgJCIqmQfy+Xlwe9SlF/CnoT9vDLtyXL7GE1Gnpr0IMn70ohofObJgJsrC7fBd3PObFq4jZ9f+wOAwFB/bn526Dkfo2mnRny58T2kQ1K1VhBj3h9ZasRGPFU+WgYgP6uAN4aPozC3mC1Ld/DR8jcAaNS28tj9bSt28XSPN3A6nTw6YUyZxDQhBH3v7laqR5S8P43ty3fRoFXd0oIuoCJOhBDsWZ+IT5AveVkFHNmZRO3GNfEJ8KbDjW04djgT3yBvmndtclpjf3RPMm8MH09+VgEvTn0cTz9PTN5Gxi19DZOnkaDqAfz58SwCq/kT17cZP7/+O91v70RJYQnxfWN5uM1zePh48Prfz5S6u7av3E1xQQn7Nhxk7IejaNGjKVXDq5C4+RBvjhgPUvL8lMfKuecG3NsTk5eRGvXCqBsbSWZKNnG9mrF58Y7TRvH4Bvrg2+q/hY26uby4Db6bc6Z6nVB8g3woyium1ikunz0J+8lJyyW2e5Mzql6erHPjeRb2w2DSU6NedRI3HaR+yzpMemUKnYe3O61ejqXYWrqgbC62lL4/8+v5zJ+0hIH396bbrSpmvnpUCNUreFppO7gl45a9hlavpV5sJK8PH8fK6evofntHnp70EDXrhfHYV2PPfAHA3oQDHNiqIo42L9nOT6/8gUarof3QeO5842b+nbiY755VC+bvL3yZ5H2p7Fy9l5hODSnOK6YwV/0c2HKo1OC3HdiSnav2UKVmMN1v61Aqwrd7zV6S9qYAsGvNvnIGv0a9MO58/WZARWZ989RPLP19NYMf7MOI54ac1fW4ubpwG3w350xk01p8vv5dzMXmMhIB+7ce4vGOL2E1W7n/ozsZ8nDFBdP/KyYvEy9MeYzd6/bx1i0f43Q4yUnL5dEJlRvb5t0a8+wvj1CQXUjXW1SET0FOIV898SPmIjNZKTl0HtH2tDr+AI1dgnMlBSXsWLEbgB2r9mC3la2fumTKKo7sTqLbLR2oXlGGrEaJ5EmH5OieVOw2O9hUpankxLTSpwOtTovJy8SLvz/B9hW7aNW3BUYvA3sS9mPyMtK8W5PSQ9aNjeTdeS+VO1VMl8bEdm8CkjNWgyrKLWLZ72sA2Lp8Fw+E3HXa9m6uTtwG381/IqQCMa/ivBKsZlU1qzCn8KKct1qtKmi1GoJCA8hIyiLAJcFcGVqtlq43lw3l9PT1oN/Y7uzfdIhmXRqd0diDSkaa+sHfZBzNot/YnuzbsJ+wuqH88NJv3PTkIHwDfdi/5RBv3fIRUkoKc4u4f/ydZY6xa+1e3r3tU6SU3PXWLRw7eIz2Q1uh0WqIaBJOw9b1aNyuPkFhgXgHeJGVkk1YVDVuff7E4vOpuQKno2b9sApvBBURUM2fx74ey9pZG+g5svNZn8PN1YXb4Lu5YDRqV59nfnqIjKQsut/W8cw7nAM2q42V09chNBraDW7Jk5MeZNWMtQghKMguPK3PGZTLYsWfa9FoBPXiovhz/CyklOgMZ1eBa/uK3aWFYFr1j8VmsTHjk9kARMVE0GVEOzx9PfGr4ktueh4BVf3KHUOr06LRanDYHYBk3qSlRLepR9eb25dZW2g/JJ5Jr0zh59f+wK+KL5+tffuCSTWfjl53dCkjkOfm2sNt8N1cMDQaDd1uvbCG/jjLp63l7Vs/BuDFqY9zdHcyMz5VKtuRTWvRfkir0+6/Ytpa3r5N7f/Mzw8T270JG+ZvpXH78nVbKyIsqhphkdVIO5xBXI8YMlOy2bZ8Nx4+JmrUU66b0IiqvL/oZY4dyiCmc/mQxXotonhn7gtkpeQQ3685NepVpyC7kE43tWHXmr2sn7uJ5l2b0KRDQwqziwCV1Hby2oMbN+eD2+C7ufqQUCc2Er1BR0CIP+EVaOCcijgpzFJv1PP8r4+RnpR5VvsChNUJZfzy1ynKLymtPNXrji7ojYYy7q3aDWueVvr4uH48QIeh6iblcDj4+L6v2b/lMP9OXMK3O8Yx+OE+BIT6n/F4u9buxW5z0LhdgwqL2btxczJCyiu3bGxcXJxMSEi43N1wcwVgtdhYNWMdCEH7IfHo9DpSDx7D6GGoNF/gZGxWG6v+SkAIaDuo5RWl5CilyjRe888GmnaM5u25L2IwVlzA/mQ2LdrOM71ex+lw8vK0/53xKcfN9YEQYoOUssKKNOdb8ep9YABgBfYDd0opcyto1xv4GNCiKmG9cz7ndXP9YTDq6Ty8HRsXbOWP8f/QblCrc6rxqjfoK5RmuBIQQvDIF6PpdUcX6sZGnJWxB1Wf2OlQIac5abkXsYdurhXOa4YvhOgJLJJS2oUQ7wJIKZ8+pY0W2Av0AJKA9cDNUsqdZzq+e4bv5mTSj2Zyd/SjmIst9BjZiad+ePByd+myUlJoZs53C7FZbPS5uxu+/1FD3821xUWb4Usp55305xqgIvGSeCDRVeoQIcRvwCDgjAbfjZuT0em1+AR5Yy624FVJEZLrCQ9vE0Mf6Xe5u+HmKuJCOjLvAqZU8H514OhJfycBlTobhRBjgDEA4eGnF85yc30RGBLAmzOf4/DOozTr2vjMO7hx46YMZzT4QogFQEXqWM9LKf9ytXkesAO/VHSICt6r1I8kpfwa+BqUS+dM/XNzfRHRJPyMCppu3LipmDMafCll99NtF0KMAvoD3WTFCwJJwMlxZTWAlHPppBs3bty4OX/OoSZPeVzRN08DA6WUxZU0Ww/UFUJECCEMwAjg7/M5rxs3bty4OXfOy+ADnwE+wHwhxGYhxAQAIUSYEGI2gJTSDjwIzAV2AVOllDvO87xu3Lhx4+YcOd8onfI10NT7KUDfk/6eDcw+n3O5cePGjZvz43xn+G7cuHHj5irBbfDduHHj5jrBbfDduHHj5jrhihZPE0JkAIfPsnkwkHkRu3M+uPv237hS+3al9gvcffuvXEt9qyWlLF+hiCvc4J8LQoiEyvQjLjfuvv03rtS+Xan9Anff/ivXS9/cLh03bty4uU5wG3w3bty4uU64lgz+15e7A6fB3bf/xpXatyu1X+Du23/luujbNePDd+PGjRs3p+damuG7cePGjZvT4Db4bty4cXOdcNUafCHE+0KI3UKIrUKI6UII/0ra9RZC7BFCJAohnrlEfRsmhNghhHAKISoNpxJCHBJCbHMJz12SWo7n0LdLOm5CiEAhxHwhxD7X7work1/KMTvTGAjFJ67tW4UQsRezP+fYt85CiDzXOG0WQrx0ifo1UQiRLoTYXsn2yzlmZ+rb5RqzmkKIxUKIXa7/zUcqaHNhxk1KeVX+AD0Bnev1u8C7FbTRooqrRwIGYAvQ8BL0LRqoDywB4k7T7hAQfInH7Yx9uxzjBrwHPON6/UxFn+elHLOzGQOUQOAcVJGf1sDaS/QZnk3fOgMzL+V3y3XejkAssL2S7ZdlzM6yb5drzEKBWNdrH1QN8IvyXbtqZ/hSynlSSS+Dqqdbo4JmpfV0pZRW4Hg93Yvdt11Syj0X+zz/hbPs2+UYt0HAJNfrScDgi3y+M3E2YzAI+FEq1gD+QojQK6RvlwUp5TIg+zRNLteYnU3fLgtSylQp5UbX6wKUjHz1U5pdkHG7ag3+KdyFuvudSkX1dE8dyMuJBOYJITa4avleKVyOcasmpUwF9Q8AVK2k3aUas7MZg8v1/Trb87YRQmwRQswRQjS6BP06G670/8nLOmZCiNpAc2DtKZsuyLhdyCLmF5xLXU/3QvftLGgnpUwRQlRFFZHZ7ZqFXO6+XZRxO12/zuEwF2XMKuBsxuCifb/OwNmcdyNKU6VQCNEXmAHUvdgdOwsu15idDZd1zIQQ3sA04FEpZf6pmyvY5ZzH7Yo2+PIKrqd7pr6d5TFSXL/ThRDTUY/q5228LkDfLsq4na5fQohjQohQKWWq61E1vZJjXJQxq4CzGYPLVa/5jOc92WBIKWcLIb4QQgRLKS+3QNgVW+P6co6ZEEKPMva/SCn/rKDJBRm3q9alI67yerpCCC8hhM/x16hF6AqjBy4Dl2Pc/gZGuV6PAso9iVziMTubMfgbGOmKoGgN5B13S11kztg3IUSIEEK4Xsej/tezLkHfzsTlGrMzcrnGzHXO74BdUspxlTS7MON2qVekL9QPkIjyaW12/UxwvR8GzD6pXV/Uqvd+lEvjUvRtCOqObAGOAXNP7RsqwmKL62fHldS3yzFuQBCwENjn+h14ucesojEA7gXudb0WwOeu7ds4TUTWZejbg64x2oIKamh7ifr1K5AK2Fzfs7uvoDE7U98u15i1R7lntp5kz/pejHFzSyu4cePGzXXCVevScePGjRs354bb4Ltx48bNdYLb4Ltx48bNdYLb4Ltx48bNdYLb4Ltx48bNdYLb4Ltx48bNdYLb4Ltx48bNdcL/AS74lFaR3umZAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "## Step 5: Assign Cluster Tag\n", + "\n", + "\n", + "fig, ax = plt.subplots()\n", + "sns.scatterplot(X[:, 0], X[:, 1], s=10, c=y_pred)\n", + "ax.set(title='Spectral Clustering');" + ] + }, + { + "cell_type": "code", + "execution_count": 115, + "id": "921d43e8", + "metadata": {}, + "outputs": [], + "source": [ + "## to summarise the above steps\n", + "def spectral_clustering(df, n_neighbors, n_clusters):\n", + " \"\"\"Spectral Clustering Algorithm.\"\"\"\n", + " graph_laplacian = generate_graph_laplacian(df, n_neighbors)\n", + " eigenvals, eigenvcts = compute_spectrum_graph_laplacian(graph_laplacian)\n", + " proj_df = project_and_transpose(eigenvals, eigenvcts, n_clusters)\n", + " k_means = KMeans(random_state=25, n_clusters=2)\n", + " k_means.fit(proj_df)\n", + " y_pred = k_means.predict(proj_df)\n", + " return y_pred" + ] + }, + { + "cell_type": "code", + "execution_count": 116, + "id": "de08bbe1", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n", + " warnings.warn(\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADaRklEQVR4nOyddXgUVxeH37u+cSfEgyeBECC4S6Foi9VoqbfU3fsV6k7dqFFaKKUFWtyKu7tDCIQgIW7r9/vjLoFAkLZBAvs+Dw/ZmTszd3aTs3eO/I6QUuLBgwcPHq58NJd6Ah48ePDg4eLgMfgePHjwcJXgMfgePHjwcJXgMfgePHjwcJXgMfgePHjwcJXgMfgePHjwcJXgMfgePLgRQowUQrzxH46XQohalTmnfzmPF4UQ313qeXi4/PAYfA+VjhCijRBiqRAiXwiRI4RYIoRoeoGvuU8I0eUCX6O6EOJ7IcQhIUShEGK7EOJVIYR3JV7jP33pAEgp35JS3lNZc/Jw5eAx+B4qFSGEHzAF+AwIAiKBVwHrJZ6X7j8eHwQsA8xASymlL3ANEADU/M8TrCT+6316uLLxGHwPlU0dACnlr1JKp5SyVEo5S0q5EUAIcYd7xf+Z+wlguxCi8/GDhRD+J62iDwoh3hBCaE/af68QYpt7hb1VCNFYCPEzEANMFkIUCSGeFULEuV0sdwsh9gNz3cf/LoQ47L72QiFE0nne15NAIXCrlHKf+x4PSCkfO35vJyOEmC+EuOek13cIIRa7fxZCiI+EEEfd89gohKgvhLgPGAQ8676Pye7xEUKI8UKILCFEmhDi0ZPOO0wI8YcQ4hchRAFwh3vbL+79x9+H24UQ+4UQx4QQL510vFkI8ZMQItf9vj4rhMg4z/fEQxXDY/A9VDY7AafbiHQXQgRWMKY5sBcIAYYCE9wraICfAAdQC2gEdAXuARBCDASGAYMBP6APkC2lvA3YD/SWUvpIKd876VrtgQSgm/v1dKA2EAasBUaf5311ASZIKV3nOf5sdAXaob4cA4AbUfcxwj2f99z30VsIoQEmAxtQT0udgceFEN1OOt91wB/uc53pftoAdd3HvyKESHBvHwrEATVQTyy3VsL9ebhM8Rh8D5WKlLIAZVwk8C2QJYSYJISodtKwo8DHUkq7lPI3YAfQ0z2mO/C4lLJYSnkU+Ai4yX3cPShjuEoqdksp088xpWHuc5W65/eDlLJQSmlFfXk0FEL4n8etBQOHzuc9OA/sgC9QDxBSym1SyjOduykQKqV8TUppk1LuRb2vN500ZpmU8k8ppev4fVbAq+6nrQ2oL4+G7u03AG9JKXOllBnAp//15jxcvngMvodKx23A7pBSRgH1gQjg45OGHJTlVfvS3WNiAT1wSAiRJ4TIA75BrcYBooE9/3A6B47/IITQCiHeEULscbs/9rl3hZzHebKB6v/w2hUipZwLfA58ARwRQoxwxz4qIhaIOP5+uN+TF4GTv0APVHhkeQ6f9HMJ4OP+OeKU48/nXB6qKB6D7+GCIqXcDoxEGf7jRAohxEmvY4BMlLGxAiFSygD3Pz8p5XE/+wHOHCA9k+zrydtvQbk/ugD+KFcGgODczAH6ul0s50Mx4HXS6/Byk5LyUyllEyAJ5dp5poL5grrntJPejwAppa+UssfJpzvPOVXEISDqpNfR/+FcHi5zPAbfQ6UihKgnhHhKCBHlfh0N3AwsP2lYGPCoEELv9ssnANPcbo1ZwIdCCD8hhEYIUVMI0d593HfA00KIJu7AZy0hRKx73xGUH/ps+KK+ULJRxvitf3Brw1Fxg5+OX1MIESmEGC6ESK5g/HqgnxDCS6jc/LuP7xBCNBVCNBdC6FFfDBbAeYb7WAkUCCGecwdYte4Ab2WluY4DXhBCBAohIoGHK+m8Hi5DPAbfQ2VTiArKrhBCFKMM/WbgqZPGrEAFTo8BbwIDpJTZ7n2DAQOwFchFBSOrA0gpf3ePH+O+zp+o1E+At4GX3W6Pp88wt1Eo99FB9/mXn2HcaUgpc4BWKP/7CiFEIfA3kA/sruCQjwAbyoD/RPlgqh/KD5/rnk828IF73/dAovs+/pRSOoHeQAqQhnrPvkM9oVQGrwEZ7nPPQb3flzSF1sOFQ3gaoHi4mAgh7gDukVK2udRz8XA6QogHgJuklO3POdhDlcOzwvfg4SpGqOrh1m73WV3Uk9jESz0vDxcGT1WeBw9XNwZUJlQ8kAeMBb68lBPycOHwuHQ8ePDg4SrB49Lx4MGDh6uEy9qlExISIuPi4i71NDx48OChyrBmzZpjUsrQivZd1gY/Li6O1atXX+ppePDgwUOVQQhxRrkRj0vHgwcPHq4SPAbfgwcPHq4SPAbfgwcPHq4SPAbfgwcPHq4SPAbfgwcPHq4SPAbfgwcPHq4S/rPBF0JECyHmufthbhFCPFbBGCGE+FQIsdvdv7Pxf72uBw9XM3s3prN/+8FLPQ0PVYzKWOE7gKeklAlAC+AhIUTiKWO6o+RwawP3AV9VwnU9eLio7Nu8n6V/raK4oOSSzmPF1DU80ORZHkp9jm3Ld17SuXioWvxngy+lPCSlXOv+uRDYhmq2fDLXAaPcfUiXAwFCiEppF+fBw8Xg6P5jPNf1dYb2fY8/hk++pHPJ3H0Yl9OFpcTKobSjl3QuHqoWlVppK4SIAxqhGlycTCTle2VmuLed1rhZCHEf6imAmJiYypyeBw//GkuJhbysAgAKjhVe0rm0HdCCnMN5GLwMNO2ecknn4qFqUWkGXwjhA4wHHpdSFpy6u4JDKpTplFKOAEYApKameqQ8PVwWxNSL4pXfnyJtczodbmj9n8+3adFWFk1YQaOO9WnZ5591KwyJDObutwf95zl4uPqoFIPv7s05HhgtpZxQwZAMyjdHjkI1rfbg4YKwZekOVs9YR6MuySS3OzWk9O9ofX0zWl/frFLONeKZn9m+cjfTv/2bX/Z9iX+IX6Wc14OHs1EZWToC1Ydzm5Ry+BmGTQIGu7N1WgD57obVHjxUOnabneH3fs0vb4znvds/x1JsOe9jc4/ksXTSqgvuG6/VOB6Aus1qYfQyXtBrefBwnMpY4bcGbgM2CSHWu7e9CMQASCm/BqYBPVDNnkuAOyvhuh48VIhWpyWiRjX2b8sgsnY4OsP5/5p//dRPzB2zmLrNavHB30MxeZsuyBzvfnsQHW5oRXS9KEweg+/hIvGfDb6UcjEV++hPHiOBh/7rtTx4OB80Gg2Pf3MfO1bvoXbjGuj05/9rfiQ9C4BDuw9jszoweV+YOfr4e9OwQ/1zjrNZ7SyfvBqdQUfzno3RarUXZkIergouaz18Dx7+KVuX72TPujRSr21Eq38YDAW47/3BbFm6g5oN4/AL8qn0+a37exOrZq6nbtOatB/Y6rT92Zk5SAkhkUEALPx9Ge8O/gyA1/56npa9m1T6nDxcPXgMvocrhpzDufyv9zsUZBdyze0dePbH83uotFlsTPhkKkV5xSwYtxQhBK/8/nTZ/jVzNvLLa7/TsEMSt7zYD4PJcM5z7ly7l0O7DxNUPZC8o/k06doQL18z88YuYePCrWxduoO4pGgCwwPQaDX4+Hsz66f5zB2zGLOPiQFP9iKpdT2cdmfZOaV0MXvUAjJ2ZtJlcDui65xa7gKlxaWsmLKOwHB/GrZPOq/793D14DH4HqokJYWlHEo7QvX4MLx8vdRGIRAa5V0MCPXl2S6v0aZfM3o/0A2VW1CeI+lHGfHMLxTnF1NSaMHsa+JwmnLpbFuxk1qNVGB13phFbF68nc2Lt9Omb/Oy7Wcic+9hnuvyKvENYtm1Ng1LsYVBL/XjjtdvxuRjJCg8gC1LdrB58XZ+GjoOs4+Jl8Y+zncvjCb3cB6h0SEc3H2YpNb1aH9jK4RWoNPrCAoPYOj17wFQWmzhwY9OD4VNG/E3Xz/1E1qdlk+WvkHd1FqAcg39/sEktizZwQ3P9CG5fSJSSo+L6CrDY/A9XBIKcwqZOXI+Zm8T19zevmzVbCm28OP/xrJ58XbueXsQjTo3OO1Yh93B8Hu/YsG4ZbS+vim3vXIDNVPisJbYuP6R7vgF+zDzh3nsXLOXDfO30LpvM4KrB512ngW/L2PhH8sA6HRLG3QGHQnNa2PyMdGo04nrNuxYn9k/L6RJ12TC4ypsFVoOm8VOaZEVnUGHrdQGwL6tGRxKO8qGeZs5sD2T7vd0wm5zkHskj9wjkLZ5P4kt6rDkz5XEJUWR3EGlkpq8jHQd3AGAQ2lHCAoPIOdwHkazEZvVzoSPp7Jj1W76PtqT5HYJ2Kx2AJwOJ9ZSO8smrcY/zA+DUc/I/40FIC4pip9f+x1riY0nv72fGslx5/mpeajqeAy+h7Oy7u9NjHh2FPXbJHDXm7dg9qmcrJV5Y5fwzdOj0Gg1hMYE06y70tPbvHQHEz6eCsCC35dWaPBLCktZPnkNAGmbDrB95S5qpsQx5s3xzPhhLj4BXtzx+s3sXLOXzre2xTfIt8I52C12QiKDsFnsJLWpx5SvZnEsI4fUaxviHeDFjy+PASHo+2gPRu/7suzaPoEV+/adDielRRbiEqN5deKz7N+eQXTdCA7tPUpIZBDTv5vD3o37ATB5qy+V5j0bY/IyktKxPi17p9L/iV7E1Y/Gt4JrhMWEcPtrNzL/t6XM/HEeNRvG8v0LowHw8fciuV0CzXs05sD2g/gEeHFgWwYfDxmBTq/j/XlDadS5PuvnbkFn1LNxwVYA1s/d4jH4VxEeg+/hrCz4Yxm71+1j97p9dLypDYkt61TKeX2DfNHqtLS6rilfPf4jmXuOEJ8cy8RPptLltvasnL6WmIQo/vxsOk27NyKyVnjZsX5Bvgz56A6WjF9BUGQgdVJrAqDRqbISrU5Hq+ub0rxHYwLD/TEY9RXOIaFFHVbNWE+LPql89+wv+Ab5kNC8Fq36NGXpn6sY89ZEAMLjwmjYPpGXe7/D4bSjvPLH07ToVT54WlxQwidDRrBy+jqe/O4B2vVvQfOejdm9fh9rZm/gu+d+ITw+jM6D2lKYW0T7G1oRmxjFG5NfKHeeBm0TTptnUX4x3zz1E5uX7KDHvV1Y9/cmAEzeRhq0TWDz4u0ktqoLwKoZ65g9agEAN7/QF1BPRA6bk2ETnqUwuxCrxcaaWRuwFFto0O7065W7dl4xTofTUxh2heAx+B7OSpNrkpn90wJSOtUnss7Z9e6cDidZGdkEhQeg1WvZsmQHvoE+xDc4XROp3cAWBEcE8NYtn5KdmcOPL4/luoe7Yiu1A5L6beqxbcUuFvy2lE4rd/H8z4+WHZt7NI+0TfupXjec6x7oRmyCKuK+9eUBhMeGkn+skMUTV3Ddg9ei0Zy5trBxl2TqpNZkzFvjKS2yUFpkodsdHelwY2vWzd2E3qADIYisFc6BHZkc2KGKw7ev3EWDdgkU5hYTHqtcPLvWpVGYW0xCizpsW7qddv1bAFArJQ6DSc+49/7icNpRBr3Un2vv6oTNaufI/ixCIoLQ6s7uR9+3aT8zfpgHwN71+xgy/HZCIoNp2r0R9dvUI/9YIZG11GdTLTYUjVaDydtETEIU938wmMDwAJLbJaDRaPDyNQPw1HdDWD5lLUV5xWe+7pYDDOv7PoW5RQyb+CwN2tQ76zxBFa7N/nkBgWEBdBrUxhMjuMzwGHwPZ6VtvxY02J+I2ceI0XT2AqGx7/7JyP+N5dq7OtGwfSLv3v45Zm8Twxe/Rq2G5QOdWq2W5HZJ9HmoG7+8+jt9H+mO3eZg/bzNJLdPImPHQZwOF/ENYtDpyxuNDfO2MOmLGQCERQWXGfzQqGD2bz/InJ8XAtCoYwPikqKpiN3r9/H36IXUbhRP18Ht2bclAy9fM50GtWHVjPVYS618tuItdAY9sQlRFOYWMeDJXsrl060h/+v9DluW7OCZkQ/R5dZ27NuYzuqZ6wGo36YeB3cd4o+PpuAb6M3Ap/vwyZI3yD9WSL3mtXA6nYx4+if++mImtw27gcGvDDzr+xqdEEWrPqlsXLgNm8XOqunrefHXx9iyZAfr5mykSdeGZQbfL9iXhu0TsVns7Nmwj/vfH1zhOX9950/mj12C2dvED9s/KUsDzT2Sx5RvZpN3NB+zr5mDu1VB/LblO8/L4M/4cS4/vPgrAMGRQTSuwCXn4dLhMfgezknAeT7Ozx+7BIDZoxaUSQeUFlvIO3Kqlp5ixg9z2bd5P3e+eTMhEUH8+fl0ADYu2ELDDkkEhgfQvHsjktuX18KJS4omNDoYvyBfqseHY7fZ0RuU26Zu01rM+Xkh9dvUw2axMazf+xi9jNz91s2ExZwIuP71+XRm/DAXIQTfbh7OW1NfBGD1rPW82ONNAJ796WGuua09AL6BPtz/we0AbFuxi23Ld+Fyudi8eBtdbm1HTEI0eoMOrU5LSockFv6xjClfzwKgduMatO3fgii3N6wgp7BsxT5n1Hxufbn/WZ9E/IN9eXnck/zy2h9sXrydAzsy2bRoO18/OZLDaUdZ8Mcyvln/AXqDnvjkGLehPszgaxud8Zw+AaqizC/Ut1wl8uSvZvHza79j8jLSum8zktslotVrad7jzOc6meOxhxrJseh0noZ6lxseg+/hjORm5VOQVUDapgPEJEZSo0HsWcffNnQgU76ZTbsBLUAI2vRvQe1G8QSEnh40zTqYzUf3fYPL5WL/1oNkHTjGkI9uR2gEbfo2J7ljIlG1IspcECcTVz+G4Qtf48O7vuSNG4dz55s3c8sL/QDo82A3UjrWJ6h6ALNHLWDJnysBSL0mmWtu7wAof/txv35U7er4Bp4op7VZ7GU/H047yvTv/6ZN/+b4BpwIopYWlZLSuT7B4YF0uqUdAI27NODr9R+g0WqIql2dorwSdHodfsE+RNapzoHtB9m+ajf1W9eleo1wHvj4DuaOXkyvIV3PaOwXjFtKxu5DdLq5LdXjw6jXvDZj3lLahJsXbyWiZjh2i526qbUYfu/X9HusJ7Ub1+CVP57CYXNiNJ+5XmDw0IE0bJ9IbP1oAkLVF/rkr2axcvpa2vZvwcpp68g6kM3O1Xu4/fUbiU2s+EnpVLre0RG/ED9GDf2N57u9UWG8w8Olw2Pwr0CspVbyjhYQGh1cZkyyDmbj4+993lk2aVv280rvd4hOiGTV9PUERwTy5ep3CQoPLDcu90gexzJyqNEwlnYDWtJuQEtKC0sZFPcgKZ3q89Mrv7F58TZe+f2pcro0vkE+tOzThCV/riIsNgS/IB9a9mnKNbd1OL+blLBhvso02bJke9lmjUZDeI0wdq7eS0xCJP6hfph9TNRsfMKltPSvVSz5cyWNOtWn/Y2tyt1Ts+6NeP6XR8naf4xJX84kKyObwtwibnj6urIxf49exOoZ6wHo+2iPsu0x9U4UQjXv2ZhvN32I0cuIX7APj7f5H7vXpdG0WwpvTnuRnvdeQ897rznj7e1au5c3b/4YKSVFucXc//5gktsn0uW2dqz7ezMN29en32O9WDl9HR/f/w2g3Dm1G9dAq9WiNZ/Zd24psbJ8ispyMvuYGPPWeEzeJn7/YBL5xwqpXqMaz//6KPZSG/lZLeh40/nLQRuMekxeRtK3ZgCwbu4mUjrXx2T26AVdDngM/hWGpdTKR/d+zdwxi3nw4zvo+2hP/h69kPfu+IKUjvV5ccxj55Vxkb45g6P7s6leoxoAhTnF5Va/APnH8nm5zzvsXLWH+z8czIAnegNg8jHR64EubJy/DZfLxaoZ68nOzCXvWAFmbxM1kmMxmY08O/JhDu87itPhJCw2DB9/b7IysvnplbHYrHZuH3YjkbUrDhSHx4XxxLf3s3nx9jK3y3Emfz2LEU+NolajeD5d9ha+AV7lUjNDIoPJyyog90g+/R7vVe7Yo/uzCI8Lo1psKD++rPLWTw08Jraoy6yR82nQNoGQ6OAzvofeAV788vp4dHoNRfkqOFqUX4yUssJCsOMU5haRczgPb38zRXkl+AWruXv7efHsyIexW+1ldQtNr21IXFI0+7cdpK47W+lcLJ6wguH3fo3eoKP3A92Y8IlKg+1+T2cKjhWyYNwy9qzfxy0v9+f6h7uf1zlPJqFlbfo93pN9m/aze10anz/yPU98ff85g9MeLjweg3+FkX8kn7ljFgOw5K9V9H20Jxvmb8XldLF2zkYO78s6L4Of0imJ3g92RaPVkNiqDvXbJBIeFwbA4X1HGfP2RCxFpbgcLgD2bkgvO1YIwe2v3sTcMYtx2B20ur5Z2YrVYDLwwfxh1GgQw9q/N+MT4EVk7er4u43a2jkbmTlyPgD1mirDcSa639WZ7nd1LntdUlDC9y+OYePCrTTr3ojVMzeAlKfl4TfqVJ9Pl72J0+kioVntsu2Zew7xZPuhZGfm8vjX9/HmtBfIPZxP6+vLa/L0uLczKR2T8A/1xSfgzHo7JweX73l3EBqNhsZdkk9z4RQXlDB71AL0Rj2dB7Xli0d/4O/Ri+j7aA9SOibRuEtyuff2ZGmHsOhQ3vt7KEW5xUTXjTjjXE7G5K1W2027NyoLyuoNOmwWGy7pQkrJgR2ZpG3af17nO5WS/BKiakdQmFPE7FEL2LFyN/e9dxt+Z6iHOM7ejen8/uEkQiKDuOn5vnj7ef2r63s4Mx6Df4URGhPCAx/dwZI/V9LvMWUsO93ShkN7D5PYqi5xSVHndZ6AUH8eGH4HGq2m3GrU5XIx7ds57NuYTkA1fxp1bkCN5FjaDWzJ/u3KF9+gbQIGk4FajeJp2acpkbWrk+VWobRZbGQfzGXHit188dgP6PQ6kjsk0nVwezoPakfNlDhCIoOwltqo01StWA/uOcyOFbuo17w2ETXDK5wvwN7N+5n05UwAoupE8NzPD59xfJ0mp6+Gcw7nk52Zq6656xA976vY5SKEOOOTx8nEJkUTFhNCYXYRtRvXPGPGyvzflvDFoz8A4OVrYsvSHe7tS7nzzZvPKdEcGOZPYJj/OedznJZ9UnlzygssHL+cReNX0PPezuRnF5G+JYMWvZpgtzoICPWjefdG2Kx2HHYHXj6nx1LOxK9vT2TqiDl4B3jR99Hu1GpU45zGHmD+uKVlGVYN2iTQrEfj876mh/PDY/CvMDQaDf0e61lm7AFSOtYnpaOS4pVSMu3bOWxbsYuud3Q8Y6rd5sXb+OSBb4moFc5jX91HUHgAoJp5//q2KkhKbFmH+q3rMfnLmSyeuIKUjvVZ+tcq7nvvNgY+3YeJn0xl+vdz0Wg1fLL4DW57ZSBe/maadEtmorua1mF3IICNC7fSeVA7aqXE89Xa93G5XARVC8Bhd/DBnV+wefF2GnZI5N3Zr5wxtzu6TgRNu6ewacE2Og9qS5u+zf/Re5fQvDaPfnEPh9KOcO1JTw7/lvj6MXy+6h0cVjuhUSFnHOfjr4LGQgh8g3x47Mt7WTZlNc2ubYT5Aujxa7Va6jStyeF9WZQUlmK3O1k8QbWhrtOkBv8b+wRefl4c3Z/FC9e+yaE9h3nu50fKxNhKSyysm7OJ0Ohgajeqcdr5jy8QNBoNNzx7PSERKuWzIKeQ5ZPXEB4fVmEXsrqpNdHqtITHhRFVpzrr521m1LBxJLSsw62vDMDsdWF6E1xNVFaLwx+AXsBRKeVpIt9CiA7AX0Cae9MEKeVrlXFtD+dPVsYxcg/n85E7yGcpspzR4K+csZ59Ww6wb8sBetzTmeY9VaaFb6A3LfuksmzSaoKqB/Ljy2NJaFGbTYu2YfY10ahTfYoLSgAIiVL+7bCYYEJjQhg87Iay83e/pzN6o578YwWkb8mg0y1ty/YdzxoB9URRkK2ahhdkF+Fyus5o8P1D/Bg2/hksxRb8gv95ZahWp6X3A93+8XFnIzD03CvvNv2b8/b0l9EZtGVfzKndUip1Hqcy4eOp/Pr2REzeJl4Y/Sg7Vu4hNDqYgc9ch5fblbJ7/T42LtgCwNalO1g7eyMSlaX056fT8fI189mKt8sFqwFueak/tRrHUyM5rszYA/z52XR+fvV39AYdX6x+l/j65QvyWl/fjB+3f4zJx0xgmD/jPpjEpkXb2LRoG236NieheW08/Dcqa4U/EvgcGHWWMYuklL3Ost/Dv2TH6t3sWLmbJtc0JDw+DKERp/mJ183dxNDr3qNW43hVDbp8J7XPEuRr3KUBs3+aT3S9SOIbxpVtH//xVPZtPsDNL/Tlr89n0KxHI+IbxJDUph7ZmTmsm7uZPRvS6XV/VwY+1YeEFnWIqFmN4Orls3sCwwIY+FSfctu2LtvJ5sXbSO3WsEzfxWA08MzIh9kwbwspnZLK8u1PxelwggCDyXBe8sWXE1qtltRuDS/qNZ1OFXtx2h1E1a7OV2vfRavTlvu9qdu0Jr2GdKUkv4SsjGwmf6XqCnrdr1xdpUUWSgtLTzt3aFRwhRlITqeSena5JC739U+leo0TLriUjvWZ8YPSDJr89UwCQn3L7ffwz6kUgy+lXCiEiKuMc3n4ZxTmFvJqvw/Iysim94Pd2LFiF94B3jz+9X3l/Nc7V++ltNjCpkXbeGHMYzzyxd2ERAZTUlRaoX82pUN9ftj+CdtX7uZ/vd4msXVd7nvnVhZPWMmhvUeYOXI+b01/kbj6MWXBtY+HqCcHu9WO0+nE7GOi6XmuVIsLSnjjxg/Jyshh2eQ1DF/waplroF7TWtRrWuuMx+7duI/h936DwWzgyRH3E1Xn/IKXVzP9HuupXCd1I7DbHJQUlJ4WzHe5JOv+3sTBXYfo+5hKP/UJ8KYov4T+T/SiXvPa1D3L53Iy6+dtJjAsgB73duFYRjbblu2i5kkLiYrocGNrSopK+fXNicz+aQEN2yd5DP5/5GL68FsKITYAmcDTUsotF/HaVzAnNOALc4rYuWYvAPN+XUxsYjQtejdBp9fR6rqm5B7N49iBbOylNiyFFu5JeoKQyCBe+eOpstL8kzF7m1j4+1L2bkxn78Z0ugxqx+2v3cjMH+fSsncqSa3Ku4Nuer4vsYnR1GwYR7WYc8sIn4xWq8E3yJesjBx8A73PmrZ4KuvnbWHHqt0AbF6y3WPwz4Pg6oH0HtKV8R9P4esnfyKpVV1em/RcueBq3tF8Du5SWTwareCt6S+pOEOg93kbeoBDe4/wcq+3sZbalI6Qxc6+LemnjVs9cz1blu2g9fXNqZUSB6Ce9ATE1Y+mXrPzv6aHirlYBn8tECulLBJC9AD+BCp0yAkh7gPuA4iJOV10y0N5fAN9GDbxGXau2kNYTAh71qVh8jayfMoaRr7yG6/8/hRt+7cgum4EuYfzWPD7MhaNX8H9wwdTkF1IQXYhe9bvq9DgAzS5piFzfl5EcvtEoupGkNSqLq2vq7h1YHhcWLlCpH+CydvEy2OfYMfqPTRoe27NlpNp0C6BuKRoDGYDCS0qR83zamHn6j0AbFm6g9wj+eUMfs2GcTzxzf2kbd5Pl1s7lBnhU9m6bCd6o47I2tXZtmwnEbXCCQjzp6RQVRuvmLoGnUGHEIKjB46xft5m0jalc+srAwlwxziOZeYwtO/72Cw20jbuZ9iEZwD1dPfNuvcRGk2FRYMlhaVkZWQTWSv8H/Uuvlq5KO+QlLLgpJ+nCSG+FEKESCmPVTB2BDACIDU1VV6M+V1O5GUV4LDZCYk8c0HPqdRuVIPajWpweN9Rnvr+QY5l5vDGDcMB1Rbv718WYrc5iHOrVsYmRVG3aW0adkgkqm4kmXuPMOGzaSS3SSA+OaZcULRN3+Ykpydi8jadUWa4soiuF0l0vdPb9p2L2o1q8PnKdxAa5fP3cP70GtINnUFHvWa1T8vj12g09Li3y1mPX/LnSl7t/wFanZY+D3ZlwifTiKoTQb0WtZn/6xJufWUAI/83lkadG5DSMYm0LQcAMJgN5eIFBpOeanGhHNh+kODI8s1qvM6Qj28ttfLhPV+x8PdlDB52A7edQ4TOw0Uy+EKIcOCIlFIKIZoBGiD7Yly7KpG+LYP/9Xqb3CP5DJ34DKnXnH8g78j+YzzTeRiH07J45Iu7ee7nRxBC4LS7eMfdBPvxb+7ng3nDqF4jjLDoUD6Y+ypzxyzmuxdGExQewFeP/ci9791aTkYAOK8c6kvN2XRjPJyZBm3qnZcK5pnIyshGSonL5eJoRg6gXDjBEYE47I4ySemNC7Zy6/8G0PnWdjTpnEytRvFlFcSgfsden/Qc+zbvJ6lNAqVFpZi8TezZsA/fIB+K8ooJiQwuK9ADKMotZvF4lU66ctpaj8E/DyorLfNXoAMQIoTIAIYCegAp5dfAAOABIYQDKAVuklJedav3ipBSsnzqGvKPFuDlZ+ZQ2lEAdq7a/Y8Mft7R/LJ+rPu3HeThT+/GYXfwzdMnEqdMXobTGlsHVPMnqnY46+ZuBmDV9HWnGXwPHs5E+xtaUZxXjMFsoH6bekTWqkatlHh2r09DSkmPuzvR897OGEyGMr//tXd1Ou08UkqWT17Dng1prJyxnkV/LOf6h7sz+o3xtLuhJfPHLqFB2wRe+/PZso5jxQUl3PPOILav3l3WBtLD2RGXs91NTU2Vq1evvtTTuKBsWrSVpzoMQ0rJXW/dQnZmDvlZBQx6eUCZlnthThFj35lIXlYBA5/pQ1wFyoUul4sZ388lfVsG3e7sRI0GMRTmFnFXwmPUalSDarEh+Ph7ERIVQq8h15Tzd25bsZN1f29m8+JttL+xFd1u7/if72v55DXs3rCX9gNa/Ss3jYeri0N7DvPLm+MxeZmY/NVMpJTEN4gm/1gRNVPicFjtZGfmMuzPZ4muE8H+bRk83uZlCnOLeeKb+8/perqaEEKskVKmVrTPE+W41IgTfkyjycDDn9592pANC7Yw7oNJAITXCKvQ4Gs0Gtrf2IqMnZlljbZ9A324+YV+rJ+/BS8/MzvX7GX9/K3UblKDJHdLPICE5nXYsGAr6+duZsP8reQdzWff5gP0e7xnhZWU5+Lg7sO8OuADHHYHR/dn8+SIIf/4HB4uDwrziti7fh8xiVEEhgVckGsc2KGa1qyesR6dXke7gS3YMH8r197VmYydmRi9jPzx4WTqpNYscwPlHS2gMLeY+AYxHNiZSeaeI0TUrHZB5ncl4TH4l5gGberxxpTnyc8qPE2k6zgxCVFUiwslJzOXOo1VsdSWpTtI25RO855NCI0Kxul08umD3zJ3zGK639OZJ0cMIT+7gFFDxxGbFMX6uZsoLbTQqFMDgiICT7tGaVEpdpsDIQRrZ29i7ZyN+If6/SuDb/QyEBjuT9aBbPxDPb1QqzIjnh7FjB/mkdq1Ia/++ex/LmrbsnQHq2esI6VzAxq2T+JQ2lGe6TSMnMP59HmwG/u3HySpVV0e+OjOsmK94zGonav3kHckD/9gX5Ja1+XpHx5k3tgl/PHhZDYt3MoH817F5HVuGWaXy8WUr2exadE2ut/duZw43ZWOx+BfBjTrfnaRqJh6kXy27C2spTbC48I4uv8YL/V8i+L8Evo8dIBHPrsbW4lNqUMCa2dvwG6zYzQZiEmIxG51YPYxU1poISw2hOpu1cuT6T2kG74BvviH+vDH8CloNBrqpf67vOeQiCDenv4SB3YeomGH0zVTPFQNpJTsXK3qOrYt34W11PafDL7T4eSTB0aQtmk/M39awHdbhlOUW0T2oTxSuzZk+vdzkS4XNz3ft1xlds/7uqDVaqjTtGaZe1Cr09L19g5M+3YOAFkHsnHYHcC5Df7utWl89vD3AFhLbR6D7+HyIyDMv6wYaefavUiXir1YS6wAmH3NPDHiflZMW0vr65qhN+jRG/S89NsTpG06gE+AmcNpWTTqdJrUEaCM9IAnlfJFardGFOcV/6cCptjE6PPukuTh8kQIwQMf38HSP1fRuEtyWfvCf0NRXjEIqF6jGmmb9hNZqxo6vY5ajeJ5btTD7Fy9l9Wz1ILl4M7McsqiDdokEF03gvEfTWXEM6Po/0RvQqOCEULw0Kd3sXL6OpLbJZaJ0J2LHav3ULNhHHs27CM28fzUY68UPAb/Mqa0xMK80YtYOH4F1mIrD312F7VS4sk9lEu95rWRLhcpHU9k3TRom8D2lbtYN3cTNRrGEhYdQrWY0LKq1/qtE87ruv9UbtfDlUtKh/qkdKh4kXC+bF+5i9cGfIjRbODpHx+i252dqNUoDoNRz+71aRxJz6JZj0aYfYw4nZJW1zc77Ryrpq9n7DtKpbVa7IkCvzpNalYodX02QiKDsBRbSO3WkBa9K4xtXrF4DP5F5OCuQ/z5+XQCwvzp/3jPc+qcLxm/gnljl7J+nkqZnPnjPAKf96fdwJYU5BahN+ho1eeE33/V9PX89u5fAFSLDS0nkezBw6Vi67KdZGWospsD2w9y7V2dOJR2hLm/Lmb1zA3MHjUf3yAfRu74tFxu/slE1a2O2ceEw+Y466rc6XBWKB54Mi17pxISGYTepK8wAeJKxmPwLyJzf13En59NB6BmShwtep69ubPJx4Sl2EJkrXBKCi2kb81g7Ht/ce/bgxj0Yv/TxkfVjcDbz4zNYr/qHlU9XL406dqQ1G4pGMx6GnZMwul0Mvzer1k/dzO1m9QgJDIInyBvdIYzt0BMaF6Hr9e9j9PhJLpuJC6Xi4mfTGXRhBUMfKoPwRGBTP/+b7Yu30lAqD9PfjuE6vFnztqp3fifJyNcCXgM/kUkNiEajUaDX4hvWbvAs9HquqYYzQZsVjsTPpnKpoXbiKkbwa3xD9H/yV7c+Ez5Aql6zWrx1br3cdqdHgExD5cNsQlRvD39pbLXdpud/KP5AFiKrTzy5d3E1IvCy/fsLQ1PVn/Nysjm66dUUaFWO5Xkjklk7j7Cvk0HgANsW7bzrAb/asVTeHWR2bspHS9f83kZfLvNzp4N6YRGB3Nw5yEy9xxm5MtjyT6Ui7e/F6PTvzqt76fNYmPKN7PJOZRLz/uv8fzSe7gs2bFqN+vmbSKlQ33qNTu/xib7thyg4FghSW3q4rA5+HjICOb8vJAHP7qD6jXDmfjZNA7tPkxANX+eG/XIGQUBK8Jhd7Du7814B3iRWMUF+DyFV5cRNRrEnvfYiZ9O49tnf6FOag3emvYSye0SKcorZswbE7hmcHtcrtObSGxcuI2vnhgJKIGqwUNvOG2MBw+XmrpNa523xPL+bRkU5ZfwUvc3Kcov4clvh9D97s488c393PXmLZQWWfjzs2nUaVKDW17oy8Fdh9Hqzuweqog5vyziw7u/RKvT8uGCV0lqWffcB1VBPAb/ErB7XRq716XRqHN9qsWGcWR/Fmkb0wmsHsC8MUsIiwmh9wNd2bflAI06N0CjEeRm5eMf4kdCizqExYQwdcRsQqKCaNAmgTmjFxESGcjAp5Uv0yfAi6K8EsI9q3sPVZxZP83ng7u+pMNNrSnKV60zj+5XIrsGk4HQqGB+fv13Jn81C71BR2mRhcXjV7B7fRqPfH4Pdpv9vBRUC3NUG02nw0lxXsmFu6FLjMfgXyAK84qY/OVM7FYHfR7sRmC1AAAKsgt55fp3yTqQTadb2vLEiPt56+ZP2LpsB817NmbTwm2UFJZSs2Ecza5txLuDP8dhd5C2cT9xCSqjIG3TflwuF0IIpn3/N9O/+xuAkKgQugxqy6fL3qYot4i6noYRHqo4u9bsQUrJmlkbuPONm7CW2uh2Z3mtpxoNYtFoNbQd0IIpX8+mQbsEdEYdQ/u+z971aTz+zf3n7BHc5bb2gOrZ3LhLg7OOrcp4DH4lIKVk8+JtGMwG6rqrU1dOXcePL48FVNHUdQ9dC4BLSmwWO0IIHDY7DpudjB0HAcg5nIfRy4jZx0hwRCCFucXu6kHIycxVwa6sAh754m6spTZMXsZyTSHMPqrK8FRdcw+Vg3QcAGFCaP9ZNy8P/54ug9tTXFBKdL1I+j/Rq8KeDK2vb8Z3m4bz4/9+xelwsn7uZiJrhbNs0ioAlk1ZXc7gW0utLJ+yBi9fL1K7NUQIQWCY/2k9lq9EPAa/Elj0x3Jev3E4Wp2W9+cOpUGbBMJigtEbdDidLsLjQinMK+LovmP4h/rRbkBLCrML6f1gN3wCfHj5tydZP38zzXo0RqPREBDqR/Ua1QiJDuahT++ipKCEToPasPD35bxz26cAtO3fnEXjV9DnoW4MGX47QdUDy+Xke6hcpGUeMu9h0IRB0HcI3T8r9vHw76ibWotnRz58znHR9SLpentHMvccoVajOHav20ejTg04sD2D5j3Kpz/PHb2I4fep/svvzv4fjTt7pBU8/AOyD+UCyv+Xd0SlmzVom8gXq97BYXcSkxjJmzd9zLJJq+n/ZG8mfzUTgFpNapDcLpFGnRvQqPPpj5Ems5HrH+5e9tpmsZX9fDy5Kv9oAY98ds+FujUPbqR9M2AH10Gkba3H4F8iivKL2bZsJ1F1I8oy0JxOJztW7iYmIZKv175PaYmFgzsOEV4jFJ1eXyaoVlpkYex7f5KTmVt2PofNeV7XLcguwDvAu1w3uKqIx+BXAh1uao2lxIrZy0hq95Sy7fHujJzsQ7msnLYOgIKsAgKr+VOUV0LNhnEUF5RQmFtMeOy53QQdbmwFgN6oJyYxgtjEKPZvP8iaWRto0vX8m6V4+OcI07VI+yZAQulkpKkHQnN+2i0eKo9f35zAuA8mEZcUzWuTnmPZX6spzC3il9f/IDgikOELXiWiZnVqNYo/7djtK3Yx5o3xhEaHcN3D3WnQph5Nup57dT/pixl888zP9H7gGu5559Yq3Tu3sjpe/QD0Ao5KKU8T3hBK9esToAdQAtwhpVxbGde+HAgM8+fm5/uecX9w9UCe/uEB1v69mU43t6H3g11ZP28L2Qez+fbZFezflkHja5K59eUBZ72O2cdM97s7A3A4PYsxb05ASklRbrHH4F9ghL42UtrBvgQ0UcDpKbH/BCkdYN+FFAaEMCJ0UafstwDGMsE8D4rD+1RHuIydh1gzawNfPTmy7Ok4OzOX7Mw8ImpWnH8fUSucuKRo9m8/SIO2CbQf2PK8rjn9h7nYLDYmfjIdk5eRbnd2pHqN8HMfeBlSWV9VI4HPgVFn2N8dqO3+1xz4yv3/FYfD7kCj1Zym5dHl1vZ0uVVlAnz5+I9M/HQabfs1Z//2g6RvzWDL0h30uKcLQeEB53WdgBBfmvVoxIqpa2nc+b+JW3k4N66SCYAdTP1BEwyOfWA4ezaHlKVg3wLaaIS2fIqsLPkVHDvAMgsprRA4AmFUfxLSMhtZ8BoY24LvS54niZO46YW+RNQKJ6F5HfKy8gCwFFvoNeQa4pNiSGx55qKpkEgl222z2stV7Z6L/k/0YtTQ34hPjmXip9MJDA8sS8KoalSKwZdSLhRCxJ1lyHXAKHcf2+VCiAAhRHUp5aHKuP7lwvZVu/no3q8JrObPE98OKVOpPJXweFVle/TAMRJb1SF9awYtejfBJ+DspeUnY/I28cLox8jKyCa6CsooSEcauEoQhqSTtmWCKwf0SRdkZStLZyOLvwZTN4T33QjxD/yxtuUgtGAZr84l8xCnGHzpPAr2TaBLROiqI4u+heLPQZesAr2aAPe4Y1DyC2jDQeapbbYVSPt6hKEl0roGdHHgOoa070UYr9w0wX9K7UY1ypryZB3Mof8TvdAb9eB0ciwzh5KCUnyDTpdxzs7M4cN7vsJuc5DYsg61G9UgJDoYa7GV5PaJZ/1963JrO+LqRzH0+vfR6rXUany6u6iqcLGcUZHAgZNeZ7i3nWbwhRD3AfcBxMTEXJTJVRbr5mxk78Z0ADYv2U7OoTwialbDP6R816feD3SlVqN4QiIDCY0OYcATvQmNDvnHzSW8/bzwTjz/L4nLBWnbjMwdDLIEAj5FmLoiHQeQOYPBdRD83kZ4nS4O96+vZ5mPdGwFx35wbIKiTWDuCdrz77UrzNcjS/4EbQ1w7gVdeTkAKSUyfxjY5oChOQR+D46daqdjC7gKwW3wcR0DZxqgAeO1oPED+3awzUFqa4OxI9hWgPAHc3ZlvAVXJEsmrmD8R1MAaNwlmbVzNlIzJb5CV82utXtZNWM9zXs0Yv/WDLYt20lk7epM+WY2z458CKPZSIP2CWds41grpQafr3gbKSVB4ad3jKsqXCyDX9HXZ4UiPlLKEcAIUFo6F3JSlU1yhyQia4UTVD2AzN2HeWfQpzTuksyrfz5blimQfSiHfZszqNU4Hn+3FGxMwlWmbOk8BLIIAOnYp345XIeVsQdw7K60S0nHfmTeQ4AdjNeAphoYWim3zJmOceaAMJZzpQhjK4SxFdJ5BJxHQX9qbwEnONPdP5aAdCC870FqqoGhEdK6DJn/MsLrFjBdA77DwLENYb4B9AnInDvUsZpA0KeoLwLngRPnBKRtK2i8ELq4Snhnqj7B7ladWp0WrU6Lf6gfUXWqk7nnMKNeHYdOp2XwqzcSFh1C7SY1aNGzCZF1qzPho6koZ4OgTpMa/DT0N46kH6P3A1159It7z3i948WTVZmLZfAzgJOFp6OAzIt07YtGUsu6fL3+A7Q6Da9c/x6NOtUn/1gBxfklmLyM2Cw23r39c9bN2USX29rx3E+PALBh/hY2LdpKsx6N/3EzhyqJsRX4PAWufDD2VKt7bR3weQFcBxDmfv/61NKyCOnYgjB1RehqAEa1snZlgbSC7wsIUxeEqPhpSloWIvMfA20tCPgEoYtAOnNB44O0TFOuHX0zhCxBGpqVuQKE0CF19cDQBGyrkIVvgvfjoAkF2zqwrwfHJmTRMTTmbgjvW8pf2P9tNUafAtpIZNHbyuAX7UWargf7CmTeoyC8IfAnhOHMcRvp2Ku+lAyNz3ifVwJt+jbno0WvYzDp8fI1YzAbCIsO4c/PpvP3L4sAqN8mgWvv6kRw9SBe/etZjhw4xtrZG0nbtJ/gyECa9mjEz0PHAZDllmy4krlYBn8S8LAQYiwqWJt/pfnvj3N8JZ/QvDY/v/o78ckx5B3J5cD2g8QlRbF7TRoAaRvTcblcFOeX8PoNH5J/rJA1szfy0cLXL+X0LwpC443wuR8AV/EoZOEbYOyK8H8Pofn3LirpyEDmPQDYkI69SGkDJHg/BNaZ4DyC0MaeZgRd1q0IjQYc6UjLdMCg3DCO3bhsS6BgGHjdDyVfAw6wb0U6DyP8XwNTN3Vt6QJdvDLazj1Qugd0jcC+FFzZoE1Q7iRTT1yFnyKMncoZbaGLBl20erqwTAPzDVD0IZj7qy8bxxHQJah5OTOBig2+y74XCj8AxzrwHoLwvv1fv5+XO0II6reud9r22k1q4Bvkg96go0bDE2KFGo2G6rFh3PxCP2b88DcOm4M2fZthLbGyccFWCnOLSdu8n/j6VcuV/E+orLTMX4EOQIgQIgMYCugBpJRfA9NQKZm7UWmZd1bGdS9njqRnAZC2cT+/vDGBDfO3cN3D13LHGzdy7GAOTbuloNFo0Ol1hMWEkn+skODIoEs860uAdbH7/1ngehY05f/YpDNX+bx1NRHiROaTy3kM4cwCfc2TDLjevZo/qlwjtkUgAgAzwucxEL4gfHBZloHGB6Gvjyz6DCwTkYZWIAJB469W2ZpApC4BCkYBdrBMAENLdU5tNXDsVsbZsReEP9IyA4o/BVM/tQrXN1NuKtty5fc3pILXbZB3J8gipG0lBP1ULnAspQNZ9CGU/q7m4vcBmLqCdSEUvaPcUF6PITXVKvaRSgcUf+GOI7QD55HK+5yqEEmt6vLd5uFoNIKACnzyHW9qTUrHJGw2B28MHM72lbto07cZGTsy8fb3InPPYca+MxGj2cBNL/Yj+Bw++8P7srAUWYirf/l3z6qsLJ2bz7FfAg9VxrUuFw7szMQvyOe0gOxxet3fFZ1ei9nHzLRv51C/TT1+ee0PAF776zkatE0EwOxj4uXfnmTPhn0ktjw/XfArCeE9CIlLpSBqT8lFd+Ygc4eAYz34DlVjpR1Z+CFYJiP1jUGfijT3gJKxgBOMPcC5Q62Cj8cCzAMRhsZIx2FkwTB3EPUI0u8DlS0j85RxtE9XsQVDW7BMQHjfhTQPBGEGTU3QhoKuAUgLGJzgOoo81h10iWDqpYLAlong+w6Y2kLBK+r6zn1gXQDODNC3UNfTRoB9Ixganbhh63JwuuMYshhKfwNNENK2Ub03zjRwrISSL5FBoxCGUzqmyWKw/u2+Zhr4vlyZH1WV4lyB1cBqAexcs4ftK3cBoDPo6f9EL7av2EV2Zi7Tv58LQJ3UmlwzuAOgAvOnZvPs3ZTOs11eozCniP+Ne4o2fU/vx3s5UXVLxi4hs0ct4P07v6BmShyvT3qekJNW5uvnb2b55DUktarDE98MYfg9X5LSqT6+gScCgHarvdz5ImpWI6Lm1SllLIztEcb2Fe90HVXGHsCh+vpK52Eo+REV8zdC6URlOHGBdSp4DQbbMjAPAhEE2hgQGqSrWKV8YgGXe+VrmaV87tYloI0D20r3haUK8Gqrg22NcgcZWkHpUrXbeK3KwBHeaqw2EoreB11DMLWEojdB3u0O2oaAqwQohpIRyqevjQHbMqS5f7mVusQGriIw9lTjbVuhdBbIg2BoBlwLrr1gaIa07wR9g3LuKaHxR/q9CpY5CFNvhD5OnVdaVRDZk89fjhrJsdz73q3sWb+PqDoRfP3UTwghePHXx6gWG4rdZgch+O29P4lPjmP0678TEhnMgx/fQXCE+ps/vPco+VkFAKRvPeAx+Fci21ftRkrJ7nVpHEk/Wmbwsw/nMuGTaexdv48VU9fiFeDDzS8NYPXM9dRMiSW5XRIFOYVsXbYTjVZDm75XZO1Z5aGrDb4vqeIlY39chZ+CY6taTdsPgsYLdJFgnQLaeLXSNrRTmS/a6irYWfAk5D+D9H0e4XUHGHurSlmZr1xF9u3g/SAILzD1UG4Y00CEuSNCmJDi+J+IEzABFtD4KveOK1P9L12AS/nN9YkgC8FxAClMCL8XwbZBFVqBCh4brwHHDoQrr9ztClmC1PiCtCkDL8LUl5NtiTq/zwtQOtM92oCUOQif8g/OGvN1YD7R+lI60pB5T4MrDwI+RBhSKvczqoLsXLOXReOXkdSyHjc8rd6r0W+q+gqj2cC2ZTuJqB3OTc/15eVeb2O32ul0S1u2LlNpth1ubEXb/i0ASOmYxG3DBlJ4rKhM+uRyxmPw/wXX3NaOotwiYpOiqd24BnlH8/EO8OL7F8aw7K9VJLdPRGfQcTQ9iyadG9B7SFdANWK+P+UZ0jalM3XEHJLTE/EL8r3Ed/PvkNIB1kWADoxtzrtQSkoJsqRstemyrgEcaI5XmUoHSAtC4wPOQwhdbTAPQFoXg32NWr0D+L6piqCEDyBVbrz/Z2hM7U5cTDiRzgz3he0IoUF498dVXOwufIoAfQOwr1SBVZ/n3UFjG9jWIg0tEObrQOOLxAuMWcoAew2E4pFg+RN0TUAXo1w92urgzAHvh8HyF9jXIF2FCH0jMN+GkmOwqaCsaQDSvg201RGGZKR1hXpvNJHqS0d4q3iBoYUy/tKhvpQMLcFVAEKCfZf7PXMColyMowz7JhUsBqRtFcKQgrTvAOGL0FW9gr3K4JfXf2fZpNXojXpG7f6MkMhg2g9syaaF23A5nexet49ty3eSfVt7fAK8yD2ST0StagSE+VMtNoRajeLKzuXl58XgV6pOVzmPwf8X1GtWmxd+eQyASV/O4MvHR3LtXZ3YtXoPABk7Mrl16ABa9CrvYxVCkNSmLmmb0knpmITJ23TauasMlpnI/CcAEAEjwNThnIeooORHUPIb0vdZZcDynwWhx+XzEsJ8LTL/FbAtQfoNhaIvwblbZdkYOylfOkZl5PX1lTGT2WDoANpo0NbCZT8EtlUgHAhNIAR8Ds5jCPMJ1VFh7oPEqQqbXAVgnaFy4mURuJzIvLsBiQj4DGHqBqZrTwuSSq9bkBofIACKhoKxu/Lt22aBTa+CtOih+HMkWkTQeKSxLRS4m3k708C2AOncBwxC5t4OuMDvTTRebyBdeUjXYSj+So033wDaELCtVgFpQztwpuMqHqsCyhjA/3WE7pQqUH1jMHQEVzbC0BpZOk19biIUgkcidFdfk5zjle6RdcLL/gaDwgNo3qsx+dkFHEnLorighDpNavL2jJfZv+0gjbs0oP/jvdAZdGWZeFURj8E/T7av3M3qWetJ6ZCEb6APAdX88A/x5+/Ri3A6nEwdMZtXJz7LsimradU7lZanaNP/PWYRyyatpk3fZlxza3si61SvsJlDVUHKk9vAWc7vIFc2FH+rfi75TQVHcajVq3M3ONLAOk3tty5xV6MCzgw0hga4eBRMA0GfpFw7roPKjWPbCI6ZUDpO+e6du8G2EKmtCd4PovG+GekqRroKEBo/hCYA4X2nWlUXDAWhA697VADVtoLjNYHSmadqBexbVJbQSXo4QheJ8HkAlzNXBVJdeaA5LtrlAGMvcO0H20JAA0KDMPdWKZZSB0VKjx1dPNKZTZkYm+MQrvxhKqZg7guWmeBMV8bavg0l0XxUuaOs00DmqFRQQNrWADqkba06nyNNvYfCqOoPDIm4Cmer+5NHwZEJV6HBv23oQFKvaUhMYhQ+AepJ87f3/mL8R1No0685h/dl0f/JXqRvPUB8g1g63tS63PHr521m7pjFNOyQSOdB7Sq6xGWLx+BXwP7tB5n103yi6kTQ9XYVUPzsoW8xmA0c3X+M6d/9Te0mNXhj8gu07J1K/rFCEprX4tjhHPyDfYk7pVF5UX4xnz74HSUFJWxbvpNRuz//x02WLzeEqYfKPRd6tfo+C9K2Hln0OWgTwXsIlI4Hr0Ggb6L84DhBm4zUxoChMzi3gy4G4f8R0r4ZYeoFgMaQCCTiKp0JpX+ALAXHdtDowKFUFFW1rgt0SSALoOAFXFih+Hu3lMNnCIOSxJWOnYBVFWTpaiG0Ibj0KWAerM5hbIcsfF99keibQeC3CI253L1ptIFI/+HqPK5ipD4RoQ1HmLqoVbo2HqGNQOjd+eKm7ghA6uuD6wDoGiCL/wBDe9SXXwGUjlHvsSEZgkaDLFTVtY49SOcBlY1z/AtChIK2purEZUhBFn+vnlps89VTkG25e5w3GJuopxuZ5644Pr1hjpSlYFkM2tAr1t/vG+BDsx6Ny207djCHus1qMe/XJbhcLkoKSsg9ko9vkA+fLn2z7IsBlEtow/ytzBw5j4Yd6pdL2jjO4X1H2b5iN/Wa1yI8LuyC39P54jH4FTD1m1lM+EStNOPrR1O3aS1CooIpKSjl8F6V4bFrzV6OHcxmx+rdWEuszP9tGccO5rJ+3mZMPqZyUsdmHxPtBrRgxg9zadOveZU39uAunvK+8bzGSst090p3ISJwFPg8jBAGpKsUiQT7VpUOKSxgX6Vy6S2zlR6NbYVyA/k8ijAkIR2HIP9JwA76VECC133Kh45DGT/7RpX7XuoWb7WtUsVQgLStKzP4CF/lDtIEgKGN2madX3acMDRHOnao7Y4tymVDeYMPuOMXJtCaEN63nvQeBSC8zlA17NiJdB1D6Ooh9BHI4kWAAXzcgT9NLGjCENpgQMlACF1N8BqAzBkEmiDwegDhPQiEL9J5DGndoOIKwkfdP1p3jEOvagcAoYtH+A098dnYViMd6QhjR4Q2CFkyDgrfVMcEjSsnbnclM+Cp3iz5axVB4QHM/20pdVJrMnvUAuwWG7ZTsuqSWtdjw/ytpHSsX6HgodPh5MO7v2L9vM2kdKrPOzNevmz+5j0GvwLC3M1IgqsH4BeigqoPf3Y3f49exNrZG0jt2pAaybEYTHqsJTaqxYaS0rkBe9buBSjrxHMcrVbLg5/eyYCnelM9/vL5tr9QSNt6wIkwNEG6SkFXD9CDrh5SahDOHNCFg2OXCm4C6BuBZQYYO4DLhjD3BPs6KB2tzmlNUAYfCZpwtTrWhILXQIS2GrJwKjgzld/deyguyxIVYJX5bvdKgQoWG0/KpCgdU+YOEb5Pqv+1kUi0gAa0wQjf55GWWQhDC4S24txuaV2GtO9Qkg2n6NpX/P6sRebdB0ikKw+Nz90QNAGEAXQ1VGBWE4y0r0TmPgheA9B4D3a/T/XB+xFw7kGYOiO06vdJFv4IlslKuM26DMw3qewh8+2ADVHRat6xF1n4CQgt0pGB8HtMpYUCYAdKz3kvVwrx9WOIrx+DzWLj3ndvpTCviOo1wkhsWZegUzR0bnmxH62ua0Z4fBgmbxNFecUUF5SUqeM6nU5yDquuWrmH83A6XR6Df7kgpWTR+BXkHs6lw02t8Q/xo8+D3aiVEkdwRFCZ8Q6qHsCNz15HZO1wRr8+nnEfTCKidjhB1QPZtGgbXQa356Znr6e02ELd1NP1cMxeJmKvApE0aVmMzH8cZCHSfwRYp6tVp8+zoAmBvFuRxm5IbazKgTd0dKcd2t1PAYDf+whzN6Rjv9K0cR5A6N2P4M79oA1Ux2qqg4hw+6qVyJi0b0SYOqExtQbTSb5Xc9vTJ2u6Xj1deN2oVsyAMHWAoD9A6BF6pa1+WoHTyffrOIDMvQ+wIp37EP7D/tX7JgyJJ14Y6quMndxPlZ5O4ftIU2+ENhAhzAjfR04/gbYaIMCeBv7DIf9Btd3YCeE7DIRQBVy62kjbOlXZrKnmfnIpUrEQQHjdgNSYEZpw5XK7yjCYDITFhBIWE0rN5IplkI1mY9nfeFZGNsP6vseeDem8OOZx2g1ogcFo4OkfHmT9XLXCv5xidVe9wd+0aBuv3/AhMfUiEVoNfR7oRs6hXPyCffEP82P2qPnoDHr+GD4ZvyAfej/UjT0b9gFqAfXYV/dy15u38PfohTzR9n/c8Ox11Gt69QXCwC0RbF/lzpiJVP5oyzTABaVjVQ688AXXIVXMVOoNwdOVe6f4F5Q0QjA4M5HShbQtB2MLML6KMDZFWuaDdS7oUlRFqywEx1ak6ToVdHUdQZjOvzGFxvsWpKk7aHwR4sSfwj9zY+hU9pC0quDoeSAMjSFgBNKVjTBdU/EYIZDmG6DoI/C6RUkonwFX8R9Q/KWKA5hvB3lMuaoc2wGXSk0t+BZs89TK37ZJfTbGNkpGwrEXtxIKQhuK8L7rH9z/1UNRfjFbluwgum5EWQOVg7sOsXONerLfumwH7Qao/PyE5nVIaH7mZiyXiqve4OuNOpLa1OPYgWzGvvMn1WJDGX7PV+QdLaDvYz0Y/9EUGnWqT+buw/g1q8WRtCzemv4iRbkltLwuFb1Bj7e/F+Pen0RhbhHj3v+L6x7qhtnndF/vcYoLSsjcc5joepGYzFU3xes0XEeg+GuOZ7kIU3ukeE1lmmiqq2wYU3+1agXQpYJlipIQ1jVQRgqLMuT27VDglgaQTqQ2/ITMsfkWFYAFlJjZSjT+r/2rKZ/JTXPex+uqQ+APKjPoeBzgHEjLYhWINXU/LQhc7tze94K5H2gCz96sxTJZBbCtM1RFcOGrgBPMN6pYgDYSbG7NIvsaJcIm86HUXQxmvr1s7tKRjnTlgX0/yMMI8/UgvP+TqN2Vwq9vTWDc+5OIrhvBhwtfxWF1UiM5lpueu5792w/SqFN9dq3dS+3GNS71VM9IBZUaVxcJzevQvEdjjqRnkXXgGLvXpZFzOA+Xy0VpkUo3FBoNjbs0YPWsDXz5+I9IlxJgOm6sjWYDNz1/PQFh/tz8Qt/TjP2udXtZ8PsyCvOKsNvsDL/3ax5s8hw/vvTrRb/fykTa1uDKfQRX0VdIaUO67Ep2AMDcC6HxQ2O+XrkOLFPAsRHsa9Vq1dBC5ZUXvQcFLyr5AGNL0FRHGDsoF4s2Tp1LGw/CpFxCoPzxPo+DeSCI0LIsnkuFMNRHmK9HaEPOOVbaViHz7kbmP4ksdXfPsm/HVfgR0jKn/HmFBqENBUcarvxXcBV9jnSVnH5SUyeltWPsoFJcy1I8j4EwqBoC863u9zwSHBtAW4eyNhWuQ1D6E67C75DZN0DOQLBNhaLhyOIfkFkdcBW8h6tkCtKRiZR2XCXjcBV9rbp8XSUcPaCa0RxNz2LGD/O4JWYI3zw9ituGDmTw0Bt459ZPeajp8yz8Yzl/j1nE421fZuq3sy/xrMtz1a/wQWnZtO7bDP9gX3exlCT3SD7d7uxAnSY1CAgLYO6YRWXjLcXWcscfcKvsvTfnldOkVQ/tPcJz17xOYU4Rg/43gH6P9WDlVNW/fc2sDRUKMlUVZOmfyjVjnYnUN4SC15U/2Pd1hNfAEwMNTVQ++HFhL2FWfndjnPu1BlxH0bgDp2UEjlRVp/oGCKGHoO/BvheMzcraBZabj+MAsuRnEIEI78GXp3aMdEBZ7x+n2lT8HVgmIdFDyAwllXzyIZYpyiUGql2iqXzut/AahNREqycj4zWgMYJlKmjMUPSGek/M14HLT6V0et2h0mk1D4PjANjmqqcvTTzI3OMXBU2Y+sxkHpT8BPpkpGWa0vJ3P31JQPgMuSBv1eXGTc9dT/Ua1ajfui5j3poAwKyf5nPH6zdxdP8xSgotSCnJzcrj9/cmcSQ9iz3r02k/sFW5tM5LyVVv8Ivyivn0gW8pyCmiVqN4aiTHUrNhXNn+2o1qkpWRzU9Dx5LatSFRdSNp0ftEMMtus/P+nZ+zbfkuklrX48N5w8pF5G1WOyUFKtuhpKAEvyBfnvr+QVbNXEe7AS2rlLGXjn3Iwg9AaBE+T6vMmtJx6n9hKkt9xLEZIU6kbGrMvXHp6it9d+tslYtu6oGUdrdvWiCMXcpdy1U8GmxrwdQVjcHtX9bVOmuhkLRMgZKR6oW+Dpg6V+btVw6GFoiAz5Cu/BPxBq27obY2QlUfn4LQ1UOiUdlJp3wZgGq+IsyqFkLaNiK1CWBygdUt9uZKV09H+jYghJKAzn9U7TP1AVxg6AT2zSqQLUxg7ILAhXRmqr68xt5KwE7mI4U/YABsZ+0cVlUoLigha382kXXC0RvOHGCt2TCuzDbYLA6k/It2A1pSmFvEvN8W02lQGyJqViM4PJDEVnU4kp7FtXd1pCCnEKfDgX+I/0W6ozNz1Rt8vUlHXIMYNi7YSmxiVIUGODQqmGd+fIj0bRmkdm1YLuouJVhLbABYS6y4XC60nDD4sQlRDJvwDOnbDtBugEoJ7HBjqyohtOSybgD7WoSpPUJXA2ldorI7AGlohcbrRqShicpjF35IvzeUKJhJ9aOVliVI6zyEsYM63tgOvG4r080RAH5Pl11PSgey5Cfliij9AVURegxpbK20dc6B0MYrwyj8/lG/2ouJEEI1UT95m/f9qqZAF+/Ouz/lGHN30NVRvnRd+BnPLS0LkHn3AwIR+J0KZssiZeyLPgJNKCJ4NNK2ARWktYO0g7aBCoTraoC+IRrjiRROAbi0EZD3sAq4+7+DxtAAGTRWxQEMVVsA0FJi4d3Bn7Fs0mrueP0mBr1UvpdyXlY+SyaupFpcGKldGwLgcrlwWO20H9CKjre0ZsrXs5n36xIAhk14hoXjl7Nq+noadkiiduN47qr3ONF1I3h98vOXvAjrqjf4RpORJ0bcx8JxywmOCMRmsVXYTLx24xoVBmOspVa63dGRowey6HhLmwpXCC16NTlNV+dyx1X0PZT+Arok1TIw4AOEvgFSRLrFvMDlsqLRnagqFl4nRKSktCILXgbXQaR1ARiSVXBRUx0Z/BdovFRVqH0rwvsOlfro3A+F76pOUdpYpSMvAqHCdh+nI8zXgnYiaLwRuqrTtUhofM+pRST0Z299KaVLae+4/ffSeVTl9WtjwbFHuWqcxeCyIIwtkd73Ky0ifQeEX4ezB68dOwEbyGyELFbzOUuLxapEYU4xK6accLGeavAnfTGTn1/7Ha1OS+8h19CiVyp6o443b/kYUH//dZvWQm/UExoZRExCJCkdk5g3ZjEmLyNpm/fjdDjZt+UAGbsOXRkGXwhxLfAJoAW+k1K+c8r+DsBfgFschQlSyn+XVnEBWDdnMz/+T/lIvf29adK1IZO/mklJUSm9h3QjuPqZ/xjm/bqEr54cCUCDtonUrVp2vUKkq1hl28h8lW5oUlXDwpCM9P8f5D0I1olKxsD3SaRjt2r7p20AFEHJOHdP1dZKT0bEK5EzUNK/uFSA0rZcpWCW/qUMviYMjB3BOg98XgesYGj2j3zxwnBqc/ErG+kqUvIPtlXg+xT4PAFo1RNDwUuqctncX6lrmvojdO6iQJ+HVD6+ZQrSYgWvG8qpbUr7dqR1PsKQijB1RTr2nZCFLnf9UmTJSHAeRnjditBXrSY+oVHBPP7Nfaybu5mug5WMSvq2DCZ8PJXAav4n9SwWpG/N4FhmLjc93xedXofD7sDsY6ZZ90aM3PEJBrORgFA/oupEkNw2gaDqgWTsPMSxg7lUjw8jscXpaZqWYgvjPpjE4bSj9Hu8J7VSKs79ryz+s8EXKl/sC+AaVLPyVUKISVLKracMXSSlvLTpFKdgs9jYt+UA3u6AihACL38za2ZvYOaP89i//SC+AT70f6L8tA/sOMie9ek0aJ+At5/XiWN9z5xiV5UQGm+k92AoGgGm3qp8/zgn67g4D+Oy74Dch5VvWPgqKV5jV3DtUUbesRG86iO87kAamiL0ySoImP88YFECavoU93V9VNGQKwe0FbvXyqbhOIQs/UNVw5oHXNHNus+KY9eJ9ErrgrL0VFfRz2B36+g4M8GZhTCeKEQTQou0/KW6agHok+Gk4i9Z/BO4MlXxm7GrkquQFuXzP/lpwL5GuYsAKXxBdgU0VeoJoPvdnel+94l4z/zfljDtW5UxNWziszz+9X3s2ZDO1BGzeeDjO6ibWpMP5g4l92gBqdcqN0+Yu8oW4Nd3JjL27Ync9EJfbnmhHy+NefyM1962fBc/v/o7AAFh/pe/wQeaAbullHsB3I3KrwNONfiXHWPf/ZOfX/2dxl2SeWv6ixiMBmo3jufjB76lpNBCv8d6UK1GaLljivKLGXr9exzYkUnX2zvw5LdD8A3ywehloGH7qqk7Im2bkaW/ga42wusWFQT0fkhpuGv8yxteXTMlLubcowJ2BUOVu0CXdEKrXharjA/78dzvTaB9Bo23+mWW9p0cz1BB1xAhfJDOXFVJqvGG81jRS8tEKP5MvdDEgOn8cuCvOHTxYOwCtmUIYztVTes8oiqPjZ3AmQWGDm4ZhhCk44ASWtOGqipmUP+flFIqnXnqs3RlqtqI0p9BVxesk5H29eUL07RRoIlQqZ2aIFV1bGiILI1CeN95XlITlxs1U+LR6rQEVQ8gum4Era9rSklhKf2f6En1GuoJKemk5um71u5lzJvjCYsN5YZnrmPCR1MpLbIw4aOp9HusByavimXQi/KL8Q/1JSYhioydmdSpoEK/sqkMgx8JHDjpdQZQUSSnpRBiA5AJPC2l3FLRyYQQ9wH3AcTEVL4fVkrJob1HCQjzY/Pi7QCsn7uZp74bQlhMKNtX7Wber4tp1qMx0779m7V/byK+fiyR7so6h81J7uE8APKzCtDqtDTr3uhMl6sSyNLfT1rpNQJDA/V4rw0oP86ZqVaUlKKc+MUqr97QGrT1wLuFki02NEW5Feq6qzityNLfy3z8Ql8HAr5BOg9C8VfIkkzwuhPh98L5T1pzXK/IVCaLcDUiNAEQ8LEqvHIeQWYPACzg8xygUy0ai94FQwLSshOZ97BynQV9p3oE62JAU61MkwdAygJwHU/PLFV6Q8aOYOiKMLYof31dHASNRTVmXwf6esolB0iNP8L30YvwLlQuba5vxrebh2P2NhISqYLoXr7mMz7BLxq/nMUTVXvMJtc0ZNDL/Rn3/l/c8Mx1ZzT2mXuOMLTfuxzafYTnfn6E+PoxRNW58A1pKsPgV/TcLU95vRaIlVIWCSF6AH8CFTr7pJQjgBEAqampp57nPzPlm1l8+uB39Ly/C37BvjTqXJ+WvVPLHsmi60bQ5da25B0twFJiZd/mA6RvOVBm8ANC/Rg68Rm2LdtJ855XgMMe1OoNQFtbGQNA2rYCrrJHc1k6HZn/lMoWwaja+Rn9VIWmJgTM1yKch5AIKHwD0LsNv1Qa89ow4ERQV5jagOMgsvB1teG4gTlPhPl69+rS/4T08FWKEAYQBqQjDXDXiMgC0EWoOAyAMwvpTEPp6R9UmjuOdHf2jT8y6EfQhCIts5TevqG5qpdw5ahzOna7t5WXeJCuImTJD2DfCd73KRedfaPKDtJW3Y5a0f/A+Ca2qIveqCeyVjjR9SJo1r0RfR7sdlbBtH1bDrBvk1on712/j7b9WpxxbGVSGQY/Azg5OTgKtYovQ0pZcNLP04QQXwohQqSUxyrh+v+IjQuUp+ngzsNsWbqDFr2asOSv1YRGhdCmX3O8/bx4ZuTD7Fi1G61eS2hUMEmt6pY7R0qH+qR0qDo+ynMhvG5SfnRtCEIbphqD5N4FuJD+7ykZA8chNca+Rv3h65LcMsbLVFAw9wGkPKakE4Ayl402Coy+CPPpMsFCFwkBXyIdm1RnqX8yZ6EFY9VOCaxshCEF/D9BujIQxl4g9EhXkTuvvj3CVUf55DXBYGzq7rPrcMda0pGOWSrnHq1bdXOpasIifAE7lI5GGpqDqQtC6JCuEmTpSbUPtrpo/F5AGturOI2+aj/5ni8tejfhp12fYfI24huo0oe1Oi25R/PJz8onNjG6nFvU5XKRseMgqV0b4nS6aHURG59XhsFfBdQWQsQDB4GbgFtOHiCECAeOSCmlEKIZStIhuxKu/Y+59u7OWIqtNO6STO3UGmxZsgOj2cDiiSto3bcZQgg0Gg0JzevwxuR/4GKowgihKR+wc2ai5HEBy9/KR2/fpHK2zbcABrAvAM0hFcRzFZ1YSWoCwPdFNUYbofy7toXgsqmyfHfLPuH9AEIXgTC1Q1C1ugZdzghz+XaMwvfBEy80tRAB7554beqOdB5RhVjGlmoVrwaCvrUSwZMOpalvm6c0eCzTVa2E/1vI0plgnap6EDj3Iwyp6pr6K188cO+m/cwZNR9rqY1W1zWlyTUNy+3POZTDDy+PJWNHJsntE7nzjZvLjH5BdiE/vjwWISA2KeqCB2pP5j8bfCmlQwjxMDATlZb5g5RyixBiiHv/18AA4AEhhAPlAL5JSlnp7przoUmXZJp0UQ0w5oxeyMGdh1j61yoAWvdtVvZotWvtXlZOX0v9tok0bJd4xvNdiQhTJ6TrCZBOsG9TG+VxnXSzKsPXR4BtgdpkaAPG1qoBt+k6KHxLZYh4DwHX31D6GxKjShl0xwqkLgmhu+ni35yHMoQuFuF/ohkK3oOQ2mrKwDt2nojrGFqB9z0gAqDwf6Bvgiwe7c7K2qG0jgJ/QRiv7BV95p7D7Fm3j4SWtZk3ZhFpm/azepbK6Htt0vM07tygbGzWwRz2b81g24pdbFm6g+73dC6TWvcL9uWmF67nr89n0P3uzhe12r5S8vCllNOAaads+/qknz8HPq+Ma1UmHW5oxY5ValUTEOaP2edEgGXM2xOxldqYOuJv7nj9RroO7nCJZnnxERp/hM8DALisq5Tuja4hyh+/ClwZYL7LrWMvlV9fWx1h7qdcCMclFmwbVBAPlHHQ1VZGA656v/vliNAEqLaPJSPBy925S3gr2QXhrszVd1AuoNJRIELA539qu22u0tG/Qj9XS4mVt275mB2r9tB2QAvaD2zJgZ2HAOW+WTBuSTmDX7NhHMkdEtm2YhcNOySRk5lTZvA1Gg23D7uRG57uc1ZV3QvBFVdpay21MuPHeZQWWrj2ro4EhJ5Zv0Kn13Hb/wYSUaMaIVHBpHZNwelwkrnnCHVSa/DDC6q36Lwxi68qgw/uyk3rQih8TxVfaSPAvgL0DZVrB4uS1dUEgLEdSAfSMhdKRqnqTvONCEMLpX2jr696xuoTkLrJACcKgDxcNkhpB4uSzqB0DgR8rxq3O7Yh859R2/2HK7lrxybQBKrVf05vwIF0HkYEvH/J5n8hcdgdHN2vQo7HMnJo0q0h3gHeGEw68rMKcdpdZWOdDic/v/Y7C39fzsCne7Pw9+VM+24uSa3LFwVebGMPV6DBXz1zA58//D0ABpOefo/1POt4v2Bf+j56Yswfwyfz3fOjadUnlesf7s6sn+bT4ZSu9VcDsuRn1dtUl6hSII+v2l15YOoF9g3Kr2vsovLhhQlMPZUhANBUQ+ri0Gibgbl32Xk9hv7yQdq3Ii0zEPqGCFNnVT9h7q+6YGmCEYYGJ1b9boQwgu8LYLoG9ElIfNTvh+sgV6A5KcPH35uXf3uSjQu3ktw+gZd7vM3WZTu5bdhAOtwQR0JLlXS4c80eJn05k6LcYizFFlbP3ICl2ErNRnGX9gbcXHGfkF+IL1qdFqfDSeApvSjPh1Uz1gGwbPIaRu35jNtfuxGfAG/2bTnAr29PICDMn0Ev98cvyLeSZ3554HIWqS5VVne7QcdW8HkSdLeBfR3C2A5haIqr4C2wgVJNdLorcPUq0IdB9Zwt/ABp6q6kjT1cdsjiEWCZpmSZQ2epmgn76hMFdIa2YL4WTN1Avg9owdhRdQfT9VHnsO1SKbe6GHAcPPc1pQRZpPSDqhjJ7RJJbpfI2tkb2bJUNbfftnwXt/3vhBT4jB/mMvNHVYfQ497O1GoUT2KLusQ1OF3l9FJwxRn8Bm0S+Gjx61iLrSS3/+fB1hueuQ7fIF+aXJNMtdiwsoDKrJ/mMXeMqhxt0DaBNn2vvJRAV8kfUPyVysYQBlVlaWyL8BqkMnlMncrGCt8nkLok1a/W0Fo1FLctBAwqNbP4PfB5ElkyGin8Eebe5doIergM0LhzzbUxgJdqiqKJBlarfHuduzLauloF4oUGKYxIWaRW/vpGqhG8pprK1zc2x+U4irCvBW30aa0ipZQqS6v4W6TPw2i8776491sJuFwuso/kcu1dnUjflkGLk2pxsg5mE+GuxA2PD2PHyj0YzQZ63ncNGs3l0WvqivwLTGh2bgGntXM2kXXwGK36NC3LnQVo1r0xzbo3Pm28y+FCb9TjF+SDX9C5pXqrGlI6oegL9WjuylY+d+/HVYFUBQhhBkMysvhLcB4C74fBtshdjt8MzH+DZbYyFKCKs0wVNBL3cMkQPkPcNRXxJ9Qy/V9Geg1CaAJPSDFbF6jUXIn6jEt/Qxo7Qelk0PiomI59C9hXgisbWTpGBemDJ4LzANKRrmI/tiVg26zqOop/RHrdVuU0kLYs2cF7gz9Ho9Ew+LWB9HlQ1Y9k7j3CC11fpzC3iEe+uJv5vy5l76Z0/EP9OLr/2CVXyTzOFWnwj7Nm9kY2L9lGqz5Ny0kb71q7lxe6v4HL6eKut27m5udPLwo6Fe8ALxKa18Y32JvYpKqnD3IuhNAivQZB0ceqCYauiRI7O9sxungIGou0LYGCN0BXE8wdVNtC1zHVVg8A7Xnp43i4uAiNH1KfCM50pCtU9deVLoS+XtmTrbQsBmcGGHuqdE1NJOjqqeY0MlcV1hmuBebiPkAV6AkvZPGvqiOaKwNMPdwN7Q0q68fYGikFsmQC2JYgvAYgjC3PNNXLBp8AL4xmA9ZSG96+J36nj+w7SubeIzS5JpkvHxtJ7we74bA78AnwIiDszA3oLzZXrMHPPZLHq/3fp7TIwvYVu3l7+ktl+1yuExF16aro6NMZ+Mx1JLdPIqJGtcuic82FQHjfjTR2Ue3sioaBKw3pdQvSvlV1qtJUA/MNYFsJ9uWqsYmpC9K2GmQO2HNAF6tWegDkIwK+Bo0fwnD6U5OHS4t0FSHzHlF6SN73I7U1oPAd1Q7R92m1+pY5QJGqutVUg8CxyhVknQy2+aBvCl6DlIwDgL6J+v2xTACWqhoNWwYq1oP60vB7SVV0FwxTrRgNbZElY6uEwY9vEMtHC18n90geKZ1OVNsntqzD3W/dTG5WAWtmb2TWj/O47/3b6Hxr2zPq6VwKrliDrzfqqRYfyr5NBwiLKd9FqG5qLd6Y/DxZGdnn5YsvLbGwc+VuwmtUIzT63I2qqyqydDKUTgD7UjD1A1chsuhzpYToFsTCVQS22epR3TIdDPMQxi5I2yLlC9YmKs10ZxbC0AZhaHj2i3q4dMhClW0FYN8Hto1q1V4yErwGgy4KjJ2hdLp7fAlgR+jCkLq7lUtIVwtZ9CWU/AC6JIS5DxjbIS1/gqY6eN2msrr0TRDGtqCtgdBFKeG8UiULjPOgakhfRajd5PRGSEazkZue74fdZic+KYaivGLaDmhRztinbd7P0j9XUrdZLVK7plzEGZ9AXKKC1/MiNTVVrl69+l8ff3DPYdI3HyCxVR0CQv1xOpzkHslHZ9Celp+ffSgXvVFXln3jdDjLxI9+fm0co4b9TlxSNB/MG3pFrvDVau8J5aPFpR7bXXmqibj5bnDuUOJqjk2qgMo6H/SNEQHvIYQeKe1l2ThSOgFnlfPPXo3I0qlI22qEuRfSmaFW+KbrEb5PlH1+ruLRYHUL4AkNlPwCmhCE/9sIY2tcOferFF30EDACQTFSE10+DnDqdaUDWfQFlP4J3kMQXgPLNWCpythtdmaPWkhRXjFNr23ItO/mYjTpyNx7lEV/LMdoNvDjjk8Ijbowi0chxBopZWpF+67YFT5AZM3wMpXLwpwiPrj7C7Yu3UlyhyT6PdazTBRtzeyNvNrvfUKignj1r+fYMHczY96eSL/HezDgid4c3H0EgP3bDlKUW3JFGnyEF2hrgNGkNNT1DaB0tNonC8C2GFiuArKWSWBoB9pqKJE0PTgP4iqdjNDVQJh7qi8Q+x7Q1/QY/ssYYe6JMKs6FEETpKkbQpxYlUrbRrBvBa2v0sVHD+YbwbYMaVsJhlYInweRljhVcJd3HxI7eN0N5uuBig2+EDrweQSpiVCtL7Wh5bLAqjJrZ2/ko/uU0MCxjGz+/HQaGq2GzoNU0kJQ9UA2LtxKUqt6Fz2Ye0Ub/JNJ35bB0r/U00LBsUJ2rNpdZvC3LttBabGFAzsySduYzq/vTKQot4jxw6dw7V2d6PdYTwJC/ajbtCaRtatfytu4YAihAb+nkPYM0PojZCnS0Fg99jsPu0c5QRMOxhiwTlNfBKY+YEhEloyBkpFIhHpct28H6xTwfgTh+8glvTcP5085Y+84gsy9F7TVQZcMSNV7wLZE9Rsu/g6pT1GaPD4PIws+B0Nj5aJx7EAWDEUGjkTIQtVwBZSAXsFb6nfH50EoVLE1WSwQVcjgSymZ8MlUpo6Yw83P9+Uad3vE0uJSMnZlltUCRdaujtFsQG/Q0e3OjjS9NoWF45bxzq2f0aZvc4aOf/qizvuqMfixSVF0vLkNW5dup0bDGJp2Tynb1/r6puxZv4/A8ACCI4Ko3aQGWq0GoRFkH8ylTpMa1KnAb1fVkK4CZPEPIAsRXncgdKcUgzgPQP4jSps+8DM05u7qOGcOUuOOgxR9ozJudLXUH//xjkbH9ws/sM5RWuoAtn/vkvNwaZBSgnUB0nkMRJiqsdB4q9Rb4a2kNoo/Ux218p9FCj8I+ES1tbStUHILLrcefsFQpOUvpO9QNN43I23LwOaWb7A1Vdk/1qlVbnWfn13I98+Pxm5zMPrN8XS5rR1CCFZOXceIZ34hpWN9mvdqzIJxS6nbtBbd7+lMw/ZJFOYW8c3TowAoLbZc9HlfcQbf6XSyfeVuAsP8iah54nHSN8CHF0c/hs1mx2A4Uflps9opzithyIe3ozfpmPHDPEryS8g+lEdw9QDWzNpAbOIVkoZpXQrFXwIgNeEIn3vL77dvBacSk5O2dQhDKlJaQBOIMLRAWiaDPKy8ON7vIsw9VKk9ILwGIzGBdZaS2fV5Sj3i6xOQUl5URUAP/xHrUmT+s0oDydxVBWRtC8D3RTTed+Aqma6yc6TD3ei+BESgWjCAStn0fUcpqua4m95Y54D3zYBRpXLKEhB6RMBb4HpaBXirEL6B3lz/SHcmfjqdHvd2QQjBscwcJEpMbe2cjTTt3ohNi5TabHS9CLrc2g7fQB+G/vE0W5btJKllHZZPWU18g1iqxaonIJfLxcI/lpN7OJeON7c5qxbYv+GKM/jTv5vLJw+MILh6AB/Mf42o2tWRUlJSWIq3n1c5Yw8w6YsZfPP0KEKjg2nQNoE1szeSn1VA856NcTmdJLQ4dxFXlUEbq9QqZRFCV8F96VNVvrQzFxC4iseoLwhTTyj5GfQt1R+6NgxhbFVm7AGExozwuR1pbA7CB2mdDaVjoVQgNREIU/uLdpse/isOFcOxLVKxG0Nb9bM0Iy1/K6lsTSSQC14PqtW/dTp4PwSWieopwLkV4dUV6fMkWGYizEoKW+jrIAkFjRWhjVUFfNrIS3u7Z2He2CVsXryN5r0ak77lIHFJUTS9thFarZa73xnEDc9ch3+oHwd2HOT5bm9w7GAO3e/uxOG0o9itNm4bOpCMHZlUiwvj9w8n0/WODiS0qENCizq8f+fnzPppAXWb1eKDv4di8jaxedE23rxJNYW3lNi4+fm+lXo/V5zBz9yj/M3Zh/LIPZxHZK1wfn7tdyZ8PJXbhg6k/+O9yo0/6B6fdSAbs68ZS5F6zPIL9mXI8NuvKM0cYUiA4AkgrQi9apjssm1XhlkWInweRBPwMa6851XxlKGlanfn2A44wL4IvB4CXTzSZUOWfOsuqumGxthKXcMtjytLjzczk+6+th6DX2UwtlENb2yL3K/bI7wGICXIPCWbXfYlYPSDkj/VNt9XVY0GdjDfhSx8EzRhiKAxqqgLdz/jwA/VouMyl1I+sj+Ld277FJfTRc7hPBZPWIHeoOObDR8QXTcSrVZLQJhagWfuOVKmpllaZEWr09LkmhTqNKnB0kmrGHr9ewBodZoyQcdMdzJIxvZMivJKmPfrEgpziwiJDOLYwRzM3pWfv3/FGfzud3cGKQmvUY3ElnUoyivm9w8mYym2MPGTaVz/SHe02hO9Jnvc05nsgzkEhQeQvmU/A57qjdAIutzaDr8gX/KPFbBs8moiaoaTXEUboUjHXtXOTlMN4X1rWWDOVTIOLFPAtlyN09VB+NRUOjoAmjjQ5ihtHbwAM7iOQNFvYOwPzo1KaMuxHWloUm7Fj74lGLYBWtDGXcS79fBPkdKqGpq4jiG8blaxHe+7kdpwlWpr6q4yrUqnnWhWLbzU/9oglBlxAC7lynNlq59L3FleuiQwnehqJnRVw0Xq7e9FvWa12LpsJ15+6gvL6G0kfWsG1WJDMZhOZJ81aJvArf8bQM7hPPo+1oO4xBPxMZ8AbzRaDS6nC9+TZFnu+2AwyyavpmH7JNbP28xwd2bP/cNvJzwmlNST4oyVRaXk4QshrgU+QXW8+k5K+c4p+4V7fw+gBLhDSrn2XOf9r3n4oAJQ497/i4mfTmfQS/3o/cDpvVOPpGexa81ezH4mXuv/ITaLnTenvkDjLsmMfGUso98Yj96o58s175b7IKsKrsKPlCgaIAJ/QBiVPo4r91FwZYEzHWQJIuArhLElLnu6Usu0zgFKwXcYwpmu0vAc21SHI019sI5WPn/hjQiZh9AGlLuutG0CnKrXqofLFmlZhMxzC5l5P4TG97GKx0kbsnQaIEGfgpBZyNJ54NwOmFTZun0e6OqC171Q8AyIUETwTwhdzYt2P5VJzuE8MvccplpcKEv/WsXySatZPWsDD358J30f7XHe59myZDulxRYadWpQYXPzxRNX8Gr/DwAYNvEZWl/37/vcXtA8fCGEFvgCuAbV0HyVEGKSlHLrScO6A7Xd/5oDX7n/v+A4HU4SW9Wldd9mRNWuuBN9tdhQqsWGMnPkPEoKSwE4tO8o1lIb0qW+EKVLgkt9gexel4ZfsG9ZoOWyR+fOMBIhKsXuOIY2qo2dsRto406Utpf+qmSR7Wrlj20pmDorgSxHuirFN0m18tfVU7ncpxh7AGFocNo2D5ch2nB3bCfvrE9jQhgQXteftCUeZCmycB3oY92NcRqCCFa/T8GTQPgidBX/3VUFgsIDCAoPAFQXqy8f+5HkdonYrLZ/dJ6k1md3X7Xsk8qbU18AIUjteuGq0yvDpdMM2C2l3AsghBgLXAecbPCvA0a5+9guF0IECCGqSykPVcL1z8qUr2bxxeM/EhYbyvD5w6gWe+ZChxa9mnDLS/3Q6XVsX76TUa/8xoOf3sljX91HRM1w4upHM3PkPD6460vCYkN5f84r5TKBLleEqY9qNK3xL5eKqQqkcsB1CGE6qcmLMx1kqVrJSxtow5HZfVU6nrGtqrJ1ZSkfrtftqnmGhyqL0NeG4N/AVaiCtedA2jYiS0aphYT5RjA2g+KvlZvHeK3S0XGkQcgExHmI5kn7LlXvoU+5rKttE1vW4e63b+HHl8ZiKbbQ+ZZ2hEQGVcq5tVpthSq9lU1lGPxI4MBJrzM4ffVe0ZhI4DSDL4S4D7gPICYm5j9PLnOvCowcTc8i90gBRXkl+AX7Ehql8satpVZWTF2HRifYv+0gkbWqU7NRHENSVEu3Rb8vZ9D/BvD986OZNWoekbXCy86XlZFTzuBnZWTj5WvC2//yUoYUQoCh/unbNd4I3yGnH2DsArb1oA9Uqz/bareOCoCfEsvSNwNDRzC2uKBz93BxEG7t+/NBlv6lqq1BpWBq3E+60n4i/iNOd1tUeC7bVmTuLer3y+99hNd1/2TaFxWNRsOxgzk47A52rtnLwV2ZlWbwLxaVYfArSrA+NTBwPmPURilHACNA+fD/29Sgx31d0Oq0xCZGsmHBZvZvO4hGq+GWF/tSPT6cWT8t4NMHv0Wj0dCoc33W/b2Zd+f8j253dmDF1HU4nS7mjlnMimkq5HDve7fS9c4ORNWOILHlidTGReOX89Ytn1CjYSzDJjxT9oVSJdGEgOUvQILfuyrLxtRHSd+iQXjdBcKMzH8aij9A+g+vUlWSHv4ZUtrAMgeJBmHqAoYGUCpUPr0rTz35+byM0NVESofy5QtvcGaC5hxpza6jJxYTrswLfi//lQ43tObgrkPEJUVTu8m54xKrZ67nry9n0LhzA657WBUyFueX4BPgfUlqUyrj+SkDODmSGQWc+smdz5gLQlxiNPd/MJiAagF899xoZo2cz7GMHLYt3wWAzaJ8cS6XCyEEbfo1Y+h175FzOJ8aDeNYMnElsYlRNOvZmA43tiLnUC6H9x5lw/wtHN2fXXadLUt3qG/+1XvI2HnBPVUXFtdRwAJYVWGN12AlqWBbCc6d6tHdsUf59mUJ0rr0Us/YQyUjnTnI0klI22awzETmPw75jyLzX0cYWkLgDKWkKQxg7ILGZzAYW0LJ92AZB/alSPu2c1/I2BJ8XwTvBxGm6y/0bf1nElvW4c0pL3Lvu7fh5Vu+CfmutXt5beCHfPvczxQXqC+xv76cwfLJa/jy8ZFk7j7MT8PGcUvMA4waNq4shfxiUhkr/FVAbSFEPHAQuAm45ZQxk4CH3f795kD+xfDfn8zJuvdCQ5krpusdHTCYDHj7e+EX4svsUQsoKSxl1fR1PDD8dq69syO5R/NYOVWt8Hs/2I2NC1R4YvXM9UTWuhaA9je0ImNnJjEJUdRtWjUyEqR1PtK2EWHqhtDXLdsujB2Q3veClMqnm/egUs00dgLrXKTzMEKfoLTx7VsQpq6X8C48XAhk8XdQ8p0K5vo8dWKHq0jts/4NuvpgXwO6uOM7VatDAFc+WBbg0oYjDE3PuJoVwojwvuMC3smFxWaxcSjtKGGxISz4fSmLxqtEh0adk0nt2pDGnRuwfPIaWvZJxehtYPyHk7GW2pg9agEbFmzmxTFPEBJx8dxC/9ngSykdQoiHgZmotMwfpJRbhBBD3Pu/BqahUjJ3o9Iy7/yv1/2nNOuewvO/PMrhtCM0aJdIPXcbRN8AH3oPOWGwnHYnO1buJrVrMj3u7YLJ28SUb2YDyhdeq1EcAWH+SOkqp6+T0Lw2b0x+4eLe1L9ESgeyZCwUvg3Ykc59iIDhZfuFNhThq2IY0rYe6Tq+EtGCsTtYFoLPIIT5evB5EqGtWn5MD2dHylJVbwHK3WJoCj4vKH+9NhJKvgGketLThKimJygFTOk1GOzrVcczUQi5dyG970M6j4I2EOF9X5VsYH4mfnjpV8Z/pEQWW13XFJ1+KuHxYWRlHGP0m+NJ6VSfkTs/JbBaAGYfE7e/diN/fjadOqk1WfrXKopyiy+qwb+i9fD/LU6ns1xxlrXUyoopa/EO8KLJNQ3Jy8pHSggMq5oyydKRrjoduXLVH7bXXWj8nq94rHQiS/9Q6peYgTxwWZWcbckPYGiHCPzSI4F8BSFLZyOLv1DieIYWaHzuA8DlLIScu5RUsn0NeD+KMHVB6GLVcY49yGO9VPaONgFsf4MsVu5AYVTZX96PqSpb800IfeylvM3/jNPh5Pbaj3AkPQsvPy9Gp3/JpC9msG7uZnIyc9m//SDVa4QxYsOHmE6qmk3fmsHsXxYQXz+GzrdUfp/nq1YP/99ysrEH1c2m3cAT7dcqW9DooqMJVSmXwqj61xo7nDZEukpBCIQwIbxuxFU8Cqxzld8eVF9SAPs6lcLpMfhXDtoQ0NZRshmOHbgch9HowtFofXEZU91B/JsQhtYIXSzStkq5erT1lHF37ALTANDXU7Idpv4qbVMTAbaFYF+HFCaEvuICr8sdS6mVgqwCQqNDGPLh7cwft5RWfVLx8fdGSsm+TfupFq/Sv4MjgtCcUmgVmxjFPW8NuhRT9xj8kyktsrBnfRqRtasTWC3gUk/ngiClE4QBEfAusvg3KPoQSn9BBk9EuH2x0rZFZeAIPdJwrep2JYtBE6bkj2UBGBqBNkqJqGmq+Begh3IIQyNk8c9gXw12QNcIfFRDemFsibQtB10c0pWLtCyCovdVoN/nWUTQD+A4gNQlIOxLkb7vIjQSaWgK6CFPPS2grXoV6wCWEgsf3PUlC8Yt45HP7qbPQ9fSpt+JLPR+j/WiZsN4fAK8yD6US53UmhiMSrBx35YD7N+WQcMOSfiHXJrG5le1wV8xbS3zf1tCarcUOt/SllGvjuOPDyfTsH0ir09+AbPP5dN8uDKQjnRk/kvunOc3wLkHsIDUKanb4+Psq937UNW0VndPU1N/d6ereIT3vZd1kYyH/4g+BawzlaZ9uYB+OzC0QOY+CiW3g9f9qghPGwMui8rn18Uji75FFr0Pxk5I61wQgYjgXyF4rAro6pMv3b39B3IO5bFg3DJA2Y9eD3Rl19o0AkL9qBYbitnHRIteKqZRmFPIgnHL8A/zI6l1XV7q+RZH9x+j3+M9eWD4HZdk/le1wf/++dGkbd7PgnHLSO3WkJ2rlZHbsnQnJYUlV5zBx74W7CvVz5Ypyh1jaAnGbgh9rbJhwtACqW8ECCWDqwlVXxKuo6q6VlsH4feIapRhWwlChzA0uTT35KHSka4ilZGlrw8iAI3hRHKCdOxBlvzpduHplZKqK1v98zm5s5nTfYC7yYfMBecxhPHfa8RcDlSLC+Xe925jxZQ19H6gGzO+n8tH939DeHwo780ZSvX4amVjp/84j2+f+RmAV/98lryjBQAUZhcCqonKrtV7iasffdEKuK5qg9+0ewppm/fT6rpUzD5mbn/1Rhb8vpSG7esTXP0KzDzRp4AuRemZa6PBsUNtN5XX3Bb6uhD0K7JkMhQ+r/a7HIBb8tjUDZdtl1r529eq4hufZ8rLM3iokkj7LmTuQ6r+wtwPTAPL7y/+xd3rWAM+ryjD79gLhhTESat24XUTUgSCxk+lb2ojVPvDKo5Wq+WGp/tww9N9APj6qZ8AOJyWxdzRi/EJ8qb73Z0xGPVlvTc0Gg3+oX68+ucz7Fy9p8wF9O0zPzNz5Dzqt03g7ekvYfIyVnzRSuSqNviDh91Ap0FtCY8Lw2DUk9wuscpKIJ8PQhcPwb8AEqQDiQMQCNM1ZWOkYy+ydKLS3nEVAE6w/AHme0BWB4MenPlQ9La7sTmqpZ3MuRS35KGycWwB174TPxftRQZ+BuiQpX+qJz1dgsrusi0DQ3NE6HRAjxAC6dgDziNgaILG+0Z1HnerzCuRbnd2xGF34nK5mPDJVAqyCwmqFkDb/i3odlcHAsL88AvxI6mlcouldk0pO3bflv0ApG1Ix2axeQz+hcZoNlIzOe4fH2ez2Ni2YhdhMSHlHuGqAmXpk8KI8L7ttP2y5FcoUasWAn8GnlB/5NZF4NzqboqSrsrphY96WtAlq6pLD1UffTP1WTqzlHCeYxPSmY1wHYYCd+qusZfqWWybCRpvZLFTNU0RemT2rSCzwecphM/9l/ZeLgLx9WN4+NO7+Ozh7yjILkSr06LRqiIzs7eZDje2xlJqZcuS7Ri9jYTHheEToLS2hgy/g2WTVpPSMemiNVq6qg1+RbhcLuaOXszRA8focls7wqJDyNiZibe/V1nmzoRPpvH9C6OJrFWdD+YPu6iFExccjfsLTISBNkwFby2TlE9XmMHQAnR1VHqmoR3ok9yyypdvPYeHcyPt25CFX6n2lb7DwLkHaZmi3IC5DyO97wDhq1QtNWZw6cDoFjorehtKI5E+byhjD2DfhJSuqyaw37Z/c1wuSUTNMJr3LB/P+uXV3/ntvb+IrhtBVJ3qPPLlvYRGBmP2MRGfHEONhhevHsFj8E9h67KdvHv7Z4BaycclRfP2oE+JT45h2IRnCI8L45BbgTNzz2EKswuvKIMvvG9D6uop444J7BuUkXdJRNDXZSmY0tAUHAeRshhZ/D2UjEP6PoLGfPmqHXpQSGnjuAumbJt1mXpyc6xB6uLReA8CTRCy6AuQR1QNhv/nYFsCwh8CngHLNCWVjcvdwNwBxh5KV1/a1WuurPqMPRv2Mf27OUTVjaT3kK5lzUzyjhZiLbURXff/7Z11eFRHF4ffWY8rkAQIJMGCBUII7u7SUqhBDajrV3d3qJcaLRVaaCm0RYq7B3cIHiPuWZ/vj1kCIQlSHPZ9njzZ7J1779zZzblzz5zzOzXQ6U+Y1YR/N5UWMk9OTCMgxJ/UxDR0ei0v9H+bzORs+o/twSNfjrkk/b/uDf7B7UeY/slsqtQIYtgTA/Dy88TDy0RJkRm/IF/2bTpI+6HxZBzNYvU/CQx5qC+DHuiFl68HEU3CiWhydWcLnooQRqRjLxS8A8Yb1YKbZRbomyMtqxEevVXlo7wXVMKVdTngofz4xb+Ay+BL83KkfS/C1LOMBr+by4u0rEXmv6CqUvm+gtAGqw3CU1UzA1XkBkBXS2njONPVd8D7QTS+/ztxMK9bcDqzAYtSx9RVVYu1lhUIY4drMvt6zncL+evzuQDUi4uiYet6FOYWMm70l5QUmtmxcjfxfZuj0agnm13rEjF5mWjVP5awiBA8fD2w2x047E5KXMWWSlx1tC8F173BX/TrCuZ8uxBQejhxvZrx4bJXyUnLo1mXRhzemcRT3V9Do9WwZfEO/Kv60WFoK8a8P/Iy9/wiYlbjgW0ZCNfTi30PFH+H1NVG4uuK9KkO+vZK/FrmgWEwTssaKJ4KFINtJ9KRhPB7+XJdiZtTkJalSuLAcRjsw0GrUvuFqTvStlPNzoUfTkceQmMEXR2w7wV9I5WZffKxHNkq7NK6FpAIr/sRxtaIa7hGQrXaSvu/So0gDu84SsPW9TB5mWg9II7Fv64gvs8JYw/QfmgrkvamEBjiT0jtqnz28ER+e2c645a8ymt/Pc3ehP20HlChCsJF4bo3+HWa1Uaj0VCtVjBhUcp/Xbf5ibjjqGa16XZbB5L3pbFyxjpWzljHC1Mep9NJUgvXCtK2B2lZrtLitREq5E7fCsz/gHCAdataqC2ZoSJ0hLcK2yv5Xs3w7RtVqKZwqCxNQxvQeJY9h7NIxe2Lix+R4KY8wthB+eZ10a7i9CBtiUhHslLAlBlg0kHWYKQmADzvAGcR6JsjtGEqU9u+D2ndCkWfgmmEaqOtCfp6l/XaLiRSSlb/k0DusTw63NganwBVfLxBfB2ad2tCYU4RR/cohXedXsejX45m+JODCKtXtgJeRONwnv1ZSUj8Me4fAJwOJyVFFuJ6xtC0U6NLeFXXscEvyi9m86JtbF+5hxHPDaHLiPaE1Qkt106j0TDmvdtZ8PMyEuZuBtSX4VpE5r+p6tgae4FlHmoh1gn2LaCLAq+7XUk2LvVMWawe+/Udla9f5oE+DkQIGHqDPkIZhOPHt6xF5j2h6qb6vY/QqfGW0grOPIT2KqkRfBUjjG0g+F8lryF0SOt2ZM5tyj1n7KR88tIJzmT140hC+L2GcN24nUWToOBNFbarj4Xij5U7x9gJWVSCxIrQRSNMXS7vhZ4n21fs4pUh7yOlpCi/mGFPqLj76Fb1aDOgBWkH0+l954lr9PT1JKpZ7dMes+eozmh1GnwCfWjerXwFukvBdWnwi/KLmfTybyz4cRkFOUW07N2M0NpVqd2wRoXtDSYDPUZ2Ki140G5wy0vZ3UuH8Fa+XU0wYATM6rUwgW0bmIYgs29Rj/meo1Q1I+kJHiOgcI8y+MJXlT0seAGsgDYcqRsE1gSkbbNKw3emK3+xLhTpLEHmvwTmmUjfV9F43nR5x+A6QJz81OVIO1FxSlsbvB5WhtzhqkhqmaeEzrzvUn/bU9UivvCktJCdLFLJd45jUPIjEh0EzyrVZroa0Wi1Kq9AyjJiijq9jiEP9yvX3mq2sm72JrwDvGjWpWJj7hvkU+G+l5Lr0uBnp+RgszgwF6tqV9IpqV73xKNY0t5Uso/lsGv1HnwCfeg5qjN6g57Ow1UmaXZqDkUFJdSsF3ZZ+n+xEL7Pu+Lwv3G5Y2qowtYBP6vwOtsOJDZlrE23gGWGKmNn6g9+H4N9N8LYGex7SoM0hfBUCTv5zwEmFcON9USxbOcxVzlFwLwI3Ab/0mJsB95PgTMf4Xlz6VOXU3hD3pNgaAiyCKfTikZjUMlYtrWAAQKmgLaaejqQnqpYClLJKuNxmpNe+TRqW5+35jxHbno+bQedeYK34KeljB/7NdXrhNC4fTTmYgs3PzuEqJjaF7+z58B5GXwhRCAwBagNHAJuklLmVNDuEFCAEtiwV6bVfKkIqxtCzQZhtOjRFINJT53mEXzywHc89Nnd6PRanu39JuYiC/F9m7Nm5gaqhgeXZsgl7Uvl2d6vk34kixemPE6Hk5TyrnaErjqYuiBLZqNm+BawLANtTaQzFfQtwfcdlYErbMpPD2o2mP+Mel9fH4ydEf4TUWF6HaDoK9cZzOAxGI3pJA1wbXXwfgRK5iE8b7y0F3ydIK0JyOLflcCZNsIlWdwJ4XkHQuOB8L6n3D4aY1OcHoOhaPzxd5DeY5Sf3rYWdA0Q+toI44miP9KZB/pI0EUgdFdXQmJFtOgRU+Zvh93B0T0pBNcIxNvPq8y24kILAFVqBjP3h8UABFcPJOrD2pekr2fL+c7wnwEWSinfEUI84/r76UradpFSZp7n+S4IWq2WoQ/3o1HbBuxN2M/3L/xKQXYhmxdvJzMpm2JXuJTR00itRjXxOSkLLiUxjbSDGQAkbjpwTRl8AGFogfS+BwpeUW+YBoF9u1q4NaaCZSaYBoDXA+opwL5PuYEsc0B4I217EfrGCFP7Ewc1DVXrHtqgchEcQugR3g+A9wOX7iKvM2TxL2Cepf4w3aTWaWxrwNhdrcGc3NaR6crBcIDjpCqkto3I4ikI70dVJq42EqEpa/SExg88ype7lNb1SOs6hKEjwtDkAl/dpeOPcf/w7TO/0KpvLM//9lgZccVed3Qm42gm5mIrqQePkZ2SQ/rhDI7sTia8QfUyx7FabGi1mtIY/kvJ+Rr8QUBn1+tJwBIqN/hXFHabnRXT1rBz9V5qNaxJ8t5k6rWIZN4PS2jZuxl6o560g8foP7YH9eNO1Kht3L4Bt714I1kp2XQZ0f40Z7h6EdoaJ/Jm9S1cETke4Dig3jP/g/B5AgImgrQo7XR9K+UDNk9D2naA30ulcdhCF4LwKW/QpXUbsuQvMDRxJ2xdTPSNlcHXRgFK0Atjb9BUUVFTMhehrY40L0LmPgK6huB1H1gXgaGTeipw7AFHtipPaGx71qeWzgJk7uPgPIbUL4HAqZXWt73S2bx4OwDr5mwiLzO/jMH3CfBm9Lu3cXhHEkGhfmxZvJOVM9Yz5NF+wAmDvychkQ/v/hLfIG+e+PY+QiNDTj3NReV8DX6148XIpZSpQoiqlbSTwDwhhAS+klJ+fZ7nPW8yk7P57d0ZAHS4sTVvzHyG3Ix8BtzXk40Lt2HQCo4dzqRx+wZl9tu+YhfL/1xDXK9mhERWdrlXOcYOCP/vAIuKvtA1APSqdJ3wA2NHZOFkEFaE592AXbkLHEfAvl9VPXLkgu704yOLf1BPDiUapD7mql7ku5IRnqOQmkhwJIKuEXiNADSAXRljWYzURYPGD7CAfRMgQNcApMGljmkDRw7S1h9p2wTaOmiMMac9rzq5HjShaq1GVL1qjT3AjY8PwDvAm2adG1GtVvmIMp1eR1Sz2syZuBCdQUebwS2pXieU7LRcfnjxN/KzCmjcvgEHtynRtF1r9l15Bl8IsQCoqFfPn8N52kkpU1w3hPlCiN1SymWVnG8MMAYgPDz8HE5xbgSFBTDkkb7Mn7SUVn1jObTjKM/2egOH3cl7i14isKofOoOeKjWCSvfJSc9l6/JdVKkexJGdSRzZmVymkPm1ghACTvKzC2MzMDYr/dtZ/AcUvguA1EYrn7AuQrkJQBVTqSDEUkozWLeAtjpCV0PdQAB09ZDOfLCsAUMcQlyXsQT/CWk/CM7Ccq4SKa1gSwRtKEIbgPDoAnRB2o8is+8G51GkzysqoU7jAyU/gSYcjANBGwr5j6ssa2M3IF2F3erqKCXV4kmg8cbp/y0aw+nVZYUwgf+HYNupdHmuYlr0iCnn1z+ZgpxCco7lYrPa2LhgK1VqBqHVaVg7ayNzvlPJjDXrhxEeXR2/YF8atLr0eQtn/M+SUnavbJsQ4pgQItQ1uw8F0is5Rorrd7oQYjoQD1Ro8F2z/69BFTE/8yX8N/QGPfeNu4M7XhuBp48H/05cREmhmbieMXz+wHfUi69D33u6YzDp8Qv25c+PZ7Fm5gZCalchYd4WAHre2fmaNPiVIZ25YN3oCtX0UvHa2ppKKdGyFIz9wL4V9I2R+a8jtRGAATRGla2JHoq/BG0kBP6E8LobDK2QUkDOHUhZCD4vIe27VRvPWxD2RNAElUaPuDmBtO1CZt+msp79xiE8ToT8yaLvVflKXRzS732EYzvSfgQwnSR/vBs87z7h39cEgKkXlPwFhhYqJt/YBUSwCr2VBvX5YganWT0xcGY5caGrCde4vEZWSjavDx/HjpV7GPvhSJ747j7qNI/A6XCSMH8zwdUDKc4voUXPGG5/ZRgajaaM5s6l4nzP+DcwCnjH9fuvUxsIIbwAjZSywPW6J/DaeZ73giCEKI2tb9UvlmH/G0j64QwS5m1h36aDJO1JwWF38sAnd/Dds5Oxmq30uVsV79ZoNARU8b+Mvb/0yMLP1UKeLACfFxCGOFXE2hANHreqOqcl81TRFGNXKPlVGRFdY1XxSONy8TgOnki0MsSBZa0y9gDWBLDMdp1Rhyx8AzS1IHASQndthcGeN4409VkA0nGYMs4Sm5qUYN8Axb8hHTtQIZONVNF6aQZ9NBrPm5CmbqqwuDYSskcAVtDVVX5880xl5IW3yswVfmDoBdoAhOHaKXhjt9n58+PZ7Fqzl8EP9SGmUyPysgpISUwlonE4Jq/Kq985HA7+mTCPHStVQaFdq/dy28vD8PH3IjM5m8WTVxLRJJzed3WtNEb/UnG+Bv8dYKoQ4m7gCDAMQAgRBnwrpewLVAOmu3x3OmCylPLf8zzvBSegmj9j3rudmV/PJ2lvKmF1QwgOC+TA1sNMefdvGrSpw9bFO7FZ7dz11s00bFMfk7eJ7LRcAkP8L3f3Lw1SKrVEWQSOJPBQIlJC4wUG9UWWlLjalgAOcGaixLU81AKwNhz00Qh9HaRtP2j81WzS9w2VxetwRfVqo1RCkDZKSTQ704Fry+BLZz4IL4Q4t2gNlZlcoBKgvJ8EZw7CNLBMG+F5B1ICQqOKzltXAU7wigVaqCQ5RybSkX1iBi4tSGMXVcvW0B6Nz2M4bfvUATUhYByAMLU7ZzE86TiGLPhA9dPnSVVR7Qrj8K4kvnlKlSP08DbRoFUd3h35CevnbGboI325b/ydle5bnF/CnImLaDc4HkuxhZDIarw/6jMObD3C05Me5N5xoziw5TDxfZpfqsuplPMy+FLKLKBc5QuXC6ev6/UB4CxWdy4/dpudGR/PpmZ0dZb/sYa4XjFsWbIDgIEP9KbtgDiCwoJo3S+Wv7+cyzdP/Uy9FpE8/MUY6sTWLpORd01iGqoMvXURGLuV+tql/ShofBEaP4THEKTwUn584VJi1IaAoS3C2LI0csdZ/CfkPwvauoiAb9B43oQz5z5XFaXOoK0BReNA3xw8X1ORJmdA2g8BXNGLv9KZC450pG07FLyuQlx9nz9rbSHpLELmvaiMsu8baLxHn7K9EJCqdqzGB1k4QbnUcKoGGn/1ZFD8rWov9Ajv0Uh7MrLwI0AL/hNP1Cj2GAwUgbMYYYguY+ylIxtsW0FX7/RPX9aE0uQ6aWl5RRr8KjWCiOnSmC2Lt9OoXQNKCsxsXqT+97ev2F3hPkV5RZQUmgmuHsSdr41g6e+r8K/mz971+9m38SAA25bv4uEvRle4/+XAvTp2ElqdlpoNwjAXqSSKoLBAvPw80el1ZCVnc/9Hd5CVnE1Wam7pSvveDQf49pmfaTMwjqGPXN606YuNxtgQqR/nWijMw2lerlLq859UbpuAL0E6EcITDA0RXhUnUkl7CphdWj2Ovcii75Aab5XZK4uV+8fmigG37UL4f3nGhVxpTVCLkTgh4FuE8cLmR0hpOW/BN+ksQOY84ioe31w9KZX8pjSKTomHr7gPJciir1U5SX1jsC5FGtsji34FZwpKlz4fHPvA/2OEoTEi4GMlX6FVM3j0rcDyDupf365cNYC0rDiR8WyIA9kQaU5A6GNAF660d3Rl16tkwTtgnqHqJAdOQmgqya7VN1BrMs5sxBVa19Y30IdX/vwfeen5hNVRMSpj3ruNXWv30WNkp3Ltd63Zy6cPfcehbUd4fspj9L6rK73v6sqPr0xl86JttO4fi7nIQucRV5bby23wT0IIwcNfjGbvhv20G9KSWtHhxHRuyKYF24jr3YwDWw7zTK83KCk08/jXY9FqtRTmFrFh3hZ8g32uaYMvnSWqLKLGU/np7QlgWw+G9sqva9+qDHnRBLAuBF0LCPqhnJGUjgxk8Y8qBNDQVfn4LbOV68f/B3BkgtCqH0NHhCEGoT1RYEZKh4pK0fqVPa79ILjcSdJ+4IIZfCktyIL3wDwH6fM8Go/z+IydmWBbrV5r64HmCHj0U1ExZ9MXyzp1s7AfVpmupoFK7ti+QT0ZgasE5VGVbKV5CLTBKpvWVc5SOovUGBpagS4GDJ2Q0q5m/ZogtRCvb4gseFOFzOpbIQK/UdE2p+Jw6eY7DoK0UpmcgtBFQdBUkPYyn+WVhrefV2kG7cYFW/n8ke8BCKsTwtFdyXQf2QmfAG+WTFnJ7G8WsG+DyktZP2cTRg8jMV0aMex/A4hqVpvgGoHUj6tz2a6lMtwG/xQCqvnTqu+JEmVNOjSgx+2dAVj86wrys9QiWc6xPB7/9l7+mTAPo6eBPveoYKac9DwMJj1evp7ljn21Is0LkPkvqiQc3xfUbPK4uJZ9t9LS0QaAvi44XTNzZzJIByevJDqL/wTrOjD/qd4w9lGheuYZyrWjq4U0xCilTlkIpgEI04nMTSmtalZZMg3p/TQar1tKtwljZ6TXaHVOQ2ucxdPAcQRh6oc4H9leRzIUK98u5jnKQP9XtLXB5xWwbUCYuoPv02f35GLbA4Z2UPwdWNeAoQN4DEKYuoJ1k/LVawKVtIUmHHSF4ExHFoxXobI+LyA8egGu9ZaAj5HWXao0YfE3SN/3VDa1JkTdaO3JYNuvOmDfq4x5BQZf+DyLtCxC6FuVuwGXa6vx/Q8DdmnYumwnVrON5t0al7plj+tsAexes4+EeVvQ6LQMeqA3u9ftI/VAOi17N8NmsZOSmMazvd+gx8hOZCVn8/CXo6legfLulYDb4J8DsT2aMvypQZQUlNB+aDwajYZB9/dm0P29cTgcLJy8nJkT5lGcX8LL054s1dc/ldzMfJDgX+XK/Sc4GWlZqBZUzX+C520Ir+FIcwg4U5VBPUkKV/q+grSuQBhaqacBaQHzIqS0QcGraqHR0AFwgOkGNB4dkcY2ql6q8xg4Dim/sCbAleKvXCE4c9UCpG0n6GPAug6npiYaD1e+gMYX4TECKfygcByU/A7YkI5UhP97Z3+tjmyw7wRdfRVFpA0Dz1uhZDaY+pRvbz+ILJ4K2hAlPlZJlScp7SDNrpvULWXeP9XoK9fNr2qh2rpByVN7PaxeA8h8NB59ARCG5uD3ulq/sB9SkVCOTMAJluN+838RHr2Qtr1IS4K6CWsC1c0alCCavgkUfab+9jAj/F5AmhcjDG0qNdbC0AxhaHYWo3rlsnHhVp7t9SZOp5OHPrubhLlbiOnckP739eLpHx/i2OF05ny7CKC0+Hjd2CgO70rGL9iH2o3D+faZXwDISctl48JtbFu+y23wrybMJRbSD2cSUrsKBtOJf2C/YF/ueee2CveZ8+1CPr7vG4JCAwiuEcShHUcqNPi71+3j5cHvIQS89vcz1GsRVcHRriyEsbvy8Ro7KGEsjRfCULH+3alGQJb841LKxLXom6VcQZhBWws8OiJ0KsHO6Tis3ANYlfG3H0M6spC5D4FtI/i87orkOawifmwrwKMDUtqR+W9AyRTwuhdsu9TCr2OPKsR+Dsj811U5P0N7CJigXBk+L4H3k6WywtKagLQsRRjaq3Ep/k7trKuvpKFPPaazAJn3kpKo8Htbze4BaV6FzH8LaWwNujCEaTBCG4g0L4bCd9TOho7qtzMb4fch0roaTL1xWreDLkpJ+Fo3qugpZ4FLyVILplvB6AnWlQhjD6S0IfPHg3O/uqka2oGxp7qRmnog9I2Q2nCQFoSp72k/46sZh91BSZG51HVTlFuM0+lEo9Ww7t/NrJ25gdX/JBDfJ5but6mxb9KhIZZiC7HdmwIQVqca+xL2k5dZwNDH+vHohDHkpOexcf5WoprVJvoyJFSdLW6DfwoOh4MvH/2B2d8s4IbH+nPvh6NKt9msNjKTsgmqHsjehP3M/2kp0fF16X1XV5L2KldGVmoO3W/vSMM2FX/oexP2k52WC8C+DQeuDoNv6qaSqzBUmhovLUuQ5hUIUzdVZKN0g+3Ea2MnwAvyN6o4cFmkmkirStyyHwJNBOg1oPEFjZdyqRxX5bRvUS4bcMWRx6vXzgIoma5em+eqG0vReLWQfFIBljOhqjm5Zr22XS5XhuuahcvYS5uKknHsVzpAx0XfRJCSCq4I+0F1E0GDtKw6YfAtC0FXRWW5ItXCsPd9rp1MgFnJG5h6KeExXTUwdUXmPAjWJWAahDS0UUqloBLfXGOKcy9gBN+XEB591ROGxgMcBa7tueBMBBwIbSRCGBCeg896rK5GCvOK+Pjer1n/72ae+O4+OgxtTXzf5jw6YQzWEisIwdqZG4jr3QyhETgcDrRaLU07lk0u8wv2pThfrRdZiiz0G9MDgBse649GIzB6lF/cLyk0k5KYRvW6IaeN6b/YuA3+KZQUmlk6dRUAy/9Ywz3v3FqaEffDi78x9f2/GfpIX7JSc1k6dRVzvllIkw7RdB7RloKcQrRaDYMe6I1/lYp9mi17N6PLiLYgNMSeJk37SuN0ESpKIOspkLlI60oInlkaWy48BqrQP+EJpp7K9WAaqITY7LtwFnwO2iDIfwkQamZtWw+mIWrGrK+v5JNt2xEeg8FjONK6XhVaKZmCxIHw6In0fQlKZiE8b0ZaV6AqdW1FyCyg4sI25a9RC76vIi2LEYZ2CI13Ba10qvqXY7/6bRqE0DUAjT/CFWkjpQNs29UiqLa6audxu1q0tasyksLYQZUbLE5Vx8RW6icXxg5Iz7vUzc7QAY3pxAK0dGSr2Tyoc2hrn+iapoYSRZMW0FQDe6K6kXr0B7RqoVhbFexHlbvM0MG1KH56//u1QvK+VJZMUf/b62ZvpMPQ1mQmZVOneQT1XAKJcb2bseCnZdzZ4BFGvXoTt704rNxxwqJCeHXGU+zfcogON5x4ovOoxJBLKfni0e/5d+Ii+tzTjce+GnvZNIXcBv8UvP28eOize1g5Yy2dR7QvNfZWq42FPy8HYM3MDXS9RfmOo1vXxTfYh11r9zHvhyUARMbUZvCD5f29AKGRITw3+bGLfyGXEmFU8fLWxWBoWiaRSGi8yujcS8tSlR16PKpEswFk9PGtLtXNBuDYrTJ19VFovB9AmlcgLatUBq+2FhT/ALa1qki6R09VKcvzJhXn7sxSLgt9c3XDOKdLiUcY45G2fSoqxtCibGKUZZlKHvMcq9rLQoSh7I1blvwO+a+AcYASIvO4CTyGQ3Z/1/aqyuCbOoMhTqmL2g8AWpzZD4I+EuFzPzgL1IK52Q7GOJW85DgGHkPV04emmtK1MXRVVaqkTT2hOI4AevAaizA0Vfo5+a+AM1tly1rnq74H/oQwXFvy3qcjvEEN+t/bgw3zt9J+aGsO7TzKE51eJj+rgKcmPUiP2zvhX8WXPz9SUhP/TlzMzc8N5eDWI+RnFRDTuVGppHHL3s1p2fvsEqksJVbWztoIwJp/NmD92IbRo+K1nouN2+BXQLdbO9Dt1g5l3jMY9Iz5YCRLp67EN8iXmRPmcctzQxn0YG98ArwJjaiKwWTAYXdcP5m3LoQwgN9bLjXGBqdv7ExToYWmQcqtYNuuDKLPq8qIOYtUHL5V3VylpT3QC5l7H2BRpRata5UKo6F9qSCXLJmNdBxU+xd/CyIQ4ftimXBCKSWYZykZAtPASjNGpW0vMnuEihTyfQPhqsIl7cnI3AcAqwprtG5QkUkeJ7JcpT0VLOtAU0VJEjiOQOF4CO6jdGksS1ToJCCtm5CWRSqEtegLtW7hcQvYtiKticowF32JRA8B36ixsu9SuQqmwQhDE6R9G8hc9cRhXa/Gw3EIDPFg6ofQRyjBM9d4qptgS9A3UsqZ1xEe3iYe+WIMDrsDrU5LwrwtpVF3KYmqTrNPgDdjP7id+T8uZeD9vTm49QiPtHsBq9nKY1+Ppe89lUqLVYrJ08hDn9/D6r/X03ZQ/GUz9uA2+GeFzWojNz2fTje1of0NrRgZ+SC5Gfn88+U8Rjw9GIBG7Rrw+t9P88+Xcxl3zwR8Arxp3u3qLfZwrghtkHLNVIB0lqgSerpqCM9bkMIDRCA4MsDY0eXTdiIzB6ubhrGPK0vXjtA3Vk8Q2urKDaTxBqSawTuzQROKs/AHFWKoqQoGl1a7zFfZvii/O7bdSFkMeU8AEunIQPi9gnQWIou+AWcGwvMupDMDzKtU8pFte9kiIMKoDLkzGTAqETld2bUaaf4bnElKi0ZbB0pSlKG3pyL8xoPMQVoTcOZ9oG4YWiM4ipS7Rx+nYt81fqrQzPFygc5CNbPXt3Y9CRQr94+xq1qzMP+tFrUNrZUaqWkwOK0nisLrm6qZvbMQ4TEYYWh6gT71q4+SQjOHdhylet0QmnaMZuwHI8lOy6X77SeSq/qP7Un/sT2xWW3Mm7QUq1mFaB5fezuVtEPpTHp5ClJKRr06gtCI8oECHYa2uiKKJbkNPqpsYVZKDo3a1iunYOewO5jwxI/8/fm/3PH6CG59/gbu/XAkC39ZTs9RnfHwOZFskpuRx4rp6wDYt/FAGYO/d8N+ti7ZQUzXxtRtfn0pbMrcJ8C6Gun3DhqPgQif8i4tKR1KUtmRCDILgmYgBAhtVaRtn1J1xKmKc+iaQtHnLqNuUVmnhp6uBCaby+0TiSz6FakLBAxKOdLYR2WWygJwpuA0L0PggKIvVR80kWBdoGbI2mjwuBk0vkhHjpIY1gZD4DdgO6CUQK2LkYWfgeetJxaqRYBaOLXvUZFC+oYuHRstwjQeaU+HvKdUdqqxLRR/DmIL+L6tqocJA6CB4onqeJ53qBubeZaKs/e4TYWNeo5ECC3S2EEJnGnrqRuQZzzC1Ae0VUvXIIQuCgJ/A6QKlbWsRTqOIIzdruhEqIvBxOcmM+OzObQZGMcLvz3GjY8PAODI7iTevvVj/Kr4UKNeGId3JlGjbig/vf4HbQa1JLxBdXrd0bnCYyb8u5kFPynx30ZtGzDg3vJVv64UrnuDn3rgGP/r/BJZqbnc//GdDHmob5nthblFzPlWaVnP/3Eptzw3lM7D22HyMvH5w9+xccFWxrw/Eg9vE827NmHQg70pzi+hzaATIW1Wi5WPxn5N4qaDRDatxadr30Jv0JduL8ovJu1AOtXrh2KqYIX/qsaedMKdYF1bxv1xMmrB9E0Vg69vgnAVT5HOIhWW6Tig4u9FAPi+pWbZxT+CoaU6viZEGXP7OpXcxSI14y2crMIPQZVh9HpCZbvadoF+D1KYwNhD+b+LvwPMyu2hCVKKk9ZlSGdhacUuoauDFEFgWaluIkikMCKMbVSmsW2LKvhh6ATolJ9dk+l6MkEV+jYOUH0omajaWZeqG0Txd4AJPEepEE6EKihjXa6uReaAZQF4j0ajV1mcGo9BOLV1VZSS4zDCqwdCXz7y67jsgbQlInPuAmxIr2SEz6Pn+QFfHezbeACDh4Gty3YBsHH+VtKPZnJ4x1ECwwLYsngHi35dQfOujZn+yRwA2g9tRUF2Iav/Ws+wx/tTpUZwmWPabXZS9qeBEPhX8wMJdWMjLvm1nQvXvcHPzcgjKzUXgGOHMspt9wv25d5xo1j48zIGPdindHV95fS1pB3KYOZX8+kzujv1YiMJqObPg5/cXe4Ye9bvp25sBI3a1Uer01KQXVTq57dZbXw09iuWTFnF0Mf6c99JYaDXBPo6KjbemoAwlc1Slc5cpHkeQhOCMHV0FUU5NaLGgVLeRIVk2jcjnMng8xR4jlILmfY9gCsbVVsP2KJyBmy7lNqmsTdgA3RQMh/0YcoVI0KUlDM2tY5gzVLnEX7q5lSJvo0snqgWb01DlTtF30IZUusmdVORharf9n+Ve8fYh+OyA0LrrxLNLH+rg2mC1fg4i11Ht4KxF8IQh8QJxZNV7QFdY8BbHVsbXaY/GkNDOEMhkhM4T76Ss9zn6mb13wm8MvR99EYdj341hu0rdhPfJ5bPH/6ehLmbadSuAZ1uaouHlwkhoFbjmhzefpS6sZFExdSmSo0gGrU7sTZVlF/MhMd/YMuSnTTpEM28SUsY+EBvbn/xRvyrXtkRT9e9wa/fsg6Pf30vSYmp9L6za4VtBt7Xi4H39SrzXqt+LVg5Yz3xfZtTo87py5QlzN3M3B+W4LA76H1XVz598FtenPo4Go2GkkILa/5RGZTr52zi3g9GXtVl4E5FCBPC5/EKt8niX6FwPBKNqnVagW9ZaHzB/1O1uOnIAENXJBqEswChq4k0tFOzXl0jsO1GE/AO0vtBNaN2pCAdaZD7gBLv0kWAqZVa7EWopwlDRxA6kBrlNnJmqG3ODDDercIuS+PmVyMdyWBZqxZPHUkQMAm01ZBZN6kFU+EyyngoVwyA8ChT01cYOyI9bgGZp9xRBa+qxW6vBxH6RgijUgYVoG4OTjOycJxyNwGCgv/+eejrQcA3SMdRhLGc0O01ScqBYzidTiwlVhw2J0YvI+lHM0k5oBZqs1NzyE3PY+Luj9AadNitdjKPZlEnNqLMk/hxDu9I4t+JiwFKhdYObTuM31WQOX/dG3yNRkOfe87+i5+cmMryaWuIaFKLnw99gdHTcEZZZA9vDxx2lTBUmFPIvo0HsVvtGEwGfAO9efzbe1n/72Y6DmtzTRn7M3N83ARQ+XULQ9PSm4Gz6GfIvgGpawIBX4Gph9L1MS8Cz5auHUwqckhXW4VyolW+cfMM0McgfB4Gy2Jk0QfqqcDiimv3/h8a36dVYW+fJxDaEzdyad2JzHHV7zUNA/tmNXN3HFU+em2QEo3zfEC5YZxJ4DEMnEfU7FyYcBZ9D45MhOcINH6vqHDJ4qkq38C+G+HzHOibllHmFMIEWhMYuyAtC1SEj+781oCEse1pRvvao9NNbcjLyMPkZSRx80FmfKpcNk/98AAbF24jMCSAdoPjCa5+IuigSvWKAxAAatYPpcONrdmyeAcdh7WhRY+mtOjR9Kr4373uDf658se4mcycMA+9Qcc328edlWbGoId6g4D8zHyMHgYG3NerjGRDlxHt6TKi/cXs9hWJ8ByB1FRBaKuWq8laKfadrt/bXOqTu6Bksiq1iA5n0U9Q+CnSayTC6wElqmY/BtZ5aj9Hioqvl8ddG5JSqWCNSrcXGi/AS2naFH6hyjp6jKDUBaINAe/nVS5B/rOAU4WZaoLAuhkMTcGyDyz/qlBL6zqkLgIK3lZnFB7gPVolq9k3KCPuM04tTuc9p6KN/N8tTeQClF6RYYHrZqb5z2N+PRIcFshdbyr9or+/UEV7qoYH07hDND1Gdj7j/smJqWi0GkIjVCa1T6APz09+FGuJtUzQxtXAeRl8IcQw4BUgGoiXUiZU0q438DFqSvetlPKd8znv5cTbX6XYewd4sWPlbg7tOErbgS1L7+5OpxOH3VHmUVCv19G6fwuq1Ai6plQ0zxeh8UV4Djm3fTxuQiJd0Tp1EY5UVR7Rvkv5wws+VnHphV+Bx20IXRjC7zGcBQalM6OtD7l3g74j+H+OQCj3imUVWPfh1O1GY3D5a217oegr9Vob4nIFSbXIWzwRKAQMgFm5hayrlcSCfowKD7XvVIuvuhgVzil8VWSRtqZaj3Amq2M788G2Tj0NOJPAmYQ0L0R433XKeLm/OxXhdDpZO2sjlhIrbQfGlZlMnUq/Md2p0zyCgBD/0vDJgpxCtDoNnj7lx3fz4u083+9t9AYtb//7AtGtVRiuVqe96ow9nP8MfzswFPiqsgZCpSl+DvQAkoD1Qoi/pZQ7z/Pcl4Wb/jeIus0jyUzJ5v07vwDgg0WvENO5EZnJWYwf+xU2i516LSLx8DEx4L5ezPhkDj+99jttBsbx3ORHMXlWHImzYvpa9qxLpNNNbanT/Mpe7b9clBNnM3ZGBCj5YmGMx+m4W6k+Gnsgi6eD13CExhPhdRfY2yALPlY72laCuAthbIss+BTMk10nsIPhDRUd5CwBY381U8egommEJ0LjhdQ3AUsxeP8Poa2C1NZX2a72Q1DyLeClbjAyB0yD0BjqIYOmKuOuj1ETBP8Pkda1CEMHZOGXKtdAG6VkD+yJl3JYrzqcTicajXrSSfh3My8NeheA/028n153dKl0P61OW0bnaseqPbx6wwf4Bnnz4u9PUCu6bNDA4R1HsZqtWM1wZHdyqcG/WjnfEoe7gDP5ruKBRFepQ4QQvwGDgKvG4M/9YTEbF2yl220die/dnI7D2jDjU1VoWwiBRqu+eHvW72fd7E3Edm/KlPeUNK3QaFg7Sy3KrvlnA3mZ+ZjCq5Q7R9rBdN4YPh6H3UHa4Qyen/zopbm4qxwhBBjjS//WeN2KEy0UvAlYVNSPRw8VlmiIBe8HkMV+gANy7kcGTVFPC5jUQq8rM1cWvKuqURl6QNACNRvXhqoMW6FxHd8JlCACv1MLrI6dyOJvVEdMA5SxB5cCKOUqRglDS4TBte7g+xTSshacJUorx1Q2PNiNIi8zny8fn8ShbYd54JO7aNKhIQ7Hicgjp/3E630bDzD3+8VENatN77u6lrNTUkq2LdtJVEwtdq7eS+LGg+UMftvB8aTsT0Nn0BHf9/LXpD1fLoUPvzpw9KS/k4BKU86EEGOAMQDh4eEXt2dnQVZKNuNGT8DpcJJ6MJ1jh9I5vDOJ3nd35ZlfHkZv0ONfVa3O120RSbOujfEN9Ear0yKlRAhBUFggTb1MNOvamGrhVSjKL2bym9NIO5jOiGeGUDc2Eg8fIzXrh3Fox1FCape/Ibg5e4TGD4lVKVxqy0ZQCWO8khgu+hzQgrSh8eiGU/Mt2I8ijC1VEphVJdBhW60SwXLHqugbjZ+SJdC3AiFBf5IyqCYQ0ABOlSns/UhpduupnKqDL3SRCF0k0qM/ONLPquTh9ci+TQdZ+LNKclr9zwaadGhIfJ/mvDDlMSzFVjoMOyFmNnPCPGa7cmjqx9chsoka023Ld5F+NBOTp5HvnlNPdgPu60mTDuVlQarUCDptAfOrjTMafCHEAqCiuMPnpZR/ncU5Kpr+VxoALKX8GvgaIC4u7rIHCnsFeNG6fwtW/bWehm3q8fnD3+OwOzCY9LTs3Zzn+76F0Gh4Z94LNGkfzat/PcX+TYcY+EAvjJ5GfAK9ST+SSfW6ofS/V8mo7lq9l6nvqzjs4BpBRMbUwifQhxemPkZmcg7R8VdeabSrCeHRR7lHhCdCX34shectSE0gQlsDYVAhkBpjfJknBXyeQ1rmIwwdALtaJwBwZCE03kjPWyHvUbBtQxpbKtVJY1sI/A1pmQ/FP4O0I4LnlOr9H8dZ9JvSyPEaicarbN6G0PiAxudCDsc1RUTjmjTv2pjETYeIdWWya3VaOg1rW65tjQaqsHqthjVKiw0d2HqYp3u8hs1qLyNwWDc2kqquJ+/igmKERlOp+uXVzBkNvpTy3NWCypIEnKxSVQNIOc9jXjJMHkaemvQg6UcyMRj1LP9jDelHMgmvX52kvanYrEqvJXlvCk3aR/PXJ3OY+PyvRLeqy5uzn8MnwJtHTqlaX6N+GLUb1SRpbyqp+4/xx4d/U5BdxF+f/cvIV4dzYPMhSgpL6De2B0Gh11fq+4XidHoxQlultMZrpW1MHREmVQBDSif4vg/OZIRpkGrgSAHsSq/HcQSIcZ23mQqflCUgqgKn1PSVdpdQWhoUfob0uBGhubKTda4kgkIDeWPms1jNttIKVCeza+0+MpOyiOvVjNDaVRn6aD+iW9cjMCQAALvVjsPl9slJz6Vl72ZUrxdKp2HqSW3ej0v48eWphDeswciXh9Egvu6lu7hLwKVw6awH6gohIoBkYAQn13i7CvDy9SSisZqljVv6KrkZBdSNjSDnWB7HDqej0Who1V9JKezfogo7716XSH5WAT4B5TXVQ2pX5bW/nmL82K9ZO3sjepOeldPX4bA7mPPdQoQATx8PgmoE0e8/qPO5ubAIoUF4Dir7nqkX0nnMJWJWVllVeN2jYu91kapoSZlj6ZBeo6DwM/C8U0XuuDkrigtK+OXNaSTtSeHmZ4eUM8aHdhzh2d5vUC8uivQjGfz2zgxyM/IJqLaSNgPiMHoYqBcXxat/PcWBrYdZMW0NiZsO0euOLni6oufW/LOBY4czOHY4g5a9m7kN/skIIYYAnwJVgFlCiM1Syl5CiDBU+GVfKaVdCPEgMBcVljlRSrnjvHt+mahWqyrVaqlwrqDQAO55u2zJwyGP9MUnwIvo1vUqjNE3F1uwW22ERobQ8cbW2Cw2Ot7YhrqxEcycMJ+4XjH89em/OJ1OBj9Usaa+m8uP0IUifJ+ueJvGHzx6V76v513gcSMI36siWedKYc/6RKa6giGMngYe+vQefAJPTKgsxVYat2/A+jmb2blqD0Mf7cevb0+n3ZCWZSSJW/drQet+Leh4Q2tKCs3UjT2xmB7ftzmbFm6jbmwEjdufQer7KkRIednd5JUSFxcnExIqDO2/Kkk7lM5bN39ESmIqz095nOZdyyYbORwONi/ezmcPfUd06/o88PGd7rh9N25cpB/N5Lm+b5G0J4X4vs1pNygejU5DTKeGVA2vwp6E/cz7YXFpctXTPz6IpdhKQIg/bQbEnfXNtSC3CA8vYznl3KsFIcQGKWWFBYndBv8Ssurv9bw8+D0AbnvxRka9OrzCdsdraR7n8K4kZn+7gOpRofQb07206o4bN9cb6+Zs5I8PZ2IpNpOXVUjyvlQ63tiGsR+MZGyzJwiuEUyd5rWoWa86VcODeXfUZwC8/e8LxPW8ekqKng+nM/juHO1LSIP4unQe0Y7oVnWJ7xtbabtTtXnmfLuQP8fP4tMHv2Xbil0Xu5tu3FxxOJ1OZnw2h/k/LWPwQ7159Jv7SguJFxeUYLPZCAoL5ND2I3j5eXHL8zdgLrGW7m93BVccR0pJVmoONqvtkl7H5ebqfGa5SgkM8T+rhKrcjDzSDqQz5/tFhEZUIyxKLfz5V/Vj/exNNGkf7Z7lu7muSNqbwucPq6IwVrONV/98kpen/Y9dq/dQJzaCd2//FLvdwdgPR5ZWlup2Swd0Og0Ou5Oda/eQfiSDfmN6oNVp+WfCPD5/aCI9RnXi4c/vOa0cw7WE2+BfABx2B/9OXERmSja97+xKtVrnlji1N2E/a2ZtoEmHaKwlVqZ/Mocq4UH8+90iAD5Y+DIdb2xNxtEsZn69gJufG1phSJobN9cqgSH+NGxbn52r9qDRCLat2E2T9g1o1LY+C39Zzq41+wCVaXs8qMLD20Tvu7rx9VM/8fsHKu8lomktmrSPZtnvq3A6ncz9fjEtejYluHoQTdpHV3r+awW3wb8AbFu+i4/u/Vr9IWHUq8M5vDOJRZOXExlTq8KkEICs1By8/Dz5+skf2bJ0Jw3io/Cr4seG+Vto2KYegSH+GDwMVK1dha63dmTZ76sY8kjfMxr7ovxiNi3aTvU6IaXhpG7cXM14+3vT9eb2GIx6Ni3Yxo1PDCjd1rBNXZp1bUxhbhHNujUus19xQQl2m524njEUFxSXFh4a9GBfCnOLady+AR+N/Qab2crn698hosm1neHsNvgXAL8qvnj6eFBcUEJQdZUoNf2TWcz6egEajYbajWpSq2HNMvss+nUF7436jFb9mhNUPYhmXRpTmFeE1WwlvEF1MpOzie0ZA1Iy/8eltBkYx7M/P1JpH0qKzRw7kEFIVFV+//Affnn9DwJD/Pl07dtUrRlc6X5u3FwucjPySJi7hZoNqlM/rnxZxoykLFbOWEdKYhqFuUXc/OwQvHw9uempQTRqU7+0XWhkCO/OexHplOVcnQnzNjP9Y6V7Neb925ny7gy8A7wZ/vRgOgx9nx9fm0pxfjEajaY0ifJaxm3wLwARjcP5aOUb5GXk06SDeiw8bviDawRWGFq5efF2HHYHq/5K4P1Fr7B06kpmTpgPwPCnB+Pl58msr+ajN+pZ8NMyVvy5ls/WvU1yYhqLflmBl78nA+7tiZevJ06nky8f/YE53y5kwH290BnUlz4vs4CivCJwG3w3VyC/f/A3U9//G+8AL77c+D4hp7hCJ730G3N/WEJANX8CQ/3ZuXpvpUqYGo2mTAiKlJK/v5jLsj9W0+Xm9qycvo6slGzmuNyk9VtG0WlYWwaM7YlvoA8htatSr0X5m861htvgXyBOdZ0Me3wA9VvWJSyyKsE1ylfP6TK8HUd2JtGkQzQNWtXBaXewdMoqatQLY8B9PfHy9aB+fB0mvTQF9oKntwkhBD+88Cur/kqgQXwdwuuH0XZQPJYSKyunK7GvVTPWccfrw2netTFGTyPpRzKJaHxtP6a6uTqxuqJoLMVWHLbys+uSIrPabrbSZmBLUvankXogjdDI05cUBdiyeDvTP55FcmIaeqOe9+a/RElhCX9/MQ/fIG/CGyhVzIBq/mU0da513Ab/ImHyMhHfu1ml25t3a0LzbicSr2K7N+WHfZ9hMOrISc/jhQHvkpWcxd3v3EZ4dHWsJVYObjvMoR1JAKTsP0awa+bu4WVi9Hu3sWHeFjre2IaSIjObFm1Hq9My/OnBF/My3bj5z9z4xABCIqoR0SS8wqz0Ua8Ox2A0kHMsl61LdnBg62GK8op58JO7KzhaWQpyiqjZoDrJiWm0HRhHdOu6aHVavtv5EQaTnqDQgItxSVc8boN/BeHrShPfl7CJHSt3A7Bz1Z7SaJ2Q2lV55IvRLPtjNTGdG+Ht68GWJTvIOZbD+NFfUS8uioZt6+FfxY+Aav54+nqU8XW6cXOxcdgdpB/NJDDEH6NHxYV+jlOtVlVueKx/pdurhldh44KtZKflEhQWSGBoAJ5nWWWqVb9YzEVm2g2Jp83AuFLf/vEqV9crboN/BdKgdV1a9mlGTmouLfs0Z/fafSTtTSGmcyNiuzcltntTjh3J4PGOL5F+JJN+Y3vgdDrZvW4fqQfTCQoNpGWvZpf7Mtxch0x+609+fGUqfe7uysNfjD5neYKMpCymfzILvVHP0Ef78+hXY1kzM4FG7RpgNBmI7X52tY8NJsNZ1au93nAb/CuQqjWDeXPmczgdTrQ6LU3aN8BqsZc+AexJSOTfiYtIP5IJgNPuoP3QVkQ0Dq+0NGJGchZHdiZTr2UkPv7lFTzduDkX7DZ7hcZ88W8rAVjw0zLuevtW/IPPTQ10/dxNrJ21CavZSnGBGb9gH+568xb8zvE4birGbfCvUIQQpY+hJi8TWSmpfPPUT3j6mPCv6suCn5bTZmAcvsG+3PDYAGo1rFHpsYoLS3jthg/YvS6RAff14uHP77lUl+HmGsNmtfHjy1NZNHkFo9+7jc7D25XZfsdrw5n9zQI63tjmnIz9scMZzJwwj5V/r8dSaKFln2bM+ESFUwZU9aPfmB4X9DquV9wG/yph5Yx1/DtR+fLvfvtWkJJD24/SomfMaY19QW4hy35fzcFtRwBVlPlic2jHUZL2KBfUyfK1bq5+Mo5m8du7MwCYN2kpdZpHYrVYS8sHdryxDR1vbIPVYmP+T0vZtGg7rfsrKeLTsW7OJnavS+TormQAjJ5GmndtjNBq0BnObKZyM/JI3HyIqKa1CKjmf17XeC3jNvhXCXWaR2D0MODt70nTTg3ZuboJyXtTyU7JrnSfkkIzb93yMdZiK7Hdm1JSaGbIIxUXx04/mkFmcg571iWyd8N++o7uTsaRLLLTcuh2a4ez/ifKSs3hub5vknE0i5ueGsTod247805urhqCqwcy4L6eLPxlBW0HxXF/3FNYSqy8+tdTtOoTWypBPP2T2cz8ch5ph9JZ808CRXlFzJwwnz53d6X/2J7ljhsZU4vFv66gXlwk0gkOh5NNi7bjG+xDfJ/yxcOLC0vIy8hHq9NSpUYQnz34HUt/X0183+a8Ov2pq1ba+GLjHpWrhNjuTflu50foDDqCQgO47cUb2b12Hy16VCz5euxwOkumrCLh3820GRhHZnI27Qa3rPCfJyMpi6e7v05wjSA2L94OgF+wL9PGzwTAarZyy3M3nFU/rSUWco/lAZCXkf9fLtXNZcTpdLJt2S6MHnoatKpXbrvBZODBT+/mrrduIWHuFkoKzbTsFcOyKatZ8NMyuoxoT7tBLVk5fR2hUdVIO5RO91s78OPLU8lMziZpbyqdR7TD26+sPEijNvUJi6pGVmouyftS8AnwommnhqQkppXLUj+8K4nXhn1IYXYhkU1rccsLN7B/yyEA9m8+hM1a8fqCm/OveDUMeAWIBuKllBWK1wshDgEFgAOwV6bV7Ob0nCzKVq9F1GkzA+f/tIxp42bSbnA8mcnZ9LmnGwPG9qQgu5DNi7dTs34YtV3JYrnpeSQnplEnNpJut7Zn3ezNhERUwcPLSINWdfENUm6ZXWv2sm7OJmK6NCKqaS3mTlqKydNAj5GdSkPwQiNDePnPJ0ncdJAON7S6iKPh5mKwfNoa3hg+Ho1Ww3sLXiKmU6NybTQaDd5+XsT1imH0e7exfNoa1s/dQmCIPwFV/Wg3qCW3PD+UtbM20OmmNnQZ3g7vQG9+fu0P+o3pVmloZYcbWvPv94vpcXtnfnx1KiYvI8/8+HA5Hfu96xM5slPlo4RH12D32n08OmEsa2dvJK5nzDVZfPxCcb63we3AUOCrs2jbRUqZeZ7nc3OWhEZUpTC3iC2LtzNu+eulmcBT3v+LKe/OILh6IJ+ufZvgsECimtXmwc/u4uv//YSlxMq9H45i4P290RsNfHL/N+xN2E/dFlF8+uC37Nt4kFnfLGDEM4P56olJgHoa6HCSj7ZV31hanUbv382VS47r6czpcJKfWVBhm+T9aWxbtpPw6Br0H9ODrUt3Asrv3qiteio4XkYwOy0Hm9XOrS/cQL/R3fGv6qdkECqgVb8WtOrXgslv/QmAuciC3qQv165Jx4a06hdLXmYBdWIjaDuwJdXrhhLTufzNyU1ZzsvgSyl3Ae66nJeB4oJictPzCY2sVuH4d72lA6GRIXj7exIefWJRNz9TuVnyMvJLU9uT9qaSl1mAxfV3SZEZjUajdHgkRLepT8LcLdRpHsG+jQepXicE3yAfwDXbq6BQu5urky43t8dSbME70JvGHcrLBf/+4d9MGz+L6NZ1WfDzMgqyCrl33Cg63dSG8AY1qN+yTmnbrUt38NKgd/EO9Ob1v58pIz+Sm5GP0+EgMKR8xmur/rFkpWRTpWYwzbqUN+Ihtavyxj/PXqArvr64VI4uCcwTQkjgKynl15U1FEKMAcYAhIdfX9K+2Wm5zP1hEb5BvvQc1Qm9ofzsBlTkzVs3f0TC3C08/MU9DLi3V7k2Qggatjnhg3U6nexeu48eozoTElmNqJjahEUpTZJp42eyfNoaWvWPJbJJLXqNUgJVnYa1xWq28cvr00iYu5nbXx7GqzOeIqpZbXQGLS9OeZyA0ABCagWzZ30idWIjylXrOhmH3eEu3HIFcnhXEnO/X0xIRFV639UFTx8PZnwymx9fnsrzkx+laaeGAJQUlvDr29MpyC5kx8o9RLeuw5GdyaQkphHTuRHBLsHA4+xam0hRfglF+SUc3Hq41OAf2HaYFwe8Q3FeMa/+9TRNOzYss9/vH/zNwp+XUzc2kkEPVF4M3s25c0aDL4RYAFSkVvS8lPKvszxPOyllihCiKjBfCLFbSrmsooaum8HXoGranuXxrwnm/7iEic/9CkDVmkG07F1+gRUgKyWHhLlbANi6bFcZg39kdzI5x/Jo3K5+GeM69/vFjBs9Af+qfoxb+io161cv3eYX7EtBdiFWs42+o7tTpaYSe6tWqwqt+sby06u/l7ZtO7AlOcdyea7vWyRuOsjNzwxh2bQ1JO9L5aHP72HgfeVvPk6nk9/emc7MrxZwx2s30XNUecXDbSt2U5BdQFzPmOum+tCVwrTxM5nz7UI0Gg0GDwPLp63h0HYVvrtl6Y5Sg+/h7UGbgXGsmLaWmM4NCY+ujkarISMpizsbPELn4e148vv7Sz+/NgNbsG/Dfjx9PYk5aaZ+YMvh0qTBPesTyxn8jCNZAKQdPIbNaufsxBTcnA1nNPhSyu7nexIpZYrrd7oQYjoQD1Ro8K9n/Kv4AaA36PAJ9Km0Xc16YYz9YCRbl+6k793dSt8/uieZxzq8SH5WAQ9/PpoB950If0vZnwaoBdrs1JwyBn/YkwOoFlGFn16ZyhvDx/Hc5MdKyyrWjY3ktb+e5tihDDrcqBZhs1JzSNx0EID92w6TvC8VgEPbj/LH+JmUFJTQb0yP0mITuen5THppKk6nk2njZ5Uz+LvX7uWtm8djMBnI/t+ACsP2zhZzkZkN87dStWYwdVtEnrH9/i2HWP33eqLb1KdF96b/+bynw+l0knEkE79qfpjOoC9z6n5zJy4mKTGV3nd2pWb9sIvSPx+XS8432IfMlCyimkdgKbFiKbHS8hQBwNyMPGrUC2Xbit2kJKZxxxs389MrUwFY9vtqxn4wsnSmH96gBi9Mebzc+Zp3bUzfe7pRXGimVb8W5baP/XAka2ZuoGnHhqXZ5W4uDBfdpSOE8AI0UsoC1+uewGsX+7xXI91v70hwzSC8/b0qLAhxHK1Oy42PD+DGxweUeT83PZ/8LLXQduxIRpltve/sisPuoErNYBq1a1Bmm4+/N7nHcslKySErJYfETQdKDX5hXhHhDaqXWYSNaBLOiGcGs2ddItWjQuh9V1dKCs3UaliDFX+uxelwYvI2MuzxgQD4Bftww+P9mTlhHv1Gl58/5KTn41/Vj8LcIoryi89hxBTHDmcw+9sFBIYEUFJYwnfPTsbD28Sna9+mVnTlSWmgNNfzs4vYuXofNeuHkZKYxoFtR2g7MI6Q2hdGaOvvL+by+cMT6XRTG/438X5MnmcXRbJnfSLjxkwAwGFzcO+Hoy5If07l1hduIDAkAKvVRp1mtYnp1JDcjHwCQvzQ68u6FQc/1Je53y/GO8CbTQu3oTfouOX5ocz+diGt+sWWc+tURFBYII99fW+l288Ugebmv3O+YZlDgE+BKsAsIcRmKWUvIUQY8K2Usi9QDZjuWljUAZOllP+eZ7+vSbQ67XnNMhu2rcejE8Zw7HAGve4sO4uuXjeUMe+NrHTflr2bs3bWJgJD/Il2+f5zM/J4fdiHbFu+mye+u6+0+IRWq+WO10ewc/VeFv2ynH8nLiIqpjbblu8iOzWHyKa1yErNIS+rAL8gH7Q6Lfe8cytDH+nLxgVbWTljHW0HtSxdbLZZbKVPDMV5Jed83fN/XMLkN1Vkx3GXkrnIgrnQfMZ9azeuxayv55OfVcCqGev57tlfMBdbSN6TzEOfjz7nvlTE2lkbAFg6dTV3v3UroZFnZ/D9gn0JCvUnKzWXarXPrU7yueDp48Gxw+nM/mYB/tX8eG3G00Q2rbiGgl6vY+P8rdRrEcntrwyjWRdVUrB1f3ek9dXA+UbpTAemV/B+CtDX9foAUHF2kJsLilar/c+aI1ExtRnySF9y0/PQ6ZXvP/1IJluX7QJgx8o9ZaoNabVavPw8qdeyDtrvFlG1VjAarSA7NQdvfy8WT15B52Ft8Tspmmf5tLV88ej3ALy/8CWadVHKh/Xj6xDbvQnpRzKJ/w/hnFVcdQE8fTzoNLwtVcKDCY2sViZipDJa9GrKr2+rm0VhXhF6kx5zsQXdBVxHGPxgXzz9PPH28+LXt/9k6GP9qX1KMlFFhEWF8MGS18hKySkNdzwX7DY7xQUl+Lrcgxvmb+X7FybTtFMjRr56Uxn3UkZSFpYSK8cOZXB4VxKRTWuRcuAYOWm5NIivU7oe1Lh9A+5642bSkzLpflunc+6Tm8uLOx3NDQCbF+/grZs/AsBSYmXEU4Op3TicO98Ywe61iXS/vWOZ9mtmbuDlIe/h6ePBO/NepE6z2uRl5rP6nwR2r02kbotIMpKy0Bl01GmmFDwNJh2t+7fAUmKl6KSZvM1so8PQ1kTE1PpP+v3dbutIWFQIPkHe1G5Ys9wi4Olo2qEhT016kKS9KXS+qS1xvZpxZGdSOd/1+dCqXyxSSl4c+A4AQWEB1H51xFntW6NuKDXqli8OcjoKcgqwltj44tEfWDd7Iw99cQ89R3ZmyZQV7Fm/nz3r99PppjbUjztxQzzulguuHkhs96akHkznyS4vk340i/vGjSI0KoTajWoSGlmN/vf+9zUWN5cXt8F3A4CXnyc6vQ67zY5vgEp7Nxj1lUoqJO9LwelwUphbRO6xPLz9vfD29+LGx9S6wi9vTuOfL+biG+xDbI+mpCYeI6JpLdbMVO6N+i2jaDc4nkPbj/DT63+w7PfV+AR68+2O8QRWoNuTkZxFSmIa9eOiMJ2USTnzq3n8MW4mQx/tV2GEUEUc2Z2MpdhC3dhIhBD0uL3sTLVBJU8GGUlZeHib8Pb3qnD7kqmrWDR5OZ1uaku3WzqU2Va9bghVw4PJSskhqll5Ceuc9Dz++mwOQiMY/FDf0iejc2VPQiKvDv0AkIRGhmAutrDyz7X0HNmZenFRLPhpOS16NiXslDKBpybLJe9LJf2oipbZuWYfXz4+idqNa/LMzw+z8s+11GoUTqdhbcocIzcjj/k/LsMn0Ivut3V0yxtcgbg/ETcANIivw7ilr5KfVUBsjzOvI3Qc1pbs1FxM3iZa9GrK9pW7sZZYada1MRqNhn0b9rNpkdLlyc8sYNOi7dz6wlCq1AgiIymL8OgaLPtjNe+N/IyG7dSs3uhpLM3ClFKW+vgLc4t4ZfB77N1wgBHPDObut24F1JPIvElLCYuqxtqZG4jt3rR0Nux0OtmxcjcmbxN1m5+I1tmTsJ8nu76CpdjKi1MfxzvQiz3r9tN2YBw1G5yIXDqO1WylpNDMtuW7eHPER0Q2DeflP5+k6imF4a0WKxMe+4Gs1By2r9hN2wFxeJwkIVCzfnU+Wf0WJQUl1KhXPtpm1Yx1/PLGNACqhQfT+65u5dpURkFOIcX5JVSrVYU96xLJSFKGuknHhoRFhVC3RRRLpqzk84e/J65XDHe9ectpVUzNRWYimtbikS9Hk7Q3tbS2bEriMdb8k8BPr/2BRqMhvEEYEU1O+Prn/7iUr5/8CUAV4bmAT0luLgxug++mlOjWyk9stdiY8v4MkvemMuD+XmUM5nGq1Ahi9Hu3A7B58Xae7vE6TqeT5yY/SpcR7WjYpj4rZ6wnIqYWx5MpPLw9GL/idQqyCwmo5s9XT0zCYraSl5HPqNeG07p/C6wlFiY88QP7txwmMMSf0e/ehsPhZP+WwwAcdmmoABg9DDRsU5dp42cBEN8nttTgL5myirdv/Ri9QceHS18l2iUEln44gxLXYm5Oeh7v3fEZJYVmEjcf5PnJj5a5xvzsAt6/43M2LthGlxFtsdvs7N1wgOS9KRRkF7Lgp6WERYXSd3Q3DEYDnUe0ZdbXC+lyczuMXuXDL4NCA6CSWqqhkSHo9DpCIqpgtzlITkytsM7rqWQkZ/HTy1NJ3HyI5t2b0OvOLqUL4vF9mtO0YzRtBsYz86t5OOwO1s7ayID7epUuyppLLOSk5VI1PBitVsv2lbt5d+SnVA0P5snvH6D/2J7s23iAgKp+NGxTn30b9wMQUM0XLz/PMn3xcT0ZanVavPzLbnNzZeA2+G7KsS9hP98+/QsARi9jhQb/ZAqyC3E6na7XKiz0hsf706JnDIGhARTlFZNxJJNG7epjMBmoFl6FFdPXkpyYRoseTalRL4wbHu2P1Wxl4gu/YrfaQcKiySto2bs53W/ryLO/PMKOVbvpMqJ9mXN3vLEtc75bhM1iJ/VgGhsWbKVF96ZkJSvZaJvVTk5aXmn7Fj1juOutWyjOK6ZJx2h8Ar0oKTRj8jKSl5lfprJSSmJaqQvKv5ofjds1IKh6IAYPA9+/8CtrZ20EoHbjmjTpEE1s9xgObjtKlRrBSKeEiiVjKiS2exO+SHiHud8v4eP7viEsKoSPVr5OQFV/ti7byaaF22jZuxkNT1njSNt/jMO7kti38QD7Nh6g7z3deHX6U+WO3+3WDhTlFeNf1Y+mndUah6XEwvjRE1g0eQVj3r+dYU8MZPPi7aQdTCftYDr7NhwgpHZV6sZGUjdWfQeadozG5O1B7rFcju5NpWr4ieih7rd3IjA0EC9/Txq2PvdFZjcXH7fBd1OOquHB1GpYgyO7kksXXE9HfN/mPPLlaMxFFrqMUBWQtFotUTG1AVWx6NSFx7CoqqUZvSB5afC7dL+tIxlHMln/72a8/DxpPaBF6TE6DWtTzmcMoDNo6TS8Lcl7Uvnzo9kc2HqEFt2b0u22jljNVrz8PGnR84SLytPHg5ufGQJAzrFcolvXJywqH61Wwwd3f0H9uDrE921OvRZR1G5UkyGP9GXL4h0k700jcfMhdq7ZS70WUaXuJt8gbwKq+ZGcmMa/ExeyccFWNi7YStuBcWU0jE5HbkYeMyfMQ6vXkevSOjp2OIOSAjMmLzNzJy1Bq9Ew8+sF1IuLKuMbrxsXSaO29dm5ei/9xnRn0eQVRMXUou2g+DLnqF4nlPvG3VHmvezUXHKO5dGoXQNWzljHsCcG0qJHDMv/WEOVmkHUjy+/lmEusTLx2clYzVYS5m6mxYb3T3wWel2F8tturhzcBt9NOarUDOa9BS+Rl1lA7UZnDh80ehjPOTt2z/oDrJy+DoDm3ZqwedF2Yrs3RW9UiT5Ws407XhtORJPT6ynpjXq2Lt2JydOIlLJUMTEwxJ9bX7jxtPvmZuSzdOoqAHyCvEk/nMmafzaw4OdlfLnxPTy8TNw//k5y0vP486NZbJi/hYjG4TTr1oikfSkMvK8XHYa1JnlfGq8MfZ+ONyrF0Nb9zy4B6Tgr/lzHpJdVtupjX42hWq1g6rWIIiwqhNSDaWxesJX0o1l0HNaGovySMgu6Jk8To9+7nR6jOvP35//y4ytT0Wg1fLP1wzPecFb8uZZNC7fhF+zDw1+onANriZXOw9vSZmDLcusUAB7eRpp3a8zaWRvPKRrKzZWB2+C7qZDAkIAKlQxBxatPGz+TwuwihjzSt1SE7VyoXicEvVGPdEqCqwfi6eNBvRZRtB8aT3SbetRtHkFUTPmniw3zt7B16U5aD4gjulVdIhqH8+TEB8hIyqJa7SrUaVa73D6bF2+jMLeY+D7Ny+j01G5Uk8e+uZfda/bhX9W31A1k8jSi0ZxQIF0xbQ2/vTOd6Nb1uPGxftSLjeLxr09kgk5+axp2m51Vf63nxd8fp2Wv5nh4V55cVVJoxuFwlBYBqVYrGI1Wg0ajIaxuKH1Hn8ilSNqTVhotU5RbTH5mPtIp8a9ywvW0ccFWXrvxw9InGd8gH0yuNYTiQhX+6uldXpEm01UtLS+zgJCIqmQfy+Xlwe9SlF/CnoT9vDLtyXL7GE1Gnpr0IMn70ohofObJgJsrC7fBd3PObFq4jZ9f+wOAwFB/bn526Dkfo2mnRny58T2kQ1K1VhBj3h9ZasRGPFU+WgYgP6uAN4aPozC3mC1Ld/DR8jcAaNS28tj9bSt28XSPN3A6nTw6YUyZxDQhBH3v7laqR5S8P43ty3fRoFXd0oIuoCJOhBDsWZ+IT5AveVkFHNmZRO3GNfEJ8KbDjW04djgT3yBvmndtclpjf3RPMm8MH09+VgEvTn0cTz9PTN5Gxi19DZOnkaDqAfz58SwCq/kT17cZP7/+O91v70RJYQnxfWN5uM1zePh48Prfz5S6u7av3E1xQQn7Nhxk7IejaNGjKVXDq5C4+RBvjhgPUvL8lMfKuecG3NsTk5eRGvXCqBsbSWZKNnG9mrF58Y7TRvH4Bvrg2+q/hY26uby4Db6bc6Z6nVB8g3woyium1ikunz0J+8lJyyW2e5Mzql6erHPjeRb2w2DSU6NedRI3HaR+yzpMemUKnYe3O61ejqXYWrqgbC62lL4/8+v5zJ+0hIH396bbrSpmvnpUCNUreFppO7gl45a9hlavpV5sJK8PH8fK6evofntHnp70EDXrhfHYV2PPfAHA3oQDHNiqIo42L9nOT6/8gUarof3QeO5842b+nbiY755VC+bvL3yZ5H2p7Fy9l5hODSnOK6YwV/0c2HKo1OC3HdiSnav2UKVmMN1v61Aqwrd7zV6S9qYAsGvNvnIGv0a9MO58/WZARWZ989RPLP19NYMf7MOI54ac1fW4ubpwG3w350xk01p8vv5dzMXmMhIB+7ce4vGOL2E1W7n/ozsZ8nDFBdP/KyYvEy9MeYzd6/bx1i0f43Q4yUnL5dEJlRvb5t0a8+wvj1CQXUjXW1SET0FOIV898SPmIjNZKTl0HtH2tDr+AI1dgnMlBSXsWLEbgB2r9mC3la2fumTKKo7sTqLbLR2oXlGGrEaJ5EmH5OieVOw2O9hUpankxLTSpwOtTovJy8SLvz/B9hW7aNW3BUYvA3sS9mPyMtK8W5PSQ9aNjeTdeS+VO1VMl8bEdm8CkjNWgyrKLWLZ72sA2Lp8Fw+E3HXa9m6uTtwG381/IqQCMa/ivBKsZlU1qzCn8KKct1qtKmi1GoJCA8hIyiLAJcFcGVqtlq43lw3l9PT1oN/Y7uzfdIhmXRqd0diDSkaa+sHfZBzNot/YnuzbsJ+wuqH88NJv3PTkIHwDfdi/5RBv3fIRUkoKc4u4f/ydZY6xa+1e3r3tU6SU3PXWLRw7eIz2Q1uh0WqIaBJOw9b1aNyuPkFhgXgHeJGVkk1YVDVuff7E4vOpuQKno2b9sApvBBURUM2fx74ey9pZG+g5svNZn8PN1YXb4Lu5YDRqV59nfnqIjKQsut/W8cw7nAM2q42V09chNBraDW7Jk5MeZNWMtQghKMguPK3PGZTLYsWfa9FoBPXiovhz/CyklOgMZ1eBa/uK3aWFYFr1j8VmsTHjk9kARMVE0GVEOzx9PfGr4ktueh4BVf3KHUOr06LRanDYHYBk3qSlRLepR9eb25dZW2g/JJ5Jr0zh59f+wK+KL5+tffuCSTWfjl53dCkjkOfm2sNt8N1cMDQaDd1uvbCG/jjLp63l7Vs/BuDFqY9zdHcyMz5VKtuRTWvRfkir0+6/Ytpa3r5N7f/Mzw8T270JG+ZvpXH78nVbKyIsqhphkdVIO5xBXI8YMlOy2bZ8Nx4+JmrUU66b0IiqvL/oZY4dyiCmc/mQxXotonhn7gtkpeQQ3685NepVpyC7kE43tWHXmr2sn7uJ5l2b0KRDQwqziwCV1Hby2oMbN+eD2+C7ufqQUCc2Er1BR0CIP+EVaOCcijgpzFJv1PP8r4+RnpR5VvsChNUJZfzy1ynKLymtPNXrji7ojYYy7q3aDWueVvr4uH48QIeh6iblcDj4+L6v2b/lMP9OXMK3O8Yx+OE+BIT6n/F4u9buxW5z0LhdgwqL2btxczJCyiu3bGxcXJxMSEi43N1wcwVgtdhYNWMdCEH7IfHo9DpSDx7D6GGoNF/gZGxWG6v+SkAIaDuo5RWl5CilyjRe888GmnaM5u25L2IwVlzA/mQ2LdrOM71ex+lw8vK0/53xKcfN9YEQYoOUssKKNOdb8ep9YABgBfYDd0opcyto1xv4GNCiKmG9cz7ndXP9YTDq6Ty8HRsXbOWP8f/QblCrc6rxqjfoK5RmuBIQQvDIF6PpdUcX6sZGnJWxB1Wf2OlQIac5abkXsYdurhXOa4YvhOgJLJJS2oUQ7wJIKZ8+pY0W2Av0AJKA9cDNUsqdZzq+e4bv5mTSj2Zyd/SjmIst9BjZiad+ePByd+myUlJoZs53C7FZbPS5uxu+/1FD3821xUWb4Usp55305xqgIvGSeCDRVeoQIcRvwCDgjAbfjZuT0em1+AR5Yy624FVJEZLrCQ9vE0Mf6Xe5u+HmKuJCOjLvAqZU8H514OhJfycBlTobhRBjgDEA4eGnF85yc30RGBLAmzOf4/DOozTr2vjMO7hx46YMZzT4QogFQEXqWM9LKf9ytXkesAO/VHSICt6r1I8kpfwa+BqUS+dM/XNzfRHRJPyMCppu3LipmDMafCll99NtF0KMAvoD3WTFCwJJwMlxZTWAlHPppBs3bty4OX/OoSZPeVzRN08DA6WUxZU0Ww/UFUJECCEMwAjg7/M5rxs3bty4OXfOy+ADnwE+wHwhxGYhxAQAIUSYEGI2gJTSDjwIzAV2AVOllDvO87xu3Lhx4+YcOd8onfI10NT7KUDfk/6eDcw+n3O5cePGjZvz43xn+G7cuHHj5irBbfDduHHj5jrBbfDduHHj5jrhihZPE0JkAIfPsnkwkHkRu3M+uPv237hS+3al9gvcffuvXEt9qyWlLF+hiCvc4J8LQoiEyvQjLjfuvv03rtS+Xan9Anff/ivXS9/cLh03bty4uU5wG3w3bty4uU64lgz+15e7A6fB3bf/xpXatyu1X+Du23/luujbNePDd+PGjRs3p+damuG7cePGjZvT4Db4bty4cXOdcNUafCHE+0KI3UKIrUKI6UII/0ra9RZC7BFCJAohnrlEfRsmhNghhHAKISoNpxJCHBJCbHMJz12SWo7n0LdLOm5CiEAhxHwhxD7X7work1/KMTvTGAjFJ67tW4UQsRezP+fYt85CiDzXOG0WQrx0ifo1UQiRLoTYXsn2yzlmZ+rb5RqzmkKIxUKIXa7/zUcqaHNhxk1KeVX+AD0Bnev1u8C7FbTRooqrRwIGYAvQ8BL0LRqoDywB4k7T7hAQfInH7Yx9uxzjBrwHPON6/UxFn+elHLOzGQOUQOAcVJGf1sDaS/QZnk3fOgMzL+V3y3XejkAssL2S7ZdlzM6yb5drzEKBWNdrH1QN8IvyXbtqZ/hSynlSSS+Dqqdbo4JmpfV0pZRW4Hg93Yvdt11Syj0X+zz/hbPs2+UYt0HAJNfrScDgi3y+M3E2YzAI+FEq1gD+QojQK6RvlwUp5TIg+zRNLteYnU3fLgtSylQp5UbX6wKUjHz1U5pdkHG7ag3+KdyFuvudSkX1dE8dyMuJBOYJITa4avleKVyOcasmpUwF9Q8AVK2k3aUas7MZg8v1/Trb87YRQmwRQswRQjS6BP06G670/8nLOmZCiNpAc2DtKZsuyLhdyCLmF5xLXU/3QvftLGgnpUwRQlRFFZHZ7ZqFXO6+XZRxO12/zuEwF2XMKuBsxuCifb/OwNmcdyNKU6VQCNEXmAHUvdgdOwsu15idDZd1zIQQ3sA04FEpZf6pmyvY5ZzH7Yo2+PIKrqd7pr6d5TFSXL/ThRDTUY/q5228LkDfLsq4na5fQohjQohQKWWq61E1vZJjXJQxq4CzGYPLVa/5jOc92WBIKWcLIb4QQgRLKS+3QNgVW+P6co6ZEEKPMva/SCn/rKDJBRm3q9alI67yerpCCC8hhM/x16hF6AqjBy4Dl2Pc/gZGuV6PAso9iVziMTubMfgbGOmKoGgN5B13S11kztg3IUSIEEK4Xsej/tezLkHfzsTlGrMzcrnGzHXO74BdUspxlTS7MON2qVekL9QPkIjyaW12/UxwvR8GzD6pXV/Uqvd+lEvjUvRtCOqObAGOAXNP7RsqwmKL62fHldS3yzFuQBCwENjn+h14ucesojEA7gXudb0WwOeu7ds4TUTWZejbg64x2oIKamh7ifr1K5AK2Fzfs7uvoDE7U98u15i1R7lntp5kz/pejHFzSyu4cePGzXXCVevScePGjRs354bb4Ltx48bNdYLb4Ltx48bNdYLb4Ltx48bNdYLb4Ltx48bNdYLb4Ltx48bNdYLb4Ltx48bNdcL/AS74lFaR3umZAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "y_pred = spectral_clustering(X, 8, 2)\n", + "\n", + "fig, ax = plt.subplots()\n", + "sns.scatterplot(X[:, 0], X[:, 1], s=10, c=y_pred)\n", + "ax.set(title='Spectral Clustering');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6d100572", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/ch5/ch5.ipynb b/ch5/ch5.ipynb new file mode 100644 index 0000000..3c730ff --- /dev/null +++ b/ch5/ch5.ipynb @@ -0,0 +1,2253 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "4e59d1c7", + "metadata": {}, + "source": [ + "# Ch5: Representation Theory\n", + "## 5.1 Group and Representation Theory\n", + "\n", + "\n", + "\n", + "Adopted from http://johnkerl.org/doc/kerl-pyaa.pdf. Only very exercises are attempted to demonstrate the ideas. SACK is not a powerful research-level computer-algebra package (such as, say, GAP). Thw Python wrapper for GAP is not installable now, and using its script language directly is much better and edicational.\n", + "\n", + "Downloading https://github.com/johnkerl/sack and extracting in a subfolder\n", + "\n", + "#### Python polymorphism and operator overloading, list data structure ability to carry different element types, and run-time binding, are features that enable groups of different element types, each invoke its own defined operation, such as the multiplication overloading. \n", + "\n", + "1. Groups are represented as Python Lists\n", + "2. Modules are python packages\n", + "\n", + "For example, importing files from the sack subfolder, is an example of Modules in abstract Algebra. We onlyn need to add an empty python file nammed \"__init__.py\". This way we import from foldername.filename.ClassName{ or functionName}. Also we can import from a file in the same folder by omitting the folder name in the import." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d870c5e1", + "metadata": {}, + "outputs": [], + "source": [ + "# install GAP on your system: https://www.gap-system.org/Releases/4.12.0.html, \n", + "# then install the Python wrapper, did not work, will focus on SACK now, and if this works \n", + "# before publishing, will come back to it. It would have been a better tutorial\n", + "\n", + "#!pip install Cython\n", + "#!pip install pytest\n", + "#!pip install cysignals\n", + "#!pip install gappy-system" + ] + }, + { + "cell_type": "markdown", + "id": "7e3dffed", + "metadata": {}, + "source": [ + "## 5.1.3 Group Types\n", + "\n", + "### This modadd_t class/data type represents elements of a cyclic group on n elements, with the group operation denoted by * modular addition is implemented here as addition mod n for the Cyclic group $C_n∼= \\frac {Z}{nZ} $" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d9a86e16", + "metadata": {}, + "outputs": [], + "source": [ + "class modadd_t:\n", + " def __init__(self, residue, modulus):\n", + " self.residue = residue % modulus\n", + " self.modulus = modulus\n", + " # Use \"*\" for addition. Seems weird, but groups are abstracted\n", + " # multiplicatively in SACK.\n", + " def __mul__(a,b):\n", + " if (a.modulus != b.modulus):\n", + " print (\"Mixed moduli %d, %d\" % (a, b))\n", + " sys.exit(1)\n", + " c = modadd_t(a.residue + b.residue, a.modulus)\n", + " return c\n", + " def __eq__(a,b):\n", + " if (a.residue != b.residue):\n", + " return 0\n", + " return 1\n", + " def __ne__(a,b):\n", + " return not (a == b)\n", + " def __str__(self):\n", + " return str(self.residue)\n", + " def inv(a):\n", + " c = modadd_t(-a.residue, a.modulus)\n", + " return c\n", + "\n", + "# in the test example function, number of elements n = 11 \n", + "def matest():\n", + " a = modadd_t(5, 11)\n", + " b = modadd_t(8, 11)\n", + " c = a * b\n", + " print (c)\n", + "matest()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "45471455", + "metadata": {}, + "outputs": [], + "source": [ + "# The above class is implemented in the package as modadd_tm\n", + "from sack.modadd_tm import modadd_t\n", + "\n", + "a = modadd_t([5], [11])\n", + "d = modadd_t([8], [11])\n", + "\n", + "b = modadd_t([5], [10])\n", + "e = modadd_t([8], [10])\n", + "\n", + "c = modadd_t([5], [6])\n", + "f = modadd_t([8], [6])\n", + "\n", + "# Abstraction Example\n", + "# with a and d ∈ C_11, b and e ∈ C_10, and c and f ∈ C_6. \n", + "# Run-time binding means, e Python interpreter will invoke the mul method (* operator) \n", + "# appropriate for each data type\n", + "\n", + "X = [a,b,c] \n", + "Y = [d,e,f]\n", + "\n", + "Z = [X[0]*Y[0], X[1]*Y[1], X[2]*Y[2]]\n", + "print(\" Z = [\" + str(Z[0]) + \", \"+ str(Z[1]) + \", \"+ str(Z[2]) + \"] \") # from __str__, only residue are printed" + ] + }, + { + "cell_type": "markdown", + "id": "64266729", + "metadata": {}, + "source": [ + "## Klein-four group, $V_4 ∼= Z_2 × Z_2$. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ed1af82c", + "metadata": {}, + "outputs": [], + "source": [ + "from sack.v4_tm import v4_t\n", + "\n", + "x = v4_t(3)\n", + "y = v4_t(2)\n", + "print (str(x)) # prints the Cayley table character for the numeric value the group is initialised with\n", + "print (str(y))\n", + "z = x * y\n", + "print (str(z))\n", + "z.scan(\"a\") # scans a character in the groups Cayley table to its numeric representation\n", + "print (str(z))\n", + "print ()\n", + "\n", + "for i in range(0, 4):\n", + " for j in range(0, 4):\n", + " x = v4_t(i)\n", + " y = v4_t(j)\n", + " z = x * y\n", + " print (\"X = \" + str(x) + \", Y = \" + str(y) + \", Klein-four X * Y = \" + str(z))\n", + " print ()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4c9e9fec", + "metadata": {}, + "outputs": [], + "source": [ + "# quaternion unit group.\n", + "\n", + "from sack.quatu_tm import quatu_t\n", + "\n", + "x = quatu_t(3)\n", + "y = quatu_t(2)\n", + "print (str(x)) # prints the Cayley table character for the numeric code value the group is initialised with\n", + "print (str(y))\n", + "z = x * y\n", + "print (str(z))\n", + "z.scan(\"k\") # scans a character in the groups Cayley table to its numeric code representation\n", + "print (str(z))\n", + "print ()\n", + "\n", + "for i in range(0, 8):\n", + " for j in range(0, 8):\n", + " x = quatu_t(i)\n", + " y = quatu_t(j)\n", + " z = x * y\n", + " print (\"X = \" + str(x) + \", Y = \" + str(y) + \", quaternion X * Y = \" + str(z))\n", + " print ()" + ] + }, + { + "cell_type": "markdown", + "id": "87a269ba", + "metadata": {}, + "source": [ + "### Symmtric Groups $S_n$ in cycle notation can be represented as image-map format in software implementation. For example,\n", + "$σ = (1234)(567) = \\left ( \\begin{matrix}\n", + "1 2 3 4 5 6 7 \\\\\n", + "2 3 4 1 6 7 5 \\end{matrix} \\right ) $\n", + "\n", + "\n", + "Here, 1 maps to 2, 2 maps to 3, 5 maps to 6, etc. Note that the top row of the image map\n", + "always consists of the numbers 1 through n, and thus may be omitted." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b0ea1f8e", + "metadata": {}, + "outputs": [], + "source": [ + "from sack.pmti_tm import pmti_t\n", + "\n", + "x = pmti_t([2, 3, 1], 3)\n", + "y = pmti_t([1, 3, 2], 3)\n", + "\n", + "print (\"X = \" + str(x))\n", + "print (\"X parity = \" + str(x.parity())) # 0 for even, 1 for odd\n", + "print (\"X sign = \" + str(x.sgn())) # : 1 for even, -1 for odd.\n", + "\n", + "print (\"Y = \" + str(y))\n", + "print (\"Y parity = \" + str(y.parity())) # 0 for even, 1 for odd\n", + "print (\"Y sign = \" + str(y.sgn())) # : 1 for even, -1 for odd.\n", + "z = x * y\n", + "z.scan(\"1,2,3,4\", 4)\n", + "print (\"Z = \" + str(z))" + ] + }, + { + "cell_type": "markdown", + "id": "d4be62e5", + "metadata": {}, + "source": [ + "## 5.1.3.2 Geometric groups:\n", + "\n", + "### The dihedral group $D_n$ is the symmetry group on a plane n-gon. It has order 2n and is given by the following representation:\n", + "\n", + "$D_n = <ρ, φ | ρ^n = φ^2 = 1, φρ = ρ^{n−1}φ>.$\n", + "\n", + "The element ρ (rho for rotate) has order n; the element φ (phi for flip) has order 2.\n", + "The repeated use of the final relation enables any element of $D_n$ to be put into the form $ρ^iφ^j$ for i = 0, 1, 2, . . . , n − 1 and j = 0, 1.\n", + "\n", + "Given two elements $ρ^iφ^j$ and $ρ^kφ^l$ of Dn, we obtain the product:\n", + "\n", + "j = 0 : $ρ^iρ^kφ^l = ρ^{i+k}φ^l$\n", + "\n", + "j = 1 : $ρ^iφρ^kφ^l = ρ^{i−k}φ^{l+1}$\n", + "\n", + "Similar definitions for the Metacyclic (metacyc_t) and generalized-quaternion groups (genquat_t)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ae6f4b61", + "metadata": {}, + "outputs": [], + "source": [ + "from sack.dih_tm import dih_t\n", + "\n", + "# rho = 2, flip = 3, n=2\n", + "x = dih_t(2, 3, 2)\n", + "# rho = 3, flip = 3, n=2\n", + "y = dih_t(3, 3, 2)\n", + "\n", + "print (\"X = \" + str(x)) # prints the Cayley table character for the numeric code value the group is initialised with\n", + "print (\"Inv(X) = \" + str(x.inv()))\n", + "print (\"Y = \" + str(y))\n", + "z = x * y # multiplication is only defined on = n\n", + "print (\"X*Y = \" + str(z))\n", + "z.scan(\"2,3\", 3) # scans a rho and flip from the string, and n in the last argument\n", + "print (\"Z = \" + str(z))\n", + "print ()\n", + "\n", + "for i in range(0, 4):\n", + " for j in range(0, 4):\n", + " x = dih_t(i+1, j+1, i+1) # just trying different combinations\n", + " y = dih_t(j+1, i+1, i+1)\n", + " z = x * y\n", + " print (\"X = \" + str(x) + \", Y = \" + str(y) + \", dihedral X * Y = \" + str(z))\n", + " print ()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "042ffd23", + "metadata": {}, + "outputs": [], + "source": [ + "from sack.sackgrp import * # this python file include other group useful functions\n", + "# other interesting group functions in this module such: as is_group, print_cayley_table, left_cosets, \n", + "if (is_group(Z)): \n", + " print(\"is a group\") # all axioms are true (closed, associative, unique identity, inverse)\n", + "else:\n", + " print(\"not a group\")\n", + " \n" + ] + }, + { + "cell_type": "markdown", + "id": "27ff0f99", + "metadata": {}, + "source": [ + "## 5.2 Harmonic analysis \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "The dataset is from https://zenodo.org/record/1188976#.YyR473bMJEY\n", + "\n", + "Livingstone SR, Russo FA (2018) The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English. PLoS ONE 13(5): e0196391. https://doi.org/10.1371/journal.pone.0196391." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "92e70963", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\DELLPR~1\\AppData\\Local\\Temp/ipykernel_7984/4177351705.py:8: WavFileWarning: Chunk (non-data) not understood, skipping it.\n", + " h_samplerate, HappySignal = wavfile.read('data/Actor_01/03-01-03-01-01-01-01.wav')\n", + "C:\\Users\\DELLPR~1\\AppData\\Local\\Temp/ipykernel_7984/4177351705.py:15: WavFileWarning: Chunk (non-data) not understood, skipping it.\n", + " a_samplerate, AngrySignal = wavfile.read(\"data/Actor_01/03-01-05-02-01-02-01.wav\")\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3wAAAEICAYAAAAEOPbcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABZ10lEQVR4nO3dd3iV5fkH8O+dBMLeYY+wRJagRAS3MhVbcOOCWlvqqlo7fqhVqZUWratq1eKoaB1YFyqCoiigIhCQKSvsyAo7rECS+/fHeU84OTn7vPOc7+e6cnHyvOt5T0Kec7/PuEVVQURERERERKknw+kKEBERERERkTUY8BEREREREaUoBnxEREREREQpigEfERERERFRimLAR0RERERElKIY8BEREREREaUoBnyUEkTkOhH53IbrnC8ihVZfx0wicpaIrBWRgyIywun6EBGR/dhOhsd2klIdAz7yDBE5W0S+E5H9IrJHRL4VkdMBQFXfUNXBDtfv3yLyXMD31UTkUJiyfjZW7SEAz6pqHVX9MNmTicirIvJwUFmuiKiIZCV7fiIiSgzbyYSZ2k76icg4o23sa9Y5iRLBgI88QUTqAfgEwDMAGgFoBeAvAEqcrFeQ2QDOC/g+D8BmAOcGlQHAQrsqBaAdgBWJHMgAjojIG9hOJsX0dlJEBMANAPYAGJ141RK7PlEgBnzkFScBgKq+paplqnpEVT9X1aUAICK/EJFv/DuLyGARWW085XxORGaJyK8C9xWRx0Rkr4hsEJGLAo69UURWikixiKwXkd/EWMdZALqKSBPj+3MAvA2gdlDZXFU9LiJjRWSdcZ0fReRS4/rZIrJPRHoE1ClHRI6ISFPj+0tEZLGx33cickqoConIOgAdAHxsDFXJFpGWIvKR8fS3QER+HbD/OBF5V0T+KyIHAPwixnsPvu4wEflBRA6IyBYRGRewzd8bOEZEtorINhH5fYg6TDbem0Ui0svY9kcReS/oWs+IyFOJ1JOIKIWwnXRXO3kOgJYA7gQwUkSqB5wj2vvbXkRmG/f9hYj8S0T+a2zzt6E3ichmADNFZKqI/DbovpYKh6eSgQEfecUaAGUiMklELhKRhuF2NBqNdwHcA6AxgNUAzgza7QyjvAmARwG8LCJibNsJ4BIA9QDcCOBJETktWgVVtRDAJvj+yAO+J5ZzAHwXVDbbeL3OKK8P31PY/4pIC1UtAfA+gGsCTn8VgFmqutOoyysAfmPc378BfCQi2SHq1BG+p6c/M4aqlAB4C0AhfA3RFQD+JiIDAg4bDt/71wDAG9HuO4xDAEYZ5xgG4JYQDc8FADoDGAxgrIgMDKrD/+B7Sv0mgA9FpBqA/wIYKiINgIonm1cDeD3BehIRpQq2k+5qJ0cD+BjAZOP7S4K2R3p/3wQw36j7OPh6CoOdB6ArgCEAJgG43r/BeEjaCsCnYepGaYYBH3mCqh4AcDYABfAigCLj6VuzELtfDGCFqr6vqqUAngawPWifTar6oqqWwfeHsgWAZsa1pqrqOvWZBeBznGiIopkF4FwRyQDQF8D38DVm/rKzjH2gqv9T1a2qWq6qkwGsNY4BfH/sAxuya40yAPg1gH+r6jzjKe4k+IbsRJ3vICJt4Hsf/09Vj6rqYgAvoXJjMldVPzTqdSTMqf5gPDXdJyL7ACwN3KiqX6vqMuMcS+FrPM8LOsdfVPWQqi4D8J+g+12oqu+q6nEATwCoAaCfqm6D74PAlcZ+QwHsUlU7h/4QEbkO20n3tJMiUgu+dupNox17F1WHdYZ8f0WkLYDTATygqsdU9RsAH4Wo6jijDT0CYAqAziLS2dh2A4DJqnos2v1SemDAR56hqitV9Req2hpAD/ievD0VYteWALYEHKfwPakLtD1g+2HjZR0AMJ6Mfm8M5dgHX8PYBLGZDd/TyZ4A1hvn/iagrCaAecZ1RgUMN9ln3JP/OjMB1BSRM0SkHYDeAD4wtrUD8PuggKuNcd/RtASwR1WLA8o2wfck0G8LontMVRv4vwBUGipj1PsrESkSkf0AbkbV9zDwOpuC6h/48yvHiSetQOUnmdeDvXtERADYTsI97eSlAEpxooftDQAXiUhOwD7h3l//9Q8H7BvqeoE/vxIA7wC43giarwHbRgrAgI88SVVXAXgVvj/+wbYBaO3/xhgi0TrEflUYwz3eA/AYgGZGMPMpAIl0XIDZAHrBN4xxjlG2Ar6GZhiABap61GicXgRwO4DGxnWW+69jBDnvwPdH+1oAnwQ0PlsAjA8MuFS1lqq+FUP9tgJoJCJ1A8raAvgp4HuN8V4jeRO+J5JtVLU+gBdQ9T1sE1SHraG2GY1X64DtHwI4RXxzNy5B4sNOiYhSFttJR9vJ0fAFb5tFZDt8UxSqoXKPZDjbjOvXCihrE2K/4DpMAnAdgAEADqvq3BiuRWmCAR95goicLCK/F5HWxvdt4PvD+X2I3acC6CkiI4w5XrcBaB7jpaoDyAZQBKDUmEQd8zLWqloAYAd8k7TnGGUK39PKO3FiXkJt+P5YFxn3cyOqNspvwjc/7TqcGKYC+BrAm42nmiIitcW3SEpdRKGqW+CbK/F3EakhvknsN8H8oKkufE8oj4pvOeprQ+xzv4jUEpHu8M0BmRywrY+IXGb8/O6CbyjO98Y9HIVveMybAOar6maT605E5DlsJ93RTopIK/iCrkvg63XsDV+A+whiWK1TVTcByAcwTkSqi0h/AD+L4bi5AMoBPA727lEQBnzkFcXwTXCeJyKH4GvAlgP4ffCOqroLvrHzjwLYDaAbfH88oy5NbTwdvAO+p4Z74QtUQo2dj2Q2gBwA3waUzQHQ1NgGVf0Rvj/Kc+Fr+HoG7Q9VnQff4ictAUwLKM+Hb37Cs0YdCxDfaprXAMiF7ynmBwAeVNUZcRwfi1sBPCQixQAegO/9DDYLvrp/Cd8Q0cCEwFPga8T3wjcX4TJjHoTfJPjeMzZqREQ+bCdPlDvZTt4AYLH6Vkjd7v+Cb56kf3RKNNcB6A/fz+Zh+B6IxpJe4zX43qf/xlhXShPie6hClLqMIYGFAK5T1a+crk+6E5FcABsAVDMWCwjePg5AJ1W9PnhbwD5tAawC0NxYqICIiBLEdtLdRGQygFWq+mCU/UYBGKOqZ9tTM/IK9vBRShKRISLSwJhrcC98Y/5DDWshjzE+mNwN4G0Ge0REiWE76V4icrqIdBSRDBEZCl8aiA+jHFMLvtE1E22oInlMltMVILJIf/jG81cH8COAEaGWTiZvEZHa8A3t2QRfSgYiIkoM20n3ag5fnsHG8PW83qKqP4TbWUSGGPt/gcpzGYkAcEgnERFRUozFMV6D70NaOYCJqvpPEWkE39ybXAAbAVylqnuNY+6BbyGIMgB3qOpnRnkf+FZWrAnfyod3qqoavTCvAegD37yeq1V1o023SEREHsYhnURERMkpBfB7Ve0KX2Ln20SkG4CxAL5U1c7wLU40FgCMbSMBdIevp/o5Eck0zvU8gDEAOhtf/p7smwDsVdVOAJ6Eb8U/IiKiqDw/pLNJkyaam5vrdDWIiMgGCxcu3KWqOdH3tI+qboMvdxZUtVhEVsKXpHk4gPON3SYB+BrA/xnlbxvJkjeISAGAviKyEUA9f/4sEXkNwAj4Vh8cDmCcca53ATwrIqJRhumwjSQiSg+R2kfPB3y5ubnIz893uhpERGQDEdnkdB0iMVahPRW+nGLNjGAQqrpNRJoau7VC5cUxCo2y48br4HL/MVuMc5WKyH745vfsClGHMfD1EqJt27ZsI4mI0kCk9jHpIZ0i0kZEvhKRlSKyQkTuNMobicgMEVlr/Nsw4Jh7RKRARFYbE0395X1EZJmx7WkRkWTrR0REZAcRqQPgPQB3RVlBNlTbphHKIx1TtVB1oqrmqWpeTo6rOkOJiMgBZszhs2PuAhERkWuJSDX4gr03VPV9o3iHiLQwtrcAsNMoLwTQJuDw1vAleC40XgeXVzpGRLIA1Aewx/w7ISKiVJN0wKeq21R1kfG6GEDg3IVJxm6T4JuHAATMXVDVDQD8cxdawJi7YMxJeC3gGCIiIlcyRqO8DGClqj4RsOkjAKON16MBTAkoHyki2SLSHr4HnPON4Z/FItLPOOeooGP857oCwMxo8/eIiIgAk+fwWTh3gYiIyK3OAnADgGUistgouxfABADviMhNADYDuBIAVHWFiLwDX+6zUgC3qWqZcdwtOJGWYZrxBfgCyteNBV72wDdShoiIKCrTAr7guQsRpt8lMnch+FqVJqQTERE5RVW/Qeg2DAAGhDlmPIDxIcrzAfQIUX4URsBIREQUD1Py8Nkwd6ESTkgnIiIiIiKKzoxVOu2Yu0BERERERERxMqOHzz934UIRWWx8XQzf3IVBIrIWwCDje6jqCgD+uQvTUXXuwkvwLeSyDifmLhCRiVQV7y4sxNHjvv96Ow4cBdd/ICIiLygqLsH05dudrgaRZyQ9h8+OuQtEZK6Zq3biD/9bgpXbDuCqvDYY8tRsPPizbrjxrPZOV42IiCii08d/AQB4eXQeBnRt5nBtiNzPlDl8ROQtxUdLAQBTFm/Fhl2HAABz1+12skpERERxmbp0m9NVIPIEBnxEaWzXwRLsOHDU6WoQERHF7f0ffnK6CkSewICPKM355/ERERERUephwEdEAIDPf9yB3LFT8ZePVzhdFSIiIiIyCQM+IqrkP99udLoKRERERGQSBnxEaUjCratLRERERCmFAR8REREREVGKYsBHlOaYbp2IiIgodTHgIyIiIiJP+mrVTqerQOR6DPiI0tyiTXudrgIREVFClv203+kqELkeAz6iNPf5jzucrgIRERERWYQBHxERERERUYpiwEeUhu58e7HTVSAiIkpauXLpMaJoGPARERERkSc99cVap6tA5HoM+IiIiIiIiFIUAz4iIiIiIhscLCnF+4sKna4GpZkspytARERERJQO7n1/GT5ashUdc+qgV5sGTleH0gR7+IioiunLtztdBSJPEZFXRGSniCwPKBsnIj+JyGLj6+KAbfeISIGIrBaRIQHlfURkmbHtaRERozxbRCYb5fNEJNfWGyQiU2w/cBQAcOR4mcM1oXTCgI+IqlixlYlsieL0KoChIcqfVNXextenACAi3QCMBNDdOOY5Eck09n8ewBgAnY0v/zlvArBXVTsBeBLAI1bdCBERpRYGfERERElS1dkA9sS4+3AAb6tqiapuAFAAoK+ItABQT1XnqqoCeA3AiIBjJhmv3wUwwN/7R0REFIkpAZ/VQ1mIyDzfFexyugpE6eR2EVlqtJMNjbJWALYE7FNolLUyXgeXVzpGVUsB7AfQONQFRWSMiOSLSH5RUZF5d0JERJ5kVg/fq7B2KAsRmeTal+ZF3WfXwWM21IQo5T0PoCOA3gC2AXjcKA/1MFMjlEc6pmqh6kRVzVPVvJycnLgqTEREqceUgM+GoSxEZKO35m92ugpEnqeqO1S1TFXLAbwIoK+xqRBAm4BdWwPYapS3DlFe6RgRyQJQH7G3u0TkEvM3+P7blmvI5zVElrB6Dp9ZQ1kq4XAVIiJyO+NBpt+lAPzTHj4CMNJYebM9fCNa5qvqNgDFItLPmNIwCsCUgGNGG6+vADDTeDhKRB707MwCp6tAacTKgM/MoSyVCzlchYiIXERE3gIwF0AXESkUkZsAPGrMS18K4AIAvwMAVV0B4B0APwKYDuA2VfWv0X4LgJfgG/2yDsA0o/xlAI1FpADA3QDG2nNnRO6355C7pyGs2VGMXQdLKpV9t263Q7WhdGRZ4nVV3eF/LSIvAvjE+DaRoSxERESuparXhCh+OcL+4wGMD1GeD6BHiPKjAK5Mpo5EqerTZdtwfb92TlcjrMFPzkbdGllYNm5I9J2JLGBZD5/JQ1mIyATvLiyMvhMRERGZqvhoKZ6dudbpalCaMistg9VDWYjIBI9/vtrpKhARUYo4VFKKTvd+ihk/7oi+M+Gxz9c4XQVKU6YM6bR6KAsRERERucuGXYdQWq54csYaDOrWzLF6HD1eFn0nojRm9SqdRERERESmOFZaXqXs4akrHahJdAs37UXu2KlhtzNQJbsw4CMiIiIiT5icvyX6Ti7xyrcbIm6/6+3F9lSE0h4DPiILqCpWbjvgdDWIiIgsoaq45JlvbL/u8RA9fF711eqdTleB0gQDPiILvDZ3Ey765xz89q0fLDn/63M3YuhTs+M+LlSyS6eVlpVj+/6jlcq+Wr0TY99b6lCNiIgommnLt1e8/pEPOBNSVh4y3TSR6RjwEVlgxdb9AICPl1iTSvL+KSuwanuxJee228NTV6Lf37/Eos17K8pu/M8CvL3AO8N2iIjSjduTnbvB1KXbIm4vZcBHNmHAR+QxG3YdcroKppq5yjek5bLnvnO4JkRERESphwEfkccs3LQ3+k4ecay0HJv3HHa6GkRE5BEPffKj01Ug8hwGfERkuXveX4ZPl1Ud2rLvMIcEEREREVmJAR8RWe6t+Ztx6xuLnK4GERGZ5Mgx5pAj8goGfEQWK9hZjANHj5tyrvVFB/HQxytCbvvVpAUY8PjX+GTpVlzw2NcoT4HJ4KVlqbP8NhFRKnl8xmqnq+BqTKpObsKAj8hiA5+YjWsmfm/KuX79Wj4OHC0Nue2LlTuxrugQ/vi/pdiw6xCOlnq/sbmTSWmJiFzp6HH7H8ht3XfE9msmav8Rcx70EpmBAR+RDVZsNSdHUTyddhpiXxGXZeKLUp2pIeb9ERFReoqW5oCIQmPAR2QBsSDF+fGy8iopGWavKap6bRtiusVb9nG4ChERURjfFuxyugpEFRjwEXnEzuKSKmWjXplvez227z+KEf/6FiffPx0aqhsxDpc/Xzn33spt5vSEEhEROenud5Y4XQWiCgz4iFKUVUu2FAcsQDN/w56Ez5P38Axs2VN5PsbPn/0m4fMRERERUVUM+IgsoJaFW9FZPaIz8M4OJzis89Nl27DrYNUcfMfLvL+yKBEREZGbMOAjcsDm3Ydx2XPfxrWKV7zDJ5MdbhnOwZLQq4TGgzn5iIi8a9/hqg/snLZ6e7HTVSByLQZ8RA54euZaLNq8D5+t2B7zMbHGb4eMZLjBwyXNctlz30XfKQmrtleex1ewk404EZGbvDFvsyPXjTR6pmDnQRtrQuQtDPjIU96Ytwm5Y6di98GqC5gk4ujxMkxL0aX/L356jtNVqGJdUfQG+cCRyj2IA5+YbVV1iIgoAf/4zJmk66/N3eTIdYm8zpSAT0ReEZGdIrI8oKyRiMwQkbXGvw0Dtt0jIgUislpEhgSU9xGRZca2p8V1ScPIScVHj+O+D3y/Yj+ZlHz1b5+uxC1vLEpq8ZF4lZSW4cMffor7uK9W77SgNvYa8Pgs7EogWC8tK7dsiCqRGaxuB0UkW0QmG+XzRCTX1hskimLbfuuTohfu9Ubi9fJ4kuYS2cCsHr5XAQwNKhsL4EtV7QzgS+N7iEg3ACMBdDeOeU5EMo1jngcwBkBn4yv4nJTGrPhD/5Nxznjm0sUiVB6+9UUHsetgCbr8eTpKE2gMHpiyImT5oZJSLNq8N+7zOSXaMNZnZq6tUtbpvml4ftY6q6pEZIZXYW07eBOAvaraCcCTAB6x7E6IIgj30G77/qM218S9Js5Z73QViCoxJeBT1dkAgrtIhgOYZLyeBGBEQPnbqlqiqhsAFADoKyItANRT1bnqe5T/WsAxRJXmsJmV2NzOPuSS0nJsDEqcbobuD34W07y6Y6XlpvWMJuPt+Vsibp+zNnSy2nfzC62oDpEpbGgHA8/1LoABHAVDTti0+7DTVXC9CdNWOV0FokqsnMPXTFW3AYDxb1OjvBWAwE98hUZZK+N1cHkVIjJGRPJFJL+oqMj0ipM3HD1ehtyxU/GmCZPH7RguuNXhYGtyfuRAK9jRBFMuRLPsp/2WnJfIhcxsByuOUdVSAPsBNA51UbaRZKV73l/qdBWIKE5OLNoS6omkRiivWqg6UVXzVDUvJyfH1MqRewWuzlWuiie/WAMAuPeDZUmc1b4H5DdNyq9aaOMw/+Ol5XHt/+VK788ZJHKpRNpBtpHkCmt2cDVMIq+xMuDbYQxPgfGv/9NjIYA2Afu1BrDVKG8dopwIQOUhnRNnr0dR8Yl5BJ96ZKXN2WtS62n7kzPW2HYtToEnDzKzHaw4RkSyANRH1SGkRI7h3+jELNzE/8ZkPSsDvo8AjDZejwYwJaB8pLHiWHv4JqXPN4a7FItIP2NewqiAY4gqKdh5EAs3nVioJNlE3nY1VE/PLEjouF++uiCh45IJhCPlO/JbWhh9eObXKbC6KFGCzGwHA891BYCZyqVryUWmLnX2wevG3ebPkbfDkzOqLlRGZDaz0jK8BWAugC4iUigiNwGYAGCQiKwFMMj4Hqq6AsA7AH4EMB3Abarqnyx0C4CX4JvAvg7ANDPqR6ln9Y5iUyaO+5c8MPtj06od5iYLn7kqsaApMBB2anmHX/wnsWCVyEtsaAdfBtBYRAoA3A1jxU8it3B6nrpTuQGJvCDLjJOo6jVhNg0Is/94AONDlOcD6GFGnSj1WPEs26oYaMmWfTHtl0h6Brv847PVuOSUlk5XowKXIyQ3s7odVNWjAK5Mpo5EyXKyU7mk1JqFxIjSgROLthAlZPMe65aCvvWNhZadO5LHPnfvE0kuvU1ERIE+XPyTY9e+460fHLu2lQLXIyCyCgM+8oyCneauDDZ7TRE+/3EHAKBc4Ujy8j2HjkXd58MfkmtgPzcSnZvRQzZxtnPJz93bF0pElPoWbtqD301eEna71dMGPluxw9oLOGS1yVNAiEJhwEee4U/DEM7mOHukRr0yv9L3vw6VNsEFPjMCtkR9tMS3yJ8ZAdPjn9u3KmewDbsOWZYbkIiIIrv8+bkRt+89dNymmhBRvBjwUcp4fpZzvU9W4jp8Jzw63b1DYImI0tnc9budrgIRhcGAj1LG/A2p2djEkh4hFqmw6Mkr325wugpEREREnsKAj1LGuiJv5uCJZtfB6PP8ImEHIREREVH6YsBHZHAqT100gQnmiYiIKH2Ulyt+cjjHIXkfAz6iFDd16TYcKy2HmBDRujUoJiIicoP9h81dvObfs9fjrAkzUbCTq3lS4hjwEVVI3WhmaeE+p6tAREQetXFXak6ZsML0FdtMO9dLc9ZXrFBeuJe9fJQ4BnxEBvZeERFRunpz3mac/cjMkNvOf+xreyuTZkKlHPpk6VY8PHUljpWWA+B8fEoOAz4iQ1FxidNVICIicsS9HyxzbS/SkWOpnYP1Lx+vqFJ2+5s/VPp+276jdlWHUhADPkpL4RJ4Hz5WanNN7KMplNDvpTnrMXtNkdPVICIiGxwvL3e6CpZ6e8GWqPvc+8EyG2pCqYoBH6Ul/5j4YF+u3GlzTbxFXDLP8eGpKzHqlflOV4OIKOXtPZRcaiCKzuznsfsOH0Pf8V9w/j5VYMBHaenAEXNX0XK7/Wl2v0REZI4pi39yugoUp+/X78HO4hL8/NlvMePHHU5Xh1yAAR+llWOl5Rj1ynwsLdwfcvvWKLludh0s8WRevJsm5TtdBSIicpHlP+3HgaNVHwau3VF5+X8vTQZYV3TQ6Sq4ZiSM39NfrnW6CuQCDPgorazZUYzZa4qwYuuBkNv/Pm0VysvDN28/f+YbXP78d1ZVj4iIyBaXPPMNRocYGv/8rHU4VOLN+exrdzgf8KkLQmSuOk7BGPARBbnljYVht23dn96rZLERISJKHT9s3lel7P1FP+GKF+ZWfM8/+97GdpsABnxEVXy2Irnx7t+t22VSTdzHDQt9cqUyIiJzBa9cvXJb6FEwTtl/mPPQ48EYj4Ix4CNP+HTZNqerELNrX5wX1/5ezy9UWmbvctlvztts6/WIiFLZV6t2hp3mAAARZjnY5pxHvzL1fNv2H8H7iwpNPadf8VHnh8MG/szCrVlA6SXL6guIyEYAxQDKAJSqap6INAIwGUAugI0ArlLVvcb+9wC4ydj/DlX9zOo6kvvd9fbimPYrL1dkZFj/bEtVISaNk9h9qAStq9cy5VyRJNtmF+wsxpEQ+Quv+vdcvH/rWUmenYiIAq3Yuh/dWtQzra0JFPig7sZXF0Tcd+Ls9aZf32kjJ36PTbsP46IeLVCzeqap5w6X59dqK7bux/7Dx/G7dxZjx4ESR+pA7mVXD98FqtpbVfOM78cC+FJVOwP40vgeItINwEgA3QEMBfCciJj7P5E8KdZJ0O9FeWIXa7v5bUHkYZl7IuQlyooz4MzK8EZHe6i5HgCwKEw5ERElZuaqHRj29Dd4Jz96Qm5VxZIt+6BxjLk/Whr7yIztB1Jv7vqOFLynYU9/g2tfmsdgj0Jy6pPmcACTjNeTAIwIKH9bVUtUdQOAAgB97a8euU2sQ0q27DlsyvWiBY7/9174eWSlcY5/qZbpjdH2LhjVQ+RJIrJRRJaJyGIRyTfKGonIDBFZa/zbMGD/e0SkQERWi8iQgPI+xnkKRORpsaLrh1xhfdEhAMCq7cVR9gSmLN6K4f/6Fp8s9c7Uh3jEE8jG+j/CDfPR7bZ13xHsTMFAl2JjR8CnAD4XkYUiMsYoa6aq2wDA+LepUd4KQODjrEKjrBIRGSMi+SKSX1RUZGHVyS1i/YP/9MwCU+b7RbvcFyvNS2Q6a409v8Ovz92U1PHxNLpEVIUZI12eBzAGQGfja6iN9Scb+WP5YzH0xPlzz23YdSj28ydWrahyx07F63M3mnrONXGkWoi3mbLikYlbm8ozJ8xE37996XQ1yCF2BHxnqeppAC4CcJuInBth31D/9ar811HViaqap6p5OTk5ZtWTXCyeTrNb31hkwvXs+4t99ztLbLnO+jg+DITi1kaMyKPiGukiIi0A1FPVuep7+vJawDGUot6IYZGqxVv2WV+RONw/ZUXE7WVxjoJxQ167eDhR2+NRFk8rKfX24nCUPMsDPlXdavy7E8AH8A3R3GE0XjD+3WnsXgigTcDhrQFstbqOlHoiJU+P6fgQhxcVp/e4eG81uUSuYsZIl1bG6+BySmNFxSWYs9Y7qYC+XLkDHe/9FD9GWBU02N5D5qdkKIljDmO8nBhnHS2ItuI9JG+xNOATkdoiUtf/GsBgAMsBfARgtLHbaABTjNcfARgpItki0h6+ISvzrawjpaavVu+MvlMEoQLG376VfM+hl7GHjyhhZox0iWkEDMBpD6kg1qDh9PFfVLyOJ3derEMZzV5x8ouVvrb5hy17Yz7mvg/Nzb0abw9jvKycpjFzVWLTSUKtsE3pxeoevmYAvhGRJfAFblNVdTqACQAGichaAIOM76GqKwC8A+BHANMB3Kaq/C2luMUy7yGSUEM645lHkIqiDav5z7cb8Kd37RmeSuQlJo10KTReB5eHuh6nPXjctOXR56IHz6uetny76fWIdxGy6Hznu++D5TEf4V/AJhaxDF00e45hsPxNsQez8frlq/kJHXfBY19XvE52BBR5k6UBn6quV9Vexld3VR1vlO9W1QGq2tn4d0/AMeNVtaOqdlHVaVbWj1JXsn/OQj0BDE7FkG5DPKP18P3l4x/xTr41iWyJvMqskS7GsM9iEelnrM45KuAYSjELNkYPGvy9ZYkQRwYeWj9S5P4PoweS//xybcVrN81/3LQ7uXn2sUp2Pj95kzcSgBHFKVyjYmZjM/a9peadzAP4TJAoIWaOdLkFwEvwLeSyDgAfiqagB6ZUDVqe+XItFgb1HEXLFxuJ1xZCidWBo6VR99l7+MR8tpETv7eyOnGZbdOK3ZSespyuAJFd7v1gGd6MYcUzILbgxspJ367ESXxEcVPV9QB6hSjfDWBAmGPGAxgfojwfQA+z60ju8lpQCp37PliGN+ZtxuMz1mDjhGEV5cmkykmmdzAZgVUuKi5BTt1sR+oRaMuew2jTqJbT1aj0uWP5T/sdqwelJvbwUUoK9fQy1mAvVt8k8XTVKwLH+jPcIyKyX7jUDJNC5Fbdvj+2xNpHjkXvCbPCd+tPtJsHjkZfOTKe1TwTtcMlycgDg2FrP1+wNU9HDPjIVY4cK0t6wRWg8vy6qUu34dxHv4rreHZm+RTuPVLxmu8JEZG1ouVTK9x7OOL2ncXmBS8bdx3C5yvMXQjmcMmJRVVi6aGcHsPiNaki8P2It72NZ+XRgU/MtnylUnIfBnzkKl0fmI5hT89J+jx/+fhHPPzJj1hfdBC3vbkIm/dEbiSDfbFyB44c4wKxCzdXrKcUMRn93qAFbeyy/whzCxFR6oj2QfzsR77CDS/PC7vdzM/xA56YhbvfMXfl5eKAOXaLNu2Luv/TMwvivsaFj32N3LFTY97/ihfmYv9hb7clz8T5PkV7sECphwEfuc7aneakP3jpmw34vyQWVtm6/0j0nVLc7yYvwbsLC1FaVh7xieMfw6RjKI5hyE4yEs1JRETkVXPW7gqbWuBvU1fGdI55G/ZE3ceKXqBjAYGGVQvHRFqFMlyv4i8nLcCm3YfwnYNTNbTS6/jemy1xPtSm9MOAj1wvmSEqybRXuxxKu3C8rBy9H/ocHy8JmWLLdn/43xL859uNEZuf7WHmQPQc97k1lTLc/+EKS89PRORG908J/bdv/sbogRwAfL9ut5nV8YyXv9kQsnzhpr047x9f49qX5mHF1vALpizZsg93T15sSS67wFh0xU/h5y5OW1Z1mGukETihcEhn+mHAR66XTL67TEk819BuB4YpFh89js73TcO+w8fx0Cc/2n79cHYdLIk432J5hMbJSgdLnFl4gIjICnb11EgSbaOXPRxDD+iCgN7P6cu3o+/4L1Bq9EwO/9e3eP+Hn7DDxLmSfo9+tqri9dQQQZ3fPz5bXaUslgVwAnV/8DP8e9Y623L/kfMY8JEr7T5Ygg3GsIxknkTF+rQzlIwY2sOCnQdx5FgZjh4vS2pMvD+Y2rTbncMy+DSQiMh698WQONwMP+2zdspCLAuyuLW9C3TzfxdiZ3EJnpixplL5uI/MH11y9HjinyG+LYi/x/bv01bhupfCzwel1MKAj1zpvH98jQse+xqAc5OL1+w4iHcXFkbcZ+ATs9D1gek4+f7p6HzftIQbgYmz11cpc9OqmCWl5fjM5NXazHLZc9/i6HEusENE3rfHhJEluw46Mx0hUCztxXNfr7OhJvEL1fQu+2k/Vm47MZIlkQDLLMH1+zaJeYeHOEombTDgI1cKHKp3rNSZyOeJGWvwh//Ft0LZq99tTOhaUxa7Y75eOK9/vwkLNu51uhohLdq8DytsyNVERGS1AhMWLct7+AsTapKcP76b+IJpVjhyrAyLt+yLad+Js9fjUEkpvl9/IqgrV8Wq7SfamdJyax5Ex/KAO7j3NJleulKO3kkbDPjI9Y45vHzwBz8UWjJBO5C/8XDLQi3JKHXg53WwpBSz1xTZfl0iolh9V7ArbVYWDky/4Ld6e7EDNfG58PGvMeJf38a077b9R9H9wc8wcuL3J8r2HcXvJp94AJzM8MtIngwaOhrKRhOHwvp/Tq9/vwlrdjj38yHrZTldAaJoShwerve7yUss++Pul2FMoF8esDqYG4blJKLTfdMAAA+P6GHbNUe/Mh8AMLx3S0xZvBWL7h+ERrWr23Z9IqJorjV6YjZOGGb5tXYeOIqm9WpYfp14xLtAiJlzx7ftT26RlUipHsz03NfrcHbnJrZcy2990UHcb8wdXf6XIaiTzdAgFbGHj1yvpNT5BKE/WjxkcJXx5NOiUSKOeHvBZtuv6R8ae9OkBVjLp5VElKb6/u1LDHpiFl6YVXWe3Ngk8tMm471FkefEB7Nq2KSVzJhPfu2L9i6kMj1gvuUDNi0aRPZjwEeutnHXIRxzQcD31nzrg5ddB0uqJJ338jBFp1I1AMAPm/fhF/9Z4Nj1iYj8fvnqAtz7wTLbr7t250FMmLaqSvnbC7bYcv3AOW8A8OXKnXEdv/NAcqNc/FMxtu23dkXSQCUWjwaywqPTT6R5+HJVfD8j8g4GfORqE+esx+/jXDjFCjWrZ1p+jX/PWldlGOcoY6gixS9cMngiIjvNXLUTb8478dDQ6jnhbjH0qTlJHf/Y51XzzcXDH2TfaOPDv2RSQcWjpNSaqS77j8SXz4+8gwEfuVpgI+mkUBPQzfbinA2WXyOdlJUrfjVpAUa9Mj/ksCYiIifc+Kq9ow8CR6g4mcIm3lzvmUkmh5+c7+vJXGXRYjEbdh3Co9NXVVo186+f/GjJtYINeHyWZefeWXwUh48xXUOqYcBHRCnri5U7MXtNESZMW4U1O4qx0aaJ90RE4cyyeaj+Pe+fGE46f4M9PVB+gb2Zx8vi69l8/4efkrq2KjB9+bakzhHJdS9+j+e+XofCvSeGjGZmJBekxqpw7xGUlpXHnGoiHn3Hf4luD3yWVH4/ch8GfESUFgY/ORvnP/Z1lRxGRER2s3sV5pfmrMeeQ8dsnyZQFuXvrdXz1G/+7yLLzr01xMqfdg6J7HTfNCzebF1+3Otemoef9tk3/5Gs5bqAT0SGishqESkQkbFO14eIUkv7ez5F7tipeH3uRuSOnVqlgT5WWs6eQCKTlJVrxYf6omJfkLNq+wHkb9yDZYX7Ix2a0q58Ya6tH6YfnroSp/11hm3X83tvYWHE4YGpNk99z6Fjtl7v9e83WXr+sybMtPT8ZB9XJdsQkUwA/wIwCEAhgAUi8pGq2jMommLy0ZKtuOOtH/DPkb3Rp11DNKmTjRrVElvU5OjxMlTPzEBGhuBgCceMk33un7ICANDrL5+H3N61RT1MuKwnGtWujvkb9uDMTo3RuHY2MjME5aqolnniednxsnJUy8xAaVk5jpaWo2a1TBw6VorqmRnIyhBkZbru2RqR6T5ashU9W9VHhvhWZPzl2e3R8d5PK+2TnZVRKdXO7D9egLaNa9ldVcdt2HUIZ02YWSknX2mZ91Z4jGbs+8uwYONePH5VL6erYplFm/eiTSNnfofXFfHhJMXGVQEfgL4AClR1PQCIyNsAhgOwLOCbvnw7npyxBgqFf+SBfwCCqla8RsA2/5CwE/sB/j1VgcARDP4nePVqZKFxnWxsCNNz0LBWNTStWwOrdxSjUe3qaFavBjIzfJOWlwQ8Be2YUxuqQGm5YvOewwCAk5rVQWZGBgRARoYvibcAEBHsO3wMG3f79qtVPRNtGib+R2n1jmK0alCz4p7ufHtx1GNyG9equD6Rl6zcdgDD//WtLddqXq9GyFVF2zepjepGsLj/yHFsP3AUHXJqo6xcscn4f9WpaZ2Kv1W+vz++1+Xq+5u280AJjpWVo3m9GmhQqxoA42+E+BZREBivAcD425EhwKLN+wAAXZrVNeUeMzIE0+48x5RzkXscLPE92MjftAd3vPUDMgSonZ2F4qOleCjEAhbBeVXP/cdX2PD3i1FcUop6NarZVe2E7Dl0DJ8s3Yob+rWDJLmgSCid7ptm+jndYN6G3RG3z123Gx2b1sahkjK0b1IbgLOLy8TrzrcXY3jvVvh4yVanq0IUltsCvlYAAhPEFAI4I3gnERkDYAwAtG3bNqkL1q2RVfEHxv8BCPB9CDJe+F9V/IEXBO53YlvFn385cfziLXuxrugQerdtiL2HjqFz0zpYu/MgOjSpjW37j+KI8UetVnVfPRrWroYfNu9DqwY1Ua6KsoAJzx1yaqNZvRpoVLs6sjIEDWtXx5It+9C+SW2U+z/oqe+DXrkawSkAGB8MT2ldHw1qVk/4vdpz+BgOxDk+PbdJbTStV8P2ieJEXtK6YU3UqJZR8XAkM0NQVq5oUqc6GtfOBgAUFB1E38aN0LRuNrIypCLgO6lZnRNBW0DAJkZQt+/wccxctRNdW9RFtcyMKoFhpWARJx5otW1UC7Wzs9DOpCfXGezkTCklpWWYv2EPbni58pC8co1/VeP29/h6AWf98Xy0a1zbtDqazT8ksnvL+ujTrqEp58wdOxXjL+2Ba/sm91nGzQIXNQnlmhe/r/T99LvOwdodB8Ps7U4j/vUturWs53Q1LJE7dipG92+Hvwzv4XRVKAnipgUMRORKAENU9VfG9zcA6Kuqvw13TF5enubn59tVRQLwzdpduP7leXh7TD/069DY1HPnjp1q6vmI4nFmx8b4bp3vafScP12AnLq+IZwCcFimS4jIQlXNc7oeXmF2G1laVo5Rr8yv+H9ihQwBljw42DdMulxRu3om1u48iJNM6m1OVGD7FDgUM57jwmlZv0bIRUBSRbhRDOQd0+48B11bpGZQmyoitY9u6+ErBNAm4PvWANhH7jJnd24SV2NH5Fa/ODMX91/SDeWqFUGdqloyXIvIDCIyFMA/AWQCeElVJ1h5vQUb9+DKF+ZaeYkqyhXoOS703Fq/mtUy8fvBJ+FX53SwpU7BD8fHfbQC437e3bTzp3KwB4DBXgq46J9zKl5//YfzkdvEvb3xVJXbAr4FADqLSHsAPwEYCeBaZ6tERKlkw98vrhLQZZ4YkM1gj1zLiYXN7A72YnXkeBkenroSD09dGfMxfx7WFc3r18Alp7SMuN/GXYcw8IlZKC0PPwLq1e824tXvNgIAlv9lCOpku+3jFJF1zn/s64rXL1zfB0N7NHeuMhQTV/2FUtVSEbkdwGfwPb18RVVXOFwtIvK4x6/shT7tGiIrUxjQkZfZvrBZKvEHh7e/+UOVbded0RblCrw1f3Pc5+3x4GdJ143Iq27+78KY9x15epvoO6Wp807KwUU9W1h2flcFfACgqp8C+DTqjkQ26phTm8sfe9AFXXLw1NWnon4td6/+RxQj2xc2Sxf/W1iIY6WplxaByE2+Wr3T6Sq4ltWpPVwX8BEFWvzAIPR+yP5ksU5oWKsasjIzKpITU3Leu+VM01bSI3KJUN3TVcYdqupEABMB36ItVlfKi/p3aIw/Du2CHi3ro3rWiQWZSkrL0OXP0+M61xntG2H8pT3Qon5N1KqeiZXbitGxaW1Uy8iAyIlVSIlS1f9u7o92jWuhemYGysoVNatnIkME2VkZHFXjEgz4yNUa1Eo8jYSZMmz4g5X/50E4+5GZll8nXeTUyXa6CkRms31hs/duOROXP/+dlZdI2ouj8pDbuBZaNKiZ9Fy67KzMkIuSrSs6iAGPz6pUFm7xslRdnp/Ib9gpLXDLeR3Ro1V9p6tCMWLAR67XpVldrN5R7GgdrI73/n1DH2RmCIKzpPxzZO+YEty7Te3qmTh0zL7Eue0a16rIS+enVTs+iLzO9oXN+rRriI0ThuFgSSlOfehzHC9TjO7fDpPmbrLysgCAvrmN8MDPuuHwsTKUlJahYa3q6NGqPg4f8yV7tzNVSsecOpW+50rVFOzVG0/HL/6zwOlqWOaDW89Er9YNMGtNEc7vksOeO49hwEeu9+gVp2D4v751tA5W9/AN6toMAPC3y3rgl6/6cmb1aFXP8jHdVunbvhGGdG+Ose8vs+V6s/54AXLHTkXd7Czc0L8dnvt6Hdp69L0jCsfJhc3qZGdh7fiL/fVAnRpZGNG7FQY9Odu0awzr2QLndcnBOZ2boEX9mmH3q1Xd2Y8u/72pyrTJhN096CTcdHZ7VM/KQOf7ppl2XjcZ0r0ZnriqN7rHuLjNi6PyMGdtEV6z4aGCWS7u2Rz9O5qbl9hNrunbFqe29U2RuODkpg7XhhLBgI9cr1ebBo5cd+OEYfhq9U7c+J8F6NW6AVZtt66X0R9PXnhyMyz880D0efgL3HtxV2RneTPZ9/X92mFA12a2BHw3npULwJeoOStDUDs7C38aerLl1yVyghsWNhMR/HGI7/+Yv6frV5Py8cXKHQmd7x9XnILqWRkY3ruVaXW0wpw/XYDJC7bgrE7mfbC/Y0Dnitcf3342fvbsN6ad2y1Oz22E2jEMtb1rYGfcNfAkAMCgbs08FfA9d10flEdI4+F1D/6sm9NVoCQx4COK4IIuTfHx7WfjpOZ1MDl/S/QDTNC4TnbFh6iCnc4OZfX7xZm5FTmnorF7qNN9F3cFANSvyZU4iZzy0ui8St+v3l6MDbsOVVmyfem4wTjtoRkVOe7+ObK36wM9vzaNauEPQ7pYdv7MjNQcItcwylz835zbAdf0bevZRN4nNfMN981I0Z/fQ8O7o0a1TKerQUliwEeu0q1FPfRsVR+/G3QSdh10x2qVPVtbPyk53Fj4rAx39PDdekHHmAM+u9k5j4eIYtOleV10aV4XGycMwzv5W/Cnd5cCAOrVqIaCv12MdxcWYv6G3Z4J9uzQskENy8597Rlt8dDPu6OTzcNG2zSqiUtPDf8zblm/Bu4xHtp5Vb8OqTmU884BnfG7QSc5XQ0yCQM+cpVP7zyn4nXz+tY1fmb5zbkdcONZ7dHv719acv5qLhnSmZngHMa2jWph857D0XdMUI1q7nh/iCi8q/LaoGer+vi2YFdF2RV9WuOKPq0drJXzlo4bXOl7K1elfuCSbo48HPv8rvMi9nzd5fGA4t6LT8a1Z7Rz5NpX57XBHQM746wJ1qzufTWTpKcUflqilNekTjZuu6CjJecee9HJlQLTT357tqnnr5bp/BCRF67vg8YJpjj4/Hfnmlybyqqzd4/IE7q2qIdfndPB6Wq4xtJxg1Gvhn3D0P1D8gZ3a2bbNQGgZvXIQwFrenyo4JhzOyadCiRRjetUR+Pa5j8k+ODWM7FxwjC0bBB+4STyHn5aopQ3tEcz9G0f35CL5687Lab9/EMxz++SgxG9W5qek8YNueSG9mgefZ/uofexetz/o1f0svT8RETJGntR1UWk7Az2AkULwOw2rGcLy879xFW98MavzFtR1W1uPr9jlVROZvCvxkmphQEfpbz7L+mGeOdSxzuC8dUb++KpkafGd1BM9XC+hy8Wp7dvhDl/ugDz7x1g63VjCUaJiJx083mVR5i8cH1sDxStYEWAEM6Gv18cdR8rFzq59NRWVfInminUlIJ7QgT3VjincxPUq1Et6Xyz0+86p9L3X9xt7agccg4DPkp52VmZ6J+ik6rdolqmoE2jWmhaz/3zLomInDS0h3W9WtFcZONDsuAHlg8N727btf3Xb16/Bl75RR7GWZBW4JPfnlOlzO5ntMkG8HUDepovPLkpOjWtm2SNyK0Y8FFaiH+yujd61tyikQXzCIiIUsXPe7UEAKz661Dbr/3SqBMpMy7q2QJvOjTM0aml/S88uRkuMd5/M3VqWrX3MMOmiM8/JDiZeO/8Ljlo1aAmahvDfMvt7P4l2zHgI6Kwzj0pJ6b9rJyHQUTkdf+48hTM+dMFjgQ9A4MWajmzUxPb6wDE/xj1stPMS9lhxeImoVzfz54VO8df2gMAUCOJlbyfucY3DWX6Xb5hnOHm4lNqYMBHKWvBfQOx+IFBCR0balpBrPPT/jmyd0LXdKPHr4y+KErt6pmemWtIROSE7KxMtGlUy+lqOCq4nbjklMgPCv/yc/OGgNrVRiUb0HdpVjfq+wKcSOGRTKoN/3DONo1qYdVfhzINQ4pjwEee0CuB5Oc5dbMTzmsUqnFoGPSE8J3f9A957MCu9i57baWcuidWCW3XOPSHFQ4CISIyx7+uNXdBF7NTBSWjS7PK88NGn5kbcf+6Jq9kOrBrU9PO9TMLhogCQK3sTDxr8u9ALGpU44PbVMeAjzxhyu3xNVqhJocnO8+sWtCTtHA58lL1b+a5nUMP7+SwfyIic3Rpbt6iGQ1rVTM9VVAyegY9uK1f097UFMmk8RnVv/JQTasWF23fpHbUffrmNrLm4pTSGPBRShreq+rY/1ATrMPJiuGvefUwY+clRRd8sbtxJiJKN/G0U9FMuc09vXt2u/y01lXKkknyfuNZ7St938qipOTjR/SMus9/gxbd+eyu+FMp/Ors9tF3opTCgI9SUqjcNON+Fvt8gFgWK+neMvST09Ly8piv4yW3X9jJ6SoAADZOGOZ0FYiIXO2F609D2zDD8O3w63OcDSgev6pqb14ySedbNqiccuh3g05K+FyRxFLH4IfNifQKd21RL+5jyNssC/hEZJyI/CQii42viwO23SMiBSKyWkSGBJT3EZFlxranhQOKKUGhJjJ3axnbH7jWDWsiM4nxGika74WdjJ5s4lciIjLP+V1yHM31B5i3EqjZKSSWPDg4oeOyszJxVd6JXsPgKR5e0yEn+tBRSi1W/8Y+qaq9ja9PAUBEugEYCaA7gKEAnhMR/yfJ5wGMAdDZ+LI/YQ2lhDrZWQkf26J++OThsayelW6cmMP3yW/PxhMhnuASEXldsqMYYvmbHGuagkQfu5v1tD6RwDHSwjexTE3IzBCc0b4RTg7qOWvfxDfctm6NxD9fuME3/3cBTm3b0OlqkM2c+K0dDuBtVS0BsEFECgD0FZGNAOqp6lwAEJHXAIwAMM2BOpKH9WmX3B+yF67vE3bbM9ecik+Wbot4fDLDRig2PVrVd9ViBEREbhHLqtaxBnLVMjJwrCz+YSuxDNBqa1GaimFJPpj97K5zK+ZSDnt6Dn59TgcAwJhzO6BXm/o4s6MzeQwjOa1tAyzavC+mfVs3TO/0IOnK6h6+20VkqYi8IiL+T+GtAGwJ2KfQKGtlvA4ur0JExohIvojkFxUVWVFv8rDyJLucGtfJDrstlkYslgVfUknvNg2crgIRUUq58OTEUgg8cVUv3Dkw+vyyWJvJRIfsh2sFBwUkgXciCX0sNODNmXrHORhxqu+jaGaGuDLYA4D7hnVzugrkckkFfCLyhYgsD/E1HL7hmR0B9AawDcDj/sNCnEojlFctVJ2oqnmqmpeTE31xDUof53RugsciJAv/703mzgcIxY0zT09r28Cyc780Os+ycxMRUey6NK8b0xz0Mzo4s7R/s3rhH6i6RdN64ad1uFUy6w5QekhqSKeqDoxlPxF5EcAnxreFANoEbG4NYKtR3jpEOVHMnriqd6Vk4cFOaRN5qMsvoiSCtcLEG8IPITXDe7eciT7tGiJ37FRLzm92clwionSX6EiRWNMC5TaObdGOOwd0xmOfr4m/Hh6OP7yYgijWt3vymH6W1oPcy8pVOgMHUV8KYLnx+iMAI0UkW0Taw7c4y3xV3QagWET6GatzjgIwxar6EYVy37CuSZ8jnsVlH738FAzu3jzpa0aS7JzGZD11dW9Hr09E5DW1E1x4LNbmJ5b9Nk4Yhtsv7IwmEaY5kDUa1rIm6DyjQ2NLzkvuZ+UcvkeNFAtLAVwA4HcAoKorALwD4EcA0wHcpqplxjG3AHgJQAGAdeCCLRQnO54qdo8xvUMsWjW0JnmrX/AqY07oxwaGiCgubRJsG2IO+OJYR/NXCeTUi3b+P8fxcLVNo9jfi6YRRvjEwi1z0pt5cFgpuZtlq3Sq6g0Rto0HMD5EeT6AHlbVicgM791yZkKrloVidUoDJ1ImBPPy0B6iZIjIOAC/BuBfXezegBRF9wC4CUAZgDtU9TOjvA+AVwHUBPApgDtVVUUkG8BrAPoA2A3galXdaNvNkK1+O6Aznp5ZEPdxsQZy8awmbeb0MH+blJ0Ve39Dl2Z1sWXPkdjOn0ilDH8YfBJuPb9TEmcwT7xpqGPZ/a6BnROsDaUCb2eOJApiR2xRo1om6nHeGhHFxqx8tDcB2KuqnQA8CeARG++BbFYtMwO/ObeDZee/Mq919J0MGQk8tcvLjTKVII5zntcl9hVLk3nIefuFnZHhksVP4q1FLIH++XG8j5R6GPBRyriiT2s0rBU5mWyNLHcuA22VRJfUNpM7mk8iV6nIR6uqG+CbxtDXmPteT1Xnqm9teH8+Wv8xk4zX7wIYIPF2A5Cn3HNxV7x+U9+4jon1NyIrw9qPf2amXLikZ+x59dQNw1oc0CXK9I1Vfx3qmuGq5AwGfJQSvvz9eXjsyl5Rn85Vz8pAvRrhRzJXy7T3v4TVAZkr2j5+JKX0ZlY+2opjVLUUwH4AISfIMldt6ujcNL552C3qxzb3K1X/LCebh9dJt57fMeFjq0cZIuvWnIdkHwZ8lBI65tSJed+l44agWmbV5u65604zs0oxsbptqhXHPA0vOKV15LQaRHazMR8tc9VSVLGmyYnWE9grib+1kXLt9e/oe0YRz+Jn9eJIkxBLk9qtRdVr92zlfNsSS1L3m8+LHhTeMYBz9agqBnyUlkL15F0cx7ARs1j9LPL5663N8ReLeFaDiyQrQ/DeLWeaci4is6jqQFXtEeJriqruUNUyVS0H8CIA//i8RPLRVhwjIlkA6gPYY92dkRs4NSz/hv65CR/7wa1nhd12ySkt8cP9g3Ba29jTBWVmCB69/JSY9o3lIeqHt1Wt38e/PTvm+lgl8Gd97kmhH9REyjPsd/egk0yrE6UOBnyUlt6/tXLgcGbH1Ewd0LJB4mkf/jS0i4k1Sd4fh3SxfcgtUTJMzkf7EYDRxusrAMzUdJ2wlEas+gmb9SAulGjtTsPakefahxLrIjOx/JeonpWBUf3bVXw/1OJcuLEKrPoNAfULFOuaMqe2bZB8hSil8NMTpaWTm1ce0vFIjE8PzWbl57W3ft0vqeMHd2tmUk2S98L1p+FX51i3Yh2RRczMR/sygMYiUgDgbgBjbbsLckw8LUSdBJO1h7xuQNsUbX6YHWJdnyjW92tUEj2Y0Qzv3TKh4wLrHu5uYw3TH/xZ94TqQKnL+f/FRA75dQLJZM1m5eP5/kG9ll2axZuEvWrTcv8l3eKuR2A7fU3ftnhpVF7c5xjaowUyXbJcNlGsVPUGVe2pqqeo6s+NHjz/tvGq2lFVu6jqtIDyfGNIaEdVvd3fi6eqR1X1SlXtpKp9VXW9E/dEKSLKn9PAtunq09uE3c9tJlwW28PbTk3rYNqd5wAAzujQyNQ6xLOmQKBkF5z58Laz8NHtvuGqnZomVgdKXZYlXidyu/uGdcOeQ8fx3qJC1DbxyWhcbByQlV0t+ec7N53dHn/95Me4jgn8XPH3y3omXQcionTRpE7swx/P62LNAj3ZHkpn1Kph7NMYuraoh+/GXhjzyqZ2CtehGWkl8sC0C1kB+112aqsQe1O6YcBHae1vl/XALed3QKME5hTYJTsrAyWl5Umfx00pu3LqZqOouMTpahARuVo8wdYTV/WKed9ozcHAru4Z0m+lZOa5h5NwSxvDA+BYz12jWibev/VMtKhfAzl1oi/0QqmPQzrJM0YkOC4+kuysTHSKM89RLM7pXHV55QcSGA4JxJ5IN5p4R0RaGR9OCbFKGhERxe/uQSdh/r0D4goO61Q/8by/Ue3qqBmUp83ND0Ej8fI6RrEM6czLjX346WltG6JF/ZrI4mJnBAZ85CFdmseet8dpoXrTfnl2iDmDNna6ZTjUw1ceog3LdsEiAEREXjP1jqrpA3q1aYCm9eIblhg4NHD+vQOwdNzgiPu/d0v/uM5P8asfQ77BriFyCBLFgp+6yDNcNCIxqpirGtMQDnNuPN4ePrMelIZ64to4whCTjROGmXNhIqIUE9wTZ4aszIyoKW+a1o0toBzmQD7bQG7o30v0s0o8vXdE8WLAR57hoXjPVK/eeLop57mohzkN8T0XnRzX/mVhIsdTWtc3ozpERGkjVGDWqoG5i468cH2fsNtaRlng5FKHFwhxw4jOeJLKh2NlnkRKTwz4iFzujA7mJIXvHWci1nBPKX9zXse4zuNvgFvHsXpaoJ6tGBgSEQFAm0a1Kn3/yOU9LZmHHsy/knW/jua0R6nszE5V5/BHw5EtZDUGfOQZXhrS6fcfk3rn5t07IOlzOPXks0X9Grj5vI6Y9Mu+zlSAiCiF+PPHAcDVp7c17bz+5fsb1Ko6l6xR7er44u5zPZBaxwVdfBbpxvl7lAQGfOQZ4YY4PHp5bIlW3WDsRSfj/ARyJTWLc0K+Xb64+9yo+4gIxl50cpVktKF+mtf38314+d/N/TG6fzszqkhE5Gn/vqHyEMuuLerhqat744XrTzP1On+/vCdeuL4P+oUZVdKpaV1P5eRLNVfltXa6CuRhDPjI85rW806OmZvP64hXbzzR06UufhoZS4dqcBAXj1DJ7v0rkJ2e2wiX9/E1bm5+j4iIrDake3MseWAwFv55YEXZiFNbYahJ87L9srMyMbRH86j7jTy9TdhtbRvXCruNYpcR4tP5ZX0Y8FHiGPCRZ3hxSGeq+sPgk5I+x1Mje+OPQ7pUKgscdspJ60REPvVrVYu4urGdRkRYmOWkZtbPJ4zk1DbJL5jiBrGuikoUq6QCPhG5UkRWiEi5iOQFbbtHRApEZLWIDAko7yMiy4xtT4uRsExEskVkslE+T0Ryk6kbpQ9X9/+4qHK9TFwV8/YLO2PjhGEh8w3GqmndGrjtgk5ht2dX8/15auKSDzlERARkxZvjx0YZLq5bslL3zsgOyfbwLQdwGYDZgYUi0g3ASADdAQwF8JyI+Ad+Pw9gDIDOxtdQo/wmAHtVtROAJwE8kmTdKMWc0b7yvIJT41x10k7BcdDgbs2cqUiArMwMDO0efbiOXzLBnBlOalYXj15+Cp66urej9SAiSkVz/nQB5iewIFifdg1x96DkR3nE65bz41shmohOqDqJJg6quhII+cFwOIC3VbUEwAYRKQDQV0Q2AqinqnON414DMALANOOYccbx7wJ4VkREQ2VtprTUM6CH6svfn4c62Vl4dmYBzklgCWQ7rf/bxWGHo/Zq3cDWunjNVRHmihARUeKCUzzESkRwx4DOeGLGGpNrFFnnponPGbfbgJOb4stVO52uBlEFq+bwtQKwJeD7QqOslfE6uLzSMapaCmA/gJBLRYnIGBHJF5H8oqIik6tOXtAxpw6a1auBv47ogawQiWjdQqHIyJCwvWVumZMRCp+1EBGRWwzvHTmpexeH5w8Gumug+T2gNatxhVRKXNQePhH5AkCocWD3qeqUcIeFKNMI5ZGOqVqoOhHARADIy8vjp1JynVQYa5/buLbt1+R/ZiIiCiUzyvy8KbefZVNNomtSt7rp53Tzw21yv6gBn6oOjLZPCIUAAsditQaw1ShvHaI88JhCEckCUB/AngSuTZQ26tXIwoGjpZXKMjMEZeXJh06pPPmdiIiSk5UhKDWhrTFLDRf1gLWoXzPpc9wxoDOe/nKtCbUhsm5I50cARhorb7aHb3GW+aq6DUCxiPQzVuccBWBKwDGjjddXAJjJ+XsUbNgp5uYdSjX/HNkbc++5MKaE6G4xpPuJBW06NrG/V5GIiMgOdUPknw2nRX2mZiDzJJuW4VIRKQTQH8BUEfkMAFR1BYB3APwIYDqA21S1zDjsFgAvASgAsA6+BVsA4GUAjY0FXu4GMDaZulFqenrkqVj50NDoOzrMPxm+Xo1qtl53eO9WaFq3Bjo1dc9chmieuea0itdnunwBHiIiokTdObCz01WgNJXsKp0fAPggzLbxAMaHKM8H0CNE+VEAVyZTH0p9mRmCmtXdM2wjnHsv7oqzOjVBXm6jsPv0aRdfgtiLejTHtOXbk62a61TP4rwEIiKiQD1bmZc7l4iftIgsUKNaJoZEyHk3+48X4LVf9o3rnJeeWnWFMo55JiKidDH2opOdrkJS4pln2IMBH5mIAR+RA9o2roXacYzlByIHd5kZgok39EmuUkQUNxG5UkRWiEi5iOQFbbtHRApEZLWIDAko7yMiy4xtTxtz2mHMe59slM8TkdyAY0aLyFrjazSI0lCrBskvhuKkqxPMLdusnntTOJE3MOAj8jIF3r25P+bdOwCDI/Qo+mVX4395IpMtB3AZgNmBhSLSDcBIAN0BDAXwnIj4H+8/D2AMfAuadTa2A8BNAPaqaicATwJ4xDhXIwAPAjgDQF8AD4pIfGPCichx1UKkVri4Z/i2+96Lvd2jSe7BT39EHhFuzdq83EZoEmMC93E/625ijcxz38Vd8dav+zldDaK4qepKVV0dYtNwAG+raomqboBvobK+ItICQD1VnWusRP0agBEBx0wyXr8LYIDR+zcEwAxV3aOqewHMwIkgkYhc6PwuOTHtV79m+MXdft4rcrJ5olgx4CNKIw1rm58M1gy/PrcD+nds7HQ1iMzUCsCWgO8LjbJWxuvg8krHqGopgP0AGkc4V0giMkZE8kUkv6ioKMnbIKJEvHpj6Hn6VQO88Dlvm9bNxmWntcKLo/LC7kMUCwZ8RJ7BJVqInCAiX4jI8hBfwyMdFqJMI5QnekzVDaoTVTVPVfNycmLrZSCKl4SPUyiC806K/f9kRobgiat645TWDayrEKWFpNIyEJF9wg3pJCJrqerABA4rBBC4QkNrAFuN8tYhygOPKRSRLAD1Aewxys8POubrBOpE5Gnndvb+A4wJl/fEpae2wo2vLgDAwJnswR4+Io8IFe8xBiRyrY8AjDRW3mwP3+Is81V1G4BiEelnzM8bBWBKwDH+FTivADDTmOf3GYDBItLQWKxlsFFG5JgOTerYfs36tcLPd3OjXm0aVLz2r7RZq3oWLji5aUU54z2yA3v4iIiIEiQilwJ4BkAOgKkislhVh6jqChF5B8CPAEoB3KaqZcZhtwB4FUBNANOMLwB4GcDrIlIAX8/eSABQ1T0i8lcAC4z9HlLVPdbfHVF4fx3RA1f9e67T1XC1yWP64cixMpSpxpWDj8hsDPiIPEw5zpPIUar6AYAPwmwbD2B8iPJ8AD1ClB8FcGWYc70C4JWkKktkohouSvPz5q/PcLoKIdWolhk10OOQTrKDe/63ElFEPVrWBwA8f91pSZ3n/VvPxJlcEZOIiFLEGe3ZphFFwoCPyCPaNq6FjROG4aKeLSrKerdtEPd5TmvbEH+7tKeJNSMiIiIit2LAR+Rh/76BuXmIiIiIKDwGfEQeVifbmmm4fds3suS8RESUGurWcGbFzJUPDXXkulZp78Bqp5R+GPARURX1anA9JyIiCq99k9qOXLdm9aqLoHhx3ZPMDF+tR/Vv53BNKB0w4CNKQ1zbk4iIvOoXZ+ZW+j4jw4shn493a05ewsf4RB606P5BOFZa7nQ1iIiIKAl8AEt2YA8fkQc1ql0dzevXMPWcpwas+Nm0nrnnJiKi1DPjd+fi2WtPdboansSePbITAz4iquL+Yd2crgIREblc52Z1cckpLZ2uBhFFkVTAJyJXisgKESkXkbyA8lwROSIii42vFwK29RGRZSJSICJPi4gY5dkiMtkonyciucnUjYgSF2pSPBERERF5T7I9fMsBXAZgdoht61S1t/F1c0D58wDGAOhsfPnX170JwF5V7QTgSQCPJFk3IiIiIkoxzTjtgCguSQV8qrpSVVfHur+ItABQT1XnqqoCeA3ACGPzcACTjNfvAhjg7/0jIiIiIgJSI5XBXQM7AwAy+VGXbGDlHL72IvKDiMwSkXOMslYACgP2KTTK/Nu2AICqlgLYD6BxqBOLyBgRyReR/KKiImtqT5Rm/jq8h9NVICIiD3r35v6Y86cLbLtepofTMPjdfmFnbJwwzNMpJcg7oqZlEJEvADQPsek+VZ0S5rBtANqq6m4R6QPgQxHpjtCLEvlXpI20rXKh6kQAEwEgLy+PK9oSxalto1pVynq0qo+3x/RD07rZDtSIiIi8Ki+3kdNVIKIIovbwqepAVe0R4itcsAdVLVHV3cbrhQDWATgJvh691gG7tgaw1XhdCKANAIhIFoD6APYkclNEFFlmhuCxK3tVKe/XoTE65NRxoEZERESxyc7KwC/Pau90NYg8w5IhnSKSIyKZxusO8C3Osl5VtwEoFpF+xvy8UQD8geNHAEYbr68AMNOY50dEFriiT2sseWCw09UgIiKKi4jggZ8xfRBRrJJNy3CpiBQC6A9gqoh8Zmw6F8BSEVkC3wIsN6uqv7fuFgAvASiAr+dvmlH+MoDGIlIA4G4AY5OpGxFFV79WNaerQEREREQWijqHLxJV/QDAByHK3wPwXphj8gFUWR1CVY8CuDKZ+hAREREREdEJSQV8ROR9T17dizmNiIjIc+6/pBvO7BhyQXciCsCAjyjNXXpq6+g7ERERucxNZ3PhFqJYWJmHj4iIiIiIiBzEgI+IiIiIiChFMeAjIiJKkIhcKSIrRKRcRPICynNF5IiILDa+XgjY1kdElolIgYg8baQpgohki8hko3yeiOQGHDNaRNYaX6NBREQUIwZ8REREiVsO4DIAs0NsW6eqvY2vmwPKnwcwBr4ctZ0BDDXKbwKwV1U7AXgSwCMAICKNADwI4AwAfQE8KCINrbgZIiJKPQz4iIiIEqSqK1V1daz7i0gLAPVUda6qKoDXAIwwNg8HMMl4/S6AAUbv3xAAM1R1j6ruBTADJ4JEIiKiiBjwERERWaO9iPwgIrNE5ByjrBWAwoB9Co0y/7YtAKCqpQD2A2gcWB7imCpEZIyI5ItIflFRkTl3QkREnsW0DERERBGIyBcAmofYdJ+qTglz2DYAbVV1t4j0AfChiHQHICH2Vf+lwmyLdEzVDaoTAUwEgLy8vLD7ERFRemDAR0REFIGqDkzgmBIAJcbrhSKyDsBJ8PXOBSa/bA1gq/G6EEAbAIUikgWgPoA9Rvn5Qcd8HW+diIgoPXk+4Fu4cOEuEdmU5GmaANhlRn1cgvfjbrwfd+P9uFs7pysQCxHJAbBHVctEpAN8i7OsV9U9IlIsIv0AzAMwCsAzxmEfARgNYC6AKwDMVFUVkc8A/C1goZbBAO6JpR5sI12F76N5+F6ag++jedzwXoZtHz0f8KlqTrLnEJF8Vc2Lvqc38H7cjffjbrwfioeIXApfwJYDYKqILFbVIQDOBfCQiJQCKANws6ruMQ67BcCrAGoCmGZ8AcDLAF4XkQL4evZGAoARJP4VwAJjv4cCzhUR20j34PtoHr6X5uD7aB63v5eeD/iIiIicoqofAPggRPl7AN4Lc0w+gB4hyo8CuDLMMa8AeCWpyhIRUVriKp1EREREREQpigGfz0SnK2Ay3o+78X7cjfdDVBl/h8zB99E8fC/NwffRPK5+L8WX95WIiIiIiIhSDXv4iIiIiIiIUhQDPiIiIiIiohSV9gGfiAwVkdUiUiAiY52uj5+ItBGRr0RkpYisEJE7jfJxIvKTiCw2vi4OOOYe4z5Wi8iQgPI+IrLM2Pa0iIhRni0ik43yeSKSa/E9bTTqsVhE8o2yRiIyQ0TWGv82DNjftfcjIl0CfgaLReSAiNzlpZ+PiLwiIjtFZHlAmS0/DxEZbVxjrYiMtvB+/iEiq0RkqYh8ICINjPJcETkS8HN6wSP3Y8vvlxX3Q94jLm0fnSYp1JbZLdXaHaewfTCHhP+snXq/k6qatl8AMgGsA9ABQHUASwB0c7peRt1aADjNeF0XwBoA3QCMA/CHEPt3M+qfDaC9cV+Zxrb5APoDEPjyPV1klN8K4AXj9UgAky2+p40AmgSVPQpgrPF6LIBHvHI/Qb9H2+FLeOmZnw98ecJOA7Dczp8HgEYA1hv/NjReN7TofgYDyDJePxJwP7mB+wWdx833Y/nvl1X3wy9vfcHF7aPTX0jRtsym9y6l2h2XvY9sH+J/H8N91k6538l07+HrC6BAVder6jEAbwMY7nCdAACquk1VFxmviwGsBNAqwiHDAbytqiWqugFAAYC+ItICQD1Vnau+37DXAIwIOGaS8fpdAAP8TyRsFFiHSahcN6/czwAA61R1U4R9XHc/qjobvuTOwfW0+ucxBMAMVd2jqnsBzAAw1Ir7UdXPVbXU+PZ7AK0jncPt9xOB638+5DmubR9dKhXaMsulWrvjFLYP5ojwWTvlfifTPeBrBWBLwPeFiBxUOcLo/j0VwDyj6HbxDVF7JaCbOdy9tDJeB5dXOsb4ULwfQGMr7sGgAD4XkYUiMsYoa6aq24w6bAPQNLhuQfV20/34jQTwVsD3Xv35APb8PJz6f/dL+J66+bUXkR9EZJaInGOUeeF+rP798sTfRbIcfw/CS9W2zCmp3O7Yje1DgoI+a6fc72S6B3yhnpip7bWIQETqAHgPwF2qegDA8wA6AugNYBuAx/27hjhcI5RHOsYqZ6nqaQAuAnCbiJwbYV8v3A9EpDqAnwP4n1Hk5Z9PJGbW34mf030ASgG8YRRtA9BWVU8FcDeAN0WkXpS6ueF+7Pj9ctPvHTmHvwfhpVxb5lL8uxYftg8JCvFZO+yuIco88V6me8BXCKBNwPetAWx1qC5ViEg1+H4B31DV9wFAVXeoapmqlgN4Eb5hN0D4eylE5WFsgfdYcYyIZAGoj9iHCMRNVbca/+4E8IFR9x1GV7h/ON3O4LoF1ds192O4CMAiVd0BePvnY7Dj52Hr/ztjIvQlAK4zhlrAGI6x23i9EL5x+Ce5/X5s+v1y9d9Fsg1/D8JI0bbMSSnX7jiB7UNiQn3WRgr+TqZ7wLcAQGcRaW/01IwE8JHDdQIAGON7XwawUlWfCChvEbDbpQD8KzR9BGCksRpQewCdAcw3uqKLRaSfcc5RAKYEHDPaeH0FgJn+D8QW3E9tEanrfw3fYhrLg+owOqhurr2fANcgYDinV38+Aez4eXwGYLCINDSGnAw2ykwnIkMB/B+An6vq4YDyHBHJNF53MO5nvQfux47fL9vuh1zNte2jk1K4LXNSSrU7TmH7EL9wn7WRir+T6oJVcpz8AnAxfKvyrANwn9P1CajX2fB17S4FsNj4uhjA6wCWGeUfAWgRcMx9xn2shrE6kFGeB99//HUAngUgRnkN+IYiFsC3ulAHC++nA3wrGy0BsML/XsM3jvlLAGuNfxt54X6M69UCsBtA/YAyz/x84AtUtwE4Dt+Tppvs+nnAN5+uwPi60cL7KYBvjLz//5B/pazLjd/DJQAWAfiZR+7Hlt8vK+6HX977gkvbR4ffk5Rry2x+/1Kq3XHZ+8j2If73Mdxn7ZT7nfRXhoiIiIiIiFJMug/pJCIiIiIiSlkM+IiIiIiIiFIUAz4iIiIiIqIUxYCPiIiIiIgoRTHgIyIiIiIiSlEM+IiIiIiIiFIUAz4iIiIiIqIU9f+8vII0ODoK1gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from scipy.io import wavfile\n", + "\n", + "################# Load Happy and Angry example of Actor 1 #####################################\n", + "\n", + "\n", + "h_samplerate, HappySignal = wavfile.read('data/Actor_01/03-01-03-01-01-01-01.wav')\n", + "\n", + "plt.figure(figsize=(15,4))\n", + "plt.subplot(1, 2, 1)\n", + "plt.title(\"Signal Wave for Happy\")\n", + "plt.plot(HappySignal)\n", + "\n", + "a_samplerate, AngrySignal = wavfile.read(\"data/Actor_01/03-01-05-02-01-02-01.wav\")\n", + "\n", + "plt.subplot(1, 2, 2)\n", + "plt.title(\"Signal Wave for Angry\")\n", + "plt.plot(AngrySignal)\n", + "\n", + "plt.show()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "511d1136", + "metadata": {}, + "outputs": [], + "source": [ + "#!pip install sounddevice" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "70524f59", + "metadata": {}, + "outputs": [], + "source": [ + "import sounddevice as sd\n", + "\n", + "sd.play(HappySignal, h_samplerate)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "36f510b0", + "metadata": {}, + "outputs": [], + "source": [ + "sd.play(AngrySignal, a_samplerate)" + ] + }, + { + "cell_type": "markdown", + "id": "c9d0a20c", + "metadata": {}, + "source": [ + "### 5.2.1 Fourier transforms " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "02700ae2", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4gAAAEWCAYAAAAkQ7nUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADXbElEQVR4nOz9ebR121YXhv76mHOtvb/inFsBXriXQiMNRaNEELBJFCUJxNcU9KkPnwoalIgYYwvPF/EZwRgTbXmIj1hEjAlVUBAVwUBaAB9qfAiiolQqN5HieoHLLc8537f3XmvN0d8fvfcx+phzrmLvb9e7/1rbe601izH6HHPO3kcvBzEzAoFAIBAIBAKBQCAQSDdNQCAQCAQCgUAgEAgEbgdCQQwEAoFAIBAIBAKBAIBQEAOBQCAQCAQCgUAgoAgFMRAIBAKBQCAQCAQCAEJBDAQCgUAgEAgEAoGAIhTEQCAQCAQCgUAgEAgACAUxEAjcAhDRHyai/+ES2/tiIvqay2ovEAgEAoFA4KEgFMTAvQQR/SgR/Xujbb+DiP73m6JpG4joc4joXxDRq0T000T0vxDRS0T0rUT0mv6tiWjlfv/3RPTJRJTdtteI6JuJ6Afd74GITt3vPzzT/xcTERPR7x9t/wO6/YuvegyY+b9m5t+l/X6E9ttfdb+BQCAQOAwhVw+Xq46O36Hy7Ddf5/UHAi+KmIAFAjcIIvqVAP5rAJ/GzP+UiN4I4NcCADP/h+64rwDwdmb+I27bJwN4BzO/dUf73wnga5h5n3fuXwH4bABf5rZ9lm4PBAKBQOBO4BbJVUDk6nv08+vPey2HgIh6Zt5cRduBh4vwIAYeLIjoDxHR/6EWxh8iol/v9v0OIvoHRPTfEdH71RL5KW7/dxLRf0NE36P7/5YKIail8j8Z9fXPiegzZsj4pQC+i5n/KQAw83uY+SuZ+dUruejt+EcAHhPRLwAA/Xyk26Hb3kBEf5uIfoaI3qvf3+r2/2wi+ns6nt9ORH/OwjydV/CziejHiehdRPT/cuf6kNC/p5/vU+vsLxvtn3gZte+/q31/G4AP8BdHRJ9IRP8/InofEf0znQQEAoFA4BIRcrWh78MB/EoAnwvgU4noZ7l9n0xEbyeiLyCidxLRTxLR73T736Sey1eI6B8R0X9FzlOr8u/ziehHAPyIytsvGfX/zUT0B678QgP3EqEgBh4y/g8A/y6A1wH4YwC+hog+2O3/BAD/J0TZ+CIAf8OEleKzAPxHAD4EwAbV+/aVAH6bHUREvxjAWwB8ywwN3w0RHH+MiH45ER1dxoVdEF8NuSZArJ1fNdqfAPxPAD4cwIcBOAHwZ93+rwXwPQDeBOCLAfz2mT4+CcBHAfgUAH+UiH7+zDG/Qj9fz8xPmfm7DqD9awH8Y8i9+uNKPwCAiN4C4H8B8F8BeCOA/weAv05EH3hAu4FAIBA4HCFXKz4LwPcy818H8MMAfuto/5sh4/QWAJ8D4M8R0Rt0358D8EyP+Ww4mebwGZDx/GjI+PwWIkoAQEQfAJGzf+USryfwgBAKYuA+4xvVY/Q+InofgD/vdzLzX2PmdzBzZuavA/AjAD7eHfJOAH+Gmde6/18C+L+4/V/NzD/AzM8A/BcAfjMRdQD+FoCPJKKP1ON+O4CvY+bVmEBm/vsAfgOAXwJRYt5NRH9a2zkEH+KvkV4sz+FrIAJmAeAz9ben9d3M/NeZ+blaYv8ExDoKIvowiNX2jzLzipn/dwDfNNPHH2PmE2b+ZwD+GYBf/AL0YtT3f8HMZ8z89wB8szvktwH4Fmb+Fr3X3wbgewH8mhftOxAIBB4YQq4ejs+CGC+hn2Mlbw3gv9Sx+BYArwH4KKXz/wrgi1Te/hBEARzjv1Hv6Akzfw+A90OUQkBk+Hcy809fkPbAA0coiIH7jM9g5tfbH4Df63cS0WcR0fc5QfcL0YYm/htmZvf7xyBWTcNPjPYtAHwAM59Bcg1+m1rzfgvEOzcLZv5WZv61EO/WpwP4HQB+14HX+A5/jcx84RwHZv5xAG+D5G78CDP76wMRPSaiv0hEP0ZEr0BCQV+vwuxDALyHmZ+7U5rzFT/lvj8H8PSi9Dp8CID36oTC8GPu+4cD+E2jSc0nAfBW7UAgEAjsR8jVA0BEvxzAzwbwV3XT1wL4t4noY9xh7x7lDppM/EBIjRA/FnPydLzNe1l/G3aMTyCwD6EgBh4kNDfgLwH4fQDepILuBwCQO+wtROR/fxiAd7jfHzratwbwLv39lZBwkk8B8PyQMEm1uH4HgL8DEao3ga8C8AWYhpdCt38UgE9g5pdRQ0EJwE8CeCMRPXbHfyguBp7Z9gyAb/vN7vtPAngDET1x2z7Mff8JiFXaC/wnzPwnL0hfIBAIBEYIudrgsyHX/X1E9FOQsFegpnHsws9Awmt9oZw5eTqWlV8D4NM1/PbnA/jG8xAcCHiEghh4qHgCYa4/AwCaHD4WHh8E4PcT0YKIfhOE4fp8h99GRB+tStF/CeAbmHkAABVcGcCXYIcVj4g+nYg+k6QADBHRx0PCNv/hpVzl+fF1AP4DzFdbewmSd/g+zRn5ItvBzD8GCdv8YiJaEtEvg1aNuwB+BjJ2P8dt+z4Av4KIPoyIXgfgC2f6/mPa9yeN+v4aAL+WiD6ViDoiOtYCAVur1AUCgUDg3Ai5Kv0fA/jNkOI0H+P+/hMAv5X2LOGk1/s3IPL0MRH9PBygWDLz2yGF5b4awF9n5pOLX0XgoSMUxMCDhMb0fwmA7wLw0wD+bQD/YHTYdwP4SIj18k8A+I3M/G63/6sBfAUkbPIYwO8fnf9V2u6uBdvfC+B3Q/I0XtFj/1tm/p/PfVGXAM1l+PYtguXPQCqbvgsiaP/X0f7fCuCXAXg3pCDM1wE4uwANzyHj/Q80TOkTNW/w6wD8c0gxmr89Ou3/DknWfw9Ecf0q195PQEKM/jBk4vITAP4ggv8FAoHApSHkasFnQIypX8XMP2V/AP4ygA7Apx3Qxu+DFLD5KciY/BUcJk+/EjI+EV4aeCFQGwoeCAQAKccN4Hcx8ydt2f+d2LMOEhF9FoDP3dbGfQcRfR2Af8HMX7T34EAgEAjca4RcvTiI6E8BeDMzz1Uz9cf9CohC/BHMnK+FuMC9RFjQA4ErgIbH/F4AX37TtFwXiOiXEtG/RUSJiD4N4rX7xhsmKxAIBAL3AA9JrhLRzyOiX+RCZD8HwN/cc84CwH8K4H8I5TDwoggFMRC4ZBDRp0JCGX8atcT1Q8CbAXwnpFT3lwH4PFuoOBAIBAKBi+IBytWXIHmIzyA1Ab4EstTHLEjWFH4fpDr3n7l68gL3HRFiGggEAoFAIBAIBAIBAOFBDAQCgUAgEAgEAoGAYmep3fuIJR3xMZ7sPzAQCAQCdx6v4r3vYuYPvGk67gpCRgYCgcDDwC75+OAUxGM8wSfQp9w0GYFAIBC4Bnw7f8OP3TQNdwkhIwOBQOBhYJd8jBDTQCAQCAQCgUAgEAgACAUxEAgEAoFAIBAIBAKKUBADgUAgEAgEAoFAIAAgFMRAIBAIBAKBQCAQCChCQQwEAoFAIBAIBAKBAIBQEAOBQCAQCAQCgUAgoAgFMRAIBAKBQCAQCAQCAEJBDAQCgUAgEAgEAoGAIhTEQCAQCAQCgUAgEAgACAUxEAgEAoFAIBAIBAKKUBADgUAgEAgEAoFAIAAgFMRAIBAIBAKBQCAQCChCQQwEAoFAIBAIBAKBAIBQEAOBQCAQCAQCgUAgoAgFMRAIBAKBQCAQCAQCAEJBDAQCgUAgEAjcJjDfNAWBwINGKIiBQCAQCAQCgdsDumkCAoGHjVAQA4FAIBAIBAIVN+nAC+9hIHDjCAUxEAgEAoFAICDg8u/mlDW+wb4DgUAoiIFAIBAIBAKBEZgBusFYz5vsOxB44AgFMRAIBAKBQCCg4Pbrg/Uihgcz8HDR3zQBgUAgEAgEAoHbAkJRjqj8uxkybrRaTXgwAw8X4UEMBAKBQCAQCEzBfIMexBvsOxB44AgFMRAIBAKBQCCgsNzDB56DGLpp4AEjFMRAIBAIBAKBwAiqoF27onZLQjtvCRmBwE0gFMRAIBAIBAKBgIBIvWd0CwrFBAKBm0AoiIFAIBAIBAIBAbN6z/Tzuj2IBDDo5pfZCAQeMEJBDAQCgUAgEAjM4yY8iKYXRqGaQOBGEMtcBAKBQCAQCATmcQNOPOJbUCQnEHjACA9iIBAIBAKBQKCiCe+8EQ3x+vsMBAIFoSAGAoFAIBAIBKa4yfBOU1AjxNQhxiJwPbgyBZGIPpSI/r9E9MNE9INE9J/q9jcS0bcR0Y/o5xvcOV9IRG8jon9JRJ/qtn8sEX2/7vsyIuEaRHRERF+n27+biD7iqq4nEAgEAoHLQMjHwG0HAzdbJMYrhRFm6hBjEbgeXKUHcQPgC5j55wP4RACfT0QfDeAPAfgOZv5IAN+hv6H7PhPALwDwaQD+PBF12tZfAPC5AD5S/z5Nt38OgPcy888F8KUA/tQVXk8gEAgEApeBkI+BOwG+iWUuxv2FB7EixiJwTbgyBZGZf5KZ/4l+fxXADwN4C4BPB/CVethXAvgM/f7pAP4qM58x878G8DYAH09EHwzgZWb+LmZmAF81Osfa+gYAn2LW00AgEAgEbiNCPgZuM5gIAIGhzrsb8yLqZzy2FTEWgWvCteQgamjLvwPguwH8LGb+SUCEJIAP0sPeAuAn3Glv121v0e/j7c05zLwB8H4Ab7qSiwgEAoFA4JIR8jFw68Bc9ZDwWAUCDxJXriAS0VMAfx3AH2DmV3YdOrONd2zfdc6Yhs8lou8lou9d42wfyYFAIBAIXDlug3xUOkJGBipUOyT7flNKoq50EQgErh9XqiAS0QIi/P5nZv4buvmnNSwG+vlO3f52AB/qTn8rgHfo9rfObG/OIaIewOsAvGdMBzN/OTN/HDN/3AJHl3FpgUAgEAhcGLdFPgIhIwMtiLlVzG4yrDEiKgOBG8FVVjElAH8ZwA8z8592u74JwGfr988G8Lfc9s/Uyms/G5Js/z0aZvMqEX2itvlZo3Osrd8I4O9oHkYgEAgEArcSIR8Dtx5eMbuBx4ZjiYtA4EbRX2HbvxzAbwfw/UT0fbrtDwP4kwC+nog+B8CPA/hNAMDMP0hEXw/ghyAV3j6fmQc97/MAfAWARwC+Vf8AEbBfTURvg1hGP/MKrycQCAQCgctAyMfArQVDvYiGa/cgurDWKMoSCNwI6KEZFF+mN/In0KfcNBmBB4FtKUKBQOC68O38Df+YmT/upum4KwgZGWDmmv5HBLpuUcZcpGfpOhTFQODSsUs+XksV00DgYSIEWiAQCATuGMbKGN2cIyFWZgkEbgahIAYCV4EH5pkPBAKBwP0CwcycN6ykhZIYCFw7QkEMBK4SoSgGAoFA4A6iSK8bk2MEZg45GgjcAK6ySE0gEAjLZyAQCATuIIr0ukE5FiGmgcDNIDyIgcCV4AVKdIexNBAIBAI3jJv0INJNh7XeVoQ3NXBNCAUxELgKmGy7kPWTR5+BQCAQCFwXqP28KS8eIRSirYhxCVwtQkEMBG4twoIaCAQCgWsEMwAG00368OgFjaz3HBxLaAWuHqEgBgK3Di8QnhoIBAKBwAtBZBCbDhKy6HYi7kvgChEKYiBw2xCW00AgEAjcFFTxKMsfXrcsCtF3GGKOELhChIIYCAQCgUAgEBC4CE8w30i6W9NleMqmYMS4BK4UoSAGAoFAIBAIBAAAxAxQEi2R6EY8egSqClB4yipsLAgxLoErRSiIgUAgEAgELhfh3bizEOdUBoNvxlPFLH2DtGZOPEuziHEJXCFCQQwErgLBtwOBQCAmsXcUxAwg3Vg+IFmcazjJZhCDErh6hIIYCFwJYlIUCAQCEQZ3t+BX4SXcXIineC9ZVKF4hlpEIbvANSAUxEDgsuEt5mE9DwQCDxnBA+8YWPMOCRZhepP2zggxDQRuBqEgBgJXibDwBQKBh4zggXcMpAVi7BduNKKRohhLIHAjCAUxELgKFIEWls9AIPAQoTwwvD93B+Kusx/QQM+buYeFDI5nKBC4AYSCGAhcJUKuBQKBh4jIk7qjIFgGIlK6MechNcIznqGCmFMErgmhIAYCVwVGTI4CgUAgcGdQJRbrchO4OTnm1/wLBALXilAQA4ErQ4TGBAKBe4hD+FrwvruFxmGXtEgNiW52E/fytiiHt+45VnpuHV2B+4ZQEAOBqwC7SnCBQCDw0BC87+6iUwWRbm6Zi6qwxnM0i3i/AleMUBADgQkuyTIXyfWBQOC+wbO0nfwteN/dgrtfmW+PWhaP0RbEwASuFqEgBgJjvCjf9Za9sPIFAoF7hUND3IL33S20couz3F///9rJYa6fAQWNPgOBq0EoiIHAGKHUBQKBwHaU/LA9vDIm9lPwLc0hq0sfgocNkKjded24LeNz2+YDoTAHrgmhIAYCHi/Kd5lnqpcGMw8EAvcFB06YYxK7HQeH6d4QUgI1GuP10nijI7L3Wm/R/bqNz07g3iAUxEDA4zKMhZM2bpkFMhAIBC6KQ9c3vG2el1sFN7G/jeOUGcwMhuYi3gCNjepznf3v7esW3q9A4AoQCmIgAFyuUZBR14+6TdbGQCAQuGyEF+N8GAeX3KLxq9ltmvtHSUi8IXpYKLnmMXIhwL7fW3SfJrjNtAXuLEJBDAQAXKoIJNQQnbA2BgKBQMDQrDeIW+dBZAC06AudNyXFiEhW2pAf19nzNoKukYZ9GNFyq2gL3BeEghgIeLzg0hRsfDr7QgT30LoXFstA4OHivO9/8IsWJidu6VJIvBnkiykeN0BjkZw3PT7j/m8DPWN98KZpCtxLhIIYCABoSri9kDWOwMxAIjCxtHUo776LPL4RTHfxAgKBwIVxV0LwbhWcT+4WehApJdByCeoSKMkU8SbuLBFds/dwS2gp0fT3bUC8b4ErRiiIgUABXxLzFwFD51U4b4ncOReaa7uLFxAIBC6MfWu+HrocxkMCTb7cLjADOUOMpiLE6NrvH91AfuaOZ/U2Pr+x3nLgihEKYiAAuJAfvJhQYgaQymoXF2rvlhUu2Im7QmcgELh8NB7E0bbgDTvA9eO2jBMDTCSFYVKqG4GboTEl4DqK1Oxr+zbdI6ANT/afY9wmmgN3Ev22HUT0nx1w/jNm/ouXSE8gcDNg9+VFrXEEkDFnKv8uQsztR1guAw8UISPRhtAHKzgcxXqIW8RDGUQJzPqJoSoZN7HMBUsNUwJde/+MsaP3ttwjVOJuzXMTuK/Y5UH8gwCeAnhpx98XXDWBgcB1QANp3PcXVdKc5fPCFsjbWcBAMFO84NbSGghcCR6wjPTv/8x7v40vBI9owO2/GwervOLVWauEXPd9c7oPX9f4zFxjI8NvG+JdClwxtnoQAXw1M/+Xu04moieXTE8gcCMoxjgrQ9qYEM/dGoDsfl6wMba2biHmFssOi2bgYeHhysi593+OafIoIiNYRAuCTvRpOlY3QQxngLoS3lkVo+uni3IGEoEyix/xOsbHci4BgLRP0O19bi97TG78GQzcJmz1IDLz/3PfyYccEwjcCRRrHF9C5TQGk62DCPhk/4NBGlYTvDoQuJUIGTnGAcU9wunRgPx43PTEvIRSMjAMoiw2+26AHotwvQ7F5a4UpzHcZtoC9wJ7i9QQ0UBEf5JcGSsi+idXS1YgcI2YU95eJHxDF/hFumiC/c2tPRUIBM6HkJGKJu/atuHWrvV3O+B4/W0aItLlmlxAzbUjuWJvTlm8Mozbt+f2tuph+0K3L0L3bb3WwI3gkCqmP6jH/W9E9EbdtvcxIqL/kYjeSUQ/4LZ9MRH9GyL6Pv37NW7fFxLR24joXxLRp7rtH0tE36/7vsyEMBEdEdHX6fbvJqKPOPCaA4F5XMZaR5REsIGA7LyR52lvNnwrEAjcUoSMlA7ls5mrcsv/gqdV0EjruQ1Do/eHuh5UKnHzjZAmupn2/UIpH3tQns3RNvu7TYq7x770jguWPQgEDIcoiBsNk/lLAP4+EX0sDnuMvgLAp81s/1Jm/hj9+xYAIKKPBvCZAH6BnvPniajT4/8CgM8F8JH6Z21+DoD3MvPPBfClAP7UATQFHhIuarV+gbLWBAmHEdHPrjjqC3Ley/ZyBgKBy8LDlpH7PBkNP33gPGtmVZBmw03ydNc/DwOsSFrZfJ20WWEaSpcnQ3f2t6vtHcVrrht7iz/t8tbvoTfmE4ERDlEQxYDD/PUAfjOA/wnAz9l3EjP/PQDvOZCOTwfwV5n5jJn/NYC3Afh4IvpgAC8z83cxMwP4KgCf4c75Sv3+DQA+xYf4BAIXxguUkOZEQOrAWjL8stZEjulVIHBrETIScCGmoy58ol0wMAERrPiJmRH5xgfH+idgudBUCcukV0/wtSkRXLyGL14T4OIkYEvfN0YTfN2gGQ/i+fTcKYhu/CkM3B4coiD+LvvCzD8I4JMA/P4X6PP3EdE/1/CaN+i2twD4CXfM23XbW/T7eHtzDjNvALwfwJvmOiSizyWi7yWi713j7AVID9wpnJN/XwpjzBk8DFqg5hwTowM9hGEBCQRuHR6ujNymMPiQUh79ftDwuYY+wc6FNN4gyAqqrTdA34vCQHT9csfCb5nnFaIrQqlhyvXXrYGvsDp+73YoswUHjt9Df0MDFVuXuSCi3+C+f/ho92sX7O8vAPjjkMf5jwP4EgD/EeafyW1R587MtXVfu5H5ywF8OQC8TG+8ZW99YCdeJPfAzj2ojarQMS5eNY0AKRHOGch0WNfjUJFJ5b+6f7a9mypNfYOLKAcCN40HJSPHPGbu95ZeCpFRQl9A1HgLrXjowWNU7u4B0uW8Y27EJFniwfIAbwbtOF3b85OohNTuvicvMjm5ZFwiGbfoqgI3jF3rIP7a0fdvdr8ZwN84b2fM/NP2nYj+EoC/rT/fDuBD3aFvBfAO3f7Wme3+nLcTUQ/gdTg8XCdwZ/AC7Gou+fyA/shbvC8AHgZQqkK2oWUftpXa9tbDQ865LsSEL/Bw8XBk5CRsdBTeZpPoUnZypADNtfFQoZUxaU7vOmiMdun/LwiTV5sBWPRi6PR0Xus9lGfpWp6fkbFDCvTs8Xoz3W5N6oLjdZsvKXC92KogMvPvtO9E9E/974uCiD6YmX9Sf/56AFa97ZsAfC0R/WkAHwJJtP8eZh6I6FUi+kQA3w3gswD8d+6czwbwXQB+I4C/ozkYgUCLc1keSfm+5UCcg12aLkvU/BSPJKacd2KF13/jxad5B9OePeeKwfXjQuMUCNwDPCwZOWZgLlTykBZvgk/dVjhh0Ohe+4yJB8mLLbiIJ7Ecb+Ge5+jvkrFVhp6rEWfEmK36qdspgVHXgNweUXSNvrby2rrUFf/wNKRQPee894qh9RPiPQ3s9iB6nFuoENFfAfDJAD6AiN4O4IsAfDIRfYy296MA/mNA8jaI6OsB/BCADYDPZ+ZBm/o8SLW3RwC+Vf8A4C8D+GoiehvEKvqZ56UxcPtxKSz4XFZZZ9k9N5NkcNcBWanmDJB6EQ9pisq/diNhe67PjU26uNIbsiQQuOcychz2rhPVbUtbyAW222LSCViOn45HkTWHGNnGCtusvNh37oHoOlhwaat3XKdCVJ+xa+uaWQzEzLBa5LQtN/QmnmenH25dG7I8Juejzwy+oRwGDHSIQZGI/gkz/5JroOfK8TK9kT+BPuWmyQgcCGZhWGIMu6LQGm9ZhDHKCyg+zGAVJgQCc97h+XOTKL/AtJ8oeCEJTBn+uI2rYuyzzgMLk5I8EZqj765hMoaRjXEf8O38Df+YmT/uKvt4MDJyPF9o+BdN988de9f5xAvC5lykOXZUxgW7FcVm7Jws3DWm513b1xSkbgEsevBqJSGXuXrUrqVYzOg5uhSlpYzTiK87OSvDLzUEGu8uxj/oCsXDTMP+Hk/eQeh9SzPkHE4k2/Jcxaj9sN/Th4Jd8nFXkZpvRuVCP4eIvsnvZ+Zfd3kkBgLzKIoHZ1RheAUdzeRZXIT/UyOAfGjOTGMTBjxnEjTlFe1E7BBcGpM3j+hMiFMRljzeeHdRrvOOX0fgSvGgZOT43W/yDd0xHmPFJyBw40hMbmz2GCW9grArRHJyXvm3G2zhlAT0HbDZqLIkjuqiOFwTKCWwKqaXKlXmGvNyjABmApBViXf3xZTJqxRzc7mNW2sTuJ9NG9t2bEdIu8AYu0JM/9/u+5dcNSGBwFb4amJXwsaoncSwC2s5L9SLSEWhxXaS5wT6NoVun3X5ClH1QGppUdBo3O487sM1BK4DD0dGTqIXsN97aL9njG8PHqaMeQPgoTiXcnh+oyqDQev1xFB67VEiJocvWymdHT/7J+PVBvbMCPGrHIa5treuMbqvrfMTei+igQKXgl1Fav7udRISCGzFOL9FkgRwaVx6FD9SlVGck1GSO16Fq1UybUJE5vpFFVJbQ0nd720VWuf2XZLiZuG+E5JLtgbq2N1lAXPX6Q9cCx6ujGze9h37RkF65/V83VfMyYK5fdMTsXscseWWHDq2pqyyLtXkPk1N2nevLuteEgEpFeXwQtLeDMq7ZOSkX9QpxlwUUGnjIgS9AOx1ajz2bp8Zo/38gXCx+7Ft3AIPDmnbDiL68n0nH3JMIPDCGClwV5ax7vM7tiWm7zwfACU3P2KQF+he0fNWY8/Qx2Fc+ie8n9rjldT5a5jZd0EUlXeSn2eW5RFdd32yd9fpD1wLHqSMJMd/Zz07PPq087BjUv4Q37fqnWs371K+9hyzVa88VBBQ/RskAoYYUnSt3PZrulcMCW81j95F2zlYYTZvd5Vrk3b8M3zdj+xYGRzTUYV0e85F7ld5xwMPHbtCTD+DiE537CcAv+qS6QkERpiZiFzIu7cDjTXQheNcxPpmyfxEADIkdxJ1GwOTMtI+dHZsmSyhL2737DEz13Iey+khcOcXpdDfm2Lg3lMJ7bZ7DPaVQw8EBA9MRnpPCk122cfsG+O9EpNc5gf0nrE5g3i8Wb1lB0zOL5SDeB4CuRaHczmA52rqhXmo0GDjNF0C5AVceAecymOldG7Oce3P7fjauSqBzRzA362LjJNrN/CgsUtB/IMHnP/3L4uQQGAeI+WIcPXMa1YLOxBmfSMCJbOADk09l61ev4niN2L02xQ/k8PjfZcWBrOnkeIdPWeHhwjYm5w8hoAM7MbDkpE8x7y2HArHCSZ5cDahfYiKolwjNQJBDW4HD++cErjNo4tzsOVqAKAuISXCoLJWln3Yfeok0qfZf857a9EzeVRZ8yJt+TZnSGsOAQDykT+YPvc3UcRsHFk02YaZeUX5dz6c4z0P3G/sykH8yuskJBCYQ+MQu7IQxpF0e5EwEs6g1NV2WBoioPUU+n7K71307TiE3dg07Y3bv+C41Ruwpz2d7Bzaz22bDN6XENnAteBBy0ibfDZeL9KIiYRafGWb72lmAvpQ3rsSFULTz11DsE8uXcL4FdUgZzC6JoLlXK1PRMNFFJU8H/J5kZy685yj11y9ulvaum2Pq7czX9R7O6qhEHjY2JqDGAjcFlgl8KuzadH0+0UrpxEBlJyFkV1zLdM9Tw+05QRWlyrzlgOMpkrE5YHbNms3O/qZDYU5pK8rtmhaIaFAIIAaM+o/R+HkVrzE2JrlXNuRzuvEMyx22uUDef/Ilk64ZL68rR3as992F/chAV0SOZaoUTwm/dlSJ8TTfYfQtosek6FE7ekXkRtbvatz28nJ75lTzkvDDWHXlCAQOAShIAZuPzTS41psWtu8ZedClmgdW2y3zAXaSdahPVQb6pyGqHt3hZNcds5mQ1mdEBZfwc5+3DWcN+QoEAhcE3ZFJBhDtoiBNAohneNxu+L6Hpjn3oXji3ygy7n2bW3wnv222w4lAlECDwNoyECu+7d3sCe65CJePxsnZhup87Xliryds/NJN17y0nlouEHUNZkDgYthr4JIRL/wOggJBHbhIKvdRXmh8dFL4KVsFlUwvFeqetWoegPPaYUsFkGeCsuyZa7NAy3I5yPETRZdu0LeAf2c9/p58uVq0NAVXsXAftx7GTl5BySko76SqkHM2a+abzxt6kF67nnyeRDPPLhZ7+l1YYZ7+6hKD7v7Qs35B0SHzPH2i1we14+G/U8fov1t0dx5O86eeS4ZAKdU998EyvXv75/Hz8E5uggEgMM8iP89EX0PEf1eInr9VRMUCMyBGhviVbAw3mUiPV9LOVdGXpamGB10TpdoCdEan1fyGnc0dqAF+VzwntbRBOSgbg69/km+xxVbbhu69uQEBQKC+ycjGyOUbUP7PjKAVPkyT178Gt5HJRSRXNsPzHOoaLxR4wqUl9by9OdBIAJyBnVdsQMWRWNr2KV/QNB4l18oX694qN3JsyQc0Lgfi62huDNCutlGh9cRuipsk4NzhpddUUWzbbt388EZbQJz2KsgMvMnAfitAD4UwPcS0dcS0b9/5ZQFAh6NUrTtoFvA1JpKawmkuRl1rUA4obNLqWuvpUnxmFzmKATHt+EndZcGbi3TRiPsinYHI83/uEXYOdaBQIt7KSNnecaMiY5ZK3JqpcvRhHrSbLxcNeoj1yWQJKrkBcZj7tSJIXHm+7bm8lB5vCmJ26JT9omXC1wXgUB5gOQf8oHyf1eDNP/do8jKLftJnOWTwjU3iZGtZbLPG3L3ke0LAj0wo01gHgflIDLzjwD4IwD+cwC/EsCXEdG/IKLfcJXEBQKeXV8tyzIv2Is2Q6IMWvz/XHjPIQLGWQotiHQUTFr6mzTphTldcQjXKNyVJ8RsOe3wDs5P02Xiqgr8BO4V7rWM3KLTUZpOOmnOY+QMYiOz12VReMdA1ZDmwigvVumTq5AcKwHjSNbx91m6RG6RK7Q2rj/TyjJUQ6Tf37hJD7qStgu9FCpLTTjyLzROo+8z/LwGbjpP6Dj6Rj3m17oSxHi8/fZtRgCgfR7OG2Ia8i6Aw3IQfxERfSmAHwbwqwH8Wmb++fr9S6+YvkAAXpDKz0ueWHhL22Vw/RKW45ROH4p5CP3cfqmCcRz2Ih2Wqdekj6uZhBUh4mhhKyawr1iCUXXQONzAJLKpTsDTbYGAw72XkQ3vqh+cdSFz56WwcERyc2yf09t4X5poiocEr7k5r82F4eRjE9452jY2Ws42I3KLhw2Isx4/os/LmPKH0TZ3/AVFKpFMT4nbS7mQ8jIelxmPItnz6Y2CdliJDMpyejNnuEaM+9wxL6KxAnngjQgPYsBwiAfxzwL4JwB+MTN/PjP/EwBg5ndALKaBwNVirOzsLVZjXrNzeM+4/KvnXhjU9Mvg87e5JVRrWwtFYRvnEIwtji+KSUEaT6ZaV7f2Y15Qamnd3eH1WjPHFzWeIAQCU9w/GTl+D2YKdgCQd76JHLAJ9tSI1X5aH5dG8R2BahbNMMwYpA7FxIO05XyTb7v4mfFkStOUNtfEPhprobYXgNfTthocL9iJl/XjzVv7MJlVx6Kabq/wIZ7aEia7xu/pZLTmPL77unxw72VgDv0Bx/waACfMPAAAiVnnmJmfM/NXXyl1gQAACfyfWvy2ooR/nCcOxEyC3hR7EVD7tWHY52izKeRQpeUs8ycXBkQ0EgBe2blcqyA5guRS+TDroz9xbyfXFMtj49bQxvWxCItqYDvuoYzc8c4RgYjAnIGaXQ3LQ2zO9+/VOC7vQZbhJ+elUu/hXCjjoWjE1Y5zbX8JSd3mRSRQSgAxODOo68E5g2b54xw9PCq8s8NjuQulOvdInu3wmB3eNppnkVIChgG7S9DkcrIcJ8/+lTsSjSQnkvwu+bJP3toY0s77xwCI6FziOXC/cYgH8dsBPHK/H+u2QOB6cS5v4PnPNc/XrGXuYHCTVD8x/F3YEyXW3fHZZJ3sbf9yJmL+eqpVeU5q7WrkPLTcwATyvNcTeOi45zJy5ElkLsYgYgbyOFqBJ//neFfxWL1wxMbdQRmTIiLoQP69Beas3XbaXLj8vrHmDB7Ek4hhKHaygzG+nwd2O2qkpFUUfW7imD6gQfOYTcbV/c65fVZn2/Whs6JssW2/CugQMjDKsuDRN55e31hh9PUIRm3Mdv2A3sfAbhyiIB4z82v2Q78/vjqSAgGPGQa8T4ie17J4mTxemSul5CYB2447AOahE/PefHs0tdKacG0augyeP/JkivD2xSdqHtKWBhyRhxBETsifk9YXRfFCBwI7cQ9lpDEecrNz7OGtjXunfhp/mESZOm/Wg5qPujFMTru7kPHQe2i3HLJDN2qbIlDq5LPv5Vb3PVJKbfN76RyFEZf7fo7rVC9rIgJSQiMHyjFb5gY+vaJJhsVUjmj7JsdquxNtVMSsy0mnci1XICMKCUlyMU1ns/BtP7eYKIRbGizjt4/e6bUHHiYOURCfEdEvsR9E9LEATq6OpEDAwwuVQyYpmFdQdp1TDlfl5zzFZOb6GeUCzit152ibZhexqCgl3ywsB054ub4ug+ePx7ZRgkfjN99AbefQMSjFeQ4n80IY3/cIKw0chvsnI30Y4tb5ovGlGe8FOR40wzPq94f5rk2ULV/w5dw4B3/f1QczoEtLSFpHEm/iecWHj1HUwkWNU+qQayQUzx5nK25E8ArSDk3XLqh1Cm7Lu8zjUGlMnvlZinmfrHtBMMt9sJdpYmBxaGTW3PwHBz9fD+xVDOzAITmIfwDAXyOid+jvDwbwf7syigKBXTikqmRR0vQUoK1ONm20Nsk4PJdua/dq9eQankPjXIpDMRKEE/tfyQ2Z9yCWBaovmgsyApVKhTJYtYAAO7nNreA0+say6xC6yv0u/wKB24Y/gPssI+e8DvZOq2uwGqUwPRZ125R/YZZ/uY62tHeHkap8atjbeYxmHpOSmu53k8uOum22n3oO9T1MMclDrqlwDf+2Z2DUnvH1RiGkUrxmZ6VrTwul6h0t1zJz3uR6uO1+0vRIwUwJGKQi74wUbWky2qsIvPzHk6tctbzI6XszUn6VvDJ3wWiftrtr3Kskr2ubBh429iqIzPyPiOjnAfgoyDP0L5h5feWUBQIAGg5sSsJWRYumP02+HMLslCnuVib3QQVhzpKbQ3Vtqd20j5shJxzreZNpgPNUepptwlH4/CUuF1GnetC10Hikx43vg008RkL7EKWP3NgFArcQ915GeiWg4V8EIKMNfR9Fevi8N555i/fy2vv13hOgOZtmlHRjdFGZM3HxHcJTZ5oBg5CAlKQwTd+Dh1xP23b+5LfRxMVgWJ6RQw19alDk7ISG9ww27j3fXlXiqjHTTpMrJGYwOaNtSkDezFDlLJpOhl2pcjjuWcerxBA1fbs5girPZN5fP2c6p12ariNaJ3AncIgHEQB+KYCP0OP/HX3xvurKqAoEFKxhJcUT1mhIM5bDGSVsvwfRNV3mM44T0xbBtK0lb2EEVYuctwQeqoTOXcs22hUT2WWK4qVJNSd1hgFMbaQ6b/Mgjmg+1Jo8O1QvpMQHApeOeyYjjd+O3mO4+abz6HhHD8BgnuM2NOOlwe53+R6+54zKj1nX1Tu3kshjuYRWadBJvh//w2QPA0MGpwSs10DflwKecj5PjY0TD+K8542TEHSQAdbnChZxw+5SdQTdtfqxYDBIDbRMrrpu8bxVMydtNjPGj/F1+PNmxuCSUach9cWqxuBKH4NGlz6S79uuaWb8W703jLKBAxREIvpqAP8WgO8DMOhmBnCHhV/g7oAhqbIWAnIOpuW9a3thFk83nZlY3/b3TSBQ1yFvhtrIjCfwcPZLzkK4nXJplN22kfWzSdx3x7+Ap1SUuzQrW/efbkn+F+4+ELgVuJ8ycsz86m9xEFGze8orxTND2fMkbubYpbFdL/M9Uw4FVFPGGk/QAUrTOJ+8CfUdKTRjv67dpHE/Pr+PEtB1AGfQ0RLINTqkYfRbPFOzcq2ES5pidyASqbd13tRQCPH6EGqBuFJ8xstcC1uFedoApE4NnfOytPRTXOCOnqsyYBSvPLm+zRhjS4n46zK6RzdmlG7TbDuP534ugmBbO/fQqPNQcYgH8eMAfDTvLk0YCFwR2olJu2ueCdFIGTsokbwc7hZzvwDYGLkTJOSFUaHxEJqmx9CW7xgLjG3nXQbjJv9lJHwwc21T919V9PdOipoOA4HbiHsmI2e8DON5px43y5ONDzX5UOYzg3un1RPzEF9v7/250GMz5p9jY2g7qNVrNzfY9V4wMoglLYKzRYJwbaP05Z8NmsiAFlWZoobmPcgmM11/jeyZg6OFuTnXQk7t2S2t5MEdj9G1jAytzfZzXMs5QWyqNKvXFu0le2Nwc8tnjML6vWnigFzE7Xv3PK+hHN4bHFLF9AcAvPmqCQkE5jFVQOquLSZM+3Ob9gnhJouGSA1xvpHDhDgRgSiBQEiw8tyWE+D62NY285a+9vS/ZSgOwgvMa3nm/kzmyY1n0/7TQffFDNtyT8c3NRC4Fbh/MtLrAo0HQnnY2JPEo/P0mLqLbKorf1smu/cd3t7V6GtTF+zoxB3y4oBzeLyt8SjVO2S8mfoOqShUVMTw3G0Wj5F7HlDvOdl/v/2A+01E4snUHH4u3jvX50w73jgpq1W0JgqM24Eek8qNqFdHVG/SzvDTK4Af7IxpRKvqwdQskzI6H2jfXf/qXpj+mfErjQbuGw7xIH4AgB8iou8BcGYbmfnXXRlVgYAHASV0grHHQsXVYkYmoPadgyoTAJQQiQsVEJCcB/Q98mY9srra11GO3qSJmX20z5bjzfsqlvnAgJ4XsPiRegBqjigd4EHU4w4IRWFssX6HlTJwe3D/ZOTk9XJ8jNxM07sluB5XYydYip4wl/dYvmPa3kMCkYujGM3gd8GHlO48vOX8U8+Ra8AXlDE2e7REXq1BADJnEYde15h42XybrZeOy5IZxsYPuM6u0+O91893uaWNyfiogZYcZS4nsY68K6Ljvdqcp7JnV/+XhcZewEXO+gPM2FreswZ1HiT31q4h1wir2X5nlOFD9j/Ed/gB4BAF8YuvmohAYB+E35uSOGKWI0XDC5RqyeTJcW3b2Z3jktonFvM9Cg1nkApUbwRscwJRLbNelm3LmfSx/uNrIGhBiKmAqF7QA5TjC/P3anUuvw8IG2MLud2nLJfj5bgXIjUQuBp88U0TcHXYMllseNRo0misjhiM1Hgxxuay1r9Dk6/3D4yyfANQ09N3XbO3LRJKwbPZE0YT+OaIWRnm70SukTTMwJCdZ815sYpdYEbZ1KZcbRX450O2HyBLhwHoe5ENiYSW0kB5wOZluvbNzFUUsarARJJX6UWUtaFFdMbXY5um5F7lg+rvixW6qxfTzHDK8I6XuBgvj+GU4h1ytzXKjnfa4M6d5I+5ty/wg8Ihy1z8XSL6cAAfyczfTkSPAXRXT1ogABiDFIXL1ueZOcT9oNEaQSQ1bnbw8rE6ye1m4JwMT22VjFYol+T4LbR4xjux1KlNlmgkBOzY7CzSui2PDpv0R77pi6GMiynvh7VnSfb7isGR9uF7CQRuE+6fjNxr3UHDrJpJozdmuaba+SwmsQ1zfONeTjR1fEp+3B6WqRP/akScm527tourbHzMtvMaoQN0EqlCx8fg9QDOQ72FlDR9gF0f1N6jRoFD03ZR0ExmNceP0HUaAeO1Y+8V22GEJN+rKL4mG9kU4Ubw1FDapkydt3mMhqnsv2r90L9LM0YUolTu0eTulrHmOmZ7MWdshjt3fl5y8blS4DZjbw4iEf1uAN8A4C/qprcA+MYrpCkQGEGE0izbaRjfSGiYMNuSuF9gJsZmG20/fiepDOShrB/lF5K3+dN2SlpBy+57VV5nOwUjidLlBa9v+TpCYnz/s8eMro8blXYW26ZCgcBtwf2WkY6nFoMSTQ4pHiK4uWwTQ9FycBobuhoc4GG6o5izbdL89F4xntiPFKZJ42akm5Ffnj83USjWP4nnDgCfrUBHC6kI6vLwGoPdjjDPul/TPHRbs27vLgPAZiPrE6aRnWUuZWNb/4wmH14eyaxPpe+by197Xe7c4kZ0/VzZ89lqplPVzhtnsowTxvcT7tHxz4Lej633Lrdt+C5LU/45OuR6AncVhxSp+XwAvxzAKwDAzD8C4IOukqhAwDC15pkFdnSAT75XTayGy6igOFTbmFOyDjy3KGlmzNXfTShRmi/Q0hR3MRKInJK5hQ6dEHiHJdt16LnXomgdmKhepiP78h180xenKhC4atxvGVk8g+63TRRnDgNQQxONKVlI2y672wN5yRtDHmj/knrNOJOe4ybo/r54b26TKOgUM/v0f0oXd50c2ffAag2y32P56oWNb38HeKJ07OD/pphyUWmqTJttfGbbjOGXiseTynNMqcP2h9K3ZX1d9YPqlDkizf10NDee+1TCcJvwYOhxdq9Mqd8y96i9Hlg87tBjAncahyiIZ8y8sh9E1OPBsPLArYKfmIyNfH7yMZ6IFEVtvtk2YZ3aNpvODyORzQqb85a0D56N8a8Th0oDsVpfd1rsqvWzHFa8jrT9tMvGOSyqNDvGW8CjuU4gcLtwf2XkmJ+at6mxRs0Y0ni8AUBWvsemGMx5sYBr4lY3B3ftU+/QtuPRyL16jpNr5i2yRuc0zzklzYyLYMn1YwafnshtzuZV8zKSpwYCHsuZ9t5ufRm28f9slb8ZWZehEH3P0+HO36ffTQwaKh/9GM0qPFqPoDHeXtfzySWkl8qYA/5i2cJwS+hva3yocwNu7Aez16Dv4Nb9s8cH7jMOURD/LhH9YQCPiOjfB/DXAHzz1ZIVCBjqosLFeDbm43Pbytl2zK75GjXMrljQZr11e+Z9atUrjLoIYBPyGAnMGg4zJ4RmjbUN6V4waz9lkiaC43bNVE3K8fYxnjsFBx57mQgLaeAw3D8ZOZ4Uy8a974QFxPGWcEaeTNJpuzfqvr5/VpG6yIax52fmFEANZdzYMKfwYzc6au6ejgraUCLxGqYkBk5bI5AIrHJt3sN02LPCwEFLnDBz8UJ7W/BYMeRtyts4OmeU3uDNEbYM1baphWt8buMVoFW8Cl2z8tKuX9+30bskdgLCuAr67CXY3AXAZKmqWdzT9zNQcIiC+IcA/AyA7wfwHwP4FgB/5CqJCgQKCGUdICpS0vaZAob9ZtiduXFwlkmu1sa5U/ZYzSglJCIgc2m6MvBU+PnU0sqtNdTCfhLNXJ6ztKvHkYtgUNFXBMKW3M2bgvdE7PDqlsOL2XP/sZeOsJAGDsP9k5Fzjz5v/dEaxMT1VBsp/G6myFjjmRwplPf1/UtJh88pM7vyt5084hKWOVJW/Jhtk1tzfYwNoykBuo4vgUtOIrLKxW28eEJ7y99FDlo+opNK++5xSnJsaaquUczAKFwXVTkqkTh2lirj7lkjIyylEqUz9nUW067v46rDWdyYldxNt7F5fbquGoL9u1W8wvK8jGsbbXu9yYoUHULn3tjowF3HIVVMM4C/pH+BwPWiuA0J7bfpr1nsE0AzoZ6WkD6byL0rsd6UTAJ4s1GLXnYV0jJagewmTN7rNxJ4NpegVrPU3VwFnWuq+g3dROIu8vOILQ3cctxLGdk49EZKAfvD3BJCQKmyzMarVKFp9JiJt9BrEaNt9wwMgIYBRFXBkTDBPevCmsGwKEumCKGVGS4Ec+cIzigMDEhxmI5BeZB7mTq9lwTkXDzE81c2udLZY8p/GYCtJBYZ6lvXCuXlGSvbi2aExnupXjXmXK9xlPfBeSjfqXQ242n1gvaq4fMz/Xs3uma2Yj7MxShdweX6yz7Ou8c8bylSM0vjaI4RuHfYqyAS0b/GnGOb+edcCUWBQIM5b5gJAVwJb5JlMS7YcEpCUurQCKok1kwyIVO1Pkyk9Vj2A04weLoYhKRrOrlS6GYhdTJGpyC4e5Ovu0Rr4CHiXsrIEUsqk/m50LMm7FBPtGNJi2ckmi8UZpPxZkJ6v995NuMjTyTaAcZPnt6XOTjFvBZK87nv4xusVKQESh3o0TH42fNqaCziluppjSiaa89fxlgjdQrtrDJCRXk2OUqAhLmW31SF5OyASOdliw/FdD/BhJoEQmVbFcQ0slPSDrovA4wSMmVENop/1RhpsQSv1v6yWjrtf/Hs7zYYlyHhLQbymfYD9xd7FUQAH+e+HwP4TQDeeDXkBAJz8NyZqhXsshj0JC9j5phDw55yBrpOeGdZh9BPrKrgcex72o83cvJoX0NmJXZCmWPytP2oQCDwYrjfMtJPVGmGlzHclLXlRzq910IfbuN9DR/dA9Nnijpi3lXGaEK+Q9403jJMnV3TVsT7N5aZk++si8hn0GbtPGyYiSodyy1Upcq8Vr6PYgulutTFtuuz61ivRZa654vYCrfolTLtbGNaHscUbDOg1san0tUridOWrw6jwTZltBk3/TcMsHEYqcON8sxj7+8W8slSYx7o+xlosTcHkZnf7f7+DTP/GQC/et95RPQ/EtE7iegH3LY3EtG3EdGP6Ocb3L4vJKK3EdG/JKJPdds/loi+X/d9GemTS0RHRPR1uv27iegjznntgTuBVgiyedzG4RYv3LxjiDz6PEdjrNZ0WT8KmtOBkiQvZCvTnmt/Lqykoas9ySt+ZUhcuBc7y+OdxJ0lPPBQcC9lZMN3eP57czjN7zdHC/vJ6/jYh/iSmwyz0dg3Bub1A5piM34IfQqCyZtxjuFc8Rp/AEE0wtSBUgIluXnlrENu1QHPS7mGrR5QpT3JMg48GqVCD82MxaQt9aBadM+oLUpWG2DUQKOkjdvk7df2orBx8V4+VWpBpMV77BrcKprecKDjS+WY8bxiC+205T0OPEjsVRCJ6Je4v48jot8D4KUD2v4KAJ822vaHAHwHM38kgO/Q3yCijwbwmQB+gZ7z54nIVkj9CwA+F8BH6p+1+TkA3svMPxfAlwL4UwfQFLhrIIjVsVhcgSJVL8PKZXyzLAgMJ2TP2ZZZ9XJG1lh+0j7MakpZ8w5B8+R7D+LYa0nlX/lZrPNqoS17NZzoopdya3BnCQ88FNxLGTnnXZrs9/zFz2bd4RZ+mvyknF0bwIN7yYs3SP5UMuyZlLsxa+6N+yQtVqYyCBqmacol2fn7xtvuGRGwXBZFYyR+Zs5z9I0U1eZ7OWbilmyPpQQMeeIkLFfkPZVj2ohAVhROd7aqcn12zYs48ZqVvM+Z697juXwh2Li4jhlcFUMzBjADmj/Z1GAtcyb9rJOCto99NAQePA4JMf0S930D4EcB/OZ9JzHz35uxWH46gE/W718J4DsB/Oe6/a8y8xmAf01EbwPw8UT0owBeZubvAgAi+ioAnwHgW/WcL9a2vgHAnyUi4sPq8wbuCtSy5w1pZarhlagXRc7t74vmGHAGOMEYuRXQtmpiE0kzzgmZ5D7OnDMBuTEyq2Gdit1tVn/3ryBw73FPZaT3JsxPnutx3jPlFcqGY4+iM7bx2Pv+ztd16VC4tRn5uCqQc4VnuPL2ptiKD9104YhlHcNy/h65lhlIAK/X6lmzfEkuxdamCv7OS0W5zPOAMyhTVXBGzsZyLVvPZ9S8e7gGilm1egxLmK/PuytSu31wm2u+4ue0GBFG7yHbXMWrvE5ZduMihfCcFcGHh8+QXnq70hzLwF3BIVVMf9Ul9vezmPkntd2fJKIP0u1vAfAP3XFv121r/T7ebuf8hLa1IaL3A3gTgHeNOyWiz4VYWHGMx5d2MYHrADffioAyZj8ngCqXw14GPvLYNUL2AiBKoH4B4izWPYvpd+FUXPpxVkiCWiVLS/WTR0LCCTE7TWcXKNXwmmu7yzaTEFKB2417KyPr7BgTD5dXYtynUwWVRafq7RidJuWe4frC3I/7BzNssvNkTaJXtijO5lkr40luPFG3QVIbKNu9yVVZ2jb5JwBdAjIjLZcquxiZksgzf5xXRnbJSpozeh6CVOjhjS0UrwVq4EMmabt8Kx5G0txKOc9JVjeeuc40RgYR9vfIp4AUeX2ViiLV7my+oP3WIj5Gg47POE+43C8a7Z8xRuuY3XcTTeAwHFLF9D/btZ+Z//Ql0HEeM+Ium9Qsp2DmLwfw5QDwMr3xLs+WHxzqzXLrFvlbv43R1RiNc/UyaeK84FwECmcqoT6lQZMpuyzn1rdeG/vDx7E249lB01xrEQ0EApeP+y0jbVI5OnOPYlA4HmfxlzmDHjVGrwfoqaCZG3cej00j88gpYebx0riVkcIuh+/pI8uaecwZtOjAJ2ew+1/SO7xOspdmb4A97PJg18BJiuuwpWtw89hMUjDs+6SYi9I//+jDLuggWTkX3nvVstWuiVnHYmr4FX1V740zQJBvA3CcYY5mEqM2/FgEHjL25iBCKrR9HsQa+RYAvwfAR0NyLA7Js/D4aSL6YADQz3fq9rcD+FB33FsBvEO3v3Vme3MOEfUAXgfgPeekJ3AHIPLAMfc5AdCEgZyzgzJ5qQrZlnnUAcSSVl5jMGdwKhphpWtSyKH9zb6mtvvOW2iaWyqw2B3Hk7rL9CYeUoxgcs45jg0E7gYejoz0eWM2GQW2GOoAwOVAqfOjOpTYtfNweAKBygRclm0QY+bOiEmnDJGGXUpmgi4j4g2INJrWWZEWYPc4m1cyJaUxiV+ql1TXcmYT9XLofePR5/7jSw0b90mTWFMvg0bN82j7XNfUhprKNi9zR8/0+Njx90tHleGtgkvN9UkwLfkN5Wtz7dvmILY7Jd39cN7HwHYcoiB+AIBfwsxfwMxfAOBjAbyVmf8YM/+xc/b3TQA+W79/NoC/5bZ/plZd+9mQRPvv0VCbV4noE7Uy22eNzrG2fiOAvxP5h/cXDZv21q2G8Tkr2bkeBXL/UcM/LwAG1SI17HIgfHN7rHMkJlyU0gDFGrjlvFStpvUIZ/m3n+MCBzeCeEUD9w4PR0Z63kiofGXr8Ra6Zx6QGYPWvjbuG5IrAuNCFncPgfHzJJWx9QQrsFIjDRltjmL1KpH1uQNsMqLvkZmBlMCpBpp5O+xhHkSMhff+4+24RKDs1/edaWLSf+tVk0+eHmHPXPbPs++AYfmPs3OPueI7l42mWE2hXL9qyK+FKZuyPlf8x7ex04OIcmB4EAPAYUVqPgzAyv1eAfiIfScR0V8B8MkAPoCI3g7giwD8SQBfT0SfA+DHIetFgZl/kIi+HsAPQZL8P5+ZB23q8yDV3h5BEu+/Vbf/ZQBfrcn674FUeAvcO1Sv3qRM+vSwurtYzfhgBl5zA/W8QwVg0wgDG3t0q8+vFh8wOvVLsUhuaW70vakWaOfmcTI91TPHFtar4Ps8pXL/OfovBFHg7uP+ysg5fbLhWbz1dS+bc+XbvjRLOeoF877vHDTtgDU3sOHqW0NNHfcfBvhZv+gIGcyuDVfYphgPd4jPtisGn62A4wUoEbjIM6hSWnpGmzc/badRgs8hf6xCKaUEtoIzk8JI1of9Hj+rXNzVTHr9XjTCXQfgivA0hNRQ3VI34LBruHy0HZerLTTa/MIP9Mw9OuR9iyI1ARymIH41gO8hor8Jefx+PYCv2ncSM/+WLbs+ZcvxfwLAn5jZ/r0AfuHM9lOo8Aw8BLTW1rrZKV1eCRsfd0DzXqjStry+Q9ohVMtnzmAvGb0lrxFsM32V8m1eKcTMdbnCN4XukRIJjATHJeIik4BDh/eqlNpA4PJwf2XkbMELx4fZfdn6TptS2FbuLF8f2guuRVHKkPlx2+nZUUWl74EMMHI77HYbmKdscyQWtvWROlHI6KUn4NeegxY9eLACNdIAXeSeles6jKEzEdKiB683hfzSjldeyu+29SoPTYG2uUH1DhYPqxZ3Kcqin0OMqfXzjKvGqCBdUWSdd5MzajjoeIh33adt9A8ZjUd/YtgOPCQcUsX0TxDRtwL4d3XT72Tmf3q1ZAUCBhJmuMubR6MvF7RaTiuinZMjmqUxc7V8MuArr7JdC8wSy5M2PKc3YV+9o1MLZ01GrxZlbxmtGy+Zw89WwrvsPvQzBFTgluLhyMjzvYT+6OazUSQf3ovN3C6ptE/fYv+fM2igMoair3gPl2sTcDLtEM8Xg9U7mTdr0PESWG/E40lJFK7zyhGfs0dFa9kLYllWA10H2qzRamwzMnBXv3aM9yCyr2bqj5l6Xm/HEzqlUWYWM/dj1/2ZzHHG+/m2XHDgFuCQHEQAeAzgFWb+/wB4u+ZABAJXjsqnePTpMCm+suWYORQhoEn5VjygZMifE31fA0spwfIB2FsCk9rSndVzRJSjrR40u+7TluticK0i31Qwu8hFnQNXlQbsE5ci1Thw+/BwZeTYqOYnqGkyDUdruBqf/xCgipK3/G0bApMBbF4jdzy7smWkIavjmf15hzYlUNeB3/Q6CWVNUwlc6Rp9jgu3KD1F9k3k9A50HajrSgXTVrwf0gaN5F/9XZRpdseWdp33kFyuqNt8HWJ0OpZAe2/rgh08Pr6cd4F+F331ks41cZ57GLjz2KsgEtEXQRbq/ULdtADwNVdJVCDQoPGqbfFaUcs8Z4/Z3gFKcj9bc4dYXLfQys6qOw6qYtacwWrJa6y9EyHPVTbss9w6TypBdKpqWaYZIXOJmEveP/Scww6+4HmBwNXi/svIXe82TfnvOO/ZDrMv7M65FYWzrhlN2P/ocwxLGTDDZc5gzuA8AJzFu2fLQJgi0YwtDh/fUrSFwcsOebkEhkHSJdgvmXRgmwyVqa0iexCGLEtuqJw8rG8afaPiOSSqMnHm8DYIyW/33jofrXOdjywRmKnMTwRc11jWY87T3o6dL3Bu4L7hEA/irwfw6wA8AwBmfgfOX7o7ELggnKJWrFdjC9bo93msaYXbt6EVJtjODRWwTalxkvaKwkgtOZXnt9fXsOJtlrsyNnD7pTceM/M5K+9l4jztPUjPQeCe4mHIyNn3lWf2TY1rrffwIXshauSIKW87PUBzhVMMLk++OMRelK+yyq7nZ9O0jkJr+dd4myohja+t8cDxgfRxp4u+d6koeaXNHacXxXDHM2bSdWszI/L95uJRvI7n13te92Lmeu3x8Ok2B3oAJzMscoMSOuKDwSEK4kpLY+u7QU+ulqRAwMMpbmYVnXIv+SyC11mlabRvpvlioTUpy9id87gD1PfVcpqStJchS1eUPrmpRN14CMdW9b2WdjuOm/1EGC3X4YT1VeGgtt39CGtk4H7gfstIz1cBNErhJP+p7mo2NRseoNewwLuoVJ1hTI15AKrnUPg4URLZoV4sK0pmhsdGjlwELDKL84BuyAAyeLAia0axCa5iSa3ezXLQnHWAKmkH0EcgkZ9DHhmFp8YHd1LrNaXk5g4A+gU8+aWZSTinKuVJxt48dCUiB9D1K68abg5gob5GN2cQcnvs3LjTeMNO/Vo90tMhrp7XmflX4N7ikKf864noLwJ4PRH9bgDfDuAvXS1ZgUAFm5A0QTGZlLwAxxrzuyrFRkQc1gevV6BEkr+Rs+idVGn0srUIrq0Cb48gJf+FRpu53eWbumpP4i6U8Q0pE7g3eGAy0k3Cgd28ZBxGX7Y95Pefyx+zxXtgixdxzkPrPFl7jjsPCAAPGwlj/al3VwUjJZinsNo5ebbPce8i71jl4Dk8YnmYN0Ds84C53eQ0HWZosR23oYm4KdRWo7F5U2evzl37VchPGvdh6x7OvDk7x2PbczFzDpGO0Vy7bqL0UG07DxA7q5jqwrtfB+DnAXgFwEcB+KPM/G3XQFsgoPCWa5oRHC/AsdQCKvXAMoDUMufJ8TNCy+PoSNepqtGmTRir0W/fX4jZjsZlso8rvTx3zE3inLTsG/dA4AbwMGUk1Un0ltzDYgIit0YbxhPOh/lOk46JsG0+HyfU8bKVE62Ii3m5XlxZkTZouQCt1ih5iTmLGlvEmH5xCldzz6EezqTPSjZl60BDa9fBh0ea9GLnMZ2VIf4xS0n7hRhticCDP7aOF43lo9HKYuAlzYcsganFM+nG/FKf53Z+Q2pIcIPcHK2P0rxY9UpxSiD1Ek6O5S33yMbAF/F5eK/tg8ROBZGZmYi+kZk/FsA9FniB240Rw7rsSUURZMZ9kzdDnq/v9UbyJ5jnHZuNC/GKsS2xfzyRuAuTtLtAY+DB4UHKSJp8mX8/JyzUzd5vncHquqAK2Nz17+NxnGvRlNnxvgwFReji9RroelAi2LIcpelxNMqMl69RJsppO2gfgTIDiwQMm5ay0t98G6ZOMkgUITs2c42X8+kkE3qqAbeE8Oq1+KzF+WyPy56XABb9Y/YYpRC20mU5xBXTmbajY2bXvYPOMsYeL2rHDtxZHBJi+g+J6JdeOSWBwB5YRbNLDekooVIESiQWNPUgzvZySN/DAFkDsVZGLVbXqyoM4wXePlr95IR3HHcVuO7+AoGrx8OSkdtCIdl/wqISZTcwM8vk0efDgImD8gNox6+g+spKQIht38rbx22cjy4quWzifeOu059JlZQt995fky0X1eqHNXDmEPL6HrTowambpbNtg9uvVqeAfN6j0FXHh5zsH12X90JObhTqHORQeXsR2GApvbUiuSeSCv3yjEzVOHZi/qC0kr5rzit92kN4CaHMgbuDnR5Exa8C8HuI6EchVdqE7zP/oqskLBAQ1JCGmq9/ifYsZ6WThZIyQB0sKX1Kzp6+icBZEutpbOm8SqY6m6C+hVZyUuM6PZql00DgXuFhy8jimUCdveu2hmePFoh3DVwXpTcP1ZpbJ+zIg9Uc2yoGTh2YH88X4uekK5AQ0tES+eQEKffIXG/vrEyxe22UqaezhKRegDQigB49Ap2clnPNazb1ljkftQX/OOWPM4MSIefceAGbnLpJyop6IZvn13nfmufdEX1Z8O+UeQpHotN7VMmU1hENhAQguxBkzFxv7dP6qEX1eHTPrsDIHbi12KogEtGHMfOPA/gPr5GeQGCKwqRHFrDLZMg5g63qqC3OC7iQlkP6JWDYiGJozLhmT7SHXhb9jbXT2jRzM1Uz/q6+nEPxSjFnwYzQ0cAdxb2XkeflGxN3kfsswX9zjsRL5uV3BEW+gFASyHaMRfHwOc2mrTCKF+SrmmVHCfz8OcAMHoaR86xW9XQbZ2ktd9seBfDB1cF5tQbOVqDjI/BGCueYJXdS1KehBUWn4ZxhaxdylnFlp8wafWVqobKy5jnK9doTSyDV2ZoHvR2Hq3iOG2Oze58olSmGXefkVLCbPu15xlx0VrlNxeOqGJ/2QN/dh4JdIabfCADM/GMA/jQz/5j/uxbqAoFGDl0FI1LG2/WgTsNZjOGNHIAHoeuB1Lk2aNTGJVrgSujHCFPDqh4/Othf53Ug5EjgfuEbgQcgI7fxKxrv2zGRBGqp/m0HeGXyHnspqoLFVT4UnW87k6xeR1NvfIEbApIqQC80YSe5TU+egI6PQMtllYuz9M3c08YQOD7nQNq6DunxMbCxqjI08kA6+erhFTgWJbE8dzlXxZBQwmAbssjdDB1L6jqQpp6Q975dm3Lk5yMyKSkqrCnDxcuJShvgPIJtU9v6qXMg1HvXzGF23f/AfcMuBdHf+Z9z1YQEAlthRtZGzlwWY1Ity6yNgJYfrXbDBjv7ZSnPTSTeSGu+OR+V6b4wxiEve9q8LZa+InRuCT2BwMXwMGTkIe+pM4gxeGuqGs2dM/l9//lC41jdpQwXPtlaA2d9dowaanhhwjLyMACbDUBaJKbripJVwjtn+2i9mebvM9lEE2PpDuQB+flp6cs/KtT+20pD2Z3r2pE+/96uhUangU3F9NfqxnWrweSqnttRvzTajnHIcvOl/tw7PwBY5y+T4Z3MY67ZuBy4EexSELeYBgOB68VsqMMlP5HsmL8VM2XM9LlP+DJKZKdYdC/QxkVgjNpPEKwvsyzetFWegVkrcyBwN3HPZeSOd3UcvbC1uIpvowbn+RSnpo2xp2NblMRdBdu1W9jgqBjaeKzniqEAZcLP7rs2X/o5/7iZYq/LcPQduO9llqhG0zaIx7s+0Sgg3sQ6UXAOQdeD+k4UVX9qO1g72zVPLZVF5lPjYa1j5QaLuQ0hZQa61MouwuTSdtFxKZgYFKixuDBZ9/V5YaCuPenp26bU7TRUXJDuwJ3GriI1v5iIXoE8Go/0O2AebeaXr5y6QABw3rGxGfFyQAywrtekD7d4LAFsMV1uJ9XWGbJQkLGCOJKpl3MBTlg0uQhOgI7H7ybQjGVInMCdx/2WkcWht8VT40Patp0+KihSmjSe5I1/Y4+FsSzn9bkPICQwcuHVe72qZcIvgyX5cmLbl2UoZCw5+7YOiCiZoUxGmmSZic1GQjxt8fQ8phUo1lQvd6xoim7fuTTHVjB4taoF32SL5tp5AsbtGj2QdI9hKHQxZxCntkKnne9p9AZWU8QSAUOuGvKMV/fKZFpTz8D1Y45Nuxb7NzfnGJ83SyppcaGZYxr7z/15FwO7sVVBZOZpfeFA4CbgvWMHKGnnhSWuc1HsqveQPDM8RNDlAaAE6lLD02sb52hrL2Ys/OGZCwSuBQ9XRvoQixHYVbMkqpEZAMC5nXeOGeROholq6LrThTHq9UjhFbRK1FxRNINn95x1fN1xpEqk3YNxQZkDxk12Z/BqBVo8AhY9sFoXOWj3jwHNa5vx4nml5YLyjodBwkJ1eY3ikWR2z9CMpmOPJgM0DHK+hk3KuTMe2ub36AeRFOpJCX4lRMvpq9ep367isSwGklbek3u/ZA6TleRWs2NKW6ucjjqq7UEKFm05bDQnu6vvYmAfDlkHMRC4WZiEuCIvGBGJhZAIsEqmGDNa7X+fgO06XTNKme1kEjWyOL6IQrfTwh8IBAIvgG26Go0+Cyp/bL2HyktpPN2Ym1yOvEK8g+ffUWOY+eHIvIDMxUi5/RzAlAQi973uLG0hJdQ8Mu812iO79H+yNQhPV8B6IxW+eSS39IQxxaa4FSOB3eNz5pwTJZGllLD1/s/BZHciyZ1UbZFsTCaPm3vefBSO3wenFM+R4kN9rwwzz4a/JZmha5SMniPnFTwE40J9pZlt7sTAfUYoiIHbj/Mkt19g0sBs5bCzWNvI2c7O296QG4HIk8UUZyzil4GxUBu3e1smU7eFjkAgsAcHvKs7Jo6tMyaD2JYq8NtHfdB4O2OrIeyOGsYIfpkFv2OXElWspKjrC3JVwuyooui4Imk+x24nYaIGZVUKiyuu70Xp1EXrfb5+VQS3tXdB5AG82cjC7WmLL2tb6LPShpw1KijV3EpvpNjxPDV7tK3yvfSjxouJ1+7yweMR0DnRrHllzgN96FxjGGo7gQePUBADdwe+AEuzzb6Pth8Mbwrl3YJ6X7sE0GLhojBSJa1Yfn175yDzorDruU26WSiKgcDdwNbqidj+HqvHpp5BRb3Z6m0Z53vv4+d3lYVQkvFB9doB2Ho93nvoZQgRiReSknjciEBJvpdzvLd333i5METOEK+bVePOzvDZZjo25DufcdlR9FOvrOxD1wHLZcllnF3halczbE+ajlXfgRLpmBnB1SXOvj2uIy5fVClPaLZzonY4/Pxk1NaLgKnePFZ6RkcAcJVe2T8xXBXYQ2nhGmoaeNgIBTFwd7BVcZtRGs9j0eNWrJUm55jknnaZURPaXfyPTQRKi8XLeDiZB2PsRdxXvewmcEet/4HAg8NcGOi2iIVGCajayVj325a/WNryp2+j506yEAJz1oXb5XfxD225nuptZA0lLEGq4l2jOs4lxNK0slGRoIOQB2DYgIcBvF6LcsjQT+etRJVr9r96sLR/ckrUeWXyeg0eNK+Oa9tVcdvZQOs5Vc8Ys1s90j1Hzfj7OgSluQzKrmPSQj5NNOdlP5Bte7teCTnAvT9zzWyLLvJNqCFgp0e0eZnv5EsYOBChIAbuEGZCZRqrmVOEDrWAeY2QAL8AbdNt+b6rXRWMRFoau1r9GsWwkHuVVjrX9siyeCtwm2gJBAIzGHtaMP97ctpIgTS95ZDJ5Gze9jn6vlNwbr0d8qDxZ3ntSPPla5qhyhsWRa5VcGZk5yxJqs0l/ex64OgIWC5asrfRuS280Vx0vP96Cx0MUG8ROHNyee78Iuza/YxaFMhGattzvZUuUy79M8rbz/NexIs+t17p01zH4u2sk4rq6Z2MK+1/p+qRRTHc6UG8V+9gYBdCQQzcLYx506wlGodbttQsx30PydvQggGp5b8FOy1rKGExlHOjBFadlWozV2p9G1mVb1u1sdtESyAQmGLseeDR721gnWCOqy8WXxhN2bYpJiWqYr+3406CACCVeXs1KgLbFC/y30zR6yScFJAlCm282Xluaewx2hf9Yv+soJCGUPLJCWi9qbmAW2Tw2C5LTXuAxYma2dSHTk6uebmULxqJIwGjNk7OEDs50foTWsXzWKuXUs6gPFPd1f/WZ5F8HqdejHfW6hbX9/j7jLfyPHC6LhoSyblU9WN2nUo9ecc4j450QzE3tvf0nQxsRSiIgbsBBkqVrq1wHPO8Vq71WphsMs+f7+ccba1WyOu1CFiikUCRqdEuwXjpIPd3k2isuee49jBWBgK3AwfzkOoxopGHRTgr+yPLvibSwXj4hFfMeJLuGAjZKdv6b5uXp01yKwoHD1aABVVprMl+ZXnCtp0D6XMKGKcEOj4CL/pSqMWK7FT7Qe2IvCZTFMNaTMe8jLMeQQc+PQWGAfz4EViL41AZp7F8Hp+MckzzfNn4zClRs+1k61UPGZ84UjQn58LfuvNh7Amk+kWGdKyscaX1AAPOYTS8gOczcC8QCmLg9sMz9jHT8tZmH64Dv2k3k5NlLsRimodBJzW5HsCjzx10UteDuq5YLpuQIF8oZjbrftwe6vWel1E3h9P5BdTO9l7oIHf4gXEv5w1xu8z+Q0AGAvMYhfCVr02YIVolp7GYeY/LgX2W4+7oe2k6nI4JM9rKmsAMz7H1eKm5fOYMHnLdl5IWYkkARJ6xO74lYgrz7zGztiV/fLYCVmL05Iny4WTL2OPlPF9FwSqFdcgH2E6xWABdDz49K/mDRdbvUoCcvGcSTxtDCviAUMdkLB/hNo49isk+01Z7xRTj5/ycRtFRuzQ+YFJoxw33JMR0iyFmjupFPy/zDt22DSFH7yRCQQzcHZhgnUxA9PtswYTd1kbTwShnYDMgUSrx98Uad56CMnkANhsUIcU0mtPsLkhwaZjI8Rft8BAGv2ucd4Ss3BRuuv9A4L5gLuDCeZBc9pT7b4qP84iMmmkm8z7X6y6/uxZNYmJlPHme9UihyDNT5KxoDKsxUw7R6p3E4My1eqX3zu7UEAglVHUYGjWeOc/Q6uj1imI5ketzUMKIfXfztPDZGTBspsrOfiutM0ioV43smgkweTzbrVPqzDBZnl8A2UJMabvCMwoznYzXAagBsc1VKSkjo4wrqFP8sk0OsO2tNO2kKOf57btCTgP3FqEgBm4/ppEd5zpva0EYbyjs+iLEyK+b5EJ/GivcLjpHimrJuZmbRG2DTgYmht+b9npdtO3RHOLwa6nnNhOQxrvqaGsKI7j9syFc57mWsIAGApNoitl3i1EqIToeSOZtUj7r1Z0pj/eekZmFvsdK452BhomyV5ZHsoWbwyc/RJboeDoFrSgj7HyNToGozXC7ZYYXF8UtEbDoR1cwbmsOXD1XKSGlBHQJ1PnlT3Ytp0CikC36qVF4D8y8S3YdGiFk3xuf22zqQ70HydTxRgaNaJ67BNp27J7ntbktpF5Q9y5pu8Xg0kRTUZ3rmNjzzwHVpWa2dU7jsfbXPXnXL/Du3bn39WEjFMTA7YdpVz5qw7A33MQMinPHqRJGBFouQMulTEW6VE721sax0J1trtdqb8u+0Fqcj4319gKMcut1zBx3VXghq6H3I/Lh1+IVQz1VYngPGMumoMH4uPNcS1hLA4HKVN3vUpDDH8Z1wtp4k5qTa9Q9t8pCCWW0YiNN91w33FUvxmgS3nh+GvlmX3iyyRRF+cGqhHvFM09YZ+17i7XSNqcO6HvwZtDcfKdg+LGfFGbxDWm7XQd0PSh18r2E1G5fToG6DpwIWG+qF/RAowCBZGabUukvdZ3I5i4hpW4ki+fol9/ZjB1eQ/QG4JlmmiEo93PP3KGgvjC2pqXYE1xHVBXHeg9kjMj3SXV8iQjIYkSYjeZRgrMzMsinM+CM51+HpMlMurij7+sDRSiIgbuFA/Uq0ynrhvkTCQTKWQrLOOZPKdWuCs903qlt2KxLy/Zphjcv6xsr5lY4dYrQesh24SqMdEUouDHYmhs4T8DUC3DA9WybFIyt3s1+N7o8umeReB8IvDhGYYvTN98rfKQ8bzwBTxh7kLweYDolj70+5om0E64bL9RnVZz8/LoWbRm37RW+sfPGBmvskTMeR+XeNE7DXfY0q4a5WQOboSj6RK2GYEr9bFvKY8suTblgYBLCyA1hDsMGWK3Ee6myeF5+jH5rT6zrRWIzyPmJpOgNAZyqTJ6jW3+U9ueHze7jgc/CWH7uxC75aVFN7R+robt6+XQsODvHny3vsaPrYWivima8vKX9KR17rytk751CKIiB2w+TTedkLkxpD/tWrt11SF0HOjoGUQL1vYS3JGoZ+wHd05MnoL6XcB+SABW/yO94jsTsrKNTCSjnJG8p3Hax08u6VOyaYJiQGlt6/X4lzJqRec0hhHK99lE4jY0ng5uCDPOlx+UhYu+F9dbSsYA7h+wPBO4v3HvReF1M6dN93pMB0pA+XSvIinw4Twp1rRfHCqxM3s1EvqI/roa5XRAXnezqecQMKwC69apYx9OH61rYYerUeZulOE3qkFIny1+UPtQI2jgN/f300Cw2ZikSAy5Koogz48Nz8qzy58o6SYu/JTEGDIPQlodKTHEhj9B14sVcb+r6haTX7voaCyUGRIZ3Ceh70PGRPH6pQ3r8CMQ1XJMSTYvu+J9JvHdkLY9v0kVu/0FRM7qEyaKXuUnf67vE4oUtXsIqT6l4Y7kaufV/Ocf630ICQd5LouRyLaGGHGma/Tu+DVvH5Ra9u4GDEApi4G5AOP/2/T7XQrQPEcCj/e05+jlksbRxrseZkHVzop1tabecs6yp6Cx7IqG89a5y0INYpgr5XX1fOUYhmmUSoGMtG91k8Vzt7oNOUv2xTShMnbQwsKcwgJ+QmICtk4uZngOBBwxqvzdKhhldtkyyWbKvqfEa6XucbcIt7TAzkFEVG2vKe5ho3D9ujh9etG+75sbg5pSPSZvuQM9ry169B7orW9tUDWIzGZzz8tT/3KxVD8tgK7o2sp819I/70HtVihANA6BVV+W5sCUz5q4ZQM6grB7MQY9lVsPr9HCvcFrRHsoM6HrE1t9YhlAzDq2yyloEaG54qiJ2Rc8fy3qN4FxlnxlJzfDSGEwdhU5RbxT4PdQyoOspjq0WVpzHFUgan+exq5MIMb1TCAUxcPth0mj8uQ0JOndJ1Xq9TWlQhpUWSxARuEtVYFM7+alpCNvboi5JYj2g8ylCE4LlZZBvhiDmXvNklXwPqorqzr7d/qvQakzojAy+rFZYEUapHuroLFNJzacQelvlbHffngQnvLRhP+eyI5p1tkg9h/osjK/BaKmXqkLS3/v9VAYC9wQ85TPu3au2GX+MTiXcO0OJ5J1LltOt71myNWJ1gk3T9ozvTqo2NmGrM3ReJy7YdVnggYR/bp1Rl0u1cZI/4aVUho66Tr2J3ojIRUEj9dLVodL9fiyBdiwZoiyUtQ9rf+XejPmokUwJiZJ6rkjy/0joLMew3tttY5iS5AweLasshuPrk7Gq1yvjpPmHWnmUuw48DEhJvXOFVnd+GTs/Tmq88Jsbmi/7+XNKIABkLvKVtGCQjWNR+lKq+Z2+JbIlT2p1073U9h3Ke2pD4kKGS7AT0Sj0G1ND0RxCkN4phIIYuP0ogs82MLBNUABiiQaJcMtzjL+CzctnSl3OLhSmLevdCuDZxoCuA+eMzFyEKpfXrE6KKHVolJA5I2xy1mGesYA2BzvarsBKV8mjtnk3vpQkRKkkys+dz2YJNfF7AK02MTIrqYUlmZKoX0wI1u6pyFvfFhFVSzRJdbv6aLG7z9b09rT+QOBBwJQB1gm3U1gKT2BIaJ+GFNqJzNCIjIxEXVE6fJQgabhpXUK9rpXnaWhkwRXxuoPxAl0X1sUE0LZZs8sfJBk/kE7Ee1UGVAmXkN2qIIkxTiylwiKpnuv5qBFTxlL5ohlW+77m42cufL7eG1UWi7IiymDWNqnvgeUStFgiLaRITFFud4Q7MrPQkHVNRrXOFoPpDq+oXR60cioTIS2PRKaXMaDqwJ4JtfUfU6OrM2Vc9vNn04GckfMg91bXaMZi4ZRDgHX5Dub2vgiFeo0a4ktdr2tkzmj1485t3jO+tFEIa/FC63O2M3JnMocL3AWEghi43fC82axXwIz12NQX+8nNpGanpZkZ+fQUvFq70FKurVq/xXy2vS1+9TXHpFvaRFlx55IXNVyurf4RfPjj1oR+f43sv1+SuY5nfs4IRi4KMU+8iCKYcqXVyZj9/e+7FhujqqyW9CYXimo0MbNYv5kBzmokmLlcNzEoz1Eg8ABQ+Z2+Wz6/rHkNZNIoYX1aHKRs3dIy8wwfbPuW0LoRVx/zgRv1Hl6cvzYyDAxQEl6/szljRNrvZqhKXc7gYSP8j1kV8BoWCMAVxDE5M+6s/c3rAV5lJ3f/CylezqlCKGGZ9do4Zz2Oy/PUePC2XDTlLIpNb57R+hzWZ4KmD1rOsj0zOA/lN+dB+u97YDPAL+cw0v2MgqIQF+/liNa5bZcGDS3lzMjrtbwB67Wb4LTXLzKt0grIc1DmD5zdOdueXXmuyrJc/lUrltaRYUE/22faTtoxXwncCYSCGLjlaKcOvug5O8HRMHYzTB7q+bGYfqgi03XIVTeolZ7ZC9otTS0WwPMTlPxDo0OFIinnpRL66risY/pE/nhUT9sWvl4J0H/eOvvCQsxP5rTtSZ8QyyPU2kt+B4qVEzrtKGG3h9BmVl9//NhjSnWdtTYUtdLQWDgZ7hzvqbBr8xO2MHsGHhqofe+a7SNeVKwxupHdxFmNNFQiDNh5b1jnq+5Y/dIGFI4mprcFXv4cCj9WyUeWoLY14Ymq8AEiq0i9tHYYqQdRwzqp7+XoRFLopShsIl+o8OLmYprvtBDPIT0+QjpaSihsSkhE4FIER5UGkwf2vYQVa2tdBzo+BudcInOKRrEtsscplWZ4hE9RgI7XaKjEW02lXywWwFI9l0+fAusBOFqqnj1eYdMUQtRiZpxrLYORQkn+Xl6ioiiXSsUYQLosB+myI7xZA6yFfrTb1HdVOQZKGDfUwyiOvlSPmR13laPl1o3GJqn30jzAWhCpFsjx/ILrHCB0xDuLUBADdwbVUim/i0xtBM2MMrMjFElZKLBeSyI9VKB1qqAR1Qggnezsmqjw2QoWhuUVT2aWpHMVPGJpJ9C4jJ0y1VrK2ul8dk2TQZm5KL/vMidWxXLuJ4Co25Kn1Q5RYWfhqKiK+7Z1sMaoE8pdx6u9e2QgoGIT9ZNOI4/RhHjZQ2WPTNXZb98ENRC4ErgX2E2C6zvN5b2oE3ZGnVmyGoDc+5IZjFRet1JIZDyxprqW35ik0ZebR6MYXwDZeI8VUtkGr4hl+cu5GtjIivxY6C5reKayLFM2VNE2M+t2pYaB9cZ5jADzVGaXl1giQkCoay5yo1DxkMFnZ6oUMvIwlDDXneyUWQraWC6hbmsKz1nfY6VRi9pgGECcNSxTq6c+fQzKWeoEkHuuGwNHlVNOSmxRdKaGyEtBEa8MHjYACHm9AW82jt4qh3lQj7K9dSWaSD3xNiYzSnWDbEWETHi7G6VF/Er/5uXUfU2qhlcMb9ErGzgfQkEM3Go0Ijgldbg5pm2TlImw49Hnjj5I8136XnIuiIDCcNF4AneC1HK6XKCE5TTx+pUcZp6EahHYlXRXSzztKeNC9djSD7uxOYTubdg2T2sMiyUgRX86z2A1tbZKrjv3IOuit4Aferzvw9PPRjPKWBn9reKox1W9MhB4OODRj2ItgUZDmPddFcOSy2uFMSCTTTuvFKqxUEOU7+wKibUmnDl6jA/c/AtZlvU5zzlAVbh0CQ8rsCmGwZmTbAxLfiGViXrJybMqoXpKYpVblJAaa5e154d0yuA4EfJGcvGZIUqXHadE1gqgTqHQe2sKr8nAPAxqHGCwrrW3a+yoVwVu2LhCOXMax7gNAjrN1wSB+wWKwfbJI+BsBXRdI5uZCJzadouSZc+6W/KqMRaOI1suBVqUpr4motxqTQXzqMpzoLUMkCQ8NNcQ3OIfzbnmlPqrnJkzsc5RyjzLvJjNmVTGwBfwaR6jxrv6wgMSuCHciIJIRD9KRN9PRN9HRN+r295IRN9GRD+in29wx38hEb2NiP4lEX2q2/6x2s7biOjL6FB3ROBOwRieTNZrPkSjrGy99bsfCbN62hyIWYVXYw1zre16xJhFMJX1qTQ3R+VzmRyoUtJEKDUhWSjcltgXTZmbOCnh5E4mVMVm23kHYcrZeaQQeqWKWEraFwHqjLKg0X0rE509JDReYOw+3iZe9gn3CRq15dqzic74nEP7DQQuGTctI8kZnUrY2HguXN6ZyrskD041nlIkLOtadr6AFJuKCcr1FSPrG64P1ze8lemGxf18qOYBGIdnykbAZMKcAsc6lmx5nmbdoiYAQsY8I8Ny2AYpGONkAzwfhvZnRWC0P8qidA6rteS+seSzWUVLO5iKFxGtBylnUVaYkc/OgNWZKFk5t+sCbxuiYQA2G2C1wViRadM8Rm0QyrqJebMWBbPTSJ7VRpXOoXhc6zNnmlGZEcixedBnGm2gCY/G/jKfRZPfRY7nck3y3tj4UxWzwwachxqF65f6IEguozN6z9NMxf5SHpnGg8jlmWJ9DqXvXJtr3k03pwncSdykB/FXMfPHMPPH6e8/BOA7mPkjAXyH/gYRfTSAzwTwCwB8GoA/T0RWyukvAPhcAB+pf592jfQHrglENUBQpyAjCyRPhEjBXq8fnCWcQE+fqGDgKiTGzW1rU625tJCFbYXXuimPs4L765npoBW2vOP6YCKD/Ia23Uuw4LWCdKQzjWmb8wyW33rmnmuanHghC62/d3yOPgOBW4EblJHeeiVo8xHFP2H8TXIMU/t+FWXHve+UdrQ56XL/+8ovwh9eDEUGnatvHTNb3843Zh6ZnXCTdc0zK3mdfiLvvJJ1hFP9pR7McvxIGpVfm03jfbL7ReU8d3RzL6xwEYAhF29jyVVrzt+CzEDn+vYj4J+bZhy5GvyyRuksFuDNBny6krFKo2fQ/nllyJ5ZO1bleYXdKy66+uWCR5+ohgVKWp20LhtiOf6t6K3X40rXoMQkzXgQy/2ZvTcufFXlaXNUCWsd34+QuXcVtynE9NMBfKV+/0oAn+G2/1VmPmPmfw3gbQA+nog+GMDLzPxdLE/zV7lzAvcIoqhB1hiEzDHE6GkCbsTY3cdeyx5D11zqgaNj8OlqJHxaNcNbeKdtMXB0VKxrIiQZFu4iBjpj2C4E1XsA59qmLdttt8sxEQFI7TkXtuBVS2W7zamH3so49s6N2/LeuD3XNCbhQhZa/wwQbe8zAg8CdwPXJCPnZrwklSXLJH/8zqjyx6jFw2zSDffeW4ESPad4bmo3hYLZ93XG6XGjODfvoKpYk4WU1gn3uL2G8xLq5JySyxeD5Ppxe5Ip7L5gELML+7Vb4WRaDRXNUoREPX7WQLv8gZ7T6Lnk1nZ0yh1zWf4Jdsm7xo5IPH9ZzvPPQmuknRPQkCieRKDlEnjpsRTI4QHEQN5sNGQW1Q5i42TeVZto2HVqZVjv3SUv6y77OXRRLOS2lfDivgf1nVR6tb9cU1SMSqsqy4zqMVVD9mT8S2EboAk0KNMAqq9yiXCqj5Mc1NJ+sJwP3ErclILIAP43IvrHRPS5uu1nMfNPAoB+fpBufwuAn3Dnvl23vUW/j7cH7hlKIYPMki/IdWoxUUZo8mU/hg1KCI0xzyTCsFhBlfHxPovYMEjBm1TXexLYBKCS1+SwTIx5B1jdzILnit8Avs0XtdxtGUOv5J1nnC9AT9geAw8UNyojp3mAvupw5Vll+QubYDu+UNaSNcWGfeRE06rboBN01HN28pgbYRAjZeocE2CTWX75Q3fFbQina7thuYCEPmoYZ1Ylky0UkSGFXYrDKTXeRRrLpLHXx/bmLJ43Zi0Uwy7ceCx37QeXZ4TYKVUMWV+YJc9t75LtOQObjRyVXGEd6Lle+WgMxEoLa4EbZim48+gYeaXG37WGnWq7+rBVU4XSW2YZbn99Pq/JM8bt22KfvBm0ToIq5ZrK4o26VIzTSv/s/Rr15UKG67GYjm9RVt1BoQjeO/Q31O8vZ+Z3ENEHAfg2IvoXO46de+q2SY3ZN1YF7OcCwDEen5fWwE3DrGhJrdidWDbbCcSMRexAMAjp+Ag4W0v1Ukqlymh5ytiFnG4VDAx6/FgEUB50cdosgknbSl2PzGu9Jm50Rqb2oW4MwjNPfKEnJSQwssv/Y77Exd2NSG/1nbNA7sM2y+VBJLhczEDg/uMGZeQjfd+rcgKQK1wBUTRSgq29J6X4VTkZLL9aC9DkyslkvXdX9GIrPy3T9YYHN9tvDN5lVifkh4I0UawoPYOtV6cCwCnJbDy3uPrYHyK5es5DaONunj7uOpBV54aTYZRQXIgjJaT0QpDIGiKQhWs6PXDqza3FYQCId4shiuswABpRM++BHo+R6rnLBYbTs9HwUjvu5IjhShwtelmio18Az96H9KY3AO9+Xxk3k6tlSQ0v7xMBA2s12ASQCwlunmlcWKadC957WBRbKxQ1iOE8D/W2cD1PPpMokTYv2KIgMiWU/OPxIRd41gN3GzfiQWTmd+jnOwH8TQAfD+CnNSQG+vlOPfztAD7Unf5WAO/Q7W+d2T7X35cz88cx88ctcHSZlxK4DtiihKMwkMuz4LEIN7XKglgsjCM7eo0E3cYgCawluQm2SLCFbch0oOZpQMqQ23WMOvJ1w3i8v+kRAFvoji5AnPniBRRmO6EqcC4iJMbWx/N1rqeFUAo8HNysjDzWiSRXpQIjHqweK+MH4s2q3orCp40XOUWkKirYwsNHSuB4suu/jz+vE+ZZOW/fZbkA77GZKr482cxOZ2bd4f9EVkhOYm1VzqznshayKfKndS3VvjKX6qU8PsIO8wZD9l42rrIUkAJm3mi5Z8gkJJKRV1Igxwr0uJFxfbfnEiAht+sN+PQMePU1OXcwOcnNc9x4BRsCWJbKoFEH40f2ip89Nnr85TvPYP2sSmQhjfXPigPtoZV8xNRk5wWe9cCdxrUriET0hIhesu8A/gMAPwDgmwB8th722QD+ln7/JgCfSURHRPSzIYn236MhNq8S0SdqZbbPcucE7hlK5TKXaMFlu3fDeUFyAEiYZrFs6oLDnG1aNFLU9rSVmIFFL7kPtjC0eTdLqezKaL3sFys9VStvc/0+zdz3acpkkditlfeFlGgn/D0529o9KCz2vCTUiU8g8BBwK2TkmD+VbTaZ9juV//jw0IZfeQUGjrdVpjKjGrUwvt4kvJ2T118qHG88Bxioi9cDQNe3zbnv8Hy91cpGn6Pj1StLneaolbw822eKJGZSJkbfVQmuYitNFZb5q4QZXqd6nD5HO8aOKIESIXWdPkszyz3NySFycwLmEqpKFnI56ALzo0tlIvUk0qwiVLvxBfMcDbuM1pf1jBJ0TUe/QZfg0J/tOzcD0SN39DEK/i3Xh/Zayy3e0VfgzuMmQkx/FoC/qUyrB/C1zPy/EtE/AvD1RPQ5AH4cwG8CAGb+QSL6egA/BGAD4POZedC2Pg/AVwB4BOBb9S9w3+AVHohQo1xDYaT8NrbLzV1gEQ4JJiwz+GgJnJ5KGMo4H2FfW2BgvZJiNSenEk4EWUuK+l5LTUNKUlM73wEYlOVzIkxzng3NYQaokwWJi+hid+q5BmMEbyVu8mK2tLvLukhViJ2PBPXkhuUy8HBw8zKyCXNU5qrKAvv30UUqSOHUjaYAMCSE0XkzICFsZnzzk8tJ4Yyyj1p+M5Ofd6O4EA1cFDUkp5hgHPnBlffaAnX+XM2zG5sOKXVVWbDoEpY8NVJZVhWFKf2iwytdWsXTQomLZJrk/HGVP9Dcv65Dk5oB1HucaacskHQLAq/Xcpjms1ZZZONEqGGtVVbbePJ6DSJCXq1A78/g9VpIBoHLQoOq+GZdBsL6SrUSOTVj79q3d+FKDRU6VimVJSZSMSyQ1DtQr3CZI8iLOz/GO5VEQqsi6rNFbm+51xeZcAXuEuihWeZfpjfyJ9Cn3DQZgQNhnj0mKvkMABX23DLDutYegMOEN0viPfUL0KIXQXd8hHxyCj5bidWVAbAu9Fus6DOClSFtLJZIj4+Rnz0DbQapmgYR3MwsOQRq1WxzBUVotUoj1euUXsrkzEpbFwtvWR+rCvlLy4+YWGqvRygUUcyhJAYuhm/nb/jHbqmIwB68TG/kT8CvdluU25YJuZt4zvEXOy4P5dxmn+N5E046mWxTbcL4fOljnzvkiuCT8c7ZvfB/yXMHWCb9mw1M0RGdrSpTpZCZy++zPMOqwgNO0xGj5KKX8FBraiM5gNXYiXK8H0duxpdAXQfqOuT1qhZD0+6sWMw4373QpUpN2Wghyf4Z2MLTGWJQBZF4/XLWx270bHiFVe+LyUuyvvtOzs1Z5g+Z63XbvIGovXYSpYtVtnJWAyy50bOxHI/BnLHjArK4tGmXZsvIkOYeluU6tJaBzlGa/uy+knadgdaaPurPRQ6Q0Q69ZjUQIWeZwzCqQeOy5hmBa8cu+XiblrkIBLaCXKVOY9TGr6BCt2HQB1v1WksoHR0By74qaSwFF2y9L9m2o6mjI1ESlwvQwBJOVEJ8lMEX7ycmQrItGd62TQkTvu7naXUSZ/ReJkbtFUs0u9/nwIGGKepvqo5WIPBQwdNvSZiPsBfjXK5whikmRZmxyWadONqp7tc8lyoetZEnpHS7hw9fOQheHJwPZtTTdoqckdwvbq6N3Hg5ddB5dwlcm7P2CKp0snxakRqucnPfOIpyxeLhtHtJqjAm8Vo2a1iWEM3aPnV9eSaIWZapSu652QFaLMozRDYu1PbjBL470V0fJMyWiERZLuG2ZoTVa1osSn9Cmy4PUpaPUqQENu+oKqDkloZowzNfUP46IwyzPmymkMGWErGu1DDerCBjyi6a94nr4MwjjVWCdqzJvP/5xl6+wDUiFMTA7QejhLhUgVo9Zf432q37YUxYBSmDwesBWC7qpETj7otM2yXccpbE9tOzEqpSlLjNBiWbQpl6obRYcoUoNiXXTbBE7ZtR1Hyolv07hNZzodJmA+NTE86PA+kaZOIU3sNA4Pohk3NUHuPC66CbZTkgLkoO5VqxUg7y7bmJK6hOXv377Se3gNvHLbO5MZ7wIpNjaor5+LamOifXcXLepGIAHbVrCqMVoPHF3az4SA1hbRWMCVTm1eUUGpNmobf1lDnvGqDrNOa6hqDSU5+BHfdvM0goMjMy7BqcjGto39Ies4RkDhp6OQxOjHGlA94by+Xax8p7E/bs+mwfybHyOqb1UMxYIOz6WeYYbJXccy7vWlF8/TlK90GVzfXZHOvetu5hUcDH1IV8vpcIBTFw+1EWfherJmtuAIAiQ7lh6ICF4Iija49AV2sdp04WoGWURYYthAag2gyXfw0IQFosYMyY81D3uHNF0KeJoOfyp8y+TJ4qLbBrhTFoVV55bH1GFXLN31TJ3gs3z+N2U7m+kp2yS2O0SQcDGFeG2wZ/zQ8sHD4QuFGUSIzKX2tFZeNfft5MxdPYvKsubG2W9YwLz5SjxwfOnXxDKIa5Fzi/QMaZy1i6kWrG0ckzM5DaYu5uDNmNoen2TXfzTFyaaWf9InuTeNWo60B9V0I3uXikUJ6FojCpwaCsk6nbnb6yU88mzV+EyWMfPuPP80YId6HOpCAKXoKGReZpM12P5Ly68ihL8ZcSplrGXv+RLKMhhYB0jUh292cO535e9H0q98TmNEqMVsNlu5pkBmU3JBgNV/OMbUedX3H9PT5vNN8K3D+Eghi49WBvFdMJS7HhUWXo5XjbVharP8C6xQCGDXi9Bq9Xsv6ThZBoP611cNqm8Mms1dIk3iMPGzepgjD8pKE2JALI5z6IYFKhQ7LOWLFR6iLIY2+aZWROLLpGlRkjZ01/h6BaWEkrscpaXqlcQx1rG4kZeD2ZDyTCwpbCQhkIXD9GxqjGnDUqkmL5Sc1aeHYstbEP1SnI9ViaYVJz7/2t4AVjPnu+UyWKRAr21EJolj7RjJR+EMBWTVQVymoihK2LZ+NMPMCWcZh47HbIAWvH1gYkrSKKLiE9eSxVV00pLQZIKusGi1JlocepGg4YoOxsojMOsgkldp1sz5QaGL0SWqJs4L5bgR2t+NmLIpe1iIvp0uZtS8sF8mYoS3GYcblQogZYIdn2JHBKwGJRw2btjmx7Ls7xvDBBZW2S61D5SqRy1tZrtqFcLEYVTqHziTp/kXdVq8rO0tIur1VpceG0ru0qwl/gXQjcaoSCGLj1KEzZ4u7nwkkbhmWHcRWmh1i5BglHwXoAr85E8TJp5mP+JyZZt109jWUh3snFkAogchMDVCu7CWZQ5bm25EYT5uVHwE2ylA52Qs5bHceWwbn2tsIMl9qnDC2JpRitwl48fjruPGqnklGPmcWwqccVczg7Qtz5+9ryCItnILAbxRtTOUzlH7l8loxqDU/zb1YxWjUBfWMW7t9bHm2feU9vi8fiQlENyseyxlyMr9nata2iF5ZDjK9Wo2M9l4s5UWVWYZONWj9D+2jMAb2XVCtjZjUGNH02mpbbZDU/veIGMPI20+EE7OiwpTXGI1XZP5UfdkyjA6fU5MzVJaOUqpPTolRWxROu6BsVmoq4hoZ52t7ZSJd6dPPz0Gsvht+qGHtFLAEaMixGZ2i+fhknrvMJuPkEb50P1RFuIrJsbyP/27Oq/L3IOxG4rYgKEIFbD1OmKHWiwHlBs1iKpW3IUuqZM2i5hCXRU9eDT05AxIXvz0IkCeilp8D73i9Wx6OlVi/TcBfOWg1s3IqKCZLqpCkR+APeAPqZ9wCng1ryILkQXUIepAoYWMO0VkMpCW72O6vATUabCV5Vksj3bAUFNEm9hKaa9Z9IPHYJVdm0tr0sI7+jfq/sXooUMEOru+rUcLkUS1Mi8GoDWq9qaFH5R2UcQFKaW4onzAkpN6FJnVZN0/BidjkS1F6HlEbfgcnMAZh6XAOBgGD8biofs0kpWL0SA5h3FehwLx1Bc695eogwrzpBLxrS6B1tNNVrgovyuCwkSsjJhdxTAngQhadUmnTX73mqEINmMJhFzqFWPyWSCBWJVGmVfTTtjH5zVm9gJ1ExyyWo78CDyqpUQz4pJZGTJAVf8mYt6xemJMcPg6NB+9/Dd5kIRFxCLJvFF7oEDP4BqMpwqRTeL2Q94kUvO4YB9OQx6OwUOFvJaZZvt1gin5w095jglnMxw2TbHUpFAK0zMFYWJwN96KNjHtdlL0vG2F1bazTSZhB52C8kHzEloOvAJ6e1IxWQ1Pcg6lXeSs4iDQMAt2TIxGNdnzc2wdpLGC7zIKkz9q7qsWaMb6rIe0U3ROydRCiIgbsBVdAoJV3zj1RZYwnzoAFMHbDeSKhF34n47HrwZgNerczcOM+stH0kBh4/kklM1wMpFyHANOjkpi4cLHANrtbgpYbhPH4MGrIyZAIWqTLVnMFdVwsAWHiL5Xdwu4aYdTMhnVyVOWP6XSeVUrtOwmZtYqfHm2HXhFy1Cep3x/zZvlvIkOZeWN8AgOVSaEsJ1C/Ar24k5ChrvoeFl/kQlcVCPjfVOkrs2jTkQcNk2rUh2dPZGGzddRRBzXXcR+dsexwCgQCgGp1xPN1i7x+LJ8W2eL7ilTiz4JQJZSpFUw7pfvYNvS1GnXPTQeU05qzjmotM8TpyOdzy4eH1Zg33N8OhHs5lnB1dms6QEiEPaCfxM9SZCsnQ5Zh0WSYeFqJ4dh2o6wtftZBHYhaZfLQEU0LqZT1M3myAzVqMk1nl7L5x22wASuD1Svq0EFbYUFQlCJZXyKaoiOhMfQ9aLMA5YzheCj2dKkrDgGxK0OrMjb2OZR4ApNKvSf2yhAYzsNnodhu7Vll/IclCYhhPT5+AVyuZ96QEWm/K2pn85BGoI9DZGpwIfGqnsjMUMzh1SIsFGOu63Elzxz3Gz4bmQOYM7pIahu0BlXVNZcxyFa+lmZuw5AQuE6EgBm49yMI7UxLGrUnhyBnU9+DlEtzlEm5BR0eiNC3UwsZcQ0ySWcZGrNEE8AZibXx0DAwnYOqaNQvLWXNzFkCWZWAAT45Arz2vCm2ioiAliBVeZJnSwxAFiWtbmXXa4I1yri9AhYCG0JhQoOUSiRnoe+TVSrx7eRABOmQ0DVoZ87HMKB1RXbcrydhi0YmSaCG5j4+Ll5LOTsEpIWnYKZh0eQ6qEx0rBrTZFOuz9QWdeBZFVvMqaLEADQNymYw6C7sKqmbiUWZMWwRUkWKkh8U6i4HALMavkPOo2HtYbWXkJod6svE003NMkfDa0K4J9djLUXjTTZt35jww+yD8z0I38zDIJH+sL5MpkqIIiSdQw3lZjH9puQQA5M2ApJUsxZMHUa6yMz72Xd0H5ywrZLUGtZr/p/d3sQA2G4nS6TpRVkym5YyUGdx3SI+ORU4sl6I8rdagRMiPjkEnp8ibDWiA5APCKxTtOFqROOoX4JMTocHb/SiBWT1pqVeFjosxMh0fy9yg74XmN70kXrR/8y7ZToS0XtciPyOLYQmbTtWIK0dYDqBE/LDWBZDH3K+FmNx7cv7nlCghHR+JJ3S5FOV7kwHeAEfH6JYLDG96GZmA9P4TJM7Irz6Xky2kVnMj02IBWi51HjSANyjrO9bX1M8s7OqrAcAqoFpqCZLmz3b2vie4ECabwIwessBdQyiIgdsPUiViECGYyFIkqDAkYpalKZjBfQ+sV+C8AQ25rAmljQGekTtwZvArr6jVkcUzOag3jLj2U9oZnQ+IQkoJeP8zDU81RqtJ5kPGAG1us64U5ewsl25OZvqolzPjkBAGyjpaOnlAIlHchiPQ6UosputNXUfJhJ4pqaaYwfWjHoESUtR3GB4tQS8/kn3PV8jdAHr6CPnZqYTvaB/ZQpRU+ZVr0O/DBiSXrkqwXTBPro9Zc2AeH4PP1sDJqdhyU6f3pYbdTiZqu4yXZXIKnYCFFAsECty70bJOp/DBb9fvLB6M1jCj30vtGgZZPLgzBrUN6qd/r334aUvB9aKh47w02MQ8VS+Phks27Mr4NGcpsKLeRjIlUcMK0XVISYqrSYEgmpwPAHmzQZEVhZLRNfnuoTIHLB63zUZvKWsBNxe5whD6WIMui6dOZcyTx2JQXG9AwyCKmub30bb+zWi42Tgjgu7TdR1FaeOyrrC/MB4G0HIh17HokZ8cA6cb9H0H7h4Br70mXrjMmp7iS/64+2tLdBTFVD23vciftN7AlXArx0o0jxqyLyhbeL3RV0TH1iJ3njxGzhm8XMh6iMOrktphSqwaYeqlqFLXJSkyhE21rdj71RhqbJspz7JP5lHj59SMRG4Hjw66aTtO4MKIIjWB24/OqqZlWDii/GYNfcnAogfWa5GPGwnJwCaLpdJV97IciMq/XIiICgAm1NDPToTd1kR/NxkqllBm4PkpeLUuii1AkkNQztVt7H+zrmFVvZ4Mx4Ct89k4/3IBIrC6HugXwPES9PgRsFyIgHFMX6qija7JrsS1S30v1sxHx0DegFcboF8gv/QIfLxUayWcxVTvTRldvU7zXg6Do2Myqn6Aa5uDWosJRcmlRHXMtY928eb55pt95VHapU2OST3HsYHAncXoOXfKmumEnpc6/8+onTr1rnl0I4MUKt+o4Qxu/9w7dxPv4S7+e2gDxnfN0+L/rI/aWVFAoPlmBPFc2YS9yKmkS1D4xduBosS1XiIqBsLSl+f5nmRTlPrOVamF8P1hqDJvs3GGR9sH4fXLftYIxzPfmv0lsoOmR1hkkPM+F2NrHtRbOUg9gdUG/ekKtOiRFp3Lo+Si07Ef/zIXqDem3A0lpEQ2WShnpaDS5z/Pi2GQe5wZzHIdWCyAI0nPoNWAxACOerudSqd7bjID6zXy2UoevcVibCeYpbGmcLhlNtjNlVivtZw2vrcjDTFE5p1EeBADtx5lkVZdaJfNGqphi7RegVcAHR8Brz0DHh2J4phtyQlXUdQsg2WyYwxdrWSrtayJ1HXC01SQWO5hMYMznGVbmzZLXGak0zNRTn2lswSxbLIoTlbrzeggC8tEbVeszc4qPMovEUYu12l5mSAC2xpOyx68OXEKroVnMtiVx5vYj4lkItD1wKNj5PUatMkSOvvoETCskV55LtbvlxL4/a+JApxzmTT4CqcAwF0P2sh48OmZ0Gqhsc0Nr1/T8kjyR196CbReI52egXuAFkvJi1hvQNSBN4NYrbO7v43yzBOZ5a/1XEbe8DYGHgLKc05OIzTe0BbKapIOy4S9Knrl2OJ980ao8fFu4t14DNG+e9f5Hk6iNnhm+0ENafRDVpki25gtl5Nq+C2Uv2dVjyjp0Cakvgc6zdFjqOdOqozyoMXaulQjUwCh2YqLaWhoJd+PP2rIPkTZ4yEj0UZk4ZDBFplDEsJp/aTNBnx6JtvWG1Fcj5fA8zPwoL8ZYN7UbqXDqRAwQ627B8XIwJVvS2itPidJltZImhLBwwCs1kgnHXCyErmxXkvI7dmZdd48jtWhXddNtOgXWi7r0h/Q7FGdCzQGkrH8OS9I8j6x3kie/mIBrAe5xmcnEtn07BnSKwycnEnElI1Vea1kbsAZEma76CXU9LXX5tRtd/EZQFeWtPJVVW38GxNOqfbqvbA6DsVoPJHygTuAUBADtx682Tim5OLjQcBKQ2tSB34ulcj4teda/UvyMwBMrZdjgV9aZOSzM9BmAxwfgxMhLZeaB+GmOo2SaYSqd3OzwTBs3LyHRThaPyqLi7GcpOX2orlIqlpNbYbBFou8sm9mGRNKwOmZFAfo1KKseSp+YkaujSlIrJhrDfNJhLTOoNee6aSEAR5ArzzHYNXqNoNzALTKH2+G0qwp/O0EZebyVivp+5VXwMsj8RRvNrqAc1es1LauJDqaLjEyUuT9tirWzyO8uJ3QzIW3BgJ3FnPeAOM/04lv4SE2s7aN3HwBbDKNqgC1jThFtLyWF3k/rwEv8L4XSWZOmjJEXBUg21RkE9X0BRaFjAbNyWeWnECgCb8EUBe1H3IpVmP5fQwX6uv6EpFl+WR6o4YNuO9AQ0Y2r2EewKusIaOqTJ6dgdZrSR0gVdDe/yrQpypHyF/dDG+WlsSAWRQ3lRcpVYOEyUaTuwwZl0TiPTxVg0Tfg56dgk7PgNe9BDxbA8dHoNMzVXLl3IYEE85WUMkUZjNwqoFElgAZpgaDyfzicJCNLRJwcqJ1DLRojjMt0/MzWHQNhlxfG83FN6WdgDr2RwAeHQOvPR91aoYDAnKHsh4nZ61958JXXR/UGHj1Qd451wrcJYSCGLj90CURCKRhIZIzwMxAl5DhlkjcDGXZi7IkhHqxtpfWLinpolxYAjYYNIj1izuxqHGmxoLWTI5Kc+0C0kVIm8VWQywl+TtXIe2q1aF4KY0w36GDF0gkEwbWdhIz+ORMhMXz55qn4iZ4SrdZSxsl1b6mTq5nLRbhtOzBZzpZXEnYCpYkls7Sdi5zgLFRuLkWrpc4J0MZkDzQszOgW0huoymZ6pkt4bjWnvNstA1dohK3zRgaimLgPsGecxpt23e8P0ZfbvNClInk+Dhgho/CW9BuB7bxkoPffQYvF0ganknUIa9WKCOTAIA0B49UL7c8a53E22LpxjhNSUhJvFtqBKxr2Qlt0oTICc5DpQe2eHy9IbV4mNJFhHR0VIywJa1Cl88oBoTM4JIRMui+FXCWtUAaJEJHadkuk0U5sTUQrdibLbEiiRSNJUGfVXlgu0fHulRGAq9W4Dd9oCiFWQskDbkGE+npJo/0ggEQUt8hr83TSpJfuViIFxKMnLkuSTV2QwLnkwlczLygrgd1WregS+LRzVlDeHU+tFzIrVivkUxJp1pQxvrlzCDKYqReb0CaNymqpoXZ+jkBAMgcqEQDWPVXVGWxFu5DmXN443C5J4E7i1AQA7cerIvllrw9q5ilWkhilLLYAItymLpaUhuoFrGdHXGxvBEDfHqmVrcjWf+vXwCrs2qdtfN8vsdgleb0M7OQpdZPIUPFm36v8NZyV3RGvs3Trybo2g6DViuAs6wWOWTkIYtyaHmVIzTte4HGEKHy7ETaTQm8GZAJImhzllCdlRTBQeYq8C2spAkl0wkK54PnfbRaidB+9gxMCbxZizXgzJWGz25Np4lAdhOpy0KNQZpuDwTuCypLcaypfZ8nxzcTRDdPdJNJmAfeNz3X5GW/t7cCBJyeSSG1LtXwRJLIB/OE1aE0WTPyzhBJGkRmVSBV9tlxqSsFbShnmekxalXvoky5Ya52tlKB0pYvKeGdiYBBTyheSlKbqG7TaJWyrEXO8DmnUl/OivXM3192soOs2It6PNmWc6ruxUqn8v+81nDYowR0SwyPl+gyI7/nFSne9soz6aN4Uyd3SeYODF3iSul0KRRmDAV2ROJcVCbkLHUDzOu73mg19QQkoYFXKk8TFa+qPQ+NoZlYvJxnbs1EjNYsNJlmcyAfaUS63ZapGoeIl/uUwMi13fv26j5ARJGawO1H16k80IRpQnUZKsOjpEnn+kc1iaNxWjWWMgONPoGGAVIegCRVxCilujA90E56AJCtv2hrBhIKY7Vzqetlv9Fv1t1ivXML9Datt9cw0VGseIALt/HhlnP82o9NI990ZudW5yptWgltVsFUKrQnP0mZmfMVU63rd0+eRinHbdZTs1Ka8m8THoYbFy/w232XB9+eU04DgfuGiSFk9PuAx94m2OVz0oTXThyP9u9V8YjdJBydczJk79m6/JKGPsqpouz5dmzCX/QLzQcrS0v0HaiXXDhu5AxLSKVWOKWjpSxLpMXWpE+GLdfQ8Ents34QSjGxvkOy3Luuq7JMvZap00Xdj45AywUslJSSu7bSsGbf7+SXVRGmBJHvlUqUypwQW4MtV2F6I4ASdZSOevBRj3wk1b358VFVginVk7wyR7q0UxkXHQctWEf2WNrjQGMZDff8+u375J1+SQlpqdXU+74aQftOq5Srt7jvkZZLpKOjGqnkR9HmEVrgTZbcSibOqwy294602py/OADo+hIdTL3MxyQXM+kcoc4y6lxrREzgziE8iIHbD2b1CA7gnJEWSwnLIQI9fixMqEuy/MWrgyxTwbIGE4PFglpCKefaB4C63g9IhXDXSyL7cimlsInE8rvRhe/hrHXeoqaCmlICrzNS38tit0fHcg1DBtYrLV29AA8bCY11zLyE93QQJc97rZwVmdmOH2Tx4s1GEtEtV6Mn8HpdCiJQ6lRQmLIl+RulcI2Ot3kkmbmuZ6SKOEOqxxIgE5CUQN0xAAKfrcpSHe0EimTtQyLktXl13bVsAWmxoJQ0h4XrksUEtViq4UDGwgo9+OLj7CTvJaGZTJR/gcD9w5hxltfajEc8s9PvSyVXyXt87CgQjbwOzks2mVBv5eLXimbNO9lwEFkEkmgXVeL4bCUn2xx7yFVpIQZDFpy3omniDeyRXvcyeLkAPXsuk/RFD1qvwacrUWI2Er7Kj4+B4QhkRds2Q11wHZ3KMuOpcLfP0hW0WnQvlTLR9xrOCmAtyguIwMMK1C1BywWo6zCcnsn1MZfQRNNKyNar3cX7LVzVjJ0WCeQUMW6+5HofshSbo0UvHrV1Rnrvq+hfOwMvO6w+6CkW6w3olVeFxgyRg1oMqNgxNbxVDM4EpB7p+Fhy6dNCi/MMen5VEos3scwN9j8XBXYeiTGWnj4BOEsBPmtvMyBvBnRdJ+9N6iR8drMGb14TBdCihfoO6dEjUdI3G9CjI/DpSuYBVhVeu4Qq4XWeIZ5b6noJtV0N5b6Vx8TmI4MVQxoVpBq/J4E7hfAgBm49aGRJzptN8Wzxs2fgjkrJaaIkjFAX8p0tkW36wtgCrPkNImQGWacwJQmz3GxKTkfRNWYEnOQIWIPK6I3u1Vn1RALiFdMFk8mksyo5ZrwtjlBWv1jr5qvCp4RXJmRmqVDHumQGUCcdeRCrpJ1WHITttZQQExe+ygByHmqlUCJR2ja1iA2R7UtlLMsUUtfSIq0w1/RjHbhP0nNq7gWKVZe7pJHGJt3qva4Sac6qeckmzfAaBh4qxuxvwpvMxZMLz7SiJLztvNkwvZm+b+K9c5EbgCoEF6GDIWH5FoJZiry4A5xXplQM3UjYJJ+dSV4dADo+kjD/RODFoi7fUNYpTKBHski6GAclpw2Lvhoki8HRkeCMfAyRuRbhQl0q+YTC18VgylowrHi7nGd0+qiYTJ8fohr+KNKDCj1+s+5zHi9mVdqGAbxeg8/OkE9Okd75fuT3vwoaMuj5GqsPfAw8fQQQxDOqQ87Wtso4JioeNwwb5JNT8UyqcbUYJwvhpTY5bEktmNyei15qr7oogTwM4LM1+Nlz8ELvX98VpZkWPTIBWHS6HmISwzBpcRrLU81ZQpn7Tpa5OlvV+YlT9MQQrAWPzHhjKT2lEi6JUmlhrFaYyFUxtTHwN8sbhgJ3C+FBDNx6MJEUXFGrIhKApMLl0TG6oyNJkl5vhPk9fozU9cjDgNR1yKenqC4mOAVutMQCJU3O18qYR8cgHpCOjjGcncqaSjkXXdKUvzlDKHMGZVPwTHmlYgVmmxgQ1PhJtcocUVGEqBMvpEkuCbl00ow0kX7QhXIpozuWpSFosQR3CfT8RITBKkuZb87gDUCkhQwSlQlKrVZWbeR0fFyURPGsql1pvUF6/Bj8uicyOTg5kxCW1RqcMrDRdQ/tmo6OkI6WyK89Q8lTKbmlcn2tggfxUK43SE+fACst6b5cygQpZ1CSqnU24bBiBmCAOie8bOxt4lTMphfAnLB7kfYCgduMbc/1rjmfunqK/YnrdLHky7logGnbXsE8R7/XgUIXV6+OYS8fEH5LaSFGyES6RE9XLIJFSVGljhIVScWZJbKFCHS2ksXaHx2Bj47EK5hZ+PNqDZythLzFEuhOHflSmdO8c831+GvkDGQCUlXYEiXk9UoqhQ5ZeLIqDqnrJNedpLolvfQYBEYmkn0nJ3KOPRVE9f6Pxk1oGwCWojvFEUdwi7w7ct3wlqVUckY+O0PKGbTWiq94jO5sg36dQCtRJKnrdMkld5tSEq9pHuSz60SGPX0i8lLrE9Cz5+CzXHS7qnhxlWuUigfUPz4TeD1dPXzUd1JR/aWnakhg8NPHGI4S8pMFuucD+vedAGdnuoQJkBZLua6+EwPC614CL3pZJqNPIp+fnwDodCy53n5d0quE1zqF3Na4hHpNwUOZF5h9e/pyUvH6vpDMDdwIQkEM3H4MgwghK+WdcxUsZ2vk7kzyHtZrOX69RiZbwyhVg+zMzKJhV5aUbvqXKV0mwAbN6UvUnu+0TNaQHdUEwWDxRDJLqCcgS2DYMbbYMaChnFlJsHLjXJSoUa/lerhY8kSxzSenxSpNSZVV89jZxK3TJSJIlULnJQRQQmcZUgAhaV5J7jXciAHKJ2K57jtwAvhZRqku53IYyiRxGEYFZURJrZc1FR681vHRfAtiiCU0D+Az9YYS6xIekGu2oggWpttMNrlNzr8QRrOTLbQHAvcS/lnn8e+Z98I8T8U+5xYbn3mVJopK/YFGU7gJjOiZULGXDxCwXktV7MzKs3Xhe2Z3aaw69ABiy+HLEq5pyx6kBE5JlLKUwKuNeH0GFB6YX31NwlJXa/FosRjumIUfF+WsKF1O7sDdq82AfHomv8syF5p2ocpPXq9BeYMSmDZIugeOjoDjhVS9tuiTPPKujUbSCuzYOMyOavMcOOmo51qkDGvOPEDAe19Bt1oDjx/J0htnahgtIZLalFbHJohBlAAJ3V12knLCkPnCciHKOExm+2uh8sh6Y8euR7hsGkQ5zs/FMJ0AUfIArF9/jOHlYyAlbJ4M6J6dAYMofkjqydX1Lnkz6LqUg6xpvBnAfafFhrTQ32DjY88Ci9Js9QtyBq8lFFpCcV3YqKWj0Nx94KJ4h3S8mwgFMXAHoGW+1fpqnLzyXVXeTFBuBlCfRYXU0Ed/Tvk36/lz3633bOqo5RyqAlWlarWWJ0iVN6pCtrTDkDWkNuYRzABLvlxZV88Ek3oRKSUwVaVqbIlLXSfeU0IVqDouUl2ulkWn1JWy3SYQzBpb1sbKtcKoFYhJRwtQ1yN3kAV7e1HWsNqAexW80EJCFr7KteR1yW8BRCi5QW6WpSgW+Zmbsuir59XChu2rLXXBLBZn+HHnkgtRzgHcYtROoFP7s0xcWn0cta652xbW0cBDRaPt2bb62epU5nGofKKFe6kKn6Z2902i0CQh7i3/sn17iCTxBGUMuuxCDbwtJjXHCzlRWUKINK+Muh6cOqRBFDI6PQNOz5BBoIXkFuZBUgzobAWsN6KMUl1Co4RAst6PmjtRb4FpMmpIxDCo8omqWBozJAYPACVXwXQzSLGVp0+A976qoa+ozwElyEluDFVRhbnlTO75MbY2prrl9H6V2mksES4npyLPNzWMtuk/iew1T6TkHybw0RL86EgqxC4WUvxnyEgnp3LnhiqbSO9mSXuw8cmeMH/Bo82AKN4Dg3IvyrfK6fzyIwxPenQnEiFFphBq/r0tdcJGyWoNrDayLMail2fHonsmUMrJk8NiTBiJvVLAbu79t9b8O8Hu/oWsvBMIBTFwJ0CWE+DDRCkhHR8Jo+97cJfAmw1S34vFFMbMCK0Hzkm/EZ8SiymLx4pZQmhU6RReKMytCCunVLAKfhNuxLKAcUnSJ5YiAVlNaiaAzMLplCv5lkHZCalieXREJ5L8FFCNdspZFsPNLAscG80aHpq4B3edFOBhNCGaInul8Au5CQUPZ6DlEvmlpeRCnEnBGFoPwNkaODkFztawojY8uPHmDEaq41kskG4JD5sM2L3VzcwoAi9vpJhPGgbk9VpyGt09I0AnPyq8mslnKT9gtwI2ISM/Idk54ygaop7rwuNC4AUeKuae/fJOYWR0Kf9Qwr7nQjXt4HHb+xSCq4QzXhWbU+PtLP+2NwEUjxtlUllSIzjKou9AkU+UOnDegHWNwe7JEwxvfiPyUYfu2Rrds1PxCjG0UmkCUieKy7BW3rkqCiDnASnZUgdo2Z6XiTqhJ4g85PVKFAvWNYL1oKLcZv1kiIJ1dgZKCeloCVqvgde9DHr/++vi9N7fZs9AM3z1/pfNhdaRrJiMc/VSs8pPMk/tqSjmkt8+gEkrj+vYWwVykZkQhYoZePwIwxueon+2Aj85Ak5XSL0YaAmEnNeoNQ9U4TYF0WR9UkVy2/NSdC49Jovhm3KWOcjREt3pCvTqM/QnWaKm1hr6uVqV+1teqWEDPNvIdeUj0LAAr9YwT7E5dC3FhFUOpszIObfjXm6P95zveN59iLgXnTdu5QkciihSE7gTKBbL1sSGbFXgQKBBPW1ZrWNcFYZqCxu16jdo+AQIolhpzhuvpRpqm7jfVuUD4AqmAMUI662TRbqp5mNMGcaYuT0vZ2RdVqK5cq7c1tZabK6FAJytxEK83ojgG2ol15KX1/cgaAEYAOKxVHHvFcbVSjy0OQOvnQLPz8Rq+Wghk5nXXlNhyxLCIuXgqjXcaNZKeqK7WQiRDRa3Y2nXqwIyv/oaeLUGr9bI63WhuSiHZdjZnz1qjUdq4qiv8bMAdy+cN3j0FJZxqoaHmQ4CgfuGJtyCt+8D5t8J/87zlve28CHH3/z3a0fteFIY+RC6qPI6VvkklT610Iu1A5gVS4xhdjoI+dXXgGenyClhc5TEwwgAC6koirWmORwtgdRrf072kM8zR+WIJoOa61BJZx7Bss1f6kijFCEjnqvNBvzsuRgU1yvgyRNR1kzJKGsbNw3KVyKAqe3Lf5kYFPw4e7ogiiBQZG4uIb3VMFHkkcncMxn3fHoqntiNFo7R/fmlYxHvutwINc8oipGkFnwDSn7i3gfFXd+QRfZpcaL0rmdIK6XRlpsiclVIuRTAYy0qA2ap0XB6Jopkkc8javJQzpVj/Dxn7n09FOObu4dfBG4FwoMYuBMgL4OKdQ6gR4+AY6nehaOXkU5OtVDJgNRnYLNBTpuagG4hKy6sp+FVJkd7CSOhnCXnYLXSxYcHWDVTGltciUF9D85r2Z9IrIve6zmo5PCWULXacaPkOcsjWPMJU8tIR9XvitBPPfDoGOn0rCrIzFo5lMAJokyvNtVaTRpyYx4451ET76ksa5G6DnSqyf3rAfT4kUxM1htZ2JcZODmRfnzBBSLxXi6XEsYKIJ+djZx8fvFeoSsdH0lYburBqxO5vrVaQP193CVfzHpb/MmEicCyHEyV45asz7DbUycxBOikzD1L7ErFh4E08JBQeAXmPYHekzB69cqGWQ+inmZ8wbwrrsmt9FyWR3+OZiKgX0jxEDvE5Vrubo9rfrg7RTw8ml+oHq9aRAZOqcxIj45l+YLVgP5EQ/+WS6DPwtuZASTkPICePAK/+33iWWSWAjerMykyY+TODnu9p5QgOf5aQRWZmyHhWoEI1c1klcU1deHZc9DjYyQG8PJLGN73fiSSgmIl357g0idkcFKXkF30D8P05smD1DyHXN1dLswToF7CNbu0wGAeMkK9JwtJpwBBPJ05g46OxAD66FjWk3z2DHh0jP7ZGTAMyKu15mICQAahymkpAgdVRrUAno2TCcfZZ5XqdhIlMGkkTf/aKfA8IT85wubpEZ69+Sm60zWOf/gZqNfq4VqwLx0dAUdH4OMFQB1g86Ou02gmnn31mFCWpiEbJP9enef9Ku8/u8cqhORdQCiIgTsALv9ptIVPTiTMdLEAOIsgAyTMdBiQF7puUxPWMq6c1lojSxGaRKDlkTDR4yPg9AyMBGyGIrMbNqdGtlLxUy2G5tUkUClYKlXCckuDHWuMNLntanGmRllx3jAVogyUogR5rYUJsuY8DhnUrYCBy7IRxITMoiyWxYDL5QgdrAsO8zBIiGiXwLZgb5eQjxfgJ0uk52t0g1bHM2EPgEnWXqTUgR8dIYFEgGUNkVHBXq7N3QtmFmW22neLgt6usEQqw8brLvlfTlG3CUOxjErfvg8qB7tZ4kiu1wlL/awPRwjBwD3HwYrR/Kaai4jm3fd6Wcl9Grdx7e+YNyrVyht0zklzNTwVFQviKZO8bXLHSVd6nBUeeXYCetf70D99LMrDkMEnp6BlD6xtaSMCjnvk5QJ0tASdnsJCOKnrIPxW/EM0pyHA8UJocbjHj+ScU62I2hgGxmfrZ4J6pBg4XYEeHUlV7OMz8NmpmEWdV7XNN62F5phFfjYyYst4O0mu5zryhkHy+LQiZ5EWbMRC1hReLoHNGrzWSp2LHnjfK+iZZVmP156JwjVkZADJonBy1rg8U6L14WUeKcDjkRrRr5o7kRgMQFKQiCiBN2spDEfH2Dw5wuaNxzhbAIv3nKB7x3vK0hZgBncdhqePMLzxETh16N+b0D9biaEWq2J0IKNYaeRc5xbMRsslvGtenAZuPUJBDNwB2AL29Xed1EMXAF4DqPl+3GnYB0Hy9ACAkkxIds1p1NhIXQc6fgQ8WoJeOwEdL0uYZc5cKoBC7Z+F8Wu1UPlOSIuFhNmoFVCIA6x6p5V8L14tglggE5CzLFLLIK1qpgLHhDdzvR5QYeRIAIaNnJNz9colrejKg1CdTYCpl9GKvaQaiClrQCUwAYkIdHwk6y49WghdqUN++QjDcUL//hW6zQC8yiKgLA9evXf06Aj8uqfAqeZMrtfgzUaFYC4ThaK/MURQ5ww8fQwaBuSzlVrXuUhSBpfJk6FOMBlkuTd6X8ZeyvKN/bInTlmH5KLwALHEaxVdNoXeDA/sJrytJSMEYuB+YeJy0H9zk0iv7c0oivZyFJ7sPQ5ALZRiP8Zf55SFy5qEFu2UisgREslFXCr/PqA/1nOrclWNk+QUFqsAqRmKheuXaft6A3r1OQpFiYDlshYbYwYNG/GInZ2JoZA0D11zGQv/3CELC0/rO/AHvQ7dO4FhtQJASGyhiFrlU6vBkMoj6jtZpqjrxRDYCZ/MC11wfr3R9RSr7LPxLMssmAzPxsNHBsDGq9WQbvqhyFiGyDlbusIKuWglVhwvgbO1VujW+7HJmpNI4NMVcHwsS4k8ew7ue6F/tQKtBxlPUwqLAZMrjeUFcMbHbe+KPSNJciG7vpdqqcslcLREJiAvO9CyR37pCEgJiRlpo89Q1yENAwYidMdHOPuQ1+HsTUfYLBhPwVicbMBHSxBL2KysY5JB6EQh7zskIvA6u3xYe8V9BI7dtz3vnucV7D+9lC7Tqfk2AzeCUBADtx4TXkEmt9Wi+tozYfzLXmLsUweitUbzEPKq5nA0RWbmwBCh0HfAcgFeLkCLNfDoGPzqs8ow1epb2jKhP2x0MVu1/uWsQidLKW1vsFwsZH1HhjBm1usBg6gD9YT0+Fiq0Z2dVQXOrHs6oSCdqRQRtNbQ0WEooUqkdBaBPGzUIkka9uoYvhVN1Vap74Cuw/DoCMMHvoThDUvwYoFuzejfdYL8aAksCEgr4NEjuRcy2FXhZQa99ASb1z1Ft34FmXXJEEpacrtME+u5gExMiJA/8HXojhagd70P+exMJktsFVeTehi4sYIC0HUtLUSJ/CjV+9CMnlfyU7XGAipEa/4OsavIZ7k0fgI87S4QuJ+YY6hNDOXMS0C6JulI/WmWoSHNVuOsylUN3ytK2ZVOJkdKHFTX2Eg1zxpGcI4mczsWxk/KMgm6+LrYELMqOGoEyxBec3aGfHamJKqRalOXM0JW/rpcIG/EWFiWOGIGK8+nMhl3BjYzopVbR7Km7ssvAa+tQa+8CoCQN1mXnqJS+RNgyW1PSbxui4XSvpQonMUC+dEReJnQn54gr0mfA2cUoKqCiAJX+ftkmP29V5EM6sBJFTsriLboJWT0aAEakqxraEs9gUBPn4KHV0q0DZW6A1xqGtDpWc0HPD0TZVEGG+TWUGzkWPlmxGGPJ07PMy/vogdeegJ+8gTDkwU2T5fI3YDV0w5P37FB/473YtEl8FEPOlOjcCJZA3q5AB8dSdc9gR/1oLRAXpn8dP1lBjq5Xur1vulzJMthpPKoNzrcrGybfyEY5FKFnBJotgEfXhy4FQgFMXAnIAJiZuvZCjiCyLdna1UYsloeVfDYGoBcmWFrsTJQ3c8Ana0kpr/vagEaK42t/bMqBUXQ+tLZFirKSrt644ogLpZSVQ7LRISK0RpESIseebWStYk2m9ZSmqihR+hXIUdtlTipsjqgNq60JZ8bAafnKOdeLkBHRxieiGBnEDaPOqxeTjjKA/pXTzC8tMRmmUDHHbouSX6jV54Y4GenoJdWMlHRdQ0xrNAuGWI0qLL87LlMdl55Dbw8knApXRQ45Zq36WVVCVky5Zm8B7ree/b9oJ1wWs6TKP+yDqWNy2Suy67se30qRvdl5hoDgbuOiSdR3wFyFX5nUd8DHm/xIY8MuJQu1CnqTAXMpnmdkF/G6zaZCLsfM9EIu1E4DSzs0HfTtqlKaWbUfESajHnxgp2diTErdarosBSKGVyECFTU5NE1jBStCc2np8B6g/yoF+XCV4sGRBFLXCM5zNOkiiMxi7HveIGcCHy8BCdZkkiMmFvIYROeRol7rpqxr9VfSY2c4rF0Y6bKB0G8bOJdVFnUac75ZiO5lnY3CGWBeN5s5JEaBl2bmcs4VEqm98dQbp2fL0xHWjrNWYrOFM+1GpL7hOcfsMTm5YTlayv0P30CWvbgTMBRXw3EgKSUrDdIJ2v07yZgtQCrEjgHtuirQUJsrZSQFNu1+RTDCjqUay6KpntRxs+oGonMm0sqt8UY7hpzRorAzSMUxMDthyZSV7MiKrdNSRcBViuzJfpDF5cn0vxD5TlZGVkzX6/KkkxIJO+Ncwaen8pcY6NLK7AKZG2glglXenoNcy0ML4P6BZh6EFisjsk8ak/FQpgS8Mpr4qkbsiyNYZf4ptchdyRK0dES9PxUBJZNCopl2QlRrgvdAgCnrkw+qFPr6mol17dYaF5GV9bJglr6MhNS34Pf+DrJUXzjU5y85Rh83GH5KmPxzldw/GqWJP1Xn6NbZySWnA/0HWizkfxGswove9DzE/D7XgM2ujRGSmLhZq6FKOQi6oQpdcDrn2I4PkIiRmIGTs70OnvJyUiqxEEU3lLAp7G+ZwlZHTYAq3cZkKVRuq4ISOr7omTnlJASgVemQNtDos+ljr1OUVBvnBeQIewC9xQ+f2z8Wyf+9m7Y1L54WMorQhNvRH33qSnEVftxx0+UQ1MILuH6JnNpe7cHLZ4z0/9OFAYHi4AxQ15ziA+XN0umc+GwpRywejH7vioXzEhg5PWmKjA5A0jK47h2A/NocTNuzL6Im4Zivuu96DYsyt3pCunREfhsBVr04A96g4zHOoNWa3DqsXnDI6xfv8DzD+iQjwhHr/V4+Yffg/TkkdgMh0GUWUJjOG3rA9h6t1SGxAx7Mky1yAoRSUGZvgNWa9BiIbmGANLTJ8g5Iy0XyIte5CAzEmcpgnMkqQymyEhROKdom2d2LetLEqDVQdvHjMdjazvMODyYgXfLM0MkYcHLJfjlJ1i//jHy6x8BZxvkx0us3nSEjhmL92Ys3vMM/VlGet8rwGIBPj0DmDHY+pePHgGrNfpXz0BDxuI0Y/muV6U+wWYDrNdlTUw3sqCuBz15LBE6XQe88po8X3moV+WuwYeAt2sl+hWQLfxYz7FmKJVCObOGnsCNIhTEwO2H5xljBjIMYpXarJU56bqCNIhgY8DCAYsQnLQ1UhoZsn7Q8+dgSkiLvoRasC2hMWbyRUksmqgqKFTW60PqdH1FUWKxXmPz8iPQ0ycgALlPoEGYZV4P4A7IRx3yoyUWT58A/ULWHOS6CL0k3Ls8DrucnJFSkmUybHuSUB0JJ+kB0vWSuq4omJRIE9RZBCQR+HiB4ckC66c90HfonzH6956ANoSBBnQnK1nnitVi3PeyzAZQEt6RCPz+10DPe7FQZlXksq2rhZGlV+6blOQmdD/2TuQ3vwHDyy+B3vcaEh2BV6qMd6IAc9eX6qvUae4kzNcAueZEIOqrAFfhzwCo06p6642GlbIYHRqnsYWZ2oOC8lyVezJ5Zuce5EDgDsMbQcbvrYF9YYt2Egq3tQRP2FElLBU1VNz1V1rc9Tpd1kRzZjJvk97Cs87ZnHKowkUETkEbhdhapIn3ohYFLkm4ZIl60GJsZdkkU7aE2ZX27bIq9VT785dsImW1Br37FeTlQkJIu41U7E4dsOixefkR8suPkJ6v0J2ukPuE/PgI68cJ/NYlzl7XYfOeHv1Pvorj9zwHv+kl4MkjMVRSAlEuXrJCkyl/QOPRg8r0xrDrx2KxBEAYFh14+QicMvLRAnSUQS8/Ad63Bp48BSijf34iTQyD8PzVup0XEIlilLQ4HdcxLLKlKD0j2eVhciKp/LdjGy2yXsdw3GF4uUd+0xHOPnyJ/L4OaZXBPCAvEzIBJ299iif/56vAq8+QhixzoaTzD0rg01Oxdx8tQEMGPVsDz3VdzPVaDJtGRwn3BvLZKbr1Y9DxMdB1SCtd37hLIKzVYGDkz6nH9hx5vlANqzLHqPfYhofc71AUbwdCQQzcCbRhJ/KvqERUJxLCEYG6vANUeFoYp24ch9Q0fI7rWoE0gNdVKIDzdHmFKtF0O2kBGNkllssleDNIUZauE4Hz5DHWH/Z6cN/jaL3B+g2P0b96hnS6Bj/tgA5YfeAx8nGP5U+I0kNdh6xhrOyvwU3SSqGClEB9Ei9byUeECPZhKGXVpQhBAga5dlr0ZdzSk8dYv/QIePUEy3edYJFFKet/6lWAGWkjuRk26eHNoB7dDB4yrOyC5FhK1VJitzaUTSK3hOVAcxSJgLTOSM9P0XUL5JQ03HQDnJ2BjpaSF0JaPGYzAEedeAZXWmBg2EiZ95MTDW+Vina8Uc+pWlMZAA1WApwAtlwTchMDNDp5Qz/Xw2cnAIHAfULhve5hb8JE/Yqn9aWh5nydUNoLY9uMwY/ZA5d/NzOZLBP8C3g9ytA4BuIVM+W9jUc1ofKj4rkEiJIa+HJpw/5zZtcGOV6r+ZxNXCfm+ZQxui5JUe3MoEdHUizs8SN06w1y3+HZz3sdNj2hP1uiP9lg84iwftLh7AMIb/yY9wFIeP7P3ojjt78P9Pgxuvc/B14TPlzXD6xG2tloDIvW0IphrNkZEtYKyel/6SkyMujJMdZvfgm5J6xen3DygR36Dz5DejyAf+gDcPQakDvCSz/VgfqFGBRTD+py8arRcgl+flLGmxY6zlnmEsSDLn2lWm0W6VFyRi31wAZY26mq0nTICUB68hgnH/1mvPIRS6zemvDSh5xg811HyEcLLJ914A44ei+wePUMeHQE2mzAi4WEx4KqfO0XEg2z3oBWaxmnkzNdvkPlrxYtaqwuttQKADx9DLz/FaQ3vE6mTydnIltPTsT7N2xkruNqLlg71PfyvNmakyZf7Rk2pXQi/rcozoFrRyiIgduPxhINJ0QUuS4Cr7GRRcCKPHThgSVW1aFp2zh41nWAZHmHsgahyS1Pi2/HhVeBUauqrlY1lAKi0OajBVaPF1i/YYH+/bK21fC4x/o4IQ0Z+fGRRGa8cgosOuST5xLSSKJ0muWvJDaU4VJFFhrWsugh0is5AceaqJ+qYmnnmgcukSS9v3oCrAZ0qzVwOkh1uvUGBJLw174HTk/F27hay6LEutCupCuordWEFEg/gfFEaHrvM3gg4NmJLHdxpMuOHPXA0RHQCT25TyBb6iQz1k8W6KAW5fc/k+cnifUb61W1mmYWJZEZ2Z6zbDmFUq2U3PiIMaI+To2HoZksjizxgcB9A1H7aWBfKRjtJL95X1DfJ6qKDZrPpsM9v28A51ZO/VXWRchbTyu3vIRIi9Po8c77QmYMNYOmVoO29kGoy2QAZeJfb8MWPuUVS4IsGbWW5Y6wkciT/PwUdLwEIwMrxmaZkImxecMRNi8RBjCQGav3JHQbxqOfehVDx1i8+hqwXGIYNrIuYidrNhaPsZMJJo/EyKC5ipwbGm0ZCBwdSRjmkx6bNxzhfR9+DH5jh+MPeob88oB/76Pehh/gN+Bf4Y1YvpfQnSU8+b4O3XoNnGYtYLNBqUKaXaXyYRDZmxJSkrBItnQKSiqXVTErcl6VdHvcNZJGpiF6h6gdeobI9tfecoxnH7LEsNigSwn0JsKmW6B7xkivngCnHXgl0UHZjL/M4gE1DIOEkWpepRUukoro9ryMrJicgUyybuXTJ8DZCvTSU6zf9BLyEaF/ZY10cibXlwh0ti5GXwBa9Vyf8dSJsXm9LgWdeMjVMJGtQJWfT92CdzpQEApi4NZDchSohHdMag8QSegG3GLoCVKd0xi1Z0Rj66/xxxmznuw2pjfSZOas2F0CD1wnSARRyHrJQWRmyTVUodafZJy+OYEXhJQZzAM4ZdApIx936F5boRsgJcw3A2DrMjlSeaS0SB44wUplU5fA2da+Utem5R52nYTTKmMnFR6USJP3O3RrWV9SqrplgDrkJ4/L+oTgTooF2YSDXe4BoXgDzLoqBlehLzchJXqPfNgJA0QaNny20vHrgU0HPCLw0QIEDdmlDCyPQKsMvPQIQ5eQBka3YWC9Ru5EuOOkk/ZtfchEWqnNK6tcSbfpFpvgd8/BaEJz456NQOCmMBcF4BUNU3wwZuBVCZBDb8l7c4gX4yIeREDzF/1aq5gayvxQdUmrUgMlhDTrGnbJKijnwn947l6AQGoArREwTha6+2JXVFpJXbk/ZvxjYtBmQFp0WD5j8ALAwEjP1gB1wDFAzwnr9z9C/x7g6D0Dun4haQOWG8kZNKCkODQeN1DlrQwpOjNkF4ZalRsCJOfw0RL59cc4e9MCmw9cYPPGAcdvznj6dI2PfMO78eqa8K9ev8EZL0Q2pA60OUM+OUM6PgLZPIOStJtqjhyzGhMBqVOQVVmGejXLWJkheaR86XiLFxjFE+kEjXiENxv0A4MWGUcpg967xNFPMtLrGEevbsAZ6KD5gd1G1n7O8jvn00JLrd6tJIxlF9VQT3LvKZXHIBdj7/BoieHlHoQelAi0yaCOQDgFsyrQDHAyJRFijLVKsS6CCVYbQWmoRW7w/2/v3GMs29KC/vvWWvt1zqlHd1ffvs19zQVmwIEgjDpASAwaoqMYhyBGTMBENAgJRmOEKH8gxpgQMQYhGkMQwfggRMGQkXkQfGCI8hrnzjAzjPNg5s7tua/uul1V57Ufa33+sfY5dbpv39vVl+6u2nXXL6l01a7du9Zjn/3t7/2q+zBxuiQFMTEATCwjvTaorqpKxoRujInNd42gbYspy2jxrOuoAC2WfXgDx1ZY1Vc/vtfalsHk2TqnQSA+zPvEbnqrYaw+ujHMXoBEoSFrb9/6BcII4or4c9fR7Y1ZXnG025ZXvrxk8hKEINSTQDb11FcLxi9kZDfmsKzRo1lU1FZNmkWictOtVONecuY5xhhkMkLnNUzG2Nk8OjfzLBYW8CsvX0zsV4ihoX3hALpAaKP1stmrCJWB1tJcENqLFoyQHwlgCYXHTyuqa57q+SkczaMQ7EuCQ99OwzmMc3Edey9nLykR6ftSrc3jPdZE5TjL1oqw9s2fNcvwlcUdCX5vRHZ9RnN5jOkEWSzRUcX0smP8rMEcLWFZE7bGUGSwbGPvzGUTlc9V8+e++APGHOciroW3bHijVy9bsp7D+h66xdqQSLxJuKuiJHf+8bU8kafOCTTENxBeun5srP/CpifnDtftX7SNMTE8z5h1AEb0SMUCLsaaPvilVwxMr8DUDWh8oY/tLeJAdFXEbWNst9IX0DEG4xzhqSvUOxlqhOpjL8Sw/aCoc5Sfu4E72qbdcWhmsNdrxDi6UugWBWYp2GaJ7mwhi338bB7VOrPywt1mWFz9u6rguor26ENk4/A2+g5aC1sjYk+/DNsooYRmD5iD+UzGpx/Z4/qvXqa5knH5UzW+LGPRtGVsGM+yIawqmAtro+EqmsaUZZS/q9YPK1mh4Tg6SAQNveFz03gQN4jjsNPNAkfHSrpaS3h0j247ozwwuKnDLaNhYPL5BcUUzPUjdLtEvdBOctylbbLaE46mx30cVwqrSN9exMVjyxo9mq7/7uo15haRZR0UOYxGqDWxUN6kBCdoBd4Qo4nEQJFjZjnh4DBWhrW2T9vo0zm6tn/viYWBpG3Rtl2H464iweT2ez5xJkgKYmIQrBr7xv49xw9eNQJVTnB97p/N8YWNBV0WgtaxFxRNy3GI6Coktbdarq2m8bq3OJJcb0kMgvbtFVDZCGPtPZora7D3x5XQ2PBp+hAVRh+T8TEG2T+iMC2LqqbeHtMVgWLfEiTQmUDnPPMLhvFBwFU5ts6i4kbfG0z6Cm99r7+1IU5AnUGdRYtYOU0zh1Xt+0Su+vvZvh9hFyuXrc3GfZsM7wldh8ezuFLiJxl+J6ATQ5cLcw3YJQgWWxcs84DBUjR+XVxGnI05fhoL34RMMHmBLure0hnWwkr79T+2fsd1DsslocyQPMMghNyCBEIu+NChudJUYHYM3kCzZXDBIYcHNE9cRp8sGH+6JpQVWoKMSuzMYGaKWoOpO3S5XOdmYkzfs7Lf31e5lBVko0jBLQ7F4wIQt93BdzqYSAyP2198N6MxziO3z/cP8jnudcFVaOKxwqC3vKPLZq5zFwvCYKP3Zq1s9M3ZowE1rA2GqzB5kKhYWrMRqQGripJxOrdYOF/VSip6KmNooraBdrukGxuyz+a44FHrUK9o3SHTGmM8YVKg3oIJMK+RtkQ0oykEc7FEbmbRaLuqvh08Kw1lJUtXMzuu7yprGQL0iuLGlLxH5wtClRHajlYc7pqnOBDam5bZ24X3/uKXUizAbDWEZYBFR1vm2KMZhChX15U6hTiulTtNib0FTRH3xpjj84xdF7ATMbd9HpR1SKluVEnVjR3f8KCJ79DpnPLZmtkXFWir6FQxrbKsBDMPZNbGvRg5mj2H2dph+5mXMcbGMFZrY6SQ9zH/fjxCXbxfRDKkdrDoiwKxeV/3a97n39N06LggeI9d1rTLsIp0hnGBaTo4mKFFgZR5vK98F+/rLobqyi3vagaR3six8mT3O6hsRl2d0+fIAEkKYuLMIytPWbjVw2SqiuZtV6kv5HRji1Uhu9nR7GV4q0w+36DBU95oCIsFsmxiwrYQm936DpvnhKZhVQwF5zDG4rcnhEtjwijD1AHpPHZ/CrMF1PVaSY3Kn48PROktZX0lNHFZ32pi5fF0kMXfa+cJ2yXNU1vkGSwLR/VyjWuhswbJLX7HUS4MoRTsoumdVNJX7owVN02RA8R1CSZaOPcu0O2NCdsloVnCqKJznurZI6zs0GWQHdSEV46QUYHu7aKtj3mFs8U6gV3mC+TSBQ7esUOx07HX1jyxe0j+linXqbjx7A5jq2x98SFbW1M+OnkSDivMs7IWjkEkVj+rKtqrE5ZPbWEXCnVg/OwhvHS9f/mJJcWl63qPrRJ8F9tSXNxi+o4rmCBkr7RoYejyjm5nm+aSkmdzllczLucv8umjbdznSsyeUD8ypn3aY1/I6B4fU3zKsnisoHgF8uf2YXsXLYTRJ/djefSq6i3t0Qobmmad2yF9L6zQrV5YDCJ9IW/V45L3ayV3tQSrb5LQS5wzjmP9bjv2qoOci/t/Nd9NpeqeFeO4FmsPXzDHx1fRdasImZVysbONVEWUf1WBtH5DATRrhUWLDM0d0nRI2x0XA9k/wDYNOEdYLuNlQyBGbpgYkbIK61vlMOpaFUOcw1Ql7ZN7LB8r6EZw0YNe2kZbTzeKXsPuQkV9pYzKahfoRobljiNMHDSC7SzuM46yKMHMYgGxZY06F9tS9Lngm+6sWIitXw+zTiA5vqVW1l1nEesw1pF7MDMlXLJoaWi+aIx7TjDWswyGat8xmtcULx7h9g+QzBHmC9Z9g63rn/s+KtjjMdo2yMUL0ZvbtHH/2vY4hLI3gkqewWKJZCuD68qILJhRiXolzGZo27dW2thnALKM8NglmqsF+SygE4eMwMyVDCELHnYqFpcdza5j/oRh5/cELm7DC/uYUbVW6kUkyv5HL9JVjjB22GlLPq8xXmMLqr5oXljVJQDshR2WT18mP2oJZUZ9ZUKzYzGtYg5bxAWoPV0FNrsQW3e1I0xvnFBn4/2KoDePMFkWW49YG9uOtH0hvd5ovtaPdSVP+wNJUTx1koKYOPusHhywIRgUdZb6omP6pWMoLR4hf0VxjyyY5gUhy2N55zCDUjChJLsxQ63EB3ldEyYVHGi0gHmF3KHGwe6I2ZMTKBymiVVNR9YgucEs8tgfsfc2SlCYzaO1s205NgyuLGIKXqMnDel7LBm0bXFHGpO+DwPBOLT12KnHSKD67BGYMWbp6coMu6yhbY69VGzkNHoPooTS0VwZsXiyQic5lAK15fLujKNJiT90lBc8i2s52QVDdynD7xTYfEl3tE12Y4QcTgnOUtws0NKi0yWFNpg9j048TeuwB4HtaY2ZKEXZUdAxrmr2r5bYz1XkL3Zo5WBeR8UqNyyvVMyeGOMWhlCAMRllXcdzxhXiPTKdx3DSpkGMQ4NS7+bo2wyzRUHVtHDJcbSbQWGRKw11lXPxi25ytO3orje0hyW2KGhKxV9esBzldDdz2jrmgU6vCqNFgZUMsozm4oi8beI+GROV71XYktJbuDkuhtAn+Gv0Z3Is4I/jxtayLQm5xHnlTvf2He/3oX8GViEmwi3K4erYG7ja8TtwDPXklnBD1oqPCuAywqSiyyzddoZdeLJ5h2264765uSOMMtoiw4zy6N0JoE5wixqTObTzyGgUn61NAyYawgRzLFaNPVY+41s7lAXNhTHatLjroLuBZuzI+kJltJ6wO4rRPIcLfJETRhafEwuMLTqkDtB5vFd85TCjKioneRZTDla9gdchpMdK4irWR3olYtW3UdZKrcZ1qGtk0WCDRztL9fst9gVYXi0RL2RfWCCXcuxLR3Qyopy14CxK7Jurq3ZRRqJXsPcmaplDldPlBuv6MNGVQbnMaC24ZQt1F4vJFTkSAsEZbBMjijSzdHmOERtTG3oFXH0/l437KBwcEZZjikWHnzWE0mJmgfpyTlt4rM9ADN5aQlDqoqHLDFmR9ZFMGtMjshItC7wTQmFYbmXY3GAvTLBIbA1mBG27W/omd2VGWznEC9o2tLnSud6skQmZB4Kn28owBx3dKMN6j+2iFzCYaBzHhxhBFHw0RHSx/3D0HK8+A8cG1L4kYL/3Q39mnA+Sgpg486gQG7Y3LfFhGsM4NIuhHfVFYTSp6fYL/ERwW0pXQnvJYhtBt0t8qVifkc1aQpFjWx8fiBd3kFkNW1vIcomWGeQlzVZs8ksmMccvF/LDHNsVmDyPfYf65uxGTMypMLbPAQANDatCLApRmKxDf4hyqMixnSCdwdaB5pLBqkOagMXCSx2mCuQzjeWmD+d9kZj+En1eCqvrK+Ay2ss5zRWHqzx+JGz7hlFdI2+1vPjSFpU5pGkLmq7CPGLxzqBPCYf7jvGnLbmvCdbibRktfZWj7ObUy5JPTkd0XWAyX5ItHIcuYzrNeDzrkGWfK2pijiJVGYvqNF3sUVgYwtjSFQFbeMJODuMKFg1sb8U1WzaxSe/KGjlfIihF2bK0Oe2O4MYGGQm2aqFQpDVcyWe8UI9xCt7H/MDiKLAwBqqAvebAxnUmMzhxgMEtQ7wX8qzvnxktndK06/Yga/OuMTE6t43H1jkUq1Cx4xjdXnnUYwF4nkPwEm8ybg1Lu+W+3nQWDv6eP/48rzxBa73l9hDbe2HVWmAVLrpKrl4rhscheCKClBndpEIri7+QocuA22/QgwXSBQgtGhxeLFQZXiDkEiuEqumNnr030caKm6rEvLS6iS/xfdVrDZ7QttxSPXQ8Ily5gFY54/0F7VzIDpbIbgFNjWlAd0Y400fT+I74iLTYTtA5uKlia09xvcUsfJSTq4qX3sdql12vTK0VRG5b91X9AG41FgPYXl50LdI02IUhn4MbZbiyxBwsKa8vY5vDl46weznGE5VkZ5HaxssFjXUNuj7VwDrEOvx2SZgU0Cm2771LZvG5wY8cLDqyg0WUI+oJxqDOYGZ1NN7mGaHMUQR34FDbYYqcMF/0WRZ9jmWWYa0l7xRXB0zTITXYaUNWWbK5R02H6QqKgw6TG/KbsXCb36pwxsJ8EedQ5Mi4iukmPmA6T6gMYXeMazyyNDFvEBBjCYtFlGeTEd2WJV908f4x8R434jGZwSxiFJZUGebQ4zOHjkpYNDF1xNm+BkHM4V+bVHoFUpHjKGcRNssOrAJdj72vG3uceOgMXkEUkXcB/xywwE+p6o+c8pAS9xsl9v5bxcn3nrvmyUvMv7igvOlpbGwJYduGdmzJDwBRuixjeTGQXfOE7W10ukXQDrZGhIsjNHNkRY6UJaEq6HYKTBDaHcFPBLDoKGDqQKgcobMIVexVKDHslW7VWF3Wlc6wfaXMtfHZxJAVjfmC5tIey0e3cB2IZmTTDq0Cpu6wLTgvmKWnHQndhREExT6nffhnrCQqtq8SJiCdRX2gfcse86dHLC8LT5Y3uPbIiPzzLbtvO+T6Zx/DPxEodxfc/L2KnZstR1+aU4+huhLo1NLuKt6OCVWGeaEjv75k+/cNfu6YfcmIZW3J9pcsX85YjCsOn3SEjzd87uhRFssx3go6KmBni7A9QqYLJHP4rYLFEyX5NFBcm3H4hyZk20K5PcEGxY9zOKijZ7Uqo4DIMgCmX3OZbNdjP2vJasFbRV2Oe7FBMnCfWbB/aQvzYaG7MGb0UkC0w+dC81yG5sLokw3qCkYvtBw9ZrCNYNrYNypMKuy0jj2vfAeuiPdansUXqEZiufBeIRdtWHcKJpaYl15Bv60u4cBfkBPngfsuI1/PO755aOj3/u3z3PQgrh0db2COq7y2VeXk/ljfphxVHw1t0d1CuLiN3y5ptjOWly3VywFdCGZax3M0KlqmsARnY4SM9K0YVu2ZRhX6ygFycSemWgSNuWkcIUUZr2MsLOYx1cBZQtuBsejFXZhUZNMWeWVJUfdN1ps2ep+8x80amAtWAn7XYbxQzjrMvIuepSb2wHVHDUIgjKvYU6/KYVFHpdUoxhp85/s6AJuGiKg0r8IPdeNJqygmLxBjojGy7bAErFi4WZNPA6Jgp0vczSUyr1E9WhehiwZN08tx2/cR7J/reY7mDp2MEFFM8IhXgo0GWiYl3YUcc9jg1YAV2p0ibq8VzPNTtMoImcUXQjYP6O4Wpg//xPvYKsLGugCyNcZXBcXNjuzQo4sG3TaYVpGDFndUE3JHqQ3adujnPdmRRycVxis6KmO/xkUNoxF+VMRqo5lFnMFnBjEW/8gu9nCJqZto6gwxnFaMpb40wXZCGJdo22JbQ7bfEIzgasX4uPLZfoPMapwYzHQRvZZdFxV921e97SuF66q1hjWI9h5rf5x/u0rcP84tXb3nbFSHTTx0Br36ImKBfwH8GeDtwF8Wkbef7qgS943NaJ5VrD6sQ2DszJPtC20Wi9FkL9Q0Tmi/YPCdIDfnmEWHb5b4IkO1IxjBe0/XtwZUA4yr+O+ihvmSrhD8ssFMA+awIQBdriwnhi53tCaGUcSGsfM+/6EPSYk9JmLICkTB70MUOF7XjWRDUyONZ7kr+MzQjjPksEWbgLdKIGD6aqL1tmX2SE77yHZfFTvmjQTvj/sqOYcA9rkbtJkiC8U3QrHscJMlH7t+lcfMC3TWc+PlCf5yy+GXG0pdwnVld7ZgezSlKxrECOYw/t1gDbSebksw+wvyZ48wN9u4RrajuNbQvZizmDlC63E3WoLpixrUNbJVxeU4XDL+RIt5paUetbhZg5pAV8XwG58L9d4YrYrYT7FXfLGW7Q/v0z0jhBYWexX64hx7EFAb4DOObp5x8Okx9WFGca3DhLg29kaN+QLITSGgyMKjbcvok4ext+PBHHN9CnVfWAi9teWFSPQqWhtzT1QJvRf7VS+G66JHmwJO1+Gox/fxbSFqr3UskbgPnAkZee7u7+NQ8jc0N+9jERHk2Fu2+ZwIrNMTVANcvwkopovP9dYqHiGIibmHIcSiYIc1Mm9jOGdQglFUlLA9gmUd0yiaNj6lqqgUirWoXcksQaqqb4u08g4D+wfIrIU29i3UENC2JSzm6GIJ0xm8chSrpWJiBMx+gxy28Znb6dpw6p2NwaGdR7fL4/YWxkSZwfHSrk1tq2JhKhtP0j4Etw/t1zo2gNe6ica8uu3HAzKvYbqMUSmLJsrQo2UMCbUSQz79qsdjR+jHoUCom6jA1W2/NUqQPic9BGhjmG9TxZBTdQZZeNpSCJnQTmILilVhIp+BqsQqocb2Vdg3oov6NTYHDdRtFO9BYNZhD1roAuZogRwssIcN9qUp2rbIsiWMy/i35nXM6ZeoxEPsV2wPOswyUO9msbhM//diGLONMqzrsPsxDSegaJZhpy0s4ruQLPv6CUUs/CeLJdRtDM9tmphGE0IMJ+29sGs5uPoycktV+c3d1lUhopUHcSVHE6fC0D2I7wQ+paqfARCRnwPeDXzsVEeVuL9shmbCWjDbMqO7VFEedCjK+BMHzN9+ieKDLzL/qsfZeUFgeUTz6ITqY8/BXmzcaqcd5mCBjivEKzpdIG0U2saMYtP1CxXj52tCvaTd22P3N6+jrZItO8y0RXzvYZqFKHRX+SRNDNmJ49S14KWP8RfTKz6XdrEegjfkiy4qZTVIALlxgCw7mIzwE4e7to8+vUf+/D7eB9C+uAAxtCTM5n2CfyA8/SiGjJ3/dY35t24xP8iZPa+0jxV8cvoUeS1sfX5JfdVhpWBuMppHLK88ewH3wUBZ5OQzxVzbx3glO2ixuxM0dPgnKsJOTn5jibte4y9ltJctpvG4lzrabUvWBNxCkckIyQx6c44Ej1iDff4G+c5jZNOSw+0M24IRh45LaBryw0UUKq8cIJNRTPY3hlDmFM/NYbvELhpkYQhXLPlNh5vGJs2L53LsoaW6PkeqMYtLOaPDBe4TNUdfNmHrIweEJ/awS+jGJdmRxx3M8TsjEIMeTvviAxI9w3UDW5NoRe46AEzvufbT2TrJXvs8mHXfybXg27h3Nw8M3auSGBoPR0a+3n19nu75V83l3ud2nGW1VgPjlULonyP9dXXVeD2QvXyENeBuWOzNZQyVP5r3L+QKmcWFgKlr1EhU4kQx1mEP5qg1Me/QOrRvh2CKCpUGrMFPZ9jtPcLLNwirKBjfxbQJa3DPX0eWbXwuNrH5urQWbZoYEdMfd0VOeOUoVk5tGszKYNobSaXpYleFzCELE8fatoiXtQIRi+7Yvg2Trh1MsQNVnyvYK42rtE2cI8xjZVTtWziJCLTNei2DxD6/AZDlss8zjNcKXRdbdqCIj4pKLAYn6HyO3PBIUEwb4hq4mLdo6hFZvcQuGowHKXKCVcqbHVpmOM3Q/ZvYRy4gnWBfPkRvHMTw3t1tmE6Pq58qSJbhOuDF/djWREEO55hlEw3DfbGhzJpeGe5iCGm5xPYtQUyex+b0s4AScIslLouGgOxlcLP4viEiMUpnvkDrvsq7Mxigeqk+zvHcP4y5on3EjfiAOhsL5zUdeuOVvkVWrJwqRRHDZ5s2hg5vGFXFOcKiiQZ1uug1BVCPSl9wKb40HX9SztHjY2jInRuqDgMR+TbgXar61/ufvxP4WlX9vtvO+27gu/sfvxL43Yc60IfHHnD9tAfxgDivczuv84I0t6Fy3ub2lKpePu1BnAZvAhk5tHt1SOMd0lhhWOMd0lhhWOMd0ljh9Mf7mvJx6B7EO9kWXqXxqupPAj8JICK/rap/9EEP7DRIcxse53VekOY2VM7z3N6EnGsZOaSxwrDGO6SxwrDGO6SxwrDGO6Sxwtke76BzEIHngCc2fn4c+MIpjSWRSCQSibNEkpGJRCKRuGeGriD+FvBWEXlaRHLg24FfOuUxJRKJRCJxFkgyMpFIJBL3zKBDTFW1E5HvA95PLOH906r60bv8t5988CM7NdLchsd5nRekuQ2V8zy3NxVvAhk5pLHCsMY7pLHCsMY7pLHCsMY7pLHCGR7voIvUJBKJRCKRSCQSiUTi/jH0ENNEIpFIJBKJRCKRSNwnkoKYSCQSiUQikUgkEgngHCuIIvIuEfmEiHxKRP7eHX4vIvLj/e8/LCLvOI1x3isnmNc3isiBiHyo//qh0xjnG0FEflpEXhKRO/bgGuqewYnmNsh9E5EnROS/i8jHReSjIvK37nDOIPfthHMb6r6VIvKbIvJMP7d/eIdzBrlvibszNPk4JLk3JDk2JLk0NFkzJPkxNHlwwvGeibXdGI8Vkf8rIu+5w+/OzNregqqeuy9iMv6ngS8GcuAZ4O23nfNngfcS+0R9HfAbpz3u+zSvbwTec9pjfYPz++PAO4DffY3fD27P7mFug9w34Crwjv77LeD/nYfP2j3Mbaj7JsCk/z4DfgP4uvOwb+nrrns/KPk4NLk3JDk2JLk0NFkzJPkxNHlwwvGeibXdGM/fAf7DncZ0ltZ28+u8ehDfCXxKVT+jqg3wc8C7bzvn3cC/1cj/AXZF5OrDHug9cpJ5DRZV/TVg/3VOGeKeASea2yBR1edV9YP990fAx4HHbjttkPt2wrkNkn4vpv2PWf91e8WyQe5b4q4MTT4OSu4NSY4NSS4NTdYMSX4MTR6ccLxnBhF5HPhm4Kde45Qzs7abnFcF8THg8xs/P8erP5gnOeescdIxf33ven+viHzFwxnaQ2GIe3YvDHrfROQtwNcQrXmbDH7fXmduMNB960NePgS8BPyKqp67fUvckaHJx/Mm987S2p6EM7euQ5M1Q5AfQ5MHJxgvnJG1BX4M+AEgvMbvz9TarjivCqLc4djt1oWTnHPWOMmYPwg8pap/GPgJ4L886EE9RIa4Zydl0PsmIhPgPwN/W1UPb//1Hf7LYPbtLnMb7L6pqlfVrwYeB94pIl952ymD3rfEazI0+Xje5N5ZWtu7cebWdWiyZijyY2jy4ATjPRNrKyJ/DnhJVX/n9U67w7FTfyacVwXxOeCJjZ8fB77wBs45a9x1zKp6uHK9q+ovA5mI7D28IT5QhrhnJ2LI+yYiGVEA/ntV/YU7nDLYfbvb3Ia8bytU9SbwP4B33farwe5b4nUZmnw8b3LvLK3t63LW1nVosmaI8mNo8uC1xnuG1vYbgD8vIp8lhsf/SRH5d7edcybX9rwqiL8FvFVEnhaRHPh24JduO+eXgL/SVw/6OuBAVZ9/2AO9R+46LxF5VESk//6dxD2+8dBH+mAY4p6diKHuWz/mfw18XFX/2WucNsh9O8ncBrxvl0Vkt/++Ar4J+L3bThvkviXuytDk43mTe2dpbV+Xs7SuQ5M1Q5IfQ5MHJxnvWVlbVf37qvq4qr6F+Oz6b6r6HbeddmbWdhN32gN4EKhqJyLfB7yfWAHtp1X1oyLyPf3v/xXwy8TKQZ8C5sBfPa3xnpQTzuvbgO8VkQ5YAN+uqqfuqj4JIvIfiZWn9kTkOeAfEJOPB7tnK04wt6Hu2zcA3wl8RGI+AMAPAk/C4PftJHMb6r5dBX5WRCxRcP68qr5n6M/IxN0ZmnwcmtwbkhwbmFwamqwZkvwYmjw4yXjPytrekTO8tmvkDK1XIpFIJBKJRCKRSCROkfMaYppIJBKJRCKRSCQSiXskKYiJRCKRSCQSiUQikQCSgphIJBKJRCKRSCQSiZ6kICYSiUQikUgkEolEAkgKYiKRSCQSiUQikUgkepKCmEgkEolEIpFIJBIJICmIicSpIiKXRORD/dcLInKt/34qIv/yAfy9nxGR31/14LlP1/zRfux/935dM5FIJBKJJCMTidPBnfYAEok3M6p6A/hqABH5YWCqqv/0Af/Z71fV/3S/Lqaq3y8is/t1vUQikUgkIMnIROK0SB7EROIMIiLfKCLv6b//YRH5WRH5gIh8VkS+VUT+iYh8RETeJyJZf94fEZH/KSK/IyLvF5GrJ/g7f1FEfldEnhGRX+uP2d7i+Vsi8mER+Rsb5/9A/3efEZEfeVDzTyQSiUTitUgyMpF4sCQPYiIxDL4E+BPA24H/DfwFVf0BEflF4JtF5L8CPwG8W1VfFpG/BPxj4Lvuct0fAv60ql4Tkd3+2F8DDlT1j4lIAfy6iHwA+HLgW4CvVdW5iFy8z3NMJBKJROKNkGRkInEfSQpiIjEM3quqrYh8BLDA+/rjHwHeAnwZ8JXAr4gI/TnPn+C6vw78jIj8PPAL/bE/BXyViHxb//MO8Fbgm4B/o6pzAFXd/4NOKpFIJBKJ+0CSkYnEfSQpiInEMKgBVDWISKuq2h8PxM+xAB9V1a+/l4uq6veIyNcC3wx8SES+ur/W31TV92+eKyLvAvTVV0kkEolE4lRJMjKRuI+kHMRE4nzwCeCyiHw9gIhkIvIVd/tPIvIlqvobqvpDwHXgCeD9wPdu5G28TUTGwAeA7xKRUX88hc8kEolEYggkGZlI3APJg5hInANUtenDXX5cRHaIn+0fAz56l//6oyLyVqJF9FeBZ4APE0NyPigxFudl4FtU9X299fS3RaQBfhn4wQcwnUQikUgk7htJRiYS94Yce+ETicR5R0R+BnjP/Szh3V/3h3k45ccTiUQikXggJBmZSERSiGki8ebiAPhHcp+bAAPfAaQ+T4lEIpEYMklGJhIkD2IikUgkEolEIpFIJHqSBzGRSCQSiUQikUgkEkBSEBOJRCKRSCQSiUQi0ZMUxEQikUgkEolEIpFIAElBTCQSiUQikUgkEolEz/8HbGAGiCg2dwAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Compute and plot the STFT’s magnitude.\n", + "from scipy import signal\n", + "\n", + "h_f, h_t, h_Zxx = signal.stft(HappySignal, h_samplerate)\n", + "plt.figure(figsize=(15,4))\n", + "plt.subplot(1, 2, 1)\n", + "plt.pcolormesh(h_t, h_f, np.abs(h_Zxx), shading='gouraud')\n", + "plt.title('Happy STFT Magnitude')\n", + "plt.ylabel('Frequency [Hz]')\n", + "plt.xlabel('Time [sec]')\n", + "\n", + "\n", + "a_f, a_t, a_Zxx = signal.stft(AngrySignal, a_samplerate)\n", + "plt.subplot(1, 2, 2)\n", + "plt.pcolormesh(a_t, a_f, np.abs(a_Zxx), shading='gouraud')\n", + "plt.title('Happy STFT Angry')\n", + "plt.ylabel('Frequency [Hz]')\n", + "plt.xlabel('Time [sec]')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "34e2c1ea", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "5.067094e-10\n", + "2.7690108e-08\n" + ] + } + ], + "source": [ + "_, h_reconstructed = signal.istft(h_Zxx, h_samplerate)\n", + "h_reconstructed = np.resize(h_reconstructed, HappySignal.shape)\n", + "stft_HappyReconError = np.square(np.subtract(HappySignal,h_reconstructed)).mean()\n", + "print (stft_HappyReconError)\n", + "\n", + "_, a_reconstructed = signal.istft(a_Zxx, a_samplerate)\n", + "a_reconstructed = np.resize(a_reconstructed, AngrySignal.shape)\n", + "stft_AngryReconError = np.square(np.subtract(AngrySignal,a_reconstructed)).mean()\n", + "print (stft_AngryReconError)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "055ba3b3", + "metadata": {}, + "outputs": [], + "source": [ + "sd.play(h_reconstructed, h_samplerate)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2fca75c6", + "metadata": {}, + "outputs": [], + "source": [ + "sd.play(a_reconstructed, a_samplerate)" + ] + }, + { + "cell_type": "markdown", + "id": "cdaba0ef", + "metadata": {}, + "source": [ + "### 5.2.3 Wavelet Analysis\n", + "\n", + "### https://ataspinar.com/2018/12/21/a-guide-for-using-the-wavelet-transform-in-machine-learning/" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "ad4ff7cb", + "metadata": {}, + "outputs": [], + "source": [ + "import pywt\n", + "\n", + "def cwt (signal, wavelet):\n", + " t0=1871\n", + " dt=0.25\n", + " time = np.arange(0, signal.shape[0]) * dt + t0\n", + " scales = np.arange(1, 128)\n", + " [coefficients, frequencies] =pywt.cwt(signal, scales, wavelet, dt)\n", + " return coefficients, frequencies, time" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "01fbe9aa", + "metadata": {}, + "outputs": [], + "source": [ + "def plot_cwt(coefficients, frequencies, title, time, ax):\n", + " ylabel = 'Period (years)' \n", + " xlabel = 'Time'\n", + " power = (abs(coefficients)) ** 2\n", + " period = 1. / frequencies\n", + " levels = [0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8]\n", + " contourlevels = np.log2(levels)\n", + " \n", + " \n", + " im = ax.contourf(time, np.log2(period), np.log2(power), contourlevels, extend='both',cmap=plt.cm.seismic)\n", + " \n", + " ax.set_title(title, fontsize=18)\n", + " ax.set_ylabel(ylabel, fontsize=18)\n", + " ax.set_xlabel(xlabel, fontsize=18)\n", + " \n", + " yticks = 2**np.arange(np.ceil(np.log2(period.min())), np.ceil(np.log2(period.max())))\n", + " ax.set_yticks(np.log2(yticks))\n", + " ax.set_yticklabels(yticks)\n", + " ax.invert_yaxis()\n", + " ylim = ax.get_ylim()\n", + " ax.set_ylim(ylim[0], -1)\n", + " \n", + " cbar_ax = fig.add_axes([0.95, 0.5, 0.03, 0.25])\n", + " fig.colorbar(im, cax=cbar_ax, orientation=\"vertical\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "207e434d", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\pywt\\_cwt.py:117: FutureWarning: Wavelets from the family cmor, without parameters specified in the name are deprecated. The name should takethe form cmorB-C where B and C are floats representing the bandwidth frequency and center frequency, respectively (example: cmor1.5-1.0).\n", + " wavelet = DiscreteContinuousWavelet(wavelet)\n", + "C:\\Users\\DELLPR~1\\AppData\\Local\\Temp/ipykernel_7984/896176808.py:10: RuntimeWarning: divide by zero encountered in log2\n", + " im = ax.contourf(time, np.log2(period), np.log2(power), contourlevels, extend='both',cmap=plt.cm.seismic)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAJoCAYAAADF6NqpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADHpklEQVR4nOzde7gkVXkv/u87A0bAGw6gw4CCIxovOdENIokxQU0i4zFgzklO9MRrYCMT7LHN1cQoG4xJPMfLdrfJEMZ7NHpyUTO/xImXCBhDRIfxSsyF8QbD4OiooKAIM+/vj6rqXrVqrapVt67q7u/neeaZvburq1ZX765a77q8S1QVRERERERERDQb1nVdACIiIiIiIiIKx0CeiIiIiIiIaIYwkCciIiIiIiKaIQzkiYiIiIiIiGYIA3kiIiIiIiKiGcJAnoiIiIiIiGiGMJAnIiIiIiIimiEM5ImIqLdE5GwRURH5rZxtVET+fprlmjYROVpEhiLyzyLyLRG5S0S+LiIfEJHni8gR8XafEJE7ReRoxz4+GJ+rVzqe+4n4uZGIXBX/HPLv+VN4+0RERGQ5ousCEBERkZ+IPBTAPwB4GICPAPhjAN8EcAKAnwXwVgCPBPA7AK4E8HgAPxlvm+zjiPixuwE8yXGYs+P/rwSwE8CbjOeOA/B6AP8M4ArrdddUfmNERERUGQN5IiKinhKRowD8PYCHAPifqvpea5NXi8jjADwu/v1KAC9FFJh/xNjucQDuhSjof7aIHK2qdxjPnw1AAVytqgetMpyCKJD/kqq+s4G3RURERDVxaD0REc0dEfl5Efl/IvIlEfm+iHxHRD4kIj/j2PYqEfmKiDxERP5ORG4VkdtE5H0i8hBr22So//NFZCAi/ykiP4j/H1jb7hSR20XkPo5jnhnv5+UFb+UCAA8H8FpHEA8AUNVPqeqfxb9+HMBdyPa6nw3gewBeB+BIAE8wypL01n/eDuKJiIionxjIExHRLDhaRI5z/fNs/3wA9wfwDgADRD3KjwDwTyLyRMf2xyDqzf4hgN8D8GYATwPwLyLyQMf2A0Q93++Mt/8OgDURucTY5goARwN4luP1vwbgMIC3ed9x5JeMfRWKe9k/CeBxInKM8dTZAP5FVb8A4OuYDKUHJr31V4Ycg4iIiLrHofVERDQLLo3/hVpW1dvNB0TkcgDXIwq8/9na/jgAb1DVobH9xwC8F8AKgIus7R8G4BGqelO87Z8i6g3/AxF5c/z4LgA3AjgfwJ8b+02C+w+q6o0F7+PRAL6rql8qesOGKxH1uD8BwIeMHvdXxc9fjXSP/dnx/1eVOAYRERF1iD3yREQ0C64A8HOefxlmEC8i9xKRDQAOAbgWUTI4lz+x9vE+AP8B4BmObd+VBPHxtj9E1Ot/BIBfiB87BOAtiHrHf8x47S8BuA+iXv8i9wFwW8B2pqRn/ez4/6TH/er496sBnGH02J+NaHTAx0oeh4iIiDrCHnkiIpoF/6WqH3E9ISKuxzYj6oF+KoD7WU+rYzffUdVbHI9/EcAzROQYq4f/i45t/y3+35xX/2YAf4CoV34YP3Y+gAOIssMXuQ3AvQO2M10D4E5Met3PBnAHgN3x71cjmif/UyLyT4h66z+nqt8qeRwiIiLqCHvkiYhorojIvRD1Lp8D4A2IesCfiqj3/qMAspG/O7iHZ1vf9plt46Hz/4goU/w94qXkfhrAO1T1rrz3EfsCgPvYSffyqOoPAHwCUa/7vRAF8tcYx/s3RMvXnQ3OjyciIppJDOSJiGjePAXAiQBeoqorqvq3qvqhuEf/GM9rjvUktftRAAfs+faI1m23PSL+357PfgWADYiG6J8fPxYyrB4A/jb+/4LA7RNXIhp1dzaiufLJsHqoqiJq6HgS0uvHExER0YxgIE9ERPPmUPx/qodcRH4e/vnxQJSF3tz+FxEt/fZ+x7a/KiInGdveA8BL4mP/vbXtPwDYB+CFAJ6HKHv8vxe+i8ibEM3T/y0ROc+1gYicLiK/bj2cBOa/jajx4mrr+asBnA7g6eD8eCIiopnDOfJERDRvPg7gFgCvFZFTANwE4DEAngPg8wB+zPGabwL4HyJyIqLs7acB+HVES7WtOLb/TwDXxpnwvwvgfyMapv5KOxO9qh4SkbcimisPAL8f+kZU9Q4ReTqixoD3i8iHAHwYwEEAxyPqVX8qgP9jvfQTAL6PaBj/DxAtSWe6GlEd4CcBXKeqt4aWiYiIiLrHHnkiIporqvodRMHttYjWe38toqHwTwOwx/Oy2xENM/8RRNnrL0A0t/2nVHW/Y/sRgFcDeG78/7EAhqr6Cs/+34So5/u7AP665Pu5AcBjAfwGot71lyEarv+b8T6fFz9mvuaHiJLeAcAnVPVOa7efA5Akt7uqTHmIiIioexJNlSMiIlpMInIVgFNU9ZSAbc9GNGz9Bar6thLH2IhoTfk3q+oLq5STiIiIKMEeeSIiovZtBbAeUU86ERERUS29DORF5BwR+Q8RuUFEXup4/mwRuVVEPhP/8w1lJCIi6oyIPFNEfgdR0rkPqup1XZeJiIiIZl/vkt2JyHoAf4povd+bAHxKRHaq6r9Zm/6zqj596gUkIiIK925Eyeb+GZOl54iIiIhq6V0gD+BMADeo6pcAQETeA+A8AHYgT0REVJuqnl1i26tgLWtXsH3wtkRERESh+hjIb0KUEChxE9zr/v6EiHwWwM0AfktVr3ftTEQuBHBh9NuRpwPHAQBOP/3E8TbXXXez9ao7AByd+9jpp5/oeB1Sz0/2fwNOP/2hxvbRvpJ9hOzL/3y6XCecEB33wIHs9ieccOL48RNOOBEnnwzceCNSj5k/J1z7cu3Tfd7cj+eVM0/6eJGi82ef79D92szPFHD93YTwnSP/MV1/I0l57cc3IkqufeIJJ+C6A+tT+7nxRqQ+8+S15meR7Nf8/BO+82NvG213PE444cjMvlz7Pvlk4Lrr7sIJJxyZemwsLvjN13FE8rTc0/j5B52Vgqg59wT/lvvMvObcB8BtAO5/wgm4+8CB8c8AxjeHu6+7Dkecfvr4vnDi6aen9ndjagFI4GTciBtxMvJk71eT+5KrblTEfH3ZbQ8cuAvAN8a/2/dpc5u8+ppd17LreeZ9v7gula0rma9Jv/6Ocb03evwGJPUwAEF1X5tdb8+rt9n7No/r2qf5Hsxj+LnrcnadLaR+evrpD/WWLTlvLmXPX7b8t35TVY+vuAPqid5lrReRXwbwVFW9IP79OQDOVNWBsc19ABxW1e+JyNMAvEFVTyve94maxPSqK8bjK9aWewAs5T6muuJ4HVLPT/Z/LlR3GttH+0r2EbIv//Ppcg0G0XajUXb7wWBl/PhgsIK1NWDbNqQeM39OuPbl2qf7vLkfzytnnvTxIkXnzz7fofu1mZ8p4Pq7CeE7R/5juv5GkvLaj6/gUgDAJYMBZHT/yX4OvQLbhuuwtnoY24brotcOvgUZ3T/1WST7NT//hO/82NtG2y1jMNiU2Zdr32urhyHr90MPbcS24brxY2PDIbC6ikvXrwdNx2bj572dlYKoOZvBv+U+2+x47NmDAQ6ORtgV/wwAWF0FABxcvx4bBgNcOhoBAC45dCj12uRekljDNmzDWm4ZsverfRgMNo2fA7L3u/z9TV5fdtvRaB+AHePf7fu0uU1efc2ua9n1PPO+X1yXytaVzNekX79nXO+NHj8XST0MQFDd12bX2/Pqbfa+zeO69mm+B/MYfu66nF1nC6mfqu70li05by5lz599XOD/u05Vz6i4A+qJPia7uwlINZuehKjXfUxVb1PV78U/fwDAkSJy3PSKSERTNRx2XQIiIiIiot7oYyD/KQCnicipInIPAM8EsNPcQEQeKCIS/3wmovdxcOolJSIiIqI5sNx1ATz6Wi4i6lrv5sir6t0i8iIAH0S05u5bVPV6Ebkofv5yAL8EYKuI3A3g+wCeqY3OEQgf+tzN/mh28W+BiIiIiIjq6V0gD4yHy3/Aeuxy4+c3AnjjtMtFRERERFQkdH582W3N18QpAohoQfVxaD0RTY1ryB6H8RETgxFR93Y1vL9UIlUiohnHQJ6IWsRGASLqHhumqJ5l8H4WiueJaFoYyBMRERFRp9jYQkRUDgN5IiIiIpo7sz2Unj3bRJSPgTxRypzeOLkOO1XAHjIiIiKifmIgT0RERES9dnAOUrTXGSEwGu1rsCRENA8YyBMRERHR7BsOC0egNTXcvh/D9kNHEc7paEOiBcdAnqaMNxOivuOQeiKiavoR4FP7WJ+l7jGQJyIiIiIiIpohDOTJwhbG+cLPk4iIiIho3jCQJyIiIqL+i+e/78J8JL8jIqqDgTx5MUMqVZMdBZA7Z5BL4xERkcHO0zGNoH0w2NTavn33QNaziKgOBvJERERE1CsHR6PwxJtsECaiBcRAnmYI53vPqzZ7QoiIaI74gnbjcbMHvGoW+Tr3pZBj+raxH2/y/siM+kTzhYE8EaVMM6i2KxWsZBAR0TSsrR523nOq3oeqvK7M/ZYN3kRkYyBPtMBYMSAiIiIimj0M5MeWrf+n9do+sMtd9HvTxyu7fVvnuYn91t1H1b+lWf3bIyIial/eUPapjQab2lz+vDpByHNl6hSsf+Tj+aH2MJD3mocvnus9+N5XUw0Yy8a/svupU5Ymj1UliC7zHsqenzLlcP3exHtMXmPvkw0ORETUnuCEdz3U/Pz8vt9DqzYg+LZpq0EhdNu6dR57X6H7abqubtfTaV4wkCeixiWVkFJD95l1mIiIesi8lzXRe898METUhAUM5Ku0CFbZR53tq8jr5W1yyLivNdHX67vs+DnkOGVek7efOp93U8PkfY+VaZ01t5nmCIbuTWP9YCIi6s4s97r3S90ecdd25Ub1pRvwmxztmXf8aYxynNaxq4ymDRkx2dZoUOrSAgby1F+zfoGZ9fK3q1QPRNI7H//PYJ6IaP7tRXFQn3c/ODgaNXK/cN2vXCPMytzXqvXCL9d4bdMWqxOhCJMFUx8wkM9Vdb7NYl/c8mQvfLNwrmahjN3rR0WDiIjm0a4qL/I0Bofer8re1/pxH+yiztJ1UmSixcRAfmHM20Vx3t5PH/CcEhHRfJhWUN2P4L0tfagX9KEMTZrWdFtaBAzkU+bpD3+e3gsRERGRn3dI/RQSqbqC+dnszZ8W1lGJmsBAnogKtVnBqDrkkYiIFksj+VKsHCxlpO5P9usD99dE0E9EBDCQpwK8ucyZKS7xlvzt2H9Da6uH+XdFRES15M6Zb/Be18j9qkJ56idTm+9eb/fnMt/vmcjGQJ5SZj8LZx+W1+j6+BNNr31LREQ0bZUS3S2A2a+zzZM+1P36UAaapl4G8iLyFhE5ICJf8DwvIrImIjeIyOdEZGnaZeyrvGCNgRwV8fWid2KKoweIiIgal3cf6/ge14v7PBHV0stAHsDbAJyT8/wWAKfF/y4EsH0KZSKilrBCQUREIXaheK35vmpkjn+j2IM73/j5zrteBvKq+jEA38rZ5DwA79DIJwDcT0Q2Tqd0EZFzxz8nQ5vChzgtZfYxbWurhxs5PgOwNrV7AfZVKPiZEhFR1xofTu/qATceC773FfWkD4fB+3XlkCnav2vkXNP37SaG7HdZx52G/tSVGKwvsl4G8gE2AbjR+P2m+LEMEblQRHaLyG7gjqkUbhZsGzbz0Te1H5pzHCZPREQtCe7p5r2oAQwc+2VH1wWgDs1qFCaOx9S1oapeoapnqOoZwNGtFGY02pf6v6/KBt1MojLfNgwGmcfYMENERLTY+l6fJaLIrNbabwJwsvH7SQBu7qgsVBFvFN3zDQ1jQE9ERERE1F+zWlvfCeC5cfb6swDcqqr7uy5UH8xKADYfQTyHlxERERER0fT1MuoTkXcD+FcADxeRm0TkfBG5SEQuijf5AIAvAbgB0eSQX++oqDSHpjGloLNpC6ur3RyXiIiIZhQ7Loj6qJeBvKo+S1U3quqRqnqSqr5ZVS9X1cvj51VVL1bVzar6Y6q6u+syE82zWRnpQURERGmzkvNoVspZVdX3N+/nhapj7XzBdHkR8e0j9HFeyKbPngIR8pnkfU78DImIqC2NL1nXJGbMpxjrQtQUBvJUStsXn6b2PysXyVkpJxER0UwxAucqAX5/1gmnorpSG3WpwWBT0H77Wo9jZ9hiYCBPnerzhWWaZStzs+hbuZoSvA4wERHRFDUa1M9hz3wX9RNKCz33/IzmCwP5OdZl73aTF4o2LzrTvqCVO96O6vuc4aR2nI9PRESUVaeHuIsAjnPCidrFGjPRDCq7fF+V3m4OKyQiollUe4RXQa+59/5Yprd9hhvciagfGMi3YNFaEvuW3Gwezn9T76FswE9ERETTM6uN5vNQ15o3nBe/eBjIU+OqJiWZ1QvOrJS7rSHrbCwgIqKZVdSLnvd8i/PdqwT4ba4w1IW2ytLle+z3lE6aNQzkiRrECyYREdH09XrpuRAtNQrMao8/ERVjID+H6l60B4NNvPD3yp6uCzB1zGBPREQzLaQnv0TwznpZn02jnrZ4dUEqxkCeptqLnNyIFrnnutP3XqPFv7Dcc7ikDhER9d/M98ZTI6Zfv1qe8vGI0hjIN2SRA1OiIJ5Af8NgMN1yEBEROcxLr3cbdVLWc4n6h4F8jtCLFi9uBMxfkhkiIiIKYDRUB08Nm4FRbPOYbK4xM/D50fxjIG+Zi4tLB/p/3vKHP3WVHXYetHkeOFeeiIgAYO+0DsQArVCb9/2q+2adjBYRA3ki7Oi6AI1ra6k5IiKirrQ6F54B/FheUMyAmag/Fq62n1yARM7N3abJi9hgsCn3eHnPlTlGvYtrtWA2rye7ifXkq5xrn6LzXP8chpcl5Pk2FR27aIRCY2UfDtnrTkREGVV74M1g/+BolLnHHByNmg3aHfuqc187OBql7sFtz9uvs/+y9Vdz+5A6WRPHbEJSlrx6ovn4tMsYWm9mI8z8WbhAfjTaF7RNyHZNHrPtYwwGmyqVo07PbhPv27ePWbgYFb3/afxdVNVkj37uvlZXGzsOERFRIgmmmVC1vi7qXH2sIzUdH5RX3OnWx/NG7Vm4QH4R9GFYddcXki6O3/V7BoDNLewzeV+F76+FoJwVMCIimlUccdaePtR1ibrGbwHF5n0tzPCpA30IyF2CA2oiIqIFNLWEeOTE+kn/8TOaLwzkyYktndNR/YI6Own65mVdXiIiIq8pTRWbh/oZg0miZsz+1WCh7Om6AJXNwpx26haH0RMRkYurpz2v9z00u/3MDH1nRv0ZN7v1d+o3BvILapZbQ+epUWBa76XVJXss7IEnIiKieTNP9U+aDwzkiYiIiIhsc94TzsCUaLaVCuRF5GgReayIPFVEfj7++ei2CjdLZrmH24c9qzR1c15pIiKi5tVJclc0vL728Puq9zXeD4moQGEgLyLHishLROQaAN8GsBvABxCN1t0N4Nsico2IDEXk2HaLS0R5tnRdACIioh6ZmXnwVMs8dqgRFfEG8iJyXxF5DYB9AF4L4FgA7wLwCgAXA3hR/PNfxs+9DsA+Efm/InLftgtO3eCFklzaGr3BChgREdXV+2XpWup9X6SRlU1PEwit785KvXhWyknl5PXI7wXwTAB/DGCzqj5CVX9NVV+lqper6vb45xeo6iMAPBTAqwH8b8zANXNe9fmL2ueyzZ7lrgtQmW/pHAbtREQ0k6a09JzXgg/DL1u/nK/66OzWB6m+vED+lYgC+Feq6peLdqSqX1LVSwE8JH5tJSJysohcKSJfFJHrReTFjm1ERNZE5AYR+ZyILFU9XpP6kDSkbBkWp7W27IVuNi+M08xODxTcDB0Vi8X5eyMiokUwboQODKYzjdYlg3DeR4ko4Q3kVfUNqnpn2R2q6p2q+oYaZbobwG/GvfxnAbhYRB5pbbMFwGnxvwsBbC93iMUI6ppX7jzUa9hYxHPOdUaJiIjmAUeZUTMWsT5MoXq3/Jyq7lfVPfHP3wXwRQB2RHgegHdo5BMA7iciG6dc1Lk0rZbeto/T9eiIpo4vcm7qfyIiIgpjj1Kzg+u6o9js/c1U8N7T4fjzNex9IrRe2HX9lWZLcCAvImeKyLL12Hki8nkR2Scif9R04UTkFACPBXCt9dQmADcav9+EbLCf7ONCEdktIruBO0od33cxqX+R6a7ntajsvvnLbjvGPzUVmDd1Aa+SpGQaN482jhHtc0fhdkRERPOKyZm60159efG0ec74ecyfMlHbJQDG3YIi8iAA7wbwQAC3AvhdEXlBUwUTkXsB+FsAQ1W9zX7a8RJ17UdVr1DVM1T1DIBL3hOVwbl4REQ091y906GPzRV2ChDNkjKB/I8D+Bfj92ciCqgfo6qPBPAhRPPVaxORIxEF8e9S1fc6NrkJwMnG7ycBuLmJY1Na04Fc0uNfruefQnEdeSIionpKJ6SrEOD3dRh+nxrw83qQ+1ROoq6UiaY2ALjF+P2pAD6mqsm3bCei5HO1iIgAeDOAL6rq6zyb7QTw3Dh7/VkAblXV/XWPvYjyAuq6wXbIEJ5ZHubT5E2k/HmY/VZz3oSJiKgtRfPjp3lsn74G8zR7Zrk+TdWVidS+A+ABACAiP4Ioo/zHjOcVwFENlOkJAJ4D4Mki8pn439NE5CIRuSje5gMAvgTgBkQRza83cNwKpjnXffEymicXJV6cmsHAmYiIqHv9C+D7VcdkvS8ME+PRESW2/QyAC0TkIwB+EcA9AXzQeP5UAF+vWyBV/Tjcc+DNbRTAxXWP1TReeCYGg021z0cT+5iY/R5sIiIiKqduZnqntubKz/0cfCJqUpke+VcC2AjgkwB+H8BHVHW38fzTkc0uTz3Sp5Y79g73T5/+PoiIiPqoqDe9lYYDlzjon8f6FOsjdbDjapEEB/Kqeg2AJQBDAM8H8AvJcyKyAVGyu+3NFo+I3JaLNyEiIpozdZaZ24WCQLtEj3iV4fEhQf7UGgKIaOYFBfIicpSIPBfAsao6UtV3qOoPk+dV9aCqvkRVP5azGyJqQF5LddUKgKtFv8uVBTYMBp0dm4iI+ikkiK8S6PdvzjpN1zx1jszTe6EioTX1OwG8CcBjWywL9SzZSNumMRxsWsOzwo5T9fNdqvi68lr5TErO+ZvHYYJERDTf2mwMqLLveRme3uf3MSnbNOpp06sL0uwICuRV9TCArwG4T7vFoa61FUQxOHNr+rzUGXJYRlRutvoSEVH/NHkvnNYIsboNAfNYz+pzEF/FPH5G1K0yY2ffDuA58dJzM+qOmq939ajaj0W/i5zr2XZParv0c0vGNnus7fP2lSd/mzYvKuUuwFV6q/d4fq7HXe6q+y/6HH2vCXluj+fvjIiIiPJMYzi9a7pb0BQ4z0i2tdXDDWW2r19/bEbdY+TVy131r7x6Y159uw0hMUXo62hRlQnkrwFwN4DPiMhARM4RkZ+2/7VUztb1o9Vvvr6c87Ec32x9Jpsb2EeXc+OJiIiaEtIzP63kck00HCT356JOmPmof0XaeS+zntl9tuqm1J4yNfYPA/hxAA8H8AYA/wDgSuPfVfH/M2iWvhBNlLWp9zsZWt2n4C/8op89D/N085s0Tk1uWEzoQ0RERG6cMtedWYpFqC/KRF8vsP79mvUveYzIw90C2qfguczIjD41XiS2eB4PnS9Y7j1Zn2cjw/36eV6JiIh8XI3koT39lRvYV1ervY4qqh9ot1G/6ceIYurKEaEbqurb2ywI9cfa6uHGLjbdBul58536lP1zVlphdwBY6boQREREwZpMfFcUdJcdpr9hMOBIuVp1sj7V5Yimj11fHv1u4aof+IW8vzYT4bHXNR8zmxIRETWnKMieRkBdplGBAf5EfqdQXztD+loumifBPfIJEXkAgDMAHAtHQ4CqvqOBchFRb4XdnA6ORsBgreWyEBERNWcWA+iDoxE2NDjUvk9THonIL7hbVETWich2ADcB2IloObq3Ov4tuC6G+Uynh36a+wnjP9dROabxWVRLDNPWTXI62Xc5lI2IiMg0rez309bvEaqJ2chC3/Voy9n4LKmMMuObfwvACwG8G8DzAAiAlwK4GMB/AdgN4OeaLuB0MDDpM154iIiIqAlNDW/fhfrB+yz2/idmt9d+cTLzz+5nRKHKBPLPA/BBVX0uJteu61T1cgCnAzgu/p+oFfktmUWNMX2+cPvKXr7M7gpKvB9PVvmQFmL3Nn0+p0RERGnJPfLgaIRdyN4zqwbWIQF9naA/eW3qXhzf05vKOSRybvC2ZoCYdLaUef28av4cuOqH7jqj2emV/OzqCGPn2Hwp8+1/CCbXkuRKciQAqOrtiIbVX9Bc0Shc/0cUtJ/crmh6QT+HXfUp6V/5ltt+nlMiIqJp8i396lIni36qztDx8nNJQNhGr2/IPvtTf5p2Xchd33WdM/bIz78y34LvA7gr/vl7ABTACcbztwA4uaFy9chsZZ3kl3axbe66AERERD3lukf6AuvQ3nm7p71OoD69ofbNdQCxh7dv2MlShYg8RET+UUReISLSdXlClQnkv4r4GqiqdwG4AcA5xvM/C+DrzRWN2tNsD369xgNecJrS/s10j/U/ERERtcqYFtd1sjS/WarLVS2rVXfueEREFQvS2adl/n3nO9/RSy65RB8A7H0a8NTHAJc+CDj8wQ9+UFW11L7if1NVJpD/KIBfNH7/CwDPEpErReQqAL8M4K8aLFsPVPmydx/kTO9C3/WFu+hcd/9ZtMF3IV5bPVxqeF/540xhCscM3hiJiIimzpP3hprSdR23Po6W8Lv11ltx6aWX4kePPRafvuwyLAM4E8AzAJwH4HfPOQenrluHj3zkI4ji+X4qE8i/BsCvi8iPxL//MYA3AvhxAI8CcAWAS5otHi2C9i40/c8dYKveWjoDiefMID2pgLAiQkREM8SXtK7JhvQmhthXT2S7CPpYZ5q9Oussuu222/CHf/iHePj97odPraxgGVGm9iOMbTYg6rn+BQC/+XM/h1PXrcOVV17ZRXELBQfyqrpfVT+oqnfGvx9S1W2qen9VPV5Vt6rqD9orap/ktdLxi9iOPl50m1fcqJHz9zUc1l4KJ+ymzr9xIiKiNtSZYx9uMepUfdJso4m7HrYgQ+cr+e53v4s/+qM/wsPue1/868tfjmUAj0M6gLcdB+B/AHg6gBc/+cl4iAiuvvrqaRQ3WF9SPs48Dl/pg3ZuTLPy2R4cjaZUAaiAQ+aJiGjG5TWW121IL1R1BJv5OuPnWVnDflbqYNRP3/ve9/DqV78ap93nPvj4y16GCxANoc8L4G3HA/ifiEbdXHz22dgsgo9//ONtFLe0UoG8iNw7zub3cRH5LxH5ifjx4+LHf7SdYlK+rlpW2zhu3+Yksfd5KjjEnoiI5tDB0cgZNDcV+M/a8HiuN9+dRWoUueOOO/Ca17wGD733vXHVS1+KCwA8HvG66RWdgCgh3FMBvPCJT8RDRXDNNdeU2oeI3FdEvici3xeRH8R55ioLDuRF5HgAuwG8HNH0gYcAOAoAVPWbAJ4H4MI6henSrF0I04qD3yrvr/k1OvfUGvbTzZqhs5Mwb8Ng0HURiIiIZloTAXbXo+NKBWxsSO+Z9jq0FmHo/fe//328/vWvx0OOOQYf/u3fxvkAzkK9AN72AAD/C8DPAbjgCU/AaSK49tprQ19+G4DNqnoUgGMBnCEi51ctS5nI6A8BPBBRg8YTAdhr7P0dgKdULQiFaL93uJtguWt1Rhb0awQB15EnIiIqF0y3Piy+gG+Ye1s9qE3sdxGCwuZMf3TnIn4+IvLnpx59NHb9xm/gfAA/CeAeLR7vgQB+BVHw+/yzzsLDRCAiZ+S9RiPJcu1HI4rFK6fFLxO1PR3An6nqHs8BvwTg5KoF6VaTva6z04Obp84Ihe4uHtWD6tlpwMj5+1pdHWfNbfczmP7feNeVLCIioqbtQr372yIGawTMS6zRguf8IYDnAngEos6tafz7KQAvQ7SMG4B3i8jtxr+/sAspIkeKyPcBfBPA51T1LVXfcJno5TgAN+Q8fxjAPasWxCYi60Xk0yLy947nRETWROQGEfmciPRiInMf5p70oQxUX17Dgvcz9mStT7aficQ2HOJHRETUicFg0wx1bFCRBWzo0cYC0QqOiv67WlWPMf49x95OVe+Kh9afAuDhIvKMqscs8229Bfkjdx8L4GtVC+LwYgBf9Dy3BcBp8b8LAWxv4oDNBMG9aFOYiuLz1Zdh54vzmSSabtDhjZ2IiKhf8u71vG/7hPZmN5PQ2fUZuQNs9rIvGlX9KoBPA5jKHPkPADhfRDbaT4jI4xGNZPi7qgWx9ncSgP8O4E2eTc4D8I54nsEnANzPVa6so5so3hxILk6eAJe9opX0YTREkwl2su8n+3fTh/dMREQUIrlH7gLGU9G64BtO73rcHk3nHV0X191SQWL8WJsJnbtIFj3tukf/erYXr4NqXojIj4rIg+OfjwVwOmq04pQJ5C8FcDeiloM/RjRP/nki8m4AHwNwM4BXVy2IZRXA7yAaru+yCcCNxu83xY9liMiFIrJbRHYDdzRUvK6We2ta9D6qXKAWPYBre/kU/42xvYu37zPt8rPm3HgiIurKLtSfljbN+1hoUD3bKzXV1XQ9qpuYgMv4zaxHAfhiPEd+P4DdqnpJ1Z0FB/KqeguiDP7XAvg1RFnrn4MoA/+HADxRVb9VtSAJEXk6gAOqel3eZq4iujZU1StU9QxVzc0iWE5fhoxXlZR/q/vp1dXCPTTXOlmuEapPN6k2W2j9Q+LKna8yQbj9fpLfy75Ps+zezyHgbwzotseEiIgohCtYLztCromAf16H09t1mUm9pEoQ3fQQ9i5iAg7Dn1Wq+reqerSqHqWq91TVWiu+lfrGq+qNqnoegPsjWobuLADHq+ovqOpNdQpieAKAc0XkKwDeA+DJIvJOa5ubkM6QfxKiEQG19G/oTDl9bGGt35s7640mU7S6OrXl58zKwvh7YwTnlf8WrQCfPfJERDQrul4/vgv1Gg+Ke8dncSUkomkJ/vaJyFHJz6p6m6p+SlU/2UQvvElVf09VT1LVUwA8E8BHVfXZ1mY7ATw3zl5/FoBbVXV/+FHKfjn5ZZ6epHW1yXPeZsvlNFtFC85JD3Ib9LExiYiIqK42728bBoNar5+/Rm/Wuyd4LsivTDPafhHZXrTQfVtE5CIRuSj+9QOI1q2/AdFf+K/X27uvRXBW5sJPq5x9u5hMI9lH0TGWWmgtjo7pG80w6yNHXGZiaTwiIlpIvbtH5TTcz1YOo2Xr/zD13mNo3bGdunVxHS7vuLMSl9C0lAnkrwFwAYBrReQzIvIiEblfO8WKqOpVqvr0+OfLVfXy+GdV1YtVdbOq/piq7m6zHPOu3AWxmWB++j237ovfbN3wgLwb0MHRaHaG9eVUQtirT0REXWqqh3tm7snUA9NPZkyzr0yyu6cBeDCAVwA4BsAagJtF5F0i8qSWytewppaf63mSieHQ+NLmXRi2e1+fL79FcDDYVCIYa/7Clb1gLVn/++WVu40MoW0HrWurh0sfw7V9I+WcwjI4REREIexgvWzwPs0gvZsGgXSdyX3vzqtXLXl+ria/DtZuT7W/XtmVro9PfVE22d3NqvoqVT0NwFMAvBfAMwB8RET2isjvi8iJLZSzIU0tPzdLXI0OyWNVstYXXyz7N/R7j/X/LPO/B9ccuypJaFrLehv/XW0brsv9G5vXrLtERDQ7fIF9X3rZi4b71280r1tn2mP93LfpmeGy9dry56bZuk25449G+9grP6cq/1Wp6pVxEroTAbwLwKkAXgngKyLyPhE5s6EydqjKRaeLYHEHgB2dBUBlLg7NXkjKnOviz9K9vMk8BP8eq6u1E+T1r9GGiIho/jQ1T79fAd0O6/8+mXaZ5ri+Sa2pHPmJyHEi8hIA/wLg2QBuB/BWRH/5TwZwjYgwK0OPzP+QZv65TZtdIXA2Jrl6340GhPnLtktERBTG18MffG9secWa+a871tVU3bPMcHkOradIqUA+Xu7tHBH5a0Rrub8WwJ2IssafqKoXqOrFAB4E4CoAL2+4vDUVz5Gvf8Hq7svl6x1tbm5P+mIVnnmTF5wwIefJP+esTGt9lzfm1LFzp3FM9GUoIxERkW0viu9Tec830ds+zcz6Ub2yTI91SP1mep0x/RqV0L5Fe7+LpMw68pcB+CqAfwDwVABvB/A4VT09zij/3WRbVb01fr6HfzkhF55kG99FJTwwFVkJPKZ/n6FJ1txf1KWcbSbJ7pKgPDTAGww2tXZhCClDtE1RIhX781uynisbOLv5z4P9uS85HmuH7xxW6f3Ovr/lguebxR57IiKqq8sG4a7uY97gPqgXv6j+UxR4268vE6iX2TY04V5Vrn2U329x3bbZhgwG74uhTI/8HwD4OoCLAGxU1Req6nU52+8BcFmdwnXPF3SVmcfS9ZyXvONH76/KPOc250aHz/W3E6nY7M/P3ibksyneJvxcdP23EMa+2WTfX3Je93ieZ8I6IiKaP9NqDGg98A8aDddksjugXEdGU50ebdW7wvcbXkfsY54A6rsyte0lVX2cqu5Q1duLNlbV61X10hpla8F8Z61vP/GY+yJTfNw+BrDu9zJbAWj6vLqy1tu2tFWUGvpYJiIiIiDs3lpFyHD8KsrWBdsdkt9F8D6ryteVmXCYyqwj/5kWy9G5OgFcX75I0xxGU/dYrvPd3nkMGwLVl88xX/HIg83Ws100ThQOITN6A+yeBybWISKiLjXZwDytXvxSDQ6BCfLWVg+3XIfoY0cP0ezwfjtF5HwRKf3tFZH1InJBvWL1Rf058tPR8IWw5QyoaX3PNN/UZ93m30z6HJoVkC6D4txKRd7f2FT//oiIiPymmUTOpfIw+/heOv0keGX0rT5t6nv9NMxsdFJRVXmB+usA/LuIvEhEjivakYg8IF6O7j8A/N+mCtis4qz1YfKSfeUlWGvL9pznqidrW1s93HhQVeeCkg1Ko/cWmgwwey7yEgGGyl7o/ftpOulKftb65HwVBvPxZ2yXu/h8BL6f5G8o5G/J2KbryhMRES2GRVkZpdx9dXKPr9YpUCfZXT+TtU3Ow5L1u1uU8DpUO/FCH8/jIhORM0Xk2yJyp4j8QET+ts7+8gL50xAtIfd6APtE5F9E5PVxYP+/ReRXRWQgImsi8kkANwJ4NYAPA3hYnUK1p6k58umhzOngtCjBWhu2trLXNoZT1bmgZMtT5twuO7ZP/16nkSHstU38LVTYR1EAHbgEXFZAWYbDyf5LHqeteYlEREQhfAF+0w3NZe53vh76pEzNBW6Te3y1+mBRQmKfvs+V34Hw99N9cmz2yPfOnQAuVtUfAXAqgF8QkV+oujPvN1NVD6jqhQBOAfB/ANwfwIsBrAF4J4C/APAGABcDOArAHwJ4sKpuVdVvVC1Q19IXq75fTNLcX9Y9jXyJ7X2Mf6/YYz+Zd9X3c9zUhTUkq34901veZtKqHvS35fobyQvqKzcsEBER9ZOdv6Z11r001Xvcm/tsU3WsNuqSze5z2vmKGMD3k6p+VlX/Mv55P4CDAB5ZdX9HBBxwH4CXA3i5iJwQH+x4AArgGwCuV9VvVi3AdDU1tL6OJbTZSx8Nh6+5E8cFfjDYhP6NdC5aRz5v6TS3uold/K9v6nP3D71y9RxsG67DJf374IiIiGbChsEg6u12NErvRXMBepP7qqt8nW8ZbY0ODT9+G9v2VV59ch7eX3VdroR0U/Tfz4iIubrbe1X1Oa7tReSnEMXU76x6zFIRS9xLf5Wq/rWq/o2qXj07QTwQnat8UYtl8iXwfRnyviRdzJGPjuEeTrXkHWY1GKykfh+31np72SfvrdzQraWceUTJPifz/N3bpgPwSbBc5bNI/5//XqrnGCjeV9Hfmeu1y6WOubZ6uDgrfMGoirw5/5WH8JWZN09ERDRHfEP2y87Vd9WX1lYP597nR6N9gffeJuuvZXMS9SsYtXNhDQY7A19Z5hz6tq1a955I/h44X34qrlbVY4x/viD+AQA+COC1cad5JbO0aPZUhA2tLzPcpvulNXzDa0ajlZJ7mrzvckN2Qs5BuZbcaolX9nj+D3mNz44S58K3r/LnNW87e65dUOuk46aeHMN/rO7/tomIiBbVtuG6avP1V1enOB0PmPX6QrfD1ENjjr5PVaWEiBwF4HoAH1HV362zrwUL5NuZut99C1feBdL1XGCSsqmoe+HJe335fXex5nqY5DPr14W68Zvb6mqPPwMiIqJ+KBuIp+6tQXW82Q6+2xN14DRfV+H5XgQiIgC+AOBGVT2v7v4WrMZclLXeDpLaGNrTxhe1m3U4m12jfPIewi+OVTOi+s+Xb4m7UP6y9/QC3ZuEN7HhsOG/KyIioqymlpzrcum6tu+X4fWxfnUyNC1/memmNFWXn+/PYg5cBOAhAH5URL4f/3tF1Z0tWCDflL4FZdmLirnWZXbEQNjFInuDqHrxyh7PdXNod2RD9WUBi3qdpzMiY0qNNUYrffcjTYiIiJpXFHy3Mew875hNL2cHoIGRld10EpUxnXpKtu47GGwy6sjl6pftl7lf+QUoTVW3q6qo6lHGv8uq7m/BAvls1nqRc43f2vjj7/OFsOn3W5zMJLnwNddI4D62e5/2Nk18NqHlXso5XrKPPdbvzRw7tELia9nPS3ZXl6/y0kqlhoiIaEbsRfUed1dnSRO998WJi03FKwsRUT0LFsiXHVpfRfWe33rHTB9nchF3rSNfdb51+fMTHXtStqRc05lbtMN6zt6mmc8mbJ74npzjJeVcsn4v4tnOGi4fuhSH7zNpM9ldkpjPTtBn/05ERETF6tavJsF63Xt8c/VfuwEh+b1anp66dd/od/95zm+06CKBcFJWri0/fxYskC+7jvwOlG9F7NuQFnf5m2iZTS4MszkEe9qtw1M8XkuJChv9nH1z8/s2Z5+IiOZOX9ZrL6OVLPMV6gvtzcsvX3826yXTy6+zbAXEXdT7Q0ahujGYny/eQF5EPlrh3z9Ns/DNs78EReuQh+h+OJF/jnzZtSnT52Nt9XAm8HJfIJbioL/6hcet6Nzaa9S3MbQ+Lf9GUvd4y0ifr+WgfdYdWg/Ac7PP5l9wrl8bwB5Kf3A0wsHRqNMkQkREtHhm6b7TxOhGs46Qvn/n1y+S+7/5mjKvz9dmwray0xeL5siXU366YrV68mx2slFZeVeAhwA41fr3aABnx/8eA+Cxxu+PjreZI00Mk59uYrxyF/Wq68JXORZgnosyF8CkbNnXFK/xHknWqA8bWl/2XIRfLOv+LexA+m8yO6WiSF5Q34tl36a27CEREVH/pRoWmr5HFoyCKxuspusRVVcWqqb5Okw767d3MbSe5pf3r15VT1HVU5N/AJ4C4PsA3gDgRFW9v6oeC+BEAGuIJqA/ZRqF7l7fvmwtrCMfoJlhTO20uuZf0Nufh9TeMf25AJKhglUTxeV+nhzyTkRENBVJ8F4UnPZxudamysQh4Hny8kLRIinTfPV6ANeo6ktU9ZbkQVW9RVWHAD4Rb9Njxxc8P4115NuQHY5jLj8Xsn3jptKzWuZ9mJ/lEqbfGBM2RC2S93fnWk4w2t41HHDbcF1wsrsmjCsdgZ+/s9GBvfJERNSxJofYT3O4vjeQju+t4aMIrbqIcW8OD9ar1rX6Xf+u28jg/gyamH7p1scGH2pGmUD+bABX5zx/FYAn1SlMd9x//M3ML+l6jrzrvUWPDQYr40eamktj7yf6PSlDV+fCzm2wjGjefEh5fBfGKu+luflPk/NcY468L2C2Hm9lnpXn2Fx2joiI+mSe7ktVc+ZUCwSnu/xc1WDVXIY6ZEnqwWBT4/Ui87hh+85b0pgWSZlAXgE8Iuf5R8Xb1CYiLxGR60XkCyLybhG5p/W8iMiaiNwgIp8TkcC/5m+UKsdotFJqe7fp9fy6Wwi3Oh7bEW+/UvIIxcN27DKkf+96SoK57N5W5M/Z32H971NmKJN/+bkyrbuj0T5j++Jz6u2RL8gcnxyjzeFtXGaOiIimrUwP+Szdp9ZWD7eS78bcZ/j+68yR78MwcXcZ+jHkv9z57EUOJGpFmU/2QwC2ishzRUSSB+Og+nkAXhhvU4uIbAKwDcAZqvpoAOsBPNPabAuA0+J/F2KSlrxlfWn9cpfDbMWbfGmXWr/oTOeitqfmhci8IBet515G0mLbxE3HbGiorlSlw9MzvrZ62NkqXHl4Vs5w+UxDA+fjExFRB1w91vPUI5+RO5WtD8F0iDJBbTP1+Dbrvf1oKKBZUSYy+g0A+wC8FcA+EblaRK6KH3sLgJvjbZpwBICjROQIRIu/32w9fx6Ad2jkEwDuJyIbi3dbNEe+jTk57S95ll/uZe8wHXNofZPzZ1xLkkSWJo+Nbx7F5zza31KFpd3ylg8sGpa0bE0LqMu9VFzUOGFPPcj/PO19Fg3DKj20Ppac78FgU6V560nlJ1UJsvYTUkGapaWAiIiI2pK5Zw6H7awvDyC4/jMcepY5DhlaP6n3hOcK8u2jaY4ylM4zkLZtuG5Opu1SXwQH8qp6E6Il514N4NsAzgTw+PjnVwN4TLxNLaq6D8BrAHwNwH4At6qq3dO/CcCNxu83xY9liMiFIrJbRHYDX/Uctc1Wx7Alz5rgbsVzDdveE2+/Mn5kWsNutg3XWQF56BB2X4/8Hut/92uz/0f/ptfyWW6puPD12PPfw9rqYffQ+rKBeYVe8mRkQGqEQM5+dtnbEhER9VB7wXO+5B4ZOkpgWuV010NChtZPRiL2rSe6q3XYw45bXJ/s2/mkdpSK3lT1VlX9fVV9lKoeFf97VPzYd5ookIgci6jH/VRES9sdIyLPtjdzFc9T5itU9QxVPaOJ8rWnTIBvbxvWEFE2WC/afttwnacltprmLzpNNNA0NUd+D5pvQXUfu6lhgK7Pv7EGnzigZ+BORERUkdU4nrpH156m5q5j1E98V+54zeo6V1OkuOGDKEwfsx/8LIAvq+o3VPUuAO8F8JPWNjcBONn4/SRkh9+X4BvCYz9eZZh16NB61zT/oqFIiSQLvSugdpV5Kd5+ZfyI68KcfWy54Pkqlq3/fSbveXJc93D1yTb2kHX30Pp676P+0PvqDSH+92/aZf1v8wX+qfMS0oM/HE5eY1QgDo5G7grFcIiDo5GzXF31dhAREdlTuux7Um+mfFn35nr1GX99InS/6e3KLhFctT4V9rp0Rvow0122rf3h8l2NMqD2lArkReQYEbk0zhT/vfjf50RkRUSOaahMXwNwlogcHSfVewqAL1rb7ATw3DjR3lmIht/vr35IXytg8nidJGShQ+td2eWLhiKFcJU5uug1P7S+6GJa5SK9HLdcljsX6ffjGn6/B/VaP6smucueg0nLbMj52WH9vKdCGdJ8veLFLfvZ8lb5O3IN/fdm2iciIurY5q4LkMjrkS/NqBPFDQR5+3P1KrvrXvbPLnXqMdNKytdMziT/6FPXOco7b+XLw+H28yf4Gy8i9wfwSQAvB/BAAJ+O/z0AwCsAfDLephZVvRbA3yD66/18XMYrROQiEbko3uwDAL4E4AZE3+BfD9v70SVLE/4lSSUGq6RMS5y97eQiVrb1sNxFf4fz/dW7MEzK7k/KtwnuEQv+i3e1VlTX513cODHdC6Prol7x5hI47K7oXI4/t6L9BfTqz3V2YCIi6oW6gXjTPfJ1RqGZDd9rq4eD6yTTHVXQZm9zG4mqo7qtu47sqnv6A+7mesHbeZ80XSLynyJyWER+0MT+ykRxlwH4UQAvArBRVZ+oqk9ENI/9YgAPB7DSRKFU9RJV/VFVfbSqPkdV71TVy1X18vh5VdWLVXWzqv6Yqu4O27Mva31RlnAzm3jxcOb0RTRv22YvbO6Ay5+1HlguGfA2cxFJXxiz+0wPi7cfr8POoLq9kQts2D6WUO/8Ja+Nyjw5Zo2/ISOwtjPLZ25e8bbBn0E8bD5EpgJTIUM+ERHRPHMG3o775bh+kHMvzb0/l1hVKH8bs37i2y5dh3HV/7J1rOIVp+1h9GWH1edv76o7++pi2fftrzOG1ueKt/M15nBofS+sAbBzv1VWJpA/F8CbVPXPVPVQ8qCqHlLV7YiWoHtGUwVrxzcqvs4cWl92CE9INvVm+FoO7S+0e735KcvpvXWXyTX1oCz7fG/NaXENF9b6XX8IfGSrdczs31Bwy77vM1hdzd6k4m3tc1VlNEKSJJGIiKgLvZnjXlJIA3nIfblKolnvsb31ObN+4qv/pOsw06mT1q+LbRuuy5lGUFVT0w+mNdWAqlDVNyKaRt6II0ps+wBEQ+l99gB4Xr3i9JH9hTCzjy8B2DMOetZWDzd8EVrC5Ivd3zUjK7XwDYeIGqXq7GsZZZd1i+RvPxhsKhWgRtuXLEKNY2ef3xElLixbBl8wPRyWz3Yb8pr4+bXVw4Dn0MxiT0REfWQGspvRbWOAr8G+uXXKuxFNDWjzCNXr0lXPa/PTL5ndPk+X9chjPvtZ4GMf+xkRud14+L2q+py2jlkm6vw6gMfmPP/YeJse8w2tz2MPpbeH9KR/H432WV/20Kz1dYet+/ebP/c8R0u9pqHDs9MXv+KhVMWSc7QdydD6trinBxQNFwthD63f7jiOwfUZ1vhc7c/Ofg/m86mLqeeYzE5PRER905tkdiW56lfh99lsPTKvvmbe/931mZCh9cl2k+fbb4ioV98eDDZZ5yV/ym3zc+T727FHAICrVfUY419rQTxQLpD//wCcLyIvFJHx60RknYhcCODXEGWT77G6Q+uB9BDvPbCHfGd7VEOz1hcNhSnqmY+ez44I8O+3sJWw9hqk5ZRvtSzbG59suxWuz85/jPKiz8F+bfr3yfstc4xoqsTktVvzX9/wZxg84sQ+bmA5mOyOiIi6NqtD73Pv0YX34Wx9Kuie7+0cCK2fTbabHK9/w8OTeld2SmZ+XbRaj7zr/dsraRGVC+RfgShT/J8BuFlErhaRqxGt3749fu6S5ovYpCo98qZl5PXI1xtWb7YQ5rW2udbajH73Jbuz1Uka14elK6qdZ7PF1OyZLzofTWYJ9e0r9BiTz97skR8MVlJbVVm6zTUUKTkveefbXmveu63nRs9l5oiIiJrhq8/YjeShjebj/QWO5AtL9uwfDTkpf1N1L7sMoUFwtuz5PetN9JIXjRQN7ZFndvtFEhwRqepBAGcA+BMABwE8Lv73TQB/DOBx8TaU0t8hMF0MrTdvMlUbFMpf6Ot9BmHDoqZ34SwzTGvbcF1hz8LB0Sj3ph7NaR8GH7MMDq0nIiKagikkmdVDGzPHKZsxvl3hUyrz6lr1V1Eq1q/zRk0Rka8CuBrAj4jI3SLy1jr7K9W1qaq3qerLVPVRqnp0/O/RqvoHqnpbnYJMx1drvn4HssOxi4Znh7b+7cAk4Nxj/W/uy1WGaLhN6HqXyXblh9a7hzqZ+ykKMsdlXF1tIDFg6NCr5LyZ53MJ+edtImwUQp1hYEWrIZirJmSndtjlq5LoI+8124brvEPyynyGrm2dPfLxsRjkExFRX/QtGauvkd5bZ6kw1c6ss4WQ9fuN38oMAZ/UgZod+Zldraja60w7HPWZPQXlnuzPv135qQiusvVxWgJNqOqDVXW9qoqqHqGqL6izv47WHuvKgxF9AarOL8kfWg+4vqBm5nmb/Vxer27RcJuoESDbSujfZzZhh59vbfdkP37lLyghZYouov73llxk02Uzz+FkmHp7Lavuzz35G5mUrUxvvj0dIPt3YfauFw2zCxleVzSKIuj8uZa0gydYHw4ZxBMRUS8k9yPzfrnI08L8DfhLVr2mzLro2cTM7SS9Cy9TXt0mm+yuveTJ5RTXJ2d5VQPK8gbyIvLTIvLT9u9F/6ZT7Kr61iNvP5cX9CbHce0vL9FGjWR3huq95/6Lii8DevixihsJJu9xGdE5TMoz+Syns25pVrVW5+K/v6TXIO99lelZMPfj2qf3OGYLvmf+vK8ytMiVJCIi6o/kftRmj3zeFDgzg36mDFZPeeo+m9OLXua92HUVf4AbmtzZ9brs6ELf8bPKdBiFlymvDpVNdhfa018kbz/1EzSnkyXTPMiLYK4CcKWI3MP8Pedf8nyPPbhwi+LEZ/4eefdrlzw/+7Yp+9qkXOWXtdNDG52P5/XS9qslL7SRIJ3cbvLakGR35cqS7Cv63/5Mogtssnxc+lyG9spvx9rqYWP4Wn6PvDlXba+1jbld5jM3Xle6R94zD6/esjhERETdMe+T07p3la2frK0entQt7Hux5948qRu465G+el+2bPbrQ3upJ0neynSsVEuMV2aUgD+JdPke+cnz+fXovP0kzxXFAxP9qrNTG/K+Mb8W/7vL+t337wXx/z1Wdfm5hGupr5AeeXvuu2nJ2rZp/tY5Wb9/fNFscnj52urhqS9dF2ar5+cmhLcIJy2i6VbRkNdHowrSN7qC9+H5HEJa47saqUBERNRnXY0aa2OJ1kmPf7k6qGueeFoT89G7ssexzFzCVV+bZo98H88XdcVbU1fVt6nq21VVrd9z/02v6H3RVFZ61/JooaKh9XYwngSK4fN8itUdktNsBnR/8FschDa9msBy6rh5x7d74+u1mC5Vfn1uMG/Oac/5vJx/D0WNOFPInEtERDTzKtwv8+ppSe+72SCQN6zfVUdsp5F/RyO9x03nPDL3Z07VzA6tb0pe3TQkRsgvC3vo50/Qt1FE7iUiHxWR89suULvqriMP+NZw95vG8nN5w3ryk92NBd4smr4I1Ntf+Pz7SHKOqiTtC5MeWm8KX5M0ZNhVXqK8ZMjfNJZHcZY1728p8O+MQ+6JiIjCmCMEkvty+d77sPpqpm4xbry3E8RN9ldcv6q3hG94/S19HP8Sb/l1tvaS3dnnYSnnOd/ro+0YtC+GoEBeVb+HaM34GReW7M6fzX2yZFm4kCEwyfJo9mtCM9pHy034Wkntx5PhQqlhQw0NhS/qsW+2Jdc/BMl9nGR7d3LAdgPfPUg+w+Qcpf/P+3zNC/mO1Gtdf49J63rdc+362/DtM6kwFE6rWF3NPG/2BpijBJjwjoiI+qLNZHebizcBUNzInXvfL6znZetF5v6K37+dIC5kyTUgqePUGfEZ/toyyxb7juGqb4cNrS9fzzTrhknZyy8/Z9c7aX6Uqel/BsAjWirHlCTJ7ur0kptfqpD9hA6TSVrRlozHXS189v6S1/rZFw49tDGdEKUNjp7XvOXuqpWlbAtofo+8LeSCV+ccJq8ttw+7pbXgvXh6wMsuO2cyP8eQm1KZ3vUukgkRERHl2Yv+3J9SjdzxPb5OeSaNCNn6qnmP99YbxvUMu0c+tI42qcckry9bt2q+Prs9dzm8bN2niR75opgiOU9Fye4m59Ne7jibaJlmXZlA/hIAyyLypLYK0766y88VL62R/YKELD8XLb0R/TPXuTdb1Xwtcclr3UHVYLAp03K4bbhu3CNfFIjZF25XcNvEMnbmPsJbLM3zE9Kokt9iWrYHezDYlEpaV7als9rr7B55z3tKbqxVR1p4lotLH7v4nB0cjUr1rCct/lvAHnkiIuqPNnvk+8HdI5/c8zcMBgXT4+weebN+ktcTPulFjl6/o3S9KHz70ERx2bqVv+7T1PJzvuWlQ7bL2z5ddvbKz5cykcuzAXwNwEdEZI+IvEdE3mL9e3NL5WxI8fJzY86LldlCV2ZZDdfPrm3M/8uMGtgOV89sUatblVY5V2teE6171eaLh0rOjfmZbc+8F7uXOfTYxT3r9rx2OH8PY3/O2b/D1BC9Coly8nrr2xrJYfcmsDeeiIj6pI2M8f06prteG37Pz1t+Lm/04GSkYVT/Wi6ZEHi5RhmrbZdNBtzUHPkQ4cvP0fwrE8g/H8CjAAiAxwD4X/Fj9r8eS3rkA1rknD2ZW909oZ41tyfHcs15h+OxoqXqfFzL4k2Yc+HrtsrVacnz9bQ30zpYlEMAALbGF/uo9TQ5ri/TfN489DDJZ7jV2l/V/bjKkm0FDu7JXl11BsxN9zqEBOV2mbcEvo6IiKhNyb2oDz3y9r0yCfQbG8FWa1WZvOXninrk03XV5Hfz/6LXh9kTuM/8Ong2h1BTy8/lvZek3loUH9gjN2meBQfyqrou4N/6NgtbX/058rk98p5e/Imyxw1tWXP3yK+tHs79IuuhjdkHrfewYTDwDtmfJvfxis9P9Dq7Rz49z7zMfO+wcuVv20Sm/vIjQxyMz9obNOc2UhW8xnjtwdHI+f1wLXvTRa8HERGRyU5A16d7U1Hg7rxfBwbp9vsMrxttz5kjX9QjvzzukbfrStUz3vvzTBXvs90eefP4k8z5RTmvsvP23dgrv0jaWAyyx8J65POC39y5yZ5e/ImiVjT7QhDawhf1yLvmwrskFyBZvz9o7+Z+7ItImRubqzyj0b6gC5P7RpI+P9lkesm8qR2O7ZcCWyubWx/Uf7wd2e1SN9x01vr0frJ/I6mgvCiDfI7CDPRAeu4c/H9zGwaDyb6M9+aqKG0YDNgbT0REvWUH0qFZ50P3l9gwGOSu855sk7BHGrYpWy/bWmOOfMQcPRqSxylfnV7yPany2NMK0z3yyzWPlT5mZNnx2NbA0QlNrmtPfVf6my4ix4jIz4rIr4rIA9ooVHvq9sjbrWHGfoZDT2un61j2XHjf2vSuFr7tsOd6J69ZWz08LkNIdvg2soIOBpsy58Hu+R4bDgv3mX8RL87wmd5/urXYe+xU+eu2bGbXUc1eiNMZW/PPSfEc+ZSANd0Lg2bv33Y8qiN+rrBRJ7BHnoiIqM/s+2ZT97KiBoGi+7W3vlVRuf34euSz9ZTsOuzpx5vLrm7XE8uMdPVbWz3sea/+emnxuVxyvOel1AjM6Oe8sqWz1jND/fwrFciLyFYA+wB8CMA7EM2Zh4gcLyI/EJELmy9ik0rMkXcGLmZr2Pb0fuL1sbOtoOaxzPnvS5jMn7fXN98aP2+28CVfzK3W49m5+gdHI2wbrvMGha758nkBX3LBCunB9m1jz32y9+/jm78eccwdzx06tnWcERVY9r+fwEzvSbnzz8sk70H+6INJC2r+/nZY+/CvI1+GqzfAtY68LRnVkQrije2LRgf4Ki3MWE9ERH3VdI98cq/M3L8D6iOuofDJ/Xuva581uepjUX0or0e+eB++x+vN9S6TbyrLrJ+aPyerP00k79V/vOJREnsKV4aKfs7r/Z/UCRnE95eIvExEfhj/qzUINTiQF5H/CeBPAVwJ4AJESe8AAKr6DQD/COC8OoVp34NhtmRF81KiIMs1Lycrp0fey7eN3Spo9sxnXxMd17Wv7Y5yhbWiFn7JKyQ9ycs+X6eFuF7rsnuOfFNS7zngnBVlrx8MNuXcvJedLdl1W993AZmymyM8fJx/d7WS5USVEg6tJyKiPtnl+RlocXRZzftpWSHTJf31jahHfrIPs85avd7lnk/ufr7s/qpK98jvQHtZ69PnrWq+AAb1/SEiRwJYAfBzAI4FcLaI/ELV/ZXpkf9tAFeq6i8C+DvH87sBPLpqQabHbsnKtp75W/+yrx1/OXKGH0+YXzBzX8kFwLdWfNF8bmNfq6vOzKquC29IkjfXRd3cPjSLa9kWVfuiM27JTK1vXtyQkpeor2wAnme8L2cA7r6wOs+JI1FcSIuy2dKb9AyEzHFP+DLh5r1+MNgU9Lmm9j3lSgkREVEoV0DuGiHW9Kix0P2FJrmz6z67UC1Zn1n3Ki9vxZ1w1Xvkmwmu84Lg6PyENVJU7XAxjx+di+L3ZXaeZV9PHXs+gFtV9WpVvR3A1QAurrqzI0ps+2MAfjfn+f0ATqhakOn4BkqtJV/GOJGX/UTIsJ5kKH3e68on0jCDO3M4ffKlTobf55nmcivmcLAqRqN9WAsu7g6MRuk59CHno5pyN7DRaB/WDq2W2t58H01UMMaf+3DoDeZdN4Rtw3VYa+D4REREs2Iz6vXKtzEKbcNgADSQaT/8vr4VwPs9j+d1vETTHacpNKB110ntsrZZ/mxdtXho/XKcKNCxMtUiCOzAasUb3wh87GM/IyK3G4++V1WfY/z+cADfNH7/CoCfrHrIMlHToYLtTwRwe87zPXA8si1ZVVrskgyVVrI7izl0P2IGdEvIJsfYEz+2ZD0O6/ewZH1ma5zr59TyGZ4//GS+vY+zhbfklygkeHcH2Muen33y19Y0z0f6ounet3/deQQtSeI7Rl7r72CwyTjuduf2IRWCJioNg8GmzBKG5iiA5G9jfKycvzMiIqJZ1Wbi1rz597us/816ia8HPrTDonziPF99x71Ecqh6w8Ld9eXqqyUVvbbeKADXvl0J8Ez2dMskUaCZcT/5v7kkgpTjalU9xvj3HOt5cbxGqx6sTCD/WQBPdT0hIusA/DKAT4XuTETeIiIHROQL1uMDEfkPEbleRP6P57XnxNvcICIvDX8LX4W7JSt6LDyZmyMxmTdAyeuRN5NjJBe5ZN9JMrzkefN3UzQ3ZzTalyqDndDO/N1OILfN0dba5HqpdhnMfZca5pNpLMkuP5f+HOyecDORSOga9H65CQDH5TBbagN65gOXe5vsb8e4LIkyPfJ7A7b3NbTkJTAEot6ALa79F7zHaY4CISIickmCc1fDd1t5XKquXW/eZ5P7sn0vDbm3urYJHylpJ7sz5dV/lguerypJIN2g1VVPva+J5efcdeLsY8XvyXzNtuG6cX2NQ+t74d8BHGf8fgqiUe2VlAnk3whgi4i8EsD9k9eLyMMB/DWiDPZlRtW+DcA55gMi8iRECfP+m6o+CsBr7BeJyHpESfe2AHgkgGeJyCPDDvlg+BPGWXOnV1eRvbBkl7EobtnytQaueJ4LbbVMXrsc78+fZM71eyYTZ9H8J1citMBt816TlwSvzLk1cxVM9ucPoJNWSeexS/Qam0vKVU1Ckipjqvz+4032F+3z4Pr12Y2D8jYUy/t8nM85jntwNHKuI09ERET1tNWw4K2POO/j9vJzQMgI0qheM0ncWxRsuupaZUYZ1A1m3XW9wJ740vUfV5xRblSu+XsT759qeweA+4rIE0XkGAA/A+DPqu4sOJBX1f8H4I8AvAzAF+OH/xHAvwH4RQArqhp8LVHVjwH4lvXwVgB/oqp3xtsccLz0TAA3qOqXVPWHAN6DBrLlZ1oRx182Mwhctv43Wr1SX047cEwaClas1+1B9su/FVESvRXr8WWkh+BPWuSKvpjRXBl/sjvTwdFo3CLrWlKs6TnkqV7dnAucqzff1yqZbREukfXTKEOd92qWIW81BNe69r4W7eRztss1Gu1z38RLDmOvlQgn59jTGupPREQ0DX1cIjXvPlqmvM2OisvrPZ4szQtM8iSFjIYM48/g3l4w20zPfMJ9LvIy0+/IvK6d3E9UVRzjvhLAPwH4DoB/VtWdVfdXKrOYqv4BgDMAvAHRNeNDiHrqz1TVV1YthOFhAJ4oIteKyNUi8jjHNpsA3Gj8flP8mJOIXCgiu0VkN3AQ9YbZmOu9W0oPrd9q/V80rMi8OIS1xpmSITXpJTMmygRxdRLSlWVe4IN4hz0l/Oe57vvyHXc0Orfg+XI3lMnwqJy/mcAgfjPaDaKT4fVF+lgpIiIimgUh99BxPS+gV/jgaJSZPldcT/TVSZoNbusKG0HpqRMOh5npom0z64iuck+zTk7NUNXLVPUeqnqkqv58nX0FffoicryIPF5ENqvqHlX9TVX976r6NFV9sarurlMIwxGI1tQ7C9Fyd38lInZSgFJJAlT1ClU9Q1XPADagfCKK9Brk5hCgye8YXxjdAadrDr4rcd3kZ/cSE/6h2SEtmHaGdlmfnZJhtsTarbLpRGvpfTtVHUKd87p0mdyfpf9ceBpA7M8u/j15r/b+fOuY+ltOo8SGodMffOcz23ufM60i5xz6bsbmuS3TsJO37nvmOU+52CNPRESzoul7li9Znu84dY5f5v4eMtR9wldH9SW7izq6yiZgM+uhbQ8Tz1vC2P38Eqol9vN30GVHde5IPWcnuwPyzwuT3c2X3EBeRNaJyOWIJuFfA+A/ReTjInJ8S+W5CVGaflXVTwI4jHRCgGSbk43fTwJwc9juv4q8XsyQtdrNntDM2uHjIMX3JXYN099j/W5ua7dimpnyt2Mw2IloaYp0uZOLtGv5uYR98dkwGADDYeoCn3uxNwKykOHVTYvK70g6aLSWuhVcYDNlDk/AYuYamJzf5PVbU+VKni/TkmpnIDVVzZibl8wHQLMrEFhZ682/L/bIExFRl4ruo1s8P0+zDD6Ze3jpjpSCTi5HMuUsX897fo982WA8vPPIfdyqgey24brAOpGn3pj7mSRJrdPMczP52TUtt+DYNLeKoogXAbgQwC0A3gvg84jWuvvzlsrzfgBPBgAReRiAeyC91h4QZcY/TUROFZF7AHgmgMC5BflryOd/uc0vWJnWNtfrfEvgLVvPubZbtubPTxKE2DIJ7Sy+92sGWLXmSmWWcSvPfr27cWEptZ3/mAGfW2aJtPRrXL3xgP9cTz6roukQ1ZdmsT/b1HJvltKVhILKgCuZSgj7c3Q1JLS5nA8REVFVizCKrHz9LW/5uS40cFy7DlSQkDh//nqe/DpietnovPdV9fg0q4oC+eciSmz3CFX9ZVV9DIA3A/gFEblfnQOLyLsB/CuAh4vITSJyPoC3AHhIvCTdewA8T1VVRE4UkQ8AgKrejaiB4YNx2f5KVa8PO+pX4U58FtKCFbWAmV+GsFbEpJVtO8ze2cj2+J85Tz75ednabsl6Pt0Tb7aQFgXf24br0hen5GdHS6MrcLaHoCd8ydzyhk2FJjWxW4Cj3yf5B8xlAMsuaedK6meW3bU/e2iVO1niUjw/Pskuv8N6PlzqPIW+1vF55q1HG8Q6NudmERHRImhzadSy9+Yt1v+J0KHwGw4dsh7ZWmn+dXEnylLm8fRw8Em9uvn6RPXe6cyIWwdzFKZr2Hv6ccdrU6JlqH0rTSVJAKNzFC097N53Ntkd0P4UBOpO0bfm4QDepqrfNR4bAViPKDFdZar6LFXdGE/0P0lV36yqP1TVZ6vqo1V1SVU/Gm97s6o+zXjtB1T1Yaq6WVVfVacckZDeUFcLWNFFIr1EXPo49tB5376SQN9caz4xeX3IvOqibZMLkn2zSrYPuRAk26aWG0OFpHXWPt2vm2TxN3MV5C1p57JhMHA2WJS9qVS9CYWWdZznwDivyfv2VQKqZKLPMIP3nCXkkh6K5JhVj31wNGJvPBER9UJyPzLvaU3fo5raX2hyutD6Spk6ZPn6ndnB5RdS93S/n+ojHcd8Kxkly+ymAv3kvbhya1XjHloPlE3czR75+VX0TT4G2fnnNxvPLZxqrVpbUT5rp53VPmEOwy/OXl9l/rr/4h/eupk0Brh70j1KzMf23jBSPfL15wo104rpLodvWcAy5Ul+TyoBdkBfdfhfnZ6Hpnotao8eICIimiF9uO+ZdUBXnS2vHud6bjRa8WyddFKVM9WRgHm5AVrMA5XPPZ8+D3vk51fIt8HOCJ/87soe33uhrVLRhWw5YNhQWjoTvNkauIT0UPnkuSSB3TLcrYeTkQDJEPVkObPQMjlVyigfla/oIuptCIiPWTW4zO7Xcb5S8/LdrbGj0T7/RS1guoCLOyC3cx4YVlczw8n8CfDSfwPmz67y7fX8bDs4GhVWGvJa9OsuZWj/HZhl3QzOkSciosVi3/fsofO7EFiHcgSZ2eH0Jv+8a9+KRRmeemU6r1Nksr/igDRvZZ9m1oQPmEtvTUfdhrXU41GZonp8Nst8GNf2yWP2ylP+0QacI79oQgL5p4nIbyT/EEWeCuCXzcfjfy9pt7hT4A1wd1j/A6kvjLNlLgncl5BudUzmtmwfP+efqz/JVG+vJTm5OO6YXBQdy+DZX+CiC3KVHlVnEGqcS3NIeHJjygR81rnPDGPKbJserZCcH1fugOgcbB0Hv8k5qTX03Fimzt9SuwOueU+moqkOmfljhclW0q938WXcTQ2LHw7Hfwuu9WcLM9SjeiZdBvFERNQnXSW4q3Q/zLnXmu+jbB0od/sKoyoHgxVnIB46WtG/JnyZHuuwEbOZMhlD6yf1oXQ9fjQ6193Q4Ph8whskllIBfhqz1i+akED+fwN4jfHvMkS98S+0Hk/+zaAdky9D/KXcMBhkWr+yX7KtJb54Zovfnnio0eTiEf3uGmK0HeZam8kQpeTiEP2+nHvRs8uYNyzdVuvG5djfGrZFP/jmHRlSy+dhLd3AELgEiL1vuzfe12iRDHvP/XytxHh520bPuVtKQ1q6R6NzU8dIXuMfsuZWuNyci3murfOeV/bkGFUqIX0YXkhERItjVu47dZe+M18/qQP5A0B/nqIw5ijStCVvvSl0+Ly/k2QPphXUmp1qwVMFKg7LT3r+7bpg0SpVNL+KvilPKvnvya2VtFVhCTHSF4wlx2PubbL7X0I6AZ6r5dC3DF3yuuT4K7llzg7HiThbVSsNt88ez9y/64ISGkTmXpgcZc2+T/u8l1+KJHc4kjX6QQ9t9O4jL3O/fRy7USmz3epqqjW7ql2ovxwdbxhERET9UTSM2l0Hq5AYLqfOmJ4G6FshOhmtmA24c+sWwXXVBpLd2UoH4J6RAUF12LSi+lbe86yrza/cQF5Vry77b1oFb5yjh9hshTTnXUc/h7S6+QJJ+/FkX76hQK5hP9ZyZkCpQNzsiQ4aWhW6JrxrWTsXz8Uw+GKTev12z2srtsYa5R6NVhyNNb6bUlr0OtdIDhR/VklGVI/UaAXj5y2IehVCPtOiVv3McHpHecoknXFls6/bs0BERDSvijo+QqdCVh1dWWrYe6ruFDZaNW+0one0ZjI/vcRxIkXD7aPnRXwjCOCtl5nvI11uT6xQoUfeHL7vWpKYywEvJn7qCWNZreTLMPlSbDeGMO8YPza+KBhBV/oLvNX6efL75EtorhvvSo7mCkaXxkFiwrnkSPxeQnqz6/BeSCsOHfLNnS8/n31yfqJzsDXTM168T08gHshubQ5etsVx7spcpJvIHO9bls/kej9NHJtz5ImIqK+6GoZvN34fHI3G99y9KBgGX7XuF/o6x9K4WVEd11wP3cdX58nLAWVqJMHbcBhUBzSP5St33kjVslnoE+xpJwbyAIAd3pbEycUmkcxHd1980l9gc/i9+SXdYRzDDNyTYN/McD/Zz7isSM+Nzls3ffy40atqtma6HByN0plRrYt4mcC2tRbCcZm2I3xpv8l5DLn4bRuu894IRqOV/IaK4RCj0Urco7+S2ieAsEYOaxvfVIOqmeODW+jzRk/4bvDGa0IrPLMyP5GIiBZbl6PJiu7dpZYdTiXmzWo+27lZX1t2Tg80R8UCdi6gST3OfJ+uelA2h9Ckd7xMAGwma67CeQ4zdac947q1r2yj0b74PRsjGDKjiXOmEwQ2StBsWbhAvrD32PqyTobL2MNj9jges5nPJ73tSfI6+6JpB6Pm/HrfsXcUJgrZNlxnLYnnzu5emIk05wYQkpE978JUybg8k/OWt96p+dzkYujeb3QudhQksAtd+3TP+JgpeS3cOc/51pG3NdErbrb0uzjP4XBYbyUAIiIiGstr5HYF9a761l6goGc9JwCsEMSadZMo2Z2rocBfhwV8DRLVgvE6RqN9k3PnSP47eQ/5CQPLJ2wOkLfOvcGOA2h+LFwg77bsnAdc5SKRfs2k5dCXiG3SW19mWM1k+5DWUl9CvuCW1prnJG+fTbX2lm1dTbYvCngrla8giYld1tItw7CX1UvbgprL6hmmHZR3tbwPERHRrJjGvdK7BHDAUPtssjtXQ8FyZtui+tBgsLOwJ97ef6NKN4aEJ7sLkUwT9e/H3ZjgS8ZM/SIirxWRH4iIishzQl6zcIG8K/DxBWvp1q3tmceLk55NemOT5TfsIDpZPm5yjKTHPnuBSycFWYZveE1bklZH+3wF96q3UkZzvlX2WOmL/LKzl921RnqdbPAAgNXVsH24zknNltpdyG+g8FUA7KDdt4+11cM4OBpNlhI0GbkmzKGHoZUOJr8jIqK+m/VG59DphaWUqONNjh+SlDgdIId2fmTr9r4Os/wVjTL7sepo0dLQ+4x6vVnHDB29WdxxVKZjaTwaNrPkM9eZ77mPAngGgFtDX7BwgbyLHdiZX0Y7WdmkN9f44nsDL/vi4Fp3fhlRErYVRK1sybGSufD7kJ0jP1lXvrgM1kUvZ7vc3teQLOsBKvfwNjIqIGrFtJPd+QLWbcN1pddpN7mmMIQktSvkbKTws4flhQbLyWdl38zH0xVcuRZcw88cZr0SRERENA3BK8zkqJqDxl4ON/fenbnvZwNnuwOssMMjcPUe13Hz5sin2VNbHYH96mp0PG/dZofn57SDo1E7uaOGQ3di68y04RZGKVBjVPUfVPUfy7zmiLYK01fu3uP0ly5K4mU+kiz1thK/fhOiL77VI5980ccmgeNolFwYzAA9CSp3GuXaAzOBW/Ra8+KT/LwVo9ESBoOoTGurG6Mvqmed74OjETBYi5/PBmAhGcoTo9E+rNmx7+qqdc78KvW6rq4CzvIVtC4OhwB+N/5lexycx+fLu30k6r337Xh7+lyaF8zQspViNRwN3Vu5brJbALyxxOMhNgwGju9JuC3IlpWZ6omIqK/2en6etqQOZd6/zfJsG64rSGmcldfba65+1MSoudHoXKytvh96aCO2DSvsIK5v+TszwnvB86TqusMh1owRh6569ETUQRfxjAJYXQVGz3A+ZQf6o9E+rOHVGI1+F1H84ZZKhGdOFzaD+dH8z5Xvchm+z35WAOBnROR24+H3qmrQMPkqFqxH/mjP0PqV1O/2/OP0a7LJOcxWuvRz2+PHVpAsfWa3hkXD7lcQBX1LmATx2RbB9Hz6pXG5B4NN+Uu0DYeTwGt1dTzMv6yQufXJ8V293GbZQhsNir+QriX7DM7khf5t7XINBtl15CN5c5Qmr43+t17v2X78XgPXkHedm73IVjDsz6IwgG4iCctwiF3w3/R3uY5LRETUkXm4J7W/UlCZbcoF1MGjLV11FGf57N7n/CH0Pql6Y855SMqfrvOlz0G5RMT+5ah958o5Fz5VZg6tn4KrVfUY418qiBeRg/E8ePvfq6ocbMEC+eODhkq7MoNPgn1zPnuR9Bcm79jR/pdz559n58gb8oIv87mci1DRBSYp/2i0rzAQdz3v2n/R/Pqw9VCLl59Llgy015EvKmPU0OIqY3hywqK/OfPGOz5vnt59e45/SH4C+7OwKyt5Q+7GDUABkv3uAgobA5IA3/U3wWH3REREWSH3R1e9oE5PevUpgfn1JF8m9aROVFT3SDVapMpUJWDPBrhBc9IddeqqUzLXVg+P/0Wiuu0kOM9vGPGer9RIAg6t75qqblDVezr+vazK/hYskHfzzZEHokQRdo98xAoenb2oZtCdXNDS87Sj/83h8iuILkI7jOfttebTxx+Xv0SikdJz1a3kbekAbEfm2KGtjv512t0B6i6g8H2m9pnatvgClj0vvkaC4qVaogagnYVzwMy59P7zFv+NlJwf7+Ma2j5mnLMyDTZJg0CdCkNeLz4REVEfVJ1z3gTXvdssTxOrASXHKNXDX2I037bhukxyuOBjGfUg9wjFbD3Z/L24/pQO6r35qKy6aPOjIbLJnJOydzl8nPqFfwnIXvTMtc9l9LtxL6h/OLrvopBefmMl/smVhGMpvpBtd2wP+Iba+7LIOznmz5eVlHkw2GQFeMvFF3BHoL9hMBi/B/viZC+zlpFawz609TWdn8AlCaQn22wvf1M03utodG7qPbreT9j+4ws61jAYbEqdJ3OfVSoXruH4CV/DQmFDkONvbZfn57ztiIiI+qZvw/DN8gQ19BfUB1MN6sY86+T+nKkDWJ1ZRWUwnzeXBA4SlyU/mHWNBnDVFf2jBlwJizEcRqv2GOW1y56uvy+lc1XlyDZKbM0eP+D1Y856OYfW95mI/ImI3A3gvgDeJiLfLHrNQgXyJ5xwZNB2rizd2aXmiodWT4L1JFv9HscQ/ejnZMj3JHt9so9JsB79m6zHmWrNjC+gSeA1vrBYF+vQOewZnou+HXTl9sRbF5WDo9F4yJDzguxbt7SgUSI1TylnSFHexdEcMRGSIDFvH7lSS975t2+ihd3m7fm2PifvzTKwYcisYNh/Y++c8jr1REREdXXZI2/y3cfzVuQJkdTt6o7+C+VbHSePP5heQlTftjPkuzqIkhGx2VGWSf3Urn+FTkNN799dbvtxM7GgXe7BYGfueXFmrXf9TL2lqi9V1SNUVVR1vaoeV/SahQrkI+aXNR2Mj9fHtnqHg9dJt0yC9kkW+slwa3uJO3M+9nbjmDvi31eMxHj2ccoFedlGiQBF66KXuEhU6nG1WxZTv4cOl4qYyUCSC7KvTKPRuZ7zWzxMP1k6sOjzcc4/s1q3x7362Nb+jTVOVFd0I3cuP+fQxJB7IiKivphmj7wrQe0uz3PTKIczmFxddfYAJysr+biSR/sC2TFHfTNdpuV43+6RtO46jbnM9IpjnzHvaAD//PXMtgUJjyfbp0cQRNn+K9T/GMTPtYUK5A8cuAvpntT0F8/+Epk9u9kLkfHa3IyQyXz3yfJz0XDrlXFAnwTp0XZbkR2Sn6wzn15jPkl8Zn6xxz2e5nreJb/EzhuDZx92cObq1XddxFPb1b7I5A+tN3vmfcPb/eVyj7xI9fb7Xh8wlN+UnwwxGkJvBs+uC3rVYDlorfmA+W8HR6OgZHchZSAiIqL6zHpdpXpCUT3NzhMVkJDY7MhKmFNbQ6STw5nH84+aTdcBQ0bXuufwp+t7S0ZdL93Rk5Rv3JPvqR/53nPVlabGPI0sNB8WKpAvGlq/tno4NWTG/NKmg2urdTD3S7IVZtBvDq1Prx2fPLc9DvLzlslbNspnNByYZcj50ibL0CUXjaAWXc/+QluDvcP2Pevem78XJ+aLzkFq+TZ7n8NhJrFK4UiGnFEI5nQGn+i1e4IT+pnHmrzn4puMfc5qB8TxZ5252Rvvd8NggDVs8++DLcBERESNmsbItkZ6+QsCR3vEqzsgt1mdNrlz8vdkt/dumy+1pJtVDwLsAH+SrNqW6WizZGMOuwFke3BG/5SCJY1pti1UIB/1yE+4hpi7e5RXrN/3BQ1PTwdq5hdyO9JD63fC98WPjr2UKkNRAOrM7G787uuRDr145wZwHkVD2H0XJefyJMZFKXpdwFqlxk3F2RDj4esld34Gw2GlJfZcn8eGwSDVkJCUI2mUMM+X+XrX+uz2Od/seDz1mvjc5v09HByNMudtLyafs6/xhYnsiIiIWhRPj/Np6j6c18mSrddUSLKWCT7jenRS9/DU3Sb183S9281ff7R74pNOMFu6/podfVA833/SYTMarWSWGc7bN9FCBfJFPfL+L9tkmIwdWI05WrsmyemA5CISfTm3jocUmcP2k+H16TlFyxgMVozH9niDS1/COPNiOw40jfJusf53spPNVTEcZo9RmFhtR/ZxYwSEmYhwfDHNWR4ktV2OyTYBjQQe4Q0+K+PtXftYWz2cm5/gkpGMf267td53496b83yZuYR9ywRMREQEdDP9ay+y9/WQcmwBmhtOndvZEZpDyj3cvGyOp1RHkjWUP6l/uOvIviDYP+qxXNn8Se2ceZAKuI+dnTOf2Z9d5+Ww+rm3UIG83SNvy1tGLneOvEeUnO7c8T7M/yeZ7IF0S+VyZt5Qdn6M1bDgWA5jrIEvsKv3tZytqX2UCTaL1mBvX/HQ9jx2srzRaN/4ZjN5fNn63TT52xjP77c+izdar9iMgOXhHK8xFfWsA5PGlWRbcx95WV03DAbegJ3z5ImIqO9m/V4VUkfIy66eKLN8bpCiTqPV1UnHjnc6afUOmDy+zr7s0HpL4LD2ZITptuG6wI6g7an9u+qHHFY//xYqkG/CpKXP+rIWBLpmMB59Oc0AcRnJEnRFSUHMjPfp8rhtG67LBFWp4UEFX3Dn2qTmRQPW/KECviFdvgukvc78+PipofUTB0ejzI3AnosVsqzJRH52+qIEdeZxk8eyQW7ekDPP8XM+t7xebV/lo0xPuJlB37tf4/uQPGc2DjCTPRERUb6mGgy891pHXcpeQz6pMyWPbxuuqzQ8v/4yuv458tntQhsP/HW8Mgn3AN+8doeKgbW5DF0kOlboCkI0nxYqkHcNrXct52APhzF7yL09xJkv5pL1vzm0HvFw+U2Z5eei55IRAEuIMtbvHD82yXC/lCqPGRzmrSuaUaKn3W4FrbIMhlk251x+y2CwCbsQ1hLqarRIyhkNwQ+7iaSPV3RRTt8EzHOcLCVoHzf7OfhvJKnXDodB+QmauPEH9eg7/nbsqRuum72rR77K0EEiIqKm9PG+04fGbjvpsFn38w2t900VHPPV/XLrpFu9PfbV5+T7t7P3WVTnTep85e2BPfrTVW+cLEOdxAoVlpKmudNZIC8i9xSRT4rIZ0XkehG5NH78/4rIv4vI50TkfSJyP8/rzxGR/xCRG0TkpVXLkfoiWBeW5EvsCwDdX2ozA30SBG6HPbTeHHKf9Orax5nMxzcviNmgLzRAd82PryQnkZ5b8YUt7wKZ3MhcQWFhY0LcmuzaLqQhouhCmdc44JoeUbR+6ZjnZjZueQ1ogLm0YD67y4bBYPz3ZDe6ZKYEOD73ZJvQof1drIVLRERU1l7Pz9O0C/WD+2fnTH0zhYxeDOsg2Yqyye7cx95eYum2/NGUIds562tW3ilTenWrbN0xb8ph3jTSwWAnNgwGPZhqSn3UZY/8nQCerKo/DuAxAM4RkbMAfBjAo1X1vwH4TwC/Z79QRNYD+FNE17NHAniWiDyySiFcQ6Pzhnm7li5zzksZ24NoPnx6nvtgsNMI4FeMXngY/6/EF4OtxjF3jF+TyLs4AMiWrcHEF4UJVeJl3wrLWLQfz7b2sPmi7fzrnKZNRmOslC5T8r+rTObf1uQmYdxICs7BeJ68o+wvCi9p2Odh2BK/JuR1dSsZTHhHREQUxmwI99WFyt7zU4wVecz7+4bBIHU8c4h3NsBfLuwUy9S9XVnrHSswbRuuS43I9C3dBrjOj3/UpSsWODgaFZzLyf6csYSzjreUW9e0Y4PcxhPj/LgbHNrJH0Dd6SyQ18j34l+PjP+pqn5IVe+OH/8EgJMcLz8TwA2q+iVV/SGA9wA4r+iY7mR3Ra12k1bEJMs8UBTgma/ZmWqZi4bGrMRJ0FaMx/ZhEqRHAbvd+pZkrY8aBiavNS8Mu2AMWffNg88JZvMuUN4ebGtdTeecfAfzhuAbwmRedMfb5wW7niz4zoz2HulANP+il/o7yCw/t9W44PpuIuXmjTmTvFiSoDtPaI957n7yRn2U1Ifhg0REtLj62Ihsj1bzTUubTAsoWMPcUml+dareuCNTF9gFV11nR/Fwe4NvqTfvtql9rji2MjvETP6Exq66a7I0sMvkuGa90dh/zrJ5hb3t8Wvs5Mm+7cZlNR9n9vq51OkceRFZLyKfAXAAwIdV9Vprk1+De9TtJgA3Gr/fFD/mOsaFIrJbRHbf+97fcWyRvuhtGAwKh1xHAf3K+Pe87Uejc63sk8vGc+kkaOlGhT2pbdLH2I5JpvMVd89yhS9sleHNdYZEm6/1Zdw3L1rj7Y3kK84lTAJ6tUPLVTy0fiXn2cmUgiQhYGYkB8ISFgIoXFYPCA+kNwwGrQTPdmVhCyYVDVdFwjdtoo8VKiIior4x7+VJnSQ3B1GF0Y/+4eQrhbtI6lGDwaZM/Su0dzniH1qfFjqs3lantzqq79l1xsz5cX4my8GjP7Nxw0Ru3dZIEh2+ZCDNgk4DeVU9pKqPQdTrfqaIPDp5TkReBuBuAO9yvFQcj6nnGFeo6hmqesZRRx0/fnxyYVnxls+1BuTa6uHMlyU7fMa8iCzFw+Ync+KjY6az1kdrhW+CGfyZifC2DdelgkFXRvQUz5ITqaXkysyV92xbGAyaS4XEinr98+by28dzDlU3Xmdmqh+N9pXOD2Cf39zA3rrBJJ9RccPQStB2AIKS3Znz2W3meu8hjTCu/VRJcuhjloHBOxERkVvS6x7ageIdeWfVg0LuvUm9LDl27Y4AX0Ces1zaYLBp8txwmLtkdLanvUoSuoh5nKL58eY0WnM6bki+Ad82do4tX4JuAAF13HpLKlP/9CJrvap+B8BVAM4BABF5HoCnA/hVVXUF6DcBONn4/SQANxcd58CBySbJly27RvtE9KVaTs3D3jZcB1m/f7xNcVCTtPAlQ6tX4pa3PUbr5FbI+v1Gmezs9RFZf9n4+VSCvIIWyiR4H8/tqdKDbz3vyw7vUjfwc83Nsvedf0E3fi6Yz589Tnb+lOtvZhvW0tMZMBmNkX5tYEtoqvV0cjxzGJyrgcR1k6kaIBdWFgIbRez9+G6EfcwYTERE1Cd2Xaj0yMjV1dRrfPfeorpb6BS91FRQg6uHPmQ/LulM+iuOTrqt8XNmj/ZO+HrvR6Nzc+eb+4bzm509Zv1zbfVwTp1pK3yjAULes5krIET9ZQCpT7rMWn98kpFeRI4C8LMA/l1EzgHwuwDOVdU7PC//FIDTRORUEbkHgGcCKFyH4YQTTsw8luphteaQJPPWJ1/YaBi+HtpY8uKzD8kyclEAvxI/vhJvsWT0xu9wfsmiHvuVuMyb0vswLg6uYHfDYOBNImJenHJbWPOCtpLD+EMv/ib3+Z60LGben6NMZYcTlVtvPkwyqgIoboTwlcf3Pt5pnNeyc9XrBNH258kM9ERENG/KJJRtS60G75zRmK7VfXyJdRNmPcNXr4v2aa7mNNl3UZJi22CwklvfnJRhj7XvpdTw/kReR56rHHl1QtcqU/aoWrdkKenwpeSKlsULq7uyZ35edNkjvxHAlSLyOUSB+YdV9e8BvBHAvQF8WEQ+IyKXA4CInCgiHwCAOBneiwB8EMAXAfyVql5f7vBLWFs9nPtFdmXd9PJe7LYbQ25WrP2vpP5PEtyZFwIz8HOXMb1PVxCVXNx8a3oDAIZD5/O5N43kNTnLceQJWe8+L8gdDFbGN5+87VLz6OPPKeRC57rJRPtacg9tciYwKdnyWZBJ3xxab79v83zmfR4hFYEyDQG+bfeiOKjncHoiIqJi5v3SV38y6wRlGtVDOhTG+7N69IGiOoN7WHvhHG+rTpX0avvqW+kymEmnowTTUZ1/JaecUUAdlcNdZtc59dUn9dDG7NLDnqz1viWSqyw51+T0R5queFn2O0Xk+yJys4g8uOg1XWat/5yqPlZV/5uqPlpVL4sff6iqnqyqj4n/XRQ/frOqPs14/QdU9WGqullVX1W+BMkwFn+rVNSatmJ8SbeOh9dnrK56sn9O1pK3GwKSfU2GYC/H2ewnF7dkGL95zLyeZTuzuznn3HXhD+6RNy4+VYJ2ADi4fj2AmsugGEajff5lS3yM81LEH4TnJEQpOQe/SHQh3zl5nznryCc3mL2YnOPNKA7cQ1v4D45Gzs8+ecysZNif8RbrfyIiIqpml/W/S+Z+W6d+srqaSl6b/B8y0tGV5Dd5bZWRj67XbBuus+onk3paVK925cXKmzdfsIycwewQNOexbxuuq5kw2T1qwFV/ddbL4ym15u/VEwHSlLwXwH1U9SgAXwPw/4pe0Is58tNy4MANmcfyMkqac9STntjyktdk51on84OiJeo2xf92FvbI5yVRMzO7Y3U1NW97F5A7191MYhKSxK4sO7grbC0uOMZgsCmVr8B8nffCa895Ss5RFaurBSMGdpYezu8yGp0bsL5qeI+8zQzA7deZn5lvHfkNg0GmZz3Zj2+qR8JsRNgL9tATEREltqBksO5R2IHiqFOkepGr1pOGw1SvdPRzkuG93Bx5W/ic8EldLH8d+aWckZh5JrGB+frw95YNricjSXfm76egnpxaLm84hG95QuoHVf0TVb0z/vUqAA8oes0RrZaox6JWspAh2WaytBUASU9w/pD36IKVPp5rSI897zkJ6O3XTrZZSs27SRwcjbAh/rKOL+xGdk9grV5vaNwgIOv345sVXmcLSqQW0FgQnQfjcwx8XQj7M5wIb9BJyudjfm5j1g1zfCGPP8eyXMHxhsEAW0YjvDFnG195Ekmwnvy/Ge7PNe/vzj7u5qKyEBERLaiQepxv5NyGQ4fgqdTkKxHEj0b7vHXEpL5r99Cn6uGO+lvZYD+qb6ezx0cB+/sRBbKvAIZDDAZrmdMx6Twr03E3mZOvhzZC1ltlH5YqfspotIK11VcUbjdeOrvwWPPfI9/t8nrfAYCfEZHbjQffq6rPqbCz5yPqoc+1UD3ypswH7VgrU9ZfZiWuSA9xCWsN3BNnmT830/ufzHFOAnNzPo3rGNm15qN9jMtcJhu98bg59N7bkxtvX3rO9+rqeEh9Lk/ylTzei3uFxHzlGjnC1ho1lx4BrPcTjxpIzr39XFVFeQ7yAuXktZns9znlcQ2h951LV4+AXTYiIqI+sO9JTU0LrGNX/M+8z7ruuVuQHVGXp3AUX8DqSPbUUGA59bqkzpYbaJVoNEhnqt83fo/mUHoA49Gu4zKl+IbXx/W8uPwbBgOMRudiC6L6ml0/dSW1C8/FtCP1fnzLDE+Wqc6R9zk11MlFha5W1WOMf6kgXkQOisgPHP9eZWzzIUS9gBcXHWxhA/miL0N0UVvO3S6slXAJ6WR321PzuqM5NJMLgD2fxr5QRdtuTT0+vkC7vqTGRTHZzrxg272qttq9o8Nh5ri+uTy+1x8cjbwXd2dylHjIe97nU35eltk6G7YeaTK6IhHcqlzQA15H2XXki44/XtKwQMix2BNPRERd6WNjcsi9095mF/zL0YZyNQ54y+Kps/iSNZvTQ8v2tqfek3Fc81h2j3xyrIg9zdX83eqkyVl+Lm1SPzTfj/O9Oc9VXufQ5LmQKaOZn426dRsrMVF5qrpBVe/p+PcyABCRKwD8BIAf8yzBnrKwn2pei6D5x+76IuZn2rSH40y+hIPBCgaDTfH+k3Xl91m9/uly5X3xZP0zACC/Rx4IWgO+NXayDZ/AJU7MG4mrVdTcT965C7p5eMu0o3D/0byw8OE9IeUp+tw2DAaZm+8WVA+QtwDOkRtAtvd+s/G4mWjP/LxC/g4YzBMRUR810Zheh6+hwXXfz3SOFM2lPnQIgHuVI/N9F93TQ+oyyTRTX+LooPqgtY2Z7K4oM33akufn7amy2PUv18pFeugVqffkzOFkKTvK1VmvND/bgFG41F8i8jIAzwPwOFU9GPKahQ3knS2F8RfWHg4dnHQiIwrWzeFEqaXQMOm1tR+3t7efs6USWiSSINpqocvr4XYxL9xVEpP4AtDKc/YdQ7VS4vdmtvYmPycXWdcNJHNT8lz49FDxfKVou+I8ConQltKQ82/f7EN6GVzbJEsLJnwrHCTJ7vbCXaGwW/G7rgwRERGV9cbiTVqX3GPN+2rQ6LrQUY2BUscsGSTmZmpP5XYqZ8NgEL9uGeFz3N294a76th56f+6eklWoJrJJrt2yozxddULv0HpfjzzNoksArAfw6XgJusKl1RcwkM9P9JAEncn/9jAZWX9ZiQtf+ktsB+mTn9NJOcyg3mzRs4chZZa1cHyBkwC/TmbQVDZ0x3x375Jkw6HzYpScW+fNx3gPRWUOeU9m4O4caZF30StzQRwO09vHiQEL9x2wHJ6ZOdacigEAlxqfh2sZOJeipHR5GecBZM6L/fmb5Sg7fL+PQxuJiGj+zcKIsOB7qqP+4sxX5BjFGJSMuOBY4/3Fz5nBe3o1KA9Xz7zRSWMb16lXV+MOspXMNnadLG+9eJtZzzE7hbL7q2JrXL5nBO8rc/ykMcX+32v+k97NIlW9h6oeoapHxf8eVfSaBQzkPay5JMmXtok5JWZmerOHPwnaB4Odzmyeo9FKnMF+BYBnmI4VEBYZZy61HgOiALvoAp47vNsxH9/1+oOjkT9IDHwfIctxhF5ozfdfpiwhyfa8ve5VhjlVaGkNySJfKqFPnIMgVNBShoZZqEgRERFNS1P3xbIN65WM6ynxMmeO+kLQcPKcqaLjupSnLjIarTjXX7eXXov24+41dw1hz4sHnFM9G2buv9z0AZpnCx3I5wVWZo+8/eUs+rKmh1RvT/WwR736+8dZ6s3gPLr4RMG+Hnr/uEVx8v+mTEI8b7IxRxb+sRpLtLkS5ZXdzmwwGK/lnpQrJFiNtwnJap8s25YJuo0GEO/69pnW34KWW6slNDeXQpXhTwFJ/ELVWoowR15FIe85BvBERERpzvnvhsx9tWyyXKMuaGZ+tyX1LXtaXd7+8vh6tb0K6kxmfcs3dN+1cpSPHtqYqSu7EtnVnSqYdOb5xfXOuB6bHDczxdOeksAh9gtjoQP5FM9w4aQH3Wxtc3357QuSrH8GBoOdqWA9aUHTQxvH+7TnUSe/T3rxXa2KE77EH6HyhrnvNbcJGUrlSIy2tno4M3/fvPClbgSObZxJVso2QhQMX7ePNb5R5fTsO1nnJDleMlxqGj3yyTky5/LZQXJhq3xR2YyVCOxtzTnxm63HE32YZ0hERDRL9lr/O62uVl4lJgmG7cYCV8CemnLp6VDyZXD3drAkXHUQO3Gy0QEUzU3f13r+HdfUhOh9R8PUJ2vJv7/egYz3P26gCK0zFiQLpPmzoIG8o2c1eBj1clAmSmAShE8S261g23AdZP3+1Nxte4iMb63N0ejcca994uBoVOriZV9sC+dDw9PiGHpRSZLrNWBcxpx5UkB6XrzrcddFLi9xTG4PeMAFs/CiXuKi62tU2Izw1Qjs9WV9qgzDm8rQPSIiopa1NXKtDHsqZBEz2Ay5zxet0mSqcz5KDzu3p/GV6JH3sTvGCsvkqOe6zmk0BXZfqgyp0bMlO27KjgIes6faVp3WQDNlAQP5Hf6sj/GXQA9tdCa7S54r80WQ9ftTgbeddTJZssI8jqx/BkajfePeeTMBnh56Rer1uWvIW1xJyXw98qHJTny99m20jBaVKW/ExFhcxsIl+zL7XfZnoS95kXbdCHwXarPR6OBolEp85yp76BD13M8n3m/uTdtoDZ/qcoZERESLomLvqt3Jk6wusxnAO63EbQmzHpK6/1dKmJzOBh88TdWcalnE2GY8LSD3delM9tn3lLeeu1+0n63Ozje7nGnb09t59523D4eg4fU7cp6jWbKAgXxYpsaDo1EqYE4CqrKtiq7AfzQ6d/zlNIfsJz32yevMn+1yANEXPDcpnzmXPGc4tM0OzIoCtV0B+0w4h2AFXKAaaxgoKKe9Tn0uX66BuFGoaJ15s0z+m+QkEUvR51D1HGWC/3honm+UQt5xtjh+tvdFRERE5YSuI19KSNDnyV9Ups5h1ocKO10ca8Sb+Yxca7j7fjeXjc5d9s7HXkc+pw5p1tWL5767816Zkvr+2urh4Dq2t96Z+fyYtX5eLGAgP1E0/zxhLvmVt255ZPLlSH85tzvXp19bPZzJZp9wtZTajQK+CxuA8RffXJYjlD3/ySxD3YDS+3zOjSSkF7vscnWhPcm5medduRU8md1DWrSLEgjK+v3O85R3I6+ypJudbT6T4Cbns8obus+AnoiIqDm++6rvcVd9wVf3KKrPlRmhateBzOXpxowOEruOFzrNM5uzKslTtS93u2QaZGr6bI055+Nps54cUcloW1/dPzm3yXkKndabYjTCNJEomfpnIQP5yZd5ybuNGYgUtf75l8A4F7J+vzGcPr3MxeQisgOj0b7UlzSZS+8qu3n8omXykveRugBWHAJfd65407yZ6O2fbXkZ/WOuhhXAavxxHKP0MPPC87Y03i6aK7fD+ffWaK93Qct8aqUBD/PcMiM9ERFReea91AzAzfuqryHfHh5fJKnz2Cv3uOxCYH3HCCLtnvjcHvnVVecScOMcU0bZUr39WEttH01fTXrK3UvNZVnbVUhOHCWzfkXmcfOc+RpBnA0cppznfL339nmh+bFggfzRAHYYX2rP0BLHl8S37Ff+F277eOiML6EdEA33GQw2jZenS7jmZJuPuZKUpC7cFYZCbYm3KR0UOjLWp0wj0DcvXgEX3qIkMq7GkaKhUgCqt346zlEyFGzyufnncBWtD5+wP9tkO/Nzy/v8NwwGzuytvmNUGRFARERExVwrxfjkNaxvG64LWqYOmNQ3Cus51vJ2ufu1piumRsLG9SO7ntxO3bJgqeEaDnryE5hq95x7Ypi217mnbizYp3oHgEmAVpS8zE5AN36t8SXJfuHMBBJbxw0ArpY539Icye/m3BlzTr3/2IYaa8VXSl5WsHZppfnbxrz+zOtdx3OsL2/+7BuWXub9OqdjeN57pSytcF/oJ40OS5ntE3bw7bphu270rnVh89aqNcvn+lzLNAKxt56IiMjN7HAoGnkXej+16zyuteqL1qfP5NDx1DezI0u3px+z8gWZ/9uB/4bBwN0YYPFOh7QC9HQd2uwk2Zp+bcjyyzllSNj1JV8dcbL8dPF79b02pWIsQLNhwQJ5AFgubu1yBITJ7845Ptb+J/PZd8ZD5J8RX7jcrXzJsPq11cOZi565hv1gsDPTsx/yPvLmMLmC2KYzzm8YDMKD5fiC4w3gSyoa4VDMnn6Rv3RhSGurzf4bMs9V8lxRDzgQlvAmbwhekuXWlZDQFezbP9u/cz48ERFRDQFBo3l/Tu67ZepdyTD5ovqlub+kzmDWX9JL7bqnriajT8fsINN4v3bd1U5CnYjqWjvGP/vnkqeHzKe380+1LVoGr05Pt/1aMzlfUmctM+qhOI9XchwuQzcvFiyQPxqA40tn916vrqaX+oq5WsfyvmBm7+1gsMkIJJcm2eqHw/Fzsn5/Kti0jxcda4/7PeQICSiDsp62OTze0WJ4cDQat0aX6TXPzL8ys8jntEyGrR/vWLKj5nlJho3ZNx/zb3Dy/v2ZRu1zlJfhtvRyg1a5Ugpae7dY/xMREfXNrE8DS8r/7JzpjZvh7yDJjByNV7Cx7/FFHRYbBoPsvuLjexsLzDXQ7Sz5Rub4JDm0Kao7RXUjMzm1r3wJXzBrj4TN1PFWVzMrSOmh93tHg/rqiL5Ed8lrk5HAKa7RAUV1UMco4yq9/dRPCxbIR0J75E166P2l1hG3LwTmxce8wCUJKOyLT5QoY7KOfPKYi3Oud9wY4X2d54ufFzDbF/+qPa65QblRLrNXvmrP/Dh4T5Z4y8kbEBJouqZItDFsyfV+x38T8Xu41OilT27croqIa7idayhdKLOl3y5nSA4GIiKivsmbUtaVaSSODb0v597fPSNZbeMl4Oxs8I7s8PaKSwdHI+ihjblTWotHzaIw8M1MoSzIv+QaCl9mVawJz6iADpJJ0+xYsED+jrDNHEtfJEPknawvWbKknLkP8+Ij6y8zlp5bcbbKma9PXhtts318jCKZpenMteQNyc2qTsBcxV6ELXlSami+aTjMTYpiX+DNm3bR+c1tbfUtV1LiYmy/39QIEU/DQXLOzGC+7I0/5DwX/Z24KgUM4ImIiMopms8OhDU4XGrcs/NG5CXD7EuPpPNMMYyC7O3x8zvSvdzJa1wrDq2uTjq3kh75ggTFibrJ4nxJjXeltgnr9S8yiQue4d9ffJ7szkTn8nzxubJXqhqPAqa5s2Cf6tGlX5H7h+/suXf32pv7GbdIxj9HjQSXGfNi3h8Ptb8sNUfe3n9q3rQjSA1dc9NUKWD2sJOiufbtO9748WS5swYl521t9XDwvu3PNXcJwrKtpwHbh9zAknNmBu92D33eDb9s70OZ+XdlticiIpq2N3ZdgABBye6MEZllOVc+ykuePBymXpNNNLecGcJuT3v0dX6YPfKh2fSBgqDYeE1w1vi4bFus34MUbJuOMTyrErk6i5Bdpz6vjuVbeYv6RUQ+JiLfj/99U0QeW/SaBQvkJ0Japsw/fFfW+Lx966GNqaQV5tB6c1+j0b70XJXUF3bypR6Nzi1sUcu7cG8YDPytdS3x9aSnju1qkbW3cfxemjn/KkCtlkvjGKnVDgq2taXOnd1iXXOoVamg3TiWs0HGKkvezWQWKkpERERd2wzgnUbdZzPye8jHDfeeet6LAo6Zun976ifmNnl1s0n9Nz3MfFwfcg1ZL6ijOXNcARgPry9RN/KOsrX3vbqKdybLMjsaNfwJ/4p5g+vVVYyTK3vqyc6pnub2vt+pz56lqkep6lEArgLwzqIXLFwgH5QF0pOV0vsFdfTGRkH6uZD1l42Pm2TTTALyKEHGxvTa8FjLDOk3GxOcDQp5raVxS6evR9y0y/q/qlJBd+BF11f24IDbdX6Gw/F7bWLu2fh9G6MIkr8ZbybRwGUCzX3bihL0hPbKmxWENhp6pjltg4iIqI6up4TZ9ZLQ8iTBf0hSW9d92VnfyFsO2OBass2uO6fqQzn1H3+G+hye/TUxrPzZg8GkNx/bxo8nK0+Zc/Xt4flFS81lDIeT2MBXT67QocOe+X5TVTML4b0AaNFrFi6Qz/vSjFkXgmRpuPFSYMlFrGDJBz30/tQw+shkbXnXcPvR6NzUc0FDfxwXrrXVw5Pgd3V13CN/0LjA+3rLi24WoQFZXnbzkMA55DihS234VL5RO3r4zfOdJ/O+QpYJNIfWW/v3nUvf41tQr4KSlL9MYG5WIGY9MzAREc2/PiS7K8O8528YDBrpoAjtfc9YXTWyr/uWgwvbT26dblwfilf0SS1fNwmmawWv1vSBrK1x0D1ZVciVjd7FW4ct2YtufzbeEZ2x+V5+bkeH/64BgJ8RkduNf39RpvQi8nERuRvA2QB+qWj7hQvkk8zlmYA+oFUwCcBze7Ydc28Gg53OC9kkycX+3C99UEtiTjb2vIvCQU/LrUsS/JfJbF9m/60oGIZeu1zWsPPksaLh5y7JFAvnzdL1NxtLlpOxX1cUMLtu8r4btZ0MB4C3dZ4970RENOvayhJfhl2GJupSruXpXA30rnu5rxMoYdZdzfXdnVxJ7mJmz/7BZFg7/I0C48C0aE11x7EAQAffCusEcm6TswZ9XKawxgxjP4GrAJhcnx3rY524WlWPMf49x3xSRA6KyA8c/14FAKr6U6p6BKKh9ZcXHWzhAnmvnC9wUa+v64uWJLCbzA3a6t1/USZKX+INW3JxdWU8dwkJ2sraMBhkXp83LLyK0hemJuYHlSy7czRCUctyLPP5rV8flEyvTjK5sp/5Lkzeo31c376Sx7serkhERNR3rmlxs3D/3DAYAMNhPLV02ajjLqc3tOd+G/Uc3zrn7oTSy+VWGvIxRhHYiupXucvcmcPkQ+XVW0vUAe3HXEvl0XSp6gZVvafj38usTS8DcFbR/hYzkE/WFLce80la0srOsdFDr0glvLP59pfMpQ/d3snqFU691vFeqwynD22tLhMkhgTpRUOGMhzbJFMNtqCofJMbT5nz77zoxyMjfDcEc6hTavm9goz1yecQ2sDhmzeXdx6Sv4/C5IUFxyIiIqJq7HvwXut/oHywn7t9QEeIt65pkPWXFQezxghKsz5U3Elh9PpbnWxF01Tt4yeZ4MuuWOXNju9YzrqM0ejc4s+A68zPDRH5WePXlwD4ZtFrFjOQD1jjOx2ARBeJvJ5xO8FHMs/dztaZMIfTu77gURK894+fHwx2RvvK+cJmhtVYX35XUGUHcXWTv+XO0ynJLK9vuLnz50TAEiy+8rkuyiE3gqTMecctKlNmqLq5zKDDZkymPNRprXc1ahRNjagSqDNzPRERUTmu+7t3Cl3JkYhJL/r4Z982yKnDDIeOelLg0Hora33Q0nNjRk+/NbS+7Nz4JBN8anor1krtI8WICVyPu45tGgx21g/UmbV+lrw9Hmb/fQBPBHBe0QtEtTAh3twQkW8A+GrX5ejAcQho1aGp4mfSL/w8+oefSb/w8+gffib9ws+jf/iZ+D1YVY/vuhBNEpHbgUuO7q4E1wL4xzer6gXTOuIR0zpQH8zbH2woEdmtqmd0XQ6a4GfSL/w8+oefSb/w8+gffib9ws+jf/iZ0LxbzKH1RERERERERDOKgTwRERERERHRDGEgvxiu6LoAlMHPpF/4efQPP5N+4efRP/xM+oWfR//wM6G5tlDJ7oiIiIiIiGi+LGKyO/bIExEREREREc0QBvJEREREREREM4SB/AwTka+IyOdF5DMisjt+7P4i8mER+a/4/2ON7X9PRG4Qkf8Qkacaj58e7+cGEVkTEeni/cwaEXmLiBwQkS8YjzV2/kXkR0Tk/8WPXysip0z1Dc4gz2eyIiL74u/JZ0TkacZz/ExaJCIni8iVIvJFEbleRF4cP87vSQdyPg9+RzoiIvcUkU+KyGfjz+TS+HF+RzqQ83nwO9IhEVkvIp8Wkb+Pf+f3gwgM5OfBk1T1McY6mS8F8E+qehqAf4p/h4g8EsAzATwKwDkA/kxE1sev2Q7gQgCnxf/OmWL5Z9nbkD1XTZ7/8wF8W1UfCuD1AF7d2juZH2+D++/39fH35DGq+gGAn8mU3A3gN1X1EQDOAnBxfN75PemG7/MA+B3pyp0AnqyqPw7gMQDOEZGzwO9IV3yfB8DvSJdeDOCLxu/8fhCBgfw8Og/A2+Of3w7gGcbj71HVO1X1ywBuAHCmiGwEcB9V/VeNMh++w3gN5VDVjwH4lvVwk+ff3NffAHhK0oJMbp7PxIefSctUdb+q7ol//i6iitgm8HvSiZzPw4efR8s08r341yPjfwp+RzqR83n48PNomYicBOC/A3iT8TC/H0RgID/rFMCHROQ6EbkwfuwBqrofiCptAE6IH98E4EbjtTfFj22Kf7Yfp2qaPP/j16jq3QBuBbChtZLPtxeJyOckGnqfDMHjZzJF8XDFxyJK68rvSceszwPgd6Qz8bDhzwA4AODDqsrvSIc8nwfA70hXVgH8DoDDxmP8fhCBgfyse4KqLgHYgmiI5E/nbOtqXdScx6lZVc4/P5tmbAewGdEwyf0AXhs/zs9kSkTkXgD+FsBQVW/L29TxGD+Thjk+D35HOqSqh1T1MQBOQtR7+OiczfmZtMzzefA70gEReTqAA6p6XehLHI/x86C5xUB+hqnqzfH/BwC8D8CZAL4eDyFC/P+BePObAJxsvPwkADfHj5/keJyqafL8j18jIkcAuC/Ch41TTFW/HlfMDgPYgeh7AvAzmQoRORJR0PguVX1v/DC/Jx1xfR78jvSDqn4HwFWI5u7yO9Ix8/Pgd6QzTwBwroh8BcB7ADxZRN4Jfj+IADCQn1kicoyI3Dv5GcDPA/gCgJ0Anhdv9jwAfxf/vBPAM+PsnKciSvTxyXhI0ndF5Kx4TtBzjddQeU2ef3NfvwTgo/HcLiohudnHfhHR9wTgZ9K6+Py9GcAXVfV1xlP8nnTA93nwO9IdETleRO4X/3wUgJ8F8O/gd6QTvs+D35FuqOrvqepJqnoKoiR2H1XVZ4PfDyIAwBFdF4AqewCA98X5OI4A8Jeq+o8i8ikAfyUi5wP4GoBfBgBVvV5E/grAvyHKXHyxqh6K97UVUbbvowDsiv9RARF5N4CzARwnIjcBuATAn6C58/9mAH8hIjcgah1+5hTe1kzzfCZni8hjEA2V+wqAFwL8TKbkCQCeA+Dz8ZxTAPh98HvSFd/n8Sx+RzqzEcDbJcqsvQ7AX6nq34vIv4LfkS74Po+/4HekV3gPIQIgbHQiIiIiIiKiWSUitwOXHN1dCa4F8I9vVtUL6uxFRP4/AE8H8HBV/c+8bTm0noiIiIiIiKhDInImgJ8AcKhoW4CBPBEREREREc22Q8BnkV6pcFpuBbA3+aGO9yKaBhKEc+SJiIiIiIholp0JfP6LwEcRrRa5Ce7VBZv0fQD/hSh+Pw0AToiG+I+9V1WfE7InEflDAN9Q1b+Ocz4Vv4Zz5ImIiIiIiGjG6YEDB/CAB/wEgIOIAvoT0XxA/wNEAfx3ADwUhw5di3Xr1qHoQCJyEMAxjqdeC+DFAB6hqjeKyN0AHlk0R56BPBEREREREc26cWB7yy23YOPGJyAK6B+KaFGKugH9DwAkCxw8FIcOfTIJ4BOVDiAi/wPA32AyL2A9onnyj1XVz3tfx0CeiIioHhF5G4DnqWrb4/iIiIjILRPY7t+/Hyee+AQA30bUQ18loL8TUQAfNQo4AvhEI3WA0B55zpEnIiKyiEiZVu5TWysIERERVbZx40aofgn79u3DSSf9FKKkdA8F8EAUx91mAL8Zd9/9n1i/fn27BS6BPfJEREQWEXm29dATAVwI4AoA/2w99z4APwSwXlV/MIXiERERUVZhYHvjjTfiQQ96IoDbEAX0D0A2oL8TUcD/DUQB/KdCA/ipjspjIE9ERFRARJ4P4K0AXqCqb+u2NEREROQQHNh+7Wtfw4Mf/NOIAvrTAJwA4C5EAfwBAA/BXXd9CkccUWoA+1QDea4jT0REVJOIvM0ejp88JiIb4p+/KSLfFZH3i8gD420uFJEvisgPROTfReQ8z/5/RUQ+Hr/+DhG5VkR+aRrvjYiIaN486EEPgupX8OUv7wFwC6LBdv8K4F64666DUP102SB+6hjIExERtesfAdwXwCsA7ADwdADvE5HfBvDbAN4O4KUA7gHgb0QkNec+Xlv2PQC+C+Dl8bZ3APhrEbl4Wm+CiIio56Tsv1NOOUVUvyrArY8Gbjta9dNyxBFHlN4PptwbDzDZHRERUds+qarjgFtEAOAlADYBeLSq3hY//lEAn0U0F//34seWALwMwB+r6u8b+1wTkfcD+GMReYeqfncab4SIiGgeqer1XZehLPbIExERtWvV+j1JlveOJIgHAFX9HCaT9RK/imjO39tF5DjzH4CdAO4N4CdaKzkRERH1EnvkiYiI2vUl6/dvx/9/2bHttwFsMH5/BKLhev+es/8HVC8aERERzSIG8kRERC1S1UOep3yPi/WzAtiSs/3MDQckIiKieji0noiIZo6IHBtnelfHmu/z5MuIgvlXAfgrALsAvAvAbwA4CcBVqrpfRD4hIneKyNH2DkTkg/F5eqXjuZ+InxuJyFXxzyH/nt/quyYiIqJc7JEnIqJZ9KuIsrx/GcD5AN7ZbXGaJyIPBfDf418fBOBPAHwD0WK3P4toXfszALwIwJUAHg/gJwF8xNjHEfFjdwN4kuMwZ8f/X4lozv2bjOeOA/B6RHP6r7Bed021d0VERERNYCBPRESz6HxEweffAVgVkc2qurfjMkFE7qWq32tgP0cB+HsAJyJaeu6ZAJ4D4K8B3AzgYwCOBHARJoH8SxEF5h8xdvU4APdCFPQ/W0SOVtU7jOfPRjR0/2pVPWiV4RREgfyXVHXuGkqIiIhmGYfWExHRTImXZHsMovXX3wXgLgAv8GyrIvK2eAj51SJyu4h8U0TeJCL3cmz/MyLyryLyfRG5RUTeICKPQhQIm9udnQwxj9dyf0b81G+JyE4RuR1RoG3v/0xEQXeRCwA8HMBrVfVZiNaevxnAEMCfIlqi7vsABvH2H4/Pg93rfjaA7wF4XVyeJxhlSXrrP28H8URERNRv7JEnIqJZcz6A2wH8rareLiL/AOB5IvIKVT3s2P4xiHq33wrgLxEFt+cDOIwoIAYAiMhPAfgQoszxfwLgOwD+FybB76Wq+jZr30NEWeZfB+AWADcC2A3gFwB8TFV/1dr+1+LjnqKqN9oFVdVT4rJcHT90Rfz4PwD4B+fZiJ6/Q0Q+CeBMETlGVW+PnzobwL+o6hdE5Ovx7x+On0t660MaFoiIiKhHGMgTEdHMEJF7AngWgL8xgtW3A/hFAE9FlAzO9t8A/KSqfiL+/c9F5D4AXiAiv2EMhX8domHmP6mqX4qP92cArsop0oMA/KiqHjDKuB5RQH8+gD83Hj86LvsHXUG85dEAvpuUI9CViBodngDgQ0aP+6vi569Gusf+7Pj/q0ocg4iIiHqAQ+uJiGiW/A8AxyIK3hP/AOAAot5ul381gvjERxE1Zp8CACLyAEQ91H9nBs+qeheAN+SU5x1mEB+/5hCAtwB4nIj8mPHULwG4D4A35+wvcR8AtwVsZ0p61s+O/0963JPe/asBnCEixxjbHUY0356IiIhmCAN5IiKaJecjytx+k4g8NM7sfgqi4eLnishxjte4erWTOeEb4v9Pjf//D8e2rscS/+l5/M2I1n0/33jsfEQNDjtz9pe4DcC9A7YzXQPgTkx63c8GcAeiof5AFMgfCeCnjN76z6nqt0oeh4iIiDrGQJ6IiGaCiJyKKEg9HlEA/V/Gv2Q5Otea8ofydmv9X9YdrgfjofP/iChT/D3iBoefRtSDf1fAfr8A4D4i8pDQgqjqDwB8AlGv+70QBfLXGMf7NwDfjB/n/HgiIqIZxkCeiIhmxQsQBdzLAH7Z8e8/kO4BLyPptX+44znXYyGuQNTj/wxMyhUyrB4A/jb+/4KSx7wS0ZSBsxHNlU+G1UNVFdEw+ichvX48ERERzRgmuyMiot4TkXUAno9oqbQ3ebZ5FIAVEXmcqn6qzP5V9esishvAeSLyECPZ3ZEAXlyx2P8AYB+AFwJ4BKLs8f8e+No3Afh1RMvZXauqf2dvICKnA3i8qv6Z8fCVAFYA/DaAY2AE8rGrAbwW0SgFzo8nIiKaUeyRJyKiWfDzAE7GpKfaJXmuaq/8byG6L14jIq8QkRcjyuh+j/h5LbOzOOndWwE8GcBGRMF56GvvQLR2/JcBvF9EPigivyUiLxCR3xGRXQA+hShrvukTiNaX/2kAPwDwSev5qxE14v8kgE+r6q1l3hMRERH1AwN5IiKaBUlw/l7fBqr6BURz558pIkeVPYCqXg3gHABfAfD78b/dAF4Ub/L9svtEFLwfBvBdAH9dsjw3AHgsgN9A1Lv+MkTD9X8z3ufz4sfM1/wQUdI7APiEqt5p7fZzAJLkdleVKQ8RERH1h0RT5oiIiMhFRP4ngL8B8CxVfU/J125EtKb8m1X1hW2Uj4iIiBYPe+SJiIgASOSe1mNHIuoRvxvVerC3AliPqCediIiIqBG9THYnIucAeAOiys+bVPVPrOfPBvB3iOYOAsB7VfWyaZaRiIjmzo8A+KqIvAtRBvwNAH4FwH8D8GpVvSV0RyLyTETz138bwAdV9boWyktEREQLqneBvIisB/CnAH4OwE0APiUiO1X136xN/1lVnz71AhIR0by6C1Gm+fMQJacTRAH9xVZm+BDvRpRs7p9RPfkeERERkVPvAnkAZwK4wVj65z2IKlV2IE9ERNSYOMv8rzW0L2liP0REREQufQzkNyFKDJS4CcDjHdv9hIh8FsDNAH5LVa937UxELgRwIQAcCZx+XMOFpflxTwD3iX8+4oQTUs9968AB/GDqJQqTlPs2YFxGs/T2ewGAmw8caL9gREREPXJPRPfJJBFGcu9M3P+EE3C3cX903T8BACefPPn5xhvTv+e58UbciJMzm994o7HbwP3daNSU8zZPdpc6huN51z6DihK/p0xZHC829286GZNtfe/L9z5Sh4mfTMpjbm+/L9/v430bBzKP6X0PgefLdb7t9+nbt4/r8wOAAwfuwumnH4nrrrsLJ5xwZGr766677puqenx+aanv+hjIu3ox7NT6ewA8WFW/JyJPA/B+AKe5dqaqVyBOMnSiCFMGk9dmAFvinzf8yq+knnvnaIS9Uy9RmKTcu4BxGV9kPG+/FwC4dDRqv2BEREQ9shnRfXJz/Hty70w8+1d+BQeN+6Pr/gkAWF2d/Dwcpn/P49l22zDKPb22ejjaxj6GQ/Ka8etytltbPZw+huN51z7N57yGQ2zDWrYsjvdq7t+0hm2pbV1lLXof42MC4/KY27vel73P1HswPgfzmN73EHq+DL736du3j+vzA4DRaB92f3IjZP1+/MqvbEptL+vXfzW4oNRbfcxafxMAsz3rJES97mOqepuqfi/++QMAjhQRdrYTERERUbuSII+mJjdAbvDzKBOIl9nW9/qifdQ5xmCwqXgjmml9DOQ/BeA0ETlVRO4B4JkAdpobiMgDRUTin89E9D4OTr2kRERERDSTdhVv0mt1A8l5Vfa8hATURH3Uu0BeVe9GNDL4gwC+COCvVPV6EblIRC6KN/slAF+I58ivAXimqtrD74kodpBD6YmIiACgl1Pl+hRIdlaWMj3rDfTC9+mct4k98/Ord4E8EA2XV9WHqepmVX1V/Njlqnp5/PMbVfVRqvrjqnqWql7TbYlp3jDwJSIiomBtB6Eczl9Jo8H6FD+DRWlkoHp6GcgTdWXWh9kRERFRNXYjfulG/YqBXl+CtlQ57PfSQENFpffJBgwiLwbyRERERDT3QofUL1KjfhONCH1piOiNhhoffOeV55sSDOSJiIiIiKpqo9e4o57oWQgS+1DGVsoQf+ah++7DeaBuMZAnmnOc709ERFROo73yVYPygOHtjQVzbTYcTKlRIrS+03kAXOF8dF5m6iUG8kRERES0sPqYxb6U4TA/OFyEeeZTeo92QB0cYC/650OtYCBPREREROQwt6PaWsiyv7Z6uNy2844BOrWMgTyRZR6S3Ljew9xWRoiIiBZJD4dmL0RgTtQzDOSJAvR92J2v8WEeGiWIiIja1pf7fNON7s4Au4le87KNCTnbF77nafdsW8djIwX1FQN5ohnXl8oHERHRPPIGmh0OnQ4KLmdgaHetIDnn/VXZ71QDdk/Z62SsX1s9zEaHBcNAnoiIiIgIxSPZKveYhwTVLQfebQR5bU3baz0gnYFGDhcG6mRiIE9EREREVCAJWhc250yDw+nrGn8GrmOEHreh8jWSub6OgP2yAWA+MZAnIiIiooVSe1paUfDUVNA2oz3HjZjGe5/38zvv72/BMZAnKrCwLe9ERETUmJmpT5jBX91AsGziuL4FnkZ5ks9v/B6aPE8Bx6/aq87e+PnFQJ4oNm9J45ixnoiIqLpG7qO+AK/DYdZ9OVYqwJzCCIepBLR2OauUezhsZmUBmnsM5IkcGAQTERFRaUVBWNXAri+mMe89B5PgEU0wkCcyzFuvPBEREdXX2rD4LhPI1VnbnQoFncOWGg58y9PRfGEgTzTndoEjDIiIiELtxYw37Hfcq9xkI0ArDQp1hr8n21Z5TYHMey0zLYMjCRYSA3kiy0zfvImIiCiYec93NXqzIbxBcbBZu2fYE7R2/Vmxx5umjYE8kQeHlREREc2vphvug3tU7ecDk5vl7f/gaNRdr+wMjADofZDNHnWqgIE8EREREVFFB0ejqTb+15p7nTes3NOgMJXh7YY6QXeqrDWHoE/rfRcep2KQ3/vGC6qNgTzRnOCUACIioublDdluK4BvbL/DYaa33rXvRo7HXuVy6pwvnmsCA3mihcMpA0RERN0JvQ+b27UaaDex1n28ra+cpctfN1BtOND19m77etinNbKBFhoDeSIiIiKinigb8DUdIE474CxKUucqT5uJ7UrnOugYGwgWFwN5IiIiIqISygRP5hz6xoP0LoLMFo5ZNNy/7Pk2Bc8VT6YhlDye+brQMjWiwufAefPzhYE80RzifHkiIqJ2dL3MGYDe9BLXPhc9eR+ltFxm9rBTKAbyRHMgJHDvRcWDiIhoTix6wNWH99/liIWiY4ckSZx67gCaK70M5EXkLSJyQES+4HleRGRNRG4Qkc+JyNK0y0hERERE82Wv5+dZUDk4LLn/Nl9nb7twnRANB+p9aGyh9vQykAfwNgDn5Dy/BcBp8b8LAWyfQpmIiIiIiKjANALIaTQsdGUWykjd62Ugr6ofA/CtnE3OA/AOjXwCwP1EZON0Skc0O2atN4GIiKiPptEzzOBtxnl60/m5Ult6GcgH2ATgRuP3m+LHMkTkQhHZLSK775hK0WgemAHwwg3rIiIiWkBFjd+h9YEqWerztmsqe3sZyXu191H7fZnBbofzvZPPqMw52oVmpi8UZeh3Ph5yrnzbDIeTfzRXZjWQF8dj6tpQVa9Q1TNU9YyjWy4UzactXReAiIiI5s6010cPOf6sqvJeNgwGk19aCnLn6RxT/8xqIH8TgJON308CcHNHZSHqNQ6vJyIiWixNr2teJSD1vqarnmHruCHvqctAvNax2fu+EGY1kN8J4Llx9vqzANyqqvu7LhQRERERUZEmhr13XQ5qVp3P1fwc11YP52/MIH9u9DKQF5F3A/hXAA8XkZtE5HwRuUhELoo3+QCALwG4AcAOAL/eUVGJiIiIiADMZ2DcVMNB1bn+ROTWy0BeVZ+lqhtV9UhVPUlV36yql6vq5fHzqqoXq+pmVf0xVd3ddZlp/phJTYiIiIi6ZAfUjQ53b0Bj+26xx7hMormm9l+0bdmGktQx2Lu+0HoZyBMRERERzYMuV7/pokOi7ffLThaeA4owkCciIiIimoKqvepllr4r8/hMqbqEWsVe674sP1xqCTpaKAzkiYiIiIg6YgfZfQkgF1Vb55+fKzWNgTwREREREQUlpGt7nvkimEpQzx78ucdAnoiIiIioRfPQG+t7D0VBfBfvPSlT3xLwFZWndnkZvC8UBvJEc2qv5/F5qEwQERH13TR6qQ+ORo3f11lPqI8jFGgaGMgTEREREVXUZY+zacNgUGtffQs+657XNpdpK1s2No5QGxjIExERERGV0HZgtmsKx+ha3xoOZtW8/52QHwN5IiIiIqIA8xA09ek9MJifHp7r+cNAnoiIiIhoBvRlabTQEQN9ajRoCwNk6goDeSIiIiIiD1/y2FnWlwaBrvZJNA+O6LoARNS+vQA2d10IIiIiKmUXgC3WY31qWKhSlpAe7LK93LsCyhKyz1lqNOBIAGKPPBERERFRjtCAtW4g2KcgfRZMI/DOC5jrBtOh5WfQTi4M5IkWBCsHRERE5RTdO/MCsVno3Z2FMrapyvvvY1C96J/jomIgT0REREQUyBfcz1MwVaXx337/Vddar9MDXvUzODgapfa9y/q/S2YZQhsRvNsNh7XLQ/3BQJ6oQB8u4kRERNQvs1I/6KKcrmO2NXqhymu7/OyKjj0rf1fUPQbyREREREQLYJfn5zbVmdrXxLTAPg6FJ2oCA3kiIiIiogJNJ7wrG0iXCWpd+2ZAW07VRoSQz5V5i6gJDOSJiIiIiKagagDXp8Bv1oayd2kX/O89ZKpB1fO2YTCo+EqaJQzkiYiIiIhmXNLj3lbQnNeYUHYZtUUN7LvAkRjzi4E80QLhxZyIiKh5ZXtdmxp+XTdTfBO6OGafRii0Je9vhw0hBDCQJyIiIiJq3bSDr7bm6jetbFBeprxdvbdpHjc5f+POGi4xtzCOKLOxiBwN4OEATgCgAL4B4D9U9Y4WykZEREREtFC67G3ua2ND34+5C8CzA/bNpeeoSYU98iJyrIi8RESuAfBtALsBfADR39puAN8WkWtEZCgix7ZbXCIiIiKi2dVUsNZ00NfGOu9NNUrsQv70QNdxiqYdtJ20r6n3vgjTCKgabyAvIvcVkdcA2AfgtQCOBfAuAK8AcDGAF8U//2X83OsA7BOR/ysi92274EREREREfVQ2SGyrJ7Zov3WGtfteWyfwrHsekmPPwvB7U1efP822vKH1ewH8AMAfA3inqn45b0ci8hAAzwFwIYAXADiuqUISEREREc2bXQC29Gg/s6RMIkEm+53guZgfeUPrXwlgs6q+siiIBwBV/ZKqXgrgIfFrKxGRk0XkShH5oohcLyIvdmwjIrImIjeIyOdEZKnq8YiIiIiIutbH3tO25pP3RZPD1qsGyH0oA80mbyCvqm9Q1TvL7lBV71TVN9Qo090AflNVHwHgLAAXi8gjrW22ADgt/nchgO01jkdERERE1Et9CnxDzdq87lk4xwzSyda75edUdb+q7ol//i6ALwLYZG12HoB3aOQTAO4nIhunXFQiIiIiornSZhDe54B5WmXrMocAzZfgQF5EzhSRZeux80Tk8yKyT0T+qOnCicgpAB4L4FrrqU0AbjR+vwnZYD/Zx4UisltEdnONPCprHi+Ys9ZKTkRE1BdV76FNZzBvun6SVz7Xc13VJbqsl9V9z9M8Z3bvPXvz51OZHvlLAJyb/CIiDwLwbgAPBHArgN8VkRc0VTARuReAvwUwVNXb7KcdL1HXflT1ClU9Q1XPOLqpwhERERERtWzWGt/bLq+d0K/r8zOPHT40O8oE8j8O4F+M35+JKKB+jKo+EsCHEM1Xr01EjkQUxL9LVd/r2OQmACcbv58E4OYmjk1ERERENC3zGgzaQXZo0N23Xvcy2fF9+yBqQ5lAfgOAW4zfnwrgY6q6L/59J6Lkc7WIiAB4M4AvqurrPJvtBPDcOHv9WQBuVdX9dY9NRERERFSkjTXUqyp7zL0VXtMUs0e9qYC9ynspek2fg/HQ6RUcTj//8taRt30HwAMAQER+BFFGeXNevAI4qoEyPQHRevSfF5HPxI/9PoAHAYCqXg7gAwCeBuAGAHcgWreeiIiIiIgC+ILVzTnPNX2saQtpPOiqrHsRnfuqr6XFUyaQ/wyAC0TkIwB+EcA9AXzQeP5UAF+vWyBV/Tjcc+DNbRTAxXWPRUREREREWRw67lc26C47AiDZP8815SkztP6VADYC+CSiHvKPqOpu4/mnI5tdnoiIiIhoLoVkdJ9mMMbAr31l58wTtSW4R15VrxGRJURz428F8J7kORHZgCjZ3fsaLyFRx3hTJCIiojx1hkXXPW4f9jHNY4f0brf1WVTpifdtP43zzjrsfAvqkReRo0TkuQCOVdWRqr5DVX+YPK+qB1X1Jar6sdZKSkREREQ047pINle3t3iv9X8fTDNhXWjiuKIRGl2eP44YmD+hQ+vvBPAmAI9tsSxERERERDOhb5nPuwrUygT5oWW0t2vjXDbVOOF6T3X2WfW1HPK/eIICeVU9DOBrAO7TbnGIiIiIiGZPyHz5aWiyxz90P3WPl/f6LoLiPmir7Azs50eZZHdvB/CceOk5IppBvHgTERG1r68BZF9GEfTt/LQxV79Necfm+vGLo8zyc9cA+B8APiMifwbgvxCt4Z7CefJERERERN2qmvStb0F2U+ZpSbeynys7cuZTmUD+w8bPbwCg1vMSP7a+bqGIiIiIiOZZV5nu+8o+H30YUh/6GXX1WTJAX2xlAvkXtFYKIiIiIiIij10AtnRdCEuXyw6yEYjKrCP/9jYLQkREREQ0r5oe0t33/c0a3/vvw3kJbcToY2MHtadMsjuihdKHCzcREREthj4MJSei2VFmaD0AQEQeAOAMAMfC0RCgqu9ooFxERERERESNmfUGj1kvPzUrOJAXkXUA/hTABcjvyWcgT0RERETUgLo99fM0l5rJ3Ygmygyt/y0ALwTwbgDPQ5Sl/qUALka0FN1uAD/XdAGJiIiIiPqqi17SWe6Z7cta9lX1vXxA1ODBRo/5VyaQfx6AD6rqczH527hOVS8HcDqA4+L/iYiIiIioJ2Yh+CwyD++hSTwfVCaQfwgmAfzh+P8jAUBVbwfwVkTD7omIiIiIiBZGE4F1m8E5A//5UyaQ/z6Au+KfvwdAAZxgPH8LgJMbKhcRERER0VxjcDU/5ikXAc2GMoH8VxH/jarqXQBuAHCO8fzPAvh6c0UjIiIiIiIiIluZQP6jAH7R+P0vADxLRK4UkasA/DKAv2qwbETUMLb8ExERETWPdSyatjLryL8GwIdE5EdU9U4Af4xoaP2zARwCcAWAS5ovIhERERERVTFLAeYslZWoa8GBvKruB7Df+P0QgG3xPyIiIiIimqLNmM/gdx7fU11cTo5sZYbWExERERERdYIBPtFEqUBeRO4tIq8QkY+LyH+JyE/Ejx8XP/6j7RSTiIiIiIjmBYPyZoWcz4OjUevloOkJHlovIscD+Dii9eRviP8/CgBU9Zsi8jwA9wPwG80Xk4iIiIiIiFy4/N3iKZPs7g8BPBDA4wF8DcAB6/m/A/CUhspFRERERERERA5lhtY/HcCfqeoeAOp4/ksATm6kVEREREREVNui99Q2kSSOieaoj8oE8schGlLvcxjAPesVh4iIiIiIypqFOed1y7jojRJEpjKB/C3I//48FtGQ+0aIyHoR+bSI/L3jORGRNRG5QUQ+JyJLTR2XiIiIiGhezEKAT9PDv4f5USaQ/wCA80Vko/2EiDwewHMRzZNvyosBfNHz3BYAp8X/LgSwvcHjEhERERER9QpHJJCpTCB/KYC7AXwawB8jmif/PBF5N4CPAbgZwKubKJSInATgvwN4k2eT8wC8QyOfAHA/VwMDEREREVHfsZeU6uLf0OIJDuRV9RYAZwG4FsCvARAAzwHwvwB8CMATVfVbDZVrFcDvIJp377IJwI3G7zfFj2WIyIUisltEdt/RUOGIiIiIiObZlq4LQES5yiw/B1W9EcB5InIfAA9HFMzf0GAADxF5OoADqnqdiJzt28xVPNeGqnoFgCsA4EQR5zZERERERF3Yi2jINHtUiaiM4B55ETkq+VlVb1PVT6nqJ5sM4mNPAHCuiHwFwHsAPFlE3mltcxPSS92dhGhoPxERERER9dy8zfeexvthYw+ZysyR3y8i20XkjNZKA0BVf09VT1LVUwA8E8BHVfXZ1mY7ATw3zl5/FoBbVXV/m+UiIiIiIloUfVw7nYEs0USZQP4aABcAuFZEPiMiLxKR+7VTrCwRuUhELop//QCALyFa134HgF+fVjmIiIiIiIi6xoaNxRY8R15VnyYiJwJ4AYDnA1gD8H9E5H0A3qSqVzZdOFW9CsBV8c+XG48rgIubPh4RERER0TzqYw87EVVXpkceqnqzqr5KVU8D8BQA7wXwDAAfEZG9IvL7cbBPREREREQ9wSz0s4s97+RSKpA3qeqV8dz1EwG8C8CpAF4J4Csi8j4RObOhMhIRERERkYUBHoXg38l8qhzIi8hxIvISAP8C4NkAbgfwVkRz1p8M4BoRWW6klEREREREREQEoGQgH2eJP0dE/hrREnCvBXAnomRzJ6rqBap6MYAHIZrb/vKGy0tERERERDOOvcRE9QQnuxORyxAluduEqPf97QCuUNXr7G1V9VYReTuAtzVTTCIiIiIiWmSbUa0BoM1Ef2yQoK4EB/IA/gDAdYjmwf+lqt5esP0eAJdVLRgRERERETWDWeuJ5kuZQH5JVT8TurGqXg/g+tIlIiIiIiKi2qr2YFO4vp1jNtgsjuA58mWCeCIiIiIionkQEqj3KZg39bVcVJ83kBeR80WkdFZ7EVkvIhfUKxYRERERERFVwQB+/uUF6q8D8O8i8iIROa5oRyLygHg5uv8A8H+bKiAREREREVEdm7suQE1lAnMG8Yshb478aQD+EMDrAbxWRHYD+CSiv41vARAA94+3OwvAY+LXvRnAK1oqLxEREREREZXE+fPzxRvIq+oBABeKyKUALgLwSwBe7NoUwL8hCvp3qOr+NgpKRERERERE+fqWgI/aUZi1XlX3AXg5gJeLyAkAHgngeEQB/DcAXK+q32y1lERERERERBW1FdhOK2BmcE62MsvPJb30B1oqCxEREREREVkYxJOtdFZ6IiIiIiIiIuoOA3miHGz9JCIiIiqvL1nit3RdgB7huZgvDOSJiIiIiDrEAIuIymIgT0RERERERDRDGMgTEREREc05ThesLm+aQF+mEJj4WS8GBvJERERERDTX2gq4+xY0c5rG4mAgT0RERERERDRDvOvIi8hHK+xPVfUpNcpDRERERERERDm8gTyAhwBQ67FjABwX//wdAALgvvHv3wTwvSYLR0RERERE09e3IeNAtTLt6ui4RG3zDq1X1VNU9dTkH4CnAPg+gDcAOFFV76+qxwI4EcAagDvibYiIiIiIiDrHOeM0r8rMkX89gGtU9SWqekvyoKreoqpDAJ+ItyEiIiIioo71sSd52lnem+iRnyWL9n4XWZlA/mwAV+c8fxWAJ9UpDBERERERzb4+NiIQzZMygbwCeETO849Cdk59JSLyEhG5XkS+ICLvFpF7Ws+LiKyJyA0i8jkRWWriuERERERERPOIvfXzpUwg/yEAW0XkuSIiyYNxUP08AC+Mt6lFRDYB2AbgDFV9NID1AJ5pbbYFwGnxvwsBbK97XCIiIiKiLjDAateijA5YlPdJkbys9bbfAPA4AG8F8Cci8l+IeuAfBuABAG6Mt2mqXEeJyF0AjgZws/X8eQDeoaoK4BMicj8R2aiq+xs6PhERERERNYzBJlEzgnvkVfUmAI8B8GoA3wZwJoDHxz+/GsBj4m1qUdV9AF4D4GsA9gO4VVXtnv5NiBoOEjfFj2WIyIUisltEdt9Rt3BEREREREREHSsztB6qequq/r6qPkpVj4r/PSp+7DtNFEhEjkXU434qoqXtjhGRZ9ubuYrnKfMVqnqGqp5xdBMFJCIiIiKimcKRADRvSgXyU/KzAL6sqt9Q1bsAvBfAT1rb3ATgZOP3k5Adfk9ERERE1HttBZnTXuqNiKanVCAvIseIyKVxpvjvxf8+JyIrInJMQ2X6GoCzROToOKneUwB80dpmJ4Dnxon2zkI0/J7z44mIiIiIiGjuBSe7E5H7A/hnREvQfRPAp+OnHgbgFQB+WUSeqKrfqlMgVb1WRP4GwB4Ad8fHuUJELoqfvxzABwA8DcANAO4A8II6xyRy2QwOwyIiIiIiov4pk7X+MgA/CuBFAP5cVQ8BgIisR7QE3AjACqKl42pR1UsAXGI9fLnxvAK4uO5xiPIwiCciIiKiebEFwBu7LgQ1pszQ+nPx/7d398G2lXUdwL8/LmpmpqVICky+RCZSYSpRjo2a5b1kWZNOmJSNFOaYaVOWaOVoL9rLpGO+FBkD2guhiZoDKqVmTSaggYqgopXSNW+UJeaogb/+2Ovo8XDuuedw98tZe38+M3vOXs9aa5/f3ueZe/d3PWs9K3l5d790LcQnSXff1N0vS3JOkh+ccn0AAAC3yL5FFwAzspMgf3S+dDr9Zt49bAMAAMAucvGiC2CqdhLkP5Hkflusv9+wDQAAwMKthddVmcHfpaGrYydB/q+SnFFVT6yqL+5XVUdU1ZlJnpDJbPKwNFblH30AAGA8djLZ3a8m+Z4kL03ynKr6wNB+7yRHZTKD/MYJ6mC0hHgAAGA32vaIfHf/Z5IHJHl+kv9M8sDhcX2S5yV54LANAAAAMCM7GZFPd38qybOGBwAAADBnO7lGHlaOCUMAgDFzqSAsp4OOyFfVdyVJd799/fKhrG0PAAAslkEJWE5bnVr/tiRdVbft7s+vLW+xfQ3r90ytOlgg//EBAGN3r/hOs0r8vVfHVkH+CZkE8//bsAwAAMCI7Evy4kUXwdQcNMh397lbLQMAAADzt63J7qrqq6rqLVV1xqwLAgAApsNp1rCcthXku/vTmdwzHgAAGIEPx6z1sKx2cvu5K5LcZ0Z1AAAAU2ZEfsLnwLLZSZB/dpKfqqqHzqoY2E0cwQYAxs73mQmfA8tmq1nrNzo9yUeT/HVVXZnkg0k+s2Gb7m7X0bMUHLkFAGBZXLzoApiqnQT5n1j3/KThsVEnEeQBAICbcZ/zxXH7ueWy7SDf3Ts5DR8AAFggp5N/iYMHRuSXjXAOAAAAI7LjIF9Vt6uqh1fV46rq6FkUBbuBo9gAwNjttpHoedXjexzLbkdBvqqelOTfkrw5ySuS3HdoP6qqPltVZ06/RFgc/wkAAGO2qt9lpnnAYFk+w32LLoCp2naQr6ofTvKSJG9N8pNJam1dd/9HkjcmedS0C4RF2m1HsQEAdsJ3mYnDCeM+Q3ajnYzIPz3JW7v7h5K8bpP1lyc5cSpVAQAAh21ZRpM5NH/r1bKTIP/NSS7cYv3Hk9zl8MoBAACmxWjyhM/BrPXLZidB/qZDbH+3JP97eOUAAADTYpR2wufAstlJkL8yySM2W1FVRyR5TJLLtvtiVXVOVR2oqvdtaH9KVX2gqq6qqt8+yL57h22urapn7OA9AADASjAK/SU+C5bNToL8i5Psq6pfS/K1a/tX1b2TvCqTGexftIPXOzfJ3vUNVfXQTCbM+5buvm+S3924U1XtyWTSvX1JTkjy2Ko6YQe/F7bFP/gAwNj5PgPL6cjtbtjdf1FV35zkWUnOGprfmMns9ZXk2d297UsvuvvtVXX3Dc1PSvL87v7csM2BTXY9Ocm13f2RJKmq8zMJ/+/f7u8GAACW39qBjHvFQQ2Wy7aDfJJ09y9X1WuSPC7JN2US4D+U5JXdffkU6vnGJA+uqt9I8tkkv9DdG0/XPybJx9YtX5fk2w/2gsO97c9MkjtMoUAAAGBchPgJcwUsj20F+ao6Ksk9k1zf3e9O8u4Z1vM1SU5J8sAkF1TVPbu715ezyX69SdtkRffZSc5OkrtVHXQ72MiRWwCA6fL9anH2xcz1y2TLa+Sr6oiq+oNMbi33D0k+WFV/PwT7WbguyWt64tIkX0hy5022OW7d8rFJ9s+oHgAAYEqEeJiOQ0129zOZnJb+70lek+S9Sb4zyR/OqJ7XJnlYklTVNya5dZLrN2xzWZLjq+oeVXXrJKclef2M6gEAABg9o/HL5VBB/seTXJ3kPt39mO4+KckfJ/n+qrrj4fziqvrzJO9Icu+quq6qzkhyTpJ7DrekOz/J47u7q+puVXVRknT3jZkcYHjTUNsF3X3V4dQCm3HEGABYBq6LHjd/PzZzqGvk753kud19w7q2309yRiYT0116S39xdz/2IKtO32Tb/UlOXbd8UZKLbunvBgAA2IlFXd9vcInNHGpE/na5+fXn+9etAwAAdimjuatl36ILYG4OFeSTm88Iv7a82ezxAAAAS8fIOLvJdm4/d2pVfd265a/MJMw/pqpO2rBtd/cLplUcLJLbowAAMCZbTWjn9nPLZTtB/keHx0ZP3KStkwjyAACwSxiYGDeDS2zmUEH+oXOpAnYh/2ACADAmvr+uji2DfHf/7bwKAQAA2K3MWs9usp3J7gAAAFbaGAK1uxSsDkEeAAAARkSQBwCAJTWGUWSmx997dQjyAACwpJxqDctJkAcAgCW120ZoHViYnd32t2a2BHkAAGAuhM3ZOdRBkovnUgXzIsgDAAAsAWc8rA5BHgAAYMmd/pSnLLoEpkiQBwCAFTevkdwxjxiPuXaWjyAPAADMhWvkZ2vLz/eFL5xTFcyDIA8AAMyFUW2YDkEeAABWnJHyQ1vUZ7STgx8OlKwOQR4AAJiLfYsuYMk5ILM6BHkAAGAu3MscpkOQBwAA2KW2O8puNH61CPIAAMBcCJswHYI8AAAAjIggDwAAsAWzwbPbCPIAAMBSEsBZVoI8AACwlFyTz7IS5AEAgKU0rRH5RR4QcFYBm1lYkK+qr6iqS6vqyqq6qqqeM7T/TlVdU1XvqaoLq+qOB9l/b1V9oKqurapnzLV4AAAYgVUPgcswIr+T97Dqf+9VssgR+c8leVh3f2uSk5LsrapTklyS5MTu/pYkH0xy1sYdq2pPkpck2ZfkhCSPraoT5lU4AAAALMrCgnxPfHpYvNXw6O5+c3ffOLT/Y5JjN9n95CTXdvdHuvvzSc5P8qiZFw0AACOyDCPSwM0t9Br5qtpTVVckOZDkku5+54ZNnpDk4k12PSbJx9YtXze0bfY7zqyqy6vq8s9MoWYAAOCWceo3TMdCg3x339TdJ2Uy6n5yVZ24tq6qnpXkxiR/usmutdnLHeR3nN3dD+juB3zlFGoGAADGYdUOHDgDY3Xsilnru/u/k7wtyd4kqarHJ3lkksd192YB/bokx61bPjbJ/tlWCQAAHI55B03BlmW1yFnrj1qbkb6qbpvk4Umuqaq9SX4pyQ9098HOhr8syfFVdY+qunWS05K8fg5lAwAAt9CqjZDDrBy5wN991yTnDTPQH5Hkgu5+Q1Vdm+Q2SS6pqiT5x+7+6aq6W5KXd/ep3X1jVf1Mkjcl2ZPknO6+akHvAwAA2IYxjpDfK+Osm+W2sCDf3e9Jcr9N2r/hINvvT3LquuWLklw0swIBAICVJ8SzG+2Ka+QBAACmxSn8LDtBHgAAWEoCPctKkAcAAJaK0+FZdoI8AACwlFYp0Dv7YLUI8gAAADAigjwAACwhI7SrZZXOPkCQBwAAgFER5AEAYAkZoYXlJcgDAADAiAjyAAAAMCKCPAAAAIyIIA8AAAAjIsgDAADAiAjyAAAAMCKCPAAAAIyIIA8AAAAjIsgDAADAiAjyAAAAS+xeiy6AqRPkAQCAhREyYecEeQAAYGE+vOgCYIQEeQAAgCXhDIfVIMgDAAAsiY1nOAj2y0mQBwAAgBER5AEAAGBEBHkAAIARctr86hLkAQAARsiM/6tLkAcAABghI/KrS5AHAAAYISPyq0uQBwAAgBGp7l50DXNTVf+R5F8XXQcLdeck1y+6CFaW/sei6Hsskv7HIul/N/f13X3Uoovg8KxUkIequry7H7DoOlhN+h+Lou+xSPofi6T/saycWg8AAAAjIsgDAADAiAjyrJqzF10AK03/Y1H0PRZJ/2OR9D+WkmvkAQAAYESMyAMAAMCICPIAAAAwIoI8o1NV51TVgap637q2r62qS6rqQ8PPr1m37qyquraqPlBVj1jXfv+qeu+w7kVVVUP7barqL4b2d1bV3ef6BtnVquq4qnprVV1dVVdV1VOHdn2Qmaqqr6iqS6vqyqHvPWdo1/eYm6raU1X/VFVvGJb1P2auqv5l6DNXVNXlQ5u+x0oT5Bmjc5Ps3dD2jCR/093HJ/mbYTlVdUKS05Lcd9jnpVW1Z9jnZUnOTHL88Fh7zTOSfLK7vyHJC5L81szeCWN0Y5Kf7+77JDklyZOHfqYPMmufS/Kw7v7WJCcl2VtVp0TfY76emuTqdcv6H/Py0O4+ad094fU9Vpogz+h099uT/NeG5kclOW94fl6SH1zXfn53f667/znJtUlOrqq7Jvnq7n5HT2Z8fMWGfdZe69VJvnvtiC1098e7+93D8xsy+UJ7TPRBZqwnPj0s3mp4dPQ95qSqjk3yfUlevq5Z/2NR9D1WmiDPsji6uz+eTIJWkrsM7cck+di67a4b2o4Znm9s/7J9uvvGJP+T5E4zq5zRGk69u1+Sd0YfZA6G05qvSHIgySXdre8xTy9M8otJvrCuTf9jHjrJm6vqXVV15tCm77HSjlx0ATBjmx1N7S3at9oHvqiqvirJXyZ5Wnd/aosD9/ogU9PdNyU5qarumOTCqjpxi831Paamqh6Z5EB3v6uqHrKdXTZp0/+4pR7U3fur6i5JLqmqa7bYVt9jJRiRZ1l8YjhlKsPPA0P7dUmOW7fdsUn2D+3HbtL+ZftU1ZFJ7pCbn8rPCquqW2US4v+0u18zNOuDzE13/3eSt2Vyfae+xzw8KMkPVNW/JDk/ycOq6k+i/zEH3b1/+HkgyYVJTo6+x4oT5FkWr0/y+OH545O8bl37acNspPfIZGKTS4dTsG6oqlOGa6B+fMM+a6/16CRvGa6lggz95Y+TXN3dv7dulT7ITFXVUcNIfKrqtkkenuSa6HvMQXef1d3HdvfdM5lI7C3dfXr0P2asqm5XVbdfe57ke5O8L/oeK86p9YxOVf15kockuXNVXZfk2Umen+SCqjojyUeTPCZJuvuqqrogyfszmW38ycOpqUnypExmwL9tkouHRzIJaa+sqmszORp72hzeFuPxoCQ/luS9w7XKSfLM6IPM3l2TnDfMvnxEkgu6+w1V9Y7oeyyOf/uYtaMzuZQomWSXP+vuN1bVZdH3WGHlYBMAAACMh1PrAQAAYEQEeQAAABgRQR4AAABGRJAHAACAERHkAQAAYEQEeQA4TFV1blW5DQwAMBfuIw8AG+wwlN9jZoUAAGzCfeQBYIOqOn1D04OTnJnk7CR/t2HdhUk+n2RPd392DuUBACvOiDwAbNDdf7J+uaqOzCTIv2PjunX+b+aFAQDENfIAcNg2u0Z+ra2q7jQ8v76qbqiq11bV1w3bnFlVV1fVZ6vqmqp61EFe/0eq6u+H/T9TVe+sqkfP470BALuPIA8As/XGJHdI8qtJ/ijJI5NcWFVPT/L0JOcleUaSWyd5dVV92TX3VfXrSc5PckOSXxm2/UySV1XVk+f1JgCA3cOp9QAwW5d29xcDd1Ulyc8lOSbJid39qaH9LUmuzOQU/rOGtm9L8qwkz+vuZ657zRdV1WuTPK+qXtHdN8zjjQAAu4MReQCYrRduWF6bLO8VayE+Sbr7PUk+leT4dds+LkknOa+q7rz+keT1SW6f5DtmVjkAsCsZkQeA2frIhuVPDj//eZNtP5nkTuuW75OkklyzxesffctLAwDGSJAHgBnq7psOsupg7bXheSfZt8X2V93C0gCAkRLkAWD3+lCSvUk+2t1XL7oYAGB3cI08AOxerxx+/mZV7dm4sqruMud6AIBdwIg8AOxS3X1ZVT07yXOSXFFVr0qyP8ldk9w/yamZ3LYOAFghgjwA7GLd/dyqeleSn03ytCS3S3IgyfuSPHWBpQEAC1LdvegaAAAAgG1yjTwAAACMiCAPAAAAIyLIAwAAwIgI8gAAADAigjwAAACMiCAPAAAAIyLIAwAAwIgI8gAAADAigjwAAACMyP8DxCEli6NCNu0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(nrows=2, ncols=1, figsize=(15, 10))\n", + "plt.subplot(2, 1, 1)\n", + "wavelet = 'cmor' # 'db2'\n", + "coefficients, frequencies, time = cwt (HappySignal, wavelet)\n", + "plot_cwt(coefficients, frequencies, \"Happy CWT\", time, ax[0])\n", + "\n", + "plt.subplot(2, 1, 2)\n", + "coefficients, frequencies, time = cwt (AngrySignal, wavelet)\n", + "plot_cwt(coefficients, frequencies, \"Angry CWT\", time, ax[1])\n", + "plt.show()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "9687e40f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1.2358689534472845e-27\n", + "6.787497196283978e-26\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4IAAAI/CAYAAAAiKmd+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3xUVdrA8d+5M5OEVHovoXcIoaMiioKKBdsqYFewt1XXsr6KBburq7v2gg2RtTfsIiK9hN4h9F6SkDoz97x/zGSSycwkk2RKSJ7v5xO999xzz33CBDJnTnmU1hohhBBCCCGEEHWHEe0AhBBCCCGEEEJElnQEhRBCCCGEEKKOkY6gEEIIIYQQQtQx0hEUQgghhBBCiDpGOoJCCCGEEEIIUcdIR1AIIYQQQggh6hhrtAMIl8aNG+vU1NRohyGEEEIIIYQQUbFkyZKDWusm/q7V2o5gamoqixcvjnYYQgghhBBCCBEVSqltga6FdWqoUqqNUup3pdRapdRqpdTt7vKGSqmflVIb3f9vUOqe+5VSm5RS65VSo0uV91dKrXRfe0kppcIZuxBCCCGEEELUVuFeI+gA7tJadweGADcrpXoA9wG/aq07A7+6z3FfuxToCZwBvKKUsrjbehWYBHR2f50R5tiFEEIIIYQQolYKa0dQa71Ha73UfZwDrAVaAecB77mrvQeMdR+fB0zXWhdqrbcCm4BBSqkWQLLWep7WWgPvl7pHCCGEEEIIIUQlRGyNoFIqFegHLACaaa33gKuzqJRq6q7WCphf6rad7jK7+7hseaXY7XZ27txJQUFB5b8BIWq5uLg4Wrdujc1mi3YoQgghhBAizCLSEVRKJQKfAXdorbPLWd7n74Iup7zscybhmj5K27ZtfW7YuXMnSUlJpKamIksMhSihtebQoUPs3LmT9u3bRzscIYQQQggRZmHPI6iUsuHqBH6ktf7cXbzPPd0T9//3u8t3Am1K3d4a2O0ub+2n3IvW+g2t9QCt9YAmTXx3SS0oKKBRo0bSCRSiDKUUjRo1ktFyIYQQQog6Ity7hirgbWCt1vpfpS59DVzpPr4S+KpU+aVKqVilVHtcm8IsdE8jzVFKDXG3eUWpeyobU1VuE6LWk78bQgghhBB1R7hHBE8ALgdOVUpluL/OAp4CTldKbQROd5+jtV4NzADWAD8AN2utne62bgTewrWBzGZgZphjj5jrrruONWvWhLzdxMTEkLcphBBCCCGEOP6FdY2g1noO/tf3AYwMcM8UYIqf8sVAr9BFV3O89dZb0Q5BCCFEHbFv52astlgaNWtdcWUhhBC1VtjXCApvubm5jBkzhr59+9KrVy8++eQTRowYweLFiwF4++236dKlCyNGjGDixInccsstAFx11VXcdtttDBs2jA4dOvDpp58CcOzYMUaOHEl6ejq9e/fmq6+qNGNWCCFEHdHsrXQSXknzKT+wOxMmp7Bi1mcRj0kIIUTkSUcwwn744QdatmzJ8uXLWbVqFWeccYbn2u7du3nssceYP38+P//8M+vWrfO6d8+ePcyZM4dvv/2W++67D3Bt+f/FF1+wdOlSfv/9d+666y5cqRaFEEIIX6vMVP40e/uU71j5JwDOhW9HOiQhhBBRELE8gjXNI9+sZs3u7JC22aNlMg+f07PcOr179+buu+/m3nvv5eyzz+akk07yXFu4cCEnn3wyDRs2BODiiy9mw4YNnutjx47FMAx69OjBvn37ANe2/w888ACzZ8/GMAx27drFvn37aN68eUi/NyGEELWHgabHfZ/x9rXDGNq5BQB5iakALEkYTr8oxiaEECIyZEQwwrp06cKSJUvo3bs3999/P48++qjnWkUjebGxsT51P/roIw4cOMCSJUvIyMigWbNmkgJACCFEQL2MTEZalrEm7hpW/viep1wr11sCp7JEKzQhhBARVGdHBCsauQuX3bt307BhQy677DISExOZOnWq59qgQYO48847OXLkCElJSXz22Wf07u07fae0rKwsmjZtis1m4/fff2fbtm1h/g6EEELURrEFBwFoV+iaiXI0r4g4m4XdR/Pp0ER2oRZCiNqmznYEo2XlypXcc889GIaBzWbj1Vdf5e677wagVatWPPDAAwwePJiWLVvSo0cPUlJSym1vwoQJnHPOOQwYMIC0tDS6desWiW9DCCFELTAo93fAtea8MK4xADtjOgJw7+NT2KmbslqnMvP2k+jeIjlaYQohhAgD6QhG2OjRoxk9erRX2axZszzH48ePZ9KkSTgcDs4//3xGjRoF4DVyCK7dQgEaN27MvHnz/D6ruI4QQghRbIXZnj7GVgAUZskF5cr2pJVCmybP2l5nl27MEZ3EwV2vQou0KEQrhBAiXGSNYA0zefJk0tLS6NWrF+3bt2fs2LHRDkkIIUQtkkSe3/LYQtfU0In7n0A92oBklU93YwfDLGtIzFofyRCFEEJEgIwI1jDPPfdctEMQQghRi7U39nmOd9na09d9bCsKvJO2krREQghR68iIoBBCCFGHrDJT2WS2BGBnTAdPeem+3jEdF+mwhBBCRJh0BIUQQog6Jpc4ZjoHcsjS2FOWl9jOc5yoyqQhUpGKTAghRKTI1FAhhBCiDullZALQly1sc54W1D2migljREIIIaJBRgSFEEKIOmrj3mzu/CQDgJjCQ17X8nQsS8zOfOE8gWMpXaIQnRBCiHCSjmAd9MQTT4SsraNHj/LKK69U+r7Jkyf73Rhn8uTJtGrVirS0NDp37swFF1zAmjVrAPjqq6+8dlF98skn6dSpk+f8m2++4dxzz2Xw4MGkpaXRtm1bmjRpQlpaGmlpaWRmZno9a8SIESxevNhznpmZSa9evSr9vYTL119/zVNPPRXydq+66io+/fTTkLcrhDj+PG/9Lw+tGQNAQb2mABzUyWTreiwyu/KVcxh32m+mqF6TaIYphBAiDKQjGCVaa0zTrLhiGATqCFYlpqp2BMtz5513kpGRwcaNG7nkkks49dRTOXDgAMOGDfPKmThv3jySk5PZv38/AHPnzuWEE05gwYIFZGRk8Oijj3LJJZeQkZFBRkYGqampIY0z3M4991zuu+++aIchhKhlMsyOXudJ5JGbc5SsjfMBMDAx0PQzNnG55Re+inmQuNyd0QhVCCFEGElHMIIyMzPp3r07N910E+np6ezYsYNnn32WgQMH0qdPHx5++GFP3ffff58+ffrQt29fLr/8cgC2bdvGyJEj6dOnDyNHjmT79u2Aa4TntttuY9iwYXTo0MEz2rNnzx6GDx/uyUv4559/ct9995Gfn09aWhoTJkzwG1NiYqInjk8//ZSrrroKgH379nH++efTt29f+vbty9y5c7nvvvvYvHkzaWlp3HPPPQABv6cpU6bQtWtXTjvtNNavDy4n1SWXXMKoUaOYNm0aTZo0ISUlhU2bNgGwa9cuLrzwQubOnQu4OoLDhg2rykvjIzMzk5NOOon09HTS09M9z5g1axbDhw/n/PPPp0ePHtxwww2eznNiYiJ33XUX6enpjBw5kgMHDrB582bS09M97W7cuJH+/fv7PO+ll16iR48e9OnTh0svvRSAqVOncssttwCwefNmhgwZwsCBA3nooYc8r9GsWbMYMWIEF110Ed26dWPChAlo99Z/jz76KAMHDqRXr15MmjTJUy6EqJsWTH8SJqfQXB32Krcqk42vXMI5Wx4BoKE6RqIqIFnl0dnYRV9jCwlZG6MRshBCiDCSjmCErV+/niuuuIJly5axfv16Nm7cyMKFC8nIyGDJkiXMnj2b1atXM2XKFH777TeWL1/Ov//9bwBuueUWrrjiClasWMGECRO47bbbPO3u2bOHOXPm8O2333pGkaZNm8bo0aPJyMhg+fLlpKWl8dRTT1GvXj0yMjL46KOPfGJq166db9But912GyeffDLLly9n6dKl9OzZk6eeeoqOHTuSkZHBs88+y08//eT3e1qyZAnTp09n2bJlfP755yxatCjoP7P09HTWrVsHwLBhw5g7dy7r16+nc+fODBkyhLlz5+JwOFixYgUDBw6s1OsxYcIEz9TRs846y1PetGlTfv75Z5YuXconn3zi9We9cOFCnn/+eVauXMnmzZv5/PPPAcjNzSU9PZ2lS5dy8skn88gjj9CxY0dSUlLIyMgA4N133/V0rEt76qmnWLZsGStWrOC1117zuX777bdz++23s2jRIlq2bOl1bdmyZbz44ousWbOGLVu28NdffwGun5dFixaxatUq8vPz+fbbbyv1ZyOEqF16rX0RgObqiM+1lnnryr1XNg0VQojap27vGvruGN+ynmNh0EQoyoOPLva9njYe+k2A3EMw4wrva1d/V+Ej27Vrx5AhQwD46aef+Omnn+jXrx8Ax44dY+PGjSxfvpyLLrqIxo1d23o3bNgQcE2FLO50XH755fzjH//wtDt27FgMw6BHjx7s2+dKFjxw4ECuueYa7HY7Y8eOJS0trcKYyvPbb7/x/vvvA2CxWEhJSeHIEe83FIG+p5ycHM4//3zi4+MB17THYJUeyTrhhBOYO3cuTqeToUOHMmjQIB599FGWLVtG165diYurXO6rjz76iAEDBgCuUcCzzz4bALvdzi233EJGRgYWi4UNGzZ47hk0aBAdOrhyb40bN445c+Zw0UUXYRgGl1xyCQCXXXYZF1xwAQDXXXcd7777Lv/617/45JNPWLhwoU8cffr0YcKECYwdO9ZrHWSxefPm8eWXXwIwfvx47r77bq94WrduDeBZC3niiSfy+++/88wzz5CXl8fhw4fp2bMn55xzTqX+fIQQtUcGXTiBFWw2W+DAQlejZLpnto6nqTrqOc/VsSSowihEKYQQIlJkRDDCEhISPMdaa+6//37PGrZNmzZx7bXXorVGqYo/fy1dJzY21qtdgOHDhzN79mxatWrF5Zdf7unElRdT2XYLCgrKVi9XoO+pbLuVsWzZMrp37w6UjAjOnTuXoUOHkpSUREFBAbNmzeKEE06oUvv+vPDCCzRr1ozly5ezePFiioqKPNfKfh+Bvq/i8gsvvJCZM2fy7bff0r9/fxo1auRT97vvvuPmm29myZIl9O/fH4fDEXSspV97i8WCw+GgoKCAm266iU8//ZSVK1cyceLESr+WQojaZZHuAYATg3ximOksmUHRydjtVVc6gUIIUfvV7Y7g1d/5fg2a6LoWE+//er8JrusJjXyvVdLo0aN55513OHbsGOBa87Z//35GjhzJjBkzOHTItZX34cOu9RzDhg1j+vTpgGsk68QTTyy3/W3bttG0aVMmTpzItddey9KlSwGw2WzY7faA9zVr1oy1a9dimiZffPGFp3zkyJG8+uqrADidTrKzs0lKSiInJ6fC72n48OF88cUX5Ofnk5OTwzfffBPUn9Fnn33GTz/9xLhx4wDo0aMHu3fv5s8///SMOqalpfHaa6+FbH0gQFZWFi1atMAwDD744AOcTqfn2sKFC9m6dSumafLJJ594XgfTND3rM6dNm+Ypj4uLY/To0dx4441cffXVPs8yTZMdO3Zwyimn8Mwzz3D06FHPn1+xIUOG8NlnnwF4fgbKU9zpa9y4MceOHZNdQoUQrFepTHeMoIuxizRjC2daFrHFbI6pK/6QzmmJrbCOEEKI40vdnhoaZaNGjWLt2rUMHToUcG028uGHH9KzZ0/++c9/cvLJJ2OxWOjXrx9Tp07lpZde4pprruHZZ5+lSZMmvPvuu+W2P2vWLJ599llsNhuJiYmeEcFJkybRp08f0tPTmTJlis99Tz31FGeffTZt2rShV69enk7Jv//9byZNmsTbb7+NxWLh1VdfZejQoZxwwgn06tWLM888k2effdbv95Sens4ll1xCWloa7dq146STTgoY9wsvvMCHH35Ibm4uvXr14rfffqNJE9fW5UopBg8eTFZWFjabDYChQ4fyxhtvhLQjeNNNN3HhhRfyv//9j1NOOcVr1HTo0KHcd999rFy50rNxDLhGVlevXk3//v1JSUnhk08+8dwzYcIEPv/8c0aNGuXzLKfTyWWXXUZWVhZaa+68807q16/vVefFF1/ksssu4/nnn2fMmDGkpKSUG3/9+vWZOHEivXv3JjU1tdJrJ4UQtU8XtnOpdZZX2UFSOKyTGaA2+NQv1DaWmp3ZrFtwMLsZji2HGNzBd0aDEEKI45OqrTsJDhgwQJfOEQewdu1azxRDIapi1qxZPPfcc343XklMTPQZySv23HPPkZWVxWOPPVal5+bl5VGvXj2UUkyfPp2PP/6Yr776qkptlUf+jghRe7368LXcqHxnBxRqK7GqZDr6EZ2IgUmG2YlfzX687xxNG+Vae/7nk9dELF4hhBDVp5RaorUe4O+ajAgKEWbnn38+mzdv5rfffqtyG0uWLOGWW25Ba039+vV55513QhihEKIuuBzXEob1ZmuvjWIMvD8QjqOIWOz0NTbTTu3jKsuPNFVH2aqbA9IRFEKI2iKsHUGl1DvA2cB+rXUvd9lkYCJwwF3tAa319+5r9wPXAk7gNq31j+7y/sBUoB7wPXC7rq1DmaJGGzFiBCNGjPB7LdBoYOl1llV10kknsXz58mq3I4Sou4p/aaa6R/eK2ZTT67yecm2OVZ9c6qtcT3lvlRnO8IQQQkRYuDeLmQqc4af8Ba11mvuruBPYA7gU6Om+5xWllMVd/1VgEtDZ/eWvTSGEEEL4sfSHqSSpfABiVeDNwoQQQtQdYe0Iaq1nA4eDrH4eMF1rXai13gpsAgYppVoAyVrree5RwPeBsdWIqaq3ClGryd8NIWqnHRuXkz7/ds/5FrM5a8025d6Tp2WXUCGEqO2ilT7iFqXUCqXUO0qpBu6yVsCOUnV2ustauY/LlldaXFwchw4dkje8QpShtebQoUPExcVFOxQhRIgV5nlPW3dgobBMHsGy4gPkEdy8cn5IYxNCCBE90dgs5lXgMVzLFR4Dnse1+txfIiNdTrkPpdQkXFNIadu2rc/11q1bs3PnTg4cOOBzTYi6Li4ujtatW0c7DCFEiGmj5Ff9dMcITwqJNDaz2WxBR2NP0G0d3b4Keg8JdYhCCCGiIOIdQa21Z5W6UupNoHgf/p1A6bkqrYHd7vLWfsr9tf0G8Aa40keUvW6z2Wjfvn11whdCCCGOK0UpHbi06EFON5ZwrXWm17WjJLLQ7MogY73vfdrCfLMHa3Q7RhjL6WbsIDfB90NWIYQQx6eITw11r/krdj6wyn38NXCpUipWKdUe16YwC7XWe4AcpdQQpZQCrgBCn0BNCCGEqIW0JYb5Zg/y8F3319/YSD+1yaf8iE5krtmLX810nnKM50fTNY3UaZG1g0IIUVuEO33Ex8AIoLFSaifwMDBCKZWGa3pnJnA9gNZ6tVJqBrAGcAA3a62L97S+kZL0ETPdX0IIIYSogPXYHjLjxnvO15lt6GbsKOcOaKCO0cfYTDdjO/+wTifBvWZQG7awxiqEECJywtoR1FqP81P8djn1pwBT/JQvBnqFMDQhhBCi1tvxSHfamIe9VtuX7QSWzSNYrKHyzY1qmEUhjU8IIUT0RGvXUCGEEEKEmTKLiCF0eQMNp+QgFEKI2kI6gkIIIUQtdVAnc4Qkr7KtZjNWm+3KvS9fx/gtj88rf0qpEEKI44d0BIUQQohaKs3YQlN11KvMjpUibOXmEaynZAqoEELUdtHIIyiEEEKIKCidRxBgvdmarsbO6AUkhBAiamREUAghhKjlzi58nFcd53h1AgFyiWOB2c3vPU6t+MXZz7t+QvlTSoUQQhw/pCMohBCiRlkw/UkO7t0e7TBCpqiwAIc9OlMtl5mdmO3szSrdwe/1dGMT/dRGn/JDOok/zL7MMXt7lZuG/7WDQgghjj/SERRCCFFjbN+4gsHrnqLxa71Z9syZ0Q4nJGKebMbeJ3pXXDEMNNBKHSQzbjw3Wr8BYK3ZpsL7Gqkc+hhbuNP6qXd7hiUcYdZo9qJC1sz/Iai637/+APMfHhbmiIQQIjRkjaAQQogaw3SUpCfolzc3ipGEVmu9NyrPTTc2+ZR1L5NHMCZAHsHGKtunzHAWhiaw48iSd+5kyN6PWGV/n4SGzWnfc3DAukd3rGWAZVcEoxNCiKqTEUEhhBA1hmlL8BwHWrt2vNi6YQVMTgHgR+eAqMSwyWxJjq4XsvYszoKQtXW8WG5vDUDHX66j/f9GRTkaIYQIHekICiGEqDGccQ15xn4J2SHsvETLqk2ZnmONikoMucSRT6xX2VazGSvM9uXeV6htfsvr5e0OWWzHg8+X7mT1nmMAmEG8huOtv/mk6xBCiJpKOoJCCCFqDsPKX2ZPklU+g4110Y4mZM6wLIrKc/sGyCPowFJuHsFYZfdb/u5fmSzZdiSUIYbduoU/s31DRpXuTf7iMl6K+S8Aa3U7CgJ0kIUQ4ngkHUEhhBA1hlFwiK9iH4p2GCFRP3er5/gvZ88oRuJi1xY+dpxCF2MX6cYmzqxC5/Qh2/v8+OtPYYgufLp9fxFtp51cpXutmJ7j5uowcQE6yEIIcTySjqAQQogaw1KY5TleZHaJYiRV57AXYTqdxDhzPWUFBJd2IePX6RTkHfOca9Nk0/K/qh3TKYXP8x/HWMZZf6/UfWVHDZupo/TIXVjteCLtqE6ouJIfIyzLPcet1cEK6x/v61qFEHWLdASFEELUSJ1UyXq0+R8/wYalf0QxmuBZpzRh6YsXQ6k1ZSMtyyq8b8OaDNL+vJ5fP3jCU7b461fp9MVZLPvpwyrFstjswhxnT7bqFsSr4Dd6OaCT+cXZj0V+OjZtCzdUKZZo2Wy28MmHGC5bzeYc1oks/vYNtGlWfIMQQkSRpI8QQghRY5TejqOBKhkZG7L+aVgPpGf53FMTDcj5le92JFfqnpwiV8chM79koxznvrUAFOxZW6U4NNBO7Sczbnyl7muisjnNsozTgujA1nQdjT1km1UbEaysOFVEQ3WMhovvYWVyE3oPPz8izxVCiKqQjqAQQogaJDq7a4bDmNwvKlXfKP7WtS4pVJ7CKsUw0Di+Ru/CpZ+ffIrhkKPjPcfHZDmhEKKGk6mhQgghagxnTJLneL7Z3evaPGePSIdTKVtXL2DnI/7XiK0x2zH/lYnlTheMzdsHwKl5P3jKlja7iAftV7Ou2TlVimm12Y79un6V7g2nnKzD7N2+MSLP2mI25yvnsCrdO9tZ9SmlhbGNqnyvEEJEgnQEhRBC1BhmXAMesl9JVqmRFYBbi27hCUflpjdG2rxZ39Na7+EL5wk+13oY2xiyfwa7tqwJeL8yin8ll4z+HYttxofO08mNaVylmExUUPnvKmNZ4vBqt3H0xRNo/s4A1u3N5lihIwRRhVZO1mGYnMIJxiqfax8t2Eahw+n3vsutv3iOlZY1gkKImk06gkIIIWoOpdikW5Gi8hhilKyLO0gKeWUSo9c0uYZrNPN8y1/86ezFvx2VWx/mjK0PwB5LS09Zi9w1fBnzII1yqpZTsbeRSXMVurx/z9gvYVXCkGq300a7NgI648U/+ecXK6vdXnk6GHs5zzI3qLrzpz3OukW/sHfragAsyndK7v99sYKXf6l4NDOmoOJdRoUQIpqkIyiEEKLGsOQfYlrMEz7lH8dM4X7rtChEFLwm9l2eY43igJ8pmdoaF/B+R70mAGy2dvKUdTo8mzRjC6mH51Q7vjxd/Y70jdavaVq0s9rtfOQYyQGdTEbsRNqtea3a7VVXYUEeG5b+wZANz7Ln60fRlsB/VlviLqPVnh8CXve0KVNDhRA1nHQEhRBC1BhGUclOoUvMzl7XKrODZUF+bsTWoBVrV7DeczzcspLHbe96zuc5e5BW8DqOhGYB7y/eLMaiS02VLN4sRldts5higwr+y0uVHKH0J0nl0zMvNHkEY7FTX+VymfoxJO2V54AufwfX5a9PpMvX5wKQqZtjxqaUW7/DMf8/i385e3qOlfY/fVQIIWoK6QgKIYSokXqpzCrfu/bli2n+zgCcjpqx/myoZQ1xFFWwWcxeAFo4S/Inqmqu71tgdmOeswf7aUBjFZrUG60Lq74Dp9aa9+ZmMtYyh2SVD0Ayxyq4q3rWm6395kMsrVF2ydrN7sZ2zJgkHrNfVqnn/N+Xq9itS0YB4/Zn1JifPyGE8Ec6gkIIUY4juUXszw4+EbcInVhV9f33e+XOB8A0Izcqs7GwfrnX58fdivXY7sAVrK7piPm52Sz89wSvS3EHV7L42zeqFFd7Yw+ZceO5zjqzSveH0pJtR3j469V85TyBYzrwNNlQ6mrspIPaU24dXarDPcRYi3Lkc4f1s0o957ylV3OxdbbnfPDqx7A83ojVW3ZULmAhhIiQsHYElVLvKKX2K6VWlSprqJT6WSm10f3/BqWu3a+U2qSUWq+UGl2qvL9SaqX72ktKqdqTaEoIUaP1e+xnBj3xa7TDCNq6vdl8s7yczkYNp0P0z/sP5iDXgYrc551D7BVPmczaWV5ieNf0zwsscxh05Ft3ievPo1/eXAYsvqfSMQ021oV0sxh3UFVmHFxPZtx4xlt/C108Qehm7GDD0lkc3r+LjRl/+lx/IuE+biq6zXM+a80uktwjln75maqbqvb6rfq/t5+pfMBCCBEB4f4NORU4o0zZfcCvWuvOwK/uc5RSPYBLgZ7ue15RSlnc97wKTAI6u7/KtimEECE1e8MBUu/7jpssX/Gw9b1ohxO0+/79Lj988mq0w6iy0muzyuYN3KsbsG5x+Z3yrEP7WDNvJp7eSoQ+N1z204e0NQ5UWC/rWG7Aa4Y9z3NcqG2udlv8jUlFd1Y5rlVmKrt1wyrf74/p+dVceTH5+z3Hico10r6G9tWOqTxbzWbs0Q3p8vV5NHylB52/PNunzl5LC743XbuhFmkL9Ra+XG6bh2Na+JQ1Vtl+695l/V8VohZCiPALa0dQaz0bOFym+Dyg+F3Ve8DYUuXTtdaFWuutwCZgkFKqBZCstZ6ntdbA+6XuEUKIsJjx5Rdkxo3nH7ZPuNoa/s0sQuVCy2wesU2NdhhVZsamcFfRDRzWiV4DT9cU3U1zdYRu317g974FM56BySmkvNyFHj9eyjmW+Uyxj6/uHitB6zf3Zs/xTh0451/ukX1s35DhU774uzc59Nc7nvPiabEFMQ34yRzIJ44RHNUJoQu4GlaGIH1EsV+c/XjH9O2YhZpDB+68bn20L88eupk/Y24HIEY5ucr6U7ntrag/EoBjhQ6+W1H+tFOvkcXJKcx/7aYgoxZCiPCKxhrBZlrrPQDu/zd1l7cCSk+k3+kua+U+LlsuhBBhc0HR19EOoUout/4ScGTieKDQZBNPQ3WMYZbAydfLOrRmlk/ZP23TIApJvVurg3znHES+jvG5NnrTY7SddjIA896+iyXfu3YWHbDoboYc/MKnfovs5cyNvYWGKocVZoegY8jKt7N0+xF6GZm0VGU/j626h+1Xsiyh6gnly47PXme/h5/0oOoFVYH2xj7auEdrN5ityNH1vK+bmfQ0tnnqBCPb5kr1cd9nK7h52lLW7gn+79yQvR8FXVcIIcKpJm0W42/+ji6n3LcBpSYppRYrpRYfOBD8P+hCCFFWZ+fmCuvkZB1m3tt34bAXRSCiusGSf4g3Y/4FgKkVBXnHWPyvC3kn5rly79tAO7/lqjoL2irhS+cwr/MmKot6yv/PxY/OAQAM3fEW/RfewSPfrA7YburR+bRUh+msdrJMdwpYr6xrpy7igleCS6JeGY/Y3qPF/j9C0tYe3ZC1sVdxh/FJSNoLRhejZO3f4f27WPrDVA7ppEq30/vo767/7/4fmXHj2T27/OnjWflV3/hICCHCJRodwX3u6Z64/1+8YGAn0KZUvdbAbnd5az/lPrTWb2itB2itBzRp0iTkgQsh6g6DinebTHqhPUN3vEXGzHcqrCuCVGqd3HLdkRU/vsuA7F88ZT8701n1UF+f25qUWoXwiP1yz7GuZvqFYP3p7ON1PshYH6Am7Hcnmt+pG7PY7IJ1/n9Ya7bxqnNUJ3Djh0tYsdOV8iHV2MeFFt9NTgJJ3z2NRbE3Bl2/Mu4/9lSV7zWtJYnaEyignipivCp/Gma47H/jQtLn304jlVPpezvkLgXg5AJXh3Dk2gfLrd/3kZ8osDs5oJN53n5R5YMVQogwiEZH8GvgSvfxlcBXpcovVUrFKqXa49oUZqF7+miOUmqIe7fQK0rdI4QQYVF2JGlPVuAdBL9bvpMfVpW/TkhUXj/DN1/dWt2WHmqbT/nZlHSSeqhtOHRkf70llLfDZBlDjJKdQ3uqTP5pm0YzdYRcHetV789VW9D2ktQlrdXBoJ9xtzGNJiqLRWYXFppdg74v3HIa96NfwWsAJCtXpz+eQgrs4UvzsdZs63WepeMB+MkcUO22gx1xvsnyJQUFBQwsfI2Xnf7XuQohRKSFO33Ex8A8oKtSaqdS6lrgKeB0pdRG4HT3OVrr1cAMYA3wA3Cz1rr4N8ONwFu4NpDZDEQ/GZIQolYru7nEt3/MD1j3Jsf7tJsxisX/ujDcYVWoeNrh8ars+F1uvZZe57dZv/S5Z8VTp5FCyW6cF1tnY1WRWRuYdWgf2jS9OncV6WzsAlwdu+Lpow3VMRyU/MzVV7msiruOG6zfVDEy5flvJ7Wrim2EgWHhCMl84hjhWasXoxyc9dA75OSFJ19nd2O753iT2dIzSmxG8LPwf9hmoIqOcZYxnx4qM2LPFUKI8oR719BxWusWWmub1rq11vptrfUhrfVIrXVn9/8Pl6o/RWvdUWvdVWs9s1T5Yq11L/e1W9y7hwohRNhMN8Z4nbfY+qnnWGvNv37e4DlvorLobmz3msIYLT84B/KB47RohxEyhxv0ZkzhFK8yQ3n/CijKywrcQBjzCO7aspqUl7uwYPoUzrJUnEOw2LuO0X7LU1Se33Ivk1NY+OK4CqsVd3YGGBtoqI4FHVu41Tu6kcy48VxineVV/lvs3WQdDd2mNgA/rt5L78neO/52MnZTX7k+NBigV3rKv3UO5sLChz3n28ymlKtKb0M0r8S8xPexD1ThXiGECL2atFmMEELUGD+rYdxjn+Q5P/vIhyz/bToAmQeymfXbD9EKrVy7dWNW6OB3l6xJcgsdLDlQMia4wmzP0aVf0cBPR2bl7JIdNrPdU/38CmNH8PAO1zrAhG3l5zYMZLPpm4vOn/MKH/U633/oUKWesUs3qlRc4WQrKJneWjZhuzIdIX3W7K/f5SXnFA7oFEztPda86IVLOFEv9Zzv1w1Yokum0M43vXNYlnUo1rV1wTEjEYDri+6oMB75CFsIUdNIR1AIIfxop3fyrO0Nr7Lsfe61abkH+Tr2/6IQVcXOsczlH9bp0Q6jSh746A/e+H4+NxXdxgGdQh9jK9fue5wPY57kZ2d/r7q9f7vK0zE/1ZLht72pjlGYZvjWnhXFuTYl6124zKt8k9nSX3WP4ryUBsFNX12uO/GuYzTZOp6jOoED7s1myrPZnWVJobEE+ZzKWPL8+SFp52vnUM+xcgS/zjIYvZ1rOcWynGRy2Y2rM2x3T/kemOX9Qc411h9YH3uF57zsiGVZGSmuUfd/x17PjUW383rMixUHJD1BIUQNIx1BIYTw4zrzfz5lB2JdKQqMIv+7DKYWTAtrTMG4zPorTVQ2C166nH07K06BUZN03P01P8TeR0OVQxPlPd1zuLHCp37hYb8bSHtcZf2Jj78L346UTkuc3/JOxm6mO0ZUeH97Y19Qz9kUexlN1REWmV2pr3I50VhV4T3PmBN41XEOHYy9NFdHgnpOZfTP+S0k7dxjv569ukFI2irrJKdrXW+scng22tmmmwWsH6uCH5E8ZqkPwPs5E3k15t9VD1IIIaJIOoJCCOFHD73Fp+yCFdeXe08iQazxCoPCgjxW/fUNiz4veUM6+PDXbHlnIqt2lbN+roY5xTkPgMdt7/pci1W+ediOJFe8G2bB5r+qH5gfW9csou03FzPX6X8KYS8jM+C93zoHe53/23EBfzj7cECn+K1vVSaDjXVs1K5Rvs7GLpY9O4aDu313Ty02n9487ah4LWEkZfw6ncL5JalWdurGZMROCktHFfwnIe5k+H54cEz779CXp1d25XIp/s8xHKetnCnMQggRBdIRFEKIMpY+dw7JKtfvNXtRYcD7VsVdx6q/vkGbkdmxsljGmzfS6+fLGLjiIa/yQruDs1+eE9FYqqOJrnjt2xazuedYKysAvzj7edVZbZYkl082w9MRzvrmQZqrIwyzrHGdl1mnWF5HMFvHM+LZ39mn67PUdCWJX6E7MNfs6alzUCeTWjCNf7lzzjVW2Yw2Fnmu98udw+/ffxzwGRPVV2TGja/09xWsQm2t9D1pf17vNZKYRJ5n11QAHfKOUuCpmKU7f4mq8ruVjtv5GPMePTXo+vc4bgBLLGvNNjxiv5ytqxdU+plCCBFq0hEUQogy0o/NDnjN9kRTDm/znppX/GYeoNfPl7H461fDFps/iTn+p4COsCxnZsy9EY0l3GaZaQD85kzDbnV1HMomjV9tpnqOBxYFv5tnZaTle6cTCWrHT7fx1t+5KOtd4imkp9rG7dbPucryIyOMDK96TTlCUql22xv72KsbsMF0jQweszUO+IyblWuX2wVmNzLMjkHHFqzKTKMsq0vBe4Dvn5m21qtWTGVlqyQAjuoEr/JDOqlKnb+yejiDTxnyiPVdtGnnzKKnaaaO0v5/o9i2PqPaMQghRHVIR1AIIcqYb3Yv93rmtq1e5+llEp8fyvOdxhhOmbZOPmUjC58FoLuxI6KxhNs1VtcmH6daMsjPPoxpak63LPWq8zdr5abtRcMt1q9IUvmeKa9JKt8rr11jlc3CuJuZaP3e6z6N8iRiTyo6ELB97ckjqGtMHsEfnANZZ7ahCBufOU/y5BEEeMkxFpS/yZxV953FtaFL/VKj+5vNFiSHaAp3ZTr/V1p/Rhdkc5HlD662uH6Gs764m/mvTKrgTiGECB/pCAohRBmqnCllAPady8q9PmODk2Xbw7PuyZ+Vsf1Za7b1KksitDswRsIiS5rf8gsKJ/st/37BKl76bSN/OXv6vQ7gLJWkPZS+dw4KeZv+0mSU1UId9qypa5u/OmC94imXg4z1IRn9Kqsq6+o26xY4sJAZN54LLX96XbvN+iWqKLT5DudZ0rmq6B6vso7GHmzKdyfZz5wnckbhU57zAzo5pLEAYDp5zva6p/Pfp2ARQ/Z/EvrnCCFEkKQjKIQQZQw21gFwY9Htfq8fofw3iS/pZ5jx+mMhjyuQdTG9uMF+h1fZl7EP+a9cgy0xerNT+0537GH43xRlaswzOJb/DzuB16v9FXtiyOIrzUZoc96VZ1jBS/4vBJGOwNSKfB0T4oiqtq7OjpVGKttzXjaPIM7Q/pn2NtcxNebZoOoe0Ums0yUfpmzVweV4FEKI45l0BIUQIoBA28KfoMsfEUxUBXRRO8MRkl+DC+fwR+zfI/a8cFli9Oa2olu4qugfXuWP297lG+cQv/cMLprPCMvygG3mqfDs1Fh2Omo47aYxrznOpkDbyNWxLDC7AbCjXvlTmAEMpb02ZImmTmo3LdRhr7JpjlNKTpyhjbOv6TtiWqhtfuteZ53ptbnOIGN9SGMBQPtuIlV2JF8IISJJOoJCCFFJ5e0IWaw4aXgk9C+YX3Gl48Bo5x98HjuZLsp3XeM5Fv/f40mFgTf2AcgjtBuQVEaRDs201My48bRQh/ndTCNBFXpGrO05B5j/0aMheUYknO3nNXzOcQmHdJL7LLQJ1wc5M3zKdulGIX1GZfgbwH3RcUHkAxFCCDfpCAohxHGunuk/1cVO3ZhRhU9HOJqqG+l05fx7wBY4LUJlNTQjt1aztD+dvYjxsxYtkBVmew7rxIDXzzAWsadMJ+bSnKkM2fg8Rw/u9am/xOwcfLBV4NTV39hlq9mMWbF30kjlhCCi4HQwfP+sIsVp8319exjboxCJEEK4SEdQCCGOe/7flDckhw26TYRjqboG+miFddaUyhEYSK6OLWnTrDg3YSiUnXJ4kmVVgJrwo3MAZxU+4bVrpolijtnbc75P1ye1YBrP2S8GIFbZOdFY6bc9rXx/lfc3NlYq/sqyqOqP3jVRWSSXWidoxqZUu81gHdCRexbAPGcPWrzSkTllNja63vJNROMQQojSpCMohBDHOR1g2/14VcjC2JsiHE14LTc7ALBf1w9YJ0EVeo772ctfzxkqxTtBBmO0ZTEXW/7w2iwlzdjCCYZ357GD2u21uUoXw5UGYo9uCMCvzn4A6OPsV3lqwTTAd8MZ0xbaabwHVcOA15qorGq3X5lNeIZa1gAwyX6XV3qauEr83AghRKgdX789hBDiOPG6Y0zEnrU1pkvAa03VUTJ+Cd1Uy/CqeLrhOOvvgOv7AvjQMTKcAYWNvzWkMaV2Im2mjvJb7N1+6yW6U4N0deeI1H42IamJfnams8pMBeAL5wk+eQSVGfxU2mB8bzk1pO2VVZVNeK6y/MgQI/hE9EIIEU7SERRCiDDYoZtG5DkL/z0e65HNLDIDdwbT5tzAwi9ejkg81fGXZYDf8jMLn/Rbfk3R3fxp9i4351t5qSWqIxxTC33SKVRQr7U6CIC2+N8JM5w2mK0qfc9qnUoucWTGjed8y19eKThus36Jyj9czt2VN8/SP+i6HztO4cTCF0P6fH/+Yas4b+Dmx9LY8PjAsMcihBDSERRCiDCIJTJb9g868h1jLAuZbL+y3HqbMzMjEk91LDF6+y0/xfA/vfOdmOd4PeZFmpSaPlnWr7HhGTEsnqJaHQ4d3K/grgVTvc7LJnPXKvIdwScd44PKY1iaBZMeqiQnZNlpkSrEI5vDnIuDrptDPDsj9OFNRTo6t9LFsSHaYQgh6gDpCAohRBi0V5HdnfC72H+We/2oJfB6qZpiXYCNbf5hm1HlNosITydpu25W7TasKriOTyExvOwY6zmfa3pvOOIoyKEg3//OseHybsyz6Ep2BFurAz6jnh+XyiOoQzw1tI8Z/BTMSdbvvPIIRspmUxLXCyGiRzqCQggRBpdZfw1Lu9MXbufXtfs859vNJkHd19i+l6LCgoorBulY9hEO7t5WccVKOM2cG9L2AIpU8Bt6VMYllt9D1lZqwTT2lbP5TWbceCZZvvWcj7Is8bq+79Wz2frk4JDFE6zKdgTPt/zlU3ayZXmowvGR5iehfE1SqK085rjMp3yeswd/OPtEISIhRF0jHUEhhDiO3Pf5Sq59r2TKW1vjQFD3XZzzPjFPVn8Uq1j2C4Np/EZo36yebvp2FKqrsfNgyNvcvXWd186k1VGorUyPeYw9uhG5OtYrCX3pzVRilcPf7S7axCzz63yle1OWmmyz2YKWqvS6wNAmlK/pYpWDIcY6n/Jx9ge50n5fFCISQtQ10hEUQojjSGbc+GpNYVv67NlsWDqr2nEUOKufULysFI5VWGep2anCOqU7U03M4DrKlZH3YeX+/EvHU2x44Que3INDjLXE4OAPs68nCf1O3ZjehW/zjP2SgO1m63gADDS6zI6r68y2lYqxKio7IlhWR2OP17kzPrjR7VDYrWvGVOkbrL55BIcZqzjJWBGFaIQQdY10BIUQ4ji2VzeoVP303D859O0j1X7uIrNbSN9MZx05SFMq3jUy3dgEwGGdGLBOcWcKoLcjcGL3qrLqyuV+Kx1PsVssXxKr7J6Rvh7GNoYaa7zq9FZbaK58/0yKRwp/Nl27YvYxttLLyPSqc7F1dqVirIqqdgRL59ErzbSENo/gHhV4BLylnz/XaNm6ZhH7dm72nE+LeYIPYp6KYkRCiLpCOoJCCFHKjsN5IWnnXcfokLRTkebqSNB183QsAIus/ar93LZqf0jfTO9+5ZxK1W+oXKOHL5XaRMWfRDObLasWVDUsv/6wnVjtNv5m/cOnrIEqGRFtrQ7yTeyDXGH92ade8YYrA9T6asdRLapqbyH85dF7yTEW5QjdGlaAmcYpfsvHFZW/sVKktZ9xGo43T492GEKIOihqHUGlVKZSaqVSKkMptdhd1lAp9bNSaqP7/w1K1b9fKbVJKbVeKRWZd1hCiDrlq4xdnPRMaDYBySIhJO2E0lbd3H1U/WmdQy1rKq5UCSlF+yquVMbEor+zzWxebp2mHKbDp6OqGpZfS61pIW2vqtoZ+6P27Afs16JV8D9HizPL/9DgNuuX7N6ZyeYDFU8PDtacAHkpn7a+EbJnhMJWsxmLza7RDkMIUQdFe0TwFK11mta6+F/r+4BftdadgV/d5yilegCXAj2BM4BXlFK+iy6EEKIadq5bxJPWN0PSVmOyyCmo3BTCcOtpuHb5PNf+AwX26m3VX7y+LVRpC6abp1X6njdj/sXzMa+F5PmVka/iKq4UhGDzCH7vHOR1vks38hw7teIL5wlkmqHbCCgYOboe2hncz9DsBYtY99Z1FdZ78MuVjHzed6S0qs5w+m8r2A2WIqW9sa+ObZMjhKgpot0RLOs84D338XvA2FLl07XWhVrrrcAmYJDv7UIIUXUD9n/OOGtoRgQvtvzBfR+G7k1tKNnMfG54+EmycqreiYt1JwM/sGNjSGIqu9lJTdbbEZq0BMV5BEvvDurP/jKpJf5y9vIcW5QmnkIMQpuMvSIvx/wHdHAdwSP7dwSVTuUd2zO8Y3umuqF59DKjPHW2EsZaQp86RQghKhLNjqAGflJKLVFKTXKXNdNa7wFw/7+pu7wVsKPUvTvdZUIIETK2gkMhaytWORi57QW0Gdo36KkF00gtmFatNvJ1LFNjnuXQkeqv8Wsz7WQWf/1qtduZaHxV7TYi5eyiH0LaXu/Ct9lgBv6VdpX1J6/zsusLTzeWRGWUS+vgfrat9uCme7Y39nGqJaMaEXnraW4IWVvhcEz7H1me6RzI587qr0MVQoiKRLMjeILWOh04E7hZKTW8nLr+Pir2mUmhlJqklFqslFp84EDNmvohhKj50vPmhLS9CyxzsD/SmHlv3o7TUU4euErRVDffWr3iHHjV3P6/WNKS6ncEk90boITLRwu24XCGplOuQjyR75uYB8gnFoc2PBv6AEFP99ymm7LU7MTSHz9g03LXz/Bqs11IY/Qn2F1DGx6r2R2yaElUJZvjmLrkbc6N9jv5u/2maIQkhKhjotYR1Frvdv9/P/AFrqme+5RSLQDc/y9eCb8TaFPq9tbAbj9tvqG1HqC1HtCkSeTyEQkhRCAxysnQXVNZ8Wv1RvGKZcZNIDNuQrXaaKVcI5+WgqqPCK43W3uOU9mNGeR6sWjJ+Po/zPh9YVSefVT7bhzUv6Ck89zbyCSeQn4z+xHv7qRvM5syougFnrJfGrDdzWYLoCSPYPq8W+j0xRiyDh8gU0dgzWCwHyQEOXJYl/1ipnPkwB5ysg4zwsjgDCM6P6tCiLolKh1BpVSCUiqp+BgYBawCvgaudFe7EiieK/Q1cKlSKlYp1R7oDMi/kkKIkKporVZ1FBgJ1U7AXZMco+TPKlbZWfnH/6IYTcWetb1BzJFNUXl2feW7FnN6zONe552NXQwy1nmVDTVW01YF3hl0ttkHcO0e2t8oWauZ8lInxlhqzq/IaP3YZxqtK65UQ9RXx2jw327oF3oyNeYZXot5MdohCSHqgGiNCDYD5iilluPq0H2ntf4BeAo4XSm1ETjdfY7WejUwA1gD/ADcrHWQq9SFECJIt9tvBuB/jvJmqlfNY7/t5W+vzwt5uw/br6y4UiBVGKmZ/9/rYHKKV8cDoJDQ7KQZTk3zQtMR/Ms2pNptdDZ2+ZSV7jC2M/bzccwUxlt/C9jG6ZYl1Y6jOrQltuJKwO6kPhXWeckxlmVmJ58dUqvjR8vJIWsr3AYZro1tSk8NFkKIcItKR1BrvUVr3df91VNrPcVdfkhrPVJr3dn9/8Ol7pmite6ote6qtZ4ZjbiFELXbQPebsYuts4HQjhA+YXuL5tu/C1l76xf/Rn5uDpdZfgn6no3uDUkO6SQAtLXybzqHHPA/8lcY18hveU1iM0OzDnGh1X9+usoqTsFRVa3VQZ+ylxxjq9VmsH529g86obwZxJDgbdYvUWhust/hvw2nE4e9qDIhMsc4/jYXX2x2iXYIQog6pKaljxBCiKi50fqN13lSCDcwSTO2uLbcD5Gu357P2lfH+x1ZCqS4biOVA8DedQsq/dyAHY3jYdprJRKglydfhW8KsT/ljZLl6Vg+cowEYInZma3udYPhp9HO4Dpmpg5upCvN2MwLtv/6vbb26ZOxTqnc2v+LnN9Wqn5N0E3tqLiSEEKEiHQEhRAiTOzaEtb2m+euq7hSOTYcCl3C+1d/q14skaBC9Cuvp2NtSNopzsU4sOCVcutlldls5nXHGM9xvCokxT2ltL+xkdusn4cktoqcblmKdhQGVVdph2cTnIqcb/nLb3nPopVBx1ashxmaHJeR1Mnw2QdPCCHCRjqCQgjhNovQTPkrZlOhXcpcNidhSx14I5Fg5FtTKn3PYMN/h697QUa1YomEPSl9Q9LOeUWhHWm62DKr3CmB46y/e51fb/WeYny2Zb7nuL2xL6SxhUK9oiNReW5nc2tUnhusIzrRb/lBncxbjjMjHI0Qoi6SjqAQQriNYHG0Q/BxMDuPM5/5ni37jrL4m9dC2nZD+95K3zPf7O63/P9sH1U3nLBabHYhPzY06xhDPQn2H7YZNCQb8F6XutTsFNT9ZdeyphW8zkPV2UQoSEHnEcyp/mjxfxznBf3ncbxooI55nRcnmFdoHndcHo2QhBB1jHQEhRCiBls473dm5o1jzg+f4Di0LaRtty7aEtL2Fn7xks+oZU3xrXMIThUT7TA8PnV670wboxz87Ez3rEvdbLbgmqJ7ym1jnrMHAFa8R54z4q5nhLE8hNH6t3FfTlD19h6t/lrb5xyXcEHRo9VupyYrTjDfSOVwsWVWVGMRQtQN0hEUQgi3fxlXh63tLWZzrqrgjT2Aw17Eos//jdPh8CrXwC5HUkhjSux2aqXv+Zvlj4DXBi3/P9Yt+rk6IYXNZNv7NMyrOVMFL7LM9jpvrQ56dq0F6Gjs4ZOYx8ptY6HuBkA95btpy6mWjOoHWYHH3vksqHqdnN5pO6Y6RlX6WTdYvuY+68eVumeD0aHSz6kpnrW9Ee0QhBB1gHQEhRC1Tk6BnSnfraHQUbk1eo4Y15qdZSGcgvaLsx+pBdM4tehfGGgWvFwyZa/s6NmSbUf44u0nGbjiIRbNeBKAlGOuzsuVW//BRbufDVlcAHuzC9i0/1jFFUtpoQ6Xe92eX7n2Iql+/vaQtLPQ2j8k7ZRVNvF8V2NnufWjPWp0t3UGeUWOCuuts3T1Or/K+lPAutMcp/gtv882nRvK7OpbkZ+MEytVv6bZvbXmb8AkhDi+SUdQCFHrvPLjCn6cM59P51cugXgP01W/nxGaxOMAp1mW0Unt5AnrW7wT8xyDD30JuKZRqkcbsH9XySjVha/OZeOOPa6TLFeqh1DlvvPnvbmZnPavwCN8VaGN6uXGCyeLDs0uqX9Zh4aknUCCzS/Y0k+n/Bdnv1CHE9AwyxpOfS6In59KpO14wDHR63zT8r9gcuU3NQKYYwys0n01Rcv3Bkc7BCFELScdQSFErdP10M/Mjr2TJoeC3/xlwYxnOLtoZlji+SX2H4y3/gZArjufWuLaGQAc2FaSiuDXmLt4wOaa/mY3XBtHsGtpWGICeNX2Ih/bHg+6/u/zK/7z3HS0BucTrESHRJtmwATmeSo+VBH5VZxWorK2ms3IJbI5Dk84VjK6N+/tu1k152ufOi1zg0+38b7tSa/zpSsqv9Zx7YIfObh3B9c5Pqn0vTVNTkHoUrwIIURZ0hEUQtQ6LfJca62S84KfCjh4zZRwhePFcO85mV/gzqtmlOQa7Gi4RgPHFf2TRU0vAmBHTMeQx/CDcyCP2C8nSeUz1LIm6Pt2b6r4TXnbxcF3LCMv+I7gzDf/SdHjrf1e6+EMTR7BYk/bLw1J/fbGPs6zzA1FSEF7PqZkJ9uhO96k1y++u102UMFtKgMw3LKStQt+JOuQKw2GoSu3+dCaeTPpPvNvNH6tF1305krdWxP1nhx4Gq0QQlSXdASFELVWJQaAIqZ4Y4//Os5li9kcM7GFT515Zk9ybQ0BmLkz9DtdnmFZxIPWDyt9n0X7HyErrSHBv+mPtFe3t6mwzt7JHVn+9Ols3bETG/7Xv11Q5DvqVV2VmdJ5r216yJ8fTvt0g0rV7z7zb2x57RIAGhRUbl3nwYUzPMcd9I5K3VsTzYh5JNohCCFqMekICiFqLV1qBEhrTVZe4GlW7zjOiERIABzcux3q1ef/HFdz8MsHWP7bDK/rmXHj6XT0LwDeink+LDFYVOWncKbmLKuwTlN1lN2Z6yusFw2X5E/HdJa/gVBzDtI3fyEQ+nyBgdxrm05n5VoTWjx1+HhVNi0GQAKFlW7n1zzXhk2JRQcA17TXDLPiXUD/3B/nOa6BnwMFLbVgGvt1fQYZ6zmWfSTa4QghainpCAohai1V6q38m39uoe+jP7HzSJ7fuo86ruCmotvCHtMBnULWK6N4x/kgH8U8ySmOP+k7e6JPvfbZi1j01Sthj6e0g3u3s2PTymq1kaTyaTl1ELu2rGXBf65xdQonp7D6r+8wTc2gKb/w5lO3kbm2ZL1h6eNwOsuykG1Tyh95W2u25SdnfyZaviNGVW7X2eqop4r42dmfBFX5TlO0vTprM+/NzeQdxxnMcJzsde3g7m30MDIr3aZZ/PZEu16Dt51nMbao4mnH3YySEcQavFq1Qplx42mqjgKw7T/nUGB38vKvGyly1Mw8nUKI45N0BIUQtc6+ONfIweB1T3HkwB52bVnL5ow/udf6Mfv27fN7T2u1n+Yq9J+857lHeNaY7dijG9KAHA7jmw9wzZQTfMoaL3kx5PGUp/6rfWnzYeAt9wN1ov2Z8/FTDD74GRu+fRGAgnlvUORw0jF3KRML3qPJ9LPYuC+HhT99TOonI6sbetDam9vKva5RKCi3E6jDMNbUVB1loHF8pgv48Ic/+eSb77jG+gMzYh9j6bNne0ax9rx2Likq+J+bYuMsrs2VljQ4C4BbrV9wp/V/Fd53oWWO57gxRyv93JpoXX4Kn3/zDf1mXcnM336LdjhCiFpEOoJCiFpnVf2SjsWP/7mN3KkXcnnO29xo/Yb4bP+pIb6PuZ+HbB8AsNn0XbdXVb+ZrjyCZxU9SQt1GKsyseHbyehhX8UCsxsznSVb3v9uRiYVgDZN5k99AKsqf7RBFQTfUU4ucE11HHFwGgCJ2Zs4un87H8e4NuU5QhIr/jOOr/5YWMWoq+agTg54LevQPnoY2zjdsqTcNpZbeoc6LMA3j+Dx4I6im/gr7na+j33AU5ae+ydLf3Ht2Nm7kqOBHzpcf3fbGK4poUXK9UFKM3WU261fVHh/QZCpN44n2ToBI/8QJ1pWYxbU3DW4Qojjj3QEhRC1jqlK/mmzOAtIUAVYca8P1P4njCWrknx9xbt3hsLZlvmkqU1kxo33lKUZJbsZnlv4GGcVPgHA+45RrDZTPdfiqrC2KhgH3J2hzWYLHNpgzlt3MyTzvwBka1dqhAUvX8m8N271uq/0aEtFzrQs8jr/xUyn+VslHdvW6iAXWv5kiu2dKn0PVRVD4HWia39626dM+/l5+SXGf9LzuujFGP/Tl7MT2lW6rQsKJ/OI40oA5jh7ctljr9F8989edb7J2MXOI3l8MC+TPzceYNlPH3p2GAUopPZ1BK+2/kiTQ66/Tyn5rg1wth/K46JX5/LWn1s89bIL7CzYcigqMQohjk/WaAcghBCh1udIyZbrbY39tFKHWE8TV0EUthL9MvahgNeaqqMc1QkA/DfmJU+5aS9kvPX3sMTzmzOdS6yzPB3ek3a7OkBF2kIucSQDzv0bQjoFck2pDm40le7wl1UQ09Cn7MiBPTRs2tKrLJfw5hGsDXQVPmd+M+Z5Duj6HNApbNfN+NB5L5QZJL1t+lIaJsQxw34r23Qz+lkyWLuoByn/nAdQpWmox4ORh135ResVuTp617/7JxcffYdOu3dRMOBHYmLiuPb56STkbqPXw/eRECtv74QQFZN/KYQQtU6z/JIRt8HF667cAzvZu9YDp0c+qAD87Qp6TuHjfHPkwbA9Mw//O1MaaOaaPWjzxUvEKAcOLH7rVUXpTm7UTU5hx2VzaNPJe4pnbpzvlOANsz6i/bALaNa6JJ9jL2fwuRfD4TH7BP7P9pHfa8d0HImqIMIR+WpyJAMYXal7GqkcGrlzDo63+l8LtzXuMr4tGkxHyx464vog45A9FntRIRaLtdZPcyr+HOum/Nc5x/qr6+Rp1wcV/wOIgazC2/jzi9dptP5jejy8NCpxCiGOD7X930whhACgq8PVIRy8/J9RjqTEX86efstX6oq3ya+Oq60/+i23KpMLLXMYtPz/GGBsYIgR2sTpNUnMh+f5lP25NcunbMiax2n2Vjp7s1ydq0KHk7EFX4Y7vHIF6gQCNaITCN7Ts0PtbMsCr/ONuhW2J5piPOY7olvbOJVr6utA5/KAdQztYO2qZbQzd0YqLCHEcUo6gkKIWkfp8jc9ObzftZHJwk//xfxpri3pp9jHl3dLWMxwlmy1b+qSaZil1xOK8GjGIexOk8O5RZ6ynN0bA9Z/+Oknmf74Fdz4/iJkB/+K5cS1rLhSJa02/a87PIO5IX9WTZVpNmPagu3l1nns2zUYmGiU3zWuQghRTDqCQohap8uh8rdYb/hKD/ZsW8+gVY8wZMOz5GQd5k3n2fzP4ZsMO5z+XWqjDaMKCd4j4cvX/g9t1s6eT+d/ziT9sZ/Jyrez/VBeudNXX495kUsdX3HalqfpaoRnpOUnZ/+wtBsNeuufMDklpG2OK/I/mt9CHQ7pc2qyQ+vnkP/NP2jOwYB1jDVfcJ11JomqgDd/XcmCLYdwOE2WfPcWOzYuJ7/Iyb9+Wi85CYUQqNr6adGAAQP04sWRSVIshKhZPv+/MVxQwQ6Xvzj7cZplGQBfN7qa3/bU45+2D2misiMR4nHl/c4vccWEK0P+xr6m2HbVMt6Ys40pm8ZGNY4jOpEG6lhUY6hpDukkz7pB4dpN9UTL6krf97q+gOvV5xRpCy8Nm8d/ft/Eo+f15IqhqaEPUghRoyillmitB/i7JiOCQoha53dnWoV1ijuBAOceepcXY14Jaydwn65fYZ0MswMrzPZhi6HKjpY/Fe14125qv6h3AgHpBPoRqBPYv+DVCEdSM1SlEwhwvfocgBjlJHnB82TGjafJ/CfIe7gp+ye3Z/3i32ByilcqDiFE7XdcdQSVUmcopdYrpTYppe6LdjxCiJopVe0NSTuZZrOQtAOuhNgVWWW2p4+xNWTPDJVL9v+bdSsim/hdiED6FbyGFSebTd9dXkXFJpmfAHBm1ifEq0KacphW34wDYMMHt5Obc9Szjrose1EhptMZsViFEOF13HQElVIW4L/AmUAPYJxSqkd0oxKi9nGamn3ZNWPnwaoaa/krJO2kGpH9dPyy4u3go2SR2cVveayy0+3zmpNyQ9Rt+cSyIO4WTx5MUTUbzVae4+LdZgcenUnC8+1o+EoPzr//RZicwg9PXAyTU5g/7TFsTzQl45HB5OfmsGfbekynk6wjBwN2Dp0OB58/O4nsrLqzjlOI48lxs0ZQKTUUmKy1Hu0+vx9Aa/2kv/qyRrBqSm8KUfpnQxdvBW463eWlfm6UBas1cL4xrTVag2H4Jqc2TY1SoMKQ5NvhNLEYqsK2tWliur9vizU8qTW1aaKMmve5i8NehNUW4znP3Lye1A8GAbD52rV0bNMSbZpsO5DNlkN59EjMpUHTVsTGxbPvaC5JMZr4+ETPz41pmlisVrRpUlRUQGxc4MTbDnsRFosVZRgUOUyshsIwFNo0cTodGIYFw2Lxqqu1xrBYWPXXd/QceiZaa0wUhXnZOIoKSWnUjNVPnETPohVh/FMTIroetl/JI7b3oh2GEH5toznt8J6VkWk2Y/uIF4hbOY0sM5Yu591LUfZ+HA4HcfWbM/n7jUw+txcZf37H4HOuw8jeSWFeDkcKnLRs3oKmzVuze+s64hs2J7egiJZNGmO3F+HAQnysjeyjh0hITOFQvgObYRBj5pGXcxQdl8zhTUto3qE3R44eIbZRO3I2z6dZag8csSn8OXcufVrUY86BBE7qmELDxDgO7tpEh15D2bt9Iy3adUEZBqapPe9hnA4Hx/KLSE6sx6F9O6jfqDkOh53Y2HqgVMD3O+B6z+N0FOF02ImLT/SUB/t+JZDi91nadIbkfYzrd7q7TZTrHZ/WGArP72Vx/ChvjeDx1BG8CDhDa32d+/xyYLDW+hZ/9WtiR3DBlkPMn3o/E9WXaKD0X/cTzNfJJ4671Edcrn6AMtd7Oz8ADZONt7jImOUudb12udRjoP1NAP5leZmzjPnu+13X99GAE4v+gwbesj7LKUYGULJL4WazBSOLXEmtP4l5tCQBt9tyswPnFbm22P825gF6GZle1/fp+gwufIWTY9bzinraU57g/oRxUMF/2U8DFsbeRFN1lFwd57l2vv1xlpupfGe7n+7GDtf3o+MA2E1jxurniS86yKK4mzG1ooAYnBhoZfATQ5liXI9Sim+cNxFLERpFE44AcGnRg8w3e3CT5StusX6JgYmBqxObRxz9it5Ea/iP7SXOtsz3xJ2r4/idAdzPbaDge24lhWPuO12vyo/qRJ42rkMB3zsnYcXp+RPXKL4xTuXRvAu53fIZd9o+AyBfx2BisIyuXK8fAOB/6l6fX5hz6Mvf9d8B+E7d4fl+iv3EYB7UNwHwu7qBBPK9rn/FyUzR1wCwUF1JWdMYzYt6PM3t2/k19h6KtJU8FYeJQUO818jZtQWb8v9J75VF9/JezNNeZW85zuRpxzg2xl3hVb7E7MzlPEZ9cvlZ3QyU/HwA9Cl4k/ZqD1/FPuR131VF/2BqzDNeZb86+zGy1Pq+zWYLGRkQQog64APHaVxu/cVz/pFjJJrQz6Z4wj6OB2wfl1tnYMErLIq7yatss9mCJx3jeSvmebJIwMRCjC4iQRVwY9HtzDQHe9IDHSGJBrjWwA4reIndNOaF2NcZhXeezIPU5yz9bwB+UjfRSh2iQNsw3F20H8yB3Gq/DShJPZSnY1Hu68+YE/hQn0FHvYuvrPdS/E6m+D3iPx3XMcMcQZraxBcx3r+DAW4uuo3vzCHcYvmCu23/87yXKX4/dA4vclA14Bq+5Fq+AkqGCjSKs9Qr5Kt63KhncLH+0ef6GZa30MrgNvN9zjL/8LSrUeQTy8kFz9NW7WNWzN/JJ9Yrtg84i5f1JSRzjF/c7y1Ke01fwDucR3MO8rW6y+f6v/R4pjOaDuxkuvLdlfhxfQ1fczK92MQ76jGf6/frm/mVQQxiFf9Rz/KUvpKrb32IDk0SfepGU3kdwfAMf4SHv49JvHqxSqlJwCSAtm3bRiKmSmmWHEfTbkNYkeUeGVKuv4oAl7bugGnEUP/IcJYdK70zn6vONW1dG0jUOzySJbktPVc0CqcRw/Vt3AmoD57ForyupW5X2C3x3NyqEwBF+89jYUG657JWigJrCre37AzA0X0XM6+o9HQ4RW5MY+5s3gWlYN+eCeTYD7mfDYl7FzA/twUXpremg2Fl5YHzPXcmHVnFseQuXNCyI9NWZLMkfjgN40DbEuiw70eacpjR6Z05IbE9H2Vczs35r7MnoSdFia7pKvmWZMa1bIvpbMHPG86hQ8FqDjQeBNp0fTJVryvnNGqJqTXbdg7HYhahtElu1gqSzCx0fCOu6duefgeas6LoIvf3awGlMI1YbmnbyfXp26GxzMvrS8ft/2N7cjqOeo1xxnXiosat0Royd40ixswHrd0/cBpLfE/OatgcrWHLzhEY2onnczOtqZfQEzbBct2RfTSisT7M8uYXApAT25JxTV0/n3v3nEm246jXz4k9LpVxTVzXt+0ew15nrtd1Fd+FcY1c1zfuPAeLtntdj03owbiGrusrd5xPWSmJaYxr0BZV1IC85bGsaHouSjtBmww+9KWnXr6OIaPVOJRhZcjOt73aWJBwCvsKG7DA7Ob54GCzpQOxDjt2rOzUjWmtDnKIFBqRRZZKYfzAdlidBazc7Yqp0cFFNHbuw+7+Z+ig9t6R8jn7xRzws8HKm84xXh3BD52n8bDxgU+944mpFQdJoWkQ6wiFEKI2W2R2YaCxIcC1rlxOSUfwGHGsNTpxGSUdwQJtI065fi8uNrswoFRb85w9GGpZA7g250oztvh9zjyzp9f5SjOV3kYmq2P60LNoBRvMVvTr3gXcS7ozjbY0ch7gSvt9dFI7WdhgDNpaD0wHaJPknE10i7OzyBHL7LgzGH7sBzY0Pp3krPXk1mtBUkwKY1JboOwjWJnnnYOz0JLAuJau3+mr1p7AzlgwY5NBGaAMVEInbmvSGUPBhnmdyI1tSmFSO9d1oH2DIVydnEqCPYUle4tz1CpQCgX0ajiMpkmdSCpMYt6+69xvS5X7PSoMaXQCXRM7ErvrZPZv+ZUtzUfjefutYXTL9hRaEmlydABrsu2eDibugaYzWrXGrmJJOprG+mMOVJkBqNNbNUejiD3Shy25JlqXfKxuxwZ7oEk9xXcNrqaJ1fuD7/pJ6Yyr39brvUVpzZMHMy6lLXGO+qzc43u9Xf0BjEtqS4I9gZV7fa93bpDOuMS2pBTaWLnf93qvRn1pGt+WhgWw8sD5dGyQTlKczadeTXY8jQjK1FAhwsxhL8L5eEtilZ28e3YSn5AU7ZCqZOmUEaTbl1VcMUo2mq3obPjfjKGmKn4jJERNtqKGbrh0vFtodmWQsd6r7FrL47SyHeOwTuSSvOmkjPw7zdPPIiHWxtK1G5g2YzpXnTeKwTPHsHTwi3QcdBYpjUK3AZcQIji1ZWqoFdgAjAR2AYuA8Vprv3spS0dQiLrrq6ev5rz8z6MdRq1xQKfQ+OFM1KMNoh2KEOVaa7bxLDMQVTO72eUM3+eaZfF5yhU0PLycvvf9QvwzLVna/CLanH4LrTv18tQvcphk5dtpkuQ9bS+vyEF8zPE08UyI2qlWTA3VWjuUUrcAPwIW4J1AnUAhRN22Lq5PjesIHtTJND5Ok9U3UVlQAzc7EnXX2MJHeT/mKZJVntc6YekElm/BsDcYPHeSV9md9V/ihaO3katjSXhkP8OBDUsvolm77lxQegTvkYMM9dNmjNXw6QQC0gkU4jhwXP1m11p/r7XuorXuqLWeEu14hBA1Uwuz5iVFDqYTmKd930yF0+IA6SKKzXG61skc0/UiEU7E/eAcCMDaM2dEOZLaJTfMP8fvOM7gy9iHSFZ5ANxov4MsHXiHYlEipX0/AL5zDmLvLZvJvDqDF+64kvmtryVz9FRPvS7pI2QapxB1wHHVERRCiGA0cwbeRXSPbsjtRTcFvB5N8aowos8bEGBDhmJDjTX8NPo3LP/YCLh2EK5NvnEOZe5lm+k+eDQLut8f7XBqjYQw/xwn2byXtAwwNvCL2T+szzwe7dKNANdmVBn1hgDQpUNH5l2+hZEP/UDzxo1JbefaiG7Idf+i57CzoharECI6pCMohKh1cmKb+5QtrzcYgH3Dn+Tm2x9gUZprUsG81tfwi7NfROMD+Fvh//Gg/eqIP7cyLErTxpZNPfemQRvM1lGOKLTuvepChnVqDMDgS+4L6p75yWeEM6SgPGC/NtohRFUnvKd/Xmv5ngstf/rUO1BmJ+LaYoHZLeC1nFKj9ztUS84tfIxfzppFt1s/Y9cVczEsFoZ2bEScTXLBCSGkIyiEqIXMpr18yuwqBnAl+ejSLImBY2+ByVkMve4FMrVvxzHc1up2rKiBI2wvJt7pda4wPccXW2dHOpywatslrdL3HO0+vuJKlbTSTK1U/Sdsb1dcKcpOL3yGme6pt6HWQOV4nQfKI9pEZYXl+dHWhKMBryWpku31i4bdyddP3saowWnExSfSqkPPgPcJIeomWckrhKh1kgtL3hi+5jibnboJe5qM4/f1+3mzhe+b02Fx28ARufjSC15jZdx1kXtgJdxx92SY/ILfaxn1hpCWPz+yAYWJ/YH9VCbb08Lej2DEJeBwOkMeS21My/HW3Zexb3U7+O2SkLddaMSDCUd1Ah86TyM9OZtheb+H/Dk11cFG/elw5LsK61nrt4lANEKI45mMCAohap2UwpIcfX3VFs6xzEMrAxPDkyS3tJwGPSIZHnlEdlOYytpstig5USW/JgpaDYtCNKG1dOh/WDfmM2wxwb0GM079g4V9H2PQhXcwYMxE0nrKqEow2jVKoCi2YVjazra40pisG/g4F93zBr0mvc26sz5lTOEU3nOcHpZn1gSfOU9k8cDn6DPxDeZ3vReADx0j2Wy2YNcVrg9o5qXe6KlvdeZFJU4hxPFDOoJCiFptqGUNg411jMqaQWbceBKPrPGp0/ikyK65WhdX89YGLqx/FvObXAxAfXXMU27GJHuO+/8tuHV0pWUTz7oxn1U/wBBJH3053Qae5vfagkZjsWsL89rf7Cn72/A0Bp1/m+e8SQsZZQlWXL2q7+R5euEzpBZ85Pfa/ORR7NUNKEhOpXlKHMn1G9Ft0OmcOHwkDztq3t+tUMkf8woDxkwkLj6RIeMegMlZPGlMYmTR87Tq0N011f2qp1hqdgIgLX1IlCMWQtR00hEUQtQ6O5PSAPiy1389Zd0LMgCIK/BNLdGxzzCYHP71RGvMdmF/RpVMzmLQHR8z5Oa3ANjS736m2MfzoWMkloTGnmrBjqKVljx5D90GnsbPznSv8tnO3hykfrXCDrXBt76H7ZHDDL3yiYB1rNaYCEZU8y1zdzpKK17zOKBPL95PvKZK7b48vj9rHj3DZ6fa3VcuIK73+Qwp/C/123v/TN1/ZncynxpTpecdDy4b4vvvx+/3jOC72070Kkt/dAlMziImNi5SoQkhjlPSERRC1DqmYfP836kVTu07HTQadugmAa89aR9Hn4I3S+pOCN/GLAd0crnXB469mSvvfp59w5+kS/u2VXpG2Y7f6ZalXufDH5vDxqFPVantSMi5cyvZd2zxKbdYZWl9ac84LuFR++We87uKbuAue8n0xCvu9r/eNJBtZlMA4pq0Jz7GSl+j5DU4SH1atu/GtSe256c7h5PWpn71gj9OzHQOZN3Zn/u91jQpjp4ta+fuqEKI8JOOoBCi1mlouHbOq2/Jx37vTuz37qTe6Q+yj0ak9vM/LTASRlsW86j9chanP+1zzYKT1yae6jlv07lv2OK43X5LhXVaN4jnrlFdUX7WVFbk+qI7OKST2asb+L3+aYOJABTGt/B7vSZISmlIcv1G0Q6jxruwTS5j6y3znE+YcDVfPTKxyu21M/YDYNjq+Vyz4NqoxzBcO//WFf3//indBoyMdhhCiFpIOoJCiFrnlPOuZEHP/+PkMZcRF59IXHwiXdJPptnkLaQ0aFxxA2FkxcGAc29gUMF/udc+kTztmm75D9sMhnWMTGwTLL+Qq8O3Yc1NN97Jkt4PMdLxkqdsdUxvz3GfE13T9wzD9SvIrCEjttFS2e//HvukMEVSeamF6zBtiZ7zOGWnXkz1c9RZHMd8yqyR3Nq3BmnaoH60QxBC1FLSERRC1DpWWwyDL767Rk7je8D2MQBXjh7CXt2QeFXodf30xM/oWjAVgHcdo8MSwxjLQhLKPDdUPnacQt829Xn2kv6snnKup7zL3b8CkKdj6dL/FACaxhQBYCgdlliOF5X9/p+1vRGmSCovz0ii7dXvYNeuzl/DxNCsS7Pac3zKtungRpDntbqKtZauIYlDCCFqM+kICiFEFNx8SifOa7jdp/yLW0fw14NnARDf6YSwxrBbNWPzBTND2mar9DP8lttiYjm/8BFGF5WsC+w28DTWjJ7Of+vdENIYwm2WM/TTduc5e7DQrH7n5UsV2anPO+t1oWHTVhj/t589Vy+kedvOIWnXYvh+iDPTHBzUvUMn/psO98wKSRxCCFGbSUdQCCGipGtRSSqLIveISmKslcaJrmmbqTlL/d4XKi0f3uDaMbUS8iqYUpoQG3gU1tlqANeefYpXWY+hZ7IltlulYoi2/ef6T2tQHUMtaxhkrK92OweN8OTuC0TjmtZqsVpp0S50o3CGezR/9aiP2TD2O4YXvsD6NhcHfX9sXMWpK1aY7ascX2V96wyuE1vWwr6PhTgSIYQoUfPmTQkhRB2h3RuxzOtwGx1HXkPTMteVdob8mT87+3O6ZUmV7y87ldVHOZvLfH3LiX7Lz+2WCPOrHFLE/W1gG/gu2lEEoCL7+W77vJVhaddwjwj2HOYaHX+1aW/aNUoI6TP6GFtD2l55zrYsqPQ9z6fcz12lclgKIUSoyYigEEJEiKkVXzuHes6PGK5dKet1PommrXxHJxqcFPpNQarTCYSS7f1DKcFxJORtHg/mm935y9kzpG2e6vwrpO1VZEPiwLC0qwzvDWd6tkwhsZzR5toowcyNdghCiFpOOoJCCBEh63RbMkol4F4f6+oEFMW38lu/c7/hYUl0n6tj+dE5oEr3NlLZ5V4/llz5NWLNulZt2tzxYFLRnQGvXVr0fyzV1V9TN81RMt12S/3KTfWtLqeyhaytBWY3RhQ+z4jC5zHq1Z30EKV9qEvW2J5c8GsUIxFC1AXSERRCiAjpYWwjh5L8aMWJ7g1CPwW0PAmqEEXVdupMVAUBr3UqeB9b8x6VbrNN574UaBuvO8bwumNMleIqzwazFS85xvKRI/K52E4xMgJem2T5hlutX1b7Gd+Yw8jSrjVxJ056kW2X/l7tNoPVvGBzper/4uwX8NpgYx191FZyE1OJj42pbmjHJSfVT70hhBDBko6gEEKESY+Cd3zKOqo9nuOT/3Yb17b8gl7du0cyLABGVXGK6LIE/+v8AP4zYSDDOlUtF+Ijjis401jI9dbQL75brdvTgGM0UL4pCaoqtWAaC8yKN7kZZ/XtlBWnWihOJfI/x3AAsnXFG5z483HMFPZq1yYxhXYH7bqlV6mdqmiUklhxpVL6GxvLvf6i7b8s+udpWIy6mVuyk5npOT6mKvdnK4QQlSUdQSGECJM1cdf4lN1g/cZz3K1VY96edCpxMaGbXhdu/e4J3FEb1TO4PG/+3HrPFNoaB6p8f3nmNrmEHsY2+hhbQtZmR7WLwca6oOr+y36R1/kM5wiv8yJsdC2Yyn3266ocTzu1jxMK/g2W8nd1DaUfWt7EoEsfrNQ9DZRvovjS6lpOyXztPfL5nTmEB+zXArAsLjzrL4UQoph0BIUQwm1+pzvYS9VGtI4385yVn8JZEaMaozgt69eruFIVaVwjUa3VwZC1+WvsPUHXneoc7TlOLZiGDQcbzZJ1oROsv3K15Qcut/xS5XgKieG1W84nJSFyHcGGTVpgWCqeyvim46wIRHN8qqeKvM5HxqzhF6drRLc4NYcQQoSLdASFEMJtyGWPcOTMV8LWfp6OZf3ZX4St/cowq/Em8+gt1c93F05fOE/wOj8n7/MoReLyacxkAGY4TgZgjGU+nY1dXnXus01nqGVN2VvLNdM5kM+drqm6Bia9W6dUP9hKUDq40bvzrXMByNHh6+wfz+Z3KflQoRtbWBh3MwDxsmuoECLMpCMohBClqDB+Cv9z18l0HXBq2NqvjBMsq6t8b/3GzUMYSegtKrN2L6Yo9DuvViS7VKeni7vT9zfrH2TGjSeholyM5SjeYAjgTvtNTLFPAMCC6VVvixn+1yjYHUPtuOolqXzAdzpkaVk6dLkCl5Xaobcm6znmJlbEDaBIWzhwwiOe8ixL/egFJYSoE6QjKIQQpThjQzeqknHiayw0u3rOcy1Va3u+dSCmDl0HNcPsyPyu94asPYAv+74e0vaq4wnb217nQ82lEY+hHkUV1vnKOYw5lcwjuF2X5HGcYPmVcyzzAJilvTeIaRjCjXECyU7qEFQ9x2VfMK/llZ7zstMhiy03O/BwzF0hiQ3gW+eQkLUVTkkpDelz36/EPHKY3iMuLik3w/8aCiHqtoh3BJVSk5VSu5RSGe6vs0pdu18ptUkptV4pNbpUeX+l1Er3tZeUUjJxXggRFkUNQjeKkHbaOAYZJdMoE+yHqtTOkAd/Ifu2DZW652n7pQGvbWp7MUPGPVClWAIxOgyvdhuDC/5DoQ590vDPOYW/nD29OuXhZlOulCDXFQXu2Nxuv4VVOrjOVLH2xj7P8f/ZPmSy7X2mOkbxrfbOH1hf1ZxphW069abfZU+UWye1YBrnFT3OAiMtZM8tvTFTTfWt0zuHpmGUvC0bVDA30uEIIeqYaI0IvqC1TnN/fQ+glOoBXAr0BM4AXlFKFa9CfxWYBHR2f53hp00hhKg2ZYQnj9ey+BM4adSFVb5fB7EbZOkk8ffapges17lj9ZOYf+UcRq4uiclWULVObmn7aMgsM63a7ZRV0KAb05wj+cBxesjbrshbMc8HvPag9YOQdFbmmL3ZUGrzmUjYYjanZ58BFVd0U+4OzhLT/8/eR7YpvGd7ipOcC0ISH0ATVbkpwcvNynXKQ+GrMutZlWFw+CbXWtHcvldFPB4hRN1Sk6aGngdM11oXaq23ApuAQUqpFkCy1nqe1loD7wNjoxinEKIWq3fENYJXpEPbIez3j+9p2DS8b9avt/89qHrNOwdO6h2sEfd/zXunlIxYNNlf/dGL123/YrRlcbXbKauxfQ8jLUs51xK6EZbUgmksreYatOusMwH43jmIbB3PdrOJTx1/I6THdJzX6OZbMc9zhgpdByoYHYy9tGoa/A67SrnebgTKI3iCZTUnW1Zwt+PNkMRXFX2rmF4kW8ez2ax66pSyGjZtBZOzGHD2pJC1KYQQ/kSrI3iLUmqFUuodpVQDd1krYEepOjvdZa3cx2XLhRAi5AzTtX4pxj21r7oquwYsINNeYZXMuPEVtzM5i2atO1Y7nJR4GzeNKOkIKaqf/y0cnUCAQ81PoqfKpLexNWRtpqlNpBubgqr7T7t3Psl3HaM5qJM951acDCx8hScdvq9fLnE+ZRt0azaZrdh9XQb7rnOtf/y7ZUZlwo+40lMea5ts4ulo7KnSvacZkV+/KoQQxcLyL7NS6hel1Co/X+fhmubZEUgD9gDF82b8rfvT5ZT7e+4kpdRipdTiAwfCk5hYCFG7hXoJ8t32GxhZ+Gy120lISAyq3tuOMyM6TbB4ql9C85q7Q6NWiq7GTpqrIyFr88vYh4Ku+4U7xQO4RhKTVD4FlOycOcqyhPVxV/Gk7S2fe1ebqT5l6cYmxlt/o0nTljRt2R6o+YnYDcMa1PrPLc3PjEA0oVWd/JSXWGeFLhAhhKik0K/KB7TWpwVTTyn1JvCt+3Qn0KbU5dbAbnd5az/l/p77BvAGwIABA2r2b0UhRM2kQvv52Cs3ncO+rIJqtxMTG8faM2fQfebfyq13rXu6YVnfOgczx+zNU9WOxNtysyP9jY10GxjUP/sRMcNxMn+z/uE5b567LorRwOzYOwDXuspYihhlLCZZ5fnU87fBy0mWVQHbVUqhDIM1tl4U9J9IesCa0acMxR7diFS1L2CdY3/PZFBCcsDrlbXA7MZgI7qvvT9HdCIN1LFohyGEEFHZNbT0RPrzgeLfcl8DlyqlYpVS7XFtCrNQa70HyFFKDXHvFnoF8FVEgxZC1BkqQEfwMXe+topkms28ztPbNuDM3qFZP9R98OiKKwXw34YP0Pvc20ISR2kGJgU6uHxykbJOt/U6j09IYtP537P+7C8iFkPp0a/GKhuA8yxzWR93ld9OYLCWmx2Y6+wBlPys9vjnX6SfcZVXvY1hHhXeZjatuFIpSilSjcCdQIDE5AYYltCtzX3Ufjn32GveOjvpBAohaoqwjAhW4BmlVBqu6Z2ZwPUAWuvVSqkZwBrAAdystS5epHMjMBWoB8x0fwkhRMjp2CS/5f9n+yio++1Y+bfjAk4yVtSoEZqPruhFw0bBb+4RrKusP4W8zep6yPaB53jlKe8y6MTzQtrBCEasclRY5w3HGLqp7Qy3rAy63WbqCF/1fZX2AzrQwhr4V3gbtT/oNqtiD41oF8L2XnGcy00hbA/ggWsvZeW3r8DREDcshBC1RMRHBLXWl2ute2ut+2itz3WP+BVfm6K17qi17qq1nlmqfLHWupf72i3u3UOFECLknEmtuaHoDjLMjj5J3I/oitfpWa0WmnKElqr66RSqo1eB93oz0171Uajy2EO4u2qfgjcYU1h+vrnK6n3yBRHvBAbrCccEtulmfq+V3WCmWHN1hDa5q2nRrvyciHGq4s2FquMdR+iyOL3sGMszjsB5L6vqhE6N6dqp+hsjBavsvxdlTXWM8in7zHlSuMIRQogK1d5tvIQQogqUYfCDOYhvnUP4wRzodW1A4avBtICBRvvd5yq8Snf+VsVd53UtJi4hLM88cNVcVox4JyRtZZNIFuGJsyZ62fYSl1t/8SnfajajZZkNSEpPv22QH7rdT6vqEsusSt9TGGAK8ZWWH5lqe7p6AQVgWusFXfdDx8hKtf2I/XKv8+cc5a/f7d7Ce/3jArObdASFEFElHUEhhCjFemQLmXHjedD2EaMM73QGn8U8TJ72n9h9huNkAH6zncwl1lm0UIfDHmtZx4gPeC0ppWFYntmyfTf6jLgwJG29b3uSObG3h6StcPvVWf1cjOdY5gOuDsEBncxasw3bzKa0N/Zxs/VrAFaYrl1B33aeyRS7K72EMkOT2qQ6RlqWVfqeWD+jlI/YLydZ5TPCsjwUYfmwOoIfCb/M+mvQdXfpRuxrdw7gWo+51mzLP2yfBKyfabTlaExzoCRHaSOyaUbodrIVQojKko6gEEKUcmhfSTpTqzK9rqUZW4hXhX7vi3G/yc03AnfGQqE4kfgv3R5jQYr3VvuZceMDJrY2zZo/o74ya+WCMaTg5ZC2V1qKnx0+A7ml6Fav8zcdZ3ml+LDhYHThM7zuOIe/zF5eddsoVyqkm61fc4/V3dHQ0e8Ihsq7zvCmi4grDM8U7VbqEE9c0BeAuWYPuhvby61/zNaQvfFdgJIcpZ2M3ZxpWRiW+IQQIhjSERRCiFJMFdwOmKcWPud13rhxM0YUPk+joRPYc/VCNpz7dTjC44BOAaBhShK6nu8o3xyzl2dXydK0WfHmJbXN/LhbK65URQOMDUHX/dns7zlOLZhGA3WMJirLU5ZubGJp3A08apvKhZbZXvfu1o08x8UdCKW9P6A4XmTreJ91dJ/FPBzWZxbGNAhb2/UbN2fvtUto5N4VtjzfJl4Mput1ez/hak/5KMuSsMUnhBAVkY6gEEKUYmj/m2z823G+13nzMlM/bTYrs568jnHD+9CiXVe6pJ8clvh6jX+KzZb2dBp6LvvifZO4X2n9mWGWNV5le65eiNUW41P3ePaEfRw/Ogf4HfX72jk0ChEFtj7uKgB+dvanIdmMNJb6TSGQrPJ8dhvtaWzzqbc1oW9Y4gy3ZJXnk/i+v7ExrM/MTWjjUxbK1BrN23TibMuCgNe7FkylfcGHrKw3AJvpyidaL87/9HIhhIg06QgKIUQpSXG+Hab/OM7jtzJrwqbFeO9uuTFpSFjjKtaue386/l8GyfUbkWereN3f/CYXV7jD5PHoAdvHxFPAxzGP+1wrO72ypjjdsoSlcTdUK4/cTUW3sT2x4o7gerN1lZ8RjHWmbwerJiq7ZdMNRXdwrf1uUgum8WTzF/iyzb0+98x29map6fshS1Wsj7uK+60f06FwHZ7BUKurI1ikrWy75LeQPEcIIapCOoJCCFFKi06+b7JvsX7FV7EPRSGa8sXbA280kaXj+fPMnxhy81sB6xzvTrKson2ZJOWLBzzL07Y3w/7s1Wb1s+g9Zp/A707fn7fFZpeAO2w2HXIp1581rMK2uxo7qx1feXbq0Oak/K/j3JC2V6zh0VWe45WnTuW1mBf5l+1VXra9RGrbdnTs7rvpz3DLSiyEbvrtJOt3jM35mCb5rtHdJs3asKDbfeTfvo523ftXcLcQQoSPdASFEKIUHZPIVMcov5uujC18NOB9Skd+DV6/IaeQq+P8vinvW/gWLTv0jHhM1dG1YCqnFD5fpXtDsYtnZWzWLavdxtvOMRwm2af81qJbedhxpU/5CrM9k8/tSUp8cOtYw2l6p2dD1tYD9mt5Ngx5BAFy40tep97DXdO7BxgbOMcyn9SDs+g97ExWnvo+x3Sc1319jS2Vf1aAHYUB4sx8UuyuDy3q2Q8x+NL7SWnYpNLPEEKIUJKOoBBClKIsMUx2XMVzjr/xtsN7R8MM3YkxDv9vgHUU/jlt2yWNhEf2kaPj2WC2on3Bh55rKyePomOTxIjHVB2PXTgARxX/HD3pOlTJZMBDOikUYfnVgJxqt/FJzKNcaPnTp/xR21R6q5JcgRlmR/509mJtg1Oq/cxQeevKgRVXKmOv9r9xyxO2t5lm853iGwoOqysv5bVFdwWs03v4eSF51u32W8q93vXSJ1lY/yz6nH1zSJ4nhBDVZY12AEIIUaOYdp63vUJ7tZd0YxOmVp4NLjLjxvNevSvYaO9MZ4f3Jhexzqqv+6qu4q3rmyTVA/deN0lx0R81qqy/DWxDyoH6UGpH/VXWnvRyrK7w3h7uTVWK3/gD9C98ncwQx1gsl+ATlQcy2FgHwCazJTHYOUgKcdg5vdROkvOcPViku3Dro++ijOP7s9s4inzKbiq6jVdiXvLZ4ChUbHbXjp5vxzwPPMSSxBE4rfEMOvo9iakDPPW+dw7mb9Y/gm73gE6meDzv/MJHsGPh0vRm4P5RXWB287y+xeo3bs6gOz6uzrcjhBAhdXz/VhFCiBBTjnwutMwh3dgE4LPL4QlFf/Fz7Gif+9oeC09C7GDsn5jBvuuWsvCfp/GkfRyP2C+PWizVVf9Y1XeR/LfjArLrl0yH7aTCt06uqQo+EfiVRd4bkrzpOIsFZjfPeaLKZ7z9n3ziPIUturlX3R5GJrdZvzzuO4EAhy76nNdirvIq+94M7yZL9Qr3e533v/srBt3xMQdvWOU1EtjR2F2pdpuUShmxTHdmle5Akv2gp2ywsc5r91qtym5bI4QQ0Xf8/2YRQogQUhW8YVNofow/i74Fb3iVx3Y/I5xhlatpq/Y0a90RgGVtrmRzxyuiFkv1ef/5z7MNDvrOFxwXURhXsu7ql9h/hCyqsoo/KAAYXPCfcuv+Zbo6p06tSC2YRgq5DFDrPdebqyPMib2Df1o/8klFkIv32rXjWcfeQ3DEe6+LmxN7W1ifabel+C1v3Nx719PqpLH4wPYE/7W9SNNc79yS51rmcWvRLSwyu/BV0rgqty+EEOEiHUEhhCglNi7epyxb12Oy3dW5Upgkm9n0KbOZRNppNeON3owbhvL+NYOiHUbImBbvDTg+GPYjXzW4ksEF/6FrwVQ6F7zvuZYZN57E7I1cWvRgRGO83fp5udc3xbl+duaaPWmj9nGqZRmWMiPN4MqzV1bLMvkqj3cJOtfrvLU6GKBmaOTHNQ2q3sLek5ljKfl7s91swrKhLwV170mWVYyxLORAfEefa7+a6Vxc9DBr4yK7mZEQQgRD1ggKIUQpMbFxHLl5HQ3+WzJ1L1nls8DsDrjGq/6Z9QjdYtZ6rq8x29Ej0oHWWt4jgomxVii1/PLyUUNg1BCG5RRyJK/IVfvVkuvJOZtoSDaRcm3RXe71ZxU7ybKKPy13hjkil/Vm67CnkKiKQhXZZOpGkGkgBl14J/NTh8M3p/KDcyCzzT48MfpKmOd/xDJb1/PZ77XQ6rs50Zq4a/ifYzgriy4Ggh/dFkKISJARQSGEKKNBkxYsNzt4lc2MvR+Ag6qhz3qf4o1KRPUdaJDmdZ5vJPit1yQpli7NkujcLIllpZJ/KxSvxAQ3klMd3zoHs9FsRX1yK64cwG1FN/OzMx2H9v5VPM/Zg/26frXiq4mdQIAkp28n/ZiO42XH2LA8Lzlna8WVius6DgFwhmUR7dRewLUpTGlP2MexwWxFssr3lO2hCRutnYm3H/Xb7sXW2ZyXI5vECCFqHukICiGEH/PN7j5JvU8vfIZn4u+i7KiVCJ1CWwNec5wNwJfOYWj3n3WhtvGz03/y7fOLHuUK94YsLXudFJlAgc7GLp6Pea3K939tnoAdK1blPWp1l/0GnnX8rbrh1UhphYsAmNfuRtbaXGsnn3ZcyvNh+n5zElODrtt94GnM73ovW81mXGCZA/j+Tb/d+jldjF1eZS0mb6Lzg4tpmJ8ZsG2btgcdhxBCRIp0BIUQwo9FZjfed56OXVs8ZRt1a3IM3wTgm8zqJxcXLhazgPruuaBjLXPpnzsbgJvttzHR7j8XXGt1gCM6CSZn0bxtZ0/5BrNV2OJUCSVrz+Z3qNqGJ7/H3MlZloU+5W9cPYShJ43ynK83W1ep/ZqoIO0qADqfeTNHU1zTrR+zTeXjMOURVLGu6Zq3FpWf4w9AGQZDxj1Ae2MfTVQWAI2V9whmgioMeP/exMATxHOb+f8QQwghokk6gkII4Ud3tY2J1u+xKaenLDNuPNfmveOTPF7LCGHIxBcd5FLrLAAyjbYUtXRt4BGLnbZqn997vop5kG9ifTeIGVX0bNjiPOsf77PHnUmu7UkTqtRGe8P1/Ww3m7DebM0cZ08WmV1okBhPfKxrNPo3Zxq/mZXfaGRG6qNViikY280mFVcKoP9Z18LkLBo3b8Osppd7UmsMDVMewUT31N0RDau2Kc2q0z8kS/tuIHVYJ/qUFVlKymY7e3uOM056ncFXPFGl5wshRDhJR1AIIfzwt4MjwEDHEn5KGEO+jvGUdS4zVUxUXf0c1zb+i5JOo8U/FjB4/EPsvmoh/415idmx/jdaaaRy/JYPNSpORF9VyjAouPgjFjQ6z2sU0p+xhd6dstcdY5jpHOg5b6aOcrv9Fn4wB5Gr62HaEokrcuUpHGSsY6Llu0rHV9/mqPQ9wdqoQzNCmW1txB9m35C0FUjjRo0AaNW4UZXu73XCOaT4+begoTrmU5ZoP+A5Hm5ZyZfOYQA06dgfw2LxqS+EENEmHUEhhPBjovX7AFc08+qNIK2wJI/gRkunAHVF5blGV01bPLFx8SjDoGVq1yq19HHMlFAG5qN9z8EMvvV9DIuFEYWBdw5drjuQo+tRqG2kFkwjmTzOtCzyXI9Vdn6IvY+/W//HCMtylHbitLryB1owfdYQBiPG7r9zXBUzHCd7necTE6Bm5XTJmsv6WFdqjcM+e3CGRvseA9lx2RwGXf5YldtYaaYGVa9tm7ae4/md7+KNhOsZXfgUzoRmVX62EEKEk3QEhRCiAh86RnJ+4SNsMVLJHfk0jcwDnGosA+BLfTKd/29JlCOs27Zc9BOL+j3pOT+7MDzrzcrTR20JeG1r3GUkqXxW6VR6qS2cZvH/81I8yqTyDlHcIa6niqoUz4HEqnWey1pntuFv1j+8ymIJzcYnPbNnE6scLOz1EA0eCt/Ou2069a7UiNz3zkFe60t/NdN96uiHjviU9R5+Ptl3bIHJWQyZ8BBFxHBYJ6EMeaslhKiZJI+gEEJUIEnls0x3psNDywG4+Y/h9IxxHZ/O/GiGVutoZXH/P/g3zx16DaZDr5Icbd2N7SGPqyIvxfy3wjr9jY1862ctY1lKO0nIq176B9909VXTzdjhU5YaYK1mpWnXSKdSlhrVWfrEeQopHKM4CUkCBV7XpzpGcVWAeJPrl0xB/bv9Dc6K+51d+ScBvmsKhRAi2mrOv7xCCFGDzHWW7AB4nmUumXHjPeel8wi+p8+KaFy13aEUV0qBjYkDK6gZ2LO2NyquVANcWvQgM50DydXeSdY1GqsZeHfKYLTIWVWt+8sTqjWx8f0vBaB535EhaS9Ubrv+Rs67/HbPeelp4o/ZL2Oy46qg2kkzXRvgKLv/9cZCCBFtYesIKqUuVkqtVkqZSqkBZa7dr5TapJRar5QaXaq8v1JqpfvaS0q53m0ppWKVUp+4yxcopVLDFbcQQgAs0oGn1h1LKblWqGViRSgVxDbmeftF7I9p51U+19mDT53DoxRVaK2O6c3bXd9kvtmDOIp8UhJoraq9E23nkVexSzXja+fQarUTTr1OOg8mZ9GmU++KK0dQ/3YNGNm9ZF3fZ86S3JT/Z/uQv1tnBNlSqMZlhRAiPMI5IrgKuACYXbpQKdUDuBToCZwBvKKUKp68/yowCejs/jrDXX4tcERr3Ql4AXg6jHELIQQ7G53Ao/bLcWrfN+T9r3uZVad/BMAwtTLSodVqNmc+XY2dxGjv6Xjj7Q9yt/2GSrU1zxk4r1s0HUvqSMc2zVkTezWnWJb7XDdtCWTX7wZAvo6pUrqG5m070+rhDfzorPrIqnDJLpM+4jbrl0HdV3jRhyxoeC7N23YJQ1RCCFF9YfsoW2u9FkApnzdR5wHTtdaFwFal1CZgkFIqE0jWWs9z3/c+MBaY6b5nsvv+T4H/KKWU1lo+bhNChMWD11/F5oPHsLzzAQDL6w2meKN7W0wsPYeeBT+DbpEWtRhro7iiQ5xumc+Hhd5Tbn++czj1Yiq3Bf84+4NkhjC20NEkZW8k3j0SuF/XZ5duzEGdgg0H7S02T80/zd5s0S2oXBe4xABjPXk61vOsUNhiNqdDyFqr+YYYVctx2L7nYNr3HFxxRSGEiJJorBFsBZRefb7TXdbKfVy23OserbUDyAKqlhRICCGCkBJvI71tA89533t/8rquDAP90BEGX/9qpEOr1VJyNgHQ5dhCr/LOzZJo3cA3sXd5fvl7zZhKOrKwJLH9AZ3CquQRUGoznKbqKI/bJzDf7E6CysdE0SzFtblIb2Mr4y2/VvnZsRSFtBMIsFW3CGl7NV13PxvmCCFEbVCtjqBS6hel1Co/X+eVd5ufMl1OeXn3lI1nklJqsVJq8YEDB/zcIoQQlfeZ80S/5cowatRuh7VL9SZ8fOY8kU5Nk0IUS8UGFrwS8Npm3YpduhF5OpaBha9iTz3ZZ7bMZ7GPcIP1GwYaG1Cmg15pg9h8wUwyzeYkq/wqxzXe+nuV7y32muMcr/PlZsdqt3k8WWZKnlAhRO1UrXcwWuvTtNa9/Hx9Vc5tO4E2pc5bA7vd5a39lHvdo5SyAinAYT/xvKG1HqC1HtCkSeXXVAghhD87ddNoh1B3+C4nqLRTCp/nSfuEEAQTvEC5AQEy48bTSh1itW7He9cMYuJJ3hMrl8WfAEATlQWAUeDKUdexzzCGWqo2LTGUbrB+43XefeRlUYokOuaaNXOtqRBCVFc0Psr+GrjUvRNoe1ybwizUWu8BcpRSQ9y7hV4BfFXqnivdxxcBv8n6QCFEpHRTkc9LV1eZyrV03aFsFdQMbISRQZcIT+d70vZ2hXUGGhs4uUsTLIbyTA1dFn8C3W/9n3dFd349gEyjbUjjDIXmjtCkjzheNCDH6/xtx5lRikQIIUIrnOkjzldK7QSGAt8ppX4E0FqvBmYAa4AfgJu11k73bTcCbwGbgM24NooBeBto5N5Y5u/AfeGKWwghymrQuHm0Q6gzspJdOyxuqEYewYdtH/Cg9aNQhRQWB1qczKmFz/Fu03u9yue1vII2nfp4zpv+fQ4Hb6h6TsA1pisNx27dsMptlJXcvC5tFQNd65d87jzZfgWvxl0XxWiEECJ0wrlr6BfAFwGuTQGm+ClfDPTyU14AXBzqGIUQoiIF9+5mQExctMOoM5yJLXjMfhnJSZ2r1U4PY1uIIgoPbcSyRbeko5FA8TL4Im1l6KSXverFJ6YQn5hS5efMMXvRTu2lpfJeTZGt61Vp7eGOCbPp2LlvxRVrkd63fsIXM7/m/IyJNGvZlt+uPTnaIQkhREjILgdCCFGOuHoJGJbKpS0QVTd6UG/qn3oH1507MtqhVMry4W9WWGerWZKkPDF7I5lx4xmS8zMYrp+vH/WgkMe10mzPl6U2O+pb8AafOodXeQOaNnWsEwgQExtHbIKrM54YX4/kuKpPWxZCiJpEOoJCCCFqDIuhuHVkZxJiqz5hZcmgF9k+/o8QRlWxvqf+rcI6utQG2AnHXCOW/XNnowyDOc6ezDbTQh5XmrGZcyxzPeffxT7AQLUu5M+p7ZTDlYLDYcjsACFE7SEdQSGEELVK/7Oupm2XtGiH4TG44D8AdDD2esp0qf/bLFYud/yT3mOuD/mzk8klWeWzzXTtfNtaHaSdsb/cexaY3UIex/FOu18xQ8k+dUKI2kM6gkIIIUQY7aMh68w2ZOt6nrK2vU4CwDLoOgxDsfXJMVwxNDXkz77YOrvS9/ziTGfxwOc858/bLwplSMel+tkbAOhwbFmUIxFCiNAJ22YxQgghhHDlEQRYYbaneD/Qxi3bweQs+gS+LST20oTmHPA7Chhow5jTLUuxtrjKc36X7dNwhnhciHGvEbQmNIhyJEIIEToyIiiEEEJEQB9ja8SfGXPTH2w87xt26UY+12ab/ruh7Y19aEtMuEM7rvQ/6zqWDHyegeMfjnYoQggRMtIRFEIIIWqphk1b0bnfcK+Napxaka3r0d/YGPA+e1zo8g7WBsow6D/mOqw26SALIWoPmRoqhBBC1HKt1UEAPnacQg7xtFCHOMcyP2B9a1F2pEITQggRJTIiKIQQQkTAZrNFtEPgfsdEYiniBGNVwDqHqY+18GjkghJCCBEVMiIohBBCREDp6ZnRkhE7kXxiaaiO+b2+1WzGZ7ZRnGf3f10IIUTtISOCQgghRBhkmB35X/1r6FXwFgCdjN1Ri2W72QSA+iqXFuqw3zprzTacUvQCXxqjakCXVQghRLhJR1AIIYQIg0aWfNqc+yDHiGeh2ZXDOjHaIXnJ0vFe50kqn5kx93GG+YdX+dP2SyMZlhBCiAiRqaFCCCFECO29dgnadFK/fhOObFztySO4zmxDtPbibGsc8Ft+QKfQRGUB7g1lFFxszqSo3nmeOvfapkckRiGEEJElI4JCCCFECMxrfzMHqU/zNp1o0a4rSSkNvXbf7GbsiFps2y75jYOTVsDkLBaY3QCYY/biNcc5pBZM86rbTB9CG7ZohCmEECKCZERQCCGECIGhVz4BPOFVVhM2iAFo172/53i1mUp3tZ2BxgYKiKG58xAznQMZbqwgQRUC4IxJiVaoQgghIkRGBIUQQogwKe4GbjXasn9iRjRD8dioW/G7mUZTdZQLLXOYH3crZ1oWeXVZrfacqMUnhBAiMqQjKIQQQoRZviWZpq3aRzsMALqp7ZxkrPApj3ePBu5TjSWPoBBC1AHSERRCCCHCxGlLAGCfNfrJ5Is1U0cD5hFcZabymTEaw5EX4aiEEEJEmnQEhRBCiDDJb9SL1IKPeCX5zmiH4nGGZZHf8nVmG84ueoKZlhG07JTmKX/LcWaEIhNCCBFJslmMEEIIESb92jXgwvQ23Hpqp2iH4uOoTqC+yvWcJ6p8/oi5gw+cF1G/8WmcUvg8Nhwc1Cn0MjIZYqyNYrRCCCFCTUYEhRBCiDCxWQye/1tfUhsnRDsUv3bpRp7j1uog7Yz9XGT+AMALN13EpUM7szTuBrqoHeTrmGiFKYQQIgykIyiEEELUIXOcPQGYZ/bgLcdZPnkEG+qjAKS1qU//ZNdxHnFMsv89kmEKIYQIM+kICiGEEHXIRt2aozqBgcZ6ehlb6ah28bMznVwdG/Ceg7Ftee6+mrPOUQghRPWFrSOolLpYKbVaKWUqpQaUKk9VSuUrpTLcX6+VutZfKbVSKbVJKfWSUkq5y2OVUp+4yxcopVLDFbcQQghRm23QrfnD7Etjlc2Fljn8GnsPp1uWeq5rr4yCLoahaJYcF8kwhRBChFk4RwRXARcAs/1c26y1TnN/3VCq/FVgEtDZ/XWGu/xa4IjWuhPwAvB0+MIWQgghaq+uagfD/eQRTHDnEdylmnvKlNYRi0sIIURkha0jqLVeq7VeH2x9pVQLIFlrPU9rrYH3gbHuy+cB77mPPwVGFo8WCiGEECJ4bdQBGgTII7jA7MbnltGe86LYFAC2xXSOSGxCCCEiJ1prBNsrpZYppf5QSp3kLmsF7CxVZ6e7rPjaDgCttQPIAhohhBBCiEoZaVnmdb5k4PPMdA5kvdmaS4oeIiH9b55r+Ylt+bfjfBbEj4hwlEIIIcKtWnkElVK/AM39XPqn1vqrALftAdpqrQ8ppfoDXyqleoKfRQlQPCelvGul45mEa2opbdu2rSh8IYQQos7ZaOlEZ+cmDutEvnEO5cox1/H9/E8AWPXIaOJtFk/d3p3ac62+hPdHDYpWuEIIIcKkWh1BrfVpVbinECh0Hy9RSm0GuuAaAWxdqmprYLf7eCfQBtiplLICKcBhP22/AbwBMGDAAFnYIIQQQpTR+u+zOJhzBOerJ2G6JwadZVnouhjr/bagfnwMG6acGekQhRBCREDEp4YqpZoopSzu4w64NoXZorXeA+QopYa41/9dARSPKn4NXOk+vgj4zb2OUAghhBCVUC8hicbN2/Joly9IHPt8tMMRQggRJdUaESyPUup84GWgCfCdUipDaz0aGA48qpRyAE7gBq118ejejcBUoB4w0/0F8DbwgVJqE66RwEvDFbcQQghRF/x3Qrrn+DvnIDqrXXSJYjxCCCEiK2wdQa31F8AXfso/Az4LcM9ioJef8gLg4lDHKIQQQgghhBB1Udg6gkIIIYQ4PowpXiMohBCizpCOoBBCCFHHLez1MM4j2xga7UCEEEJEjHQEhRBCiDpu0EV/j3YIQgghIixaCeWFEEIIIYQQQkSJdASFEEIIIYQQoo6RjqAQQgghhBBC1DHSERRCCCGEEEKIOkY6gkIIIYQQQghRx0hHUAghhBBCCCHqGOkICiGEEEIIIUQdIx1BIYQQQgghhKhjpCMohBBCCCGEEHWM0lpHO4awUEodALZFOw4/GgMHox2ECAl5LWsHeR1rB3kdawd5HWsPeS1rB3kdj3/ttNZN/F2otR3BmkoptVhrPSDacYjqk9eydpDXsXaQ17F2kNex9pDXsnaQ17F2k6mhQgghhBBCCFHHSEdQCCGEEEIIIeoY6QhG3hvRDkCEjLyWtYO8jrWDvI61g7yOtYe8lrWDvI61mKwRFEIIIYQQQog6RkYEhRBCCCGEEKKOkY5gBCmlzlBKrVdKbVJK3RfteAQopdoopX5XSq1VSq1WSt3uLp+slNqllMpwf51V6p773a/heqXU6FLl/ZVSK93XXlJKKXd5rFLqE3f5AqVUasS/0TpAKZXp/vPPUEotdpc1VEr9rJTa6P5/g1L15XWsYZRSXUv9nctQSmUrpe6Qv481n1LqHaXUfqXUqlJlEfn7p5S60v2MjUqpKyP0LddaAV7LZ5VS65RSK5RSXyil6rvLU5VS+aX+br5W6h55LaMowOsYkX9L5XU8jmit5SsCX4AF2Ax0AGKA5UCPaMdV17+AFkC6+zgJ2AD0ACYDd/up38P92sUC7d2vqcV9bSEwFFDATOBMd/lNwGvu40uBT6L9fdfGLyATaFym7BngPvfxfcDT8joeH1/ufzP3Au3k72PN/wKGA+nAqlJlYf/7BzQEtrj/38B93CDafx7H81eA13IUYHUfP13qtUwtXa9MO/Ja1rzXMez/lsrreHx9yYhg5AwCNmmtt2iti4DpwHlRjqnO01rv0VovdR/nAGuBVuXcch4wXWtdqLXeCmwCBimlWgDJ/9/efcc3VfV/AP+crO4WKGWVTcseBUopQ7bgQJYLFzhx66OPeyL+9FEfJw58cKAogooiKiqgIKDsUSjTsimjlBZKC3QkOb8/koaGZucmN20+79err96ce+653zZpmu89554jpVwlLe+EMwGMqXLM59btuQCGVl5Ro4Cr+rv/HPbPCZ/H0DYUwB4p5QEXdfg8hggp5XIAhRcUB+PvbwSAxVLKQinlSQCLAVyi9M8XThw9l1LKRVJKo/XhagBNXbXB51J9Tv4mneHfZJhiIhg8yQAOVXmcC9cJBwWZdVhDdwBrrEX3WYfBfFplSJOz5zHZun1hud0x1n+kRQASA/EzhDkJYJEQYoMQYpK1rKGU8ihgSfoBNLCW83kMfeMBzK7ymH+PNU8w/v74vzX4boWlZ6hSKyHEJiHEMiHERdYyPpehK9DvpXweaxAmgsHj6Iozp2wNEUKIWADfAfiXlPI0gGkA2gBIA3AUwBuVVR0cLl2UuzqGlNVPStkDwKUA7hVCDHBRl89jCBNCGACMAvCttYh/j7WLks8bn88gEkI8DcAIYJa16CiA5lLK7gAeBvCVECIefC5DVTDeS/k81iBMBIMnF0CzKo+bAjiiUixUhRBCD0sSOEtK+T0ASCnzpJQmKaUZwEewDO0FnD+PubAfKlP1+bUdI4TQAUiA58M1yENSyiPW78cBzIPlOcuzDm2pHKp03Fqdz2NouxTARillHsC/xxosGH9//N8aJNZJP0YCuME6TBDWoYQF1u0NsNxb1hZ8LkNSkN5L+TzWIEwEg2cdgFQhRCvr1e7xAH5UOaawZx3P/gmAHVLKN6uUN65SbSyAylm3fgQw3jpbVisAqQDWWoc9FQshMq1tTgAwv8oxlbNmXQVgSeU/UVKGECJGCBFXuQ3LxAZbYf+7nwj754TPY+i6DlWGhfLvscYKxt/fQgDDhRB1rcPchlvLSEFCiEsAPA5glJTybJXyJCGE1rrdGpbnci+fy9AUpPdSPo81idqz1YTTF4DLYJmVcg+Ap9WOh18SAPrDMmRhC4As69dlAL4AkG0t/xFA4yrHPG19DnfBOnuWtTwdljfVPQDeAyCs5ZGwDHHbDcvsW63V/rlr2xcss/Futn5tq/z7guV+hT8A5Fi/1+PzGNpfAKIBFABIqFLGv8cQ/4IlcT8KoAKWHoHbgvX3B8s9a7utX7eo/buo6V9OnsvdsNz3Vfl/snK2yCut77mbAWwEcAWfy9D4cvI8BuW9lM9jzfmqfDKJiIiIiIgoTHBoKBERERERUZhhIkhERERERBRmmAgSERERERGFGSaCREREREREYYaJIBERERERUZhhIkhERERERBRmmAgSERERERGFGSaCREREREREYYaJIBERERERUZhhIkhERERERBRmmAgSERERERGFGSaCREREREREYYaJIBERERERUZhhIkhERERERBRmmAgSERERERGFGSaCREREREREYYaJIBERERERUZhhIkhERERERBRmmAgSERERERGFGSaCREREREREYYaJIBERERERUZhhIkhERERERBRmmAgSERERERGFGSaCREREREREYYaJIBERERERUZhhIkhERERERBRmmAgSERERERGFGSaCREREREREYYaJIBERERERUZhhIkhERERERBRm/E4EhRDNhBBLhRA7hBDbhBAPWsvrCSEWCyFyrN/rVjnmSSHEbiHELiHEiCrlPYUQ2dZ9U4UQwloeIYT42lq+RgjR0t+4iYiIiIiIwpUSPYJGAP+WUnYAkAngXiFERwBPAPhDSpkK4A/rY1j3jQfQCcAlAD4QQmitbU0DMAlAqvXrEmv5bQBOSilTALwF4FUF4iYiIiIiIgpLfieCUsqjUsqN1u1iADsAJAMYDeBza7XPAYyxbo8GMEdKWSal3AdgN4AMIURjAPFSylVSSglg5gXHVLY1F8DQyt5CIiIiIiIi8o6i9whah2x2B7AGQEMp5VHAkiwCaGCtlgzgUJXDcq1lydbtC8vtjpFSGgEUAUhUMnYiIiIiIqJwoVOqISFELIDvAPxLSnnaRYedox3SRbmrYy6MYRIsQ0sRExPTs3379u7CJiIiIiIiqpU2bNhwQkqZ5GifIomgEEIPSxI4S0r5vbU4TwjRWEp51Drs87i1PBdAsyqHNwVwxFre1EF51WNyhRA6AAkACi+MQ0o5HcB0AEhPT5fr169X4scjIiIiIiKqcYQQB5ztU2LWUAHgEwA7pJRvVtn1I4CJ1u2JAOZXKR9vnQm0FSyTwqy1Dh8tFkJkWtuccMExlW1dBWCJ9T5CIiIiIiIi8pISPYL9ANwEIFsIkWUtewrAKwC+EULcBuAggKsBQEq5TQjxDYDtsMw4eq+U0mQ97m4AnwGIAvCr9QuwJJpfCCF2w9ITOF6BuImIiIiIiMKSqK0daxwaSkRERERE4UwIsUFKme5on2KTxdQEFRUVyM3NRWlpqdqhEIWEyMhING3aFHq9Xu1QiIiIiCiIwioRzM3NRVxcHFq2bAkuQ0jhTkqJgoIC5ObmolWrVmqHQ0RERERBpOg6gqGutLQUiYmJTAKJAAghkJiYyB5yIiIiojAUVokgACaBRFXw74GIiIgoPIVdIhiKbr/9dmzfvl3xdmNjYxVvk4iIiIiIaj4mgiHg448/RseOHdUOg4iILnDi2CEcnNIROVkr1A6FiIhIUUwEg+zMmTO4/PLL0a1bN3Tu3Blff/01Bg0ahMqlLj755BO0bdsWgwYNwh133IH77rsPAHDzzTfjgQceQN++fdG6dWvMnTsXAFBSUoKhQ4eiR48e6NKlC+bPn6/az0ZEVNvk/PwWmpsPI/WHkWqHQkREpKiwmjW0qhd+2obtR04r2mbHJvF4/opOLuv89ttvaNKkCRYsWAAAKCoqwrRp0wAAR44cwYsvvoiNGzciLi4OQ4YMQbdu3WzHHj16FH/99Rd27tyJUaNG4aqrrkJkZCTmzZuH+Ph4nDhxApmZmRg1ahTv/SIiUkC5Ntq2Lc1mCA2vnxIRUe3A/2hB1qVLF/z+++94/PHHsWLFCiQkJNj2rV27FgMHDkS9evWg1+tx9dVX2x07ZswYaDQadOzYEXl5eQAsSwA89dRT6Nq1K4YNG4bDhw/b9hERkX/yYjvYtsWUuipGQkREpKyw7RF013MXKG3btsWGDRvwyy+/4Mknn8Tw4cNt+6SULo+NiIioVnfWrFnIz8/Hhg0boNfr0bJlSy4HQESkkDP6emqHQEREFBDsEQyyI0eOIDo6GjfeeCMeeeQRbNy40bYvIyMDy5Ytw8mTJ2E0GvHdd9+5ba+oqAgNGjSAXq/H0qVLceDAgUCGT0QUVvQmXlgjIqLaKWx7BNWSnZ2NRx99FBqNBnq9HtOmTcMjjzwCAEhOTsZTTz2F3r17o0mTJujYsaPd0FFHbrjhBlxxxRVIT09HWloa2rdvH4wfg4goLBjMZ9UOgYiIKCCYCAbZiBEjMGLECLuyP//807Z9/fXXY9KkSTAajRg7dqxt6Ohnn31md0xJSQkAoH79+li1apXDc1XWISIi3zQt2ui+EhERUQ3EoaEhZvLkyUhLS0Pnzp3RqlUrjBkzRu2QiIjCloBZ7RCIiIgCgj2CIeb1119XOwQiIiIiIqrl2CNIRETkRJkuzu5x3mlOHkNERLUDE0EiIiIn8mPa2j3u/fIfKkVCRESkLCaCRERETpQYGtg9fkn3iUqREBERKYuJIBERkRM5a3+ze3yDjj2CRERUOzARDEMvv/yyYm2dOnUKH3zwgdfHTZ482eHEOJMnT0ZycjLS0tKQmpqKcePGYfv27QCA+fPn282i+p///AcpKSm2xz/99BNGjRqF3r17Iy0tDc2bN0dSUhLS0tKQlpaG/fv3Vztffn4+9Ho9/ve//3n9MwTK7bffbvuZlRQbG6t4m0S13ct69gASEVHtxERQJVJKmM3qTEvuLBH0JSZfE0FXHnroIWRlZSEnJwfXXnsthgwZgvz8fPTt29duzcRVq1YhPj4ex48fBwCsXLkS/fr1w5o1a5CVlYUpU6bg2muvRVZWFrKystCyZctq5/r222+RmZmJ2bNnKxa/yWTy6/iPP/4YHTt2VCgaIiIiIqLqmAgG0f79+9GhQwfcc8896NGjBw4dOoT//ve/6NWrF7p27Yrnn3/eVnfmzJno2rUrunXrhptuugkAcODAAQwdOhRdu3bF0KFDcfDgQQDAzTffjAceeAB9+/ZF69atMXfuXADA0aNHMWDAANu6hCtWrMATTzyBc+fOIS0tDTfccIPDmKr2HM2dOxc333wzACAvLw9jx45Ft27d0K1bN6xcuRJPPPEE9uzZg7S0NDz66KMA4PRneumll9CuXTsMGzYMu3bt8uh3du2112L48OH46quvkJSUhISEBOzevRsAcPjwYVx55ZVYuXIlAEsi2LdvX6+ek9mzZ+ONN95Abm4uDh8+bCuPjY3F008/jW7duiEzMxN5eXkAgD179iAzMxO9evXCc889Z/td/fnnnxg8eDCuv/56dOnSBc8++yzeeecdW3tPP/00pk6danfuM2fO4PLLL0e3bt3QuXNnfP311wCAQYMGYf369QCATz75BG3btsWgQYNwxx134L777gPg/DkvKSnB0KFD0aNHD3Tp0gXz58/36vdBRO5t+3uB2iEQERH5LbzXEZxxefWyTmOAjDuA8rPArKur70+7Huh+A3CmAPhmgv2+W9x/ONi1axdmzJiBDz74AIsWLUJOTg7Wrl0LKSVGjRqF5cuXIzExES+99BL+/vtv1K9fH4WFhQCA++67DxMmTMDEiRPx6aef4oEHHsAPP/wAwJL0/fXXX9i5cydGjRqFq666Cl999RVGjBiBp59+GiaTCWfPnsVFF12E9957D1lZWQAsyWnVmFx54IEHMHDgQMybNw8mkwklJSV45ZVXsHXrVlt7zn6mmJgYzJkzB5s2bYLRaESPHj3Qs2dPt78vAOjRowd27twJAOjbty9WrlwJk8mE1NRUZGZmYuHChRg5ciS2bNmCXr16edQmABw6dAjHjh1DRkYGrrnmGnz99dd4+OGHAViStMzMTLz00kt47LHH8NFHH+GZZ57Bgw8+iAcffBDXXXcdPvzwQ7v21q5di61bt6JVq1bYv38/xo0bhwcffBBmsxlz5szB2rVr7er/9ttvaNKkCRYssLxuioqK7PYfOXIEL774IjZu3Ii4uDgMGTIE3bp1s+139JxHRkZi3rx5iI+Px4kTJ5CZmYlRo0ZBCOHx74WIXOu0+HqgX5H7ikRERCGMPYJB1qJFC2RmZgKwJE2LFi1C9+7dbclOTk4OlixZgquuugr169cHANSrVw+AZSjk9ddfDwC46aab8Ndff9naHTNmDDQaDTp27GjrverVqxdmzJiByZMnIzs7G3Fx9uthOYrJlSVLluDuu+8GAGi1WiQkJFSr4+xnWrFiBcaOHYvo6GjEx8dj1KhRnv7KIKW0bffr1w8rV67EypUr0adPH2RkZGDNmjXYtGkT2rVrh8jISI/bnTNnDq655hoAwPjx4+2GhxoMBowcORIA0LNnT9v9hatWrcLVV1suEFQ+F5UyMjLQqlUrAEDLli2RmJiITZs22X4fiYmJdvW7dOmC33//HY8//jhWrFhR7fe5du1aDBw4EPXq1YNer7edt5Kj51xKiaeeegpdu3bFsGHDcPjwYds+IiIiIqJK4d0j6KoHzxDten9Mokc9gNUOi4mxbUsp8eSTT+LOO++0qzN16lSPenCq1omIiLBrFwAGDBiA5cuXY8GCBbjpppvw6KOPYsKECdXaqRrThe2Wlnq3eLKzn+ntt9/2uVdq06ZNSE9PB2DpEXz33XdhMplwxx13IC4uDqWlpfjzzz/Rr18/r9qdPXs28vLyMGvWLACWHricnBykpqZCr9fb4tVqtTAajW7bu/D3ePvtt+Ozzz7DsWPHcOutt1ar37ZtW2zYsAG//PILnnzySQwfPhzPPfecbX/VBNgRR8/5rFmzkJ+fjw0bNkCv16Nly5ZeP4dERDXFgV1ZKCk4gk59L1M7FCKiGoc9gioaMWIEPv30U5SUlACw3PN2/PhxDB06FN988w0KCgoAwDY0tG/fvpgzZw4Aywf+/v37u2z/wIEDaNCgAe644w7cdttt2LhxIwBAr9ejoqLC6XENGzbEjh07YDabMW/ePFv50KFDMW3aNACWCVFOnz6NuLg4FBcXu/2ZBgwYgHnz5uHcuXMoLi7GTz/95NHv6LvvvsOiRYtw3XXXAQA6duyII0eOYMWKFejevTsAIC0tDR9++KFX9wfu2rULZ86cweHDh7F//37s378fTz75pO3360xmZia+++47AHBbd+zYsfjtt9+wbt06jBgxotr+I0eOIDo6GjfeeCMeeeQR2/NTKSMjA8uWLcPJkydhNBpt53WlqKgIDRo0gF6vx9KlS3HgwAG3xxCRc6dltNohkAstZg9Ep0XXqR0GEVGNpEgiKIT4VAhxXAixtUrZZCHEYSFElvXrsir7nhRC7BZC7BJCjKhS3lMIkW3dN1VYu2SEEBFCiK+t5WuEEC2ViFttw4cPx/XXX48+ffqgS5cuuOqqq1BcXIxOnTrh6aefxsCBA9GtWzfbfWtTp07FjBkz0LVrV3zxxRd2k5E48ueffyItLQ3du3fHd999hwcffBAAMGnSJHTt2hU33HCDw+NeeeUVjBw5EkOGDEHjxo1t5e+88w6WLl2KLl26oGfPnti2bRsSExPRr18/dO7cGY8++qjTn6lHjx649tprkZaWhiuvvBIXXXSR07jfeust2/IRX375JZYsWYKkpCQAlt7K3r17o379+tDr9QCAPn36YO/evV4lgrNnz8bYsWPtyq688kq3s4e+/fbbePPNN5GRkYGjR486HB5byWAwYPDgwbjmmmug1Wqr7c/OzkZGRgbS0tLw0ksv4ZlnnrHbn5ycjKeeegq9e/fGsGHD0LFjR5fnA4AbbrgB69evR3p6OmbNmoX27du7rE9Erp1G9UTwxQrH750UfAXS8S0PRETknnA3/MyjRoQYAKAEwEwpZWdr2WQAJVLK1y+o2xHAbAAZAJoA+B1AWymlSQixFsCDAFYD+AXAVCnlr0KIewB0lVLeJYQYD2CslPJaVzGlp6fLypkXK+3YsQMdOnTw++el8HX27FlERUVBCIE5c+Zg9uzZTmfmNJvN6NGjB7799lukpqb6dL6SkhLExsbCaDRi7NixuPXWW6slsP7i3wWRC5OdXHyZzMliQsH3z16OnuIftJiSo3YoREQhSQixQUqZ7mifIj2CUsrlAAo9rD4awBwpZZmUch+A3QAyhBCNAcRLKVdJS3Y6E8CYKsd8bt2eC2BoZW8hUTBt2LABaWlp6Nq1Kz744AO88cYbDutt374dKSkpGDp0qM9JIABMnjzZtvxHq1atMGbMGJ/bIiKqbRqhEC00x9UOg4ioRgr0ZDH3CSEmAFgP4N9SypMAkmHp8auUay2rsG5fWA7r90MAIKU0CiGKACQCOBHY8InsXXTRRdi8ebPbeh07dsTevXv9Pt/rr7/uvhIRUZjqq92udghERDVWICeLmQagDYA0AEcBVHadOOrJky7KXR1jRwgxSQixXgixPj8/3+uAiYiIqOaYZ+qH/eaGaodBRFQjBSwRlFLmSSlNUkozgI9guScQsPT0NatStSmAI9bypg7K7Y4RQugAJMDBUFQp5XQpZbqUMr1ychEHdXz+mYhqG/49EPmGfztERFTTBSwRtN7zV2ksgMoZRX8EMN46E2grAKkA1kopjwIoFkJkWu//mwBgfpVjJlq3rwKwRPrwXzgyMhIFBQX8B04EywfZgoICREZGqh0KUUgqL3O+BueUH7c63UfBcab4FMZq/0ZLTR5MHqz1SkRE9hS5R1AIMRvAIAD1hRC5AJ4HMEgIkQbLEM79AO4EACnlNiHENwC2AzACuFdKabI2dTeAzwBEAfjV+gUAnwD4QgixG5aewPG+xNm0aVPk5uaCw0aJLCIjI9G0aVP3FYnC0NoZj8HZaq0J694ERs8Iajxkb8v3/0Uf6/b6Dyeh932fqhoPEVFNo0giKKV0tJrrJy7qvwTgJQfl6wF0dlBeCuBqf2IELAupt2rVyt9miIgoDGwzNXWaCP5L9z0AJoKBJs1mmM1maHXVP66cjD7//7z9id+CGRYRUa0QyMliiIiIaq3TxafVDqHWW/P1K9D+XyIK8nKr7SvVn1/jcY/d1ANEROQJJoJEREQOpJa6uQ9Q8F9ooNXdMw8AUHhkDw7lbLZLCCMqzifiWcaWKCrkbR9ERN7gfzEiInKo9NwZ5GxarnYYqqljcrNUre32dgqUxRHDAQAV0Y3QbNYAxHyQ5rDerbrfoH+nUxAjIyKq+ZgIEhGRQ9kf3ozU+Vcg/8h+tUNRxT+R3VxXMHGmymCLFBW27TJdvN2+aFEW7HCIiGo0JoJERORQw9PbAADnSk6pG4hKirT1XO4/fOpskCIJX62MewEAJ5Z+UG1fpPGk3eNjsm5QYiIiqi2YCBIRkUP7NC0AAFIboXIk6jhxZK/L/R0+6wxpNgcpmvDxzA/ZaPnEAgDAXl1rAMCAY5/hlvJHMaZsiq1e3bMH7I47IBvi6IFdwQuUiKiGYyJIREQOLdFfhLXmdjBHxLuvXAs9rf/KbZ0DuzYGIZLwkrz+VWyJuK1a+VJzd2TJFKfH9dbsROMZGYEMjYioVlFkHUEiIqo9Dh/aj8/X5eGvovr4Xj6KHwzhmQh6wmyIUzuEWidFHEG8OAcA6F2+BgBQJKPxtWEKNpvbALgcAFAY00atEImIagUmgkREZCf5k254CsBT1hGh+0q3AGDC40i4DpsNpIu1G2zbdc2FAIAEcRa9xU701uy07SvTV79Asc/cEK2qlRIRkSMcGkpERC5pSk+pHULIEibOVKmk8rJSu8cV0DutG1V+0uk+IiJyj4kgERG5JqXaEVCYWPzRk7bt7UdOY0nEEKd1TbnV789spckLSFxERLURE0EiInLprcX/qB1C0JWeO+NRPakxBDiS8JKTf862/dp7U13WHVnkfjIfIiJyjokgERG5dOvxl9UOIegiX23iUT2NuTzAkYSv4ZoNtnUEiYhIeUwEiYjIpTooUTuEoCqtMHlcV1MeXr+bQLsJC2zb1+uWYI/u/Mygs4xDMbjsDXy3IReHCs+qER4RUa3CRJCIiFxqrslXO4SguumjlWqHELYiUOF03w26P7BfNsTi7z7CQ+/NcVove9n3gQiNiKjWYSJIREQ287MOqx2C6kYeecfjuiauI6iYooI8xIpzdmUXlf9l93hf5I340PA2RpX/4rSdjct/Ckh8RES1DRNBIiKymfNNeE/AIc1mTNQt9rh+3lnOqKqUwzlZ1crizacd1p3g4jk6herrCxIRUXVMBImIyOY2rfOelnCwa+dWr+ovnfNWgCIJP2ZdlN3jH0x9cdLofB1BZ9pKTjBDROQJJoJERGQzWLPJYbk0m4MciTqMwrvEo7/Gu8SRHJNmM0qFfSK43dwCiSjyuq1e5i1KhUVEVKsxESQiIrfKSj1bV6+mEybvloPoqmHvkxKWzpyC9J+G2ZUdlYlcIJ6IKICYCBIREVnpSgu8ql9HhEeCHGjZhwqrlV2tXea0/tfGQU73/aQZokRIRES1HhNBIiJyT/DfBQXXAG223eOlpm627Wt1fzo9rgTRgQqJiKhW4X92IiICAJScPgmtcDILpi4yuMGoxBSRoHYIYWmEeYXbOoO1mz1qq4Pc4284RERhgYkgEREBAKLfaOV0X97p0iBGoh6p97436eA/WcoHEmYS5UnF2tqHZMXaIiKqzZgIEhERspfPh8ZZbyCAD3/fFsRo1CNMFV4fk5t/SvlAwkhxaQXKpFax9uIrTijWFhFRbcZEkIgozJlNJnRZMsFlnYvzPwtOMCrbeNC7yWIAwKzxfq07Om/H4ZNYbOqpWHvdNBwaSkTkCUUSQSHEp0KI40KIrVXK6gkhFgshcqzf61bZ96QQYrcQYpcQYkSV8p5CiGzrvqlCCGEtjxBCfG0tXyOEaKlE3EREBGzbvc9tnV753wchEvVNW3bA62P0FacDEEn4iCnIxi26hYq1115zSLG2iIhqM6V6BD8DcMkFZU8A+ENKmQrgD+tjCCE6AhgPoJP1mA+EEJVjQqYBmAQg1fpV2eZtAE5KKVMAvAXgVYXiJiIKe5u/eMxtnThxLgiRqO/vyAe9PsZQVn3pA/Lc1EXb1Q6BiCgsKZIISimXA7jwP+FoAJ9btz8HMKZK+RwpZZmUch+A3QAyhBCNAcRLKVdJKSWAmRccU9nWXABDK3sLiYjIPzfq/lA7hBqtwsCZRn117NBuvF7xktfH5Uvnv/Nd5qb+hEREFDYCeY9gQynlUQCwfm9gLU8GUHXcRq61LNm6fWG53TFSSiOAIgCJAYuciChMfL3uoNoh1HjlEfx35CvTp5d53Nv8vam/bTtJFDmtd0zW8zsuIqJwoMZkMY568qSLclfH2DcsxCQhxHohxPr8/Hw/QiQiCg+Pf5ftvhK5JKRZ7RBqrLrmUx7XHaf9y6N6LUSej9EQEYWXQCaCedbhnrB+P24tzwXQrEq9pgCOWMubOii3O0YIoQOQgOpDUSGlnC6lTJdSpiclJSn4oxAR1U77I69XO4SQYTb5ltDFlHg/wQxZHEAjxdvcIFMVb5OIqDYKZCL4I4CJ1u2JAOZXKR9vnQm0FSyTwqy1Dh8tFkJkWu//m3DBMZVtXQVgifU+QiIiCoK9ZuU/sIeaXdlrfDruXAzvSfOFNJsx19jffUUvXan9C2vnvql4u0REtY1Sy0fMBrAKQDshRK4Q4jYArwC4WAiRA+Bi62NIKbcB+AbAdgC/AbhXSmmyNnU3gI9hmUBmD4BfreWfAEgUQuwG8DCsM5ASEVFwtNYcUzuEgGs2b4xPx53O26tsIGFi+6pf8ax+VkDaztj6QkDaJSKqTXRKNCKlvM7JrqFO6r8EoNo0YVLK9QA6OygvBXC1PzESEZG9XzcfwqVqBxFCYkWpT8eN2Pwgzg2/ElExcQpHVLudKytXOwQiorCmxmQxREQUAop2/ql2CLXGot9/UzuEGqc0qoH7Sj7abG4dsLaJiGoLJoJERGFo++rfMHj7M2qHETLW/zzdr+PN/HcaUg7KwCWZRES1Bf9zERGFoY6/XYuG4pTaYYSM9PWP+nV83LnDCkUSPnTGs17V/9mU6XHdK7SrUVTIZaSIiFxhIkhEFCaO7NsJTE7AjGeuwa+mXmqHU6vElh13X4nsGPWxXtUfqV3tVf2/Zr/iVX0ionDDRJCIKEwUfX4tAOAW3UK0FbleH3+mzKh0SBTGNKaygLZ/RNM4oO0TEdV0TASJiMJAXu4edMB+2+M2mqNet/HNi7Vz8fljB3P8buOsIVGBSMJL1BnvL0Z4QycrAto+EVFNx0SQiCgM5G5e6ncbt+gWKhBJ6NF8OtzvNk5HcVH5UNPtzEq1QyAiCmlMBImIwoAUWrVDCFkNUOh3G2OyblcgkvDi7T2CRESkLCaCRERhoDiO66o5k21uqXYIYak8sn5A2/8nKi2g7RMR1XRMBImIwsDZmBYwSr7lO/LvirvVDiEsGUtLAtp+sa6OYm1VlJdh1UcPouT0ScXaJCJSGz8VEBGFAW3xIeiE2e92zCaTAtGEln9kM7VDCEsDl13rVf1lpq5e1a9XkedVfVc2/TQNfQ5/hq1fPq5Ym0REamMiSERUy2358ztcsnSkIm39/PWHirQTSt7Uf+B3G69WjFcgEnJloHaLV/Ujzd4tWH+h1bNewLaXL4LJaIQ0lgIAhKncrzaJiEIJE0EioppgcgJW/e9erw87sm8nuv55q2JhHDx8WLG2QsU47V9+t9FHs02BSEhJxysisHnptz4d++8v/0JmzpvoVL4FqzdswPItewAAB2O7KRkiEZGqmAgSEdUQx3L3eX1MwZy7FI1BK2vXovJ5Rw8p0s4AbbYi7ZBybin5GN2W+Taba/ud79u2my+4AY/qvwEAFB7+R5HYiIhCARNBIqIaoFhGoUDGe33cyujBisYxvGyxou2p7WyFVDuEsPVWxZVqh+DUTdrzr/Nmmnzb9p3Gr9QIh4goIJgIEhHVAHHiHDI1O7w+7s6Tbyoah8ns/4QzRADwkP47tUNwKlJUqB0CpJSY8fc+nCmrXb3wRBQ6dGoHQEREnums2a92CIg3F6kdgqK0ZVwOgELTii3/4NAv7+JfS9rh0r7d0bVLGlIaxKodFhHVIuwRJCIijy0xpakdQsgqLlW/F4mqM5tr5vBfWZyP5/Rf4CPTM+i+7FYMe3OZ2iERUS3DRJCISEXrfngPWX/McVvvrIzAdOPlOFBwJghRORclatf0+VIbqVhbr81fp1hbpJzFW5WZECjYos8ctG230uThU/1rKkZDRLURE0EiIhX1ynoajZY/4bZetCjDJN0CnC08ioP/ZCF7+Xy3x0ipfE+IDrVrQXmzPlqxtlJOLFGsLVKOLn+7V/VliNwHqzGX2T0eos1SJxAiqrWYCBIRqWibuQWyza2d7pdmM1ZPO78EhP5sHpp/NRBdlkwIRnjVlEqDKucNHOWS5a5nVynWFikn7rR3Sz6smfNygCIhIgotTASJiFTUSXMAHTQHnO7PO7wPmXmzHe7bue53140HoEfQIGrXDIZ5639SOwQKMOHl30FJ/kH3lYJAqB0AEdV6TASJiFTWVJywe7xz3e8oKz1reSDs36ZPHTi/cPnZglyX7QYgD8RgTZbyjarEWFGOzM1PKdhi4D+6Zx06hXPltWt4bqB5O0T6YFQHl/tXf3iPP+F47ExM82plFabQGLZKRLUDE0EiohByaHc22i+4ElnT7wQASIP9dPHpGx+3bZcZ6rlsa9EG7+6N8sRR6fqcNUlNm0syv7gMY97/G4/M3ax2KDWK5sAKRdvLPDZLsbaKTp5A6dkSAIDJLPHKrzuRX2y5N/CdX7Oq1X//57WKnZuIiIkgEdUIJadPApMTkLX4K7VDCZhVnz6KZl/2BwDUPb0TACA1Wqf1y6Iaumwvd9Ni5YKzqiNKFG+ztjgYkRrQ9s8VncDWiFuRst/xUGFyLP20myHUF2hzLtvl/i+Mw/wJx07CO21w9PW+AIA12/fA/NfbeHeOZbjy24YPqtWPOrRcsXMTEQU8ERRC7BdCZAshsoQQ661l9YQQi4UQOdbvdavUf1IIsVsIsUsIMaJKeU9rO7uFEFOFEBw+TxRGcg8fBgBs3fhXwM6x6bXLsGnRlwFr350+B6fbtgs1lp43DZwPBTsX3dhle/qyQmUCq+J3U0/F21SDNJtxtviUom1uih2gaHsXEuWnEStKMapiYUDPE+5yYoL7Gm9lttwjrCk9iaf0s9Gk1DK5zYVDxgEgtWxLUGMjototWD2Cg6WUaVLKdOvjJwD8IaVMBfCH9TGEEB0BjAfQCcAlAD4QQlReDp8GYBKAVOvXJUGKnYhCgNToAQAnz183Ulz3s3+j+8p7A9a+K6tmPos9Zkti96nxEnwffbVlh9n5/WAxxftctjmxcKpi8VWKFecAAPlH9qO8rFTx9oNlzVcvIGGqsj14xbrAvTYB2F4Lkai5v3c1HJaJXtVPPPiby/036bzrYXQlV9bHXJPlAkJ08X4AQJ8zzpchSTTmVSvLyVqBVZ8rea8rEYULtYaGjgbwuXX7cwBjqpTPkVKWSSn3AdgNIEMI0RhAvJRylbTc9T2zyjFEFAa0ZsuH38jTe1WOJDDK9/6Nv82dUSDjMMU4Abv0lgkrRMVZp8csWb0hWOHZCEiUl5UiaXo3GP7TEGdLioIegxIa7P1B8TbTSgLXWw1UnfSEA2K8ccDsegj1hcZqXA+//M3Uy59wbPZkr3bY6wcAxUWOe/O1puoXAVJ/GIk++95XJCYiCi/BSAQlgEVCiA1CiEnWsoZSyqMAYP3ewFqeDOBQlWNzrWXJ1u0Ly4koTGjKTgMA7tD9giVT71C07dKzJVj91YsAgKWmboq27SmdqRRHZSIKZTxWR9yLAaVLAbj+yH9x0dzgBFfFORmB8rJztsfHDu3xu02T0YjTpwr8bscbu7XO1270VeezaxRv015Nm94mNPTVKjtpUp6so0g7bb6z3P1yldY+8RSQ2PrD6w6P6Vy+BSeOOF9uhojIG8FIBPtJKXsAuBTAvUIIVzdROPrMI12U2x8sxCQhxHohxPr8/HzfoiWi0FRlGYUhhd8o1qw0mxH5WjIy/3kdj1TcidsqHlWsbW8UIB6NRQFSNYfRSJzEyHPz3R7TT7vN6b6cTYGZVOJa3Z+QGp3tsSkiwe821394B+Lfbn1+yYwgaF6Wo3ibMsA9dW9/ZXlN7NW0COh5aqO/dzvuefNFpmaHIu3kyvoAgDnGQQCAvScsr/+TZ8pRFFV96YhK+SdP2j3+zDhckXiIKPwEPBGUUh6xfj8OYB6ADAB51uGesH4/bq2eC6BZlcObAjhiLW/qoPzCc02XUqZLKdOTkpKU/lGISEUV0d4N7/LEnuzVOPR/nW2PO4t9SBGHUZDnen2+QBilXWX3uF7FMcuGcD5rqCup86/wNySnCvIO27ZLCo753V7H/F8BAOWl59zUVE57zSH3lULIkVPnMMpomQX2J33Nv0U+ryh4zzUAbNu5S7G22mlysXbum9i71b8e4I1myz2qlRcQ3ttoGfa5wNwb/xQ6vzf4VIH9fYJ/mHvgfeMov2IhovAU0ERQCBEjhIir3AYwHMBWAD8CmGitNhFA5aXvHwGMF0JECCFawTIpzFrr8NFiIUSmdbbQCVWOIaIwcHjDL7btIhmtSJttvhuB5ubzSc3NukVYFPE4Eqd1UqR9b03QnV/uIUlYhsLKiBhVYnGl5Re9bdvdF1zmd3v5sEyy8n8LduBESZnf7blzYOfGgJ9DaX1fWQIzBPaaG2G9vofa4fht3d/KL23iSpe8eYq2l7H1BbSe619PXIqwXM++TmcZBr7A8DQA4DX9R3jgmPPJX/osuca2vSInHyZoUCKjsfVwzbxfl4jUE+gewYYA/hJCbAawFsACKeVvAF4BcLEQIgfAxdbHkFJuA/ANgO0AfgNwr5Sy8rLY3QA+hmUCmT0Afg1w7EQUQobtfPb8dpnj+2e8sX6/8ksrBITQua/jwCkZnARyl7mp+0puzJaWD9TF2xbigVnr/W7PlaKTJ9BizuCAtN2jZFlA2j1dWoFFhkcxRJuF1ppjePTU/wXkPMEkZHDvd+xz6KOgns8THTX29/pFiAqPj73P+ney4++f8JXhZTyun4MfP3hc0fiIqPYLaCIopdwrpexm/eokpXzJWl4gpRwqpUy1fi+scsxLUso2Usp2Uspfq5Svl1J2tu67T8og/xchoqAzVpRj618/Yv3P0+3KmziYae/0qQKvljOYMtv5FO2lUu95kAFWWupbD1kdcUbhSBwrg/+/q69wKTaYU/GBYSoyD013f4Afdv7+WUDbD4RpX8xBW835nutLtetw/2c1e2HxuiX/qB2C334w9fXr+G+MA30+9r2codi5djGSys4PcR6hDexFFCKqfdRaPoKIyK3FX7+Lzr/fhPT19hO4zI94zi7p+3v3CcS/3Ro5bwzzuO2HK5wnHHkywOvBWR0scD45ygqT5d7FB+eE9oe7rhrXaxl6YiyWoqfGMnnLA7of/G7PlXMR9QPafiDEnq6eNN2w9zGsXxB6vVyeEqcOqh2CQyeOeX7v6EI/l5GovDdwnqmfT8e3/+UqjD36pu1x5d8QEZGnmAgSUcg6XOJ8FsZF330MADhbWoqszx4CAHQqz0buCc/uk0k17QYAPFBefQH5FprjTtfxUlLWtq1O922RluUNRhd+FvA41HZLEG/5LjxebZ6xkJdRsrRaWaZmB9LXPaJCNMroc3Sm2iE4dGr6SI/r+nvB6FrdnwAsy0UQEamBiSARhayko86HbxZYOwQryspxr+5HW/ne98e5bbeg+BzqogQAMNXgeCHmhTMCfx9W3dM7ne7rLPYDAG7SBndSDTW00RwN2rnG5b4asLbXmNsHpN1eMtth+W5zk4CcL5z9Vu75OqLDtMpMOjRGu1KRdoiIvMVEkIhCUlHhcYwWK5zun3jQMsPe7DX2QxMHSPdDKbPn/gfRwvW9d0fPBf7tMaLMea/jQO0W7Nu+Djph9qitivIyrP7iuaCuxQcAm83KL8weKPu2rwto+701zhP7QNDDGNTzKWmpyfOEK1TdU+UClLeMFeW27S+NQ2GsKMeTFbf5HVP2fwajcHIz9xWJiMBEkIhCVKkHn3FnTn8dBcs+rFZ+8ZP/Q37+MWByAjYvmVNt/6AD77htu/3ZDR7F6Q93y4/nbfjJ47Y2znsLmXvewc/TnsSOo6f9C8wLNWlYm+m7O4N6vt3bNwKTE5CzKTATu7TQHEdO1gqs/vAenDgWmvfcOVMMZZaAUdpoTXB659Z9eX4WZAmBPa/0xX/0n/jV5lpzO3Qp24h6CN7fPxHVbEwEiSg0eTAx8IQjL+Jp/VfVyhdHPIak99sBALotvxNH9ll6aoqLCvHLijUeLXlwsXYjDuVs9jJo79Tf5vqDX8Lenz1u60iEpWcutnAr3n/3Nb/i8oYSk8VcaO8e5Rb/rqpMRASkXWe+nmWZzCWQM5Wm/jASmcdmYfn7d9uVS7PZ9roPRakiV+0QHGqmyQ/KebSnz//8N+l+RzuT7xO9lEnLEjMmqcVCUzp2mNkjSESeYSJIRCFJY1ZuYfEmn/fGuTPFiHurFS77YzjaaTz7ELp96ybFYnCkldl1L04HucdtG0f27cTRA7tgPLAWgGUK+fcM7yoSX7D8bupu97jc5KSin/4wDAlMw1UUFZ5PJC7SWO7t05YX+9TWkVPn0O1Z1xPpzDUNAAD8ZZ1lttKar/+DJp/3xqbXLvXp3BeSZjM2LfwcJqP/w1G37DuGDhrPZ+cMpsrfp6dWffoYTp8q8Po8e/KVW94lQliek39kMuJxFvWEb683Igo/TASJKCQVHVf2g+LmH71Pjkr1wVlGwh8VZWfReEYGrj5ZM5cSMJtMGKa1T7iF2fOFtb1xQNsiIO1WlTA1xbbdTWNJ5H3tiVy4cQ82ayd4VPdNw4c4dmg3dqxZCADQH7ZcGOh+1rOhjv9s/NPlOpyrl/6E7qsewB/fVR+K7a3cnMBeYHFm93HXCdKBKZ1wlda7Ybx9Dv4PO2b+y+tYtspWXh/jTj/NNvTRbkdDcQprn8uA2XT+isrZEs9mUyai8MJEkIhCUsq8yxRtr3yv9/f+GIzBWZTdL5F1kG1uqXYUPtu4aFa1MlmSF5BzxcjgTqSzXzYCAOzV+JaA7vjjM7d1qiYudT/ORIdfr8HqaXehwOD5jKKrPnkEbX8cDcN/GuJM8SmHdfqssCSknba/aTfRiS8MxuA+D5WGvek6yWth9m246klNolf1pdmMl/Sf+nQuV1I055dGydDsgubFeig5fRIbf/sM0a83x+7Nfyl+TiKq2ZgIElFYiC877PUxsSc2+f2hN9CEzoBss/K9C95YvMr3iXUKDY2rlZ3KzXHZO+ULs8mEKSXPK9qmIytMnWE0mfHot5vRXBwHACSbfVseY7LOu7X2jsh6AIDMvNkYXmi5d9Ys3U1JBPQ5dL43efvS6pMr7Vz/h207WRRg19pFXsV1obgz+/063lcz9MouHZJjTgYAHItq49Vxh3ODN7HPxuxtMO6yLEFTkLM2aOclopqBiSARhZwTRw4o3maaZq/Xx1yUOx26l5J8ugcoaPTRaK/y/Vbxv97j87GlBdVjz8x6HFunXuVPSNWUlwWnF6ocemw5kI+krPdQV1jWqqwrT3rdztp577pd4uRCf5rTqpVphIQ0e7YECQAUx1ZfDqT9zxeszWn28yZO4T45DYTBWmUnf0rVWC4u6eDZ73f7ql+x9T8DUR7Ej15Tft52fnpiDybgIqLwwkSQiEJO8cdXqB2CnZK3eyvephKTbgCAxlSKHprdirTlq96anSg87n2Pq9ks0Wmr4xlOo4r3+xmVPSl0irbnTJw4i9OLX8Fj+m9sZc1Nng05PLx3GwDgxLGDyNj8jNfnrutkkpB1794IwDIksajg/LDb1evX4dTkZPvK0j7JKzeacUba3+N4Ru/dUMgLqZMGWqyedpdif3uVDPAsYa+/8B50LsvC6ePB6xH8PeIxZBT+jHKpRV5ietDOS0Q1AxNBIvLbyTPlmLlqP6RCV5y3hdj0502Qj2OHlE221izzfGkIV3QKzq7qD+MH/b0+5utfFqKNxvGwycXmnv6GZE8E599dhmYXkg8vtCvL1SY7qX3exsVfIXlmX2z642ucOPSPT+ceo3V8H2zGyQUAgH9e7oOEd9viUM5mzM86jPY/jUYdlNjVjTxjuc/sXLkJLy3YjtHvLkdMlZ7Jc9KAf/2wB2aT572MFzob2dDnY/2VmTcbqxdWX3IGAMql1qc2T6KOR/W2CMuSNtqK4N97PMN0CU5Ht6xWnpO1Ars3/43SsyXVDyKiWo+JIBH57eFvsvDc/G3YdkSZhYxzREtF2lHSgey/FW3vjIhVpB2tCI3hXg1QaDdLoSdO73M+e6RG4YXqd749StH2XKkcMljplIh3e8yeU5bvOSfNqIiqr2g8u8xNcWh3NtoZLesK7tyxFaN/6Ig6onpC0nfjwwCAOX9uwvG/v8AzhU/Z7Y8S5VgZ+YCHgyEdK9e7/30E0rsrT8BklpifdRhms+V1djL/KAzCtyGvct8yj+ptF5YZZc3a4K5nCQB36hag/oLbqt3znPrDSKTMuwymV1vj8KlzQY+LiNTFRJCI/HZx/mfYH3k9xEllFhdvCO/vqQq03msfQOrTv+CB2ZtwqPAspJT4eMVeFJR41yNXePwwdv5fJsrzvb9n0RGh8a0XIxDMXt47dmfBK0733adzvX6et7qXrla0PW9ESfcT3whrQm/O3Yj8Pcrey/a3uTOM5edjOFbg+u/LbDKhzpk9eMfwAfpptzmsI6XvqeCbf6q7mPwc/Qs4+kIKln8zFd+ttfT0F37o+3qLd+k8693XwTIk9cS2P30+lz8u0a5D9kZLr7E0myHNZuRKy0UHA4y4+9WauQQNEfmOiSAReW3jwi/shkr2KrfMRqcvP6VI+22xX5F2lJajvw5Tdw3C6NfmY82O/Xh1QTYe/sa7D+27fvsQ7Y07cNH25xSJ6eQ5Ze938odSQ4MBYI25vWJteTNZSiCY3PyrLS8rRb2zloso409Nx5BNDyh6/ixzCg4t+9z2uFWu6yR718Y/MXbzJJd1zCbf13r8LeIJn49VSlNxAm8YPoQhbzNyslagjUmZi1iuDDNalq8YeuCtgJ+rqspkDwDyDuVg038vh5hSF3tf6oliGQUA0AsTXtB/7qwJIqqlmAgSkdd6rLoPuk+GArDMbhhntPQwaBS6D2tzRXNF2gmUjZF3IfObNORETsBlBb59eIoXygzDumH6KkXaUUJxcTH2T+mMPVu8X7PxQr01OxWIyGLN1857HoNhdMWvOLx3h8N90myG4T8NMWTvfwN2/qmG9zAg7wvb4/4m18sIdFgwzuV+wPfk2tk6hWppcGYnUn8Y6Xc7ZaXuZ6Vtq/F+QiUlNBUnbNuXbH0E3c9Y1hNsY9qLDlVmHO6u2Y0Rb7lea5GIahcmgkTkk/o4haMHdiFj8zNoBMsHjZMHNmP7ql/9bvs2nf9tBMvVJdUXRHfGaDJjUX4dRc+/NvJeRdvzVba5JfasW4iW5kMo/vUFtcOxI/IdJ2HBtGLuVIflNXVGf18TwYNTL1M4Ej9VKHNBJuKVxjh+OPC9ioFmOq7+3woRBQ8TQSLyWWnJKbvHvbKeQceF49UJRiUaIbH1rx+ByQk4me964fBnv9uIn/Mb4ebyR4MUXfB00eyHMFXeh6bmAgH2pJQ4gXpqh4ET2qRqZXlF5zDzI0tPYOVi8DVF1ftBV330LxRO9mym3w4Vju85VEuffe8p1lbF9KFO95WcDr37nh35PeIxtH/2/IU4o8mMDQcKVYyIiAIpOAsrEVGtFKjZ78qkHhHC93uQgq3z7zcBALb98Dr63/GGwzrnyk0YkP0E/hO5LpihBdWJPMskIHsN7ZCmbig2Xy7fhssKvlM9NzWdPGT3ePfmv7H826m4VfcbAKCJqFkftk/lH8O5M6dRv1FzJB/6GfU0ns0YPNs4GNfplgY4OnWUSgMOnzoHnUagYXyk3b79749BZ5Xi8taN5p+w8b/vo6xhd2SdTULBoZ2IvOUxdEppqXZoRKQw9ggSkc/azBlYrSxP1sG679/BrvVLfG63JiWBVfU//DFOHDmAsvJyFBdZPtiXl5Xi0O5sPPnme7hUW3uTQAC45OCbAIB5cdcp0t5Nn6zB6VL/Xgtns75HopOF1oPpQd33AIB929bgxJEDSJl3mS0JrGl2mpsheWZvGKZlAADmm/vBJD3LtM8h+EsnBIsWZrz336fxn1dewOy19ovGJ5cquw5pID2jn4UeZ1agz96puPvYs3hGPwuH/9mAe7/aiL93n3DfABHVGOwRDHOFZ8oRqdcg2uD8pWAyGmE0liMiMhr5R/ajvPQcklt3CGKUVJM0FKfQcMtzOLfZAKTn49TZckQbdDDowuO607Rvf0bT/GW4RbcQpY8fQeSrTdAMwNtqBxZEsQf+AJCJnE3L0aJjBgwRkW6PcWR9Ti7mZzXCTZktfI6lvvGYz8cqraCkDK2+Ha52GH5rb51gpHLCIz2M0AoJs8kMjdb13/kOGdoTQfmjpSYP/9F8Ytn+vj/aNoxFQUk5hndqhNmmIbhH96PKEfpu+Npb8VfFRPyz/Rjqj7kL7dKHqB0SESkgPD6ZhQkpJXLyql/5PpSzGSeOHaxW/vDXWXjqpZdw7wuv4ly55X6Pn7ccQcsnFuDkGcuis+t/+h+0/5eIiFcaAwCSpndD8sxMbPhlBkzG0Jm2noKn8Ey5+0qwLDw99+WJGDhlHu6aOtfj9tWe6t9feXlHcYtuIQBg6X+V6RmraaZpX8PWlwcidf4V2PTRPT63syPyVoz8tW+1RbC90aw4y+djlZb4egO1Q1Bc7tE82zp6v6zZ4rZ+EooCHVJI2B95PW6cthRPfmEZGVGTk8BKU/Sf4xbdQiT8dKvaoRCRQoSS6z6FkvT0dLl+/Xq1wwiaooI8zNl8Eof++BAjJz6GzLZNzu+cnAAAOHbrepwpKsABTVMczjuOOkufxBVayyLL/zNejjt1C2yH7JWNYR73MVLmXW4r231PLlI+aGp7vD5uKFImfoA69RsF+KcjZ86dKYZOb4DeELzhVsfzjqDBNB96hCe7/wC4+sN70PzorzXufilybpeuHdo942S5Aut7kzur+s9An2HulzTw5xzkm0IZi3qi5HyBk7/zJTvz8OLnP2FpxL+DFFkImVxUq16H7xlH477/m6l2GETkISHEBilluqN9HBpaA32z7hCiNBVIq3MO52Kb49SKj5Cx9QXcCQB64JuZe5H+wg/IPlwEzZ7f0c16XKNPLa+BNpUNac+3WTUJBIDW4ihQJQkEgIPvjkRKlWPSi/8A3muHzVeuQFKsAfn7s1GWPR/dJk1HRGS0kj8yORH136bYqe+I9k8Hby05c9kZn477acV6tBJH0Ln/KMftmkzIPDZL9Uk9SFkC/l9sbLviATyzdDmef/5V7Fq3CGfPlaL5isdwuPczaDfwWqxeswrDhlxc7bjfF3yNYX6fnVyxSwIBZK1dhkmLK7DqyaHQas7/MR/48n4sjVgY7PAoAO7TzUf28vnoMmA09m1bA11ENJqldFE7LCLyAXsEQ9je/BLUN5Rj19KvsEZ0g27dh7jr/2Yh9/k2tgVipxmvwN26n1SOtLq16a8jdeANOLh+AboNvhpF5yqg0wjERPDag1J2b/4bKfMsa3KdebIgaL/bw3t3IHlmps/Hb+j1BioOrEHr47+jweTz626t+/4d9NrynBIhUgh5oPxeTLzzEfRs4WB5BD97SUqlHpHWiYXWoBNky0HIvPll2/5Hn34U/9VP9+sc5L0jsh5eqPMS/vfQ9ecLa1GPmLc2RfdF97Mr1Q5DUQUyDnWe3Q/t/yVaCjwY8UFE6nDVI1ijEkEhxCUA3oGlL+tjKeUrzurWhEQwv7AQqChFYlJjmKVEaXk5/skrQbemdbBt9x7snvUw6qMIA7TZtmMmlj+Ozw2vqhi157aZW6CT5gBWtn0Mz2YnYbAmC11G3ALN0U0YefXtEBoNsnbtgVETifTUZNtxWYu/QmneP8i8cTIAoOhsBcqMJjSI923CiVqrygerUqlHDpqhywubAn7afdvXodU3yvSz5Mr6ODVpI0qWvoXM3W8p0iaFnmcqbsETujkwQoNx5S/g1TuvRK+W9QKSHHQq/QTbIm/Du8YxuF/3g+Ltk+fWdHwG4shGZPxrdlgnguFgXdcpMPS8HvvzTmF0RiqKTp6AwRABo7ECMbEJ0Gi17hshooCoFYmgEEIL4B8AFwPIBbAOwHVSyu2O6odqIrh62p3odux7lCAKSYJX0Kr6xZSBGJRioPb8hAObB3yERxafxEHZAPfofsRlmjXIazIU0EWgf+5HOCVjEP3UXmh0BujczFZXm2zcfxw9PkutVr5Lm4J2z24I6Ln/2fgn2v44OqDnoNrtyYrb8PKLr0NMqat2KBQEr3RZgCeyL3dfkWqco7IeGl9wT/d+TTO0NB/COWmwTBoWdTWuevxjlSIkotqSCPYBMFlKOcL6+EkAkFL+x1H9UEwEK8rLoH+59s0aV9P8bMpEQrQBGmnGkaT+SD80A600eTgto5BlToFI7gFD6XFURDfG1xX9cZlpKeo1bIo2A6/HocO5METEoHmzZohLcDDUzQdnS4pQYdZgZ14xxNc3Qm8uRUPTMTQRBT63OR+DMBp/4ldTLzTSnEZR86EYdJvDPxWvZW/ZgC7fc+pwonB0WkbZlo0g8tZecyMISOyTjVFqqIdmA29GdJ0ktOnaV+3QiGqt2pIIXgXgEinl7dbHNwHoLaW8z1H9UEwEV71zI/qcDL37+Siwhpb9F41FIe5NKYDQ6ACNDhISffa+q3Zobk1v8Tq2Rqbjmu33opGhFCeSMi0TuhAREQXJjeVPQguz3a0xO83NcFfka/iz3H6ZnuvKn0adjkMxRLsJTc9su6AlDVY2nwQASClYigZndtntNWkMWNPUsjxGuxOLkHh2r93+cm0s1iffCADoePxn1CnNtdt/Tl8XmxpfCwDokvcD4srs1zEtMTTAlkaWGZDTjn6L6Ar7C75FkU2xrcFIAEDPI7MQYbRfEqwwqiV2Jl0CAMjI/Qw6c6nd/vyYtshJtFyo7XPoIwhpstt/LLYT9ta7CEKa0OfQR7jQ4fg0HKiTCZ2pFBmHP6u2/2BCBnITeiDCWIyeR6p/FthXty+OxnVFdHkB0o59W23/7noDcTy2A+LK8tAlb161/bsSL0ZBTBvUOXcIHfMXVNu/PekynIpqjnpn96L9iUXV9mc3GI3iyMZoULILKYVLq+3f3OgqnDHUR6PirWh98q9q+zc2vg6l+gQkF21Ei6Lqs12vTZ4IozYKLU6tQfLp6rfirG56Oyb0T0FibPBmcvdEbZk11NFcgnZZrBBiEoBJANC8eegtWnu4PFbtEEgFfTTb0VScQJ+DNfAiwJ6l+NHYBFMjtwEmIPnoIc7qSUREQdVJ7EcrcdSurL3mEMpP5wMXTB9wuWY1ntnaCRm6xcjQ2s9Ua4QWN+yxJEqv6H5FhmaZ3f7TiMGEnAEAgKm6n5GhWWO3/ygSccs/lsnSPtXNR4bGfu3M3bIpbt/ZEwDwtf479BD/2O3Pkil4f0dXAMBP+m/QXtiv8fy37Iz3t7UHACwxzEEzHLfbv9icjve3pgAAJhq+RF3YJ4o/mPvjfaPl8+89hs9hQIXd/lnmYXjf2Bg6GPGgYQYuNN10Bd431Uc8SnCfg/1/7y/BB6Z4NMEJ3O1g/6L9RnxuikaqyMUkffX98/bpMNesR5rIwW0O9n+5Lxa/miX6i2zc7GD///YmYbksx3DNOkzQVd//5t5m2CDbYYxmJa53sP/FvanYKVvgRs0KjNd9Vm3/E3u64BAa4k7tn7ha+3W1/ffvyUAh4vGw9g+M1c6vtv+WPQNwRY8WIZcIulKTegRr/NDQXTu3ot2cfmqHQQHyv7j70d60E6Z2I2GQ5Uho2BxtuvRBRHQ8pJTQQMJorICxogxGoxGlZaXYuexbDNj+fNBi/MvcCea2l8OY2A7lBQeQ3KYzYuo3Q3LLtjBoNSgzSSzadgyXd24IjUaDM2UVOHHGiDoGMxJiYyA0GhzOPYDkj7sGLWYiIqq9PjFeimaJcTjWZAj6ZGRCnD4Mc9020JWdRExUBApycxCT3BFa0zmYy89BaLSIia+HqJgECEMUTBVl0MIMjVYHIQQ0Wh0gNHbLlxCFs9oyNFQHy2QxQwEchmWymOullBf2+wMIzUQQAK7+YAWuPvJfXKNb5r4y+WRDdH/Uv2IK4hIbYdfP76DTuMcRFR2LYyUmROg1aBBnf/mw5PRJmCrKkZDYUKWIz5NSouhcBepEG3D0wC40apYKCYHdu3ehQb06OJl3AFtOCIxeWn3NtErFMgpxLxxzut9fubuz0fTL/gFrn8LDgTt2osVH7dUOg4LkgWbfY+qhcWqHQQFilgIaYfk8udGcgh6a3Xb7Nw/4CN2GXIO1c99EYru+aNPF9yWIiMg7tSIRBAAhxGUA3oZl+YhPpZQvOasbqomg2SxhNEsYdBqs+uMH4OQ+9Nk62a5O9pDP0GXJzWqEF1Tft30N4/55DOVSi8UDf0C9o8vQJ+d1AMDKQXPQuXtv7JpxD9rf8oFtYpat/+Rg+ddvYdDFo7Bh9xH0v+RatKofAwAoKz0Lnc4Ara4mjXj2TXlZKQz/sU9c999zCIYzRxBTpz4S6tYP2LmP7NuJJp/3Vqy9MXXm4odTVynWHoWmh8rvxluGaQCA9eM3I719Sy4pUMvNTLgLQ0/NhbxpPpqmdObzXYvl35uDU7k7Uf+H67F/4jrUKz+Khi3aIfLVJtg6dCY6X8SZponUUmsSQW+EaiLordwX2qOpPIrCe3ag5HQhmn8ZmkNLz8gIxIgy2+MFvb/E1h078Pjpl/BuncdwyaABOLlsGtLv+wIH/9mEE3s3If3yO1SMuOYrf74eDMJyI/j9iR/h3fuvCd7JffxAd2f5Q2gvDmLU9Xfj1G8vo6JJL2Re9xQAYOXUW9C38Hslo6QQsSrhMvR5aDZembMY4wb1RttG8ZYdCiQG5VILgzDBLAXykYCG4hSO3LIeTWY4/J9HwXThIuNMBGuVH0x98Y+5Ga4Yey06pA9VOxwicoKJYA12+lQBSk6dQJOW7WxlG3+dAUN8fXTudwVMZok2T/2C/ZHX2x2XJ+tga8JgDD1dfVYmJf2YNh0pG1/Cj71m4okNAwEAq1s/gMwJLwb0vATkHz2IpP91wWkZhbjJRyFEEO+H8OED3apmd6DPba873V96tgSRryX7ExWFoFWDvkKfQU7WkFMgMdh67SoUr5qBzJtfhdDYryWau3srmoboxbPabKeuPZLu+A6JDZva7wjTRPC5iomYov9c7TAU17L0KwDAvv9cFtz/P0TkFSaCYWDtvHehi66DHqvuw5Gb19oSx3XzP4C59DSitn+LrmI3crQpKKifjsy8OfhD0xdDzSsdtvdz3RvRtmAp2moO28peafAanjj+mH3FKld8d65djPrN26N+o2bK/4Dk0M71fyCxSRskNWkZ3BP78oHuwt4BJ/ZO6YbW5v3etx9iJpU/hJQ2KXjs0L1qh6Kqwvv3oF6ik6HKHr6OVjW9FfsO5+GFc1fjuj6peG5kB5w8cRQV5aVo1CzF5bF7n2uH1prA3TNLltf6dMNbAIA19ceh933VZ+sDgO+fvRzjtNWnbK/t1nR4Er13KLOOq5qWN78XH+2OR1/NViw3d8WMF/4Ns5SINtT+2zGIarLasnwEuZAx9n7Lxoib0KRKea/R9wAASs/dj6KzJUhNbIgGhfnYMW0LOt74NmYt/R037LcMzWtZ+hV2RkzEZ6YRuOvB9wEAxopyHN67HccWvYVH7rgFm976Ad3PrsRiUw80GHIPulU5V/sM5xOYUGC0r4XDcQRq/sWpTdF98c5TzyJSr8FtT+/F47o5dhdVwokGZr+OXzJmPYakpSLDLHFq+R5M7NMSGq22em+TEye0DdBaMhEMpAdvvhH46i38ZMrEiDumOa3X+OaZaPnRanxneB49NTlBjFBdPcY+hA3b5tb4nznzhufQosSER+duwZ7jJYjUa9UOiYj8pHFfhWqDyKgY26yYCfWS0OHpVWjcoh1uuPlerO/1Or5r9wY+uKEHIkUF6qLEdpxOb0CLdmnoff/n0OkNiL/0eRwSTZDx8LfoNvhqtX4cqgE2aTsDAPabvZuN9VizSwMRTtCs6fE6uj/2K6IMWggh8MnLz2Fp4nXuD6xlTty1FevT/4s6iQ38amdIWioAQKsRuGdQCmIivLt+2XTix36dn1xbaeqIlOaWy4+FqANDRKTTun3aJCIZ+cgx1/4h4IcnWNaf2xg7AHpDBObHBPEeboV8bzo/O3RW/w9hiIhEi8QYfHNnH2x4lhd+iWoDJoKE9MvvwJXX3Y7LujTGhrghaDvAeYLXpksmmj2/I6CzUlLtUNqwBwDAdNVnHg8LBYDMiTVvCNU5aQAA/Gjqg96jqk+ClNmlXbWy2myvpiXqN2qG9JGT/GpnOhRYbkCEzr+51Y1uUDsExXxuvBjtS2dg+/BZiIiMxuqmt6HvOPfDoP+OfBDjdX8GPkCVJbdujz3jfkX7u74EAKQNqFmzZi5LGI1nxf1YaLKMJksbFn4Xs4jCAYeGkp2e/w7s5DJUu/yjbYu2pn+qlW80p6DXLW/gn+yr0LZrX6/aFBoNzshIxIhSpcIMuChRDgC44oVfHO7vNuQabBYC3ZbdHsywVBN509eKtFMa4f8FJ6mLUiAS/31ivBS33fUB9k35C63MB9QOx28TdYvxe+TFuP2i1gCAzNvfVDki9e0xN0YbzVFs13VCRwBtqrz39W5oUi8wHwx8aCY2VJhQeLovikQZwnOaH6LaL3QulRJRjaMf957D8l8wADq9AW17DPSp3ZI7HE9iFKrOyAgAqDZrZVWBGkp9e/m/A9KuPxq3aKtIO+2H3eJ3G7rIaBTKWAWi8U/vSyy9gcmPr8W5R3OxqtV9+MlkWVT765TX1AzNZ9Mqnlc7hJBxyJyE+8yPAACKU65QORrHvkr6F1Y1uBY79R2d1jki6+HYbRsAAJF6LZokxiOhXlKwQiSiIGMiSEReMz9biOKH9iEusbFd+SFpuR9sePfWfrWvj6pZ1583m9tgnVmZ5MdbL+s/UeW8jqxu8yDWdnvRZULsqTXm9hjey/kHVk81TKyHP0w9/G7HXy26WJaxMEREIiomDn0mvoRDiZaylM4ZaobmtW+NAwAAkShzU7O6VU1vVTocnxw0K5vcrDR3QmJCDIof2oeMax53UEO95RVerRiPmyuewHV3P48+90xH+6dX2e1faErHLl17AMDBRiPczsRLRLUHh4YSkdc0Wi3iEuqhrMz+g+CR3s8gKm0QMpq08Kt9fWQ0dpqbob3mkF/tBEt3zW7b8NBgayBOqXJeRzJvmuJV/UWmnhiu3eBw36MRz2G5EkEBOB7XETinVGveOyLroUlCvWrljdJG4JZFGryU3By/XbwYO3+dhn/pvlchQuc2mlPQQ7Pb9vi68qexytwJV+uWY1dEF3Tysr16aZcDuZ8qG6QPmmvyFW3vWt2fiC83IC4h9O6l6z54HO7uP8TpBZq9sjFGPGO5lzEzmIERkerYI0hEPpO6SJRLLYxSg/mtJ6P3ZRNR388kEAD0ej1Wmf3vDQqGDRlveZwEbo7qjU0x/d1XDBOPah51um/5004WofeBARWKteWLJqLQYfnYgRn4cMqTaJKUiBF9e6HLDa8EOTL3Ii743c02vISxmhU4dMNytLz/R6/bM+vjlQpNEScVHDacYt7nfKeKkxalNKqD+Eh9tfI9ZsuIjpu1C4MdEhGFCCaCROSzmNg4tC37Av/X8y+MnvCQYu3qtRrcoqsZH06EzoCcMT9j50j3PTndHl+E7o8uwOqGoddroIYeUUeDcp7B5X8G5TzOrDI5vqghhECETmvbHtrBu6VWgqGTpvrENm8ZpqFZajfExNXxuj1jYjssN3VRIDLfjSubbNvelXKbYu2WRDgfbmqKTsJas2X24AN2q/0GXuvOvauV7R67AGsGzwYA1UYzEJH6mAgSkc+iDTpsfn44nh2pbO+dVhu6CxX/Zupl91jqopCadhHapw/1uI3Muz/EgWuXKBpXZum7irYXDBMrvgnKeU6n3x+U8zizp9V4Vc8fSjo1icef5jRVY9gpm+Pg9cuw75rfIaVUpM017Z9A69tnOt2fWCceT1TcgbvLH8TPumGKnPNCXxkH46kK+8R25+XfOayb0q0/rh/cHQCwJbJnQOIhotDHRJCI/JIQpYdWo95ECMF2iXadbfvO8odQlNTLRW3nGrfurFRIAIBB2s2KthcMbZwso/Bp8ouKnqfHpf7PPuqPuETPe4AeLr8rgJG419f0P2wcEbj7FDUagRYN6wasfU88GLMYzdumoVXHXmja5yoAwKbofj63t9zUBb3HP+lyds2YCB1GRW3BNMM7qJCBudClgYQxvqldWfterpPOM/8+gA4P/xqQeIgo9DERJCLywbzoq/E7MpDWupGPLSjTE/F6xdXYbG6NV/QfK9JeMBUZGjgsb595qeLn+vOi2Yq36Sm98Py5PtR8NFJLnfcs+WJm0iMe11354nj06DMUHUqdT+hy8t6dfsXTpCLXr+P9NdZ0fth5s9RuwOQixI193ef2ymDwqN4os2UUQHSzrj6fy5Xxuj/RvZ536xXGxNWB3hARkHiIKPQxESSikDS38wdqh+DS2Mc+xp6XL0O9GM8+BF5ImTQQOCgbokSqv2h6sQ8xNJv0DX6pc3218r5dUpUIyU5UnHpLktQr+cfjut/e1Rc5r4xW9PxR8qxH9SonDwGA3x69xGm9ukmNne7zxM6obn4d7y/pYCkHGev7fXtDNBs9qhePEgDAmOHD8KnR+e/XH63PbLJt59+1LSDnIKLag4kgEYWkzDR1PyxWlS/tZzosldVn4POWVOjtd4p+Bvppz3/gU2vx9DhxzutjEhIbIqbntQGIprpmSYlBOc+3cTdWK4tq5P26bK565LyViCK7x68Y7nVY74GK8/dStkiMwVlZvador9nXHvDz1BpI/oVxGI6hPo70rb7MSUqjBJyW0V63uanPVOwcPsujuvvTn0axjEKdxAZoKY55fS535pv6Ylfc+QUgYlW8+EFENQMTQSIKSU1TOmOGcYTaYQAAfq53M+4s/xcm1fsEp/+1F6ZHdrs/yC1l+gTriDN2j+uJEkXa9VbljIje6t4tOAl/k1btMd/UN+DnaVXlA/6Oy+Zi99gF6DbE+8liHr+iB8aWvaBITNF1kjALl9ke3/HA85hpvLhavWdH2z8X/crewYfGkXZlV5ZP9juelLLtfrfhi2hRikaT96D78OrJuhACD0d5tw4mAHQfMRGd+nm21En6yEmIe+EYDBGRGKLN8vpc7kjAtkzFgowvEBUTp/g5iKh2YSJIRORGx+YNkdznWjx742WIr5Po07T5F5JG5ads3xKZjmOor3i77nzc/DV0enqlT8fGxwdv4pAMbU7AzxHd53a8A8vyII3bZyKlm2/rRt7crxV69BvudzxmKdDzmqfQOdKygPq6LpORGBsBDcx29cqkHnH1k+3K3rh5CL7XX2FXtuDO7n7H1NB42O82fHGl9i+X+7tL/+599MZ+s/JLhYzRrkSj0r0AgDhjgeLtE1Htw0SQiEJW2bCXMKn8Iawb7ngK9ED7wmiZcc9oiMdzV3REs3reDx1zxhChzH19v8Zfg1xpSf72NhsH04QfscjUE0tMaYq074nYSB1iInRBO5+v9HctwRtiQkDP0bHPpdgYOwg3lz8Gjc6/IcRPXdYBG4f6N8nNCSRAb4iwDcc01LPMKnmj7g+7endXPIiGjezvkxvSviE+vNa+pzci2v+hx0oNi1ZaD1PwZt5da26veJvZQ2aiQbsMAEDT1sou6UNEtVNovhsTEQG4a1Aqpr88Gb36BmbdLVeOyzooaZgOADgbneymtve0OmUSp7pdL8H8QQvRsvQr7EociuTWnTDgucUoHf6aIu17omnJ1qCdyx/1GzXHmLGBX9PvtUljMPrqiYiPjvSrHa1GoMdFl+G1imt8bmOZyTJDpcy4HQCQ3MGyuHj2kJlYkzgGSzpaluq4stkZ1I+tfk9gtDXxW2zqgTWDZyOxYdNqdbyVFXuR320EQrL5aNDO1UgUKt5mlwGjkTZ0PMzPFjpcRJ6I6EJMBImoRvjFlBHU831hHAbRog/+VX4PIhObB/Xc3mjZtisiKk5huGYdoissHy4j9VpESu8nb/GVzlwWtHP5L/BTlTSMj8TY7v4nTJU+MPk+i2ipdWmDbkPGA5OLUL+R5bXcZcBo9L7/c7TvZRl+2qbnUIfHN2qeim3DZ6Pf4z+g98DLHNbxltQEZh09dz5LfNjlfkezibpyyOx83UB32moDl3RqtOr8fomo5mEiSEQ1wvZmge/JqWpInaO49bIBGH7dA+jfxftZHz2x1OT/RCmNmqei9YllmG54Cx1OLLKVx5bs97ttT+XG+bcuWuXQ1mAwRaq7mLkv9kfe4POxw7SulzZo0qo9MLkI7TOqTx5TqVPfyxAdq9wMlMlR3q11pxQZEe96v5ftzTYN8TmWqAdW42OjcutlHpd1FGuLiMIHE0EiqhH2xfo/SYU3hJQw6DS4rEtjCBGYXqRfdI57YbwVVWGZGCK24vwEERqz8pPROFOu8e9+x380gUm0HdKE/r2MSorHGfeVgmzo+AdVOW+k2fXvYol+oFfttdUc8jmWhHpJuEn7u8/HX6guihVri4jCBxNBIqoRWpTtQoEM5nToSi357lyfFq57KNx5oeImAIAm0tJO1R6PLsOqT5EfKAll/g1z6yJ32bb/MAU24Y+rxWurzTJWv7BQcscqFSJxTW+I8GnNPn+d1br+eyvQeDfUs4vY5084iBAVDsvLpOuLFeekAQtN6XZleqFOLysR1WxMBImoRuhXtACJInhXvU9p6gX8HOU6/z4MD4iyfBDtOe5hrG73GHqOf9a2LyIyGu83fNGv9j0VZSxyX8lD8Yn+L1juSuOGDfBGxVUBPYdajsjEamUNm7ZRIRL3/jZ3UjuEajpeeqdXFyLaaAJzn1+EMLrcHyXKMUK7HgBQiHhgcpHli4jIS0wEiahGMMjgDXUEgB1RaQE/h1n4N0wxIcLyFq7TG5B53dMwRNjPUpncItWv9j2VF93Wr+M3iPNJQafb/+dvOG5lt5kU8HOoYbx+OUofP2J7PChKnWVXPNE4ALNmutOteJnL/Zd3bYzN5tBMnJ25cD1IIiJvBCwRFEJMFkIcFkJkWb8uq7LvSSHEbiHELiHEiCrlPYUQ2dZ9U4X1xhwhRIQQ4mtr+RohRMtAxU1EocncpGdQz5cd2Svg50gsdX2PUZ6bCSCyYl0vVt6xVROX+xXj5z2UO4Tlw3f+vTmKTkrizLQb091XCiFnZPVlHRz5QTMUkVExAICzMgLf3hOayzQAQJpmj9ohOPSwfq7aIXhlR4vgDQEnoton0D2Cb0kp06xfvwCAEKIjgPEAOgG4BMAHQojKuY6nAZgEINX6dYm1/DYAJ6WUKQDeAvBqgOMmohCTcfWjyBnzc9DO1+Gc69kWlZAgT7vc31CccrnfDNfTxJfHt/QyIt80P+3f7ypelli3An9fJgBEGWrW9PqdymZ4VE9af33ZQ2bi9G1/IynOswQyXLj7e1GTr0tR9LmFH4eIyHdqDA0dDWCOlLJMSrkPwG4AGUKIxgDipZSrpJQSwEwAY6oc87l1ey6AoSJQ0/gRUUgSGg1S0y7C6raPIE/WwbiyyQE9X8vyfwLaPgCkXT/F7vG7xjFeHd+sLMdtnf/6sRi5KyPKXrFttxpxr19tVVQOkQ3i+nIl0r/F3oNJD6NtYiBX+sjNACxrBDZqHpxhwb76zuS6NzsQtsb2VbQ9f5c9OVgl+cvH+Z7wxVGerdeYj5q3FAoRhZZAJ4L3CSG2CCE+FUJUvmMlA6g6HirXWpZs3b6w3O4YKaURQBGA6nfFE1Gtl3n9s4h+cje+mHx/QM/TqmyX+0p+ioyOtXv8o6b6rI/fXPSb0+PbDr/dZfsRhbvwqP4b34Jz4w7dLwCA942j0KRlO7/aKpWWRc8hgndtckPCsKCdy185kRPwvP4Lt/VEXMMgRKMMA1xPiFITfBR5q1/H32B83rb9Zb0HbNsyxnXv4D+jfsTZRw4i7vFtfp2fiMiv/7pCiN+FEFsdfI2GZZhnGwBpAI4CeKPyMAdNSRflro65MJ5JQoj1Qoj1+fn53v44RFRDxEXqEROhwx5tq4Cdo6RO+4C17chyUxd88uBVWHLpErvyCPM5p8e06uj6PkZhdjw9vRKu0i4HALSN8/8DfQ+5HQCgMQVvQqCd9S9xX6mG6XLvl2qH4LErtKuDfs7WzZS9Z7Zhk2Z+Hf/FrT1s2+NbnQUAHJaJaDTY9WRGbXsMRHRsgu1+UCIiX/mVCEoph0kpOzv4mi+lzJNSmqSUZgAfAciwHpYLoOq7Z1MAR6zlTR2U2x0jhNABSABQbcoxKeV0KWW6lDI9Kcm38fZEVHNsrntxQNrdfsnX6HnbOwFp25lG172P5onRqGc4PwvgcVkHEUbHS2aUy9C436nfvR/63UZbHAAACBm8tdD0rfvj4rLXFG1zpjEwr0dPRUQGf20+Xx2VgV+e5UKDLlV2mPTwS8f5dbyoKLVta3V6VEgtDqXehORGzpdQuaf8Aaf7iIi8FchZQxtXeTgWwFbr9o8AxltnAm0Fy6Qwa6WURwEUCyEyrff/TQAwv8oxE63bVwFYYr2PkIjC2HFdU/eVfJDacwj0huBOtCH1lnvW9OfOj2YwQYO6xY6HqG6u50GPVgBvpd6vsVzPU2KWz/Lrv8OqFnehbv3G7isr5Oa+LTHl5pGKtmkK0L/UnZfNxdrOz7uskz1kZkDOHSjrzP4NJ/bWSlNHj+rNN3l+H2FKg1j3lVyQmvPLx6SNuBn6FwqReeMLSEysj1Ut73Z4zLa6Q/w6JxFRVYG8IeM161IQWwAMBvAQAEgptwH4BsB2AL8BuFdK22XguwF8DMsEMnsA/Got/wRAohBiN4CHATwRwLiJqIbIiewSmIZVuM7kaBineeIv0Bgc9/KYm/RwWB4s5VfPUmwR6+Zt09DnllchNMG7R1CjEejTLhmrmkx0X9lDt+gWKtZWVe0zLkbGVQ9jdYPqPVonUAeHbvwLXQaMDsi5A6WVCMxi7M58bhruUb0NdS8NcCTnmSItUye8F3EHtDr7NUV73/QSlpm6Vjtm4b8GBCU2IgoPAfuvK6W8SUrZRUrZVUo5ytrjV7nvJSllGyllOynlr1XK11uHlraRUt5X2esnpSyVUl4tpUyRUmZIKfcGKm4iqjnan9sQkHalChMqa8ssSVXVPrzk1h3QY+RdmGvy7cOfyRCvQGRO2tbUnFk3XekzaaraIXgs856PbNvLWliGCGbXGYJmKQG6IBJAXTT7g3q+N/SeDWG+qqdn9/3tN/s/MU/lwCbpoOdeo9Wivya7WnmkPjSGhBNR7aDG8hFERIpoXarsrHkbzJYp980q9AiaohtYNi74UKjV6ZAywsEwMQ9ilHWa47ibRel9ZYioHYlgTbOpz1SsqT8OppSLUSb12BNVvdeoJjh+R1ZQzxcrSt1XAlCc2M2jeqPKX/QnHABAtLCMAuiqP+xwf87l3/p9DiIiV5gIElGNVc/ofHbgf25Y53V7xsoFp83Bn9q+shfSGFV9bTKDrvpbtSeparuGcZhhDMzsmG1atghIuzXZqwb/1lP0RPcRE9H7vhmo17Ir2pV9DnSsWUNCKzVIDtyMv/4wR8ThPaP732m8OOv3uZq0SEFW/w/R4/b3HO5vn2E/+VBNWvuSiGoGJoJEVGPJLlc73deiZSuPPtCNKTu/qHsjjfWeN2l2UjtwtBUlAICK2OpT3AsHQ8cONnI/Q6UQApEGvs0HS/MuFwXtXGnN6uD3hwfitv6hmVDVVBFn83Cfbr7ben9F/EuR86UNuw5xCe5nUL2y7Hl0LvtUkXMSEVXiJwQiqrF6XHKzw/LXYh5FhF6P7IieLo//yHgZPnziTqwxt0eBjEP5dd8je/CMagu9B4OosPQwpLVugl3mpvjFlGHbV3V2QQDYZE5Bh9aeJQADZWDuo6TqWpxcFdTzpTSIdXiRgHwXVbRH7RDsbMx8Bzmjf8L0p+/F7w9zohgiUhYTQSKqdepE6wEAj955q8t6y8zd0CghEjF3LsJrXX5Bm9QO6DLQv7XBfGWOsEzsotUIfGS6HN+bzvcuVUTar4t6QDZAl6aeLdtQVr9ztbIpFTf5ESlQJnXuK9UgW80tFWlHo8KQYqrdelxyM1K7D0BibARSGsSpHQ4R1TJMBImo1hlxsWUKeHcfnL40/AcA0Dk5Aa9e1RUaTfB7V97XTbBsaA22sstvegT33nW/7XFFTCP8Yepue9xJHPC4/fS7pmN9/DDb442930artv5NMPI/k7Lr76ltecIohVri8rahao25vWJtXVf+NA5cu0Sx9oiI1MJEkIhqnRZVEp2P0n9WMRL36mvPAACEqcxWNrh9A3RvXtf2WFd2EkO1m2yPUzWOZxl0RKvTIf3h72yPe1x6C6JT+mF8+TM+x5xlTvH52FAUJT2bUZJqrhcrbvSsogfXgprVjUGLDq6HnRMR1QRMBImoVutc9CeA0B3OmF6xEQCgKS92WkdfdtK2vbrBNdg88GO/zjmub0eMGel7L9i/73vAr/OHmj5lKxRpx6iJUKQdUt4rI1sq1tYtpZ8r1hYRkZqYCBJRjbY27SWP6s0yDcMyU1fkmJMDHJF3fo0YAQAwRic5rVM5oyhgWVS822Dns6U680zFLVhqsqyRJoTAyDTPFs52pFMTz+5PrClOaBoo0s6BxP6KtEPKa93Ns4lWiut3d1snUpa5rUNEVBMwESSiGs3YJN3u8ZK2z9k9NtS1JH4dOlgmTSlBFJa1exbZg2fA9ExBcIJ0QcrKsWjOx6RFJ1RfW9Bb65PG4ZaKx22PIyIisd7c1q7OV8bBfp+nJtoc4f7DvydORbdUpJ1wsaT5/e4rXcCbe/0mV0wAJhcBk4sQHevZxQuzLhrvGMe6rJNXP8PlfiKimiI0x0oREXnpL1Mn9NduQ0xb+yv/PS65GZuj4tB7wDhoXnzdUnjdIypE6FgX01YA9r1+F2reNs3v83x7Vx+cKCm3PdZrNYgY9gywZIKt7L/mG3A9lvp9rnCUL+NRr3gXgNp1/2QgHY9p677SBf4y9Edv406P6ubJuu4rXSDi7BE8qJvnsk76He973S4RUShijyAR1WitWqbgjvKHsREdAAAROvueNaHRoNvgq6HRarGm/ji7GTRDQXPTIQCAxuR6wpI9Vy7E2m7/5/N54iL1aFU/xq6sy4DRdo+/uLmHz+3XZD2xw+82ksRptCz8S4FoyJV7/z3F47qN67tfqP1CUaf3ua2j0xvc1iEiqgnYI0hENVrjBvXx0cvPo7ioEGsWtkdGV+fJTO/7ZgQxMs+s0vdG67L9MEW4HrrWpksm2nTJDGgsjeLD8wNup9s+BN5q5Xc7QpoViCZ8pNaP9Kr+mo5Po3dUjPuKVm2MOd6G5NaO0T9bLzkREdV87BEkolohLqEeel/zKISmZr2tFQpLr4XU6FU5/9qh3wIAFpl6on4j3yeQqcniErzvOXIkNrWfIu2Ei55Dr8Fvpl5O9xul/d9y72se86r9ThVbvY6pYZtuLvc3SG7tdZtERKGqZn1iIiKqZZLNljUBNUZ11rJLbNgYAGCK9CwZWpB0eyDDqdE691dqYfrwYYTW6b6njLf51XaUPOf1MUlNWuJt4zin+4WU/oRERBRSmAgSEamoaTvLUNb6SQ1VOX9MpGV4XlKUZ/UL9E0CGE3NtSHGs+UJyN6lmjVO972m/8hh+T6zZ38rFT7e/TJJu8Cn44iIahomgkREKsq48iFgchES6vq/RIQvGjVPxc7Lv0Pnuz7zqP7xiBaBDUgl85Lu9uv48v7eDVski7ybV3t9zBTjBPeVABzU+vZa3SldDJHWRfjUJhFRKGIiSEQU5tr3GobI6FiP6iZU5Ac4GnU09nOiHCk495ovmrTyfF3ASjcMTvOo3n6db4ngCnNXp/uk4McmIqo9+I5GREQeizafVjuEgOh+9RN+HZ9Yz/s168hzWeY2tu2mdT0bx3yuvuuJX5wxoMJh+TMVtyDGw4XpiYhqAiaCRERk80WjJ13ub1uyLkiRBFdEZLRPx91ffh/2X/sH2rX1vmeLLLIjurut80JFleGgGs96X1PapPgUzzjdSofljerGIdLAnl8iqj2YCBIRkY0uoZHaIahmc1Rvr4+5+Jq70LJDegCiCR+Nb/nCbZ0Hupps2xVRSR61m3gq26d45G2LsNNc/T7BgaVLfWqPiChUMREkIiKblqdrZ4+fJ7o9vgjTjZd7XL9caqExlgUwovDgbP3KM/L8xCyxEeeXmdDHJsIshdt2DeWnfIqnUbMUnGxV/XUQ6cNyFEREoYyJIBER2RREtnK5/2gEF9SuZBAm1CvcpHYYtcIac/WhtXdU/Nth3fbNGmK6aaTbNv1Z8S8/pl21skWRw/1okYgo9DARJCIimxJ9osv9hXp11jsMlkk679aQM5SfDFAk4SXCwQQt97U5Yds+mdDJbl8pPJjl1Y/F34sjqw+R9qQXkoioJmEiSERENpGmYpf78wzNgxSJOooQ41V9jVYfoEjCS5pmT7WyqGZVZv28IKfro9nmtk1/egQv6jcIe832yWBn41Y/WiQiCj1MBImIyKbRmZ0u99erOBakSNRx7tZlXtXvdvFNAYokvFQODT0tz8/e2qz7+aGYQtr3GLbW5Nk9XqAdWq3NgoTOPsfTPDEarTXnX+tnZARajn7a5/aIiEKRX4mgEOJqIcQ2IYRZCJF+wb4nhRC7hRC7hBAjqpT3FEJkW/dNFUIIa3mEEOJra/kaIUTLKsdMFELkWL8m+hMzERE5dzKyqcv9ccbaPRSyUfNUr+prdVxOQAkSlmGXy6os5i415yeIkUJrV7/i5oV2j9te9bzd41nGodAl+7aOYKU8WIZJrzJ1xC7ZDK06eT+rLBFRKPO3R3ArgHEAllctFEJ0BDAeQCcAlwD4QAjbu/g0AJMApFq/LrGW3wbgpJQyBcBbAF61tlUPwPMAegPIAPC8EIIr9xIRBcDJiOqJ4AFzA9t2ytmsIEajjtalX6odQtjJ1OwAAHQUB2xlwnx+yQitLLer36Tl+clcdpibQR9r/7FguHYdhnf0737WqH+tw+2Jn6OPdjt6aHb71RYRUSjyKxGUUu6QUu5ysGs0gDlSyjIp5T4AuwFkCCEaA4iXUq6SUkoAMwGMqXLM59btuQCGWnsLRwBYLKUslFKeBLAY55NHIiJSkE5Wn7Sjhea4bVv4dedVzfCNYYraIYSdfFgSuT1tqiwcbz7/Wowvrn4P4XkCMJvtSpLEaVgHHPksvk4iPr5/jF9tEBGFskDdI5gM4FCVx7nWsmTr9oXldsdIKY0AigAkumiLiIgU1qyYyyGka/7xqN5qc4cARxI+6jy1C+VP5qHx4En41jgAACD1UVhT5zKnx6xLexkA0EFzEJry03b7NpuVW+bkjIxUrC0iolDiNhEUQvwuhNjq4Gu0q8MclEkX5b4ec2Gsk4QQ64UQ6/Pz812ER0REjhyPTnG5/0BE9fXVwtXD5XerHUKtoTdEwBARCV1pIa7Wnb/bxGy9q0SK6h9Xeo2517bduEU7nK4y4+tOs3Kz22qf2IvSxw4r1h4RUahwmwhKKYdJKTs7+Jrv4rBcAM2qPG4K4Ii1vKmDcrtjhBA6AAkACl205SjW6VLKdCllelJSkrsfjYiILnBWX8fl/pN6vrdW+sTwutoh1DraslO2bVFxDjtjMwEAp+KrLzgPANv1nXEa0dAbInB87De28g6aAw7r+yIyKgaR0bGKtUdEFCoCNTT0RwDjrTOBtoJlUpi1UsqjAIqFEJnW+/8mAJhf5ZjKGUGvArDEeh/hQgDDhRB1rZPEDLeWERGRwqIrilzuP25o5nJ/OOmgOah2CLWOMJ2fFCYuwf28cB2f/hvxk48CAEyR9WzlXTX7lA+OiKiW8Xf5iLFCiFwAfQAsEEIsBAAp5TYA3wDYDuA3APdKKSun/7obwMewTCCzB8Cv1vJPACQKIXYDeBjAE9a2CgG8CGCd9WuKtYyIiBTWJE7rcn9See0fIveH7iK1Qwhb9ZPbAADWdHgSEZHRaJ9qWc6jdQv3Qz2l5vxSHpX3GRIRkXN+LYAkpZwHYJ6TfS8BeMlB+XoA1VZ5lVKWArjaSVufAvjUn1iJiMi99FH34PCmN5EsChzuTzCeCHJEwfefiIcw1LgCAPBqxXg8rp+jckTho25SY2ByESpX7OszYATKe+chJcL9hC2JSY1t2xVwfUGDiIgCNzSUiIhqIKHRIMvcxq5sl/n8rd2tz20NdkhBp4MRAFAg41An2fnkOfuv+T1YIYU1gwdJIAAk1YnDO8ZxAIBR2lWBDImIqFZgIkhERHYKZILd43aa86v+VCT3vrB6rfNE2TsAgBzZFAmy2Gm9lh17BSsk8lKsKFU7BCKikMdEkIiI7NQTpx2Wf2gcid7XPhHkaIKvjcky0UgzcRw6We6mNoWSJJwCAKw1c5kTIiJ3mAgSEZGdDsLxbJgjNOsgNLX/34ZJWG6fPxGdipM6LpdRk+TD0pu919zYTU0iIqr9/9GJiMgrbTRHHZa30uQFORJ16G+cg1VNJqDro78iwcRJqmuSLsLSm9tds1vlSIiIQh8TQSIisrNLd35Y3ZYR36oYiTqSW3dCn0nvQmg0SDm3xWGdf5XfE+SoyBNDtFkAgDPxbVxXJCIiJoJERGSv+b+X27ajIj2bsbG2anLNmw7L6/e4IsiRkDd6/Hu+2iEQEYU8JoJERGRHaIRtu03XfipGor5GzVMdlk/o53xZCVLPhUufEBGRc0wEiYjIjoAZALBemwaNVosXK25UOSJ1bTG3qlYmzJxNNBQtNaUBAKSU6gZCRFQDMBEkIiI7ERFR2Nj7bbS47XMAwLB4yyyiZ2WEmmGpZpm5W/VCIxPBUKQVJusWE0EiIneYCBIRUTU9Lr0FSU1aAgA6TpqB2cbBGFf+grpBqWSs9q9qZcJ4ToVIyJ14nFU7BCKiGoOJIBERuZRQtz7aanLxlG6W2qGooqk4oXYI5KGTMg4AIKVwU5OIiHRqB0BERKGvpyZH7RCI3OqhrXydcmgoEZE77BEkIiLykoyIUzsEcqC/yLZscLIYIiK3mAgSERG5MKfdO9ULhTb4gZBbuy6dg7V1R0Jo+PGGiMgdDg0lIiK3Cu/ZDo1GizpqB6ICobX8q7ym7Fl8E/EiAEBq9GqGRE50zLwEyLxE7TCIiGoEJoJERORWvQbJaoegmvpn9wIArmlxBjhmKeM6gkREVNNx7AQREZELHQZdi2NIQv/LrreVCWOZihERERH5jz2CRERELjRp2Q6YvNuuTJhKVYqGiIhIGewRJCIi8lJC/SZqh0BEROQXJoJEREReio2vq3YIREREfmEiSERE5IUcXaraIRAREfmN9wgSERF56NCNf6Fxg6Zqh0FEROQ3JoJEREQeapbSRe0QiIiIFMGhoURERERERGHGr0RQCHG1EGKbEMIshEivUt5SCHFOCJFl/fqwyr6eQohsIcRuIcRUIYSwlkcIIb62lq8RQrSscsxEIUSO9WuiPzETERERERGFO397BLcCGAdguYN9e6SUHdqSqQAABp5JREFUadavu6qUTwMwCUCq9esSa/ltAE5KKVMAvAXgVQAQQtQD8DyA3gAyADwvhOB0bURERERERD7yKxGUUu6QUu7ytL4QojGAeCnlKimlBDATwBjr7tEAPrduzwUw1NpbOALAYilloZTyJIDFOJ88EhERERERkZcCeY9gKyHEJiHEMiHERdayZAC5VerkWssq9x0CACmlEUARgMSq5Q6OISIiIiIiIi+5nTVUCPE7gEYOdj0tpZzv5LCjAJpLKQuEED0B/CCE6ARAOKgrK0/lZJ+rYy6MdRIsw07RvHlzJ6ERERERERGFN7eJoJRymLeNSinLAJRZtzcIIfYAaAtLb17VBZiaAjhi3c4F0AxArhBCByABQKG1fNAFx/zp5LzTAUwHgPT0dIfJIhERERERUbgLyNBQIUSSEEJr3W4Ny6Qwe6WURwEUCyEyrff/TQBQ2av4I4DKGUGvArDEeh/hQgDDhRB1rZPEDLeWERERERERkQ/8WlBeCDEWwLsAkgAsEEJkSSlHABgAYIoQwgjABOAuKWWh9bC7AXwGIArAr9YvAPgEwBdCiN2w9ASOBwApZaEQ4kUA66z1plRpi4iIiIiIiLwkLJ1utY8QIh/AAbXjcKA+gBNqB0GkML6uqbbha5pqG76mqTbi69q9FlLKJEc7am0iGKqEEOullOlqx0GkJL6uqbbha5pqG76mqTbi69o/gVw+goiIiIiIiEIQE0EiIiIiIqIww0Qw+KarHQBRAPB1TbUNX9NU2/A1TbURX9d+4D2CREREREREYYY9gkRERERERGGGiWAQCSEuEULsEkLsFkI8oXY8RBcSQuwXQmQLIbKEEOutZfWEEIuFEDnW73Wr1H/S+nreJYQYUaW8p7Wd3UKIqUIIYS2PEEJ8bS1fI4RoGfQfkmo1IcSnQojjQoitVcqC8hoWQky0niNHCDExSD8y1XJOXtOThRCHre/VWUKIy6rs42uaQpoQopkQYqkQYocQYpsQ4kFrOd+rg4yJYJAIIbQA3gdwKYCOAK4TQnRUNyoihwZLKdOqTMf8BIA/pJSpAP6wPob19TseQCcAlwD4wPo6B4BpACYBSLV+XWItvw3ASSllCoC3ALwahJ+HwstnOP96qxTw17AQoh6A5wH0BpAB4PmqH2KI/PAZqr+mAeAt63t1mpTyF4CvaaoxjAD+LaXsACATwL3W1y7fq4OMiWDwZADYLaXcK6UsBzAHwGiVYyLyxGgAn1u3Pwcwpkr5HCllmZRyH4DdADKEEI0BxEspV0nLTcgzLzimsq25AIZWXr0jUoKUcjmAwguKg/EaHgFgsZSyUEp5EsBiOP7wTuQVJ69pZ/iappAnpTwqpdxo3S4GsANAMvheHXRMBIMnGcChKo9zrWVEoUQCWCSE2CCEmGQtayilPApY3rwBNLCWO3tNJ1u3Lyy3O0ZKaQRQBCAxAD8HUVXBeA3zPZ6C7T4hxBbr0NHKHg2+pqlGsQ7Z7A5gDfheHXRMBIPHUa8Hp2ylUNNPStkDliHM9wohBrio6+w17eq1zr8DCiVKvob52qZgmgagDYA0AEcBvGEt52uaagwhRCyA7wD8S0p52lVVB2V8XSuAiWDw5AJoVuVxUwBHVIqFyCEp5RHr9+MA5sEypDnPOvwC1u/HrdWdvaZzrdsXltsdI4TQAUiA50OeiHwVjNcw3+MpaKSUeVJKk5TSDOAjWN6rAb6mqYYQQuhhSQJnSSm/txbzvTrImAgGzzoAqUKIVkIIAyw3vf6ockxENkKIGCFEXOU2gOEAtsLyOq2cVWsigPnW7R8BjLfOzNUKlpu011qHcxQLITKt4/EnXHBMZVtXAVgiuZgpBV4wXsMLAQwXQtS1DtMbbi0jUlzlh2WrsbC8VwN8TVMNYH0NfgJgh5TyzSq7+F4dZDq1AwgXUkqjEOI+WF5sWgCfSim3qRwWUVUNAcyzzt2iA/CVlPI3IcQ6AN8IIW4DcBDA1QAgpdwmhPgGwHZYZgC7V0ppsrZ1Nywz3UUB+NX6BVje+L8QQuyG5crc+GD8YBQ+hBCzAQwCUF8IkQvL7HCvIMCvYSlloRDiRVgu+gHAFCkle7vJb05e04OEEGmwDGnbD+BOgK9pqjH6AbgJQLYQIsta9hT4Xh10ghfjiYiIiIiIwguHhhIREREREYUZJoJERERERERhhokgERERERFRmGEiSEREREREFGaYCBIREREREYUZJoJERERERERhhokgERERERFRmGEiSEREREREFGb+HzrPdy8bfoAKAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# We cannot reconstruct from continous signal wavelet decomposition, \n", + "# We will do the discrete wavelet transform, \n", + "\n", + "(cA1, cD1) = pywt.dwt(HappySignal, 'db2', 'smooth')\n", + "h_reconstructed_DWT = pywt.idwt(cA1, cD1, 'db2', 'smooth')\n", + "h_reconstructed_DWT = np.resize(h_reconstructed_DWT, HappySignal.shape)\n", + "dwt_HappyReconError = np.square(np.subtract(HappySignal,h_reconstructed_DWT)).mean()\n", + "print (dwt_HappyReconError)\n", + "fig, ax = plt.subplots(nrows=2, ncols=1, figsize=(15, 10))\n", + "plt.subplot(2, 1, 1)\n", + "ax[0].plot(HappySignal, label='signal')\n", + "ax[0].plot(h_reconstructed_DWT, label='reconstructed DWT Happy signal', linestyle='--')\n", + "ax[0].legend(loc='upper left')\n", + "\n", + "\n", + "(cA1, cD1) = pywt.dwt(AngrySignal, 'db2', 'smooth')\n", + "a_reconstructed_DWT = pywt.idwt(cA1, cD1, 'db2', 'smooth')\n", + "a_reconstructed_DWT = np.resize(a_reconstructed_DWT, AngrySignal.shape)\n", + "dwt_AngryReconError = np.square(np.subtract(AngrySignal,a_reconstructed_DWT)).mean()\n", + "print (dwt_AngryReconError)\n", + "plt.subplot(2, 1, 2)\n", + "ax[1].plot(AngrySignal, label='signal')\n", + "ax[1].plot(a_reconstructed_DWT, label='reconstructed DWT Angry signal', linestyle='--')\n", + "ax[1].legend(loc='upper left')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "f5578c24", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(104906,)" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cA1.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3e5bd6b4", + "metadata": {}, + "outputs": [], + "source": [ + "sd.play(h_reconstructed_DWT, h_samplerate)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "35563134", + "metadata": {}, + "outputs": [], + "source": [ + "sd.play(a_reconstructed_DWT, a_samplerate)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "c99af11f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJwAAAEWCAYAAAAjPY3FAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABC1UlEQVR4nO3debxd47348c83A4mZJFwSJFpqSiSawZCrMVRjVqKmaybcNvyqqGh7K9dtS0tb11RTCa2S1hCqbqtUBA0iBI2EKgkRNQSpqKjE9/fHWufYOc6wk+yTk8jn/Xrtl72etdbzfNdae21nf/M8z4rMRJIkSZIkSaqVdm0dgCRJkiRJkj5dTDhJkiRJkiSppkw4SZIkSZIkqaZMOEmSJEmSJKmmTDhJkiRJkiSppkw4SZIkSZIkqaZMOEmSVIqIwyPi7raOY0XzaT/vEfHliHg5IuZGRL+l1Oa3IuLqpmKIiM9FxBMR8W5EnLI0YpIaioh/j4hn2zoOSVLrMOEkSaq5iDgsIh4rf9y+GhH/FxGD2zqulmTmDZm5e2vUHRHTI+L98pz8PSJGR8RqrdHWkoqIjIjPtlLdPcv6O9SVtdZ5j4ghEfFRec4rX9vXuq0WXACMyMzVMvOJJa0sIsZFxLwyWfSPiJgUESMjYuW6bTLzB5l5fDMxfBMYl5mrZ+ZFSxrTIsY/KiJ+2cI2lfdL3WuDJWx3ekTstiR1LGJ7oyLiwzL2dyLiz23w2Ws15f01cxH3Wei7JTMfyMzP1T46SdKywISTJKmmIuIbwIXAD4D1gI2Ay4D92jCsFlUmQFrRPpm5GtAX6AectRTarLmldK5qZVaZZKl8TWi4URTaNShbpONsZvuNgSmLUldFne2bWDUiM1cH1gdOAw4B7oqIqDKGJYlpaV3/fRpct1lLqd1GLeZxjynv+a7AfcBvahtV459dSZKWBf7PSZJUMxGxJnAO8LXMvDUz38vMDzPzt5l5RrnNyhFxYUTMKl8X1vXMqPsX84j4ZkS8XvaO2j8i9oyI5yLirYj4VkV7oyLi5ogYU/b2eDwitqlYPzIi/laueyYivlyx7uiIeCgifhoRbwGjyrIHK7bJiDgpIv4aEW9HxKV1P+gjon1E/Dgi3oyIFyNiRMOeO03JzL8Df6BIPNW1tV3ZA+KdiHgyIoZUrFsnIq4tz9fbETG2Yt0JEfF8eW7uqOwF0kL8n42I+yNiTnkMY8ry8eXuT5Y9Mw6uuC5nRsTfgWsbnquK9j5bvu9cnp8ZZRsPRkRnoK7+d8r6t2/kvO8QERPL/SZGxA4V68ZFxP+U1+7diLg7Irq2dM4bU9b1/Yh4CPgnsEl5DF+LiL8Cf63yHC+0fcW6lSNiLtC+PJ9/K8u3KNt+JyKmRMS+FfuMjoifRcRdEfEesHNzx1DeY+OAfYHtgb3KekZFxC8biyEi/lTWe0l5DTYrt7sgIl6KiNci4vLyelXel5XXv118fH/NjohfR8Q65fZ1vdiOKut7MyK+Xa4bCnwLOLhs+8lFvGZrRsTPo/hueCUivhdlUi4iPhMRfyrjeTMiboiItcp1v6BIfv+2bPeb0UgPnajoBRUff7/8MiL+ARzdXPstXKf5wA1A94joVsWx1H0/XVzeB9MiYteKOBv77G4eEX8sP6fPRsRXKrbfM4rvwHfLtk6vWLd3REyOj3th9WlwPk6PiKfKOMZERKeIWBX4P2CDqOiBFhEDI2JCWderEXFJRKxU1tXkd0tFey3dG5dGxO/K43gkIj5TrosovstfL+N8KiK2bum6SJJalwknSVItbQ90Am5rZptvA9tRJFu2AQYC36lY/29lHd2B7wJXAf8BfB74d+C7EbFJxfb7UfQaWAf4FTA2IjqW6/5W7rMm8N/ALyNi/Yp9BwEvAOsC328i3r2BAWWsXwG+VJafAOxRHse2wP7NHPNCIqJHue/z5XJ34HfA98rjOB24pe6HKfALYBVgqzLWn5b77QKcW8a1PjADuKnK+P8HuBtYG+gBXAyQmTuV67cpe5WMKZf/rYxtY2B4FYd5AcU126Hc75vAR0Bd/Ws11tuoTFr8DrgI6AL8BPhdRHSp2Oww4JjyXKxEcb4W1xEUx7M6xfmD4loOAras8hzXb19ZmJkflL1boDifnyk/m7+lOPfrAicDN0RE5bCiwyg+j6sDCyX1mpKZLwGPUXzem40hM3cBHuDjIXbPAT8ENqP4PH+Wj++/Og2v/ynlcX8B2AB4G7i0QViDgc8Bu1Lct1tk5u8pej+OKdvehkVzHTC/jLEfsDtQN3QwKK7VBsAWwIbAqPI8HAG8xMe9pn5UZXv7ATcDa1EkjJprv0ll0uVIYDbFuWrpWODj76euwNnAreX9Uafys/sG8EeK78B1gUOByyJiq3LbnwMnlr3itgb+VMa1LXANcCLF/XYFcEdUDM+k+OwPBXoBfYCjM/M9iu+wyh6Es4AFwKllzNtTXPuvQrPfLXXnqJp741CK7/K1Kb4/6763d6f4btmM4lodXJ5rSVIbMuEkSaqlLsCb5b/mN+Vw4JzMfD0z36D48XBExfoPge9n5ocUP+y7Av+bme9m5hSKYUB9KraflJk3l9v/hCJZtR1AZv4mM2dl5kflj5u/UiS46szKzIszc35mvt9EvOdl5jvlD/r7+LhX0lfKuGZm5tvAec2fGqBIhr0LvAy8TvEjEoqE2l2ZeVcZ6x8pkgd7lgmyPYCTMvPtssfY/RXn8prMfDwzP6AYord9RPSsIv4PKZIHG2TmvMxsKbHxEXB2mcBo6lwBEMXwnmOB/5eZr2Tmgsz8cxljS/YC/pqZvyivy43ANGCfim2uzcznyjh+XXFMjdmg7C1R+Vq1Yv3ozJxStvVhWXZuZr5V1l/NOa7cviXbAatRXJd/ZeafgDspfkjXuT0zHyo/C/OqqLPOLIqk0CKJiKBIoJ5aHse7FEmhQyo2a3j9TwS+XX7+P6BI7AyLhXv4/Xdmvp+ZTwJPUiQ9F8XYims2NiLWo7gXvl727HqdIvl6CEBmPp+ZfyxjfIPi++ALi9hmQxMyc2xmfgSs0Vz7TfhKRLwDvE9xjodl5vyWjqX0OnBhec+PAZ6l7MFWqv/sUiSEpmfmteVn+XHgFmBYue2HFAnUNcrvkcfL8hOAKzLzkfI+vQ74gPI7tHRR+T36FkVCqG9TB5uZkzLz4TKG6RQJrGqvQTX3xq2Z+Wh+3GOsLpYPKRJvmwORmVMz89Uq25UktRITTpKkWpoNdI3mh5VtwMc9SSjfV04GPDszF5Tv637Av1ax/n2KHyV1Xq57U/4onFlXX0QcWTFU5B2Kf9nv2ti+zfh7xft/VrS9QYP9q6lr/7KHwRCKH0Z1sWwMHFSZFKHoHbI+RS+Nt8qkVkMLncvMnEtxDbpXEf83KXqEPFoOXTm2hdjfWITkR1eKxN/fqty+UsPPB+VyNcfUmFmZuVaD13sV6xu7bpVl1Zzjaq59ZX0vl5/VOg2Pb1Hqq9QdeGsx9utG0YNuUsXn7/dleZ2G139j4LaK7adS9G5Zr2KbRblOjdm/4prtX7bZEXi1ot0rKHrDEBHrRsRN5ZCxfwC/ZOH7fXFUXotm22/CrzNzLYrz8heKXn/V1vVKZmbFcsPvyoaxDWrwHXI4Rc80gAOBPYEZUQyl3b5iv9Ma7Ldhg3aqvo5RDM+8M4oHI/yDInFZ7TWo5t5oNJYyOXUJRS+71yLiyohYo8p2JUmtxISTJKmWJgDzaH542SyKHzl1NirLFteGdW/KnjU9gFkRsTHFcLwRQJfyR99fKJIsdSp/zC2qV8u2PhFHS8oeSqMphp1B8cPxFw2SIqtm5nnlunWinIumgYXOZdlzpwvwShUx/D0zT8jMDSh6q1wWzT+ZruG5eo8iSVHX9r9VrHuT4nPwmSrqaajh5wOKz0iLx7SYGounsqyac7won6NZwIax8CTPDY9vkT+XEbEhRTLjgUXdl+J6vQ9sVfH5WzM/HorXWEwvA3s0+Mx2ysxqrtPi3ncvU/S+6VrR5hqZWTds7Nyy7j6ZuQZFz8Hm7veGn+H2LJxka7hPS+03KTPfpLjPRpW9Fqupq3vZ+6xOw+/KhrHd3+B6rJaZ/1m2PzEz96NIaI2l6BlYt9/3G+y3ShY9C1s8rEbKfkbRI3HT8hp8i4WvQXOquTeaDibzosz8PMXQ482AM6psV5LUSkw4SZJqJjPnUMz7cmkUk32vEhEdI2KPiKibM+VG4DsR0S2KyZ6/S9ETYXF9PiIOKHtVfZ3iR9zDwKoUP4jeAIiIYyh6ONXKr4H/FxHdy2TQmYu4/4XAFyOiL8Xx7xMRX4piMvJOUUym26McFvJ/FAmhtcvzWTcXyq+AYyKibznnyg+AR8qhLM2KiIPKuaSgmFMmKXqoQNGjbJNGd/zYk8BWZdudKOfKgfqeZtcAP4liIuH2UUwOvjLF9fiomfrvAjaLiMMiokNEHEwxN9KdLR1TK1nsc9yERygSHd8sr+UQiuGCDeeFqkp5j30BuB14lOL8LZLyel0F/DQi6noLdY+ILzWz2+XA98vELuX9XO2TKF8DesYiPlmtvBfuBn4cEWtEMXH5Z8rjh2JI1VyKCem788mEQ8PP9XNAp4jYK4r5g74DrEwTqmi/pfinUTws4JtV1rUucEr5OTmIYl6qpq7vnRT3zRHl9h0jYkAUk3CvFBGHR8SaWQwb/Qcf3+tXASdFxKAorFqej9WrOKTXgC5RPCyizupl/XMjYnPgPxvZp6l7f7HvjfJYB5XX8T2KhPeCFnaTJLUyE06SpJrKzJ8A36D48fYGxb+gj6D4V3UoJsZ+DHgKeBp4vCxbXLdTTBD7NsVcUAeUc548A/yYotfVa0Bv4KElaKehqyh+MD4FPEHxQ3A+Vf7IKeeYuR74r8x8mWJy4m/x8Tk7g4//P30ExRwl0yjmdfl6Wce9wH9RzNXyKkWPoubmk6k0AHgkiieY3UEx39KL5bpRwHXlEJuvNLZzFhNNnwPcQzE3VsM5oE6nuL4TKYZ5/RBol5n/pJjo96Gy/sq5YsjM2RQTnZ9GMXTtm8DeZQ+RxVH5FK2614HV7ryE57ix+v5F8US5PSh6Fl0GHFkmIxbFJVHMB/YaRfLyFmBog+FIi+JMikmYHy6HQt1DMeF3U/6X4nNzdxnHwxSTXFfjN+V/Z0fE481u+UlHUkwU/wzFPX8zxdBTKOaD2xaYQzHx/K0N9j2XItn9TkScXibIvwpcTdGL5j2KIbmL2341zgeGl4m9lup6BNiU4nPyfYr5nxqdCDuLebd2p/hszqIYevZDPk6gHQFML6/tSRS9v8jMxyjmcbqkjOF54OhqDqT8zN4IvFCe0w0o7vvDgHcpviPHNNhtFE18tyzhvbFG2d7bFMPwZvNxD1JJUhuJhYeGS5K0/IiIUcBnM/M/loFY9gAuz8yGw8EkaZFExNHA8Zk5uK1jkSRpcdnDSZKkxRARnSNiz3LYV3eKJ87d1tZxSZIkScsCE06SJC2eoBjC8zbFkLqpFPNRSZIkSSs8h9RJkiRJkiSppuzhJEmSJEmSpJrq0NYBLA1du3bNnj17tnUYkiRJkiRJnxqTJk16MzO7NbZuuUw4RcS/A4dTxL9lZu7Q3PY9e/bkscceWyqxSZIkSZIkrQgiYkZT65b6kLqIuCYiXo+IvzQoHxoRz0bE8xExsrk6MvOBzDwJuBO4rjXjlSRJkiRJ0qJpix5Oo4FLgOvrCiKiPXAp8EVgJjAxIu4A2gPnNtj/2Mx8vXx/GHB8awcsSZIkSZKk6i31hFNmjo+Ing2KBwLPZ+YLABFxE7BfZp4L7N1YPRGxETAnM//RmvFKkiRJkiRp0Swrczh1B16uWJ4JDGphn+OAa5taGRHDgeEAG2200ZLGJ0mSJEn6lPrwww+ZOXMm8+bNa+tQpGVSp06d6NGjBx07dqx6n2Ul4RSNlGVzO2Tm2S2svxK4EqB///7N1iVJkiRJWnHNnDmT1VdfnZ49exLR2M9TacWVmcyePZuZM2fSq1evqvdb6pOGN2EmsGHFcg9gVhvFIkmSJElagcybN48uXbqYbJIaERF06dJlkXsALisJp4nAphHRKyJWAg4B7mjjmCRJkiRJKwiTTVLTFuf+WOoJp4i4EZgAfC4iZkbEcZk5HxgB/AGYCvw6M6cs7dgkSZIkSZK05NriKXWHNlF+F3DXUg5HklYMo9Zs6wiWHaPmtHUEkiRpGddz5O9qWt/08/ZqcZvVVluNuXPn1i+PHj2axx57jEsuuaSmsVRj7ty5nHbaadxzzz106tSJLl26cP755zNo0KBPxFkro0eP5owzzqB79+7MmzePE088kVNPPbXm7VTrwgsvZPjw4ayyyio1qe8HP/gB3/rWt+qXd9hhB/785z8vcb1HH300999/P2uuWfy9v8oqq9Sk3lpYVobUSZIkSZKkZcDxxx/POuusw1//+lemTJnC6NGjefPNN1u93YMPPpjJkyfz0EMP8f3vf5+XX3655Z1ayYUXXsg///nPRtctWLBgkev7wQ9+sNByLZNC559/PpMnT2by5MmN1jt//vxml5tS7XZNMeEkSZIkSdIy7Le//S2DBg2iX79+7Lbbbrz22msAjBo1iiOOOIJddtmFTTfdlKuuugqAcePGsdNOO/HlL3+ZLbfckpNOOomPPvqIn//85wv1Grrqqqv4xje+sVBbf/vb33jkkUf43ve+R7t2Rcpgk002Ya+9Fu6lNXfuXHbddVe23XZbevfuze233w7Ae++9x1577cU222zD1ltvzZgxYwAYOXIkW265JX369OH0009v9ni7dOnCZz/7WV599VUAfvnLXzJw4ED69u3LiSeeWJ/w+f3vf8+2227LNttsw6677grAW2+9xf7770+fPn3YbrvteOqpp+rP1bHHHsuQIUPYZJNNuOiii5qM96KLLmLWrFnsvPPO7LzzzkDRA+273/0ugwYNYsKECfTs2bM+CffYY48xZMiQ+vNyzDHH0Lt3b/r06cMtt9zCyJEjef/99+nbty+HH354fX1QPAHujDPOYOutt6Z3797152vcuHEMGTKEYcOGsfnmm3P44YeTmc2et0qjRo1i+PDh7L777hx55JGfWJ4xYwa77rorffr0Ydddd+Wll14Cih5T3/jGN9h5550588wzq26vMUt9SJ0kSZIkSVpYXUKizltvvcW+++4LwODBg3n44YeJCK6++mp+9KMf8eMf/xiAp556iocffpj33nuPfv361SeGHn30UZ555hk23nhjhg4dyq233sohhxxCnz59+NGPfkTHjh259tprueKKKxaKY8qUKfTt25f27ds3G2+nTp247bbbWGONNXjzzTfZbrvt2Hffffn973/PBhtswO9+VwxLnDNnDm+99Ra33XYb06ZNIyJ45513mq37pZdeYt68efTp04epU6cyZswYHnroITp27MhXv/pVbrjhBvbYYw9OOOEExo8fT69evXjrrbcAOPvss+nXrx9jx47lT3/6E0ceeSSTJ08GYNq0adx33328++67fO5zn+M///M/G413zTXX5Cc/+Qn33XcfXbt2BYrE1NZbb80555zTbOz/8z//w5prrsnTTz8NwNtvv82BBx7IJZdcUh9HpVtvvZXJkyfz5JNP8uabbzJgwAB22mknAJ544gmmTJnCBhtswI477shDDz3E4MGDP1HHGWecwfe+9z0AttpqK2644QYAJk2axIMPPkjnzp0ZNWrUQsv77LMPRx55JEcddRTXXHMNp5xyCmPHjgXgueee45577mnxM9ASE06SJEmSJLWxzp07L5SQqJvDCWDmzJkcfPDBvPrqq/zrX/+iV69e9dvtt99+dO7cmc6dO7Pzzjvz6KOPstZaazFw4EA22WQTAA499FAefPBBhg0bxi677MKdd97JFltswYcffkjv3r0XK97M5Fvf+hbjx4+nXbt2vPLKK7z22mv07t2b008/nTPPPJO9996bf//3f2f+/Pl06tSJ448/nr322ou999670TrHjBnDfffdx7PPPstVV11Fp06duPfee5k0aRIDBgwAisTcuuuuy8MPP8xOO+1Ufy7WWWcdAB588EFuueUWAHbZZRdmz57NnDnFHJ577bUXK6+8MiuvvDLrrrtuk/E2pn379hx44IEtnpd77rmHm266qX557bXXbnb7Bx98kEMPPZT27duz3nrr8YUvfIGJEyeyxhprMHDgQHr06AFA3759mT59eqMJp/PPP59hw4Z9onzfffelc+fOjS5PmDCBW2+9FYAjjjiCb37zm/XbHXTQQUucbAKH1EmSJEmStEw7+eSTGTFiBE8//TRXXHEF8+bNq1/X8HH1dctNlR9//PGMHj2aa6+9lmOOOeYTbW211VY8+eSTfPTRR83GdMMNN/DGG28wadIkJk+ezHrrrce8efPYbLPNmDRpEr179+ass87inHPOoUOHDjz66KMceOCBjB07lqFDhzZa58EHH8yUKVN44IEHOO200/j73/9OZnLUUUfVz1H07LPPMmrUKDLzE8cINDrsrG67lVdeub6sffv2zJ8/v9F4G9OpU6eFkjAdOnSoP0eV16OpuJrS3DC5xuJdFKuuumqzy5UqY25uu0VhwkmSJEmSpGXYnDlz6N69OwDXXXfdQutuv/125s2bx+zZsxk3blx9T6BHH32UF198kY8++ogxY8bU94wZNGgQL7/8Mr/61a849NBPPkT+M5/5DP379+fss8+uT4b89a9/rZ+jqTKmddddl44dO3LfffcxY8YMAGbNmsUqq6zCf/zHf3D66afz+OOPM3fuXObMmcOee+7JhRde2OjQskrbb789RxxxBP/7v//Lrrvuys0338zrr78OFEMNZ8yYwfbbb8/999/Piy++WF8OsNNOO9UPKRs3bhxdu3ZljTXWaLKtxuIFWH311Xn33Xeb3K9nz55MmjQJoL5HFcDuu+++0JMF3377bQA6duzIhx9++Il6dtppJ8aMGcOCBQt44403GD9+PAMHDmz2/NTCDjvsUN8T64Ybbmi059SSckidJEmSJEkVpp+3V8sbLUWjRo3ioIMOonv37my33Xb1SRaAgQMHstdee/HSSy/xX//1X2ywwQY899xzbL/99owcOZKnn366fgLxOl/5yleYPHlyk8O9rr76ak477TQ++9nPssoqq9ClSxfOP//8hbY5/PDD2Weffejfvz99+/Zl8803B+Dpp5/mjDPOoF27dnTs2JGf/exnvPvuu+y3337MmzePzOSnP/1pi8d85plnsu222/Ktb32L733ve+y+++589NFHdOzYkUsvvZTtttuOK6+8kgMOOICPPvqIddddlz/+8Y+MGjWKY445hj59+rDKKqt8IkHXUGPxAgwfPpw99tiD9ddfn/vuu+8T+5199tkcd9xx/OAHP2DQoEH15d/5znf42te+xtZbb0379u05++yzOeCAAxg+fDh9+vRh2223rU+IAXz5y19mwoQJbLPNNkQEP/rRj/i3f/s3pk2b1uI5qlM5hxMUycaWXHTRRRx77LGcf/75dOvWjWuvvbbq9qoVizLL+fKqf//+WTf2VZJWSKPWbOsIlh2j5rR1BJIkaRkzdepUtthii7YOY5GNGjWK1VZb7RNPfRs3bhwXXHABd955Z6P77b333px66qn1T3aTqtHYfRIRkzKzf2PbO6ROkiRJkqQVwDvvvMNmm21G586dTTap1TmkTpIkSZKk5dCoUaMaLR8yZAhDhgz5RPlaa63Fc88917pBSSV7OEmSJEmSJKmmTDhJkiRJkiSppkw4SZIkSZIkqaZMOEmSJEmSJKmmnDRckiRJkqRKo9ascX1zqtrstttu44ADDmDq1KlsvvnmNWt+8uTJzJo1iz333LPR9Y8++iinn346r732GhHB4MGDueiii/j1r3/NY489xiWXXFKzWOoMGTKEV199lU6dOrHSSitx1VVX0bdv35q3U43p06fz5z//mcMOO6wm9TU833fccQfPPPMMI0eOXOK627dvT+/eveuXDznkkJrU2xrs4SRJkiRJ0jLgxhtvZPDgwdx00001q3P+/PlMnjyZu+66q9H1r732GgcddBA//OEPefbZZ5k6dSpDhw7l3XffrVkMTbnhhht48skn+epXv8oZZ5zR6u01Zfr06fzqV79qdN38+fMXub6G53vfffetWVKoc+fOTJ48uf7VWL0LFixodrkp1W5XLRNOkiRJkiS1sblz5/LQQw/x85//fKGE07hx4xgyZAjDhg1j88035/DDDyczAbjrrrvYfPPNGTx4MKeccgp77703AKNGjWL48OHsvvvuHHnkkXz3u99lzJgx9O3blzFjxizU7qWXXspRRx3F9ttvD0BEMGzYMNZbb72Ftvvtb3/LoEGD6NevH7vtthuvvfYaAPfffz99+/alb9++9OvXj3fffZdXX32VnXbaib59+7L11lvzwAMPNHvs22+/Pa+88goA7733HsceeywDBgygX79+3H777UCRDDn99NPp3bs3ffr04eKLLwbg3nvvpV+/fvTu3Ztjjz2WDz74AICePXty9tlns+2229K7d2+mTZvWZLwjR47kgQceoG/fvvz0pz9l9OjRHHTQQeyzzz7svvvujBs3rv7cAowYMYLRo0cDMHHiRHbYYQe22WYbBg4cyJw5cz5xvkePHs2IESMAmDFjBrvuuit9+vRh11135aWXXgLg6KOP5pRTTmGHHXZgk0024eabb27+A9NAz549Oeeccxg8eDC/+c1vPrF844030rt3b7beemvOPPPM+v1WW201vvvd7zJo0CAmTJiwSG22xCF1y5meI3/X1iEsU6aft1dbhyBJkiRJS2zs2LEMHTqUzTbbjHXWWYfHH3+cbbfdFoAnnniCKVOmsMEGG7Djjjvy0EMP0b9/f0488UTGjx9Pr169OPTQQxeqb9KkSTz44IN07tyZ0aNHNzk07i9/+QtHHXVUi/ENHjyYhx9+mIjg6quv5kc/+hE//vGPueCCC7j00kvZcccdmTt3Lp06deLKK6/kS1/6Et/+9rdZsGAB//znP5ut+/e//z37778/AN///vfZZZdduOaaa3jnnXcYOHAgu+22G9dffz0vvvgiTzzxBB06dOCtt95i3rx5HH300dx7771sttlmHHnkkfzsZz/j61//OgBdu3bl8ccf57LLLuOCCy7g6quvbjTe8847jwsuuIA777wTgNGjRzNhwgSeeuop1llnHcaNG9do3P/61784+OCDGTNmDAMGDOAf//gHq6yyCuecc85C57suOQVFsurII4/kqKOO4pprruGUU05h7NixALz66qs8+OCDTJs2jX333Zdhw4Z9os33339/oaGHZ511FgcffDAAnTp14sEHHwRg5MiR9cuzZs1iu+22Y9KkSay99trsvvvujB07lv3335/33nuPrbfemnPOOafZa7Q47OEkSZIkSVIbu/HGGznkkEOAYl6eG2+8sX7dwIED6dGjB+3ataNv375Mnz6dadOmsckmm9CrVy+ATySc9t13Xzp37lyz+GbOnMmXvvQlevfuzfnnn8+UKVMA2HHHHfnGN77BRRddxDvvvEOHDh0YMGAA1157LaNGjeLpp59m9dVXb7TOww8/nB49evDDH/6Qk08+GYC7776b8847j759+zJkyBDmzZvHSy+9xD333MNJJ51Ehw5Fv5l11lmHZ599ll69erHZZpsBcNRRRzF+/Pj6+g844AAAPv/5zzN9+vQm423MF7/4RdZZZ51mz8mzzz7L+uuvz4ABAwBYY401mqyvzoQJE+rnijriiCPqE0QA+++/P+3atWPLLbes70HWUMMhdXXJJmCh95XLEydOZMiQIXTr1o0OHTpw+OGH15+n9u3bc+CBBzYb8+Iy4SRJkiRJUhuaPXs2f/rTnzj++OPp2bMn559/PmPGjKkfOrfyyivXb9u+fXvmz59fv64pq666alVtb7XVVkyaNKnF7U4++WRGjBjB008/zRVXXMG8efOAoifN1Vdfzfvvv892223HtGnT2GmnnRg/fjzdu3fniCOO4Prrr2+0zhtuuIEXX3yRww47jK997WsAZCa33HJLfULlpZdeYosttiAziYiF9m/pHNSdt7pz1lS8jak8fx06dOCjjz6qX6479sZiWlSV+1de55aOrTENr3ndcnN1derUifbt2y9yW9Uw4SRJkiRJUhu6+eabOfLII5kxYwbTp0/n5ZdfplevXgv1fmlo880354UXXqjvudNwbqZKq6++epOTgI8YMYLrrruORx55pL7sl7/8JX//+98X2m7OnDl0794dgOuuu66+/G9/+xu9e/fmzDPPpH///kybNo0ZM2aw7rrrcsIJJ3Dcccfx+OOPNxlbx44d+d73vsfDDz/M1KlT+dKXvsTFF19cnyR54oknANh99925/PLL6xNHb731FptvvjnTp0/n+eefB+AXv/gFX/jCF5psq6l4mzs/ABtvvDHPPPMMH3zwAXPmzOHee+8Fimswa9YsJk6cCMC7777L/Pnzm61vhx12qJ+j64YbbmDw4MHNxlsLgwYN4v777+fNN99kwYIF3HjjjS2ep1pY5udwiohNgG8Da2bmsLJsVeAy4F/AuMy8oQ1DlCRJkiR9moyas1Sbu/HGGz/xtLEDDzyQX/3qV58YJlWnc+fOXHbZZQwdOpSuXbsycODAJuvfeeed64epVc75A7Deeutx0003cfrpp/P666/Trl07dtppp/rhaHVGjRrFQQcdRPfu3dluu+148cUXAbjwwgu57777aN++PVtuuSV77LEHN910E+effz4dO3ZktdVWa7KHU+WxnHbaaVxwwQVccsklfP3rX6dPnz5kJj179uTOO+/k+OOP57nnnqNPnz507NiRE044gREjRnDttddy0EEHMX/+fAYMGMBJJ53UbFuNxduuXTs6dOjANttsw9FHH83aa6+90D4bbrghX/nKV+jTpw+bbrop/fr1A2CllVZizJgxnHzyybz//vt07tyZe+655xPnu9JFF13Esccey/nnn0+3bt249tprm423oYZzOA0dOpTzzjuv2X3WX399zj33XHbeeWcykz333JP99ttvkdpdHLE43bSqrjziGmBv4PXM3LqifCjwv0B74OrMbP7sFPvcXJFwOgJ4JzN/GxFjMrPxO7DUv3//fOyxx5bkUJYZThq+MCcNl6o0as22jmDZsZT/gJQkScu+qVOnssUWW7R1GIts7ty5rLbaamQmX/va19h000059dRT2zosfUo1dp9ExKTM7N/Y9q09pG40MLRBMO2BS4E9gC2BQyNiy4joHRF3Nnit20S9PYCXy/cLWil2SZIkSZKWWVdddRV9+/Zlq622Ys6cOZx44oltHZJUr1WH1GXm+Ijo2aB4IPB8Zr4AEBE3Aftl5rkUvaGqMZMi6TSZJpJmETEcGA6w0UYbLXLskiRJkiQty0499VR7NGmZ1RaThnfn495JUCSPuje1cUR0iYjLgX4RUTf48VbgwIj4GfDbxvbLzCszs39m9u/WrVuNQpckSZIkfRq15nQz0vJuce6Ptpg0vLFnBjYZeWbOBk5qUPYecEyN45IkSZIkrYA6derE7Nmz6dKlyxI/5l76tMlMZs+eTadOnRZpv7ZIOM0ENqxY7gHMaoM4JEmSJEmiR48ezJw5kzfeeKOtQ5GWSZ06daJHjx6LtE9bJJwmAptGRC/gFeAQ4LA2iEOSJEmSJDp27EivXr3aOgzpU6VV53CKiBuBCcDnImJmRByXmfOBEcAfgKnArzNzSmvGIUmSJEmSpKWntZ9Sd2gT5XcBd7Vm25IkSZIkSWobbfGUOkmSJEmSJH2KmXCSJEmSJElSTZlwkiRJkiRJUk2ZcJIkSZIkSVJNmXCSJEmSJElSTZlwkiRJkiRJUk2ZcJIkSZIkSVJNmXCSJEmSJElSTZlwkiRJkiRJUk2ZcJIkSZIkSVJNmXCSJEmSJElSTZlwkiRJkiRJUk2ZcJIkSZIkSVJNmXCSJEmSJElSTZlwkiRJkiRJUk2ZcJIkSZIkSVJNmXCSJEmSJElSTZlwkiRJkiRJUk01m3CKiHYR8ZelFYwkSZIkSZKWf80mnDLzI+DJiNhoKcUjSZIkSZKk5VyHKrZZH5gSEY8C79UVZua+rRaVJEmSJEmSllvVJJz+u9WjaEZEbAJ8G1gzM4eVZVsA/w/oCtybmT9rwxAlSZIkSZJUocVJwzPzfmAasHr5mlqWtSgiromI1xvOAxURQyPi2Yh4PiJGttD+C5l5XIOyqZl5EvAVoH81sUiSJEmSJGnpaDHhFBFfAR4FDqJI8DwSEcOqrH80MLRBfe2BS4E9gC2BQyNiy4joHRF3Nnit20xc+wIPAvdWGYskSZIkSZKWgmqG1H0bGJCZrwNERDfgHuDmlnbMzPER0bNB8UDg+cx8oazvJmC/zDwX2LvawDPzDuCOiPgd8KuG6yNiODAcYKONnPNckiRJkiRpaWmxhxPQri7ZVJpd5X5N6Q68XLE8syxrVER0iYjLgX4RcVZZNiQiLoqIK4C7GtsvM6/MzP6Z2b9bt25LEK4kSZIkSZIWRTU9nH4fEX8AbiyXD6aJJE+VopGybGrjzJwNnNSgbBwwbglikCRJkiRJUitpNuEUEQFcBAwABlMki67MzNuWoM2ZwIYVyz2AWUtQnyRJkiRJkpYhzSacMjMjYmxmfh64tUZtTgQ2jYhewCvAIcBhNapbkiRJkiRJbayauZgejogBi1N5RNwITAA+FxEzI+K4zJwPjAD+AEwFfp2ZUxanfkmSJEmSJC17qpnDaWfgxIiYAbxHMawuM7NPSztm5qFNlN/Fks0DJUmSJEmSpGVUNXM4nQTMWDrhSJIkSZIkaXlXzRxOPy3ncJIkSZIkSZJa1KpzOEmSJEmSJGnF06pzOEmSJEmSJGnFU03CaY9Wj0KSJEmSJEmfGk0OqYuIXQAycwbQLjNn1L0A53SSJEmSJElSo5qbw+mCive3NFj3nVaIRZIkSZIkSZ8CzSWcoon3jS1LkiRJkiRJQPMJp2zifWPLkiRJkiRJEtD8pOGbRMQdFL2Z6t5TLvdq9cgkSZIkSZK0XGou4bRfxfsLGqxruCxJkiRJkiQBzSScMvP+pRmIJEmSJEmSPh2am8NJkiRJkiRJWmQmnCRJkiRJklRTJpwkSZIkSZJUU81NGg5ARGwGnAFsXLl9Zu7SinFJkiRJkiRpOdViwgn4DXA5cBWwoHXDkSRJkiRJ0vKumoTT/Mz8WatHIkmSJEmSpE+FauZw+m1EfDUi1o+IdeperR6ZJEmSJEmSlkvV9HA6qvzvGRVlCWxS+3AkSZIkSZK0vGsx4ZSZvZZGIE2JiE2AbwNrZuawsqwd8D/AGsBjmXldG4YoSZIkSZKkCi0OqYuIjhFxSkTcXL5GRETHaiqPiGsi4vWI+EuD8qER8WxEPB8RI5urIzNfyMzjGhTvB3QHPgRmVhOLJEmSJEmSlo5qhtT9DOgIXFYuH1GWHV/FvqOBS4Dr6woioj1wKfBFimTRxIi4A2gPnNtg/2Mz8/VG6v0cMCEzr4iIm4F7q4hFkiRJkiRJS0E1CacBmblNxfKfIuLJairPzPER0bNB8UDg+cx8ASAibgL2y8xzgb2rqZciUfWv8v2CxjaIiOHAcICNNtqoymolSZIkSZK0pKp5St2CiPhM3UI5p1KjSZ4qdQderlieWZY1KiK6RMTlQL+IOKssvhX4UkRcDIxvbL/MvDIz+2dm/27dui1BuJIkSZIkSVoU1fRwOgO4LyJeAALYGDhmCdqMRsqyqY0zczZwUoOyfwIN53WSJEmSJEnSMqCap9TdGxGbUsybFMC0zPxgCdqcCWxYsdwDmLUE9UmSJEmSJGkZ0mTCKSJ2ycw/RcQBDVZ9JiLIzFsXs82JwKYR0Qt4BTgEOGwx65IkSZIkSdIyprkeTl8A/gTs08i6pJhHqVkRcSMwBOgaETOBszPz5xExAvgDxZPprsnMKYsauCRJkiRJkpZNTSacMvPs8u05mfli5bqyd1KLMvPQJsrvAu6qNkhJkiRJkiQtP6p5St0tjZTdXOtAJEmSJEmS9OnQ3BxOmwNbAWs2mMdpDaBTawcmSZIkSZKk5VNzczh9DtgbWIuF53F6FzihFWOSJEmSJEnScqy5OZxuB26PiO0zc8JSjEmSJEmSJEnLsWrmcDopItaqW4iItSPimtYLSZIkSZIkScuzahJOfTLznbqFzHwb6NdqEUmSJEmSJGm5Vk3CqV1ErF23EBHr0PzcT5IkSZIkSVqBVZM4+jHw54i4uVw+CPh+64UkSZIkSZKk5VmLCafMvD4iHgN2AQI4IDOfafXIJEmSJEmStFxqMeEUERsBc4E7Kssy86XWDEySJEmSJEnLp2qG1P0OyPJ9Z6AX8CywVWsFJUmSJEmSpOVXNUPqelcuR8S2wImtFpEkSZIkSZKWa9U8pW4hmfk4MKAVYpEkSZIkSdKnQDVzOH2jYrEdsC3wRqtFJEmSJEmSpOVaNXM4rV7xfj7FnE63tE44kiRJkiRJWt41m3CKiPbAapl5xlKKR5IkSZIkScu5ZudwyswFFEPoJEmSJEmSpKpUM6RuckTcAfwGeK+uMDNvbbWoJEmSJEmStNyqJuG0DjAb2KWiLAETTpIkSZIkSfqEahJOV2fmQ5UFEbFjK8UjSZIkSZKk5VyzcziVLq6yTJIkSZIkSWq6h1NEbA/sAHSLiG9UrFoDaN/agVXEsQnwbWDNzBxWlm0JjKIY6ndvZt68tOKRJEmSJElS85rr4bQSsBpFUmr1itc/gGHVVB4R10TE6xHxlwblQyPi2Yh4PiJGNldHZr6Qmcc1KN4DuDgz/xM4sppYJEmSJEmStHQ02cMpM+8H7o+I0Zk5AyAi2gGrZeY/qqx/NHAJcH1dQUS0By4FvgjMBCaWT8FrD5zbYP9jM/P1Rur9BXB2ROwLdKkyFkmSJEmSJC0F1Uwafm5EnAQsACYBa0bETzLz/JZ2zMzxEdGzQfFA4PnMfAEgIm4C9svMc4G9qwm6TEJ9rUxeNfq0vIgYDgwH2GijjaqpVpIkSZIkSTVQzaThW5Y9mvYH7gI2Ao5Ygja7Ay9XLM8syxoVEV0i4nKgX0ScVZb1jIgrKXpONZr4yswrM7N/Zvbv1q3bEoQrSZIkSZKkRVFND6eOEdGRIuF0SWZ+GBG5BG1GI2VN1peZs4GTGpRNp+y9JEmSJEmSpGVLNT2crgCmA6sC4yNiY4qJwxfXTGDDiuUewKwlqE+SJEmSJEnLkBYTTpl5UWZ2z8w9szAD2HkJ2pwIbBoRvSJiJeAQ4I4lqE+SJEmSJEnLkBaH1EXEysCBQM8G259Txb43AkOArhExEzg7M38eESOAP1A8me6azJyy6KFLkiRJkiRpWVTNHE63A3MonlD3waJUnpmHNlF+F8UE5JIkSZIkSfqUqSbh1CMzh7Z6JJIkSZIkSfpUqGbS8D9HRO9Wj0SSJEmSJEmfCtX0cBoMHB0RL1IMqQsgM7NPq0YmSZIkSZKk5VI1Cac9Wj0KSZIkSZIkfWq0OKQuM2cAawH7lK+1yjJJkiRJkiTpE1pMOEXE/wNuANYtX7+MiJNbOzBJkiRJkiQtn6oZUnccMCgz3wOIiB8CE4CLWzMwSZIkSZIkLZ+qeUpdAAsqlheUZZIkSZIkSdInVNPD6VrgkYi4rVzeH/h5q0UkSZIkSZKk5VqLCafM/ElEjAMGU/RsOiYzn2jtwCRJkiRJkrR8ajHhFBHbAVMy8/FyefWIGJSZj7R6dJIkSZIkSVruVDOH08+AuRXL75VlkiRJkiRJ0idUNWl4ZmbdQmZ+RHVzP0mSJEmSJGkFVE3C6YWIOCUiOpav/we80NqBSZIkSZIkaflUTcLpJGAH4BVgJjAIGN6aQUmSJEmSJGn5Vc1T6l4HDlkKsUiSJEmSJOlToMUeThGxWUTcGxF/KZf7RMR3Wj80SZIkSZIkLY+qGVJ3FXAW8CFAZj6FPZ4kSZIkSZLUhGoSTqtk5qMNyua3RjCSJEmSJEla/lWTcHozIj4DJEBEDANebdWoJEmSJEmStNxqcdJw4GvAlcDmEfEK8CJweKtGJUmSJEmSpOVWNU+pewHYLSJWpegR9T5wMDCjlWOrFxH7A3sB6wKXZubdjZUtrXgkSZIkSZLUtCaH1EXEGhFxVkRcEhFfBP4JHAU8D3yl2gYi4pqIeL3uKXcV5UMj4tmIeD4iRjZXR2aOzcwTgKMpkl2NlkmSJEmSJKntNdfD6RfA28AE4ATgm8BKwP6ZOXkR2hgNXAJcX1cQEe2BS4EvAjOBiRFxB9AeOLfB/sdm5uvl+++U+1VqrEySJEmSJEltpLmE0yaZ2RsgIq4G3gQ2ysx3F6WBzBwfET0bFA8Eni+H6xERNwH7Zea5wN4N64iIAM4D/i8zH2+qrME+w4HhABtttNGihCxJkiRJkqQl0NxT6j6se5OZC4AXFzXZ1IzuwMsVyzPLsqacDOwGDIuIk5opq5eZV2Zm/8zs361btxqFLUmSJEmSpJY018Npm4j4R/k+gM7lcgCZmWssQbvRSFk2tXFmXgRc1FKZJEmSJEmS2l6TCafMbN+K7c4ENqxY7gHMasX2JEmSJEmStJQ0N6SuNU0ENo2IXhGxEnAIcEcbxSJJkiRJkqQaavWEU0TcSPGku89FxMyIOC4z5wMjgD8AU4FfZ+aU1o5FkiRJkiRJra+5OZxqIjMPbaL8LuCu1m5fkiRJkiRJS1dbDamTJEmSJEnSp5QJJ0mSJEmSJNWUCSdJkiRJkiTVlAknSZIkSZIk1ZQJJ0mSJEmSJNWUCSdJkiRJkiTVlAknSZIkSZIk1ZQJJ0mSJEmSJNWUCSdJkiRJkiTVlAknSZIkSZIk1ZQJJ0mSJEmSJNWUCSdJkiRJkiTVlAknSZIkSZIk1ZQJJ0mSJEmSJNWUCSdJkiRJkiTVlAknSZIkSZIk1ZQJJ0mSJEmSJNWUCSdJkiRJkiTVlAknSZIkSZIk1ZQJJ0mSJEmSJNXUMp9wioj9I+KqiLg9InYvy4ZExAMRcXlEDGnbCCVJkiRJklSpVRNOEXFNRLweEX9pUD40Ip6NiOcjYmRzdWTm2Mw8ATgaOLiuGJgLdAJmtkLokiRJkiRJWkwdWrn+0cAlwPV1BRHRHrgU+CJFsmhiRNwBtAfObbD/sZn5evn+O+V+AA9k5v0RsR7wE+DwVjsCSZIkSZIkLZJWTThl5viI6NmgeCDwfGa+ABARNwH7Zea5wN4N64iIAM4D/i8zHy/r/ahc/TawcmNtR8RwYDjARhtttOQHI0mSJEmSpKq0dg+nxnQHXq5YngkMamb7k4HdgDUj4rOZeXlEHAB8CViLogfVJ2TmlcCVAP37988axC1JkiRJkqQqtEXCKRopazIhlJkXARc1KLsVuLXGcUmSJEmSpNYwas22jmDZMmpOW0fQ6triKXUzgQ0rlnsAs9ogDkmSJEmSJLWCtkg4TQQ2jYheEbEScAhwRxvEIUmSJEmSpFbQqgmniLgRmAB8LiJmRsRxmTkfGAH8AZgK/Dozp7RmHJIkSZIkSVp6WvspdYc2UX4XcFdrti1JkiRJkqS20RZD6iRJkiRJkvQpZsJJkiRJkiRJNWXCSZIkSZIkSTVlwkmSJEmSJEk1ZcJJkiRJkiRJNWXCSZIkSZIkSTVlwkmSJEmSJEk1ZcJJkiRJkiRJNWXCSZIkSZIkSTVlwkmSJEmSJEk1ZcJJkiRJkiRJNWXCSZIkSZIkSTVlwkmSJEmSJEk11aGtA5AkSZK0/Og58ndtHcIyZfp5e7V1CJK0TLKHkyRJkiRJkmrKhJMkSZIkSZJqyoSTJEmSJEmSasqEkyRJkiRJkmrKhJMkSZIkSZJqyoSTJEmSJEmSasqEkyRJkiRJkmrKhJMkSZIkSZJqyoSTJEmSJEmSaioys61jaHUR8QYwo63jkFYQXYE32zoISZIkrdD8m1RaOjbOzG6NrVghEk6Slp6IeCwz+7d1HJIkSVpx+Tep1PYcUidJkiRJkqSaMuEkSZIkSZKkmjLhJKnWrmzrACRJkrTC829SqY05h5MkSZIkSZJqyh5OkiRJkiRJqikTTpIkSZIkSaqpDm0dgKTlQ0R8GzgMWAB8BLwNrA2sBnQDXiw3/SrwA2B94P2y7BbgwPL9RsCc8vVmZu62NOKXJEnS8i0iFgBPAx2B+cB1wIWZ+VFEPAEck5mTI6IDxd+aJ2bmL8t9JwG/Ao4oq9sSeJbib9vfZ+bIpXs00qefczhJalFEbA/8BBiSmR9ERFdgpcycFRFDgNMzc++K7ceVZY81Utdo4M7MvHlpxC5JkqRPh4iYm5mrle/XpUggPZSZZ0fEpcCUzLwsIj4PXAU8nJlfjYhVgZlA18xcUO4/HeifmW+2ycFIKwCH1EmqxvoUvZE+AMjMNzNzVhvHJEmSpBVUZr4ODAdGREQADwE7lKt3AC4H+pbLA4HH65JNkpYOE06SqnE3sGFEPBcRl0XEF6rY54aImFy+urR2gJIkSVqxZOYLFL9p1wX+zMIJp/HABxGxern8UJsEKa3ATDhJalFmzgU+T/GvSG8AYyLi6BZ2Ozwz+5av2a0doyRJklZIAZCZ04GVIuLfgM0p5meaCAyiSDj9ua0ClFZUThouqSplF+RxwLiIeBo4ChjdljFJkiRpxRURm1BM+v16WTQBGAa8mpkZEQ8DO1IMqXu4baKUVlz2cJLUooj4XERsWlHUF5jRRuFIkiRpBRcR3SjmabokP34S1kPAqRSJJ8r/Hgn8PTPfWepBSis4ezhJqsZqwMURsRbFI2ifpxheJ0mSJC0tnSNiMtCR4m/SX1A8SbnOQ8BPKRNOmflqRLTH4XRSm4iPk8GSJEmSJEnSknNInSRJkiRJkmrKhJMkSZIkSZJqyoSTJEmSJEmSasqEkyRJkiRJkmrKhJMkSZIkSZJqyoSTJElqNRGxICImV7x6LkYd+0fElq0QHhHRMyLeL2N7JiKuj4iOrdFWrUXE0RGxwaJuFxFX1+J8lvVmROxaUfblsmzYIsY0PSK6LkEsS7S/JEmqPRNOkiSpNb2fmX0rXtMXo479gUVKkEREh0XY/G+Z2RfoDfQAvrIobdWg/cV1NNBiwqnhdpl5fGY+U6MYngYOrVg+BHhyUWOSJEmfPiacJEnSUhURn4+I+yNiUkT8ISLWL8tPiIiJEfFkRNwSEatExA7AvsD5ZS+kz0TEuIjoX+7TNSKml++PjojfRMRvgbsjYtWIuKas84mI2K+5uDJzAfAo0L2FOMdFxIUR8eeI+EtEDCzLR0XElRFxN3B9RHQrj2Ni+dqx3O4LFT2+noiI1cvyM8rtnoqI/y7LekbE1Ii4KiKmRMTdEdG57EHUH7ihrKdzRHy33P8vZRzRxHaV5+/QiHi63OeHFddobkR8v7wWD0fEek2ctgeAgRHRMSJWAz4LTG7uWjcWU7n5yRHxeBnP5uX+60TE2PKcPBwRfcryLuW5eCIirgCiuWsrSZKWPhNOkiSpNXWuSK7cFsVwtYuBYZn5eeAa4Pvltrdm5oDM3AaYChyXmX8G7gDOKHtI/a2F9rYHjsrMXYBvA3/KzAHAzhRJq1Wb2jEiOgGDgN+3ECfAqpm5A/DVcl2dzwP7ZeZhwP8CPy3bPxC4utzmdOBrZa+qfwfej4jdgU2BgUBf4PMRsVO5/abApZm5FfAOcGBm3gw8Bhxenpf3gUvK87c10BnYu4nt6o53A+CHwC5lmwMiYv+64wMeLq/FeOCEJk5bAvcAXwL2o7hWdfU3eg6bienNzNwW+Fl5jgD+G3giM/sA3wKuL8vPBh7MzH5lmxs1EZ8kSWojS6O7tyRJWnG9XyZWAIiIrYGtgT9GBEB74NVy9dYR8T1gLWA14A+L0d4fM/Ot8v3uwL4RUZe86ESRmJjaYJ/PRMRkisTOzZn5VAtxAtwIkJnjI2KNiFirLL+jIoGyG7BluT/AGmVvpoeAn0TEDRRJtpllwml34Ily29XKeF4CXszMyWX5JKBnE8e+c0R8E1gFWAeYAvy2iW0BBgDjMvMNgDKenYCxwL+AOyva/GIz9dwEnAKsCZxGkRgC+BzNn8OGbq1o74Dy/WCKZB2Z+aeyZ9OaZZwHlOW/i4i3m6lXkiS1ARNOkiRpaQpgSmZu38i60cD+mflkRBwNDGmijvl83Eu7U4N17zVo68DMfLaFmP6WmX3LIXPjImJf4MVm4oSiZ09jy5XttwO2r+xVVDovIn4H7Ak8HBG7lbGem5lXVG4YxSTrH1QULaDovUSD7ToBlwH9M/PliBjFJ8/NJ3ZrZt2HmVl3TAto5m/GzHy0TNC9n5nPVSTYmrvWjak7zsr2GosxG/xXkiQtgxxSJ0mSlqZngW4RsT0Uw64iYqty3erAq+VQrMMr9nm3XFdnOsXQNYDmnob2B4p5gaJsq19zgWXmq8BI4KwW4gQ4uCwfDMzJzDmNVHk3MKJuISL6lv/9TGY+nZk/pBhatnkZ67HlPEhERPeIWLe5eFn4vNQll94s6xjWxHaVHgG+EMU8WO0pJv++v4U2m3IWH/dsqtPcOWwqpobGU34WImIIxbC7fzQo3wNYezHjliRJrcSEkyRJWmoy818UyZAfRsSTFBNM71Cu/i+KJMgfgWkVu90EnFFOEP0Z4ALgPyPiz0DXZpr7H6Aj8FRE/KVcbslYiiFpg5qJE+Dtsv3LgeOaqOsUoH854fUzwEll+dfLSbqfBN4H/i8z7wZ+BUyIiKeBm2k5ITMauLwcDvgBcBXFU+PGAhMb265igu66BNtZwH0UT5Z7PDNvb6HNRmXm/2XmfQ3KmrvWjcbUiFGU5xA4DziqLP9vYKeIeJxiKOJLixO3JElqPfFxb2lJkiS1JCLGAadn5mNtHYskSdKyyh5OkiRJkiRJqil7OEmSJEmSJKmm7OEkSZIkSZKkmjLhJEmSJEmSpJoy4SRJkiRJkqSaMuEkSZIkSZKkmjLhJEmSJEmSpJr6/37PQkm5++CdAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "FeatureRepMethod = [\"STFT\", \"DWT\"]\n", + "HappyReconError = [stft_HappyReconError, dwt_HappyReconError]\n", + "AngryReconError = [stft_AngryReconError, dwt_AngryReconError]\n", + "\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "x_pos = np.arange(len(FeatureRepMethod))\n", + "\n", + "fig, axes = plt.subplots(figsize=(20,4))\n", + "plt.bar(x_pos-0.2, HappyReconError, 0.1, label = 'Happy Class Reconstruction Error')\n", + "plt.bar(x_pos+0.2, AngryReconError, 0.1, label = 'Angrt Class Reconstruction Error')\n", + "\n", + " \n", + "plt.xticks(x_pos, FeatureRepMethod)\n", + "plt.xlabel(\"Feature Representation Method\")\n", + "plt.ylabel(\"Reconstruction Error\")\n", + "axes.set_yscale(\"log\") #the log transformation\n", + "plt.title(\"Comparing Reconstruction Error for Different Feature Representations\") # Stft has much worse reconstruction error\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "59f73dfa", + "metadata": {}, + "source": [ + "## There are other Audio encoding that usually \n", + "## captrue more suitable audio file representations\n", + "## such as:\n", + "discrete cosine transform (DCT) \n", + "Mel Spectrograms : \n", + "Spectrogram with consecutive Fourier transforms: scipy.signal.spectrogram\n", + "Mel-Frequency Cepstral Coefficients\n", + "Chromagram\n", + "\n", + "Other forms of optimisation, like removing noise, or sometimes adding noise for regularisaition, can all contribute to better performance. To keep code simpler, we will attempt classification using the STFT and DWT only and compare performance." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "0e4b34ba", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Defaulting to user installation because normal site-packages is not writeable\n", + "Collecting sklearn\n", + " Downloading sklearn-0.0.tar.gz (1.1 kB)\n", + " Preparing metadata (setup.py) ... \u001b[?25ldone\n", + "\u001b[?25hCollecting scikit-learn\n", + " Downloading scikit_learn-1.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.2 MB)\n", + "\u001b[2K \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m31.2/31.2 MB\u001b[0m \u001b[31m5.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0mm eta \u001b[36m0:00:01\u001b[0m[36m0:00:01\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: numpy>=1.17.3 in /home/manal/.local/lib/python3.8/site-packages (from scikit-learn->sklearn) (1.23.3)\n", + "Requirement already satisfied: scipy>=1.3.2 in /home/manal/.local/lib/python3.8/site-packages (from scikit-learn->sklearn) (1.9.1)\n", + "Collecting threadpoolctl>=2.0.0\n", + " Downloading threadpoolctl-3.1.0-py3-none-any.whl (14 kB)\n", + "Collecting joblib>=1.0.0\n", + " Downloading joblib-1.2.0-py3-none-any.whl (297 kB)\n", + "\u001b[2K \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m298.0/298.0 kB\u001b[0m \u001b[31m4.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m[31m7.4 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\n", + "\u001b[?25hBuilding wheels for collected packages: sklearn\n", + " Building wheel for sklearn (setup.py) ... \u001b[?25ldone\n", + "\u001b[?25h Created wheel for sklearn: filename=sklearn-0.0-py2.py3-none-any.whl size=1315 sha256=b7b93b0db4d3c641d3d03b01c0e298a73c6fbb042a64540009bd3e0106be96af\n", + " Stored in directory: /home/manal/.cache/pip/wheels/22/0b/40/fd3f795caaa1fb4c6cb738bc1f56100be1e57da95849bfc897\n", + "Successfully built sklearn\n", + "Installing collected packages: threadpoolctl, joblib, scikit-learn, sklearn\n", + "Successfully installed joblib-1.2.0 scikit-learn-1.1.2 sklearn-0.0 threadpoolctl-3.1.0\n" + ] + } + ], + "source": [ + "#!pip install sklearn" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "197f6414", + "metadata": {}, + "outputs": [], + "source": [ + "from scipy.io import wavfile\n", + "from scipy import signal\n", + "import numpy as np\n", + "import pywt\n", + "\n", + "#Emotions in the RAVDESS dataset\n", + "emotions ={\n", + " '01':'neutral',\n", + " '02':'calm',\n", + " '03':'happy',\n", + " '04':'sad',\n", + " '05':'angry',\n", + " '06':'fearful',\n", + " '07':'disgust',\n", + " '08':'surprised'\n", + "}\n", + "\n", + "def get_features(file):\n", + " # load an individual soundfile\n", + " sample_rate, waveform = wavfile.read(file)\n", + " h_f, h_t, h_Zxx = signal.stft(waveform, sample_rate)\n", + " #h_Zxx = h_Zxx.flatten()\n", + " (cA1, cD1) = pywt.dwt(waveform, 'db2', 'smooth')\n", + " #cA1 = cA1.flatten()\n", + " #cD1 = cD1.flatten() \n", + " \n", + " feature_stft=np.array([])\n", + " # use np.hstack to stack our feature arrays horizontally to create a feature matrix\n", + " feature_stft = np.hstack(h_Zxx.flatten())\n", + " feature_cA1=np.array([])\n", + " feature_cA1 = np.hstack(cA1.flatten())\n", + " feature_cD1=np.array([])\n", + " feature_cD1 = np.hstack(cD1.flatten()) \n", + " return feature_stft, feature_cA1, feature_cD1" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "28d1de88", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_9593/646808383.py:20: WavFileWarning: Chunk (non-data) not understood, skipping it.\n", + " sample_rate, waveform = wavfile.read(file)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Processed 215/1440 audio samples " + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/manal/.local/lib/python3.8/site-packages/scipy/signal/_spectral_py.py:1999: UserWarning: nperseg = 256 is greater than input length = 2, using nperseg = 2\n", + " warnings.warn('nperseg = {0:d} is greater than input length '\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Processed 1440/1440 audio samples " + ] + } + ], + "source": [ + "import os, glob\n", + "\n", + "def load_data():\n", + " X_stft, X_dwtC,X_dwtDC, y=[],[],[],[]\n", + " count = 0\n", + " for file in glob.glob(\"data/Actor_*//*.wav\"):\n", + " file_name=os.path.basename(file)\n", + " emotion=emotions[file_name.split(\"-\")[2]]\n", + " features1, features2, features3 = get_features(file)\n", + " X_stft.append(features1) # Stft features only\n", + " X_dwtC.append(features2) # DWT features cofficients only\n", + " X_dwtDC.append(features3) # DWT features deep cofficients only\n", + " y.append(emotion)\n", + " count += 1\n", + " # '\\r' + end='' results in printing over same line\n", + " print('\\r' + f' Processed {count}/{1440} audio samples',end=' ')\n", + " # Return arrays to plug into sklearn's cross-validation algorithms\n", + " return X_stft, X_dwtC, X_dwtDC, y\n", + "\n", + "X_stft, X_dwtC, X_dwtDC, y = load_data()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "815a2fa5", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAEQCAYAAAAgQ8X9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAAsTAAALEwEAmpwYAAAnl0lEQVR4nO3debgkZXn38e+PVVAQUFSi4qC4RDSijsZdRBFXNO5GTcQF1CSiRvNCjIoKYjRq1IiKGxpI3BIRxCBRFtGAsqoQRVFGJKKADMo6bPf7x1OHaXr6nOkzc+qcOdPfz3X11d3VT1XfVV1dffezVKWqkCRJ0uTYYKEDkCRJ0vwyAZQkSZowJoCSJEkTxgRQkiRpwpgASpIkTRgTQEmSpAnTWwKY5DlJ/iPJL5Nck+TcJAcl2WKo3NZJPpnk0iRXJflmkvuPWN6tkrw3yUXd8k5O8pi+4pckSVpfpa/zACY5BbgA+CpwIfBAYH/gJ8AjquqmJAFOApYAbwKWA/sBOwE7V9WFA8s7HHhqV+4XwF8BTwYeXlVn9bISkiRJ66E+E8Btq+qSoWl/AXwWeHxVHZfkGcARwK5VdXxX5rbA+cBhVfXabtoDgLOAl1XVZ7ppGwHnAOdW1R69rIQkSdJ6qLcm4OHkr3Nqd3/n7n4P4NdTyV833++Bo4BnDMy3B3A98IWBcjcAnwd2T7LpHIYuSZK0Xttont/vsd39j7v7nYCzR5Q7B/iLJLepqiu7cudX1dUjym0C7Ng9ntHtb3/7WrJkyZrELUmStKicfvrpl1bVtqNem7cEMMmdgXcA36yq07rJ2wDLRhS/rLvfGriyK7d8hnLbjBPDkiVLOO2001ZfUJIkaZFL8svpXpuX08AkuQ1tMMgNwJ7z8Z4D771XktOSnHbJJaNapSVJkiZL7wlgks1offruDuw+OLKXVqu39YjZthl4fZxyl414DYCqOqSqllbV0m23HVkLKkmSNFF6TQCTbAx8GVgKPKWqfjRU5Bxa/75h9wUu6Pr/TZXbIcnmI8pdB5w3d1FLkiSt3/o8EfQGwOHArsAzq+qUEcWOBO6c5LED820JPL17bcpRwMbAcwfKbQQ8Hzi2qlbM/RpIkiStn/ocBPIRWsJ2IHBVkocNvHZh1xR8JHAycFiSwRNBB3jPVOGqOjPJF4B/7moVzwdeDewAvKjHdZAkSVrv9NkE/OTu/s20JG/w9gqAqroJeBrw38DBwFeAG4HHVdWvhpa3J/AZ4ADgaOCuwJOq6owe10GSJGm909uVQNZFS5cuLU8DI0mSJkGS06tq6ajX5uU0MJIkSVp3mABKkiRNmPm+FNxEWLLv0Qsdwpxb9u6nrtF8bouV3BYruS1Wclto2Pq4T8Ca7Rdui/5YAyhJkjRhTAAlSZImjAmgJEnShDEBlCRJmjAmgJIkSRPGBFCSJGnCmABKkiRNGBNASZKkCWMCKEmSNGFMACVJkiaMCaAkSdKEMQGUJEmaMCaAkiRJE8YEUJIkacKYAEqSJE0YE0BJkqQJYwIoSZI0YUwAJUmSJowJoCRJ0oQxAZQkSZowJoCSJEkTxgRQkiRpwpgASpIkTRgTQEmSpAljAihJkjRhTAAlSZImjAmgJEnShDEBlCRJmjAmgJIkSRPGBFCSJGnCmABKkiRNGBNASZKkCWMCKEmSNGFMACVJkiaMCaAkSdKEMQGUJEmaMCaAkiRJE8YEUJIkacL0mgAmuUuSDyc5OcnVSSrJkhHlaprbzkPlNkiyX5JlSa5N8oMkz+5zHSRJktY3fdcA7gg8D1gOnLSasocCDx+6/XSozDuB/YF/AZ4MnAJ8KclT5ixiSZKk9dxGPS//21V1R4AkrwCeOEPZ/6uqU6Z7MckdgDcC766qf+omH59kR+DdwNfnKGZJkqT1Wq81gFV10xwubndgE+CwoemHAfdPssMcvpckSdJ6a10aBPLqJCu6voLHJXn00Os7ASuA84amn9Pd37f3CCVJktYD60oCeBjwGuAJwF7A7YDjkuwyUGYb4PKqqqF5Lxt4XZIkSavRdx/AsVTVSwaenpTkq8DZwAHAo9Zm2Un2oiWVbL/99muzKEmSpPXCulIDeAtVdQVwNPCQgcnLga2SZKj4VM3fZYxQVYdU1dKqWrrtttvOfbCSJEmLzDqZAA4YbO49B9gUuMdQmam+f/87LxFJkiQtcutkAphkS+BpwPcHJh8DXA+8aKj4i4Gzq+r8eQpPkiRpUeu9D2CS53QPH9zdPznJJcAlVXVikjcC9waOB34N3I12vr87MZDsVdXFSd4P7JfkCuAM4PnArsAefa+HJEnS+mK1CWCSfYDPAFcAnwQeCOxbVceO+R5fGnp+cHd/IrALcC7wZ93ttsAfgO8CL6+q7w/N+2bgSmAfWoJ4LvC8qvramLFIkiRNvHFqAF9WVR9MsjuwNfAS4F+BsRLAqhoetDH8+lHAUWMu60bayOADxikvSZKkVY3TB3AqgXsK8K9Vdc7ANEmSJC0y4ySApyc5lpYAfiPJFsBcXuJNkiRJ82icJuCXAzsDv6iqq5PcDtiz16gkSZLUm3FqAIt2rr3Xds9vDdyqt4gkSZLUq3ESwIOBhwMv7J5fAXykt4gkSZLUq3GagP+0qh6U5EyAqlqeZJOe45IkSVJPxqkBvD7JhnSXZUuyLQ4CkSRJWrTGSQA/BHwFuEOSA4HvAO/qNSpJkiT1ZrVNwFV1eJLTgcfTzv/3zKr6ce+RSZIkqRfTJoBJthl4ejHw74OvVdVlfQYmSZKkfsxUA3g6rd/fqKt+FHD3XiKSJElSr6ZNAKtqh/kMRJIkSfNjnNPAkORZwKNoNX8nVdURfQYlSZKk/qx2FHCSg4FXAT8CzgZelcQTQUuSJC1S49QA7gr8cVVNnQfws8A5vUYlSZKk3oxzHsDzgO0Hnt+1myZJkqRFaJwawC2AHyf5fvf8IcBpSY4EqKo9+gpOkiRJc2+cBPCtvUchSZKkeTPOlUBOBEiy5WB5TwQtSZK0OK02AUyyF/AO4FrgJtqJoT0RtCRJ0iI1ThPwm4D7VdWlfQcjSZKk/o0zCvjnwNV9ByJJkqT5MU4N4H7A/yT5HrBiamJVvba3qCRJktSbcRLAjwPH0a4EclO/4UiSJKlv4ySAG1fVG3qPRJIkSfNinD6A/5VkryTbJdlm6tZ7ZJIkSerFODWAL+zu9xuY5mlgJEmSFqlxTgS9w3wEIkmSpPkxTg0gSe4H3Be41dS0qvpcX0FJkiSpP+NcCeRtwC60BPDrwJOB7wAmgJIkSYvQOINAngM8HvhNVe0JPAC4ba9RSZIkqTfjJIDXVNVNwA1JtgQuBu7ab1iSJEnqyzh9AE9LshXwCeB04Erg5D6DkiRJUn/GGQX8mu7hx5IcA2xZVT/sNyxJkiT1ZdoEMMndgMur6vfd88cBzwR+meQnVXXd/IQoSZKkuTRTH8AvArcGSLIz8CXgAtogkIN7j0ySJEm9mKkJeLOq+nX3+MXAp6vqfUk2AM7qPTJJkiT1YqYawAw83hX4FkA3IliSJEmL1Ew1gMcl+SJwEbA1cBxAku0A+/9JkiQtUjMlgK8Dng9sBzyqqq7vpt8JeHPPcUmSJKkn0yaAVVXA50dMP7PXiCRJktSrca4EssaS3CXJh5OcnOTqJJVkyYhyt0ry3iQXJbmmK/+YEeU2SLJfkmVJrk3ygyTP7nMdJEmS1je9JoDAjsDzgOXASTOU+xTwSuCtwNNo/Q6/0Z1+ZtA7gf2BfwGeDJwCfCnJU+Y0akmSpPXYtAlgkm919/+4Fsv/dlXdsaqeQjuP4Kj3eQDw58Drq+oTVfUtWtJ4AfCOgXJ3AN4IvLuq/qmqjq+qvYHjgXevRYySJEkTZaYawO2SPALYI8kDkzxo8DbOwsc8ZcwewPXAFwbmu4HW/3D3JJt2k3cHNgEOG5r/MOD+SXYYJyZJkqRJN9Mo4LcCbwHuArx/6LWinRtwLuwEnF9VVw9NP4eW8O3YPd4JWAGcN6IcwH2B8+coJkmSpPXWTKOAvwx8OclbquqdPcawDa2P4LDLBl6fur+8G508UzlJkiTNYKYaQACq6p1J9gCmRuWeUFVf6zesuZNkL2AvgO23336Bo5EkSVp4qx0FnOQgYB/gf7vbPkneNYcxLKddaWTYVI3eZQPltkqS1ZS7hao6pKqWVtXSbbfddq2DlSRJWuzGOQ3MU4HdqurTVfVp4Em0U7XMlXOAHZJsPjT9vrRLzp03UG5T4B4jykFLTiVJkrQa454HcKuBx7ed4xiOAjYGnjs1IclGtMvQHVtVK7rJx9BGC79oaP4XA2dXlQNAJEmSxrDaPoDAQcCZSY4HQusLuO+4b5DkOd3DB3f3T05yCXBJVZ1YVWcm+QLwz0k2po3kfTWwAwPJXlVdnOT9wH5JrgDOoCWJu9JOJSNJWsSW7Hv0Qocw55a9+6kLHYI00jiDQP49yQnAQ7pJ/6+qfjOL9xg+AfTB3f2JwC7d4z2BA4EDaLWNPwCeVFVnDM37ZuBKWp/EOwHnAs9bTINSJEmSFto4NYBU1UXAkWvyBlU1PGhjVJlrgDd0t5nK3UhLEg9Yk1gkSZLU/7WAJUmStI4xAZQkSZowMyaASTZM8pP5CkaSJEn9mzEB7PrcnZvES2hIkiStJ8YZBLI1cE6S7wNXTU2sKk+9IkmStAiNkwC+pfcoJEmSNG/GOQ/giUnuBtyzqr7ZXbJtw/5DkyRJUh9WOwo4ySuBLwMf7ybdGTiix5gkSZLUo3FOA/NXwCOBPwBU1c+AO/QZlCRJkvozTgK4oqqum3qSZCOg+gtJkiRJfRonATwxyd8DmyXZjXZt36P6DUuSJEl9GScB3Be4BPgRsDfwdeAf+gxKkiRJ/RlnFPBNST4LfI/W9HtuVdkELEmStEitNgFM8lTgY8DPgQA7JNm7qv6r7+AkSZI098Y5EfT7gMdV1XkASe4BHA2YAEqSJC1C4/QBvGIq+ev8Ariip3gkSZLUs2lrAJM8q3t4WpKvA1+k9QF8LnDqPMQmSZKkHszUBPz0gce/BR7bPb4E2Ky3iCRJktSraRPAqtpzPgORJEnS/BhnFPAOwN8ASwbLV9Ue/YUlSZKkvowzCvgI4FO0q3/c1Gs0kiRJ6t04CeC1VfWh3iORJEnSvBgnAfxgkrcBxwIrpiZW1Rm9RSVJkqTejJMA3h94CbArK5uAq3suSZKkRWacBPC5wN2r6rq+g5EkSVL/xrkSyNnAVj3HIUmSpHkyTg3gVsBPkpzKLfsAehoYSZKkRWicBPBtvUchSZKkebPaBLCqTpyPQCRJkjQ/xrkSyBW0Ub8AmwAbA1dV1ZZ9BiZJkqR+jFMDuMXU4yQBngE8rM+gJEmS1J9xRgHfrJojgN37CUeSJEl9G6cJ+FkDTzcAlgLX9haRJEmSejXOKOCnDzy+AVhGawaWJEnSIjROH8A95yMQSZIkzY9pE8Akb51hvqqqd/YQjyRJkno2Uw3gVSOm3Rp4OXA7wARQkiRpEZo2Aayq9009TrIFsA+wJ/B54H3TzSdJkqR124x9AJNsA7wBeBHwWeBBVbV8PgKTJElSP2bqA/he4FnAIcD9q+rKeYtKkiRJvZnpRNB/C/wR8A/Ar5P8obtdkeQP8xOeJEmS5tq0CWBVbVBVm1XVFlW15cBti7m+DnCSXZLUiNvlQ+W2TvLJJJcmuSrJN5Pcfy5jkSRJWt+NcyLo+fRa4NSB5zdMPeiuQ3wUsAT4G2A5sB9wfJKdq+rCeYxTkiRp0VrXEsAfV9Up07y2B/BIYNeqOh4gycnA+cDf0ZJHSZIkrcZMfQDXNXsAv55K/gCq6ve0WkEvTSdJkjSmdS0BPDzJjUl+l+Tfkmw/8NpOwNkj5jkH2D7JbeYnREmSpMVtXWkC/j3t5NInAn8AHgj8PXBykgdW1cXANsCyEfNe1t1vDXiqGkmSpNVYJxLAqjoTOHNg0olJvg18n9a37x/WdNlJ9gL2Ath+++1XU1qSJGn9t641Ad+sqs4Afgo8pJu0nFbLN2ybgddHLeeQqlpaVUu33XbbuQ9UkiRpkVlnE8AB1d2fQ+sHOOy+wAVeqUSSJGk862wCmGQpcG9aMzDAkcCdkzx2oMyWwNO71yRJkjSGdaIPYJLDaefzOwO4nDYIZD/g/4APdcWOBE4GDkvyJlaeCDrAe+Y5ZEmSpEVrnUgAaad3eSHtCh+bA78B/hN4W1VdClBVNyV5GvBPwMHArWgJ4eOq6lcLErUkSdIitE4kgFV1EHDQGOUuA17W3SRJkrQG1tk+gJIkSeqHCaAkSdKEMQGUJEmaMCaAkiRJE8YEUJIkacKYAEqSJE0YE0BJkqQJYwIoSZI0YUwAJUmSJowJoCRJ0oQxAZQkSZowJoCSJEkTxgRQkiRpwpgASpIkTRgTQEmSpAljAihJkjRhTAAlSZImjAmgJEnShDEBlCRJmjAmgJIkSRPGBFCSJGnCmABKkiRNGBNASZKkCWMCKEmSNGFMACVJkiaMCaAkSdKEMQGUJEmaMCaAkiRJE8YEUJIkacKYAEqSJE0YE0BJkqQJYwIoSZI0YUwAJUmSJowJoCRJ0oQxAZQkSZowJoCSJEkTxgRQkiRpwpgASpIkTRgTQEmSpAljAihJkjRhTAAlSZImzKJLAJPcNcmXk/w+yR+S/GeS7Rc6LkmSpMViUSWASTYHjgPuA/wl8BLgnsDxSW69kLFJkiQtFhstdACz9Erg7sC9q+o8gCQ/BH4G7A28fwFjkyRJWhQWVQ0gsAdwylTyB1BV5wPfBZ6xYFFJkiQtIostAdwJOHvE9HOA+85zLJIkSYvSYksAtwGWj5h+GbD1PMciSZK0KKWqFjqGsSW5Dnh/Ve07NP0AYN+qWqVPY5K9gL26p/cGzu090Pl1e+DShQ5iHeG2aNwOK7ktVnJbrOS2WMltsdL6uC3uVlXbjnphsQ0CWc7omr7pagapqkOAQ/oMaiElOa2qli50HOsCt0XjdljJbbGS22Ilt8VKbouVJm1bLLYm4HNo/QCH3Rf433mORZIkaVFabAngkcDDktx9akKSJcAju9ckSZK0GostAfwEsAz4apJnJNkD+CrwK+DjCxnYAlpvm7fXgNuicTus5LZYyW2xkttiJbfFShO1LRbVIBCA7rJvHwB2AwJ8C3hdVS1byLgkSZIWi0WXAEqSJGntLLYmYGlaSZYlOXSh45iNJCckOaF7vEuSSrLLgga1Gklel+RZc7i8lyX5WZLrklw+V8sd872fnuRHSa7ttv1Ws5h3/yRz+g96aplJFtsZGhalJEu6bX731Zee9bIXxfd5NpIcmmTZQscxnxbic5yv3zITQGndcQbw8O5+XfY6YE4SwCR/ROt38z/ArsAT5mK5Y773RsDhwP8BT6Rt+yvm6/21TlgCvI12jXlplMVyXJ41/2VOmCQbAzeUbf/rnKr6A3DKQscxz+4JbAh8tqq+Mx9vOPUdAO4MbAF8saq+PR/vrcUrSYCNq+q6hY5FM0uyIa2L2w1zsIz19rhsDeA8SLJjkn9Ncn6Sa5L8IslHk2w9VO7QJBcmeWCSk5Jc3TWNvWrEMp+Q5Myu6eq8JK8Yrp7vmjcqyWuSvCfJr4EVwIO66c8YsdypGDbsYVNMK8kDknwlye+6bXRukv26156Y5OtJLuq2ydlJ/nZ1MSZ5abeej0jyxSRXJPntwHKf1G3Dq5KcmuTBPa/jC5L8JMmKJOck+bOh11dpakiye5L/SfL7JFd22+WtQ/O9sFvutV1z5h6DTctD22LJ0LyrNGMm2SfJj7vPYXmS06Zi7favuwEv6pZXa9pU0c03FeO3BpeVZK8kP+jW6dIkn0qyzdD8f53k5CSXJbk8ySlJnjpUZrrvwD/TzigA8KmuzAlT6zhqnboy+6/Juq6BHZIc3X3mv0zy1iQbdHHcKskHuu/BlUl+k+SoJPcZinfqM39MkiO6sr9L8pEkmw2UG9xG709ycfc9+9rg/tK9x5nDgSbZIclNGXGcmo2sbP6+53Tr3pXbNsnHkvxf9136SdoVn1ZZ1oj3uPkY2X3Pju9e+u+B/XmX7vVlSQ5L66LwE+A64Knda29PckaSP3T753FJHrY26z9Xktwr7Vh6cff9uSDJl5JsNO6+0y3n8d06Xpvk50n2nudYZ3PMqiQHJtk3yfm0z+r+WXlMfXb32S/vPrPDk9xulsvYZaDsOMflByQ5snvPa5J8N8mjR2yDfbp97dq0Y+0qZfpiDeD8+CPaqWpeR7tiyd2Bvwe+TqtaHrQl8G+0H6h3AHsCH01yblUdD5DkvsDRwPeBFwCbAG8BbgvcNOL93wycSrsk3oa0k2afCuxNO40O3XK3Ap4HvKeqblyrNZ6FJA+lJQLnAa8HLqTVDP1JV+TutNHeHwauBZYC+wPbAvuyep8FPkdranwu8K5uXZ8CHAhcCbwHOCLJPfr4h5/kCbTP9Wjgb7vYPwhszDSXJ0zrl3Qk8GXavnAdbbsMngdzN1oz5pHAG7rl/jNwK+CnaxDni4D3de93ErAZ7XOYSr7+jLbf/oD2GQBcMtv36bwTOB34EPBXtCaWS5K8m7aNPgS8iVZTdwBwvySPGNg3lwCfpCVyGwFPB76W5MlVdczQew1/B87o1u9L3bKPBv6whuvRh68An6Gd8eDpwNtpx5DPAJvSai4PAC6ifTavAU5O8sdV9ZuhZR0GfBE4GHgo8Fbg1sBLh8rtB5xFO+bcAXgXcGySnarqeuCjwNFJHlpV3x+Yby/gKtp+OBemXfckWwLfoe2X+wPnA7vTjpGbVtWHZ/E+Z9D2u48Ar6XtH3DLiwo8Dti5i+FiVv5puHMX34W0bfli4NtJHlxVP5pFDH04mvY782raZc3uTDvWbcCY+06SP6Z9z0+j/cZsStvetwHm8rdhplhn66XAL4A30vbHX9N+E6EdE78JvJB2DH0X7Xf5cbNYBjD2cflBtOPLmcArgauBVwHf7I5hp3flXt7FdijwBWBH4N9pn1H/qsrbPN9oP1aPAgp44MD0Q7tpjxuYtinwO+CQgWn/RvvR3Xxg2na05GjZwLQl3fLOoBvxPfDaS2lf5LsNTHstrWnsLvO8Pb5NO8BvPkbZdNvvzbQDxwYDry0DDh1axwLeOrTtLwauB3YYmL5HV/axPa3jd2k/LIPxPqx7zxO657t0z3fpnj+ne77lDMv9H+Dswc8XePDgcoe2xZKh+fdvh4Gbn/8LcMZq1mUZcNgcbZcnDK3zkm6/fOtQuUd25Z45zXI26D7bY4Gvjvkd2LF77aUj1u/QEe9RwP7Tbbs52h77d++z59D0HwHHTjPPhsDmtP6Lrx/xmX9sqPybu218r6FtNLx/Tm3zlw9s458DnxooszHwm+H36GvdaX90rwXuOVTmE7QEYqOZPhvaMXbZwPNduvd8wjT7+dXAnVYT94bdvncu8MERy95lLveR1cRy++499xiz/HT7zuHd9rz1wLS70pKdZfMRK2Mes7ppRUvWNhuaPvUZHDM0/UXd9MfPYhm7dM/HOS5/C/gxsMnQtv4xcET3fAPa795wbM/vln9o3/uLTcDzIMkmSf6+a6q4hpZ8nNS9fO+h4ldXV9MHUFUraDU52w+UeRjw9aq6eqDcRbRkYJQjqtuzBnweuJz272TK3sDRVXXheGu29pJsTvuhOXxwfYbKbJfk40l+STsAXU/7B7sVraZidf5r6kG1PiHnAT+tqvMHyvyku7/rrFdiNdKaqh8CfLmqbq6hrapTWFmjMMpZtHX9fJLnJLnFunbLXQr8x+DnW+3f5eC6zcapwM5JPpzWzWDzNVzOmtqNdmA8vGsG2ihtsMb3aD9Sj5kqmOTBac2Uv6X9cbm+m3/4OwWjvwPrsqOHnp/NwDEgyfOSfC9t1PQNtNqK2zB63b849PzztG380KHpw/vnd2k1XA/vnt9EO+H+C5JM1Yo8E7gjc3si/pnW/Um0feH8of3jG8DtaJcFnUun1Ko1qlNdcI5P8jtW7nv3YvT2n0+/o9VgvTvJK5Pcc7jAmPvOw2m/MVdNTaiqX9H+yM5brLN0TFVdM81rw9+BL9Fay4Zb4GZaxpSzmPm4vBnw2Kn3GNhHQ6uFnDqG3aW7Dcf2H7TPpXcmgPPjINq/lsNofUgeyspRlLcaKrt8xPwrhsptR6vFGvbbad7/ouEJVXUtrZnlZd0O+mjawfNj0yyjL1vT9sORSWda358jgafRkr5dacnUgV2R4e03yvA2vW6aaeMub7ZuT6spGfX5TPeZUVXn0Zq3NgD+FfhNWj+3xw4tdzb7wup8jtYc86e0H9XLkvzncD+cHk0dTM+jHWQHb1vQfuRJclfav+xtgL8BHkHbL45h9Ge4yndgHXfZ0PObjwFJnk5rLvox8Oe0z+ohtFaBUes+vC9MPb/zaspNTRss9ylaTcZLuuevAr5fVWdOtyJrYNp1p+0fj2HVfeNL3eu3Y26tst90zXtfp3UdeTntD/lDaN0i+jh+jK37k7Mbren2IOCnaX3OXw2z2ne2Y5bHq7mOdQ3M9B2/RdzVuvksZ9XvwGqPE2Mcl7ehfUfewqr76V8DW3e/a9tNE9sNtOS4d/YBnB8vAD5XVQdMTUhym7VY3kWMrvm64zTlp6v5+Cit39gzaH27ltF+9OfTcto/seEv4pR70Gq5XlJVh01N7A5ki8WltC//qM/njsAvp5uxqw0+PsmmtJrSd9D6YS0ZWO50+8IFA8+v7e43GSp3ix/M7qD8ceDjaYOUnkjrE/gF2o9F36YOfE9k9J+hqdefROub87zBGusZaixnU/t3LUPbabjD+AJ7AXBeVb10akLayOZtpil/R+CcoefQTn8zXG7UvGdNPamq3yX5IrB3km/Q+lC9YjbBr6Xf0f7w7DPN61P9aa+F1vpSt+zTO9vPcdR+82xaDc2zqvWNpHuvrWmtKguqqn4B/EWSAA+gJR0Hpw1+GXffuYjp94f5inWsY9bg4mZ4q1vEnWQTWuXD8HdgrOPEao7Ll9N+0z5C+0M9av6bkkwlm8OxbcTc/5EZyRrA+bE57Yd60J5rsbxTgKcM/tgl2Y62I46tqn5O6zP1Jlq/hk8MNgHNh67Z9zvAizMwMnHA1DoOHmg3pvXhWBSqDVo4FXhObjma8U9p/a/GWcaKqjqONljl1rT+izfS/j0/uzuATi33wcAOQ4uYSjLvN1BuI1qiNd17Lq+qL9CaKO438NIKWif8Pvw37eC5fVWdNuI21bQ9ar+4F7P8Dkzjl9xyfaEb/bmO2JxVm4heQqt1GOV5Q89fQNvG3xuaPrx/PpLWRHXyULmDadvnk8DvaU3K8+UY4D7ABdPsH1PncRy1v29FqyketKK7n83+vDmtD+XNyUKSXbllN50FV81ZtD/50LbFuPvOybTfmFtPTehq3efi+zVurLM+Zs1g+DvwXFr+M7xvz8o0x+WraF28HkDrT73KftrNfiGtD+BwbM9mnirnrAGcH8cAf5nkR7SmrWex6oFoNg6gJWzfSPJPtIEib6FVJc82gTuYNhL4elrzzkJ4I3AibSTa+2hfjLvTRt/9Le1AcGCSG7s4X79Aca6Nt9GS7SOSfJw2WvfttA70I6WdVuMxtOamX9GafPejdVQ+e2i5X0lySFdm/265g/vCqbQO/O/tfuRX0Eb/bTr0nofQ+tqdTKtpuRftB+LYgWL/Czw6ydO697m05uha3FX18yT/CPxLknvT9otraX0zdwM+2f37/ibth+xz3T6zHW17XsDa/7H9PPDpJB8AvkY7kL90LZc5l44BnjkQ31JaM/jl05R/SpL30j7Dh9L2mc9V1c+Gym3BLffPg4CfMVSLUVWnpJ0O5jHAh6fru9uTD9A6yZ/Urf+5tB/e+wCPrqpndOX+i5acfiLJ22j7+d/Rmm0H/ZS2H70syWW078W5A4nkKMfQzuhwaJLP0L4jb2HV2qR5l+RPaGcX+ALtt2ZD2r57A3AcbaT7OPvOAbQk6dhu39mEdlyZsybgMWL9AWMcs8a0U/dZfZ72eR1IGyT3rTWIe5zj8htogxu/keRTtBrV2wMPAjasqn27WsC3A58ciG1H2pkt5ueMBH2PMvF282inz9OatJbTRlg9hKERiLQRaheOmP8EBkZ0dtN2ozXNrKB1pN2bdvqEMwfKLOne4xUzxLYhbaTblxZ4Gz0QOIp2ILqGNijj/3Wv7UyrJbyalhy+g9bsdIsRYkw/CnjHEdvzO0PTVrut5mAdX0j7wVpBa5L7s8HPllVHmz2clpz/qpvnIlpfp3sPLffPRyz3TOArQ+V26t7vSlqi9AZWHQX8l12Zi7vlnU/70d1yoMx9aP9wr2YtR6sxNAp4YPpLaDXdV3Xx/pg2QvkuA2We1+0n13br/QJWHeU57efK9KOAN6CdKuWX3Tp+g9YVoZi/UcAbDU2/eb26+A6g/eBcTUuSH8j0+/9juv3oSlr/uo8wMNJxYBu9Bng/rT/Y1bTBGDtME+d+3Tw7zee6d8+37vbJ82l9dy/u9sfXDc33KNofn6tpid6Lh5fVldubdgy9gVt+/5YxzWh3WtJ0Pu1YdWq3H5/ALUfe78KIfbvPG607yGe79b26+7xPBHafzb4z8N08k1v+xqyy/fqKtSuz2mNWV66AA0a8x9Rn8Kwu9stpf3D/Dbj9LJcxtV+Me1z+Y9rv/tSx9EJaf/anDJXbh3asuZbWovOoUZ9HH7d0AWiR6/oUnkcbxfvyWcy3G61m4Am1Bv+GtO5JchfavnBgVb1zoePRwkjyUtpAr3tW67g+XbkltGTmlVX1yTGX/V3gpqqat5PWSrOVlSf73q2qvrmw0ax7bAJepJJ8mHbal1/TTmi5D+2f8QfHnP8etGbWD9D6KZj8LUJdv8n305pEL6V9pn9H+0c91o+5NI6uw/uDaDVDj6ANHpO0SJkALl63Av6RNoLoOtpVQZ5QVT8cc/630JpEfgD8RS8Raj7cCNyJ1jx6O1qT6UnAc6udG1KaK9vR/nReDryrqo5c2HAkrQ2bgCVJkiaMp4GRJEmaMCaAkiRJE8YEUJIkacKYAErSkCQ3Jjlr4LbvHCxzSZI/H3i+NMmH1na5krQmHAQiSUOSXFlVa3O97lHL3AV4Y1U9bS6XK0lrwhpASRpTkmVJDupqBU9L8qAk30jy8+4SUaR5b5Kzk/woyfO72d9Nu4TeWUlen2SXJF/r5tkmyRFJfpjklO4yWSTZP8mnk5yQ5BdJXrsway5pfeN5ACVpVZslOWvg+UFV9YXu8QVVtXN3PdVDgUfSzst5NvAx2mWndqZdQ/j2wKlJvk27xufNNYBdjeCUt9Mu4/jMJLvSrr+7c/fafYDH0a7Ve26Sj1bV9XO5spImjwmgJK3qmqraeZrXpk6A/CPgNlV1BXBFkhVJtqJdy/Pfq+pG4LdJTqRd+3umC7w/Cng2QFUdl+R2SbbsXju6qlYAK5JcTDv5+4VrsW6SZBOwJM3Siu7+poHHU8/7+FM9+B439vQekiaMCaAkza2TgOcn2TDJtsBjaJdqvILWjDvdPC+Cm5uGL62qmWoMJWmt+E9SklY13AfwmKoa91QwXwEeTrvOdgF/V1W/SfI74MYkP6D1HTxzYJ79gU8n+SFwNfCXaxe+JM3M08BIkiRNGJuAJUmSJowJoCRJ0oQxAZQkSZowJoCSJEkTxgRQkiRpwpgASpIkTRgTQEmSpAljAihJkjRh/j9fWcyLGOViIQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# plot emotions\n", + "plt.figure(figsize=(35,4))\n", + "plt.subplot(1,3,1)\n", + "#np.unique returns ordered list of unique elements and count of each element\n", + "emotion_list, count = np.unique(y, return_counts=True)\n", + "plt.bar(x=range(8), height=count)\n", + "plt.xticks(ticks=range(8), labels = [emotion for emotion in emotion_list],fontsize=10)\n", + "plt.xlabel('Emotion')\n", + "plt.tick_params(labelsize=16)\n", + "plt.ylabel('Number of Samples')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "b85c3976", + "metadata": {}, + "outputs": [], + "source": [ + "def matriciseFeatures (X):\n", + " max = 0\n", + " for i in range (len(X)):\n", + " if X[i].shape[0] > max:\n", + " max = X[i].shape[0]\n", + " XX= []\n", + " for i in range (len(X)):\n", + " s = np.array (X[i])\n", + " s = np.resize(s, max)\n", + " XX.append(s)\n", + " XX = np.array (XX)\n", + " print (XX.shape)\n", + " return XX" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "1a69fe03", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1440, 1258854)\n", + "(1440, 419618)\n", + "(1440, 419618)\n" + ] + } + ], + "source": [ + "X_stft = matriciseFeatures (X_stft)\n", + "X_dwtC = matriciseFeatures (X_dwtC)\n", + "X_dwtDC = matriciseFeatures (X_dwtDC)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "dbc742dc", + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import StandardScaler\n", + "\n", + "scaler = StandardScaler()\n", + "\n", + "X_stft = scaler.fit_transform(X_stft.real)\n", + "X_dwtC = scaler.fit_transform(X_dwtC)\n", + "X_dwtDC = scaler.fit_transform(X_dwtDC)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "71a60176", + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from sklearn.neural_network import MLPClassifier\n", + "from sklearn.neighbors import KNeighborsClassifier\n", + "from sklearn.svm import SVC\n", + "from sklearn.gaussian_process import GaussianProcessClassifier\n", + "from sklearn.gaussian_process.kernels import RBF\n", + "from sklearn.tree import DecisionTreeClassifier\n", + "from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\n", + "from sklearn.naive_bayes import GaussianNB\n", + "from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis\n", + "\n", + "from time import time\n", + "\n", + "# the dataset has 1440 audio file, all feature extraction mathods generate many values for every file as seen in shape printing in matrcisaition\n", + "# the following classifiers are all set on the lowest parameters, increasing iterations, layers and depth, number of estimators, \n", + "# regularisation parameters, other setting should increase the accuracy achieved. \n", + "# consider automatic fine tuning of parameters\n", + "\n", + "# the following only show how performance changes when features are extracted using different representation\n", + "# others concatenate all these different feature extraction methods (stft, dwt, spectrogram, mfcc, .... etc)\n", + "# horiazontally to enable classifiers finding the most discriminating features among all. These might differ from \n", + "# one dataset to another, and from one classification algorithm to another\n", + "\n", + "names = [\n", + " \"Nearest Neighbors\",\n", + " \"Linear SVM\",\n", + " \"RBF SVM\",\n", + " \"Gaussian Process\", # this is very slow, consider commenting out if not on a fast computer\n", + " \"Decision Tree\",\n", + " \"Random Forest\",\n", + " \"Neural Net\",\n", + " \"AdaBoost\", # this is the second slowest, consider commenting out if not on a fast computer\n", + " \"Naive Bayes\",\n", + " \"QDA\",\n", + "]\n", + "\n", + "classifiers = [\n", + " KNeighborsClassifier(3),\n", + " SVC(kernel=\"linear\", C=0.025),\n", + " SVC(gamma=2, C=1),\n", + " GaussianProcessClassifier(1.0 * RBF(1.0)), # this is very slow, consider commenting out if not on a fast computer\n", + " DecisionTreeClassifier(max_depth=2),\n", + " RandomForestClassifier(max_depth=2, n_estimators=2, max_features=1),\n", + " MLPClassifier(alpha=1, max_iter=2),\n", + " AdaBoostClassifier(), # this is second slowest, consider commenting out if not on a fast computer\n", + " GaussianNB(),\n", + " QuadraticDiscriminantAnalysis(),\n", + "]\n", + "\n", + "def compareModels (X, y):\n", + " X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2, random_state=69)\n", + " learnTime, score = [], []\n", + " for name, clf in zip(names, classifiers):\n", + " start= time()\n", + " clf.fit(X_train, y_train)\n", + " learnTime.append(time()-start)\n", + " print (\" clf: \" + name + \" learnTime = \" +str(learnTime[len(learnTime)-1]))\n", + " start= time()\n", + " score1 = clf.score(X_test, y_test) \n", + " print (\" score = \" + str(score1) + \" in \" + str(time()-start) )\n", + " score.append(score1)\n", + " \n", + " return score, learnTime" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "708d6621", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " clf: Nearest Neighbors learnTime = 6.523072957992554\n", + " score = 0.13194444444444445 in 789.330155134201\n", + " clf: Linear SVM learnTime = 2239.9565012454987\n", + " score = 0.13541666666666666 in 233.9917562007904\n", + " clf: RBF SVM learnTime = 1845.867311000824\n", + " score = 0.11805555555555555 in 2809.182865858078\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\gaussian_process\\kernels.py:420: ConvergenceWarning: The optimal value found for dimension 0 of parameter k1__constant_value is close to the specified lower bound 1e-05. Decreasing the bound and calling fit again may find a better value.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " clf: Gaussian Process learnTime = 12998.663620710373\n", + " score = 0.11805555555555555 in 1559.7494747638702\n", + " clf: Decision Tree learnTime = 269.72395491600037\n", + " score = 0.1423611111111111 in 0.2526736259460449\n", + " clf: Random Forest learnTime = 1.0748169422149658\n", + " score = 0.12152777777777778 in 0.2685856819152832\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\neural_network\\_multilayer_perceptron.py:702: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (2) reached and the optimization hasn't converged yet.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " clf: Neural Net learnTime = 31.200265645980835\n", + " score = 0.19791666666666666 in 0.5775916576385498\n", + " clf: AdaBoost learnTime = 6637.967088460922\n", + " score = 0.19791666666666666 in 12.978172063827515\n", + " clf: Naive Bayes learnTime = 7.24346923828125\n", + " score = 0.2465277777777778 in 18.289345026016235\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\discriminant_analysis.py:887: UserWarning: Variables are collinear\n", + " warnings.warn(\"Variables are collinear\")\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " clf: QDA learnTime = 306.20986557006836\n", + " score = 0.13541666666666666 in 7.932264089584351\n" + ] + } + ], + "source": [ + "stft_score, stft_learnTime = compareModels (X_stft, y)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "fcef07df", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/manal/.local/lib/python3.8/site-packages/sklearn/gaussian_process/kernels.py:420: ConvergenceWarning: The optimal value found for dimension 0 of parameter k1__constant_value is close to the specified lower bound 1e-05. Decreasing the bound and calling fit again may find a better value.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " clf: Gaussian Process learnTime = 2723.0790464878082\n", + " score = 0.12152777777777778 in 458.4064860343933\n", + " clf: Decision Tree learnTime = 81.19836735725403\n", + " score = 0.1597222222222222 in 0.15889668464660645\n", + " clf: Random Forest learnTime = 0.8245458602905273\n", + " score = 0.1527777777777778 in 0.15880417823791504\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/manal/.local/lib/python3.8/site-packages/sklearn/neural_network/_multilayer_perceptron.py:702: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (2) reached and the optimization hasn't converged yet.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " clf: Neural Net learnTime = 17.42845582962036\n", + " score = 0.10069444444444445 in 0.3424232006072998\n", + " clf: AdaBoost learnTime = 2100.7681033611298\n", + " score = 0.2222222222222222 in 7.885491371154785\n", + " clf: Naive Bayes learnTime = 6.829381227493286\n", + " score = 0.3298611111111111 in 5.026338815689087\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/manal/.local/lib/python3.8/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear\n", + " warnings.warn(\"Variables are collinear\")\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " clf: QDA learnTime = 105.56209802627563\n", + " score = 0.14583333333333334 in 5.473020792007446\n" + ] + } + ], + "source": [ + "dwtC_score, dwtC_learnTime = compareModels (X_dwtC, y)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "bc63cd32", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/manal/.local/lib/python3.8/site-packages/sklearn/gaussian_process/kernels.py:420: ConvergenceWarning: The optimal value found for dimension 0 of parameter k1__constant_value is close to the specified lower bound 1e-05. Decreasing the bound and calling fit again may find a better value.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " clf: Gaussian Process learnTime = 11750.665244340897\n", + " score = 0.11805555555555555 in 459.52876019477844\n", + " clf: Decision Tree learnTime = 67.40228509902954\n", + " score = 0.14930555555555555 in 0.1542825698852539\n", + " clf: Random Forest learnTime = 0.8243024349212646\n", + " score = 0.1423611111111111 in 0.1545271873474121\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/manal/.local/lib/python3.8/site-packages/sklearn/neural_network/_multilayer_perceptron.py:702: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (2) reached and the optimization hasn't converged yet.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " clf: Neural Net learnTime = 17.055216312408447\n", + " score = 0.10069444444444445 in 0.3132355213165283\n", + " clf: AdaBoost learnTime = 1733.8889164924622\n", + " score = 0.2465277777777778 in 10.246487379074097\n", + " clf: Naive Bayes learnTime = 6.380509376525879\n", + " score = 0.2604166666666667 in 4.947436809539795\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/manal/.local/lib/python3.8/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear\n", + " warnings.warn(\"Variables are collinear\")\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " clf: QDA learnTime = 104.62977313995361\n", + " score = 0.13194444444444445 in 5.144797325134277\n" + ] + } + ], + "source": [ + "dwtDC_score, dwtDC_learnTime = compareModels (X_dwtDC, y)\n" + ] + }, + { + "cell_type": "markdown", + "id": "603a69cf", + "metadata": {}, + "source": [ + "### The following comparison chart shows an example of basic models against each feature extraction representation method:\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "In case, your computer can not run all these models in the previous three cells (it took make several rounds to collect the mterics below), a sample collected metrics can be including by turning the cell below into code cell and run it to rerun the graph\n", + "\n", + "### It is obvious that STFT because it generates more features this makes learning time in red bars are always higher for all models. The model complexity itself affect the learning time, and the slowest is Gaussian Proccesses and ADABOOST. The accuracy of some models are better for STFT representation (blue bars), but other models are better with DWT coff (orange). The DWT deep coffs (green) seem comparable to the first group of DWT coffs, and could be concatented together for better representation. All models accuracy are obviously very low, because of the very low parameterisation of these models to learn faster on a normal computer ( i7-1185G7 @ 3.00GHz + Nvidia/Quadro T500 + 64 GB RAM). More iterations, slower learning rate, deeper layers, and other parameters can increase the accuracy.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "752724f8", + "metadata": {}, + "source": [ + "stft_score, stft_learnTime = [], []\n", + "\n", + "stft_learnTime.append(6.523072957992554)\n", + "stft_score.append(0.13194444444444445)\n", + "\n", + "stft_learnTime.append(2239.9565012454987)\n", + "stft_score.append(0.13541666666666666)\n", + "stft_learnTime.append(1845.867311000824)\n", + "stft_score.append(0.11805555555555555)\n", + "\n", + "\n", + "stft_learnTime.append(12998.663620710373)\n", + "stft_score.append(0.11805555555555555)\n", + "stft_learnTime.append(269.72395491600037)\n", + "stft_score.append(0.1423611111111111)\n", + "stft_learnTime.append(1.0748169422149658)\n", + "stft_score.append(0.12152777777777778)\n", + "\n", + "\n", + "stft_learnTime.append(31.200265645980835)\n", + "stft_score.append(0.19791666666666666)\n", + "stft_learnTime.append(6637.967088460922)\n", + "stft_score.append(0.19791666666666666)\n", + "stft_learnTime.append(7.24346923828125)\n", + "stft_score.append(0.2465277777777778)\n", + "\n", + "\n", + "stft_learnTime.append(306.20986557006836)\n", + "stft_score.append(0.13541666666666666)\n", + "\n", + "dwtC_score, dwtC_learnTime = [],[]\n", + "\n", + "dwtC_learnTime.append(0.27277231216430664)\n", + "dwtC_score.append(0.10069444444444445)\n", + "dwtC_learnTime.append(280.72698950767517)\n", + "dwtC_score.append(0.125)\n", + "dwtC_learnTime.append(301.32664680480957)\n", + "dwtC_score.append(0.10069444444444445)\n", + "dwtC_learnTime.append(2723.0790464878082)\n", + "dwtC_score.append(0.12152777777777778)\n", + "dwtC_learnTime.append(81.19836735725403)\n", + "dwtC_score.append(0.1597222222222222)\n", + "dwtC_learnTime.append(0.8245458602905273)\n", + "dwtC_score.append(0.1527777777777778)\n", + "dwtC_learnTime.append(17.42845582962036)\n", + "dwtC_score.append(0.10069444444444445)\n", + "dwtC_learnTime.append(2100.7681033611298)\n", + "dwtC_score.append(0.2222222222222222)\n", + "dwtC_learnTime.append(6.829381227493286)\n", + "dwtC_score.append(0.3298611111111111)\n", + "dwtC_learnTime.append(105.56209802627563)\n", + "dwtC_score.append(0.14583333333333334)\n", + "\n", + "dwtDC_score, dwtDC_learnTime = [],[]\n", + "\n", + "dwtDC_learnTime.append(0.26615381240844727)\n", + "dwtDC_score.append(0.10416666666666667)\n", + "dwtDC_learnTime.append(319.6564145088196)\n", + "dwtDC_score.append(0.10069444444444445)\n", + "dwtDC_learnTime.append(320.5957622528076)\n", + "dwtDC_score.append(0.10069444444444445)\n", + "\n", + "dwtDC_learnTime.append(11750.665244340897)\n", + "dwtDC_score.append(0.11805555555555555)\n", + "dwtDC_learnTime.append(67.40228509902954)\n", + "dwtDC_score.append(0.14930555555555555)\n", + "dwtDC_learnTime.append(0.8243024349212646)\n", + "dwtDC_score.append(0.1423611111111111)\n", + "\n", + "dwtDC_learnTime.append(17.055216312408447)\n", + "dwtDC_score.append(0.10069444444444445)\n", + "dwtDC_learnTime.append(1733.8889164924622)\n", + "dwtDC_score.append(0.2465277777777778)\n", + "dwtDC_learnTime.append(6.380509376525879)\n", + "dwtDC_score.append(0.2604166666666667)\n", + "\n", + "dwtDC_learnTime.append(104.62977313995361)\n", + "dwtDC_score.append(0.13194444444444445)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "6e7bd25f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAAEWCAYAAADiusdpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAAsTAAALEwEAmpwYAABogUlEQVR4nO3de5xN9f7H8ddnZsRIRhEphVKS22DGNXKIdNBNjnKvqClU4nQ51cGpzk+ny3FER+q4ldyjqE41yamM3DIuuSRSlBCFcYkZ398fa822jbnsMbct7+fj4WHv71rruz7rOnt/9vf7XeacQ0REREREREREzmwRRR2AiIiIiIiIiIgUPSWJRERERERERERESSIREREREREREVGSSEREREREREREUJJIRERERERERERQkkhERERERERERFCSSERE8sjMFphZH/91NzP7sIDWM9TM3iiIuv36vzKzlv5rM7PxZvaLmS0xs+ZmtqEA1nmJmaWYWWR+150XfkyXFnUcwcxsjJk9mc30AjlGRcHMnJlVC2G+lma2rTBiCucYpOgV5L1fREQKl5JEIiJnKD+584uZFc+vOp1zk51zbfMQU1czW+YnKbab2ftmdnV+xZcd51xN59wC/+3VQBugknOuoXPuM+dc9byuw8y2mNm1Qev83jlXyjmXlte6M6ynip9oiMpQPsHMns5peT+mzfkc023+9luG8igz22lmHXKIKcE591Q20/PlGOWGfw05M6uboXy2X96yMOMJR/5+OOBf0ylm9ms+1ZljEi2/+NfNET/+PWb2kZldWVjrL2hm1tvMPs/F/CfdX/J67xcRkfChJJGIyBnIzKoAzQEH3FC00XjM7CFgBPB3oAJwCfAycGMRhFMZ2OKcO1AE6/69mgOUAa7JUN4O7zz876lWnDEZVsi+BnoGxVIWaALsKrKIwk9dP/FYyjlXpqiDOcWWe/9wzpUCLgJ+AP6Tv1EV+XksIiICKEkkInKm6gl8AUwAegVPCO4+5r8/4VdmM2tjZuvNbK+ZjQIsm3mbmtlSf96lZtY0s2DMLAb4G9DPOfeWc+6Ac+6oc26uc+7PWSwzw8x+8uv+1MxqBk37o5mtNbP9ZvaDmQ32y8uZ2Twz+9VvEfCZmUX407aY2bVmdhfwGtDEbzkwLGOXGjO72MzeMrNdZrbb3w+Y2WVmNt8v+9nMJptZGX/a63iJr7l+vQ9n/EXezC40s3f82L4xs75B6xxqZtPNbJK/XV+ZWVxm+yYUZlbNzP7n77+fzWxa0LRASw2/FcVoM3vXX+9iM7ssaN62ZrbBr+dlv84+GdfnnDsMTCcooeLrCbzpnEvN4ZgGWkGlHw8ze8TMfgLGZ3KMavjn8q/+vrohaFqW57h5/mle66Z9ZrbazGplsysnA12CEg+3A7OBI0H1FzezEWb2o/9vhAW14DOzP5vXcu5HM7szw3EqbmbPm9n3ZrbDvG530ZkF4u+PH/zjtMHMWmcxX3szW+Fv31YzGxo0Lf2c7OWv82czezxoerR/LH4xs7VAfDb7Jkv+uT7Lv4a+NbP7g6Y1NLNF/rHbbmajzOwsf9qn/mwr/euoi2XSEiaTc/jfZvaemR0A/pDd+rPjnDuEdx7HhrgtQ81spplN84/LlxbU8sy8+84jZrYKOGBey7rGZpbkb/9KC2qR5m/rZr+ub82sW9C0O81snX9sPjCzyhn2R4KZbfTrHe2f6zWAMRy/3/3qz5/lOQKkH4Nf/WWaZDwGls2937zr7ykzW+hvx4dmVs6fVsLM3jDvHvqrv2yFUI6NiIjkDyWJRETOTD3xvtxOBq4L9UO4/0H+LeAJoBywCWiWxbznAe8CI4GywIvAu+a1tMioCVAC78t1qN4HLgfKA1/625LuP8A9zrlzgFrAfL98ELANOB+vtdJf8FqxBDjn/gMkAIv8lg9DMmxXJDAP+A6ogteyYGr6ZOD/gAuBGsDFwFC/3h7A90BHv95/ZLJNU/34LgRuBf5uZq2Cpt/gz1MGeAcYlfXuydFTwIfAuUAl4KVs5r0NGObP+w3wDATOh5nAY3jHeAOQaSLQNxG4NT3JYV5ysKNfDtkf04wuAM7Da/V1d/AEMysGzPW3rzwwAJhsZqF0R2sLtACuAGKAPwG7s5n/R2Ctvxx419akDPM8DjTGSyzUBRriXUOYWTtgMF73xsuBazMsO9yPJRaohne+/TVjEP629Qfi/fP+OmBLFjEf8OMsA7QH7jWzmzLMczVQHWgN/NVPJgAMAS7z/11HhiRzKMxLzM4FVvrb0xp40Myu82dJAwbi3WOa+NPvA3DOtfDnSW+dNI3QdMU7b88BknJYf3axn42XCPwmxG0BrzXkDLzz9U1gjn+Oprsd7ziUwbsvvQs87c8/GJhlZuf76x4JXO8f46ZAsh/HjXj3s1vw7m+fAVMyhN8BL6lXB++8vs45t44T73dl/HmzO0fSj0EZf5lFGfZRKPf+rsAdeNfnWf52gnc+xeDdO8v6sR1CREQKjZJEIiJnGPPG+KkMTHfOLcdL9HQNcfE/Al8552Y6547idQ/7KYt52wMbnXOvO+dSnXNTgPV4SYGMygI/O+dSQ90O59w459x+59xveImYun7SAeAocJWZlXbO/eKc+zKovCJQ2W+p9Jlzzp1ce7Ya4iVx/uy3eDrsnPvcj+kb59xHzrnfnHO78L4cZexelSkzuxgv4faIX2cyXoum4JY3nzvn3vPHMHodL+Fwqo7inQcXBm9DFmY755b4x2cyx1tRpJ8Pb/nTRpL1+YBzbiGwA7jZL/oT8LW/rTkd04yOAUP8fZ3xS2RjoBQw3Dl3xDk3Hy+xd3s225juKF4i4UrAnHPrnHPbc1hmEtDTvHFqymT80gx0A/7mnNvpnxfDgB7+tD8B451za/zujUPTFzIzw0uADXTO7XHO7cfrjnlbJjGkAcXxzvtizrktzrlNmQXrnFvgnFvtnDvmnFuFl0zIeJ4Oc84dcs6txEuApJ9rfwKe8ePZinfMc/Kl3yrkVzMbiZeoON859zf/+GwGXk3fLufccufcF/59YwvwSibx5dbbzrmFzrljQO3s1p+FwX4rm/14CbT045fttviWB90zX8RLiDcOmj7SObfVP4+7A+/51/kx59xHwDK8aw28876WmUU757Y7577yyxOA//PP11S88yQ2uDUR3vXwq3Pue+ATglpDZRTiOZKVUO79451zX2fSMuso3t+Das65NP9c2BfiekVEJB8oSSQicubpBXzonPvZf/8mobcGuBDYmv7GT7BszWbe7zKUfYf3a3tGu4FyFuKYHGYWaWbDzWyTme3jeIuJcv7/nfC+VH1nXvenJn75c3gtAD70u2w8Gsr6MrgY+C6zhJaZVTCzqeZ1+dkHvBEUU04uBNITAeky7q/gBMxBoEQW+yw9tmIZyovhfQkDeBiv5dMS87pj3UnWMq63VFDMGc+HnJ50NYnjia8e/vtQjmlGu5zXhS0zFwJb/YRAuqzOvRP4CaVRwGhgp5mNNbPSOSz2FtAKryXP61nEE3wtfOeXBWLNMC3d+UBJYHl6kgVv7KbzM4n7G+BBvCTTTv88vDDjfABm1sjMPjGve9RevARDxv0c0jHn5Gs8M/Wdc2X8f/fjJyeDEke/4rWCqeDHd4V53UJ/8s+Fv2cSX24Fx5zt+rPwvN/Kpgpey5b0Vmmh1BV8jRzjeGvBrGLrnKG+q4GKfhKxC97x2m5eF9Arg5b7V9Aye/Cu7+zuH6XIQojnSFZCufdnFcvrwAfAVPO6X/4jQ6srEREpYEoSiYicQfxuPn8CrvG/gP2E162jrh0fJ+MA3hfTdBcEvd6OlyRJr8+C32fwI94Xl2CX4A36mtEi4DfgptC2hK54XTiuxeuaUCU9JADn3FLn3I14XRnm4P1Sjd9KZZBz7lK8rlsPWRbjtmRjK3BJFsmZv+N1X6vtnCuN1yog+Gle2bVa+hE4z8zOCSrLan/lZDteMqhKhvKq+F/enHM/Oef6OucuBO4BXrbcPzFqO15XNSBwPlTKenbA+xLY2k/cNeZ4l7Jsj2kmctqXF/tdgdIF78vsznGccyOdcw2Aq/C6emU6LlbQ/AfxusrdS+ZJoozXwiV+GWS4pvxp6X7GS0jUDEqyxDhvAOXM4njTOZfeUtABz2YR8pt43RUvds7F4I1Jk9V+zii7eEO1Ffg2aJvKOOfOcc6lt5b5N17Lk8v96+gvOcR3wvE0swsymSf4fMlp/VnyW+E8gJeQiQ6xruB7ZgTeNfJjcLUZYns9Q31nO+eG++v/wDnXBq9F5Hq8Vkvpy92TYblo51xSTttE5tdSdudITq0vc3PvPzEQr4XnMOfcVXjd6Tpw8jhmIiJSgJQkEhE5s9yE1y3lKrzm/bF4Y+d8xvEP4snALWZW0k8a3BW0/LtATTO7xU+S3E+GL9hB3gOuMO+x9lFm1sVf77yMMzrn9uKNszLazG7y113MzK43s8zG7jkHL6m0G+/L4d/TJ5jZWWbWzcxi/O4d+/C6aGBmHcwbsNmAvf6+OHZS7dlbgvdFebiZnW3eQKvp4zKdA6QAe83sIk5OLuwALs2sUr/rThLwf36ddfD2/Ru5jA/ndUebBTxjZmX9fXk73v5/H8DMOptZekLnF7wvfrndF+8Ctf1jFgX0I+vzIT22LcDneN1XPnLOpbcoyPKYnoLFeK0THva3vSVeV5f0saOSyeIcN7N4vxVFMbzkw2FC2y9/Aa7xty+jKcAT5o0rUw7vXE8/rtOB3mZ2lZmVxBvzBwi0OnkV+KeZlffju8gyGTvHzKqbWSvzBsQ+jJdcyiruc/BarR02s4aE3t00Pd7HzOxc//wZkItl0y0B9ps3YHO034qslpmlD4J9Dt51m+K3lLk3w/IZr6OVePelWDMrQVCXvVNcf7b8LmA/4nUFDKWuBkH3zAfxzvMvsqj+DaCjmV3n11XCvEHZK5nXUvFG88Ym+g3vXpN+jMfgHZea4I33ZWadQ9kevP1ZyfzBwX3ZnSO7/PVmei8jF/f+jMzsD2ZW27yx3/bhJbtze18SEZE8UJJIROTM0gtvLIjv/ZYkP/lf0kcB3fwvMf/EezLTDrwBhQODB/td1DrjDaa7G2+g3YWZrcg5txvvV+BB/rwPAx2CurllnP8F4CG8AX134f0y3h+vJVBGk/BaxPyAN2hwxi9cPYAt5nVVScAbEwY/3kS8L1eLgJedc59kFk9W/ARMR7xBhL/H6zrSxZ88DKiPl4B6F68bUrD/w0sW/Gr+E9cyuB2vBc2PeIN4D3HOJeYmviD34XU5WQXsxNuX7Z1zO/zp8cBiM0vBazHwgD+eSsiCzod/4B3jq/DGT/kth0Un4rU0CB7gOadjmpu4juAdo+vxWuO8DPR0zq33Z8nyHAdK4yVmfvHj2Y3XTTGndf7osh7X6Wm8/bIKWI03KPfT/nLv443tNR+vK+T8DMs+4pd/4Z/PiRzv6hSsON51+TNeV57yeAOKZ+Y+4G9mth8vYTU9p+0LMgxvv3yLNzB4Zi2nsuVfQx3wktTf+jG/hteCDLxBjLvijf/zKpBxcOqhwET/OvqTc+5rvKcjJgIb8ZKQeVl/KJ7Du6dFhVDX23j3iF/w7k23+AnszGLbitei7i8cvw/+Ge8zewTePfJHvGv7GvwEmnNuNl7Lsan+ebIG7/wPxXzgK+AnM0u/P2d5jvgt554BFvrHIHh8pVzf+zO4AG8w/H3AOuB/nMI5JiIip85crsfrFBERETmZ35VmG9Att8k3kd8j8x4dX805172oYxEREQmFWhKJiIjIKfO7xZTxuzmljx1zyq2ARERERKToKEkkIiIiedEE2ITXzaYjcJM7+ZH0IiIiInIaUHczERERERERERFRSyIREREREREREfGeyBC2ypUr56pUqVLUYYiIiIiIiIiI/G4sX778Z+fc+RnLwzpJVKVKFZYtW1bUYYiIiIiIiIiI/G6Y2XeZlau7mYiIiIiIiIiIhGeSyMw6mtnYvXv3FnUoIiIiIiIiIiJnhLBMEjnn5jrn7o6JiSnqUEREREREREREzghhPSZRZo4ePcq2bds4fPhwUYciElZKlChBpUqVKFasWFGHIiIiIiIiIqeh0y5JtG3bNs455xyqVKmCmRV1OCJhwTnH7t272bZtG1WrVi3qcEREREREROQ0FJbdzbJz+PBhypYtqwSRSBAzo2zZsmphJyIiIiIiIqfstEsSAUoQiWRC14WIiIiIiIjkxWmZJBIRERERERERkfx12o1JlFGVR9/N1/q2DG+f4zzPPPMMb775JpGRkURERPDKK68wfPhwvv32W1JSUti1a1dgXJiXX36Zv/zlL2zfvp3o6GgAOnXqxKxZswD4/vvviYmJISYmhnLlypGYmHjS+ubMmcPNN9/MunXruPLKK/NxawvesWPHePDBB5k/fz5mRokSJZg+fbrGzRGRIrfuyhohzVdj/boCjkREREREJDwUapLIzM4G/gcMdc7NK8x155dFixYxb948vvzyS4oXL87PP//MkSNHmD17NgALFizg+eefZ968Ezdv8uTJxMXFBd4/+eSTAPTu3ZsOHTpw6623ZrnOKVOmcPXVVzNlyhSGDRtWAFvlSUtLIzIyMl/rnDZtGj/++COrVq0iIiKCbdu2cfbZZ+epztTUVKKiTvv8poiIiIiIiEhYyVN3MzMbZ2Y7zWxNhvJ2ZrbBzL4xs0eDJj0CTM/LOova9u3bKVeuHMWLFwegXLlyXHjhhQW2vpSUFD7//HP+85//MHXq1EB5WloagwcPplatWtSpU4eXXnoJgKVLl9K0aVPq1q1Lw4YN2b9/PxMmTKB///6BZTt06MCCBQsAKFWqFIMGDaJu3bosWrSIv/3tb8THx1OrVi3uvvtunHMAfPPNN1x77bXUrVuX+vXrs2nTJnr27MmcOXMC9Xbr1o233377hPi3b99OxYoViYjwTrVKlSpx7rnnAvDf//6X+vXrU7duXVq3bg3Anj17uOmmm6hTpw6NGzdm1apVAAwdOpQePXrQrFkzevTowa5du+jUqRPx8fHEx8ezcOHCfNzrIiIF64UuHUL6JyIiIiJSmPI6JtEEoF1wgZlFAqOB64GrgNvN7CozawOsBXbmcZ1Fqm3btmzdupUrrriC++67j//9738hLdetWzdiY2OJjY1l9+7dIa/v7bffpl27dlxxxRWULVuW5cuXAzB27Fi2bNlCcnIyq1atolu3bhw5coQuXbrwr3/9i5UrV5KYmBjo4paVAwcO0KhRI1auXMnVV19N//79Wbp0KWvWrOHQoUOBFlHdunWjX79+rFy5kqSkJCpWrMhdd93FhAkTANi7dy9JSUm0b39id70//elPzJ07l9jYWAYNGsSKFSsA2LVrF3379mXWrFmsXLmSGTNmADBkyBDq1avHqlWr+Pvf/07Pnj0Dda1du5bExESmTJnCAw88wMCBA1m6dCmzZs2iT58+Ie9TERERERERETlZnvrsOOc+NbMqGYobAt845zYDmNlU4EagFHA2XuLokJm955w7lpf1F4VSpUqxfPlyPvvsMz755BO6dOnC8OHD6d27d7bLZexuFqr0hAjAbbfdxpQpU2jQoAGJiYkkJCQEul2dd955rF69mooVKxIfHw9A6dKlc6w/MjKSTp06Bd5/8skn/OMf/+DgwYPs2bOHmjVr0rJlS3744QduvvlmAEqUKAHANddcw3333ceuXbuYNWsWnTp1OqkbWKVKldiwYQPz589n/vz5tG7dmhkzZnDw4EFatGgRGJvovPPOA+Dzzz8PjNfUqlUrdu/ezb59+wC44YYbAkmvxMRE1q5dG1jPvn37SElJoVSpUrnZvSIiIiIiIiLiK4iBXS4Ctga93wY0cs71BzCz3sDPWSWIzOxu4G6ASy65pADCy7vIyEhatmxJy5YtqV27NhMnTswxSXQq9uzZw/z581m9ejVmRlpaGmbGc889l6t6oqKiOHbs+O4+fPhw4HWJEiUC4xAdPnyY++67j2XLlnHxxRczdOjQE+bNTM+ePXnjjTeYOnUq48ePz3Se4sWLc/3113P99ddToUIF5syZQ9u2bXO1DcAJYxkdO3aML774IpCwEhEREREREZG8yWt3s1xzzk3IbtBq59xYYBjw5VlnnVV4gYVow4YNbNy4MfA+OTmZypUrF8i6Zs6cSY8ePfjuu+/YsmULW7dupWrVqnz22We0adOGV155hdTUVMBLKFWvXp3t27ezdOlSAPbv309qaipVqlQhOTmZY8eOsXXrVpYsWZLp+tITQuXKlSMlJYWZM2cCcM4551CpUqXA+EO//fYbBw8eBLyBt0eMGAHAVVdddVKdX375JT/++CPgJXZWrVpF5cqVady4MZ9++inffvttIH6A5s2bM3nyZMAbBLxcuXKZtohq27ZtYBwm8I6DiIiIiIiIiJy6gmhJ9ANwcdD7Sn5ZyJxzc4G5cXFxfXOaN5RH1uenlJQUBgwYwK+//kpUVBTVqlVj7NixBbKuKVOm8Mgjj5xQ1qlTJ6ZMmcJLL73E119/TZ06dShWrBh9+/alf//+TJs2jQEDBnDo0CGio6NJTEykWbNmVK1alauuuooaNWpQv379TNdXpkwZ+vbtS61atbjgggsC3dYAXn/9de655x7++te/UqxYMWbMmMGll15KhQoVqFGjBjfddFOmde7cuZO+ffvy22+/AdCwYUP69+9PiRIlGDt2LLfccgvHjh2jfPnyfPTRRwwdOpQ777yTOnXqULJkSSZOnJhpvSNHjqRfv37UqVOH1NRUWrRowZgxY05hL4uIiIiIiIgIgKU/veqUK/DGJJrnnKvlv48CvgZa4yWHlgJdnXNf5aLOjkDHatWq9Q1utQOwbt06atSokaeYJf8cPHiQ2rVr8+WXXxITE1PU4ZzxdH2IhG7dlaFdKzXWr8v3dYf65LJB07JseCsiIiIicsrMbLlz7qSBk/PU3czMpgCLgOpmts3M7nLOpQL9gQ+AdcD03CSIwGtJ5Jy7W0mH8JaYmEiNGjUYMGCAEkQiIiIiIiIip7m8Pt3s9izK3wPey0vdEv6uvfZavvvuu6IOQ0RERERERETyQaEPXB0KM+toZmP37t1b1KGIiIiIiIiIiJwRCmLg6jzLzcDVIiIiIiIi4aYox74TETlVakkkIiIiIiIiIiLhmSTSwNUiIiIiIiIiIoUrLLub5crQfE4kDc259VJkZCS1a9fm6NGjREVF0bNnTwYOHEhERAT16tVj/PjxxMbGkpqaSpkyZRgzZgzdu3cHoEGDBnTt2pXXX38dgLVr11K9enUiIyNp164dw4cPP2FdS5YsYfDgwezYsYOSJUvSoEEDRo4cScmSJTON7bfffqN9+/b8/PPPPPbYY1x44YUkJCRQrFgxFi1aRHR0dK53SWxsLFdeeSVTp07N9bJF7YsvvuCBBx7gt99+47fffqNLly4MHTq0qMMSERERERERCTthmSQys45Ax2rVqhV1KJmKjo4mOTkZgJ07d9K1a1f27dvHsGHDaNasGUlJScTGxrJy5UquuOIKkpKS6N69OwcOHGDTpk08+OCDDBo0CIAqVarwySefUK5cuZPWs2PHDjp37szUqVNp0qQJADNnzmT//v1ZJolWrFgBEIgvISGBxx57LJCkyq1169aRlpbGZ599xoEDBzj77LNPqZ6cpKamEhWV/6djr169mD59OnXr1iUtLY0NGzbkuc60tDQiIyPzIToRERERERGR8KHuZnlUvnx5xo4dy6hRo3DO0bRpU5KSkgBISkoiISEhkLBZsmQJDRo0CDnBMHr0aHr16hVIEAHceuutVKhQgT179nDTTTdRp04dGjduzKpVq9i5cyfdu3dn6dKlxMbG8sorrzB9+nSefPJJunXrxvbt22nRogWxsbHUqlWLzz77LMcYpkyZQo8ePWjbti1vv/12oHzp0qU0bdqUunXr0rBhQ/bv309aWhqDBw+mVq1a1KlTh5deegnwEmE///wzAMuWLaNly5YADB06lB49etCsWTN69OjBli1baN68OfXr16d+/fqB/Qjw7LPPUrt2berWrcujjz7Kpk2bqF+/fmD6xo0bT3ifbufOnVSsWBHwWoBdddVVAKSkpHDHHXdQu3Zt6tSpw6xZswLbW7t2bWrVqsUjjzwSqKdUqVIMGjSIunXrsmjRIt544w0aNmxIbGws99xzD2lpaTnuSxEREREREZFwFpZJotPNpZdeSlpaGjt37gy0JAIvSdSiRQuKFy/O/v37SUpKomnTpiHXu2bNGho0aJDptCFDhlCvXj1WrVrF3//+d3r27En58uV57bXXaN68OcnJydxzzz3ccMMNPPfcc0yePJk333yT6667juTkZFauXElsbGyOMUybNo3bbruN22+/nSlTpgBw5MgRunTpwr/+9S9WrlxJYmIi0dHRjB07li1btpCcnMyqVavo1q1bjvWvXbuWxMREpkyZQvny5fnoo4/48ssvmTZtGvfffz8A77//Pm+//TaLFy9m5cqVPPzww1x22WXExMQEEnDjx4/njjvuOKn+gQMHUr16dW6++WZeeeUVDh8+DMBTTz1FTEwMq1evZtWqVbRq1Yoff/yRRx55hPnz55OcnMzSpUuZM2cOAAcOHKBRo0asXLmSsmXLMm3aNBYuXEhycjKRkZFMnjw5x20VERERERERCWdKEuWzypUrc+TIEX766SfWr19P9erViY+PZ/HixSQlJdGsWbN8Wc/nn39Ojx49AGjVqhW7d+9m37592S4THx/P+PHjGTp0KKtXr+acc87Jdv5ly5ZRrlw5LrnkElq3bs2KFSvYs2cPGzZsoGLFisTHxwNQunRpoqKiSExM5J577gl0GzvvvPNy3I4bbrghME7S0aNH6du3L7Vr16Zz586sXbsWgMTERO64445AF7v0evv06cP48eNJS0tj2rRpdO3a9aT6//rXv7Js2TLatm3Lm2++Sbt27QJ19uvXLzDfueeey9KlS2nZsiXnn38+UVFRdOvWjU8//RTwWiF16tQJgI8//pjly5cTHx9PbGwsH3/8MZs3b85xW0VERERERETCWVgmicyso5mN3bs350Gkw8HmzZuJjIykfPnyADRt2pQZM2ZQsWJFzIzGjRuzcOFClixZckLXsZzUrFmT5cuX51ucLVq04NNPP+Wiiy6id+/eTJo0Kdv5p0yZwvr166lSpQqXXXYZ+/btC3TLyo2oqCiOHTsGEGjJky54jKN//vOfVKhQgZUrV7Js2TKOHDmSbb2dOnXi/fffZ968eTRo0ICyZctmOt9ll13Gvffey8cff8zKlSvZvXt3rrehRIkSgW6Czjl69epFcnIyycnJbNiwQYNhi4iIiIiIyGkvLJNEp9OYRLt27SIhIYH+/ftjZoCXJBoxYkQgIdSkSRMmTZrEBRdcQG62qX///kycOJHFixcHyt566y127NhB8+bNA12cFixYQLly5ShdunS29X333XdUqFCBvn370qdPH7788sss5z127BjTp09n9erVbNmyhS1btvD2228zZcoUqlevzvbt21m6dCkA+/fvJzU1lTZt2vDKK6+QmpoKwJ49ewBvTKL0ZFd2Saa9e/dSsWJFIiIieP311wPj/LRp04bx48dz8ODBE+otUaIE1113Hffee2+mXc0A3n33XZxzgDduUWRkJGXKlKFNmzaMHj06MN8vv/xCw4YN+d///sfPP/9MWloaU6ZM4ZprrjmpztatWzNz5kx27twZiOe7777LcrtERERERERETgdh+XSzXAnhkfX57dChQ8TGxnL06FGioqLo0aMHDz30UGB6s2bNGDhwYCBJVLFiRdLS0nI1HhFAhQoVmDp1KoMHD2bnzp1ERETQokUL2rVrx9ChQ7nzzjupU6cOJUuWZOLEiTnWt2DBAp577jmKFStGqVKlAi2J+vTpQ0JCAnFxcYF5P/vsMy666CIuvPDCQFmLFi1Yu3Ytu3fvZtq0aQwYMIBDhw4RHR1NYmIiffr04euvv6ZOnToUK1aMvn370r9/f4YMGcJdd93Fk08+GRi0OjP33XcfnTp1YtKkSbRr1y7Qyqhdu3YkJycTFxfHWWedxR//+Ef+/ve/A9CtWzdmz55N27ZtM63z9ddfZ+DAgZQsWZKoqCgmT55MZGQkTzzxBP369aNWrVpERkYyZMgQbrnlFoYPH84f/vAHnHO0b9+eG2+88aQ6r7rqKp5++mnatm3LsWPHKFasGKNHj6Zy5co5HgMRERERERGRcGXprSzCUVxcnFu2bNkJZevWraNGjRpFFJGEm+eff569e/fy1FNPFXUoYUHXh0jo1l0Z2rVSY/26fF/3C106hDTfoGnz8n3dIiJSOIry74yISE7MbLlzLi5j+enfkkjOWDfffDObNm1i/vz5RR2KiIiIiIiIyGkvLJNEZtYR6FitWrWiDkXC2OzZs4s6BBEREREREZHfjbBMEjnn5gJz4+Li+hZ1LCIicmYbnRB6a8V+Y1oVYCQiIiIiIgUrLJ9uJiIiIiIiIiIihUtJIhERERERERERUZJIRERERERERETCdEyi3Kg9sXa+1re61+oc54mMjKR27docPXqUqKgoevbsycCBA4mIiKBevXqMHz+e2NhYUlNTKVOmDGPGjKF79+4ANGjQgK5du/L6668DsHbtWqpXr05kZCTt2rVj+PDhgfUsWLCAG2+8kUsvvZSDBw9SoUIFHn74YTp0CO3RyacqJSWFQYMGkZiYSJkyZTjnnHN49tlnadSoUZbLjBw5kn//+9/Ur1+fcePG0b59e37++Wcee+wxunTpkusYRowYwaOPPsqOHTuIiYnJy+YUuoMHD9K3b19WrVqFc44yZcrw3//+l1KlShXoeg+tWcPRHTtYd/Mt2c6nx6yKiIiIiIhIZk77JFFRiI6OJjk5GYCdO3fStWtX9u3bx7Bhw2jWrBlJSUnExsaycuVKrrjiCpKSkujevTsHDhxg06ZNPPjggwwaNAiAKlWq8Mknn1CuXLlM19W8eXPmzZsHQHJyMjfddBPR0dG0bt26wLavT58+VK1alY0bNxIREcG3337L2rVrs13m5ZdfJjExkUqVKvHFF18E4j1VU6ZMIT4+nrfeeos77rjjlOvJjnMO5xwREfnboO5f//oXFSpUYPVqL+G4YcMGihUrlqc6U1NTiYrS5SoiIiLye6MHJIhIOAnL7mZm1tHMxu7du7eoQ8lR+fLlGTt2LKNGjcI5R9OmTUlKSgIgKSmJhISEQLJkyZIlNGjQgMjIyFNaV2xsLH/9618ZNWoUALt27aJTp07Ex8cTHx/PwoULAThw4AB33nknDRs2pF69erz99tsATJgwgRtvvJGWLVty+eWXM2zYsJPWsWnTJhYvXszTTz8dSJ5UrVqV9u3bA/Diiy9Sq1YtatWqxYgRIwBISEhg8+bNXH/99Tz77LN0796dpUuXEhsby6ZNm3j00Ue56qqrqFOnDoMHD85xOzdt2kRKSgpPP/00U6ZMCZSnpKRwxx13ULt2berUqcOsWbMA+O9//0v9+vWpW7duIHk2dOhQnn/++cCytWrVYsuWLWzZsoXq1avTs2dPatWqxdatW7n33nuJi4ujZs2aDBkyJLDM0qVLadq0KXXr1qVhw4bs37+fFi1anJD8uvrqq1m5cuUJ8W/fvp2LLroo8L569eoUL14cgEmTJlGnTh3q1q1Ljx49ANiyZQutWrWiTp06tG7dmu+//x6A3r17k5CQQKNGjXj44YfZtGkT7dq1o0GDBjRv3pz169fnuC9FREREREREQhWWTROcc3OBuXFxcX2LOpZQXHrppaSlpbFz506aNWvGE088AXhJoiFDhjBlyhT2799PUlISTZs2zdO66tevz3PPPQfAAw88wMCBA7n66qv5/vvvue6661i3bh3PPPMMrVq1Yty4cfz66680bNiQa6+9FvASVWvWrKFkyZLEx8fTvn174uLiAvV/9dVXxMbGZprIWr58OePHj2fx4sU452jUqBHXXHMNY8aM4b///W+gRVSjRo14/vnnmTdvHrt372b27NmsX78eM+PXX3/NcRunTp3KbbfdRvPmzdmwYQM7duygQoUKPPXUU8TExARa6Pzyyy/s2rWLvn378umnn1K1alX27NmTY/0bN25k4sSJNG7cGIBnnnmG8847j7S0NFq3bs2qVau48sor6dKlC9OmTSM+Pp59+/YRHR3NXXfdxYQJExgxYgRff/01hw8fpm7duifUf+edd9K2bVtmzpxJ69at6dWrF5dffjlfffUVTz/9NElJSZQrVy4Q64ABA+jVqxe9evVi3Lhx3H///cyZMweAbdu2kZSURGRkJK1bt2bMmDFcfvnlLF68mPvuu4/580P/5UmKzrora4Q0n7oCioiIiIhIUQrLJNHprHLlyhw5coSffvqJ9evXU716deLj41m8eDFJSUkMGDAgT/U75wKvExMTT+gGtm/fPlJSUvjwww955513Ai1pDh8+HGid0qZNG8qWLQvALbfcwueff35Ckig7n3/+OTfffDNnn312YPnPPvuMevXqZblMTEwMJUqU4K677qJDhw4hjac0ZcoUZs+eTUREBJ06dWLGjBn079+fxMREpk6dGpjv3HPPZe7cubRo0YKqVasCcN555+VYf+XKlQMJIoDp06czduxYUlNT2b59O2vXrsXMqFixIvHx8QCULl0agM6dO/PUU0/x3HPPMW7cOHr37n1S/bGxsWzevJkPP/yQxMRE4uPjWbRoEfPnz6dz586BroXpsS5atIi33noLgB49evDwww8H6urcuTORkZGkpKSQlJRE586dA9N+++23HLdVRERERM48L3QJbQzTQdPmFXAkInK6UZIoH2zevJnIyEjKly8PQNOmTZkxYwYVK1bEzGjcuDELFy5kyZIlNGnSJE/rWrFiBTVqeK0Sjh07xhdffEGJEiVOmMc5x6xZs6hevfoJ5YsXL8bMTijL+L5mzZqsXLmStLS0U+4WFywqKoolS5bw8ccfM3PmTEaNGpVt65fVq1ezceNG2rRpA8CRI0eoWrUq/fv3z/V6jx07Fnh/+PDhwOv0JBfAt99+y/PPP8/SpUs599xz6d279wnzZlSyZEnatGnD22+/zfTp01m+fHmm85UqVYpbbrmFW265hYiICN577z3OOuusXG1DcKzHjh2jTJkyeRrnSURERERERCQ7YTkm0elk165dJCQk0L9//0DCpWnTpowYMSKQEGrSpAmTJk3iggsuyNOTulatWsVTTz1Fv379AGjbti0vvfRSYHp6AuG6667jpZdeCrQ6WrFiRWCejz76iD179nDo0CHmzJlDs2bNTljHZZddRlxcHEOGDAksv2XLFt59912aN2/OnDlzOHjwIAcOHGD27Nk0b94825hTUlLYu3cvf/zjH/nnP/950vg9GU2ZMoWhQ4cGxg/68ccf+fHHH/nuu+9o06YNo0ePDsz7yy+/0LhxYz799FO+/fZbgEAXripVqvDll18C8OWXXwamZ7Rv3z7OPvtsYmJi2LFjB++//z7gjSO0fft2li5dCsD+/ftJTU0FvIG977//fuLj4zn33HNPqnPhwoX88ssvgJfkWrt2LZUrV6ZVq1bMmDGD3bt3nxBr06ZNAy2kJk+enOk+LV26NFWrVmXGjBmAlwjMaV+KiIiIiIiI5MZp35IolEfW57dDhw4RGxvL0aNHiYqKokePHjz00EOB6c2aNWPgwIGBJFHFihVJS0s7pfGI0rtzHTx4kPLlyzNy5MjA4MwjR46kX79+1KlTh9TUVFq0aMGYMWN48sknefDBB6lTpw7Hjh2jatWqgSekNWzYkE6dOrFt2za6d++eaVez1157jUGDBlGtWjWio6MpV64czz33HPXr16d37940bNgQ8JIl2XU1Ay+5cuONN3L48GGcc7z44osAvPPOOyxbtoy//e1vJ8w/depU3nvvvRPKbr75ZqZOncoTTzxBv379qFWrFpGRkQwZMoRbbrmFsWPHcsstt3Ds2DHKly/PRx99RKdOnZg0aRI1a9akUaNGXHHFFZnGV7duXerVq8eVV17JxRdfHEianXXWWUybNo0BAwZw6NAhoqOjSUxMpFSpUjRo0IDSpUtn+dS1TZs2ce+99+Kc49ixY7Rv355OnTphZjz++ONcc801REZGUq9ePSZMmMBLL73EHXfcwXPPPcf555/P+PHjM6138uTJ3HvvvTz99NMcPXqU22677aTxkEREREREREROlQWPcRNu4uLi3LJly04oW7duXaC7leTOhAkTWLZsWeDpaHJqfvzxR1q2bMn69esDT4ALB4fWrGHjjh0U65d91zwNjlz4NHB1eAr1uMxvOTrnmXyhPppYY0WIiPz+6e+MiIQzM1vunDup1Uj4fMMVOQ1MmjSJRo0a8cwzz4RVgkhEREREREQkrwqtu5mZ1QAeAMoBHzvn/l1Y6xZP7969M30al4SuZ8+e9OzZs6jDEBEREREREcl3eWoKYWbjzGynma3JUN7OzDaY2Tdm9iiAc26dcy4B+BPQLLP6RERERERERESkaOS1v8wEoF1wgZlFAqOB64GrgNvN7Cp/2g3Au8CJIxOLiIiIiIiIiEiRylOSyDn3KbAnQ3FD4Bvn3Gbn3BFgKnCjP/87zrnrgW5Z1Wlmd5vZMjNbtmvXrryEJyIiIiIiIiIiISqIMYkuArYGvd8GNDKzlsAtQHGyaUnknBsLjAXv6WYFEJ+IiIiIiIiIiGRQaANXO+cWAAtCmdfMOgIdq1WrluO8oT5aMlShPIL6mWee4c033yQyMpKIiAheeeUVhg8fzrfffktKSgq7du2iatWqALz88sv85S9/Yfv27URHRwPQqVMnZs2aBcD3339PTEwMMTExlCtXjsTExBPWVapUKVJSUvJ1G0PRqFEjfvvtN/bs2cOhQ4e46KKLAG97XnzxRWbOnFnoMYmIiIiIiIhIwSmIJNEPwMVB7yv5ZSFzzs0F5sbFxfXNz8Dyw6JFi5g3bx5ffvklxYsX5+eff+bIkSPMnj0bgAULFvD8888zb968E5abPHkycXFxgfdPPvkk4D1xrEOHDtx6662FEn9qaipRUTkf9sWLFwMwYcIEli1bxqhRowLTmjZtWmDxiYiIiIiIiEjRKIgk0VLgcjOripccug3ompsKctOSqLBt376dcuXKUbx4cQDKlStX6DFs2rSJfv36sWvXLkqWLMmrr77KlVdeydy5c3n66ac5cuQIZcuWZfLkyVSoUIGhQ4eyadMmNm/ezCWXXEL16tX5/vvv2bx5M99//z0PPvgg999/f0jr3rJlCx06dGDNmjVMmDCBOXPmcODAATZu3MjgwYM5cuQIr7/+OsWLF+e9997jvPPOyzJeEREREREREQkfeRq42symAIuA6ma2zczucs6lAv2BD4B1wHTn3Fe5qdc5N9c5d3dMTExewisQbdu2ZevWrVxxxRXcd999/O9//wtpuW7duhEbG0tsbCy7d+/OUwx33303L730EsuXL+f555/nvvvuA+Dqq6/miy++YMWKFdx222384x//CCyzdu1aEhMTmTJlCgDr16/ngw8+YMmSJQwbNoyjR4+eUixr1qzhrbfeYunSpTz++OOULFmSFStW0KRJEyZNmpRtvCIiIiIiIiISPvLUksg5d3sW5e+Rh8fch3NLolKlSrF8+XI+++wzPvnkE7p06cLw4cPp3bt3tstl7G52qlJSUkhKSqJz586Bst9++w2Abdu20aVLF7Zv386RI0cC4yIB3HDDDYExkQDat29P8eLFKV68OOXLl2fHjh1UqlQp1/H84Q9/4JxzzuGcc84hJiaGjh07AlC7dm1WrVqVbbwiIiIiIiIiEj4KbeDq3AjnMYkAIiMjadmyJS1btqR27dpMnDgxxyRRfjl27BhlypQhOTn5pGkDBgzgoYce4oYbbmDBggUMHTo0MO3ss88+Yd707nLgbU9qauopxRNcT0REROB9REQEqamp2cYrIiIiIiIiIuEjT93NzkQbNmxg48aNgffJyclUrly50NZfunRpqlatyowZMwBwzrFy5UoA9u7dG3gK2cSJEwstpuxkF6+IiIiIiIiIhI+wbEmUm+5moTyyPj+lpKQwYMAAfv31V6KioqhWrRpjx44tsPUdPHjwhG5gDz30EJMnT+bee+/l6aef5ujRo9x2223UrVuXoUOH0rlzZ84991xatWrFt99+W2Bx5UZW8YqIiIiIiIhI+DDnXFHHkKW4uDi3bNmyE8rWrVtHjRo1iigikfB1aM0aNu7YQbF+/bOdr7ATqwLrrgztnqVjU7hCPS7zW44Ouc5+Y1qFNN8LXTqENN+gafNCXreIiIQX/Z0RkXBmZsudcycNnKzuZiIiIiIiIiIiEp5JIjPraGZj9+7dW9ShiIiIiIiIiIicEcIySeScm+ucuzsmJqaoQxEREREREREROSOEZZJIREREREREREQKl5JEIiIiIiIiIiISnkkijUkkIiIiIiIiIlK4ooo6gMw45+YCc+Pi4vrmNO/ohPn5uu5QHisZGRlJ7dq1OXr0KFFRUfTs2ZOBAwcSERFBvXr1GD9+PLGxsaSmplKmTBnGjBlD9+7dAWjQoAFdu3bl9ddfB2Dt2rVUr16dyMhI2rVrx/Dhw09Y15IlSxg8eDA7duygZMmSNGjQgJEjR1KyZMlMY/vtt99o3749P//8M4899hgXXnghCQkJFCtWjEWLFhEdHR3yvhg6dCilSpVi8ODBIS+TH8aPH8+//vUv4OT9c9ZZZ9GiRQuuvfbaQo1JRERERERE5PcuLJNE4S46Oprk5GQAdu7cSdeuXdm3bx/Dhg2jWbNmJCUlERsby8qVK7niiitISkqie/fuHDhwgE2bNvHggw8yaNAgAKpUqcInn3xCuXLlTlrPjh076Ny5M1OnTqVJkyYAzJw5k/3792eZJFqxYgVAIL6EhAQee+yxQJKqqKWlpREZGZntPHfccQd33HEHkP3+EREREREREZH8oyRRHpUvX56xY8cSHx/P0KFDadq0Ke+99x733XcfSUlJJCQkMGHCBMBrFdSgQYMckyTpRo8eTa9evQIJIoBbb70VgD179nDnnXeyefNmSpYsydixY7ngggvo3r07u3btIjY2lnvvvZfp06fzwQcf8P777/P888/TpUsX9u3bR2pqKv/+979p3rx5rrf5ueeeY/r06fz222/cfPPNDBs2DICbbrqJrVu3cvjwYR544AHuvvtuAEqVKsU999xDYmIio0ePpl27djzwwAPMmzeP6Oho3n77bSpUqBDSunv37k2HDh249dZbqVKlCrfffjvvv/8+UVFRjB07lscee4xvvvmGP//5zyQkJGQbr+SfF7p0CGm+QdPmFXAkEizU4wI6NiIiIiIioiRRvrj00ktJS0tj586dNGvWjCeeeAKApKQkhgwZwpQpU9i/fz9JSUk0bdo05HrXrFlDr169Mp02ZMgQ6tWrx5w5c5g/fz49e/YkOTmZ1157jeeff55587wvfIsWLQokVV544QWuu+46Hn/8cdLS0jh48GCut/XDDz9k48aNLFmyBOccN9xwA59++iktWrRg3LhxnHfeeRw6dIj4+Hg6depE2bJlOXDgAI0aNeKFF14A4MCBAzRu3JhnnnmGhx9+mFdffTWwz3LrkksuITk5mYEDB9K7d28WLlzI4cOHqVWrFgkJCdnGKxJuQu0+G0q3WBERERGR08m6K2uENF+N9esKOJIzW1gmicysI9CxWrVqRR1KrlWuXJkjR47w008/sX79eqpXr058fDyLFy8mKSmJAQMG5Mt6Pv/8c2bNmgVAq1at2L17N/v27ct2mfj4eO68806OHj3KTTfdRGxsbK7X++GHH/Lhhx9Sr149AFJSUti4cSMtWrRg5MiRzJ49G4CtW7eyceNGypYtS2RkJJ06dQrUcdZZZ9Ghg9fCoUGDBnz00Ue5jiPdDTfcAEDt2rVJSUnhnHPO4ZxzzqF48eL8+uuv2cYrIiIiIiIiIseFZZIoNwNXh4PNmzcTGRlJ+fLlAWjatCkzZsygYsWKmBmNGzdm4cKFLFmy5ISuYzmpWbMmy5cv58Ybb8yXOFu0aMGnn37Ku+++S+/evXnooYfo2bNnrupwzvHYY49xzz33nFC+YMECEhMTWbRoESVLlqRly5YcPnwYgBIlSpzQxa5YsWKYGeANAp6amnrK21S8eHEAIiIiAq/T36empmYZ75ksN4O9q8WKiBQF/ZIoIiIiUjQiijqA092uXbtISEigf//+gcRH06ZNGTFiRCAh1KRJEyZNmsQFF1xATExMyHX379+fiRMnsnjx4kDZW2+9xY4dO2jevDmTJ08GvARNuXLlKF26dLb1fffdd1SoUIG+ffvSp08fvvzyy9xuLtdddx3jxo0jJSUFgB9++IGdO3eyd+9ezj33XEqWLMn69ev54osvcl13QcgqXhERERERERE5UVi2JMqNomjpcOjQIWJjYzl69ChRUVH06NGDhx56KDC9WbNmDBw4MJAkqlixImlpabkajwigQoUKTJ06lcGDB7Nz504iIiJo0aIF7dq1Y+jQodx5553UqVOHkiVLMnHixBzrW7BgAc899xzFihWjVKlSTJo0CYA+ffqQkJBAXFzcScs8/fTTjBgxIvB+27ZtrFu3LrBtpUqV4o033qBdu3aMGTOGGjVqUL16dRo3bpyrbS0obdu2zTTe9FZfIiIiIiIiIuIx51xRx5CluLg4t2zZshPK1q1bR40aoTVDFzmTHFqzho07dlCsX/9s55vfcnTIdYaahNXTzbIXateZUI9Nfh8XODOPTX4fF9A1k1/U3UxEfg/0d0Ykd/T3v3CZ2XLn3EktRdTdTEREREREREREwjNJZGYdzWzs3r17izoUEREREREREZEzQlgmiZxzc51zd+dmkGcRERERERERETl1YZkkEhERERERERGRwqUkkYiIiIiIiIiIKEkkIiIiIiIiIiIQVdQB5FVuHvEcilAeAxkZGUnt2rU5evQoUVFR9OzZk4EDBxIREUG9evUYP348sbGxpKamUqZMGcaMGUP37t0BaNCgAV27duX1118HYO3atVSvXp3IyEjatWvH8OHDA+tZsGABN954I5deeikHDx6kQoUKPPzww3TokL/bnFFKSgqDBg0iMTGRMmXKcM455/Dss8/SqFGjLJcZOXIk//73v6lfvz7jxo2jffv2/Pzzzzz22GN06dIl5HVv2bKFDh06sGbNmvzYlJDt3r2b1q1bA/DTTz8RGRnJ+eefD8DYsWN54403GDlyZKHGJCIiIiIiIlKYTvskUVGIjo4mOTkZgJ07d9K1a1f27dvHsGHDaNasGUlJScTGxrJy5UquuOIKkpKS6N69OwcOHGDTpk08+OCDDBo0CIAqVarwySefUK5cuUzX1bx5c+bN8xJXycnJ3HTTTURHRwcSGgWhT58+VK1alY0bNxIREcG3337L2rVrs13m5ZdfJjExkUqVKvHFF18E4g0HqampREVlf6qXLVs2EO/QoUMpVaoUgwcPDkxv2LBhQYYoIiIiIiIiUuTU3SyPypcvz9ixYxk1ahTOOZo2bUpSUhIASUlJJCQkBJIPS5YsoUGDBkRGRp7SumJjY/nrX//KqFGjANi1axedOnUiPj6e+Ph4Fi5cCMCBAwe48847adiwIfXq1ePtt98GYMKECdx44420bNmSyy+/nGHDhp20jk2bNrF48WKefvppIiK806Nq1aq0b98egBdffJFatWpRq1YtRowYAUBCQgKbN2/m+uuv59lnn6V79+4sXbqU2NhYNm3axKOPPspVV11FnTp1Tki85Mby5cu55ppraNCgAddddx3bt28H4NVXXyU+Pp66devSqVMnDh48CEDv3r1JSEigUaNGPPzww/Tu3Zv777+fpk2bcumllzJz5syQ171gwYJA662hQ4fSq1cvmjdvTuXKlXnrrbd4+OGHqV27Nu3atePo0aPZxisiIiIiIiISrpQkygeXXnopaWlp7Ny5M9CSCLwkUYsWLShevDj79+8nKSmJpk2b5mld9evXZ/369QA88MADDBw4kKVLlzJr1iz69OkDwDPPPEOrVq1YsmQJn3zyCX/+8585cOAA4CWqZs2axapVq5gxYwbLli07of6vvvqK2NjYTBNZy5cvZ/z48SxevJgvvviCV199lRUrVjBmzBguvPBCPvnkEx555BFee+01mjdvTnJyMmXKlGH27Nl89dVXrFq1iieeeCLX23z06FEGDBjAzJkzWb58OXfeeSePP/44ALfccgtLly5l5cqV1KhRg//85z+B5bZt20ZSUhIvvvgiANu3b+fzzz9n3rx5PProo7mOI92mTZuYP38+77zzDt27d+cPf/gDq1evJjo6mnfffTfbeEVERERERETCVaF1NzOzm4D2QGngP865Dwtr3YWpcuXKHDlyhJ9++on169dTvXp14uPjWbx4MUlJSQwYMCBP9TvnAq8TExNP6Aa2b98+UlJS+PDDD3nnnXd4/vnnATh8+DDff/89AG3atKFs2bKAl2D5/PPPiYuLC2ndn3/+OTfffDNnn312YPnPPvuMevXqZblMTEwMJUqU4K677qJDhw6nNJ7Shg0bWLNmDW3atAEgLS2NihUrArBmzRqeeOIJfv31V1JSUrjuuusCy3Xu3PmEZNdNN91EREQEV111FTt27Mh1HOmuv/56ihUrRu3atUlLS6Ndu3YA1K5dmy1btmQbr4iIiIiIiEi4ylOSyMzGAR2Anc65WkHl7YB/AZHAa8654c65OcAcMzsXeB743SSJNm/eTGRkJOXLlwegadOmzJgxg4oVK2JmNG7cmIULF7JkyRKaNGmSp3WtWLGCGjVqAHDs2DG++OILSpQoccI8zjlmzZpF9erVTyhfvHgxZnZCWcb3NWvWZOXKlaSlpZ1yt7hgUVFRLFmyhI8//piZM2cyatQo5s+fn6s6nHPUrFmTRYsWnTStd+/ezJkzh7p16zJhwgQWLFgQmJaezEpXvHjxE+o8Ven1REREUKxYscA+jIiIIDU1Ndt4RURERERERMJVXlsSTQBGAZPSC8wsEhgNtAG2AUvN7B3nXHqTlyf86b8Lu3btIiEhgf79+weSBU2bNmXEiBH07t0bgCZNmvDnP/+ZCy64gJiYmFNe16pVq3jqqad47bXXAGjbti0vvfQSf/7znwFvoOjY2Fiuu+46XnrpJV566SXMjBUrVgRa+3z00Ufs2bOH6Oho5syZw7hx405Yx2WXXUZcXBxDhgzhqaeewszYsmULX331Fc2bN6d37948+uijOOeYPXt24CltWUlJSeHgwYP88Y9/pFmzZlx66aW53u7q1auza9cuFi1aRJMmTTh69Chff/01NWvWZP/+/VSsWJGjR48yefJkLrroolzXn9+yi1dERERERERO3eiE0Bod9BvTKuQ6Q31qeihPQz/d5SlJ5Jz71MyqZChuCHzjnNsMYGZTgRvNbB0wHHjfOfdlVnWa2d3A3QCXXHJJjjEUxUE6dOgQsbGxHD16lKioKHr06MFDDz0UmN6sWTMGDhwYaDVUsWJF0tLSTmk8ovTuXAcPHqR8+fKMHDky8GSzkSNH0q9fP+rUqUNqaiotWrRgzJgxPPnkkzz44IPUqVOHY8eOUbVq1cAT0ho2bEinTp3Ytm0b3bt3z7Sr2WuvvcagQYOoVq0a0dHRlCtXjueee4769evTu3fvwJO++vTpk21XM4D9+/dz4403cvjwYZxzgfGB3nnnHZYtW8bf/va3k5bZsGEDlSpVCrz/5z//ycyZM7n//vvZu3cvqampPPjgg9SsWZOnnnqKRo0acf7559OoUSP279+f632c384666ws4xUREREREREJVwUxJtFFwNag99uARsAA4FogxsyqOefGZLawc24sMBYgLi7u1PsEFaC0tLRsp8fHx5/UnWnLli2ZzptVOUDLli3Zu3dvltPLlSvHtGnTTiqPjo7mlVdeyXSZSpUqMWfOnCzrBChdujSvvvpqptMeeuihExJi6YK3o2XLlrRs2RLwEmRLliw5af4bbriBG2644aTyKlWqBJ4QltGnn356Utm9997Lvffee1L5hAkTsn2fkpKS6TrAe4JZsODtyTgtuJ7gabGxsZnGKyIiIiIiIhKuCm3gaufcSGBkKPOaWUegY7Vq1Qo2KBERERERERERASCiAOr8Abg46H0lvyxkzrm5zrm78zJ+j5ysd+/ejBo1qqjDEBEREREREZEwVBAtiZYCl5tZVbzk0G1A19xUkFNLIufcSU/lEjnTOefg2LGiDkNEpNAUxMCVIiIiImeyPLUkMrMpwCKgupltM7O7nHOpQH/gA2AdMN0591Vu6s2uJVGJEiXYvXt3nh5hLvJ745zj16NHsa1bc55ZREREREREJBN5fbrZ7VmUvwe8d6r1ZteSqFKlSmzbto1du3adavUiv0upyclEjsl8wHIRERERERGRnBTawNW54ZybC8yNi4vrm3FasWLFqFq1ahFEJRLe1t18S1GHICJyWnuhS4eQ5x00bV4BRiIiIiJSNApi4GoRERERERERETnNhGWSyMw6mtnYvXv3FnUoIiIiIiIiIiJnhLBMEmU3cLWIiIiIiIiIiOS/sEwSiYiIiIiIiIhI4QrLJJG6m4mIiIiIiIiIFK6wTBKpu5mIiIiIiIiISOEKyySRiIiIiIiIiIgUrrBMEqm7mYiIiIiIiIhI4QrLJJG6m4mIiIiIiIiIFK6wTBKJiIiIiIiIiEjhUpJIRERERERERESUJBIREREREREREYgq6gAyY2YdgY7VqlUr6lBERERERMLauitrhDRfjfXrCjgSERE53YVlSyINXC0iIiIiIiIiUrjCMkkkIiIiIiIiIiKFS0kiERERERERERFRkkhERERERERERJQkEhERERERERERlCQSERERERERERHCNElkZh3NbOzevXuLOhQRERERERERkTNCWCaJnHNznXN3x8TEFHUoIiIiIiIiIiJnhKiiDkBERERERAre6IT5Ic3Xb0yrAo5ERETClZJEIiIiIiKSay906RDyvIOmzSvASEREJL+EZXczEREREREREREpXEoSiYiIiIiIiIiIkkQiIiIiIiIiIqIkkYiIiIiIiIiIUIhJIjO71Mz+Y2YzC2udIiIiIiIiIiISmjwlicxsnJntNLM1GcrbmdkGM/vGzB4FcM5tds7dlZf1iYiIiIiIiIhIwchrS6IJQLvgAjOLBEYD1wNXAbeb2VV5XI+IiIiIiIiIiBSgPCWJnHOfAnsyFDcEvvFbDh0BpgI35mU9IiIiIiIiIiJSsApiTKKLgK1B77cBF5lZWTMbA9Qzs8eyWtjM7jazZWa2bNeuXQUQnoiIiIiIiIiIZBRVWCtyzu0GEkKYb6yZbQc6nnXWWQ0KPjIRERERERERESmIlkQ/ABcHva/kl4XMOTfXOXd3TExMvgYmIiIiIiIiIiKZK4gk0VLgcjOramZnAbcB7+SmAjPraGZj9+7dWwDhiYiIiIiIiIhIRnlKEpnZFGARUN3MtpnZXc65VKA/8AGwDpjunPsqN/WqJZGIiIiIiIiISOHK05hEzrnbsyh/D3gvL3WLiIiIiIiI5Kd1V9YIed4a69cVYCQi4anQBq7ODTPrCHSsVq1aUYciIiIiIiIiZ6DRCfNDmq/fmFYFHIlI4QnLJJFzbi4wNy4urm9RxyInCzX7rsy7iIiIiIiI54UuHUKab9C0eQUciUjWCmLg6jzTwNUiIiIiIiIiIoUrLJNEGrhaRERERERERKRwhWWSSERERERERERECldYJonU3UxEREREREREpHCFZZJI3c1ERERERERERApXWCaJRERERERERESkcClJJCIiIiIiIiIi4Zkk0phEIiIiIiIiIiKFKyyTRBqTSERERERERESkcIVlkkhERERERERERAqXkkQiIiIiIiIiIqIkkYiIiIiIiIiIhGmSSANXi4iIiIiIiIgUrrBMEmngahERERERERGRwhWWSSIRERERERERESlcShKJiIiIiIiIiIiSRCIiIiIiIiIioiSRiIiIiIiIiIigJJGIiIiIiIiIiBCmSSIz62hmY/fu3VvUoYiIiIiIiIiInBHCMknknJvrnLs7JiamqEMRERERERERETkjhGWSSERERERERERECpeSRCIiIiIiIiIioiSRiIiIiIiIiIgoSSQiIiIiIiIiIihJJCIiIiIiIiIiKEkkIiIiIiIiIiJAVGGtyMzOBl4GjgALnHOTC2vdIiIiIiIiIiKSvTy1JDKzcWa208zWZChvZ2YbzOwbM3vUL74FmOmc6wvckJf1ioiIiIiIiIhI/sprS6IJwChgUnqBmUUCo4E2wDZgqZm9A1QCVvuzpeVxvSIiIiJSiNZdWSOk+WqsX1fAkYiIiEhByVNLIufcp8CeDMUNgW+cc5udc0eAqcCNeAmjSjmt18zuNrNlZrZs165deQlPRERERERERERCVBADV18EbA16v80vewvoZGb/BuZmtbBzbqxzLs45F3f++ecXQHgiIiIiIiIiIpJRoQ1c7Zw7ANwRyrxm1hHoWK1atYINSkREREREREREgIJpSfQDcHHQ+0p+Wcicc3Odc3fHxMTka2AiIiIiIiIiIpK5gmhJtBS43Myq4iWHbgO65qYCtSQSEREROT2NTpgf8rz9xrQKab4XunQIab5B0+aFvG4RERE5WZ5aEpnZFGARUN3MtpnZXc65VKA/8AGwDpjunPsqN/WqJZGIiIiIiIiISOHKU0si59ztWZS/B7x3qvWqJZGIiIiIiIiISOEqiDGJ8kwtiURERERERERECldYJolERERERERERKRwhWWSyMw6mtnYvXv3FnUoIiIiIiIiIiJnhLBMEqm7mYiIiIiIiIhI4QrLJJGIiIiIiIiIiBSusEwSqbuZiIiIiIiIiEjhCsskkbqbiYiIiIiIiIgUrrBMEomIiIiIiIiISOFSkkhERERERERERMIzSaQxiURERERERERECldYJok0JpGIiIiIiIiISOEKyySRiIiIiIiIiIgUrqiiDkBERERERER+J4aG2BtkqIYWEQlHakkkIiIiIiIiIiLhmSTSwNUiIiIiIiIiIoUrLLubOefmAnPj4uL6FnUscupGJ8wPab5+Y1oVcCQiIiIiIiIikpOwTBKJZOaFLh1CnnfQtHkFGImIiIiIiBSG2hNrhzTf6l6rCzgSkTODkkQiIiIiInLGUzIia1UefTfkebeUKMBARKTAheWYRCIiIiIiIiIiUrjUkkhERERERE4vesy6iEiBCMuWRHq6mYiIiIiIiIhI4QrLlkR6upmIiIiIFJRcja8yvH0BRiIZhXpsNO6NiEjBCMuWRCIiIiIiIiIiUriUJBIRERERERERkfDsbiYiIiIFRIO9ioiIiEgWlCQSERGRU1Z7Yu2Q5lvda3UBR3KaU/JOREREwoCSRCIiIqe5XA3Cq8FezxhK4ImISIB+jJAQKUlUCPQEjfAV8hM0dFxERERERCTMFNUTAUP9IQL0Y8TpRkkikVAo8y4iIiIiIiK/c4WWJDKzS4HHgRjn3K2FtV4ROf2o9V34Cv3Xqq6hVZiLxKq6zsjpqKh+4RURERE5FRGhzGRm48xsp5mtyVDezsw2mNk3ZvZodnU45zY75+7KS7AiIiIiIiIiIlIwQm1JNAEYBUxKLzCzSGA00AbYBiw1s3eASOD/Mix/p3NuZ56jlVzTL+8iIiIiIiIiEoqQkkTOuU/NrEqG4obAN865zQBmNhW40Tn3f0CHUw3IzO4G7ga45JJLTrWa05fGvjljKIGXT/L5mtFxERGRE+jvjIiInEFC6m6WhYuArUHvt/llmTKzsmY2BqhnZo9lNZ9zbqxzLs45F3f++efnITwREREREREREQlVoQ1c7ZzbDSSEMq+ZdQQ6VqtWrWCDEhERERERERERIG8tiX4ALg56X8kvyzPn3Fzn3N0xMSE27xURERERERERkTzJS5JoKXC5mVU1s7OA24B38iMoM+toZmP37tW4OyIiIiIiIiIihSGkJJGZTQEWAdXNbJuZ3eWcSwX6Ax8A64Dpzrmv8iMotSQSERERERERESlcoT7d7PYsyt8D3svXiNCYRCIiIiIiIiIihS0v3c0KjFoSiYiIiIiIiIgUrrBMEomIiIiIiIiISOEKyySRBq4WERERERERESlc5pwr6hiyZGa7gO+KOg4JSTng56IOQk6i4xK+dGzCk45L+NKxCU86LuFLxyY86biELx2b8KTjUnAqO+fOz1gY1kkiOX2Y2TLnXFxRxyEn0nEJXzo24UnHJXzp2IQnHZfwpWMTnnRcwpeOTXjScSl8YdndTERERERERERECpeSRCIiIiIiIiIioiSR5JuxRR2AZErHJXzp2IQnHZfwpWMTnnRcwpeOTXjScQlfOjbhScelkGlMIhERERERERERUUsiERERERERERFRkkhERERERERERFCSKOyYmTOzF4LeDzazoUUQRxkzuy+b6bmO08xuMLNHc5inpZnNy2LaFjMrl0PoYc/MUjIpSzCznoUcRwczW2FmK81srZndY2bXmNmiDPNFmdkOM7vQzCaY2UEzOydo+gj/fDjtj01WzCzNzJLNbI2ZzTWzMn55FTM75E9baWZJZlbdn9bSzPb605LNLDGTeiuY2bygY/CeX745vZ6geUeY2SN+vc7M+gRNi/XLBhfojsgDf1vf9LdtuZktMrObC2G9cWY2Mp/qWmBmG/zjtTDjMfo9C7oGvvK3f5CZndJnCDP7m5ldm830PN8Pzax20LW3x8y+zeo6PN1kdT/Kh3p7m9mo/KgrQ73p10368bg1v9fhr6eKmXUtiLrzW1F91vOPxUmPkfbLlwW9jzOzBTnUddrs77wws5v843VlFtMz3aeZzJN+Dawzs7vzOcbeZnZhftZZ1E7lGrEQvmeEuO7eZrYr6G/eTDMrmdd65WRmVsnM3jazjf7nw1FmVjzoM/QK/9r51Mw6ZFg2yj9Ow4sq/t8zJYnCz2/ALZbPX7jNLCqXi5QBskwScQpxOufecc4VyYV8CttfqJxzY5xzkwqqfvNEBL0vhjcIXEfnXF2gHrAA+AyoZGaVgxa/FvjKOfej//4b4Ea/ngigFfBDQcUeJg4552Kdc7WAPUC/oGmb/Gl1gYnAX4KmfeZPi3XOZfal+G/AR865us65q4D0DzdTgdvSZ/L3861+OcAa4E9B9dwOrMzD9hUoMzNgDvCpc+5S51wDvO2rVNDrds4tc87dn49Vdgs61s9lnGhmkfm4rnCSfg3UBNoA1wNDTqUi59xfnXNZJmvy437onFudfu0B7wB/zngdhvvfhWxkdz8KV92C7oUzQ1ngFI5PFeB0SVoU1Ge9E/7W51J5M7s+F/NX4fTZ33lxO/C5/39edPPvR82AZ83srLwGFqQ38LtKElH03zOmBf3NOwJ0yad6xed/NnwLmOOcuxy4HIgG/uHP8plzrp5zrjpwPzDKzFoHVdEG+Bro7Ncl+UhJovCTivflfWDGCWZ2vpnNMrOl/r9mfnlD836VX2EntmTobWbvmNl84GMzO9vMxpnZEn/e9C/6Nf2yZDNbZWaXA8OBy/yyk74InWKcgV8pzewyM/vCzFab2dN2YuuaUn7Wfr2ZTc5w4T/sL7PEzKr5dVUxs/l+7B+b2SV++QQzG2Nmi4F/mNdKJv2XzBUW1BqmqJnZUPNbgfi/OD3rb+PXZtbcL480s+f8fbrKzO7xy0v52/2lv2/Sj2sVP/s+CS+pcHHQKs8BooDdAM6535xzG5xzx4DpBCUo/NdTgt5P5fgfy5bAQrzz4UyxCLgoi2mlgV9yUVdFYFv6G+fcKv/lFE78QNIC+M45953//jughHmtcwxoB7yfi/UWtlbAEefcmPQC59x3zrmXIHCufuafw1+aWVO//ISWheb9wtTbfz3cvNZXq8zseb+ss3mtK1aa2acZ68jhXvmWmf3XvF+z0j+gZOdTIP0elGJmL5jZSqCJmT3kx7HGzB4Mir+nH+9KM3vdL8vqfnnS/crMKpr3a1p6K5Lmp3Y48sY5txO4G+hvnkzvTf52POLfl1aa/2uff2++1X+d2XEMvh/G+n8rVpnZbDM71y/P9D6ZE3+5Eea1mnjAzBqY2f/Ma932gZlV9Oe7zD8flvvnZqatCMJA4H50Kue3md3h778leF9e08uz+7v6b/+YbPavr3HmtY6YEGrQZnaemc3x6//CzOr45UPN7HUzWwi8npvrA+9zS3O/7KTPJmHmVD5DBa4L//0a/zid9LfeP0bLzGsFMSzEmJ4DHs8knqyu79Npf58SMysFXA3chf+5yMyizWyqf87PxvtSmz5/KPu9FHAASPOXud2/R64xs2eD6jqp3D8WE/yy1WY20L+XxgGT/WMRndlKT0PZXSMdzWyxf+0nmlkFv7y3eZ8TYszsO/MTpuZ9/9lqZsVye283L1l9Nv5nu8zWbWYR/r31fH+eCDP7xr+Wc3MPO9O0Ag4758YDOOfS8I53T7zrJMA5l4z3w2r/oOLbgX8B3wNNCiHeM4tzTv/C6B+QgvdFcwsQAwwGhvrT3gSu9l9fAqzzX5cGovzX1wKz/Ne98b6Anue//zvQ3X9dBi/7ejbwEt4vHABn4f3BqwKsyec4ewOj/NfzgNv91wlAiv+6JbAXr4VBBN4H4PS6tgCP+697AvP813OBXv7rO/Ey0gAT/PVEBs3XzH9dKn2fFcUxzqRsKDDYf70AeMF//Ucg0X99N/CE/7o4sAyoipfsKe2Xl8Nr6WP+MTwGNM4ijteAnXgJiW5AhF8eB6wIWs/OoHNoAl6Lli+Ac4FXgWv8Y1OuqK+fgj5mQCQwA2jnv68CHAKSgU3AduCSDOdysv/v8UzqvQ74FfgE78P5hUHT1gB1/ddjgP5B9c7D+1WlP94Xu/HB51C4/fNj/Wc200sCJfzXlwPLgrc1aL5RePeRssAGjj+hs4z//2rgogxlgTrI/l65Ge9eVgIvCXdxJnEuAOL813/G+6URwAF/8l838OM4G+8+8xVeS72aePfccv586ddUVvfLk+5XwCCO3wMjgXMK+xrIUPYrUIGs703XA0lAyQzbPAHvPpLVcQycy8Aq4Br/9d+AEUHH4qT7ZBaxTwBuDVruZf91MT++8/33XYBx/uuPgcv9142A+UV9HWU8Fpx8P8rV+Y2XpP4eOB/vb/9Cjv+Nzu7v6lS8vzE3AvuA2nh/r5cDsVlcNxs4fi8si/e5Y4g/vRWQHHTslwPRp3B9tCTofhHO/zi1z1BDCbrH4/2NqEImf+s5fq1F+vu/TtCxiMviGMUB84E/+K8X+NOyur5Pm/2dh+PUDfiP/zoJ7/7+EMfvE3Xwkhnpfxey2+8b8O5nh4B7/PILOX4NRvn7/6ZsyhvgtT5Oj69Mdsf1dP6XwzVyLsf/bvTh+N+C3hy/h70N/MF/3QV4zX+d473dr2cX3v1qB14r+8gc1j0EeNB/3Zbj99+Q72FFvc+L4Bhn+tkQWAE8mPH+AsQG7b8SwI9431nvBl4q6u35vf07XZta/6455/b5vwjdj/fHJN21wFV2vGFNaf9XjhhgonktgBzeB990Hznn9viv2wI3BP0SVQLvhrUIeNzMKgFvOec2Wgit9k4hzmBN8P7ggXcDfT5o2hLn3DYAM0vG+wD0uT9tStD//wyq6xb/9escb6YIMMN5mWnwPgC/aGaT/e3cRvh6y/9/Od72g3f86tjx8Rxi8L5QbwP+bmYt8D4oXoT3xQ281idfZLYC51wfM6uNd7wG4zXb7O2cW2Ze66TqQA1gcdA5FBzfbXh/YO/h9y/aPxcvAtYBHwVN2+S8JuSYWRe8X77a+dM+c86d0Ic6mHPuAzO71J//emCFmdVyzu3CO8dvM7Ov8K6VIRkWnw5MA670522alw0sTGY2Gu/X2SPOuXi8e9YoM4vF+3X1ihyq2AscBv5jXiuh9NZGC4EJZjad49dQsOzulR875/b68a0FKgNbM6ljspkdwvvgOsAvSwNm+a+vBmY75w74db0FNPfXN8M59zNA0DWV1f3ypPuVmS0FxpnXXXSO835ZCwdZ3ZuuBcY75w7CCducLqvjCICZxeB9CfqfXzQRLymSLrP7ZCim+f9XB2oBH/n7PxLY7u//psCMoONSPBf1F7Ss7ke5Pb/L4SUCdvnl0zh+7WX3d3Wuc86Z2Wpgh3Nutb/8V3jHITmTmLs554LHvLka6ATgnJtvZmXNrLQ/+R3nXPpnitxcH9nssvCTx89QGWX8W/8n88a9icJLBl6Fl6DIydPAE8AjQWVZXd9HQqjvdJfeUgG85OjteC1IR4LX+tfMgvdrdvu9m//56nwgycz+i/elN/ganIzXcthlUf4UcKmZvQS8C3xYIFsdJrK5RioB08xr+XkW8G0mi0/DSw59gvd59eVc3tunOef6mzfjaLwfhoZns+5xeImpEXiJ9fF+ecj3sJz3yBkv+CbfAfjEOXfIzGYBT5rZg0Hf+SSP1N0sfI3Aa956dlBZBN4vRbH+v4uccyl4fzQ+cd74BB3xkj/pDgS9NqBT0PKXOOfWOefeBG7AuwG/Z2atCijOUP0W9DoNTkhmuixeZyWw/c7rp9wHL+u8MKcmpkUsfR8Eb78BA4L2a1Xn3Id4v3SdDzTwkxU7OH4OBB//kzhv3I5/4iWIOgVNmoL3RzVjV7N00/DOu4+c10Xt9+6Qv28r4x2HrMYAeQfvg1zInHN7nHNvOud6AEuDlp+KN+7QtcAq59yODMv9BBzFO3Yf52adReAroH76G+dcP6A13nkLXvPiHUBdvF+w08dqSOXEv1Ml/OVTgYbATLwPCv/1yxPwvuBcDCw3s7IZ4sjuXpndfSdY+tgqNznn0pNIh/PwwSTT+2Vm9yvn3Kd458cPeMmwQh3sPpif3EzDa2mY1b0pW1kdx1zI7D4ZivT7ouGNt5Yed23nXFu8Y/JrUHmsc65GLmMrSFndj/Lj/A5Fel3HMtR7LI/1pgv+uxXy9ZEP6y0KIwj9M1Sm90NfYJ+ZWVW8H35aO+fq4CUTgufNknNuPt4+bRxUfErX9+nOzM7Da+X2mpltwUsS/IkTv6gGzx/SfvcTP1/i/ciWK865X/D+Ti7Aa4X/Wm7rOA2N4ORr5CW8FkO18X6ozOz8fgdo5x/HBnitsXJ9b3fOObxWP+mfzTJdt/95YIf/Haohx4cA+L3fw/JiLd6xCfB/LLgAr+VdRvXwfhgBL2F7rX9tLsdroZqb76+SAyWJwpT/i+t0vBtjug85/ss1/q/u4P2qkz5wcO9sqv0AGOBnxTGzev7/lwKbnXMj8bLgdYD9eOPW5Gecwb7geFLitkymZ6VL0P/pT+FKCqqjG16z0JOY2WV+UuRZvC/jp9sN+QPgXr8VAWZ2hZmdjXf8dzrnjprZH/C+OGTLbynUMqgoFq8LQropQHe8G+7bGZd33tg4jwMvn9KWnKb8FhH3A4Ms80FVr8brdhYSM2tl/hMz/P7ol+E1Mcc5twn4Ge+Xq8wSdQB/BR45DX45mY83htK9QWXBTwqJAbb7CcceeC06wDsnrzLvSRdl8BJL6eNExDjn3sNLMNX1yy9zzi12zv0Vr6l48Dhc6esJ5V6ZF58BN5lZSf/6vNkvm483uGJZP9bz/PkzvV9mdr8yb0D5Hc65V/G+HAQSb4XJ/yV8DN4HZUfW96aPgDuCzvHzMtST6XFM57yWL7/Y8fGGegD/I/9sAM43syZ+PMXMrKZzbh/wrZl19svNzOpmV1FRyOR+lNvzezFwjd+KpxjQOWhaSH9X8+Azv178v0U/+/s9o5CvD0L83BJOcvkZagv+NW9m9fG6fGWmNF7SaK95Y7XkZjBq8FoTPRz0Pqvr+7Tb37l0K/C6c66yc66Kc+5ivFYjy/EH7DazWnifmSHE/e7fD+vhfVZYgncNljPvoQe3493jMi03bxDnCOfcLLwfRNL/Bvxuj0UW10jwva5XFsul4N0b/oXXbSktD/f24M922a37NeANTuzFkJt72JnmY6Bk+g9e/rn+At7QAsEtxzBv3LongdF+Iqk53vAOVZxzVfB+LMnr4PISREmi8PYCXnPwdPcDceYNHLgW71cE8JqB/5+ZrSD7X/Gewmt+vsq8ZuFP+eV/AtaY13y9FjDJObcbL7O9xjIfuPpU4gz2IPCQ30y3Gl63g1Cc6y/zAMcHsxuA90VkFd6XiAeyWPZBf3tW4bXAKKqBfkua2bagfw+FuNxreFn3L81sDfAK3vGejLe/V+ON1bQ+hLoMbxDwDf5xH0bQlwrn3Dq8Dzvznd9tJiPn3Ct+IuOM4pxbgdd8PP2PUfoA7yvxxv3qk+XCJ2sALPPPyUV4feaXBk2fgvfBIbOuUzjnkpxzc3K5CYXOTyTchPeh91vzBsmdyPEuDS8Dvfx9eCX+r+L+L3PT8cbemI7XTx28D8Pz/P32Od4YEQDPmT/QJ96X3IxPfAv1XnnKnHNf4o3bsgTvS/hrzrkVzrmvgGfwPuivBF70F8nqfpnZ/aolsNKPvwvHu0EUhmj/PP8KSMT74Js+MGum9ybn3H/xfs1d5t9nBmeoM6vjGKwX3nFdhZfM/lt+bZBz7gjeF8Fn/WOSzPFum92Au/zyr/Cf6BhuMtyPcnV+O+e2441zswiv68O6oMmh/l09VUOBBn79w8niix65uz5WAWnmDZJ+Og2kHOpnqFnAef412B9vjLOTOOdW4t0r1+N151+Ym2D8pO2uoKKsPnucrvs7VLcDszOUzcJLzpUys3V496PlENJ+n+zfB5cDE5xzy/1r8FG8LlErgeXOubezKsfrYrrAr+cN4DG/7gnAGPt9DVwdLOM1MhSvy9hyvB/TsjIN7wfPaUFlod7bu/j7cxVeUi/9O1N2634Hb3yh8UFlubmHnVH8z4Y3A7ea2Ua8h+kcc84948/S3LxBvTfgdfm73zn3sb/MfOdccEvWt4GOZhZOXcNPa+kDb4kUKv+XlEPOOWdmt+ENYh2WH8JFRERERESyYmZxeAMxF8mTR0935j3Zdgpws/+DmxQhDVwtRaUB3kC1hveEnDuLNhwREREREZHcMbNHgXvxu9FK7jnnkghhyAwpHGpJJCIiIiIiIiIiGpNIRERERERERESUJBIREREREREREZQkEhERERERERERlCQSEREROYGZOTN7I+h9lJntMrN5uaxni5mVy+s8IiIiIoVFSSIRERGREx0AaplZtP++DfBDEcYjIiIiUiiUJBIRERE52XtAe//17cCU9Almdp6ZzTGzVWb2hZnV8cvLmtmHZvaVmb0GWNAy3c1siZklm9krZhZZmBsjIiIiEgoliURERERONhW4zcxKAHWAxUHThgErnHN1gL8Ak/zyIcDnzrmawGzgEgAzqwF0AZo552KBNKBbYWyEiIiISG5EFXUAIiIiIuHGObfKzKrgtSJ6L8Pkq4FO/nzz/RZEpYEWwC1++btm9os/f2ugAbDUzACigZ0FvhEiIiIiuaQkkYiIiEjm3gGeB1oCZfNQjwETnXOP5UdQIiIiIgVF3c1EREREMjcOGOacW52h/DP87mJm1hL42Tm3D/gU6OqXXw+c68//MXCrmZX3p51nZpULPHoRERGRXFJLIhEREZFMOOe2ASMzmTQUGGdmq4CDQC+/fBgwxcy+ApKA7/161prZE8CHZhYBHAX6Ad8V7BaIiIiI5I4554o6BhERERERERERKWLqbiYiIiIiIiIiIkoSiYiIiIiIiIiIkkQiIiIiIiIiIoKSRCIiIiIiIiIigpJEIiIiIiIiIiKCkkQiIiIiIiIiIoKSRCIiIiIiIiIiAvw/z6g/52GFYvsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "x_pos = np.arange(len(names))\n", + "\n", + "fig, axes = plt.subplots(figsize=(20,4))\n", + "plt.bar(x_pos - 0.5, stft_score, 0.1, label = 'STFT Accuracy Score')\n", + "plt.bar(x_pos - 0.4, dwtC_score, 0.1, label = 'DWT Coffs. Accuracy Score')\n", + "plt.bar(x_pos - 0.2, dwtDC_score, 0.1, label = 'DWT Deep Coffs. Accuracy Score')\n", + "plt.bar(x_pos, stft_learnTime, 0.1, label = 'STFT Learn Time')\n", + "plt.bar(x_pos+0.1, dwtC_learnTime, 0.1, label = 'DWT Coffs. Learn Time')\n", + "plt.bar(x_pos+0.3, dwtDC_learnTime, 0.1, label = 'DWT Deep Coffs. Learn Time')\n", + " \n", + "plt.xticks(x_pos, names)\n", + "plt.xlabel(\"Model\")\n", + "axes.set_yscale(\"log\") #the log transformation\n", + "plt.title(\"Audio Classification Using Vairious Models and Feature Representations\")\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "40263d30", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "10" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(stft_score)" + ] + }, + { + "cell_type": "markdown", + "id": "d1eaf892", + "metadata": {}, + "source": [ + "### 5.1.2 Laplace on functions and graphs\n", + "\n", + "The Laplace operator can act as a digital filter that, when applied to an image, can be used for edge detection. \n", + "\n", + "### Image Edge Detection\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 119, + "id": "d74476f8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 119, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD8CAYAAABXe05zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9WbAtW3aeh31jNtmstfbe55x7bld1q7moQsdCRxAECIANSMIgaTJM0xZl2Q+2bEcwwg6/+Ml8dPiJ745whBm2wnqRLZm0LDFE0Q1Ny3DQlknJlMKiCAIUIVQVUHWbc87eezWZOZvhhzFzrXUuqkBSFOyL4J0RdWuf1WTmypxzzDH+8Y9/iKry2fhsfDY+G5+N3znD/f/7Aj4bn43Pxmfjs/FPNj4z3J+Nz8Zn47PxO2x8Zrg/G5+Nz8Zn43fY+MxwfzY+G5+Nz8bvsPGZ4f5sfDY+G5+N32HjM8P92fhsfDY+G7/Dxm+b4RaRPy4ivyQivyIif/636zyfjc/GZ+Oz8c/akN8OHreIeODvA/8F4BvA3wL+66r6d/9zP9ln47Px2fhs/DM2frs87p8EfkVV/xNVXYD/DfCnf5vO9dn4bHw2Phv/TI3w23TczwNfv/r3N4Cf+m4fdiLqnfzWRxQQZP2z/QfQq79f//hrY40r5PxlPR/v+v3Lu5cDy2vva3tNXju9Xs7w2qcF4TvFNK9/6jtf9/VP/E2fkav32kV4oHdCJ+BQvBecCFoVrXYUJ3YPRKT9r92T9przDr26uPV70N53DtVKyRVV+66qsgZu3ttxAVTE7rITEKhFKaWCKqgiYNenkFVxzlGrfUYA5+zeabuHa3ToAO8hBme/wQmIs+to1+rWp1LtOlGlVr38dtd+tCpopVYQL7/prst5rnC+BhF7terlt6/PROTq76tJJ6892PXhaftNYvfq6r6IgHiHiAPnXpsXWts9XNfEer+rUrUirOdTSrHr815wzp5NVajt3K59Xz+xHkBBXLvGy/y2OeOuPqWv/d7Lnbr67VfP7rJi5HyrFfvt59+93hteH9ouyTn32jGkzaFaFahX1yio1k+cQy824Or+idgcQsA5jzibTzVnVOvFYoi09+qVUeH8nGqpV+/p+dhyPsd3sXPtdRF3/sg3PnjJi/vDd/zCb5fh/k4ne+05iMifA/4cmDF5su0BxbULv4Zw1h/tnC10J4JvD+vaZDrXJp+AE3c14S5G2IkgOPvsOuFtvQD16vIv78u6qNrfYMajXr22LoT1s9fftXPoZXLr+kDX89opHWKGldX4VcTJZXHrJxaE2hUHUb5w0/E9neNOCqMqwQlD59gNnrIUjsdEdEofYbsb2N31bKKn1EzoOugjuVSyKpqV4AUthfmwUFS4ud0QIixLJk8zonaduShFlarCOEZi59EQmYuQROjHkRAd++OJ0/6EnGbSkgkI3gspK/tFmQvEviOKshwSVQt0EfWOeUo8HhfAczPA597a8NYbGyQ44mZAFaZFqcUMYN8HIpkyTcynhVoqOSvLlPBOCN4TOoePHbVW0mmBUlAHcbB5WGvFiSMEe9ZpqagWfPTUqiypklNFUJwoznt89HjvcCiUggdiEOLYUUVIS6YWwXceL0othZJB+y2z7zjuj7jpwK4ThjHi+kAcB5wL1LyAVnKpSKk476labJ74wLIUltNC8I6uC6gq85xYlkrfCduxA3EspdoGFgLihGlSSimMQ7BnV6XNa0HFo6KUpMypgqt0wdl8kUjKGUh0MdoGVgrOeZzzbf2AikJVtCias60wH1FxqAOVYOerlT4owTtqzaSlUksB53EihLD+zyFhRHxEnKPiKBVy26ACSoge1w2UUlimmVKyXZOA1IKI4mPE+4DzwdZSiGiMhNjRdT0uCCUX8nyCCqUoKSfEB/tsydRa8N7jQkS8w3UdtSq1QqlALuAU7x0+OLs3IRBCIHQdEgdqgVoTVYVaM06wexwjf/J/+D/7bvb1t81wfwP4wtW/3wN+/foDqvoXgb8IEL1TtL62G71m8LjaiVk/pheTresGd7WLqwIOtLZP6dlHVhTVK2/7NZz/u73evqm2uWj76OpVCauH+Z1zBq95+s3bOx//HE1chQ8CoteW/XIO+9s+fxMDX731fLETNlqQXIgieFVcVvJss6h3lWETuNl1bLcd4xiotdBtNgw3G06nmbwUai0sUz4vulIFFx3H08J8nxmjsuk8eamcpkxB8NGx23S4GCkhUsRTm+cyz5nHxwmpib5kxAmhC9QCWeGwJPZTJRfFAwQHTlAC6j1958lF6CNsovL2k8jbzzZI9IS+J83KtCSKBjR4uuhJKVOnCc0JUfDOUZ3SD4GSM0pFcOR5RpzgRKkihOARlKoFreB7QbQyzRlRJQTzqKalUhW6aAbYiT2XYp4C3gvBC04czgm1VkpVKC0CSFBQ1EP1jn0uHOcFtyzcDZ7YBRTFKeg8M+cToPjgzWHImZwTfhyoRVkOE04c2yGiQEqZZS54B3c3A10fmJfMdFpQlBgCVGVaKkWVYQg4Z0bbeQcFSs7gBBccYQyEwZPTZJtSdVQKntIMn0droWqFDC4K3ju0ZrQUFIfmAgguBKq4ZuA8qhXnlBjMgau1UtWhVHJx1JwYu0AXO7xz5+hGnGPJymmeKbnQR0/oeqoqpSpSM1RtG3UgeA9ASqtjFEAtCqwoQiGGQHAezZk8z6gWW+vOU0uxyFUzVFBtkbQoNc246hHAx0joPFUd9H3bYCtaEhWHVzPkcRzw3S3LMlOmQs2ZWiuIol5es0/fafx2Ge6/BXyviLwPfBP4F4D/xm/9FWnh0bXXezHg63BchWTXdk70HO7J6jG0R8LqdaujniNh+4xovTq6vhYGwrohrKZfQYUqdr71fbnypgWhcgmB4Tp0vURQa4i5ht2KhUlOWtRgL5wvdQVcnAoqFS/w7q7nB590bPOCr5nOm5GKFIIAVZAqxM5x99aWrvcMfUQ0kXOGGPCx43RazJNOBWpFl0T//E18hPTRPfOiHGvmyejZDVDnwmlKVAn0Y2AYOwgD2UXUgVDxOB4PE2la2HRKdEI39NSUefWYmItyTJXDbJ7SZuhwfWBWKC5TSyVoRYtDHLz7LPL8JhKihxAREfYPE6elUIvSDQafzMcJXzJ1ybbxUREBjzDnjPOeoe9QrQSBkiviHNHb/fYORD3eCSVXUkq2mKXas6/mEfkQkGpeuHiHFsVrxZVK8J4YA+IcOVdqafPS2VxRVVSEWoUFWJYFlyu7wPl73hvMlFJBi80v75Ss5s354FGJLFrAKzFYBLZMhVwqMQrj2BH7gZQrc1Zc8PRRKFlZ5gXE0wWLIKoWOglogZwztVgY6p3iglCphBAQrVSpdk9qQEuyCBaLZNeNUEtBRZuBFPAWTbpAg3McWQvihc63daig4nA+EHCoJmIY6aJHFVJWfAhUhTQnpqTkXO2ZNahMsEgxzwaRdd4RYrANLTeoDA8q5JKoUlAJRJdxBCgLtSpaZmp1aDAnT0syG+M8ikFStSZUHS5422Sb3XLO410E72zz7jpyUsq0h5JYnTfnVyfFNqIYe8Q7Sk1oSgaJfZfx22K4VTWLyP8A+D9g0Ou/pKr/0Xf9PAY7uLNXauMCN1x9uHmnev362c6JOd16gUn07I6bZdXazKkDoTQYymGgw+WAqhXEmUctq5duXvwF19UzntZ8aDuKyNk4n+33GfNqk0tXCKjhvCuS26IJg1RWDK95Cc1L773jq7cdX3s6sKkLQkay0uFQqXROCc4RHGx2kd2TLRLsvL4LaK50mxH1HucFXYTjvBC7SNnPuL7n6dvPON6/QAVyLbx913HTeY7HmWmu4Du2u55u7FEfmNRRmtEqtXK/P1GmmUEgFiW4QE6F/SGxT5XTUpnmQvDC87fuSM4xzYU6T7hS6GLbxGrm83eRTQAfHXHTg3qWuTBPCzkrnXeU44l8tHhnxcZLKkC1xZBBXES8B+fwCCVlXAyGrZcKJePFE7ywJPPWuxDOUFjRindCDHafizasqoBTg0yC94gY/k2pqFTDZFXQrGf8tFCa8+Hoo6OLBacVHwJdF20t+IbT5oTWzJwqvu/wzpPmxOF+T4yBIJ55rtSU8M6x3Xi6LlLFcZoyy1JwDroYqKWy5GyQgwvMKYMzY5mzQi3MubZ1p5Sy2DoQi17xnhCCRZfz0vDmCrUYTOR8w4TFfnNd4xuDN0UNInKq9N6cFql2XxGhALUudCFwM25Q8UxLJmWDgZw4UhZOyaKeGHy7TQo1Iz6wci66LhBbzqaUiqrifaRUSMtCpSIh4rvOjOUys+a21lyLZYvMOahq6xfnKCWhJeG6gVohUc3Q1oKXjjAanKQ1ISjDMJColPlIKUpOGeUIpRJDBx2Ij1CVsigpHS2C+S7jt8vjRlX/KvBX/3E/f+1ZXye9pGXOzgk0pe3k7TP2DagtjNILUq2rwbYznFEHlWphYUtGXGCUC55t510N6eUY5+tiNbY0c70a79dAHM6QyAqHqOGwcjbIzZPmsiGtHtmKAV0b7ieD40tbz/sbxzOdiRRUzcsvKeMqEGCz8Tx7PrK5GTgcMmWuFK2EGPF9B07ogqDqWGpiOzo0FTbPNmzGjtP9hxxePtI75Y3nI06E43FhSoIMPbsxEoeR5HvmXFlqJjghLQv744mAsomOsiwss3A8zbw8JLJE1EWKzojAMPakqizLjC4FV7SFtsJ29Dx5MrIahthFUsqkVG0hB+F21yKGOTWvT6neIquaFbQQABFv3pwIKRlk0283eA/kzHxIeN829ZSIzkMXaW4yghLVPisiECNSMmVJpDk1XDLQxUtUZ8lQQWt73sFjhqDinKemSucdEUGLoxsa9rlir13AhY66nMinR0IwSCIvBr103qNFOCwz1MrYezYbyzOkAqcpMy9KFwUngWky+CP2A4JFAt47ShVyrmRqm+6O4JVSLZoQsMgCyy9RC6hiULZD6xolVqqaI1NysoSvgGgB5wBHqWrevANNhVIVJwXXedR5SjFIqo8eEcdSClUNO1eEOdsGSrvOXEFLIbpCdR5UCV3H0Ed86NBqv0NrtWt3LRleLUk79J4YPHXJ5GXG4SB4wOOCrcWqSsUcEpwi1SJ4ccFgHXVozrgQDP4qxRLoXY9qR11mRDN937Og1LJQK4b9K4S+ww9b0pyYjy+hVnMkrogBnxy/bYb7n3g0z9SMJmePFC74ttA8avlE8q85y6JmQn8TYi1tH9XV8J6BcHRFRlrSU9fkYYNNVnjkwgy4wmfOZpfzbiOvZRz1/DvOTv9VRHH+3ZdPo3o5xoVFI3Te8d5Nz1dGeKKZJ6EyACkpaSl4rQQM09vtAs/fumG8HdnvjxTMaHh1kAsuWmi7LBnvhG3nOc2VzZu3DMGxnGYeXh0QYDcG0lKZk5IqdJuBcTfgQseicGwhXXSekmb2j3vqVHGqLKLMS6bi2GdYiMQ+Mnoh+45abfM77U9oVgxWstD8ye3Izc0IPoL3aFlY5oVlqeQKm01EtJKmmYCgTvCNBbHe7JITfddCWyykTrkgztN5ZwusVPKcQNVYIg2L1QIh2CbrYiCMETcndIGqgsrKbIC+j3RDxLUIZp0VkjM5KYpbny6hEyBQcyH4YBtMqXQ9hCjgGlRRM973FK1U7wnbG/LhyHE/I1S2u4GcK/cPMzVl7m56brc91XkOp4V5NuPWdx2ocpoKODGYSISqFRccmg02q+IQlK7v7H6WxRJv3q7du3ZvSzGYpuHNqgZH1sYKoVRSzmjJiHOEhvNrKaRScY0pU0shz4mUbRNdUgVJxOgJYSCnZFBKtGReypDzJYLyzhhOYjs0mhK4hHcDYxwIwdm90waVefOiLbqvhOjxLuCdInlBSiXXgtYF10V8EAjeEo2lWpTmuuZhCUikVEugGhsrgmDP33nKknBhwvkegsd7D6HHKZRpMTis6wFvvoE4FEeaZ5xUak6fsGSvj0+N4X6dKePOGPLqcZ8/hzFG3Mr0aHj3inGjcvZ4PY2G0wz++TBtYTcUpHnOVzS4KxqUWVvD35xzVDU3v6K2YzrOSdHVg75EAqvXvk7s14322ZmXC0Ol7V4XL9vBk7Hjdz0b+ELI9CmxDcLgIeVKSRVRM0pdcOxuIs/efkItlRf3JzY3OyTNlFII4hh6x5wKUxE2nZCnBMPA3ZMNfd9z/+IFp/0M2Tys/T5xmgtx6NhsB/pxoIaeU4XTsgBCdMLpcGQ+HlmOM1oU1wUzHs7Rb3o2fsTnxE0sDOPIfqkcH47UKUGq5mV1Ee+Ut97eErwnqZgxFIM6llTIS2G7HUgpMU/NE/dC58S8IXHGsFgWovdUVYbOcOPjXIjDSOh7KJm6TOa9qVJqpe8CInCaCloqIsmglCDIMlNLoVbFuUBKlTzPdMHTD4EwbsB5qCBkalqoueJjRH2klkzXmdFKUyItFjl0XaTrPQ5BM2ieGmjmOB0mllLx25HNdkvKtqltuh4JPSklvEzc7hy7baRq5XgsnOZM8ND1HSrKKVUSjs4LpTEhQgzUXA2/bU7LEB1O89k7vbC5Wh5GjJGjzYFx4lsit1ikUpSUF2het+WajH0DxrzRaglItHndYvNRCgx9QFRYFrvvYYjgAnMqaMl4ZzCXIs2QGjhZ5hm0EF1gcA6plbTMqHibPziq8xR15LZ5xGgbfSmFmhIlV2On1IwHgirUQMG+IyrETnAhUvRCOaxqiWsRsY3OWaRQKjDNhJhxMeLHHeJHikKpGdSorC70RgiYJ2paAEhpaXmz715m86kw3MJqtM3QiTT2hnPt/Qt31sxtRZurrM0wmo/MGU5pUdHZAJpRbia9wXX2Zm1HVWQ9Zm3eM9f0PvMwrlkeqxd/yTw28EQueP0KwrjmRZ9hEq7gk8tPt2hC7XXnhfduO3738w1PdYHTQu9gDGKTqVYC5jl1vePps4Gbp1vSXHl8mPFdJGelqCdGYRsd83EmV0AK+wXGzUDv4fjqkZfTC/KcEFXSAnOuVO/oNwM3t1t813EqnsOUqaXQBQNz718+QM587r23KGnh/qNXvLpfwHtu7m5YnJDnmdGD6zacijAdTsi8ELUSN5G+99xsA/1mBG/eklRHyYVSzTvzbbE/Ph4pYlTECEQBdcb2KSVTK4QQ8M42KnGerOAD5JQs5FXonT1FUWUcA847UioND7Vkm3egOVGWQs4FFzpKTixLssgtdLhxREOjxNVETYmaSsudKMGDi56aC8ucmE5LSyB6gmQkl4bNmsdWijJNE7UouWRO04IrmcFD13uKAikx9I6bfkugMi+Vaa5UMfaM85GkFaP3BFJW6pzRVOn7gKhhuPYcHdE7nJYWeSg1G1Zr2HyxiDQEKhgEokrN0xnGyKWyTJmqieDDFZ6tiDf63dnZamtWnDldzju6zhMaAwcXDPfFaI6aCyE4vHMsuQCe6BvDphaLZEQtyYlS5oUiiosRgCqVXDwqARcwb52MFrV8g0K6glNKUeaScb5aTkQErYlcbE7lLJSacN4Tux7EI2IbOqpoyVALRgitdMEjztZ96CO+e9Ow/5qp84lSCyUt1LQYbdHH86b53canwnADv+kiX0tMNgPnzhCJvXddcHFJAuoZuxZnD9JdGXZpyIe6BmmcaTeWOT/DGmsWkxXqqGfIxGhBdkRtSce25VyAlNWWf+J3Xnja6wXxCVjEzjdEx/c+2fD9N8LbIVOXQhXDjWtOhrMVpescm9vI8ze3eOeYT4nHx4lcHV0fEaf0wSM5kRfjsOIC26c3VmxzPHH/4T3zYovWC+TqSCh0ge2mY9x0EDoONfA4JUotDEFZTon5ODNGz3h3Qx88h6lwnMxKqg/cz5n9aSLNmaKBblAGKbiUiOLwQ2DsPLd3luicGzNB1JFSMm52SXTRIzlT1NF5o7dFL0hVigukCq70bHcbou+Q0BNiT67gNhs6H1gW4xPnmhmCw2lC6kwXAM3keaHUAy4ulDRTJVDAsHexRW60LQM/XB9x/Wic5FKoeaZM5mmLeMR5ohfjbKeFkirLqaBUtqNHcFBtztWUiNHhXGRZFptb3iCENM+4XvC7jiKRMs90bmbbWwLscCw8PC6E4Bi3Pa7zpOLxKoh4g9JcgQRLUZxreZFS8CLmXaZEFU8uSk7JqIeaoPHZFSXXisQOUEqaEFVciDbvnQNXccXYCJoTqVgkFRoXey2UUXVULZRstMmxC4BYck8c4j0pZ1LKOJSu6xEn5GTFLU4qmgxDDyL0Y0ToUMRol43pQ6nMNVOqQ50QhohzArlY3UU13lkVRWKAIu0YQkqLMbT6aBFaaN73Uigp451dpzhnHG4B8R71sdEHwTXcu1RzXFzv8N2A8x0lF5bpQJqPlOWIqDMKJpXYDzgJvwVQ8iky3JdxMaSrkXZcDB6sRlob7e6SLLxAEdoSVa3gpn23rFlPVoiF8+fN81ptafOiz8nM1devDUI514uxAi3QPP0VdvnEr1EMaln3J2m4J6yJyEuk8Hwz8CPPB951mVEXdFKCWiSe5oUxAg5iF9jdDtw8HQBhWSqPh0QSx7N37+g7T5kndM4Muy1SKzUMPHt2x7K/p5bMy/2RshS6YOH6ccpU7+i2kXHocF0kiZAJ7KeJnAqiyv6YCCTeeOOOoIaffvThC/b7zGmqLEthKgtLganA1Dyvpyi9MxqXergdPJvRkwWUxuAoqcESFa2Kd+ZZBR8YYsdxUdx2i799k6df+DK752/T3T5n9+wp/d0T4u6WbhzMy4vRNitxiFur6fRCyyvF8NRlIR2PpOOR6X7P/OpD5lff4vjBNzl98E309DGunPCu4j2oA98N0HmQSp1n0uFkxix2qHP46HBiYb42fnGMjjF6tDRuN+YIxM6ivlqFYbfhdMocp5ngHDfbDp8L6ZihE/oAQwjUpExp4XAsVCpd11nirVQriinClDNOPGPXkcVCdO9tvsXgjd5XCqXCUispFYLzeHEGgVShYEU7lihNxm+mOVclQ4gEMc53KYU0L5aw9GIee1ujtViF6pLMg4+9N252gx1dNAOe5oxSrOCmH1BVcjL4yjlLhqZS6QOMY4e4YEyNbMwOgzCgFmGpBeeN5unkvOLQSqNWFvPHQoeGnpoSOS1mK7JtpqJnzhelGlPIxwFx0SKEmu2ZV8P8xRtEZcnx9j0VY8/4QMWT5gfKdIQ8Q1GKmscfumD1EFNCS/muVvJTZbhfZ5bYpHZiHjNSm7GzcUk0XBWn61oZSeOTOiynUlvhjCVl0NfNbuP82f/an2sF5oVO2BZZw9QvIV/7bPve2bvXFbcXoJ5LsC/pxvWi11esWvGLdwM/8mzgqWT8MjNIRXPlNCldB7vBEVvYdbONOJS8KFMqLLnSbTqe7HqiL+TDAXGBzbZHQsAPAz4l5lcveHjxQJoz3juGMZLnwmExetS46xn6joLnVIWpFtCFAEwpkZfE6GEzduy2kbzAw8PE6ZCYj5llqqSlcipKdULXRViSeUtLZkEJnWO3C9w+Ge2u+HhOYumSSUs23D52ZAb87bvcfPH7ePKl72H79ufZvv0u22dP8N0GLel8//VcMvzJMPOSVBZd4St7vh6hVwWKUfkkmsdTF6iJNE3sP/qY6cNvs3z069x/4x8wfes/ReoDjkKdH9G5FWuIUBG6LuBrNo81RFQ8XWf4bp6XNocFcUYBrKUY79dDdRHXOTZaiV4o88ySKp0I4+DoYsd8yuwfT+RSiJuBvh+w/G5m221QYE4Z0UoQY0TEzllCWAsxOJxCzUJVYSmNy+0d4rQ5GUJJ5p3KugZdKzjKhVyzJS9bXqimyjxbIrhza/Gbv6wrxBKXWumHnhiMRQIQgvGw58WSxH0UYgyUquRiuRRnySBEhT56NoPHh44qDi0VqzR2FDxzUUpJOGf5MIdYpOocVY3KWYpVyKoT8M0zchaR9FgSOhUo84KrCiGAOHy3QXzEebufVStVLSIJ1X6rODH4TBz4DsQSnWnaU6qwHB5gmRBv1ZQ15Zang7wkDq8+4LcSAPx0GO6zgeNMxXPuAo1Iu/Fm+ow5UlticuVNX0MUThoxTGubqPa3sTVWo9nAcDhDIKwOOXziptnOZ9lz+wuMrXNdXEO7LrneCGjRwCeYIhd/317pnfD+3cD7vXCzHBlcxdVCTubtbAbPk40lz2q1aresQs5CepgpWnn6bEffeaRUlsOJbuwIzqoYN0FYHvfc3+85HhZSLoxjxKNMJ+Puig+Mu4F+jEzFcyjCnBPBCYHK4TARnW0YVOX2buDw6pH7VzPTZBBCyZXgIAWh77yVX9fCKMACm9Gx2w5stx396KnOOMcURdOCZjgdlfDkPZ595Qe4+eIP8O7v+iHGZ2/g+8G8MoltsywGablwda+boRAHEtpivJocazJh3aC1QWCrB14LosmSTnijz20iT790g3zxy5aMy4maFqaXL/nwl/8e0zf+Pvtf+2Xyx9+AejC+MQVxSl0KRQTf9VSnlDlbeL5UCO5M8fMxoOI4HBZwmaH3BKkspbAkZeg825uB2AVOp8z9qxPLnNje9IQYWBRccGzGQK3GTBGqJQPVGB4iHgnQ4QxuaOXZqSjeQxDzwEVWQ4olBGs1o+QqPnrSvBilDwwnxgpS5kXBC0McDOMtSsmKd8YcqWqFS9EpooX5lBAf6TcDRZXpuKAqDJsO7yBn20ykUQFrzvjgGIahMXAcqdijdl7wPpJVqLniQmc+ci2gCS0miVAxb90SiuHMM/dqEbVgfHRadfNS1WAsVbwKoQ84F1Ayos6462Ket2vzrtTGNImOOAz4fqAWIe0PlHzCh4ATD7E/R3+x66jFU3Li+PAROR1xrdrzO41Ph+G+Gp8UP7Lbd2Xu1IzjSnG8Zmp4cWe2zjksumaHtOPrtZU/L+BrcEOv/h/Anb32M9f6NyFQ6+bxmxMKa1r12sC3aY8Ad13gqzvPO75wR+FJ9HiFx2PFodz0nqEzHM1F46p2d1vKYgVEw2hl0n1nXNn5NBm7Yp8pA3RFePX4iuOxkFOmqrJ7usMhnA5Ly24HdndbfBeYiDzmymlJRusrC4/TzFYqnRNc6NjejBweTpwOicfHRG2GAwfFVWLvCaqkJVGrMkbH8/e2jJuIhAgKGStmoRTyIrB5h90P/BDf+6M/wbMvvc9w9wQXhsYBvno8GBiG64wu6DyIMUeuVLQuEwiu1RAueZH1kNew2Zqz0MbXbaGw1mQUt5rAO0IcudncsfvcF9D6R0mz8vitD3jxH/9tDr/y/6K+/Ifk0wt79lVY5oyIGQy06ZUEmoMSyeo4HReqwnYjSErMp8IyK10X2OwizsHhkHj18gSq3D4ZwQfmDHGMdFHIuSXgJZh3nxXXKjb9OUekqESyFuZS8CEiAoVKFzqCiO2H3vQ6ijpCo7TnlMi5Usq6KpW6JGg1Al1nRiwXNV0PcUabmxOh7+hiIC0Lh2MiemG7GZC+g6SEoIToCF0kLQXVbGu1ZBSIXhg6T4jOiKO13T/FPGkRarEKUe/b718SVKXiWIowz4mqiRgC3kN13mqbc8ZTz0yXvEIpWJJZfMS3AhnNiSqV6gUnxiRREdK8IGp5A1wwB9IbLJZOJ3KazzmSfrACqJoaiycY42jeP0JeuHvjDXz47ub5U2u4V4jErZ54+68xfbV91r6zwhOXT34S0rCxFsKsK3j1grUdbE12XlMNuTr7+RrN0l82GC7X8brZvhh6UT3TqMxbNOz2vZuBrz3peM5C15IxUiGnwpNtxxgxPQwHwyYSNx3DdkMuiVQzfYyEMRrnuGTzSlwkVWXYgmQ4Pswcp8UEmKKj73uKOuZkoj/d2LHddEjsmfE8zAvLnPEop9PCtD+yrRU6h9/2aIFXLx9ZlszjY2HKytDFVqggFg2kiiiEYOHn07uefoxk7Ld5sTLzaRm5+9Lv4os//tO8+X2/i82zZ2bYxZ/vnd1Ao4bhA4TRkk/OtUlgtEBKRnM6e+JSLCy/5DTOpVlA+z7BEmtiHqkpmTk7VwjmtdO8N8WSicW0J7QsUBZEKt1Gef5938vzH/gay+Of4fStX+XD/+D/zv5X/j2Ov/4rhDohWBGUjwHvrBIUlONhYVpM7XA7OrTCYaoojs1dZOyM6fDRi4XptBCdMPSBOZuh2j7pCDEYBFMViZdCJUqh4okh2NQXC1IUcJ2n9wM55VaQ1dFFh3eemqvxu1F8MKqb5R0sV5Szrc95Mc9+M0a6YAeurfLGR2/wVzXPvfOORQtzARcCXefNCSqVro/00bDps9FXoSQrNe+6ji54fPAW6YrgnXnwKoY9l1IaXOrRmg1+sEdGyokpGzwSnCVC1QEuNrW/Yrz+4HHB4apDU8Y5oe9GQuzA232py8kKdWLA4+iDQ6JnKpXTtKC1MmxGqJ40zeRlTy0Tod8Qhg2IRTo2f2xOLsdH0jJDndnd3LC5ufst7eSnxHC/Tn1Z4QczhBcGxmoAz59Zv2AR2hXkcjbt7e21EGbFN688ar1MZlZce2WMNPjkGjW5OHOXMGaNCtZ/nKmLQlNLkbPHt35uGwPfdxf5vpvIE1mQlFmyOY+UzJNtYDv4s75C9I5h7Oluxqb1oGxuBxNXKuZFBxc4Ho+Erme79XhV7vdHTlMChDGa4Z7nzEwi9h032y3d0DNVz1yEaTmRF4MPDseZfDgRSmJzt+HmbsNhKhyOiWVamJJ5Ms4rc8qoE257oZaKxwR3hsExjB390CFOKKkSfSTevsWzH/wpPv+jP8GzL38PYRgBB+Lb03MNwRogjmZE1/LqUmA5ng0ndWkJwAI1rw+zwR/1ytOuV0/rah4I5k7SEpjNYxLX2UbhOyQMEHt7QF1AiMDGytpLhmVBywnSidhVui9/hbsvfoH58U9y/w//Ph/8+7/I4R/8bTi9RFzFReOoH08zy1LYDBEfAqfTjKqVzu9uB6J3HB5OvHg1USrc7DqcOPbHBL7y5NmGIBVNi9EhqeSTJdccQJNyNYprQasjFcVFo0yKGI7u17LRdv9VFPHeSsZrMXepOmouSAWpldOSAeVmGwleSHOy3JILZuhrwflIN3ZQhVwKIp7dZjRMvBov3qvaZiEm8OSkolSKJoL39H2gi72pMmbDgvvOzqlaWLI9Se+94fJVyTlTakarkKsZdqfgvD/DY0ZuqLYZO/vtOZtDJU7ouh6cI67qh4DzjqKRtCyUqoSqeDnRbbZsbm+ZUuW0f2kiW6FnPjwyP7ygi47dE4VBCbFDxVsCMs+UWsnphBNh3AwMY4+0CP+7jU+J4b6MdUmtJeCwVhPCWiGz1rzAOefB+q9VfMrKxi/mW1hD4iZG1Qy0sHraFyhjff0191l4bTOx1y5wypUjz4qhGwvFTiy6wiXKm0Pkh28j743Ksy0cXmWDGkSIVJ5tIrtd80ZEqBlOi5KPC50LdMEgFOPOzHaOYmXlfR8Ye+W0n3g4JpbFElFDdKSsTEkgeProGTcjrhuZEO6n2aKUauyU+TSjS2LTCW+++QzvPS/3if2UOR0TUw2MY0dfE6f91O67kpOjCyDBM9z2jNvBQu6qVAKbt77IOz/yM3zux3+S3Vvv4Jp3bU9v3fA6NIxItIVDXWB5hHyyApWSoKamtd1w7lotGVaNUmVzoF4ZcYuSLuJfbesWo8yJXBlwEfP4mwd+1sR2HeJ7iD0SRzQ2edEuWnl83ZrHv0xomQCl221464d/lOc/9KMcvv0b/Pq/9//g4f/zN1nuf418PFBKZrfp8cFxOGVSqWy7wG4bcaK8+GjPBx+fcF54/nQEJzwcmibJGKxsHCUOW0BJrRzeiVr4jSnVOWcVg0ol9r1Fta2CUCRa7qhW058WIXQdxpJs0rNaEc2UUsipmEZMbIUszubWshRC8IRo2i0hOIY+oiImpOUc49iD9yzFQfUWOYkV3UjTHRdVkxt2EH0gBN+8/ISqmg57rSxpYi6egphHjKO2ZKqqkKon5WIy0CGYdO9VpafJFzijc1aooUUVSyYOgb7v8cOI1kbJRCxa6gZmN3OaJjicEM3ELjDsbnBDz2POTGUhnGZO+z3luKe7vaFkpR6P0FckdCzTxHJ8xImyud3R9wNCafkAfd3+fGJ8Kgz36p2eucxy5RFf+UacoYaLFywNFikYOwBWgy3nDynSMG93ec2sIhex1/bfhkGamb0YdHGu0f3ANd6eqNU3rNenyrnKTFav8WyOlN7B9z3p+JEnPV2e2QVHWBLSQrzd4LgdI7vbgZwqsXfosjDnQj/2JC2U/QmNVrCg2YoEylLRlZWRKsc5W6m5WnZeUB4eMwTHuPOMux4fe7JEDhUOs5VRd17YzwvT/oRPifd/4MtIemRKiVcv99zvE1Nx1L4niCNSWU4LOVVC5xhiMBvcBXZjRxw6gjNRINm+yZd+38/z3k/8DNs3nhsU0SAKu/MOcwM3VoBQZ3R+iaQjNZ9AM1oLVKvUo9jftSaTFK3FZERrbmI/5o2dN/N1nKExkCYYJtKgEtcq/sSD8zgfENeMujfYxMkFShEXIQzQbZBuhLgxPnB3g9YbyAt6eoS8xznHzbtf4Pv/1OeZ/8if4Rt/6xf51i/+Ffr7f4CWmWUuOOd4cjMydI68ZD78+MQHL08E53iyNez4OFdC59kMHcdTIhblbrNDtVBypSbTnu6CN4fBCepbJZ/6xhU3ipt30iIMd9bzwNESbjZv1FvytCR7P5fCUjKbcaTvpH2viRWIZ0qKy4mbTSCGnpyracOI0Q9VbTPwYom+3HSunQ9EUdPszongArEPCI5UE7UkbGoZd3rOlblYbUPoB6oEUzzUBOqYq5CKVWB7bx60VmfwkRh3W9UhTSTDsHKTVvUCHaYNLs5bVOkWgrfCJryj2+5Irw7sX3wbmRPutEC/x/eV3W4gTY75sCc9vjCxq64n9INVTqpn2e/Zv3zJfHjkyc1Axw4vFT8M4LeUnK4xhd80PhWGG1bjrecs0pnvLBfoRPWiRWLY5+u70sWYX8ASK7/Vs3e8Qte2ObjXvqes+PrVv9eLUM4FPevF6SrBei3dWhU9dyxpjBIV7nrhJ9+94f0uEzB1to0oy2lh05nYzc1Nx7gZ2D9OaK6krMQ+cjtGvDfYJM2FipIFfHAsSyUGz+AcS62cjguoFebE4Dgelf1xIXSR7a7j9umOOI6cqrA/LExlZggeyfDq/kA+zQxUuiGw3L/E9dY5Zi7g757Q4dl0Qn24Zz4saDUxqHHT02964iYSug6nCrmS/R1v/vjP8pU/9EfYvfk5XOjNWKtr9KeGJ7vebnPaw2mPlrkZ6NVgJ5PaLKbxXJs6W82JUkrTfTajXgtXkVfhjJOBPfPVSRBLRPnWMMA1FTxxzkJq503wyUVcCIgzPFzcioV7JJ1gfjQGgO+Qbov0t0gcoOuQ+AbUp9T5hCwHRGf6XcdXfu6P8t7v/nF+/d/9RX7jF/9twvR17nbmZR8ej3z08czhlLjd9mw2gXmp1Kzstj1SYX9aQB19CCyn1O4pBKe4YBjzmtNdJtOLib0HNc65UygiSNOwTktCgif2sSUzTX3vdJooyYzpPJlh2/QdQ7D5fTH6bbY7Nelg75iWhFSTo0VgWcBVIXaBGIXSVqp3wSRpj0c0ZWIQumjl6kkNqvGYtIEZ7cxi2rZ4f1W8gzFklpRJ1RFCILpLUc2UlFSMQ67iqZgipIin8wEvtsEEZ/i65qVFAY7grIrWeUzil8x216P1ljrPTCkh+wN9LoQQ8bVS5yPUTPAjLpjRr+qYjnumxwdO9x/RY3K6Uk/EYcP4zveSs3D44B+uVu47jk+V4bYV1ZKLK/54zk41XVwaBt285dfgiTaM/ndJYCqrMuDqwa8skcrq0Z8rNdHmrDdps3YNZ+z8jDs1vHX15+TqNlc9Qzke5XMbx0+/u+G9zsKwIQqdWueap29uoRa67QAC82k5l3b3m55uCLjgWE7JmiKoNSIQZwmi7cY42A+HhdJ4pUME1Az2cYIwDDx9NnLzdAch8Jjh8bSgWrmJnmVKvHh1YJlOPH/zjrffuOWjb36EkimzsJ+Vo3RUzfR1we+t8nEqEDrPdoxsb60hg+86BJhnZfP+D/PVP/wnePbl93H9xrxVGizSwiyTEsiw7M/G2CxvRvOC5oWSF8MC80TN2cqDa6WWTM2l6WWsxVht0z7v4lYQtUIluFax2DZgJ47a4JFzVe5aAyDNI3Wte4mPFiqHoUE8XTP0C9WZVy7LAZleIb6D7gYZbg1a2WyhH9FlhmWPsNDfPuHLf/S/yDu/+6f49t/6Gxz+o7/B6cXX+fjVwill3nga6LrQJAsCm02AnDgdEkMMBLEqx5odYegJrkmnOkXEFCuXlClJUWcFO75rXm+79+l0YlZLBg7eG5XRNb3qlJmTskwFTbZWNr1tLqVBNFUCtZoqZOw8m+0GVCk5E6KjH3pMMdc8yBBt45tPCyrJtD8qnJZEmU+MXnB4q3At2crffTxHrbMKMw7fd7g4kuYJUsJ5JVeY5sanDkIwiT5K00M5pmQQTOxM6rcUw+wdlpR0lkzFGaUypUzQCd+N9p6Y/KyKZ05GMRxjR8ZBSeQ54+sEsbAsM1ILfb/FNxinlEzOwv1HHzE9fkSXj9w9vSM07ZkwbvH9yFzmMx3xu41PjeG+mO6Lr8r5r+Y9cS38xNlSGnwhV99dNUY4Y5rXUMvKATdYxcSoaBPd+EDnj5698HMhjq6bgO3w0gB5d3VNSmvl5ZTv2Xl+6Dbwpi64RakpMy/C9rbj7qYjNC9iWmbyYnKfwxiRIIgzdbbTKfPw8kiIHbc3nXlH3rHdBLQUpiVxPCld7+mjY5kLqSpJHd1N4PmbT+i3A4sKj8fC/rQQPXQOHu4n7l89AJUvfvEdOlFeffCSlDJThcl1pGHAO6WbDnS5Mp9Mp6MfTQho2A10m57Qynt1fJP3//Af473f/RN0uxvDi5tug8FYHhof2ji2jfpVEpQFLQs1nahppiyTJYJSouTFjHWxggctjYtswez5OZ8Fylbt9HOUVBv8XdueLJSmVSON+98mE5wNOheKqltwiyDuiPcRt32b4fnnqA+/DnlGSjYvPWfEJ1hmZHqF63bIcAfdCOOIdgM6T8jygDgYn7/Fl37hz7D/oZ/gl/6tv4Q8/E3e3s14p8xzJvbCGGk0T7i9NSbIdDQ9ct+0y5XKkpW+ax1mAO+DwUdOTTbAe+gGBMjzRPEwjDeEaMk+jyWXc1O96xrLIvYBJ1jZ/lKMwYFYSsCZvG7sHFOu5LmYxngwql1Ro5v2MaDOVClzLlbBWQs5W1OL7aYniOmV5JoJGuiD6X/MRVmyolGI/QZ13uZ4LphELaQs1JLpvccHgylVnOnatFyHbxCYa8lui5QrPjjEmxaLUSpNWEo1I96qdmmVkYRADCMlK6Xs7bWcqVXINZukrYIV3RRKSdS8MO8rh4cH0sNHbF1luLml290RtzcQN6Qpoy9+g2We8XG4ihJ/8/gUGe4rY93ajV08YW0629fJpUtxjr/Gwc/wiZwX8Pnltd3QBWw5e8tg4eFKG7lO6No569mjs0Vez5g22pQFqyU+HPBWL3zttuPznfLUVUYEa0hVub3tudk68pLQGNBi8pN9cLgu4HtPNwTyoty/mjjNC/1ux83TDa8+vMdTuA2RnCrzvGb2PbVYO6qsIDHw5GZkeztQQ+Q+Kcc5s6TCEASy8vL+yHw48eTZDc/veqaHA7/+8og6R9aAbnZU5xi0ELJpPudcUFX6sae/GXny5h2otsUW2XzlJ/jen/9TPHn/a0iZDXM8Y1+tyq5OLbmY0bJYaW+ZqflETRN5OZHnA2VeSCmZ6HwuVM1ngSjapiztAVa5eNGXB3qlN9MEgJB6FV0Jqz46ugqEtdwFrZ+jNHYLpsVRRRDJFEnI8muk/bfx4nHR4UNnC85XXDUjrsWhaUbmByRukfEJ0m/QzQh9j05HZDmCF27ee58f+xf/+3z7P/wZvv7X/zLzt3+JfuzxHo4Ho5ltb0drh5YrqCN0Qghq2H+LNOe54ELA98Y7dr5RELuI3+zAeabDIzV4+n4gxMG87FqttdsavZRMdMpwYyyHvCwsdc0ReOZUCC7z9MYiw8NUOM3Gz66qnE4ZghD7iHeRacnkORNC35KFiaqVMVqLOu87FjU9Ge+cleQDx5StpsBbQZlSKdkgMEEoxYSirBmLGByUEi521GpzJmKRpwKEYM9RK9J5QhyIvXnFy5I5lpmQlGHoqWLaMTUoIoUONXXBzZaw6TiIQipUlnO1qcm8BtRHlvlIfnikzCfiZoOrhZ1XNtuBbnuLHzYQOqpASoW8vwcJzcT9DoBKlFUDpPlNV7hk5VJGvhpnkQvz5KLiV8+76AqLrKHzNU5+fewz1NLaXNl3DLNeoRS9YiOsPv1aANTyOVSpODHFufc3nh+7i7zZVUZW1bJM5z3PbrZstpHjYbFEUzENiyEEhGqoexWO+8R8ShxT4a0vvMW4Hfngoxekapn2Za6kXOh7Tx8ih2NmPynSRcbbjpubntgNzOJ4dUwcpwXvPKNXjseFx/s9UTPP7gZ2g+flt15yPGbCbgu7HXOujNuB5eGBUK0QpzY7OG4i2zdvePOdJziB6ZhZwhu89/v+GF/8yZ+lu3sL0Qy1Ya+OJhqfrZilLFbQkrNh2flEWU6U+UiaDizTRE5z87LrWQZ07TrkXjPOaw6kWvjf8harnO86D2zirOXwF22blZtzCbOuMS8FzWa8aYqBYmpxQjFWRC4UB7I4g1LCqTWrGJHhXaQmXJnRuiBlRpYDdBvc5in0W9ju0G6AaY+WE37Y8bnf94e4e//7+fW/8a9z/3f/HR5ffohDjJFRC0vO1AKx98S+M0XEJrxfa8UPHT4GpOaG99uc1+BAlDQfyLUQuo6KmABWaR1cnAddufaV2EVbFyr4riNUBS+cTlYUsx0D4oVjUqp4bradNXtojYOHwfIDy2ki5UwMvbWSKNkEorqOrrOVnIrxYX3sjHYHHKaFnLM1G3CRXKxZSBcCSkd1iZSteXUjMl7Wda1UtU5GTjwhRnOwvKcCCUdwag2ZY2+9StWaAFcEckVcteRsdTaHy0QUhwsTcRPYjAMyz2ho81BNNkEapp1L5v7xQ/pD5o0o7HZ3ZCbiZoPf3KC+o2QFX8BlfLX7Xer8O4QO2HaY1aF2V2HC2aifWSBXPAGtXPq2yblZwuW48to6NA/ZjPHqnV/SVqbbYKUP9XwWrdJsvZwjgItNsGvzojwLwg/eeL66cTzrC7sgVspdKsMQCc6xZFgekyVBopWtI0IqhW6wRMv9/cRxSjx5uuVL738OpfLRhy+RrIxdhLzgg3BzO1ATPB4SD6cKwfPsychm11Fc4Ejg4bhwmprUJoWPXhw4PpwYg/LO5+44PZ74ja9/jPOB4faW0vfsTxPzaSY/PjJ48DFQWqNfFyM379zx9I0b8mkmqYen38MP/Px/hTe++n24bjBvGjN4JkRkOiVmsDOUyTzouEHSA8v+Q8vATzNpnijLYgnHqheIan2ASDvulVJks7Vu9ehl3ar18rXr758hN67stAMt65TB3Idm/Nd8iQJSzvGaaEXJlrBszQFqztY8Nk3E/ind+ISyP1hnolJRn5G6UJcTMuyQ8SnajcjuCTqNML9Camb75nO+8l/+b/KNz32V+a//b+mnb+J0aVCQtIJR4147760r0FIJMeCkaV+0nyTR4ccRwbMcDlQtBJxBOgppmc1bjT2smtUOnG/PvbFsCo0RsSz0Ubjb9ijCrBDGkc45ytwMrRf6jTGdSlqaBnjXvPlC9LDpI+JaM5Bq6ovBWY/RVCrWAlVxXgjiKGVBaiV2I0WVJdm8CiHYfLE9hSgCviM1nrhIK67FEtE4B8ETQouwmpysiGnMOBIBq1T2/WB2pxpuX0VRn6iHyZooOMc4RGTogErNph4oruVUaqGKEQh8TpTTI67r8cMt+N70/QFKQWpEa6WW+XrSfsfxT2W4ReRXgUdMzCOr6k+IyDPgXwW+DPwq8M+r6st/1LHOuST5zSQYvVp4F7aJLdoW5TYP3LUeCOelxRkjp/3z/OelKGbdLNZSDTuH0f/Wvm+rB9eW/UWHW00L+Au944fvIu+N8CzCbtNRamVZKqG3hNwsQtFKJ46xi6YPohC9Zxw8ZcnWsUaUp2/f8c67b/D4eODx4UA+VVyAzgtDF9mMnmnKPO4LU1Hi0HFz19NFzzHBSRxTWqhaePrWO5Q88/E3foPTywOeyjAE7j94ZH9YiOOG3dMbTlr5+NUjx/1EFOsyHvvIEjO9OA5L4fbtJzx5uiUvmSUH+vd/nO/7hT/N7p0vWEKuwUi0HoVn77rkMzNE00TNC/X4EdP9h0z7R9J0Ii+LGb/yevGBc+uzXh+gXs2LBk41qGSFO5qf2Z6Tfc4gsPIJb1yb361XrzVxk1YLcNa4Wb311divJYhajAusvnV0d/haKd/6JVLs8KHDdT0hDqARVyvqTBNF0hHX38F4hww9hOfo6R7KCdeNfPGn/yDPvvhF/tO/9q+Qvv7vI2IMEZxFACCWZEOQGCgKeTF8XKojDB3d7pZSK+k0geYm/t96X+ZCWdtuZVMxdNFbs2JtYm6SUY3MU2KZE33sGIJFikWVeHtjsMS8Mpqax1ysGfPa+Li0svKuD6YJDsxz4ZQq3nk2XaP6FSGrFcD5YHj9khbjUXur3DRdbsPwa87W69M5BMPiq1pVaa3SNGGsDZy4lrz1waouwfpq1oRzgeAwJhFq0rYCVbyxmVwg5YW6ZFI5sByr1TJsbqx5NAU3jkxTYjnuyadHRGeeP33SmlQku+bxFkJv+HupoAkJAyK+yQM38a7fYvzn4XH/YVX96Orffx7466r6F0Tkz7d//4/+UQe5AjeuPNv2XvOAVv2RFd+2vy6hrkEb6w/W1wy+recrLHw9p67Jx1ZV15gGZ5xdLuX0K2bucOfTjF74nsHz/SN8cRRuBwjezrJS91SVKVfGTcft6BnHSF6U+bhwd9MxROXxxcz+kHC95wufe4Ow6fnog1dMh6N1UvGRKMrNRpBcuH/InCYlOcew6djterTrOFXPMRVO89EKHrYDw65n/+EDy/5kSaAhsn+YqThun90w3uw4lcLH9ydevDpQlsqTseNmE9iOkZoyL5ZKjZ6bLjBPmVQ6nvzIH+Grf+SPMT570yh9DW5SsZDRYJEZrS3pmCfrOjPtmU8PLIdH5uORPE9WXp2tBJ8GVQnemmlUDK8+H59mUI0hok19cU1Mausu0p68ieyuCctm7FS0ie+ujTKacKf4qzzIOn3WTYEzvALCVQrFXNtaAY+qKcYVMfU75zM+JWqcrV1V1+O8dZq3/oIJSQdkfAbDDbJ7ik4dzA+ID9x84Xv43n/+v8fX/8//Bse/9zesWpRKFccyJ3L1uCj4qrhqkIl46Dcd8eaWUh01naDaPdYWzs+nBW2FMnlJpijQe5PVVcXHDonmBc5zIqWF7da4+dNhotbKeDMQ+pHltOCLFXspkItFJs6H1iig4rXSjdZPNC2FJSWqOmKIxC5SUabjZAa771HxLMtkbd6cUL2jLAohEbuA855SDPNeJQtKblCHGs2wQissKlSXCL5rG3HDONUgIXERnKNUjwRtcE9F58nK4n0PWkmlgitEH0nLRCBZw+ZG+dOaKGliPh1wWnmyvUHnvbV7kx5Ch3rbYCnFGoaAwTC1NvVS6wf6/2uM+08DP9f+/peB/yv/OIZbmu42cjaKlyI3ueCQq1elnCl3VdeufusiBG1h88owWfeB9VZcl2XYeaQ5ZZcFurZDc+3s0njbzglB4I0g/MDW88VeeNorg1drR+Wj0bKCWCFBhM0mcHvXEaNwmmDKlTeeD0StpJN1VNk96Xn6xi2nqfLBxx/jihWaOG8Uv9tdZDllHh4Lp2QUppvbkc2mI0tg0sBxWZiWRHQR7yrT4yNp/8C0nyhzRqpwf59wXeTNd54hfcfjaeI4WSJw2wVCdNxtHO+8c0MplYc50rnIOARubkbmHHjr9/1JvvIH/yjd7kmj9GnDfrmIMtVklL6yoOlImfek0yPL8cB83LMcDyyzFVesRszmwloY06oiEc7FTNcb+gpaKI2+qc3zbh6/M2aOYPS2MzXwEx67c2vl5gqQ2IyrqBntq0gNVsjk8g2bsA1mgQYHVJBMqbFxyzM1L/i84JeF0A/4bmwLNiG1IGVB0gkZnyLjzuRATy9REv3dc778J/9rfOvZc7797/5VdLlnmZcLh71YLgUnSHT0Q0C6YNTKNENrpYYqvgqlWJMEUUdasjVSDrDMJwTwvZV5i/OUUnBauNl0KI4lWWl7xFrKlcOEp+K8SdqW2hpJYJoupdSmrxJx4plOmSlB9LDdRFz0zLkyLdXalClIti5XdZnpPJQQSMksRO8Mbsmp/V7nqMV0YPKSLF6KJjrmoTGJLIKqxZ5xqQnyCs/4xsppT7Dx+hEhqyBVcWLJYe/UOhd5h4s9mmcoCz7swHU8vnzBw0ffos5HbrdbmDO6nMBvka5Hm5KlaqXUineBELcoxXRZnG+646/rLH1y/NMabgX+j2Ku6P9cVf8i8Laq/oYtDP0NEXnrH3UQEc6NEtxrK+RiaNfltmKeCpdkZbuScwi78qiVs3/kqpzD3lVsSHFn2qB9v162CFlrH9c1a9QnL8LohPcH4Yfveu7IjM5oUqfcxHb6gKNytwv00dN5kwZ1Eki5siwzYwz4XDjsZ+YFdm/cMYw9Lx8WHvcnymlh7DwhwN1tYIye6Vh4PBSWIow3HbvdBj9Eknj2c+E4HYlOuO0jSzK95qiVeckEHINzHFNi83THO597yn4pfPvFIykX4tBT6szWC7fbjrubwOG4ULqO7Rs3PBt6NkGZcs87f+BP8JWf+TnCeNNyCBeDqJqbh52awZ7Q5UCeH5mPDyz7R+bjgWU6khdrmLDa5nWzXL3fayO7zhNDS5p/rW2SrFQ/3NVkN+oftVJdU3hzHnUrq6Rt9WICQ6yJzatWdGd6IHA1oc6vvYaji2sGfdWNbxGCFtOWqRbF1VpaQ4FCKJnQbxDtsIo/hfoK8oSMz2HYgn8Oh3u0HC1x+ft/Abe95Vf+7X+VOn8LrxXRQklKjo7dTY/zTRckFVQn0lxZUjX8GJNbpYLHtE2qCsEb1xofcN6MV1ahLAtehDh05FJJCaKPVOB0mAkkNp3JsNZs8IZzq8hTwjnPGD1dtJU0pUrK1iKs6zvAsz8k5mI9KUMX2R8TUxMgkZTovFJ1wYXAuNlYteVhQbAGBtU5SlbbKJyzx17qGQTDOyTE9p6g2cgESCIQ7HMuWLNo4QpyMUdAtVBTBoG+G6w4SBSNAVgQ8dQqTNPEw4sXLKcjm+BwJTHnuUGIHoe3PELXWcI9ZZyX1kXIN3tXW9S5wr3fefzTGu6fVdVfb8b5/yQif+8f94si8ueAPwfWA+6yHqyC7cL6u8arbWgztmcfXNU6mbNij+f/4M5QSntt/Z7IefGfceurhWoedmMeyOpXCU8dfO3W8aPPe54GZT4qKSm5CndPN2yjZYRun47sto7lkMhFKFlYxLQgSi4EryyzoD4wPh1Y8Hz8wYFlWgjeWi31vfD82UhdMo8PM4e5oD7w5PkNu9stWSJHrTwcTuSlsOkDnYeHx5m8JPpiOslvPN3x6uWeOTjeeesN+s3APmU+3s8sBWI/Mh/2DAJ3u57bbccpF2Y8Q+jY9J6b0bGfA+/89J/iyz/zc/hhy2Vba1vqWf7UxJ80ndD5wDI9sBxecXq8Zz4cWOalVUA2LRFxr0VUq4ifinl8YB712dtuMFaru7yaG+vzu+Q+VshMqWdxpLMn3ppCn+eZXOzzWd9g3bYbs+Q8f6/AvUvRWHuvXV/biiy5JSbKoNU6uGgr1y8l0b/xPsQn6PEDnJ4MyigJV57C+BR2T+HgoOxxMfD27/kpahz4pb/8vyLsvw7FqG1D54nBcZoWsiodznpsliYoZV0aIGSOR/NOQ+dbci/joyV9nY+UhoEPXcRRWVJGvSeIkKeZPFs5/dAHglPSkgGh60wPfamGbQ+dWJf2VKzzjfdsdwM+Goz0eFqYlkLXd8TOs+RCcMrWeXJVjrPh2QpIhuITuhTDymPAq8d1ELxv0IgpAK7qnrbPGxxaKtSc7FF7uyem2Q81C4jVB4gL1oCB0rrSt5ZHGN/bgzF2xPDwnAvLq1ccH/eU4wO3uw3RBUumdhuDUFxsjJmmOrks1sBBFFhwPrTCnwruMu+/2/inMtyq+uvt/z8QkX8d+Eng2yLybvO23wU++C7f/YvAXwTog9emZd+YY2vS6CI1tS7AteSd9gnzmpr3faldBy7Y+LXRb9+w+/Uar/v1dmPX8IqgRJQvDJaAfH/neWsUqDDlTKqerrfMdnGZ221k8JVpn5lO2XoTih3ntCzsdj1pznS7kYhwf0gcphN1TkSU7RC52US2g5Cnyv6YOCXoxp67uy1xGFjUcSzK48FoVttxADKvHo6QCz5b6PrGsxtevTwgfeBzb+6oLnLIMKWCD55xVJhOeKk8fzoQvOOYCn4Y2A0dz55u0CVxv1c+/wf+FF/6fX8Q12+uNrSW2qsZSjJBqDyhaSLPD+TjA/PejPZ0ODQvu1HP1NpMtcoGLr3jpMkGtCcsDQpr2DeIVUCqnJ+XjbWYBi7Uv/OMazx9ExQyukU5y3pK0zlw6LXTzZr7WOGztVDrPNfOzv6qA3nlrV+dm8ZMgHKhNVZrx1U//jWGZyBlOfspqgVOFVcWZPscdnfoEXRZ8GHD53/0Jwmx45f/0r+E3P8q28EW+v3DkYoQO8eSE4LHBY+2dl7gOBbhVFpxSq54b4m5mhWvFbzxwPtgRtg8ZIOP5rQwnyaCKJveWs0djwtaEuPQIdKhAsMQieIRVabFxLOC9/Sj4dlzqZwmM5rjGEGgJMuLbHuHiuc4V3ZDRIjMapHmolCq0jkzXlozsQrixSRna8L7YN3oMS1wnG+VkkaXBHBq383VoDLvA0UNspNoz7WWQueEsMo0FFNgpFYr+nLWEWeZJ3KFOu/ZDY5h6FE8JQkhRqQbmlPQ+Pd1NtqmD/gY0VIRslXo+t4qRv8R4z+z4RaRLeBU9bH9/QvA/wT4N4H/FvAX2v//G/+oY61eMxhS6M6WuV5CaBpMcknpnwPV1epfQeLN01mLBbQ5VHIWhWI959oth7bYGlZ67nepwjYIXxkc3zM43pCKy5Vptq7UsesQ54lDYBuUu9HjxbrKlKrQBfqho5IRF3j69Jb7xxPBeXIrlnFO2To4oOw2ged3HcG1dmCnAs6xu+nY3YwQOu4TPC6V43Sg5sLN2HE6nJiXiZ0zIZ3b2448Zz764J7N7Y5nt1uOWdifFk6HiaSCc0qXEt7BeDNymhe6vqfbjAzbjqd3N6TpxONJeO9n/zhf+L2/HzfsOCfwDJcCXT3tubFGTtTpnrR/wbx/4PjwkuloUYH10dOz12x3+VKpdi71VTPYtZYreOT8cNvzXp9aaJDNlWH/5HxFWpR1SXwbslFQLZbQdB6RcJkNYnPr2giLimlViMEqq3bNShe99vpXupOs1NP1F5dV/CpQNKP1gTn9Er4bCP0WpxXRcA6ZpRZk+yayeYKKR5cHCJ63fvBruD/73+Hrf+V/QXrxTbRWYjdY9CiKDwoSUXVGy1M4HjNFlW4cOC2FQEKxCsRalVGEKBk0MJ1mFOssg/OWj0iF7RCRRpctFZyLCFYtXGsiBmuSnLMyT4lcrTnCMEbECfvTiZSx5HnT5E5LwVEIYuyuqWlpD2OwuCpPDNJb4wOtRAmomt57Fz1rT89czEDGILjgqam1KyzSKK2Nulmt0EicOQm5Wqm8F4vKrAlwaFFbgWw5G/ErRVSsQUKaCV3kydNnpC7C/IBWE71TEQpWd4GukUACMXbMqjtfa7VyAZ1xQUyf5+ykfOfxT+Nxvw38620RBOBfUdW/JiJ/C/jXROS/C/wa8Gf/cQ5W6wWqqG0xrAtopd/ZRF7/00x543evi31N9Z/Rocv6YcW7VR1rYU5rVWrG/ewzNbRdlLc7+OGt57mv3ERl13miV6LDqq184SbA7c4zBMd0KOTBm3peZ53W07ww7EZKrhxOM31w5LmSaZ0viiXmnt32PH+2oebCNC0UhG7s2GwCsY/kOHJQx6tp4XBaGKKnC8LHHz/gcuGuc0jIvPFsw+Fh5uGk7J49YbPbsp8W9vPCw+ORaa6M0RFqxUtld3fD4XCiqCNue569sWPXRU7HA6e58NYP/zxf+uk/hN/csHKotWEKVQvS4BGtCU0TZXpkObxienjJ4f6e+Xi0cvW8MkPKOaehjSIlrV8jpcEa62bb8GuhFb6sHW6QpmznqU7b6649f7166Otr6+ZuHrPt/6uRVWu6UAtFzAMTb97mdSOPc7QmsLbYs9fX38XVnqHnY1+GnI9iCczUmhabk1GrFRuFrifoaEdRAQ7oviK7N2Hc2SHTAy5uefMHfhjJ/yK//L//X9Knj9rRGwWvFeSI11aObaXeslSmXKxbS6v8dQ66IGzGAFqZTjN+6IlDz1SEPBckZ8beONXLYr0brbWZOSmdd3Te4bSwLNYUWFWIQ6TvA1phfzCK6jAOhOhIKZMXuw4fnMGOKWGUAGfsiuDo4hbAOs0rrRGC1V20wmZA8KGpZFaFouTSGixg3XRUCuKiMTm14NRDgEptNkiBhA8OFzu8N5GpNXehuVJFqTmTlwmcmJZ6nakkUgvBXOgIfgTXorN2kc4HfNeT5hO+JOpCE7xS6jIRgslZ1FxWy/Qdx39mw62q/wnwo9/h9Y+BP/pPfkA5z32gdaG58pybhyVn74Zz9eK6OK5Fp64BFQTjSHI5zvqJc4d4WcNb8+w2ovzAjecro+fGKYPzjF7wVDbR42MElF0PNzc9miqPjzP9zQheGG9HpBQeHk7c3W2sm/iU0VSo6tjcDqQlM0+mMbzbBbZD5HRYyNlK73e3PcPYU9Ux18CheF4dJ9KSeNKbl/Hi1QP1NHG76bm92eCDKQROBG7fvkW848XjkcNpoovGSrnpPLE2oaKbGw5FIUSePd3y7jtvEMkc9k24/0s/zvt/6Bfobt9ouNua7a4GN9TSvG3Toa7TA8vhY04PLznev2A6HG0hNjzbtuPWBq4hIyZj1+CxtqFekoHNC28frmWlftniNabIWp5u2LUJBbkGgbSWZroa+vXJr765MUAseDC8sVYx3LjJeMpKEUWbZwmrhV7n25lifj315OqN88Ssr31OazbD3aBA1amJbGmrBLT77RTYfwCbN5FxZ3crPSLdlje+9mOk07/Ar/1b/zIuv8J7b11t1CpKTeXW0/WtCKQoW7GeiGTrDtP3ge1Nh1bH6bRY3woqOZkGt8uFQDFVwUJrtRWYT6bW2PeOPpjLUxBUHN3giZ0nxsicKo+HmZQKm02HEzidEjUXk2r1npRMnjd0AVVHylg+KFiThLSYAJkPhgcvRcmnCc2GHVeMMuwlglpn+HnOlGp9JNe55Trjn5dqkYlrmt15mSharaQ92HWLgJalJbcDKSXSPFOWI6qF27sbPJV6emzMFo9WwTmHjx2+i6TjEbDO8D546wqlxinX5phozm1tYdW4ran5dxufispJg5v1qjCCi7Feq9bWz7ZFc514Oi/EVSdbro+9Hrd5W6uxWIX1mylRFXAQqLy38fzY044vjYIuhW0fmE4L01R58+nQev8t7G46trueNGUe9gtx6HC5shl7pv3Efp9xAo+vjGK1TBnfd3S7nnlK3N9PjL3n6W2PF9OjqBWkJXDG0TMtMIWeh1R49fiAKIwxMM8Lx1ePDChvf/E5vhZOx4n7KRGf3LF7tuOwZI6HieUwkVPCVWUnELSwudng+p65teJ6/vYtbz+/RXNmPyWKKnX7Nl/4g3+c8fnb5sV88qnVgnWfKUjNlGXPcvyY6f4Fx/uXzIcDeVrOJeuOlSu9PlfrySdrtKTN26a9t9JIritmr6EyMVrVRa1gbUFlc2TVzrZmstGM8Jps4vq4F6EpG624JSeKZpwL1jBh9fRXw31JgjSOv2KF1461qGdlu3CG4YTzj+Xyp2qmeuz31AsjIqjgol6468cPEZrx1gxlxnU73v7x38f88Ipv/+L/jro8GCOi6lkFMHYONCNeGYeOvBi7JenCZuzY3AyUWpkX64zkvOHDWgtRhZJnsiqinm7sCR6meUbUjH7fmcCTisPHnhist0ToItNsLb185xi2O0rKHI8LaLEeleKYG4zW91Yin4tBeeqktUyzNe5iNAhDwJXaXK1KToVUDUcvBYpWUnUNL1Zq9WeYhFLPsbZWKClR8wmnVgnpnVjiU8RUKVUJMVJxpGXmeLinC47tEOmdzZMcejKOXM0JcCkDJgpGk4Y1v6Gi2bjf5kwKpVREKuPdHbiR04ffXJUHvuv4VBju1Xd5Tfzn6rJtnayh7ho6X4emF+/nyjnj3NWk4aWKYejmydfm0LXSZlUGge+/jfyep5G3N475uNjZ0sLQKZvbyDBYRdams8n54qMDFUcRuLkbCE54fDWRqmNK1ql9FmsOO44jNWdevjhQSmW7Cbz5bEuaZ5bZ6FD9tmOzHRFRDvPCIUceTjPHw4noHX0M3O+P1NOJnYdN9ARN7A+Jhwz9G0/x/ciL/Ynj4QRLQqsSFZb7ic3NyM0bN5xq5XA4Mgbh8++9wW50TPs9S67UpZCl5wt/8Od58uXvQXxsnsH6QK5x7aVxkReW00vmx1cc71+wHE+tG3i+eNpSmxCXhatnVseZrdFghLUY5uJz2iaxQhMri6NBY68hgetGvsIZpVAqVpEms5WJO4/30TYN51kLB1Z99UusVqE4qmYoGReiwSjiz/djJaWspxZpCddWxLUGDec/1nm8as+zRhhAzuBtjsoys6biPZVrjoEeP0B4Cxnu0OMLBMUNd7z3M3+Y48ff4vHv/jum9VIytRQsx1gIRCR4BCXnSi2FYQzE6Hk8LORU2GwsEVcUq/gUo7qqD/hoHdadd+TphAOe3A04F5mmhaUW8+q90kWDtY7HzHEq1sZu21EKTKcFESV2kaV6DgcrZR+GQCoNBhF/Lhuf55mkMAxba8+WDNbyTuj7gIuRORXIZrwrtXnUNq+8N3ZN9R4fOko2iNLHzhj4yWoNYoxsukgXI76LVuae7HXBs6SZVApe4GbT0Xe2mRuuTqv4tFJ5cqVIASbEe1zsbN4URaU2uDazKmXGLjLudoTtuyyHI5LuX8MPPjk+FYYb4BzFXkMcbVyQwQtOLVcG+zqkuJS/y+qsXY6mciljX6ERNUPwLMLXbiM//DTwtBMolWfbzhTEguPp7cAyWZ8577FO1QuI89w8Hbh9uiMvM/tXC1N2JKn00Wof5qVyN3YtgVIZoufmScd2jMzTQloE8Z5xF9juBlQd+wWSj9YlfZl5Mg6cUubFqz35cOSmU3bjyHTK7D88kGPH9s1nZIQPP37guD9R50yohbttx3wqaBfYPLvltCSm04FxHPjKV9+mQ7l/8UBKxumdToXnP/x7eedHfwLXbRAJV0/iApFY9UWmLntLRD6+5Hj/ivk0kebFeMG1SaiqngWm8J3hhShSlUo5G7kzHxuHSDYMeCV7yoo3yvn5mY30DT4pzWtuLBFZE6CNXkqlZBBpZcXikNYRXHy088rqHbdf3DxXgLrMqA+mxe0Ml78kOq/L6O33CjQDL6ysmbVQ6RoXvMDiar0zUZqfeJmjtO2lzXs9fYxsniPDEzh9jPiecPMm3/Pzf5q/88G3mb/xHzL0PfO0UEqiI7IsBVKiVLvO2Ak4zykJc1Y6H1Ax/ZxAJljfBXJJ+OjZ3u5wPjBPM7jAuHFE5zieEksudF1nfVE70FI5niqnOdMPHcMQybmQ55khKjBwzMohW9Q0RpN/pSrVO3IVtJpi3jJn42ovGbdURFs84pzpkgRLTksILKkVsogVAgUf8OJoNbmUvGCcaqXVK0HNeC9ses8wDkiIpp2dZutoJYGcMzh4493Pk+9fEHWitrZwRUKTGnaoBBO2EgUXyKUiNZ21YCSY1rdmi2a8N5prKTDvHyg1EPpIqcNvaS8/NYb7kty5EKqACx59jixfN+j2GtdLpmGSck1Aoapamam+/u3eKV/der4yOr6wEZ51HueF3ilDB/iB4zHx4YuTfd7bjjr0kW6MPHm+o4rw6v5A5wLJB4qHd5/fsH9I3D++4sm2Q6qVsY6j43bsQJV5ypTqiBvPzW3PMHbsT9agIEsk1QWphc57Xj0eOB1ngipv3PY8udvw4sMHMkJ3t8MPWw5L4fDwyPFhBlWGKGxDb4yBEOjubvjwfo/PC0+fbvn8u29CLjxMC7VVyE2HCT+8yRd++ufobp58gk+qoI2FUZMZ4nQinR5YDvecHl4xn04mFJWaPomhHkZ1S8dmZCNVp/Mm+loBzLkz0YrvXm3WDZ64ftbaqiEv7xm+baL4BsXgTCTfDL6FyaLFGEapUJeE+MlYJaGzDuPXxVnrdFGBmsmpNCXAzsLgczRi5tXISnpVEr9OPGkbkb22znNdjfq5sMjK4KFwpsS2oiEnpiEpckKOH8P2LWuVtphsbP/8Pb73T/xX+eW/9DHsf4M+gHcd6jw5VQ4J3DgwvPGcuVpJ+rNnbzPdf0S6/4iiGe89viTSZHmO2Br+1irGonDQjREtC8ucUAq7m55x6AhdZFmSyTEUk/+NXUfKttF3TlEfORRHqhNj1+Pj2J5xvDQ9mGcjJBTFilM8aVlAlCFGW085M6lAsW4+17ZjveOlFoJ0xDg0bezF3i1WFu+cELRYd5vmYTuxSkx7UI55OpFTYjMIvc5IUNJcycVohqqAt76W6hRtvSxBLNKrGUqlNOhOnSAVgiVqLDGP53RIdOWFQXzBXyin32F8egz3JaY8ey7awuALjm3vXnvjXoQqLYHDmmTUtlOaZ1OxReSlMVYQvCifGz0/sA282zmedbD11uhAKoxPt0ynmeU4sT8YDgiKF2E7eLZvjNw92/H46kCuynYceHlMbG4j795s+eijBx4eF26ix1elG4S+9+xG0z1WMU2Ezgd2twPeex4fZw4aWKonpxNSldOc+fj+QJ4SY++NDeIdh6WSxw3d3S0IHA8T0+FELYVx8Lz1dMfpYNfuNwOb2xuOp4W6LHzu88944+mOkhfSUqlL5vTxC8qLEzILn/uz/xy3X3zfKr6uw7W6NuZddUhO5HlPOt4zPd6zHA6k04myJINImuKalExdDmg6IXGHSLLnu/Kw5cztgaYzoiu3e22yzMr6eR37k4Yja6uS0kb2V/EUucylSxeb0JKOHpFqCwmBBGAeqTgTIPIhWv/LNWg9ewqGU5bWxZwQrGJQoMV6Vwb69bm9ho/Skq9rpyU9Oy7a2nCZpnVhOX/PVPrWRCkok3nbm7egbqDOSH/Hs/e/n/d+5k/w7f/bv4ZMjyw5Q9+zDDd8cFzobm95+vxNCCM+dMzbgbS9Ibz5HvF0IP3GrzBNiZQy2+3AsA1khGV/sAYcYwelNihRGXcjw2ZAa2F/XEizFa5sthEVxzJnPIlxGJiS43icUYGxD4QYSNkkU0u1+oIlN9ZNrdZMGCvdD6LEaNCOFItHliJIrg1UssIVH62Bg5RCDHaO4AOqQhIlpYRTa74RvWng56JM04mQEzFn/LDBh0jOM6VmOlFcEQ4ff5OsjqId6sE3KrIg1mXeK+o2UBs7Jpu4mlTIoaCyNNaSQIyNJapWmOOjbT5q3vpvNT5FhtuGzevX/eqVftUgTdZinXUtuFZm6Rpn1rnrELYdpWGLTiCgfO3pwA/fRHYUeqc82Xoiat5GbIuaigvCm29tkKqMrQvI07du6TaRhxcP1AK5OmYKN0OAKnzzm6+oc6LPiRg9N7vA7S5YIgZpzQAU7zzb7UhZFl6cJg4pkpxS0kT0jv1+4uXLR9Ip0XlPaB5orkLBE5/ekIpyejxRTxPzNLMdOobouX+55/GUkXGDDz3Tqz2BxHuff86T2w1pmfG5UO/3LB88II8TMlfiV3+Mz//s78f1I9dG23ilDdvW1v9xOZIn87anw6rwNzUho4q0LuxarfUYilXF1nzBge3hsPKrLSFdz5GSwb96Zv1caHhN1+Rs6O3Dtgk07PzaeFYlS0bSDCK4tYO7F7zrmmdunja1UEqmpBkXuqYP7Rs7xZ3nkuk9Gz7rYrgkWNak9zpPz/NQ2zVzfuNMKVw3nTUZ3zwW87ybQyJN9tQsP1oFsofp3vDu02zQ3vicd3/PT/P4q7/Ew9/7m9RhJL/1Je5Thl6JmxEXHLd3IyqmGS29hzHw7Ktfpv7gT/Jr/5e/zHj6FqHrWIpBGEPnCMGTi7K03MlmDAyDp1TlsLfXhjHiG288LQuOQoyBuWSOczX8vDW2MCVIR8rJ2qxVpR9uiP3AdDyQlwWPso1CPwRc7FkKVKwXaMozkqxgpaI4V4ldZ3YBK6IpORHEGRXPKaUuBDIxRkKIBnmQsE5N5iVrMqlbEaykn0wqcHw8os6b3jaCc6sgmuK04kMgaaXUbBW04qhi+iOkxcr8IgZX1Yp4T3C9TR1fca6zLj7bHS5239VOfmoM97lzRLsJZmTd2WADlw42zYI358qCyQaNeOcuFr15aU5aYQ/K4ISvjI4fGYUbFja9581nI7uoDNsN08kakXrN7HYd3nliL/TBstVd55iOM/PxhFdhKoqGyOAy+4cTL/YLT7aRTSdoDOy2HXe31jw35wrBQvlxsyEGz+HxxGNy3M+e07QQvNA5z6vDxP3LR8pxJjhHH4wuFbdbws2OvCy8+ugV83Gh00qu1RrHTon7Bwv7FU86TozLkedv7Hj3c+8iKpTTEX84kj94wfJyoWYlZSGNN/zgn/xTjM/fso4xF/C1YdD1XCGp2ShR6bhn3j+STkeDSLIlxEwQwoSXKAUk4vrQELEzYsu5tFwvtM/mhrQKxtVFlXNDWMO3VzPYvG1thk9WcV7z2laq4WuMovXfbX4kmQzvbi2tfOjMM1dPqZWarbuJiz0+9Jw7v9MofCVZyBuKSYe2CELVr5P1CraT1+bnNRZztU2ef4+FywuFVvJvkx3vrLpQZEHTvbFe4hadXyL9E8KTz/G5n/sv8fVf+SUeygFP4CRKHIVujIbZasH7yPbmOafjIyVPPD684P0fep+7L/+P+Qf/67/AtP+QUJVdZ95uKoV5StRarDpyCExT5rRYl/pha8U4y+mEqtJ31v3mNCsP00ytQnAGOVmit+Uw1ArvBMOhfewJMVDnic4rm7Ej9gMZR5lmSzCHgA/KfHzECXRdb/ZAwXmDiIqCYj1mXZvDAWuVJmpYfK7Zsio+4IMVxCyPBxDYbAYohVyLUf1oeYCilOUEOyFEQXJCg6fOmZItr+N8RKI3GdhlQnJBm7Z9xairMTQsWwtkpWgBqXjf438LaddPh+EWWqGDnl1pa4rQdIL0stzWz6teqHwr3W813uL0jGsLtk46Ud7oPD+yC3w+Vp70ytB5bu9GbnozGiUXckrWscZbuWpVq86alkRJSkrWO7Gkgut6JHjS8ciUC3MWngyBjbPd9MmTge3GOLWLetQJwTk2m02rICu8SoHjqTCnhSAm3POthxM5Z6Yp8c4bW7abjof7E+ocE479qz11WagnExJagJtnG05LZn9M+KFnO25IhwPb4Hjr3ae88WRj4f39Hl49IlMlHTKnWdEQuPnqF3jrZ3+Ot3/vz+DGJ1xw2Yu3rdrajeWMLhN52jPv703pb77ia9dsXvVqcIXW3Z1zWHk2ZKynatROzc2wuVacUjARH/2Evavnr57DsNWQtn8K0tgoa1k9GGXQoiltALxIE/Yps3WDcbNFbTHgQ28iQOJNdtabNKuPPYiH1rPShIiMthZCD76dk7Wi051N82vSDHJB9M9dltYihXVJVKU0GMeihYATj56TskKdX+KG5yDRKiv7p9x+4X0+9wf+OPv/+P/JszffBjFmhHdK8I447BDJxKiUYWCZrR/kN3/pb/Pln/3neOsX/tt89Ff+p+xY6KLlQDRVOi902wHxnsf9xDRl+tG60Ys45nmy6MCbEZ2myuGYSMuCEiB6hsHTDT1g+iGlZLxUfB+Z1DGdDkQqN5tI5w0eSotyqpXjrDi30McBFww+8s7TdR1Zi3XJwVnjarXkp2UEZ+Mp+UgpCa+tXVhOdF0Tjirl3AYtotaFKZlUrB96xmdvk7KSHl41gTTbsAQhL7MlPzHOtzpnHH2xjj/4YHoqztotBm/l/6gnp9nmd5ur6XhAV8fnO4xPheFePaQ1XF4X6DlkRl4Ln8/h5fX8v4JirfCgSbAKjA6+sg380E3giS883UQThNoOvHrxyLJ4jlMCX3njSYcgvHx5oBthMxqJfplmnMI8zSgOH4TT3vozLrkSnGd0tkFEL9w+6RmHwLxkq+5yEIfIpkEjrx4q++x4PCakKlHgxcOBb33wiFPY3PR8z1feJI4duSpv7gZyKuwfZzZDpOs6Pjoc0BB4+vk3OU4Tjw8LGntyhXI6cLuLvPW5p2w3kemjF9THhXe/8n3M7pt86+9+k4xn95Uv8vmf+HFuv/AO8u730T3/knXzmF6dEeU1YaZrv8eaKenAcjSjnSbrWlOLaT3rqnTXtByc7+0Yn4BIzI4393k9x9ktNoPddmk4GzYueHDDiC+PvskM4tux7NhS2/cRFKMnng8rqz2v5+sxLrWgOZFkwgdjkoTQQzCZ1pImXBwJsQPnL3UFJZFrwTcGgWGW18h8qzdod9Z+zzrLufr958lsC1it32VJmMfv5IJ3i0MkofM9Em+oyyscBRme8JWf+CmO0wvm+UDfC7EbGLqR2Pd03pHmA9P+FSFEiJ4pFx5e7nn45i/zhZ/6E6T/4K/Bt/8+SylosTxR3xs99NX9ifm0sL3p2Ox6ypKZphOxE0L05CVzWizFGrywGTqqd2f2ifeOeWpNllFCDEjfoYs9yzHA2EcKjmmupApFC+qUXJSQEsFHtts7pCaDHcSxaLKko/fMOKbDI2hl6K2ysrRq0apY4lArEEx6t1bisGHob9DlgDpB1VMFPJ4QHCpK10VEhSjmjBV11LJY5OC9wUHFCqk0lQbnWrVlGEdr7CCKUxOOK3NtglbmrKRptsj1u4xPheGGS6B4xjJp8EdbmKvRbmu4edLWf9DJxdu+TmAFgfc2nh+5C3yuh57K7Ri5uekR7/j4xZ6chOOSiJ0wBDicrJ3Tze3I7a1JZC7TQp6Uac6E6FHv2O9nalWGMTBGYTsEYrD2Vbe3HV1wTEshF9P83d5uCUHY3x/Yz45jcRymmSFaU4avf/ueFy/Nc//Br77D59/e8nDMZK0823XsX848vNjjFFJaOBJ4lQQ6wR+P3H/8yOmwMA4dvSibpwNvvLFF9g8cfmPm+ee/SLyBD/7O3+FwKAzvfZEv/NgP8vaX3mL+6Bt88MtH3vtdfwjHjM7zJfJp9702CqAI1HQknw4sh4dL55rcGglohXotEKZnvFaaFvGKVV8MtjMdCDEPxc7a2CZroU7Tu149czlXMtZz8hmtjQVjYgamGNG+g3muZ0+8nV/VIgOtV+5Dq35Y+dc1ZWrJ5HnGh2g9JUO0fphpsoq42DdYpkWIacZpMeaJhLY7rAU40gx6M95nD+SKFXHez7SpYZrXJqLU5KjeW2LUJRPkqh7KDD7i/IAue2R4yvD0c3zxe7/Gr/69/zeqlS72dOOAiOM0GYa8zLPpTaty2N8j5cS3/8Hf5o0f+uPEJ2+x/8bfJaB0QQjS8OzjRF4ym9EzDgPznDgdZhAINZAmq4p0PhL6gVxMSiBGh2ta2WVZmlyqQ7xVwZZlphehH4TQmEApwykVtCRCcAwxMGki54ngHNU7go/42FGpdIp1bY+Bms0ZMEfONrzoAho8UjLBYdKwavBGN3Q4Z5IMtSU0EcF3AyqwHF7h+g3DdotOB4JfW3hYVa84Z7kScdRa0Na5J/YRH23eeQxRKGlhqQsSNwZBSsAFb8nUYXPNcv5N41NjuL1b8Ry1rCqy+uCcY0oxY33maWNNDdzZQzdDrsAAfN9N4Cfe6njvLnI7BO5fnHBd5DDD6X4mdIE5Z6bTwvPBWgmlOfH0buR2G1iWxJxh/zBxmArjpmOeM4eUefKkZ4gOKQVBiB7G0dGHSCqV05QheGveu+0QCg8PhX3qOGTQmrjbeKap8PUPDnzrowNP7iI/9bUvs9mMfPjyEaf/X+r+NFi3bb3rw36jm83brW73+/S3V3eFJFQIAYYiQEiEDcRxMI4TXMSkKo2/2s6X5IurnKo4SaWcchWpAkxRseMkxBCDgxEYBEJISEJC0u3vafbZZ/ere7vZjC4fnjHfta+4F6mMcV3PW/vus9d613rXms0znvF//o3nuJ1z8WrDfrNnPq/pxkSPphsiyVm01XRXHSokKpVZmczJcc3psoHnr6hNzen9t3j5tffZbTuau/d473f9Fk7fPGX36Gs8/uu/yPWLPXf/6L9GfXImUAU3c4KcE0wQSfEiCeMW320ZuzKMLGndORcmwETNmnBgbky7JluCG1fAyCTASaUzPgQzTMySSSb+LRi1qB5yWc0PLn5Jla4lMTE08usukFOaTfl+kx4g3/zjpls/GAJHhDuYZdscRsnftB22qohhwPoGU0norFaGTDwEF8jGo+wepuMAi4iEXiOnPU+Q0YRzv/76lEhREdWI8kZoi1r+zrqkyodO0lrSKCyT2S1O3/wsj7/xVbrhnGUzR6uEMZouBGKhrhlrZCEKHqsU/fUlm6/8NXbPPyCHhHWRylrGoOiGSEZzcjyHnBn3I4FEbQX7jz6hTcY2lfCWC5atQOwIUmLc94L7akNVOXQIhBikg7VF/JISMRrGiHC8Ee+VrDSVqzBGKJ9aleAGBZV1pOL2mHLCjh3GQlXN0MVr3Gor4R1xPMy/xhSYO0tbwpfRBqwhjmLCZQq8p4GqacmqZvR7MorgB5KSpCA9ibOUJsVBdmZaoWxNXbeFOCEeQcHUpBRQsYRolwAK6yyuaWUR+A7Hd03hhhI/VR72iU4lDJLJBbB02QgmrlAYJSdi4vumlFlZxfcsDT98r+LBrYp7p3PxunYV88ox7AeuuoAZIqta86l3TzAxyNfeXqJipOtGos9cXXckDPNZRfSeqnGc3a+4fTpjv+5ZXwleOl9UzGeOsY/4IjWuGstsVjP2IxfbSNYNQWkWM4VNmRcvrnnycsc+RD737gnvvHOb7RB4cb1hXhvCPvH0yUtao3FoNiME6+g2veDSRzXdtsfHyKKG1VHLSVth+w79aIfymS6PfOPJr2IXC+792I9x/wvv4C8+5pO//rNsn62JQyafvsnp930R7VpAMPzXANZCsRPsOoY9Ydgz7DeMfUcYJ1y7eJFM8XGHtbbQ2w5+JFGKd+lkZBhZho75ZrE4sEQOKkMOhUzBjTXr60NHbRGeuXTskytZOhTJqRu/GQSWXompxRV4OR4WlpynAakpZ6R8LCtS6iUswPTEqsP6FlM1mHqGthVkiGVIa1xTFKjlXbM+wH03rckNnDIl6nzreQFSEuWf9kQjSlBtLRgrkIryAkUpC8MWNbtFdXSfh5/9Id7/1b8pxT0Ljda6mrGX3ZVzlrrW5Hyb/e6KbFpeffQY+h1NbTAKfJDkJqMVbeVIOTH04n3S1ApbaWJSJO1ksKYK1TJFdBI/kJgEHolDB1rhXCWF0Wqsqco1yYSsGMeEDwNZCwU2JIhKFgdtrbA2/IA2WrxTcoRUakNOkh6VBHIzWguNsNQXrRVBack+tZpF00rafKFmKiWdOFHE8Vqlog0w5H5LVB1oTcj5sEDnMm9QIZJCB3HAGouyTvKJNeiqIfmR0O9AV9hKwlCUzoz7PSl05LzA9/v/dmDcWuubrYG6wbSnB3W6qaetpEICGKQeKBSJRise1IbvWVk+dep47+0Tlg2cP9tyOVrmc0MdRta7nplRrOaWmYM6eYzNNHXF9qpj8EIp7EIi24qZ0ww+UzWG+/fmzGrNfjPS9xFbaY6OV1Qms92NjGMmGcVsMcO1NV0ngb7JNNRtxaK2hK7no8cXPH6xZXXc8r3v3MWgeHm15/h0yXw249XzC54+uaBxNcEp1rtIrA2zqmJ5dsRu39NtOnKI3J4rbi9nVONIfnmFHrKkyftMqgxnn/8UD3/wC+T9S57+nb9B/2rDcD2Qi3Dh6Ht/kNmdeyjzukISchIHOaY/0ZPHHt8JiySOQ8G1C4Ycw6Gblg5YmBsT73iqsGoa2OWpcL9WlYGpA59cHw/hzxPFrwwYcwqyQ0gJ9MQ5LyUw3RRjigXpaxu30lEruXfUTUHWqgQ36GL1qoBDok0RCCnp4lVWJLGqI4aIHwZcVWOHAdfOMFWLMq6o6nqMS2LlWaAgNe1ApjXyNez+9aUlTQtplt9LIRQ35S3ajGhbkY0vXHUNKYDRcv3CCG7JrTfe4vqT2wQ888UpkJlrSTAPw5aqmhGTZ7laonTi5N5D6BWNCtja4cfM4MVHxlXi0T12HqUS88Zhnbg7qtqSdYUfIxlJiE/jSCbh0Xiv8WNCS848IQJZwnFrZwlJAoRHr9iOiThKYjzWoK07cOxjjIzDiFGJCid7IyW/uq2EFRQmT5IUiMMARoyetNGkBAOA0sxrTeXKzMDWKCQnU6WI1uJMqpRGFdW0igFXVyhd0Xed0BALoSLljO+25NDR1g1V02CbBSoVF0wNuIbUB3TqMLOaen5KSh7jGpIfUHVDNv+tUU5Ow6rCDKB4W7z2sMnfUx5hKeYZjM7crw3fd1zxwCluLzRvvnXCooKnH695uY300WOzdGStg6OjhvlMLFerxqFz5mrj2XVJLFezp53V1DYTySyPLfdutRituLgYGMZAXRuOj1q0VnQhsh8zpjI0bUVWmcvrkXEIaFvRNIZFo7k4v+bJ42s2feDNt0/49JtnXLy85HKI3H1wG60MTx6/Yrveo0zFJirGQbrYxogncrcf0CEwJ1DP4O5xS73eEV51ZA+7mElaU58uuPfFz9NWiVc/99N0LzdEL2buIYihTqxnHH3f92DaeXHPm4rmhAFPvGolD8C4xe83MpD0kmKTU0TiRWCyURWmzzQ4fA3wmvxJcryBBOAAYch733T8k33sBIccOvQUyWMvrBNb2ANp+r7pNax8Wg20JKsnkUof3lNRIBfZph6YSwkmPrbg8wK9TIKgCW4Rq+0Cy4SET5HoR8K4xzYzXLvAOOHERz9gckbbpmAjk6S9hHgc/q9cgwnOKYvORGkkIZCJLx236w/ezllZlBKBFEqT/Ro1u4Obn3B69y2ePv4qfthSNTPaeUPKS7ZRBFFV3YAy3JrPsK5lePExLouj3xi1xGyliB9GQjK4ymGVeIuL054GUUOQdUYlJYkzxhJ8ZNd5Mol6XqOSlnR2ZEeTY2LMgTFlOi+2LSllshb+t8kR1xSvFWPBe3QKaK1IIRJDFHTDVagsDNRU0nRUVlJwlRhIKWvpuoGQEovW4Ex5L4XI6bUR1a8CrSXhPYyBQyIWCU1PtBVogV6MNZAzQ7dDJc/i6PhGrVscDScxka0lbCL7PcY4jDNYU4OuGfdbxm6DUZYDZfbbHN8VhVtgEMEYM0wVXFa6/LpP99R9H3pC5kbxxdOa7z2umOuEiZnFYkEaPY+ebPjk3JOUprKJo8ox7DzzuaN1mhATzbIhDJHL7YBRhnEU/+K7Rw0hZ0xdszqqOZlbLl9sWXcyXT9a1ixWjm4/MgQP1mIaEdnEoLlad0RVUVcGYxSV0Tz+6CWPn2xQzvH2e7c4nWtePH6Kdpals7x8cUXfjUQfaeqaED3rvUcXs/jYDyQycwdnc8V8tWJGxH90QdhGhjETVMbUFcvVjHpm6T/4BtcXG/yQbs5xcVpLETi5zemnPyv+G6/dKEqpkikxDQPFiD70PWPfE7wMJHMO8icK7U7pif5WYBY1uf9NGHJmYk5M9qhCNSyDzYNXSCmhecK3002CTPJkL4IebEPWEmybw3j4uik0uqwWKJUgSCiFSCrV4fc8WFzpqQgL1KO0UBIP50xPw9ObIajcjNNIXEFSpCxc9jD2hH5PNVtSzVZk64h+RGXQzpEO3Xz8lgWBm+WjPPjc7GoKbJRzKAJWT/QebT3GVDJszSJuUUofYuRojlk9+BSXrx6TIuy3e5o2YY1mcXSGVsJlNq5l6HekbsC/fELa9xCFPmiMYRgiMUJdS0za6DWJQN3MIWsihck4baS0xSdFHyRIpCohCxgFtgQwRAlkyAk6nxm6kZSyZEdrSYG31mCsIxHJIQsjoxhBhSSNgs7C+Ag5MQw9adgxry2uqXBNA9oQgRgjCUVlBACLMZGtASzejyKucWJCRlKEvif6LdoaxqLyJCfaxRF6XtNfvKSyGTs7YtxeM5/NaGZiHif1Kx12ooehqWoFR8+Z2O2oFkdQteTeMw4XmLjh5s78x4/visIN03N0GCEBN0NIeYC12IJOQw4y9xpx8ntjbiREoGCaV+c7nj8dyVax6UbOlhXv3JszqxSVrZnPGi7Xgagyu90eVxnu3l7x4umGqrbcvTXj1blgcEczRaMUjz+8ZvQR2xhunbZoEpfXHSGIhWTb1NhKs916dvuMcjVTKocJiQ/ff8nF2tMnxWceLlmpwIvHW9pWvLyfXe+IJKySrL3gZUp9fDInRhE0zFvL0VxTKTg9rnHrjv2HV4RR4ZMiVprZvMZZjTEZf7GhH0IhekwGR3kifpDIHL3zaarjoyKxleKhDraruTA7Ijl05HHH2G8KX9WTU5SCdmiQ81QnS8GcpNmlTZygjjSBYNLB5gJnHAp2vmGQ3MAexe40duBHkZi7uaRmpyjc8kPHXnD1adY48fxz6aq0PvyukwmU0roMh0qgg1KQRV05tdZSxAt2O6WnHMC8cudO5yELVBPKziQMHfXyGFPNCTmjc0C7RojOB/ymYPGHeI8JPnoNCJ/w7pTJKhGDR/uR7AawNRgr0JGaoB4tHjH1MfXqNsvVHa4vP6JeHDMMA81sRfQdxmTAsLu+QBuF0Zbh6oImQWXk9xwG6czbtkXlzBhkdlE1R9i6JiWP3/f4UTy8jXOEDD4GdE64upLuO0W0thgtu+boRxlGll2TVpacxmICldHWiJ+2yqRhAEQsFcvioHIWSMMatK2J2eCHjRAHtKVyCqMSw9gTVI12joUdsQtHSEbqMMWfRGsqYzC6FO4MTd0Qq6L0zBKErK2wXpyz0MwgdKh+w7ypwRqGTuYfVe1uBuBBUn60MVTNjLHb4vut7HK1xiqHtgZVN2gmBtK3P74rCrf8XhMGWXBQrW52ueXmnWTslc58flXz+ZmmzgGVNXkMjL3Hx0xIkXu35hAjVdK89caSRVOUcUrx+Lzn5VXPrVWDQ3PndMH1pmc9Bu7cXvByG3i+GThtLduryPVFh9Ga41XN6Z0FcRg5Px/pQ6SqLfPjBVZr1lc92x7MrIEk7oD9rufVumezC/Qx8ta9OXnX8dF2ZPCQr3a42hKSdGvZwnw1h6phWPf0+56hG1jWmtO24uh0wVHl6L/5CdvnPaPPBKupVi3L4xlGAX4g7EbCEMhRhnMTTBGmrhMIxjH/zKewTVPk2nKeBWqghN4qKZphJPhecO1xJAeRN99QltRhUZXrJTfeYTZxYJ1MA5cphSbBRMXL4YAPHG6FJAo/Kdri4ZxNffBkJo7EOEKMB6hchoyHlp5pCJrJRdRVCuRhUGXJ2hZP+CJt14qsLDmVgZY2pDIIF7g5S3K7UgfPa6ZkoAnXA3KWDnHYe4LvqWdH0l0hmLyuRMgz2SIdTGqnzrp8q9cDJqZzlpRCR0+KVmwGYiwy/IBIPCJgUGGAJqPqIxa3H3L+4iNU39POjsTwv7KF8tiTcqapW7pXl7jYM2sbgg8SYpAjbe1Eaj4MMtPQmuRHhhhFwBJ8iWaDEPLB3iFlaUiUhpQ1IUdUTrjiFZOSqAYFw09iPaHFBGtImZwDtTU468prYfCCQ1caKbRawgnM2FMTcI2lrcU+eLfbkbVhtmxQcY+OPaaeAZXEqJmCUSf5WbTOEBMpBmxd41bHpKwYvRf2CIow9NRaUdUNfuzIYcS4SoIblCgxdWHs2Kopvt8RFUfsvKVZvcnm+TPG/QXeX+NixNYL6todMlC/0/FdUbinY/KqkPSb0nVMnV/pmG7Vmh84anjDZeZiZYv1so2eLy2ro4bQjey2Axm4f3uJzpFdl3GrJefbnuebEWc06IwyjlebAWc0Z8uWi/M9ylW0VrbFnYd5a5nPDMuTlt22Z9d5RgzVvGJ1MoeUOD/vCNpRLR2ZROMU3W7Pej1yce2JIbKcW3znebUPxKTofcI0NbHPWDwrYzDG0PvI0G+4uOqplOKkNdw6W/DuZ+6hN9dc/eoj+kvPkIBFS7OYUZmMyYG42ZFChiQWpSGJj0MuvGGBgUtvupyzfOuhMCBu2uRvGRhOXOocxV42jqN4G4eiGsviPTEN3KZOWgq4FH59gDqSuAqiOHCbSzee07TPykUqL6EIOXlyGAVzBNRkCRvFfTClWFgvNx28wMYT/U699vPow7+ZCvkkpU/F+Er5QzKJNoIblyQG+VMUi1qbG/aJ0mQVX9MSHCptua+FThhGTwwXjN2O2fEJplkBCe1mZQEoZzHn17785rzkw/WRf+uYSDrJeYgjOQ6o5CBV8mBkW3Bv8V/BzWmPTmnbGVGL2tNah2uWDFtFt98RQ2DoIsPzxyx1pus84+hxOuOsnPdQwhacdvjBE/seKOuv0gdqXi4MI5UV2pTdigajDcMwCH09yLMQkuwED4No5JLGJPOMyllZnKOwRBRTQlDCOYfWmug7uj7gtKapBXf2ITAMkTCMnNw6oTGZftfjUeTKCmU3eXkGtCX6JLbPk2YhRcLQI+N2g1YKWwnEk3OQ/64Mfif3A0GcHeu6RrcSSGGNkR3BfC47v+CJfSc+OI2jv86kfk+InvmxETGUtYcd67c7vqsKt8gmVMEdy4UsF9FpeFgrfttZxV2XmNeW49Zxve7Ybj1jo3l4tiQMI2MfqIyhrjXaKdrjIwYML689F+cbzpYNp0cNy9pw3Y0cndTQDZzvIyxmmJSwGKraYVXiaF5ha8eLTaQ+vodeZPzFc1bLhnGIXK0HsA2oTAyexcwwDjCkiov9FuM0WVv2WZOxUCn8GJndPSHnTNp3nMxmdNcdw95zdHyC3/dYBpyGOw+O+NS7dwnPn3H1pRfst5E+ZPRyzurhbfQ4kDY7+sueOEi2Xsq5qKZlmxtjPogMcinOab5gefuuFNHXrsJk2jRBFGTx0Q5exDbR+1LQb2iYhyJY3qPYRr0GHUzf/wamuGGJwLRg5ByLOVWAKOZU024BZaRgZ3VTsCnb5eKlPUFuOUscVArizcyUVRiSJIJHGc4qJ12a4NYazJQeb8hxkC7aaJRyAkNoB1lCflEGXYrUJCY4JOq81vlPgiGF0CbDENide+pFR7U4weQsDJRCo1SvQUe/nriYS0xbzpqsksRlxYgJgRh6dGogB4F5cpLuXGmIAeVa7OyE2eKU9fYl+/0W6xS1a2jmS3xM1Bh8N5CvX3J+fkm3HZnXhvZsKY2A73GVxVVGWBs5YHRR/AG+XBtlLdZo8JmkZDiXUIQQiUlk5M4YYZmmUGDjsttWBp+C8LCtKbheIowj3ktnb6yl0RltK+q6QZEZ+j05ZazT1LVhDHC96zGuZlkbXOzwu5EQM9ma4vouxnK2wDrpMCMXwVC2wp0PvScy4qyWgqst4PD9lpQUxklkWfIjFBMqY+WeTSmiisWtaeZo15JjZNysCX1frnVCpYjv1rhmDrnitYfmHzt+w8KtlPozwE8AL3LO31c+dgr8P4B3gA+BfynnfFk+928DfxIhov4bOee/9hu9x3RjTkOwA8ZdHoOlgS8sKr4wV9ybKeaV4Whu8cOIyol2aZg3luvzDacnS3ZpwNaGo7srzu6fsOk0u83Idv2KW3PDw1sty6MZj55ecvLglLjbc9Fb/KJG7Tq22x23VjPqSrNqRHJ7mWrU6RljZdhdnWOVpFhvh0yuZzIY8x5XVQz7kXWX+PDJtXj0Zhhzoq0qnNVsAlSnx4y7Lcb3NEazXwe6IcGs5vxqRxg65k5z796CO/OK9a98k/H5jq6L7CO0Jwvmt46wBNLYkcdRONVyj0vVKAU8qzI1R/jlZMHUmlu3qZdLKL4wh+Fh6Xqma5Fzko7b90Tfi3S95CJOUKxS0302tZmFoVKw9ZRFbHNw9ztAJqXbPnCvIzmMxLFjMhubOMopi6o1jB5shUL8ltMoKTyq2K1mBWn0DFd7shcD/KkhODwLOaOsRjstdPCcUFph2wqzaMXlLUYU4KqK7KwM02wlvGltULoiqeL1ncvCoYUHL/PNST16M3SccMsYPP3mijAOzI5uSRGp5mVnKVOcaTeSXhvHQ1mACsMm50gKvvyJYohl6yJikw5WOttRsFjbMDu5y2b9ElvXsmjrCj9cCyzgFP3lSP/qFakbmFeK+cxKfJgKtLOaqrGS3j4GgVqsRSnwoy8BARlb7j+nM1iNz0n4/lH41U4bJBBJAg1A4cs9l2IoOzMjsu+UGHKShTvFElAtux2lIIcRZQ11ZbC1wGjj2NH5jHaWVa1otSL6IKwfxCogpSiD6sJtl9tfDK+yv9kJaFPJwh8lxDhZWQiNc7h6jk/gu70oHqsFgMQYWicio5yx2pGGPbay2OqImEQJq1XEOlBVjbGGnDJjP6JMuDFV+zbHb6bj/nPAvw/8+dc+9m8BfyPn/O8qpf6t8u9/Uyn1PcAfA74XeAD8pFLqs/kwbfrORy5yX7nfBK80Ct5uFD94VHHHJFotQb1zq+m3I/s+0CwaVouKfr0Hpbk836Cc5f6n73DnzoLzS2F99BfPeedWxd1bS6q24ZPn19Snc5aLBR9ej3g9Uncbrq56jLL40bOsKnb7yDWa6u6KXQw8PDnG1Jb1Bz2vrgKzRYvfbokhYK1GE3n2cseLVx3ZWSqlGAcxrgmDJ81WVE3i8tU1cehYVobrPtBUhlg7TO1I0dNWhgcPz1jFke2XP0FtIz7CoDXtqmV155jcdYT9IGkzvSfGqdFTcmO8xogooSdF8KGIWbO49wa6alDKFkz5tYHIxLEunXGKI9GPxLGkuU+imYk+kL+V+jexSg7fJ8PBOElNxXqq+JMPSiAPHWnc4/sRW1do4wo1S5EHT7/eMFxt0bMahcLvO/zOT4iymJUZMaGPRTxBVpKAosrvJT8CSkeUCgXDFhVuGDrYdBhjyTmhyQxGYWuHqSt04zDtDF034CLKOjIOpQs/O020waLQzJM3y2uQDQpKiO/Y7UnxGW3oqZdgqtlNjS7NzGFwoBSTv7z8bKW7TZoQR0wMxamwPPR6yu8EkgwAMQva1bEUvpywribnRN/vBcKZnzA+f0wTdszmhTOdIskPtMsZ1hr8GAn+Zk4w7bRCEAqiMUAMxJSKS2VhKCVRIBojfG0fJOFIGX0Q2qUYST6IyM5ZQkh4IIeMUwnnlEBAZFKKaJ/JRoR4dtaiXM12u2e/H5gvl5xUBhMHUIaQIMQR7RqhUaIl1iwnxmEAUxaKjCg0fZCgEgfWGKEUGk3yspNRWlg9xohzoa1kMc9xlHvRGiq7BALO1fjdBvKGlEQWT/JYW5FrETVlYyRUKopU/p9UNn/Dwp1z/iml1Du/7sP/AvC7y3//h8DfAv7N8vH/OOc8AB8opb4B/CjwM7/R+7w+VScrWp35/Mzwg8eOEwveK+paY8lsdx4fEq6qGXvFq2FHDpn9kGiXNT/4o5/m1mnNB1/9hK9+dMXxwnF/5njjrdvEnLm42nLvrTtUWvPR45dUKNo4cn7VkVHUVrZrVzuPripUZXn+4orm3ikxGvHrNRpHIu63OCVccjM/4vLikt21eJAoYOw8YwTd1LS3ThhDh7OGZtFw0Y/oIbKa1+TKYbQh58TxsuZsWWG2W3aPXmJGsY9NxlJXhqbS+Msr1BgJYyD6iEDAwoZIpbNWCuLr263X6JaJTHV8jGqOoF6hYldeVNgdhx16CU0InlTc/3KMBSopTnsHSLd0QXLjlMWgFHDSIeFFGB/Fq6NYwKahIw178jiIn0TliP1It7vCNTW+G9mfbwlDQCkLm7HAOfLA5ywsHG1Ld55Sgb3z67/+YcB98DpRHGASmdmKqi7qIIQSLUUnhRE7JPK2Q7s9tnGo2uEWS3Q7RxkR2wgWrouCT5DRXBYrpSe2iHTUqkSyhXFgf3VODJH2+A62mTPRC79lRDXBvxN1EmGgUHj0OZaCHRPYyUpgclVU5DCgnMO2RzTVnFSoqrFItbWruL68Ir98xKLKaKNkV2tgebJAuZq+68vGSMQ1IcHYjYgVqRF/EYR1o7MipJvJR0KjnCOMnnHsZUHXmhwyPkPyATNx/5W43djayoDdj1glYq4EsuNTkj1Q1Va0E8ay95H9MNLOGhatRcUo94GRATRBQh5cXZW1UKGyJozSteeUiRGCl5kHGnmWTIs2Tn5vItYq0RhHj7EVSoHVMjCPOUkgS2Wolkd4b0VYo5QkxOcrbF0VTxMLWfBxrSyZXoakMX7Lvfvrj/+qGPfdnPNTeT7zU6XUnfLxh8Dff+11j8vH/rFDKfWngD8FYA9pNWJGftvBF1eOz6wsrUpURnPr9pLTmeHRB+fEbCTFOSQygft3F+w3PanJ/Mjv/AKnR44Pf+0jfumrL7l1tuRkabl375TrLrLr99y5dwLB8/4H5yTvifvAxW5gdTzjllH4oNh7T9NUuNoR0gj7jnRleNnvmBNx3qOip1aabT/SjZnx6glKK06OW7kRteXpi2tM3bK8dUQatjSLFbbV9PsrxpQ4WzWopiZbiwme1iRmKsLFNenZGuOhS6BqR20NRsvFVCERRonRyqkM5FISJZqSNI5UtpNTxibTwCtDyKBnM3Eky9OjdXNoZclqkEKTIykKXzjFsbjVFThFboICaxWp+8EyFSZP6ZwFHskTJJNLZmUY6S9fkboeWzvGfiSNkgnZX3cQQWnZssZQqIypqDWVKt4VhhiLqGhKTUK+LhbYSBYVeVtXWZmnlOGTUSKXnqzcjRVudSGXYJyWAhc81hqBJQaPMopwvcUuZth5i5mtUNUcbWuyNkSlil1xEejkBBRM/FuG7pI03q2vIGbas7voesahwL8+qJx+OczhgqacSEkisiar0UOnXQZtaIRdYhr08oz56UO8P0drS8zy/FXNnPXzT2jCDu0qvI+gFe2yAaXpdx0+RGKxONA6l+sS0c7RNBVGye8jrAhdPIgUSStUUhA9KgdMcU7MOeFDxiThZqsi5NHWYK0iKi1MFQPERBg9Wkmaka0MdVPRziu0rdh2Pd2uZ1lrFjMDQXahMSRIIzQO0y6wWuCZjHTMIvZTImkHpgSiHIPg9NGTosGoGp0CyhhCyITY0VTiUZP8CCqIMUJhp+Qc0YiwqV9fCFMJJR25qrDVnL7vCfsNSkVsW/QBxpYl+7+54eS347B822Uj5/yngT8N0FQ26wxOJd5rLV9cau7NNPMafJ8YgfnYc91LFzWbGdp5jakNtTNsrvfcfecW3/fmLWYu8PSbL3hx3lPVNW/eXXB2MufZizWbbuDdz9yl23S8fH5NYxVD1DzbRIyrqJRiGAKdF7/hxekCy0g/GJatxuREHQO522Fipu89A5q9z1xddUQUb33uISkn1hc7rq72rO7cIvqRXbfnzXffYvAd56+uGYaI0wptDGnco2PFqlFYwK079OUOHWBUhvp0BsOI0klW6hQJIRGjFMVYhn8xT3JwinkQZWh4c96FDZHEw7i2EHsI+4JJ34AdWVtymMY3siVPQaKYhOGhy1ZOiiJ5omtKbzVxkYVaKG2XCHGksBBGxusLxu0OUqZf79hfdGiUuKhp6aIjEMeSSh5ElBFCIlHodyoTo78ZTmpVsG9IYdoK5MIDlu4veum6CmhCsZpAxRIgmyImi52C0Uok61ahjSJFX+w3hUKmfcb3W+z1Djtf446W2MURqlqBTqQSfVbGCocFR6nX/cBv5gj97oqsErOTO5hmwc2KW9znD0/Ta6rSJLugFD05DQcmkJogqjK3UHEQawDfoRC/DNsuyb5jtjhivdmzf/mEJZ7gKozLOKMJMdJvOpJSjGXHZZQkp4eQsFWNMgKhqMpgjQElQz+VJJVdGwPek8rOQyt5DUkWxoQXZomRou+sGI2pJD71vc8k73HOUtUOZ5WQB5qGlGHwieADqwYap4gxEoJ4F8WUZTg4V2BqiL0MSaMshEkZctbSGJQNkTIFyphwdL8nK5mDZO2kYSDjh5GULnDGiCo3B8CBFlm9321lrqTFHVOVBiaOAaX2ZO+JvpeMUm9RpibbMiv5Z8Djfq6Uul+67fvAi/Lxx8Cbr73uDeDJb/TNVM6c6sSnas17reK4GKenrNgOmcGPKBS3VhWrY8XRUUO7kIv36mLHG597yJufvk+/vmJzvWcYxJj9s28dM5/PeXXe8ejFmrffPOPy6TVD3zFvKq6uOp5deGazitbBrvPErHFtza2Ht2nrzObCswuwPD0h+p643VFVEt7bZ4VzhpfXW8YEb3z6TXxds+9HLnYjmyHQXexYHM958M49jIPQixthHXpurwyNy1SmwppMYzVu57EXexSKQSnq4wU2DGIZiSb2PSlm6SK0Ai3QQEzCySloyWsYtTwIOQvOLVtMJQ5qzhaE6sa9DzJZGbSuDoZfZOGzRj8KG0PpQ0hFngoEBSpB+vCckYKSEpSEE5In9jti1xG2okTz25Hueg8p4oxBOy0Pm0+EkBgDxJgLJ3iSpYiXskSmKGRyX2TiQTr/mOWh1cX6N6RUnOnKGpWl4xb45ka9mMprDBmdEIl6AuUjlS2ybyueFTpmYQiiRKIdeuJuxC02uONbmOURmXlJEyrnd0KhisnWlACTy3YgRRg210CmPQFTzQ+8+8NcoZztXCSKKokT3gQR5VjEUXm6HhmVvVAeC53SuAYdR2zToKslw/4Koyriyxek9SXNyRF21hKTJiVNTL3A91qjrMOPQsVEO1FLBjG/SmSqSuHqGlM5sW3NTjppsjQqZGyWTjgH8c6e6L7aiKTdx0g/+JLvKNCFs4raaqyzVK3DVRVjygxjwtjMoq0xWawHBAbRYCth1FCsWpVmDEAaMKYi5czoO7StCT5itEOrjNWKVIKyp3tIRFWy4NuqLvi+xioD0eODWOOqymCqShZ+q1GuJXpJe5fuXhaIYbcTJW2ZyQQv1+7gbPDPACr5y8D/FPh3y99/6bWP/9+VUv9HZDj5GeDnfqNvVin44bnmloWZVYIZ50ClK1atpTNy4/mguHOn5eisxXcBnxTvfP4tTu8csb86J0dFv+lZ7wP337lPU2k+eXpJv/esqpaLZ2tap5kvHet95nKQIUEOgaAs9dExx8cz9LinUj37dWTdKYyzjNtrcko4MudXe8yioVWax892qMWS7/3Mm1ysN7x8dsGwGwg+M3eOum04Ol0x7jYMIbFbr2G3F0HNqmY2b/H9iFOZejeiLrakqNgncLMa5Xs0piRryNY+JnDHK3LwjJu+sEhuLvJEP3tt2gtwwxzJGWUk0bz01699fZauzM1R48XhW+RUOLQlz1NYJaWY5F/3vvAaDlt8ulPGb664+NIH+K443FUa6wxOQSoZhcEnwpjwUUyNYpLOMuQidAGBRkIkhcJLR9Sh6IIMpFhgkoQp2oApxUxldfPfIF4TRrq7BNSVxVgpJJOEWhcsOXpRwboMKcoMwRhhVmit0DkTvfhupPEZZnuNXZ3A8gzlKlKSQpB0ZuI7T9dFGDylzKbAsF2jtKY5Al3NmFLDb6ASbuYFWrjoKZW4uJxeu+7SdWddFqgUyCpjmhq/3aFSpq4tOlp2z95nvn3B8XLBsF4LO8fWxJwl59SLfUS5nCILz7qkt2iysvgyELZKCVacNQHB3jOKJKopjFUw+cYUtlFWsmjnHIgZumTpfKA2Gls3ZTabD3/2w0BUhnYl7CqXIsFbElEiwLTGVA6SRU/vH2UmpBB2Siyhz2RFkXbITkHBiAjGbNWitCFSCMtZrjVJaMqEgZw9IQgm7gpEpkF82l2DtkPpXzJKO7mng9gHFCMVEecYSbYfxn/KIAWl1H+EDCJvKaUeA/9bpGD/J0qpPwk8Av6H8uDmX1NK/SfAl4AA/C9/M4ySmVG8OVMsK8Oy0cwqRa0UF7uBmTMcLWsaZ5gva1bLms35juZsxYP7d8gpcPXyBTobnn1yQZ8Up/duU+XEJx+9YrvbY6NisJbl0pJi4rxTNKdn5O0TdI6EqKhqTTNzVGqkWtSsd54xO0Y83fWOhdXk0bNVcOvdB2yv1rw43/Lg7dvcOlvx4sUlT59e0VqH9YFZTjLUWToUI+Pes3l1RR4989pROUtWmhgTJ8dz9Pklw/NrcrYMWWErw6yxKC/BuxmE0YHGrVY084rrp1tCmBSDUng0+gZ/LtCApMSoItHmZgtWOrjXvehEIdFCVZF3r7n6pZsuRpVvMY3Z5N1S6bylQ88xFrVkce9Lgf7ZOcNakkogi80lYsOaMoxjIkbFMEZiViQ0SYnzSVSKGOS1GenGp4I8DTqlKAubREWRpPsknbdC3oOyxdWUKC7EC94UHnYKAWMUxioZOFuwVhgnB5/4kDAKlMqYVF5nhAKnVGYcxCLYDonUddh+gz25i65XMrxMN6EflAVWEtDkpGalySExrK/Q2lAtwNTFcvdbTLfKDiRndCqqyXjDbz9cO/ktyaoWt0cUxtWYlLFWkfpLllXPq4tv0jaGYb+lXS7o1td42zLqiuAD/egFj7aGuqnFO2T0pJgwldgYG+PQVUufpOjFLLvDMBYxFhnxZxW7hJRSgY1EgJRRhJjxKJJRNNkwb+R66KSYzQ1Kafb7PdnUNK2jVgFT1/hhZOhlSK2M4N6uqlAhEoeRsR/Iyotz4OjxQ4/RVq4/AePmBygLPFUlP0vKAqtoY3B1S8aQwkDlNNVsJgSBwR+ol3nsQQeoZ6QU0LGjaiwxCpwy7bZMisLDz6oshhEN+AihHyde77c9fjOskn/5O3zq936H1/87wL/zG33f14/KwJ2ZwQCL2tJWin4f0EqSZeq5ZXXckEPi5eWONz7/FrfuLtmdr4nRU7mGr3/lE6rZnDfevkva73j56Jz95Y5kYHU6o7Ka9bontAsWt1bsXj6j8h7tNHVTsVg12ORxuqLbRy42iZ3v8X3PcWtlaGY087MjXj0/Z1SGdz7/DjpFPvn4FV0fWChF2u6I+55UVRzfO6U9WnB5fs5wvactgy5rwZTt0q3TJerZC/aPr0lBMyDbq0ZD3HVoI4VYnkUrE2c/cvVkQxhTyWLMAptMHTUUnUsxxJErIwU3F5EBqrBDSqGlyK6lspeW1ElXWCSXKcv2e1KWSYEwRaZc3jsnsX/N07ZPoqFyt6W73GCtbDmtFQOnFBUhJIZRFtAYE3svIbYJJPYNwbXLKI/DysGkypRnIcYChyDeyVZpOQUmT21tWYMEZrAHCKLQ1YrwyPuED9J5aQ/OCZ5trcJnoYZpwGZZsHLK5DSJZ/Ih3CNEuT45rGEcqW7fg/aUrBxo6ejJWZiDFB3D5FyoIMVIv75CuxqUFuHGAS7JN/89wUSxWAqkSRyVOdAyKUPSFMlEtK0xKJr0kswVqv0Ul89f8dk/8kfYf+URu3/415kdH5EuN4wqsveWbjtinKWuFNrKHCEkhM+eyv1mDAFkaBlDWSg1gYzOGVVw4ugl4Ugryo5FFrCYFKOXdKmZNbQNmEZBVrhaItE2uxGy4fhojskJ3+3IKTH6kbH3KDKuFijFaok7izHI9UChTCJ6oROiNBolARimLN7JY0wjA3+l0M0MVEMc1mLfag05GyotEE1yS/rBQxrQMeDDCKoWiqgGpxBaK4DWxKJmVraW9PmsiWii12V+ANgpaPrbH98VykmVYb+TAUbtMn430KfM6siyPGs4Pp6x3/TktuW9z79FYxQvP3qKHyL9mLm+3tMeLXj4xl2G6y1PvvGM683Ieszcvz9Dh8irjac6PeH49pJ0fUE1JLwytJXi+M6Ko5OWsRu4vuo530bOh0TlNKdNRbfrwDlGH3n8/kuqWc0Xvu9T+H7Ho0cv8PuR2I3kYYSYuXf3lKO7J1x1PR9+8zEmA0EsJFeLiqQ0brbg9Nac9Owl/uMrhgF8gmYl2KMCtBVmSJog4hzJUTNsO8G/cgE6lHTCWkn3dfC0yOnA1gHIZdCmkgwbJ/8JKYelcBRgAKWhWqHSDpF9A9PWvGzJFab4oJQOH7npRaAjHiOgSb6jf3kNYzx40EihBe8TIStS0viQhL5ojIRRACGUlCNrDgyNEIROmJMUgde/pzFi06lNCU8rPGNUGVIVb2WQ7pxUsEQl3F0yaCs7IU1CZUMYCvRi5GfJDrETVaATVLawaYShhtEZpSLGSIccYiTnDtIzzMmAWd5BgvQSWrkbWEPy1+Q65ETW4H1Hf31Bq2WHprXj4OGtJnWr7KrE9KvkfhaFJbq4PiqE1ZGTFFBjhY1Uz4i55eL5hq///Pt84bf/GPd+/x/mhbVc/+z/j9XZCflqQx/2pKYiExl8IvtyP6aELWZRKUaySofFXZLkASQ9hzAWjEVClrXS6KK+FQqlwqeAdhWNAqcV1shirHUFqS91wrFazalUJCvQbk7wnjgEdEpYazFKoQiEIRG9L7TDyOiDsD9MJQp8a9GuQhmF0jITMcoSkYCEbJyIepoVcRepmprkPcpmMBq/22CWlma5IvQ7su8FT7c1cRwheQwZVZUnpGSXhhDACHvLWYeyjn6nGfdbIL32RH3747uicGujMW3Dq6sepXoe3m45mVua1tA4w3rTc/vdhxyfztmeX3C+H1HZcH7Rswuet957wPGy4uVHr3j26IKLi4F9htWy4fJyJBnL8u4ptUvsHz2h2w1Ya5jXitXpklv3jllf73n2qqMbEz4r7hy35K5jvRtoFzUvn23Ya8Wbn3qTprY8ffQJl1drYjdSx4zxkRwVs+M5Rw9use93XJ5fEX1k7jRVrTg9W6GMxjQN83nN+PgpfHJFHBVDTLjWUdlMChlbieJSFFbysUxRCpZanDMoo4STqoqiEC1mP5P3Ry6OdzmJ6CTLcCTFSOh7cbkrjnMTYJJyxoBAGtoyeU+QNYdcyZwPIoKpmSVD9mNZZaSbSd2a4XzN9unlQbk42WpOHVuIkahEORdfK6raQLuoZTAUE30ntq1aKaFLW4Up5kAadRjyGFejSyiEKNisYPoacsoCL6UMMRCGQBhGYoqla85lYKhIUX6pFEQsE7OCydXTGpQV6taYkpyzCLa47BHKsNAkTCqD4tBhRk8VPWZ5C+olCY/KkwOhJiPD41y8vxUK33fY3TWV0iQr/joZDrbHsmsqatT8elYnoFzZ9eSDX83ENNpebbBPLlj3mQ+/8gnd4xdc/8zfZn72gDv/nX8eVTdc/p2/xPHtE4zdc7Ed2GLJ1jKMipgGqsKA0JUjm4qYMqQgkFUZSFqr0TqBEVqnHzykhDWKIpGS3VSK1FahtcOQ0FbUt6auSSHRjYqqqTg5PYYUGHa74gViUboGVTy0jSEnz9AV1lUSGE6eD0VEhFNV1QjMpCLW1SgEAotGE/Y9GI1WDXH0WDaibk1eUmqUJpXrpfoe52bUx6eE4IndhqqZARnfnSPISUJZjVEKXVucqQgRQt8Bifb0Nu5kyfXHX0GHntHvvvujy0JMfHi+4+7ScvtWzeK0oqqdpERXjjc+cwfnKp5/+AylYbcP7LtEbhq+8O7bWEYuPn7J+sWabszMzlrOKkfXRcLimOXZDH9xzvWzvSisnOH0rOX4dEm9OOHFi3M+eromGIdViqOZZX99ia4di1XL5fUOfbLic2/eoaorLl6cc/HsHBMRV8KYqZ2lMwntHI8ev8CliNqP3JlZ7t5eoI1mTIp2UaHJ7J88wT5Zk7xiFxLaGGZNJdipNdJBpCz+B0m2bCFKB11II5JfZ7SITohUTUVOUwEXA54MItctxV4VmCTmyLjdCJzxLVuyXOTGoJIEJaiDlLusFq/Zjh6Mj0BYC0lkwUpr8rBneHXJ+uMrtJIHKGeBP3ySjiKpTC6FleSlSAK2Fg/y4CWMImWFq6zMcbIML6vaYK2lmtdUs5bZ8ZKTe/dZnKywrcPVMyRsOmOqGqUzRlu6bk8MCWcd+/2W2Ed26y0Xz58zbnu6iyv22510p0DwQDalKJXkmhAJJEwW86lRyVmJSlEpIMk5MsgimimOaArGF+dUfkSfvYGq5oXWF2+EMjkVpguHncWwXcuCpLR8xjgmuORQuLNnSv6ZLP/J4bBbmq6XQoFW+BAZ+pGslnz0pa/hdgMf/I1fxDjL3d/3L3Lnd/0BlDJc/63/lKN7R2hrYNezU1mwW4QuaFuHsg0FwxLKZgyMPlA5i0YTYxCfGK3RVobQfWEdOS1zk8ppbPHYzl5CnHVVk7TGq8zy7DatGXEqELRBWUcYBmLckdVA7H1hMgXSKIKvbGpCTgQ/kHMqaUwZFUd0XaFROKtkwVWGHJJ4j1iLc46sFfgRo2VI7rutLAbYwtnWxBAgd1gDdd3ik8yltFFku2D0AZeD+LbkLDs02wjMaSpSDhAHXD2nWa5IsSYoK/DRdzi+Owp3hntzzXv3WlZnDY1TXF13rB6e8eZbtxm6PReXl9SzlvVFzz7C8d0lR7OW4fKSzdBx/WrHq03ALmrmjWHdQZjVGJMYn73Eb3rBpyrF/YdLVqsl0VgePXrGy81IsBUGmNlMd3XNbDlj3XvW3cjs+ITGaC6vt+wvrkjbETUKfU3ikZSopExNt99Rh0jlDNZmTo5bmlnFfky080qEAN2IeXJNGmDvQVeOxkDs9mDNwSVNRHBCgQgxSCOb0oGmJxBBwbgRiXAcC7XMaHQZ1uWJusdNF2fQ7C+vixdy+havEp17cpwENZmsjXSsOZROX/IbE4J9T5J2gUdkccihZ//kKZvHa5wplK6QBcOMmayV8M615uTBG6wvXtF3HoXCGcHf+0E6JKvBOo02EimntGMxrzh5cJdbb79Ju5pRVxV+d82w2+Avt+yfDQSfSMNAGAaUFZm0Rvjq49gxW63QtaGeLVkdLXj4qR+kWd1ifXVFv96xPb/kyVe+Snd1DSkTfCT6woDI4r+SonikCI1Nk8iMMZGyxoreRoJ2YhKy5BhlMWSL089QJ/dQ1YLDaly6aHSavlCKQ/QM+zW1EUaCZqLFUFbDCbuPRVA1rZJeZNiH/dQEpSX8OIoTXa745Fe/wmeVYuzgw//iFwhDz4P//h/n9o//bmLOXP7t/zdn775N1lfE6w3BzpDEIBhHhSGVSLECkaCKNeskeS9xAkHk7E6Lh7zsHgWCslZJanvuyVZyJceY6Ls1y8UcxyhDxmBIBJL3UIafSkeZm2ihhopToRNmyzBgCpHe2AqnpKkxRDHIKpxrpZXE/aWIc0bwdyM7w+QHeR4mr3ptJcXeahRGRFT9FqsyRmeGMaBjwrgK7Wqq2RI/9OS0I8dE9ENJoJd5yLDboUZPvZyT1BlBnQv3/Tsc3xWF2yl4eNpwdG/BsrVsu8ybX3zIojZcPj2nXs5YzJc8e7Zh1Ip3371D2A189SufcPukJfnAo1d7XCUimtG2qLmC9TX5ciAbw2zmOLkz5/ioAe243kcuNnv2Mg2kiRH2e7oQmJ8s2I+ZXTKsTlo26459F9B+oI5JVho0Wz9ZpmquxsByaYj7QDt3nJ7MMHVFAvqsWZ3MGfadMFw+fInxmq2P6Moyay06BIiK0McDvpVJpCzJM9OAuezW5TUFHxx7j3GKkDxEDkn3qRB6VOGhyqBPimwmcfnkCaHr4DgiQvkCmWQveKQ2Ao9qizbtgQ0yuTdOTBMo3XmRspMC4eqazdM11siuIAyZYRT5cSjsDO0Mxlkunz1h6EdRrqlMCgGSDHGtlgLgrKaaz2iOWm69+ZDZ6QK/3ZA3L3n16Ipht2PoZPegS+iBKp3/FKUGIu1OBUte7/doZTD1OfOTU0IfWLy1YHb/Uyzv9tz5VOC9H/ki1y9e8vL9D3nxzQ8Y1xuCF4VijKIaVGWbnxQYo0uKW5H1azhYjqsMIaMwhC7A+SWkiLn1Bso2r2GaRc06eZ4U2MMPHdptcY0WL25Tkn8KJVNlcxguyzpw6Lvl3smyyEx8vuhH6rri1flAeHlBNRO5934T+egnf4kcAw9/4o9z78d/D7nbc/Gz/zmnn/40MUTWvWdQTggiY8AARlmGbkSlgK0rKmcODUPKiBIzJWyxGLDWAOLSR/G4JgU0luwMHlD1jFUzw6WeOIjTX8wZP/SonDC2gphk/mH1ge+Pk8UqR2kmDtFq0WOMwprCcBHXMlCWfuhIUZourcDqhHEaHU1hwQR8jGQMagpqphJGitZo68T2NpQGK8t50a4CnanaBcbOaW/dJ6SafvOScUj4/hqjG3SWc2Grima+EPOy73B8VxRuaxVvvHeMSpkhKd74zF2Gbcf5ZYdKie1lz/VmT3s84727R1y93PDJxy9ZNC2XLzp2OfLwzVNevNgRbSu+0Vc7+q2nrQ2r05Z7byyZzSu2m8T5JtGPiX4QdRWjx6/XVNowv32LUFn62FHpyLDt8Z2nHQdMEOl4spqIIgUYxszR3QWrmSNsttxaWO7eO+LoaMHVpsM1NU0tW7qmcnRfe4bqFX0E6oq2NahBONoxSVZi2fmSsirMCg6sjZSnjvs1NV5KJK/IRlO3FWmQjDzp2NJBMHNw5gPIictPHtOvr5nfnSTk0yOeJPTP1DLc0k626bq6eU3JjLxhp6VSvCVQePf0HBUT2hkGH/FB6IoRUNairIhofO9JWQRXcRzJMvPB1kW5aA3WaZa3jrj7qTch9QybC549el/EQAUl1Vozb41IrjWHEGm0BCVAERahi9+eEnc6FElF0vqc/faCzftfIlvL0cP3qB9+D+NwzVuf/Tynb9zncz/+O/noV36eF1/5OvtXFxIwMJRdCWWhLJYDUK4dYq+qinjloORLEIeIWq9R9gnq+GGxKJ+UlLJNVmUAqbQ40sWhx9i6+KBMJ18GzEIXioXnbNHTogplWS7QGUU4lGG/3/Iz/8Xfp+r3mHlFCgltDUOXefQ3f40c/gJv/KF/mbu/5/eRho6LX/ob3PrC95IfPSZ0AlkYY1G2YuwHQhhojaUq5NScEjFHFBLbFcdE0ho7X0rBLaEDTMHU1oCu2I8eV1mWi5rcd8QetKtRTkycUjlPKSVx99Nll1buNR0DTuXCWEGoQSmTY8JWBts4ckhoJcPw4HvI0FYOozMxBYb9SJUTupqRSfgQ8UmYMVbLvSRmXQFbz1C2JmZRLpvUHXYk5MS4vUYlTb1sUHmkXZ5g6wcM+479xRS6HclDwviX4nvyLRDmr6uZ/3Ql97+eo64t3XrALOcctS2ffHjBbCYr3eUu4xl5+MYZZuz56q8+RmWwQXPxbI2dWZat43obcacnmLHHdgNXmxFtNQ/eXnL3zoqmnXGx8ZzvEtttRz8EUtXAbsP1yzVaG8KyZUyZcHXOuE+Hm2MWM01lCFYzVi21ge58TU6Zs7vHNK0pMvjI6u4p2Tmu9p66baSzGTzOVQwfP0NdD+yHRNSGkwfHqN2WqChukpqJ9CaDSSkx0wV83e1vkmznUuynieW4H2UKXznxoi4DxTwVlxiLYCMTtjuunj7h9N1PQ9WiKKEBOUPswB2DbVF+h64qjBOGQk5BGAmHDi6XoViCGOhfXeKqmmBHycEs0uOsEG/rUsBEoi7pRdF78QUxBmsylZNhY7OoObp7Qhz2XH7zG+gsHXWtNcYpCWmdHlBbHtJJYJQzReMi21wNpGKqVPxx0uRqOGHuEbKKDM/ep3/2PrqZ8+j6nPpoyekbb/G5H/9x3vqBL/L8q1/jk1/5VbYvXoq3ShJ6HNMCqJBte4GgEkok1maCTUqR7hXqcoO257C6jVIVIv6R9BpIN+KcrAh+wIx9SY8vIp58wwrKyPsejFfUJOznxsiRLL71uzVdF/n4y+9zVubOIcg8xFrL2Ec++ltfInV/ljf/6B/j7u/+/Ty6eMXV+1/hzhe+n/S1r3MxBKJSqBAwccRqS2UtKifiKAEiWUNVWcIQGIcR11RUWih4aegKVFfEXcbiFbRtS6UzcbcWoysyTkngh0Kw8JAUaQxoFUhogd+UMJ2MUgUasaiqFngqjYDCVhplDCkEcZkdJFLM2QqnpTkbh4EUPK52xHFg8KJKjUHYQklriBFbV9TzBtMs8MHjZnMsFX4dDxMFrUXoF4aR/eUlOYw0pztUPUPFSNU0knWZNOSArhrQM2LZ0X+747uicIeQsKs5rq642HQcH7fE7cBVl2nnlk+9cUJ/veb5qw5nLd16T0Bx750TfOd5ciU0JHO9Jo4DuzFy+86M23dabt9ZEqLj41cju85zfbmmy5nFaoHabHn+4oo+WrQWM/qq26FG8GNCBY/OGbdoGY0mtjU5erqrPSDm6ddXa9xg0VZz+80zjDUkBU1TE0cvnMwM28fPUI8vSR6iMizvntC4RO/9TTAq6sAGSYcHsZRyLRxPrWVFTxMVTr5Ksi21kYttDaYy1MsZYT8SC9uEafuulOwchpGX33ift374R9HNEnQ6fI44Ahqla7KxmHqGq9vy8E/Oc4W2VhYGpQzj9Zb1xxcYFMMQGYu6MSlIWmO0zAWErpcYeoncslrjDFSVwTmFtprZqqJyjrS9EopfJViocRJAfAilUaCNLQZTqkSQKWFdWCMVSauC4kQs+lsSbBTCAVfF52UKoJBw4I704uvszx3d469z+u5nWL71Kd778d/BvS98P5/8o1/i6T/6RYarDSGK+CPFUkGLuddkdKXK75yyUPNUkfYrHQjXF1jnYHYqVL08jfpes9wtW/849mjrBB5Qk8GXdN4iypyi1G6GW+pA2xTGSRx6Ut+zud5z/sHHvF3JEHTMQhk0WgaYwcPjn30ft/rPuP+H/wRv/Uv/Oh/8h/9nNu9/jVvvfQb/5V/jst+SrcNYyUxMJEI/EFPG1TUqB0LvGafh4eAJ+zWmdpisSH4ohoqGbrunbhy2yoReZPXayKLlvadxFVgnixuRbE3xoc/C8sgyE6kqV/zGE6nrUdFLCIKxhzGtMrK4pXHAGhFRpRQZgyfmhGsq4jgStTCKVBGVkTLWWprZjGo2E7w7AdqKGRmg61qe10piDLMS4VWOnuAjvh9Jo4Q5u7bBtsd4n/GbS1CebtgIz/w7HN8VhVtpRd+PRAtv3F3w6sWeTTdwdlrTGnj16CVDFgex7VXH7GTGrDFcX/Zc9MKTtaMko0QFd+4vefjwCGMMl5vM5X5g6APrzR7VNhy3Gv/yFZcvByIOa+D26ZyUYb0e5MEKCaO1+CE0DQm4uliTYuTurRO2Q48ZPYu6ol603H3jlL4fyMqymFeEMdMsV6gwMpxfkh9fYZOliwFTaczY0+9GkhfmyLSlQhUIcirZeeIsC0aXyQd4gow8oAUAjzEKvp3yQT5r2wrlDPhA8J5cElZVVmgCT778dX5gv6NanQLu5qLkCNGDrkFVKLfAzuconaGY+adCC8wFj82+Z/PoBToWTLPQeBMKyqAqxiA+HwrGrvBujWyjq0pRV4a60VQziYeqjEjjlU5YZ0XjUYrK5OUsC5guXXQu76EPHO5k9WH2Z8oWVGtIqbAvtMaCDBqL78kk3Z8k2CkF0r7n8iu/wPqjr3Dr+34r8zc+zad+/Ldz/PAeT37pF7j+6EPCEPBDUdpN2ZXFHyWR5T0LpVBFgS+iV6j9iN5cYqoG1FzYDGSyEshBHaTtiugHTKhQxqJ0Kci6DD+0FmhIWaYotddZJdP18l1P6CPf+PL72H1HdTLpABIhKvrB01ROKHwenvz9r5LVn+eNf/F/zlv/g/8Z3/iz/x721WPufubzpK99iZ0SGp9WGd+L97cGVAxixIQihoAzSobVfQ9hwNQN1omcPCpo53NqnQQjTpIMr6wjp4DOkImy20iWOAzSNChF8JmYPc45bK1xbQO6pl+/khBh5RDLGCVwZAhQFuuqqmlbSzI1+43wqF3dQkwMoUfpIPdPDGhtqduK2WpJ1c5BO7wfMDqiqlaeMW1QtibHHcYqlJ0RfEaNI6ZpiSoz7rbEvEeR0CZTNS2mPaa7XrN9+pisbdEtfPvju6Jw5wQnd05YNJaPn2x4dd3x3v0G3QfO9z3KGYyCl6/2nN49wpF4/HhPMJbr7Y55ljSJCNy/t+KdT99Ca8fTFz0XO08aPbv1jrGqWcaR4fEVKmhs22B8ZF46oTAK53rbCcVPz1tC7djvOjbXHfNZxcP3HjCGgWVMzBvL0YO7rI5bLi+uUbbBaM3oE6ujFb7f44h0z84xQdGNCayhaQ0MoxjzxII0IEUiMQ0ep/+bIsCUYHRMD2PhCEw83nIes1GEEER+rRP10ZKmrUlhYHh1TdyXAl6YJM8/+JD+4pzZrXsoW8uDXWK2cugl8cXUUM+olsdYVxG6PSADwFyCA1SKdE9fErpRJvFjwXKNAatKwE1RyqHwg5dBTCOCmaa1uEpTtwbXWJHDq8Lxt6osGMLRPdzQWoQwqtDJxOBQhkQTd11qpykzAmFqyMKXJCyh0CS1KguCApQIZ2RbrA+D4BSER6/6Ha9+8W+z/vovc/uLP8bdz32eo7v3efTzP831175Mv90z9lFMlIBIvun0lEDRekKes4iictDEbYduzlErN4H0oldRFFZIgU1iIIZBrhe58H0lw1OEJJKVKfCK5uBBnsUEipzYX76i73d88PEVxwYqow/aALT4jPjgqbQFrdlfDjz+W7+Mm/8F7v73/lXe+MN/gsf/0f+Fu7MFt9/5DPnj9+liYBwj5HjA9H0/4kOQSLiUcVXG6CTDTGOLB4giRE9ba6rGMXadsHeU7DxyzLiqBiDkhDOVJDJlU5SymRxKYR891BqjIllHsSKoNKZakH1XhtaKPMrA31aWqpafIxR6otHg/cA4ii2r1Z6cwBhFMxfaqapnZGWRG0YYJinuQYGppMlSORT7Mk1OPVXj0NWCkC3bZ59A6DE6Us8a0jgShgvGvmfY7ZgdHX330wGtVcS952moiI3jYfZsPtmw85nlwrK+6KCpuXNvxfmzKzoagnF0my26Gxm0WL2+82DFrbMFu03iyeWa/RgYuoHtVkz3535DzomhV+yDIqnAqtU0BsYok+hujPQp0ylDihm33aFD4v7tI+pVw36/YVUZ6mXL/HRJ01a8enVN5Rpizuim4eT4mP3VC5q2JTx6hVoHglIEq5gfWaqcSX0qKTVl6p7EllVg0gN5D+BAt6OEHExFPeupg+TAFhEXQUUKgZQjTdUwf+MNwrCBmNjuz0lZirvWlvXlFa8ePeL4vc+gU5RuQd5VLF9tBdqhTE21vE01P2JYXxZWSRmK5URYn7N7co5zhjCKT3NCKItmyg3U8hCmlKiMwdaIR0ylqRpD01hMbcSASFGGjkbStaBoVApcok3JqkwH5aQudqITlj2pKjVT/qK0n8poJpm/2HAii6JBeL5Kk2LCaQcqS2HNCOtlwn1UJnUbnv/cT7J6+0OOP/tDfPp3/W7OHzzk2S/8DN3VJaGP+DEU21gR8ZApHtWUEan8yGkMgtFerVH1UoyItDp0iLIQRVSWv5P3JDeiVA0oYdIAxjqUqwrGLcNp0Ac9Ti62ut3lJftux4sPXnLfyqKlzXSeMiQYRc9OVYnAadxn3v8rfw9TWW7/gX+N8Ef+FM//4v+Vhz/6Q4TwFucXz7geEzqnouwtcERQqJxwFhnqybaJpDR9TDgUrVE4An63Y/SRjMK4MqDVoKuqNBygvCelIDuXpMhao2srEXZ5ctHckXWPc46qcrQnK2I+Zf/qOTp5jLGiktRi9DSGkZQ1ylpSjgedgc4JZS1aiT9LtVoRAJOQKL3ynOZkSAiUSdqjTUVKmjT0MAZU9JjaYZuaqj1jt91jx4G0e4Kxhn4/0m8vib5HV62Yqv2TauY/bdH9r+MYg2K3OMN0V6wfveRizMxrS4qZT55tmZ/Mqck8+uCCztRkRmyM6GFksXDMas0b754yXy15eTHybN2z23bklFlf7dEhMK8Vp/OGboBdEExt2RpqA2PWXIVElxN+H1BGM3dabhClqJsW22qc8jy4f0YEZrOa7XbLpgvMj07wfc9idUztFNdPH7E8O6Mhc/74FSlD7yOL+7c5XmZ2H1/JIDLLDRpzJh0EKtJl5zx1UocnrgxmZMutp618nJgCUrzEuIhiaWrIw8C4vaKaNxIFZjWMsgBoY6EbefwrX+LtH/1RTDNHZXfYWqskkl20IyuHnZ3QnJywe/GxbDVBHpTo8VdrnFXEoMRFzWoqY2WIUwaAYQxoo2gcWA2zmZNUo0pRzSohsChVBq+glEjNtSn0Ni2FVZftvy47D/F3RpzmlBK+uZWO72DjkmTYKfgtxCzvRRa1pXZmOrNwwJdlIGwnRzwMutgQphhBSUHfffw+xMDp9/92zt59j6ppePaLf5fu5SuCV3gvcEhKmRBLoEMWTxNMLsNLSD6hxkjeXqKqVmCqXCCOacQ47a5CJAePUrZ8WAa9pmpQpkFpgzJT4KwshHkaIoeO9dNn7PtI9/KKti5QkxGGfylZRO/xXrjOuBIvtodv/tWfprl1j7Pf+ofYf/IHefaLf4UHv/P3QmUZPv6EYYiy+9OFlll2MsYZoskkV5FQIkyxirqWzMd+EJdH7SzZNGitcFUlHblPwtvWJTwjweBlUFjPFrKz8bUIa/T0rGQUEZ0jedxh2yPq+Zw89LgcSDEQwkjwoq6WHZoTmCtHrDPyc1hoZwuwhiARN5BHlNXkrIUSmfY458QqFsHKk4+4ymHnx/jdFqugPT4jtm8RPnrMsP4Yhg51fo6uFihlqeta5llhqgXf/viuKNzKaPKrx7z//iXbEc7mFV1SuHnD2XHLsydXZOUw8wV+16HiiFKwnFtu3Z5x/40zsA1PrnqevNzQ9Ylx8MR+ZKYCq+Oa1hiu156LztP5xKIxNM5xPWS2UYZT4+BZthanFNshyIRdK1KluX/rhMVRTdI1TsP19ZbZ6hiLbCmXRwv6zZrN+hpXVayfPuH5155x+/Z9uvUTlNHYfstuMxbDdrmtlDHk8BrcoUQ0o6ZhWn7NK7sYU+WsC70r3wygDtSBQ79MSpHNkxfEYcA2Gn+9J3sp2qYkizRW8/iXv8zu+TOqozOMrRDDKU0mQOgPkVy6WtKe3sO4r4r/QxLLU399TdzshdZdttpaSM3SCWtDHAOVleFjVSmamaGqNa62GKdxrvhpqFwIEdIx6oLdGiOdphYt/qF4o9RheEUZyils6VYNOcRDxy+LmpWFoaTxSN5mYYGUrTll0JsVqABkjXZlgBwnpoA5wFQZT/f0Q150O06+8FtZPXyTlH6Ui1/9BfavnuMCxDERYiJ4ddhVaa1QlADlnIk6w5gwuz1mdk02t2T3UGYaB8gDhNkTPdlWxZw/CaxUzcFalKlQdkH2O7KaFs9cYG7NxaOPub6+xvmBem4Lp7lg/tOQ10g4bwyp4PVyDoaLwId/+a/ymVv3efB7/yAffPIB11/5Rxz/4O9if3HFy/6ydKxZ5hdNxegj66yI2ZC8wsaRpdPMK1lwxjGSfMY5IwtQCQyRgbqRhQixPhhCT9/3GJXENhWFsgpnG1RyWOvkmqPx/RXZWgkd2W9wtQPbkv2e4DN+AK1dUQbr4kWvyEEDgWrW4ox04jFnaqPQrsH3PdErxiJAM+XaxBiISbp2ca6NJMBHhQ5rjDPo5R2efvIR6fIjZsYR9UsWpwo3X1Avj6lwkob0Tzi+Kwp39iOvnqxBa1Zzw2A0s6XF5sTzVx2qnRNUFo/iUXimdQNvvHnC8njOLhqevtpwcb5lt/d0QyLudxxrxdlphYqJ5y971j7jyRwtak6OKvohcrH3kBPzSuMai3IVQ86gI+3ccv/uEpMyQz9wdGtF9p6L9UBb16hxwKNYLJas15f4GEsO5h5zuaN+8/sx9oohRhaLFhMifhBJbSzxSCl5gUqiSL2Z1JBoYrFjvQntBQrGLeZR01b6ZmU+cH7L3D2FwO7lVRHh6MJ9FraKHyP1rOXZRx/y4hvf5Oitd9GuFTx5WhDSHvRKcFM3ozl9QHNyiu/3KCSPcjw/F0FJlm47RsG2dYE2CBFLpq01zcxStxrXCp1Pa3BWoV1JpDFCn5rWIUm+EgaJ0g6lEkY72ZaqIq7Rk9CmnIQp/BhQjWC/2RhUChgjsXfKCLNEGBs3KtRDOIGS/E9diVIxqywYahBJekZLajklUSgl0uaC9df+AfM3P8fqwZvUVcuLX/p79JfPyLUEUIvPknh25Kwk61FLBz3NEOPgMbsNpj0mYxEwvwTUTlL4AnmkFNGpDFjrGlO30oVjyLHjYCJDLp7dI92rZ7x8/0OurnrmRuEmphGycMqXCOU0yWhFmF9OHbxa1h9v+Pg//X/x7v/kjDf++f8xH/zZ/z3Vo3/E6ae/wH799/BJhsn1csbaK87HPcMoO4om9zyYKxZNDarE0iWY4EHrHNpq6bKLAEnpTDaGbu8Zxk4gkNkMpRtCCBg0trUQS0Ok5F5y7QqrMtbZong0aFcTcgk8rmZU7ZwQA9EP5NBjDaimReuG+ekxpj5i7HaYICrjNI4MAbqhJ+bEfLFEkYnjSAAJI1YiworeEDdbdufP2fbX2MrA6Zr7D8/oj5bsnn4IYSD5Ae8dOr22y/quH05m2R5Z47A2cjS3DGPg+Tbg6or1xZ7WwlEF1bJhvqi4f28B2fLkOrLznsuLrWz9hoDd7zkxmbtnSy4ud/RjZj3CoA0rl1nW4ndy3UeyD6wWNbZ25KZlt+sxBM6OHPfvrER23cyYrVq2m56QoW5ayV60CpU0188+wTUzxpQZU8Bljd8mzt6uePoLH9EcLZkvLf5id2CMqNJZxyz+BdNQcuqpMlm64jx9XIoUvNadM7FNbs6lYN5RcO6Jux2ENZxUofAVyl/OYtKU48DXf/Yf8NYP/zBmtpTEFq1FeZcSOY+gHFk73OIuy3vvsnv5jNhn0n7DeL0jJ83oAzEL1IEBa7S8d/K0c0u7rKgbI8Miq1BWo8vripIIVBGHqCkeTBdY5KYwq4Jx89qOQ5VFIoN0T0U1mlWWfydE+KM1evJfUZTkGdnNCGjqpfNUcu50ae1TLIujMyTxxRXRR1bopMlGFtC4vWb/5H2O5gtmd25x63t/C8//4U+Tuh3aVDgbiYAf4k1RUoCRISVZYIDUddhxh2orMoGMLYO1KHAOSPcfi7FSVeOaJaqag7ZAkJGILvmFWfBtwsjVo0esX7xisx5YWSVeIYVaOsFuSiP7rsL5l+YCodRpgX1e/conuL/4F3jrX/lfcPv3/Y94/hf/A978A29z9tanSR99nd4YLjvPizHRRYUNkUX03JspFnVd5jrSUbuqRqmqMIOkwYhpWkyDpCX5TIyJylWv0fBiYRBpcsz4vpfE9AT1bCVwRxhE0KQgx0CIgYAm6RpTJXI9g9FDSXiKSlE7S7NcCp2PRH20wDVHbC8u6LfX4pk9BmE9xUG844MnaYfDS8D1GBmv16i8Jg6eNCQuP37CMYZPffHHuL4aOW8a8ualYOshilePStTt7Lt/OJkzfLxOPLidOXOGZy/3bLNmtWrx2x1tpZhXlqbV3Ls94/T2is4rnl4FXl137HYDXZ/odz1LAscVjNny+FUnAxcHKgcWBpaNYT8kvILKKGanMzwGVnNcjCxbeHDnGOUjl+ue2WpOu2jYbXfUsxWNle5nvjpie3nBftuxWh0xKIXWYie5e/8Zs13kxc/9AllZHJHcyZZThpFSgUQVmUuBVWW4KCvtlMgi5yeXbgumMp7LqjyllU9VzdYVMYykOCnuClNicgCcksazKv7VmsYpPvzFX+Pyo4+oT2+jTQWvJbTkMKKNMBWoFszvv03z6Cv43TV+sxM1olJYK0EV2klRJAk3vp1b5kcO1xiMlqm7tkLPElhEkHvtxIVQZUTxaC2ZhNG2dNQyozelC0cVXmE5VMmCFAZJSXwpi59At7ng4Y7phaoYR8k5TyJbLo6Kmik8IWMqQ0oKcpQcyqLun5JbVJbdDkTC9Qv2H32F+ae+yOzufVbvfIbth18hDb0oGqPYfMakbjrirMmm7IhyJPlE7jfoZgG6KQW+FHqKtCN7FK0s8s5SzU/QthVyO9OCXu6V5IXWGHqef/Ur7LY7hn3P3FLO59RMJEzxQRFNQT6wWqZNnyrGV2GE5//gG6ze/f9y9s/9K1x/5Xfw4qf/Jnd//x9lf/GSi+2WcwXROdJ+x5HyvHHicM4SsyVGhQ+eupbFXDtLzoowjnLNM4RxxIdIyqPAD64qnijCXLHG4JyIzXy3Y+w62qZGuxado1xfII6DkAeMZRxll6u1lUUuRfK4gdijjaFqWtxsBqZi6HtIe2p9REwjpq2Zzd+k36zR6ho17ojBH7j/MSlMHDH1MdnN2F1d4q+eU9U1ZNhtR/LTp6j2y0Qqlien9M4QwiC7uAzNrD7Qf7/T8Z0/89/gkYD37tXMB8+zZzv2Q4QhMlxucRlmrWF13HLn9hG3Hj6gV3M+vhh5dbnh/HzPxfVI3O25rSLHBpKr6bRiKPLirOD2omZVGy62nufXIyGC5IEGkh9Jmw21y3z+s/eorOU6JO6+eY/ZomLf98yWK4yGlEZWR0d0VxcoXfHg3U8LB1lbrDF0z6+wW4kX631kftJQWRi2A95Pukjpuimsh6yKdzQlRGyCPqbnGvXa2ZpoWxPIm8sDJWU+FEHPhInebIHle8cSniDvp/ExsjppuHzxjPd/7ufx22tSDBwGYkqVLjAW7xKLO77P6o23sdYR1tvSGcgCZIwWmbrRmBSZLQzzY0ezsFStwdUWW9e4SotfhAFbGUxRPdqqMEucKd24eCXLW5fQ34mvbISrrJXCGicdesHFdfm4sCjEH9w4KWi6pLirFEunXrIFjUVbi6ldsQvVh/OryBirMUZ+TuPE/F8ri3FG7GWLYFGrxHj5nO7J11Bk5g/eojm9I19jwFqNq4ykt9QW6yym0ofzUEjmpH2HSuNrC3Y+8LIVipw8Kns0inq2xMyPBduWEzRNQQqs4iEGxs01H/3yrxBSQkWodfHsKPed+NwUx8HyPqCwxootQcqi6M3SdPg+8cnf/FmGD36GN//gTzDY22y+9LPc+aHfxspJMfb7nlvK89ZJTT2roJ2RbE0uMngJBwkkHwmjJ2UtNNngyX5g3O3xQ4c1FusqwfKNxblKxig5EIOcJ6NVEdNoQt/hu57oB0JMopKMgK2J2hCTxJCl/RUqBrS1tIs5zdERphLvmBRkBzR2A9vrK+LYY6zB1Q22boimYhwjMSWisuQwSiKQTtz9zGe49yO/H9WeoUgoa0jAfu+5fPyY/vI5/fULFLHscgXfny0X2PltvjVj9FuP74rC7YyiO9/y8rIjxsTMKGYuM2scprbcPl3y4M3b3HnzPpd95qPna549u+bpy57NdqDZd6yCUIHM8QLTOmyGo9ZSq0zygYxiiJl2UXP3bE6Micudx1Y1TmfOzma8+9YtLs437LPhzv1bbPs9ew+L2Vw8eU3GxMDV48eYasn8+Jirpx+xPr/k6uKCtL2muriiNhKZBQrdj+TOk5MWmbg2N8XaTknO06OZDkPJnMWHO8bX4I2Cb+sp93H6g4ZiIJWnNJRS8LW6+X4KYVKorJhC3X3vuX17hbXw5b/3s6w/+UgSraMk18h7Z8ji+Ia2qOqY1RvfQ7M6Jg0l9KHQ/mxtqSqLyZn5qmF5UjNbOSnY1qCdOP0Zp9G2FAQjhVqKocjejZMhk3YW46TjNlqjimucuPEJU8FUTmAXLerEwzDXCHPGOgvGFqaODKGEjaGk3TRieCVtsy+DTi3Xw8rqqXTZnGqRSytjUE7+6EK/M86Vn9Wi0sh4/oTh5Qc08xmz2/ep2hnWifdKVVnICWsFfnBWCretrRTvnEnDiBm3Nzh+jnLtkI2GlGWPsorm+BRdL8i6cIvLjmOKj8spksLA9aOPePH+x/iQqGKS+YLRRYVZNJi5aAoKk0lr+XmmtTxlDgrTGDLrx2s++c/+Cja84t7v+UNcfPkjKrPl9nvfz3J9zVn03F84jLVk2xB1RVRCPmiWy8IbTwz7gegDIUZ8tyEOewngTWIZobUqi1CQxc/JTi0WC1ijMnVTlQVVjKVG7xmjdMIpJkIYxTJhcYZuF6jkpdloGqrFkmqxEpWjCA/KoMVK4Y+avhvp1+eQA2MKYp+gFK6ZMT85w9SNQDFDh3Was/vvMbv9tkS+VS22biX+TCm0dUSlGL0XnyKgHzwXL1+xv/zkn1gzfzOZk38G+AngRc75+8rH/nfAvw68LC/73+Sc/2r53L8N/EnEbuffyDn/td/oPbxPqNpRZfGwCEAzr7FWc/veCQ/feUjVznn8+AUfPHrB9eWO7T6y3/WsiFgSs7MFRmUurzv6MbKc1WgS1hrq2tGliLKizNvsPD5mmsoxhJGzW0sW84bHLy5ZnR5RqczlhZihO6Px3mONYdzt0ViO33yH0G24fPoJm50kN6+WNfHlOWoXydoSQmC2bMAH/Cir/QRGR604+9znGLaX7F5ckHbjAVucUEYp0jedttDHytZ8asiVPhhQCZljEpeAYOGSkH4ztGNiFaIpdpJjAquZzyqevv8x3/z7P8/qjbdoXI3WqYg55GFWuRRu7XDHDzl573u5/KVfpj+/kMQRI0VJ5YyqNe2Ro66Ep2+cEZ8ODEpPrBkZzE0kbV2ofShZCISeVdgmRgptMZMtw0XZeSgtg0JjHJMJlsSpaSIBZWyJipPBY8qFb6sdk3Q/a4VRhlwUh8RMKh2QCpJwb6uGHEdRMALGSaBB9vFAYUxJbD1Bk31Pun6FWh7T3r5L2l/TP39E9KOIP6wqw1fJM4yJ4myoBRjLmTx0qJkXAUvphoWyN11nRTNfUh3dR9kSOjEV4TJkJAfB7sc93/j5f8j2ak0YAzMD9jUWUk7F8oB8GPzCAVU63Jm57GIn/nyKildf+oT2r/9/uP8Tf4LLz/wwL37673DvJ/5VxqcfsfEdm36kUo48RMa4x9UG6xpSEpOvEONNDN0o0WUhIxS7qiWGEjicItZkdA6k0TOW3EjrKlyli6BJhramqtG5IYbxwKOPwRNjpEoeiyFpsFWNrpxQT6sZ3X5A+z1ayW4gxJ5satDiDNjtOqwZMLZm9JeQBjSJPkT22x0hBUzT8vSrv4oyXyX1nXTjvhN+fvSYVOFHEfl4H5EMD+mjXeWorT40Yd/u+M1g3H8O+PeBP//rPv5/yjn/H17/gFLqe4A/BnwvkvL+k0qpz/5GgcHGahpj2BPxylLNLUcnS+6+eZtbd0/Z7we+8bVHfPjhc7brAe8zYbvldmWk83KOYQzseuHYLttK7jlj2I0Bo2AIMKTMuh85Xc3Q48DDN85Yziu2PpFdxb2TJdvtjiEbbp0ds77akHE0bUu/XTNbiNH57uIZ/dWWnde0bc18uaDbbRmfrWmzYYxQzWfMZoa48TfKyCg+wdX9Nzj6ge9nvHrGOP4KYzcKE4MCk0wskulBmbjDKR9UghM0cvDcQHMIK5WvKg5yuXhtU3b9Cp2njg1SyAwbz6KtuLjc8ss/+VO8+yM/wO3ZUrbcrnSnIPSsSU5drVh96oe49QNf4unP/DQ5eOmkrYHR42aauhZYQBtRcWprS+GGgzGUUQWb1od9h7JF7afszceMJmeJrTr8MvlGmq4mCEVJBiZakXKQAiQ2fYLflqzLHLzg2Rox3I/FQ8QIG4eJElfgIlNVkuBWFIkqRsjmQFlTxUNclbgylQVS8NsLqvU5dnUXM5vjmgaVAzFEdG2LDNwU/3TIVn6fkCVUIvYDJnVQ5g4TfJZTEuaOtTRnDzCzE9DlNbIsF2qjJ8dAGjuuP/wSX/6pv4vVsBsjx86I8EZPHXc51/nwViiVym5uuhflfKSM/LwF9w4DPPvpX2Pxzt/m/u/5fXzw575C/81/yK0f/O0MP/83qKwTUVZIAnE5R6YiEYQRU1UCM3jx3A4xYurm8NoEhKGjdTO0bei3W5QWhpFWGWOQ62Qq+k4YalXbyI7NK1Ic8EkoMSl4solkLd25qYrrIHItdUmsL9NMEcqlgRxE0+ATjPt9SXKXu8R7T9/Der2ncZIudf7xnpxi8XCpUCRSCjJYT4n9ZsPoswRCBEVMHqMyldFFVzCd9X/8+M2EBf+UUuqd3+h15fgXgP845zwAHyilvgH8KPAz/6QvijHz/NxjrGa2qrl//5g79+9QzSwvXu748MkFH3zwjP12REVJUL+9cCyWFT6K+1w/JiqrMcqSEKnzRe8JOdMayzaIl4nRBt1qPvOph1hj2Q+exdGctq0YhkjTLjFKs91sqOZzUggMfuD0/gP8MLB9+ZRu59mHTGUFr96GxMInVB8Zo1i2rmY1lVIMWpMQ97hQKFa2cYzXF+SYqWc1nRWVZkIekonid6OdvGmZc0EuJ98SUS/ezLhSwSm/ld9dOOElCUe2/vJ455zYXO2pa4uxiqcffMyX/8u/y+rBG3JDGw3aCnUuRenelHSr5ugBt3/kd7N/9pjdo49QTktCDYq6tVSNlTqvZXB7kKSrXDBqKZDG3MBAB79RJfRAcYybZpBVKaQTBCBqyZxjKSBlUYuStyjskuKlIoCSGP+gyXYa0soikTWCKycNqphPqal0T8PLMhBFmo0YgrxHuTzKVUIVTNJxGw0pjgznn1DZCltVhKbBxkGKocpF8CGD56ynoYac6xSlq3S+I7vl4T4Qr8GEVpZmeUp76y2Um6O1u6m4U8cubSZp2PL4V7/Eq8cvWDnJ92wbLRF10/2D9Ay6/N7mAMXJTuJbZy036EkikwN0V56P/vJf43P/689y+mP/XZ79nf8nb//xz7M4e4B/9YQuCiRkGoerW5JWqGxwNuNDh+9HKYRaYZTAYZPvTN06qGq0SvhOOlXnMq4S2qm4XurCo04oH8jNiKnnKIVkT2YkCFhrsqqETOCsPFF+EA2Fz+gkakmVk8TcIU6CSitMYzFuznBxxbh5SdM26PqIMYLPGVdVNCYU8VIihUhIHXXV4JxME2JW7OL2EOGHcoxZiTfSrEEbJV4pv+58v37802Dc/yul1D9SSv0ZpdRJ+dhD4OPXXvO4fOwfO5RSf0op9fNKqZ9f+0R2mrN7S9577xYPHpwwhsD7H53zC7/8AV/76lO6zUCbPbdtZFUpyWQ0pkzaYeEU81pzvDTUJFFlVRZXOQZg3lbcO2v4/Pfe5dOfvksIgc3gOTlboYFdF1ie3qKdNQxDx/GdeyKrtYazO/fwviPFwBgUg08s5w1jTOjZknv37sPzV6isGXxCqURjFP2mK5716rB4KmuImw27J0/YPv6ENKTi+CdlWoQDr18zVdrjIsTJN58UDxN5wLSSJByjbgaccSr+hbkyQS+TH/W0FfY+s1wuaKwmhsgv/+Tf5dmv/hphvybF8VCs1WsewRkFpqV98/u5+9v+Odq7t6lai1WZqtHUM4erBcs21pS/rQz3yrZf8HpTRCaTW1sW50BTAoKL+EEpRImnS35hgVBSTgK5YA83s1IZYiD7WHYZGeWEPqGUsIIUFL67eGvoaYagb4a5hyugjSwJOZZhaIGuTGHBKBAiRkarYhmLKFc1mbBbM148x1iwTYOpalwjTnKCeRuUEgGNqB8tri5OezGTSi7hNA2ZFIGmrpjfexu7uI0yVVGOmgMbSHiFwiTZvnjEr/3U3yf7UURJMVFpygD3Rn07FeryG0MuwQSqXCN1c24OsHdZcFKA3bM9Fz/zt7j9g5/HHL/N9c/9l5z90I/TGg6WBq5upRBGwa7jGMSFL4yyK3IVrqrQRphKOkVMDFibCSSGUaBFbSyaYnQWRsIwICZUAimFocPv9+z7QNfJjEbXLbiWiAyKTVURfKRb7whjkibFiP4hhMAQJEHnQEtMCe13OBPQSsKcr6/X7Ndr6rDjqDVYJ66Cgn0ZhjGy7XYMg2ez6Xj66oLz8w37LrLZDez2Pb7b48c9fhiIQy/NyD+Dwv0fAJ8CfhB4Cvx70z3+bV77bfv9nPOfzjn/SM75R1aV5uHDBZ/+7H2Ojpe83HQ8u7ji0ftPuXq1QY0Dpy5yZwbzhSMqy7NdRr31BeplTdsYFkdzjm+v6EYPlRVzdK0xbcXDd+7w1nsnfP8Pf5rj4xkvLzZUs4azsyX7biTiaGdz9tsNnU/cfvst/HDF6e3bnN4+YRi6YpTuUNZw9803qJcrlme30Bm+/lM/w/Byh49SUNrGELsOQib44pFRnvDoA/3lFdff/Ijdk+eM230J280HmtV0Kie8sfzrhr+dY7mw8ulUrEJBldQTuRLSSd3wn2++k4SWmrIgXF/sCUpzctaiFZw/e8Uv/qX/nPWTT0jjKMPdLDe1wCblllIGXZ9w9IXfwe3f8lup5zOMVTQzR9VIgTa2kuFPmQMqlSTk1xrx1TDSeevKlgfVMCXWTwpKBTIURFEU6QX3dkwZg6QbDFTZCowMNLMSj3ERuMj5zNJ6UXTZ5BhJBUOdHAcpgQxS3NVhoVBaizeGsSgjxVzbiQcti7C49sl7KeMwtkLrTB734riuZOdjnOD9xhiM0ZL2o4UZ4eoKVzuxBR56TAqlcKbDbmJ2+wHt3fdQ1eywwxK+kCmdvyfHkdivefqlL/PNX3mfZdvQD5HGTtcDKbppGmBPEnVZjQ4sp3wD5eWSu0mWYALSjRbBD4nHf/PnGR/9Qx7+gT/E5Zc+QocXzB58npoR287EbiB5TE4olQkpHnB+MTiTobJRCU3AOhE5dbsdfuixVjObi6ugPCeabKyEKmQgZZwxpAS7zYbgR+LYk8KIbZoD5z4lwziO9GNgzEZ2OKEnK/Ax0/US7OFcRTOf4epaCuY4ouJIdjVXVzv2mw0qedLQ03dbUgyoLNcxZRGK5RAIfmRIkb3PnG86rtbX9P0ISeZtjauxShMGz/X5KyEIfIfjv1Lhzjk/zznHLHvQ/xsCh4B02G++9tI3gCe/0fdrGsf3/NDncLXhuvNcvLziw68/49VVRx567tawcopZ09D1ioshoCpF//E3SENAO8uY4fnzK+pZi0fRKYcGZhXcvzvjzq0Vj59c8PTZltlsRtO0DMNIVTfUteP64hW2ajlaztm8esHi5A4QCP2IaxbkZNAxslgs6fweW1X0m2u2z19SXXXkoBmjdCPtvMaV2LIDT7tIjlNM+MEzbHYM13v6q52kXmfByzjwmnN5kIpWbloSZTL32oPKQWgl6TmlPE/CDiaZPOTpf0Up6LS85/+fuT8L0ixN7/uw37uc5dtyrcraq6url5npnhUYDIYYgiRIShYlkQraYYmyTckRVCjkUEhhyxeSfM8IhS8UYftOtiJIBSVKkEgJpEiBIEgMSMwAmH2mp7ea7qrq7toyKyu3bznLu/niec+XNeDMAJZ10Qeo6cwvM7/lnPc87/P8n//z//sQOJ33XH/xEnUp2Oidb7/B+//0a3THT0muIflGsldlSc8tm6QNZuMa25/9FWa3X6eoR5i6QBeSLZuBDaKFvWAKm+lcgklrLdQubZ4biDGZuTHwkZMEEfk4gw65bHRaOJp5I8kTcykHXQYFQ3HmIUMeWg+VmgJEwF9nvHigaCqlGVzTyUNAKak8UJQkKOYpS2IQgSNtJOMd2Dhamo/KalK3zIM/yOaUaZPGaIwRgSeF6GBLZaKwOaArEkQnEIngFpSzLTZuvo4ZX0SpzLHPxh/koE3oCf2c5dMHfP8f/S5d01OSaDov114NlYEa9qVcUejhPn8OOiF/Jv3cYsz9AVhL6sYAzbHjwT/4TUaTSH37sxx99TfY/blfolLijBPbhugTzXyBa5YyKaktRVVTVCUUYsmmExRaNFP61kMQFcOqslSVoaxGmKJcT8GuDScwxBDoXcT7bJ5tLdgKhacajanGI0ISvRNbWCabE4q6IkZF2zq6zklfpO8gtKgUhOWUknw9mqDHWzhKrFYQHElB33na5RLft3RdS9/06OSxyN+NasvG7haTzS2aLuF6j0qOcWUojEKlQAge3zlh9fyU439W4FZKXXnu278I/DB//XeAv6SUqpRSLwKvAN/4w56vrEqWx8ccPDnj8YdPePzghKOThpEKXKgNwSf6ZHl22rMKgSsXxuxVoLuOgGXeetrOUZaWNkK5MWVvt+TSxSmfeP0FSq158PCYrgtsb03QStE3PVsXr6CNoel7Lt28zerkgOXZGePZJv3yjLZpWM1XPL13j9XhAU/39zk+XbJx4SqHBweU4xFTkxj5iI+i9meMRvmAW3UyCKhyZkLmUedOZYqCn4UQs9NNWvOPB9BRFOGGAE5mWORylSEaD7KvSLcoo45wfuM9x1NZsw9Titg8LacRMaxiOuHi3hRUZLVq+f1f+4c8eesN3PKE1Hek0GZsOmOpQ/FuKsqLr7Lzc3+WyYuvYEcl2lopc43wpoXDbNbUPlXYTO0z55tNpjkOOtYonRXrUs62pfEmMq0529IaXVTiem4EzlH5vemiEA54WWLqCmWK3NxVOdtOkonnhptCoAVxRJDsLWWIJEaBVNbGFjnj1MqijF0P7hCFA6/W9DogBfCO2C8xVjYIW5aZ1gnGqpw9Co6sdYaJbE6Jo0LHXmAYxN1o84XXKXdvibRrFtcaGpNiI+dIviGszvjgW9/hrW/9kEmVXcx9ZGx0Dt56vcELTz1DJ9k9XsQWM4xEfovrbIEMIeTJylzxkRTHPzrg9O1vcfmX/xSLh6dwdp/RrS+glqciuRo8yQf8colGGCDGChXSWkO1OaMcj0BpurbH9S0pOFSUteCDmDUPFMYYfO5neCErBEXX9fTO0fU9RT2ink4w1lCNalRZ5/licV0viwKMxcdEH4LczykSlGh993OhJ3bLOUobkq1QITAeVRRVLTIGIWCzrs/pyjFfdsTohSGljPDHKdEkJhub1JOZeLJm/0/vemIUQ25xjv/pMfMPDdxKqb+JNBc/oZR6oJT6K8D/XSn1hlLqB8CvAP+XHCjeBH4VeAv4deDf/cMYJQCudzx+csThoyMePphzdNJxaWLZm5aMKoNLcNp7fGHYmZXU0TEdCcVr1XVYraGo6MoaOyopjePqzT1e/tQNVqdznnx0SFXWbG1O8b5HacvG7gWe7h8QTEmhEw/ffZOqnlJWI6JrUdrg+kRSho3tbVrXs3PtBUazCffffputS9cZj0f0j5+hk8Jl1kJVa3RK4vunZWHJsMLgjDKwRvSPB9XnaFlkHPH55mRMiZAdMVK+WSR2pzUsMoxaDp6Ua8bFQJFb49NAhkoGrNn3jpPDhusvX6EqJYA+/vAB3/xbf5+TD+/j2xWxb6R8MzWYmvOxIU2yY+rrn2Xni/8c9aVbubGp1hm2lPdpDREYI+P2awzcnGfl4hOYx84HrrUWB2+trdCmMhsC5HGltTA9Bjee9aSlQqlC4nEfGXRM0KLbbcpKNoEgsAkDvzsT3SXDHSZajRgaPBfYQhCOtLxFoUSqTI1UhnNDB6tJvoPkMzxkRCY2Q0UqZ9qCdQuPXcSzIDknaxLRWJldfpHxzddR1aZQGpXJzVSdB446om8J/ZLThx/w7b//VdpVx8iKmJMiCb49RAAFdmgGp7ReL7kRsG5AivS6VBlrQC/jcoMe1PAvdIonv/N7FOaM8cuf5vSN32Xnl/8ixoxIAWLUKAzReXzbQoqY0uRrH7EGolK0zhOz1VxRqDxRO1RiMueQUjbO0KLi6CJ0IaFNJQJbCmFrZF33vu+IuiT4QHRDwIeAYdEHOi8bswsJU1RikBAirmvxPtC2MnUaV2fYLJvro8YHQEWiFZOLoTgJMRGVYtX2tG1L8k4wcNdiiYQYWHSO3os2S4jS4P5ZAzh/FFbJv/4THv7Pf8bv/1Xgr/5hz/v84UPk7NmKR4/nJBKXNoq14P6yi6ySYjwu0VHU1YpSxNdtWTJSid5FXOsYTSpMirz4yVvY6Hh0/zEhKSazMS4qms6xubWBMQUH+48Zb+xycviMelRy6/XXOTt4guuzo0aE0cYGrmsJvWPv1gs82z+gXXZcvf0qq9PHuP1DwmmL95reR8rCMtsY4c4WUlbHREhRxPNjVvrTOWAHYS6IPCiiS6LyGHrO0gXbHWbX9HkgT2S4IGPgSQLc4O6eYO0Gf17V5iYl59i3UcNNKpH/wXsP+aU//8e4fO2A+3ePiBHe/t3vsHttj1/4S1NmV1+UIGlqVDGVrDM0OVHUUM6ob34RhWf19ldJRw9gYIbkwJaUzhgy0kTLAX3wnxyqAY3Jgn/Cy00qSUbMgLAnYp+zW204V75LUrZqQAvjRBlF23acnnVcvrS1ph/GAWLRZJ3riMq63APNQmQDDFYrwcZzM5wsGStEIBnQib4X7W8l1ydFZNMZyPW5wZeCA2RYyOpCniMFCegpghZKojIaW5mc+QZQmmr3KhuvfhEzuYTSVYbNlNDXUiLFnhQ6om/ozp7xzm9/nbffeJ/NcYkOkYULGKUoBwpgUtjn2CNDdbjGs4emaNZuSblBvu6+SNwCBv0XSTKI0DxpOfjqP2Dvi3+WB//jr3KhTtQv/yncO7/BKg166grfdVRliTIF2gq1NXjhN3snbDFbWkIyYAvKaoRPQOhElS+IGbZPWoqbkK9ZUeREQaNsgfPgnKJvzphs19jSYpUhxkTfdgRViH5M3pxt1n7XxhJjJWtTl/TNgqLqsHWNqsYcPzukXa0ojYLKMqoLTCG0VDOagi5pVjLU1q+WlN5hCsG+V01D7z01ontOagVajf68qvkJx8dCq8S7wIMHp2xNLCNraBqPrkoWSeMKze5IMKuVC+hC0SfDzqym7Q1RK8oqMA6e6e6YGy9eZTk/5fBwTlSGyWxE3/eYomA2mXC2mDPZ3GL3wg7Hzw7ZvnSV3a0xT+6+h61nIqred1TjEU3bobRm9+o1Hn1wj9F0m8nEs//wPuNRje4jlTI0MWLLgvGspCgUfe7Ei4FszME0IpZVzwXbIW9RKltkidSoiFDBwCRJQ2maA7PE9XxTre8gRdKiOMfwO/JVZtcNFEN5rpg1N0qt6FEoH2nnDYuF59XPvsxHH3yDmBR9H/nG//hbbF6+zGv/wpjxBQ3aoPVFVDGT9x+6oconVdsUN3+RsTJ07/424fghWgWBMchQ0EAiJ1cm+QYW2zDxuoxRNrZEIPoekwdwEqCiJ2YWiuJ8UCEFT0ryvcaSkuDayUXGdUFdaMBlSEN+L6pMES1LgncikZoHNpIaYAKZzjOmICqhRCpydy+dY+8C3eTGXsxMHKXEaSc3kbW2FGVJCuK2QkK434B3Plcmiqg01hioDL6Xor7eusTWK1+i2L6FsrVsHkpn2dZ8swcnGV23ZP+tH/L1v//bhJTYqA1p1dN7cXwymcyvTTalSHn4JmnWTjt56CtTR4ROmbOCrBQrGHiGlBJ5MCcnAq5PHL5xn40X76PGuxz9+v+bC3/636d99x+jQo8LEU3CVlogMyUj8JiCbrEkxkhRWowSSVWU9AJsadEY+mVLytxwjJyzkDdLgaCkcjN1DVXNounwbYcJDkKHtlbgib4Xbe+qoCpHNIs8Pm8hOEfXthTWgi6pSostt+ibhnoyRo22aL0m9T2xb2VWIzqq6RSfpG+BsaiiwkTP5sYWoV0Q+gaFwSdDbALBL2isYTqqcTFQleZnxsz/f+iA/4sdIURuXh6zPbNZbxdOW6HjzAqDCQ4DVBamm2Ou3LiAH03p64q2adAKrrx4kWuXJuw/eMDBUUM5mzKeVMwXc4qyYGNrk7PjI6aTTeJqxfz0jBc/8wU2Ks/hRx+iipqTswXFaMTmzg5nx8dUVYVOcPfNt9na3iM0S54+fkxVWJbHJzSPjokBfIToPYWC1dGC4MUBxg83wzpXHoJnnhCEdYQdaHsDm4LnArJkVKyx7XVjLmPCQ4OIOOTbzyEysMZb16X/gKEbTWE0JmdYMSU+evMus90JWxslaAgqcnq24mu/+nf58FvfpDt9SmhPiM0zee5yC+w4B1klZXu1S3Xzy4xe+xXMhZuZTieBYi0KpTKDOA0wTyDFXgZaohM8OfWkFCRoDx9qCA7a5F7Bc1i/Ec9MrRUokT2VRmISaysllQYhZuxRJhUzOktRjwiUtA5MOaYoa5S1z+H6KcM5wqzBp/wa8lpSHbjMRRaoRukM9ZBFjUCGmLR8BmXLfH0FIoEB9lDYwlIUFcZoio1dtl79RapLr6DsZH3+Uq4AJGj3QvdzK1ZPn/B7v/YP+eDDfS5tjlDZANSFRJVhMqPArNdVriie64/oLHVLHrNXaiCoJTmvaWi+S+COQ6mnhPftu0B37Dj4znfY+9IXOfvB97F1pLz9ZWodUKXFjGuK0USYRPmcaGOxowm2ENw7JnlvRisKowiupyytaIXESB8CrQcXpZFs6opytoGqK3xQuN7Ttx2+d5Q6UpQlq+WCvne4zq3hRt+20K0wMVAaqTSa1YoYJCN3rhEeeKEZTaeYoibFSFVaynqELmuSKZgvGhZnC7rO0/cO5Vtmk5qNrR3KvPv57Gw/ri2mLPBdZLnqmTcOlEwn/wyI++MRuEurmE0KtJamwnizZmezpIqBkU1sTkegEheubLO1O2N/GZmvOppnJ4zqmlc+eZVCwaMnZ3SxYHNrA1Ki6z1bW1skHzk9esa4rjl9+gQzHnP9pZd4/KPv0/SKjYsXmZ+csrW7g9WG48NDZpMZTx48ZLVYsrW9w/77d4jNivFkRtd5RkmhW9FASSlRFgWFghSiiLbngBQZAqiWBZgDZxogBHWOb7P+2QCDDNE7rbUpJPgkAU5yc0bnRia5PB+E+UkJa4TBsG62xXUejlFKsMQ8xAOJxx8+IqgJt169LGV73hQePzjgd/7G3+LRG9/HnR0R2mPi6kD2lWobVcwE+hCcgFRtYa9/mdHr/wLm8ifBlnmkWSRmySwPSbaHYRkJgEmd642oXG0Irh8YGgMpiI5EJObzcL75xRjO8e2Ba20UqshTl8ZibSGVSAz0y5Z+uSB1DYXpGU8raWzWG9h6A2UqUSqMolIkVY/AP7bISorGklTC2OwXqfPovBbXHdbUQnlr2hhRQ7QyiSl4t0JnOQCTZQJsWWK3L7H9+X+O6tpnUeVGnl4V2p9MHslIewwtwS1pjh7z/V//Db7+T7/LbFqxUReELop+TkqUJvtr5iOR1tmCnG4pnyRm58Qh14cxDbm1bHpyTYUiOARy2Yzl+qUQObu7T2FWFLMrHPzW32D3y38Rmp5RaammU1RRyQYQPb7viF1LUVWUVYXSSvTTtTCS0FpwYBQ+aloX6JzD9SKupmyR9WmMbOQGlosl88OnaL+iLETrplksaVYNXdYJUZkSiXdUVizLXNvi+44UOnkfIeJ6J4NXKRJcC76hKDSjyZjRdMJ4axcz3qVpelxzRuha2tUC5eZcuXGZrRdfRY02iUlTGs1kVDDb2aGczrKIl8d1jtWqEXrjTzk+FoFbJTg9bvjosIFxwbiyqOC5cnnGZDaCUnP5xh7jrRmrWOCWc3TT8uLty3zu01foThr2n3UU9YjZxoS+c4zGY7a3N/AxsXn1GruXL9ArzUtf/gqznRn3P3zE5PonWHUNd96+y/aFPcJqTugCKWr2nx6ydeEChbUcPHjAaDQleDFoGFlDPDmBkPAhYoxmXBuS86K9kD0CRcshG8Ym6VKDNCpTkoApYj7nfojDxGQcglEkB9znM+jcOEMwvYG/nGI6h0RyJiWPy+uhBjw2B5CUKHPmpXLgC53jve+/x2tf+Xm2NisZ4skvfP+du/zuf/m3OXj7Ddz8GbE5JC4PZG+ptiT7VqL/rJRC19sU17/E6NN/Dnvjs6Rykt/7APPkqcfgJdtGoaw5D3hIQE86gc60PHhOZIs8Mv+cV6KWcjqRBr3StUxA7DrwvQznRNmUsAXleCRC+3k0HC+NJz9/Rj8/gRBQtsDUY0w5QpuShEbbck0VFD0i6VMIlCQMGj1wpKPK1EdpukoVJFWDKazw3XUWz8pytMoa9NYFdr/8Fxjf/gp6fBFtx5k5M7i2iOhS8g2xX9KfPeXuN36ff/Q//Ba9c7x4bYNu2aJSonGRUmvsMPO01kKQgZU4bH5rOiqQsf84wHXrNPCcRniuxjhIwKb1RhqTJjTw7NvfYfP2LVbf/Tp2B6rLn8M2S3SQSsgUBu+dCEF1Hb6ZS+NXLjhojes7QtcTo8N1DV1UOB/RqkQrg7VyzlEygh5iJCAwVaU8liCKhj7hPTSLOb2PLBdLUt+BdzmhSHgf0doQgkKXFXa6Lc5V3uO7jrZrCa7HECi0x1Y20xoDm3t7FJMdcI7gZQjn9HjOw/ffJfqWYrpBNCU+JQgJlaLg+8aikiEqTfxDQvPHAuMOEY6c4sKFCTYEQghs70zovKewluQ0zw7PaL3Ppp0lL7y4y6yE/SendBFmO5sorXFRs7G1gWvndG3H3o0XWCxO8CFw45WXOTs7xhcbXPrEJZ7ef5vHH+4zG804OnzGbGuLgycPsdWYVz/1aR5/9AF4x2w2y/52CmMKJpszju90aDRLHygrS2Gl0RNys3HYLWPuKEvsO28urvNeJaPP6xtiwDhyCTxwOQUfRoKeUqwd3+WH8jsKaeyp88CmjCK6wPBrOr/+gGEWRmMHCCZrUjx4+z63X7/FC7cucvS9h4R8I8cId77zJsr8d/zyv6G4+KnXqZDmmJ5cgXpTRuO7U4hZOMtOMBdfpyrHuNEF3IPvQvNMSvMhg87ay5Egzb0MHYkw0JAN5mCfcmZkB52QISMMMsIv1pEMO1UikoIEVTUEcnIGn4Qap7TB5HFpFXPFQG4IxiTDlcnlCU75mbAYpBGpdR7wSZI5k4JMMeZraYxIdpJlAwZNdJUEY47B5wQ6SwNYSzIWtXmV0at/kvL6z6PGFxFd7gDYXIzJphd9S3Ir3OKYR2++wf/013+Nex884Rc+fZnJqGLeHVErxaoPbBV6zeEeBn8GIbyMgDCgeGKY8FzWN+iO59j+/DRuyj+HoXWcxGiCBEFxeucR472rsOjofvCP2fzyn+fZ3/4memebPkG36tBFwdoSzsuUqrEyzNQ1PsOIiuBaXPCkclP8IXXE2ErUKRVgC5KR3kAIkVGpsWaKiwrfRVyM9F5odzYJqUBF8U7tXCKlJbooSbaiGk9QQOgatBUSQux7tIa6rvB9Ly5EVlFOamGqtCdMKkvnxlgbsdWIvoOjpwuOT9+hqKdELz0cFxO11Wxsb1DWlrbrSHmidA2n/oTjYxG4o4KLmyWx6QkJXPT4aKiMYrloaJWlnE2wIVGNCy5uj3Gd58kyYkdjdqYVi0XHaDpjOp7w7MkjYkhUZcmD+++zuXeVSa347nd/SCorLI5+saQqR0zKEd71bG1t8uzZCduXrrG7O+Xh+3fQuhQRmJQYTyqIDu8Tzz56gD91WCUMl9JoVIx4H9cQCUhjkoG9sI6wKjeCxJE7pnODBJVhkgFTTFnwBjWMJp+PvYd0Pt5+/swDAp5Z4zGJuSlr6HF9ow1NzSrjhlqG10hAv+p45/ff4VM//woPPnzGk8NGGC9AHyJvf/MHpAR//N+IXHrt05QIDKOnlyGbnqb+hBRa8XbUNXrzFcpXZujJDv2H3yae3hf6XhhgHeEUp+F8pPNseahHiDEHwIGLneNXjEID1Bk6iDCoD8bYS/WDTH5KUzAIrJMihRVrMu96jDUCG/lePs/wOt5BYUguiFFEWaJ1Ic9jDLockUwWm8ryBXItAgM2llBCJdSIj6XSgDQoVRBXdGUUOPkc5uJL1C/9ccq916HaQZlRpiDKs8ln7kk5aPeLY5689X1+46/9Ld545wOu70149ZPXeO97HyBWlgEfoTJQqHNhKVknkmAM2uayPvQ6QA/rbqCgqiErz4mFzglIxpBkEzCJsjCQzUP6U8/Z23co6wnP/smvcePf+y84+HuXoO9wBqSdLNOLxlpQRoJ2Eiu8FDXRi/FC7zyta5heqLDVCJNaylEtMI/3ouTiPUZrJqOa6EUPKZDVMomMp1Oi85Q6ynSqj0TXyhoBOudJfaIoNEU9w/lehKW0JmXYsw0NuugpijLPEShGownBe2KpcH2LoiP5nqq09L2mbx1tc0RpBnchxDIta3hPN2e4poV8T/2042MRuI1SnD1rZDEVmulsBC7iK8N0b4fNesxi1TMZWera0jjotWW6WWKtYdkGJtu7bG1v8uT+PUw1oV0u6KLl1muf5Wj/CQ8fH1Nozf6jfQqreeHWDbr5Kd4FqsKymp9x4/Ytom959KN3GY+nLBeNbAC1yRommtGsZup6TnLwTEmapoLD5kATB561yuJHOTfOmtlr26ycnbMm6WkQj3TR7lZqXc6uu/nk65m54kO3cYBYztug6jx5z0F/IO6mGNZB3FqojWZBWOObSike33/EC595kc9++VXO/uEbLPqQ/zaSkubdb/0AFSN/7P/Qc/n1z1BFKTP19CqUI5EH6BYkdyrj6Nqgxlcpbs4w00u4B9/A778DzWlutmaX9SgVxYDRS8MzKyGaQtgmWWM6RwoGXOh5/82hS6CR6mPAJeUzJFEBTJo+DFm3xihZf5DwXQuqyBokEHongRUlzciU8nVWWCK6KABpNKIGPrRUD2T+cyZ/SNnfOYrsLK9tkc2LExRj7PXPUb/8J1Dbt8GOZbOKPm+sUTaX3IyM/Qo3P+HxD7/Lb/y1/5avf+Nt6kLzy7/8KjEpVicrLJGlTxglgVvnTDjGmC3g8vJbzwQMLJW4Pq9qWKNr2dxzaumAoui8VpViLVCVcuAnKZZPTth+ZYI7eEb70e+w8fofxz36XbwRrRajIzFEUnDYqgQFru8hOIhittx3jogVDZeuYTrdILqMzyvRuHbLFdF7uTFtmf1cjTjqdJ1MpY4qdPISmCebzJ8eE4I0wrW22KRIwVMWtVBHXU8KkUKLXnWKQeznevCjEVGJEJsmrhlDk+kIZSY0ragdKmMgBPrWUVQKW5cyqdk4knLCPvEL4dQ/p2/0k46PReD2QdwhCquZjAtCgtHFbcazGc9OV/SrjgvbE1QILNpIMR6xNSrp25Y+wmxzhu87Ht19H2tLjk5O2bt+hXFZcOd7P6CebjAdj5nPn3Hl6h5b44Kzo0OGTrguSq7eus7x4w/xXWQ822S5WFJUhmpcYsuCpuspRlNKk3jy3kNG1tKsOul1YZGqPw2VO1pnKmDU581H4LnIKzg2RiAKpVAqYmclRWFpTxpSVOuSdMjIY8oZ3bq5lM6xb/k2d+hlwiJmN3OTtZMTgUFHeWiM1oXBtoE1yoAEqje//gO+8he+zAu3H/LuO4f4lFm9CZxPvPWtN2i7hq/86yuuff4LjHYcJjr09BpqNIXxJqorSd0pKjayaVWb6Eufp5xdxmzdxD/8HvHsESp6QuhluGIYNBqalNoILr3uBCBQRPaBTAgeKT+PorKY+dRJD5m7yZreYIIY7/oIUdUUhcNYQ/IuVyIBY0uUFomCvosimGWsyMDmi6yzW41QFrMf4ngGUeiDtiyFf27y1UkQvUPFKE1IEkoXEpStJdVb1Ne/iL35C6jpVZStUCqbFZM3suTXtL/oVrjFEY/f/A6//p//N3ztG+8QSXzpM9e49MJVvvdP3iR0jgI46QNbVmfOtkB5KScZawGzIcgS17RSUjqnnK7hp7Rew6Cy0Jd8RKOHWhFwfk0hjBF8GzIXvubo7/516j/9b9G/+5swnYljfd7IjFIk5/BeWEXeOUIAjyFiMcZI41JJk7npOpxr0WUFzpOcXwdQ5xpSgj7ItUx9w7zraArNhZ1tUpB+UTQVPmoRJjNgrcWWBdZoQtfSu4DrVhTJ0EeRiggx4tD0/RJTFdR19s2savziVFgvusZFmeC01mKKkhgWBNeQrEIX1doZqzSGQmvhrWeBtZ92fCwCd4yJ00XHzkZFNJa96zskNPceHjLZGHNxZ0LT9HQBtrYmYApWTc9ousXFvV32P3rA9OJl6s0ZH733Ia98/gvE9owP3nmfzYuXUKnDdT23b93k9OiI1WJFPZlydHTGxcuXmEwLHt79ERuTMX1SLNqeja1NuqYFrehdT13XNPMTmtWSuHL0XrDWohBZyRACIZDpY0kwrHX/XeVGIeffazE3lQRGymaUZnT9Ep/68qf54d/6xyzOWkS/Wq0n2gYDYK30udjPkPskJTu1guBDblQOsEiS4PR8lA8y9FEXmsIoupRQkcxhVpwenHD/rUe8/Nnb7H90wrO5NIsGgf4Y4e4P3sOtfpVf+tdaXvjFn2N8IWBCiwnXUJNdqEWci+4M+oVsHKZGb76MGl9E77yEf/Bt0rO3YflMsvOsXmiszQ1Xcx64giclv6b+pRRR2maIRYuutT7vJQz1jgT2IUcU5bWqMsQglZ6YF+Sf56EYjMIkD7VaB3SlCtkA8hSjwkggRRNjT/ANupys9T4IHUqXkni7npAsKTrKPMqPUlCMYecW1Y1fRO99CqpN1I9pa6vMPXeQ/NoVvJsfcvDuD/iH/8Xf5p/+/jt0JF7ernn9cy9ydrjk6OERJiW6JJOEdSkMLmkk5qpvOFUxDLiI9FNQ6/UTY1qze2TPkvetyayfHKztYPYQ/braVFblgkkq0rMnB0yv7tHeu89Gcw/vKnSzRI/HFAbQtTQh+16mdAuF8wEXjDR1IxSVpZhORB61aWjalhQ8NQlVVATvMFoE3aJzhAiL1qNiT10lFm2LP+mYlQXFZEJzsI/rhcKbQo8pJPimFGUNlmMsDf3KsFh2tJ2nqkqZZhYck4oAZQEhYehJxmRYJlBWFa53YoqhFNZqfNB0nUMry7isiMg0qy3FIu450s9PPD4WgVtrxcWdMbOtGbtXt1msOk6algsXN5kUllXnUWXNxc0ZPgQWyyU7l64xqgz7Dx6we+Uyzx5+QNt5PvHZz/Hk3h0W85bZ5g7HBweMShkeeG//LuPxlKosaZzn5u1bNKtTlqcdO9s7PH16xGRzF903LBctSYucUmFL5kcnbG5OcE2DvnwLExva+0+YbtRYFQjNAGnE3NAZ4ItcnqdzyCTJ9cz2SvGcjx0TJ+98xLfvPSG0DpPR7wF3XKc+koDnjYF1I3P4+YBBxnwTSnZoB6QVSPjg1yVzVRgqq1gNZg5IKeyS58533uYLX/kkt16+yOKNJ3ReXjxGYRRE4MHdR/z2X/vv+NLpGS//6T/N1osXCPMHaLdCzS5DUYHZRdkxqjsjhUZubruN3v0M5eQS4fA24fEbhMMfod1CgiTIwAt5Q0yJqHOtmgNnyup+6ylRpaWBZyx4v8ayoxo2u0w3jMIN1sZmzNit4QKlM6wUhetuMvyRcjVD9AKLkcDKAIh3LbaSoC6iViGf//yaCP9bu5ADPqJfMbmIvfo5zNXPCsxkx0iKPgxgRAZFPqIj+o7Ut3TzQ/bf+j6/+Tf+e776tTdoUmK71Lx0Y5NyOuL9b93DLVtGSnHYRQyKSudAmysTxVCl5OWTWDcHYxKRJ22yHMA65Rj6Cgj9lHhue6aG9aWHBZrXbW5PJGmUjzZ3WR2c0Nx9k/rVL7F84+9gxjXWVhKku5Cbfh6lasmEYwQVpIrJRtdRaRaLFX2zZFQY+mWkpc09oEhSeXw8a64XRYFXDmtLNrdrUIbgA6aw1Bd2aeZj2pMDklb4ECnrEq80KgZm0wmKSOvg7OkzYggYY7BAXY0wKoHz+HZJslbeM56yMIxGFaao6M5OcasFRkW8MvRJoXtx5BkXBTFEqu0ZFFOak2eymf6U42MRuK1RXLq5w3g6Y//wlGQLruxu4rzntHVMpmMm0ymLeYOpK25/8pM8e3CXRTdhtr3Fo/vvs3PxErtlwcN3vkdVT5jVFU8ePmLvymVWqzPOOs/lq9dYrJbYccXudMyDe/eZjiZEFEfOM55M6ZtTkoegDFs724KD94GN3S0652kPTzBLLU0hpVDRy4Rd3mEjZP0EwWrXzcI0tA/XfR0G+GPImBNgUMRW5ByVMmvGSYznMIzViqjUmlRBSuubZ7hZEvkxUtb7DmAKEYd3Ho1ec3C1UYxKw2kf89h83mISdIuGO9/7gBdfv8jVpws+ejTHRfAkYegpgV8Onjzla//t/0SxcY166yJGO4p+gfYNenoZNdok1SMoKlS3IvVnpNhJIBztYa7O0Js3MUfv4fd/SDz6EPwcFfIuJU4HolWicgY4DPbYIg+EiHC9SgkVA2STBZDfDylkgaokmX+eYhXMW4TzE0o+VIzyvUKgLG2IXqZNMbKlxmy4G1HYcSXYt48sFi3oEePKYbWYraUoU5Ex5OA4mqEuvEJx7fPo7ZdR1Ua2TZMse9j4GTwjgyP5jtAv6Y4PefD9b/Gb/9Wv8XvfusMiRGZGc3lS8uKnbnJ60vPo7hN0lOB23AU2rcJq0U45n+Y6TwSyzYScC/L2nyBm4wmGdZvOZxRSiqLRooaKQMkYpSJvbMJSUflfCgm/iBy9+x5awdl3vsnev/aLxPubdNHTNR4fFISA7wOxsBS6RGmPUXF974QYoOlwPpB6R11WKCJ922NMIcyuJNc4Kuj6nsm4opxu0rcNFzbEnLfznuBayrIAdSYc7KLAdyu5B7QVmLJtCaqTQb4r11CmpludQHCMS4u1pUyrJpnh8FHEyKpS1ARj6KmLmvHeJbrllOXpCaroCd6jU2IyKRjPtjl9uo/vWqrpDtPNix9/VkkxqrDjMR/tn7KxOWFzZFl0PR1C7bNGcXQkjI/JuODBu28z3tgGBSdnc25//os0R4/Yf/iEa594jY/u3KVtOi5f2cP5nqIes1mKP93la9dR9Dy5/wEbmxdIscegKJQYD5hyjB0pRpMNjg4eUVcV9bhmuVhhdUFzvKJcBZqFZFhkrDCRwObxcqUIKWXDgpwZ5yAp98xz+hXA+iZV52M3QhmLOUAJDmcz6yFkjFtpIOQm5fAcJCm3jCa6sOaDayUDHqEbRpsTprRiLZZgbDWlDBUy+B2C3KinR3NO9qfcfOUSXeM4OG5FVCu/d2IClzg9mfPuV/8BR/d+wM0vvM6lT77GaLfDuBWmu4ia7EFZkcZTKEfofg79UvQ1dIWaXceML6B3XyIcvU88fJ9w9D6pOZER8ly+q8GNZb0DxhzXJUOW7lECfO4vSLPNFAJxJA/KmLWWtBqIzX7IEs9lAjAGogE8ujA5w5Thmq5rWDUlBY5xYXDOk7pAZQzOr9AxCzTFLGmgNHo0w158meLKp9A7L0O1u3ZmVwz6HTnDHoK270m+w7cLFgcf8f7vfp3f/NV/wLfffUAfI7VV7FSKl1/cYevKJb7/O2/RLTvGSjF3kTbCVTvI+Eqglux4CMi5OoxDJ9XkPkjeINX5WhigEmGkqHPTYi2BnJSt4chBO2cSCWGfRB/pz1aUsxH+pEXt30FPtrE64oLDdy3eR6JR+AAmBApb4NplboxbfDLiLuM6RqUhWItbiRGDToJJJiIuQecilYFSK2LTYL0DlWh9R4iRejQiOM/i6Jiyd5SVDNIARN/jeo/Vlt55VID+yUN06hlPJlRGSYKgLLoqWDrHso9UOmGNxbUyRGNsOio8twABAABJREFUAXEBtqKwitn2NuPoOVk0tCcnGB2xVYmqJizmDavlB9RV1hT4KcfHInCHEDlpPDdvbJMcnC1XpKpmb2+PxdEzTl3i+osvEd2cxw8OuHjtBqfHR2zs7nF17zJP7r9DQnPl1ovce+tdfIDJbMJytaKezmjmC4wO7F7cYf70EX3XsL2zRdu068GLYrJJHz2VMYxGNWfPDpmMpygFvm9RwdGendCftoyLEm1L6rrAqEjySYbjjMb3/rzxl7OWHAskuAysBkVeyufj5oMuSQJ0lspEZZ6vUngv/00gQSfbnA2NJYVM8oVMqTKFZC/DkIg2ipDfV0yJ6BLKaoJ3TCpLbR2dj2gE7x1eP/jI/keHTGZXePETV+h/8JCjlSNE2ezWsNDK8aPv3eHJ+/e4960f8Pqv/DFe/GO/wOaNFyj8CtMvMOM91Hgz6yNvQTFF9UtwS4g9mDFqcgM7ukTa/RTm7EPis/fxR/dg8RRiI5xqdY79E4WLHEIjN661yBSm8IGlx6CkJ6AQzDxJ01AbnQOOonMJlIj9KGuHcgJwMoptRQYghUQMAZcKzuKMvXKB1oqyKqQ6CrI5q9yV07YWT8jtFykufRKzdRNV7ZDsCHGbT6TBRCxFqRKyQUTyHcm1uNUxxx/d5Y3f+G3+4d/9Ku89PsGryMRqtgrN3mbNtZeusP/gGYcfHYpuNHDQBqxKVBqsBqul0rJZdxxgbRKchctU3jyGNSy/NMAkao2BM9BTVVr3V9Y9FNZ7am5cqkyLVYQgUJyJhsUPvo3euIrfv0va3MUHmX5MPqGDJ3Ytpq6xCuKgVOh6QghYBc4rQuhASeM1+g4NdADKsDmtib0j9I7WtaRspuCSpixKYf8nDxiaswVpEjDFJkVZ4Ykk52jaVhymjILgmYxGmKJCa0XbrIiuR41qQoCuW0kvXQdSiui2xVQ1JE0qEvjAaDZhsrVNuXWFbuOYGDyLNtB2jkKLHEHXCvX0px0fi8ANcO3ihHbhOOkcs73LXLh4gacPPsQny7WbV3j25CM2r1zj+icucvDwI6596tPQnXHnm1/j4oufIMWGt7/1PSbbO4SmIWnN1oVdnj5+wnhjm1FlePLRQ2bTMePxFGML6kqkG5VRPH34mMnWJtoqmqZha2uH5fKM8XjC8vQUXVrMKrGMir73KGMYTWvMaolHst7gg+g2ZGlRmaPR60xEjnwxhq49Ikh1rtudf0txzkZ5juo2ZOYgmc6gNijPlAjOgxbBf1NYbGmy04oiOcnk1m7qSUZ4dXZnn1SeRdehk1DHGDYeHXF94OjJnBuvXOGFlzr6OwectV4m6pS0EwOJ1aKhXa44OVpy+Df/Hg/euMPrf+5PcPn1TzG5cA3bzzHtLnpyAeoZlBZVbKLcFNyK5Jak0EmmO5mgx5cwu69jVk+Ix/eIJx8QTj6C7hRiK1i5iihk6nDtWRklM49agmgiwyFxPbwteDQBZQq8T6ArlCYP4oBoVGV/x1pYJ9LplwBUFZprRYMtxQhWKZMlXoUVQDVDTS9jdm5hdm/BxjVUuQlZ1W/oPwierfNm49cmCNE3hG5Fe3LAkzff4Hf/7j/mt//pDzhYdqATVilmRrNRal7/wm1GO9t8+I07uN5RkOiiZu4Su4VitM64cyIx6LhnGqtcbbUO1sPqjEN6oYVaqY0aUunz9THEdn2evUvzck1EyZWQVKDRZVaUNfSnZ2y88nnO7r9Ja5f0WJSPpBCwpc2iWR0uIZIRLmvQBI+pLa0XDr8GYp5CTFrTd4HKCO3Tap37GAFTFhR1SakKVk1L6D2VzUmAEpZZ3/VZfTARfMTHgHI9VS1tbWsqEoneOSEvJGiWHW3v8F1HLA2qVBhbEl1L03R5BMHJbEVmyxg7oi4Uq6RQITHe3KA0lq6Zs1gsPv6B2xrFyWlLF+Hyyy8zGZd8+OZbjDYuMS4iH31wnxdf/zTN8QEHR8+4/tJLPHjrDdo2cOMzP8eDd97g2dNTrrxwi+bskPHmBkVZcHxywu7lyyznZ6yWsLE5JSSZGGvP5sS+Zd4mVn3Hpb0LBBdgNOXS3i59u2Rr5wLz4wOM8uhC50UsGZcZWUwJacm5bViSzDkO2PYg1p8bXjpnumRcewjWkpCkdX9xwBtDjHmEGBETyqWpNPgzZStDISjRsk4hYo2Vkt4akgFTiT9n7BuUEaXFclIjCsRqPXq/MS05Wnb0MWHzDeqiBMFEolt1HB8ec+HGNov5ivhozrwLMrqb8U8ZpIHQB3ofeeObb/Lo/od86pc+zyf+xC+x/dIrjLYXmH6OqbdR4x2oJqTCiN6JH6P6juTPhL+rKhhvYibX0bufhvaAOH9MPL1PPPmQuHgE7RmpXxG9YbmCugyUJmfNkcyDzkM6ZF2UCLlMkkWYIoWR8fOkCmFFRMFCyVWOxKfsW0mgyEE8uqwZU5ZgZ6jJBcz2dcz2C6jZddRoF2VHwlYZArU6hxDIBgwp5XF83wORfn7EyaP7vPe13+erv/ZV3nj/MYsgKpNWKSZKY1Pk2tUZm5dm7H/0hMXpAnyi0pqPGqFQTozFIFQ9ye0zyyl3uYcMG1mW66b1GjJS2RBNk+GU3BtQ0nDMteU6UA8bAhmOGYxAxOpNPrdbOWyh6A4XpMMP0WmEdT19Va6rjdAHCqNAGekvdY5xlaVWK/HYLLT0Inx+DR8VfScCYs57rEuUhUbbmrIusEVBXVtWrXjSjrQV3riVeywET9936BBkYy9LUoR6lPXiEU1z507xKKwthF/ee5qmRadAUhatS4LStIJ4kYInLJZymq2hb1eYwlLVI7AlKkVKo3DtgmaxEimH52nEfzBm/s+Otv8LHj4kqDe5/cptFkcH7L//mK2LVzmbn1Ft7fDqzevs37/D5sWrjOqaN7/2T9m79QqXXtjkza//DrYYs3dxD7c85vLVqxzuP6VJir2r13hw93129y5Dv2J+NqcoSpbtisJWHC97RuMJu7MR+8cnvPjyy0w3N7CFRoeOw4cfYlOSZpLS9HPxyXMBkg8UpaVHmk0hyQLSSmUtknVtKct6bbg6RF75WUKvR4yfn0hbc7WS/HzQIWGAxrPmx/D86yLWaHSpMWVBOa1QlZgFmMLy7OCIGIQ2511PWdl1YyqFREFiXFgaL+JZZSENucEsNqVIc7qiKC17N3fpOo8/WLF0UYwictYdo2woNspk2P6TE07+zj/lg+//iNd/5Rd58ctfZOP6LaqNi5juGFVuokc7pHoqo+x2DLFGOQd9Q4wtolY3hckEM76J3n6V1B6SmiekxSFxcYBa7DNKI3h2BxUXpOwioo0lIr6ZSgkdLyWyLreceaUUKgWBoAoRwU+6yFdlmG6Vcy/QowJT0McSRhsUs13MzhXM5nX07DK63hWa38AQGYjOKtubASkFVBQZUIIjepc1RxqIjoff/ya/9z/8Jr/zte/z6GRFGC47UKEYqcSFzYpXPvsizdKzeLZkddphc2P2yEGhFbVJFGtBM8mK5XkyBxvF4LYk72td9wkskjPWmGUWUgry2AC1hGxGbXKVqM6nLNGSCQsdU4aMCm2IvUcVFYRIWDUUkynd6ohqa5eQbbtCXuexj4TghXIXDC6GrOkiE5IhiIxAFxK+d8zGAmn5kNUctfxNURTYwtA2HTEI3q9VJBojLCSQxnYW0I9EiqKgKAtIHm0Kut4RmhatLZ1zLJteho20ZjyqCa5HGbuWuVCAD47oBbrTSaZpu77H+oBNCjOSpnFUlsaJXMJGZbNRyE8+PhaB2xQlN166yZP336YcbbJz9TKPPtrnyiuv4lfHPH20z41Pf5HDe29zdHjGy1/+k4TmhDvf+SbbW1u0qw5TKKaTHR49eMj2pesUOvLh2z+kmm5zeniIArQtqTa22K4Njx8dcP3lF4kx0LSOT75wC786ZfH4AVobzp48pCxLkpbJqN3Ll+g+OGCJIsSAiVHoZFbj+0GQf8BckcU7JNd5IpKBQqak654yCDjQ+lKS8jfGKM+lFEoPlD65iIKFZx9CtHBbkYWjlcaMLaPdKaaqqHe2MFVF7B39fCnBL2t2lKMxttSEVpTPUhDT282J5azzdDFiS0OtLK3z6wncEBPLs4btS1tcur7DatET5o4+KqLKTL2c1SUlXHcVE00M3Hv/EQeP/h53v/UGn/pTX+b6z32ejcs3KaYLdHuGrqbo0Q6qnpKKglRVqLJChwC+hTwaTIpgRjC6ghrtojd7jF9h3ZKyW5KuvUZqnpKaU1JzTOqWKLfE+F4srlyz1sJOKU+vForoRN9bJ53pZAatjGDduhDnn3KCKkboyS5mchE7voAZ76LLKXq0C3aUed5WGqqxBWWE+qctCgsEUuiJvoPQydeuFVhkfsTxB3d592vf4nf+0e/zzv19VkFMdZWCpBQlijGK7bHms1+6TVKW5fGck6dzQucYGVjWI1ahY9cmRkatsVNNdrrJPVvigHMMjchzLFrBubQrmWmSWUqQGEbwh1UeQsLoYWBHZSU/2SCCCxgrm1foA6mQ4TCA5f4B5fYeYX9JWK3oo9A0Y4h0TrLvkZV2Tdf32XzaYI3C9RIQYzZ6nlRW3NdjxFpDSpomIIbOyrBYNFRVIe7yrs+GJgmnFMvOY0iUheixT2abjCqLD4p26YlZnCwS6VxH77JzvDXUtSVR0iM9oRAb0AWFtpgCkjFQjGiWK3zTYMqCaEqasMR0DbowFJtbjGcTCr2FjS7L/P7k42MRuLWG/ft3me5cpu9WLNrAzU++wqMfvcnswjV2L+1y5+v/hMnOJS5ev86bv/c72KTZ2tphvlhy5fYtXLvk8Okxu1dusDw+4OToiLqecPLsiHoyxYxHXLx1gzg/5uhkwd7NF5ifHDLe3OHapSnLowPCfM7pszNU8oxmU6rJCDPbZnfvAk/e/B7HT57K0k2gU6I7Ey1wU1pSShgXSC6tM2xlpImospHrmgmbseyh7Ix5YGSdbBvJfkxuJA2TkynlWYd846UcxAfbL2U1xbRGT0rqrQvU21voosKHQD+/i0la5kq0kY75wABQiXprTEyRrdIwd5GDk47gAlVdEhE/Te+zcJaPzI/mbF7a4vrLAffOExados9ytiKzmkeqORfRCiGxWPW884P3eXTvES9+6w1e/aUvceWzn2X3tT9JaOfE1TG6nqKqTVS9KSwUa6CYoKoxKkTRDgkt+I6UDKgS9AhVbsM4oLduQXSiOOgbkmvAr8C3maGxyhN2reDp0eXrI7RMNcim2kL0sm2NKsaoYgLFWL62IzDidSlKfSXYEUNAU4Njn6lywJaeQgyNvCcvKnepb/Dtkvb0KUcf3ePed37It37727zz3kOeNb1shAOejKJMiSmK3WnJn/0Lv0AykdXpnMXJisXxipLEbHvC3TPZb8Y649tGnG60GrIJfU5aSOeCZVopoVFmmG4AiYaeDSTBshkat3LkemLdbyFTC3VOYFBCadU2QwcefB8oygJ3fMbG7kVMhK5dkspJzk4ThIhWkRA188ZTWIUxMozWLVeMCssqBlwvUseihR8JSZqxjkQ9qRjNpoRkRZMEhU6estQyCu8d1kR6I+fYuyBqgqlHM86bkOXk7EwqFZ0hHyWa6WVZifKj1nin6JomN78dXiXKwmJNSSo1NoxpmxaDJ1qZS2i9JS1aNrXh4rVrBC+mF/pnTOH8oYFbKXUD+C+Ay0gu+Z+llP4fSqkd4L8BbgH3gX81pXSc/+Y/Bv4KkoD9+ymlf/CzXiMlxfbV65w+O2Kys4tyHY/e/iGXbr/C/NlT3r1/j73LV2mc4/DuPS5duUJ7esKyT7z0hS9y9OE7YKdcu32L/XvvY7QmacOqdZR1iTGwvb3Js0eP6FzE1FMOjs64fPM2qj2jOT2iUAWnyyXjac1oNqGPidkLL1LhePjW99i6eBHiHVTmE6uUUCGJYlyhcY1MaInk8dCRz53wlDInMzcX09B4HDr4stDzcmfIYAbMfKjTNXmIJOMlSoPOjRVTGcrNMcVsymhnFzsuMUUJVjHauMDq7nsZqxVYQ0fhdg+O5q7rhRGDYm93zHzVs+wTvfeMqoKm83Stpx4FdGHpe8/qZMH23ibNacuDByc5EMSh/Qp5wfDcZxZnoMTxyYrF773Bh+98wCf/+AG/+Fdewj19i/HmBtXWBex4C12OMdUMVW1APSOVJaowUFhItSi6+SAGAqEXN+4YhHViR5JBVjFnmDbDFkKxU4P5b+gy9n2O3a4vipIsTTCAzK/OkrrnV4ScUctgDkokV9FlPgGyWRC9DM94R4w9yXW45ozm6JBn997jvW9+mx9+4y3u3H3CcdszqJXnKw1IIKuBSQmvf/YK9caI04NntPOeJx8eCafZwsYrL/Lst96iUIpppnmaDLOJAYfCZH/GlB2a1lVSiOJCo3mu6xhzXyBXixm2U+r8lMkAlFpH73PO9/AJhmaoWq/n5CLRRlSErmsli/YeXxmC7zEpMSotyzbSNA2aRGENXYTY9JRK4bQlpiCwx7DJhIQpDckUYtNW16QAIfQkDCFKsuicE4pmVKjeMzZSXda1pSxHQs1bNZhyTBcH3XuyDiWUZUlVW8qyJiWF66QaqCcbNIsFwfUUhSEmYbzMZhtsXBhTVIbu9ISUAtEHNBGjNVXfU4eeoCxz14lh8E85/igZtwf+ryml7yilZsC3lVL/EPg/Av8opfSfKKX+I+A/Av5DpdRrwF8CXgeuAr+plHr1Z5kGa61xUbF9cZf99+8wmu5w9aXb3L/zDtXsIrc/9RoP7t3F9YGbL96mOd5nvLPH7mzCvXfe4NLVG4xGFXffeotRWeNcwMw2GJWO8eYmMTj295+we/kK7vCAJ+8+YOfqVd5/84fcuLSNOz2mWa7Y3NzBVCW90Vz5xCvMH97l2f4+F194mW5+St/0FIj7iVZIl9waKf1CLr3JwWqASrTcHOSu9sBwkJthoKmp9XkYuNhDCnNeikq6HYZNQYG1BdVGhSoN1eaUanOKqWvKyZioDb5fQhqxefUmj//Jb5JQFKW4kQcXUFoGaYwtsvt3Ah0xVcGV61u8f/cY14k3XlVami6wWPSY0lBoS7PsUcawd3ObZtXy9FkLTuNJP7bhZO+GLJIkTdqUFV2PT+a883u/Q/QnuNNjNvcucu3zn2Tn5i3GF69QTbbR1QRdjXMWvoWux8I6MTprbheoNJEnDB7lRcuD4GX5Jr+uciR4i8B+IqG0Y9A4kTes15h2Wuebep31MsBWOZgrXYDKsq2DilTspRoILak/JYVOAmTmKffLE+b7Dzl470fc/e5b/PDb7/L+hwecORkYeV5faDh3CRgBWyPDFz53nesvX+b02THJB549OaVdtoxU4sZrL3Ay3iB5R01kYjSFUiKglSRTHdbpGsvOtD5FNmse2isgomkh5qlKOQfn6IrAKhpIVtZycAGT5V21NkLJzHLB60G0XDoOSQwo2uNjimJEO2/RY4/zgcJKgz/FwLSUvsMyALqkxOOcp0yJuixJqgMUvfPEIAlCNSrpmha3aggK0AWlkuva9x19HyEF6skYawqUUozGFqUNDk00FcpEVl2gy3BVXRbYaopbtZASOml85+h7h+9WaG2w5UiWYi8j97pKUATaJRjfMJ5OKIqS5vSI6CM1gbI0jEh0J09JtlzPCvy0449iFvwYeJy/niul3gauAf8K8Kfyr/114KvAf5gf/69TSh1wTyn1HvAlxCn+Jx9KU1eRw/v3ufH6F3DNMR/cucPeCy8T+o6njx4wnWwwuVhw/OAD9l54gZOnTzjtOm6/+jKP33uPpyvHZLbD4dMDirLG4rh4+QonZydQjvnUz7/Mkx+9xWw85tYf/xIHTx4xKmesnj7FVGMuvHiJujA00fDi7Rd49MPvEdqO0cYuBx/cx89XpJAzIKXRVm7tGEJ2b1cZqw7rm44k/O51gM5sETVYjaUBIskZdswZOcPvS2Yz3BwDLVAbLR16Dd57xnubjC7uUYxriqqia1bEdo7rW6oLV1H1iHbRCmUxis8fAyUwCGapjKaPHWhDd9ax98oeh4dLjk57Vm1PPaooC4PzgWbVi/QmkeXJkqK2XLy2hY8nHD1rUEFlUX7ZaIZebO7GErOQUAyR2GoOnxxTvnGHbrGg//Y7TH/n21x58To3PvMKV177FNOrNxhtX6DauEyaH2BshSpnqGqCKkdQ1HmIJmPRtoA0Yv3CKUFuBEokFJ609B3OZXWH/6isG6MykyfXx0jGbZ77fmCEBAgtKQgMk3z+etDK7hv6dk57+oyTjz7k4Vvv8O633+HO2x/w+HjJKqZzSETJW4zkDBlQKlEl2BtZfukrr3Lt9mWW8zkpRp7un3LydEGRYHNrxmf/zb/M3/j//PfokBgXmtpk2d61kuR5RSHPrUGJSuAwDi+fM0N653iKaJboddQGJZm7rF0YxKoigpfrzKhKA1wSkU0xZ/8DhILWqCZgCgNNT60TXoMLwmqxWqZ7e59QUVFpmY41hUa5jtnuDn1rmJ/M6bqArQuKUcVyuSJ2nsZ5gvdUdUEqKkJIOO9IKOqqFN/NsmA0m6HLmrbtiM0CWxasWsf8rAWTGFeWvvFov8Iak/VQAiFIpVoVJaYs5O9jEJd4Bdp7orb0TQddjylLlCkZzTZJyyXat5gsudDPlyjTUG/uZrXFn3z8/4RxK6VuAV8Afh+4lIM6KaXHSqm9/GvXgN977s8e5Mf+4HP928C/DXBpo+b44ITbP/+LPLn3Ps/2T7n+yU/z7KP7nJ02XHvpNn51hk9w6dYLHDx6wKWXPgkEHr13h26+YtFEjk4f4j3U0w129y5wcLDP1ZdfJXZz3vv2N7h4+Tq+bzl+/FBsxvqGzQu7lJsXQXuwFdsjywff+Ro6FoRkWTw5oJqMCJ1DJUsgL3JEqCN0gZQDcwhuPVwzoIM8/7/DDZOdVkXFRK1/Z53V5RJT5bJUDBSkcWZKgTYCkXKjpt7ZZLK7g6kNWsNi/xFu1ZG8aDXYzQCLM/pFh9J2vRgUSTLz6PF9T+g8uihoFg3RK1aHLZ/4/C2+9bUf0bpE0zjqcUlpNa51uKKnnIjlVNd4xtMR2xcnuBA5OxXe6pVbVzk+PuH4aJEr6HMQZV1+JZlk/Oj9B2LqYDXeLzg7u8PdN99j5+I3uPbJ29z44s/z2r/8v2O1/55Mmo2m6KpGFzXainwmVY0qRKFNNiaL+Dtq0IakLc8nMbld8PwVyGlmOv+NISvMwV9oha1g6K6VrDpDNfJP9ESCa/Dtgub0Gcv9pxzcvce9N+7w/g/v8cGjZ5z0DheHrBZMzvP9sNnkYKcReOTSpODP/fkvsX19j6NHjyAl2lXLydMzQtczMYrP/m/+Vbj6GR689/+kUDAyiULl3urA1dMD1DOMqUds1k7J4J004IZsPA4x/Dw7X58mctKh01DUMJjqDNh2lv5a/0ArCcY692Vipq96H9CxRblE7Hu8A0WgqipE6RzRbleRpk2UWuzpisKAjqTRNqunSyKKjbpk5SM6v5dV22fd+YQuYIWCHlSKFGWBLUYkFKumpQqRcT3CqRH9oqMLHV0rcFp3hjDOCsNkVFKOakojhsPEKNFUidmHMoYYwRhJjEJwNL6nLi0uJVxylAiENZqMIXR0PmGLktIqjGt+rIfwB48/cuBWSk2BvwX8n1NKZz8jjf9JP/hn3kJK6T8D/jOA129eTDc+8Qnu/+D76HrChYubfPDd72DHU26+dJuz40MuvvAiy6MDDp8ecvsXvsLjt74NVJiYaJpe3LPRXLl+BR9bnhwccOnKdQ7u3cV7z61Pvc7xh/dxbY8tYDQZUU22QGuWp0/ZvnCB+ZO7rJyjtGPm8xMUsL07wwUHo0FsSKNUFHmemCG7XPYZa4i9mASnjGerobmYhjHgJF6Ock5/7MTIjcC6UAeFMchgR84MtS3QpWG6M6EYjym3N7GzihQV3WJOe3RCd7IS6AOFmmyxuPcjkvMYXYj2RLbFcqsVwSWoLLayeOcy7zmxOppz4VMvcOuTp7z7w8d4L+e5rgusUfStx1Ti7ZcSNIsGWxRc3NvAmgVnZy3PnjzF+SBMmSSO6jFnagOSIpsXBBRJdFaJxjOa1nQu8OThU+bzBY2D0ZXP8Phrf5ey1Gxcu8Ts2hVGW5uU001sNcGUFbqswYjRgdKFjJMbm+EMTcqwhvQcJHtOz6Hyg+Y1Gd4iD8ScGxmLqbGYBEdicPLPtfh2hVvOaY6fMj/Y5/CDhzy4c5cP3nvIg0cnHK86Wh9x+YV0DnCss1LhPYe8XxQKRiiubo/5lX/us4x2phw++AiFiCytThr6laMkcvn2K3zu3/oP+Oav/z2aszkTnRgbs3a70eQZgBSzy1CCGM4hkpw0KGStisj/YBjM+R6WYRVJUCLELA2bzsXQ5FmSOPqE9NxjMtBjcrNTSotc1SQRvtEJnh0tUeMRo7oSJpSxYvjrA8mW2CQ0T2uFGHB6tGAVGrRVjOqas6UDowSiiYGtaY21ClUqXARTGirKfB96utBjzTjLrCRcdGBLyrFm5MBXLV3T47wH79GdIqlAHzzBGKwt6FvHqRPN9qoqsEXFbGOM7x3eB/EWdcJgCVEw/6ASddbI8UHigxkVGG0Izv20+Ar8EQO3UqpAgvZ/mVL62/nhfaXUlZxtXwEO8uMPgBvP/fl14NHPfIEU+dE3vsHe7Zc5ffQRD/aPuHL7FZSBUI25/InXOLh7h/HOVV773C9w7xtfxZ2t8HFFu1ox295EFRWb25ucHB1jZpvc2Ku59+6PuHD1Che2pzy68y4KTT0es7E9wxYG7xOt6xlVNUcfvc9kNCKqgsXRCeNxyXhzAxcVuztXOFi8hVLgvViYSRIspq5Ja4rpiO54IR9n0CH5sc0tnd8guWRd437rsnTw8TvPASXOJTGXtRZloJhU6ElNtbNJOZkBDrda4s/muNOG/qzD9U4kKYNicXBAiuIspJTQsKrSiMZxiIRFi9IaOy0xoxK/7CF5Hr35Aa//yS9w+OSU/f0G7zxNgqqyKB3xvSikCWQk/3ShmW1UWKM4O+vFE5AhWOfhnAFvzjdzGKAgwAVpVrF0YjShFSwVzbNDvvk3/l8c3HtAM2+xhWbrwia7V3bZunKBrUt7bFzZY7SzQzndEJfwqsaUIk+glBXe9trEV+dGoh4uj7zHoUsxWHYlMu9bJvZi8OI72K/wbUO/WtKenrB4esjxoyc8/fAxj+4/5HD/lGcnS85aRxsibhiUyn0/GXKRl1Hr15WAFlFUStgjL17d5Jf+zGvU0ylnR0dynhL0i57DR6e4ZcvWeMyX/73/mPGlq7z9+7+PipFSk2GSgYlEdlMSql9KDKD1uqAYqKoDvUmtFyA8zyKRGD/AXsMvcr6mM5auAusgv25I5iHiFBJJicbMUImlIOdmREBVhhC6PAwVsZWlqCvJzIF6VJF0JBCJaCZlIo4mzLuE65ZYHzHWoKyYY7QhEb1oqldGozdr0fkxmqSEEWILRdM5/HJFOZpIN2ZdjQQyCIRSgRgMfXBoFRiNwaWET2CNxhYFprQQRYrWpYKgFH3X0i57rAlsb4ypRzU6RfrOC8U3OGzyKFsQgsq9sZ98/FFYJQr4z4G3U0r/6XM/+jvAvwn8J/m/v/bc4/+VUuo/RZqTrwDf+Fmv4fueiy/cYv/eXbo+8NLnP83p4RPqnSskAvfuvMX1m6/gmlPe/Md/nwLLYrHE1lOqidygtio4W3VsXH0B7Vfsf3ifq9dvoml5dOc9vPPs7F3ElpqYIstFR9SG5HtW86dYazg7WVAUmmuf+iTBtYTg0UrhvaJZdusssRjVFCViq+QTelwwvXGJ0Lc0qz6v6efGh1WGR+J5uH7u/OYlf56VPIdAyldaYwsLhabarKm2Nhhd2MbUJb5b0p/OiV3H4skxbt5l2t4gJRs4Ozhc60gYa4lEXOtFCCu7nIToSSvWzJiYIu3+M44enfKFX/kcX/0732TZBJyXLLP3CZ8x0KKyeYQ+EF1EW0s9kWEgY3uWyx7vJXvzKcnocv7UwyyLyudGGreKtusZQAzvA+9+5x10IcavPuu4HB6dcefdBxiTGJcF09mYzQubbOxtsLGzzXRni3pjg3pjSjEqKMcTyvEYVRhMMZKArrNnpgYBLGQTjUE439EFvOsJXYNrGvrlgtXpgvmzZ5weHHJ8MOfo4ISjozPmi5Zl5+hCJCYZRgpDSP4xlsY5vqv1+fkY1tdYJSZa89L1KV/65U+hjGVxdCx4vLG4pufpR8+YHy2pSbzyJ/8UL/3Lf5Hm9ITHd97EpMTYaGoNhREcehi6GVbZ8w3jYdYL9bwklDp/PIGykhWvs+58bYZEZHjvQ/W5fqY0bBQpb5Ipu7kNBiNKXndsUQE0jmlpceMxJ2dLrJbGamGFbqqipxxbdGlAl3R9pLAGbRKLCN4U+KgwOmWcObLsPBHNqFCMRiUiFWHpEZ54aRI+9TiXcF1g1TpGnQNdcXa2gBCprKauROs7xsi8CYTQM6kL0DXl2LIx3qbzDuUDOpKlk2FSVyxdoqfBO9i2hoIE3rNoO5TzbIxKoBCYM0IyhXjL/pTjj5JxfwX4y8AbSqnv5cf+b0jA/lWl1F8BPgT+t3Kh0ptKqV8F3kIYKf/uz2KUABhruf/GG2zfeIndScHZ0TGXX32dxbNHzE9bXrz9MgcffsDq8BBdjTlenlBPN6jrivHmlvBgg2Jre8rTB3dQbce0rFjsPxAjz+TYu3iBSAdqynzVMtvYYHX4lKLQTHZ2OXv6FG00ey+9Qr88IyUt8p0Jzg4fk1oHSotLdNNJAywnIbosKLe2Kcf7oJrBFoHBbT13IuUWVqCSytOI6bnsRWAEY8+FepQWGqE0cxST2ZRYJopJLU4arsU1K9zZnOakoVu0meIlUSHERFitiItG4AECzjspa41BWyPTcInsUNKTlEYZ0Snuvefdr/+Qr/zlf5FP/fwB3/vduzgvwlK+dfTO0XWO6bRiOq3FqCF/bq0Uo3GFUYrCGJbLnq53DHKfPtMGBzW8MGSBAyaaIKlEJBEiOOdRblhGKX8ewfp9SrSu4+mqQ+8fo38oXPXCIJ6gpaUoC+pxxXg2oqgsk9GU8c6YmBQxSuWEsmtHGNd52uWSbtmKiUfT0rU9TdOxanqWbU/bR0JSeHVOA5U1ca5x/WNH5kLHDJEo9fxGKZN8I2XYqDWvfWKPT3zmpkzhdq3wqjUE5zneP+Xw8SkmRcaTgi/+n/4DilHNve/c5dH7d7EqMdGK0g4iZMAgqZDXEnnKVw/XK1d5EtZzWM7rdhAyCwO8leEW+Rt1rio46HAPf5viejMYNMWVRZqR+brHbPGnokJXBabr6Ton/phlTVII3NCKOuN0o6RRFU+Pz9ioS7TSLLxn1XTURUH0LdFHTKUojEYriwsBRaBUBSYFUjbeSBGaVUsbHLPK0nhYnC6pRgWx3iB4j4lS7VaVFkG1ssD1CRMSvu/QJhFCoNQDJl/TuobVfMGotpJwJeknVFXNzkQzLUticCznC3xM1FqqTqMhFYVUZ9E953L1zx5/FFbJ7/CTcWuAP/NT/uavAn/1D3vu4XB9z41PvEa3OqNtIxdvXufw7luoaoud3R0++MH3KIDQ9+hqxIXLV6g2ZtC1PN1/zMbuJXZ2Z9z7/rfZ3NhhfGHC6fGcoixJoWV7+yLJllSjEctly9bWNs3pIZPxGN93PHv8hMnuNhsXLjA/3JcRrXJKCbgQqDe2ONUfyghN7lUpY2TEvVCo0YhqZ1OygNzIGYLQ2uB3YCDkrFprlSEVwSCDCusSViYlhR5oqwJdKUxVomcl5cYYW1VgFHHpCMuO7qyhPVkSstazqS2xF46oOzrBrxaCbWqLsV529JQIvRcjVmBgSsQYCEH0R/oI0Tu++1vf4TN/4nUOHjzjww9OCNn8XFTyPMEnXB+ZTivqUSlUryi3cT2p8pAQnM0jsU3ZzUcTIGfgmX2wzuMGNCnDCdL/yj+RTSkGn5kXae3UQspyukrhg6MJkHoniGveGAe4pi4Ns1lFs/Ks2j5T1s6vT0KmPodiNWQII+VMmvw7ieFayyMRsktR1qxZUydkl085rA8bXEgKg6LWiqlV3Lq+yWufe4HZ5kg+X4gMo+IpKBbPzjjdP5FAnhKf+TO/wIWXbxNT4sMffpvY9IwUjAyURtQAz4PnAHNkfXae18N4/uzz3GfKTcYMUSSyew6Cyw8p+UBz1UOmrQA0em3ecN7Pkc+dMuYuol+h6WQjUBq/cvjlQvjSRUkEbFkxqg22LtB6zLRpGZWaVRuJpsYYD1E8Ids1LqPxIRB8oq4MLni6ZUvSAmfEqCiix4VE0/b0LlEYqbpWi4bCaAolkgSrxsugmy1IWlEVhqK2oCJ9HwjOyRyEtahCKrnoHV7BshG/0A2rqYikZs7pSvS7R7WmrGrBs1TEjMZQTnCuf15o4Z85PhaTk9V4xLPHH3Hh1ktoP+fg3j32Xvwk3eIpj956kxAirUts7O5ixmN2r17j4O4dPvxwn0988QssD5/y4KP7XL/xIk3XEcuaatKRkqYe7aynB0+OzqgqSzc/oTIW51pMXXHl1VfxMdCtWsrxJsYYvFuhbUGKkQsvvsL8/oecpGfI9FueVEySdRSzCcXGFFtbCcL5ZlYqrctEGIrUQeCH/J18bbQ59+5DMmJlFaY0mFlFOa4oZxOKyZQYPcvHj3GnK/yio180qGiEJxwSyqn19GV3tsBoubm8c0SVsq2WZDtxaBoFuZGjEiii9YHeB3xI3H3zPUa7G3zuV36O+f/wdQ6ftfnKKWJIdG3Ax5amc2xujplOS9FeSAmtYTQrKCqTP1vLqpGurlbZOCJ7Kg6ZKkOh/RwdKuTm1zpYQpaUTYJV5gaXnO+4fn8qP4dUOLIhBhKrLrDqVxlnzpOBDAHnfAMdcsnEc7+z/nfepwCpEBKs0VD5/yGDHRrVokA3rAiTJDu+OC156fYmr37hFarplOXJyRpei050VtpFz+JoRddIeb21W3Prj72GX3xEtBt88MZ3ZROwUGklQXsYSx8qmjRgtio324fR9sF/Mn9qfX4tBphD5AHyKE0637DUusbM3+eNW05Kvg76/HwNo/VoTVRBkGOjRawriXqgd9Ks9G2LKQz1pKSoanxSGOfYnI3Fq1F5KiLjWqCFxgdKLxuoQ6qnutSi5GdKTKWl0e46rLGSuKTEokmUNuJCQjcJbQNtHPT0oXeB0gRqpbK0BYwKgyoKzpZubZOGKdF0FFXJYhXpujNWjePiVkU9m2CKktP5iuWqo6oMuIQpPEoXBO9xiyWqCqiizJXMTz4+FoG7bzt2L1/j+MP3GW/tsHvjJk/ef5P26SFN4xnvXWU2rmidZzaqeff3v0Ysprz0hS/y5MMfUSXY2Jxx8PADynqKBqabF2iaJbYes1jOqayhMJFCJWxd07Ud1XSDemNGs1yibcF4c4vge5rlknI8xkxmXLm0x9P7P+Jk/4goVjeSRQzCT5Mp05u3KCYzqu0pSj9BhawLoRUunGuUnOcjUSYwtdw04nQW81SksFOMFQnNFBP4hClKTGmIXUN7eoY7a+hOG1zbZ60UI+yT3AiK2SILJBsemofoIcAIp1tlTYiUZAQlJCRLSdBHRR8TLiq+/btvcuEv/Rl+/n/1c3z973yTs7nwYEOSwIeXAaPjoyWuc8y26jy1mgWNjGazmKKtJhyuaLqwFhIKKa6z7OdnBf8gjTUMWbdSa2giqSGoDoEJ1ka3Q5Nt2DwVgz3iOd0t846HbDrloDvABHK1Uual//hGEvPmnGXycqCG8+yVocMnG0ZU+PzZdIJSwazQ3Ly8wSufvMLW7pQQAsuTI5QSGYUYxCatX/W084az4wXtosVaxY1ffJ2TJrDz4Q/R3YQ73/keOnlGWlEaIGPNBiOMD53Wn08+d37bSsbR5fwP0gq5KoisnViSek7nZAjXGdJCC9wRh2vHkN5rzuWIkSoqIpQZJdRWpTR2MkY5L3TA4CSpiBFrQRcFrhfDZtCUlcX3hpiW1JOapo/0fSQ46YuMRxZjCkodSFS0fSD1nt4FCjzj0YhFLzRY30uFiTLEkDA52VJRuOIYLVrsyRD6TgShioK+aUm6xEdPbWU6cli0ofccnczpg6bznlIllNP0fU/0idZHbHRUMVKhsdGSnGdFCV6h/ApT9c+XPf/M8bEI3EZrHn/4kOufeBXfnHD/e99B9Z7OweVPfJK+b1CFZVZpPrpzh+1rL1GUhsO7bzOZbWCtwXUNo+mUja1tVGHxEaY7m/RNx2xjhmt7ZtsbRO8IrqOeTYgpyokd19iypDs5xrmOEC3jC1cox2M+fPstqtEGPmZZ1phIOmuE2ARVTbW7h61rbDXKNb7gZ1EJPJKUkQX6XPmpjCzgdaY5YKNKgopJimJcY2qLmVQU00mevvMZGI34XjwVVQ7wKePb8TnJWN/0Urpnb8vBxHUNBwz6IzmIOhR90jTeswqJLoCL0Mxbvv7bP+Bf+d//aX6hafn6r/+AxTKPiqeIcwptEyFF3FlH2we2tiKTjVrE+7WiqBRpawxKsVh2nJ46ml6kAtZEHAa1OgniA99isGED5IbKwUc+71Den7fW1tCEYBK55/Bj+bz8VYYyYg5oa10Yhsfz86d1KM7wyPAcQ1n+HCySHxLYJAfK/KqlUhQkaq25uFny2mtXuXxjD3SSOYDg0VlqNjiP7zx90+OanuOnc5ZnjWD2Fza4c3BK+8N3KMqSxRvvEZYLaqOYGUVpspmvUrkZKKFWZZqfOt9a8lYpBhrDhRhMqdVg/JEbDwNUqOUjy/MYgZmSZi1dbPQwbDac6POKRfKJKFi0Eh5/YS1906MQGS7lAuWsRNUWilpYYL1DlyV91PQhMJptyORhaDhD7AbHpWVUV4QQ6TqH85G60DCd0LQdrmkpjaIyhkUHTeNQ0WMLS7U5IXQ9pEBKIn9sDUynE05P5jQx0fVST/UhErqeworqoSgEKnofWSxlirOuNFtbm1jfMaoLmpjom46RTYxmBaTESAut8enC0XpP0JaxCRStElbVTzk+FoG773uUKTl69IDm2VNS9PTBcvnllzg73Ge8cwG/WLB0jtuf/QzPHnzE6bHn6o3r7H/0gKKusTqy98KL9O2CmCyeRFj2GAKx91SjKX3XE5Vi9+o1VqdHaAqi1tQbWzRH+9Sb27QnZ+zdepnV0WPuff8BUZUsTz/AO58Xd27QBEUgoH3AFCPJSiwYq2WUVktg0cay5nQjAT+m4aIIB3ro9g+GBPq5ktyOSmxdQuxJWX41rByhl0AdfMgZJwxc7wy0QwIfY24IKrwfgrdk+QklCn4p4qL8azysQqIPiaWTYN4jePeddx7y+79/l1/6yhdolj3f/K23BWNEglkIoILGaPC+Z9U4JqctG5s1s1kh+J/SzLbG1JOCRXOCb2XTiDnbNQrKQq+Hj3yUz3Jum5Vrlvx5JSYMEAoZyM1BNW+Ua2wVyeKHKUXZYlXezM6pbEMTGXgu+2b9WMqPZ6RhDX8MOK7gvzAYChdKbHmNUhRKsVFZrlya8vIn95jtbBB8L+Y/RXZ0j5G+c3SrhnbZ4VrH4mQlLBKrmV6/wDcPF1QfnTCabfCD77+FUWPa0zm1VkxKjV1raus1LJFys3CAMYb3qpSWMfWhCNFKlC8z2yaRWyAByayF05mb0ALHKFgnC+IqFXguyV5XnXpI0we4UGmICjdfiuuNBmMM01lJN65JpsCWJQYoS0vbe5xbocsKF2BcVxSlIVqDNobORRrvSF4YULPpGJcSURlMABVWBO9p+kDXQ9uLbk2ZILqOuq5oWzFFKLUmhkCzXGCMzq/vIARGdSUGJclTjSeEPtI1DavOC4MKGFWKiUlEbWidZ2N7SigS0yJiRyV+uWRcahbB0pIIydEuG8pakTDr9faTjo9F4C6rkhRX+FWSMdHRjLHVnDy+j1KWx/fvc/1Tr3FhZHjwzttsXXuBS7s7PHjrTWxhGU9qdq9eYjVfYIqarumwtkT1Pbao6FYNx/v3qLd2ufjCTU4OHzKe7UBZoJznZH+fyfYuy7Mj9m69xJM7b2HHG0w2Zpwdn3L11kvc/VBo6klJBz46B1Zs16qtXXTdowrhnK6zvWzmq8RxFm3EMoskQwWCM4PJQlRDZmmMpZiUmFowNFPVxCQdQT9f0c47+lUn2CzCQXW+XwcuCWIiXBO9BDijtOhOrCtYJUE/qRy0wSVFFwIrL5l2nxIeMVPwiE73b/z673Hp2i6v/vLP0axavvv19+ldbsYlJTlqFOyaqFjNHe2qY35aMJvVjMc1ttK0TWDehowHD59fYa1iNKqoKjH1XSwdq8YJnp2hCY3KiOoQoHPg/jGPvqHJKMd5Jj2kgGpNyUuDMNYfqEzPf1udN6UZMvfzaK4zHhzWrkZKjMgUmAQmJYzS1FaztVFw64Vtrr54GVNA9D5vPgkweB/pVo7Tp2ccHS7wvaNvPMTA1rhg6/omX9vveHLaU1lP9d5DbnTbXNq6THNyxFYJI5uzYp1ZPjFlOEAwdSV9sHUmDlGMr5+LFErrNeNkyAPO6Yzn2ibrUcm8K8oGHuThAUaBdSU5XBeSEuNinTfLEKVqNIrpxS3a0mKnMlcRg4OkWTatjJrbCtd1VFMZGgveUebehTKGECMYGE0nBCPYva0KiqrEKcXZsqHPFapFURQaYzXNqhMTBmMZWY0tLc5F2s5TVoWMsy89OgTMhkHbisKU6KKiaxb5XBmisUwsTApD07Qse4F84uN9LmyO0dagk6Uc1Zz1noUXlcGqLFBqhS0Upir4GRD3xyNwBx8YVTVnp3O2Ll/F9UvRRNYGnxKf+NznWDy4x5NHLTc+8/N0q2Me/ug9qskGW3u7GKvoWhHbny+WVGWJb04YjyYcPnzE4nTF7gs32NzeYPHsAFOMUfWI0JySdI2djPAxsHf7VT743jdxTWR1umC8tcnG9iYPf/QOyXuGpk5C5SAcSKpk46UvQCObiNYSvOKQSqespDZgsgx6D89NVg65kURuBhzclAWm0Pi+I/Y9xER3vKBfOYLLI/PK4EJcMzOGzUCpKJODgyO6Yq0EF4M0mmISPNuFuM6ymwidV/RJqG4hJVzU9CmBNsyXHX/zv/4q/86/8y/xmT/9izTLlje/+5EIZeUmY8y6FaRI1IpRaSmV5uxowfJkxXhScbzoCSFmSadhs0l0Do7mPWWrmFSFqLy1HheGIAF6UGhU57DEGhnPMVUy3iHzZc2AWFckz/3V+eCNHMPfDFiuGkJ4ft4/SK8duN86ZZsvJRuXTsIeKo1ic1Kwu1Vx+douWxdna1MeNeDwWtE1PYf7cw4enXB6uiIEUbyzCi7vjLl8e4+Hvube/h3+3C9+iuPTM/aPTmkWK07aQ4oYmBZVzn7ze8usHUPWds5UQGPNULYwpNXnvJ4MRxklyUfekOX51PmaTYgX4yBZvD7Z6RyiyXVNTLKRiEtTyK7vgQiMZzNSL87oChkQE2uzCu1Fl3rZS4U6b+T7qh7hgyRJdWlwwbA4OUPZgtGoInlFQNP3DmsUY6vAaJZoulYs6OR2S6gUscYQg6LtHEoHNjdHeCfVqnOJlHrKumQ8LmTS0QVUcoQ+UviIT5EmyKa0PbYY7+m8Y9FJlavziFnTtBAMMSp6ZWiDonMtbdOhQmRUFxSFonPuvA/zE46PReBGac7OVsx2L9AvzyjGI9EHqMbceuEaD3/4XbSquf76p9n/8D20MhSVZfvyFXrXYIpNXNOjyjG1aimrEZvbMx7/6H2aruPSrVuk1OHaJaqqGW1ssHj6mOneHvsP9tm5cpOwOuXO735dJpl6z8UXXqCbn/Dkg0eMN3bp61NC6gDhXKZhFNgnHFsU9UTGrRVrDHkNjUSZqFozG8iZTA7mSp0HnhQSyYhc64DhphQJvcc3Hb4X/m3QGhViHr1O6+dcU9qUoqgKvPf4lNAhnWepKcmkV4i4mAN2gC7KkENQER/BpUBIGg/0KbL0kT4pPnxyyF//m1/lr/zlP8vn//k/RtM67rx9IFlcOseYIxC8WG1dvjYjODg8XPB03rJsPUaTu/SaVScbkU/Qx0jXwrwT7FA+z3nwFLg1W1gNr5YhkOfx2zQ0HrMiHgwwxhB5B8bFeUkf17+YCEMmmTPLczqdvKeYkjjOK8mw187nGfIZVYbpxDIblYzHJRcvzdje20TZPHmbhUiDDxwdLnh4/4jDwyW9D1kLO2KVxlrYvbbDUQ9f/c67BKX5J2/cY7OyVKVmYzbj9KNTRkaL8/hac5s1g2nYoKIX9b5hxH7NmR+qCyU9p5CCdGAT0iRHD+0bee+CkOR1nP02U1gH/pjy+8gnWIFs5CEzWELGwVOkW6yopxNoPClp4qKjn/UYW2I19L2D6Fk0gdIacWbK/pFlnlJcnHVgCupCM7IGXVoWyzb3i8AWhkXnKUc10RpSiGijKKzC9Rq/dKKVo0XatV11VHWJ62Wdai0yAaNxjetcvtayZpumxeXPe2VWEGNiNfd0XgJx5yFFT1SwbAKLxlN7DVXNyaqlcwlNoFSR4CJHjTRJBwGvn3R8TAK3Yjobs5ifMduYsjpruPDCDaoi8eEPvsts9xKTrS0eP/qQC1evMD8+4cK1mzTzE+rZNocPP2Tz4lXC8oTRZEpRj3j45hu4PnDpxi1617F56RLFZIPkVyxPjqg3d3h09z71aIeP3nqDnYu7InpjRly+scezD+9DSkw2tli0K5QZJs9y5pqyelxSmNEeNk4wkwk2417rUWokWIQgN87zmdAQNOQB+VplMSDfeUzX5wUfcIsOv/IE5/9AqZ6x3ijEviFTFHPSQUc6yLRhvotDillsXtFHaT76mGhdJBrhc4cQSEnTB5F+7WPEJwgKfITvvfsBf+2/+i3+8r/6Fb70L30F+DrvvPVYKIDqfDIyJFjMHWfHHcoqHi0dh42nLC2ayPZsgusaYgr4IGL/vU8EJc09lzGM5/JeNscl867DZaMGmQNJ6DTovEggeh6a/rFT/RyfPmMfsknmDCepgfmRm5rrdyCZqIQxKbNR0pB7vtVnjWJSG3a3KjZmNfW4YOfCBqNJlSFn2ZCdDzw7WPDg/iHPThqa1pNiEv0XrVBas7O7xd52xcKU/ODb9zluHV1paOew7D0bo4LeJ2InPpviQCPnRAZ8Qjbj0JjhsyQxlTYoTJ46DC6t17cfTGrVOW490CrTkIw8534jfqnxvHrIjBWeq3LW534QrVL5PCdIPkNGMZKCIgboVy2j2OGDKPf1TWS1mFPNRhgU5WiELSrmK8fRokV5z8a0Ztl73LKjNgrXtlngCZbHpwSlCbqmHk2IfkVdVhADve0JzmONoe0dOgWcExZWUWpGkxoXE8H1+CiSFyGKTkvTBrrOM64MV3cnVKXh+Kxj6T0oQ6kUuhA9kwpH7w1NF3CNx2rRb0++BWsICDnAVBUTm3fGn3J8LAK3VrBcdWjg7NkJ119+meiWHD58xoUXX5FMdLrFS5/8BM38jL0LVyA6TLnHox/dweqCxcEDNra28M2KR+/fYzrbpHQdhVVEpwirU86ePGbj6k3MaELTw/alKxzef8DFy3s8e/yYneu3KWl58v57pAQuwPL0jM2LO0wvX+Dg/plQ9lKk73vqcYH3ATf3jK9coBxPKMYl+lQmBGPM2J2SJszzZgrpOVhkYJQlEikEggbVKVzriL0nOEdyYokUs4/jGrONA3ab/y+Pgydt5He0DIK44fGMpfsg2a1kuYmoJLP2udHmQsInhUsy/hoiGTqJa57yN3/4PiF4/tL/+pf4hX/xl1D6d3jzh49FZ0GdwxIqRh4+OaOalBx2jod9RAXH2Bgu7V3g5INHJG0orOLixW0OD45penHdccj7CNlVBwXzzjEMUaYcsHXSaOIa/1aQwYF1kZ8D+TnhMD332HNRnEGXwwyUuCEJH6gUnGf1Q7PUKIUtFLWVKbvNacHG9pjLN3YpSptZMXLt2s5z9HTOw8enHBwsaDovUJeGaDUnRNoA3sN82XIcHP27+7LJap2nW8FaacIfPjvGzFtmRmWtDAvOZRUPqUzOE4mh0auIKqEKRGhM7kSipNEZkybDfNIjkeRAr3ndAlVJVj5wuyV2yzio0uY8URlqDDUEf9bnTylhI2mtJdnwgYQWtdzg6drIyBqK7SkpOIyC2PccHM9pnSJpxaSsaLuekAx952hDT20SbePEvMPD6aKlCyd5fF1jCo1WhtFkxGq+wrlIOS7xzrNaNUxrTfJJ1DOVJUSwCorKEKLm9KwjtD0FikkJoXccLzpcitQbU5YrR9sHdJHoO3DB40OiS6ADmEVHTGCIhKCw1uKcZ7OUwbefEbc/HoE7hojrOy7cuMW1l25w8P67RAy3v/Rl2tUZdvMKk5klqpKtm3ssjw7wS8/x47uM6oJ+tWLn2sv41SGHD5+wfeUa3ek+9XiDdtVQ1wWLkwWb127SnB1RTTdx8xOe7T+imsw4erLPlZdepTt7yunxEdsXL/PRR09QsWNnb5fWORZPz+h8FPppEuaH7x1Bdcz3H7Lz2k3KzU3MqBjSCSBKIxOew5jPS8eBX5zUkIXlKxUgaWGPxOFnKaPBSTi3Q9BeGxMPz6ch5YGSdtURosYHj/M5nKnM4sAQcibtUPRBIAofhInik5YgTsKliMtfhzTACcLx/vqbH3B2Mudf/FOv8ek//jnKuuL733sgusgZO1ZJkXzi2VnPfhNZpYQPiVMSp299RIlnYjU3Lmxz81Mv8fTwW0xHsvH0XaALwmrxSJOwe44mtR6yVgPWnCGq50oZowbdjXNYZaCysf5bzul86789D9rk35eQIsyK0ipKI1K701HBZGwZ1SXjSUE5qhiNi+yzKMa1y3nH/pM5T5+ecXy2ovMRl2RQxGvoERGzkDPWwhYQI6dPlxRRcRwD3hhKI03wPogXy6gyNF1HXRjquia6DoU0i30O0jolcYZZfzCh8bkuZNf3dYQF0torUiuRXRiaw3o44QnJtAfD6nQ+eamQOQZIOYCfb57DdLyxYkKcfBDsWxeE0JJMkOiYhKK5agNGG7QKTEcFxWiDECMnJyv6LhBdQpfQR0t0gRg7iqLCoone0Tc9ptAsu0DjIpZIaS195ylLT9SGSKQYjfCpQwdHWWiK2QSj5d7sXGLZrmSSeVLgQhQZhj4yUontkaIwkdPjBV6Rm4wCj/qYMCQ6J+YlpVGMrGy+KSW2xpqm18x7cZUfVyN88DIwdL4M/5njYxG4E3D78z9HPTY8vnePnVe/wNb2iPmzQ3ZeeZ2yqkl2gm9OaI8POD18RlkV1FvXONp/hCkn7H9wF9d1TLZ2OHrwPrONDZrVGSkk2q5jdmGPsyePUdry8N7bpKgYVRZTjrjx4ivs33uTejRjevkmH/3ofQpTsHP9BseHx7gE1169xXvv7aO8lI0+R2OVIt3JIWr8Kna2RTGuQZ2sP1iSOvW8q54zcaVAc86hXgvupPx9SNB7ylEFKhI6x5ozjOgYD1ElpZTpfZIlhayn7NsekAwvRATuSQKZhJjoQ6CP0PrAKmh8kuzb5aDtY1prgQSls8u3jKBHISngE7z58Ijjv/17/OKnrvHlX7jNZGPCt3/vPU7nPUPPqkuKZ70M9kjJLtnsou2BxKmOnB0sOPruXXzQ3H7hKoVrOHz4FKMTNiTaoLI2c0YXk0z/TSojFMJhA8uYePBxzaKR5FATgqi4hbCOP8+hJefhXuvnRJZylmiNxmpNXSnGtWVUWaraYkvNZFxhKyvsA2tAgyksMcDR0xUPH55w8GzOfNUTUqJX0OXznfJA0fBeEwq0ojKKfrGSjAyYo6jKUvwN0Vhr6IJnuVxRJk9ZGZIK1KNSRrszPDbg2eQs+hw6PV9PP87I0QODUNZj5soPsXg4Z4NDvKzB/MP1hpiGE8mA5g/ZtUJBzKbbWa4guWE0SaELi0sQVp1UoMFTjEt8SigMrQskbSitpTYJdKTthFVlosafzUkqMaoED1/1wo0fVRoV3f+Xuf+Msa1L8/uw3wo7nVi56uZ73xw6TafJM0weRogUbcuUYdqGDVMQaBgG/MGWAMNBIAwYlgR9sCXQMAQLokBSJE0JM8MZcYacaU3PdJh+O735vjenylUn7rSCP6y1T1VzulsD0DL6dF+8t+qeuM/ez3rW//kHcIHlo114nuW8wZg5SkpSrUmVQPvgKjivoSmDN/ayNiHFKlV4LxgXmvVUojQsG6icASVIvaNIM4wzeOvBOHLlsVKTSc+ytUDDeNSjNZbmkgagxWOdwDn5kz+czAd9zPKYhVvn9k//MiLVyCTj6p1PI9Oc9vyA5fSEvChweEYbQ06fP+e7X/8+aZLTSx2bm9voFJ58+CHr21sMtndZnBxRtw1Kw+JwHycU9fQFshZUDq68/CZZYnn2/ndYv36HWVny8bffZWtrm5tvvsXy5BlaOrZvvsTB3bsYJKm0OOOxxuCzFOlq2vMDvMxRvRHpoBcwRQdCqtVUX8bgVBfx1YATWi6jryEiK9CijLdoobBt4MN6FzomD4FCZeN03wVIoSvWdlW4485ARpjEXciuwdMSZk+NdbGbDdaU4TwLnZGN3bZ1F6yL4F+1Ki8goPLwSdlivv+YZ0+O+ekv3eHLv/QG3/36JxwelXFB8SReMhSQeE9NGHgGGm/ovqaLkumiRAlYvjhjlEiWLaSEIaaWnTw9HDVJtIRVmvVxRhID2Z0Tq/doXVggnQ8+yDgwxtO0lsY62kiXvHCvI3bTilSBUhKpINGCLEvJUkWSapJMoRNNooNdrFIKKX30nADvJbNpw4MHxzzfn7BoHTUO6yUNRKgnio3isZVCBqGJCwEIujW01sWuGSokG70cVAzEkJLjuUHqHsJPSXRC2wbdQrdYxeUcCEwG2a2khHNYy9A+iBU2wiq7UfhOURmGrXK1GbloRoALDNxf7GI6Rs4KjFptcy4V9SiVDzOj7loIdMK6MYiqIc80WZbg0wzvJUen5+Q6DCDTIgcCA2N+uqRtW4ZFSus959OSQT/nbFaBcPR6BXkCeE2WhN2cFwKdSqRNkcahRPDLrhqDVJK2VdRlyCZViSYVnkXT0JaGzb5md7OHxVOVNTpLWOsVmNYiXUtT1QgTzLhM6xkUEYJsQqze2lpBbSzni5ZEK/qDoObWeUFeZFjX/Nia+RNRuJuypNi8xdYrL3P+4jGkfbZe+QwvPnoHaR1pmuBFjhOOejbh+aMnPLz/mGXZYMnY297gZP8pom25evsGxXDA4dOnZFkPkab0R0PmZ2ekCtKdPeR8yc2bt1ievuB0MkHnY97//kecnM156fY1RJbz3je+yu6VXdau3OCjP/wmy0mF8YK+EIDE6UB3ktLQTJ9jRUEy3iHfGKN0wApdnMBL2eXcxDFXRz9bURpEoH7J6FUS8WhrYlK6Vngf/UVsSP4QAoxxqyIdlfEYG61ao+LNSxfwwjhc0lKGx7i4Tfehi7Ud/S8aKxm6wh2ciK2PNq6X8GAZeYaOQIW633rc+ZLF73zAq3d2uf36NYR9hpnVSC8YS0uLpPGCiXFMnaLx0B+leJGyP5kGzrgXvDiZ8JzA1EhlcFAbSIHEYVxQACYBiGFSNgipGOah85ZAkkIaHRylDFmE2ju01KsFzLoA2QT73kgPk6CUQEmN0hKtgu+LjhYESapRSq/Svj0S7wRNY3HeUVaGxbLh5GzB6bRiVrVUztMKEYU6UT3YQTsEkYuQ4bWsECjr0M5TuxB9pRCUHnym2NoZI0xLP8/wQjKpK84nS3YgnnOBv29jo0A447Deo3xcWCJFlQjJCN/BHUE96S531qITFckVnCQEq3lNV4O73YmP7ArXEeM7IZCLYb5OrnYwMgniGxEZWt1GwLUWlEM0JWlWIGVCbSzLRY2SGukdbbVEWI3OC8rGs2ihrS8CgRdeM500tI0nU55ENeRaI6VHSXDWU9WOVBqUUrhEIQU00SHTNC0qcaTSk2SaySIsJt57eolgmErKckHtNUmaokR0vGyDc6htW4SHqmnJ0wS0wLSO2gqG/RxjHFWrqC30xwVCaXxZkXqHMjUyTX7yWSU6zSgXZ3zzn/wa23deZ/tKj8ff+A0OHj1iuPcS/aTiydN92jaok7I85+xsQT1vMPOKE93ymZ96m9P9Q5xxTI6PyHs9SFPGa2MWx0cUw3EYBuqErVu3OHv6EIlg8/YrHD89YHuUc+v6DkdHJ9hqyp1XX+bs+JSDJx+Q93ucT2u8JKa8G1SSk2/1sGcTzNE53knkYIdiaxOkjdPzC7Oiy3tM4TvqVRxYxULS5fY5QghpUF7KCx5y7CadtXjvQgiCi57PPjBXwuAy8HJtNF3qOvFOYo+ILnqETriDSISQARYhFAEbMe0uOsp1WDDhIjU+DrgIF+7Me56YUMrrT/bZf5pwZ6hJ02CWZH3U9yrJ6bJhZjy7r7/CK597k3/ya7/DOSHKSScKYz1LE0x/Ggel8LSpIJWKxloSLyiER3qBNXA4LTmegZYCLYJ6U3e+MhdQdsS7A29XiiD4SVOFUgItBYlWiBiY6+LuQzhP0xgQHqUsjiYsmt6HQr1oqI0NQ0bnGfYyjhclM+No4hZJRuFQlxzm/IVIKtWKLNXoLGUyW6DwVC4s/FoE4682TXjl5i57G33GgwHDXopBMrct5ckxUkrKKmzVnTQkQmG9jaKriFl7kFElKjoieddIXB44Ah0Xu/v3zrh7JazphGadv5T1McIvenYjLpprIVbsFPAoFVN5Uo1ddsIxQMug8MSipKOXBnivrFqM9yRak6nQrDTG0tYe1SxwMqHfy2mEYFHXlI3BIEikJs3CccBDogARHANdN2i3IKSLgjqBlxrrPRaJFlD0EqrKUzUN07KllyTsDRXCeybzoJA21mKkIMszpFI467A2NGFpqnC2pTU6CG+ynHlrgr2yEoy31lE62ChnRQ8IA9m8yDE/6SZTzhrK02Nmz58yO5/y4KMCJx3VomRgn5ALx6PHL5guKkb9AefHT3GLhkJ7br71MjdfusrRyTlNGy6E3voGyWCNBMvJg/skRYGThvHWBkWvx/Gje6BSrBDs33tIf9SnGK4zOThiMBhy4+03ePrxuywnC4TSnJ1N6eWaqQzYrheCZllSLxXCOCZ3v4eZl6T5gHxrm6xIsLVZKZ+CiGZFgwj/uZCtrW4+pqQI0U3uk+hQaMiHeZhuL8LFiQ3YpfXBZNTFwaeJzy8D6oKzQU2mpaCuDcTi3UQIxFhoCMpJ4yPlL/K8m0ubgm7L2/l0dABP90fFi3TiPM9j9tYNa+g3LhgeqTA0tVictWylkjUFHB1w97dPSCcz9pRgKYO73tRZEhF8up0PNWZWe6QK0IHwnrGWJAhkJJxI4dHOo4RFCRDCxvcnEL5jfIc/EhEHlGFHJGOhV5IVX1sAjsDksTGOrqMNOndhSWt9kOlrrSnGfZJBn2ZZQYR3VqxtIZAiJHpvbwzxzoVEpSQhyzNOT+ekxoQOPVYzIUAN+1zdGbM56qGlwjpD3UBRFHzhzTs8+DgjOTzCVws8Id9QAFpEDjvRjkAQP5HAWBtwZwARRpYrg6hu3tIteDIcFO9CW7yaBPiuWw/nw4oG2hXsVScfO3UZqZveg5KYqg6LZ6LjLlFgrcU6T94rcNYzndRUFnqJZrw5pGk9rXF4pTG2ZVm1aBlYL7UHdIIiQJPWWJxxjDJNqqFsLSDRIkB0uVZ4Z0kTRYPDuRAXpKXE+sjRtoKFsahMs1lk+KrFGcfcyeirHiBMgSLFkPVSytKCCp299pbKADZQBrUT1EahckE+GuCsoKlqnGnJtAwDW5FycDRbkQ5+2O0nonALIRFpxltf/hzP7j3g4f4xvY0xzksmxyfcP5kymy3oa8HhizO0twwGBa+/9QpJnjAvDUma0y8GbF3d4+z4nPMXj7FVyWBtDdNaNre2MNWcF08fgO6znMxQwrF99QqLsqScTOmP1ik2N/n+1/6AougzX7ZUdcPOlT2skhw8OaNtHYkMFDTbOFKpENVzjt5/zI1PrVPsXSMbFSzO53QTdt8Jby5VO+8uOpqAJ3qIBbvrULwPXN98kJH0E9JCYrzDtdDUZlW0uVTcoOsUWdnLKinIEk1ZBWpUKPghf68hQCy+g0lWHXjnIicvlbt4u6jmEHFnRbhAnYCp9dxWgls9zTiLWOlqkBreX+YITIqqRHrP7Z5kaT0zJzhvAo1tDpQi2nMG4DjQFOMAbGkdhYgGR16ivEdLiUYEA3wRipfyHo+9JHQKx2bV6lkffDhE7EC7zxq74ovPHYq97T5HfHivSMgyjfOCybLmeF7iEORpghQepTR5ohn0EjY2etx+aY+dK5vsXL/C8+dnfPOr32F+XmLmy2iaFT2/pUAUGb5XUFnPvKwDdc4k+ADYkqY5t+/s4hNo7k7JE4WPQ9xgiuaCtJwOponnVliyYOU0EwZ23SGRMhRRGTt2YseOZxVgHWrzRRFfzXMuDT0D9B0piBaEDgKlIP5RYc6jVDCckh6Zptg2pFMta09ja4wTJLnEGhPodYSQBKsUIkkxtmVRtiwmFf1eilbB/72JkGKRSlrjqCqDlgKRSXSMspMSyip4u7fWkiUSF3ceZWloon9QkaT0hKFNBbUNn9VKQS4kOE/RgyRNqG3QTfh4XqZaU9YtSZHiVYIRBounnyeMBznzeROahmg3W1cG40JUWwd1/bDbT0Th9t6zsXeF+WzCK5//AtnD+3xy7xmT6QInEibTBcvjGeujlEJ5NnY3efn1axzsH9HbeJ22LOkNtujv7PDow/eoFkvKWcXG1gZpr8/22honTx8inEMkA6pySZErBms7LGZT2qZmvLNNuazYf/SA3d2rPPnkHm3dsrm9xaLyfPLJAxbLlg0Lynna1oYuJtWkbcP5u9/h5hf+LHrjKtl6H/l0ibAueIK0LpoSRSxPdJor6ApSx78Ov+nkwoq8lwfPYi+CUtIEbqoxDmtC+IKxHc4t438v3PCCjLxFaRG3zJLWOwxiVdytu2A1xPldoP7R+X103XZ8v52MHo90rDINVYQXehLe7im2ssCMuDDB8ivEyDgfhnAyDEl7SAYeRq1nLARnrefECKbOM0fQiDDKU8KTOIFKA8+3cjGMWHhaBNI5UiGDsZPzGBHsRyXBcbETklxcEhEOgNUW/2KJihmD8W6XU9g7FWq/kIxHOf1eiveOop9RNp7T0xm9ImFrY8Bw2I/ziOA9fe/xMfN5SbF3i7NZxf/0f/9/5u/8rf8Dhy8EToQFFCEoBgU2TTkrG46WFbV1ZHmKtA7dWvyypG1bhFBkWyOS802q4xMSEQqS9QEjt7H79TGotku7CS5+rHBx/MXs0XbKRkHoKDvxme8663gcI27esUU6E7bVuhgPpxBhyCu1WAVfOBdFO0oi0gSinWvHaMqKBOmhEJK2MbRVg3DQ1g3oJHhWmzaGJAjW+jkCh3QhME5rSWM8y0Ud8lAleOswJorQvCfTwR+mqhzDfojgsyZAY7Mm6DXGeYo0LT6JYdc4lNYY4zGNYdSTGOtoZiXCeQb9AuegrCyJFhRFgveCqqqRScL29g6ibagWS0QLo0yATqkrx2I2RyaaQSYjpfKH334iCjeAzwdcvXaHtpwwmy2pZhW+dhxPJ5TTJZtpQjIouH11jUGRMD8/J8sy5sfPGd94lbKqOP34PtdffYsX9+4yOV8w2tplMJA8eO97DEcDWiuQ0jBaX0NIxXQ2I0tTBhtbHL14hnSO4WDI0w8+pN8vYDTm4OiMk6Mp+IRKaKZtRS+RCOdYTpckwxRfN0y/87vU/9qvoAdb9Hc2Ef4Y6IyMorQ4Qi3OeojdxopT0HG6ASJuLbxBlIZiqFmezpFS0tYt1rY0JvK3nb+g6XFReLtC2cE1TRP4gtbZgJl6T21jF+Y8zslVN7kKWIhb3y7eTIqLUtaVtlAUI++YIAP+QiZ5bZiQ6y4ai9X7WyXby8sJKIGeaLwgTQSJkGTS05OeUwMnVjDznoqwG4iup2Go6sLPjrj40C1QjkRIdNw5CBGKrvSXKGndVp5OGMVqQhb3QfGHcN/OTSNaaTEoFDubPfa2huxeHbN1ZYsv/Ok/RWsFT+/fZ34+RwjNcjHn6cPHq/nMoqw5nNY8/s9/k89/8U1e+RN/lV95ep8X/5d/n+pszqCX0S9yWiFYtJ7KtJTGsTycsqgNL++uI6WmbRuMNgipOS0rdtfXMIenEfaJ6tfY3dpou6CUDAk2sQAF64BQbleF1nmUUmG3EQu9iDCRjIPOzoBKRj8eCEwp79pwLoeQTboSL1a7twhRxS5BaoE3Lc47lNSQaZK0xxyFa0Lh03mKMQnTaQXeYFEs5zXWOPJEY60AmaK0IJOK2bRC4ciLjNoGv23hAuasVHDYbE1DmmWcLVskhvEop+glWCdZTpfUTlK3hpFW9KWjci6IvHSQvudpQp6Dqeuw2BpHXwl0qnBNTebBa7C+RQvNorHoRDDspwjXgLMkUgYcXwq8VAhKEi3IM8Gol6DUv0ThFkLcAP4TYC9ee3/be/8fCCH+j8D/AjiKd/23vfe/Hh/zbwH/83ht/a+897/5Y19EKiaHhzz9+D7vfft7lMZj6xJRO7alYePqIORBXtkgSSVCJTS1ZevqVcqqYnG6T29zl7W1gu/97j8DL7j+yquoxPH8/hM29q5TL2coYUl6fYxUtIsZSheQpJydnDAYDJmdnnB4/2PGW5tkozEffvAQZx3bu5s8OZrxfFIyVp7dJDrtGRcYHtIw/+ib1PuHpONthjdvIcS7iE67F/eVLtJMPPLS8CfcXDSACoEGAYfEWRbzOWUpyDJFmhUx4DcWPN+ZM4WLKUAdHeUwbHF1omiMozKBJ2sIVqmNg9q7yCKJ/GjvIwTQFcFL1kviog/tLsXuwpSxACbADS344kiznqnA0bWeji7W+ZF3viOyG1gJgRUBl1R4pArdsdaQiLCdN1aAkIzHOQezksoE4ZAAtOsGkOH9WwQVQaqfiSjA4QIm6cDtWH7CwG4FxkZMnAtky/sYQ8aFkCRVgu21lEGhmM4qOJDc/szb3Pjcn0Tvvc1rOlvBDqZc8uJ7v8Pdb/w27333PU6OnnP4/IR2Mue127s083Nu/dSf5MYb/yU33QKf5nz9/eeczUu0lFwb9pg1Leel4fnZgtmyZmtYcHVjRKYErS05m85Z9DJuDHq08wW+sWSyE2510EYIx1WJRgpiElL0WInfRceBdy7gwFJ2MxOFtSH8QikZY/w6SqqPG0cbU9FFhE6Cp4+HlQQf7/E2LpbSoYoEb0PH773F1A1l3udkumS8phB5hvWCZd3S66W0rcQsG0zZxExNjbWSIpPkwzWW52fIaKBWtz6I2qyL2LqkaiFJoJclGGcQePqFYjBIab1kuqg4bzxV1bKeeDZ7CdZ7ahOusVQKUhSpdCgtaXWONYY8VSRZRtUYXF2hUh0cOZEgPMWgj2tbymWNyiBFkroQSSeVJNGSWgh6vZQ0URBtcX/U7Y/TcRvgf+O9f0cIMQS+JYT4p/Hf/n3v/f/t8p2FEG8Bfw14m5Dy/ltCiNd+XGCwbRu+/3u/z/npAqUU1npEWfHSzU2Gg5QsT9E6QfTWyFI4OzrFqQTrQsfqygXTh3d5OJmze+MaL7/1OvvPnvDk/gt2dnc4ef4clRes7+1h2xpMi8yGIBRtVTEcr3N2+ILZ6ZTdl+5QNZa7Hz2inyf01sfce3zA8dk5hQz849a7gLF5G/Lnehl2fsz07kcMf/Z1BrdeQmUhAsl07BIRnPzcasjFavjQufb52OUGznGYJjkXmBWmNSzmdehcbaB9hYzFCyrfhfC9Y5L4yAMPnbcPcBy1C7CCtUGNaOMJYld4ZLhYBWEAh4/PG0HirqiFYhB+UsBAwM8NFDc2C/qFolqYUCNVWISQ3VBTIKNpRWfeIzuqX3jmuDAFCGigYCkUv/zLb9Ebav7+r38v5GUKF/xJujnaSsgQlpY2/jfzXFJPxncfd0LdTqDDCLpr5bJb6cVuKDAmpIQslSwqi0w9B6czivMK+XvfYbT1D7nz2eesXX+TdLzBcl7y4de+zTd/8+/z4O57nEynHO6fY6cl/VQwOZ/yz/7T/5APv/ceSENR9Ll5axcvU373O3c5nJZUxjLINdu9lEndUjUth6eW+bQk1YpAHbWcnc24+fZLuLv3sW0TbAwcQCjCimAlbJxD6+D3LIn4VreYhms4Uv5ir+zCOQes/NwRnXGavSjIHaYdD3En85ehukcDtSAekyLyxRsLRUyh9+F1jg5fkG1uULaOclKhZEk+KPAC8uEA3AQtUk6mDb6uSVKNqyryGwXpeIRuPO2yCiHDxuCFoDYGpYiGTwLvAizTy4Ola9C7BathaS1XB5JMSxpnA23WCRIF/UzQ1qFhq+qGNEsDfCah8cFnJ0kTGufROlwXTiY4a0i1CrBm2UY1qaGxLbnMcN6TJglpvP5Fqi+3TX/k9scJC34BvIh/nwkhPgCu/ZiH/GXg73rva+CBEOIT4MvAH/yoBzRlxdXdLW5d36GcnNM2jq2d6yAsvdEarTVkxZD58TGzyRJjYOfGbU6fPcYZz3BzzGRyzvWX77B78zrf/+Y36A3HbK6Pef7JPTau3mC0tcn04AVCeLL+kMVkSlFkgOX5/XvkqeLWG69y+OIFZwenXL+2R+ktz56fUJWGvfGIcxa0y5LGSXIlSJOEujTITKKE5cUffpWrX3qddOcm2WaP6kmDVF1XEsQi4eYicyT+1H1ZUoQhlw1DSeuIPsUOQyeG6Ipa1xV3FrIXQ9AghQ9PfpErGTjLHZfY+KDGa12gPoUCFby0OxghdIyXTx8f+eQErm5cLKQP3fbnepo3Rgn9fspoe0z76BScCSIbwgWv4uIhOxrh6pmjF7m8tHgRvKzzVPGpO1dQqeS3vvGY89KsHutix9exQZy/YIvg4y5CelLvgyFVXNg6TBtYKS659F6Iuw9Wdb4r8p61NGWtn3G8qDkpZ0ipcK3l/Y9f8OJv/z2uXf9n7F27BjLl9HTK6fEhx2cTqtZz/9kxQ2B3d50br+wxFZ7f/81/jHeORGv2T2ZYPG++fJVeJvnq9x/z6OiM+SK4+mXCk+vARcc6amdBhM/WOMFX7+3zV376Zzn5+h+At7hu3yTUKiyim2Wobl4eh+QyLsyqW6BlVFTGEGnolraw8/CdXNdfiHGkjB49hAquwskSnk8EfFtJucLNhfRgwbUtMlE4A0WacdZ6vDMAjPoJtmowWUFfGfrra0xmFX42wbQNqYJZZWH/lPHuDro/ZHG+QEtItMJ5yJMEa4P2QKrQ1CgETeOQ0tLahtp6MhxbQ4UUIUBYaIUh0ka1BxfmDJXpTLUciRb0BgMOpi3ltCJPBGt9TWsdtQ3HJE/TFYQV7GINaU9HdpiirBqwTbCXlTCr2n/pjnt1E0LcBn4K+Drw88D/UgjxPwb+kNCVnxGK+tcuPewpP77Qk+YZWSKolwvWNwYIJLro0+sXGOdQSU41naKlpMlHbK1vcPbsEYNBj7JqqJqWa69/ClsvePrhu7zyqc9w/vwpTz55wu7tO6SZ5NmH71H0+xSjEWeHB4w2t2mqhvnJKds7m8g05cnDkHRz87WXOTxbsP/kgEJK+utFcA/zBc/KllnbMgjfQnAG6+WIxLL8+HvUkznp1i2GN/aYPX0UDOoThTdu5S0iOqyPaBEbO1eVSsY760xPznF4nLGRJhUvih9gj/iL3wlWwg7vLjDuMJAK97Rx4m98ZPF4GzvsUHy7FHPilvqSC0i49EXXhf+gWZOMxftOIvjcWLFWKNp5zdHiENsGSbNSgWbl48mulUDKcCI767GNw9toGxe3lk4KhA2ClP7OmBNn+ebvfMDprEIi0B2yERtG6bsUmkt4OqGjDLuei06cWLrDOnfpQXTgT2TBXJpTOgLEIxFsjVLu3Njg8KN9Wu/p63C0mtZyfr6gLhseP9inAarWcO36NsZL7j46YHdvjTdf3qMxDWdVRZYo1teH9AZjnj56RKYTTs5mLJYPyfOCO1sjfGuYzEvKqPb0zq7k+WFX5CLVULE/nfMbH97lL/7sLzL55h/g6grfFdNYjF18jI6QXSeDF3GlsnExJp5HEsIAke6QXAi8ZFSKBsO0wI6S3YSTrmB3C0SApUCgtI+5q5FJFQnuzgumdYtJooeKlNStBeNIhaFJMubTCikFvVzRKk1dWpSE6emMcrZACsHmzpBl2dKWNYkKDUGWJ7RNQ107tIQ0U8GCtXZUbUWeCjYLzXCQcjgpQWm0khRYrAjq2bDzBCcV2gWetioKFk1ImDeZZpApUA5Th+68X3i0CpYJ4GJXDYhQC6xp6RUaRA9rPSenE3pZ0rVTP/T2xy7cQogB8A+B/7X3fiqE+A+Bfyee2v8O8O8C/zMumqjLtz/yDoQQfwP4GwC7oxA9tnX7KsvFkt5onbJc0BgTQjl9WN2rusUYOC+f8vIXv8jB/XvkgzWGvYLTZ4/pb25y7dZtnn/vOyyXNbs3rlCdvGBSLtm+cROZacrZgq0bt2jmM6ZHL9i9epW6qjl+/pjN7U3SwZDDF0ccPnzCMEvI+hn9QUZTG957/pAPZg39BLZTEeStIkyEpTfU+w+YPXrC9udeYfzGW7z4xiOEUOgsQaUelh5jgrrRE7tiEZw7skKjEoUzFikUnpg9KG3YZkZMm1Xp6bb98XhycVLhXQw01lhjLz1GRGtWT56lLBbNqrMNbIYYahA7zHDFiYvXW7XHgg4kEUIwlvC5oebKIEXELMHu8b3NAZsv75H0M2zdYpvgHy6koJovMNOK6f40CogiV0NIVOZwVuKGGc8rx7efHDIp21VIs/Jixc6xQqDiGdYN4lddc7xI2lhyQsGP/GYh/sjJKi4fX1h1qd2yJaLuu7WWTAvqJswW0kSSF5q18YjjyZw0VQjhef3WFR6+WPD4+ZSf/elPk+SOxXKG8KFItW1Qbb7xU7/Mi+d/F3BIpTidVpjDKXVrQkal1mGe0rRU1tB2cwOIw0YiU0nwydN9/sGy5X/487/C0T//NaS3KO+jT0z4zNaC1yoUD+/D4NBFZ0AZOe8uQh0xU1KsNAIiZkvGyDIZOnIpAhMiDLy72Y5HyFCwu3mB92H46USgb3arhLeW0kElBHmWhnxH29IoybCX4hFMzmeMxwVVWdPvaapGg61wNuDrxkGiBOWyYrC1RTWZ4+oyHCvXMuhlWNfibMuydHjvsB60h808oZ9LzhYlSoGWCcumBSDVgkQGzraUgr4USB8SqpoWFBZb16RaYHH4NpAGepkGa8mVx7sGrxQOQyolbeMxyzm9QpPqlMPzivPplCLNGaYXwrEfdvtjFW4hREIo2n/He/+PwjXhDy79+/8T+NX441PgxqWHXwee/4vP6b3/28DfBnjz+qa//vbrHO2fsHn7NtOzCflwxGKyIOmNQEh0As2LAza318jzlLvvvMPuzTso2XJ+cszG3hVcs+DZd7+NSHL6m9vYtiXt9bjy2sss5wuE0Kzv7XH85BGJEGxf2eP8bAIS9m7dIu2P+eS9D5B1yY2rayAlSVZgleYPP3rE/dOGRes415LGQa4EWiuauqGXJei24vzD99h46yU2X/80We83aSqPKjRZJhHCIRuNW7a0NrJCJGitGGwMaNoW6y1OQtNYTJRRR5eRf2Hr1BVYVh1iWAxiQY+LHfFxAfMOF1XrHakErSVV61ZpMZ3fRNddR1QXJ36waPsOIwYyAW8VitvjhN1bW0z2zykXNV5Af6PPa3/pl9n89Nsk/VE4V5IUlfdD4svhE55/5b+m+q/+ENvWSBUGQEIL1jbWOHwxYd86vnc246QyqwGklLHbo4N1Lg8SV6rui98RuvI2zhoUF930xecKv+sacOIw8qKMixVUUlvHW6/dJityvvfRPtYFdkOSaKZ1jdSSnbUMnWV868N9Dk8X/Ilf+CxaNyyX9cpnJtECieT45Jzf+83/nExLvIO6tTjruL63hhCeTx6dsawMrQmK3EQoJHZlUBXwd0kYegcO/JOjY/6Tr3yFX7n9MvbRXawIi50L02eEhKptyaPoI+gGokCGC41B4JVH2IRQ1CMxHyHi8DKa/gcrARmGnTI0AiKqNL1zP5ACZawlzZLQZdsgO7dAaUDmAxa1IZWK2jnSuqVKFNWiYTDMmE/mDPo5TWnIJCTrA+bTJfWyDipdIWiqFo5PSNKMdNCnqWrKylCaNu44BLOqxTSWG5spoyLBOM/xpKFqDWmqKDGYtiVLNYpoLOch84E8MF+22LKhN+hB9BKqyhrdD+HgeRqOay9LAyVXyOhBLmgImGGSpiRZTmMcMlVsbm6y1Vd4Z36gMfsXb38cVokA/l/AB977f+/S769E/BvgXwXejX//L4H/TAjx7xGGk68C3/hxr5H0elTJCJM0TBcGqRNm0znF2oi2aUnTnMXJIVdeeonl5ITZZMbttz7F6ekJ1WzJtTsvc/rwE9qmojce03goFxM2dq/QHw85evaUzb3ryEQzP3rO+vY2Ksk4ePQYhGR9d4+qFTx99136GIY76ww3xiAEBwenfPu9Z5yeV4xSxUhlLNqWhbWMEhWSaRoPPY1wDYff+wY3/8yfpLj+GoMrI04+mSCQZGu9AAGc1chGhqmxgDTXZIOEJE/w2mEaS7WogllQ9DsJPq8XBaoL1u0k646LItXxIXyETzp2iOvYKNFH4nzRYkW3j+3k7xHrpAuRurhdnEQ+dnehlF1LBG+PEoZaMT8tqWuDkEEAMbq2x+jlV8k2riJ7fWQyQPbWEcMbIFrU8GM2T494/LV3mU+C0lAqgfGCg9OKJ7Xj+9OGo9pdWrQEHSlReqJFt1iBO13x7rrRrgiFDjz4kwgZbE5jH3mBtXvowCBBBzN1O4/w6s7DtGr59vfv8lNvX6cpS05nDa2QbKz1UUoyHKQ0Tcu0cczqlk+/dQ0hKhrrqZsWCYyHPQbDIafHRxS9jFSnLMsKZFjgq6ZlOq/pD3oopYMNAkEx2ksCWm9c8I+xPuyYGueCzQGQKsH+9Jxff1DxF69fI3vxIuLdF3xH58NAWsYfugVOiguL4Y75FNCMcByE63jsYb4QbAXERbZlh413FgvexAF9sBJQMbjYuzBTCYEf4bjPXEhkWtaWGS39LHz25ayi1y9oWkOiFJPpkiwNQcLWCrJE0N8ZMZ+VAa7RmuWyoo8nSXOSQYERJWeTigRCZJgTjFPBegZl2/DsrEEqjQCUd6AUUissgsmyZZgr+mnwyVmUQXo/GGTM5xW9RJFgGaz1wg7Wmvi+ggunkpq6aaE1eDyJdjgvUDph0bbUSQIqYehLVKo5nrgfjl3E2x+n4/554K8D3xdCfCf+7t8G/nUhxOfi6f4Q+DfCF+zfE0L8feB9AiPlb/44RgnAcjbld37rq9y+c4dekVM3ntH1W4yvXIVmzumzF+zduc2L+w/oDQeMNoc8+fB9euNt1ra2+OBb7zAa9ti9fg0jEsR0RjZ0WFNyur9ga/cq5WKJLWf0RyPmy4rl/IjB+hr5aIPT42PKsyPWM0mW9yjG63gpmSwrHu+fop1jO1dsFwPefXrO/UXLbZWyK8LF1FQ1jVMo5WmePGT69DFbr15j7dU7nHzybZplTU/0ydd62NbRxi7XIYJIYGEo+lDNa5ZnJXUdOquOP90ZO/nYZUOk7F2UmNXF1XHBf6DOdV7aBJGO9TZ0D0oR5Gwh3skBWaJoovUpPkz/bSxenU0oIgwXR1LwuYFmJ9d4JyinSzrlp5SK2f4pR+/fA5XRv3IdvbEOvV1Yv4av57jlO0xfHFLO64B1uhBaW7aWR8uG9+YtB3WgLHafRXTMBUKBCZv6bpB4UaBXAI+4tKCJi4UNxKrbXoEh4tIgNi4KXdGW/uI6mpct9/ZnbN2wvPLGDW698gr/xa/9Hifzil6WoKRjvDbmmx8dcXVnjPeWo9M5xrSkStIrMvIiB5nSK3ISpUgTgZIZVW2ZL1pmy4p5WSEPJizLZvV+NgrFn/nSW2T9Pl/91nucLCoWjY9b+kB9tN4Fgy3nOZgv+M3Hlj+7t8bo5BRpQ0GQSqGRWBvk4hKCb3p3NnUYumDVfQcUzq2OW8c+cT60EcENM6gtA488Bi8Q9ysuLLjWeJJERvl8oAd6CU4KzmrDSVOR9wuccVStxwlHnojAkHICnzjSvKBpPZODU7SE/mgAOqXIG0xrI49c0zrQtaHXU/h+Qbo0lLXlbF6ylmiGhWZhJKfzCp2omCafIFONN3U0akvC7kgKRJJgpaByhrXxACkcRV8xnS5YH/aojEGLsLAWKSvLicaGQa5UklR4vLegNF5YmiSlyHqwXGCM4fxsQZEk/3JBCt773+OH1/5f/zGP+VvA3/pveu7u1jSG3miTvRs3yHsZqmnZefVtTDvj3gfvcX44Jbdzrt26QbuYc/DkKVdfeol6OeXgkw/YvHqTq6/c4ezgCNcs6Q36VLMz0Dnr2yNODw/RUjHevcHR4QHOe4YbmwgpOXnxGF+WjHNNfzwOJjFa8uxgwuT0nI1RwcC3vGgq3j1Y8nBW0TjPYeu4ZSx9KfBtS7Xw7F7dYvL0lKNvfZfxnStsvPEWD37ru6GjdaCSFNVLSOpAVLM+OI+licaUNdW0CqnsEGiDrrtcQqZf1xkL0QlbOoMgF7vleDH5iwIfhlgXBSl03wE+CX4VAJLxIEVrRes8k9owr9oLQRDigsscn0gLwWu55NYwQcuQdo+O9D48eE99PuPur/5zDt/9hOs//yWufPHLpGR4p7CTJ8ze+xaPv/o9qmkd4FQlEGnCtKz5aN7yvHaswllWZ2C3LEV2S2SROBG6URk/rYsc447WFz9F2JrH57t8UgcDsRWS/QNdeNeDOxE61MoLzk4rPv6vvkfRyxisP+bk9IyegF944wql1fzed5+yNiwCTcx4PC1KCq5d36JpDNPJlDyrApNGS0ZrQ/CW5bKlqg1ZkoAP2La1Flt5Ui1Riebe/gmlOeFkXlFHN8gu7ccS8PvKtqRSI4Xk+bLmG3PDL41HqOkUIcKw2jiHUCKqKcMwutMcdDBSBxd1kIiQlwTtApAeLZPQFniQ6DAAtQ4p1cpFUNhQgMMOiJhtGb5GEaPyjNS4JAsJStZRJJI8CbBL3RjMokZLTz7uYeoabz29foGQHqUVddVgDAivaJsGj8AYh08dy6rm+VlLVbZ4ZxnnCZuZJC0ki8YhtQYBiVRYAYtFjVYCYz1ZasjzlKqp6eWKycSGVCZrQUlcY+hlCWezkn6i0KmgSINDaJJpqtaRagmpQieKclmS5DkB98oZpgWZ8piioF605KkO9Mt/WYz7v+2b84Jnh+d86+/8GsN+zu1XXqX/7vscPnuKmS5JjOGtz7zJ0aNHDEZ9rty5w9nxEUWieetnfpplZXj/W+8wHAxZG/c4ePKE7Rs3SKTg+Oljer0xLk958MkHKN1j98Ye1XxKfT5Dti1Fv0c+HJAVPXxW8OzhY0xV0+/njFLPIt3kwcdnLI3j5Y0hj85LHtWW15uEXgFITbo+Ittbo6gqzt5/h+b8F+ndfIlsnDI9arEtWFODk6g0IVMa01iUTgAop0tsExznVok2od1dpWV0NcjamEEjo1hnBTnHEi2Coq2N9/PxDl0DKUQcRnbDTiEoeinb45yPn50zr9vIQrnEce4wCAAv2NKCN8YJPa2iAVMs3jLgp2GXIGjnJUfvfsz5w6ec3X3ItZ/+LDpJmO8/5dkffJujD58EyqIPhlJlZXm4MDxqHPUlnFrAqgsMXXX8xCLkYHYF+oJH7GN5F91HXNEEo+vtyhjr8hWyerzwq6JlfYhws7GwWxH8UqwXLGc1p8sXwdtDCH7/kwPOKsfNK2sMckndtGSpCm6EHvau3uHw4AW1s0gNearJi5w8z+n1crycMVi2jAcF82WD9x6tBUmi8AIa77m7f0pTt4Em6qC1ljjOCNJ+ZPCp6WimAj46Ome0t84X0wTZtiubV+8vOPNSqHicfRxWegKLs0P6wwH0PjC+hRSoxMfE9gtvExG1C1IFoZoXXSZqHFx6h45GZcHsKzCPqizj/HxBkhQkEtYGGXXbUBlLmuXYOvCfqypYBwhvyEYDdJqQatBpj/MzAwqkyJDG4KVkvjRMW8HzWU3hPFsprPc1OMuyNvT6OctpjdIahw0uf9riWoPGk2rNMFUkvRzrBUpp1jJF3stoFksG/ZSmAaU02htGo4LzswVpEsKZ8T7sFKRkXltUMWTR1CRZSuYcyiwxTmBdCMNorce39uJ6+yG3n4jCvSxrvv/uxwwHBYqGJx99h2rZsJwuubnR5+a1NdqzY258+nWU9rx4/JwiT8n7A54+eEzd1Ny4cZ1iNOTRh+/R649ol3PqasH6lZtYa3j+4CFpr+DqK6+yOD1gcXzM2sYGqSZ0qKlm6WH/3kPm53OGoz7DvuLocMJX37kHTrBdKN4/WHBcGxYIToxlV6YAtNMpZwcerTWiPmV29y4bb+wyvLHN6YtHLE7nFOtFpFUJTNmgskC8L6cLqkUTvKGdizmSsWgpGcU2F5S/YDkqLgp2xL+duBhYdrCAW3WcoVvuCrJY3S/EW704L5nWDbMqcGc7BaeN9+m6bhAkwGt9xW4/QbiQFh+eUOKsQXqJ4mJ7LRDYxYIn//yrHPzh95CFpl2UVLMArRgXOrnWefaXNXcXDbP4xuNbX223Q/G4wPuFjzZQ4sJXRcKKkmYi3i19oBeuiIIOUBclewVB+e7vMnx2Hzxbgtzd4Tr6G0SVZ7emeSoHk/Ml42GPaxt9GhsuvkQLvvj5z/B8/5i7H7xHr0jIe30SDOO1AXmWMF4fUy1LkjQJeL3yZImirhsG/R5palgsa+rWUkea5biXsyhbSimpvCXENYbFHxeEWWHmKrACvndwzq0bm1y153ReicYFfnig4oXBZmdwJoVHyi4RXcfiLnDehpxP6ZHRDCUoLFdTBpSWoAK+ZCqDcOE7UDJCJypI5IPtrCPpF0zlAJE2KO/pKUeWepa1J5ESKVqyYYoQQeSSyWAMVp/PkP2CKstQmaU3HtGUJVpIzqcLzLKlto6DZcuoKFjXkPmGRd2ipAIlOTxe4CPM0xuG2LGqalDOsTVOUIkgKzSTaYmUOgR2KImtKpIk4ey8RKkQvlHkCeWypChS2jrEqFlX07QNxoeIO5l6fFqQA4kzQBBQJaliuQwzM6Uv5gs/7PYTUbilEGz2ctCaQisoDe18yeu7Q7bHGf3xkOsv3WC5mFNNz9je3cEKzdlkTpJqrt68xvHz5xw/ecrerZcpq4qi0KTbe8wmZ0yPTumvb7B+9Rr7T5/gFmdsbu8wHPfBGebLmmVpOX7xgGpZs7W1xs5Lr/DoyT4fP7zLW69cxRj4nXcesTSOnUyzaC2PG8dt4xkqS7tsaBvHYGvE/PkpJ+9/l961X2Tt1k0ef/MR5fmCtNC0dY0pg2mUWTRBINBcYNSdI5hdFe/OvQ06f++u6wm3i2EkhC5cRLFPeEy4mKSMA764ANh4/zDAFCxqQ9m0OC+o4yt3C0C3GAQWqmesJLf7ikxqTOdNETF4QRR4xBG8lJJECWQUcZSTKX4SPpfzwWvEx/dRWceLynJgPIYO+gnvpcN4V6LzWKiFCCKPxgf2moz1ovusq+Ny6XiF4VNkoQkRISnoKCWdv4ePO5Pu7yvDKS4wbxf/WA+VcxipuH1ljfPlAikVmZZcv7ZL4xxVXZMkgiLP0YlkbbzOzs4Gm9sb9PprVKXh0aN7FEVCmiY406JkjrWWtV5OIiRn8yXeO/Ik4dXb1/j44SHNbEGqJFJ5pNDUpkHgMZeooBKovOeDsmEn75HUi9XZZeOAM4kFvNvmeAKrJDBKghNlkiQYG+4gtQDRhYYYOuGWUhIvZRi4t2F+YjyrXEqlVXSS9SRFjl2ULDQ8enGKSjMyJXBKYHTCaC3FmrBrUTrjZFaC9KRpAsajnGCxrMiamlwNsUKjdfD0GQx7HFZzni8aZq0lk03YhcjObMwxXziGhaJ1gl4hGfYL5pVhNEiQXjAvF6QiZ3pWokXgWWVK0jaW2jrqukJF6LIodJDvCxDeUPQz5k2DUioM6/sDHAYjNWtJiqkqjDNkmWS0tsl8usAJA9JR9PIfXzN/7L/+/+kmvGdvoPjMlSHFsqTXVnzm2hrDIuHqSzfYvXmVo+cH2LZm4/otFkZyfHRKpiWj9THTkyOSRDMajzh4cB/akqosefzJXebnczav3WL31k1OnjwiVYrecER/1CfrFcxbxfODc/YfPSYVljffeoX+xhbf/P1vcvfb3+fN129Q5Dnf+fApeM/tURbCCyw8rywnlQkWqM5RT2t8kqAzwfH732Xy/JSNtz5FbyPHLBvqaYUpDaa21MsGaxxVVVPVNcYEcNvZSzQ/HxSSInZBqwk/dPUaIjtC0gkgunvEn2MH2ulbROQvEx56SeYOjRMYQv0K/h4Xr9cNSRWCG6lknETvirjVDR4qbpUq4+LWWHgf1Z8X1DUXO0FWnyngrNPa8bSyVNH7ooNIxOp/0BXewCgJhULH92w81NZjCAuTlQHvtSJQGp28KOQOsUr8McTHxOewcWHrlswLpD8uHv5iMUMEGGXuYClgrZ+RCceybjDWsLk95o3PfZkX+/uYtqbXG9BfW2dzd4sr16+yc/Uqt175FDdeeYv1nR16oyGjUcFo1AMc1tSsj/Ju0xOKhACL4jsfPuJ0tmA9l2wNM1IlSDRoHzwyFKFb9QTrAuMdHx+eMyv6WE9I3RGxd+t2LD+gGVgNByImLUIAAAKpQ+kIUngfmCFSILVHJQFGkYnCxCxJLS/L6F387iWmbXAY+ls3mZYtnfjKCSirFplqil6BThOs8ygtGA97WBMDG6SiX2QgJdWyQmuBUIK00JTWcd5aKgfWCaaN4Wxpwq7SOhaLllQGf5xcBu3D4dGUclbi6hrbVugkI08TsjzBOUcvkSHko245mzfU1oVB/SANrBEEdWPRaRDnEf99a3uEzARO9+hpgRIGEQfI4/UxpRO0beDUp2nCoqz/f6ec/G/rNhoW/JW/9hf4w9/6Xfq9hK21NZRreent1zHCcfBin+s3riPSlLK1LJcLNnd3w0BFawabAw4eP0B7uHLzJjWG588OWR+PWdtcZ3l+zPGjE5LeCNFWDEcjdJLz9PELJidTzHLJ3t4mW9eucnBwzMd3n7IxSHntpz/Ns6cHfHz3Kdc3+qznDR++mDPUgej/pLY8qQ27eYKxjqQ1NK0gGRXMH5/z4p3vMPzzP8/OmzeYfOVjylmFTjXeC0xrwDmKLIuzPIH3NqRmX4IZ8NHeviuw4sKdz9HFhxHoVUTFXxQ7IOXKDbC7KEOHGBeEDhv2HWc5Zk36UOjC7cKPGw+pgN0scAXM6j2JqIADfEjncc6Ddwil8IiAf6uwaAgXIQnCAAsBVW15WhmOTHz/8XN3w9YOxJbeRxFJ5KdHCX1KKLSGeCxjfxy664ui332QLjQALvxJ/sX/Eo/0ik546eZjoa8dLPEYACf4pc/eRDZT5nXOxnhIlmZ8+P57WOMY9nv0+jk3b1/nzbfeYLh1hTQfMNq5STLYwqg/pP/sOUod0s8zruyMGfYTrly7xv7+CR998gxdBde8umxIE0Vfa/JUsKwtvSRhUrZoEVJkAsXThd2OD6KYJY7HVcumVuH6EQGvNjYm06xi3AnflRQgHN4KnGRl4RC49PaC9x553ULquBMKjYdUEitsgFNiMyC7bl7Ewi8k9+7eZ45grBMMnrzIyCUkBOuHclGT6oy1PFi5Nt5R1Q4hDE3caeWpxNQ1Kk1Z1J7prGKgJNkwpRZg2mCHnGuFsS2b4xydeBpjqWqLWZb0s4SmNggpMM5RpB5agzCGfqqZL0uclzStAS9RUjPoh0WlXyS0rSPLJfNFC0jSRDJaG1AbR2kVyjRoKfAyo63mbK4PaK2iniww5ZJESKpFE+iUP+kYd5Io3v+9/5o8y3np9hDpLNdeeYPJ2QnOCW7euYmxnnKxoJ8nrN+6zXw2wRqDFIIX9+6SpIpsuMZiueB4/4DxzhWGGyMe33/IeNijGIygqejlCUIqPn7vY0xdkSrHlWub9Hev8/zojAd3H/PKq3fY2dnku9/6HpPTGZ967SonJ3P2j2ds9lJms5oza7ESHtSOVxtLIgQsaubHU7Zvj0mPJpx+57ucvvEyw1s30OldmsqRpIToMRvCWpfGY4yLQzMRrF+9j74jHaM6Fsdue36p5XYr5knXnYYuM6TNdI6DHcwtg51mh+d2dMOIAxOHRy4WpVCw/Q8UrVxCT0mMBZVKtE6wbSiZEgKFyV2kfzvr8MLFoVVcKSTBq0IIpFYYYzlpHPdLx9x2asAOy44/rxScF4yPTjDUCMi8oE8YcBLvHyiAFz7oHTeb7mj9AJTCahbQSeeFvzhWNnordRYCDkHlPWVcwKSAnfURazn86V/5DN9594BHzxYs5iWmPsJ7w3B9yHDY5xf//L/C5us/h0yHrIyuATXcQypNkmUUwx4vv/oSP/uv/HV627e5/7XfYPYP/jPq9oBp2QTzsTbQ+g6nNYNEkacJHoXxJdaE2UXYVbnVUFoKydN5wxe3RiS2DB2hCwPNi6gyudoZORc6bREhJescIgnH1YdOYTX4lfHxMRoGV7lg9RCTnbr4s04erwg7VSs0+4uWWsC8bBikCuXDsFsozdn5AmEtLm1wlSNB4K1FyuC1YyxkqaBGgJWcH86ZlQ3aOnoatseDENDcaup5S2tasiShNDDOVFDb41gb5yQ6oVEVZW0RSrNoPK005LnmaNGS64SyrhnmKY0x9BKPcDWDfi9oLwBXhx2FU4rh2oDDaYkQkr52JInHoGnLis3NIcZalErIshRqRVlWCCHoZ/LH2rr+REAlpjG8/vkvcPX6FleuXeXlz36WkxePGfQGXH/pFvOqoqpr1teGZL0+y8UEGc3YF6cnjDbXKTa3mM2WLOczdm/cIO8XfPLeh8xOZxzvn9E0hp2b1/G9AQ/u3addzFkfJdx87WV2XnuLj9+/y8fffo8333iZ8do6H33nXfqZ5O23b+GdZTpbsD4qOFzW7FctWWQ4PKkdx62ldg7TtCz2z1lMDcmowE6Oef6N75COdynWMrAuGEg1DdZ6rHFB4RWR2859roMRcKueL0ymxb9YTP0KT7gMrRC76QsrzYgLx6LUoSyClar5QsQTi1d89hXoAuF9jZUilQFaEElKOipI+ilS61XnLZVEaBU6flgFDTvvY+hDeGNeSLJRisg1T2rLvgnp83SZhERcX4KXocvQnhBUAwhkwCyBVngK6elHOXIqQQvQ0ehIEoq5JjyPwkcGBiG9R1zAMYHTzOoYuHh8Ojpg42HhPCU/6ImyXmhGuWXrpS/w83/pf4CzLbPZlKpqSKRDJp71tR69jevIYh2hE4RSgU8vJf2NPfKij0Mis4L++iZODOlt7vHal/8kv/wrf4Hx2mbwmtaSIkspq5pce4aFZrpsWDZt2P3JWBi7U2RVxD0LK5gj6A36SCFJMkWaqVUnHY6tR2t1ESrsQ/MgBFjjMDHCq8P/u5uQAjRBjNM0uMaEhKHVs4LUEqklXkm8VNRoHpwvKY0A5xj1ssDGwFFWFqECA6iuDd466qaNp7SPMxtYmsAeaRrP2fkSV7X0tGA4zqmdC6rUtkULS5GE3WFrLI0Nu8FBP0UkAQY1gEyDj0qqoJcmLOYG0JwtWpTQJFoxKDQSG6iCZYNpQ1gGaUJpgtL1aLLEtB5V12TC4NDBBdU7qtai0hzbGqQIwRE6y9FS0VrijOKH334iCrdOEx7d+4Te2hoIwcn+E26++jr9nV2miwqlEra2t0CnWOvIij6m9SRKsra9jtM96mWFMCXj0RrT4wOef++7mLNzcg2jtRG3P/9T+LxgcnqGbGvW1gp2X36dJl3n9//p7+Kblp/703+C2aLk/e98l/WtEdduXGU2K8F71jdGHJcGoTVbkaifSKgFfFQ7Zk3gZbdlzfnjU9oqDEAmH35IVQp23riDlA5TGZRXl8Q1/qJ7idCAUjJM6eOQvvPcjveIfOPLft7+AgXg4iryK8Jy7Dg7Cl285wouuNx1dmU9wiUXHXm4eIYydGetU7z8V//7vPLn/yJykJEMcnSWBmhEqCCAkBKhgqGWi9h3az1V02JckN7PFobnS8uD0rHwHicDvS8UbkEaF8iOmqjohoJxZxE/SxYfowkmR4kUIQpLghQxFktFlZ8k+lGzCoKQ/tLFEI9HGGSFbntVtF2wxW0EkXUCOcHS9ua6ZncLMtXw+qc/z8Y4xzlPljp2tgb08iyY+sfvwF9+OSEYbF1n76VPUzaWyXTC46eP+Mqv/sd84x/8R5w8v0faH1H0c25uDXnt2gbCWzIteWlvwPb6ACHCsS20YtTPiE+74noE7VSQp9ssIR8V5MOctJ/RX+vRWy/I+iGQQCqJkiHZPpghCYSLGJcQOOOiDauPXXW3jQszDeGCcZggepvEAyyIs5CoILRSsF+1nAqF0JIiVeAtQktkluG8I1cSknSVb5n2CxoEbetJdQh6FtZiGsfR8YS+luxu9NB5SosGqZjPKzQa34aCaryndo5p2ZDkOSJJaZuG83lNWVucV/SyhHGhsbZBKIv3Fq0EmXJgbRg+Z1lg5SQpjbUIpTg5m9PLUsqmxVjIMfQyCUrRLEt6ucZ2TB1nKYpgtytUBkhaG8RGWv/o8vwTAZXY1nDrlVeoZmc0y5rtK3s0JNSLOb0sY2N3l3K5ZDmZoKTi7OCQ3mgMQnJ8dIarapSCjd1dzg6PMPMFO1evkOYJjS64/rmf4uzpQ84e3MWXS7a3x6zdfIknTw+4+9493njzJcbrYz769jukWcKnP/0SdeN49ugpWkny0Yh7L55gjGWUJUzLhmGqaWvDxDjulo7XU8EokeBr/PEpmB5pT7M8n3Dw/gN279xAFh/i6kCx0lLSWrNy8vPEE1tGrwccWId3ofPsuh4bh0adDGKViBj5uh2zI9DmXFeDV34kcKmzdnHA1H0RoktYFPH/F0Y33geTnb4KW3BnFH64x/TwPlZIslEPl9XUS4mp2jjkCsZEkiiH9g7jQgK2DNpqZqXl3WnLQRusayEM4DItMAbubBQ8PitZ+GgRIEIc1UoJSiyciBU1sLMeVaLrBiP+vlogWcECvjs4q21IVJ5GXLsr2MaHuLVWhMXaE7r/HEhl8Pn4mc+/zrXdBdfe/FkGV95mON4kPZrzc59/hdffepmjoylGKF7c/Q539t5ApvkPwFAikZhkQGsd80XFojnm6PuPGH7re1y/doOHj5/x/P5DxoUmzTTOeRIlmC4c/cLRyzWNdeRpEoy3hET4MBxThBAN6wRl2zLcukm9PCIfZgjXkPXTQM+rDfVc4NrgBy+9x5kAaRADh4OaUEbRU2gQRIyoEwR4LHC7w78L1Z1whAQZQKca4xytgCeTisHaiMm0oskMctyLToaQ9zLaCjIURnpUTyFETio8ZRnPp9YiBZRtGKPkiSAvUlyS4D2cnc1wZU1PSgbDnKp2uKZh0EvJtSfTIWC+RZIkCWUFvTwJsYHOYGqHTDTOWXIpQjSeciBCStCs8Rgn0YmmLA3rw5zGe5RO6fmWQV8jdULb2hhFGDyOjDVolbGcL6jqhnK6CCHj1tIfZLTtj5ZO/kQU7iRLWU5P6Y832Ht5m0f3H5ClDUUCo/Uhzx48oC0rhNQUvZzh1i4CmB4f4o1lOOrjZMazBw/BWHrjNfrrY4Y7V0i3dvj4619j/+FTCt+wd3WLtZdf58nD58xPzvjpX/4ibbXk/kcfsbu9ztr2NrPZlMnxGZubayyqmsWkZJAoRN2yWAaxw9w4KhMSMc5ay/0a9jLJWEpM9NIe767RLo85fe8j1q5+kbWrmxzdOydVnRdGgASMvfiCvHfBPdBf2oRHr2kJ0W21C34lYt8/OE4Lu8iuoIvYekf+rLiEGUd6xAXJTay6MumC21yHd4IIjnxEfrAp+f3/4N8lSaDoJ4w3hiS9gjxNaKsWW7W42uCNwQmHEzHAOHpiWO9pDRyWhieVZeHjsJXgAVG3Au0FRhc4s0B6QSqgyDVNTDH33pNL6IvQiVsuoFTfbSVEh/F3HHDijiXsiLqCDpd8vMOBw4quYENNKNo23if3kAkR0+QFaM24MGTDNZLhLicHRwyylGvbI97+3Gd465d+hcnxhPvf/yanB0+4fnZAun1jpSz0HlzTcHq0T1UbjE8o5y1n5xMmCN6//4JyUaK8o2xaThctpY2ugd6zPuxxdF4iCFay/aKIi7BDxwAFRwhUSKXEtDXtYsnazS2U6GHLBXk/pM3oxJGuabJ+wfJkjm1bqtkSVktiWCSFF6tmQCKwxkQCvVh9Ji+6rM/4dagO0rMIIZnUjme1ZUpD07acTAPMs7O7Djr45Y7Xh5jGoMcFrbNoJJPS0djQDCzrFq00hXLkqaJ1jnJRsrGRcjJdsD3s8byqmbcW5y29LGWtlyOdIVOePIFl61g0ntQLNgroj/s01jFvBZWFbJCjbE3uLXkqSHOFsZ6TuaE2lvVBTmtDDMhpK3AqZ+AqMhVnTR50kmABrRO09Og0ZXo+D4tGWSJd0E0oCQen80uU3z96+4ko3M4a1ravovKED777HYo0Zbw+om48R4+fsJzVoBPG/YK812M+n1OXIfvRSUnZWHx9Qq5A9sZkowH93V2Qlnd/47/gxeNTlFJc/dJn6W+uce+Du5Tzmtc+8ybtYsbkxXNeee0OaZby4vEzvG3ZvrpD40JAQK+1DEc91voppXc8qBbU3tHXgoUJApKPKs/LuWGgM7wJyR3LUUE2zLAn55x8/JTN2zc4fXhCa+LI0QV2bPf1BFjiBzbQ8fcXU7QOsogNOXi3KlLd9nsFeXiAMM2X3l+U51D1EFyoBztKoEKsoJGOa9KxWJIIRxgkifJYUwbFnGlwxlMMCrIiIR3kpEWKLVvMsqapW5wxGCPCAJawI5i18LTynLoLB/Cu6BrnkF7Rk5YkSqiLRLNs7Ao2ypWn6AqxiOwRf4HNd3+6+UC3FHZzAghdXdi+iwscGzACWh+Uih0sIoDCE4KIZTxWMrybXEkWZc183ufk/a/z4IP7fO7zL7H/Yo22rRDZBuuvf57rjeGjb32NF+//Af0rx+QbV0iyHFeV7N/7Lu998yscn58zX9TMFyW5Tmlaw7KqqZxHC0GWJBiVIVJFIQ1/4vO3GW7v0raWs3sVbeuodIA1dJTatHRiHMjShHoRXAqbZcNorYdrMppZTVs2pKlAZQnlfB4SZJqQB2mFXZ0bXQ7nCq5zfpV4Qzdch7Dwd+elBJVn2LoGJK2Hh9OW56WnLpfk0a1yvmxJjqdcvbaJ9pLKWJIkobWeTCcoJUlHI1QzZToNi9Wwp/GtpXFBoLSeCk4PTlkbpeAq9oqM5bKk0IKtNQ3OkJKQpIImSTk+mpBpQaIVQijq6Yy5EcH6wRi0E4yLlMIFLxTnYNl6lo1DqeAQujXOcFnO1GYwn9FPoUFgl46i8CSZBJWynM4ZDXSwK2gdy2oR4VGJ0nB6ViGwP/kCHKUTTk9PmU0njIZjNvf2WJ4eU07n5P0eKnFoqfFecXJwRDObsnPrKmma8Ozxc4o0wVZL8rxgvLeDGg4oq4Yn776DrEruvLTHzS/9LIu65On9e4w313jp1R2OnzxC2JLbr93BWZidnbC1PcZngb6TYlCyYHZyjrMGpxWPZwuGSiGc4NwYWg8qkZxax71Ksp16RioMIM+enjEYaVQqmdx7SH/9NfqbfaYHS4RwMXMxFGYX9qCXhoE/CFNcjBO7i6ADoC97Sgs6r+zOPnNFp4tdZyf8C7186HJFLH6d9mI1/rzUjQLRDwO8VAzWCxbTBU1rSRxYV9LULcWwYOvVN7j5mTc4/fC7lKcnqOmC5aQMHsUimEa1Dg5rx3PjWMb3LjpPQs/Kg+TgfInAszfKmFYtTRsK6ZKQalN5QRq7Oh0PQagrnou5QHzOjjq5Wqw6y9tQmFsRhqMGT+MCtdCJsP3OgFSImA5zcZS6b2Q4zJFKsn84552v/BZpkfCFX/5ziPwBk/MzXFOi2iXjjU2Uhrvv/yHbZ8fIJKNuWsplycHTxxztP2O5bFhWLa0XaBw4SyoFjRDkiWQ46DGrLEpJ3n5ph7/wb/5NFkdL7t19zjA75rCtmS2ruJuQWMIx73ZavcGQYT6gPD1gWOVMDxfUkwVKQp4psqKHQGFri6kNrm4hmp7J1S7lAjYREcbrFnjZbXOIcwUClJJt9KOeIFDtSp9w93zGUeMZJIJ5YymUoraOyliePzvGCc+VK9sMBmG35b2ncZIsz0jzjGJRMRgWOA+lkMwWC66tD1i2NQqFcAakosg1/TRHK4lvLIOis1VNWNaGtVSRa8vSSs4nLUUekuaLVGOlYuwbskTQtAHGOF+2HEwrZJ4xHBRs5OGYnMwsqjljracCV956Ei2xraFuLZluKQpNVTksFUJAokOGZ4NiMi/pFxqRZMHo7UfcfiIKt7WW87MzvE7ob2wzjaZQMgsx94NBQWs8s8kpyjVce/VV6nrJvQ/vkRc5wrYU/QGj3T2sTjl8+JDl6QnDNGftpZdJ1rf55KO7HD99xhtf+hKJaLn/7XcY9HNuvvUKk+MzqmXJ9q1bqDRncn7OeDxkfnrK2fEh23ubtG2Dlorbo5z9ectR3SJV6L5a62k9vFdabqUt/b4OtphNQ1OpIK1tKs6enDC+ts78pMLUFyc+sOoURWSTdEPBUHwhxEd5LqNeKlZh58JFcpkmCAEr7qCJMLgLQgwJaBG6/paLoo2/MHMNTXxku0Qss8sbtEqxdmWTZdVQ1xbrbPS9sDiRsP3SX2H3L/0ixy/+r+TFkHRzQnPvGSIOcBtnmbWWg8ZybqMEH79aUITrBmqOsqrY7hfoVHI8a/B4lg6W0jPzYeCqRDiRJR5N6Ia1C3xhdel4SB8WwQ4bd95jYrEOzomsWBICyAjHLJEBEgFWjoyrnt0HuGo8GqNVD5Tn4GzCF179EqoYc/3VT/Hdr/wTju6/x9relGYxIy36nE3PefLoHkonOOc5OTrg7PSc/YMTnu6f0DiBkAkD0QXKCjIleWVrRK9X8KiesDkU/IVf+TlOHr7gyScHzE/OA3PJQeNM3Fm4bnaNRpJ62O0luGWJwDM/K/GtRePxElqrWCqBThKc6RSwwchMyiD1xhK6ahvab2c9UoZmQemQ9oQLHG5cYAQFRa/A1Q0ARgqenlY8rBwOSWMFqQoy+gRQXjJbGvIs5ejFMctMMd7sI/tFeC/OM97os7E14PBoShWT3V+9uUFV1YzygrY2CO/JUk1jBN4qvHSYIKEgSxSLNpwjeapoasPCtjTWoo0m0wrhBWMlGCRAIvAiYVYbKgH59g7bmWUtF5ydLfEyJa1LikLSOkcCyFThvCcRkr60JFoxX5o4NPYheMRa0n7G8ckSpQVpP6fxnZfQD7/9RBRuYy2jjTVM1XD29DG93oCqqbHOUqyNWc5LTN0yGGQk+Sb37z9GtAt6SqJMG+hTow0O9o+oJmdkvmIwHLJ263WcFtx793208Hz2p7/I2dkZH3/9m9y6vsvmzVs8uXsPBYy2dzg/PArGL4MxJ89fYMsZ1+7cZrFYAor1QvHw0NI4xzjRzIxlEcdhtfDsG89HlWM79WwkAcqoq5bBMEcpT/n8kN7aNXpDjWkMPpqzdgPKrtd2/qKLkbILLogdzCUxSCj8F1ht5xR4aV5JF3GlpCchxHgp75Hd3t+K0J36DnIQK/x41b12LJb4xHVtODicsKxNvIaD0xxOkviWp7/+H3Pyh/+c2fMP+eLf/JvU7/0m8+oRi7qlaS1lYzgxcOJgSXi7gZ4nVkVGEC6oUZqwOS74eP98tekYArkXtNHsyfhgPdsKqPArO0zR7Rj8xcbhgs0hLuAhTxzgBddDLUDTWcbGgt89j+iMvFbjhuBKaFqOjxekmWdza0jaG3B+fMRo6xpHZ3N+77d/m5dfewWd5jx9ts/J2RyBp8g0tm2xTnJ6dsbhyQSnNIOdPZrzGQMpOJ7MKWtLXzvGPdjZWYfllE9d3eDgww85/qe/y/npDDdrItbvsLgVK0i48N33ZAi8vX11i+l775LjWLYVWgi8ciilaatAuRO6ivTVjlYayZI+zGHkJUhNqgvFrrNuFXWmEhX1CMF9r17UqCRQSSsr+eC8opaSodYI51grErbX+xRaoYSgh8LblsGwIEsk0/MSUVnSvGDQS0DCrK5JegXlskELwcmkwhlHngU3RSM8wnjqqqZIg77YesuitNQ2Y1E3bIxynFY0VWAXbYx74TOYhoGG9X5C7RwqOj2m0tEfDtCDdZLyCGssUifYpmY81CFTAI9MJdZYnBNkmUHlBbNlgzeW/rBHs2ww0Z7j/HxBoaC3NmRaGg7PZ+jkR5fnn4jCneUFxjjqqmFrfY352TlISW99nflshkCwfWUTa1o+/OAjyApGgwHaLMnyHkYqXjx/Sl/DxuaAJNtDDMacnZ9x9PQhm9tb9AcjHnz3Hdqy4jNf+hzj3Q2effQxRdFDphlOKvJBSj5Y58Xje/R7I/pXX+Pw2TMW56eM1wYU/Qkb/TlKSh7PaogDtSZ2pHj4qHLcTCzDJCXxnrZ11LWh39OotubkwRGj7XXK2QuoBTayRlZMax9EEmGIFqxdV3v92L5chlBCkQsF3cZCJRAId5FiEvi8F9ijEgItY/GOrym6In8JYhdc7ATgYsGwxnJyOAm/UYEypuMAdV61JNVHTI4/wpHw/j/+NfzsIUf757TW0RrH3DpODZy7GNrqw/ZaxAVLAKmEzUJzY2vAvaMZxrog0Y7SeQ0URB8RxIovvuqmuRAtQeyi43N3H0T6UJRW4bjxd6LjCIsOj19th+jYO52ox8Zjl6Sa8dYms8khxfoaVha8/+57jNb32T9Z8PjpEZNli7eOfr9HtVgGMZYqmE8nTKYLlosaYxx6tMEXfuWv8Y1/9J+SqwprDQmWz97c5K/99f8R3/29rzIYanaUoT44xs4XuMbgnacRIg56w95Ae4V2gkLBVi9ntmzxZYlsDU4Hubf3AcroMBDbOKSJgRMi2hL4rmmwEcb2q/sHFWnIVBSrs4WVOZrUEmc8Qjq8CDj2i0WggEqpKZTARuqo9Z40V/TyDFHWeNfirWVhg6y+njXYxtGWiixXIZXdCYpUUS5KeonCJ4G6OJ035L0M4Vp6qaDfyzg/naESzaxx5FKRS5jPK+q2QSSend3tkIO6mDHoK/r9FGMd9dJhJiZQKa1h4A1nLx5Sm2BrlktHr0io2sDiscaS6KAizVKBTiSz2RLhBL1eTlO1uHrJYJhxPq3xzrGxM2RWtizrmuHGJoqjH1kzfyIKd7mYc7h/zPWtNSb7L6gqS397h7KuGQ369POU5azk+PkztvoZ0rckjaO3vk6bDrj70V32Ntbp9zXZYIzqjznYf44Uktc+9SYgeXrvHuNRwc0vf4nzs1Puv/seO9euUlcVUgdvhbL2TE4fsr61i9ApTz76mOHGOoMbN3ly/xGDImF73OfFfErlHI0Pyi3pY1eG58Q43q8Ne5VktwiOalXdkg8SZKpoZkuaQY5OEuq6iRhrKAadYg9W1TImbXfb846RGwdsUVQhhfwBi1YirCGIMvCuIHqJEtEuSHSdVOh0JUQr0K5gd5hz53Ad4p5sdCVsjEcrQZGn6FQxXh+ipWd5OmM+XWKdQMiWx9//Ci6m+RgXBn5zC+cWqnjsfHx9CMyVTMOVfsKN3TEf7Z+zaAxpnjEeDDk6OQmSdudWhRXCiey4cEO8vOCIuMCt1iR/6e9cuCausP543FZYLtDRMeHCKjYVgprghTIYjHB1yXQ24aWf/iLLieXb3/mA+aKiKSvSNOHx42dIIRitrXHrxm2qxQltU5HqhLX1dY4mNS2e1z/702zf+DwbxT+kz5y1IuP6To//yb/xb3Lzl/51zj/8hGr2HNu0lNOSqjIsWscnVcvdecvSeiSSRPhgqSp8yDisK16/cZXMGVy1hH4az7FAl/TO4aUCERS5AhebiLgbitmQKg6LRQfVec+ydYxUtILt5ibxj9LB8lVrhTFQGsWH53PmCHKtgjYjlSRa4lqDryW6l+JTQaIzJtMqBDNACJpONMJ5FpMlbSvBGhCWtUKR5RIlQ0EfjfMQapGCVorlMoQlzFuHSzLWxwWnxyc0jWV9XOASgluoEMhcMtoecnayJEsCs2pjnDFZtGipab2jNGBMwNFVT9PUliRTeCfQKqWqPP1MkCaK2ji09+hE4qylWixCiMOywhpDf1RQ1pbD0wV6OGKUJjFc+IfffiIEOEopNoqE2dEROk3JBj1aUzHoF6RpytnJOZOjfQZFRk8HT4Dx1assasPTu5+wpkH7hrW9K7RpwbOHD0mk4NqtG1gSDh89ZO/qDjvXrvHJe+9z+OQFr375F2nTHosWstEmrQ28352b1zEIzk9O2Lp2ncHaOif7L8izhLXNAS2OQaGQIhRE5QXaE82MwgV/t/LcrR2L6JDnrWMxqUizkGa/ODgl7WUBm5Wh4wtDnQv01BOsTr1zFwyPqFxb8bEvQSIB2ZBRugxd8feuK0ahYxfxAVpEyCSOlFZh3XFhkLCa4nUOg60PgzuwGOtpjA9DNAuD7W3e+lO/xKd++Quk/V7sgAWV8cytY+k8DZ7KexYOFt5HVszFSSiBVHlujQp+5qfu8GxaM60MqQRvGs7OT6Jdq4vDMR8V4z6Gu3oSCanwaBkYQQkeLS5wcE045jp22hfilG7v4jtEZrUudIxLwQWU1O1Suvd+eLTPW2+9wmc//ynWr36WXn+Ppmw52j9hNi9Z1jVSJyS9PmmvT1kvqVpDay11XQf1nBSMRn3e/sLPMHn+jL2B581XbjBOHZ9+9Rq3f+GvMH9wl3r/Ht4YZrOKRW04bR3fn7e8O2k6tTlSBoaE94JCCra1ZjfTjDPPfP+YPJGrBYkIkwWnSBfFYYJOqisI2HM2zEjyDBEZEERbEwWsFYrV3NaHbl3gkUmMlUslXgSu9P6i4v7SorUOi6GUtBZGiWa9n5FqjWtbvBIYNIlKaZxg2Ri8l0jrAvXOCxIZivlwmDEcZEglmZcGLaEnDcNc0CsybOtoWouUYa4z0JpqsQDrWRtlQW2KJMMimpL+Wp+ZSfECysawPiqY1+G8n9WOs0bSiJzUG7bWEoyxYZdrLIMiWZ2TZWuCeZQL9r5Jomnbhn6RYozD1pbhIEEkmrN5gxeKnUFOX8eL90fcfiI6bm8tiYDxzgalEeRak6QZOMfJ/jGmLOkXPWQzY7h9BZslHDx9jl1WbPYTxlev0d/aoaxK9u99wmhji8HGmGf37lFOp+zcuoXSioN7HzHs9Wl0nw++9S0GowFbe1c4PnjGoCi49tprzI7D643WhpTzBYePHjPe20alKWpwSnLvkOt31nD5KWcPTgJDwnd0tuCUN3eed0vHngr+vtZaZCtwXpEUGr9ssZUhTUM8UYcZBiqaX0m6u9G9v+SW12Hhq448YrGIOHRzcboviB4RYgXjiFjMRXyk76ADWHVKHRTQvTx0C4Wgdo7KQz96dTsbY9B8zYOPXjC+9hq56oGUDNb6jMYFT5+EAAoIO4oq4tplVI4GiCQMTzPluTZIuXl1ja99dMDB6SzwpFnB26g46HKd7W1Y8VbH4vJ7F75jfshLi9yFCGdFsaSrQd2rxB1Oh5asFr7uYRfwVtfVTxYz0uEav/Ln/lXuP3qKnzekiUAqKIoMECzLmnGaUC+nVNKDMTR1EyxtyyVaCnZ39njplc8wffQVvvDmLV5+eQ/RLFjrJTRHRzz87X/E8vSMuqqZLi0nDby/8Lw/bWmsZ3OQMq0thfSUTUsPzxUt2Uoko6Hm1Zev8fT3v49OxIXYS8CFmVk3WwnHohvKikRijcG1wWtHiqBwjNU/prqHAymJocMyagqcQ2mN9YJ5C3enDedCYnxwDcyEQitHoiW9QcZo1ENKqJYtbRn43UpLlIPEW0xtESoYaxVa0M8EgzxBRGVyP1NkWXBK9FJwfL4EL2OQsGe7kJTLJY1MSFNF6yRN00aseYrSKdPDJUWvpVmWZFoznVdkaYpAYTRUrcLNpyQDwem0YpgpdCKQXuAsFKlGCOgNRjjv0JmiamA6WVDokNaksPTWerQYFrXBWcfuZo9EmJDwc7EF/yO3/8aOWwiRCyG+IYT4rhDiPSHE/yn+fkMI8U+FEHfjf9cvPebfEkJ8IoT4SAjxZ/+bXkNpxdbVXUSSU/T69PI+Smn2n73ANSX9XEK9YHzjDqY34ORkCtawPu4x2tmhFTmP7j3gxSefcP32TYphwfGjByTesHvjKtV0wuHDe4x395BpjqtnXL+2QZIoHn9yn+2bL3Hzs1/kbH+f2fEhw50ddG+AFIad29dIhyN8kjBvLM9mNV//aJ97L2boWCWEkKtEj44d8bQxfFRbJiZsRZ3zLGYlxdaIfJhiygZrw5Q51Ai/GqKtur0V+hG6we7vnVz7opB3rxuSbzqsWsZwVhmxSgjYthIiGkGFF+i42t3rSuJj6bw7QktvERy3NqryAo5snaNtG2Znp3zz136dd37razSNZfvl21z/zGthWyvUKpi29sEX2riwKEnCMLAnBW/vjbmzN+Kd+wccHE8iU6TDnsN79T5GlMVtuAzK+tV7Xwk9whfDytkvgveXubGrwyouIfji4j/dseg6UiJPvHsGsxp0esrK8+73P2Rt7xU2i5y93U36gwF5mtLLU9bHfbJE0u8VSKkRzpIoR64FiVQkScKon/HpT32WUW/Emi/50l/673L1Z/411nXK0Fe8+Orf4+CDP6CsDfvTlqel4XsTw/dP5iyMZa0ITAgpCNxn59lWkg2lyBPBZz//Ki9enNPzhkSrwEoiMBukknFnF4+nvBiUQ5C4myrQnaRUdJE74f4yNBgd7TRKtUVklUgV3Akb53k+NzxqwMoubE2AtxgnODgvqcsaJT1pqtA6YV6G2DBiLqaWoUlalIZRGhZ74QWzZYOzlvVRwtowQQpBZSSzWUPbWrSE0jha49EqDE3LxjKvLXUT4sImiwapU47nlkXVUFV12Ik4TyITamNYOIIDYDNncyDBOhI8eaHp792gjdCnF46kyChbQ5ImyCwPgrEixRM8TbwkhEIvgm/J1sYag1RTzZcgAh3xR93+OFBJDfwp7/1ngc8Bf04I8TPA/w74be/9q8Bvx58RQrwF/DXgbeDPAf8PIYT6YU/c3dK8YF621E1Df1Bg25rD+/fppwm9RKGBrVdfxyjNydExopqzvjZkcOUGtUw4P9onF5aX3n6bVsCLT+6ytjZm75U3qJbBrHx85RrWK3qDPps7W8xOZ9jlgtsvv8L52YI/+NVf5eTxY9auXce0jtMnT+kNN+ivb5LlKcvZjHe+/QnLWYUva7BB5RS8MAI2rCIw6kUwqnmvtNxfNlQRODZty+lhyejqejD1IXSAiZKrwnnRARGvoq4aeS4mhzGd5FIRV0JEKpxfmTN1JcbDyk9ZIZE+3F8RGAAqvqb0YQsmYufdnSDdW/DCc2o9p87FxSBcet55nLG0Vc1iPqc1hmf3nvPu1++zLNturBr8sp2ndFEM46P/SSL48itb/Jk//SmeLiyVcaTxuEofZwgR/xaxiAof1Z/+otMWl46FlBddcljkBJeLt7h0nCXdzkWsBqVKBIZJ141fTBfCYzrDLwg72rINvONn3/86u9fusPXmLzDsj0IXKgR5ptndWmdvZ4s8kSTCMhoUjEcjtjfGvHLzFlvDEZ/9zGfJypLtZMbOmz9HdTxHTE+Rref+136fo2dHPD1e8PFZxTePK753PKM2js1cs9tP0YTBmLKWLSnYURIpHDvbfUTe4+DhPsOYNHHhpR1TliDaBsfzOG7VBX5FGQ2UUL+yd12dK3FhVYkKQ9t4fISWYfCpJJVM+eh8wZENx1N5H5wJhWeoYZCG2YVpDPNpw/nRGeM0DAOddSQ6fMeN9RSJYKgFAy1x3jBbNixrG2YfUnK+aKnmDYVW9PKE+bKiLVvqyrFcGE5Ky7Q2qAizpLlC5wXPTprAEiHsXp3wpLnGOM+ilrSNRzYt40LRmODJUmiJXTScP3qINwapgv9SYyxpnlA7z3JWkwBtVYf0KsB4ycnMUDeWYZaSCk81q2jKlkdHM340UPLHCwv2wDz+mMQ/HvjLwJ+Iv/9/A78D/G/j7/+u974GHgghPgG+DPzBj3qNxXzBZDrnpdde5ujRY86ePac/6LNeCJyzJMMNDo4mmLIklxWbVzfw6Yjj0znL0zN2r1+hv7vD+f5zFkfH3H7jbYab63z8zrfxzrF94zqz03PWNkY0bcNy2bJxZY+i3+PwyWPOnh7w0tuvkgzGPHvwmDTLuPbmWxTjMaI3ZnZ6xPN3vseoSLmxuYaxE/anNX0XOkDrLApBIwL2KgkczBMH319aRsrycl/jjIHZkkbssPv6DgcfHVKXFhuLqiNaWYoQI/UDtmuwovuJS91NJ8CJzfklvUxM2I7DxK7ua+lJBbRWBOmzhepyly9CoVSIlW+J94F9IIAWwePKkfYkazrsJBoXsNEQrxesaH15BjLIxY0PAQu1FZQI6nihaxlsNT97c5NPff4Ov/HVj3l8cB48RgjudogOee62GIF9YuMuJXQefrXQdQPFi4IeeOKSkGYT7hPhpBUU0kG9fgWxQBSVrIq0Xx3jOIFY/T1WOt6/+5Cv/fY/4Rf+9J+BSckwk2wOM47Ol/T6Gb1+Aa5hd3udzcEArSXTk1Ou33kZsk2u3rjGW7/w3+Gjr3yLmzsKqTSnH38N35QcHpUsypb9Rc37ZyWP5i2nTYv1MMo1u/0cLQT7dY20jm0Be0oGeqMU6CTjw4dT8nKB6ocuWPioBeiu9dWhi0HWUl2CiMJujtUc5tLxWh3LOKuJuDMimEtJKfCb6zx5tOBe5aiRJM4zyhSe4D+TKRj3CxrrmM5b6kXLMJM0bROYV8rhSbAONtPw/F6Abw3KO7ZGIXQZJJNZg7aeQRGSdpraBjfFvsQ4yf5ZhdMJhZb0egnLZcugl3D/+Rm5StkZZeRaYKxlMOzRtMHz2wlJ7i0qVUzmFXUryEVQ9Dpv6PdzGhfiC41xJFmKs45qXuNMixYh/aes6mDLKyROJGwNC7RsmU7n1IuahQCRZmj9o/vdPxbGHTvmbwGvAP937/3XhRC73vsXAN77F0KInXj3a8DXLj38afzdj34TUrJ77TqffPddFgfHrI/7rEUYJN26yuT0CP9in1GhGAy3Ka3gxd2HZEpx6/WXsUrx4v59ikRy6603qSvDN37jt0nylHQ45NnjZ2zv7YR4K6/Yub5J1h+wPJ/hLbz+cz9D07bsP35GmvW49VNfIMkzklTxnd/7He598IBqMkEj2VzLeHosGKSKxlpSFzygF86vBno+mvrg4UFt2dEt66lkN43e00+nfP6/90tI9TWevbuPqz3G20DVi3a1SIXz7sJ3w4eLZwUFCBEx4gh2eGKR8rGYi+5fVgNHRLBXJVqdChFeT3aqOgG2g0zojO87jDtcoJaQ9vLJ0vByL2EnkyQ2DJe89xhrL+h4UUhEFAG1sVvyAhIlyDXkWvL0bMm7v/ptFnUwmSdipGFuFY6j7+qjiAXYX0j4PVwmmERohItdQyysqyWu+7eLqSMdFAUihkh0XjAXWLa//ILdKhn/7vEcny95ePcTpPNcf+kVZDPj6riPIjAJzs6nZHqLTFne/MznOT87YvfmG9z6hb/Koz/8A65/7pfQxRrLx99ilJ7y7J/9Pe7+839MvWhY1i2HRvDtk5L705DuHmAxzzBRpFpxUDbMlzVbwrOjFDkSRZC4Z9s7fOfrd/m09qRKoqUMRl8uOihKeYFnC7mKZiNu/YUXSOuiQjLuSjqAzjukDrscZzwoj0oCFU5qFWYjao3v7z+jVCmp9vRVGG4OtKZIApRXNS3OSny75OrOgKYxJEhk29ArNLOlYZQp+pnGOmiMobKW0bhP2dSMU8lkUtM2LVIpjmctQgUnTunCIHuybGkIC1oqHCdnS3IFU2vYGWSsDVMGmcI0NXk/Y17WNEayqA3aOopRTr0oKbIQYBFyTC06SShbi05SZrOK8biHE4EGmShBVVvINYfTEowj7ycMsj6uqvCmZjqvmDUwqQyjrRFXN9YQ/tmPrpk/rqCuLgTvLfA5IcQa8P8RQnzqx9xd/JDf/RGwRgjxN4C/AbAzKnjn977OWHs2x70gZx8OmTSSo++8Sy4t6z2NynKevjhhuVxy5cYVtnb3OD454eDpc26+dIPhYMT+4ycc3n/E1ZvXKK2h6BWM1waUdehg169cQSUpJ08eI5qS0fYmZ4eHLKcTNq/fYuvOKyAdSZHz+L13+Ojdu9im5fYrN0FlPL3/kJtbA9z+FNMqlq3DicBmaL2Igo7YEQtB5eHdyrKhGnrrBX0s9dkZD771iDuffZvZ4Tnn+2XcadpA1fNdIQ2HMpg9hWJsIxd7NXFE0RWlP7p1vXARDD+J7tgj8REuCX4WTlw8xhMNsHwokjJ23SIuHALBzMEHi4ZJq7jW0wzzYIY1XxqCkZxfufWFmDCJ8T4qNQOrJUVSN5ZJNQ/mTXHAGnYswVnQR9qZdxd+F93Z5LkQD4UjFnjCXVd9ScPPCsW++Jg/cFZ2g8nLZqv+0r9eauNX9798Unugah3Gw/Onj5jMTsmcIcVx+9oGSx9YHtV8wuuf+zLbX/7LNO/8LtgaWaxTCEn1+D3q05qzu98kWVPc/ea3efr0OdOq5em04pNJyaQNC/EgVUH5aj29XsrzWclZ2TAUsKskuVBI4UmV4M7rL/HgcEmvXLC+rtFSgrVxsRPhG/IRMJIXO5WLmYEA51ZLnxAClakAr7QOEf3T8Q4lIlyiFMLZuNNSfPvb7/GwajFKM8wU3geKYqolpbUkUgWvdetYyxMWixrvPWVZszHKmZYt6/0CfINVgW1VFAk6y2jalkJJnHFUVcOwn3G+bNBaUDtPvTQMM8nhWUXrBUmWMMwErjUMC0GWpTTOsj0sQCpmkyVCeuaTCifgvPQMhUVpxfnZko3x/5e5/4y1bUvT87BnjDHzinvtfNI95+Zb91bu7mp2zuxusgNltpgkEpIsCrQMQ5B/yf5hygJtGDYtGLBggARFtSiLRmc22V1sdqWu7srp5nzPOffEHVdeM48x/GPMuda+xaoiBQHCncA5e++15pp5veMb7/d+7xeSZzndSOAHktoqV84eeVSlRimFtpbFfEUn9JF1xdbegPPxgiTwUL5hZ39AOl1Q2pr5UpAVmvPKsL0/4spun8VsiRIXn7D3Lv+TVCXW2qkQ4nM47vpYCHHYRNuHwEmz2j3g6oWPXQEefIdt/QPgHwBcHyV2JGt6UcRwf494Z5/ZbE6Rz+kpTX/YQfoJR/ePUEry5LNPoeKIs7MJs6MjHnv6aaoi57WvfhPKksPHHmcxmxL2hySDLrP5jE6nR9zvks3mLM6OSTodRG9IUdWEvuTguQ/h94dURcnOIzd48OarvPbVlxB5weHlAyaTBd2kYLgVc3x0zuEwIitqIiWbSN6gbGO630wb2yBuZuD1QrO1Knm856HqmrMXXyXZ/n6u/vCHKf/46zCr3NSpcgRgW57tSF25qQYUF4D42+QfDtpbVYhcR5zrqNK2Ebjjlj0LnhT4lgZs2yi94SDZVAe2hvyt+gXruOpbueG8rrgSSg46IWGoCIG8dH4ftvElKZqfm3JznEGXdRF47Huu9ZO2rPLS2dkK1wjBE67IqT2Vi5TFBksvciWbKf9mstJQLS0Y2Qsc9Zr2YF2k0+ztPe+1e1mbeq2F3u7deZpzNE65dmnI2c0jtjsBg55PEnp4MsAKSzcM8cKEujCk0xm+KTl94SuM3/oCW7t7vP7FrzCbHWG0z9sPx9yaFdyd5dxbFqzqmo4fkPjOaGqlNbXR3J9mVEVFX8BlJZ1bojB0fMlwe4Duj3jry1/kE7FyyVDPafqFME139qbYBoForGABjAYayaVs8gYIR4UgnHpCNNSgNS5oCULXFKKdZdnQ58FU8MJ5Qe0HdEMfgaUX+sS+chantYuAlRQMYx9Ta6yuWVWaUSfAVCUHww51UdKJFMZolHINk7WGeWnJS4PvGbaGCSezDCUkWirms4JRoqgqjUahlGIYuWBnaxBR1DVFXuEFEiMks/ECP/CZpyVKKmorGfjuHBfLDCUEi6Wh3wtRosYGAcWqoJuEjlqMArS2zCY5USCxdUnY7zKbps4pUHhEUlMsF2S561tpkOSez9ZWh4NRn6zU9DqhKyD7Lsu/japkt4m0EULEwM8ArwO/D/ytZrW/Bfyz5vffB/6qECIUQtwAngC++r324QnYGXXYvnGdMoh5/ZV3OLt3H7uYkXS71PgcPTghSUKe+PAzhP0eD965TTk755EnH2dx/JC3v/4NtoYxw8sHaFsxOthDmZyTu3cIghAviRk/vM/y9B6DnRGq1ydIEkY7I7YvXaasKtLliu1rj3Hn9Rf42qc+TZ7XHDxylSrPuPbIobOLTSKeuL6DJyyhJ13jT5yfRVuOLoST2mnhSqct8HZheDUzHKc1Vkqocx5+5UUqtrj+556i0wvwlcJrprGekC6ZKJ26Y/2leQ/cNLjextJ2o8MWTUQuBAi5UY60Ui1fNlpuwBfGlXmLdhvtdoFG663EmnChDcLaOrlpbXgj1XzjPON2qil9H6M8SgOZhsI4Xru0TXWjERRWuAFPupLpnUHCD3/fx52XiDFoa5Gehxf4/NAnPs7h7qiZldjGNKuF1pYqEutIeg3s5kIdn2iuiRUXPrcxolqf2Prd9Urropz1O+v/LkbloLXlzdunRGEEvkSHIfFgwJMf+AD7B3v4YUCWVZzcu8vZ85/i5I2vc3LrJd741H/P2fE9vv6lL/OVr32Be5MFL9w55au3T/jm0YK7y4LSWkaxT+Q7o6tVpZnlFWlZ0sPwiYMhj3iCgXT+4GEokVHElQ89zZ985WW20WyH7r550oGnEmpd9eVsgi2sE5JttL25LKbpZ+cnIdqY5vlqV3CVrbqlT4SgRnA6r/jG/TOOmguVFRWBcGZZrkGzxRjXp7QXeQw7AZ3Io7Ka0SCktjV7WyFZmhIqsNagsCRJCMKuG0Bb44p4JpmmNgqEZL4o8YCicve5nwTs93yEgNDHOVkGAUk3wHqKcpGRxCFZVtLpJxRBiBJO+ZMWNd3IZ9gP6XUDpJJ4nQ65EQx2hs74wpOUubPA3e762LpyM7CHE6hrrAZZ59TGMJlUjMcFRQm5lPS3hxyOelSmJrJOr3TR7vlfw8zv+s5mOQR+veG5JfAb1tp/IYT4EvAbQoj/CLgD/BqAtfYVIcRvAK/iDNb+04Zq+a6LEOCNdnjn9hHpYsnB/pDRVkLUG1EiyJcrdve22X/sBovpgpuvvMz2zhajw0sc3b5LNp1w7bln3PdMRiS9hOXknNpYDq5dQQYRD2/fpd9P6F66hrECpRRhGFFogULRv3IZ6YW88Jk/4PYbb2EqsFJS5RnXn3iUuizoSk3tdanKitFWzN1ZCcojCaAs6vUDX7a8snV9CT1cBP1yWrElFZGSXO0GFNMx73z2eT76V3+aR4zl1hdeh1RRV1Cjm2q2pkt7k7Vvq/fWYNTo1Wxzc5yOu+F1ZRuhbiJRr6EPLK4wJcAleTzpImJHKbfc9iZQbVuJtTQK1mKlaHpeWiojGFvLbFVzJ53TVYqmNSEWp3VPsVSIjY4aCJTkmUcPuLK7zfl0RVGVa8WGtgYVxlx58ileefsmupnGt5KUCzh8gbpoqR1D2xRh7bvdfA82EsoLx3JhOxcpE/fZjQzwPTGQ2NBRrbfL8XjOMq3Z3RmQrlIqC1c+/CNckpav/vE/581bbzAfT7l96wGmWuDJkDRdkOaat+6ccnw+I1BwvMg5XpRktUZJSceTjJKQRWU4TwsKbfCM4UDCR0YJYaOLdD5ggrGGH/m+D/H5V++Tno35SF8R+xKlJLWpkY11ALh8jFpr+l2HHGstQjVySt2oiJREBRLrqs9coGKsM5nym+ACNxAbLKlWvHK04F5hGA66zjfbQmkN41w33c5lM3OxBBh8aZgDcSdECEsSKNJVReQrytK4eo8kQAmNEU6mmGcF21sdVkWNtFAbTb7QdCMP4YHnOVpHKacS6UYeQRSwygrXlqwwVHlN1PFZZRWVCpilmkHg0YkjikZjr5RrcVZqMEjS0hDHIXlR04kCpvOCYpYSRz5pVhDGAbNFTs+TTgqbVQRKME5LxvMCL/RZSsn21hZ7vYSqLvCxaFuymlffCzL/rVQlLwIf/Q6vnwM//V0+8/eAv/dv2na7qCDk4XjBajZje6vLzmhAtL3NeLbCFimXrl8jSLq8+fKbFNMJl65dQXge5w+PCJTBG/Y5enCOP9hi+7DPZDaGuqaztc1iVVKfjtnb38YLY/I8R/k+/d0Rxw+O6G3tcPjEc9y79RrPf/bPWJ1PGOzuMk6nPPbEDTqdDtbWHFw9IFuuWE2n+HLB2WSFFLAVKBZFiXI1464sFxfJFtY2AOOm+rmFb2U1QyUIhWUUeNTnx7z+mRf48K/8IMVizrvfvL9OCBmzqRA0FyogW+dtVyrvpFyCTcm8lC5qbY1/ZPPFvAjwrX+JJ12Fo2ecckQJ4exMm33JC1GsbJoqtMlKA+sycducZyUc17+snNbaa6Iyy9pUzkFjc+xRmPDnfuLn+MRP/Ci/8Y/+AWVt1pGurjVx4EOxoCgKlyQ0LZe/SUiusVd8O0u9eX3Na1/kSNic27e/0PK87SCmN+9eAHn3f0utCCAtar74zTf4tb/4Cb7vBz5MEMaM79/mkY/8OE8+80FIV9x/cMKrr71F6EE3iZGBz+k45d75HFNprIaydk58XeVhG9nmeVaxKmrqumaIZccT7PoKkxbIsGa3H3CUac5KzU//xMd55d1jXn/9Jh8MYC908zLP9503u3HJ8DYxicW1mTOaukmS17XBk2uFP9KTeHFAuSodSDdRt5KgQoUMFLbWWGEpKsE745xvTQumno9ZFHSjAKUMNZJANoYKwpL4ir3E58puj3mWsTuKyNOKfiAolhmdJEBYDYGkO4iwxqClQhpDtsrZ2+6yKg11YamMJlGWZCcirQyVNsS+pDaK81XJfk+CJzme5ez2I85nK+cA2EtYLpbUQlJ6MSMFni7IK03kKaSQJF1v3R9UWk1/EDNflPjCMpsXUJZ0+q6Z+FYUsVqmeFaghSDPDLNliedBqi2ZChBByM72gMNuCEITSIuwGisUQcd/T4Dz7cv7onKyyAuyswlXd3tsXzogN5J7r91ia9TjiY98kCwreO0bLwDw9EeeZXZyxnw8Zbi1xSqFNFuwuztkusi49cpbDPcGdJMu9+/co5/E7F+9hLaCqq4IAp/ewSF333qDveuPMdo/ZPzwXW5/5UvY1Yprjz3CyfE5H/jgB5hPxpRZwRMffg5rSxAK6fmcnky4tDvA9zPeeDhnJw6oVwWlcsZNjgZwkbaxbasr18zgpBK8kBpiaYg9i29dX8rX+12e/emfoVj8ISdvnGJM41EinTWrajhVKy54ZgjplCc0wCobLtq2XHQDYsIBpTSbhgASgZIG30Jdu0g8kK4M3X2mjV8dSrUpUIMzhUI4iGy7sVvrlCRyPVV2neJrxKaCsQHONmdosUznK/7bX/8d/ulvfYp8dY6uNxG/wbIoNF9+6Q6rvHLRfaNwELIlqjeJYGdL68J8c+HY19WgVlw4juYctVhH7ms6ZE1yb47jX6dKaJK3rA2swJ3zm3fPeeveil/6O/8eUkS8/vnfZOvONzm8ekgxexRtJJ61pGXNdJGSTTJOZilVZRgkEXlVO2OiylAZQ1E6R0qMoQcMPcmWJ+kHrivQRz98mQ//0q/yW//k95m+fY+f+8lPcDTXfPmlt9nH8misXPNkCUk3opxnGLHJiVxU2EipwBqsdb1PW7oMq/G7EXVRu6fAtqOhQQYeKgrQeYmQTmp6kmqeP005s5K8ds2Ni7rCaFxCWUp2OyGxgK0Q+knA8SxlZxCS55pASaqiJI49Al8hhGS4FbHIKoSxaCSzeUG3H1LXFaGnWKLRumZ7lKA910KiG0vXCq7UDOOQuONTGoCKaaoRNXS7iryqKa0kFz5+WaLRCCmcpFAbVKSwKAwKbcD3vIbHVhydLgisJumEzBclvU5Etqro9AInlUVQGVfPkCPQnQSrLXujIfuBgDpHCQ+lBMulxosDJvPiPcVi3768L4BbCLh+ZZudq4+wyDOObt7j4MoB1z/yEcZnY26/+CKHVw8Z7e0zPjlhfnzK6MpVxtMplbbsX36Exdkxppiz1ekwm8yZnVbs7Wyxd7DDcrFC+CH7V66Spin3b9/iysd+COv7vPPmGyzvvElZ1Fx68jGEznjmg09RlhVXH71Kd7TD+fEZnjT4SrA4P+exp24wn05IX77DVuKRzzVdT+FLw9ga0JawAae6ieBk45dRW3izMPRUTaDgsS1F15Scff2bvBl3efznf5K6/Fec3ZyCVdS1bfwnZMPRGrRto2vHr5smymyBE8QaqFwhxYbuaA2rnFLFWZp6DeAbAbqhBlqu3jRfUotFWicZa6kXIVpQa9UgDWXRfH5dRd/GpnYTJQNraVmeLSizxfrY1nlEI5jNFrz4/LfeoyZBtFTshmOWAEJitEu0cUEGbzfhdvO8bf5uI/S2i8579tEeeSs/vECXmGZwovnIxX6elbb84ae/wvf9+J/y83/z7xDvP803v/hJnv3Y93PjqSfwqDg4GHD/eI6+eZu7J6fcO09ZrkrGy5K66eIijcUXkDT5iq4UdCV0PEk3hEcuDRhsD/n4f/if84Uvv8xrd0/4a7/2c7z0xhF/+PmvExnNU4liOxR4yvmUV5mLlqVti4xkQ4s1D4BsB3aDtC4FpqQg6odYPExRuLPUTVMFQIQedV6CsFRWcJ5qvnW05N3aUkrPFUBJXGGV73plesbQt5qOr1BSsig0B6MOWVa6cnBf0O8F6LIgqwr297pkZQlC0t9OuH9/QRgFrPIC31fUtavqSmKPeW7Jq4w48BFKMM0NsjRkdYGQGmU0Rms8DElXUltXwWiikEBDXjuKKvEgKz2EsEhr8ISFqkYIy3JW4VnLYlYjtMFPQsbTnCTwwDjzNSsVATV5bZqOboLUOuDf39/isg/WFNgKggBSEzAuCmbHYyKh3v89J6MwYP+ZZzmfzCkWGc9+/0fo7O5yfO8+t7/1Io996Dn6oz63Xn2DvKrZPbzELMsoKkOv3+Pk/gOS2GPv4JCTyRxZpQQohoeXKKoVVVVw+Mh1Tu+9y3iy4tmf/XmO3nmVr/3xp9kdjrhy4wq9vUOSbp98OmY1W7B//RH8wOfe668xOryCF3oUiwn9XpfZIgUr2OpHnEwytiOLtR5HaYmnIBKCunQgeLGTeMuDaiyv5YZE1ChR8IGdBFmVPPzSFwgGP8lTv/rziH/2R5y+M3EPjXF9KR3QOkVAbZ1hPjhANk0S0WAbnrpVRIimRNyVHUvbHBdi7UroCUeNGOnkhsa65EQbUbcJUCmc70fdRtpN27TWAKsNpYUAbcQ6aocLtMXFv8SmqMU1bGgle05pIlvkbbmKbw9AhF3b3pomqm835iid9ng2+wPeE16vBxJ7kfteszVsom73xlrX3VTLOtBu9y/W+YPxPOfv/1//7+TzFT/5S7+Aym+TTY+wRYcgTujioe+doI2iLDWiKIjqmp6UrKqajgUlLDuxTy9ImE4WSBx1kXiCYSdCdXq8/GDO5/7u/4XQE/za3/gVvvz5l/jM117E1jWPBpLrsWyMzCSe52OqGiWcBau0NLI/iW26L7kBW25mccI2NEhAscjWtokCp9GWkYe1Aq8XUGYVy5Xm9fOMV1LNBEnYPO9ZZfA9gdWWRAoGgG9rfF8R72yTzpYs0oJu6FHXNdpa8qLC9yT9XsAiqxFS4PkB796dk+aasnINCTxVo2tnp1poRVHXxIGi1pqs8gmtYJAo8lqTYIgSHxHGFFYxW2XM0pLSKgZotDEkoY+Shm7sUwuBFwi08jFWorVhtViRJD6zeUVROI8Vs6qcra2weIFkvKzwigrP9ygKTV5pCqnQgcf2sMOOAHSNtpBEitOlZpHOqbVmd5RQWhq1wHde3hfAjfJ54637DCLYv3wJE/U5fXBMNRvzoR/5c4jA5+4rLyOspT8coq0llCDikNnJEf2tISIKmSxWdLsd9kZ9aqOYnZ3iK9h/7CkW0zFVVfHcj/44b3/z67z0xS+xt7PN4x/5EF7glByzo4dYY7ny1FNUZcFyMmH74ApZDSZbElFT6Zo4ltSVoNdPuLxVoc2KSaWJfUVdWQqNs9ME/DUfTUN3OHCdWsNLBfiyIl5UXO95iHzJnU9/gTD5eZ781T+P+Gd/zPnNMXlhsFY2umgX46pGKmguAJPFNjIvx2Qb23h6SOfVbYXjv1vAlk2M7MsW6MBId3y1caoPi6V1lQAXJbtElgPdi7VdRqy/1w333bzREMO24RnWUW7ztr3wsx1whLXNdL6hmS48w600cm2S1XQGcttsGVka0LbvAeR1lN4eiwvV13JHKy5QLOLCACAaWuTCebbjhLWb5s1rtYu1vHt0yq//439EPr3Hj/70DyGqKb29XR68/Qovvfgq79w64eh0xngyJ9aGLeWkmUlTGKWERNaaokrxJSgpCZUiBR5MSk6Ob+NLyc/88EfYv/44v/tbn+e1W7cxxvKIgg92FV1fEkrXSENYC0a7Ypn2IjWDo1NEGafEkRKNUx15gSToRWSzDNEU7AhnhIMIPbS2KN9irEeWW25OK56flax8H78ZUYV0DprWgJI1W0FA7MPSSk7PM/b0qfvuCEleuIShany/u8MOealZrAoIA07ujOl1Q46XFUp4BLamG/v4vqSoDLqyDHshq7zGSA/PGCJlCULYP9giSzPiOODhrOLoeEKcBESjPez5hKqs6MUdqFaEgcJ6rsRolRq0LJBeQJVmhL7P7aMlEZJBrFzTcN8lLwe9gExbKHNy5bOaZSgpmVcG040Y9LvsBQLqlEooOv2IRW5YlRppXYu+HMHhQY+t/f3vCpnvC+DO05RBEnDj2Sc4f3jE8csvM+r5JJ0ud966iS6WxGGMCUOy5ZKoNsxmEwI/4PpTT1GiObn/kMCTDPt9KqMRFq5cPsBoQbaYIvC48Ykf4+uf+le89JXneebDz/L4h56hLjT5YsHi5JTe1oDh4T4n9++TJCFRd0BZ5ngmhygk7nWJBh0WkxVWKlbnc6KOj5xKhr5HWVkWVbX29vBwmfZaW/ymArCGtZPgTFtezw3RLMezPle7PnY1450//GO8v/zLPPNXfoU3f+efc/zWOSI31Fpj68aZruFVJRuglAisaqJQLJ4U1LqlUNxKbSf1tWNgQyP40n2upTeQIIxLNK7pDtu67zUl6Y0PuFoTNaLF6KZydKOBNpY1+L6XpNhEuG7TG2tVa1uVy4ZWeY+17QVtNlyMkm1DTzVbb95vJ56biYBA6+YTouXPAWld4wljGw67ia7bgYmL0XWL1Zu/10ORhVdu3uOf/va/pEoXPPXsY9y9f8z27i7PffQ5ivQrvHv3IV5zH7XWCOPayu0NIgIPdrZ7zBYld4/npFozAZa1YaUlH336cX7gJ36E1167zR/8499julohgB0JH+4qRqGrUHXWp467bgc05blhu+1Y086YWhW7pySeDyoKyOcFom5mVo0ZlYoCtDEEsU9Z5KxOU+4tK755XnBqBbWFThyQ5YWjsZQDQSUEvhTkVjJflfR8QZVXSK3RwhB3QxLfJUy9KCDNK2Zpxc3TiixLSSKf83GJlootaeiHPr4Uzm5YSnqhpKpKjBUkvqTjuRqL0Xaf+bKA2nI0SVlkIH2F6fQ5PZnRsxVRqNB1hic9stqQ+LWzJchqgkCRzRcMk5AH4wwhffqJwmDoepLYh14nIDcgKkOcBNw7L9HGIgNFEXrsjnrseoJQGrTyCZXHdFEzTUt0XbPT9ZiVFbHnUS9XZJPxd8XM9wVwB1HIYx/9MOOj+5zfe8j+5X26gz6zszP8QLC9f5mjh2cEunK94eqSrb0Rvd0rLLMFs+Nzer2YpJ+Q5zVCKXYvXSLPc5aTMaNL1+hcfoQv/v7vcPf1t/jxX/gpdi5fYnpywuLsnCpbcfDINTw/4P5bbzM6uIwXB9RlhlQS6Yckox2C/jb33nwFZeDgygGB75G9cpPZbMUihVobFApfuYx9qVuKo03QuUjVtcVy8He3sshME+B47CtdD70Y8/bv/SHq1/4ST/27v4r63X/B0avHZJlxUixj8YRaR6i1af1NLGb9ahtJ4cCwxbjWQpaGo2yTUkCgmh6TVhDYTUcZRyNsQl4HqJtCH22Ni7ybAaRtaLDWTTfrO+wXTeLQNtaoDX8s3gvkpqFd2ki2BZR/rSDy4oyjpUva2UGDpO1A0To3mnWRjV3PAtqovDVHcgk0mhHFJZguAra7Thv7V9ZH36zT3m0Dr966z6///p/x7wU+j17u8aWXX+Z8vGR/b4fv+5jgnbcf8u79MavU4mnDVuhz5dFd+r2Ygxs3ePW1W1C5Ti+Xu4qPPPc4Jtwjja7w27/5B9y+c4ui1igr6Ev4WKK4EgsC4YqXkE79Lw34vmoGV3fcSjV5AdqiL+cj3bYb03kNld7IAwHhS4QvkbXB1DVlCcermm+cZbxTQ6085zGvDd0o4myVoahdsVfgcVpqrC4ZxD5SKAIsvjX0AkkkLEVZEndjlsuKrKiYrjShB/Fuh8UyY9BPGPoeoa1IAsWyNpSVYdiPHFeNx6jrEXoC4wz8OB6nBFZT1HA0KQgSn96wR5oWZMsVhyOfTiiJQp+q1iwy51g4nZYo5SMwqMDnaJ6SJBFdz8NWGYNOhK5rok6A8X3S8QptBdO54/YqJUilYLQzYCv08SjJSkMcKKqqIs01oqoYdiLmRYGoDb2dmMk4w1TfXRL4vgBuLwh58PY76HzF5cceZZUuOL5/hi81cX/A2XjJcGuErSsWy5zB7g5BknB+9ACdpXiej7YwPl3QH3bo7+0zPTtDKMXB408xnS/5o//3f0On2+XHfukXCJOE81vvcP7gId3RDo9+/MPkacb44QN2L+2wXE5RqSXqbRF3Y+KtPbSpefFz/5KDJ5/l2pMfo0rnVPo1Hrme8uChS5IGUrg2TLWibL6+Sm78PgQCvy3SwckFa2G5UxoCBEqWKCU4iDzK8Smv/+bvYf/yr3Dj538SxGc4evWYPANRNwlKY5syNtfVpmnv52BbbACllc/JdSUmrhigXaeJJAXWNS1owm4rLdYICi7E083660jTkaKuYKaJ3m3D7SPE2h/8Pd19mqWhp2H9vtjopr/tGWmjcNGAbHsNnQKk2cca0Df7WEfkF7RVmzuw+dF+yorN+ZlmJGoTpu0gZNYrX4TrZhvNIPTt23/33gP+X//w9/grf/Xf5cc/+hN03vwiL7z2Gg/PVkgh+djHnuRbbx8zG4955ANX+eFf/HGOH9zn+Tff5WyZ0enHPLq/TRSGTIqIr//ZN7n14A+YFTnCuIYeXQEfihSPJi6q9aSz9Q18ia0NvpJOwicExpjGDrcpc28pE+kGe89T6MLdISWdeklKgYoEtulTJz1BWRvOVjXPj3Nezg0rqQiMxUiL0JrSWgLfoyxruqFHjiCUkq3AIwoUAw8SBZ3Iw/csvi/wlOTsfEnS7fPOgwmLSvPsc1fxugO6p2P2EsUqLThPNVZIdO3UOEhLZS07/ZjBMOH44YQgCJgtUkadiKK2LHJDpxsivAi9WOHVmkcGCt8TLEtDjlmrphar0kn58pLdYciqrEi6XfZ7ofNSR5GVFd3YIy9r9LJmnNXosibwnSFWEfhsbfXZ7Qb0PMsitURKYa0kLzKEkMSBZJmtiKOATrfDyXhJx1cXajb+9eV9AdxllqGzGUlvwMnxMbPpksMrl8mylGy6RNY5+VJT1obLT97g7dfeJurESKsJ+n1WyxUUKYPhiO5wm+Nb7xLGCVc++hHu33ydL//Bp7l24yr7N65SZxmL+/dYLZdsX73B4RNPc//W25h0zv6VR1gtpgy3R4RRSI0k6m0xPT/DVjkf+ZlfICsNr33zeXZGPcJOHxGEdDsR252MQEj0oiStSyIpCCTOm0NAXbUY5zTZdQPsQWMIdafS+JlFWIPYitmPFNXkhLd+959h/52/wFN/9a/h//Pf497Xb1OkgrKpqmqB0UkA26IKuW5uK5uS+dY3pG2B67juxpLWClzsK0A20Zd2UkTbgDy4hCiikSUi1n0ynamVRIsmHWpASxelNxJhV/DR8g0t2LXJyBZYG8ATNDp2NiX3wLqYp2VA7AUEXxthremMdvBqi3DEGpjbgo915MmGZtn81RzJuj5evGcdK1pnwmZMuJCYbWcIFxXlAku6Svnv/vF/z+/97hY/92M/yLM/8qt8eH6P5fk9rj79QXRynzdf/hans5RvfuMlHv/Acxh9h+5wRLYqeO2tc84nKcfjGVlVr89ZIUkEfDCSPNVVBModm5TgBwpbN4OqdfMGKQBtEdJF376nsNr5E6gmOWF07QIP93ShlGh8EnyEtCglKGsYrzQvjgu+sawZW4hlQ59pWNUaqPF9H6UEq9IQ+pZh6Luq46aIKgkFezsJZZ5hsRRVyTTVHI3PSZRgOOwS9mJ6YYBJJFVZUdcahZvV9gJFbiFPDaHyXCLweIrWhmy1ZK8fM1tmlEYgowDlBYRVgQwlNlJ4gUQiOT5fsrMV4EvJapU6ukhZDvsRWmsu7XbRpcXkKcpTGANJICiMQBrLOK9YlU5AoLXluKjYHg3YjkNCXbPKa3qxa4xsACN8PFtjbM0w9BkMYs7OV/jWsiqq71nWLuz3QPX/pZYPXN2xv/df/g1O3r1HmVck20Nm5xOUr+gNeuR5Trfbo7t3wPHRQ6b37xKGEVHcYX4+wQrJY889iUVxdv8uw4OrbF25wlc++yec3bnHMx98mqgbUhfOA8HUJaODA4xUPLz5DgGC3StXqOocZQxBnKBlwOBgj8V0Tm/YozPaYXJ6xunNt9h75FG0qZgeP0QXBYuTI1576TbfeOOU+7OS1BgK7RzHioaL1Zp1pNhectVUNprm9VDCYz48Gwc8NQq51PGgBm97lyd+9Ve49ETMvT/+JPe+epPVoqYsa7SG2jjXNmvd7xbH67XwZK3jbJvcEkZA3QBpm0w01pUf6+b32lpy7aLtQhvytkQd9680G/DW1vmcWOEUBLV1XuW6QVhjm3O3FyWC7bVoQbx5GBokX4MsF0FZvCdyXgNyS1W0XLawm21wAei/w7PXxvGtJhtYNy1eH04bedvW6vbbqKPm/zbx3CYzL5gH0hZOiTXvbgmjmOFwyMBXhD74vkevE7Jaruh2YkBydjphsciYpyllrdGtjMa2ntbQkfBspPhAR9L1nRjBU5LAU6iGlvMau8XWv11KhWwicqwrV28LsMAlbVXTt1RJUJHvZjTGEHZ9aqM4Ps944XjFn80KbtcQKYUnXUSpoWlgbYl81yxECkEkLNuRx24nJBCWnm+5vBfRiXziQFFowfk0Y7aqGOeWxBd0D4dsDQdEVcl8laIL10BYKMVw0CVbZizymn7k0cpRy7rGU5CETo44W5ZY5SN9H98YPOlaxencNfJuFKT4gc9sWVBqjS88PAx+qAiDAE+4dn1CWfJlRT+SHK8yND6rvKYsDUXtrDBWwhKN+uz2ushsCXXFVi+hNsZpy/0AYRTT2RJlLVv9iKKowRgKrfH9kP/ij97m7fP02yefwPsk4pZKcfTuXRSWqNfl7MExfujjJX2mi4xeJ0KrDq++8Aq+slx9/AmsEEyPjtjd32a4PSLNS2ZnZxw+9UGEH/CNz3wKkRf8wI98HI1A1gVp5qodu1tbGCy3X/oGw/6I3sEVrKihzPCSIcoTRL0+dZHT7SbEwxHz44ek52dce/pZFosFxw8fkgSSuNMjvhby4P4Jg9Aji2pU7m6gsoIAJ79DQVW7yNZTcg1kG17WlZzfLAFRY8cGz+9wGHvU4yPe+u3fof4Lv8jln/4FwuGfcftzLzM7M676rQUs66gZjUUaN70FXLJQiKYlOZuGuM1LpgET0US+si3xFgLVdIuXxiK169dXWVewo9cgKkG45hEtSSAb6eM6thUArWTRLXZNRdj152i05tAWxlwA6iZBeZHpsK2aQzjAXmtK2ui3KcZ5Dyfy7UujYFnH2+tJQUszbRLCrSRcsLlvoj1HHB31HiXkelttnmFjJ5DnK06Pc04vzBYkm5LzNll6EfjbNmrCuk73fSn4YCR4squIlQNor0kAuk5HbXf2jb2tm3AYZ7srG2BuBxprnHugEE59olyC3QqLrlwz3Kq2nM8zXjpZ8tVZyW1t0RJKq1H4TYWsuyL9wCPVmkAqhqHPfsdH2JraaLY7in7oI6ygrjQVltxYloVhWhrmZcXB5X12t0ZU0wkPF5mb+QhFUdUc7PXQpevgHihHl6rm9idJTKk1VldUSIQXEAQeSSBYrWqEkOhaE4WuO9OyqIg6McfTjGDQxZc+Zp5iKFBCYEyF8SSVryAt2NlOyKsSLw8pK+P87aOQWMKq1GyN+vQGXYqsxBce2x1FpWu63Yh5ltPzQ+ZVTZ6W7I0i0mVO7EtSawmUIu51+F5B9fsCuIuipLezw8npOZN7D9jdGWGU5eT4mEuHO+RlzuTobbZ3trj85NM8vHeP8wf3uX79Ov3RFud371BbydWP/CBnD24xvvUmB1s95qlHjaKbBMwnOWG3QydSnI/nCF1x4/EnWCxTwiikO9ii7MRI5ePFHaqyIo4i/KTH8uwEP/C48tTTjI/uM753jyRMCMKITifk5N13SeKAp6710bcty9IQKVe4UmlYWWdAJMSG89bWPdxtBKtw4Fphebswrnv8WQ47CfudkGJ8ypu//Xvkkx/nyZ/5ReLRFm998kuc311Caai1RaiGq7TOvAnjEoebqLX58q+d9ja+Jg1O4SGabu8CrwVf6yQmVtnGu/vbolk20kBHFbgNtrr1jSRvjbZr8HOLWHPXzZ/N326Ni3w9bCLxi79bNjztOsK+sJ64EFG/Z7EXsPXCum0ytd1CIASVbRo4tKDebqJR27Sry2bAaQeiNaUi3jvDaOWY60NpjtGaC9Ww69u1OTdpXeJxV8GzseJaIomlG8CVVM48rLmpsrn+60EZsb6eUjadk6Sr6nX1Ng7JlRT4oUSEDiJ0qfE8iZGS83nJq8cZX51VvF66FllSOvsEIaDULlkdhYpKWzyp8LFsxR62sXrtBR5JHJFWNX5pGPZipDSwrLl9nkIS8eSzh/QCn9X5BF2WdDyQnsREEQMVUZcllDVJ32c5z7HCwzPa8eWBoEwNq9IiPUkn8elEglVaEkce6Ipu4mxYCw1Hc81injIcxdx47BEWJyuK2ZSdvS55rjFFyZ2y4vDgMnGUMV2lZPPS5WmMs8+1WEorCYZdRsMeVVUS+Yqhr7Ba04sC0tKSZwZrcxbLkq1+QpEVhIHHqtJIaSmEYjlefK9Q49/sDvi/xOIHPkcPTnn5qy8z2N7DHw6ZnUwZ9PpMs4r5dMmVS5cYHV7inVde5ujtt7hx4wZeFHDz9dfwOz2uf/BDHL/1IiKb84FP/CDdg0tcunYIuuT4+JQiL+j1uhzdPybwPXYP95C+z/bhIUEcUlaWcDACJVlOzlyHDeWRLmYEYYTfHTI+PmV2NqPTG9Lr96mNxxuv3AIhODzcpT+MCQKfbqjoeoK+L/CVy2o7a0zHb7cVZ67IZQMuLZVRWcvt0vCNRcnzxyvuLipEJ0TkC+5/+lO8+s+/Svz0j/LcX/+LXH56myTx8D3pnASF4yWdDScXXP1s83dbEOQiO1/Jptu8WLdCU02/Sdm8HkpLIiWRkITStUjzaKMbx5pLnN5b4ABpTQnQ/myhaJPkFLYFpW+jS77tkX1vAlCsaQzH7W9+X4ObbY+jmV00wKrWV+Li5trPueNrpXFr3vrCu20uoTntzdk13L5sfiKbSF02xyDa9V0TXiHc9ZLCNrSMuzeOXm6JF7t2aWyvgutM5KLsJ33B93cU12OIVav7bu5fExy098WNWgYlJV6jTZbCNVlQjUrJNr+HkcTzJcoXyEC6RgTWnYsWMM40L5zkfGFS8mphWRnn9igRdDwPayyVcaqJtCkaiwXshIJYaGoLsXLP3XTprFOjwKeoNXeOVpQiYInhcL/PpcNDpqdLxtMFmNo1WzDQSUJGvQ5FqQlCH+radfPRFZ3II0piiqIiUB7SDxgOOxzsdZksMjf7qEv6gwThKVdmnpaclRV0Q7Yv7eNHEXuPXGMwSFx/SQ8IPfq9EWFVkC4WFLmhFoJpVjPLa3aGEb1+gtcJCMOQxXJJICxDk1LnK5S0zEtDtshBSJbzkq1OQFVljoIpK3yrSQZ9qtpjt+O//0ve01XG8198gY/9yEfxAp/xrdv0t7a4f3LCcKvPo49fRyufu2/fIvQFH/y+j1GWFavzU64/+SRSedx59UWiuEN/NCDNKvp7l6myJcenr9Pv9jBI7rx1k72dESruYAjobyUsFyuUqhkcXuPs/l2WZ6fs3niceNChSlcEQYAUitX5GdPjh5ja0BuMqLKSO89/jaC/RdI9JDWwd+2QK2cpRVHiIzjPa5ZG0PUMKbopbnAl0bVt/EIAGtmdbqfewoH67UI7OsKCFh2ubwXILOPo858lX8x59i/9HE/9jQHRH/5L7r90zzmK1WtyAm2dmb42DhBa607RxHoCFwXKZvy20tDksBwVYlxSU8gWsBoaBYsyltQ6uZtpMLmtXGyIDqR1aheHcOu4c7NjYNNrbTOEtVQC2I3ypPnMxSh9s64LSy9G4e8ZCwTr5KRoZgKidcBrkqJrDvrCddmommm8Y1zpsr54/O+hSzaA3hYg2ZZvt/Y9Ubnbj10PDm014mYIaikk97dnBbGAXQmXfbgaOZ/oUDX9Q4VLIAYN9SGaknY32DQDiW3UJELiqQ3vLaTTbQe9AKSHLUtk6IFUmKpGICg1jDPDC8cZX5nkvF7Cwjb3WTj/b2Fl04gXZrWm53nUFrYUJL5Ca8sg9uh4HsYa4lCwP/TpRZZFVvPuScHkqKQ/7LLf63D87kOydMXeqEciKhalxvMllbEslylxHJAWGiUsW50QYQ1hrJguVmjpgRR0kghRVxwfp9S1IjOaXhIxTwt0ZQmBJPHY8kO6B3vkpeWdl97g0b0haVXT9QSVHxCJkp6qOD8v8DBgJON5Ronl8qVd6qIkswWD3oBVVeMJn06ZEsYBhoBCehydpGz3QtJFSi/2qbV2ro7ChRRSGrJVycgDXayaQrrvvLwvgFvXNXuXdrj7zm2Ggz7JVpfpbMKjl3cYHlyiRjA5OebS1X0GOzvcffMmvX6XK089TV3VzMbnjPb2KbVmtczobu1x79372Lpi/5EnefuV19DzCc986APgCXRtCZOYsjR0eh28aMCDN1/Hlkvi3hAVBpTzGUEcU+maokg5e3gfzxi6/R7FaoUwhsc/9EHC/jbRcERw9gBT5hzudqkrzf15zXyc4i8KrAKhJTmWrLZUbWJJNFrp74BhAqc3vlNZqlVJcSywss+zjx8iphNm3/oK3xpPefIv/TyP/a/+Mp29T3P7C68zO8soS+cs2FZsth4lG3g069fW/ShpS+cb6uRi4wYLCqchDxtLQNFU/gjaCkux/rsFibYUfgOpzdLyz6zj7zUQSrFBXOuCV7dGE7XaC1H6Buq4gPtNopFNSfp6UBE0VAFr0LbNDORif89WeigbLrlNurb8slwD8uYTbVTfHk8bmbf7tu5yuZ9r4L64z3Zos2tqROEqDmPhfLZ3FRwGgu3A2bwGchNpt6IPKZvBtlEJNYWhF+Y+zbpNZtwTrmNNMIiwKEyVM3zmgGKuyU+nSGHJC8M4rXnxNOUrk5I3Kte+bj1oNfe/tBBaV9sbNU6SXU9RGydf7foSaQ1BFOALwyCB7YGPkoL75yWpJ4mDgCuDLirLmZ/N6XR8wlCibUidZly+MmJZ+VibIsqCKPEIlaAoNUZXdOMIWRi0FUjlkRU5wndWyl5sMF6AqQ1hGLKqK8q6ZqUNg9EQTwk6uqLf8VjNlnR8ySzXmMWcw90us3mG1IYSQV1XDLo+vdGARVpS1yU7e7tM8xrjJ6j5FN0RpHlF7YecHk3pxRGrNGN3K2CRQ7XIMZ5E64JuJ2K+Kjnc9cisoli4hPF3W94XwK18j24vYHs0YFVphBA89eyTBHGHNC8pshWXrj+K8n1e/cbz7OzucfDY41RVwWoxI+x0qcucbLogLzV333qbTicm6Az56h9/hsPtAY9+9FkqJMoLSDo+xgi8OKQuCqZ3b9IJJZNFSS5KtmyF3x9xev8BcadDnc7pBgptfErTGOVUBVGvh/UV9998nfnJCV4+JYhjZjLjldMZVeXkVaGS5EZTNB4avnBUQt249a3NkNjEpZsvteWuNqTLnPJIEV97gp/8tb/I0Sd/h8nNN3jpv51w4xd+lms/9St0Lh9y84++xNm7c7K0AgOVMM1o3lAGTedc3fA3bcS5Tus1kauWjaWrdaXQQsh1dCYAsZFg0Oq0ZbuNNuRtQmfxnoFjU/C+Se6172yiZ3sxIm+UOZuY/AIvTBO02lamaDfctuU9uux1yG02LoYbkqTdphshWlw2zS+GFrTFOvHalr6LCwfTRrgSx0W3220LoVyHJLv2Ptnsf3PfFe6L2RGCjoS+lGwp2PZhFHjEnlnz2Eo4A6lAuWm/bbwNWgZorWSxDT0mXMLRNgoT4bknrlwUqFjyxF//WcIbH+fN/+G3wI7JSs3p0vDC6YqvzUteryxp4yCpGuqm7U1K0zoukoJASbpKECrohx6J71rX1drgFyUHA59uIJgtcrIC7i0KOqMuh2FA4knun85YFRWdYcyq0nT7Ef0o5vgsIwihKAyJUvQSn7rIsFI5q+d5TVFDNwmojaHXi9jpRUwnS4yBsrZIJFUpSLOSEsNga4CRoLIVW8KQZisAqiBmlWV0PMnpOEXhKpFLXRIGHr1un7QylEXOaLTNKivQYYdumtGJLLqoKaUknc+4dm2Ls/GS3U7sQo46c4ZtAnwlWa0KRgMfEXgUZxn9fkxVffc2Bu8P4BaCw6uXmS1W9LpdLl25RO0FLFcLbFFwcPUa89mc+y+9xLUb1xleuspkfEo1nyCET55pPFVRVjllXrC/P6QqDUdvv8KzT16jf3DIqqwZbg9dlGucFGg+ntDrhvS3+njxgFHcJd46pNKGF//0CxwcHiLrnDiWeNtbzM7G1FmFFwWE3RFGKmyZE4mM3n4HqfqcvHyb2WTJoS+wvmKcWca5WWumUQ7ktNlUAaoWJFqSYc2tNl9wKzg18OXFivTLLyLDLodBB687p54e8dZv/zbL4x/nqV/8YZ7du8StT/4x956/Q74yUDuJn9bORF7IpgS+8SxpzfDXQ0UrB2t02a6Rg4tuvXadtUm3QAiD0HZtEKXXU/6GqxWbqMGu/xfr6LNF2DZpKmidD9t9sL4Wa1Ki4aDfC5j2glqljXrbgp71Sptw9+LnafdxcXtNdE/LF19YT1wYnJpzbM9HNjdVwroISTTn+O2DcgvW7evKPR4EAkIEibB0lWTLs4x8QUdJIs9F2V7DnyspCDyFRKAr7XTXTRFNuxcpnU5Z2pZbdw0XgkAhPIloImItPBbjgKOX/oT66B6lsTxY1HzraMXzS81blWXRzFJUQ1tJ2VIlze0yrjlG1wNpNXtxgFQCpMWz0A09Lm0pblztcu/hgrfuLimB0aURVzshoqx45+6YbuLT64Roz2Nrf8hge5f5ZInRU1bLGZ3AJ/QleWGIPEVeVZgahJR0ogBb12gh8CvNapWDDKiqkjLPEcrDp8bzFUHSwZeWqqrZjqAunZ3rrLSIPGM7CciyGoWgKGs8z3m5+EnAsrAslyu2hh2yuiD3OwTLlJ7IiUKw3YRq5hoLr5Ypg9DD6pqiLAj9gFVZ05XOAz30JVIJjk4WdJOI6aJovpffeXlfALfn+2RZxqjfY7i/T1pVyCpFCcX2Y0+wGJ9QTCc88dyH8OKAxfiUTieg6nZYpgWegnyZoSRcunKZfLWkLhc89oEPQBBS6ZpeN6YqMvA9Z04kJZcu75MuU05OxvQGkmRrh7MH93h46xaDQQ9P5iSdPjJIWE7H2LIi9sCqEC/wqcsMz9ZEQQjxFtb3GQ6P+b4nRszHK169v+SkqPGkdVIt4eQ+eX0BtHHaX9OEjhfBpL1tbUXgXMO3FgvyT3+ODw0CbowiDnoRIs14+LlPsXjwkKd++Wd58q/9dfrXP8O7f/Iik6OUqrTUGGoNtWh46gtJqdZNUNiWDgApGyRSAmkl2jThazOoGGnwTaNtbgYDZ0zVRrESazUbl0Jojazek2xcR6Vt+XiLqGITwbLhoVuQFxdWXRtTtVvZsC2Nw+CmZL29wBdg98J+WMv9WpZ5kyC0a28YRz80WmfRRLLWqXEqy1rO6ECTNWUh20gc1o2g3aAg1tRZAITSEgsYKBj5ko6C0HMtybwm8amEdL4fnqts1FVTMKNcUlpau6ZNpHVAv57EYPF8id+L0EWJChVUhjqruPsHf0AQSPLScG9R87WHK55f1tyqLIVlbd8gm3sMBqUEtRCMPA8fGIZu7rU37GCqilxbfCT92GO37xN7gnsPltw/ztBKsrW3Td8a6tmS81lOV0FW1fQHXfYOezzy2KMYoZiNJ6RpTigFnVC6Rr15QScJKYRHJ/SohSJWrj9kF4OpSqIg5Oh84RKjYUBeWlAWG4TUtSUVgl3fUtbGyRKtR52u2NuKybKCOHSgLxXOA1kb5pnFmpzRdo9pWmJ6PZJKM/ArbFkSdLvMphXb3YBZXtMNPLxOwumDKaIyyMglaZWSZIUmjizjSQkC5lWKQOC9390BrdbsbPXwki7z8SlKefRHWxAkjI+PQFu2rz1KnqZk04y40yEvSvJlAUKTTWf0hgOE9BpTG8HO1asslxlhGBBFIVWRE4Qx1mrqqmZrd0hWlJwfPWTv4DIyClnNJhzdv8fO/h5x7HPpCddM4fT2LdAZ24eXWU4mnNy8zc7OkG4vgcAjGu6wmC9YjQv6u3uIusKPJoTnGb1UEIc+S2WYl4ZVVTm9rrRrO9YGL98DElK5KXXpsKqpYIMUeCkvyOqCeVoy3Up4bDciMDWL157nxZNjHvn5n+PGj/07DJ94nFuf/BMevPSAbOnsrVwHmbaQxAGaEM7gSAqB1xTlOGrA4CnlSuvXfb8aPEc0fh5uBlE6rVsDDg0YN+f1XjlqQ4W0934NvqKhVZp1WI8R6+1tul62YMs6im5nK+3nbBOFt1zJxUTPWmYIbIhwNtSF3UTsThXS6swb+aRsB13n/ujjQNXiJIN5M5ToNVdtG/rE8dbtOSohUNZRUp503tsdIRh6goGSRApiBZFy7n6ekjSTNnwlnELEWDCuzbMUzWzNGCcNxeIpr6HD3N++EHihIuxH6KLCCxQi9BCyQvoWoyGtNXcWmi/fX/F8qrlTO41++4x6tqkLUNZpvnH3LdOaYRJRmJpR6JOVFcZalrUlUYbd3YDD/Q6v3xyjPJ8zXXPp6h5JbfCrnJPpijAM6G3FlLml2++we+0p7t5/yA/+7E9jhI+tXkLVNXVe4hlFaQSL3NAdbGN1jW8MWVk1z5wh6UQcT1bUxoBUaOWxyDMqUyFEzWCYsKMkaZbRTQJyYyjKmsevDciWBV4UU5saP/TRaY4RilL5eEKQBAGLoiINEvxpRscv6fY8gp1tjs4W9IKAeVHSDwUq8phO5sSJjza+m2UryyKv2emFCCXwdIHwBYusIlTfW/D3bwRuIUQEfB4Im/V/y1r7fxJC/F3gPwZOm1X/D9baP2w+818A/xGOwv3fWWv/6Hvtww99VLfH8nxMb2vI1uWrnB+fYqsVSSeh0gZja3SVI5RE6xJRVyxnK4JQsn/tCkL5TM/OGQz7+GHEfHzGYNCjqip0VSGUoq4rdF3TGY7I6wprDaODK5TaIrRgPl9wcOkS29sDhB/w4J23OblzB19KLt24gpVw/vAOw+6IXjdAdWKi7QPKImcrDknmSypdsLs3Yjz+IsM4QPRhkdfoZckM7aR3Cmzj3HexcLCZWaOUe90AwYUYvI0sCwtv1DBblcy1JS0113ZCdro+ZnrMzd/6Tc5e/TAf+Mu/zAf+14+x9elPcvMzLzE9XSEr56ft/K0l6/IX6bwRWg67DU+N1lyAvPU037n0NYk664pyKsQ62WrXRS3QtphpGyy0mxfte5vNb6JmxHoQa6/OGrYb6UZ7nO3UvR00WkZkXXHZvGrWXPl74vP2ZNfyxPY+rKV8DfCvZX3Ne76FUEAoBF7DH2Nd67cSl8OobDvkNUDdFCsp6wDdExAKS1cJep6gI6DjOXWI39gmeKKJyq3bR+ArfF8iNI2fhTOGkraJtEXTFBqxTlRa6/Ta0TBCBj5VWrhuN1K6yi/raK5lZXljXPK1k4yXi5r7tV3fNzdraK6oAKmcvXDiSaSwRFKyKCuGnqNwjHFP7CCUjAJBtxfxzr0pGsFJWXN4aZctoymritNZiRKSZHebWw8nDHs+J4Xlzpfe4s7d25zPcn7+F38Kaw2Le+9ST6bosiSJYkpdERRLok6POs9c+7UiJ9lKuPlgQVHVbHcTTlclRw9neJGgO+gT+z49WZGlOd1AoHVNpTXDQYeyqAiTkMksI5CCVV5RV5YkknihT4JHWRd4vS6dVcUosiShTzgIuX1/xm7kURiDbzT9rRF3HkwYxDFCWMrS9b9cFZKOJwh917Cku5VwllmCUNHxzf9sr5IC+Clr7VII4QN/JoT4ZPPef22t/X9cXFkI8QHgrwLPApeATwkhnvxeDYPr2jA/GzMc9OjuXeXeuw8ZHRwQd32yVUqoFKLKiXsdsJKssNx5+008LXn02SfJM8tsfI/dK1cI4g6L6Tn9vT2W8ylhFBFEMWWeki9WyLBLYRWq1ggEi9mCoNtjfPs2tsjobg1YTpeURUo+PWN3GBMOd9AqRqcztnf2ieMAGXUwQZe6rgmTLtXK0N3ZYzab8fw3XyKII65f6vHw4ZKsNARKMPAU2lrS2pI2XRBc+TFrS1VLWx7vuEwETf/HZsptnRytBh4YWGUVK6NZlBU3tiMuDUKCqmD2wlf52r0H3Pilv8iNX/z32frAN7n9h5/mwUv3WCxqKtcH7D2qkoYEWcsDkU7uJ+2GUqkb3bHLyklKLJmB3GzkjNhNabzB8dGmoWVad8B1MEzjR2IbSsVeiHDX+rmLzxfvea2V3znvkPbNC47fYn1IDqytvUBzr0cWdw2Eo0MuDqKIpplE86KyDrw8K/AE+MJVxwZCXtBsu/3XDfeicc1iHfPkeGZfWkIpiIRrvBEqQaQEYRNNhxIH7NKBopICX3n4niD0feqqxmjnWS2Eq5YUgvVP2exbCoGSCuXB6JmrGGJWt991yWacf7UxltLAJDe8epryrVnF66XhpL4wi2GTImjvo9XOqyMSjutWAg47ActKMy41kZT0fMt+J6CqNA+OFoSxz5muuLE/oufVnE8K0kyTCM1gt8PUSCaLHK8XUy1r3rl7i1BZTu/f5/TohNXZHJOX5HVNnhXI3BlTJbsxQS+GOGB8PGZrkHA+XWHqmm6gSIuCO+cLuknI1euHeDIkXM4oyhpTVsg4YjZb0ev2WE5XeIOA80lG7Dv5rmcsUexT+x4D6YGtqQZbhEXJVuSsjXvDDueTnMNhQl6UUJVcvrrNvQdzQgR+IEmzAqE85qsUKRRCWeapYTAMuDtJ0UZxEEkqo/keuP1v1SzYAsvmT7/59z02ya8A/z9rbQHcEkK8DfwA8KXvvg9DsrWLP+hx+uA+ncE2QbdDaQxh0sVUUGrN9PiIh7fuMJ/P2NkfceWxG+g8RWB59KMfxQiFtbB3cJ26XFFXHrU2FMucyBN0RjtURmN0SVlWLLKM3mCLo1s3kemcyzeuUZUluljiGc3hU89ilc/4+JiuXeBbzfDKZYqipJI+nU6C8pzjWtwfUNUaky+JdM721Wtce2Sf5JXbHM9u0w0lQrhelLmp8a3TdAvrfEO0bUGpiQfFBdmaaGkDpyVuOQR3YwQv5IaFyVlWNZNVxfWdHsPIUJ/d4Y1/8t8xfuOHefwXf5hn/jfPcvCtP+XtP/g8Z29PyEvtEovWUlsBxrmtuYFCIK1x/t1i4+7nAMEVrlfaUhgH3FVDu0AL2JvmBhfw/AIAtAqUDeUhmmsgWl12u0Lz4XXS9kI9ucN2e6EG8du56s0i1+x6C9sXKkBFu0UXdrfxvZSNLJBWUeKqS70GsH1r8aXEF6yLavymV6Npuva0EX6bsBQ4l8hACAJl8ZBOj40lVNI1TRBt5Ozc9SJfoTwFxlKVFVizfkak5UKnJZrPNYlDKQg7inh/yPI0o56fIK1G+u6ilqWlUh73FxXPH2e8kVa8WlrmzXPYqmFcx0U3oxKSdZMOH1y/R12zHXiUdU3dBCHSM+z3AvYGIZNpyqAf86DSPLo/omsrJqc5x9PMmVDFktMlVHbOzl6HYTfhztEKXRZ0+wGXd/o8fOsmYb3CUCLCDjGWOq2IPMVkPGU7SihmCzqdiLOjFdmqIPJ90srwYJoy2u6xeziitgo5Oae0Bqlrev2YIqs43B5wNlmQdCJuPlzQizxWmaarJChF5gliodC2ZKki+mXJ0K9ZLHMOr464f5rS8yHsRCxnKZevjTiZ5ATKgueTLTIK4VGWZaMsc0ZfSSSYpDWx5zNIPIw2VLnP98hN/ttx3EIIBXwDeBz4b6y1XxFC/ALwvxVC/E3g68D/3lo7AS4DX77w8XvNa991UZ5PZSW333yHOIoxymd8/hBb1JRZzunxmG4gUdJSFRk3blymM9qmqg3JwSHbjz/H2f076CJjsZhTFne4+cabnJ6M2dse8n0/8BGMH4H08GSN0YbxcoZUEbdffZHQwuH16wjPw0MTBjF1ZcmXS86Pj4mjBD+KCPtDChkhk4BIeZh0jggigt42dV2TL6YIJE9/6AOURlFj2blW88ws5/bdMTdPUzSWjpIkyiUp0ybq3Uzz7SZqs2YNL6aReGnpChDaqkUDWN/jljbMspppZVnlhsNhxOW+T6RzTr74KcavvsyVn/p5nvjFX+bjz36MB5/6A25+9kXmxxlVbaHWWCUxxq5lbG11Xd0O/bY5JutK9ksrSLXj4Stas6k2erZrwHcMhdtmKwt8j+YZ1hr2dXk2F6PXCwMYFwkbuxkEGspA4KRu9gJFuJH2sebohXCzHCHaIpf1yHmBlGnpAbcfJYST4AGBhUBaAgSBsA2d0baqM+7+qHaetInilXBfulC6yHo07JHPVigJnpR4wjSabFfZGoUeWwc9TCVYnC2cn7pwqUFPSWQzXG4AWzTJZ/d5L5R4cUR6unLdb1TT+FlY/H4HMdrh1Vfu8o37K17LNe9WhuyCnNBdAwfi2rrzxILvQYQg9hyvvxMEGGswVtD3JXHoE3uSSlvm84xeEnB7kbMz6BHrgsUyp9Dw1H6H01KjhE8USeSwy3a3x+n9MSeTKYNY8TOfuM6jzzzBrTceUq6WdLa2WeUrFBLjCx6MM/a3QjCGzlaf8+NzZF3jS5/CQFpVHOz18bb6mFygVjMMBVEUoIQPVcVoEJAXJd1uzLww7HQDjO9RTxeoqMOyqEn8CM8TTERMVGhGvYKsgL29DuNVRSwNYSdhcj5ne7fL0TjFFpowVCyXGhkG5MucYTcEAatVyajnk2MRpWHUCahtxbzUpCXrWorvtPxbAXdDc3xECDEEflcI8Rzw/wH+K3cb+a+Avw/8h/xrcU7zDfu2RQjxt4G/DbDXj3n4xitcf/waqjPECxUmNczSh5ydnDDodACL7wdcunEVpTyCTkI0GNHZu8LX/uUfkC3nVHXBweVDTu7f4eTuCbu7fS4d7lKUGdMHD4jjhChJWM2n1GVJlU+4vL9DbziiMk7qo/yIPK/IqgLPaLa6IXEnxEsS8gqiXohSznDUCwKq0nJ+dETciUBXDHa2yVcLjm7exfMDrK453O8wmSzwz2En8alqQ167jjaBAOtBUV8wZrKsp/pSuuSlRFA2jYJbwI6aikbXVNRyH5jUmqnOmZQ101XAtVHCKLHY+QNu/sav8+Dr3+Dpv/yrXP6Vv83ux7/JvU99nne/8gbT8xSjHcBoLKr5utq67TvZEMDWUmEpDKy0m2K3xSmWTbQNAm3F2vmwdaZrHwSnKNyAdPNMOG/oC4+QaJ6epl8L0Pa7bLbTbNvRPbZ52DbKkrWO+0Jkvy6ecdU9DQ/cRPK25XFbasPZpjr6QTQJRkMgHbcdCNexRsk26m2b8DYNlK37krVGTmsDKFzLOIqiqX60eLLRWUtntRrFHp1elzKzZOO5S3BKNy0XQqCac5LCFdS06hQpXBWl9FzOokoL8ARex8MWrp9j78Yhs2TE5//sFq88mPJGbjiqNVUziG2qUTeDpC/dBTXSzTr6gcfKQlcIvKYpaOwposDNf64OQyazlGQQcG9V8chWh63QoCvBLDeEQpAHkmEQOpXLoEfgeZiq5IX7J8gAPvHcIQdXLzNPA4pVSrfTQUlLtxuSLkrypQFtWC5zuumMwZMf4OxkgpWKZZaxMNDpxXR7HWbTnJ3QUAeGSCqsMXjCMBg6LjuKEsZpCbUhrS1K1+zu9pgsSuIkIvQF8xrKtOCgZ8lyQxz7TDMNec7WMGE8XdHrx6zKGpPmDLa7jM8zaqupS8HOThfwmJxP6AQSLQR1WdOPPZKeZLIMGC+W2Nriqe8EpW75n6QqsdZOhRCfA37+IrcthPiHwL9o/rwHXL3wsSvAg++wrX8A/AOAx/f79oM/+AnSvKaqSgJpqGqDn/TZv+qzmM4oMs2V6wfUlUYoQXd7F6MiXv3iZ6GyeJ7iqY98PyYd88pXj4i6Ha498RhPPPMMy8k5W72EstbUZQrWYIuMR558HM/zWEwmdJIAL4jcOlYTKIO0MLz+OKuiYrFc0em45IKpLWG/z2o+o8hLrPKo5jO6O7uUVYHwArYGXfKi4NqTTzA77XI6ybm2MhxPVkyyiqqGni8xlabQFr9pIVPVTYcY20TVVuB7klw7OJTWyb8C5XC0Mq4PpQsYJXMs36w0R8bydG1Y5DVXtiIujSLiUFPefoFv/v23uPP9n+DpX/7zPP4ff5hLP/UCd/74U9z68lvMJ6UbGKx1EsCGrmm+x4BrxZaaFrRZJ69a0NaiNdFiHeG2Usc1QLKhPi5Q0c06dg2y7est9SEtjdHVhfXFBb7abqL01nPkYil+O4is+XPbbscNPutqQ1j7tbSRvqMkLIEQhLhsvS8cndLap65tVK3ARwgp+k4AAEy7SURBVDg1iHAqMl80uuumn2ToKzwp6G9vU6RzfC+gLkqnPKgM1Ib58bzxQHHRvvOTcY2bJe1A4QbwdvBQClQgQAm8MKAuKgRQFzV1XWN6HW7dr/j6q9/kzazgZq5Z6FZhdIHXbichuCR0jQOMSMGW71NJWGqNsI7q2Y48kJJlYTBWY3RANwl447zi6f0el3qSs2XN8TjHaPC6PmE8dMUonQ5hpVkUmi+9c4xQHh846PDI9cvMxkuW0wfUqxWFF3Dl6afJi4qbb7zFaDemns9YLQvGJzO6hyuS0QGnRxPmGrr9mN1ehDY113c8KgORthhdYoqaTi8iKw1KKu6Pl9SVoTIQeoad7S5lZQn8AGkNqVHUBvZ6zrxt1I9Y1gZlDGEn4uQ8pRP7pKWlWBYMBiHnk5y61mRCEnoBWaVYTqd0fIEIFKu8JlSCnb0uk2XFYr7CaIsva8T/HOAWQuwCVQPaMfAzwP9NCHForX3YrPaXgJeb338f+B+FEP9PXHLyCeCr32sfYRRz/52bzCZTrj12nUVWU5XuIctWOVIorjxywHQ8I4oCutt7PLx9i8nplNLWLFcpT37ww7z78is8fO1FHnv8MfaefIb+7j7jBw/IFyuE76OiiHy1RJia6889R12XLI7v0+kkTjJoJUqU2CLFtwavO2A5m3J+es5gtEe+WBCEu4SDHbJ0gVUR08mYniwZPP4YVipsnlLnBWEU093Z4+7RnOk449KlHbLpiqJ07Yh6YcC70xRhLV2lyK2h1C7a8ZokWYsqVW3XCglPCmLf8ae6tmv3vyZOAmupheBubVnomrE2zLXmfFVxebvDqBMS1gWTr36WL7/8Ivs/+KM88Us/yzP/6Q9y7ee+xK1/8a+41fh9F8asE47tdLkGCgyldbYoGtae3DWusMjpujfx73siaNkkEYWFdf0iLgm4Xrut2mw+QxNFN6R5awS1Vn6sEd5JFDe+JGLjFSJYZ+nbPbfYLTajkmv11YC8FI2XDC1VAh52HWn7wvUSFaIxeGqohKCJrkUTpfpiUzDjS+EidAF+U3dZrFJ0baAqUBjKVTsQu4FC0Tj4iXZWYJpZgFgX4Sgp8APl7oZS+AMfqyV17p632jhf9amRvPH2hDemR9wsLQ9KQ92crxYtsdNeo81MRQrpshYCEimQwtF4PSmJpXBulkpiLAx9wSgK2Nvp89qDCR1fga25dVSRppVTBSUB8cAVrnTDiKioOJos+NM7E3q9hEsdn6eubhMFCd4gYrVIqaqCUXfI6cmYqBOw+8gNjt98iyKrCYQgUZLjt29RiphZqTk8GLLdCZgtV8SexAqXI9BVQSgFySihzEvQlqo2VGXNJK0Z9Z0/+GSZEyqJEpLUQuyF7AWarKzpJz7TCqq0ZmsrZjbJ6MYeBYYHD8Zc2etydFYwjAUPyxoRxRghKBcrup4lDH2mq4JYCrYPusyWFfPzBaY0KCy7jcHVd1v+jY0UhBAfAn6dproV+A1r7f9ZCPFPgI809/g28J+0QC6E+D/iaJMa+M+stZ/8DpteL09d2rL/6O/8LPvXH2E+m2Nqw2o2oaotoRIgFJiKbjdGRR2yLCMMBZ4Xk85n7Fx7hHR6yuJszNUPPIduqqSy6RzPh0ILVBBSLJcMeh06O3ukizl1ntFLfDCGrAI/8tFFTqAMyACiGFMW5IsVZWXZvbJDZRR10CNdFrz7tc/z+BNXGR3eYJ4LwsRDZ2eIqgAZ8uDOXe7fukV/MISq4K03brGYV5xNct49d5F3Vhvmdc3cQlVZZ2bUTIURjbmRwAG0dOoDqx2QmbXB08aMaV09aBubVSzbSvBU6HE19Bh1fK6MEgaegaLGaIno7XP5R3+Sx/7CTzM4VMyf/yy3PvlZbn3rFrNpQVE5xVhunCY3FYJUO116pqG0lhIorEtSVkKgTQOUTZR+UUp3MZpuQfpibNEWeCgp3XsNkrTl52tJYgPyLf8smh4/0DotirX3iUFgLihPbLsdF4JDA7wbCeCGL1FNEtlrqI5IOJleIFxiUmLxhEAJ00j4ZDMAi/V7vpRIYdxrLe0inIGXbAcwcZHqAGFaqwLrHBuFG81UU40qcdSS70t8X+IFHro2zhbWd1F9ZTSVEWRGcHte8do442ahuV1ZlrW7ElbwHp32RUhoJ0WedYZWkfKotGYQePjCshcHzGrDIPQxpuZKN+BKz8N6ikVeEvk+89wSYyhrjRWW7VGX3FgGWwmHWz30YskyTfnUzRnSDznoKH7gyV26nZggjhlnFYEuOHxkl7C7xWtv3SUEIusKls5PTumEHr6U3JumyKTD3s4WHb0kr2pqK7BaEwU+Wgh0VjLoBBRF5kA5r7DGcmepMUXFfj9ES4WwltgXzPIKL+6wFxm01Qw6PqfLijrXbA0SJrPUOf1pw3xZ0IkDJsuSUeyxMjWTOiBAOctZagbDgGlRoSs43ArwYo/5qmI5zalqCAKP1MLf/ewd7szy7xh2v2864Pzu3/sPOHlw5h4+XbGczzg42GZydE4URgx3tzHCkhUVcZIg0GTzFYO9A4xOqZYZyXDEcr5gtcgJPAjiiLyqWeYVvX6Xvf1tsumEylhEVZD0B3hxiK4N5WqF7ym01gSDIaaqXFcQYTC6JtneR0YJ9x6uuPXOQ3r5fZ7+8JN4cYxJl7z5+T/Del32nnyaaNQnm52C1ljruOzJZEo+HjM9OeOtW2fcP14xzy1Hy5yjoqbAoDUUtbsfbaJPONIXaw2R52G1WZtDCSkaM0An0att01ke4RJFuCYOFkiE4LKSPBYqDkOPy6OEUaLo+kBRIQiwyR6HP/ZTPP6LP8ZgVzF/5c+4+Uef5ubX3mEyKcmRnCxKxrWhsoJSSNLKkGkH3Lm1lFg0bVKyfbY2lAPYJlIWiAuzBRc5N+vScME0/HGD8maDpRcguo2H22GrAeaGOoKNuqWh1V1UvikjdD9a/bNwYKZoo03h+OfmeELpim0iaR2/jVNuODrERdZek8AUuJmK3/DWAveekxw2xTxiU1Lv+j2Khhbhgj2tXUf1QjbvA8pzvSGlL0BIvNB1gDFljbEuqZxqOMk1b57nvLOquF3DkTbU1nW80c0cpxKsTbXaqyrXd8TNMDqBJKsNXU8x9D0GgSTXlhWGoSd5bBByYzvgPK9JlxW+pyDwKLOaWAqEAhkH9BPF6PI2eQ5DXWCqin/19impCNkJLD/y7B7bO9uURe0aca8ynvvwNW586OO88/a7zO4fkZiMIisp8gopDFmmQQhWRc3e3oDtvR1m5+fovKQwBlNpkk7MapWzM+iwSlcIXboovNKu9Zn1CYRlXJYkUURXGYrakAufvUA5F9FeRA7Mz9Oma01FIKD2PaYnC7qxzzKv6SUBla94cLJg0E0o8orIk+wNfOaVoSwMO4nHYCdhMlmitaUoDcJaRtt93j1b8V9++l3e/S7A/b6onJRKcXrnFnUlyVeCuBvy6NNPcXrnDn4QMjzYxfN8JuMxURIjPYWwkr1HrrCcp/hS0d/bwyqfsK5A51gvIqssVVaQBB67B3vUVcVivkDVOaPL1xBJh3SZUS7nJKHntMZSUqdOYhj0BsSjHbzekAd3z3jpT77A6Vtv8EM/+UNcvvFxx+cWFdoIHv2BD0G54o1vfYOV6PLcJz6EoqbWmtnJCSYt6O/sUyF4RHr48owXb02wQuIrgW8UBQY8Z4TTcsZY05RDK0xDHFucURDWAYwRLcg33DJ2zTW3FMrSWt6qNcfacr3STGrDQeRzsNvhcDTAq0o8e8q9P/gfuPMnf8zlH/0pHv2ZH+JD/9kP8fjtF3j3M5/jja+8yfLmmPnSUmhDaa2TfuEq69aOfN8Wsa210U3BjlNptIkvsaE+aCrzROvX4fhkv8FlbcS6l2ZbRt9a1TZ7A1wbNZrotAX5tps8zfGsfbCaKLxtfNB6diuc+x7COnAWrhl0JMQavJUEvxlYnebaKUNaSsWy4aJbWmcD1KLRh7vr4EmXuxDO2rAppKFxcaRJWkqnl/Zc6bsKfJACFQaYuqYuHA1R1k6iOSk0N2clNxcV9yrDu9oyM+5aqPVVc6X6bf6ipbh94QqmpHS0TkcJcm0IBHQVDALh6gkE7AQeh7Hiif2YmYY8yxl1XBXiZFm6JByGKInoeJZk1MNTAYlNuXuWcnuSMssNj2zB933oGr1+h0UGd2+dIJXh4NF9yqDPw4dzTFoRVhlCQVHWJKHCSI9F5kygPF+hEVR1znBnh+N79ylWBdILmC9XbPdj8jp3s1QVki5yN6P1A/qRYlVpAt+nH0imuUZbweVhgNIVSexTeR6z4yndbpfzyZJOqCiUYDXPCTxJVtQE0mACj4dHCy7vdFisCrDON32yKliUloGC/jBhOsvQtQsy/MhnEEkKAZGn8NR3x8z3BXDXVUkQJRTlkq3DS2zt73H7hRfIzqY8+v2fYPDUcxx/9TP0tgaAJO71yQs4O50SRD7J3j7Sk+TTKWCohEeZl2SLFYknkPjM50umd94h1BmVVRTWh+kEZWqGvQAjJKWG7mAIdY4VkmT/Omb7KV790h/yp7/5T7n2yFV++a/8IuFg5NonTc+oUlexVTEkqwOufvApTO06gBjpYYqcbq9D1O+SphmcSYySbO102RunZLXGlx4Yy0QKykpDY4wkcBGdbaIh23y51uQsDpo0rduH+0KuO6ZfeF1Yl7iaW8tLpeVeVfBooXmk0mQi4MYzT/HRv/mfMP78b/DWJz/Lrd/7J7zzqT9i/2M/yFO/8JM8+bf+cx795Xd48jOf4rO/+QXevLegrqFqueWGrjFWbKpBmwh2E2VvEmoXwUs2pyWN44Yj4XoTxg1f3CbnrLDraHnjMNhQI2wSj+ukqHRRul5X+si1rLBZtUmauuGj1UI7ftqsE39tNB0AsXQ0hpMFtoUvblawbgEmLhhKCbmO5MX63Ntou9F1C9GoQlh7qyjZRLvW7cvzJMpzGwliRe9wm3yeo9OCOi+xxlAby0obpoXh9rzi3WXF/dpwt7KcG0u5jt3c9Sxx11baRrlo7froSmsJG5WLQpLXGl9Kup6g50tK4xoG93xBR1quDhVLC/myZBB5blitLYkvWRU1QTdiOwp49LEd5lpRZyXTac6Xb57hRQGPbHf4ke+7yiNPPsPtl1/n5DTl/mTBjSd20arL2TsPmJtbDLc6BGFImlV4nqRGMJ1nSKmohUJay/hsRTcQ7D17g+OTCWGgma8K9ne6TKYpUeBjjcLWzn6iUB6J7+OFHoESjLyK8TKHIOSRrR46XRIGApvELCYpUdJlOlkSe4JuFDBZ5gjrPMYDH5J+j3sPF1zb65LVNSDZ6Up8z+NsUbAVSq5dHrDMDfmqwpOO5Ov2FIQB83FBrQ3fneF+nwC3EJLlImPn6mN0t3q8/LnPQVXzxMe/H7F1hbPXXyQaDpFhSH9vn+N332V5fMLVZz5A2B9S5jnp/WO0MagwQgQ1vs4IYoHOcxYnKcvJmE5gXQdoA9XNWxzs9wiSwKXhvZDEC/GiCCVCvME+hVa88jv/EFHN+cVf/ikuPf4UGteOaXl+hpIVvdEO2liq5YzJ2YJLl3fwPai1gKrAjxJsFDmDKiHZ3t/B2Jpxobly0MVay/Es5zSrqXXTZRvXKssKp5H1paCtOxXNF6xVfjS/Yi2u1RhNIq+NSBugU6JRfTTl52fAuKi5U2ke5Cc8mCuOlp/k8i7UwyFJmFKuTnn4ud/lzuf/mN7TH+bRn/4JbvzMX+eHS838//s5HkxKtBXUDT2ibds4oRlYxAZaBa36rqU+RDMwbTxanDOeA+xY4rrtCBBWrruPW+t43TbByBrAac5dNE1qHW3SViy2VlffiRhsC3NajnnT3cdF/21yMJCioT0csDp6x6xbtklJw1m374k1HdIOYJuEZ2MIpZRL/FVmMytpQV6A8pyZUhB7eKHCG3SoK0ORGapFjkWjkaxqOEs195Yld5YVD2vLQ205bnT2NW3uwD0LVTMzs01RkcLdR2+dhgZfOuLKGEuiBD1P0fPdnKTjeyShawH2xHaACgNW85xYSgLP4+40Z5bXBJ6gM+zgKY+j2ZKPX/s+ZKn40z/6EufTJZWnGCQRex2PK5cOGO5d5v70Ne6eTNja3aJcgk7vsjOKCDseYWsSZVNqK0hTDcJDN3ayua4IqCnmS+688hJXH3+ah6++wNU4oqYklIZQgrE1mTXEkUcUBAglkZ6i5xkEHn4QsttNMHWJ5wn8QZfVvCQKfWazjCTyGHQCTsdLhDGgLKXWdIYxR+cZ24MIGQgmk4L9bsRgELBclOz2PS7txeTK5+zuGZ41EPgkoaU76vPOvQXLyZLdUeRm2N9leV8At9aaZDCkqkq++S//iDiIGF69wsnDB/SLlE6vhwwCou1LvPCFL6NXC579ge8nHAxJz0+ZPnhAf3uLqLfNyf37lKsV1x89ZHrvXebTlEgJlPCZr2q8MMGrC0JlSLaGoHy8MEEFvvvChRFe3KdIV5y89VUO9iJ6gwP83ohCW0xdYqoUZXM6gx2ydEmdVwgL/dgSJQF5miGsxfNDkIp0OcVoSPojou1dPGUJpIenDHEcsnr9IWdZTeApwrpGKkElJFndqBYa/taK1te6Kci5oLzYcMQOgHTzVpv4ayNN2UTwbdu0h8Zylhfcun+Ht0/+R653QkahYpD49JKYTmxRWc7k5T/jM9/4InLvClc+cMAP/vmP8/aLb3Hz9pyjRYXVAiNc7X5NazbVHE+TAJQIPGTTvLbVIjsw83C+H4FwHtRhwxOrhm5YK6PE5hzbl9bRbRNhCxqbWeMGN9Hw46380FxIhraDSmspu2751mhcpHB8uyfa/ozO5dE1jzEbuaCg6ZoukEI6/r653hujKtE0oBBNKbqrugWNarKCqqFMlC+IOj5+4v55nYRyUVBOc2xZYaXABpJ5ZjlZldyZFtxZVpwbONGWEw1Le8HMiya6t1A6rslx5oKmx6gr59fC0W+BkgQCSm3pKAikdFQYlq4vGQaCUBqiSBF2YrJljqcks8Iwm2YUpSEHtkcDBmFIVRf09rdIi5KTbId3jmcYaRnEAVc6cPnSiIfnOS/f/xa37x0RRCFeVrHXqdja6WBDHy+JyYuSNM8ptGA2X+GpAOFLkjhB5yv6ocBPIk7HKSNj0Tsn7F09ZHV25ipGPZ/pJAWcv4sIFBpLqBQSQ1FVSAR7wwirDVAjEp/VIsNXksUyJxCGJJKczzKk9AhDqGtL1AkZT0uSAHo7XW7eHLMVBezvRMwWJVZJRoMQ0e3y1ksP8CpLEApqW9HbHvDwdMXp6ZxhoMiKzXf7Oy3vC+BWnsdqsWT++mtcvrRLYWGV5hxeuwwIosGQPM24+fUvsjMIufQDP4oKY9KzB6yOT+mOtihRPHj7HWan53z8R7+f1WyBiYcMdytMWTFZarq7O9jFFD+JCIfbhNsHWGPxlEIIhVQSEXWoyoJ8PmOwe0jS6yCCBCMU6JrapngqIewOQEo8XbkvmvDo7x0wm82htoRxgK5rfE8SdxJWszlVVnJ2/5TBziFxr0+cKB7IU67tDVhmEzAlHc/nJKuprCXxYFU7LwmB8w0RFmrh5F9tVNkqSCSCWrS+1E1k23LALc/c0i1sIvUaw5HWnGvD7armmi+4uvQYhj7dwGerH5Bsh6iiZjq+y5ufuU2Ox+BwwI2nLvFIWXD7zjkPFzXTAmok2h3COgK/aNjkbFDdvRc0peO4BGokLbGUeKL1jm6m82ITVyvRxsgu2pZtIlI4AHKgatfe5xt6u6VV3ltY0jbQdSoT0xzvJiHYVjI67fwF5YlwMjkpaJKGLYfdKj8apciF85dKoRTOUlc7gseT7jO+JwkSj2grprs/JNweks8LsuMF6bvnbru+RxUoFpnm/jTl3qzkflZxri3HWnBmLJm2VE1m0zYNJrzmZmuEcz1skp+60bTLJhnuNcejsJTGEnsSX0qUdQCeKMtO7BF6ikBaBt2I+bJwMxXpcX+2wGgnd7uyHXOtF3Cal9RRwvGioH71Ac+/8U38UNFPfK73I7r9mKPzlKPslPPzOZcu71Gen/H0fkzncIeihtDWZEXddB+xCG3Y7iSsypowDPBEjfQVRWFYnK/wfclkltM5OmLr2qNUlaXW8OB0jid9ktiwNeiT1jVSg7GGdFk6GrMXUlWGRBm8rR7LecrOIGaRa8LQI1Yek2VFZaETKaqiJokU01mG1Jbedo+7D2ZEnuCxaz1yzyebFMTC0N3b5vU3H2JLN4UutWRnELPUgvsP5nSUYGfU4eHJAl9eiH6+bXlfAHddVpTnJ1x97AaVqYmEx2gwoKoqRgcHLCdnTE/OuPH000Tbu9S1YXH8AJ0u8Qc9rPKw+RKvWvLMR55jMZ4ye/iQncMdKhMzzwS1LfDSjFBYKiOI4y5ChQgqjIUgiiEIqfOcKl2ipCEZ7WGFIlstENLD5Cs3vQ0jtJXURcViMmcw2sPUJel0QZmtXAl2XhE0HbLr2hL1+/jSY9fbJRkMqKsBGEu2qjlIa1ZpRSfIuTVPCT2JMJZppZ0MDtHcqLV1ErVpjFlFSzcIauv6SrqouoGlRua2LqJpCYOmokXS+ErgvrjH2nKmLbfKkst5zWW/ZDcr6MYBnSSivx3SqytWi4zZg3POapCdkNH+DruHmuk043yaM80qcsPGQrWhaFoNCKLtnuJAOxKCWFliKfCbsu814LVcuBDrVmKC9lzctiSb84Nmw1ZipWti0RaTtEnNlopoDbxaIylh5RqU2+a7EvBUq8V26ynZatDl+pzWx0hb/i6bCLvVZxgXiRu5bt6rFESJIEg8eocjrOchvIiiFMxePUYvFq7oSwoqI5gsKo7nBfdmNQ/zmjNjODdwZiwL0wxuLYdP6/PdFiK5DjweLrp29b+bxYFvO5y5RKsAhLZ0A0nfl2wnHsNIkZY13SjAViWmtkilOJpkDOOQaVXT3+lwY6fDMk8J4hhdWwQexw9POOgaAtXh0naHzHgUpuCJD97g7ZsnbI965JNzfuL7r6GTBFsJ+mGCXc5Yjqf4oaIqNZGAXBiS2EdFEt/CIjPkaUncCanqiq1eQFVbivEZg8sHfPNrb1CWGs8X9PshpbBUFfieZbYqkIFPN4mptKHj+djAY5U5JYmRCuqKfjdhNpmTphVR6LNaFfS7PsusxhpBt+tzNskIDFzbDzFxzMNb58i65MqTe7z59kOm53NkDWHkE/mCeJjw1u0JdVry6CN9HoxTbFXj+e9z4JZSsv/IZYqqwg8DUAFlUbJ1cOj8nuuSw+uP4g93KbKM9OyEwFfk0qPWgjhUdPpD+nsHzMdj6uWM3Ut7+FFAzZCeKPHNA3xPYumQ5Zr+7jZCl2itifojqspQTRdAhR9G+P0RZVlgbI0QEpMt8KMQKzzKosBqTZ0XDHb2yOdzlqcPKNOCZLSNF3j4niafpwglMUWOSLbo7faQZU3QG6GqgqGELF2RZzm2rli+fkyUKlalITOWSAg83yXXLGC0oTaNP0kTRfoNzaubabHXgpndFFE05MEatEUTobdgvjF3deCqheXYCMal4d3Ksl9qruSanWVBPw6JQ4/eoMvhSJBnBfN5xuTdJVr5aKXY2e6xV1esipo0ryhKjTZgzUbJINuZgrAEEiLpEn9hczxKCef1bE0ji9v4Z7RUi1NQgxcIdNmqS1xp/NrrxUJ7wm0GoNVMO+QSazml00WLtfplU8regHZjHiWabbTRdYuUqtmWUtI5v+GSe8Y4+kFKkJ7Tc0dxSLQV0T3contphyLVVJXP9K1b6Pk5whq0cM50mbacpzUnac2DVc1JqZloy7mFibak1imLLngiuutlwW9yEDWbAqJ2eHPlOgLVmIbJZrByhlJO2SMsdH3BwBMcJD7bvYCyqtkZBFhtKaQkLyvGeYXWlm6g2R91OBh1OU9Tev0OfS/iwXiFNZp+EtDxImLfWcCGMRxeu8RsmRH4CrKUj3/sMlc+/gkmJzPmR3fQ6YIqK4lDRaU13VCRFTVC+c5nP+lg6xqMIYk9ylLTTSLiQJCuMpbKo0ihtoIgkPRCSZIEFFpQILBVjcWVxivtZrp4kukyZ7sXs8pr6iIllhZdabRV9DshdVVxsNdlsahR2uAFwnWSDwKGkYfX7/Hqa6eoIuXJR3e4/3DF/HzhZKM+hAFcuTLg7iRjOk25OopZ5DUmL7m8G1G/76kSpVzllRAUuUb5JVF/QGkMqijYuXadyijS2TnkS6SSlBZ0rekOuyT9AVUF0/EJejFjtDNCK0VuFVYEeKpieHBInmnKdMHo8BJR0sFgiLYvkc3HUFcoP0B5MUFnQJGtaL2KbVURxglaG7QuGoCriXtd7r31BmGo0PmC6byivzNyEa5RGF0S93YpbUVVVKjePpEum47hgmUG3eEuw/0UpOLxvKawkFZLaiMIRPPlbUra24iqLRxRXARDp8AwjTMbYsPjru+/3bjotcm4/397bxYr25alZ31zztXHinb3p7vn3CbTmZVUlUslXMLIMgiBMQjz6AeQH5AQbyAeUFmWkHiEB8QzAiRLNH4BC8tPVWUbjCWDK8vZ37w3b3POvafZZ3fRr1jdbHiYa+19KpWZrkyVfc652kMK7YgVsSPWWHvHmGP+4x//uNbp6EWsBNch0QIr51i0li9by14guVO1nEQB441iNEhIU8nh0ZT37x6TH+/xk3/8HV6ebmgdqFAxzSKGRwnCeXGvumyp6hatHVGoSEJJaCy0Fmn9SLU+VxT9OeJTZs8+kR3sc5PpYn0h7drNPoTJnubXZZyiz0H99ZSq+yzXQyVcq/dJ4VkTfRv5NWzSLSA939uzdXq6I9Dh3ApHGHbNOVGADAVxFpKfjBk/OEblE7QNWT+bc/qjS+r5JUI7rPUNI42FZaWZl5qX25az0rAwlrmDC+vZQY29gX36hRrhd07KdTKe4oarzfXfvBuEgfchlI62g1QkjrjHdRxMY8UklLwzijieRawqSOKQAMGTdU2lLdvWEAjJMBEMhxGPDid8cnnF++8cMwgDqtbRmJb9aUamLGmgeHJZcHxnyIP33mG1KTFOE7UVx3shg9ke64tT2p0mQKDbFqdrT4MMAsqqJUki5tuKNM3Ybvzw7tZYjDZM0sj3fOxqgljx4uWaOG949HBGLi1loykqQ21qouGIyAVMIoGNDXE6QRcFJorJHBgsbdMQR4ptUeBURJAEVOsd41GMQdKUFYNQUFhBqWEoDAePZnz+bMV2ueb9k5yLecHFfIeVYZcQGA4Pc85rydPna2ZZRDBKOH2x5M4gQGQJZfWGz5zU1iCEpG1KdGOQ0RRrLaGwjI7vslvvWDx/Shp5ip1RIYECFSQk6YDV1ZK22FDOzzl+931UGrM4n5NlMWno0C6mtQIR18z27jGY7uOaLdH0mPmTj3GmJRtPieIBIhlRl0WHKRtMsSIeT9FNgzWlz1SC0Ivll1uOT2bUtcVKS7lbEscxu+0GrSIGB3exbUU63meYj7BWAwZrLOVqTmhbVq1EpRMmM0d8tuD+4RijLfNtQ6UN68bQWMHWeE3vptv22w4aUe5mm+9Hg910CzpeDeKvhvEeFugbYbgO2oYb2l4f4KUTlAKetYaXWjBqLIeB4KRs2I8DJoOE5M4dTHCHh9+sycOfsF4V7GpN2zSszhpEqMgnA2YHA+4+PCCJHB/8K3+Ovff+DLptWX34XeafP+bis2csTpc0lcFp5yf22J537boCmV+UvLZGN6agwzeuxecd1+yTa+ZNf6DLrPvdyKuT5Xvt614JUHbDJpS8Cc6+WUZc652ESvrnpRcGUoEgHsaM7o4JBynjBycE032cSNlebrn4/CXFtz/BbOZI4WlfGigrw661rFvLvPIMkbVxrLRj3sEha6Cxnu3icF2m7R0OnPc/QBDhO0WN68fjddfM+YWqL0IGeFhfdvWBSIhuAIZjGipGCu4MFPvjiHnjaGtLoTWNDNjVmsqBs4LRQDIepcQq5IvLBe8+OGIySJhfbmhDybsPj5CNZhzAy9WaBw/3USrkxdMrhJC4XcnhOGJ4OGZ2/xHDw/ssnr9gtSlodU2WZUDFrtQopVBhSJbBdr1DYgmDgLLVZHGAlGB1SxSHbHcN4zzGSsOdwzHz+ZKmtTS6xaYxQinyULApK2yUMNq7S7N7jKp3RFFA01rCOGS52iIJCIKAalcx28vZNYbiYkMWS2ol2RaGVAge3R9zsdqx29QcjyIIFaurksudJQ4NkWvZ308opeLjj84ZSMfdkxEfPVsxCWE4HfCdpxv0mz5zUuC8Rm0oMUIipGAyHTK++5Dl5QvWTx8TxxlN6wgHqQ9gxZbJ8X3m55e0TcUwSzj69d+g0ZbzZ89wKiRQEmSAUjFplnu2QBASDUagUurdjmycI4wlme2hRYDeLlGhHzYqsaT7h7RNja530DTI0IsstcWaMFS4IEboijDNyIc11lmEa3EmwiFJRhPCNEdECUJIdOOod5fkecRn3/mIXdkyGcfsIkGehZSDkN/8xgmL1YYvnq+JC83ZtiKTAmclQlpaB7XtWsU7HPamocRfUegKdOKGDuefudHoUHANQ2gcWvgvf4eYXEuw9u3gPb1u4RyrxvFFaxnWhuNdw5N/+HtMoohxEhEFhkwFDOMAUh8U6qqlXm5YzOH8izkyCnn8JOTOryUcfuM3uPdb/wm/+R/eQS0/oj79kN2zz9g8ecLmxSXb8wXFVUGxrmiq1rNFrAXntcPBBx9HLyerMNZPfbm+Bs4HLdV1MCL7BatfyJxvghBdk4uSnqPd4dpK+uuhupFhCJABJFlAlEZk04x0f0h2sEc0mRJN9qlNxOb5gsuzFcX3PqV4eYasd1irMdqrLFbGUbSGZWVZVparumWpHRsDc2tZO8HCdtow+KYX8IH+1fZ95cR19u0FoV6VC/Yt6/0C3g9DkH3W3TFqYukXb+UcR3FIJi17eUyjLY8Xmottxf4g4WnRYo1moPw1OcoCTqZDlnXDxhR847077OUZ1XrLTrfMZmNSJUijiKdnC9LpmEGcsNWGcrEhd5YsE0TZkMn9r/H973/KQfgTkiyjtQaJxLQFxknCMKGtd0gjMXVDKLyvKpIMg5ymKDBYz/WualwQYgPB3mTMfLFlsaiQAgoVok3A1BhKDPPaEdJSnD8jwBAEXY+CgLoxyDBEaEFZVIwHESoK2VztmAxClhpevNwyDgTf/NoRq6KhKjR7mSSIQs7OCzaVZpKGKCGYZinDOxO+//EViRK8c2fEl8ua1FqOj3NWreNqUfILapNvSOAWklYbVJYySCTjwyMGRw+4evmc5dOnjGdTLi6WTO/cwWiLEJLp/Qfsih3rqwXT2YjxyT2uLi/ZLS6ptxXj0YAgiJFpfk3JUnFMMhzhRMjm8oIwipDWEe/fpW4tu6uXJIMMaxowBpnvYayhqZYIYxAqwMkI22yIwrATlQ9QYYKMJHGe0TY1VltW8zNkNiTKhpTFjpDAj/gqC5LhDBVFvPdnDZdfvsDGI+4/uMvdrz/lw2//ECFUpxb3GPv5gl0bsGt9Q8RGO7T2Yka227Lf7JPpqG/Xw79e0bHuFfP6TLujCYqus1BAaEU/ZeyVae3c7MG5CQQWr03SGN/c8UnbMq5aDood+0owDSQDJQmkJAkVcRwyiHyDBM5hdIt+9mOeP/2Y8z8I+STNkYNj8uMDjr7+iOHhPqNH7/HuX5gQBi2uWuHKNWa3oZovKC6u2L64YDtfU60KdKWx2qK1wRlBUxms1jjng6xx/hZc7064hjxETwGUikAJZIAfwqsCwkQSRoogVoRpTDRMGeyPiSdjgtGIMB/hZEq1aSnXFZtFweazc+qLD7G7AtNU2NZ30GrrqIyh0rBrPcSwqC1XtWFrHFsDG+dYWFhaR+lcR+sUXVdqVwSFTpHR8/iDbvGRzi/i9hWFP0k/j9MHd3Bd05T/w/aLeCo9V10Dg0ASCsd+5iGEbat4vq5IQsWHiwKHIBUSowR7Wcgwj3m23jLdz3l4cMAkDGiLHbWAo4MxSRAQyIDvffqUB+/dYRwqVmWDWLfcSwzpdIIOBGqQ8OVnX9BeXiKOc3Sh0cWOWDmKrfUzJTOJkAGb7Y5ASlwEjQuIs5xtURKGAa3R1JuaJFWstzUHewO+PF1S1ZrpOKEKJEE0YFiW6NZyvqhIk4TDJEJWG5wzFI2AwOLaGiciokDhpCYf5KhAcn6+Jo0k61rz5dmOaQLvvjPhoqhYzyvGiSIdpSyXO4wTDJIIhWU4CDm4M+LzFwW2bDk5zFm2mvXllvf2UrJpzhdfbnxT3i+wNyJwO2vRdUs0HrJ35wSZ77M6O2X94kuy8ZSrqxXD2T7Li0uyPCPOp1ycnnP+5DF333nI9ME7/Ph7H1JXG0ahI1caJWJsEBOoCHSLCCTx+ATCgOrqFOE0UZAg4z1a3VKvL0myFCUlYZJgrEBbTbueszk/Y3Z8RFvtsLsVQRSCCkFr6rpChSlxPiYXAcVqw+hgj/X5KeWmYDCbks2OqIoN5XpFlObIKAVrCIYnHP+ZMU3Vom1AlE0ZjRKkTNgqyfvv38VpsF8u2e40l7XXPO7HWmlx86Xssy+LQxiPfYPnQvflKNN1N14HbbgudL7KA++zsX4b3mtm9NPm+/e8xsqBynl97kvti6qDwDIVgpkSjJVgWApiKfxYLqUIAz/VJZSWSGikXuLmc7ZzQfHRP0IFEUIFBNmQZDZjuDcjHqWEoyGT4wcMPvh1Rr8VEiUCJQzSNGAanGux1Ra92VFvNuiyAAS21Zim9V2G2uAwBFGCioNuVyGRQYAMJFGWIIOYYDAgyDJEkGCR6MpSFRXVomK5LqifLinnX1DPV9ii076whrY111oxlbbU2rFtDZvGsWoMm9ZRGEdpYGstK+tYOth0mi9td82t6AvR3XCLbjF9tTgd4PnVfTt9X6Lt531e10Tw1Mwe7+5hbCykQVesdJAFkrESHA0iEgWEirNFSShg1WisUF4hMZDEkaRxjsu64eBoyLsnMxJjaNY7dBowzRJmecjFuuajFy+5e/eAaRxS44i1IVI1LgrZast0PEGqgETvGL1/hExzRN0QYNludhijUQLqqvKUyiSmrjoIxQUsVwVD5XCBpGoFGsOLq5rZNOd8VVHqgLrViFIzPJiRWYtTjtoYIhVwMErRrSYOJEUFujWo0JIMR4jWYpqKJJLEg4xiuWFvb8jVckdRNqSZYniQsw1yFhcXJM4SZQPONxVlaZEY8mFKIEP29xKeXu4o5ltOxiFJHvDFF0seTFP2jxOezXcs5juy8Abc/Fn2RgRuISSzgxnH773PtmyoXp5BvYJAUpYF+WTE088eMz2YEaUJly/PMOWOd3/tG8TDCX/4+3+fKISjownDSFK0kvjkEQiL0DtsA9H4mLbaUV/MsbpleHgIBOx2JaYuUVGECkOEjNhtd9i2Qkqfr8zuP6DerGjXV1S7hsFknzCRNOWOzWLFcD+iLHaYomRztSIav8/swX3mFxcEydfZbTega0JqLp9ccvzwPjKOSEb7yOgIUSzQVcXWwJ2v/zrVZoG6kATWwXuayWTAH/7wBfPWMgwVjbG0RrI1Buv64Cww8ga/llb44C26gN4VJlUfsR0Y6TfaConrxpSJ6y/8TdDuVU+vsz26YQnCT4XXr2zJjYASWBs4dZaodeRCMFWCkRTMAslAGFIJqVKEyut+hFKQBJIk8M0urq08v7beYlZnlI9vFp8wTgmTGGRAlCbYIEKqiCBLiUYD0umIeJiRDA+JEt8R5313CG398GgcSnn5f6cNtjVY3dJuSlhY9GZFvT3FtA7aGmlKTF3Tlg2uLhHO4oyltYamK/9r4zVctq2l1I6tNmway0Z7SKS2gp21bB0UzrGzsHOww9G4rmuxKxBa4QO3cxBYcT15RgNIfx0Ury7c3e7JXZdsvS4McFOe7jJzRDdqDaKwowE6wSAQDEPFnTxEYSlaQ7EwDMOARkBbGy8UJWCYh4wDQRRIhvsD7k1zDgcRzbrADkKyNGAYw8V8w9W25P79Pe7OBswrQ73YcjJLWBSw3hTM4gTdlHztaw8ZnvxLXJzP2a3WYAxFsSNQAhv5CfdNY4myhG1pUXGMcZJ2vSWPA6wxtK3FSEVZtQwHMWfLHUpCOhrRWoMIAu4fzHj59CmJtSTDjNpY1qstw0FEVTkGccBGN76grVtCKRjkMWkas14UZIlibjxnPFZQW8mzsy2/tn/AaBiTJjEX8x1VZai6ebNtazg8GfDkqqRcluznEXv7GT/4smAaSu7dydiGEWfnF0jnC8RS/PzQ/UYEbhUqDj/4BlcXl5x9/hnj8RARJySTfeqy4fMffsTs6IgoTTh9+gzb1tx58BCVDfn2P/i/CQPBw4d3UKZgsSoJ8z2q5YLpyQlxZBGToVesa2uSYUaY5DR1y2ZxSiBDoihAKgVCURULXNsQZwNklCDClPPHn5BnIfFggNYQDwaoJAJq2p0gihQyCknDEVIYcIbJvUcMjhx1uUV2/OowzsjCCzbzC6bvfB05mFAtrwiiHOlgeO9dLj76AU3pGM6mBIHzrcTmBcPsgvvW0VSaRam5sJpUgjM+cJpuUo7rtr/+G9sd64Nu98+gjd9Oq+sv+TUZ8Lr0pzqYhf6t4FqAqN++S+gafjpYpmOimK4JKOgglhIoNZwKR2wNkXPkAnJpyaVgKL3GcyJ8h16gvMhRKP3jJPL4q+p0S2xT0DY7AiHQa08dxDlqBAWOlfTtSDIMfCszzovSX+O8rktbHUbrTsjJ0bd6K1/FQ8geA/Y5rXVet9lgaY2HiUpt2HUF5KI17AyU2jev7ByUDkrrqOD6cW3ddcs5QtLiA2cPhdBl2uCIOoaPh7VumqiCniXibsiefQdkX894paqBE35h6BuIpPCdqr65yGtZDxVME8mqacHCQaJonGNrLPPWofGNUMfThK/d3afa1SSDkJM84iAVbJcVzgmmI8WuNmzKmqbR5NMhI6VY7mrKeUmmGp5etuxaydFkjBDWM4wOT0iP3ydYfIhtLim3O5y2aFriJOXiaksWSnZNSxin6KKi1hV54q/GelcjnARa7h6POLvaEuEYD2Nqs2McC/aHIV98/ph7J1NCp1nvWtCWQSBxVrM3GXpdlsBDR7at0QiODmZcvJwTh4KVlbx8cs4kURBElNsdJQoR59Ryx+Jyg9aWqm5BSOJYcO8o52Kn2S4KBpFiby/lk8sdYtfw7tdGMMx48uMrdKVJAkXZ6Dc/45ZByNnjT1h8+QX7d09QgxFWKs4++4y62PDwg4e0zlGvr4jbloNHD9BO8eQH3yWLFYd3T4iTGKIhs2FLnO8RDwaEaYa2XiFQOkecDVBhyuLyAl0VJGkIpgtuUtLsCpSKiPIJ4IcCbJ9/TkSLjCdUbcvw4BiCEG0lIhoSZA4VZ754JbxGSSQDRDLGNEv06oKqMdi6Ik4SmsYi9RpnvUiVUpIgyXFINpfPGU9SqsvntC4mGh3SLJ4QS8tvfuseu9WGL75cUr0smLoAbS1b4WdXmg7LVqIvUvViUz7gBd03XluP6QbdVtvhqYDyOuh2RLxXcHDbg+PdL/RUOM9A6VkLltB1LdOub1fvX9sFTRyNFdROsLIOhB8BlgjP386FJBUtAylIECTKsxzCnZcV7VvfI+VnYfppMhAFkkDIrjHGEQjjmTZN3TXAdIvWdUu6l9B1eI61989iTAckdZBDa6DRFo2ltoKytTTGN/TUFkqD17t2ghZoHJTOUTpB7WDrLI0TtP2koB7GgK7FXHZDd33Ha19zoMukQ3vDE+8Xlp7nKeCVEWt9PcNe73x6uItX4RPnFQyF812gfqKNJBcwDATDWNG0htbBXuxV9koLq9bTBZUUpHFAnoRUrSPJAo7zhPt7GbUBV65wRnA6b3HSZ9zhMONgNmK+qoi3DUd5wOm6YVVqpqMMW9WMH97h+fkV7sdPOL6sULKlWhdkAdShBBeyLSqSNGbjDKayzMIK05Rez0YFlK0lUIJ0EJHECReF58XePRhQtprxICEIYLGpyYQlH0+5nG8QtmI8Tric75jEAY0QLFalZ+WE0JaO8WHO/GJOnipUlvLpxxdM0hBpai7LlmEeMg0Szj/8hG1ZMy9a8iSkcTCKLB+8s8dKCw/1hpI7s4zPFxV6WfOtd4aYNOQHP56zXpWknZhYYzzz6efZGxG4dd2wPX/B3oOH2CSlWO9oNis/D+7ePba7Bl1XzCZDBvf32GlLXayY7e9RNprZvQdIJZEqJIljomyEiiPq3Y66mOO0JpnuATB/9qkn6ucD3yatHE4EgCBOU/pvRbFcYuuCOAqxSYq1GtVuKVtLPOgmrdsGbIOSFtvWCKWI8xSHRtcVSgXILGI3f0YYR+zmc1QQYsKciy8+5/D991DZmLqsqBcvGU32aNsBxx/A5vKSzWpHlg84eHAPozVtWRCGT3HO8fSiYFGBlhKjDFgfLK0VaOmDaqB8hhaKDt/smnfCAIy5UfS7mX7e0cO6IC7FDfPEuRu1a9ll6qLPXnsuuPCZo+qKof3sSfrssnuffnSYUoLWeG2TDYIrDM5BHICw1o8IE745JxOCVPjpMwlew6XnSwei7RgiXvrUNyHZmwaZLqP2DSaeNeJZJj4Q3+D17roz01jfYds663nVzlPrrJNY4ai7IF25m2y6do6Wm0k74K+P6pkc3Xn0sJMT7vpaX9cSBGhhPaYtfHDtptrRz7y09JIBN9BHe13J8Ne3Xzx9bUJcX/Og46eL7tWpgmEkmaYBOF/XeDBQaIeHfJDUzqECQRQEZJHCWBjEkoNRyiSUXFwVtM4wHqTMtxWDQcQoi9i2mtl0wqqqSbUlk5qrnaZFMsxjtpuWwUnC4OQ+4WJD/eRLFstT8sO7RIEAo0mTiItVyXbXYEI/rGAvDmjKkiyS6FZTlg3aOtJBShBIrlY1pqqZTHMulwWDQQw4NqUjEZbRNOXs5UsOjo8oVMvLixWjJMC4gNOXa/JYEKYR9a5hPAopypaB0Iz3x/zwJ5dYY4glnFcWF0hGaULYGjZNicIxyyR5GhBKwcPjhI2MePL4nFDA4Szjk6stm5XmWycZK6c5/7zEaUfoLKNBysWqBBFh33Q6oLOGaDChRbJ8cUq9WnN8Zx8Z56w3OxIB+7Mh6eyA0xfn6NaQDwdgDLOjO0SDMbouEFIiw4xgOGN78Zz1xQVpqggluKamKOakwxFxFuOsxTnlMUHraU22rXFItosNEkM6HOJUBK1GSAhmR8QyJIhinHU0m0tGB0fIIEIGEUGW4RA0tUYqv31r2pjJw0dQrIgHKSrJCJIQlY6J0gH1Zsn6/DnpYIiMYqIgIEw+IB7vEb18yridcfH0Kev5krJq2DuaekxWW6qLHY0zpAgCJdDG+synb+Omx4VttzX3MxCNoVPy61rdhQ/KCkHTFbqCLugZd8MT9kGhCxfCQyEWT6mzXbXsRhGvTwf7KEXXzeibbAS+DV8qge12PQifcTZ+IjI1jq3zI9pcV2jtBxME0gfvGL+bCPFBKcAQdMdE9/r+nDwH23Zz0f0594HTa7b4z23w16t1vpjXOD/lRztBg7mm2dX0iMuN8qBAdItfp5HefW4/YV52HGrHDS4duptCseE6/KK7bs6mk5jtF1XVvV6KGwTbdrsg6Ty7RHUYNp1+uequTyj7L71fFMeBZJJEVK0llI57eUgWSzbdHMblpiZSCqECJAaBIneGw4HkcJISCEikpaw1tWg5Ph4jnKGoGibDAbU2DOuaRGkWdUOY54Qm4vmXlxhXsz885OXFmrTSZKqg3cUUTz9DJQnWwsW64HTjm2mOZxHHk4TVomSSKOrWoFtD4wxJHBAox7KoEc4x3RuwLRv2JynaWopdSRxFyCTixbxhfyCJs5DzS8UkiQjTiNPzLUmskGFGuamZTTNqB6rR7N8Zc7rQ1DvNIITTnWVTW/bSkFwaFk3DsrRM8wCRhGRRwr1ZRJXGfPS9U5Rteed4yFnVsNlovnGcMjke8IPPFtjWYrUliRSbokFaybptrusXP8veiMAtggATxLTbNZGrOfnGI6yKuHp5RoRjMh2THt7h6uVz0DXjLCUOID24TzAYYXWF0C3Ggjo55sWTx+wunjLbn5HkCTLKaBtNnOcopag2BVaGODRhFGPbiihIcEpSXF2QJAkqzkEGPsuJQ2SSUi0rBCkqyjHFFVKEWBXhUIRZ7iEKFSCcD38yCFGhIkqHqOkMoWKstchkhMrGVOslLz//MbGtkCHocoCME6QKkeP7zNIZn/+/f8ByVbG3f0QSKBaXc4ajlAf3prTG8XJddwUwP2vQOT89O1ASbWHXTauR0gdY0ynm+ZZxvxGXXXbWCxMF0OmbvFrZ7v6JxB/fvvsuF9dJld5MejHOhyb/uZ7l4rNwz8H2xz1U4al5PqAb0wtF+XOx5uYMWrgWQ3IGLzYkbt7/+v9J9EVX0S0GPnh5/FqgpG+FN84r+jrrdypeNsBggaZ7L99n2etre5hEdRw60WX213JVAgLba4N0OLPw2HMPPWl5IwrmgAiv5KgF17sf4URXg+ha+7vs2vXcve6zTPc3tP0iSPeFlv3n++fiQGCNh5ZC4QvRmRRMQ8FeFqG7KU33RwmZEqwby8JIzsuGPFIMlWRpNWkccihavvVgn3t39nDOspmvvThTYJklQ5x2zIuWcRpirGVYFmRK83LT0AQh3/zt3+bv/d4fUduWuw+P2RUW9/IjplFNpRXD2NdOIiF4cbnh+dkCkogPHh6xnydcnF2QBY6q9h3IjZCEoe/YXJeGOBTs7405O1uSJDEoydVlQZonFNYQqJjhKCYaRjz+/JQH7z5g8ewFy+2OUBmGeUJbV0xGMTvrCIRkNslYVIrVxZJcCS4qON/W3BtlPBgqdtqxrJzXwkdAZTiaBpg85cMfnDIMFXdnGVsBL85L3psm3Lk34ourmrB1aOG/b1b72seyNag0IIl+fniWP/eZf4FmjKXcbnyBbu+EVsZcvDgllo7JZITIx6wWy67NdMBkPycY5R5rrjY0yzm78zOGByc8+97/w7Pv/GOk1sRpjAtT2tYilSJMMnS5Q0hHW+1wxiCcJc5zrAop1wvycU44yEFFqCglGu0jk5xyUxIP94nzAaYpcRiauiZIh4T5EOscuqo8BBA4JBonFdneHYLhASKZ4sIBVqWodEq7WbB++ZhqcUZVGlQUYtvSB8Yo8yPKhOTk3Xd4/9EBxekXOCOI44R8ssdoPODByYT7eznT1FO38kCQxcpTtYSnBhJAFEAiPUZpuy236nSjQ+m7AHXXSZfJTsOiy4Bt1zLdJ86B7MSX6NXz3E1aCTdj1W7Cmd/yCTrBJ9tl3MLjzN2iIiXXgyIcAm19vcAPiejfiQ6e6V/njzXOwwEGH9S19boUNZ6mWFpoET0gj5UCLf3vtLZrbOm+dE4IGnHTRdrgawD+UvoGHQ9PeOthEPAMG6/N7VkhbRdc/bzLfuiEu56yE3Wgtj9vd9MQ5XrOdQc5iT/O7FEdZGIENMJPOuolc3vIBXxBMu5gESl9ti2FYyAFwwAOsxCJo2oM94fR9cT6051mVfkGtMM08V2vecbYaL71zoj7j47JR0MaLagbQykd2XhEIARXRc04lGSDhLGzDIKWUij+6fMt4f4BZ0vLpthyeDyjrSzx/JJJYrCE5GmM0w1CwNlqx2qzI0oj7u6PmMSS9XJLqhRR6FBKYYVllCgOJglt7RtcTu7OuFptSbOAotI8v6qY7xoqGSNUQJ75OZZPny1QdYNuGyqtSJVkPBmyvqpIIsW6srRFxcFsxKa2XLy4QhlD6SzPVxvuToe8d5DQOMOzeUXTOoI4AgLePxmRHI/4wYeXyKbhnf0BO6F4+nTNw1HC17425XRrKK92SKXQrWOQBISRotYWGQdMk+SPJSM/bW9Exm20IRaCMA7R0lFdnRMqydH9u1TaDz8oiy1BIBmf3EUjQFvqYgNNyXCUML7zTYrVOZFsuHvvgOndB7gopak1QaAwdQ3GY2EORZSECIkfIlw3tLsFg+khSEm53qBUQDw9wjnB6uyMfDKh3GxJ85xwkGG2JVIIyqIhjiOc0zTVjjQJIR0gosRnSjIAobBGY6whycc426LbHYNBjB6EYFp2qzWjkwky8NNwqt0OozXp4QfMggAVKOYvF2BrTFOTDSLaNsc6gTEWIWHTGFyrSUJFawVaOWgNVvjAa61ACOMLdlYgVDdpxTpCfHegD7RcB3lfuAQkBMon2Fb78WD9sAFne8zWB/y+O9HaPiP27eDOCoLAZ5/WOaSU13iwuc68X9n6vxKAempb32Akumy6h3JuZuF0WLK4KbZ6WEGgO7giFX4oQis8XEQPl5ibYcv9e3koyfliVY/9I66LjX68nIeN+lpSPzW9Pz/FDf+6z557NUdw9PwBK/xCoDrYqWfn9AXg3uf+mnXu+AxVev1xnEMoh3aOqBPFCqDTIneMlCRXglEkCZSgqA13cj9IwFjBFzvHXDtCaTlII1plMSIkrQr+3DePGc5GlNuGeCDY1Q2tNezPRggMlYVMWVQakzQV0tU0IuAPfnRF2UoIhnz80U84PMyxpSGrNkymAZUWTAYxSkKSppwtSrZFQ2Udeag4yAPmiw2jMGJbVSglaQ1kccRwPGCx3Hj4LIt5frYhRaCtYFM2mFpzMhmgdMUwDcDUrDaak0lKpOD8yQsGWYIMIjZFxdGdEZtdgzSWaR4zXxYsLpbEUlC0mvNdzb3piPujkMpoLtYWZxxpBINYcPcgxQxivv/xHFvueP/OEJMGfPnpOfemMY8eTDkrBedPr5DCUTaaKFaUSObbmkY4poOEVLo/Viv5aXsjAncYSNLRCA3U2x0hiqOH77AtK4y26M2SRDgm9x5gRMh2MafVFmU1+8fHyOGU9WqDKRakyZDocIoLvUQr1mGaHbr1k5qbqkaGIeEgJ0pSivk5pmmI85ztukA4jRABo/vvUqyuuPjsYyYH+xTzU4IwRYUxdVEhnOLlizOSiWV8cMLy4iXD0YAgjn2AEgkyiXCIjg8eEmdDRBiAhWhwAOkAs5lzfrpl/84jgmyCUAq9W9NuL4mzCc5FhHsfkFtJsS0xekgy3SO4usDaS4RuEAwIloK8bjkRKfNKU2lBWzUYbTDO0RqHFX6wreyy8b7rMgz89t1Yh9Y3EEYPBoiuoOWQWONLabID0a3ptVL8dtwXHX3WmXSv08IvGq4TwUJ4iKKrEPpjPSzjbhaAHuJQXdCW/XF85qjpcWzoA7yDjoFB1yHqmRQOTy001vlmrCggMIay1d0i4lu9sTcYtcBn6gqfQfeLhONGywU8Ri3EDZ2y363gHLHzr+zP1Z+vh0J0j4x3b+TrDJ2G+SuYueoWNIQXPRJdxi2FQ1oIlfdT40BKtLNkSiIsxEp0k+L9rMhECfJYMU1CysaSx4raCDIJT2rNWW0ZBopHo4QX25IojMibit/5YMav/c63uHy+pN5e8fTlnG2hGUUxTaORScR+FrFwIWJbEaSwXLf8o8crvphveefuHt/+3me8+/AYSsHEVOT7AZXxTJ/GOJQKuVqWtFWDFYJBKDkaR2zLFukEy+WaKAponUTRkuUJ89WOEMFwNuHzZ3OGkSLNEz76ckESKvbHMVESEIcBrXMUheZOrkgyxXxRYZuKaDZitagIw4BV5Ruo9ocxu9Zw8fQ5QiiqNOVs3bI/GfHONKLUNRdXhqp2OOMYxIL7+wl2nPGjj89RTvDoaIDKU37wyRUnieLRvSGXteb02YbGWqw2SClojR9yXFjLZJQzFBDEvxgMeSMCt5CKRvuSUZ4kDA/2WC63mKqkKQqmkxHRaIgNYmzTMD99ySAJOfrg66hsRLFcgNYM8pwgSiBMUIGirQy2aQkjCSKgXC67tuYEFQ4oFlfUqyXp7ABdN6SDAWG8RzA6ZHd5zvrFZ4zGQ7COwWQfIVNsXRFFMZeff0pgNUlgWXz2ITjDWjuUDEmytBM06iKVtEg1QAjB9vwK01a0uiVMMwb7x+RXP2F1umL/0Qjb+h1Imk9wIvS82yAmGp9w8E5LMV6ACBhPR2RhTL03ZHm55P1Hh2x2NRerii9fbPnyco3SfgJ11cEjSQczWHwGDB2k4bxwkTY+q9a2p/F5U0oipcMYizVdYVGIXmQPYUEoh1QOa/zAB6n8PEbTB+AuCOP8e2G9VKqWdJrdDtcFuZ4BIV/hkUvpg7btcV0nroWWeg56H/S93oaHMALhiKXnutfaEik/WWiahSxqjbb+M60TWGG9IiAeWtD6hlFT4zq2SjdIwdFJKfgAq1/ZFfiWdF/gVTjaTmdAvRL46XFsOoU/9wpfvvu7aAHCeq1Geriqg4TCbiEJuvmXxvqFoFf3E/jhxoGE1lnGSnI8iMAJHowjirJhEiuWrQ9UhZNc1posjLiXRxTGMBgkBFXDv/Ybx0weHhAPD2jsijYcIjcVEzRSWIRUZMJRVI60qsmkY7Nr+dFZw+PLggfHU9IsoaoMyy8vOAka7n7jkFpm1NuSPA1RreZyvsI5y84qIuBgf8B226BESysCrFBsGsgTST4dcrmuSJxgejjm/LJgkgQMhymnlxvuzUZkscAFiiSEykK5tdyfJERpyOViB9qh0pT5+YL7X/+Ajz58jNENx3cOqHTNarGgahwH04grAuIk42QUU7uWyxWUpcEISJTk/kFCleY8/2xJogIO84BomPCTL9bsSXj/0ZQF8PLpCmP9QGcBYPGNOlKTT4ZMlCQJDLvK4X7B0EnhfkE6/i/KhBAXQAFcvu5z+edg+9z69bbZV9W3W7/eLnvHOXfws554IwI3gBDi2865337d5/Gnbbd+vX32VfXt1q+vjr0RrJJbu7Vbu7Vb+5PbbeC+tVu7tVt7y+xNCtz//es+gX9OduvX22dfVd9u/fqK2BuDcd/ard3ard3an8zepIz71m7t1m7t1v4E9toDtxDiLwkhPhZCfCqE+N3XfT6/rAkh/ichxLkQ4oevHJsJIX5fCPFJ93P6ynN/vfP1YyHEv/V6zvqfbUKI+0KIfyCE+LEQ4kdCiP+0O/5W+yaESIQQ/0QI8b3Or/+qO/5W+9WbEEIJIb4jhPi73eOvil9PhBA/EEJ8Vwjx7e7YV8K3X8n8ZPDXc8M3in0GvAtEwPeAb77Oc/oVfPgLwG8BP3zl2H8D/G53/3eB/7q7/83Oxxh41PmuXrcPP8evE+C3uvtD4Cfd+b/VvuH7W/Lufgj8f8DvvO1+veLffw78r8Df/ar8L3bn+wTY/6ljXwnffpXb6864/2XgU+fc5865BvhbwF95zef0S5lz7h8C8586/FeAv9nd/5vAv//K8b/lnKudc4+BT/HX4I0z59ypc+6fdvc3wI+Bu7zlvjlv2+5h2N0cb7lfAEKIe8C/A/wPrxx+6/36BfZV9u0X2usO3HeBp688ftYde9vtyDl3Cj4AAofd8bfSXyHEQ+DP4rPTt963Dk74LnAO/L5z7ivhF/DfAf8FN1pZ8NXwC/zi+ntCiD8SQvzH3bGvim+/tL1urRLxM459lWkub52/Qogc+N+B/8w5txY/f4DpW+Obc84AvymEmAB/WwjxrV/w8rfCLyHEvwucO+f+SAjxF/8kv/Izjr1xfr1if94590IIcQj8vhDio1/w2rfNt1/aXnfG/Qy4/8rje8CL13Quf5p2JoQ4Aeh+nnfH3yp/hRAhPmj/L865/6M7/JXwDcA5twT+L+Av8fb79eeBf08I8QQPOf7rQoj/mbffLwCccy+6n+fA38ZDH18J334Ve92B+w+BD4QQj4QQEfBXgb/zms/pT8P+DvDXuvt/Dfg/Xzn+V4UQsRDiEfAB8E9ew/n9M0341Pp/BH7snPtvX3nqrfZNCHHQZdoIIVLg3wA+4i33yzn3151z95xzD/Hfo7/vnPsPeMv9AhBCDIQQw/4+8G8CP+Qr4NuvbK+7Ogr8ZTxj4TPgb7zu8/kVzv9/A07xk7WeAf8RsAf8PeCT7ufsldf/jc7Xj4F/+3Wf/y/w61/Fby+/D3y3u/3lt9034NeB73R+/RD4L7vjb7VfP+XjX+SGVfLW+4VnnX2vu/2ojxNfBd9+1dtt5+St3dqt3dpbZq8bKrm1W7u1W7u1X9JuA/et3dqt3dpbZreB+9Zu7dZu7S2z28B9a7d2a7f2ltlt4L61W7u1W3vL7DZw39qt3dqtvWV2G7hv7dZu7dbeMrsN3Ld2a7d2a2+Z/f9gJPObKLalRAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from skimage import data\n", + "from skimage.color import rgb2gray\n", + "\n", + "from skimage import img_as_ubyte,img_as_float\n", + "coffee_image = img_as_float(data.coffee()) \n", + "plt.imshow(coffee_image)" + ] + }, + { + "cell_type": "code", + "execution_count": 121, + "id": "fdb09725", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD8CAYAAABXe05zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9SbBtSXYdiK3tftrbv+63ERmRmUgkMgEQIJlCAgQpgiLFqmKVWY2KYmnCAc0wkUxDFTXSqMxqpJEmwqAk1YCqokwqI40iCZGgUUWKBAEi0TCRyDaa37/+9veext012Hv7Off9H5kgwCxFGv8xC4v337v33HPPcd++fe211qYQAt4eb4+3x9vj7fGjc5j/f1/A2+Pt8fZ4e7w9/u2Ot4H77fH2eHu8PX7EjreB++3x9nh7vD1+xI63gfvt8fZ4e7w9fsSOt4H77fH2eHu8PX7EjreB++3x9nh7vD1+xI4fWuAmov+QiL5FRN8lor/5w/qct8fb4+3x9vj37aAfBo+biCyAbwP4nwN4BuA3AfznIYRv/Dv/sLfH2+Pt8fb49+z4YWXcPwfguyGED0IINYD/FsB/+kP6rLfH2+Pt8fb49+pIfkjnfQzgae/fzwB89ZNenFEeChryP3QDQL2f8Ybf0Z2/BQBEQAjd38IPOE///3c/W395d0dCd178h92wkHzYD3r9m77jm65ff08AkQFSeZTOAc4D1gA+AIYQnOPX6GEM/0fg1+j31e8a/OGHkAG8BwwBiXxO2wLOg3dsAWQTwFrAtYAPCCGAiPg9IL6etkXw8vv+tYTA/1nLn2342oNz/HX1er3ny0pTBEOgqunuqw8I3gEgfr2MheAdiG8Sfxv5jhTPp2OGuvfo9fTGQbxmfb1cd/D+4O/9HSzp6+VZ6Gv7D5Ws5fsbvNwHeSMRP8f4vEgfNt/7ELphkiT8d+flPHoOOa+x3b3Tn73cZ8h39b3zEcWxEeRk+iyD8yCi3vcMh2OH6OD56jg4uKc6V/v3AdTd0/49JEKQ8UiJ5b873z0zAGSomyPynYJz3fxA9+x0vL5+Db3nrOPcB0DGFILvxm5ieez3nicBQJYCTdvNrYD4vu56Q/dd4ngC4BzfK/kuIQTswwZ12N+NdAB+eIH7TR92EH6I6JcB/DIAFDTEz+d/hS/eH0YpksADCTxkZIL0fqeTnQzF98fX+fDae/Tf8cJ674mfHzxPqjd9Vu9nSmz8DH5AMqiMfeN1HFxP2x5+1ySJ56As4yAsky84B7K2+7tcmxmPQdMxDxgAYbWG3+0BQyBrYaYThH0VAycVBfxyBTOdAMYgbDZ8T/IMoWkQ6oYnNQAYAzMccEAFgDRBWK1BZYmw3yPs9ghtC7KWr905wDg+b9OCihxmNESYjICLa4S65u9liK9JPiPUNUye88AnviY+VwAVOcga0PERfz/Lk5tahzBf8O93e7ibWw5gAKgsQGkKv1h2zw+AKQv43Z7vY9OCypR/1usCEOoasJbvQ/CgPO/GQV2DipwDB8D3rKp53DYtyBogTYGm4clrLcK+gpmO+XutVvx3HXf7iu/RbIowKICLaz7/vkKoKoSm5fc6j1DJ/bISeJ3rFrM0BRGB9FkHj1DV/LvJmBfMquYxAPD52haUZ4DzoCKHX674mqpKFmAHyhIeo9bCjIZA0yLUdbf4EcliG/j7p0lcEOK/9bvWtSww/LxlcvA4JToYM3AujveD82UpXw85wNo47mCIn6sEZpPnoEGJsN1xMEwSvp91zWPdGviqAiUpn7Nuus8D+Jr0WvcVKEv5flvL940IyPge9eewKQZw7Ybvu7yfkoTvmS6qelgLUxYITdsFdXmmfl8BBPxG+Mf4pOOHFbifAXi39+93ALzovyCE8CsAfgUAJnQc9KbyH7svGLyRjM8BpguSGoDjjdNFVQM9Xg+cd/99EOitlVXay8/de9DPVnuBPzgJCiEAJuEHH6iXKVL3Hot4/uDN4UM03QJBSQoE4mynbSUTNN130IXBWtizU/57VfMDny/44QfP3997+PUGNCiB6Ri02iDsdjwQs5QzijxHeHgKPL9E2O35ciZjIEkQ9vzvsFrz60cDUCXBqm5AgwGMNQhNA79cd4ta24KSJC4GmC+BJOHA1rZAE+KgRvCg0RA0GsLfzBF2u7hQUJrAnBwh3Mw5aOQpaLsHshRhsQLNpgjLFQcpaznIZxnCbge/3QHed5k/AHie1HqvEQJP+JQDlN9XfJ40hSkLzrys5c/WTG9fgcqSz7HbI1RVF/QlEwYAilkt8X3VjAqQZyDv2Vfw8wVoXwFJAr/edBkxgLDd8UI0KBHWGz63fAcYQqgbfr5ty0G7qfl7TsYIErApz4Dtjl/nHHy15fdLMAn7KgaheF0alMjADAb8Ow1A8tm6wFGRAxKMKcs4cYjzhfge6T3TBVsSErIZPycZt36zBaUJB79ByUnCdgtAFlxdSCYT/r0h0HjM9w+SobctsN/zM6trXkjTVBKOCqFtYfKcFyDn4gITnIMdDfm+aVyRBMjXDe/SnIPXBFASKZOlgLXw2238bnrvYC0nQEUOv9l1Uz7PQbMpMF9IkhBAwwFABCPjFu0nI9k/LIz7NwF8gYg+S0QZgL8G4O9+4qtlW6eBjpJUgiBvVfoZcgzatrfVQD9g8/tBJgZeDdKUpAg+xADYz65DDHhyWj1/73P71xF86K5DBktom/h7QAa/bvn13PKd4iprbP9D4uv0u8SdRpLygLYWZjiEfXAPSCzCqERoXRe0++8ZDkBFwQFNB8doxINJ/h1Wa9DHLxH2e84u8xzN5x5g9xMPEB7f4yBdFsBswkHTyIQbjzjT2WwR6gZmNIQZDDg7LkuYk+O4wKDigEJ5zhl/VQFNw1lYWQLHM6B1HOyzLAbY4BwHq7Lg/6828Nc3vJAY4oAO8ARPkphl+40EbefjPYmBQzInIoGQdNJqhmiIJzogW2We/GHXTbpQ113GK88f4KCl44ayjP/TseG8nK97vvofWcOLaVV12bbCBTq+dvuYeTIs4kDTCcgaDu5pygujtXy/2pYX0KEE9RB4JyMBSbPIUDcxi6Y858+Se6TZKYAY8Hh3K1ly4B0RmoaDuHMxmw7Owe8rDkqy8wh1zWNYFmyQfB+91zpus0wgD3Bw1nncy/TDZsPPIEkQ1hu+v8YcwixJ0i3azgFN090jCcJyQk4SyiI+3/5iH79TXXMsSXjXpPOxg4EkhvV3+M7x7haAmY5hjmeyM0sQ0kR2uzzvoNm3Md01f8LxQ8m4QwgtEf2vAfwqOPX9r0MIv//Jb+hgivjFHWK2yVAF9TJk12V3ZEBWslIK3d/RZbwH7wMOs11+gbyml00rvkUkWTBvLzXrPzgvGUm/A4AOSqEk5YkZFxswXkfmtWsgxXfleuDrw1vkHMgkDI0UOeA8/PEY5nION1/EbbpmNKYsQCOpG+hWv+oGZPAe2O1AwyHQtrwVBhBmY/jcYn+aIrs2DHWMSs46iwy4XXQTfCvZu+wOQl3DjIY88RILKkv42zkP3tMTwBpeKCQYmeMjvmdZimAMIBm+KTm4m8GAF4jdnoN9XXN2pcFKYBy/WIKI4Fdrfl7WyEQmwEv2I8E2OM8BOk05U/KBs1zJrKDbdtli+16WS2nCgUgDbpbx50vWDkC2vv4g64xbbZ4cPM7RTUq/2wMC4ShMFqEXeW5wjr+77rgAYLuD3+15y+189/r1BmY8QkgSXtwUclC4TCGeOLh4gdL7Y8qiy0YHJd9XCJQnUIRm+3COs1EJ3FTk/BnWxgUGvpcfajbZXxRCiD9r0IPAMGQMwmbbwTd9aCtNeUGXGoDe+wCAfMI7C6nzKJTY/wwzHnNQNnwtcRETTJoS3onF6zOJQEgZyDlQWSC4TYToGDoViGQ0jFBYkF2aX65AgwH/vFiC+jsTMMSntZaDOtAbjh8WVIIQwt8H8Pf/0K+XgR28AVwPA9P/R5DfH2xTuve6XgA+zLTlH92AJ52k5hC+QA8eCb57Xe/3dzH3eMTiVe8aetkzJXeCtQZ3hWj0PvgAhKZ7nSweZjDgQFw38LdzUFmCNlvG6hRbbDjzpUHJE2Q0gBtmSJ5f83Z1MoK/mQt2Tt3nty3gU54MrUP2fIH8gxohz4A0AVUNgiEO2mXJ2WfbcqZrTMSSzWjIgXCxhDmaIRbyFAcdFMBmi1BVMOMRZx2bLWi9ZZhEgislCcxkwhMsBA4yRDywmxohJAwdaJZOBJQFTwSZ2GhbADYuAqHme6oLDbxn+KYsYJIEYSMT0FqEnWCjWdrh4lnG5xXMlfI8Zq/25Bhoas70QwclEBF83QA1uuy+ruNCbjJzgPlTkkTMlrOwjOsDt0uuc223fA8AvnfORxiDspTxaWNhjmZ8z6oKyHOgqmScybU1++5+6CIXPELLgcdXVQxQYb1hqGBfxQRA/x7nl7wX4IXLjIbwuz0vPv16kg8Ihv9PadKNex+AIuNnI7CSwj9+I/CDYOOUcJaq0GrEpuU64uc4x4vXdhezekqTuIhRWcTAbGZThMWSv3t/EW7bru5miMf33kfcm+tBssAJxMIDwvKucTYVbJ13G6Ftgc0G5mgG2u3iNfrVmnfQzvMipef4PsH7hxa4/0hHP2P1LuLW6Gepd/FezboloAaHg6DaD6B9WEIz8H6mfYB7vwm20IJjP+j73nZLFpP+whFfbwihPiwwHnxGUwPGRpy8PyjtyRHDFfsKKHLG0to2YoMacMha4GQWt5a+TJFcLmMADZtth/dZw4PUZxwEH5zApxZwAdQ4hkVu5sBwALSOJ39RICyWHCTTlAejFI2Q5xyoNls+32bDEMp0wp9d5qBdBbdYcfZCBuHmlifZbs+LQJ4BswmQpaDlhoulN3MOPm0LP1/wwpSmXPV3FfzlFQfb+YKfgwQFM2aM1ysGrQXELGO8frVG2O46bFgggiBBKWLbzoGyFHQ0BZYrxqOThD9fi2xty1ivNTH4KdZripwDhRRZQz/zUwZFzUwEDe6hFrZMkoA2OyDPQIMC4XbBOxCFuKwBBiOEQYFwecNwUNvyc05kcWuamAmTJhzOAdZ1hWEJ/jzGmYMR9pWM7yDfzcbFKEIWEa4UKDJTvNrD5DljwXL0s2sExvApSWLgQtPwc9FzSsYf39O0/P285wDnHMhKMPaBaxODQa94mCJsd7zgBB93v1CoabuDl5/9zS1/x4znhdZFSHBpMj7urPizzGEiEEKsP/i6gQG4tgPwLidwomDk+sKgAK0YVgtVLbsCw4Xi2YRrQndRgTvHpydwk0EfZjhYbXqBWAN0LOKREWz5zmv67JQ72bFmPBETT5NuQpFBhGJC6BUp7B12Cg+WAHR4nQb+HhskYu2yiziAYPq7AWMProMsYLIU5sE9nmCJZajh/IoHlRQFdbJQljF04AOa+1Okz65hz+cMb8yXMXs1RzMAgF9vGE4pch40jUN9MkD++0877FMLr/dPQSvDeKMU78JeMqPhgCecMfDDEu5zD5DcboHn51zkFCyRmhb+Zg4zGQEPzoCqRnh5wYWb0ZCzXOdhmhZBtsVBCozGGgTveeJqwadpePFSFgckkCRK16MYHDhLo1iUpeGAdy7bbWSAaIanz4CyDH614u+bZQgyuUFGcN2as6y1FHzHzN5Q5k7Ybg/wX4Bxdhoaho+EqaE/K0zRUTIDFxqHJbCvEMYTYLlGWG85EAmzB9MxaL4CpPCGqmJ2SV3zIipsBS08xx1DWcZCn2Kx/LEhZqw6Pk2WRhqg1kd0cQrOAYq66Lnqukt25P5pTQFVhVi8C4EXwrKM0Euoa4FDONjTdAJIUFSICuDinmLVZA0Xdlfr7prWNUM4ikPLIkRFHndOlCYc2BVOASKTJNaB5DvoTpAmQw7yRuZwkXdzpXfPgvNdMTlNuAA/HPCu1XkEWaDNaIhgDfz5ZUyAFOJ7jYrcOz49gRvdCn6Xftet7EKlom5gHdDk+ufqwxV3AjcHWN9BJL6NnxUcDjP0O0H2ANZoBdvzvYzfH35Wdy29XYQsAkGyQ82QoRm84S0+TSdA6+BPhjCLDWcLeQbkGWcpzjHmnVj+vTFwJ2Mk12uEknFoXN/KPUh4e7/fc/Hw7IRfs94i5BlosUax2jJuuNvzNk6CPG4WfA8GA4TFkqGaLAMVBZBnCIMC7axEPcuAACTfecEDME3hTqcw+xp4dcUB9PSYg8d8CZJMzy9XvGUd8MKD+RJuvuh2Dqt1DKihbZlF0wi1i6jjH5cFB6TpCCHh5+CGGcjzLsJnCUJi4FMD+3AGapzwwR1oK5n2fBm34wAinQuZbOW7h8p/AyQTdLGwGbw/yBhJilC6ONFwyFvtDRfVNKONOK+1vPuoGy7EHk2ByxuGqLRwVTecAS/XsfiHtmWW0Hbb4c+C+1KWRXgn1AKjKO1TYBG/3XLgg4Oxacysu+Ql6T6/X7w3zIIiHSO7HS++QIedK92tV4CMFNLgETaVYMlWgj3vqsJ2F+E8ynNgt0OAMDAAXpCKgu+/FCC1PkHWd/izztl91UEh/WKpXJPWNAAc7I6oLOX8bUcNrGuEpWbqh5CnQimakYMYq/e7Pejymj/TuY6G6RzCuu5qHUB3r99wfHoCt3cI4ZAx0sewY/HDdEXK1yh9WkTsY9t8ooNzxqJlXBBMXCz4b/J7axFqfwCN3F1cOijG9vBt88YFgyELf5DtK5tBgxLlOezpCcKwjMwPs9oxnCCiDKWgERFoPOTMZViCqhrmyTlwMkPIEpj5OmZVpPS+4xlCmsDnKUJukWx2oKrmrLlumJ2iDANhIoA4o0Fzh+9KBD8ZgLYV0g8W8F96jPRmx5OoaRGCh10kCLcLwAoufHXDuLZkKvBc9DVHR6A8g7++6TiuPa43rAVJZkRFDoyHaO5PsXmnQDU12LxDCCYgvyW0JVBPAmCA9qwGbRLAA5g2sKlHmlXYr3MEx8M/PU+R3/KYcNlDkAeCAaYfeIw/3sHsWpjbFcJiFccLLNMvg9QYQt1lpFTkHFCUg+w8Qs07FHNyzM99s4mca4AnelzEFdsX6MSPB6AX57HYrIEmVDVQ5AjLFQd33WJLsIwZoUBBCF6y/I7RQ7JbiUwSa2GEAx0pfkkirBjf7Vw0qIhYKnKslWkizy4YCZC57Ox6Gb3Ce8ExFEEKZwFAQ4esij7dTiiMvCAKw0QWIV83XHQWSKavM9B6S/++KxSkhdTQ8i7WDAYcmBUmUjaQ3LfIRRcNidJYiYihyKzTCATngdWKF5Qi552o9xGWo/EYYbnsoKAQmDRwWLs8OD41gTsORuUvG/sapt3nRSs+DXQFvoPArqt7H7Jou+p3f4E4OEf/c/rn0NfIOeL7JFC/tlj03nPAFtGJGrdvDqHm35nhEOaecLMTC+wEwwV4AvpwqJBMEsbqHpzALLeMgc4mcGUKqhz8aADTCBdcs6o8w/b9CYYfzIG9DD4fgGrP0EuRd1nSdseZ824vu5EeXbLIEUYD5lbvOctJ/vnXI04ZnAO1jCVSkQvmyBgh0hRIM8ahVyseoE0Nv993nF6FytIUZjqBuz/D5jMj7GcGq88C1T2e1JNvWrgc2D8QiMklSLZAsiP4LCA5Z16ycYBrMrg0wLsCxgPUEigAyZZADvApUB97uGkLs05QXxGe//khtu+1SOYTpCtCeRkwftqifLoCvbzoxoL3LHbZV1ysJdOj3ElRrSwjEyfUjXCDKeLaQbb25uyEi2WCzZvvPRX4iCd7sJZ3O1nK0IkXQVLdcMZd72M2G+o6wn5+s4t8ZwBdACMRNWmAqxvmtKsQxVrGvZ2HKk71Ongsc5E1VBUHMGF8aIYanGPsvWkj3x4AJwJWab9eoCXJcnWcN23MbrXYS9YKA8PExdzv9lDmlgZv5bvH4C2Qz5uSuyho6/O7R0NAmUr6/ZRtsu0VETVuUACs3LOmBQ0l+MuuAtZywbLIEF5dds9hK5CW5ySRTo7ke/8IZNx3VYQADuCSmN363qSGFvqaXraM+AC1uhscwxqfdN5+MI3slTufE6lNeh13s2mBWZjj2YNT+tsnQwzF9H4ft2k5K+jgPfzRGLTedYW3tmXYQoJC5ByLcMTcrriwMRoirLewyuYQloW/uWVBxnQMqmoMv3fLr29a+OtbmOGAg3aaclHFOQ7YwXPwVnxP2RtlyRl008LlFiZNOjzQOWai2Aw0GUmwqYHdjheaJAGdzPjZLJlmhjQV/JHpUJTn8O8/wPozA2zvGazfA8gB+TVh+8gjvzbIri3qY4f1ZzxGTw3Oft2imDvk1zskqwq0q5m77iUDDYG/myYFykUuCwRrEIYF2lmB6ijFfpaiOiLsj4F2FGDXBoNzQj0FVu8DoASvfv4Y6foYw5ceyT5g9PEW4aNXHLgiDt5wsNNsU+5P2HFANVnawQNZFwRDmgBpFnHy0FScpQl2T6MhwnbPdLTEAlc3CPMFw1vWgMYj/q6CF4Oo439D5oXQB4ODUN34+g6okUEETMoM6kvwldlV1wxVCW6snOXIjhD9BCnToiw4oDUN/3+767JXKTIiTeKORYMonINXPYY1PKaaJo5FAB31TsRBsV4h31/pqsgykPeCgVNcXM2I8euwr+CaFkaTQWUaadBfreLuSkVyfXgj8vxlbBtdnIj4b3UdFcnu6prrIlkWsfpgDVAMgHN84vGpCdwHRw9SODi0iNfLjgF0FWN0+HVwjrMEfY2umHc52KHpigB9MUy/GBmx7B4d8Y4iE+hl0f2v0ntdH45ROCX4AHs07ZgPdQO6XUTRhilLnqDzJQdLobCFzZYLjELBc/dnsOdzxru3O8l6vQyKFOFoAtqz4tGfTBCGOezLGw4uVR1VdWFfdUU3rbRnKWg47ChzIhJw0yGyp9c8oYucB3pdwy3XMEWOcFUzV1sViEdT0K7ibEIyKYCVmqFuEB6eYP5TM1x8hbPgZEMAAXYLtEOmks2+RRi+bFG+3MBeLDiTE9YL0qRbXNuW8WfNWlKeGEGCdqSmrdZ8jy4CUkNIrcU4TblmoItRWaB+fIT9aYbtmUE9Jfg0wCeE9WODdgDcfGmMdjhC+Ypw+nsV8t/7CKFpYCYjhobKgrPeJW/x1YqAnJPisjAqkoQhD8kSQ93AnB7zOZIEODkClmsOUsOS2TfCgOEg30QGDYBD2pwRCbtw3GNmmmVM8RPIo5Ol2w7+EXyfRkOG0wx1EnKBJijLEL1UJDM3SptU/UDbdjAKVAyUcYAuCw6y+z1U1KbwDRnDBcme0hPGMHyic64R3J+SWMiM/HZN/vSz21YWAaHdaZKnxdG2iQsGjYb8874CTBJpgxH2UXuEpNsNhxAYRksSpmfu91zULQuE+QLeyes1HhF1tS4iNPdGwPd+BDLuvk9HV03tbc37ApngD4uPocO9+6yTWMBU9dPdBUEzbf1sPaLs/RBSeY2qZw7Pd7dAevD9DAGU9oK3B2VcJFT+Jm9rQ8yujDBG/HwRdyRmNASOZzDKp3YOYbWC2e2AouAg1tSc2RYFwnrN1/fqCiFJQIMC5naNMB4wRW88Zm60nl+ytdC2rCQTGhhPJiOBwSOcTmEv53CXV8y5lm1kCCIBJmEJLJYMIaQp0DoONnXDu4fbOczD+1j+7APcftGiHQSQIwyfA9VxQLDA6GnA9Hs7ZM9EMdm0DMeEcGh+k6WcsSfCNAiBs1EAKmoIQJd1OsZrI6YoWXk86qbL0JsG6WqD1DuMk4QzRUNozyZYf6bE6jMGuwcepibUM+DlL+RI/uQXkWwDTr6xR/rN53ztatTlPReAJfCZYck7HB9416M7upR4UdvuOGvPM65HyCJA8xXjpIqLy8KvW3u/3vACrnzq3k4xjunxmAvWkvXHbFF3oglrBLzwucNiecg6MSxYUk40UUeVU+k4yT1DCJwgADwm1OtmKJCEDwjVnndBAn3E+SMLR1DoRD1V0INRFSdvW5jxmN8oBV3Kc9kNpkyTvJlDaYmaOet1xyCvi5EPQo/0kYYbrwUQyTsvgPp91VvGHM0Y0rqd8y65dTwvezsSfg6sa0AI8GWG7NsvY4H9jfHkh+HH/W97TOg4fNX+Zf7HXWVh9DSwr2e3bfNaVt6Xvuvr+LRdpt0/Dhgs3nUE/37m3LumPr59l7XyJirgXT8U/b0ZDZmzGQKzOja7qDKksux8PhrhImvmMxoCx1PmWSthXwf1YtlRpAZl9O2IMErNGTcsK7vQOoQyR3j+SuToOYLv0Zg0QIxHCGnCOOpyxTuTtoXfbmGVXqgDEYh8ZWWKqOEPRPFoJmO4x6e4+ekJFj8GIADFFWF/GpAtCdMPHMbfWoDOrzmT1qCTpRFzVclwyHnbSzvBbmsxeFI+M9C933SZVVQ/przAxUMzMCKEnBcgUpqe93zPqop3KSqWKQr4sxnmX55g8XkDl3FhNL8muJyx89l3PGbfWICevOIs0QemRqo2oGA2CIRtEANNkiAUGagVvLjMWRClIpC2ZdwZOBBvRDFTvwis8IhkigdFRqVUZlmEKvy+4iJx23bZoGC1+n4aDTlQrdZyXh+DagzmukgI7k5lwXDY7bwbM4o/S9KgxXGlafbdIqO5k7WdNYLy6O9wzLW+EIMw0BW9hVYJ2fWo2payrNM7CIOr/14zLA9UlvbkuMu4ByUnYYslU12PZnz/daERkkBfbEZFzomWGK2FNUNk/+Ll38KiPn+jCufTEbjNcfj55D8AcFiEjEFQRS59KONOkU8D+10Odz+Y3v25H/S1UBi3O6rWfAM1MeLTvc/Uaz+4th7LBSICgKFOFegcaDLmB73eRNoYDAcO9d7Qz7NHM4TjKXB5y2KUyYg/TjIFMxrypF2vQeMx/HTEBbQsO8zEk4RpfMt1x/ZQ/w9hD9BgwN/j5Ah+UsJsa4TUwry6hrudw0wmvLjs9/DCtqBUKIe7nWzb28iU0Eyr+ewD3PzUAPsTQroGakmMRs8Djn9vAfr4JdPShCdMuWy/8wxB6Xjeg9ZbdLL2IDaz7uA7xEO2rhpIosAGiBBVpPr1d2NKC2zbWGAFEUJiOZCGwHz0Su5rzpPbPTjC9vEAq8cJqhMAATAN0A6A4YuA09/dwH7vpbBPdrIVl2vW4GQtQpnDTwewN2vGvb1nuEu+E5JErHI9Pz/Z5ShmHRlL/URGAoVfb6IaVAtyChNEmp5jObsepsgjH1qVhFQUsjA4HseScUYTsd78Okh6FIYQPrnSH51k9urQp/PNTMbw600XiCUp0ADYZcf+QBwThDceM3Ypkupcj4wZTegEh/eSMet3icFdFhUzGbOZmSg99V4gTeGPx6DnF/zd1hvg4RloVyHczrsERBYuvS/m+Ii9h+YLqMfOr2//Hhb++o2B+9MBlQS82QkPEhz78ElP8t5/Xd/JT534DoqVd36OXG6gE5qgWywoFRJ8z98kwi9vYqD0ru1N16c0KXN6zFmbZFchT4GOOsrZaVV1xTRRXEW3vhd7zhgMReMfNlhKJDg3oOMjhJtbmLZlJoO40YWWizqhqoHNltkApfiZSBWf6wIeOJ2hPRrAVLwddOMcyTlDNvb4iAdzloISC9O2zFjI8+j9gCRh/vRwCKQJ6ndPcPPlAi4jJLsAuwdcBtz7Wo3BN8/hz7nKHiwLU6gseTcg3se02gCbXczAAxAHeFSGOidCD9+p/HRSSoYdA7Ni4WqDesdqVINTnLg1McapCkAtQOasPEUI/PcQYD4+x+gpYUwEf+8Iyy9OMf8xy985Jzz9iyOkX/0Cph+1GP+bC4SbW9BoxHNgPAQWaw4ooxL2Zg0/HYK2FUj8YqhhoU/Ybvm7q0MgGcAJL1gx7l7AjD8LnnpgnqRFwH4iJJBTd79kW5+lvBtzHu6q4ySb2RROBEWhbngXN5DArAuAGkxVosjUBUKgkgOxj2LtQrcjKVyrOtILG4OtGtqOcy/XGOqmy6iN4SxaC6Cy+wqqwhR7hOgMKLueCB3ufbRu4EWxAQ2HnExd3/L9nI7hBzns7YrrDm3LwqA8hbmesx3AbMq7TyDSXtG0nWOkxosD7/bXj09Hxt2DSg4gkDsZ7l0I5a7/9iEXuzveSNV7E98b6IoU/YKknv9NIh+9thA6Yc0brsMcHQFnR6B9zWrGy1te9RWXdZ4HgwREVhmybJvKAv7ymj9TOMKdwtJExaRWx3WLxwsI84ipyBmqmC8iLSsGqDThax8Uwo9N0bx7is07BSbfWsDcroHEws1GoBBgXl1HaTvzUEec8Qkkg7YVShyBPvMI53/uFNuHhPI8wBUcuM/+9RLme8+ijzKM6YqgZc6wzG4fhSaRZdCnJPa3xhqk9ZlL8InZp2aK8j6IZP8Ar+1RRmMAvxPwTZZGp0FYlinzLkYKi4JTohFL1UKUcHWD+vMPcPUnBlh/JiDZEkISUJ4TTn93i+zjK84mjeHCaAhA6+AeHsNsKtDt8iCrRGJZiCQc4yDJQORtawatGbb4rag7XtgxZRCpyPer6sB2VDnSNBiIn3fFwVp2T1p4c9e3B8/C5DlTEjcbfr3Aan1oihOPTgFLw4FktOEg01XnvejWJ9S7uFuylqEFcU5E5KT7zr8H4OsSzxnF+4MG8H7Ny1AnS99XIGvEb6Q+yOxNngPvPgQt1nBnMw7UN3Ne6IfDCOWEqga98wB0u4TfbGGGg/h/LRL79x/BvrqO/HCEwEybqsKv7/9fWLRXn2KohI7DV+kvIvp99KGIfoFQYQfgjbh3/3gj6+NNSkvN5u8aSt3BqKP3d/QT8Ye/193CHdYJyMCeHiMcT+GzBHaxYUGKfvbZCQep9RY0GrAR06tL/pw8iyb4VAgmKFtQVbnRcMgLQJZxpqxURiCq2HA8438vZTs9HvLWbbWKRUzNJP3RmDHU1IKqlpWXstUMgwK0r+FPJqCXV2LkhE6uLRCL4vPLP/dZLD5rkS0DmhEh2Qac/dYa9ttPeNsrGRYVuVyDcGIr5h4H6SbSt9lUfDaq9foeGJolS0EOoUfF891z7sMRBwVJ7QqjW2KBEqLnsnwOZdmBAEQpbJFGCchCaVmZudlxsJIA3753Dxd/aoTqBEiXQHUSUFwRHv+9FwzDbPfM9S1ymOs5onCkzCNExL4ordQsbMw+4yIFdGIQpaEBHYQh1xuE6cAFsw3cYtlh0nnOLIiq5gShKLqApLBT03SiF63BtC0vDBnz9cO+EyMB6Gh8YPohpUlcFPpNNqjII/yiRVarIqRByXUVVUr2MW1RZSpTRvFnhTkULlHf73jPJMtWlgiAKKFX6qOOGzOZcKKz3sSEINo2zKYdZfHhGfDykiGpsxP+rOWKY8V0xIv081f8HMYjVD/5Luy+RfpqgX/x4f8ZC/fmwP3pgEr0UL8PrfLqz84B4Q4kEcJBNsy/7gLua1m6rqp9T5H++V8T+ugCogIa2322SfpU7cNMOwTEpg7KzSZCSAzLrl+84qxJs5d9zQ//9Igx3Oev4uQPyxVntQ9OgdWWGSC6MDixl8xShC1vtaKJkt6D7Ra4dyKfsUU4mnBw3eyiWIMGJcMRWYrmdACXW+yPEhz9qxfM4EgS6YwDrthXNYwqKMuSGxlI1xhzNAOsgTue4PzPTBEskOwAbwn3f2OH9Bsfwy/XcI4FCZRlkYfrN9suuAJddiWGPwfCCWVKSCFWIRJYigUyDujmQB9AwkaIz/iOdkADtAaioPdYgnMsEovPBYktQVgsO6Wk8yJnd/xzngEFB0DUDcJuB/udZ3j4PYvw+AznvzCFqQjZIuDqFx/CtAGjZxWSVQVzOe+ojlnKviVJAjQ7hKaOCxuFw51GXNg0Cx2Pu+8uxcEgXtnmeMZjrGbOOcQLhnqLmhGDf1jLBVDvOwdFIpgihzk5RuwQtHFdAdMafm9fFZqUcRdFQkeED2yQtlhHnD7Kz+O5bFercMwZ9ze3zCFXXF2K7Gja3kLO9rvxe/QtdwVKCQ03PujL1KOJmu0thgqdVVUUjGkmHp/BvhOz+e98FOsBWkw3ziGMBvBlCvO95x2bBUA9TTBY1+zG+X2OT1fgvnuIDP6NHiZyvGazGgJYVSBf/IClYg/fA8TfAegKK/pZ0MXgDs+7V+x5rSAqGbmZjjmL1ODz4oqJ+9MJ08luFzxhDPGgu10wFczajj+sWcyuQvPuKZKrFWOFdcPBIMtilxoaj4HVqrsxScJyeO3LeHYEWm05Ay+4uwuVBdA61O+foC0sKADUeky/teTMT7biZC0XIYUzqzBMaBrm3krGByIs//QjLN63KK8C6glh+mGD4deewl3dwEvmo9tYXzdwi2WHa6rJveCtIQTuJANI8cjCZDbS6hSvPcCygQ631K2wBnqi157Xa7CaBHMtysWtdZ8eZ9gjBSdHmP/MKWb/fB9NnMK+6vBKhaPUdkD9Z6o6NrB4+Ooa7Wfu4fpnRqjHBJcTbr9U4DO/GmAWqXCiieGE7V52XwVT+DxznyEwCBxrFyjvioscbDdQ6qMRL3V2K5RCpLgkUpLwNl7ta1N22It9RiGQlPQAVbm8yshZKeq7OZLnHcxgWRCDhBkrfRl5hOyubqKHtZpjaZFcuwixaZeJxVD1hteWdMqbPyg+A7LYpgcUxVBVXWFU7Fz9vgKFpIsfSndU90hVj0LgIYDZI5EOSR0uL4s4ZRnvfpdrmCyDuzeFfXULc9Uecty3O4z/+QegxPLc+pHwKgHi9iR40wVJ8RvoFy77kMZdC9a7vR71dQfsk5gZU3c+xTT5zUDP3xsqXOizWtDh3jGDI/abUHMmJd3HgkmRA9MxF5NGQ4YqgLjV8lXnDYF7J5zZAGhPx4AhuKMh7O0G1LrYJYTSNOKAfB7HFqREwHaHMBowne3iOmbZSCy08Wr7+BjNiAuJybLlYNB6BJUl64JSNxE+QJFHf5MwGoBuFqB37+PFnz2GrQNMC2weEd79h3OEP/ge3J1CbrwfppsMgMAdvW1qNDKyLMCI+Kb3MfONuHbwvTryndqFDwf9D/kc7QF01nuorLoFDoN/tPj1QLtjSGhXYfq7V90Ek+ehlDgOGuwBgzSw14l0CKKTI3b9kwz83scpdj/7GVz/VAZbEc5/bgByAzz6B6+AJfgceQZyNkrJkXLQVbWmLlJRjVvkvMD2uvfQdBIbYig/n+sswj3ecTD2dQOK2a2IXTbb2CWGaaKyA5T2ZWFfgQZFN7e0cYNQDKNpm/D9QwhRraiqQaSSzVPXaAFtG1kccaxstjHj17EEMPTCLn1yPzSbNsRmZrIjiZTDpmGhlmTZRimnRhYDuI6IILsGNWAL0xHw9CUo551juLmF111c0zJNNcu6ukPbIoyHMLvOEwgC1fB7GvheW7vvV6D89ATuvlLxLm59J2DGwlOfNtgLxAfQBhAnX6TvCU1PP+s1sykcQicADkU6dwQ8+jumBOUHBZRu9eXJZnZVxIhpNoW/vu3wt6KIlWja7IAsxfYLp7CVRzuwGHxnCXI+PnT1NaE0YYx8OuGMpG54Io4GjFevVsxagEzm1sEfjxGshb1awY5SZIsaPjGwmwqwBHO1QPWFB8iubjqXNCfigZx5xe39GSgA1bvvYv75lLHsITD9sMXo9y/YUMoJxVKgDq/0LLHbJBFA8L1quuAj+Kyq1+J20rmD4mosLMp2Wl4kn2u68RIIPlbsDxlE8bl619n0HoyHXiIgcI3f7YHopocOO1fb1CwDffZdDrAXV/DLdcy+wnrDjJxByc9jt0fY7lD+y2/j3W/N8OKvvIN2ABTzgKtfvI9iforxb72Av7iS6/RxnDEdj2sAIRBn1GUB0jZozjNtVCEU7xFeXUa4gXyAr3s7Ncu+JMqP7mO7djKKgZOShGsyt3MOwje3DMEs19FsSsdytEUt8pisUKbYe9M5IWrTA2FbBOd5YcnSTq9Q7/h+W8uFxE2PkoXeDkl3zOIVQknKO5EeRZKshW9bqbMUPK9SsVZtxJJAWVsAP9cy5frMag1MR6xqvb7tEhsNxBagR/fZg/7hMeAC7MUt/KiEOb/huZjnsYlxLNDnvfjxfeqPn47ATYcB+DUlI9BBHr4HYQAdH5v6WLc5OFefS82fcwcuMZ1ENmbf8bWum8B9yEU53uDtmBkNZRu4iys6ZAtPxnR4bF2DnnIxQn0ayJrYNxGjAUJisfvsMdK5yHMtYfDhnItWbcucT+8ZzgB4EM0mHRc4EbhF1aL3zxDmS84Gm4a7qgCo7g9Q7mtk8wpUt0ivdvDjEuZmhbDdIf/uOWde2vPRWtCwRLAG7uEx7GKH2z99iv2RQXHr0eaEB/+fK/gPnjCObdmL2feMjXTRpCwDPvsYZrWDP7+Ue2/4WQjbIBaD7kBkXBC+I766K87S7DtCXnc4+3yig3PCZt157zTyYE8Pll8rXBNa3y1qUZEpNLKjGeqjEu0oRfHsJS8y0omHipy/w3rLOx8J4GG9QVhv8PD//h00X3yM868OkK4Drr+UwDQPMfytRrJGznK561EbbQjMoGQYQlSAIYjIJ2oTAtzVdQxulGUIApvAh8ifBxADh7rbGcneiULsqhPWW7ES6PBfX21j93jOeD38YsXZqvMdi8g59rQBpJmAl0IvwzAKfYCkO1CW8XcT2TuI+Bq02YVAMf0u8cqqUjGPV4xfkgYv9sWxjZjCHFrwzNgIDVUlnXE6W1+/3cI8e4Vgu1ZqEbrTxU52hT61SBYrhseqSnYTthszQGdspVCcxItPOv5YrBIi+gjACrxJbUMIXyGiYwD/HYD3AXwE4K+GEG6/33mUDviJwhvq9X3sB/Qep/suphnVVTELD+j7nGgGzuc3r0Ey/ez/gOmiC4Vciyl4kobtrqOP7SuY05OufZRWylVJ1bad+5t0d6HhAEgs/GwEV6bwuUV1nGL4ZAN7PhestKcQGw+Zz9u0HKhbJ9X7EC0mzXiEcDRBfX+MZFHBvrxizxJRXfrjMXyRwq6UTtXy36zwm4VTHFYrHkzvPARCYMhmtcerXzpFsmM+dnnjMf1Xz+EuLjuJdRzApsuK0QVAenQftFhFnD5yi7Upbq/Q/Jozo1D3XgvovSD/JgrnG3/fZyjdNR5LUv6cPt1TmQqyyKsV6F26oTk95tPPl4esD6VyamEueN5tDUrOvnWhOzvG+V+4h0BAsge8Be7/42ey0HX4cAxw/UJskjA+bCQw100UsACcmSpThsoyWqbGZ6NBTKAfxuxN7JSOpo4Lc9wxrde9hazb/msQ1O45RIzZc9/TPdNJZewiScSn3B0IcFRCrgV5AMymWa47ho3ARLHNnOzC/XbLCl6hIkaYpN+UV4vhasWru4z793jB3e7iNWlmbU5P2Ju+t7s2jx4wFVSEczFApxnfMxnnKtsPzsEMBnyNQlhQNsy/cr/6iXTATw7pf/jjL4QQfjaE8BX5998E8GshhC8A+DX59x/q6BsxddtVipP39SycqW8xq+oVDRmztt3E7jE/4oTT14deC7CeeOYgKPQKpHqN9mjKg26z4YFvLD8g7RDjpXeetTAP73fb6eMpFylPjoCjCfDoHkLTwJ2MOTMoLFxuMPntV9zFZl/FXpFU5Dxpr27jVircLnhLKdACFcxmCW0LWu+wejdnxsWIcdmQJgyV5Cnspmab0O0euL5FGA9Y8EEErDbQLiT06D78lN9v9g2e/+UzpGvAJ8D0owaTf/pdtM9fdgIHnQhADNqkbAXvmUXy8oKLV9JMIOhi23+G+v6+BUJUl3Z/jxj2nUW3fxzYeN7h9b+WhceC9J3aij2E9O4qayGOemFfwT17Cff0ebcLU5jBmpiB+9WK/9Y0XVu42UQK1ks8+LsfYvKkRT3mz7z8pXd4AVXlorVxR6Nj1JRFJ0oZlLxIL1fxOgBEGqYGEKXQ6Vb9NbfO0HH09X1c7HPse6PfUQp+mrnqIkBJwlCH91y0lL6lMMQ7Rr3XDUMbZjKBOT46ULpqJ6PINjGWfV4AnmMj9qYPu128/tigA4gNnNU6mrK029k5F2X3yjBRdaNfrXkXJYKceH8TG7UWfreXbkxtVzwfDIDH9+P9C3vO3EMrLLBefYWs6kfk+95NUu8c/y4y7q+EEK56v/sWgF8KIbwkoocA/mkI4Yvf7zxv8ip5o3T9rhjmjmHUXWrf3az5ANe+Q8J/k4y9KzoeepcoawTEtCCl9gEQt7peRiXFQ0pTLtYYwz0c25abJRgD2u7hzmYg59BOCqQXK37413PGu7Wh63QUJc+hECn41S1PCM0GVH6tcl8V32iWUjdw75zBDRLYDTcBTi6XrP4Sjwru/5gzHPKqWyDgPcLxFC//wgnsLsCnwOnvbmF/77tRWtzH/Q/Mf/TZ9CCrvl8ynz+88RkdjLn+9lK3w32uvWbnkb+bRtbCgZq2Ny76z/7uhInXcMcOQc/V/9y716Jslkh9FIXhwZzrb+kVjhDnPyzWfD/aFu1PfhaXPzNAMffwCeH4a7fAh0+jECZiotriTa+/yLnLihQYdQcEw3i4324POtjruSK/WuEXLcyFblehtYY4N/S76RyU3UB0PtTXON8F2arm7FtM1lSReVBnECjCb7eMvfeaGSgsoayk2OSgl0UfeLTIOItWAP3CuT4v4LAzlXia8E5K7Ha19djZSSeWm41B13OE6RghT0DnN8B4CGod3Mvzg+cNoPOB6Sl/eQHhHcOvN7+KZbj5ofC4A4D/NxEFAP+nEMKvALgfQngJABK87/3As/SwxHjiT9riOuZW961RI1zSF9UAB38/wLk1a4Prttv9xUIwza5w1QVtk6XMGhF1m98zpogk4SANsIw3l+aw4qqHlNkFYbMVJzimbqEsECZDkHNww5yD9u0SOJ3x1lSVd1nK/tVEDHesuR8jxHUtOMfXAMQsSmX2KLnRLIJHeP8xAKAtLOyyht01jJWrebsGpyyFWQh90FhgOkIYFrj4+RmSDQft+7++AL75QWwIcOdhgSw6ZoDyXVXMooVHoMvCXW+r/4aF+mARfYMA626xMS7WDq/XL/T5v6G4eeBjE8SJMvSvxx9c3yGzqQenOPHDhgQECSYxOAjOrG5+bOYkvtlNwza42z2C80i++QQP52e4+DPHyBcBz//yMY7/YIzyf/gGtHchAC5W7naRp03KUhB/EgCRjtlJ3ptoJNVfXGM3GtM5/gGIO1NzNOOsuaq7gqQuREXOyYNAP5HhIkKTIOOBcjFCE/Vm5NbnjPnTaMi1miBURiAGeqRphBW4mCmQivp4a7EweITQMciCqzu7235ykWWHTooypox0hEfwPWql1OL2vHD6ownjF+Mhs7bOb+Bv5rACD8W6giyMUVRUVbFhcvfZ31/uDvzxA/cvhhBeSHD+R0T0zT/sG4nolwH8MgAUGOBQ9IJO/Xcny+mCLoDQdK+1GTTAHmRcPepgtIbt4aVatIo4uVyHHjGTShNWRIlqDkMbBQ7Be5gJb50IGUJTg4Yl3MkY9vkV/GrNmY21HVVwJUIQoR7B5Ehf3rKZUCvCirKEn45gFmtWzE2EGbLassIyiICnktZQ1gBJjrBY8RZxNESYjVkFWUq38V0NtAkG37iN9CTac3EoDIpuDZ0vWbwjRj7ueITzr46RrQJ8Atz7F7fAB0869zfdtcQd02G/P63OGymERbOfnqgmZsw6gVTd16f3GQKZJG5ngTdAaHc+84A5pDWQXrbNXhU4/Jzedd3FwKO9sIw9Sjt1nY41HVM6hqLPDVyvM7nw1j//Lnb3Byh/50kHiWUZ76YmIxamzJfA05e4/2sVzv/CQ2SLgIuvpLhnvozBb3zE3F+BLaA2ranSzSjaspJ2eLHSRWe/jw2Tfb2Li1u/SElZCr9mM6ooMQ8hMpi4U8yKxyZ4+lCWRhYLTSdcTM1SFgvV0kRBs+HREGG5ZhWw1oS2uwh/mcm4s5e9vmGuunjG62Lot1vOioXTzfe/0wUcYPraULg/LhxzxO/aJJi0w8JDr8juteenPHdzPedesNMhzPVS4KeUIaqmB9uMx6z6vJ13i6V4lxhx4wQk7r2ht4wefyyMO4TwQv5/AeC/B/BzAM4FIoH8/+IT3vsrIYSvhBC+koLbch0wRYztaIBvKEBFio8WZnoY5UF2pufVbD54hKbXcR29zKx/fcrPtkxNMrMptG0TKcTRtDAnx1wE3Gw5Yw2BcW7nGWYoizgAaSDGSfKgaDrmwuJizRamrWMMuqpAizXCZAizWPNWcDwErTag9ZYz8eWacekQQKNB51yng7YogLKAm5aARwzyVNWgZy/hL6+Y5H99K4ZXlsU9RJwBBQ9arOCPx2g/9xCvfmGMfBEQCLj3L64RvvXBgUn/ocmX8uLFF0O6wKhjIPfyqw/ghYP36hi48zwAdHTAPu6tz/ANmPhrGbkepsvAlDd7MGbuwCo6dljgJYXsfpekO+Onfy797JjJK4aprCfvkd1WcVz4umEGhBaxdxX3lBSxzf1few6fAfkNcPVTKbY/9z57wzQ1aL3r5N5SDPWbXedjo9c3KAVKSjr4I0njtYYQYI5mXFBUpaG1gPMwZyf8vgUHqLBasceMOvdp0Tx4LrpXVeR0I0lAE+nQAwDewV/d8Hk2m85PZFDGoBY2W7hXF7G5cuzJ2bNq1fvK8ndzwE4BACudeeAFw9aYYHhhi+NU9Qtq7qZMFyCOZ4AXpshpF2GROxrDXC0QnRvFXsAMyy5OVVVsEAwIXCLXwwKisVgF9BpTv+H4IwduIhoS0Vh/BvCXAXwdwN8F8NflZX8dwN/5wSeT/79hsgFAaJsum9O33ClA9TOl/ta6HxR6F//G89wtSpIhXiGLPAodwn6PsNkBN3Pmb253seKsDwZNzYUmNepPEt5ulSXIyaQ3xAKM5YoHtGLeiWVPA2s4eI8HPDjFzAchMKtAuoTAGpasE3EGUnEHG8zGCNaAXAASg5Cxr3NYrbkAo2IX01GughoA+QCaTuDvHyNkCV7+4hD5PMBb4Ow3bhA+eMKS6zvPRO+9wjvRk1uLOVK86luF9hdULQRG73FxgzNFHrtxU5Zx1i6B2mQp//tNz7r3nPuwxsHE7V+/MAAOAnhT9yC47v9qCXpQV+lBbofjzRyMz/51+NUK9PwC9oMX/FLL3wnOwW+4W3tYrTl4H08RvEeYL/DwHzxHtgrIFgGrxwnqn/+SOEhW3A5LCowkgYd9RwT7Vmx3veEkQcapvXcKM53w/ZYioAZYxZZhCOFm3hUIRQTlr5nvz0V64nqJQkJlybUXYu/ysJWFINqvZnEBUxpvWG/YYsAaEe8w5zuaRekYUjWoQjuaZafsYGjKQvxvqk41aXvQqT4irSVpwwR0Yp6wrzqTLYDPLTsWEufO+v0z2KsF/HzBKuHFiiX2QFeU1gRBOlnBOWkKImNCYSLF9emTw/MfByq5D+C/F+VSAuBvhRD+IRH9JoC/TUR/A8ATAP/ZDz5Vl/0Ad7asZADq/EO6t7yJCeC7LKeHUx8oHPu0Lyj22WXdimlTmsCensiD20v/QANYD3h5iLJtpLKAGc3Ep1k6aSguHQJvT4+mwL6Gv7rhFVWDihf+5oQVle5kzP7L8yUXCRfrTmQgvgo0HDBOmFhQw5aZQd0AZ1PO6q2FHzBrxGcJ7Ktr+MUS5uQYNADcqwveDQxKCfAe7ekYdrXhbWyRg+oWL/+nRxi+9HA54fS35vDf/UgmsH0taCsGCSf2qkYGq6HobfFa8bi/VVXGTrCHvwc6YYM+Mzm//lvHgSllO6w4rirt7rSfUy4/gE7Qo9cu8nH+293POGSj8GdRhwtH3F5fcldd2+ueJHi3NheOdNJeQPH7CqYA2/AqtEXMxDj9J09w+Rc/g2CAq5/O8WD9CPbbTyIDIwj/mK8xjYZZJD1CqcjZjle7pa/WXJvJWITCcAUzJbRAqFJ20oKgYNlIkpgFajcZMxkz5LDfR69yANGETBlZ8T6OhiBtzis4cNhXnYmU4PJRDq8K0eFA5l3Nu4seRh0NupSWKkXKCM9JJszPWNggGlT10CKntEzTXpZQ06rNBun1pnM9VJsFobnqgse2s2wHS9IVJ3rZS69Qr0Xa/jh7w/HpcQc0f+nNgVuOqI4E0Je/yxsO/w1029iDYtTrmbq+P27Rk4Tpb1LdDrudGPD05PIAFxS0D+DZMaiqY7aKtoV//xEAwN4sOQhu9/CXV9LBZsYZ9e0S6mcAkkCv+KE8eBoNufjjfGe7KtSqULDsvZ0WSC6WUaZOTYtQZqCarSNpveUBZYgD/PWtME8Yl0cI3FJsV6G5P0VyswHmS2x+7n00AwOfAONnFZJ//W14XUTUJRFdUFNhg27JX6Nh9SdDjwd9928Hi3boshWtuuvfVExxtzuL8oUPurwIn/igk0p/7PSK3ADiVluD/93ay2sukXfgttcKq3fu1cH3BLqFqg/rSaDx2v1duwkNS+Dyhu/h0QwXv/QItg7YnRk8/GcL0B98yKfqNc41kwlfq3p+6Lbfe7EurYT5ZMXre8cZr7oAyoJrRsMua/WBces0FQzdRJ60fh8zGnKzEKHUhTKPNgoAeAerxlziuBgLuUDHHpHiamSVyKJjpmOeb2pJG3xkK5G2QFO2iw8RCokdhOTexgYgykvP0tgou8+7V9sHMxwgnMyAFxdA8Af2xPxipgPSUNqkAZ2Y6XjG5/Y+4txmWLJ6c7WOc+jXq3/wI+AO2BNa3M2WD16mqkrvDqTwBxTBg9MSVPUW2gZ9BV1/ggAcHMzZCf8pSzmorTccyFNpIfXinIPqZARjLTNC9jUX9lrHPsTTCcxm37nwLdcI1sA8uMdZjWDe7p0zmPkG2AkeKf4fMAbYVzzg50vQdMwdV4Q7q37PjGsHuCJBkmeAAdpJgWS+52418zXcy3OePONRVFZqwRGJZfgkT0F1i+bBFMn1BuHZS+AL72FzzyJfBZTXDunvfQSnWKfaE2hQTRkK0nZOyiqIXhL6DHvxEkCXydyFxuJz7BX8evgsL+wCiTVdBSe+Vi1ZIYG+j4d6D4IEjboBlC0i5mRBx4XhlmhM5eyMsULbk1NrEA6+O8+dIyYhPVaTZv53O4QzRpz2mCesJtXv6dcbGIBdGk9mXLBerXH2/73AxZ+/h+FLj8s/PcH99SOEj591C6mTxh1ARzdr2yisCW3LTYj3lUB8PcdFFcwIZAgA2ENcCmvx3FnLeOrw8tjabDAQhahkx6J0DMrtThJQgl6D4QAaDOCXSz6P+pP0dmSkLn+KdYsXyQGMYojnbpFLF3qBW0Wcpri1Ov+RIYaSNLHb7mQx6by9qSy4scTxDGG+QvjoWQy8umtRSia7WW4O+rny8zbwN3OoSCuag41GfK/feww/yGA+eomw/+Sk+tMTuIFDTujBH5g9EE2hDPG8vpMlHRw97xMAkfb3mvINiL4HNBkhbPdxgNJizXQ77zlo7yoEkftSVSOMJKMcl2inJWg2QHqecZf15ZqtGTUrMYJFNy1ouWG2yK5BGOQc4CXjCet9x0UVGlTY7WOfSfVkRpIANwugbZGMZEIZw9zsIoF9dslSXhEthM2Oce88Q3s2QbLYIRChnZUw2wZIDNIPz1kJ9t47eP5LM4yfObiUMPidJ3DrjdzvHgYsz8rORrzNe/GKL0Mc2oL6x9wtApMBYKOCjPAGE58877JQoOMhOweTUGQLaHAF0LkEAlEKHXFzFej0OOkqsac7AVmDQdBrJt/LpAS6EzycGTI9b/Y3FLwP7RlEiRkHZugmv47/1sdzKNVS/+a3W5jAJlthNGCzqMsbnP1mjsuvTGErYPEzp5he3TAcIqZJYbEUCfyEmTBqXSqZJ233XdAS1WEIIbresfe3kAaUMZIkCBtuvWaaloun2x38eg0zEPfK7bbTMkgtBiryEd91Nbny2j2nYkhCmxoYgdvIZ5wJV3XsZhP2Vdz9sid86CAnKaZqncWLRB6eDbrUiiJU7JUe1ps4PmJXe23hF7hQqkI0c7tAbGkWF95G+OE+3kvdCShdsdtRmYNkxC+WwOffxe1PTXD0bxZck/g+cMmnI3Br3UbBecFPuyArA73PGAHkJgs9y1owYbfzOukXjSIbRbnd8QFlMNOJYHFV7AMYrm+EEcIV3uZkiPQVN2YNacbZcZHDjQvYTQ1TtbCLHf9e3scKroa3VbsdC29K5tka7xHKHGavzoFsMEXjEWOKatQv1xh84Ia96y3a9+7BLnaM6xmCXewQcnltCDDPr3mxePcR34/lmid5YtEelUgWO/hhjkBAPUuR+YD0yS1XwacT3HzlFNkiYD8zuPcvb7gdVV8Qodx2wbX9YgXMF1ALADRt3Jp61/PFcA6UdcKJaK5PxJCOtUBCnBGHECeCer6gh3VqZoM0ZaOqaLXZ7QJit3Hd7vbEJ4oBR2+IsowWsqri1PcCkOsz8dy6SLzGjNGEwBBCreIaK0VOHEJMGqwbWaB1HIduEenEPaHLvN0G5DyMMcB4xHznl1eYfbfA4nM5dseE8Jd+HLNf+w602BuM4e/X1JFxhKbl7LHM4AYZkvOFBBaeGxrkzaBkTFq9069uYu2CEsMLxOkxwophNDubCWxlOCPf7DizXW/4M+OCJ1n/eAx/c4uoTJWCvnqrK5vGVxVILGLVDAtCCohQmM6X3S5i1QfQmS7gzkE7vFOSRI9uI+wTv1wxRXTPxX6Scdo8niF7chPVocEHEAX4puooxX1BnIw9LrRyEhB6C3O/1RpeXuG4boHL244X/wnHpyNw69HzCQm+3/Cg18OxbQBY3HUT7DjEffXcYWU/Dn5vAAIXHzXAKtm/ZVw4EvInI1BVI3ty1XXjSBLAcpYSToZwwwzJixumBE5GCIMC9b0h0ustaFuxJL1uQNRyYUc8kMN8AUThRA4/G4NeXnSmOhrgQgD12j3Z2y2ae2PYIoOpmo4W2DA22X72AQf21ZZZAVnGgqGmRXqzRX02RDrfA5Yw+GCO8OwVb5WNQf2FB1h9xmD4ImD0okH46Nnh/evjuooHyv0yOZsdqSiChA1AMjlit23qIA4ysmU0HZaoWDWCj2KK2HJLVaniHqgUNAAHwgXmecsOTVkLQCfQ6Eu6vY+TGCEcdPEG7kAiismH3vdTnxARHan4JiYWDoiWpqo56NdV0gxa2AztnV0kGSC0YE5nJ+6hRtgm00mEz/LvXSA/eYxqarA7NZg+OgO++wRB1ZTWcKCWpsNhvUY4HmPzuQmKiwp+XPJ3ko4sUIWgZNdoW4S9MDO0pdl+zxn0csXXcf+UdwEQSfyOM3m/2cb7xHUH4iRlt+dCOcDy9STh67NsAgVDoN1eWq8x9OLnC/5ZGg27y6vI/49dbdT0yYg9q8rQ1YfbOYZPwMmBF9l/9PIObFEQPVJOj3kMN54XEcG0FVpjfQJ7zMcmxorzDwe8Q1AMnExMROJ43VcwRyXCs1fibW+6Xd4bjk9V4FaRQt+vRLHu/tEXQrypMHkAnfSLT/IeOxqyUtD72OlcTeNpmgJnxzBNi3B9CwJj0fblDRc9xiOACH5cwo24gS5VDa+wgxLueIL9wwHKJytuEKrtxIBYcAzCqY0WjsczZoi8uuTzlAVfS1nwQtQ0IKSsfkxZzp6eL+HHBeNhIQCvrpgdkiQw+xbb92cYfBBASxZltJMCyWLHkvqrLUJuYZ5ccEB8cAast/D3j/HRf5xj9BRwBTD4/Zdw6qimnPkoYGm7gBU8oIukBs/gO3m1BU+a0Uj448LxTTqmQ3xW0QwMHV/fWvheZqv3jx+26XjdQI/XS7GbSezwva+Ehz8A+a6ruSruSJ+R0rfyPGZF2pEJoYkLUZRM98bbm/x0yGqCcedPPa54nwd/8H/lWvd1Dpa78RhjgMUSdHrMBezdDpM/uMXNnzxGceux+NIMsxeXzN7QHoyJBa0qrs2EALpeIj0bwi4rmNUG7nSC+he/hEBA+WQBvLxgFkhVAxkLXLToDGsAK37jJzPOuG8XHFB3O04apI7BvVGHLPhR6mrDPtvUszyInPGygBEKoBcxC3fX2YiboecAJ3Bb7LkKHOyWlKdPWQpsXCfrB3r+NjJ2BiUvRtp82Xl+toZxaTQNku2W6aw+AKntziFWuxRCNOyKdMwk4euSxtT6bBWT19f6m9uDXrIwnxyePx2BOyAWeMgQQsuZSp8JwviQ4t935M59BglwGAj6rAUyzCk+mvJAJgI2UrRppLlB67ijuDFM0XMO5jtPECTjIFegff8+XJkge74A5stuog8HgCWULzYwK/FcrsWovSh48Oz3CDsXGQIocmDFrm2qzDLDYaQZUVkyvKLe1lnKOPdiDSoz5mc/eSGttIb8PRqHwXevY0EzpBamcWiOB1y4LBLYqyXC8ZQxd4FwLn5uimQHtCVw719v4a+uoXLu/ta9eyacxUS3NWHDxA4+fXl6lsYuK0APg9bnpIdg6J0yEgfKw8jQ6NNBveNTqAWo7gpasfysqm5LbLnOEBQz1+KjOsoBUItRQCZfkYPA5l5qYKTS/UDCrujh6F3iIdz+A6bIYaGSZYasNAV6PjmRVthTbkqdJu4o1Tp0sWR5vPfAaovZt3Pc/sQIwQDzv/QFzH77Cs2DMZLbHej5BX8GwAyPi2vkv/kdXoAnYyx+fIzbLxEQCKfjY0yu5myAVXVBJ7QtKPjoFEijIRfYjQF6XZngPO9g8zxizREqMXwed3N7kNjQYMBBK894MRX3TG0eYSZj7givdRAdh+gt2k3TURUty+z9UjrrpBIUXXrQ+zLy2rWpgzVx50Pi2oiy5O+62cYkwOTciDkEB9QGZjLh5EybW6Q2QkIdfCZj567Xi7XcOm+355aHN592qITQm+SHF3vo4vYGe1cyOBDwvCn7Dh6U5IxViQCAtNmAtVKlNmh//DHSF7cIt3N+aHnGme94xFBDxUyM5PkN7HoTiyBUFByAdQDVLW+5AITdnq1c12vuUQcwj3NQdNQ8wcFiX8IyB3mGFPzxmP2xnYMZs7dyO8yQbBPQ8wv+ncjo0TRSuJEq9noLzMZwwwxm18JnFiG3fH1ZKuIdLmyuvjjDzZ9ymP5+gnwekPzBE3h3KGbiW8yYnjJH0DT8/YGD4gsXG4lryrkoJpt1Ry3To8eyiJ8Roa4O2jpYOMjEAh9vh7uASaqEg2R6cdEPMUCE0PMHL8tuzGiPRtvDoYVLrDCVZpt9jFNbr2kvShUf9SmD/aDcG9yxXnCwIPaLmYbvYbRv1WeQJJz5CXZKFbezQ9PCXi2Rr0qsH1pc/yzgsjOc/trHbII0HsFfXgPlMcLzV3y9ZyegmznCaIDxRztc/ckBxj9xjdv9Ccrzd5D+mw9kMTNxZ6ke7TQaCr9axTRpNyd922HsgiNHQ6g71FEdv8hS+P2eoQd1K6wbLnJKoxBKeQHWfp9mNETYiZ+K1juUA673uw9pWdMFd6EKBllkzGjIzzvNoC6Onb4gcIcouX5zcswU337T6KbuqIxFzjFkvRH73hCFY6oiBtAVIZ1DaFhkFEJAyH4UMm7fm8w9ihSAw+wDb9iOQgP84d/73GxzdorY5HRfsVBlIHL0EICmRnK7PcjckaZA2nAGsd/HgRHN2msOpqFpOCsIAfQHt0zjO5qCdpyN+OvbSL3irurif3Bx1bFOkoQnQdMirDYIJzPsvnCK4qUIEh7dh88z0OUN7Fx2CdYiWAM/m8GstqCNE9+IjUzSIdykBPmAdsaLQTvm7Vz2wRqhzLH+0glWjxMku4DH/9hjcx84+vqSVWN31GUH91stOhWHk3Zi3kn3bPQCbZ8iJc+nC9Ld8+s/t7ssjcOxIOcWiXY/Y7/L9Y6MJL1ua+DrztkPO+moIuNEpcaRmqqwiGRNXre/Yg4FNWjqYZIRc5fdRtyy94N2jxHF2PYhNTC+VncZ2pXJEODbKEoJzjHeGgIX1kQRO/xojf10iqNvEJoB0HzmDHZVAcIppqrm+oqOv+kEYbVBAuD+bxQ4f6dE+7kGL0OJ975bRtUrJYkobg3XRdbsm6PUQaQJN7lW98AsY27yaMg4cd1EnngIgb2od/tIj9OxFTasn/DbHe9a2hbu4pKH/fERolcKwPh7nnfFRN1Z9Rr5Kryk/ilamwk1uxNGwdVedmc57xyUO27GI16sRyVTArOUabQ9XrivKlZaqwp0z8pPKktm4qw3MCfHvIA1bAVrz0669oaygPD7A6h5A8NOjk9H4AYOBu2Bv4RsQ+O/NatSDFyzqP4WU2lolHLT3smYKXrWCs4U4E8mqM+GKL59HlfzUAtWPZuwJ/Vyy/BJmnDBRYMvkWBwBn654vZF4lVCYhTDMIVBWKx4UA8GbAR0PAWWG/iXzAc3synzumXVbd6/h3qWIr+ukN9UXJNqGoSjEf8MIGQp/LiAWa1BzmP3eIjiwsDOlzyoANByA6QJmlmB/UmK4qpBPUsw/4LF4GWAffgONg8NAgHbRx6zbxGGT7Zw6ZDpcYYQmkNqm7JG+vhu37+hz6mOuKPKd3uGUwfZe6+N3MEzRy94og8/9MaGqiH7gfruoVxzxcb7zRjks0yWRm+QiLdqANV+gXeoWX7LRayYHe12LHjR4phir3LdB+NTFxSBB+P3F0WfFjAPqLGyy4jwQO9ec6Gt5oA5HgHGwCw2mH03Q3Wcwe4c0vMFwoq9QMywZIbTdAxabeCJWLMwHbMHjgPMhyX+6l/5l/hHX/sFNk+6uukgL/XWdg7+dMqmSmUOLNdx88sZK9P/tF1bEKMrAECe832XQqNazprRUBrlCgRXFoCxCLe3UMpo2GyZadKylsHPF10Qv9PIl9IEphD71PUGAcLp17GhOLIylIZDvv9tywuO+iBJcTEoB3wt3jING2bFZyT1EFVJqpjIDAc8z3da4+ocNWk0BBaOFxYgUnjRftoDN3VZFoA3Zlpxy97j+na4YecPQUk3wM3JMd/s1UaMbqRQcTRF2NXIv3bOWykipjhZC0wnQF0xXS/PEAaF4NViv5kkQJGzr0ea8GBYrrtrcZ7v6r6KA4yKEZ8rBODqNgpEaDpheXqZwdyssP/CfWwepcjWHvU0Q3G+hdns4B6fwuzbTgSw3iI8WwD3ThESi8HTFbcAe3QGulkhTIb8nQYZ7N4hXRks38tYgt4C1z8bkM0N2jKAPr+BPy+xvWdwlCeY/f4c9ORlF3SADvqwlgNDVSHsmsgFVo+JKGToBVM19NLn1Ic4XhNX6ft64irFt1WME7PjnpT8YAxYe8BOieIrDZyt0NB64i3mm/P2PpouOQcvdgIAet1qJCmQBUTbfZnBIAbwoNcjE90kBK+Z+QEb6hMWGqLD7j7976GMJ+qMsCLlzAcYayM+m8wLpovuW+zfP0H+r2/4fFIkx2bDC1eecYYbPML9U5g2oDwn/NzwA/yz259H8/gY5uU5KGFnRzQ1wp6AnMcthKaKIgcqkWtLbSBivTqWipyhtSxlnx6l/Aldz2ktRwJk2O0RDZ8gEFUIbJ0MMBVVdy9ZZxXMSmMuNkK8b9RywdiulySPlX3s9IOmjm3TVNgT6gakismrWz5fkoDIw9c1w5rSZSj2ndQxKnHHnV9Gvx21W9a+m36+4F0cEZBa+NWauyd9Mo3730kHnH8nx10ctfeH7ndiJHM3aMf/y+/seMwqxbZlUv9sjPC5d/jmJgmw3XUue5Mx2i++y1ixtfBHo4MGB+Z2yau4Wi7mGZpHR5xxXM+7okOvlZSfL5g66BwXNRxzWrFc8wLi2cQpjAcIRYpgDK7+wrtoxhbJPsBlBuVHc1Dj4E7GMOuKubLbPfsb7/b8PUIA3SyAb33IiwQRy+CbFs3xAGZTIRCwfD9BWxLmXwpoSwCe4H5qjWRDmP79IWbvz5Hsge3DHPT8Am65PsQeNSgGz5mTVMejCXwPnlDzpK71GB1mq/0C8h0GRYTEkiQuABEO6T3feE13g38vaN81nIq0NtNRSaMJWS+zjVabvQw5tFyci8ZKgbuTa8eY4KQJsucGASSNdpU7DGO67uF37mlcEIUuqdl4/7vFn+/cg4P3y7X6FfcLRfCgxRqmatEOU6zezVD/qR9j0yVilSCNRjxeL66iH05IDAZPVsiWAf/bv/+/xO7UICQkzIysgxsAbp3nPcJyxT4hVzdw0pADQbruSME94siOvX/C7Tw2/OCuTty5iYocdjSUxUrGj2TjyiYK+wp+seL60bAUJpCYao2GiKrPqgJEcQox09K+lNHITBhHZjqRzy9i4DUFG3NFF8CGA3OYjeHffcBzGuB7LhANyb014xEv6LMp/yzspuh+mIkHjNZ88hw0HovRmRFx36ddgIPeIBSupSrGlPLHVXWmVsVJf1fenmXciWI0EKx4DXrnIfbvH6H4eM4B+GgIbHbszSGFPHI+imZ8ngr3es6fcSpB+uqWtzTOI7laY//+EcoNk/xDmcPsKv7cmwVvuYROhNkY2FUcdGX7TNMJ3MkYVDWo7g3RjizKqxauMChfVSJZTwBLMPMNU9dWG+kMncVtKURYYE6O+eFv9nDHIyQXC2TfeQHuNJKjLQn1FEi2hP0X9yi+XWD6dwZIdg4uJ9x+4xiDFhg+l36H3iGgYzMAOFQxWhupc6ru6z/H/mIb/UiCR+zNKLhtZCn0F2LczUS7vwUHKF0wfl7Prx3oYB39OY6VyPO/00+0x+CIEIYWBOO4VCYHDno2KrfcDEterKQZsBmWsNmE4RRdvAAutFVVLEgCiPf6TTa2KirrdqK+w7utZSirV/iMPzvHmW+ew672aGY5ioXD8r0cp7/DYifuPFOCjo9AVc2CkzQFzddoHh1j+r09yusUwXhk37uAq9mzPfrH+8DF78DwYddOTDJUNYqSXUg0BUszDqIi6lFmBRf2REQjGHXEzRWTlmdE1kRBl5eCpxGf8aCtwRR2yPPIO6cs6xZga9lLW/pt+tu5uPVl4mZYgYZD+OUyesP7ugEtVmyNDEh3Ksu7cQnq2puT6bxlZ2UrrCUzGR0sZgrhoqlBsym3Mry8Yf3E98m4PzWBG+hhn70ilvwhZksHVoy9h2mOZx0d6OIaGA7QfPUnEAyh/L2nvLKJ2CVMRyxf33JfyOTZNft2lDnMes/ZuNCEwnzFDJDjKXwmKj4ilN+96hr1GsP/v75l7m9iEbwH7jG/lrHuJWg0QvOZUw7ERLj9qSMUCw9TByRbh+JyD5dbtCcl0qstmkmJbL6OCwDta4Qig58NYddbXoAmI4QQ4GdDmG3NQqD1GkgzuM8+wPLHhkg3AasvtihepLj/DzIMX+6RbBqYJ+e4/Cufx/A5IVggfX4D71znBxOxWeFpSxas5kMAYiZEhqIIgTHELuCoGRQpdU6OvgJT6X4Hz7Zv4BRf3+1sGGNPDttVkeky756KERFqcIjBTceVwB99t0ANgrG42acfyu8ixq5NIsZj8Rpv2DFyPIq8YACdo516VxzQVtMuQemzYXrz4hMmTbxHqsiLz2XPIpHsOoNpcpBDV5RfcU3GzxecFYq6l5IEpm5RTUq0BWH83TWPp3itshC2LScRrUcQcU0s3Crv2wlNN02FmcNZcHAO2O74GkOIwZnGY1Df0bDM2aVwtYo7IcWlVchDaQInSt2+RNyMx7ELlBHrVQi7KBIB5P5p3AhV1TV9ALj21SM4xJ6vdd05hyo00qOTUp4jnB0DF9cIe26e4C+voJ2ElH5KkzHC7ZwXj8US4fKaPy/P2Tzr2Sc/9k9V4NbjwFdEJ+ObXucDzHAQu2lzazBeTXc//Q5cbjD6nRc8OM6OES6upfg4leLMCLTZwZ9OQY1jPnSeAWXJHWaub7mQOWaxgs8T+MwivVix/FzUedS08Fc3XGh0zImmpkW4uuVMo6pB0wn2n7+HdLFHsAb7hwXypcfuyGD6YQ27bdCOUjTDBMUFO4dl330ZzXuw28XFxKwZKvFHI7ZvLRIk8y1oueHJKtxvnydYvm9ADnj4TyzyeY3i5Rr0/IIXnbLA5jEhvwFGLxzCfHGYPfezV/W2EMtJDVh9D2EAh23MNPgBHU3QdUKaGGD7fP1esO8/5wgbJCm0qzfleacwFcOiqKzssYzQSwBU2Rgzfw0uve+gxmQHUvMetNMvgkeqoRMRj/QmDHUTC1dU2ojVAojKuqB+6HKvor1DXFB6O5K7IjTp6KKc8sjx1owc4GCZJKDGwW4a2E2D9U89wOj3z5khczbjWs5oAJxfcuESAM0XwNlPoLhuYbZVxHr5XqotQB2pkiqIiYpBDXyyK+GsNOX5QYRwc8uLU1ky9OZEqLXZxPOTNfDbLcJ6w025ieAXKw54wyHPc1EgmyKPzzC0rfjcdEZZGuRVgWtmU/65yLnzDlGXjPRqGrHVm2bWZcnPNMv4833ocHQfeDEgw1CRFCWjsEaZR00Lmo7ZYjk55h1IWYD2FdfeFkuOQdKX9pOOT0fgDjgcnCEAdDcj6SaNbmfNbMo3DmATKB0wj+8DPmD09XPmQS+38KmFmU4YA15tOYtYBoT7p0Drub2XYN7BGjaRalvGL0cZqqMcg48XsK2DHxYwmz380QjmovMVYOXluMOa93u4xQr23imax8fIbnbYPRoim9dI1w5taXH6NWaCmNsVbJEjr0QqbQwH7DHzZHE952p7kTFn1xrUZ5w15C+W3INS8LWw24GMQXq+xOnvpchWDeyyhnlxCT9fcNHNEPDF9+DygHpKuP+b24NK912nRTMecUd2KbZwwFLowYs3SH0Q1DQovSYokecXlZVAryCFTrRzhxbIuDfTxkwvS9JiodqY9rP0OH70M4Sq2PUA7OkCNIuXAK/34TVK4t1dgPqMGPEdV8x6PI40V3ZndL0GAfbOtcm4B1hpqaycvkJYfHj0fbGuAnRZY28h1IKfWe2YutY4mFaKq3kGs9ggtA7hxTmoKGDIAPdOYJZr5NdqL8w0RyLiMSDe2mHHyl4i4jlT1YwpC1UO0s2HL0MW4/2eA5w2ZQg+7oZC28TFQeEEI4uy8ujNRH18hJkxX/S+q++aMTsHVAH2+Ahhs2Wa3mgIFAX8bscdaASKCbtddOkL+4rpoQp5yDil0ZDvyw03SjDDAes6jIGXLvNmu2d3zau10HGPQYsMJL0/+UXCnFMNgDRq8JsNaDiEOxrCes/tzy5u8f2OT0fg1kPwstD0t8qdXJ1fYmCKJNqvomGnL7TChU15AGeLGmgdmqMSKcC9FkVA4+7PYIWAzxVig3acI3nnIXyRoJ7lzJ++mcMcz9CUCYrLHXyewjgPs5FK98Utn2M2YcpRkQGbHT/U1Q6hqmHvnyFMhizsGZbI5jV8zpN29I2L2MRAi6Fhu418brZd5QlHOfNhsd6Ajo+w/8J9+NSgeLHioK3cUqnKw7CCcfQ7exb/bHbwPewXwWPxhSEG54S2AOyrW7i+/Lx/EJvhBylGxcfVo+b5Xj8+nkw+ZtXKMlCTLzKe8dlegS6eU2EC7QWa9kztBTM1aspfs1gm1HUnrukt9v2fKUl5gSFC6AVmPS9ZRKc3Derqf9FnqehiEheSu/qB4Duxj+MMEar+M5b5zMo+ULMqVXgqRIUOS+8vQFq8PFCcWrYfiDCRUAy7jF064NQDhCxBuqxRvXeM/OMbzuq8CGqEEYKqRpiMsH1cwjQBw2+s4BXXl8DrN+LvLr40ti1l92qZnaU0Pi8Okb3mB/CBWRviokeCD8fnLwZrOhYAIPY1dYYTtf2en5PnDDpynyEmUcpIGpYIyxVTNsUNUnnjaFrEkSxFT224jEY9RjgoU1EgXM+hTZVDJR5Cht0pcX4FpCmSby05EO8rtiI4O+F5U7Pni5lM2F6XDOz9ewydDArQxTXCdgt7s+bF+dU179A+/e6AvYp5r2CkE0ODt8lF/Tgc8KTVFXYj7ZKOZ/CjEn6QwmxZgZhdrOHLFCjEupII9mqJ9jP3YD98Bdru0dxn4YKb5LDLCvmVZw8QaxHWG2TPUoRBDnN+g+bzD2EXe5j1Nnoio3Wsdmy4Q0l4ecHcTe1z9/KS7WFbB1O1SBaCo/vAfN3bRdd8YMwmVe3RAOmrBcxyC3c0Bh6fwiwGcMcjbB6VGDzdsCtAK1mLTbjgOS5ZabnirMJdXnUijl6WZwYDrN5lGKW4DtGv+a5SEkBnVak7AS0kReZIl/UoI0KDB1FAQI8PrpmkYNuxEKm+NOh2X1GlKdelTn5RsZeKFacW77Spgl5HSnEbDKBzlUvTDg811LWrkms74Ia7roHGgc0Cusz7wMmvld1iyx2TqG0BzfgMAa1sr5uGr93amBnrPeoC8+s7zk/irEelalRjykKiW/9djWAM/CjF/iRF9jsLZlWlrPoMkjSYJMH2y0cAgGTrEBLL3Gq1hshSmDRly+A05b9VNbDfw+sOwAcWCWlDBR+AIut4zYYQjb2Ajo6pc7+q4vczI2kgTASknLzEmoKwPQjgrLos2JdlseKdwsU1d+HRe5ywsMborh3oPETk/9FhUKiXlKXijMjqaKoqpoDudhyHBI4CEXfDEhFXqGv2FhLDLDMedXOprkGzCXafP0X5AdfjYIgJEXku7QXdQWJ09/h0BG6g8xt5g6gGYGzTHM34JgmMwfLXlDEhIoQ0QXV/gPJDxqapboDVBnabsWjlZAKqW7jTCWe5nkUy2YcXvL2rG4ZcNjsgS+G2W9jjI/hXl5zxPjqD2TfRRpTmK/izGdB6mO2eM5b1RrI63YZlXSHkZgG7TnmH4Dz88RjU+khTDKsVb9tWW6SVSN/nK5h9DT/IcP4/e4DyxmP4ZAuqXGxbBvEhpl3DzYUXy05sJIfRBg0Q7HE6AQjIVgHDV70CGt5cDGNVpDswzYnOjX28WkUlvaMvpFEe6102xN2gqEXFaDSvRlF101XjgdcyNljGp/W9lGewapBvbNdtyLG8WFt46XVpBxcKkkn3gnnE+/uLWs+IP9INcacQ2rTwyzUX09QNMk15kV5vIo0sfB9M82Dn0b+G/mf3WTKRdWUjvGESi/TawWUjHu9VBRQFKDfwl9ccpIoM6aYF3XqkWrQHYmEtOmcOhzJm151LpATlaLLUx9tlV0RFDjMcMFVQ6wN3x5tCFDKHYrMHaUoQTaO87DIXS4FIPBMxDDFsmSTRF57eecBMmDwBbcR9r6qY/iede5Cm7LoosJtRsdFuL66SITJrYlHyeMrdpl5dxwzZSMefSFFMk4iDw0pP2brhXb1w2GkyZu1H00SaKbWfzNb+dARu1fCjC9YxaBP3ETRjGWxAN8DvnyJc3HCTgbqBH2QoP7hhfHq7B4Zi4tRKkNvu0bx3hvTFLdxshPD4Huh2zSyT7V6KASxLD8t1V/gSbwZvLZppATPIkD3Z8TZnveNA7D0HgiAZ1WjAwX1X8aDd7aXzTcqrdJoyFuoC44yPz0AvGRvffe4Y5bMV0LRwj07QjDNc/Ykcoxceg+d72I3i4IT68RHS2x3Ch09B6w1/XyByq+M2/05Q8Ecj1LMAuyMUr7aHXOY7maTpUcCQJW+caB280D1DpQYeqB8ryR6p13uR0sOgaDNeKHpObkE70Mvi4IWiRVa8ZrQVm1LVpK1byMVvu2oYHwU48Oh2V5WxUlAyO548yrdXMQ5bdrqOpeJDVMDdPQ4ohvqdgo8NAqA7MaDzrLAiwVZlp94TZbX0dk2czeOgyKs7kz42HrNKobyG1CIYA9MEVkk2JQfbuoE5OeZFpHUIhpBsKoQyh5sNYLMUZrHioJKmvBAURWwk3K8z9EVSJqHOEgFAgPCwiXrUyLYL3kqX7S3yIXS+3VHO7hxCLWO8rvnatztO4KS2YiZj3kVNR8CLc+DVFZ9T4bCdUAJVMTscRCohhBdP47EUIZkpFfncAP/ctsDF9WF7N21O3LaHzYvlO9Kg5IYqqzXC9274eUwnHLR3uy6+aaD/hOMHBm4i+q8B/CcALkIIPyW/Owbw3wF4H8BHAP5qCOFW/va/A/A3eLThfxNC+NUf9BmaaR8UlADGgk6PEfvgLdeyLTFMtWsdaFhyBn4zh1mugAdncMMCOJ0ARHBlyk0ONjXqsyGSFWeh1f0BXEEoLnL2KNntEUYDkGS60ExoNORFgAj24hbUTNCcDeDOprBXS86yAYRWilqJYWXlIIcb5kg/2vC1K11J+hi6+zNuCnzFajZztUCYjkF1g+L5Gj5L4CcFN/EdWNz77R3suoa93XChabVFGJawmwak9rHOoT2/PCgwRlMm3c5L5lbdGyJdEnwK2MUGbR+jVtii/0x04Als0i+MdTxs+5qEXZkZrx3Bd1mjIUCw7+jWBnCw0QXHsaOiOWXKHY5nUp+QRUEwV4aguM9mmLBNgFltpODc8OulDhGahpvw5hnCeMgZd1XzZBuNENZrkE1AxZivZ7uLPOVQ1yD0HPveBKFoYVPpjq00aLi8ZjbUcMB4OxmGLcS4SReLvi/LQXEWvYKqKjQhSkpx2ITN4uJCzki3mQCzr2H3CZqHE6S//T1Oho6moBXDT7sfv4d2YNCWYww+WiA5n8cxrp4hNJ1whq4iMEmo1KNaZfkAYiariURUpkrzaIB3LTAGwXduedGt0Zg7uznxN1GTNx+Ygy1jJDYjUf+TpmXm1WolMJ4YPElwDEDnDVIWB7TSsN3G2gMU9lFqo47Jk+OOEuwc+6tIyzTK89gk2d3OeYdVN/D3jmCIOFi3bdz5KbNF60WhV0+6e/xhMu7/C4D/I4D/pve7vwng10II/xUR/U35939BRF8G8NcA/CSARwD+MRH9eAjB4QccSi8DAEozzrKPZnxTWt4GKZxBwwE7m43HcKdTuFGGdLECiFtx1bMULjNoBoTpd7hbSHV/hOyGaXbNoyMgBDQDi3C/wOTVggNr1bBP8XwFt95wU880Ae4dw2VMq2pOBzC1h9k1UkBMxCEvZ8w15y2cL1Kkr3hAhbqBOZ51xjfBwmxrhISLbTRgHqfJUoQ0gZmv4E+nqI8zIADD70mF+WbBA2k4QP3Ze8i++xL09AW8DCjlv/JNFK6x4Mkxg5ZBuT9JMf3AYz8j5uHeYX5E0Ydm2yJYiI0TlGN9hyrXFZE7AUmfCdRXWN6lG2pzVypyVpYuV/z5pRR+feAgMhtLqy32owiDXDzReRsfNlsOVMsVTxRtQNu7vgglkHDsrzgQUcawGlP5hrE/qPLxIZQymkjW7F30v9HPuMu/DsKB7/PF/WbLnZBOjrmJxmIJGo84y5NuQneLt8FLV6ADHJwQWinO9Z5JLFb259iujtewvZ9jmufsZieil5Cn2B8lyFbCPrm4Bgr2Yoly/7aFv5lHmT2A6BtvBswFZ+8UofuJPL3fWACNmFRFda7pRF1KByTixVheH43dVAkpr6HJkBdSacGG2YQLj/eOQOe8+9aiM1nLO+f1Jj5/ytnw7YDWKmSIyC7R+oYWZWMCIz1mh0OEWhpKAJy5b3ZMOxRHUPv4IYIh0HoL89EL2TWwWCusN8yUGg0ZUjPieb78YxQnQwj/AxG9f+fX/ymAX5Kf/68A/imA/0J+/98G9s38kIi+C+DnAPzLH/Q5vH0WaGQ0BE1GXPXWzO54yhPnpfRSzFKE9QZmMoR9vgFmE6x+5j5cxl3J148Mzn6nwupzQ4w/2iJdVtg9HiJdt6DGIyQE0wLDj6SSW+QyYUVxKX0isauAqoEpMvhJiXqaYPBkw/j2cgV1IIO1qL/6E8iutwipRfLyFv76BjQcwpwcwY/Yq9sstwjjQSwamZMjbu0kn02OH1YzK5BfVzDbmvnZ213E9dG2SL/dKcCiS58hzgKdO2RN9At/Esh3pwbpOsCnxGKBm3lHxZPCHgDGDcl0Bvc9GiACN1+mXmDswySHBT0HMkk3YXQ7nOcwx0dcHBWWAU3G8KMCGDE8ZfY1aM3QVEgscDWXTMkCt3P22VCISDjUWgRTDFqNmTqRl+ugHMXone8yM0MgxUd1p0TEQSpnzw7GWa0o7bhAF/H2XhCNuxbTiYr08Nc3vJOYTtgL3vIu013dQLs9HTBvZGcTlYLynZR/f7jbkgDkPLDdMt/ZGthNjWAK7kC+crw72e+BfYLxhyNWWn5w3T3v8bArML44j7BALBYLA0K9rKNtgATY4Nvo2EdlwbuaogDlOXO1nQdaURpqwbJn9hWcA0mwN5oVGxMzZYgVKhUFuxWOBuyhkmVsP+HEEjkE5tnv9qAJqyJjI4QkERMsg+AgRVd29ws9F0wdV1EkBPC4GHFTZIaRcg7Ct3OY+2ccx2R86JMPUrfpvMRT7iCksTBN3lhr0uOPinHfDyG8BIAQwksiuie/fwzg13uveya/e+0gol8G8MsAUGAQt0dWC5CtiwwCJAnqL9zH/jjFBGD/kJINdAIRwqiAGxeohwb1mBASwr3frjD/sQz3/tUCCAH16QDUBpjKoTrKQW3A8NkOZlsBrWNO9i1bndKg5C3LYgmAH6I7OkLy8hbj51c8GMQkBsbC397CFDnyV2yaQ6+uGfZ4/x3OUlZb+FEGnxikuxrN6QjpyzkH3UrMmpz4MWx3MKfHyJ7PBZsVPrngX7EWsN11+GpPqEFpAjKC96rBD6SvoSyMZFgC3w4IyQaclVgDXzURO9einzJC4paRzAFuieBjRgIAZNFNXuAAKohbd1GOmdEwPkfCgO99K/4s8w1n0o3jnYYPLNyoGygNrt8cGM5FebM2Ag6yFQYQA4cZlrylhy5Qsuj43vfWrbL0mYyMGh8ij93kOV93mkptwzP04Tyo5ayQmyPIYthqAfb1gpPfbkHOMS67r0DDAezJEdz1bbfAQIOyBP9eg2KgYytEGqXukuLnU/TV2T8YIls65guHwFBgmiHcPwE5j3RZw3/8nPnU3gOLNTAeIjx/1flsCK5rZEfENZxwkMj0sfYgdrNa1Asqb5fnppS8eO/Ra5SgQ01rAVb8PJxjv5IJN6vmxsUDXoicFyqeiLN0l7heC6QkNsS7fbcIays8a2JBPLYRDAylwDZRdGSmE4SmgXt4DPPhC/aIUXpnLY6HaQJ/NoU9n3fMnFS6ST28B1zdMBzrPdN9Dcni1PyxoZJ/m+NNS8QbEfYQwq8A+BUAmNBxMEXONz8EplDFLboBJRbp9RbZ8wbNvTHS8ysu8D04Rcgttu8MUZ7vUdw6FHNg+I0LNI+OUF4x5Wj73gTkAkwbUB3lSPYOpnIwu5YJ8oMCtJfC4mbH1qvOM3QhwdverBFGJXBVRbFD9B8Yj+E/9wj7BwMkGwc7LZG8mnMX9eMhwukIzSRBMIT0kpB+42POvo6nXVNTcDDmncQ24oYg4u2fsCjMcMBCmHofsUHGxCR46qTRtlFA13+RTFTbAYArgMnHHuHVZeTKstVqwsq1ve9MeXa7KAqi4GMrMaDL7rqi5htgFBFImGEp1pk98ch6y+ZdDyew6xpmsUV4dRkpe8pz1iyPsqL7HRBVnW6x7BaQNOkCuTIOirwL9CoC6qsC9Xo0k9Qikw/CMpHDOe56v94wP3c2jd1gtBmvFd49L649yXzPYydqFIAOGx1I9g7wVnuzkd1MjwZ4J2vX5xDrCwpL9fjmcI7H12SE8uM5Fj91DDweYXiz4vcWOap7Q5APyC433Dt1s+38phddjYTSpIPlrI2NdtXTgwU2h+6R2tuV7QZ4ATEixNHmvvpd1ImRO8sLi8RyLaBf8wDA0nAy8Ne3PDfmS36umhHLs6TJiGthzrOj546hNsg164Icvda1WArEXZcGXr4Wir7i5rvPePFVMgMR/HLNBcyrG5irG2A4PCzU1jXMci27QdMteAIHUZZx7eMTjj9q4D4nooeSbT8EcCG/fwbg3d7r3gHw4gedjJKEB+x2FwcuAUCwwGwCNx7AztcI1iB7es1V6ekIzdEAuwcFXEq4/eIQx7+3hL24BdIEbWkxeFWhPh1i8HSN6t4AdueQ3+4Yq/UBocw467icAwC7AkqnG3c6hk8tsi1TA8OwAG0rLn6os5/zCGmC/eMRqlmCpPJwhUU6Z4zLH40BAsgHmCbAp5CsxzKu+eKcH/KaW6WZB7Jx2bK6i/IsCjYgfGQvXVbs6QnCZiOZnVicKjShwUhpVdbGYqNXjJTANq9eBiUkAAtTg/2Uq0hXgmU+L0KAW8qk7an5XvPOhmbp4kFiLczD+5yBiI2tPxqxqk+ypOxbYk9QVV1bLh0jWXawjVaVpMqRfVUdZJ9xYRClHpQdAkSY4aARhGK2hqJohE/GsJHJc+aD9znbnqEKfzOPmRKNRpFtYY5m/LM0lw1O39cL2Lr4tQ2w48lrjmZdCy1tWNGTxEdTJnkfWQDevPaajvPNnh7QBCFLkK08dicW2WdOkb64hR+X2D6QRgYuIJsXwNFUfOiDuF2KH7eKqozh8ScB2oyGnR91KoV9wW/hZTEn2YGRMDEky9Xdgd/tYbKhwGkm9q2MfSz3zNdGnrOH0O2CqXRVxQulBGCIOCcGxZq7Q9Gg5PEAdLi32Lt2jBV59qnYvxqDYO0hbAYwVAowpVIFQJosiDiJueVjjhs9aCSEwHPcWi6uCnMFujiph8snHH/UwP13Afx1AP+V/P/v9H7/t4jo/wAuTn4BwG/8wLMR8y7hPbAj6d1oeRXebGB3FQ9g4Wq3P/4ONzfdtSiua+zOMpz92lOEYYn28Ql8ZkEeaEYJyg9ugOUaxUsAswlDD5sdr5oN95LjKnABP2Mfa/P0JZI9m/QgTdlp7dU1Z3yTEdyZeJvkKar7A1RTi2ZAKK8c8qdz0GqD4B3Mk5ewWYZwNEH60VqakBYIZ0cI51ecIYwGoOs5aDKKxQu/2bKsFoC/uGJ6YZZGD146PkJzf4r0XCS1bXs4UaOwxXGylyagQDFwUJaCPBAbM/SCEWUZd0QZDwV3Fn69ZNthseyZMMmzk6ya4S7LWLZz7H0t57Znp3DHI+wfDJBfV2jfP0N6Ld4UqzWc9BHkRUCUsur7If39FCahPO/ENjqhlIYmGHxQeXgIMQj6uoERRoHXAKAKWj2vnO/g97bLpJDnUSCiuwz1GPdOaKdFzjsq9bA4PYZZrmKvxMh/F4ZP39ALDVsRm6MZf06SgDKxRNXMXXc4dwqQyn4IvjOeis/FGvGkN6B9A58S1u8azL7JLKr2qEQ9IviEcPzPLtmrR4qSGrQBdFmqZsRadJXFhYoc2EmmKpJu9mShw2K0dGiPft2a4QZuAqxiLXM0g19vInPEDKXPZcp6jki/U1m9iH+04QeAaO9MBT+72BxDx0uedQmO6Rp/RNsCTUSAyJCJHjfCZInZshWtgBNFb5oxYWG343uoEBEQv6M6GcbFxkoT4v0fI+Mmov8buBB5SkTPAPzvwQH7bxPR3wDwBMB/BgAhhN8nor8N4BsAWgD/qz8Mo4StD3k7BUMcpI0B9oxBUd3wKnl2jOb+BPUsg5lkSHYt0os1sg+YS10/msBlBumygakd8icLzpQBVk1VjUAPY+w+e4ziQ5b9mtGQB8lyx51rxkIFGw67FbxtgeMZqscz7E9T5Ldsw2oqD59aHH17B1M7ljPLto9mUxkcPn5uMAbh6UtoNx3a12i+/B7MvoFZ7WNXjbDdgY5nwGrND1cWNoVp6qMM6TlE8t0wlU4Lgj3/jQO/6f4k53oh/5wmXVAUE34/GYAWuUw6E1uVRRVi3wQMPfxVAxEASrO4dfenU8AYpMsW9hsfwapplXgSR2wZ4KIwIG2ker4bhkDEwdiI5zWAA8k7AL5eCfTcOoozbAN0nFs90hRkWKZMkiXFhgUKO+gE6/lOkEVvYah7GXDL3cSd5+5LBeO/lCSwRzMWnjQtF4J7xVI9lFrplyuGSkQBS0XO4hCBbtAzzOLvLHi/sImMmCp1yk/PeDAAjAZohgbtIGB/f4DhN86xOz0CeWD7KGD+C+9g8o157Muq5ycNSlq3GA4R5gtQnvB9A6Izortd3Pluyn83nYGT7JiCCsjShBdB5yJbK+wkobOifkwzceCUoDznjJse3gMWK5bbaxIjjoMKlSl8YkbDeF+8uFvGXZgWl52D325Zpi5Ni81AFI57H+EU0o73wcNvdoKlh273ttmw2lJ2a8FzxyW1pY3Fa2s7Wwu1DPjk2uQfilXyn3/Cn/7iJ7z+vwTwX/6g8x5eRcIr62LJMMRoALpZsPGNbnvGQzQnI6zfLRAs4BPC6W8sgKbF7ksPsD9OkK49XEFI9g7p1z9GeHwPbpiB8gRm28AfZdyjMbMov/GSg0IiK6OxwKBgjrQMnDAaAIOCva8TFmm4wsI0Ac3Iohka5LfA8W9cMj3RWmA6Qf0nPw9TOVDrUZ0VGHyX4RtcXiM2lX14D35UYvd4iOymhlntQct1bG7qqwpmsYrYpNKsqG1hDGH4NebBqk1kNEeSghgsd16JsuNekSvUDcgBPgW8pa45hfb9bFsuCiaJULmaqFIDcEDvIyDylWMWDB2QBoA0Fd5WQJkh/egVZ1R10m1j9f/CTDDDMlK+tAhnhoPYlJeIDaqiE6HixtZyUiqG9bGIp5JyxT6FzsX3gjNpI2b+WiPQzA5AzLC4Uz3Foqh+frQT9sK/5pvEz22746JjCCARW/jlihOSXtHxAGryAdhX8De3zP11nqEbbctlKGb5EDFT9LvuFSwPFjPJdP1uD7vjBhvkCOmSHQNf/lmCH7T4mZ94gq/nn8P888d49x+vQEUK4z0H/AdnwMWV7BzLOF4OTJm8UARFqBT9tnWR851Kl8RPvt+KzZRlbFfml8tORi5wHQ0KXkTThB31ipyf+zUXrrUhCqReRIllj22lG4uQB2kai6rcZqyjK1KWcbatc2FQMgV5WAKXt9DGDgw/WVZbG+JCLRBdD+GkH6jI891yzYuT0Cq172Qcw851dZ3qECp8LWR+4l/+xzwky9bWQ7Sr4B6dsMBlPIUfFXCDBM0wQbpl/+rBB7egxQrunTPUEwtbB+yPLMqbFnZZS4utFtYYuGGGUDBmtH1ngPK8Yo7wcCDCiwGa+xNkz2+Bbcuc4funUNm8mtm4YQ5XEEwVsHmQIN0GDD5egKS1mcIogQj7eznKV3vk19JEocwF/tnz4CLC+nNjZPMWyWIHWnJmzRhpC6MsAcW7gPhww24fpdl3D75W/vnAYlXfHxgj9wkAppS/LnwCmNWjBZ4sRfCSwRBJ373O05q7ubsueOgey3JPzTAdsf9zCDGD5Av0nTKxx+/WSj4Artyrl7NipPKdYrAFQDZjqpnImU3OvPpoYl/mbNjVelHJsuSd2pbvp06aPt5pOmvQ6MessJFqDiSD71MfNRBHYRIRb8+l64o5moEsawXe6GYIdIE5SRiz7rXsu2uFi+ARAnVCHB848zMESvJo6hSLbXLtpgFuv1hieOEQbMCf/vKHyIzD/Z8+x/ofPsDH/9EYD3+9Rm4MtzeToA1rGTNWCEbug99u+d7dGZf6GmW1qBOf0hkhPkRKudTnoVm4jqXIDrGsfIU0QsGgKyTG3SnAeorlShgiWceIUVhj0cQ6Dc8V5foH3ikFL9nvEO5sCvPRSyZQ7Pf8fmNkRzzpqMtak0gS8XXh3Sx5dLUJ29lRGCn+so6B7Zjd85e8UH8yxP3pCNy+SJijOxsBdQu8vIDdst1iOxugHafwKWE/s5h8sEP6kle9+sceYvO4gE+BQITpB+yS1xwXzJl+egEUJwiG2NZ132L8exfwRyPg/il8mYFcwPInZhi8qpjNYQ3IJfDE2aQflqDEYvfeEfanKcgFJGuHe//kGbNRtnu4m1vAOdjhAGa+we7zI4ye7mCv1wiDjl9MoyFzSMcjbL5wguHHa1DloruYdtHuMyMi5c92smadvJHyJYU7spbZDsFzsap39IU4IIJxvB60BfFkMoQQJENSaa9mTIBkk7JFVOc6hR2UOWItF3Ik8Ol5aFchjEqEj5/3ijPuIMNRT4r+uZHnQM4BGdodXKxleVvL21EzHgGzCfx4gP3DAXxGCIZQjQ3ypUdbEqop47fJLiDdBgQC8qWHywguI6Q7j2TtkF9uYa8W8LfzzqFP6Fn6HDpBh/5b8Ge+0Yj+LfwGDuzrlltYKTuhLGDzHH65jFnqXXOv4Bz81bXYw4YD3nb/NSS70tCb6bwN5wKh6bFjAHAw8kB1FHDvay2o9Shf5bjeD3H7dx9j826A+1N7FN8q8OLPprj3tRGGHwGmaYHFkq+rbbkYuRdoSeHB3gJDJunGqHaQ6VHtuBEGQ2y+bmCGg66mAUkY2hZmMmGh0OkRLxhpAlqsuqbF3oNmE2C+5AxajcV815gitC1MWTD8MRrGnYBi1hpAI6MjsQiNtEq8voFZrXjs2p1wu4W5laXcMCFL+Rpah7BaHYq3buZdPUAaTcTFjAwoz9C+f5+toz+4ZarsdAI8/x+PDvhHOqjxqB+MkV1sgJsF6GiGMCjgxjnacYp6bGGrwEH7xQ3gA5rHx6hOM4CAbO0x/q0XsYtN+nQbO6dXJwM0Y4vy5Q6mapjhsd6Dtnu0Z2NsHhcoblruq5dYFkEQcbd074HUMp/YA4GAempQXgW2jHz6EkH6DEb60b7G0b94xoPv7Ai02aN9eIREeJw0HMJPBhh8tOBgdHHNisv9nido35tByflx8GmH8i7jJUhBT6CUiG0CUYwD3xOeiO+xqYFkFzjzTjOAdtDgQ0nCEvGyBKhXxEmTjkfrusAbTZZkcpBklWEyAjY7Xvwub7osFIjwDpUlwweAeDyL5N0Q2xmo/LtpoB4QsBbm3UfwkxL70wLNyGB7ZpFuAtbvEvYPHULqcfRgjsvLMcwqAU72IAMkaYv6cgCzJ7hjB3ObIuQB5bMExbVF8zM5svkMoPcwetli8MEcNF91HGJjIuYZ3RINxQYPkfYn9yVi0Q1TxwIRQycN121ULdd5lMiWRWoIvm5gtltenKqag89uzx3S617HeqXXtS1C27CKsWUfkr7LXBwHhjPuYIHbH8/hcuDFrz/CbB4w+6DF+VcK1F/eIf1WiZc/b3HfjjFKDKwhhJs5onWt2AlTnnMjBMuCMHKmY5VIoGejrztqzsi9Z49qmkxAel7H9ScalghzVniG7Z7rUNaypz4Z+OubuLuDc3C387hDgvTKVEhGbXZJaZWbfbx3bFjFGbpqOBRfZ7jQw1/vpFmG5e+kDTKcYwGNFD7DvuL53NSxwbYRV1Ou3VjpOcnEC3u7RVJI02XhuX+/41MSuFtkL5ZMRp9OEPIUy5+YwdYBLicUVw2SdQ2qW/ijMZpZAZcbeEsYf7RF8vKWFXNiFBTKnNkjTYP8fI38WQs/LOAHGcKkgF3s4B6dwOcWo4+3oMbDvBAu84SDp/p8k2N6WppazK63zPcWLwwIXSnsK97S73agwYAxL89FS7Pdw+xFjl03LGte7VgBeD3nwaKy3N0OYbc/bAjQE1IgkeJtDAgyaVWVNhryNlG9DvqdwuPNZjx0cOHRlIR22GUAoUVsHoGm5Wp70/B9GJTS65I6Qx1dWDQDdCz/NqMh1wdCgHt4DPviumNU9JkFQgO9/cV3MXxRIf3Gx1E+Dms6o3xhDVCeAe89Rn1viP1pimZAuP7ZAFMR2mmLZG4x/jhg/LFBPbXYvjrGcENIV4BtCjRDQjMCxmvAtIB/kiNbBSQ7IF80WLyfYn8WMHwRsDszWD9MsPzMKUx9itkHFbJnc2C+4nuiwVAmbV/ZqFh89GiRv6kHBaVJZKdQWcIQwd3M+bWifu1ztf1uL+KP7pmHEGLwBtCpXr2InQTX99vtIdYt48GnhHbscf2lFOsfb0CFw/v/DaH4+BaXf+4+jr7pcZUXqD5XIf8gx6s/QzgejTH9IEVyNIb54FmXYAgnmi1QVfbvEVbr+P1jhglEGISvu6u/EBHgu8UZ1jJ0NSyB+YJdO60RGp0IpChAnQv9ciXnCIc0T2mRFgBe0Nab7vn1qImUyeLbS5pgJImztqMJNg0rd4kOCAMA4K9uOubJhqmSfr4AvfcYgQg+S2CvFgKdGpg5Q4fh4hrZ1Q133/rMI9DLC3y/41MRuGEsqG7gPveYg3MpdLUATL5xi+rhGG6YgjKLZpIxvrzxSNccHJtHx2jHKcpvX3DQGpTwsxH7abcOSCxMzYPMDzKE1MI+vYAF4spGWQaMR8zrvl0xpU/6TJoXF7Cti+2EQtMwPqnV/pLpehQC/HQEI7awZrmFv7zmLWaecWY9Efnw1U3sX6fyWD9f8O3QLaJkz2G36+HCPeqdYZc1pe2pVJ8Xg16XFXTbcM3ihi9rPPulAukGCEXW0akUHlDMTge4Zc+Y6IHuHEBakOxZmzoPOplxwwoVIlXc/ipmqToJjAF2e8x+56r7bgAHQ8Vz1Xb1nQfwRYbmuMDtFzLs7hOGzwPKlwbFVcDgCmiGAemWIY/RC4C+HpDOZSfUOPgsAYXAhVfv4YesfgzWIH01x+B7KS7+7BkuvwJkc2DzDlBc8e5k8zDD/HP3Ud6eYfz1K1YR1k3kFCslTE2UmENM3b0C4qLlNztmuIxG0WnPlEV3n2LBteNjBzEuigwWySYBWTh96KxGgSjzP2QUuS5oBiCMWvhfWGOWOMxvhiieLhBenOPsX6V48RdP8OA3Wlz+bA73pQ2ybwxx++UA8gUGFxZl/QD46BkvIGJLTMYAiTS3kIWI+zEmXUsxHUtAV6cRXjgzcjqbAUoFbltueNGTQA7vGULzvd2E6dUhNABbE4VCqkZE6BXDlTLKFyqJ1ZjnoTR1ofEoiqMgJlVKPwUQm0TznOkaYij7JkJs4lBqbyrUP/4Q1HikrxZ8r8YDfu9+z1BgannXcWd30j8+FYE7WIP2bBJZCrv7BYbPtrAXcw4eD8eojlKYOmB/bDH5uILZOyRXKzT3JzD7FvmK2xuhLADvYRYb5ltXDbdoGhRoj4fcEPf6FiHPOipdwSbpwRrG2+/NYF9cg+YrWO8RgmQVUcIrwo80QXjvEbwx3H7sesm86ixFezJE+vSat7jGIGy2cF94B2Zbc6MDQLbZlhuF9t32FI9s2+h9HU2Dwh3cy4k1QAgwScI+28s1lFvrdbACEXsla5FeblEfpchvLPzRCPRCiiZqKbnbi9pNelgmjI0rVY8Ssdjtd+kG82ypauBHJRtpLVadP7N6WWiRTwucT0Wj1Rc3yGQwkxFoNIQb5nj1ZyYYXHgMrjwmH3tQAI7/oIHZNrCXc5Yza9Gsp7qEuu+BM9XgOotUk6UMXYyHaM5GoAAMnxhkK27pdvTtBi9+kaGj3VlA9juExc+cgv7EKcbfXADPz7uJq0FA+LwAOixcA6gEXb/eMM11zIIdMxnDL8QPXH1G0GHY0Wta7rXfcYFMF/dIjxThRiyaxmy759sdPJoRgL3FthpiawPSa96m+7YFPnyKh/+EcP7njjD7lsflqET4EytkXxvj5icDgBTABGV4DHz8nJ+rwHU0HHYJiIiWqM+YEcqdOTmGV0aRZMVq8kXW8g6vbjgBU4Fc3XSUQynexyDsuwQn+qFovUiycG5ykAH15sAeoZO6W4E0+LNV0k55BhIeto6nIPUiMyz53ztpHagcbDIMg4jdLW7m3DAhS0G1R3Wag9oxTO3YGVQtFTYbmCcvJc58csz8lARuAgUpohJh+NEK5mrBA/zBCXxCoBYwtcfomUP+0RVAhObBjKXsqy0XwKYjFgest6h/7CF8ZpB/vIa7N4PLLbKPLplNUhSgQYHm0TGSyyV3XV8xr9SmCWjJwhAv7nLahSM4ofENCw4UIk32gxTJ1RrudAo7XwNNi+RbNxzUBkwNar/8HpL5LrZPw4Mz1EclM1mifNt2LnZyHDbvRef9kWWxYKUFvVDXCJfXkUNqBgMYlW5LP0jlj5rbJZL1EQBg+6jE8Ju28yMJ4i0+HkqVfxd7JiLPDnBcaOMEaxnfPj4CQuDdxotX3BVF+dBCz+OBH4BQd7YBaprU40SbyQSUZ6g/c4r0fIn7v2HYK/p2C1zecPNYcWlzvfvSF17EnYqaRAldz6i3e1XBXVYI55ewHyc4+zpn0P7de9g9HMDlBp/7f65gn1/h5pfex/lXgeLSYvZdj+WXpqAvTjH5g1uED550n6n0PP3uyjZJuwxYxTZYLNlPer/nQOFuOYvTgi8QA7nf7aOHzEEg1GxbFawi21aqWRf8meNPRQGXE/KTHaz1aL49wfHXQ2fOBYA+fo4HzuHVnz/F9DvAejdC9RN7mKsMV38KGD3JcNpOkLdSXBd6W5gvpOgnnPiMvdUj9S7P2IMjS2HuncK9eMWv0dpGnjNcIv0r6eOXXG8ZDsRSgFkoXm2X1U9E7Fr9ZtcxUYJn2qLWSfZVR6s00o1enodm5Np0mqSJLzZbeJXKB7EdFsMrGrLCE87DnJ5w8D4S7cbVTQzk2u4MIcB/9hGS5R7JN590c7yqOHnQeT4eoXr/FOE300+MmZ+KwG1aD7Op4MsUwRJ8noK2RfRabsYW5asK6QVLTMOwhBvnCJlBerkB5kvhJjuE8RDunTNkz26AEFC9f4r0Zov0wxfMvf3xz/CHSrHCz4awN2uQNOUNF9cdbjgYwNwbwJ9fggYlzGwIXzAkAu0XCMBsGzRnI6S3u4576RwPQmtBswmSyxV3ynh6DUwn8AVzwrGvOuVUhBvcAcwBcdMjKxk3pRFXpdBxqoPzPRpYwgOzqhjXk6JRqGtQnsNdXSNbvg+fA5sHFqNBCVJsXCvuqkism1i9D2XeTQwg8qzhW+Bz9+CEupn+7gc8yKNXiGPxDMCiF6JOLZdlMcNWwyeW3jPtLnt6Dewr2MsbhhN8L/ORicwZpu9BAT3PDufgm1bog7JwKLcbiFlxqGv2YNnsgJs5yn/DDakxHaN99wxJFXDyOwbbB8DLXwSKC4vjbzksfvIIg5Mh0m8+Q7i9jdvpKDhRaKMXtLumyoIFC3xkxiM2MVMMWKX1co+jy57e/x4PWhWlXCfw8bPkRJEmirJAOwCOxlu8N7nF1+oEs/8Hw4AH8NqTF3j4qzVe/MePcf9ft3j6yODsy5d49fwI63cTmCbHMY6QJxbhyYsIHbENbApKOGiGzbaDJZzQUS+uQINB11GplaYDx9PIDome3tsqipCimZhAaMF1tgV+0zUo1h0dJww8F4MwTth2toliG21vFpzw6+ua60VXN4d2tABj2tOJFBm5MElpIkKhIA07GrjdvvMl1wLnbs9mU7VYBJOJODis5cVsPAKcR3q1RbCfdh536+DLFG6UoRkksLWHmQ1BOy4Ejr+zZC9ha9AeDdAO+LLL71zAn18enCrcOwLVLdr7U9jFDtnvP+UbTAQ8vg+f8dYpme+46/XtmosNx1PGoQYDhP2tSHtrAAPQ++8gZAlckaCeZkhXDeg5G0FR3QJ5yg2Aq5oz+tFQvBSkoNc65hA/v4h9Ek1do3iG14qRwCGvWvHuoJX2fucY4CA4xay24cw1YrAicweAsOuys+HzgNV7hGpGwHgIWixjAKWMu8mHPGe7UnAR2R2NumxVFxgysCdHaMcFfJkgfSXUKfhDDnaZdzisFJKZEyxy8n4vSLFB0IkTmRwStFVx18fW+W3ETCC1daWeu1yvqzz/goN4FIcopVEXubZla97FEvYix3hxhuT9GSikyJaE3T3g8mcNTn8voJ6lqL/6WYy+XrLhkeCruiOITBwVSSmEAnRdyH0AsqTXHSYcBtw7HtEwTJ2L/TiDjxYHPDTkXtqsW+iNh58M0JYBr14e4dVHJzB7A3v9kmESkfirNNufX+LhP0ox/9lTnPxLi8V/WCId1fCDFtX1APPPZ5hhgvxmwUZoMl5C03KQVj58XXN2LBxto4pDIEIlSBLu5So7pT4EFeoayDOuDwxLxN6nKpJSdW9guMk8esCZeut4kUil/qA7WDVhc447t8+mMGcnvMjs9jxOlLIoNQsqSoZVNWEbDjooruFx6m9upbWaZOw+wKgBmexe1UpAFdnq7bL76ccoP7jhBO/ZOXv+f8LxqQjcIWWaFdUeWV2jPspgcotk18BczuFPZghlhvp0gEBAsm15u1w3cfWjyQjtwyOYXYPNZ8egFhg9u4ZbLvlGDgfAvgb5krspX1wxT1usO3EtBjI5Y2zIeEsZigwhMWxSVXFbp2AIOGLOZn1/jGaUYPDRkpkmhXhGT8e8Kmc8cM1qJ7i2BRy3MusENl3TXC1gdd2+m04W22cv9FWSmpFFxSJTBs1s2mV/8roonDEGR3+wwsWfGWD4cQJ3PIJ5abvPr5imxHzWhlkeWQqfGtiiOGjaQNbAPzgBNR62qRFenHeZUWBHOIAD1GGmncaGuaFlvnjMorw/9DzWeoS9E3h7PwcfhAufxu/rXduJVLTDvA8wNoUXQ6b+QhihAs3YlNkhboDFxwnKdx9h88VTFDcGbUk4/yqQXyU4/TctNl++j8HHJfDqMtLzlC7adQpCJ4ZRGENFR3XDMmph7fQVkgf2BYLtxgW/bUH5hP1IIKwOZSXpAmA4kDbHJZItwX6QoTrxOPoGcdbfMAvJCzeb6Y2E8PEzzAzh+X9whtHfGyP7a+d4/sEp/M+ssP/tMRYuw8y9g+x3P0RYrQ6aEgTDuwiIEjY+rqrino9lGWl/IIqd2fVZsLGZQBTqeTIcAltmYMVCYbxeGR91A5QibhHvGFMUzG6S+xcpg4YVnCTCnRACsN8fjDUaj3lsxu42GScWSlGVuXtQICUCioxpygq7GgJNJ2geHcNua/hHx0ieXwOtiz0o23GOlKjbvb/h+FQEbnIeZr6BdR6hyJDMuXM6Oc9+zalFSA2CJSSrBulTxtSQpmzuPizgLcFer+GnAww/WsPcrmIHFRqUzC5Zb5E0rEQMqVB4Gqb1+fmCvcCrOm6xePXdgU6Pkd1WMJsKSWJAu1p6+LFVa/l8A3M9R5iO0R4P4coE2c0Oy58+xejJFtR6fnAP78FsdvAXW8SedMogAGRS24OgHF3/ksPAHg9DUtjp+5MITHB2hPp4gO2jAoPzCtkHl6DRkM37hwOEbQ2zGyGbB6w+O8TsO9KJu5Ui0HbHW0bnYdY7+KMR7LpCOJkBt/O4YNizU4SqQXs6Qvq73+OJL+wWpS0G9AqGTcuBp3LCRe4VZiOVUSa/FOZC23TGRnq/9D6p/J4CELR5gmCScn8pMQd4JoQNETPzJOHJLv7ioZchx8+UjDd8+ATlR88wevcRlj97H+/9/RaLz2a4/skEZ7/boHowQu49wsfPeQHSji3aIaXno34ATbQtZ3QAY7qL5UFBOmLUvV1E7NAiuHaEtVbrbjxFuiYH9N1pimwJmDbA1gbT71UdfATJ1KUeEiGs73yIR6nF079yjObvPcCf/l98G7/1rfcx/J8ssPzWBIPrBOnj+zDzFdxlxxKiJOmagEjhmMdNGwU2saj4/6Puz2JuzdL7Puy31jvtefjGM9c5NXVVz82pSUoUJUuxZSu2IigxlABGAhhQLhwEAXJhOUiQ3AhxEMRBbpJAiYMkgBNZjmWJkTVREimJksgm2exmjzV0nTrz+eY97/1Oa+XiWWu973e6iiQkW6hsoFDnfOfb0zs861n/5z+kKer0PGRHys+1nNNOR/IfQYafdd2Iuahl1+a8gWxeYC+vhIrnFkTz1k2Zh0WRPN+YhsXjI850I/4RNXfqduDOtnazkfPigo790D04DLYH0I7MYF00nj4+DAtSeWef+HKNTWPRsLx+TPr0UkgLRUHqowHbNM5XHp/ON/mX+DBpzPJLh6zfOZQfuGBfjKGe9lFljSoNnSdzkpeOPVBV4iuylQNddxNWnz8genEJHzySi14r9MEe9sa+hIYe7QWqnN2Jl4X3G1ZK4qQ83Y2ykI54u0OVFVSOh/3iArXNMcOu8M/P12IlC1QHA4q9lHhVsL4/YP5GRL6XoS9mYlB1a8DyK8chIFanScNEoNVtV42XNsYzBVrFun0zl9V1H+bwWho1XxHPdvRe5Oz2U7GiXbpuxt1IvZeaYqJY33Sexe5zmJ0zxXEmXHa5dF0eVONO8KLQ3Y44yV3OSR+eyo3uOnZzcemwdydfHg6dkZijVfmBqRf7+EGOdTuINrbo+dxB3NIYYvli2+DauumW/FAu0gFS8OG24edt46kggnGPYJVqAhvFLxT1sxeM/unH6MIw+rigc2FZ3o6pU0016cFbrzUQie/MPCvHMQ+EntbkWFJVsu3WrpAl8fXi7jntLagIfFeprlEQ9WDQvL9/aEU+0pgU0UE8MnQ+OAmdelj8nR++dmk/RBG8/zG3/8GScgDv/dLb/OTnPmZ90YMHay7ejan2u9hRX3YariAGVkcUNZjyeCgGXG5w6Qftnj9tV2speA4Tt9udFNtY5kraRbzp8RDd7RBNJ058YxoztjgWEsJ4JAKXl1eoQkRQWOsCFIxLzsmartnNVpQ3uXKLhVd0mvOLRvHrYbVIAqslaKTBtIljaZDuHEvtSBLsnWPOvtqjHgv+r9c70o9OsFczqVmF2AAH2uOnPD4ThVvVhu6LHSZVlHs9uJpLce1m0m1njoftEqlJUgk4rUTNtzvuUQ4TBh/MwmtKSoXDo9IYO+gKgX+7g6P9YH4fuJZaSy6kbQqGunkEb71GPe5jOjFm2IPpiPp4IrzgYVcEOsZIcO8qp3O6I35yRuckBwP5JMYcTlBlRfc7Txl+62UzpHJY17Vhn7EhLQalw3bJd94/RgeEsJ22VYv6V1XOmawg+eFThv/oQ3j6sun2ihLmK6bvV1RdsBGUt/euTeRRShY4j9eWNcoY6m4sLBNj0Yf7cqw6mVzUHmv3/7kiIDaczme7LOXGcV0WEDBlX6B1Jwu831AAoqhRKPrj0JoNBMHKLpcBs8OvvSDGevaFt2Z1RTAIiqAx3PLfAxpFowuikDdxApfZnOQHj4lyw/ijgtGTktlbMvOwSQRv3gsWoTgfFnB4u0/yiaJmBuGPgTM3al0YzR+do13o8Opa7omqDvQzlaZyPfuH321Mxixfh92+pXduiAqL3Wwa10cIkIxxqef+eJiiRP/gYw6+XZIsLd/51bf43BvPKZcZmzcLPv5THcr9Pty5IQWxJUyR49qwflS3GxZDlWVu4dGNdN7bGq9ckIS14rftKHmq3w3BK3azbYbgzlZX9XsSZ2es8LCvZqJ0dj7v4Xoaj+TYGdvg8FbSbvTNY/nd1CXb93qimhwPg/+Jh9O89D8wWAqxhbZlSd1LpJaNBizeGjL7yYIf/dk+Jz8/Jb8zaQQ/WsHRPubGvjz3X2ICzj/XQ9WG+GxBf5mhXp7JCel1MP2M6GojRk9pIsOysRg0mV4qK2gak84L4kensr3aOM+LW0fiN5IXsrIuNgEGUZtdoO6pQV9W3O1WoBF3YeiDPYqbE2ykyB5doEY9qC02TdDzjUyPhz1srDF3DsUQayscbaxle7PD5rYh31d0rgZ0np8JPtYV5ztfIMVToa2QrJsLOk6u2Z2CNzFqukDptlUzxIoaSmG9WKG9k1sUYWsZhGo/xZ6O6H+0IP+TI/rPI1b3ukze7zapJD7FxNHbxCZgRLIoxNt8ucKMetg0JlqsZKvdFlNAkImrTke6OmPBT8uNlW0uhHCL4NpXN2IRqx1M4BSFIQHHDSlDWpC3MfXF3HefrxjS+2FvGPzWLRMi3SyUeHtU1923szXDa1mLXa5IvvMR3L6B6aXc/Ecbrr44oneqSRYF+s378OiZ5CqmKcYXJ0/pdJxg5f2dHeVSOcjDGnstUg1aA2yPX/c6zqc6keu4LDHnlw1DSL4UjIdEGwUKxt86pTySuLRrFgamcZ30NgresMxut/R+62Oq/uuA5oPnRxzfvsJYxflqn2d/pMveD1NGzs7BPrgtOooXJ/K541g0E262oUwrDm7QD0ZcquOCo6Gh3jnc2Rd128KkFTLwVoVuJOedTLzErQ1BxiQJem+CObto8cejYCVga2d4VRvY7tBHB7KjPHEQjoNVvG+9juOgnv4xBkpdA4kQIWrD+u19+s923P9PE5Z3Yfi0oupFmKMp9vwSOhnq4kquhX4PtWm91iuPz0TH7QG7IP/sZqhdIUG5m52YOa3F2pRTAfJNGkFt0e89Inr4Uqhcy5UMwJwnQD2Uji06mQm+VhTyGnmBfnoa5PF2vZFp+GQkFo43DkU+by26qGXYWFv0eiuqyNMLKRJVLTsC5fDgzQ6bJdQ3D0jnFdmFZvQjSK9yqrfuhPimMGA09hpFrB24G9gi/saMX2EKgCxUVRmKuNzsqZjIRy5k1h0X2zLxJ3HQijFgYPBRTD5RrI817E+bEFb/HjsZAnmMTi+2VPt96ba1lsVrsUR3O4EOZusaPRw2QbibjeCmPtS3fQyMbfjqxkhhc8dGUlCaYhlwV++T7b27vadz6zgFr2c3gPJZl/7frWc9OFqhanuxgGDgXlHakkj7EOIGOxZBDS/PiC5k4e6dVuymItyp9rvB890zKlScNAuysRinIvRUNRULq0J3Oy12SEutV8kiY6uyCboGkYi7oXcz2HafNYrYvr4HGqIdqKKUMIvW8NoLk/xQ0y/C7QXNzOaM/vFDdAW9b3XpxBVnL8a8/aUn7N7KWd6JKO6IRkCfXILrRnWvJ3DcLhcc2hU7W9cCS/hjkOdCifRS9bIiWA7HsaTMr7cNBOUYVKrbFUZXXYvishYvnLAgOrgmwDCexeTVr1p8ZNRwIPepszZQ8xUqScjfOpZFp+s6+slIdjixi/fz8wYX4qDHI+nSrxaYswt6H1wSz3f03jtl/iZcfi6h/945apO7yLdUYKLlKkA6n/b4bBRuoD4YUt49gIMp6srxOCtHxZktxat70JffnfaIljvUyYVslVcS4aUP9oQHe34BsyXxRy/g5Jz67Dz42yp/Ay2XcmKc1SQHU6rDEcWDI4o7E2w3JVqXRIsc23VbPm91erRPfXOP6mDA7rhHdLUWlkiv4xSgkFzueO2XLjn8rTn68QnJ47NrXQ3Q8FQds+DHTPX9tp3WFrqFwbaLlO8w9aAfqGFhi17X1+ED53tNFGE7McPHht2hwcawvT9xzI4WdLAT10KzWhPNt5hhB2UsZtxH5SXRfBuGrcFr2RvNjySUAmgxKZwwxf1nq7Jhfji6W1Cf2VZSuluIAtbdwrt9h35NLWitYwBkTXdbNrJw36l7rFJFEgKs/Fba29i6LXh7AWn8Whr82KzWmJenWK3JTjd0ripWdzokpyvM4SRQ/oJTHM3OIvC6najKGiPXbJI2+H47ecjBTLrbDYwMr2pF62Yxj8R5j1rCAq7eSkiWkC7FKE1dLQKWqhKBlXzsXZsx0c64VJEYOx3/gxfoGq7+1i3+9Ne+xXuPbhB3ShZfKrh6O8O8fU8WvCRBH+6jxkPsYiVF2RVpPRk3ismeGI556ER5fB0HfaZJA4ms11LcokjCDopCjKGm48CZpjXI94PEcP/4gOLNViBYx/4RlfM6FGFzcSWMqqIgPXENUCb1wJ6cS9PnogWF8dKTQt7rgdYU9w9Z/sw9+ewvz2RudzDi/t/acetXLrFZKrbQPiIQN8R2iV+f9viMFG6L3lXosnbmTa64XVxJcY0jcdaylt1X72MjjT69klXYS5ezDHs1lxNw40hOfNtPOdKCbSYx9eFEDrCxqG2Omk6ER96NKSYpJlJUwwybaFRRoi8WaKesNMd77O7vYRKNTTReCaEO9qj3+kTrXDyfP3yMnq/DoMQnQIcbvdVpt/2b2x1PKOae6ubSQa7d6P413DGrzy9DR3pNdel8SgC8GZFsvRXds5J6VBPlsLifwOF+g+X64ZnnX5+cYdJIIKxNTj12N3/oHuVG0Vkm293VOmzFpTNqshz9TkLFSXPOfVdZFLKbCKZFr+DO7e+ilQx6PYOkXXic4b1yWKXAUKbp1hOXx2hN0/35h/aDTj+MatHNlG541q5rVw6m0k/FICi92BLnhvJIhr5Mx0EsEzjdfvjon1+VIdFH93uyje8L1u0XM5XEjrrnBmHdjsx7uh3Z2bSDmP0iBHB8QDmEYgyTD8XL2uPGKN3QU9vXmPuO/nqQlBppKOonz7n5j+ZEW8v/9x/+FAeHS9K0JupVXH3JsL7Xl9DhTioMLE/vdA2YyPSF9mk2G8zFpdg/5C2puFZERweiLPTF2F1nqidUQpzITEUatSuanZVfcH0yUNhZOLqe351stzIMjGMZwju7WOn0DfZqLpDLo2cScdiRfw+aA89KSlLUeBSgnOVP3+HFz3cp+24n2+uitsJOSx9doE+v0OdXsvPr98KsbfeTr1N86bWwm/ykx2ejcEcRerZy0V07kZp7l7j9CbbfpXxwg90bRySLgvjDVv6wVnJAhgP58vdvU97ek67BbWH0/p7gUJU4/kWzlWxh3A1hRj3ygy7FOCadl6RXO6Jdhd6UwlqJRVwDYGMtFq9aYSJN74PLQNSPrjbYKEKfz8NgSV8Kr9X4/L3aEO1N0G/cJ9qbEo1HeL/iVwu175jkjd3N6G5c+2oR8zQ2V+zCjffqdssPL60k2tedmMt3MgYfJuwOoOopitsTGR61oAAAkgSz3hJfbShuiv/1xRf7YfDnB7vBIrOqQtqIdRQnpVRYDKDFDmlTnzxTwk/tfbFqXS++cHql5TUoQzUwhlKqKUpFiU8M90NS90tu8OmEOFWzWPjkG+8n3U6E97sAzyH2Rv1mNkefXKJqy+B755SDWCih/Y7I+F1h0f1u09G73VhQWWrRFNiqpcB1TI/QtftzMuqFYm2LsvGn8VRGt/vavr6HLsBqJNC60/bEJiym7WFvaCrcTibsOty1p3/0lM6VZfJDRW0U61mXW/tz1LTg/MsRZ3/4WHas55fSvMSxy/Zs1KUqiYMi1Kt7zXzpBoMuBMOdq0CtTFNUkgQanodUzMVl0AigtPMKur6zxVghDEzH0mHnBWY2l9BnkK6+pRr2kI2/BvWjlwKTuuvdrNYQx2x/8r4sUm4AnY8isj98TnZVY0ZdOVcvTzEfPcacXWCnDmrJ84aGqBTd907EibK6Pk9pP37fwq2U+r8ppU6VUt9t/ex/pZR6ppT6lvvv32j923+glPpQKfWeUupf+/1eH8AqCQG2T19gl0vZsqQJ5sEtTJaweHfK+Vd7xJuS+GzhprjiqkaSihvgwRg7HaFWW6L5TlbIzcYd+LJF4NcCa4z6QvafDFHbgs7TJf0na6Jtid6WwqDIizCFJkupD0bUg5TdgWxjsidX2E6C6SZUN6fS+e0KuUAnI7nQ5otmiFJV6L0Ju594wOaNqVw8g74bhjSdXltk0y5ivouk1WED17rEpjts0quvn1BNCBcuS+puBAr2v1NSDgzp3HL1uUxM4WnYLAEySWJ4cYqJFcV+ByzYWwdCIXSqsNCBuAJjt9uAs15TOHqKnZNBW4d3h52HXzxa8EB4rpa4MZXETeFpU/9auxtPMQwGV51MqHKet9ti+QBNgXRDSxVFRNNJ0x2bpuBoz1CRg+WYGCX1+WUwR0qvCsrDPnq+bj6bg6uMGwL6wac/3h5OkJALz/O3De3RQzuTMWotMB0uGeka5OYwe72/x+lPiH99skJM1DZizBYgOT8U989vCcH834MlgzsvZrVm+muPURbML+/zC+++z8lsyN5kTfyVGboCvdxKN5omMqD22HOn4+h7VkgC7rOGwbJfjM8voRAjLtWCD/xsyguYsDY0THa1lobJe6f479SVZBv18TPZoUfOasD/fDpBDQYNTOGbJ0eJtMuVQFhxhLp7E9XrEu1Nsbsd3Q/PZXDZ70FZsP93fsTBX+zQ+62P0bO17CicmllFEWq1bXZ53n98OJDB7Wz5401X6/EH6bj/78Cf/ISf/++ttV91//1NAKXU54E/B3zBPef/qJSKPuG51x7KWpF5pqnwMbsdGPaphimXXx4R7ww3/9pDomWLa3rvpiiSlkvs+aWIYra5UP4ePpFtlVICsVSVDNascLHJUup+yu7mgGrUQS3XqF0uw9BdJdutyhWYNMX2u5hxn7qbUCea0Q9nJOcrVFnJzeh+t5r0ZJKe57II+Ti2smxkz/sTqp7m8b+umb87EZrieNQ6GDrAGmHwqJotelA+uuPgB12+2IVO3eHFmBZtrG0OBdi8IF6V9F/U6NIwfl+xOVZYBbvXDwTu8F0gBE62WW/pPFtQTGKGT0vm746Jjg8byMMtCna9vhaz5T1EXlWbBR9p3yXHScCYgWsF2/OzwwVvGpuA4Abn3BL9IiUp8TbAHr7LlyFf2RqM2pBlGWAZF5DsbUkDP9nxbI2TRwcpuvssWCNUSq2JrzaUvVgG3lEkw2EIjA0PZyjHiw+Lr3ZF3vO2X+l2SWJxdixkiGacMMQfQyAsSvWtfbrnlu0Nw/T9CrM/EWO2ulHbysLZgnDS9PoOsH0NthbY6sUJR//kAmXgn/7aF7g5XTDpbtltUy6+Yll98Thw1fGhvLXTSnhfFRf4YKuKaDwiOjyQjlspZwrXlcas30Pv70mNAMmlbKUmqUFfqKr+evGZlHXdgix1wNg9vk63Q7AuhiBFv6YLKKvAoZdBZyWYty+wpxeYcQ/T64TdfnS1kZSjq7ncQl33b33xBQ+2xWnS7ByKArNYXFukXn38voXbWvuPgMvf7/fc408Df9lam1trHwIfAj/z+z6rlHBae/dYtg91TX5vj2IcM/lwS++DS+pb+83vJolAEGkS8CRenmGvZtLhVo7LmSQBr1L7U+ydm+R3p5ihw9gqSzzfCjbYy1DrrRhVaRVk+IFLHkWkz2d0fyRTYM5n2Nkc2++SH/UoJhm6rKGsZBDT64VV1Namwax3Bf2PFtz6h9A9L1GrbbBvlQNuWuY4jfCm3eUEBknU8nPwAzY/1Atde+umhMAW8Hh7PN+RzSqi0nDwu2vpyDZw+U4Gd28GBZ326d6+43t2QnZZyeJYWjZfvCU3iTGgowbP9EXMy7eVboqKL1AeBgmFoRHVBOjAWMFDXREN9DkvA/cpJE4EES766JW+wRjsdiu89Ehf49H7OYgOik9Ju8FYYUH4rtQXnvZre864Z81EYter5ksoKzpnMuPw/PFr7n4QQhba/tTBu7wWoVhYtNxOgOMD1LYQ1tVq28An/jpy10k0nXD+5QEYiDaKzql7L5ed6L+r3BTufDkIyjOV5LppLBcCt92pP+2jZ+z9ICe7VPSSgh89PeTd2y/pvTlncS+mfnBDzlFZiNAkDIZ1SOvxMnGJenMiu6JolJeXTjG5WgcOdeCKa4krs9uddMN+mH1HumJ/v3h/EVubgG+rNAlKRzObO2WkcfeOxgdaB/uCu8d4rxjV62KHfaHv9bpELy5Rz05kxnQ5wz59IYps78vjT4/H1h3LxR9TM5uLpuS1O0I9/JTHvwjG/T9SSv2ug1Km7me3gSet33nqfvZjD6XUn1dK/ZZS6rcKu8V0UvRqh00iyjv7JMuC4a8/EmloLxPDlZdn2PVGMCXris/eRFbLNEFNJ+j9PTGwqSXuSuKwOlTHY+pxh3IYsb03ROcV6ZlLEs8E+ti9eUQ97ko+YhJRHg2p9gfYWBPN1+IWlibS5cQR5q17zL68x4ufT4nymujZeYhMYzIU18Jd3vhNAOblKTx8xugHM7JvPXRwThE61aAis0asJT+hy2ljuPIFWkR9zwlvF3f/s/bvewXfaoOuDJujFJXXHHynYnVHkawt8y9MZWJf107x6LDCqsJsNnTef0ndUXQuSsq+EzC1gnQDY8cbY8VNpxn43n7o2BrE+E7HOJtR6aSdrN0XjLYhVBRJp2JtQ/+DEI+GVs432Xf0MSH011EIPY0R2+DlQVJd10IP87af7vOHQmlNgGFCx+s/12aLHXTR8w2247xZ3Hf0HGsPFQGhqFtHwySWZHPV6YRZgooi9MEe1aQrthBay1DNL6oQFn+VJtR3Dqn6iu2RYvgYoo23AW6opN7zI+x6/ILbTpPXLeaTex8viLJVRfbthwyeWh793fv8zJsfc7bpk8U15R+fc/7lfkis9ypZkhR946iZR3Q6IT3GY9m+A7XbnTRiiedSl8IUcWZYfndIUWJdLiYgquXtjmh/GiICbVE0lL0D1xAe7QdGVhiiO1hN9XqoNJE4vrKUpnGxkkUZULsCu3EhCG63Zjcuv9Z12AQxmSRVefw+3IfdrtSurjvXnU+3dIV//sL9fwLeAL4KvAD+d+7nn9TbfyJQY639S9ban7LW/lQ0HGM6McXtKTaNST56SXQ2h54oG/XVUjx/HX6kIk19Y8rzf80NPqoKJiPKGxMZJPqVyhd3a1F5zeU7gn9ll3mAVmgxL2ykqHoJ1SBFzzegIb5cE50vZAB0tI8Zdqg7oobUqx1Rbjn43ZrkatcMIOdL2RoVpduONaEDtq6lAzi/klXYU/P8BdpiUdiyaDon2+ra24M6uAaRNLzu1mFvdUphyOWfu9mhCrkJd7d6dF9uSRdQDhSbI035+TsBgw9bRO0YLGfn9D9cUA5iBo83bN45Rt29eW0ACjQ4tTUBz/WPV9khvtCHAuS7dV+QW74uoXB69kgLy/Qm+f67mtW6CRn2NqB+IASB0x3Owas7m9awWPkiYWzo0sN7umPsYRyz3aE+foZarkWIEixPnaLTKSjDENUNAD0sE7bucdOtqU5GcWePeLal3hugFmvMetswklqiLTXoc/mFIfHasr1VM/kgRxVVsPBt0xDbDcA1yKWFcweIpAXXeWjJrjfs/c4VyRp+47tvoJXlrekZSlkWb8Dy669JCG6kQ6yZ7WauGEdBXu4FYJ6lozqSnGQXy1ZgdIH3uqaunfd3As4+QXUyOZ5O7GQHsjNX3a4U+UxSn+xaMh5VJYueWS6DfD14v+R5SCuiNo13ibWYo6mcG3+9uHmKvw6oKqEn+2ObJhKMfvtI0AK3SJv5AnN2LjVivYaHz67fw688/rkKt7X2xFpbW2sN8H+hgUOeAndbv3oHeP7q8199RLlh/pYcWL1wBzqOsHEkwpuNW23v3JBCfHSA3hQc/u4WvdjIQGabk5zMA4al9qaYB7fYffU+6y/eoDjsMv64oPtiS3wieBPGOB+Smvywhy4NVS8iuZSTmT65gpMz6sOx0AP7HUwWS/gBgLEMPphLWvtHTxtHuVtHqNHwGjsh/L923FEvJ3ZJJqHwtArGj/E4VYPvhiLmu07b+FYEsULoiuIGWy4rucgjea7d7dC7imKouXg3oRokHP72mmII3XPD1Vsd1MEe3lFQKRVoYras4NEzsouccpQS72oW704hSZvvWjadZcBpPfThOusg+PFQjHv9ACe0pPxhEXAQinhy9OUmde/l+eohGajbcbOARpWJ9lQ8HbbkvpP2UEk4hrqh1Nk8b3xFPGvHDdv8dwgwg19EilJYEZ4lUVbXaJEB8w+Ls25oeRsXvlE3n0PdPMKkGqs1elNgLq+uzy7cXEGlCfbmAflUskVHH0TiGV8bwbd3eQNdOXaMX9ivqU/9NQkNJdF152Gx8H4vD58wflgxfD9BAb/x0X0GnZyDL59y9Tmh4gKyeGWpUEkdFbNerBq8OstEdt7JgjbA0wbDYpdljZbB7Vzk+5fNwNkvzrOFYNLbrXTeedFcg1UlzZa/v3xyfV0392BVScMSCQtFdTLRnFQmDCxtWcnOv2UvG4KBXWNGVQklcLnF7o1luJyKCZX3TLHuc7ZTsV59/HMVbqXUzdZf/wzgGSe/BPw5pVSmlHoAvAV84/d7vboTsfftGfG3PpRC3e9iew4vTWLpGMtStiSdVDrls0vib36IXW/Rk7FgU47HbXc74agmEcUkphhEqMqSXmxFLKMUtpuSPzgQNkuWUozF6S9dliF93Z5fovam1J2Y5MWM7S0Zelz83A1Wb4wpbo2oRxl6sRXutOtG1cVMEnVaOGBz8JrBiPCMy+vUvjj+cRzRDxVts1UO4oI2dc5jx7rpqq8JJ1pwSRh0GUP04pz+y4q6g1DXrGX/+xXzBxpdwfxrxyFB2w97PJZrt9uGnllbklVN+bnb1zH7NgXRD/Z8IYg0PpHE09YCPu2/r8cxVbOtDN2/O4baYcDaUfcaml7UdIyOPub567jXDhQxVyCsbbrrwOzx3bbzXbk28ddaOvqqbChn0BIcuY52lzfOd95zI9LSAboUmPBd24XIWrn+I+F053cmpOcbTC+Bs6tGXOKuHw8r6dGQqy+OSBeW1T3D4Tc36NkKVdVucKquzROuqVjdkNzvEpumwDYLd6sxMQ52sUXJ4DcfEe3gxQ+OePfuS7528IxRmrO5Ybj60ki44070IjBR0kSWuWAFNRIvHNXtSAGfTtwMpVkcrxmSObEURdkU0cjx9IcDeY+DPYG7xiPhyKfNTpj2LtTtlOWarsO5EN8ekeab/Qlq5pAAf57yXGCa7Q7V78ucy10fdrtrGozlivLGGHU5F7y/LAVXb9npXmPzfMLj9/UqUUr9v4E/ChwopZ4C/0vgjyqlvorAIB8D/0N3gX1PKfVXgO8DFfDvWWvrT3jZa49oU6JPrxx+PJIw37NZgDyU8xkQx78Ia2o3te24yKRCfmezQd06xo66bPe7bPdjho+kg49PF6iyEgHO/pBinJLOC2wvo9zvkY81nQtL+uRKtk9x7JReS5JEBpxoxItbQdlTlP2U0cOdZDwaKxQ6ayVQwVs+tk2bIPBXryn/ymZwKDanUVO0QkFLQkcmr9OiTXn6nLc4NTXWJ+NAoBu9ejF4aKC+mgH3SBdw+W7MHh2G33zO8s49qg6U/Yj0S3fJfuN9bG3CQultUc1sTuf7z8jfuUV2mVP1E3jjLurhM4mK8oM8YyWyDJqia638TligHJziCq9Oo2ZhCx2sdEvKzRMCHOJtOpM4dO+2FvmzFMaO86NxHXdHMhHbYpjQKfuhaBQBTUcZOuwWHGHrukns8RmIuvG1BlHuKeeV4SmLpqgDVxi/+0icFDtr5NN22IfLGarbwdy7SbwpMVlMfLagdnQ3v6C34ZrijRtsjjQmgeFDRfp81nh4eFGUnxd4JpJvDPz1qhWopFl8a6/yNXKN+eGkL+hVSX1xxeE315i0z8U7PZ4vRvyR2z+i/1M5383f5ODwQNTMGwnVtruq4ZN7KNBBYzZ38X/OoCyoXV2uJCDMMX+MsywIp4L3tgsvUV1nOrcWe1Y17KPKSuZOTvUYZam4hJbC9qDbkR2Ky1zFWOgkgp37Rq2TiD+4V/pGEZSF7MKGQ8fUkQUbl+oUny7c89017Tpzv6PRUYTa/IuxSv671tqb1trEWnvHWvsfW2v/HWvtl6y1X7bW/lvW2het3/+L1to3rLWfs9b+rd/v9UFgEToZ5sEtiDXRi3NZgdYCgxBHwac4KJuMlaJdFAL8jweo2zfI702ZvTskn8R0rmr0tiJ5dimpyZFTy1UGXVvqLGLxzoT5gwxVQ7wusVdz5+HdkbDh0ZDi1ojNgzF1pqn6MVFuGf9ow/R3Z8JAmS+CE1u9P5TP6ehEbf8R5RSIQUXoPpNqd5se54Wms/H4Y4sWaHZ5A0fU19fGa1axHjNuwy6OsdLOd+z/8IxsZlm9UbLdkwHxzb/7kt2+Il1a5m+k2Dfvha1sNJXv62+k+uyc7KMz6l5MerrCdBLMu/ebpJM2huoxXc+ecD8LxcEXcs9+8QuOh1J8QXZ+E2azESxZqYZr7ZgRMoSMsIMe+Wt78jotW9k2q8KrKwNjxZtrOWFOoOkp1aIjttgsrij7dBbtKV4eHnLP1aNRo9j0xd8rY/33d5i7mS9EEm0t7AsHQG9LonWBOT0PMMu1Tk1pohtHXHyxS7q07A4sx7/uujtjm6Loz4luFvkw2Pb3pjvWQYzki7qHWF6hmPpjFP/wMeOHFctfPSZLKuZll6+Mn1FOa67+0N2QNSrdqRv+OZ90s1pjLq/knPYlhCJI3atKum/XuOlux9E9/YyiDNeIp1nay5kU+byQ4r0/wXZScSG9nMlAdLtrMGU38LR+5zEayHt44VCayA5rsRQ4qpvBrSNJ0el2JArNOC/uTgZ7E/kOpcziVL8vyILXovidoU/18Y3B7/H4bCgnrWX71iHRxVJoTdbKQfIhvRsxmFK9HvrWDTiQCzgMMZTC9jLyOxNWt1J6pxX9J1uykw06L7FJTHk8xgxkWltOxWtjda9DPlJUXcXwaYGerYVfORCfgTqLKG+MWbyWUaeasqcwiaL30ocEp6QPT+Ukr9ZiH5nGAWO7Zo7k/Zehuejh2uCnzSf2v+c7mmtdke/w/Gv6be0r7JG2SOfVC8EnZPsOwZycoUsLRnH5JcvqXhf77CV3/sGa1R0p3hdfG6Hv3mpSvEdDKWhuV1E/PyH9+Jxq0kVvRGVo7t9yHhDq2vcPzA3vzuesPn137eXpeAz7E/jEtqrkJvNsG5cY7iXocmlJcjaXM9Lf/rBJLfHb0lSEIWrQF6jCw1Ceu+toYD42TUXCw/b0ywBnOCaCSlM3cC6COVMwr/KGWMuldHRKNYo8v6vy7+F3ZkUBnYz6jdsyePMwz/NTF6hrwqLsC7geD5l9/Ta6htUdxd53IbpcOTaWEYvTqrq2EIXz0mYuBf79dR1AUFbWDQc8sJ7cAlTPFwx/+zm9E8vJBwf82kdv8MH6iH/9J3+Xq89p8STp9ySoIy8C00RlmeC+w4GkrS+XrskoBdP2n7XbCVx85QzhAjPJ2xuALKxZhjo+CC6E+HQZf3xLl6SVxJKA5RgnKnYsFCfDtxux41DLtXzGfo/8rRuo2qBmyzA3whi4eYSays5UbfPAL5fZwk5oy96NcDIW9XfHLULdjuy49Kd33J8JW1eAzpM5NtIwX8F0hFo6l6yyaqKrBl1sFFEPM6L4ALXJqQ6GLo0mwmron5SklzuJJ7PWeWZHVP0Yvasg1myOE1CwvKsZPDUMnlUksx31/gCTjYkWBfQyynFCnWqyuUFZS1Qo4nVNcrlx1rAj7EKUnqonsuP4/SeOLaJDqrc1FsK13xSgV8UNzbCnOS7ez8FzoIGGMkjzmtdkylGTZyhdrW0ohlGjwNSRlq7CCB1s8Dxn9F6X5dd2VJ1MqFrf/oCDgy9y8fmY7pnl8meP2d8V1CdnRLeO0dOJXJwuV69+fkKilGM97KgmHczn7xO//1RkzLbJIQQwnhJnraQNJY3i0hd4M19c+66enXLtZ77zU1ow3xY3OahfrWChuivUuiB5127xG/WwfkE8vQhqPFsK/VF5bxB3vGxZEQ36gvFud3jRkI9cC/a5tsXE8EW2bhbgwMv26ryqctF2YgS2/vyRJC3VBhtpoocvZUjXGuAKZCYNQvGl17h6S5OswSSWve8Jl1xnmZyntucH7ec3dEJblddnJi34SAbTRWAXuQuvOR/eJ2S5pP+iZPdxSnWrYlfH3O+t2d0pmf3cHca//EN56noj6TPuOOjBWOZAXvDimVB17VJqdtCbwEUTDhyonj4nsttBDeKAP6u6xUI6aRJ6/Of1KTx2s5WhqdJSPB2LxV8/ZrEUVpjbraXPZsJ2ac1m7GSIulqEa8zMF9J8xJEoXEd91OkFZrFCpZWYVnU7EqU4m8N8AY4y+GmPz0THrYqKatLD9juCO21EceYVUCiNvXtDONZZJE57wPKLh+yOM1b3+9SdiPRiR/Z8hZ7J1tL2OujVjvLGkOxcTvLs7T51qiiGingLUQm7/YjNHfECtlqhV1t0XpKsKnRl6Z7sSGfSxSeLHJPGVMdj9MZ1VUkinYFSjS/vK4PD61+4GURem9C3B1twDVrwhR0Iij9/4wMBFw7sB/fe3mo1fI4WL9xDKH7XkvzwGenCEiWG9W3F1c8Ii6f/j9+j99JS9RR1oph//Q7R0YEMg9PEbQ1NeJ/62UvSR+fUw4zkcoMuasp374UJui96HqoJA0nHMLGv7lackjQUQtXIxht6nm4Mpbrdxte7Fc6g0iTgu4EBpLWYkqWJeDTPFnA+E7Og126jD/eJRgM5Rp2sSUupPT4tN7B31WtncaKdiMoP3Ly4xNnxtq1Tg6Oj3wV4vPNLb7GbRqSLkmqYET85w1xdXbcy8N8vy1D373D1dsbgmWXxTsWNb/g5ios0c4wVpVpmV95Iy1+LDgK5RodsnRPVgvKAIFMPil/3e2a9pff9lyQrKZA/OD3mm1d3+aNf/iHP/xULB3uNW6cbjiqlpLPdGwcoyUNTPvw5uPG586l63evGUt5Uyp0flaXCUivKAEFJUrxj9ng6p7M+lgGndMaqNcT0VrHedtWu1m44WUOeY9YbaeDKSuL9XICw6nWx/S4n/407vPzFA6pJr7FzSBPMnszScKKwsHP4PQaUn4nCjYL4fEndT50s2HVKcST+BL0udT8l38+wkcYcTqhGHeJNTdXR9E5yol0tBXcjN47pd/HRZ7PXxdFrd6PH9lATlZayryj7QkWMCsguCuLZhuRig5n0Wb09kcT5bY3JItKzNcmLK9ly9hKUU0li3LTZWMz5ReAKB0tVN1QL7nytwY+ngDXH4fqQCC9CaZ/ANp/bc3A9Htw+pO7G9wyW6/8m7yNbbafcK0rMxSWdmUE96nLnjz/GxKBuHWPWWw7/3iN5roGyp1n8zF3IMsz5JXQ76L2pdPF9uSDr0zOSF1eU+31UZYjnW6o3b6FuHQe+daApeuEMBAP/sI33Q1i/4HiPE89ocAyAa2KZoggDQj/wCQ54wfSqbiCQzdYpJJ30ereTRen0Qv7uzKPC8UtTKZLOKY8kuYbXh8XTccJVFMlNr/W1Ls8Pp4JFrH/e1nlYvPuA3WGX0Y+2WKXIHl8K3OHOfdvBUcUx+viQ85/eJ8ph/gb0HsXo3KKXuyAdtz4L0TbsEElgabD2cE22iraKG/dF62cPvsloP/eV68ycnTN6VBJ9Y0RZRuxlG/pRQedgy+wnj7EbocPqXq9ZFL0L5XYnC3lLgRwcHxcrZ/8qAcBmu5OgaBfhZpeuECaxUPBcFGLbOE2Pho2HjbOIVd1OkNMD2CyFo33suw9cAk4nnCMgJLkL37wDceNFHhYmwEwHjB8WZAtLtCmEJaQkpFk9O5WGZiSRbJ7//YmqGPf4bBRu1/nE8x1czrGLlZDaL2bSOY8H6KIm2hnqvghk6kwTFYbB420zgNw57Hk6oNrvUg87rB4MMAlU/YRyGHH47R3pwlD1IZtZdGEZ/84pydkKm8ZcfXnC5naX3Tiic76j83hG9uGpqDZnYu84e6tLPUjhaiE0uViivEIsk+usrmHWbcyw1T1D0x1fK+KmbjowX/TdcwN+67nPrYGSFKQmlIBEAlPDcNMLJiCoEtvvPfrmC3ovFO8/PiafaFZfOBD13ek5t/76Y+oOoKDqKlY//wDV68pUPtLogz0RTDl6m3l5SvrhC7HB1Jr4bEF1PIbX74nM2XdGgf7o4A3/ndq7ECfE8ddLGER56MWaa9S+MBj2hdxxha21gosXZbMI7JzqzW+nneLWbrbU55eyGK83rc/rxUANo+XVTjlYzLrYNzObNzBJ2Xy2ILxxXbDJcylIr92hGmV0TjfYVJM+F7qrGPxXQbjhFwB9eMDlz96g6sL6pqI4qOk/t9RdLVt0VxDtZtsUr9YcwMMkjU+KXyAbr/Rr16rnzXsIyDaJ8226oLWW3nefs/+9kuTbA775/A7nRZ9BN+fFHzOY+zek+4wbq9pgPOUgNVsUQXin0jTklpqDseyqR6OgEbBFiR6NROXoF/eqasQ9/lxkqUSb1XVjueyuC9oL0+k5vDwnenmFnS+ahdPPjDyn3wpZgqome+85PD8V2nKeS+rQ6YxktmPvn71APT93KlDhfKvhALM/gbng5KojaTyffVtX5w6oNjtRKY0GohiLNOZ4j/zGEL3Oyb77hOyDE+LFjux8S3K1k2IP1Idj8jeO2N3fxyqIVgW6qMmHGhMrTKywGuJViUkV/aeW0ccVvQ/OUbWh2uuTH/fZHmo2hxH9k4rodNas1N5vN0nY/50ZVTeWwWlV4UNKw4DMf60WQ8QPFdu0J93rhe7JF6hGsdYSizQveO0mCq/vcfTW9jZg3n472D7cYVusQ9ekswxrLPWzl0zfK5j8ZsbsCxW7SYR9+z5YQ/3ylBt/+yn5WL5TMdCsfvY+ejwSw3lA7U8bvnO/h5kviH74CFVU1AdDsTDoxFTv3CPanzZDSNd5huw9aEQ5fsvu+NMe5giDMg8TKNV4frjiH3Y9vrD6hcqLZ/y/e6hHKbmhuq28R4/Bu+f5RiOERvS6jYjH74La3bR7mM3m2mIcjn23E95P37tN/dW3sFlMcrHBJhHpowu4uBImQ/t6cEUzunnM1c/foeooohy2t2r2vxmxeF0RbUVs43dWofC3H27XFtS37eH4tQunMUAL30E1MIsv4P7a9KIkczUjvSy48Y2c7t8d8qOrA/7C23+baCgunAFadAXZHyvlh5Wj0bVhv8pSzMEYtXPHP44c5dOFD1iDdX7daig+3uK06NKU/HucnodFE3Ce2G0qb4Iayo7frjeCQwdNgZzber6Q66XXFWpjRyLNOJhKlFpXhvz2ao56/zF2tgBTY65mbl5iMRdX4m9iLHY0EFqzUo1q9hMen43CbQx6tRGGQr8nhXDUx944BKWItqI2Us5VTT05Qa226NkKqxR6V7K51WX2Vka8KtB5RTnusLkzYHegiApLdrql/3TH8kGfOlH0zmuyK3eTR5piL6XsR3QuLP0XNd1HM/Hc7bjsxV4XNexz+Qt3mX1+TOfl2vlwS5dmXREPyr3w3ZqbINysHssrigZrdb8THRwQHexfLxzu30JB8MMaNyySL2EaRoaHBzznOGkgm7Adr+vGX1qra451vW8/IV1aVK1YvA7zd4ZEhwfYuqZ68pzbv/REireS4r38+j0RJZycCXy0P5HBTuk4uLXBfvSY+OUMM+igNwJLlW/cxL4thd/vSvziFgyk2kKd1vG0uRcrRM3x98k6OIjFDbd8MlBgUiQN7GFXEpChEu9R4VKRbGMyFDr5WuAx6zBWHzhtV+smtSWKQvcNNFzdFn0OrdDDYcD7zXYnzIa7t9i8vd8M25OI6MNnmNNz6qv5tfPr2TPRjSNmP3OLsifX+fxt6D+KWN9SJGsk03G9CZoHvwA2l1WL7dMemru/tw3KXqWdhmPo8W1Pa/ONgbPHNbuc+P0nJPOc/knN+ZMJ/+cnv0icVKzvD4RZsnHWv3420+uJk6DDmo2n62nBuFVlBC6pRGrv3fz0cCD3RyeT7trTCtNUYNdEdsdm6v6cJlQ/8Tbq/h1hsji823vW2M1GjOaqqhlcOo49kQt4qetAWbTPXgrtsKxkZuLTcrySsqqcICgO1xy4BqsswPufOJn/pz0+G4W7coD/fImtaux4wO72iM2DEQDxYicFtN8V/NutrPV0iBnIgakzzehRiSoN6/tDNjcSipEmXViyhRVMGkiWNaOP1vR/eE78cobtd6j3B6yPYrKrksn7awbfeSG0xOUK5itZyY3BxhEmlhtEL5xarS0Kaf0dCNQqP0iUD1o3z6kbpzlP46of3GD9E/eov/R6U2RbuKOnnYkXh23oW9Y2tC1o6Eym2Qb7LXrY2npYwYfhus9Vn18w/tGG8fcj9OeXmERRvHEjYKrV46fc/GsPKQZKBr19zewX7qNvHmPOLyTFqNuR4XJRysXe7WLOLtAfv8RkCfWwQ3y+wmYR1dt3JeWk5ckchEiuW0a31KPOQS9wkP3C5yh12lHFAk+6dje3w3KNi1ILJj/uJgxq1jwPCedeKQfI5wre2y6Ls3IdnDWhO/M3tB/6euw7fC7vEug+gx4P4Z3XKe5M6D5ZYpVClTX6o+eiMiyKa9AaWkmW583jULRtBKvbmtFH0H9p2N3PmXxYE288tOEG524I6I9X+9r6sSE6NDi3L+ieMlg1s5fwPH+9umvMrNYCnaUSYKzXOTZS9B7H/OjpIUlSc/lODKOB8KF3LvnGQ40LxybyqkhjxGQuz7EfP5Xv080C5zp8ju0OczkTmqtj+1hrRViDdNZ64by8k5hqkEhIcV7IAlELP9/M5pjFCvtUZCrq+MDdw253EJoyFa4x1e+LYMol2mNdfF6nI/8/PhALgyRtEumzVCIX167m+F37K55E7cdno3DHERwfwI0D2BtTTbouacaZJZWVSNgHEj2muh3qaZ/djR6L13tsXhuRjxSzNxLOf2LE+RdjiqEiWRu654Z4a1BFyfp2B11bSWRPE/IHB2zuDqm7MZMPtmTvPSd+ehGoh6rfEzik1xEL2aJk73euKAZahqjTsZy8smy8mOOYyN3oAZt+ZTvZlqy3ObQozeydAff+F+9RjNOm03v10Va7+b/7hx9u+gCJV26q8BKRE2zkeRABtCmJ0Xc+on9So39rxMWXID9IhUPvYIvq5Iybf+0jULA90FgNV1+/ib55LPSp7U44sU404gdHdrdDP3kpu6KjISqviWcbqtv72Hs30ONhsFr1IiPvfe0l6rrXC9hw2L20hEq1xyEDRSxtcFx//N1QDpAC4Hy1w8O9lxeEeAw0KDZb8WCAdIdF4brv1HlhmAZm8YW3xTWmrlHHB5Tv3sMqRXK1oxp3JSzk4TPZhvvv768n973U/pT5T94gH0ki0+5AceM3dnQuDYsHmtHvZujCkj65kPdLYsxyGcInXo1p87BTYO7Qahja19krVMxXd3pB/eevM7fzs25A2D3JGT4xWKMoy4h8z5LfnYZr1NshS/p63OSFekzfhfLqAyemOrtyu6JEBs29bphjoJWjftbofg+9P0VlGfW4z/JLRwF+6X33uYSmjAbiK98R2qTu9URUcyjRabhu3d67IcNN5+SnpxPZNXi/mdWG+vSsUXsr8QXXh/vSiS+WAgk7fr/KMrletHI8fu08+j/rPG6lUIu167QHpFc7srzCZI5Y713+DNhexu6oj40UujR0Liz5NAaFxImlls6lpf+ypnuywyQR0aZAVTXpsia92EoC/PGYOouICkP6conppNhBTwIdyjoMOtX+FJvEmCyh2O+wuJ9SZ4oXf+KI499YoJMYvdzIwMNto63Nr+HNgcStVRBZXIv7AvndqqL/vODZ//wtsuXOFRn3OpHjYxOFwmGrZpjkN1W+K341b5JWxxRk976jjCPstpCfu1AIu90y+u4FUb4nXRFQ3J6SXF5JQVGa6vScw7+6Y/mvvMPibsTko4rFV28Q5Uf0f+cJ9vJKutBBXyiT223Dtnl2SnrZpT4aU017xGdLSBPKL9wjvtoSnc2oL6+aRHMHnQSDJr8IagVRgu5GDRTi5wXez7qs8Ok73islfH+QXYdns+jGCjYwB/ww1DMQXJhCWwCmnF9JgPrcc41LWm8gE7eY9Hri6WIhuVhjeilUlvSjk5CUIgUzanYYRgyzuHnE5U8cYCNItpbVLc2dvzOn7idEuSXfM+x/z5KsK+x66/jI9bVj0ThWFvI22kNo11NwVJYFimNjWcuPsX1CAQ87QANWXVsczPkl+nDM5lgWlvznCva/eMb5syNuf09SiexWBoUqyxqvD1MHplEIpM5lYGm3WzjcF4hCKbi8ahhFfv6hlfCv3XA7ulwwyB0+3pGiWb12SLTcYQYTdMuyAg9lHO+jXp5hbhxS7nXJDvcxlzN0pAWvdkwyGUI7ncR41Cy8zgoDJ/a69kgTSfi5f1csOXoJ0frHZ1Ptx2eicJs0or65RzlK0bUFA3q9RSuFzWLJa9Oaqp9gtWJ9K6V7XpEsSoppKlv2TNG5NFgF6doQr2t2Bx2iXU28tNgsoXMqF0Xx5jH5NEHnluxii7paEHUyMQFabTDHe1RTuWjiuWBrOi/RVUa2sGz3JCVblTVczDCbreu6EyfLbcm3vXDGGmwpxdMU9TXOq+9yzXJJ9hvvS5HwdpSVxFnpWEEShQBTL+yg1e0EzCwSubWPxQpRW5HD27xtaRRJR1I12Dmu+NmqxHz8hO6oy0HVYfFaTHZeYF+7hf6gDD4cZrVm+Pd+QPzzn+PlzyZ0zmHxuuKtF/vop6eYi0v0eCSJ4m7LbNabkAykn54RdTvU0yHEmuR0hU0iirdvEs+mRBcLUfp51Zt7eCMlIDAPMBZiFdgZcnG5rtHoazBWcLMzNsAq3oYgHDO/OCDeOHrg5NduQfAwkI/E8zJsoSE6Fznv6hcLJVHdOqae9jHdmGhRoKzF9DPRHpxdUPsBpO9gw01iZY7wxm0uvjREGWTGMFTc+buX6MWG1es3Wd6N6D8FE9WkT67kOCexDMVq52JY18gLgK0aTrYwROTtwqAyb/xWpDDX2LLp/j3cIgyn6jr7qQWdeLuH6HLF3b+6pLg95cl0QP0TOfHO7ZpWK0JSUaeDXa9l8L1yC4dbKG1diw+JFpGMKivZ8bQ4+7Y28t21JjrYF2/+433U2aVQEL0DZKQgz4lPF+R3p2SPL53PSEcYI7Xz1n5aoMYjzn56yuE/OcWcX4rXTeBuF+GzoxQU0vyo4RCzWKL396hvTIkuhKYYHomk8hRfuIsuJIkq3+/QzavfE+P+TBRuFJTDFBspkstdwKNtFmOjiN1RDzQUg4g6EwgkO99hspjFvZh8qkjnYDVsjjTd71XEm4rsfCuvZW3AoxZvDjARDB/nxIud5PWVsoJ7Axh9taQa7FMNEqKF4G7q7BK13ydd1Iy/dUm910fPVnIBGaHY6ZTWVvi6XN13MdfUbt40Smm8QZRZrUA1qdpeTRZc1HzRhoBx+47ed5MqTSHL0BsZ+FrqZgjqBm/KRSt58QGVbfyH/U7BWPSHT8nMLYa6x/K1DtPvFag7N1GPngZc32x3dH/zRxyrN+h9dMXkwZT8qEvx5usMP1xhPnwMiyXKyYRVlgkLx20P7XKFXq5Qg76oUSNNcraG2lDcP0S9diimPFdzd7ydZN4XZceJJVLNxe757dAwSaJGxahwXWNdADpER6kIea3UPadyGLXvHKNInpumspPQGvo9MdbvSViDnS+CJJtIzKy4fYPyoIeJNcnljjiX61dtSvSzM+xyeS3kN1wrLqFeTyfk79xi8VpGujJsjuQauPX3z+H5CfVb94h3hsW7hjt/W5PNShETZc7Leuv8uj19zytpW0EIKk6uLWD+WKGa4aNt0f6glU8JITczMGdUkzEaCur5JUQRKZDOe5y/GPPa44r65gHRy4uQBmM3m4DL637P+W/rJmDBDyKrSkzdikI6WUfD9eZdejR076/QVwtXiLfyfTqZ8L0BrKXzwYkLWejIQDTPZYfj5kCs1hz96nM5LloLWaKsUHGEtXHw9vdxZNJtRyKyubwi8tdmlsl5no7ZvTal82yBiRXpyQa1zem/vAreLJ/2+GwUbosoErMYNJQHPZQVEygTK/KxyNklWR16z3fkBx3KQcRuX5HNoO5CYRT9l4ZkWRLPtjL0TBPqUQddGapBQrw1ZJcl6eNz7GqNWa2l63ztFnq2giiivDkhOVuRPq9k4OAGJumTC8rPH6OKkvjFVViRA26qGy8Hpa/jz747CZS/tqtaxCvQijsstbuxlMLaurn5dNUwMFrcW58E0nh7t1R7zuXM5nnTDRkbEqbVeCRb/qIIgzNb19TzBfHLLh0DqB7bW33Sq4Rkc0D98sQxaQrMak3vR5cyNM4Ui9cSRo8q5u8OyW68Q/+Hp5jTcxEx9DpC+axl2OQ/r50v0IsVaiRTfxtr8Y8uSqqDIeb2xNkN5HAxkwiyomXr6nHmlo9xkEADwY2w9Wfvj01RCid/2wwcg5m+v4nctjckK1kD/X5zwy7l+jHbHaqu0ZMx9rVbVP0ULMRXW9CaupsQbQri55fCevCdfhSBbbpznbqif7jP4ouHrI81gxc18/sx3QvD/q8+wZxfoG/dIN/L2E0jjv6JIioqso/OhOoYRwLhecZN5IN1Ddp5wwQ4x3Pd/Wd5ZdCuIhoZPE1RCcyU9hDd2JCEFOYpVpSl2nWzw8c1dZpw8SUYDQZMLhfYuTCRvFTd0zZ9PqTu9aSgZplkNtZGvEKSWI6/83oJ/jDdjtD+/EI+HUuTtt3JQt3tCoxyeiEmXpsKqyPUZIxO0gYycVCYrmvBtQd9YYxsRCylRkOZxW23YOSa9nRf61OKXFOmspTizduUw4TsQrJxO7/9EeaN20Qb4Zl7H5tPe3wmCrcuDSaNMKmmGPfIxxFlTzF6UmISRdlTpCuLSSzJBopJysuvJ7Lbs1BnYGLQJfReljL4Ouyjc1E91okmyg16VzM4WUmo561DtFLoo33qsUvaKUqKNw+IVoXEEnUy7OEeaiOsFtNLSZZViFGyowF6lwsLwUeUtQdcwQyp8TduPxoalW7Mlhxk0f67rUzDHAEsUVgYvN2rrWuUNwGyUpDDAE1r2db3e8I1vbiUn6WJ458bsWidL8Qe1zMe3PbZLJZEcURvueHi52+QrCvMwZioqqjPL4KazTx6iu71GO5ystkBZ1/uEm8s8U5z8fM3GT6aiiDHbTNVr4eajFDOJsB6pdx8gdrs0FmKHQ+o9wdEy5z4UjyW83t7RMdjouWOeLnFrjayAPmua7OVLWziukQIx069MlSUHU0iXVKeywBKq0D5o9tB97rUzonvmkK1rGC5ku2uS9zR0zHq9rGwZZLIDV+32FhT9zOiTUHy8CVmNqd251hnbepXg2mrfo/6jdtcfmFAnFuSNVx9Lubgd0u6v/GhiHW6XfLX9ljeS9jtK+7+jUuhEq7WwVHTLJwBkk5bDJXox79Pe26glcBLNNg21gRPGn99NNexoxL667HNBW/x8m1dC6zRzRg82rC6NWTxbsXwsRZqphfgOCsG77ceaHM7l3STZbLzAXk9J7BRnUxIDf78XlwFWT8Ai5UcF98keeOvqoLZQhJw0lSyMZ3qlSiSZuLkTJSN2jFQzi6aXerVLBjjmdXa7QC1SNmNadkA19i8IH0+E7toP3/qdYmenmGOpuhKWC0q/3SHwM9E4Zath2JznGJiKPsKXUKU1+ymMSZF1I9dBRls9xPKkSG71NSZxaSK7qll8sEO7YaaJtZEmwqrFHU3ovNiJcbnSkG3C7kwVYr7ByhriS+2mKMpJtUk6x3EMWbcF5L/Zkt9NGJ32KH7YiNbrcMeppcRZZKBp6G1xZShEhDkwr7babrzOHQofpAYOnBaghpwLBILtmEYCAZKs7WO3Q3iO0U32FGR+BKrvjgeUorLmj7cDx2kWa6kWE4nIhPOMofbKikqxsggZjRk73fnXH1hxP6TK+ywj97tMOutfA7XoavNhvjkjNsfH3LxC7dZ3o7onxjWtzusbz9g/N4CnrzEnJ3L8NKlXHtc0xal8I+rCtYb4smI6nhM1esTbSuyk5WjVMVUhyPsjQm6ksUfJG5OP34eFr+w5XfQg/d6CZCUt3mtDQq31fXH2QfQuhsspOF49WQkjCjbE1fA7TQj2ooRGcudRN0NMqL5lvjFBXa9pvZ0Tu1gNI/N+iF0mmI//zrbgy7LuzHZzLC+Kd/tzt+dYb/3Icbh5uUXXhP6YA23f3WFMgY934HH2qHx76C5XsKtF5qDEqx8JqGQNpa/ARpRcv0E5pJp7Sah1UzELiRBCpWKE9kx+vfabFB5TnQ1Z3zrTXQVU/Qt5sEtoheXmKuZwBjuvtD9npguAcYVYbNYSIbldof1tEFAmdiFr1gR8C1XYcdsFgvp9g/2xMzOXbNBYblcygygLINQJzRMi5WokC+vgiWtXGyxdNlRFvy+MbaB2vzx327R0wnendDOF7IIOmjIuF2d7nbEiMqFwnza4zNRuOtOzPp2h91EEe+gf1LTOc2pejHFQBFvoOooVCXFe3PbYroGqzWdc0XvxLD3z55T3ZhQTjJ0YdgeJBSjmM55wW4a0e2lRCtZPetxH73cULx5jKot8TJn/oUJydqgK8vsa4f0TgrSF4sQCIqxFENNskzJ+j3q/SHlKCU6FyiDzDRb/qp1k1hhf6B0U5Bt2VAC69ZWUysZhEVR+L/vUvzWNUiK/YS/JVLBNI5mqtfBLlbY0qC6HfLP3RKY4cmJbCOLUrZuYfBkpHsEuQA9k8czM3Y5dVGgq4q9bUFxd0pytkZNJ6hd3gxcPXMhiqiePGf6X1xivvQGpz8xQNeW3qnh6gsjkteHDN6fw+PnmLWY3KvhQF7PURnDhbvdET3cEiuFHQ+p9vqgOmKDsC6k8wV0EqNmS4oHR+jh6ygLRkH87CJ8F5vn0qVVleClvuOyVhgCnvfrCoQy7t9GI+lakwSzP6IaSKHO9xNUDemiJFqXdJ4uMP2MepihN0qk0uu141C3BEKJ2MkGxgxAkqEP9iju7fHw38wYfyDX/uzNiOkHNeNf+5jq9Nx91wzevEcxScnHmuHTkuiDp3C0L4tulkrox9W8UUpqBTWhq/bDam9TYIJNrNBN29xtlahrQ+1gU+CvP//7EYHNo+QX5PeceVgzPBS1a7yqMWmMLqHY6xAnh8TLlRQ0f252O8GFHb+6nXbT9jRX3W4IXSCOhI3iF1ncXKLTER8aV9i9Z4hygQd2u5NFwzn7+cQnHERil0tRdXo5/mYjkJuxTofiWDu9nly/kQsHthZrDGy34VpQW4FJQuOS9pv7rvr/h+EkwgVO1pZsbrBasbrbBQU2lptvfUuJ90JHYJForRk8tuz9YI0qa8yox/bYGcAMIsq+pI8rYxk8c9usXofyaICJNFEvoezHdE63VOOMeCfWrdnFjt20z+pOyt5ZRPnGTcpBzOXnU5KFFHm8QKIwchLW60Z+TTMUC11x+2GNO4mtztoa+T3TmsQbK/Q/x5ttS9d9pxMe4cLK5ITHLvFj5NwVc8de6CToIPxI4OhAxAVK/IvtZisX0HgkGGMkEAuefuiDU1cbrB5h+hkqjdHVAfb0zBUIxzzwnzXPUb/1fW7+aMrua69x8W4q53lhmH1pQvLGiOG3XsikPy+wxg1hh30pyFUlw+OqwmYZzBbEl3O5KTsdGfz0uxBrOa77I5KLdYi5s1lCfTTFZpGILBTUXbnsdV5jE43Oa1RlyAcpylpUaTBZhFWga9kN2kihC0PkfMajvEblAstVgxSd19T9BFUZ9Hwji483P/IDO6euDF4qu1xu8m4X9icUd6Ys7mdEhWX/24rVXUXUh3t/awYfPKLa7qTgxjHmi2+wud0j2hkGzwuyD05gOBDb02GPaq9PfLVprFpbXXbgWUeCfwvURiN4egXaUFoYUVK00+tYdk1Y6EIRrz0mLj/XfoFyg9AQIacV2fmW7mlC2VcUo4ju+6dYt+sIeLjHz11CvNlsxA+n15WinjjxjmcSRbpheUBQIduiEFOoqhIFi2cVDfrYzUa44VpCi/Xhvuzqup3GXjpxgi1HURWr1lgKsOvyzXojn7ksmmPuZmGqI8dcH+xLAlDtnA93uRR67eGiFtf/Ux6ficKta8vgeU2ylM6gHMbs9hTKgIkU9QCxYC0gWVvquWLygaFzUZLvZ+SjiM5lRdnTxDtL7+mG7gtN8vQC282IATPqcvZzB/RPKuK1bH+UAZPF1FlE7+ma6HJFeWtK77QkXgvTZH1rwuK1iKNv5uR7MdHJTD7z2Yzkae7M0OvGL9jja76YxrF0MteKeSMYkQ61brbONa2uzMEUzsVPJY7O52+S1k3mJb0hLDmWpA61K6juHVGMEjrbKnTq5uTsmjeKHh2gRkPxL19uUdOx8LB7XSnobce0PCf97hPWX39AvKlJAb1aC78bruVm+q6tPj8n/YcL7nz/gNXXbjN7M6Z7Jot0ce+Alz/b5favLNAPRS2o0iSYDylvLeAKuIcs7HoNS4uaLaQwDgbB89iMetg0luKbV6iNFGeUIlq4Y2YMNnYdYWXQuxIMQi9rQSM2E2WdzSJBrBAKqwb0pqRzvgzQjbcGNV46nyRN+LD2tr8OhhoP4XCP7b2xeMQDycayOdDUHTj8nZL+t55Qnzn/aAdPRDePmb/e5+odzc1/WpN9fCHv3etgugnFnjAh4jNPi0sDt9kbk6nIJaAHXxvfhb8C3bjrzXfhQDAxa3aNr7AfWjBeO2wi+MO4UBQKUC/OGQ4zNjcz0kUtwjYI8IUfRKpeV3YR263b4WbhdYNHTMt33UNd3mxKxGxDGUo6r3PVyYTiWZZSvBer4HuDsZCl1PtDosrVi35XvlNROpuCKsxl/CKhOxn66EDUm7N5E48HKNWByYjycERSi1+JtRadxNhbB6jTK8z9mxKYfnH1Y6K59uP3LdxKqbvA/xO4ARjgL1lr/w9KqT3gPwXuI7mT/7a19so95z8A/l2kDP2PrbV/5/d8j8oweChS381rfdY3nAlMpKTjKRS9U0O6qtlNI5KVZfBky9nX+pQDRbKyKBtTp4rOVU18OpcTmLipulKs7/aJckv36YrdjT7JbMf8zR7DXU3n6YLV2xP6tSV+7wlJHGOOplx+/Zj1LU06t1y+kzH5yMELnlDvJKs6HQoJP2oFGHiqXmuy7nmw6OuH3Re6gCVaCzpqMguVBpxTW5vL7GK2yDJUvytJ1SAX8WYbtuBXnx9Q9hTdl8iW2CfLuwvcFiX2aiZ0vVp8zDEGNR5J5+5MlDwzReATRe/piu1tJya4cYCuKicnj651ecEytCionr+kdzWj/8NjFl855PLdCF12if/wJfU3upRfeQBA9myOPb3AFkvZSg76qLTnVLRlk6BTl0Jxsxbc1J7VWpgG1ogxmFO+ej2AjZQU4kihaiveIL6AG4tVGbpwUvZKdmJ6k6NmpQhZKpfC7YIOTEjG8cZgpsHsayODLp+HmSZEx4fUN/dY3u2xm2h0CcnGsD6O2BwpJh/VjH7zGdWzF9T+/LsiGN27w+Irx0SFpXMK3Q/OBL8ddrFJxPL1ARdfVIw/gO57OcG9z58D34V2ZLjni5/v5P3jVV+ScG16empZhV3hq4u0H062PU/8PaEijTE25EPazYbkdEQyijGJojocktQGzi+lWx+N3LVTCu3Op6aXElmoOh05175xcmpIjBGTs4tLCQSpDdYlN6mgHi0FvihKSNzudm8S2Cm20yG6XFGfnsniN1/KcUwTtNdg9LoChbihqqpriWJ0eZhtGMrcvcH2Tp/++5cuM9cNUpUOjDarFbaTCCNl+S/WcVfA/9Ra+02l1BD4baXULwP/A+DvW2v/Q6XUXwD+AvDvK6U+D/w54AvALeDvKaXe/j1Dg62l2O9S9SI2hxFVT3Dr7aEiWrkuOxXlZLy1pPOK7XGHOhUM0EaKog+Tj3JxVFtvUT0pMuWtCXUvZnOosRFs7g45+1rM0W8rBs8KsseXFLenlD3ZarM/Jb814vJzGdnckl1alIXtEexmEV1nnhMCRaOI+vIqdGfhK/ktKo3hkNIxNm/DI02BU4njC1uLzVv4NX744wq/x78Bn/SBqeVCqWuR5HazoFSsPneXs5+v6D0UD/Egv3Z0QSk4Tmyy3qJqQ30wppx2iHY94vc3wrf26ewxQofbbFFPT+jaI3Y3B/TeP0PtTQgJMF5A4jrXtnOcLUrsw8cMnzxn8O4bXH55xPh/2+Hiix06M0uUWzY3Doh3+/Seb4lfXIn3RE/S3e1ogPJdkOtslVdC1ibQ8+TqrWT7WVZEKxnYBogiEc8biZprzSXAKR2dwCQX/2TrKJ/eetZv9+l0hK+bpQ5Gq8THZNe40ql+H3W0x+7mgPXNFJNAurIkayuOlDcj9r5fMfjWM+qTM6qW+lAoZBnqtdssPjdFGTlGt/76E+ygJzLqLObyiwMWb0B5N6d+lIWorRDGDEEvQFkSnBgdtOEtEqQIGkJ0m4d6PMTyalFPWukvHpc1VejGw2LhAobbHjIqilBlReflhmqYoSrZhZFlqKJwsIZj+Thqp+p2hW7n+NaeZx/mPh1xilSOw23XWxmIOjWttzxQw4E0Jc6jXHW7YbgYZixxLIV3s2niFCcjuLhCKYESpdBb1HTsFvsaG2n5XUfBVXGM+tETBi+6YiebiNuodVoLrubYqiL29rvrDdT/AsNJFwT8wv15qZT6AXAb+NNI+jvA/wP4VeDfdz//y9baHHiolPoQ+Bngn33ae9TdmOXdlO2REvN+A3WqSBaWbGnpnhYU45h0XhBvhTaYjyJQoEtL99IweLQRSmEvRd05QpU19SjDJprVzYTtoSKbAwp6zy29j+eSETnsYlJN56LCdBMufmrC9kgxfmjoP8tle60VR786Y/25w7DdE3FFJt23V7p57mUY6rRyJbVqeMAeIglYoZu8ezSllZno2Q5yMkyD26WpxIZNR+j5SnYWkyHFfp/00bkUmptHzN7ucfveCcvv3UCfzzE+rssPkHpdGWZ2OrKbcGn2i/sp/Rea6NYh6uPn8r1zSRPxmLhZrohOYnoXC8zeEH25RO9N4excBkWDPt6sx27ddF7R0CZrg35+xl4kU/+993Iu3u1gUkgXlnhrWd/uom51Gb7XE/bEbCm4fBzLjdTrYDvi0BZoYLb1/8qZTMF1qCVK5O9eIejpf74w13VTdNMkuLwBAVu3Woky0t9oy5Vsw11nrUdDOD6kvDFkc5yRjxXxxpKuDMVQM3tTkyxh//s5ne8/oz47l4IdqKMNz9+++4DzLw+Jcgso9n/rsYRoFyW21yE/7HDxRwr+2Dvv8Svf+ALZsnGja3P+5ZpCdn1VJQPttjLS86ZrZ7cADTXQH6v2YNLXCTeICxmQ0BTtNsbu4Sdj0Z1Mfp4X6IUWSLOTYKYD1POTIGIJlHE/x3Hn1szmAnHcOkQvt3A1E7isrsWsbrGUBsZa9PGhnKPNVl4ziUXB6DNFATsdYXop0S4XjcB6Kzvq8UhMnbwmYLZwi2ns8nBlyMh6I9j86XnYgYlrpbMC0BXKWpjN0c4TxS6XTVqT3wX3ujLYXf5XNJxUSt0Hvgb8BnDs092ttS+UUkfu124Dv9562lP3s1df688Dfx4gHk9Z31SYRLDseCPskSi3VJl4aSfLmmqQsJvGJBuD1dKJ739njd5V4vbljKesUtgYgV6ONMVYkawQTvG65ugfnokXSRKjTq9IYo1NIlRtMSkcfruk82IDkUSZRRcb6nGfZOVu+kK6FR+zJAq3ZqADEGKTPBWQplD7raYf2shZM+ECDf7ASdrcRI6xobvOEOpwDzY76TgdNEKvQ/rsCrtcCjd7uQam3BnO+F5yQwqzHHt5/9s3sFoLnuYpUes1qhzRuTLM30gohxMmVyu5SdJEum83yNRZJni0G6z4m0EfHkASc/pHbzL94YZ4uZJdgfIyaSevLmvqswsiY1HDPtHTHTd/Z4vam7J+55DZG5IN2j03XH51yuLPrLj3v55QP5BLLblYw9UC1hu5eVy8GLgi7YZcpEmTXOJ3MUHRJ+dYQTA1s5HIlpUTr3h2gyrdpN8JhyhKzHYbhE+kCfpwHzMZkB/2yPcSyq5CV1Kss5lidSdiHcPwseHe37hCPTnBrNZULdy4Pf/Q3YTqa28xf6PL9kjETQ/+s3MXmRcLTNKJefRvwa0bV9zpXtG/u2T4gWMEhV1aJINEz732uLX7c0hU8ok9ztvFq449TBfocUphjQ5KU6ua4F4vcQ/Qoe/QfTOilNBT/fvvxIc/2uzg1j4qd4uo6/x9sLXZ+iSfTM6Pe416kFFNu8KLdrMGNlvsUrIs9d5UOuAkgY4VSXuSCMWwFt9us1yhT87RxooS1lsVKIXtdaTgGiP2EMbKAN4aKc6eLrpao/ZS0UIsl+i9iezadjvZIXQ7AV4LSttEOOlsdyIqWq6kgwd+rwScP3DhVkoNgP8c+J9YaxeBwvQJv/oJP/uxpcNa+5eAvwTQuXPXVgNL77ng1SaFsie4dv95Tj5N2e5LVzB/C1QdM33PMPlgi97KSTaDjpjOXxZsb7qMxVomSaoCXUP/pEIXQvOy3Uy6qV2O3lXUkaaYZow/Kuk+vMKMupgkIv7ohdhOlm64BXiFme+2dZpcM23yAQDXnPn8QDFKGxOkutWJtHxLwha9rlE6Dq8fPLiteBHb3Q5VVSKvThJYbaCqhRtdluSvH1Jn8Bs/eJ3JjmDY5D1KOL+Si99zvD3e+fgF6UGf9dc1oNE/dZvhr7mUa+2Sxr303nFq1W4nN0KvK3SrW0dM3t8Sz3euk2vx2j1t0C1k9cUl6uqq8fOoDf26pveNDeb+Tc6/MqQcKOpac/GVPt2LGmVgc2OKifekMC5q0quc6HLVBAdsd+Ij0/q8KnF+IkphK9dVOlgg7Jb8n0EWaT8o8451qSRwi6pxDzvqko8ydgcJZU8Rby1RIRSxbGlZ3olY39Jkl5bDb+3IPjqTNJX1Vm5+f+O0d2FKOv3i6+8wezPFJIrBU8Pooy1qvpJMw7nskE5+dszo+Io/fPwRf+fZu2y3KdHZGQak2/ZCEn8t+mszornm3L8pWkXWGlSUii1AW1NAowC2lcFWhGL/YzmJxjadeNR09aquhf3h5kWym8uIzhchlMTm4ldvtjui0QB9dCh2Av7zu11R8vBEIENrZcCoVeBHq15XILXlWnDlSGNNJAItv7B5F00fTlxVwSAKwDx9IaHWrikQEkAFtfy+HvTlWE0n4V4GZOYUx+IWucvxyToqCG9kFiJiKffaPsxhl39KKZXHH6hwK6USpGj/J9bav+p+fKKUuum67ZvAqfv5U+Bu6+l3gOe/5xsY6Jy6D6kgnyq6J5b+0x1VP2Y3jSjGimIE9esbhr/WY/Asl6IQKfT5HDsZOgqXEqvL2ikqE0WyFtZK53SHfvgc9qfYboq+lANrugmqNqRnW0wnZvPGHp2zrYQSxzHnP3dM77QiWZZysalYtqjOkEllGXoykg5ssWyyBh3fWvkkbWhtH8tWN47QrWiGR9cUmNBI2NMk0MlwQ1SVV1K0tRJKVByjBn2qToQuIHuWMnxahcGSclFrdrfDzBcOu46FgpcXmN2O7OWSwcf7bP/4En5lSPetW8Tf/1i231EkXNluVyCWopBhnZPXU9fw7CXpRUeoibzS6QUIILpmaiRYoPNouZrLTfSDhxyf71PemqL/Uc3F12D+QNwg440lm1uStaHqRZTDHtztYWKFsohatrDE25p4XUonl4u3BVWN8l7cuF2O7yTLurESHQ9loNZJMZ0Ym2rySYJJxIvcRIqoFIZSVEh+6epmJLS8CLIry+G3t6SPLzHnlzJ3aC/qHsbw597IIheNRxRfeUDVE9uHeGPZ+8YZXM5g0Jed0qDH9sGU9R9eE1cR//bkG/yDZ2+TvNfDLpbXBowBKmkNiq8NxKlR3s1POaMt3IC8ZSj16rWp4uTa5/ciHC/iQWmUbYaUvrhbh4Er43YaSlGfXxDdugEHU3QsDB2T59K41EaalHAdGdhJFJ3dbuXzxaI2tTtn4pTIDtEPie16EXy/VbcjcxpnNqbSBNXvBy0DVtJoVFHCQoI4QtrU2lH2tELhKJBZho0jWSCqSii1vjP33iUgtgrGBGpiiOArK2miImdtqxTkr9B+W48/CKtEAf8x8ANr7X/U+qdfAv77wH/o/v/XWz//fyml/iNkOPkW8I3f6z2iQjDNuuM67ZfSsZSjhNkbKbqy6NLSfw7DR12m35+jdxVqtnSS15Ry2kXnNat7PcqeYv8HO3Z7SUhpt1oJzUZpOL0QKpZWmMkAk0Ykzy4p7h2Q7yVsDiK6zyrZsqQJ6dKQjyPSmaPlDbpC8zk7l5O9N+bipw+Y/GBJpBT12fk14YLvOoLwIIoa/LuNP3pss0XFCje4cXLjzVak1Qd72MwtPggEoFLBn81yhV2tyW5MuHo7YfDYkl2Jgx1RJBN9LyF2BvM6TUQl6LaEnF6QzfdY/WjA/J0aXfU4Pt2Dpy8IdCtjwDi1l+tWzOmZLAw6lqHeeuMCXF+hnznusIdQ/He1VQk7pBNVOsAB0aZErXcc/pdncmMM+pS391jfEXVh2ZfYLt/tJmsrGaVdzWaUEpUuBKKj0KUMnK0iuOyZSDjeVsnfsYg/TqTAQlRa+X0r/5YuaqzSVB1F2VeYVKGMBHeMHlX0Pp6jLsUUy+Y5VQsXFqe8ZuGW4unOfZIRHR2y+cJNAMqB5vDbG5IfvZCFrN8Tp8W6ph53ef4LMcaW/JtvfJe/t/oCl7M+N79bh/R5n8cpxfZ68b1O2XMeO16y3u7SXfePteAKvldShusZ8BoG31n7ov5JrBORlZeY2qD70gBoJ4UvDvvocYfksULNrVP7ulCCfl/c9kZDiCNJmUlcXFheyCwiL6RoFwXRdCJqRx9tFsfYai2LgJFQDtXvC/OnKKUAD3qo9VbEd72u82U32KJZ+FS/L42Ox8k3W6Gi1jKHUkph1kJrDd17HGP2R8Ig2eVCTTRG3DPdIFsUo57WeN2eof34g3Tcfwj4d4DvKKW+5X72P0MK9l9RSv27wGPgv+MKwfeUUn8F+D7CSPn3fk9GCXKzmASSNfRfFtSZZvZGTLLWJBtL1YHJB4V0UGVNftij+2QBWUr+2h7xsmB3lGFiRdFXTD4qSZ/OSF9G1OMu0XwLL89dt6yFo+xogjaNqTsx9v4BJtZYrUg2FpVXbvXOGX7vnOUXD9wRExzNK7tUr0M17rI91Iw+itHdrNl+tqxcMZ4HW4fVOkzCvS2rgwraN4Ot6xDHhLHBKY0oEg/iXq9Z1ZVylqkpNs/Rm4JkY+nMDMnZWqhPXlJd18JhddzrkKTtugO72TL5zozd/h79/+YZFxc3WHz1iJEzdwrxUEUpcNF45IZ9LsqtqoTSZIx09ZlwZs16e51q5nFvkOOibEsVagRDfvpC9nFJHHjx9mqOfvaCwa9bhkkstLGjPcqDHtsDUROubkWYhOBpE+8sqgLbkyLfvayoupoqU+hKfs/GoCsRedWpn5XIn8V6QdJm1jc10c7SPzV0TnPB289nktpiLMZT4qL27qLFsIgaOAwnvdeTMeWDG6xud0hnFdUgYvLNM+yLU4zjF5vDPVGqTgfYWJN+fs6N0ZJvnL/GxbrHTz94xPzD4+becrbAnqfddhy8BtWFJ3jqXn2NJeXtEuS8tFwurQnXsryfY6ZE1+XybYVjAw+6677bFagjE7e9ZLbDJpFI33s9CeSIZRCoDvbg9TuUvZT4g6dyrxhHwTtfYWe1cLfXaxkUrjdB6CJvreW6dPRHDz/aUrjg5tYh0dlMOONJ3EAssWfnuJAMawRaMabJhiwrOJiItUaWwnrT4Phu2BlVFXZvLMyj9ZqQnbpaC+xiDWoydvbBn14z/yCskl/j08GWP/4pz/mLwF/8/V67/cjm0inVqabORHxT9jVRYRl/uCM5WWC7KfUgQ5eG85/aI9kY4p1lc5xS9qQz6swMnedLGSTVhuhKKGPmtZuoopLAhixBXS3cVrjL9jAhXdV0TrZ0PjylvLPvPH7lgilujtiNNd0XfptXB5MbP7gqhogN7DoLgxnhkzretr8JWt7cQCNiMDbYUbZlxEJ18jLjWnDtLKM6GhGXjceCeEVLbp/KUgebVOx/eyWDmflK6GxOMoxxWYRuAISDKvCS5KKADx5ysN/lNL5B9Efm5I9H5D/xOumv//Ba9BZKibFOpMURz/mN2ML5GvuBlrFuQFM0BaXVgQsvzV2tDhPHWndTRddMvK5RJY2lPj+Hi0siregby8Dj2cOBbIuzlGqvTzlKqDsiZe+cbFm+PqDsK29PjY1Al1K8450l2RrijUEXhnieo1db1DbHrlaBtWGNbbzy2jsnaBapV7qnsDg5NaGeTth+4TbFJKboa7JLGHz3DPNEUEallLB0Xp6hkoSorHjxZ+5SfM9y+ZWKXZGwezLkd6uIBydnGOdZ44+htyJQEaHbbS+gbTEWIFS7lleGd6ZsH3v5Wpbgw91yvOQVy9fgzucLfbuJKCQtSJWpDAKLCv3yAqPbIiDX0BQl0CW+lJxPXZQy31msqPNcrt2y5TXjGyJvbxCLEtj7oFhvE+uopfpjd1y6HVSVSCOkFFZ3pCOOosC2sRvXJFVCl7XPTwRTHwjkqBwl0G42MlhNYlmMCtkREMtgU/V6oiY1Bg73Mb3MWW38V8Qq+a/toSBd1aKiG2lRS2ZQ9BXTD3dEuWyn9eUSmyW8/LmMsg91R9N7KeyT4eNKsMxljp6vhcubJjIEAVThOL5VBWeX0mEO+ygL/ec50aYgulpDXpB8fCor9mRMcf+QH/23UzqniukPafi/dY3NoT4YUfcS2UIbi02FyhdS2gt3wXEdv24bRAXzIusuftd5X+t4qgqVJJiDKWq+Iv74RPA9J1OXfD/fLTmmw3pLdDmXTsKJCsQ4p3lta+31ouKGpBJjFZF87zHJ229TfnPM+U9XoFKmu7fQv/WDJh7N8WZxPttqMIDdTt7TD16iSBaKQV+2rKu1E/OYUMD9tdDcrK3OvAWpwPVt9zXfFv/vde1glzx0fVorMrft9+yH0XuakTOM8gPJMHjXGp9W5F+zpgVffdJW1u2erqkLwz+pazssogg9GmFvH1J1YtKLHct7I1QNnR88oz6/lPfwu5tdLlvyYUTx4BBlYPI+bC8P+Mqf/QG/vn6A+u0RZvmwSenxx9hTUR0byrStb32j0DqubW/wBmpxdga2gfMajBy3Y3K/56Ew36gYHfBvEbE0eZ92W8j3MxY2G7hxKB34Yhn8PlBuKLhaScpNHENPOnWzWEoRHw6kG66b3YIktK/D7pkkDrqKULydvW+IsrMWO5tLRF6aYLc7tPOzt55n7eX4fmeRJDCMBP6YL8Vuoihkgbx7A/30RL770b40Ud1MCn2aSDMWaenST87lef0e/8LDyf+6H1FhUZUl3xff7TqD6fsVJlZsjlJ6p6AXCrM/YvVaT3BIDZ0LxeBZLcX3+y/JHxxispjINJl1drkUus1606TEO1YBuwK9jtGLLWq9xeyPYNQTv+deh9U7B2z3Im79qmFzaDGdyAkCRJhAlmGVSPR1CfG6ou7FRO4m0Fkmk/1Xt8jQCB980bHXT5L3E9Yus9G8PBWP4OU6+Cl7Dwaltfhah22xvI8pL2RI4tNj3FAkOBYmkci+/WdyfFNALsq6xsyXHP2TC17+4j7b1yyrewobdTlcv4H93odum7eSkN4oki7C7QoiH5hQVShj0ft7cnPEsSxCi2WIxWpbhPrPLze+OyC+SLaxfz8feHWQG+YETdfbLra2KMOOoT0c9I8fp0CZxofaiWJCsXrl0byPDDrDZ2tBJyBdr7pzk/zuJLxppBRHf/+pDIid50Xw6wCZJ4yGmBv71Jlm/LBCF4ZkE3GQrYiTmv4LG/xJbNVSMKpmwX51F/Bj3je+sWg5WIbGQsfXv3sUScftHAGxJgxYA0wSPLzBloXQXN05MT5h5+YRnF4IDz6NidZWdmva3XN1ga2c8Knfd+6DRrxzHM1OxZ3AEgqfTSn5fa2bMOJuRzBmT5Wsa5dR6RapsgyiGz+krq9m6OFAFo9uhjq7wBYl5uQMPRq0rFxlhqQPpnCwh8li595oQkQZRrj/YVdgDMbRBX2yvdLNgv9Jj89E4caAriyr25rBU8P0gx0YKAcxVU9MgMyoy/puj/WNiNgNjYePawYfr/Bqp+zxJTbS2E4qQ5RhT04QoLqSbxg9v5CtUiSDOp6+DD7Var2jPhhS3OizPo6ZfQ7u/XLO4rUMXUG0dtsy52WtjFDXqo4i2oGuDMUwIXbMCuOc30zr5gndT9oSdHissDWUlG1kErZy+uaxeAtXVWMkVRTYzRbjsxH96/lO1CoRhbiCLB1Yg7EHt7fmic4EyTSFDbAfP2X4+oSqm3D8p55w+jfucv61MYflA8z7D6VAaiVexnHsPJvFs5z9CbqqhRrlBC5mNheRQRKjbXbNZjVQJsFxj70vSxL+HJLtVbN1DwMwv713RTMwImgtCtq0inVL8PJjSr/GzjS8d2WbY+gMwzx9E2jMmkBgHv+9osZDXU/G2DvHlIOUOtOUfU3/eU78wVPq5Up+14UJ+KKtJmOoDdXNKdEqp/ftJ9S3D0Ap0ivFr/zlnyZTMHokw7IwRzFOmu7HCE5lSOt6vLZoOs2B3JevLE5+0cFJOPBUtQAA7rpJREFUy40GUzUxef54uaItx9VdX/5688eqRtJtBn3UaEA56ZGsXFyfBnNxJcXU4eW+0wVQboai3D2skiTYGFs3uA66hN0uxM2pLJPOe76Q//vAEf+9DvZEtNNt8c3jGPPmHaInp0J1XSyhk8qu0kONbhjpvd11r4d9eSbzqIMp+vlLmfmMBtg0gfUWrubBalnVtXTbzo9Huebn9zKZ+nS+yb/Eh41AGcvRb+cMnufEF1uSizXlMKL/bIuNNMv7PXZjd0Are+2T621JdXuP8ngsK9tMmBbqaoGKBeOqjydUw4zy9RuUNyeobY4qStR0LDeAUzqZLGJ1KyZdG4Yfg0k03fOa4ZOS6HLVpKEUJXbQY/VgIHjppUVvCnQhcIT32LZ1c2MExViWNZ3XK9iiNTbYT1JLzJLdbDEnZ/L73a7cAE5uS1k2U373CMpLj1XLC7t/S5rP47tAv4hoFdgIQLigzS6n/88+JCrg0TfuMP6TL0DB2c/soV+7fY01YIoyxEuRpY00fTKS31mv0Qd71A9uyE7IwQrXOlGXdKJHA/FibplpNeET0bWC04Yk5IeOWuctSmvZ5mPqhvrn//NPKauGZ946Rj+GV3uoQ13HkZv5hTvmrcXDuwBGt29i7t/ExhpVW5JlxeSfPiH+3kPh88ZxSA1Xva4Llx2A1tQ3ppg0Yv3GhOrekRhjrXP0rmT8sGbw1JA+m7sFUgXtgEriEM0mH9U2ugI3YwjHtd0duwLvPUo8zdUX0/B7VdUU6igSRWT738vmmroGrWglysLFivj9J9IRO7tUPR6h9/datgkGPRoGQZW/N9SgLw5+84UIbyKNnS9kgO71DdY21rb+uyyWssB1O/J7va50wnsTuVd8tB+gP3yKdcEJNi/g/NJ16/J8NR3L98zz4H2vOh1sXqDXLiA7TSjv7MsAs9vB3L0hYh6tQ9HGWpiMJGAk0g30+QmPz0THrSykz+aobU59PMEMUuKXMya/9ZLi1oTZ213xLSmEfaJzBQbqTJEf9shONqiyJr6Qgu0HgtYY7PEeppeyvt0lyi3xpiY7EYoW40FY1WwSs7s7ZnE3EZn9WUHvudh7nvxkyvihoWdswJVNnhPdvsniNeFKD17U2CSi6kUkUaNCC4pBd0MEtaRquiLfWXrppNlsZBWua7kIBn25qQd97Eb8gnFxYfgbxWGx3g9ZtRgY4Lopjxc6/xS7lew9s8ub33f+FtdsZwGzWnP0WyueTAY8/84x/IktB/9lh4ufu8FBXlI9e3GtGzbzBcrbVR5O5RhsdqjxiPpgRLTYyWdYrkLx8BhwdOuGYIBao8+vMK/sAJoLRzfd8yuJ4gGmaDE3rsEuvmD78+87dRckcC301r+Pab1GG+pyBbytKmyGdDTOjcM+JkvR65zd3TGdJ3Pso2fUXiJ/sC+JP2lMdHolny2KsP0upifneH27T50pdtMBqrZMvr/EdGMuvhDRPbOiJPX8dDe4DTRUrZprz18TtKGllpGZX3Ba56X9ncLz/DFqQVl+JxeOowuMCHMd9946i13Hq+XaVAqVdonOF/L53ZDdJ+7g5zFVJWpI520trKpCWBy1aQRTz164zEjTDAqLQiiFznDKrtbyvSJROOKaHrvbhdlRiP6rEGpfmghnOy+gNpheJ1xPSilZNOpa3uf8UnaXaUry/Arz4gTSVPY0bpEJ19PhPswWsjPW7VSkH398JjpuvS7gckZ9PMHGGr2roKrZvHXA+naHzbF4mMQbi4kkYf3guyXDJznJskTnJdHpHKoaM+ihej3MnUPM3SOqaZf5mz3irUHVluxkJUnur4nc2yYRqqxZfGmfs6+kDJ5X4uNdWda3O5hIce9vXtE9K4VyZEQEEx0eYLsZu0NL9K+K7aZ1EvngXdK+sD39z2/hqiavUn7QYLfCG7VuCi5RXpSVqMIg3NDXuhpvCuREFioTIxsvb1cuXsuWVRDMyNu6i8MLYK69Zqv7NJbo+x9z+K2K7qmm3sac/CFDsjVc/JE7RHuTVwqnFix5uYTTCzCG4s4e9d6I6MWlsHr8zerjwhxty15coeYr9GqDHfSabpZWsXDHLCTctApvu9O9hue28XEt/10TltB+aXut8PuOPRyPVsd6jeHiihRANOgT7e+hD/cFj50t5WbXmu53nmI+eizWA4M+6v4dyrsHUmTqWjzEu1mANfRqy/lXR1y9oyl7cPWucNLrfoJNNP0XlnRpA0YrysMGx/ffyRtj6V4vHPdwLFv0xcaIzLFk4qTZafjr2wdNu+d6E7R20Q4LhsPdVZahux35mdcNTEZu7uQK+C7H7o2pD0bi7pjKfyTOcbEoMU5BiamD4Iz9iaS+O41BMJNKU4El4kjmQWPxqbd5C+fO0mbekqXC0vIJPMNBKKJ2uxVx2LOXmMuZND+PhfmjB315n7Jy1/5K4JLNFjNfYF6cBJtXe34pw3twvG0tKTtOCY2Txn/a4zPRcZteihoOZKUFsJb6eMLqdhI6bVVDtIP+C8vgeUl6uUMVlayUtZGBwXqLXq4pXjsI/r4m0ez99oXggwcD8hsDshdWnPI68vWLSUYx0Oz9oCLKDVVfOueokAt4e3uArqx0Bp5V4nwsqhsF1gqzRZU1dUc13VdNKA5KqWtDr8aulaZTwwQPbk+VUkphM8mD9M5mgTHg1ZkOm/QpNOE9XICpbmOExhX1VkFrc4r9e0pRbXBlnMy//2vvsT34PJCy++qGFz/f4eg3Yf7H3mT8Kx+KoZTrgAFUt4/qdpl/fo/ueYF+eiqJN+4zqMRZ5EaOJwsykNNKhBXODjUUYI95+q13m3bpi7VpMTuUln/zD1u7zM4WVt6iILbtd4MIKGqlGnG9U20Gf9epdYFxUBaYy10QkJAm8PJMvuNwgL19RDHtksx2xPOtBCDMtqjnL+Wz709ZvT1leTsm3lr2fmDovcjpn6Ski4p4tuPkF6akS0vnopZ7oW4CpFWkWzRT05hB+bmH4/T7xV2lqQys89wxi2SmY71HOTSmT76YtXnqHpJoHSd/nVmjZZiYps1CnCZiURBFLiu0Qt2/w+b+iGhn6ETiKw9gB114sQxDQBzGbW8eoE8uYbGWoe7Bnsyxnr5oLB7GI+xyDXtj1K5ADQeY2gdGO9KCs2al3w8dt93lgpP7eMHhVEQ/1so5dQVWQWOA1e3CYimqT7eTxb9HmhKNR+J2GYnSkywTAkEhC4MajyTJaP3pffVnouO2kXIubob6cMzujSPmbw+xWop178Qw+VFFVFr2vrciPdvKgast1SSjPBxItt+tfTbv3mD2dpeqo0Epus/WcDmn3uuzPe5QDiORuFcGk8Xo5Y6qHzF5b0OyrtClYTeJiHJD57yg8/EV/R+ckiycmslhfF7Ao2LDvfEMkyjUtgArBdNfwCqJW5xdRxH8BEaCSlLXpRZBwCKYoqTOoLUYGflBW91wZq/R4dy2XWWpJMN0W9s4hx97nDLANQ6qiMaj0DW0vZkDDlobzGrN4d/+iGRh6XyzB4c5Jz8v8MDVv/oW0cF+w/jw3PA4YvDximgh3FZRvcWoXpf6ndfkBvGdZydDj4eY9RYzm2M2m0ZZiiuKRwehmwoJL94LxePtZSHXSNiqK4f9RtcWzVe3owELf+VnyjEU/GcIw2T3OrqTodNEjuHeJHiY29rI3wd9gY2evJDC9eY9ynfvYboJ0a4SOb3WJI/O4MkLmaFsNlT7ffJRRDGG4bOS4QdLkh88ZvQ7L+h8eIoZpOz2Fdt9TTovQqhAOK9VJXMCdx7l2EhHGJhLrgv23h/B5Ew3ToE4Z8owX2ntZtodtZ8j+EUtLCCxC5QAR0v1zUDZFEZH0aSqwSCZsXkh7KkoojwayIynrgX2uH0k2oCTS7lPlARBsHPzq56zaS1LaseHrw4G2MVS+NmDvqMBCgTqOd8qdqn0zjxKDYeilIzj4Pxn/fypKFDjoYQJH02p7xzK9z3YE6EPbgbQ6Yj5lDFiMJWl0lg5+McWhVzr1op3ymLVsGM+4fGZ6LhVbbGDLvnNEVdvp3SuxH+77ij2v5cTb2vqToQuZQAokEhGedDDJJrO6ZpyKiep7iiyuaH3Ykfy+BzbSVFaEy12cLNLOqtQZc327oi6qxnM5HVnb/fIp4rh05rueUV2usFGit29CeUwps4Uk99xKixrUdscMx1hNjHff3FM73bE8J+siHJxxvMnVynHi211GiERW19XSQJiLl85epW114JrjTfjbw/LvCzcd3z+36oKYi1bw8Dvbg0x2xCCjtGpExj4mKe6xbyw5tpnrM8vuPFfWE7+9Buo3+my/oktJ/8ty/7f7nL5xx6w9+sd6qcvwNSCn1/NiJyzni1LwRFNjR0PePlzA+486aOVxrx+C5PFJA9PrlldKmpQTZq9ubhq4Ato1IltHrdtKTJf+fzXIJ0WIyQUY92o/uTHtsFofacYOSGG276H2DjnJUNZCkZ6/yZ2V6E2Em9Vv/MadS8h2pREqwLTjYlnW7iYYVdrjC8gkUbdvEm0yNn7ds74w4zk4Us5jdudFLRIo4d9Jh8YkfyvC2eilcn8ww8jndJVTh7Nd0VgAc9c8j8Pal+4lnR+7Zoxnp9tw/FtzwBUHDdq3LqWRKb2NQXNZyor6MZQWbSL29O1W4DzPORypu89b0yptlvUpsntpDYibXeLkV1v5Rgl3itHo4Z94vOVLOhp0ojPpiMR9mx30gF3MhgN4Klg5B5HNy7tKtrvE/lwkcRJ7a1FLyRI3KzWEgzsjpMtCsHU26IopYWT3hq8Y6x4mXiq4+/BKvlsFO7KcPHTB5gIdgdiXZmsLN0zQ7yt0UVNfL7CZjGrN8f0H63Q8w3FfpfsubjBrb48JdkaTCxeFMmLmZwg1/maLCFZViSXG3Y3BygL2VUpA8WuxmrxufBeFSExfF2RXuxAw+61CZ2Ts2Bioy8Mqhgz6OVcfSnj9n8mn934iKM2DU39OLQBUUsSTTM8qpvMRk+F8nh48Dr2FK8WhS0MRCPxadYnl9IRpOJIaDab8JphMOrVme5hNptAA7vmYRHRQA9WPLZv/NJHXPyJB0T/rMv2CE7/WM7oWxn6p28yGvXghx9hy4p6sUK73D09GolIoRZR0u2/eSp45HjI/HNDFn92yZ3/zaFQKo0R065da8BaF40Kzx8jB+/4mxalQkp9SExpX29u6BoWh7ZDnnuftqxbae8eqIJ9q+q4nYwXbWw2IjDqOiZImqKiSNzueh3KW1OsgmhbSlhArInmW/THzzGrdeNdgqt9kUbNl9K5L9fEZdHw7a1PLipQZUXZV6Qri9pKd+pNl0zbb8Q09sDhe5aV2J9ar3tImkbCC3+UvS4E88+9tstzn9sfZuvhGjej8d240k2oiFsMvMmTbvnZqOWaaDvCZBGx9xGpjdijvnZLBvzzhVgzQ5gDqCgSeM1a2aW64T6qCMwUtdoIr7rblXNWVehtLjBM5BJ2PMfbLaJ2s0H1eoFnreJIzsFQyA3mpfjraWSBsNbKLqINP3n+eC3IAmXhhFUuDGI4ROV5EOQQx/BZV07W3YhioKg7YjhlIxg+LQVCAagMtpOgNjn9hwuqcRez36UcRCS9BGUt3bOS9GJHftSlGMcCZaycXHXQE8HOoytIYvJpTP9Fjs5rir0uu4kmKqGKFMVQS7ef9UgXFSbRFHc6zF+POPrt3F0YRpwAi5Jkpvn5r3/MP+U+dDvoymIGaVNYfQF3Az6sSxJpQRzgOsu2l7HHm7MGQqFVZK0GpVxX4/my/v8tLjg6wtryerHz/3efx1olYcJttRw0f35lkfGLUHV6zt4vbSl+4k0W6wweppz9Yk7dzTDRmHHyFvq9RzLQqZ0Z1WYj8EkUwdMXophz1KtsXjP6z4fYZMfLf+MuAMf/n/fkHHpxh+d2u4VOYCHnwe0M8QP/OMsa6XYrYb0dPdf2sfDHLBBHXEpJULVVtcw2nFdNkP13O9J1d7uOIeGoc4d7VJMOujKosoYkwqQx6bMrzOk5xlNLcR28O/9eAo7SUqxK5+w4HIq1rocaANPLGD/MibYVzJfSXY5H2LOL5hz6IV17ZwZhTnJtx2GNuCPGze/6Drwt5vHXmyzmNjz/VZpgGxYMcx8vHqtrscqNImFLxeJbUl9eEV9NIJLADjoZ9vJKFsRtEcIQRIIukIbfpQaOd78H05GwbKzBbmWgqXs9OedOhBeCRDY70YBstrLrtVZCQVyos91sZCZRVWC12/FI0xRSdNxQ0eel2lyMq7yJleDhugnxNi7sYpfLcNX5cZPE8rufdajExELzi3YQ5ZZkaylGEatbEVUv4davbUlezsnvTcFC1YtAwXaqiXYd0kiLerHKWNxPyOaWq58+YvK9DLXYwNWcqKyoD0biBLg2bI4zNgcSLjx4XrG8G1N3ABRWweUXFMe/GZPOK2ZvJu7fkJPc60oSdZ4T5YrcxAwywcB1aSkmGVm7S9HOkB3beBN7JkKLanVN8KCc3DovwlZX97tyoj0vtUXjAn5sIWC9kULySXzQNougrJqhUhjwNQOnHxsGtrots92R/Pr3OXh2i+0b+0S/nLC8B2c/BdmiS0fdR33/o+sFww3E5OS7YzJb0P+BohdpbJYyfJqAQToab1TvYYq4WVhUmorr2p0jdF7KjbPeSnGuKvHcjmNsLV2bh6C8gk77ou39ueNIOj8fXZXnGGsdG8Th5UaSWFSv69R2bnBdG2yaYKdDqnFGnWjSix2mlxBtdqhHJ5jLGXV7cYRmbhFk6u7r5XlD8+xkMBmKI8Bmgxcz1f2E7WHK8KPCMYhK7KIV3eb4/O1B+I8Nxt3vNdYD5seLtDvfr0IuwU3wleslLAZORRmeD6CSxi7WaRpUpF2Qstshxhq1klxPu9lIEXWJRp7SqDLxNtFJEnxDpGveYSdDmRPsjVGbTGyPkR2lHg7FwTNN0ftT7HoLuzwoJQPzy5lJKVeQjfP4ZjICazH7I1lITs4bGf1GKIrGhQj7wadce7rlqW+hyFGDnjRntSzstqrEcnm9/cSdjn98Jgo3Cqo+5FPL3b9XsjlKmL+hiXK4/Q/XJE8u2L11zOlPZhx+q2Dw3ZfUByM6Z5pikrF6rUu6qNkeJgyfVqjK0jnZoNY7Cb7tZrARJVJ8tqQcJlTTiHRp0bWl+2TJ9mDK5gaMHteUXfFAqbqKsp9w8J2KZFWRnq2lG0oTuUnimHgD//jR6/zE7aecvvaAZF2RT5KGQwuysmoC5tU4p7mL2/OAfapJGwdEtu46VtcKu+/OoCmsgY/rCqpqc59bQzQZwLU40J90StpURvf3a3imLwZeofnsJd3LGd2DPdLFHuvjiMt3Em693Ii5Tp5j104JmCaw2aL3pqy/fAuTKoa/8VjCBVZrdLdDf7MTqCR3En3bFO7gRueGb2LAPw/B0D4ow4ynqLLGJBF6Lsb5tpdhYy3GW8aKodFc+PAh4UYp1KB3PQnHZQmaXgaxhsqABpPGYsgPQgVViqobkaxK9FYKQPLRS+rzS+mGHeQSPr87t8FpMYrAFk3kmONV68mYan9ApBR60BM/8X6P3VHG4PEGtXOQoJNeh2xFzxaKEJFoqyNu77DC77ZpkEaH6yv8m2kNLlvQS7tYX4OaWmZPHtLTqcTDqX7PmUJVjeEZCHxgDFzNA9XPrtZSqB13W4+GAqskYiClxkNZ5M8v5XXOLqE20t1WtYNb6sYZ0FEA7WzeWB17Fpff/S6XkCQy3HXMD7vZigBHadSTE2kQ3GtRlKEI2+1O6LXdTmj2PP3VW8FiLWbYFWy8k0qnvdvJ9xkOYPbp3JHPROGOchg8tXRFHEjdgQf/yXOe/albXH2uR/cwI9oZbvzGFgxUNybEJ3NsN2P9uT75RCLKDr6zE1m6sai8pDocUY5TOi/XqHmF3hSYcY98GtO9qNC5YXskUEvvrCLZakysyKeSYpJsDNlVSXK6ktU/c9il1tjJkPzmiN5Lw+ZJn7tvXfHo8HMMH67ZvN1h0OtRO3K9SlTImgSuMRJCR2ttuDGam0C6Je2YIWbrzGhaGHSbbSFYYuOgF7ojY6VDLMuGMwrNwM09VKSvb29bnWFQ3dU0eHyLbSCfaQdPntO/uCJ7+w420kTPzqlXjfE8WYYa9jHzJXbY4+SnEu784hO2q9t0v/cMpTbSQb88DR1ogEQc3cqs1s1w16n5dL8rW1In6VZFSXTmVIQ+ydsnoXilmqOaebqZIsZ2UmwSQe3mI94JLolQVY3eFZheClpmM/Fqje0kmCwmP+hQZ0INTRYF8ZMzzGpN7Z31rKTFRMOhwBmZUOE85KL3HNXM7UIAYXzcOKI+HMsiNJIhfNVPyPcSop2RpKaVC3U2FmtbfOpPWJh98bSvdOL+nAv+nDZCmprAErnWiUet68ZagVTa84S2fP7ajk2gHu3ghBBPBo1qcFc20FNeCKzU+nx+F2pdJ41SWCde8YIes96itltnAaDCTq/hrsvOVbmhoJ0v5H0c5dTzv+12K9fW0T76atEM+2tZEPBsMeffj1YyZHTwiLUW5dSYflehD/YgjtBXDhqZC4fbx7Rx6Ey4PuXxmSjcOq+Zfn/J0z8+ItolDJ5WWK04+K4EICSzHSqvZcs534pvyTtHVH2Nrix9l5ZT92J0pIlmK+ZfPaTKFMOnuXRHLmxhd5Qx/uECG2uqYUq6NGAM6Syn6nWxClb3DJMfKDqnOXpbYfoZujaYYQd1co4ig7Iie3KFshPMf2/JQbKk6CtMIoNO1QqX1cOB80toUci0asnRVejEPVtC4o10MH8P/gVxLF2CcqG26Ia+FTljJmvElN51bXo8dMnUM1E06mZrG7a0qlW025/TdV7BfhOuDe1CAAA0AprVmvgDCRiunULNsxXscik+xIBarLnzD/pU37gBkXUGWEam9JHwuk3hbngIWC9KozsyvBTqZEk9dxBJm8fuHd98ALDfBXnJuxb1mw3DvhLlUlEk89B18NaGQk8pDYB3DiSOpIAvlwyeX2L2hqzeHBM/PhWBhevyVK+LHfYp7kxYHqV4ID1d1vR/cEa9N0Avd46NsXXXg0sK3+Xo+QbbSdCrHXa9Id3uSO/eZHNvhEk09eEY3c3QLwlU0tAstGcVruCG3Z1fUNrNQIs5E7xXAlbeogO64ad3IPSq4HZxD9eLg1nagdrm8grV74tIRSkZjJcl3LmJN2KiKBvmzqAnmYzbHRQOrup0MOu17ILHQ+l0l6sAJXpBTHD2c/eXtVagxCSRRdRT8cCpLT1HXRoTs1hK6pUXDZXyucScqhToNEvFPG0j0It3xVQ+ZLiV+G43Owm6Xi7DHMWs88aG2NlSf9rjM1G4lQUbazoXlv5Jyfo4ofehIv3+U6HbpAk2S4geXlA/uMHqfh9lLOmsYnCxQ+cl+Y0hdaa5+EKf7mkXGyn6L0uy919S3j8ivzUgmeV0X+zQFwuqm1NZaUuxYtXbkmSRkN9JGX0I0/e26NJQjTN2+wmL+yNu/7Jsw7ynrhr0yR5dMluO+L9+7w+hHsDocYyqwe6N4fRcbo6qakJCPbOktK9c2OYa3oixWGoUAruY4z3UrkTNl0QH+4K3lTIgDSIJN/zxN1PYlmaZdJVRK2HHW28G+MXTEpsuLIhZ2libLwDWy6cVbVMii3Qv3lLUu6wFNzhvRlTX1CenJOs1cW0cluu+v3dqoyka4v1ShgLgWTbX1H7uM4Qt+7YJbXjVaMp/v2vslCRumBumJYuPorAA+PxKD0Xo8Sh4VavpGJsl9J5usHtjNGAHPWwnE1VtrCnGMfM3NFgY/sIpF796RNU9RpeW3lOLelo0fOJBH5+cwnwJjxeYyME2ZQkPn9CrblHclOJd3hyRnc+E3mcNNqg6fWvcfFdrLMqFVkgBr5pFWhuUiiGNoWjdqC3KZTBoaqlOjYuea3Zx15W0IabLLQK2rtFu8KuUgjwX2X/k5OSVeOLbOILtNiyikqgUCXSxE0hN7XLqown6wyUYgeSsG2Dq6cR1x9rNMirxvvasls2mod3666SqMNstaiNhCLrfRcURZt0k52DFXMo3V0xGUmyvTEP9dR4o1lhUx/3e3hi12VEfjNDrjcxRXHwaRixlg0bhUx6ficINgg92ZoblnYRkLTxpuh1HxjdUe32SxZpylNK5KFndTumeGEwnhlizuJ+iS1BuR5VsDN33TqjuHrB40KH/oiQ+W8jWatBD72SAEynF7uaAeF0RryvGDw2rWxkmjRwWqrCRYvSoxnQSorqWgpQkwlYpSuLvDSje2TL+2gX5706pO4pq3EU53wYblQ1dqa6b7q619Xy1AAldLkINh1I0Ns6S0kUy+RVfI4MP74bWmPg0W0K7k3RskxetwusxTEIn9klBBeFhrMN/aQ2yrnOlARk2dbJGUu93Fe3XbW2zA+zhedHaJbO001mUBls21Ell0eOhpIYU5fVj1uZeu+e2j/OrxxzjhFUt9eM1I6RPvFhlu64m44bSNexz+dNH1KkiHytWr/UZ/eiAw2+u0UVF3UupepGL4JPU92dvTOh9fU7xiwXz3zlgPB1x8LSPVgo77AvdrSzFMS5NUYcH2GFP/Jy9692LU9KTM7Zff0vIHQcT1HIpOLppzKOAZkjeCkgI55Zm0AhcZ+JEEdCa2XwC1Ic1zfNbrCTr+d41YREIfvP+7Yd99NVCim1eUN/ZJ5or2WUtV2EAzXYX/q96Cfb4ALVco24cSYf7nQ8wtQmGWqrbkQ58sQx2D35YGHjpLrJPH+7L72221IsVKomJxiNh8iyX8l19pFiSYPOcaDwS1tZmIwK62QIGffThgcPfE+n+nWAoHLtYGgH9o6fCUosidE/0E/61PXX30x6fjcJtLbvDjBd/WMHBjlt/VYB6G0eY/SHFfpd4KZS27OUa2004+Ohc+NIaqlEHXUExUhQTsFrYIvZnblEMNenSEO1qKdpaYZNYlFnLHcpY/n/U/WewbFl23wf+9j4+fV7//Cvb1b4bttEASBAAAVI0EBkynJBEKkSRIiXNSCGGNJLmgzQzwQhNiENpnCYEmRlqQhCHAh0GhiLhTTcajW60qerq8vXs9femzzxu7/mw9jl58r5X1a1BkFFzIirqvftuZp48eXLttf/rb4wfodxNWQaavK1YbfskZ7nEKCkkVWe6kGxH5/uhxjNsnpMcW1YvKNphznxLoJL5zZhuGG4wNqwb7FTOgVXn23TXaw6LVOV2lkTScRWFfLBVakeF74YBtmSTL9vk67p4sdqL2/Nku9z8woLIuusB0ya+9l5DzLrrduesd7acEVYsKTHlenu+Zh+w0Qk38fImhLNRYJWLnAoEJ6yxw8ZgtnZJrIqIO+8anzdPWZSu+h5XuGyjk6wXVLvuwnW3SxX1Vn7oFsuDmHBqePBjis67HvGpxoRw9skWWV8xfyGj9VbI4M2S7oOM6MGI+cE+W//0Cf+PF3+KH/+df4+LjxuCxbP0vjFCT+eSYZhlArM40y1VluIbTw91/1DOr98jeeucxQs7mDhExxFKaRm4VZ7aCNSkex2UCSldYlFNU63f/prfXrNRrlJJq2ujFRue8h4bwpv10HNtLyBKVmH2aEe7U8fnwlj2fcztPeY3E3qTlUAc1bB5PhcKn/tMa3aQS7dRDvJQxknYXUdNtk76aYq6dLcjMAyI++JiKTBFrwuPj1BJshYnVc2J0wrY0uB1u9QCmYo3DtjRGNVuC3Zf4/IW5fJeldbYs0ssruHKFzRZSRXCoHUbZu+Ncb/3v1Q3rVK3lFK/opR6VSn1ilLq33I//4+VUo+UUl9x//1Tjcf8B0qpN5VSrymlfvxbvYYJPXRhCS804RsJxleU213ygz5FLyK8WBEcjYQsP1ug334kHNzIQ08WhI8uaZ0UpFtgNSz3LelQ0t7bh4V4HZ9M1p4E86VslbTGO58SH4qaKhuGTO6EhFPLakvSvNMdpyQMPLK7u+4DjaTbUeJbsvc7Y6IkJ/FzpnchPjdMbz2p1Gt2dJX/x9U/45z9bCmqQzudwfml3EDDvmTopSkmy+sFwaSpdMtXi7ZyGKkRqXozeb7+rJoqzPUPN4dMzS9ro6C5D7v+UmvXVdj53MmKl+uC3IA1rg49NxauxmvUIg2t8D70LPM/8BLlCzdR1/fXFqPuujVl8VUnuAE9VTavply/ZrM4N+TZ9cLpjJXq33G8+Jo3fnOf7FPPAOAtDdMbHn/lR36eu3/ybYZ/8IjkD5/wB/7CF/kbf+k/51//zK+weD6jjBTh2QJ8j9UO3Dve5nGR8PE//Bo7XwZ/YZg/1yN9ZpdypycdchKhlin6fCS+PoURGtq1PdTWULb/rYhgmst9vbezNlByBVMsAGQHWJkpyc5GxCs6DOqdRO0o2NAaqPrfXQFyBmY6DOrFF9xCfmW3Ui+mFfd8uazZGxQue1Gr9a7RSPMlrAzXiVaME62FqeF7qJkreqUR58Xru7LbS6LaLsJmomqsuuVaEBMEMhQ0VjptZ2ZmJ1OxfOg5znYYUCXeVBF/NVRWBzE7+KXXlfMNfIEKnYwfR9M044mwUlwjVUOCnniW1HOxem7w+xPgFMBfsdZ+WSnVBb6klPpH7t/+M2vtX2v+slLqI8CfAT6KpLz/olLqxfcLDDa+Ynw3AA29tyzhuGD6TJvOvQX+u5f1pLX40C2Kto8/G6LTAutpcRCrTrRt0RkUHYO/9IimFhMqFgcR7bKD3eniX8yxx6ey8nVkQr+61pFBWqQlNNaKA2F8kZH1ApKjpRtAyUTYpqmj1Lnh1HzF6mKbN45uYA9yFmch6ZbkK5py/sSN2xzWVMW0LlJugFNNsyvRACBbMWPWUt1mh1oNEsuy3p4qXwQFpsrKCxzjotraNmAV962or+WaZ11iTcWFvoJ/1w9TNSZrJzPZdnZa6KPTDek1VlJZlOfVnRiet6Haq66PPK90v97uDuOPbPHoRy1eX/P8f5rIFy/L1xDHVdrilWPDdtVa1ie/foywf4K6k1y/z+rWlYIlW/pUPLUL8cyxvqgX/9v/0x+niBWzZwzJ7Sn/4K0P8zOf/06CsWbrPgxfHmOSgPkLPdoPLfqdmD97798EDdcmJcnhnAc/3qfzwCOcBfjbt0neFPdJwgD9tpN99zsbIbVqlWO3W5x/eoCXWgZJiHrtnQbF1HW9TlGqtL+mJFaagAo+cHg0FSWxLOsUpVq2bk0tVKnuO+Wv4ZONa6/FrrVaaHVVjLXzA0EKcrlcob75Lkn4PHouyUl2Ol1nM3Y7knBfCI1P9d133/exYUDRjygGewQXS9RoUsMsJk3Rw6FAGnEsLJXJVKCUhRR/bazkRCaJ0GkvRmsTqVIsWlXLufZVaVN5LsPqnS03V7DisZ3NhIXCvFZg1pmXTvRji0IgoP0dsUMojaTsRJF8PmGAnf4+hpPW2kPg0P15qpR6FbjxPg/5CeBvWmtT4B2l1JvA9wCff8/X0NB5XNK7b2ndmyCpHj7+yVgKVRxhhl2sEgn64npMGSiCpcFbrt9c67FiuS84rCpBGctq6LHcVawGbfrvZuhVhLpz3U22gVhhIk3a8zCBIpqI74POAQPt1y8EWjm7FD8DtwKrMJTtW5LAfEH39QNWuxZ2VmSDACxw4wBee0ugDLvuYurteEPNVtPdNrocoS+ZipFSrm1h16yPnCoxZiOA2OVX2iyri4+i0UU3B6VXB3Y0Fhe9NsbaGAJW5+AMmfRwIBCGVpS7fS4/0mXnH47WuLQrwhsqvqpT8a4EAVfsGmPxWhF22JPF9MKj++UEk1i0E3A8cS9Vxblp7VpdU6VR4Vq12nT2q+wC6sExgMtYbBpYedt9+az6HnaR4T06w+Y57YcB6hM3yToBykDvDU161se0LO2RIrqw7HxlyvT5LmWgCKeG9nFJ5/ce0Tm8Rt7x6Lx8TLHfZ/erOSefCkjONIM3CsygjXd4UZsaURSoVJoI4xgaKgwI4gDzXMTZd1rS/oCD1U3s2/fXVLzqPtiIXqsgqgY11M0ZKibRev6gsWV1P7HGqb212rSGWWgs/tVwt8bLWTOE3LnbubNa0JrgwdnGQF8pEcHU1MGtPmo4cC8i8nKV5fjjlNFHurS1Isq2UGcjKcylhGxX6UtVl1t9x8xsjjk9F1ZI9X4c79pmzu9kPpf/KjO0ipeeZShjsbcOUOM55vo23sPTzTlCZYtQidwqVlMUweW43qV4W0NslX+aNqfCTx7/szBupdRd4NPAF4DvB/5NpdSfBX4X6covkaL+242HPeT9Cz1+agnmJcEkQx2ei6l8GMjqukwph230/RPCdiJF9NoueUfROpZQhMWdHsttH51ZOvdh8qxM7bO2JpwZljueMFcU4CkWN7p4mcFbFOS9AOM7EYGxZB3BqL3MUrQ8wsVKAkyhphvJzZKi2uJvoJKYrVdzHtzyMMsA9kqiY5/Jhwd033JbPN8XWl9VfF2HrJS/TtvwfbKP3SF640i2j67rMfMFlY/JmrblsD7nQwJV0W1u952xT8NjRIqXsFCeOqiqjkpeXg8OeRJLlptCzOW1Y6oA+vX77Bx1IY5EANGKyLYSirYzCssNwcUKbzTDXo6cQ9y6ECtvTd9T/Z7MMDLLjV/J0IXFf/U+ZWMQ2YSGavvVqqvWV27xqohXAzPW/PR66NqEnLx1OlAVUUVZcvYjdxi+MkE/XtbQQ+tlTXzYo+gnwrFOpWnov12SnGYcfbZHOLb4K0tyOEdPRLodjFImtzt4H9mj/aX7eJM+tx8HLG4Le0rfO8a4AXPNjrF2jSU7qpt68z7dax3mN0JGHyvR5S67SYh9+fWnDmflY7Zr9WPlbVLtfLJ18ajvWbfgU/Hyy3ItiW/AVfVrWIPNyrUbZfW81a7LQxYEx6pQcYxtJ3Axrl0jbZYJL9p3XiLHp9DpSDG2Vh7z6Ahvb4etL65QRSkpV/0E//CS8tGhfG4OgqwyKysFo/K0PL8xAk3euibkiCzfmA9U92VtAhe52Vieow7PsEWBlwn8oZwuQ1XOjFBj6tUuQ3c7oETDoToJZquL9Tz0fIU6v3yfqOBvA+OuDqVUB/jbwL9trZ0A/3fgOeBTSEf+f6x+9SkPf2LvqpT6i0qp31VK/W5WzPHSEj3LJC1FazFTf/chGIN3Oa+xq3xfUrAXB4rpLeFmm1Dhp1YScnxF720IJ+CvLF5q0Tm0TkuiM0cpUrDc8VntRigDwbTEBIpgbvFySzQxWA3RhfgIpJ98hos/8iI2DDC394U5UeFjrRjTimm9eYH1LWrmMbw+xvqWyxcknZtAUsVV4MufK8m3ksIqVpXSjYSnbvDoeMN10b7KELCNVdzRmuTCyheqeq2aAXGF36ydpeVVrLcJl9Sv0/iv7lQd1KJbrXVosZshmDTFjCfk14fMPrxN0QnRuVzT+YHPxUsR55/uMf6OA+zta6i7NwVjrbqgJBHTnU4bG4foZU7r3Qnx/RHB73xT1IFXBpobO4HGwLH2OGkwHSpoqsKx6/+qeUNjkavfe1XMHJundZwzfbYD1/clRNbx5st2hLfI6Lw5Zu9z54RjmO97nH0sIRxbWmcFw889RL3yliR6JzHnn+jQ+mePsEpJp3V4ip4uSA6XBJdL2bKbRreaZbX82hpbd682y4g/9xo7XyuJzjzmPzbj8mM9vJ3txsdp19BWkoi5U2OmoDy9OXOoCnR1L1TDbbeQNecI9bW7MhzfYB4ZW9sL15LwigpalqgopOwnsNUXfnNlSxz4NcasOh3ZdcRVNJnMq8zJGebeQ+zFJXqRk/dCrDP8qobo+mBPTqVSQeZFjUsT+HBjHx4dYc8u5JwdB1sFvvu9ylWwlKFor7veTa/SerZg5guhMbvEHdx7VZGYaalWSzD4wTqOzYY++TAW6m41mH2P49vquJVSAVK0/3tr7d8BsNYeN/79vwJ+1v31IXCr8fCbwOOrz2mt/UngJwE627es8dzEvB3hTR3u1O1gL0awv0Oxv431FCbysB7C5NhRDN6weEtDnmiChXQz/demAEye71LEis6hwUvF6KfoRpKEMy6JjxaiiEtL4rbH5LZP/90cb2lEXJPllHcPmN4O8VJLenNAMEmdb4bb5p9e1PLd1kMPfwHTnYRooki3LeztoBcr6SJOzqHM686mcrNTg55Qn2YL1MVYcDKoY5Wa+Hg9TW90nJSlBBJXcvnGpH+j2FcdT1Gg4p7IpperzZCAJu+5IdaoP+tK1FENJLvS+diDXU6/d8je3/mmfDGv7bHak4CK0fMtgqklvjT4S0sZwXJPkbc9wrEMNONjF+Iahqheh9nHr9H6tVfRvi+0uKKgPLuoC/XG/dk07ao67ebEv6IxPu161PhssIHP1qyUDRjJLZadhHv/lM/wFUV8rUtUlHA5QWmNfzFndWeAtyxRpcFLLfObivZDS+9+Svi1d7HGKfWc0VXncUHyVyLU6lSYIEqh0zZlK2C1n9C5mDr/lKz67tTDQVVZGLhhrJ0v6P7Sq1jvw8wuuqjSYPaGeIulMEkqaKw0YLO6Y1dh6JJz1sPe2hztKqPI7ew2QhNq5kZjyOt+XoluBIoya/l7pRJUyvGhQ2wS4c0zmecg3WlF61NxJAKuhSfQXJpJ4d/qo04vUZ0W5uwCu0rxLiYkpyMp8MOB7GCVFjfEagfdSmBniJo4W9u8EEGW0thsiTk9k04cXMFV0t0vFqgkRic9l0Dv3nunDTtD7PGZ7Axc2HFFYqjuJGXlvjOzufiGuwBjLy/wHuaYnaFQoSe/j+GkEuu0/wZ41Vr71xs/v+bwb4A/Bbzs/vwzwE8ppf46Mpx8Afid93uNvG+Y3g4JJhF6NCe/tY3VivDBOfS7ZNd6FIlHmWji80xiyIymDCEbhIyfDYhGhvbDjOitEygKlh+/iZ8a8pYmGpWUoSY96BCMxKJ1uRuSDWPKxEMVFi819O4V+IuS8GROOWyzvJaQHK8YvLEEYwmORrITaE7afR/Vlc6we99w8RFFMQ4xH18SvpmweH6L1utnlMMW3tlFjQeqirdZiHF8uT+QbVbgw0pSPkxpNuCJ5jZ0g3lRHY3Os/YyafK1q4lbltUQRWXedBUvrmXRRbMbb3Reym0vHZyjHh2z+wUcz1aCLuLTjMc/ELP1smXr5anLEjRkd3dZ7YZM7nhcfCRi+Jokkqi5ON+Z41M6Wq+zJj0Pc36xHvJWApzqaAw/61OtQm8bP2tyu4H1ELLJHGleB2vYyAy1YvyvlOLOL5ScfSygaHmUz28RH8ZijLTMCU+XqLxET+f0OgHD10usp4jePau3z+nz+xQtj/bXD2l96d5aGYsUAJtE6LSk2HVpSyDb+lvXKXY7lC2f5M0zCZGuF1InckpTer/0Ou0XblK2AubP9OhOFnja2dxWu5CStZqxss5191sNyVSBIE04qsa9nbLyCne+7p6bYRzN+zhz0vxGSLRutVD9HqYViXcHoHxP2CVZjsoLKXxOx2CXS9mpdlvS7I2r2ZMMue1kJtcxzURh2e9hFxUTTOBJylIova0YVYg/vBrPnHmYgvkCMxpLgHO3I3+uYtQ8T3bEF1PpnudzcYmcL+XcK1/wzLkZJra+dyqaonILVjXktOOJFGzf+bj8Pjvu7wf+JeDrSqmvuJ/9h8D/Qin1KQQGeRf41+Tesq8opf4W8A2EkfJvvB+jBMAfa86+w+AvO/RfLcgGIcnjOSc/fBNdgJdb8kQGh1YpTCBwh7+CyW2f2W2LVZrOQygPhnhHl8T3RiyfGVJEEI4yrFbYQEsS+yylDPr484K85+NnBi8tiR9O4HwE3TZ2kBCfyeP8sxmcXZB97A7B0RS7v4V6cCRy28lUtkBZTv+1gPOP9wjPPOJrU/I84fLFgOR+hF7mcvMcnUghchNvvbNFfjDAm8rWTfU6wmd16rfqC1EPHKubovklgScLb/WFc2yVeqtfdWdZLtvvausbR+hBX4Y3uZP2lptFu0mX03HkaJFLVBhSji9Qb993/stGIuSe3+bgty3Gh9VuQpLLOVy+GIOG1pEhviwpEy3YolNL2rygfPAI3e2KUnU0Xg9Hczcj0N7mglZR/uoLYNbvtxpW1v/mtvRN+qFVjeu85rPXdEfXmbNK0dMF2B6rPcvhtsef/+O/yD/4d3+I6Hgh/OvSMPvUDaLLmPjtc/GhyDPstT1oJ8L9jjRlpEW1t1zJVrkaCKYZZquNP1nR/9pctvtKSaRW5HPvjyXkBxkf+d/ZtStdsfa4UaFwkL17x6jruwSXS7KbWwRRCA8P6x1bdQ1qb5PGwLZ5DTfgo+qeqm6LCl4pDVVjoJSS+6AK7W1ww5Vq3LdNr55MgiFs4GwGlqv1+w58gQ4ck6tWlXoeph05wy9371TBwlqsF+xyKY6At65jb+zCu4/kvQz7MJpKYa/w7rMLyjSVTMyOWK8qY4Vl4lLhVb8rr7MUnrke9LFpKnMe35cAB4dhk4saU8ItYhmETqY1vl6ZbGFsTU1UYQiHZ++pm6iOb4dV8ps8Hbf++fd5zF8F/uq3eu7q0Lml94bH4Q/nnH1ySP8NOPqXPayd0/nlNuGJJZgZFrseJgixGpIzQzBTjJ/X+HNItyHr+wRnC0y/Q9mNxJFPIa5tnmJ+LUQVHcIH50SnC0zk03l9jE0C9GQpcUFhKAOCRS7pJGcz8YhIEoKjKWU/QS+coKWy3WzFYrGZBFgP/LlCuxt0tW3rQGLrr4uo7rSdmfsSfxKLwbunZavXZI5UXbJWMuRRWoyo6kFeQ6wSqDVjoIHrbuRdugGcXaXrzrktng82Dp2AZom6GMlneUWcUbEsKhmx6rTrpGrhC0s3V55fEp/sMH22I1YsoeLkMwNapwYTglWK7kUuC+PCiL+1tehnb6NH05p3a6azNfPkys1cM0Wq7rBaZ7RXF3cpOOuE8id4605UU4t9qkJSQQXK1ruWqusuT06Jt7ocfL7H6DmPn/pv/jD+HUvPJmTPd/Ayiy4s3nQlyTZucSu22oxeSOjez4gfzVDH57IAtdviQFiUtcrVu1wITcz3MCdndVHV0yW7vzdgNQzJrw3wTs6kEDd3E7lYkCpPo15/F565RRl7qO02/nmMdQshVB7wtmaU1PYLTUip+fnbtXisZqEEAUqXazFP4GYVleNlAw+XP+s6xsw4SqfqtKUQvvlAbAe0cKeF2ZI7Xx7EFTDPBUYMQ7wjF30GkDkIZTKtvzOq05Ydbl6gzsbggia4GNWLsghhcoGpXMo7vihiKde+JtopNG23DYkr/LmYl9ksg3Yii0C12w3cwlPRMItCoMVK6VztjtstWbjnizUc1kwlesrxgVBOWk8RXximC4+ibQFF/JtdrAdWW+b7msHbOcFS46WCV8ZnGXnHJ7rUFC3IO5bFrkf7HUj32qRbgcM3wUSe5FPGitHzMe3ePsnDGd50hQ089Bv3ATB3bzC/06Hzxgi9yvBOLll96BpnH4/ov9uj9XCOKg16PJPuZyFfSDVbUN7Y4eyTLXa/bDj/GIwe9VAHJd5cs7zZJnk4ly+q6xrEJSwXy8j50g02spqhANLp1N212w5fxWc3uqBynYSzpggWQmuqhlJVkauKXiUWuLbN9MU+/d89rNNj6jzHZreq1DrD0PcF5nHp88pWQclI5/fKWwxOdph81w3Gd32Sc8NqoOk8LgknBVYp0i2P/m/do6yM8FOnZgsCyvNLOdd6IVOoYO3l/QT3uzpP0yjKSkshv1KI1gWc9e9WiknbEEVVO52GYIiyxH79dTqvBfR2dzDDjghilELfGjC5E9J5XMjP3PxD9XvMr0dcfBR0ERB/41JEMZ5XhwrYa9voy5ksqmcXG7TQarBnzy8Z/EYq3jXzFVSsImPq9yI4dSlqPGtRDw+J9DXpZreHqOVKfD4qlszGPZVTMZPqeQqs+f+O/91UWFY00DVOvl5gVZII7Ldc1UPRypyp9nsZ9LHXtsUiN+vBWw9kN7q7LWk0Lpm+soqo8G58XwqsciK5TiLQyniCqqTo9WBSY/e3BcOeTEX5WhRCv9vqw+HJOmShldQGT3axlECO7a01b/5itGa/jEtU28X+LVOsMdib18RFcDqrIwuVNVKcHe9dtVsCjWWlLDRhIK9lTL2b+MC7AypjCeeGuz9bkg58okvZSs6v+QxfXeCfTph9bJfVQBFNIJgbvEWGKgydx5oiFlvXrA/zZ3skRyusr1kNRZGZ9X2MB9HEML3pAT5Wd+l8/Qg1yiiXK/St6xSdkHBcMPnwkPaDBYsPb+HPS5SFvK3RSzHqx/ewQQTzuZO3pniHF1z/mRGm32G5vUXryEf92Dn8/BbzA4/2qwtUt+1cwKQbIgil2KxSqpxCYN1dVtv5pwzkmvJ2Ocp1oW8MhK4ONzdsLRuHHs/pvVLWhvJrIUajYLlz030ZythOC/v4uHaFk99rqBeLguLRIe2TU7rP3+Xyk0P8pUUZSIcB/ryk//kHFMenNSZojk7EuCkXJegTdMXG9n2jQDi8Vf7ylHuswVevC0jzWrpzRl2RzVc4eMOfozoHk+WYh4/gkVNahgFhEtI3FquUdGQHu9jY590/2aXzAJ79e0uxJLZWhmYTsbflYoyerZyaTqHaHczRiYhMylK+4I6GqgE1b5HeHhJpLfQ4QLeTzSGtksGfXaWox6fYOweUwxb+pIsZC9Zcf17Na1Bdr0qWXpYCA6QpKpRFRplqqOuuo7t/K+c/W4odcb0waIVyVrGKdTI6Lgty9kyPvK0ZfGMiTJLqvo4jlAswNq7LrnYYdjZHDXq19auaiTukyTL09lAe7/juut9DnV1KQXQe3lVzoi4n0OnI8y6W6wQdQBlRVJrdAfpsLI6PFYtkMhW1sLEyfJxM5X0dnmC1J4KpMJAZkO9DEte7AVuZZoEoLXvdmi5YUyXf5/hAFG6dFnReH0FpiB5YbBJSDGL2fvUUjGH17C5FrEnOjWxDM4EfgsNL0FvMr0dEI0s4Nejc4k1WBFqRd2L8pSFve/hLQxkqug9K/KWh/eoJptNCtWI8wLRjypbP9EYACg5/sI0/V8RnHtGFZTXQ5LttgrMF9vFJHbmF1rX1pO20SK938BcWXcDpRYdOS1G0wbYiWOXywRkjttmemPfY1UqCSPNNCGTTz6MxmKyOpwwVlVJYpWs/lKsYd23y5NwIbV5gStlJqEtFWUmlKxpYY4srX9RIhmWeRhUlxnWgUHXxthbUVMwZpRT2rXsM3n0oA81AlHBmNJbZYE0DFJGFzXOM6+JrW1WQLWm1QODVg8Pa8P+qeOgKtVEF6/dTmXzV17eByVbXth7guaP5eWzQKB0nXAcJxtfoVYl/OoE0ZXWjg5cZ+m9AODP4o6XsKuJo3cEdnYlGIAqwp+dOXi54p53OZCfS7bh8SMmIVKMpx3/6gBvTBH8cSxNQFLJpqEKlq0Qda2E2R48XmG6L8sYOepVuxpZdOayxKEpholSimuo6Ofig4pVb7T4TV6CsBh1EddSXXa6ksDstgC3y2qdE37lJ2UvwVkY0FL4rwkrJsHC+XM+D9nepfD3UbEFZuXRe24OgBWeXdWdOXsCgi328kOLqaczlTDp1Jek5eF4dRoy1qCTGPH8T72SEnc5dEHEpCTzVbRGGtd+3XCcDzlCq9tGxtrZFkPvGCGtsNKnhVT3oy/Ua9rGBTznsoCv8G2TBnr03q+Tb5nH/4zxWuwGPfmyH0ad2KActVFYQvnmM6bWYf3if+fUAL7UkZznxSUo4zsgGEViL//oj2o9WRBND596ctO+xuNvHm6T4SynkRawYPefTuTen++aE9pfvY1sxq5tdyk6E2R4wv9uthTjpUOEtFHnPgAXrQeeohNIKdajyPOm0a2qRzTJs5GN8RfukYHGgiN6OmH5EMKv0oINaCLWppl/5vlhaVjzoJowBDsZY/6zpmazeY1VuSpKfyqiQv9SUvqogm9lM7FcbFK86hLUeAjpBQerw5/PL9e87TrSunNmq4FsnDrFOCVccHlPcf0R5WsFGcl66SgqJpKOqvUZc17hxaK/2DQFqCMgaW/tobF4Udx2qYvuUYrXO7lSNh9n6OtX4vnHD0UoxmiRrBsv1fbkU8xQz7GBeuMVy1+edP28ZvDGnfX/mvKE1+Y0tsjs7mGdviJFYO0EtVlJklMJOZpgXbzP/sY+hqu4RMbdSSkFRcPtnz+U8hz0xRHJskTqXtCxrVzxbGrgcU/Qj0p1knXvojppXXdNA19e29oXBdYqVuq8RgFAv3kWxtjqNo3oBavp3o/R6N3h+CaXl7JMhwdIK88gYYVdM51innCYMJHfSWvlzntdKS7VM10U7jlEtYWSoohSL4U4bG4UieDGuW14sBWappP3LFXa+xDu8EGOqxUKc/VYrCT3wRO4vKTyr2hWSilqpG0HI7XbtO6LaLXSnLRS/ancSyPmrJMG2E8ywIwPW0qyhzXEjsOEpxwei40ZB/48ecvpb1wjmCZ2zKdkze6x2I7Ku4Nr+oiS4XKFmS7KbQ4JJJuklgw7zGzHJWY6ervDSNpPbPibs0X53xvJaW3y5J2IoZV3y9PijQ9oPZWs1f76HPyu5+EhE92HJatcjnEi3LdJ5iE8zggvH/wxDKdgdMWlXrQQzmaJPR3Czi7eSgh+fwSd//G1e/9KHWOz6JLC2R01i8SxoxVg3fIJ1t/ikNLkBD9in04Su+o5IQdMbkMlVZWCTk139m3idOBvVahfghpIqCOSGms1dWKvbGZhGQkn9uqpW2UnX3sDk65gos5m2rpy5kG54oVSvYddQB1oGsZW6s5Ju19BS6eK6PE8uSVWQjcAhzY5ccOuGxLiKL3MY+qaBlVr/e0X3ciybxZ0+yx2faFLiz0vCyxVbXzonOe3jH19gRxOKD9/GW+RYT1O0PGyg8e8ccPapHsPXW4SPLuWz8j3mt9rM9zWth8JkKDoh0b3zOvVFjab4I8Q9EgRimi+cMdd6wF3trsxkhj9OUWUohSyJa/vQCjJpQmkVjq0qlW+1KylL6Shd8V7PEtyOxlp5jFK1M2Xz/gZq3jnG4F1MOPhcQNERRS9lWUvedactsJN7LxQCbZhVim4nslOdzhxEI7Mjvb8r9LrFss6A1L2OYOvOGMpmOSxWtQe2quC/2Uyk6FaaALtYYC/H0rBoJQXfqTUr86jq/eDYWXa1kq68ukadFnq2oJxMZPGofs9pO7xOW4p/ryPCH+2h+i3U9PcpwPnHfagCzn7zGt0HlvY7Y5bP77Dc8QkWxlmyGvx5IUnZgM4NOjeo0kBeogyUoQxiei+fs/rBXeZ7HkXco//qGOtroqMSG4dkB12Mp4hGBXk3wHoKVcLlSxF5B84/6qFzWO5LCo4yosCsE+eNWVN3ZgtoJXVyBnFEdJEyeqHN/u+uOPremN/58guEB877JPBl8GGNrPBFAaOJfCGqxPErbJGK9XBV+FKzH66KUa5KmqsvZNHEz1kX6Oq1YN3hyhPVz2mNFSaJiw5juVr7p3geSvtr+XxFnWswY5pMjbqbK0sZrFV5jatUvhxOCXjVG6UJT8hQraHaq96DWvtB17a1LiCgttismATNRe7K+0UhC1VjNoAK1rzjqmBX76/I8fZ3sZ4kLh1+X4z1fIavBQy+8IjWy3NsRxznpncSxs+3wULvHUP7KAcD8dhgQk2x08V/fIENA9oPF5z/Cxb/z5xz9l/dAQXeooe/SkWQs1gKa8I5ydlWLDOUo5MGnl/NQaRQevMVq2stVNnBNwZ9puoAaio6ZKUsdS549T2Q5cJCQRbe9/OMNosF2rohfIPDXUN1FYQTiGI2OJ8TPsowJ2c1TU7FsYT+FiUqF4wbrda5mm7HZh2rQ7da6xzLJJLXKkuZyYSB66rnqFbipOoZtGIZFEaBsHCSGHtxWWP3uteT+8dljsr3V/xRJOA3rHcE5mJEncoEaCXGeHpVoC6ngvm7xc9OZuvvTGlkJ2OtDCare7WRonX1+GAU7hKCGWy9MmP+TJ/pTY9gIQU9nOfi9pWXQo9apfhuG8RyBXFI960pJvQc9lTSfVhw+UJAcpqR7rdJ+x7+SlzcgmlBtiXQS/v1c84/s8fpdxvCC0hvZMQPQqyC7jsasEQTS3KS4U/d1LjTkgijpfhMqK0BTGey+i6WeNMYf5WIb3cJ3bc8Ji8VJCc++bUBwYPz2u3MVunl1TCsKhLNTldpxA2LJ6lsjW5qg1t7tZt0xf+9CP1NGXuN7TZd3qqBVbVFDXx44QWy7YToeI6+mIqL24rN6Kqrn3PFkHGUMBUGlB9+AQD/9QfC/pg7Klfd+TcFROvuu47Ucucn57o5eN3YUaj14zd2Hk+xzhRP6StUuCbv2A0pa3qc0pjtHotdj8n3efy5P/FL/NSb38Vpq0f3jR7e5VS6tTjC+Arjw8Fv5yS/9kq9AHTz58n225TtAK5v4V3MsAqyex3m/Smjn5gTfqFL6ySi6N4gunchvjedhLIb442XIv7Ic7ydbcqz88Z8oml9K+/XH4sXPYM+9vzSJdFEwuM3Fvx1A2EbOaiVz4hAJrZevG1e1IHOFfvDLFdr1lKF3YZhvVupu/A4pOgnBPdl+KiSRCL2fINy1FCrlAhdFgtxZ8yL2vmworuqKMT22uLamBaClXfaMidA8Oiq8NaWrrP5erA66Ml33NEDVadd55za6VR2jxWLJ4nX92nuft+Ja/SgLwtEFOI/OJOir5UQGXptSfh5dIy9GAnrpFzb5ZJKQrwXBOudxlOODwTGrQxEl5Z0O8aEit69gs6jjHCU4U9SbCAKKvICopBy2JbBThzVBHz/dIKNAsrtDv6yIL40zA8CykijDBx9jydd/NEYf2kIxzkP//g+Fx8DlJyDfxagCvAy6D4oCaeW/ssXBJcyAbZhgEozzNmFeCNUxbcqnMsVajyj+/aMYJqx9+UUf2FRcUnRgsW1WMQkaSP2yQ1r5ELoNdbYYEHQKBRPYNVP65KbRRvWRds9h7z2pu9JjWE3lJQ1dgtuECifgQoCxh/qcvKXlrz+L/cxw04tHlFJ4pz/Knl9Xn95n/Bpzgv88VJu3Eo6X6lF/QCv00a3WoJ/s1646vCFuhuvYKGGJwbU77XyIHkaE0VVzJ6r96Qf1Nd7k40SrM+l7u49VgdtvNyic8X/85XPcKM/Jt8pmHyoS35tiA08Fs8Omd10uy8Qv3WH/6uHh4yfDVltBcxvtcivDfCPRzz3Py7I/8sD0lnE7OMp/rwgmGQU+3255quMohsyf2FLhnZJLLLx6wfS4QXrkGrli1AsvJRCaFqxJMd47v5aLIU11GlL0XJBIDTfq78Wf1Wq2425SAVDVPRFV+jX95GpFbu2KNBbA0wSoLMCczlyWLgThzl3PkCgiWFP8Gsj8WW61xMfEDfvKc8vURdj9Hgu+aMgNQNq+KX2Up8vausKwkAaqcfi4qH7PWE4jaUhqYKJK762SVNhq8wXmPFUrlWSyKIQRZjtnpxvEEhnXgl8HINFHZ+v/cV9H3WwWxuqAev51/scH4jCrQ3ElyVFS5N1NPHZivB0jj9aUSYB4xc75DtuCxT45L2QcqeP9T1UVmBaAendbfnyTFZQWjqPMgbfmLLc9nj8Q9A6Vgy/MaXY6xFMci4+LKk55X6KP9X4C+i9A61jiz+35C1FfFHIoEJrGZoAta9CEouUVmvZ0lVbyjTDu5jhnYyIjmdYD1qvRsyeKyhi5cydAvnwqwGQ70JWy1KGHJXZu9cwqHddcdMgqVmYmsZAVahCPaRTmwWv8k+oB25XYZGmeMeZLwm2ux6WGF/xif3HmG6BjQIZ4FTm+u49VgNLOX8H+1SDRMfssPce4b31CNJs/SUNfElqabfIvvel2i8Cz4UYVAM0VzhMI75s432wHuo2C/aGNPtpg8pGoa4x+eYiVw2Kq3PQiuWuz+Su3Ef5yucv3/5VsHD6acXkuYSLTw4JZgWtY8v2KyVZz8PbGqyv51KSlhZ7GuMrvFWBXawYP9+iDBUf+i9WXPs5n9nNGJWX5B0f1RYBV/z6Me3XzkTAM50JhGfMmu7WLJxaM3qxxcn3DyV0wfdluz/ooXtddK9b49mqlawtTKEuthvXsmIPVfdjHS6wnptYV7iqbNRKaak8Dxv4qFKGjHpvR4rW9kDOA1ewcynqygXsqm6ntmqVvEixTKgWeDubC8Oj23ZdeYCthrFao4JAsi2XK8x4ChXXutuRe7KdoPd38Xa2JKiinnnI8FYnsUugl0UOZyMg3jMZ+nwi8M14gpk4Xn6FtzuvFDufy3c6jmA0le/jfCHGX522DKt/n0EK/9gPlVv8pWE19FnuKlonMa3Xp5huwnI/Ir4o0VmJ3R6gxjPC8xUm9tFzjcpLvEWKCXvkWwFBPyF89xQbh0w/scfp95ZsfcXDKsvJd3cJ5rDcVUSXFmOg9WpMfG4pYogvbR0grDNL6+XH2Pkcb74E3xcO7LvHzqlMuNJmPBEVIQiOVhQyPNrqM3uhT//tnOnNgKzvoYwlv7uP/+bj9eDPDTCwLvVmuUQ1upQmPnwVMqgMe9ZhDFWXe4VFUR3VnzcwZ7XxRduAS1gPS2tsdyWdSus45+3/4kPs+goKx0nd20bNlrLdrjjAtTFSNYxyWGqDc44S3LIa9Ck86cq2BphQYAhd+UR02pjTM0xZ1HLrJ6AdqJ97PQto4PkNVs16btCATUyJtWajID1NwFP9XIceZSjQWDiybO1M+d987Sfwph5lYhg/55F/aIH/dyOChWV2zcPLLLMfeI7227uoRUq502V6V5qH+LLAe3ACUUj/9TnKgol84ouC6EgKc/LwGLs1gFbM4naf6HgB/Rbe8Ug6xGEPFivwVuv7Jxfamwll4c232+hejF958HTbEtJbyhwnfeGA6C2hvprJtM73VFrVoc+1ERWgcGHQFXxh7Xr+YaVLltzHUP7eSrAtCVLWl44f7fuo6ULYVmEgYpp+D6ZT6XjHE9Sgj+p0nDHbTNgZDQMutCcDyxt76FUmw1vPqTNL46AQ6aK94UDoraWodwHUZEZxZw/vTBqWShBjxxNH99M1pa+CQQDxO+l1YJnKeXbawrlvJUIDdE2TSkSRyaBX7wzMxGknXJCDmi2eNPdqHB+Mwm0tq6FPkcgwcHLbJzrrYEKP3tdOKYdt/AenoDWrl67hz3N0XsL5paym1hKMpnjzPbzDM1CK2cd2WW5rtn8XLj9uUbkimCk4sahC3OniM/kzRoIcTCDbWJ1ZkgduFSzFxN20Yvx7J6xDFESiXXOCW4lg7lEEeYZKM/yZMAuynkf/Tc34WU04jfC/WchUPInrKX01UIOK5dAY5FXHVcMjx7WtO+4Nqfwal21ivTUeXrMkdI2vvwelV37NSY+ttZjJjPhzr5FU3VUQyo1Z2dbevi4dn7Go0UTeSyWeMGb95XZ+y83hjAMjBTN0PGdVWqGWVUY8UHe61fHEoLI51GwMcuthXSMkmKZxVYMSWLMqKDe48E9cG2cY1nlkiSYl55/bIZhB71xcK8GSzVqcfcKy/bIlHcLNX5Yike22SYd98pbm+m8VmEDhzyVdRQHeW49QSYIH+POFzHGcolFN5xz+xDMEc1gNuwy/co4ZdtDGiMNk9T6avtrthDJQRCMZ7ntnU/LrQ/zXHwqtzn0ulIbom48cQ6Lx3q/MHFB6Q0mpGrMB+RzMmvMdxxAYYWRp8QuRRPdSHPXAecV7Yu+6P0C3YphK0roZjd1LarACMbGz5YJORthsgdrfEfuIeYq+kNkClxMZRHY6cl3jSFSVnpy72R1gfY1+kEvBzzK8by5lJ+J7EtxwMZbveeB8uJWLlCuN3JetGKVyTL+F1ho1i8Si1xiozMPaQvXE97DzpdAdqyScspRBrVZuR2Fq9ebTjg9E4baeIj7PKToerRNL0dKYwBPmyGyBN5pi5nPUjQPyrsfsRkg4M+iD52l/81T8IG7tg6/Jnzkg3YlqYF9ZGHxDMf6hJatpQP9Nj7wDulBEEytBMR74K4N3aVDWEr0rlCuzvy1hCfMlerGEOKLc7aPfPaq3f8r3MY7mY61F+x42tdjliuSNEyhKBhczpp/cJx34EmY66MF4si7arKGQDdpb6G8q2t7Dq6vChJvb1mYVbg7WMOWGf3eNecO6kFWPa8APtixrz2w96MOgJ9abaYqZTGpv5eyF60zvRCz2NTtfTYlHE2EjxJHg1w5z1Ekswys36KpZKE56bosCO5qQvKllJzPsw8m55Gs2hEp1Zp/Hml5YMRZMoxu/MhtomlRtepOsE3GU4x7XCUZXh8aOMsn+DsqIwCY6z9n/Ysn4uZCzTymCiSLrW9qPofMQlLH07hmyQUj7Kw8IkpjoSO5XPVvU+ZLW993noeT6ZLnABxUeXxom33eHMlZ897/ye7w52UX9BYVaCuPBjsbrXUcNqRmyvTarPZjfVMQXIcGDXAbmva5s1T2NGfYk7Wm5xonrAuPgl/U92fA1cVBJxaqo0o6wBqII2+9KIZtLpJfpJOKiuFhhjBH8uiiglHhAD8hv7aDbEXok9FEuRnU3Szuh3GrjPzyXBa3fo9jpEuTF+twdJxuAiRsSl+Ua+/Z91KNTtCefu97dBpBEHM/DzsWe1SwlQYcgFBM6IL82IHx0KZciy6WpWm0qiJXnyaA1DOX9WakNZjJxqlJxP9SVZ3rgS+5lp/3/B5L33KAstO7NWR206L4+Rp+OZJqsPez+NnocYZIQ4ynyFnipqunMKgqhtEzvtMjamtZJQdnSBHNLGSrSLUXwWgv7/JKT79N4c0X3XWGZrLY1/hIwUMaa1ZZH9I5l+R13SAc+ZaToPkgJH45QWY738FRuklYi+Fh1FA0+d1dWdjtxiRejMeFom/aRZrntk/TbTqhyBcbwwnrabp1QoNkR12kuNbSxhgKax5MF3FsX5AoqKDYHm02qYf256HVHCsg2MRD/40c/tsvNn5bg4orWpKwlGwScf0Lxt/+5v84//9/+O7TvPsfOV6bo1+9DnkvBdsUXpMMSmpdTQjYNn4oCvcowcYTtt/BmC+xsXhsU2QYGWKkfmzLu6tqo4MrwsUFPq957cxBbfzZarfnpV2GnxjC07EZkXSXxY28uSZ/psffbI9LBkPlLKfoyIJgKrdQEiq3fu6yDbs2x7CS5c0NYEKVh9cI+3rLAWwheai5Hci/4HmbQoWyFWE9RRIrJSwW//fgu2VeG3DqYi/WwEVOjKhu1uTClAxnAxxOFlzmWSHOYaCxqNhfnx9JIwXLCpkriXtMyy7WSVP6vG6kyHsY59ek4knlQXmCnc4EZDvawsyU2CaVQeZ50t3lWWwVTlgTvHmOHPcywI4pGEBhtNheikGlh4xC8RHw+nMe5ardlsFg6lWKWC9PD9+X9ep4bSjriQe6KeSK0SlkwnQ2slYQqFQRCLMgLyq0e3kyunRl0Jch5MhUO+XIFrcTRKzW6+h5pBakIh+qE+2ow3GtjogA9W6J6XcpBB3v23uX5A1G4TaixCvR0QWuVoarggU4L24rIhwleK0BZ8FJL91FJOMoJjsayLSoKym5EOCrw5xrrK1onGZcvRBRtReeBwWrFLEtY7Rn03Tn6DTHwD6eWYGlo3Z9Q9GOCqSZ9Zoei7bEaKlFRZiHR68IesVt91OVEtkFVt+F5mPkSL45rObAELeRSrHa2xYvZ22V+LcDEPv7uDuXJqXSFIDBJg16l1LpQbAzL5A8NTrHjeja67nWHeSVXsYnvwkbBv8q4qDFh5xSnfbV+nTRn/3dc+KlxiSbIF6r9+gWdW3v8qb/3b6NfWhB/dsK96wc8ez6E80sZylYLk177QCutsDTUoFoi0Ww7odgWZ8bKr7rCV6tigrFY1s6Elcd0bTfqtvEo6Rat+xLV7nbuC1abEVWD1JJ6AWnuhKyhtkOxZYkqDPGFoffuChtJFN7yeofdr+ZknyowJqD7sCC8WGESgTlMv40qElRpsNd3KDsR6v4C88ItipZH0faILhR64pKTru1x9tkDkvOCYFZQBpr+GzO8vM1ye0DvtMQfLcRSoRK3NGYXlQ2vspbVfkn3TY/oaCbsCId92yxDO456FW6rWy1ZWBv3ZlW0myyeehHM3H2pzBoKrDIX5wtpsopE3v8qR19M193scinQx/FZHUKgwlAUpeB45IG8RqeNDQPhvPfa4qu9WuFXmPZ0Lo83VpoLNzC38/makloUqG5HzmW+ksVUK8Gdk3g9f6oWkkgaKzuZoaOQxQtbtEcz2TE4Nz87nqxFYE6boXe25TNpxRKcEEfYnQF6Mhd8Pc1gmUISYHoJeroCTwlE+B7HB6Jw513F5E6Iv+hhPY23jPDOZRhBIZ1Quh1TxhqdW1r3p+KM5nnMv+M27VdP0LOMsDAS3trrkN7ok1wYJh2PeFSic4sJAvK+Qr/aYbkHnceG7htT1CJF5QWerxm/1KeIFdFUdgH9tw3RqCB7fp/gTLokW3E2qw/U3bh2sUR1u0ILbMnEXyWJ/L6nCc8WKJOw2o3pnMiE2uRpjbHWXwjYwKk3+MjWSFfiWCGqoZRsdtCVX0jl41EdVUK8UBC9K/jlmjYoT9kQA+mKw6wwp+foR4eYBmVJ6FldWKVc+7Vzdr+acPFSwrTXoj2zawvSml5XorS/luhX2LJjNOjdHWwcku91xR8mDtD9Hh5QjidUDnY2Fy5vZe5f/YwnhEjlhu8KphESXJbYUm8M2qDBM66v/RVmiiuMJvRI+5rDz7bovyP5kpfPx/Qe5HivtknGkHUt8VGJyg2cXmJv76FKK3auywx/maFaCYubbY6+zyN8cUL77/bYeXiOvXOdwz84ZPJCiQ0Uu5+PaZ0W6HlK7ytz+stU8N9OWwZzNnf3TEXr9KUI7QxZbnm07ymGr+dwdCpFsyxrpo6ZTuvhYQUnVNe3Sf1r7lBqa4YG7Ce7RI2OIhHqOMZEJcPXkwWmm2AfT9YLYmnQqwy1s4X1Pcw79+Xc2y35TlgLrQQdBIJrX44FI7+U51BBINi1cVS8Qa9u7ChEwaiMDCFVvydMpuUKNRqL4ddWX55nmQo05wR2lcVD5S2jeh2YL2m9cSE/N0aajOVSBpxBIA6agZFmQymZOVyMBccH8aupBDZxJJbPIPbSWY5+MF3DOU85PhB0QG8FugDrafxpiol87GyBnS+Fl5mVBNOc5CSl8/VDKdpAekMkxrOP7aPKEu/oErM7YPH8kKLt4aWW3v2StOeJCGdpMR5gRfDjpQZ9PqnJ+HqyIL4sBGoJhCUAULQ8MKDOR3ByLuost9VpsjFqS1bPc14EsdzwRrZf+mKKN8/xF0JrVKHLoqw4w82O92nDyeZWvSriVzDyGla5yhRxv9Okc9VMg4rfXXFLm+KZK0rNOlsvF0mycn4U1Q2c3d7BBh7+199m72fe5Nqvjtn58gT/9YcywGy8h6aApt7OhyHqmVuUB0PSW0PheS/kui5e2q85uzIUdkwC54GxsZNosHKsU2PW16Zxva6qUW0u3h61GVVV/DeuvaNlOqqkDTSzu5bie6Yc/Ftv8fizCeHMcvh9Idd+O2P/i3P6Xz1Dj+ek+2JsVnQjwV+dN3S+J/j1yXf4lKHlL7/068xuKuxiRbrfFovjyPAf/dDfw8st7W8cy0Du4aEks8TSHaowkAFfcyjtZOSml5B3FKsdiy5tzaKoYTlX5OtrUN0Hxki37uk6V7R5Xynfr8N264Gou+YmTWXRCALHnrJS1KxFT5fSAFXeKllGrQB1jCu9vSWL0Xi65nd7WgJPKjl9HEnxq5LRA18gjSx3XkCOJvj4WGCnKMJGAemLB9j9Lbi+L0yw85EUZ2sxnYT0QzJkt9MZtvLdDwMJaOh3RIh3OZYZQJrJ3CSOZAA/nW3OmRYLSNOam261EkglL6RoT2Z4l3OK3a4k9biMzPc6PhAdt7+ybL08ka3Z2Rh9VECnhem1KFohweNL+TAnc2wSYfotFjda0n2fFBhfkV7rUT47oAw1WVejSkva10Rjgy5gNdREY0vvLcj6MLtliS5D/Ok2JvEpb/UJL1b4sxy9LIguPeY3EtKeJpyW+NMUkpjiuvA69bJAP1YiqMkcNlsIjqZ7XUnGSWI3WS9RsyU2ifCPR3gzp95qbDWbUvT6aBZf2CjswMYwTX59PWisceJGYboq6tnoRq+yBZqHNaJ0TFxKC44n7umaUVN86BZv/Cs+rbdCbvyqwb91DXU+Qj84giynnMo8QDq1st5K1udVlmLYdOOA5Z0Bj3/Q5+YvZejZCnN4jLqMSB46mqDniadJ1dltbNllh6Eaaffrt9EQ0ujNhPtm2PKGwVX9C2vKYNMiQGmFP1phvYiy0Hz1t16gfGlF3o2Iz8Eq8M8lW5DSCMW0nRA+HsugLRP2SHA0hjAg3S248/wJ/9dXfojVszmrT97m4R8KCCbwFz7z6/zvf/eP0Rtq6Rbn8/V9AMLSOHPDssph0CXGWGsxoY8/t2y9AvGDMcZBQjVMVkEI1ULqCrjMCQL0/q4U+6oBcMpRWwbgmCLKFe8Nj51AEp2s5+H1e3Vx5vGxFOsgkICEopCdna9Rq7RmW1RsEt3v1oI3oFZO2okwwFRTIm4cpz1JMP0O6uFh/RrKWe6GLpBXuWBuAIoSc3aBbsXo2JdkpkC6fuv+XXXach+mmag1W7EMXF3DoN0uGyXxfnY2l8FkmqKSUN7z2QU2Elm+mi2g3ZJmzljYGQglcvz0ryN8QAq38ZVEe83dVsPT4GnKdohOC2wUypd/d0AxkAl8fJpiPU1wPmd1vcvliyHJhWU1kGIUX1r8pdDLvMyirEKXlq1vZmR9n+ktH10aJs+3KUNF3lL4q4Dtr8/QWYE6HdHydlltJfiLktV+i8XH+wy/OeP4e7v038lp3V+zQiqnOrNKpWBHkWzDuh1ZWYsCbAilka2Yw7+aEWTV9nYtNV/T/p52SKG+8sOncLDro8LOHQOg2bHXRarqvq92po1zVXGEnYngQOU5amtAuhWC83hZ7sf4vRB/p0VwOIGTszUfujnQarw3r9OWhO2ipIwVu182+ItcfDeKAjPJn/q4jff5fotcVUxMibWbgbbAWpLdhH9q/nxjsfMaEWcOgtLHF4SXQ1Y7HlxPufazIcazZD1QFhhNZNu+SqEw0qnNFmsaaZajVhn5nV38mccP7L3Fl4NbfPPwFoefDWg/hHQAD9Mh3oOY5MxgxhNZ7AZ9weg7rZobbS5H8rwuZcWkKbrXQxeGrK/ov1vC4YmbAVA3CBtQkbs/akikLNc8Zt3gxCPDyBoHr+4Z91w2L7Ch69gDX4qcMWLXmuXr3cBkit4aYKMQtcqF7QGY+QJve7iO/AKxeVVKYMk0xaQp3u6OpAc17FQZ9Fya1QqTF5L9qJXAKEWJfXwsn/ewX2dQ4tgtarrAvxgLvDObCfxZ3TNpLhF0UYg6H0nhTxLp+hfLmgUEoLpiKctWXxbvzOVLZpkU6UTEe6osIfDxDy+pzaveh8f9LaESpVSslPodpdRXlVKvKKX+t+7nW0qpf6SUesP9f9h4zH+glHpTKfWaUurHv9VrWAXFsOWw1wK2hxT7fVQhyewqy8luDUn3W2IQdThBLwvCNx5DUaJLi5dB2lMEc3fzaEU4M/TfXBCfprROSjrvzAhPpUtpHZcEC8NiX3P2acvoOzPyjmL0Ypv5s32yu7v4lwt2vzjGH6fowmI1LA8Shq9ntN6dUAWi1uwNZ/tpJjMIA7lZ40i2blkGoynpC/uUWx1xBaw+3Eri3ihqTUpfcyi5vmiuU6rk8khnU3VMOgw2oAhgPbRy/6+GcdVr1ZBAszBWxd35VNTMgarrdBaUyeM5z/x0yQv//ZzkJOXyhYD7/7owIZq4e9XtUvOqFd72Fsvve5HFswOKnS6te3N6L5+jv/YmZrncgCtsnq1tVauC08CzN6Tv1bWrZgeVApQKt35yK7rx3M3vQfU8zQXP/Y6ZTMGCzTz+tU//BkWkmN4WBaQJHH3uYowNA9nqW7sWbbRbMg/JcyZ3YzDwhfO7vP54n9bNGR/6kbdY7cDgLcNv/s3vYPtrlsHvnQpNsduRrnQosyEux7VVaeWBXVEu85ducu+PdtE5hOOGb4i7P1Tg1zOMpk93vZtzJk+2kqG7AXkNt1EVbGdvWtk3BD5m7nDmIJROuigpHx2u7WKdKtF02wKLlSXl7gCzvyX0vFYiQQhJUofs6u0t+a45VpOEG7jPzGHSqhQ6MYAeDsRcKgwlesxBODKLWklxdtRShj1sT8gLdrl0vihljWHbxRI1maPGM4FE0gyzPeDye66hnBUGynmTzBdr6u1kKoXdERjMYoF1uwkRphlxPHXJ9nVI9FOOb6fjToEfttbOlFIB8JtKqV8A/jTwS9ba/0Qp9e8D/z7wv1ZKfQT4M8BHkZT3X1RKvfh+gcFlgjj1PbeH8Q/w5zll7BE/PMeGgSgodwLCqSF+PKUYtvDmGfPvvE10nlK0BM9Oh5q8rUi3IJhblnse0WVAOEppv7WSOKFem/gkJe8FqNKSnGjmN6FUUEaAEgGQuuGx94UcVZZMXxrgLwzxWEQ6rftzeHSEmS83O8jqZs4z7HQm+XfjiWBqszl60Mef5Syvt4lPPfzllqSXV1LvqsMrqdNXalVkk3Ncm7ivi2v9Jayw2QaGW4UwNI+axXEVPvE3oZcmpGKyHM8JYSoetjUWM1+iXn2HCKRjabc4WF2j/IrsMMxi4aAHW6fPK5d36O1ss/j4DSZ3fIo/OqL33/XovnyGefveJv58ddeh13YAOE51fd1oDNTwNu1ZNxY/V7wrWmFVyBs2uNX1rYahzc8a6+x3jaF3zxBOA35y/iNsa/iX/sV/xE/9138YEyjZfc3nYC3pS9fxloU4xj04ki9qX4yHTr8bTFxyt3NB+2bGqvT52lfvoruG3pszhp8fYwYdODp1XxxROGItXI5rZWDtq1EITq0P9sh7PuluSXKiid86pZwva6VtvQNznzFQJ9Q0HRkpZWdUzXKa0XEb95ZSEEhIAUqj2y2BDHrtmk5X0eN0FNU+4vrS2UoEvkAubkBqs2wNj1hb0/uq11JhiO20ZGawWqF6XRd04onWYD5HDSSwgMkMTs/rAAOKEmUtNuhgWpE0irNl7amiIudl42LmrKP92iQSaCjNZLegFIOvG1GfOpEY4IRrAo3UXT2iY8D3RT1ZCo5OtwUn51AaimcO4PC9++pv2XFbOVwcCYH7zwI/AfwN9/O/AfzT7s8/AfxNa21qrX0HeBP4nvd7DVXC2ccCHn82oYw02SAiOpxCUZLdHKDSgtZhSjDJKHsxZeIzf6ZL2ve4+HCbItYULUX7qMRLLUXLcvYpRXJiKDoey2st8LXg460QFEQnS8rYIxobrIL2ayHxmRWfiNQSjyzzZzq8/c8NefwjJf6ipPPqBb0vPkI9Olkb7ZgGM6HR/WKM3LieJyt0S6KQKu759E6L5YcPak+G2rfEa1DiGjDGhr+GCxLYcAGsUrCbasIrxa5mQrCJhzf52k3xSdV9bzBVGsEJuteTzt51a9Uwyq5S9MNTglfvY+89pJmXWS9Evl+rMfO2ZvSDK9QvDwlmJfbwpD7XmtlSy6u9ejjYvG5YSxXAgDPvqq+X823ZMKEyjd0SUDvWXeGy1/mV64tYP2+TPjh4bU58YfjQT16gLPzkV36AwdsFydGK5YevwY0DTLdF+FjoYtbXlC/c5PEfPeD800MOf6hP65Hmoy894Bdf+TBvXWzzb9/+RYKxZvCawju8kK35O49Eqr09FNx1OofjM7mWznKBMNjYZpfbXRa7Pt23PdonBnN+KYWjcq1z1MkNLxzVwLorAY/nOUm5C0rQmzsWpUXabq0VA62Kx7yzxfGP32J1o4vpS4GtfUWKQmh6btBoF0vUTNxA9XgurpNVio4LDbYLsVWwy5UsVoEvBlGV6tBawbfzog6MsBcj2Y20WwJ/rFKYzjGdlgwkA59st03ZF8m5XSwlNWdHZlpEwuOWPMoSzi5RaSasoFK6cXUxhtMLCVLouI69wuqH/Zo/riqvE0CtZCCr2i3p4h37x3padlHvcXxbGLdSygO+BDwP/N+stV9QSu1baw8BrLWHSqk99+s3gN9uPPyh+9n7v4aB5MQyveWz++UZnI9IP3KTx98fs/VqQO/rZwCkNwekQ5+8pSnkvbPc1nQfOfwrEPZIGUOwtHRevWD+wpb4bsubAQvT5zu0H65AweC1FqpwWGtqaZ2W6NQweiFk+E1L+jjg8kVLLxmS3Juiui3UeIZqMDR0FEm3UsVpFYV03b0eGOEqU5Z4l3PYS0j/xQvS/8823vI6/nRWF/nq9zYm0g0v7WbnV8MDvjBcJIjgSTy8CSOs+dlqY7vfZKDUNLLGLqLqQM1yJZxgzwONE1LMBce3tv4S2vOLTezZGlABlQ2tvJZsD3uvXhKfd7A6Jfzi65LJWZ2r0iKgqSmDEhNW7z6yTNgdLlILU9Y7iep9beDzeh3QUL/vyjmxMazcGFw2F4enHLYs8S5nBIsWNvTxUsvuP4hIHk/xHp3hDXuYdiQ+IlHA5Lk26UDRPhb+d/LnDln+wxtg4Ud3X+X1wz2Wb/b5y8d/jv6JYvvr0jfZ2A3xWpIOYy4uZUsdBthBFzWaQhRiq6DhssTb32N2kLDcVbQfG7rfvMRkmRSIitfeuEeq91PdC3UQRUV9rD4bgLqgu+ZBrbM3rXL2qEGA9TR5V2Aj7/G5MDvA3a/KKSxTGei7BcFqLR2/k35XyVGVrYTKMvlZZcVa7RTywjVN8h7NaFzj7Wq2FPvWNBPYw1p0ty20vLMR8cqxlKJQho7dtuDjqxQ9TNY7gaIUcdNovH7dshRYKgxQnZacw0I8681ojN4eitVzEmMGHWwhoeN2NpcF2AU4FM9ew5um6MXa8uFpx7dVuB3M8Sml1AD4u0qpj73Prz+Nw/LEHa+U+ovAXwQIOkOSU0v7MCM6XUhgwo680e59SzCXLaH1FCbUrIaa+NKQdeULVbRgVvqgIJhZ8o5i++slvS89xgw6BLMCPZPCuNqXrt7LpHPwTyZsvaI4+0SLaGxITnOi0wVn3zlA5+LWdvCFBcu9iNXAo/WuRY1n9YCmEhnUog3Y7Jgd+d+OJ6iDvZraVvziDtOPGjqHAf7zt1GvvbPxHMAGJXDDXrTqlAMXK7VRlBpfuivDuibjpP73K14mVTpMzUpx51AN9pTvY1Ypnu/LzT0XrrrqtKlMgJrhCDVnu9pWNzt4t41U5yOii7GoTav318SYK0VfVfSrXUaRu07b1OeOalwfb3NnUUvWG3CT7CosvBeSVxX1ChKrhpdNGEVpGE0IZtssbnVoP04JzmbC1fU81DJFn42wwPxT1/Fyyx/6V3+HX/x/fQYs3G1NmYwt2UDxf/7lH0flir0vW/yVwlvl4ukchSLICHy4nGBWLqO0pTC3DtCz5ZqqVg1ao4jFx65z/F0+/kKG9Jyc1wPLmlNfMXM2OP2OjdJIKKqETMr3pWg6z+3K/qG+xpXIxIlS1GzBjX9wStlPnIeKYMn13aldlJ8zX7KTGToVaEJvD6W4VXBTdW6JKBM5H2GKQgQ7RhYxlEK789Fd13EvnAQ+CMQ7JAjQvo89PEHtbKGiENOWTlCfXWL7XUmEX64E8oxDGUJWOHq1k3Y888pbBqXFLTCORAlagNrfwbRjyflcrlC+x+ruFvHphROhrVD9Hvn1LXRhKHsR3ix9+v3ojv9ZrBJr7Ugp9avAHwGOlVLXXLd9DThxv/YQuNV42E3g8VOe6yeBnwToxwd28NpMsJ7A4+w7Bux+7pT49WOCiz74mmyvLWntviK+NJLteFyyGmqyvmK5J45/4cqy8/WSIlFkd3dIhwGtR0tMJ6LoReQtjb+0tO5PUMcX0OvgzzJ6D0LytsaEmoc/PsSfQRmLshJr8VaG+KwQY/dBF04uRK5dSYLdBF5EL43BnsPnVLslg4goovONE/L2AXlHc/hZxb7fo7u8gX373sY12nAF3CjorL9s7nUq46n1g6/kJ5abRaxZp5rnW3Xc1c8rIQ9AM+OxnM3RRSFf4DzHZhZ6HSni3S52OhUsUyvHz22IearXXS7lC5umsDXEbO/hnY4x55d1Z6fv3BD1WxzC42MZkNXn22CWNHcP9kkRkSw8jdmAamD7TzvqiLLN7erTXltpJQVTK8pIUSYe+TMDWu+MIA6F+x+IvDp5OKfshbw126WMIJxYvvxrH2JnYvGX0L2v0LklHBfEj6dwci5dXWtH+MFnFyL42NmS11yu8MZzTCdGTecyGK+uwwvPMH4mINsqiS48+l87l2JTWQZka6EOziwKqJk3GztAqE3CNjw0tKr1XRKUYeqBI56H+egz5LGPt8jx3nxUD7ZVGEiRNVYsTp0nDLDOzhwOhOrnEtPtpbsPs0zgjjSVgaPVEAvkaNoJaFCpL8O9LIfRVBoX123j++jEzULarXq2UeHqtRVFxefPRQFtu22xpUgF1lHdjizkkVyXusivVk5JnKHCkLLbwhvP1zFnl2MS17WrTsfJ+w3B4aU0mg+dDcLvx6tEKbUL5K5oJ8CPAv8H4GeAPwf8J+7/f9895GeAn1JK/XVkOPkC8Dvv+yLG4l3MuPjefbzMEiwsi2eHxKdLvIsZ5VCK9mrgkXfkIgczizLi5pccWxbXJICh9eV7qHaL1d1tVG4oYk3eC8WuNTMEC0PycIZ6cCw3x0zSyv2thNXA48GPegxftZSRYvhGgb+QuzJYFBJfFoXygWolToDzpUuDLtZ2qY3uVFRbwgAQlZpIsAcvX6KLASffqRk95wE7dI0RfDfLn+Ao24ZhEqyL+lVctlmoavOpGmZQm1Ll5ud8hbnyNBFOsxPHytBRuW23UKjmEIUU+wN8rWC+rCGOpi9I8zVVFFG8dJvF9ZjDH1Dc+bmQeDpDlyLRXj27zaM/GLD9dctwusBOZjUctTGgbJyrdMdP32Gsr09zp+EKvdnsqm1RrK+ZVlLMqs/Vroea1og3SHw0J3tBqKm7X57XnOTldz9LfLIQVZy1WKV49TeepX9kGb42Z/f3wDufoYqSxYf2iI/mFB0Zitnru+iTS+xout7RxdHagvTaHtm1AUXLI6nuad+H5+9y9j1DLj9V0v+Gz+DNHI4dG6XTrhlCsoCXG0NGFYSyWDeHudU90GmLTPzsQrrc6t6qhDSVwpZAvLxPJqitDqowUkQDEfuopCcsC1fclO/Xob48eCyKRWcBSxLXqeuVl3zTOU8liXwvSyMiOaewJM2cOCaVOUxRrPnaVQxfXoix12Ils4I4hlaMrSIKe22BoHwfc+h60zB0cxPp7ivVYzXHUonAKjjqpDLG+c3n8j7jSAIs2oLP4wlcZ8MAfXzhXiNYz9Gecnw7Hfc14G84nFsDf8ta+7NKqc8Df0sp9eeB+8A/C2CtfUUp9beAbwAF8G+8H6MEwIYS6+WnliJSDL4xRc9XFDsdVCfGhD46tcyvK8IRWB90LgZS8cjgZYZ4pInOhUaTXR+gc/En8VeGMtKgILlYkkxX6MlC0mxcWohpR4xeCJk8B60jjc4sW99YUEYeJlAEywLvSLoaq5VgjVks255qsAJrLBf35W+4p5nJFN3rUl6OZBB0MSYadei/GTL9I1OmWRfr7dEbz7Dp5YafdPPLU8d/AVAp+9aeKbYs11akeOstfhP+cH4m1bEx6KtiqnRFC8s34JT16zssvyxlcORiqnS3g/8gF//matDZ4F5vWKa6oj19JmG1pdn6mhX/bccJVt0Oi12f6KMjpqMhgziktp918EblbyLMmWpBWr9vgZrWO4x1FqZa/761gDgGPkGDM2uGSQWx1MZNRUFtRQuoR6eo57uo0lImPpcvbbHaVsw+kqJmHe78XIvDz/p07sGzf/NSvtDHZ2LgPxpj7t5AFQZ9fIFfDADQUzHfJ/Cx1/ZkG79aCSPB90UToCHrebQGPdRyibp1ndHHBlx+1BIf+oRjS/v3HtR4pc0yoelV923jaNocqCQRi4PFQj6/KqXd3d/lfFGHflT8Z1KxK1ZxBPs74nw3mq/vLyfqqXBuPE8aoEFXzu9iXHPbbZpKSInjj+vKO3uVYpYzqpQcc2MPrEWP52uaqqdF5FKnz1iUj3xnPRfgMHfwUuBJAfX9GmevoZuiFHe/bkcWrSonMivXOaljEdvZwBemysk5qggEPjQGtcqlRlSJ9Z6H7bbg9AKSSHy8OzGcjSSrs9uRRa5hx3v1+JaF21r7NeDTT/n5OfAj7/GYvwr81W/13NVRxlqkzTshg9fn5MOY9NkO/sKQ30zIE0XREpk6GgZv5fjzEn/ubrzCsLzZRi9yZh8/oPPKCcVejzL20blLiB9JMk6+00INE9JBQNbRtE4LHv9AIIY+mQUDw1dn5L2Q0fMhnaMSneaUWx25AQOfsh2xuN2j/fYItVyh2r4MJpTCFqYeyDULl80y7GolzoGzObY0RC8/oJXcZfU7XTr/1BHznz2AP/AsvV97U/ihquHRXXWsFce24l83FouKhdFUJNYF1/mqND1P3C/Vz197e5flhq9yDZ9UX96q0DvT+vp3sozyYiRPG/gb6e3VOdfdr7WgNf5owcVPWP69T/xD/tr/8KcZvpatrUjDkKwnnW58bkW4UnXIzdAD9/81vPFkjFl1PSyN860WMjZ3IHVxd46FT+DuzsGwdjR0hxmNaT1aYVWM9RT+0hKOof/liMl3rQCPm7+cgoLz7xzSu58Snl5KklOnQxl6xA/GYvZ0dimcX2cpq/ICfT4SzNklLtnZHNXrMrsRkXUU5XYXdnocfqbL+KMFg6/5+EvLzueOBVtWGm9nS2YPlf2A54nK9OqQ2v3fOEpflb2otBYJeJqu2UG+Xz+fLQqXntOCxUoMnO4fbewWazaK1lLMPA2LFfntXfzRFNXrSmBvu12HHICD1pLECY0kdZ1eB7XMZJDncPGKw22yTIq9+5ltxaizC+mq0wzbF/y7nh2AQCIg0NZ0LrsSt0CgPSxWBp++D9f3sCcXwiwBmMzk5522PH8UoJYpajyVgjwc1O9BrTJ5nflSKISXE0c1bImR3Xy5hqqecnwglJPKwOz5Pu17M8pOSDbwmd720KmHicB4wvX2F+AtAQvKWvQiw/oaqzXhZYZpBdKJ99usdmLyjiaYi9WjHs1E9OIpFjshly9pdAbpICQ+g6wH7Uew87UFeS/ERJr5DSgTn7y1Rf/Vqajb9vssDiKSs0zMbXpdSeFobuGu8n+1wqYiYNCDviRkL1eoOKb92hnLnX0m/+iAwZ84ZPKz1/C/+1lan39dvmCFqQt4xe5oStOb9L0N9ojDxmXqD01/YNuAdKpFRn5n3Z3Xn00D+qmLdPOzq9kprqCaSrDxdLilWehslpHvd2n9Rsxf/+qfpvvI4k1STLVILRZ0H5acfGVA975LFdHSKV91TKyKr/IamPYVeKT+/YqD3YRtakFRcyi6xnzXxcarZwHKD2TRaMwY/DcesvrEi8yue/yVv/y3+I9/+ycIHoX0vhRz8WG48fOX5AddoonBn+WwtyWsiMkUvywpb+6ivR2YLwXftes4MFsIa6Z0Xtuq3ebRP/Ms409mvPjMEY96tykjSF9awlww3O2vTeBYGFl4HmZviHp4LN1qw6Pl6ueONdRhGJ6TbsehmP83BqBoDaHAIuZCVH+q15WwgDBAn40xlQeJgxh1EkuXXZaCOQcizw+ORtB2gSRGXP1IHQ5dFEKpK0QkhDECj1Sh4a1EGCxdgSuE4udw9DQTteUiwl7bEwhmsappgGo8q+1dVRiuyQZFgbW6HtqKqMkFQ4SBQKaDrtAwsxxVhlR+2yqJZTbjaIW2cOEYrZZAM0UpUIvWUrwr+XxpMFEgqVsfeD/u0hJd5ow/1CVYGEbPeSSnlssPQ+uxomxDdAHKWPrvFOQdjS48vCSg6ITkHZ/22yNWN3sCl1iLLizxWY4JNWWgya8NGb3YAie0Wd3O8JKC7s9L9mQ4Vuz++mNMO0GvPEzkE8wCjAf+0qLnK7lB04Jw6pO3fULPa6TOqHqoAtQKRpyjWo2bVtzTNBVfk06LnS9ecPQHtjj/1Wvk3z8jmLfhsy/S+p23MRcj8Uyo1GoOt97oGN9L/m2FOlcX6wZeW1Hr3IOeKHBNWGMNT1xJivGq9yhQQ9Poqfk8G91W89/SFP+3Xub6a1uCOS5XLp1cumczmdF+9ZS7DxL0+YTSCT823m+DjrnmVTdk/NZgi2oYWZ3D5mIHrAew70X5qxZFz5OiX6x3NU2bAjMas/ulKa/9xYT/9NUf4z///v+Bv/LFf4740zPyv7fL4Y/uMXwjw0sNWT8knq2EseCSXLzDi3rnoIcDqmg3u1xiLi/lZDwPvb/L4kN7hFPLn/70l/l4+yH/1Y+GLNKQ9K0Bvfua3a8u0O8eUqeyex7q/pFAUdV9avTGZ1pfU2tq3nSl/kVrYf44n5061SbLpai5/NUKR1ZpRnlyJvdNGNbDS3ldUTqqinuexNSCG+N2AnEsWL5S2Bv76MUKG/ikzw2J3zmXAjiayjknEWqxlGbKJQTVn6Tn1cwQPZrKotJtSQGfSKgDuQtGabdk+BkGYgRlrFAwnZWFzXIZohpJIALEdbA08ryjiVw73w1H3cBVKSULTCBdOL4n1M3lSq5NHAmlM80pOyF4fcz5e5fnbynA+SdxqNIyuR3Vjnztx4asp+i9BZOP5ahSGB7eClRh6Lw1k+QaLaGq/lJu7vB8iXc+Fec1IN0KyDuSmHPxsRbLPcXoJZj8wSXepc/ucMr8mqb/zQm7v3HI7KP7LG93WV5vYz1N757BX4IJFPl+DwDv4SnJa8dSVC9Ha2tGl7FYwwFVV9vASq1xMtexJOYoX1wQKUr2Pz8mGll4p83kx+fMrvnMP/McXr9XG9LXw8qrAzn3b/Ufm/hu4NcQCqw76No1r0EzbJ5nVdTqf2+m41yV3jdEQ7WIo14c1FOLdv3wPKM4PKJ45x7F0XGDpmexeUb55juYr75KeXgk0uPGggIIh9vzpENqFu36F7QT7awHrM2CvQH7vEfR3rhuTuat/LW9wMa1Nxb1jbfZ/zWP1TLk3/mZP8unbz/g5K1t2scl+789Ju17LPZ84sMZNvRrjx6V5dLlrVLMeCJzgk6L8uYuVZiBDFEtNgwYPRdQhvDrh8/zW+MXCLRh/sqQ3tuavd9d4L/+qBaHSDCErvFqGvdBfR2qnUTz82y3RLqtlfipVxS/Sozj1JnsbTv7WPEVsoHvPL0bzUDDzZE8k6K2PWT+6VtgDOXDQ+FHV48rS9SwD+VaVVkO28TvnIvvyOMTSfvJc2F7OX42eV6bYZmLkUA7s9kaMplLd206klVpOy1ZON3OANcpi9Of0BdVu4WKY2GxJAnsbon83RhhrVyOpTD7PmrQF+y8cvlL01pwY/O8FviY80thVOV5nepufY/geMJqLyHbes/b8YPRcRctjTIQLNx23sD+78xQhWG106NMLMPXDeG0JH40wbQj/EUpPsg7oXgvWCse3nlBcDQmsBb/oM/4+QQvtZhQkW5ZuDunPE/Q11LSv79H77xkea0N19viKmihiBWqsAx+74xeNybvR3greY3y1h7eycjdsBpzer7+IsO6SLov9BNe0aXghl4VA5Wmkl6dF+z+no8q21wMYi5/aIX65Rj12edpf+k+5aV7zSZtC1xB2ixWG5S7K56+Sm+qIevfb/ii1F/oK1h4RQ3cMIxyr/9kOO96aFpDDu9jU7lx1HDEmnrXZMhsdPW1r8pTxERXVY+6wTK5ejTk7hVG/lRrXRrXtzqXKwuZWaVs/dyroD7MYl/z8P/yAvq7FDovOPwDfYoEdAYnn9li90tjyq0e+p2HlBcjSQ0H6XT7PeH/TpZr0UmvjQpD8q02i2sW9eIMtYz4+vk1zl7ZZfAO7PzuGH3/0NkfmA2e9Yb9rRs0bzBKXAFXvssPDQKxML0Y197dKknk/FTk7vEYE0foKJTCuT2UnMeGiKmCZlQYbi6unqb1pXuY2bzOuqwzGK0VaXkkPy+2O+hVgWnFaLdoqCjCXI7qjlh1ugJXrlZrm+KWGECVvQRvMsPc3MMbzSj2tgmzIfkwIXzzUK5H4HYARbH24Q587HgqIp4gwMYhxW6XIMsxJ2fSiVcL2M6WhGIURs4xL0QEdOMAxlOn7chQWj5f205gtpDz1wrj7A8Wuz6D1uLJ+9QdH4jCXUaQDhTLPY/2oWE10ESTiNa7E6ILSzS2tB8t0TPxtvaOLhn/4C1MoDA+FLHG6i7huS9JFllOfmOL1W5E+0huntELAf2Pn5EVHs987JhvfO5ZdCmLhc4N6ZYk7BhfoBEvMzIQeucxcb+HacVkt7coEp9k0ZIVtZeg336MjkIprFBP2K3zjFANfwL5BSkExk3f8TzM+QWqleCXJduepoxajD9hWfzxCfxcD/tdd2j/dkFZmfnUfOw1jesJip/nyXauKp7NYt2gBtZd6hVTpZpp0fxdu1bW1Vh7NRRsdO7Njl06s0rk8j686fr6VEUTef3mKbkAiQ3+tlVPPu97kZhMufE2bXMA2xQiVdBR6G2oWGXh2nRUbF7H5jUuxxO2fuF1/B96gbyteebviwBk+Drc+xOi3i2OfazfZ/haStRuo42V4dXtGxD4zO/0mB/4dB/mRHGAWvYot9pMnm1x9CMFkPPh3XNef7zP8nN7XLtX0vvio7W3h7FrHxwlfPpK3l7jtrZBO3U7NFtlTGqnKj08FbMvt6uRDtFJtuNYTLYmU2FqDfqCg6dig6wanO7KP0U1RDEqTWX202pJIVss1kPfOBIZue+T39wGhaS2R1I8VeYGplHkKH+Clds4RAVDyY10lrbF9SHePIMkxrucYpcrgvMF1lN4y1ygmjwXKXxpBIOHWrouWoyuFPTAR6cSzoBSa8fErQFqPEWPJnLtKhdFBxFV6T22zOqAabGp0KK2VAob+uhlTu9eyuSi/fT7mA9I4faXkA2g944h7SvaJyWroYc/b9N9WOJlBm8sYL3KcggDWic5y52A+NIQTAunqvTwJ0Zy+WIfZS2zaz6LA0X/MyeURtOJU1775ecwHUvnUUEZa6Y3fLqPCnRuydse8VlGGWnxgdAe+bUBk7sx4+c0wRz6rQHBTL68yeMI6zyPK/ZIRbNSVwZgVXcqPFdPbthu10EmYkIUPIRhxwcVMvmuCP9PjlB/d4D9gefofvGhwDM19tzomK50x1c77asYNrDJAb96rqzx7JpKV3WXpvLpUI1OtdppNKxoraEWw7w/I/TKNWIDd1+bYNF4j00IprEreAqM9IR1beP5m9ei+XtPWyRkJ7DJpKnzPKvna+wUyvMLer/6BpM/9ALTuzFFJFCdygw2NpSxZbWtUIXBDrrY7R4qL7n81DbRqCSY5Fz+sIe/9IkfGWwSstqJOfrhgsHOjG6c8vqXb9N7U7H3267LDgLZfvu++Hm4xdM4bNZaB+NpvaY2VjOT2lpBy5DW82popM6SrAKZAZxOQUQokXTMaUZ5egZKoz1vnb+a5eucRd93Q8O09le3ZYk9Fw6zCgOJMBtNUElCeTCk6AZ4y5J8r4M3ywTvTlPp7gddtLNKJsvrBadWNc5mBG8fyRzFWsq9Ad7jAla52Ed3Y7Tv1WZVVXJ7JaqhLKWQBz5mp4++nKJdmo3udWWx7cqQ0jg3QFvbBZSo4QBWmTMEM2J4NZ3Ja+SS1kNeYOMQE8q9FZ7MCCe/T8n7P/bDwvXfXGE8hSoDyZV8Y4Ja5fgtyckrBi2KbkD0WFH2IorEo//ahLIVEByOKHd6lJGHTSIWt7tYDcZTTO8qsmdW+FnA5HGXzrs+QQn7Xyw4/WRAMHOugA8BY+m8NQbA7LZRXcG65zdilnsa/ckx09M26dCj9djj4HMjzPZAJgUH23B0vqZJObc+8cmovtBrrLlSnJnZHN3riPfwbI4XhrS+cYTV1yijmMlzPuq7DHu/rRl9/20Gv4Ub4LmcRBrDtVqcs4Y8NkQz7lCBL/zcLAeTrQNgoRaYQGNrfYUL/gS7pIYroOlEuClzf0pn3Dhq0Yd7vnqBqJ6uKtRq7Yl9FRrZ6PKb2G1DtFRjrtViV/29ulYVQ6Y6mrCNKZ98nQ1Pk0qFuH64mczo/eqbTH/weS5fUuibC37wmbd5+ewaF0mbfBDw+Adb9N4V0yVdWKJxyfgvTQn+zpBbv1gQTDKspzj7jgFZT6EnBr6yxTiA628XdH7rLSkwrVZtn2qn0/pz1+1EnCxd0Qbq5COU3Ecma+gFtBYvkzx3A8mGzavS6HZSF17Vbq+HgIGPOTmjcoI00ymarrsXRGiiSonzMmfnMrBDBssy/HSeIr4PswXZS7co2j7LHR8vh3LPZ/DKtI4fw0WT4XtScAGsxbQTFs/06PxeLkPA/V0ZGrrhtn7tnuwOtAZP4785lkXEWOm6S4PqdTCjqexOdrZkDtGSAarpt9EgGHbgoYYDESSdX9S7CaW1C4kIRYhTMWCCULxQ0lD47KOxvP/9HVRp8GYpaikW0E2R0dXjA1G4rQfpIKDz9oS82yNvacpOhA48vPMppt8GrVju+Cx2B0RjQ/vtEdaXvL/82gBlLCb0mHx4wGqgKRLF+NMZrCytdkr+pSH7bxsG3xiTD2Mmd0Lah5aLj1mSI42Xikug9TxUXvG+S4pr0l13H1jOXumhhgZ/odj73SkqkxU+P+jjj2QQoTwPwrCe4td5fhVXuFlwQDDR2VxUZmVZC3Xarx6jzB7+MmTyvGHrX73P4d++S/mHbrP9WwHGqeCu+n8ATjyzCVdUr1XxtW0Nm6x/R5R03uYicGW4eHVB+JY0QRq46vt03bXviMJ1rlfEIQ0/kauoTv282t9g0Mg/VWpIt4iUPIl9b5z4FfikYpE0CvqGCrTx3p/Y+QDgYaYzOv/wZZKTF7j3R1r82ulHUMOMvZ0JrWs5D0Y3+IF/9wv89Fe/g/ZrEd17iuDvDLn48SXd/9rj4iMtgkWC1dB9VNI+ViSnKfGbJ5RHJxIW0OuK1NpBF9adq4oiwU+rMGSvcR9qJbs23RgiO65+xQQRN0qF8kIHvzmKYBjKQM2xRFSnJeEQVQcPa8OoKhC61UJF/lpSrrUIW5TCDnvCZS5NTfULjieEpaH1miG7tY0JNPqtB/JYx3KhLKVr77RgIbQ67Xt0vr6os15xHuH1eXQ7ImLKc+wid2rJhPTuNsH5Aj0T9kqlfNazhfv9NnpZylCyLCU/QCuIQ1GjOmqitRY16JN96Drh6Vz+PpnLgNT3JQw9y9ZNQxSh8gIz6KAvp/LZdNsw+v0pJ/+xH15mWW5r4ouY+CKjDGRyXnRDVNFGn09Y3LzOYk/TfVCy3PaIz2K88xnLvQFlKPFnVisWu5r5TUs+LPDjAhMoen+7S3KWCevkdATeEOuHGAX9N2QQGYxT9CKTVa4sMZ2uDA6QbMrV0BOWy7MeqoS8F+Ifj0ApvHmOOjqFrQF6thDMzw0RrbHr1Jnq7+7PdWEvSyneSQxK10qt1htnKLuD8UNejW9y8MeOSX9mj8vvvcbgyz48OsIu1srGusBWXVVD3r45EGrYs16hgDWHbWLjmqGCcGNxqHHz6mgU7w1uuG4wPaquG57eedeDyCb88G3CK9XRKJpXPUVsntV2uDQXnfc7KjqlVpu7B3uF+thcOK8Km8oSCrH41V94mWe/lmA++gzH39Ph9HaEt1SEc8XP/4/fx86xpYghmpTkLc32LyQUrVLcKgtL916Of7mA00vMZEKJYNeq3a6pkJVitQ5RrnYEFVuI8on7pGI0XL2WlatixRnHSJFU7RbWOWTayjdkthAL1monWA1FVzQGvtoFbK9qP3ddwW1nI+FwJ5F0m2kmJk+dFiorxbRrmYpuYrmU5zm9wO5tw/Fpnftol44NEkfSRVfNlKel+BoDhdzPJpOiLee5Inzk5OdZDhMnmkligT88DSdnsrvwfWGJWCu/v3QdddtDFcJDt50Ef5qKK+kik259NhMcPnev206Erw3YKESfjmQR0gp67d+35P2fyNF5VJC3/RqvDh6cUVx3fBitMKEMIucHHtHIML+R0PI0/tIQzMUE6uJDEekA8mFJdOwTvuETXVgGX7tEnV5gru8Kf9NadA5FDLtfnokTV17IpPj+GYQB3qUkuutFThmJb/dyx2P4mmGxpyVsdZVibu0xeqnD1mxJOWzjz+RxytNYqzZtVq8IXSrTo+rPxizR/a4U9CzH9jTxgzFDfwAEnE32iH9sjP65Puffu0fv3R7BV98Sh7ayFJXlBr+78gi54k/SFJ40BnK25InOHe2t8d7ml75+AgeBVIKU5qKhlXRryFCvwoeV757zaYejASrfF1HNtyqu9bleWThgc3GBtQryaXTKxutv/LmS1WtTX1OBcNYLVFXcm8KoTVtZqHB4M53CF77Ota9IEK7tdzCtkDL2JWuxMChjCWZa6K7zHP/RuRTkLKN0fP5Kaq7iuF447VIUufXiUe0M3AKutFoPJaudmDU1zlwxRqrdYmWZa8sSKil2LpxrNZ45n/lEOtB0TVkVv9+r6khPYIFr+1LMHeXQzBc1ZILvSbHutjHtmMXtNu13JmS3hkTffCwmT1GIUorixhb+8VgYGVEEJ2c1i8ZMpsLoCMSetbYcVkpUjZUvtufJLsV5bJteInMyY1GAFwRSkCucvyhkkex36vxJ6yLgVByv4aBWItc3L9EXUyfTX0CnIwveYkW508PEAbrfwju6RI2nsrg5f/BsmDyd9uuOD0ThtlpJBmQBUaLJ25pwvI3ViiL00PEQ4ytax5bLj8JyX9F+qICI+YFHcm4wA4+8C+EUikuPna+VJMcp3jKnGCYEWRd8TXqtRzBJGX5zLh22QT6AVkTwQEj9thWhz8ZyI7UiwrM5Xjcm68b03lkQTmPCR2OK564xu5Uw+OYMrMW7d1znCJqpeChX3YdSSib4SqPjaM3NhkYBKDHjKbqdiIrq9By1NSR5NMOEXVA+PBqw9y+8y7u/fJciiel2P0T79x4IJapspL4XT9nGw2bn3JRxy4nU57PBc9b+xuObUntRZ14Nklj7WdTnVA2lmufyXocTMwn2vv5Z7Q9+teirKvw3d8/PUyALdzi/7m/7qEIbqt0RbC4S1WLZvN7VdXHnVPmoN33ITZpiDo/h8aE0CJVDXfPauutWVKEGrvMH0K2WdHuVUnW+LtpNI7DmwLaGya7sFGoYBQROUM40yg/EttgKO8WmGWpnyykeUxGNpKlww6vO3BcIo3b6qwI+kljS3Zcr+QwXc9SNA9TUqTB3t7BFiekkLG63CScFeVuT7baJDmXRMvcuZeDY60o2o+cELkkklLzxVDI43f2hWrFg2S5JXQWBqDsRu1dbGmw2R/d72J2hDAaVYvSpHdpHKXnLJ3k8k/e1yrC9Nulem/BIVNRkIo+3ZfWdcOyqOMB0Y/Sb4g+j2m1Z5LaH2EAWDO98CsMu3ngu3P2icN24DP3DR5ebsN2V4wMhwMk7sNpWnH1PyfSmh1WQDSKw4M8yVjsykbcaBq8KJq4LEcYAFJFidlPjrcCfW3a+Yum8O8NbFejxgqLlsXx2i8WNhNW2z/KghX80Qt0/RJ9dgjHo6ZL85ja2FWFDX4rHbC7GNVrsXgffGKOXOZ2vPGZ1e8DJd7aZ3tF4D0/lCx4EcH0PFUUycChLbGnqtA+8tel8U/AA1INLW+QySMpzN2SaoycLOm+M2fvdJbqEBz9/l7s//C6XHzfMD3xGP3AHff1gvUIrXRecDUEMbHbezcFlg69cf4mv0g+VpvbpqF6nel9VqKxtCHiqtJSKFnnlECOub8Ht1l4toHlPG9ar59QUCrnHV54atTWt5z0Vm7/62lVIQzMRBmhI+6sOOKyfV4XhGrpqnrc7n2ZOqUTUra9fpb6VXdD6cfVnFPhSTNNUOkdjJTg4y9ZFO/A3oJvaaVKrOrT3CYZRGMpA0u2SrNs1EviytVdKKLBxuPbHrvylq8+wWnyci58UxlzYKwu5p22euxBjF5rsLE1t4GFbEYvbbVBQxB7T245a2YtBe+goEun9sEe52xdXPmMknqw0LlNSGClmLk6SapWB1qzubol3SBhKke93UU6qj6dZ3O7hj5b4lwtWW4rH35+QHM7RU2dE5Trl4GKJmkrupF2tUNf2ULevi++JdpTL2QL94GQtmgp8ONiVa/P4VKwMVine2dgFGGtUp43ZHlAeDIU37jcahaccH4iOW5VgQui/4hPMLdtfHWNCj/ELbZLzkGAmWPVqqNEF7HzFkJzl5G2f6FJofK0Tjc4NwSzHPxox/dQBqgBvEDG/FhCNjeRFHqfopXAw7c1r4nXia84/0cUqCJYJyVlB4G3jfeNdzOExWh0QnY7I7+5hFXi+CHUWNyzxqcLsDFHGSGbdKpft1RTZdmaZqCWrL5TnrfPymoWyYVFqixwznqCHQ+mGJlOUtQTWsvNVePgjCe/+4l12PnvKWa/L7i9GXHzvAYOvx+j7j0Uo0eAoX1VG1n92hlEbHdhVIU4TVvE8RwtrLDhQMzTqFKArP28OS+vXuXIuG0fT67rOjmzsEPSVrMwrwcHrB69x5qsS/uZ5PHE0zaOswWTlk7uT6hysch23aUAPlXvg+nNuCpPq927t5i6hwuOrQWij066KNuDYCoEriIuNWYbSamMAXr9Oda0ce2I9uEaENnGMaifiu+FpcaqbTKRIu+AEccKbQactAbvL5cbnrQjkvFZpPRytPwfPE18SN9tRnTa2nUjSOUBpSffbxKfy/cy2Y6791lJ2smdTwa3d+anJHG+6EM8UFx4BCBXQRQGKXN4pMPOCeDIVrxOtMNMZWmmh7GkPipLWG2dyXmlG68Sw/Y2MshWg5hrTCvHOJtK1O+sLVRSUz97ABFo8SZTCLyTY3IzG4kliLUp70kWHgZx7EEga/GiyFvpEkQQgn12KDH4yk2v91EwaOT4Qhdtbwd2/d8nyRodwlKFmS7LndwjnRhRIaUkRh5gAsr4iutREYy3FbJrjn82wSYha5ag04/J7rztf74KzT0asti3RhcfWazneokDPU3HqG0H6wj5Z3yecGvyVpfPKCWW/jU5z2NuWibKnKW7vCtvkeIRdpYSvL3nh9T7T77jOgz++ReeBofM4I/z6iYQD376OOj6XL5nnCdZtHIc2jkSG3GR8sDlQs0WBubwUU6ogEP/e0lDc6tE6tFx8qsT/5V3sCwXmnz8n/7ltLj81oLPTInz5Xs3hvQqFbOC/pgTtr+EP9zvYhj/zU+TqVw2c6gLQ/J368Vbc5668P+DbYnfUMuSqO/bENKsWFzkvj+Z5PuE57s51s2jmjY72KUNTRwOsQyXKRjFudt5qPeRsWsY24aCm7UH9f7OGTdwvyUOrCDa3MDR3KpVJk1Kqpq2hJOC5+V6bGaBPOCKWyC7CGSPJ6SrY6pNe73H28Rh/btl6tUVwP5Tu0HG07XgiBWk8ESpbltdsJONsWOsFxqmJbZpKV1t99mGA6nQwF5foizHmYJt0r0V0siCYpOjRHFWURI6tosdzbBRiuwHFIKGMffm9Byf1udvARdcNemQHfYLT2ZrWujVALVYCJbooQeV5QvWtEtvDAKZzwabHU/pflvvBdBPJrVzmQgG8nLrADA+KAu98SnljiNUWb1W4zE8nqAkDERPlGXbQFQXswxNoJ5SDDp5j59jxRBalNKO8sSPvuZ1gfI29DHiv4wMBlfhLCQYNxzl6WWC6LfxZjrc0BJMMFGQ9xewWrLYtxofZ9QCdGoIH5wDo0Uy4lmFA1lEUiWK5GzC9a9C5ov9OSevtkdwYF2NUu4UZdAkuhdsZTkrSvubiMwek+y0mHxm6bY6YpfunE7y3HslqqJTcjFoS33e+nmMChT/LZQs56LK62UW1HERSiWQcVipOZN9CEAPCEhiLBwNJjNnqcv6xkB/9S5+n846PMtB+x2f8tW12/5kHTO5oprcj5t/3HN7N62tMtAEfNL1IqiJRS9hNo5A1IYfqcUXuKGTrgeTGMLC8skhUA7ErHboKwqdCJ+tfUBvQjDzdmn99lRFT/3stDFrbx9Y0wwYH+6n+KRWsIm92/fqmXP/noI1amJRnT5fVX4VrnrL41bBNFX7cgI3q16iGbVku9qoVm8X9bOOaOjMoW6klq8Wr+hwq+KRm+bgBeiFwhVqsmB+EzD+z4Ef+zc8zv5nUJknK07Uy0S6XmOVq7dFdlq6zXOsT6kWrYk6517Rliep2Mds91I0DedxsSTDJKLqR4L6A6bTQ4zlFLxYYJQ6EHrwsCM/mMsCNIxk8JjIUNFPJqQ0fXqBSxyDqdlB5QX57F93v1TFmyvfXPPDr+zLLUkq6YHD3i0GlhdACj8/Rp6P1vel7Ij5KIvzLJf4sQ09X0jHnzpZ4tRL6YxxjBm3KtruOYYBepOLzPRILX3s5ll26UpjIl51DWojd7HscH4iO22pFfm2IykuKCtue5/izjOX1NnlbLFhREJ1LtFP/3ZUo0DrJOgS016HY7rD1zSVF2+fyxZDtr1haZwWtd9Yfil2JmXqxneCfL2m/OWF5q0vv7SVH39dm9Lx4p/ReEbwP36Pod/Avx7C3DZOZcES1xhvPiTX4i4jzj3UYxD7TOxGdh5lYUFbqMu2vTdihUfQ2zaFqiXg9/LOU44n0TN2EcGL5mb/7WfZeLei8csL8w7ucfTzg8S/c5tk//g6vvHWDnd8MmP/hG+x8uYt+44F8yZTe3LpXw8e6QOZPbOk3mBGu06yL5hX14FVr0KtmVdVRMU1s9u0qKVVdiDck6XZ9bk3OeP3+8kw6TaWppPsbQ8QrMEm9c3BipI3UmyaEoTa78o0dUxOTbFAGKyvaJqNDfLCv+K5Ui+uVrr5WpF7hxss5qNpWQTV8yKsUoPrx9QbKPYcn8WHaybLtKiWcGsqziH/w332W7QuRfis3q1EVBLJc1rugevGteN1QS8xtlsmgsJLaO5jNZhkm8jn/7gF7v6FJb/YxviI6WbJ8bgdvVaILMZUK75+J698yI99vE0wyvEdjsZctJRAYJyrSO1v1/WKdlz1lCYFP8M7R2n5CKWyuarm9ardrCp4YWpWSo9qKZQFwCTpmPq+HjLSArQFWKfAU+mws3bunMcsV3rV96b6VgvEU73wqHbb7e3WewpxCMO1Vip4s0SA2AcUVIdjVr4V9n3/8J3X02jfsd3/nv46XlqTbMdHpAu9sQn5ji8X1mOiyYLUdoEpLMCtJHkxYXe8S3x+Jl3EnQaXiSJbvdQVeKURQ481S6cQXq9oMnsDHasX8pV2Klkbnlu7Lp6S3h0xvhpQxdB6XtN8eY0Kfshei0xI9y7COtlUmPuHX3q39dYudDmefaLH3pRl6kYldpKflg18sxfXMUbnqY0Nx2BBAvAddT3c62A/dEcvZwxGUJeVuHxN6HH2mjQlh/mLGjesXjH7lgHBs6RyVdL9wv2adXMWXn2CQNPnIT+NFm01o4ir1rnm+TXrgE3hydd81F4Cr92LlW/JenOsm06RoYOvuvK8GTTzxPBWV8Spm7s6nPv/mY64MNJ/wiGnK/Zs7gqcU+OZnXnWltRCqoq9BrXi8ClHVxlFhWKscK0FMU9FZXxMArWpGiopj56YnQi774Wco2wHeLMO7mLm0GmlQbJZJ3meabsxj6vsg8OsM1krarne2xJnPheoKTCLYtg0a10Mp9GwpIpS+hE5X3aZJArJBRN7z8VZG7JrfuZDQgiCQ6zLoYuIQPV0IgySO5Ds/m8G1PcGoL+Q8xIJ26TBkdw9ked252zRFdTsU+338o5EU0LKUxSd2Q2Fr5bV9HzPooscz2Z0sV+L698ItoQI6YoMNxGa22Onin07kczs8kabQURbtbCYKzdQNb8OAzz3+Kcbp0VOB7g9Ex21CjS5EMRVMMtLdFnFa4o9XtN2XqTtO0ctcJK5ZTqS1KJDynHxvF2+S4Z2OCE6g2OmIecz5DC5G0OsK1gRifN6KJHxhlFG0YryVodzuEFyssHdC9n/lhHKrzYM/uk3nkaF1kpO3fIobCfN9Dy+z9O7nsDWAVYbKC7x5xt4XCpS1mCRA55F8OaD2hKiMn6h8DIyIVKoOD2U38Wb3+4LlCgdYv/wmwaAvQ6Aswzu6hIMh139jytknOugs5Oh8nz/4p77Gr3zpo1jfZ7HzDDu/N0G9ft+FM6yVkRsOeA2GiwxTFSoUjiuVH7jZ7Kzl1+1Gp1dzmmsOd/6eBXit6nyKKMZh/e95VKZFFUuDxgJTY9rNDrV0nU6w5plXXXBZOoMwW7Nz1sk9mwtVc5hbaYRqOX3pOv7CrBc5+TCfWLyucuzr4WPlCVIpHd3uRVfZptV94TpYu5TCWO+GGgtV/dyeFuzVxYKpViIdq7HrxJlX3yFIYvH/cMIYVXmBV54dahNqqsU2ZQm5ki7bMU3MyRm2KPCGA8qbu9Is3WrR++YIdXhG9uGbAjNMlnB2ibm1L4EnnRZWKZa3ujz4cY+Dz4H6V06Y/fQ+nccFXI5lB5DnElZdGnSaS2qM76MmQs9Vw4Fct8lSFrRuGzNoy6AxiURxej6COBa2SxTK4tNroZe5DD09gVEE1tIi0PO0DBFnc7R1FrCdNrQS+b4HnlCNnYDIdGP0LMU/m8LluM6staVBd0IJc9gayi5iOhWxU/H+O9Jv2XErpWLg14EIKfQ/ba39j5RS/zHwF4BT96v/obX2591j/gPgz7tvzf/KWvs/vd9r9Lo37Hd+5n+JKmWlnd2K6DxI0XmJ/+6xfEBxLPaS0wW228JEAaqUQcDiVgdlLMmjOVYpyk4oVMDLmUx8J9M6bkgNenJTLiQyCGcKnx908UcrynbIcj/Gywz+ouTiQxGtM0PnniTjjJ8J2X55LufV62BbEWq2xLZj9Mkl48/eYfS8x41fmaJKg37jgXyJKl5yUWCchWN1PNFJqYaAoeZlF3UB0WEgyi2XjILnwaCHDXxWN7ucfTwABXs/9pBAlzz6hTuoEroPSgZfPKR8dPQEtECTjdDoApudY522U/Gzi3ydLt/sbK8sBpuslUan3SjSVUbnVY72hocJPH37eHW4+LS/V1iv62bdferOdxODf2KoC0/slK7+rOkS2NyF6DCQ53/K9a2uYzVMrGYhlUNfff0qGblWa6MmpQT3rhb9xnnUp1l19mGIt7NNfnsXb5FJ+LALG64WLpOmeLs765BbJ2e387lb7NchFc0Fr3bDdBarquJWKy3sijgSuu3eDssXdqVbttb9jpIC5aiB5U6P1UGL+GQl1slaM/ruazz+YUPy0Gd5O+fO34f2Vx8L9znNpHN2dYCyFMVkabC9Nib0BcqYLAXHXqbk1wboXO5DPU+lnrRiKeyhCzmwVp6jFUtSTrWL6bVFrVntIKKoXrjkHvYoD7YpeyH+OAVjMK2QvBcSXqbo2QpcGLhqJfVgtIqio98VO9w0hTDg8+c/zbg8+/+5406BH7bWzpRSAfCbSqlfcP/2n1lr/9rG/a3UR4A/A3wUSXn/RaXUi+8XGKwKI9jWKmf6bEcyJts+4UgGH+zvUHQiVnsJRWsL44lntp9a4vOCyW0fLCQPROiS93x0XmK6LfKtmGDSRb/9CLaH2PHUdSc5qijJDwbieeJp6fS//oDuWRebhIxf6hPOxPAKIDwv2T1fot59JF3yfCEdBmBbEWZ/C+sp2o8t3lQS3ZWLW7KTqXzR3JerwgJxnS3QkMQbMaaCNUa6QRcsMOMJXq8jJjYA55eoQY/4SHPzseHoB7d4/Os3WR0U/KU/+4/4L3/th/Eyj9mfusnWq/u0vnIfMxrLVi7L1pbeVQdc4haPtTy+7jarQtf4IldDwKoAV0PJTQilIWO/0nk/gR+DqAErSmF9PFk01zdS8wnNE1h2NSBbP//md+IJvLlZoOvdiN2EcKpCXO2mGs8j18WFP9iq2LEu2o7nXomxhI3B+nnczkhHUU0jtWWJ7nXFVqHxXusFlEbBrop9t4PZ6XP+iRZWtbj2Py2wl6ON7l0P+mLWNFu4WK5ctv2ObijP12gsHE5vnWVDvVDvbcPJuSwuceR40h42DknePMNO55g7+zKsywz+6w+k+IcBelWAgbNPdNj9Yg5K0Xq84vbPhUzugC4CgonwqvE9GPZkgZstsL02+U4Hf7xEX84gzdCphDVUBlGLF3fxUkOZ+HjLAu942dgRXTl8T4q25wbk1sLJ+fqSZxm63ZIFUCtxMby+DUBwJuEo2bUeZewRXqxQy1ygp0wIDCqOBUJ14h3lS4Axgy6cOnHPe9FV+fbCgi0wc38N3H/v16b/BPA3rbUp8I5S6k3ge4DPv9cDTOixOIjw0pDuuwv8g4TFno+Xlsz+wDMUsXAlvcwyu6bJhtB/09B5JJzPIgnxMlje7OIvS46+16eMfHa/bFkNFQe/Pl0HhKapFJtYEt4XNyS5HSA5zdZbyaIkbw0wIZK0PZ7IQCIJxXN4lYpCshOjji+wnkfZDkhOM84/GpNvt1lci+i+PSPbTkhePcKcXzgZsb/u8hpb9Wa3VnVawJNSdCUQSzmZoeNItlaeB9M5eplihj0OfmvE9Pkup6HH3/h//2Ha3znie77nHX7p1z+JCQL8Z59j/4tT1DffdS/nhn8NO1hVVfOrg7YKEmjgrBgLahOqaEIvUOHI73mjyRutxRzrbn9zKOn4zVf8Qp4wv3paYb+CO1/lkT+Bc9dwgEftRd4c2jZ3I1WIststVe6LSq9T7nHnZUvn+REIxFPBIvUMxK4XRm97q1Y2VnmIZjyRa9As0I331Ay68JI2qtel6ET038okLSqT+DHvxjV5nuozz4uaQWKXK4FHqs/GXfP60nh6nepSFM7utUSdXUgRdo5/tp2Q77QIHo3kcWGAWhUEU+lk84/cITgcoWaSAJT4GnSH1bUOJvz/tvfmsbZl+V3fZ609n/nO976hXo1d5erR3U6bBmxaxoANCAiEiCgklhKJ/JFIQUSKQEhIkaIgIoH4J4rkjAhCACkMtqXINg4GO7S7Xd1tV1d3dXUNr95453vOPfOe1sofv7X32fe+V4Xd2Kn3SndJV/e+8+45d689/NZv/X7fQWM9wMLOVyeYQOMfT2rJVRZLx97MUGmONxeyjY2CGh9uT0eQxOS7faKTBWUS4J/nePsn8r5BT0osgPU8rFMwzHcHBAcjIcI4D8yqFwDUjVa0wj57ncVOC1VadGlRnRBVWIrEIxznIkl9dg4gdnRKiW6KOx82iVDGykIBEMdO3//fEsetlPKArwMvAv+DtfarSqmfBP4LpdR/DLwG/FfW2iFwHfi1xtvvu9c+cJhAsdjQJGeGMvZpv3eOfamPP05R6wGLbcX6mwXBpKCMIja/lRPtj8l2usyvt5i+WNB7y6eMNLqwXP+XGQ/+QMjZJxXBVDF/ro+37BIez4Rk4GvUqTjpzLc0OofNr4/Rkzn2dFh3eTe/HjP5RF8c3s+GMJqg564h4hwvVGlhcw09meMNS2zgsz1rkw8i0oEm6UYkr98TlbF+T+brTGBt7gSoqmzNlKJv4jKly8ypmsTTaG7Zyh/Pba1t4KP2xdey92ZJ507I4Re7TN/q84sPP8Of+bGv8vrwOvf+xTPc/SNduq98io2vHWPvPayJLnU2fSmwVXTxCg1RBfomvbo+1gqOZvP633Uj0HuMVkkTi12xSCtnedMIoDSCp9I03X9WetNZYxFs4uQbjVc5gRdKHI/Dp9NEsFTH8BhESnVcUIqolPt8OTAFplFmcH9DD/rYvU14+44E8gaWXoVOy/r6FpPnurQezPHuHEqJwHEDmln+heMD2cVVJRBrCR4O8T2N3T+SzO7TLzF6vsPkhub6Lw3Rp2Op8zqNbDNfua9cgG7W6BwjpUqQ7NyTGrBdphAY2W062dVwKpR422vD2VAkUYsCjCUIfMmYrRWG5jxlOejTf3tGuhGT9jzSvubBl9s8+7M5upMIEsbTYoKcKuzNHdTREPptTOyjTYQ6Hkk27FQEg6MJppc4jLdxMqsFdjIV5AxI4LQWfI/g8BzTa6FyKWGpliR4uuo9VOW2OMYC4XmGyss68KvCkEzdTirNsFqhtMZs9lFZISKYLnmsKfmLTHZV8/nK8OIDxm8Jx22tLa21nwNuAF9USn0K+B+BF4DPAfvA36wu7eM+4vILSqm/oJR6TSn1Wp7NmF9TFJHChMJUat2f4z08xWpY/25O6/aI8MGQwVszooMJajShaHucvurRuuNjAjj+nMfJp0NMoEkOFbtfLVh/s6BINFnfRy0E7aEWGeXeOsvtmPaBYfBuKivww8OV80WrhXp4THKQSqDv9xwdWNciUEJNdZ3805FkLFmOnudYBds/8y7h4UQaHL0udr3vjFotOolXVPjqga40MIp8VZ6osLgV/hjk374vN5zSQpF32+iauDI8h8MT9HjBzq+ds/drJd5U849/+Ye5c7rGn//3f4nikzNm1xW3/9w2x//hZ9Evv1ArFFbBs9ZRcVC5y4YDqwuqV9klVZlg1QRtkm7k9arh430gUqP6vAvH4ejbgFwPa1ZlFy3bdZ0kUic2K2/NC5/nPfr3HkGHNLLtCr73uFE1FOtRMU+rz6zKCpff53ZaejhBb23gX9tFD/roVgvdTtBRJJyAwCOYlSKElqZSbza2drhpnoe6yQ2rRd9YzMkZ5vBY6rcAm+vc//EeB1+C1qHBhlI6JBO5hWbQrt1rmotqGK5KII0ejFJSMlCtBNVpU+w4OGAcUW5KSZGdLQma3baUBU5HmMlUIHwba+TX+vipJd2KKVqa9n6OLi2tfSHceUdDgcuVRrDU3TYmDjC7G+RrMQ9/tEPZjcUKbWNNSjd5gUolsKIVqihFfTAIROmwJQqBtpMIpX+2kKx9njrKvJIdd1FgxhNUryvvDUXqVk0XeBNRF/WPx/J3lMJqvULPFAX4PmUnouxKwMa6LNvpk9heGxWF6J0tcUHyPjiv/m2hSqy1I6XULwM/0axtK6X+J+Dn3D/vAzcbb7sBPHzMZ/008NMAyd5NaxWkA83gexneyViaFp5H781zyn7M5AfW8VJD/HBOsdZi/IPr5B3FjV8WNb4y9rn9U5bCt6TrMckBLNZ9pjcU1395RnD3WPCa7QQbhUyfbYv+iado301FpSyJpda0cNCfQZfZjZhgZujcdz58eY7td2vZxXwtwZ/lqJs7kJeyMCxTkvcLGPQ4+AObtE7W6f3KbdR8UYvO0Fi1VwGwvNDsE5abjw5D2ba6LLzCzNbnsnpICwXTmXS4tZKt4MkZ3rxFC3juyGf4Sosz1eZ/u/1jrH3qhD/753+V/+lbv5+ZbfPOf7TO4LvrbH7lGHvn/gUnc2AVvCpiyiUkR5NBWZUrJIA3yw8fgNCQN7nfCRr63I1GY6O2XGeBjXJJvWOoyhVV1n7hZFU7g3K1g3DNWe0FNYX7ESGsRpnjwudcYkXW17L5uzQzda+hDW4gzUh/4DrhvSHEodRRN9dheI5NUzGnvo9A8RaLx173qn6uVKVKaVHKeUZGofQylEi+qiTGrHXo3Df037V035/j3ZOGmZnOLu6EmrC/S2Sr6nwr552qHJvQTCbojXXSF7bRaSnwvtKChnSnQ1ThsKuglcSOTRxj4oC87aMLiyos0aigjDS7P/+Acq1LutMif2aL0cst/IWl/1aIHs/xH55B4OPHPv48Yr4b0RvuUXQidFYKVHh4LkJeWS48jsrtxiVbZjIVEaz5AlqxBN2WjzqbSGbuXHFUuy2wvzTDXt9BlaVo+Jfydyrijlqm8nzkTpZgmaJ6XXRaoJaFW3xcohVH5Lt9gsMx5uQUvbsNQYQNPjiv/jcGbqXUFpC7oJ0APw78DaXUnrV23/3avwu84X7+GeDvK6X+FtKcfAn42of9DZ0J7T1dBz3PhMGklWwf4xC/LIncJPQ8xSQ+KAjHltn1mPmWJjo3aD/lud0THrx5k+jcslxXbLxZiOtGmqKiiOzGOtlaiCqh996CohtgAw/PaRxQlrC3XXeKe29NWF4T3Gu52UNPU9H2DX0W19uMb/oE84jkpCA6WeIdnIiou1aMX11nuaVYfyvH7m6gziaiRFZ1w7VChaVkURW6oG4EmlpPuRL8qSnOYbB6j7dCfFSUaDs6l8zH92WxKid4RYFe67H5tZTB2wlHX0gYqk1++lt/mL0fPOCn/oOf57977SeZzhKGr2yx8cYm6187xj44qLe1FSpCHHQqUaRLhgcuENb63lXsatauH3ujrfDAsKrb1hl2Q0sbU0ijt7ETuRgkkeZuo5RysQxiLny+lDAafYfHHOMFw4qm/nijefoIpr0yiq7Mb+sPM6Ke50pu4f2RPPS5U5s7PJHrnRfCCKwgis1mcHUtqh2ZI4NUiBN1Yw+1SClPTrHG4nXEoZxWgnc6Ye1bBXoslG9zPnZuSI/CJWtN7nq34khYrllaJxKJOLxrrw9ZTrg/ZvLqBp3bOXoyxdoW8dGhlC4yC8sUW9G+00xYjHlJ1vPo3Fngj+ZYz2P2Yo+TH73O2rfGzHZ94lix/ptj5rfazG906Lx2il3rQSEItN25LDzz5/q03jrB9EXGWbVbguOu7sUq6Vg4J3alYLHEbK6hJ45djSyYMken4aKV6I5si9KfPltCItfftGLwNfkgJrw/lMU0L0SnfymEPO/BiXtMPHA9MhsJdl7lheiY+B5qtkClHwyF/a1k3HvA33F1bg38I2vtzyml/q5S6nNIGeR94D8DsNZ+Wyn1j4DvAAXwn38YogRAWUhOqq201MZsGKCzHBw2M/A8bBLA2Tle4NN7F/zRnGK9zWI9ITo3xK8n3H54gySD/jtz1sepnNzpQkoVgY+3yMluxgRzg3++ILgn7Ky6YaAcPnyZQreNdzoiMeukz20RjJbYyGf46QF5RzH8pKH/lpA4ptd98k6b3nKHshPhny9JjjLspxN0ZlDzlOzWJsFwgTodubPvYxfLOgDXlPEqM1NKakxluao1KWFnKdcsssVqa97UxLCzuTQuW4m8ZzhCzURT2ddw/Rdm5Ftt9r+UcO+9Lf76G3+Kl37wHn/6h77JX//VP8b58wFnn9ym98422792hr370DHgwhrbatJ05VfYzMa0cn6b+hHCzmUo3SPElCpIPa6L2WiePg63XVPRG/jt1WlzCJkKDdGw44JLzUVWu4Fm07iWam3Kwl4K8pVgmC1LyYRBrqNbROregJPyZI7sxBykrv68ahF3wbPSe7kglKUCac5lmRBeWi2xE/N97P4Rxi243taGQM2yvG7sKWfoW2m54/DqFwwjmrsDJfKvuFKUzTIplzgLM4oCel1R/GvFqGVK77UHwrQsjWha93tYT8PJEPa2ZGFZ7+AdDLFRSL7ZovfOFD1xbvJHp3RPRyS3tsm2Eta+M2W5nTB7tkNyuJRGZRRK5p7lkrmutwjO5rTeG6EWKXo0Xom6baxJTfl8KscNdXKjux0xJ3aKi9Wiop1ZcFUvV2GI6bZBicetV5cALarMUdOccLoQGHKopfzhmp/S49FybaczUXocz4VleTYSeGEcCyMTHl90rm67J4E52Vm7YV/+03+J7r2M+O6I+QvrWF/hz0qC8yX6fI7tiOOEenAE2xuUvVhw32kurs+eQqUlZS9kvhPRe+scfTbBdluku13Coxn5Vovw3lDEmnak5uadzYR9uUyxs5lYQG0MUNM55myE7vdYvrzL+XMh4xcBA2Vi8aeK9gPo3i/x5yXv/yeG8O2EjTdKdGnp/vp97HxB+dINYYMOU7zxEjUc16al9my0ajSVpaAQqge2CfFqZKM2y2rkwCPBrcrIqkyvysZiZ+TaCIyVXZNNIpZ7HQ5+T0T68gJrFV984X2+vPYWf+OrP0GwH2I1dO4p9n5+352rZf0wSOZ/qXzwuKy1ieFuULObv18373g84uPix62w1vWi1UCyXIbrXThfj2OEXhqPYNtpIDYcm7LWF28iWy7DFx9zLprHcoG12phbU37gEZ9MWGG9q2vt+6huVwSfHMxTRZGUzRrn3S4WsvV3Tu61ENWl0tCFRmlF3nGY9PrvxVFtvkAYQGkorq2jLOjzORyfOaJPKoHKoVBUFJK9uEf4cAR5QX5zg7wXEowzVCGY9+VmTOvuGD1ZcPalPXRuOfyi5hP/+5mgvpq08LKUGj2Id+MiJXtmXcpPiyXWCEyYyJVHZgtwUEG0qG9WhsBK69oRqIoJqt2WxSmKsDsb2CQQgo21tVCXbceovBToYTuh6CfoXI7PO51gR+dyL93cWy00xlDc3BINpGUqO5eNAeV6B//eMf/66B9ynh993zju3/VhtaJ/OxXt7WcGTK/5LLYV/dtyk0aLHOs1SBTzJbafkK2HJO/N0MOpZMj9Dt7+CeH3FGZjgI1D1PmUUGuOf3iNZGiI3hZBdFVaAQsohVnvom6PJbgB6nREubeJjkLS633u/XhIcS3Fjwpe3TvkzV95no03LL13p3jH59goZOdnt8jbltNPeljf0vl2jNIabzQntlB0AvRcw3pfFpn9U7nJhueuhlaKzrKDkFmjLxBcmvoZTUjeBc2RalQPfFVnXSxEC6HThlDYX2YylYaN6RIda/a+Au/d9PnCq7d562Sbr77+Il/6zNt89ofu8w9vf56JWufuv7cHwPZrKfFr78g5b7AFm96MlbnCI02+x+G3kfJGxQx8bDBt1IxV4IMpLgTER/RXLrz10VLKI4G/CSUEOef5xaCqLu0EHpFT/ZDPqrP2sqS5/1wxR82Kwk5ZL8DgMvZGgqXbiQSRkUDMvN0dIZnNZlJvDUNpplsrmbAnkqp2uRRBptmigfoxF3sQIDuGekExWKtqY4QqAVCuVKKUkmx06VG8ekuo3vNMsvpIyDlY66y+DGxvCmzVOSLZToLOStK+R9pPaD8Uu69omLG42cVbtuncXWJ9TfdOjPUUuihFBzyJse5vyA4ig+Mh1hr8YcLy2Q3Cs4VoieQCJsCYlVFwBXf0fefL6UEc1yAE1U4EhbZYovo9aWLGzmczFeihWmbY2Rw1dCiwbherhQletgO8sdN1GfQxp0P0eIZZl99RZYl/dC59L8+TUkzgo3Ijz5b5t8Bx//8xvNQQnMxJr3UYfiJkdsMSnMPRFxSDt0Imf3CDjW9ZBr95ikpils9vkQ2EdJPeXMOf55SJT/T+qTQZ41i8HzstOBuhyja9eznBKMW2YvL1Fnk/oP3msWBBp1pu+GpbtEyxkcfJZ7Y5/fEltsz4M5/+Jv/ku5/lvZ95gbUDQ/f2DO/BSQ26bz9M0WlB52GMztxNmWUimD6e4nmeZDytGD0Teq1VSmpvw/Nau7suOzSww1BtjRuZYhOGJ2fRZbWNB7EmoMh343SLda8jcy0K7GKJ1pr5q33+9A99jZ99+1O0/nUH7xnDV954ka/Yl/jkK/f4I3/81/j18S1+5fWXObIR2/olol/9jtxgrpZdQxVrhbxGIK0gfh+Ah7aFwZYXmYiXR/1aM0ttZupN42JVyQk0YI2mEv26JLalLlnK8fhMuPl6tWtQvi/nsTGfC1DCS7jxy9jzKnO2xkFDq8XElYV0GNQ1cjXoS2mk0+L8k2sMvvYQc3AkQbsspbkeC1KpbtQWxSrAZll9vYBVA9jNp6nbcsHiTFlXttGrDLMi3rRbonMN+MM5ajzDnA0l07ZOfGp9ACPR1J68ukH7/QhvOMe0Eyav9Om8O6X/7RHzZ3vc+WMxL/w9QY5Mbm0SF5a8ExKd5fTuFOLLWJn1FoV4PAa+LExFgbIG89wN0LD/pYjtb2ha8xTTHaBKS9kK8N9+KOQWhwyjFoJrCTxwfSCUeK2xkYc+9yj7om3inYyFWdpKsIEWAwWHya4QaaYTUiYSWnWa1yxMPehjOwkm8inbAcHpXD4rL8TAuOXq3QenH0q+gSckcGMtZS9i+FLI+Q+UJPc9/AWEdxTpGlz7VxnRWYrpxDz8o1sEU4vxFd37Bem6j/UVXlpSbPXQ/TbqdCw40uMzcZYIPJJv3ZfMwPNQGx2i46VA5qoT5Puin2uE8ZUNImbXFN79mHCk+PnXv0QcwvY3loQPx5T9BLvWE02D0McfLzl/pU/vvZloIVTbL4DOQMwQYkehDQMoUqG3Vi4jIA8GoJ0YVt0YCsM6qK9qsOZiILDmoq7HJcJE9T5b5JTDcwkI3S4qiSn7bYpY8U9/5Yt039Nc/2f3KDd7ZBsJBz8c8O3wOm/e38XzDP/tl/8xf631JzguE7bLHyB+9xhzfCpwxAbDsv7bpsS6gCqM0YbGsBZPTlusMtJqcXqsOmE1jxobDpUP5gWkSUWdr2rrVZ1drwL1hWz7kuHBqqZtV+e4UuyrSzmuIVVpUj/OQFl+aBx3k4jkIIZKSQliUV7MusMQ3Uoc5EyLANNmn7wbERxPaR2mVM4pyulls1hKn8apBdrFsoYdmgbDsb5GFXqnMd/6GlTnIVArhUt3vLWzU78riYdyMNnTkfzNW9fFsX2tJ5nlTNiOR3/oJif/Tkl8MGDv/02J747ofWcIQNFPmG95XPv8PrOvbBOOC9a+eUoxaBHvp+jJgvCuETf4MIDZvGZAk7pnwxhUu4WeLcH3GLxjOH8hIBx38Q/PUXlB0d0U5NiykGOfzeuFrbon7WKJqvRiTCznOS/RR0M5t57ndEhi8QCIYxGJ2ljDBD6qtPiTjDL2yTfahBVtPs9RqU+x1yPveQRDvSo9BT6zVzZJ7s8or22gFznMf4fggL9rQyvmezEmgPBU0zq09N7PsFqA7fr9A/KXr3P4xRbTZ0usb7n+zxV5W9N+mJF3fPxJztmnOmDBX/aIzkta75yRb3YI9kcixLPWx46n+OMlZTeC7Q3BbhuDUsIYw/Ow27tEh3M6D3pE3ynpfusI4xouaiEPTLnXQ89zwW3PFtjAx3p9TKCliz6bywVPnA7CxhrZtsALe+/O0OdCo6edQLctIPyDI8HuNlh1dqXHSSXV2czaLkDx/Iart3KC9jWJpBHErcEsl5Cm6HkLL80YvB0QjSNaB7J4eYcjotLyzM8tKAYRJ59OmP7wgr/2f/9ZvKVidtNwPgoxwQ7B9XX8ozH24HiV0bmMF72C7dViTnXNFpeZN4k2K/RGVVq5QABpZtVUU63KMg4N4SEaJw1ESjVvqDLti0bKdVOzypA9T8oxFTLmQtC+SISqX6uCn+etmsnNxdYXTWacMQYg9V/3HuWya9XvUm71ISuwpSXfamG1ElnThSwy/ulCYHXxBgzHQlVvxbB0jXWnKV0ulqvjLkuwbnGtdG6sRWRvA7lejR1MbcjgEDz41efIeTSTKXqtL/Tz4zP53FYCaS7iSu0IlZeYtS56MmftzTknXwpZXss5/XTE9X0fipJiswPW0n2QM/u7exQ70L49FhGowqD2TwVmuLcjuOrSSQZsDFCjiZgD93swna5q3aWh994Mq9uUsUeQi9GBN3UljigUPHmeoyrtlGqxXSxrrRallHxfpFKKcfpGapGK+p8S2K3NC/R0Dq0Y0wpItxK8pcGrIJHv3YfdLbIbAxZbAe2DFDV3BJ1nrpNe6xMfL8nXY8JTR8X/EFu/JyJwW0+hS4u3tGy+bujcnpJuJiT3xqjzKYvPPkO65uMvLJ3bHvGpxfiW7u0FZcun850jTK/Fcl2x3LREI03wpkGlGf5b98SxwvMo9tbwtcYeneHPEhaf2CY5n9Syq3ie3ACjKbYVs/mr+7JlSiLBaeaFZDTGEt0+FnigQ4goIDnKpbnieVJjzHIpSaQZdq1LcDgm7Afo0Qw217H39yUTDQPsoCtbqfkC1XYwPnfjSCNppbBX1z8fR5Wvhimx2cXGXF1/rlxWQFAFaUowmxO2RLjKzuayAJwN0UlMOFtjKzdsv2ZZ7IrsgJeBLmC266O2fTqxR9AXppk+PMOMzsXyqwpmlQ5JgwkJ1LjvC1lfEzHSMBcALsLhXCZta+gfF36n+lz5O64G7zLdqizxKHLELYS1rdtFklF9zHUzNJcykdcoVZWsAvZlFqYW+dNKmKl2h9newHRbqHlKvtlh8kzMbE/TvVeSHOfC+s1LyAtMv4VeivlBRUQhyzAnZytqfJY1cO0rZIjI1zWkZ4HaQs0hX+qdR7WDiqK6pKI8D9UJ62upFqmUaooCdWMP60nZUQ/H6JMzuL6LyiTh0XnJ8//AcPSFiLW3ROnTdCWwesuS6HCG8Tu07oxZXu8SHUxRi1zOVxwJScfp+9iiQC2XWN817KdTqaM7cpydTCl3bxGNSvKuR9Rpoc6n6MrLMQpXrMVCsm/mC1lUPU+uT6+DjQPUbInptkRTuyEJYV3WjzWiB+6JwJbKDeEww/qa5WaI7gW08j0WN3tMrwWsfXdOcHiOPTlDbaxhwoCi5cnifLak6EeywHwIbuSJCNwAWFj7Xia2RNOU0DGOymsb5D2f6TWP/p2CPNFE45L44Ryd5vjvjVwXuEU4sbSOwF8a0r5Ha6uPZ4RKa7fX8SZSTzLPbINS+LNCVl1r0b4vNabhuZRX4hCtlDRCxxMJEGt9gRVOpnWtL33lmlDzS0vy9pHUs4yVbnQUSSMky9HjOaYVk9yZSAd6kUk2njs67GgiDagoEq88aDSrAFsxKI3TtTA1O+9y9r06py6bqowOGoYANa3ePcDldAaTiTD22i2n7ZLKziHLCc4nsN4nAVoPRcUx64dkfR9/YVhsBZJJPEjx9Ca628afCvFAHMJXmeUFDHJDl6M+bNf8qpu0VWZcMwR1XS+vBPrrRQxWNVpzSWGvauw2G5UNmF8VuKpja57PR1A87m/W2Xq5+r1m07KuoQerrFflBXpzHdMV13BvUZANQuY7Pp2HOXnHI28rNl9P8WeFPOS+NK9UafAentbIBzM6XxE5XGnNTKeN609dNlpJ71a1e++C6mQ97yaGG8RLslLI0w5lUpWgKumHViLHNxxDvysZ97UNcbVxYkre/WO8fY+bd2M4PiX9wRfI2z5lpJhvhez+yoLW9044+EO76Bw2RgHeaE65vYZ3YFZNxDjAjs4dVDZDdzuij+0yZzuegO8T3j3DbyfMn+1x9HvXWfteSwSgYmnsqsLtJkoDsRO0y3LJvhfSyFXTuaiS5uJqQ9KvkSPMZtj1AWo8FWZlEKKMQRcheIoi8sjbmmSWs7zRY7El11fnZV1fLze6LHZbRGep8EtMhDfPSTcTcZ3/gPFEBG5VWNrvT1AHp9Lt1Ro/Lyg2u6jcEJ3lbB+lZIOQwbdG4Guhoy5SCJ3mgJKadzjKhZ2Ul8LYcs4T1teiBZBETF7oEp/mRA/HlFtOO+B8JhjObgcqYff5UoTgrZVMvGrMTGciNKUUReLhLTz0Ykmxt4b39n25udpt2BwIVvXGFkUnwFsU0nEvnB3TyzcJ3t132F8Nm2tOL8EIvrsivtSByK6y0KpmXa5qvEDdkLxgInC50WFdllk/wKvX6xJKFAmM0Mlm2skUpjO8u6C7HcoborTWeX9KmQQMXwowARgvIjnxCAONjkL0fAlxiF5mouOwzGoGoIpE8tNm2SrLb94XTti+WR8GVoxHp5+tkxgzW6wWNatq0kiTIHRBq+SykUO1SFphejYXlzo7dcEaVhm5vKmx4/E8VAPiqAKFTmJxT+m1KfsJ4xsJpTO/NiHMd0O678N8T9Heh/btKZ13jTiM54Xbmi+xRSllCRDfx8o02AXsCqb4yKjIS9Wui1Vpp5bTbbxe/3/g18qEeI0SUiqyr6rTxsaRZJ6eFRXMbhvTjSk6If4sx7Ri7FpbpFWLEnN0gjYGu7NFGXnowhINM7pvL1HTOeV6j87Dkgdf1rQPEjoPz9DHZ2IKXC1SeSA7Tt+XOnUUStA9PpV6dwVVtBZ9PqX9VkY46skz2ArRxkCwAZUEgDPyZTqTEornQbslzu7DsXxVz9r5VNxwZnPUxhrFelvuykrnRSvRKokD0rWAcGKwnsJqRe/dBd4sRd07xLrzl24mErT7YoouLFOFl5oPFSR5MgJ3VqAeHEkNKQyEJjos8EEw2usxOrN0vn1YZ7+q28H0O6g0I9/ZpIw9/FlJ0fYJ8hLv5FzKDe5G12cTbBSQ7/Zp31tI17comV9v0Xowx46n8qCuDaR2eDyUbU+/hzJGMk9rpJlgV42ltO8RDhXLa10mz4RsjTdRx0OUw3KqVojxNcuNgGioiPeHdf1K5SVmZ11A+IGPOp9KUFvry4M2na3Yab6Pxa5cz6tAdilo1DrOjvZ9wV398miIWikP6WQ7CUuzXMJyiQpCdFv0J3CNlNKReYI4hs0B3umE5U8m9D93wuIXtohHCpW7DC2JyLbbqNyQrYUEk4L5Tkg6UMyuKYq2wXrgTxXdO7D29lKU5IbnojfRyKjlZtFwic91AUvelL+9nDFXv2+0wBWLBgmnJu6wyk4bqB6amiMNFIqwSBtU8zCU3cp6H9OKmD/TxnoiojbfVgQzGL9coAzYJKP77ZC1N6F7P2P7q0tJGLJc5rxYyjmompTG1AJlMlftCC5uN1UTN9TF+6Kp8VJl1o1GsApcvVs1pGGNrZEoFYbbvHBDMmilMDvrQgc/HTr/VQ2TGbbfJVuPKRKNCTWhtcKIvD4g/PY9uX8HXebPDVBGSm3rx3P0cIpZ64Cvad2fceOX2kSnab2TUL7on9jclXSKQs5zUcL4TBYW5YwiKmq7I9GU19fxx0uCo4nsCuZL7HwJrbg+z5WNWLm3iTdyJZkj2dlUDkQ4BJHudaHlMOlpKWTBMIQkodwagIbFXpv2/Tmzmy3CUYm3yCVpOzqVRGzQZf7CBllXYz0J2mXk4S1KVFqSb8YXbr/L44kI3CgEceHMEuz791E39ij7LZZbMWWsSZZue+GCdrkumXHZjfCcP+X+jwxITg1Zz6M3WWLvH6wsiqzFtiKCszlqMifQCjPooEqY3WzTO2hh81zopsOxBDGlpC5+MoE0xUzmUJZ4mxviEv/Ofdamm1CU5L11dA7ZTodo7ISkFjlqtsQzlv7dY8n+fV+2XNZgNrrk/YggEElYnbbxbh8IyqTXQS2WELhdQ4WbxRMx/Yqe3agZKxo1ZW3E17FmLF4qozSQHs369+Vh84xylNWiVqrVktJNUUiGcfseanOD6FRxetYhbkFyZ7JSjtMaf5RiWgHGV+Rdn8MfhvhYYV6ecnPjnC9t3ubXz25xO77B+Y9Zymyd4P4u8YmidWRIjnKio5ksvsulc25xi4xyDceqEQt1dqwo62B0GVvdrJ/LB+hVvb3xxDQbkWLwK6iCqlygBsIGNP0Wy+0WWd9juabIeor2vmXyjGL50hI/KljvzTl8sEbrvYDWgSU5s0Snc/zxUhbv2cJ9rsIaYUAqJR6KpiLb5IX0RCqVwOY1q2rYNBaq6tpWzkW+h3X4/xoCmRdu/rpG+OhEyCkYA1qTf+o5cTJfLCXQLTK5B4pCslNHZjHdGH+S480VJvIwgYcuLcHJXD6/vw5KkTyUmn3rLbH7soOeaHwUhsMf2eDs8wXXfyGm904KSVz3oKg0yTfXJWgHvgRrrUUgajyVXbvnOYKOwT8YUa51GX+2z+C1A8zxqeyAhud1cma7LbKXdhm+HLHzqwXq7FxEt1LHEA0CSd7CANvvYnpil6izQo5p0AWg6EeowtB+b0TZiei+NaIYJOg7h7DWQwUBxc0tVGkoY4UyUnHIugG6kKQp20rEOP0yvr4xnpDArSST9sSN2j53ExP7nHy2w9p3F/gLjT+cu7KH3ExFL6IMNfHBjLIV4p9O6Tws8TJLcn8mRr1xLJ9dlKhIo08FyWHbjoV5cEr74BTVSiiurYv5wYND6HbcNj2ToO1u7Kp5aEsjuMuzEZyMUGFAOEzxMiOu8Z7Du7rus+216/qk9T1IpERw8Ht7KAPr34HgfMnJ53q0N58l2Z+hz+dyQ50NxZHeUWRlS9yoCytb1yNrI9xqWMsFjezLp73Z5Lt0PR4J4kqLatx8jnZNINVK0K0E207YfCOjdzek9/qhmDpU9OZAoZcZOitoZyV5N2Tnq5rZNZifxfzBV7/Gvzx+icTP+dk/+zf59eUz/O3v/UGyno9RlsO7Pdr3IrK1kCIZoDNFfKIIx5bk1BCf5gTDBTorBHFQlNjJRLJMly1iDErrWjO6wtirMFnNF2q9a+W57DrwpXbaSrBRQDFoUSYiH7xc90jXNKq0eCmYAM4/YSm7JVj4xIv7BF7JyTduoU5D4gcxHLa4MbckBzOha5+N5G8XRR2Y8WJqNuBiWZdDlDHSpC5LgQ5Wo+kk1LiOTcPp5mjWu+uGpFvoKuZu1dxUYVgvAMHxVHaFSSwNvMlM0Bzra5JAbUgdON2ICcaSYEV3zsivD/D2J6LL/dwuelng7Z/AxgDSjHKjCxviE6sWGftf3mTtnYy1twzROw8lYCex2IhpLSXISrTJ96XxX13fuesvmVLQWmlWcxVUv033tiRUKgxEOjUM5TOcWUJwMmf33SPM6Zlk164/dUHca2MgBLbQQ1tLEfsoI5KvykKReMRHKWo4xj/XEAYE0zl0Wpj9I+kfWRi/2KX9YIkylrwbEE5yVG7w5jneIseEvgAdPmA8EZT3frhtv9T5E4IN3drAJhHHX1wnmFvCaSmWZL7GBKKTy2LJ6PffAqAMFcHCsljTDN5NCR+ei51Y9SCXpayUpRHyQoUtzQsJMN0O+bU1sl5AOMrEkaPbkaZiXmDaCerwVB6KspSVuhADYIwRjQPPkxW3KFHnsgCNfu9N2g+W+COpU6ppwyrK90if3cSfZpjAo+gGHH4hJJjC3r8astxtS+3vzploMcwWmIMjAKy1q3IIrHC4VTbWLBOYEuUcch6rfy0fePHlD7AQq8k8tai+k3l1YlYqCmWRdPKgVcChLCVTH/Rk0apGGDB9qc/Zyz6zWwWdvSlKWaZ3ewyeHbHdmXL3bI0feeZdfl/vbWKd80+PP89rd5+hOI0Jt+dkywD/YUR8rChiUFYCqJeC1YJ68RbgpRZlQZUQzC06t5hAYTx5jzBoV4dWBgrry2dg5fN0aVmuaxY7ljKy6EKRb+e8eOuQfrjgWw+vkQ1jCAytd0La+xbjQzS2RGc5wTjDPxzJFj3PVr0L46Bojn5OWdZCUbWQU5U1V3os7trUlHunj3LZCLkumcGqVFJdv6q5qBvMT1deUxUuG0SpztXZ7WJRK1MK/tkF9811sutrePMMlUrzVaVuEU0ibDtmudNisemz/o1TeRad36VNInGbmcyhKMhe2OX00wm7//xQSDutWMqYtQ6OJ0G300a5UpHqdjEbPfRoijk6kd6J76N8r0aPmLareb+/L2UPz6vnbm5so+cp6nwijOJAbMmodGeWTjullYgfJ2BaEd7JOWajx+Jam3CUYUKP4GyODX30LBVS3/6R/D1nCkwYMPnMNjqTpCo+mFN2QrJuQHIwZ/ZMm943DwD41/f/Lufp4WMLJk9G4I537ed/5C8S3R1iegnL3RbJvQn5RovwYIKJQ7KNGGXBn4g+riotd36yi5dC3rW0Hir6d3JBbSSBnMT9kTS/3Ba0vLlN1g+JH4xl9T4dYbttbCTdYDWeSeZ/Y7fWLs73Bsz3YnpvnMJo7PRLus7xOUN1Wtg4JN3rER7N0LMFk8/sMLnh038/p/X2GflOj+DgvNb2Lbf6ePsSlMuNLnqWYtoRJvRI10Pa753X7tIEviBc7h8JUsX3V8JAsGqCNQkUrLLsC69Xwb4pf3rJwbx+/+NMeptiUZffV7m5VLVw936hEuuVkmGloRGFEtidqL0NfAoHg0sHUmrIBpZ8o8Abe3TuSNDUL0/57LUHHM67jJcRN3vnvNA55uXWAbv+iOOix78cfYJv7N9k/rBDdOwCUwE2AONJELcVwbKotqtgIosJId/OCVoZt7aGvNw7Irea07TN/qzH4Wkf7ZXki4DW9yJah5blhsJLoX1gCCYlwbwgOJ5JMMpzWcyMrYkWdc2+aihW6I2KaAU0fTBX2PyL51/5/mqBjqIaotgk1dRuS+AUN7PVZ8AFcTLldrwqipwaocI8uye12cMTd+/kKxSLll2oWeuIhk83EtG2diKZ6umQ4tPPg7VMbyYCazydC5GlOgeeJ89cEkO/S3pzQHgyh9IKvvpkKKa8zq5NheGqFOaYzrU+vqcxJ2d145KdTUma5kuyZ7fwJ0LkoSzl+VJKiDPbm/I5Z6MVWqjTFqx9HAkYIY6x3ZYsiPMl+d4awcMz8DwxWplnzG/1CeYF3kxgwereweq6urLN8vPPEYwzilaAtyzI+iFeZojuDsmv9fHmBXq6xN59yK/Nf+7fynPyd31Y38N6isMf26F/O6f9+j42ywjTguxaj7wtcMDOfkkZxcTHS5abMcEUFruWcKTQhSU+mKOnc+zhAvOJ67WeQPncLv7xGD2aoXoSZIPhEq5v4p1OBBY0nYtmQL9H2QpRgYeeLMTJ4iRDLVPM1jrZZ58h+c6+4Ebbbaaf3KHznSPi79zHbK5x/KPXiMaG5MQwfDFA52tikOp7ZM9uMd8NGXzlvtw0WsD9nI7QxxbP9/CPWphOgnfuGiSlIbvZJ87W0bMEcyQP0IpcU8G2vLpksoLSrdAR0pBjpTgIj6JN4LHb6+b/1bVTvSo7YKUJZLKF1LbdA6mTGNWX2h9pJkEsE7ICk0mtMoiWuq5/ErH+XljvAmy3Db5H2Y1Jt2Kic5/5eZc3s1dQBpab8PraGr/ZuYkOSswsIDzxCCaK5ZaBrYxyc0EUFShl6cUphdEssgBPG/rJEl8bplnIdBmRziLUQUT4MCA6CznQHe63b2I9i7dQhBPYOjVYDV5miU9TWaznS0HMOL0M60TzbVlK5ub7dekMY7F5elHm1ZVzan/HJg1d6VWzsQqy1U6qajJqf4U4oromgryhqTj4AZj/Gl2CZPGq35Vadlmibz+U7NW5qoPLwmFVDrx3KKShfiwZcKWP8uw1/OGcop8weP2U5fWe3PeDLsWghX82c9NUmH4HmwRMboZsvXUgTON+TwJ6lmOGoxrdoro97FRgqkShnPuiAFzyMOhLMjZbUGz3MTs9vEWOWmSYbsLwU30G352Ix2UrluvWaQks0J0DSodGc8YnKIUNPNQyx3RaWF/L7qko8Kxl9so2edcjPnLEu/0TQdt0uyIq52mK7R7+RBbx6HDK/FZPNJgyWD63ThkKdJAz0WL/sKT6iQjcAGevhJgAxrcCooMO+mjI9KV1ZrseRUuRHBu81GC1YvJsCy+X7MhbKFr7lrXvzlGlZfbJHQngS5GXrB1hAh+GY4JeQrbhOsKlQ1CcDlFRuGpkKoWaLSn7bRbXEvxpWWcR/jQXfYJeG6O1QHiq5mHgsfnaGRhDttule6cQBcPpHDvoUiYevbcnjtQTkm22iQ6nrumlmXz+Gq0Hc/J+BHqAKgxlO8R4ivmzPVrv4xpj3kp7ooTLJrs11KtGDrgarlJUmt6rX66aVs4xpqp7NrfeVc3blLWGgvIDV2coV1tsz1tl82VJWWlRG1szBpVDKKwMcZ3rfVUWaG7VZ64ZHEW0bvu0gA2ZoASS9T4mFN0HZcHqnHQDikjTOlSoMgIiTCA9zKUn5ZPYlUemGopEFv3IQHtp8VJLMC+lrHIuTEWVFQInLSUDrLG+Vb08L6RppbQEFl1pldt6gaoCtVksL7jm2NJImaTKqrVHTZOvRlPd0DFBLzgBgTRWLysw1gs5F3ZjteVZ9XmeVxN3KpU/FUfCwKyc5N3irFriEjN9aSCM4sNjKdPNFgTvH2GVwva7qPkSVRhMFBC8f4g1hrg00jeYzEW7B+B06EgviqMvdBh92rD51Raq6kM4fLje2ZIG5HSOOTkTFc8sh3wmuwytIA5RRUK50cXEAf7ZDL3M8UZz1GSG2RqgsoL4rKTshOjxQpI2Y6SU2Uoo99aFIHd0KouuM/zObq5JDVrrGl+tPA2tjojZGcv4GU1rPyR8MJTz3m7JeQwD8u2uizkGb5qyvNYFK6bn4chw/nzM+nemQnUH9KCPOvtgPOATEbitr1j/TsrwlYjkxGADj/SV6xQtjfHFMKF7d4l3vmT6Uh9/IQSQzW/lLAceG185kA7xxoDkjrxfT5wuSZrhDWdiV9ROyAcxxhMonjo4djrJyAprLHY+x9Na0CVlSXSaUyae1K0WqTSVrBU88npXauq+CKZ7wwn5tTW8uTQa/H3ZEpbXN9GzlOTNA7fy9sl7IfHdETYMKG5tiX734RIT+Sw2A6K7Q8qNDv7xBGU69SKjN9elLnh44rS8G2SPS8SPy9Kpl40XatGnGnnSYFqyanCpC9l1A43RFESq/SqbsDQnum9KbOkJvtVzeuK+77a9gsOmUbuvkQ4VocQFduWQC5Ql1ssES2stQWMhCKxjEpZGFoEgqBvUgGSgIMYalXWcsfKeNF3VUiuavcPSqzAQQhVQOxE1oGJVhmpdVo01K6cip8NcY6Wz7PGlqOpcVkxMVmUSi3tNNdAxjYzsEQy8w59f+N4M9g4qqitpU5CAXl3j1PUqlunKFNhamC9QvQ7xiWSv6synfOWWBJwHRy6B8SWTnS3wxjOKW9v4d47Ez3VnU9Q4S4vKcsqbu8xvtcHC9msTencTsp0uXj/Be+eBmKp4WnZsraQm+4hHp6BgVBwJjroqD5YuKYgC1HQBJ2cQi66IDQOCecH0ekSn7ElzeZagTsdSCw89dBTK3yiNyGKUJcGDEbYdk+60ie+P8W4fSBO020YtM5J3T7n5nsK2IvK9Af75GHY2ydZbLLcj/LkhPpihhxOWL2yL5SHQ2k8pY0n4TOjDwbEs3q7080HjiQjcelmgLGx9fUa6IaYGOjckRxmd93NM6GFCjZ9m+POSYFoQPDjD9Fok95WcqChAjWdwPoVrm+R7A4KjiRBHtjcEwO/YmLq06NFEAkirJRfdd+LmFRXWiUEF+yOCkzOIIpafvIm3LAjunkjAOZ+RPr9F+MY9sUSbTPGPxL0iuJPW+r/pZkLrdEL2/BYqEzxz1vVI3s4o19t4c9ly6mlG2Y9Z+/UDaXzOM9Qixbs9pXjxGvPrAzpvHMs8kwRdlpjZom5yXaB521zSygvaG4JIqTUoKlZfjXFushMvKtk1m1q1Cp4vIkWPBKGGkFETdmeLHFs25E2LYrV9D3z5ciUG3XbBIi9QZSXG03DbyQvnSKIFZVHNoSxhmbqH2bpdRCE1dVgF5uozoggopWHosk2bZdKrrHRUtBEIogviZrFcoXpgtRjalSCY8sK6fv2IPdsjiJ1Vs7AO1B8W2Bt0/w+Uy23cD00Mu2pk/zoMVju4JHYCa3HtrYhTr6yRTHkuu6b5Ev87Q1ncglB0apzJAr2O9Ityd642+/j3Tx3+WqGWcm6tpyk3uhx/ocv4BXjhH45RaUl8vBQ88zsPZPHdXJNsuJrDxkDYmRoq2Vp7PpbMPC8giVHTBX5eCl47icA16Dk6QW1tEOznrO3D4rk1kvdHFJsdEYuaLfCPxsKmTmLB06cZtp1QtkMW1xKi01wSw9iRx5BSr5rMRK4CCPo9Of/zJeWNHmWgCAqDVYr8+rrcppEiOZQSW/LOMXaxxFMKu70hcORqEf2A8UQE7go6ZNsxXjfg9DNd1t5aEIyWqDTHUwrTCpl/YkN2kdZKtrnWJduICc8zODgRJEinxfnLfdoPlhTrbYL5UuRTT0fYnXWi/QkmCWTLlsSyagN4WmBDUYhJAnRRwqF0qG0UoZKY6P5ILlYSScYdhQTHcwn2s4U0cu4fS13OGOlG97u0vnsIQPDwHI5P8a/vwrM95j+wS/xwItoOkzlms0/wcCgOIuOZ7Dxe3CG6cwrG0vneSB4IJ3zD1gY6mGDG4wvBFljZT1Vb6Ip1aE2t4lcFkaaE5CMNzuq9urFVr7QvasjZpUZlA0PcZHHaYvV+rLnQTKt2CxXkzZhFHWR1EsuWtaJaV007p+cCyPeKRQhYt6CtMvhcgk+F5Kh2CakTe2oyId1nV6SaqtRjc+rafYWoqJuJdeYt0DHjdhpyLfzV/Iw7X5fRHNYIG1SrxyyE6pFr2KSw1zunZm28un4AOKJQ8/2eJ5m025XU5LcwABWiiqJ2Pzejc3GcXy5Rgz753hre6++gNtdEvuHgVKRNHYTOeko4CEksZSZXGzc3d8k2YqKTBUU3YrET0j4siYca73Ak3Ig4RsehXO9eBxOFgkrZbRPvC5VfOZkKO5vLot8KJSFRxaqB6FBcNvDQ1aLi+6hFSn5TmpHpwEff6KPTknLQQnVjcd/Jcil/WCuZfhSS90KiYY63FKx5ud0HpYSQ5IhRentTLNmyDDzN8oUt5ts+wcxiPUW2EeOlhjLWtG+PmXyiT/v+wvlSigtS7Uu7PoD5E055t1qhUrfidSLCiUe6FtIeLaTQP1swe2WN+DRDLwq8790VtwpjCEcperzA3tqjbAUcf66Nl1vCcUDy3pn8ARfs9OGZeO45vC/Wys2yuy2r+/qAshuj0hKOTqTGpzSq2xbqbuxDaYW+fT5G0YPToSwMQSCuH4DpOZcNt521kymq1cL2QqFDu8AZjlKKtQRVSGNS3z/COLF7u7fF/Eabk0/7RJ+8zvp3U7y5JzU556jNaCKQJ6iFk5QTi6+FhlyjqOnkAi5g8Kjof41EaBo6NN97mYUHj2TitQiWa4hWwfmy/kddG3cCUjX6RKu6HGGNpczGFzN+h34AVsgUh9PGMQzrf1fnJgpr4pA85PI3xAxCXzRgdu8nX2X4daMoTTHVOSvNilLvju8RjRMHr6zrzJ5XL0i1bGwl0fsYhmuTkl5DNJtQvyZ5qnEdHjGVaDBPKxamXSwEb5/nsLlWl0jsXHoLVI41cSSw1CAgv7aGP5yTf/4TBAfn6MMz7MZAzllp5L6PQmGzjieCOtlapxjEnH0y4fxHl6z9Up/Ow4LWQ4HLWl8LJNBxJ5jNMc9fwzsZs7jZFQLPOGO525YkyDWAbUWOiSO3Q1KYKMAkPsFCjAhMEkjWnma1sUOwP6TY7tN7d8rk+Q793xjJe1tSj9ajSe3CLvePFmVGV3I13YSyFcqOPnY9nHbblftyipdvooxlsRXgpZb4TK7bcj0kG0D3nQnzWz1aD5Z4J2KAoVoJdjrDpCne3g7W9zDREx64VeWGsUwJ7p4QJTuYQAsr8vYBdr1P551z0t0O4XvHEMcSvLICdXBK9uoNzp+NpPE0NBx/Abp3rdS18xzOx9gklnrUdC4Pu4M74XmYfhsb+lAYqb0tUycYY7F7GwJNynK5+EUpdbfAJ7+5gU77Yk00mWLOhqLxsciEBALimxmG2MVClMlaCSYMSO5PxZbph3dp72eUgw56OJLaaa+LPR3R9jXRWYIqDecvtNi4fy4XeX0NO5lhJxNsENTCUOXZsA461lqHozarjLEJ6K+CuZONbbIDKyq4IFEatmDwCHzsQiZY18rzlQh/lRW67zoMXBbryguVAl1ljFyWF811K72Qoqh3EVJmyS827Tyv/r/6vmrU+Gu3HqqPbSwg1eJWjepznLFAXctvliW0/3gESPW3XRZcSfE2j7UWdrpwzh7jRAPu3FeLq3tLpWneWExrxmQliXCpbwGsrrnbnVQa3mpzHapyhJOWtYvFajcDmH679nPMtzukawHeooWXF3ViBGA6LSmVrPXhXGC3i2e6jG/5qBJ4KPLN8cOJPHOlQY9nK4eelsgreEMh3LS/e4QNfEwvIfnGQ9EJcb0J3e9J4AQJqL0W6U6L5N5YstjFAv+Bobi+jj+ZyT2wuSbZ71qEv3QN434L72CIt0wpN3vSwyoNxd4aWT+k9fYJvuOEmH6bdLdD8uYB+Y0NgnsnMvdOS3RYtjexnubs1Zh4ZFAlFLGHPy/xMoM/Lxn9QI/WUS6ompOz2vpNVRKxUzkfenGJS9EYT0TgNnHjMHyReDSBpox9/HbLPSwIuuLVXaKjhWiRGEt5awerFfHIkBwu8aYpvXcDgeskkZyYdsuhFETn1maZbP86bdjZFJjPQnR5i36MDjzotigGEelaQOv+HFX62MDDPzyX7ERrggNpTNokQimFruBfhycrN53RuaMpO4JKmgqhpy8axGuvDzEt2ZapTkdsxpIIs7Yh58NalLGsvz4SwlC7LfCnOJKHsoKeFaV0osNQMiaQ2iQSsKy1F+jbkg03Hm5wGXBlSuCCg1ayxa5Fk/w6WFeLwSqwlzWeG89D+2oFdUvzOgBTZZ1NSJyxjqbOysi3ggUWq9LO5YWkyv7V46j9LlOtqd0lq+NTLtg71cJaSbA6D8pyAd3RrNtXqnqPGc0Gcf2+Go/trOgqAlPQqLs3z8Ultb56uDJULVvbEIeq+wYVOcvVsmUh9GTuSkHg1ZR9FcdYvxA504o8FYfCOswyzHAkzMj1AZNP9Om8P0NPl3ihjx9oSVhasXAenJ2X8jxXJkxRUcjs03sULU08tExuaDZ/wxCPSjCglgVqPK3vBxXHMOhJuWEyg0FXrMl8LbwH35OkZTZHDXpy23Rb6Kyg7PrYyCM6FdMCGwVyTqIQ7919KYemqahwbg0khpzPCA58kXZNIiEFKSX6RlmOXhb4vpbnzS1sqjDE9yVx80+nUg4FWYAGfYqdPkXLo/9eRrrmE8xKsq5HmWg63xsxe2GAl4vRAqdDuS8WUhu33bYkTpW6Y9m4/y6NJyJw62UOm6I5UG50heVmLOHhROQSt8WgM3k4pejF6Lv7mL1tio1ESifLku69EbYVoY+GIqrVSgRp4rbUNokkAwdUmskW7saWAOWzAnVwLOWO2Gd+s03e0vhLS94SwSST+KQbEa2FgOvnt3osNn02Xjsl2+6gc0NQiVrFzjV+OpMGaEWlznLstS1MHKDnOfObXaLTJeMX2wQzQycvpfQxW5A/s04wXBIejURU31rs7hbW15RJgF4W6KXoJWAt5WYPq8B77+GK3VaJUdW7ZHUhk7WFaWyp3csuEDaRDcrTmMxljrCCt+mqVNLYnlfNxgp6aJ1JgAsmNk1RuLpvpQ9izaUMunK7abA7VSNQNdAvTfU/uZncRIyUFurgSCMDN/KQAZRZTmUgcLHh6K3kT1XAxVHyyKje5xq29XHbclWjrlQZlYhcrWr15YUFp9kTaDImoawp69Y4dxq3qF4wm7iUYSvPq0tI9TVNkhVEcTaX5h7y3FGW4tgex9hem9nzA5KDlHt/qMf6W23a9+bEX38POm3pxSQRnIwxz17DOxqKxESn7ajkkLU1G98c0n6QgAadlmK4+/6BwPg6LQn6rViC9nwpmiq+6HrXCU9VumklgmgpDN75jHK9Qxn72ECjCosJ21it8M8X6KOh3Af9HlYrzNYAE/tSDjVGNEeyQmrhY8SYvC1CVWqR4QWeLB5AsdklOBiJM/0yEwcra+uMOd/tk25EhOMcVVhaByXLzRAvE7bu/FafcJgRHI4FnugUQHUkCot2ayD3ymyOXu/B5ElvThYlZv9QmFi9NtkgovX2iWyRnr+OdzRC5wUqLwgnC8Z/4CVUadGFxfM18e1TgSktBMmB6waLolckHfLpDLWxVrMo7dY63tmUxQubREdOO7so0NMUf56QHCwZP9ei+/4S72yMDgP80xlqPKW8vkl4npMOPHFzzkryXojfaQn+0xpUR/ROdLdDjRjIxeas6ITQDYmGKdlahFWQ7C/gZCi+kFoTfeMdyaSzHNVtU/YilBEY5PiFBF1AMDOYQBEfZ5x+MsZfQGvzeVrfO5HjgFXp41J2Bqx0uaHO1JRS4K+afJSlBNiqpuwyV5TGLNOLtOmKFNQsSeRFXQ7Rvlo5aFfH1Ai89fsvl0Dc1t+WZW0oXGX/Te3olSelQ1xUGPI4gkpvoixRa2uS3Uzn6HZCOZ5K8IYVQicMoFCrc1DVoB9HUHKYaZnvY7a3zV1AZaPWLC/Zx2fv1X2jvMa8qv+qyh4NXe2Vz6VFB9HqnBgjjcbtDTg5w97cRZ2cSwYL9S5N9boiwLSzKVlomoLqslzz8BceXoo8d+euIT+ZyH2zlGatN5oKkWX/CAuYWzvMt33W3ppRdiK8pcgapzsdlhs+cfcZom/dFbLMWk/6TpkYJ9gkouwn+FMxuraVsa+1ggRTSsohvghZ+WPBjefrLbxpCqXFJoFc5+oatRJM4GF8TXAyAa3xjkYsXtrm/IWQnV8VxIgNPPR0KaXRLKAYxOTdLq0759gkwjs6lx1Cp4U5FPie2VsnXY8Ihxnh+8egFNmtTYFNhpoi8cCKabj/zUNwOjC1eJan0dOl252mMFXSKP6A8URQ3pVSx8AMOPmoj+V3YWxyNa+nbXxc53Y1r6dr3LLWbj3uP56IwA2glHrNWvtDH/Vx/E6Pq3k9fePjOrereX18xgdTc67G1bgaV+NqPJHjKnBfjatxNa7GUzaepMD90x/1Afwujat5PX3j4zq3q3l9TMYTU+O+GlfjalyNq/FbG09Sxn01rsbVuBpX47cwPvLArZT6CaXUW0qpd5RSf/mjPp7f7lBK/a9KqSOl1BuN19aVUr+olHrbfV9r/N9fcXN9Syn1Rz6ao/43D6XUTaXUv1BKvamU+rZS6r90rz/Vc1NKxUqprymlftPN679xrz/V86qGUspTSn1TKfVz7t8fl3m9r5T6llLqN5RSr7nXPhZz+76GtfYj+0JYCO8CzwMh8JvAqx/lMX0fc/hR4PPAG43X/nvgL7uf/zLwN9zPr7o5RsBzbu7eRz2HD5jXHvB593MX+J47/qd6boiqR8f9HABfBX7P0z6vxvz+EvD3gZ/7uNyL7njfBzYvvfaxmNv38/VRZ9xfBN6x1r5nrc2AfwD8yY/4mH5bw1r7r4CzSy//SeDvuJ//DvCnGq//A2ttaq29DbyDnIMnblhr962133A/T4A3ges85XOzMpwYBIH7sjzl8wJQSt0A/hjwPzdefurn9SHj4zy3Dx0fdeC+Dtxr/Pu+e+1pHzvW2n2QAAg4k76nc75KqWeBH0Sy06d+bq6c8BvAEfCL1tqPxbyAvw3811z0Pvs4zAtkcf0FpdTXlVJ/wb32cZnbb3t81FoljwoQs/Ky/RiOp26+SqkO8H8Bf9FaO641rh/zq4957Ymcm7W2BD6nlBoA/0Qp9akP+fWnYl5KqT8OHFlrv66U+vJv5S2Pee2Jm1dj/D5r7UOl1Dbwi0qp737I7z5tc/ttj486474P3Gz8+wbw8CM6lt/JcaiU2gNw34/c60/VfJVSARK0/w9r7T92L38s5gZgrR0Bvwz8BE//vH4f8CeUUu8jJccfU0r9PZ7+eQFgrX3ovh8B/wQpfXws5vb9jI86cP868JJS6jmlVAj8OeBnPuJj+p0YPwP8lPv5p4B/1nj9zymlIqXUc8BLwNc+guP7Nw4lqfX/Arxprf1bjf96quemlNpymTZKqQT4ceC7POXzstb+FWvtDWvts8hz9P9Ya/88T/m8AJRSbaVUt/oZ+MPAG3wM5vZ9j4+6Owr8UQSx8C7wVz/q4/k+jv//BPaBHFnp/1NgA/gl4G33fb3x+3/VzfUt4Cc/6uP/kHn9fmR7+TrwG+7rjz7tcwM+A3zTzesN4K+515/qeV2a45dZoUqe+nkhqLPfdF/fruLEx2Fu3+/XFXPyalyNq3E1nrLxUZdKrsbVuBpX42r8NsdV4L4aV+NqXI2nbFwF7qtxNa7G1XjKxlXgvhpX42pcjadsXAXuq3E1rsbVeMrGVeC+GlfjalyNp2xcBe6rcTWuxtV4ysZV4L4aV+NqXI2nbPx/jWj+oh47EMMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import cv2 as cv\n", + "\n", + "# [variables]\n", + "# Declare the variables we are going to use\n", + " \n", + "ddepth = cv.CV_16S\n", + "kernel_size = 3\n", + "\n", + "src = data.coffee() \n", + "# Check if image is loaded fine\n", + "if src is None:\n", + " print ('Error opening image')\n", + "else:\n", + " # Remove noise by blurring with a Gaussian filter\n", + " src = cv.GaussianBlur(src, (3, 3), 0)\n", + " # Convert the image to grayscale\n", + " src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)\n", + " # Apply Laplace function\n", + " dst = cv.Laplacian(src_gray, ddepth, ksize=kernel_size)\n", + " # converting back to uint8\n", + " abs_dst = cv.convertScaleAbs(dst)\n", + " plt.imshow(abs_dst)\n", + " \n" + ] + }, + { + "cell_type": "markdown", + "id": "0596c844", + "metadata": {}, + "source": [ + "### Spectral Clustering\n", + "Another example of using the Laplacian operator is Spectral clustering that is carried out by applying some standard clustering method (such as k-means) on the eigenvectors of the Laplacian matrix, hence partitioning the graph nodes (or the data points) into subsets.\n", + "\n", + "Adopted from https://juanitorduz.github.io/spectral_clustering/\n", + "\n", + "This example uses unsupervised clustering algorithms and how they benefit from better representation. The creation of the dataset already know the circle (y) a datapoint belong to. However, the clustering models estimate the cluster membership from the data coordinates only (X), and we are using y only for colouring. Even metrics in unsupervised ML algorithms are not the accuracy measures, but cluster coherency measures and other distance based metrics." + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "id": "1fc95fdf", + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn import datasets\n", + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.cluster import KMeans, AgglomerativeClustering, SpectralClustering\n", + "import seaborn as sns\n", + "\n", + "n_samples = 1500\n", + "noisy_circles = datasets.make_circles(n_samples=n_samples, factor=0.5, noise=0.05)\n", + "X, y = noisy_circles\n", + "# normalize dataset for easier parameter selection\n", + "X = StandardScaler().fit_transform(X)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "id": "4e19e6cc", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n", + " warnings.warn(\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADZnUlEQVR4nOydZXRUVxeGnzM+E/dAIAkkQHB3d3cpLS2lRp0adaFGlX4tdaNCqVIqFC3u7gGCO4S4Z/x8P84QCAmUtikkMM9aLCZzfTLZ99x93v1uIaXEixcvXrxc/Wiu9Al48eLFi5fLgzfge/Hixcs1gjfge/Hixcs1gjfge/Hixcs1gjfge/Hixcs1gjfge/Hixcs1gjfge/Hixcs1gjfge6mwCCEOCyG6XYbjPC+EmHYJ51IohMgVQmQJIVYLIe4SQlzS35gQIlYIIYUQurI5ay9eSuIN+F68lB39pZR+QAzwGvA4MOXKnpIXL2fxBnwvVwVCiDFCiJVCiElCiEwhxCEhRO9zli8VQrwqhFgvhMgWQvwuhAj2LOskhDh+3v4OCyG6CSF6AU8B1wkh8oQQ2/7qXKSU2VLKmcB1wM1CiHqeffYVQmwRQuQIIY4JIZ4/Z7Plnv+zPMdpLYSIE0IsFkKkCyHShBDfCiEC/83n5OXaxhvwvVxNtAT2AKHAG8AUIYQ4Z/lo4FagMuAE3v2rHUop5wGvAD9KKX2llA0v9WSklOuB40B7z1v5nnMIBPoCdwshBnmWdfD8H+g5zhpAAK96zrc2UBV4/lKP78XL+XgDvperiSNSys+klC7ga6ASEHHO8m+klIlSynzgWWCEEEL7H5/TSSAYQEq5VEq5Q0rpllJuB74HOl5oQynlfinlAimlTUqZCvzvYut78fJXeCeIvFxNJJ95IaUs8Azufc9Zfuyc10cAPepp4L8kCsgAEEK0ROX26wEGwAhMv9CGQohw1FNIe8APNUDL/I/P18tVjHeE7+Vaouo5r6MBB5CGSrVYzizwjPrDzln3H1nKCiGaowL+Ss9b3wEzgapSygDgY1Ta5kLHeNXzfgMppT9w4znre/Hyt/EGfC/XEjcKIeoIISzAi8DPnvTPXsDkmVTVA8+gRt9nOA3E/g2Jpb8Qoh/wAzBNSrnDs8gPyJBSWoUQLYAbztksFXAD1c95zw/IQ03kRgGP/t0L9uLlXLwB38u1xDfAV6jUjwkYB0pVA9wDfA6cQI34z1XtnEm7pAshNl9k/38IIXJRqaOnUTn3W85Zfg/womed54CfziyQUhYAE4FVHh1/K+AFoAmQDcwGfvn7l+zFy1mEtwGKl2sBIcRS1Gj78yt9Ll68XCm8I3wvXrx4uUbwBnwvXrx4uUbwpnS8ePHi5RrBO8L34sWLl2uEcl14FRoaKmNjY6/0aXjx4sVLhWHTpk1pUsqw0paV64AfGxvLxo0br/RpePHixUuFQQhx5ELLvCkdL168eLlG8AZ8L168eLlG8AZ8L168eLlG8AZ8L168eLlG8AZ8L168eLlG8AZ8L168eLlG+NcBXwhRVQixRAixWwixUwjxQCnrCCHEu0KI/UKI7UKIJv/2uF68lFdOH0klaf1+XC7XlT4VL16KURYjfCfwiJSyNtAKuFcIUee8dXoDNTz/xgIflcFxvXgpd5w+kspjXV/g/lZPMvvThVf6dLx4Kca/DvhSylNSys2e17nAblSXn3MZCEyVirVAoBCi0r89thcv5Y2M5CxOHjwNwLGkE1f4bLx4KU6ZVtoKIWKBxsC68xZFUbyf6HHPe6dK2cdY1FMA0dHRZXl6Xrz859RsVp3737+NY3tO0vv2blf6dLx4KUaZBXwhhC8wA3hQSplz/uJSNinVplNK+SnwKUCzZs28Vp5eKhRarZYB9/S60qfhxUuplIlKx9MHdAbwrZSytDZsxyneQLoKcLIsju3FixcvXi6NslDpCGAKsFtK+b8LrDYTGO1R67QCsqWUJdI5Xrz8l6SfymTq8z/x89uzKCywXunT8eLlslMWKZ22wE3ADiHEVs97TwHRAFLKj4E5QB9gP1BA8cbOXrxcFpZ8v5JvXlT9yCNjw2g3uOV/cpy8rHy0Oi1mX9N/sn8vXv4p/zrgSylXUnqO/tx1JHDvvz2Wl2uTvZsOsnb2Jmq3iKd5r8alrmPNt+J0OPEN9L3gfiJiw2jWsxFCIwiuFFj0vt1qZ/qkmRzYdpihD/Wnbpta//hcd6xM4uURbxEYEcCzPz5MlZqV//G+vHgpa8q1H76Xa4v0Uxn89t5cdHotg8b1JSDEDykl74+bwu41ewkM8+fRr++jxXlB/9TBZF4e+Tanj6TxzI8P0ahTvVL3bzAa2Dh/KwCRseGsm7OFkY8N4vDOo3z13I8ABIQF/KuAn7hiFxnJWWQkZ7F/y2FvwPdSrvAGfC/lhpW/rOeH134DoHJcJN1Hd0IIgV+QGrX7BPqwb9OBEgE/cWUSezceBGDbsp0XDPi2QlvR61MHkvnjo2006liHmLrR1G5Zgz0bDlCnVc2/dc4LvllG4ordNO3REINJz9HdJ+hyQ1vyswup267kjUNKid3qwGg2/K3jXIyCnAJmvDOb7LQc+oztxoHNh/AJ8KH1gGaoKbZLI/lIKtLlplL1iDI7Ny/lC2/A91JuiKpRCZ1eh0aroVJcZNH7d066ichqYRTm2WjStQEADruDX9+dw8HtR6neIIa6bROw5lmpEn/her5W/Zvx6Jf3cnD7EZb/vIZK1SPQmw0EhPrxypynycnIo3LcpQe7E/tO8eaYD5BSknw4hQNbj5CdlkP1hjE07daAsKiQonVdLhfppzL58fXfWD59LeM+uIP2Qy8+h5CbkcvqmRuJjA2nYae6F1xv65KdTH3+J3Uch4tZnywA4PU/n6VJtwaXdC271+3jqV4v47A7eXn2kxe8aXqp2HgDvpdyQ7MeDflo0xto9Bqia50t1o5OqML9791ebN2D24/y2WPTAHCPbMuh7UfwC/Yhuk6VC+7fYNTT4+ZOTLrtQyrHRZKdlsvXz/5I7VY1uXXi9aSdzOD0kRRy0vOY+eF8qtSsRIfhrSnIKSSuYWyJ/fmF+BJbvyqHth/FJ9AH/xBfstNy8A3woX6Hs+4iO1Ym8fv7c1n163pa9m1CXmY+iat3s3nRNqITqjDgnp4U5ls5fTiVKjUrYTQbAfj9g3l8PeEn9AYdH2x4jWr1Y0q9rqBKAfiH+pGXmV9sbsJmdfzlZ36Go7uPk5ddAMCRxGPegH+V4g34Xi4LtkIbUoLJYix67+TB05zan0ydNrWKFC2x9apeaBfFCKsSQq0W8exZv59GXerR787u+Ab5Ur1B6UHxXLqOas+Mt2fhH+LHtqU7OZx4lLiGMbxyw2T8Q/1oO6g5875YDEDS+v2s+nU9j351L1kp2Sz6dgXXPzGYjiPa4B/sx7PTH2bF9LVsXZpI424NqFo7iqj4SFr3b1Z0vK1LdrD69w04HU4O7jhCbP2q5KTnsXDqMkBV5/78v1ms/GUd1z0+iNtfHUVmShYnD6YA4HZL3O4L1yCeOnCaeu1qU5hTwKGdxxjx6AAOJx5j1id/0qhT3UtSC7Xo3Zhhj/THaXPQekCzv1zfS8XEG/C9/Occ3nmUL5/5nhP7knli2jgqV4/gxzd/Z/+Ww2SlZNOidyNufmHk39pncGQgE2c/RXZqNlVrRf2tXHXjLvVp3KU+c6cs4vSRVPrf1YOje07gdrvJSskmMjYcIQRRNSuRfCgFKSX7tx7m13dmI6Vk+lsz6TiiDQBVa0Rxw1NDGTyuL6+NfpfVv23gzkmjix0vMiacln0ac3D7UYY/OoBuN3ZgwdSlLJy6jKoJlfEJ8GHdrE0AbJy/ldtfHcWWhYkkrd1Lk24NaNS5bqlPGFJKFk1bwc7VSThtDrYsTqRm8zhwS9bP3YJGqyEvO/+SAn5QRCB3vjn6L9fzUrHxBnwvFyUvO595UxYjhKD3bV2w+Fv+1vZZqdl8/MhUDu84SnyTaiSuTGL/lkN8N1EVZDfuUo/Th1P/0bkFhPih1Wmw2+ws/WE1v06eTd+x3el/d89L2r73bV3pfVtXAI7vPUlOai4BYX70v6cnrfo3w+xnZOkPq6ndqiZhUcG0GdgMo8VIQssaJfZl9jXx+Ff3kZ6cVWIeoPvojtRtm4B/iA/WfDv7txyi200dSGhRg6DIQEIrB/PIF/ewaf5WOo1sB0B0nSjyswtIPbaHkY8PKvX8D+04yhtj3kdKSbebOnLjM0NpO6QVuRm5+AT40LBz3WLzCHabg8zTWYRGBaPVai/62Ugpyc3MwzfQB43G2zbjasEb8K8RHHYH86YsJislm163dSWsSshfbwSsnLGOT8ZPBcA/1I/uN3X8W8c9nHiMTX9uA6C2qRbRtSuz6reNBEUEkJ2WS0KrGnQc3qbUbV0uFztX7cE/xJfYuiWN9LYs2sHE698muk4VtFotB7Yd4fMnv6PzDe3wDfC5pPOzFtr48pkf2DhvK2PfvImWfVSrBp+66sZ23WODSFy5m4c7TgCg313diU6ogtPhRKdXfz5ZqdlsmLuFvZsOcizpBGMn3Uz1+sXPt3JcBNnpuTw74DX2bznEmBevY9Qzw4qWd7m+HYW5haz4ZS16o47GXerz4aY3cDqcRESHlTjvVb+tZ+Wv6+g6qh0Lp60gtm4VrntsUNHyxl3qF1vf6XDy4QNfMPvThdw68Xquf3LIRT+Xnyb9zjfPT2fYI/0ZdH9v9EY9Pn/zZu+l/OEN+NcI25bu4t17PwdAaDXceE6wuRgB4f5F6ZLAsIBiy3Iz8/ji6e84tOMot792I/XaJpTYPqZuFeq1S+D0kTR8Aiy8f/+XnNh7ih5jOlEpLpwbnhxatG5BbiHZqTlEVlMplYVTlzPlqe+o1TyOOm1qMfDeXljzbXz66FRSj6VTvVEs2Wm57Fi+mxueGsL2Zbto2bcxh7YfpW7bWpc0Mj2edJJf3p4FwPKf1xQF/DPs2bCfo3tOEFWjEqFRwcz/cil/fPQnD31yJ33uUG6YU5+fzh8fzSc0Khi/YF82zN1SIuAD5GXkcXDbEQAO7zpebNmRXcdZ88cmctJyWG3eQOMu9QmpFFTqORfkFvDOXZ+SlZJNSOUg/rfsRWo1jytaLqWkMM+Kxc/MpgXbsRXaqNUsjnlfLAFg0XcrLhrwnQ4nv707F1uhnYPbj3BLrXGEVgnh+RmPElXj4q7mO1bsoiCnkKY9GhbdEL2UH7y/kWuEoPAAzD4mCvOt+Ab5sG7OZhZMXUbtVjUYdH/vCz7it+7XjLeWvYAQokRA37fpILM+VhLAlb+sKzXgB4UH0nZgc2Z/toig8IAij3h7oZ2Ow9sWrZeXnc/E699h47ytPPDRWPrd2Z3TR1OJaxjD2lmbWDtrE0HhAfgG+bDo2xUANO3RgJpNq1O5RiU6j2xL4uokpEsyceTb1G2XwIMfjcUv+MKVtwCV4iLoMLw162dvpnnPRsWWFeQU8NJ1/+P04VRGPD4Q/yBfti5JBCAzJatovayUbAByM/Ko1jCWum2Ka/l3rdnDng37ad67MY9+dS9J6/bR9cYOxdbJSM5k/ZzNAERWu7g0NO1EBtEJUWSlZFOreTyHE49g8TcT1zAWl9PFF09/x5zPFnHD00P4+rkfsRXauf31Udwz+RaWfL+SQff35tTBZHau3kvtljVKBHGdXseNzw7jx9d/IzgykLysAvKyCji47UipAb8gtxCTj5EN87fy3IDXcbvc3P/B7Qy4xNSal8uHN+BfI8Q1iuWdVS+zZ8N+pjz5LdUbxrJl0Q6W/bSapt0aXlQdU79dbUClWI4lnSSkUhB2q52czDxqt6rJoe1HqBwfecHthzzUj87Xt8PkY0Rv1HFi3ymGPdyfqHO2STuRwcZ5WwE1Sux3Z3e6j+6I0+5koyclZLQYsQSaiW9cjdOHUwiNCuaF3x8ntHIw1nwrBqOerNQc0k9lsnz6Ggbe15sG7Wtf9HPx8bfwxDf3U5hnxT/Yr/hCjSgqkDqSeIwXfn0Mv2BfslKy6XFzp6LVbnxuONUbxhDfKJY6bRLwP+cmk5WazXOD3iA7NYcOq5J49sdH6HZesAeIrRtNnTa12LN+P20GNb/oOQdHBhIcGUD7oa1wuVy8e+8U4htX4901E8lOzeWnN2cCcPJAMrZCOwDbl+/mgQ/vYMDdPXG73TzR82W2LNpB7VY1mLTkBQxGfbFj9B3bnd63d+Xg9iMkH0ohKDKIOucUku1YsQspIeN0Fit/Xsv+bYfpdF0b3C63OvY+rzdiecQb8K8hqjeIYdVv68lOy8XH3wxAw051CYlSqQOXy0XSuv0EhPlTpZSR3G/vzeXjh7+mYed6VKkRyexPF9Lvzu5oNIIPx31JtfrRxNSugn9I8cCp0WgIqRwMwOgJIwBY+8dGPnzwS9oMbM6QB/tStWZlbn/9RnYs30XPW7oAsPzntfzyzmwG3d+bJt0bkLR2H9/d8Asdhrem43VteH/cF8TUrsprfz6Dj7+FJ799gHWzNnFi30nqtE2gWt1Lk3jqDXr0wfoS71t8zTzz48PsWb+fBh3roNVp6VNKU5Pq9aNLTeGcuXaDSe3bYLxwdW1wZCCvzn2K/OzCv5xf8Q30ZdzHY5nz2SKWfLeC9kNbkXEqEyEEQZEBjHpmKPOmLCahRTwuh5uUo6mkHEkjNyOP8KqhSLeakAX1VCIvIPnUaDTEN6rGa/OfLfb+ujmbebb/awCMfvE61vyxCbvVztpZmxhwT09SjqbRom/Ti16DlyuDUL5m5ZNmzZrJjRs3XunTuKo4vPMY37/2K+HRIXQY2ppK1cOLDMfmfLaQt+/8hMDwAN5e/mKRD0xORi4FOQV89vi3LJ++BoCeYzox/6ultO7flDV/bEKr09JxRGs2zN3ChBmPFlWGnj6ayrKfVhMZEw5CEB4dSkKLeJ7s9XLRyH3qgfepVEoa45FOE9i+fBdCCL49+iFP9prIkZ3HMZgM1G5Vg8pxESyatoKv979H6LlqFKsdnUFXbtQl+7ceYv/mQzTuVr/UCdh/QkZyFtdXvRO3y01svao8/8t4ouLP+vbY7Q4MBj1Hdh1n4bTlxNatStdR7YuW79tykC2LEqnXLoGN87dyLOkEQx/uT0Lz+GLHObH/FIu+XUH1BjFF7qILpi7ljTEf4Bfky7BH+nNg22HSjmcQEOaH2+WmVot4hj/cH5OP1y30SiCE2CSlLLWYwjvCv8rJSM7ixL5TxDeuhtnXRGzdqjz5zbii5W63m7lTFnFk13F8ApQKIyslm4xTmVSpWZmUY2l88+J0Du84StshLdHqNNRrW5uazasTERtOvba1aD+0FYX5Nj4Y9wVul5vEVbuLAv7v789j+qSZaLQaGnasw+61+3h/w2u06t+MjX9uo+ctnQmKCMDtdrN5wXYAmnRvgEajYcSjA7AEmGnRqwmhlUO447UbmfXpAkwWI24JVWtXodP1bfn8ye8Y9dQQqiao6lyD6e/71GSmZDHzg/m43W46XteW6vXKrr1mfKNqxDeqVuw9u82B3Wq/ZDXR+fiH+NL7ti7M/nQh3W7qWCzY52blMffzxZw+koIABt7Xh6q1ipu41WhcnRqNq7N9+S6+eUFZRgdFBJYI+N++/DMLpi5Ho9XwwcbXiG9YjbaDW3J3Zj5ZKTl8+cz3BIT603ZIC+Z4mrb7BPhQmGe9pIB/Yn8yX0/4EZ1ey80vXldmN0QvpeMN+BUUu9WORqu5qBKiILeQl0a8ReLKJIaPH8DYN24qsc7+LYf43x0fA9Drti70HduNKrUqU8fjGHn6SCprZ24kKzWH5EMpVIqLoOOwNiQ0r0FC87N69PRTGexas4fM5CxanvM4fyZ1ZLIYcNid2K0O7IV2BtzTkxqNq/HDG78x6daPaDe4JROvfxuA5395lLaDWtCyb9Ni+2rZtyn129cmaeMBKlULZ8/6/XzqkYxa8600696Qfnf1+Eef5/o5W9i3+SDrZm9mw9ytvLl4wn8mQ0xPzuTNm99n36aDPPntAzQ7b7L4UtDpddwz+VZGPTOM5MMpfDtxBs17NaZm0+qsnbmJTQu2Fd1ALf4Wbp14Q6n7qVQ9griGsRzacbTU+gKXU+XkfQIs2PKV+ZzFz8yQB/oy/S01V5CdlkP1+jFodVr8Q/1o0acxQRGBl3QdG+ZtYcn3KwGo1y6h1JSZl7LDG/ArGMf3nWLX6iR+eE0pKB754p5S0yEAhbmFJK3bD6jAXhoBYQGEx4SRciQVp8PJvCnL6TiiNbqH+gMQ3yiWJt0bsvi7FdRtm8DmhdvZvGg7Wr2W/Ox8jBYDh3Yco+OI1jwxdVyJ/Q8a14ew6FAObjtCYJg/wx7uT40m1QHYs3E/a2aqlN256o/C3At3o7L4W2ji0Zjb8m2ER4eSk5aLw+rg40e+psOI1ph8TGi1GrS6ixcXnUt07Shy0nMBOLDtMPlZ+f9ZwD+SeIxNnmC8acH2fxTwQXkDWfzNTBz5DuknM1g/dzPvrHiZsJgQomtX4cCWw2Sn5RQ9+ZxBSsnWpYk4rE6adm/A6wufIz+roFTjuPZDW2ErsBHfuFrR7w0gP6eAnLQcOgxrRXyT6vS5oytNutXH7Gsqll77K2o2iyMg1B+dQUt84+p/vYGXf0WZBHwhxBdAPyBFSlnCdUkI0Qn4HTgTdX6RUr5YFse+lshMyeLp3hMJiw7l2J6THNtzkj3r918w4IdUDubJb8exffnuIiuA84mIDmXSogmcOniaD8ZNAeDIrhO4XC60Wi1mXzOPTLmb658YxJwvFhNSOZj4xtV4dsBrNOxUl52r9uB0OEk9ns7Dn95VYv8+/hbW/L6Blb+ux+xr4qu97xYtS2hRg+DIQPQmPa0HNCO8qgoUbYe2uKTPI7ZeNO+vf5VlP67mgwe+ZND9vTm5P5k3b/mAkMpBPPL5PUTEXFqKoHbLmlz/5BBW/76BJt0aEP4fphbiGlej66j2HNh2pJjnzj9Bq9MSGhVE+skMQiKDEELQsENd/nfbR1SOi6BG0+q06N2oaP3czDymvTyD3ybPwe1289jX99H9po4EnDfRfoZ2g1vSekCzItnuztV72L58F5XjIvjh9d8BCK4UhN6gp2qtqFL3cS6FBVbmTVmM0+6k161d0Gg0PPntOOIaxRIYFqBSXYW2izay8fLPKasR/lfA+8DUi6yzQkrZr4yOd01izbeRciydsOhQqtSsRGiVkFIfw8+lw7DWdBjW+qLrVKoeQaXqEdz77m1sXrSDln2bFtPlG4x6YutFc8//xuB68ya2LdkJqCeIgDB/0k9mEBBaesAA8A/zByA4Mgid4exXrnarmny2438IjfK8Pz9/fCkEhQfS/56etB3cksBwf356cyZHd5/g6O4TJK3fd8kBH6B1/2b/OgBfCgEhfjzxzbiim+q/wWQx8uR3D7J/88GiNJwQgsEP9OXr535k8Lje+J0jNz2ceIwjiUdxu1WqJj+r4C+PceYcC3ILmHj926QeSyehRTzthrZiw5zNNOp86c6asz5eUJSGK8y18u3EGUi35IVfHyOhVTxvjvmA3Wv38fjU+2nVT6XzMk5nkZuRR0ztCzuherk0yiTgSymXCyFiy2JfXi5MpWoRPDf9YfZsPEDH69oQnRB1wYCRk5GLxc9cLMfvsDuY/+USctJz6XlLl6JKzt3r9mIwGWjSrUGp/unZ6blsmLeFqPhK1G5Zg8Zd6/P8r4+Sn1lAtQbRpBxNo0GnOiW2O8OYF6+jabcGVKsfXULrfr6E85+g1WqLpIxNutZn0bQVhFQOotY/uIFcTv5tsD9DVFwkUXHF6yAG39+HHjd3wuJnLmYsF1O3CiFRQbQd1Jzo2lXoemP783fHsT0n2bf5IPXaJRBeNfTs+eq0BEUEknosHd8gX+56+2Ye+PD2EhXYFyM7NRuNRqNuOIIi3X76qQyO7jrBBk8txuaF22nVrymnj6TyVJ+JHEs6yWNf30fG6Sz0eh29bu+C2eJVAf1dykyW6Qn4sy6S0pkBHAdOAuOllDsvsJ+xwFiA6OjopkeOHCmT87uWWPTtCt658xPaDm7BAx+NLXJLXD93C0/3fQWAO968iYBgXzbM30ZhbiFbFu3g9YUTqN+uZLXsF09/x/ev/orZ18THm9+8aJFVecBus6PVav9WDv9awuVy4bA5MJUSMAvyCnmo3bMc3H6E9kNb8tz08cWWn9h/ijlTFrFp/jZ0Bh2vzHmqZMHaRVg/bwtzPltIeHQowx/pz9Kf1uByOOl7RzcQgk/GT2XvhgPcM/kWrAU2ktbt49uXZwDQ764ezPr4TwCe/uEhOl0gTXmtUx5kmZuBGCllnhCiD/AbUGouQkr5KfApKB3+ZTq/q4aCnAKWT1+DtcDGom9XMPLxwUVVtAGhfuiNemo1j8PHz8L/7vgEt9tNQot4dAYd62ZvolbzuBJVl3ZPIw2HzYnT4bzs1/R3uViBkxf1ZKG1lH4zdDlcRVYROWm5JZZHxVfi9KFUDmw9jBCC3PS8ooBfkFtI4sokKsdHllq4B9CiV2MadKiN3qhHq9Uy/OH+xZaPn3IPbrebjOQsRsfdh1+QD91u6oBOryO+USygCsIulkL0cmEuS8CXUuac83qOEOJDIUSolDLtchz/WmLBN8sQGkHluEiadK9P5fizE7q1msfz8h9P8Mqoyfzw+q8ktIpn1+q9xNStin+oH0u+X0mHoa2o2Syu2D6HPtSP8OhQohOiiPbmUa9q/IJ8efanh0lcnUTznsV7Bx/cfphvX55BlYTK9BnbjbqtaxVTV01/aybTXvyZyGphvLNyYgnzN5fTxb7NBwmpFESYJ1VUWGDlu4m/sH/zQW54ehj12yWg0WgwWYw07FSHrJQcfAN9uHfyrUgpqVKrMjqDjrqt/3mj+WuZyxLwhRCRwGkppRRCtAA0QPrlOHZFw+12M+PtWSz9cTXXPTaIDsNalVjn1MFkPn74a+w2J3e/fTPRCWeDsM6gZ9Vv64mICaPTdW1LFCH5BFjITs0hOzWHuu0SGPPiSNJPZvHGze+pnG1M6PmHI6xKCEMe6Fv2F+ulXFKvXW3qtSvpQbRixjqW/7wWgBd+e5w253XGSj+ZCUDK0XQKcgtLBPxZHy/g/XFTCI8JpeeYznQd1Z41f2zicOJR/EP8WPTNMqrVr4pvgA+5mfnkZeWTdjyd5r3VjUcIQcOOF+7tez5r/tjIkV3H6Tii9QWVbNcaZSXL/B7oBIQKIY4DEwA9gJTyY2AYcLcQwgkUAiNlefZ0uIKkn8zk00e/AWDG23/QYVgrjiad4Piek9TvWBu/QF+2Ld3Fao9+ffOCJsUCfrcb2+MTYEGr0xIYXnwyLflwCvs2H2T4owPYv/kQp/YlExDmR+Mu9anbtiZ+wb7/uPLTy9VPQssa6I16ImPDiKldUoI55IG+BEUEEN+4OlVrVi6x/MhuZQmdciSN3Mx8PnzwK5x2JxqNwK6zs/i7lcQ1iqX/3T05uO1wUQ1J0tq9tOjVuMT+Lsbhncd4YegkXE4XmcmZ3P32Lf/giq8+ykqlc/1fLH8fJdv08hcEhPnT69YuzP9yCZ1GtiXjVCZP9ZnI6cOp3PjsMDbM20KLPo2JaxhDbkYetVsVnwoxmo2EVA7iiR4vI91uXp79FE26qkKlbyfOYN6UxfgEWtQf1dbD/PDqbzw+9X7ST2Qw5cnviG8cy5AH+5XI43vx0rJPE77a+x4mi6FUdVVs3arc8tLZULBjxW5W/LKWRp3q0WZgc/rc0Y3CPCsuh5NtixOp2y6BuZ8vwuV00es2ZZjnE6gGHJXiI+l2Ywc0Wk2xautLxWg2YPE3k5uRh493EFOEt9K2nGEw6hn34e2Meek6giODOHXwNOknMrH4W9i0YBt7Nhxgz4YDTNn5NsGVgvANLPllPrkvGbtV2eKe2HuyKOBrtcpMTKfXcWTXcdbP3YJvoA/WAhsLvlnGsp9Ws+yn1TTu2oBa5+XxvXgBiorjLoUpT37LztV7mP3JQqYd/pD4RrE8/vV9ZKVms3b2JrYsSsTldAFnexQ37a5kwct+WsXCacsRQjDgnp44HU6yU3PwC/XD7XRjshgveuxK1SN4Y+FznDpwmsbd6l903WsJb8Avh+gNekIqKTvhynGRTPh5PPu2HMRgNpC0bj/dbupARGwYRnPJL31uVh5H95yg+82dqFQtnFb9mpK4KomQykGMemYYNZvFU71BNNlpuQSE+NGybxN8/C3UblmTuZ8vpnarGoRHl8zje7l2KMgpYP28rUTEhFK7Zc2/3uACxDeOZefqPSS0iMPsc/a7GhgWQK8xXehyfXsadqhNXnYhPcd0IiDUv2idM99tvVGP0WLgs8en8evkOXQf3ZEdK3Yx7oM7LmhJIaUkIzmLmDpVSpjWXet47ZHLmFOHTjP380WEVA6mzx1d0RtUaiQvOx+Xw1XsS/13SFq/j11r9pDQogbxTapfMOXy2/tz+WDcFwB0vbEDjTrX4a3bPiayWhiTlrxIxDnBXErJb+/NYe7nixnx2EBqt6yBf6gffkHesvZrme9e/YUvn/4eo9nABxteJ6bOP1Nm5ecUsH/zQaokRBESWXq7xgvx/au/sHXJTkKjgrn5+RHcWudBbIV2ImLCEBpBq/5NufedW0vd9vcP5vHhA1/S67bO3PvubddcevJiOvzyYRh+FfHnV0v5/tVfef/+KSSuSALUBNL9LZ7ktroPkbgq6W/vsyC3gIk3TOajh77ms8emoTdc+MFMuiVCCDQaDX5BPpzYlwxA8qFUslOzi62bnZ7LZ49N41DiUaa99DOV4yO9wd4L1jxlXuewOYtSg/8EH38LDTvV+9vBHlQv4c0Lt7Nw2nLcUnL3O2PoMaYjHYa3AilL9B4+lyU/rMTtdjPns0VkndOK0os3pVPmnPFu8Q20EBQZCCinyuOelm+71+4ttffrxdBotUU2w2Y/U7FS+fNp0bcxu9ftJT+rgMZd61GpWgR2m4OYhCrENy7+eOsX5MOAe3vy67tz6X1714vu18u1w4B7exEQ6kel6pHFHDIvJyMeHUhoVAh129TC7Zb88NqvnD6cxvgv72XMSyOLnpzPxeV0Ybc5GPJAP6x5Vjrf0O5vOXdeC3hTOmWMy+Vi15q9BIT4FRUppRxL4/PHp1GQU8jtr99IbN2quN1uCvOsJSx4HXZHqV/mo0nH2bPhAPXaJRTTFCeu3M28LxZTs1k8/e7qjkajITczD1uhnVBPW8GLnq/TRU56LgFh/uWmQ5SXaxtroY0Z/5tF6rE0Bt7Xm+zUHB7t+gIAHUe0IScth4iYMIaNH1BkqJadnsvkuz7lwNZDjPtoLNXqR7Nw2nKCIwLpckO7a+q7XR6sFa4ZtFptUdPvM4RXDeWp7x4s+tlhd/DZ49P486ul3PW/m+l1SxcK86x8Mn4qG+Zt4b73bivh2hidUIXohCpkns5i5ofzqFQ9kua9GjH7s4Us/GY5879aSsOOdYipWxW/IF/8LvEp+owhlhcv5YWdq/bw1bM/AOAb5MPoCSO4/bVRHE48xqmDp9m5eg+NOtdj6+LEooB/ZOcxTh5IJigyiG9f/pkWfZow5YlvAVU4eKYD27XOtXPbK0dknMzk18lzyM8uYOG05QAc23uS2Z8uIOVoGokrdvPqjZP55sXpnD6aykcPfcnkuz/l1KEUfntvLu/dN4VnB7zGwe1HqNFEpWnqtK5JoCeFdGT3cRZ9u4LU495iZi8Vj0rVwomsFoZGoyGuQSwGk4HrHhvE9U8NJuN0FiaLkeDIQOq0PqsgqlavKjWaVmfnqiR2LN9N2vEMfAN9lB4/wHwFr6Z84R3hXyZcLhdrZm7EYXPSsl9jRj45mAVfL6P3bV0BqBIfSddR7Vk/dwvZabks/k61fTNaDPwyeQ4AVWtVRqtXplcarQaNTsPA+3rTsHM9QioFERDiR352AS8MeZNje07SeWTbYk8WXrxUBCrHRfL2ipfJz8wnpm7VovfzswrodUtnajWPp3arGlj8zqZD/YL9GPJAX3Ys301hrpWElvEc2HqIZj0bMe/zRZzullrUhP1axhvw/2PW/rGRpdPXENcwlrlTFpFxKpN7Hbdy28QbGD1heFG+3uJv4eEpd+OyOVk3ZzNr/9hIaJUQajSuhn+IH/ZCO9UbxhLXMIZK1SKIrBZGbB31xxDXILboeGdy8gB5WfmX/Xq9eCkLQisHF5uDKsgr5JVRk0k+lELtljV4Z9XLJbapVi+aCTPGs+ib5fw0aSa1W9Rg9cwN7N1wgHlfLuXbox8R+A9l0VcL3oD/H+J2u/l4/FRO7DvFql/X07BTHYIiAorUMHqDHiklf3w8nzUzN+Ef7Evrgc1ZP28LsfWjGf38CBp0qMPHW97E5XQRGRuOtdBGy76N8Q8p/YvrH+LHhF8eY/eaPUWmU168VHSSD6VgtCgjQJ8gn6JJ2B0rdnF87yla9W9KUHggx3YfZ/XMDRzbc5KjO48z5qXr2LvhgGruPmsjXUa2K2EoeC3hzeH/h2g0mqI2bfXbJbBn/X62L9tVrO3e6SOpvHfvFDbO38rJA8lsX76LBV8vY9vSnWxbqnrEhFUJITI2nMzTWTw34HVGxd7Lmj8urF6q3y6BEY8OpFq96P/2Ar1cEOnOxZ0zEXf6aKR905U+nQrPulmbMPuYaNS5Ht09XbqO7TnBEz0n8r87Pi5Ke8Y1qU7ddgkIIWjQoTbRtaMY++ZN5KTn8tatH7F+7pYreRlXHG/A/4+55eWRfLptEv3u6QlAp+vaEFu/Kku+X8n4LhPYtGAbbQYpRU5Y1VBqNYsjrmEsvoEW6p3Xfero7uNsWbQDa76VLYt2XPZr8XJhpGM30rYSKT2FSo6dUPA1ONYiC+df2ZO7CqjVPJ4jO49j9jcTEB7I6pkb+eOjPzkjK5eeHr1RcZHc9Pxwxn14O73v6EqjrvUJrRzM0aQTaLSaomYtGclZfDtxBr+/P/dfFZdVNLw6/MtIYV4hBrMBJNwUdx9B4f74h/hx56SbEFoNgeH+BIQEUJBbgMPmLGHDkJedz2ePT2P/poOMnTT6b3mDe/nvkI49yIzrQBaA/wQ0llFI12lk1gPgSEQEvo0wdb/Sp1nh2bokkeeHvklhrpWuozqwaNpymvZsQLMejeg4ok0x//0Zb//BJ+O/oddtXbj7nTHsXr0Xk8VY1Oh9+qSZfPqYsiF/8ffHL0vz+suFV4dfTjD7npWHDbyvJ3M/W8TeTQcJfDOAx7++H1B5f6PZWEyBcAbfAB8e+vjOy3a+Xi4Rma2CPYBLSWGFNgKCpqj3pRVp3wL6Bghx8T670rEHhBmh86bjzicnPZf8LPU560063G43/sF+9LurRwm/nCU/rEJKybwpi7n5+RE06dag2PJgz81Bb9ARGH7tTOSWVQOUL4B+QMoFmpgLYDLQBygAxkgpN5fFscsbSev38c0L06nWIIaRTwwq1lDk2J6TLPp2OTG1q9Dz5s788NpvgGoIAapByTt3fkJ2ei4PfXInNZt6LYr/K6Q7G+ybQVcNoYv96/Ud+wGJ0JfSilnfFPxfBfdphGlw0dtC44N0ZiAzbgT3KfB7GeEz4sLHsC5CZt0HwgJBXyMMJf6UrmmadG/ATc8PpyC7gAF392T4w/0JrRJcqjnaiEcHMX3S73Qa2bYouJ9L5+vbElYlGLOf+W/ZR6SfzODwzmPUbBqHX3DF850qqxH+V6gGJ1MvsLw3qml5DaAl8JHn/6uO5T+vRaPVsHnBdqTbzS0vX49Orz7mn978nXlfLEYIwUeb3+DZnx5hx/JdtOqvJnZ3r93HpgXbAdi8cLs34P+HyLz3oGAqaGKRQe8hdNURonRXRWlbj8y8FZAQ9BnC2KbYciG0CMvQ0g/kTlXBXlMJHGtwp09H+D6CMJZsXSmdBwEXyFxwHQO8AR9g7pRF7Fixmx43d2L0cxe+YZ7BbnMQFR/Jq/OexjeweFC2W+0YTAY0Gg0NLiElKqVk9e8byE7NoVX/prwyajLbl+2i5y2dGT/lnn98TVeKsup4tVwIEXuRVQYCUz1tDdcKIQKFEJWklKfK4vjlifrtEtizYT/7Nh9EaARJ6/ZRr11tCvMKyc3IA5R00uxrIq5hbFFzEoCazeOo07om2Wm53vz8JSKlHVnwI7jTEObrELqSrfVKbuMEx0H1g/sk5LyINDRB+D1S+vquo4Ca2JPOIyUCfrF1HXuR+V+ANgLhcwfoG4DfBHClQsGHah3r3FIDvjD1QbrTQPiBse1fXse1wKlDp3l77CdIKclOy6FR57++Cf7w2q9888J0mvduxHM/PYLJxwSoJuvTJ/3B9U8OYvC4S+vRvGPFbp4f8iYAt2XcwIEthwE4tOPoP7ugK8zlyuFHAcfO+fm4570SAV8IMRYYCxAdXf7zmC6Xi5kfzufgtiP0uaMbrQc0J/VYOm6XmxN7T/FY95d44ddHady1PhGxYbQf2pKYOlWoHBdZYl9RcZHc9b8xuJxOElqWkjrwUhLbesh9CQCJAeF3LwBu20qwbwNdPDj3IgzNEMbWahup7H8xdAGhBdsicB3DbRoMtuUIQwOE4Rz7XX0zsNwCQo8wdbvo6UjrbLD+4tmuMcLUCfS1kLpYcLYH+zqEoXWp2wpdFFhuBncyCK8dAEBAqB+Nu9Rj86Idl+wye0bOvGn+dnIz89m78SDblu9k7meLyDydxfev/kbfsd0vSY+v1WrQaDRFc2tPff8gWxbvoM3AFv/quq4Ulyvgl+a7W6o8SEr5KfApKJXOf3lSZcHB7Uf48IEvadq9Ab9Ono3r3l4MuLcXOZm5JK5U3vdbliQSU6cKf3z0Jw6bA/0FGjJsXridJ3tNRErJhF/G07aCfqkuK9pQEL4g80BbCQDpPApZD6nJVGN/cKchHTuR2lg0ukoIjS/ScgM4k0CYwF0AlqGQ+ybYFyFFCITOQWiDkO4CyHkOHGvBcitCG1bqaUhnMshshL4eEh1oKoMuBnf+z+DYos7PchMi4A2EtnTLXulMRmaOAddh8H0S4ettvG3xs/DMjw+TcjytyCjtXArzrKyZuZHA8ACaeFoZXv/UYCJiwmjUuR5hVUJ4ddRkgiICiIgJpV67BKJrVyk12DvsDnIz8gmODGTdnM1kpWTTbkhLXpn7FFmpObQZ0Byzr4kWFbig8XIF/ONA1XN+rgKcvEzHLjN2rNhNYZ6Vpt0boNUptUVo5WDaDGrOvk2HSD2Wxv6th/hk6yQCwwJo3qsRToeLOq1qojfpCa4UyOnDqQSGB5S6/8yUbNwePXFmcnap63gpjtAnQPCPKrjrPaNydz7IHM8aVnCsUS+dI0BXSd0Q8t4C11EwjwTsCG0MUmMGTThgUiN/AJkPDk/hlGNb0XGlPRFpW4DQNwVdLDLjVnAfg4A3IeADkBlI50nIfQ5wgrEzOI+ArviTm3TsB+dBMLYAd4YK9gCuQ//Bp1Ux8Qv2veAE6dwpi/jooa/QaDS8vfIlgiIC+emNmeSk5TLwvl4ANOxcj+XT13B093E02n088NEdJfZjK7Qx+e7PWPTtCm6deD1TnvwOKSU5GXkMf7j/f3p9l5PLFfBnAvcJIX5ATdZml/f8fcqxNJb+uJoqNSrRZmBzti/fxaNdX8DtcvPYV/fRfXRHAIIiAhn3we28duN7pB5Lo1L1CLQ6LV1uaI/OoMMv2Jc2A5ojhGDirCc5uusEDTqXnp9vM6A5d/9vDE6nk44jSn/svxaR0gaAEBdoXK2rruSP7gykzEMYaiP9J4IjEbS1wLYUNFURuni1vvOwCqzGDmpSFQ3SugK0NUHsBcsoZME3SNdJhGU0BLwK9vUIU3+k8yjSeQIKZ4BMQ9o3gM+94PbkdJ3HIf8DwAGWuwCn5yLcYF+DLPwG6fcCGlNbpCtFTQa7k8HnDoTvePCfCM49CHPxSWBpW4d0bEUYuxRTCkn7RmTu+6Cvg/C9F6Hx8RwuC9w5V7280+lQTdCllLgcTnav3VtUlLhl8Q5qNYtn+CP9yUrJ5uju4zTqUo8aTUuqco7vPcmCqcsA2LhgGyYfI4V51lJTExWZspJlfg90AkKFEMeBCYAeQEr5MTAHJcncj5Jllvtn1d/fn8tPb85Eo9HwwcbXyM8uwO1So++8rLyi9QpyC8nNyOehz+/i8I6j1GxaHY1Gg8XPTK9buhTbZ0ydqsTUqUppSClxOV0MefDSJpOuFaQjCZn9OCAg4A2EvnhTbekuQOa+BNYFYOgNpCI1lRCWWxCWYbjzp4KhhfqnjVIbGRqD74OQ9y7gAENnEMGQPwGQUPiDR12ThsQM9hXgPo00doWMMaCLAfsqz766ACbwuV9to6sNhmbgOgWaEPB7GVwHAAsUfABowDYbTG3VXILbY2HtzkIIgbAML/kZuFKRWfeAzEU6EiHgJbDvAF08snAOOFarf6YuSOGDtM5Xx7f+jgx4A6GrBa7jYGhVdEO4Wuh9WxcsfmaCIwKp1642pw6mULdtAtmp2TTsqCZ4LX5mbnh6CI061yWmTjSxdUumhvas30/rAc04sS+ZFr2aMPzh/mSeVimdS0FKSU56Lr5BPmi1F6+1uJKUlUrn+r9YLoF7y+JYlwuLpxOV0WLAaDHSrGdDHvn8LvJzCul0fTsSVyXhG2jht/fncvpQKuExYdz++ij8Av++NtftdvP1cz/y23tzuWXi9Qy6r3dZX06FRdo3gXO3eu3YUiLg4zquRttoQBsAzmNgnYMUFtCNB/sWcGdB3vtIbS3QV0PoqiH1zUATplQ6uMG1AwytwL4ODB3AOsuzz/Cz6RXnQXCfABnu2TYddHGQ86CaZA2cAjlPgmM9mO+AvEkgfBHBXyCdp8HYS90EhPqOCF00BH6AdO5CmHpd+DNwZSitvxCgqYnMeQWsv4GuMfjcCIU/KjWQthoy6xEV/IUf6OuB4zAyZyLITPB5EOFX8aSEF8MvyJd+d56tYq4cF8Gbi57D7ZIYzWfz9GFRIXQcXlJdteyn1ezbcpDqDauxZeEOWg1oRsrRVBp3qUeL3hfum3s+M96exRdPf8/QB/tyy8Try22HLW+l7QUYfH9vqtaqTERsOFVrKqlfr1uVd/2czxby9p2fEBDmT6Mu9dj4p8rt1mubUJTq+TvkZOQxfdJMHHYnv78/l4H39vL2l/UgDC2QukYgBMJQvFpcOk8ibSvA5y6VHy/4EnCAsRNoI5CFM1Wg01QCn16QMx6pCYOQnxCGBkjzcBWcXQdBEwqOI+D7NDhOqFG6OwPQqDy/Ow1hbIfUhoNtBWijwX0anAdAV9PzFJAKzl1qwtZ9FLCBtKl1HHtBZoHbAeazD7jC1AlBp7PX5DqBdKaDfSHoaqAx9wfbQrAvVSuYIsC5R7127UUY2kLoYtD4qkIvbSg4UDcWbV3Q14ECz3yQdCBtq0BfD6EpfR7paqC0FqGlcSzpBK/cMBm3202PMZ2YOPtJnh34BgU5BZw+nMKLvz9xwW2TD6ewbPoaohOiaNWvKX98NB+HzcEvk+cwfHz/C7rZXmm8Af8CWPwtdBhWeh791KHTBIT6o9NpqVorCo1Gg0arIbhS4D86VkCIH6NfGMHv789j+PgBV3Wwl87TKvDpal7wOt2Fv0PBL2AZgsY8EBk8FdCBELjzvwfXIYR5OLLwZ0+Q10PA62Cbq3agjUNYRiJz3vHssVCN5PUNwLEV3DaELgDpczPkWUEbB9IH9LFg/RO0Qep/Yx8wtEJjuL3o3IS+FhID0r7KM1I3AQ7wnQDaEDB0BE0AOLaDoQ0If6S+NRR8B46NgAFEBG7XXoS+PsLQ8OxnY12g/HcM7TwBXuCWDpU+MvYC+1qVHtIEgbEXwjIMoS3et1j4PY40dlZPNoXfgzYEEfAO0nUSrPORBR+A+TpEwEv//pdZgUnasJ8Zb80krGoIp4+k4na6ebTbi3S7sQN/fr2UsOizaiy3211ixP7ru3P45Z3ZaLQaPtkyieufGsL3r/xC/7t74ucxaCuPeAP+P6BKzco06FSHtOMZrP5tPX3u7EbVmqobVW5WXqlpnbzsfBZ8tRSdUU/3mztiMp+dgBRCMPLxwQx7uH9RVe7ViHSeQGbeoiZM/V9DWIao9wvnI13HEaa+oPGHnFfUyDx3D25tFch+RuWrzddD7gS1DS4QoWDspwKsJgEst4IrGfRtkPaNQAHYV4PwAW010DUA823Igk+RjgMqj1/4vVL0aMLBNBS0VSFvokqhuNLQeOwNpPOkKvDCCuYbQFtdjfTzX1MXp6+DcKcjbbNBWwd00eo6tSEIoUXqaquAr62qVEPuQ8i8dyFkJkIXiZQSaV0GOM+KmDXhUDhHbSd8IHAaOLeBcwfCPLxYrYCUUs0BaMPA0BKZ/RjgAOsSCGivbk6uyWpl576z21kXI23LEcbuCNPZYi/pPKlujvp6V8XEr9PhVF3iPIF7/ZzNLP1pDbWaxzPkwT78/NYs3C43hXlWXvz9ceq2rUV+TgGfPDKVnauTuGfyrTQ9x4/Hx5PytfiZMFgM9LqlCz3HdC73g7WrN7qUMbZCe1FO8I+P5uMX7It/iC8OXxNGs4HkQyns33IIg9nAgx+NLbH9sh9X8+FDXwFKZtZpRMl84tUc7AE1yj4jO3QcwV3wu9LCuw6CbaVSlggfMLYB62wwDQLrStBVVbJLV7Ind54K6JRk0jZLec9oqkDBF4AWhBGsv4LRMxci80FTBeF7Pdg3Iws8DiDWBmAeAAXTwDQAjf9DuPO+BWMPsP4O5qFFgVTaVqqCKvdpdQznHvW/rjk4NysF0JmqWne6mlvQ1gAEMv9j8LkDDM3BsUvJN517QBOGLPwRKQtAE6W0+vrmIKLA52GEuSey8FdwLAfzYIShNsKoFF7SnYd0HEDKPLAngn0pUl9fKXW0oUj/l8G+HPTtkBk3AG7wfRzcqUXOndKdqybEZTbSvgaMc9TNSUpkzgtgX6LmCUKmXlghVQFY+tNqPnt0KvFNqlMpLoLRE0bQqHM9Zn38Jxqthlb9mpGXXcj62ZvoeUtnWvZRN9LEVUnMnbIIgNW/rS8W8Ic81JfYulWpFB9B5eoRAOU+2IM34F8SC6ct55PxU+l3Vw8s/mYad6lPTkYucz5TX4aQykEs+2kNNZtVJzw6jC2Ld9C4S/1i+zjzmCeEwC/o6lJKXAzpLlB6d2006BuC72PqZ41WTTzaVwEaNWGKGwqnga4u+DwHukgVvLM+B2wqqBs6K28a6QY8LRylzRMsW6kJXtdx9b7riEqFaKMRvqMRQofUVlcjfWcS6GsgzD3AMga0nspnUw/I+Fidi3UO+D2hJkB1lTw5fcB1WuXsAXyfQxifR+hrIKVD/W/PUtcGYGgNBTMRhrYIcy8w98KdP0PtS1tLafxdJ1Sgt80B9CACEL63InRVwfd+MA9XVg1CU/SZyuxHPFLP9aCvq54C7KuQxq4IQ100lsFgGYy7cD7oG6njCIHG//GzvxxhUjch20IwND3HydMN7jTPyxSQrtJLJysIC6YuJeVYOinH0mnYqS5Hdh2jQYc6fJE0Gb1Bh9FsZPRzwxn9XHGFVNWEKNoMaMa2Zbto1qNRsWW+AT50GF7xpNPegF8KToeTtOMZWAusRNWoxPyvlpCVks3uNXuKzM0emXI3C75ehsPuRLolGo1ASlj83QrWzNzAV3vfJTjyrEtfuyEteP3PZ9EZdDToUOdKXdplRUqJzH0FCn8C83CE/8sIn5uQjqOe3PuZAGMA0xDQxqs0gn2pGrXnz1ZyR20lEDoVpJ1J4HM7wjwAKc0gDIBFrW/oBP4vINwpSOsfgFGtb/sTfG5SQVNXCen/BhR8DDlPgcaCMJ2Vz2p0Ybh9H4T8r8EyEqHxQ0o3wtAS6f+auqHom4BjAwgTwtiiSBcvC36C3BfA0BMVuI3qGnUJoKt29oNxnwJHkqo1d6xV1g1SB6aB4DoJlutVsAdw5ymljzinMlRmgm2JmiPABhpPClEbDdqIos8e+3rIHq8+O59HwL4Ht3U0wv9ZhL6GMovznwiu24oVhAmhBf/nkfaVCENLhKakVXdFotOItiSu3ENCizhCooKpUkOJMM51si2NgBA/nvnpYWwFdnwDr45Bmjfgn4fT4eSjh75i1icLaDOwObH1qtJjdCcObjtCdO0qbFqwHY1WQ1SNyry5aAIZyVlUjosgLDqUY0knAFWMpTOojzb9ZAbppzKJaxRbwpP7akM6DyDzPgVNEMLnTtCYwbZYLbQtVgqRnAkqgOvqq0BkGgq6BDSWAUjnMaRjg1rffUwFcZmDCPoEWfAbFHzkWZYGjt2gjfUUUZ0AbbCa1NT6q8lMY0vceR9C4QaPHPKsKkXIE0jPCFzaNxUL+AAay1BltQBIVxoy+zlw7VM3LIuqupTGFoAGoTlnvsblKR63L4DAjxC6OMAAGnMxVYwwD0JigsIvPdudAMsdCK1fMSWStO9AZt6t5JiBH4GuGtK+HUQl8HtRpYcsdZTCSN9e3SwLfsTtPAyu/Wpkf0YpJAvApjx+pG110U1KaINA27TE71IY6iMM9Uu8X9FYP3cLv7w7m1FPDaHLTe0JCPG7ZBUPKMXPuevbbQ6ku7jksyLhDfjnkZ2Ww6yPF+B2uzm6+wQ+AWZcDhe3vnI93W7qQLMeDTH7W6jfLoEN87ZQkFdIZPUIbn35ejKSs+g4vA3VGkTjH+xH+skMnuj1MocTj3Hfu7cy8CrX10vrApU7B2UcZu4Jfs8jbQsRxq5I+2oVyN3H1OSlc6uSUBo9OWXHAZV3dx0CfQvQxCIsoxC6WKQzSSlg3JkghUppGAeoPDOAtrUa4TuScBfORWPurdwqTT1BE4kQprMnqm8IlpvAeRhhUq0npTtHeeoIPWj8z1olO3YpiSR4JjdVIY7QlJTdCctwJAJ0VRHGDhdsdiJ0VRB+tyP18Ujbn6Bvj8bcueTn6dgBMgUkSGeimmuw/gKmfqpQzNAMjJ0R2JA5zyoTOBsqPebcqSqQTf1AE6E0+abrwF2AMJz1gpHSXZQquhpZ+uMq9m8+xP7Nh2jasyGhlc6qmqz5VvJzCot1yroQ25ftZNfavaz8dT15mfk8PvV+aldAg0NvwD+PoIhAbn99FPO/XEzTHg2xFdj4/lUVxKrVj6GFZ0Jn5+o9PN33VaSU5KbnMezh/gRHBtLpurOTsRnJWRxOVCahhxKPlTzYVYbQ1UFiUBpwnfLyF+YeKk8OoAlEWueqEb5zm5IYOqsiNB5nSPtilX4R/qCJBEMbZP4XSH09NelpnQfm0ZD3ilpfFoKuqbImMPaE3OfV+66jSGMbNarWlewpIDT+CP9ni36WzlPIrHvVTci2UKVWAp5TNwl9bXUjce5DGNv/xfXHIvzHX/oHJq1Q+CvYViMNCYhz0z6AMLZFOjyDBEMryP/cs8AfXHvVddvWI22/g8896mnK2B3wUzdH6VBpH31TyLpVTTgbuiO1USDtKgWVPwXpMwaNz83qlGQh2DeBtsolNYYp7zTr0ZClP6yiZb+mRFYLL3o/MyWLiSPfYdfqPTwxbdwFJdigFHYvj3ybmDpV2bN+PwDbliV6A/7VgEajYfgjAxj+yAAAfn1vDgABYf4EhJyjrz2nF/CF+gJXbxjD/e/fxqHEo/S+7eK2uuWFM6qUf4IwdYDQeSCMpbtK6qorGaU7DVw2j1yyMhI9AhCmrkjbMhW07GtUnl1fD3J+QITMRgQ8o85R+zrSvg5haAX6WiCd4NihRtdITzXr38g7uw4ppZDQoKSMP4PvXaCLVtcR9CFIx9kbUxkhnYc8k9VapOOIqgAuXIAs+AJMPRGW0WgCJxet7/YdD4XzwLlfFYwhwPKAsoqQIMKWIa1LVLWwXfnCoI1RI/8zFg7kQ85EpKYK2GYoxVPe+0jzMFW4lfc55L8Hmkhk8LdozswlVFC63NCeJt0bYPG3FOuMdWJfcpGN8ro5WwiPDiWhRekBXG/QUal6JPnZBSS0rIHT5qBRx3oU5BRw6nAKVWpUwuiRWR/edYyC7EKqNYwm+WAKlaqFF/nxlwe8Af88pJTM+WwhiauS6DG6E/3u7E5svWhCKgURWS2chdOWk5uRS9dRHXjpjyfITM6i3dCWJK7czedPfUdcgxhumXg9vgHKU2PAPRcumS9vuAt+g/z3kebrED63/a1Hfek8hiyYBppghOWm0tfJn6Ikhrom6oapi1dKGusvSFNv0DdDhC1A2jdD5mjPRlbQ1QHN2Udx5Vd/znyIMOCWKCtkYQbLbRfsXlUq+vqqmlY61CSpuS9ozzZSEUKn5hvKHPtZTx6zGmDIgi+VosaxSaWjPJbPAJozKp/sF1TA19VV6TH7WhABIEZB3hse11CjcvyU+WBfqeZKsIOuFuS9Dob2KrVlXwXmYeDORjq2gisN0KjPwrFNSWL/AulxJxXnnGt5IjCsZFVxXMNYhj7Uj6S1+8g4mcEDbZ/htXnP0Lhr8XkLt9vNpj+30+3Gdmj1Opp0r8eib1cx86N55GUWsOaPjQwfP4Cxb9zE3s0HGd9xAghoP7Qlf369jF63duHBT8aWG3+dazbgOx1OhBBFNsdnOHUwhXfu+hSAvKx8GnetT902NdFoNGxeuIPXR78HgMslGfZQv6LtVvyyjp0rk9i5Mol2Q1rRuEsFbE+X/5mSTOb9D8yDldf8RZDuLDXa1NVEWmd6lDcoqwFTyZw0uNX6mMHYTClo3CngzkemdgZdHUTgewhdLaSxLzi3g7GvCraOjUhN9wvfhGwLwTYTAGHuB8Re8mULjR/C/8Jl9P8VQt8IiR6EP0LrcfI09VASS9OgYje5YmiilNzTlaM6aQHgVvJRy2jI/wJ8x6vmK879SMc2pRLSN1RPVaYRSmbpKlApMvNIZNZd6vdhuk7dABw7lAfRXyBdmcish8CxFhnwGhrzoH/9uVwOzL4m7nrrZuZ/uZhJtykxQObpkpbkG+dvZcLgNwBo0bsxAaF+zP1sEaFRwezbrDyW1s/dzB2v30j6iQwK85Wyb8viRABW/bqeu98eg8WvfDS0uSYD/v6th/jf7R9jtBh45PO7qVLz7GguMNyPJt0asHnhduq1S2D3un1MuuUDAsP9GTZ+ABqtBrfLjY9/8V9go051mfXxAmo2q0507b9us1cusVwHuW+AZRRoAovelu4sZP5nym7X53aELgYpncjsZ8E2X6VgjH0BASIAKQLBugipiURoIwCHCmqWW5GaGFX1mfeqGlnrGnnSDXZwn0I61iEM7cE0DPKS1GhU3wBpX40I+koVZZWCMLZFWn9VQa2UvP2VRko3svAPcKcgzIMQ2jCEqSOEzgKMRa0ZhWW0Z6I5+ILFTsLYDOnYqGoZLEPB3QFhbK9Scb4PqLoCTaD6WRcDuurI9FEg08DvNZW+cmwEEQL+cxAUIJ0HzpwpFP4O2KDga9zG7lDwtfIystyCOH8Q4DqhzNpAyUArSMA/Q+sBzbnt1Wz0Bj2tByiFVEZyFge2HSa+caxSSHlwuyV2u4v0k5mkncig39hu5OUU0um6NgghaNytPne+dTO5mblE14pi/dwttBnQvNwEewBxofxzeaBZs2Zy48aNZb7fGe/M4uOHvwZg/Bf30HNM8dFoXmYeqScyiE6IYvqkmUx56jsAnv7hIYIjAsnLzqdZz0bFcoKgGpiYfYzlKmf3d5BSKhWMJqCYwkQWzkNmP6AqUF0nwDwUYR6MTOuqgrU2Shl1+dyD0Poh897yyADXgCYWDPVB2lUBUeFXah+m3soS2DQAsCtPd20QWGcqLxlDV8h7QZ2AoQ3Y1yCCvkEYL9wFTLqzQZiLa9bLCdK2DpnpSXX5PIjmX7pWSmeKur9qwy+8jjtPzWU4NnuqbQHzXeDcqAK+pjIidCZC44+0/oksnK98elz7lSWF+Xo1QVzwidrWfyKa8+ybpbQh8z4D+waE7z1FKqaKisvpYsLgN8jNyMNgMhARG0ajznXZv+UwIZUC6X1HN9b8voG9mw7Sc0xn4htX++udXmaEEJuklM1KW3ZNjvAbdKxDtfrRmHyM1Gldq8Ry3yBffIOUvrpR1/pUq1eVgPAAajWPo1I1VdiSlZqDw+go8tSw5luxFdgIDCufLnmXghBC6dnPR1cdtPU8NghHIHcPUjrANBKciWoU5NiD0MciXZnKRlgTBNhAX1VNgupqKOtim6pOxl4JEfAa0joLoQmGoPch42bPsnXg+4Snj6wRtDURllsvGuyB8u0AKfwAA2BXNs7/dne6Cwd6AHfhTMh5SckyTf3A5wnlGWTqBAUZStZpHlwkLxWmHqBvjCz8Bax/gKGlJ59/wnPe2hIqIuk8hMx7XxWGBU66YPvHioTD7uTQjqNUjotk6xKVlmnWoyF3vaW+m7vX7uW9e6dgtzkqZKvDazLg12hcnffXv4oQ4i+LMBKax/PBxtfRaDVFEy+bFmzjxWFvUal6BM/9PJ7AcH9ev+k9Vs/cwP3v31ahJmovBaGvCUEfIgt/hPz3wdQH8j9Urpc+49Xjvs+9CI1FFVdpApUlsaEHuD15Ued+Zdqlb6mqVPW1kYW/Q94rqges5UZVHGXoDOa+aAw1wfDklbzsMkUY6kDwd+qJyNj2rzf4t1jnK/8hXJB1u5ogN3RA6BtCQEPApSajzz1HbRj4jAVdLZXiKZiivIvMgzy/x+LqLWldpG4OAIamRRPPFRmTxcg974xh+Yy1tBnYnLQTGVRvEFO0/MSBZArzrQBsXZJIdlouNZpU44tnvkej0TD2jRupVD3ySp3+X1JWHa96AZNRtfKfSylfO295J+B34Eyjzl+klC+WxbH/KQZjycf+U4dO88vbszD7mek2ugOrfl1PcEQQ3UZ3KDbLnrgqiYLcQg5sO8yhHUeJrhPF6pmqQnTLoh1XXcAHELoI8L0XLCNUQw7bSpR9gAZhaHTW5ldXDdAqkzThr/xajD2VsVjeu6q3q6GZ0pT7jvPs3F8pQhxbAC0i4Ip+Nf4ziimL/iOkY7e66Ro6KotmV4ZS6ji2KYsH50GEPg7pTMXtPADOA6ovsCZIyWN1sWqyV3YAXYwK/HlvqX3raiAMZ6tyhb4+Uvio35+ulprEt28GXXyFdthM2nCAxd+uBGDi7CeJPqd5eotejbnx2aFkns5m/dyt/PTmTK5/cjCnDijL9C2LE6/ugC9UsvcDoDuqWfkGIcRMKeWu81ZdIaXsV2IH5YiVM9by2/vzAMhKyWbuFGULkH4qg2EP9y/qdB8RE0b99rWJrB5O3bY18Qv2ZeybN7F54Xb6ju1+wf1XdITQgjYSoY3EHfyz0nrnvoM0tkHmT0VYhqIxdsRt6qtsebVhKgXk9wRCG47U+IDzBBTMUxOGxg6quEcEquYc1j/A2Bo0wUjrUjWX4KkKldIF0lbhfV3+S6R0I3MmKIsFTTSEzFKB3rVPpeXcErQhuAsXQMFUZeFsnYOUTjDfCLZfkYbOnqIzM5i6gbMu0r5eqbcMxSfMhbElhMwFoUdoQ3DnvAQF3yhPpJDvy3eK7SKccb8MDA+gkuc1qHSORqvh5hdGsnrmBmZ/qiqwrflWrAU2jizfVe57UZfFCL8FsF9KeRDA06h8IHB+wC/3xNaNRqfXYfIx4rSr5tMGk4GtixOp374O9dvXZu+mA/zv9o8JrhRI0x4NizS+5xZr/RXbl+0kPTmLVn2bYvYt/xO80roA6UhCmPsidNVxu62qxN++TqlECr4E3Ej3aYSxIxrLMKQuFlk4C2EephqDuNMQZk8nTFNvFcx1VUGfcPZAmgBw7TtrQoZOpUF0sUoR5NgCARMRxr/fVezaQKjRNih7CI0RYeqA29AK4TwA2nCEJhBZOB0c69Q/Q2tw7FSdutwZYJ0BPreD3lMprauE9HkA8t6H/M+Q2iiE7qzeXujOGc26Tnn+PwZuazH/oopEz1s6E1OnCgFhAUTFq+tbN3sTzw18AwS8MudpWvZtwnWPD+TA1iM47E5OHTgNwL7NB6/kqf8lZRHwo4BzfQOOA6VN1bcWQmwDTgLjpZQ7S9uZEGIsMBYgOvryPhY2792Yu/53M4u+XUHKsXTGvnkTG+ZuISslh/DoEH54/TeW/LCSkU8MIuN0FrZ829+uTN2z8QCPdX8Jl9PF2EmjGf5w///wiv490nkAmTUOcCHdqSrdUjDNU40Z4snVd1SeNoZ2RdsJQzOkFEjbctVwu/BL8JuAxucGMJSsUZDOZGTmbcoJ0nRGCeIEd67K/dvmq/Wsy7wB/wIIIcB/grox6usX+QdpNAYw1D67oqG1ciTVNwd9B9SNwle1ZjT1RBZMQ+oSEOaeCE2gKpZz7VZNaGxLELobSj++z31IXU2EobFKAVZQNBpNMTFHbkYe6+dswe12A5BxKhOtVsvAe3uzcsZa3G43rfo1xZpvo1479Tm73W4yk7M4sus4O5bvovWA5tRsduXlwmUR8EuLdudrPTcDMVLKPCFEH+A3oNQ6Zinlp8CnoGSZZXB+f4u+Y7tRq0U8YVVDCIkMokWfJvgH+2IvtDPlyW8JjQpmz/r9bF++mzYDm5FyLI2I6EtXJzhtDtwud9Hr8o+Pp+lIsgrw4GkCgpqANDRCmAeq5iS6aKQrQ6VmhK+SWNrXeKpfx4BtOVJfS+WVTe2LG5rhVFW1oEaGfk+oVI+xtcpBm/qDfTPCWNzZ0stZpHQrOayhLUIbUvo67iyV5jF0UK0OTe2Quelg3wB+T0H2/YBUPkYyA+F7N8LQCmnfrVxA7WuQ+toIQ2OkbRXSdQqMHdFowxCGOmpy+tzj2TcjrYuUzbKpw3//IfwHJK5KYuOf22jWoyGR1cJpM6g5AGFVQhj8QF9shTYCwwMxmPW0GdAcl9PFD6//xtfP/UjjbvXZt+kgu9bu5fU/n7vCV1I2Af84cG79dRXUKL4IKWXOOa/nCCE+FEKESinTyuD4ZYpOryOheXzRzzGeCRu71U7PWzqTciSVzYt2AJCdlsuJvacIiggsocm/EHXbJvDcz4+QfjKzmNFaecSdPxUKfgDf+xGaEDAoWaSwXKeUNbpqyt3SuQe0MQhhwF04A/LeVBO1eKpihQ849oD5BmTGaMAB7ucQPjcWHUvoqkDQpyp1ZOpy1g8elG1AwCTAUS419uUFWfC9SoXpGkDQxyWLpACchzyNVgBtZYS5O8L/MaR0IK1/em7uKarPgOs0UjrV05phkwr4uJHSDvZdyMw7ACcYOuM291MN188/p9zXwbEFWfg96BcjtIH/5UfwnxBdOwqNVrBt2S4GjetTJMU+g9FspOsoZazndDj57pVfWPztCqSUbF+6i1ot4omIubiM9nJRFgF/A1BDCFENJdodCRR75hNCRAKnpZRSCKGMxCG9xJ6uIFuX7mTRN8uo374OPcZ0KrHcYDLwwEd3kJmSzbzPF7H8l3VExIbxeI+XuOedWxg8rs8lH6vd4PJfnCJd2UqdIQsh70MIW3i2/Z0zBfQtEKa2yNy3lP+LvhUy8H21saE1oPOkCIYADuWRrw1C4nmqkXkljimMLS9YuKPSZt5gf1Gcnmkz53ZwpZRujaGrCeZRYF+PMHqsoe3blGmdbYFyDDUNUSor5wH1+xUmVVhn6Ao4wZUOOh+KHuSFH1gX4rYtQfjcgdCfkz7SVVcpJl1NVVNRAYmKr8TkVS9jLbATXvXidiM56bl89/IvtB3cHIPZQLcbO+AbZCE4MvhfGROWFf864EspnUKI+4D5KFnmF1LKnUKIuzzLPwaGAXcLIZxAITBSXsES37zsfMy+JjYv2M6amRtp0acxMz/8kw3ztjD/q6U06FSHoIgA1s/Zgm+gT5Ghkt6gx+xrQmg1NOlSj+3LdgOQmZpN4qokqiZEFXfUrCBI23rVhcnY+azPu8ZPecbnf6E6P3kqb2Xee5D/ARg6qfaFDtUBDMcmsC5Urf/cVrC0g9xXVGrH7wmEqTNgQAT8D+lOQ5jKtWCrQiLMw5WaSV8b9DVLX0fjgwiYcLZXrzNZjdRlofLvOdN4xjYPzLeAc69qsFIwVT3h2deDsRXC0AcZ+LGyZHblgH0uAFJbtVjAF76PqboNbY0ydxu9nPiH+ON/Tpbs8M5jpBxNpUGnupjMRhJX7mb1zI006lKPW14ZyfwvlnDLy9ej0Wl4fvCbALz8x5O07NvkAke4PJSJDl9KOQeYc957H5/z+n3g/bI41r9l4bTlvHffFDqOaM2h7UdIWr+fFTPWMurZYWyYt4WGneviH+LLgqnLmHz3Z2g0GiYteZ767dWXePOf25k64ScAOo1sQ3hMKMkHTvNQ+2dpO7A5z/z0cIVqRi4dScjMWwAH+D6E8L3bs8AKpsGqUKrwT9yFv6MxDwTrn4BUkkxjNzDfpJqGCD/lymhfC9oqoIlAhPyqpJT6c6ZrzP0qcnvUco2qh2h0aesWjTQl4FKFU9af1M/a6hA8G7LuUqkd5x6QuSrPb7nDY4cBGlNH3G4XiG2guwecW0AUbyaiOmpdvI9ARePkgWTGd55Adlout782ihGPDuSjh79m78YDzPlsId8c/IAR4wcihGD+V0uKtsvNLPlUe7mpOJGpjFj123oKcgqY+/kirn9yMEnr91O/Qx163tKZOm1qEREThsXPgq3QDqjZdsc5k6uV4yLxDbBQmG8jKr4SleIi+OG13wDYtmwX1gIbvgEV6GOVTsDtee1QuVx3LuS8rKxztVXAuQNsPyMNrcHUHWxuFRRcmWBpAbn7gALQe0rNXSmgq4bQRV2pq/JyiQhdJQj6BOnYD459IFNVrYU+GqkJ9DhoDlI3eFNvhM9N4EpFOvcitdXA9rNyKtXWANyQ9wbS1LX4HEwF5uCOo2xdtIN67RKKVDb52QXkpKvgnXk6GyEE1epFs3fjAeIaxWIw64tuqA0712HwA33Q6XW06HPlrRgqUGQqGzqPbMvejQfoOKINQx7sS8u+TYlOiMLsY6Jmk+pF6/W4uRN6g46QykHUa39WK16jaXU+2Pg6dquD2LrqSx1aOYTVv6+nWc9Gf9kY+XIi3XnIgu/UKNtyfamTeMJQDwI/QrpOgKEdMvMB5bVuaKHy7GcCvrEDaPyVZNKVDcIO9tUI35HIgFeVoyJGMA1FmLp7g30FQhiaIQzNcOtqqApq6UTaDyICJ4FjO1JbW1VKY0M6kyHzJmWr4TteqYJAFXcZWqEknuXnb+Df4Ha7ee+ez0hclURUfCTvrnuVpLX7CAwP4Mlp4zi29yRdRynl0R1v3kSn69uSfiKDV0e9S/fRnWg7sDmrftnAr5NV8qNeuwTaDGh+JS/p2gv4HYa1pu2gFiQfSWXj/G0kH05h/ZxNDH6gb7FGCX5BvoRVDeXNWz6gUed6jHlhBFsWJ1KtfjQNOtYtts+m3RvQtHs5bFBuWwp5kwCQmqBiqphzEaZOyMIlKh/r2KRMtqQbjO1UWsfndtWGL+N2MF8H1m8BCaZBymlRugGHkmD6PlyiKTiAdKWpQi1dzeIpHi/lB/s6sC9XzV/sm5GWkQhtnHLWPNM+0u8JFez1jdQTgbYmGIOUXYa2GkIXjSjNgK8CIoTA4GlWbvQxsmbmRibd8gF6o563lj1PpbgIAsPVnFdAiB/xjWJ5tt9rOB1Oju89SduBzQmpHEjzXo0QQuBfDub3rrmAD2ArtPHSsLc4sO0wDTvVZc/6/YREheC0OwmKDKTj8NZoNBrWz91CbkYeK2aspUrNSnz/6q+YfUx8umMSkbEVoLBEGwnoAddFuxG57bshf5IqcDINUeZmwoLwexChi8ZduEh5nssMleYxdAXXHtDVQNo3QfZDgFM13TAPKfUYMu9dKPxBNe8I+UXldr2UL2yL1NOcM1EpeWyLkNYZYL4ZVW4jlG2C3zvgWKIqapFgHo7GVLrEWLpzkIUzAA3C00axoiCEYNyHt7NjxW4SWtZg3ezN6A2qEv/nSX+w/Oe19Li5E+O/uAchBD4BFjpd14aF05YXKfH0JgMb5m0FoMv17ajXNuEiR/zvuSYDvsPm5PThFAAKcwuxBFjIzy7gC4/vfUhkIA061qXtwOZs+nMbdVrXQGiUplyr16DRXHrrvyuJMDSD4J8Bx18Yd9k9nahQBVT+7yO0AaCNwJ3/g+qAJbPA0BO0sWCdrNrraashnUdRE38OdZO40OjuTCmGzFLe+F6uCFJK9RSHruQEr6k35O0AYycQoeBYrFRWriPKR0eYlXWDPhJyH1TbGIzgSIILBfzCRWBbotbRBFS4BilR8ZWIiq9E0vp9bPpzG+2GtqTtoBZ8ME51d9u8cDsOm4Pty3eRejSN2165gRueHkpkNU8x5jlaxDOVuleSazLgB4T689yM8SSuTKJW83giq4ez+U8lL9TqtBgtSi8cHhNGUGQA6+Zs4cGPxzJ+yj1E16lC+N+orL3SiHNL6i+AxtAQt88DSi8t/MCVCIaBSPtWcO4EbOp9ITzdjVxK6134o+paZWgOuoYIU9cLn4fv/UhdHYS+QYUuu6/w2BYgs+4DtBD0JcLYCuk8ohrH+NwC5t5I+z4o+NzTEtFXzeMUTlNyTZ9xCF0kUt9CzfVoosCZiDv7FdDFISxDi9suO7cq5ZahozLMq6Cs/HUdWzwFlz1Gd+KhT+9k9cwNNO5SjyO7jvN031dxu9yMeek6Rj09rGi7ln2b8OAnY9m6JJHCPOsV1+JfEwH/aNJxPntsGkIjGDa+Pw3a1aFxl/o07qL09QW5heRl5dHr1i4069mQSI9D3qkDyexesw+Tj5HDO49x8/PXXcnLKHOkbZ2amDW2R+jrIfPfUQv0DZFZj6lHfPNI0DdTqhzrDDB0Um0JtREgXVA4XVktGJqAtCIL54GhSYlOTEIXh/C98l4i1zrSdaa43QXudKR1MTLrftCEIoKnIHTxyIKnVDB3rFcTsfY1YLkN9K3QGDwpiaCPkAW/gW2FMscr/AqEL1ITgjB3U6kcRxJYlfsszh0qz19Bqd+uNr9Onkts3SpUrR2FTqdl2ss/8+eXS3nok7HnBPHiwVyn15G4cg9Lf1jN0h9W07BjXWLqXjkF0zUR8DfM28raWZsAcNqdhLwbXOSCB7B1cSJfe7T1KUfTmPbyz7z0+xPUaZvAoHG92bvxQLG+t1cD0r4BmXkz4Ab/VxDmQeBzj8dO97gqv9dW8zzGB6uqTd8nlDOmzFFNyg3tIPthNfLTNVEma87dYOqPCHzrSl+il1IQ5j5Imaf09cbOqkoahyq8cxxWjVJMncGxRlVMOw8p3x1NBOS9jtv6C8L/OeXVY+6JlOlqHUA1Utcj7buQ1rlQ8C2Y+4K7EIQRaZunJvqvcLXpP6Fl36Z8c/ADjBYDPv4WElclsXeD6gN86nAKbQY1RwAt+pQsrIprFMPCb6Bm8zgCI66sg+g1EfBrt6pJQJg/Or2OglwreZ4CiKN7TiDdkszTWfgG+VCQXYjRbODwjmOc2JdMZLWwIkmVX7AvXW+4igpI3AWc1d/nI4QO6TquJmU1e8F8q5qYdW5TIzwb4PssuDzNru3b0PjejQyejnQeRjU98VgouZIv//V4uSSEJhDhO/bsG6ZeSNdJ1ZLSeMYraTQYuyE1vpD3GRT+BO6jqtetaz84h6liKukENKr+QhsP2ioIjQ8yYzjgBGNHZaBnGgyF34F1OmhrwXkGaxWF4MjAotfxTapx04ThHNpxFLfLzYqf1wLQdnALapzX53bw/X1o2KkuoVEhBIRe2Rao10TAr9OqJm8sfI7NC7YRGB5IzWZxbFqwjWf7v4beqKdWi3hialehx5hObF2yk5FPDKJ2qxoIIWg3pCUrf1lHsx6NrvRl/Guk8zRofBAaX9Vmz/9NNVo3tEI6DyEsI1UzDG1VQAfuLI/SR6hcLUKZpbmOqypbUJK9rHFqtK9vADhA3+6C5+ClfCF0cYiAicXfExqkOxPhTkNqI1WrRE0kaIJBUxV0yjpYFk5XNhuACJqKMLbCnfeZenrQJoCIQgS8o7pmAWgqIV1HkO5qCJkBmpDzHFMrDiazkdETRgBwYNthdq7ag1+Ib6kqHK1OS43G1Uu8fyWoGHKTMqB6/RiGPTyAbjd2QAjBkd0ncNidFOQWArBz9R4CwwN46tsHuO2VUVj8zJh9Tdz51k2MemYo25fv5FDi0St8Ff8caV2ATOuCzBiDdJ5GCB0ay0CEvilk3IhM64e0rvDk6n+Hgg9AVwfcTvB9Wvne570I0oUmdAYaHzUxJZ17UdbGOap5uWMHwlD/yl6sl3+FtK1FZlyHzBipHDVDZoO+DZivB78nz87PaDyKLOGDFIHqtfOkmqB1HQRtgJLt6uqowYW2EmQ/AHnvIVM7I7MeR56xxK7AxDWM5YGPx6LTaZny1Hekn8q44LrWAisn9p3C5XRdxjM8yzUxwj+ftJMZpB1Po9etXQiPCSW2blWGPNi31C70u9fs59uXZwBQo0l1qtWreL06pW2N+sPTBHmcFA/BGaWM67BqOgIeRcVmMA4EeRSEFoxtVHcrt+dLfF7+VZj6IF2pHsndCITQq2bYXiou7tOA6viGKwVh6lqiWE66C0AaPG0PnSDTkK5MMLZS8zo4wDobpE2ldQLeAMdmzz49nbFsc8H1KOiqUFEoLLCy5veN+If4FnvqX/PHBpb/vJbW/ZvxaNcXadajAbe8cgNmy9knGLvNwTt3fsqib1cw5qWRjHp66GU//2sy4C/7aQ3TJ/0BwFPfPUj7Ia0uuG71hjFExVciOzWb2i1rkn4yg8RVScQ1iqVKjfI/kSvtmzzmaG7liaIJRupqgPOwqqg0tgHzaHCfVH+I2jggXUnp2AyBHyjbXX1jMLRUlrmudOWm6dgBmkg0AROu6DV6KWOMXcD3UcCJMPUqels6TwN2cJ1AZj+m5JoyFzThkDUOKQIg8BPwuVcV2RnaQeH3atJX39jjlJqlnhbdGWDqor6D5RhrvhWtXoveoPpdLPhqKe/dNwUhBG8tfZ767dV8RN3WtfAP8cM/1I+QPCtbFiXSLelkMbuWvMx8lvywClAyT2/A/4/JSM5i25JE/IIsaDQadAYdETEXH43G1K7Ce+tewelwERQewCujJrPk+5XE1q/K5JUvY/Er5021pZ2iyVl9AsIyGpkzQeVffe5G4/cQ0tQLcp5VTcd1TVSlJahHdl2Cehy3r1f70lZWAb9wJuS9CpoYCJ5arM+plwqOO11VZusbF1VES0cSMuM2lc83D1Md0NzJKt0ncwEHYES4diP87kH63gHuHDB1BV0CQmNEGtqo3rhyE8L/mXJvsbFjxW7euPk9wmPCeezre4mIDsPpUKkYKSUHth3h6wk/0nF4G2yFdp7/7VE+fugr9m48SOMu9agcV7zeJDgykOufHMzWxYnUaFKdgtxCLH6X1zL6mgr437w4nVkf/0nl+AgmLZmAf4g/MXX++nHSL8i36HXW6WwAMk5m4bRfmTzc38LQUk2cuXNAE4J0nADrIjUxa52N9H0AgQ2p9Xw5ZYF6DDf2B8tINLoI0A3ErYuHM+oLEaTSPQDuI+DOBLwB/2pAShsya7xK/Rk6QtCnSkbpPKCcNEG1ntTGgbY6wtwPmfWgaogufJB+T4A7X1koaENAe84Evn29KuAC1fu2nAf8LYt3kHw4leTDqezbdJCI6DB6jOmEyWLEN8iHL57+HrfLzYy3Z3FifzIdhrci9Zjq65SfXVBqMD+4/Qh7Nx1k5+o9DBrXu2IGfCFEL2AyqgHK51LK185bLjzL+wAFwBgp5eayOPbfIT9bOftlJmdTqXokoVF/3+Rp7KSbWDd7M/XaJZQLM6S/QggN0tQNMu9SfvXGnmDsAY6VYB6jluvrqkIqx17Q+apHdGlTf9hFeDzvZSZgRVhuQwqD6mSk/+tqXi8VBOk6O1/jzkB5AwikthYYugP5YF8NQVMR2lDVREVXRQV8TWXIn4qU6UhjN4R5oPLRcexWHkv6eKXycachdOXQbPA8mvVoxIoZa4mMCaeWp+2pb4APfe7oRuKqJOq2qUVhvpWT+5UMOTM5myenPcD2Fbto0KE2y39eS7V6VYmpc7bQauC9vdBoNTTqXI9K1S9/xbn4t42nhGqFtBfojupvuwG4Xkq565x1+gD3owJ+S2CylPIv+/w1a9ZMbty48V+dH0BmSja/vDMLg9mAAOq1q02jzvX+9X4rCtJdgEzroXqVauNQedhjYB6KJuBVzzpZSOcxsK6CgsmAC0yjEP4PIDSBSFcaMusJEA7QVkMT8PyVvCQv/yHSvhVpX48wtEUY6iIde5EZd4I+TnU0M3ZCBE4uklRKV5pKEVrXgNPTAEfXHHxuhoxBaqfm4WgCJqqJXWmvMPYaTocTrU5brFisMN/K2PoPk3w4leoNYnhi2v3s23QInV7HL5Nn0fXGDuxavYelP64mIjaM99e9RmDY5dPfCyE2SSlLLWsuixF+C2C/lPKg52A/AAOBXeesMxCY6mlruFYIESiEqCSlPFUGx/9L1s/eXNSk5P4Pbi8R7POy81ny/UosfhbCqgbjdkkadqpbISsCS0NoLBDwOtK2Rckn3UdBUxVh6Ah4bghZD6snAPMNqK+FC9xHkQXzwdxeaab97vbsIwNp34YwNLyi1+Xlv6FE5yznEZAnwOlU9teW64rr5zX+UDgHzrQw1ESpCVn7GtBGgeuEMt2DCueSWlr3Oq1OS2iVEJIPpxJWNYTYutFUqxfDI50msGfDAfxC/LB7GihlpWTjtDtK7ONKURYBPwo4ds7Px1Gj+L9aJwooEfCFEGOBsQDR0WUjgbQEmGnctT4Gk6GYRcL+bYfIOJnJiX2n+PDBrwBo1qMhG//cxvO/PErbQS3K5PjlAWFsC0hk5q3qDcutCLNHgSFz1R8nKGsFYxfAoKps5XFkaidVLWkcAgVfKAmefR2ETEeIa6aU49rF2FLZbrizEKYegBbpSlf2CoAQBqRlOBT+Ab6PgGkoGl0o7vTrlFJHOgGLx6lzB9KxBWFsi9DFX9HL+ickrd/Hga2HufOt0aQcSSehZXzRwLD9sFbsWLGb2DpVSTmWSodhrWjVvxmhURc2jbNb7Wj1WrRabdF7+zYdJCsth0ad6xapg8qKsgj4pQ2Dz88TXco66k0pPwU+BZXS+Xenppj54Xy2Lk7EN8iHx766F4Aju47zSIcJFOQWMvLxQeokhSjSmedm5JbFocsX2mjQxoDrOEJ/dnQutBHIgNfAulSZqdnmgu/jCMt1yLzX1UrW31S1pb4miKaA7oLBXlpXIa0/g76VanUo88HYDiHK9svr5TIh/BCWUaAJBNdJZMY4cJ9E+t6FMLRC2WvvAX0j5XmvDVGpG11tlUZ0HQfrDKSxBWTdD+5TSFtbRPCXV/rK/hYZp7N4pv9rZKfm0POWzoyfck+x5QPv7UW7wS1xudw8N/B1Dm47TJNuF56r2LJ4B2/d9hFxjWJ58JOxBIUHsn/rIR5s/yx2q50HPrqDfnf2KNNrKIuAfxw41/6tCnDyH6zznxFSWT1GhlcNRWdQd9K8rPyiKluDxcDzvzyK3qTn9KEUmvdqRPthrUvsJ/lwCgaTnuDIivVYegahi4bg70HmInTF/T405oG4CVCmaT53gWkgaEMQljuQBV+DobG6Ibh2A3oIma288DUBCE1xQyhZ8DXYl4I7G3JXI3GD/+sIy+DLdq1eyg5Z8A3kvgrGrqriVp4EjR7s65D5X4J5hCrYk1lIQ12EeRDSOk/554AyYTN0UCKAolRQBbRUkBLpVmNQt7vkWFQIQWhUMHs2HuDgtsMA7N96qGj56aNpZKdmE9+4GhqNhg3ztnD6SCqnj6TS/+6eNOsRSF5GHnarJx2UmlPml1AWAX8DUEMIUQ04AYwEbjhvnZnAfZ78fksg+3Ll7wHueOMm2g5oQfVGMUW6+dqtavDE1Ps4vjeZUwdOU7tljYv65ayfu4Xnh7xJUEQAr8x5qtjMe0VC9bUt2dsWUOZWtgVg7AXpfZHmAQi/R9GYe6iJOXcGFO5WPjr2tUjbMhB+SPOg4h2PjC1VwNdU5qxBW95/fGVeygopHcjCmSCzEabB4Nipeh5gV1XarkNKmqvTqQprnGf7H7vSke5ssG9UvW2lXT1Z2ncjyIPA95COHQhDxUuXBkcG8fIfT7BvyyGa97pwQ/K4hjHc+dZoju0+QVhUCHc2Gk//u3vy45u/kXwwhYc+vYs+t3elRe8mrJixjuoNYohrFANA/Q51eOTzu8lIzqLHmE5lfg3/OuBLKZ1CiPuA+ShZ5hdSyp1CiLs8yz8G5qAUOvtRssxb/u1x/w4hkUG0H6aqaTNTstgwdytVE6Jo2qsx/xt7N3arnQPbjlw04O/bfBCHzUHK0TSOJZ2ssAH/DNKdjyz8FZAI8xClmzZ0VFpp1wklvyz4GnzGgDZK3Sj8J4BlDNKxA3KeBENnsP0GttnI4B9VQ3RAWG4GQyekJlg9GcgChHnAlbxcL38H22r1+wUkZnDsBleSkuX69laOl7qaYFWW4gg/ZcfgPg0iHGnqodKC+gYqrVM4A7CCKxVhbIHQ17xy1/Yvqd2qJoERAfz+/hz8gn0ZPK5vCS29Tq9j2EP9yUnPYWSVu3DYHPw06XekSz0VHN19HIBGnesxZefb6Ay6oi56Wp2WXreW7AldVpSJDl9KOQcV1M997+NzXkvg3rI41r9l+qQ/mD5pJj7+Zj7Y9DpNezRgzcyNNOpcvDF54qokvn35Z+IbVWPUM0NpN6QlJ/cn4x/qR4NOFc/eVbrSVYGULk5pp60LIPdFtUz4gKk76KqDviloQpU/uqG90uR7EMKI1ISp5ugAnGlV6Cg2ghdCB/o4NXFjufzl417+JRo/VGhwqn4I+gQV8E39VFMUy81q1K+tBa696nvjrKJsEkx90eiqIgPeQTq2KjsOoVdqnfNbKnqQUoLrKGiCEZryX9uy9IdVzHh7NgDV6sXQZmBzAA7vPMbWxYnUbl2DWs3i8Qn0YcA9Pfl18hx639oFk6+JE/tO0fOWzkX7MpgMl/Xcr6lKW1C62sAwf2o2i2P9nK2M+/AORj09lOi6xStul/ywko3zt7Fx/jaqJETR8+ZOPPplubhnXTLSXYi0bwONr7JOcO5UzU4swxCaUKQmBNzp4M5SShxjV7AvBrTg8xjCMhAce3A7dyMM7ZR9gjtFPdIb2qrRm6G1uikYml/py/VSRghDEwieBu4cpC7GM1nfFfJfVgV6toXKYsE4UBXdFUwFv+cQliFFE/nC3ANh7oGUbpXicZ9WAw5tSf29LPgRcp9TRmyBk0vMCZU3qtSqjEajwSfQQkSssmaZO2Uhc6csZvfafYRXDeGTbW/hG+jDHa/fyIhHBxIY7l8uemFfcwF/6EP98A3w4ZsXp7N+7hZ8Asz0GN2paPnWJYn8+fVSYutWRavTEhUfybKfVtHtxvZotVpcTheZp7MJighAq9Ne+EDlAFkwTTU0cexUreqcO8GRiHS2QRZ8p3Krvs+BI1FZLbiOgb6lGmmZewFuZOZYJcM0D1e+6bp4MF+nttFVg/xvVIckXKiMnperAWFoohrbZNykgrV5jLLOlplq4lVmA4XgtnlaWgaUrtpybIac8QBIaUX43V/KOp7iSvtqcJ32zAuUX9oPacVHm9/A5GOkclwkdruD6ZP+wNdjwaI16IukmlqdlsSVSezZtB+zxUTVWpVpP6zVFQv+V/6WU8bkZuQy78vFbPY0HD6fiOgw4pucVagc2HKIjx/5mqxU5ZEz/a2ZLJi6jPVzt9Dzls64XG78gnzRarVIKfnq2R+4vuqdTH1x+mW5nn+FO0/9EclspbU3DVcl7o6NYF+ompa7D6l+pO5UMLRBBH+OJmiyxwxNokyxAFca0nkEIbRofG5CmPqD9Q/1qJ//ETgrbq8ALxfAneqxSkZ9f4RRuaaaRoBxOIhwcGxXfRAMJVVtgGqCjlG91pRebSrMQ5UQwO9xlR4q5+zZsJ9pL01n3heLKcgtxGDQ0/PWLmi1GgaP682Enx/BJ0CJQ9JPZfDqqMnkpOSSuHI3f05dxpbFiVfs3K+6Ef7Mj+bz1bM/otVpeX/dK8SX0mmmcbf6vPj74+zdeIBda/bicrrYOG8b3W7qQP12Cayfs4Xw6FC2L9tFWJWQIs8La76V2Z8tBGDOpwu54ckhGM2XNwf3tzD1BPdxsK9Tpe3mvgBIp59HI52lpJM41B+3dKl/nqoJoQ1D+j4Atj/BnYK0LUPoRqt92FeACAD0arJX6zVPq8hIaVO9abVRRXl06SpQvku4Va8DjS/SeRyy7wTLrao2Q1cd8EO6cwGh2ltqAjxqMBD6BAj+DtxpYCz9piCMrREXWFaeyEzJYvlPa8hIzmLtrM04bOto3LU+jbvUZ8T4AfS9oxs+AZZiFfoWPwt1WtckLyefTQu2A9BmwJVLf151Af+MNZCUkvNtgnasTGLLwm3sXrefqrUqM/PD+bicLhp0rEOMJ4ffZ2x3Dmw/SsqxdKJqRJJ2PJ0mXVUHJ7OvmTtev5FZnyxgwN09y3ewBzSGOmB4CyntCHH2XIWumtLj4wJXMtJ1AqQVbLNBXxfM3c/ZSagyVcMB4uwITRg7IXNeAssYsIxRKh8vFRaZ9z7kf6LM9QInIYQRHKvVzR4QlpsQ+sYg/JGG1mpU785Q/3yfg/Q+SG1VQIB0IAM/VwZ9jj0I81CEqfPFT6ACMOvjP5n6/HQ0Gg2DxvVm3+aDmHyMnDyQzLalO6lWP5qEFsUdQM2+Jp758SGW/7yGTfO30bR7A4wWPS6Xq1h17eXiqgv4/e/uSVBEIBExYdQ4p/lAyrE0nu33Cvk5hTTp1oAti3dQpVYljuw8Tq3m8UXrCiHYsXwX6SczadWvKR9tfrPYHTuuUSz12ydgPkeK5XK6ynU+/9xgX/SexuPjr/EDU39k9jilyNBGFl/RnaFy/UKCdT5YBiGdp5DOg+A/0eOR4kS6TiNKmZDzUkGwrfT8v1ilArVGhLEr0rYWDLWLHFGFLgKCPkUW/AbO3aBvpJ4SZT44k9RckX2tmi/KeQYAiR1heOnKXFcZcsbmQKvTcPLAKZr3asy41k/ToGMdkg+lUJhn5ZOtkwirUtxKISgikIH39sbsa+bNWz5g5a/r0RsNdBx++Z9qrrqAHxDiR987upV4XwiBxhOUdQYtkTFh3PzySHLT86jVPJ4ti3Yw9YWfqNe+Ns9Mf4Sk1Xto2rNRUbDPTMniowe/4sju4wSE+PHbe/Oo2fxdln6/kpkf/slNE4bT+7aul/Vaywph7gna6SAsCP15/ia6eqBZDRSoSTtAFnwJ1lmga+TJ8ZqQzk1I/4lovDLMConwewhZOAuMbc965BhbQOhvpZgIapQJn6ELwtwfhB7pWKvSeiIQfFuDvo5yZnUdKPreVHQG3NOT9ORMjiedJDgymK1LVC5++7Jd9Lq1M6nH0zmy81ixgO9yudi6OBGTxVgsI2DNvzK9fK+6gH8hwqqE8Mqcpzi4/Qix9aKpmhCFX+DZNMTiH1aSuDKJxJVJtB/ckmGPFC8USlq3v6g9WaPO9ajeIBrc8NVzP+Fyupj+1h8VNuADCEPpnh9CnkLa1WM9fmeuTwO6Bmri98yIDtQEsTfgV0iEsQPC2AEpVW2FdB5H2teDrj7oo9Wo31PHgfMA5L2p1sOKJvB1RMg3JfYpg75QXbH0V4cVucXfgsliwulwsfr3DYx4bADS7aZBx7rs27ifTX9uZ/+Wwzz86V1F2vylP6zitZveQ6PV8Nq8Z3jk87twuyQdhl+4rep/yTUT8AESWtRg15q9PNDmaZr1bMizPz1cZLXQuHM9Fny9jMZd6xFZ/Wyxkd1mx2A0UL1hDHXb1uJ40gm63dSBJt0aEFwpkOGPDmDm+/MYcE/PK3VZZYqU8rwRnUnl7vUNODObK3xuQ1pXgLAoIY9puHq8Nw1EujKU9wpuhGV00WjRS/lFSjdCaHAX/gG5byDNg8GZrBRY6JEyG/RNwLlfpXa0dVSBnmMzGJpccL9K6aUm86V9AzLvc9DXRfiOLW6vXA7JTs+hMNdKZGx4sfejakTyw2u/EhUfyfLpazmw5RBGsxGjRSmRNBoN302cQa0WcYRUCiYnXZkwul1uCvKs9Lr1yg4Kr6mAD7B92U4ANs7fRsaprKKA3+WG9jTsXBefAB9MFiO2QhufP/EtK35eyz2Tb6HDsNa8/uezOGxOfM95Mrj15eu57tGBxd6riEhXJjL3FTUZ5/+0Kr4BMHZQZmp5b4B9NW7hr5QXhubg2Aq2H5Rax9AGnMeQ7jTI/0DtUxuFsIy4chfl5aK4XdmQ/wU49yoLjYKfVIou/2PV2F4GKIUXqHSNxh8KPXJkY3/w7QTOVKQrs4TPvXQeAMceMLRAaEORhX+AfYn6Z+wI5biXwqlDp3m2/2uc2JfMMz88RNvBZ31/eo7pTI0m1TFZjEy6/UMcdiexdavS987u+AX7cnTXcRx2B2ZfdUPrMqoDTocbi5+J5r0aXaErOss1F/AH3NsbrV5Hgw61qRxffIIypNLZlofJh1P57b25ACz/eS0dhrVWd3Kzsdg2QogKH+wBVUhl/R0AaV1UFPCFEMii0ZgbrL8gczZAwGvgPqHeltmgiYC8V8D3IWXJgABN2fQz8PIfYf1/e+cdHlXRxeF3tqd3UoBAEhJqKKH3XkQpoohiLyj2Liqf2AvYe0csqKiISJPepPcSOoSEJIQQ0sv2+f6YJRBSCD3Ivs+TJ7t75947d5I9d+6Zc35nKhR/DppQpGUVeAwF+w6lfqmLBpxgDAX7JlXBypkLrFQ3eGcaWI+BdSVSF4bwvL70sNKZh8wZDY5k8BiB8HsVDK2h5DcVx6+tfYkuuHqk7c0geYfSu9m5dk8Zgy+EIKZFfQDG/fYkafsziGlZHw9PE6Peupm9G5OoExdeOpH0C/Jh+JODLvo1VMYVZ/ATeseXhllWRWj9EK4Z3Zdlv6+m67AObJi/Ba1eS4vul18lLKV+OBNkEcJjMOKUBBgpHUjnMeWXdxx0aZyfQHgMQmIHRxaY/wAsIF1+fBwgDCpDEkATpLJ7caokLzc1F7tLodx5BLS10XhehzT1c2XYDgecYBoEaKD4EwicDsYuSl7DfghsqwA94IUz73+ACbzvQyBU3D2U1sfVeAxBGtqA8ENovC/6pVYXm9XGoV2p9BrZBUuJle43dKq0bUCoP17+Xvzz7UJyM/O5alRvfIO8Ky70UUO44gx+dTF5GHn4k3u4d8KtrPtnM8/2fw0hBK/PfI62V1UujVojsfwL+WMAkAiE181lt1tXqUd1bV1V4lAThDN3DOgiEV53qS+v44jSVDHdrHz3thWqkpF1pTqG5x2gGYzQeCj9e1Sd3Mvr1nhlITyvR2IFbYTSTQKVdKXxUk91slit3ziSVUSWJkBp3Jf8oUTRfF5FaAxI82w1e4fSUpj4f4a0bUEYTyg/iho+swdI2pbCZ49NQgjB1ff1IbaCxM2T2bJ4Ox8/9C0AJUUlTH1vFuHRobw173+ER9W8MOUr0uDnHSvAXGQmNDKkynYajQYPbw+K8ooBtaBZ6Hp9WSE8UAuuUhnrU5DSqSoWyXWgCUQ6doN5mtqob4O0LFalDQEROEW1yeoLhr4u9w1gTwNdEyRe4P0MYEC4MnsBpP0wyHyEvuGFvVY31UboGyH8Xin/uS4aAn4ERxrS0ElVPsP/hHS2sTdYFiB8TAh9DNJ6Un0Fl/vvcsietVltzPh8HpkpWQwc1YfIRrUJqRtM4/ax7Fyzl7iEmNMewz/UD6OHAUuJlcP7M5FSkr4/g8zkrFKD73Q6yTuaj1/IpRdQu+IMfsbBTF4Y/Bapuw/z+Nf3lRFOq4zuwztiNdsoyisiceUuivOLGTiqDztX7yXnSC6t+7fAdIpvvyYhjB0g4HuVHGPsVn67thbyuLyxEK4wOo2Kn9bWUTN/UH56TZBKzvK6V7kELEtAEwied4IuEnLvVofx/xRpWaZK3WlDoOB1cB5F+k1A4zHk4ly4mwqR0oEsmQqOw6oWgq4u0n5IaSzpmyN0MQhDPBCvpgmOA5D/JDgPqTBL4Qdej4NO/V8IzxFIZz7Y94KuIdKyAoRX2ULoNZAdK/fw+eOTANAZdNzz5s0E1PLjtVnPkZeZT52Gqv613WanOL8Y36DyWkCxraJ5e9GLTJkwneL8Ejpc05qmnRvSuMOJjNufXvmDn9/4k5HPD+O2ly5tEMMVZ/BT9xzm4HZVT33+90vJy8qnTd+WRMWrBcb8YwXojfrSVXZQ8bdDHhzAqyPeY9nvqth3eEwo/7v6TWxWO/e+fSvDT4nbr2kIY+Vxv0LfCPw+QDr2I4yDEPpIpL6J8rdqg0E7Qmmia4KVcXfkovF5Cqc9Wz3yyzwo+Qk8TtS1kdZE9Zm+HegbqBhuVBFrTjH40p6mIkX0LRDaQNxcOJzmxWqsC98FlIIlPs8g818C63JlsH1fRWNoqbKpHZlI21Zw7AB9C7BmgKkPwvsehHBllzsyoOhDwAkyT8Xv44DAHxGG1pfoSk9PUO1AgsL9OXY4lzqxJ7SgfAN98A1UekLmIjMfPfg1S39bzWNfjKJvBRPExu3juO6xq9m2fCdtB7Qqk+FvLjaXSrjM+HwuNzwzBJPnpZscnpPBF0IEAlOA+sBB4AYpZU4F7Q4CBSgNXbuUss25nPdcaNwhlmtG9yM58RBOh5N1szcx7cPZfLp+PElbknn1hneJaBDG/6Y8SXhULeZMXETiil3Ed2tMaD3lAorv2hiHw4HNagcgxbWif7ki7YdBGFwFqNVjqNDFIJ0lOAu/BOcxhMfNgAGZfYeKuff/CIFEmqeoUnYeSlQN79dAHlOJOsaeKvLHugg8bgTHYRXOd/K5nUXI3EfBvhU8rkP4vXlxL/4KQlrXQe5oJXVs6KoMvzMfWfSTKwIH9bvwC5z6eLCuU3o63s+DriGIIAj4CaFvdsLYgwrX1DUH+2ZXBI4VkC5hvppLndhw3l/+GnlZBcS1qdhXn5mSxfwflgGwbOoaGneIo06cmvk7HA42zN2C0Aha92tBfNfyhZFMnibueHUEf344m2GPDkSr07BvUxIhkcH4BV38Yi/nOsN/FlgopXxLCPGs6/2YStr2lFJmneP5zhkvX09GvXUzUz+cxb6NSeQcyaMwpwib2cbaORspzC1mz/oDJG1Lwelw8NkjEzEXWziWnkNxQTGDH+jPbS+PwG6z0eumLuRl5bN300HyswtKZwWXE1LakPnPqcVXQ08I+PyErrl19YmZoPBVoZp2pfgnretA4w841JfcMkMt7nk/B8XfgcwF0/Gi5U7QNQLvh6D4Z5z5LyB8HkWYequap44DqplbYvnCIh3KRWfboP6OxqtcC++LVaSVoSNoG4B9u5qxa+upH2cGIvAXFaIrLWCeh0QDpn4IoVdRXwGfgiMVqQlTLkCNr4roqeGER4eWquFWRFh0KDc+dy3L/1iFVqvhmT6v8P6/rxEaGczKv9bxynD1/Xj5r2cqVcG85r5+XHNfPwB+efNPJo79hRY9m/HytKfx8i2/pnYhOVeDPwTo4Xr9PbCEyg1+jcHT15NbXxhO0rYU5v+4lI6DW7NhwVaOpefQ+5au6PU6GrWLITczD4NJj7nYgtHDwO51+wipE8zU92aSfTibgDA/Fv3yL616x1/Sx7RzQtpViB0og40dcGl+aOuoYtUyVyls6uNVeTv7AYRpAIhAlWilqQWF76h97PtOHFvjDz7PKaOui1Kzx6JP1GlLpiFMvVXCjt9HSNs6hPHylaaoiUjHMVU6UN8IITxUZI3XM5D/uGrgSFV/U6eP8r9rm6hoHNtmJZiniwZdW4RHb2XsLcuQlrWum74EaT8R3aMNAW2IisryHnVpLvgCYDDqufv1kWg1gsmv/0lko9r8/vZ0JBB7Ul0NS5Gl9PWe9fsxehmp17hOuePtXL0XgK1LEsnPKrjoBl/IUzWEz2RnIXKllP4nvc+RUgZU0C4JcDlx+VJK+VUVx7wXuBcgMjKydXJy8ln373QsnLyct279CIBB9/djxudKM+bZyY9wNOUYE5//mdtfvgG9SU+DlvVJ3pGGp58H79z5GQAjnx9Gm/4tqdsoAv+QE1V6pJTs3XgAb38vImLCyp+4hiGt65CWFQhjF4ShrLdN2lPAWYgwVF7HV0oHsmiSmjlqaqvHf2wIY3eQxcjsm5Sf3/dNFQJqng2+ryrhLWeWWgy2rEDatyFM/RG6BpWey031kM4iZM59qgat131ofJ4s3eYs+QvM/6qaCMbOgFD1jR3J6knM0B0cu12hlh6I4GkIXTTO7EfAkagqo2nrgaE3wuehGh1Xf7Yc2pPGv3+uoUGraNr2b0nyzlT+nbaG4rxifnv7bwDufftWvHw9ERpBr5FdMHoYWf7nal4d/h4mTyNvL3qRhm3L/i9vWZrI/B+W0qxzowtWrFwIsaEyt/lpZ/hCiAVARVZr7Bn0obOUMl0IUQuYL4TYJaVcVlFD183gK4A2bdpc0BwGk9eJWblfiFqB1+l1RESF8tPLvyOlZPJrU/k59UuyDmXRqlc8Or2W0PohZKVm07BtA+K7Ni533IWTlzP+to/xr+XHu4tfIrKCO31NQhjaIiqpSSt0kUhpV4uw2lpqJndqG6EFbTjSaoOS71UYaOCfYD+AdKS6pHWd4EhG+L2hZv0af2TB61D8E3iOVr8pRNoPIvzfrnbfpXUz0roZYepy2d8opP2wSmrSN0EIffntUqokKU2A0quv8mAFSusGwHoAad2q4u21wQh9e6RlCdhWI0zdVPilbZ1rx2i1eKs57uawIZ1WNXPXx4PzoPpY+INlMXjfCtRsg1+QU8imBduIiAujQYuo0+8ATBk/nbnfLUZv1PPq32No3bcFC35YQkF2EZ6+ntitdmJaRJHQ50QSZ2bKUdbO3oSUkpIiM5mHssoZ/Bbdm9Kie9Pzen1nwmkNvpSyvNawCyHEESFEuJTysBAiHMis5Bjprt+ZQohpQDugQoN/MekwqDWvz3wOgPjuTYhNiMYvyIfGHeK4Zdxwpr43g3539GT32n2MGzIerU7L+Pkv8NHK1ykptFC7QcWz99Q9KoMxNzOPzEPHarzBPx2y+GcoeE3NCAO+BeGBLHwXLOsRvs8ijJ2UMTDPdu1gBdseZNE3oNEqF4EmHHxeVtr82iCkIxeK/1DtLbNAGweOjYADZ94rCK97ELqIqvvlyEXmPAjyKNLaExH45YUchguKdGQic+4Gxz7wfh7hfUf5NsWToeBVMA0Bv1eqFCAT2jCk3wSw7QWNH7LoK5AWpNddCOeR0r+VLIkFz9tU4RP7XtBEIExXIUumKX0kYQBnHs7i38HUXUXq2LerJzN93GWRTPXHezP4+fU/8Qv25dN1b5UGX1RFSO1AWvdtjsnbxJ8fziKmVRTFBSXM+XYhTTrG0faqVrTo2YRlf6zCXGSh6/AOLJ+6ht3r9tG6b3NC69eiVa/TZ/RfbM7Vh/83cDvwluv39FMbCCG8AI2UssD1uh9QPtvjEqDVamk38ITa38mLLr1HdqX3SJVUNP3Tf3A6nDgdTjKSMonvomb1SdtT2LRgG0YvA1lp2fS6qSt1G0bQ99bumIssBIUH0Lxb+SeAyw77btfvneDMQjrzXDNykMVTkbpGaHR1kT7PKoOgbQDWJSAzQdddGXwMCG0o0rICad2lBLR8nlcJXqarwdBZFVgxTwdHElIXjdDdUnW/hEY9TUhUvdXLGccxZexBacifgnQcg5JZgFSlBX0eRWJS0VWaE8EC0p6GLPkdtLVA1woKxit5A9NgsCwFoQPvJ5TOkcxX2jklU8HvfSiZpmLxNT6gi4Wiz1Q0T/EUsM4EXQtE0GSEqV25/tVkil3JkkV5xVjM1mrt4xXgVVqScND9/SjKLaLPLd3ZuyGJlJ2p3DpuOOvmbObVG95T5ygo4WhaNod2pZORlInTKTmSfLTG6Wydq8F/C/hNCHE3kAIMBxBCRADfSCkHAqHANJf+jA74WUr5zzme96LS7foOZB/JwWA00GGQiiu2WqyMv+1j9m8+SP1mkRTmFJJ3tIBHPr2H2rHhjH739kvc6/OH8LgBiQBdY6QIhuKvlDFx7AJKIPcBZMCXaHR1wHuU0lLPu09Fa9jzVQq+obmKt89/FbTBUPIdeD2k5Bos8wEDwtgJWTxRFWLRxZ2+X67oEGnbjjC0v+DjUB2ktIB1PWhCyxeTqQp9Q/B9RSlMGvshrZuUlLCrWpk0/wPaIKAhGLoibcmQ9xBoIiDgM5frTSKLp0DxF+qY3s+fKELuPAIeI8CRjiz5E7wfgOLJLmkMvZq1F4x1XYNNLdh73gYlf6pFedP1ILOR9kMI/ekzUGsSwx67mqDaQUQ1iySyYfWeSI6LJAohOLz/CKv+Xs/1Twzi7cUvYjPb8Pb3Zu0/m0rbF+QUsnHBVq59dCA7Vu0hPyuf4No1L6fknAy+lPIYUC60wuXCGeh6fQCouVqo1SAg1J87X7mp3OcOu9P1Si01BIb5lWvzX0AYWiBccrbSugVpmQnGwaCPc8nlOsFxFDSu69fWAs/7wTIHnEmgf0At8uWNU9m7VlUIHschsCwErOC0ILx+Q/q+rnR79GUNviyZi7QsRBj7Ijz64rSlQMkU0PgiPG+pMTV1ZdHPUPgmiEAImoLQ1avWfkJoEJ43Ih3HkDl3IO27wftphCviRWjrIC3LVG6DvpXyz8tCcOxRNwldJLL4e/UeVG6EI1PlRzj2qSchyxxVrN4eDNp2qjyhxk9lT2siVISOfbOSRyj+EgzdQOaAIwe0ASpMVxsJ+ucvyNhdKMKjw7hxzNAz2qfv7d2xWW1smLeFzYsS6XmTCjE1mowYTepm0KZfC16ZPgZzkYWo+EiSEw8xb9JiopvXI7JRDH7B5TNzLzVXXKbt6bDb7Cz+ZQUlhWZ63dwFb7+KDYnBaODJb0Yzb9IS/MP8CK0XQvuBl5mo2hkiLf8ii38Cj1vBlgq6emDoAcYOKuzShRAGpDYEHAfVB4UfILWRgFXpqhv6KneMvoWK6LFvA328WhjOewxwIClCeN+vzussRha8CM5sFVHkTAHLarAuVcfXRpctvF5R36XVFRFUCyEu4L/98Rm1zD67xCNnjkqIAlVZ6ji6aPB+GgpfB8sC8H1bJbMJX6TwVmNXPBucB1RBGsdBKPkGvJ5WN+Div1QRE8tcdSxtCMLnMXUuXRRC448M+BKcmUjzCkC6/lY9QBsBFpVhjiMFaV6mFnv/w5g8jAx75Goat4vl2kcGVuiP12g0RDQIw1pipX7Tujz+5Wg2L97O/i0H6TSkZrq93Ab/FNb9s5kJd3xS+r6qSlaN2sXSqF0sxzJyeP+eL/h+3BSemvggtRuE4VfLt0br65wNsvhnVeQalCEo+hjh9w7Co7yshDC0Q+riUVLK2eAoUpLKwgDkAWEghVqA1N6vhLbsSScO4DiM07IBbOvA0AWMvZRKo8dQKPwSDK0AocTgtOFI2z6QNoSh/JqJlA5kwXgo/hG8HkL4PHL+B+f4dXveqJQmtfXUQvYZIK1bkCV/gdf9YD8MxgHqc3saMm+c6wnK6fopBPMc1yw/TS18ez0I5gI1Q3emq0V2xyE0/q8gve4CaUba7wCpRehjERovpL4FmOfgdGYjTNcocTtdNJg6gzYMofHDWfAZGNqAMxxsm5G6hv8Zg38sI4fNC7cTFV+X6Ob1y21v3KFy1+Ludft4utfLWEqsvPD7E3S5tj2dh7aj89CaaezBbfDLYfIyujIKZRk9napI2pLMmtkqBG7BT0uZ//1Sut/Qiae+e+C/ZfT1LdXsUtcKHOkq8kYXW2FToY9TNU3zPwDrdBXxoUsAy2TlyhGeKvTPsR30LREefcDQDGm8BuRRcFgh7yVw7gb9QvCfhPC8DbSRyqAWTQLvZ5XhcRYg88aCxoQ09ELjrdZPlE97IhT/ruLLEVAyDen9wAWb5QtdfTVzPgtk8Q9gngEIVSvY/Ad49EDa94FjLzj91exd4wcYVW4DqBsqgLSB33jI/xAwqAL0rtoGQuhAeJfXtrGuReapRCwpLWC6CmzrkLpGCPtupCYS4XUzsmQx2JygMyKM/c7q+moiP73yBzO/mEdI3SA+XfcWAbX8q71vZkoWJa5i5On7j1ygHp5f3Ab/FFr1iueteS9gLrLQdkD1lh5iWtWny7XtSNqegn+ILy17NiN1Tzq5GXmERdU6/QEuF4y9VOKUIxlMIxCew6sUO9No/ZD+Y5GO+xEyT/mZZYrSVNd3UNEm8qjyIR/HEA+WZeBYp1Q2NXEgAtFovUDbCADhfR/Sc2RpdIosmQkaT1V4xboWpyxUcg0et0DBOygJJy0YeoPHVRfWpeNCOnLU+sLJmjOn4/jNU1tX+dqdyWoBVVpVfD6Zyn9v3wGirprRO9JAGwPahmrhNfsr8H4KjM+CdQ+YZ+K0b0N4P1hxgpQwAVrAARpfZP7rYF0Ixv5Iyz+ga4YInIjGaygw9FyHpcZRnO+K4MktwmFTa3IHtqWwbdkO4rs2KjfrX/TzcvZvTabPLd1o3a8Fd71xE8X5Znre2Plid/2suKIN/o5Vu1nw0zIatYul3+09Sj9P6B3Pga0H+ea5yUQ1jaROXDjfPDuZmJb1ufP1m/D288LpdLJ3YxL+Ib6E1gth3B9PYS4yM6b/a+xctYf4ro0JrlvzVunPBY2+AdLrHqT9gFo8rYaypRA6hK4W4Lrx+T6H9Lge0EHO8bBLPdKyGmHsgPC8FenIAOsy9STg/SxognEW/giOvQiPG11ZvxJn3otgTwSvx1RUCSj1TutSlzxANHjeqqJRPIej8bqjWtcpbbuUa0XfEI3HtadtfyrOop+h4A3wHAE+Y0ojbSo8l3kB0rISYRqA8LoTDO2Rtr0qhNKrv0rAMrZFet4F0qnKEsoCFVapq+1a9F6hZva5k9RBrWtA10RVqXLsB9kW7AfB0Kzc+YWhJQRMUtpHxu7IklmAHpzHVAP7TiWEp/E/43GoSRTmFZGcmEpk49r4BJy48d0ybjgxLaNo2CaG4NqB2G123rvnM3av20+DlvX5cNUbGIwqCS5pewpv3foxUkqK84p59PN7uenZy6uq2xVt8P/8cDZLf1vJzC/m07RTQ2qfJJE644t5zPxiPgC3vjicxJW7SVy5m27XdaBFz2bM/W4x7436glr1Qnhn0YuER4Wi0WrJz1JV6gtzi5DOmlzs7OwQxs4I49nNZqR1K9K2FWHshNBFIwMmuSQZNiMtiyB4PkLrrwyPea5Lf6cYCp9yafEHIIVeGXz7TjD/o2SbrRsQPmPUfsIEeS8CRoS+ORg7gtd9Sta5qr5JGzjzEdogtVZR8isgkLom1S7aIi0rlV6QeQFgda0ZjFL1Aypq7ziGzH0csChZiYBJgB7hcRXC64RuutD4I3yfxWlZCyWTXDsfBVu+Mv4UKJ16n5fUExh2KPpAPSWogVcL7KV/h0RkyXQwxKPxGIQwnhTS6jsWaflXLdRaGyMMCQjd5Z04CPD5Y5OY9/0Sug3vyPOTH0WrU09edeMiqPvUiTUoq9lGeEwYXn5e+AV7c3I1U+8AL0LrB5ORdJRakcFljr9/y0EW/rycuIRoeoyoubP9K9rgR7eox9LfVtKwbQN8gso+7h4vcB4RE0ZUs0iMHgYato2hTmMVx5uyUxXwzkw+SlZqNuFRoRg9DDwz6SE2L95Gq97N0RvKp8dfqais2AdAZiItvZCG9oAdNN7gSFIx/s4CZTTt28H3BYSxKzLvGXUAZzYY+4CmjspKtW5XxVzM01UhFq+bEKY+qmBH0G8gLScydbVB5fsj7cjiX5WAmMcwKP5B+fd9XjjxtKCJVBICJ+9nP4i0rFI3E10dED4IoUFaNyBz7gKcypXkTFfa8lJfrsyjlCVg3YrUhKrIGfsu0HdA5r8I5r9VkpTfeECCZSVoPBGGNghDAtJztIrAcWSogjOGDoAGdA3RGOKRumhkzm2AFjzvVQXINeGu6/1bhVnaD0HJD1CiQeqbqgpXLoQ+DnE8JNZjwLn8yWsMlhIrW5YkArBlcSJWsxUPb4/S7VuWJLJr7V46DGrDsbRslvy6AlDx+yd/h0NqBzF+7gtkHMyiSeeyi7l/fjiLeZOWoNFoiGkZRd2GVWeJXyquaIN//RODaNUrnlr1gstJGw996CoatYulVt0gstJzePHPp2nSMRYvXy/S9h7GL8SHfnf0IKZFPaKa18Vhd6DVaWnSMY4mHU+fNHTFIQQIvStlwQlFHymftekm8ApUM/CCD4EMVUqv+HsIngued6vIHhGkxLy0ddRsvOidE+UVnclIxxFAgCxAlsxA6GKgAmkGpb2zUh2vwJXw7cgEClXsunkWIvAbpDYWbP+qylBetyEtC8C6E6QZzL8oGWBNKBhag89TasHUVcsXx0HQxYF1FQJH+T4UTYTCD0HfWcW6GzqC+U+QLsVFyzKQJUjzfFctYq2rmEgbpMxXC+eGdmrtwzxH+dld1acwtAXf8ar2gPVflTmLAGM/yH9KtfEYqX5ro1X1qv84mxZuJSo+kvDoUNr0b1nG2Gdn5PDi0PEU5Zewd8MB7nj1RkLqBJGVlk1cm/IJZhENwoloEF7u87D6ymUZEROKl//FVcA8E65og28w6mncvuIoE71BT3yXxiSu2s2T3V/EYXfw5Lf3M+DOXkz7eDbTP/kHjVZDm36PcF/zp+h5c1cyk7MQGsFt44aXcQ8dx1xiYeeqvYRH1yr9Bzkdx9VMhTh1nnh5ITR+EPAZ0rbNZWRsYNsCha+p8EXrSjD2Ben6MmrrqIxbUaiMrmEA6NsCViXpDCpKyNhXGa7Cn5HW6WAaBOZpKjNYG1MapimtG1Xt3vwXlF9bWxe08eDYpo5pWQLGgS7hMiPSsVe5ZACpCYaCFwCpEp/Up4AFiieB193KAHs9oK7JkQMe3RCeN7nWL07huO6/Jkxp0TtS1c1P6EA2RXgMQWi8lXEHwAFO12vTdcqfrgkGj2sRpgFIKZD5byA1EeB5GxrPa3HmvazkJgwdwNADoQ1AHl+c1cchPH4ETV1EBU8/x5HSCrZdpaJrlyt6o560vYeJaBBG6p50jiQfLdXT0el1eAd6U5RfgpefJ55+njw3+VG8/D2Jjq9e0hzA9U8NommnRoTH1CIw1P8CXcm5c0Ub/OpQlFuMw65maQXZRQClGXR+wb7sWLmb2nER7Fm3j00LtwMQ2yqK658YVO5YU9+bwaQXplC3YQTvLHn5tP8Y6fsz+OShbykpNPPwZ6OIdpVhvGzRhiOEB0JXH6cjSUXVAKUzY10CyGNg6I4wdUNoA5Xh1rd1aeZkKB+1JhAR8KO6EVjUOguGjigtf9e6iQhCOlKQR8eAqZ/S4dcEqfh4ByoTVtsEtD6ACYS3mr07lPCd0EWpIh/CC3T1QRulIn9EAHg9ArJEJUZ5X4W0JaqsX0Nn8LgDoYtA6GOR0oqzcKIrkUoPWn+E1wMIz9uRGn/AAyxTXf1toWLq7Wlg6qE+8hiirkaaVdlAbTjYt7g0bnqoG4OhFbLwC1cdgr1gXY70e10JoBW+rwy+UyWBicAfVTKYsWuVC8nHkUVfu55EEiDgKyVlcZngdDpZ+tsqjqUdo+fIrvS5rTvfjf0FAIfdwW0vDicsKhTfIB9enfEsSVuTqR9fjzH9XuHgtkM88fXoMzL4Hp6mMsqZNRW3wT8NCX3iefKb+ynIKaTvbSrZ5LrHr6FBy/qEx4SRcySXnMw8co7k4hfsi81iI7a18onabXamf/IPyTsOcfV9fTl8QImJpu3NoDCn8LQGf/u/u1g3dzOgHksvZ4OvFigfBNsmpO/rCNNgpCMdkCpG3zQcCl5Si5BeoxA6da1CG+B6MkiFHNdCpm0zwn+8qrlq/ktFpOg7K2Mmjx/veqUI6dgFtkDAqRYxjUNVe5kPZmUAMPQE0zA18xcmpCxBmPpC4DRlcK0rlESBda6r7msUWDeAx+0IXUPlG8eiktL07ZG29UhxA8KZAYVvqfNp64MtFWlLRGNsgzA0wVnwOeibu6Qkmqmbmc+DpdLHQuOvFqKzrgIcSEcmHC8aZ12i9tP4IHRNkZpVrgVbkJbVaLzvQBh/wZlzP1gWIosNiOCF5eodVIktsXS8ceapKlaXCYkrdvHGyA8AMBdbaNGjKSYvEw67g+L8YrYs3cmBrSm06tOMqKaRRDWNZOfqPRzcpooB7dt8sPRYO9fsJWlbMm0HtCKkjnoiKikswehpRKPRXOxLOyfcBv80ZGfkEB4TSo92nUuTqDx9POg4uC02qw2nw0Gb/i2xWawYPY00ahdLZCO1sLtvUxJfPPk9ADqDjqEPD8Q3yIcGLesT2ajqyIf87ALi2sYQ3aIeJYVmmnVudGEv9ELjOHxCn922CeF5PcLvhGiqtB9QvnkADEjbXqRlKULf2BUZ5IfTZ6xapDVdr1wW+ELAFIQuUkXX6Bsic0eDCED4xCGxup4ATOBxs0pUktmARoUzGvup7FyvO5CWNa44/hVqVmzqgTA0Rhb/CYUTlMEWPuqmIdqDrgFY5iNLJoLnKChZqm5WslDJDDuzwPtB0EQpF4xltnpasO9F6hshNN4IjwGuZKfaCM8hpbo5ZRA+rqeLfeo4zkJ1k9C1Uk8egDB1VdFJzlxwlpQ16sfli7X1QVO9RMLSU3vdhdQEgT7hxBrBZYLJ24TeoMNmtePt70V81ybcO+EWtq3YhZefB18+OYmCnCJGjb+FG55WVbvCYkK5/slBHEvLpt/t3QE4mnqMsVe/QUF2IYMfHMDDH9/Nst9X8eEDX9NpSFse/PBOTF5nNq6XErfBr4K8rDz+d81bJG1L4baXbuDWccNLt9msNiaO/Zm8zALm/6g0Xcb++hjLp67GL8iH/nf1JLhOEFHxkSRtS6FByygatKxPg5b1T3vef75bxKcPT6T3rd14Z9FLaPVaPE9aaLos0cephCDbDoRH+dhloYuGwO9UhS1DN2TRh2DfgbRtBm0DhC4UjddI8BqJs/BbKJms9jPEAHWUy8PQGgJnKclgfR2EPg6nrinkvwbisEsWQqOiaDzuBn09hKmvcm84jyn3kfBVUg2uBVShCVauHWcWeA5RNwlbIujbQ4nrCcGRqdYlZIHym0vXQq0zDxE4CVn4kesqdaqyV8kU8B2rCs/4PlblsAltEAR8pTRsnKinEhGB8LqxTAKZxtgWaZgC0onQnFg0FN4PK2kKXYxaRzkDVGTQGTwR1CBiW0Xz7pKXyT6SS5t+KoFy0P396XpdB5ISU5j1hRLwy88uBGDD/K2s/Hstf386F6C0Bq2UEqfLpeuwqbWjlTPWk3+sgH8mLmLYowOJOgPXz6XGbfCroDC3mOTEVOBEUZPj5GcVsGbmRuo2OiG3emBLMr+8OQ2AWvVCaHdVK96a9wK5mXlENau+O2bpbysxF1uY9eV8bnhqCBExlRdZvlwQwoDwvrfqNobWCENrFfpY8qv6UK9X0T0nt9M1QmIA4YXU1Ifcx1UpP4+RSrXTsRfp9zpoAlSYo+dwNetmEWjqqKcN+1yE5x+lvmzhcY1rFuyNdOZD1rWADvwnIAJ/RZqXqMLehp7gPAwUgNfjYFsGzjQwDVX6/+jBVA8s85CAxv9N8H5MzZSdx1xPADuQ1rXKpVUyBzwGo/EYWG48pHQii39RT0amm8A8UUXwGLqptYRyY2zi1BhQofErXRO40qhIB8e/lh+tasXz/C+PcTjpCL1u6kJW2jFeunYCzVzV6zQaDRqdctXUqhvM67Oe58DWZNpdrWpndLm2PVsWb6fD4DaEXWbfTbfBr4LaDcJ59qeH2b1uH71cxVCOExgewNX39SXjQCYDR/UhuHZgaey+3qjHL8SXA9uS0QjNGS3+AFx1d2/S9h6m58iu1IqsPIriv4a071c68LrmYOgF1kVg7FUuo1eYOkPwLMAAQq+eAgBsO1VMv8xFlsxWoaCuQi0E/KH09i3/QvHXal/KFsMQrkxUmT/hRDES8z8In8eQ5oWuViUqbh5UJJGuhcr21UVCvkt0z9BZZa4Kl9KqfYtaMPYYBIWfgC4e9F0g9x7lZrInIk19yi+kOlKg4GVX54LVugFWsG9CoikX3++m+vS4oVPp6/xj+TTp1BBvf08G3d+PtgNbYSm2sHfjAWITomnauRFNT3Kpdrm2He2uboXhMsyzOSeDL4QYDrwENAbaSSnXV9JuAPAhSrTjGynlW+dy3otJzxu70PPGLuU+F0Jw3WPXAMrP9/UzP7J73T7G/vIYtePCyc8qYOzVb6LRCN74Zywte5RPa6+Mbtd3pMuw9pfdgtC5IKUFmfu0SrrStwX/LxEy50QS1CmU0Zn3fx9pWQ2G9lD0BTg9VBSNrrnarglDaIMQuuagDUVqfBC6JghdXaR1h/LrG9qfqCOra6B+0KqQT1D9MA5QkTLWzUpXyJkFwoLw/xCkBWnoBrbtqlyjRwTYD+G0boLchwEJ8kGE35uqfKBtlxIqK/kVTFdXHDWjCVI3Ptsa0IUreWTLDDBeg0brf55G3o1vkC8tezZloiuKxy/Yl59e/QODycAHK14ltlV0uX0uR2MP5z7D3w4MAyotJiqUetSnQF8gFVgnhPhbSrnjHM9dY1g9cz2LXdl5wXWC6HpdB/6ZuAiH3YEDyEjKhB7l98vJzEOr1eAb5FNu25Vk7BUSMLteWhEaEzhNYP5HLXKepLd/KsLUF2Hqi5RmpGUtOJNVRInHdWo/bThCVxvpLAI0CK9RCKFF2nYis29U5/V9FeE5Qh3PYzBSEwhSo54mUNFC0vIPoAW/z1QSmNU16zcNQJh6QcBnIK1KtqD4J/C8HSG8kOgBq3JBmeeourQAphFqLUHXCWleDMYOCHHSWo3zGKXKmcYeaHT1wev68zfkbkqJbl4PjVaDVqfFWqKe/KxmKwXHCi9xz84v51rxaiecNimoHbDPVfkKIcSvwBDgsjb4SdtTWD1zA006xFGvcV0CwvyxlljJOHCEX8f/xcBRfchMzUKj0dDxpFq5x9m+YhfjhozHw9vEK9PHENOifrk2lhILezYcIDw6lOCI/5YQ26kIYQLft5G29QhDe4TQ4Sx4W4Vdahuo6lGa8jfGU48hKVLiadalCI9hSmcfkM4SZN6zqgCIzxjwHIk0z6P0JuPIUjcA6waEoR2aU/3exr6IgB9VchQGpHACOpUhfDxaRhjUgrHXzUjPmxDCddMO/FFJIRi7gfVfV6aAUGsB1mUgC5GWeeB1H8L7rtJTSsuKEzcVY4/S87ipPg67g82Lt+Ph40Hj9rFkJh/FL8S3TGRNSUEJrfu14NO1b6LT6/EO9MLL35OAUH9a9Gh6CXt//rkYPvzawKGT3qcClRYgFULcC9wLEBlZc+POJz7/M6tnbsDb35Pvdn3Esz89wvfjprBh/lZyM/PofUs3hj8xGG9/L+ZOWsyUCdMZdH8/rn1YLc7tXrePguxCCrILObD5YDmDfzjpCL+8OY053ywkpmV9xs8fh18FTwL/JYShKcJw0hfM6Yo5d2a6pAuqQanEcGxZ2WWZrYw9gHmZchsV/6gMqfAD01Bk3v1g34XUtYSgn8tEwQghwCUyJqUDDN1V7Ly+UxktmhPtTzyhCcOJSmjS2BcRMAlpXQ9Fk5UEg3AZH2du2WPomysJBwRCV32XIIC0H1YL3xp/hOeNZZ8crhCK8ouZ/c1CvnrqB7Q6Lfe9exufPfodHQa15rkfH8HT15OVf6/ln4mLMRj1PPzZqNLv2Mjnr7vEvb8wnNbgCyEWABXJ/Y2VUk6vxjkqmv5XKiMppfwK+AqgTZs2NVZu8rjYmn8tP3QGHQm94jm8LwMPLyNt+rfkjtiHiWlRj5enP8OPL//OkeSjTHzuZ3rf3A3fQG/aDWzFjlW7MXoYadGr/Jd5yZQVpO09DEDS1hQKcwr/8wb/VITP00hLW4Q+oVpSzADC61YwJCBFINI8E+ksUq4aTQT4vAiWZQjPm9Qiq74lWP4FvwkIXbBLegAQWir+t3VtFlqE18izuyahAWMnkE6kYYcSZ9M1Aa9AhGlI2baGeAieoV6fYUilNP8NRZ+rN9p6YOp1Vv29nPlmzE8cPqAKkzjsDg7tUoKHq2dsICstG1NeEV898xOhkSEEhgeyY9UeOl7TuqpDXvac1uBLKfuc4zlSgZOzNuoA6ZW0vWy4+42RtBuQQFTzSLz9VTRGeEwYnYa0JXlHKg67gz0bDpC+9wjXjO7HpBd+ZfCD/fF2CSvVjavNC1OeLHPMjINHQGgIqxdCndgINi3YRkLf5nQe0pbaFQg2/dcR+sYIffmShRUhnYWlRbaFoSWUzEUWvKm2abzQeN2J8LoZvG4+sZP/x+AsOKF34zcBaduo4s/PpHDJWSBMXcDYDtBX6RI9U0Nfup+2tppVCU/Q/IeK8LhI35/Bb+/8jaePByPGDC03GZJSsmPVbiwlNtpd1Yp2AxOoHRtO+r4MWvWJp3ZsOLvW7KVWnSC2LdvBxgVbKThWgN6gpU2/lpfmoi4CF8Olsw6IFUJEAWnAjcDZTY9qEEHhgfQYcSK0K31/Bi8Megur2crI54fReWhbIhvXIa5NNFEtIuk2vCOh9YIrXYzd9u9Oxg58A41G8PqcsXS9rgMRDcLw8DEREV2xnrqbE8iiSUqBUwRB0B+qcDd6wIbQVBwrLTQeoDnh6hD6WIS+YjG9C0F19GzOGtPVCG1tEN4X9ZouFv/+uYZZXyodpdiEqHKRdEII2l/dhp2r9+BXy5feN3fF29+rNAkLILZNDK36xLNp0XbXTnBwe4rb4FeGEOJa4GMgBJglhNgspewvhIhAhV8OlFLahRAPAXNRYZkTpZSJ59zzGoZGp8Vg0mE1W7FZbbz0p9JxT96ZysvXvU1RbjHj/niKpp0qLqZxcHsKJYVqATF5+yGadmxY4UKum0qQOa7fuSCLlN888HegRIl/XWEIIVyF3v+bRLeoR5dh7SnKLaa4oKTCNknbDrJ58XYMJgN3v3Fz6ZP4cQxGPSOeGYpGo2Hjgm0c3JZSY3XszxfnGqUzDZhWwefpwMCT3s8GZp/LuWo6YfVCeHPuCxzalUbbAS1LP9+74QCHdikPVuLK3ZUa/Db9W3H7KyMoOFZQmtHnpvoIz1uRmkCELra0gIcqhejmv0jzHk159+7PyUrLZt/mJHrd2AUPnxNPa4f2pOET6EOfW7vTbXgHgsLLZyaDCn9u2bMZ34+bgs1qJ7j2fzvR0Z1pex5p1LYBjdo2KPNZ826N6Xpde4weRjJTjvLlU99z/ZODCAo/sQh5OOkIb9z0AZmHjjH258f+8yGYFwKhq4/wfvBSd8PNBSQrPRuTpxFvfy8MBj0dB7dlxudz6Ty0HUYvY5m2/05dw/wflMZVx0FVL8Q2bNuAd5e+TMGxQlpdBhLH54Lb4F9gakWGMO73p5j11QI+GK3y0+rERdD71m7M/moBxQUl1G0Ywa61KpV/67JEmncvOzMtKTTz18ezyc3MY+gjAwmPurz0O9y4ORcOJx1hyvi/yM8uxNPbg8xDR7np2WHcMu56+t/Zg3qN65RbG4tpGYXeoMM32KeM3lVlNG5/ZVSpcxv8i4TepMfkaURKSWj9Wqz/ZzOfPz4JgLveGEnXYe3JSMnC6Gkibd/hMlE5mxZtK037NhdZePyr0ac9n91mZ9WM9WiEhg6DWpcWbXbj5nKgKL+Y/ZsPUrdhBDM+n8esr5S6ZUKf5mxauJ2YllF89th3HEvP5sWpT5dLkGp3VSu+3fE+epOhyidmm9VGYW4RAbX8L+Tl1BjcBv8CsnbOJia/9gdt+rfEXGIpLYxiMOrw8PYv1ev28vcktk00QbUD+PqZH0lOTOGpiSfcE0HhAXj6emIuNFOQW4S52ILJ01jZaQFY8ddaXhvxPgB9bu1G674t6HNLtwt3sW7cnAPp+zNY/89m4trG0KhdLN8+9zMzPp9Lq97xtOmvIms8fT0JjAhACIGXrycHE1U+545VuyvMiA0/TXTbrnX7+Pa5yWi1Gnre1IX+d/Sssv1/AbfBv4DM/3EpO1btYceqPYz77UkW/biMxh0bUq9pXfyCfflw1euYCy38OmEaWq2W5MRU+t/ZE9Mp/siGbRtwz1s3s3nRdlr2anZaYw/gsDlLX+ceyWPi8z/T88bO7pm+mxrJpBd+YfGvK/Gv5cfX295lz3rl4tyxcjfP/vQIepOBtN3pHEnJ4oEP76Trde1J3XuYvMw82g08uyCH5b+vYrMrJDOkbrDb4Ls5N1r3ac6y31bRcUgbWvdrznd7PkJv1LNn/QF+eOk3GrWLpe9t3Vk9Yz2/vfM3AL7BPrw6fQwAVouNnCO5BEcE0rJnUzKSMtFoBLO+msein1cw5KGr6HZ9hwrP3WVYO8b88BD7Nh1kwY/LGPxAf7exd1MjkVISFBFI8+5NyM7IJTkxldtfvoE1szfRqnc8gaH+xHdpxBePTcLpdFKvSR2CwgN59oeHyx1r78YDLP9zDU07NqT9aaLdmvdoyvRP/8E/1I+EPs0v1OXVKISUNVa9gDZt2sj16ytUXL5syErLxjvQq7Q8IsDrIz9gz7r9hNYL5trHriY6vh6Txv3K0t9Wcf97dxDTqj7/Tl1DzpFcFvy0jFtfHE5JoZk/3lVp9gl9m7Nx/lai4uvx1ZZ3qjy/3WYn50gegeH+aLVug++m5rHk1xW8PvIDjJ4Gbnh6CD++/DsRMWFMWDCO0Hohpe1WTl9H2t7D9Lixc2lt2dUzN7BuzkY6Dm5Lm/4tGTd0PKv+Xo/eqOeH/Z+cNuItKz0bo4cBnwDvC3qNFxMhxAYpZYWlytwz/AtMcO3y/3BRzepSlFvEun82s3P1Xj7fOIGnvn2A0e/ejl+wL68Mf4es1GyStqUAMO/7JbTp3xKAoHB/4lpHs3H+Vnrd1KncsU9Fp9eVfjncuDlfHEw8xBdPTMLD24PR799OaGTI6XeqhIzkowBYiq0c3K788un7MziWnl1q8B12B1lp2WSlZ3NgSzJ2mx3/EF/evfszco/mU5BbzMYFW/ELUVIUtWPDcDqcZKYcpVYVfbvSQqDdBv8ScP0Tgzh2OBcAm9WOzWpHq9PiF+wLQP34eqyesYFeN3cldXc6geEBLP9jNbe9PIKeN3amVmQw14zuV+HNpDLysvIpLihxh3S6OS+sn7uZDfO3AtBpaFv63tr9rI/V++auHNh6kKLcYqxmK1fd3Yvo5vVo2LYBTqeTGZ/PZdOi7dgsdtbO3kjSthRSdqby9sIXie/WhEO709m8eDs5Gbm06NmMl/8aQ3DtAF65/l32bUriucmP0n14x/N16Zc1boN/CTCYDNz07FBqx4ZTNy68XL3bEU8PJqF3POFRtbBZ7bww5C3MRRbiWkdTJ1aFa55uRnUw8RB/fTyboNqB9LihE6/c8C4pO9IY+8vjlfr93bipLk06NSQoIgBPHw/iWpeXhz4TQuoE0f/OXvz65p/Ed23C8GcGYzDq0Wq1HNqTzicPTwSgefem6PQ6TJ5GjqXnkJ2Rx+Nf3kfKrjR+fmMqa2dvwj/Yh46DWrNt2Q52r1MLv4krdrkNvgu3D7+GMHfSYmZ/vYCB9/Sh/51lowUKc4uwlFgrTQ+viIljfy4tqP7Yl/fywX1fATD8qcHcO+HW0nZF+cVsWbKDOnHhRFYjQcWNm+MU5BSi0Wrw8lUKsMX5xaTuy6BuXAQe3qbT7K0oLihh44Kt1KoXQlxCNMk7Unn/3i8AePyr0QTVDuDV4e+xccFW7n7rZuo1qk3iqj0Ehvkz6P5+6F2lBnOO5JK0LYXoFvXwD/GjpNDMz29M5eD2Q9z0/DCaVFDQ/L+K24dfwzEXW/hmzE/kHs0nbW8G3Ud0KhN66e3vVU746Tgr/lrLz2/8SdfrOjD8qUGlC7MxLeqj0WgIiQyiaadGjBw7jPS9GfQY0Znco3nM+noBBpOegmNF/PLmnwRFBPLqjDGYCy3EJkSVqQhUGZYSCwXZRWfkWnLz3+HkhU6n08knj0xk/g9Lueqe3jz+5X3lZJ+llMz8Yh47V+9hwF29aN69KdM+ms2kF37F28+Tj9e+ydZlO0hcuRuArct2MGh0P174/QmyD+dQOzYcrVZbYQW5gFB/AkL9S997eJu4+42by7W70nEb/BqAydNI/7t6MmX8dAbc1bNacfbHmf7pP+xZv5896/fT/YaOpT767jd0on58JEeSjzLphV+IbhnFU989gNHDyPRP5jDpf78C0GukkpXNzcxjyS8r+O2dvxkxZgj3vHlLlectLijhnbs+Y8W0tTz+1X0MuOvKK7BxpbFm9kaOpWfTdVh7fALL6s9bSqysm7MJgHVzNmGz2jAYy8o/p+45zEcPfgOA1WKnefemFOYWodFqaNGrGTlHconv0ojoFqpA/XGhQW8/L7z9Kp7wuDkz3Aa/hnDnqzcx5IEBBIT5n9F+XYe1Z+uSHdzwzGC0+rJhl/Ua12Hah7NY8dc6Vvy1jjZ9W9CkYxyBEYEIIdBoNbTu2xxriQ2NTsP+LQcRQrBvY9Jpz3s09RjLp64GYMO8LW6D/x9n55o9jBs8HqfTSf6xAm4cc22Z7R5eJh778j5Wz1hPow5x/PrWNDpc04a41jFIKTEXmQmo5UuL7k3YsWoPsQlRrJi+jsH398M/1JcVU9fyVI+Xuf/DO/ho1esAGE3Vn/i4qR5ug18D2L1+H0lbU2jdrwU6/Zn9Sa4Z3Q+/Wr68dcvHLPhpOVeP6k3/O3sSXDuI1N3pWIqtaDQaGiREERalKh91Hdae95e/itVs5a1bPiI7I5drRvej3cAE6sRF0H1E5wrPlXMkFw9vEyYvE7UbhHH7KyNYO3sTfW87+wgNN5cHQmhKqz5qtBUX8ek8tB3xXRtze9zDFOYUsXlRIq/PGcucr+ezZUki4dFh3D3+Flb8uYZvn/sZKSVPffsAdoudnWv2ArBmxgZiE6Jp2rFiGXE354bb4F9isjNyeHHo29SJCyf9wBHueu2mM9pfCEHKzjRsFhtHD2WxZUkiJi8j1z0+iAPbkln620qad29Ch0GtCTzp6aFpp4bs3XiA7IxcwqND8Qn0pP/tPeh/e49y58jPLmDdP5t49+4vaNKpIWN/eZSAWv7c8r/rueV/15/jCLi5HGjUrgFvzhlLVlo2nYYqH7rVYmP+90ux2+207d+CiJhwco/m4RfkQ2FOEY3ax/LOnZ+ydtZG2l7Vij8/mIV0SpJ3HOJ4sEhJYQkJvZuTujudg4mphNQJYsW0NZgLLST0ia+y/KObM6fiW3U1EUIMF0IkCiGcQogKV4Vd7Q4KIbYJITYLIa6MsJtq4nRImnSMZfu/u1g0eRnp+w6f8TG6DmtP9+EdaXdVS7LSs4lwKW3Gd21M71u74eFtpFWv8jrfDVpF8ehno9DqNWxdspPlU1dzJPkof3/2D6tnbgAgKTGFB9uOYe53S7BZbGxZvJ20PWX7KKVk2sezGZ3wNIt+WV5lX7MzcinKKzrja3Rz6Uno05x+t/co9advmLeFNbM38Pljk3hh0HiOpBxFr9fhX8uPHiM6k5V2jGW/r8JcbOHw/gwCQv2o17QO+zYl0WloW+587UZ639qNxh3iuPed2wgI9ScrPZvf35nBs/1fZe3sTZf4iv97nOsMfzswDPiyGm17SimzzvF8/zmCawcSFB6Aw+7gSHIWqfuOlBrs6lKvSV3+N+UJUnalYjXbaNAyClCRC09+fX+l+wkhyM8uIHX3YVI5jMnbxJrZG5n73WLiuzYmuHYgyTtSMZiMhEeFUtSmmMYdYtEZdXzz3E80bNOArtd1IO9oPt+MmUy7ga2Y+90SvPy8aF+BoNWa2Rt5dfi71I4N56VpzxAedX6KaxfmFqHVaasdCujm7MlMOcrUD2Zh9DDQpm8LnHYnDruDlF1ppO05TEKf5tz95kjS9h5m15q9dBzUhgNbk+l/Vy/iuzQmpmV94rs0xuBhKCObEFDLn+cmP8KCn5ax7p/NgJr9uzm/nGuJw52A+7HrHBk4qi/FBWaC6wTSrPPZ+y4jG9U5431a9YpnboMleHiZMHoa2bZ8JwB71u8HBI3bx2Iw6Zj9zQKuGtUb7wBP/vpoDuvnbmHPugNEt6hHWP1a3PLCdfz48u/YrHZyMnIrNPiJK3djKbFyYGsyKTtTKzX4UkpyjuThE+hVGmddGduW7+S1Ee8REObPC1OeoHbsmd0s3ZwZy6eu4c8PZgEqh0Nn1DH4wf54envQqL0qlh7ftQnxXZvQeVh7Dm47RN3GEfgH+5Ueo7KCJD4B3gy4sxc6vRatTkvHwZU6DdycJRfLhy+BeUIICXwppfyqsoZCiHuBewEiIyMra/afIio+kqe/u/jl+Q7uOERJoZl3l7zM7rX7qBUZTPr+DBb+tIxWvZvToFV9MpKPcmCL0vQ5uO0QRg8jtRtGkJ2Ry6aF25g3aQndbujI4IcHkJWeQ9qedELqBlOcX4ynKyHnOF2GtmP/piTComrRuEMsNquNaR/NJmVnGoNG96OhqzzkjM/m8ulj39Hv9h48/MndGEyGcn0/zvZ/d5KdkUt2Ri57NyVddgY/+0guORm5RMVHlqvaVBGZh7LQG3RlYs4vJvWa1kFv0GHwMFCcW8yKaWvx8DbxU9KneJ5UUxbAx9+b+K6Nz+j4Ht4mBo3ufz677OYkTptpK4RYAFRUSWCslHK6q80S4CkpZYX+eSFEhJQyXQhRC5gPPCylXHa6zl1JmbYXm9Q96TzSaSwF2YU88MGdXPvIwErbLvhxKevmbSGqWV26XtcBg0nPHXGPYjVbCYuqhXRKbv7fdRxJPsrk16YC8Mpfz1SYIHMyO1bt4dHOYwEY/EB/Hv7kHgCe6D6u9Enjp4OflZGRKMovxmFz4Buk4sD3bjzA549Pwj/Uj/vfv4OQy6gI9bH0bMb0f5XkxFTufO1GRj5/XZXtNy7cxktDJ+Ad6MVrM58jOr5ehe2cTie/v/s3839Yys1jr6PnjV3Oa79TdqVRXFDMnG8WcfjAEQLC/HngwzvwC/St1v7L/ljFz2/8Sc+bOjP8ycHVutG5qT7nlGkrpexzrh2QUqa7fmcKIaYB7YDTGnw3F478Y4UUZBcCSsK5Kvrc2p0+p4hj3ffObcz7fjG1IkNYMW0t6+dtoeuw9mi0GgJC/QiPqbraEECtesFExUeStC2ltBoYwNCHB1JcUEKPEZ3KZPEe2p3GS8PeJu9oPg99cjc9buhMbEI07y195Uwuvcawc81ekhNTAdi1Zh/ZGTkEhlUun7F6xnpKisyUFJnZt+kgu9bsJa51DA1aRZVpd+xwDt+MmQzA1PdnktC3BUYPQ7US+iwlFn585Q82LdzGna/dRJt+Lcq1OS7BMeOL+WxauA2AIQ8OwK+DMvjmIjNCKyqNo5/20Wz2bz7I/s0H6Tmic5Vqlm7OLxfcpSOE8AI0UsoC1+t+wOX5Df0P0ah9A56a+AAZSZn0u/3M4uiLC0qo2yiCcb8/yW/v/E2Lnk3JyVAx+t9sew+Tt6lakszBEYGMnz+O/KP51G4Yzq61+wgI9aPb9R0qFHjbuzGJlJ1pAMz+agG+QT4k9L48C1fkHyvAXGim4+A2mIssBNcJQmeo/OtoLrZwMPEQLXo0xTvAi1XT1/LvtLUE1wnk8w1v4x9yYnbtH+LLoPv7MfvrhbQbmMCt9e+n9y3dcEonXYd1LDXiJcVm1szYgG+QLwl9VBRXyq40poz/C4DFv/5bocE/TlxCFPO+W0xInSACQpWPfvf6fbx1y0d4eJt49qdHKlxX6jGiMztW7qHfHT3wr+VXbrubC8c5GXwhxLXAx0AIMEsIsVlK2V8IEQF8I6UcCIQC01wLuzrgZynlP+fYbzfniEajOeOSbsX5xcz7fgmH9qSzYto6gsL9ufG5a5n91QJC64dQJy6C2rHhFOYWYimxYPQwkrbvMEt/W4nBZGDQ/f0wepSd9QXU8iOglh8zv5jHhw98TVhUCO8seonQeuUXdOO7NqbDoDZkH87BarGTlVr1k0lNZd/mJF4cOoHwBmFEN6tLSZGVniM743uKXAFAbmYuDoeTwLAA6jery4zP5nH9k4NKs6FtZju71u6lw9WtS/fRG/Q88MGd3PbiDUx5+y8iGoSzfOoa8rLy2bRguyrubdAz77slfPLwt2g0Gt5d+jLNOjciLKoWHQe3Yd2czbSupAqUw+FgwQ9LMRdZeHXGs9gsdgpziiAKti3fRaorbHf3mn0VGvzBD/Sny7D2+AZ5n3ZR3s355VyjdKYB0yr4PB0Y6Hp9AKh8muDmsmHZH6v49NHvAGjdtzlbluygUdsGTNrzEUZPI7lH8/ltwnTWzNmIl78nd756I39/No9Vf6+naac46jeLrHTGmLxLuTYyko6SeegYS39fhbnIwqDR/UoXKEPqBPHUxAeYN2kRdpuDjkMqj+KwWW04HRKjR+ULvpeKfRuTVAY0MP2TuYx6+xbiO5df3Ny3OYn/XfMmliILr/z9LPe8dQtDHhxASN1gFk5eRlCEP0V5JWgryHzVueLhOw1ux8HEVHyDfdi0cBvxXRuVGlmb2QYon7/dql77+Hsz9tfHKM4vIaCWf4X93758F+/c/TkA1z46kGkfzsboYeDDla+T0LsZjTvEYvIy0aRLI5xOJ4W5xfgGnhBaE0KckfKrm/OHO9PWDaC0cf76eDYGDwNDH7qKbct2YrPa6XxtOwxGZSB8AtQMVAhBbOsYrr6vHyF1gwHYvW4fP778B5YSC1uX7gCgWedGzP56AU6HkwNbU6qMux94Tx+QUDs2nKzUbL5+5id1Tn8vrn306tJ2fkE+DH9ySJXXkrbvMBNu/4SC7EKe+eFhGrmif84HWWnHSN6RRlyb6LMui9eqTzxDHx7Ajy//gdPpZP73S7n+8UHl2h3Yksyx9BwA9m44QHzXxtRuoLJZp74/i+TEQ1wzum85/SWH3UH+sQL8QnyJ79qYN7uqxfnkXanUb1q3tF3/u3pi8jLiG+xDix7NSj83moxV6tj4BHrj4WWipMiMzWwHlHhaUW4Rzbs35f3lr6LRaMjOyOXdez4n90genYa24+pR57wc6OYccRt8NwAs+2M1v72tCqkbPIxMfE4t+o354WH63NINgI5D2jB+3gtodVpa9GhaZv8jyUdx2O0YPdXioH+YH817NGXEM0OY/ulcBo7qXWXIZFSzSB788C4Atq/Yhd6gw25zEBIZXK3+71y9B4fDSbPOjdi9dh/JO1KRTsmWxYnnzeCbi8y8fuP7bF+xm4H39uHxL+5j8+LtpOxMo9OQNgRXI0Iobe9hElfuxi/Ej05D2pCyK51+LjkLh8PBst9Xk5eVT6+bupDQJ56Bo/pgKbHS/poTeQ0FOUUccq1lpO4+zLihE/hs3Xj8Q3xxOp18+/xkpr4/izteGcFNzw0DlJFu1qlRmb74BHhzzeh+pe+dTid7NxzAN9i3zM358IEM5v+wlPDoUHrf0o3o5vV4f/mr5GTmUScunIAwPzy8TNRrrm4mxyW6l/y2knmTlgAq3NJt8C89boPvBoA6ceFodVoMRj2BJy2kSaez9LVGoyGhEr9ug1ZRNOvWGLvVTu+bu9KiR1MCwwJo2DqGG54Zckbyts06N+LjNW9iNVtp3P70hSs2LtjKcwNeR0rJbS8NpzCvmOjm9RACYltH43Q62bokEaOXsVrHqwxzsZV9mw4CkLz9EKl7D/P8wDewWWyk789g9Lu3V7m/w+Hg3VFfsG3ZDnre1IWVf6/HL9iX8Gglab1lcSJvjPwAALvFzvVPDuLxL+8rd5y6cRE88/1D/PvnavKPFVKcX8zqGesJCPOncYc4Znw2D6fDyayvFnDDM0OqXbx+7neLeW/UF4TUCeKdxS8SEaNu0DO/XMBvb08HoE5cBI07xBHTsj6gXGd71u9nzayNJO9I5amJD5zoZ8MINFoNGo3mjOPx3VwY3AbfDQDtBybw+cYJ6Aw6IqJDMXmbsFvtdL2u/Wn3XfbHKt68+SMatW/A/357gqCTQguFEGelZR7Ton65zw7tTsNutRN1Svx5zpE8nK4b0+51B/AO8MLoaWTzou1kphxl6ZSVvHHzh2h1Wt5e9CLxXc7O+PiH+DJ2yuNsXZpI56Ht0QiBTqfFZrGh1Z3eqEqnxFxoBkAgue3lG4iIqkX7q9Xs3ehpRKPR4HQ6MXpVHULZ++auNGwbw5rZG2k7oCWLfl6Ow+nk/nfv4J7xNzPrywVc/8Q11TL225bvwOmQHNqdDij3XlZaDt7+XpiLbQRFqL+nT6A3PoFl3ViWEis7V+0BlISyw+EoPWe7Aa34dO2bIESp3IebS4u7xKGbc+aTRyYy/ZM5ALy39JWzms0lrtzNtuU7aN2vBbGtVEz++rmb+e2dv0no05z4ro14rv/raPVarn/yGnIycul/Zy9iE6IpLihhzjcLKCk0czT1GLO/XohGo6Hr8A6MfH4YWxZt57PHJwHw4tSn6XJtu/N27YkrdnFodzrtr0mocJFz55q9rJqxnhbdm9K6b3P2bT7IztW7WfX3erb/u4umnRvx2sxnS43kliWJFGQX0vaqluUimmxWG4t/WUFxfjE9buyMRqth/+aDzPxiHiWFZnat3ccr05+h2UkLwMk7UjEXm2nYpmK31ro5mxh7zZtIKXn2p0fYvXYfYVG1SOjbnJevfZsjKVm88PsTGIwGgiICyqwBHGfNrA2sn7+FToPa0qp3eZE+NxcXd4lDNxeU7jd0ImVnKjEt65dLAqoOxfklvH7jexxNzWbl3+v58N/XEELwz3eL2bRwG5sWbuOhj++ipMhMq17NmPTCFABsNgePf3Efnj4eXOda9Pz5zT8B5Y/ue2t3ouPrERQegNVqw8PLRPPujfjxld/ISDpKvzt7sOD7peRl5XPnayOJiq9cyiP3aB77NycT3SKyjGFv2rkRTTs3ImlbMg67k+CIsuUev3z6BxL/3cWKv9YyYd44GrSsj9HTwJJfVxIVH4neqMdhd5Ya/FPXRk5mw9wtvH3np4TUDWbTwu1sXLCVLsPas+yP1dSKDCYg1A+/kzRrdq/bx9O9XsZcbOGF356g63XlcxvyswtLpYptZisPfHAnACv/XkfqXhVeuXfDfm57cUSFfTp2OJtWveNpf1JYqJuai9vguzln4rs0YsL8cWe9v0anISAsgKOp2fiH+JaK8TXr3JBlv6+iy7B2aHVaBo3uh0+QN4cPZJJxMJM6cRFljpOyK5XaMWHc9cZNpO3N4IcXpxAQ6kdc6xhGPD0UgE2LtvHDS7+X7jPv+yUANO4QV6nBdzqdfHDfl6z4ax2dhrRl3B9Plhpom9XG0ikrmXDHp4RHh/LW/P9xeF8mhTmFtL8mgdoxodhKrNhsDp7s+SJjvn+IpO2H2LpMRTLd9uINpVFQFZG8I5WfX5+Kb7APHa5ujUajoXaDMFb+vQ6A3KP5aDQa6jaMYNhjg6jb8MSYHE09RkmRciEdTjpS4fE7DWnLgx/eicPhpOv1HQEV5dOsSyOGPTqQY+k5dLm2/I0CYOZX8/n4gW/oPqIjT3w9GpOnW620puM2+G4uOSZPI89PfpQ9Gw7QtNOJRdVd6/fTokdTPH09+fD+rzGYDPS5tRte/p606h1PwzbRHE46QnhUKPnZBYwbPIG0fYe5ZnRf5n63GIDNixOJax1Teszw6FDCokLITD6Gd6AXHQe1Rkpo2K7ySB671c6+zQcBSl0o9ZrUxWq28tEDX9OwXQOklKTvz2D78l28fcenSCl55LNRjJpwK3O/W8w3z6qop81LEmk7oCW16oXgsNpoe1XLKsdmxfS1LPrlX0Alnk1YMI6SIgsNWkexavp6+t/Rg+ufGERMy3r4h5TNWm3dtwWjxt9CUV5xpXo6Ht4mhj58Qkdp2sez+f3tv7nhmSHc//6dVfZt9Yz1OJ1OFv+ygttfHkHtM5T1dnPxcRt8N1VSkFPI3g0HqNekDkGnuCvOJ7Vjw8uFbWalHmPL4kTaXdUKAKvZSmi9YJZPXU2dhhFM+t+v7Fyzj3G/P0Gjdg3IzlAx6whB8+5NKMwpomXPZmWOGVa/Fgl9WpC+L4P0vRmlhV4qKtMopSTvaD4+gd488fX9rPtnEzaLjU8enqjcSE9cw5HkLILrBHPzC9fhsDlI2ZFKRIMw0vYexm6x4R/iR/cbOrFx4Tbyj+aT0CeeBi2j+GLDeKSkVASuIqSUNGwdg8FkICDMj/pN6xLZWGWudrg6gVFv3VKl8JiHt4kbnq44Z8HpdDLry/ns3ZjEVXf3onGHOIryi/nplT/IP1bA5NemctXdvatMXBs4qg+5mXl0GtKWsPrnp7aBmwuL2+C7qZJvnpvM7K8W0KxrY96cM7ZaAlzni9Hv3s7a2ZuITYiiUftY/EN8GXB3L4Y+PJBt/+7if1e/AcDu9fvpOLgtL017ht1r99JhUBsiG9XGbncw8/O5vHfPZ4wYM7R0ljv04atYPXMDXr4erJm1Eb1RT0jdsjH0x9KzWTxlJVPG/0W36zvQoFUUXYa1Z+5E9eQQGO5PXOsY/EN8iWsdzaGd6Sz7YxWg6gwPGt2PPi6NorD6tXhzzlicDmdpzWKfCmQUjpOZcpRPHp5IblY+D398N9/t/hC9UU/AKboz56IymZx4iI8e/AZQ4aKNO8Sxb+MBmnZuyOZF2+k+vONps5Q7DW5Lp9MoorqpWbgNvpsqObhNaeErOQBLtQ1+zpFcVvy1jogGYSScZeRGg5ZR5Gbmk5lylCEPDSjVmtEb9EiHg3YDE7CWWKkTp54MEnrHlzlXXlYBXz39E06nk1/f+qvU4DvsTpb9vhIvPyUzXCsyiPpNIzEXmclMycLkbeJ/17xJ0rYUOg1py8wv59O0U0OStibz3rJXad2vOVHxkUQ2qsMP+z9hweRlHNqVhkarwelwkpl8FL9gH3z8T4QwajSaahvoxJV7WDVDRadtmL+FG8dce1bjVxUBYf7EtYlmz/oDpTH1Hj4ebFu2g7qNahPdvGLpZTeXN26D76ZKRo2/hX//Wkurns3wC66e3jkoCdxf3pyG3qDjsw3jqd/0zIvZ7Nmwn7FXv4HT4STnSC43jz1RML0or4S1szei0Wroc2u3Cvf3DfLmmtF9mfnF/DIum61LEksTqPrc2o12V7XCbrPz0QNfM//HZdz5+k0kuW50VouNq0f1Zv6Py9HpNHj4GNHqtKycvo6p782kz63dSejVnLWzN3PVPb1x2Oz8++da2g5odcbXe5y41tHEtYkh50gu8V2bnLa91Wxl44JtBIT6lRaROR3+IX68NuM5stKzS3X141rH8MY//yMvM5+EvpenCqmbqnEbfDdV0qxLY5qdRaKSOC7oJQTiLF0PQojSiB0hyh6j07VtefTzUTgdzgrDDUEJiN3//h2MHHsdgSfpzTTv3oQGCVHEtKzPod3ppOxKwz/Eh6W/rwZg6e8refzL+9i3OYn+d/YkMCyAmJZRRMXXY+fqvSz6+V/WzNqofPxZ+bz05zO8On0MoATPug3vVGV4ZUUU5BTisDvwD/Gjdmw47y55GafdUa5qWEXM+XYRnzz8LXqjno9Wvl7t0NiAUP9ylbMat4s9o367ubxwG3w3F4RhjwwkPKoWETFh1Gt85rV2AWITonlzzlgyU7LodIoypoeniX539GTbsh1kpmRVmBAEyuifqszYoFUUz3z/EPe3egaH3UFRXjGPfX4vj30xitUzN9BrZFc6Dy2bnHX1vX0BSN+fgd6gJ7JJbZITU4k9KQIIOKuM0qTEFF4aMoHCvGJemvYM8V0andFaSUF2AQA2i43i/OIzPr+bKwe3wXdzQfAL9mXAnb3O+ThVZW7O+nI+nz32HT4BXny48nXqNqy4OHZF+Ph7ERDqR1ZadmnxkL639aDvbT3IzcrHarFVGB8fVDuA5X+uJrJxHW56/lqGPzW4zHZLiRWDSV/6ZFId9m86SPoBFSe/a80e4rs0Os0eZbnqnj7oTQaCwgNo5tascVMF51RMUgjxthBilxBiqxBimhDCv5J2A4QQu4UQ+4QQz57LOd24Oc6xdFUApSCniILsojPaN7h2EG/N/R+v/PVMGaO96Jd/GVl3NG/d8hGFeeWP2aBFFD1u7ExJQTHxXRqXuSmsmrGe2xs8xDt3fXZGM+0WPZvS+5audBzchnZXJZx+h1MICg9gxNND6HNLN3d9WDdVck5aOkKIfsAiKaVdCDEeQEo55pQ2WmAP0BdIBdYBN0kpd5zu+G4tHTdVcfhABvN+WEpY/VD63nZ+jN2EOz5h/g9LAfh844QKXTSqYIgdg6ls2OK7oz7nn28XAfDJ2rdo2Cam3L5u3FxoLpiWjpRy3klvVwPXV9CsHbDPVfkKIcSvwBDgtAbfjZuqCI8O4/aXKtZ4OVt6jOjEvo1JtOnfooxMwcloNJpyxh5UXPq62Zto3a8FdV2hoge2pbB29gaadGhI8+6nj7hx4+ZCcj59+HcBUyr4vDZw6KT3qUClmrtCiHuBewEiI888lM+Nm3Oh3VUJZ+VWAeg4qA0JfZqX8eFPfG4ya2ZvxCfQm+92fXhGoa1u3JxvTmvwhRALgLAKNo2VUk53tRkL2IHJFR2igs8q9SNJKb8CvgLl0jld/9y4qUmcmp3qHahqAfgF+6DVV68QiRs3F4rTGnwpZZV1yYQQtwPXAL1lxQsCqcDJMXN1gPQz6aQbN5cro966hfYDWxPTst5ZFYJx4+Z8ck4uHSHEAGAM0F1KWVlYwjogVggRBaQBNwIjz+W8btxcLgRFBNLzxs6Xuhtu3ADnGJYJfAL4APOFEJuFEF8ACCEihBCzAaSUduAhYC6wE/hNSpl4jud148aNGzdnyLlG6VQo3CGlTAcGnvR+NjD7XM7lxo0bN27ODXeWhhs3btxcIbgNvhs3btxcIbgNvhs3btxcIbgNvhs3btxcIbgNvhs3btxcIZyTeNqFRghxFEg+g12CgawL1J1zoab2C2pu32pqv6Dm9q2m9gtqbt9qar/g7PtWT0oZUtGGGm3wzxQhxPrKVOIuJTW1X1Bz+1ZT+wU1t281tV9Qc/tWU/sFF6ZvbpeOGzdu3FwhuA2+Gzdu3Fwh/NcM/leXugOVUFP7BTW3bzW1X1Bz+1ZT+wU1t281tV9wAfr2n/Lhu3Hjxo2byvmvzfDduHHjxk0luA2+Gzdu3FwhXLYGXwjxthBilxBiqxBimhDCv5J2A4QQu4UQ+4QQz16kvg0XQiQKIZxCiErDqoQQB4UQ21zS0helWvsZ9O2ijpsQIlAIMV8Isdf1O6CSdhdlzE53/ULxkWv7ViHE2dVFvDB96yGEyHON0WYhxLiL1K+JQohMIcT2SrZfkjGrRr8u1XjVFUIsFkLsdH0nH62gzfkdMynlZfkD9AN0rtfjgfEVtNEC+4FowABsAZpchL41BhoCS4A2VbQ7CARf5HE7bd8uxbgBE4BnXa+frejvebHGrDrXj5L/noMq4dkBWHOR/n7V6VsPYObF/L9ynbcbkABsr2T7pRqz0/XrUo1XOJDgeu0D7LnQ/2eX7QxfSjlPquIqAKtRpRNPpR2wT0p5QEppBX4FhlyEvu2UUu6+0Oc5G6rZt0sxbkOA712vvweGXuDzVUV1rn8I8INUrAb8hRDhNaRvlwQp5TIgu4oml2TMqtGvS4KU8rCUcqPrdQGqQFTtU5qd1zG7bA3+KdyFugueSm3g0EnvUyk/oJcSCcwTQmwQQtx7qTtzEpdi3EKllIdBfRGAWpW0uxhjVp3rv1T/W9U9b0chxBYhxBwhRNOL0K/qUJO/j5d0vIQQ9YFWwJpTNp3XMTunilcXGiHEAiCsgk1jpZTTXW3GAnZgckWHqOCz8xKHWp2+VYPOUsp0IUQtVJnIXa7ZyKXu2wUZt6r6dQaHuSBjdgrVuf4L9r91Gqpz3o0oPZVCIcRA4C8g9kJ3rBpcqjE7HZd0vIQQ3sBU4DEpZf6pmyvY5azHrEYbfClln6q2CyFuB64BekuXw+sUUoG6J72vA6RfjL5V8xjprt+ZQohpqMf1czZe56FvF2TcquqXEOKIECJcSnnY9ciaWckxLsiYnUJ1rv+C/W+dhtOe92SjIaWcLYT4TAgRLKW81CJhl2rMquRSjpcQQo8y9pOllH9W0OS8jtll69IRQgwAxgCDpZTFlTRbB8QKIaKEEAbgRuDvi9XHqhBCeAkhfI6/Ri1CVxhFcAm4FOP2N3C76/XtQLknkYs4ZtW5/r+B21xRFB2AvOMuqQvMafsmhAgTQgjX63ao7/mxi9C303GpxqxKLtV4uc75LbBTSvleJc3O75hd7JXp8/UD7EP5tja7fr5wfR4BzD6p3UDU6vd+lEvjYvTtWtSd2QIcAeae2jdUlMUW109iTerbpRg3IAhYCOx1/Q68lGNW0fUDo4HRrtcC+NS1fRtVRGNdgr495BqfLaiAhk4XqV+/AIcBm+t/7O6aMGbV6NelGq8uKPfM1pPs2MALOWZuaQU3bty4uUK4bF06bty4cePmzHAbfDdu3Li5QnAbfDdu3Li5QnAbfDdu3Li5QnAbfDdu3Li5QnAbfDdu3Li5QnAbfDdu3Li5Qvg/h3nSz1jkFF8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from itertools import cycle, islice\n", + "\n", + "# Plot the input data.\n", + "fig, ax = plt.subplots()\n", + "\n", + "sns.scatterplot(X[:, 0], X[:, 1], s=10, c=y, ax=ax)\n", + "ax.set(title='Input Data');" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "id": "9bc2d854", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAGDCAYAAACbcTyoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA4KklEQVR4nO3deZSc9X3n+8+31t731tLaJcQiwIBohLCBeIkNxk4gmUmGnJtAiO9l4uOZcSbxndg5Z262ySQzkzhzcnPtxLGNxSQxIV7GxMHYxAYDRiAa2UZIAmtHolvqXb1XdVV/7x/1tNRqtVot6Kqnuur9OqdOVf3qeaq/D4jWh9/2mLsLAAAAxScSdgEAAACYG0ENAACgSBHUAAAAihRBDQAAoEgR1AAAAIoUQQ0AAKBIEdQAlAUz+ysz+89h1wEAl4KgBiAUZnbUzH46T9/9q2b23Mw2d/91d//Dt/h959RqZvea2YCZ/dQcx7qZnTKz2Iy2mJl1mxkbVwK4JAQ1ACVlZkDK0/ffL+n/k/Qhd//+BQ4blPTBGe/vkjSQz7oAlCaCGoDQTfeAmdmfBj1VR8zsgzM+rzezL5hZl5m9aWb/xcyiM879gZn9uZn1S/oHSX8l6RYzGzGzweC4L5nZfwleN5rZN82sJ/h53zSz1Quo80FJfybpDnd/fp5D/5ek+2a8v0/Sw7O+a75r2mRm3zOzPjPrNbO/M7OGGeceNbNPmNkrZnbazP7BzCqCz1qC6xk0s34ze9bM+F0PLFH8xwugWNws6XVJLZL+u6QvmJkFn+2QlJF0maQbJH1A0v8569zDkpZJ+mVJvy5pp7vXuHvDHD8rIukhSeskrZU0LukvL1LfRyX9oaT3uXvHRY7935JuN7OGIGDdJukbs46Z75pM0h9LapN0laQ1kn5v1vm/KOlOSRskvUPSrwbtvyXphKRWScsl/Y4khlyBJSqvQwQAcAmOufvfSJKZ7ZD0GUnLg3ldH5TU4O7jkkbN7M8lPSjpr4NzO939/w1eZ87mu7m5e5+kr06/N7M/kvTURep7f3DMngVcy4Skf5L0b5QLXY8FbdM/b/l81+TuByUdDA7vMbNPS/rdWT/jL9y9M/i+f5J0fdA+KWmlpHXB9zy7gHoBFCl61AAUi5PTL9x9LHhZo1yvV1xSVzCcN6hcQFs249zjl/KDzKzKzP7azI6Z2ZCkZyQ1TA89XsCvS7pc0uene/rMbG8wvDpiZrfNOv5h5YY8zxv2vNg1mdkyM3skGBIdkvS3yvU0znRyxusx5f5ZSdL/UC7kfcfMDpvZJy/yjwNAESOoASh2xyWlJLW4e0PwqHP3q2ccM3to72JDfb8l6QpJN7t7naTbg/b5uuK6Jb1PuWHMz0iSu18dDK/WuPvsnqtnlevZWi7puVmfXeya/ji4hncE9f3yRWo7w92H3f233H2jpJ+R9Jtm9r6FnAug+BDUABQ1d++S9B1Jf2ZmdWYWCSbbn7c1xgynJK02s8QFPq9Vbl7aoJk16fxhxQvV0inpvZLuDIYq5zvWlQtKPxu8vpRrqpU0EtS3StL/vZD6JMnMPmxmlwW9fkOSssEDwBJEUAOwFNwnKSFpn3LbXHxFud6qC/mepL2STppZ7xyf/09JlZJ6Jb0g6YmFFuLux5ULa//azP74Isfudfe9F/h4vmv6fUlbJZ2W9M+SvrbQ+iRtlvQvygW9nZI+4+5PX8L5AIqIzfofPQAAABQJetQAAACKFEENAACgSBHUAAAAihRBDQAAoEgR1AAAAIpUyd5CqqWlxdevXx92GQAAABf18ssv97p76+z2kg1q69evV0fHxe6bDAAAED4zOzZXO0OfAAAARYqgBgAAUKQIagAAAEWKoAYAAFCkCGoAAABFiqAGAABQpAhqAAAARYqgBgAAUKRKdsPbfElnsuodSevZAz3a1zmsLW21um1zq1pqEkrEomGXBwAASkjegpqZVUh6RlIy+DlfcfffNbMmSf8gab2ko5J+0d0HgnM+JekjkrKS/oO7fztov1HSlyRVSnpc0sfd3fNV+4WkM1ntPjao+x/apVRm6kx7MhbRjge2aeu6BsIaAABYNPkc+kxJeq+7Xyfpekl3mtl2SZ+U9F133yzpu8F7mdkWSfdKulrSnZI+Y2bTqeezkh6UtDl43JnHui+odyR9XkiTpFRmSvc/tEu9I+kwygIAACUqb0HNc0aCt/Hg4ZLulrQjaN8h6Z7g9d2SHnH3lLsfkXRQ0jYzWympzt13Br1oD884p6CePdBzXkiblspM6bmDvQWuCAAAlLK8LiYws6iZ/UhSt6Qn3f1FScvdvUuSgudlweGrJB2fcfqJoG1V8Hp2+1w/70Ez6zCzjp6enkW9Fkna1zk87+f7O4cW/WcCAIDyldeg5u5Zd79e0mrleseumedwm+sr5mmf6+d9zt3b3b29tbX1kuu9mC1ttfN+flVb3aL/TAAAUL4Ksj2Huw9Kelq5uWWnguFMBc/dwWEnJK2ZcdpqSZ1B++o52gvuts2tSsbm/keWjEV062UtBa4IAACUsrwFNTNrNbOG4HWlpJ+W9JqkxyTdHxx2v6RvBK8fk3SvmSXNbINyiwZ2BcOjw2a23cxM0n0zzimolpqEdjyw7bywFo+advzaNrXUJMIoCwAAlKh87qO2UtKOYOVmRNKj7v5NM9sp6VEz+4ikNyT9giS5+14ze1TSPkkZSR9z92zwXR/V2e05vhU8Ci4Ri2rrugY99Yl367mDvdrfOaTxyawaqxO6pq2OrTkAAMCishC2IyuI9vZ27+joyPvPOTU0ob9/8Q3dsqlZ2zc25/3nAQCA0mNmL7t7++x2biH1Ni2vq9CmZTXa/caAJiazFz8BAABggQhqi+CWjc1KTU5p97GBsEsBAAAlhKC2CFprk7p8ea1+eHxQ42l61QAAwOIgqC2S7RubNJmdUsex/rBLAQAAJYKgtkiaa5K6ckWtfnx8UKOpTNjlAACAEkBQW0TbNzYrOyXtOkqvGgAAePsIaouooSqhLW112nPitIYmJsMuBwAALHEEtUW2bUOTJOmlI/SqAQCAt4egtsjqK+O6ZlWdXn1zSKfH6FUDAABvHUEtD25a36SISS8e6Qu7FAAAsIQR1PKgtiKua1fXa3/XsAZG02GXAwAAliiCWp7ctL5J0Yj0wmF61QAAwFtDUMuT6mRM161p0OunhtU7kgq7HAAAsAQR1PKofV2T4tEIvWoAAOAtIajlUWUiqhvWNujAqRF1D0+EXQ4AAFhiCGp5tnVto5LxiHYeolcNAABcGoJanlXEo7pxbaMO94zq5Gl61QAAwMIR1Arg+rUNqkxEtfNwb9ilAACAJYSgVgDJWFTt6xp1tHdMbw6Oh10OAABYIghqBXLdmgZVJ6N6/iC9agAAYGEIagUSj0Z00/omnRgY1/H+sbDLAQAASwBBrYCuXVWv2oqYnj/UK3cPuxwAAFDkCGoFFItGtG1DkzoHJ3S0j141AAAwP4JagV3dVq+6yrh2HuqjVw0AAMyLoFZg0Yjp5g1NOjU0oUM9o2GXAwAAihhBLQRbVtapsSqunYfpVQMAABdGUAtBJGK6eWOzeodTOtA9EnY5AACgSBHUQnLF8lo11yS081CfpqboVQMAAOcjqIUkEjHdsrFZ/aNpvXZyOOxyAABAESKoheiyZTVqrU3qxSN9ytKrBgAAZiGohcjMdMumZg2OTWp/11DY5QAAgCJDUAvZxpZqraiv0AuH+5TJToVdDgAAKCIEtZCZ5eaqDU9ktLeTXjUAAHAWQa0IrGuu0qqGSu060q9JetUAAECAoFYEpueqjaQy2vPm6bDLAQAARYKgViTWNFVpTVOVXjrSr3SGXjUAAEBQKyrv3NSssXRWPz4xGHYpAACgCBDUikhbQ6U2tFSr4+iAUpls2OUAAICQEdSKzC2bmjUxmdUP3xgMuxQAABAyglqRWV5XoU3LarT7jQFNTNKrBgBAOSOoFaFbNjYrNTml3ccGwi4FAACEiKBWhFprk7p8ea1+eHxQY+lM2OUAAICQENSK1PaNTZrMTqnjKL1qAACUK4JakWquSerKFbV65cSgRlP0qgEAUI4IakVs+8ZmZaekXUf7wy4FAACEgKBWxBqqEtrSVqc9J05raGIy7HIAAECBEdSK3LYNTZKkl47QqwYAQLkhqBW5+sq4rllVp1ffHNLpMXrVAAAoJ3kLama2xsyeMrP9ZrbXzD4etP+emb1pZj8KHnfNOOdTZnbQzF43sztmtN9oZnuCz/7CzCxfdRejm9Y3KWLSi0f6wi4FAAAUUD571DKSfsvdr5K0XdLHzGxL8Nmfu/v1weNxSQo+u1fS1ZLulPQZM4sGx39W0oOSNgePO/NYd9GprYjr2tX12tc1pIHRdNjlAACAAslbUHP3LnffHbwelrRf0qp5Trlb0iPunnL3I5IOStpmZisl1bn7Tnd3SQ9LuidfdRerm9Y3KRYxvXCYXjUAAMpFQeaomdl6STdIejFo+ndm9oqZfdHMGoO2VZKOzzjtRNC2Kng9u32un/OgmXWYWUdPT89iXkLoqpMxXb+mUa+fGlbvSCrscgAAQAHkPaiZWY2kr0r6DXcfUm4Yc5Ok6yV1Sfqz6UPnON3naT+/0f1z7t7u7u2tra1vt/Sic+O6RsWjEXrVAAAoE3kNamYWVy6k/Z27f02S3P2Uu2fdfUrS30jaFhx+QtKaGaevltQZtK+eo73sVCaiumFtgw6cGlH38ETY5QAAgDzL56pPk/QFSfvd/dMz2lfOOOznJL0avH5M0r1mljSzDcotGtjl7l2Shs1se/Cd90n6Rr7qLnZb1zYqGY9o5yF61QAAKHWxPH73uyT9iqQ9ZvajoO13JP2SmV2v3PDlUUn/VpLcfa+ZPSppn3IrRj/m7tngvI9K+pKkSknfCh5lqSIe1Y1rG/X8oT6dPD2hFfUVYZcEAADyxHILKUtPe3u7d3R0hF1GXqQyWT30g6NaVpvUz29dffETAABAUTOzl929fXY7dyZYgpKxqNrXNepY35jeHBwPuxwAAJAnBLUl6ro1DapORvX8wd6wSwEAAHlCUFui4tGIblrfpBMD4zrePxZ2OQAAIA8IakvYtavqVVsR0/OHelWqcw0BAChnBLUlLBaNaNuGJnUOTuhoH71qAACUGoLaEnd1W73qKuPaeaiPXjUAAEoMQW2Ji0ZMN29o0qmhCR3qGQ27HAAAsIgIaiVgy8o6NVbFtfMwvWoAAJQSgloJiERM2zc1q3c4pQPdI2GXAwAAFglBrURcvqxWzTUJ7TzUp6kpetUAACgFBLUSEYmYbtnYrP7RtF47ORx2OQAAYBEQ1ErIZctq1Fqb1ItH+pSlVw0AgCWPoFZCzEy3bGrW4Nik9ncNhV0OAAB4mwhqJWZjS7VW1FfohcN9ymSnwi4HAAC8DQS1EmOWm6s2PJHR3k561QAAWMoIaiVoXXOVVjVUateRfk3SqwYAwJJFUCtB03PVRlIZvXLidNjlAACAt4igVqLWNFVpTVOVOo72K52hVw0AgKWIoFbC3rmpWWPprH58YjDsUgAAwFtAUCthbQ2V2tBSrY6jA0plsmGXAwAALhFBrcTdsqlZE5NZ/fCNwbBLAQAAl4igVuKW11Vo07Ia7X5jQBOT9KoBALCUENTKwC0bm5WanNLuYwNhlwIAAC4BQa0MtNYmdfnyWv3w+KDG0pmwywEAAAtEUCsT2zc2aTI7pY6j9KoBALBUENTKRHNNUleuqNMrJwY1mqJXDQCApYCgVka2b2xSdkradbQ/7FIAAMACENTKSENVQlva6rTnxGkNTUyGXQ4AALgIglqZ2bahSZL00hF61QAAKHYEtTJTXxnXNavq9OqbQzo9Rq8aAADFjKBWhm5a36SISS8c6Qu7FAAAMA+CWhmqrYjr2tX12t81pIHRdNjlAACACyColamb1jcpFjG9cJheNQAAihVBrUxVJ2O6fk2jXj81rN6RVNjlAACAORDUytiN6xoVj0boVQMAoEgR1MpYZSKqG9Y26MCpEXUPT4RdDgAAmIWgVua2rm1UMh7RzkP0qgEAUGwIamWuIh7VjWsbdbhnVF2nx8MuBwAAzEBQg65f26DKRJReNQAAigxBDUrGorppfaOO9Y3pzUF61QAAKBYENUiS3rG6QdXJqJ4/2Ct3D7scAAAgghoC8WhEN61v0omBcR3vp1cNAIBiQFDDGdeuqldtRUw7D9OrBgBAMSCo4YxYNKJtG5rUOTiho31jYZcDAEDZI6jhHFe31auuMq6dh/roVQMAIGQENZwjGjHdvKFJp4YmdKhnNOxyAAAoawQ1nGfLyjo1VsW18zC9agAAhClvQc3M1pjZU2a238z2mtnHg/YmM3vSzA4Ez40zzvmUmR00s9fN7I4Z7Tea2Z7gs78wM8tX3ZAiEdP2Tc3qHU7pQPdI2OUAAFC28tmjlpH0W+5+laTtkj5mZlskfVLSd919s6TvBu8VfHavpKsl3SnpM2YWDb7rs5IelLQ5eNyZx7oh6fJltWquSWjnoT5NTdGrBgBAGPIW1Ny9y913B6+HJe2XtErS3ZJ2BIftkHRP8PpuSY+4e8rdj0g6KGmbma2UVOfuOz03DvfwjHOQJ5GI6ZaNzeofTeu1k8NhlwMAQFkqyBw1M1sv6QZJL0pa7u5dUi7MSVoWHLZK0vEZp50I2lYFr2e3I88uW1aj1tqkXjzSpyy9agAAFFzeg5qZ1Uj6qqTfcPeh+Q6do83naZ/rZz1oZh1m1tHT03PpxeIcZqZbNjVrcGxS+7vm+1cHAADyIa9BzcziyoW0v3P3rwXNp4LhTAXP3UH7CUlrZpy+WlJn0L56jvbzuPvn3L3d3dtbW1sX70LK2MaWaq2or9ALh/uUyU6FXQ4AAGUln6s+TdIXJO1390/P+OgxSfcHr++X9I0Z7feaWdLMNii3aGBXMDw6bGbbg++8b8Y5yDMz0zs3NWt4IqO9nfSqAQBQSPnsUXuXpF+R9F4z+1HwuEvSn0h6v5kdkPT+4L3cfa+kRyXtk/SEpI+5ezb4ro9K+rxyCwwOSfpWHuvGLGubqrSqoVK7jvRrkl41AAAKxkp1Q9P29nbv6OgIu4yScbx/TF95+YRuv7xVN65rvPgJAABgwczsZXdvn93OnQmwIGuaqrSmqUodR/uVztCrBgBAIcTCLgBLx03rGrRj5zF9+snXNZ6e0pa2Wt22uVUtNQklYtGLfwEAALgkBDUsSDqTVdfplB7eeUyZGXuqJWMR7Xhgm7auayCsAQCwyBj6xIL0jqR1/0O7zglpkpTKTOn+h3apdyQdUmUAAJQughoW5NkDPUpdYG5aKjOl5w72FrgiAABKH0ENC7Kvc/77fe5njzUAABYdQQ0LsqWtdt7Pr2qrK1AlAACUD4IaFuS2za1Kxub+45KImm69rKXAFQEAUPoIaliQlpqEdjyw7bywFo2YfunmtaqrYAExAACLjb9dsSCJWFRb1zXoqU+8W88d7NX+ziFd1Vany1pr9PTr3XrmQK8+eM0K5W7HCgAAFgNBDQuWiEXV1lCpX2xfc057Zsr1g4O9WtNYpWtX14dUHQAApYehT7xtN61v1LrmKj39erd6R1JhlwMAQMkgqOFtMzPdcfUKJeMRPb6ni3uBAgCwSAhqWBTVyZjuvHql+kfTevr17rDLAQCgJBDUsGjWNldp2/om7e0c0msn2QAXAIC3i6CGRbV9Y7NWNVTqu/u7NTDK/T8BAHg7FhzUzOxDZvafzOz/mX7kszAsTZGI6c5rVyhipsdf7VImy3w1AADeqgUFNTP7K0n/RtK/l2SSfkHSujzWhSWsriKuD1y9XN1DKT3LzdoBAHjLFtqj9k53v0/SgLv/vqRbJK25yDkoY5taa3TD2gb96I1BHeweCbscAACWpIUGtfHgeczM2iRNStqQn5JQKm69rEXL6yr0nX0ndXp8MuxyAABYchYa1L5pZg2S/oek3ZKOSnokTzWhRMSiEd117Qq5S0+82qXslIddEgAAS8qCgpq7/6G7D7r7V5Wbm3alu//n/JaGUtBQldBPX7VcnYMT2nmoL+xyAABYUua916eZvdfdv2dmPz/HZ3L3r+WvNJSKK1bU6nj/mF462q/VjZVa31IddkkAACwJF7sp+09J+p6kn5njM5dEUMOC/NQVreo6Pa5v7z2p/2P7OtUkL/ZHDwAAzPu3pbv/bvDyD9z9yMzPzIzFBFiweDSiu65dqS/vekNPvHpSP3/DKkUiFnZZAAAUtYUuJvjqHG1fWcxCUPqaa5J69xXLdLx/TLuO9oddDgAARe9ic9SulHS1pPpZ89TqJFXkszCUpqvb6nRiYEwvHO7T6sZKrW6sCrskAACK1sV61K6Q9GFJDcrNU5t+bJX0f+W1MpQkM9N7rlymhsq4nnj1pMbT2bBLAgCgaF1sjto3zOybkn7b3f9rgWpCiUvGorrr2pV65KXj+s6+k/rZ69pkxnw1AABmu+gcNXfPSnp/AWpBGVlWV6HbNrfocM+odr8xGHY5AAAUpYXukfC8mf2lpH+QNDrd6O6781IVysL1axp0fGBcPzjYq1UNlVpRz7RHAABmWvBN2ZVbVPAHkv4sePxpvopCeTAzfWDLclUlonp8T5cmJpmvBgDATAvqUXP39+S7EJSninhuvto/dpzQd/d3665rVzBfDQCAwIJ61MxsuZl9wcy+FbzfYmYfyW9pKBdtDZV652XN+smpYe1583TY5QAAUDQWOvT5JUnfltQWvP+JpN/IQz0oU+3rGrW+pUrff71HPcOpsMsBAKAoLDSotbj7o5KmJMndM5KYUIRFY2a64+oVSsYjenxPl9KZqbBLAgAgdAsNaqNm1qzcjdhlZtslMUaFRVWViOmD16zUwFhaT73eHXY5AACEbqHbc/ympMckbTKzH0hqlfSv81YVytaapipt29CkFw/3a01jlba01YVdEgAAoVnoqs/dZvZTyt1SyiS97u6Tea0MZWv7hmadGBjXU693a0V9hZqqE2GXBABAKBY69ClJ2yRdp9x9Pn/JzO7LT0kod5GI6YPXrFA0Ynp8T5cyWearAQDK00K35/hfym1we6ukm4JHex7rQpmrrYjrA1uWq2c4pWcP9IZdDgAAoVjoHLV2SVvc3fNZDDDTxtYabV3XqN3HBrS6sVKbl9eGXRIAAAW10KHPVyWtyGchwFxuvaxFK+or9OT+Uzo9zrRIAEB5WfA+apL2mdm3zeyx6Uc+CwMkKRox3XXNSrlL39rTpewUnboAgPKx0KHP38tnEcB86qviev+W5frnV7r0/KFe3ba5NeySAAAoiIVuz/H9fBcCzOfy5bU6vnpMHUcHtLqxShtaqsMuCQCAvJt36NPMngueh81saMZj2MyGClMikHP75a1qqU3q23tPaiSVCbscAADybt6g5u63Bs+17l4341Hr7mwZj4KKRyP60LUrlclO6Vt7ujTFfDUAQIm7lA1vL4mZfdHMus3s1Rltv2dmb5rZj4LHXTM++5SZHTSz183sjhntN5rZnuCzvzAzy1fNKH5N1Qm958plOjEwrheP9IddDgAAeZW3oCbpS5LunKP9z939+uDxuCSZ2RZJ90q6OjjnM2YWDY7/rKQHJW0OHnN9J8rI1W31umplnV480qfj/WNhlwMAQN7kLai5+zOSFtrlcbekR9w95e5HJB2UtM3MVkqqc/edwWa7D0u6Jy8FY0l575XL1FAZ1xOvntRYmvlqAIDSlM8etQv5d2b2SjA02hi0rZJ0fMYxJ4K2VcHr2e1zMrMHzazDzDp6enoWu24UkUQsorvesVITk1l9Z+8pcdMMAEApKnRQ+6ykTZKul9Ql6c+C9rnmnfk87XNy98+5e7u7t7e2stdWqVtWW6HbL2/Vkd5R7X5jIOxyAABYdAUNau5+yt2z7j4l6W8kbQs+OiFpzYxDV0vqDNpXz9EOSJLesbpem5fX6LkDfeo6PR52OQAALKqCBrVgztm0n1PuHqKS9Jike80saWYblFs0sMvduyQNm9n2YLXnfZK+UciaUdzMTD991XLVVMT0+J6TmpjMhl0SAACLJp/bc3xZ0k5JV5jZCTP7iKT/Hmy18Yqk90j6j5Lk7nslPSppn6QnJH3M3af/xv2opM8rt8DgkKRv5atmLE0V8ajuunaFRiYy+pf9zFcDAJQOK9W/1Nrb272joyPsMlBAHUf79eyBXr33ymW6bk1D2OUAALBgZvayu7fPbg9j1SeQFzeua9SGlmo985MedQ9PhF0OAABvG0ENJcPM9IGrl6siHtXjr3QpnZkKuyQAAN4WghpKSlUipjuvWaHB8Ul977XusMsBAOBtIaih5KxpqtLNG5q1v2tIeztPh10OAABvGUENJenmDU1a3Vipp17rVv9oOuxyAAB4SwhqKEmRiOmD165ULBrRP+/p0mSW+WoAgKWHoIaSVZOM6Y6rV6h3OKVnfsK9XwEASw9BDSVtQ0u12tc36pUTp/WTU8NhlwMAwCUhqKHkvXNTi1bWV+jJfad0emwy7HIAAFgwghpKXjSYr2YmPf5ql7JTpXk3DgBA6SGooSzUV8b1/quW6+TpCf3gYG/Y5QAAsCAENZSNzctrdd2aer18bECHe0bCLgcAgIsiqKGs3L65Va21SX1n3ykNTzBfDQBQ3AhqKCuxaER3XbtS2SnXt149qSnmqwEAihhBDWWnqTqh91yxTG8OjOuFI31hlwMAwAUR1FCWtrTVaUtbnXYd6dfx/rGwywEAYE4ENZSt91yxTI1VCX3r1S6NpTNhlwMAwHkIaihbiVhuvlpqckrf3ntS7sxXAwAUF4IaylprbVI/dUWrjvaO6eVjA2GXAwDAOQhqKHvXrqrX5ctr9YODfeocHA+7HAAAziCooeyZmd531TLVVsT0+J4uTUxmwy4JAABJBDVAklQRj+qua1dqNJXVk/tOMV8NAFAUCGpAYEV9hW7d3KKD3SP68YnTYZcDAABBDZhp69oGbWyt1jM/6VH30ETY5QAAyhxBDZjBzPSBLStUlYjq8T1dSmWYrwYACA9BDZilMhHVndes0OD4pJ56rZv5agCA0BDUgDmsbqzS9o3N2t81rL2dQ2GXAwAoUwQ14AK2rW/SmqYqPf16t/pGUmGXAwAoQwQ14AIiEdOd16xQPBrR43u6NJmdCrskAECZIagB86hJxnTH1SvUO5LW91/vCbscAECZiYVdAFDs1rdU66b1TXrhcK+S8Yg6B8e1r3NYW9pqddvmVrXUJJSIRcMuEwBQgghqwALcuK5Bz/ykR7/60EvKTp1dBZqMRbTjgW3auq6BsAYAWHQMfQILMDA2qS89f+SckCZJqcyU7n9ol3pH0iFVBgAoZQQ1YAGePdCjdHbu/dRSmSk9d7C3wBUBAMoBQQ1YgH2dw/N+vp+91gAAeUBQAxZgS1vtvJ8vq0sWqBIAQDkhqAELcNvmViVjc//nEo2YeoZT+udXujQ8MVngygAApYygBixAS01COx7Ydl5YS8YievjXtum9Vy7T4Z4RPbzzmDqO9p+36AAAgLfCSvWG0+3t7d7R0RF2GSgh6UxWvSNpPXewV/s7h3RVW51uvazlzD5qp8cm9fRPunW4Z1RN1Qm954plWttcFXbZAIAlwMxedvf289oJasDiOtwzoqdf79Hp8UldvrxWt1/eotqKeNhlAQCK2IWCGhveAotsY2uN1jZVqePYgF460q+jfaO6eUOTbljbqGjEwi4PALCEENSAPIhFI9q+sVlXrajT0z/p1rMHerW3c4jhUADAJWExAZBH9VVx3X39Kt19fZuyU66v7j7B6lAAwILRowYUAMOhAIC3gqAGFAjDoQCAS8XQJ1BgDIcCABaKHjUgJAyHAgAuJm89amb2RTPrNrNXZ7Q1mdmTZnYgeG6c8dmnzOygmb1uZnfMaL/RzPYEn/2FmfE3GErG9HDofbes1+rGSj17oFd/+8IxvdE3FnZpAIAikM+hzy9JunNW2yclfdfdN0v6bvBeZrZF0r2Srg7O+YyZRYNzPivpQUmbg8fs7wSWPIZDAQBzyVtQc/dnJPXPar5b0o7g9Q5J98xof8TdU+5+RNJBSdvMbKWkOnff6blbKDw84xyg5GxsrdF9t6zTLZuauXcoAKDgc9SWu3uXJLl7l5ktC9pXSXphxnEngrbJ4PXsdqBkzVwd+v0DPawOBYAyViyrPuead+bztM/9JWYPmlmHmXX09PQsWnFAGOqr4vrZ69p0zw2rNOUMhwJAOSp0UDsVDGcqeO4O2k9IWjPjuNWSOoP21XO0z8ndP+fu7e7e3trauqiFA2HZ0FKtX9l+7nDoSwyHAkBZKHRQe0zS/cHr+yV9Y0b7vWaWNLMNyi0a2BUMkw6b2fZgted9M84BysbM1aFrmqr0HKtDAaAs5HN7ji9L2inpCjM7YWYfkfQnkt5vZgckvT94L3ffK+lRSfskPSHpY+6eDb7qo5I+r9wCg0OSvpWvmoFid6Hh0CGGQwGgJFluMWXpaW9v946OjrDLAPImk53Sy8cGtOtIv8ykmzc2ayub5QLAkmRmL7t7++x27kwALFGxaEQ3b2zWlSvr9P2f9Oi5A73ax+pQACgpxbLqE8BbVF/JcCgAlCp61IASsaGlWmsa150ZDj3SO8JwKAAscQQ1oIRcaDj03Ve0al1zddjlAQAuEUOfQAmaPRz6td1v6puvdDIcCgBLDD1qQAmbORz60tF+He0dZTgUAJYQghpQ4hgOBYCli6FPoEwwHAoASw89akCZYTgUAJYOghpQhuYaDt375mm958plDIcCQBFh6BMoYzOHQ11iOBQAigw9agAYDgWAIkVQAyDp3OHQZ2YNh66sr1DvSFrPHujRvs5hbWmr1W2bW9VSk1AiFg27dAAoWQQ1AOeor4zrZ65r05HeUT39erf+seO4ohbRZ79/UOmsnzkuGYtoxwPbtHVdA2ENAPKEOWoA5rShpVq/sn2drlpZp798+tyQJkmpzJTuf2iXekfSIVUIAKWPoAbggmLRiEZSGWWnfM7PU5kpPXewt8BVAUD5IKgBmNe+zuF5P//Oqyd1tHdUmexUgSoCgPLBHDUA89rSVjvv57FoRF//4ZtKxCLa0FKtTa01WtdcpYo489YA4O0iqAGY122bW5WMRZTKnN9jloxF9DsfulLZKelQ94gO9Yzo9ZPDikZMa5oqtam1Rhtba1ST5FcNALwV5j733JOlrr293Ts6OsIuA1jy0pmsdh8b1P0P7TonrCVjEe34tW3auvbsqs+pKdfJoQkd6hnRoe4RDYzlNs5dUV+hTa012tRareaaZCjXAQDFzMxedvf289oJagAuJp3JqnckrecO9mp/55CuaqvTrZe1zLuPmrurfzStQz2jOtQzopOnJyRJjVVxbVpWo02tNVpZXyEzNtQFAIIagFANT0zqcBDajvePa8pd1cmoNrbUaNOyGq1prFQsyvomAOXpQkGNiSMACqK2Iq7r1jToujUNmpjM6mjfqA51j+r1U8Pa8+ZpJWIRrW+u1qZl1VrfXM1iBAAQQQ1ACCriUV25ok5XrqhTJjul4wPjOtQ9osO9I/rJqdxihNWN04sRqlVbEQ+7ZAAIBUENQKhi0dy2HhtaquW+TF2nzy5G+N5r3frea+cuRmiqTjCvDUDZIKgBKBpmpraGSrU1VOq2za3BYoRcaPvBwV794GAvixEAlBWCGoCi1VSdUFN1k25a36SRVEaHe3J7tf3wjUF1HB1gMQKAkkdQA7Ak1CRjesfqBr1jdW4xwrG+sdwGuyxGAFDCCGoAlpyKeFRXrKjVFStqlclO6cTAeG6ItCe3GCFiwWKEZbl5bSxGALBUsY8agJLhHtwZoTu3X1v/aFqStLyuQptaq7VpWY2aWYwAoAixjxqAkmdmWllfqZX1lbp1c8s5ixGeP9Sn5w/1qaEqnltBuqxGK+sqFIkQ2gAUL4IagJJ1ocUIPzo+qJePDagqEdXGYNuPtU1VLEYAUHQIagDKwszFCKlMVkd7x87MaXs1WIywrrlKm1prtKHl3MUI0/c6ffZAj/Z1DmtLW61u29w6771OAWAxENQAlJ1k7OxihOyU68TAWDBEOqoDp0bOWYywprFCB06N6v6HdimVmZrxHRHteGCbtq5rIKwByBsWEwBAwN11aih1ZgVp30hawxOTenjnMWWmzv9dmYxF9NQn3q22hsoQqgVQSi60mIAJGQAQMDOtqK/Quy5r0X23rNf971yvZCwyZ0iTpFRmSo/9uFPj6WyBKwVQLhj6BIALaKpOaCw9Ne8xT+zp0ng6q+pkVC01STXXJNVcnVBrbVJN1QnFWaAA4G0gqAHAPLa01c77+R3XrNC2DU3qHUmrbyStV44PnumBM5PqK+NBgEuopSaplpqkGirjbAsCYEEIagAwj9s2tyoZi5yzkGBaMhbR3devOmeO2tSU6/T4pPpGU+oZTqtvNKW+kdx+btNTgmMRU2P1dHBL5HrhahKqTcbYjBfAOQhqADCPlpqEdjywbe5Vn7+2TS01iXOOjwQhrLE6ocuWnW2fzE5pYDSd63kbTal3JKUTA2Pa3zV09jvjEbVUn+19m37mvqVA+WLVJwBcxPQ+as8d7NX+ziFd1VanWy9rWZR91CYms+odyfW69Y2m1DucVu9oSqnJs6GwtiKm5pqEmquTZ3rhmqoTbNALlBBuIQUAb1EiFlVbQ6V+sX3Non93RTyq1Y1VWt1YdabN3TWSygTz3lLqHUnneuD6z53/1liVOBPgWmtzz/XMfwNKCkENAIqMmam2Iq7airg2tFSfaZ+acg2OT6p3JHWmF65nOKWD3Wfnv8WjpqYzw6eJMytRqxNR5r8BSxBBDQCWiEjEgvuXJnT58rOrUSezU+ofzYW2vtFcL9yxvlHt6zw7/60iHp0R3HLPTdWJi85/4/ZZQLgIagCwxMWjES2vq9Dyuopz2sfTwfy30bR6h1PqG01pX9eQ0plz57+11ibVHPTCNdck1FSVm/+WzmS1+9ggt88CQkRQA4ASVZmIak1TldY0nTv/bWgio74ZAa53NK1jfWPKBvPfImZqrI4rYqbf/6e9msyeu+gslZnS/Q/t4vZZQAEQ1ACgjJiZ6ivjqq+Ma2Pr2fbslGtgLLdpb99ISj0jKf3LvlPnhbRpqcyUHvrBEX34HW2qqYiptiKm2mRcFfEIc+GARURQAwAoGrEzd06QcvPfdh8bnPecjqMDqkqc+9dIPGqqScZUWxE/J8DVVsTOvE8yXAosWChBzcyOShqWlJWUcfd2M2uS9A+S1ks6KukX3X0gOP5Tkj4SHP8f3P3bIZQNAGXlYrfPunfbGn3oHW0amchoeGJSw6mMhicyZ94f7x/TSCqj2dt1JmIR1U0Ht+TcgY57pAI5Yfaovcfde2e8/6Sk77r7n5jZJ4P3v21mWyTdK+lqSW2S/sXMLnf3bOFLBoDycbHbZ922uVU1yZhqkjGtqK+Y4xtyQ6qj6VyAG56YDEJcJgh1k+oeSmksff6v88pENOiZm37Ez74Pwl2U/eJQBopp6PNuSe8OXu+Q9LSk3w7aH3H3lKQjZnZQ0jZJO0OoEQDKxqXePmsu0YipriKuuoq4pLkXHmSyUxpJTYe5INAF74cmMnpzcPycOzVIuQ1/qxLRcwPcrEBXnYi97c1/2Z4EYQsrqLmk75iZS/prd/+cpOXu3iVJ7t5lZtN3yVsl6YUZ554I2s5jZg9KelCS1q5dm6/aAaAsJGJRbV3XoKc+8e683D5rWiwaUUNVQg1VFw5+6czUOQFuZqDrH03rjf6xc7YdkXKrV6uT0fN75Ga8r5pnI2C2J0ExCCuovcvdO4Mw9qSZvTbPsXP9FzTnMqQg8H1Oyt3r8+2XCQDlLZ+3z7q0OiJqDu6yMBd3VyozdV6P3PT7U0MTOjSROXMLrmnRiF2wR240ldF9X3xRabYnQYhCCWru3hk8d5vZ15UbyjxlZiuD3rSVkrqDw09ImvkbYrWkzoIWDAAoamaminhUFfGoWmsvHObGJ7NzDrGOTGR0YmBco6kRTQWrH/Z2nj4vpE1LZab0aMdx3XP9KlUlo6pOxFQZj3KfVSy6ggc1M6uWFHH34eD1ByT9gaTHJN0v6U+C528Epzwm6e/N7NPKLSbYLGlXoesGACxtZqaqRExViZiW1819zFSw+GEkldEfPz467/c9/Vr3OStap+fNVSViqk4Gz4nYmSBXlYiqOhhuTcbYbw4LE0aP2nJJXw/+gMYk/b27P2FmL0l61Mw+IukNSb8gSe6+18welbRPUkbSx1jxCQDIh0jEVFsRV21FXO+6rFmP/fjCAzj3bF2lD2xZobF0RqOprEbTGY1NP6ez6hsZ01g6e+aODzNFI3ZOcJsZ6GaHPLYqKW8FD2rufljSdXO090l63wXO+SNJf5Tn0gAAOONi25N8YMuKi85Rm547N5rKhbfRINSNzXgemsjo5OkJjU9mz9tzTsrNz6tORFWVnLuHbvqzynh0UbcsYcVrcSim7TkAACgai7E9ycy5c80XOXZqKjeHbnbP3JmQl8qodySl0f7MeduV5H6WVBmPnj/8Oscw7MVu9cWK1+JhPld8LwHt7e3e0dERdhkAgCVsulcpn9uTvBWZ7JRG0+f2zJ15Tmc1ljr7PHulq3R26PXcIDfdaxfV8ERG935u55yLKZKxCCte88DMXnb39tnt9KgBAHABxbI9yWyxaET1lRHVV8bnPc7dlc5OXbCHbiyd1Ugqc+YOEQtd8frF547ojmtWqDIeVWUi14tXGfQcslBicRHUAAAoUWamZCyqZCyqxur5h2qnty8ZTWX1Xx/fP++xu98YUHVy7ggRjVgutCWiqgqCXOWM56pELtBNB7yKGNuazIegBgAAztm+ZPvGJn39h29e8Nh7t63VPdev0vhkVhOTWY2lsxpPZzU+efZ5LJ3RxGRW3UOTGpvMzjmvLvdzpWRsRq/czIA3HfKmA17wPt8rYYtpIQVBDQAAnONiK15vvaxFiVhEidjFh1+nZaf8TKibmJwOc9PBLqPx9JTGJ7M6PZbWycmsxtNTZ4ZiZ0vEIrleuRk9dFWJ83vvpl9fynBssS2kIKgBAIBzLMaK19miEcttJ3KBIdPZprc2OdtDN6P3bvJswBtLZ9U3mtZ4OqPJC8yrmzkcOx3upufUzQ54g2Pporp1GEENAACcIxGLauu6Bj31iXeHtuJ15tYmjQs8ZzI7dTbEpc+GupkBbyKdVffQhMYnpzQxef7++RdbSPHcwd6CLi4hqAEAgPMU64rX+cSjEcWjEdVVLGw4dnrvuplz6w52j8x7zv7OocUodcEIagAAoCxF5hiOvf3yFv3znq4LnnNV2wVuFJsn3EAMAAAgML2QYi7TCykKiaAGAAAQmF5IMTusvZ2FFG8HQ58AAACBYlhIMRNBDQAAYIZiWkjB0CcAAECRIqgBAAAUKYIaAABAkSKoAQAAFCmCGgAAQJEiqAEAABQpghoAAECRIqgBAAAUKYIaAABAkTJ3D7uGvDCzHknH8vxjWiT15vlnFKtyvnapvK+/nK9dKu/rL+drl8r7+rn2/Fvn7q2zG0s2qBWCmXW4e3vYdYShnK9dKu/rL+drl8r7+sv52qXyvn6uPbxrZ+gTAACgSBHUAAAAihRB7e35XNgFhKicr10q7+sv52uXyvv6y/napfK+fq49JMxRAwAAKFL0qAEAABQpgtpbYGZfNLNuM3s17FoKzczWmNlTZrbfzPaa2cfDrqlQzKzCzHaZ2Y+Da//9sGsKg5lFzeyHZvbNsGspJDM7amZ7zOxHZtYRdj2FZmYNZvYVM3st+O//lrBrKgQzuyL4dz79GDKz3wi7rkIxs/8Y/L571cy+bGYVYddUSGb28eDa94b1752hz7fAzG6XNCLpYXe/Jux6CsnMVkpa6e67zaxW0suS7nH3fSGXlndmZpKq3X3EzOKSnpP0cXd/IeTSCsrMflNSu6Q6d/9w2PUUipkdldTu7mW5l5SZ7ZD0rLt/3swSkqrcfTDksgrKzKKS3pR0s7vne5/O0JnZKuV+z21x93Eze1TS4+7+pXArKwwzu0bSI5K2SUpLekLSR939QCHroEftLXD3ZyT1h11HGNy9y913B6+HJe2XtCrcqgrDc0aCt/HgUVb/p2NmqyV9SNLnw64FhWNmdZJul/QFSXL3dLmFtMD7JB0qh5A2Q0xSpZnFJFVJ6gy5nkK6StIL7j7m7hlJ35f0c4UugqCGt8zM1ku6QdKLIZdSMMGw348kdUt60t3L5toD/1PSf5I0FXIdYXBJ3zGzl83swbCLKbCNknokPRQMe3/ezKrDLioE90r6cthFFIq7vynpTyW9IalL0ml3/064VRXUq5JuN7NmM6uSdJekNYUugqCGt8TMaiR9VdJvuPtQ2PUUirtn3f16SaslbQu6xsuCmX1YUre7vxx2LSF5l7tvlfRBSR8LpkCUi5ikrZI+6+43SBqV9MlwSyqsYLj3ZyX9Y9i1FIqZNUq6W9IGSW2Sqs3sl8OtqnDcfb+k/ybpSeWGPX8sKVPoOghquGTB/KyvSvo7d/9a2PWEIRj2eVrSneFWUlDvkvSzwVytRyS918z+NtySCsfdO4PnbklfV27eSrk4IenEjB7krygX3MrJByXtdvdTYRdSQD8t6Yi797j7pKSvSXpnyDUVlLt/wd23uvvtyk15Kuj8NImghksUTKj/gqT97v7psOspJDNrNbOG4HWlcr/EXgu1qAJy90+5+2p3X6/cEND33L0s/u/azKqDxTMKhvw+oNywSFlw95OSjpvZFUHT+ySV/AKiWX5JZTTsGXhD0nYzqwp+979PuXnJZcPMlgXPayX9vEL4MxAr9A8sBWb2ZUnvltRiZick/a67fyHcqgrmXZJ+RdKeYK6WJP2Ouz8eXkkFs1LSjmDlV0TSo+5eVltUlLHlkr6e+7tKMUl/7+5PhFtSwf17SX8XDAEelvRAyPUUTDA/6f2S/m3YtRSSu79oZl+RtFu5Ib8fqvzuUPBVM2uWNCnpY+4+UOgC2J4DAACgSDH0CQAAUKQIagAAAEWKoAYAAFCkCGoAAABFiqAGAABQpAhqALAAZrbezMpm7zQAxYGgBgAAUKQIagBwicxsY3Bz8pvCrgVAaSOoAcAlCG6j9FVJD7j7S2HXA6C0cQspAFi4VknfkPSv3H1v2MUAKH30qAHAwp2WdFy5e94CQN7RowYAC5eWdI+kb5vZiLv/fcj1AChxBDUAuATuPmpmH5b0pJmNuvs3wq4JQOkydw+7BgAAAMyBOWoAAABFiqAGAABQpAhqAAAARYqgBgAAUKQIagAAAEWKoAYAAFCkCGoAAABFiqAGAABQpP5/p4asKMKciH4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "inertias = []\n", + "\n", + "k_candidates = range(1, 10)\n", + "\n", + "# Inertia measures how well a dataset was clustered by K-Means. It is calculated by measuring the distance between each data point and its centroid, \n", + "# squaring this distance, and summing these squares across one cluster.\n", + "\n", + "for k in k_candidates:\n", + " k_means = KMeans(random_state=42, n_clusters=k)\n", + " k_means.fit(X)\n", + " inertias.append(k_means.inertia_) \n", + " \n", + "## the Elbow method; find the point where the decrease in inertia begins to slow. K=3 is the “elbow” of this graph, we know it is two cluster data, we will try both\n", + "fig, ax = plt.subplots(figsize=(10, 6))\n", + "sns.scatterplot(x=k_candidates, y = inertias, s=80, ax=ax)\n", + "sns.lineplot(x=k_candidates, y = inertias, alpha=0.5, ax=ax)\n", + "ax.set(title='Inertia K-Means', ylabel='inertia', xlabel='k');\n" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "id": "746d8a0e", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\manifold\\_spectral_embedding.py:259: UserWarning: Graph is not fully connected, spectral embedding may not work as expected.\n", + " warnings.warn(\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABAwAAAFsCAYAAABILyuLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyddZgVVRvAf+/c3GTpbkHBwEAFEYVP7O5W7O5uLFQsVGws7O5GCRUDDLq7e/vurTnfH2fu3VsLC+wudX7Ps8/uzsw5c2bmzJn3vOcNUUphMBgMBoPBYDAYDAaDwZCItbkbYDAYDAaDwWAwGAwGg2HLwygMDAaDwWAwGAwGg8FgMKRhFAYGg8FgMBgMBoPBYDAY0jAKA4PBYDAYDAaDwWAwGAxpGIWBwWAwGAwGg8FgMBgMhjSMwsBgMBgMBoPBYDAYDAZDGptNYSAi80RkZB2eT4nI63V1vpo+v4i8LiImB6Zhi0FE+jj9uv8m1FGn44Ch5hCRkSIyb3O3Y1PZ1LG1Jt4Dw5ZDTcsKZpw0GAyGdGpThhCR/s6426c26q9rtoRvQI0qDESkg4i8JCLTRKRcRNaKyBQReUNE+tbkubYUnA751eZuhyEzIlJfRCqc53TW5m7P1kCCgHvj5m7LtoaIZIvItSLyi4isEZGwiCwXkW+cD5x7c7exrhCR40RkQC3W/7rTjxvV1jkM1UNEDnOexf0Z9vV09gVFJDvD/u9FxN7SnqMZJw1Vsa6+ISIHikiRiCwVkd02R/u2dETELyIXicjnzkQpICJzRORdEemyudu3MWxN8yOn/w4QkYLN3ZZUROQgEflARBY634wSEflbRB4UkVaboT21KsdsSdSYcCoi3YFRQBgYBkwGsoDOwNFACTAiociOwPa0Yp4FRDd3I7ZDzgS8wFzgAuCtzducbYrR6H4d3twN2RoQkR2Ar9Fj4nDgIWAV0AToB7wGdAVu3lxtrGOOA84FBmzeZnARcOlmbsO2zq9ABMgkGPdx9nmB/dDvBgCOAm0/YJJSalXtN7NWMOOkAQAROQr4EFgGHKyUmrWZm7Sl0g54CT1uvAIsAToAlwEniMhhSqkRVRffstiI+dHmpg9wD/A6ULg5GxJDRCzgReBCYD7wDjAT/d3YC7gC/S1vUsdNO466kWM2+5y5Jlez7gGygT2UUv8l7hCRK4FmiduUUsEaPPcWj1KqYnO3YTvlAvRA/DkwWEQ6KqVmb46GiIgAOUqp0s1x/ppGKWUDpl9XAxHJAr5CCz0nKqU+STnkERHZG9i7zhu3naOUCmMmc7WKUqpURMYC+4hItlKqPGF3H+BHYHfn7+EJ+/YGcoGRNdEO5z0MK6UiNVFfdTDjpAFARM4A3gBmoJUFSzZzk7ZkVpJ5LvE28C/wKNB9M7RrY9mg+dHWhoh4AFctz3MGoJUF7wL9lVKhlDbcgL7P2wyJ93VLmDPXpEtCJ2B16ssA+oOZOjhm8seIbRORnUTka8fUpEhEPhKRtBdKRHYTkR9EpExEVjumPY1kA3wQRaSfU0ehY7o+QURqfLUpU5ti2xyTzFHOdawSkaEikluNOrMck62Q8zHCuXfPichk5/6VO+Y6F1VRxwbdQxE5VUR+Taj7TxE5aePuSu0iInuihdA3gLfRk4LzEva7RGSxiPxTRflLnPtwXMI2n4jc7tzfCqfffCkie6SUjfutisgVIjIFLTTe6Ozfx3n2M5z7WCIiv4nI8VW05UAR+V20ad4yEXlKRHZ2zjEg5VgRkcuc5x6re4TUsNmbZPDNTbnu85z7FBSR+SJSrZVzEWkvItNFZIk4JpsicoiIvC/aLDHg3PcfROTAKuo4UUTGO89ogYjc47zrab7E1X2mm8iFaA3x4xmUBQAopcYqpZ5LadtxTr8odX5+E5FjM1xvbOzsJiLDnWNXiMhjIuIWbeL5mNPfK0RktKSYdkqlz18/0eaI851nN0FETqvuhYpIJxF5U7TJbchp26MikpNwzEi0Vj42DsZ++icc01xEnneeX8jpDy+JSI2uIEiGGAZS6c5Qz2nDCue+/SYi+1az3nNFu5x85PQxS0TucO79MueaFjj1N8xQPltEnnDuY7mI/CHaHDNjzIXq3PfNzAjAA/SKbZBKC4JR6JX41DGqT0LZDRo3E55hYxF5VUSWA2VAK2f/ziLynehv3xoReaum+5ZzHjNObueIyGXAm8A/wAGJ8nBCP23o/L3K6defiSP3isjFIjLVue/TJMM3wDmuWvKZc9wXzjMPOuf8TDK4SMgGyOUi0kBEnhSR2U5bV4uWQ27akPullKpqLjEFmATssiH1bQFs6PwoNjfo54z75VIp96WN56K/U4+IyCznea4U7b7RIcOxXhG5WUT+c+otEpFxohUXiJb7YxPvuVL5bR7g7B/g/L+z6O/TIrRs28PZX+2+VV2ccfkmtGXB+anKAuc+FiqlrltPPbG2t8uwL9Oc9EjRc7NVzni6QEQ+EZHOzv6R1JAcU437utnnzDVpYTAb2FFETqhKIK4mLdGrCZ+iO0g34BIgHzgkdpCIdAJ+QSs9ngYWA0cA31b3RCJyMfAC8AfwIFqYOBh4XvRK9AYNchvJ7uiVx9fQJjZ90KviNnBxVYVEC5hfogfOI5RSsVWZPsABTp1zgRzgZOAlEWmklHoooY4Nuoci8gBwB/AdcJfTxuOBD0XkSqXUsxt68bXMBehn+rFSqkxEvgbOFZG7nUE6KlpjfZOI7KKUmpRS/hy0yfjXENf2fYcWcN8EhgD10GZQv4nIAUqpcSl1XAs0BF5GmyEudLYfD+wEfIAeBBuiB55PRORMpdQ7sQpEZH/gB2At8DDaROwUEgTvFN4ETgc+QvcrH9o140fn/fxivXdu07kUaIo2JywEzkKvoi9KvLZURCt5vkFfa0+l1HxnV3+gAdqcbxF6nLgQ+ElE+iqlfkmo41S0Fno2cC/a3PlctOlf6vk25pluDDGh7aXqFhCRy4FngWnAA2hztP7AZyJyiVIqta5W6JXa99HP/hDgBrQr1M5oE8iHgUZoxdVnItLFWQFN5BH0uPG8c87zgHdFxK+Uen09bd4L+Bn9zF9EjyndgKuBXiJyoLOi/yB63OkNnJ1QxRinnjbA72hzw1fQz3IHtElqXxHprpQqWldbaojv0atd96Hf0euBb0SknVKqpKpCInI7+hqfBa5WStki4kd/0z5GWzyVoVfQLwD2F5G9UgShD9Hj8WfoVff26O/i3Aznq+5935yMAG6n0qIAKi0IRgHFwFMikqOUKnP290H3wVHO/9UeNxP4ET323o/u16Ui0h797fOh3/mF6PHhuxq61upixsltHBG5DRiIfj+PXYeF4XfoZ3Y3eqy7GvhURD5By4KvoCcQVwMfiUhnpVR8LNhA+exKYA36e7QM6Oic4zcR2VMpNTOlbdWSy9Fj1gHoMWg8elV9J/R7/Oh6btV6EW2W3hxYvql11TEbMz/aEy03vIx+n/uin/0uInJw7LstIvXQ3802wKtod4fmwOXAn863cr5zrBf9TeuDlinfQvepXYET0O/1i+jnejxwHVoGBpiQ0r63gQDwOHqMXups39C+VR2OBPzAsLqy1hatZP0CmIh2Hy0EWqDdR3dAWwrVhhxT1X2tijqbM6OUqpEfoCcQci5wBrrjXgZ0qeL4ecDIDNsUcErK9med7TslbPvA2dYr5dj3ne2vp2xP2oZ+oSqAdzK07Sm0kN2xGtetgK+qeVymNtlAj5TtX6NXw3MTtr2uH5cC7d81Dd2R9kgpm5Ph3JbToYoAz8bcQ/TgpYCBGer/DC3s5dVUf6qB/uhHD1qJ13Cscw2HJ2zb2dk2KKV8R2f70wnbrnO2HZpybD6wILE/UynorgGaZGhfpueUDUwHpqRs/8vpqx0StnmA35xzDEjYfryz7eKUOtzAOPRkQ9Zz72Jtv7Gax/XPsG0JUJBybSuB31PqmBe7b2hlXTF6sG1YjfvVFP0x+yblOhejBYr6CdtzgTkZ2lvtZ7qJ/XE1ULwBx9cHSoFZQH5Ku2ajfR4T7+885zpOTqnnb/QY83nic0cLHknXjZ5sKPRErF7C9nrOtjVAVsL2kcC8lPONR49NeSnbY/0y8d6/jjOmZbj+z4EVQKuU7d3RE5sBmcqlHPu6c85G1TmuirLPpWw/2dl+Sab3AD3Wxr5Xt6eUlcT7l7D9AlK+e+gPuQJeTjk2tj21vdW+75vrB62wCgJjErbd5vRzN9DFaeshzj6308//Szh+Q8bN2DN8K0OZd5x9fVOez6dk+FZXcT2x527GyRoaJ7eVn4TnO9v5/Sngq+LYWD99NmX7E872BSR/A3Zztj+UsG2D5LMq+kkX5/1MHfPmUQ25HP2dSBsza/i+XuGc477N/Yw3sN0bOj9Szs9xKdufcraflrItAHRLObat89xfT9h28zr6iZXw9wDnuHYZjovtGwm4M+zfkL41khQZoor7EZs8n7AB97y/U6ZPNa9rHskyfOz9S5PfU8q9Tg3IMdW4r0ntS9i23nfT2bZBc+ZMPzXmkqCU+h0deOIN9MBxHvAcMEV0RPA005gqWKKU+iBl28/O7x1Am5KjBae/lFK/pRz7eDXPcxJ6deEVxyQj/oNeubeAg6pZ16bwu1Lqj5RtP6M/6O1SDxaR3dGCggD7KaX+TdyvKldmEG2G3BC94vAD+uO+k7NvQ+/hmehO9UaG+/UFkIceFLcUTkBPut5I2PY1+uU9P7ZBKTUZPak609FexzjH+Z1Y/iy0UP53yvV70atY+4v2kU1kmFJqRWrjUp5TtvOcstHPvouI5Dv7mqJX4T5XSs1JKB9GfyhSOQstZH+W0sYCdL9uhzaPq21eU0oVxv5R2mf5j6rOLTqDxdfoVciDlFKrE/en3K9c535FgT+BRBPxvdBa4NeVUmsTypeirYlS2ZhnujHkoz/e1eVg9Gro00qpeDnn72fQgn2/lDKLlVIfpmz7FT1WPKOcr4NDbKUx0/N4XiVovZ2/X0C/T32qarCI7IoWZt8BfCn381f0ivohVZVPqKcecBR6XKlIqWceWomy3npqiCdT/o99izLdNz/asuNi9GRrYOJOpQlA3B2qwLmmWJ2J/Ti2yvtESh3fAFMTt9XUfa9tnGv/E+gulWa1fYDflFIRpdRU9Pjcx9kXsz4YkVBHtcbNFB5L/McZ548GxqmEwGnO+zFoU65xIzDj5LZNc+f3HLV+H+TBKf/HxuhhKd+ACehvSWIf2SD5LNZPRJPvHLcSrXjL5HK1XrkcPWkNAvtKBpPvTUVE9kPLphPQFhtbDRs5P5qulPosZdvDzu/jQT8/9LMfDSxOee5l6LEkcew/E22VdF+GNqZaGq6PwSpDLJiN6FvVITaub4gMtanEZKATZSOyV22CHJPxvq6Dupoz16hLAkqpiWitDiLSFjgQbQ7XG/g8g8llJuZk2Bb7KMb8PBujhenpGY7NtC0TMf/d4es4pmk169oUqnO9iYxGr8j0UhmiRouOfTAAbbLeOkP5+s7vDb2HXdATj2kZ9sWoi/tVXS5AD1KLREenj/EjcLJo94zY/RuGnnz3QytWQAtIk5VSfyeU7YJeJVu5jvM2otLtALQ2OQ3R/ksPoK0eMvnNFqAHx/bO/xvynPJYt8le06raVYNU1a8z9em90GaM36M1yGnZRESkI9r861D0vUkkcSK8MfdrQ5/pxlCMfi7VJXYdkzPsi7nOpAoZczMcu7aKfbHtmZ7H1AzbplRxzkRiY+q9zk8mqjNG7IhW2F7g/GQiU/+qDZLOo5RarWW0jPdtEPoZV2Uaj4icgnYT2QNtJZRI/YS/26MtQzJFUZ9O5b2GmrvvdcEItDywv4j8hDZxfyhhf2Icgz7O75GxnRswbiaSOtY1QSsiMn3LpmTYVpuYcXLb5mG0HHy9iKCUumEdx6b2harG7ti+xD6yQfKZ6LgT96PfsVSf+EznW6+cqpQKici1aFlqrui4TT8DnymlflpHu9aLaJerr9EWOUeorTCI+EbMj9K+w0qppSJSSOV3uDH6/h9C1e9moiKgE9piqybuX1Wy7Yb2reoQG9M3RIbaVIagvzPPod3EfkW7+7yrlFrXOBhjY+WYDZXN62rOXLMKg0SU9pkZJiJvojWlvYB90Cse62JdqQcl5XfGU1ezibE6zqFqH5G6EEqrc72JvIP2T7kG7aeWaf9RaP+h0Wgz4ghau3QdlYEuN/QeirP98HW0OdPkps4R7Z/aF93mql6+s6jU6L+DXoU6B/hBRHqjB+RbUqtG+zNdv47Tpw4k5akHOFrhH9Af+aeBsWhtZhSteT6D6j2nTIjThjPWcUxqrIbaYENSiM5Eu+D0BQ7DiRkRw1GCjUYPeIPRz6AE/SG8Dfhf4uEb2M6NeaYbwyTgABHpkGgpsp52bSjruudV7ct0nqre//URO+ZxqvYFX1vF9kz1vEWyhU8igWrUs8lkmpQ5ZLofnwEnomOifJ+6+isiJ6DN//5Cj98L0a5GLvT9SrRwitVfne9ZTd33umAE2ke7D1oIjMUviDEKeNJ55/ug3/HRsMHjZhyVnJEBNuze1jZmnNy2KUfLY1+ilQaWqiIw2zrGmuqMQdWWz0T7VY9Gv3/3oycMZU75weh3srptSGqHUuoFEfkc7XN+INqS90oReV8pVe3AuUmV63gdP6Lf9b5KqcUbU8+WRDXnR1WNT6nPHfTC5yPVPf0GNHVdZJJtN6ZvVYeYzLoH2r1nY1nXtSfNh53Fgb3RCp2D0craJ4F7ReQIx2pkXWysHJN2X9dDXc2Za09hEEMppUTkT/QL0bKGql2B7oQ7Zti3UzXriAXeWKUqAwZuDVyGFhruFBGPUurW2A4RKUB/nN5USiVlehCRVPPlDb2HM9FCygLHdHRL5jz0C3IRmXPIPoDW+A0GUEqtEpFvgOMdoesctJD1Vkq5mWhN3c8bYb6VyG7owCT3KaXuSdwhIhemHBubXGZ6Tpm2zUTn9v1DbT3pG4uBY9CTnU9E5BSl1OcJ+w9Cm8+er5R6LbGg6EBPicQ02Btyv2rima6Pj9EfnAvRgd/WRyz1585A6upMV+d3bSk0u6LN6BKJrWKv65yxMTVazTG1qg/VLGefdysbm39GBzb6GhghIv1S3JHORisI+iZOYkUk03g7Fz357UT6SlNqP97Q+745+R3nHqDf+wB64h9jFFou6YOWGf5LMJnfkHFzXaxAW+l1ybCva4ZtWwrbwzi5zaGUCojI0egx9VoREaXUtTV8mg2Rz45HT9yOSXTJgXgw7U1K36aUWgoMBYY6ptBvAqeLyONKqbHrLp2Ms1r9I1rx1VdVBvfcJljP/ChtLBKR5miXhth3eCVaxs2v5tg/A+265VuPi8zGKhVqq299jf5unC0iD1bDvacq1ji/G6DdAmJt86Pdh5Is+hwl3kjnB9GZHv4G7kQrxWDrkGNqYs5cczEMROTgTH4ejl9bzE+jRsz9nIf4LTqnc2qk+HWZfCXyAbrz3pvJ9050mhLfprW05nH8YK9Ca7puEZFEH9eYpilJm+QMMkkC1Ubcwzed3wOdj0ASUgvpqDYG0f6p/YGJSqmhSqmPUn/QkaF3cbSHMd5A+8KehQ5s9qNKz5M8DJ0vN+Mqi+h4A9Whque0C45vWgyl1HJ0sMJjE/3cREetviZD3cPQ7/VDGfZtSBvrFMdH8xC0r+2HInJiwu6q7tchpPvEjUNbDPUXkfoJx+aiI5KnUlPPdH0MRWvbb5SqU2LtJTozAmghqQy4SkTyEo7JA65CT3h+TK+lRrjM8b+LnbMe+t4VkrwanMq/6JWASzP5ZIpO79ggYVOpsz1xG87K/DfACSLSI0M9IiKNq385dYdSahRacG8HjJTk1EZRtAAR/+46q+Z3ZqjqS+d30mqkiBxB+kR3Q+/7ZsMR9GL+vEehY/gkmuFOQptT3oReKR+ZsK/a4+Z62hBFZxHqLgmpZp1nUa2UhpuL7WCc3CZx4nccgx6zrxGRp2v4FBsin1XVTy5CP+ONQnRMkezEbc67Fouuv0FjkKMsGI7+DvZVCRkhtjY2cn60oySk9HaIWb1+BvG4A2+j5fiM6c1Tnv3baNe3tG+OM/7FiC02beh3o1b6lqN4fxT9XR0qOttDEqLjJaTGHEolZnGcuoCaaH0dq69RhvLT0ErurUqOqaE5c41aGDwJNBSRWBqKcrQP/RnoFc9hjg9PTXEn2k/vOxEZgk5HcyRaCw7r0ZAppRaJzo07FJjqmAbNd8rvChyH1vDNq0ZbdhCRTEIfwJOJgYhqCqXU9SISQisN3Eqpq5VSJSLyA3CWiMRWbtqiXRjmku4XWe17qJQaKyL3oH1k/xORD9H+ZM3Rwt8R6ABIm5tD0P3ulXUc8zE6zsMFVK5ufY0WVB9BB1jJZEL0FNo06VER+R96RbEYnc7mICpXztbHVLR54M3OB3Y6+h25BC0w75ly/I1oQWOMiDyHNs07hcr7nficPhKR19BmgHuiBeNV6JR7PdFBUKobgPQgR/OayiqlVKbAWJuEUqpURA5DT5beE5GzlFLvo830lgGPiw6mtAidjvRs9Fiza0IdERG5Ef1h/EtEXkG75PRHP9/2JI8NNfVM13dt5SJyFLqffea8pz86bWrsnONQnKBrSqlC0fnYn0WnRnrdqao/+hleomovreAq55yvoj/856Hvx4UZzLvjOKslZ6Pv4QSn/GS0Im4HdCDS29BRhUEHZLoSeE50ytMw8KcjGF6Gfu6jRWQYelJsofvusegJzIBqXs/1IpKp3T8rpcZUs45qo5T61ZmkfYdWGvzPUT5+hHZZ+Nm5Jg/6O5OdoZpv0L7qFzmCSyyt4sVoATye03oj7vvmZgS6v+9HZb5vIH4tv6DvS+zYGBs6bq6LO9Hm21+JyDPoMeVoKr99G4IZJ2tonNyWcSwNjkFHTr9KtHvClTVU94bIZ9+i5fM3HblvLXqF+wi0ZdvGzgs6A6NE5FP0+7gWrdy8DC1//rKOskmI9vH/ET25fRrYT3TQw0Q+rQ3ZupbYmPnRROAtEXkZbUHSF+3iMQrt2hbjDvTz+0BEPkB/V0No2f8I9Ip4f+fYp9Dj3J2iF8x+QL+7O6NXn2MT6Vgg9kdEpx6vACap9NTjqdRW3wL9vY8tfu4vIu+hV/G96HHuZPR1Z3T5cRiOnvTfJ9riYS6wP9CDyvSRMV4WkVboezQfHcPlVHQchWEJx9WVHLOpbNKcWR9Rc2lDDkELt+PRNz6C/vCMQEelt1KOn0fmFBEjM9Tdx7mY/inbd0d3gHK0qckwKj90qek7MqaNQHfmT9EmGyH0IDsCrXXxV+O61Xp+mlV1/nW0qT/p6UBeJ0PqDrSfkELnTBd04KGhznVUoAedizLVuaH30Dn+SLQguwZtobEQPUhcVlN9aRP74YdO23ddz3HT0SumiWninnHKFpEh/ZlzjBudkm4sWvNdhh7M38ZJB7auPpuwv63T1pXOvf8LvUo2wCnXLuX4/6EHpgp0QMOn0KtGCrg5Q/1noz/QxU6ZecAnwKnVuIextlf1M62qa1zXdWfqw2QeB7KcPhYBznK27YaegK1FmyeORPuWpdXpHH8KemIVRKeluofKFHOpKWiq9UxrqH9moz9ovzrXEnae59fOM3OlHH88OitKrF1jSEm1VNV9dLZX1Z/aOdsHJGzr72zrhxY8Fzj3bxJwRoa6R5IhJRK6b7/gtCmE/g78jbZ6aZ1wnIWOHbKIytX3xL7UCL2qMAPdhwvR49lTQNdq3OvXWXc/vnUd/TJjv3L2JY3bVP196o4eJ2fGrhs9Fk9xrmcpOtZMg9Q6nWNjvujL0asaf6LHgY+A8o2975v7By2gxZ7BgRn2X+vsi5CQ3jPhGqs1bq7rGTr7d0ULg2XOc3obHRAx43c5Q/nYczfjZA2Pk1v7T8LzTUu5ic6m8p2z/1n04kSmZ7OuPpLWH5zt1ZLP0O5xvzp9pBD9/dmFzKlyqzpXUvvQC1JPAv85dQbQE7rBQPONvH/r+mm3uZ/zBlzPhs6PlPPO9kOP+wH0d+AZMqQvR8sVd6G/jwHnuU4FXgb2zdD/7kArX2Pf1bHA5SnH3Yx2fQiTICuwjtSEG9G30rZV4172Q38DFqG/cyXo79z9if2Mquc8ndHvX7nTvg/Q7iBJ/RytaP/COU8Q/c0ZBZyYUl+NyDHVuK9J7duQdzNh++5swHwv9UecSrYZREdTHQfcppR6eH3HG9Ix93DrwDFH/Qg4XSn13uZuz5aOiNyAHth7qvRUpts9ItIfeA1t/jly87bGUBUiMhHwKKWq7XtoMFQXM04aDJsXEVHAG0qp/pu7LYZtmw2Z79VYDIPNgaTEHkjxQawt/95tCnMPt3wcXyd/yjYP2p80QrKf73aPiHhT/Tgd39wr0Fr9fzZLwwyGDSB1bHa2HYlerTFjs2GTMOOkwWAwbD9s6nyv1rMk1DL/icjPaPOOHLRvTm/gfaXU35u1ZVsP5h5u+fiA+Y4v2XS06d+paPPTR5RSyzZn47ZAOgDfOj5uc9F+b+eiTa8uU8lB1gyGLZW7RQf+GoF2k9odbb4ai7ViMGwKZpw01ClOkLe0oIwplKqtJ8OTwbA1sUnzva1dYfA5+oLPRl/LXLQfjxGmqo+5h1s+YbQf2LFooU7QioMrlFLPbc6GbaGsRMd7OBPtkxxBD5C3KqU+2JwNMxg2gFh+7pvQqbTWoAO23qWUWrQ5G2bYJjDjpKGuiQXiXhf3UneB4AyG7YlNmu9tczEMDAaDwWAwGAwGw5aDk9ItzdUqhTlKqTl10R6DwVB9jMLAYDAYDAaDwWAwGAwGQxob5JLQqFEj1a5du1pqimFb5u+//16llNqYHNcbjemvho3F9FfD1kZd91nTXw2bgumvhq0JIxMYtiZqo79ukMKgXbt2jBs3ribPb9hOEJH5dX1O018NG4vpr4atjbrus6a/GjYF018NWxNGJjBsTdRGf92q0yoaDAaDwWAwGAwGg8FgqB2MwsBgMBgMBoPBYDAYDAZDGkZhYDAYDAaDwWAwGAwGgyENozAwGAwGg8FgMBgMBoPBkIZRGBgMBoPBYDAYDAaDwWBIwygMDAaDwWAwGAwGg8FgMKRhFAYGg8FgMBgMBoPBYDAY0jAKA4PBYDAYDAaDwWAwGAxpGIWBwWAwGAwGg8FgMBgMhjSMwsBgMBgMBoPBYDAYDAZDGkZhYDAYDAaDwWAwGAwGgyENozAwGAwGg8FgMBgMBoPBkIZRGBgMBoPBYDAYDAaDwWBIwygMDAaDwWAwGAwGg8FgMKRhFAYGg8FgMBgMBoPBYDAY0jAKA4PBYDAYDAaDwWAwGAxpGIWBwWAwGAwGg8FgMBgMhjSMwsBgMBgMBoPBYDAYDAZDGkZhYDAYDAaDwWAwGAwGgyENozAwGAwGg8FgMBgMBoPBkIZRGBgMBoPBYDAYDAaDwWBIwygMDAaDwWAwGAwGg8FgMKRhFAYGg8FgMBgMBoPBYDAY0jAKA4PBYDAYDAaDwWAwGAxpGIWBwWAwGAwGg8FgMBgMhjSMwsBgMBgMBoPBYDAYDAZDGkZhYDAYDAaDwWAwGAwGgyENozDYTJQWlhEMBDd3MwyGahEoq6CsuHxzN8NgqBZKhVD22s3dDIOhWkSjUQpXFmHb9uZuisGwXpRSKHsNSkU2d1MMhmqh7EKUCm3uZmzVGIXBZmDI1a9wctMLOKHhefzy8R+buzkGwzr5ZuhwTmh4Hic1Pp9h936wuZtjMKwTFRqLWrEPasX+2GuvQCkzCTNsuSydu5wzWl/KGW0u5ZLdbzSKWcMWjbLLUKuPQ604ALWyNyoyf3M3yWCoEqUU9tprUSt6oVbsjQqaOdfGYhQGm8h/IyZxSvMLOb5hf35+95f1Hr941lK+feVnIuEooYowT17yYh200mDQLJqxhPO6XMMx+Wfz2t3vrfd427YZctUrREIRIuEo7z70KcWrS+qgpQYDKLsIe/Xp2Mu6Ya+9CqXC6y9TPABUORCG0G8QGlvbzTQYAG0p8PDZT3NU7llc1fN2ilYVr7fMm/d+yNoVRYSDERbPWsb3r42og5YaDBq79Hns5XtgrzwIFZ65/gIVn0NkLhACey2q9Mlab6PBEMMO/IC9fB/sFT1QwdHrLxD+F0IjgTCoAKr4rtpu4jaLURhsAkopBpzwKGuXF1G6tozHzn9+vasDlssCpeL/u1zmERjqjkH9h7B4xhICpRV88uRXTPtr3QKCiCBWch8VS2qziQZDHFX6NIQnAAEIjoLAJ9Uo5U7+V1y10TSDIY0R7/7Gb5/9RbA8yKx/5jD01rfXW8blcWGJHlMtEVxu018NdYMKT4PS50GVQXQhquiGapRK7Z+e2miawZCGUkEougFUIdhrUGuvrIYFoStpzpUmHxiqjZmtbiIVZYlxCBShwLp9ZJq3b8rJNx6Dy23hz/Zx87CrareBBkMCpYVl8bFTLKG0cN0KLhHhptcux+P34HK7uOiRs8irn1sHLTUYALsIiPnJRkGt37pF6j0AUg+wwH8EePaqzRYaDHHKisqxo1qAjYSj1bLGOvfeU2narjEiwg57tufQ8/rWdjMNBo0qAUmYBtjrt4gh6zjw7AYIuFogedfXVusMhmRUCIgmbAin/J8Bz26QdSxggeQh9R6qvfZt4xhVyyYgIpx77ym8df9HIMJBZ+xP/aYF8f1KKf746m/WLi9i/+P3Ib9hHgD97zuNs+46CctlYVlGZ2OoOy4edA4PnPoEYgntdm5Ntz5dk/ZP+m0acycuoPsh3WjeoSkAfU7pRe8Te4DCrH4Z6hTJuQQVHAHYILngPz5pv4rM0i4Hnl0Qz666jGdXaPIXEEbEW/eNNmy39D29Fx8+9gXFq0sQEc6+++Sk/auXruWPL8fRtF0Tuh/SDYBGLRrwxswhhENhPF6zWmuoQzx7gHsXCE8EbMi7JWm3ssuh4jsQH/gPQ8SFiA9p+BZKhcz4aqhTxMpDZZ8B5R8ACnLOR6RyzFQqCsEfwC4H/6GIlautZOvdh8q/E/AgYixkNxajMKgmtm1nnNyfftsJ/O+M3oRDEVru0Cxp38u3vMmXz/+AUoo37/uAV6cMJis3CwC3x9x6Q+1RVX/tcdRevDn3OQpXFNGmS0tcrkoFwIj3fuPxC59DKe0q8/w/g2i5Q3OApOMMhppGKRuR9P4qnk7QeBREF4G7HSL+yjLhKajVpwOOyUz95xDf/rqcCGCEWUPtoBwzrVThM79BHq9Oe4pF05fQpE0jcgty4vuKVhVzcbcbCJYFEUs46+6TOfWmY+P7jbLAUFtU1V9F3NBgGERmg1WAuBonlImi1pwKkQUgQMX3SP2nE8qa8dVQe1QlE1j5d6KyzwEEcbdOLlN0CwR/1CJB2VBo9KXu45j+WhOY5e31sHLRavrveBWHeU/jjqMeIhJOTyPTtG1jWnVqnjYY/zhsFBVlQYLlIcqLA8z6d14dtdqwvRIMBLmx7z0c5jmNi3a7nsKVRWnH1G9Sj/a7tElTAnz7yk8Ey0OEAiGikShjv/uvjlpt2F5RSmEX3Yla3hV7xX6o8PS0Y8TKRTw7JSkLAFTFT0BF/EcFPq2TNhu2bz579luOyDqDY/LP5vcvx6Xt9/o8dNitbZKyAGDSr9OIBCMEAyEqyoJ898pPddVkw3aMCv6GWrEnavnO2KVD0/aLWIinU5KyAIDoYojMBwKgAnoiZjDUMioyG3tFby0TFN6UMUaBuNukKQsAbQ2jAkAA7CUQXVD7Dd6OMAqD9fDyLW+xdM4KlK0YP3IyP7/zK6BNC3/55E8Wz1paZdl2u7TB7dGTMjti07xDkzpps2H75duhPzP1z5kopVg4bQlv3vcRAOUlAcZ8PpaZ/8ypsmznvTrgy9JaWLEs2u2cYUA2GGqS8Dio+AqwwV6FKr4DAKUiqOAoVPCP+OpYKuLpDMSUCH7w7FwnTTZsvxSvLuGlG4cRCUWoKAvy0JlP6Zz0SjHxl6n88dXfhIKZM3m02rEF0aj2t/X43HTco31dNt2wnaIKr9dBDYlA6VOo6DK9PTwdVfEDyk5fVADA1RgkZglrgatNnbTXsH2jigeAvQKwtZIqpLPPqehiVMX3qOiSqgu72lIZlNMCy8y5ahJjF78eQhUhlB3TcCnCwTBLZi/jsr1uBiAasRn4ze3sdkDXtLJ3vX89z9/wBqsWrebMO06kUcuGddhyw/aI7q96gmXbNqHyIIHSABd3u4Hi1SXYUcUlj53N0Zcemlb23PtOxbYV0/6ayaH9+7J7313quvmG7Q0VTPtfKYVaewGEx+tt/iOQegPTy/oOgbxlUPE9eHsg2efWfnsN2zWpFoaRiFYAvHzLW3z5/PeIJbTZqSVPjXkwzYKrbZdW3PHudXz85Fe07NycSx49p87abdieSVFgqTB24Gsouk1nkJFsaPQVYtVPOkwkCxq8hSp5HCQbyb+tDtts2G5RQeJuhgAqhApPRq05A60MsKHBe4hnp7Si0uAVVPFDoEqQvGsRywTorkmMwmA9nHf/aUwYNYVgeZAWHZvxvzP257NnviNYFiTqREP+/NnvMioM8hvmccvrV9Z1kw3bMYdd8D++fnk4qxevISvPzxl3nsiE0VMpWV1KoKQCgI8e/zKjwsDj9XDxoLPrusmG7RlvDx14KzQWxI3k3wX2cgj9DTgZZwKfoPIfzOB/K0jOuZBjFAWGuqFBs/ocd+XhfPrMtwhwxeDzEBG+fP77eMak+VMWsXDakowWWj2P7k7Po7vXcasN2zV5d0PxnYCCrBMQd2tU4dVAhZ6XKQXBXyHr6LSi4umKNHilrlts2I6RvNtRa88DFQF3V/AdiCoe6LgaaFTgU8STrsASVzOk/lN12dztCqMwWA9tu7bmvcUvUbiiiEYtG2BZFs3aN8Hj9xAtC+LN8tJ6xxbVqmv62Fk8fuHzRCNRrn7uIrodaExoDTVLfoM8Xp06mNVL1lK/aT08Xg/Bch2TAHSWg+Ydm62nFs2Khat4+KynWbloNWfddRKH9jfpvgw1i4gb6r+qlQSSj1jZKBXQprDKURhYDasV2VjZZaiiW3XEb/9RSN4NJiKyoca5+NFzOOXmY3F73PE4BY1aNWTxjKVx94T6Teuttx7btnnp5jf55aM/6NpzR2545TL82b7abr5hO8PKPg7lPwhUEHE10hvd7SAyA219oMDVslp12eXvQ+mLOp1iweOIq2ltNduwnSLe3aHJGJ1S2WqKiKDc7dDuhxX6t6tttepSwTGo4vtAfEi9gYhxW9wkTAyD9fDvzxN56aZhTPp1Wlz47HPqfpxw3VG06tycvqf34ow7TkwrFygNcPvhD3Jc/XO5/5THKS0u55ZD7mfuxAUsmLqYO496uEpfR4NhY5k7aQEv3jiMXz/5M95f2+3cmmteuJg2XVqy1yHduGXYVWnlbNvmqctf5rj653LN/neweska7jv5cSb/No1lc1fwzBVDWTBtcV1fjmEbR0VXokofR5W/D2hzb5EspP7L4O4Cnt2R+q9lLGuXDcNevjf2ykOww9NRJQ9DcIQOdlT+JgS/r8MrMWwPVJQHeffhT3h/0OeUrC2Nb3/wq9vYtXcX2u/ahns+vol6jfLTyo79/j9Oa3Uxp7a4iL++/ZdvXh7OVy/8yIoFq/jt8790emaDoQZRysYuex9V8pQOYugg+QPA1xdcHSDvZsS7Z3rZyCzslYfpMbbsdezQv1D8INiLIPw3quimOrwSw/aCqvgJVfwohCfHZVjJPguyTwJXO8g+Fck+Nb2cvQZ79enYy/fCLroTO7oatfZSiM6ByFTUmgvq+Eq2PYyFwTqYPGY6dx39MMFAiO9eHUGgNMCRFx3M6I9/57OnvyFQWoECrtr3Nnoe251z7jkFy7IoKyrjxRuGMe7H8Shb8cvHfzD6oz+S6g5VhFg0YwktOjZj1aLVNGvfxKRaNGwSq5eu5Zr97iBQWoE3y8u8yQu5/qVLmT1+LkNvfZu1ywoJlFZwc7972XHvHbji6fPJyvETDAT56qXhfDN0OHbEZsqYGZze9lJUtNKPLGrbTPp1Ki06NmXZ3BU0bNmArBz/OlpjMKwbpSKo1Sdr6wIsVHAk0uhT7OhqKLoXojNBClCF16FcLZF69yGuZigVRgX/gJKHgChEi2D1sUBiNOUQKvg7+A6F6EKw6iHW+ld9DYZ1cd/Jj/PfiElEQxF+eH0kb819FpfHzbPXvMqk36bh8XkYestbvDPwY64YfD477NEe27ZZMmsZdx/7MJGQtvS646iBSW664Yow40dNRinFqsVrsFwWDZvXr6IVBkP1UKXPQNmrQAAV+BAafQKuDqiSIVq5ioLy97ADHyO5VyD+gwCwI8tg9cWgFumKSh4iqcMShfB0lArqgIp2GbhaGYsuwyahKn5CFV6Hznr0ERQ8ifgPQpV/COUfA0EI/ooKHo/KPg4r53wA7OhaKLoVwn/rigIfQuCDlMrXYkdX6WxL9ipwtUbEpAvfEMwMdR1MHD0lHuQoWB5k1Pu/02G3djx46uB45O7FM3SWhMWzltG8fVMst8Wj/Z+NB54D7SKWirIV1/W+CxEhGomS3zCPk284muYdm7HP4XuYgdewwcz+bx5i6X4TCoT448txFK8p4Yp9biMa1oLqyoWrWblwNYtnLsPjdXNI/75c3+duIsHkYF6JygKASDDCs9e8xpv3fUTp2lJcbhen3Xo8Tds2Zv8T9jE5xA0bjr1a/xDVP5HJ2NEwrDoK1Gp9jFoL0bUQnY1aewXUfxa16hhQhamVpfwf1bEPQuO0wgCFyrkAcbUG/8GIlb4CbDCsj4m/TCVcoS0DK8oqWDBtMa/c9jb//jQJ0HLCnAnzAbjxoAG8M/95rt3/LuZOTEnvlUEmmPPfPK7Y51bmTVoIwCHnHkjnvTqy1yHdaNq2cXoBg2F9BEcBMd/vKCr0J0S+hMAblcdEdSpbVXgdquFXUDoYgl+lVJRJiC1FrTq20nLBszfKfyji3RXxpMf0MhjWhwr+hnY7AK00+B6FQMk9lQdFZ+vfpU+h3B1Q4TlQ+gjJfTRTZiWBVUdqJRcKXC1QOWchro6Ir0dtXM42h1EYJLBqyRoAGrVowOiPfmfSmOSc4BN/ncKdRw3MmOYrWB5kwdRFfPnCj0nKgqpQSiX5lleUBXnhxjdwuVwccm4frnn+4hq4IsO2TPGaEsoKy2nWvglT/pjB8LdGEwyE4vuLVpVwQ58BcWVBIuFgmLmTFvDC9a+nKQuqIlwRYs3StdhOsM/X7nwXt9fFZ898w+BfHzBKLsM6UXYZ2CvB1UqnRip7BfAAsUwJAoUXVCoLkrAhOh9V9noGZUFVBB3hwlEmlD2PwgulT6AafY9lIigb1kE4FGb5vJU0bt2QUEWY9x/5jPyGeVSUaoE2VBHmqcteYuY/czOWD5aF+Pnd35g/ZVG1zheqCDPz78q0t1+/NJwfs0YhYvHs2Idp26XVpl+UYZtFKduxpmoA4keVvYqeOFnoMTAEJc9VMb6iMyaE/4Lgd9U8Y1ibe8f//RXCf+k4ivUGY2X125TLMWwH6BSJXrAaogKfOP0p1l/RfbEq10IVdZQFg8isIEjFBlVUWXd0NhQ/iMKFyrkYKy/dVdeQzHavMPj65R/5+sXh2LbN/CmLEBG69enKuO/Hpx1r24qSNaVp2/05OlBR39P355uhP63zfC63CwSi4WhcWRAjGraJhm2+evFHOnfvyOEXHLQJV2bYFvln+AReu+s97KjN3InzsSyLHfZqz5QxM9IUVXbUZt6kBWl1eLO8iMDxVx3BVy/9uO4Tis6eEA6GUQpUtHIl147ahAI2U36fweBLX+K6Fy+pkWs0bDuoyCxU8f06gFHEmVhZTcBeTCxmQcLRWmBNw6ODIGadmpAXfF14qEwllmh5oICgVlqsOR3V8FMddNFgcChcWcRTl73M0jnLWbloNaFACI/fA4qM3/6Zf6crCyyXhS/Ly077diK/YV7GBYZEXB5XRqUuQCig+/G1+9/JGzOeIb9h3kZclWFbRamQjiAf/hfsYsdiS8DVJm45kFxgLdqiKxEByQKrADy7kG6tlYoHPXZn6tfOgkXR1Sj3p4hnxw26HsO2jVIKVfYyVHwDKgxRbY2FZy8I/56hhE1aWlAAsrSCy98PSh9j3X3W4+yPZjguon/KhqA8XRC/UXKti2066GGoIsTAM5/itFaXMPjSF9Mm6BN/mcoL17/BzH/mMPu/eURCEcLBcEZlAeg0XqnffrGEnsfszYv/PcYOu7fn2hcyWwaIJezaeyeuHHJ+fIV2Xbx257vVu0jDNoNSitfuepfTW1/CHUc9RGlhWdL+NcvWcvdxg5j250xmjJtNOBghGAgx7Y+ZGa1a3J50/ywR6LRnex4fcS8HnrIf1zx3UebGCDTv2JR7PrmJaDSzMJvI96/pGB+G7Yvhb43izHaXceW+t7F41tKkfUop1JqzIfQHRKagTWMDVSgLAKqwULGaQ73BSN6NSM4FQBWR5CUf6g1BCwjrIbpAZ1MwbFdM+m0a53e5hvO6XMOE0VPS9j94+mB+/2Iss/+bR/GqEirKgpSsKc2oLACw3OkiVHaen8ue7M/Ab26n13F706RNo4xlPT43lz91Hs3bN1lvu4PlQUZ9mEmgNmzLqMgC7NUnYa/og13+cfr+kqch8AlEpjrjagUQyKwsADJPrCzIuQxp+AWWZyfw9qmirAVZZ4HvINa/ohtBlb+6nmMM2xrKLsFecwn2it7YxY+lK0uDP0DZs1oeiM5EK5hCVSgLQPfXDH0t+wSk0TdY7jaQc30VZS3w9IGcK1m/EkyhSp5YzzGGbVph8N6gz/nt0z9ZvWQNw98azfevjUjav2jGEuxquA+AnvD3OHJPXCmTMGUrRr73G7cd9gC/fzGW378YR37j5FUAy2Vx+ZP9eWLU/fz26dhquSyYlYTtjz+//odPBn/NqsVr+Gf4BF68cVjS/pULV2O50idV0SoUUO12aYPLm9JfFUwZM4M7jhzID8NG8tmQb2nZKTnNoljCkRf147VpTzFz3JzMQThScHtceHwmjsH2xNK5y3nykpdYsWAVM8bN5v6TUz+4YbDXkv7Br8IFRuqBtEnfbi+EwmtRpc+jyt4E1w7px3i6I41H6VWHjCsSKSgFJgjidkU0GuWOIwaycPoSFk1fwp1HPZS2iLBw2hKikZTxVGlFayqWy2Lfo/ZK215aWM5Tl73EU5e/zPevj8ioMGjcuiHDZg3hf6fvz6IZS9P2p+Jyu6jXyMgE2xuq8FoIT9KZX4rvRUXmJx8QmU6lz3cimYK5CfhPJl3sj2o3rbVXYQd+QI+fqeV90OBjJP82CP5WjZZ7wcqsKDNsu6iSQRD6VQcyDrwFwRSL68hcUMEMJTMtFljgO4KMhvDl76DWXIhd8TNEJgCp7oUuqPcY0uBFqPiO9Su4BFwN13OMYZtWGKxcsJKQE6AoXBFm5aJk3629D9s9ycQ6kY7d2mG5BBEtLPiyvFz86Dl07dE57VilFEtmL+ee4x/lp7d/oXhlSdL+zt07ctxVRzDm87GMHzmp6gYL+HP9tNmpJXd9cD1zJy3gi+e+Z+Y/c6ouY9hmWL1kTVwjGwlFWDZvRdL+9ru1jbu/JKFgtz5dtbuLgy/Ly/kDz+C0W45PP1wpilaV8Pj5z/HViz+weOaypP25BTlc8/zFLJ65jI8e/wI7WsVgK+DL8dGoZQPu+eQm1i4v4ssXfuDvHzNb6Bi2LQpXFONy6U+IUorVTgyYGCJe8HTPXNi1O8mWAlmQcwEUDMpwsAICUDYEyp6D6OT0Q+q/on8X3cq6FQY+kPqQdxNYTVDlH6IC36DU+q1oDFs34WCEivJKYTVUEU6K+QJw8DkHZizbvEMTsvOzAG1p6M3yst8xe3PdC5ndsKIRmx+HjeLpy4YycfTUpH0ut8Utw66iUcuG3HroA1Ua1gCIS8itn0O/sw+k5zHdGfHeb3z36s/Gmmt7wV5OfHVULB3dPZGs08jcgfwgsUCZFuDRuevzbwO8GY5XEP4Diq6G0C8kuy1YkHsVlndnVPE9QFmG8gnHSi54eyA5l6OCv6DK30VFV6yjjGGbIbqY+PdXRZ3+m4D/4CoKKrDao/uyoPtRDuTfClbrzMdHZ0DhZU7MjRQLMN9BWFlH6XTN0VnraLBzHncXpN7DqPBEVPnbqMi6ymy/bNMOnMdecTijPvgdsQQR4eBzDiQUDDNj3GzmTVpAu51bU795fVbMX5lWds7E+doXMdtDoLQCl9tFRVmQlp2bM/GXqRnORkZfRV+2lz6n7gfAPz9NJJwQYK75Dk1ZOqvyhdrn8D0IByNEQhFmjJvDU5e/jFI2IsL9X9xKh93a8sRFL7B41jJOvflYDj47s3Bj2Drpdfw+DBvwAS63i2jE5vRbjycajTJ/8iKm/jGD+s0K6LJvZ8Z8Pjat7ISRU/D6PXj8HoJlFUQjUcLBMK13bFHl+WxbQYq1izfLyz5H7IFSiul/zcJyVeoU8xrmatNcp0jrnVrSdqeWrFi0mrXLChl4xmBCFWEsS+h//2kcc/mhPHft60wYNZn9T+xB/3tPNYERtyE67dme1ju1ZOH0xdhRm9PvOAGlFMvmrmDC6Cl4vG72O+RAvIwjzSQw+h9acPWhBYwKUDa4Wq7jjFGSVwoEcIO7o45FEJlJsvWCoFfKYtvyIeswvWKnKlCrTgR7mdYIB3+Ceo+hyl6BwMfg2RWpdy8iWZtwhwxbEv5sHwefcyCjPhgDwP4n7Et2XhZrlhcyfuRkguUhdtpnB3zZXoLlyYqEJbNX4HK7tMWW0gsQlkuo1ygPy2VldDNMjUsgliBAdn42bXduTTQaZda/yTEQcguyKS0sB7QFw/HXHMH4EZNxe1w8eMZg/v5+PErBJ099zfP/DGLM5+N4894PaNSyAdcPvYxGLRrU4B0zbHZyLoOSQdpyytUWPLui7BJUaCxEV4KnK8ljXIwyUAFnXyywrB/BRkkOqExWCVWZbXvB20v/GRyTcJyA1RLshKCe2f0hNBYkG1U2FMpf1eO6PAmNv4PoYlTxfbp0/r0mm8I2huRcjAr9rfur+MB3KEoFUKHxEJmHeHcGyQaVwcXLno9WbvmBcsCDqADK3RJCmQPLZrYc8Ot0ygCh0SQtIFgdwE5YgPUeAWoZiBcVHAPF9xMPFNrwXbAaoIpuB3slknsd4v/fBt+TbQlZX0CeRLp3767GjRtXi82peVYvXcu8SQvYYY/2lJcEuHKf2yheXQICXr+XnfbegUm/TatWXIGd99+JfY7Yg9fvfC/uVlDQpB4la0szBi1q06Uli2ctQwT6nLY/vY/flwEnPBpXLLi9biKhyoHel+UlVBHS1rKWJLlLHHZeXwpXFjPu+/+IhKP4sr08PWYgHXZru6m3qE4Qkb+VUlUsN9YOW2N/LSsuZ/pfs2jZqTn5DXO5uucdzJ+yEKXA6/fQpUdnJo+ZFs/nvS7y6udy/dBLGXj6YMJOPytomk/JmrKM/bVFx6ZxK5z2u7Xlhpcv5bK9bom/GyKCy2PFz+3P8REJRYiEo2lCc7tdWnPgKb1476FPCAZC+HN8XPvCJRx0Zu9Nvkd1gemv1SMcCjNlzAzyG+XRbufW3H/KE/z66Z8oW+H2uum0R1Oe/GQ4IqH1V4ZHWwoUXp2QCSEPLTxk6O/SGFQ5ENHuBQ2GwarjqUwjBkkRlxG0gqKC5MCIAF6k/hBU4TWOoO2D7NOw8u+o/s3YzNR1n90a+6tSiql/zgSl6NKjM+8M/IRhAz7Ajtq43C7yG+YSKAvGMyGsi6xcPzcMvYw37/+Q+ZP1pMntc6NshR2x0xYQsvOz8Po9lBWW4/a5eeSHuxnUfwiLpi+pPEiIy8Aujwu320XQCbwYS+cIeiFi4Ld3cPthDxIMhLBcFl327cTgXx/Y5HtUV5j+Wj1UeKYOZujdE1UxGoquQY9dFuADKz99JTcjPsi9CkJ/QyjmnivoCVqI9DHWDVYzrVTFgvwH9QSs4suEY7zEAx3iozJInZskBa/kQP5DUHwHKMcCV+ohTf5EZOswdDYyQfVQ0SXa9cCzm1YQrTkdVBm6r3nBvSNEJrJ+NwELvIeAqwUEEuNhFKAtCjK4Nro66PhECGSfC67WySkZ8VGZlQkq+2/MsiFBVsi5EoIjITLZ2e5HGn+PuJpX70ZsZmqjv24db+om0LB5ffY6uBv1GuXzwaOfU7zGGayUzlVfXhIgtyC7WnXNn7yQdx74OK4s8Po9lJcEcGUIfASwYOpiouEokVCUXz76nYYt66MSXpJEZYHH5yYYCMXdxVNjK3TYvR2LZi4l4kz0XC5Xmsm6YesnJz+bPfvtRtO2jRn14R8smb0s3idiabfa7JS+Cptp4b68LMBDZz5FOBRBLMHlcREoqagyPsbSOSsIByOEgxEWTFnEvEkLycqrXGFVSsWVBS63Cztqx/tjqsKtbdfWLJq+OG7yGwqEWDIn2fXBsPXj8Xro1mdn2u/Shln/zmXsd//Gx8dIKMKs/5ZTWnFAhpKZLE3CsPZiR1lgOT9Rxxc2w/FqFVqZENQCdfkH4Nkp5aDEfumh0t83xW3B1RwiC/VqGOg6jVniNoeI0LVHZ7r23JFwMMyb934YH7uikSgV5UH6ntarWnUFK0I8ecmLLJy2BMsSJ6OMm9yCHNzedB/y8uIARStLCIciBEoqeOGGN+h13D7JB6WkEo+Nr4nKAtCxk8IV4XjQRTtqs2R2dSaNhq0N8XRCfD20i1fJ/SRngAmBrw/r9GuJE4ayNyCUEINAsjMLDwBEHOuBiD5PyX3gO5jkoLKJimBFpdFyShYFVaEnfipBmatKSZ68GbYFxNUC8fVCrDxU6WBHWQDxLEVWHlpJtT5sCI+FwDsJ2/zob3gVC7zROei+F4byN8C9M8n9NbG/+ahUkqmUOhW4O0N0UeV2cUF0+x5jt3mFQSL+HD8uV+WH3HJZzJu8kOLVyeYxO+27A3n1cwDIyqvs2GWF5UmmiqGKMKFAiGh4/dYJylbkFuSQlZP+omTXy+KAk3vS6/h9yMr1Zxz7O+7ejhOvOwqP34Pb48Jyu9i1d6pwbNiW8GV5ESv5FY1Go8yZkJwqsX7TejTvqAMXJsY4sMN2PIaHshXRcJRgeYi1ywszni95RUzw+L00bZseCMbjc9Otz86ceP1R+HN8SW4LMbrs24mjLjkYb5YXt9eNy+Nmv2PqVDlvqGO8Wd40RacvyybLPTzlSA+4946VStkXm9Dbzk+5kyosUxCvxHNZ2gTSnSmNl4C7K+TdjhY4MvjwujvpFE14nR8XZKXH/zBsO1guK23sClWE+TZDauT/nbW/jovltuKxYuyITVlROXbU1v1eQaCkgkBJoMq1s9gYKyL4s7103L1dxuNa7NCUq569EK/fgy8rvb/m1s9l195daNCsPh6fB5fHRd/Tq6foMGzFSKr8aEHgA9JWa73Ho8fMmFUV6Dz0K0ma5KuY68L6ZVjEC+4upMeIsbS1V+7VTiDZTAtwUcSzK/h6O+1xg2dP4/K1rSNZJE8z3TprEikxWDz7U9lvEvqPWkNyUM8KMgf5rAJ3JmsA0QGW/SeAZ3cy91e0TJBzNrq/ekByUe4u1T/3Nsg2rTCIRqO89/CnPHLuM4z7YTxn3H4CbbpUrs7aUTtplR+g7c6tuOm1K+KxBmLm1pA5RgHoCVRieW+WF4/Pg+Wy9MfcbXHSDUfz8s1vpgVZAtjzoN24ddjV3PXB9dw87Er8KUoFl9tF/Sb16Hl0d1wui2jEJhwM8d4jn2/cjTFssfz45igGnjGY718fQe8T92WvQ3ZL2p/qW5tTL5unfx9IWVE5YklSf66qv7oShOT6zQrw+Nx4szxYlmiFg8A+R+zB+FGTWDQ9PYJ341YNGfjN7Zz/wBk88NVtNO/YNGm/5bJo1KohXXp0pl7DPGxbCyOpWR8MWz///jyRgWcO5r1Bn9GiY1NOvvGYJIXnfa/PxJ2UPMOCBh+AhKl0C1jfZyhKpfmhH+2m4EMLxM7H3r2TTqtY8U2G8n6kwetYOWcgDT8Ab8/0Q9zttamhdzfiwnfJYyhVHVcKw9bCgmmLGHTeEF6+9S3KSwLcMuzKpGCxdiTd9eWuD68nt14OPr+XaAZXg1QioQjKGfMsl0Xj1g3xZmk5ILYg0LhNI/53Rm9eyjAmiiXc++ktHHlRP16e+ARHXpIeKKxV5+Z4/V4OOKmH026bb4f+xIoF6fGYDFsvdnQNdtG92EX3oCLzkYLHdFDBOGHSlAXZF4G/B1rxGVs5XV+4soQAtK7O6HHW42y3QPIg90YoujJTKyH/Nqzci5FGX0LuDRmOqafjF2Wd7LQpAuGJqOAf62mXYWvCtkPYxYOxC29Fhf5G8m7RcS7iREhzffF0h7zrqFRaRai0CqhqrE2YI7l2onIhwIXu6x7IuQ6KbiLddUFB1jFYBfciDd6Aeg+Q/n64Ease4j/C+T8MdjEEtu9099uswsC2bS7pdiOv3P4Ow98czV1HP8TciQvo2jM9y0EcgVveuIoFUxfHTf1ipoBiSdqxMSrKKs1cFs9YyjXPXYRSCjtqY7mEk288hvKicv769t+MsRL+/PofVi9dS9HKYv786h+C5clmWpc9eS6td2wZD0KnlCJYHuK3T//cwLti2JJ55NwhDDp3CCPe+40nL36Br174gb6nrnvV6NInzkXZioqyIMpWcRPWVJPYxHzhiWnDyovLuWXYVYBgK0U0EmXPg3aj59Hd+f7VEXELhUTWLi/in+ETqCgPMu2PmSxOSQt26Hl96H3ivqxYuIriNSXYEZtwMMz4kVPWK2wbth6+fPEHbu53HyPe/Y1Xb3uHx85/joPPPiDpG//49S0JlCcMlv5jsLw7Q3gylcKuE8U7icTxNqFCsSDvRu23C0AArKaQfx+UPgWqOENLI6jy91HKRoWnQygl57NrNyTncv13aKzTrqiuK7ogtTLDVsq0sTO5cOfr+fGNUXww6HOu3f8uep/YIym1Yurw1GrH5hxwYk8mjJwSV/a7Pa6MLgcxGcG2VdzqUIDeJ/agY7f2iAiB0gr82T4e+fEunrlyKKsWr0mrRynFq3doM9yF0xcz8r3kNHYNmhdw8+t64vbHl38TDob1uCowecyMjbs5hi0OFV0JKw+AwNsQeBe1+jiU1RZUhkxJcbxI3rUQ/pPKVdwMSgWgcoxVJK3aWnkQnygFAS8UvABlzztpHDNQ8pj+HV0EFZ+l7PQhDYY61Y2g0sKhAhUcvY5rMWxNKBWClf+D8ueg4hPUmnNQ0UKwMqRKjiNIvUeQSGLmo1g8jXW52ZRX/mkvhdzr0P04Cngg9xaIjIfQX2Ts++Xv6vbaK520i4nzMoF6gxBXQ0ceiLUjABXfrqNN2z5bfZaEtSuKePD0J5kzXuenbdyqIbcMuwrbtlmYEEwoEo5yx1EPUVGWbs7SoHkBoYowO+3bib+++5cDT+6pcy9boiPWhyNarHVb2M5kK7bSn4rL42L10sr0eMHyEP+NmEz9pvXiVgt6RUMllFcEA0Gu2e8OClckC7xur5vDLzwIgPa7tYlPCAGyco0519ZGKBjm8QueY9wP47GjNrkFOVz59PnsdUg3fnqr8uMZjdi8cvs7SWnAYjRp05CyogBturZi8cyl7N53Fwoa5+u0diLY0SiRcBSv3xOf8LtcFm63K00BEFMyKNvW0b+DEab9NZM9++2WlNHDl+WNC8xKgcvj5sb/DWD62HQ/79NvOx7LsmjYogG+bF/cKiI7PyseXMywdaCU4o0B7/PNS8MJhyL4s32cdMPRnHjtUQy75/2k40Z9+Dsj3v01qfziOT5GftGVw0+br31YrXxUeAp4e0DoT/QHPuZ+EMuYYKM/8i7SViMU2pzQTlhJtddq30VxJcgGXqdsFLAQ8aKKB0Dgw/Q6c85CLO2ChqcrhMfrE6kgSrKr5R1s2HL46Z1feOXWtwmUVeDxuul13D5cOeQCht3zQZLCcuG0xRzuOz2tfEGTfEIVYfIb5bHbATsz7ofx9DphH5bNW0EwECIciqCUwu1xgVRadSk7XTC1XBbZ+Vksmr4k/u22XBYz/56Ttnjg8bkJByNYInj9Hr595SeevvzlpG8+wD5H7EnTtjpl3m59urJguo6VVFEajKd+NGw9qNC/qMJbQTmuV55uSMHjUPE5ye4D5bCyJ+kuAT7HVcGrx9WKr8DbDwLfoBUBscCvsUWDdbkfWDquQWR2wnkiSGQCyk5MS54YqwAQDyr0H2rNWcltBrDaId5u+m/P3hBIuC7jkrDVoSKLUEXXQXiuVuC72yD1ntDKdZWY9jMMa04howuBNASi4NkTVTEcfD2pDDzoptIqICEKbNLfiXX5wF6SUCagU4RGlyds81Apa+i6VHQVrDqK9DShOZWWBZ5dks+ZZN2z/bHVWxgMvuRFJo6eSsmaUkrWlDJnwnzuPPohcuplp1kFVJRWZOxvlw8+D3+2j3+HT+Dt+z/iiQtfYMhfD3HWnSdi27ZedVCAUnj8HnzZPuo1ztdR490u3F43bo+LrFw/1zx/Me8O/DQehd7lttj/+H3YaZ9O8cBz2flZXPfypfiyvbg9Ls4feCYrF64mkCEycyQU4blrXwegefumtO5cmSZvwbTFTPtrJrZts2DaYtauKKqp22qoJT558it+/eRPileVULq2jGVzV3D/KU9QXhJIcm0BtKVJhv7a9/T96bRXB2b9M5cPHv2Ca/a7gydH38fZA04hr34OdlQ5EysteGbl+vHn+omEI3E3mVhsgTPvPIlh934QVw6ICN0P6Uabrq0ArSTzZXm59qVLKGhSD7GEA0/pSac92zPznzkZ2zfgeL3a4PV52O/YvePvYagixPev6ejMy+atYHmGdKaGLYtxP4zn4ye+Yu3yIkrXlrFq8Rpeu/M9pv01k/pNCpKOtaPRtBVaEH79fi8inlO1QFE+TEdNzrsNybsJXJ2o/IjbWvCVHLSrgYt4JPDY//6DnLzLCWO7q7kObqRi1gpevcLgdvI6e3aB7NOclYQM2RaKE6IoZ51M0mexdAgAKroKFZljLGS2cFYsXMUTFz7PykWrKV1bxtrlRfz45ii+f20kjVqlpxzMZPGXUy+bS5/oz9plhXzz8nAGHD+IXXrtxDXPX8w+h++hXbqcgIS+LC/+XD9ev4fs/CwsS+JxB8QSOu3VAbfbRXlJ5YqYUoou++5A/aZ6PPX43Bxz+aHs/r9dERGatmvMxYPO5sc3R6UpCwC+e+VnggGtSD78goPiZhGJlgmlhWXMm7yQSDhDJHHDFoNSCrX2QrDnaosmtRZCv6FKHtaK0SQRXZGuLADEA/UG6ewDwS9RRQMgOhep/xz4T0KPozHXBD+V5tv10eOox/mxdFpb/1FOZPj4CVCevXUcmNjxnj0g+2xdRvKReoNQwZ9JUxYA2NOxQxP13/7DSRqDy4aiVBSlKlDhmSi7PL28YYtCKwsmAMU6QHF4IqowFr8idUqZKd6ABfUeREeeHwmlT0Dpc0jDd7U7TTy7hqIyBocfrMZUKhScH6mnYxOVv0elMOoG3yFOfALneKsh5N1FPEZR/oNIZDwZMy1Qiip7GQDx7AxW/cpdoT9RkQUoFUFFZqHswg25dVs9W73CYOXCVWkf/cIVRTRv35TLnuyPP8eHPyWQoNvrTvr/wdMHs3rZWic2QITJY6bTeseW9Dlt/7hFAYCIxbN/PcwRFx1E6doylFKIJZx998l8G3yPL4rfpGGLBkmBlPy5fv4ePoHX7nwXZStU1GanfXbg0HP78mXJW3wdeIeTrjuKVp1bVPlxX+WkulNKsWpJpQmj5RLWLi/itsMe5PLut3BWu8sZ/dHvGeswbBmsWLSacDBllR8oKyrn/i9uJb9BLl6/B8ttxSdfljs5ONeHj33Jfz9PIhwMY0dtAqUVBMqCHHv5oZSsqQzgads2d75/HRcOOotgeQg7qhAnPsHXZW/zbcW7HHlxP1bMr9QKK6XIa5jL3cc+TDQSxY7Y5DbIpd+ZB/DhsqF8G3yXG1+5nJx62eQW5GS8xqKVlVYyi2YsSYiaH6VoVQkv3TSMC7pey/ldruH1u9/b1FtqqEXWLF2bts1yCauXrOXOD66nefsmuL0uvFmeygQD6GjxMSaOnsDHT35HpfBgIZHpkH2WE4QrRlSnMioYrP8mBChwtUSa/o3VbCpWweNOlO+YcOABX19YfSTaTNEGBMk+GqvRN0jTKVgN39XBtdw7VHGVCVY8kTlUKjCiEF2NXf45amVf1KrjUIWXotS6VugMm5PiVSVYKRZM4Yowqxat4sKHz2KnfTvh9rqTghlDsgvXktnLGXLl0LhlVDAQYvyIyfQ76wBCFaGkSfyeh+zGE6PuxePzUF4cwLYVlsvF+0tf5ofIBzz124P89e2/cWtCl9vFgSfvx8W73ciKBavjY+PB5xzIwK9v59vQuwyb9SxN2jSma4+q3SdjiwuLZy5NUtIVry5h6p8zOaPNpVzV83Yu7nYj5SWBKmoxbH7CCVHkE7ZFF+ugq77D0JOcdaxsqlIovIKkFdbgz4hvf50WMVHJIA2RRp86Y2ER8YlZg/exmk3DavwTRGaQNJHydIfCK3XE+tgkzn8MVv5tSNPJSJOxiHcPPbmqyh4r6lj72mtJtnAIoaJLUCsPQq05BbWyDypi3MC2aKIrSEvnYi/XQS1zrkArpFJlw8TFMBsKL3eyZNhAEEK/I56uTlDMxP5hQaOvwH8I2IXE+1/+vVjNpmA1HYukxuiwGkP5WxB4s7Kd3p5YOWciTScgTSdgZR+ngxpmUsBBvL8qFXXOG8OFsleiVp+MWn0iauWBqOD2M+fa6hUGZ911sp5guSxEBF+2lxOvOwqAYy8/jC9L3qJrj05J/bugST5uT2UH0xN5fYDLY9Fyh2YsnbOcn94enTT+ddy9He13aUPxqpK4aXc0Ek3ygWy3c6u4AsPr99CweX0mjpoS32/bikWOz7eIYDlR8GPpHzPR/75TARj1wRjKiys//tl52WTlZTHljxkEy4OEKkImsNwWztGXHkJWbpZWWgG+bB+79e5Cs3ZN2LPfbny86jVOu/X4JCWYy+2ioEl+/P8kBZloE9eyonL+GT4Rl6dS8PX5vfQ4qrtWejlSZTRiE0gQIHPr51C/aT1cLh39u2HLBgx/c3TS+7Jm6dr4ymosy4hlWZxwzZEZr7H/A9rMd+6kBcwYOzvhOiz2P3FfPnn6G51hpCLMuw9/SihYxaBt2Oz0PKY7uQU5ePw6xoAvy0tB43rs2W9X2uzUkmGzn+W+z24hGkpeCW27S+v438GAYtHshIFUhVHYWjC0SxJKKST7DESyQdzxbagiRBImgZ490EK06Mjd5e+QtGolLkeoIblc7hVk/OT5T9FnssucoEaVJpCSezmUPoxWKlRA8A+ITF3nPTNsPtrv1oaOu7WNZxbw+j1k5WXR7+wDyW+QxzO/D+TdhS8kxR0C2KV3l3h6ZGWrJNctj09bFYZDYSaOTn72x11xOC06NktydQxVhJIUvHv02xVftvY7d3tc/PzOL0nWhJbbYvFMnXI2MYvTabdlztLRdufWFDSuB8Drd72X9D04684Tef2u9wiUVlBRWsHKhasY/ZEJLLelIuKFrFOpDOLmBrKQnIsRcWPVH4zVbBJpExv33iSPZREqJ/k+cLVE2SWONVYCOSch7o4QXUp8zBQfklC/eLsntCcLInPBTkyJHHLS1+nxVZy0jOI/1LEOSyUL8ffRf5YOIkmo9h8JgU/BXuNkbChClb2SoQ7DFkPulcSDYSKAH3IuBcDKuwKr2QTtfpiIKzWOgU3lN9sL7nao6DKo+CT5MO8BWO62jntBzHrFhSQptLom1OV3XGoSLWQizkKAXvQV0e+NuHfQwZIzkXMRAKr8LZJkC1dLiK6C6FydXUQFUCWDMtexDbLVxzDY79i9GTrpSZbOWU40GmX2f/Nwud2sWLCSuRMX8P6gz5n658ykMqsWpQcaiqOEVUvWcPFuN3DsVYdr3+3yEF6/h17H6VRgh194EL9++md8sh+LVAzQoFl9nhh9H58/+x1N2zRiwfQlLJi6OL7f7XFx1KWHZDz1ERf2469v/k3a5s/18dWLP3LF0+ezYNripCj4O/fakdyC7HhEZoDSonKm/D6drj0zpRczbG7a79KG12c8zdxJCwHFvEkLCQZCzB4/D4Cht7zF9HGzkybs4Yowa5YWZqzP6/MQiUS56aABnHBt5QTe5XGx24FdERF6Ht2d1+96D5fbhW3bHHvl4ZXHuVw8PeZB3nvkMyyXRYNm9Xnz3g/j+y2XRe8Te8SFgkT2P34f3rjn/STfXZfbYsznf9Hz6L1YMmsZLo8bHOG7cauGNHCUEzGXHaUUYz7/iz6nmJRgWyL5DfJ4depgpv01CxFh8axlFC4vYuofM2nTtRXPXfMa08fOIppi5TXrn7mAIjvXxo7CEWfFxlw/oKD4TvAdTqXwKGC1QKxslGdXsBqA7ax+ZZ+ZVLcUPI0qewnsVeDdW7sUJGYzcLV03BGSEU83FF7SzCSjM1CRWYCPJDMJBDydHSE45r8bRAW+B3eXuOBh2HJwuVw8NmIAU36fgR21WbNsLYtnLmP62NkUNMnn5ZvfYsIvU9PiDfz306SM9WnFruKDRz9n7Hf/Ur9ZASsX6r7gy/bRsVtbcvKz2bPfbkz8dRoAu/fZOSl98tl3n0y9hnnM+ncevU/qwYDjH006h9fnYc9+u6adO7deDi07NYsrE2KIwD/DJ7Bnv91YNq/SQsfj99C5+w78M3wilsvCjuq0un98OY4+p+6HP3tdwfIMmwvJHwDZJ6GiJXoSEpkK0QXY9u5Q/jpU/ERy/nggMraq2oAoVAxHhf5wcsnPQysT/Iivtz4s+3Qof00fbzV2Jl1ODf6DUPUegeBI8O4HJQ+lnMOHZB2V+fS+g5zYC4nUQwU+Q7JPdawXYmOsX9cfLURPRZyJWfg/VHQF4mpSxTUaNidW9sko7156gq/CEJmCYKOiq1HB3yDwDkRnJxdyFEyZiUJ4FmrV4eA/Hq2MCAJ+xO9kiMk+G4rGo11g3ODrEy8t7g7Q4DVU4EPt4lgxCkg8v0dbM2Yi61QouSdlYz6Uv43Ku8kJ8pmgrPPunx7HwF6OCk9DPNt+mnvZEJ/M7t27q3HjxtViczaNobe9zedDvo0HfIuEo4QypDGsChEBqQxe1OfUXtRvWo/fvxxHt747c81zF+Hx6pW2+VMXMfvfuXTdb0eatat6YJv5zxxu6HMPYgl21Ob6oZdVGfl+xPu/MfD0wWnbLZeFWELLHZqxfN5KEImbtXv9Hg48uSc/vjU67j7hz/ExdNKT8cBIWwIi8rdSqntdnnNL76+jP/qdQf2HEAlFcXlcuFxWxjgWVSGW4PV54sEIW3ZqzvFXH84ng7+hZafm3PzGFfGVqFVL1jBh5GTa7tyajt3aVVnn2hVFXNLtRoKBIOFgmLPuOplTbzk2aeUrxvSxs7i61x1JbjuxdokIDZvXp6Jc1xMJRbS5riUccm4fhr89mlBA92Ffto/7PruZPfvtlnaOzYXpr+nMnbSAq3vcTjgUwe11U69RHqsWr8noB65RXPvoIrr1KqVFu8rVgUqNvQsKXtQCqZWD1HtYa/0BZZdCcBS4GiPefapsk1Ih1OrTtECiwuA/Fsm/E7HScyur6HLUyiOAkvSKYrmZJU8HH1MJqRx9B0FwLBBzz8iC3Cuxci9a1+2qc+q6z27p/bVkbSn9d7ya8uIAbo+Lpm0bs2TO8njmo+ogUpk5wZft4/Z3r+GdBz6moizIZU/2j1sFRiNR/vz6HxDY98g9M46XMQadN4RfPvoDO2rTpUcnbn/nWho0q592XKgixOV738L8yYsyNAz82X7adGnBgqmLUUrpdI4KOnfvSFlRGQunabNaj89Dj6P24u4PM6W723yY/pqMUgq1+li9oo+A1US7bKkNcSlJGF8lW8dyCQ6H6HzIPh8r54zK8wX/BHs1+A6sDPqaAbvsTSh5lLhyof7zWJ5OmdtfeBMEv8hQixP7wL2TozQQ4ivGVjOdei/yV+U1uFphNf5xA6679jEyQTp24S2VsYEkx+mr1Zdh0wIZZp0Hqki7v/gOQvJujSvmVXiKDsbp3XedyiQV/B219lIdkBEX1HsSy987c/vL3oSS+zPsccq6Ozrvo0VcaSc54DvASeHsuEhIDtL4Z8Qq2IBrr11qo79u9RYGifz09ui4qaHLZa03urXLbdG4TWPKCsuIhCIccFJPRn4whmB5EG+Wl1adm3Puvady+eDz0sq27dKKtl1arbdNnfbswOsznmbhtCV06NaWvPpV+6I9ceHzGbfbURuiOsjhvkfuyY7dd+C9hz8lVBGmoizI+JGTadKqEcvmaTNcy2Uxb9KCLUphYEjnu9dGxP1kbdsmmpq6MxWB3IJsfFk+StaWsd8xezPmC/2RdbldtOjYlGOvOJxjrzg8rWijFg343xmZB81E6jepx2vTn2LWP3NpsUMzGrdqWOWxT1/+ckqMD9FCg61QKFYuWk2LHZpx2i3H8dRlL2FH9WrzD2+MZJ8j9mTM53qVJBwMM+2vWVuUwsCQzpjPxxIKhbEjNtFIlFWLQtgZIsNXIrzzdBsOOrUIWAKevSD8D3GB1mqI5T8A/Aekl7RyISuzy0vSceKFhu/pzAZWQ73aUAWq9HnSIyLH9+oATqoc8h/USgzlWEUEf9FBE8vfQq82BJwMD1uWwsCQzLQ/ZxIsDxEJRYiEIiyauTRu2VQVHr+btl1aM3/qIlp1ak55SYAV81c5LlmKXfbbiSF/PpxWzuV2sd+xe1erXTe9egXHXn4YiNB5rw4ZrbcARrz3G0vnrMhciYKKsgrmTVrIpY+fy3evjWDmP3NQtmLepAUce8VhfLX0R8qKygkHw0z5vYp0eIYtBmWvgcgs4opKuzq+/D5tRRCZqYPOuTo4sQYioBTi6YLkpGcCARDfvtVql5VzNsq3n44/4OmGSGoKXIfIVAhVNclXQAgi0yDnEj3xC/6Izm+/DLw9IfIv8ZS20YUoFdLju2HLJfg98fSdqjr5hLzaPSG6TGtjvf9z6qgA/IinPZJ9WsaS4umaZAlTFeLrCY2/g8gC8OysZYkMKBXMYD0Tw8ncFJkB/mN14MPyd3Q7VQlEF2pLA1VCXOERXQBbkMKgNtiqFQZrlxfy8zu/Uq9xPjn1spMCdCml8OfoYIfBQCgtmruI0PuEHlz/ymX4s338OGwUcybOp/eJ+zLl9xns2rsLp1fhQ7ihNGhWP+MKQhoJgoPLbYFIsoCjtHl6z6O78/6gZLOv/Y7fm8+e/hY7alNeEtCBHg1bFBXlQX4cNgplK7r06MR/P02M73N7XDRp05jVS9YQqghnXLXttGcH7vv8Fhq1aMDY7/7l7+ETOeKifoz77j+ad2jGTa9fUSPtzMnPplufndd/YEJ/9WZ7dTTw4uTVkNLCMg46szdPX/5y0vb9T9yXP7/+RwdWjNpxn2PDloNt24x87zfWLCtkn8P34NOnv4kriNw+Nx12acOCaYsJhyIZJ2IFTevxwFd34W/VFhWeggp8CZ4uEBwNVjaS/2CNtFPEq10Tqne089sN0gjUspT9EcR/MKp0cPI3w5OqzEq3YDBsfsb9MJ7Z/81j78O6MWzABzrTDFqJ3q5raxbPWuoEN063MnB73dz76S3sfejurFi4iq9e+IFIOMqkX6ZSXhLgksfOIb9h3ia3UUTYce+qAnAmY8WUyALN2jVh2dxkBUIkEqXjHu1p/ON4nbXGoUmbxkkZPfw5fh2kuQrlhGHzoMKTITgGvN0g8C1JwQalccKEJD29MliQeyOScw6oMu1vbRc6MVwWQva5iHf3GmmnuDtW78AkObuAysCKMUKIqzFK/I7CIIbP8Q+f5/zvBxXRMWoMWwwqulhbFLhaoqLlKdYvot0FlFBldoSsE5H8OwAXBD5ARebroMWRKeA70MlStOmIq7nOnrRBZEo7aoNYiK8XKvBeclf29obgt+jFhvLtIgXzVuuEGSgNcOkeN/HSLW8y6Nwh3H/KEzqdHPoje+yVh/PShMfovHfmgU4pRYPmBWTl+Hln4Cc8fcVQPn7iK375+E/u/+JWbnzlcn56+xcu7nYDD54xmLKiqlamao4bhl6Kx+fG5XZxys3H4s9J9zk8866T6Lh7O7r0qDQJ63fOgezSq0tlfntFkh+6YcvglkPu4/nrXmPIVa9wdU9t2h2j636defG/R+lzWq8qTbwty6JRiwb89e2/3HvSY3z8xJd8O/QnLhp0NgO/uZ25Exdw+d63cMsh97F07vJav56rn7uI3IJsLJfFPofvkdE154RrjsDr93J8QoDEvQ7pxi69dkrUN/DuQ5/WensNG8az17zK4xe9wEs3DePCXa9PiraeXz+XwWMe4NSbj6uyfLA8RPtd26Ii83UqxfJXtJbefwhWww9BXNirz8JefRIq9E+tX4/kXu4IES4dIdmbwTXM20u7M+TdSFy54GoE3oOTjwv9tN2lVNrS+f6NEdxz/CCG3vYWl+5xEzP+SfSbVTz5y32OW2HmdRIR6NitLRXlQa7Y+1beH/Q5nw/5ltwGuQyd9CSdu3dkwImPcskeNzLivd9q/Xr6ntaLTnt2iMeWOe7qdMuxeo3z2XHvjpx7/2nx779YFr2O35uGLSrTSK5avJqJv5hgnVsSKjwBtfo0VOljqDVnQ+DthL0W1H8WGgzV8VwyIdmIR1uoqLXn6xSw5cMgMgdp9C2SfQp20QDslUdilz5b+ylh3V0g6xjABZIFeddmOgj8R+hV5HiARIHsI8DTjUqFbgQCH9Vuew0bhIquRq06FlXyKKrwGii5i8oZtAtyr4OGn2oz/oxTZwtxt0bEiyp+AFX8EJS/CqHRSIO3kLw7UGWv6f5adLu2AKhFRHyQdwfxtKI515NpDV1yLtSxNqxY4EbRsRa8e6NdgAAUlD5Xq+3dEthqFQZzJy6gvCSAHbFRSukVg4T4WUWrSvj57V+Y/ldyADkR7ePvy/bR57T9Afjjq7/jKxEiMGXMdKb+OZNnr3mNuRMX8Osnf/L0FUNr/Zr6nNKLO9+7jo67t+Ovb/5Ni79wys3HsFvvroz7YTz//VwZpOm9Rz4jHAwnRcg3+cK3LCrKg0z9YybhYET7myasyIol2BHFuB/GM+LddEHUl63761GX6knL3z+Or0z5VR5i7Lf/Ury6hHuOfYSZf8/hv58ncdfR6WazNc2O3Tsy6Kd76NqzM8vmrmDRzKVJ+/f43y6ccfuJLJqxhI+f/Cq+/d+fJjFv0sKkSOKmv255/PLRH4QCIZTScV3ivt8CvmwvU/+YyXuPfJZsXSA6k4I/x0e/sx1Xg/B/VA7OOuUXgFpznjafDU9Arb0AtUG+uhuOuJpA/Xf1yoByQTBFSSXNkPrP6ejixQnCUHQFVHxFuhBk+uyWxIh3ftXfTKXjDiS6S/myfEwfN5sXb3ozSfFluSw8Pg/+HB+d9uxA/aYFLJ29jGAgGA8aOGGUjrg9qP+z/PnV38wZP5/HL3yO+VMW1ur1eP1eBn57B/3OPoCGzQt44+73U/Z7GPLHQESEB08bHA+IXFFWwTsDP4lnfQCtREgN9GjYzAR/QVsOxHLOpxCeBaXPgJ2o/LeIZVJAssGzh07zGh6PjgkQ0RkH7JWo0hch8AlEZ0LpS1Dxba1ejogg+fdBzsXgag9lL6Vcl0DBq4iVjyq+X7uAgW5zySPoyVeCEG/G1y2L8L86ThA2+tkkWmnp1IqUv6vdY5KenYXur15tTQAQGk2lFYJAeIoOsln6jO6vgS9RJU/W9hVh5ZwJ+fdrt56KL0iy8AHIvQNxd0SVfwrRac5GVRnTI65g2D7661brktBih2bpK7HO87KjihHv/EL95gVJk+5GrRpw7QuXsGbpWrr27Ezbrjr1116H7MbciQsIlgdRSrHTvp2YM35e3BwwEoqwYGqGwEM1zLJ5Kxh45lMEy0M6cJyz3XJZHHhyTy56+GxAR9JPJBKM8NCZT+HL9uJyu8jO82eMu2DYfPiyvDRoVsDqJel57ZWtmDxmOgunLU42I832cdPrV1BeHKDVji3YpZeOwrp73134+qUfCZaH8GX72LPfbqxZVhj/1tq2isezqE2ikSi39LuPkrXp1jetd2zBoOE6+uxHT3yZ9K6GKkIMOGEQbo8by2Xh9ri4/uVLa729hg2j89478OdXf6fvULB0zgruOGJgpck02rLrymcuwJ/jJ69BLvseuafe4dm1MnIcfvDur4VcOyGfs4qAXQSurFq9JoquhPAkklIlAeCFxj8j4kYFviA5N3oQSu5Av2COUJt7JWJVw83MUGfs3GtH/hk+MaPyMVBawe2HP5jmOnPslYey835diEai7H/8PogIzTo0xeP1UGEFcXvcdOnRGYBF0xfHFb0ul4tlc1fEZYja4qWb32Tke7/pNI8J+iqPz80L/z1Gk9aNmT5uNotmLInvU7bi65eGo2wbt9eNshX7HL4Hux7QpVbbathA3F1JDgKbiA0l92kT77iJtIC3B2Sfg9iF4O8b989W7q6VGQisfLAaOfEQYpOykA58WNtUfAZlr6P92mNp9xTgg/xHsPw99MpxRUpgxPAkCE9Ep8uNgrsDZJ1U++01VB93Z9Im1HFsKH/bsYZJzFjUDvLuQOwVOlih21ml9/aAwEp0/7TBsxNUfE/luxB0+m/tosKToXiA047E9XM3ZJ2LlXuu/rcsVXlRDiUD0Fmf3GDVR3Kvq/X2bm62WoVBQeN6DPz2Tm495L6k1doY4VCEssJyfNk6X7cA939+KzvskZ5u65x7TqFBs/rMnTCfg846gHY7t6agSb5TVk/ATri2ijQyNcjyeSvj0ZWVrXD7PEjUpvVOLbjwkTP5b+QkVi1cTagic+aHcDDCfsd0584PrseyLMqKy8nOyzJ+i1sAIsJTYx7ksj1vomRN+gTbjtoUrynBn+1HnD573cuXcsBJPdOO7Xl0d25982rGff8fe/bbjd4n9iAaidKqcwsWz1yKUorDLzio1q+pvCSQltXB7XFRr1E+t719DdPHzWLe5IWsXJyextSOKkLRMM07NuWVyU/i9rgpKy4nK9cfT1dq2Lzc/vY1XLv/ncydWEXwLUvIcnyjAY685GCOvuzQtMN02qM3UIFPwL0Dkn0mIhbKfwwEf9AHubuC1bS2LqWSyDyS8j/H/C7zByH2AuzgRL2yl7ZaECvjgSZjsKx6KLscxIvIVvsZ3aY4444TmTdpIaM/+iPjfqWgZefm8bSIO+69A5c9cV7a9zErx8+QPx/ik6e+Jrd+DqfceAwAx19zJENvfRvLErLrZbNL79qfgM+dMF8rCwCP143b4yYSjnDWXSfhz/Yx8oPfWLu8kGgkWQaKKUbcHuGxUffRZd9OcbnB6zd+4VsC4u+Lyrkcyp6p4ogKsHYAe4nuvFYBUvBcxgww0uANVNlQUBVIzvk6MGH26ajgCLSLAOA/rDYvBwAVmU08CB62ExiuAvwHg68ndsVPYGfyb09QiuTfi2SdBERQdnnG6zXUPeJug6r3JBRdTbKff4ygVvzjKP3FQuoPrVQSJNaVPwDl6gDRBUj2qYirOcrXT1sY4AEVRXLOrsWrcYjM1zE/FOhrygJC4NkFci/ADv4K0TVgZ7pegAhknYLk3w042Z0kZ5udc23Vkk63A7ty9BWH8engr9N3CnTp0ZkLHz6T6X/NYpfeXWizU8uM9ViWxTEpgm5B43q8Mnkw//40kRY7NKPTnlVH364pOu/dkbwGudjKBgWn3HQsZ999MpFwhGt63RmPglwVyraJhKOsXV7Etb3uZNXiNbTt2oonRt9HTr4ZdDc3Tds05sqnL+DxC5+PC4GJNGrZgMdG3Mu/P02i3c6t6Npzxyrr2v/4fdn/+Mooxy63i6d+e4C/vv2XnHrZ7N53l1q5hkRyC3LY9YCuTPtzJgqdf/z+L24F4PELn+eHYSPTUi6mEglFULbiugPuYtqfM8lvmM+Tv9xHyx02NGCNoabJzsvizvev49I9bs4YJE5FbJ4YfR+Tfp1GQeN89jlizyrrEu/uaQG4pN7DEDoaVFCn9qqLj2zWKTrbgei0ZdLoS0R82GVvo1ZdQ9UrKDFswIdddIc29xUvFLygIzMbNisul4s737+eQz2nZvxOKtvmmucuZs2yQpRS9D5x3yr7XPMOTbniqfOTth135eHsuPcOrFiwir0O3q1OvqnHXnEYM/+Zg4jg9rh5acLjNG7VkPEjJ3Nup6syvpeJWC4Ll9vis2e/5cXr3wDgsif7c8zltT95NKwfK+8q7MAnYC/OtBeyzkA8rSG6Cvz9qpw8i5WP5F2fvM3XAxp9CuGp4N1LB4KrZcR/BKr8TZz85Ej9lxBvd1RkIWplPzKntE2qQS/vhcag1l4OhFBZJyH5922zk7CtCSvrEOyKfpWK/iQEfL2Q7DMhMh28+yHuzJnkRDxI7gXJ29ytoNE3EBoH7s5IhtSdNY6vB+Aj7haUdxtWzmkouxy16lgnU8m6XA2cbArR+ag1Z+igo549oMHr22SGj61GYTDr37m8euc7ZOdlcenj59KoZUNCwTAL1uFH+PeP49njoF3jKwQbSn7DPA48Zb+NbfIGk5Xj58X/HuXPr/+hQfP68Unf9LGzmTd5YUYhSET7uNtRG6/fy/kDz+CdBz9m1aLVRKM2C6cv4ZuXhnPyRt4Dw8axavFqXrjhDcpLApz/wBnssEd7lFLM+HtORmUBwMpFaxh661vc9f7G5cv2+r1JSoTaRkQY+M3t/P7l31iW0OPovQAdkPSHN0ZWGbzRl+0lGrWxLIurhlzIiPd+Y/Z/84hGbApXFvHyLW8x4OOb6uw6DBAoq+DlW95i4bTFnHjtUfQ4Sj/LaWNnVfkcQ8Ewdx/zCEMnP7lRwpyIBb71p/qsSSTvRoilCPP10YGPAMqGULWywEM833LuVUh0NqriKyAKKoAqvh1pPKJO2m/Q2LbNuw99yj/DJ9D7hH059srDERGm/D4Df7YvzfJJl1Hcc/wg3pr7LLkFVac3Xhdd9u1El33rQJB16HNqL5p3bMaCqYvY46BdaeQEMnx74MdVKgtcbguxLMQS9jliT9p2bcU1+90Rt8R8/rrXOeyCg/D6qkiPZ6gV7PLPIfAheHZF8q7Twd8ii0BVlepTQelAVMOPsXwHbtQ5xd3RCUJXN4inKzT8QqfP9eyKuHU2EBX4lKqVBS70VETA3Rb8R6BWHUHcUiHwBWSfoTPsGOoMFRqLKn0OrMZI/m2IVV+voEfXEVC74nOUdz+s7FM26pzialqtdMo1hVgNoPE3Op6Iqw3i3UPvCP2m031mVBYI2hVBgZWD5F6CKn5Axw5BQWQyVHwNWTWTZW9LYqtQGATKKrix7wDKisuxXBbzJi1k6KQn+eLZ75g4uorIv0oHUnvltrc58uJ+W80Ke069HP53RrIQXdAkv0rLgkPP68vlz1zAvz/qQIgv3jiM0rWlJojcZubWwx5k4bTF2FGbyb9N571FLzLtr1l8/VJVeYq1G8roj/5g9vh5dOzWru4auwm4PW56n5CspPD6vXh87nhgxkS69OzMw9/dwcy/5/Dvz5P48vnviUaipr9uZp669CVGf/QH4WCYqX/MYMifD5PfMJenLnkpzdw5hrIVC6Yt5oc3RnJo/7513OKNQ0SvgqRhNQJ7dYYCDfUqXXStTgcZ+g8V+hdUohLFrHzVNZ8/+x3vPvQpwfIgM8bNpn6z+hxwUg/uOvqhjMoC0P21rKicwZe+xJ3vXZ/xmC2RHbt3ZMfuyZO+xq0aIpIQGsTB4/Pw+Ih7aNC8Ab99PpbJv01j4JlPmYCHmxkVGusEUq3QQV4Byb8FVXQzqKriDSkgAoVXQePhddfYTUTcbfXEP3GbqwkKN+lKWQvyHwb/ARD4CcJ/otZek5Kuz/TdukZFV6LWXug8BzcquhRp+Caq9BmdAjFzKf2r+E5U1lFbjaueWA0g69jkjVbjqo6G7Isg53JHHvgdVXj3OpQL2xZbxROdMmY6gXItBNhROx6Nfe3ywqTUdJkQS1i9ZO1WozDIRMsdmnPlM+fz0k1vUl5cDmhTw7PuOpkTrjuSS7vdwJJZyVo/l8eFJYo2O7XkiIv7bY5mb7cUrSrWEbRjQdYjNmuWFVK0sni9K7GWZbFw2uKtRmGQCZfbxQNf3sbDZz3NmuWFKFthuSz6nNqLm167nAEnPpYWTM/lthCBgib1uHhQHfiuGeKEgmHG/TA+vmLpcrlYOG0xbXdujVQjnsTCaZnMabcupOBpbQIbnYs2M7TAvSvUf1WnKit7KqVELKCXH8kfWOft3Z5RSjHq/THxzEYVZUHmTJhP7xP3TcqAUBXL562s7SbWOpc+fi7L561k0m/TiIajiCU0bFGfR3+6h4XTlnDN/nclKQnEEsQSLJfFFU+fb6wL6hhV8S2VUeUrnAB/gL2KzP7gCWRSZG5tZJ0Eof+cbDMh4pHzC4YgrsaoFb1JCpYHxMfYrOPBvVMdN3j7RgV/ceIRAEScgJqAvZLk7AiZiIAqBSmovQbWMuLdHZV7lZMqsZx4RoS825GsI7R7jVqVUsoJUOreFfx1ZyVRl2zxCoPi1SXcf8oTcV9osYTGLRty93GPcOh5fcl5+SfKSwNJvtL5jfIoWVOKZQktd2hGyx2aJdU5b/JCpv01i1167Uirzi3q9Ho2liMu7McRF/ZDKcWyuSvIa5BLbkEO378+Ik1ZADrokTfLQ5uurbZqZcnWhlKKa3vfhSAoR2Pg9Xt45spXOPS8vjRoVsCKhauTzElzCrIpLw4gImTnZdEtJf7AqsWr+fvHCbTp0qpOzWE3hd377sJ7i18CdPtdbhf1mxYwe/w8/vw6PfJ+NGLjzfJQ0CSfxq0b1nVzt2sGnfsMpQmZLiLhCJ8P+Y79jt+bXXt3YcKoyUluNG6vi6gz3nq8bnqnBOYsKy7n9y/GUa9RHt0P3X2r8D0Vd3uksU47puy1oMrBagFEUGnKAtBCvhfw16nJrwE+fPxLZvw9J/6/y+Pi358mEgmFOfG6o/hsyHdpKYldbgvbVrg9Lo65Itl/PxqJMubzsdhRm/2O2xuPd8ufTOfVz+WxnwcAOvjs2uWFNGvfBJfLxXW9706zKFC2wuVx4fa46LSX6a91iQqOgfIPqQyc6gZVil10m16tLLkPnV4xEb+zzZ2WLUApBaExevLm64tY9Wr9GjYVETdS8DDwMEqFILoEXC0Q8WKvuZB0ZQHoFRcPePbaKr4h2woquhiK76VSMWCBVYC99krIOgaCI/T3MWlFvR5QDLjAsztIcp9U4ckQnga+Hogrcyy5LQ0r92LIvRilohBdBFZDxMrFLn0xg7IAtPWMHzy7bJPxCyA5j8QWyfwpi0jsmAKsXLSa378YxyPnPMPz/wzi2MsPS8rpXlZYhsvt0oFlXRbBQOVgPOnXqVy57608e/UrXLbnzcz4e3YdXs2mIyI079CU3IIcAOZOqiKCORAKhBn1wRgqylM/RobaorwkwNLZy5NM7IPlQf7+YTyPX/A8N79xJZc+cS5ujyu+v6K0Al+WFxHB5XZRVlQ5eVu5aDUX7XoDQ656hZsOupef3vmlTq+nJmjUsiH1mxYA6L5YheVWKBBm2ZwVzEyYDBhqn/9+nhR3O3B5XCilGD9qMq/e/i59T+/F3R/fiMdXqVu2Iza5BTk6m4VA8apK39RQRYjLu9/CU5e9xH0nP86LN75R59ezqYhVH3G1RER0+scqCQEBCG495sLbAn99809c4Wq5LVAw9Y8ZfDbkOyrKgzzzx0Dy6ucklclrkIdlCXZUUVqYnKXmnuMHMaj/EB678DluPfSBrc49Kjsvi5Y7NI9nWCpek9lXPBqOEiwP8eVz39Vl87Z7VOgvkhUCtjbrDnwOFR8ijb8D984ppTxoaTcK0UBSn1RlQ1CFl6OK7kGtOgZlp2dd2pIR8SLudpWTqnBV6fMUEISyF+qqaQbQKS7FlbBBdErO4I9QdCc0+g58R5M8fSx3/rdBKZSqXGBQFT+hVp+OKrkPteooVKQO0nvWICIuxN02nsJUp2Wuigoof7NO2rU52OIVBm27tkKnvtIrtWJJkk/tvz9NpKykPCkwVzRiEwlFsKM28yYt5JLdbyIS1uY1PwwbRbA8REVZkIryICPfH1PXl1Rtxo+czAOnPcmb931IOJTZDGjSr9PWWYflEi1UOcTug6F2yM7LonmHJrg8LlweFx6fJ746a1kwftQUFk1fgp0gAEQjNhVlQaKRKEWrirl0j5tZu7wQgLHf/Uc4FKaiLEiwPMiXz3+/OS6rWiyYtphB/Ycw5OpXqhRaf/987DrrCAaCZOVlxf838Q1qn93/twtev0cPsyKEg3qMCJYHmTh6KlPGTMeX44sfb9uKkjWlRCNRQoEwdx79UFzxOnfiAtYuL9Tja1mQ718fuTkuqVooew120b3YRbdULcSERq2nlhCKytUEpaLrUTIYNpV9jtgTX7buj5YluBzlaygQYsqY6Yz97j/qNUle4SpcUUQ0YhONRHnu2tcY/vZoXSYY5q9v/9X9tTTIlDHTKVlTWrcXVE1CFSFev+c9Hjx9MJN+zRy7aeWiVevMTCMiuBMsKJRSVcYoMdQM4t0HbTEA2iopdv8jEJ4OwT9A6qeUKiEegT34Aar4wcpd5R84vuUBUMUQnlC7F7CRKKWwy97GXns1diBDJrP4gesIogeQNL4mT0YNtYBnFyqtYXzO3zY6MFxA99dY34wTrjwu8jesOS0ut6nyd4EKXVaFIfhzXV3JBqMqftb9tfQVbVmQiZg7UZX4kxV821B/3eJdEvIb5vHMHwP56sUfadC8gDkTFjDms7+IhCNEI1GeuuyluHlsVaxZVsi8SQvZYY/2dNitLb5sL8HyEP5sH+13Sc8RuiWwYNpi7jjqIYLlQXxZXtauKOLqIRfG9y+etZTHznuO6X9VpZ3ViGXx/Ss/c+h5fbn9yIFMGDmFZu2b8PjIe2ncyph+1zQiwuBfH+DjJ78CIDs/i7cf+JhIOEKoIsIb97wfz5FdFdFIlL++/ZdD+/elzU4tdJohtMKswxYa2yBQVsE1ve6grLAcl9ti+tjZPPN7pW93ydpSnrz4BX779K911iNi8eFjX3DTa1fw9BVD+ebl4WTnZ/HQt3ew0z5bhzvG1sbNb1zFp09/zZqlhXTaswODL3mRaDSKHbUZ8d6vhCrC6wyaZkdtvnttBJ336kjj1g2xo/pYl9vaol2+1Jr+EJkFRFEVI6HJ6HjWBKUiqJKHofz99dRiQ/lrkH0idtk7UPIAYKHqDcTKMplpaoOTbziaeg3zmPnvXHY7oAuPX/A8tldbFC6bt5LX73qPyLpiGyn45Mmv6XfmAXi8bgoa16NwRRFKKbJy/WTnZ1VddjPy9BVDGfGufh9//3IcL41/jBYdK90tP3n6a95+4ON11qGU4ud3f+Hywf2ZPGY69xw3iGAgxKk3H8v5D55R25ewXSK+/aD+EFTFCPDuCaVPQHQlMbcmVXw36/ULD3wA9e7Uf7s7Qmg12lc8Cq7WtXsBG4kqfw9KBqGtsEahrFwkIduDqhiBKr6fyslpFURnoyJzAAu15mywV6B8fZGCIVtNYL2tCXG1hAbvogKfgKsdBH/SWS9UBLCg+DbWm344Mh3s5eBqBu4uEPoLqNCWC1uoC58K/YMqvBao0P2VIJJ7eeX+8FRU0e1gL1lPTWEI/oDy7odacw5EpqDcnZEGbyJWQS1eQe2zVbxtrXdsyWVP9AcgGo3y8RNtee3O9wgFMg+yMfeEuNWBUjRoXgDA0ZcdwtrlhYz7YTz7Hd2dfmcfUNvN3yhm/zcPy6UnisFAiImjkyOT3n74gyyZna6Z9WZ5iUai8UlpuCLMgulLGP7maCb/Nl3HQJi3glfveIdb3riq9i9kO6Reo/wk4atVp+Y8fM4zBAOhjOb4YgneLC/BMm226HJbcUFwl/27cPnT5/H1S8PptEd7Lnl0ywwIuGLBKiJhbQ0QCUeZ/d+8pP1PXvwiY74Yh50y8XR7XIjLIhKKoGy92jV/6iKmj53FD6+PwI7alK4t49Hzn+OVSU/W4RVtP3h9Hk696bj4/613bME9xw+icEVRxkwXAHkNcylZrVdivX4PrXfUioEGzepz/xe38MY971O/aQFXDbkgY/ktgsgM4qskKgDRFeDWwrcqe02v5KX5FlvoVZeE4HrRxdosuOQB4oJU0e0o/5FIkmmnoSYQEQ49ry+Hnqczc3TaswMDzxjMrP/mJcXiSCS/YS7FTn91uV203qlFvK7HRgzguWtfIxqJctkT/XF7tkyxaNKv0+LWai63xdyJC+LfiX+GT+C1O96loiylv4q2eisvruyvkVCEkrVlPHzW0/GMEh8/+RWHnNtni1bwbc2I7wDEp2VN5euNKrrXyWVfVEUJL0l+/Ql+31LwBKr4PoguRXIvrzLX/WYn/BeV42QFKjQhrjBQ0aWowmuATBlNctAm7o6sIG6ILkKVva4noQDBMdoVzH9YhvKGTUU8XXWKTEBln4IqGQLlr5D03UvCcUeorACc2BqSdxWKgA56mXVc/D3Y4ghPovIaAhD6E9AKA6Vs1JpzQRVmKJiFlhNiZSMQWYAKz4TINHSqxVmosleQvI1Lmb6lsGV+GdeBy+UityCHaDRFKymA0gLAASf35IKBZ/DERc9TvKqUCx46gwbN6sfLn3f/6Zx3/+l13/gNYOdeOyLoqMZen4cDT04OLLZiYebIud367kyzto35/rUR2h/ZVhx89gF89sy38VUXZStWVlHeUPM069CUSCiapCzQ/tEKBNrv0oaHf7iL5659jbkT5nP0ZYewa+/KnMOHn38Qh59/0GZoefVp3qEp+Q1yiYQiWC6LvfrtlrR/wbRFGS0rWuzQjH2O3JNvXv4JFbWxbZsTrjmSeZMWJgXaK1xRlWBlqGk67dWB1UvWJm90xlfQQWWfHfswnw/5lr++/Y+9D+nGMZcfGj90j//tyh7/27XuGryxeHtCaBxgg6sxuJpX7ovOJrMw64Oc83RucOXkXc46BWWvIXnVZdsxQ9zSad6hKcvmrazSqsDr93D/l7cxe/w8Ph/yLe26tubqZyut9drs1JKHv7uzrpq70fQ+cV8+e+bb+Li4U0IA3CWzl6cpY0Evnhxz+aFMGDWF2RPmY4nQuXtH6jetR+HK4vhx4WCYyHos3ww1g1gFznhR1RjhgvwHdKrXkkHgKkDyH0go3wApGFwXTd00fIdBxU9oxYcX8SWkC48u06vNaV3WpwPr2at12jpx6QB6nr0gfEvCcRUou8gktK0DRLwoy0PV/VUg+1wk+2RU4Z1ACMm/E5GseHnJ3/LHV7w9ARfxRQH/EQk7g6Ayudla4OsDkgsVXwBuJ3nSIVB0N5XWM1Hd57dytjqFQSQcYdKYaUkmsvmN87j4kbPpcfRehCvCNGqpTe0H/XjP5mrmJtOkdSOeHfswoz78nVadmnNAgsJAKcUeB+3Kfz9Pwo5G4y4Zbq+Lf4dPxOv3YLkszr77FHodtzctOjbTq9sJtNtlyzRj29ZQSunUVwl+om6vm/73ncphFx5EoDhAkzaNsCyLO965dvM1dBPx+jw8O/Zhfnh9JFl5WRx2ft+k/T2P6s7imcsQIe4jb7kslsxezjcvDicSiXLclYfR59RedNqzA58+/Q1iSfw9N+4zdcf0seluTifdeAwnXXskwUCYxq0a4PF6uOTRc7nk0XM3QwtrBqn/AgQ+AlUBWScmm7d6e0HgS7TwkLhqG4HyN0DZ4P8fknUKeHtAeByKRKEqy1gX1BGrlqyhZG1y3IEDT+nJOQNOwev3Uq9xPlk5frr26MzRlxyymVq56Zz/4Bm036UNy+atpM+p+9GweaXf+077dERE8Po9SYpWbMVnz3wLInTYtQ2n3XI8+xyxB4HSimQ/WzDZaeoIZRdBZG7yRtfukH+LzhxgZVdmPvDvX+ftqymsrENRVi6Ex4O3F+LtFt+nXG1Bsh0z9xCVmoMIBD7RVgVWA8i7HvH1RawcnV2hsnZwbZnuxNsaSgUh+G/yRmkB+beCd28EG3E11psbvbcZWlgziKcTNHwXgqPAvRPiT5RhvTowaWQaWgmQkPEkOBzEq60qcq9H/P0QVzOUSllwcHWomwupRbYqhUHxmhLO2/FqilOCEhWvLOGFG96g9Y4t6Npzx83UupqnVecWnHnHiWnbn7/udSaMmgwCHr8Hn1hEwhHqNytgeWylRaC0sDRustjzmO788dXfhAIhvFke9j9+37q+nO0OpRQXd7uBeZMXJm2PhCK8MeADGraoT7+zDqyi9NZHQeN6nHLTsWnbf3xzFJ8+862OUm7b5DXIpaK0goYtG7BmaWE8d/r0sbO56BHtcrFr7y54/R6C5SF8WV4OOqt3Wr2GmuehswYz4t30QLCfPPEVLhEufPiszdCq2kHEB9lnpm1X4Qk6GjQW2mqgIVCsBVi7GJRj9h4cgxRoNxnl3gHEr4M64QV/37R6DTXPh098ycs3v5kWY2P0h38QLA9xz8c3brEuBhuKiPC/M9LHwbXLC7n54PsBRTRq06B5ASWrS8mul0Xx6tK4m8KMcXPo1ndn3B43LreLlp2as2T2MgRosUNzsvO2zNgN2xJ2xW9QeCHJfvsC0f+gZADS4I2tIk1idRFfL/D1StqmVBjWnAV2KdosuKFevRWP/l+VgdJ9VlzNEStPF/Ttr/3pCQE5cZN5Q+1hR5bA6iOcNIoJqKVQch9S/w090d5GEE9XyNCvVOH1EJmJNh/IJh7g0aqn3WRUGPAhKMTlxJXxHwKlU9GWij7k/+ydZ3hURRuG7znb00PvvUgVUMTeBRS7ovJhQSxYQCxYUBRUFMSCiGAHGwpIFQFREBDpvfdek5CebD9nvh9ns8lmk5BsNgQC93VxQXbP7kyW2Tkz77zv81ivPU2/RdlxRt9Jd63dy8/vTiG2SgyPD+/Jh4+O8dch+vGlymalZvPho2MYv+Ozcunr6WTe94v8tcU5Zwlmm5nq9auSmpCO26Fvsmo2yhVEurHn1ZgtJjb/t4NOt3Sg3XWty6HnFZvEwyf5buAEPC4vjw59gNV/buDAlsMFXutxevj48S+59v4rKsyCtjBmfTEPVx5rz8yULAxGvbQop9TAZMmtgwdo0r4hw/8cxJKpK2jSvtEZqzVyNmPPdDDujV84vi+R+wbcTmRsBP/8srTAazVVY8boudz08DXUb1mxs5OkYzaBtZq+8i2Z9yRMAUNu7bBQ4qHyFKR9EijVEJEVJ7BypqCqKpM+mMHmJdu5/n9XcfntFxcYLEDowdoNC7fw75QVXN/j7D2lLQ7rF2zG6/b61wQpx9MAcGS5iIi2kZ2uL/atkRasPncJIQSj/hvKtFG6ev3d/bud97ovAzT7TD1V2dwBEfkUpPWjUJE/715k1leImIGntY+nHe8Bn3Ccb47N8bSXvjlV3Ytuz6eCkruGFXEfIrN/Ai0JEfFAhQqsnClI9ypk1rdgqIOIfhHSng0OFuRsurRkZMZbiMq/lkdXTxtSSnD9Se69P2cta9WzXLRU9CBWvjVBZG8wVEJ6tiGsXRGmFpztnLE7lczULAZcPwRHphOjycChHUeCBH0MRgWTxeR/3FOUMnIFom7zmuxet8+vRg66pVREtI3OD1/DugWbqVK7En//uIiJw6fR5uqW9Bv9GFffexlX33tZEe98ntIw4PohJBxIQmq6j31BC1WD0eAvT9Atgiq+ZWDjCxuwd8OBgFRZ1auSkZzJg29158/vFhAVF0ni4ZP0at6P2k1rMWDcM7S+sgWtrzz7J9kzlQ8fHcPK2WvxuLxsXLSVJ4b3DNAqAIiKj8wVkhPinJhjhbEZEitBGgYyFWI/g6zRem2tUhMtqQsocRAzFMXUFBHzWnl0+Zzgt49m8cv703W7zyU78Lo9CAQyz4Ct3qAqCQeS/D8X6ZZQQajdrFaB+gVCETw35nGmfjobR5aTBq3r0qfdyxiMCo8P70nHru3p9c4D5dDjcwPpWgoZb6ELqK1GYgDyiXKKqvq8ghf9dL1gkdkKhaFaIU9oYLsX3P+CegSUJsjUfnpKfOT/UCIfQkSdwSK6ZzlSPYpMeQI9kGNGagmgncx3lcWnPZEjSlnxx6sQAqnU8gW58s6zTr3MwFBTL7tR6iAzv0JmDAPrNYjoVxG2uxC2u8qr62FHKe8OFEbATd+jsn/TIXq8FvjBC0XQ9KJGGM1GLDYz/cc+cbq7WS68PeNV2lzVEqEEngjc2e9m+n/xJFVqVWLLfzvYtHgbR3ef4M/v/uG9Hp+WT2fPEVRV5cS+BDRVQ0qJI8vJpbdeRF5VHqEI2l3fGqPZiNFs5PHhPTHl8cSuqPT5+BFu6BmcStutz43c//IddLqlA3s3HmTVnPUc3X2CVXPW0a9TBT9lOQPYtWavX0/CYDQQWy0GsyVwPNZuXAOz1YTJbOSqezrR+Ay19Qwrtrsh6imC4unmy1BsXfXnvPvB/Reo+8GzHpLv0p0SzlNmbF++y5+p5HV7SUvMoErdSgHXuBxuouMjMVlN1G9Zh2vuq/gB8uYXN+bFb/oQFRcR8HhUbARXd7+MF77uQ+LBJJZMWcHBbYfZt+kgg24dxsFtBWe/nSdMeLeTmwPq1OcJ842B18gkMNQCLKBURkT1Oc2dPP0IJRYR/x0otfM9IxG22/QyLy0VPAtA3QbaXsgciuaYUy79PWfw7tODAQC4ddeAiMfzXaSC0hQwg4hERL95mjtZPohKP+gaBgFbZoGIvA8R+yFgAs8yUNeBdgDsPyAz3iufzpYhZ2zAoF6L2kRXisJsNWGNtHDF3Z249v4raNgmV+jE61YRiuCXQ18yJWkcHbu2L8cenz4q14znha/7YMqzuK/ZqBoX3XQhUko2/7c911LSx9ZlO093N88pDAYDHW5siyXCgsVmpm7zWrS/oQ039ryKnExPqUn2bz7IT/vG8NuJb7n3hdvKt9OnCWuEhf5fPIklwux/zGQx0v0l3ad++aw1eFyBCrwJB5POieyL8uT6/12JNdKCyWLEaNbH75MfPYzBlHtb2Lf5EF+sG8Evh7/k1R/6nRNpy0IIlKhn8vlFmyDap/TsWkCw3aIH1FP5M5+nNNzw4FVYIsyYzEZMZiOdul3Em5NeChiv6UkZvPnbS/y0dwyjVwzDYrOUY49PH9f3uIor7rwEo0lf8JssJh4b1hOjycimxdtQ860HNE2yd+PB8ujquYP5KsCEbpFoA+sdEPsBQYFI26OIqvMRVRfl1j9XcIT5Il9wxOp7xAAR3RGGKuDZQYBFHwBSt1I8T9lhakvgeL0VJeoREHkzQrxgrIeouhBRbQXC3K5cunq6EcZ6iJi3QOTcTwQY2yBMbUCmg3qQIMsPd8Ubr2dsSYLZauaLtSNY+OtSouMjueb+ywEYNOkFHmv5gv+6rUt38vM7v5GakMa9L95WoUQPi6J2k5o88UFPfhzyGzGVoxg89WVArzWu37KOLrSXZ/xeemsH/79TTqSScjyNBq3rVvj6+dPJu7NeY8GE//C6vdzQ80oURaHfmCdY/NsK/4bYkeXkp7d/Iy0hnet7XhVkl1lRMRgNDJn2Ch8+OgYpJS99+zQmswkpJc07NiHh0MkA28UGrer6N6fZ6dkc3XOCus1rYYs6L8wVLnq/9z+ad2xC0uFkrrr3UmIqRXPbU52ZPGImiYdyUhElvw6bjj3dQZtrWnB3/24oyhkbZw4rIm4kMrWvbvEV9QxKjriToTUwn4B0TGEDY33Apyrt3e1TPK8U9L7nCY2r772MuGqx7Fm3nw43taVBK11L4+LO7Vg5ex2gB2V/eX8a0XGR1GxUnYeG3Oev26/oPDHiIY7uPsH+LYe4pvtl/qyuei3roOTLRlQMCq2v0NdKmqaxf/MhoitFUa1uldPe74qKMDWHylPAvRRMrRDmjgBokU9D9uf4F2j2b5De9brSetTziEJT9isYtnvAvUK3TzRdiIjSPeqlobauXxB0fVf/P6V3HyARAUHd85QGocRClVng/BMM1cHic5SJHQFpj+Ifr67ZyMwoIB0in9bH+TmAMLdDRj4O2T+AoWau4DFWEJVAJgS+wNrN/0+pntCzZozNzmr3JFGSU7yLL75Yrlmzpgy7UzS71+3j1S7vkplH+NBgNCAUgdftxRppYdz2UeesBVvKiVT6Xfo6aYnpKEYDkbE2pCq57n9X0ufDhxFCsGruet659yOEQaFWo+p8tvy903IKI4RYK6W8uMwbykN5j9fk46kMuG4IR3blnjwaTAYMBgW304Mlwsx7f7zOhde2Krc+lidul4dXbnybXWv3gZTEV4/D7XTT+qoWDPzpOcxWM4d2HOW5y15HahKz1cTYtSNOy/f7XByvbqebQbcNY/2CLf7HTFYTUpN43V4sERYeffcB7nnh1nLrY3kipURmvAmO6ejq3jUAOxgaQPxnKIZqSC0DmXynTwhJIuLHIcwdinzfcHG6x2x5j1cpJZ8/9x2zxv7lz0YyWUxoqobqVTFbTVxxVyden9C/3PpY3vw+9k++fPEHNE1SqZY+v8ZVjePl8c/Q/OImqKrKwK7vsX3FLjRV47mxT9Cl1+lx+DjXxiuAlv0rZL6LrlkAuu+7QD9RF2BogFJ1brn1r7yRrhXItD663aKI0feowgYxA1BstwCgZQwH+y/6CyLuQ4kZdFr6di6uCaRrBTL1KSCv8GFOZrMHRBSi6uJcJ4tzDOk9hEy+D2SWnn0grSAERPREiX4a8AmfZvhcl0xtEJW+D7RwLiPKYryeVUdFHz46JiBYACCUXGEjg8HA4R1Hy6NrZwRj+o8n8fBJ3E4PziwnycdSSTmRxrSRs1k0WU+PGff6BFwON84sJ8f3JbD2r03l3OuKy/hBv3J874mAx3KCBaAL/+1au688unZGMP2z2exYuRuP04PH5SXp8EnSEjP4b+pKvn9rEgBTR/6BPcOBPdNBRkoWc79bUM69rrj89eNiti3bFfCYVDW8Hn1+ddldbP5ve3l07YxAetaAYyp6XbIX5BGQKeBdB+kDkFLVT2fUkz5rMDsya3R5d7vCsmPVHuaNXxRQuuT1eP0lCm6nh23Lz91SvOwMO2P6j8fj9qJ6VZIOJZOemMnBrYd5+56PyErLZs+6/WxfuRtntgu308N3AyeUd7crLFLLhsyh5AYLQA8U5PxRQd2HlPnT8c8NpFSRaS+AdAAekMlAsj7Ppr+G9O7Ts7fsP6AL0jrB/st57ZgyRKYPIDBYALrLR04JqQT13N1zybRX9TUAbt0alJMgEyF7FNL1n35R1kfoJYwO8G4Bz+by63ApOaPz0VVV5df3p7Hm700kHTqZJ002F69bT10yGBUMJoWmFzU63d08I9i6bCdLp68MLKPx/VtKySdPfMF1919BTJUYhCKQmq7QH10pqlz6W1H5+6fFzBu/kOTjqRzZGVzTnBMsEIrAYDRy0U1tT3cXzwhSE9L4cfBkVG/u4ihvstPUT//g3hdvJbZKNEazEY/Lg9FsJKbyuRnJLis2Lt7Kr8OmkXI8nQNbDwVZ1Hl9ZSJCEZitZq67/4qC3qbCI6UGqc9TqCWaew24l+u+zH6lUyOcL0kIK0d2HePbgRNIOJjEwa2H/aKdOUhN4nZ4EEJgiTCfMyVfBTH0/pFBWkY5JB1OZvbXf3PFXZ0CromOP78eCCdSS0VmfgCePbpQKp78V5C7aLOCuT1CnFXneGFDZn3u23wVhBOZ8SEifjT6CXfOPGwAUfGFo08XUrqRmZ+CZy14j+qb3yBy5gujngVibHgae3jmIJ0LwLsh/6O+vzVk+iBEtUX6mkDzlStIDZSY09fJMHNGBgySjiTz1cs/sn/TQY7tS8Cbb1FQEDFVYhizavg5e8PbtWZvkGtCXpxZLv4c9w8vfvMUg+8cQcLBJG57ujNtrjpvW1daHFkOvn1tAttW7OLA1sPFGq8Go8KopUNp1Lb+aejhmceh7UcxmgwBVot50bwa3781kac/6cWuNXvZvnI3HW5sS7cnbyzw+vMUH03T+PX9aaz6cz07V+8N0I4oDKlJBk97mY6dLzwNPTwDkZk++7PC8CIzR0Cl38B2Bzj/AGMTRPTrp62LFZn5E/7lz+/+YcfK3bgcp7byklLywGt38r/X7zkNvTsz2bl6T5HP/zp8Ol0evY7Hh/fkxyGTia0czaBJLxT5mvMUD+lejcz6QhfwkykEi/gVgOVyRNyoMu/bGYt7JUHCcQHPLwTvHkT858j0gYBExL6PEObCX3OeYiG9B5CZH4JnJ2gnKJZdolIXUeVXhDg3NGLyIz0bKPQAAUA7huaYj4gdiUx7FrQUiHrmrNbdOCMDBq92fpeju48XGh0vjHNVuwCg3XWtMBiNqF4Ns8XExV3bsXT6qoBrRvb5ihnpP/DVho/KqZcVk5F9vua/aSuDlP6LQlPluWFRVwiN2zXAaDb6MoOMtL++NavmrA9IL/7rh8Xc0fcWhv056JxQ5z9dzBg9l1+Hz/Bb1BWXFpc0KaMenQWIGN01wbtf/1lpBNpOAha43l3g/BMRMwQR+065dLMisnHxVj7t83WJx2utJjXP6Xmj060XsWSKLrgbFR+J1+XFnunwP5+dZmfSiJk8Pqwnd/W7pRx7WrGQagIy5XF0P/sSoFQ+ZzdfAFhvBs9W9PRtMxjqg5q3pEhDpg9GVP4JpdrScupkxUNKDZnyP13ct6iATX6E8ZwW9RWWq5HZP6AHV0xgvgLc/wRelP4yVF+JUvWv8uhi2DmjAgZHdh/n3fs+DkmH4MG37i2DHp0a6d2DzBqji39Ev1BuX6CGberz6ZJ3WfHHWhpdWB/Vo7Js5uqAFGNN1bgj5mGaXdyYD+e/dV5xvpRkpmYx9P6RbFi4pcTBret6XFlGvSqatKR0xg+aiD3TwYNv3kv9FnXKpR9RcZF8sXYECyb8R3yNOFpe1pQ18zagenPHq+pRebr9y1SpU4lPFr9DjQbniHp0GaF6VUb2+Yp/flkSlMp9Kuq3qktUXGQZ9axwpHQhM0eDuh8R8SDCUj4p5kIIqPQrOCYDCtJ6NyRdSlA9csYryMwhEP8Nwnxa9bEqJJNGzGDCe1NxFyOrIC8RMTYuu+30f/5SSmZ+Ppf1C7Zwxd2X0Pnha097H3IY8O3TtLmyBelJGdz08NW8dN2QgIAB6BoxM0bPpf/YJ+ja+/py6mnFQXP8DRlvotfYlwQFIp8oiy6dEumcj3RM1QXZIp88LYJsBSEiHtTV+b17wHI9MntcvoAB4N2ITGiLjHgYJeZ89lZpkZ5tyNTnQQsu9z4lUc+HuzvFYueavUweMYNKtSrR6537iYyJKJd+CHNHqDRed/owtQf1ADJ/wAC7Pl7NlyPiv0Kc5eUzZ1TAYOh9n7B/U643sGJU0LwaRpMBs83M9T2vQjEozBo7L2AjXK9FHW5/qstp76+UDmRyD5AZgAHp2YKoMv209yOHJu0b0qS9Xk+kaRptr27BxkXb/M/naBfs23SQud/+w93Pdyvsrc5TDL5++Sc2Ld7qDxbkHa9CCK68uxNNOjTk21d/DqjPN1mMvPZjv3Lp88Cu77F/8yE0VWPtvA38cvircrMdq1avKj0G3uX/+Y6+NzPt09n+nxWDgqZqJB9N4dvXfmbQxBfLo5sVhnnjF7Jo0lJ/sCBnPjAY9ZrZDje0oeMtHRj3xq84s3IXvIqi8N7sgeXSZ5nxNjhmAS5dRKjKDEQ51UwKJQoie+v/BrSY4ZDxMrmnMkL/t8xGpg9EVP27XPpZUdixajc/vTMlILNACIEQgBA0u7gR19x7GTPH/MmJA0n+axSjwoDvnimXeW3213/z7cBfcNldrJ2/iai4SC6/veNp7wfoDlK3PH6D/+dBE1/guctf9+s+AX4HlFFPf8OND1193ma5FEgtA9JfRD8hz0FBnx8UMNQB6+3gWg7efMr3tsdRjA1OW19zkO71yLQXASe4liKlBxFdPq4iQgiwdgZ8dn7RryBdi0Cm5bnKdzBjn4i0dUfkWN2eJyRkap/c+npAd+1Q0fUJosFyJ5ACzlkElNWYOqLYbjqdXQUgNTGdl68fgiPLidFs5Oiu47w/p/wCR8J8EZgvAkDKi8H+K3jzC+1q4F6rCyLbbjv9nQwjZ5S6Smpiun9jZfBtvkAX3lK9Gm2vaknnh6/FaA68qUVXOv0nXwCoJ0C60W8I3gIGSvlwcNth9m08yMvf9+XDf4bw+i/P07RDQ3+QRWoStYQn4ucJJvlYil8UTsk3Xr1elSp1KnHHs11RDIG+q2Zr+dXc7d98CNWrIqXE7fSQfKwwkaHTR8LBJLat2EX3Abcxcsk7vP5Lf67/35X+QIyUBIgjnic0UhPTC8wsUL0aqlfDnuXkrn63EJ0vk0AxCMyWcoqMu9cRsAD37ir00tOF1FKQ7nVg7gSVpkDMSIjsm++q8+O1tKQmpKMYcksKhCKQUqJpEk3VOLLzOPe+dDsNWtcLeJ1iUIgsh2wYgK1Ld/oDHC67i52r95ZLP/LiyHKwddlOYqtEM3bNCN787SVe+u6pXG1OQCIpicX2eQpAZhXwoIa+PlRBPYaI7AnWqwlceisIYzmldnu3kRvwdIJ7VVFXnxak9CDdG5HSDpUmQdxXEPMxkD8AeGrtnfOcAi09zw+C3M/UC9KFsF2LsHUj6Gy5nDKpj+465tdq87q9p9RpOR1IKfVMDe9+RNwXEP+9Pl6VOuR+t3xzwFnOGRVOfuTt+xjTfzwGg+LbJOSecmmqSlR8JM0uasRVd3fin1//A6mf1j485P7y6bChju7r6L/PGpDSiRDW8ukP8N3rE5j+2Ry8bi+aqmE0G7n92a4c3HrEf40Qglsev55pn81m8oe/U71+FQZNfPGc1oAIhR4D72bzku3+k3CnN/AkLKZyNBabhd7v9+Db1yboARsBvd59oNz6XL9lHfb5snjcTg/lvUZcNGkpH/Yei9Q0PC4vJouRy267mOV/rPVfI6Wk17v3s2ruekb3/Raz1cQrP/Sj+cVnr3hMeXDTQ1cz7dM/UL0qbpcXKWWAQGdcVV29t/+XTzLk7g/9drU3PnwN8dXjyqPLYLoI1BzrUQdSapRnVbr0bEGmPKSrHeMALGBsBJqDgPrPyL5Izy5k+kugZUL0ayi2ruXU67OT9je0oVrdKiQePonX7UXKXAtlgMg4PRX1sWE92bxkO9npuv1X43YNaHddq3Lr8/yf//X/7MjKb0l2eklNSOOp9i/jyHLiyHJishiJjI2k5WXNcvJhAOjyyHVkpdl574GRHNl1jNue7kLPN85dwciQUGqC5Wpw/+ebH/JrbgjAioh4AOn4DdTDvoerIK13l8u8Jk0XEyBwJ0taShFepHTrWbvqXp+9oqL729u6ExCENTZCGhoi017SU8LNVyJih571Kd+nnainIOtL3z5GI7CUxqsr/BubgbkjuHN0I2wQ+VQ5dBYaXdggQCtM0zRUVcWQ71DudCIzBoJjLuBCIgETRPQCLTfrDWFCWroiM0eB4zddEDluJEKJL6deh8YZlWFwy+M38vXGjxg+bxDXPXA5RktuPMMWZWX/Fn2jM/Dn/jS/uAlGsy7y98HDo/G4iy84Fy6EMIHM+xEadJXRckLTNCZ/+DsuuxvVqyEleFxepo+ag8GU+4WKqRLF8X2JjHv9F5KPprB9+W7e73kOq/OGSJurWjB+52e898dAnhjxIGZbbuaA0Wwk8VASXo+X+wbcwS1P3KA/L+G7gRNIPJRUxDuXHZY8abomq5FNi7cVcXXZM/7Nibgdbv/Jt8flZfkfa9G8udFYoQhiq8Tw9r0fcWJ/Ioe2H2Vg16Hl1eWzlmr1qvLD7s959/eBvD39FZQ8rioGg4KmSjJTs+h0Swf6jXkci288L/zlPzYs3FI+nRb5LIjc5St2JbO/BZlNrqCZC7z7QOatAbUhTE2QqU/pWWfaMUgfgFSTy6HHZy/WCAtj147g/Tlv8Nny9zGaAheFlWvGc2TXMRq0qsuwP9/wz78HNh9m2qjZBb1lmWOymALuAxv+2Vou/chh4cSlZKZm4/CVGHlcXtKTMtizbp8/WGy2mbmgUxNGPfUVW/7bQfKxVH55bxobF5dv3882hBCIuNGISj8hKk8FpRYBaRyGOkjPRoQSB5Umg4jSn5fpkPl2OfXZAOTJeCzvDC73Oj1ALO34T2WlHRzzCEyJbwv278H5l74xc85GZv9SPn0+i1GinkFUmYaI/wHMlxFwhixike6tuqZF3HdgqOt73gPpL5VLRpItyurP6gVwO9wkHS6/+6rU0nwlkw5ys4ncYP8R8mqBKLURnjVgHwdaIrhXItOHlEeXS8UZFTAAqN2kJi0va87Tnz7Ktfdf4U9JzEjO4puXf2bCe9MA2L1un/8U3Z5h5+SRckqtNjVDr/tBvzcYckXkpJRo9uloaa+gOf5Geg8htaKsuUqHEAJbdHB2g2IQNLqwPtZIC2abmceH9STlRFpuiYKUbF++k+z07DLrW0WlSq1KtL6yBbf26Uz3AbdjidQ35G6Hm1lf/M2btw8HYMPCrX7hLsWgsGvtvkLfsyy5oFMTTL5AnBAKDVoFih6uW7CJDx8dw8wxf5J45CQnj5btZBxfLTboMc2rce39V2CJMGOxmbm7fze8HjVAWDIzJYuD248EvfY8RRMVF0mbq1rQsUs7XviqD/HV9c9fVTWWz1rDE21eAmDDgs1++zqX011umwdhbkVuKqoVjIEnx5pnF1r6m2iZo9HU4/ocW5YLGaUq/vnejxesd/j6aQNzOzC29KlO5+BGuiqGUvLpxGwx0fqKC2jSriHvz3mDOs1q+p/btnwXj7d5EbfLw85Ve8nZAbvsLlbNXlcu/a3fso6/HyaLiWb5sqBSTqTy5Us/MPb58Rzbd4Iju47h9ZRMgLQkxFWNIb9RhJSS9je2xRppISLaRqUacVx1z6UkHjqJ6gvUup1u/vjy/HgtKUIoCFNbhKkZotIPYMxjQ6vug9RH0Dy7EP6sKQm49FPy8kCpASJnPjPo2VJ5kJodLfNztPRBaG497VrKEro/lKg/8SAL+D4Y6+jBYxEFIhoR+bBeEuzP4nCDfULZ9asCI4xNEOYLEXEjwHId/iCXTILMN9DsUxFkg3ocXeTXC+pBX1DnNPdVCGo1ruEvSzBZTf41DOiHpr9/MY8RvT5n7fyNHN1znKy0MtzXCCvB6wEAKxhqgYgErIiYl/RAgX9sq+BaiJQlc/4pb86okoS82CKtNG5bn/k/BS7+/vp+IQ8OuocWnZqya+1eNK9GZGwEVeqc/poaKT2gZuCvTVFqgRKvDwLvXqR9Ejh+1Z9zzkBiAIzI2A9QbOG3MRJCMHTWQF696Z0Af/snPniIO/p2Zd/Gg8RWiaZavaq4HK6AhbViUFj79yauvrd8VMjPdhRFoe3VLZk4fFrA4xsW6hutjl3acfJIMi67G03VaHZRo4LepsxJT8rA40vrNZgUGrSuh6ZpHNx6mK1LdzLq2W9Awl8/LGLMc+Mwmo3c+9Jt9B7ao0z68+qP/Xju8tdJS8zwP3bFXZfw6o/9eGDbXQhFUL9FHaSUVKoZR+LB3JPcBT//S+/3/lcm/ToXuKhzOzJ6jw14LPlYCh63h0tuac+y39fgsruw2MxceE35pHjrp/I5KbMePTUSn2+0dz+kPY3/5Cl7NBILWC6FuK8QIvzxcBHVH+leCd4duQ8a6iFi3oTIx/TTQuMFCGFAmi8LtFmyz4KIsvkenQu0uaoFKQlpAY+pHpUtS7bT6orm/kWkNcLCJd06lEMPIf1khl9vxePycHHXdgAkHUkm4WAir3UZisuuj+fpn83BEmGmat0qfL5yWJmofV/7wBUsnbmaf39b7n/MFmXlmU8f5bFhPUk8mESD1nWx2Cxc98CV7F6333/d2r82hb0/5xLCWB9Z0BzkmA5RT6JvzARgBvOlp7l3PrRUXyo6gAomvR9SS0V6j0Jqf5C+0gnHZCRWfZNUeTKiDEQahak5Mup5yPog76MQO1x3IPPuBWNDhBKDjLgXHHmCBNphpJaBUGLyv+15ioFQYpGGvHX3PhyTwXa3fhiq+g5pDPVBnH53Ake2E5fd5T/sbNS2HmarGUe2k6O7jvPzu1NYOkPX4fj7x8UYTApGk4l3ZrxChxvbhr0/Qlgh/jNk6tMEaBTEvYOwXK9nGCrVEYZqSC0dyCvQKMGzEcyXhL1fZcUZFzBYN38TY58fjyXCTLvr2uhCR2ruAG7YRhc4en/uG0z7dDaObCd39bsZk7lsa5ekloXMfA+8+xGRvRHWzr5009wbLOoepP1XyP4OZKovdTUvqv4n410og4ABQOsrLmD8zs945cZ3SDiYRNOLGnHZ7R15975P2LxkOxde04rXf+2PxWbh4s4XsnLOejRVQzEYqFavSpn0qSJzcPsRPnx0DI4MBzc9ci2KwYDqyT0Jr1QjDoCnPnmEOs1qcmzPCTr3uo5q9aqWab9UVeXHIZNZv2AzV91zKfe+eBset5eFPu0PAHu6gy9eGM/xfYnsXL0HZ3ZgtFNKicflYdIHM+gx8C5skeHX5qjZqDo/7h3DG7e8z/aVu6latzI9B93DVwN+ZP7P/1KnaQ2GTH+FuKqx3PrETfz4zm943V4sEebzNoshkH4ygxGPfM7hnce4OY+Ceg4GkwGjyciND16DyWJm85LtXHrrRbS7rnWZ923Ot/OZN34hzTs24fEPHtSFFrO/IncBo0JaPzTzleCYiH7akV9c0AWuFeDZpJ/0hxmhREHlmci0geD6Qz/xin5Vr0nO/AyUGIgbiTBdgIh8EOleqvcJI5gahL0/FR2P28Nnz3zLhoVbuPTWi1CUfBswAbWa1qBG/WoMmzuIf6euoFmHRtz40NVl3rd18zfx87tTqFy7Es+OepS4qrH89vHv/lN6gA8f+RxntovRz3yD5nMkyIvL7ubEvgQW/rqUW/uEX3VcURTenPQiUzrN4oe3JiEMCg+9dS87Vu1hZJ+vUD0qfUf35vLbO3LN/Zcz/s2Jeo2w4Px6IES0rC99dcoX5NmM58HUVq9drjwFaZ8ISjVE5ENl3i/p3YPMGAaAiBmIMDYB5xwC6tYdP6CZL9bdX4Jq2tF/lk5k1peIuOFl0k8l6jE0Y1PdcUK6wHoXSBcy+UFd0T/ycUTUYwhjCyRRgE9sUlhBnLcKLyma40/I+gSUymAoQBfK2Ep3sKg8EZn9PSAQkb30x8qQtKR0xvQfT/LRFB58qzsdbmjD5n+3k5qQK9S4ZckO5k9YwtcDfsTtcAfZxqoeDdXjYuwL4/l288gy6aewXIusPAtSe4OWAqaOYGyFTOmji4pab0JGv4OixCKNrcC7BX1NI0CpXiZ9KitESdI3L774YrlmzZpTXxgi2Rl27q/1pF9luHKteCrXqsSuNXsRQtCkQ0M+XDA4bJF4qaUh054Hz3ZdWAUFIvugRAafAmmp/cH1N/oi1eqrUYtGJl1L4KI1x5akKCwoNTaH5XcoiCkj/+DrAT/4axQjYmw4spz+qJxQBB8vfJt6LWoz4pHPObLrGHf178adfW8usz4JIdZKKU+rMXZZj1eAhxo9S8LBRKQEi81Mp24d+HeKnl5YtW5lPl70NjUbhmdSUL0qnzz5JStnr/OVFQiuvqcTfT5+JGgh/dvHv/P9W5NwO9xYIy0M+O4Zru5+GbdFPehPNQd9g6h6Tq3eOjPjRyKiyuZmvG7BZgZ2HeovOTBajLqTR55+9f/iSbo8ei2jnvmGjQu3cumtF/HUJ4+UmdhNRR2vQ+4ewYo/1qF6VSwRFrr2vo7ffTa1kbERvDPzVdpe3TJs7f06fDrTR832OYVILujUlFd/6Ist31ha/89m3rx9OC67G7PNzO3PdKHPhw+jJXUDdXeeKxWK5UAQNw7FemXYfo+8SO9h5Mmbyc18MKCfFObZDFrvR8S+g8z+yr95ELEf6AGHMuJ0j9nTMV4nDp/OT+9Owe1wY4kw07X39cz+ej5etxeTxcQznz3KrU+Eb6O9ZNpKvnhhPKpXRQhBjYbVeX3Cc0EB3qQjyfRq3g+3w4PBZKDV5c35eOHbfPrM18z+suR2mg+8dhePvV822VJOu4uHGj3jz+JSDApCEQHza4tLm/HRwiGsmLWG8YMmElcthld+6Bu2e1dBVMTxKl3/IdOe9Qn2mcByLbhWAemAAWz3I2IGh22zJT1bkGkDdLV7YQQlBhHzPsJ8YeB1UkMmXAakAgJEPKLaMr32P/2lPFfmlcIsAtPFKJXLTjNAS34APDllRQKIAjJzLxBVEFV+B+0YMv1NQEPEvI0wl11mUUVcE0j1ODKpC3pgSAFjY9BU0PYBAkydEJW+RYjwOHudPJrMu/d/wtFdxzHbzBhNRh57/39cc9/lQde+eO1bbF22E82rYY2wMH7nKDJTsujT/mX/XgZy7aGLIrpyFNOSxofldygILWMY2PO+fwz6eM3plwlR+Tc9Az3tZV/gqx9KxO1l1qeyGK9nVIZBZkpWQJp8yok0vt81GkURmCymsEe0ZMb7PhsZb+7/a+YwpLk9wnRB7nVqErjmk7sgVEDdjzB1Rka+CNkf43Pm5kywzpj91V8B6vf2jMCom9Qkr3Z5lykJ3/He7PLzMK0IpJxI9X/WXq/KXf278epPz2EyG8M+Xud8M5/Fk5YFbPjnfLOAZhc34YaeV/kfc7s8TPl4ll8zwZnt4sC2w1wjLmfwtAEMunW4/j2TFCtYYDQZsKfbyyxg8PePiwL0CVSPGnQDGPXM17S+8gIGfPtMmfThXOH4vkT/CajqVanRoBpzHL8gFBH24MvWZTuZMHSqPwAMsGrOOsa98SvPjurtf0xKyc/vTvGnarsdbvbkpEbHfwEnbyP4pKsojAhRhvOw+18gr8huAW05JyHNF6JEPaUrUZ8nJI7tS/DPYy67m8yULP7I/hlN1cKeVZiRnMnwB0cFlPOlnEjjvR6fMmrpewHXzhg9B7dDv071qBzy6an0+fBhVs1ez8kjyQhFLxMsjiWsLarsnJX2rN9PVlpuvbGmakFDdvuKXYztP47nv+xzviyxNKjH8uy3PbogarWVCOFBiPy2gKVHpj4Jmq9MTwJaAjL1Mai2OmD9IV1L0IMFvgtluh7UsN4K9kngWU2xg7HgO2ArG6SWDZ4NeR8hIFgAIE8iU59EVJ6KUmVmmfWlwqMl5XF608B7BFF9DaCVyXj9sPdYdqzcE7DeG/HoGFpe3jzApe3Y3hNs+W9HwCHniQNJtL7iAu7qdwvTPpuNEHqg4FTBAgCjsYxdFBzT8z2Qke9nDzL5EUT1/1Aq/1y2fSlDzijRw+r1q9Li0qZ5hGUlL17jizKpxZzISoJ6goBTIdAFYLTEgIdk1igCF4iAuSNSSpToJxFVFyPivwOKedMXlZDqiVB7fUqatG/EqTx6PE4Pnz71dZn14Vzhjr5d/af7qkdlyN0fsuavjTizw29PlHw8NcBSBsDj9pJ0JFCYcP5P/5KenHuDVQwKV97VCSklHbu0Z0ridwyb+wb1WtQuVruKQSEjOfPUF4ZIk/YNUQy5U1GBNwAJQ+7+sMz6cK5w/6t3YvDdPL1uL9+/OZF/fllCxsnw//+mnEgLcGIAXaX9xIHA+XXXmr1sX5FHnVvArX1uQkqJMNRFVF+NiP8erDdTvAWtitRcyILSgcOBoQnFirVnvKMvfs8TMrf2uQmTJTcw8O+UFUz+8PcyUcbOTM0KCvJKTQa15chyMO3TQBeGzo9cC+j6CRMOjGXkknfp8frdxW5bSg13vrk9XNRoWK1Ywet54xeyf8uhMunDOYPlBsh7GqsegszBeu19WaClBz8mswhar2a8EfizqQ1CiQRAqfwzovLvEP0OxT5DFHFIrYzWBMIW7I5TEN5t4CwfN5QKg7GFz/0gBxcy9QnwbCoT8eDkoylBeznFoJCWGDiOx/QfH7AONFmNNGnfECklT4/sxY97PmforIEB68aiiK0WS2o+/ZuwYmxajIvSkZmflF0fTgNnVMBACEH/sU/4FwhSg91r9/HWnSN4qsPLLPt9NZoWvkWgiHoasOG3lRERoFTzC2uBnrKDO5/isrEJMuNdZEILtMTrkFmfI52zKfTjVOoRsIOXx5FJN6I5ykaF+IWv+3DTg9cQEWMLUkjOy76NB8qk/XOJJz54KGAxlp6UwbD/fcojTfsx7/uFOO2uIl5dMrr0uo6ImAisPicGa5QVW7SV6x64wn9NVlo2a//eGJA5YIu2snL2Wm6x9uCuSo8w7vVf+Punf4PeP4eouEhM1txFutvp4dlLBvLDkMlh+13ycme/m7n/1TuIqxbjFy4riISD5WNFWZG4vseVVKufW5vscrj57JlvebhJPyZ/NJPUxAIWoCFycee2VKoZh9WnfWGJMGOJsND9pdw0PI/bw9r5m/y2mqDPlFd0y0ImtkcmtEGmD0Y6poE3q5CWDEBcnp8lpPdHpj1TJoseYekE0W+DUucUV8p8TgnnKSnNLmrMpbflphl73V5+HDKZJ9q8yDev/MSR3cfD1latxjVoe00rLBFmhNCtcS02M/97I3fjL6Vk/T9bAqy9AFpf1ZL7aj3BzZYHeLf7x/zx1V8k7E8sMLvAbDPr+gB5profh0zmqfYv4yiDQHOVWpV4f87rNLqwfpHXGUxGjobx8zwXEYbKEPU0kHP/9IDjN2Ty/WhpLyI9YRaSjHwM/aBKAQz6Ztt2T0AKufRs1Wur82K+AS3pFn0Ne/IBZPZ4Xfclf6AB9PfPX9vumo1MugHpPRze3wef00TliWC6mNzPsSA0pLd83KYqCkKYIHoQuYedGriXIVMeR6b00EtswngPfWjwfVhsZoxmA0LomVUNWtahUdvcuenY3hPs3bg/4HWtrriAt+/5kC6m++ndoj+/DpvO0pmrkAUcIAhB0GHYgc2HeLDRs2xcVDZuTyJ+NFg6o+8ni8CzvUzaP12cURoGoNv5dK/5BPb0YMsOc4SZq+++lFd/7Be29jTPPsh8T7cMsdyAiH5WV74E3UIm+W5deCVvJoKhmR45Lm6arOlKULcHLx6VBrpdjHs5GJsjKo3TlWDDxLg3fmHyh4EiTHlpeXlzRv13evzsK2L9Vw592g9g38aDQY+brSbqNK/F2NUf+E91S0tqUjpfvvg9e9YdoFnHxvT58CHiquq2MtkZdh5v/aLuhJDntCoqPhKXw43HWbwTrLjqsTRsXY/1/2wOKGdUDAq3P9OFWV/8RXyNOIbNfYMGreoW/kYlZMnUFYx4dAzOrIK/VzGVo5mS+F2Zi+1AxR6vHz/xBfPGLwzK5DCYDETFRfLd1pHEVgmP0rTL4eLHIZNZOXsd1RtUo89HD1PvAv1mLqXkpWsHs2vtvoCyBaEIZu7egcVW3M2TASJ6gf0HAjPGrBD5pC6cKEyIuJEIyzVh+b3A59Rw8jZyrb0K6FfV5SiGuLC1WRQVsSYcYO64BXza5+sCTqYEZquZkf++S5P2DcPSlqZpzBw7j7nfzici2sYj7zxA+zyCn2NfGM/cbxcECMQazUaq1q3M8b0JxWrDZDXy0Fv38cv70wLmOluUlXtevI2Zn8/Fme2k9/s9ufeFW8Pye+X8bt0iegYJL+bl06VDaXVZ87C1WRQVdbxKz1Zk8r0UXJ5qg9j3UWzdwtae5vgbsr/U24t4BGG703+P1OwzIeNN9DkqZ75XwNAW1M2F9DE/BojqB1lfEDjXKWC7D1z/gXYcbHfq+glhvD9rSbeAuqfwC6LfQIl8JGztFUVFXRNILRWZeDUF38dsENETJeaVsLW3c80evnnlZ9JPZnBdjyvp/tJt/vKynav3MOD6IbidnoD5vsWlTdm74UBAuVhRdH7kGhZOXBaUkdvqiuZoqsbO1XtpdXlz3ps9MEhPqTRoaa+CcyaFZkKau6BUGh229oqiLMbrGZVhAOhKwoWk5rntbv759b/wNpg9Btwr9UnJ/oNec5aD80+feE3eG6zRlwZWgpMA9YQvjTUvAqTq899VwbsTmfl5yL9GQdzVvxvV6lXBZNEXNDFVogOeP7g1/NHhc5H8yqw5uJ0eju05wdE94Ss/WfTrfyydvppD24+wZMoKVv+5wf/cliXbyU7LDpgkFYNC5VqVih0sAPB6vFSpUynoxm+NtDDnm/moXpWTR5L56LGxhbxDaFx2+8U079gYo9lIZFwEDVoGBiOyM+ykn8xfG3aeklKYL7HqUXE73axfED5B1p2r9zJzzDwObjvChn82M3PMXP9zJ4+msHP1noBgAQJu+l+VEgQLfC+SOcKDeVEheyzgApmFTHs+rKclwtgAIu5DT+O1gLFjviss4CmbE41ziazU7KDSFgBNlTizXSyatDRsbaUlpvPdaxPYv+kQO1buZvzrgcJuc75ZEOQmU7lmXLGDBaCX5Tgy7UHZf5qmMW3UbDJTsvC4vIx7fUJQuVlpUBSF58Y+jtFsxGgy0OGmQJsxxaiwdenOsLV3zqJlUHhqvwPs4athllJC5lu68rp3G2S+T0AQwD4efa2ad96LAHUrxdfbUsF7EJT4fI8bwbUMtCP6NY454F4S+i9TACL2bZ99nxFM7QnasrhXhbW9cxLpoXChS4cu2htGvn1tAluW7uDAlsP88t5Uko+l+p/7c/xCnNmugGCB0aJnPhU3WABwZNdxv6NeDjmltTtX70VTNbav3MWMz/8s/S+UBxHVV3ebwASGBkBk4AXqlrC2d7o54wIGjiwnWiEiFkIRVM+TThsWvLvwq10LBenegPQeQFNTkTJHyDAfsviLAwC0PeBZGfy4EkNuMEIFeTL4mlIQXy2W73d9xi+HvuTn/WO545kuAc9np9vpf+UbuBwu7JkOtq/cTWZqYWm/5ymMzOQiPjMh/NaK4WD/lsP+DZbL7mLX2r0c3HaYrPRs3E5PUAmEECUPDGWlZPP3j4uDTqCbdmgYMGmnJYUvfR3AaDLy4fzBTDzyFVMSvuPpT3sF7AFVj8qzHV8j8fBJPG4PO1fv4eSxlELf7zwFk3w0tVChIE3VqN20ZtjaOrLzGDmLEbfTw+51+zmw9TDZGXZOHklGzXdqXKexg+eGLqBk+3ovOL4mKJ3WcAEBwV5ZcGCvNCgxbyKqrdB1FuKGo5dH5GCHtL76PUVKpGc70nsg7H2o6Jw8mhJUApCDJcJC/Zbhy3JKPHQSxaBPOqpX4/CuYxzcdpiMlEwObj9CdKVgl4uEgyW8b0v4ddgMHJmBQbGouEjsGbmZlapXw+105391qbi59w1MSx7PlKRxvDPjFWzRuadrmlfju9cnMP/nxQAc2X2cvRsPlElZT4VGK6p0zgLGcGZwuEFLxb/hk3Y9w0FNQnqPgIgt4DUFaBycCud00Ao4+NDyjn0nUgvODC4NwtwRUW0VotoylMqTCiiN+BstQ9c2kuoJpGcTUob3O1Ph0dIofCtoAGODsDZ3eMdRf8mswWhg+4pdHN+fQGpiOhZbcAmK1DQyilpjF8C25bvYtSZQN0RKiapKfzDC61aLXruHgDDWRVT9F1FtCaLKPLB2DbxAPYqW+gRSepFaOtK9EamdPXuuM8olAfRN7gUdm7Bl6Y6Ax+teUIvq9avS7/PHw9ug7X+QORz9lArIfB+ZqREkhuin8HS+kiFBDfwd9Zqt8KIoij9lffmstUHP711/gKmf/MHUUbPxur0IBKOWDQ3rIqyic88L3fhxSGAUtmrdylSrV4XHh/UkKi6ykFeWnM4PX8M/vyxBKAqaV2XO1/OZ8/X8QqOvxVHoLpAC1oib/t0W8HPLTs1Ce+8iEEL40+H/m7EqqB8nj6bw3cAJ7N14kMSDSWiqxpuTX6RTt4vC3peKyoNv3ssb3d4PeCwyLpLaTapz9/O30rRDo7C11fHm9phe/RkhBJom2b/5IP0uHRh0SptD0lELBqMsUnul2KibCVD+VmqXSTmLUPTxKt2r0fVw8gYmspFpA8HURHdXkBoyqi9KVJ+w96Oi0u3Jm5g+ak7AxtVoMtCgVT0uv7MjNz50ddjaatS2PpWqx5Gs6adeQhH07TRQD8SW8b45+VgqRpPBHxwxGBVqNa4R9nZsPk2RPev3Bz2neTU+eeIrEg6e5Jf3p6Eogo43t+fNSS+ellKwCoHlOoKznYReymq+EBHzatiaEsKCtFyjZ8lKdPeClAeRuCnzAYubXGtZ9PbM4b8PC2EGYUZKb8HlCfYf0Yx1IeN9XbTcUBsqT/GXFp/nFBibgKE6qPnKag1NwNgAETMkrM3d8sSN/PbR74C+3vvw0TGoqoZWyFpV9YRHt05qkhP7cg97hYAWlxVHrLBkCGEAoZeWS/ey4Avcq5H2nyHrM98DZqgyHWEI30FNWXFGZBhIKfnx7cn0bPA0b94+nIu6tA26puWlzRg2d1DYb6BKZA9dOyB2sO8RN+ELCpwKSa6oixVhCfYiDSdtrmoRVEvvcXuYO+4fslKzsWc4sGfamfrpeeXZU/HPxP94uElfnrv8dWo3rRW0PrBF2/h0yVBaX9kirO22vrIFY1YNp+9nvanTvBZup6dEqVqlQoLJrMcYLRFmripj+63WlzcPUEgH/QR80+JtnNiXgCPLicvhZtwbv5ZpPyoC21bs4ok2L/JYq+cRBcz6zmwnY1Z9wA3/uyr4yVJQtU5lvtn8Mf0+f5zLbr8Yl91daLAAwGjSSphdcCpyvpgWsN4SzjcOxnQBBWakaQng+seX4eCCrPCWnlVEEg4m8fyVg3io8bNsX7ELa37bQSF4a8pLPPRW97BuZM1WM2PXjuD5L/tw29NdcDt84/U0HbLnZNwYTQbaXNWyTDfpNRpWK9BMyeP28NPbv/l/95V/rCXxUHizHysaUstCS30WLfEaZNZXoOQ7CUdBRPdDiR2KEOG1JxZxYxCxH+g6AzlzzOkasAj0bYQApSpCqXyqF4TekjCCoSDhTi9kfgI4QWaDehRc4StTqohIqaFlDNXHa/oAXWctP9auKPFjEYZqYW374cH38faMV+n3+eM4shx4XN5CgwXhRtM0jP41rIWWZa3XYmpH0DZbuiD7e32syiyQ6Uj71LLtR5g4IzIMVv+5gd8++h1ntovkoyms+CPwJNxgMtD+huAgQrgQ5ouAi5CZH0OYU6qKRgNbD92719wO1ONIQyNEQSv6MPDEiAf564dFZOcRlNRUyYn9uTZnRrOR+GoFpbGdJ4fEQ0l8/NgXuB1uTuxPZNjKUQH3Z6EILrqx7MZr/ZZ1qd+yLosnL2P/5kPF8qENB1LCjQ9dTcqJNBq0roeiCJx2F9aIsvFkvq7HlUz+6Hf2bjgQ8PjJo7llCIoiiKt+frwWhaZpvH7ze/7v/es3vx90TYtLwh9pz6FK7cp0fuRaThxIxGgyBDgi5Ef1Co7sNVOvqTs8WQbma0BIUGqC6QKkmqwrmZcBwtQSabsDHPndRPKlHCrRnKdo3r3/E3at2YvUJB8/9kVQWnxkbASVa4dPIDgvEdE2buh5FbZoK7O+mFcmbRRGvRa1qdu8FrZIK+1uaMOxvSfKJMsA9BKIJz58iNHPfhsoKCkJEEqW6E475ykcmfkRuBYBHrB/R7A+gBGMLcukbSGMYO0C3sPIrE/LpI3CiQLr9fomyNwJvNvB1KrsmosbDcm3ExgQUUGm5f4oNVDiyq4PFQHnDLD/BjjAOZfg8Wry7YvKhg43tEHTNEY/+21YncSKQ9fe15N8LIVWV1zA4R1HqVQjrswCsyJ2GDJxPoEHCSpox/L8bEIY8uuDnJmcERkGJ4+m+BcE+WtahUEgBGSmlp0PvL+tuNFARJm3E4CWpgdps79CpvVDpj1fJs1kJGfy5u0f4CzEtkkxKFgjLbS/oQ0PDLyrTPpQUUhNSMfg83+VUgYFC4QQOO3OMq/97P/Fk1SrU3YR/YLYsHALzTs2Yebnc/ng4dH0veS1MvEP93q8fPzEFxzZdazQa8w2M43bNeSlb54Ke/sVCa/bi6MQ5wmEb8waRJnfuLu/dBvNLs5/8haI027gyWtbMPTJ+qxfEln6bAP3ErB2B8c0yBiEPHkzUi2hBk0x0bK+AmdRG0wTGOog4r4ok/YrEiePJPsDofnnUaEIImNtpJWlrzZw6a0XcW0ey9rTwcGtR7jruW78N30VY54bR58LB7B95e4yaWvJtJVMGDolyH0iB8WgEFctlgHjniGm0vkgV5GoR8jVBci/+RK63aFWtlkawlgXogcQXA5RlmSCpRt41kHWR8jkHmhldFoqPVsg7QWKzJ4QMRD5WJludisEagK55ST5x6tu0SnzW3GGGUVReGvKS0FZpGWKhKj4CNIS05nw7hTevH04Y/qPK5um1BPI1McpXFxUAREJ1ht0t5GzgDMiYHD5HRcTER1BRHRwqpZUJV63ytev/MzJo6ErBkvp0QVR1MJ9hoW5PSVyPyAaRClr/V1LwbUEpF3/4/oLKcPvxfz5c+PYuHBLoTXtRpOBcdtH8d4fr/trHM9TMI3bNaBO81rY8qfJotdJaarGwonLWPPXxpDbkFKyb9NBDu88Wug11etXxVUCUSzFKGjcrmgv7lNxYn8SM0bPxZntwpHlJPHwyaAMgHAw68u/WPjrUlz2gn8/g8nAsLlvMHbNB1SrVzXs7VckzFYzNz50NdZIS3AkXepjdsfKPcwYPadU7Rzdc5w96/ejaQXPMbYoGxHFtDD6b3YcI56rj8N9EaVbAHvAPg5/uqp0gmthKd6vYKR7NWSNBVmYEKgC0a+gVP0HYb4w7O1XNHoMvAtLhBmDKdiOVq9FTWRM//GlaiP5eCo7Vu0uNOCpKApN2jco0Xu2uqI5BlPpllXTP5uDI9uJPcOB0+5iztd/l+r9CiI1MZ3hD37GySOFbwque+AKfjvxLdc/UEC68nkCEJGPo3uwF7R2kiDTSn0YJLUMn0haEYdnli6UqBxBuQAIFvIsEY4ffHNrNuCE7DLagKU8XrTFoqExSvU1KNHPlUn7FQrrrfpmVRSkr6UBTkgfiCyFULDb6WbHqt2knEgt9JqLu7QLsj4siko146lSp3Sn8YsnL2ffpoM4spw4s13M+WZ+qd6vMGT6K3ogrTCLRWFDVP0XJW4kQpzGoEkpOCMCBnFVYxm/41Mu7tqu0GsUIXAWsnk4FVK6kcndkSkPI5O6oDn0UyDpWoKW2AXtRDPfnzYU+p+LmUAFbIBM3TEhsjQTlAvIm9KtIdNe1QVewkjiwaRClaar1qvCyCXvUvU0n1afrRhNRkYtHcp9r9xR6DUCcBRit1gchj80mucuf4OnO7zCD0MmAbB/80H6X/EGnQ33cZPSnVtsPUhLLNhm0GgyBNf/eyUHthzh/lfvDLlfUkriqsf608UdmU4+e+absLtrJB1OLlQhPCLayusT+tP26rJJ8ayIDPjuGQaMe0ZPzy8A1atizwh9vE4Z+QdPXjiAF65+k7fu+AApJSknUnn77g/pYrqfm5TudLXcz+p5Gwp8vcGoYMlT2tL1f8n8sHw7ZmUDWG9Gn39DRNjI1YpxIrNGI717i3pFyVETKLyGwgiRzyEiHg5vmxWYO569meHzBmG25ltI+T5iTZOF2oMWhzV/beSRpn155aZ36NNuAI4sBy6Hi8+f+45uEf/jJqU7nY338Xm/gjc/BqNSYJr+tmW7aNy2AbWbhF5G4HS4MFtzx/vCSctYN39TyO9XEBnJmYgCrCoBENCl9/W8+O3TYW2zIiMsl0KVmaBUL/yiUmy+pHc/Mul6ZOqj+t/eQ0gp0TK/RTvR0b+G5eT1hbyDgh7QyO/luQMUG5i7hdw31GTdItz/8z607PBZR0JOJmcRrkymyxCVfyn8+fMEoKv5/wXGokpnpc9yseRkp2fzeOsXeeWmd3i4ST82LNTtBBf/tpwHGz7DTUp3blK60y2iZyEd1DNIFUPgFjXleCpZqXZ6vB56FnR2uj0gc9Hj9jLqmW/CnxGsHqfQ/aShEVSaijjLyhPPiIABwJHdJ1gxa03AY9XqVcFoMWKyGLnirk6h34TdK3QFUGkHnJD1CdK7B5n6DGh5lYKLSsl1g+1eEPlPM93gmkvugrSkOHwL2jwDx7UInKU77cvP/964B0uEGVuUVf8SCrBGW3nrt5eYsH8sDVrXO/WbnMePM9vFpOEzAh6zRJgx28xYbGbqNKvJpbeGlhaXfDyVJVOX47K7cDnc/Pr+NOxZDl64+i22Ld/ln9iKqgX3elSaXdSIdte3Dnhc9apMHfkHNRuHLmRzYn8i1erl2pse2HKIn94Or1fvzY9dT0S0jYgYG4pBQSgCo9lI72E9mJ76A5feFn5HkYqMEIJvXv0Zmef+ZTAqRMbZsEZaiKsaw21Pdyn8DU7Bj0Mm+UXSNizcwuGdxxjY9T3+m7HKn/JclNqx6tWIqxrD3c93QyiCJwcfw2yVGE0qOP8BcynEGN0rdcXnHLSTyPTXQ3+/grBcAyIORBR6YFlP68R0O1TbhIgKs7vPOcDkD3/HmZV7TzaaDFStU1m/j0VbeWxYIYvNYvD9mxNx2d04Mp0kH01h5ex1fPbMt8waO88vIis1WehhrerVEIrgqU8exmDMXUZJKTm08xiXdOsQct82LNhCs465pTsuu4t3un8c8vsVRN3mtWjesTG2KCtGsxHFqCAMgpaXN2dq0jj6j30cYwHZHecpAudc0PJmBCqgNEI/ELJAdOhzjsz+GWSmTyQtE+mYhLT/Atkjgbwb6cLWBBrggah3CFr2aylQGoV2dRcYW+V5XxUyPwhr6ZcQAiIeQg96WMg9vKsHleciKn2nlyOcp/h4tvhOwPOg1Effy5gh4iG/A1BJWTZzDakJaTgynbjsLn4cMpktS3cwotfnJBzMtR0tNLtA6hkKPV6/K0jw1pntYvuK3SEnHmaczNTvI5Fmf1vzf1oc9qAskX0Bq29/lzNe4yD+e0SVOQhjnfC2dxoo94CB2+VhRK/Pea3LuwEn4Gariay0bARQp3ktXvi6T+jCFEo8uStlBZTK4N1LcMbAKXBM0ifs/GhOiCrFAlSeBPKmmWkFt1MKLrm5Pd9s/oSqdSvrC3gJzkwns776i7sq9+K2yJ6M6PX5ec/lUyCl5Kd3fqN3y/6B5QBCt6aTUmKLtvLW1AEBp0QlwRZlDRjrEdE2Uo6nBQhRFYety3ZyaNuRoMcVRfDsZ71D6huA2+EO8B5XvVqpTvsKom7z2ny/azTtrmuNRCI1idftZd64RTzSrB+3RvbkucvfOO2COWcjCycu5cFGz5BwINAfvHrDargd+g37jYnPlyrDKCouN61VapKouAgObg8ee0WRcDCJZTNX+xYLeW9NHoi4l9CDsm5Qt+f5WUJRab0hIJRoRJU5ENETfSWjASp4/4Hk/yET2iKTrkOqhWtynEdn24pdPN76RVbNWZd7PxK6qn9qQjqqV+PJDx+m5aWh27rGV4/1n15JKYmpEsOOVbvRSiAga093MOH9aUExBa/bS9W6lalSO7TUWa/by5Z/twc85nK4w3pvVhSFEX+/xTOjHgUkmldDqpIdq3bzyeNfcGtET+6q1Itty3eGrc2KilSPop3soZck5d2wK9VBOwSoYLsHJaLwjMRTYqhM7vxnAlEFPBvJ1U0oDl7IGkyBlo/yJJhCtSfVwLuWwNNUoZd/hREl5nWI/wb/3ArAIcj+Up9fE9qi2WeEtc2KiO7o0ReZ+jwB40dEgeYTQDe1RUQPCLmNmCq5B6AGo4H46rHs33SwZHOYhAnvTsXrCQyCCSHITrPz8JDQ6/6P7j6OKzt3/S6EKFWGZUEoEXcgqsxAPwzOGa9pkP0LMrEDMuFCtIwRYW2zrCnXgMHGxVvp12kgf/+0mKzU7ADxHaPZiD1Dt9w4vjeBJVNWhNyOMLWBqKdAxIKxGSL2A6RnN4F+2cWlgNdoCeD8DeKngqGx/sUTVcDSFQxtSt6EoQbS1BHpXluqGqL81GxYnbSkwBT29fM3k51mR9MkS6auYPXc9WxZuoOM5LIXmTzbOLzzKK91HcpP7/xGWkJGgDuBJcJMWmI6HqeHjOQspn7yR8jtRETbeO3n/lSqEUe1+lV55/fXOLzzWJEZBYWRciIt6DFN1fiw11i+2zaSlpc3IzI2gpjK0Vx4XSuu6n5piduIjIvg1qc7s+W/7WEdN/HVYnE63Eg193M+uvs4J/YlIjXJ3o0H+OOrv9i2fCeJh8/bfuUn/WQGH/Yew7AHRwUFCwxGhaTDyXhcXpzZLr55pXQppG9Pf5laTWoQVzWG/l8+SXpSRkgBsxP7E5FSMvTJ+qSnGFBVAAnpL0L8RL1GV8Tof4wtIeJRSn7UYIHoF/X5tQhNm5IilAiEiCBg0yCzQN0AaKCdQGZ8hPRsDn9JRAXA7fLww5BJvHD1mxzcdjhIb+fYvhN43V68bi9fv/xTqdrq/+WTNL2oEdHxkdzZ92YatK6Ly1HyksfMk1lBlmCqV+X7Nyfy1Ce9uP+VO4ipHE1kbAR1mtfiocHdSzxcDSYDjw59gJ2r93BoR+GaNiXFYDQQVzUWLc/8qnk1ls5YjaZJ7BkOPnpsLAe3HWbX2r3nDxPyIaVEy/4VefJO34Y5X/BaS0CfC7zgmIJUE4PfpJiIyN5guUqf9yzXQkR33V2rxOTdbOfgBeefYGoBMcNAqaqvYZXavvm1pELgClg7IzUn0rMlrONGP5XNl6nmnIn+OXsg4w0072Gkez1ShlbCXJGRzoXI5LvA9Re6e09edxSJvr/xgHcbuJeF3M4lN7enW5+biIqPpNnFjXn2s97s33q48IyCInai3nzrXiklB7cdYet/O/ho4RBqNq6OLdpG5drx3PjQ1dRuWsJsGQF1mtWkfuu6bF22M6wi3sLYCGQ+DQf3X75sdxXsP6O51+trES28h8RlQbnZKh7cdpg3ug3DVcgJYf5oj8lSuq4qUU9DlF6TJz3bIftrwudV6wbvXoSxKqLq3IBntLRXQN2c55Gc1UJhbUfq2QrJ9yCFQbeHqTwz5NSg/Nz82A1M+mBGgc9JKXmvx6e+WlzJZ8veo37LUoo6VhDsmQ6eu+wNstKzC/yvc2Xn2sApiij1eL3q7k5cdXcnABzZTu6t9liJMwwKw+tR8bg8nNifxKj/3gt47vcv5rFsxmrUvHoX+nAolA8XvMXL17+DJiVIyegVw6h3Qe2w9PXu/t1YV4h4pKZpTPpgBi6HB82rMmjSiyGXgVREXr7hbQ5uP1Kg7abq1fwbMiEotVJx0w6N+GHXaP/PDzftWyoNjy0rI+l1aQu++28Hlap5QboRnmWI+NEB12mudWD/haLLyfIR+y1kDkJqJ/Xa2/jPEJZrQ+5rANabIetTCv7CSPCsQqb8A1JDRj2DEnXe4SOHT/t8xeLJywr25Ja6BksOpU2Xr1KrEp+vGOb/+e17PyLpcCGiyqeY//IjNYnb4eHvHxczdNZAHh/+oP85e6aDCe9NLZHv+CNv38+6+Zv56e0pSE3jocHduf+VO4vfoSJoe01LzFYTzuyCvz+pCek82/E1hCLo2LU9b05+scwsyM42pH0CZH5I4QdP+f6PRehrAiGsiPhcdxUt61tfhkG4cIJzBkq1JRBxT8AzmvP3ktmNm68BUQ1SuiMRerlW3KjwjBulJhjqgbq/kAtUONlNXzsbakPlKQhxXsQbQLrXINP6U7iwe54sUQml0Q0SQvDUR4/w1EePALBu/ib+/mGR/r4FzafFnw4BvVxh3YLNvDvrNX7c/XnAc6/c9A5Hd+ceBAhFFGk9XqVWJe558Vae6fAKikGhRsNqfL5yWMgZwkFYuoCrsANEDVJ66eMVE1SZgShNeVAZU24ZBrvW7itcdMeHyWpCCEH7G9pw1T0lP/ksFC0FRJjr84QVlEBfaM0+HZz5BoqIpMgvolIL0vvgV/VWU8AVPhXPx4f15IaHclPPjGYjRpPBVx9aBWe2E3uGHUemgxmj5xbxTucWJ/YnoqpqkQtHxWBACEG9FnV44LXwWVM6s5zIQpTnQ0X1atRpFjgxbVu+k29f+zkgWGC2mjAaC1/o1GtZh6c7vEpWWjb2dDv2TAe/jwnfuOl0c3ueHtnL/7NiVDBZTBjNRipVj/PVITtwOdx8/9bEsLV7tqNpGge2HD71xkToysP9v3girO2n58tkKil3PpHEZ3N268ECQPcxD0xBl+oxSHuewGBBjn5AIYjqkN7Lp2mjq3rLzNGFX19ChLEBxP1AbrmbQE8lNuoZblpaHi2dsWFrtyKw+d/tfv2AglCMCopBwRZlZeDP4VVCP3k0pVB7wVDOFYxmI83z6BAAOO0uXuvybsB3UiiCiJjCnUOsEWZ+fX8qa//aiDPbicvhZsLQ8NnWRUTb+HrTxwECjopBwWDUbZbtvrnVme1i5ey1JB0J3amqwuFeQdFZqgr+7370AES+9WGp0BLJtcULBwoYWwQ8IqVES3sVtLz/5wJEPIWnySjg3gKOb9E3pg5w/ZOb6l5KhBBQeToY8tZ/G3x/TCAqkbt2Pgqu5WFpt0Lg2UjhFn85WAAFbLeAuVPYmk5NyKOzEaZz2iq1K2M0Ba5Np3zyOxsXbc19QEBUXCRGc+H7PVuUleEPjsblcOPIcnLiQCIbFm4t9PqSIuI+BnNepxkT+ng1gqEW4PBpk2Qg7dPD1m5ZUG4ZBq2vvACk9Ecdg9KWBPT9rDdde1+PooQvriG1TKRnM/qm3UPpJ10FDPUh9n1k2gtI7z6I7IWwdYeMQeSmpyp6m1Kif2ktBJ2KWe4G1+wCmqgS/FgpeO2Hftzy2A3888sSmrRvyE2PXENqQjrTPp3D7K+ScDs9GC0mKtUsnX1JRaJ20xrYomy4HR79RlrA4rJr7+t4buwTYR2vqldl6YzVVK9flRMHkvC6S+eeoRgUouMjefn7vkz99A/Wzd/MZbddxOPDH+Tjx7/EkalHn00WE9YoM163iqZ6sESYgywOr7irI6v/3BDwmNlionKtMC6M0LMMOnZtx4zP5xJfPY67n++GPcPBspmr+HrAT/7fq/L58epHURRaXdGcXWv24vWoBY7XJhc15PMVwzAYwhc8lVLy37SVNGnfgK3LdqGpWpHR/cJof2UWVWu50aSCIkwQPRCp7kcmfQCmFoiYd5GZI0HmLEQtQGUgFX1+NQL5TsWUVqBtJ/A4wwCG8NpyKtZLkdWWIrO/07VzInrrAWrPVkjLozyvxIa13bOdy++4mDnfLMDldBc4ZmxRFn7aN5ao2MiwnnJvXrKd6vWrsHvdPpCULpNL6N+9257qTMO2DXii7YvEV49lwHfPsHzWWvZuPKhfpghqNKyqa9N4VKyRlqBT/pgq0diirSTsDywniq5UShu8fNRsWJ0pieOYNvIPEo8kc/vTXahcK56kI8m8dO1gslJzTx4Lsr4+Z7F01i2xCw0aKHp2qLERQoRxDevdC5qHXE2D0q5hBZivg8jeaMndQaqImMGAB1zz8lxXGV1ry4W+fvYSuAE1gvlScC8Nfv8C7ftCQ1EikFUWIB1TwLMJYb0ZTG2RapJeuuZNQdcB04IO8c5pzJehb1Rz1pD551iBiBsFlmvDOl5TE9M5vOsoikHBZDXhKSIoXBwUg0KjC+vT7/PHef2W90k6ksxDb3Xnopva8t3rv/rXOopRD3x6PV6QAqPFGFTe0PmRa/jn18DxqqkacdXCJ6AphEBUGod0LUI6F4DpYrB2AS1Jz0ZUj6LvRU0Iw5ntVFcuAQN7poPlv6/hzr63IBTYv/kQq+auD/iPvrVPZ255/MawtiulRKb8D7x7OHWkLR9Kbag0AZJv9dnjGMHUHhHZEyyd9VQf1yL0Oqr3kcaCBJnypAKZOoJnfeBjrmn5rjdAxIOlUwgvhLZXt/Tb0p08mkzfSwbidrpRPSqRsRG0u6413QfcHvZ2z0ZUr8rCicvo+uh1eD1eMlOz+euHRf6TeKEIWl/Zgn5jHg9rsADgo8fGsnjyshLrFwghmJn5I0+2eYnkoykIRVCtflXuG3A7Nz18DdNGzWHeuIW4HG5+P3ySus1rB2UxuOwe3L663lpNa5JwICmghGjp9NVB7XbqdhH3vHBrCL9p0dRtXpt+o3WlebfTzRu3vM/xfQl4PF4iom3Ub1mHF77uE/Z2z1aW/b6a9te3oeVlzVBVjRmj5+S6FAg9Ov/JonfCGiwAmDnmT7597eeg4NKpiIi28dGiIfzw1iQ2/LOFYc804bZHHfQeeici6h7wbEWmPg04QD2CFJEEbvwlkIRfxEkYQRoJ0BPQCjg1MLVGxLxTor4WB6FUQkS/nNt02vPgWqj3WUSAUg0R90nY2z1b2bZ8JzGVY7j92a6YLEZ++3iWf+4BsERYGL1iONFx4d0sb/p3GwNvHuoX/ywutigrfUc/xvF9CUz5ZBYuhxuT2cQ9L97KzY9dj8lspFez53A53BzcdoTBd31Il17XkePnJYDje3NPXU0WI5VrVyL5aIr/sYyTmWScDNSEqVavCm/PeCX0X7gQzBZTQFbc5I9m8uPgyUgpsUSYiYqL5NnPHiMqLnwbv7MZ6T2A0I4jIx4EzOCckc8hwQixo1FMTQp5hxDbVU8gk+/1ZUeVkIiHwHSZvqnGrffRdjciojsYWyMTO4FM09tJfRTixuR7g3RALw9DROoZCZ4NeZ73gvu/wJeIaETshwglvN9bIYTeb7rr/XUthtR+6N8soz7HRvZGmC8Ma7tnK1JLAfdyiHwYpAE8a8Gzhtx7qAGi+iGshdlyhobH7aHvJa+RdCS5xAcHzS5uzCvfP0vfTgP1Q0yzgYtuupDbnupMx67teeHqN9m2fJdPk+tzRi55N+D1UpN4nF48Ti8Go4H217Vhw4LNAeL6f/2wOOA1RrORhwbfR7OLArPDwoGwXOsvfZTevcjk+3xi/NKnTXID2O4p8j3Km9MeMJBS8uI1b3HYJ95T94LapCdlBJyARUTbqF6/CjJPBkJ4Gs8KLViABSxXoxhrISvP0C0PDXXA2i03Q0LdT+5iVUGox5Exb0HGO4DUN/3u5egBAguY2oFnc4Gt+TF1QIl5uehrwsD8n5eQnZbt/yJdcksHXp/Qv8zbPVsY2ecrFk1ahtfjJSougtpNagak7ZvMRhq0qoOmamHfgK2YtfbUwYJ8NWEGo0LTDo2wRVgZs3o488Yvwhphpkvv6zH7atWP7DrmF/ly2d0c23uC/l8+yaDbhuNxemh1RXO2r9ilv5/JQN3mtVC9Kkd3FS4SF1Mlmrd+e6lUv29x2LhoK8f3J+DI0oNtlWrG89ny98u83bOF37+Yxzev/ITb6cFsNXHZbRcFCEcqiqBph4a4HW5skeGt71w0edkpgwVBNYUCzDYTdZrVYvDUAcwbvwhHpoPOva7FGKNH+qWa13HBDd59iNjhSPcK0FLB2BC8eepalSpgaAjuwAVBUF8q/YIQpdNvOBVSTQDnfPwngVIiqsw7XwvuY8t/23mt61A8Li8mi5FufTrjdgaOoUYX1g8pU+VUrJ638dTBggJqbqWUtLy8OTc9fA0NWtXl2N4Errr3Uur4BLd2rt6T68KgSRIOJtHl0Wv5c/w/HNx6hNiq0bgdHjJTdaErxaBw3QNXMOXjWYV2QzEovDVlAE3aNQz11y02P78zxX9/sESYGTF/cNh0ac529E37XT4XADPY7gAt731RgFILoZRULLAYeDaADOWE1oqwXIWwXItUvtYPq8ydEGbd/lNKN8g8ZWTSCcYLdD0C198gLHomrXcH+um9CpabfGnuhX0vBUS9FPZNaEHIzM/wH76JCETMYIStW5m3ezYgpRuZfA+oiehWvx3A4/t/zEHE6mKXYSbh4EnSEtNLPHdbbGYuu+0i6resy2fL32f572to0Koul9/R0X/N8X0JeQ6ZDdgzHDz01r38+PZvCCFod31rNi7aisfpwWQx0vaqFmxctKVIY5Gr772M+18uhZtJMZHZE3xOeBK9BOQ+lJjwB4LDzWkPGGSn29m/5ZC/jm/vhgNB12SlZvPT279Rp1ktLr+9Y9DzoSK1TEqsrgGgxCNi3gRAGOvpjgv5iXgMMt7SU09FJFiuQFFikbbb9VMFYUJmDAbXf2C+3Bc8OIUqpjmMug0FkGNpufKPtX47KZPFSOVa51O787Js5mr/yXp6UibpSYGnPm6nh3nfLyKmSjS93n4gbO2qXrV4yt1BmWWCD/5+C4CYStF0f+m2oJd0e+JGFv76H4qiIKXkhp5X06BVXaYnj8dldxEZG8mvw6cz64t51GtRh0o14lg6fVWR3WjSoVFxf7WQkFLy/eBJzPx8rj99V1EE8dXPp3bnZdHEpf7Px5ntYuHEQLVjTZWsnrue4Q+NZtjcN8Ladt4T0sIIWjxI+Gjh2/7gxa19bgp+keU6EB8Dip4yG9lbn4ur/qv7k4tYpPNvyPpAj9Zb79D/XRSiUpkHCzT775D5Pvntq84HC3JZOXe9P8jksruZNjJYIGrHil28ctM7TDz8VVjbPrq7GErzBax1n/+qjz84cM19lwc93+jC+lRvUJWEg0lITXJnv5uxRdn4Yu0IMlOziIyNYO+GA3zUeyxup4cer93JyKe+LrIbiiKo0SD8i/q8SPd6ZPoAomJjcGTpy8Mcm9Tz+PCsz1Na6gBHfu0cCdohZNpTUHVhWLULpHqSkEoQrLf7TzeF5VKwBK4thTAjLV3BvUh/wNwJxRAP8aOQWobuJa8lI9Ne0lOoI3v7BB+L3ggKU6uS97UESPUoMrUveHeSG9mTunX6eXTUo6Amo9+DPOApwP1ApkDGUKSxCcLcPmxN2zPsRerSFEatJjXoOeheABq2rkfD1vWCrrn7+Vv5cchkFEVQqUYcF3RqwoXXtuKu525BMShomuSjR8ewfcVurry7E3+OX4jHWfThW9trWpa4ryVBalnItOfBvZLc8Woqk2BNWXDaAwYRMTasEZZTel563V6O7jrOvk0H2bV2H62vvMB/gw4Voe5GiogQ0rmsiFMo3CoRdyJNzUE9DOZLEUoMmn0qOCaBsSUiZiBKbO4pqHai3ambzR6LZp8C8aNRzG1L2OdTM+uLeSz/fQ1uh67wbzAZqNmoup46eR4/NRtWIzOl4OBOzmmp2+HmwOZDJB5KYt2CLTRsXZfmHUuXjpiamE4o+wohTl1r2rxjE77e9DF71u2n+SVNqFa3ChsWbuHHIZOJrx5L39GP0eO1u+jhS1Pt0/7UnrybFm7lriq9eH7sE1xz3xUl7/gp2LhoK9NG/pEbLDAoVKoZx/2vlH1E+GyiQZt6bF6yvcDncsar16NyeMdRstKyWT5rDXHVYrm484Wl3simJZZc7FAIccpUZ2GoClXngns1GBohTE2R3n3IjPcADRE9EMXWGWydAdAy3uaUmWQyQ5+HIx9Hie5b4n6fCqmehIw3yNWqEfpJTtSzYW/rbKbxhQ1OeY2UkHIsFZfTxYpZ6wC44s6OQaJXJeXEvtDE2GIqRxf5vMls4vOVw1j79yZiq8TQ6vLmZCRn8vlz40g6dJL/DbqHjl3a8fXGjwFYOmNVoDNNAaiqxv/qP8UVd1zCqz/1C3s2G4BM7QMyjfcnmPnp45psW1uVx4Zeej4omxdjc4pnyS2Q3hMgt+rCgZYbEErR4+aUhGrHWgzldRH3ie8gSwXzFfrJdOaHelaD9W6UyB6IyhMAPcVdZg49xTvqJcDS2Briv0YxhH8MybRXwJtXl8YCpkuQprYlNtutsBhqULyDUgHqAaRb0TOxLZchDLVK1fSBLYexRFgKdcMrjOhKpw6q3zfgdtpc1YLUE2m0v7ENZquZqZ/+weLJy2h7TSseffcB3pycm/E6c+yfp2x3dN9vmPzRTN6d8Sr1WtQ55fUlRWZ97hNLdeMXRDY2BmvXsLdVFpz2gIGiKFSrV5UDWw4V+LzBaMBs1U99Th5PoW+n1zAY9RvjqKXv0aht/ZDala4VyPSBIQQLBMQMKt6Vpha6ly0g3at95QgO8GxGuv5FRg8AxzQ9GioifWrZRaGCPA4p96IZO4D5IkR0X4QIj/BQ6ok0f+qnlKB6VA5tP8oTbV6kSfsGjJg/mOj48NaenY006dCQXWv3FficEAJrlAVVVanTrBa9Wz6PQCCRvPJ9X66+97KQ2jyy6xiD7xqBx+1FCH/pa7Ho9U7xshxqNqxOzYbVAUg5kcqg24bjsrsQimDdgs30evt+9m0+yMrZ67FFWU75fl6Pl6wUL0Mf+JRfh02n+SVNeeTt+6hUIzwZK/mV9zVV4+SRFAbdNpxKNeP56J/B1G1+Pm22aYeGGIxKkI99DrYoK5om6dStA72aP4cz24UQcGe/m3ns/Z4htZmZmsWQuz/E43Kf0sYoP5ffeUmxBCuFUkkXCyJHj+ZBn4K3RCbfhYzoDUoU2CfoPuKnxOeRnv0ZmmMKmDsgIp9EmC4odt+LRKYTqCYu9RrhzPfQMj9BxH+BsASfTp9r1GlaE5PFWHDplQBrhAWEoO3VLejX6XWO7U1ACMHcb5sxfN6bIbWpelU+6j2WA1sPlXi81mlWkwuvPfXJqcVmCciQfK/Hp2xavBWvR2XQrcO45v7L6XRzB34YPKlYNrw5do0LJy5l1dz1tLu+Nd2evImOXdoVu+9Fvr+UerYOUK+Zmze+OggcBNYgE75ARg9CiQxtfqhQGOpR9Mm6FYQCSnXI+gzpXoYujv0ZVJkd8vpNy/oSnNMosc8nkYiIe095lRAKWHID/VrGp2CfBDjBswXNOUevgc8a5dPxUjj1RtQD3vWQdDma+TKwdkbYuocvw0o7ma8PLr0MLbE9mq2HXppwjmdzCWFDKrG6yF6BmPx/pGsDON/UM6UzDVBlFsIQ2prqv+kr+fKlH0ocLFCMSoAVbVG06NTU/+8l01Yy/s2JuLJd7Fqzl+WzVtPrnQeYMXoux/cmEBFtJSu16D2X6tE4tvsEj7d+kTZXXUC769vQY+BdpQ5M+9GSyM0Qkujfj21w8ho0UydEpW/OaBvQcrFVvKhzWwymgpuue0Etnvr4Eeo0q8nMz+bicXlxZrtw2d0smbYipPaklMi0p32TyylQGuinQESD9V6I/Rjh3YH0FHxiVyjefeRO6ipoRyD9JXAvAy3Bd2MuwY3Duw7s3yPTXitZP4rgliduLNRrdN/mQ/w6LL8I47lJhxvaYjQXPGGYI0z0+egRLrutI1M/nY3L7sZp18frH1/9HXKbwx8azaEdR5GaLDJYULVOJeKqxmCLttLhprYMnjoAKWHdglPoY+Qj8dBJDHlqbrNSs/lywI/M+34RycdSSDh0kpgqxT8d2bvxIH+O+4eXrh1Son4UxSW3tC/0JDrleCojnwxvuvLZygUdm/jrp/MjNcnjH/Tkjme7MPe7BaQnZeCyu3Bmu/hz3D8htzl+0ES2Ld+J6i3aFSEqPpLKteKJiLbRpH0DBk16gZaXNmXhxKXBTjlF4tbtcf1zrAfs43TVYe2E7tNdkrRU7Rg4/9BPxLTSWUL6MTTS60ULxOHzxD5PzUbVMJoLLw2554Vb6TnoHjYs3Mr+zYd849XJhoVbcGQV56Q3mAUTlrBk2ko8Lm+R49VoNlK9QVVs0VZqNqrGgHFPc+tTXfjr+0VBOgun4sDWw36dIE3VWDxpGR88PJrj+xI4tP1okfaK+clOt7N0+irevudD9m48UKJ+FIYQAiKfLORZFTKHIdXztopCGEEpQkfCehtEvqTPT+5/0Gvr7brWimdbSG1KzzbI+sK3UT/FPGloBEQBVSDqNYh+BZxzdOG7kuDdRq4otwqelZDWF7y79ExaDBRur5gfD7j/hYz3gq3GS0PU84X0QYJjuu809zyYOlHods/YAaIHgiEenJMAtz7OpMcn5F5yHNlOhvUcVWhmbl7qXlCLqPhIoipFcvcL3Xjp26fZtHgbR3YVo1wsD4e2H8HjK+FVvRqHth1l6P2fsOW/7SQdScbt8GAsRmAW9D3jpn+3M3H4dL5++acS9aMoRORjFHpO71kH9jPbGrxcXBIcmU6EUFAM+k0qr43RwW1H+OzZbwGJmkcI0RJhpn6IKSJSTfRNtKdCgbhRCFNzhFDQHH9A+htIPJA1BipP1LMIioPlKhAmkC5yJ/icujcfUQN8dbbFXXh48qnSlo5ajWvQb/RjjO77bVCdkVQl9gxnIa88t8jO0KOSikFBCAJObl1Zbkb3+xbNqwVseEwWU7FSbQvCke0k4VDSqQ8RBDw18lEuu+0iTGYTezbs5/kr38Tr9mI0Gxnw3dNce3/xSgMata1PbJVoXD6nDCDAwtHj9HB9jyvZ9O82ju9NKNZ7aqrG0d3HUL2qP0uoNNiibLz7+6s8d/kgPK7gurhQNw8VDXumExAoBl2fIv+G6Ivnv0cxKAEnuopBoW6IomaqqrJv00G87lOLyd7xbBceeO1urBEWMpIz6dX8ORxZTowmA7vW7qXPhw8Xq00hLEjzlXnS+0Cv0cxZFKl6wMB0acFWtYUi9cWwUvraWyEEMv4LSOxIgXO8LNnJS0XFnunUS+KMet1pwHiVMGnETAwGJcA1ASAqPgpLxKkznwpi19p9eNynrq298NpWDJr4AlFxkWiaxpMXDuD43hMIIVg0eSkfLRhS7Da7PnY9Uz+e5delyW916nF5eeHrPiUKfAoh2LN+f8j3mvwo0S+gOWdBgMiovzWCrKDPQaR0gcixbtUIOmV3TkPfTOd/oQohntZKz9bgdgpC1EBUmuC3Z9PSXgTnAiQqZI+Hqn8V/wTTdr9eApbXyStgUaJA3Od6EKHYGQ8OpHstwhasqxQKiu1mNOfvvo1tvvuPEMVc958LZJM7JgUBn5V3NWSuJShjRChgCM0t4NieE8WypzWaDbz7+2vUalwDIQRTP/2D0c9+i8ftZcLQKXy96WNqNKhWrDYvv6MjE4dPx2l3+YejlLmaSQaTgec/f4yPHvvCr6F3KtxOT6HlnaEgTC2RUc9B1ucErwk0pJZ9RpfSlEuGwd8/LsLr9qKpGkIQcHorNYnqVQM2ZUazkQffvLdAcaFTIdUE3QoxaAK3+P6YgQhfxFhAyh3IxEvQ1DRwzkKvVfOiR0jz+8sWjjDUQlT5A6zdfG0Y0dN+zHq6rBIN1mt1JdpiYwZr5xJcH0xqQhp/jl/IxsW6xVjnXtfSude1BZ5IXn1f2Youni1MHzXHP16NJiNGc+5YklL6Nti5N0whBDc9cg2PDi25AKLbpdvQZKcFls4oBgVrlBWLzYzJYqJWk+pYIsy82/1jbo9+iF1r9rJm3ka8bq8ulmh3sfDX4o9Xs9XMF+tG0P2l2zCajSgGBbPVhDXSQmRsBLYoK7c/04VWlzcvdoqfwajQ6soLShUscNpdLJiwhKUzVqFpGk3aN6LPRw/5y5bycu0DV4bcTkXiz+8W4HF50FT9tF8x+r7bvv82r0fF6/aiKPoDQhG0u65VQL1fSXjvgZHsWRdcsmOL1ser0Wigev2qxFaLYcLQadwe8xB//bCInav3oHr1vjizXfz72/IStSviv9BPRrCgz+82ENE+z28rRD4L5vYU/xTM5xduDF28U0oN6fwb6fgdKR0oig0R/yVQgK+z5bxWDMDK2etQPao/O8VgMiCE78Rb6IFLl9Ptv0cJRVC/VV0+XjgkJBvbX4dP589xC4I27EazEZPVhGJUqFwrnhoNq7H2r43cVakXY/qPIzUhnWN7T+B2enA53GxatBVVLb7jUq+37+eNSS8QXTkKo9mIJcJCfPVYbFFWLBEWur90G3UvqI1QSrZkzLFHDhXpXoW0T/UJ6oGI/xqUAg5nDLVBqVGqtioEnu2+Uigv+gbLQOD6UkXfDOQEpBRQquglSIaSf37StdhX3po/wKWgrymNICqB0ghkAjLpMrTkHvoBhusf9DWsW89q9RZcWlkQiq0zovLPYGiCvoa1gIhDL7mIAPMlYGgKlMRq04Kwls4uXXp2IO2/IX2uOCL2PTAWFOAVSHP4RNPPVqR0gmsx+vjJCXDlXT9p6GM57wbWBtGv6wKZJeTIrmO8ePVbQY+brCZMFhMmi5HIGBt1L6iFpkp6NXuOHnX64HZ5+GfCEpzZLlSPipSwaXHxM3Iatq7HF+s+pGPXdpitJn2OtZkxW01ERNuIrxZH22taUatR9WK/p9lq4tr7S1c2KNVjSPsUpHsjACKyt26hGLT9llDK70ZZUy4ZBtXqVuHYvgSkJjGajTzyzv3s33iQBb/8549KGYwG6resQ1RcJC983Yc6zUouviHVxDy6BTmnaSbfv82gVALrNRDxLJy8AX/UTWZAxmAwXQyuFegTrqmQSalwhKEmIu4TpHMhqHv1QSLM4D0Apgt1X3FvEV8IpSFoh/B/waPf9HnPhkb6yQyeaPuSv6bohp5XE1s1GnumI2gTKKVk8B0j+GbzJ8WO8FVU6rWozZHdx/UTdyF44oOH2LfxAKvnbSDleBqgb7jrNq8FQvDUx48Uq8Y1P45sJ1+99APH9pzwp64qBoGmScw2E7GVo2lzVQseGnIfQ+//hGN79JN+r0fl3fs/4YWv+mA0G1C9KpYIC62ubF6i9iNjI3ns/Z5cfsclbFq8TRcabVaTPev306B1PaaOnMW/vy0vNHU8tmoMWWnZaF4NoQjuf+VO/vfG3SX+HHJQVZX+V7zBsT0nAF3Btkn7RnhcngIzDL4f9CvNL25Mu+tah9xmRaBeyzpYIsy47G4sERbue/l2Th5JZtfafezbdFCfdy0m6javhdfj5d4Xb6ProyW3vtI0jZlj/mTJtJW58TLfNGKxmomMjaDxhQ343xv3sGjSUqaPmgPoQeGRfb7i+52f+SP9JouJCy4pmUioECZEZE+k5UpwzQdDA6T5MoRnAxhq6adymR9R+OmXyddh31iy3IqIGVgqjRiZ/io4/9LfNmss0noz+vxdwMmsax5a9o8okcXLqqio1GpSw3//MVlNXNP9MiJibBzecYytS3fgdnpQFIXaTfXrLr+jI48O7RFSsGDpjFVMGDrV78pgNBlRNS8Gg5HYKtHUbFSde1+8FWuUldc654q6zRg9l15DHyAyxka6L9hWo2H1EgkPCiG47NaL+X7HZ8z/+V8iYyO4rscV7Fy1F2ukBYPRwHOXv15kiURkbAT2TAdIaHVFc57/qg81S7AAzo+W/QNkfqKP1wwLMrKnfhJekHWfuh+Z/hoibkTI7VUIDDX0z0j/AYwt9Np/z15w/4f/RF6poju2mFojYt4OyWZRujcg0weTO3/kBCe8IOLBUA2s9+jaLievyn2hZy3S/a/eN88m9DlO6HbgJUCY2kKVGXp6v3SB7W5QD4K0Iw1N4ORNFOn2pdTUS3CRutVk3AhEKTbx0rUCmfokOToOMvJRn8BTAd8ZmQ0pPZGVp51StLxiY9bHoUzTfxTREPEUqDt0i/i8eyNDQzBUQ8S+H1Jw6/i+BD7sPRZ7lsP/X2KymFA9XqwRZuKqxXHFnR257+Xbua/mk/6gbfLxVMYNnEDrKy/gwLYjuB1upJQ0urBkmnV1mtbkvT9e598pK0g8dJJrul+K2+Ul8dBJWl7WjL6dXuNYERmydS+oxbE9J9BUiTXKwovfPM013UPTIQOQ3iPI5Nt984WGjHgAiPBlF+bXANEg5UFk1XlhdVYJJ+XyLRr25yCGPfgZmSmZPD2yF5fcrNd5trqqBZ89/Q0geWrkI9z57M0htyGlF5l0M5DXAs8E1tvBNUePtmqZYP8R7JMJTLsCZDYi8jEkAjxrwXorwhLawBHW64A8p0m+tDTpWU/ulzU/sYAdfxBDmBHGurowTYhsWrwNt9PjV5mf/c3fRWaSed1els1Yzd3Pn9t+ti98/RRu12gObDnM3c93465+twCw+b/tvN71PVxON9f3vIoXvupTKoGdF656M8BmVCiCJu0akpWWzbG9CTizkkg4mMTCSUuDFLXdDjcdbmzLS98+w6KJS2l91QXc88KtIfWjRaemAWIyF910IQCr524o1CLHYDLQuF0D1v29Sf/ZYCC6UhQWW2gpwwAn9idydPdx/+J+1Zz1rJqzvtDrvR6VP776+5wPGNzdvxvH9yWwas56OnXrwENv6SJTCQeTeO6y10lNTKdp+4aMmP9WoRomxWFkn6+YN25hwBwSGRNBu+tbs3zmak4eSeHkkRRW/7kh6DRXUzWq16/KsHmDmDpyFjUbVeehwfeF1A9hrA/Gx/R/A/iEBGX2VwTN634UsN0Djt/I/QVcCEOVkPrgxzkH8Piqz/ZB9lgKn2Q1/f5zjgcMOtzQhl5DdXGqBq3r8tzYJ7BFWnFkO3n+yjfZv+kgVepUYsTfb1Glduh2aXO/+4eRfb4M2JArBsHdL9zB9FFzSD6WSvKxVLYt34ViCJ7HVY/KqKXv8cPgyZgtRh55NzQL3ZjK0dzdP/ee2uYqvcxx9teFa94IRXBz7+tZNHmZv/8nj6SEXKbpxz4RyFncOyH7CwpPfZfg/B0pPzinheSEoQYy7jPdLlXEQdwoFGNNn1ZWf3DNAxGJiBuLMF8YcjuaZyuk9CAw1d4EkU9B9pcgk8GbDFnvQ9bI4DdQsxDxXyIzR4KWioh6CqEUkOl0CoQwQ8T9uQ/klGu5NyKLKpMwXa3rHuRcox0D00Ulbj8v0jGdgDk9+yuKLNXwHgTvfjA1LfyaCo4QClT6CZn+ih4IjH0PxWedqGU2huxRgAFiP0CxhbZmBMhKz+bxNi/gduSuEc1WE7c93YVZX8wjMyWbzJRsJn1wlBmj5waUvIJemtZvzGNExkWyd8MBuj15E03aFaEVUujvK4I2+XWa1sTlcHF4+1G/hXx+ajauTtLhZH92u5RQv0Xt0s117n99wVdfwM/+I0VuuqQbXEshTCU74aZcShK2LtvBvk0HSDmexidPfEnSkWQ8bg8zPpuDyWrEYDL6NwmhIh1/EBgsAPCAll1A9LyARWX0K7rOQtTjKPFfoNjCu2mW0lN4tNfYASpPAGMT/DEd6dE9PL17Qm6zTrOaaL4USqGIAsdt3tIEo9lIVOUoVs1dT8qJ1JDbPds5uvs4G/7ZQkZyJuPf+JVtK3YBMGvsPKQAi82MPSM4S6MknDiQGBAsAF/tlSI4cTBQ3bYg+62nP+0FwHUPXMHbM16h+0u3h3QCVxhSSmo3rZGb3p6H+q3r8s7MV2l2cWMsNn0DajQZsERY2LlmL5pWvHqx/FSqEZc7Hgv5aPOm71psZmo1rs7qP9dzdM/xkNqsCKSfzODfKSvITM1i3viFzP/5XwD+nbKcrPRsLBFmXZejFONV9ar89f2ioGwTk9XE7nX7A27K+YMFALc9rbsdtL7iAgZPeZknRzyMLTLM6sBKHQqMiYuaEP0WwnIleqotgBUMtZHudUhZinuPoQ6Bt9WianuNYGiIdC3VRc3OUTxuD399v4j0kxmsX7CZCe9OQdM0ti7dydFdx7BGWXBkOUs1XgHGvTGhwNP73ev2BWQsaaoWpMfR6ML6xFSKplbjGgz8+Tle+u4ZqtQK7ylQfM04f2ZZXqLiIrnn+W7c/cKt/rnfaDJQq2kNtvy3nez0kjo/5cF0AbnfAUnRdfJCV/73rEe6VyNlaPN6hcD5O2iJoO6CjDf1OUM96MswiABZtN97scgcTrA1rFvfBAeUJ2joNep5iULYZsdrwQABAABJREFUbkIosSixQ1DiRxVff6uYSCWukN/TDJZuEDdC1/ECQAFRDTzrdE2xUDFdAOS9T+Qfg4KAxYIAqaUjXf/p2hPnKNK9VA+caMch/VU0NQ2pZYFzMvrnqRScVVQCpo+aExAsAF0DID05M2CdICX+Q8schCJ4+O3umMwmHh58H29Pf4VLbm5fqv4URHyNuKDHhBC0v7ENI/5+i1qNa/jXnFLTSD6WyrG9J0Jv0NCY3PVAYe4mgWtqiRXpWozU0kJvt4wolwyDSSNm+gMC9kwHDzfpS+/3enDiQCLOLH0gTfnod+5/uRT+6jnpN/lxn8qL0wLxX6GYmoXedjGQac+DWogKqLpTjyxLD/oAqw7GqpDxil4jG/UUStQzJW6zYZv6vPpDP34YMpmDWw8HPW+2muj/5ZMsnb6SY/sS6HBDWz5/9lsUg0BqMHrlMOqFKIx2NvPHl38FTHDPXzmIh4fcx+Lflvs3Q/9NW4k900FEdGjpzImHTqIYlKDN1a7VRfsuK0aFZ0f15tr7iiduGCoTh09n7V+bkGrwhJewP5F37v0Io9mI2+Uhpko0jdrW56uXfkAogos6X8jgKQNKHFCxRdkY8fdbjH3+e3au3hP02ZgsJh588x5O7E9k24pdtOjUjD/H/cPMMX+ielXenPQinbqV7kTjbGTZzDU4s5x+cbUPe33Oqjnr2LBwq/+GnnAwiV1r9tL6itAsBJ3ZzgJLU9IS0ot8naIIbnniRvp+1jukdouLdC0u/PRJJkPm+0hi0IPFkWBsA/ZfkY7JYKgFlaeGZG8kKo1DZrwNruUElyEYwXozGBqA808wNgTvEWRaX5AqMupZlKg+JW7zbGf3uv0c35egBwXQ1wdr/tpITKUo/xg2W00sm7Ga25/pEnI7+RezoC9o188v3FFGGAQtLmnKJ/++E3K7xeHI7uMM+9+oAr9T9kwHv4+dx+LfluNxeTHbzDRu14Dty3fxxq3DMJqNfLHmA6rVq1ridkXMu0isehlN0AELYGwO1v/p6ulKNIg4ZKrvu2u+EhH/eYnbPNuR0uHLJPLNLe5/kYlX69mr0u5/XNp/LlWGAVpBFnAauKYX8SIBojpUmalnBpQRUsuGlP8RHNAAcOvaCclrfJ+HCZT6IFN95QQqxH+HMF9c4nZFxMP6RsoxzVfqkP+CWIh+ExwTAI9++JbaGykMenlElekIEXrW41lL9neA05f5lg1JVyGjngUtDT2TGf1+GXFXyE0UJjo9/8fFRb7OFm3lo4VvU6VW6NljxeGVm94hMzU4uCqlZMeK3bp2WKYDIaB6g6pYIiy80/1jVFXj2VGPcsvjJdcXEJZOyJhBkP2t7twUhBVihulCqWoiWK6G9AH6eMUIVX4PqTSkrCiXDIPq9asi8qT8ed1eJo+Y6U93Foqgar3SpYYKa2efF3fhdk1BmDohqq9CmC9Dy/wM7eRtaBlD9WyAcONaRKHpsjJbL5nAiT4hJ4B3q2/ydeq1sSWyIMvlqnsupVr+z1bo9efdnryRUU9/w/oFW4iOj8Zld+PIcpKd7sCe5WDe+NBt185mqjWoismSO46kJvnpnd8w5Dltt0SY/afrodC8Y2OqN6iKqRD7xoKIqxHH1MRx3P50F+b/vJinOrzMu/d9TGbqqa1sSsr8n5fgtLsKHHc5tqfZaXakJsk4mcmGf7bgcrhxZrtYOXsdJ/aHdqpwwSVN6dQt2JrOaDFyd/9bmPDeNBb/thxHppPG7RrgyHJiz3Dgsrv5dfiMkNo826latzKSwIj+8llr9ci5b9rVvBqVa8WH3EZkbCSX3Nw+4HtxKgwmA9/v/pz+XzzJlv+20/fSgbxy09sc2R3+bBDpmI0+fxZ0Cur2/TmJvoLKBu8K/XqZDd7DSOeCkNoVhtoIWw8Iqpk16KrjzsVgH6+f9FhvBe2AT2PHCdnfhNTm2U6VWvFBJ+tHdh0n5USaf45VDErwfauE3PPirZgsphKJCn60YDCf/jeUhANJvNr5HfpeOpBN/4Y/G2T9/E1omixQvVtTNdxOD0mHk9E0DbfDzfblu/xzXVZKFjPHzgupXaFEIaKfI1ixWwFzV9CckD1CF8uLeAhcf+vrEGkH18Iz8hSs7LEQZIktU32OLYbca4wlq7/Oj4h6mlxB12IS/Qai2kKEMKClPY928nY0e1EBhhDx7vQ5EBS2Nnb4NvSafo22Rz/Ek1kgHXqZRAgIYUCJfgG0/IFpAxjb6wGuzDd1+0rLTXp5SM68rh0Hd+EljRUaJb/OiQvsk/QUeEDPdqtXqiY6P3Id1ghLgCj4qbj2/suZkvAdjdvW58sXv+fJC19i/FsTQ85KLQxHtpMdK/cEOe34n89ykn4yE6/Li+rVSDiQxOEdR3FkOXE73Ix7/ZeQ21YiukOQLpICSm19DZAxENxrwNgAvLvRS8Sy9DnWeaoD7tPLaQ8YHNx2mC3/7UDk23ekJWX4lZEbtq7H4CkDQm5Deg8gs74C270QMxREcSZuBSxX64JXzt/1iJx3J9gnI7PHhdyXQjE2puAEj8K+bHk/MDcyPfTPp1q9yn5nCqPZSNdHr+elb5/m97F/4XboQYLda/dishgx+zbBFquZ6vXPPfHDjJRM/hq/yF/KkYNuo6gHt6rUjmfYn4NCdgPISM7kh8GTuOjGtjw7+jEuvb14kfcLLm5MVFwkezce4NOnvmbvhgMsm7majx//IqR+FEWLS5sW6ExQUIlCfrxuL4Pu+CDkm0DlmvH+janBZKDd9a15f/brzPl2AW6HG3uGg/STmSQcyA1KGM1GajY698ar6lWZ8smsAJcZAJfdRWZKFooQRETbeOm7Z6jZMDSxNI/bw6/DplGpRhxPfNCT+14pXiZYfLVYajashj3TwcCb32Pnqj1s+Gcrr9/8Xkj9KBJTe4IW9cXGCelvoqkZob3cUBX86dpCX4jFfw/ulUCGbzGQDa4FecTTRAGLunODaZ/ORuabG9xON8f2nkBK/bvc/aXbCwwcFgcpJXPHLSDp0El6vXM/fUcXM7tFQKvLL0AIwcCb32P9P1vYuWoPb3R7v3RlAAXQuF2DkEvaNE0y9ZM/2LvpYGiNi+h8P0dA3Nfom77DuQGtrLG+Q5ic60z6tecY0jGT4ACLBHU3+gZZAcuNiMgnQ2/DtQTpWgCRT0D0CIoXNDAjzB0RwoBMHwTOv8G7AzKGhL/kyVCPYtk8BpBnDeVZg2afFXr7AaJwBogerOsjeFYFHKxhqIV/myNVfW4+x5Du9eDdS1Bdp3YUfV8hwNgWETss5Db2bjzAjNFzuO2ZLgz47hliq0Wf8jVGs5GOXdtjtpqZOvIP/vjqb/ZvPsTUT/5gwc9LQu5LQVgjLFSqGVdgsLiwAHLe8rX0k5l89fKPoXfAUIPc77AJInpB1ABwTkE/2HDoh8hKZXJLxAy+1505nPaAwYT3pmHPsBcoPOF1q0gpaXlZM6rXD+2LLbUsZHJ3cEwE+y/65l8WkvofgAaeLbpwjfcguaf/TiiFbkBhiPhxYC7IssRMsbIinLPQPLtDavuJ4Q9y0U1tqVwrnrueu4WHBnfnvR6fBvimaqpGvRa1iYyNwBpp4boeV9DtyTPb8qMs+GfCf6ScSA3agOXYfUlNElsllpaXhl7C8vINbzNt1BzmfLuAn9/5jX0bDxTrdcf3JeB2ujm+LwHFp9bt9agc2n405L4URr/PH+O6HlcGTa5miwlTAYGE/BzaepjfQzwFu+mRa7jpoaupXCuey2/vyJDpr/Bej0/JTMmbSSGpWrcKlWrGY4kw0/qqFjzz6aMhtXc2s3XZTnau2lOgzoXH5UHz2dZe90DoJSyf9vman4dOZe53/zDujYns33Ko6Bf4hozT7uLk0WTSkzL887+UksTDJ0PuS6FNRjwAkX0Inkut6HNsQbe+vIvyLMh4LbS2Ta0h+gU9AGDqgKj0M2SN0kUQ/Zj0xYGxhd4nY1NE/NiQ2jubyUrLZuaYP4MyDKQm8bh0K1vFoNC193Uhb6hnffkXY54bz5/jF/Lj25M5eoqMlpw5zmg0sNtnF5p0+KR/ASmlJDUxxGBSIbS8rDkvj3+GqLhAizrFqPgtwvJjMOWOV9WrMuTOD0JqWyhRiPjRuv6GoSmi0gTdQtq9jNxNoaJb95kvBWyg1EDEf12mae9nLJnDKfhkXdX/iAiE7faQPxvpXotMfRYcU/WDK3UPBaf+55DzvfAgPbq+kr5m9fVRKKCeYo4uIcJQBRH/Ayh1C+hLjl15UUjIGBiyXoyI/0rPJlBqQ+wohBIFjp8JOFgTsWC6UA9qiThdt8bYOKT2zmZk5sfoTm8FZSV7AYGwXoMwhFYSkHw8lReuepPZX89n5udzWf3nBtITCyhvyiHH3tntZc96fX49tOOov/zM5XBxeFd417BCCD5dMpSWlwWv0802MybLqTN7p3w8i6QjyaG1HzNUD2gp1SGqP8J2l55ZkB9jc58tdCTYeoAl9BK8suC0Bwwc2Y4ixYssERYaty+5MqYf9RD6l0ACbvCso/C0qXy4F4F3O8J2iy+FRPfzFhGhqXcXhTBUKcQTN+eLnf8zCv4yC3fJfMtziIyNZOisgUw88jVPjniI4/sSAtLrhSJ4YOBdfDXgR1JPpKF6NTwub8gn6GczWWnZwcEC8M+9ZquJpheF7tuuqir7Nh1E9ahoqkZGcibpSaeebAFOHEhi4cSlXHhtK2xRVp+ft5m7+98Scn8Kw2KzkJmSFSQa5sx2oXpVfyaKv5sGQWRs4AnvxkVbQ2rbYDDQ/4snmXjka9767SWkqpGVFnjCd9PD1/DD4Ekc23MCj8tL6vFUouOjCnnHioszy4m7AMvJHAxGhToXlNyiNi8bFm3xp/YZjIIjO4oOyOZs9OwZDn55fxrVG1SlUdv62KKsWCMtdH7k2lL1p7A2hWIm+BTMV+YlClgcKfkWE57QxiuAEtkLpdoSlMq/6jWI3j2BfTFdqJ8oeDfpfVKPgXLunX65HQWXOeXFZDESVy025DbW/r3RbyXsdXvZsapoXZgcvB6V0c9+C0DnXtdijbRgi7LSoFVdajUOfzZIRExEQNAe9Ew2j8dL5VpxQddf0jVQFCzhUOiBN2G5FqXqPyhVZyNMrcCzhYB1k1ITlP+zd95hTlRvG77PTMpme6H3jlTpiCBFrNhApYjYUQG7omBHUWwoRVAUC/xEsSAIgg1FRUUR6QLSe91e0+d8f8y2bJItSXbJwndfl5ds5uy8u5vJzDnved/nichvpbTqvc8i8Jam6oos1JUqbZBLLy8OFOcmityzrHrypvSARf/Pfkb/Z9StQET+YtniZ3MqSNS6PnQE8ufd+Pi8Gi8o8YIb3N5aWuVBGFuj1PgapdbPKJZLkK5deLb4RoPlCshbqFd0YUeoUX7OduYipcy38CsNMxgCd5HYv/VQoVCgw+Zk08//lvFDFf1z+Ts/knwklcvvGIg50owlJoKISDMDhodek6t245rs3+qdOLPn2gs33IpTv1Vdj6+FItj2x38BxRZqDZSkBfqcIPouffNAFI+pQtRY3e1EpqPPUUTYudFUqejhN+/9yN8rNvpUKlaNKs3PbUyfa8/jijuD2MlWm6BnOG2AqpfQSd9iHF5IAIEwtICk5fqN29gWYQh8QVgqfr1hfSnPZuKpsmkGY2js41p1bZY/WdEQAq655zIat2lQ6DHttDvZvdGXYMeZzfY/d7Jg8hc+EwYGk4H6LerQaUB7Rr8yKuAYqqrSpmdL9mzaj9utYTQbyc30JXaUj9TzbTL//4qiEJMQzdytr7Nh5RZqN6nlYYkYSgxG1afQq+bScLg8dwqkW2LNKXpQGc0GOg/sEJKfIyouknbnt2bXP/rEv815rbjuoatY+T/dDUBzaxzdHYSybTUl5VgaL4yY5rO6AKBOk1qc07MFY964Nag4PQd14Yf5v2DPc+CwOTlxsHz6FELoveiKovD6L8/x9zcbMEea6XZJEMJgpVLgWV7y7+EGmew9XCu+kFTAFLj/sheWwWD9XP/gKgmIxPeQJ7tSmESQLtCSdXGwswSnw8kDfZ72nZBFtx9s3aMFo1+6MSj7z15XdWP9D1uw59kRilJYNeCXYgkMkT8RfuCtu+gz5DysOTZ6DuocUgeaAlSD6jN5It2Skwe8kwGbfik2MRfQpF3J3d4gsAzPTxpIECoi8SNk+p0UluILVZ/0nmV2dTL9Xv+C2pj0iqLoOxCGIDa9TN3Rp+YuwJzvilBe8jU/IochDa3BfQTM5yOU+MB/Hr+U1j7r4/7q3OT5tYjUE1EhQERcisydV/R1wmykdTGFSQRpRTp3IiICt2qvjsjct8DlT9RVAcO5YLkaERH4mqtF5yaAnqT3VQlVFkIRtDu/NW+vf4XdG/bT5ryWAbdLlkVxF7jiFCSUi5N8OAUhROE92Wgy0LRjiJ7Ppp7o1Y/5m2oxDyGEsZj2lC3//hteVGnC4LsPVnkpnatGFYNBpXaTmsxcMyXoXWyhREKNJcjsmfnWNz5uXB5E5i+CbGC5Fgy6argwNABDkB7HZf2scS8j0+5Et8TxZ7lRQPEkgoqIn4YwBdbTWRJLtIV3Nr3Gmq/WkVA7jh6DunDiwCnsNn1yoKhKpewChjurv/zLazKrqEqhZeBrPz1LQu34oOO8/MPTLHx5MUumf1OoFO4XBeJqxpGVnEXrHi3oP0L3nI9NjKF/JWRli3Pnqzfx3997OHUopezLlSI7PaEIbnj8Wq4ac0lIfg4hBC999xS/LfoLoQguuK4noCcl9EWBCLjfuTqz+edtOEt4GyPAaDKiqApPffYQrbu3CDrOPTNvp1Gbhix4/nNyMvN8OmcUp17zOhzfe4LaTWox8olrAb2Vpc+QnkH/LKViGa6rmTs3l/MbCpJeKpgvRsQ9F7IfRcQ8ru/yaWkQcTFCWJCGVuDajq5zUMu/ze4ZypFdx0k97m3XazQbUFSVMW/cwsU39Qs6zmW3XUhUXBQfPvkJx/efwmkrveKwaYdGHNh2hKjYSB58W+9DF0JUYmJLp/OF7elzbU9+/Gh1ucZbs/VnhRCCll2b8cJyHyWuAaJEXo001NcrY0y9EYYGSFNXsBZLqpm6hyxedUBKCY6ffRwxAgaIvB4l9umg4whjR0j8EJn1Brg2oW8WlYLSRNeaQIXYorYU3aGh8q5ZoSYhox+EnNcpvWWigGKVk0otROI8fb4eip/F2A5qLNbF44wdEca2SPcRfQ2ABIyIiItDEqtaYV2Md5WdATCCsQ0icWHQu9jxNeOYtfYl5j3zKX8sWUfqsdIt2GOSorHn2nG53Nzw+JBCe9qGrevTsHXlurBNmH8fk4e9rgvslzGHLe6qY4owMvnrx2ncJjTPaKEkQo3lesWW2hBh7oXm3IrHHMRyfUhihZIqTRi07t6CHX959t3XaVqLEY8Npu/QXiEreRdqXWSBOmupREH0GDD1RBjbVnk/njB1g9obkNKmW2pYv9AVtMv6uUVkUBnBkqSfymT9D5tp3K4BO//Zy5CkW0GjMLOmqAqmCqihnym07NwMoQqPBZEpwsjdU2/hvCu7hCRZABAZY6FWgxpoUvr0rC9AURWuf/hKzh3QnnP7tcVsqVp7oDpNavHxgbdxOpykHc9gw09beHPce96L1BIYDCpX3HVRyMqrbHl21i5fT0xSNIqqMLLRGBw2Jw5bUZVDRdT7zxQat2vgsTtawB1TRtLl4o40bR+cCnIBqqrSsktTHDan32qGAi6+tR89Lu1Mj0FdsERHVGmJnVAiEUlf6GXEWjrStRsyxpWj4syIiBweMvstKTWw/6r36xo7QMq1SC2VohJaCVJBiLOr5atmgyQU1ft6uP6Rq+l2ybl07Ns2ZLG6XdKRF0e84beaoYCuF3eg/4gL6HlFZ+JrxlXt9SoEE+bfxyPvjSU3y8qJ/SeZPPQNTh5KLnViq6gK/YedT0IQbRslkY5/kK5jepVNxkP6Z6d4ybd0egogngUIIZBKI9BKlDVHDNJducyhm5MJU1ekto8y54JKC4i6Ccx9EGq9Kr+HKNGjkVG3IjUraMcgczK41lNmAsF4rl7JGyKkc5cu7GjqBdmvIx2/5QvKFnxwBJyNdoqGdt5tH4Z2iKiREHFFyO5vDVrVIys1B5ez9LlgXM1Ybnh8MJ0GdKBRm/oYTVU7Tzvvyq58nbMg33UmhUVvLOeH+b/gKmMOm1g3gS4hqpAFkO7jSPta3c7ZvhKZcU+Je7walvOBKk0Y3PnqTfyx9G+SDxUJR5w8mMxlt18Y+mCGRpS9DZqr94xggoSZYO4f+p+jDIQQujOD0hiM49EMrfU+NFmKCnPE4JDFTz+Vyc0t7sVWys625tbITA2tyFN14MKRffj5s99Zu3xD4Wu2XDtX3h36THWtxjWRpSQLQH8fvpj6NUtnf8fIJ65l5BPXhfznKA9Gk5HajWty+e0DadCyHi/fNJPkI6k+W40AmnduSmKd0PS7upwu7j73EY7t9eHBnI/U5Fl5vbbo1JS7X7+F2fcXc3WR0P3yTjQ6J7S710n1EspMFAGsnPcrv372J90v68SkLx8N6c9QXoQwgloLodZCJn2FzBiv29T6U/kWZjCdH7L4MuMe3Ze81GdRKbolZyjR8VFMXfUc9/X03BmPjLWENFkAurCVyWLGml16smj9yq1sWb2D2o1r8e6WqVU+oQUwGA3EJcUQlxTDW/+8wht3zWHNsnV+K3k0TePKMaF7Jmk570LOG5Sugq/plmxnmeihSPoImdwfj8+y63jl7F4r9UArQ2RN2wPZkyEnEmqsALXqnVaEMCDUGFBbI5M+QGZPhbz/Uer1E3VHyOJrtt8h405KTVIIgw8rxjMfETcFeWoNUGw+5D6gi+6FmPot67Jx1dZSH3OZyVm8++gCjGYDr/74bFBi4YGiKAoRkWYatq7Pg3Puovm5jXnn0f95VBSU5Mq7Q1MdCyBdh5Apg/B2WimOABl+12uVih6azEZ6DvIsFXbZXYzrNoGd60LrRCCi7gSlPJNkDbAh874MafxAUSKvQtT8GW/RwwLMCFNotAsAFr2+rNRkgSUmgpjEaAaNPvscEoQQ3DDR+8Z6S8t7Wb0oMMFJf/S4XN+FLQspJfY8B9++vyqk8QOlwwVtmLdrpn+BQQGtu4dOmXjNsn9KTRaYLSYioszc/GzohUqrAxff1NfrtYf7PsPClxaXKS5XEeo0qcVNzw4t11iH1cGapetC7q0cCMLQFJG0CIyd/A8yBG5xVxLNdUy3T/Q7izIAZoh+JCTxqhvndG/h5byy4PkveOOuOTgd5RQrLgeqqjJpcfkSVk67i9RjaRzZWR53pcolNimGSV8+ypD7/PdeW6IisEQHaiHqidRyIGc2/hd7AoiAyBG6Mv1ZhlDr6or7xXH9g5Z2F1JLC22shDcpn52iS6/4cKwNafxAEMKEEvtEfmuEv3uoCaGGpvRcSreeMCm1oiFS32k3Vm5LUTgilGhvrTOZiZY6DBli97e7Xh1FbFLZdoqaW8Oe52D1F2tCGj8QhBBcPe4y3t3yht/L1RxpolnH0FRnAsjsGZSaLBBRum1oxBUhixkqqtwloc+13n2ruzfs48ELnsblKnvHqrwIYYKkL4H4cow2grFdyGIHi7T/hf8JZgTS1D8kcX5bvJbFM1b4PR4Za2Hqqkl8tHcWtRrWCEnM6kYrHz3fx/ae5MUR0zi0M3TWL0IInvniEZqfW7aoilAEzTs1CVnsYDm4/Qg56b4rYlSDyqW3DghJnAPbDvPqzW/6Pa6oCi8sf5wF+9+ife9zQhKzuhEVF6WLUxYjMyWbD5/6lJ8++T2ksUY+fi0X3+ydoPBFnSY1K0UoLiC0NHCWonYceUtIwkgtC1LL2MmJeRFR8weUyPDrV6wqajb0dKzQE6I/8fZD80Map8vADoyddmu5x9doEJjNWKiR0knrtt8QEVmwiC+aGxiMGk8tCI0CvpQSmXYjulOTHyJHI2osQYl9JiQxqyWmHiVe0MDxCzI1dLvmAEKtBwnzKN80XUI4WQbaf8TvHNbYBZRaIQkjs54CdymikMZeiKSFiMT/IfyKjJ/hRPiw5nNuQqYMD2kYS7SFt9e/SkR02a0fRrORZh2bhDR+MKz7doPfyzUuKYYOfduEJI6W+zHYv/M/QKmFSPwIUfP7ShIqDY4qmcHZ8uzs23IQa46VLgM70qqb943N5XCx/ofyilOVD6GdpPSyD/RsTtStiKjRIY0dFDmvlXIwC9LvDEmY3xb9icvhPzPrsrtIqB0fst2L6oLb5Wb/v4fISs3GaDRwxV0DvcZomuTrt74PadystBxyfZXMFst8GkwG+g87n0c/GBfS2MHwyYuL/e4eu51uHr/8Raw55XQqKYVNq/4tdZdc5PdDx9WIDTpWdUJKyeGdRws9gu998w4v51opJYunfR3SuE6Hk7QTpZfNCUVwbv92vPrjsyGNHRS2pZT6XMh8AukKgSuM6z9K70FWgXR91/Is49ShZI7sPo6UkicXPuStXi3hpwXlE/8rL1JKTh0uo8Rb6KKHL//wdPjYsjrWccGgPfS6NAMhPO9/BqOkRtwHSJsvMb4KIrPBtbuUAQLcR85OL3stTe+Tl26IfQ7wIdbn3q7rlIQS1zHKVBdW6kLcy7rwXxggtbT8Fiw/ONcjc2eHJpjtJ0ptfXAfQxjbhGU/eGUitRyk8z+ktOm28IqvHfJspHNXSOMmH04tU9coJjGamycN5eKbgxe0DRXzn/nc7zHdfWp6aALZvqHUOYGWA2oThIgITbwQU+kJg1OHU7ip2T08eMFTjGo6jmN7TzBr7UvM3/2mh1WSYlBw2kNXYQAg08cC/izqBFjuQNTagBLzaHhlH0Vp4kUSXFuRMvi/VYe+bTBHFmUDRUkBKgWO7T277OnsVjvjuk/g/l5PMLLxGDb8tJUH54zhs2PvUqepp096RHRoP9QzxrzDiX0+LOry5wvnDmjHiryPeeKTB4mKCx9P4dgaMSgG/7cSe56DI7uOBx2nVbdmHuXLokRIzaX59Nk9k5FSMmXkdMZ2eYxbW93HV7O+4Yq7LubLlA/pMcjTp734Zz0UfDXz21KTvEl1E/jWtpCpqyZRp0lodpRCgoij9FJfCY4NpRwvJ2ozSu8Dd4NzS/BxqhmfvbaU2855gDGdxvP66Ldpe14rlmb+j5ue8ayyKO2eEghbft3GklIq6owRRj49+i7vbn79tPTW+kWJQ1XcDLoxjfgaLgozyEJSu6GDBs2ykPZfg48jokEprZJQgnNb8HGqGdL+C/JUf2TaUGTacIQSjai9DuI+KDFS6LoOoYqrpUP2E/hPGKiQ8DFKrV9RLINCFjd4zPhvRwBwgu3H0IQydkR3qfCDdiikrXjVAenag0zuj0y7AZl8EWhpiJorIXEFnks+g54kDCFPXjnF7zpOURXGTr+VxSkfMmLCkCoVlC2LyDj/bh2aW7JpVYgsDk09KLRSBLyX4G7QwnfNVekJg2/e/ZGs1Gys2Tay03JZPGMFQgiWvfW9rh6dT4OW9eh+WaeQxZWu/aAdKW0E2BZTZva2CpFaDlraHeDaWcZII+XrbSudK+++hPOu7FoUv4SokhAKLbs0CzpOdeLvbzdxfO9JbLl27HkO3p+4AIBNP28j7XhG4bio+EiuHuuj1CtArLk21q4ofZGydfWOsm0XqxBN05g+5h1+/Gg1Winq47Y8W0h2/dv2as2tk0cUfi19hAzlPaQ6cGzvCdYs+we71YHD5uT9xxcCcOpQCpt+LprcG4wqd74yKqSxS2tnAkg9ns7hECSKQomWOw+ZNQUo6btcfPJiR4qyezHLQqg1IP5dSps8C8vgoONUJ6SUzHv6Uxw2J3arg1Wf/E7KsTScdidLZn5bOE4ogjFvhKY1pIBPX11aqguN0+ZkzZK/QxozWKT9F2T63YCNDr1y+d/fOxgwJA1FhUYtbMxcsQfVQEjEB4VQEEmfoS/4/OCrvPkMR2a9Cth0dxXXXnD8CRgg50U8ptCWUSHVdZB5iyi9N98N1oUhixcKpHMnMvU6yqzsDcH8FUDETwdRSuuQsVNYLUyrApk7V08EyFy9/c66WP8b5L2Nx9/dcG5IdR3++3s3uRn+Nmh17YJls0NblRss6acyeajv06QeLV1/xGgKzYayiL4XDB2LvVLieSQiQS27Lfl0UekJg6iEop5ag8lQWOa39psNhZko1aiSmZLF1DvexpZXciIXGNLxD2XelGR2ftloeCBzpoPjL7xKVrxuiM7SXRTKiRCCI7v89+E/Nv8eImPOrnaEqLjIwoy0UAQx+SIua7/ZoHu35iOl5JVb3iTlWGiEjo7uOu4l/lUSieT3xadf2KiAnxf+wU8f/4a9xGc2IsqMwVT02TOajZw6nBKSmKVVKlw15mIatKoXkjjVBUt0hIc7RWSMXvWy9bcdHhaLqkFl5j3vsWdjCErtAbfbTUoZD1mAZbO/LXNMVSGdOyH7DbwdCVQ8tW5UhEwOTVAtDb9JabU14jQ485xOhBBERHkuSM0WEwf+PeyxgaAogoVTlrBm6bqQxd636UCZY1a8G6KdzxAgpQ2Zfj9oetWZEGAySx6cepTuF8fx6qJ9RboGIRLck6IG3sm0AqIg+uGQxKlWKHEUJv2kBiJGn3+5D+Ax4bf9iJbzfujiOsohrGxbGbp4IUBm3Avufd4HlEZ4LDe00LgYCSUa/N6rBcSHqPWhOiHiKDLAM4CSn/y2/0HR2sIA7oPIrOdCUq0MsH7l5tILS4AT+0+RcrSMtrAqZPZ977Pjr924XZ6JuaT6iR5tcnnZ/hMhFUEIFbRS5mDxb+muTmFKpScMrhl3KZ0HdsAcaaZd79YMf+waALpc1AGzRc+Ku51uMpOz+GPJWj56/ovQBM55B8/srK83QYSXl7A7GZ/9LV72GirSnYaWdida6ihkEGWtrbr698I1R5xdlkkAnS9sz6DRA4mIMtOoTQMenHMXAF0v7uhR0p2XaWXr6u28fNPMkMT95KUvPUq5LDHe7Q4GVSUy1n/pVFWTmZzldaMFcNgcHtoYTpuT2MQoXrnlTe4//wl++/KvgGO27+NfzNAUFZ59X5VJYp0E7n3zdqLiIkmqn8gzi8YD0LZXK48ElN3qYO+mA0y87IWQlGh+9aancI8xwjsDLxRBVHz4tM6gpYPPXlYNKH6PdSNFLFrWa2gp16PlvBf436y0vuJwaoOrQiZ9+SgJdeKJjo/ioXfvJiYhmsZtGxTltwS4XRpHdx/nxZHTST+ZEXTMLau3k3ai6Dz+2h1iksJoPiBt+NphjrBoPP/BXyTULD7Rj0LLXahfr1mTA+6lV5RSqhcFKMrZ1QsOIOJeArWpvvsXeRPC1EXXvlIboC/MCpIJxyBnJtIRfJWK5k4ukTDwsxILp/kr6PdYn6+fwCO5oliQ9t/RUkegpT8QnMOESPR/6Cyz/YT8XWzjuYAFzBeAJb/Vy9SDouohF8gUsH6FzPs46JiaprF4xjdFuXHh3TIKgBL61shgSD2e7nMOm5mc6VGNZo40s//fQ0y4ZDITLp3Mwe2HAw+q+m93C6vWeB9UesLAFGHiha8fZ3nOAl778dlCAb1x027jthdG0LRDkRiH0+5i93of2ckKollXgla8l1kAviauGjJvXtDxQoWIvlN/KFFy4VMyA+iC1GvB8Rs4/0am3YrUAsuA1WlWy++z6Lcw2s2uKoQQjJ12G19nL+C9rW8U9l5ffFM/Hn73bjoP7FA4VnNLDm4L4saRz+GdR/nty6K/tVAEdZt6+ym7XG6WzFjh8wZ3OhhwQ29iEqK9dgw1H37hj10ymZ8//YMdf+3mlVtmcSDAv1tMfJS3QFo+f69YH9A5qzuDRl/EV+nz+fTwO7Q7vzUArbo258XlTzDwxgs8xmamZAVtb2jNtfHehI88XvOVeJRS8tOC1WSmhGY3KWhMXfSJPyWrpiRepYGZU3QvcdcWyH0TbIFVSgjs+C3xDrGtVXXh3P7t+PzYXJakzePim3Thq9ikGGb+OYWr77nUo4TY5XCRfjJ4P+opI6d7fF2veW2MZu/J2a51e9m3pRTV9SpEKPEQcSX69VryIV0iIWBbCtlT9Os173Nk9hsBxZRaJogEPwdzkTJ48drqhjA0Qan5HUrtTSixekJWCIFI/DTfUaX43NKGdIXg+smciGeyKAqfm14yGxkqPYBQEH0/+vy1ZGKpxPXq2qm32jg3gH2lXkkTAFK68xM3Po8inTsCOm91RiixKEmfoNTZjJIwuzBpIuKnQvQ4UBoWG22HEPyNFr2xnKyUYpV7Uq9q9EKTLAuxWHgw3PTsMMyRZq8Nj5Ji8NZsG/f3eoKNP21h449beGTApMDnUWoT/C26pP2XwM5ZRVS5z9XOf/by+GUv8NKoGfQb3tvLoz2qFPGJcuMqKcRlhOixeL9Jbsj7DOkOjxIZYWyPqLkKkTgPaq6n9JaKLAonudIJWmC/w4Lnv/BbMZtxKviJWnXn1OEUnh/6Ok9cMYVGbRswYERvjwmtyRJ8Bnvf5oOoxRfBEoY9do3XLpjUJHs27mfzL+EhPJVQO555u2byyg9P8/mJ96jVyL9gVurR9EL1XEURHN0dWG/7e49/4rcPOTc9NGVj1Zm8bCvTxrzD+AsnYc2xMezRqz0SLKqqoqrB7RImH06lpA3DoNEDvXcOJGSczGTl/0IgyBYChDAhkj7TLbZqrALTJaWMTqWwNFtaka69AcWUuR/gv5/X7lGGfzbidrv533Of83C/Z9j401bGTb/No8VGapKYxOB3UdOLVRcAdLvkXOJreosL52VbWTA5RFWOIUDEvazbwiV9DdFPlzIyj6JWAnvgrZa2b0Hm+DlohFAshqs5Wt6XaKkjkbnvIWIeAqXEfU+EoKrKfcDza0NzMHbzMdCBzJ4SfLwQoUTdjKixTNfCSPqllJGSompaF7gDu7/i/Bfc/jS/FHCHl4bO6UDa/0JLvQWZ+TQi8gZQSzgmhECvZ/cGz43eqPhIho2/xmuc26Xx0XOf43KGVuA+ULoM7MC8XTOZ+tMkvs75qNSxtlw7UuqdntlpOditFa/iktIKtoX4XXT5q9AJE6qk/kFKyfcf/sy/f/zHL5/9gT3PgaIqHP7vGIPuugjTwt9xWJ2YzEY6hsDvUpj7IXPnoz9AFYh9CmEZhsz7BLSSDzwBInxKZBAJoMr83EZ5xVqcyJxZEPdChftfImMsZNp9K6X2vKJLhc51JvH3txv5c9k61ixdR0ZyFppbY8efu3jmi4cxWYzY8xyoBpX2vf2XyJeXtue3xmQxYc2xoSgKF9/Ul4EjL+D3xWu9NAs0TcMSRroSlmgLDVrXw2g2eln5+cOaY2PJm9/Qvs85FRZDjKsRg1CEx6KigI79w8NW6nSwZ+N+vnn/J7b98R+H/zuK0+7iv7938/L3T2Mwqjjykyz1WnhXrlSUus1qkVgnnpSjaUgpaXZuYy65pT+ZyVm8+5jnQ1eoIqx0UIQwIg3NAa38t1cA2zdIy+UIg/8WLp8oCeg7gz4mF2oThM+6zTOf5COpfDltOfu2HGD7ml3YrQ52b9hHUr1EEmrHFVYVmCxGYkPQJtDl4o5s+nkbbqebqPhIRr8yit5DevLowOc85m6KKsLKgUYIoV+vMpcK7e84dyHtfyDMvSsWUInXk4E+57MGUBv6OnDGI7VcZO774NoF9tWADZz/IlHB0Dpfe0oDTAhDy+ADRlwBuR+iz2GNEPeaXn2aMgBvjaswa0tQG4CWAe4KqL1rVrTchShRN1QslhLjW/04H2Hq4PfYmYyUbn2949wCtu/QKwkMSO0UmDqCcx36MykCYeoUdLy+1/dizVd/47A5UVSFRz+8l56DOvPtez+RXmLj0WA0+K0SPR0k1olHVRXysqz6nKAc3YdCEcx7aiF3v34LilKR38WAPh/wXSVc4ft1FVMl79riGSuY/cAHfP/hz9jz9ImT5tY4vPMYV951MZffMZB6Lepw2egLuXrcZUHHE6buEDMR/Y2RkLcEmfGIj2QBEPN0SJVtg0FKBzJtFDL5AjjVHe9WBH9oYPsambugwjEnLXmMmg2TMFk8Ew1CCPoPD++Lt7LY/Ms2nr9+KsvfWUnaiYzCHW2Xw0W9FnW5Y8qN1G9Zl/Ou6sp9s0YHHa9mgyQmLXmUyBgLmqax9ff/mHX/+z4FDvtc25M2PUMwIQkRM++Zy7A6o7km9mZOHiy/sOGWX7fz5j3vVTjeI++PpUm7hl672apR5dLb+lf4fGcCpw6n8FDfp/n6re/Zv+VgkZisQSUrJZtnFo2ncdsGdLigDZOXTQw6ntFk5I1fnyOxbjxSSpIPpzL7wQ94/wnvXsgGrepx8S3h47es5X2KPNUDeao72CtQyuvei0wbW+F4ImosmLrj07fdcl2Fz3cm4HQ4ubfn4yyZ+Q2bVm0r3Kmx5zk48O8hXv7+aVr3aEGzcxvz0rdPYbYEn9B/9svxNMtvf3Tanbz94DxeGDbNa3IYHR/F7VNGBh0vVEjH38iTPZCnekHOCxX4xhRk+piKtxCYL4GIq9BL4EtMD009EEr4JFOqEpkxFnLfBftKoMCpyAaufxFxr4Gpt26jGjsZYQz++SyiHwLzQPT3QELOTEgfjbfGlUGPHyZI12Fkcl9kch9IG1qB78yD7Bd1YdoKIAzNIOZhELF47X8qNRGG5j6/70xHZr8O2a/prUqFlUcucO1ERN+jtzqpjSHqNogI3pLzgmt7MuLxIagGBSk1vn7rO567fqpXsgDgyU8fquAiu/Kw5lgZ2/Uxbmh4Nzc0vLvcpnlup5vl76zkl0//qFA8IYyIhDfz7Wu9q5NFxMUVOl9VUyUVBuu+3YgtN/+iFWAwqBhMBnoP7oFqULl35h2hD5ozh8Kbq2uj/p8XBoTlqtDHDhT7z3qJVbkTBcVxgWt3hb+rfe9z+OTgHDRN46Zm95ByNA0hBHWb1yY6nATLqpCtv+3wcERQVAWj2Ui95rWp2TCJIfcPYsj9ofU9Xjx9hZ7hBI7tOcHSWd95jTGaDQy5L3z8lo/sPs73837BXYqloj+kJgPqFa7btDbvbn4dgMcvf5GNq7bidrmJiDTTsvPZZQFawJ6N+wsz9lLmq6lHmDCYDLTr3Zq4GrH0HBTaaqFfPl9D6tF0kJCVks1XM717/FWDwjX3XI7RFB6qv1JqkDWZovtrBYUMtWMVjimUaETih/q3Z0+D3PfQn0sRCPMFpX7vmUra8QxyM3M9RaUsJoQQ9Lq6G806NmbWXy+FNOaOv3azd/NBpJTY8xx+3RB6D+lJQi3vVoXThcycBBQs+iuqXeMALQfU8lf4CKEg4l6AuBfQbD9Bxn3on5eIfD2FsxTHRjyrhEyAApahCLUmIjGE7ggAMh3s36FXLWhgX+57nKElwtg6tLGDQObMym+PDUQk1pnvCFKx30eJuhWibkVzHYSUKyjYOT8bLUALcfxGUWJLAAZdZDdiMEKYEfEvhzzk568tK5wLrl/pW4jdZDF5WLmfbn78aDVH/jsW0BzWYXNybN+pCn+fMPdD1FqDptkhuY/u1ocKxo5lfu/ppkoSBudd1Y1tf+zElmfHFGFk2PhraNqhEb2H9MDpcPL9h7+Qk57DJbf2J7GOH8GdCqA5toI8WcYoATETEUr4qM7rmgXlvdEWvHXFkgtBTEAVRWHOxtf4ata32HMdbP9zJ4MTbqHnFV2ZMP9e3wImZyjn9m+HKcKI3erAZDFx6W0DaNW1Of2G9UJRFH794k+O7DxG7yE9aNIu+BLN3Mxc/l6xocxxA2/sS6tu4ZMxVw0KspzCL6pRJSLSTG5mkc5A10uC8wCevGwCy97+npQjaRzfd5Kbmt9Ds46Nee6rx4hNDL4vr7rQskuzwhYNs8VEl4s70uPyLpx/TTfiasSy+ddtbF29gw5923Buv+DbNjRN4+PJX5bpHNCqWwsuGhVOi2KBfo/14URTeLzgdzLopb4yo+iwIbj2IxH9IBhaIJ3bdV2EtJuRSg1EwuyzaicsqV4CsUkxpDnSUVSFBq3qcdXYS+nYry2N2zTgwLbD/LHkbxq0rkff688LiY/6nEfmlykWm1Q/kZufrciuaBVQ7hZDFUQESCuF2kYiOn8nKzCUiIHIhPfzhbgMkPMyWs5riLhXwr50NuSYuoPjb8Ct93xH34swtkOYuiLdyWBdAkosWK4NiTK/zH4HLyFWLyyI2OeDjhVSyq3yrqBXADvx+D1N3QMOrRgaI5MWI61L9DZj23K0k0sh+kGUqBsDPm+1xDwgX2/EBpgheizC0BrMA/Sqo7wvACdYrkcowSdI165Yjy3HVuoYRVV45P2xIbmfhwrVoCLLueYyGFVcTs9nSNdLAl/kK4oZWWOF7lIhNXD8gXayC0Rcg4h9Jqz+TgVUScLgmnsuIzYxml3r99JnSE/a9ynSKZhyw3TWrtigK8DP/Ib5e2YREaztRt7/Sj+e9A3C0Cj8LFfMA8DUBxwFux8Kvh8aCsS/D86/Ifd9dEnShoiIi4IKHxUXSUSkmS9eW4Y1/8O/ZunffD/vFwaNHhjUuasTHS5ow+SvJ7J2xXranX8OF1x3XuGxz179igWTF2G3Ovj0lSW8u/l16jYLri98zbJ/KG3t9dRnD9Lzim7Bfy5CTN2mtRk+YYguEib1BIKvTK3BpHLzpOE0aFWPV/JtKE0WEyOfDK4k22A0UKN+Ep+/upTUY7pYzI61u3lv4sc8/O6YoM5dnajZIIkZa17kh/m/UK9ZbQbddVGhsOH6lZt5dvCrOGxOTBYjkxY/RrcgEzWH/ztaeH/wxWW3D2DcjNuxhJnNpRACGfcKZD6MvltrwLOaq5gnVMSlEHkXpI/If1lDxD0XfHy1IeS8WyTU5c5GZjyCqPFVUOeuThiMBmatfYmvZn2HOdLEkPsGFepcHN93kvvOewKH1Y4pwsTxfScYMWFIUPE0TWPfZv/VTE3aN2TmmheJiIoIu0maiHsRmXoTkIue7PKT9FCbQeL7unuSlquPi3k2+N9HbQDOPeD8rfAlmTEOam08q/Q3RMJsZO5HILMQkTci1LqALmImU4eAlgYYwP6HXnIcLLYlpRy0IGr/BZjD7j0Q0Q8g7X/kV2P5m78CRELN7yF9bH5lrAaRwxEiyGeGWge0TLAtLoqd/TLS3BdhOHv0N0T0g6A2QLr2ISxXI4xtC49pqaN1bQMk5H0ONb5B+LQbLj+fvbas1OOfHJ5DQq04DMbwsg286Ka+rPx4Nf+u3pGvwSV8b4QImLNpKl9OW86qT35HSkmrrs04p3sFNY1KoiToJ8+bR2HriHUxmPtARPituark3RNCcOHICzi86xiPDJgEQExCFLlZVlyOogmbLdfOkV3HaNGpaXABSxWdSURoR4Dwu3kIoSIS30LTsnVhnczH8HvDzf0AJWkumnSBY21+32Fwb+cXU5fx4VOfeuzEOO0ustP8qSafuXS+sAPZ6Tm8NGomk4e9QWyNGHIz89BcWjE7FcHW33YEnTCo1bCGrjPl6z6lCowmEw6bI+wSBgC3TBrGyCeGsP6HLbx573ucOuStY+Byulkx90c+2DaNcTNu57sPV9GhzzlExwdX3bPhxy28dOMMj3uI2+k+K909mrZvxCW39OehC57mzXvfIyo+CnueA03TCt0p7HkO/vp6XdAJg9gk/8KToCfcslKywy5hAKBYLkdGXIp0rNd7kh2+HBwk2H5GxExAxr8NObNAqV+KfVf5kK4jyLSbKOopzY+lZQR13upIYp0Eho6/irFdHmPe059iiY5Ac2m4XRoul0t/C/LsrP7ir6ATBoqiEBFlLmqLLMH5g3tw4kAyTds38nn8dCKM7aH2BqTrP7B+AXl+dIrcBxDuo8iEjyF7MmBEmIIrcZXSgUwdCjKtxAE7eqItzDZcKhEhLGiWOxh/4XNs+/0BDGYVg9GA5nIyfrqDvle5AFd+KXgIUOqBO8P3MWNPcG4HY/iJUgu1FqLWL2iuw2D7HnJe9TPSCrYfIfFDyHxKT7iYg28h0K0aS9ori/yy77MHIRSIHIbMfBaZei0SAUSju6kUq7BzHwMtBdTg5rBN2zdg6+rtPo/VbV6bA/8eJnFgfFAxKgNThIlpvzxPZkoW61fq80lfKIrCote/5qF378ZoMrBn0wGuvPuSoBOyMvtVyPsIz3WeW096hSFVlp48tvcEC55fhObW0NwamSnZHhN9KPCfrxV0LBF1G5gG+DmahkwfizzZDS3rjbC0tVKUGETEhfjPzmrg/BUt8wXI+wBcmyB3KtL6VUDx7FY7qxb+zs+f/uFVtqm5NdJPZgR03uqMy+nixRHTcdqdSCnJTM7C5XB5eK9KqdGyS5DJLfQWiOETfU+KpVvy/NDXGVpnNC/eOB1rbullX6cDo8lIzyu6oLn97H5JOLn/FG8/NI83753Ljj93sXTWd8x5ZH5A8TRNY82ydax4d6VPe57cjDzc/n6WM5jHLnqe3Mw8pISc9FycdmdhsgDAHGn2qO4KlITa8Ty+4AEv288CXr9zDjc1v4eH+z1D8pHwsKwtjhAKirk7nv7pJclDZj4H6WPA+Q/Yv0Gm3xVwTOlYh8ydh09rBqkhtbNrQgsw+frXOXkgGaTuc223OvTPc34eyhRhomP/tqWfpJxMXTUJS4zvBNbCKYu5u9N4bmvzALvWB2jvVokIIVCMbcpoiXEiMx6H9FvAsQYcvyBThyNlxa2/AKRzFzL3f34sFk3gPhrQeaszn77yFf/+tgMpJU6bK/+adfPq/Q1xOkDTDGBoH5JYIvFtPWngC+cvyLQbkSd7I20VEG6tQhRDQzCdV8oIN2RPgfS7dSFJ51pIH410HQoonnSfQOZ9Cc6tPo7aw8Y6vSrRHBvAuhB9HeEGMvFsxxO6y4SSGHSs0a/cRNvzW/k8dnzvSZ668iWGJN7KF68vK7OV8XQQVyOWbpf630jR3BrffbCK6Xe/wzfv/cT2NTuZdvc7rPt+U0DxpJajr9dsP+G9znMgtTQf33X6qbKEQVkTx6T6iUz//YWQWBrpSpQzIW4Gvnfd3YAd8t5H5oWP57IH1hWU6ftl/YjCG4C0grPsPviSaJrGQ32fYdpdc9i31XfZ5rK3viflWHhewJWFLdfuIcpVEpPFxPNLJ9K0Q+OQxLtt8gim/fY8kbHeAlVulxvNpfHr52uY/cAHIYkXanZv2EdmaumLnuXvrsTlyN/ttjr497fAvMKn3fUOL42ayZpl63xKfuzesI8NfkR3zmSK60P4YtyMW0PmfDJgRG/mrH+VRm29d901l4bUJFt/28HTV4deXCkUSGkHx/elD3L8RJFwlBOcOwKKpeV+gkwbDdZPi52v+A+TisxbGNC5qzOlzQlUVeHS2wdw58ujQhKrdfcWvLNpKr2u6opQPJ+rUpNITXJk5zEeHfgcDrs/jYvTTM7s0o9rB0A7gT4BlfqcQEuucBjpWIdMvV5X5vdlB4pd3xk7yzi2x7dNoNMu+GlxEocO9EUkvB2SWEKti0j6EiJHo7eilEQDUpAZDyFd+0MSM+TkzipjgF1Pxha2hSkBCXdL93FkyhXIrOfwfb1KyHq6wuet9pSV1FObIBI/r7AVuy8sURG8/N1TPPjO3T71zjS3hjXHxrynPuXPZf8EHa8yWPHuj2Uuub774OfCjW671c7Ov/dUOI6UdmTqNcjMZ/0LKee8oc9Rwowqayhp07Ml8bXjyDjpu9Ri8D2XBy0gp+X+D3LfAVETZJauNIvAv7mmU/fVDUN0O6SyMnHFjxsDsuQ4eTCZQ9uPFFpblR3n7CA6Pop2vVuz7Q/fNj+dL2xPl4HBefyu+24jM8bORVEVEurEs2/zQdxuN6pB9SnQJd2S/aX04p5OtPykRqkUu4xUg0L/4ecHFOunj3/DWcqkXgKEWS9yVXDV2EtYPH2Fz2M1GyUx6I7gNE4ObDvMiyOmkZ2eyzk9mvPPD5tBCIwRRpw23+/Hkd3Hg4pZWeiVZRW5rwkw9w0smPUTipTu/Zz7LOTW54fz4g3TfbZiKQaV0S/fGJTYbkZyJpOHvcGhHUdp37s1677bpDvemIw4bL6fdw6rk+y0HJLqBi++HHoq6J6k1gal4qXGeqViaZVsBXOqs4uh46/mx49WF20kFE4rBdMebsA7myYilMDFdqV0IDMnguNPUM/RK0cl6Pt6/irmBLgPgyH4SseQo1XQ0hMBxgDa5eyrQTop/Zo9+xDm/kgRBTLX94DIuxGGwNvspJT877nPWT5nJXWa1eLkgWTseXavhGxxHHYnh/47yvnXBC5uWVlYs8u+XotXRxiNhlKrEvzi/C9f86Sin4/TT5UlDEwRJhbsm82vn/9JZEwES978li2/FvW8LHlzBSMmDg74/NK5C7Knot80UtDv5kW95r5REZarA45ZWUgtG7JnUSEbJctNiAAmtPG14vyWFoOubDpiwmBO7D9F6tE0WnVrHnbCUJXFG78+z5ql68hJzyH5cAr/e25R4bG/v92I2+UOeEJrt9p57rqphYma4/vKcvXQS1OvvueygOJVJlJKZt77foWsac7p2ZIRftowyqJus1oc2XkMzUcPvVAE3S45l/haujtA+97nnDUOH2PfuJXzr+7OgW2HSayXwPPXTS08lnIkjYPbD9O4beBJ2UnXvsrR3fou2x9fla/i6NJb+gccr1LJnkyFEgYiHhE/PbBYhtbgOoDv3S8BhmZg6qOLhRk7nTVe9/2G9aZR2wZs+nkbrXu04IFeTxYec9qdrF2+gQEjAq+ImXXv+2z74z/cLo0/vlpXNNkr5fHVpENDEuvEBxyzstByP82fZJYXFZG0CFFu1fpiGFoDEfhdgCmJEHmnfr0azkGoSRWPUQ1p0rYhC/bPZs3SdbTu0ZJH+j3jYb+8/J2V3D/7zoDPL3M/BttKwA7an5TtkgBgDkstA+lYn189UAGSPkaoAbh6GJpR6odaWCD2Wf16VRsiDOGnVVIZCCUGav6GtH2jJw6zXwL3vqIBeR9A1LUBn3/zL9tY9PrX2HLtZKZkIYQotSoXdLes3oPDL1mQciyNr2Z9W6EpwZ2v3Mg5PUrTy/ODWk93RfCLAWImgnMzUsQgjMG3kYaKSm9JyM3K4/HLXuC6mrcx674PGDjqAtJOZrKlhECGqwzLozLRUqFQ6VPi+c4X/FsFpW7+v/O9SSuata8KnP8CFREaNCJMFb+ocjJyST6cysvfPUW73t7et0IVIOCTl5Yw4eLJjL9wEm89+GGF41QnNE1j2t3vcF3N23j8shfpNKA9tRrV5JOXv/IYJzUZVC+WLdeOu4ybK0B8rdjCjK1iUMKy/ys7LYd9mw5U6Htadm1W4cST3Wrn4I4jPLfkUXpc3sUrk60YFIxmI2uWreP+Xk/y9FUv8+jA5854PYPFM5YztPYd3N1pPDUaJNJ5YAdmjn3HY4zUpM8ES0XITC7WcuLnrTOaDBhM+iJFURUUNbxUvAuxfkeFZgdK/QqXbkrpQrr2QvR4sFwFlBQtVYBIcO2EtOuQGfchUwYhtawKxalurP1mAzc0uptRTceRlZrDwBsvYOa497zGldey1R8pR9OKkpiCovtFsbfdYDIUOjQIRejii+W4L1c51sVUaAMBU4Xt0qSUSNdBXXwu6jbAV5VFlD7XSh+Zf71ehHRVvCy3OrF/60HuaPsgw+qOZv3KLVx5t17J5ShRVeW0BzmX1E5RlFTUKGhFcLsF7vxTS8wgChI0Ql8M+7WJPX1I609U7OcyIAKwAJXuE/oCLPZpEL52y80gbZBxDzLjXmTKlUjbzxWOU52Q7lS01BvQTvZE5sxGWIbqa4riyQIg2LVP+snMwjmcx3y42NzAYFKp2SCp8HWj2ehlTRgObF29w2/VmS9MFiMN21R880VqabouTPxboPqyuM53Fsl+GZk2Gpk6HC0nNG1OoaDSZ3P/e/ZzNv+yjazUHFYt/J05j8znrQc+9Jqr3fR0kP7Hpq6gNgIRhZ519eX/bYCocei/tgTsyKxJwcWtDAxNKd/NVgCResbf3L9CIbb+toPh9e7kjnYP8uAFT5Ob4d3/LN1SV652unHYHNhy7Sx763sP4b8zjV8+/YNVn/xGVmoOW37dxtQ73uKpq1/GVWIy0Htwj6AsYuJqxNL3+l5ERJkxR5roenFH7yp6AffOGo2i6B9Tt9PNrPvDT8MgKj4SSilDK0AIsMREEBlj4Yo7K9Y+c/JgMiMbjuHODg9z2zkPcvJwilfyRHNpOKwONJeGy+HCmmNj94Z9HNpx5gp07d96kA+eWEhGchb7tx7imcGv8uyQV8k45aknUbtJzaBbvm586jrMFhOW6AhadGqCMcJ7AX3PzNsLF1yaW2PZ7O/ITAnDBbASXY5BArAAEYiYeyp0eqnlIVOuRqZcASn9wL4O73u6hm6XJwG3PpHQMsH+S4ViVSfsVjuTh75OypE0Th5M5skrXmLmuLns3ejZh20wGehzXWmiaWUz6pmhmCNNRMZYSKgTR1wN73Lxi0b1JTper+iQmmTbHzvZ9PO/QcWtFJTytEgIdOeCCIi+u0Knl1Ii0+9DplwGKRdA3meAL02aEterzEXmfV6hWNWN566fyqH/jpJ+MpOZ4+by3uMf8/PC373G3fbCiKDiiMjhIKL1/4ji2OFzSE828OuyODaviSI92cCmP88tVrYvQZ4IT/0TQ83yDgQRqc9fK5gw0HLeRiYPQCYPgKznQPrSRLGjX6+u/NJ8GzL3rQrFqW7IrOfBuVlvyc77WNcb8aUnETMhqDg9BnUmvmYslhgLpggjHfvmC9QWm5ZZoiK4aly+m4AEW46Ndx4pw/b+NNC4bQPczrLXNUIRRESbqd24Fh0uKE2E1htpW4U8dQEy5VLIGK23zXuh5f/nQq/wskHu3ArFqUwqvSUh9UQ6znyRCIfVwddvfe9VuiwUQecLg1OXFcIESV8gHRshZzo4V/sYZYfsSXiUeoWh2q9Q6yBFrJ8LqhgxTyIMzcF4LqJcE+Ai3pu4oDBDLqXkwLbD5fq+6PiowgXsmUhGclahfoDL6WbN0nU+7eP6Du0VdKyJH93HrvX7WDxjOT9/8rt3L6+EF4a/4XEDtueFnxCKqqq07t6C7Wt86z0UcMmt/ek/vA/NOjYisU7FeoSXzPyGrGL2nvu3HizXBrHm1nwuFM4UMlOyC1uKpJQc3nHUZxVKnyE9g24luv7hq+gxqAs/fvQrn7+21GcLyvQx73p8rWmSjFOZxNWIDSp2yIkYlO99XMokwdARoh9AGBoiDBUUN7X/BO6DRefXDuFbvKwkWkB959UFu9XhUVllz7Pz6xd/eo1r3LYBJnNwYlzdLjmXD3bM4M+l63jv8Y992ip+98Eqj0olza2xf+shul4cnPVoyLFck2/ZV8quoEiEuJcRak0P3/Vy4doNjl8orGKQaZRvP8ms7/CewWSlFj13nHYXi6d568SYI80VfqaVRBiaQM0fOb77H8Zf8gXJh9OBkruQdh57cx8XXltMpscRhgku0wDgNUrfxTZC3AyEGgfGrhV6PknpgpwZFN2/yzsvUkGtX+441RItmaK/uy3/OVdyV19BGIOzXY2KjeTdrW+w9bcdvDdxAZt/2eY1Jjs9l/nPfu4xJzm4o3xrjaqkSfuGGEwGL+e+kjz64T0k1Uuk3fmtMFsqZnMus6dQtGngBq2cf4cAKm8qi0pf+Q0bfzWW6CI7I1+TzFbdmhMVH1zfpnSnIHNmQ/brPnxYi1PigxOkt3aokVIircvBfAF6H2EpZL8Opp4VThYAXmr8qkHBFGHEZPHvrSwUwVOfPVThWNWJASN6E5MQXVhK7StZEJsUTfNOTYKKY7fa+fy1pXz8wiJWfewjWVBAiddNEeHnfb1x1VaatG9Y5sL850/XUKdprYAmVpGxFo8KDEVRMJgMRESX8hkRcPNzw4OeyIUz7Xq3puE59TEY9cWor2SBalA4/+puQVUGaZrGt+//xKLXl7HwpSXl1qtQVIWouMiA41YG0rkLkMXa0/zg2oUgt+LJAtB3zbwyWioQSan9tub+CHPPiserJsQmxnDhyD4YzcX2Knzc+65/5Kqg3Qr+Wr6eL6YuY874//lMFhSGL3aPV40qjdqE2ZzAfQqce8DQooyBWeBcX/FkAeSXtpf8TOfv/pY2TVTrIyJvrHi8asTNk4ZiLJa88nUfHfrIleRmle5SUxY71+1hzvilPNDv0/xkgW/mPFubI3sL5gECjKGxcgwVUlr1hKmxK6UvMVxgXYAwdUeIii5FFKBkQjG/xQsjfu+xIhIR+0wFY1UvRPS9eK4dfLQAmPoHHefEgVN89PwXzH3sI/aVIsbtLtGCEGylY6jRNI0f5v3CeVd2KWyn9Mfcxz6iy8AOFU4WAPnV78VR0N8nM6Xp7BE/o+KxKolKTxi06tqc/+2dRVL9okm7alA8Iu/bcpBbWt7Hqk+9y7zKg5Qu3QYod66uLFsuBIgERFx42X7JvA+QmU+CLT+LbeyF/50pB4H2rz3w9l1e4k4PzLmL8e+PY+CNF2AwGTBGGDFGFH2ALNERRMaG1+Q/1CTUjmferpl0uKBNYdLAZDGhGosu2NwsK+O6TeC9iQsCjvPc9a8zf9Ln5baYEYrAFGHkiY8fCDhmZbDhp608fdXLfPPuj9jy7Fw48gK/N11VVchJr4g2RxHXP3wVLToXKUFrbo3bXriBh965m5ufHYYhv3e++DUdYTETm1jxZFp1wmgyMuP3F7hyzMUY8//uRrMRc7HEn9QkT175Ek8OmhJw0mD+pM+Z/cCHfPv+qnKNVw0KqkHhlueGUaN++IiiSdcRZNowfddFpoF5EHoZt8/RoGUEFsg8ACIu9Xwt4mpE3AsQMyl/gWYCpcTitIJ959WR8e+PY9z02zBZ9Am/oipYYopNcAXMGDuXOzs8HPAibM2ydbww4g2+evPbMneNAFSDilAEF1zbMzDl60pCt+C6FvLmgGs/GLrkL+J94dL1BQJAGBpC9EN4NiC3hdgpEPsKup6BOb/6pfh7ZQ6JLVs4M/jeQbz207MYTEXzsIJrFwABi6atYFTTcRzZ5ccmrQwO/XeURwZMYvH0FWScKr2yNCvNwINXt9YDG9ohom4OKGZlIdPuhJxp+Rt3NUGphe8FkQz8ehUKxL+JZ5F0EsS9BHGvgtocMIOIw0M7RjoRSmJAMasLwnw+1PgBPXlSQIk1hGMNMvlCpD2wNVdetpV7ekxk0dRl7N96qHw/lxDUaJDIfbNGBxSzspg7YQGz7n+fP5asw2BUad29uV/tpRwfrdvlRcS9BhSvtDRC3BSIewVMfdHnISVt1Y0V1qKpTKqktjy+ZhwvLn+CBq3qEV8zlgfm3EVUTNHF7LQ5cVgdvDchwAWYlpKvIFxeEQ8z1NqCqPVXYNn4ysS2Eg+7jYhLIeo+vLOpAiJvRIiSF1j5qNOkFg+/NxZzpH4zdbs0ls9ZyYARvZn40f0sPDyHL0+9T58h52GONGEwqkREmmnU5gwv5wIs0Rae+OQBWvdoQUxiNFeNvYSWnZsVPvPcTjcOq4MvXv864F2wLb9u92tFVxLFoDBv50y+zllA78E9AopXWaz/YVOh04M9z4EpwsAzix7xecNt0aUpLbs2CyhOZIyF576agKHYzuQnL3zJhTf04aZnh7Lo5Ht8fnwuwx67hogosx5fwLn9fQnLnFkYjAbufPVmel7ZleiEKLpf1omLb+lXOMHVNIkt186/f/zH3gqKUxbw94oN5W6HURTBM4seYUXeJ4x84rqA4lUazk0g8/3QpBXcexA1luJ9fwWUWIgIzJVECAUlfhoeEwDbMjD1RIm6AVFrLaLmL4i4KegLMH23IRBr3OqGEIIr7rqYa++/gpjEaFp1a85tL9yAOTI/cZPf65p2PJ3fvlwbUIx/vt+EPa/8IlbDHruGb6yf8OTCh8Kr5c59WNcKwAXYwfUvosZ3oPjapTMjIm8NOJQSfaenEJd7F0KJQ4m8BlH7d0TNnyDxk3xxaVVPekVcHnC86kS781vz0LtjiK8VR/0WdXj0w3uKqjHzr9fcjDy+9GNrWxbb/9xVISfg5p06IGpvRamxOKAK00rF+Q/6ZpYLRBbEzwWTL00xFRH9cMBhlIj+EDGMomVMJkI7hmK5AlFjuX691vw5X//DCEQEbo1bzVAMdRCJ74FSH5SaEDcVT9FdG2BFZk/1c4bSObr7OC6Hq9xCynE1Y/nG9gmfHJxDveZ1AopZWfy5bB32PAdSShRVYdij1zD4vkH6xnYxhCK46ZnrA44jjK0QsU9QlHB1gO1bFMsgRMK7+nyg9lownZc/xgRqnbBqUawyW8XGbRtw75u3ExkbSatuzZh+97teY4xm3R+5wmXXShIo8fm9O+VQ4LQMRVECKCmpCsy9wbmDgqSBMHUGQ1OkdRFoR4rGKQ1RYp8KOpw/z9T4mnpWa8L8e/lh/i9kp+Vw0U19sUSV0SZxhpBQO567X7sZh81Bx35tue2cB7xKZ1WDSl62NaBe23a9W7N19fZyKSu37NIs7G6yBXS4oC1LZ3+HPc+BOdJM5ws7cN4VXel5ZRf+XFpUPWEwGXj1x2dR1eAsDv31OUbF6eVe1z5wBXWa1OLg9iP0Htw9bP9uocZkNnLzpGFcfsdAOvRtw+u3v4XL4XkvdLvcXsre5aXbpedyeOfRci3CIuMi6XVV9/C0XzW2o6j0OgJMvRCG5sjo+yHn9WIDFUj8X/DZ/XyxJx1Z7OUIUCNArQGJH4LjbzB1Q5jCz3KqMhBCcOWYS2jf5xxadW/Bqo9/83In0DRZIeXq4nS5qCM/zP+13Emu6x66MigR20pDrY++82QFDGDsgFDrQOxTyIwxFF1TCsS+gDAGYPNVnOKfWVn8ejWCWgsByKQvwfYDGJrojgpnCedd0ZW4pBgatWnAiQOnvBYUqlHF7XIjpazwva/NeS39tyX6YNTT1+u6XeGIoa3u/IJbbwEwNofYiciUNXhs6kWMREQMCC6Wx9+5+PWqFF2vNb4C6xJdTNISuI1gtcPYHhH3nN4Dr9ZFerUc6U5xUjorXCVUr0WdwqosX227Jbk+XO+vQKcB7Uk+kqYLZrs1WnVrTueBHfhxwa9kpRQJv7bu1pwbHg/F9eN9bxBC6HMBgIS5YF0E0g6W6xAiuDlzKKmSd1DTNMZfOIl9mw8ipWTI/YO4/uGr+HL6co/+ltRjadx17njeXv8Klujy75wLYdQFD3PngesQOH7Ft+d14XcE+qtUOiJqHFLEgWs7IuIahLENWt5SbwFELQWpZSOUGKTUAFHhh1S3S8+lZv1EDu88Vvh1SVSDyuV3DAz016m2zLr/fX6Y9wtCCNr1Podbnh/O67e9VSjgCXop7W2t7+etda9Qt1nFsoCTFj/Kl9OWc/i/o/y+eC0upwvN7fvGq4WxLeB5V3blsXn38teK9XQZ2JELR17AltXbffS0SQ7/d5Sm7RuhaRpCVPx6rdkgifOu6FK469jeh0qtEILeg3uEXSVGZfPdh6uYdd/7KKpKfM1Yxn8wjr9WrNerP4pdVhMumczkZRPofGGHCp3/1skjqNmwBjvX7eWPr9bisDr8Jrscdmd4JgsAYWgKiR8irV+A2gwRdRvSdUBfAJFfeaCPRLh2gqFZvi6EDKDPFt2VJyd/F0epoye2S/5Mpq66y89ZxPY/dzLhksm69aai8NJ3TxIVG0VmalbhBNTldDHnkflobo3B91ZsJ7vPkJ5M/EivNFi/cjNpxzP8JssUVcEZpF5CZSGEBZIWIXPfByUGEXU3UsvQr18PJLi2A1frX0ktsOs15kFIH62fD4E0nOM1WxKGZhA9puLnrsakHE3l7k7jcTnduF0az345nvot67Jv84HC57bb5WbVJ3ria/z74yp0/sZtGvDqyqf58ePf2LV+L/s2H8Bp831/VY1q2F6vACLxQ2TOHJBWRJRefi5zP8Vrx8X9X+E/A75eo+4A6xfo83030tjF+3pVEvVxZxFS2pEp14J2HKQbYsZDxBVg+5qiTVUJrl3I1BGQ9GmFkgZRsZHMWvsSX735LUf2HGfTqq1+r1eACpXPVDH3zLydOk1qcXTPca6462JqN67J0tnf4bB6riGP7z+Jy+nCYDSgaVpglWiWK3XtOWkFpM/KGyHMEKa6MFVSe3d45zH2bjqANceGLdfOkhnfMOR+7wmAPc9B2vF01n23qcIxhFobJXYCSuJsvcRU9ddqoCAiw6xMthhCqChRN6PEvYww90I61kHW074dE9wH0bKmIE+2RZ7qiXRsrlCsnPRcju8/Vfj1p6985VM07WxDSsnyOSux5dqx5tjY8us2OvRpgyHCM79mz7OTm5nHt+//VOEYlqgIRj11PY8veIB5u96k//DefscOf3Rwhc9flfS9vhePfXgvF43qS+rxdJ4YNIWTB5I9xggh2LluL999sIoro27kyqgbA9Is2fRzkRLvxlX/cnzfyaB//jOBT19agj3PgTXbSmZyFtZsK43Oqe8xR3PaXdjz7CyYvKjC51dVlavHXsqjH4xjwb63uHnScL9jr7knsDL+qkKYuqDEvaSXYKMg00aCayueE1o30v4X0rEOeaob8mQ7tOw3Kh7M/mvRv2Uq2M9sD/DysuTNb7Hl2snLspKXbWXDj1s5f3B3T8cCl4bT5uSj50oujstHnyE9eXDO3by/fQZPLnzQ77h257ciqW74CqMKQyOUuOdQYsbrGwQZD+iich7XqwTHn0jXYbRTA5An26Clj9PV5CuC4y+K+p0dkPdRaH6Jas5vX64tvF7teXaWzPyGq8ddhmoomhNITWLPc/DjgtXkZORWOEbbXq25f9Zo3lwzhVd/eManbS1AfI0Y2l/QJuDfpbIRSpw+F4+bhDA0QGbPBOtCvKp/nVuRWg5a6jD9ek25BllBzRjh3EzRvqeW75zw/+DcnJ8s0K0kyZ0LkbfhveSzgXuf3qpXQeo1r8O46bcxZfkTvPnnS9Rq7FvN32g20C8ErmKVhdFkZMTEITzy3jjO6dGS3xevZe6EBV5CuXnZNlKOpfHKzW9ymWkEIxrcxcEdR/yc1Q/uwyCL2dXmVq/rtYo0DGI9ylbcUuPGJuO81DMBXC4Xm3/dxn9/7w44njA0B3+lnZY7wBC+N1svXLvwLWxoQmr2fL9kDWQGMrNivqol2xEKdgWdDifppzLP2uSBEIK4mkXiJE6Hk9ta3481y+Y1VjEoHP7vGH9/uzHgeDUbJNFzUBcPYcUCOg9sT+8h1We3/Pi+k0gfwnpCCFp2acrMcXNx2l04bE6m3ja70MKyvHhcs1IiFIHb7Sb9ZAbuMK7EqGxqN61VWCJrzbXx0qgZ7N6w33ugAGuOjR8XrA747xUdH8V5V3YtFFksTkKdeEaGpGyvipDWfP2bkhgQ5v7IjEfzH/BuyJ2HdO2t2PmFgmdFm6I74bhTkTKwcvszgXrNa2MqXBBJvpy+nG/m/ojmw33DYFT5es4P5GVbvY6VB5PZSM8ruiJU710uRVV4bN69YVsR4xPnf/h04Ii4SLfu0o7rxx1r8itnKkLxZ5CgIHkgtQykFpwLQHWmZsOkQl0eoQh2/r2HN0a/7XOnXwjBdx+sIuVooIJ+gvZ92pDkx93nmS/HV6/WUNcWvOewAky9kHmfgHM7+m73bmSud6tyqQi12O21+PWag9TKsCU/k1Fq6ZUFBWg5kDYYn2sJ6UDaf0E6S7fFLo3m5zahdffmPo+NfvnGClfgnk72bT3oVV0AkFA7joPbjvD7V38jNUna8XRmjJ1bwbMreN67Cyyx7Uif85DwokoSBnE1Ynny04cKH9hOq9OrX7EAt8PNt3N/YvyASWxctTXwoP68ga0LkNmvBn7eKkRKO9K5D5+6DMII2EuU+lRsAhqbGMPtL96AalAxmg2M/2AcezcdYGid0dzYeAwP9X06aGur6spL3z5JRLSucyE1/Jazak6Ntd+sZ/Kw1/ly+vKA49VuUgvN5Z2g2b5mFxMve6FaJG+klOxavxeX08euliLQ3Bpasd9D02SFf68J8+/DbDGhGBSuf+QqzBYTt7a8nxubjOOWFveRejz8b7qVwYT591Kjge5GIDVJbqbvxZUADmw7zIyx7/LKzbMCjhdfK9bne5eTlsPdncZjzQlscVflOP7Gt32tzBd3K/65FyArdj8UMc+ASAAUfYJs6o1MG4VM7oc81QvNsSXwn70aM/KJa2nTU++319zSo1e0JDkZubzzyHzuP//JgJNciqoQk+AtDiel5O5Oj3Js74mAzlvVSOe/+Q4bXkdAM+l9r4W9ypKKzglE1O2gNgEUMDRFRN2MljkJeep85KkeaHmBifpVd3oP7sElt/YH9PtrVqr/61UI+ODJhdx17ngyUwJftBZ3FivOYxc9z/qVFasmPV1I93HPhWshAqTB+3rVyqc5Uoj5IjB2BxRQkhCxT6DlfapX3J7qhZY1LbhfoJoiDE0g9tlir+Ti078WAE1PhqcOQzq3BxyzVkPfFQYfPPkpX7y+LODzViV52VZOlaiOBfT8ltmIPc9emJ+SEpwV1NgRhqYQeTN6YsuCiHsF6fg7/3q9AC19TH6LeXhSZXLAtRvXQPrp0S6OpkmcDhd2q4PVi/4KPKDrXz8HrGD9PPDzViEy/T6wfuznYAq4jub3wJiACETspArHGPrI1SzPXcDSzP+xZ+N+HrzgKXIz8nDaXWz7YyfX17qD/Vv9e6yeqTRsXQ9bTtkPLyklTrsLW66dlf/7tczx/ti9YZ+nN3k+dquDbX/sLHWCEi589PwXvDv+fz61GBx5DpbO/o6bnhlaaIE4+uUbKyyE0+PyzizN+h/LcxZQp0ktRrd/mBMHT+G0Ozl5MJmRjcayZtm6UP1K1YbEOgmkHvPv3V2A/pBzYsu1s2bp3wHHO7TjaKHDSnGcDhc5GbnsWLsn4HNXFZr1R2TGPYCvnVM3MmuKboGIGTBBxCVgaF2hGMLYElHrT0TtzYjImyFlUL7dmEOvXEi7Hi3nnaB/l+qG2WLm1JHy7cA6bE7sVgfH954o1zXui7ysPHJ9WGJJTeKwO1mzNPzvGZpzv95vrPmy7tMg701EzKMgYgGzbi1XQZcPoSSg1PxGv17jZyLTbssvJ3cBDsh6CC394bCe1FYGQghy08tXYeG0u3Danbhdbnb8FXil7OH/fFs02vMcrHhnZcDnrSqcdhu2o4Nx29bhcsLxgyYyUlT0AkQNnD/q16daB4jQF/zRd1YohhAGlMS5iNqbIWm5rvqf9Qx6otcJeW+jJV+D1AKzc67W+LVfLYkb/e9l92yhqyA+KxrRW3eXvfV9wOetKqSUPHbR86z8aLWPg3B0zwlMFhMtuzbDGGHEEmNh7PTbKhxHiX1Uv15rrUXaftDvsTIPcIJ9lZ6cdR0O/heqBKpMtvLAtor1ekREmjmnR4uAYkn3UTB2yrcoLFlGroDaOKDzViVa1ovg+KWUERKkHSXhTaQ7GUQUQinvDcITg9HA9/N+Zums77xU0K3ZVh696Hm+OPFe9SrbDJKUoxXbqTZZTLQ5r1VAsdJPZVKrUQ2/f19zpImouMDe26ri+/k/s2DyolIVc3Mycrnxyeu4auwlCCF87viVB1VV2bvpALMf+NBLBV1zazx33VS+zv6o4m4r1Zzy+M0XoBpVmrRvFFCc3Kw8VKOKP+1Yt9NN3aa1Ajp3VSEdmyDzfkq14pU2FMvFSPNfuoCX6nsHpSyEEEjNgUwfg4dlbgE5r6OZeqOY2gd0/upKdmr5J/FCCMyRZuJrVdy1wmFzkHwklXrNa3Nkz3GvjQuDUaVBKz8ViWGCdJ+A1OspvWJAQxjbQK01epuNUiswITl04S0tbTRoR/HambQvR+Z1QkTdHNC5qyvHD5wqe1Ax3C53QDbUbrebo7tP0LFfW/5avt7rvm6ymGjSIbB7d1XhsDl4/LJHeXF+BppbsOjtmhw7YOLiYWl07KUnXtwuiUGtDzVW6g5nSlKF1foLEMKMzHrQ94LXvQOZ+TQi4SyrNqho+xxmCMBmXkrJ8X0nObdfO/77e49XOb9qUGnUpkGFz1vVTBk5nZ3r/G90SE2iGlWmrppE6vF0YhKiMFsCc9sTwoTMnQPWr/BqE5FpyLQ7ELUq2k5W+VRZhUHHvm08vNkVg//QDVrV5bYXb+CSW/pXOI6WNQWZfAlkvwIGHws4Yw9EwlsVPm9VImU5xYYcawAQas2AkwWgu1isXvSnXwuqrNRsdm/YF/D5qyM1GyYRGVtU+ikUgb+5V1zNWAbfexlj37ilwnFWLviVkY3G8OKIaTRoXc8radCoTQOm/jQpbC1pCpj/zGdl2uvs2bAfKSWxiTEBJwsKWP3lWt+tD+hJg1WfVFxQsbrTvFMTj68NRt92PKYIIxeN6ssLX0+scIz//t7NiPp3MeGi54lOiPa6XhNqx/HEwgfDvmdR5s6h1GQBgJaKpmUjlKiAkwWF8ex/UupiL/fDoM5fHek79DyPrxUfGgMF9Lm2B9N+m1xhC9uUY2nc2GQc9/Z8nIxTmZhLJBFNFhO3Th7BeVeGuUuFdRm+K2GK40Zz7EQIE0KtE3CyAEC6jvhOFhSQOz/gc1dXrhxzcbnHduzXlsnLJlbY1tdhc3BP94mM7fIof3+7kaR6nm0JQggGjR7IDY8PqdB5q5rNv2xjz6Z0jh80MW18Az6ZUZsfPkviqVHNOXnEiNMu2LE+il8/34AQav71GliyAEBq2eDYgN97uj38d7hDTsSleGb1S7HnM7SG2GcQ5n4VCiGl5KVRMxjd/iEWvryExu28EwM9r+jChPn3Vui8VU3q8XT++Krsisu1y/9BCEGNeokBJwsAXYzW54Z2PtohpNt3hdHppMpWITXqJzFnw6t89NwXxNeK48JRfXjqipfJy7J69MJGxlp4bdUkatRLrHAMzXUU8uYVveDaiv4rFruJmC/UfYzDGgP6h7uMsj/Hj2iZT6HEvRBUtI+eX8SmVf5aOPApbnamYzQZ+XDnTN6buACXw8XQR65m0nWvkXIkDU3TCudRBqPK80sn0DaA6gK3y80bd7yNK1/88+C2I6gGpfBrgFbdmtKic9OQ/E6VSXmukZMHk7mn50Rm/vFiUAmQv5av56sZKzxEU4UqCncO9d3vs6capoCZa17kw6cWcnzfSa4ffzXvTVjAf2v3eAhLKqrg/rfv5NJbAvO/fn7o64XqwcmHUxDCw66d+Fpx9BzUJajfo2ooz+TUDskXImt+r1tzBYh07YfMR/HUolE9v1aCS6BVRx6cczf1W9Rl6287uOTW/vzz/Wa+n/ez5+daEVw97lLunRmYLdqMce+ScSoT0Eu5I6I99SoUVeGy2y8M/JeoIiQmypwPICFtMDJpsV5pEGgsLQ+Zeh2eyQLh+bWICfj81ZWLR/XDaDLw44Lf6DSgHSazkbcfnu9VAdDu/Na89tOzAdmufTltOXs3HSj8OjutRBWOgMvuuBCjKfDFdVUQGReJLdfJQ1e3REpw2PS/hd0qWPZBDWrWd/DR1DrkZM7AYDbSZ0jPoOLJtFt9O4kVcvbNYRVjS7TETyFnLhgagbEPZN2Tb+lXDFEDkfgxQon1faJS2LbmP35e+Efh1/s2HUQowmPzqO/QXsQmhff9IiLKjNuPrl5xls76npjEGG4pxSWqPMisSeAqTWSypFhyeFCln6KmHRrzzKLxhV9/cfI9ju89yfxnP+PwzmP0uro71z14ReAXl81XX5cFKNb/nfMK0tAIERHGkwR3BXbzrV+gWa5FMQU+Sf/7mw0+Rf1Ug4KmSS6+uR8tuzQL+PzVlcTa8Tz2YVFm9H97ZpFyNI3PX13K1t920Lp7C2586jrqNAms/HrHX7s8FnMup4sm7RpyYFtR/9JPH/9GveZ1uemZoYH/IpWMw+4k+Uj5Wjj2rN/P0tnfcd2DVwYcb/2PW7CXKHuTbonBpOJ2abQ5ryUXjuwT8PmrK6YIE3dPLapymbZ6MuknM/h+3i/8+vkaajVM4qZnh9Kyi28147LIzcojuVjfuebS6DywAxt/KhKn3b/1EJOue43JSytevVClOP8rewyAzERmvYiIfz2IWJv1BJbHZq0bPWkgQa2HiK6Yb/uZgBCCYY9ew7BHrwHggmvP444pI1n/4xYWvf41EVFmhj16DT0u7xxwjI0/eSbCW3VtxpZfi4S9bDk2xnWbwNytb1S4eqFKKbftmRuZ8RDU+DbwFkL3QbyrYQouXgFEIeInB3buak7/Yb3pP6zIAvmim/qx85+9fDTpcxw2B1fcfQkX39Q3MI924Ncv/vT4OjYphrysogWe1CQPXfA072+bTs18kdtwZNe6vSAgN6vkrrZg0RzP+dLLN81kSdq8gJMgUmr5m4O+EIAB4l4O6NzVHcXUGRKLKqplxN9I1z7Inq67qZgHIaJGIQJMWP+2aK1nPFWgGgwe64nXbptN7cY1ad/7nIBiVAV7Nu5HURS0MpOysGDyIi67bQC1GwfRdmn/A98Vh/lzgqi7EGrdwM9fSZzWtJvRZKRRmwY8/fkjITmfUJOQGCnsCTGeB65kT99L3Mi8T8M7YaBloF845VHklpDxCNQK3N+7x6AuHPj3kFfSYOCovtw3azQRPsTNzkZUVaV2o5rcN2t0SM4XnRCNwWTAadd3KBLqxtPpovYeCQOpwTdzfwzrhIHT7iy3ermUkg+fXMglt/QPuC2hy8AOfPvej156G3Wa1uatdS9jifalIn72IYQgsU4CN0wcwg0Tgy9hNZoMGM1GnPn3CUVVuH781R4JA9ArQJwOZ3jvgnk8E8rA9g3SeQcigP5OAIwdPcswChGIWv+AiDyr9GFKIzYphgHDezNgeO+yB5eDpDoJhQ4IQhHc9vxwHur3rMeYlGNpHPj3EK26BpZIqxK0NPyrnJfAfQBpXYqIHBxYLLUxupBybokDBkhaijA0D6rd4UwiMsZC5wHt6TwgNPoj9VvWYe/mA7pJixAMG381M+99z+Ott1sdrP9hc1hXxmQmZ/l1QiuJPc/BO+P/F3AVkRAK0tAeXDvwquKKex0RcXFQ7Q5nEkKY9eqjxNAI7dZqXAPVoODOt8PtN7w3677b6LGWcDvd/LRgdVgnDLJSc/Tq3vKYHkiYPHwas/56KfCA5t5gXYLXGi/qbkT0WIQIzzXXmXXXjxgEpvPzvxCgNgV5wHtcEOV6VYLxXEpPFpSYXGrHkBW0+yrA6XASmxhNpwvbE5NUtIAzGFWuHnvp/ycLKpEm7Roy5MErEIr+fjbv2JjffDiDNG7XsKp/tAoRFRtJXImqoBr1HExZuJeP12+jYQvPu7BQFU7sr5iAVAFSSqw5NnoM6kLd5kV98oqqMPKJa/8/WVCJmCJMPPrhPXrLB9DwnHosnuZtJRpfMzbsNTcwlLb4L/lYNIFzR+Cx3Cfz1cCLP3cEWEbo+gj/nyyoNJ76/CEs+W0IcTVi+PnzNV5jNJdGTT+WYGGD+fxSDpa8XjVwbgw8lvuwPpcydMJjrmFsjzC0+P9kQSVyz4zbCysHDGYDGSlZXnkiqWk0PKfiYopVSfdBnf3mt3zd7v79vZwVXz5IOZbG53OHsGPrBWjuYs8dJR5h7vv/yYJK5Kqxl9Kqm55oVVSFhNqxZJ7ybg1p2jG8hea7XtLRq2q1NA78eyjgWFLLA6URGHsCUcWOmBGWa8I2WQCnscIgL9vK6kV/ERkTQZ9rewZcwlUcIdRiPqISbJ94D1IaI6LvCTpW5WLAM1Pq67jIH2MA47kB3xRfHjWTv1ZswOVwEZMQxYSP7iPjZCZ52VZWzP0Rp91J+z5hnmCpAtxuN79/uRa71cEF15+HJcqXd3vF2bvxQOHu4z/fe3srmyxGnvj4gZDEqkxK9lqOfuoYXfvpr7325R7uHtiJnAwXQhFEx0UGPOH5/LWlLHh+EbY8OxFRZh6bfy+px9NRVYUtq7djMhvpN6y0yfXZwz8/bObkgVP0urobiXV8e3pXlEM7jhRO+A5uO8LBku43Al77aVL4L4LLbPuKBXIAoc9wTT0CCiPtfyDTx6KLG0VA9NNAHggLOHei5c5HRI5CiFIEqc4Sdq3fy851ezm3fzsahWhBdOpQiq45A2ScymLZbG/xswn/u4+EANwXqpRS/dElEAdkoScPjIiISwIKI12HkWnD822+LGC5GdR6gAquvcicGRB1J0KJKutUZzzH951k/cotNO3QiHbnV8xu1R8Om7NQc8Npc/K/Z70twK998MqQxass9qwv5f4qdK0ya7YNBJgjTAy4IbAWQrvVzj3dJpCZkoVqUOl04Q1M/qwVebkuvpxlIzfrC4aOvzqs2zeqCqml623bSk0w9w/JM9poMrB3s267rrk1vnjta68xbc5ryZV3l18w9HSQm5FXagGXyWLE7dSQUmI0GznvysBbwGX6aHBuATRQakHUJCAd3KnI3A8g8obAqxkrmSpPGNjy7Ey7aw6rv/gTiX7B/bl8PRPmBaeiKaVEZk0EmVz6wIhrECK87daEEEjMgG/XAo/qA1N/RML0gGP988OWQhsUh91J7UY1WPXxb2z86V9cTherPvmNWWtfpkmY73JXFlJK5j3zKYtnfIPT5sBgMvLl9OW89c8rqGpwk/xF075m/crNpd6omrZrFPaCMQC1m9Tk6O4T+V9Jug/QS76lhC/eTiIzxQ4IGp1Tn6m/PBdw5cofX/2NLd/NQ0qJw+og81QWS978BrfTzc8L/0AxqFxwbXAiStWZlR/9yjuPzCc7PReDSeWDpxby4Y4ZQV9Hf3+7kYVTlnjobpTEFGGsHvcKYxew+1Mh1tAXX+jibomfIgyB/U7S/htFSsg2cP0Hps75XuEusEUg3acQsY8GdP4zga2/7eDVW2dx8mAyBpMBVVWY/vsLND+3SVDnPbj9MK/eMsurdakk/Yb2CipOlWA+H+zf+Tkogcz8fwuIn4YwB9jS4dxEUVWBFRx/QuzzkH4r+nVsQjo3IRLnBXb+M4Bje0/w4g3T2b1hH6pBRTWojH9/LP2DbKPJSstmwsXPF7Yo+uOaey4LKk5V0LG//wWP1CAvU9dlEEJw0zPDGDr+qoDiHNt7EmuODbdLw+3S2PjTDlLTx3HfeY+TfjITKSWrF/3JxwfeRjWcnUlZqWUhMx4Fx2r0BLgRLKOCfua4XW6eGfyql41iSa6557KQbAhXJol141FUxW8bjcOav+YS0G9YLx5+d0xAcaSU4FxP4aRfS9Ur3rOfAue/gAtp+xpqfBeW4vxV/i7+b9JnrF70Fy6nG7fTjS3XzmofZYIVxvkPWMthneJYHXysqiBpMajNQNSiVDsU9/6gSlja9WqFIV/h3ppt44lBU1j33SYPy7rSvEnPdFZ/8SeLp6/Alv9QsufZObrrOMmHU8v+5lLITs/h/cc/KbMt9dDOo0HFqSreXPsSbXu1JqleAo/NPER0nH7jFQJueexk4bije08EtZvX+aKOmCx6ws+e5+Dth+axuJhjgj3PzsZV/gSQznwObj/MjDHvkpmSjebWcFiduByuoEo+C3jt1lmlJgug2IM13Il7DcyXgqiJZ1lgCaQtqPurMHUDin2/bQlkPU2Rc48NHH/4+M6zA7vVzhODpnBi/ymkJnHanNjzHPy57J+gzz3r/g/Iy7aWOa6sazocUCJHQOTd+ddr6buloiy70NIwtgNZ7O/h3g3pN1KU9HIE1+5wBvD01S+z65+9SE3icriw59n57oNVQZ/3yzeWc/JQSpnjqoPFddP2jXls3r3UaJDoZQ1ZHCkledl5Ae9212lSs3D+CnqL7S0t7yP1WDqaW0Nqkuz0XNJPZgR0/jMBmfVc/rrHDbh0lwTbkqDPu2bZP2z5dVs5xq0LOlZlo6oq0357nnot6pBULwHF4GdpLOHkgeSAk09CCDC0oWiv3g5pQ/MTtQX3bUXfWAhDqjxhcGTXcQ8bGiEE9VuGQg1SUrbtEODahpb3ZQjiVTKOP0HE519c/iY0Qt+tCoKnv3iYhq3rFX5dYJlWgD3PwaevfuUhxHc2ceJAMs4StkkGk4GE2sGVsEqfImje2HJszJ3wUbnHny6iIv5m2tL9fLJFMPD6DI9jstjHMthS45ufHUrPK7qgqAU2TQ6vrPDvi9ey7ruzc1J76lBKocZAAW6XmwbFPuOBopW4BoXqe5I36drXcNjK3w94WnDtAS1b95/2qVacjzCDWjPgMCLiIogaQ1HS14Xn/VyA6xBa7kcBx6jO5GTkeS3YTZGmkOi2SE16OgH6me080OcpUo+nBx2vMtHcqeDap+syidLmOQoYWgQcRxiaQcJsiqoMJF7zD+lGy3xOV6c/Cym5WWCMMNKya/AuUm63hiyHUOBbD85jz6b9QcerTJwOJ9vW/EedJrWISfQvbmwwqkE5cFmiLcz8cwrm/E0EpC7CXByXw8X0MXPJzcoLOE61xnUALzFIQ8ugT6u5tXIJW65dsYE1S8M7aSClZMPKrcTXiqNRm/poLt+/l6IqtD2/4hbqxRGJ8/RWhEJKJLVlDjJ7OtJVot0zDKjyhMGQ+wdhjjRhjjKjGhR6DOrMlG+fDP7Exm5gOq8cA52Q9QzSfbLsoacJLed9yH4BXBvA+WuJoxYwXwWGcyDyFkTssz7PUV4s0RZadmlWKLxXQPGE75H/jvH01WenLU3foecREWkmItqMoii07tGCqasmYbYEJ0wSmxjDjU9dV+Y4KWHxjBVs+HFLUPEqE82xATLGgGsdODzdOiQKm9aPonmnpgy4oTev/PB0ULFUVaXzhR0wGP1neNNPZPDc9VOx5pS9u3im0f6CNsTViNWvV1Whfss6PPXpwyHpCX/onbs9doL87Qn9+fU6vpr1bdDxKguppUHaYHCuAefveAnMmi8Hw7lg6oNI/BQhghPSFObzwW8bnARyIHtqMf2ds4fEOvF07NeWiCgzqlEloXYco6eMpM+QwDQjijPmjVswmot2HwuSjCXZtW4vM++ZG3S8ykJKDVIuBcdKcP0NskRyw9gDDD3A2AWR8A7CEJzbgzB2xne3qsj/zwHWxWBbGlSc6srg+y4nItKM0WwgIjqCa8Zdys2ThgV93useupLYGkVtY4rB9x029Wgazw5+Neh4lclDfZ9hxbs/8u/v/3HgX8/Npgat69JzUBdadWvGfbNH03twcJ/1Bi3rEhkX6fW6UAQIfWG74cfNfPCED02zs4Go0UBE/n8GiLgUET8j6NOef003mnRoVPi1vyIRe56DycPfKGwlDUfeemge85/9jO1rdnpZ8UYnRNFvaC+adWrCDU9cyy2ThgcVSyjxYPCVJCv2B3T9h8x8MKg4lUGVaxh0vrADczZO5dD2I7Q5ryUJteNDcl4hFETiu2i5CyFnFihR4D6E76oDZ76tVm0fx8IAm7fyeBHxiOi7wNAqZMJitzw/nJUfeSYm2vZuze5/9hfuFBYI8Zxt1G1amw92TGfHX7tp0r4h9VuEzht11FPXc06PFswY+x5up4vczFzysm1e41wON6nHM0IWN+TYfvB7SKBw3jXX0Ov6tggRmtvNxTf3470JCzyse5qd25j9Ww/pu4qA5pbkZlnPOtcES1QE72x6jU0/b6NG/cSgdm9K0mdIT+b++wZTbpxB+vF0DCaDz9YczS3ZvzV8K5KkYzulispahiNMnRCK9yQ0IIydQG0Erp1Fr4na6OWh+X8/oYBWhv7OGYgQgheXP86Gn7ZiNBk4t3+7kD3XWnRqyqdH3+XF4dPYs3k/cUmxHN7pW7ei5KImrNDSQXorjxcScRXCcjFCSQxJOKFEIy1DwFpccC8S1IbgLriGneAOzOmmunP7iyPpeUVXcjJy6TywAyZzaFT4E2rFsfDIO7xx59v8/c1GEmrH+70u006Ed0XMnlLaJjpf1JERjw2mVgidScZNv5UXR0wv/Foogo5927JtzU5cDhdOu4uTB8+++yuAYrkcaWgB7oNg6o5QQiPwajQZmfXXSyx8aTFfvfktsUkxHNzue1fc5XThsDrC1nVtzVd/+z1Wp2ktbn5ueMiEeAFE7BPIlEGeLxp75IshWgEtLO+vp0WJokHLupx/TfeQJQuKo0TdgKi1Oj8h4K9cRgU1jD2XS1XkPo5MHYbMCkFVRj61GtYoXGgVcOVdF9PmvJZYoiMwR5oY9tg1IYtX3Uisk0DvwT1CmiwooNslnfho7yzqNq+NrRRxrm6XdAx57JBhuqCUgy5IG4VMuyFg68+SRESavSpiWnZpxrX3D8IcaSYiOoLul3UiqW5onAGqG5ZoC72u6hbSZEEBjds04J0NrzFwVF8yfNgnFXD+1d1CHjtUCGMZJYUZdyJTLkG6g9MpKYwnBFAicaXEQMxEIAJEFCi1A3ZiqO6oBpXul3ai04D2IXfXiE2M4ZWVz3D/rDs5ddh/f/h5V3YNadyQosRT6t5O9rPI5IGhrVARJXU9NETcCyAidSFQEQWWwITqzgTand+anoO6hCxZUIDBYOCxD+/jtZ8mcXyf/yrYxm3DW1g2vpS5/dezv+e2cx7g1y/+DFm8mATPtgepSSYuuJ/ouEgiYy1ERJkZ9ujZO4cVxpaIiItCliwoPK8QjHziOubtepPkI/6flxGR5rAW727eqYnfY3s27Gdc18f48OmFoQuo+rCZjHkADI3z770REDUudPFCRFhIV0opmTvhI4bXv4snBk0hJyM3yBNmgVZKRj7qnvC2/bLcSKlCh1jBugSphW7XP75WrMfXM8e9x+GdR7njpRuZ8ceL3PT00JDFOhP49oOfGNloDOO6T+DonuNBn2/floN++8G6XXpuyGzxKgNh6giitN0tGzi3IR3rQxazVVfPhN/qRX/x/fxfGPrIVbz07ZM8++X48P6MVzGbf93Gra3u49bW97NldfALix1/7fLqFS0gqV4CfcLZpUJJAEOHUgY4QUtGhrLk2lTCNsx9ArInQcRVEP8WosbSoFsfziSO7D7OuG4TGNl4DN/P+7nsbyiD3Rv2+XVLMJgM3Dp5RNAxKg8FIq4t5bgGMheZ/WboQprOx7PpSCDTbgZDZ4ibhqi5EqEGr4typpCdnsMTl7/I8Pp3MXfigqA1hw78e7hUZfkJ8+8L6vyVzU3PXF/qcYfVwbvj/xeyeI3bNvBoOVKNKre1vp+EuvE8Nu9e3t8+nY59w9Oq7nQgpQst80m0U73R0u9HSu/K1oqQfCS1VD2De2bcHtT5K5uRT17rtQlVHLvVwacvLSm06A0eA3qLSDHSRuvr1ugnEDUWo0SF3zPptCUMcjNzua/XE1xqHM4NDe9myZvfknY8nY2rtvLuo0EKQIl4vcffa9EdDVEP6iX9YYp0HYbUa/DfIVyAO6QJg6k/P0ezcxsTVysOBFhzbKQdz2DWfe/z0eRFZCSfnS0JBbjdbqaMnM5lpuFcX+t2Zo6dS/KRVPZs2M8Lw6cFff6+1/fCWGK3QjWqDLpzIE9+9nDQ568spLQiU64CmVPGSBe4D4Qs7pOfPkjngR2IrxWLEAJrtpWc9FwWTF7EexMXcGRX8Emc6s4nU77k8ogbuDruJiZe8gJH95zg6O7jPHXlS7jdwSnDX3JLf0yWErtrAnpe2YWZa6aEbbJGSolMvxNcu8oaCY5/yxhTfkTMGIgYDKIG+mQhB2Qu2L6AzGchhMm06srvS9ZydexNDIocyf29nmDPxv0kH07lzXveK3W3tTycf033ImG0YrTu3pxpvz2PJSrCx3eFBzJ7avn0AlyhczNSIvpB1H3FXESs+n/OPyDjUaRtZchiVVf2bNzP8Pp3cplpBHd1fIQNP20l7Xg6y2Z/x59fB+fy0bFfW5+aG3Wb12bS4kdp3K5BUOevTH79fA1vPfhhqQswgPQQtrnWqJ/E4x8/QM1GScTWiCl0YNu/5RBTRk5nxbsrg37mVXekOxkt+Qq0E+cgky8E61K9Dc7+MzLn3aDOXa95bRLrJni953E1Yrh35u1cdFPfoM5fmezdfIDxAyaVaf2oaRJ7GRaS5UUIgUhakO+EV+B6kwfaMch+CpkzF6mVNaeuek5bwuCz15axZ+N+NLdG6rF0nPn9yC6Hq9TSwfJQ9GYUz4CbQFgg903kyV5IZ3jaVkjbj0AelGmNZESUFOsKgH9+2MxtbR7g2cGvkpmcpXuqlkiO/7lsHS+OCH5RXJ1Zs/Qf/vx6PW6XRmZKNq58Gz8pZUgUth94+066Xuy565lUJ57vPviZYbXvCFuVWenYCtpJSlWaB8CAEMGXpB3cfph7ekzgnh4TOb7vJE6702s3Z9sfO3mk/zNh7yxRmRzdc5yPX1yMy+HCmm3zsEl12Bxlen2XxaDRF3HtA1dgMBUlZeNqxLLu203c3PJePpkSpk40Mkd3oKEcAkxK8Bo3UktDS7sdmXwxODaDdOJ1b9cOINPHhLUQb2Xjdrt56cYZWHNsOG1OstNyCj+/iqoEvbho26s1j82/18NBRDWq7N18gAf7PM3zw14P3/tF3kLKd70GX4UmpQMtYyLaqf5gW5F/vZZUl0+HrBeQDv99v2cDr9zyJmnHM3C73KQcTSt0+5CaJC1IzaGkugnM2fiax76RwaSSfjKdycPfYGzXx8JW1Pfz15fhsDq92lxLUlyQNFCklHz8wiJGNRvHgue/wJ7nIC/T83p12Jx8OW0FS2d9F3S86ozMmQrufYAG2gmK5mx20ILbYDGajMz++2WPtgNzpAkJvP3IfG5oOIbj+8Pz+fbjgl+x5znKtNdVDWrhOjUYNOu3aMkXITMe0ysKZMnPsQTbcmTWM0HHCjWnJWFwbO8J1q7Y4DGJLSAi0swNE4cEH8R9AtxpxV5wgExGF7vKRmY8rqtlhwlSy0VLvx9yZ+O1YvdCgPkCPTsVBHnZViZd+ypHdh7j6O7jpB5Lx+rDt1pzaX7FTM4GstNz+GH+Lz5LsE0WE6OeLr38rjzkZVk5uOOox2unDutlXk67i9dunx1Woj1SamhZL0HGQ5QqIFeA2gjM/YOO+9RVL7Prn32cPJDMif2nyM30PWnKSs0JWTa4uuF0OPn6re9x+7i/miKMXHxz/6DFh9xuN3s3H8TlKHrvM5Oz0Nwabqeb+c9+xn9/7w4qRqjRcj9Fpgym7PsrQCwiamTQMWXm0+D4S5+QafsBPwtfoYLbtyDfmY6UkpXzf/WZxDKaDTRq24BWIbCt27vlIG5n0fXqdrpxOdy4nW7+XPYP37z3U1glDaT9D7TkQUB5WjRNiJhHgo+Z+6GeKNCOgXsvkIHvz4sE196g41VX1q/czKmD3htbqkElKj6KPtcGr0ey85+9Hn96l8ONLceB2+nmwL+HmPfsZzgdodEFCgUHdxzh3vMeZ9/mg2WOVQ0qd7x0Y9Ax16/cwqevfMXJA8kc3H6ErGKbOcWx59nZu+lA0PGqK9K5E+z/4D1XEyAiEZE3BR3j2N4T5BWzrrTnOchKycbtdJNxKpOZ4+aSmxlku3kIyUzJ4skrprDinR/LHizgklv6Ba3DIN3HIXOCLsjv3gcyBe+ELIATwnBTu8oTBnnZVu7t+Tj7Nh/weg4pisKcTVM5t3+7oOPIrGcp9UHr3o5MvhjpKvvmVhXI7NfAvqp0NeQCRG1E/FtBl/3mpOf49RstjjnSxGV3XBhUrOrMowOfY913G31mICd9OZ6rx14adIzPXlvKyQP+EwI56bnc3vZB1q/cHHSskGD7CvI+zU/ClYWApKUIpaSQVsVJK0c1hynCROeBHcJWkbeymTFuLsvm/IDbx2d72GPX8PDcMUHHWPPVOjat8l+yr7klD/d/hkXTSnN8qTqkcztkTwGtPGr4Jkj8AGEIgbCY+xBlV4uZ9N1hY5vg41VDVry7kln3f+BzsX5u//ZM/20yBmNwu5FHdh/ni6nL/B53OVzMvv99Xrk5hDoAQSC1HGT6OHDvoewElxlinkSYQ6Ab4j5C2dUMBhAGMIdvmXFlsv3PnTw7+FXyfGyuJNVP4IMd04mvGZy4nNvtLvVa1NySZbO/477zngibpMFTV77ErnV7cDnKrl679Lb+IZk3JR9O8ZkgKI5QBCaLkUtu6R90vOqIdCcj00b4efYZIOkHhDF4fYdXb51dauXi+h+3cGvr+8PG4WPa3e+wfuUWrDll6zc069iEh94Nft6ElkL5NiwiIPKG4OOFmCpPGBzfd9Ijy18cidRL4kOBLOuhJ0FmI61hUjrrPkjZZd0ABjC2QYjg37qaDWt4SSWYLCZiEosUZxVVofvlnbltcvhdvFWBpmns23zQ5zUrFMEpH7ZygeC0OcsUVHFYHXz8Ynhcr9J1jHKVySJAqYuihGbxnlTPs+zWGGEkJjHKI3lWu0lNXvh6YkjiVUc2/fRvYemconp+wFOPpodEX8Bhc/r1XS7AaXPxyQvhcb3iPq7v4pdK/i8kVITBh4pxIChNSrxgQu8JL/7HUxFJSxEifPvoK5N132/CXuDRXeKaSj6aGnSyAMBpd5Z53TvtLn7+7I/gRZdDgczEv8tTAQW/j4IwBb/JAvhwj1IBM55vjITEjxFq6GzGqhPb/tjpt3w5KyWbyJgQiJdKytzMcTncHN55lB1/hUclV9qJDEor0CnobzdHmmnTswynmnLSrGNjzwSF0KvojBFF+joGo8q9M24PyUZktcS1C/+aaE4I0dzMaSt9/SLdkqzUHFZ/8VdI4gXL8b0nS29DyP+TGc1GzunRIiTzJqm2xHudZwaKVy4YIPJ6lKjgqz5CTZUnDOq1qIMpwoiiKpgijFhiiiZJUpMsefOb0AQyli/7LdQ6oYkXJCJqNLpqpr8Pb8FkNgkR/0rQ8Y7uOc7bD83zyM4aTAae+vQhhtw/qHCSJoSgXtPaYStiVtkoikLr7s0xmgyoBhVLtOf1unT2tyGJ0673OShliAQBxCSGhzWNsFylW2zhr2qg4HcxQ/x7QceTWgZa9hvccP9eEmrqi2FzpImbnhnKw++OwRxV9LmJqxkbkkVGdaX75Z11gTcBaom/w88Lfw+J+FOzcxt5TMr8EREdJlUepp66PZ2XXVxJFIidGrT9lJQOtJz383eICxAQcSUkfYaeOCh42YRQwuNzfTrodVU3zPnVQEaz0WNue3TnsZD0vibWTSCpfmlOLjoC/b5y2lHqgalL/j22DCy3IYzB2e5KKdHyloD9B6DY59pwDtT4Gc95iYJQg9f3qK507NcW1aAnH80WE4qhaBrttLtYu2JD0DE0TaNjv7Irjpx2Fwm1Q2uVFyjX3HMZEVFm/O9l6dmETgPaccmt/YOOt37lZha+tMRDRyc6Por3t0+n0TlFySyD0UDd5uExzz8tGM7J/4dAX2MUT2gJyA3erUJKSY9Bncscp7k1r02f08WIiUMwR5o8rp9CRNFjqHaTmox545ag40nnf3qVo0eFgQqJC8AyiCKRfhWhNgo6XmVQ5QkDS1QEN08aSv2Wdel1TXdGPX29hxBRcpCChwDS9jPkvVW+sdmv6qJUmq8+kqpDmHsjanwNfrP2+ReZPIlMGxdUr2VuVh739Xycr978FiEEiiKIiDLTZWAHzruyK4Pvu5z6reqgGBTqNK3F0EevDjjWmcCtL4ygQet6dOjbhkfn34up2EIpsxQv+vJyZPdxXho1A81d9nu6YeVm7u40nlOHTq+egTA0RtT4HkwX+BlR8LvYIG0kmhZc2aRMuwly3+fi6w8wc8UeouIiqFE/icH3Xkava7rTqX87VINCTGI09715R1CxqjvXPXQFzTo2olXXZry44nEPtW2H3Rm04KHdaueRfpPIzSj7npmdlsPIxmPY/ldZrgSVi1CiEUnLIaq0a0MCGmTeh+Y6FVQ8mfk05EzPF5kCiAIRg4i+B8XYCqJupXD3NvaloGJVdy647jw69G1Dk/YNGf/BOGLii5I6RrORjBDcY58c9CLH95woc5zBZGRE/btYtfC3oGMGgxACkfA+xDyF/93B/Hus9S00e3CiuDLvY8iaBM5/ACf6osKCiJmAYqgBcS+iJ7kMEH0fQik7+XKm0qJzU/qP6E2jc+oz8olradOzZeExg0kl9Vjw2lhvPfAhm37ZVuY4g8nAvT0f58NnPg06ZrDc+cooJi15zG+yXuYXTKxdsSHojcF/f9/Bs0Ne5Y+v/sbt0jCYDJgtJm59fjh1mtTiwTl3ERUXiWpQ6HlFFzr2O3stFYWaBJGj9Wo381X5tu0F9xQZtOAhwHcfruLrOWU7pwhV8Npts3l+2Os+NeyqkgEjevPmX1OITYr1PigprJY5svMYr99RvvWkP6T7pN4WYv0U/bmvAhawDEYxnYuIvgeUOvrrhuZgCU8b+yrfhpvzyHy+zO9rPbLzGK27NScmIRqHzYHbpTFiQvCCh9K5EcrrICDzwPEnMuUaZNQIRORtISn3DwglBtzl6LF1/YPMfh0ROz6gMEd3H8ft1nSLMbckIsrMKz88zTk9WyKEICYhmrlb3sCaY8MSHXHWVheAbvX13HVTC79OqpdA47YNOLL7OJpL48anrgs6xr7NB8os7y7Almtn/7+HGNd9Ipfc0o+bJw0/bb36Qq2JdP5RjpEZkHYT1AhsUiOlM7+sTqIoULO+5MXlY2nRpStmi/67T142EWuuTd/xKcMe50zm5KFkbjvngcK1xOz7PuDCkX34ffFaAPoNOz/o6yX5SBp2W3naUfTr1ZZr59ELJzFgRG9unzKSxDqnZ4dBKFFI++pyjNQg5Upk7V8RIsDy4uJODCIKou5BRF6PUOIBUGIeQUbfA6gIUXalxpmKy+VieL07sefpZZrT7prDqGeG8tGzn6OoCo3a1Kdll6ZBx9m9YX+5xtnz7Njz7Lxy8yx+/WwNt04eQdMOIWpPqSBCGJCu3ZSr5zX9JmTNnwJvE3D8hm6dCGAAyzWI6LEItS4AiuUqZMSlgESIMKkaOk3c3vZBjuUnn/733Oc8/N449mw8gGpQiIg003tI8IKHm3/djizHBoLT5sRpc/LZK1+x+ed/ufGp6+l+aaeg4weCEILMU5ll2ikCzHloPi3ObRpwm8C/v/9X2IogNck5PVrw0LtjCisLzunRki9TPsBhc4a1ZWpVoKU/APb8Slj7AYh5HkQMesuThogcFXSMLb9s99tqXhzpllhzbPy5dB1juz7G4Psu54o7Lw46fqAIoZSrBe3Xz/+kfZ9vGXzv5YEFcv1H0f68G5SaiIQ5YGiv/xxqHai5SrdaFlFhu+aq0oSB3WovTBaAXsby+1drmbdzBjv/2UeDlnWo1ahm0HGE+QJk7ruU3QNYgBu0g5AzE4kJcbp6R4QFPfNUjmRH3ucQYMKgQat6GIwGFEVgMBnoPLADNeon8tjFz5N6NI0bn7qOi0b1C00vXjWnpPDQn1//w6KT77N9zS7ia8XSuG3wwmhtzmuF5i7vtao/IDOTs1g66zvST2YyYf59Qf8MAaMkgju77HGuzUgtO6DSayGMSEMbyJ88C0Nt2pzXHrInoGVvBcuViOgHz/qJAcBz177msb44uP0Ic7e+wVVjL0UIwTk9WgQdo3bjGliiLTis5a8acdic/LjgN3b+s5e5W94I+mcIGKUu8C9lCxHmgfNfMHUPLI65D1iXU5g0iLgamfMO0vYDGDsj4qectZoFxfnouS8KkwUAthw7va7sRs/Lu5CZkkW781uHpL2ofe/WbFm9o9zjNbfGmmX/sPnX7Sw8PAdL9Gl6Fiq10dsByqHJZFsFgc5dTAPA/hd60sCAsFyHtK9G5r4PSn2Ie02vNDjL2bJ6e2GyAMDt0nA7Xby/bRpH95ygdffmRMWWo42kDHpd1Y3D/x0te2DBz+F0s+2PnTx33VRm//1SSOYlgZBQJ77cCftv3vsx4IRBx35tMRgNuF0OzJFmLrmlP6nH0pg87HWMZiOPvDeW5uc2wRJVlm7NmY10pxYlC/RXwLEWUfMHcO4AQyuEGvyaq/eQHvz08epSNSyK43K6OfDvYeY8NJ+YhGj6Xt8r6J8hEGKTosselM/SWUEkDAxt0SdmAjCD+UIQkci04Uh3NsQ+ihJxIYjy/zyngyrdistO987kHNp2hPEDn8PtcmPLc+DwYV1XYYzdAvs+aQXnpuDjB4gQFkTC7Py2hDJ2nYxNAo4TGWNh9rqXGTr+am55fjhPffoQz13/Opt/3saRXcd55eZZzJ24IODzn0nY8jwnag6rg7FdHuP4/pMIRQmJF3LNBkkk1a14iafD5uS/tadX8EjEvwWG1ui9caUNjC5fP66/b0/8CKLGQtRdiKRFkDMNbN/qyr+5byPTbggrS7TTxcmSVl8Cbm/zAGu/WU9MQhRZqeVI7pSB0WSkQ59zyh5YArfLzaEd5Z8EVwYi7lkwdc3XMigtiy9ArRd4nNjnIeZRiLwdkbQI4VwDefP069W+DHmqH1KWrc58prNr/T6v156+8iW+eH0ZCbXjyDjlx4aygvS6pnspvdX+cbvcpBw9ffbLImoURFwKIpbSp2smMAReiSEihyPipkDkbYjE90AYIet5cB8A5x+Q0hfpLrul40zn4DbvCtCPXljE9LFzia8ZQ2ZyVkieQz0GdfbdW10Gqqpw4N/yOMFUDp0v7MDQ8VcTX8tHmXcxjGYDTdoHntRo26s1L654guseuoJHPxhH36G9ePKKKRz49zC71+9jTOdH2XGa50ZhgeZD/8XxJzJtDBKzLvwug28N6DSgPSKAyk5bnp3dPp4BVUVinQQeeX8sNRoklVoZo6gKjds2CDiOUGsikr6AyNsh5jFE7LPItNH6elPbCxlj0HLDf81VpRUGSXUTMFlMHk4IORl57Nmwnycuf5GIKDOxSTG89c8rxNUo/YZTGkIIpLDo5R3+R+FZ6mcADIiIKwKOGyhSy0VmTwX7ShBmfWHkPgG5s0qMNOl+9obGiNjngopZp0ktRr9cVIp0cLvnQ+aLqcu48cnrzvoqg0at63OoWKbf5XBzcPsRXr/jbUwWE0aTgTd+fZ5mHYMrW02oE8/Jg+XXJVCNKkaTgQE39AkqbiBI6UbmzAXrZyBdYLkaos6DzJL94WY9+aUkIWKfQpSpUu8focQgYu4t+hmc6/H4/Do3gnMLmM4NOMaZQK+ru/L9h78UvSDhyK7jfPLCYj5/dRmKqvD4gvvpMyQ4C7aGberDkvKNFUKgGlVUg0KnAe2DihsomvVryJkDWhqYzofEpZBashTSoPcRKgmI6HuDUoEXwuBRqablLsTDA1umgvUriBwRcIwzgQEjevPPd5s8Xju27yTH9p3kx49WoxpVbpg4hJueCa6ns0HLeoU91GWhKAKhKqiqQkKtOOo0rRVU7ECQjnXIrNd0W05Da0haCimDKGobyEckgloHLEMQ5sCfBUIIsFyBsOjzH826Es9KRxcy+w1E/KsBxzgT6Hqp9/Ml+WAKyQdT+Oe7jZgsJrpf1olnF40Pqqy4VsMa5SrxLkBRFV2rRkC73q0DjhsoR3Yf560HP2T3+r3UqJ/E5GUTee322Rza7pkgNpgMNGpTn84D2jP0keC0sc7t366wQuHkwWQvbZ5XbprJvF3hYZN62jC0RK9aLvHscaVC+kgkFjA0gMTPg7K9tkRHoCgCrbRLttiSSwhQDSqqUeW8qwLc4A2CrNRs5jwyj39+2EJUjIWxb9zC2m828MO8XzzGGYwqDc6pT5N2Dbl/9uigYgpDC0TshMKvpXbMc0D2i8jIG8O2HQGqOGEghOClb5/gkf6TfB635dpxOd38MO8Xho4PUmhPaQHusjzrzSAUMA9CGFuAsSMi0BLUIJAZD4Lj16IXsiaD6mMBGnU7SszD+vdoOUgtN6gPucvpYua4ufzz/WYioswepaFSk2Xa/J0NvLLyaUY1HefT095hdeCwOvjo+c95dtGjQcXpclGHMqsFzBYTQhG06NyM3oO7U6dpLXoPDr5fsqLInHcgdwaFd/+8D8Hoo9zX3BcRP11vKZA2pJaFUAJPBAJoOe9C3sd477ZJpMwtdc/4bOD+2XeyZuk/ZKfleB0r6Pl855H/BZ0wOH9wTxZO8Z8xEIrAaDIghCC2RgzXPnAF0fFRXHRT1Xu3S/tvkPkYhZMm+/J827oSO4FKC0SNeQglESmdSC0NREJQD3DNuhJyXsZXNYN0p5311+vFN/Xjqze/9bnLpLk1NLfGxy8s4obHhwTVmtDzii5ljjGY8tv0jAZufPp6TGYjA0ddgNFUtRoT0nUYmXYrhQt255+QPgavZAEJiKQFCEMLpNTyr9e4oBKz0vkvMnOiXm1ZEndwQqBnAvWa1eHKMZewfM4PPo87rA7W/7CZfVsO0vzcJgHHqdusNkJVkKVYKyqqgsGoIhTBDY9fi9lioveQHtSonxRw3EBw2J3c22MiuZm6CG7GqSwmXDLZyyJdNao8/9VjdL+sM1JKslKziYqLDOpznXI0lSk3zuDkwWQUVXgIR4eFPeppRggjMm4qZD7kZ4QVXEd0dxRL4PpxqkElqV6Cd4Vj8Z8FgTHCgKIqDLrzImrUS6Rj/3a07lbSyrXymXjpC+zeoD9z0k9k8PLNbxJfs8TcVMDoV0Zx3YNXAvr1ZMuzB6UBJaUVmTFR3+AiGihe8anryv1/wqAYLbs2RygCqfku21INCpZQ7GorsR5JNW+MiNiJeo+geeDpfZOc/5R8Qa8wKIGIfhAALectyJkFCGTMUyhRNwQU9us5P7Dqk9+xWx1eFmmqUeXb936iY7/T84EOF2rUTyIqPoqsFN+l3KpBISou8KRNAeYybkJCEdwyeQRxSTEMuKF3lU9iPbCvxHOx5QKXt6iYiJmAEEZ90ZT5MKAhLdejxAVWHSMd6yBnNgV9tp6ZcwG2n5DCAMauQU2aqzOmCBPN/4+98w6PourC+O/ObE2v9N6kS0exgiJiw4oFFcXyCVYUsSGiggiIioqiiGAXEbuCBVSKoIL0jvSeXrfO3O+P2WyyyW5I2QQIvM/DQzI7O/dk986dc09539ObsPq39SHPscdUfn115x+lnF7AVQ9dSu1GyZw38ExijqEcqHQtJ/BhIMETRLUh+l4jWODZZKhySAeYO0HCTIQov9Se1NJ8896FETAwEcCd4F6OdJ1ucBoole97PhEhhKDnpV1KLUtVzaYApY+KwOUorn1dEuff0IvTurWg5yVdqNvsGMoGerdTgsdI213yPNslRrBAT0emXQfaYVBrGdlCtWJ8AzL9TpAFLRgKATxQ3u1I1xIwtz2pVRK69+vET7MW4nEGL+XWNRkgv1xRmC0mXN7Q87ZFl6b0vfk82vZqRauux85HyzySRX52YIDJkesoUdHToFU9ul/cGa/Hy+MXj2XD0i1YIyy8tGAMLTpXrJ3mxVtfZ8PSLeia7pO3LPRLcjLyWP79Spq0b0idJtVfJXS8QJhPR2KmVG60o8oNHx0RR+HuiI6P5JYxA2nQqh7dLjq2laA71u4K+F16dbJSAtV4zBaTP1gw9cH3+H7azyiqwuMfPsA515xRoXFlzhvgWojhExT3+VVwzEFaOiHM1V8lVBZUO534+iWbg27OFZOC2WqiywUd6Xf7+ZUfyHoGpcdD3GBqb2Q+j/REP3IO0v135cetCEzFJ4cOBJeSknq2b9PkBTyQMxYpK6arfmRPqt+R8jg9xCQWOvW6pjPr6c945PxnePeJjyt0/ZqAfVsP4MwNvjkyWVSadmjMHeMHVXqc1t1bBMg1FofUJVFxETRsXZ/BLe/nqsTbmDdjQaXHrRAsQQhqZElpHil9D6jspzEWSA84vkJ6/6vYuNphCjO1Xl9fbxE4PkVm3I3MuPOk5TPIy85nz6Z9QV8zW83UapTE4x9UniSzbrM6pc9XTXJ4Vwo9L+nMo32eZUDsrUx7eNax+V6Cztcg2VIfp4DMGQ8yG/CAZwM4f63YuDKDwkes9P1cJJDl+RuZeR8y7XKkXrIi5GSAruv8+8vaoK9Z7Gai4iMZ9dnwSiufWGxmouNLd4o3Lt3CRbedz2v3TueKmFt4esAE3M6jBxrCDnPHIAeDkB76lkKZ9z5oBwE3aIeQ+TMrNKyUOsjMIkcUAnwomYLMfACZ0hfp3VOhMWoCVv++LmiwwBppxRphZfBzA6nXvE6lx2neqfRN9O71e+k7+DzmzVjIFbG3Mqz7Y6QdzKj0uOVFYr14zNZAXzvYMm/yyacv+24lW/75D6/bS15mPm8Or9h8BUjZk+YnjLbYzChF+tB1TeeFQa9yZ/uH+ffX4GvMyQDpWknw7KkZsIDtYrBeWOlxOvVpX2pgNyczj659O7J/2wGuSriNW5oN82f5qxvF28y8mobbWSyg4tun7t9+kB+n/4rXY5zzyv/ervjA+n4K13KtGMmhZrQlpF2Hnjer4mNUIao9YPDJ2LlBGeGtdgv2KDundW8eluypiLwN7DdQWtBAOn6ArCeMh6R+GJkxrNLjVghx00EpIIAJVekgkHomJb8yUcp7SsfFQ/oQEW0nIjYCe5SNpAaFpWxSl7idHlz5Lr589YcKXb8mYN6MBUF1681WE7ZIG43bNiAmofLMpl0u7Mgd428qlTPix+m/8uw1k0jZm0ZuRh5v3D/jmDgIInoEmAsirAXzsfg9LUDz9WgFZPslFS5ssp4LSqwvGm4zsr8B1/X6ZFJXghZ801zT8fePq3AECXApqoLVZqZO01okNah8djC5QSJPf/4IifVCSyT+9f1KXr3nHXat30N+joMfpv/KqgXrKj12eaHYzgb7rQSulUFKffWCOWMqPE9QbP6WA2ozMLfzkX3awHJhsXF1g2dHT/fJMJ582LvlAP+tKZk9F6rAbLGQWDee+i3rVnocRVGYuOAZGrcLTbR2YMdhPhk3lzW/b8CR6+TfX9bwzdT5lR67vBBqIsSMIyC4FExa0VvAO1RkviKKva8c4woFIgYBdmPOmroSOF8lyFyQuUjH1xUa40SHlJJv3vipxPGCFqyYxChaHGWjX1aMnvNIqZwvbpeHb6bO59cPF+HIcbBjzS6mPvBeWMYuD1RVZeKvo7FFFsmYBpmumUeykFKimgp92IJe9oripqeMVgx7tI2kegmYLIG+hSPHiSvfxWcTvq7wGCc88qcS1D/DamxYzZ3CIiU/ZNxN9Lnx7JBBA6lLFnyymHce/YjczDwO7Urh+euPjWLSS7+NIaGuz3cpTmfng+bR8Hq8Jf4etRLVbiLiNkMNT0QZfqyILfKqBJzGv7xKBCWqENUeMEhulOSPNIJRWRCVEIkjx0l2Wg6fjP8qLOymQphRYkcjaq8GS1+C/qkym4CZIvOPSQZMUaMRyfPAdDpBZy4Yx1P6g7BA9OMYToIFYsdX+GZv3KYBs7a+xqjPhjNr62tkHs4Met7RGG9rMpIaJAa0awhFEFcrBl2T5GbksfjL5cx/b2FYxrr6wcv4OvN9bnnmuoCHagG8bi2g9E8IgSOn8ioN5YUQCiLhfbBdR2jpUgmZd6N7DyBiJxZKhkbehjBVjCBSKDGIpB8QcW8gkr4jdImdNAILJyES6saVWMNikqJRTAq5WfmsX7qZdx79MCxjnXFZVz7b9w5jvhwRdL4iICs1B93XfiaECKqUUx1QYkdB9AuUqmmfOwXdtQQRMwqUJEAByxlgvaBCYxr3yQeIuGmIxM8QllbBT5ReUI9hCfwxRExCVIn2xKi4SBRFIS8rj90b9zHuhlfCMlaLTk15d93LzNj4SsjqGEeOE6/byMZ5PVpYVEUqAiXiOoj/iFI3/55F6DnvICIHg6k5IMDUFBE5pMLjiuhRxpyNnw6Rg0Mo25gM3fCTEEKIEpUqtkgrQghyM/JI2ZvGM1dNRNMqVvVZFIl145m04Bm+ODKDpIYleQmkLn3EiMb9o3l1slKDV6ZWNdr1as07aycTGRu6LD3tQAbPXTeZnpd2oWvfjj5fKpb7Xi9Ollx29LutN1NXTGDM3Ed5/tvH/FnhohCKoO4xIC49bqDWJnD/YwIigFyj/ShnHNIbpOWpnLBFWHnsg/v5JusDOpzbJqjqQH62E0UtPJ6XmV/pcSuCpHqJzNw8hYat64d0CXRN5452w6nTpBYDHx2AalKwRVgZWYkKTWHphEiaj4h7zZC21ENwPijHpz9Q7RwG9065nT0b9/Hf2l0gjS/FmVdYbudxeUjZl0abni3DMp4QFqTQCJ5RyjAiPTLTeF3URWr7EKaq17DVHT+D4xNQmxoZLPdq8B4t+5aBzP8cJfIWZMSNgKh0r3Z87Ti69+uElJImHRqRmZIVQBwjFMHY756o1BgnMi6/5yLW/rGRJV/+BRgP6bysfDSv4RC4HR72bStZjl9RCCGw2q1BS/psUVZik6JxOVyYzJIz+jmp1/gAUHH5t7JCetYic143IqKmeuBZB+7lR3mXBjnjEfGvQ61VgIYQlaseEkoUWM8ybDK19mVmizlnMWMrTa54ouL089px/WNX8v4zs/0Pwuy0HP/PulcvoYhSWVjsVix2C46cwMqGqNhIPC4PiiqQ0iBZdeZVj5Sg1A4gsyeAdIO5PXg3gqsMLTxZTyNq/QbJSwBPhbgLikIIk689DnTvfxiOW9H5KsB+NSJoGXrNR3ztOB774D7G3/yan5QzP9eBLEK4e6gc6jFlQWRsZND1VTWp7Fq/B0UVmC1gi/By2S0HqoWISuq5yJxJoO01glSeLeD6iaMQMUHeFET03Yikb5HSHYb5KvxKM9Kzybh/isPUDuzXVGqcExnjfniSx/uN9ZPqeT1aQNWsM8+F1+1FtYeHRyc2KYa8IIFWoQg2/70NXTf693VNxx5tw+V0Y7VVbh4cDZqm8fHYuaxfspkO57Th8K4jrPh5jZ/4MBSWfPkXbqeHMXMfxeP2YDKbKn1vNW7TgMZtGpCTmYs9yma0ERW5v+NqxXL3pFtCX6CGQ8RONDh5tII2ooJMdgG8SC2twomc4rBFWHE53CUCwUIIDu44hGpWDZ9Ah6T6CWQcySS+VlxYxi4N82cuZOEnS2jasTFuh5sNSzezd0vpMs8Hth/i73mrGPzs9QwadY2hRlLJ9jih1gW1riFnaWoB3k0E7k/NiLjXKjVGVaHaKwxik2IY+OgVmK2+jYMEb5GSbykleeFmNzV3IWik3v2bj+DH92XJvZB6IXrue1VaaSA96yFrBLj/NIIG+R+Cdy2lZr/8MLKqQpjCSuz22YSvWb9kc0CwAODMK7pVWjLwRIbJbGLws9djKfIALt6ikBvmrGmTDg2DRmfXL97MoV0pKKrOfS/s5omp6yDjJvSs0chgjl2YIPVMZPpgQ8nD9Z1RLuVeylGdWaCA5E0IpdLBggCbXEuM+6a4DUp9hL2SCisnOG584qpAJ6zYslJ8Y19Z1G9RJ+jSlbIvjZ3r9qBrEqlLPC4vLw15k+HnPk12etVmbmX6zcaGy73AUPRw/ULoapiiKJivotKbrwB7vHsgaxQl7xkLIubkDcgCnHvtmSQXaZPRvXoAYZrXVQpZVwUQFR9JfO3YEmus5tFYu2gTmlenfrM8Pl29juT46ciU89DDkIErDTJrJDjmgnsJ5L5krLOUZU0v/KDCOl+lEzKGULKKS0DcxJOWVBbgtO4t6Nq3MMBXEOgqgKKIo26cywMpJaf1aOEj9StyXJf8/eMq3A4PulcHCX99/y/XJg9hzR8bwjZ+MHw+8Rs+n/QNqxas44Mxn/PTrN9JO1C29siCKkmzxRzWQNyoS8cbe4diz6J7Jg8OCzH1iQqh1kVE3EzhHkijBAmwDO/zuP1ZrUtUHUopWf7dSvIy8w2fQEp2rN3NDfX/x/yZv4V1/OL456fVTL3/PVYtWMeXr37PD2//ws51e8q05XI7jIS2yWyqdLCgKGTOeB/BbTG/xD4QYWoUtnHCiWoPGICxCS1toYiKC9/NLd1/Q+4Uyra5AZCQOwGZPTpsNpSAZ2uR0ilJ2QIFADaE/epKDe12upkw+HVubXEfbz/6AV6v8bD77q2fS8jgAFUeqT4R0LhtAxLrh+7Vjq8TF7axjuxNZex1LxulhiFuESEkF1ybWTiFHJ8h026sMPnlUVHARQCUb74KiAol51M2SCnRc6agp1yAnvEgumY82GTeJwQlAkM9rmVpqgOqqnLWVaHlNuNqha9dw+3y8PD5z/grB4o7tcGwfslmbm/9YJUFDaT0grafsgUIiiF6VKXH1/O/QU+5CD39FnRfn7l0zqekLB6AGyEqz6h+ouOqBy4J+ZolzM+gpy9/kdR9aUhdBg3MAtz88OHC9VU/BKmXIoMpa4QLng2ULUBQDBGDKz20dK9ET70cPXUAunu1ccyz0eDWKLHW2xBl9qVqLq5//MrQLwpRope+Mpjx5MesW7TRCAqUAc48FyP7PsfSr6uOxHvzX9sDZLjLitY9WpBQSX/p4M7DDD/3aW5v/SB/fP4nUkq8Hi8bl23F6wmcm7ZIawAR4kmLoyRRwqnSs3jucr6ZOj+oFHkw6JrOy3e9xQfPfh42G4pjx5rdeDy+wJ6kzAnh6IQoelxydEne0iD1HPSMew0fNuetwrEdXxOczPb4VUw6JgEDe5SdHv07B31NNan0urJ72MaS+d9TqpxI8HeB44uqqzKwnokR7SuPnqeA5D8QSixSutBz30bPeg7p3V6uoT8eN5dFc5ZxcMdhvpj8HZdH3sxvny0hdV/JXhqL3ULPy7qW6/o1EUIIrhjWL+Tr1z8avoz2ukWbcOb7FpFSpl+JQKd3G2i7wmZHAEzNQYkHbJRryUj4EsXcytj0588xKiFcR2tjKAbXr5D/nlGq65oHKd3Qc6aAd3WQk61g61O+69dQDBh2cUhH6dZnB4ZtnIP/HSLjYIa/xLusTq0rz8WqX6uGAFEIE1jO9vFmhHLcg3w2USNR7MZ9Ll2/o2eNRs//rlzPAendZaiCaLvA/RekXoCecR8EnfdmMHcr87VrMs4b2Cs4DwZwzfDLwjaOlJJVC9b5eTVCyTtHxRbfFLuRzm/DZkcJ2K/0zddyVGGZz0WJeRwA6dmAnjUGPW9moTpNGSClG5lxJ3i3GKWx6QPRUweAazElH0AClChQG5TdxhqKlp2bYY8OHug7rUeLsMrI/jTztzJvvgqge3W+ePm7sNlQHBfeeh7WCEsJdYTSkFQ/gSl/jkMIwZG9qUx75H1mPv0peVnlq9Acc9Uk1i/dzL6tBxh7wytcX+8uFny8OGTwr3WY2ptPZAglwWglCorIsD6Hfnz3Vx+3RtkhdcnXr/0YNhuKo+elXTBbTOWaryaLiY92vYnVbiU/x8H7Y2bz5vCZHNoVRGGpFMicF8D1u+HD5r2CPNwR3TnfIJAtASvC2qtc169OVDuHQQHan9fG3xdeFA1Pq8eR3anh00E21T/6OUoz0IvJe4jkSmcqpZTGRNEPg7WvwX4MBjN2xCDQcwzCK2ewyFpx6k4rimpkuWXWY+BcALiQzq8h+dcy6yIf2H44QD7E69F4acibKGYVzR14k19y5wVccNM5Zf1zazRa92gR9Hhscgy7NuyjXa/w6KY2anM0PgLJsPGqbzMoA44bRG2Vg3T/aziOll4Ik4/tWc8B+3Xg3W2QseRPo6QzWUxjHgVhMtjNZf57kPMa4DDYtRM/Rpg7lM0g7SDIYuVzee/6nNZiQS5ze0T0Y2X8S2s2GpxWz78pKgqz1VTm0tGyILlhUtB+8KKISYrCkevCU2Td0aWkdpPkSo+/Z/N+Vi9cT8uuzfy8N1I6wNoblESjRzB3MsHna9GNlQqm1sb7XcuQGQ8ATnB8g8SDiChjZZd+xOCkKTqcewmYgwTIRbRBLncKRMVHYY2wltBzB0PuT9f1sJSDCiGwRVlx5garTjJQp7Gk3ZnmYiElM0KtfJmo1FKN9hi1LljOQwhhyBmqLcB2KaiNIPctSlajFF9fAWs33zX3I9NvAukAbEjvbkTsmDIa5ABZ7LPwbg9BuqVAwhcIUZ5ER81Fg5b1gsrC1W1WC2e+C1tEeD6nhLrxZB4phcxQQJ0myRzaWcj1IRTDl64snPkufp/9JxariXOvOxOT2dgy2KNs9LutNxExEfz1w0qjvLuoSYooEYxr2r4hiqLgcXu4v+cTZKZko6gK//66jteXvVBmm1L2pQWsr5lHsvlu2s8IUWyVF/DMFyOo0+QkJjwsCnNXX+tz8eMtQU8BNTyfU+3GR3+uN2pTjz2bDgQcqx2G70nXdZZ8+Re5mfmcd90Z/lYUj8vD5ff0w+PxkHYgg8VfBAngF3OpoxOiiIgyVMuevuJFNi3fiubRWPjJEj7a+WbZ72/vbgJ9DRdkjSk5IEDUMISPo+t4xDGpMACYPf6roMd3b9zHA2c9Fbbsvoi8HZRkjIy+CSyXgloQafNJEBUPFgBEDkJKiXQtRTp/rVCPuMweY+gWZ4/zaW3nIL27kGnXQt4McHwFpiYgSjLgFk4kXyWCuQN6zqtGWaT7LwJKWcpRZTDgvoux2gNLPHVdcvndF5U4N752XJmvW9PxyQvB52tWSjYj+z5HRgiFifKiZZfmtD+7NYpJQTWrtOrWnLOu6mEErwRcfnsml9ywmhILjaWXUX3iWYt0zkfqWeUeW8+bg0y/FZk9Hpl2FdK7HannIdMGQO5UcM4zynPVYARtXoz7SQEsoDZE5r6PdC3zZasKHGAd3KvKbpTtIl/mrSgERNwc5GT1pO6tLYo/Zv8Z9LjH5WXSbVNZv2RTWMaJiLZz5QP9DTIgk0JC3Tjjd1+2WDUrZKflBgQLwAi0te7Rkn3bDvLH539yZE/5ie02/72Ne7o8yrRH3ufRC8aw7LsVAAbfRs5EcM4Hx49guzbIuz0Yc1XByOpGgHsp0vE90vUPheurA9yLy26U+XRQ6hDwaJWAJZgT4AlrKeiJjI1/biE/hOLLp+O/Dqu84fC370E1KYbUaKSVQU9djcX3TKzVAN6YtwWVzBLvk7YBSC0F6fixQu0JupaGTO1n+AMZDyLzphrXzX4eckaB41vInQmRDwV5txfDFyiQTbSCdhiZ9xHSvZbC/mSnj1+mbBBKrBFcC8gd6aDWp2QFpIZQKy/JWhOQnZbD9tU7g762aM4yXr7zrbCNNXLWvZgsJlSTgsls4sYnriImyahgUM0qJrMpIFgAgISrHrgUR56TxV/+VaH1XtM0hnYdyWvDpvPK/97m2WteAuCnWb8x5upJ/Dj9V7567QcGjhxQIrtftN1HMSlY7GZia8Xy6YtfsXvjPvKyHeiajtftZeuK/8pl17UPXxbQ8iGlxGRWS2w4Bcam7xR8cHwa/LhnDTL91rANc+eEm4mMi0BRFUwWlUvv6Uv9VkbySFGMY8WDBWC0pWmaxl8//stfP/5bIaWR566dzIRbX+fNB99jWLfH8bg9bPlnO8PPfZovX/uBee8uoMsFHbAHky/3udSqScFqt9Cyc1M+GDObA/8dYtPybXhcXnRd4na4OVwOIl4ReRdQvK1OA0tJ9SWhBNsLHj84ZgGDqLjgN7LUJZmHs/jnp9VhGUcICyLpF4i4D1AMokNtLyR8AhF3EZLbQM9EZj+NzLwXmfUoMv0WIxNQRkjXYt8N6jL+SQd41iKdP4F0YjgADsid6CNeDPFVKLXBer7BSp/3FjJ9IJg6YZSH+3TFTWUvuWp/Vmve3fAK5153JopqbErrNElm3nvFGMQF9Lnp7DJft6ajtL47t8PN55O+CdtYk39/lhEzhmGxmdmzeR//zFvFiJnDmJ97N/eN2xf8TXoaev5sZNrNyKwnkKmXIvWySyxJ7y7IGY3RR+s2sk6uRUjPOkNNBDfgAOdXoK0leOmsBCzGBk07BPlvITP+B2rjIpt+BSxlL38Tah1E8k9gvwvDqTUZWbicF0ueHFn5ft6agrjaoXkKPC4P0x//OGxjDXvldib88jQJdeLJy3bww9u/csPjV/LJnrcMEtUgsd/c9FzWL93MPZ0f5eW7pnFn+4fLpd6Qn+PgiYvH4XF68Lg8uPLd/Pz+7+haHnjW4Ncz1jaCcw7B279867l9EOCB/BnIrKdAphY53waW88tslxBWRNJXEP2k8V5MoCZB7quUaIOoJB9NTUJcrdhQlC14XB4+eu4LvzJNZdHnxrOZtuolWnZthtR05kz+np6XduHb7A/48O9NRMcFqz7QQNuJTO2PzH4KmXYt0ll2OV0pJaTf5iMX862l+V8aLzq+9lUHuIEMyBtP8OJPDTCD7UrAZnDX5EwwEg9+vg4bWM8rs10AIu51iH0ZRLwxrogFx5eU8I1Mp5+qLvDBGmEJWYHqdWv8MWdZ2CQOm5/elPe3vc7ZV58JAr6c8gNJ9RP57MA71GlSqwTpIoBQFI7sTWVY18eYdNsbPNF/HB89P6dc475x37vs23IAj8uDM8/FXz/8i67rfPvmfFz5LrweDVe+mwm3vB5MzRCpS1SzSveLOlGnSS3++PxPPhgzm7HXv0JUfASqScFsNdHmjBBysyFw05PX8NJvY2h4Wj1Uk4ot0srujftJ258ecF5kXCTNOzUp17VrNESo4IkO2g5DFSUMiIqN5KMdb3LdI5cDsOCjReRn5TNt9SR633iWX7a2OLLTcnj2mpcYd8MrjLvhFX+AqqxY8Mliln79N26nB5fDTfqhDPZuPsCvHy/Gle9G883XKUOn48xzhmxhadi6AR3Obcvq39fz8di5DOv2GK17tMBsNaOoCrZIG3XKUR0pbL0NGXDzWRiBXbPxXZRIRChgu7Bcf3N145gFDMZ9/wT2qNBkT99P+zlsY0nPKsifgvFAzgeyIf1WcPwU8j3C3t94aMp8o4XAswm0wM2alE70rGfQU69Dz58b+FrejGJGuI1qAudPlCTjKoVITj8I7pUYDrAEBNj6QvQjEHEHInEuQglNyBcMifXi2bNpHxabGSkl+7YeDCCwiYyN4NmvRp4q5SqCYa/eTp1moT+P30NkdCuCw7tTmHzHWzhynDhzXbidHibf8Rav3fctIYncIgZB3kzAacxXmeerRCmElBI990301GuNapUiATDp+I6SDmIrcP5CiVJYZJBjBXAaagr+DK0ThBURMxYibkckzEKY25bhUyiEUBJA348RpBCgbSWQLMYCUSNQbH3Ldd2ajN43nEXXi0JL9W1ctgWvJ9R3WD448108d93LpO5Lw5XnwuPy8Om4L3nsorEhe8TPurIHP7zzC658F/k5Dpx5Lv6Ys6zEeb99tpQHej3JS3e+GZCBXrVgHW5X4ZolBLTq2gzci0JYGaoEXQfnD0V+d4BnEyJ+mjFf415CiRhwlE8gEELYQHow7hOTT87KjX/9RgXbAET0k+W6bk1Gk3YNudbnYAaDI8/JjrXhUSqQUjL5rrfY8vd23E4PbqebxV8s5/bW95OTESIooTYA9wojkCrzACcy//2S13b/i542CD1jKFIrIrer7QOtWEba3Abp/Y/gZJih7k23UemFB2O9doFnBSLhc8MfiHkSEV0+1Q0hFIQSafg6mEFm+GwqUjVm6gQJH5XrujUZVruVke/fF/J1oQiWfbcybOPNfeV7/vh8KV63F1e+mx1rdnFby/s5tONw0PPNVhOqWSXtYDqOXCfOPFfQKp2DOw7z1GXjGdFnDFuKZfqLM9cnNUjA6/ayY21g+wFgBIaD7L80j8a/v65lz6b9eFxevG6NI3tSeOHHp7j+sSu5ZfR1jJ9X/nUwNimG1P3pmC0mnPkucjNy/a22QgjqNqvF26sm+VsoTgFIeJfSOFJk/uywDfX3vFXMnvgNXreGM9dFxuEs7uvxBKt+C85bJISgU+92/P3jvzhynThynb6fA9fG3Mw8Jgx+nQd6PVmC1POzFwOrgHVNJ7lhIn8GIf+Uugzpm+zZtJdNy7ca6iO+c6579AoGPzuQ60cOYOo/L2K1lzNwqiT71n8LoPn82SJqVSIe4j8sc2v5scIxu5vqNqvNt9kf8s9Pq3jq0vEBX57JolKveZ2wjCP1dMh8IMgrXpAlFz4AlMbgWmZE2qWPKVgIKPZlyuwXfZF4F2RvRZoaIwqyp2oj4B/8pa+R9yLU+oFORODVgNpA8QeABJmGkfFygdQQlo4IU/Ce+rJg2787ObTzCM68kk60alKZvu5lkhsc36Ux1Y2IaDsfbp/KzvV7GH7u0+RlFpFNElCnaXiCK26nmzFXTSqRTdM1naTk1UhJkGh+BOhpIGwYEUzN6PsvTk7l/Bpy3wYc4N2GVJIQkUZpv1DrIrFhLGLC6K+1no3MezeEpRJELZBBCGD0FPzzFRvC0g1huwhhD70hKA1SOkrXJI+fgWLtWaFr11QoisKL858m43Amj5z/DHu3BJYARsdFoZoq374hpeSN+2eQk5ZT7Dgc2B58rRNC0KhNAzYu34rFZsbt9GCxW0qs+dv+3cHkO9/Ele9m+6pdaG6Nxz64H4DkhokBGb66Leow8NEB4HiL0Gyh0UBuyddlNoEZ2jMR1l6VIx/Kn0HwIIWEyAdRou+p+LVrKO6eeCu3Pns9z187mRU/rwnQthdCEF9K1Ux58MM7v7B5+bYSx5Nqp2KLDBGQtV7k08sumHNWgx+jCKSejcwY4tt4K8j0PYhkXzBKiSMwP2NHxE5Aulf6jgcbt6BlpnjwwLexRxj/mzshzK0Q5orzt8i89wg5X60XosRPrfC1ayouuOkcet9wFm8/+iFfv/5jAOGr2WKiVqPKcwqB0Xr15as/lDgezH8rQK8re7B6wTp/9YGiKtRtVtKnfuyi5zi0KwWpS0Ze+CyzD0z392Yn1I3nyG6DJ0hRBM9/9zi5mXnooUrFJUTE2snPCtzkedxeLDYzmldHSklsUgyN2zbg9udvLNPfHwy/fbYEZ54raOtynWa1mLl5Cqp6qj2xKBRzW6izAT3/G8geSXGONNSGYRkndX8ak24vuV543V4yDgZvlW3ZrRl/z1+N2WZByzU20vZou79VrAAv3fEmf/3wL163l/E3T2HqPxNo3Mbwc+s2q82ezfvRvTpCEdz/xp1Ex0eRmRK60iexTjxphwI5nXRN4sxz+X0TzavTskszzrysEsSQ7r+KBGKLwwZJP6Oo4VOvqiocswqDAnTu06EEmVH7s9vQ95ZzK31tqechUwcQWmM0VFZ/NzL3FR+LZT3ABNKNzHkxcIHybiKQS6CQC0FEjwRrH+MmjLoPETXUuFFlYNlUIFIIrqVnhcj7wXYVImFGpYIFy79fyewJXwWVUATQvBp3tB8esp/0ZEfT9o2IKdoXJ6BR6/rc9OTVYeHdeLzfWHZtCB7Iuv7ew0FL/yAfcl8G739AMkYU043MHovUCwMbRt9twffqMJixC2C/GiKuB6WBMc/iX0O614D7n9DGyiMEX0J8coq2ARA7HmEryY9RVkjPemTmM4TUmATIuM1oqTiFEoivHUeT9o3880YIQwb0npdvDUuFwbSHZ/HrR8Gz+qGYvaWUfPDs5/z7yxpsUTZsUTbcTjcfj/0igMtg39aD/meDx+UJyDC36tqc/710K3Wb1abrRafz6uKxpB1I59+fvsbjDjVXcgg+jxSIHGaUekcPR0Q9WIa/PDikdhA9azSU1r6W9zLSFaoS4uSGzW6l8wUdAhQT7FE2bn762uB9p+XErx8v4s3hs4K+NuCOg5jMIdbw/Jm+0n8FiAM84Pge6ZMhBAzCS79PofsqSwwIJRoR/yaozcHUHpHoKw/PmUzoagKd4D6KCvZrjX+RtyPiXgvx/qND6rnoOZMMctlQcP2CnvN6hceoyVAUhZ79OwfIT6tmlQtvPY+m7Su/Adu68j8e6T0m6GuhSqoBfv9sKXMmGyoJ8XXjANixdhcLPiksg5ZScnh3qj9Z5/VoZBXZXL3ww5Oc1r05DVvXY+z3T9C0fSOmPTzLqCYIAVewIIaANme04ophF3Hp3Rfy2rIXKryZ17wac176lhXzV4c85+B/h3nsoucrdP2TAcJ2DiVyxZazjf1KJZFxJIu7Tx8RtE0GQUgfees///H+6NloHo3khomoJhVnrpP3RwdWPexct6dIEExl/7bCdevh6ffQ9cKO1G1Wm3un3M7FQ/rw+eRvQu51ADJSggcwYhKjuP7xq+h3e29e/uNZkupVPPOv53+LzP+0JLmsH05IvaRCPHnVDVGeTU63bt3kihUrwm7EnMnfMnPUp0hpsL2m7E1Dl5KbR13DTU9eU+HrSvcKZMbdBMpX+PpHZD6hy1SLoiiTpYqIfwthPR+p5yPzZkLe276UrwKm9oAHEf0owhIoR6g7F0PmnYQMUoSEioifhihnX2IwrFu8iccvHlvqDQRgMquM/f4JuvY9vdJjFkAIsVJKWa0aYlU1X/+et4rnrn0JXTeY3g/tOoKqKnS/uDOj5zxSYXWN/BwHVyfeFrDREoogLjkGiyWfGYtXYC6vJHnkAyjR9yGlF+n8EbJGGRTKUgdLd4OfIOI2lIhAaUhdOwwp5xOY1VcJmeUviugnUCJvL6ehJSG1w8jUfr57tXSI6McQkXdUekz/9WrQfN29cS/Dzx2N2+EmJimazCNZqGaV2o1r8cZf4yvF5n1t7TsCnEyAhLpxuPLd5GUd/Xsrji59OzLhp6eRUrJ+ySZGD5iI1+NFSmh/dmuyU3M4c0A3bh51bcB95nZ5GNR4KGM/+JuWHY0MhS5NKKIMQRHbFYjYiQhRufi5lF5kSm9DFedosF6IEv9mpcYrjuqes1U1X3Mycrm/5xNGybHNjMftQREKZpuZt1ZMoFajiqtrjOgzhjW/bwg4Flc7Fql7eeKNtXQ6OzdEUDYERCJKbaOVRvfsNp7xWorhNphaG06iuR0i5ilEEfJWKSUybSB41xS7YKhqgyJQ2yASP0YolSd009NvB/dyjrqui9ootctB/lkG1JT5qnk1nrpsPOsWbUQoAluEFZfTg9R1Xpw/ivZnt6nwtd9/ZjYfPf9FwLGo+EgURZCdFkyWrXSoJpWv0mdij7KTcTiTiYPfYP3SLSAgqV48kXGRJNaN54E37yKxbmCr6+v3z+DbN+cHuLCqST0qt0hcrVheX/5CWFpcZzz5MV+++kOA0lcozPd8FtYqg5rkE+jZEyH/fUD4KkVTAR1iRqNEVFx2efGXfzHp9qk4iiQcrREWQwEnKx9vGeQWhcCvvKSaVKb8OY7TujUnLzuf95+ZzY/TFyAEWGxmGrVtiKoqDH3lNpqf3iTgOj+//xuThrwZMF+DqXcUh9lqZuKvo2l/Vusy/92hIJ0/IzNHENB+EHxUROIXCHPF14riqIr5elw0+Fz3yBX0u603m//ZxlOXjPcf//DZOSz8dCmHd6dw+T19uWvCLeXbjKmNKHwQmsDUCZH4scGGnXFnGS9SdHJpSD0HtCPItCt95IUCIu6A/Nng+RuQyIw7kPbrjf5vJdY4T9tJuYMFIgKR8BHC3L587wuBzX9tw+sOXGiL3pwFMMrXwiRrWQPRo39nPj/0LlkpWdza8n6QRo5o2XcreOicp9mxZhedL+jAqNkPY7GWXVfbFmklJjGGTF/UMyYxms/2v43KAWRq/4oZq+01tLbTrvfNQR1s1xnEcO4/AQ2yR6Fru8H5jUFOKHXQ9lPSiTzaYm+C2JdQ7JdUzNbi8G4vOTmDSdFgAbVpeMasgWjctiGf7X+HjEMZ3NP5UTwuLx6Xl/3bD/DMVRPZ+OcWGrWpz/PfPk5CnfLxoTTr2Jh1izbi9WhY7Gbe2zSFmIQobm52b4VsPbzLqDCYOPgNFn+5HF2T9Ly0MyaziaVf/43H5WXP5v14nB6WfbcCr0fDFmElZW8qWak5fDMjmfvG70PXBRabF6XUJ5wCkf9DiR5eIVtLQM8CvbQKsgKY/BKOp1AS0fFRzNj4Kqn70xl7/WQ2/230Vjtynbzyv7fZuGwrMQlRjPlqZAkn8Who3aMFm/7ahtvhxmwz8/w3j9Hlwo6+zXv5N2AF1Yt63ixftYCPhNjcDRwfAR6j/Us6kdpe0FJBxBnVCDJYYKm0YIGvVSx+WqWDW3541nD0dV2AOTyywTURqkll/LynSN2fzmcvfsW3bxZyY73xwHuk7k9HSskj04fSa0D3cl27WcfGWCOsuPJdmG1mo4/60St56+FZQdsUjgZN0/C4vGz4cw1jrpqIUATRiVFccscFfDxuLl63hmpSGD0gjcR6CexYs5u42jFkpeRwaGfJ9sOjBQsanFaPN5a/4Je3qyzW/L4hMFgQzB3A4Ok61ZIQGkrMSGTkHUjn75BThPMkeyJ63ttGIinyHpSou8t13UZt6vtbVkwWE2de0ZXRn49gwSeLefHmslVCFXX5NK+GI8fBvm0Huf+MJ9A1HdWkcP3IAcye8I2h/iGNQPB5A89kxfw1xCZHk5/jZN/WAyW7D48SLIiOj+K1ZeNo0KrykqSAr+XsaMECABXU43/PdUwDBvNnLuS3z5bS4ezW3Pjk1SwqRnqleXX2btqHrku+e+tnel7aldPPaxfiaiUh1FoQ/y4y901Q6xga7dKBzP+Mo0bxg0JB2PpC3vugZ+InBcr/CGRm4WnSC/mfAC7QQ7Dah1rpir6etAChhodL4MjeVA7sPAwycNx6LeoGlPXEJkfzyLvDwsYhUZOwauE65rz0LXWb1eaO8YNY/dvGgK9Q82hsXfEfXreXlb+s4Ye3f+GqB8q+eVYUhVcWP8f0xwxyqTtfvBldk3iy5gfleC8TIm8zAgParsJMvfNrX9VNgfEC8qYRqBVbXgiIfxelMn3fRSD1XIOstLhNSpJvU1bgqFggegTCVvlyupqG3Zv2MXPUp5itZu6acDPZabnkFsn6e10a6xdvwu308N/q3bz18Ps89clD5Rpj1OzhvPPoh6TuT2fQU9eQVC+B5T+sxOuqWLvDNcMvI3V/Gn/MWYbHZXz3f36zwsjI+h72rnwXn0/6Nqiz+sucBHKzVe546iANmh+lgixyBEp0WQPHpcOo4PkZiACKljkWOK1FbI0YhIg6xWFQHJkpWUx/7COyU3O4efR1NG7XgC3/BBKxrVqwDs2rk5/tYOz1rzBz85RyjTH4uesRQrD57+30G9KbLhd2JCtlP9H6htKankLDcrHxf+6r+CsWvVvAu5HC79wNzp99r0ug7GogAbBehIh7rcIVbMUhnb8YEqBaUVnmAu6ZIrD0QcS9EJYxaxLcTjezRs9mx9rdXDG0Hz0v68KiYvruO9bu9q9b4258ha8z38dsKXsS4eyre5JxOJPFc/+iU5/2XPfIFWSn5/DLB39UyOb6LesSkxjNe099gqtIpemn47/ys9drXp0da/ewY61R/l0eCbmiqNu8Nu+ufzlsG/cNf27BFmkLcJ2tditmq4ncjDz/ec07N2HUp2EKAtcgSCkNolbXH4aSiv1WcH1X7Kw80HwVg7lvIG19ytUC3bhNA57+/BHmvvI9jVrX544XB5GXnc93b4UmmC8NVruFDue04c3hM8nLzEdKiaIqzHnpu4C26fxsB7+8/wdup6fC81Wogk/3vx3QXlQZSO9On8JY0T2XMNp+9SLPAFEHETfpuCc8hGMYMPhn/ireuP89XPkuNizdzB9zlrFn0/6Ac6LiI8lJN6L+QoiARaGsEJbuiISZAOj5syH7OQo1jcsp0yR8UVIlFuOj8xr/F+dIUOLKkGk6WrWBKSwlhwB52fkM7TqS3Iw8FJMAXcFkUhGKQq8ru/Pt1Pm48t1YIywMGnUt3fqdzoKPF6PrOucN7FWuLHlNxcGdh3n6iglGpN9q4t9f13KwGENxdEIkOb456nVr5GSUP2NVv0Vdxsx9FIC1izYytMtI2vdI55n3JJZyRw3MRhmsiKMwQKaUnK9CAWmmcgEDNawLnky/2agwQGLcq76Mmn0g5L2HwcVgBtvFiIjBhsSZngq2vuVWDamJ8Lg9PHzu0+Sk5yIUhVUL1hkP2CLLjtlqQvg4AjSvRnYx4sKyICYhmhEzhgHGPXJTo3vITs9B85Q/IKuaFJIbJBpOYREUDRYU2F1aH+09z+2ndgPPUUrLFYQpPKRkADJ7NDi+x9hsFZDVCbBfV0SiTgG1GUrMU0j3SqR3K1jOQpgahc2OExlPXzGBbf/uQPNorFqwDrPVHJBtEkJgspjQvMZGJy+r/P6A2WLmjvGDAHDkOhjadST7tuzloxUQHReMULY0KGD2Ecv62xzB8AuKzn8TlKaEVObhaoUtWKDnfQY54zHWUV9LJSpYuoJni49oGaPKMf4V0PYhnfPB3B5h7hAWG050TBvxAT/N/A23w83aRRuJS44JaM8qzjGgaTpet7dcAQMhBFcMu5grhl2MruuMu/FV/vzmHyNYerScUxAUtAXEJsWgKAJdl3g9GrpeOF8VVSE2KZq0AxmhLlMmxCZFhzVY8Fjf53A53CgmBaRR2RFfO5bajZNZv2QzmlfDarfwxIcPYI+288M7v1C7SS26XRS+1toTGs6vIecVwGEovuTPLqbcIgzibOlbV4UC5ZDmLkDPS7rQ85IuAHzywlw+fHYOmqYjVIEs5bkdDJFxEQhFEJMYjcliwuPyoKgKrvwiQU0BifUTSNmTWm5bi8Jmt4ZtryO1I8i0a3zPBBPG88AEwgyWswx5clyAHRHzOJg7IPO/BGE1fFpxfFbHHDPSw/9W78LryyC58t3sWr83gBU5Oj6S+14fgjXCgi3SSr0Wdeh+cacKjyel7gsWFMhdVUDTWXoNfXn7NWDtbTgJ5tMJiLuIZIidRGFmqYKIHhU2zePdG/fhdXvRNR2vW0NRBVJKhCL46/uV9Lu9Nw1Oq0f/Oy7giqH9eKL/OF69521eGzadxy96Pixkfic69m4+4Cfi8ri87Nt6MIBrwGQxcd/rdxAVF0lEtJ2YxGguufOCSo05Zeg7OPOcrPgtgunPN0TXy+ksCit4NyMsnYy2GRFlkG6JRArJ3ywQ93ZhMKwEyrhEWC9GmMNTZi2lE7ybMaToNPDL0ZmNap7Iu0FtBtY+iJjRyJyJyKzhBslj6hVIvfwbiZqGrNQcH4u0obCRlZKNp1gp5x0vDiKpXjz2KBv2KBuDx1S8dxHggzGfk3Eky1/WarKWLx6teXU2/bWNqLhIHp11L7FJ0SQ3SKR19xaoZmM9NVlURsy8l9O6Nw+6uVNNglr1jxYsAERDsF1WLvtKhet3CqVvzYX/HF9B9INgOg3M3RDx09Ad3yPTb0dmj0emDUB6wyMXeKJj14a9aL4eV5fDTW5m4H18yd0X0uHsNlgjrFhsZu6ccHOlxvvlg0Xs3XIAl0NjxNUtSE8pjaU62ITSDccbEHFTQalnBGctvcFfE2aGyHsMQs2g1yjrmm5HRIeW8Ss3XD9RSICrAlHG/+6VEHETmDuBqS0i/l3w7kCmXuObr4OQrvByGZyo2OJrbQHwOD2k7E0L8JXanNGS60ZcgcVmxmIzc+W9F2OPqjhx58ZlW/n7R4MhXuoSc2mbmxDTattKg5h7+Nt307RjYyJiIjjj0q6YLcZarZpVzri8KwMfG4BSCqliWfCIL5AcDqxasM7fiqB7daITohCKIONwJrUbJ9H1otNp1LYBD73zP+JqxXL36Y/w1vBZPHvNJGZP/DpsdpzIkO51FN7zLtD+IyCwqSRD1FMYa5cdTB19+5uKIS8rjw+f+wKvRytVxrA0ZKXk4MhxMPDRAXQ6vx0R0XY6ntvWH4wTiqBhq3rc99oQTOYQe64yTuOR798XtoAsngL5SB1jz2nHULzTQNts+B5qU4gcgrRehEy/Hpn9LDLrSWTm8Vsdc8wqDHpe2oWPx81FuL1BiTCc+W62rtjBRzvfJONQJo3aNKikDFhBFL0ABVGfUJmwgvBtwfsUUBNArYcQZkR8YSmknve+L3JnBVM7yLg9yHVVEHXB1Bw8ZSknC98mvUHLusYPvj/J6zI+b4/LS8q+NM68vDv3v26U5jrynKxbtMkfvNm4bCv52flh60E7UdG6ZwvMFjNmq9dfKl0Umlfju7d+5uNdb3Fwx2Hqt6xbKTI5wL9JAvh5djJ3P5OJooSK+hdUzBSd59Jw/AAl+gGINuRFdeefkPWgEQCz9oaM2whk6i64RiyYe4JnXhmsLUufVlnhk/jR9lJ4j7qNf9KMUGyI5EJNaen8GqTvQShVoxzYUr5e0ZqGhDpxNGxdn31bD+DKD0JyKuHj5+fy6b632b/1IEkNEohJiK7UmCaTihACiUQ1qdRtXptd64OXXxfwboKRRcNHYlQQFO59/Vn0vv4sAA7tOsLD544mOz2Xrhd1ZPKQNwP6WIUiEAJskTZO79OOhV/tJT7ZSYt2DmITQ6zvwokQYXz8mbuC6zeMeVqspNv9L0pSYemnzH4a//0ireBaBKZbwmfLCYpzrunJ4i+W43K4gzqXv3zwB7O2TCEvy0FUfGSlmKvBqGgp8A/3brez+q8OXHD5khBnF7dHAaxgM7hlhOV0RK3fAdB1J6TdYDjkpnaQ9wGGQocs9n4LmE4H73rgaEFOV3grpyy9wP0vxgbCS0AbjeNLlFq/+X81FBIKgmEgHV8jrOeEz5YTFBfddj57Nu/H7fQEJLsKsGPNbm577gYuvetCpJTUb1G3UuMV938T68VxaEfZyq8VVcFsNXHG5QYZd61GyUz7dxJgVHA9e+1L/DN/FckNk9m1YS/Lvl0RcA8a1T0qTdo1JD/Hwf5th0odTygirJWpbc5oicVu9j/LilZy/PrRYn50fOL/fJZ+/Tdet9ffcjH/vYVcP/LKsNlyokLY+yMdX2Dc70FaBvVskFmI5AUGH4+peaW4UkQx9TuT2RRcPaHEG0FVVRRVoVGb+kTERCCE4IV5T/lPmTn6M+a+/B2RMRHE14nn2WteKnEPqmaVOk1qkVQ/njW/b6zw31EhmE4zggN+FKk29m5FxIxBmA2+Pund60sa+HwC1y/VZmZ5ccwqDJp2aMzry8dzwxNXoVpKBgI8Lg/7tx8kLjmWph0aV1ozXAgBsS9iSM6ZIOJ2St+UyyL/+yZi9DOFr3o2oh/pjX7odMgZh6GNnAGe3wkehNBA7itjsEBBqJV7uBRFTGI0ry4ZS1SQTb8jx8mbD75HxhHDYbBFWIlNikEIgRCC6ITIsMhZneiISYjm7TUvcdeEQVgjS/Y4SV1yeHcKEdF2mp/epNLBAoBHpg/1MyL3vvFMzObSSgQLFqci1TMRQ0FJMEq6tSPoqVehH+oImUNAZgF54Pqe4LJeGpBexmABYSVxE0IgEj4JQWToQeZOQ3qKSEKaWuGPfUo9bHrCJzIMPoznGfrybdRtGpydOi8zD0URNOvYuNLBAjD6w2s3SUYIQcuuzUqoJxRFUdVBKSVCCM64rBute7RA13XcTjdPD5jAZVGDuP20B0nZl4Yr38WfX/8TlCFb1yT52Q6Wfb2CSfc34KkbmzFtTH20UP6JqXkl/9pAiLiJYDmToI9U1+/ozoVFxm4PFLRdKAZJ3inwyLtDGf7OPbQ/u7VRdlwMiqqQeSSbJu0aVjpYAND31vNo1bU5QghqNUri7EvL824BpkZgv9bgr5ASPftF9MOd4EgP0DYCLvD+C2RT0tfQASd4/+LowQIgzG1WIvIOsN9I0EpI/QB67ruF55pbUThfbWAuO49UTcaAe/sz+osR9L7hLH+GvjgO706lXvM6lQ4WgEHY2eemc1AUhci4CHpeUgoBehDX1h5p447xg/D4iK/nv7eQqxJu44rYW1j61d+4HR72bz3AgW2HSgTspJR4XF62/bvzqMECMO7V6ITwtNQCdO17Og9PHxo0W6xrOpPvfMvfVtHgtHp+fhuz1UTzzqcIkcHXnp34CUQMxqiAKw4naHsQai2EuWWliVUjou3cM3kwqlnFZDFxzfAyVvRJkLqOoggefOsuv/zz2kUbub7+XVweczOfjJ2LK99N+qFM1v6xIWjATvNo7N92sEzBAsWkkBiGZ0oBhKkBIuEDCtfNIpD5yKzRSN0XRFCTwJ+8UHxk/ccnjgtZxekjP2TO5O/85VyqWUURgrHfP0GXCzuGdSwpfSXOeqohgVWu1gQr4DaiR3peIHFFOGE5FxE/PXzlMT48cv4zrFuyyXgYFOl/U00KF93Wm/vfuAPVpHLgv8O8M+IDpJTcPekWGp5Wv9Jj1yRJmkVzlzN24Mv++aqoCoqqcPu4Gxn4yBVHeXf5IKXE6/FiMpuQhztjBKbKCt+CrySCqQ24l1KhVpyjDtMAkTwvbC00BdBzJhoEo3go0bBpaoNI/BLQQeYhs8eDdggRNRRhPaPSY9ek+bpv2wHubDe8sIVGgNli4swruvP07IfDPp7H7cFsMXP/GU+w+e/tR3+DD4qqIJFYbRb63nIeP836Hbez4trEFpvOtAVbqN+0+DXsiORfEWrF5fmCQTp+RGY/GUIG1Aa1ViN8Mo8y51WDod5+NUpExaWDi6KmyNQ5ch3c2Oge8jILP0ez1UTd5nV4Z/VLlU4eFEfBfNWzx/mkxsoKC/7kgP1GcM4tkwRs+SEQid+EreWrANL7HzL1KoJXh1kh8QeEqQ5gRuZ/BM75YD0DETksLD22NWW+6rrO/zqNCKimMltN2CJtvLfpVeKSS2t1KT88bg8ms4nfPl3C+DIyz4OxKVJNKprbS+8bz+aPL5ZVmJy2VAh4ZPo9XDykci2ZxeH1eBkQe2vQgLEtysoTHz1It36dMFtM/P3jv8yZ/B0NTqvL3RNvJSIMSa+a5BPoGSN8hIcFPpUZEJDwGYolPKpsBSjg29izcR//6/xo2VsTBFhtFtxOD+3Pbs3ODXvITa+CdlMB/W7vzYh3w9dCUwA95WLQdgR5xQyR//ORH5vBuwmZM9ngjIl5MiwJ46qYr8eswqAobFGBURhd01FMCnNf+T7sYwmhIoQJodaB6OcoX1eGj+XYu7mKggV2ELGI2HFhDxZIKRk06hrqNKmFLdLK6ee3w+SLiuuazvqlm7ks6mauiLmVgzsO89w3j/H8t4+HJVhQ06CqCvbowjmra0Y09Pu3fq7UBicYhBCYLWZjPsS/B5SnNcRXzq+ngHsR4Q8WGL1uIu7lsAcLALBdZQTnsPpaK4qsE9oR5OHTjX+Or1HiJqAkvh+WYEFNg8lswmQuss5JY16t+Gk1R/ZWjigoGApIvZ76bDhJDcoetdc1HalJnHkuvptW+XtJ88AnrxStrjADdogZHfZgAYC09ATzGYAN1NMIzN56IKU78nBHZPYziOhHURI/DluwoCbBHmXH7Si2KZBwaOcRNi7bGvbx/CR0kQ8aLQJlhht/ea/jwyoIFihABNhvCnuwwLh8HYNElghQ6hscN34IyLjZmK/pNyAirjPma9T9xy0h17GCopR0o3VN4nK4S6gmhAMF/sD5N5xF7xvPKvP7dK+Ox+lB1yULPl5cJcECe5SNdmeexkW39Q77taWU3PHiIKLio4hJjKZRm0LfVOqSdx/7iMsiB3FLs3tp2rExLy0cw0Nv/S8swYIaB2GhuGQ8KOD4OOxDqSYVVVVp2qExQ8bdiKKWcW8jDS4bKSXrFm+qkmCBLdJKUr0E7nlpcNivLaWEqOEg6hgcYaYeFG65veD82Vhfj3QD6UZJmIES/3pYq8vDjWMeMFjy1V98+uKXhlyGrwxR6hJXvpsVP61m6Tf/VIhtvjRI6URPuwVyRhllz+aiQZiKfCRmDDmtSmyazGdCzLMQ9yqIiIpfJwReuXsaowdMIHV/Go3bNvTL/wEgBId2HEb36rjyXUwc/EbYx68p2L5qJ5Pveov8bAeKWjhX3E4PGUey+O6tn0nZlxbWMaWU6FlPQ8ZNoNjBdh2Bm5EKOHAimqDlUmVGEsS+AHEvg9qgEtcJDj3vY0i7GrzbDBkaz14CMmEyC7/DnjMJWQE235MB6YcyeKL/OFwOt9Hr7yMLcjs9eD0ac176lt2bQkm/VhxfT53H7a0fJDcjj4EjB2AvEhQOVm5+NMQkRmONKLvckdmq0a5nHv8bUyAZq0LMJIgdj7D0LPf4R4N0LYfUPuBZbhDfyXwCAnQixqdOooNzHnj+DbsNNQFul4fH+z2Px+VBCOFfYz1uL26Hm0/Gf8mmv7aFfVzpWgqp54B3g0EQW5lnOYBIwFhfKxH4j5lo+AQRN4WdeFh69xgVls65GPxKkT6pXR9ElBFoRgfPJnDMDev4NQVSSqY++B67NhgJpILqF82r4Xa4+WLyd6xauC6oBGxlsHfLfm5uMozfZ/9Jn5vOxmIrUmJegSkXkxiNxW7xEztXBLeMvo77Xh/CPa8MrhDBXWlw5Dr4X6dHmTXqM9xON3Wa1mLf1kI5cNWkcmRPKlKXpOxLY+aoT8M6fk2Cnv+5j6UfChOmvhYpx7dI1+KwE0fnZuYxrNtjvPfkp7Tq1oJGbQt9xqJ+dFlRQIZvtlWcJ+Pc687k/jfu5PGPHgjgCwsHpNSRmfdA1kiQ6aC2AO9aCtvVVdD2GL/LHGTWE2Edv6pwTEgP//zmHyYNmWoEBhwuv/6r7tUxW014XF4QoOuSCbe+htVu5Z01LxFfOy48BuTPAc9qQBqyIqYLfbJIHoL3cx8NHoxAw1F0v0PCDPb+kPMi4EaiQOIchCk8vVcZhzP59aNFxucKbPknsEzYeEgUPmWKSuycAvy3ZhejB0wgKyWbiFg7OWmFjlVkbASOXCe6puPMdfL+M7OZNfozXv7jOVp2aRYeAzwrwPkdRrVAqsHAqtTyabx6CE3cWQqkk4rLKKpgvwLy3gFtr6FAEj81vERYuZPx30/6f8VetFLyPj2l5FGAjMOZPHnJC+zeuI/E+vEc2W1UEQgBkXGROHKceN1e3E43P767gHnvLuCRGcPofUPZs1WlITs9h3dGfIDX7cXr9vLNG/No3qkJ21ftwuvxVsiZdOQ4/L2MZYGqwoAhqUTE+Bx1U1dwzQfX70gkMvphlMjby21HKMjcyYXEm+SXYTqeWmML4HZ5eP66yaz8ZS2J9eJJP2RwtUgkkTF2XPluPC4vQhGsXriedYs2ccWwftw9MXxEkTLrkUI5sfyPwHYROH+icJ0p5/clHRgBzYquS3GgH4DcqYBA2i5CxL1UwWsFMS//A5DZ+P8urbikalEZSFmMwOvkhpSSd0Z+yLdv/kRMQhTZ6TkB7Z1CgNejoagKh3en8MyVE2ndsyUTfn46bJWjr937Lqn705FSsuzbFfQb0of5Mxai6zpSl0F7ukuDI9dYu4oqP5UHZquJ+i3r8MrdbyNUhQat6jJl6biwER8u/fofUvam4swzfIKtKwJ9As2rF85WKSv8d9RU6PlzIWcsYPYFrgvuZ580PF6MPYAXmfmAwZmS+G3YpN1nT/qGnev2IKXkv9U7uWDQORzelYKu6RUKprmdRhuZJ0h7SllgtpnoeWkX3nxwJlJKrHYrb66cEBZuHMBIdLmX41el8K4pdoJGII/EiTFfq73CQNM0xt34CrkZeeRl5fuDBQXQNR1bpJWoOKP02pHjJD8nnynDpvPVaz/iclR0U14Ubgq/IB2USEStpT4SoIo+GCtiVxSojSHyLvAeNLKmMteIOOXNqqAdJZGTkRtUicIPaWx8wYjUDn/7f2EbuyZg/M2vcWRPKi6Hm8zDhZlsXdPJy85HKILE+sZC48h14sxz8fp97/LJ+C/JOJxZeQNksdJsoSGSf4Hop6i4vndFFlphzFfb5WBpD969vkyq0+i/ChOknhfIilcCXlAKiA0ViByKUMLbJ3oi453HPmLnuj14XB5S9qT6nUddk+Sk5aJrOrUaJWEyq7gdblwON9NHfsiHz80JS7VBcWdN8+q8/MdzvPjzKB+hUfnnq8ftpTxJVme+yti7m5J2pBlYzoaYR4pIH7og59Vy2xAKUmpBNlxFoRgl3wjjn/lMQ1XhFAD46b2FrFqwDo/Lw5E9qYWVbxJyM/L981UowmA/z3fx1ZQfeH/MbNYuChP7tQxcD0XUg4jkXzGqtyrizDkq9j6lPpg6IBLfh9zXMfwKJzjnI7Wjk82VGd4jR7Gjju8HAWp9sF8dvrFPcGz4cwvfT/sZt8NN6oF0fyIGjI2MBBLqxhmVgZqOI9fJ+iWbeXP4LP6Ysyws1SJuX6l2ATr36cCne6dRp0lyuYMFYChmeSrQolCrURKN2jRg9JwRfPbi17gcbpy5TvZvO8iqX9eW+3qhkHYgHXcQdaoCxNeJQ+o6CIiKi+T2528I29gnOqSeBdnPGAFRmUnQPY6IplD6Lw/0dIOYL/8zpKxoYqkQRitMoR+SWC+Bzw9Op9eAbhWar1KXFWpZjE6Kon7LutzxwiDW/LaB/Ox88rMdZKfl8POs345+gTLblwGytD2hj3zf97OIeS5sY1clqj1goGs63iIRJUVRAsqgNK+Ox+WlaYdCpnO3w8Oyb1fw7uMf8dRl4ytvhP1a4yGI1VcqqiNzXgGl8kzh5YL1bJTkX1CiHwI1nsIJZAYlPJEuTdN4vN/Y0A8pXyVHpk8lQVEVEuqGl5H5RIcjx+H/2Ww1B5b/SbBFWOjcp0PAezb9vY0PxnzOsG6PVZ7XwHKGb4NhAWEHUztk9vMgzFRrZFJpZMzXuIkIJalIUYoStvkKGBHuUgMaZtB3+X5WEWpS2MauCcjLzPNH7RWTij3KFpDZMplVevTvHBCsTdmfxofPzuH+nk9weHfZpLpCIb5WLFc9cCkmiwmzxcRZV/XglbumkXk4K+yl1aVBNaskd/geJeE9hNqIgMBamDInADL3NdD3l3JGJGjrC8dXYyvNQF2TkJ/jRPM5jVKX2KPtAX2umlenZddmAY6l16Px0XNf8GT/caxauK7ENcuN6NEYTpwZzN2QeVORrr+oULtXZZAwCyVpLsLcxmgTKAoRnl5s6fwV3L8T+tkRDdoG3+sSMIUt01gT4Mh1Fq6n0uiDDvBhPRoR0faAcmmPy8PXr/3IS0OmhoWb656Xb8MebcdiM1O3eW2Wf/sPP838zc9LVV24Z/JgZmx4hTMu60pMUrS/5U3qkqj48MyZPZv38+Fzc9BDVA1Y7GYO7ThsBDwkuJ3ucnHn1HiU2LgqBK5rXiPxo9Qr8p58cP2IzH4BmTWy0iZc+/BlJNSJw2q3EFcrhiN7UvnkhbnYIivTFlt+XDjoXGZteY1rHrqM2OQY//1iMqtEh0EpCnwJr8z7Cb2+KhhJ6yJJBrV2WMaualS712K2mLnpyWsw24yN17WPXM6cwzOo3SQZ1WQED5IbJrLhz0ByI13TcTs9rP1jY6WdTqHEIpLmQdJ8gy/A+a1Rhuj4BkRVbpYVArpAtAOFNkXcBNZzDSfB0gMReWdYRsxOyzWCAUE+stZntKT3jWcHOGK6rpOyJ/xEaCcy7pk8GIvdgtVuoeO5bfj88Ay69++M2WZGCCMZvn7JpsA36YbjkJeVz8Edhys1vhAqIv5dQx/X3MPogXZ8DtnPg6ltpa59dBRZImSReWHpCfZBRiuPqRUidmz4hvSsImjAQNSByLuLveZBauHvwT+RceuYgUTE2LFFWqnVIJEP/nuDgSMHYPVJfQohSgYFpI+kRxgZtMrirgk38+neaVz78GUs/24lP836nQm3vM7ZV4WfPyAkpCAn3WgfEmqi0Q8u4kCph4ibGr5x3H8SvMLMClGPEMhCL8G7J3xj1wD0u/184mvHYouyERUXwatLxvLYBw9gtRucFdYIKxFRtqDPMJfDzT/zV1XaBiViAKLWcogdD56V4PgKskeDLbyqNyVRlJfDjtAKyZRF/JtGpl/EG9wbYaqiku5/CK6MAESOpITMYzgrG2oAOvdpT7PTG2ONsGKNsPD07Id5dclY//pqtVto2rExbkfJRIEzz8XiuZUnQmzTsyVzDk1nws9Ps2/rQX7+4A8+GPM5Tdo1qlBPeFlRNAiimpQA32bEjGE0btOAiJgIrh5+Ge16nRaWMbet3BGUWBJgwP39iU2KCTjmdXn9rQunAEKt5asQsgIWiB4Jyb/79joKYDb8yBKtnz5eA9eiStuQVD+RD3dMZdrqSbhdHn79aBFzX/mBXev3YIusAsJsH1ST6g9iARzeVej3DBp1De3Oao092k7PS7vQ/44+4RlU20/I1nbzuWDpRYmHmVa5PUJ14ZhwGAweM5BL7rwAqevUamSwVb+6+Hk+HvclZovKDY9fxfX17i7xPtWs0qRdw7D0gQmhghKF1I/gL9HR90GtvyHrOXDNo0xl26IeyANHP884GaNvxQuooBYyeAthQcSH0Yn1ITYpmlqNkoJq546YMYzfZy9FNatovpYFa4SVrheVhym65uOca86g43ltycnIo36LOgghePrz4Xw89kuyUrO5+sFLefCsp0q8TwiByaxSq3HlGdmFEKDWRnpW49+cCGFkxtxLIG8G/n6pUi/UAGRpG2xr4fWxY8zVAjm+uAB7RMyjEPNo+f6QssByFrh+oUSENvoRhBKFxExhWZ2KsF8ZfhtOYLTo1JRP975N6v506jWvjcls4vaxNxCbFM2u9Xu4YNC5zBr9WdD36ppOizDpVsclx7JuyWZc+cZ8kkDnCzrQa0B3pj0yi6yU0sr4DcTXjSPjUGbIrpvI2Ajysgx2ekUVmMwmv+yWoogAZ0SJuBoiqqC02toXPBso4STYByBslyBzA0lkReRd4bfhBEZcciyztr7OoZ1HSG6YiD3SRpO2xnP+r3kr6dynA/+t2RX0vdYIK+16hUdBQChRSO9WCjfTDhAeSPgUMkeWURkpynhfyNbGSAxpXN+EFnaQBWusNHqHC+yxdEPUqryzXhzCei4y/2OMLFcRqK0RUUOQ+a8X4eMAIsPPIH4iw2Q28fIfz3Fg+yFikqKJ8WUmX/jxSebPWECjtg1p0q4Bi4MoJFgjLHTqEx7ZOqvdStqBDEwmFTdG8GzX+j188N9Unr1mEtv+3XHUbkXVrGKxmnHkBg8gKSYFRVH8bUJmswl0icftxWQxE5tcuFmv26w209e9HJa/rSja9moVtGzdHmVj6MuD2bBkMyl7C4mmO57fjugwVTfUFCixzyEj7wZhMQIIgJ4wG/KmgxoLEUMgpVeQd1rAHJ79gMlsQuoSj8vgMfK6vfy3Zjdfpc9k7A2v8M/81SGrSAoghNF+kn4wM+Q5iirQNWPia5qGLcKKM8+FyWIisUj1dGRMBJN+fSYsf1sATI0wfOfixJEKIm4cMvd1jEBNEb/a0in8dlQBjlldZHKDRH+wYNNf27ij3XDmvbuA1AMZxNWKpU7TWgHnJ9aL54ph/Zj4y+jwGSFijJ5szMY/Uysjwu/6hbL1eCsgDx79ND9sYL8eRCyY2yNixlTE6nJBURQmLRxDQIxFwKjZw2ncpgEDHx1Alws6You00qZnS2ZtmeLnjziFQsQmxdCgZV2EEKTsS+POdg/zxeTv2LZiB7UaJdGjf5eA8y12M/1uO5/Xlr2APZxlV9azMdi3fdUqaj1j0S9LsACA9KO8XjQy74XIYaAkgtqkSgJawSDiJhcrv1XAfitKxACw9gH7NUZlkNoEEr9EmFpUi10nEiKi7TRqXR+T2YTL4eLh80Yz44lPWPHTGuo0rcVFgwNlr4SA8647kxd+fIpGrcMnpXrWVT2wFals6HhuG2aO+rRMwQIAd767VKe3IFgAoCgq1z56BbWbJJNYL54nP3kIe1TVS2qJyLtALUZwau6JiHkWYWoI0Y8bPaJKMsS9ibCFX3LsRIfFaqZR6/rYI21IKXnpjjeZcOtrLP3yb+o0rsVFt54f+AYB3fp14uHp93DWlT3CZoewFKyvADaE9QJjfdXLmhQ4WmYzj8IJbQLrhYZ0rIiHqPsQ5nYVMbtcENazwHZp4EGlLiLxU4RQEHFvgpJkzNmox1Ci769ym040KIpCg1b1/MGCL6f8wGN9n+O3z5YSFRfB6b3boyiBia3WPVsy+NnruXXMwLDZ0bpnS39lmDXCyplXdGPhx4vYvWFvmaiNpCZLJbnWvbo/WCAUQbPTG9HxvLZEJ0Rx3sAzufCWc8P1p4RE3aa1uePFQQHtFha7hXc3vIKqqjzx8YM0PK0e9igbl9x1IS/+NKrKbToRIUwN/MEC6VoCaQPA+SXoeQgl0dgPFYXSECIHI+JeC5sNtZvUIjLGjmpSsNjMdDyvLesWbWLNbxsCgwUhcsKqWSUrpXRFrIJgAUB8nVjOv+EsohOi6HBOG4a8cFM4/oxSIYQN4t+iRD4+/lOEWhsR/QiYOxs+ruVMSP6pamTJqwDHpMKgOKYMfYf8bGPD88/81az+bQOvLXuBx/s9z97N+2nWsTHjfniyROlRZSGEgMTPkPmfAIrRFuD5F4RSRh658hLOOcGzDFFrKUKUXSKsskiql0Cjtg3Yv/UgEqjdOJlzrjmD3Mw8dm/cx+Mf3k9MYjXzN5zA+Oj5L0jdn46u6ezZvJ/5MxYycta9OHKdrFqwjoS6cWHfeBVAxE4A8+dIPQ0RcS0gkGWeg6KcWuFeyP8AkfR9lejWh4IQFqT1Ah9LuRtEBCJ6GFK6wLMREfU/RGwVRIZrKBZ+soT/Vu9G82pkHMlixhMfM2r2w+zZvI8f3/kVS4SFJz56kO79OoV97GseuozEugnsWLubs6/uSeO2Df1tAmVBXnbZ56vX42Xu5O+Y/NuznNa9+oJIQghkxHWQ8zJG4M6GiBkJCKRnPcJ6JiJyZbXZc6Jj68od/PH5n2heHc3rYvJdb/HBtjd4+N17mPbw+0hdMvi5gVzz0OVhH1tYz4D4d5DuJUaG33o+Mvdtyk6G7KXsPoHXUL+JGWcEQ6sRIuIapHMeRjWFHaIeRCiRSO92UOIQyUvDxuhf0+HMdzF95Id+Yuk3HniPi4f04aXfxvDstZNx5Drpc9NZDH/7npCl9RVF7cbJvLbsBRZ+upj6LerS99bzePOhmaUSBBaFLnVc+WXjWJK6ZPPf/zHg3ot58aenK2N2uXHWlT2Y+dSneN1erHYLF93em1oNkziyJ4XczDzeXvMSZkt4FBlOBsisJ/EnmRxfQcRNiKRvkGm3gX4QLJ0RcdMQSniThxarmTdXTOD7d34hMjqCy+7pyx+fLwtiYPD3ez1aubZc2Sk5HPzvMHNT3qvW9UyY2yKVREPVDAXMbVGsnZF6Onh3IeKnn5C8MMdFwKDoF6l7NXRNI75WLG+vCp+MUMixlVhE1FD/79JyhkGI6P2P0p0EQfnZ6TXwbjd0jS1VW/YvpWTryh14XB7antmKl/94ji9f/QFd07n6oUs5vDuFe7s95iebeu3PcTRu2/AoVz0FIKBaQ9d13E43FpuFcd9XvZaqEBaIvNkfgJVSGll31wKOXhVT3vkqQWYinQsRkdeX39jyjubdYfRyWbogYl9AmtqCfggRcT1gQ6ZeAfoRQ+IrbsqpTG25IP3/uRxuhBAMe+V2hr0SPmnBYBBC0PuGswIkG2988mo+HPM5HneIPr+C9yqi3IoKrnw3X0+dx2Ozqj4rKrVDxnPC3A4RcSsosUj3OoT9YjC1N3SY3X8ZpLpRw1Ci7qlym2oiCjKc/YdcQP8hF1T5eMJ6hhE4KPg96j4fEevRqgeKlJmWGW7IewOqIWAg9WxDktfUDGHpAfFvGWu7pSvY+qPnTPG1tgmwnmessaeCBuWHb8nqcE5bvjg8o8qHa9KuIUPGFmZOLx/aj18++MOfhAsFofiSDeVYYr1uL1+/MY97Jld9m4rb5WHjn1uIrxNH4zYNeHXJWObPXEjdZrW5Ymg/Fs9dzou3vo6qKtRukswbf43Haj8xMrXHHkXvax2JRFHrI2r9UuUjJ9SJ59bRhVU2vQZ05/0xs3E73OilPO+FoFxKSWAQ5q5bvInDu1Oo06TW0d9QCUgpwbMaI0DQEZH4hSFfix0ReRvSswmZfhP+1vSkrxFq3Sq1KdwQ5SEQ7Natm1yxYkXYjdjyz3YeOnuUX7s2JimaOk2TSdmThmpSeejt/9HhnDbsWr+HOk1rEZdctRJqUroNJuGsMUCm72hFAgQh3hP3BortokpYeHS8NXwmP0xfgFAEXS7swJi5Rq/57Ilfs/iL5Shmla1/b0fXJUIILv1fXx58s+p6a4UQK6WU3apsgCCoqvmauj+Nu08fQU56LkIRWCOsNGnXkMzDmbicHm568mouH3oRO9bsJiYxmtph4DAoDVJKg8gq+2nQdlbyakHmrP0WlNiqzSjo+V8bJGNCBaUOIukrhLChO+ZD3rsgrODdUFghYWqLkvR1ldlTk+ar2+nmvh5PsHP9HhBGL2GLzk3IzcwnOy2H8wb24r7XhrB3s8H0Xx2Bw10b9jDtkfdZ+XPlpLeCBRWadmjEO2vCJ/MZDNK9BplxKwbbtIpI+gah1jOO50wABHjWUrjJtKHUCZ/MWDBU95ytqvkqpeSFm6bw++ylgEFc1axTYzxOD+mHMmndowVPfTqc7LQcctJzaXZ6Y1S1atUMpHYAmTsNHMG5P8qOYEGFqp8bUjuMTB0AuEFqiIQZCEs3pLYfmfWsoc3uWU1hksSKSP65Sh3amjJfAb545TvefuQDwOj7b9iqHha7mcO706jTOImn5zyCNcLK4V1HaNqhUZVvbLPTcvjhnV+YNXp2hWTrChAqaPt93kdV+je4XR7u7/kEB3ceRvfqDH31Ni69qy952flMfeA99mzaT+qBdNL2Gy2W9mgbT33yED0vrTq52prkE+jOpZB5B8ZapIJSC5TaoO0zZOZjJ4KppREQNzWpctlqZ76LRXOW8cb9Mwr5NCqw5Qo1X9/4ezyndavaqkM9czi4fjOiGvYBBm+E1JA5r4J7KeAF72bf2SZE1P0Byepwoyrm63FRYdCwTX1/OZeu6WQeziLzcJb/9TFXTSQ2OYa8zHx0XefFn54OGwNrMAhhQdgvQdr6I9OHgGdpwSuUewbbB4Hj4yIHFIReeg9OZbF3y36+en2e/8b5Z94q0g9lsm7RRj4eOxdnngvVrCAUBXQNs9VEQp24KrWpJiE2OQZ7lI2c9FykLnHmOtn81zb/69Mf+4if3/+dvZv3o2s6D7x5F/1uq7psuBACYe0ByT+hZ78E+e9QsQAXYOkN7j8IrK6pvA5vaZDaEch9CXAaJuuHwP03UqkDWSON4wEyQIrRD34KZYJqVqnTrJYRMJBGlmjzX9v9r//03kIObD/E+sWG0kf/Oy/g3ilDqtSmJu0a8eL8p/l99lJeGDTFiM5XYLrWaVqL/BwHWUeKrKlVnBSVeg4yZ1IRYjgTOL5HRgxCZtxm6FgXv/+UuKo1qoahafuGLJ6r+NoSNLat2OF/beXPa3juusmsW7QRRVVo1a05E38dXaVBA6HWQ8Q+h24fBOnXYKyJFVFrEmDqCt6iLSpVK40rpdtoq5A5FKzlMu9dI2CQfgdou4LbUFzW8RRCol7zOtgiDXI13auze2MhsXB2WjbPXDmRA/8dQlEUohIimfbvpCol5otJjObGJ67msqEXcXurB8hOy0ECAlEulTFVVbjojt78OP1X/zGTWSUrNYdaDasmYCClZP6MBezfftDfLvHx2C+59K6+TBk6nSVfLsfj8iIUYbSDSYmuyQACxlM4CkxNKHxQakYbgu7jY9NSkRl3gjQZpK8ACbMR5pZVZo4twspFg8/nwlvO5d7uj7N99U4EwuiiLcd8FQKufPASvpryo/+YyayScSirlHdVHrp7JTjn4/ebHZ8jY0Yh8z+F/Pcp9GFNGG1rprBKkVcXjrkY9A/v/MI1SaU7p26Xh6yUbPJzHDjzXHw89otqsU0IAd71vt/Ky1fge49aByIfxJgoFkOGznpOWO0sioWfLmZol5EBN5nH5WVQk6F8//YvfrkZzaOTWD+emMQouvXrxMBHq1o+qmZgzR8buDppCCl7U0NuTDxOD7s37MWZ58Lt9PDeU59Wn4Gef30/VFB6VABxUzHmqxmwIexXhcW0YJCedcjUi0BPK3IwH5lxNzLrGQodWc0g4RLxYO6AiH2+ymyqSTi44zA3NbyHv374N+R8dTs9/PvrWlwONy6Hm+/e+glnfvXIUvmZvCs4XT0uD1OWjsNqt6CaVax2C1fe1z+sNhaF1FKN+eopKuWnI3MnG+WGsqAf2HDPUZJ9hKFvVZlNNQmOXAdDu47kg2c/RwvBmK15ddb8vgG304Mzz8XWlTvYWiSgUJUQ2nYQJio8YQHipxkZPUwYRMhVoNzhg5RuZNpAcMyhMPCrgGsh+pE+oO2hcI21gFLXsC12MkI5tQE7GnRd5/nrX+a5ayeHlvKTsGfzfpx5LiO4mZLNojlB+rarABmHsnDmu41Sblm+zVcBLrnrQtr2Og2TWcVit9CiSzOS6lfdZmfi4Dd459EP/cECg2g6lasSb2PDks14XD7FBquZOk2TiU2KYdBTV9O6R9VtaGsS9Nw3IbUvpbZcyxwgC2QuyDxk/qxqsU0IwY61u/1ztbzzVQLNOjTm8qEXoZpVzFYzMYnRtD87PEo6waDnzYL02wn8PHXk4S6Q/yOFqjsaqHUNVQTbxQZ59wmGY1phoGkabzzwnr9HEQIlMfyQ+PtdTWaVuNpVWx4TACUJtGwq5iDEISIGIpR4pPVs0P4Dy1kItXa4rfTjw+e+wOXT/y3QH5W6RPNorP1jQ8C5QyffxtlXV6Mueg3AlHvewVlEgshsMZXoxZZS+qXdgOollFTrgqcgilneKgMTImo4wnwaMukHcK8CS8cqVSGQebOKETGqGAuvBO9qAhZh+5UoMU9WmS01EbNGzybjSJa/2shkNeF1leQOKFrGZ7KYMFuq59GQ3DAJs82M2+EOvvYfBQ9MvYv6zevw4Y6prPhpDfVa1KnS6jOc80DPpXDzpeKPeHi3EjBfTaejJH1edbbUQPw0y6jMKggWqCYlaOBA8xZ+zrqmE51QTQRSaq0ijbQF+ZZyVAhEPYCixiKTfgbXQiOLbz0/zEYWgWcNaLspbI0pSsBTTF5XRCCSFyDEcVF4ekJgw9It/D1vVeF8DPHI1TyavwdbCEFMmAm8QyE6ISpg01XePvBu/TvTqmszXln0HMu/W4nb6abXgO5hJ28sQF5WHr99tjTg/i6wPzcjj9zMQqk6zePltWUvVHmLck2C1LMhdyqBEsBH8xPN1ZYNF0IQkxBF5lGUEEKhVoMkzru+FxcP6cN5A3txZE8qPS/pUrXKb7lvURgUKPpZukFbFXhu7CQUS6Ci2omEY1phIIQoQaqja5KImCBSWNLoZWzdsyX/m3RrNVmIISVnagtKPbBegqFTbwNTe4wMbCgooDZBZj2Dnv0CmJoj7FdXabAADLlKRTW+VovNQmSRz7Log8IWZcMaeYogprxQTIG3jMftDdB6LwqhCBq1rs+ozx6qBst8Y8aMAssZRj+a9VLAasi3qE2B0pQ5BIhEZO676FmPgbAhIq6ueslCta5hIwB2n8xpAYpGbFW/JNAplB2KSQm48b0uLyaLCVUNvvTH14ljzJcjUU1V2xNegMv+15feN5xFYr14ul/cmYgYOxHRduJqxWCNKF1JxhZpZek3//D89S+Tsi+NvreeV7XBAjA2jP7HptmQxCta2lkUSmLV2lIDoaoKepH5qnl1hCIw2wKftVKXCAGRsRHcNeFmGrSsHvIoYekOUcOM9dXc2cjGi0ggAsTRnGozaPvRM4aBeznCfhnC1rtqiQWVJIMk1vgF1IYUykYWg7CdChaUE0bPdJGAkW/q2qICP2ND+lBgjbDQ99bzOOvK7tViX3ytWB7/4H5qN0mmaYdGtOzaDFukFYvNTMJS2XYAAJCtSURBVMPW9fxJpWAwmVWiYiMYc9UkvnvrJ868ohvnX38WFlvVKXxZ7BbM1sI5aIu0Bt77RXxYrToDhTUGwb5vCYT6HM1g6YmIrD7C3nE/Pknjdg2o26wWZ17RDYvdgsVmplW35pjMof0SxaTQqE19Jtz6OjNHfUqbM1rR95bzqj5hpyZT+LlaCJmHFxGG5OIJjGNOevjrx4uYcMvrgUYpguSGiSTWjWf7vzv9Gdy4WrFM+OVpmnVoHOxS1QLp3Qe4kUoTyJ8JuZMJjNYFgwWsZ6PET6ty+1L3pzH2hlc5tOsIA0dcTlztOF66/U08xWR2hBD0v/MC/jf5ViKqQ6u8hhDGbFy+lYfOHlWCWCU6IYpmHRuzfulmNB8fh1AEkxY8Q8dz2x4ztmmppRrl/qYWSNciyLwfKE1GSRj/lDqI5N+q3G4pHcjMkUaJt/UCsF8JGUN8VQfF1ibLBRDzJIqp6kn5asp8PbI3lSFtHsJVrMXAbDXR4Zw2/Ltgnf9jForgwTfv4uIhfaotYFAcedn5HNp5hAat6nJoVwrDz3ma3IzcoFkxRVVAGFrh9igbH/z3RjUQ4kpkzkRDDs/UFqIfh4xbfS01xQIGpo7GfK2mjEJNIJFzOVzc2f5hDu08EnBcCGh3dmt2rttDXqZRkaSaVC4fehF3vDgI2zFiR5fSBd4dhrKS9CAzBh9FYamggsqOSPgAUcVqSQB6/hzIfd0IdsVMgKzHwLuREn6LUg+iH0OxV11LT1HUhPkqpeSpy8bzz7zATKKiKDTt2Ij8bAcHdxz2H+/evzMj37+PuGqqMCgOXTf4FWISo4mKi+CFm6bw94+r8HqC+7AFJHK2CCvDptxO/zuqXqVkze8beOXuaQhV4ZHp9zDvvd9Y+PEiP89ZAezRNm577gaueuCSavGvaopPoOe+7du3FIUCagMQMT5iPt98UBpBwgwU07Hbc+3bdhBFEdRpWouZoz7li8nflZgLxWGxW7jw5nMY/nbVBzqkdycy8xHDB4h6GGQW5EygJPeXAhGDIephFKXqn1dVMV+PecAA4OkrXuTv+avQi5UeWiMsfhmwADv6nc64H56ssrKo8kC6FiGznjaI2gI2OAWlqr6/SUlCqfVntdq2e9M+Xr7zLTb9tRUZomoyKj6SuSnvVflnWVMWW4CPnpvDxy/MxesOXLSsEVai4yNI3Z8RcLxO02SmrXqJyJiIsNtSXkjPJmTWU+DdRKFT6xdpLHKmgqi9CiGqPpjkt01PR2aN9klE6gQvk1MheRGKWrWkhzVpvi7/fgXPXje5RCuCNcJK/Ra12bF2T8BxW5SVt1ZOqrasbWlIPZDOlHve4Z/5q0st+42IsTN+3lO0PbOKKwyKQEoXMnuijzlfI2RpevwHKEVk+qoKNWEDBgZp7z1dHsXtCHS4zBYTjdo24L/VuwKOK6rC+Pmj6HJBh7DbUl5IPR+Z8zI4PqTk+lVUIcGGiHkCEXFj9dkmpdEClvs6hgZ7CKc76hGUqP9VuT01Zb7m5zi4rdX9ZBQh6gZjs51UP5GUfamBU0HAvVOGVCnXSlmh6zpfvvoDM578JKA1GAyyXK3Ixqzv4PMYOfO+arXvz2//4fX73iXtQHpIH/aMy7ry/LePV7ktNcUnkFIavCbedZR4ZokIHw9PsQCS7UpE7ITjQmb1j8//5PX7Z5BVrG1BNatIXfpVQRq3bcC761+pVtukZz0y60lfe2KICavUQ6n1e5XbUhXz9djvuIFn5o7g7om3EBkbuKFSTWrQEpSVv6xl1cL1JY4fCwjruYiE9w0yNqygNATbpWC7BojBaFuwg7VqZRQLsPCzJVxf/y4Gt7yP+3s+wcZloYMFYPSFHdmdUi221RQMevpanvz4IZIbJgUsoLqmBZUaOrQzhe+nVb2+bVkgzG0QCR/4WhSsQBxYLwPbAFCb42+5MXeslmCBdK9GT7kQ/cg5yNQrwfUzfg6DoNCMPvJTKDPOuKwbLy14hlbdmqEUKUF15buC9oc7c11Me3hWNVoYGkn1Enj265H0uKQzZqsJi93CBTedw3kDe9Hjks5GyarFhNVupUn7RlVuj9T2o6dejX64JzL1OnB8hJFJKGWRzf849GunUAINT6vPtH8nceYV3QIC2R63l4xDmViKtSfoms7E296objODQigRKLGjIHIYxrPfBNaLwdoPrFca7WGoRsmEpeqDSFLPQ0+/G/1wD2TatZA7CcilVMKz/Gok6a0BiIi28/aayVw+tB9qEX9V6pLU/WmYzMVKlCVMffC9kFn96oSiKFz78OU8/uEDWGxmzBYTXS7syDnXnkH/Oy/AYjOjmlSsERbOu65Xlduj6zqv3/8u1yQPYWjXkYy9/mVS94UOFgD889PqKrerJkEIgUj8ECLvB8ro4zm/9W2Cjz3OG9iL8fOeIjI2AovNTJP2DTlvoMFbYI0wyI9tkVZ633BWtdij532EfuRM9JSLkWk3+So0Spmw+gGkdIZ+/TjGcdGwZjKbuOahyxhw78W8fv8MFn68GF2X2CJttOzSjL/n/RtQAi51Seq+tFKuWL0QpiZQaxHo6aDUQgjDyZHafeD8wegjtF1e5XZkHMli8pA3Awj3ikI1KzRsXZ9d6/YW2i4goW58ldtWkyCE4JxrzuCsq3rw/du/8M6jHyB1iaKqnHF5V75+Y35AZB4M3fnjBUKJgqTvQT8CSgJCGD2JUs8Dx5eAgIjqYXCVGf8DmRHiVTOYmpeM1pqPfSbxREO7Xq2Z+vcE/v11LaOvnGD0gCuC868/i09e+LJEy9KB7YeOkaUloSgKz341kvRDmUTGRmCLMIJymqax8OMlZKZkc8Ggs4mIroYAV+Zj4N0ASNCKz1sTqC1A20khyRxgbl/ldtU0NDytPs99/Rj7th3ggTOewuV0oyiC3jedzffTfi5xfk5azjGwMjSU6AeRkbcCaoDagHT2A+82sPVBmJpWuR0y702fBrgHvJklT1Cb+OZxkey42rzK7appiK8VywNT72TICzfyQK+nOLI7FSGgU5/2bFq2lazUYvPTR354vOC8686k+8WdcDncxNcqbOvqN/h8Vi9cT9tep9Hx3LZVbsfiuX/x08zfceW7yA5yT8clx2C2mUnZW+j/xx6j9o4TGULYENH3IqPuQmYOB9dSQPdxssSDtxhZHzpS5la1YnGZ0bJLMz4/OJ3stBwS6yX476WBI65g8dy/qNe8drUQukvvf5AzEYP0MNie1ARKY9D/K3JMpZC368TCcREwKIDJbOKht+6mZ/8upB3MoMuFHVg8dzlul5vVC9f7gwaKqlQ9uVU5IYTFkFAsekytA5F3VJsNeZl5pfb23DL6OgY9dS1LvvqLyXcaMl8PT7+nSklsajIUReGKof1o2r4RO9buplPvdqxbvInu/U5n1cINhX3jArpeVPW9quWBEErJ+apEQuQt1WaDlNLo9woF8xmIhHeR3q2QcSfoORB1N4qlc7XZWNPQ5cKOTP37RVb/toGWXZuRtj+ds6/uweqF6wNKajv1Ob42uUIIEosFNlVVpe+t51WvIdo+Qla/KLUQSXOQugPSbzLOtfaplvLumooGLevxzrrJLPvmH2o1TsYeZcOR42TN7+vZv60wqNWobYNjaGVwCKVkIF7YegO9q88I7x5K9tIWwIpI+BCUJEN33b0STC0hfmr12VfDEBUbydS/xvP77D+x2i006dCIn2f9ztpFG9m2slD60x5tO2Y8MaEQEW0vEXRt3aNltcoVph1Mx+UIIU8pDEK8Vl2bM/XB95j33kLik2N56fcx1WZfTYMQFoh7DZzzQeYizWcY1QSYwft3kTMVhOn4CiRabBaS6gcSC9drXofrRw6oPiP0DEKvr0DMOJSIq9DzP4ecFwEzxL12XAULy4PjKmAAhmPYa0B3dF3n7o6PcOC/wwgBjdo0IGVvKq58F9c/diUNWtU71qYed6jfsq7BehskZiAUQa2GSQCcfVVPzr7qlJxiuNDhnDZ0OKcN4256lWXf/oPXoxEVF0l0fCRpBzLodWV3el9fPeVRJxKEEEillo//ozgUMDUwyufMp0GtxdVuX01F47YNady2IXMmf8sHYz7H7XBjsVlo0r4RuzfsoVnHJtw+tvp6q08omFqD+0Dw15S6gIKixkHyj9VpVY1GUr0ELh/aj1UL1/Fk/3G4XR4sNjMdzm3D+sWbSagbxxMfPXiszTw+YW4Prp+Cv6bEgbAjhIpImFmtZtVk2KPs9L/jAg7tOsLdHR/B5XBjsZnpfGFH1v6+AbPNzOg5I461mcclWnUNvSm1WM1Exxts/vdOGcK9U4ZUl1k1GkKoYL/UIHBNudColEYF0+ng3QJ4IfpxhBJ3jC09DmE+ndDtXcKnqgRKxECIGFhtZlUVjgsOg2DISsnmwH+H8Lg8uJ0e9mzcyxdHZjB1xQQ2Ld/Goxc+y851u4+1mccVhBC0OaNV0NekLpky7N0Axt5TCC/+/vFfXPluNI+Gx+nh2a9HMs/5BqPf3YvIutFQKTiFQNj6E1zqRwfHV0jX79Vs0MmDRV8sx5nnQtclCLjmoUv5JvsD2p51Go9f9Dzfvjn/WJt43EHYL8coKQwC73pk3jvVas/JhOXfrcDlcCN1iSvfTeO2DfjR9QlXPXAJE255jXdGfhig334KIKy9CSn/rKchMx+tVntOJqxfshkwODaceS6yU7P5wfExI94bxqzRn/HiLa+Rm5l3jK08vtCsY2N/y1lxuF0eHuk9pnoNOpng3QUyFyNj7gTvFkTtNZDwCTjno6ffifQeP621xwOEMIMI1VomIfNepB6q5fbEw3EbMIhJjCY6IRpFEagmlfot66KaVB7r+zyrF65j9cL1jOjzLJp2ykEoiqseCM28q5oU9m07WI3WnFxo1a05ZosJ4VMmrNusNiL7YXD9Cp7VyIz7kFqI7OTJCttlhHRo8YJnW3Vac1Kh47ltDCUajPaQFl2a8sGYOfw08ze2rtzB9Mc+YuUva46xlccXpLmrj+A2GFzgOT7IeGsi2p3VGqtvM2GNsNL+rDYs/fJvPnr+C7au3MG3b87ni5e/O8ZWHmdQGxhVMUHh9RF0nUJVoEXnpui6wb1jtVvoeG5b9m4+wKTb3mDL39v5Y84yf2voKRiwRVo568oewUu2JaTuSzsVFKwqqPUxguECMIO5HUgHZNwOnhXgXoLMOFXVUQJRg0p5UYBWc/Zcx11LQgFUk8prf47jo7FfYDKr3DL6OlwONzlpOX5N7tzMPJy5TiJjI4+tsccJ1i7ayMRbg7NFm60mFFVh8RfLOLD9IJfdcxGqenz10J3oGPPlo3z43ByyUrIZ+OgAouOj0A9vo1CiRkd69yHUU+00AFI7BBm3AO4gr5oAFendhsx5AxF5u8GxcAphw5BxNxEVH8l/q3fT/44+tOjUlLcemoXbJ2PrdnrYuX4vXfseX/wbxwpSeiD9OpDpQV5VMeasBT17AiJysMFhcwphw7nXnonL4Wb59yvp1u90+tx0NjNHfYrTxxXjynez+e/tx9jK4wsy894QQQEBWEBthp71LCJiIMLcprrNq9Fo0q4hz3/7OD9O/5Um7Rtx/cgB/PntP37/1ev2BvAanALMHPUpi79cTjC5d4vNTINW9XjjgffoNaA73ft1qn4DazCEEgWJnyFzp4MSi4i6D6mngizo0dd9HD6nUADp/AlyJoV41QoiApn/KdLcGWG/6oTlLijAcRswAKjdOJlHpg8FjAzY6CsnGuWzPkgpObQrheann9pIAKxbtAmXs8jmS4CiCMxWMy6HG4/Ly7wZC7FGWEnZl86d40uLjJ1CeREZE8E9Lw32/67nTAGZWeQMj2/B7VHdph2f8GyEEo6BwNh8aYAXnF8DFqRnBSJhVjUbWLOhmlRufPxq/++L5i5j/ZJN/t91TWfXqbavQugpoGdSUjKpICvjAtd8QEE6v4Pk34ySxVMIG/rech59bzGILnes3cXcV78P4KDct+VUBVcA3CsoScplBGPBDZ4/wbMU6fwKkuYh1LrVb2MNRuc+Hejcx1D1ycnIZeqD7/kDsgCZKVlomnYqeePDXz/8i9tRZL4KUFUFi82CI8/JjrW72bF2N7+8/zvjfnyS089rd+yMrYEQphaIuAkASKlD5l0EJnQEUjtwKunlg3QtIUARCShUQXAYPoNjNji+RcocROTgkhc5gXBctSQ4ch288r+3GX7u0yz9upCh8+COw9zT5VGWf7ci4HxrhOWUg1AEifXjAwm8Jeia0e9Z9Lgr38WSr/6qdvtqGnRd54NnP+ehc0YxZ/K3/qi41LPRM+6DvKmU+EK0UxmFAki1KeAofhSjIqPo5+YG9z/VZldNxi8f/sFD5zzNW8Nn4vZJKXo9XqY98j7PX/dyQEAWYP9xJK94zKEkU1gtVBRakePS+F3PQGqn+GIqizV/bGBEnzG8MGgKmSmGioeUkm/f+omhXUcGbi6A1APBqj9OYoioIAe9GE6uxL/OSg3pWV1tZtVU7Nt6gFGXj+fJS19g96bCbOyKn9cwqMlQ0g9kBpyveXTysvKr2crjF7FJ0YEHJGheHUeeM9CHdbr5Z15x6b9TKC+knoGeOQI97Rak68/C456tyJQLg8gr2sC7l1PwQakV5KAG5BPowzrAOa96bKpCHFcVBlOGTmfRF8vxuDxs/nsbd024hcuGXsRDZ48i/VBmifPNFjMdzzO0YU9FaSGhTjwWuyUggi0U4ZejLIpDOw6zbvEmOpxzqgyxovjmjXl8PukbXPlutq74j8O7Urhj/E1Y3feBe3mQd9gQtosAkFIz2GlPYgglAomJ4Juw4tDQ8z5Bibypqs2qsVi7aCNThk7Hle9iy4rt7Nm0nxEz7+XLV7/nq9dKsvqbrWb633kBYKyviqKc8CV1lYEQZiQWSga5BCWlFr2Q+wbEvVg9xtVApB3M4KlLx+PKd6GYFLau3M5zXz/OrvV7eGv4LHQt8DM3WUxcePO5AP7ecUU5rnIi1Q+lNmjF9cELKriKwgU5U5HWfobk7imUG1JKHj7vGTKPZCGlZP2STYz74UliEqIYPeBFPK7A55yiCk7r0Zzo+CiklOi6ftL7sI3a1Gf1bxsCjqkmFV3XA9sUJPzwzi9c/9iVfuWEUyg/ZOZDvmSMF5nxLzJmLFgvhPQbQeaUfIMSaXAbcMqHBRCm+j6foGgVRrD1FfCsRXq2IszBielPBBxXT4btq3biKch6uTXeffxjnrx4HOmHM0ucW69FHd5ZOxldl9ze+kH6W27gkd7PhNZwPQnQuG0DImMjsEZYsNiNYMpZV/bAZCl5U2tenT/mLDsGVtYcbF+1y6jeADwuLz+88wv39hiJdK8McrYVEr4AU2v09MHIw23RU/oaffwnKaSIAVMrjPItK6htwdoPiA5ytg6OL6rXwBqG3Rv3+VtAvC4v//66ljvbD2fBx4vRtWJl9gLGfDmCvrecx+v3v8sltpu4JmkIW/45eXvEpdTB2gewAHZQGoD1IuP/kmf72hNOoaI4vOsIqmq4KLpXZ//WQwzr9hifv/QtXnfJIOPdE25m2Ku388M7v3BpxCAui7qZ32YvrW6zjy/Y+mGQykYCscb8NYXgJNF2GyW0p1AhuBxuslKz/RtbR46TJ/qN5e0RH+AJMl8vuetCJv76DGt+38CVcYO5xHYTM5/+tLrNPq7Q5YKOmK1mbFE2rBEWevTvTPeLTw/Sugi6Ltn81ylS5ErBW5RjywPZoyHzQZBB1DvUzoik70BPQz9yruHDZgxDypOXhFKa2oKwAXbACuZeYL2A4EpKOpzgql/HVcDgkrsvxGq3+H/3uDys+X1DyeQNcOC/Q0RE25l42xvs33YQKWHz39v5edbv1WfwMUZ2Wg5jrpnEXR0f5qNxXzC41f1kHsnC4/Yy6Klrmfzbs3S5oAMEyQpaI6y07BxKDuQUyoILbzk3YL56PRqpew+Rm1W8xxmMEtA8ZM5rvoiuBG0fMueV6jL3mENKD3rWs+gp/dGzJ8CRs8G7CfCCtQ8i6StE5O0E17W1Gprip1BhdL+4E6pJ9VcJ6LrEkeMk7WAQ2R8Juzfs4485f/Lj9AXomk5ORi6ThkytZquPLfS8Gegpl6BnjESmXgquHwENlPqQNB8ROxH0YG1xKqihNcVP4ehodnoTohIiUUyFboor38XWEEGr9Uu3cHDnYV679128bi8ep4dJt009qZSUpPNX9NTL0dPvRE+/F/JexVhPVUj6DiV+GugheEmEDZRQCiCncDTYIqx06t0es6WwcNflcPPP/NVBfdiVP69B13SeveYl8nMc6JrOFy9/f1IpWW37dwcP9HqKB3o9xbQR7/PstZPxerxoHo3x80Yx7ocncTs9weIFaF6NBq1O9dJXCrarAFuRAy7wLKEkTw+grUdiR2Y8APphQIL7T3D9Uj22HgeQ2iFjbU29HD3nTUi7yleJ4YGYp1ESZ4HpNEL7sCdudQEcZwGDqx+4lGfmjsDi24QJIYJLtANIuDJhMP/+stYf0fW6vUEjuTUVk+98i7++X8mu9Xt5f/RsNI+G1CW6V2fhp4sByDiSibdYKZw9ysatYwZy0W3nHwOraw469+nAq0vHktwwEaEYE1XqOqopWMAASL8B8t+hMKKrGbI1Jwlk3gxwzAXtP8ifCeTg7/l2LUAIgdTzMPq/ikKBiBsQMU9Wu801CXWa1OLtNS/RrlcrTD6nVtf0oM4swDsjP2Tcja8GZHOL94zXZEjXIsh9DbTt4PrOmLd+joKdCJmOlA5KfoDCCIDFv139Rtcg2CKsTPt3EhfcdA5mqzFfFVUJunkAWPTFMm5rdX9AtUxp87umQWr7kZkPg3cLuJeA+xeMP14H8hDaZkPpQw9C0mXqiEj4BCEsJS98CmXG2O8f56ZR1/jXV9WkoqjB3eyDO44wIO5WcjMLs7lSl2iek8OH1TSNkX2fY9PyrWxavpW5L3+PlBKpSzwuD+uXGOoeGUeyAt8ooG7z2oz5ciR1m9U+BpbXHIjoERAzjkJpa4XQ20IPHOkM2iYKuU88IE+O+QogM+831lbvliLBWB/vlsPX1hlMOl3EQcyTCOv51WVqleC4ChgAdL+4M1OWjOX089vR5cIOJNdPRFGCRw1ksR5GXdP9Os0nA/ZuOYDX44tkFXOKEmrH4fV4+ej5uQHHFVWhW79ODBxxxUndjxwutOjUlNf+HMeZl3ej3Vmn8fzsOCIiQzGjB/FcxckzX/H+Bzh9vxQvgfe1IWQ9XPJ9agOUmKcQwlbytVMoF+o0qcUL80fR99bzaNWtOb0GdA+okimBYlO2YON2UkDbC7JgngbJGChxkHkvJbMxVkTsRISaVLX2nQSIjo9ixHvDuP6xq2jVtRnnXncGZlvoOSiLfRUmiymoRFuNhHYI/D3FxeekBmoDZM7LQG6x18yI2OcR5pZVb2MNh9li5uZR1/Lw9Hto1b05va7sXuqaqXsDvyevx+tPmNV0uPLdOHJCJ0zqNq/F8h9WsnPtnoDjVruVW0ZfR7eLTsn9VhZCCJSIyw0FKnMXsJwDIobQmdriz0EPUkRUrZHHE7x7CVp9AaDUQdcywTm32AtmsF+OEnF9FRtX9Tguvb8WnZvy0sIxAGSn5zD/3YWsXbyRgzsOs3fLgaAkfgXYs+nk0Qm9ZvilvDX8fRTVuLkduYVMsod3p7Jn074Sn1W7s1rz4Ft3VbepNRpJ9RN59quRAEjpBsdcpOtvQxHB+x+BhCjF4N1VLTYeDxARNyCdP4NQfFFpN4WR6nyDz0EWyyYo9RHx06rb1BoNe6SNh9+5BzCIuhbNWcaKn9ewc/0e9m7aT34pTlzq/pOIhd56AYhXAZNPi1ojwGHybAJP8R7aSET8GwjllNRvuKAoCoPHDGTwmIEArP5tPcu+XcGWFdvZt/UAWSlByLl80DWNnIw84mvFVpe5xw7m9gZrt34E/H3FBQFagXSvhhL8OipEP44wnyI/DieKyn/uXL+H3z5dwsblWzmw/RApe4uTUBbCHmXjwPZD1G1a8zPnEdF2elzShdUL1yOlRDWpAYoRa37fSES0vcT7Lr3rAi4YdE51mlrjISzdEYmfASC1w8j8L8Gzwgiaa7sJXaalILSd1WbnMUfkLZD7js+HVTCqZH3wbgPP+pLvsZyDiAqSCDsBcdxVGBRHTEI0A0cO4Lbnb+DQrpSQwQLVrGCNsHDONWdUs4XHDpfe1ZfJvz/LiBnDuOnJqwPu6SN7U0g/nIXZVpjtjk2K4eXfnyU2KeYYWHtyQAgLIuJGROwzoO0jdLBABexgv6YarTu2EJauiKRvELEvQOykYq+6wLUAlKI9iSokfYswtahOM08qCCE4b2AvHp5+D3lZ+ThySwYLhDAqk6wRFs67rtcxsPLYQKh1EEnzjPkaP5NAp0lD5n8C1h5F3wEJMxHWs6rZ0pMLnXq3Z+grt5FUP4HcjJKSdEIRKKrAYrfQpH0j4pJPjuedEFZE4leI2BcRCTMJJN6ShqNr60tA9jD6sVPKM1WMpu0bMWTcTfTo34XMI9klXheKQCgCs9WMxWbmtO4nz/PumbkjGDX7YZ7+/BEatKob8NqP7/5K9/6dAlo6zr3uTIa+cvsp9ZMqhFBro0QPRUTeAdpBQgcLTEaFrOXc6jTvmEKJuheR8B4i9kWwXx34orYJhJ2APLzSGCVhWo1JIJwwd93mv7Yj9ZKlIKpJwWwzU79FXV5dMpb2Z7U+BtZVH9xOd0DP22ndmnPutWeSmxnoOOmapEHLukxZMpaufTty9jVnMG118U3aKVQZvDsJXrqkABajBD9uCkrkDdVsWPVCSg9Sz/CXBQtTE4StPwKdEg6t2sCIclv7GWyzCV+gKMEUE04h3HA53BzYfqhkf7gA1axiMqvcPWkwD7199zGxr7qg6zpZqdl+WT6hJhnzVU2kBPOxqRki9iWw3QDmrhD3FoqlU7XbfLJi7R8b0bwlW0VUk4Kiqlx1f39e/uO5Gt16Z/R8ZxjcBBhStcLWzygvLi7/aapvbAIi7wdTF4h6CiXytmq3+WTFv7+s8auAFYWqKJjMJnpd2Z131kwmKq5mbC5CIS8rz69mpqoqPfp3pkf/ziV82OiEKDqd355HZw6j/Vmtufbhy3nioweOhcknJzyrMMi6i0MFLGBqh0j8ssa3MknpQOqFbVzC0tVYY2VJsmhhbulr7+gJtisQSXOq0dKqx3HZkhAM7c9ujQgSVdS8OppXZ8+m/TRp1/AYWFZ9+PPbfxh3w6vomsbFQ/rwwJt3IYTA5XDhyHEYerXSIHn636RbqdOkFnWa1OLFn54+1qaffDC1IPjtpQNukCaEWquajapeSM8WZPrNIPPBfDokzEIIC1LqSO0ABtGODkiwXYmwGiWcIv71Y2n2SQlbhJUm7Ruyc+2eEnrXXreG1a5itZtrdGYnKzWbB3o9xZE9qSTWjee1ZeNIqGOwxkvPNhCxINMACab/t3fe4VUU3x9+Z/fW9ELvvYpIEwFRQFQQUBRUBMGGXRRsWL+ACnb0pygWFKUoCIqIgiAKWOhI77339HLrzu+PvbnJzU0QFBJC5n2ePORumZ1dTubOnjnncy5CRN5jRhTFvVS8HS+ltOrSjF8n/44/fx64x3QiZGW4cFzAmkZSepHJA8Gz0qxwkDABEaiRjnedWaXDvxMwQCsLsW8hhIaIfgSiHynWvpdG2lzfknW/b8KbT4Ta5/ODz8/BbYeJLx9XPJ0rIsY+/gU/fPAzmq7x9IRBXNm7DQBH9hyjbNVEDu08gpQSu9PGq3OeB6Dz7VfS+fYri7PbpRNba8yS1/mdBoHUPN82hOXCrgRkZH1rlppEIiPvR4t+DABppGNGaumYc1gNYl9DaDFguxSROLH4On0OKTGzvxqNqzJ64Qiu6teeei1qhe0vUzkBi7XE+D/+Fe/e/zEelwef188vExcF9RrevPMD5nz2K36fH4uu8/GaN7lpcLdi7m3pRmjRiMQZ4OwLlosILV0DpghVxYJOvWCQ6a8FNAm84N0Ernnm9szxkPk+5gqYBjGj0eJeL86uKoDRC0dw23M3Uv/SOsTmC+P2+fxUb1SlmHpWNHz//hyO7j2Oz+PjxMGTTHt7FgDSvQRSnwZ5ArCA8160Mt8pRfliZsgn9/PA23dw0eUNqFi7fEikvaZpF37ZYPdC8K4FvCDTkWmvACD9h5DJA8C/HdDA2hZR9g80PbE4e1vquf6hLjz9xSO0uLYp1RpVQbeETr/rtbywX74O7z7Kjx/Nw+f143F5efd+s4qMz+vj0TbPs3bBBoQQlKtahu9OfkHdZuHzfEXRIWwtEQmfgb0L6A0Je13UL+zxVUoJacMAL+CDzE+QhqnhJJMfANdPmM4TO5T5Dc15fTH2tmgoMQ4DgPqt6vDMxEe557V+Ids1TfDitCd4484xPNt1JBsXby2mHp4b0k6ms/6PzaGhldIs2QOw7o/NQa+11+Pjq5HfFUc3FfkQliposcMh7n1CtQwExLyCzPgE4+QAjOyfiqmH5wYps5GelZjlIwM2K8hV8HYtzlNO0geZ7yHzy5sripzI2Ejuevk2Ri8cgTs7VHuj56CubFqylSc7DWfK6zOCIfsXAn6/n83LtpORkpk7xgqBnpM7611Lbni3F7InB1YYFMWJxWqh56DreOf3l7E5bCGpthe1b0BsmRievvolPnjsc1xZBYXWllykdwvSn1fgOWe1C/BuzVMuwgfeJeDfh6J4EULQ4dZ2vDbnBRq2rhsSGZNYKZ5r7riS57uNYlS//+Pk4fBw55LM4V1H2bF6d0g2fI42QfLRVNKS0pDSrHR2bN8J1i4oQDxOUeQI26Vo8e9BxF2EpthaIXYURspgjKT7kd4txdXFc4L0H0d6VhD+ihyYH3jXklse3QVZE4quc8VIiVuSP7b/BMNvDM3Fv7Rbcz59eiKbl27H7/Oz4c/NTNz1AXFlS74y8r4tB3n0sudASPw+M1TL6/HR89HrqFKvEicOniQlX53a36cv5ekvvVhthZX3UxQVUmZD8h2EDLaiPPg2QNYUwA2pa5B6ZcQFkP8sjTTkyRvASDGV5UUMyHSwXQr2q80qEr7VoSf5D4FvC1gbFUufFblIKXmlzzu4MlzBbZquUbd5Ld6572PcWW62LN9BVHwU3e+7uhh7enbw+/08c80rbFmxA8PnJ7ZMNEmHU6hSryK3PHUDADJ7Tr6zvOD6BSJuCm9QUeRMf+dH9m7cH/wsNEHvJ65nZJ/RuLM8bPxrC9mZLp4c91Ax9vLsYaSNCnx3AFo8SBeIeETMMACkexGhYcQSmfmlKcSrKHZWzF3D3C8WBD8LIbj9fzfzbNeRZKe70HWNfZsP8NHfF4bm1PxJi3jn/k/QdY2ouEhST6RhtVkY+uUgANb/uRm/N9QBPf7FKbTq0qw4uqvIh/TtgPTnQzc6b4HUIYEKCgYyaRWU+/OCKH0tPWuRyXdgOgssgA0wIPoJhBaP4d1GmJh59lcQM7TI+1rUlKgIA4CJL03DlekK2Zad4WLr8h1BASTDkBzdc7zQNpKPpXJkz7ESUZ951ti5ZKZnkZmajTvLTdeBV9Htvs7sXLuHVb+s5YsXp4RVjtAtGrpFx+/zF6h6rihCsn8w62OH4AH3AnIndT7wbSu0CWmkI317kDJc4Ou8w/0b+JNBZgIe0GpC5CMgvcjsGcjsuYTXAfeCiDa1DYyMEvF3eaGydcUO/p6/PnSjgMUzV+AOrNK6s9xsXbGj0Dbc2W4ObDuEpwCBr/ONPRv2s2X5dlwZLjwuL+4sD49/9iCJlRKY8d5s/K7tpvpxCH6kiAkIzmWo6JhiJDvTxWfPTArZJg3JpiVbcWeZkzqPy8vWZYXbq9/n58D2w6csJ3q+IKUPsiZilkt0gXECYt8Fa2Nk1kSzDnj21+EnClM8VhqZZhuKYmP0wLEh0TBSSo7vP4kr0xxf/X5Tk6swpJQc3n2U1BPhFRfOR77431Q82R6yM1y4Ml0M+fh+WnVpxrwvF3B491HGPjY+7JyccorubHeJ+B65kJFpr2OG5efBSAd/HmFv6QKj8HKh0n/ULJtdApCZn5q6WzID8EDkA+C4HtxLzdK0gdSvUExHiZRec5HwAqXERRhommbW+crzUnF411G8ntwvQa/LS5kqicz9YgFWu5XW3ZoTGRMBmKVaxjz6OQK48pa2PDX+4fNaRTmxYjxWmwWv24eUkp8++SWYfvD3L2tpcU3TsHP8PoN1izYxrOcbuLPdXHlLO56ZOOi8vs8LF42Q5FoAmQL+vPXsfUhLPcj+yRxs7O3RdLMOs/SsMIWtpARLXUj8+vzOndYSCYmm8K+HzDXm754lYL+mgJMMpH8/JPU1v3QsDSFhIkKLKIIOK/IiNI38w4TVZmH57L9DtlWrX5nlc1ZzbN9xLr6yMVXrV0IIwZE9xxjU+llc2R4iY5yMWf4aZSolFOEdnBkxidEY/lx7zUjNZPQ9Y5FS8vf8daQcXsuglwShpaUMMJKQJ3uDb7Np84lTEHrlIu+/AvIbrD3CxsKpf4Vsq1SnApuXbWfnmt3UalqD+q1qo+s62ZkuHmv7PId2HkXTBW/OH3ael7XTQUSYUVsAeCH1MYL26VqK+X2Tz+nqO4aR8qSZdyscED8OYWtRdN1W5FLANGzl3DUhCz/x5WI4sO0QaxduonyNMjTt0BirzYqUkpdveZtls1eDlDzx2YN0uq19EXb+zIkvH8fRvcdBQna6i3fu+zg45i6fsxpnZLgwafKxVL55ayafP/81QggGj72Pa+/qWNRdVwAFGqwvvxNdIqUFmTkNtGiE/Yrg/M3I+BAyPjSPirgDLeapc9zf/4hWDvPV2Ad4IHMsOQ4TmfQHWMLfuZBZSPdCZPIgwIeM6I8W81zR9bmIEGeymteyZUu5cuXKc9idf+bEwZM82uZ5jh8wvVk2p42IWCcpR3LD8i02Hd2iB1cYNF3jmUmP0vHWdlwf25/sdFfw3E/XvU2l2hWK/kZOE4/Lw0Mth7J304EC92sWDcMXvsLliLQHPdaOKAevznm+WEtOCiFWSSlbFuU1zwd7ldKNTLoDvDkvXDYQZUHmW0EQ5UAey/kAkfehRT+BcbK3qXgNQAQi7g2Eo6CX7vMDKSUy+VHwzC3kCI0Cy02KxIACPYADETMUEdEv/LgiovTaq+Sd+z9mzme/mjopukZUQhSpx0NXs2pdXJ3dG/YFJ7ktu1zCK7Oe4aPHv+SHD37GMCS6RaPPMzdy50vnd+nQaaNn8cmTBecgCk0wa9d6rLZ80T2iXEAEMaCQ7OiBFle8IcRFbbPng70CfP/BHD58bHzQFvN+9+XQpH0DNvy5JbjOULF2ecaufJ3FM1fy3sOfBo9vdlUT3vjlf0Xa/zPFcC+H5P4UXh/dgRmBkJc4II3g2KvXRiubP9WmaCmt9vr3/HW80OPV4MJPTpppXsdltUZV2L/lYNCmI2IiGLNsFB6Xl8GXvxC017hyMUw78lnR38QZcHjXUe5t8niYLk4OVocVryt0Bdti1/F7jGC0ocVm4aesycVapafUzgl8u5EnbzUXugBzfLECeXV8ojHHnJz/Rwsi/lOwXYo8ejGmOGBge7nlCC2qKLr+r5BGBvLEdWAUFhGR40zIj5Xc+3cgysxEWIpPGPJc2GuJizAoUzmRyXvHsmP1bpbMWkml2hUYMyh0wJSSoLMATCGV9x76lI63tsPutAUdBkiJzXl+rtau+Hk1O9fupXW35rTqcgl7Nx8ocH6gCYFms+DzhBpwyIRJhXgXG0LYEYlTMHwHIHsWQotEZs8CX16HgZbHWQAgIfNzZORdICIJvmQLAp/PP6R3PbiXgLUpwnkN0rOQgmv4GpjiXPlewGTecDZlr8WFEILHP3mAga/145cJi3Bnezh5KIkfPgh1AO1atzfk87pFm1j/+2ac0U40i47h8aFZdCJinEXZ/dPmyJ5j/D5tCeVrlKPlNU0ZX8CkFczwdqEV4OAK+XuFAldhFEVCz4e70vWeq1jw9Z8c23eCag2rMLLPOyHHrP8jVJTr2N4TzB2/kLJVcysHaLp23tqrNNIge4YZHeC4ngKjCILkdxYApJyzvinOjOadL2ZWxiSWzV7N9pU7adqhEU9dFVqadV+++V5WWhZfDpvKnS/fhpEnEsEReX7mjPu8Pn6ZsIjsdBedB1xBYuUEDu0o+AUsJ5U45Hx3CUi/LCUIS00otwzpXQ3uPxHW+siUIfmOyiJ0TudDpg1DlJmL+ZqZs08Dcf69dkopwT0PfPvAcS3YmoNrdiFHaxS88JV3/iC5EOcE59//3GkghKBu81rUbV6Lw7uO4soK/YL0e8MHG4/Lw+t3vE+Xuzsx+9P5uLO9DHyt73kZLjvn81/54NHx+Dw+Jr8ynRHfP8300T8WeKyma0REO0k5Xng+W7uel9K4bf1z1V3FaaBZqkD0g2a+c/ob+fY6gcx823zIlBfA0gx8B0xvp+N6sLUtoh6fPtKzFpnUH3PAtELs64Q5BII4QKsIxu7CG9SrgVMJyhUnMQnR9BrcHYCBTR4P2RcZF0lmSqi9+rw+Jr00jUbt6lP74ursXLuXxm3rc/1DXYqsz6dL0pFkHmj2FO4sNxabhV5DuhObGM2Jg0lhx9qdNtataEXzNiso9AVNRCMC9ZkVxYPdYaPLXZ0AeOueD0P22Rw2PG5PyH+fYRjMm7iIFp2bcEnHi1g5by2VapfnoXfvKspunxZS+sz0F/8hQDMFN20dwPNbAUdbQasExn4KjOQCwIKIHXnO+qv4Z3Rdp22PlrTt0ZKfPvklJMtWCNBtethL89blO5nx3mw6334F8yf9TmRMBM99NbjoO38avHLrO6yctwbDbzDjvdn0eqIHHwwKj4QQmiAi2okrw4WvgHl7DkM+vr9YowtKO0IIhK052JojPWsJ/y4sYKzxJyNTX4CI/qZIq5AQ8/J5KYwoM8dC5semUHfmWFMX5pQOgwjCtbjyENEPYalx1vtZ3JRIh0FestKzsdqs+L25q5n5JA4A8GR7mT/xd6x2Kz0HdeG+NwYUcU9PnwVf/xUUGNMtGrvX7w87pt1NlxIdG0mnfu35e/46prz2fYFtxZWL5ZmJj57L7irOCD/hL9MFrQhJ8MwHzwKwtkQr92sR9O3fId2/Y0YTSMBvemqFM0+eLWBpYmow2NoANkh7htxSdXnRIWEKQpyfK32lEXc+kVl3Vri9Gj6DtYs2se73TSRWSmBm6pdmqbvzkE1LtiGlxOf14/P6WfjNYspVKxPiMEisFE/La5pSrVFVLul6EaTcQMERM0DCV0q/4DwiMzXUmWUYRtj8VhqSnat3s3P1bpxRDr7Y+h7lq5ctwl6eAf5DAeHcQNSk5y+IvD+fw8AKjp6gxyMi70cea03uJD5fNEL0y+bkX3FekJWWjWbRgwtdQtMKXGE/sucYP3zwMzaHlVd+fJZmnZoUdVdPm+Vz/g6mXKScSMNq1cOO6XZfZ3SLzs1PXs+zXV7hwLbDgDnnzVtysnP/K7jmjg5F0m/FaSAzzEgnmTPOFhbtlA6ubwE7RA9Bi7y76Pp4pmT/lKfUtwT/AcLuy94TNCvCeQsy60twFbyIi1YLLeaZc9vfYqLEu+xqNqlGs6uaYHPmlhA8VQS+1+3lr+9XFEHP/j2N2zXAHmFOtoUmmPlBqKcrpkw0lWqVp8s9V9GsUxPqNq+FI8IUjrFH2Gh57SXEV4ijfqvafLL2rSLvv6JwhLBC5INAXqGfU4Xf+cG74ryuHCCsF5GjEgtO8O4MdRZgA8slCEcntIgbELa65A7ENrA2B60C6DUhYRqaHl2k/VecmvveugOb04bQzBA7n6dwe5USMlOzOLzraFF174yp2aRacEJqc1hxRNjZvGx7cL/QBM2uakLDy+rRa0g3dFsFEDnfLxpolUGvYUbKxL6DZq1b9DehKJTbX7yZiBgnlsBLSv50vfxIKdm4eGtRdO3foZcHYcecwFpAVIDMT/McIMDWDizVEZEPIrRocywl8JImnKBfBFoZiHwMLbJX0d+DolCuvuNKEirEYXOYY0xeLYOC8Li8rPh59SmPKW5qNqmGxaojhLmA9+nTeSqZCKh/aR3iysdy27M3UqFGOepfWger3bx/i9VC0w6NiSsXQ+f+V/Dk5xdGOdQLBtulYKlP7hz2n+ambnAVpml1nmBrRvB+pA8yxhJyX1pFsJRDRNyOsDUFazPMyGDMf23tTfFj66WQOL1o+16ElNgIA3e2m+2rdlGuellGzHiavZsO8HCrZ/C4ChZWycFis9DkioZF1Mt/x+0v9sJmt7Duj80c3nWUgwHPKwACXJkupr01ix8+mMujY++j5bVNueKWNqyat5ZmnZrw5PiH0PVwj66i+JDSD94NoEWhRT+KjOhtiiH69/7DmRpY6p/XFS6EoyMyZoTpcZVu8C4LP8g1Eemahoy8D+HsCVEPQ9Ykc2Ib9yGafv6K4JRWdq/fi9fj4/IbL2Xyng95e+BHrPh5dYEpX3mxWHXKna+rtUDlOhUZ+eOzfPvOLIRFY/GMUAey1WZh/qTf+ePbpaz7fRO3PXsT1Wq9CumvgYiC+DFolurF1HtFYRzefZSkwynUa1mLr/Z9xDdvzmT66B/xFCK2loOUkjrNik+c6p8Qwg6JU5Dp7xGM4ArBCZ4/wbMY6ZoDsa9A7BuQ+iRID8S+jGY//1LZSjvJR1M4sO0wtZpW54tt77Pom8X834OfBqNLC8PmtNG4bfEJWJ8Oo2Y/z+fPf03SkWRWzF2DP4+T2RFpZ/e6vWxftYsfP/qFYdOf4O5R/Ti04wgnDiRx23M30uOBa4ux94qCkEaGWR1Br4FI+ArpXQNJAwhGPhWKDWyXFUEP/z0i5n9IkQC+jeDdAjLvgocORjJkfoLMnIiMewPs14FnKXjXgr0LIub583qOfrYoMQ6DvZsPMHPMHBIqxnPdvZ0Z3O4FUo+n4ff5Gfbtk7Tq0oznpwzm7Xs+JO1kwbkliZXjuXpAB/q9cP562F1Zbia9PI3v358TItwYRJrpFQDubA/v3P8RSDPHyOv28se3S+lyTyeaXtm4iHuuyIs0kpAZnwIGRNwDaU+Ddw1IAxn1KFrUQGTs+5DyEBgFV8CAKHB0h+hBRdjzM0NKA5k5GTI/zCdcmJccMRgXZI4x88WQgA+MNHBNh8g7i6S/ioLxuDxMHz2L4weSuOHhLvwyYREzP5iDEILLurfg+a+H8Pin9/NC91fZtmpXwQKsFo32vS6j3/O9cJ6nYlwAf85YxmfPTebA1sMF7jf8Zgi7O8vDb1//yV/fL6fTTScY/MYhwAYZ70OcitwqTqSUzB43n63Ld9Chz+WkHEth9MCP0CwaFWuW5/2lo7j9xd7sXreX5T+vKdjJJaDF1RfT+/EeVGtw/qaUSM9aZNqr4Pu7kCOycn/1bUSe7Etu6psG6SORth9LxYT2fGbpj6v4a+Zyml7ZmKoNKvFUpxEITWC1W/no7ze4uv+V7N6wj5lj5gTnePmp36o23e6/hnY9Ly3i3p8+h3cf5eMnJrD4hxUhpSJzcGXkOkRSj6fxXNdRGFIiDQOfx8/nz31Nxz6XExV3fgo8lxakdwMyayro1c15aNJNIF2AgYj/As3WHCPmJUh7hYLz+QVQFSJvgsj7irbzZ4A00pBpo8E1jVDhwhzyphFnQ8qT5IoauiH7G4joDdbz24l3NigRDoO0pHQea/s8mWlZ2OxWFs9cQfKxVFwZZi7thOHfEFMmhjfuGIM7y43QRIED1cmDyUx5dQbzvljAs5Me4/sxZlmh+97of96UVhzW83X+nr/+lMfo1tx8N587NNzS4/KybtEm5TAoRqSUyJN9AnlQgGsOGCkEtQoyP0A6r4eU+8EIF1rLJQNcU8A1EyPuXXDPBf9xRNSDCFuRVvcpFJnxnuksOCUauQOuQahATja4FyqHQTHz+oD3WfrjKrxuL79N/oPsTFdwDP3r++Uc3XuMUf3eY/f6fQgEsgCPgeEzWDR1MX98u5RHxwzk8K6jbF25k673dDpvaoUvm72Kl25+C3mKqF9/3pDggONg3pRo7nlOIzrObeaQK4qVb976gYkjpuHOcvPbV38SnRAdLNt2ePdR1izcyJ/fLWPF3LWFh3hLWDVvHat+WUfPQV2pUrcif363nOadm3Dr0J7nhcia9O1DJt1GwWW8chCBn5z7zKsN4wffLjM/V0Scq24q/oG/f13PK31G487ysGDKX1RvVIXswPzVYvXw21d/Yo+wM+P/ZmP4jULnsFtX7GTryrEs+PpPej7ShZkf/EzVBpW559V+54WT1uPy8MAlT5GVXpA+UQABFoseFDl05YuoMAyDfZsP0KiNEuouLqT/IDKpXyCv3wHu+ebiTiCaQGZ+AvJ2SB+B+ZJdQOUrJLAPMt+F7O8wYl+BzM9Bi0JED0Xo5YvwjgpHJvUF37Z/OCpvycQCIoC8q5XD4Hxh/5ZDZg63NF+ID24/HBQqEJpgz8b9PHXV8GC5RE0T6FYdw5AITWD4jZDBN+lwCs93G2WKsghYPX89Pp+fqLhIRsx4igaXnrucVL/Pj6ZrhXr71/2++Z8bkdC0Y2M2Ld6G1+1FaAIhzPu0Oaw0aX9+p1xc8Mhs8O8nOIAaJwiRC5Ee5PHu5NbFzpnwaeQKreSdIGZDymOBbT5k0jIkNvPQmJfRnN3O3a1IPyAQopDJc2HCLyHoZm6XdznhXypOsF/x3zqp+M+s+30znkBZQaEJHBH24ITW5/Xz8KXPkpWWFRSyEkKgW0171YTA4871zBs+g/976FOsdiuebA+bFm9l7JAvyUrP5panrueO4bees/uQUmIYRqEpWb99/dcpnQVgpq3Vb1mbLcu2Bye1ukVid0jAHhDuVBQnq+atDYZuG4bEatfRNIFhSNxZbt4YMIaMlIwQ8TSr3YLhl2gWgdeVZ3yVMGvsPHSLjifbw+al25g1di4px9O4rEdLnv9qMLrl3KT4mdo0fkQhpcakZzmndhYA6KamhpEC8kRgW57vE726qWOgKDY2/Lk56NByZ7rJSs3CarfgdfuQUjLl9e/JSM4M0Sqy2C0YPgPdogXHXQAkrF+0ifV/bMbn8bH+jy389f0KUo+nUrtpDUb+9BwxiedOB8jv8xf693Bs/8lTOwsAJEQnRhOdEMXBbYfw+wxzTqwJ/D4/QgiqnscRP6UC7yaCGii4wL8PhB6ILNTAsxTp/pNcwW6B+VKdM5/1E1qWZh8k30OOc0G6/0LKLNDKIhI+QVjqnLNbkdJX6PgKgG974fvyYmkBvvWYTpOcuXpgPmu95D/1saRQ/C7006B6oyroFnNCYHPaaNW1GTcN6U50gpn37Mp0B50FAFqewcxqs1C5Tnj0gMflNVeCDUlWejaebA9Jh5MZedu7IcdtXLyV1/q/x8SXp+Fxe9myfDu313qIXmXvZu6XCwrt8/EDJ1m7aGNw8JRS8s59H9HVcRu9y9/D9r93FXheYqX4f3wemiZ4/ushdLuvM5FxEdRvVYdHxtxDjwevYdh3T3FJx4v+sQ3FOUQ4wVIbcwC1mmUCo0eCKIv5J+fFrIudM5nNsVfD3G9tWkCjLnInjh4gw1SrTR2KlLm2L337MFKfx0h7GWkkI/2HMU70xDjaAiPtzULFE6WRivQsR/pz0wqMzAnIo02QR5tiZP9c8L3qp+FVFVZE1H0Q/T8QceYENmYUOPtCzP8QEedfKbPSRstrmgaFDYUQvPjN41SqXQGr3fyiTT2eluss0ARCgOGX6BaNSzqFjzfSkMHcca/bR8qxVDzZHqa99QM71uSW1ExPzmDs41/w9j0fcmDbIbIzXTzXbRQ3xA1g+E1vhjgi8uJxeVj/x2YO787NNVz1y1puiB1AN2dfJr48rcDzGlz6zxMTaUja3nApo+Y8T5nKCcRXiOOFr+/EFn87RD2KiH3tH9tQnFvaXt8yKPSraYKH37ubOs1rYY+wIYQg9URaiLPAXDiQWKw69VuG24Df6w/aqzvbw/EDSXjdPpbP/pvfvvozeJyUXoyMsRgpTyA9phitkTrCHF9P9Eb6jxfYXykNpGcN0psrrih9O5HH2yOPNsZIfjTgnM2H9XSU8H1gqYVInAR6bRCxEPkwRN4NkfcgEr9S6QjFTLNOTbAHqsbYI+zc8tQNNLvqYpzRpiMnPSkj5LtZCMAwx9fESglYbKEvPD6fH7/PtBev28uJAyfxun1s+3sXXw6fGjxOSsmcz35lVN93+e1r045/GDuXm8rcxR31BrFz7Z5C+7x7/V42Ld1mVhnBHKsfaPYUXe19eKjl0LBqJADlq5cJiuOeCrvTxrt/vEzjdg2IjIvgqn7tGTDsZm4cdB1jlr1KdLzSNCpWrE3IfeF3mDn7jhuBWHOTzCC0ulfOq6Qw57+iIA2jnO9yP8hkwA3GAWRqaEUB6f4TI2UIRsY4pPQj3X9hHLsc41gbDFfh1cKkb39gTDb7JaUfI/lhc3w9dgXSt6fgE8XpONcMSBgPjq7m8dZLIfo5cPZFJHyOsJaORVpxJurrLVu2lCtXrjyH3Smcw7uPMmfcr8SVj6XHA9dgtVnZuXYPgy9/AVemudKQ86XojHaQlZYd/L3HA9fwzZs/hLWp6Rq6Vcfryp2URsQ4mZkyAYDv35/N2CFfYBgSm9PKVf2uYPnsvzl5KDl4/rDpT9D2htB8srULN/J891fRLRqOSAefrH2L/VsO8mzXkcG+1mlWg7Gr3gzr06FdR83BOCWTynUr0ODSuvw6+Y/gfqEJrht4FYM/uv9fP8viQAixSkpZpHH0xWmv0khDZk4EJCKyP0KLNQe/o40JDckX5ku0TM7d5LwNsqdQsPqsg9CBWiDKrURo0RjupXm8uBZTyVZLBM8fgbYsEPkgIuqRkAmk9O1HnryJHK+wSPgK9ErIY23JHeQdiPJrwyaehpEFJ643PcjEmBUgMl8P7bK1GSJhklkhooRQ2uzV5/Xx48e/cPJQEl3vuSqYonV7rYc4usd8CdJ0DWkYRMZF4s72BMfNRm3qsWvt3rDQUjCrEHjyjK+6rvHGr8O4+IpGHN51lIcvfYaM5EwQEBUXSbf7r2b627PweXxousblN7XmucmPhaxoZWe6eKjFUE4eTsbw+Rk6YRDte13GzRUGknIsNXjdzza9S4Ua5UL6I6Xkma4j+XveWiw2C49+MJDR934UckxipXg+Wv0mcWVjz8KTLTqK2maLdXyVkoVTF7P9711cfuOlwfDlEb3e5M8ZywHzuxJJsIJSjiZQZFwEZSonsndjeLlii82C3+fPjUgUcP+bA+j9eA9zTD/ZB/y7MMdwB0Q/A+mvY6YBCNDrIxInm5UK8vRVpjwAnmUgDYi8By36MYykO8GzBFOEKAIROxrh6BTWJyP1Tcj+FNDAORiy/4/QSC0nIvFrhLXRf3iiRU9psleANQs2sHzOai5q14C2N7QCYNrbs/j8+a+ClTyEJtB1LRjZBKZNXn7jpSycujisTYtVN4sZ5zm+7Q2tGDHjaXxeHyN6v8Wyn/5GGhJ7hJ0H37mDDx/7IigOHp0QxdhVb4SVFP1y+FSmvfkDQtdoemUjXv7hGb743xS+eeMHfF4fFpuFvs/dRP//3RzWp9++/pPXB7yP4Tfo1K8da37bSNLhlOB+3arz/FeDad/r/BbCy09pmxNI73Zk9gyEpTo4eyNEIDIg5ZF8JRUFYCM4LxVR4LgZsscX0Koe+Mmjz6ZVQiu3EAAj/R3I/Jjg+Bp5N2SNz1PyUIeEyWj5ysIa2fNMkVehm1ELid+D5w9k6lCQWWYfbe3REsaF9cjwboSTfYFs0C4CPRa8edMONYh8EC36sdN/eOcB58JeS0SEAUDFmuW5e2Rfbnq0G1abOQGocVFVajaphjPKgT3CTv9hNzPH8zVX9WuPzWl6c10ZLr579ycSKsWFtRlfPpbu91+Npue+BOV4Rzct2crHT03ECEwcPNle1v++ifSkXHEPw2/wSp93Wf1bqObAV6O+w53lJistm8yUTP78bhk+rz/kZctbSGmylGOpZAeiEg7tPMqh3UdC9ne5u1OJcxaURoQWgxb9MFr0IwjNfPEQQgdn74AHNgLsnaDcRogemidkVDNFVETFAlq1QMRAzAE6eCVAMyMDku8j9wXfB74tgfrdMndb5kfIrNCBXGbPMMsgygyQmcisCYSnDhRsr0JmgXEs8CktMAHOM6zoDRAJX5UoZ0FpxGK10PORrtwzql+InkufZ27E7rThjHZQqU4Fvk+dwOvzXkQLjJOarrF52XaiEwteEbr5yeuDkWBgWqJu0ZBS8niH/wVX1qQh8Xp8HNp5JDh5NvwGf363jNfvGBPS5t+/rOPk4SSy07NxZ3uYMOIbgOCKGwBChH4O4Pf52b/Z1BbxeXz8PP43HJG5JU6d0U4m7BhT4pwFpQ0hBB37tOO+N/qH5DrfNLg7jgg7ETFOImMjmLDjfSbvHRtMUdF0jay0bFKOpxbY7rV3daBWk9AKGDlzApnyOPh3kOvw1cC7ldycVgn+LciTtyLz5r34D4B7cWDi6sotiSg9hDqFC46mwb+ZoEaBawqh4z9Q9rcS5ywojVzS8SLue6N/0FkAcOUtbXBGmvZqj7Dz5q/D+DFrMhVrlUe3mKmrPq+PpT+tCpZdDGnzqia07hb68qTp5vfv5Fe+Zfns1UHnlzvLzabF2/D7c8fF9KQMHmj+FGkn00PamPr6TNzZHlwZLtb8toEju4/hc/uCdi0Nic9bcKrM/q0Hc/VvZqwkMy03RUHoguEzni5xzoLSiLDWRYt5GhFxqzl3BbC1AK0ciEjAAVHDEeU3gr09ptMAcx6ZPQkoIFpaqx6IVMgzRwy8F0nXb5A5jtzx1WVWIpB5FyL8kHQn0rsptN3M98zjZSYYx02dIenLM7xKCq3m4D9GcAw3NgU+5yHigRLnLDhXlBiHQUHous7bC0cw7NsneXvhCPr/72Z0XefBd+7klqeuJ7ZMNFKaObgpx9LCzj95OJmfPvkFw5/7pR0RCBHbvX5fcFIM5qTh8htbU6ZKYkgbXreXZbNDa+KWqZKAbjEfrUQSXz6OJlc0pGnHxlhsFhyRDgaNuSfkHJ/Xx1/fL+e9hz4NijRJQ3Jk5zHsgdBLe4SNTrdd/m8fl+I8QMS8jIj/HBH3MSLuQzTNgnDeCFFDzTxUwAzZOkr4n6cPsj4hdJKpg9ACAov5jre1Bku9fG14TRHGvH3SyxEc7LGAKI/QEiByIMG0ipgXQ6MSpES6FyPTRxIS8eBdmqctJ0TckPtloyhxdL/vat5fOooXv3mCsaveICLKSb0WtXnxmydo0LpuUJzrxMGkAkNRp74xk/TkXCer1W41tQ1cHpIOJYccGxnjpFHrUHs1/AbLfgpVh4+vEBccs4UmSKgYB8CjHw7EardisVm49s4OVK4T6nTb/vcuprz+Pcf356bdbFqcK3Zkc1hpfV1zbA4bipJJk/YN+XTDaJ77ajBfbH2PCjXLE5sYw9sLR9D6OvPFShqS1ALmAwBzxv3KrvV7g+/kdqeNyJiAWKAvv76QAfarCI0Yw8z3NfLYthYTul/EBP55LhAOawNLY7B3DDlM+vZhZM00SybmjPnyEBCDOdZbQK+FpofOSRQlh3JVyzB+63s899Vgxm0YTdMrG6PrOqMXjaBz/yvNdylpVhbIG6mVw6p5a1n209/B72bdohFbxrSvzcu2hwh+Wqw6Vw+4EsMXaq9+n58dq3eHbIvJ4wA2DIPIuAhuGtKdxEoJ2BxWylZJpOeg60LOSTmeym9f/8nUN2YG0yvcWW4SysditVsQAiIinVzUVokZllSEcCDKfI+Iew+ROA0t6jaE0BGxb0JEfyDHbnLSbvNh7AbXDELmsCLgnPdtIVSvRQ+kAOQbP/EGFqbyoFUgOP+VPtDKgOPqgBChDUQ0Ijpf6oN0IV0/Q9oIcsdwA8jEjOQFcCCcqsRnDiVC9PBUWG1WWlwdmvOdkZzJsh9XhZRXtFh1vH4ZmsOdp0ShEOCIcjD0S7OEXfOrL8ZitSANiWFIrr7jSu4e1Zej+05weOeRHM1FrHYLjfMNgPe/NYAVc1aTfDQVv9fPrnV7aXtDK176figpx9OIjHGGTEqTj6Xw4vWvs3fj/gJzdvs805MDWw9xRe82Sp+ghCOEML20IXjB87s50QwOXBIzdCu/QluOl1SY+2NeRAgn0loPtFgwAiVgrE0R8R9D1lSkey65q1cWsLYObdLZG7K+Ad8GgqtkUqJFD0FG3g3oCC3PKrGRgUwbAa55FKiMGzXYnFxbL0FE9D3DJ6Q436jZpDo186y6SilZt2gjO1bvDq7iS0Nic9rCat7nRAsAaJrGtXd1oG7zWgghaHJlI7Ys3Y7fZxBfIZYxy19j/5aDIe0IIajfqnZIm40uq8eVt7Rh3hcLEcDRvSdwZbnpcEs7WndrgdflDRH98nq8TH97FpNe+ZaCUrn7D7+FvRv2U75GWfoM7fnfHpai2KlQo1xYKsrOdXtYu2hj2AuUL1+5xbyLB0IIGl5Wj079AhU+HNdD1leYY6kVEiYhLJVNAdqQENs4cyzOaUeLRUY9DRmvBLa4kf6DCOtFUG6JqT6uJQZf+qSUSNccSH3GDLHNj7ObGZ0gbIioh87w6SjON2LLxASdWTkc2X2MZbP/Dka4Arl6yHmQhsRv+IPO2oq1yjNguJkm0OWujmz4cwt+rw8JPPHZQ1zS8SJiEqNIPZEbUSD9kmqNqoS0++zkxxh6zcsYgfF978YDNGnfkAk7x5ByLI24cjEhwrJblm/n2a4j8Xv9ISm+AJXrVKTtDa3ITM2i9+M9VLnEEo4QzkBEQR6Mk+BeQGh5xZzKAnmNNmelP5DKIGIRsSPNXfYOkPFx7jkRAxERA5Du+WY6VxAdrBeHXj/mJTjZw4yUxYf0bUOzNYOEr03RcS0WIXLfuQzfIUi+C4yjedId8vQ78h7wH0A4byo1+gSnQ4l3GBTEp89MYte6fUHngG7V8Xn8ZimwvINuzu8CajWtwU2Du3HxlWZoX8Wa5Rn79xssn7OaGo2rBl/UH3znTo7sOcrONXspUzmBfi/0ov1NoS9grkw3malmbWS/z2DyyG+5/cXeCCGILxca6rr+j80MvfblsEE2h+RjqUx9/Xu+2PY+iRX/WRBRUQLJnm6GrIaJIEKukWqEOg/KQOTdCOdN5lHCCWW+B9fPoMWD/RqE0JARfcCzAty/m7llEbchoh4IubwQFqRvR+CT3+yLfz9YqgXTKXKQ/oPIEzeAzLtCl/ePygsZoyF+PJq9FYoLj01LtvHDh3ND8m41TWD4/UEz1XQR8vJlsenc+nRPbnqsW/DFaNTs51k45S8Mv0HH29phd9qJLxdLr8Hd+P6Dn7FYdNr3as19bw4I68OutXsBUyE/6VAyK35eQ/ubWuOMdISUF3NluXmwxdMc2HYoaKJCF8g8ffvihSnc9+bt9HwkdMVMcWGQnpzB/z3wKd48znjdouUWEjDMzyEiiQJ6PHgNNz7WDZvdDAUX0U+DrbkZ8mq/FhFY2ZcxIyFtJOAFW2tE7Ivhqtz+nPFVBtK+vkFEDzEnsXqZ4GFSSmTyg+BZaHasIBmb7CnguA4t9uX/+mgU5ykv3zKalKO5aTNmGpe52o8krOyiEIK2PS+l95DuJFQw54kdbm1HYqUEdq7dQ8trmlKlXiUARnw/lFF93yX1RBp1mtXkwdF3UqZSQsj1D+86htVmweX143X7mDD8G978dRi6rofNQye+NI1JL08vtHzp6t/Wk3QkhY/XvHVWno3i/EOmDQP/njxbrJjRAvlftvKgt4CoAQirWQJeWBtB4nQzesB6McJ2iXlczKvI5IfM9vWq5rhpC51bCpmEDEYn+CH9HYi41Zxr6KH6HNL1K6Q8SqEpYMY+yJoEZRciNOXcyssF6TDISM4MrnzZHFba3tCKZbP/DqmkEGK/Enau2cN7D40j+UgKtz7dkxOHkvjoiS9JPprKXS/3CZ4WXy6W9/4aVeB105LSmTD8G1KPp4UM5s5IO9Pe+oG4crF06nd50DObnZHNs11eCXMWxJaNQQjMNAppOiAGtXmO95eOZNeavTijHDRu10ApH18oGJnkrtQLsF4G3pWE1nvN/2V8HDLfRfrWIuLfQ8psZPqb4N0MEX3QAmUQhbAh4t8v8LJSepAZH4N/JwgHBKstGOYKl4gA503BQVNKA5l0Rz5nAYANrA3Buybw2QPJAzESvkGQZrZra3Pq0jaKEkNWenbI2FOxVnmO7z+RW/pLELoyBvg8fqa8NoNF3yzm883/Z5YSe20GS35YaUZzBVTAhRDcPbIvd48Mj0yRUvLTp/NZ/et6/D5fsIyeYRhsX7WTI7uO0rHv5SGT3zfvHMOBrYdC2rHZbbS5viWLvllsaie4vYwd/AXlqpWlfPWyHNt3gqYdGgfT0xQlGzOUO9cedatOpVrl2R+wC80S6twCs2rzDx/O5dfJf/Dl9veJLRODzP4Bsr4ASx2E4/rgsVrEDRBxQ4HXlu5FyKzvzJKHWAhGJxjJ5thr74Cw5kYoyqwp4PktXysOcHQB11xMcUUvuGZiZNRDOLqAb6s5wdbLobgwyM7MnavaHFYuueoilv+UJ/U137uX4Tf467tlrPx5NaMXvUS9FrVZ/8dmxj0ziai4SNr0yNU+a9y2PpP3jC3wujvW7GbaW7NwZbqCUbS6RUe36kx5bQYNWtcNiXLdvWEfE4Z/E9KGxabT8ppLWDlvLT6PD7/PYNe6vbw+4H3uffN2tizdQbWGlYMODMUFgMwpEQ7gBEcncM0nRN8l9ATwr4TUjRjShRbRE+nbi0x/FWQ2Ik+lMGGpgigbLloPIP1HkRljzCitvFVmRCQy41PQK4Oja270lpFkijaGRMYK0GqCcQgzvVaCTIWTt2IkfInwrgM9EZE/qqEUUmKqJJwJO9bs5okOwzD8BgkV4nl+6mAev2IY7ix32MpXfirXq0BWmouM5Ey8Hm9AZdnGxJ1jWPbT30wY8Q3x5eN4/uvBVK5TkZ1r9zDp5WlExUWxY/Vudm/Yh+EzsEfYsEfYsDpsuNJduDJd6FYLnW5rx+OfPgjAl8OmMunl6SHXtzqsjF4wnBnvzwkp5wTmwJ1T5qzbfVfzwNt3nOUnd+4obQqzZ4I0kpAnbjQHKayQMAGS7gh8DohdFUoE6IngP445GfUDDkTCZyANZNrzgEDEjkLYWpkDbProgHNAA/evmIOkzYxMMDygReUKGVrqIBK/QwiBdM0PDLb5qjzEvGb2Nf1VQr8YNLNdoYGlCSJhQolxcil7LRyf18eTHYezY80eQDJs+pN8OWwqO9fsCQvxzo9u1anesAqHdx3F7fJg+AxsDisDX+tHq67NGdnnHVKOp3LHiFvpclcnsjNdfPHiFA7tOEK1hlWY+cHPuLPc2Jw2EivGk56cQfnqZTmw/TB+j4/IuEi+3PYekbGRHN51lDvrPxq28nXzEz1o3a0FT1/9Uug+YZbhtdosRCVE8cnat3Pz10sApU11/kx494GP+WXCIqSEu17pw6EdR5g3YVFYCk1+nNFOqjeszMEdB2l91REef3sPusUKji6ImP8hU4aYL+yOnojoJwGJzPwMPMvN0mSZ4zDHVwdo5UEmgVbNdNLiBWyIMt8iLHVMh+zRiwkT57JdCTHD4cQ1hK6KBdLShBlRIxK/RVhqnp0HVgQoey2cHz+ex4eDv0DTBO1ubM0lnRrzwaPjcRdQiSYvulWnwaV12LvpAJmpWebClYBqDSrzydq3efeBT1g++28uurwBT3/5CHannQVT/mL+xEXUalqDmWPmkJ3hwmqzEF8hjsy0LMpWSeTQzqP4PD6sdgvPTR4cFG68r+kT7F6/L6QPletU4P+WjOTuhoNJOxEqpmix6ticNvw+P8OmP0mrLs3O7oM7h6g5QeFIz3Jk8r2BYly1IOYFSLoLc+zLHx2bD71hIDUgjVwNgwhEucXIrK9MJ61eFRH3LkIvj/SsQmaOA60iuH8zz0WaEbRSgBZtjrPSg5lecBda9GAAjNTnzIjeECKhzHRIHQ7eZfn2WUFYTQ9y1CC0qIH/7UEVIefCXi9IhwGYq2DHD5ykUu3yWG1W1i7ayKSXprFt1a5gycWC0HStwNCq+q1qs2P1nmDkgqZrPDHuAd5/5DNcmW4zH9LnD74vOaIcfLD8NdJOpvN8t1HBa8YkRvPt8c8xDIMXr3+d5bNDBb00XeOaOzpw+/9uZuBFg3FlFPwFYbVbmZ391b95NMWCGmxPjZQeU8NAq4TQIpC+Xcj0t8CzGuTJU5ypU2AFA71OIEQsj4hM5CDI/g6MwwRzcXIGchGJiBkJ9iuRx1rmadOCKLfMLNuYNjogupjv78PSAOInw8mbwNhbSD8diDI/ISxV/+FJnB8oez01hmFwcPthYsvGEJMQTeqJNMY9M5k1C0xF7cLQLBrSkCERWAAJFePwefwhat2XdW+BYRj8/cs6fF5/2NjcZ2hP7nm1HzdXuCcoahsR4+TlH57h4isa8fv0JYzq+39h1RKcUQ6mHv6Ul28dzYo5qwsM+3ZGO3lmwqAQRfPzHfUCdmoO7z6K1WahTOVEPG4vk16axuKZy9m76WDhJwmzgojP48PuNHjwpYN07ZcEOEAvHxCbDdiXXgvsnc0JLoHJKhB8ybe2QEv8GuPkgIA4LIAdEf00IrI/hu8AnLiKcIN0QOIPkD0Nsj6j4Mm3BpEPo0UP+hdPpnhQ9npqko4k48p0U7FWeQBmjZ3Lz58vYOfaPYWG/0N4Kdsc6rWsxe71+4KRYNEJUdw9qi8fPjYer9uL1WE1qx8EUs2i4iOZcfILvhw+lUkv5b5kdep7Oc9OeozM1EwG1BkUVmHBHmHjucmD8Xo8jLzt/8LG+hyad27C6/P+d2YPpRhRc4JTI400M11Lr2GWYHQtQGZ+Ct4NhJYCz4+FULHDnM2XgG8juU5SK8SMgrQXMCMX8mnHYEWU+ws8y5Gpz5jVGgD0Gmhl5yGlF3nyNvCty3chmynwbe8OSdcX3BcALRGt3JKC952HnAt7vWBjhC1WPTiBbXRZPYZOeITtq3af0lkAFDoQb12xM+y4N+/+MPjdnrOypls0hKYRkxhFxVrliE6ICg6YukWj5kXmC9ML17/GinzVFXLa3bZqJwMbDzadZkKQ36kjhFkrXHEhYUVmTYPsb5B6ZVOw0LcXZPI/nFfIim4wZzYPmR/mOz5HGyGArbmZhqCVAyNQzlPEgYjESP8AskLr1QfxHYITnQMe3QJy1cyGzAgGxQWBpmls+GsLnzw1EWekgxemDsHr8XLiYNIpz8uv0J1D3jrdOayctwZfnvKzhmEERQttDhutupqrU/Vb1WHVL2vxefz4vX6q1KvIyrlrePnW0QWaoivLzcOtnuH4/hMh42uwfJ4hMfx+ylUrE36yosRybN8JXu33f3hcXh5+727iK8RxZM+JU58kc4U7fV5ITcqZMrnAn8856t8DWZ8SoucCmGOiAxwBjQx7q0D6lgswkJaGSO9+OHkthY6dac8FJt4F7EMCdoSl8qnvRVGiyM5w8b8b3uDEgZPc8EgXWnVpxr4tB0/pLAAKdBYAbFu5K+RzelIG7z/0aTB9LCc1VtM1rHZrMI2hQas62CPsuLPcWGwW6rWqgyvLTf/aj4SUGc/B8Bv8+Mk81i7chKZr+I3wOYrVbqWySkm4wBDI1GHg24C0tYfoZwIv/KdyFkChL+i+Nfk2eCHtaXLHyBxngW7+WGqaFRcs9cxKCYAp8m1qJMiTtwaEvfPjAfdyyPyc3AW4/OOwZqY3lHIuWIfBD2Pn8vcva/G4vKz/YzOTX/k2pP4smKtaBU1UIVxUpkAK2O33GSRWimXQ+wOx2qzEl4vlwXfv5N37P0Fogs3LdzD1je/DnAXOaDOs0J3pCQp6AdicVspUSiQzLYsm7RtyYOshImKcPPGZUke+oPAsNcWsZDb4diBTXwT/bkJqfotEkMcLaUDDNMhT2WxBzgXDLFsT+SBCrwCAjHsPkvqabck0ZNprkP1NvvNiQPgDqQ1p+TIRqoDMDAzcLiAbEf1cSKUFRckm+WgK7z/yGV6Xl4zkTEb0eovI2Ijgy5Vm0YiJjyLlRFqBJim0wIv6KczV7803MQ4cbnPauOr2K7jo8gYAPPn5Q9zV4DGyjWwMw2DMo5+zf8vBkLad0U5z9cznw+fxmfsDxJWLQUpIrJxAbJloju87Qe8nelCnWckJ71b8MyN6vRV8wXl74FjadG8REuIdFR+Jx+UJVk4KQUBUrMFVvU7lwC3sRU6ArRXC2cv8FPkQMnt2IAJMmKlcehXCSooFIxRcAU2bHCwB56sTrPXAt92MbHD0PEXfFCWNt+7+kP1bDiKlZMZ7s/G4vUgj18bsEXasDgsZSZn/+hr5tWbAfOGvWr8Sd750KwCtu7WgVddmLP5+OULA9Ld/IPVoSpizwOqwolt03FluVsxZE9xuseokVIzH7/Nz8RWN2LZqJ3Wb1+be1/r9634rzj9kxgfgXQ14wb0o8IKdV8BbD6S9FuakLWyxKeQqBWzzm2UVo4ebKa+WGsiohyDjXbNN90KMjHEFOAucmPPmbPDlHV8doJUFmWWWJvdtAb0cIvb1f+jbhU/+Qu8XDBlJmcFVf5/Hh2EYlKmciN1pwxFp54qb2zD0y0HYIgquuX3dfZ3DttmdNuo0q/GP1z55KJmRt71D8jFT5XbVL+sw/AY+jx9PtofxL04JO+eJcQ/S+/EeWB3WkO3SkBzff4LU42ms+Hk1d7x0K//310iqNVDergsKmWbmXwFgmCJZ9k6Yg5oD9JqQ+C25k8h82LsSPpg6wXIaOYIyDTLeQ3oCTizvaszB2wd4IHsCpthWHiJ6Q/RwwocQqxmdIJPBuxbsbdDK/Iiwt/3nfihKDPmFD7PSs7n6jg44Iu3YHFYiop18sn50oRoA1RpWRreEloyzOazUvqRG7kp/IZMHT7aH3yb/wexP5wOwb/PBoLiW1+3jj2+Xsm9zaJh5jcZVGDXnOYTZcC7CFMlNT8pg/+aDaEIwfst7dLv36jN7IIrznuyMPCtdEtpc38rUGbJbsUfYeW3ui9RpVqvAcx0RdsYvSaJspbzOBIupS1DYmBzEAM8yZHqgqoHMDjgL/IAHfOvB/Uu+cyIQid8EFL4L+DswUsA4CN4NiDKz0WKGIsQFO50rlaQnZYREP1VtYI6ZNodpr4+NvZdrBnSgsP/2Zp2bhHwWwlyYik78Z8f9rnV7efGG3BekdQs3YPjN8fXEgSSmv/Nj2DmfrH2LJgWIcfsNg5TjaZw8lMzSH1fx1m/Def7rwTijlKjsBYVMJtfp6TOjVUUEYAecENEXEf1s4HMB2HsXsNFhChL+E8ZBSLkPmSPc7f4d04HrNRevMt4JPyd+HET0Inz89psaXvIkuH9DxL6MljABoVf8535c4Fyw3zDX3deZmMQonNFOouIi6DWkB2OWv8oDo+9k8Ef389zkx6h/aR0KkmATmuBgPmVtTdcYPuOpU+c75j1e0zi29zgHth9mycwVIfv8Xj9Cz3NlAWkn06l5UTX8vjx1y3WNqvUr4w2s2rmzPKycu/b0HoCiZGG/EixVAwOsAxH9hCnyEvsSIuY5ROI0hF7e9KQWhF7AoBr9XECd+zTxbUca6ZD5GaG5YQZh6QtGOlgvIbxUTi0I1rt1mZ5mxQVHpdoVuKx7C+wRNmwOK3eNvI0+Q3vywpQh3PtGfz5Z+zbx5WJpdlWTAs+/onebMG2B6wZ2pnrjqrmRXadYbHBludm2aheGYTBh2FRcmXm0XqS5SqZbcu1VSkm9lrUx8qV3Va5TAYvNEpgMe9nw55YzexCKEsMdI24xX7acNjrc2pbOt1/BG/OHce/rt/Pe4pHUb1mb9jddWuC57XpeQmTUkdCNtrYQcReFlucKwR1MKZAZYwmP9vIRshqnOUBLJCwIVCQGzg0I3BopZt6w4oLj3tdvDy5wVa1fmav7X8mHq97g3tf7M/LHZ7m6/5Vc1qMFsoDAloq1yrHxr9CxrHyNcjzx2UNkpmT947UNv8GBrYcBWDD1L9LzRTEEK+IEsDttZKe7iEmMCkmZcEY5iE2IDoqLCk2w/e/dp3X/ipKFiLzXFB4UkaDFIyL6IMr8gIh5BhH3OiL6BaTtUgqOdLWCd1W+bQ6I/wCM/afXAekF4yTSuyFPxa4cvIS+7mrgPxGYN+e1ZQvo1cit7uABT8nQkCgKLtiUhHJVyzBh5wcc3H6YSrUrBEtkdb8/d+Vo+ezVITmyec+t1bQGaxZsDG6r36o2jds1wOctJN8mH/YIGzUuqsqYRz8vMKdM+iVCwxzsJXz42Hjuea1fSC3oynUrcNXtV3Bw+FTcWR7sETZaXNM0rC1FyUcIByR+B74doJdHaIHScM7ccl3StyNXWyAEHax1CAnpEjGIiJuRGadb+9gP9nbgmn0KJ4OdYKSB60ewtci3PwGcvfJ4cx1ga3+a11eUJIQQvDBlCPu2HMQZaadcNbPWcetuuTZhGAaL8zlLwXSENmxdD03LFTHUdI3b/9ebl25++7Sur+kaV/Vtz7aVO9maLzc3B4vNgmF4kYZkz4b9zP5kPpoQwemKzWmlc/8rzXDfbA+6VadR2/oFtqUo+fQZeiMdbm2Hx+Wlan0zf7rRZfVodFm94DGzPsq/0m/aeuvurYDxhDgHogaDe8FpXl2AozdSZkPW54UcIzFXu7xgJCHTPwAjNbQN+3XgW21WZsAALdYMn1VccLTu1oKJuz4g+Wgq1RtVQbfoVKlbkSp1c1c6Z3/6a4HnXtajJUt+WBkiQHvT4G5YrRYM49QaCDm06WGO5R8/8WWYjlYO9ggb7iwP7mwP7z7wCfZ8EbtNO11EVGwEf0xfijvbgzSkSvW6QBGWOlB2Ifj3g6UmQgQiSCLypJ645iILchhYGpgpDO483+X29gi9ZqGRhmHoFUCrYOooFKiLYJBbscGA9Ocg4jZCUsn0+mZJyMxxmHNdG9iKVOfyvOaCdRgAOCMd1LmkJlJKfvjwZ9Ys2MgVvS+jw63tAIhJjELTBf48tuWMcvDA6Ds4sP0wDS+ry74tB6nXojbPfvUoJw6cpP1Nl/H79HClzPyaB5d1b4HdaScyNgKLzRLM7c1Lfs/wtpW7QtrYv+UQE0d8w2Nj72Pzsu00v6oJl9/Y+j8+FcX5ihBWsDYEQLp+Q2Z/D9amiMg7EUIHEV3AWTrEvGLmhVnbm55VvSLEjTE1ECLug8w3C7oaIUu4eg2EXhkpIik88CiveI0E/y7z+sHBOcl0FsS8AN5NYKmLiOhzJo9AUYIQQlC9YRUAtq7cybfv/EjZKgnc/r+bcUY6EELgiLSHCc3e9uyNHD9wko5927FizmocEQ6GTjTVtm9+sgfrft/0j6mMFpuFph0as3fT/pC83rx4XJ7gGGsYkqQjKVjt1uDqmCfby5TXvqfP0BvISMkiOj6Sm4Z0/28PRXFeU6FGOQCO7T/BxJemIYRgwLCbKVM5EYC4crEc2hHqlG3XsxXtu2eAvw9k/wwYEP0kQotBOjpA5lgKFe4KYkE4uxAU6CpMTyY4eZWAJ1Bal9xtrqlgv9aMSJNuROQd5veG4oIkvnwc8eXjyErPZuJL00g6nMzNT15PnUvMl+6E8nFhwtjVG1flko4XYY+w8/u0JaSdTKf7/VdzRe82ZKRkElc2lpRjqYVdEjB1YjoP6ACYc+LCcGflRiJKwwjRhgFY/uMqqjeuyt2j+nJo51G63tOJslUSz/QxKEoIQosGrRFS+jEyPjFTpiJ6IexXmgdocYTOGQERD1EPgW8b+PaZDgd7G4h5CWmkmGm1voJW+fPOYQU4rjerM2jRnHqMDSAN8G4kZLLh3wiZeyFmGHjXIRydEbaSUynpXHNBOwxymPXRPD4dOglXppvlc/4mMjaCVl2a0bzzxfQcdB0zP/gZi1Xn5ievp2OfdjzY/Gm8Hh+6Reehd++kZpPq3FFnENKQlK9RjhsHd+OHMXMAghEB0pDBsl/2CDuXdGrCom8Ws2vtHuLKxpByPA1pGCERBHmJKx+L1W4Jemxz0HSNynUqcHX/K8/9g1KcF0jP38iUweSE9Es8iKgHzRq0MS9B+khTBdbeFWKegZM9zJUooYGzByLqEeTJXkiZCdghaihkjA607iNXHDFnwHWAvY153ewfzLxZ/5HA/rxlPfMMrEIH33HzX5l34JYIfIjYYefyESnOI5KOJPNUp+Fm/W67hQPbDjNixtMIIXhl1rO8fMvbZKRk0rhdA16YMoThvd5k+6rdgKR646qMXjiCIVf8j32bDyIEPPrhQD59ehI+jy8s9BVMZ0G9FrU4vOsoE1+eTsXaFTi04wiaRYSUoc27KOb3+jm04wg2hw1XpjsY2eDOcnN41zGeGv/wOX5KivMFwzB4rN3zQcHj1fPXM2HnGIQQDP3yEV7o8SqHdx2lct2KDJv+JJUrfmGuRuE3a3wnzoX0l5FpwwEJkY9D9sSAmFfeaEIR+AFENBILpL1iisH6dmFOXgtTEDfMPFpLXfDtzNOuB3yb0eJPLxJHcWHwyi2jWbNwA163jyWzVjJx5wfElolhwPCb2bFmN5uWbCO2TDRPffkwyUdSg+VkLVadMctfY8XPa+hf+2EE0Klfe/ZtOsDWFTtNIfDAOKlbNBACv9ePpgmq1q/El8OmEpMYTVRCGp4sT6EVGAB0q079VnVZ/dv6YAqCYUj2bznETY91K4KnpDhfkBnvQ+Z4IBvpXgiJkxDWi8HRDdyLwfUTCDtEPo6wNzXLHeIHdETcOyBsyOMdzMasjcB+I7h/wDTWvE7VHMeAA2FrhpE1FfzHQCSATAnsKySiRi8LohymTljeRQ0/wtYSEXHTWX0mFwKlwmGw/vdNwRxXT7aXLct30KpLM4QQ3PdGf+57o3/w2B8//iUgUGiqaf8yYRFWm4XsdPOL/cjuY5SpFM/kvWPZvX4fL938NtKQeFxeal1cjYQK8bTt2YqyVRJ5tusr5su/ICT8tiBOHEhi0TdLuHpAB7au2MGutXtACJxRDmpeXP2cPh/FeYZ3A7mDXDZ4lgEPAqBF9AoItZhIzxqkzALc5vjpmovUEsFIwhwsXabKa9k/zJrhyYMCA6kH9OpmNIK1GTh7I092NQW5gMI9tDkXzgT3T2C9FLRIcM8P7BBga3e2noSiBLB/yyG0gFCh1+1j09JtwX1N2jfkm8Pjgp/d2W42Ld4WHAt3rd3Lom+WcGDroaBi/Y9jf2HCjjEkH03lvYc+Zcfq3Xg9PuLLxVK1QWWqNqjEgOG3cH/TJzl5ODlQfjZQkCMveR0GPj9/zlhG2aqJ9Ozble/fn42UYLVZ6Hjb5efmwSjOSzJTs0g5mhq0wWP7T+DO9uCIsFOpdgU+3/R/Iccbx2YTnFBKN7gXgutngs7UrPehzK8ImYLMnATZ3wF+c0KsNwZLeUTUIGTqk4Gx/PTSGvH8DkRA5IOBKAY/YAWnmsiWNras2BF0ngohOLj9MLFlYoiMjeTtBSNCjn2myyvBsVQIWDVvLZ89OzkY5frrxN95969XiIqLZPmc1Yx7ZpKZpiChXsvaxFeIo9fg7sz94je+fefH3Koh/6B4tmXZDmxOK/2e78W0t2aRlZ6NbtWD5RkVpQjPckJewr0bwXoxQuiIuNeA14K7ZMYHmJpZpkihdM0yK7/kOFN9WyD6ZogeYgrEpjyB6Yj1gKWhmZLlvN6ck6aPyjOHzUk/KAT/PvAfh4jbwTUfjH3mOVpF0FXJz4K4YEUP89K+12XYI+xomsBqt5ByLJUlswoWsqjVtHpuzowwUw0iYiPQdPNRubPcjH9hCi9e/zpN2jdkzLLXkFJiGAZ7Nh4gKz2bbvdeza51e/EHqjTkiHAVRI4ieE7bx/Yd5+je40jD/JNo2qExzsjCQ8IUFyC2yzBf2DXAASIOmfUdUhYw0dSrgszzYi/sQAS5AlqGqTdwsgdCL4co+xNoMeYu/x7wbjajF4xDeao0QMHOAhHoU85xHvDvNAfenG16ZbNPilJD7UtqoFst6BYde4SdqvUq8f2YOWSmhYtr2Rw2EivFh2yzO60hIbW7N+xjQO1HyM5w8eavw6jXsjYCwYmDSWxeuo1bnrwBi9Ucx3OG6kJSbMmramv4DY7tPU56cgYWq+krt9qtNGxd5z/dv6JkERUXSbVGVbA6rNgcVsrXKMussfM4tr+Qcl+WRgTHU5kJwkGIN0pmw/EOSM96RMwwcPYGBMgM8K1FOG9EWKqbaVqn6yzIQQjTSYFOjviscHQ4szYUJR5TYNaOxaojNMGq+evZsaZg8cBGbephdZjjm8/jxzAM7M5cbQGvx8dj7V7ghw/n0vORrjz8f3eDYTp7d6zeQ4NWdbioXQM2Ld4WWmL0NKQPNE3DleXB4/Zi+A2kIbny5jb/6d4VJRDHdSByyhZKpG8f0v1XwcdaGgE59inML3MRRfDLW2ZB2jBIewZh7wjxX2LOT/1mGoOwoTm7Ib2b8zgL4LQMlmwwToI8lnu8oyNClIq19DOmVDgMrujdhhEznqLXkO4ITWP2p/MZ1fddpr8zK+xYUwSpvlkaRsL2lbu4oncbqjWsHCwX4/P42L/1IEt+WInX7TWdCdLcvnXlTia/8i1lqiQUmn4ApqpsjcZVeW3uC+YXgc2cbDe4tG6wDKTP62fVL+vO2XNRnJ8Iaz1E4tcQ+bA56LrnI9NGIFOfCj9WT4SI/gT/lI1UEH6wtcrdht8U0cqcYFZhMI4RDNWS6cj0d8xcsVNiAxEHCV+BiDU/4wT7Neagjc9s07/bnFQrSg1RcZGM/fsN7nzpVspXL8PWlTv49OmJPNbuhTCBLSEED//f3UEHrDQkC79ZwtV3dDAnw8LUgsnOcPHp0xOxWC0c2XMsKDYrhODLYVNZOmslNS6qVmifLFYdR6SdV39+gZpNqmFz2rBH2Gja8SKW//Q3HpcphiilZPf6fefu4SjOO4QQvPP7ywwc1Y9GbeuTdDiZz5//igeaPUXqibTwE2KG5/kgIeN1iH4WyOvI90D6KHOOYBwht8qMF5n5BTJrMtivOkWvAs7h6JfA0R0zTNYOIgY8f5ObuiDAvfTf3biixPLEuAd55L27ueLmNnhdXia/PJ3Bl7/IjtXhToN+z/fCajV1LaSUfPHiVIZ++QgxZXI1kHweHzM/+Jm0k+lkJGcGHbbuLDfzJ/3ON2/OpO0NheduCyGwR9i5/qFrGfh6PxyRdiw2C0IIMlOzgikJPo+PxT+EC98qLmy0yNsRsW+Ds6+5IetLZPJDGFk/hB0rHB3BkhNFLU0h2ciBoFchZHHKuwY8KxFk5anE5QHPUrPyjKVeWNuhOMDaEmLHmr9jMf8NRhNIwHsGQralj1LjRmlxdVOSDqegaeD2+vF5/fz21Z/0HtIj7Fif1xccQCXgynTz6brRPNdtFCt/Xo2Upl6GPcJOhZrlMPI4BnweHxOGT0XoWoHqnuVrlOHeNwaAhNbdmuOIsPP+kpGsnLeOus1rUr1xVaa9Zf5RWe1WGl72T38EigsRYW0ECGTW5wQnn+7fCjkYcle83OA/jJYwHiN9TCCUNVBSRkSYB2uVzLq1YO7L+gyyJlDw6lcUxAw3J8K2tgg9EVnmBzMkVy+PtF1r1hA3jpqHa+XNsjqKUkW5qmW45ekb+Pz5r4Nj5+GdR0g6kkKZSgkhx/o8PrMMV4YLv8/PoZ1HGDb9SVpdewkjb3sXd5YbIQhWtqnZuCrH9pqrv9kZLuZP+p1F05YUGLWlWTQeeucuouIiadC6DpXrVKTxX68wf+Lv6FYLnftfwUs3v83fv6zD6zadBpXrqfDD0kZEtJObBnfju//7KagZ5Pf52bpiJ5d2bRZyrMCNxEYwxNZ/DC2yH9LRAXn8WnKdA4H64pbGeVK0/OD5C+lZQkjZxJDO3IuwNgBLDYS1CVLeDPYfTeevszsy6yvI2BC4vgBrwaVKFRcuukWny92dWPLjylwdASlZOXdNWNUB3aLjzs6j5WIY1Gpag+lHP6N71O3Bl3mQ6FadWk2rhyxu7dtykPEvTkGzFLye2OaGlnS67XJiEqJpdlUThBDUaFyN/VsOclmPlhzcdoi54xfgznLjiLRz8RWNzuqzUJQMhKMz+PcGqiL4zB/XjxBxffjBMk8Zb6Ej0BBlf8U4fgP4NweOMUA4kXqF0PxDmY7M+D8KHV+1+hD9kCkcbu+IEFakPhG8K00HghaHzPwscLBdVUU4BaXGYQBmuoERqEJgd9poXEgJrVueuoHtf+9C0zRsThttrjcNqHHbeqz8eTVghrc2aF2HYT3fwJ2da+zSCLgJZK6YTA6xZaNBCrLTs+lyV6fg9ppNqlOzSa5OwehFLzF99CwSKyVw+4u9UJRS9MrkelitZr5WAQhnT3MFC0AaiIhbA6c0JTe1wA+2NsiMd/M4C3IIKHKHEQlalFnCK/rJYISN0CtA5J3m74BMnBLIQwMR9XDwOEXpQtM0KtetyOFdRzAMiTPaSVzZmLDjWlzTlMjYCMAcR299uicANS+uht+XmwrTsssl/PHtUpbNWR1yvjRknklvnuvrgoTycaz/YxNPjX8Yu9N8gXNGOenx4LXB457/6jEmvfwtJw8l0fvxHsSXi/3P964omTS4rC5JR1Lwur0YPoNqDSuHH6TXMKvX+LaYk9acMmFaGdM5mjPZtV+K9G6FzA/yNXCKNARR3lw5ixyA0Mubm4QeUk6XyAeROMG3HuHsibCp0sqllYvaNWDVvHW4s9xY7FbqtqhV4HHX3Xc1v3y5EIAGretSrloZ88X+oqpsW7ETgEq1K+Dz+k0drjw5XYbPwMAocEqQWCmeI7uPUblOReo2z7126+ua0/q65gBUqVuRJ8Y9yF/fL+eSjo3pes+pImsUFzSWRpilYn2As4BS3AEi74W0l0zhbhEHtkA1ONslkL0FU6hIR+q1IelmQsfUvCKI+SkDIgshrKYDI4CwNYW842jCOGTW16DXRETd/69utTRQqhwGtZvW4H/TnuTHj+dRq2l1+j0f/jKecjyV36cvQQJulwd7hA1Ptoeje48z7a1ZwVxZi1Vn1bx1ZgmwAtA0YToncuQQhCDtRAapMp33H/mMi9o1oEohK1t1mtXkmYmPno1bVpRghBYDCZPNcCstHhE9JOwYKT3IrBkgrUAaYAPpQhoZZjWF4GBqgGcBZM8o5GoWQst6gZnflQlZk8zB1XFNwf3UKyBiX/63t6m4gHjzt2F88cLXeNw+Bgy/JagVkIOUkvkTF6FbNLKzXOiahjvbjd/n54NBnwcdBlLC79OWYI+wFzgPsNh0/D4jpAytlHDiYBKLf1jJ5JHfcvcrfQvsozPKyb2v3372blpRYnli3IOUrZLI4Z1H6TWke7DsYgjuheDPCuTHakEHgUz/MLTsofsPsNShYAdBISKy8ih4TyBThyISviiwj0LoiKh7zuzGFBckvYZ0R0rJhj+20KFPW1pcHe482rZqJ3s27DMjEQRIv8Tv8/P3/HVBZwHAoR1HWDVvbYElvyEgn5Fv7D15KJmTh5J5vtuoEDHb/HTs046OfZT4cWlH2NsgY0eBaxZYmyMiw8cx6T8M7kWA36z+JQA8SN8OyP6WkAmAZ5FZdrHgqxE+WThhNpsyBMotQmgJBZ2IsLVS5RNPg1LlMAC4tGuzsJDDvLzQ4zW2r9wVzL1NPZ7GpFems3r+ejJTc0W8/H4/1RtVIa5sLMlHU3Ib0KDxZfW54ZGu/D59CavmrUVKaVZdCIgg6haNpCMphToMFIochLUhIv69QvfLtJGQPZ3cslsuZNpLZl6Wf2+eI+0ISx2kpQ54ThAysOq1wXkb+A6Aawam+rcgV+XWCJRZVChOTZlKCTz5eeElCud9sZBxz0wORmX5DYMxj3xG0uEUVv2yLugAsFh1ajetgTPKwdqFG/B5cl+2EirE0fXeq4hNjGbKa9+TkZKJxZ5bycbr8nJk9/FzeJeKCwVnpIP73xxQ6H7pXZ9b4hYAP2R/g2FtBFnjyXWwCrDUBEttzNSEvOVoHeDsZerKpL8d0JCxBtrM0X45fJbvTHEhomkatzx5A7c8eUOB+9NOpvNkR7PEbQ7bVu3k5/EL+OjxL0OOdUY5qNWkWlhEoKZrtO/Vmk592zPxpWns33wQzarhynAHx+fUE+lIKVU0oeIf0ZzdwFl4WU2Z1M+s4JWDcQSZMQGyvyIkzEX6wdLA1C/Im8KAZgqFO/tC9hTwrDIjFWQ2ueOzBkYyFOIwUJwepc5h8E/sXr8vRKhLaBoWq4Vj+3IVlIWAB96+k7rNa/H2wuF8OHg8ezbsxxHloNt9nYO6CB37tGPfloM83HJo0FlgtVuoWKs8DVrXLdobU1yYeFcTWvsbc0D1biR3RUsDR1dw3ICwX4lMfQW8qwLbOyGin0YERGSk8Sjy+FV5Vs4sZtito0vR3I/igmbzsm0hKVxg5txuXrINrzvXjuu2qMXA129Ht2h43V6W/rQKd5aHxu0a8OgHA4lJNAW8bny0Gw+1HMruDXuRhkRoArvTxk2PXVek96W4QPFuIaTUBgDSFHfNO+5qZRBxY8wSX9GPQ9Z0MFLAUgcROxxhCeSZO6/DSH0esn8gNxLBDpEPnes7UZQCDu8+FvYSL4HkIynoeTQJbA4rby0YQY2LqvHc14OZ/Mq3nDh4ksRKCdz3Rn8u6XgRAG2vb8WPn/zC2CFfBJ0FNoeNHg9crZwFiv+MlB7w50+R1QBfvooHQNy7aNbayISJyLRXzSpfIhoiB5rlxgGc1yA9q5FJd5DrLLCD9WLQQ7U+FGeOchjko02Pliz9cRWebA9SSqrUrciA4bdwcPshNi3ZDkiqNaxC9/uvBqBq/cq8OueFQttbt2hTSH5Y5boVeW/JKKa9OZOfP19A7Uuq89T4h4mMVUJxin+B4wbI2Iu5omWAiEPEvIzMngVZkwPbIhExL5hf8CIeEf924e35dmBOhHMGWxui7Fyk+y9kxjugJSJi30BYCleoVygK44rebZg/8Xe8Hh+G38Bqt/DMpEfxurysWbgRw+9Ht+g8Me5BHBGmBsEDo+/kgdF3FtieO9vNzjW7g9o0QgjeWzISd5aH+y95EsMweGzsfVzUrkFR3aLiQsLWOhCbnZNSICBqkOl4zZwY2KZB9HCEbqYziMi7IPKuwtt0LyQ3AsEJMcMQ9lYYJ/uZ4rGRg9AiCl5BVihORfVGVYiIceJxe4OpBm16tKTHQ9fy/Zg52BxWNF3jpsHdqHWxqZvV9vpWtL2+8HDsP79bFtSM0a06PR64hgEjbublW95m68qddO5/BXcMv1U5EBRnjBA2pLUVeNdhjokS9AYQeZ+ZfuDba46/1pZoDlP3TVgbIxInFd6oZzEhkQnWphD/GTL9daRrHthaImJfQQj7uby1CxLlMMjHs5Me5dfJf5CVlk2HPm2JK2sKYr3y43P89tWfGD4/nfq1P+3BsX6r2sEFCnuEnctvuox1Czcy5fXvcWW6OXEoiY+fnMDjnz54rm5JcQEjIu82Q2H9e5C2TghLddM2LQ1M3QH/UXB0NfUQTgdLjZyWAasZRiszIfUZwAX+/ciUQYgyM8/NDSkuaJp3vpg35v+PjX9tpfHlDWjYum5wLI2vEMeO1btpcfXFVG9U9bTaszlsVKhVnqN7jiEllKmcQNUGleld9p5gCtlzXUfy3cnxYXoKCsU/ISzVIHEGuH9D6rUR9vamKCFA4jTwLAFrY8SZKGtbmwdKd3lACIS9PTLlQfBuAAxIexFpuwQRLDWmUJwejgg7Y/9+gwVf/0V0QhRX3NIGm80ssfjxmrf489tllK2aeMqSiflp1ukiNvy5xRRatOpccfNlfPbsVyyZtRKv28e3o3+kXvPaZ9SmQpGDSPgMsr8H/Eh7dzTdnKvKhCmm9gE2cHY//Qatl5jn4AKc4OiGcP+EzJoCZIPrBFKvjIgefHZvpBSgZlD50C06NS6qytIfV7Fp8bbgIGizW+lyV8czbq9u81q89P1QfpmwiDrNa9JzUFfmfr4gGHXg8/g4tPPoWb0HRelBCIG01kd6NyO8y8FSFTDr2eO49h/PD2tPi4OEKcis8WaYbeQDZtSB0AKyB0rPQPHfqN6oChv/2sqmxVup0bhqsHzixVc0OuMSXEII3v3jZSaP/BbDb9D3uZvwe/0hObwel9ec7MaqrzvFv0CvaqZleTeBtQHoFQAQ1npgPfOyxyLuTWTGR2AcRkTcgdDLIv1HCEZ1CT2gc6AcBoozJ7ZMDGUqJ7B7wz72bTpAnUvMUOwylRLoOajrGbd385PXY4+ws2XZdjr1bU+jNvWZ9PJ0vG4zgsHvN0JSdhWKM0EIO9JSC+leivCtB90UyxRaJET0OfP27O2QsW+Dey7YWiGct0DmR+RGHbjBv+/s3UApQs2g8rF7/V4ev3IY7mw3dqedB9+5g273Xv2f2mze+WKad744+LnNDa0Y/+IUdIuO3+fnlqdU+KHi3yGNVOSJniAzkFjBuxYRO/I/tSms9RCxr+Zew9rILC3m32sKz0QO/G+dVpRapJQMueJ/HNh2CBD89vWffLji9f/UZnz5OB55L1R9uVPfy/nzu2UgBJd2baZSvhT/Gpn6LLjmAl5k1pdQ9leEFvWv2xPCEb66FXmvKYgodLOcrlWVTlT8O2aOmcO4577Ck+Vh2ps/MGbFa1RvWOVft6dpGj0f6QqP5Dobej9xPet+34xu0bDYLFzeq/XZ6LqiFCI9y5FJAwE3MtMOce8gHP+tFKfmvBqcue9t0tENMsdhrnr5ERGFC90qCkc5DPKx+rcNGH4/SHBnufl9+tL/7DDIT3y5WD7f/C6blmyjSr2KVK5T8ay2ryhFeLdg5tEGftwLzvolhLBC4jfgWW6Wd7Q2PuvXUJQOMlIy2b/lYFAEdueaPbiy3EG9grPF0188wnUDO2MYBk3aNzyrbStKGe6F5FZJ8IJvO9gKr7T0b9Ai70DaWoFxEmyXBkVoFYoz5ffpS3FnmhoZhpSsW7TpPzkMCqL5VU34dN3b7NtykIaX1SUmIfqstq8oPUj3H+SOry6k+5f/7DDIj7BUgzLzwLceLPUQuqpQ929QDoN8NLi0DppuqsnaI+xBtdizTXR8FK2va35O2laUIiy1CVWDPbsT2RyEsIH98nPStqL0EBkbQULFeE4cTEIIQblqZbA7z/7LkRBCOQoUZwfrJaZWAR5A5tF5ObsI65ml4ygUBdG040VsW7ULd5YbIaBey9rn5DoVa5WnYq3y56RtRelBWJshcRDUHLBeem6uoyeC3uGctF1aUA6DfDRqU58Xpz7Or5P/oEHruv8q50uhKCqEXgYSvkJmfgl6eUSUEs9UnL9omsa7f77C5Fe+RdMF/V7ordS1Fec1Iu5dZOaH4D+BiLwLocUXd5cUikK5/cVeREQ72LF6N537X0n9c+QwUCjOBsLRCRn7Krjng60twnljcXdJUQjKYVAArbu1oHW3FsXdDYXitBDWRoi4/5YHrlAUFWWrJDL4o/uKuxsKxWkhtEhE9FPF3Q2F4rTQdZ2bn7i+uLuhUJw2mrMbOLsVdzcU/4BW3B1QKBQKhUKhUCgUCoVCcf6hHAYKhUKhUCgUCoVCoVAowlAOA4VCoVAoFAqFQqFQKBRhKIeBQqFQKBQKhUKhUCgUijCUw0ChUCgUCoVCoVAoFApFGMphoFAoFAqFQqFQKBQKhSIM5TBQKBQKhUKhUCgUCoVCEYZyGCgUCoVCoVAoFAqFQqEIQzkMFAqFQqFQKBQKhUKhUIShHAYKhUKhUCgUCoVCoVAowlAOA4VCoVAoFAqFQqFQKBRhKIeBQqFQKBQKhUKhUCgUijCUw0ChUCgUCoVCoVAoFApFGMphoFAoFAqFQqFQKBQKhSIM5TBQKBQKhUKhUCgUCoVCEYZyGJRyZs6cSZMmTXA4HDRq1IipU6eG7Pd4PDz11FO0b98ep9OJEKKYeqpQ/LO9bty4kS5dulCpUiXsdjvVqlVj4MCBHD58uJh6rCjNKHtVlCT+yV7zYhgGLVq0QAjBjz/+WIS9VChM/sleV6xYwV133UWdOnWIiIigfv36jBgxApfLVUw9VpRmhg0bRpMmTYiJiSE6OpqWLVsWOMauXLmSa665hsTERBISEujcuTPLli0rhh6HohwGpZg///yTXr160bFjR+bMmUO3bt247bbbmDdvXvCYrKwsxo0bR0REBG3bti3G3ipKO6djr6mpqdSsWZO33nqLuXPnMmLECObPn891112Hz+crxt4rShvKXhUlidOx17yMGzeOgwcPFnEvFQqT07HXqVOnsnPnToYOHcrs2bN5+OGHGT16NP369SvGnitKK2lpadx5551MnTqVb7/9lubNm9OnTx+mT58ePGb//v107twZn8/HhAkTmDhxIj6fj2uuuYa9e/cWY+8BKeVp/7Ro0UIqLhyuueYa2bFjx5BtXbt2le3atQvZZhiGlFLK999/X5omc+YAK+UZ2NrZ+FH2emFxuvaan3nz5klArlq16rSvpexV8V8pSnuVsuhtVtnrhcWZ2GtSUpIsU6aMHDdunATkrFmzzvh6yl4V/4XTsddjx46Fnffxxx9LQO7Zs+eMrqfmBIpzQdu2bWWPHj2Cn8eOHSs1TZPJycnBbUlJSVLTNPnhhx+edrvnwl5VhEEpxe12s2DBAm655ZaQ7X369GHJkiWkpqYGt51OGsIPP/xAixYtiIyMJD4+ntatW7No0aKz3m9F6eRM7DU/iYmJgJlek4OyV8W5RNmroiRxpvb64osv0q5dO6666qoC21P2qjiXnK69li1bNuzcZs2aAXDs2LHgNmWviuIiMTEx5Lve6/VisViIiooKbouKisJisWD6AUyKw2aVw6CUsnPnTrxeLw0aNAjZ3rBhQwzDYNu2bWfUVu/evenUqROzZs1i8uTJdO/enaSkpLPdbUUp5Uzt1TAMPB4PW7du5ZlnnqFVq1ZceumlwbaUvSrOJcpeFSWJM7HXdevWMX78eN56661C21L2qjiX/Jf56+LFi9E0jfr16wfbUvaqKEp8Ph8pKSlMnjyZefPm8cADDwT39erVi4iICJ544gmOHTvGsWPHGDJkCPHx8dx8881A8dms5Zy2rjhvSU5OBiAuLi5ke3x8fMj+02H16tVER0fz5ptvBrddd911/72TCkWAM7XX6667jrlz5wLQokULZs+ejaaZ/lFlr4pzjbJXRUniTOx10KBBPPzww9SpU4c9e/aEtaXsVXGu+bfz1yNHjjBy5Ej69+9PTEwMoOxVUbQsXbqUNm3aAGCxWBgzZgw9e/YM7q9UqRILFiyge/fuvPfeewBUrFiRuXPnBiNmistmVYRBKSd/ukFOyMuZVENo0qQJqamp3HHHHcybN4/MzMyz2keFIofTtdf333+fpUuXMnHiRDIyMujatWtQGVnZq6KoUPaqKEn8k71OmTKFrVu38sILLxTahrJXRVFxJvNXj8fDLbfcQlRUFO+8805wu7JXRVHSpEkTVqxYwS+//MIjjzzCI488wtdffx3cf/jwYXr37k2LFi2YM2cOc+bMoUWLFnTr1o19+/YF2ygOm1UOg1JKjic2JSUlZHvO5/ye21NRv359Zs6cya5du7juuusoU6YMffv25fjx42ept4rSzpnaa926dWndujW33347c+fOZfXq1Xz11VeAslfFuUfZq6IkcTr26vV6eeqppxg6dCiGYZCSkkJaWhoAmZmZpKenA8peFeeeMx1fpZQMGDCAjRs3Mnv27OD5oOxVUbRERkbSsmVLOnfuzDvvvEP//v0ZOnRocP+bb76Jz+dj+vTpdOnShS5duvDtt9+i63owDay4bFY5DEoptWvXxmq1smXLlpDtW7ZsQdM06tWrd0btdevWjT/++IOTJ0/y2WefMX/+fAYNGnQ2u6woxfwXe61evToJCQns2rUruE3Zq+JcouxVUZI4HXvNzMzkwIEDPP7448THxxMfH0/Tpk0BU2wuR0wOlL0qzi1nOr4OGTKEmTNnMnPmzDDdA1D2qig+mjdvzv79+/F6vYBpw40bN8ZqtQaPsdlsNG7cmJ07dwa3FYfNKodBKcVut9OxY0emTZsWsn3q1Km0adOG2NjYf9VubGwsffv25cYbb2TTpk1no6sKxX+y161bt3Ly5Elq1qwZtk/Zq+JcoOxVUZI4HXuNiopiwYIFIT85obSjRo1i8uTJYe0qe1WcC85kfH311Vd5//33mTRpEpdffvkp21X2qihq/vrrL6pUqRJ0EFSvXp0NGzaEVE5wu91s2LCBGjVqhJ1flDarRA9LERMmTODuu+9m586dVK9enRdffJEOHTowePBgevbsyezZs5k9ezY///xzyHlz5swhMzOTNWvWADB9+nQAWrVqRfXq1fn4449ZsmQJXbp0oVKlSmzfvp1p06YxYMCAor5FxQXEv7HXJ598EovFQuvWrYmLi2Pz5s288cYb1K5dmz59+gAoe1WcE5S9KkoSZ2qvFouFDh06hLSRI3rYpEkTWrduDSh7VZwb/s34+tVXX/Hcc89x5513UrlyZZYuXRrcV7t2bcqWLavsVXHOyGuzAHfddRd9+/alVq1aZGRkMGPGDKZMmcLYsWOD5wwcOJBx48Zx44038tBDDyGl5IMPPuDw4cPcd999QDGOsVLK0/5p0aKFVJRcxo8fLwG5e/fu4LYZM2bIxo0bS5vNJuvXry+//vrrsPOqV68ugbCf8ePHSymlXLx4sbzuuutkxYoVpd1ulzVq1JBPP/20dLlcwTaAlfIMbO1s/Ch7Ldn8G3v9+uuvZdu2bWV8fLx0Op2yfv368vHHH5fHjx8PHqPsVXEuKE57lbLobVbZa8nm384H8rJ7924JyFmzZgW3KXtVnAv+jb3ecccdBc5dz3T+KqWaEyjOnLw2m5KSIvv16yerV68u7Xa7LF++vOzYsaP86aefws6bP3++bN++vYyPj5fx8fHyiiuukAsWLAjuL645rDDbPT1atmwpV65ceRbcFIrShhBilZSyZVFeU9mr4t+i7FVR0ihqm1X2qvgvKHtVlCTUnEBRkjgX9qo0DBQKhUKhUCgUCoVCoVCEoRwGCoVCoVAoFAqFQqFQKMI4o5QEIcRxYO+5647iAqa6lLJsUV5Q2aviP6DsVVHSKFKbVfaq+I8oe1WUJNScQFGSOOv2ekYOA4VCoVAoFAqFQqFQKBSlA5WSoFAoFAqFQqFQKBQKhSIM5TBQKBQKhUKhUCgUCoVCEYZyGCgUCoVCoVAoFAqFQqEIQzkMFAqFQqFQKBQKhUKhUIShHAYKhUKhUCgUCoVCoVAowlAOA4VCoVAoFAqFQqFQKBRhKIeBQqFQKBQKhUKhUCgUijCUw0ChUCgUCoVCoVAoFApFGMphoFAoFAqFQqFQKBQKhSKM/wfKh3Q33uZfSgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import time\n", + "# ============\n", + "# Create cluster objects\n", + "# ============\n", + "\n", + "params = {\"n_neighbors\": 10, \"n_clusters\": 2} \n", + " \n", + "ward = AgglomerativeClustering(n_clusters=params[\"n_clusters\"], linkage=\"ward\")\n", + "complete = AgglomerativeClustering(n_clusters=params[\"n_clusters\"], linkage=\"complete\")\n", + "average = AgglomerativeClustering(n_clusters=params[\"n_clusters\"], linkage=\"average\")\n", + "single = AgglomerativeClustering(n_clusters=params[\"n_clusters\"], linkage=\"single\")\n", + "k_means_2 = KMeans(random_state=42, n_clusters=params[\"n_clusters\"])\n", + "spec_cl = SpectralClustering(\n", + " n_clusters=params[\"n_clusters\"], \n", + " random_state=25, \n", + " n_neighbors=params[\"n_neighbors\"], \n", + " affinity='nearest_neighbors'\n", + ")\n", + "\n", + "clustering_algorithms = (\n", + " (\"Single Linkage\", single),\n", + " (\"Average Linkage\", average),\n", + " (\"Complete Linkage\", complete),\n", + " (\"Ward Linkage\", ward), \n", + " (\"Kmeans_2\", k_means_2), \n", + " (\"Spectral Clustering\", spec_cl), ) # this is using eigenvectors of the Laplacian matrix, we will do in details below\n", + "plot_num = 1\n", + "plt.figure(figsize=(18, 6))\n", + "for name, algorithm in clustering_algorithms:\n", + " t0 = time.time()\n", + " algorithm.fit(X)\n", + " t1 = time.time()\n", + " if hasattr(algorithm, \"labels_\"):\n", + " y_pred = algorithm.labels_.astype(int)\n", + " else:\n", + " y_pred = algorithm.predict(X)\n", + "\n", + " plt.subplot(1, len(clustering_algorithms), plot_num)\n", + " plt.title(name, size=18)\n", + "\n", + " plt.scatter(X[:, 0], X[:, 1], s=10, c=y_pred)\n", + "\n", + " plt.xlim(-2.5, 2.5)\n", + " plt.ylim(-2.5, 2.5)\n", + " plt.xticks(())\n", + " plt.yticks(())\n", + " plt.text(\n", + " 0.99,\n", + " 0.01,\n", + " (\"%.2fs\" % (t1 - t0)).lstrip(\"0\"),\n", + " transform=plt.gca().transAxes,\n", + " size=15,\n", + " horizontalalignment=\"right\",)\n", + " plot_num += 1\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "id": "d4851b8a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHxCAYAAAB3WFbeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABzt0lEQVR4nO29edwdRZX///7kYRMRN0CBkElQogJigJhxxgFXBB0HhMGRRUFRMQjIMoIwjIrOlxkENUEYQGRRRgMiy4AbiI7gzxmUNQmERRLAEIig4IKCaML5/dF1Tefm3ue59/ZW3X3ez6tfT9/q6qrq7qpTp7ZTMjMcx3Ecx3HqyKSqE+A4juM4jjMqrsg4juM4jlNbXJFxHMdxHKe2uCLjOI7jOE5tcUXGcRzHcZza4oqM4ziO4zi1xRUZx2kQkk6U9NWK0/B6SctyCGeRpNdnT5HjOE3GFRnHKRBJ+0j6qaQ/SHo0nH9YkqpOG4Akk/TSqtPRCzPbxsyuqzodjuPEjSsyjlMQkv4ZOA04FXgx8CJgNvBaYJ0+94yVlkDHcZwG4IqM4xSApOcCnwY+bGaXmtkTlnCbme1vZk8Hf1+WdJak70j6A/AGSX8v6TZJv5P0oKQTU+FODb0oB0t6WNLyoDClWUfShZKeCMMzM0dI/0sk/Y+kxyT9StLXJD0vdf0BScdLulPSryVdIGm9PmEdJ2lJSM+dkvbsuv5BSXelru+QiuPN4XyWpBsk/SY88xmS1kmFYZJmS7o3pOc/Y+n1chynWFyRcZxi+BtgXeDKAfzuB5wEPAf4MfAH4ADgecDfA4dIekfXPW8AtgLeAhzXqfADuwMXh/uvAs4YIf0C/gPYDHgFsAVwYpef/YFdgZcA04F/7RPWEmAn4LnAp4CvStoUQNI7Q7gHABuGtD/WI4yVwFHARiTv9k3Ah7v8vB14NfAq4J9C2hzHaTiuyDhOMWwE/MrMVnQcJP1f6FF4StLOKb9Xmtn/mtkzZvZHM7vOzG4PvxcCFwGv6wr/U2b2BzO7HbgA2Dd17cdm9h0zWwn8F0nFPhRmttjMrjWzp83sl8Dne6ThDDN70MweJ1HE9l0joCSsb5jZw+F5vg7cC8wKlz8AnGJmN4Ueq8Vm9vMeYdxiZj8xsxVm9gDwxR7pOdnMfmNmS4EfAjOGfW7HcerHWlUnwHEaymPARpLW6igzZva3AGFFT7oR8WD6Rkl/DZwMbEsyl2Zd4Btd4afv+TnwytTvX6TOnwTWS6djECRtAnyBpCflOSG9v54gDZv1CesA4GhganDagETRg6SnZ8kA6ZlOokzNBNYnkV23dHnrfu4NJgrXcZz64z0yjlMMNwBPA3sM4Ld7C/p5JENCW5jZc4GzSYZ60myROp8CPDxiOvvxHyFd25nZhsC7R0mDpL8CvgQcBrzQzJ4H3JEK60GSoamJOAu4G9gqpOdfeqTHcZwW4oqM4xSAmf2GZD7ImZL2lrSBpEmSZgDPnuD25wCPm9kfJc0imUPTzcclrS9pG+B9wNczJHcdSeuljrGQht8Dv5G0OXBMj/sOlTRZ0gtIFIteaXg2iUL0SwBJ7yPpaepwLvBRSTsq4aVB+enmOcDvgN9LejlwyIjP6jhOw3BFxnEKwsxOIRlSORZ4FHiEZG7Hx4D/G+fWDwOflvQE8Angkh5+rgcWAz8APmtm38uQ1EXAU6njfSRK2A7Ab4FvA5f3uG8e8D3gvnD8v24PZnYn8DmSHqpHSIbA/jd1/Rsk82vmAU8A/w28oEdcHyVR6J4g6eHJorg5jtMgZNbdq+04TqxImgrcD6w9zJyXAtLxAPABM/t+VWlwHMeBCnpkJO0m6R5JiyUdV3b8juM4juM0h1IVmTD2/p/AW4GtgX0lbV1mGhzHcRzHqR5J54etW+5IuZ0q6W5JCyVdkTbE2Y+ye2RmAYvN7D4z+xOJ0a5BVnU4jgOY2QNmpiqHlUI6pvqwkuM4GfkysFuX27XAtma2HfAz4PiJAilbkdmc1W1PLAtujuM4juO0CDP7EfB4l9v3Ug21nwCTJwqnbIN4vew+jDvb+NalU3w2suM4TsuYsc56zP/TH6tORiXsMGVpqTaSdpn0zkLq2e/bpR8CDk45nWNm5wwRxEEMsEKx7B6ZZaxuRGsyvY1oHSzpZkk3Xz7v96UlznGyMmOdnvsmOo4zJG1VYpqEmZ1jZjNTx8BKjKQTgBXA1ybyW7YicxOwlaRpYefafUgsmK5G+uH32i9fK+ObjVU6tcDpQxYFYKJ7y/zmLnwdJ8GV+hqhScUcoyZHOpBkE9j9bQAbMaUqMmHc6zDgGuAu4BIzW1RmGh5e6dtLVU0vxSKLAjDRvf7NHad8epVLV26ciZC0G4nR0N3N7MlB7indjkzYlXe6mb3EzE4qO36neopSLNJCclCB6YK1Orx3tH10Kzde/uJ4B5qkQo4J45UuIrH6/TJJyyS9HziDZEuSayXNl3T2ROF4U9UphM3GVpTeE5IWkoP28FQxFFTFu6mK8Z61Le/A6U8dh2LznoRcx3eQF2a2bw/n84YNp5AembDx3I2SFkhaJOlTwf1ESQ8FLWu+pLcVEX8MxKBlV4lXUv2p47sZNT/X8VnbiPeODU4jFY/I5sgMS1FS5mngjWb2e0lrAz+W9N1wbY6ZfXaUQOu0HK8u6SyaOn0zpz9FfcM29U7FjH+DdjPIMFDMFKIyWUJn3fTa4ci8Tt0rxPrh38wZj6wVaNaeT++JqJ6291472Sms70fSmKT5wKPAtWb203DpsLCHwvmSnl9U/I7jNIPxKrqsinIsPRFlV+ZlxzeewuiNnQio+dBSYTGZ2Uozm0Fi9G6WpG2Bs4CXADOA5cDniorfcWLCew5Gpw0VXdnPWHZ8sSiMRdHm8hkDhatMZvYb4DpgNzN7JCg4zwBfItlEcg3aYtm3TV2qbS/oTek5iJW25y9nePLMM7Uvn5NUzFFW8osIVNLGna23JT0LeDNwt6RNU972BO7ocXuhln1jIq9WUR0UotoXdCdqeuWvQSoqV4Cqpyr55TIphVTMURJFfclNga9IGiNRli4xs29J+i9JM0gm/j4AfKig+FtFG7reHWdYBqmoYqvM2riKy+WXk5VCSoyZLQS27+H+nrzj8uW9juM0hVGUmDYqP73wumB0NKl0I/+5En3qJ+p2rGPG9e5sx3HyYjwlpk2TzOtYFzj5EL0i0y9z1qmAdeOtp3ZS5zzr1BOfZO4MRM3nyBQ12fdlqW0I5kv6naQjJb1A0rWS7g3/R7Yj0/QCVocJvE2lqHff9DzrDM4oSq3LhLip9TedNKmYo6zkFxGomd1jZjOCHZkdgSeBK4DjgB+Y2VbAD8JvxxmJono4vIvaKZpNxuq9GjOG3sVolIBA3b9pnSlDZXoTsMTMfg7sAXwluH8FeEcJ8deSNi3NHhXv4XDqyijlOyYFO4ayF9P7gJp/Ux9ampB9gIvC+YvMbDlA+L9JCfGvxl7Xf7jsKCslmoIyAVlaeBPdG0Pr0XHahpc7pywKVWQkrQPsDnxjyPsKs+x7+evOzDW8bprcA1IkD69ca+R3N1HrMIbWo+O0DS93NcIt+47LW4FbzeyR8PuRjnXf8P/RXjeVYdn3gNOPKiTcuvSAxIi/u3biLfd64o02JxaKVmT2ZdWwEsBVwIHh/EDgyoLj78uFh8/hQyceWVX0juMEYmi5e6U8PDE1PFwZzoY0qZCjLAqLSdL6wC7A5Snnk4FdJN0brp1cVPyD8MUT53LMew8Z2L8LO8cZnTIqm1HjiKlSbjujyNkYlOFa40NLvTGzJ83shWb225TbY2b2JjPbKvx/vKj4B+XUL581cM9MG4Rdk1o2rnjGRRmVjVdo9ScWOevyoz5Eb9m3DL544tyqkxANTaoIYhGITjHErHR7JVh/WiU/2rz8WtL5kh6VdEfKraf1XklTJT2VsvZ7dtbEj0o/IfOuecVMAB4GF4COMxhlKd2jlMlWVYKOUzFZe2S+DOzW5Tae9d4lHYu/ZjY7Y9wj00/IfH2/6icAuwB0BiHm3oim4WWyuQyjpDa6kdnmHhkz+xHQPc+l1tZ7v3jiXPY7r/qemaw0utA5jRoCLBIvB06HXsr/MEpqoxVa32tpDcaz3jtN0m2Srpe0UwFx58K898/hsGOO6Hs9i3AsS7BWWei88nBiodGVjzMUrvw3lzIn+y4HppjZ9sDRwDxJG/byWKRl3350a+tnnHpaX79ZhGOMgjVvxaOIZ4x1KMWVtuKI9ZvHguc9JzfaPLTUh57We83saTN7LJzfAiwBpvcKoAzLvt3009arnjNTBuMpHmULy37xxdqailExbQqxfvNY8LznOAlFKDI9rfdK2ljSWDjfEtgKuC9LRGW02Nq+NLtsYZklvrQS5K3V+PFv5DiRlIM298hIugi4AXiZpGWS3k9/6707AwslLQAuBWZnMYg3Y531vMXWYLIuefXWavx0f6NOw8SHlJw20JFxUciqNisyZravmW1qZmub2WQzO6+f9V4zu8zMtjGzV5nZDmb2zSxx5/Xxh6kwx5sA7ORLFIXbyZWJFJROwyRLAyWK1q2TibZ8Q5dx+dF6y77DZKbxJgA7DuQjhJsqyB9euVbhz+aVQ/3xb1gBbd5rqZdl39S1j0oySRul3I6XtFjSPZJ2zRJ30YwncA86pf52ZoqkDUMD/Z4xDyHcZEHe5Gdz6kNTGwttpQjLvkjagmR+zNKU29bAPsA24Z4zO5N/Y2Q8gXv+sXNKTEn9GHRoYFCFJ0ah4/OzmkeM+aypVN3YcYW6i5bPkell2RdgDnAsYCm3PYCLwzLs+4HFwKws8Tv1ZlBlwIWOUwaez8rDGwKRoUnFHCWRe0ySdgceMrMFXZc2Bx5M/V4W3DLhrSjHcdqMy8CEiXp5qu4FcoojV0VG0vrACcAnel3u4WY93Iay7OutKMfJDxf29WM8GZj1e9ZJSZqol8d7gcahzZN9e/ASYBqwQNIDwGTgVkkvJumB2SLldzLwcK9AqrDs6ziOC/smkFY+sn7PIhuKrjQ7eZGrImNmt5vZJmY21cymkigvO5jZL0gs/u4jaV1J00gs+96YZ/xONbhAcpx4qEsvtSvNEdHmyb59LPv2xMwWAZcAdwJXA4ea2cos8Tu9Kbs7OO9VSnUltuer07BATMTw3mJIg+PUBZn1nKYSDbcunRJ3Ah3HqYTNxlZ4q95pJDtMWVpedwbw1ukfK6Se/e7PPlPKczTSsq+3ZhwnP2ItT67EOE5OtHxoaQ3LvpK+Lml+OB6QND+4T5X0VOra2RnT3pe6jBE7Th2IuTzFqmQ5gxPbkKxTP7I2ab4MnAFc2HEws3d1ziV9Dvhtyv8SM5uRMc5cmLHOelEL6Lbg38HJgued6shraM971iKgxKXSRVCUZV8kCfgn4KIscRSFC8A48O/gxIT38AxOngqIv3d/B1koco7MTsAjZnZvym2apNskXS9ppwLjdhxnBNouTF2xrgZ/7xW/gzbPkZmAfVm9N2Y5MMXMtgeOBuZJ2rDXjcNY9nWcMmjLOL5XKM4oxF4+Yk9f1ZhUyFEWhQxOSloL2AvYseNmZk8DT4fzWyQtAaYDN3ffb2bnAOeAL7+uCl/aujr+LpxRaUNZiv35Yk+fk42iemTeDNxtZss6DpI2ljQWzrcksex7X0HxOxnxgp8fVQzXeAs0HkYtS/4Ny6XV73tSQUeJyR+ZcSz77sOak3x3BhZKWgBcCsw2s54ThZtA2+caOKuoYrgmb0W01UK+IrwxUS7+vutLpi9nZvv2cX9vD7fLgMuyxFcnfK6B0yS6hXyMy+ZjTFPdaMMwmNODEuezFEEjLfs6jlMMnZ6ZPBWGvHovXYnJTpFKjPfqRUxbVy1J2kLSDyXdJWmRpCOC+zvD72ckzey653hJiyXdI2nXrIl3BmfUysKFj5OmiIrOFZA4KHo43Ht6nKLI0iOzAvhnM3sF8BrgUElbA3eQrFj6UdpzuLYPsA2wG3BmZ/Kvk3DYMUcUFnavymLGOutNKLxc+NQDn5NVPE1/x65Qtpi29siY2XIzuzWcPwHcBWxuZneZ2T09btkDuNjMnjaz+4HFwKxR428iZ5x6Wqnxzf/TH114NYS8vmPTK+sstLGseH5w6kAuc2QkTQW2B346jrfNgQdTv5cFN6eLA04/quokOC2ljZV1nRhGschDCfH80A7qbhAvsyIjaQOS1UhHmtnvxvPaw62nsbsYLfuWOVfkwsPnlBaX4zj1YRjFwpUQpy1ktSOzNokS8zUzu3wC78uALVK/JwMP9/JoZueY2Uwzm7nXfhtkSWJuFD1XpFfr6aBTvGemjnh3vNOh7ZPl61AWJkpjHZ4hM201iBd2tz4PuMvMPj/ALVcB+0haV9I0Esu+N44af9Po1Xo6/9g57HX9hytIjZMFbwk7Hdo2Wb5bcatDWZgojRNdb4Sy2tbJvsBrgfcAb5Q0Pxxvk7SnpGXA3wDflnQNgJktAi4B7gSuBg41s5UZ0994Ln/dmex3Xtw9M61osTgD4/mhvbRNcYN2PnNeSDpf0qOS7ki5vUDStZLuDf+fP2E4ZnHvyeibRibsfcWRXLrn3KqT4ZSEW6l1nPayw5SlpZra3fXVnyqknr3mpk+O+xySdgZ+D1xoZtsGt1OAx83sZEnHAc83s4+NF45b9q0Jl+45l2Pee0jVychMXVrrVafTlZhqqfr7O04bMLMfAd17Lu4BfCWcfwV4x0Th5G7ZN3X9o5JM0kbh91RJT6WGoc4eNe62cuqXz2Kfmz5YdTIyUZcKui7pdIqhqd+/EfM5nNwpavl1egVyOA4eIDkvMrPlkNirAzaZ6IYiLPsiaQtgF2Bp1z1LzGxGOGZniLs25N2yu/jVX+JDJx6Za5htxFvcTpvo5Hefz+H0pKBVS+kVyOE4p6jkj0Q/y77h8hzgWPrYiWkTRbTsvnji3NzDHIU6KwNNbXE7Ti+amt/rLIOcvjwiaVOA8P/RiW7I3bKvpN2Bh8xsQQ+v0yTdJul6STvlEXebqXo1U1OFo+M4w1PFsJXLoJyIa/n1VcCB4fxA4MqJbsjVsi/JcNMJwCd6eF0OTDGz7YGjgXmSNswafxvpCIx573cLwE6z8DkcxVDGey1r2MrzSHOQdBFwA/AyScskvR84GdhF0r0kU1ROniicvC37vgSYBiyQ9ACJ9d5bJb04bBb5GICZ3QIsAab3CbeyLQrq0FXp49xOHfLpKHjeLoYmvdc8n6Xsvatipaq9lsxsXzPb1MzWNrPJZnaemT1mZm8ys63C/+5VTWuQq2VfM7vdzDYxs6lmNpVkW4IdzOwXkjaWNBbu3ZLEsu99fR6usi0KvKvSqQOeT+OiyZXcsNTpXfQqR/3S3+gyp4KOksjdsu84/ncGFkpaAFwKzB5E03JWpy3dqnUShk4+1Pmb16WSK+Md1+Vd9KPu6W8jWVYt/djMZGbbpZZUf6fLz1Qz+1U4v8zMtjGzV5nZDmb2zayJL5oYlYaJulWbsjS7CmFS54q0CZT1zYcp1zHKgCx4Jd2b1pf9uCb7Do1b9h2HmMaVBxWosSzNriPDdDM79WWYch2TDHCKoygFz+VHObgiUxNcoFZDR8DFIJBiSIPj9KLIvJlH2FWVnbr0gNmkYo6yyH2LAkkzJP0kzJm5WdKs1D3HS1os6R5Ju+bxAHnhlYQzHv0EUplDD3URinnhZbI+FJk38wi7bWWnbRSxRcEpwKfMbAaJPZlTAMK1fYBtgN2AMzurmGLAM/pwxFrJlJ0u7ykrDi+TjlMSbZ0jM84WBQZ0DN09F3g4nO8BXBzsydwPLAZmURGxVsR1IdZKJtZ0OU7TcBnaHEzFHGWR+xYFJBZ+T5X0IPBZ4PjgbXPgwdRty1i1N1PpeIXn1JEiKo+mrcxxymFQGeoKj1M0uW5RYGa/Aw4BjjKzLYCjSIzmQW/zOD03lazSsq+T4MInTopQwH14rFjaXpa80VgD2jq0BD23KIBkk6fO+TdYNXy0DNgidftkVg07rUYWy75tFxp54cLHaQtFy4yYy5LLS6cJ5LpFQeBh4HXh/I3AveH8KmAfSetKmkayRcGNo8bfj5iFhuNURZnDR3WrHNssM9r87E6Kmm9RkKVPubNFwe2S5ge3fwE+CJwmaS3gj8DBAGa2SNIlwJ0kK54ONbOVGeKvlBnrrDeSEBj1vjqR9Rk3G1sRxXBHk75Vme+zKe/McdrCIBs8xszI0s3Mfkx/nWvHPvecBJw0apwxMaqwboOQz/qMMSgx0I5vNQy9FMxYlE7HqQObja1gk7ENXLbkjFv2dRxnIHopLK7EOHVllOHWrMOmD69cK04lZlJBR4nJHwlJ60m6UdKCYNn3U8H9neH3M5JmpvxPlfRUaqfss/N4AMdpE3Wbf+I4sebZUZTwKJUQJ9McmaeBN5rZ78PqpR9L+i5wB7AX8MUe9ywJFn+dBpL3MIMPW6yJC1KnbniejZ+6z5HJYtnXzKxj5GXtcJiZ3WVm9+SSOqdW5K10uBLjgBvsK4Kye0li7ZVxAjVftZTVjsxYWLH0KHCtmf10glumSbpN0vWSdsoSt5MPLmCaQZO/oyu0+VN2L0lTemVcqY6TTIqMma0MQ0WTgVmSth3H+3JgipltDxwNzJO0YS+Pbtm3PJoiYNpOnt8xb6XIhb9TFybK+01Vqn2vJcDMfgNcR7KrdT8/T5vZY+H8FmAJML2P35Et+1ZBU1vDB51yVNVJcFLkrRD0Cy9v5bapwr8qmipvYsAbdvUky6qljSU9L5w/C3gzcPcE/sfC+ZYkln3vGzX+WGiS0bRuzj92TtVJqA1lVC4+B2lwmlzZxyRvvLetIbR4r6VNgR9KWgjcRDJH5luS9pS0DPgb4NuSrgn+dwYWSloAXArMNrPHsyQ+BmISKk51DJMP2iT8i1Yo+oXvOzOXQ5OV4X54nomPLJZ9FwLb93C/Ariih/tlJBtMOjXkyMMOZ+4Zp1edjEbQJuFftKKfNfy6N0Sa3CMcK01832XOZykCt+wbCbG30kdRYmJ/pqJo63M7a9LmnbWdGtHW5dfjWPY9UdJDKQu+b0vdc7ykxZLukbRrHg8QC1krr7q00o/b+wMD+63LM+VNW597UNrUNd8GRaNN39OJkyIs+wLMMbPPpj1L2hrYB9gG2Az4vqTpdd4BO01bKq+TLz236iRkIo+ueLc4nI28K3f/HtVSlLLmw2YlMqneY0u5W/Yd55Y9gIvDMuz7gcXArFHjd1an7FbRkYcdXmp8gzLRe8hDMHqlGRf+PZqJKzHOoBRl2fcwSQslnS/p+cFtc+DB1O3LgpuTA2UX+rlnnM6HTjyy1DgHwYWf47QHH9bKh1YbxOtj2fcs4CXADBJrvp8L3ns9Vs8enJgt+/pEzlV88cS5HHC6G81zHKcavOGSE22d7JsmbdnXzB4JCs4zwJdYNXy0DNgiddtk4OE+4UVr2beKbuyYWx0XHj6Hva84supkOI7jOC0ld8u+kjZNedsTuCOcXwXsI2ldSdNILPveOGr8bSL2Vsele87lXfO8Z2YUYlZSs+K9l05ReN7KlzYPLfW07AucIun24P4G4CgAM1sEXALcCVwNHNqUFUsOfH2/Ob430wjErqRmwSfhOkXhectJI7PxFhpVz61Lp8SdQGc1DjrlKN+jqUH4Etg48O9QD/L6TjtMWVrqeuid9vxsIfXs/3fFR0t5Drfs6+SKKzFxM2yXvFeexTDKd/DhlLjZbGxFbctLa4eWxrHsO0PST4JV35slzQruUyU9lbL4e3ZeD+HEhw8z9afKCsm75ONglO/g3y5u/PtURxGWfT8NfMrMvhu2JzgFeH24Z0lYrj00delarUs6i2aUnpm2vDsXeI7jREW9DfsWYtnXgA2D+3Pps8R6WOb/6Y+1WOHRhop4GE7Y7d0D+/V31z7qUKYdx4mbIiz7HgmcKulB4LPA8albpkm6TdL1knYaNr4qKrqihwFiF+RZn/+kq79aanxOvXDl1YmZtsij1s6Rgb6WfQ8BjjKzLUiWXp8XvC8HppjZ9sDRwDxJG/YItq9l3yoq/aKHAWIX5Fmff9hv5sMu7SJ2Rd5pNy6P6kHuln2BA4HLw6VvECz7hs0iHwvntwBLgOl9wutp2XeiSr8M7dkF73DErqg51eL5w3EiQCrmKIncLfuSzIl5XfD2RuDelP+xcL4liWXf+0ZOeQ/K0J5d8DqO4+RLW4ZwYqXuQ0tZav5Nga8E5WQScImZfUvSb4DTJK0F/BE4OPjfGfi0pBXASmC2mT2eIf7G0JbVOo7TNDYbW1FoA6otsqH7HbbluZ18GLkEmtlCYPse7j8Gduzhfhlw2ajxjcooBaLsQuQF1nGKoeiy3PY5dEXR1ueujLYuv64LoxQIL0ROXfE5XKvjZdlxmk9mRSYswb5N0rfC71Ml3S1poaQrOvNowrXjJS2WdI+kXbPG7ThVE5vi0KSKO7Z36zhNxSYVc5RFHlEdAdyV+n0tsK2ZbQf8jGBHRtLWwD7ANiSrm87sTP51nDLJs4Ksq+JQByWh6ndbh3fkOLmggo6SyGoQbzLw98C5HTcz+56Zdaag/4TExgzAHsDFYRn2/cBiwtJsxymTqivIYSiqMq3TO6iKur2jIlf+1HFVUR0V0TqmOQay9sjMBY4Fnulz/SDgu+F8c+DB1LVlwa0V5CUI6ihQyqCp76VulWmsNDV/pCly4nEdDcPVsexUlea6L7/OYkfm7cCjwbhdr+snACuAr3WcenizPvf2tOxbZ/ISBHUUKGXQtvfiLbfhqFP+aIPSVUf8u8RLlh6Z1wK7S3oAuBh4o6SvAkg6EHg7sL+ZdZSVZcAWqfsn02dDyX6WfZ3i8IqxXtSxtVk1WfJ4meUji9Ll5bg46qQMD01bLfua2fFmNtnMppJM4v0fM3u3pN2AjwG7m9mTqVuuAvaRtK6kaSSWfW/MkHYnkIfw8orRaRrd5SKdx4dtXdelfNQlnXniPSXZqfvQUhEq5hnAusC1SjSyn5jZbDNbJOkS4E6SIadDzWxlAfG3is3GVrRSeDnORIxXLhrdum4Z/i2dXHKAmV1HsmkkZvbScfydBJyUR5xOghfi4SjapHyVuFl3x8mHJsuJnrhlX8eJn073c5OFkysxTlG0be5Nk+VEEynCsu+Jkh6SND8cbwvuUyU9lXI/O2vcTm/aJnQGoY2CyfPBaMQw5yK2b+dK8uDEkH+Gpe5zZIqw7Aswx8xmhOM7KfclKffZOcTt9GAUoROb4HSy45XP6gyax3spvWWXj1G/XRHprGPFXCVtbDRVTe6WfZ3R6CUsyhSeXunlhwv+OMmSx+tSPopIZ9OXg0+UxlaU5zZvUUB/y76HhU0jz5f0/JT7tDAMdb2knTLG3Sh6CYu6CM9ByFugnbDbu3MNL0/ybpHVoTJwnF7UQYZNlMY29LBUNbQk6ShJiyTdIekiSSMJuyIs+54FvASYASwHPhfclwNTzGx74GhgnqQN+4TdOMu+VRFLJZi3QDvp6q/mGl7M1KEycBzHGQZJmwMfAWaa2bbAGIlNuqHJ3bKvmT1iZivN7BngS4SNIcNmkY+F81uAJcD0XgHXzbJvLMpCL5peCcbcMxM7regyd5wuYpbXlVHd0NJawLMkrQWsTx9r/xNRhGXfTVPe9gTuAJC0saSxcL4liWXf+0aNPyaarizETJt6ZvKmDV3mabIobl75NQeX1+WRHl0Jx8Gda2b2EPBZYCnJiM1vzex7o8RThCQ7RdIMkg0hHwA+FNx3Bj4taQWwEphtZo8XEL9TEW6QzYmZLIqb52unyRS1VNrMzgHO6XUtzJ/dA5gG/Ab4hqR3m9nQrdNcDOKZ2XVm9vZw/h4ze6WZbWdmu5vZ8uB+mZltY2avMrMdzOybecTtxEPVwv6wY474y3ksLehY0hEjPrRVDTHlyZjS0mqqGVp6M3C/mf3SzP4MXA787SjJd8u+NcUrgTU549TT/nJetVLVIZZ0xEgM9lraQvq9xpQn3eZVq1kKvEbS+ko2ZnwTa9qkG4giLPu+StINkm6X9M30yiRJx0taLOkeSbtmjbtoYi4wbZvfMAzHvPeQqpNQKTHn24mIqZKFeN9lU3fvHoS6PEuseacXJhVyjBun2U+BS4FbgdtJ9JGew1ATUYRl33OB48zslcAVwDEAkrYmmRS8DbAbcGZn8m+s1KXAOAkdwXHql89qtTJTl3xbB0Ef67tsupG6JhBr3okJM/ukmb3czLYN01KeHiWcIiz7vgz4UTi/FvjHcL4HcHFYhn0/sJiwNLtqvGA3g7TgOPXLZ/GhE4+sLjHOhLigz49hZJi/98FoVb3gln3XsOx7B7B7OH8nsEU43xx4MOVvWXCrHC/YzeSLJ85l7yuO7Hu9aEFVp3lMdUqrsyYuw/KnTe+0tZtGjmPZ9yDgUEm3AM8B/tS5pUcwNmr8TjvIWsFeuufcvteKFlR1msdUp7QWTZFKXZ1a+a7cOnWhCMu+d5vZW8xsR+AiEgu+kPTAbJG6fzJ9rPj5FgVOh7wq2PF6ZhwnTZFKXZ1a+a7ctoi2Di2NY9l3EwBJk4B/Bc4Ot1wF7CNpXUnTSCz73tgn7FptUTAodWqNNY1L95zb6gnATnx4j0e9cXkeD0XYkdlX0s+Au0l6XC4AMLNFwCXAncDVwKFmtrKA+KOlTq2xJgrZU798VtVJKB0XttXTryx5j0e9qZM8n5C29sik6bLse5qZTQ/HcWZmKX8nmdlLzOxlZvbdPOJ2iqHJQrZNq5n6CdsmKqp5k5cSWGRZckXVcdyyb650KgcXLnHzxRPnVp2EXBklvzVZUc2LOrS465DGtlFH+d/aVUvOmnQqBxcu8TCeUHnXvKNKTElx5JHfvIfGcfKhlvK/zUNLkh4IWxHMl3RzcDtV0t2SFkq6QtLzgvtUSU8Fv/MlnT1u4M5qjKrl17F1kCfjCZWv7zenxJQMR9nfzXtoHMepK3n0yLzBzGaY2czw+1pgWzPbDvgZcHzK75Lgd4aZzc4hbqAdlfWoWn4tWwcFULceB/9uTkzUrfw4w+FDS12Y2ffMrJPrf0JiL8Zx+lKGIuo9Dk7TaUODznF6kVWRMeB7km6RdHCP6wcB6dVJ08JO2ddL2ilj3H/BW6/1xr9fOTSpVe2V9poUWY68IdBw2jxHBnitme0AvJVkW4KdOxcknQCsAL4WnJYDU8xse+BoYJ6kDXsF6pZ9nTxoUsWdB92VUZ3fjyu/q+OKnZOFVg8tmdnD4f+jwBWE3awlHQi8Hdi/Y0cm7Hr9WDi/hWTrgul9wm2kZV+nXPJsRcZQUeSteHgruzlUrdjFUD7GI/b0OdnIsmnksyU9p3MOvAW4Q9JuwMeA3c3syZT/jSWNhfMtSbYouC9L4p3yaatAqLqigGIVjzJ7Z9qah5rKjHXWi6J8jEfs6aucFg8tvQj4saQFJHsmfdvMrgbOINn1+tquZdY7AwuD/0uB2Wb2eIb4XSBWQNMEguehhDJ7Zzp5yN99MxhWJvh3Xx1/H9kZWXqZ2X3Aq3q4v7SP/8uAy0aNrxdNq1Sd8qkqD202tqL1QzteftvJMN+9Dr09WYni+UrsPSkCt+zbIFyzrw/DKDF1npTrOFmIopJvAa2e7NvLsm9wP1zSPZIWSTol5X68pMXh2q5Z4nbWpF+hdwWn3rjS02ya+M2qlDku79pHHn3bbzCzX3V+SHoDsAewnZk9LWmT4L41sA+wDbAZ8H1J081sZQ5pcMbBWzXNpNfwVNETgts+HFYETXynVcqcmOVdR8mKLo0+tLQGhwAnm9nT8Jel2ZAoNxeHZdj3A4sJy7WLoFsrdy3daRplV4D94vOy1Tz8myaM2lvW7/3N/9Mf41NiGkARln2nAztJ+mmw4Pvq4L458GDq3mXBrRC6M4tnnnJwAdgsBhHkXraah3/ThFEbC3V7f1bQURZFWPZdC3g+8BrgGOASSf1Wlfd81rZa9i1bCSgivroV4KZQVN5p4rDHqLiS7jSWFtuR6WfZdxlwuSXcCDwDbBTct0jdPhl4uE+40Vv2bYISEKvSEUuFEUs6BiHWb9kk/B07TpzkbtkX+G/gjcF9OrAO8CvgKmAfSetKmkZi2ffGTKmvEBdqxRHLu53/pz/WSplxnLYTW3mNLT19qXmPTJZ+4xcBVySjRqwFzDOzqyWtA5wv6Q7gT8CBYb+lRZIuAe4k2UzyUF+x5MROLEqV44yHryhLyLO85vFOXX6UQxGWff8EvLvPPScBJ40ap+PESBusjzpxUyclpi5KVx3SmBdlGq8rArfs6zgZcSXGcQanTQqCUw65W/aV9CpJNwT3b0raMLhPlfRU8JveTNJxnAiJYXw/hjQMShMt9DotoeZzZPLokXmDmc0ws5nh97nAcWb2SpKVTMek/C4JfmeY2ewc4nZGoE6Vg1MdMfQ0xZCGQfGehvJxWZYPrd5rqQ8vA34Uzq8F/rGAOEpnlAITayGrU+WQlSpbyQedctTAfmPNK44zKmWUvTbJMqc/RVj2vQPYPZy/k9Vtx0yTdFuw+LtTxrhLZZQC44WseqpsJZ9/7JyB/dYlr9RR4fIhn2roLnt1zDutoeVDS70s+x4Uzm8BnkOyBBtgOTDFzLYHjgbmdebPdNNWy75l4QLFGZW6KFxpfMgnDvLIOy67nF7kbtnXzO42s7eY2Y7ARcCS4OdpM3ssnN8S3Kf3CTd6y751po6VUd3Z+4ojM93vvQqOE6/sqn35bGuPTD/LvpI2CW6TgH8Fzg6/N5Y0Fs63JLHse1+25DtVU/sCXBKX7jk30/3eq+A48VL38tnmyb4vAn4saQHJVgPfNrOrgX0l/Qy4m2QvpQuC/52BhcH/pcBsM3s8Q/xOyfTq1q17AYZyu6sPOH3wCcDOaPjwg+O0CyW7B8TLrUunxJ1Apyd1sd5ZBfvc9EEufvWXqk5GKRSdD7KG7/nUiZEdpiwt1dbu1ifMKaSevfOko0p5Drfs6xSCVw79ufjVX+K4vT9QdTJKoeh8kDV8z6dx09TeNR+Sz5esln2fJ+lSSXdLukvS30j6N0kLg/Xe70naLOX/eEmLJd0jaddR4/VM4NSdky89lw+deGTVyXCcqElP7m2SUhOdAt3Wyb6B04CrzezlJBtI3gWcambbmdkM4FvAJwAkbQ3sA2wD7Aac2Zn8OyzRZQLHGYEvnji36iQ4AW8cxU+sK5aaQGsn+wYbMDsD50Gy67WZ/cbMfpfy9mwSo3kAewAXh2XY9wOLgVmjxh8LLgCdrGRdmu1kpw2NoyJkVezyL/b0OfmQpUdmS+CXwAXBWu+5YRk2kk6S9CCwP6FHBtgceDB1/7LgVmvaIACdYsm6NDtPmtR976zOKLJqovwQu/yLPX3R0OKhpbWAHYCzgrXePwDHAZjZCWa2BfA14LDgv9dj9Zwp7ZZ9nTYyzN5MRVFk930ZSpK3wPPFh3OcOpBFkVkGLDOzn4bfl5IoNmnmsWrTyGWsvu/SZBI7M2uQt2VfF25OHTj/2DmNXc00Y531SqkUB22Be89Tc2jat6zieVo7R8bMfgE8KOllwelNwJ2Stkp5253EMB7AVcA+ktaVNI3Esu+No8Y/DHXuXqxTIa1TWmPl5EvPrToJhRBbyz629Dij07Rv2bTnKYOsq5YOB74maSEwA/h34GRJdwS3twBHAJjZIuAS4E7gauBQM1uZMf7G08nUdVASvADmh1sAdhynNGo+R8Yt+zpOTShreMaJmxjzQZEWkmN83qIp27Lvyz9VjGXfuz/pln0dx0kRmzCvQy9hE4ktH0Cxw/cxPq8TF7lb9g3uhwfrvYsknRLcpkp6Klj8nS/p7DwewHEGxSd954tXMI7TDOo+2TerGt2x7Lu3pHWA9SW9gcT43XZm9rSkTVL+lwSLv45TOnWe9B07bez+zwN/b8Xg77Vd5G7ZFzgEONnMng7uj+aQTsdxSmKUIaPxKg0fguqPV7bFMOp7bW1erflk3yIs+04HdpL0U0nXS3p16p5pwe/1knbKkvAyqONQRGsLYg7U8XsXQd6Va2yV9TBlxPNEO+jkidjyqjMYRVj2XQt4PvAa4BjgEkkClgNTgt+jgXmhV2cNYrHsW8ehCC+Io1PH7+0MzzBlxPNEO3C5WW+KsOy7DLjcEm4EngE2CptFPgZgZrcAS0h6b9Ygb8u+seC9JdXirWvHcfKiSfK87pN9c7fsC/w38EYASdOBdYBfSdpY0lhw35LEsu99oye9frjWXy1tal270lZ/mlRR1oFh3/ew8ty/Z3Fklewdy77rkCgl7yMZYjpf0h3An4ADzcwk7Qx8WtIKYCUw28wezxi/0wB8hUH+tElpK5My8+qw8RRplK4NFP1do5ZxpZrfy59Mud7M5gMze1x6dw+/lwGXZYnPaSZRF3AnGspQIiZSBmLOq3VWYlwJq5iaKzK1sOzr3eTl4F2fTszEtHu2ky9VvnevX6qjn1HdYcliR+ZlKSu98yX9TtKRkl4g6VpJ94b/z0/dc7ykxcHq766DxuXCpRxibm06zaZbic5DqY61gvIGQ1x4/VLpZN+OUd2XA68C7hol/Vkm+95jZjOCpd4dgSeBK0iWYP/AzLYCfhB+I2lrYB9gG2A34MzO5F/H6YcL/XbQrUTnoVTHWEHVaT5YXcteXdPdNsYxqjs0eQ0tvYlk+4Gfk2xP8JXg/hXgHeF8D+DisAz7fmAxMCun+FtJGwpsP6Efa2vbccajLkoM1Cutaeqa7kopyLJv2iZcOA5OxdrPqO7Q5KXI7ANcFM5fZGbLAcL/zl5LmwMPpu5ZFtwaTREV7qBWKJtc2WdtbbdBCXScDp7fnSpI24QLxzmpy/2M6g5NZkUmLL3eHfjGRF57uFnW+GOnU+HmpVRsNrZi4BZHXl3rdVCIirYB4Th1pu75vQ4yqM5UNEemn1HdocmjR+atwK1m9kj4/YikTQHC/86mkcuALVL3TQYe7hVgLFsU5EleSkUV4/5FxplXS7HugtpxnP5klUFVKkK16A2rYNPIcYzqDk0eisy+rBpWArgKODCcHwhcmXLfR9K6kqaRWPa9sVeATd2iwFmTYRSQPARCLGE4+eHfw5mIKid+eyNrXDpGdRcCM4B/HyWQTF9X0vrALsCHUs4nk2wU+X5gKfBOADNbJOkSEo1rBXComa3MEr/TLvIQCLGE4eSHf4/6UKdVW61C1czyGMeo7lBktez7JPDCLrfHSLqIevk/CTgpS5xlUkdrky4oHMeJFZdNThHUwrJvVdRNiQEXFM7o+BDNcGR9X/6+nQ5VT2Zu7e7X41j2/TdJC4Pb9yRtFvxPlfRUyv/Z+T2G4wxO1UIjBk547Z5ruLkSvDoT5ZOs72uQ+9uq7LTtuStvNFcw2TdPRn57ZnYPyeQcgoXeh0gs+/7azD4e3D8CfAKYHW5bEiwBO05lVC40IuCk/72i0PCbMMQZQz6p+zsclbY+tzMauVv2NbPfpdyfTQtsxdSFtrVynITxvvuHTjyykDi9IqonLiNaSs17ZIqw7IukkyQ9COxP0iPTYVowRXy9pJ1yitsZEK9c2sl43/2LJ84tTJlx6ofLiMFwhS8uCrHsa2YnmNkWwNeAw4LzcmBKMEV8NDAvbBpVKzwDO03jiyfOrToJjlMrmqbwtXayb4puy75p5gH/CBA2i3wsnN8CLAGm9wowZsu+TcvAjtPhoFOOqjoJtcIbNU5eVJ6XfGhpdcu+krZKXdsduDu4bxwmBSNpSxLLvvf1CtAt+zpO+Zx/7BwfZhoCb9Q4eeF5KRuZFJmUZd/LU84nS7ojmBx+C3BEcN8ZWChpAcnmULPN7PEs8TuOky9FzJmpvLXpOAPSWtMMbe6RMbMnzeyFZvbblNs/mtm2Zradmf2DmT0U3C8zs23M7FVmtoOZfTNr4p388UrHyVuZ8damUxdiWHLvDI9b9m0IebUkvNJxIFFmDjvmiIk9FkydFOvWtuad+iMr5iiJ2igydRJoVRBLS8K/U3M449TTKldm6qRYx1IGHadtFLFFwddTbg9Imp+653hJiyXdI2nXYeKrk0BrM/6dmsUZp55WdRKix3tinDyoshHY2uXXZnaPmc0IWw7sCDwJXGFm70q5X0aYCCxpaxLDedsAuwFndlYxNRHvmagXMVZGMeWhXnszOQlN6ImJMf+3DW8Ejk7uWxR0HCQJ+CdWLc3eA7g42JO5H1gMzMop/nGpopDGmiljqhxjIsbKKKY8lHVvpjbmuzo9c4z533EGpZAtCgI7AY+Y2b3h9+bAg6nry4Jb4XghXUVMlWPTqFPFVTZ1yncxTJz3HhKnVNq8/Bp6b1EQWM1QHr0fq+e05pgt+6bxistJU1ZlXXW+O/KwwyuNv2gGafgU/Q288eU4g5NHaVljiwJJawF7kcyd6bAM2CL1ezLwcK8Azewc4ByAW5dOiXb37JhbmZuNrXBh2FCqzndzzzi90vhjoOpvkMbL+mDMWGe9qL5bTJQ5MbcIct+iIPBm4G4zW5ZyuwrYR9K6kqaRbFFwYw7xOz1wwdY+qu6pcarBy/pgDKPEtG5or812ZPpsUQA95syY2SLgEuBO4GrgUDNbmSX+thB7oYo9fW0hltam5wen7rhyWC8yfS0zexJ4YQ/39/bxfxJwUpY420jshSr29Dnl4vkhX2IZEoklHU4B+NCS0wtvlTpNwvNzNrIM+5WhPAySPldinFjJOrR0lKRFYbfriyStJ+kFkq6VdG/4//zgd6qkp1JWf8/O5xHixFulToyMWqF6fs5GtxIwimJYpDLpSkp2aq3st3X5taTNgY8AM81sW2CMZG7MccAPzGwr4Afhd4clHau/ZjY7Q7pbR60LiTM0RU3c9QorDkZRDF2ZjJtaf5+2KjKBtYBnheXW65Msp94D+Eq4/hXgHRnjcCi3kMSsNMWctjxxhcNxHGcwsuy19BDwWWApsBz4rZl9D3iRmS0PfpYDm6RumybpNknXS9opQ7qdAom5ZRFz2qA9ipbjNJ1WmTNo6/LrMPdlD2AasBnwbEnvHueW5cAUM9seOBqYJ2nDPmHXwrJvm4m1kFetSMSuaDmOMxjeK1ofsgwtvRm438x+aWZ/JrEl87fAI5I2BQj/HwUIm0U+Fs5vAZYA03sFbGbnmNlMM5u5134bZEiiUxSxFnJXJJpHnspprAp4lemK9Z04JdLiOTJLgddIWj/sdP0m4C4SC74HBj8HAlcCSNpY0lg435LEsu99GeJ3GkBWIVp1D4xTPHkqp7Eq4FWmK9Z3UhRlK26uKBbPyBLCzH4q6VLgVmAFcBvJ/kgbAJdIej+JsvPOcMvOwKclrQBWArPN7PEsiXfqT1YhGlsPjBsNc5y4Kbt81kEe1H2vpayWfT8JfLLL+WmS3pluv5cBl2WJz6kOr6AHoy7vyDcabAZeLp1cKHFibhG4ZV9nIFxYNgtXYpqBl8vRGWXIx4ey4yR3y76pax+VZJI2SrkdL2mxpHsk7Zol7rIoenwz9oJRdvpifx+O4zSDUZTAQRsAtZNjbZ3sO45lXyRtQbIr9tKU/63D9W2A3YAzO5N/Y6boFk/WlnHRilbZLXfvKXAcp+64HCuXIiz7AswBjgXSA297ABeHZdj3A4uBWRnjbxzDavLetey0GV/15jjZkYo5yiJ3y76SdgceMrMFXbdsDjyY+r0suDkpXJN3nMHJY9Vb3r2adVKO6pRWp0Dcsu9qln0PAE4APtHrlh5uPZ/ULfs6daLNFWETyLtXs06NkTql1XH6kSUX/8WyL4Cky4H3kSg2CxIbeUwGbpU0i6QHZovU/ZNZNRS1GmZ2DolNGm5dOiWqdWG+bHV1fPlnuytCx3EaQM3tyORt2fdyM9vEzKaa2VQS5WUHM/sFicXffSStK2kaiWXfGzOmv3TaWsn06yVouxJTNkVM7vYeIMdx6kyWOTI/BTqWfW8PYZ0zjv9FwCXAncDVwKFmtnLU+MfDTULnT9kKnFeuvSlCcYxFOe9883fNO6rilDhOy6j58muZRTVyswa3Lp1iPpxTDj5M5DiOUz07TFla6mDP1AtPLkQReOCA40p5jlpY9i1DialbL04RPRauxDgxcdgxR1SdBMdxakDuln0lfV3S/HA8IGl+8DtV0lOpa2fn8gQ5UbdK3HuonKKpWrk/49TTOOiU+gwzVf2+HGdkaj60lLtlXzN7l5nNMLMZJJtEXp66bUnnmpnNzpJwx3GKJQbl/vxj53DkYYdXnYyByPK+ylaCXOlymkRRln0JK5n+CbgoYxyO47SYuWeczgmv3bPqZPyFIpSAspXGGJRUJx4kK+Qoi9wt+6a87AQ8Ymb3ptymSbpN0vWSdho1bsdx2sVJ/3sF+523+jBTVb0KgygBvurOccojb8u+70552ZfVe2OWA1PMbHvgaGCepA37hJ2LZV/vPq0Xgwr/qr6r56dqmff+OavNmYm5V8HnsDm1oq1zZEhZ9jWzP5PMhflbgDDUtBfw9Y7nsFnkY+H8FmAJML1XwGZ2jpnNNLOZe+23wcgJjFnQOWsyqPCv6rt6fqqe84+dwwGn12cCsOP0I6Zeu9YOLdHbsu9d4dqbgbvNbFnHs6SNJY2F8y1JLPvelyF+x3GGINYepWEF+oWHuzLj1B/vtcuPoiz77sOak3x3BhZKWhDum21mj48av+M4wxFrj9KgAj2tiF14+JyoLQDH1Np2nAmp+dBSLSz7Vp0Gp724VWnHqQ+xlddR01O2Zd8tL/r3QurZ+/b9F7fs6zhpqhga6SWEYh2iaStuAdjpEJMSA/Glpx9SMUdZZLXse0Sw6rtI0pHB7Z3h9zOSZnb5P17SYkn3SNo1S9x1p+qu56rjH4VYhkZiSYeTcMapp1WdBKfFNKJhIyvmKIksy6+3BT4IzAJeBbxd0lbAHSQrln7U5X9rkrkz2wC7AWd2Jv/mSV0yVdWaetXxO04s1EVmOPHhG+3GQZYemVcAPzGzJ81sBXA9sKeZ3WVm9/TwvwdwcViGfT+wmEQJypVhM9UwPRMu8JwiqWMv2TCUUX5GmQDsFVFc1KkcNCXvtHn59R3AzpJeKGl94G3AFuP43xx4MPV7WXCrlGF6JpqSaetKHgIuj8q0qAq56b1kRZWf9Pf4+n5zConDKY9OOaiTQuNUS5bl13cBnwGuBa4GFgDj5bxeU396qmx5WfZ1mkUeFX0elakrtGtSZW9lnb+H9/L2p+mKfUy0erKvmZ1nZjuY2c7A48C943hfxuo9NpNJbTLZFW4uln3bjgtJpyxiViZibtnH/N7yxuVRvFQ5tCRpLOzB+K1R05911dIm4f8Ukgm+4+10fRWwj6R1JU0jsex7Y5b4nfFpk5B0ysErI8dxcuYIVu0KMBJZ7chcJulO4JvAoWb2a0l7SloG/A3wbUnXAJjZIuAS4E6SoahDzWxlxvidyPGKr1nkrRyXkT98iCIOvGEVMRVZ9pU0Gfh74Nwsyc9Uws1spx5uVwBX9PF/EnBSljjbTGxWKwehW3jV8Rmc4vDKLT7qWEbrmOY2IOlg4OCU0zlmdk7q91zgWOA5WeLxL18j8iqoeRX6UWwouLBxnLipUxntyLI6pTlGiloqHZSWc3pdk/R24FEzu0XS67PEk7tl39S1j0oySRuF31MlPSVpfjjOzhK3Mzp5FXpvTTuOUyWuwNSa1wK7S3oAuBh4o6SvjhJQEZZ9kbQFsAuwtOu2JWY2IxyzR407CzGvYGgzWeZKTHSvz9NxnPLxclcfqpgiY2bHm9lkM5tKYvX/f8zs3aOkP3fLvuHaHJJxr+h2rnYNPk6y9O5MdK/3HNUPrwTrz6DlzhuX1eOWfbss+0raHXjIzBb0uGdaWC9+vaQ1Jgo79SbvyscFXHtx5bM9eOPSMbPrzOzto94/cg4ys7skdSz7/p5Vln1PAN7S45blwBQze0zSjsB/S9rGzH43ahrKxmfGj0/elU/b3nXTN6Ar4/ma/g4dpwjK7D0pgrwt+z4ATAMWhAk8k4FbJb04bBb5WLjvFmAJML1XuLFuUdC2itVJKKtnqIy9iKqkaAVjs7EVrsRkxHtBnTqSt2XfC81sEzObGibwLAN2MLNfSNpY0ljwvyWJZd/7eoXbhC0KYqk8nMEY73tVpcDmlYfyqNzrkJ+9oZEdf4ftpO57LWXNtZdJeiHwZ4Jl33H87gx8WtIKYCUw28wezxj/X4ht2MdbhvUixu8VU5piSovjOPkyqeZDS7lb9u26PjV1fhlwWZb4xiMmJcZpFj7voh7E8p1ia1Q5xeHfOg6y7rVUGXXo6naaQV6Vo+fZYolBiQFvVLWJLN86JnnQ5uXXPS37Spoh6SfBeu/Nkmal/B8vabGkeyTtmiXujtDyyWlOXYilonWaTV1kYt4VeUyKwSC4PMiPIiz7ngJ8ysxmAJ8Iv5G0NYn1vm2A3YAzO5N/s+CtH8cphhgqhhjSMCixKBB1kYl5V+SuGIxOm3tk+ln2NWDD4Oe5wMPhfA/g4rAM+35gMYkSlCt1EnyOEzMxVAxlpCEvBaQuCkQal5cO1H/VUu6WfYEjgVMlPQh8Fjg++N8ceDB1/7LgNi7DFrQYhO9EtE14xNJSdZxe1FEBGZSJZE0d5GWRDCqbXIbFzciKjJndBXQs+17NKsu+hwBHmdkWwFHAeeGWXvrZhH1PTSxoVT9T2YpUkysKx4mZqmVN3uQtuwaVTU2XYZNkhRylpT/LzT0s+94LHAhcHrx8g1XDR8tIemw6TGbVsNNqxGrZtynEJty8tePUhb2vOLLqJLSa2GSXEwd5W/a9iEQ5eV3w8kYS5QbgKmAfSetKmkZi2ffGXuE2wbKvMzhNb+04zeHSPedWnYTa0bah9DrS5sm+kFj2vRP4Jqss+34Q+JykBcC/AwcDmNki4BLgTpKhqEPNbGXG+CvFC+jo+LsbnarfXdXxx8BhxxyRe5hN7Zn0XhSnaGQWt2niW5dOiTuBjtMQYrGMWxf2O+8o5r1/zsj3+/t2OnTnhR2mLC1xzQ+8+rv/Ukg9e9Nb/72U56itZV/HcfLFK9XhmPf+OZnmzAzyvpvaSzMRbXvuqstem5dfO47jtJpL95zLkYcdXlj4bZ0/ludz12UotC7pjJEJFRlJ50t6VNIdKbcXSLpW0r3h//OD+wsl/VDS7yWd0RXOdWFrgvnh2CT/x3EcxymXuWeczjHvPaTqZERDbL0pWXs7ylIwquyVacPy6y+TbCmQ5jjgB2a2FfCD8Bvgj8DHgY/2CWt/M5sRjkdHSK/jOCURQ4VUl1bqqV8+i3fNO6rqZERB03qRqh72cSZmQkXGzH5EYiMmzR7AV8L5V4B3BL9/MLMfkyg0juPUmBgqpDpVIl/fbw4HneLKjFM/2rr8+kVmthwg/B90mOiCMKz0canMqUCO4zjFc/6xc9jr6uLmzDhOEbRhaCkv9jezVwI7heM9/Ty6ZV/HcbrpHuoaZeirjOGyy3c7vVY9MzEMITpOFkZVZB6RtClA+D/hfBczeyj8fwKYxzg7X7tl32Koy3wDJ1/G++51yhPdQ12jDH2VNVx2/rGj25cpmxiGEJ1qaevQ0lUkeyoR/l85nmdJa0naKJyvDbydZPdsJ9CrQsm7pVSn+QZ1JjblYLzv7nmiWD504pFVJ6FSYisLo+A9VvEzyPLri4AbgJdJWibp/cDJwC6S7gV2Cb87/h8APg+8N/jfGlgXuEbSQmA+8BDwpZyfJXrGK9S9KhRvKeVLG5ZROuUxSAX3xRPn9r3WhEp+IppQFvrJ4SZ9v7rPkZmwpjSzfftcelMf/1P7+N9xwDQ1liYU6jqTx/tvg1n5vJ+xqe8sa0Ojie+kTTTp+02i3jsBuWXfQJu7D5vUsiiaJgmvfuT9jLG+s7rn+/HS32Z55rSPvC37TpX0VMp679mpe3aUdLukxZK+ENvy6zYN43QLwFErGheWTp2JVcEalPHS3xZ55jIoH9ow2ffLDG7ZF2BJynrv7JT7WcDBwFbh6A7TKYm8BHhbhGVWqhC2de9taAJZv7t/w4lp455Mzprkatm3H2GJ9oZmdoOZGXDhRPe0CS9AzaYKha/uvQ11YTxlJY85NG2VDVUo/20uM3Wf7FuEZd9pkm6TdL2knYLb5sCylJ9lwc2h3QXIKZ4iKoUYK9gq0lS0klq2bIjlu3pvb7m0VZHpx3JgipltDxwNzJO0IdBrPkzfp3TLvk7diaVCgGyVQr/niFH5jjFNdcPfoVNHRpVwj0ja1MyWpy37mtnTwNPh/BZJS4DpJD0wk1P3TwYe7he4mZ0DnANw69Ip9V4XNgFNXZradpryTZvyHI4zCpuNrRipITDqfVVRZu9JEeRq2VfSxpLGwvmWJJN67wvDT09Iek1YrXQAE1gDLppYWsxeUTh1IpZy41RPG/LCqMpInZSYJpC3Zd+dgYWSFgCXArPNrDNR+BDgXGAxsAT4bl4PMUqBcgXCcYbHy834tKFy7+B5oTnUfY5MrpZ9zewy4LI+4dwMbDtU6gakLgXKh5Gqxd+/UzSev9qDy5N4cMu+JeKZvlr8/dcTN3qWP2X3HDWxp6pJ8mQSVshRXvonYEjLvmtL+kqw4HuXpONT91wn6Z6U1d9NesXnOE6cVFUZdc83cMUmO2VXwk2q9JtI3YeW8rbs+05gXTN7JckmkR+SNDV13/4pq7+PZkq5kzteQTjjUWVllFaiqp5I2cTeBcepM3lb9jXg2ZLWAp4F/An4XS4pdQqn6gqiTXhlOBwxtehjSkvTaWo5ia3R2IYemV70s+x7KfAHEsN4S4HPplYtAVwQhpU+HtumkVmJLWMWRVMFS9m0uTL0PBQno36XIr9nU8uJNxrzJe/JvrOAlcBmwDTgn4M9GUiGlV4J7BSO9/QLpI6WfduSMbMKlrYofE5/mlo5lUGR5afzXYZVTGL4nq4cZ6OtPTKPBIu+nQ0hO/Nd9gOuNrM/hzkw/wvMBDCzh8L/J4B5JEpPT8zsHDObaWYz99pvgxGT6MRIWxQ+xymCMnZ7jkExGZY6pjkm2qrI9LTsSzKc9EYlPBt4DXC3pLUkbQTJyibg7cAdNARvDVSHv/vR8XfXbtpa+Xu+bx55W/b9T2ADEiXlJuACM1sIrAtcI2khMB94CPhSzs9SGW0VCDGQ97tvk5DzfOvkzYx11ou+DE2U72NPfxHU3Y5M3pZ9f0+yBLvb/Q8ky7FrSRssOLbhGQfB34HjjE4Tyk8TnqFtuGXfAWhDxm5TK6VJz+K0m4NOOarqJDgNoPFzZPpY9n2npEWSnpE0M+W+i6RbgmXfWyS9MXVtx+C+WNIXmrb8uuk0QZnrrPhowrM4DsD5x86pOglOA5ikZwo5Skv/AH6+zJqWfe8A9gJ+1OX+K+AfwjLrA4H/Sl07CzgY2Coc3WE6TqH4iikndppunsB7Q50iGMmyr5ndZWb39PB7m5k9HH4uAtaTtG5Yor2hmd1gZgZcyCprwJnxwlFv/Ps5TkIWZfuE3d6dY0pWJ68yWmZvaNOVwjxp/NBSBv4RuM3MngY2B5alri0LbrngQwX1pk7frwilywWukwcnXf3Vca9nybt1KqMdHl65lpetllCIIiNpG+AzwIc6Tj289VXX6mjZ12kHRQh0H/Jy8uTIww7v6d6dd6uu5MvoifWyNRh1X36duyIjaTJwBXCAmS0JzsuAySlvk4GHu+/t4JZ9y6UOQztVC13HiY1+5XbuGaez33kTr2aqupKvYy+PEye5KjKSngd8GzjezP634x42lnxC0mvCaqUDWGUN2OmibMWiDgKlaqHrODGQlg3jldt575/DYccckTmOuuANnWw0fo5ML8u+kvaUtAz4G+Dbkq4J3g8DXgp8POxyPV9SZ2fsQ4BzgcXAEuC7gySwjRm0DoqF4zjlM4xsOOPU0/jQiUdmiqMuSo03dLJR9+XXShYRxcutS6fEnUCntbg15NXx9zE+Vb2fw445gjNOPa30eOvIZmMrolCKdpiytFQ7a++76X2F1LMXvPqCUp7DLfsWTBE9SnVpJTUdr7RXJ4/30eS8XVV+OePU09wC8IDEoMRUwZiskKMs8rbsO1XSU6lhpbNT166TdE+PIadaM5GiUkTB8Aq0WbRx+LQfnreL4fxj57gy4zSWvC37AiwxsxnhmN11bf/UtUeHT258lK3Bt6XSa3LLvJu2tgK7adM3r4Lzjx19ArDTbKpYfi1pC0k/lHRX6BgZOXPmatnXKZ62VHqjtMzTFWEslWIs6YiRbqXce2OK54xTT+trZ8ZpLxVN9l0B/LOZvQJ4DXCopK1HSv8oN03ANEm3Sbpe0k5d1y4Iw0ofz7JppFcOTi/SFeEwlWKR+ckr5/60RSmPjblnnF51EhwHM1tuZreG8yeAuxjR4n/eisxyYIqZbQ8cDcyTtGG4tn/YTHKncLynXyATWfb1ysHJE89PTpMYdPh5r6u9Z8ZJKMqOTLouD8fBveKXNBXYHvjpKOnPtUkU9lV6OpzfImkJMB242cweCu5PSJoHzCLZPLJXOOcA54Avv3YcxxmGTcY24OGVEyvnl+/mPTNOsaTr8n5I2gC4DDjSzH43Sjx5W/bdWNJYON8S2Aq4T9JakjYK7msDbyeZMOw4f8GHDJ2iaUMeG7aHsS0LCJz+jGGFHBMR9IHLgK+Z2eWjpn/CHplg2ff1wEbBmu8nSSb/ng5sTGLZd76Z7QrsDHxa0gpgJTDbzB6X9GzgmpDoMeD7wJdGTbTTTOo6xBOLEa26UcV7q2seKxLPu06ZVng7hHmy5wF3mdnns4Q1YQ42s337XLqih9/LSLSrbvc/ADsOnbpxcCuiTiwMWhG4wrM6o74LL/tOXUnLAM/HvJZkruztkuYHt38xs+8MG1BtpeqgGcArj+LxdzwY/o7yYdgVaS2vLJyISMuAmPJlmRs8djCzHwO5bGGQt2XfdSRdIOl2SQskvT51bcfgvljSF7Isvx4GrzyKx9+xEysxVRaD4PNVHGd48rbs+0GAsMx6F+BzkjpxnAUcTDIBeKseYTqO47QabxQ4VdD4vZaGtOy7NfCD4OdR4DfATEmbAhua2Q2WbLd9IfCObEl3HKcqYuw5aMOKJMdx1iRvg3gLgD3CcutpJBN8tyCx1rcs5W8ZI1rwazJlC2IX/M6oxNhzUPQwkpcXfwdNZRLPFHKURd7S6HzgFcDNwM+B/yPZT6HXfBg3dNdF2eP5dZs/4DhVMl55acuk4jY8YzdtWMxQxWTfPMm1R8bMVpjZUWF36z2A5wH3kvTATE55nQw83C+cibYocBzHiYlHV7qcaipNV2KaQN6WfdcPxu+QtAuwwszuNLPlwBOSXhNWKx0AXNkvHDM7x8xmmtnMvfbbwLsza4p/t+LxdxwHXtk5dWaMZwo5ymKQ5dcXATcAL5O0TNL7Je0ZrPz+DYll32uC902AWyXdBXyM1TeGPAQ4F1gMLAG+O2gi29id2QQm6oqvM7FMdvWy0RzqXiYcpyrytuz7APCyPuHcDGw7TOKc5lL3Cthb4E7e1L1MOPXF58g4juPUmLx712LprXOKpym9aGN6ppCjLEa17HuqpLslLZR0haTnBfddJN0SLPjeIumNqXuuk3SPpPnh2CRLwl1YOHXD82w+5P0e8+5d89669jBsL1pa8WmKEhQDo1r2vRbY1sy2A34GHB/cfwX8Q7DseyDwX1337R9WNM0IBvNGJjZhEXumjD19bSC2PFtX/D06dSWt+MQ0lDgJK+QoL/0T0Mey7/fMrNMs+glhabWZ3WZmnWXVi4D1JK2bY3qjJaZM2YvY0+fERwzKbwxpGJQ6pdVxmkQec2QOovcKpH8EbjOzp1NuF4RhpY+XtWmkU098GKZ6qlJ+0wpBrzTEqjB4Y8GpK42fIzMekk4gsdz7tS73bYDPAB9KOe8fhpx2Ckd6afZQxCrInPzw4YP2MpFC4ApDM/HGS3VM0jOFHKWlf9QbJR0IvJ1EQbGU+2SSpdkHmNmSjruZPRT+PwHMA2aNE/a4ln1dkDlOfnjDwCmSQfNXnRovrnTFxUg5R9JuJAbvXmdmT6bcnwd8GzjezP435b4W8Dwz+5WktUkUoO/3C9/MzgHOAbh16ZR6L3B3nMjxhkGcNGWPn7rkr2He9yjfJeb9uMZqvvXhSJZ9gTOA5wDXhjkvZwfvhwEvBT7etcx6XeAaSQuB+cBDwJfyf5yJGVWTHqXV6lp7OcTao+Df38lC3ZWY4/b+QNVJGIqi33esSkwTUGpUKEq8R8Zx4ifm1mbM+Hsrhrr3Zu0wZWmpi2E+e9euhdSzH33FNaU8h1v2dZyWUGTPVdmVcay9cMPiSkwx1FmJcYbHFRnHaQlNqjSb9CxVULYieNApR5UanzMcY1ghR1nkukVBuLadpBskLQpbFawX3HcMvxdL+kJd7Mg0peU3KmU/f9vft+OUQdmK4PnHzik1Pmc42rD8+ssMuEVBWJ30VWC2mW0DvB74c7jnLOBgYKtwdIcZJW1v+ZX9/G1/3067afoE8Q+deGTVSXAaSK5bFABvARaa2YLg7zEzWylpU2BDM7sh2Jy5EHhHTs/Qepou/Jzm090Tl0fPXKy9e+Olq+lzO7544tyqk+D0YIxnCjnKIu8tCqYDJukaSbdKOja4bw4sS92zLLg5OdB04ec0n+6euDx65mLt3Ys1XWWy9xVHVp0Ep0HkvUXBWsDfAfuH/3tKehPQaz5M35lAE1n2dRzHcXoTa09Umkv3nMt+5+U7AbgOzx0rk2SFHKWlf9Qb+2xRsAy43sx+FSz+fgfYIbhPTt0+GXiYPpjZOWY208xm7rXfBqMm0YmcQYfEBhVQMQqyGNPkNJu69PjMe/+cXOfM1OW5Y6SVQ0upLQp2T29RAFwDbCdp/TDx93XAnWa2HHhC0mvCaqUDgCszpt0J1LWyHHRIbFABFaMgizFNzirqWnaawhdPnMsBp/vSbCcbuW5RYGa/Bj4P3ESyFcGtZvbtENQhwLnAYmAJq+bVOBnxyrJ+eAUaB152qufCw/svzW5qOYltgcaYninkKAvfosAZmrqb/3YcJz72uv7DXP66M6tORhSUvUXBuT/bqZB69gPT/z/fosCJE1diqqepLVWnvVz+ujMLtwAcW09ILEzCCjnKS/8EDGPZV9I6ki4IFnwXSHp96p7rJN3TtSt2K/DC0xxi+ZZFDonkrSS50uUMStEWgL0R1pu6Dy3latkX+CCAmb0S2AX4nKR0HPub2YxwPJop5TXCC09zaMq3HE+5yFtJavI8lKIV27Yqgce895Cqk+DUiLwt+24N/CD4eRT4DTAzr8Q6TlMYr4Iqo9enycpFmRSt2Lb1O5365bOqTkKhxKagTuKZQo7y0p+dtGXfBcAektaSNA3YEdgi5feCMKz08bpsGuk4ZdOUXh/HyUpT92Zqq4JaFHlb9j2fxPjdzcBc4P/CdUiGlV4J7BSO94wTrlv2HYBY5ms4w5NVkPm3by6xtdYHpYj9sXxvpnIYkxVylEWuln3NbIWZHRXmwOwBPA+4N1x7KPx/ApgHzOoXtlv2HQxvubeXNn37tiltZbTWi1CWxkv3oPF5T4UzCrla9g0WfZ8dzncBVpjZnWGoaaPgvjaJAnRHj6CdyKlra9GpL21S2soiT4VhEJngCkrc1H2LggklRLDs+3pgI0nLgE+SrFJal8SyL8BPzGw2sAlwjaRngIdYNXy0bnBfGxgDvg98Kd9HccrABZLjrM6MddZrdblo87PnSZX5aFKJS6WLYEJFxsz27eF8Xh+/DwAv6+H+B5KJv47jOI3CK3InDzwfjY5b9nUqo4lzH3zobXz8/ThOfNR9aGlUy77/Fqz6zpf0PUmbBfdZKcu9CyTtmbpnx2Dxd7GkL/jya6eJcx+qbFXVQUnwVqdTB5rYyGoyo1r2PdXMtjOzGcC3gE8E9zuAmcF9N+CLkjq11VnAwcBW4egO03FqRWyKgysJcVNVfoktn9aBJjayxqPxy6/7WPb9Xerns4HO8usnUxZ/1+u4S9oU2NDMbghLtS8E3pE59QXjAqCelPXdYlUcPN/mR57vsqr8Ems+bTp1Koettewr6SRJDwL7s6pHBkl/LWkRcDswOyg2m5MYyuuwLLhFjQuAetL279b2588Tf5fNZZTho2Hu8bxTHiMrMmZ2gpltQWLV97CU+0/NbBvg1cDxktYDes2H6dvvFItlXx8nrSejtoTq1IIaD8+34zPM+2lKnnDWJD18NOh3HmbIqU55pw27X0/EPOAfux3N7C7gD8C2JD0wk1OXJwMP9wswFsu+bRsnbQqjtoSa0oKKLd/GplgN836akifaSpUWhT3vlMeoln23Sv3cHbg7uE/rTO6V9FckNmUeMLPlwBOSXhNWKx0AXJkp5Y4TqFPLp43Eplg55RBDuXRlYjDqvvx6VMu+b5P0MuAZ4OfA7OD974DjJP05XPuwmf0qXDuEZAXUs0h2y+7smO0MyWZjK7xySDGKsPJ3GCf+XYqhivfqSkR9mNR/pkctUNjvMVpuXTol7gQ6rcIrWqeutH0rhTqxw5SlpdpZu/b+VxRSz+4y7a5SnsMlslMoTav4m/QsTrtwJcbpR5kTc4sgV8u+4dp2km6QtChY8l0vuF8n6Z6U5d9NinmkuChinDi2yZPj4RV/O5ko38cwf8JxnGaQq2XfMNH3qyT2Y7YhmVvz59R9+5vZjHA8mjHttaCIVlBRyoFXLk5eTJTvvXfAceJhDCvkKItcLfsCbwEWmtmC4O8xM1uZU1pXo069EnUhpsrFlar20fnmXraLw8uV00Tytuw7HTBJ10i6VdKxXbddEIaVPp5100gfsmi2UIpJqXLKofPN2162i1TkiixXTZZHTae1WxT0sey7FskS7P3D/z0lvSlc29/MXgnsFI739As7Fsu+/YilwHplXx2x5AGnedRVkauTPDrysMOrTkJUuGXf1S37LgOuN7NfmdmTwHeAHQDM7KHw/4lwz6x+AU5k2bfqSqROBbYIvOvf84Dj5E2ZcmXuGaeXFpdTPLla9gWuAbaTtH6Y+Ps64E5Ja0naKNy7NvB24A5GpO7do3VXBOraYnQcJ16qkCv7nXfUwH6rbkAXSeMn+wbLvjcAL5O0TNL7gZMl3SFpIckE3yMAzOzXwOeBm4D5wK1m9m1gXeCa4H8+8BDwpfwfJztltLRHLbB1V4DqhL/r+tLkCsfJl3nvnzOwX++FzR9JuwWzLIslHTdyOE2z7Ns0A2yO4zhF4fIyTsq27HvT0qmFKAKvnvJA3+eQNAb8DNiFZFrKTcC+ZnbnsPHkMUcmKrxQOo73SjSBMr6hy8tVHPPeQ6pOQmVUtGnkLGCxmd1nZn8CLgb2GCX9I1n2TV37qCTrzH8JbseHbqJ7JO2act8xWPpdLOkLWZdfO47Tn/G6wV3JqQc+lFEup375rKqT0DjSK5DDcXDq8ubAg6nfy4Lb0Ixq2RdJW5B0CS1NuW0N7ANsE+45M3QfAZwFHAxsFY41wnScqmlDJe8VpFMUm42tqH0ZauPS7KIm+6ZXIIfjnFS0vTozRhriGsmyb2AOcGxXxHsAF5vZ02Z2P7AYmCVpU2BDM7vBkkk5FwLvGCXBjlMkXsk7zug8vHKt2pehuWeczkGnDL6ayRmZZcAWqd+TgYdHCWjU5de7Aw91tiJI0a+raPNw3u0eBXVvQTi98e/qOM4onH/sHA475oiqk1Eak2SFHBNwE7CVpGmS1iEZzblqpPQPe4Ok9YETWLUtwWqXe7jZOO794shs2bd7+ex4lVqVLQhf5lscdW8Z1gVXGJ0mcsapp42szNStTFRhR8bMVpDsCnANcBdwiZktGiX9o0xZfwkwDVgQ5utOBm6VNIv+XUXLwnm3e0/CONo5MPzy6w7ds/FjrdR81YBTd2ItWzExY531ontPvvR6Ys449bSR7ovtW8eKmX2HZAeATAzdI2Nmt5vZJmY21cymkigpO5jZL0i6hfaRtK6kaSSTem80s+XAE5JeE1YrHQBcOUh8TeyxaOIzjUfdWieOkzcxVmxtVGJGlUV7X3FkvgmJjLZa9u1J6Ba6BLgTuBo41MxWhsuHAOeSTABeAnx3kATGUthGKQD97onlmcqirUN3w+QZV/acphFjg21UWXTpnnPzTYiTK42z7Os4ZRHjcIETL3kO5QwTlg8h1Y+yLfveu2yzQurZrSY/XMpzNM6yr+OUhSsxE9OEnqa8ehbyVCaGCcuVmHxp02qmupCrZV9JsyTND8cCSXum/F4XrP12rm+S76M4jhMbTVD2JlIEmqCsNZm8v8+oE4AnosqhuMbPkWEIy77AHcBMM5sR7vmipLQU2N/MZoTj0ZFTXVNc4FWLv3+nCEZV1jw/lkNRynTeFoCr7DmbVNBRZvrHZRjLvmb2ZFgbDrAeI5obbirdBcoFWbk0oXfA6U2ME0snwvNjtWTNM3PPOD2nlDhZyduyL5L+WtIi4HZgdkqxAbggDCt9POumkU1QAlyQtYsm5NlY8XkgzrBUkWfSylNMyveYijnKIm/LvpjZT81sG+DVwPGSOtJ7fzN7JbBTON4zWpITXAmIG6+018TzrOO0m7Ty5Mp3fozSI5O27PsAqyz7vjjtyczuAv4AbBt+PxT+PwHMA2b1iyCPLQrSxKT5tgWvtEejrQpg2WW0yvfs8ihfmlZmqnieMVTIURYD2ZGRNBX4lplt2+PaAyQTfH8VrPk+aGYrJP0ViSG97YDfAM8LftYGLgK+b2ZnTxR3XezIxG6rwW2eOI4zHi4j4qFsOzK/eKgYOzIv3jwSOzLDWPYF/o6kp2Y+cAXwYTP7FbAucI2khcB84CHgSxnTHhUxKzHgPSROf5rWonVGoygZ0cT81cRnqjNu2ddxHMeJjjb3EJXdI/PLhzcvpJ7deLOH4uiRcZxY8VaRU1fqnnfLSP9ESkzd3yGsOV/K50+NRusUmSZk/iYySgEetLXmwsGJjWF6GmLJv+l0xNBTEkMastI9JaGqKQqTUCFHeemfgCG3KNg/tQXBfEnPSJoRru0o6XZJiyV9IasdmVFpQuZvIkUW4BjmL2WtjFwBby8x5F+IJx0xUvfyWfdVS7luUWBmX+tsQUBiJ+YBM5sfLp8FHAxsFY41wnScppK1EnAFfHjGUx5j6eVwshPDt8yzfMbwPHUj1y0KutiXZJk1kjYFNjSzGyyZXXwh8I5REuzUDy+YThWMpzx670J5FN1b0bRvWcXzNH5oqRfjbVGQ4l0ERQbYHFiWurYsuDktIBZB4wpV/tS9S90pnqb2Jro8iYfctygIfv4aeNLMOvNqeqlmfZd75W3Zt0pc0MdDLApVk/Cdn5220iR5MiYVcpTFKF8ivUUBrNqiYJaZ/SL42YdVvTGQ9MBMTv2eDDzcLwIzOwc4B+pvR6aprZGqiN2CsjMYXi4cx8mLoXtkzOx2M9vEzKaa2VQSJWWHjhIjaRLwTuDi1D3LgSckvSasVjoAuDKPB3DaRdU71jrORHh+aQ9N6VmcVNBfeemfgCG3KADYGVhmZvd1uR8CnAssBpYA3x0hvbWmKZm+roz6/r0HyBmGQfOLy4N60yTLw3Wf7OtbFDhR0yRh4Th1Ghqta9mra7rTlL1FwdPLtyyknl130/t8iwLHqbtAgmpa3t7aj5NhlJiqv2Fdy55PQB+eMU0q5CgLV2QaQpsLYZoY30MVFUIeccbwLts836SuikRd8fddX1yRaQheCBPq/h5iUB46xPAuixqGiek9O9lo2rc87JgjSo+z7pN9MbOoD+DgPP3VJUx/nvaF6c8Td5hNex5/R3HH7cfgR+UJGOCj35ynv7qE6c/TvjD9eeIOs2nP4+8o7rj9GPzwoSXHcRzHcWqLKzKO4ziO49SWOigy5+Tsry5h+vO0L0x/nrjDbNrzFBGmP0++YToDEL1BPMdxHMdxnH7UoUfGcRzHcRynJ67IOI7jOI5TW1yRcRzHcRyntkS1e5mklwN7AJsDBjwMXGVmd1WaMMdxHMdxoiSayb6SPgbsC1wMLAvOk4F9gIvN7OSq0lYGkgTMYnUl7kab4ANJ2gCYDtxnZr/JGuZ44RURZizP3eYw/ZvnG6bjOCVTtUW+zgH8DFi7h/s6wL1dbrulzp8LnAcsBOYBL+q6djJwN/BYOO4Kbs+bID0bADv08wcI+GtgL2DPcK5RwgTeAiwGvgucG46rg9tbuvyemTr/O2Ap8EPgQeBtw4Y5aHhFhFnlc7c5TP/m+Ybphx9+VHtUnoC/JCRRNv6qh/tfAfd0ud2aOj8X+H/B31HAf6euXQN8DHhxyu3Fwe3arjCrFO53AVN7PPs04K5xnv2HwA7hfEtSpq8HDXPQ8IoIs8rnbnOY/s1zD3Ojrt/vBr4AHExX4wbYFTgLuAq4Mpzv1iOeVoY5THh1CXPQd+nH6EdMc2SOBH4g6V6Sih5gCvBS4LBx7ptpZjPC+RxJB6auTTWzz6Q9m9kvgM9IOqgrnNekzv8NeIeZ3SppS+AS4Dup66cBbzazB9IBSJoW/L1iyDDXYtVwWpqHgLV7uHfY0MxuDc91n6Sx1LVRwhwvvCLCjOW52xymf/PsYX6PpKcVSf8K7ETSO/x2EllwVLg2l2QY60JWHz7/iKS3mtkRHuZg4dUlzCHfpTMi0SgyZna1pOmsGpMWyYe/ycxWdnnfRNLRwc+GkmRB9WX1lVg/l3Qs8BUzewRA0ouA97JKWepF2cL9fOAmSRen0rUFyfyg87rCebmkhSTPPlXS883s15ImdcU9aJiDhldEmFU+d9YwpwDvqkE66/DN6/wuCWF12AvYycz+IGkecGvq2tvMbHrXvUj6OsnQerpSa2uYg4ZXlzCHeZfOiESjyACY2TPATwbw+iXgOeH8K8BGwC8lvRiYn/L3LuA44PqgwBjwCEkX3z91hZlVuPcSxgOFaWb/Iem/SVZs/Q2rlLj9zezOrrhf0fX79+H/C4BPdIV5JbD7BGEOFN6Q6ewO8w8Z01hWmOO9y0Geu6x0Zg1zoPBSYf43+X7zQcLrFWYR3ydr+QF4lqTtSRpRY2b2hxDGnyWlG2F/lDTLzG7suv/VwB89zKHCq0uYw7xLZ0SiWbU0LJJmAWZmN0naGtgNuNvMvpPy8xHgCjMbr/el4/evupyWm9mfJG0E7Gxml3f5fwWrlop3hNxVaSHXI8yHQ0bvGeaoSNrEzB7NIyxnMCS90Mwea2v8eVJ1/s0av6QfdjntZ2bLJb0QuMbMZgZ/O5DMj3gOq3p0twB+B3zYzG5pe5iDhleXMCXtCJw5yLt0MmARTNQZ9gA+SdJzczPwH8D/kLSmfgSckPL3W5Ilk/8fcAhdE7RyTtMmBYX73a7fL+g6Xgg8ADwfeEHK30ySyYxfJSk41wK/AW4Cth8x7u7VYufSe7VYr7h/2x03sGH4fv8F7NsV15njxP08+q9U2wD4NLAoxPnLkFfe2+P50vHv1y9+klVuG4XzHYH7gHuBnwOv67pvoPhJJp2fBfxn+IYnhue5BNi0y286/pkh/sXd8TPgKr0+cd/eJ+5bgX8Ftpwgrwwad3f+fQE98m9X3C+pafkZA9bv4f7ikI9mklqI4GEOH17GMCcVEGbu79KPAd571QkYKdGJ0B0D1ifRbDcM7s8CFqb83RYy61tIKr5fkqwuOhB4TleYAwni4HcgYTyoICaZNNbr2JGkZyjt9xng/q7jz+H/fSl/NwJvJbHN8yCwd3B/E3DDiHEPulps0LgvC+/3HSTDfZcB63bHNWTcV5LMgZoMHA18HNiKZAjy37vCHCh+4PbU+Q+BV4fz6ay5ymeg+Eny4eEkQ58LSVbSTQluV3bn90Hip/8qveNIrdIbMu77gc+SrLi7MbzvzXrk4YFWCDJg/h0y7srKzwCy6uXjXJvIxMOUzjVgKrA3sG0fv71MV4zbcBsg/pkkpiX+YbznGCR+EjMaSv1+A/DP9Fm9M2jcJPJ9UiqOHVhTIe4X91v7hDmQaY0B495u0Lzix+hH5QkYKdFwW6/z8Ht+6ry7MlybZMz7IuCXXdeGWao9qDAcVBCvJOlV+mGP46kuvx8lqYhemY5ngne0dJxrw8Sdrtznd12bP0Lc3WGcAPwvSSt5PEVmvLgXdF27KfyfRDL02PO+8eInUW7XCuc/6brn9q7fA8U/wTvqTtdA8dNlpqDL3z0jxp1+DzuRdJP/IuSPg0eIe6D8O2TclZWfiY70vQxn4uE4EvlxN/CB8P88kp6+o1P+3kAyZPFLkpU0U3u9v2HiB15H0tv9feDXwLdCubgO2KIrzIHiBxYAzw/nxwD/R9LIuxb4jxHjfgfJnMflJMP8Pw35YBnwDwPGfXJXmIOa1hg07pXh3n8Dth403/gx3FF5AkZKdJJp1g/nk1Luz+0qPLeNE8azun4PJIjD70GF4aCC+A5gqz5xP9jDbTLwDeDzJGOv9/Xwc0MolO8kGYJ4R3B/Hau34geOOxTSo0laM/exeitn4Qhx35X+fsHtQBJh/fMR4/4/4O/C+T+QjFf3+44DxU/SU/E94I0kwzBzgZ2BTwH/1XX/QPGTUniA/9cVxsKu3wPFH/wcy+pDbS8iUca/P2Lca5Qhkt7Q3YALho170PzbXX4miHvU8jOnX/yD5uHg9oU+x+nA73o9DxPb71lE0sP8QuAJYOPg/mzgjpS/m4BtwvneJEOer+n17QaNn6QnuxPfNJJ5hgC7AN/rCnOg+LvSfDNB/pIsOOnuRR807ttIGpvTSHrmXxbc/6rreQaK21bJhKk98kO33aRB474N2BY4iUShWUCipK4Rhx+jH5UnYKREh+7/Hu4bsbpyMX2IMAcWxOHaIMrEoIJ4705B6OH/HeOk+R9I5l/8ose1V5H0Mn0XeDmJ7ZvfkAjIvx0lbpK5SemjI3BeDFw4Qdy/DnG/NuXvFBJ7PN3x7saa1pyHiftGkvkpP04JmI2Bj3SFOUz8rwe+HgTT7SQ2gA6mq0s9Ff9vQvzTe8VPMo9mgx5xvxS4tIf7hPGTDG1+hqT1/mvgcRLB/BlWH/IcOG6S7UEGKT8Dxd11z+798u+QcZdVftbIw8HvE+FbHNjj+FXKX1qRuKUrjNu6fi8M/8eAR1m9wZaumLt7ALcB7iEZEhmvV7Nv/KyuWIx13beo676B4idR8LcN51ezqodkva7nGSbudJrv6Lo2dNzB7V5C72eX+zrA4hHi7v4Gs0jqjAeB/xskf/sx8VF5AmI5WF0QP87qgvj549w3njAcSBAHvy8nGX/foMu9lzXNv/glabVt28svyVLTCcMMhasz72Jrkp6Pt/VJ50B+ScaVO/62IelJ6Rlm130XTuRnWL9D+Pu78DzjmqAn6V3754n8jRdmeD/puV2fAr4Z8ttzx/G7Poki8q1uv8BH6Op+75OmgfwNGeY6JBX3m8Pv/UkmEx/K6srWOsABKX/vIemSX81fuLZul9/9gDP6+H0JSU/pacDngNnd77GP38+T9Hit4ZdEsTsmFeYhffz9D6nGQde1+1PnT5LMSbqdRPnpVKiTWLMy/DLJRPYrSYbC/yu80/OAS1L+bqZr8ihJI2s+8ESX+0Dxk5iXOC+8768Dn0/lve7h2YHiB7Yj6Y24MBxLQjw3k5poP2Tct7FqjsqslPtY1/MMFHfwe3wI92MhDfuR9KDcBhw/Qty39ckXomuhgB+jH7Vdfl0mkt5nZheMc/1ZJBN675jIb68wwzLxQ0kUpxnAEWZ2Zbh2q5ntkLpvIL/B34dJFLPx/H2SZFLjWiRjxn9NMh79ZpJhkZNScQ/kt4e/WcD1Pfxd1f1aSMbc/wfAzHZPxd3tF5KhltX8Duov+L3RzGaF8w+G93oFyZDCNy1sVNrl7wPB3393++vj97A+YS4CXmVmKySdQ1LJXEqieL7KzPZKhdnt9w8kE5NX8yvpt+HaEpJK8Btm9qvul9Hl76Lg75c93tvAfiV9jeR7P4ukN+zZ4bnfRDIMeGCXv/VJeq16+uvjdwPg8h5hfoTEouqPgLeRVKK/JukV+LCZXZcK8yMkjY/rx/M7ZJgvAP5oZk/2eocpf3/V5dTXxIOktUiGtYwkX/w1ycTjpcB/WrBbIunNJPP9FnTF9VzgsK7y2x1/T3MQktYGPkjSUFkAnG9mK4Oc28TMfp4Kc5j4x0jKwXRWGRW9xlKbdQ4Z96tJ5oitZo9F0lSS4d2vDhN3yu8gpjUGilvSfmY2rzsOJ2eq1qTqcNA12S8Pv6w+CfB2Qq8JyeqEm0kUD1izy3kgv0P6m3AF2DB+h/B3G8ny1teTzD14Pcnkudex5rLmgfwOG2bq/CZWn4dw+7D+hgyz5z5F4ff8rt8D+WXAVXqD+hsyzM5QyFokkyDHwm91ffOB/A0Z5u2pa+sD14XzKfQuPxP6HSZMP5p9MKBpjbz9+TH4MQkHAEkL+xy3k8yVGdrvEGGOmdnvASzZv+n1wFslfZ7VTWEP43dQfyvMbKUlrcklZva7cM9TJKuzGMHvoP52BG4hWS30W0tauU+Z2fVmdn1X3IP6HSbMSZKeH4xYyUJPgyWt3RUj+BvG7x2S3hfOF0jqGNCaTrICjhH8mpk9Y2bfM7P3A5uRTDDfjWSC9LD+hvE7SdI6JPPF1ieZeA/J8NDaI/gb1u9aqWvPCQlf2sPfMH4H8ifpuZJOlnS3pMfCcVdwe96w/nr4fXw8v/2Q9N1B/A3jt9ufpA0l/Yek/5K0X9e1M7v8nRz87TuBvwnDC79fLOksSf8p6YWSTpR0u6RLJG06gb+F3f6C3xd0H8CNoUy/YBx/L8ziz8lGVFsUVMyLSHYp/XWXu0gmi43id1B/v5A0w8zmA5jZ7yW9nWQc95Vd9w7qd1B/f5K0flA6dvxLApOu4W5FZlC/A/mzZEuKOZK+Ef4/Qp88OajfYcIkqRhvIfkeJunFZvYLSRuwurI3qL9h/H4AOE3JhnO/Am6Q9CDJJMAPdIU5qN/V0mJmfyaxj3OVkq75Yf0N4/c8kmHMMRIl8huS7iPZOPXiEfwN4/dcki1DfkKymuszAJI2Jpnrxgh+hwnzEpKhy9dbsiktSrZLOZBkQcAuQ/obz+97036VWKLthUiGlFc5DOh3mDCBC0gmyF4GHCTpH0nmnTzN6pvmdvvbe0B//cKDZB7Rt0l6O38IfA34e5JhobPD/37+3t7DHyTl6+eszuYkNsGMZIVXEf6cLFTdJRTLQSI0/67PtXmj+B3C32T6WHtkzRUSA/kdwt9AK8CG8TtMmF3X/54uo3VZ/Q4TZuqe9YFpefkbzy9JS/9VJArfiyYIY1y/DLhKb1B/I/jdjGAnicT68t6kJkIO62/IMLcJ18Y13DaM3yH8DWpDZxgTD4OGOYwNnYH8Dhnm/K7f/Wwx5eovXLstdd7XHtKg/sLvQU1r5OrPj2xH5Qnwww8//KjzweD2e4axtTNomMPYgRrI75BhDmqLKVd/wX08e0i3D+sv5TaonaNc/fkx+uFzZBzHcbLxLpIeg+vDfJbHSVbzvYBk5dGw/obxeyL0leOHd/0e1O8wYX6TZFXgXzCzr5CYJ/hTgf4ArgxDtpjZv3YcJb2UxJbNsP468S0zs3eS9EBdS9KbugZ5+3NGx5dfO47jFIRGMMfgYcYTtwY0rZG3P2c4XJFxHMcpCElLzWxKXv7aHGabn8cZH1+15DiOkwFJC/tdosscwyD+2hxmm5/HGR1XZBzHcbKRtzmGNofZ5udxRsQVGcdxnGx8i8SK9vzuC5KuG8Ffm8Ns8/M4I+JzZBzHcRzHqS2+/NpxHMdxnNriiozjOI7jOLXFFRnHcRzHcWqLKzKO4ziO49SW/x9LPlhuDCgQKAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "## Step 1: Compute Graph Laplacian\n", + "\n", + "from sklearn.neighbors import kneighbors_graph\n", + "from scipy import sparse\n", + "\n", + "def generate_graph_laplacian(df, nn):\n", + " \"\"\"Generate graph Laplacian from data.\"\"\"\n", + " # Adjacency Matrix.\n", + " connectivity = kneighbors_graph(X=df, n_neighbors=nn, mode='connectivity')\n", + " adjacency_matrix_s = (1/2)*(connectivity + connectivity.T)\n", + " # Graph Laplacian.\n", + " graph_laplacian_s = sparse.csgraph.laplacian(csgraph=adjacency_matrix_s, normed=False)\n", + " graph_laplacian = graph_laplacian_s.toarray()\n", + " return graph_laplacian \n", + " \n", + "graph_laplacian = generate_graph_laplacian(df=X, nn=8)\n", + "\n", + "# Plot the graph Laplacian as heat map.\n", + "fig, ax = plt.subplots(figsize=(10, 8))\n", + "sns.heatmap(graph_laplacian, ax=ax, cmap='viridis_r')\n", + "ax.set(title='Graph Laplacian');" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "id": "f74b64a5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.])" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "## Step 2: Compute Spectrum of the Graph Laplacian\n", + "\n", + "from scipy import linalg\n", + "\n", + "eigenvals, eigenvcts = linalg.eig(graph_laplacian)\n", + "np.unique(np.imag(eigenvals)) # The eigenvalues are represented by complex numbers. Since Laplacian graph is symmetric, the eigenvalues must be real." + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "id": "ee0435d4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Min Norm: 0.9999999999999996\n", + "Max Norm: 1.0000000000000004\n" + ] + } + ], + "source": [ + "# We project onto the real numbers. \n", + "def compute_spectrum_graph_laplacian(graph_laplacian):\n", + " \"\"\"Compute eigenvalues and eigenvectors and project \n", + " them onto the real numbers.\n", + " \"\"\"\n", + " eigenvals, eigenvcts = linalg.eig(graph_laplacian)\n", + " eigenvals = np.real(eigenvals)\n", + " eigenvcts = np.real(eigenvcts)\n", + " return eigenvals, eigenvcts\n", + "\n", + "eigenvals, eigenvcts = compute_spectrum_graph_laplacian(graph_laplacian)\n", + "eigenvcts_norms = np.apply_along_axis(\n", + " lambda v: np.linalg.norm(v, ord=2), \n", + " axis=0, \n", + " arr=eigenvcts\n", + ")\n", + "\n", + "print('Min Norm: ' + str(eigenvcts_norms.min()))\n", + "print('Max Norm: ' + str(eigenvcts_norms.max()))" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "id": "84592794", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmAAAAGDCAYAAACMU6xhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA700lEQVR4nO3dd3gc1b3G8e9PkiXZkiVZkpssy5J7xxhXwKZ3AoQbAoRek5AASUgh7UK4aZfkphdCdUIzhN5LaMa44yr3JqvY6sWS1aVz/9gxyEbGTdqRdt/P8+zj3Znd2d+clbSvzzkzY845RERERCR4IvwuQERERCTcKICJiIiIBJkCmIiIiEiQKYCJiIiIBJkCmIiIiEiQKYCJiIiIBJkCmEgYMLP3zezGI3xtjZkN7eiaOoqZXWtm8/2uo7N1hf00s0wzc2YWdZTbed3MrumoukS6IwUwkU5gZiea2QIzqzKzcjP7yMymHuG2OuRL73O2f7eZNXlBa++tcu9651y8c25bZ7x3d2ZmZ5jZe2ZWbWZlZrbSzH5gZrF+1wZgZjlmdrrfdbTHOXeOc+6fftch4icFMJEOZmYJwCvAn4FkYBDwM6DhCLbVKaGrHU95QWvvLSlI79stmdklwDPAE8AQ51wKcCmQDgw+wGuC9VmKSDegACbS8UYCOOeedM61OOfqnHNvOedWA5hZhJn9xMx2mFmxmf3LzBK9dXt7u24ws1zgXWCet91Kr3dqpvfc681svZlVmNmbZjZkbwFe78wGrwfuL4Ad6c549Qz37qeY2ctmttvMlprZz9sOi5nZaDN72+v122hmX26zbo6Z/dXMXvV6jRab2TBv3X1m9tv93vdFM/uOd/9OM9vqvW6dmX3xALV+prdw/+HXA7WbBfze+0yqzGy1mY1v5z0M+B1wj3PuAedcOYBzbqNz7lbn3GbveXeb2TNm9piZ7QauNbNpZrbQzCrNbJeZ/cXMovdr69vMbJuZlZrZb8wsYr/3/61X+3YzO+egH+Bn6+9jZq+YWYm3nVfMLH2/9vqVmS3x2uFFM0s+wLau89qy2qv5q/utv9DrGdztfX5n7/+ZmNkwM3vXAr2IpWb2uJkltdlGjpl91/s8qszsKesivYwiR0MBTKTjbQJazOyfZnaOmfXZb/213u0UYCgQD/xlv+ecBIwBzgJme8uSvN6phWZ2EfAj4GKgL/Ah8CSAmaUCzwI/AVKBrcAJHbRvfwX2AAOAa7wb3vvGAW8T6BXqB1wO/M3MxrV5/eUEegP7AFuAX3jLnwAu9cINXpudCcz11m8FZgGJ3usfM7OBh1v857Wb936zCQToJAI9WmXtbGYUgZ6uZw/hLS8k0FOWBDwOtADfJvC5zAROA27Z7zVfBKYAk73XX99m3XRgo/f6e4GH9rbZYYgAHgGGABlAHZ/9+bvae980oBn40wG2VQycDyQA1wG/N7PJAGY2DfgX8D0C+z8byGlnGwb8ynuvMQR6EO/e7zlfBs4GsoCJBH5/RLo355xuuunWwTcCXyRzgHwCX2AvAf29de8At7R57iigCYgCMgEHDG2zfu+yqDbLXgduaPM4Aqgl8KV6NbCozTrz6rjxALXeDTQClW1u77VZ74DhQKRX56g2634OzPfuXwp8uN+2/wHc5d2fAzzYZt25wIY2NeYCs73HNwHvfk77rgQu9O5f26aG9trq/b37fpB2O5VAeJ4BRHzOe5/ovUdsm2VzvXarBa5q067zDvJz8i3g+f3a+uw2j28B3mmzn1varOvlPX/AAbadA5x+CD+rk4CK/drr120ej/V+PiLba9/9tvUCcHubz/73B3jeJ59JO+suAlbstx9Xtnl8L3BfR/2u6qabXzf1gIl0Aufceufctc65dGA8gf/d/8FbnQbsaPP0HQTCV/82y/IO8hZDgD96Q1mVQDmBEDPI2/4nr3fOuUPY3tPOuaQ2t1PaeU5fr86222p7fwgwfW9NXl1XEOgt26uwzf1aAr1/e2ucS6CHDOArBHqMADCzq72hrL3bHU+gF+hwHbDdnHPvEugJ+itQZGb3W2A+3/729op90gPnnLvMBebNLScQVPbap93NbKQ35FfoDUv+sp39aPuaHQQ+z70+aT/nXK13N/5z9vczzKyXmf3DAkPguwkMcSeZ2YHq3gH0aKdOvB7eRRYYcq4kEKr3Pm8wgZ7Lg9XTz8zmmlmBV89j7bxXuz83It2ZAphIJ3PObSDQ+7N3PtFOAkFgrwwCvWRFbV92gPt75QFf3S809XTOLQB20WYiuDdE1e7E8MNU4tWZ3mZZ2+3mAR/sV1O8c+7rh7j9J4EveXOypuMN8XmPHwC+CaR4QSeb9ue17fH+7dVmWdsA+HnthnPuT86544BxBIYiv9fOe2wACggMYx7M/p/d373Xj3DOJRAYDt1/P9q2aQaBn5eOdAeBXtfpXg17h7jb1rF/DU1AaduNmFkMgc/otwR6d5OA19psJw8Ydgj1/IpAO0306rmS9j9bkZCiACbSwSwwEf2OvRObzWwwgZ6dRd5TngS+bWZZZhZPoBfkKedc8wE2WQK0Epgvttd9wA/3zq8ys0QLHJkH8CowzswutsBk9NvYN4QcEedcC/AccLfXizKawHDnXq8AI83sKjPr4d2mmtmYQ9z+CgL7+iDwpnOu0lsVR+ALugQCE7/5NMzuv40SAuHoSjOLNLPr2TcEHLDdvFqnm1kPAkGunsCcrf3fwxEIMXeZ2U3epHYzsxHs24vZnt7AbqDGa7/2wun3vG0OBm4HnjrINj9PDzOLbXOL8mqoI3BQRzJwVzuvu9LMxppZL+Ae4Bnv828rGojBC+YWOCDgzDbrHwKuM7PTLHDgySBvn/fXG6jx6hlE+6FXJOQogIl0vGoCPTiLzWwPgeCVTeBLG+Bh4FECQz/bCXzR33qgjXlDTb8APvKGzmY4554H/heY6w3bZAPneM8vBS4Bfk1guGwE8NFBar7U9j0PWI2Z9Wvned8kMBG+0NuHJ/FOr+GcqybwBXwZgV6bQq/GmIO8d1tPAqcTmJS/d//XAf8HLCTQSzjhIPtzE4Ev8TICPVkL2mzrgO1GYCL5A0AFgWG3MgK9O5/hnHuKwMTwKwn09JQCTwP3A//+nNq+S2B4tdp7r/bC1YvAxwTmub1KIMgcqdcIhK29t7sJDIX39GpeBLzRzuseJdBrWwjEEgjx+/A+79sI7HcFgf16qc36JXgT84Eq4AP27fnd62cEDjioIrC/zx3eLop0Txb4z5yIyOEzs/8lMAlcZzXvAGbmCAxPbvGxhveBx5xzD/pVg0g4UA+YiBwyb3h1ojfkNg24AXje77pERLobnZlZRA5HbwLDhGkEzgH1fwSGzERE5DBoCFJEREQkyDQEKSIiIhJkCmAiIiIiQdat5oClpqa6zMxMv8sQEREROaiPP/641DnXt7113SqAZWZmsmzZMr/LEBERETkoM9txoHUaghQREREJMgUwERERkSBTABMREREJMgUwERERkSBTABMREREJMgUwERERkSBTABMREREJMgUwERERkSBTABMREREJMgUwERERkSBTABMREREJMgUwERERCRvOOV5etZO6xhZf61AAExERkbCxeHs5tz65gpdX7/S1DgUwERERCRtvrS0itkcEX5iY5msdCmAiIiISFlpbHfM2lzCyf296Rkf6WosCmIiIiISFZ5fns6W4hjPH9ve7FAUwERERCQ9rd+4mLjqSb5wy3O9SFMBEREQkPJTvaSS1dwxm5ncpCmAiIiISHipqG0nqFe13GYACmIiIiISJitpGknv18LsMQAFMREREwkDFnkY2F9WQ3qeX36UACmAiIiISBpbmlNPQ3MqFk/w9/9deCmAiIiIS8p5amkeEwdi0BL9LARTAREREJMQ1tbTy4eZSzpuYRq/oKL/LARTAREREJMQty6mgsaWV08f087uUTyiAiYiISMgqq2ngjqdXkhofzSmjFcBEREREOpVzjjufW8POqnq+OnsYCbFd4xQUoAAmIiIiIeo/64t5e10RXztpGDfNHup3OftQABMREZGQk1tWy/efWUVqfDTfPmOE3+V8Rtc4FEBERESkg7S0Om5+dBmtDp68cToxUZF+l/QZCmAiIiISUr7+2MdsKKzmz5cfy+gBXeO8X/vTEKSIiIiEjNX5lby1rogzxvbn/IkD/S7ngBTAREREJCQUV9dzxQOLiY6M4Adnj8bM/C7pgDQEKSIiIt2ac47c8lp+8kI21Q3NPPv1mQzvF+93WZ9LAUxERES6pfc2FvPc8gKWbC+jaHcDAKeP6cdxQ5J9ruzgFMBERESkW3HO8djiXP77xWxS42OYMTSFaZl9OGlkPzJSevld3iFRABMREZFu5Wcvr2POghxmjUjl/qum0DO6651m4mA6fRK+mT1sZsVmlt1m2W/MbIOZrTaz580sqbPrEBERke7vvY3FzFmQw6VTBvPP66Z1y/AFwTkKcg5w9n7L3gbGO+cmApuAHwahDhEREenGahubeeSjHCIM7r5gHBERXfcox4Pp9ADmnJsHlO+37C3nXLP3cBGQ3tl1iIiISPeVU7qHM343j3mbSvjScendtudrr64wB+x64KkDrTSzm4GbATIyMoJVk4iIiHQBLa2OZz/O5943N9DS6rjvysmcOXaA32UdNV8DmJn9GGgGHj/Qc5xz9wP3A0yZMsUFqTQRERHxWXNLK7fPXcmra3ZxTHoiv73kGEb07+13WR3CtwBmZtcA5wOnOecUrERERASA+qYWNhRW8/qaXby6ZhfXHp/JXV8Y26XPbH+4fAlgZnY28APgJOdcrR81iIiISNfhnOPDzaU88OE2lmwvp6G5FYALjkkLufAFQQhgZvYkcDKQamb5wF0EjnqMAd72GnSRc+5rnV2LiIiIdC2VtY3c88o65m0qobSmkdT4GC6flsHMYSlkJPdi9IDeIRe+IAgBzDl3eTuLH+rs9xUREZGuyznHuxuK+ekL2ZTUNHDehIFMy0rhnPED6BMX7Xd5na4rHAUpIiIiYWTBllJ++PwadpTVkpUaxzNfO55jBif5XVZQKYCJiIhIp6tpaObh+dtZsr2cBVtLyUqN454Lx3Hx5HTiY8IvjoTfHouIiEhQNDS38PKqXTy3PJ+lOeU0tTjGD0rgiulDuPOc0cSFYfDaK3z3XERERDrN79/exP3ztlHX1ELf3jFcMX0IXzx2UNgNNR6IApiIiIh0mJLqBn7z5gaeXpbP9KxkvnHKcE4YnkpkN75uY2dQABMREZGj4pyjtKaRt9cV8df3tlBQWcd1J2Tyg7NHE9uje1+zsbMogImIiMgReXj+dl7P3kVOWS0l1Q0AjEtL4PeXTmJaVrLP1XVtCmAiIiJyyOqbWli4tYw/v7uZ5bmV9Osdw6wRqYzq35tJg5OYlpUckidO7WgKYCIiIvK5mltaeXZ5Po8vzmXdzt00tzoGJfXklpOH8Y1Thof10YxHSi0mIiIi7WpuaeWNtYX84tX17KqqZ/SA3nz1pKEck57ErBF96Rmt+V1HSgFMREREPuGcY3V+Fe9sKObJJbmUVDcwOLknf7h0Ehcck0aEjmbsEApgIiIiQlVdE79+fQPvbiiiaHdgQv2po/tx6dTBnDKqH9FRET5XGFoUwERERMJYc0sr/1lfzP+8so6CyjrOHjeA08b044ThqaQl9fS7vJClACYiIhJG6hpbeGtdIfkVdeyqquPd9cXsrKonvU9PHrpmCqeN6e93iWFBAUxERCQMFFTW8eLKAuYuySO3vBaAhNgoJqYncdcF4zhtdD+iIjXMGCwKYCIiIiFqa0kN2QVVzFmQw4rcSgCmDOnDneeM5tTR/XSWeh8pgImIiISIzUXV/GvhDl5YWUBNQzPOBZb3jo3i+2eP4rwJAxmSEudvkQIogImIiHRb9U0tLNxWxuq8Kt7dUMSq/CoAZgxNZlpmMnExUZw4IpWs1Dh6ResrvyvRpyEiItLNZBdUsWBrKX99bytVdU2YwTHpSXzvrFFccEwa6X166nJAXZwCmIiISDfxyuqd/HNBDktzKgAYOzCBP1w6iQnpiaTGx/hcnRwOBTAREZEuKr+ilg82lfDiip1sKamhfE8jmSm9uOOMkVw4aRDpfXrqzPTdlAKYiIhIF5JbVsuji3J4bU0hBZV1AIzsH8+ZY/szakBvrpoxRKeLCAEKYCIiIj4rq2ngd29vIrugitUFgYn0xw9L4YYTs5g5LIXRA3prTleIUQATERHxQWFVPfM2lfDOhiLmbSqlsaWVaZnJfOPk4Vw1cwj9E2L9LlE6kQKYiIhIEDjnmLe5lA83lfDh5lI2FlUDgXN0nT9xIDfMymL0gASfq5RgUQATERHpJMXV9bywooCcslo+3FxCXnkd0ZERTM3qw8WTRzN7ZF8NL4YpBTAREZEO5JxjW+ke/vTOZl5bs4umFkdyXDQj+8dz26kj+MIxaboEkCiAiYiIdJTX1uzirpfWUlLdQExUBFfNyOTKGRkM7Rvvd2nSxSiAiYiIHIUdZXt4ceVOnvk4n9zyWoamxvHV2UOZPbIvI/v39rs86aIUwERERA5RXWML720sZsn2crILqthYVE11fTMAkzOSuHFWFl86Ll3XXZSD0k+IiIjIAdQ0NLN0ezkLt5Xxzvoi8srraGxppWePSMalJXDhpDQG9+nFaWP6M7yfhhnl0CmAiYiI7Ce7oIoVeZX8+Z3NFFc30CPSmDE0hdPH9uekkX2Zlpmss9HLUVEAExERAbYU1/DYoh2s27WbJdvLARiQEMt9Vx7HSSP70jNaRy5Kx1EAExGRsFXX2MJzK/J5c20RH24uISYqgqGp8XzvrFFcOCmNtERd7Fo6hwKYiIiEFecc2QW7eXD+Nt5ZX0xNQzMDEmK5/oQsbp49VJcAkqBQABMRkbCwOr+SF1bsZOG2Mtbv2k3vmCimZyVz5cwhnDyyr85GL0HV6QHMzB4GzgeKnXPjvWXJwFNAJpADfNk5V9HZtYiISPjYXd/E22uLWJFXwZr8KlblV2EG49IS+NG5o7nkuMH0iYv2u0wJU8HoAZsD/AX4V5tldwLvOOd+bWZ3eo9/EIRaREQkRDW1tLI0p5wVuZWsyK3goy1l1DW1EB8TxegBvfn26SP5yvQM+vaO8btUkc4PYM65eWaWud/iC4GTvfv/BN5HAUxERA5TVV0TC7eW8np2IUu2l7Orqh6AzJRenDmuPxdOSuOkkf2I1ER66WL8mgPW3zm3C8A5t8vM+h3oiWZ2M3AzQEZGRpDKExGRrqippZUPNpbw2ppdrMirZHvpHgBS4qI5bkgffnr+WCYNTiItqafPlYp8vi4/Cd85dz9wP8CUKVOcz+WIiEiQVdY28ud3tzBvUwk7K+vY09hCQmwU07KSuWRKOmMHJjBjaAqxPXSeLuk+/ApgRWY20Ov9GggU+1SHiIh0Mc0trby7oZj5W0pZnV/FyrxKIHCtxYsnpzNrRCqzR/ZV4JJuza8A9hJwDfBr798XfapDRES6gIbmFh6Yt41lOypYvK2cuqYWYqIimDAokdtOG8H0rGROGJ7qd5kiHSYYp6F4ksCE+1QzywfuIhC8njazG4Bc4JLOrkNERLqOllbHitwKXs8uZFNRNStyK6lpaCYzpReXTElnxtAUTh3dT71cErKCcRTk5QdYdVpnv7eIiHQdNQ3NLN5WxtyleSzLKaeitomoCGPMwATOGT+A08b05+zxA/wuUyQouvwkfBER6X5aWh3ZBVXklO1hRW4l63buZnluBc2tjv4JMZw6uj+njO7LzKEppMTrvFwSfhTARETkqDW3tLI8t5K31haysaiaJdvLaWhuBSC2RwRjByZww4lZTM1MZvbIvkRHRfhcsYi/FMBEROSw1Te1MH9zKdk7q1i/azcf76iktKaB6KgIhqbGcda4AZw2ph9jBiaQkdxLc7lE9qMAJiIih6S2sZkPN5eyMq+Sfy/Lo7SmETPISolj5rAUzhrXn5NH9SM+Rl8tIgej3xIREWlXfVML8zaVkFteS2lNI898nE9pTQMAJw5P5foTM5melUKcApfIYdNvjYiIAOCc++QEqAu2lLG9bA+N3jwus72hayJTM5PVyyVylPQbJCIS5gqr6lmSU84jH21nRW4lEQYzhqYwa0Qq04emMDWzD3ExUfSI1MR5kY6iACYiEobK9zTy0ZZS3t1QzKurd9HY0krf3jHc+18TuejYQTpKUaSTKYCJiISo8j2NbCmuoaymgZyyWraV1LCtdA/bS/dQvqcRgD69enDBpDSumjGEsWkJ6uUSCRIFMBGRENDc0sranbt5fPEONhZWU7ankfyKun2e07d3DFmpcZw1rj9ZqXEcN6QPkwb3ITLCfKpaJHwpgImIdEMtrY71u3azcGsZC7eVsWR7OTUNzcT2iGBaVgrpfXpxyXGDOWZwIqnxMWSk9CIhtoffZYuIRwFMRKQbcM6RW17LspwKNhfX8PSyvE+GEbNS47hgUhrTMpM5flgK/RJifa5WRA5GAUxEpAtqbmnl4x0VvLuxmFV5lazJr2JPY8sn6yemJ/LT88cwc2gqAxIVuES6GwUwEZEuoKahmbUFVRRVN/D+xmIWbCmjcHc9PSKNsQMT+K/j0hnZvzfTspJ1aR+REKAAJiLio11VdTy5OJcnluRSWhMYUoyOjGD2yFS+c8ZIzp4wQHO3REKQApiISBCVVDewdmcVH24uZe3OKj7eUUGrgwmDEvnRuWMYl5ZIWlIsvRW6REKaApiISCdxzrG5uIbX1xSyOr+SnLLAObhaXaCXa8zA3lx3QhZXzxxCep9efpcrIkGkACYi0oGq65v42/tbeW9DMQWVdVTXNwMwekBvhvWN59wJA5k0OInJGX3oExftc7Ui4hcFMBGRDrAqr5Jnl+czd0kejS2tzB7Zl2lZyYwflMjxw1LUwyUi+1AAExE5QmU1DSzaVs4zH+fx/qYSnINzxg/g6ycPY2J6kt/liUgXpgAmInKIquubWJZTQXZBFQu3Bc5A7xwMTIzlxhOz+OapI0jsqcnzInJwCmAiIp+jYk8jS3LKWbdzN48vzqW0pgGA1PgYbp49lJNH9uO4IX2IjtJFrEXk0CmAiYjsp6S6gSXby3nko+0s21EBgBkcOziJX35xPDOHpeg0ESJyVBTARESAnZV1LNxaxhtrC3l7XREAPSKN60/I4sxx/RkzMEHDiyLSYRTARCQsOedYtqOCJdvLeXnVTjYUVgOQ1KsHN83K4gvHpDEkJU6hS0Q6hQKYiISFot31zNtUwsq8SjYUVpNXXktxdWA+1+gBvfnJeWM4flgqowf0JiLCfK5WREKdApiIhJSmllbqmlrY09DM8h2VLNxWysKtZWwt2QNAXHQkE9ITOWF4KpMzkjh/YppOiCoiQacAJiLdXmVtI6vyq1iTX8nf3t9KbWPLJ+vioiOZmpXMl6cMZtaIvozoH0+PSB2xKCL+UgATkW6nuaWV5bmVvLOhiHmbStlUVE1LqwNgxtBkTh/Tn5gekYxPS2D8oEQFLhHpchTARKTLa25pZUd5LU8vzWN9YTXZBVWU72kkwmBqZjJfP2kYJwxPZWjfOPr1jsFMc7hEpGtTABORLqe+qYV1u3bz3oZiVuZVsjSnnPqmVgDGpSUwe0QqZ4wdwIkjUnWUooh0SwpgIuI75xybi2uYsyCHj3Mq2FJSQ0urIzLCGJoax2VTMxjeL56Zw1IY1jfe73JFRI6aApiI+KK2sZl31hfz3oZiFm4rY1dVPZERxqwRqZwxNnDiU/VwiUioUgATkaDZWVnHG9mFLNhayvsbS2hudaTERTMtK5lbT+3LyaP6kpbU0+8yRUQ6nQKYiHSqllbHnAU5PL5oB9tKA+fiGpgYy1Uzh3DWuAFMzUwmUic+FZEw42sAM7NvAzcCDlgDXOecq/ezJhE5OhV7GtlUVM3i7eUs21HBtpIa8ivqGD2gN3eeM5qTR/Vl9IAEv8sUEfGVbwHMzAYBtwFjnXN1ZvY0cBkwx6+aROTwFVbVszKvgvc3lrC1pIalORWfrBveL57RAxK4/oQsrj0+U5f4ERHx+D0EGQX0NLMmoBew0+d6ROQgmlpaeX5FAR9tKWVZTgUFlXUAxMdEMbJ/PLeeOpzJQ/owYVAiqfExPlcrItI1+RbAnHMFZvZbIBeoA95yzr3lVz0icmB55bW8ubaQ+VtKWbK9nNrGFlLjo5mamcz1J2YxaXAS49ISiO0R6XepIiLdgp9DkH2AC4EsoBL4t5ld6Zx7bL/n3QzcDJCRkRHsMkXCknOOrSV7WLC1lPmbS/nP+iJaHQzrG8fFkwdx4vBUzho3QGecFxE5Qn4OQZ4ObHfOlQCY2XPA8cA+Acw5dz9wP8CUKVNcsIsUCRfOOdYUVPHO+mJeWFnAjrJaANL79OTqmZlcd0ImQ1LifK5SRCQ0+BnAcoEZZtaLwBDkacAyH+sRCTsr8yqZuySXxdvL2VlZR0NzK2ZwXEYfbpo1lNkj+pKR0svvMkVEQo6fc8AWm9kzwHKgGViB19MlIp2npdXx+OIdPL+igNX5VQCcODxw9vnByb04f8JA+sRF+1yliEho8/UoSOfcXcBdftYgEk6yC6p4fPEOnlySx/hBCXztpKHcPHuYLvcjIhJkfp+GQkSC4L2Nxfz9/a0s2V4OwHkTBvLXKyb7XJWISPhSABMJUc453llfzKOLdvDBphLSEmP5yXljuOjYQTo/l4iIzxTARELM3lNHvLO+mI1F1ST27MHXTx7Gd84YSY/ICL/LExERFMBEur2WVseGwt0s2lbOf9YVsXBbGQDHDenDXV8Yy5Uzhih4iYh0MQpgIt1UbWMzb60t4v/e3kheeeByQBnJvbjt1OHcOHsoCbGaWC8i0lUpgIl0MytyK/j5q+tZlVdJc6tjYGIsv7p4ArNH9mVQUk+/yxMRkUOgACbSDazftZsPN5fw4eZS5m8ppV/vGG6ePZSZw1KYlpVMTJSuwSgi0p0ogIl0Qa2tjnW7dgcm1G8pY96mEgBG9IvnGycP52snDyM+Rr++IiLdlf6Ci3Qx1fVN3PncGl5dvQsIXAD7lpOHce3xmfRLiPW5OhER6QgKYCI+a2115JTt4fXsQl5dvYt1u3YDcOmUwdxx5kiFLhGREKQAJuKTwqp67n1jAy+v3klTiwNgckYSd5wxkvGDEpk9si+REeZzlSIi0hkUwESCrKq2icXby/jJC9lU1DZy0aRBTBycxGmj+5GmoxhFRMKCAphIkDjn+P4zq3l2eT6tDlLionniphlMzUz2uzQREQkyBTCRTuSc47U1hczbVML8LaUUVNbxpePSuWjSIKZk9iG2h04fISISjhTARDrJ8twKfv/2Jj7cXErvmChmDEvh9tNHcMlx6ZhpbpeISDhTABPpQM0trby5toh/f5zHvE0lJMdF8/WTh/HdM0dpQr2IiHxCAUykAzjneHNtEfd9sJWVeZUMSurJ1TMzuePMkfTWNRlFRGQ/CmAiRym3rJY//GcTz60oICrC+OUXJ3Dp1MHq8RIRkQNSABM5AsXV9WwqrGHOghz+s76IqAjj1lOH841ThmtivYiIHJQCmMhheiN7F197bDkAvaIj+ersoVw5YwiDk3v5XJmIiHQXCmAih6CqrolHPtrO/M2ln8zx+uXFE5g0OInEnprjJSIih0cBTORztLQ65m0u4b9fzCavvI5j0hO5afZQLjkunaF94/0uT0REuikFMJF2VNY2MndpHo8t2kF+RR2p8THcf9VxnDlugN+liYhICFAAE2mjYk8jr67Zxf++sYHq+mamZvbhznNGc8bY/sREaXK9iIh0DAUwEaCppZV/fLCVP/xnM82tjuH94nng6vHMGJrid2kiIhKCDiuAmdlgYBwwHpgAjHPOTemMwkSCoXxPI/9ckMPcpbkU7W5g1ohUvn/WaMYPStDlgkREpNMcNICZ2VeBa4CxQAzwKpANvAT8olOrE+lEu6rquH7OMtbv2s2sEan8+uKJnDSyLxE6gaqIiHSyQ+kB+yFwKVAK/BroCTzsnMvtzMJEOktrq2POghzueWUdkRHG7758DBdPTve7LBERCSOHEsDOd85le/cvMbOzgZfNbA7wR+dca6dVJ9KBnHO8nl3IL15dT0FlHePSEvifi8YzOaOP36WJiEiYOWgAaxO+9j5+w8zeA34CfATM7KTaRDpMXnkt335qJct2VJCWGMt/nz+WK2Zk6MhGERHxxREdBemcawB+amaPdnA9Ih1qZV4lc5fk8vyKAqIjI/jZBeP4yvQMekRG+F2aiIiEsaM6DYVzblNHFSLSkXZW1vH397fy2OIdREUYZ44bwA/OGk1Giq7XKCIi/tN5wCTkVNU28fXHl7Mmv5KLJg3i7i+MI7GXrtcoIiJdhwKYhIzG5lb++M4mHvkoh9rGFn5+0XiunDHE77JEREQ+QwFMQsLanVXc8fQqNhRWc8qovtx62giOHZzkd1kiIiLtUgCTbq2xuZW5S3P5xavriYow/vKVYzl/YprfZYmIiHwuXwOYmSUBDxK4tJEDrnfOLfSzJukenHM8sSSX37y5kcraJsYMTOBvV0wmKzXO79JEREQOyu8esD8CbzjnvmRm0YAOUZND8rOX1zFnQQ4zhiZzzcxMThvTn+gonVpCRES6B98CmJklALOBawGcc41Ao1/1SPfQ0NzCd/+9mpdX7eTyaYP55Rcn6KLZIiLS7fjZAzYUKAEeMbNjgI+B251ze3ysSbqwij2NXPXwYrILdnPBMWncceYohS8REemW/ByziQImA393zh0L7AHu3P9JZnazmS0zs2UlJSXBrlG6gOaWVu58djXTfvkfsgt286NzR/Ony48lNT7G79JERESOiJ89YPlAvnNusff4GdoJYM65+4H7AaZMmeKCV550Bc457nllHXOX5nHF9Awun5bB+EGJfpclIiJyVHwLYM65QjPLM7NRzrmNwGnAOr/qka7pkY9y+NfCHdw8eyg/OneM3+WIiIh0CL+PgrwVeNw7AnIbcJ3P9UgXUd/Uwm/e3MhD87dz1rj+3Hn2aL9LEhER6TC+BjDn3Epgip81SNf0kxeyeebjfL547CB++cUJRERosr2IiIQOv3vARPZR09DM2+sKeX5FAdcen8ndF4zzuyQREZEOpwAmXcY764v45hMrqGtqIS0xlq+dNMzvkkRERDqFAph0CdtKavjGE8uJj4liznVTmTykDz0idWZ7EREJTQpg4qtdVXV879+rWbStjKhIY85103SaCRERCXkKYOKbrSU1/Oi5NSzPreDm2UO5auYQBib29LssERGRTqcAJr54Z30R35q7kobmVn5+0XgunZrhd0kiIiJBowAmQffYoh385IVsslLjmHPdVIakxPldkoiISFApgElQbSjczc9eXsuJw1N58JopxPaI9LskERGRoNNhZhI0VbVN3PSvZcTHRPGny49V+BIRkbClHjAJmgfnbyOvvI45100lOS7a73JERER8owAmna65pZUH52/nz+9u4dwJAzh5VD+/SxIREfGVAph0up+9vI5HF+1g1ohUfnzeWL/LERER8Z0CmHSqZTnlPLpoh67rKCIi0oYm4UunyS6o4ltPraRPrx5876xRfpcjIiLSZSiASafIr6jl8gcW0dLqeOS6acTFqLNVRERkL30rSodzznHPy+uorm/mH1cdx6TBSX6XJCIi0qUogEmH2lG2h38t3MFb64q47dThHD8s1e+SREREuhwFMOkwOyvrOPePH7KnsYWLJw/iW6eP9LskERGRLkkBTDpEQ3ML33xiOXsaW3juluOZnNHH75JERES6LE3Cl6NWVdvE5fcvYnluJeeMH6DwJSIichDqAZOj9szyfJbnVnLbqcP5zpk63YSIiMjBKIDJEatvauFv72/lb+9tYWJ6osKXiIjIIVIAkyNSWtPAl/+xkG0le/jCMWn8/KLxfpckIiLSbSiAyRF5d30x20r28MDVUzhjbH+/yxEREelWNAlfjsi20j30iDROGdXX71JERES6HQUwOSJbiqsZkhJHVKR+hERERA6Xvj3lsJVUN/Dh5lImpif6XYqIiEi3pAAmh+1Xr62n1TmumJ7hdykiIiLdkgKYHJaVeZU8t6KAm2YN5bghyX6XIyIi0i3pKEg5JM0trcxZkMP/vbWJ1PgYbjlluN8liYiIdFsKYHJIvvvvVbywcieTM5K458LxxMfoR0dERORI6VtUDuqlVTt5adVOzhk/gD9dfiw9dOSjiIjIUdE3qXyuV1bv5LYnVzAuLZF7vzRR4UtERKQD6NtUPteqvEoAnrhpOr1je/hbjIiISIhQAJMDem55Ps+v2MmYgQkKXyIiIh1IAUza9UZ2Id95ehXNra1845RhfpcjIiISUnyfhG9mkcAyoMA5d77f9Qjsrm/i+8+sIiUumnfuOImkXtF+lyQiIhJSukIP2O3Aer+LkE/d8/I6dtc385evTFb4EhER6QS+BjAzSwfOAx70sw75lHOOd9YXMTAxlulZOtO9iIhIZ/C7B+wPwPeB1gM9wcxuNrNlZraspKQkaIWFq5V5lVTUNnH7aSOIiDC/yxEREQlJvgUwMzsfKHbOffx5z3PO3e+cm+Kcm9K3b98gVReeahub+f4zq0mNj+a8iQP9LkdERCRk+dkDdgJwgZnlAHOBU83sMR/rCXt/f38rW0pq+P2lk3TaCRERkU7kWwBzzv3QOZfunMsELgPedc5d6Vc94a6gso77PtjKGWP6M2uEehpFREQ6k99zwKQLcM7xw+fW0NTiuPXUEX6XIyIiEvJ8Pw8YgHPufeB9n8sIWy+sLGDephJuODGLCemJfpcjIiIS8tQDFuZeX7OL37yxkRH94vnxuWP8LkdERCQsKICFsQVbS/n648vpFRPFry6eoNNOiIiIBEmXGIKU4HPO8fiiXBJio3jl1hOJ7RHpd0kiIiJhQz1gYaihuYU7n13Dq2t2cdm0DIUvERGRIFMAC0O/eWMjTy3L46ZZWdx59mi/yxEREQk7GoIMM0tzynn4o+1cOCmNH5831u9yREREwpJ6wMLMT1/IJi2pJ/dcMN7vUkRERMKWAlgYKa6uZ0NhNdfMzCSxly41JCIi4hcFsDDy8qpdAEzNSva5EhERkfCmABYmNhVV86vX1jM9K5ljdLZ7ERERXymAhYn73t9KZIRx35XHYaYTroqIiPhJASwMLN5WxnMrCrhyxhD6xEX7XY6IiEjYUwALca+v2cXlDyyiR6Rx+bTBfpcjIiIi6DxgIW1nZR3femolAxN78szXZzIwsaffJYmIiAjqAQtpr2cX0tDcysPXTlX4EhER6UIUwEJUU0srL64sICs1jlEDevtdjoiIiLShABaifvnaelbnV3H1zCF+lyIiIiL7UQALUR9uLmXWiFSuPT7T71JERERkPwpgIai2sZmtJTVMzuijc36JiIh0QQpgISi7YDfOwfhBOuO9iIhIV6QAFoIemr+N2B4RHJuR5HcpIiIi0g4FsBDS2ur4n1fW8fa6Iq6ZmUlqfIzfJYmIiEg7FMBCyEPzt/PQ/O2MH5TILScP97scEREROQCdCT9ErMit4Fevr2f2yL48cu1UIiM0+V5ERKSrUg9YCFi4tYzb5q4gKiKC314yUeFLRESki1MACwE/e3kteeV1fP/sUfTrHet3OSIiInIQCmDd3LMf57OhsJpvnDKMG2cN9bscEREROQQKYN3YyrxKfvjcGlLiovnCMWl+lyMiIiKHSJPwu6mdlXVc9dBiUuKjee6W4xmY2NPvkkREROQQKYB1Uw/P305dYwtP3jRD4UtERKSb0RBkN5RbVsuTS3I5e/wAXW5IRESkG1IA62b2NDRzwz+XEmGmk62KiIh0UxqC7EYenr+de15ZB8CvL57A2LQEnysSERGRI6EA1k3UNDTzf29t5JjBSdxxxkhmjUj1uyQRERE5Qgpg3cSTi3PZ09jC3V8Yy7EZffwuR0RERI6C5oB1A2+tLeRXr6/n5FF9mTQ4ye9yRERE5Cj5FsDMbLCZvWdm681srZnd7lctXVl1fRM/e3kdI/v35q9fmYyZrvMoIiLS3fk5BNkM3OGcW25mvYGPzext59w6H2vqcu6ft42Cyjoev3E6cTEaMRYREQkFvvWAOed2OeeWe/ergfXAIL/q6YoWbCnlz+9uISs1jplDU/wuR0RERDpIl5gDZmaZwLHA4nbW3Wxmy8xsWUlJSdBr80tzSyvffnolEQbP33I8EREaehQREQkVvgcwM4sHngW+5Zzbvf9659z9zrkpzrkpffv2DX6BPqiub+LmRz+maHcD3ztrNEm9ov0uSURERDqQrwHMzHoQCF+PO+ee87OWruS7/17FB5tKuGlWFl87aajf5YiIiEgH821WtwUO53sIWO+c+51fdXQlTS2tPPDhNt5cW8Rtp43gO2eM9LskERER6QR+9oCdAFwFnGpmK73buT7W47uXV+3k3jc2MjAxlsunDfa7HBEREekkvvWAOefmA5pZ7nHO8a+FO0iNj+GjH5yqSfciIiIhzPdJ+BKwubiGlXmVfPOUYQpfIiIiIU4BrIt4bnkBAOdMGOhzJSIiItLZFMC6gDeyC7nvg63MGpFK/4RYv8sRERGRTqYA5rPd9U18/5lVREdG8MfLjvW7HBEREQkCXVzQZ3c+u5rd9c08esM0kuN0wlUREZFwoB4wHxVW1fPamkKmZvZh1ojwOMu/iIiIKID56r4PtgLw0/PH+lyJiIiIBJOGIH1Q39TCvW9sZM6CHM6fOJAJgxL9LklERESCSD1gPnjm43we/mg7Z48bwK8unkDgqkwiIiISLtQDFmSNza28snonvaIj+fuVkxW+REREwpB6wILsqaW5LNpWznUnZCp8iYiIhCkFsCBqaXW8snoXyXHRfPfMUX6XIyIiIj5RAAuiZ5fns3h7ObefNkK9XyIiImFMASyI3lpbSN/eMVw9c4jfpYiIiIiPFMCC5KMtpfxnfTFfPHaQer9ERETCnI6CDIJ/L8vj56+uJ71PT75zxki/yxERERGfqQeskznnuPfNjfSIjOCha6YS2yPS75JERETEZwpgnWxHWS0l1Q3cftpwRg3o7Xc5IiIi0gUogHWi0poGvv/MagBOGtnP52pERESkq9AcsE6yMq+Sbz6xnKLd9fzkvDFkpPTyuyQRERHpIhTAOsHibWV85cHFpMRFM/fmGRw3JNnvkkRERKQLUQDrYPM3l3L9nKX0jY/htdtnkRwX7XdJIiIi0sVoDlgHKq6u51tPrWRAYiyv3naiwpeIiIi0SwGsgzjn+PVrG6isbeTeL00kJT7G75JERESki1IA6yB/e38rz60o4KbZQ5kxNMXvckRERKQLUwDrAPVNLfzjg61Mz0rWme5FRETkoBTAOsDv3t7E7vpmvnnqcHpEqklFRETk8yktHKWNhdU8NH87yXHRHD8s1e9yREREpBtQADtKd7+0loTYKF697UQiI8zvckRERKQbUAA7CvM2lbBwWxm3nDycgYk9/S5HREREugkFsCO0IreCG/+1jN6xUVw2bbDf5YiIiEg3ogB2BGobm7nOO9v9nOum0ju2h98liYiISDeiSxEdpuLd9Vzx4GIqa5v4y+WTdZ1HEREROWzqATtMf3t/K5uLa/jDpZM4cYSOehQREZHDpx6wQ+Sc4/a5K3lp1U7+a3I6Fx07yO+SREREpJtSADsExdX13PXiWl7PLuSmWVncceYov0sSERGRbszXIUgzO9vMNprZFjO7089aDmR5bgVf/OsCXs8u5PJpg/neWaOJ7RHpd1kiIiLSjfnWA2ZmkcBfgTOAfGCpmb3knFvnV017OedYsr2cRz7K4Y21hfTsEckDV0/hjLH9/S5NREREQoCfQ5DTgC3OuW0AZjYXuBDwLYC9tGon98/bSkFFHRW1TcRERXDZ1MH84OzR9ImL9qssERERCTF+BrBBQF6bx/nA9P2fZGY3AzcDZGRkdGpBMVERpMbHMGFQIuPSErlgUhoJOseXiIiIdDA/A1h7F050n1ng3P3A/QBTpkz5zPqOdNa4AZw1bkBnvoWIiIiIr5Pw84G21/BJB3b6VIuIiIhI0PgZwJYCI8wsy8yigcuAl3ysR0RERCQofBuCdM41m9k3gTeBSOBh59xav+oRERERCRZfT8TqnHsNeM3PGkRERESCTdeCFBEREQkyBTARERGRIFMAExEREQkyBTARERGRIFMAExEREQkyBTARERGRIFMAExEREQkyBTARERGRIFMAExEREQkyc875XcMhM7MSYEcnv00qUNrJ79GdqD0+pbbYl9pjX2qPT6kt9qX22Fc4tccQ51zf9lZ0qwAWDGa2zDk3xe86ugq1x6fUFvtSe+xL7fEptcW+1B77UnsEaAhSREREJMgUwERERESCTAHss+73u4AuRu3xKbXFvtQe+1J7fEptsS+1x77UHmgOmIiIiEjQqQdMREREJMgUwDxmdraZbTSzLWZ2p9/1BIOZDTaz98xsvZmtNbPbveXJZva2mW32/u3T5jU/9Npoo5md5V/1ncPMIs1shZm94j0O57ZIMrNnzGyD9zMyM8zb49ve70m2mT1pZrHh1B5m9rCZFZtZdptlh73/Znacma3x1v3JzCzY+3K0DtAWv/F+V1ab2fNmltRmXci2BbTfHm3WfdfMnJmltlkW0u1xyJxzYX8DIoGtwFAgGlgFjPW7riDs90Bgsne/N7AJGAvcC9zpLb8T+F/v/livbWKALK/NIv3ejw5uk+8ATwCveI/DuS3+Cdzo3Y8GksK1PYBBwHagp/f4aeDacGoPYDYwGchus+yw9x9YAswEDHgdOMfvfeugtjgTiPLu/2+4tMWB2sNbPhh4k8D5O1PDpT0O9aYesIBpwBbn3DbnXCMwF7jQ55o6nXNul3NuuXe/GlhP4IvmQgJfvnj/XuTdvxCY65xrcM5tB7YQaLuQYGbpwHnAg20Wh2tbJBD4o/oQgHOu0TlXSZi2hycK6GlmUUAvYCdh1B7OuXlA+X6LD2v/zWwgkOCcW+gC37j/avOabqO9tnDOveWca/YeLgLSvfsh3RZwwJ8NgN8D3wfaTjYP+fY4VApgAYOAvDaP871lYcPMMoFjgcVAf+fcLgiENKCf97RQb6c/EPhj0dpmWbi2xVCgBHjEG5J90MziCNP2cM4VAL8FcoFdQJVz7i3CtD3aONz9H+Td3395qLmeQA8OhGlbmNkFQIFzbtV+q8KyPdqjABbQ3jhz2BweambxwLPAt5xzuz/vqe0sC4l2MrPzgWLn3MeH+pJ2loVEW3iiCAwp/N05dyywh8AQ04GEdHt4c5suJDBkkgbEmdmVn/eSdpaFTHscggPtf8i3i5n9GGgGHt+7qJ2nhXRbmFkv4MfAf7e3up1lId0eB6IAFpBPYKx6r3QCwwshz8x6EAhfjzvnnvMWF3ndwXj/FnvLQ7mdTgAuMLMcAkPQp5rZY4RnW0Bg//Kdc4u9x88QCGTh2h6nA9udcyXOuSbgOeB4wrc99jrc/c/n06G5tstDgpldA5wPXOENo0F4tsUwAv9ZWeX9TU0HlpvZAMKzPdqlABawFBhhZllmFg1cBrzkc02dzjvC5CFgvXPud21WvQRc492/BnixzfLLzCzGzLKAEQQmTXZ7zrkfOufSnXOZBD7/d51zVxKGbQHgnCsE8sxslLfoNGAdYdoeBIYeZ5hZL+/35jQCcybDtT32Oqz994Ypq81shteOV7d5TbdmZmcDPwAucM7VtlkVdm3hnFvjnOvnnMv0/qbmEzjgq5AwbI8D8vsogK5yA84lcBTgVuDHftcTpH0+kUAX72pgpXc7F0gB3gE2e/8mt3nNj7022kiIHqECnMynR0GGbVsAk4Bl3s/HC0CfMG+PnwEbgGzgUQJHcYVNewBPEpj/1kTgC/WGI9l/YIrXhluBv+CdELw73Q7QFlsIzG3a+7f0vnBoiwO1x37rc/COggyH9jjUm86ELyIiIhJkGoIUERERCTIFMBEREZEgUwATERERCTIFMBEREZEgUwATERERCTIFMBEJKWa24DCff7KZvdJZ9YiItEcBTERCinPueL9rEBE5GAUwEQkpZlbj/Xuymb1vZs+Y2QYze9w7wzZmdra3bD5wcZvXxpnZw2a21LsI+YXe8j+Z2X97988ys3lmpr+fInLEovwuQESkEx0LjCNwTbmPgBPMbBnwAHAqgbOXP9Xm+T8mcBmq680sCVhiZv8hcCHypWb2IfAn4FznXGvwdkNEQo3+BycioWyJcy7fC0srgUxgNIELa292gUuBPNbm+WcCd5rZSuB9IBbIcIFr+90EvA38xTm3NWh7ICIhST1gIhLKGtrcb+HTv3kHugabAf/lnNvYzroJQBmQ1nHliUi4Ug+YiISbDUCWmQ3zHl/eZt2bwK1t5ood6/07BLiDwJDmOWY2PYj1ikgIUgATkbDinKsHbgZe9Sbh72iz+n+AHsBqM8sG/scLYw8B33XO7QRuAB40s9ggly4iIcQCUyBEREREJFjUAyYiIiISZApgIiIiIkGmACYiIiISZApgIiIiIkGmACYiIiISZApgIiIiIkGmACYiIiISZApgIiIiIkH2/w0EK+FvNGcyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# We then sort the eigenvalues in ascending order.\n", + "eigenvals_sorted_indices = np.argsort(eigenvals)\n", + "eigenvals_sorted = eigenvals[eigenvals_sorted_indices]\n", + "# Let us plot the sorted eigenvalues.\n", + "fig, ax = plt.subplots(figsize=(10, 6))\n", + "sns.lineplot(x=range(1, eigenvals_sorted_indices.size + 1), y=eigenvals_sorted, ax=ax)\n", + "ax.set(title='Sorted Eigenvalues Graph Laplacian', xlabel='index', ylabel=r'$\\lambda$');" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "id": "f7bcb799", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAGDCAYAAACr/S2JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABLiElEQVR4nO3deXyV5Z3//9cne0ISQkgCJOwSdmQRQYu2qLVFf+2gtlqdsVrtd7Sd7jOdqTOdsa3f+uvyczpTp46ObVH82lqr1kot39q67wsKguyLQEJYkkA2sp3l+v1x34mHEEICyblzct7PxyOPnHNv53Ofk5A313Xf12XOOUREREQkcaQEXYCIiIiI9I0CnIiIiEiCUYATERERSTAKcCIiIiIJRgFOREREJMEowImIiIgkGAU4kQRjZs+b2f86xX2bzGxyf9fUX8zsc2b2ctB1DLTBcJ5mNtHMnJmlneZx/q+ZXd9fdXU5drGZbTWzrJNst9HMlg5EDafDzM40s1eDrkOGJgU4kZMws/PM7FUzqzezw2b2ipmdfYrH6pc/mj0c/7tmFvKDWsdXXcd651yuc27XQLx2IjOzi83sOTNrNLNaM1tnZt86WXCIFzPbbWYfDbqO7jjnLnHOrRygw98C3Oeca4XO/7y0dvn5Ptc5N8s593xfD96b30czm21mT5lZjZkdN3CqmRWa2eNmdtTM9pjZX3esc86tB+rM7JN9rU3kZBTgRHpgZvnAk8B/AYVAGfA9oO0UjjUgoa0bD/tBreOrIE6vm5DM7ErgUeDXwATn3EjgM8BYYNwJ9onXZ5m0zCwTuB54sMuqL3f5+X7tJMc53c8qBPwW+PwJ1t8FtAOjgL8B7jazWTHrfwXcfJo1iBxHAU6kZ1MBnHMPOecizrkW59yf/f9ZY2YpZvav/v+8D5nZA2Y23F/X8b/7z5vZXuBZ4EX/uHUdrQf+tjea2WYzO+L/b39CRwF+69AWvwXwZ4Cd6sn49UzxH480sz+YWYOZvWVm34/t1jOz6Wb2F7/VcauZXRWz7n4zu8vM/ui3Wr1hZmf46+4xszu6vO4TZvb3/uNbzGynv98mM7v8BLUe1zrStfv4RO+bef7D/0zqzWy9mc3u5jUM+Alwm3Pu5865wwDOua3Oua8457b7233XzB41swfNrAH4nJktMrPXzKzOzPab2c/MLKPLe/1VM9vlt978f2aW0uX17/Brf9/MLjnpB3h8/SPM7Ekzq/aP86SZje3yfv3AzN7034cnzKzwBMe6wX8vG/2ab+6yfrl5LZMN/ue3rOtnYmZnmNmz5rVi1pjZr8ysIOYYu83sm/7nUW9mD9uJWzkXA3XOucpevA+dLZQ9fFZr/NoPmtlP/F27/X2M5f8s/BLY2M3rDgM+Bfybc67JOfcysAr4bMxmzwMXmRdIRfqNApxIz7YBETNbaWaXmNmILus/539dAEwGcoGfddnmI8AM4OPAh/1lBR2tB2Z2GfAvwBVAMfAS8BCAmRUBjwH/ChQBO4El/XRudwFHgdF4LR2d1zH5f5j+gtcqVQJcA/y3HduycA1ea+QIYAdwu7/818Bn/HCE/559DPiNv34ncD4w3N//QTMb09fie3rf/Nf7MF4AL8BrUavt5jDT8FraHuvFSy7Ha6krwGtViQDfwPtczgUuAv6uyz6XAwuBBf7+N8asWwxs9ff/MfDLjvesD1KA+4AJwHigheN//q7zX7cUCAN3nuBYh4BPAPnADcB/mNkCADNbBDwA/CPe+X8Y2N3NMQz4gf9aM/BaML/bZZurgGXAJOBMvN+f7szBe39ORdfP6qfAT51z+cAZeC1q0M3vYx9fZyoQcc5ti1n2LtD5e+Kc24fXijetrych0hMFOJEeOOcagPMAB/wcqDazVWY2yt/kb4CfOOd2OeeagH8GrrZju22+65w76pxrOcHL3Az8wDm32TkXBv5fYJ7fmnQpsMk596hzLgT8J3DgJGVf5bcKdXw913UDM0vFazn4jnOu2Tm3CYi9jukTwG7n3H3OubBz7h28kPPpmG1+55x706/5V8A8f/lL/vt1vv/808BrzrkqAOfcI865Kudc1Dn3MLAdWHSSc+pOT+9bCMgDpgPmb7O/m2MU+d8731Mz+43/vjWbWWxLymvOud/7dbc45952zr3uvz+7gf/BC+uxfuScO+yc24v32V0Ts26P3+oXwXvvx+B1w/Wac67WOfeY/xk24oXorjX8H+fce865o8C/4f18pHZzrD8653Y6zwvAn/ngM/w8sMI59xf//Pc557Z0c4wd/jZtzrlqvNbNrvXc6X/+h4E/8MHPTVcFQGM3y++M+dl+5wT7HvNZ4f08TDGzIr+l7PUT7NdXuUB9l2X1eD97sRrxzkek3yjAiZyE/8f/c865scBsvNaF//RXlwJ7YjbfA6Rx7B/iipO8xATgpx1/lIDDeC0ZZf7xO/d3zrleHO+3zrmCmK8Lutmm2K8z9lixjycAi2ODIF5YHR2zTWyQbMb7Y9ZR42/4IKz8NV7AA8DMrvO74jqOO5sPglRfnPB9c849i9cSdRdw0MzuNe96xq46WuU6WwCdc1f71w2+A8QGnWPedzOb6ndZHvC76v7fbs4jdp89eJ9nh873zznX7D/M7eF8j2NmOWb2P+Z14TfgdQkWdAloXWtI76ZO/Bbm183rMq/D+89Dx3bj8FpOT1ZPiR+A9/n1PNjNa3X7c9ONIxwfhAC+GvOzveAE+3b9Hfk8XmvZFvMuF/hEz2fSa014LZax8jk+eOYBdf30miKAApxIn/itDvfjhQ6AKrwg0WE8XjfVwdjdTvC4QwVwc5fQle2cexXYT8yF9H4XW7cX1vdRtV/n2JhlscetAF7oUlOuc+6LvTz+Q8Cn/dawxfhdlP7znwNfBkb6Qek9ur+u76j/PSdmWWyA7Ol9wzl3p3PuLLzurKl43X9dbQH24XXDnkzXz+5uf/9yv2vuX7o5j9j3dDzez0t/+ge8rrnFfg0dXYKxdXStIQTUxB7Evz7rMeAOYJT/uayOOU4FXtfjyfwA730606/nWrr/bHtjPf41qKfgmM/KObfdOXcN3uUAPwIe9S8T6O73sS+2AWlmVh6zbC4x18uZWSmQwal3B4t0SwFOpAfmXcj/D+ZfGG5m4/Baljq6YB4CvmFmk8wsF68V5mG/S6871UAU73q5DvcA/9xxfZmZDTfvzkiAPwKzzOwKv1v2qxwbYk6J3233O+C7fivOdLxrpTo8CUw1s8+aWbr/dbaZzejl8dfinesvgKecc3X+qo4/mtXgXTjPB2G46zGq8cLVtWaWamY3cmyIOOH75te62MzS8YJgK941a11fw+GFoO+Y2d+ad1OA+X+QT9admQc0AE3++9dduP1H/5jjgK8BD5/kmD1JN7OsmK80v4YWvIvwC4HvdLPftWY208xygNuAR/3PP1YGkIkf7M27oeJjMet/CdxgZheZd+NOmX/OXeXhtUrVmVkZ3Yfm3noTrzWx7DSOAYCZXWtmxc65KB+0hEXo/vex675m3o0WGf7zLD/w4ndL/w64zcyGmdkSvOvv/k/MIZYCzzrn+nznukhPFOBEetaI14L0hpkdxQtu7+H90QdYgfeP9YvA+3hB4SsnOpjfVXY78Irf9XeOc+5xvFaB3/jdTu8Bl/jb1wBXAj/E6+4rB145Sc2fsWPHyWoys5Jutvsy3o0EB/xzeAh/eBT/eqqPAVfjtRod8Gvsy510DwEfxbupoeP8NwH/DryG10o55yTn87d4IaAWryWtc1DUnt43vG6sn+N1w+3x9z/mztiY4zyMd2H9tXgtTTV4F7nfCzzSQ23fxOsebvRfq7tw9gTwNrAOL4z/sofjncxqvLDW8fVdvK78bL/m14E/dbPf/8FrNT4AZOH9J+AY/uf9VbzzPoJ3Xqti1r+Jf2MD3jVeL3Bsy3OH7+HdsFGPd76/69spHlNTu1/3tad6jBjLgI1m1oR3Q8PVzrnW7n4fu9l3At773dGq1sKxrWl/h/cZHML7mf+icy72jtW/wfvPhki/Mu8/oCKS7MzsR8Bo59yAjKqfbMwb9LXcObcjwBqeBx50zv0iqBpOh5l13F083534JqBBy8zmAPc6544bnkTkdGkwSpEk5XeBZQAbgLPxLvQ+pSm6RAaC343eXVdtQnDObcAbYkak3ynAiSSvPLwun1K87p9/x+vyExGRQU5dqCIiIiIJRjcxiIiIiCQYBTgRERGRBJNU18AVFRW5iRMnBl2GDGYdlxT0eUpKERGR/vX222/XOOeKu1uXVAFu4sSJrFmzJugyRERERE7KzPacaJ26UEVi7F/9J/av7m4sVBERkcFDAU4kRs0rr1Lzyqsn31BERCRACnAiIiIiCSaproHrTigUorKyktbW1qBLkQGQlZXF2LFjSU9PD7oUERGRfpP0Aa6yspK8vDwmTpyI6c7DIcU5R21tLZWVlUyaNCnockRERPpN0nehtra2MnLkSIW3IcjMGDlypFpXRURkyEn6FjhA4W0I6+tnO+f22waoEhERkf6T9C1wyezWW2/l6aefDroMJk6cSE1NTdBliIiIJAy1wCWwSCRCamrqKe9/221qbepq3+NPAFB2+fKAKxERkcGmPRyhpqmdl7ZXs6mqkZmleZxfXkxRbgYZaaf+9/hUqAUuYPfccw/z5s1j3rx5TJo0iQsuuACAP//5z5x77rksWLCAK6+8kqamJsBrrbrttts477zzeOSRR3jooYeYM2cOs2fP5lvf+la3r/H222/zkY98hLPOOouPf/zj7N+/H4DPfe5zPProowCsXr2a6dOnc9555/HVr36VT3ziEwAcPXqUG2+8kbPPPpv58+fzxBNewLn//vu54oorWLZsGeXl5fzTP/0TAHfffXfn447tvvKVrwBw2WWXcdZZZzFr1izuvffe4+rcvXs3s2fP7nx+xx138N3vfheAnTt3smzZMs466yzOP/98tmzZAsAjjzzC7NmzmTt3Lh/+8IdP4RM41uE1b3N4zdunfRwRERla2sMR3tlTxwV3PM+3HtvAytd2863HNnDBHc/zzp462sORuNajFrguNnz71uOWFS35EGMuXUakrY1Nt91+3PqSC5cy6qILCTU0sOVHdxyz7mTXVH3hC1/gC1/4AqFQiAsvvJC///u/p6amhu9///s8/fTTDBs2jB/96Ef85Cc/4dZbvdqysrJ4+eWXqaqq4pxzzuHtt99mxIgRfOxjH+P3v/89l112WefxQ6EQX/nKV3jiiScoLi7m4Ycf5tvf/jYrVqzo3Ka1tZWbb76ZF198kUmTJnHNNdd0rrv99tu58MILWbFiBXV1dSxatIiPfvSjAKxbt461a9eSmZnJtGnT+MpXvsKnP/1pzj33XH784x8DdL4ewIoVKygsLKSlpYWzzz6bT33qU4wcObLH96fDTTfdxD333EN5eTlvvPEGf/d3f8ezzz7LbbfdxlNPPUVZWRl1dXW9OpaIiEhf1TS1c/19b9IWjh6zvC0c5fr73uS5by6ltCA7bvUowA0SX/va17jwwgv55Cc/yZNPPsmmTZtYsmQJAO3t7Zx77rmd237mM58B4K233mLp0qUUF3vz3P7N3/wNL7744jEBbuvWrbz33ntcfPHFgNftOmbMmGNee8uWLUyePLlzqI1rrrmms4Xsz3/+M6tWreKOO7xg2trayt69ewG46KKLGD58OAAzZ85kz549nHfeeUyePJnXX3+d8vJytm7d2nked955J48//jgAFRUVbN++vVcBrqmpiVdffZUrr7yyc1lbWxsAS5Ys4XOf+xxXXXUVV1xxxUmPJSIicipe2l59XHjr0BaO8vKOGq5aOC5u9SjAddFTi1lqZmaP69Pz80/pLsb777+fPXv28LOf/Qzwxi+7+OKLeeihh7rdftiwYZ3bnYxzjlmzZvHaa6/1uE1P6x577DGmTZt2zPI33niDzMzMzuepqamEw2HAC5i//e1vmT59OpdffjlmxvPPP8/TTz/Na6+9Rk5ODkuXLj1ueI+0tDSi0Q9+OTrWR6NRCgoKWLdu3XH13XPPPbzxxhv88Y9/ZN68eaxbt67XrXoiIiIn0xqKUFXXwl82Hepxu81VDXGqyKNr4AL29ttvc8cdd/Dggw+SkuJ9HOeccw6vvPIKO3bsAKC5uZlt27Ydt+/ixYt54YUXqKmpIRKJ8NBDD/GRj3zkmG2mTZtGdXV1Z4ALhUJs3LjxmG2mT5/Orl272L17N+B1e3b4+Mc/zn/91391hry1a9ee9JyuuOIKfv/73/PQQw91thbW19czYsQIcnJy2LJlC6+//vpx+40aNYpDhw5RW1tLW1sbTz75JAD5+flMmjSJRx55BPBC5bvvvgt418YtXryY2267jaKiIioqKk5aX09SMjJIycg4rWOIiEjiag1F2FndxAvbqvn1G3u554WdPLGuCrOeG01mlObHqUKPWuAC9rOf/YzDhw933rywcOFCfvGLX3D//fdzzTXXdHYVfv/732fq1KnH7DtmzBh+8IMfcMEFF+Cc49JLL2X58mPvnszIyODRRx/lq1/9KvX19YTDYb7+9a8za9aszm2ys7P57//+b5YtW0ZRURGLFi3qXPdv//ZvfP3rX+fMM8/EOcfEiRM7g9WJjBgxgpkzZ7Jp06bOYy1btox77rmHM888k2nTpnHOOecct196ejq33norixcvZtKkSUyfPr1z3a9+9Su++MUv8v3vf59QKMTVV1/N3Llz+cd//Ee2b9+Oc46LLrqIuXPn9uZtP6FZ3/nX09pfREQSS2soQuWRFvbVtVB5pJnqxjacg7QUY/TwLBZPGsnYEdk4V8aL22q67UbNTEvhvClFca3betMNN1QsXLjQrVmz5phlmzdvZsaMGQFVNHg0NTWRm5uLc44vfelLlJeX841vfCPosvqFPmMREenQ0h5hX10zlUdaqDzSQk3TB4FtTEE2Y0dkU1aQzZjhWaSlftBR2XEXatcbGTLTUlh54yIWjC/o96FEzOxt59zC7tapBU4A+PnPf87KlStpb29n/vz53HzzzUGXFIiKh71u2nGfufIkW4qISCLoCGwVHYGt0evZSk81xgzP5tzJIykbkc3o/GMDW1cZaaksmFDAc99cyss7athc1cCM0nzOm1IUyDhwCnACwDe+8Y0h0+J2OurWbwAU4EREElVze5h9flirPNJMTVM74AW20oJspp4xkrGFOYzOzyI1pW/TLWakpVJakB3Xu01PRAFOREREEtbRtnDn9WuVR1qo9QNbRloKY4ZnMW10PmNHZDPqFALbYKYAh3dXoya0H5qS6RpPEZFkcLQt3Nm6VnmkhcNHPwhspQVZzBjjBbaSvKEV2LpK+gCXlZVFbW0tI0eOVIgbYpxz1NbWkpWVFXQpIiJyiprawl5YO+zdKRob2MoKsplVms/YETmU5GWSMoQDW1dJH+DGjh1LZWUl1dXVQZciAyArK4uxY8f2evv0vNwBrEZERE6msTXkDevht7IdaQ4BXmAbOyKb2WX5lBUkX2DrKumHEREREZHT1x6OUNPUzkvbq9lU1cjM0jzOLy8+6R2aDa2hzta1yiPN1PmBLTPda2EbOyKHsSOyKc5NvsCmYURERERkwPQ4RtoNi1gw4YMx0upbQp2ta5VHWqhv8QJbVnoqZSOyOXNsAeNGZFOUhIGtLxTgRGLsfuBBACZed23AlYiIJI6apvbjwht4k7xft+IN7r1uIW3hKJVHWmjoEtjmjS/obGHTtei9pwAnEqNx6/FzzoqISM9e2l7d7RRTAO0Rx4Ov72HhxELKCrJZML6AsSNyKMrNUGA7DQpwIiIiclo2VTX2uL5oWCY3f3iyAls/OvGcEf3IzJaZ2VYz22Fmt3Sz3szsTn/9ejNb4C/PMrM3zexdM9toZt+L2afQzP5iZtv97yPicS4iIiJyrJmleT2uXzBxhMJbPxvwAGdmqcBdwCXATOAaM5vZZbNLgHL/6ybgbn95G3Chc24uMA9YZmbn+OtuAZ5xzpUDz/jPRUREJM7OLy8mM637SJGZlsJ5U4riXNHQF48WuEXADufcLudcO/AbYHmXbZYDDzjP60CBmY3xnzf526T7Xy5mn5X+45XAZQN5EpIcMkeOJHPkyKDLEBFJKEW5Gdx3/dnHzXyQmZbCyhsXUZSbEVBlQ1c8roErAypinlcCi3uxTRmw32/BexuYAtzlnHvD32aUc24/gHNuv5mVdPfiZnYTXqse48ePP81TkaFu6t9/LegSREQSTkZaKsNz0rj+3AkU5mZQ29jOjNJ8zptSdNJx4OTUxCPAddfp3XX04BNu45yLAPPMrAB43MxmO+fe6+2LO+fuBe4FbyDf3u4nIiIivbexqpFxhTl87kMTdb1bHMSjC7USGBfzfCxQ1ddtnHN1wPPAMn/RQTMbA+B/P9RvFUvS2vWLFez6xYqgyxARSSgHG1rZV9fC3HEFCm9xEo8A9xZQbmaTzCwDuBpY1WWbVcB1/t2o5wD1frdosd/yhpllAx8FtsTsc73/+HrgiQE+D0kCR9/fzdH3dwddhohIQlm7t46MtBRmjskPupSkMeBdqM65sJl9GXgKSAVWOOc2mtkX/PX3AKuBS4EdQDNwg7/7GGClfx1cCvBb59yT/rofAr81s88De4ErB/pcRERE5FhH28JsO9jInLLhZKXrWrd4ictAvs651XghLXbZPTGPHfClbvZbD8w/wTFrgYv6t1IRERHpiw376olEHXPHFQRdSlKJy0C+IiIiMvREoo71lXVMLMqhcJiGCoknTaUlEiO7dEzQJYiIJIzthxo52hbh4pmaDCneFOBEYkz50heDLkFEJGGs21vHiJx0Jo7MCbqUpKMuVBEREemz/fUt7K9vZd54zXMaBAU4kRg77rqbHXfdffINRUSS3Dp/6JAZY3qeyF4GhrpQRWK0VO0PugQRkUGvqS3MtoNNzB03nExNkxUItcCJiIhIn6yvrMPhmKehQwKjACciIiK9Fo5E2VBZz6SiYRTkaOiQoCjAiYiISK9tO9hEc3tErW8B0zVwIjGGTZoYdAkiIoOWc451FXWMzM1gfKGGDgmSApxIjMn/68agSxARGbSq6ls52NDKRTNKNHRIwNSFKiIiIr2ybm8dmekpTB+dH3QpSU8BTiTGtp/8lG0/+WnQZYiIDDqNrSF2HGpidulwMtIUH4KmLlSRGG21tUGXICIyKK2vrMfhmKubFwYFRWgRERHpUSgSZcO+eiYX5zI8Oz3ocgQFOBERETmJrQcaaWmPMF+tb4OGApyIiIicUMfQIUV5mYwdkR10OeLTNXAiMfKmTQ26BBGRQaXySAvVjW1cPHOUhg4ZRBTgRGJMvO7aoEsQERlU1lXUkZWeyrTReUGXIjHUhSoiIiLdqm8JsbO6iTllw0lPVWQYTPRpiMTY8sMfs+WHPw66DBGRQWF9ZR2Gcea44UGXIl2oC1UkRqixKegSREQGhfawN3TIGSXDyM/S0CGDjVrgRERE5DhbDzTSFooyf/yIoEuRbijAiYiIyDG8oUOOUJKfSenwrKDLkW4owImIiMgxKg63UNPUzrxxBRo6ZJDSNXAiMQrOnBN0CSIigVtbcYScjFSmjdLQIYOVApxIjHGfuTLoEkREAlXfHOL9mqMsmlhImoYOGbT0yYiIiEindZ1DhxQEXYr0QAFOJMbG732fjd/7ftBliIgEoj0c5b199UwdlUtupjrpBjN9OiIxou3tQZcgIhKYzfsbaA9HmTe+IOhS5CTUAiciIiL+0CF1jB6exeh8DR0y2CnAiYiICHtqmzl8VEOHJAoFOBEREWFdRR3DMlOZqqFDEoKugROJUbjwrKBLEBGJuyNH23m/5ijnTB5Jaopa3xKBApxIjLLLlwddgohI3K2rrCM1xThz7PCgS5FeUheqiIhIEmsLR9hU1cDUUXkM09AhCUMBTiTGhm/fyoZv3xp0GSIicbOpyh86RAP3JpS4BDgzW2ZmW81sh5nd0s16M7M7/fXrzWyBv3ycmT1nZpvNbKOZfS1mn++a2T4zW+d/XRqPcxERERkqOoYOKS3IYvRwDR2SSAa8rdTMUoG7gIuBSuAtM1vlnNsUs9klQLn/tRi42/8eBv7BOfeOmeUBb5vZX2L2/Q/n3B0DfQ4iIiJD0fs1R6lrDvGhM4qCLkX6KB4tcIuAHc65Xc65duA3QNcrxZcDDzjP60CBmY1xzu13zr0D4JxrBDYDZXGoWUREZMhbV1FHbmYaU0pygy5F+igeAa4MqIh5XsnxIeyk25jZRGA+8EbM4i/7Xa4rzGxEv1UsIiIyxNU2tbGntpkzxw7X0CEJKB4BrrufCteXbcwsF3gM+LpzrsFffDdwBjAP2A/8e7cvbnaTma0xszXV1dV9LF2STdGSD1G05ENBlyEiMuDerawjLcWYo6FDElI87heuBMbFPB8LVPV2GzNLxwtvv3LO/a5jA+fcwY7HZvZz4MnuXtw5dy9wL8DChQu7BkeRY4y5dFnQJYiIDLjWkDd0yLTReeRkaOiQRBSPFri3gHIzm2RmGcDVwKou26wCrvPvRj0HqHfO7TdvMrZfApudcz+J3cHMxsQ8vRx4b+BOQZJFpK2NSFtb0GWIiAyojVUNhCJOQ4cksAGP3c65sJl9GXgKSAVWOOc2mtkX/PX3AKuBS4EdQDNwg7/7EuCzwAYzW+cv+xfn3Grgx2Y2D6+rdTdw80Cfiwx9m267HYA5t98WcCUiIgMjGvWGDikbkU1JvoYOSVRxaTf1A9fqLsvuiXnsgC91s9/LdH99HM65z/ZzmSIiIkPerpqjNLSE+HC5hg5JZJqJQUREJImsq6gjLyuNM4o1dEgiU4ATERFJEtWNbVQcbmbuuAJSNHRIQlOAExERSRLvVtSRnmrMKdPQIYlO9w6LxCi5cGnQJYiIDIiW9ghbDjQwfXQ+WempQZcjp0kBTiTGqIsuDLoEEZEB8V5VPaGIY66GDhkS1IUqEiPU0ECooeHkG4qIJJBo1PFuRR3jCnMozssMuhzpBwpwIjG2/OgOtvzojqDLEBHpVzurm2hsDWvg3iFEAU5ERGSIW1tRR352OpOLhgVdivQTBTgREZEh7FBjK/uOtDBv3HANHTKEKMCJiIgMYev2ekOHzCrV0CFDiQKciIjIENXcHmbrgUZmlmrokKFGw4iIxBi97ONBlyAi0m82VNYTjjrmji0IuhTpZwpwIjGKz18SdAkiIv0iEnWsr6xnwsgcRuZq6JChRl2oIjHaqmtoq64JugwRkdO241ATTW0aOmSoUoATibHtP+9k23/eGXQZIiKnbV3FEQpy0pmkoUOGJAU4ERGRIeZgQytVda3MG1eAmYYOGYoU4ERERIaYtXvryEhLYWZpftClyABRgBMRERlCjraF2XbQGzokM01DhwxVCnAiIiJDyPrKeiJRxzwNHTKkaRgRkRhlyz8ZdAkiIqcsEnVs2FfHpKJhjBiWEXQ5MoAU4ERiFC46O+gSRERO2baDjRxtizBvZkHQpcgAUxeqSIzmyn00V+4LugwRkT5zzrGuoo7CYRlMGJkTdDkywBTgRGLsvPt/2Hn3/wRdhohInx1oaOVAvYYOSRYKcCIiIkPAOn/okBljNHRIMlCAExERSXBNbWG2HWxidtlwMtL0pz0Z6FMWERFJcOsr6nBo6JBkogAnIiKSwMKRKBv21TOpaBjDc9KDLkfiRMOIiMQYd+Wngi5BRKRPth5spLk9wvxxI4IuReJIAU4kRsG8uUGXICLSax1DhxTlZjCuMDvociSO1IUqEqNp1/s07Xo/6DJERHqlqr6VQw1tzBs3QkOHJBkFOJEY7//yPt7/5X1BlyEi0ivr9taRlZ7KtNF5QZcicaYAJyIikoAaWkPsONTE7LJ8DR2ShPSJi4iIJKD1FfU4HGdq6JCkpAAnIiKSYEL+0CFnFOcyPFtDhyQjBTgREZEEs/VAI62hCPPGFQRdigREw4iIxJhw7V8HXYKISI+cc6ytqKM4L5OxIzR0SLJSgBOJkT9jetAliIj0qPJICzWNbVw8c5SGDkli6kIVidGweQsNm7cEXYaIyAmtq6gjO0NDhyS7uAQ4M1tmZlvNbIeZ3dLNejOzO/31681sgb98nJk9Z2abzWyjmX0tZp9CM/uLmW33v2sOETltex78NXse/HXQZYiIdKu+JcTO6ibmlA0nPVVtMMlswD99M0sF7gIuAWYC15jZzC6bXQKU+183AXf7y8PAPzjnZgDnAF+K2fcW4BnnXDnwjP9cRERkyHq3og7DOHPs8KBLkYDFI74vAnY453Y559qB3wDLu2yzHHjAeV4HCsxsjHNuv3PuHQDnXCOwGSiL2Wel/3glcNkAn4eIiEhg2sNR3quqZ0pJLnlZGjok2cUjwJUBFTHPK/kghPV6GzObCMwH3vAXjXLO7Qfwv5d09+JmdpOZrTGzNdXV1ad6DiIiIoHacqCBtlCUeeMLgi5FBoF4BLjubpFxfdnGzHKBx4CvO+ca+vLizrl7nXMLnXMLi4uL+7KriIjIoOCcY11FHaPysygdnhV0OTIIxGMYkUpgXMzzsUBVb7cxs3S88PYr59zvYrY52NHNamZjgEP9XrkknUmfvyHoEkREjlNxuIXapnY+Pmu0hg4RID4tcG8B5WY2ycwygKuBVV22WQVc59+Neg5Q7wczA34JbHbO/aSbfa73H18PPDFwpyDJInfyJHInTwq6DBGRY6ytOEJORipTR+UGXYoMEgPeAuecC5vZl4GngFRghXNuo5l9wV9/D7AauBTYATQDHc0gS4DPAhvMbJ2/7F+cc6uBHwK/NbPPA3uBKwf6XGToq1v3LgAF8+YGXImIiKeuuZ33a46yaFIhaRo6RHxxmYnBD1yruyy7J+axA77UzX4v0/31cTjnaoGL+rdSSXYVjzwGKMCJyOCxrnPokIKgS5FBRFFeRERkkGoLR9hY1cDUUbnkZmr2S/mAApyIiMggtXl/I+3hKPPHa7IhOZYCnIiIyCDknGPd3iOMGZ7FaA0dIl0owImIiAxCe2qbOdIc0sC90i11qIvEOOOLNwddgogI4N28kJuZRnlJXtClyCCkACcSI2ds11neRETi7/BRb+iQc88YSWqKBu6V46kLVSTG4Tff4vCbbwVdhogkuXcr6khNMeaUDQ+6FBmk1AInEmPfE38AoHDR2QFXIiLJqjUUYdP+BqaOymOYhg6RE1ALnIiIyCCyaX+DP3RIQdClyCCmACciIjJIRKOOdXvrKCvIZlS+hg6RE1OAExERGSR21x6lvkVDh8jJKcCJiIgMEmv31pGXlcYZxblBlyKDnK6OFIkx9etfDboEEUlStU1t7D3czJIpRRo6RE5KAU4kRmZxUdAliEiSWldRR5qGDpFeUheqSIzql16h+qVXgi5DRJJMayjC5v0NTBudR3ZGatDlSAJQC5xIjAN/egqA4vOXBFyJiCSTjVX1hCJONy9Ir6kFTkREJEDRqGNdRT1jR2RTkqehQ6R3FOBEREQCtKvmKA0tIQ3cK32iACciIhKgtXuPkJ+dzuQiDR0ivacAJyIiEpDqxjYqj7Qwd+xwUjR0iPSBbmIQiTH9W98MugQRSSLrKupITzVma+gQ6SMFOJEY6fn5QZcgIkmipT3Clv0NzCzNJytdQ4dI36gLVSTGwWee5eAzzwZdhogkgfeq6glHHXPHFQRdiiQgBTiRGIeefZ5Dzz4fdBkiMsRFo453K+oYX5hDUW5m0OVIAlIXqoiISBy0hyPUNLXz0vZqXt1Ry9H2MJ8/bxLt4QgZaepClb5RgBMRERlg7eEI7+yp4/r73qQtHO1c/uK2ah64cTELJhQoxEmfqAtVRERkgNU0tR8X3gDaI47r73uTmqb2gCqTRKUAJyIiMsBe2l59XHjr0BaO8vKOmjhXJIlOXagiMWbe+u2gSxCRIaDNv97tYEMrhxra+N07+3rcfnNVQ5wqk6FCAU4kRmqm7gYTkb5pDUWobmzjUKMX1g41tnGkuR3nvPW5mWlMKhrGG+8fPuExZpRqDErpGwU4kRj7V/8JgDGXLgu4EhEZjFraI15Qa2zzw1ordc2hzvV5WWmU5GcxbXQeJXmZlORnkZuZRlVdC4+v3ddtN2pmWgrnTSmK52nIENCnAGdm44BZwGxgDjDLObdwIAoTCULNK68CCnAiAkfbwn5Q8wLbwYZWGlvDneuHZ6dTkp/JrNLhfljLJCej+z+rRbkZrLxh0XE3MmSmpbDyxkUU5WYM+PnI0HLSAGdmNwPXAzOBTOCPwHvAKuD2Aa1ORERkgDnnaOoMax90hTa1fRDWRuSkU1qQTUleJqPysyjOy+zT9FcZaaksmFDAc99cyss7athc1cCM0nzOm1JEUW6GhhCRPutNC9w/A58BaoAfAtnACufc3oEsTEREpL8552hoDVPd2MrBmLDW3B4BwAwKh2UwrjCbkvwsSvIyKc7LJLMfAlZGWiqlBdlctXDcaR9LpDcB7hPOuff8x1ea2TLgD2Z2P/BT51z390WLiIgEyDlHfUvomKB2qLGN1pAX1lLMKMzNYFLRsM6wVpSbSUaaRtiSwe+kAS4mvHU8/5OZPQf8K/AKcO4A1SYiIkkidpqpTVWNzCzN4/zy4l53L0ajjiPN7V43aMx1a+3+9WapKUZRbiblJbmU5GdSkpdFUW4GaakKa5KYzHXc53wqO5tNdc5t68d6BtTChQvdmjVrgi5DRERinGiaqcy0FFbesOi4aaaiUUft0fbOu0GrG9qobvogrKWlGMX+TQUleV7L2sjcTFJTLO7nJnI6zOztE90selrDiPQ2vPndrj8FUoFfOOd+2GW9+esvBZqBzznn3vHXrQA+ARxyzs2O2ee7wN8C1f6if3HOrT6d8xERkfg70TRTbeEo1614g0e/+CFSzDq7Qasb2whHvcaHjLQUinMzmVma790JmpfFyGEZpCisyRA34OPAmVkqcBdwMVAJvGVmq5xzm2I2uwQo978WA3f73wHuB34GPNDN4f/DOXfHAJUuSWjf408AUHb58oArEUkePU0z1R5x3PnMdmaVDicjLYWSvEzOHFfQeTdoQXa6wpokpXgM5LsI2OGc2wVgZr8BlgOxAW458IDz+nNfN7MCMxvjnNvvnHvRzCbGoU4RDq95G1CAE4mnTVWNPa7PzUjjhiUTGZ6djtdhIyLxuHqzDKiIeV7pL+vrNt35spmtN7MVZjbi9MoUEZEgzCzN63H9h8qLKMjJUHgTiRGPANfdb1zXOyd6s01XdwNnAPOA/cC/d/viZjeZ2RozW1NdXd3dJiIiEqDzy4tJT+0+nGmaKZHuxSPAVQKxoxaOBapOYZtjOOcOOuci/jh0P8frqu1uu3udcwudcwuLi4v7XLyIiAys6sZW/mpuKWldrmXTNFMiJxaPa+DeAsrNbBKwD7ga+Osu26zC6w79Dd7NC/XOuf09HbTjGjn/6eV403uJnJaUDP2hEImn92uO8vzWGhZNKuRrHy3n9V2HNc2USC8MeIBzzoXN7MvAU3jDiKxwzm00sy/46+8BVuMNIbIDbxiRGzr2N7OHgKVAkZlVAt9xzv0S+LGZzcPrat0N3DzQ5yJD36zv/GvQJYgkjf31LfxxfRXFeZlcNr+MzLRUxhcOC7oskYRwWgP5JhoN5CsiMjjUNrXx2zWVZKWn8Jmzx5GTEY8OIZHE0tNAvppDRCRGxcOPUPHwI0GXITKkNbaGeHztPlJT4Ir5YxXeRE6BApxIjLr1G6hbvyHoMkSGrNZQhN+v3UdbOMpl88sYnpMedEkiCUkBTkRE4iIUibJqXRVHmkP81dxSSvKygi5JJGEpwImIyICLRh2rN+ynqr6FS2aPZlxhTtAliSQ0BTgRERlQzjme2XKIXdVHuWBaCeWjep55QUROTleOisRIz8sNugSRIee1nbW8t6+exZMLmTuuIOhyRIYEBTiRGNNv+aegSxAZUtbuPcIb7x9mTtlwzp08MuhyRIYMdaGKiMiA2HqgkRe2VTOlJJcLp5doMnqRfqQAJxJj9wMPsvuBB4MuQyTh7a1t5qmNBygtyOaS2aNJSVF4E+lP6kIVidG4dVvQJYgkvIMNrfxhfRUjhmV4k9Snqq1ApL/pt0pERPrNkaPt/H7tPrLSU7l8fhlZ6ZqIXmQgKMCJiEi/ONoW5vG1+3DAFfPLyM1UJ4/IQFGAExGR09YaivD42n20hCJcNq+MEcMygi5JZEjTf49EYmSO1DAHIn0VjkT5w7tV1Da1s3xeKaOHa4oskYGmACcSY+rffy3oEkQSSjTq+NPGA1QeaWHZ7NFMLBoWdEkiSUFdqCIickqcczy/7RDbDzbx4anFzBiTH3RJIklDAU4kxq5frGDXL1YEXYZIQnjj/cO8W1HPwokjOGvCiKDLEUkq6kIViXH0/d1BlyCSEDZU1vPazlpmluZz3pSioMsRSTpqgRMRkT7ZcaiRZ7YcZFLRMD46Y5SmyBIJgAKciIj0WuWRZv7vhgOMzs/i0jljSNUUWSKBUIATEZFeqW5sY9W7VeRnp7N8XhkZafoTIhIUXQMnEiO7dEzQJYgMSvUtIX6/dh8ZqSlcvqCM7AxNkSUSJAU4kRhTvvTFoEsQGXSa28M8/k4loWiUqxaOIz8rPeiSRJKe2r9FROSE2sNRnlhXRWNrmOXzyijKzQy6JBFBAU7kGDvuupsdd90ddBkig0Ik6nhyfRWHGtq49MwxlBVkB12SiPjUhSoSo6Vqf9AliAwKzjn+sukAe2qbuXjmKM4ozg26JBGJoRY4ERE5hnOOF7fXsHl/I0umFDG7bHjQJYlIFwpwIiJyjLf3HOGdPUeYN76AsydqiiyRwUgBTkREOm2squel7TVMG53H0qnFmmVBZJDSNXAiMYZNmhh0CSKB2VXdxNObDjG+MIePzdQUWSKDmQKcSIzJ/+vGoEsQCcT++hZWb9hPcV4mn5g7hrRUddCIDGb6DRURSXK1TW38fm0VwzLTuGx+KZlpmmVBZLBTgBOJse0nP2XbT34adBkicdPYGuLxtftITYEr5o8lJ0MdMyKJQL+pIjHaamuDLkEkblpDER5fu4+2cJQrF45leI6myBJJFGqBExFJQqFIlFXrqqhrDvFXc0spycsKuiQR6QMFOBGRJBONOlZv2E9VfQuXzB7NuMKcoEsSkT5SgBMRSSLOOZ7efJBd1Ue5YFoJ5aPygi5JRE6BroETiZE3bWrQJYgMqFd31rKxqoHFkwuZO64g6HJE5BTFpQXOzJaZ2VYz22Fmt3Sz3szsTn/9ejNbELNuhZkdMrP3uuxTaGZ/MbPt/nfN9yKnbeJ11zLxumuDLkNkQKzde4Q33z/MnLLhnDt5ZNDliMhpGPAAZ2apwF3AJcBM4Bozm9lls0uAcv/rJuDumHX3A8u6OfQtwDPOuXLgGf+5iIh0Y+uBRl7YVs2UklwunF6iWRZEElw8WuAWATucc7ucc+3Ab4DlXbZZDjzgPK8DBWY2BsA59yJwuJvjLgdW+o9XApcNRPGSXLb88Mds+eGPgy5DpF/trW3mqY0HKC3I5pLZo0lJUXgTSXTxCHBlQEXM80p/WV+36WqUc24/gP+9pLuNzOwmM1tjZmuqq6v7VLgkn1BjE6HGpqDLEOk3Bxta+cP6KkYMy+Cv5pZqiiyRISIev8nd/VfPncI2p8Q5d69zbqFzbmFxcXF/HFJEJCEcOdrO79fuIys9lcvnl5GVrimyRIaKeAS4SmBczPOxQNUpbNPVwY5uVv/7odOsU0RkyDjaFubxtftwwBXzy8jN1KADIkNJPALcW0C5mU0yswzgamBVl21WAdf5d6OeA9R3dI/2YBVwvf/4euCJ/ixaRCRRdUyR1RKKcNm8MkYMywi6JBHpZwP+XzLnXNjMvgw8BaQCK5xzG83sC/76e4DVwKXADqAZuKFjfzN7CFgKFJlZJfAd59wvgR8CvzWzzwN7gSsH+lxk6Cs4c07QJYiclnAkyh/eraK2qZ3L5pcyerimyBIZisy5frnULCEsXLjQrVmzJugyREQGRDTqWP3efrYfbOKSOaOZPjo/6JJE5DSY2dvOuYXdrdPtSCIiQ4Bzjue2HmL7wSY+Mq1Y4U1kiFOAE4mx8XvfZ+P3vh90GSJ99sb7h1lfWc/ZEwtZMF4T04gMdbotSSRGtL096BJE+mx9ZR2v7axlZmk+S6ZoiiyRZKAWOBGRBLbjUCPPbjnE5OJhfHTGKE2RJZIkFOBERBJUxeFm/u+GA4zOz+LSOWNI1RRZIklDXagiIgmgPRyhpqmdl7ZXs6mqkXGFWdQ0tVOSl8nyeWWka4oskaSiACcSo3DhWUGXIHKc9nCEd/bUcf19b9IWjnYuT00xfv7Zs1B2E0k++rUXiVF2+XLKLl8edBkix6hpaj8uvAFEoo4v/uodapp0841IslELnIjIIBGORGlqC9PQEqahNURDS4iG1jBPbz5wXHjr0BaO8vKOGq5aOK7b9SIyNCnAicTY8O1bAZhz+20BVyJDUSgSpbE1TENLyPveGdJCNLSEOdoeJnZyHDPIzUyjqq61x+NurmoY4MpFZLBRgBMR6Sft4SgNraHOkNYRzLxlIY62RY7ZPsWMvKw08rPTmTAyh7ysdPKz08jPSic/O53czDRSU7xtXt1Ze8LXnVGqWRdEko0CnIhIL7WGIl1azsI0xoS0lvZjA1pqipHvB7SiotzOx/nZ6eRlpZGbkUZKL4b+OL+8mMy0lG67UTPTUjhvSlG/naOIJAYFOBEZEroOszGzNI/zy4spys0gIy31pPs752gLRztbzupb/HAW05rWFjo2QKWnWmer2aj8XC+cZaV3tqoNy0jtl4F1i3IzWHnDouNuZMhMS2HljYsoys047dcQkcSiACciCe9Ew2xkpqWw8oZFLJhQQHpqCi2hCA2dwSx03M0C7V1auDLSUjpbzcoKsjuDWb4f2rLT+yegnUxGWioLJhTw3DeX8vKOGjZXNTCjNJ/zphT1OqCKyNCiACcSo2jJh4IuQU7BiYbZaAtHufaXb/C1i8oxg1DEHbM+Mz2F/Kx0hudkMLYwx3sccw1aZlrKoJmaKiMtldKCbN1tKiKAApzIMcZcuizoEuQUvLS9+oTDbISjjv0NrXx81ujO1rS8LC+kZaWr5UpEEpMCnEiMSFsbAKmZmQFXIr0VjTpe2FrT4zaZqSl8ZGpxnCoSERl4CnAiMTbddjugceASReWRZp7bWk17JNLjdhpmQ0SGGk2lJSIJp6ktzJ/e288jayppC0W4cckkMlK7v1ZNw2yIyFCkFjgRSRiRqGNdxRFe33WYSNSxeFIhZ08qxDnHAzcu1jAbIpI0FOBEJCHsrW3m+W2HqG1qZ3LxMD4ytZiCnA+CmYbZEJFkogAnIoNaQ2uIl7bVsO1gI8Oz01k+r5TJxbnHbadhNkQkmSjAicQouXBp0CWILxyJ8s7eOt58vxbn4NwzRrJwwgjSUnXproiIApxIjFEXXRh0CQK8X3OU57ceoq45xJSSXD48tZjh2elBlyUiMmgowInECDU0AJCer2EnglDfHOKF7dXsPNTEiJx0Lp9fxsSiYUGXJSIy6CjAicTY8qM7AI0DF2+hSJQ1u4+wZvdhUlKM88qLWDB+BKkpg2MaKxGRwUYBTkQC45xjZ/VRXthWTUNLiGmj8zi/vIi8LHWXioj0RAFORAJx5Gg7L2yr5v2ao4zMzeDTZ41lXGFO0GWJiCQEBTgRiav2cJS3dh/m7T1HSE0xPjy1mHnjCtRdKiLSBwpwIhIXzjl2HGrihW3VNLaGmTEmn/PLixiWqX+GRET6Sv9yisQYvezjQZcwJNU2tfH81mr2Hm6mOC+TS+aMoawgO+iyREQSlgKcSIzi85cEXcKQ0haO8Mauw6zdW0d6mnHB9BLOLBtOirpLRUROiwKcSIy26hoAMouLAq4ksTnn2HqwkZe21dDUFmZ22XCWTBlJTob+yRER6Q/611Qkxrb/vBPQOHCno7qxjee2HmLfkRZG5WfxybmljB6eFXRZIiJDigKciPSL1lCE13bVsr6insz0FD46YxSzSvPVXSoiMgAU4ETktDjn2LS/gZe319ASinDm2OF86IwistJTgy5NRGTIUoATkVN2qKGV57YeoqquldKCLC6fVkZJvrpLRUQGWko8XsTMlpnZVjPbYWa3dLPezOxOf/16M1twsn3N7Ltmts/M1vlfl8bjXETE6y59ZvNBfv3mXuqaQ3xs1iiuWjhO4U1EJE4GvAXOzFKBu4CLgUrgLTNb5ZzbFLPZJUC5/7UYuBtY3It9/8M5d8dAn4Mkj7Llnwy6hEEtGnVsrGrglZ01tIWizBtXwDmTR6q7VEQkzuLRhboI2OGc2wVgZr8BlgOxAW458IBzzgGvm1mBmY0BJvZiX5F+U7jo7KBLGLT217fw3JZqDja0UjYimwumlVCclxl0WSIiSSkeAa4MqIh5XonXynaybcp6se+Xzew6YA3wD865I/1VtCSn5sp9AOSMLQu4ksGjuT3My9tr2FjVQG5mGpfMGc20UXmY6e5SEZGgxOMauO7+lXe93Kanfe8GzgDmAfuBf+/2xc1uMrM1Zramurq6VwVL8tp59/+w8+7/CbqMQSEadayrqOP+V3ezeX8jCyeO4LoPTWD66HyFNxGRgMWjBa4SGBfzfCxQ1cttMk60r3PuYMdCM/s58GR3L+6cuxe4F2DhwoVdg6OIdGNfXQvPbTlEdWMb4wtzuGB6CYXDMoIuS0REfPEIcG8B5WY2CdgHXA38dZdtVuF1h/4Gr4u03jm338yqT7SvmY1xzu33978ceG/gT0VkaGtqC/Py9mo2728kLyuNT5w5hikluWpxExEZZAY8wDnnwmb2ZeApIBVY4ZzbaGZf8NffA6wGLgV2AM3ADT3t6x/6x2Y2D69LdTdw80Cfi8hQFfG7S1/fVUsk6lg8qZCFEwvJSIvLSEMiItJHcRnI1zm3Gi+kxS67J+axA77U23395Z/t5zJFhqz2cISapnZe2l7NpqpGZpbmcX55MUW5GRxs8OYurW1qZ1LRMJZOK6YgR92lIiKDmWZiEIkx7spPBV1Cv2sPR3hnTx3X3/cmbeFo5/KMVOPvlk4hHI1SOCyTv5pXyuSiYeouFRFJAApwIsS0UIVGeC1Uob2dLVQZaYk9SG1NU/tx4Q2gPeL4r+d2cOfV8/jYrNGkp6q7VEQkUSjASdKLbaEa3eQNNbMyaySZaSmsvGERCyYUDJoQF406wlFHKBIlHHGEov73SNRbFrMuHI0Sijj+sunAceGtQyTqONoeUXgTEUkwCnCS9GJbqK49+AYAt0+4lLZwlOvve5PnvrmU0oLskx7HOS9chSOO9kiUcDeBqj38QbCKXd/xPBT1l/vhLBTu2OaD7fvq7T11Pa7fXNXQ52OKiEiwFOAk6b20vfqELVRt4Sj3vriLcyaP9Fu4OsJWRyCL+qHNW95XKWakpxnpKSmkpRppqSmkpxjpqSlkpqeRnpNCmv88LdX7np5qpKXEPu+yTcy6tBSjtCCLdRV1J6xhRml+n+sWEZFgKcBJ0ttU1djj+vf21TO+MMcLTn4oyslIJS01rc+BKvYY6akppKYM/A0D55cXk5mW0m1IzUxL4bwpRQNeg4iI9C8FOEl6RbnpPa6/6uxxXLVwXI/bDGZFuRmsvGHRcTcyZKalsPLGRRTlasgQEZFEowAnSauxNcTzW6s50hwiLcW6vb5sKLRQZaSlsmBCAc99cykv76hhc1UDM0rzOW9K0ZC4y1ZEJBkpwEnScc6xvrKel3fUEI06PjpjFB+dPoobVr7Fb4vP6txuKLVQZaSlUlqQndAtiSIi8gEFOEkqNU1tPLP5IFV1rYwvzOGiGSUU5GTQHo4c00L1t2qhEhGRQUwBTpJCKBLlzfcPs2b3ETLTU/j4rNHMGJPXOetARwvVsmFHWVaeSv4MtVSJiMjgpQAnQ17F4Wae3nyQuuYQM0vz+XB5MdkZ3beq7Xnw1wDMuf22eJYoIiLSJwpwMmS1tEd4cXs1m6oaKMhJ51MLxjJ+ZE7QZYmIiJw2BTgZcpxzbDnQyAvbqmkLRVk0qZBFkwo1XZSIiAwZCnAypNQ3h3hmy0H21DYzZngWFy0YRXFeZtBliYiI9CsFOBkSIlHH2r1HeH1XLWbGBdNLOLNsOClxmOlAREQk3hTgJOEdqG/l6c0HqW5s44ySXC6YVkxeVs+zK5zIpM/f0M/ViYiI9D8FOElYbeEIr+2sZV1FHcMy0vjk3DFMKck7rWPmTp7UT9WJiIgMHAU4SUg7q5t4bsshmtrCnDl2OB86o4is9NMfcLdu3bsAFMybe9rHEhERGSgKcJJQmtrCPL/1ENsPNlGUm8Glc8ZRWpDdb8eveOQxQAFOREQGNwU4SQjOOTbs8+YvjUQcS6YUcdaEEaTqJgUREUlCCnAy6NU2tfHM5kPsq2thXGEOF00vYcSwxJ9gXkRE5FQpwMmgFY5EeXO3N39pemoKH5s1iplj8jvnLxUREUlWCnAyKFUcbuaZzQc50hxixpg8Pjy1mJwM/biKiIiAApwMMq2hCC9tr+G9ffUMz07nigVlTBg5LG6vf8YXb47ba4mIiJwqBTgZFJxzbDvYxPNbD9EairJw4gjOmTwy7vOX5owti+vriYiInAoFOAlcfUuIZ7ccZHdNM6OHZ3H5ghJK8rICqeXwm28BULjo7EBeX0REpDcU4CQw0ahjbcURXtvpzV+6dFoxc8cWBDp/6b4n/gAowImIyOCmACeBONjgzV96qKGNycXDuGB6CfmnOH+piIhIslGAk7hqD0d5bVcta/ceIScjlU+cOYYpJbkaGkRERKQPFOAkbt6vOcozmw/S2OrNX7pkSv/MXyoiIpJsFOBkwB1tC/PCtmq2HmhkZG4GV509jrJ+nL9UREQk2SjAyYBxzrGxqoEXt1cTjjjOPWMkCyeMIC3OQ4P0xdSvfzXoEkRERE5KAU4GxOGj7Ty9+SD7jrRQNiKbj84YRWECzF+aWVwUdAkiIiInpQAn/SocifLW7iO8tfswaanGxTNHMas0ceYvrX7pFQCKz18ScCUiIiInpgAn/abySDPPbD7E4aPtTB/tzV86LDOxfsQO/OkpQAFOREQGt8T66yqDUmsowsvba9iwr5787HQum1/GpKL4zV8qIiKSbBTg+kF7OEJNUzsvba9mU1UjM0vzOL+8mKLcDDLShsYwGd2d43lTiqhrbueVnbU0t0c4a4I3f2lG2uC9SUFERGQoiEuAM7NlwE+BVOAXzrkfdllv/vpLgWbgc865d3ra18wKgYeBicBu4Crn3JF4nE+s9nCEd/bUcf19b9IWjnYuz0xLYeUNi1gwoSDhQ9yJzjEtxVg+r5S5Y4dz2bwySvKDmb9UREQk2Qx4U4mZpQJ3AZcAM4FrzGxml80uAcr9r5uAu3ux7y3AM865cuAZ/3nc1TS1HxdsANrCUa6/701qmtqDKKtfnegcw1HHqneruHDGKIU3ERGROIpHC9wiYIdzbheAmf0GWA5sitlmOfCAc84Br5tZgZmNwWtdO9G+y4Gl/v4rgeeBbw30yXT10vbq44JNh7ZwlH//y1bOnlAY56r611u7D5/wHEMRx6s7a7lqYU6cqxoY07/1zaBLEBEROal4BLgyoCLmeSWwuBfblJ1k31HOuf0Azrn9ZlbS3Yub2U14rXqMHz/+FE/hxDZVNfa4/lB9W8JfE3awoa3H9ZurGuJUycBLz88PugQREZGTikeA624AMNfLbXqzb4+cc/cC9wIsXLiwT/v2xszSvB7Xf3JeKVcsGNvfLxtXoUiUl3fUnHD9jNKhE3oOPvMsAKMuujDgSkRERE4sHk1DlcC4mOdjgapebtPTvgf9blb874f6seZeO7+8mMwTtLBlpqVw3pTEH9k/Gc6xw6Fnn+fQs88HXYaIiEiP4hHg3gLKzWySmWUAVwOrumyzCrjOPOcA9X73aE/7rgKu9x9fDzwx0CfSnaLcDFbesOi4gJOZlsLKGxdRlDv4p486mWQ4RxERkUQy4F2ozrmwmX0ZeApvKJAVzrmNZvYFf/09wGq8IUR24A0jckNP+/qH/iHwWzP7PLAXuHKgz6U7GWmpLJhQwHPfXMrLO2rYXNXAjNJ8zptSNGTGgUuGcxQREUkk5t34mRwWLlzo1qxZE3QZMoht+PatAMy5/baAKxERkWRnZm875xZ2ty6xb48UERERSUKaSkskxsxbvx10CSIiIielACcSIzUzM+gSRERETkpdqCIx9q/+E/tX/ynoMkRERHqkACcSo+aVV6l55dWgyxAREemRApyIiIhIglGAExEREUkwCnAiIiIiCUYBTkRERCTBJNVMDGZWDewJuo4hoAioCboIOWX6/BKfPsPEp88w8cXjM5zgnCvubkVSBTjpH2a25kRTe8jgp88v8ekzTHz6DBNf0J+hulBFREREEowCnIiIiEiCUYCTU3Fv0AXIadHnl/j0GSY+fYaJL9DPUNfAiYiIiCQYtcCJiIiIJBgFOOkVMxtnZs+Z2WYz22hmXwu6Jjk1ZpZqZmvN7Mmga5G+M7MCM3vUzLb4v4/nBl2T9J6ZfcP/N/Q9M3vIzLKCrkl6ZmYrzOyQmb0Xs6zQzP5iZtv97yPiXZcCnPRWGPgH59wM4BzgS2Y2M+Ca5NR8DdgcdBFyyn4K/Mk5Nx2Yiz7LhGFmZcBXgYXOudlAKnB1sFVJL9wPLOuy7BbgGedcOfCM/zyuFOCkV5xz+51z7/iPG/H+aJQFW5X0lZmNBf4f4BdB1yJ9Z2b5wIeBXwI459qdc3WBFiV9lQZkm1kakANUBVyPnIRz7kXgcJfFy4GV/uOVwGXxrAkU4OQUmNlEYD7wRsClSN/9J/BPQDTgOuTUTAaqgfv8bvBfmNmwoIuS3nHO7QPuAPYC+4F659yfg61KTtEo59x+8Bo4gJJ4F6AAJ31iZrnAY8DXnXMNQdcjvWdmnwAOOefeDroWOWVpwALgbufcfOAoAXTdyKnxr5NaDkwCSoFhZnZtsFVJolKAk14zs3S88PYr59zvgq5H+mwJ8Fdmthv4DXChmT0YbEnSR5VApXOuo/X7UbxAJ4nho8D7zrlq51wI+B3woYBrklNz0MzGAPjfD8W7AAU46RUzM7zrbjY7534SdD3Sd865f3bOjXXOTcS7cPpZ55z+959AnHMHgAozm+YvugjYFGBJ0jd7gXPMLMf/N/UidBNKoloFXO8/vh54It4FpMX7BSVhLQE+C2wws3X+sn9xzq0OriSRpPQV4FdmlgHsAm4IuB7pJefcG2b2KPAO3p39a9GMDIOemT0ELAWKzKwS+A7wQ+C3ZvZ5vGB+Zdzr0kwMIiIiIolFXagiIiIiCUYBTkRERCTBKMCJiIiIJBgFOBEREZEEowAnIiIikmAU4EREYpjZq33cfqmZPTlQ9YiIdEcBTkQkhnNOI+OLyKCnACciEsPMmvzvS83seTN71My2mNmv/NHzMbNl/rKXgSti9h1mZivM7C1/svnl/vI7zexW//HHzexFM9O/vyJyyjQTg4jIic0HZgFVwCvAEjNbA/wcuBDYATwcs/238aYou9HMCoA3zexpvAnn3zKzl4A7gUudc9H4nYaIDDX6H6CIyIm96Zyr9MPWOmAiMB1vQvLtzpvK5sGY7T8G3OJPN/c8kAWMd841A38L/AX4mXNuZ9zOQESGJLXAiYicWFvM4wgf/Jt5ojkIDfiUc25rN+vmALVAaf+VJyLJSi1wIiJ9swWYZGZn+M+viVn3FPCVmGvl5vvfJwD/gNcle4mZLY5jvSIyBCnAiYj0gXOuFbgJ+KN/E8OemNX/G0gH1pvZe8D/9sPcL4FvOueqgM8DvzCzrDiXLiJDiHmXcIiIiIhIolALnIiIiEiCUYATERERSTAKcCIiIiIJRgFOREREJMEowImIiIgkGAU4ERERkQSjACciIiKSYBTgRERERBLM/w/ipewIx1oQFQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Step 3: Find the Small Eigenvalues\n", + "index_lim = 10\n", + "\n", + "fig, ax = plt.subplots(figsize=(10, 6))\n", + "sns.scatterplot(x=range(1, eigenvals_sorted_indices[: index_lim].size + 1), y=eigenvals_sorted[: index_lim], s=80, ax=ax)\n", + "sns.lineplot(x=range(1, eigenvals_sorted_indices[: index_lim].size + 1), y=eigenvals_sorted[: index_lim], alpha=0.5, ax=ax)\n", + "ax.axvline(x=3, color=sns_c[3], label='zero eigenvalues', linestyle='--')\n", + "ax.legend()\n", + "ax.set(title=f'Sorted Eigenvalues Graph Laplacian (First {index_lim})', xlabel='index', ylabel=r'$\\lambda$');\n", + "## From the plot we see see that the first 2 eigenvalues (sorted) are essentially zero." + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "id": "eccc4b5c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1.80047446e-15],\n", + " [9.03912054e-16]])" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "zero_eigenvals_index = np.argwhere(abs(eigenvals) < 1e-5)\n", + "eigenvals[zero_eigenvals_index]" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "id": "1aa023f8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
v_0v_1
00.004073-0.035858
10.0362870.006895
20.004073-0.035858
30.0362870.006895
40.0362870.006895
\n", + "
" + ], + "text/plain": [ + " v_0 v_1\n", + "0 0.004073 -0.035858\n", + "1 0.036287 0.006895\n", + "2 0.004073 -0.035858\n", + "3 0.036287 0.006895\n", + "4 0.036287 0.006895" + ] + }, + "execution_count": 90, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "## for these small eigenvalues, we consider their corresponding eigenvectors.\n", + "import pandas as pd\n", + "\n", + "proj_df = pd.DataFrame(eigenvcts[:, zero_eigenvals_index.squeeze()])\n", + "proj_df.columns = ['v_' + str(c) for c in proj_df.columns]\n", + "proj_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "id": "3c5d81f7", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHjCAYAAADCEQCRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABYp0lEQVR4nO3de5zcVX3/8dc7AUGQqxKFJJhQE5SgjSQEbCtSBURqCV5iQeSi1BgLilYrpGi1CC1qK+LlB0ZFRAWkRhQFjEAb0UqAIKCEiyRcZEOEQrgKRhM+vz/OWfhmmN2Z3ZnvnF3yfj4e89iZ7/d8LzuZ3T35nM/5HEUEZmZmZhuyMaVvwMzMzKw0d4jMzMxsg+cOkZmZmW3w3CEyMzOzDZ47RGZmZrbBc4fIzMzMNnjuEBUg6VBJPyl9H1Y/Sa+WdGsPrxeSXtKr6/WCpDsl7TPMY0+SdL+k37XZ/hOSvjWca40EkvaW1DcC7qPjz6GkMyR9rFv3ZNaKO0Q1yb/En5D0WOXxRYCI+HZE7Ff6HodD0pGSft7D6z1H0r9IulXS7yWtlHSJpBH5/jX+IYiIn0XEzjVda7Gkv6/p3JPy97JRfi1JX5B0i6TxdVyz2yRNBD4E7BIRL2qyv/bOg6SZkn4k6UFJD0m6SdLJkrap87rtqvMz1KmImBcRnyx9H7bhcIeoXn8bEc+rPI4pfUOl9f+BHYLvArOBw4FtgMnAacDfdPnWWhrGvT8rSBLwZWBv4DURsXKIx4+t477a8GLggYi4r8TFJf0FsBj4X+ClEbE1sD+wFvjzAY7ZID9jZiNCRPhRwwO4E9hngH1HAj+vvN4PuBV4GPh/wE+Bv6/sfxdwM/AgsAh4cWVfAPOA2/L+LwECNgEeAnattN0OeAIYl1+/Ebg+t/sF8IpK24nA94D/Ax4Avgi8DPgDsA54DHgot90KODu3vQv4KDCm8r3+L3AqsBo4CXhJ/h4fBu4HvjPA+7RPvt8JLd7rHYCF+fp3AO+v7PsEcH6+v0eBZcDMIRz7XeBbwCPA3wOzgCvze7Yqvy/Pye2vyP8ev8/vz9+ROhF9DZ+LDwO/yt//d4BNK/s/ks97T75eAC9p8j2fnP8d/pCv9cXBPg/tfJYazj8pn2sT4BvAL4HnV/a/FLg0/5veCrytsu8s4HTg4vxe7NPG9z3YZ/FOBv5ZavrZq3x2nszvz1kNx23esP+x/Fn4BMP8vDS5t58DX2jx2T2SZ/58/Bnw36Sfu/uBbwNbN7wf84Gb8r/j1/vfS/LnjRQZuy9/lt45yPUXU/ld07Dvv4Df5X+vK4BpDf/GZ+TPwKOkn+fG30svyc//BriO9DN0N/CJhuv8Vf43fyjvP7JyjZPy822AH+X3/cH8fELD9/HJ/F4+CvwEeEEnv8P92PAexW/g2fpo8Uv8SHKHCHhB/kXxZmAj4FjgT/2/pICDgOWkzshGpF/4v6icK/Ivh62BHfMvjP3zvjOBkyttjwZ+nJ/vln9h7gGMBY7I97xJfn1D/iW9ObAp8FeN914579nAD4AtSH9IfwMcVWm/Fnhfvv/nAucCJ5D+cD117ibv0ynA4hbv8xjgWuBfgOcAOwG3A6/P+z9B6jQckL+vfweWDOHYP+V/gzH53mcAe+bvZRKpc/GBhn+Pl1Re780zO0RXk/6wbpuPn5f37U/6AzQN2Az4ZuP5Gr73xTT8MWvxeTiIQT5LDeeZlM/1XeAq1v+DvDnpD9c783l2I/3hnpb3n0X6I/qXlX/jwb7vAT+LbfwsDfbZW++9b3LsM/bTweel4Tybkzqse7f4/B7JM38+XgLsS/pZ3I7UGflcw2foRtJ/WrYldQJOqnxPa4ETgY3z9/E4sE27n6HKvnfl93UT4HPA9ZV9Z5E6Hnvl/aex/n/yqh2ivYGX5/fvFcC9wEF53475PIfk+30+ML1yjf7v6/nAW0g/F1uQOmvfb/g+VgBT83u4GDilm7/T/Xj2P4rfwLP1kX9pPUb6X0//491535E83SE6HLiycpxIf2z6O0SXkH/B59dj8i+4F+fXQaVDQfrf7fH5+T7A7ZV9/wscnp+fDnyy4Z5vBV4DvIr0h3SjJt/XU/eeX48F1pDyNPq3vYfckcntf9twjrOBBbSO/HwVOK/yetv8Pj4M/CFv26PJ+ecDX8/PPwFcVtm3C/DEEI69osU9fgC4oPK6nQ7ROyqvPw2ckZ+fCfx7Zd9LGs/XcO3FNO8QDfR5GPSz1HCeSflcjwAfatj3d8DPGrZ9Gfh4fn4WcHaTn4eBvu8BP4uVY5/RIWrjs7fee9/k+Gfs7+Tz0rB9Qn7/XtrwPT9Eipp9dKCfjybnOgi4ruG9nFd5fQCwovI9PUHlZ5fU2dyz3c/QAO22zt/PVpV/4+rP5vNIHcCJzX4OGs71OeDUyvt3wQDtziJ3iJrsmw482PB9fLTy+h/I//nzw492H84hqtdBEbF15fGVJm12IHWAAIiIIIW8+70YOC0nZD5ECqsLqCa2VmfQPE765QQp7P5cSXtIejHpl8gFlfN+qP+8+dwT8/1MBO6KiLVtfI8vIP1v+a7Ktrsa7u9u1veR/D1cLWmZpHcNcO4HgO37X0TE6kh5GDNI/yvt/z52aPg+/hl4YeU8je/PpjlXo51j17t3SVNzkuzvJD0C/Ft+D4ZioH+v9T4Ljdfuwvnb+Sw1eiPw8YZ/oxcDezS8b4cC1cTlZvc+2H0N9FkcTDufveHo5PPS70HScFz18/uR/Pm9gBQN6tf4GRsn6bw8geAR0pBt42esesxdrP9ePdDws1t9r9siaaykUyStyPdwZ95VvY/q763HSJ+nZ/yb5d8//yPp/yQ9TBrS7T/PRFJkp9X9bCbpy5LuyvdzBbB1Q37aQJ8vs7a4Q1TeKtL/JoGnElgnVPbfDbynoWP13Ij4RasTR8STpAjBIcDbgR9FxKOV857ccN7NIuLcvG/HARI8o+H1/aRhpRdXtu0IVBNv1zsmIn4XEe+OiB1I/6P/fwNM0b0c2F3ShCb7+t0N3NHwfWwREQcMcsxQjm38fk8HbgGmRMSWpD+IauNa7Vjvs0D6YzGYxntrZTifpV8Af0vqSL29cp6fNpzneRHx3mHe22CfxcG089kbzHDev7Y+axHxe9JQ45uHcR//nre9In/G3sEzP2PVz8aOpJyzbno7aTLDPqQ8rUl5e/U+nroHSc8jRXCb3cc5wIWk6NFWpNyj/vPcTcqZauVDwM7AHvk92avJ/Zh1xB2i8i4CXi7poNwBOZr1/6d9BjBf0jQASVtJmjOE859DGuI4ND/v9xVgXv7fmyRtLulvJG1ByvVYBZySt28q6S/zcfcCEyQ9ByAi1pE6XSdL2iJHov6R9L/apiTNqXRyHiT98l/X2C4ifgL8D/D9fJ/PkbQxKYen39XAI5KOk/Tc/D/bXSXt3sZ7M5xjtyANIz0m6aXAexv230vKLRmO84F3SnqZpM1IuSqDGeq1hvVZioifkv6wL5D0VlKO0lRJh0naOD92l/SyIdxL1WCfxcHua8ifvQb3As+XtFWb7Yf6efkI8C5Jx0saB5A/95NbXGcL8nC7UomDf2rS5mhJEyRtS+qUf6fN76GZjfLPeP9j43wPa0hR2s1IkdBGB0j6q/y74JPAVRHRLDK4BbA6Iv4gaRaps9Xv28A+kt4maSNJz5c0fYBzPEF6T7YFPj7cb9ZsIO4Q1euHWr8O0QWNDSLifmAOKb/gAVLOwlLSLyMi4gLgU8B5OVR8I/CGdm8gIq4i5SzsQMoh6d++FHg3aZbUg6Rk2yPzvnWkqMBLgN+ShvD+Lh/636SZN7+TdH/e9r58jdtJM2vOIeXDDGR34CpJj5H+53hsRNwxQNs3k/4Af4uUf3EHqXO3f8O9Ts/77iflHrX8IzfMYz9M+oX+KOkPeeMfok8A38hDKm9rdQ8N93MJ8HlSJ3A5aTYb5M9CE6cBb1WqcfP5Ns4/7M9SRFxK+gycRcpT2Q84mBQR+F0+7yYDHN7q3AN+Ftsw1M9e9bq3kBL8b8//XoMO0Q318xIRPwdeS4pm/CYPsf2YlO/yhUEu9a+kRPOHSf9h+l6TNueQZlLdnh8nDXbvLZxO6mz0P75OyvO7ixRtuwlYMsA9fJw0VDaD9HPZzD8AJ0p6lNTJP79/R0T8lpQD9aF8nutpXpLgc6Rk6fvzvfy4/W/PrD1KKSs2UkgaQ+qAHBoR/1P6fqycHHG5kTTbqp18LtsASLqTlAh9WcF7OIuUkP7RUvdg1m09jxBJ2l+p6vByScf3+vojkaTXS9pa0iY8nZPS7H9k9iwn6U15aHAbUtTlh+4MmZnVr6cdojwj4EukMP0uwCGSdunlPYxQryLNtLifFJI/KCKeKHtLVsh7SCUPVpDyqhpzlMzMrAY9HTKT9CpSldLX59fzASLi33t2E2ZmZmYNej1kNp7162f00XnNEDMzM7OO9LpD1KxmhLO6zczMrKher6zcx/oFxSbQpJCXpLnAXICXstuMCRpuWRczG66V8/+i9C2YbZBuOvmDPS04ue+YObUEJi598r9GVeHMXneIrgGmSJpMqm9xMOsX6QIgIhaQ1rpi6kmnxl2NDcysdrf8/emlb8FsA/XB0jewQepphygi1ko6BlhEWpjxzIhYNtgxL/6XlitUmFkNdn3CE9zMSrjp5B5fUK7RDL2PEBERFwMXt9v+rhMdtjcrwREis1J6GyHSmFE1slUbdwvNzMxsg1dLhygvEHi1pBskLZP0r3n7JyStlHR9frSzIrmZmZnVRWPqeYwydQ2ZrQFeGxGP5ZWTfy6pf2HRUyPiP2q6rpmZmdmQ1dIhilT++rH8cuP8cL0hMzOzEcY5REltSdV53bJrgZcAX4qIqyS9AThG0uHAUuBDEfHgYOfxLDOzMjzLzKyMns8yM6DGpOqIWBcR00nFF2dJ2hU4HfgzYDqwCvjPuq5vZmZmbXAOEdCDWWYR8RCwGNg/Iu7NHaUnga8As5odI2mupKWSlvbF7XXfopmZ2YZrjOp5jDJ1zTLbTtLW+flzgX2AWyRtX2n2JuDGZsdHxIKImBkRM71sh5mZmdWtrhyi7YFv5DyiMcD5EfEjSd+UNJ2UYH0n8J5WJ3JhRrMyXJjRrJQeL92h0RfNqUNds8x+BbyyyfbD6riemZmZWSd6vnTHUHmWmVkZnmVmVkavZ5lpzOhLgK7DiO8QmZmZWY08ZAbUl1S9c2V5juslPSLpA5K2lXSppNvy123quL6ZmZnZUNSVQ3QrqdZQf4HGlcAFwPHA5RFxiqTj8+vjBjuXk6rNynBStVkpPU6q9pAZ0Jshs9cBKyLiLkmzgb3z9m+Q6hMN2iFyDpFZGc4hMivDlarL6EWH6GDg3Pz8hRGxCiAiVkka14Prm5mZ2UCcQwTU3CGS9BzgQGD+EI+bC8wFGHfgHLba/VU13J2ZDcZDZmal9HrIzB0iqD9C9AbglxFxb359r6Ttc3Roe+C+ZgdFxAJgAcC+Y+YEP/SwmVmvecjMrAwPmZVRdybVITw9XAZwIXBEfn4E8IOar29mZmaDkMbU8hhtartjSZsB+wLfq2w+BdhX0m153yl1Xd/MzMysXbUNmUXE48DzG7Y9QJp11jZPuzcrwzlEZqU4h6gEV6o2MzPbkHmWGdBhh0jSmcAbgfsiYte8bVvgO8Ak0or2b4uIByVNAm4Gbs2HL4mIea2u4TpEZmU4qdqsDCdVl9FpDtFZwP4N2/qrUU8BLs+v+62IiOn50bIzZGZmZjWT6nmMMh11iCLiCmB1w+bZpCrU5K8HdXINMzMzs7rVkUM0WDXqyZKuAx4BPhoRP6vh+mZmZtYur2UG9DapehWwY0Q8IGkG8H1J0yLikcEO8iwzszI8y8yslB7PMjOgnjpE9+Yq1FSrUUfEmjztnoi4FlgBTG12AklzJS2VtPTha66s4RbNzMwMcA5RVkeHqGk1aknbSRqbn+8ETAFub3aCiFgQETMjYqbXMTMzM6uRO0RA59PuzwX2Bl4gqQ/4OKn69PmSjgJ+C8zJzfcCTpS0FlgHzIuIxoRsMzMzs57rqEMUEYcMsOsZ1agjYiGwcKjXcB0iszJch8isjJ7XISoUzZG0P3AaMBb4akSc0rBfef8BwOPAkRHxS0mbAlcAm5D6Md+NiI93ej8jvlK1k6rNynBStVkpz/6k6pxC8yXSuqZ9wDWSLoyImyrN3kBKr5kC7AGcnr+uAV4bEY9J2hj4uaRLImJJJ/fUUQ6RpDMl3Sfpxib7PiwpJL2gsm2+pOWSbpX0+k6ubWZmZl0wRvU8BjcLWB4Rt0fEH4HzSHUMq2YDZ0eyBNha0vb59WO5zcb5ER2/DR0efxbPrFSNpImkXt9vK9t2AQ4GpuVj/l9/krWZmZkVUiapejxwd+V1X97WVhtJYyVdT5rJfmlEXNXJWwD1VKoGOBX4COv32GYD5+Xp93cAy0k9RDMzM3uWqZbQyY+51d1NDmmM8gzYJiLWRcR0YAIwS9Kund5v13OIJB0IrIyIG7R+D3E8UB3fa9YbfAYnVZuV4aRqszJ6n1RdT6XqiFgALBhgdx8wsfJ6AnDPUNtExEOSFpNGnp6RvjMUXe0QSdoMOAHYr9nuJttajvk5qdqsDCdVm5Xy7E+qBq4BpkiaDKwkpdS8vaHNhcAxks4jJVM/nJcE2w74U+4MPRfYB/hUpzfU7QjRnwGTgf7o0ATgl5Jm0V5vEEhhNmAuwEvZjQnaqcu3aWatOEJkVkbPI0StE6C7LiLWSjoGWESadn9mRCyTNC/vPwO4mDTlfjlp2v078+HbA9/IechjgPMj4ked3pMiOkvMljQJ+FFEPGP8TtKdwMyIuF/SNOAcUt7QDsDlwJSIWDfY+aeedGrHmeNmNnSOEJmVMeZFv+lpD+UNUz5Sy9/ZS2779KgqV93ptPtzgSuBnSX15erUTUXEMuB84Cbgx8DRrTpDZmZmZr1QV6Xq/v2TGl6fDAwpGOikarMyPGRmVsaGUql6pHGlajNrykNmZqVsEEnVI06ni7ueCbwRuK8/h0jSd4Cdc5OtgYciYnrONboZuDXvWxIR81pdwxEiszIcITIrwxGiMjqNEJ0FfBE4u39DRPxd/3NJ/wk8XGm/IhdSMjMzMxsxOs0huiJHfp4hr1L7NuC1nVzDQ2ZmZXjIzKyUHg+ZFZh2PxLVU54yeTVwb0TcVtk2WdJ1kn4q6dU1XtvMzMzaUWYtsxGnzqTqQ4BzK69XATtGxAOSZgDflzQtIh6p8R7MzMzMWqqlQyRpI+DNwIz+bRGxBliTn18raQUwFVja5HhXqjYrzEnVZmX0Oqk6RmE0pw51RYj2AW6JiL7+DXntkdURsU7STsAU4PZmB1cXhJt60qlxV003aWYDcw6RWSmedl9CXZWqD2b94TKAvYBfSboB+C4wLyJWd3J9MzMz69CYmh6jTC2VqiPiyCbbFgILO7memZmZdZmHzIBR2YczMzMz665hd4gkTZT0P5JulrRM0rF5+5z8+klJMxuOmS9puaRbJb2+05s3MzOzDnnaPdDZkNla4EMR8UtJWwDXSroUuJE0w+zL1caSdiHlFk0DdgAukzTVK96bmZlZacPuEEXEKlJtISLiUUk3A+Mj4lIAPbN3OBs4L0+/v0PScmAWKSl7QF7LzKwMT7s3K8NrmZXRlWn3efmOVwJXDdJsPLCk8rovbxuUl+4wK8PT7s1K6e20e9chSjruEEl6Hmn22AdaVJ1u9o5Hq/M7QmRWhiNEZmX0PEJkQIcdIkkbkzpD346I77Vo3gdMrLyeANwzwHmfqlQ97sA5bLX7qzq5TTMbBkeIzErp9eKuvb3cSDXsDlFezf5rwM0R8dk2DrkQOEfSZ0lJ1VOAq5s1rFaq3nfMnOCHjhKZ9ZojRGZlOEJURicRor8EDgN+Len6vO2fgU2ALwDbARdJuj4iXh8RyySdD9xEmqF2dDszzJxDZFaGI0RmpfQ4QuQcIqCzWWY/p3leEMAFAxxzMjCkvq9ziMzKcITIrAxHiMqoa3HXrnGEyKwMR4jMSnGEqIROcogmAmcDLwKeBBZExGmV/R8GPgNsFxH356n5NwO35iZLImJeq+s4QmRWhiNEZmX0OkLkafdJ1ytVR8RNubO0L/DbhmNWRMT0oVzEESKzMhwhMiulxxEiA2qoVE1Kmj4V+Ajwg05v0BEiszIcITIro+c5RJ52D9RQqVrSgcDKiLihyfIdkyVdBzwCfDQiftbq3I4QmZXhCJFZKY4QldDVStWkYbQTgP2aNF0F7BgRD0iaAXxf0rQW1a0dITIrxBEiszK8llkZXa1ULenlwGSgPzo0AfilpFkR8TtgDUBEXCtpBTAVWNrkvK5UbVaYI0RmpXgtsxK6Wqk6In4NjKu0uROYmWeZbQesjoh1knYiVaq+vdm5XanarDxHiMzKcB2iMrpeqToiLh6g/V7AiZLWAuuAeRGxuoPrm5mZWaccIALqq1Td32ZS5flC0vDakDip2qwMD5mZleKk6hJGfKVqJ1WbleEhM7MynFRdxojvEDlCZFaGI0RmpfQ4qdp1iIAOyjFJmijpfyTdLGmZpGPz9umSlki6XtJSSbMqx8yXtFzSrZJe341vwMzMzKxTXV+6A/g08K8RcYmkA/LrvSXtAhwMTAN2AC6TNDUi1nX4PZiZmdlwecgMqGfpjgC2zM22Au7Jz2cD50XEGuAOScuBWcCVg13HOURmZTiHyKwMT7svo+tLd5AqVi+S9B+kIbn+JKDxwJLKYX1526CcQ2RWhnOIzErpdWHGnl5uxOo4laq6dEdehuO9wAcjYiLpX/Vr/U2bHB4DnHNuzj9a+vA1gwaQzMzMzDrWUYeocemOvPkIoP/5f5GGxSBFhCZWDp/A08Np64mIBRExMyJmetkOMzOzGkn1PEaZTmaZPWPpjuwe4DX5+WuB2/LzC4GDJW0iaTJp6Y6rh3t9MzMz6wLV9Bhlur50B/Bu4DRJGwF/IC/SGhHLJJ0P3ESaoXa0Z5iZmZnZSFDX0h0zBjjmZMD582ZmZiOEV7tPXJ/SzMzMNnjDjhBJ2hS4Atgkn+e7EfFxSXOATwAvA2ZFxNLcfhJwM3BrPsWSiJjX6jquQ2RWhusQmZXR8zpEDo0AneUQrQFeGxGP5dlmP5d0CXAj8Gbgy02OWRER0zu4ppmZmXWRh8ySTnKIAngsv9w4PyIibgZQl95gF2Y0K8OFGc1K6W1hRks6qlQtaSxwLfAS4EsRcVWLQyZLug54BPhoRPys1TU8ZGZWhofMzMro+ZCZA0RAhyOHEbEuD4FNAGZJ2nWQ5quAHSPilcA/AudI2rJZw2ql6r64vZNbNDMzM2upK6lUEfEQsBjYf5A2ayLigfz8WmAFMHWAtk9Vqp6gnbpxi2ZmZtZEqJ7HaNPJLLPtgD9FxEOSngvsA3yqRfvVEbFO0k6kStUtwz/OITIrwzlEZqX0OIfISdVAZzlE2wPfyHlEY4DzI+JHkt4EfAHYDrhI0vUR8XpgL+BESWuBdcC8iFjd6iLOITIrwzlEZmX0PIeoEEn7A6cBY4GvRsQpDfuV9x8APA4cGRG/lDQROBt4EfAksCAiTuv0fjqZZfYr4JVNtl8AXNBk+0LSQrBD4giRWRmOEJmV0tsIUYnhrRxM+RKwL2nx92skXRgRN1WavYE0mjQF2AM4PX9dC3wod462AK6VdGnDsUPW0SyzXnCEyKwMR4jMythAIkSzgOURaeaUpPOA2aT1TvvNBs7OZX6WSNpa0vYRsYo0UYuIeFTSzcD4hmOHrI5K1Z8gLfD6f7npP0fExfmY+cBRpCGz90fEolbXcYTIrAxHiMxK6XUOUW8vl40H7q687iNFf1q1GU/uDMFTq2C8EmhV9qelOipVA5waEf9RbSxpF+BgYBqwA3CZpKle8d7MzOzZR9JcYG5l04KIWNC/u8kh0XiKwdpIeh4pFecDEfFIJ/cKNVSqHuSQ2cB5EbEGuEPSclLI7MrBruMhM7MyPGRmVkbv1zKrJ0SUOz8LBtjdB0ysvJ4A3NNumxyIWQh8OyK+14377XqlaklvAI6RdDiwlJT49CApzLWkcnh/6GtQHjIzK8NDZmalPPuTqoFrgCmSJgMrSSNIb29ocyGpP3EeaTjt4YhYlWeffQ24OSI+260b6qhDlIe7pkvaGrggV6o+HfgkKVr0SeA/gXfRXnjsGRwhMivDESKzMjaEpOqIWCvpGGARadr9mRGxTNK8vP8M4GLSlPvlpGn378yH/yVwGPBrSdfnbU/lKw9XV2aZ5eKMi4H9q7lDkr4C/Ci/bCc81n/cU+OOL2U3XK3azMysJoXqMuYOzMUN286oPA/g6CbH/Zwa7nrYS3dI2i5HhqhUqr5F0vaVZm8CbszPLwQOlrRJDpFNAa5udm4v3WFmZma9VEel6m9Kmk4aDrsTeA9ADoWdT6oTsBY42jPMzMzMyhqN647VoY5K1YcNcszJwAYwOmpmZjZKeC0zYBRUqvYsM7MyPMvMrJQeF2Y0oJ5K1dOBM4BNSUNj/xARV+dqkjcDt+ZTLImIea2u41lmZmV4lplZGb2eZeYhs6SOStUnAv8aEZdIOgD4NLB3PmZFREwfykUcITIrwxEis1IcISqhjkrVAWyZt2/FAFPrzczMbARwhAiop1L1B4BFkv6DNPusGuKZLOk64BHgoxHxs06ub2ZmZp3xkFlSR6XqucAHI2KhpLeRymvvQ1qddseIeEDSDOD7kqa1WpDNOURmZTiHyKyMDaFS9Ug07MKMVRHxELAY2B84AuhfaO2/SAu4EhFrIuKB/PxaYAUwtdn5JM2VtFTS0r64vRu3aGZmZs1I9TxGmU5mmW0H/Ckv29FfqfpTpJyh15A6SK8Fbqu0Xx0R6yTtRKpU3bS3U10hd+pJp8Zdw71JMxs2J1WbleKk6hLqqFT9EHCapI2AP5DXJAP2Ak6UtBZYB8yLiNWtLuIhM7MyPGRmVoan3ZdRR6XqnwMzmmxfCCwc7vXMzMzM6jLiK1WbmZlZjRwhArqQVC1prKTrJP0ov/6MpFsk/UrSBXkGWn/b+ZKWS7pV0us7vbaZmZl1JsbU8xhtuhEhOpa0JEd/McZLgfkRsVbSp4D5wHGSdgEOBqYBOwCXSZraasV7V6o2K8NJ1WalOKm6hE4LM04A/oa0gv0/AkTETypNlgBvzc9nA+dFxBrgDknLSVPyrxzsGk6qNivDSdVmZfS8DpGHzIDOh8w+B3wEeHKA/e8CLsnPxwN3V/b15W1mZmZmRQ27QyTpjcB9uchis/0nkFa7/3b/pibNYrjXNzMzs86F6nmMNp1EiP4SOFDSncB5wGslfQtA0hHAG4FD8yKwkCJCEyvHT2CAhV9dqdrMzKxHXKka6KBDFBHzI2JCREwiJUv/d0S8Q9L+wHHAgRHxeOWQC4GDJW0iaTKpUvXVA5x7QUTMjIiZE7TTcG/RzMzMrC111CH6IrAJcKlSD3FJRMyLiGWSzgduIg2lHd1qhhl4lplZKZ5lZlZKb2eZjcbhrTp0pUMUEYtJa5cRES8ZpN3JpBlpbfMsM7MyPMvMrAyvdl+GK1WbmZltyBwhAuqpVP0JSSslXZ8fB+TtkyQ9Udl+RqfXNjMzs854lllSR6VqgFMj4j+atF0REdO7cE0zMzOzrukoQlSpVP3V7tyOmZmZ9ZRqeowydVWqPiYv7nqmpG0q2yfn4bWfSnp1h9c2MzMz64o6KlWfDvwZMB1YBfxn3r4K2DEiXkla9+wcSVtiZmZmxTiHKOl6peqIuDci1kXEk8BXSAu4EhFrIuKB/PxaYAUwtdmJXanazMzMeqmOStXbV5q9CbgRQNJ2ksbm5zuRKlU37e24UrWZmVmPOIcIqKcO0aclTSct3Hon8J68fS/gRElrgXXAvIhYXcP1zczMrE2jcXirDnVUqj5sgDYLgYVDPbeX7jArw0t3mJXS26U7LBnxlaq9dIdZGV66w6yMni/d4QgR0IUOUc4LWgqsjIg3Svpz4AzgeaQhs0Mj4pHcdj5wFGnI7P0RsajV+R0hMivDESKzUhwhKqGOStVfBT4cET+V9C7gn4CPSdqFlHw9DdgBuEzS1FYr3jtCZFaGI0RmZfQ6QhRyiAjqqVS9M3BFfn4p8Jb8fDZwXp5+fwewnDwl38zMzArxLDOg8wjR50iVqreobLsROBD4ATAHmJi3jweWVNr15W2D8pCZWRkeMjMrxUNmJdRRqfpdwNGSriV1lP7Yf0iT08Rwr29mZmadc6XqpJMIUX+l6gOATYEtc6XqdwD7AUiaShpSgxQRmlg5fgJwT7MTS5oLzAV4Kbvh4oxmveccIrMyej7LzIB6KlWPA5A0BvgoacYZwIXAwZI2kTSZVKn66gHO7UrVZmZmveAcIqCeOkSHSDo6P/8e8HWAiFgm6XzgJmAtcHSrGWbgHCKzUpxDZFZKj3OIRmHnpQ51VKo+DThtgHYnAw4GmpmZ2YjiStVm1pRziMzK6H0dot5eb6TqqA6RmZmZ2bNBRxEiSXcCj5KW4lgbETMlfQb4W9J0+xXAOyPiIUmTSBWtb82HL4mIeZ1c38zMzDrkCBHQnSGzv46I+yuvLwXmR8RaSZ8C5gPH5X0rImJ6F65pZmZm1jVdzyGKiJ9UXi4B3trJ+TzLzKwMzzIzK6W3s8ycQ5R0mkMUwE8kXZuLKTZ6F3BJ5fVkSddJ+qmkV3d4bTMzM+uU6xABnXeI/jIidgPeQFquY6/+HZJOINUb+nbetArYMSJeCfwjcI6kLZudVNJcSUslLX34mis7vEUzMzOzwXXUIYqIe/LX+4ALyKvXSzoCeCNwaEREbrMmIh7Iz68lJVxPHeC8T1Wq3mr3V3Vyi2ZmZjYIr2WWDDuHSNLmwJiIeDQ/3w84UdL+pCTq10TE45X22wGrI2KdpJ1IS3fc3uo6rkNkVobrEJmV4bXMyugkQvRC4OeSbiCtSXZRRPwY+CJplftLJV0vqX8ts72AX+X23wXmRcTqDq5vZmZmnSqUQyRpf0m3Slou6fgm+yXp83n/ryTtVtl3pqT7JN047O+7wbAjRBFxO/DnTba/ZID2C4GFw72emZmZ1aDA8JakscCXgH2BPuAaSRdGxE2VZm8gjSZNAfYATs9fAc4iBWDO7tY9jfilOzzt3qwMT7s3K6XHi7uWMQtYnoMrSDoPmE1aAL7fbODsnIu8RNLWkraPiFURcUUu+Nw1Xa9Unbe/DziGNMvsooj4SN4+Hzgqt39/RCxqdQ3nEJmV4RwiszKeLWuZ5XI81ZI8CyJiQX4+Hri7sq+Pp6M/DNJmPGnWetd1vVK1pL8m9epeERFrJI3L23cBDgamATsAl0maGhHrunAPZmZmNoLkzs+CAXY364bFMNp0TR1DZu8FTomINfDUlHxInaTz8vY7JC0nhcwGLTTkITOzMjxkZlZKj4fMykyR7wMmVl5PAO4ZRpuuqaNS9VTg1ZKuyhWpd8/bBwp9mZmZWSFR06OFa4ApkiZLeg5pBOnChjYXAofn2WZ7Ag9HRC3DZdB5hOgvI+KePCx2qaRb8jm3AfYEdgfOz3WHhhX6cg6RWRnOITIrY0OoQ5QXgD8GWASMBc6MiGWS5uX9ZwAXAwcAy4HHgXf2Hy/pXGBv4AWS+oCPR8TXOrmnjjpE1UrVkvorVfcB38tZ4VdLehJ4AUMIfVUTscYdOAdXqzbrPQ+ZmZWyQQyZEREXkzo91W1nVJ4HcPQAxx7S7fvpeqVq4DHgtcBiSVOB5wD3k0Jf50j6LCmpegqpoOMzVBOx9h0zJ/iho0RmveYIkVkZG0KEaCTqJEL0QuACSf3nOScifpzHAs/M1SP/CByRe3nLJJ1PqjGwFjjaM8zMzMwKG4XrjtWhjkrVfwTeMcAxJwPu+5qZmY0Qo3Eh1jp0OsvMzMzMbNTreqVqSX8OnAE8D7gTODQiHskltm8Gbs2HL4mIeZ1c38zMzDrkCBFQQ6Vq4KvAhyPip5LeBfwT8LG8b0VETB/KyV2Y0awMzzIzK2WDWMtsxKljyGxn4Ir8/FLgLTVcw8zMzLogVM9jtOk0QtRfqTqAL+fp8jcCBwI/AOawfu2hyZKuAx4BPhoRP2t1ARdmNCvD0+7NyvC0+zLqqFT9LuDzkv6FVHvoj7ntKmDHiHhA0gzg+5KmRcQjHd6DmZmZDdcojObUoaMhs2qlauACYFZE3BIR+0XEDOBcYEVusyYiHsjPr83bpzY7r6S5kpZKWtoXt3dyi2ZmZjYY1fQYZYbdIZK0uaQt+p+TKlXfmKNFSBoDfJQ04wxJ20kam5/vRKpU3bS3ExELImJmRMycoJ2Ge4tmZmZmbamjUvWxkvrXHvke8PX8fC/gRElrSdP050XE6g6ub2ZmZh0ajQnQdaijUvVpwGlNti8EFg73emZmZmZ16UYdolq5DpFZGa5DZFbKhrHa/UjTaaXqrUmFGHclTcF/F3AAMBt4ErgPOLI/+VrSfOAo0pDZ+yNiUatreNq9WRmedm9WRs+n3btDBHQeIToN+HFEvDWvcr8ZsCwiPgYg6f3AvwDzJO0CHAxMA3YALpM0tdWK944QmZXhCJFZKa5UXcKwO0SStiQlSh8JT61y/8eGZpuTIkeQokbnRcQa4A5Jy4FZwJWDXccRIrMyHCEyK6PXESInVSedRIh2Av4P+Hpe0PVa4NiI+L2kk4HDgYeBv87txwNLKsf35W2DcoTIrAxHiMxKcYSohE4KM24E7AacHhGvBH4PHA8QESdExETg28AxuX2zPmg02WZmZma94sKMQGcRoj6gLyKuyq+/S+4QVZwDXAR8PLevrms2Abin2YklzQXmAryU3XBxRrPe85CZWRkeMiujkzpEv5N0t6SdI+JW4HXATZKmRMRtudmBwC35+YXAOZI+S0qqngJcPcC5FwALAKaedGrcNdybNLNh85CZWSkeMiuh01lm7wO+nWeY3Q68E/iqpJ1J0+7vAuYBRMQySecDNwFrgaNbzTADJ1WbleIIkVkZnnZfRkcdooi4HpjZsPktg7Q/GRjSP7WTqs3KcITIrBRHiEoY8ZWqHSEyK8MRIrMyHCEqo+uVqiPiSknvI80uWwtcFBEfkTQJuBm4NR++JCLmtbqGI0RmZThCZFaKI0QldL1StaS/JhVhfEVErJE0rtJ+RURMH8oFHCEyK8MRIrMyPMusjK5Xqpb0XuCUXJGaiLivC/dpZmZmdXCHCKihUjUwFXh1rlb9B+DDEXFNPmaypOuAR4CPRsTPWl3EQ2ZmZXjIzKwUD5mV0EmHqL9S9fsi4ipJp5EKM24EbAPsCewOnC9pJ2AVsGNEPCBpBvB9SdMi4pHBLuIhM7MyPGRmVkbPk6oNqKdSdR/wvYgI4GpJTwIviIj/A/qH0a6VtIIUTVraeOJqpepxB85hq91f1cFtmtlwOEJkVoojRCV0vVI1sAJ4LbBY0lTgOcD9krYDVkfEuhwxmkIq5tjs3E9Vqt53zJzgh44SmfWaI0RmZTipuow6KlX/HjhT0o3AH4EjIiIk7QWcKGktsA6YFxGrW13AOURmZThCZFZKjyNE7hAB9VSqBnhHk7YLgYWdXM/MzMysDiO+UrWZmZnVyBEiAMYM90BJO0u6vvJ4RNIHJG0r6VJJt+Wv21SOmS9puaRbJb2+O9+CmZmZWWc6Saq+FZgOIGkssBK4gDTT7PKIOEXS8fn1cZJ2AQ4GpgE7AJdJmtpqxXtPuzcrw0nVZmU4qbqMbg2ZvY60LMddkmYDe+ft3wAWA8eRlvM4L1ewvkPScmAWcOVgJ3ZStVkZTqo2K8VJ1SUMe8iswcHAufn5CyNiFUD+2r+W2Xjg7soxfXmbmZmZWVEdR4jylPsDgfmtmjbZFq3O7yEzszI8ZGZWhofMyuhGhOgNwC8j4t78+l5J2wPkr/2Lu/YBEyvHTQDuaXZCSXMlLZW0tC+a1m40MzMz65pudIgO4enhMoALgSPy8yOAH1S2HyxpE0mTSZWqr252wohYEBEzI2LmBO3UhVs0MzOzplTTY5TpaMhM0mbAvsB7KptPIS3oehTwW2AOQEQsk3Q+aXmPtcDRrWaYmZmZmfVCp5WqHwee37DtAdKss2btTwaGNDrqWWZmZXiWmVkpvZ5l1jKdd4Mw4itVO6narAwnVZuV4aTqMobdIZK0M/CdyqadgH8hRYxmA0+SEqqPjIh7JE0CbgZuze2XRMS84V7fzMzMrFvqqFT9YER8LG9/P6mT1N/xWRER0zu4XzMzM+smR4iAGipVN2zfnDZqDZmZmZmV1K0OUbVSNZJOBg4HHgb+utJusqTrgEeAj0bEz7p0fTMzMxsOR4iAmipVR8QJwAmS5gPHAB8HVgE7RsQDkmYA35c0LSIeGez8nmVmVoZnmZmV0ttZZk6qTroRIWqsVF11DnAR8PG8qOsagIi4VtIKYCqwtPEgSXOBuQAvZTdcnNGs9zzLzKyMXs8ys6TrlaolTansOxC4JW/fLidfI2knUqXqputyuFK1mZlZj7hSNVBTpeo8Jf9J4C6enmG2F3CipLXAOmBeRKxudQ0PmZmV4SEzs1J6XJixEEn7A6cBY4GvRsQpDfuV9x8APE4q4/PLdo4djjoqVb9lgLYLgYWdXM/MzMy6rEA0J48YfYkUVOkDrpF0YUTcVGn2BtJo0hRgD+B0YI82jx0yV6o2s6acQ2RWRs9ziMos3TELWB4RtwNIOo9U1LnaqZkNnB0RASyRtLWk7YFJbRw7ZN3IITIzMzMbivHA3ZXXfXlbO23aOXbI6li641XAznnb1sBD/dWp8zT8o0g5RO+PiEWtruMcIrMynENkVsqzY9p9dcZ4tiAiFvTvbnYrjacYoE07xw5Z15fuiIjP9beR9J+k4oxI2oVUwHEasANwmaSpEbFuuPdgZmZmI1Pu/CwYYHcfMLHyegJwT5ttntPGsUPWrSGzZyzdkbPD38bTU/JnA+dFxJqIuANYThpDNDMzsw3LNcAUSZNzgeeDgQsb2lwIHK5kT+DhiFjV5rFDVsvSHdmrgXsj4rb8ejywpLK/K2N+ZmZmNrpExFpJxwCLSFPnz4yIZZLm5f1nABeTptwvJ027f+dgx3Z6T7Us3ZGtV7CRIYz5uVK1WXmeZWZWRu9nmfX4ellEXEzq9FS3nVF5HsDR7R7bqVqW7pC0EfBmYEalXTvjhcD6445TTzr16XE4M+sZJ1WblfLsSKoebbrRIWqMBAHsA9wSEX2VbRcC50j6LCmpegpwdauTuw6RWRmOEJmV4bXMyqhj6Q5oklOUxwbPJxVOWgsc3c4MM0+7NyvDESKzUnq8dEeZwowjTteX7sjbjxyg/cnAkPq+jhCZleEIkVkZjhCVMeKX7jAzM7MaOYcI6LAOkaQPSlom6UZJ50raVNK2ki6VdFv+uk1uO0nSE5Kuz48zWp3fzMzMaqaaHqNMJ0t3jAfeD+wSEU/k/KCDgV2AyyPiFEnHA8cDx+XDVvQv49Eu5xCZleEcIrNSepxDZEDnQ2YbAc+V9CdgM9I0+vnA3nn/N4DFPN0hGjLnEJmV4RwiszI2lDpEI00na5mtlPQfwG+BJ4CfRMRPJL0wl9YmIlZJGlc5bLKk64BHgI9GxM9aXccRIrMyHCEyK8URohI6GTLbhrQ+2WTgIeC/JL1jkENWATtGxAOSZgDflzQtIh4Z7DqOEJmV4QiRWRm9jxB52j10NmS2D3BHRPwfgKTvAX8B3Ctp+xwd2h64DyAi1gBr8vNrJa0ApgJLG09cXbpj3IFz2Gr3V3Vwm2Y2HI4QmZXS6zpEvb3cSNXJLLPfAntK2iyvbP864GZSReojcpsjgB8ASNpO0tj8fCdSperbm504IhZExMyImOnOkJmZmdWtkxyiqyR9F/glqfL0daT1x54HnC/pKFKnaU4+ZC/gRElrgXXAvIhY3cnNm5mZWWe8llnSaaXqjwMfb9i8hhQtamy7EFg41Gs4h8isDOcQmZXhStVluFK1mZnZhsxJ1UDni7t+EPh7IIBfA++MiD/kfR8GPgNsFxH3523zgaNIQ2bvj4hFra7hafdmZTip2qwUT7svoY5K1WdJmgjsS8oh6m+/S94/DdgBuEzS1FYr3nvIzKwMD5mZleHCjGV0tJYZT1eq3oinK1UDnAp8hBQ56jcbOC8i1kTEHcByYFaH1zczM7MOSPU8Rps6KlUfCKyMiBu0/jsyHlhSed2Xtw3KQ2ZmZXjIzKwUD5mV0O1K1YcDRwP7NTukybaWmVweMjMrw0NmZmW4UnUZ3a5U/U5SB6k/OjQB+KWkWaSI0MTK8RN4eohtPa5UbVaeI0RmpThCVEK3K1V/LyLGRcSkiJhE6gTtFhG/I1WwPljSJpImkypVX93sxK5UbWZm1iOq6THK1FGpeqD2y/JMtJty+6NbzTADD5mZleIhM7MyPMusDEWM7LHDqSedOrJv0OxZykNmZmWMedFvetpFmXT2p2r5O3vn4ceNqq7WiK9U7QiRWRmOEJmV0fulOxx3gA7rEEn6oKRlkm6UdK6kTSV9R9L1+XGnpOtz20mSnqjsO6Mr34GZmZlZh7peqToi/q7S5j+BhyuHrYiI6cO9ppmZmXXZqBrYqk+nQ2b9lar/xPqVqskzz94GvLbDa5iZmVlN5DpEQAdDZhGxEuivVL0KeDgiflJp8mrg3oi4rbJtsqTrJP1U0quHe20zMzOzbhp2h6ihUvUOwOaS3lFpcghwbuX1KmDHiHgl8I/AOZK2HO71zczMrAtchwjofqXqvwC+lRd7fTMwo79xRKwB1uTn10paAUwFljae2JWqzcrztHuzUlypuoRuV6q+Oe/bB7glIvr6G0vaTtLY/HwnUqXq25ud2JWqzczMekOKWh6jTV2Vqg9m/eEygL2AEyWtBdYB8yJidavruA6RWRmuQ2RWRu/rEBm4UrWZDcBDZmZl9LpS9U7n/lstf2dvP+SfR1UmkStVm1lTjhCZldHrCJFGVbelPh11iCQdC7yblE/+lYj4nKQ5wCeAlwGzImJppf184CjSkNn7I2JRq2vcdeJfdHKLZjZMjhCZleKk6hI6qVS9K6kzNAv4I/BjSRcBN5JmmH25of0upNyiaaRp+pdJmtrOivdmZmZWk1GYAF2HTiJELwOWRMTjAJJ+CrwpIj6dXze2nw2cl6ff3yFpOakzdeVgF/GQmVkZHjIzK8NJ1WV0Mu3+RmAvSc+XtBlwADBxkPbjgbsrr/vyNjMzMyvE0+6TTqbd3yzpU8ClwGPADaTp9wNplrY1+t4xMzOzZxEnVSedRIiIiK9FxG4RsRewGrhtkOZ9rB9BmkBlMdgqSXMlLZW0tC+a1m40MzMz65pOZ5mNi4j7JO1ISqQerKz0haT1yz5LSqqeAlzdrGFELCAXeZx60qlxVyc3aWbD4llmZqX0dpbZaBzeqkOndYgWSno+8Cfg6Ih4UNKbgC8A2wEXSbo+Il4fEcsknQ/cRBpaO7qdGWZOqjYrw0nVZmU4qbqMjjpEEfHqJtsuAC4YoP3JgP+pzczMRgrnEAGjoFK1mZmZ1cdDZknXK1VX9n0Y+AywXUTcL2kScDNwa26yJCLmtbqGK1WbleEcIrNSXKm6hK5Xqo6I2yRNBPYFfttw2IqImD6U6ziHyKwM5xCZldHztcx6e7kRq+uVqoFPA6cCHwF+0OkNOkJkVoYjRGalOEJUQicdohuBk/MssydIlaqXSjoQWBkRNzRZvmOypOuAR4CPRsTPWl3EESKzMhwhMiuj96vdO4cI6qlUfQKwX5NDVgE7RsQDkmYA35c0LSIeGew6jhCZleEIkVkpjhCV0O1K1XcCk4EbJN1Jqkb9S0kviog1EfFAPu5aYAUwtdl5q5WqH75m0LVfzczMrANeyyzpqEMkaVz+2l+p+uyIGBcRkyJiEmm5jt0i4neStpM0NrffiVSpuum6HBGxICJmRsTMrXYfrPi1mZmZdUKq59HZPWlbSZdKui1/3WaAdvtLulXScknHV7bPkbRM0pOSZrZzza5Xqh6k7V7AiZLWAuuAeRGxutUFnENkVoZziMzKcKVqAI4HLo+IU3JH53jguGqDHGT5EmlWex9wjaQLI+ImUp7zm4Evt3vBrleqbtg/qfJ8IbCwk+uZmZlZd40ZmcNbs4G98/NvAItp6BCRyv4sj0irwEs6Lx93U0TcnLe1fcGOhszMzMzMavDCiFgFkL+Oa9JmPHB35XVf3jYsXa9ULWk6cAawKWnW2T9ExNW5/XzgKNKQ2fsjYlGra3iWmVkZnmVmVsqzY7V7SXOBuZVNCyJiQWX/ZcCLmhx6QruXaLJt2N9M1ytVkwoz/mtEXCLpgPx6b0m7AAcD04AdgMskTW1nxXszMzOrR10dotz5WTDI/n0GvifdK2n7iFglaXvgvibN+oCJldcTgHuGe7+dDJk9Vak6ItYC/ZWqA9gyt9mqcnOzgfPy9Ps7gOWkzpSZmZlZ1YXAEfn5ETRf+eIaYIqkyZKeQwq6XDjcC3a9UjXwAWCRpP8gdbj6x7zGA0sqx7c11udZZmZleJaZWRm9r1Td2+u16RTgfElHkdZFnQMgaQfgqxFxQESslXQMsAgYC5wZEctyuzcBXwC2Ay6SdH1EvH6wC9ZRqfq9wAcjYqGktwFfA/ahy2N9ZmZm9uyUCzm/rsn2e0gBmP7XFwMXN2l3AXDBUK7Z6bT7r5E6PEj6N1LU59+BY3OT/wK+mp+3PdZXTcQad+AcXJzRrPecVG1WSm+TqkfotPue63SW2biIuK9SqfpVwPuA15BqBrwWuC03vxA4R9JnSUnVU4Crm523moi175g5wQ89bGbWax4yMyvDi7uW0fVK1ZLeDZwmaSPgD+RIT0Qsk3Q+cBNpaO3odmaYedq9WRmOEJmV4sVdS+h6peqI+DkwY4D2JwND6vs6qdqsDEeIzMrodYRojNN5gc4jRLVzhMisDEeIzEpxhKiEEd8hMjMzs/qM0Gn3PdeyMKOkMyXdJ+nGyrZtJV0q6bb8dZu8/fmS/kfSY5K+2HCexZJulXR9fjRbl8TMzMys59qJEJ0FfBE4u7LteODyiDhF0vH59XGkJOqPAbvmR6NDI2LpUG7QOURmZTiHyKyMnucQeZYZ0EaEKCKuAFY3bJ4NfCM//wZwUG77+5xU/Ycu3qOZmZnVRIpaHqPNcHOIXhgRqwDywmvtDn99XdI6YCFwUkS0fMecVG1WhpOqzUpxUnUJvUyqPjQiVkragtQhOoz1h+GeUq1U/VJ2Y4J26t1dmhngITOzUjxkVsZwO0T3Sto+R4e2B+5rdUBErMxfH5V0Dmml+6Ydomql6qknnRp3DfMmzWz4HCEyK8URohKG2yG6EDiCtBrtEcAPBmucq1ZvHRH3S9oYeCNwWTsXclK1WRmOEJmV4aU7ymjZIZJ0LrA38AJJfcDHSR2h8yUdBfwWmFNpfyewJfAcSQcB+wF3AYtyZ2gsqTP0lW5+I2ZmZjZ0HjJLWnaIIuKQAXa9boD2kwZo33Q5DzMzM7PSRnylas8yMyvDOURmpfQ2h8hrmSXtDJmdScr5uS8ids3btgW+A0wC7gTelle6nwTcDNyaD18SEfPyMTNIRR6fC1wMHNvOtHvnEJmV4RwiszJ6nUNkScvCjKROzP4N2/orVU8BLs+v+62IiOn5Ma+y/XTSVPop+dF4TjMzM+sxF2ZM2skhuiJHfqpmkxKtIVWqXkxauqOpPDV/y4i4Mr8+m1Td+pJW1/eQmVkZHjIzK6XHQ2ajsPNSh3YiRM2sV6kaqFaqnizpOkk/lfTqvG080Fdp05e3mZmZmRXX7aTqVcCOEfFAzhn6vqRpgJq0batL6hwiszKcQ2RWhitVl9HVStURsQZYk59fK2kFMJUUEZpQOX4CcM9AJ68u3THuwDlstfurhnmbZjZcHjIzK8WVqkvoaqVqSdsBqyNinaSdSMnTt0fEakmPStoTuAo4HPjCQCevLt2x75g5wQ8dJTLrNUeIzMpwhKiMbleq3gs4UdJaYB0wLyJW533v5elp95fQRkI1OKnarBRHiMxKcVJ1CV2tVB0RC0kr2Tc7z1Jg1yHdnZmZmVkPjPhK1WZmZlYfV6pOul2pemPgq8Bu+dxnR8S/52MWA9sDT+RT7xcR97W6vmeZmZXhHCKzMlypuox2IkRnAV8Ezq5s669UfYqk4/Pr40i5RJtExMslbQbcJOnciLgzH3doHjprm3OIzMpwDpFZKc4hKqFlYcaIuAJY3bB5NqlCNfnrQf3Ngc0lbURKnv4j8EhX7tTMzMysJsPNIVqvUrWk/krV3yV1llYBmwEfrMwyA/i6pHWkxOuTvLir2cjlITOzMjztvoxuJ1XPIk233wHYBviZpMsi4nbScNlKSVuQOkSHsf4wnJmZmfWYO0TJcNcyuzdXqKZaqRp4O/DjiPhTTpj+X2AmQESszF8fBc4hdZ6akjRX0lJJS/vi9mHeopmZmVl7ulqpmlSk8bWSvkUaMtsT+FzOKdo6Iu7PM9HeCFw20MmrlaqnnnRq3DXMmzSz4XNStVkpTqouoduVqr8EfB24kbSg69cj4leSNgcW5c7QWFJn6Cvt3KBziMzKcA6RWRmedl9GtytVP8bTnaPq9t8DM4Z8d3javVkpjhCZldLjCJELMwKjoFK1I0RmZThCZFaGZ5mV0TKpWtKZku6TdGNl2xxJyyQ9KWlmZfu+kq6V9Ov89bWVfTPy9uWSPi9J3f92zMzMzIaunVlmZwH7N2y7EXgzcEXD9vuBv42Il5OSrb9Z2Xc6MBeYkh+N5zQzM7MeG6Mna3mMNu3kEF0haVLDtpsBGoM8EXFd5eUyYFNJmwDbAltGxJX5uLNJ1a0vaXV95xCZleEcIrNSeptDZEmdOURvAa6LiDWSxgN9lX19wPgar21mZmZtcA5RUkuHSNI04FPAfv2bmjTzv4CZmVlhnmWWDLdS9YAkTQAuAA6PiBV5cx8wodJsAnDPIOd4qlL1w9dc2e1bNDMzM1tPVztEkrYGLgLmR8T/9m/PC8E+KmnPPLvscJ6ubv0MEbEgImZGxMytdn9VN2/RzMzMKsYoanmMNsOtVL0a+AKwHXCRpOsj4vXAMcBLgI9J+lg+xX55XbP3kmasPZeUTN0yoRpch8isFNchMivDlarL6KRS9QVN2p4EnDTAeZYCuw7p7szMzKxWo3GKfB1GfKVqT7s3K8PT7s1K8bT7EtoZMjuTtDr9fRGxa942B/gE8DJgVo7+kOsV3Qzcmg9fEhHz8r7FwPbAE3lf/1DaoDxkZlaGh8zMyuj1kNnYUZjvU4d2IkRnAV8Ezq5s669U/eUm7VdExPQBznVof+fJzMzMyvO0+6SrlarNzMzMRqOu1yECJku6TtJPJb26Yd/XJV0v6WNe3NXMzKw8r2WWdDupehWwY0Q8IGkG8H1J0yLiEdJw2UpJWwALgcNYfxjOzMzMrIiuRogiYk1EPJCfXwusAKbm1yvz10eBc4BZA52nWqm6L27v5i2amZlZxUgszChpW0mXSrotf91mgHb7S7pV0nJJx1e2f0bSLZJ+JemCXDh68Pehozt+5o1tJ2lsfr4TMAW4XdJGkl6Qt29MmrV240DnqVaqnqCdunmLZmZmVjGWqOXRoeOByyNiCnB5fr2e3N/4EvAGYBfgEEm75N2XArtGxCuA3wDzW12w25Wq9wJOlLQWWAfMi4jVkjYHFuXO0FjgMuArra4NrkNkVorrEJmV4jpEwGxS3wPgG8Bi4LiGNrOA5RFpKEnSefm4myLiJ5V2S4C3trpgtytVLyTlBzVu/z0wo9W1mnEdIrMyXIfIrIxe1yEaoQnQL8zroBIRqySNa9JmPHB35XUfsEeTdu8CvtPqgq5UbWZNOUJkVsqzI0IkaS4wt7JpQUQsqOy/DHhRk0NPaPcSTbatN1Yn6QRgLfDtVifrdqXq55CKNc4EngSOjYjFed8Mnl7c9eK8r+UgoyNEZmU4QmRWRu8jRPUUZsydnwWD7N9noH2S7pW0fY4ObQ80W9miD5hYeT0BuKdyjiNI/ZfXtdPf6Hal6ncDRMTLc3jrEkm7R8STwOmknuISUodof9pY8d4RIrMyHCEyK6W3EaIRunTHhcARwCn56w+atLkGmCJpMrASOBh4O6TZZ6Sco9dExOPtXLDblap3IWWDExH3SXoImCnpbmDLiLgyH3c2cBBtdIgcITIrwxEiszJ6HSEaoU4Bzpd0FPBbYA6ApB2Ar0bEARGxVtIxwCLShK0zI2JZPv6LwCbApbmv8tTaqgPpdg7RDcDsnOk9kZRIPZE0fNZXaddHSoYyMzOzgsYw8pKqc03D1zXZfg9wQOX1xaRRp8Z2LxnqNbvdITqTlFe0FLgL+AUpmall4pOZmZlZKV3tEEXEWiqDn5J+AdwGPEhKduq3XuJTo2pm+rgD57DV7q/q5m2aWRucQ2RWSm9ziOpKqh5tutohkrQZoIj4vaR9gbURcVPe96ikPYGrgMNJhR2bqmam7ztmTvBD5xGZ9ZpziMzKcA5RGd2uVD2OVJH6SVLG92GVU72Xp6fdX0IbCdXgWWZmpThCZFZKj2eZjcAcohK6Xan6TmDnAc6zFNh1KDdnZmZm9fKQWTLiK1V72r1ZGR4yMyvDQ2ZlDLdS9WeAvwX+CKwA3hkRD+W8oVOA5+R9/xQR/52PWQxsDzyRT71fRDSrPLkeD5mZleEhM7NSel2Y0UNmAGPaaHMWqap01aXArhHxCuA3wPy8/X7gbyPi5aTKkt9sOO7QiJieHy07Q2ZmZma9MNxK1T+pvFwCvDVvv66yfRmwqaRNImLNcG/QQ2ZmZXjIzKyMnq9l5rKAQHdyiN4FfKfJ9rcA1zV0hr4uaR2wEDipncXWzMzMrD4eMks66hBJOoFUifrbDdunAZ8C9qtsPjQiVkragtQhOoz1F4xtyjlEZmU4h8islN7mEFnSTg5RU5KOICVbH1qN9EiaQJqSf3hErOjfHhEr89dHgXOAWYOce66kpZKWPnzNlcO9RTMzM2thjJ6s5THaDKtDJGl/4DjgwIh4vLJ9a+AiYH5E/G9l+0aSXpCfb0zqSN040PkjYkFEzIyImV62w8zMzOo23ErV84FNgEslASyJiHnAMcBLgI9J+lg+xX7A70kVrDcGxgKXAV9p5wadVG1WhpOqzcrodVL1WCdVA8OvVP21AdqeBJw0wKlmDOG+zMzMrAdG4/BWHUZ8pWonVZuV4aRqs1KcVF3CiO8QecjMrAwPmZmV4SGzMlomVUs6U9J9km6sbPuMpFsk/UrSBTmZun/fKyRdKWmZpF9L2jRvn5FfL5f0eeXkIzMzM7PSurp0h6SNgG8B8yJiGikZ+0/5mNOBucCU/Gg8p5mZmfWYp90nXV26gzSj7FcRcUNu9wCApO2BLSPiyvz6bOAg4JJW13cOkVkZziEyK8U5RCV0e+mOqUBIWgRsB5wXEZ8GxgN9lWP68raWnENkVoZziMzK6H0O0eiL5tSh20t3bAT8FbA78DhwuaRrgUeaHD5gFpekuaThNcYdOAcXZzTrPUeIzErpbYRojJxUDR10iCpLd7yusnRHH/DTiLg/t7kY2I2UVzShcvgE4J6Bzh0RC4AFAPuOmRP80FEis15zhMisjF5HiCwZVoeosnTHa6pLdwCLgI9I2gz4I/Aa4NSIWCXpUUl7AlcBhwNfaOdaziEyK8MRIrNSehsh8pBZ0s60+3OBK4GdJfVJOgr4IrAFaemO6yWdARARDwKfBa4Brgd+GREX5VO9F/gqsBxYQRsJ1WZmZma90NWlO3L7b5GGyBq3LwV2HdLd4aRqs1I8ZGZWRs+TqkfhFPk6jPhK1WZmZlafMa5UDbS32v2ZpOTp+yJi17ztM8DfkvKEVgDvjIiHJD0H+DIwE3gSODYiFudjFgPbA0/kU+8XEfe1ur5ziMzKcA6RWSmuQ1RCOxGis0g5Q2dXtl0KzI+ItZI+RapUfRzwboCIeLmkccAlknaPiP543KF56KxtHjIzK8NDZmZleMisjG5Xqt4FuDy3uU/SQ6Ro0dXDvUFHiMzKcITIrBRHiEpoZy2zVt7F0zPGbgBmS9pI0mRgBjCx0vbreVbax7y4q5mZWXljeLKWx2jT7UrVZwIvA5YCdwG/yPshDZetlLQFsBA4jPWH4ZrykJlZGR4yMyuj90NmTqqGLleqjoi1VGJ9kn4B3Jb3rcxfH5V0DjCLATpEXrrDrDwPmZmV4iGzEoY1ZFapVH1gtVK1pM0kbZ6f7wusjYib8hDaC/L2jUkdqRsHOn9ELIiImREx050hMzOz+ozlyVoeo0070+7PBfYGXiCpD/g4aVbZJqRK1QBLImIeMA5YJOlJYCVpWIzcdlHuDI0FLgO+0s4NesjMrAwPmZmV4bXMyuhqpeqIuBPYucn235MSrM3MzGwEGeNp98AoqFTtafdmZTiHyKwU5xCVMNxK1Z8EZpOqUd8HHBkR90iaBSzoPxT4RERckI+ZQSry+FzgYlIV65ap7R4yMyvDQ2ZmZfR8ltkozPepg1r1SSTtBTwGnF3pEG0ZEY/k5+8HdomIeZI2A/6YK1hvT6pLtEN+fTVwLKmQ48XA5yOi5Yr3U0861fMBzQpwhMisjDEv+k1P6/T94Pbptfydnb3T9aOq3uBwK1U/Unm5OdA/7f7xyvZN+7fnztGWEXFlfn02cBBPF3QckCNEZmU4QmRWhpOqy+ikDtHJwOHAw8BfV7bvQSrQ+GLgsBwdGg/0VQ7vA8a3cx3nEJmV4QiRWSm9zSEajVWl6zDsDlFEnACcIGk+cAxpOj4RcRUwTdLLgG9IuoSUT/SMU7RzHUeIzMpwhMisDEeIyujGLLNzgIvIHaJ+EXGzpN8Du5IiQhMquycA9wx0QleqNivPESKzUnobIfJq98mwOkSSpkTEbfnlgcAteftk4O48TPZiUk2iOyPifkmPStoTuIo01PaFgc4fEQvIs9X2HTMn+KGjRGa95giRWRmeZVbGcCtVHyBpZ9K0+7uAebn5XwHHS/pT3vcPEXF/3vdenp52fwltJFSbmZmZ9UK3K1V/E/jmAPuWkobPzMzMbIQY015K77OeK1WbWVPOITIrxZWqS+hqpeq87xXAl4Et8/7dI+IPkhYD2wNP5FPvFxH3tbq+Z5mZleEcIrMyep5D5KRqAMa00eYsYP+GbZ+JiFdExHTgR8C/AEjaCPgWMC8ippFyj/5UOe7QiJieHy07Q2ZmZlavsUQtj9GmZYcoIq4AVjdsa1qpGtgP+FVE3JDbPRAR67p0r2ZmZma16Hal6qlASFoEbAecFxGfrhz2dUnrgIXASe0s7uocIrMynENkVoorVZfQ7UrVG5Gm3u8OPA5cLunaiLicNFy2UtIWpA7RYcDZra7jHCKzMpxDZFaGK1WX0U4OUSvnAG/Jz/uAn0bE/Xmh14uB3QAiYmX++mg+ZtZAJ5Q0V9JSSUv74vYu3KKZmZk1M1ZP1vLohKRtJV0q6bb8dZsB2u0v6VZJyyUdX9n+SUm/knS9pJ9I2qHlNdsYtSKvdv+jyiyzpypVS3of8JqIeGu+4ctJUaI/Aj8GTgUWAVvnitUbA+cCl0XEGa2uPfWkU0dfZpbZs4CHzMzKGPOi3zRb/7M2v7hrp1r+zv7Fi28f9vch6dPA6og4JXd0tomI4xrajAV+A+xLCshcAxwSETdJ2rI/31nS+4FdImIeg+hqpeqIeFDSZ/NNBXBxRFwkaXNgUe4MjQUuA77SzpviITOzMjxkZlZG75fuGJFxh9mkvgfAN4DFwHENbWYByyPSUJKk8/JxNw0y+WtAXa1Undt/izT1vrrt98CMVtdqxknVZmU4QmRWSo+TqjUiO0QvjIhVABGxStK4Jm3GA3dXXvcBe/S/GGDy14C6kUNkZmZmtp5qPnB+zG3Yf5mkG5s8Zrd7iSbbnurdRcQJETER+DZp8teghlWpurLvw8BngO36F3HNs86OAtYB74+IRXn7DJ5e3PVi4Nh2pt2bmZlZfepa7T4iFgALBtm/z0D7JN0rafscHdqetCpGoz5gYuX1BOCeJu3OAS4ipfwMqJ1p92cBX6RhirykiaREpt9Wtu0CHAxMA3YALpM0NRdnPB2YCywhdYj2p40V751DZFaGc4jMyvC0ewAuBI4ATslff9CkzTXAFEmTgZWk/sfbYf3JX8CBwC2tLjisStXZqcBHWD9RaTapGOOaiLgDWA7Myr27LSPiyhwVOhs4qNW1zczMrF4jdOmOU4B9Jd1GCr6cAiBpB0kXA0TEWtJQ2CLgZuD8iFjWf3wefvsVaRWNY1tdcFiFGSUdCKyMiBuk9YbwxpMiQP368rY/5eeN283MzKygkZhUHREPAK9rsv0e4IDK64tJo06N7d7SuK2VIXeIJG0GnEDqcT1jd5NtMch2MzMzs+KGEyH6M2Ay0B8dmgD8UtIsBk5w6svPG7c3lTPR5wK8lN2YoJ2GcZtmZmbWygitQ9RzQ552HxG/johxETEpIiaROju7RcTvSElQB0vaJCc5TQGuzrUEHpW0p1Iv6nCaJ0j1X2NBRMyMiJnuDJmZmVndhlWpOiKaFmaMiGWSzgduAtYCR+cZZgDv5elp95fQxgwzcGFGs1JcmNGslN4WZnSEKGlrLbOS9h0zZ2TfoNmz1Mr5/s+IWQk3nfzBnq5ldlvfDrX8nZ0y4Z6efh+dcqVqMzMz2+C17BBJOlPSfZJubLLvw5JC0gvy61mSrs+PGyS9qdJ2saRbK/ubrUtiZmZmPTRC6xD1XFcrVQM3AjMjYm0uxniDpB/m4kkAh0bE0qHcoHOIzMpwDpFZKb3NIbKkq5WqI+LxSudnU1xryMzMbEQbU9NjtOl2pWok7QGcCbwYOKzSQQL4uqR1wELgpHYWd/VaZmZleC0zszK8llkZ3a5UTURcBUyT9DLgG5IuiYg/kIbLVkragtQhOoyGYTgzMzPrrbGjai5YfYYT1apWqr6TpytVv6jaKCJuBn4P7Jpfr8xfHwXOAWYNdAFJcyUtlbS0L24fxi2amZlZO8aiWh6jTVcrVUuaLGkjAEkvBnYG7pS0UWUm2sbAG0kJ2ANdw5WqzczMrGe6Wqka+CvgeEl/Ap4E/iEi7pe0ObAod4bGApcBX+nGN2BmZmbDNxoToOsw4itVTz3p1JF9g2bPUp52b1bGmBf9pqfjTb9bWU+l6heNH12Vqoc1y8zMzMyeHcZqVPVbajPiO0Sedm9Whqfdm5XR62n3Y0ZhAnQdur10x6GVpTmul/SkpOl53wxJv5a0XNLn1VjAyMzMzKyQljlEkvYCHgPOjohdK9snAl8FXgrMiIj7G457OfCDiNgpv74aOBZYAlwMfD4iLml1g84hMivDOURmZfQ6h+iheybW8nd26x3uHlWBj64u3dHgEOBcgLyu2ZYRcWWuTn02cNBwbtjMzMys27q+dEfF3wGz8/PxpHpF/fryNjMzMyvIOUTJkMsPVJbu+JdB2uwBPB4R/XlHzd7tAUN01UrVD19z5VBv0czMzNo0VqrlMdoMJ0JUXboDnl66Y1ZE/C63OZg8XJb15Xb9JgD3DHSBiFgALADYd8yc4IeeaWbWa55lZlaGF3ctY8gdooj4NTCu/3Vez2xmf1K1pDHAHGCvyjGrJD0qaU/gKuBw4AvtXO+uE/9iqLdoZl3gpGqzUj7Y06uNca1qoPtLd0DqCPVFPGNV1vcCZwHPBS7Jj5Zch8isDEeIzMpwhKiMlh2iiDikxf5JDa8XA3s2abcU2LVxu5mZmZXjpOpkxFeq9pCZWRkeMjMrpbdDZmPlITMYBR0iD5mZleEhM7MyPGRWxojvEDlCZFaGI0RmpTipuoQR3yFyhMisDEeIzMpwhKiMlmuZmQ2XpLm5ppSZ9Zh//syGxnEyq9Pc0jdgtgHzz5/ZELhDZGZmZhs8d4jMzMxsg+cOkdXJ+Qtm5fjnz2wInFRtZmZmGzxHiMzMzGyD5w6RmZmZbfDcIbKekHSEpNvy44jS92O2oZD0Y0kPSfpR6XsxG8mcQ2S1k7QtsBSYCQRwLTAjIh4semNmGwBJrwM2A94TEW8sfT9mI5UjRDZskj4l6R8qrz8h6UNNmr4euDQiVudO0KXA/r26T7NnmyH87BERlwOP9uzmzEYpd4isE+cBf1d5/Tbgv5q0Gw/cXXndl7eZ2fC0+7NnZm0a8Yu72sgVEddJGidpB2A74MGI+G2Tpmp2eL13Z/bsNYSfPTNrkztE1qnvAm8FXkT6X2szfcDeldcTgMW13pXZs187P3tm1iZ3iKxT5wFfAV4AvGaANouAf5O0TX69HzC/B/dm9mzWzs+embXJHSLrSEQsk7QFsDIiVg3QZrWkTwLX5E0nRsTqnt2k2bNQOz97AJJ+BrwUeJ6kPuCoiFjUq/s0Gy087d7MzMw2eJ5lZmZmZhs8D5lZ10h6OfDNhs1rImKPEvdjtqHwz55Z5zxkZmZmZhs8D5mZmZnZBs8dIjMzM9vguUNkZmZmGzx3iMzMzGyD5w6RmZmZbfD+PzuChdsJV03fAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Let us visualize this data frame as a heat map:\n", + "fig, ax = plt.subplots(figsize=(10, 8))\n", + "sns.heatmap(proj_df, ax=ax, cmap='viridis_r')\n", + "ax.set(title='Eigenvectors Generating the Kernel of the Graph Laplacian');" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "id": "e882b804", + "metadata": {}, + "outputs": [], + "source": [ + "def project_and_transpose(eigenvals, eigenvcts, num_ev):\n", + " \"\"\"Select the eigenvectors corresponding to the first \n", + " (sorted) num_ev eigenvalues as columns in a data frame.\n", + " \"\"\"\n", + " eigenvals_sorted_indices = np.argsort(eigenvals)\n", + " indices = eigenvals_sorted_indices[: num_ev]\n", + "\n", + " proj_df = pd.DataFrame(eigenvcts[:, indices.squeeze()])\n", + " proj_df.columns = ['v_' + str(c) for c in proj_df.columns]\n", + " return proj_df" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "id": "eb3c83ef", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\DELLPR~1\\AppData\\Local\\Temp/ipykernel_7984/1902041793.py:8: ConvergenceWarning: Number of distinct clusters (3) found smaller than n_clusters (5). Possibly due to duplicate points in X.\n", + " k_means.fit(proj_df)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAGDCAYAAABjkcdfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAo/0lEQVR4nO3de3hc913n8c9Xd8m6jG3JF0njSxLHiZ1Ycta4pTRt2kJJ2tKwbLeb7ELawG42LN0HHgrbLs8DBQrL7nYLXWhLyKaXhFvoQwsN3bShS6FNKCVxEtmO7dpxE8eS5YsUe3TxRTd/9485ShVFl7GtM7+Zc96v59FjzZyj0ffkF9sfnzn6HHN3AQAAoLgqQg8AAACQRoQwAACAAAhhAAAAARDCAAAAAiCEAQAABEAIAwAACIAQBqDsmdl9ZvaroecAgEtBCAOw5MzsiJn9cEyv/X4ze2Lmc+5+r7t/9DJf71WzmtkdZnbGzN48x75uZifNrGrGc1VmdsrMKF0EcEkIYQDKxszwE9Prv0/SpyS9092/Oc9uOUm3zXj8Dkln4pwLQDIRwgDEavrMlZn9r+gM04tmdtuM7S1m9hkzO25mx8zst8yscsbX/qOZ/Z6ZnZb0F5Luk/SDZjZqZrlov8+b2W9Fny83s6+Y2UD0/b5iZp0FzHmPpI9L+lF3//YCu/6xpLtmPL5L0kOzXmuhY7razL5hZi+b2aCZ/amZZWZ87REz+yUz22NmQ2b2F2ZWF21rjY4nZ2anzexxM+PPcaBM8ZsXQDG8TtJBSa2S/qekz5iZRdselDQp6RpJ2yW9XdK/n/W1L0haJeknJd0r6Z/cvdHdM3N8rwpJn5O0XtI6SeclfXKR+X5W0kclvc3ddy2y719LepOZZaLwdLOkL8/aZ6FjMkm/I6ld0vWSspJ+fdbXv1fSrZI2Stom6f3R8x+U1CepTdJqSb8iibdBgTIV66l9AIi85O7/R5LM7EFJn5a0OrqO6jZJGXc/L+msmf2epHsk/VH0tf3u/gfR55Pfz25zc/eXJX1x+rGZ/bakv19kvh+J9tlbwLFckPQ3kv6N8oHqkei56e+3eqFjcvfDkg5Huw+Y2e9K+sis7/H77t4fvd7fSOqOnp+QtFbS+uh1Hi9gXgAlijNhAIrhxPQn7n4u+rRR+bNV1ZKOR2+x5ZQPX6tmfG3vpXwjM2swsz8ys5fMbFjStyRlpt8OnMe9kq6V9MD0GToz2xe95TlqZjfP2v8h5d+GfM1bkYsdk5mtMrOHo7cphyX9ifJnCGc6MePzc8r/t5Kkjykf4P7WzF4wsw8v8p8DQAkjhAEIqVfSmKRWd89EH83uvnXGPrPfblvs7bcPStos6XXu3izpTdHzC51COyXpbcq/tfhpSXL3rdFbno3uPvuM0+PKn5FaLemJWdsWO6bfiY5hWzTfTy4y2yvcfcTdP+juV0n6MUm/aGZvK+RrAZQeQhiAYNz9uKS/lfRxM2s2s4rowvXX1EPMcFJSp5nVzLO9SfnrwHJmtkKvfatvvln6Jb1V0q3R24cL7evKh6B3R59fyjE1SRqN5uuQ9MuFzCdJZvYuM7smOls3LGkq+gBQhghhAEK7S1KNpP3KVz38pfJnmebzDUn7JJ0ws8E5tn9CUr2kQUnfkfS1Qgdx917lg9h7zOx3Ftl3n7vvm2fzQsf0G5JukjQk6f9K+lKh80naJOn/KR/i/knSp939Hy7h6wGUEJv1jzgAAAAUAWfCAAAAAiCEAQAABEAIAwAACIAQBgAAEAAhDAAAIICyu21Ra2urb9iwIfQYAAAAi3r66acH3b1trm1lF8I2bNigXbsWu78uAABAeGb20nzbeDsSAAAgAEIYAABAAIQwAACAAAhhAAAAARDCAAAAAiCEAQAABEAIAwAACIAQBgAAEEDZlbXGaXxySoOj43r8+QHt7x/RlvYm3bypTa2NNaqpqgw9HgAASBBCWGR8ckrPvJTT+z73pMYmL77yfG1VhR68e6duWp8hiAEAgCXD25GRwdHx1wQwSRqbvKj3fe5JDY6OB5oMAAAkESEs8vjzA68JYNPGJi/qicODRZ4IAAAkGSEssr9/ZMHtB/qHizQJAABIA0JYZEt704Lbr29vLtIkAAAgDQhhkZs3tam2au7/HLVVFXrjNa1FnggAACQZISzS2lijB+/e+ZogVltVoQd/eqdaG2sCTQYAAJKIiopITVWlblqf0d//0i164vCg/m7/SV2U9Mtv36wNrQ3UUwAAgCXFmbAZaqoq1Z6p13t3ZPWx93Zpa3uzTo2MEcAAAMCSI4TNo7muWle3NWrvsSFNTM1dXQEAAHC5CGEL6M5mdGFiSgdPLFxfAQAAcKkIYQvoXF6v1qZa9fTm5O6hxwEAAAlCCFuAmWl7NqOBkTEdy50PPQ4AAEgQQtgiNq9pUl11pXp6c6FHAQAACUIIW0R1ZYVu6GjW906d1fCFidDjAACAhCCEFWBbZ0Yu196+odCjAACAhCCEFaClnroKAACwtAhhBerOZnR+nLoKAACwNAhhBepcXq/WxhrqKgAAwJIghBXIzNSdXa6BkTH1D10IPQ4AAChzhLBL8EpdxdFc6FEAAECZiy2EmdlnzeyUmT03z3Yzs983s8NmtsfMboprlqVSU1Whre3NOnxqVCPUVQAAgCsQ55mwz0u6dYHtt0naFH3cI+kPY5xlyXRl83UVe6irAAAAVyC2EObu35J0eoFdbpf0kOd9R1LGzNbGNc9Saamv1lVRXcUkdRUAAOAyhbwmrENS74zHfdFzr2Fm95jZLjPbNTAwUJThFrJ9uq7iJHUVAADg8oQMYTbHc3N2P7j7/e6+w913tLW1xTzW4qirAAAAVypkCOuTlJ3xuFNSf6BZLomZqSub0alh6ioAAMDlCRnCHpF0V/RTkq+XNOTuxwPOc0muW9Os2uoK7e7NhR4FAACUoaq4XtjM/lzSLZJazaxP0kckVUuSu98n6VFJ75B0WNI5SXfHNUscaqoqdEN7i549mtPIpgk11VWHHgkAAJSR2EKYu9+5yHaX9HNxff9i6OrM6JmjZ7S3b0hvuKY19DgAAKCM0Jh/BVoaqrWxdRl1FQAA4JIRwq7Q9uxynRuf0qGTo6FHAQAAZYQQdoWyK+q1kroKAABwiQhhV8jM1NWZ0cnhCzpOXQUAACgQIWwJXL82X1fRQ10FAAAoECFsCdRUVWhre4uePzmq0bHJ0OMAAIAyQAhbIl2dLXK59vTlQo8CAADKACFsiWQaavJ1FX3UVQAAgMURwpZQdzZDXQUAACgIIWwJrVvRoBXLqKsAAACLI4QtITNTdzZfV3FimLoKAAAwP0LYErt+bbNqqirUczQXehQAAFDCCGFLLF9X0axD1FUAAIAFEMJi0J3NyOXa2zcUehQAAFCiCGExyDTUaMPKZdp7LKepi1ygDwAAXosQFpPubEZnx6Z06ORI6FEAAEAJIoTFZP3KBi1vqOZ+kgAAYE6EsJiYmbrXLdeJoQs6PnQ+9DgAAKDEEMJidP3aJtVUVWg3Z8MAAMAshLAY1VZVaktUV3GWugoAADADISxm3Z0ZTV107aGuAgAAzEAIi9nyZTXa2EpdBQAAeDVCWBF0RXUVz5+irgIAAOQRwopgw3RdBfeTBAAAEUJYEZiZurIZHR+6oBNDF0KPAwAASgAhrEi2tDerpqqC8lYAACCJEFY0tVWV2rK2WYdOjlBXAQAACGHF1JXN11XsPUZdBQAAaUcIK6IVy2q0obVBe/uGqKsAACDlCGFF1p1drtGxSR0+NRp6FAAAEBAhrMg2rGxQpqFaPb1nQo8CAAACIoQV2XRdRX/ugk4OU1cBAEBaEcIC2LKWugoAANKOEBZAXXW+ruLgiRGdG6euAgCANCKEBfJKXUUfdRUAAKQRISyQFctqtH5lg/ZQVwEAQCoRwgLqzmY0Ojap7w1QVwEAQNoQwgLa2LosX1dxNBd6FAAAUGSEsIDMTNs6MzqWO69T1FUAAJAqhLDAtrbn6yqepa4CAIBUIYQFVlddqevXNukQdRUAAKQKIawEdHVmNHnR9dyx4dCjAACAIiGElYCVjbVat6JBe/py1FUAAJAShLAS0b0uo5EL1FUAAJAWhLASsXHlMrXUV3M/SQAAUoIQViIqKkxd2YyOnTmvUyPUVQAAkHSxhjAzu9XMDprZYTP78BzbW8zsb8xst5ntM7O745yn1G1tb1Z1pVHeCgBACsQWwsysUtKnJN0maYukO81sy6zdfk7SfnfvknSLpI+bWU1cM5W6fF1Fsw6eGNH58anQ4wAAgBjFeSZsp6TD7v6Cu49LeljS7bP2cUlNZmaSGiWdlpTqsqyubFRX0T8UehQAABCjOENYh6TeGY/7oudm+qSk6yX1S9or6efd/eLsFzKze8xsl5ntGhgYiGvektAa1VXs7s3pInUVAAAkVpwhzOZ4bnaq+FFJPZLaJXVL+qSZNb/mi9zvd/cd7r6jra1tqecsOV1Z6ioAAEi6OENYn6TsjMedyp/xmuluSV/yvMOSXpR0XYwzlYWrWpepub6a+0kCAJBgcYawpyRtMrON0cX2d0h6ZNY+RyW9TZLMbLWkzZJeiHGmslBRYerOtlBXAQBAgsUWwtx9UtIHJD0m6YCkL7j7PjO718zujXb7qKQ3mNleSX8n6UPuPhjXTOVka3uLqitNu3u5QB8AgCSqivPF3f1RSY/Oeu6+GZ/3S3p7nDOUq7rqSl23plkHjg/rjde0qr6mMvRIAABgCdGYX8K611FXAQBAUhHCSlhrY62y1FUAAJBIhLAS1x3VVbwwSF0FAABJQggrca/UVXA/SQAAEoUQVuIqKkxdnS3qO3NeAyNjoccBAABLhBBWBm7omK6ryIUeBQAALBFCWBmYrqv47olhXZiYCj0OAABYAoSwMtGVzWhiyvXcMeoqAABIAkJYmWhrqlXn8nrt7huirgIAgAQghJWR7esyGj4/oRcGz4YeBQAAXCFCWBm5qrVRTXVV6uECfQAAyh4hrIxUVJi6shn1nj6nwVHqKgAAKGeEsDJzQ3uLqipMPZS3AgBQ1ghhZaa+plLXraWuAgCAckcIK0Nd2RZNTLn29VNXAQBAuSKElaFVTXXqWF6vnl7qKgAAKFeEsDK1PUtdBQAA5YwQVqaubsvXVXA/SQAAyhMhrExN11Ucpa4CAICyRAgrY9N1FZwNAwCg/BDCylh9TaU2r2nSgePUVQAAUG4IYWWuO5uJ6iqGQ48CAAAuASGszK1qrlNHpl67e3PUVQAAUEYIYQnQvS6jofMTevFl6ioAACgXhLAEmK6r4H6SAACUD0JYAlRWmLZ15usqXqauAgCAskAIS4gbOprzdRV9udCjAACAAhDCEqKhpkrXrmnSgeMj1FUAAFAGCGEJsj2b0fjkReoqAAAoA4SwBKGuAgCA8kEIS5iubL6u4gh1FQAAlDRCWMJcs6pRjbVV6uF+kgAAlDRCWMLk6ypa9NLL53T67HjocQAAwDwIYQl0Y2eLKitMuzkbBgBAySKEJVBDTZWuXd2k/ceHqasAAKBEEcISavu6fF3F/uPUVQAAUIoIYQm1urlO7Zk67e7NyZ26CgAASg0hLMG6s8uVOzehIy+fCz0KAACYhRCWYN+vqzgTehQAADALISzBKitMN3a26MggdRUAAJQaQljC3dgR1VX05UKPAgAAZiCEJdyy2qiuon9YY5PUVQAAUCoIYSnQnY3qKvqpqwAAoFQQwlJgTUud1rZQVwEAQCkhhKVE97qMzpyb0EvUVQAAUBIIYSmxaVWTltVWqof7SQIAUBJiDWFmdquZHTSzw2b24Xn2ucXMesxsn5l9M8550qyywnRjR0YvDp7VGeoqAAAILrYQZmaVkj4l6TZJWyTdaWZbZu2TkfRpSe92962S/nVc80Da1pmvq+ihrgIAgODiPBO2U9Jhd3/B3cclPSzp9ln7/FtJX3L3o5Lk7qdinCf18nUVjdRVAABQAuIMYR2Semc87ouem+laScvN7B/M7Gkzu2uuFzKze8xsl5ntGhgYiGncdOjOLtf45EUdOD4SehQAAFItzhBmczw3ux+hStK/kPROST8q6VfN7NrXfJH7/e6+w913tLW1Lf2kKbKmpU5rqKsAACC4OENYn6TsjMedkvrn2Odr7n7W3QclfUtSV4wzQfny1tNnx6mrAAAgoDhD2FOSNpnZRjOrkXSHpEdm7fNlSTebWZWZNUh6naQDMc4ESdeuztdVcD9JAADCqSp0RzN7p6Stkuqmn3P335xvf3efNLMPSHpMUqWkz7r7PjO7N9p+n7sfMLOvSdoj6aKkB9z9ucs7FBRquq7in198Wblz48o01IQeCQCA1CkohJnZfZIaJL1F0gOS3iPpycW+zt0flfTorOfum/X4Y5I+VuC8WCI3drboyRdPq6c3p1s2rwo9DgAAqVPo25FvcPe7JJ1x99+Q9IN69fVeKDONUV3Fvv5hjU9eDD0OAACpU2gIOx/9es7M2iVNSNoYz0golu51maiuYjj0KAAApE6hIewrUbv9xyQ9I+mI8uWrKGNrmvN1FT3UVQAAUHQFhTB3/6i759z9i5LWS7rO3X813tEQNzNTV2e+ruLoaeoqAAAopgUvzDezt7r7N8zsJ+bYJnf/UnyjoRiuXd2ox5+vVE9vTutXLgs9DgAAqbHYT0e+WdI3JP3YHNtcEiGszFVVVrzyk5LUVQAAUDwLhjB3/0j06W+6+4szt5kZF+YnxLbOjJ568Yx29w3pzddyWygAAIqh0AvzvzjHc3+5lIMgnMbaKm1a3ah9/UPUVQAAUCSLXRN2nfIt+S2zrgtr1ozmfJS/7mxGB0+M6MDxYXVlM6HHAQAg8Ra7JmyzpHdJyujV14WNSPoPMc2EANa21Gl1c5129+W0rbNFZhZ6JAAAEm2xa8K+bGZfkfQhd/9vRZoJAZiZurMZPbbvhHpPn9e6lQ2hRwIAINEWvSbM3ack/UgRZkFg165uVENNpZ7tPRN6FAAAEq+gG3hL+raZfVLSX0g6O/2kuz8Ty1QIoqqyQjd2tOjJI6c1dG5CLQ3VoUcCACCxCg1hb4h+/c0Zz7mkty7tOAjtxs4WPXXkjHb35fQm6ioAAIhNQSHM3d8S9yAoDU111dq0ulHP9Q/p9VetVE1VoS0mAADgUhT0N6yZrTazz5jZV6PHW8zsZ+IdDaF0ZTMam7io754YDj0KAACJVehpjs9LekxSe/T4kKRfiGEelID2ljqtaq7V7t6c3D30OAAAJFKhIazV3b8g6aIkufukpKnYpkJQ03UVg6Pj6jtzPvQ4AAAkUqEh7KyZrVT+YnyZ2eslDcU2FYLbvLpJ9TWVerY3F3oUAAASqdCfjvxFSY9IutrM/lFSm6T3xDYVgpuuq3iKugoAAGJR0JmwqA/szcpXVfxHSVvdfU+cgyG8bZ0tMpl29+VCjwIAQOJcSv/ATkldkm6SdKeZ3RXPSCgVTXXVumZVvq5ifPJi6HEAAEiUgt6ONLM/lnS1pB59/4J8l/RQPGOhVHSvy+jQyREdPDGiGztbQo8DAEBiFHpN2A5JW5y+gtRpb6lTW1OtenrP6IaOZplZ6JEAAEiEQt+OfE7SmjgHQWmirgIAgHgUeiasVdJ+M3tS0tj0k+7+7limQknZvKZJTxweVE9vTtkVDaHHAQAgEQoNYb8e5xAobdUz6yrOT6ilnroKAACuVKE38P5m3IOgtN3Y2aJdR85oT19ON29qCz0OAABlb8FrwszsiejXETMbnvExYmbc3TlFmuuqdfWqZXru2LAmpqirAADgSi0Ywtz9jdGvTe7ePOOjyd2bizMiSkV3NqMLE1M6eGIk9CgAAJS9SylrRcp1ZOrV2lSrZ3tzoq0EAIArQwhDwcxM27MZDY6MUVcBAMAVIoThkmxe06S66kr19OZCjwIAQFkjhOGSTNdVfG9gVMMXJkKPAwBA2SKE4ZJN30NyT+9Q4EkAAChfhDBcspb6al3d1qi9x4aoqwAA4DIRwnBZqKsAAODKEMJwWTqX5+sqeqirAADgshDCcFnMTN2dGQ2MjOlYjroKAAAuFSEMl+26tdRVAABwuQhhuGzVlRW6oaNZ3zt1lroKAAAuESEMV2RbZ0Yu194+6ioAALgUhDBckZb6al1FXQUAAJeMEIYrtj2b0flx6ioAALgUhDBcsc7l9WptrKGuAgCAS0AIwxUzM3Vnl2tgZEz9QxdCjwMAQFmINYSZ2a1mdtDMDpvZhxfY7wfMbMrM3hPnPIjP5jVNqq2uUM/RXOhRAAAoC7GFMDOrlPQpSbdJ2iLpTjPbMs9+/0PSY3HNgvjVVFXohvYWHT41qhHqKgAAWFScZ8J2Sjrs7i+4+7ikhyXdPsd+/1nSFyWdinEWFEEXdRUAABQszhDWIal3xuO+6LlXmFmHpH8p6b4Y50CRtDTk6yr2HBvSJHUVAAAsKM4QZnM8N/tH5z4h6UPuPrXgC5ndY2a7zGzXwMDAUs2HGHR3RnUVJ6mrAABgIXGGsD5J2RmPOyX1z9pnh6SHzeyIpPdI+rSZ/fjsF3L3+919h7vvaGtri2lcLIXsinqtpK4CAIBFxRnCnpK0ycw2mlmNpDskPTJzB3ff6O4b3H2DpL+U9J/c/a9jnAkxy9dVZHRqeEzHqasAAGBesYUwd5+U9AHlf+rxgKQvuPs+M7vXzO6N6/sivOvWNOfrKnpzoUcBAKBkVcX54u7+qKRHZz0350X47v7+OGdB8dRUVWhre4t6juY0smlCTXXVoUcCAKDk0JiPWHRTVwEAwIIIYYhFS0O1NrYu017qKgAAmBMhDLHZnl2uc+NTOnRyNPQoAACUHEIYYkNdBQAA8yOEITZmpq7OjE4OX6CuAgCAWQhhiNX1a/N1FbupqwAA4FUIYYjVdF3FoZOjGh2bDD0OAAAlgxCG2HV1tsjl2tOXCz0KAAAlgxCG2GUaavJ1FX3UVQAAMI0QhqLozmZ0bnxKz5+irgIAAIkQhiJZt6JBK5bVcD9JAAAihDAUhZmpK5vRiaELOj50PvQ4AAAERwhD0Vy/tkk1VRXqOZoLPQoAAMERwlA0tVWV2trerOdPUVcBAAAhDEXVnc3oorv29g2FHgUAgKAIYSiqTEONNqxcpr3Hcpq6yP0kAQDpRQhD0XVnMzo7NqVDJ0dCjwIAQDCEMBTd+pUNWt5Qzf0kAQCpRghD0ZmZutct1/GhCzoxdCH0OAAABEEIQxCv1FX0ngk9CgAAQRDCEERtVaW2tDfr0MlRnaWuAgCQQoQwBNPdmdHURdfeY9RVAADShxCGYJYvq9HG1mXa00ddBQAgfQhhCKorqqt4/hR1FQCAdCGEIagNUV0F95MEAKQNIQxBmZm6shnqKgAAqUMIQ3Bb2pujuopc6FEAACgaQhiCq62q1Ja1zTp0coS6CgBAahDCUBK6stRVAADShRCGkrBiWY02tDZob98QdRUAgFQghKFkdGeXa3RsUodPjYYeBQCA2BHCUDI2rGxQpqGa+0kCAFKBEIaSMV1X0Z+7oJPD1FUAAJKNEIaSsmUtdRUAgHQghKGk1FXn6yoOnhjRuXHqKgAAyUUIQ8l5pa6ij7oKAEByEcJQclYsq9H6lQ3aQ10FACDBCGEoSd3ZjEbHJvW9AeoqAADJRAhDSdrYuixfV3E0F3oUAABiQQhDSTIzbevM6FjuvE5RVwEASCBCGErW1vZmVVeanqWuAgCQQIQwlKy66kptaW/WIeoqAAAJRAhDSevqzGjyouu5Y8OhRwEAYEkRwlDSVjbWat2KBu3py1FXAQBIFEIYSl73uoxGLlBXAQBIFkIYSt7GlcvUUl/N/SQBAIkSawgzs1vN7KCZHTazD8+x/d+Z2Z7o49tm1hXnPChPFRWmrmyLjp05r1Mj1FUAAJIhthBmZpWSPiXpNklbJN1pZltm7faipDe7+zZJH5V0f1zzoLxtbW9RdaVR3goASIw4z4TtlHTY3V9w93FJD0u6feYO7v5tdz8TPfyOpM4Y50EZq6uu1PVrm3XwxIjOj0+FHgcAgCsWZwjrkNQ743Ff9Nx8fkbSV2OcB2WuKxvVVfQPhR4FAIArFmcIszmem7NjwMzeonwI+9A82+8xs11mtmtgYGAJR0Q5aW2sVXZFg3b35nSRugoAQJmLM4T1ScrOeNwpqX/2Tma2TdIDkm5395fneiF3v9/dd7j7jra2tliGRXnozlJXAQBIhjhD2FOSNpnZRjOrkXSHpEdm7mBm6yR9SdJPufuhGGdBQlzVukzN9dXcTxIAUPZiC2HuPinpA5Iek3RA0hfcfZ+Z3Wtm90a7/ZqklZI+bWY9ZrYrrnmQDBUVpm7qKgAACWDu5XVtzY4dO3zXLrJaml2YmNIDj7+gzWua9SNbVoceBwCAeZnZ0+6+Y65tNOaj7NRVV+q6Nc367vFh6ioAAGWLEIayNF1XsY+6CgBAmSKEoSy1NeXrKnqoqwAAlClCGMpWd7ZFIxcm9cIgdRUAgPJDCEPZuqq1MV9Xwf0kAQBliBCGslVRYerqbFHfmfMaGBkLPQ4AAJeEEIaydkNHi6orTbspbwUAlBlCGMpaXXWlNq9p1ndPDOvCBHUVAIDyQQhD2evOZjQx5XruGHUVAIDyQQhD2WtrqlXn8nrt7huirgIAUDYIYUiE7esyGj4/oRcGz4YeBQCAghDCkAhXtTaqqa5KPVygDwAoE4QwJEJFhakrm1Hv6XMaHKWuAgBQ+ghhSIwb2ltUVUFdBQCgPBDCkBj1NZW6bm2zDhynrgIAUPoIYUiUrmyLJqZc+/qpqwAAlDZCGBJlVVOdOpbXq6eXugoAQGkjhCFxtmfzdRUvvkxdBQCgdBHCkDhXt0V1FUdzoUcBAGBehDAkTkWFaVtnRkdPn9PL1FUAAEoUIQyJdGNHvq6C8lYAQKkihCGR6msqtXlNE3UVAICSRQhDYnVnM1FdxXDoUQAAeA1CGBJrVXOdOjL12t2bo64CAFByCGFItO51GQ1RVwEAKEGEMCTadF0F95MEAJQaQhgSrTKqq3jpZeoqAAClhRCGxLuho1lVFabdfbnQowAA8ApCGBKvoaZK165p0oHjI9RVAABKBiEMqbA9m9H45EXtP05dBQCgNBDCkAoz6yrcqasAAIRHCENqdGUzyp2b0IuD1FUAAMIjhCE1rlnVqMbaKu4nCQAoCYQwpEa+rqJFL718TqfPjoceBwCQcoQwpMqNnS2qrDDKWwEAwRHCkCoNNVW6dnWT9h8fpq4CABAUIQyps30ddRUAgPAIYUid1c11as/UUVcBAAiKEIZU6s4uV+7chI68fC70KACAlCKEIZW+X1dxJvQoAICUIoQhlSorTDd2tujIIHUVAIAwCGFIrRs7orqKvlzoUQAAKUQIQ2otq43qKvqHNTZJXQUAoLgIYUi17mxUV9FPXQUAoLgIYUi1NS11WttCXQUAoPgIYUi97nUZnTk3oZeoqwAAFFFV6AGA0NavaNDURdd93zys2qoqbWlv0s2b2tTaWKOaqsrQ4yFG45NTGhwd1+PPD2h//whrnyKsfXqV0trHGsLM7FZJ/1tSpaQH3P2/z9pu0fZ3SDon6f3u/kycMwEzjU9OaXfvkP7om9/TxMXvvx1ZW1WhB+/eqZvWZ/gDOaHGJ6f0zEs5ve9zT2ps8uIrz7P2ycfap1eprX1sb0eaWaWkT0m6TdIWSXea2ZZZu90maVP0cY+kP4xrHmAug6Pjet/nnnxVAJOkscmLet/nntTgKB1iSTW99jP/IJZY+zRg7dOr1NY+zjNhOyUddvcXJMnMHpZ0u6T9M/a5XdJDnr8i+jtmljGzte5+PMa5gFc8/vzAa34zThubvKiPf/2gfmD9iiJPhWJ46shp1j6lWPv0Wmztnzg8qPfuyBZtnjhDWIek3hmP+yS9roB9OiS9KoSZ2T3KnynTunXrlnxQpNf+/pEFt58aGlNNFT+/kkQnh8cW3M7aJxdrn16Lrf2BItcVxRnCbI7nZncAFLKP3P1+SfdL0o4dO+gRwJLZ0t604PYf627XT9zUWaRpUEwTU/l/9c6HtU8u1j69Flv769ubizhNvBUVfZJmntPrlNR/GfsAsbl5U5tq5/kXb21Vhd54TWuRJ0KxsPbpxdqnV6mtfZwh7ClJm8xso5nVSLpD0iOz9nlE0l2W93pJQ1wPhmJqbazRg3fvfM1vytqqCj340zvV2lgTaDLEjbVPL9Y+vUpt7S3OlnAze4ekTyhfUfFZd/9tM7tXktz9vqii4pOSblW+ouJud9+10Gvu2LHDd+1acBfgkkx3xjxxeFAH+od1fXuz3nhNK31BKcDapxdrn17FXnsze9rdd8y5rdxu1UIIAwAA5WKhEMaPfwAAAARACAMAAAiAEAYAABAAIQwAACAAQhgAAEAAhDAAAIAACGEAAAABEMIAAAACIIQBAAAEUHaN+WY2IOmlInyrVknz32o92Tj29Erz8af52KV0Hz/Hnl7FOP717t4214ayC2HFYma75rvNQNJx7Ok8dindx5/mY5fSffwcezqPXQp//LwdCQAAEAAhDAAAIABC2PzuDz1AQBx7eqX5+NN87FK6j59jT6+gx881YQAAAAFwJgwAACCAVIcwM/usmZ0ys+fm2W5m9vtmdtjM9pjZTcWeMS4FHPstZjZkZj3Rx68Ve8a4mFnWzP7ezA6Y2T4z+/k59kny2hdy/IlcfzOrM7MnzWx3dOy/Mcc+iVz7Ao89kes+zcwqzexZM/vKHNsSue4zLXL8SV/7I2a2Nzq2XXNsD7L+VcX4JiXs85I+KemhebbfJmlT9PE6SX8Y/ZoEn9fCxy5Jj7v7u4ozTlFNSvqguz9jZk2Snjazr7v7/hn7JHntCzl+KZnrPybpre4+ambVkp4ws6+6+3dm7JPUtS/k2KVkrvu0n5d0QFLzHNuSuu4zLXT8UrLXXpLe4u7zdYIFWf9Unwlz929JOr3ALrdLesjzviMpY2ZrizNdvAo49sRy9+Pu/kz0+Yjyfyh1zNotyWtfyPEnUrSeo9HD6uhj9oWxiVz7Ao89scysU9I7JT0wzy6JXPdpBRx/2gVZ/1SHsAJ0SOqd8bhPKfnLKvKD0VsXXzWzraGHiYOZbZC0XdI/z9qUirVf4PilhK5/9JZMj6RTkr7u7qlZ+wKOXUroukv6hKT/IuniPNsTu+6RT2jh45eSu/ZS/h8cf2tmT5vZPXNsD7L+hLCF2RzPpeVfjs8of6uFLkl/IOmvw46z9MysUdIXJf2Cuw/P3jzHlyRq7Rc5/sSuv7tPuXu3pE5JO83shlm7JHbtCzj2RK67mb1L0il3f3qh3eZ4LhHrXuDxJ3LtZ/ghd79J+bcdf87M3jRre5D1J4QtrE9SdsbjTkn9gWYpKncfnn7rwt0flVRtZq2Bx1oy0TUxX5T0p+7+pTl2SfTaL3b8SV9/SXL3nKR/kHTrrE2JXntp/mNP8Lr/kKR3m9kRSQ9LequZ/cmsfZK87osef4LXXpLk7v3Rr6ck/ZWknbN2CbL+hLCFPSLpruinJl4vacjdj4ceqhjMbI2ZWfT5TuX/X3k57FRLIzquz0g64O6/O89uiV37Qo4/qetvZm1mlok+r5f0w5K+O2u3RK59Icee1HV39//q7p3uvkHSHZK+4e4/OWu3RK67VNjxJ3XtJcnMlkU/hCQzWybp7ZJmNwMEWf9U/3Skmf25pFsktZpZn6SPKH+xqtz9PkmPSnqHpMOSzkm6O8ykS6+AY3+PpJ81s0lJ5yXd4clp9v0hST8laW90fYwk/YqkdVLy116FHX9S13+tpAfNrFL5v2S+4O5fMbN7pcSvfSHHntR1n1NK1n1eKVr71ZL+KsqYVZL+zN2/VgrrT2M+AABAALwdCQAAEAAhDAAAIABCGAAAQACEMAAAgAAIYQAAAAEQwgCkmpltMLPZnUEAEDtCGAAAQACEMACImNlVZvasmf1A6FkAJB8hDAAkmdlm5e+nebe7PxV6HgDJl+rbFgFApE3SlyX9K3ffF3oYAOnAmTAAkIYk9Sp/X00AKArOhAGANC7pxyU9Zmaj7v5ngecBkAKEMACQ5O5nzexdkr5uZmfd/cuhZwKQbObuoWcAAABIHa4JAwAACIAQBgAAEAAhDAAAIABCGAAAQACEMAAAgAAIYQAAAAEQwgAAAAIghAEAAATw/wFaYim4PFOWpAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "## Step 4: Run K-Means Clustering\n", + "inertias = []\n", + "\n", + "k_candidates = range(1, 6)\n", + "\n", + "for k in k_candidates:\n", + " k_means = KMeans(random_state=42, n_clusters=k)\n", + " k_means.fit(proj_df)\n", + " inertias.append(k_means.inertia_)\n", + " \n", + "fig, ax = plt.subplots(figsize=(10, 6))\n", + "sns.scatterplot(x=k_candidates, y = inertias, s=80, ax=ax)\n", + "sns.lineplot(x=k_candidates, y = inertias, alpha=0.5, ax=ax)\n", + "ax.set(title='Inertia K-Means', ylabel='inertia', xlabel='k');\n", + "\n", + "## Now k=2 in the elbow method as well" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "id": "523f4e2c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEICAYAAABS0fM3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAU10lEQVR4nO3dfbRldX3f8ffH4SEqGEAGmGGGB2XUTCil9Aqki6ZJhArUCml8gD44okJpy2qyYtOQ0BiiSavN4zKSWCQ0Y6ogqWZBlSxAqtLEigyKCEVkBMyMDDBC5MEnBL79Y++Lh8u5T3PumXvv/N6vtc46Z+/92/t89++e2Z/92/scSFUhSWrX8xa7AEnS4jIIJKlxBoEkNc4gkKTGGQSS1DiDQJIat0sHQZLDklSS3frpTyd52w5u6/EkL1nYCtuT5M1J/mqx65D0Q4sSBElOSPLZJI8keTjJXyd55WLUMlDThUl+0B/wJx/fmlxeVXtV1d2LWOIO68PwiJ34fq9OckOSx5JsT/KZJK9d4PfYqfsk7cp2ehAkeRHwceAPgf2Ag4HfAL6/s2sZ4iP9AX/ysc9iF7TYJkdT82j/OuDPgQ8Ca4ADgXcA/3Thq9sx890naVe3GCOClwFU1WVV9VRVfbeqrq2qW+GZSwd/neT3k3wryd1J/kE/f0uSB5NsmNxYkn+S5ItJHu2XXziOogfPQJO8OMn/6t/zpiS/OXi5I8krklzXj3buTPKGgWV/muSiJJ/oz5hvTPLSftn7k/zOlPe9Mskv9q9XJ/lof5Z9T5J/P9BuRZJfTfK1frs3J1mb5Ia+yZf6Uc4b+/ZnJ9nc13hVktVT9vXfJbkLuCud3+/7/pEktyY5ckgfBfg94F1VdUlVPVJVT1fVZ6rq7CHtn3Xprp/3zOW7JEf0o4lHknwzyUf6+dPt02uS3NJ/bj6b5KiB7d6b5JeT3Ap8O8lu/fQ3+v66M8mrZvoMSLusqtqpD+BFwEPARuAUYN8py98MPAmcBawAfhP4G+AiYE/gHwOPAXv17X8K+Dt0oXYU8ABwer/sMKCA3frpTwNvm6auC4H/MUPdBRzRv768f7wAWA9sAf6qX/bCfvosYDfgGOCbwI/3y/8UeBg4tl/+IeDyftlP9uumn94X+C6wut+/m+nOrvcAXgLcDby6b/tLwJeBlwMB/i7w4qm199M/09d0TN+nfwjcMGVfr6MbsT0feHX/3vv02/4xYNWQPnpFv+7hM/Tjmwf66ll/n6l/I+Ay4IJ+338EOGHY36OfPgZ4EDiO7nOzAbgX2LNffi9wC7C236eX9329eqCWl+7sfw8+fCyFx04fEVTVo8AJdP+QPwBs789IDxxodk9V/feqegr4CN0/3ndW1fer6lrgCeCIfnufrqovV3fmeSvdweMf7WB5b+jPJicfn5raIMkK4OeAX6+q71TV/6MLtUmvAe7t63+yqr4AfBR43UCbj1XV56vqSbogOLqf/3/6fvmH/fTrgP9bVfcBrwRWVtU7q+qJ6u5XfAA4o2/7NuA/VdWd1flSVT00zX7+C+DSqvpCVX0f+BXgJ5IcNtDmv1TVw1X1XeAHwN50B/pU1R1VtW3Idl/cPw9btiN+ABxKd7D+XlXNdJP5bOC/VdWN1Y00N9Jdbjx+oM17q2pLv09P0YXg+iS7V9W9VfW1BapbWlYW5WZxfyB5c1WtAY6kO+P9g4EmDwy8/m6/ztR5ewEkOS7Jp/rLJY8A5wL772BpV1TVPgOPnx7SZiXdmfyWgXmDrw8FjhsMFLoD70EDbe4feP2dyX2pqqIbaZzZL/vndEExud3VU7b7q3TX4KELy7keyFYDX5+cqKrH6UZpBw/bp6r638D76EZlDyS5uL/XM9Vk8KyaYx2z+Y90I5DPJ7k9yVtmaHso8PYp/bOWbl8nDe7TZuAX6EaCDya5fPDymNSSRf/6aFV9he5yyXOuOc/Rh4GrgLVV9aPA++kOHuOyne7S1ZqBeWsHXm8BPjMlUPaqqn8zx+1fBrwuyaF0lzk+OrDde6Zsd++qOnVg+Uvn+B730R04AUjyQrqz+W8MtHnWf5a2qt5bVX8f+HG6+zy/NGS7d/Z1/Nwc6/h2//yCgXnPBGZV3V9VZ1fVauBfA3+U6b8ptAX4rSn984KqumyGffpwVZ1A1xcFvGeOdUu7lMX41tArkrw9yZp+ei3dGfDndnCTewMPV9X3khxLdxY9Nv3lqo8BFyZ5QZJXAG8aaPJx4GVJ/lWS3fvHK5P82By3/0W6sLkEuKaqvtUv+jzwaH+D8/n9zeEj88Ov3V4CvCvJuv7m7lFJJi/VPEB3T2HSh4GzkhydZE/gPwM3VtW9w2rq6z8uye50B+/v0V1amVp7Ab8I/FqSs5K8KMnz0n1d+OIh7bfThc+/7PfnLQyEWZLXT35OgL+lO1hPvu/UffoAcG5fZ5K8MN0XCfaeZp9enuRn+v3/Ht0o8zn7JLVgMUYEj9Gd6d6Y5Nt0AXAb8PYd3N6/Bd6Z5DG6G6lXjFDbG/Ps3xE8nuSAIe3OA36U7hLPn9GdxX8foKoeo7uhfQbdmff9dGeae86jjsuAE+kO2PTbfYruK5hHA/fQ3ey9pK8Dum/rXAFcCzwK/AndTVHoLn9s7C+ZvKGqrgd+jW60sY3u4Dt5r2GYF9EdaP+W7pLSQ8DvDGtYVf8TeCPwFrr9f4Duhv+V02z7bLrRxUN0o43PDix7Jd3n5HG6Ud/PV9U90+zTpn5b7+vr3Ex3Y3o6ewLvpuvH+4ED6C61Sc2Z/HaKRpDkPcBBVbVh1saStMQs+j2C5ai/vHVUfwniWOCtwF8sdl2StCP8heWO2Zvu8s1quu+u/y7TX/qQpCXNS0OS1DgvDUlS45blpaH999+/DjvssMUuQ5KWlZtvvvmbVbVy6vxlGQSHHXYYmzZtWuwyJGlZSfL1YfO9NCRJjTMIJKlxBoEkNc4gkKTGLcubxZLUmqfvf9kzr5930FcXdNsGgSQtYYMBMHXeQgWCl4YkqXEGgSQtU8NGCzvCIJCkxhkEkrRMeY9AkrQgDAJJWsKmO+tfyK+Q+vVRSVriFvp3A8/Z/li3Lkla8gwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhq3IEGQ5OQkdybZnOT8IcuT5L398luTHDPXdSVJ4zVyECRZAVwEnAKsB85Msn5Ks1OAdf3jHOCP57GuJGmMFmJEcCywuarurqongMuB06a0OQ34YHU+B+yTZNUc15UkjdFCBMHBwJaB6a39vLm0mcu6ACQ5J8mmJJu2b98+ctGSpM5CBEGGzKs5tpnLut3MqouraqKqJlauXDnPEiVJ09ltAbaxFVg7ML0GuG+ObfaYw7qSpDFaiBHBTcC6JIcn2QM4A7hqSpurgDf13x46HnikqrbNcV1J0hiNPCKoqieTnAdcA6wALq2q25Oc2y9/P3A1cCqwGfgOcNZM645akyRp7lI19JL8kjYxMVGbNm1a7DIkaVlJcnNVTUyd7y+LJalxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGjdSECTZL8l1Se7qn/edpt3JSe5MsjnJ+QPzX5/k9iRPJ5kYpRZJ0o4ZdURwPnB9Va0Dru+nnyXJCuAi4BRgPXBmkvX94tuAfwbcMGIdkqQdNGoQnAZs7F9vBE4f0uZYYHNV3V1VTwCX9+tRVXdU1Z0j1iBJGsGoQXBgVW0D6J8PGNLmYGDLwPTWft68JDknyaYkm7Zv375DxUqSnmu32Rok+SRw0JBFF8zxPTJkXs1x3R+uUHUxcDHAxMTEvNeXJA03axBU1YnTLUvyQJJVVbUtySrgwSHNtgJrB6bXAPfNu1JJ0liMemnoKmBD/3oDcOWQNjcB65IcnmQP4Ix+PUnSEjBqELwbOCnJXcBJ/TRJVie5GqCqngTOA64B7gCuqKrb+3Y/m2Qr8BPAJ5JcM2I9kqR5StXyu9w+MTFRmzZtWuwyJGlZSXJzVT3nN1v+sliSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxIwVBkv2SXJfkrv5532nanZzkziSbk5w/MP+3k3wlya1J/iLJPqPUI0mav1FHBOcD11fVOuD6fvpZkqwALgJOAdYDZyZZ3y++Djiyqo4Cvgr8yoj1SJLmadQgOA3Y2L/eCJw+pM2xwOaquruqngAu79ejqq6tqif7dp8D1oxYjyRpnkYNggOrahtA/3zAkDYHA1sGprf286Z6C/CXI9YjSZqn3WZrkOSTwEFDFl0wx/fIkHk15T0uAJ4EPjRDHecA5wAccsghc3xrSdJsZg2CqjpxumVJHkiyqqq2JVkFPDik2VZg7cD0GuC+gW1sAF4DvKqqimlU1cXAxQATExPTtpMkzc+ol4auAjb0rzcAVw5pcxOwLsnhSfYAzujXI8nJwC8Dr62q74xYiyRpB4waBO8GTkpyF3BSP02S1UmuBuhvBp8HXAPcAVxRVbf3678P2Bu4LsktSd4/Yj2SpHma9dLQTKrqIeBVQ+bfB5w6MH01cPWQdkeM8v6SpNH5y2JJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1LiRgiDJfkmuS3JX/7zvNO1OTnJnks1Jzh+Y/64ktya5Jcm1SVaPUo8kaf5GHRGcD1xfVeuA6/vpZ0myArgIOAVYD5yZZH2/+Ler6qiqOhr4OPCOEeuRJM3TqEFwGrCxf70ROH1Im2OBzVV1d1U9AVzer0dVPTrQ7oVAjViPJGmedhtx/QOrahtAVW1LcsCQNgcDWwamtwLHTU4k+S3gTcAjwE9P90ZJzgHOATjkkENGLFuSNGnWEUGSTya5bcjjtDm+R4bMe+bMv6ouqKq1wIeA86bbSFVdXFUTVTWxcuXKOb61JGk2s44IqurE6ZYleSDJqn40sAp4cEizrcDagek1wH1D2n0Y+ATw67PVJElaOKPeI7gK2NC/3gBcOaTNTcC6JIcn2QM4o1+PJOsG2r0W+MqI9UiS5mnUewTvBq5I8lbgb4DXA/RfA72kqk6tqieTnAdcA6wALq2q2yfXT/Jy4Gng68C5I9YjSZqnVC2/L+pMTEzUpk2bFrsMSVpWktxcVRNT5/vLYklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWrcqP+rymXjpOe9/jnzrnv6zxehEklaWpoYEQwLgZnmS1JLdvkg8GAvSTPb5YNAkjQzg0CSGmcQSFLjdvkgmOmbQX5rSJIaCAIYfsA3BCSp08zvCDzwS9JwTYwIJEnTMwgkqXEGgSQ1ziCQpMYZBJLUuFTVYtcwb0m2A18f41vsD3xzjNsfJ2tfPMu5fmtfHDu79kOrauXUmcsyCMYtyaaqmljsOnaEtS+e5Vy/tS+OpVK7l4YkqXEGgSQ1ziAY7uLFLmAE1r54lnP91r44lkTt3iOQpMY5IpCkxhkEktS4XT4Ikpyc5M4km5OcP2R5kry3X35rkmNmWzfJhUm+keSW/nHqEqz90iQPJrltyjr7JbkuyV39877jqH2M9S/pvk+yNsmnktyR5PYkPz+wzk7p+zHVvtT7/UeSfD7Jl/raf2NgnSX/mZ+l/vH3fVXtsg9gBfA14CXAHsCXgPVT2pwK/CUQ4HjgxtnWBS4E/sNSrb1f9pPAMcBtU9b5r8D5/evzgfcss/qXdN8Dq4Bj+td7A18d+NyMve/HWPtS7/cAe/WvdwduBI5fLp/5Weofe9/v6iOCY4HNVXV3VT0BXA6cNqXNacAHq/M5YJ8kq+a47lKtnaq6AXh4yHZPAzb2rzcCp4+jeMZX/86ww7VX1baq+gJAVT0G3AEcPLDOuPt+XLXvDKPUXlX1eN9m9/5RA+ss6c/8LPWP3a4eBAcDWwamt/LcD/Z0bWZb97x+aHfpmIaao9Q+kwOrahtA/3zAiHVOZ1z1wzLp+ySHAX+P7uwOdk7fj6t2WOL9nmRFkluAB4Hrqmpn9vuMtc2lzQz1w5j7flcPggyZNzVlp2sz07p/DLwUOBrYBvzuDtY3k1FqXwrGVf+y6PskewEfBX6hqh5dwNpmM67al3y/V9VTVXU0sAY4NsmRC1verMZV/9j7flcPgq3A2oHpNcB9c2wz7bpV9UD/R3sa+ADdkHChjVL7TB6YvPzSPz84Yp3TGUv9y6Hvk+xOdyD9UFV9bKDNzuj7sdS+HPp9oNZvAZ8GTu5nLavP/NT6d0bf7+pBcBOwLsnhSfYAzgCumtLmKuBN/d3844FH+uHjtOtOfqh6PwvcxsIbpfaZXAVs6F9vAK5cyKIHjKX+pd73SQL8CXBHVf3ekHXG3fdjqX0Z9PvKJPv0tT4fOBH4ysA6S/ozP1P9O6XvF/ru81J70N2l/yrd3fwL+nnnAufWD+/WX9Qv/zIwMdO6/fw/69ve2v9hVy3B2i+jG0b+gO4s5K39/BcD1wN39c/7LdG+n67+Jd33wAl0Q/1bgVv6x6k7s+/HVPtS7/ejgC/29d0GvGNgm0v+Mz9L/WPve/8TE5LUuF390pAkaRYGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWrc/wcfrbkBLZwspwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "k_means = KMeans(random_state=25, n_clusters=2)\n", + "k_means.fit(proj_df)\n", + "y_pred = k_means.predict(proj_df)\n", + "from mpl_toolkits.mplot3d import Axes3D\n", + "\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot(111)\n", + "ax.scatter(x=proj_df['v_0'], y=proj_df['v_1'], c=y_pred)\n", + "ax.set_title('Small Eigenvectors Clusters', x=0.2);" + ] + }, + { + "cell_type": "code", + "execution_count": 109, + "id": "ab004583", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n", + " warnings.warn(\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADaRklEQVR4nOyddXgUVxeH37u+cSfEgyeBECC4S6Foi9VoqbfU3fsV6k7dqFFaKKUFWtyKu7tDCIQgIW7r9/vjLoFAkLZBAvs+Dw/ZmTszd3aTs3eO/I6QUuLBgwcPHq58NJd6Ah48ePDg4eLgMfgePHjwcJXgMfgePHjwcJXgMfgePHjwcJXgMfgePHjwcJXgMfgePHjwcJXgMfgePLgRQowUQrzxH46XQohalTmnfzmPF4UQ313qeXi4/PAYfA+VjhCijRBiqRAiXwiRI4RYIoRoeoGvuU8I0eUCX6O6EOJ7IcQhIUShEGK7EOJVIYR3JV7jP33pAEgp35JS3lNZc/Jw5eAx+B4qFSGEHzAF+AwIAiKBVwHrJZ6X7j8eHwQsA8xASymlL3ANEADU/M8TrCT+6316uLLxGHwPlU0dACnlr1JKp5SyVEo5S0q5EUAIcYd7xf+Z+wlguxCi8/GDhRD+J62iDwoh3hBCaE/af68QYpt7hb1VCNFYCPEzEANMFkIUCSGeFULEuV0sdwsh9gNz3cf/LoQ47L72QiFE0nne15NAIXCrlHKf+x4PSCkfO35vJyOEmC+EuOek13cIIRa7fxZCiI+EEEfd89gohKgvhLgPGAQ8676Pye7xEUKI8UKILCFEmhDi0ZPOO0wI8YcQ4hchRAFwh3vbL+79x9+H24UQ+4UQx4QQL510vFkI8ZMQItf9vj4rhMg4z/fEQxXDY/A9VDY7AafbiHQXQgRWMKY5sBcIAYYCE9wraICfAAdQC2gEdAXuARBCDASGAYMBP6APkC2lvA3YD/SWUvpIKd876VrtgQSgm/v1dKA2EAasBUaf5311ASZIKV3nOf5sdAXaob4cA4AbUfcxwj2f99z30VsIoQEmAxtQT0udgceFEN1OOt91wB/uc53pftoAdd3HvyKESHBvHwrEATVQTyy3VsL9ebhM8Rh8D5WKlLIAZVwk8C2QJYSYJISodtKwo8DHUkq7lPI3YAfQ0z2mO/C4lLJYSnkU+Ai4yX3cPShjuEoqdksp088xpWHuc5W65/eDlLJQSmlFfXk0FEL4n8etBQOHzuc9OA/sgC9QDxBSym1SyjOduykQKqV8TUppk1LuRb2vN500ZpmU8k8ppev4fVbAq+6nrQ2oL4+G7u03AG9JKXOllBnAp//15jxcvngMvodKx23A7pBSRgH1gQjg45OGHJTlVfvS3WNiAT1wSAiRJ4TIA75BrcYBooE9/3A6B47/IITQCiHeEULscbs/9rl3hZzHebKB6v/w2hUipZwLfA58ARwRQoxwxz4qIhaIOP5+uN+TF4GTv0APVHhkeQ6f9HMJ4OP+OeKU48/nXB6qKB6D7+GCIqXcDoxEGf7jRAohxEmvY4BMlLGxAiFSygD3Pz8p5XE/+wHOHCA9k+zrydtvQbk/ugD+KFcGgODczAH6ul0s50Mx4HXS6/Byk5LyUyllEyAJ5dp5poL5grrntJPejwAppa+UssfJpzvPOVXEISDqpNfR/+FcHi5zPAbfQ6UihKgnhHhKCBHlfh0N3AwsP2lYGPCoEELv9ssnANPcbo1ZwIdCCD8hhEYIUVMI0d593HfA00KIJu7AZy0hRKx73xGUH/ps+KK+ULJRxvitf3Brw1Fxg5+OX1MIESmEGC6ESK5g/HqgnxDCS6jc/LuP7xBCNBVCNBdC6FFfDBbAeYb7WAkUCCGecwdYte4Ab2WluY4DXhBCBAohIoGHK+m8Hi5DPAbfQ2VTiArKrhBCFKMM/WbgqZPGrEAFTo8BbwIDpJTZ7n2DAQOwFchFBSOrA0gpf3ePH+O+zp+o1E+At4GX3W6Pp88wt1Eo99FB9/mXn2HcaUgpc4BWKP/7CiFEIfA3kA/sruCQjwAbyoD/RPlgqh/KD5/rnk828IF73/dAovs+/pRSOoHeQAqQhnrPvkM9oVQGrwEZ7nPPQb3flzSF1sOFQ3gaoHi4mAgh7gDukVK2udRz8XA6QogHgJuklO3POdhDlcOzwvfg4SpGqOrh1m73WV3Uk9jESz0vDxcGT1WeBw9XNwZUJlQ8kAeMBb68lBPycOHwuHQ8ePDg4SrB49Lx4MGDh6uEy9qlExISIuPi4i71NDx48OChyrBmzZpjUsrQivZd1gY/Li6O1atXX+ppePDgwUOVQQhxRrkRj0vHgwcPHq4SPAbfgwcPHq4SPAbfgwcPHq4SPAbfgwcPHq4SPAbfgwcPHq4SPAbfgwcPHq4S/rPBF0JECyHmufthbhFCPFbBGCGE+FQIsdvdv7Pxf72uBw9XM3s3prN/+8FLPQ0PVYzKWOE7gKeklAlAC+AhIUTiKWO6o+RwawP3AV9VwnU9eLio7Nu8n6V/raK4oOSSzmPF1DU80ORZHkp9jm3Ld17SuXioWvxngy+lPCSlXOv+uRDYhmq2fDLXAaPcfUiXAwFCiEppF+fBw8Xg6P5jPNf1dYb2fY8/hk++pHPJ3H0Yl9OFpcTKobSjl3QuHqoWlVppK4SIAxqhGlycTCTle2VmuLed1rhZCHEf6imAmJiYypyeBw//GkuJhbysAgAKjhVe0rm0HdCCnMN5GLwMNO2ecknn4qFqUWkGXwjhA4wHHpdSFpy6u4JDKpTplFKOAEYApKameqQ8PVwWxNSL4pXfnyJtczodbmj9n8+3adFWFk1YQaOO9WnZ5591KwyJDObutwf95zl4uPqoFIPv7s05HhgtpZxQwZAMyjdHjkI1rfbg4YKwZekOVs9YR6MuySS3OzWk9O9ofX0zWl/frFLONeKZn9m+cjfTv/2bX/Z9iX+IX6Wc14OHs1EZWToC1Ydzm5Ry+BmGTQIGu7N1WgD57obVHjxUOnabneH3fs0vb4znvds/x1JsOe9jc4/ksXTSqgvuG6/VOB6Aus1qYfQyXtBrefBwnMpY4bcGbgM2CSHWu7e9CMQASCm/BqYBPVDNnkuAOyvhuh48VIhWpyWiRjX2b8sgsnY4OsP5/5p//dRPzB2zmLrNavHB30MxeZsuyBzvfnsQHW5oRXS9KEweg+/hIvGfDb6UcjEV++hPHiOBh/7rtTx4OB80Gg2Pf3MfO1bvoXbjGuj05/9rfiQ9C4BDuw9jszoweV+YOfr4e9OwQ/1zjrNZ7SyfvBqdQUfzno3RarUXZkIergouaz18Dx7+KVuX72TPujRSr21Eq38YDAW47/3BbFm6g5oN4/AL8qn0+a37exOrZq6nbtOatB/Y6rT92Zk5SAkhkUEALPx9Ge8O/gyA1/56npa9m1T6nDxcPXgMvocrhpzDufyv9zsUZBdyze0dePbH83uotFlsTPhkKkV5xSwYtxQhBK/8/nTZ/jVzNvLLa7/TsEMSt7zYD4PJcM5z7ly7l0O7DxNUPZC8o/k06doQL18z88YuYePCrWxduoO4pGgCwwPQaDX4+Hsz66f5zB2zGLOPiQFP9iKpdT2cdmfZOaV0MXvUAjJ2ZtJlcDui65xa7gKlxaWsmLKOwHB/GrZPOq/793D14DH4HqokJYWlHEo7QvX4MLx8vdRGIRAa5V0MCPXl2S6v0aZfM3o/0A2VW1CeI+lHGfHMLxTnF1NSaMHsa+JwmnLpbFuxk1qNVGB13phFbF68nc2Lt9Omb/Oy7Wcic+9hnuvyKvENYtm1Ng1LsYVBL/XjjtdvxuRjJCg8gC1LdrB58XZ+GjoOs4+Jl8Y+zncvjCb3cB6h0SEc3H2YpNb1aH9jK4RWoNPrCAoPYOj17wFQWmzhwY9OD4VNG/E3Xz/1E1qdlk+WvkHd1FqAcg39/sEktizZwQ3P9CG5fSJSSo+L6CrDY/A9XBIKcwqZOXI+Zm8T19zevmzVbCm28OP/xrJ58XbueXsQjTo3OO1Yh93B8Hu/YsG4ZbS+vim3vXIDNVPisJbYuP6R7vgF+zDzh3nsXLOXDfO30LpvM4KrB512ngW/L2PhH8sA6HRLG3QGHQnNa2PyMdGo04nrNuxYn9k/L6RJ12TC4ypsFVoOm8VOaZEVnUGHrdQGwL6tGRxKO8qGeZs5sD2T7vd0wm5zkHskj9wjkLZ5P4kt6rDkz5XEJUWR3EGlkpq8jHQd3AGAQ2lHCAoPIOdwHkazEZvVzoSPp7Jj1W76PtqT5HYJ2Kx2AJwOJ9ZSO8smrcY/zA+DUc/I/40FIC4pip9f+x1riY0nv72fGslx5/mpeajqeAy+h7Oy7u9NjHh2FPXbJHDXm7dg9qmcrJV5Y5fwzdOj0Gg1hMYE06y70tPbvHQHEz6eCsCC35dWaPBLCktZPnkNAGmbDrB95S5qpsQx5s3xzPhhLj4BXtzx+s3sXLOXzre2xTfIt8I52C12QiKDsFnsJLWpx5SvZnEsI4fUaxviHeDFjy+PASHo+2gPRu/7suzaPoEV+/adDielRRbiEqN5deKz7N+eQXTdCA7tPUpIZBDTv5vD3o37ATB5qy+V5j0bY/IyktKxPi17p9L/iV7E1Y/Gt4JrhMWEcPtrNzL/t6XM/HEeNRvG8v0LowHw8fciuV0CzXs05sD2g/gEeHFgWwYfDxmBTq/j/XlDadS5PuvnbkFn1LNxwVYA1s/d4jH4VxEeg+/hrCz4Yxm71+1j97p9dLypDYkt61TKeX2DfNHqtLS6rilfPf4jmXuOEJ8cy8RPptLltvasnL6WmIQo/vxsOk27NyKyVnjZsX5Bvgz56A6WjF9BUGQgdVJrAqDRqbISrU5Hq+ub0rxHYwLD/TEY9RXOIaFFHVbNWE+LPql89+wv+Ab5kNC8Fq36NGXpn6sY89ZEAMLjwmjYPpGXe7/D4bSjvPLH07ToVT54WlxQwidDRrBy+jqe/O4B2vVvQfOejdm9fh9rZm/gu+d+ITw+jM6D2lKYW0T7G1oRmxjFG5NfKHeeBm0TTptnUX4x3zz1E5uX7KDHvV1Y9/cmAEzeRhq0TWDz4u0ktqoLwKoZ65g9agEAN7/QF1BPRA6bk2ETnqUwuxCrxcaaWRuwFFto0O7065W7dl4xTofTUxh2heAx+B7OSpNrkpn90wJSOtUnss7Z9e6cDidZGdkEhQeg1WvZsmQHvoE+xDc4XROp3cAWBEcE8NYtn5KdmcOPL4/luoe7Yiu1A5L6beqxbcUuFvy2lE4rd/H8z4+WHZt7NI+0TfupXjec6x7oRmyCKuK+9eUBhMeGkn+skMUTV3Ddg9ei0Zy5trBxl2TqpNZkzFvjKS2yUFpkodsdHelwY2vWzd2E3qADIYisFc6BHZkc2KGKw7ev3EWDdgkU5hYTHqtcPLvWpVGYW0xCizpsW7qddv1bAFArJQ6DSc+49/7icNpRBr3Un2vv6oTNaufI/ixCIoLQ6s7uR9+3aT8zfpgHwN71+xgy/HZCIoNp2r0R9dvUI/9YIZG11GdTLTYUjVaDydtETEIU938wmMDwAJLbJaDRaPDyNQPw1HdDWD5lLUV5xWe+7pYDDOv7PoW5RQyb+CwN2tQ76zxBFa7N/nkBgWEBdBrUxhMjuMzwGHwPZ6VtvxY02J+I2ceI0XT2AqGx7/7JyP+N5dq7OtGwfSLv3v45Zm8Twxe/Rq2G5QOdWq2W5HZJ9HmoG7+8+jt9H+mO3eZg/bzNJLdPImPHQZwOF/ENYtDpyxuNDfO2MOmLGQCERQWXGfzQqGD2bz/InJ8XAtCoYwPikqKpiN3r9/H36IXUbhRP18Ht2bclAy9fM50GtWHVjPVYS618tuItdAY9sQlRFOYWMeDJXsrl060h/+v9DluW7OCZkQ/R5dZ27NuYzuqZ6wGo36YeB3cd4o+PpuAb6M3Ap/vwyZI3yD9WSL3mtXA6nYx4+if++mImtw27gcGvDDzr+xqdEEWrPqlsXLgNm8XOqunrefHXx9iyZAfr5mykSdeGZQbfL9iXhu0TsVns7Nmwj/vfH1zhOX9950/mj12C2dvED9s/KUsDzT2Sx5RvZpN3NB+zr5mDu1VB/LblO8/L4M/4cS4/vPgrAMGRQTSuwCXn4dLhMfgezknAeT7Ozx+7BIDZoxaUSQeUFlvIO3Kqlp5ixg9z2bd5P3e+eTMhEUH8+fl0ADYu2ELDDkkEhgfQvHsjktuX18KJS4omNDoYvyBfqseHY7fZ0RuU26Zu01rM+Xkh9dvUw2axMazf+xi9jNz91s2ExZwIuP71+XRm/DAXIQTfbh7OW1NfBGD1rPW82ONNAJ796WGuua09AL6BPtz/we0AbFuxi23Ld+Fyudi8eBtdbm1HTEI0eoMOrU5LSockFv6xjClfzwKgduMatO3fgii3N6wgp7BsxT5n1Hxufbn/WZ9E/IN9eXnck/zy2h9sXrydAzsy2bRoO18/OZLDaUdZ8Mcyvln/AXqDnvjkGLehPszgaxud8Zw+AaqizC/Ut1wl8uSvZvHza79j8jLSum8zktslotVrad7jzOc6meOxhxrJseh0noZ6lxseg+/hjORm5VOQVUDapgPEJEZSo0HsWcffNnQgU76ZTbsBLUAI2vRvQe1G8QSEnh40zTqYzUf3fYPL5WL/1oNkHTjGkI9uR2gEbfo2J7ljIlG1IspcECcTVz+G4Qtf48O7vuSNG4dz55s3c8sL/QDo82A3UjrWJ6h6ALNHLWDJnysBSL0mmWtu7wAof/txv35U7er4Bp4op7VZ7GU/H047yvTv/6ZN/+b4BpwIopYWlZLSuT7B4YF0uqUdAI27NODr9R+g0WqIql2dorwSdHodfsE+RNapzoHtB9m+ajf1W9eleo1wHvj4DuaOXkyvIV3PaOwXjFtKxu5DdLq5LdXjw6jXvDZj3lLahJsXbyWiZjh2i526qbUYfu/X9HusJ7Ub1+CVP57CYXNiNJ+5XmDw0IE0bJ9IbP1oAkLVF/rkr2axcvpa2vZvwcpp68g6kM3O1Xu4/fUbiU2s+EnpVLre0RG/ED9GDf2N57u9UWG8w8Olw2Pwr0CspVbyjhYQGh1cZkyyDmbj4+993lk2aVv280rvd4hOiGTV9PUERwTy5ep3CQoPLDcu90gexzJyqNEwlnYDWtJuQEtKC0sZFPcgKZ3q89Mrv7F58TZe+f2pcro0vkE+tOzThCV/riIsNgS/IB9a9mnKNbd1OL+blLBhvso02bJke9lmjUZDeI0wdq7eS0xCJP6hfph9TNRsfMKltPSvVSz5cyWNOtWn/Y2tyt1Ts+6NeP6XR8naf4xJX84kKyObwtwibnj6urIxf49exOoZ6wHo+2iPsu0x9U4UQjXv2ZhvN32I0cuIX7APj7f5H7vXpdG0WwpvTnuRnvdeQ897rznj7e1au5c3b/4YKSVFucXc//5gktsn0uW2dqz7ezMN29en32O9WDl9HR/f/w2g3Dm1G9dAq9WiNZ/Zd24psbJ8ispyMvuYGPPWeEzeJn7/YBL5xwqpXqMaz//6KPZSG/lZLeh40/nLQRuMekxeRtK3ZgCwbu4mUjrXx2T26AVdDngM/hWGpdTKR/d+zdwxi3nw4zvo+2hP/h69kPfu+IKUjvV5ccxj55Vxkb45g6P7s6leoxoAhTnF5Va/APnH8nm5zzvsXLWH+z8czIAnegNg8jHR64EubJy/DZfLxaoZ68nOzCXvWAFmbxM1kmMxmY08O/JhDu87itPhJCw2DB9/b7IysvnplbHYrHZuH3YjkbUrDhSHx4XxxLf3s3nx9jK3y3Emfz2LEU+NolajeD5d9ha+AV7lUjNDIoPJyyog90g+/R7vVe7Yo/uzCI8Lo1psKD++rPLWTw08Jraoy6yR82nQNoGQ6OAzvofeAV788vp4dHoNRfkqOFqUX4yUssJCsOMU5haRczgPb38zRXkl+AWruXv7efHsyIexW+1ldQtNr21IXFI0+7cdpK47W+lcLJ6wguH3fo3eoKP3A92Y8IlKg+1+T2cKjhWyYNwy9qzfxy0v9+f6h7uf1zlPJqFlbfo93pN9m/aze10anz/yPU98ff85g9MeLjweg3+FkX8kn7ljFgOw5K9V9H20Jxvmb8XldLF2zkYO78s6L4Of0imJ3g92RaPVkNiqDvXbJBIeFwbA4X1HGfP2RCxFpbgcLgD2bkgvO1YIwe2v3sTcMYtx2B20ur5Z2YrVYDLwwfxh1GgQw9q/N+MT4EVk7er4u43a2jkbmTlyPgD1mirDcSa639WZ7nd1LntdUlDC9y+OYePCrTTr3ojVMzeAlKfl4TfqVJ9Pl72J0+kioVntsu2Zew7xZPuhZGfm8vjX9/HmtBfIPZxP6+vLa/L0uLczKR2T8A/1xSfgzHo7JweX73l3EBqNhsZdkk9z4RQXlDB71AL0Rj2dB7Xli0d/4O/Ri+j7aA9SOibRuEtyuff2ZGmHsOhQ3vt7KEW5xUTXjTjjXE7G5K1W2027NyoLyuoNOmwWGy7pQkrJgR2ZpG3af17nO5WS/BKiakdQmFPE7FEL2LFyN/e9dxt+Z6iHOM7ejen8/uEkQiKDuOn5vnj7ef2r63s4Mx6Df4URGhPCAx/dwZI/V9LvMWUsO93ShkN7D5PYqi5xSVHndZ6AUH8eGH4HGq2m3GrU5XIx7ds57NuYTkA1fxp1bkCN5FjaDWzJ/u3KF9+gbQIGk4FajeJp2acpkbWrk+VWobRZbGQfzGXHit188dgP6PQ6kjsk0nVwezoPakfNlDhCIoOwltqo01StWA/uOcyOFbuo17w2ETXDK5wvwN7N+5n05UwAoupE8NzPD59xfJ0mp6+Gcw7nk52Zq6656xA976vY5SKEOOOTx8nEJkUTFhNCYXYRtRvXPGPGyvzflvDFoz8A4OVrYsvSHe7tS7nzzZvPKdEcGOZPYJj/OedznJZ9UnlzygssHL+cReNX0PPezuRnF5G+JYMWvZpgtzoICPWjefdG2Kx2HHYHXj6nx1LOxK9vT2TqiDl4B3jR99Hu1GpU45zGHmD+uKVlGVYN2iTQrEfj876mh/PDY/CvMDQaDf0e61lm7AFSOtYnpaOS4pVSMu3bOWxbsYuud3Q8Y6rd5sXb+OSBb4moFc5jX91HUHgAoJp5//q2KkhKbFmH+q3rMfnLmSyeuIKUjvVZ+tcq7nvvNgY+3YeJn0xl+vdz0Wg1fLL4DW57ZSBe/maadEtmorua1mF3IICNC7fSeVA7aqXE89Xa93G5XARVC8Bhd/DBnV+wefF2GnZI5N3Zr5wxtzu6TgRNu6ewacE2Og9qS5u+zf/Re5fQvDaPfnEPh9KOcO1JTw7/lvj6MXy+6h0cVjuhUSFnHOfjr4LGQgh8g3x47Mt7WTZlNc2ubYT5Aujxa7Va6jStyeF9WZQUlmK3O1k8QbWhrtOkBv8b+wRefl4c3Z/FC9e+yaE9h3nu50fKxNhKSyysm7OJ0Ohgajeqcdr5jy8QNBoNNzx7PSERKuWzIKeQ5ZPXEB4fVmEXsrqpNdHqtITHhRFVpzrr521m1LBxJLSsw62vDMDsdWF6E1xNVFaLwx+AXsBRKeVpIt9CiA7AX0Cae9MEKeVrlXFtD+dPVsYxcg/n85E7yGcpspzR4K+csZ59Ww6wb8sBetzTmeY9VaaFb6A3LfuksmzSaoKqB/Ljy2NJaFGbTYu2YfY10ahTfYoLSgAIiVL+7bCYYEJjQhg87Iay83e/pzN6o578YwWkb8mg0y1ty/YdzxoB9URRkK2ahhdkF+Fyus5o8P1D/Bg2/hksxRb8gv95ZahWp6X3A93+8XFnIzD03CvvNv2b8/b0l9EZtGVfzKndUip1Hqcy4eOp/Pr2REzeJl4Y/Sg7Vu4hNDqYgc9ch5fblbJ7/T42LtgCwNalO1g7eyMSlaX056fT8fI189mKt8sFqwFueak/tRrHUyM5rszYA/z52XR+fvV39AYdX6x+l/j65QvyWl/fjB+3f4zJx0xgmD/jPpjEpkXb2LRoG236NieheW08/Dcqa4U/EvgcGHWWMYuklL3Ost/Dv2TH6t3sWLmbJtc0JDw+DKERp/mJ183dxNDr3qNW43hVDbp8J7XPEuRr3KUBs3+aT3S9SOIbxpVtH//xVPZtPsDNL/Tlr89n0KxHI+IbxJDUph7ZmTmsm7uZPRvS6XV/VwY+1YeEFnWIqFmN4Orls3sCwwIY+FSfctu2LtvJ5sXbSO3WsEzfxWA08MzIh9kwbwspnZLK8u1PxelwggCDyXBe8sWXE1qtltRuDS/qNZ1OFXtx2h1E1a7OV2vfRavTlvu9qdu0Jr2GdKUkv4SsjGwmf6XqCnrdr1xdpUUWSgtLTzt3aFRwhRlITqeSena5JC739U+leo0TLriUjvWZ8YPSDJr89UwCQn3L7ffwz6kUgy+lXCiEiKuMc3n4ZxTmFvJqvw/Iysim94Pd2LFiF94B3jz+9X3l/Nc7V++ltNjCpkXbeGHMYzzyxd2ERAZTUlRaoX82pUN9ftj+CdtX7uZ/vd4msXVd7nvnVhZPWMmhvUeYOXI+b01/kbj6MWXBtY+HqCcHu9WO0+nE7GOi6XmuVIsLSnjjxg/Jyshh2eQ1DF/waplroF7TWtRrWuuMx+7duI/h936DwWzgyRH3E1Xn/IKXVzP9HuupXCd1I7DbHJQUlJ4WzHe5JOv+3sTBXYfo+5hKP/UJ8KYov4T+T/SiXvPa1D3L53Iy6+dtJjAsgB73duFYRjbblu2i5kkLiYrocGNrSopK+fXNicz+aQEN2yd5DP5/5GL68FsKITYAmcDTUsotF/HaVzAnNOALc4rYuWYvAPN+XUxsYjQtejdBp9fR6rqm5B7N49iBbOylNiyFFu5JeoKQyCBe+eOpstL8kzF7m1j4+1L2bkxn78Z0ugxqx+2v3cjMH+fSsncqSa3Ku4Nuer4vsYnR1GwYR7WYc8sIn4xWq8E3yJesjBx8A73PmrZ4KuvnbWHHqt0AbF6y3WPwz4Pg6oH0HtKV8R9P4esnfyKpVV1em/RcueBq3tF8Du5SWTwareCt6S+pOEOg93kbeoBDe4/wcq+3sZbalI6Qxc6+LemnjVs9cz1blu2g9fXNqZUSB6Ce9ATE1Y+mXrPzv6aHirlYBn8tECulLBJC9AD+BCp0yAkh7gPuA4iJOV10y0N5fAN9GDbxGXau2kNYTAh71qVh8jayfMoaRr7yG6/8/hRt+7cgum4EuYfzWPD7MhaNX8H9wwdTkF1IQXYhe9bvq9DgAzS5piFzfl5EcvtEoupGkNSqLq2vq7h1YHhcWLlCpH+CydvEy2OfYMfqPTRoe27NlpNp0C6BuKRoDGYDCS0qR83zamHn6j0AbFm6g9wj+eUMfs2GcTzxzf2kbd5Pl1s7lBnhU9m6bCd6o47I2tXZtmwnEbXCCQjzp6RQVRuvmLoGnUGHEIKjB46xft5m0jalc+srAwlwxziOZeYwtO/72Cw20jbuZ9iEZwD1dPfNuvcRGk2FRYMlhaVkZWQTWSv8H/Uuvlq5KO+QlLLgpJ+nCSG+FEKESCmPVTB2BDACIDU1VV6M+V1O5GUV4LDZCYk8c0HPqdRuVIPajWpweN9Rnvr+QY5l5vDGDcMB1Rbv718WYrc5iHOrVsYmRVG3aW0adkgkqm4kmXuPMOGzaSS3SSA+OaZcULRN3+Ykpydi8jadUWa4soiuF0l0vdPb9p2L2o1q8PnKdxAa5fP3cP70GtINnUFHvWa1T8vj12g09Li3y1mPX/LnSl7t/wFanZY+D3ZlwifTiKoTQb0WtZn/6xJufWUAI/83lkadG5DSMYm0LQcAMJgN5eIFBpOeanGhHNh+kODI8s1qvM6Qj28ttfLhPV+x8PdlDB52A7edQ4TOw0Uy+EKIcOCIlFIKIZoBGiD7Yly7KpG+LYP/9Xqb3CP5DJ34DKnXnH8g78j+YzzTeRiH07J45Iu7ee7nRxBC4LS7eMfdBPvxb+7ng3nDqF4jjLDoUD6Y+ypzxyzmuxdGExQewFeP/ci9791aTkYAOK8c6kvN2XRjPJyZBm3qnZcK5pnIyshGSonL5eJoRg6gXDjBEYE47I4ySemNC7Zy6/8G0PnWdjTpnEytRvFlFcSgfsden/Qc+zbvJ6lNAqVFpZi8TezZsA/fIB+K8ooJiQwuK9ADKMotZvF4lU66ctpaj8E/DyorLfNXoAMQIoTIAIYCegAp5dfAAOABIYQDKAVuklJedav3ipBSsnzqGvKPFuDlZ+ZQ2lEAdq7a/Y8Mft7R/LJ+rPu3HeThT+/GYXfwzdMnEqdMXobTGlsHVPMnqnY46+ZuBmDV9HWnGXwPHs5E+xtaUZxXjMFsoH6bekTWqkatlHh2r09DSkmPuzvR897OGEyGMr//tXd1Ou08UkqWT17Dng1prJyxnkV/LOf6h7sz+o3xtLuhJfPHLqFB2wRe+/PZso5jxQUl3PPOILav3l3WBtLD2RGXs91NTU2Vq1evvtTTuKBsWrSVpzoMQ0rJXW/dQnZmDvlZBQx6eUCZlnthThFj35lIXlYBA5/pQ1wFyoUul4sZ388lfVsG3e7sRI0GMRTmFnFXwmPUalSDarEh+Ph7ERIVQq8h15Tzd25bsZN1f29m8+JttL+xFd1u7/if72v55DXs3rCX9gNa/Ss3jYeri0N7DvPLm+MxeZmY/NVMpJTEN4gm/1gRNVPicFjtZGfmMuzPZ4muE8H+bRk83uZlCnOLeeKb+8/perqaEEKskVKmVrTPE+W41IgTfkyjycDDn9592pANC7Yw7oNJAITXCKvQ4Gs0Gtrf2IqMnZlljbZ9A324+YV+rJ+/BS8/MzvX7GX9/K3UblKDJHdLPICE5nXYsGAr6+duZsP8reQdzWff5gP0e7xnhZWU5+Lg7sO8OuADHHYHR/dn8+SIIf/4HB4uDwrziti7fh8xiVEEhgVckGsc2KGa1qyesR6dXke7gS3YMH8r197VmYydmRi9jPzx4WTqpNYscwPlHS2gMLeY+AYxHNiZSeaeI0TUrHZB5ncl4TH4l5gGberxxpTnyc8qPE2k6zgxCVFUiwslJzOXOo1VsdSWpTtI25RO855NCI0Kxul08umD3zJ3zGK639OZJ0cMIT+7gFFDxxGbFMX6uZsoLbTQqFMDgiICT7tGaVEpdpsDIQRrZ29i7ZyN+If6/SuDb/QyEBjuT9aBbPxDPb1QqzIjnh7FjB/mkdq1Ia/++ex/LmrbsnQHq2esI6VzAxq2T+JQ2lGe6TSMnMP59HmwG/u3HySpVV0e+OjOsmK94zGonav3kHckD/9gX5Ja1+XpHx5k3tgl/PHhZDYt3MoH817F5HVuGWaXy8WUr2exadE2ut/duZw43ZWOx+BfBjTrfnaRqJh6kXy27C2spTbC48I4uv8YL/V8i+L8Evo8dIBHPrsbW4lNqUMCa2dvwG6zYzQZiEmIxG51YPYxU1poISw2hOpu1cuT6T2kG74BvviH+vDH8CloNBrqpf67vOeQiCDenv4SB3YeomGH0zVTPFQNpJTsXK3qOrYt34W11PafDL7T4eSTB0aQtmk/M39awHdbhlOUW0T2oTxSuzZk+vdzkS4XNz3ft1xlds/7uqDVaqjTtGaZe1Cr09L19g5M+3YOAFkHsnHYHcC5Df7utWl89vD3AFhLbR6D7+HyIyDMv6wYaefavUiXir1YS6wAmH3NPDHiflZMW0vr65qhN+jRG/S89NsTpG06gE+AmcNpWTTqdJrUEaCM9IAnlfJFardGFOcV/6cCptjE6PPukuTh8kQIwQMf38HSP1fRuEtyWfvCf0NRXjEIqF6jGmmb9hNZqxo6vY5ajeJ5btTD7Fy9l9Wz1ILl4M7McsqiDdokEF03gvEfTWXEM6Po/0RvQqOCEULw0Kd3sXL6OpLbJZaJ0J2LHav3ULNhHHs27CM28fzUY68UPAb/Mqa0xMK80YtYOH4F1mIrD312F7VS4sk9lEu95rWRLhcpHU9k3TRom8D2lbtYN3cTNRrGEhYdQrWY0LKq1/qtE87ruv9UbtfDlUtKh/qkdKh4kXC+bF+5i9cGfIjRbODpHx+i252dqNUoDoNRz+71aRxJz6JZj0aYfYw4nZJW1zc77Ryrpq9n7DtKpbVa7IkCvzpNalYodX02QiKDsBRbSO3WkBa9K4xtXrF4DP5F5OCuQ/z5+XQCwvzp/3jPc+qcLxm/gnljl7J+nkqZnPnjPAKf96fdwJYU5BahN+ho1eeE33/V9PX89u5fAFSLDS0nkezBw6Vi67KdZGWospsD2w9y7V2dOJR2hLm/Lmb1zA3MHjUf3yAfRu74tFxu/slE1a2O2ceEw+Y466rc6XBWKB54Mi17pxISGYTepK8wAeJKxmPwLyJzf13En59NB6BmShwtep69ubPJx4Sl2EJkrXBKCi2kb81g7Ht/ce/bgxj0Yv/TxkfVjcDbz4zNYr/qHlU9XL406dqQ1G4pGMx6GnZMwul0Mvzer1k/dzO1m9QgJDIInyBvdIYzt0BMaF6Hr9e9j9PhJLpuJC6Xi4mfTGXRhBUMfKoPwRGBTP/+b7Yu30lAqD9PfjuE6vFnztqp3fifJyNcCXgM/kUkNiEajUaDX4hvWbvAs9HquqYYzQZsVjsTPpnKpoXbiKkbwa3xD9H/yV7c+Ez5Aql6zWrx1br3cdqdHgExD5cNsQlRvD39pbLXdpud/KP5AFiKrTzy5d3E1IvCy/fsLQ1PVn/Nysjm66dUUaFWO5Xkjklk7j7Cvk0HgANsW7bzrAb/asVTeHWR2bspHS9f83kZfLvNzp4N6YRGB3Nw5yEy9xxm5MtjyT6Ui7e/F6PTvzqt76fNYmPKN7PJOZRLz/uv8fzSe7gs2bFqN+vmbSKlQ33qNTu/xib7thyg4FghSW3q4rA5+HjICOb8vJAHP7qD6jXDmfjZNA7tPkxANX+eG/XIGQUBK8Jhd7Du7814B3iRWMUF+DyFV5cRNRrEnvfYiZ9O49tnf6FOag3emvYSye0SKcorZswbE7hmcHtcrtObSGxcuI2vnhgJKIGqwUNvOG2MBw+XmrpNa523xPL+bRkU5ZfwUvc3Kcov4clvh9D97s488c393PXmLZQWWfjzs2nUaVKDW17oy8Fdh9Hqzuweqog5vyziw7u/RKvT8uGCV0lqWffcB1VBPAb/ErB7XRq716XRqHN9qsWGcWR/Fmkb0wmsHsC8MUsIiwmh9wNd2bflAI06N0CjEeRm5eMf4kdCizqExYQwdcRsQqKCaNAmgTmjFxESGcjAp5Uv0yfAi6K8EsI9q3sPVZxZP83ng7u+pMNNrSnKV60zj+5XIrsGk4HQqGB+fv13Jn81C71BR2mRhcXjV7B7fRqPfH4Pdpv9vBRUC3NUG02nw0lxXsmFu6FLjMfgXyAK84qY/OVM7FYHfR7sRmC1AAAKsgt55fp3yTqQTadb2vLEiPt56+ZP2LpsB817NmbTwm2UFJZSs2Ecza5txLuDP8dhd5C2cT9xCSqjIG3TflwuF0IIpn3/N9O/+xuAkKgQugxqy6fL3qYot4i6noYRHqo4u9bsQUrJmlkbuPONm7CW2uh2Z3mtpxoNYtFoNbQd0IIpX8+mQbsEdEYdQ/u+z971aTz+zf3n7BHc5bb2gOrZ3LhLg7OOrcp4DH4lIKVk8+JtGMwG6rqrU1dOXcePL48FVNHUdQ9dC4BLSmwWO0IIHDY7DpudjB0HAcg5nIfRy4jZx0hwRCCFucXu6kHIycxVwa6sAh754m6spTZMXsZyTSHMPqrK8FRdcw+Vg3QcAGFCaP9ZNy8P/54ug9tTXFBKdL1I+j/Rq8KeDK2vb8Z3m4bz4/9+xelwsn7uZiJrhbNs0ioAlk1ZXc7gW0utLJ+yBi9fL1K7NUQIQWCY/2k9lq9EPAa/Elj0x3Jev3E4Wp2W9+cOpUGbBMJigtEbdDidLsLjQinMK+LovmP4h/rRbkBLCrML6f1gN3wCfHj5tydZP38zzXo0RqPREBDqR/Ua1QiJDuahT++ipKCEToPasPD35bxz26cAtO3fnEXjV9DnoW4MGX47QdUDy+Xke6hcpGUeMu9h0IRB0HcI3T8r9vHw76ibWotnRz58znHR9SLpentHMvccoVajOHav20ejTg04sD2D5j3Kpz/PHb2I4fep/svvzv4fjTt7pBU8/AOyD+UCyv+Xd0SlmzVom8gXq97BYXcSkxjJmzd9zLJJq+n/ZG8mfzUTgFpNapDcLpFGnRvQqPPpj5Ems5HrH+5e9tpmsZX9fDy5Kv9oAY98ds+FujUPbqR9M2AH10Gkba3H4F8iivKL2bZsJ1F1I8oy0JxOJztW7iYmIZKv175PaYmFgzsOEV4jFJ1eXyaoVlpkYex7f5KTmVt2PofNeV7XLcguwDvAu1w3uKqIx+BXAh1uao2lxIrZy0hq95Sy7fHujJzsQ7msnLYOgIKsAgKr+VOUV0LNhnEUF5RQmFtMeOy53QQdbmwFgN6oJyYxgtjEKPZvP8iaWRto0vX8m6V4+OcI07VI+yZAQulkpKkHQnN+2i0eKo9f35zAuA8mEZcUzWuTnmPZX6spzC3il9f/IDgikOELXiWiZnVqNYo/7djtK3Yx5o3xhEaHcN3D3WnQph5Nup57dT/pixl888zP9H7gGu5559Yq3Tu3sjpe/QD0Ao5KKU8T3hBK9esToAdQAtwhpVxbGde+HAgM8+fm5/uecX9w9UCe/uEB1v69mU43t6H3g11ZP28L2Qez+fbZFezflkHja5K59eUBZ72O2cdM97s7A3A4PYsxb05ASklRbrHH4F9ghL42UtrBvgQ0UcDpKbH/BCkdYN+FFAaEMCJ0UafstwDGMsE8D4rD+1RHuIydh1gzawNfPTmy7Ok4OzOX7Mw8ImpWnH8fUSucuKRo9m8/SIO2CbQf2PK8rjn9h7nYLDYmfjIdk5eRbnd2pHqN8HMfeBlSWV9VI4HPgVFn2N8dqO3+1xz4yv3/FYfD7kCj1Zym5dHl1vZ0uVVlAnz5+I9M/HQabfs1Z//2g6RvzWDL0h30uKcLQeEB53WdgBBfmvVoxIqpa2nc+b+JW3k4N66SCYAdTP1BEwyOfWA4ezaHlKVg3wLaaIS2fIqsLPkVHDvAMgsprRA4AmFUfxLSMhtZ8BoY24LvS54niZO46YW+RNQKJ6F5HfKy8gCwFFvoNeQa4pNiSGx55qKpkEgl222z2stV7Z6L/k/0YtTQ34hPjmXip9MJDA8sS8KoalSKwZdSLhRCxJ1lyHXAKHcf2+VCiAAhRHUp5aHKuP7lwvZVu/no3q8JrObPE98OKVOpPJXweFVle/TAMRJb1SF9awYtejfBJ+DspeUnY/I28cLox8jKyCa6CsooSEcauEoQhqSTtmWCKwf0SRdkZStLZyOLvwZTN4T33QjxD/yxtuUgtGAZr84l8xCnGHzpPAr2TaBLROiqI4u+heLPQZesAr2aAPe4Y1DyC2jDQeapbbYVSPt6hKEl0roGdHHgOoa070UYr9w0wX9K7UY1ypryZB3Mof8TvdAb9eB0ciwzh5KCUnyDTpdxzs7M4cN7vsJuc5DYsg61G9UgJDoYa7GV5PaJZ/1963JrO+LqRzH0+vfR6rXUany6u6iqcLGcUZHAgZNeZ7i3nWbwhRD3AfcBxMTEXJTJVRbr5mxk78Z0ADYv2U7OoTwialbDP6R816feD3SlVqN4QiIDCY0OYcATvQmNDvnHzSW8/bzwTjz/L4nLBWnbjMwdDLIEAj5FmLoiHQeQOYPBdRD83kZ4nS4O96+vZ5mPdGwFx35wbIKiTWDuCdrz77UrzNcjS/4EbQ1w7gVdeTkAKSUyfxjY5oChOQR+D46daqdjC7gKwW3wcR0DZxqgAeO1oPED+3awzUFqa4OxI9hWgPAHc3ZlvAVXJEsmrmD8R1MAaNwlmbVzNlIzJb5CV82utXtZNWM9zXs0Yv/WDLYt20lk7epM+WY2z458CKPZSIP2CWds41grpQafr3gbKSVB4ad3jKsqXCyDX9HXZ4UiPlLKEcAIUFo6F3JSlU1yhyQia4UTVD2AzN2HeWfQpzTuksyrfz5blimQfSiHfZszqNU4Hn+3FGxMwlWmbOk8BLIIAOnYp345XIeVsQdw7K60S0nHfmTeQ4AdjNeAphoYWim3zJmOceaAMJZzpQhjK4SxFdJ5BJxHQX9qbwEnONPdP5aAdCC870FqqoGhEdK6DJn/MsLrFjBdA77DwLENYb4B9AnInDvUsZpA0KeoLwLngRPnBKRtK2i8ELq4Snhnqj7B7ladWp0WrU6Lf6gfUXWqk7nnMKNeHYdOp2XwqzcSFh1C7SY1aNGzCZF1qzPho6koZ4OgTpMa/DT0N46kH6P3A1159It7z3i948WTVZmLZfAzgJOFp6OAzIt07YtGUsu6fL3+A7Q6Da9c/x6NOtUn/1gBxfklmLyM2Cw23r39c9bN2USX29rx3E+PALBh/hY2LdpKsx6N/3EzhyqJsRX4PAWufDD2VKt7bR3weQFcBxDmfv/61NKyCOnYgjB1RehqAEa1snZlgbSC7wsIUxeEqPhpSloWIvMfA20tCPgEoYtAOnNB44O0TFOuHX0zhCxBGpqVuQKE0CF19cDQBGyrkIVvgvfjoAkF2zqwrwfHJmTRMTTmbgjvW8pf2P9tNUafAtpIZNHbyuAX7UWargf7CmTeoyC8IfAnhOHMcRvp2Ku+lAyNz3ifVwJt+jbno0WvYzDp8fI1YzAbCIsO4c/PpvP3L4sAqN8mgWvv6kRw9SBe/etZjhw4xtrZG0nbtJ/gyECa9mjEz0PHAZDllmy4krlYBn8S8LAQYiwqWJt/pfnvj3N8JZ/QvDY/v/o78ckx5B3J5cD2g8QlRbF7TRoAaRvTcblcFOeX8PoNH5J/rJA1szfy0cLXL+X0LwpC443wuR8AV/EoZOEbYOyK8H8Pofn3LirpyEDmPQDYkI69SGkDJHg/BNaZ4DyC0MaeZgRd1q0IjQYc6UjLdMCg3DCO3bhsS6BgGHjdDyVfAw6wb0U6DyP8XwNTN3Vt6QJdvDLazj1Qugd0jcC+FFzZoE1Q7iRTT1yFnyKMncoZbaGLBl20erqwTAPzDVD0IZj7qy8bxxHQJah5OTOBig2+y74XCj8AxzrwHoLwvv1fv5+XO0II6reud9r22k1q4Bvkg96go0bDE2KFGo2G6rFh3PxCP2b88DcOm4M2fZthLbGyccFWCnOLSdu8n/j6VcuV/E+orLTMX4EOQIgQIgMYCugBpJRfA9NQKZm7UWmZd1bGdS9njqRnAZC2cT+/vDGBDfO3cN3D13LHGzdy7GAOTbuloNFo0Ol1hMWEkn+skODIoEs860uAdbH7/1ngehY05f/YpDNX+bx1NRHiROaTy3kM4cwCfc2TDLjevZo/qlwjtkUgAgAzwucxEL4gfHBZloHGB6Gvjyz6DCwTkYZWIAJB469W2ZpApC4BCkYBdrBMAENLdU5tNXDsVsbZsReEP9IyA4o/BVM/tQrXN1NuKtty5fc3pILXbZB3J8gipG0lBP1ULnAspQNZ9CGU/q7m4vcBmLqCdSEUvaPcUF6PITXVKvaRSgcUf+GOI7QD55HK+5yqEEmt6vLd5uFoNIKACnzyHW9qTUrHJGw2B28MHM72lbto07cZGTsy8fb3InPPYca+MxGj2cBNL/Yj+Bw++8P7srAUWYirf/l3z6qsLJ2bz7FfAg9VxrUuFw7szMQvyOe0gOxxet3fFZ1ei9nHzLRv51C/TT1+ee0PAF776zkatE0EwOxj4uXfnmTPhn0ktjw/XfArCeE9CIlLpSBqT8lFd+Ygc4eAYz34DlVjpR1Z+CFYJiP1jUGfijT3gJKxgBOMPcC5Q62Cj8cCzAMRhsZIx2FkwTB3EPUI0u8DlS0j85RxtE9XsQVDW7BMQHjfhTQPBGEGTU3QhoKuAUgLGJzgOoo81h10iWDqpYLAlong+w6Y2kLBK+r6zn1gXQDODNC3UNfTRoB9Ixganbhh63JwuuMYshhKfwNNENK2Ub03zjRwrISSL5FBoxCGUzqmyWKw/u2+Zhr4vlyZH1WV4lyB1cBqAexcs4ftK3cBoDPo6f9EL7av2EV2Zi7Tv58LQJ3UmlwzuAOgAvOnZvPs3ZTOs11eozCniP+Ne4o2fU/vx3s5UXVLxi4hs0ct4P07v6BmShyvT3qekJNW5uvnb2b55DUktarDE98MYfg9X5LSqT6+gScCgHarvdz5ImpWI6Lm1SllLIztEcb2Fe90HVXGHsCh+vpK52Eo+REV8zdC6URlOHGBdSp4DQbbMjAPAhEE2hgQGqSrWKV8YgGXe+VrmaV87tYloI0D20r3haUK8Gqrg22NcgcZWkHpUrXbeK3KwBHeaqw2EoreB11DMLWEojdB3u0O2oaAqwQohpIRyqevjQHbMqS5f7mVusQGriIw9lTjbVuhdBbIg2BoBlwLrr1gaIa07wR9g3LuKaHxR/q9CpY5CFNvhD5OnVdaVRDZk89fjhrJsdz73q3sWb+PqDoRfP3UTwghePHXx6gWG4rdZgch+O29P4lPjmP0678TEhnMgx/fQXCE+ps/vPco+VkFAKRvPeAx+Fci21ftRkrJ7nVpHEk/Wmbwsw/nMuGTaexdv48VU9fiFeDDzS8NYPXM9dRMiSW5XRIFOYVsXbYTjVZDm75XZO1Z5aGrDb4vqeIlY39chZ+CY6taTdsPgsYLdJFgnQLaeLXSNrRTmS/a6irYWfAk5D+D9H0e4XUHGHurSlmZr1xF9u3g/SAILzD1UG4Y00CEuSNCmJDi+J+IEzABFtD4KveOK1P9L12AS/nN9YkgC8FxAClMCL8XwbZBFVqBCh4brwHHDoQrr9ztClmC1PiCtCkDL8LUl5NtiTq/zwtQOtM92oCUOQif8g/OGvN1YD7R+lI60pB5T4MrDwI+RBhSKvczqoLsXLOXReOXkdSyHjc8rd6r0W+q+gqj2cC2ZTuJqB3OTc/15eVeb2O32ul0S1u2LlNpth1ubEXb/i0ASOmYxG3DBlJ4rKhM+uRyxmPw/wXX3NaOotwiYpOiqd24BnlH8/EO8OL7F8aw7K9VJLdPRGfQcTQ9iyadG9B7SFdANWK+P+UZ0jalM3XEHJLTE/EL8r3Ed/PvkNIB1kWADoxtzrtQSkoJsqRstemyrgEcaI5XmUoHSAtC4wPOQwhdbTAPQFoXg32NWr0D+L6piqCEDyBVbrz/Z2hM7U5cTDiRzgz3he0IoUF498dVXOwufIoAfQOwr1SBVZ/n3UFjG9jWIg0tEObrQOOLxAuMWcoAew2E4pFg+RN0TUAXo1w92urgzAHvh8HyF9jXIF2FCH0jMN+GkmOwqaCsaQDSvg201RGGZKR1hXpvNJHqS0d4q3iBoYUy/tKhvpQMLcFVAEKCfZf7PXMColyMowz7JhUsBqRtFcKQgrTvAOGL0FW9gr3K4JfXf2fZpNXojXpG7f6MkMhg2g9syaaF23A5nexet49ty3eSfVt7fAK8yD2ST0StagSE+VMtNoRajeLKzuXl58XgV6pOVzmPwf8X1GtWmxd+eQyASV/O4MvHR3LtXZ3YtXoPABk7Mrl16ABa9CrvYxVCkNSmLmmb0knpmITJ23TauasMlpnI/CcAEAEjwNThnIeooORHUPIb0vdZZcDynwWhx+XzEsJ8LTL/FbAtQfoNhaIvwblbZdkYOylfOkZl5PX1lTGT2WDoANpo0NbCZT8EtlUgHAhNIAR8Ds5jCPMJ1VFh7oPEqQqbXAVgnaFy4mURuJzIvLsBiQj4DGHqBqZrTwuSSq9bkBofIACKhoKxu/Lt22aBTa+CtOih+HMkWkTQeKSxLRS4m3k708C2AOncBwxC5t4OuMDvTTRebyBdeUjXYSj+So033wDaELCtVgFpQztwpuMqHqsCyhjA/3WE7pQqUH1jMHQEVzbC0BpZOk19biIUgkcidFdfk5zjle6RdcLL/gaDwgNo3qsx+dkFHEnLorighDpNavL2jJfZv+0gjbs0oP/jvdAZdGWZeFURj8E/T7av3M3qWetJ6ZCEb6APAdX88A/x5+/Ri3A6nEwdMZtXJz7LsimradU7lZanaNP/PWYRyyatpk3fZlxza3si61SvsJlDVUHKk9vAWc7vIFc2FH+rfi75TQVHcajVq3M3ONLAOk3tty5xV6MCzgw0hga4eBRMA0GfpFw7roPKjWPbCI6ZUDpO+e6du8G2EKmtCd4PovG+GekqRroKEBo/hCYA4X2nWlUXDAWhA697VADVtoLjNYHSmadqBexbVJbQSXo4QheJ8HkAlzNXBVJdeaA5LtrlAGMvcO0H20JAA0KDMPdWKZZSB0VKjx1dPNKZTZkYm+MQrvxhKqZg7guWmeBMV8bavg0l0XxUuaOs00DmqFRQQNrWADqkba06nyNNvYfCqOoPDIm4Cmer+5NHwZEJV6HBv23oQFKvaUhMYhQ+AepJ87f3/mL8R1No0685h/dl0f/JXqRvPUB8g1g63tS63PHr521m7pjFNOyQSOdB7Sq6xGWLx+BXwP7tB5n103yi6kTQ9XYVUPzsoW8xmA0c3X+M6d/9Te0mNXhj8gu07J1K/rFCEprX4tjhHPyDfYk7pVF5UX4xnz74HSUFJWxbvpNRuz//x02WLzeEqYfKPRd6tfo+C9K2Hln0OWgTwXsIlI4Hr0Ggb6L84DhBm4zUxoChMzi3gy4G4f8R0r4ZYeoFgMaQCCTiKp0JpX+ALAXHdtDowKFUFFW1rgt0SSALoOAFXFih+Hu3lMNnCIOSxJWOnYBVFWTpaiG0Ibj0KWAerM5hbIcsfF99keibQeC3CI253L1ptIFI/+HqPK5ipD4RoQ1HmLqoVbo2HqGNQOjd+eKm7ghA6uuD6wDoGiCL/wBDe9SXXwGUjlHvsSEZgkaDLFTVtY49SOcBlY1z/AtChIK2purEZUhBFn+vnlps89VTkG25e5w3GJuopxuZ5644Pr1hjpSlYFkM2tAr1t/vG+BDsx6Ny207djCHus1qMe/XJbhcLkoKSsg9ko9vkA+fLn2z7IsBlEtow/ytzBw5j4Yd6pdL2jjO4X1H2b5iN/Wa1yI8LuyC39P54jH4FTD1m1lM+EStNOPrR1O3aS1CooIpKSjl8F6V4bFrzV6OHcxmx+rdWEuszP9tGccO5rJ+3mZMPqZyUsdmHxPtBrRgxg9zadOveZU39uAunvK+8bzGSst090p3ISJwFPg8jBAGpKsUiQT7VpUOKSxgX6Vy6S2zlR6NbYVyA/k8ijAkIR2HIP9JwA76VECC133Kh45DGT/7RpX7XuoWb7WtUsVQgLStKzP4CF/lDtIEgKGN2madX3acMDRHOnao7Y4tymVDeYMPuOMXJtCaEN63nvQeBSC8zlA17NiJdB1D6Ooh9BHI4kWAAXzcgT9NLGjCENpgQMlACF1N8BqAzBkEmiDwegDhPQiEL9J5DGndoOIKwkfdP1p3jEOvagcAoYtH+A098dnYViMd6QhjR4Q2CFkyDgrfVMcEjSsnbnclM+Cp3iz5axVB4QHM/20pdVJrMnvUAuwWG7ZTsuqSWtdjw/ytpHSsX6HgodPh5MO7v2L9vM2kdKrPOzNevmz+5j0GvwLC3M1IgqsH4BeigqoPf3Y3f49exNrZG0jt2pAaybEYTHqsJTaqxYaS0rkBe9buBSjrxHMcrVbLg5/eyYCnelM9/vL5tr9QSNt6wIkwNEG6SkFXD9CDrh5SahDOHNCFg2OXCm4C6BuBZQYYO4DLhjD3BPs6KB2tzmlNUAYfCZpwtTrWhILXQIS2GrJwKjgzld/deyguyxIVYJX5bvdKgQoWG0/KpCgdU+YOEb5Pqv+1kUi0gAa0wQjf55GWWQhDC4S24txuaV2GtO9Qkg2n6NpX/P6sRebdB0ikKw+Nz90QNAGEAXQ1VGBWE4y0r0TmPgheA9B4D3a/T/XB+xFw7kGYOiO06vdJFv4IlslKuM26DMw3qewh8+2ADVHRat6xF1n4CQgt0pGB8HtMpYUCYAdKz3kvVwrx9WOIrx+DzWLj3ndvpTCviOo1wkhsWZegUzR0bnmxH62ua0Z4fBgmbxNFecUUF5SUqeM6nU5yDquuWrmH83A6XR6Df7kgpWTR+BXkHs6lw02t8Q/xo8+D3aiVEkdwRFCZ8Q6qHsCNz15HZO1wRr8+nnEfTCKidjhB1QPZtGgbXQa356Znr6e02ELd1NP1cMxeJmKvApE0aVmMzH8cZCHSfwRYp6tVp8+zoAmBvFuRxm5IbazKgTd0dKcd2t1PAYDf+whzN6Rjv9K0cR5A6N2P4M79oA1Ux2qqg4hw+6qVyJi0b0SYOqExtQbTSb5Xc9vTJ2u6Xj1deN2oVsyAMHWAoD9A6BF6pa1+WoHTyffrOIDMvQ+wIp37EP7D/tX7JgyJJ14Y6quMndxPlZ5O4ftIU2+ENhAhzAjfR04/gbYaIMCeBv7DIf9Btd3YCeE7DIRQBVy62kjbOlXZrKnmfnIpUrEQQHjdgNSYEZpw5XK7yjCYDITFhBIWE0rN5IplkI1mY9nfeFZGNsP6vseeDem8OOZx2g1ogcFo4OkfHmT9XLXCv5xidVe9wd+0aBuv3/AhMfUiEVoNfR7oRs6hXPyCffEP82P2qPnoDHr+GD4ZvyAfej/UjT0b9gFqAfXYV/dy15u38PfohTzR9n/c8Ox11Gt69QXCwC0RbF/lzpiJVP5oyzTABaVjVQ688AXXIVXMVOoNwdOVe6f4F5Q0QjA4M5HShbQtB2MLML6KMDZFWuaDdS7oUlRFqywEx1ak6ToVdHUdQZjOvzGFxvsWpKk7aHwR4sSfwj9zY+hU9pC0quDoeSAMjSFgBNKVjTBdU/EYIZDmG6DoI/C6RUkonwFX8R9Q/KWKA5hvB3lMuaoc2wGXSk0t+BZs89TK37ZJfTbGNkpGwrEXtxIKQhuK8L7rH9z/1UNRfjFbluwgum5EWQOVg7sOsXONerLfumwH7Qao/PyE5nVIaH7mZiyXiqve4OuNOpLa1OPYgWzGvvMn1WJDGX7PV+QdLaDvYz0Y/9EUGnWqT+buw/g1q8WRtCzemv4iRbkltLwuFb1Bj7e/F+Pen0RhbhHj3v+L6x7qhtnndF/vcYoLSsjcc5joepGYzFU3xes0XEeg+GuOZ7kIU3ukeE1lmmiqq2wYU3+1agXQpYJlipIQ1jVQRgqLMuT27VDglgaQTqQ2/ITMsfkWFYAFlJjZSjT+r/2rKZ/JTXPex+uqQ+APKjPoeBzgHEjLYhWINXU/LQhc7tze94K5H2gCz96sxTJZBbCtM1RFcOGrgBPMN6pYgDYSbG7NIvsaJcIm86HUXQxmvr1s7tKRjnTlgX0/yMMI8/UgvP+TqN2Vwq9vTWDc+5OIrhvBhwtfxWF1UiM5lpueu5792w/SqFN9dq3dS+3GNS71VM9IBZUaVxcJzevQvEdjjqRnkXXgGLvXpZFzOA+Xy0VpkUo3FBoNjbs0YPWsDXz5+I9IlxJgOm6sjWYDNz1/PQFh/tz8Qt/TjP2udXtZ8PsyCvOKsNvsDL/3ax5s8hw/vvTrRb/fykTa1uDKfQRX0VdIaUO67Ep2AMDcC6HxQ2O+XrkOLFPAsRHsa9Vq1dBC5ZUXvQcFLyr5AGNL0FRHGDsoF4s2Tp1LGw/CpFxCoPzxPo+DeSCI0LIsnkuFMNRHmK9HaEPOOVbaViHz7kbmP4ksdXfPsm/HVfgR0jKn/HmFBqENBUcarvxXcBV9jnSVnH5SUyeltWPsoFJcy1I8j4EwqBoC863u9zwSHBtAW4eyNhWuQ1D6E67C75DZN0DOQLBNhaLhyOIfkFkdcBW8h6tkCtKRiZR2XCXjcBV9rbp8XSUcPaCa0RxNz2LGD/O4JWYI3zw9ituGDmTw0Bt459ZPeajp8yz8Yzl/j1nE421fZuq3sy/xrMtz1a/wQWnZtO7bDP9gX3exlCT3SD7d7uxAnSY1CAgLYO6YRWXjLcXWcscfcKvsvTfnldOkVQ/tPcJz17xOYU4Rg/43gH6P9WDlVNW/fc2sDRUKMlUVZOmfyjVjnYnUN4SC15U/2Pd1hNfAEwMNTVQ++HFhL2FWfndjnPu1BlxH0bgDp2UEjlRVp/oGCKGHoO/BvheMzcraBZabj+MAsuRnEIEI78GXp3aMdEBZ7x+n2lT8HVgmIdFDyAwllXzyIZYpyiUGql2iqXzut/AahNREqycj4zWgMYJlKmjMUPSGek/M14HLT6V0et2h0mk1D4PjANjmqqcvTTzI3OMXBU2Y+sxkHpT8BPpkpGWa0vJ3P31JQPgMuSBv1eXGTc9dT/Ua1ajfui5j3poAwKyf5nPH6zdxdP8xSgotSCnJzcrj9/cmcSQ9iz3r02k/sFW5tM5LyVVv8Ivyivn0gW8pyCmiVqN4aiTHUrNhXNn+2o1qkpWRzU9Dx5LatSFRdSNp0ftEMMtus/P+nZ+zbfkuklrX48N5w8pF5G1WOyUFKtuhpKAEvyBfnvr+QVbNXEe7AS2rlLGXjn3Iwg9AaBE+T6vMmtJx6n9hKkt9xLEZIU6kbGrMvXHp6it9d+tslYtu6oGUdrdvWiCMXcpdy1U8GmxrwdQVjcHtX9bVOmuhkLRMgZKR6oW+Dpg6V+btVw6GFoiAz5Cu/BPxBq27obY2QlUfn4LQ1UOiUdlJp3wZgGq+IsyqFkLaNiK1CWBygdUt9uZKV09H+jYghJKAzn9U7TP1AVxg6AT2zSqQLUxg7ILAhXRmqr68xt5KwE7mI4U/YABsZ+0cVlUoLigha382kXXC0RvOHGCt2TCuzDbYLA6k/It2A1pSmFvEvN8W02lQGyJqViM4PJDEVnU4kp7FtXd1pCCnEKfDgX+I/0W6ozNz1Rt8vUlHXIMYNi7YSmxiVIUGODQqmGd+fIj0bRmkdm1YLuouJVhLbABYS6y4XC60nDD4sQlRDJvwDOnbDtBugEoJ7HBjqyohtOSybgD7WoSpPUJXA2ldorI7AGlohcbrRqShicpjF35IvzeUKJhJ9aOVliVI6zyEsYM63tgOvG4r080RAH5Pl11PSgey5Cfliij9AVURegxpbK20dc6B0MYrwyj8/lG/2ouJEEI1UT95m/f9qqZAF+/Ouz/lGHN30NVRvnRd+BnPLS0LkHn3AwIR+J0KZssiZeyLPgJNKCJ4NNK2ARWktYO0g7aBCoTraoC+IRrjiRROAbi0EZD3sAq4+7+DxtAAGTRWxQEMVVsA0FJi4d3Bn7Fs0mrueP0mBr1UvpdyXlY+SyaupFpcGKldGwLgcrlwWO20H9CKjre0ZsrXs5n36xIAhk14hoXjl7Nq+noadkiiduN47qr3ONF1I3h98vOXvAjrqjf4RpORJ0bcx8JxywmOCMRmsVXYTLx24xoVBmOspVa63dGRowey6HhLmwpXCC16NTlNV+dyx1X0PZT+Arok1TIw4AOEvgFSRLrFvMDlsqLRnagqFl4nRKSktCILXgbXQaR1ARiSVXBRUx0Z/BdovFRVqH0rwvsOlfro3A+F76pOUdpYpSMvAqHCdh+nI8zXgnYiaLwRuqrTtUhofM+pRST0Z299KaVLae+4/ffSeVTl9WtjwbFHuWqcxeCyIIwtkd73Ky0ifQeEX4ezB68dOwEbyGyELFbzOUuLxapEYU4xK6accLGeavAnfTGTn1/7Ha1OS+8h19CiVyp6o443b/kYUH//dZvWQm/UExoZRExCJCkdk5g3ZjEmLyNpm/fjdDjZt+UAGbsOXRkGXwhxLfAJoAW+k1K+c8r+DsBfgFschQlSyn+XVnEBWDdnMz/+T/lIvf29adK1IZO/mklJUSm9h3QjuPqZ/xjm/bqEr54cCUCDtonUrVp2vUKkq1hl28h8lW5oUlXDwpCM9P8f5D0I1olKxsD3SaRjt2r7p20AFEHJOHdP1dZKT0bEK5EzUNK/uFSA0rZcpWCW/qUMviYMjB3BOg98XgesYGj2j3zxwnBqc/ErG+kqUvIPtlXg+xT4PAFo1RNDwUuqctncX6lrmvojdO6iQJ+HVD6+ZQrSYgWvG8qpbUr7dqR1PsKQijB1RTr2nZCFLnf9UmTJSHAeRnjditBXrSY+oVHBPP7Nfaybu5mug5WMSvq2DCZ8PJXAav4n9SwWpG/N4FhmLjc93xedXofD7sDsY6ZZ90aM3PEJBrORgFA/oupEkNw2gaDqgWTsPMSxg7lUjw8jscXpaZqWYgvjPpjE4bSj9Hu8J7VSKs79ryz+s8EXKl/sC+AaVLPyVUKISVLKracMXSSlvLTpFKdgs9jYt+UA3u6AihACL38za2ZvYOaP89i//SC+AT70f6L8tA/sOMie9ek0aJ+At5/XiWN9z5xiV5UQGm+k92AoGgGm3qp8/zgn67g4D+Oy74Dch5VvWPgqKV5jV3DtUUbesRG86iO87kAamiL0ySoImP88YFECavoU93V9VNGQKwe0FbvXyqbhOIQs/UNVw5oHXNHNus+KY9eJ9ErrgrL0VFfRz2B36+g4M8GZhTCeKEQTQou0/KW6agHok+Gk4i9Z/BO4MlXxm7GrkquQFuXzP/lpwL5GuYsAKXxBdgU0VeoJoPvdnel+94l4z/zfljDtW5UxNWziszz+9X3s2ZDO1BGzeeDjO6ibWpMP5g4l92gBqdcqN0+Yu8oW4Nd3JjL27Ync9EJfbnmhHy+NefyM1962fBc/v/o7AAFh/pe/wQeaAbullHsB3I3KrwNONfiXHWPf/ZOfX/2dxl2SeWv6ixiMBmo3jufjB76lpNBCv8d6UK1GaLljivKLGXr9exzYkUnX2zvw5LdD8A3ywehloGH7qqk7Im2bkaW/ga42wusWFQT0fkhpuGv8yxteXTMlLubcowJ2BUOVu0CXdEKrXharjA/78dzvTaB9Bo23+mWW9p0cz1BB1xAhfJDOXFVJqvGG81jRS8tEKP5MvdDEgOn8cuCvOHTxYOwCtmUIYztVTes8oiqPjZ3AmQWGDm4ZhhCk44ASWtOGqipmUP+flFIqnXnqs3RlqtqI0p9BVxesk5H29eUL07RRoIlQqZ2aIFV1bGiILI1CeN95XlITlxs1U+LR6rQEVQ8gum4Era9rSklhKf2f6En1GuoJKemk5um71u5lzJvjCYsN5YZnrmPCR1MpLbIw4aOp9HusByavimXQi/KL8Q/1JSYhioydmdSpoEK/sqkMgx8JHDjpdQZQUSSnpRBiA5AJPC2l3FLRyYQQ9wH3AcTEVL4fVkrJob1HCQjzY/Pi7QCsn7uZp74bQlhMKNtX7Wber4tp1qMx0779m7V/byK+fiyR7so6h81J7uE8APKzCtDqtDTr3uhMl6sSyNLfT1rpNQJDA/V4rw0oP86ZqVaUlKKc+MUqr97QGrT1wLuFki02NEW5Feq6qzityNLfy3z8Ql8HAr5BOg9C8VfIkkzwuhPh98L5T1pzXK/IVCaLcDUiNAEQ8LEqvHIeQWYPACzg8xygUy0ai94FQwLSshOZ97BynQV9p3oE62JAU61MkwdAygJwHU/PLFV6Q8aOYOiKMLYof31dHASNRTVmXwf6esolB0iNP8L30YvwLlQuba5vxrebh2P2NhISqYLoXr7mMz7BLxq/nMUTVXvMJtc0ZNDL/Rn3/l/c8Mx1ZzT2mXuOMLTfuxzafYTnfn6E+PoxRNW58A1pKsPgV/TcLU95vRaIlVIWCSF6AH8CFTr7pJQjgBEAqampp57nPzPlm1l8+uB39Ly/C37BvjTqXJ+WvVPLHsmi60bQ5da25B0twFJiZd/mA6RvOVBm8ANC/Rg68Rm2LdtJ855XgMMe1OoNQFtbGQNA2rYCrrJHc1k6HZn/lMoWwaja+Rn9VIWmJgTM1yKch5AIKHwD0LsNv1Qa89ow4ERQV5jagOMgsvB1teG4gTlPhPl69+rS/4T08FWKEAYQBqQjDXDXiMgC0EWoOAyAMwvpTEPp6R9UmjuOdHf2jT8y6EfQhCIts5TevqG5qpdw5ahzOna7t5WXeJCuImTJD2DfCd73KRedfaPKDtJW3Y5a0f/A+Ca2qIveqCeyVjjR9SJo1r0RfR7sdlbBtH1bDrBvk1on712/j7b9WpxxbGVSGQY/Azg5OTgKtYovQ0pZcNLP04QQXwohQqSUxyrh+v+IjQuUp+ngzsNsWbqDFr2asOSv1YRGhdCmX3O8/bx4ZuTD7Fi1G61eS2hUMEmt6pY7R0qH+qR0qDo+ynMhvG5SfnRtCEIbphqD5N4FuJD+7ykZA8chNca+Rv3h65LcMsbLVFAw9wGkPKakE4Ayl402Coy+CPPpMsFCFwkBXyIdm1RnqX8yZ6EFY9VOCaxshCEF/D9BujIQxl4g9EhXkTuvvj3CVUf55DXBYGzq7rPrcMda0pGOWSrnHq1bdXOpasIifAE7lI5GGpqDqQtC6JCuEmTpSbUPtrpo/F5AGturOI2+aj/5ni8tejfhp12fYfI24huo0oe1Oi25R/PJz8onNjG6nFvU5XKRseMgqV0b4nS6aHURG59XhsFfBdQWQsQDB4GbgFtOHiCECAeOSCmlEKIZStIhuxKu/Y+59u7OWIqtNO6STO3UGmxZsgOj2cDiiSto3bcZQgg0Gg0JzevwxuR/4GKowgihKR+wc2ai5HEBy9/KR2/fpHK2zbcABrAvAM0hFcRzFZ1YSWoCwPdFNUYbofy7toXgsqmyfHfLPuH9AEIXgTC1Q1C1ugZdzghz+XaMwvfBEy80tRAB7554beqOdB5RhVjGlmoVrwaCvrUSwZMOpalvm6c0eCzTVa2E/1vI0plgnap6EDj3Iwyp6pr6K188cO+m/cwZNR9rqY1W1zWlyTUNy+3POZTDDy+PJWNHJsntE7nzjZvLjH5BdiE/vjwWISA2KeqCB2pP5j8bfCmlQwjxMDATlZb5g5RyixBiiHv/18AA4AEhhAPlAL5JSlnp7przoUmXZJp0UQ0w5oxeyMGdh1j61yoAWvdtVvZotWvtXlZOX0v9tok0bJd4xvNdiQhTJ6TrCZBOsG9TG+VxnXSzKsPXR4BtgdpkaAPG1qoBt+k6KHxLZYh4DwHX31D6GxKjShl0xwqkLgmhu+ni35yHMoQuFuF/ohkK3oOQ2mrKwDt2nojrGFqB9z0gAqDwf6Bvgiwe7c7K2qG0jgJ/QRiv7BV95p7D7Fm3j4SWtZk3ZhFpm/azepbK6Htt0vM07tygbGzWwRz2b81g24pdbFm6g+73dC6TWvcL9uWmF67nr89n0P3uzhe12r5S8vCllNOAaads+/qknz8HPq+Ma1UmHW5oxY5ValUTEOaP2edEgGXM2xOxldqYOuJv7nj9RroO7nCJZnnxERp/hM8DALisq5Tuja4hyh+/ClwZYL7LrWMvlV9fWx1h7qdcCMclFmwbVBAPlHHQ1VZGA656v/vliNAEqLaPJSPBy925S3gr2QXhrszVd1AuoNJRIELA539qu22u0tG/Qj9XS4mVt275mB2r9tB2QAvaD2zJgZ2HAOW+WTBuSTmDX7NhHMkdEtm2YhcNOySRk5lTZvA1Gg23D7uRG57uc1ZV3QvBFVdpay21MuPHeZQWWrj2ro4EhJ5Zv0Kn13Hb/wYSUaMaIVHBpHZNwelwkrnnCHVSa/DDC6q36Lwxi68qgw/uyk3rQih8TxVfaSPAvgL0DZVrB4uS1dUEgLEdSAfSMhdKRqnqTvONCEMLpX2jr696xuoTkLrJACcKgDxcNkhpB4uSzqB0DgR8rxq3O7Yh859R2/2HK7lrxybQBKrVf05vwIF0HkYEvH/J5n8hcdgdHN2vQo7HMnJo0q0h3gHeGEw68rMKcdpdZWOdDic/v/Y7C39fzsCne7Pw9+VM+24uSa3LFwVebGMPV6DBXz1zA58//D0ABpOefo/1POt4v2Bf+j56Yswfwyfz3fOjadUnlesf7s6sn+bT4ZSu9VcDsuRn1dtUl6hSII+v2l15YOoF9g3Kr2vsovLhhQlMPZUhANBUQ+ri0Gibgbl32Xk9hv7yQdq3Ii0zEPqGCFNnVT9h7q+6YGmCEYYGJ1b9boQwgu8LYLoG9ElIfNTvh+sgV6A5KcPH35uXf3uSjQu3ktw+gZd7vM3WZTu5bdhAOtwQR0JLlXS4c80eJn05k6LcYizFFlbP3ICl2ErNRnGX9gbcXHGfkF+IL1qdFqfDSeApvSjPh1Uz1gGwbPIaRu35jNtfuxGfAG/2bTnAr29PICDMn0Ev98cvyLeSZ3554HIWqS5VVne7QcdW8HkSdLeBfR3C2A5haIqr4C2wgVJNdLorcPUq0IdB9Zwt/ABp6q6kjT1cdsjiEWCZpmSZQ2epmgn76hMFdIa2YL4WTN1Avg9owdhRdQfT9VHnsO1SKbe6GHAcPPc1pQRZpPSDqhjJ7RJJbpfI2tkb2bJUNbfftnwXt/3vhBT4jB/mMvNHVYfQ497O1GoUT2KLusQ1OF3l9FJwxRn8Bm0S+Gjx61iLrSS3/+fB1hueuQ7fIF+aXJNMtdiwsoDKrJ/mMXeMqhxt0DaBNn2vvJRAV8kfUPyVysYQBlVlaWyL8BqkMnlMncrGCt8nkLok1a/W0Fo1FLctBAwqNbP4PfB5ElkyGin8Eebe5doIergM0LhzzbUxgJdqiqKJBlarfHuduzLauloF4oUGKYxIWaRW/vpGqhG8pprK1zc2x+U4irCvBW30aa0ipZQqS6v4W6TPw2i8776491sJuFwuso/kcu1dnUjflkGLk2pxsg5mE+GuxA2PD2PHyj0YzQZ63ncNGs3l0WvqivwLTGh2bgGntXM2kXXwGK36NC3LnQVo1r0xzbo3Pm28y+FCb9TjF+SDX9C5pXqrGlI6oegL9WjuylY+d+/HVYFUBQhhBkMysvhLcB4C74fBtshdjt8MzH+DZbYyFKCKs0wVNBL3cMkQPkPcNRXxJ9Qy/V9Geg1CaAJPSDFbF6jUXIn6jEt/Qxo7Qelk0PiomI59C9hXgisbWTpGBemDJ4LzANKRrmI/tiVg26zqOop/RHrdVuU0kLYs2cF7gz9Ho9Ew+LWB9HlQ1Y9k7j3CC11fpzC3iEe+uJv5vy5l76Z0/EP9OLr/2CVXyTzOFWnwj7Nm9kY2L9lGqz5Ny0kb71q7lxe6v4HL6eKut27m5udPLwo6Fe8ALxKa18Y32JvYpKqnD3IuhNAivQZB0ceqCYauiRI7O9sxungIGou0LYGCN0BXE8wdVNtC1zHVVg8A7Xnp43i4uAiNH1KfCM50pCtU9deVLoS+XtmTrbQsBmcGGHuqdE1NJOjqqeY0MlcV1hmuBebiPkAV6AkvZPGvqiOaKwNMPdwN7Q0q68fYGikFsmQC2JYgvAYgjC3PNNXLBp8AL4xmA9ZSG96+J36nj+w7SubeIzS5JpkvHxtJ7we74bA78AnwIiDszA3oLzZXrMHPPZLHq/3fp7TIwvYVu3l7+ktl+1yuExF16aro6NMZ+Mx1JLdPIqJGtcuic82FQHjfjTR2Ue3sioaBKw3pdQvSvlV1qtJUA/MNYFsJ9uWqsYmpC9K2GmQO2HNAF6tWegDkIwK+Bo0fwnD6U5OHS4t0FSHzHlF6SN73I7U1oPAd1Q7R92m1+pY5QJGqutVUg8CxyhVknQy2+aBvCl6DlIwDgL6J+v2xTACWqhoNWwYq1oP60vB7SVV0FwxTrRgNbZElY6uEwY9vEMtHC18n90geKZ1OVNsntqzD3W/dTG5WAWtmb2TWj/O47/3b6Hxr2zPq6VwKrliDrzfqqRYfyr5NBwiLKd9FqG5qLd6Y/DxZGdnn5YsvLbGwc+VuwmtUIzT63I2qqyqydDKUTgD7UjD1A1chsuhzpYToFsTCVQS22epR3TIdDPMQxi5I2yLlC9YmKs10ZxbC0AZhaHj2i3q4dMhClW0FYN8Hto1q1V4yErwGgy4KjJ2hdLp7fAlgR+jCkLq7lUtIVwtZ9CWU/AC6JIS5DxjbIS1/gqY6eN2msrr0TRDGtqCtgdBFKeG8UiULjPOgakhfRajd5PRGSEazkZue74fdZic+KYaivGLaDmhRztinbd7P0j9XUrdZLVK7plzEGZ9AXKKC1/MiNTVVrl69+l8ff3DPYdI3HyCxVR0CQv1xOpzkHslHZ9Celp+ffSgXvVFXln3jdDjLxI9+fm0co4b9TlxSNB/MG3pFrvDVau8J5aPFpR7bXXmqibj5bnDuUOJqjk2qgMo6H/SNEQHvIYQeKe1l2ThSOgFnlfPPXo3I0qlI22qEuRfSmaFW+KbrEb5PlH1+ruLRYHUL4AkNlPwCmhCE/9sIY2tcOferFF30EDACQTFSE10+DnDqdaUDWfQFlP4J3kMQXgPLNWCpythtdmaPWkhRXjFNr23ItO/mYjTpyNx7lEV/LMdoNvDjjk8Ijbowi0chxBopZWpF+67YFT5AZM3wMpXLwpwiPrj7C7Yu3UlyhyT6PdazTBRtzeyNvNrvfUKignj1r+fYMHczY96eSL/HezDgid4c3H0EgP3bDlKUW3JFGnyEF2hrgNGkNNT1DaB0tNonC8C2GFiuArKWSWBoB9pqKJE0PTgP4iqdjNDVQJh7qi8Q+x7Q1/QY/ssYYe6JMKs6FEETpKkbQpxYlUrbRrBvBa2v0sVHD+YbwbYMaVsJhlYInweRljhVcJd3HxI7eN0N5uuBig2+EDrweQSpiVCtL7Wh5bLAqjJrZ2/ko/uU0MCxjGz+/HQaGq2GzoNU0kJQ9UA2LtxKUqt6Fz2Ye0Ub/JNJ35bB0r/U00LBsUJ2rNpdZvC3LttBabGFAzsySduYzq/vTKQot4jxw6dw7V2d6PdYTwJC/ajbtCaRtatfytu4YAihAb+nkPYM0PojZCnS0Fg99jsPu0c5QRMOxhiwTlNfBKY+YEhEloyBkpFIhHpct28H6xTwfgTh+8glvTcP5085Y+84gsy9F7TVQZcMSNV7wLZE9Rsu/g6pT1GaPD4PIws+B0Nj5aJx7EAWDEUGjkTIQtVwBZSAXsFb6nfH50EoVLE1WSwQVcjgSymZ8MlUpo6Yw83P9+Uad3vE0uJSMnZlltUCRdaujtFsQG/Q0e3OjjS9NoWF45bxzq2f0aZvc4aOf/qizvuqMfixSVF0vLkNW5dup0bDGJp2Tynb1/r6puxZv4/A8ACCI4Ko3aQGWq0GoRFkH8ylTpMa1KnAb1fVkK4CZPEPIAsRXncgdKcUgzgPQP4jSps+8DM05u7qOGcOUuOOgxR9ozJudLXUH//xjkbH9ws/sM5RWuoAtn/vkvNwaZBSgnUB0nkMRJiqsdB4q9Rb4a2kNoo/Ux218p9FCj8I+ES1tbStUHILLrcefsFQpOUvpO9QNN43I23LwOaWb7A1Vdk/1qlVbnWfn13I98+Pxm5zMPrN8XS5rR1CCFZOXceIZ34hpWN9mvdqzIJxS6nbtBbd7+lMw/ZJFOYW8c3TowAoLbZc9HlfcQbf6XSyfeVuAsP8iah54nHSN8CHF0c/hs1mx2A4Uflps9opzithyIe3ozfpmPHDPEryS8g+lEdw9QDWzNpAbOIVkoZpXQrFXwIgNeEIn3vL77dvBacSk5O2dQhDKlJaQBOIMLRAWiaDPKy8ON7vIsw9VKk9ILwGIzGBdZaS2fV5Sj3i6xOQUl5URUAP/xHrUmT+s0oDydxVBWRtC8D3RTTed+Aqma6yc6TD3ei+BESgWjCAStn0fUcpqua4m95Y54D3zYBRpXLKEhB6RMBb4HpaBXirEL6B3lz/SHcmfjqdHvd2QQjBscwcJEpMbe2cjTTt3ohNi5TabHS9CLrc2g7fQB+G/vE0W5btJKllHZZPWU18g1iqxaonIJfLxcI/lpN7OJeON7c5qxbYv+GKM/jTv5vLJw+MILh6AB/Mf42o2tWRUlJSWIq3n1c5Yw8w6YsZfPP0KEKjg2nQNoE1szeSn1VA856NcTmdJLQ4dxFXlUEbq9QqZRFCV8F96VNVvrQzFxC4iseoLwhTTyj5GfQt1R+6NgxhbFVm7AGExozwuR1pbA7CB2mdDaVjoVQgNREIU/uLdpse/isOFcOxLVKxG0Nb9bM0Iy1/K6lsTSSQC14PqtW/dTp4PwSWieopwLkV4dUV6fMkWGYizEoKW+jrIAkFjRWhjVUFfNrIS3u7Z2He2CVsXryN5r0ak77lIHFJUTS9thFarZa73xnEDc9ch3+oHwd2HOT5bm9w7GAO3e/uxOG0o9itNm4bOpCMHZlUiwvj9w8n0/WODiS0qENCizq8f+fnzPppAXWb1eKDv4di8jaxedE23rxJNYW3lNi4+fm+lXo/V5zBz9yj/M3Zh/LIPZxHZK1wfn7tdyZ8PJXbhg6k/+O9yo0/6B6fdSAbs68ZS5F6zPIL9mXI8NuvKM0cYUiA4AkgrQi9apjssm1XhlkWInweRBPwMa6851XxlKGlanfn2A44wL4IvB4CXTzSZUOWfOsuqumGxthKXcMtjytLjzczk+6+th6DX2UwtlENb2yL3K/bI7wGICXIPCWbXfYlYPSDkj/VNt9XVY0GdjDfhSx8EzRhiKAxqqgLdz/jwA/VouMyl1I+sj+Ld277FJfTRc7hPBZPWIHeoOObDR8QXTcSrVZLQJhagWfuOVKmpllaZEWr09LkmhTqNKnB0kmrGHr9ewBodZoyQcdMdzJIxvZMivJKmPfrEgpziwiJDOLYwRzM3pWfv3/FGfzud3cGKQmvUY3ElnUoyivm9w8mYym2MPGTaVz/SHe02hO9Jnvc05nsgzkEhQeQvmU/A57qjdAIutzaDr8gX/KPFbBs8moiaoaTXEUboUjHXtXOTlMN4X1rWWDOVTIOLFPAtlyN09VB+NRUOjoAmjjQ5ihtHbwAM7iOQNFvYOwPzo1KaMuxHWloUm7Fj74lGLYBWtDGXcS79fBPkdKqGpq4jiG8blaxHe+7kdpwlWpr6q4yrUqnnWhWLbzU/9oglBlxAC7lynNlq59L3FleuiQwnehqJnRVw0Xq7e9FvWa12LpsJ15+6gvL6G0kfWsG1WJDMZhOZJ81aJvArf8bQM7hPPo+1oO4xBPxMZ8AbzRaDS6nC9+TZFnu+2AwyyavpmH7JNbP28xwd2bP/cNvJzwmlNST4oyVRaXk4QshrgU+QXW8+k5K+c4p+4V7fw+gBLhDSrn2XOf9r3n4oAJQ497/i4mfTmfQS/3o/cDpvVOPpGexa81ezH4mXuv/ITaLnTenvkDjLsmMfGUso98Yj96o58s175b7IKsKrsKPlCgaIAJ/QBiVPo4r91FwZYEzHWQJIuArhLElLnu6Usu0zgFKwXcYwpmu0vAc21SHI019sI5WPn/hjQiZh9AGlLuutG0CnKrXqofLFmlZhMxzC5l5P4TG97GKx0kbsnQaIEGfgpBZyNJ54NwOmFTZun0e6OqC171Q8AyIUETwTwhdzYt2P5VJzuE8MvccplpcKEv/WsXySatZPWsDD358J30f7XHe59myZDulxRYadWpQYXPzxRNX8Gr/DwAYNvEZWl/37/vcXtA8fCGEFvgCuAbV0HyVEGKSlHLrScO6A7Xd/5oDX7n/v+A4HU4SW9Wldd9mRNWuuBN9tdhQqsWGMnPkPEoKSwE4tO8o1lIb0qW+EKVLgkt9gexel4ZfsG9ZoOWyR+fOMBIhKsXuOIY2qo2dsRto406Utpf+qmSR7Wrlj20pmDorgSxHuirFN0m18tfVU7ncpxh7AGFocNo2D5ch2nB3bCfvrE9jQhgQXteftCUeZCmycB3oY92NcRqCCFa/T8GTQPgidBX/3VUFgsIDCAoPAFQXqy8f+5HkdonYrLZ/dJ6k1md3X7Xsk8qbU18AIUjteuGq0yvDpdMM2C2l3AsghBgLXAecbPCvA0a5+9guF0IECCGqSykPVcL1z8qUr2bxxeM/EhYbyvD5w6gWe+ZChxa9mnDLS/3Q6XVsX76TUa/8xoOf3sljX91HRM1w4upHM3PkPD6460vCYkN5f84r5TKBLleEqY9qNK3xL5eKqQqkcsB1CGE6qcmLMx1kqVrJSxtow5HZfVU6nrGtqrJ1ZSkfrtftqnmGhyqL0NeG4N/AVaiCtedA2jYiS0aphYT5RjA2g+KvlZvHeK3S0XGkQcgExHmI5kn7LlXvoU+5rKttE1vW4e63b+HHl8ZiKbbQ+ZZ2hEQGVcq5tVpthSq9lU1lGPxI4MBJrzM4ffVe0ZhI4DSDL4S4D7gPICYm5j9PLnOvCowcTc8i90gBRXkl+AX7Ehql8satpVZWTF2HRifYv+0gkbWqU7NRHENSVEu3Rb8vZ9D/BvD986OZNWoekbXCy86XlZFTzuBnZWTj5WvC2//yUoYUQoCh/unbNd4I3yGnH2DsArb1oA9Uqz/bareOCoCfEsvSNwNDRzC2uKBz93BxEG7t+/NBlv6lqq1BpWBq3E+60n4i/iNOd1tUeC7bVmTuLer3y+99hNd1/2TaFxWNRsOxgzk47A52rtnLwV2ZlWbwLxaVYfArSrA+NTBwPmPURilHACNA+fD/29Sgx31d0Oq0xCZGsmHBZvZvO4hGq+GWF/tSPT6cWT8t4NMHv0Wj0dCoc33W/b2Zd+f8j253dmDF1HU4nS7mjlnMimkq5HDve7fS9c4ORNWOILHlidTGReOX89Ytn1CjYSzDJjxT9oVSJdGEgOUvQILfuyrLxtRHSd+iQXjdBcKMzH8aij9A+g+vUlWSHv4ZUtrAMgeJBmHqAoYGUCpUPr0rTz35+byM0NVESofy5QtvcGaC5hxpza6jJxYTrswLfi//lQ43tObgrkPEJUVTu8m54xKrZ67nry9n0LhzA657WBUyFueX4BPgfUlqUyrj+SkDODmSGQWc+smdz5gLQlxiNPd/MJiAagF899xoZo2cz7GMHLYt3wWAzaJ8cS6XCyEEbfo1Y+h175FzOJ8aDeNYMnElsYlRNOvZmA43tiLnUC6H9x5lw/wtHN2fXXadLUt3qG/+1XvI2HnBPVUXFtdRwAJYVWGN12AlqWBbCc6d6tHdsUf59mUJ0rr0Us/YQyUjnTnI0klI22awzETmPw75jyLzX0cYWkLgDKWkKQxg7ILGZzAYW0LJ92AZB/alSPu2c1/I2BJ8XwTvBxGm6y/0bf1nElvW4c0pL3Lvu7fh5Vu+CfmutXt5beCHfPvczxQXqC+xv76cwfLJa/jy8ZFk7j7MT8PGcUvMA4waNq4shfxiUhkr/FVAbSFEPHAQuAm45ZQxk4CH3f795kD+xfDfn8zJuvdCQ5krpusdHTCYDHj7e+EX4svsUQsoKSxl1fR1PDD8dq69syO5R/NYOVWt8Hs/2I2NC1R4YvXM9UTWuhaA9je0ImNnJjEJUdRtWjUyEqR1PtK2EWHqhtDXLdsujB2Q3veClMqnm/egUs00dgLrXKTzMEKfoLTx7VsQpq6X8C48XAhk8XdQ8p0K5vo8dWKHq0jts/4NuvpgXwO6uOM7VatDAFc+WBbg0oYjDE3PuJoVwojwvuMC3smFxWaxcSjtKGGxISz4fSmLxqtEh0adk0nt2pDGnRuwfPIaWvZJxehtYPyHk7GW2pg9agEbFmzmxTFPEBJx8dxC/9ngSykdQoiHgZmotMwfpJRbhBBD3Pu/BqahUjJ3o9Iy7/yv1/2nNOuewvO/PMrhtCM0aJdIPXcbRN8AH3oPOWGwnHYnO1buJrVrMj3u7YLJ28SUb2YDyhdeq1EcAWH+SOkqp6+T0Lw2b0x+4eLe1L9ESgeyZCwUvg3Ykc59iIDhZfuFNhThq2IY0rYe6Tq+EtGCsTtYFoLPIIT5evB5EqGtWn5MD2dHylJVbwHK3WJoCj4vKH+9NhJKvgGketLThKimJygFTOk1GOzrVcczUQi5dyG970M6j4I2EOF9X5VsYH4mfnjpV8Z/pEQWW13XFJ1+KuHxYWRlHGP0m+NJ6VSfkTs/JbBaAGYfE7e/diN/fjadOqk1WfrXKopyiy+qwb+i9fD/LU6ns1xxlrXUyoopa/EO8KLJNQ3Jy8pHSggMq5oyydKRrjoduXLVH7bXXWj8nq94rHQiS/9Q6peYgTxwWZWcbckPYGiHCPzSI4F8BSFLZyOLv1DieIYWaHzuA8DlLIScu5RUsn0NeD+KMHVB6GLVcY49yGO9VPaONgFsf4MsVu5AYVTZX96PqSpb800IfeylvM3/jNPh5Pbaj3AkPQsvPy9Gp3/JpC9msG7uZnIyc9m//SDVa4QxYsOHmE6qmk3fmsHsXxYQXz+GzrdUfp/nq1YP/99ysrEH1c2m3cAT7dcqW9DooqMJVSmXwqj61xo7nDZEukpBCIQwIbxuxFU8Cqxzld8eVF9SAPs6lcLpMfhXDtoQ0NZRshmOHbgch9HowtFofXEZU91B/JsQhtYIXSzStkq5erT1lHF37ALTANDXU7Idpv4qbVMTAbaFYF+HFCaEvuICr8sdS6mVgqwCQqNDGPLh7cwft5RWfVLx8fdGSsm+TfupFq/Sv4MjgtCcUmgVmxjFPW8NuhRT9xj8kyktsrBnfRqRtasTWC3gUk/ngiClE4QBEfAusvg3KPoQSn9BBk9EuH2x0rZFZeAIPdJwrep2JYtBE6bkj2UBGBqBNkqJqGmq+Begh3IIQyNk8c9gXw12QNcIfFRDemFsibQtB10c0pWLtCyCovdVoN/nWUTQD+A4gNQlIOxLkb7vIjQSaWgK6CFPPS2grXoV6wCWEgsf3PUlC8Yt45HP7qbPQ9fSpt+JLPR+j/WiZsN4fAK8yD6US53UmhiMSrBx35YD7N+WQcMOSfiHXJrG5le1wV8xbS3zf1tCarcUOt/SllGvjuOPDyfTsH0ir09+AbPP5dN8uDKQjnRk/kvunOc3wLkHsIDUKanb4+Psq937UNW0VndPU1N/d6ereIT3vZd1kYyH/4g+BawzlaZ9uYB+OzC0QOY+CiW3g9f9qghPGwMui8rn18Uji75FFr0Pxk5I61wQgYjgXyF4rAro6pMv3b39B3IO5bFg3DJA2Y9eD3Rl19o0AkL9qBYbitnHRIteKqZRmFPIgnHL8A/zI6l1XV7q+RZH9x+j3+M9eWD4HZdk/le1wf/++dGkbd7PgnHLSO3WkJ2rlZHbsnQnJYUlV5zBx74W7CvVz5Ypyh1jaAnGbgh9rbJhwtACqW8ECCWDqwlVXxKuo6q6VlsH4feIapRhWwlChzA0uTT35KHSka4ilZGlrw8iAI3hRHKCdOxBlvzpduHplZKqK1v98zm5s5nTfYC7yYfMBecxhPHfa8RcDlSLC+Xe925jxZQ19H6gGzO+n8tH939DeHwo780ZSvX4amVjp/84j2+f+RmAV/98lryjBQAUZhcCqonKrtV7iasffdEKuK5qg9+0ewppm/fT6rpUzD5mbn/1Rhb8vpSG7esTXP0KzDzRp4AuRemZa6PBsUNtN5XX3Bb6uhD0K7JkMhQ+r/a7HIBb8tjUDZdtl1r529eq4hufZ8rLM3iokkj7LmTuQ6r+wtwPTAPL7y/+xd3rWAM+ryjD79gLhhTESat24XUTUgSCxk+lb2ojVPvDKo5Wq+WGp/tww9N9APj6qZ8AOJyWxdzRi/EJ8qb73Z0xGPVlvTc0Gg3+oX68+ucz7Fy9p8wF9O0zPzNz5Dzqt03g7ekvYfIyVnzRSuSqNviDh91Ap0FtCY8Lw2DUk9wuscpKIJ8PQhcPwb8AEqQDiQMQCNM1ZWOkYy+ydKLS3nEVAE6w/AHme0BWB4MenPlQ9La7sTmqpZ3MuRS35KGycWwB174TPxftRQZ+BuiQpX+qJz1dgsrusi0DQ3NE6HRAjxAC6dgDziNgaILG+0Z1HnerzCuRbnd2xGF34nK5mPDJVAqyCwmqFkDb/i3odlcHAsL88AvxI6mlcouldk0pO3bflv0ApG1Ix2axeQz+hcZoNlIzOe4fH2ez2Ni2YhdhMSHlHuGqAmXpk8KI8L7ttP2y5FcoUasWAn8GnlB/5NZF4NzqboqSrsrphY96WtAlq6pLD1UffTP1WTqzlHCeYxPSmY1wHYYCd+qusZfqWWybCRpvZLFTNU0RemT2rSCzwecphM/9l/ZeLgLx9WN4+NO7+Ozh7yjILkSr06LRqiIzs7eZDje2xlJqZcuS7Ri9jYTHheEToLS2hgy/g2WTVpPSMemiNVq6qg1+RbhcLuaOXszRA8focls7wqJDyNiZibe/V1nmzoRPpvH9C6OJrFWdD+YPu6iFExccjfsLTISBNkwFby2TlE9XmMHQAnR1VHqmoR3ok9yyypdvPYeHcyPt25CFX6n2lb7DwLkHaZmi3IC5DyO97wDhq1QtNWZw6cDoFjorehtKI5E+byhjD2DfhJSuqyaw37Z/c1wuSUTNMJr3LB/P+uXV3/ntvb+IrhtBVJ3qPPLlvYRGBmP2MRGfHEONhhevHsFj8E9h67KdvHv7Z4BaycclRfP2oE+JT45h2IRnCI8L45BbgTNzz2EKswuvKIMvvG9D6uop444J7BuUkXdJRNDXZSmY0tAUHAeRshhZ/D2UjEP6PoLGfPmqHXpQSGnjuAumbJt1mXpyc6xB6uLReA8CTRCy6AuQR1QNhv/nYFsCwh8CngHLNCWVjcvdwNwBxh5KV1/a1WuurPqMPRv2Mf27OUTVjaT3kK5lzUzyjhZiLbURXff/7Z11eFRHF4ffWY8rkAQIJMGCBUII7u7SUqhBDajrV3d3qJcaLRVaaCm0RYq7B3cIHiPuWZ/vj1kCIQlSHPZ9njzZ7J1779zZzblzz5zzOzXQ6U+Y1YR/N5UWMk9OTCMgxJ/UxDR0ei0v9H+bzORs+o/twSNfjrkk/b/uDf7B7UeY/slsqtQIYtgTA/Dy88TDy0RJkRm/IF/2bTpI+6HxZBzNYvU/CQx5qC+DHuiFl68HEU3CiWhydWcLnooQRqRjLxS8A8Yb1YKbZRbomyMtqxEevVXlo7wXVMKVdTngofz4xb+Ay+BL83KkfS/C1LOMBr+by4u0rEXmv6CqUvm+gtAGqw3CU1UzA1XkBkBXS2njONPVd8D7QTS+/ztxMK9bcDqzAYtSx9RVVYu1lhUIY4drMvt6zncL+evzuQDUi4uiYet6FOYWMm70l5QUmtmxcjfxfZuj0agnm13rEjF5mWjVP5awiBA8fD2w2x047E5KXMWWSlx1tC8F173BX/TrCuZ8uxBQejhxvZrx4bJXyUnLo1mXRhzemcRT3V9Do9WwZfEO/Kv60WFoK8a8P/Iy9/wiYlbjgW0ZCNfTi30PFH+H1NVG4uuK9KkO+vZK/FrmgWEwTssaKJ4KFINtJ9KRhPB7+XJdiZtTkJalSuLAcRjsw0GrUvuFqTvStlPNzoUfTkceQmMEXR2w7wV9I5WZffKxHNkq7NK6FpAIr/sRxtaIa7hGQrXaSvu/So0gDu84SsPW9TB5mWg9II7Fv64gvs8JYw/QfmgrkvamEBjiT0jtqnz28ER+e2c645a8ymt/Pc3ehP20HlChCsJF4bo3+HWa1Uaj0VCtVjBhUcp/Xbf5ibjjqGa16XZbB5L3pbFyxjpWzljHC1Mep9NJUgvXCtK2B2lZrtLitREq5E7fCsz/gHCAdataqC2ZoSJ0hLcK2yv5Xs3w7RtVqKZwqCxNQxvQeJY9h7NIxe2Lix+R4KY8wthB+eZ10a7i9CBtiUhHslLAlBlg0kHWYKQmADzvAGcR6JsjtGEqU9u+D2ndCkWfgmmEaqOtCfp6l/XaLiRSSlb/k0DusTw63NganwBVfLxBfB2ad2tCYU4RR/cohXedXsejX45m+JODCKtXtgJeRONwnv1ZSUj8Me4fAJwOJyVFFuJ6xtC0U6NLeFXXscEvyi9m86JtbF+5hxHPDaHLiPaE1Qkt106j0TDmvdtZ8PMyEuZuBtSX4VpE5r+p6tgae4FlHmoh1gn2LaCLAq+7XUk2LvVMWawe+/Udla9f5oE+DkQIGHqDPkIZhOPHt6xF5j2h6qb6vY/QqfGW0grOPIT2KqkRfBUjjG0g+F8lryF0SOt2ZM5tyj1n7KR88tIJzmT140hC+L2GcN24nUWToOBNFbarj4Xij5U7x9gJWVSCxIrQRSNMXS7vhZ4n21fs4pUh7yOlpCi/mGFPqLj76Fb1aDOgBWkH0+l954lr9PT1JKpZ7dMes+eozmh1GnwCfWjerXwFukvBdWnwi/KLmfTybyz4cRkFOUW07N2M0NpVqd2wRoXtDSYDPUZ2Ki140G5wy0vZ3UuH8Fa+XU0wYATM6rUwgW0bmIYgs29Rj/meo1Q1I+kJHiOgcI8y+MJXlT0seAGsgDYcqRsE1gSkbbNKw3emK3+xLhTpLEHmvwTmmUjfV9F43nR5x+A6QJz81OVIO1FxSlsbvB5WhtzhqkhqmaeEzrzvUn/bU9UivvCktJCdLFLJd45jUPIjEh0EzyrVZroa0Wi1Kq9AyjJiijq9jiEP9yvX3mq2sm72JrwDvGjWpWJj7hvkU+G+l5Lr0uBnp+RgszgwF6tqV9IpqV73xKNY0t5Uso/lsGv1HnwCfeg5qjN6g57Ow1UmaXZqDkUFJdSsF3ZZ+n+xEL7Pu+Lwv3G5Y2qowtYBP6vwOtsOJDZlrE23gGWGKmNn6g9+H4N9N8LYGex7SoM0hfBUCTv5zwEmFcON9USxbOcxVzlFwLwI3Ab/0mJsB95PgTMf4Xlz6VOXU3hD3pNgaAiyCKfTikZjUMlYtrWAAQKmgLaaejqQnqpYClLJKuNxmpNe+TRqW5+35jxHbno+bQedeYK34KeljB/7NdXrhNC4fTTmYgs3PzuEqJjaF7+z58B5GXwhRCAwBagNHAJuklLmVNDuEFCAEtiwV6bVfKkIqxtCzQZhtOjRFINJT53mEXzywHc89Nnd6PRanu39JuYiC/F9m7Nm5gaqhgeXZsgl7Uvl2d6vk34kixemPE6Hk5TyrnaErjqYuiBLZqNm+BawLANtTaQzFfQtwfcdlYErbMpPD2o2mP+Mel9fH4ydEf4TUWF6HaDoK9cZzOAxGI3pJA1wbXXwfgRK5iE8b7y0F3ydIK0JyOLflcCZNsIlWdwJ4XkHQuOB8L6n3D4aY1OcHoOhaPzxd5DeY5Sf3rYWdA0Q+toI44miP9KZB/pI0EUgdFdXQmJFtOgRU+Zvh93B0T0pBNcIxNvPq8y24kILAFVqBjP3h8UABFcPJOrD2pekr2fL+c7wnwEWSinfEUI84/r76UradpFSZp7n+S4IWq2WoQ/3o1HbBuxN2M/3L/xKQXYhmxdvJzMpm2JXuJTR00itRjXxOSkLLiUxjbSDGQAkbjpwTRl8AGFogfS+BwpeUW+YBoF9u1q4NaaCZSaYBoDXA+opwL5PuYEsc0B4I217EfrGCFP7Ewc1DVXrHtqgchEcQugR3g+A9wOX7iKvM2TxL2Cepf4w3aTWaWxrwNhdrcGc3NaR6crBcIDjpCqkto3I4ikI70dVJq42EqEpa/SExg88ype7lNb1SOs6hKEjwtDkAl/dpeOPcf/w7TO/0KpvLM//9lgZccVed3Qm42gm5mIrqQePkZ2SQ/rhDI7sTia8QfUyx7FabGi1mtIY/kvJ+Rr8QUBn1+tJwBIqN/hXFHabnRXT1rBz9V5qNaxJ8t5k6rWIZN4PS2jZuxl6o560g8foP7YH9eNO1Kht3L4Bt714I1kp2XQZ0f40Z7h6EdoaJ/Jm9S1cETke4Dig3jP/g/B5AgImgrQo7XR9K+UDNk9D2naA30ulcdhCF4LwKW/QpXUbsuQvMDRxJ2xdTPSNlcHXRgFK0Atjb9BUUVFTMhehrY40L0LmPgK6huB1H1gXgaGTeipw7AFHtipPaGx71qeWzgJk7uPgPIbUL4HAqZXWt73S2bx4OwDr5mwiLzO/jMH3CfBm9Lu3cXhHEkGhfmxZvJOVM9Yz5NF+wAmDvychkQ/v/hLfIG+e+PY+QiNDTj3NReV8DX6148XIpZSpQoiqlbSTwDwhhAS+klJ+fZ7nPW8yk7P57d0ZAHS4sTVvzHyG3Ix8BtzXk40Lt2HQCo4dzqRx+wZl9tu+YhfL/1xDXK9mhERWdrlXOcYOCP/vAIuKvtA1APSqdJ3wA2NHZOFkEFaE592AXbkLHEfAvl9VPXLkgu704yOLf1BPDiUapD7mql7ku5IRnqOQmkhwJIKuEXiNADSAXRljWYzURYPGD7CAfRMgQNcApMGljmkDRw7S1h9p2wTaOmiMMac9rzq5HjShaq1GVL1qjT3AjY8PwDvAm2adG1GtVvmIMp1eR1Sz2syZuBCdQUebwS2pXieU7LRcfnjxN/KzCmjcvgEHtynRtF1r9l15Bl8IsQCoqFfPn8N52kkpU1w3hPlCiN1SymWVnG8MMAYgPDz8HE5xbgSFBTDkkb7Mn7SUVn1jObTjKM/2egOH3cl7i14isKofOoOeKjWCSvfJSc9l6/JdVKkexJGdSRzZmVymkPm1ghACTvKzC2MzMDYr/dtZ/AcUvguA1EYrn7AuQrkJQBVTqSDEUkozWLeAtjpCV0PdQAB09ZDOfLCsAUMcQlyXsQT/CWk/CM7Ccq4SKa1gSwRtKEIbgPDoAnRB2o8is+8G51GkzysqoU7jAyU/gSYcjANBGwr5j6ssa2M3IF2F3erqKCXV4kmg8cbp/y0aw+nVZYUwgf+HYNupdHmuYlr0iCnn1z+ZgpxCco7lYrPa2LhgK1VqBqHVaVg7ayNzvlPJjDXrhxEeXR2/YF8atLr0eQtn/M+SUnavbJsQ4pgQItQ1uw8F0is5Rorrd7oQYjoQD1Ro8F2z/69BFTE/8yX8N/QGPfeNu4M7XhuBp48H/05cREmhmbieMXz+wHfUi69D33u6YzDp8Qv25c+PZ7Fm5gZCalchYd4WAHre2fmaNPiVIZ25YN3oCtX0UvHa2ppKKdGyFIz9wL4V9I2R+a8jtRGAATRGla2JHoq/BG0kBP6E8LobDK2QUkDOHUhZCD4vIe27VRvPWxD2RNAElUaPuDmBtO1CZt+msp79xiE8ToT8yaLvVflKXRzS732EYzvSfgQwnSR/vBs87z7h39cEgKkXlPwFhhYqJt/YBUSwCr2VBvX5YganWT0xcGY5caGrCde4vEZWSjavDx/HjpV7GPvhSJ747j7qNI/A6XCSMH8zwdUDKc4voUXPGG5/ZRgajaaM5s6l4nzP+DcwCnjH9fuvUxsIIbwAjZSywPW6J/DaeZ73giCEKI2tb9UvlmH/G0j64QwS5m1h36aDJO1JwWF38sAnd/Dds5Oxmq30uVsV79ZoNARU8b+Mvb/0yMLP1UKeLACfFxCGOFXE2hANHreqOqcl81TRFGNXKPlVGRFdY1XxSONy8TgOnki0MsSBZa0y9gDWBLDMdp1Rhyx8AzS1IHASQndthcGeN4409VkA0nGYMs4Sm5qUYN8Axb8hHTtQIZONVNF6aQZ9NBrPm5CmbqqwuDYSskcAVtDVVX5880xl5IW3yswVfmDoBdoAhOHaKXhjt9n58+PZ7Fqzl8EP9SGmUyPysgpISUwlonE4Jq/Kq985HA7+mTCPHStVQaFdq/dy28vD8PH3IjM5m8WTVxLRJJzed3WtNEb/UnG+Bv8dYKoQ4m7gCDAMQAgRBnwrpewLVAOmu3x3OmCylPLf8zzvBSegmj9j3rudmV/PJ2lvKmF1QwgOC+TA1sNMefdvGrSpw9bFO7FZ7dz11s00bFMfk7eJ7LRcAkP8L3f3Lw1SKrVEWQSOJPBQIlJC4wUG9UWWlLjalgAOcGaixLU81AKwNhz00Qh9HaRtP2j81WzS9w2VxetwRfVqo1RCkDZKSTQ704Fry+BLZz4IL4Q4t2gNlZlcoBKgvJ8EZw7CNLBMG+F5B1ICQqOKzltXAU7wigVaqCQ5RybSkX1iBi4tSGMXVcvW0B6Nz2M4bfvUATUhYByAMLU7ZzE86TiGLPhA9dPnSVVR7Qrj8K4kvnlKlSP08DbRoFUd3h35CevnbGboI325b/ydle5bnF/CnImLaDc4HkuxhZDIarw/6jMObD3C05Me5N5xoziw5TDxfZpfqsuplPMy+FLKLKBc5QuXC6ev6/UB4CxWdy4/dpudGR/PpmZ0dZb/sYa4XjFsWbIDgIEP9KbtgDiCwoJo3S+Wv7+cyzdP/Uy9FpE8/MUY6sTWLpORd01iGqoMvXURGLuV+tql/ShofBEaP4THEKTwUn584VJi1IaAoS3C2LI0csdZ/CfkPwvauoiAb9B43oQz5z5XFaXOoK0BReNA3xw8X1ORJmdA2g8BXNGLv9KZC450pG07FLyuQlx9nz9rbSHpLELmvaiMsu8baLxHn7K9EJCqdqzGB1k4QbnUcKoGGn/1ZFD8rWov9Ajv0Uh7MrLwI0AL/hNP1Cj2GAwUgbMYYYguY+ylIxtsW0FX7/RPX9aE0uQ6aWl5RRr8KjWCiOnSmC2Lt9OoXQNKCsxsXqT+97ev2F3hPkV5RZQUmgmuHsSdr41g6e+r8K/mz971+9m38SAA25bv4uEvRle4/+XAvTp2ElqdlpoNwjAXqSSKoLBAvPw80el1ZCVnc/9Hd5CVnE1Wam7pSvveDQf49pmfaTMwjqGPXN606YuNxtgQqR/nWijMw2lerlLq859UbpuAL0E6EcITDA0RXhUnUkl7CphdWj2Ovcii75Aab5XZK4uV+8fmigG37UL4f3nGhVxpTVCLkTgh4FuE8cLmR0hpOW/BN+ksQOY84ioe31w9KZX8pjSKTomHr7gPJciir1U5SX1jsC5FGtsji34FZwpKlz4fHPvA/2OEoTEi4GMlX6FVM3j0rcDyDupf365cNYC0rDiR8WyIA9kQaU5A6GNAF660d3Rl16tkwTtgnqHqJAdOQmgqya7VN1BrMs5sxBVa19Y30IdX/vwfeen5hNVRMSpj3ruNXWv30WNkp3Ltd63Zy6cPfcehbUd4fspj9L6rK73v6sqPr0xl86JttO4fi7nIQucRV5bby23wT0IIwcNfjGbvhv20G9KSWtHhxHRuyKYF24jr3YwDWw7zTK83KCk08/jXY9FqtRTmFrFh3hZ8g32uaYMvnSWqLKLGU/np7QlgWw+G9sqva9+qDHnRBLAuBF0LCPqhnJGUjgxk8Y8qBNDQVfn4LbOV68f/B3BkgtCqH0NHhCEGoT1RYEZKh4pK0fqVPa79ILjcSdJ+4IIZfCktyIL3wDwH6fM8Go/z+IydmWBbrV5r64HmCHj0U1ExZ9MXyzp1s7AfVpmupoFK7ti+QT0ZgasE5VGVbKV5CLTBKpvWVc5SOovUGBpagS4GDJ2Q0q5m/ZogtRCvb4gseFOFzOpbIQK/UdE2p+Jw6eY7DoK0UpmcgtBFQdBUkPYyn+WVhrefV2kG7cYFW/n8ke8BCKsTwtFdyXQf2QmfAG+WTFnJ7G8WsG+DyktZP2cTRg8jMV0aMex/A4hqVpvgGoHUj6tz2a6lMtwG/xQCqvnTqu+JEmVNOjSgx+2dAVj86wrys9QiWc6xPB7/9l7+mTAPo6eBPveoYKac9DwMJj1evp7ljn21Is0LkPkvqiQc3xfUbPK4uJZ9t9LS0QaAvi44XTNzZzJIByevJDqL/wTrOjD/qd4w9lGheuYZyrWjq4U0xCilTlkIpgEI04nMTSmtalZZMg3p/TQar1tKtwljZ6TXaHVOQ2ucxdPAcQRh6oc4H9leRzIUK98u5jnKQP9XtLXB5xWwbUCYuoPv02f35GLbA4Z2UPwdWNeAoQN4DEKYuoJ1k/LVawKVtIUmHHSF4ExHFoxXobI+LyA8egGu9ZaAj5HWXao0YfE3SN/3VDa1JkTdaO3JYNuvOmDfq4x5BQZf+DyLtCxC6FuVuwGXa6vx/Q8DdmnYumwnVrON5t0al7plj+tsAexes4+EeVvQ6LQMeqA3u9ftI/VAOi17N8NmsZOSmMazvd+gx8hOZCVn8/CXo6legfLulYDb4J8DsT2aMvypQZQUlNB+aDwajYZB9/dm0P29cTgcLJy8nJkT5lGcX8LL054s1dc/ldzMfJDgX+XK/Sc4GWlZqBZUzX+C520Ir+FIcwg4U5VBPUkKV/q+grSuQBhaqacBaQHzIqS0QcGraqHR0AFwgOkGNB4dkcY2ql6q8xg4Dim/sCbAleKvXCE4c9UCpG0n6GPAug6npiYaD1e+gMYX4TECKfygcByU/A7YkI5UhP97Z3+tjmyw7wRdfRVFpA0Dz1uhZDaY+pRvbz+ILJ4K2hAlPlZJlScp7SDNrpvULWXeP9XoK9fNr2qh2rpByVN7PaxeA8h8NB59ARCG5uD3ulq/sB9SkVCOTMAJluN+838RHr2Qtr1IS4K6CWsC1c0alCCavgkUfab+9jAj/F5AmhcjDG0qNdbC0AxhaHYWo3rlsnHhVp7t9SZOp5OHPrubhLlbiOnckP739eLpHx/i2OF05ny7CKC0+Hjd2CgO70rGL9iH2o3D+faZXwDISctl48JtbFu+y23wrybMJRbSD2cSUrsKBtOJf2C/YF/ueee2CveZ8+1CPr7vG4JCAwiuEcShHUcqNPi71+3j5cHvIQS89vcz1GsRVcHRriyEsbvy8Ro7KGEsjRfCULH+3alGQJb841LKxLXom6VcQZhBWws8OiJ0KsHO6Tis3ANYlfG3H0M6spC5D4FtI/i87orkOawifmwrwKMDUtqR+W9AyRTwuhdsu9TCr2OPKsR+Dsj811U5P0N7CJigXBk+L4H3k6WywtKagLQsRRjaq3Ep/k7trKuvpKFPPaazAJn3kpKo8Htbze4BaV6FzH8LaWwNujCEaTBCG4g0L4bCd9TOho7qtzMb4fch0roaTL1xWreDLkpJ+Fo3qugpZ4FLyVILplvB6AnWlQhjD6S0IfPHg3O/uqka2oGxp7qRmnog9I2Q2nCQFoSp72k/46sZh91BSZG51HVTlFuM0+lEo9Ww7t/NrJ25gdX/JBDfJ5but6mxb9KhIZZiC7HdmwIQVqca+xL2k5dZwNDH+vHohDHkpOexcf5WoprVJvoyJFSdLW6DfwoOh4MvH/2B2d8s4IbH+nPvh6NKt9msNjKTsgmqHsjehP3M/2kp0fF16X1XV5L2KldGVmoO3W/vSMM2FX/oexP2k52WC8C+DQeuDoNv6qaSqzBUmhovLUuQ5hUIUzdVZKN0g+3Ea2MnwAvyN6o4cFmkmkirStyyHwJNBOg1oPEFjZdyqRxX5bRvUS4bcMWRx6vXzgIoma5em+eqG0vReLWQfFIBljOhqjm5Zr22XS5XhuuahcvYS5uKknHsVzpAx0XfRJCSCq4I+0F1E0GDtKw6YfAtC0FXRWW5ItXCsPd9rp1MgFnJG5h6KeExXTUwdUXmPAjWJWAahDS0UUqloBLfXGOKcy9gBN+XEB591ROGxgMcBa7tueBMBBwIbSRCGBCeg896rK5GCvOK+Pjer1n/72ae+O4+OgxtTXzf5jw6YQzWEisIwdqZG4jr3QyhETgcDrRaLU07lk0u8wv2pThfrRdZiiz0G9MDgBse649GIzB6lF/cLyk0k5KYRvW6IaeN6b/YuA3+KZQUmlk6dRUAy/9Ywz3v3FqaEffDi78x9f2/GfpIX7JSc1k6dRVzvllIkw7RdB7RloKcQrRaDYMe6I1/lYp9mi17N6PLiLYgNMSeJk37SuN0ESpKIOspkLlI60oInlkaWy48BqrQP+EJpp7K9WAaqITY7LtwFnwO2iDIfwkQamZtWw+mIWrGrK+v5JNt2xEeg8FjONK6XhVaKZmCxIHw6In0fQlKZiE8b0ZaV6AqdW1FyCyg4sI25a9RC76vIi2LEYZ2CI13Ba10qvqXY7/6bRqE0DUAjT/CFWkjpQNs29UiqLa6audxu1q0tasyksLYQZUbLE5Vx8RW6icXxg5Iz7vUzc7QAY3pxAK0dGSr2Tyoc2hrn+iapoYSRZMW0FQDe6K6kXr0B7RqoVhbFexHlbvM0MG1KH56//u1QvK+VJZMUf/b62ZvpMPQ1mQmZVOneQT1XAKJcb2bseCnZdzZ4BFGvXoTt704rNxxwqJCeHXGU+zfcogON5x4ovOoxJBLKfni0e/5d+Ii+tzTjce+GnvZNIXcBv8UvP28eOize1g5Yy2dR7QvNfZWq42FPy8HYM3MDXS9RfmOo1vXxTfYh11r9zHvhyUARMbUZvCD5f29AKGRITw3+bGLfyGXEmFU8fLWxWBoWiaRSGi8yujcS8tSlR16PKpEswFk9PGtLtXNBuDYrTJ19VFovB9AmlcgLatUBq+2FhT/ALa1qki6R09VKcvzJhXn7sxSLgt9c3XDOKdLiUcY45G2fSoqxtCibGKUZZlKHvMcq9rLQoSh7I1blvwO+a+AcYASIvO4CTyGQ3Z/1/aqyuCbOoMhTqmL2g8AWpzZD4I+EuFzPzgL1IK52Q7GOJW85DgGHkPV04emmtK1MXRVVaqkTT2hOI4AevAaizA0Vfo5+a+AM1tly1rnq74H/oQwXFvy3qcjvEEN+t/bgw3zt9J+aGsO7TzKE51eJj+rgKcmPUiP2zvhX8WXPz9SUhP/TlzMzc8N5eDWI+RnFRDTuVGppHHL3s1p2fvsEqksJVbWztoIwJp/NmD92IbRo+K1nouN2+BXQLdbO9Dt1g5l3jMY9Iz5YCRLp67EN8iXmRPmcctzQxn0YG98ArwJjaiKwWTAYXdcP5m3LoQwgN9bLjXGBqdv7ExToYWmQcqtYNuuDKLPq8qIOYtUHL5V3VylpT3QC5l7H2BRpRata5UKo6F9qSCXLJmNdBxU+xd/CyIQ4ftimXBCKSWYZykZAtPASjNGpW0vMnuEihTyfQPhqsIl7cnI3AcAqwprtG5QkUkeJ7JcpT0VLOtAU0VJEjiOQOF4CO6jdGksS1ToJCCtm5CWRSqEtegLtW7hcQvYtiKticowF32JRA8B36ixsu9SuQqmwQhDE6R9G8hc9cRhXa/Gw3EIDPFg6ofQRyjBM9d4qptgS9A3UsqZ1xEe3iYe+WIMDrsDrU5LwrwtpVF3KYmqTrNPgDdjP7id+T8uZeD9vTm49QiPtHsBq9nKY1+Ppe89lUqLVYrJ08hDn9/D6r/X03ZQ/GUz9uA2+GeFzWojNz2fTje1of0NrRgZ+SC5Gfn88+U8Rjw9GIBG7Rrw+t9P88+Xcxl3zwR8Arxp3u3qLfZwrghtkHLNVIB0lqgSerpqCM9bkMIDRCA4MsDY0eXTdiIzB6ubhrGPK0vXjtA3Vk8Q2urKDaTxBqSawTuzQROKs/AHFWKoqQoGl1a7zFfZvii/O7bdSFkMeU8AEunIQPi9gnQWIou+AWcGwvMupDMDzKtU8pFte9kiIMKoDLkzGTAqETld2bUaaf4bnElKi0ZbB0pSlKG3pyL8xoPMQVoTcOZ9oG4YWiM4ipS7Rx+nYt81fqrQzPFygc5CNbPXt3Y9CRQr94+xq1qzMP+tFrUNrZUaqWkwOK0nisLrm6qZvbMQ4TEYYWh6gT71q4+SQjOHdhylet0QmnaMZuwHI8lOy6X77SeSq/qP7Un/sT2xWW3Mm7QUq1mFaB5fezuVtEPpTHp5ClJKRr06gtCI8oECHYa2uiKKJbkNPqpsYVZKDo3a1iunYOewO5jwxI/8/fm/3PH6CG59/gbu/XAkC39ZTs9RnfHwOZFskpuRx4rp6wDYt/FAGYO/d8N+ti7ZQUzXxtRtfn0pbMrcJ8C6Gun3DhqPgQif8i4tKR1KUtmRCDILgmYgBAhtVaRtn1J1xKmKc+iaQtHnLqNuUVmnhp6uBCaby+0TiSz6FakLBAxKOdLYR2WWygJwpuA0L0PggKIvVR80kWBdoGbI2mjwuBk0vkhHjpIY1gZD4DdgO6CUQK2LkYWfgeetJxaqRYBaOLXvUZFC+oYuHRstwjQeaU+HvKdUdqqxLRR/DmIL+L6tqocJA6CB4onqeJ53qBubeZaKs/e4TYWNeo5ECC3S2EEJnGnrqRuQZzzC1Ae0VUvXIIQuCgJ/A6QKlbWsRTqOIIzdruhEqIvBxOcmM+OzObQZGMcLvz3GjY8PAODI7iTevvVj/Kr4UKNeGId3JlGjbig/vf4HbQa1JLxBdXrd0bnCYyb8u5kFPynx30ZtGzDg3vJVv64UrnuDn3rgGP/r/BJZqbnc//GdDHmob5nthblFzPlWaVnP/3Eptzw3lM7D22HyMvH5w9+xccFWxrw/Eg9vE827NmHQg70pzi+hzaATIW1Wi5WPxn5N4qaDRDatxadr30Jv0JduL8ovJu1AOtXrh2KqYIX/qsaedMKdYF1bxv1xMmrB9E0Vg69vgnAVT5HOIhWW6Tig4u9FAPi+pWbZxT+CoaU6viZEGXP7OpXcxSI14y2crMIPQZVh9HpCZbvadoF+D1KYwNhD+b+LvwPMyu2hCVKKk9ZlSGdhacUuoauDFEFgWaluIkikMCKMbVSmsW2LKvhh6ATolJ9dk+l6MkEV+jYOUH0omajaWZeqG0Txd4AJPEepEE6EKihjXa6uReaAZQF4j0ajV1mcGo9BOLV1VZSS4zDCqwdCXz7y67jsgbQlInPuAmxIr2SEz6Pn+QFfHezbeACDh4Gty3YBsHH+VtKPZnJ4x1ECwwLYsngHi35dQfOujZn+yRwA2g9tRUF2Iav/Ws+wx/tTpUZwmWPabXZS9qeBEPhX8wMJdWMjLvm1nQvXvcHPzcgjKzUXgGOHMspt9wv25d5xo1j48zIGPdindHV95fS1pB3KYOZX8+kzujv1YiMJqObPg5/cXe4Ye9bvp25sBI3a1Uer01KQXVTq57dZbXw09iuWTFnF0Mf6c99JYaDXBPo6KjbemoAwlc1Slc5cpHkeQhOCMHV0FUU5NaLGgVLeRIVk2jcjnMng8xR4jlILmfY9gCsbVVsP2KJyBmy7lNqmsTdgA3RQMh/0YcoVI0KUlDM2tY5gzVLnEX7q5lSJvo0snqgWb01DlTtF30IZUusmdVORharf9n+Ve8fYh+OyA0LrrxLNLH+rg2mC1fg4i11Ht4KxF8IQh8QJxZNV7QFdY8BbHVsbXaY/GkNDOEMhkhM4T76Ss9zn6mb13wm8MvR99EYdj341hu0rdhPfJ5bPH/6ehLmbadSuAZ1uaouHlwkhoFbjmhzefpS6sZFExdSmSo0gGrU7sTZVlF/MhMd/YMuSnTTpEM28SUsY+EBvbn/xRvyrXtkRT9e9wa/fsg6Pf30vSYmp9L6za4VtBt7Xi4H39SrzXqt+LVg5Yz3xfZtTo87py5QlzN3M3B+W4LA76H1XVz598FtenPo4Go2GkkILa/5RGZTr52zi3g9GXtVl4E5FCBPC5/EKt8niX6FwPBKNqnVagW9ZaHzB/1O1uOnIAENXJBqEswChq4k0tFOzXl0jsO1GE/AO0vtBNaN2pCAdaZD7gBLv0kWAqZVa7EWopwlDRxA6kBrlNnJmqG3ODDDercIuS+PmVyMdyWBZqxZPHUkQMAm01ZBZN6kFU+EyyngoVwyA8ChT01cYOyI9bgGZp9xRBa+qxW6vBxH6RgijUgYVoG4OTjOycJxyNwGCgv/+eejrQcA3SMdRhLGc0O01ScqBYzidTiwlVhw2J0YvI+lHM0k5oBZqs1NzyE3PY+Luj9AadNitdjKPZlEnNqLMk/hxDu9I4t+JiwFKhdYObTuM31WQOX/dG3yNRkOfe87+i5+cmMryaWuIaFKLnw99gdHTcEZZZA9vDxx2lTBUmFPIvo0HsVvtGEwGfAO9efzbe1n/72Y6DmtzTRn7M3N83ARQ+XULQ9PSm4Gz6GfIvgGpawIBX4Gph9L1MS8Cz5auHUwqckhXW4VyolW+cfMM0McgfB4Gy2Jk0QfqqcDiimv3/h8a36dVYW+fJxDaEzdyad2JzHHV7zUNA/tmNXN3HFU+em2QEo3zfEC5YZxJ4DEMnEfU7FyYcBZ9D45MhOcINH6vqHDJ4qkq38C+G+HzHOibllHmFMIEWhMYuyAtC1SEj+781oCEse1pRvvao9NNbcjLyMPkZSRx80FmfKpcNk/98AAbF24jMCSAdoPjCa5+IuigSvWKAxAAatYPpcONrdmyeAcdh7WhRY+mtOjR9Kr4373uDf658se4mcycMA+9Qcc328edlWbGoId6g4D8zHyMHgYG3NerjGRDlxHt6TKi/cXs9hWJ8ByB1FRBaKuWq8laKfadrt/bXOqTu6Bksiq1iA5n0U9Q+CnSayTC6wElqmY/BtZ5aj9Hioqvl8ddG5JSqWCNSrcXGi/AS2naFH6hyjp6jKDUBaINAe/nVS5B/rOAU4WZaoLAuhkMTcGyDyz/qlBL6zqkLgIK3lZnFB7gPVolq9k3KCPuM04tTuc9p6KN/N8tTeQClF6RYYHrZqb5z2N+PRIcFshdbyr9or+/UEV7qoYH07hDND1Gdj7j/smJqWi0GkIjVCa1T6APz09+FGuJtUzQxtXAeRl8IcQw4BUgGoiXUiZU0q438DFqSvetlPKd8znv5cTbX6XYewd4sWPlbg7tOErbgS1L7+5OpxOH3VHmUVCv19G6fwuq1Ai6plQ0zxeh8UV4Djm3fTxuQiJd0Tp1EY5UVR7Rvkv5wws+VnHphV+Bx20IXRjC7zGcBQalM6OtD7l3g74j+H+OQCj3imUVWPfh1O1GY3D5a217oegr9Vob4nIFSbXIWzwRKAQMgFm5hayrlcSCfowKD7XvVIuvuhgVzil8VWSRtqZaj3Amq2M788G2Tj0NOJPAmYQ0L0R433XKeLm/OxXhdDpZO2sjlhIrbQfGlZlMnUq/Md2p0zyCgBD/0vDJgpxCtDoNnj7lx3fz4u083+9t9AYtb//7AtGtVRiuVqe96ow9nP8MfzswFPiqsgZCpSl+DvQAkoD1Qoi/pZQ7z/Pcl4Wb/jeIus0jyUzJ5v07vwDgg0WvENO5EZnJWYwf+xU2i516LSLx8DEx4L5ezPhkDj+99jttBsbx3ORHMXlWHImzYvpa9qxLpNNNbanT/Mpe7b9clBNnM3ZGBCj5YmGMx+m4W6k+Gnsgi6eD13CExhPhdRfY2yALPlY72laCuAthbIss+BTMk10nsIPhDRUd5CwBY381U8egommEJ0LjhdQ3AUsxeP8Poa2C1NZX2a72Q1DyLeClbjAyB0yD0BjqIYOmKuOuj1ETBP8Pkda1CEMHZOGXKtdAG6VkD+yJl3JYrzqcTicajXrSSfh3My8NeheA/028n153dKl0P61OW0bnaseqPbx6wwf4Bnnz4u9PUCu6bNDA4R1HsZqtWM1wZHdyqcG/WjnfEoe7gDP5ruKBRFepQ4QQvwGDgKvG4M/9YTEbF2yl220die/dnI7D2jDjU1VoWwiBRqu+eHvW72fd7E3Edm/KlPeUNK3QaFg7Sy3KrvlnA3mZ+ZjCq5Q7R9rBdN4YPh6H3UHa4Qyen/zopbm4qxwhBBjjS//WeN2KEy0UvAlYVNSPRw8VlmiIBe8HkMV+gANy7kcGTVFPC5jUQq8rM1cWvKuqURl6QNACNRvXhqoMW6FxHd8JlCACv1MLrI6dyOJvVEdMA5SxB5cCKOUqRglDS4TBte7g+xTSshacJUorx1Q2PNiNIi8zny8fn8ShbYd54JO7aNKhIQ7Hicgjp/3E630bDzD3+8VENatN77u6lrNTUkq2LdtJVEwtdq7eS+LGg+UMftvB8aTsT0Nn0BHf9/LXpD1fLoUPvzpw9KS/k4BKU86EEGOAMQDh4eEXt2dnQVZKNuNGT8DpcJJ6MJ1jh9I5vDOJ3nd35ZlfHkZv0ONfVa3O120RSbOujfEN9Ear0yKlRAhBUFggTb1MNOvamGrhVSjKL2bym9NIO5jOiGeGUDc2Eg8fIzXrh3Fox1FCape/Ibg5e4TGD4lVKVxqy0ZQCWO8khgu+hzQgrSh8eiGU/Mt2I8ijC1VEphVJdBhW60SwXLHqugbjZ+SJdC3AiFBf5IyqCYQ0ABOlSns/UhpduupnKqDL3SRCF0k0qM/ONLPquTh9ci+TQdZ+LNKclr9zwaadGhIfJ/mvDDlMSzFVjoMOyFmNnPCPGa7cmjqx9chsoka023Ld5F+NBOTp5HvnlNPdgPu60mTDuVlQarUCDptAfOrjTMafCHEAqCiuMPnpZR/ncU5Kpr+VxoALKX8GvgaIC4u7rIHCnsFeNG6fwtW/bWehm3q8fnD3+OwOzCY9LTs3Zzn+76F0Gh4Z94LNGkfzat/PcX+TYcY+EAvjJ5GfAK9ST+SSfW6ofS/V8mo7lq9l6nvqzjs4BpBRMbUwifQhxemPkZmcg7R8VdeabSrCeHRR7lHhCdCX34shectSE0gQlsDYVAhkBpjfJknBXyeQ1rmIwwdALtaJwBwZCE03kjPWyHvUbBtQxpbKtVJY1sI/A1pmQ/FP4O0I4LnlOr9H8dZ9JvSyPEaicarbN6G0PiAxudCDsc1RUTjmjTv2pjETYeIdWWya3VaOg1rW65tjQaqsHqthjVKiw0d2HqYp3u8hs1qLyNwWDc2kqquJ+/igmKERlOp+uXVzBkNvpTy3NWCypIEnKxSVQNIOc9jXjJMHkaemvQg6UcyMRj1LP9jDelHMgmvX52kvanYrEqvJXlvCk3aR/PXJ3OY+PyvRLeqy5uzn8MnwJtHTqlaX6N+GLUb1SRpbyqp+4/xx4d/U5BdxF+f/cvIV4dzYPMhSgpL6De2B0Gh11fq+4XidHoxQlultMZrpW1MHREmVQBDSif4vg/OZIRpkGrgSAHsSq/HcQSIcZ23mQqflCUgqgKn1PSVdpdQWhoUfob0uBGhubKTda4kgkIDeWPms1jNttIKVCeza+0+MpOyiOvVjNDaVRn6aD+iW9cjMCQAALvVjsPl9slJz6Vl72ZUrxdKp2HqSW3ej0v48eWphDeswciXh9Egvu6lu7hLwKVw6awH6gohIoBkYAQn13i7CvDy9SSisZqljVv6KrkZBdSNjSDnWB7HDqej0Who1V9JKezfogo7716XSH5WAT4B5TXVQ2pX5bW/nmL82K9ZO3sjepOeldPX4bA7mPPdQoQATx8PgmoE0e8/qPO5ubAIoUF4Dir7nqkX0nnMJWJWVllVeN2jYu91kapoSZlj6ZBeo6DwM/C8U0XuuDkrigtK+OXNaSTtSeHmZ4eUM8aHdhzh2d5vUC8uivQjGfz2zgxyM/IJqLaSNgPiMHoYqBcXxat/PcWBrYdZMW0NiZsO0euOLni6oufW/LOBY4czOHY4g5a9m7kN/skIIYYAnwJVgFlCiM1Syl5CiDBU+GVfKaVdCPEgMBcVljlRSrnjvHt+mahWqyrVaqlwrqDQAO55u2zJwyGP9MUnwIvo1vUqjNE3F1uwW22ERobQ8cbW2Cw2Ot7YhrqxEcycMJ+4XjH89em/OJ1OBj9Usaa+m8uP0IUifJ+ueJvGHzx6V76v513gcSMI36siWedKYc/6RKa6giGMngYe+vQefAJPTKgsxVYat2/A+jmb2blqD0Mf7cevb0+n3ZCWZSSJW/drQet+Leh4Q2tKCs3UjT2xmB7ftzmbFm6jbmwEjdufQer7KkRIednd5JUSFxcnExIqDO2/Kkk7lM5bN39ESmIqz095nOZdyyYbORwONi/ezmcPfUd06/o88PGd7rh9N25cpB/N5Lm+b5G0J4X4vs1pNygejU5DTKeGVA2vwp6E/cz7YXFpctXTPz6IpdhKQIg/bQbEnfXNtSC3CA8vYznl3KsFIcQGKWWFBYndBv8Ssurv9bw8+D0AbnvxRka9OrzCdsdraR7n8K4kZn+7gOpRofQb07206o4bN9cb6+Zs5I8PZ2IpNpOXVUjyvlQ63tiGsR+MZGyzJwiuEUyd5rWoWa86VcODeXfUZwC8/e8LxPW8ekqKng+nM/juHO1LSIP4unQe0Y7oVnWJ7xtbabtTtXnmfLuQP8fP4tMHv2Xbil0Xu5tu3FxxOJ1OZnw2h/k/LWPwQ7159Jv7SguJFxeUYLPZCAoL5ND2I3j5eXHL8zdgLrGW7m93BVccR0pJVmoONqvtkl7H5ebqfGa5SgkM8T+rhKrcjDzSDqQz5/tFhEZUIyxKLfz5V/Vj/exNNGkf7Z7lu7muSNqbwucPq6IwVrONV/98kpen/Y9dq/dQJzaCd2//FLvdwdgPR5ZWlup2Swd0Og0Ou5Oda/eQfiSDfmN6oNVp+WfCPD5/aCI9RnXi4c/vOa0cw7WE2+BfABx2B/9OXERmSja97+xKtVrnlji1N2E/a2ZtoEmHaKwlVqZ/Mocq4UH8+90iAD5Y+DIdb2xNxtEsZn69gJufG1phSJobN9cqgSH+NGxbn52r9qDRCLat2E2T9g1o1LY+C39Zzq41+wCVaXs8qMLD20Tvu7rx9VM/8fsHKu8lomktmrSPZtnvq3A6ncz9fjEtejYluHoQTdpHV3r+awW3wb8AbFu+i4/u/Vr9IWHUq8M5vDOJRZOXExlTq8KkEICs1By8/Dz5+skf2bJ0Jw3io/Cr4seG+Vto2KYegSH+GDwMVK1dha63dmTZ76sY8kjfMxr7ovxiNi3aTvU6IaXhpG7cXM14+3vT9eb2GIx6Ni3Yxo1PDCjd1rBNXZp1bUxhbhHNujUus19xQQl2m524njEUFxSXFh4a9GBfCnOLady+AR+N/Qab2crn698hosm1neHsNvgXAL8qvnj6eFBcUEJQdZUoNf2TWcz6egEajYbajWpSq2HNMvss+nUF7436jFb9mhNUPYhmXRpTmFeE1WwlvEF1MpOzie0ZA1Iy/8eltBkYx7M/P1JpH0qKzRw7kEFIVFV+//Affnn9DwJD/Pl07dtUrRlc6X5u3FwucjPySJi7hZoNqlM/rnxZxoykLFbOWEdKYhqFuUXc/OwQvHw9uempQTRqU7+0XWhkCO/OexHplOVcnQnzNjP9Y6V7Neb925ny7gy8A7wZ/vRgOgx9nx9fm0pxfjEajaY0ifJaxm3wLwARjcP5aOUb5GXk06SDeiw8bviDawRWGFq5efF2HHYHq/5K4P1Fr7B06kpmTpgPwPCnB+Pl58msr+ajN+pZ8NMyVvy5ls/WvU1yYhqLflmBl78nA+7tiZevJ06nky8f/YE53y5kwH290BnUlz4vs4CivCJwG3w3VyC/f/A3U9//G+8AL77c+D4hp7hCJ730G3N/WEJANX8CQ/3ZuXpvpUqYGo2mTAiKlJK/v5jLsj9W0+Xm9qycvo6slGzmuNyk9VtG0WlYWwaM7YlvoA8htatSr0X5m861htvgXyBOdZ0Me3wA9VvWJSyyKsE1ylfP6TK8HUd2JtGkQzQNWtXBaXewdMoqatQLY8B9PfHy9aB+fB0mvTQF9oKntwkhBD+88Cur/kqgQXwdwuuH0XZQPJYSKyunK7GvVTPWccfrw2netTFGTyPpRzKJaHxtP6a6uTqxuqJoLMVWHLbys+uSIrPabrbSZmBLUvankXogjdDI05cUBdiyeDvTP55FcmIaeqOe9+a/RElhCX9/MQ/fIG/CGyhVzIBq/mU0da513Ab/ImHyMhHfu1ml25t3a0LzbicSr2K7N+WHfZ9hMOrISc/jhQHvkpWcxd3v3EZ4dHWsJVYObjvMoR1JAKTsP0awa+bu4WVi9Hu3sWHeFjre2IaSIjObFm1Hq9My/OnBF/My3bj5z9z4xABCIqoR0SS8wqz0Ua8Ox2A0kHMsl61LdnBg62GK8op58JO7KzhaWQpyiqjZoDrJiWm0HRhHdOu6aHVavtv5EQaTnqDQgItxSVc8boN/BeHrShPfl7CJHSt3A7Bz1Z7SaJ2Q2lV55IvRLPtjNTGdG+Ht68GWJTvIOZbD+NFfUS8uioZt6+FfxY+Aav54+nqU8XW6cXOxcdgdpB/NJDDEH6NHxYV+jlOtVlVueKx/pdurhldh44KtZKflEhQWSGBoAJ5nWWWqVb9YzEVm2g2Jp83AuFLf/vEqV9crboN/BdKgdV1a9mlGTmouLfs0Z/fafSTtTSGmcyNiuzcltntTjh3J4PGOL5F+JJN+Y3vgdDrZvW4fqQfTCQoNpGWvZpf7Mtxch0x+609+fGUqfe7uysNfjD5neYKMpCymfzILvVHP0Ef78+hXY1kzM4FG7RpgNBmI7X52tY8NJsNZ1au93nAb/CuQqjWDeXPmczgdTrQ6LU3aN8BqsZc+AexJSOTfiYtIP5IJgNPuoP3QVkQ0Dq+0NGJGchZHdiZTr2UkPv7lFTzduDkX7DZ7hcZ88W8rAVjw0zLuevtW/IPPTQ10/dxNrJ21CavZSnGBGb9gH+568xb8zvE4birGbfCvUIQQpY+hJi8TWSmpfPPUT3j6mPCv6suCn5bTZmAcvsG+3PDYAGo1rFHpsYoLS3jthg/YvS6RAff14uHP77lUl+HmGsNmtfHjy1NZNHkFo9+7jc7D25XZfsdrw5n9zQI63tjmnIz9scMZzJwwj5V/r8dSaKFln2bM+ESFUwZU9aPfmB4X9DquV9wG/yph5Yx1/DtR+fLvfvtWkJJD24/SomfMaY19QW4hy35fzcFtRwBVlPlic2jHUZL2KBfUyfK1bq5+Mo5m8du7MwCYN2kpdZpHYrVYS8sHdryxDR1vbIPVYmP+T0vZtGg7rfsrKeLTsW7OJnavS+TormQAjJ5GmndtjNBq0BnObKZyM/JI3HyIqKa1CKjmf17XeC3jNvhXCXWaR2D0MODt70nTTg3ZuboJyXtTyU7JrnSfkkIzb93yMdZiK7Hdm1JSaGbIIxUXx04/mkFmcg571iWyd8N++o7uTsaRLLLTcuh2a4ez/ifKSs3hub5vknE0i5ueGsTod247805urhqCqwcy4L6eLPxlBW0HxXF/3FNYSqy8+tdTtOoTWypBPP2T2cz8ch5ph9JZ808CRXlFzJwwnz53d6X/2J7ljhsZU4vFv66gXlwk0gkOh5NNi7bjG+xDfJ/yxcOLC0vIy8hHq9NSpUYQnz34HUt/X0183+a8Ov2pq1ba+GLjHpWrhNjuTflu50foDDqCQgO47cUb2b12Hy16VCz5euxwOkumrCLh3820GRhHZnI27Qa3rPCfJyMpi6e7v05wjSA2L94OgF+wL9PGzwTAarZyy3M3nFU/rSUWco/lAZCXkf9fLtXNZcTpdLJt2S6MHnoatKpXbrvBZODBT+/mrrduIWHuFkoKzbTsFcOyKatZ8NMyuoxoT7tBLVk5fR2hUdVIO5RO91s78OPLU8lMziZpbyqdR7TD26+sPEijNvUJi6pGVmouyftS8AnwommnhqQkppXLUj+8K4nXhn1IYXYhkU1rccsLN7B/yyEA9m8+hM1a8fqCm/OveDUMeAWIBuKllBWK1wshDgEFgAOwV6bV7Ob0nCzKVq9F1GkzA+f/tIxp42bSbnA8mcnZ9LmnGwPG9qQgu5DNi7dTs34YtV3JYrnpeSQnplEnNpJut7Zn3ezNhERUwcPLSINWdfENUm6ZXWv2sm7OJmK6NCKqaS3mTlqKydNAj5GdSkPwQiNDePnPJ0ncdJAON7S6iKPh5mKwfNoa3hg+Ho1Ww3sLXiKmU6NybTQaDd5+XsT1imH0e7exfNoa1s/dQmCIPwFV/Wg3qCW3PD+UtbM20OmmNnQZ3g7vQG9+fu0P+o3pVmloZYcbWvPv94vpcXtnfnx1KiYvI8/8+HA5Hfu96xM5slPlo4RH12D32n08OmEsa2dvJK5nzDVZfPxCcb63we3AUOCrs2jbRUqZeZ7nc3OWhEZUpTC3iC2LtzNu+eulmcBT3v+LKe/OILh6IJ+ufZvgsECimtXmwc/u4uv//YSlxMq9H45i4P290RsNfHL/N+xN2E/dFlF8+uC37Nt4kFnfLGDEM4P56olJgHoa6HCSj7ZV31hanUbv382VS47r6czpcJKfWVBhm+T9aWxbtpPw6Br0H9ODrUt3Asrv3qiteio4XkYwOy0Hm9XOrS/cQL/R3fGv6qdkECqgVb8WtOrXgslv/QmAuciC3qQv165Jx4a06hdLXmYBdWIjaDuwJdXrhhLTufzNyU1ZzsvgSyl3Ae66nJeB4oJictPzCY2sVuH4d72lA6GRIXj7exIefWJRNz9TuVnyMvJLU9uT9qaSl1mAxfV3SZEZjUajdHgkRLepT8LcLdRpHsG+jQepXicE3yAfwDXbq6BQu5urky43t8dSbME70JvGHcrLBf/+4d9MGz+L6NZ1WfDzMgqyCrl33Cg63dSG8AY1qN+yTmnbrUt38NKgd/EO9Ob1v58pIz+Sm5GP0+EgMKR8xmur/rFkpWRTpWYwzbqUN+Ihtavyxj/PXqArvr64VI4uCcwTQkjgKynl15U1FEKMAcYAhIdfX9K+2Wm5zP1hEb5BvvQc1Qm9ofzsBlTkzVs3f0TC3C08/MU9DLi3V7k2Qggatjnhg3U6nexeu48eozoTElmNqJjahEUpTZJp42eyfNoaWvWPJbJJLXqNUgJVnYa1xWq28cvr00iYu5nbXx7GqzOeIqpZbXQGLS9OeZyA0ABCagWzZ30idWIjylXrOhmH3eEu3HIFcnhXEnO/X0xIRFV639UFTx8PZnwymx9fnsrzkx+laaeGAJQUlvDr29MpyC5kx8o9RLeuw5GdyaQkphHTuRHBLsHA4+xam0hRfglF+SUc3Hq41OAf2HaYFwe8Q3FeMa/+9TRNOzYss9/vH/zNwp+XUzc2kkEPVF4M3s25c0aDL4RYAFSkVvS8lPKvszxPOyllihCiKjBfCLFbSrmsooaum8HXoGranuXxrwnm/7iEic/9CkDVmkG07F1+gRUgKyWHhLlbANi6bFcZg39kdzI5x/Jo3K5+GeM69/vFjBs9Af+qfoxb+io161cv3eYX7EtBdiFWs42+o7tTpaYSe6tWqwqt+sby06u/l7ZtO7AlOcdyea7vWyRuOsjNzwxh2bQ1JO9L5aHP72HgfeVvPk6nk9/emc7MrxZwx2s30XNUecXDbSt2U5BdQFzPmOum+tCVwrTxM5nz7UI0Gg0GDwPLp63h0HYVvrtl6Y5Sg+/h7UGbgXGsmLaWmM4NCY+ujkarISMpizsbPELn4e148vv7Sz+/NgNbsG/Dfjx9PYk5aaZ+YMvh0qTBPesTyxn8jCNZAKQdPIbNaufsxBTcnA1nNPhSyu7nexIpZYrrd7oQYjoQD1Ro8K9n/Kv4AaA36PAJ9Km0Xc16YYz9YCRbl+6k793dSt8/uieZxzq8SH5WAQ9/PpoB950If0vZnwaoBdrs1JwyBn/YkwOoFlGFn16ZyhvDx/Hc5MdKyyrWjY3ktb+e5tihDDrcqBZhs1JzSNx0EID92w6TvC8VgEPbj/LH+JmUFJTQb0yP0mITuen5THppKk6nk2njZ5Uz+LvX7uWtm8djMBnI/t+ACsP2zhZzkZkN87dStWYwdVtEnrH9/i2HWP33eqLb1KdF96b/+bynw+l0knEkE79qfpjOoC9z6n5zJy4mKTGV3nd2pWb9sIvSPx+XS8432IfMlCyimkdgKbFiKbHS8hQBwNyMPGrUC2Xbit2kJKZxxxs389MrUwFY9vtqxn4wsnSmH96gBi9Mebzc+Zp3bUzfe7pRXGimVb8W5baP/XAka2ZuoGnHhqXZ5W4uDBfdpSOE8AI0UsoC1+uewGsX+7xXI91v70hwzSC8/b0qLAhxHK1Oy42PD+DGxweUeT83PZ/8LLXQduxIRpltve/sisPuoErNYBq1a1Bmm4+/N7nHcslKySErJYfETQdKDX5hXhHhDaqXWYSNaBLOiGcGs2ddItWjQuh9V1dKCs3UaliDFX+uxelwYvI2MuzxgQD4Bftww+P9mTlhHv1Gl58/5KTn41/Vj8LcIoryi89hxBTHDmcw+9sFBIYEUFJYwnfPTsbD28Sna9+mVnTlSWmgNNfzs4vYuXofNeuHkZKYxoFtR2g7MI6Q2hdGaOvvL+by+cMT6XRTG/438X5MnmcXRbJnfSLjxkwAwGFzcO+Hoy5If07l1hduIDAkAKvVRp1mtYnp1JDcjHwCQvzQ68u6FQc/1Je53y/GO8CbTQu3oTfouOX5ocz+diGt+sWWc+tURFBYII99fW+l288Ugebmv3O+YZlDgE+BKsAsIcRmKWUvIUQY8K2Usi9QDZjuWljUAZOllP+eZ7+vSbQ67XnNMhu2rcejE8Zw7HAGve4sO4uuXjeUMe+NrHTflr2bs3bWJgJD/Il2+f5zM/J4fdiHbFu+mye+u6+0+IRWq+WO10ewc/VeFv2ynH8nLiIqpjbblu8iOzWHyKa1yErNIS+rAL8gH7Q6Lfe8cytDH+nLxgVbWTljHW0HtSxdbLZZbKVPDMV5Jed83fN/XMLkN1Vkx3GXkrnIgrnQfMZ9azeuxayv55OfVcCqGev57tlfMBdbSN6TzEOfjz7nvlTE2lkbAFg6dTV3v3UroZFnZ/D9gn0JCvUnKzWXarXPrU7yueDp48Gxw+nM/mYB/tX8eG3G00Q2rbiGgl6vY+P8rdRrEcntrwyjWRdVUrB1f3ek9dXA+UbpTAemV/B+CtDX9foAUHF2kJsLilar/c+aI1ExtRnySF9y0/PQ6ZXvP/1IJluX7QJgx8o9ZaoNabVavPw8qdeyDtrvFlG1VjAarSA7NQdvfy8WT15B52Ft8Tspmmf5tLV88ej3ALy/8CWadVHKh/Xj6xDbvQnpRzKJ/w/hnFVcdQE8fTzoNLwtVcKDCY2sViZipDJa9GrKr2+rm0VhXhF6kx5zsQXdBVxHGPxgXzz9PPH28+LXt/9k6GP9qX1KMlFFhEWF8MGS18hKySkNdzwX7DY7xQUl+Lrcgxvmb+X7FybTtFMjRr56Uxn3UkZSFpYSK8cOZXB4VxKRTWuRcuAYOWm5NIivU7oe1Lh9A+5642bSkzLpflunc+6Tm8uLOx3NDQCbF+/grZs/AsBSYmXEU4Op3TicO98Ywe61iXS/vWOZ9mtmbuDlIe/h6ePBO/NepE6z2uRl5rP6nwR2r02kbotIMpKy0Bl01GmmFDwNJh2t+7fAUmKl6KSZvM1so8PQ1kTE1PpP+v3dbutIWFQIPkHe1G5Ys9wi4Olo2qEhT016kKS9KXS+qS1xvZpxZGdSOd/1+dCqXyxSSl4c+A4AQWEB1H51xFntW6NuKDXqli8OcjoKcgqwltj44tEfWDd7Iw99cQ89R3ZmyZQV7Fm/nz3r99PppjbUjztxQzzulguuHkhs96akHkznyS4vk340i/vGjSI0KoTajWoSGlmN/vf+9zUWN5cXt8F3A4CXnyc6vQ67zY5vgEp7Nxj1lUoqJO9LwelwUphbRO6xPLz9vfD29+LGx9S6wi9vTuOfL+biG+xDbI+mpCYeI6JpLdbMVO6N+i2jaDc4nkPbj/DT63+w7PfV+AR68+2O8QRWoNuTkZxFSmIa9eOiMJ2USTnzq3n8MW4mQx/tV2GEUEUc2Z2MpdhC3dhIhBD0uL3sTLVBJU8GGUlZeHib8Pb3qnD7kqmrWDR5OZ1uaku3WzqU2Va9bghVw4PJSskhqll5Ceuc9Dz++mwOQiMY/FDf0iejc2VPQiKvDv0AkIRGhmAutrDyz7X0HNmZenFRLPhpOS16NiXslDKBpybLJe9LJf2oipbZuWYfXz4+idqNa/LMzw+z8s+11GoUTqdhbcocIzcjj/k/LsMn0Ivut3V0yxtcgbg/ETcANIivw7ilr5KfVUBsjzOvI3Qc1pbs1FxM3iZa9GrK9pW7sZZYada1MRqNhn0b9rNpkdLlyc8sYNOi7dz6wlCq1AgiIymL8OgaLPtjNe+N/IyG7dSs3uhpLM3ClFKW+vgLc4t4ZfB77N1wgBHPDObut24F1JPIvElLCYuqxtqZG4jt3rR0Nux0OtmxcjcmbxN1m5+I1tmTsJ8nu76CpdjKi1MfxzvQiz3r9tN2YBw1G5yIXDqO1WylpNDMtuW7eHPER0Q2DeflP5+k6imF4a0WKxMe+4Gs1By2r9hN2wFxeJwkIVCzfnU+Wf0WJQUl1KhXPtpm1Yx1/PLGNACqhQfT+65u5dpURkFOIcX5JVSrVYU96xLJSFKGuknHhoRFhVC3RRRLpqzk84e/J65XDHe9ectpVUzNRWYimtbikS9Hk7Q3tbS2bEriMdb8k8BPr/2BRqMhvEEYEU1O+Prn/7iUr5/8CUAV4bmAT0luLgxug++mlOjWyk9stdiY8v4MkvemMuD+XmUM5nGq1Ahi9Hu3A7B58Xae7vE6TqeT5yY/SpcR7WjYpj4rZ6wnIqYWx5MpPLw9GL/idQqyCwmo5s9XT0zCYraSl5HPqNeG07p/C6wlFiY88QP7txwmMMSf0e/ehsPhZP+WwwAcdmmoABg9DDRsU5dp42cBEN8nttTgL5myirdv/Ri9QceHS18l2iUEln44gxLXYm5Oeh7v3fEZJYVmEjcf5PnJj5a5xvzsAt6/43M2LthGlxFtsdvs7N1wgOS9KRRkF7Lgp6WERYXSd3Q3DEYDnUe0ZdbXC+lyczuMXuXDL4NCA6CSWqqhkSHo9DpCIqpgtzlITkytsM7rqWQkZ/HTy1NJ3HyI5t2b0OvOLqUL4vF9mtO0YzRtBsYz86t5OOwO1s7ayID7epUuyppLLOSk5VI1PBitVsv2lbt5d+SnVA0P5snvH6D/2J7s23iAgKp+NGxTn30b9wMQUM0XLz/PMn3xcT0ZanVavPzLbnNzZeA2+G7KsS9hP98+/QsARi9jhQb/ZAqyC3E6na7XKiz0hsf706JnDIGhARTlFZNxJJNG7epjMBmoFl6FFdPXkpyYRoseTalRL4wbHu2P1Wxl4gu/YrfaQcKiySto2bs53W/ryLO/PMKOVbvpMqJ9mXN3vLEtc75bhM1iJ/VgGhsWbKVF96ZkJSvZaJvVTk5aXmn7Fj1juOutWyjOK6ZJx2h8Ar0oKTRj8jKSl5lfprJSSmJaqQvKv5ofjds1IKh6IAYPA9+/8CtrZ20EoHbjmjTpEE1s9xgObjtKlRrBSKeEiiVjKiS2exO+SHiHud8v4eP7viEsKoSPVr5OQFV/ti7byaaF22jZuxkNT1njSNt/jMO7kti38QD7Nh6g7z3deHX6U+WO3+3WDhTlFeNf1Y+mndUah6XEwvjRE1g0eQVj3r+dYU8MZPPi7aQdTCftYDr7NhwgpHZV6sZGUjdWfQeadozG5O1B7rFcju5NpWr4ieih7rd3IjA0EC9/Txq2PvdFZjcXH7fBd1OOquHB1GpYgyO7kksXXE9HfN/mPPLlaMxFFrqMUBWQtFotUTG1AVWx6NSFx7CoqqUZvSB5afC7dL+tIxlHMln/72a8/DxpPaBF6TE6DWtTzmcMoDNo6TS8Lcl7Uvnzo9kc2HqEFt2b0u22jljNVrz8PGnR84SLytPHg5ufGQJAzrFcolvXJywqH61Wwwd3f0H9uDrE921OvRZR1G5UkyGP9GXL4h0k700jcfMhdq7ZS70WUaXuJt8gbwKq+ZGcmMa/ExeyccFWNi7YStuBcWU0jE5HbkYeMyfMQ6vXkevSOjp2OIOSAjMmLzNzJy1Bq9Ew8+sF1IuLKuMbrxsXSaO29dm5ei/9xnRn0eQVRMXUou2g+DLnqF4nlPvG3VHmvezUXHKO5dGoXQNWzljHsCcG0qJHDMv/WEOVmkHUjy+/lmEusTLx2clYzVYS5m6mxYb3T3wWel2F8tturhzcBt9NOarUDOa9BS+Rl1lA7UZnDh80ehjPOTt2z/oDrJy+DoDm3ZqwedF2Yrs3RW9UiT5Ws407XhtORJPT6ynpjXq2Lt2JydOIlLJUMTEwxJ9bX7jxtPvmZuSzdOoqAHyCvEk/nMmafzaw4OdlfLnxPTy8TNw//k5y0vP486NZbJi/hYjG4TTr1oikfSkMvK8XHYa1JnlfGq8MfZ+ONyrF0Nb9zy4B6Tgr/lzHpJdVtupjX42hWq1g6rWIIiwqhNSDaWxesJX0o1l0HNaGovySMgu6Jk8To9+7nR6jOvP35//y4ytT0Wg1fLP1wzPecFb8uZZNC7fhF+zDw1+onANriZXOw9vSZmDLcusUAB7eRpp3a8zaWRvPKRrKzZWB2+C7qZDAkIAKlQxBxatPGz+TwuwihjzSt1SE7VyoXicEvVGPdEqCqwfi6eNBvRZRtB8aT3SbetRtHkFUTPmniw3zt7B16U5aD4gjulVdIhqH8+TEB8hIyqJa7SrUaVa73D6bF2+jMLeY+D7Ny+j01G5Uk8e+uZfda/bhX9W31A1k8jSi0ZxQIF0xbQ2/vTOd6Nb1uPGxftSLjeLxr09kgk5+axp2m51Vf63nxd8fp2Wv5nh4V55cVVJoxuFwlBYBqVYrGI1Wg0ajIaxuKH1Hn8ilSNqTVhotU5RbTH5mPtIp8a9ywvW0ccFWXrvxw9InGd8gH0yuNYTiQhX+6uldXpEm01UtLS+zgJCIqmQfy+Xlwe9SlF/CnoT9vDLtyXL7GE1Gnpr0IMn70ohofObJgJsrC7fBd3PObFq4jZ9f+wOAwFB/bn526Dkfo2mnRny58T2kQ1K1VhBj3h9ZasRGPFU+WgYgP6uAN4aPozC3mC1Ld/DR8jcAaNS28tj9bSt28XSPN3A6nTw6YUyZxDQhBH3v7laqR5S8P43ty3fRoFXd0oIuoCJOhBDsWZ+IT5AveVkFHNmZRO3GNfEJ8KbDjW04djgT3yBvmndtclpjf3RPMm8MH09+VgEvTn0cTz9PTN5Gxi19DZOnkaDqAfz58SwCq/kT17cZP7/+O91v70RJYQnxfWN5uM1zePh48Prfz5S6u7av3E1xQQn7Nhxk7IejaNGjKVXDq5C4+RBvjhgPUvL8lMfKuecG3NsTk5eRGvXCqBsbSWZKNnG9mrF58Y7TRvH4Bvrg2+q/hY26uby4Db6bc6Z6nVB8g3woyium1ikunz0J+8lJyyW2e5Mzql6erHPjeRb2w2DSU6NedRI3HaR+yzpMemUKnYe3O61ejqXYWrqgbC62lL4/8+v5zJ+0hIH396bbrSpmvnpUCNUreFppO7gl45a9hlavpV5sJK8PH8fK6evofntHnp70EDXrhfHYV2PPfAHA3oQDHNiqIo42L9nOT6/8gUarof3QeO5842b+nbiY755VC+bvL3yZ5H2p7Fy9l5hODSnOK6YwV/0c2HKo1OC3HdiSnav2UKVmMN1v61Aqwrd7zV6S9qYAsGvNvnIGv0a9MO58/WZARWZ989RPLP19NYMf7MOI54ac1fW4ubpwG3w350xk01p8vv5dzMXmMhIB+7ce4vGOL2E1W7n/ozsZ8nDFBdP/KyYvEy9MeYzd6/bx1i0f43Q4yUnL5dEJlRvb5t0a8+wvj1CQXUjXW1SET0FOIV898SPmIjNZKTl0HtH2tDr+AI1dgnMlBSXsWLEbgB2r9mC3la2fumTKKo7sTqLbLR2oXlGGrEaJ5EmH5OieVOw2O9hUpankxLTSpwOtTovJy8SLvz/B9hW7aNW3BUYvA3sS9mPyMtK8W5PSQ9aNjeTdeS+VO1VMl8bEdm8CkjNWgyrKLWLZ72sA2Lp8Fw+E3HXa9m6uTtwG381/IqQCMa/ivBKsZlU1qzCn8KKct1qtKmi1GoJCA8hIyiLAJcFcGVqtlq43lw3l9PT1oN/Y7uzfdIhmXRqd0diDSkaa+sHfZBzNot/YnuzbsJ+wuqH88NJv3PTkIHwDfdi/5RBv3fIRUkoKc4u4f/ydZY6xa+1e3r3tU6SU3PXWLRw7eIz2Q1uh0WqIaBJOw9b1aNyuPkFhgXgHeJGVkk1YVDVuff7E4vOpuQKno2b9sApvBBURUM2fx74ey9pZG+g5svNZn8PN1YXb4Lu5YDRqV59nfnqIjKQsut/W8cw7nAM2q42V09chNBraDW7Jk5MeZNWMtQghKMguPK3PGZTLYsWfa9FoBPXiovhz/CyklOgMZ1eBa/uK3aWFYFr1j8VmsTHjk9kARMVE0GVEOzx9PfGr4ktueh4BVf3KHUOr06LRanDYHYBk3qSlRLepR9eb25dZW2g/JJ5Jr0zh59f+wK+KL5+tffuCSTWfjl53dCkjkOfm2sNt8N1cMDQaDd1uvbCG/jjLp63l7Vs/BuDFqY9zdHcyMz5VKtuRTWvRfkir0+6/Ytpa3r5N7f/Mzw8T270JG+ZvpXH78nVbKyIsqhphkdVIO5xBXI8YMlOy2bZ8Nx4+JmrUU66b0IiqvL/oZY4dyiCmc/mQxXotonhn7gtkpeQQ3685NepVpyC7kE43tWHXmr2sn7uJ5l2b0KRDQwqziwCV1Hby2oMbN+eD2+C7ufqQUCc2Er1BR0CIP+EVaOCcijgpzFJv1PP8r4+RnpR5VvsChNUJZfzy1ynKLymtPNXrji7ojYYy7q3aDWueVvr4uH48QIeh6iblcDj4+L6v2b/lMP9OXMK3O8Yx+OE+BIT6n/F4u9buxW5z0LhdgwqL2btxczJCyiu3bGxcXJxMSEi43N1wcwVgtdhYNWMdCEH7IfHo9DpSDx7D6GGoNF/gZGxWG6v+SkAIaDuo5RWl5CilyjRe888GmnaM5u25L2IwVlzA/mQ2LdrOM71ex+lw8vK0/53xKcfN9YEQYoOUssKKNOdb8ep9YABgBfYDd0opcyto1xv4GNCiKmG9cz7ndXP9YTDq6Ty8HRsXbOWP8f/QblCrc6rxqjfoK5RmuBIQQvDIF6PpdUcX6sZGnJWxB1Wf2OlQIac5abkXsYdurhXOa4YvhOgJLJJS2oUQ7wJIKZ8+pY0W2Av0AJKA9cDNUsqdZzq+e4bv5mTSj2Zyd/SjmIst9BjZiad+ePByd+myUlJoZs53C7FZbPS5uxu+/1FD3821xUWb4Usp55305xqgIvGSeCDRVeoQIcRvwCDgjAbfjZuT0em1+AR5Yy624FVJEZLrCQ9vE0Mf6Xe5u+HmKuJCOjLvAqZU8H514OhJfycBlTobhRBjgDEA4eGnF85yc30RGBLAmzOf4/DOozTr2vjMO7hx46YMZzT4QogFQEXqWM9LKf9ytXkesAO/VHSICt6r1I8kpfwa+BqUS+dM/XNzfRHRJPyMCppu3LipmDMafCll99NtF0KMAvoD3WTFCwJJwMlxZTWAlHPppBs3bty4OX/OoSZPeVzRN08DA6WUxZU0Ww/UFUJECCEMwAjg7/M5rxs3bty4OXfOy+ADnwE+wHwhxGYhxAQAIUSYEGI2gJTSDjwIzAV2AVOllDvO87xu3Lhx4+YcOd8onfI10NT7KUDfk/6eDcw+n3O5cePGjZvz43xn+G7cuHHj5irBbfDduHHj5jrBbfDduHHj5jrhihZPE0JkAIfPsnkwkHkRu3M+uPv237hS+3al9gvcffuvXEt9qyWlLF+hiCvc4J8LQoiEyvQjLjfuvv03rtS+Xan9Anff/ivXS9/cLh03bty4uU5wG3w3bty4uU64lgz+15e7A6fB3bf/xpXatyu1X+Du23/luujbNePDd+PGjRs3p+damuG7cePGjZvT4Db4bty4cXOdcNUafCHE+0KI3UKIrUKI6UII/0ra9RZC7BFCJAohnrlEfRsmhNghhHAKISoNpxJCHBJCbHMJz12SWo7n0LdLOm5CiEAhxHwhxD7X7work1/KMTvTGAjFJ67tW4UQsRezP+fYt85CiDzXOG0WQrx0ifo1UQiRLoTYXsn2yzlmZ+rb5RqzmkKIxUKIXa7/zUcqaHNhxk1KeVX+AD0Bnev1u8C7FbTRooqrRwIGYAvQ8BL0LRqoDywB4k7T7hAQfInH7Yx9uxzjBrwHPON6/UxFn+elHLOzGQOUQOAcVJGf1sDaS/QZnk3fOgMzL+V3y3XejkAssL2S7ZdlzM6yb5drzEKBWNdrH1QN8IvyXbtqZ/hSynlSSS+Dqqdbo4JmpfV0pZRW4Hg93Yvdt11Syj0X+zz/hbPs2+UYt0HAJNfrScDgi3y+M3E2YzAI+FEq1gD+QojQK6RvlwUp5TIg+zRNLteYnU3fLgtSylQp5UbX6wKUjHz1U5pdkHG7ag3+KdyFuvudSkX1dE8dyMuJBOYJITa4avleKVyOcasmpUwF9Q8AVK2k3aUas7MZg8v1/Trb87YRQmwRQswRQjS6BP06G670/8nLOmZCiNpAc2DtKZsuyLhdyCLmF5xLXU/3QvftLGgnpUwRQlRFFZHZ7ZqFXO6+XZRxO12/zuEwF2XMKuBsxuCifb/OwNmcdyNKU6VQCNEXmAHUvdgdOwsu15idDZd1zIQQ3sA04FEpZf6pmyvY5ZzH7Yo2+PIKrqd7pr6d5TFSXL/ThRDTUY/q5228LkDfLsq4na5fQohjQohQKWWq61E1vZJjXJQxq4CzGYPLVa/5jOc92WBIKWcLIb4QQgRLKS+3QNgVW+P6co6ZEEKPMva/SCn/rKDJBRm3q9alI67yerpCCC8hhM/x16hF6AqjBy4Dl2Pc/gZGuV6PAso9iVziMTubMfgbGOmKoGgN5B13S11kztg3IUSIEEK4Xsej/tezLkHfzsTlGrMzcrnGzHXO74BdUspxlTS7MON2qVekL9QPkIjyaW12/UxwvR8GzD6pXV/Uqvd+lEvjUvRtCOqObAGOAXNP7RsqwmKL62fHldS3yzFuQBCwENjn+h14ucesojEA7gXudb0WwOeu7ds4TUTWZejbg64x2oIKamh7ifr1K5AK2Fzfs7uvoDE7U98u15i1R7lntp5kz/pejHFzSyu4cePGzXXCVevScePGjRs354bb4Ltx48bNdYLb4Ltx48bNdYLb4Ltx48bNdYLb4Ltx48bNdYLb4Ltx48bNdYLb4Ltx48bNdcL/AS74lFaR3umZAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "## Step 5: Assign Cluster Tag\n", + "\n", + "\n", + "fig, ax = plt.subplots()\n", + "sns.scatterplot(X[:, 0], X[:, 1], s=10, c=y_pred)\n", + "ax.set(title='Spectral Clustering');" + ] + }, + { + "cell_type": "code", + "execution_count": 115, + "id": "921d43e8", + "metadata": {}, + "outputs": [], + "source": [ + "## to summarise the above steps\n", + "def spectral_clustering(df, n_neighbors, n_clusters):\n", + " \"\"\"Spectral Clustering Algorithm.\"\"\"\n", + " graph_laplacian = generate_graph_laplacian(df, n_neighbors)\n", + " eigenvals, eigenvcts = compute_spectrum_graph_laplacian(graph_laplacian)\n", + " proj_df = project_and_transpose(eigenvals, eigenvcts, n_clusters)\n", + " k_means = KMeans(random_state=25, n_clusters=2)\n", + " k_means.fit(proj_df)\n", + " y_pred = k_means.predict(proj_df)\n", + " return y_pred" + ] + }, + { + "cell_type": "code", + "execution_count": 116, + "id": "de08bbe1", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n", + " warnings.warn(\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADaRklEQVR4nOyddXgUVxeH37u+cSfEgyeBECC4S6Foi9VoqbfU3fsV6k7dqFFaKKUFWtyKu7tDCIQgIW7r9/vjLoFAkLZBAvs+Dw/ZmTszd3aTs3eO/I6QUuLBgwcPHq58NJd6Ah48ePDg4eLgMfgePHjwcJXgMfgePHjwcJXgMfgePHjwcJXgMfgePHjwcJXgMfgePHjwcJXgMfgePLgRQowUQrzxH46XQohalTmnfzmPF4UQ313qeXi4/PAYfA+VjhCijRBiqRAiXwiRI4RYIoRoeoGvuU8I0eUCX6O6EOJ7IcQhIUShEGK7EOJVIYR3JV7jP33pAEgp35JS3lNZc/Jw5eAx+B4qFSGEHzAF+AwIAiKBVwHrJZ6X7j8eHwQsA8xASymlL3ANEADU/M8TrCT+6316uLLxGHwPlU0dACnlr1JKp5SyVEo5S0q5EUAIcYd7xf+Z+wlguxCi8/GDhRD+J62iDwoh3hBCaE/af68QYpt7hb1VCNFYCPEzEANMFkIUCSGeFULEuV0sdwsh9gNz3cf/LoQ47L72QiFE0nne15NAIXCrlHKf+x4PSCkfO35vJyOEmC+EuOek13cIIRa7fxZCiI+EEEfd89gohKgvhLgPGAQ8676Pye7xEUKI8UKILCFEmhDi0ZPOO0wI8YcQ4hchRAFwh3vbL+79x9+H24UQ+4UQx4QQL510vFkI8ZMQItf9vj4rhMg4z/fEQxXDY/A9VDY7AafbiHQXQgRWMKY5sBcIAYYCE9wraICfAAdQC2gEdAXuARBCDASGAYMBP6APkC2lvA3YD/SWUvpIKd876VrtgQSgm/v1dKA2EAasBUaf5311ASZIKV3nOf5sdAXaob4cA4AbUfcxwj2f99z30VsIoQEmAxtQT0udgceFEN1OOt91wB/uc53pftoAdd3HvyKESHBvHwrEATVQTyy3VsL9ebhM8Rh8D5WKlLIAZVwk8C2QJYSYJISodtKwo8DHUkq7lPI3YAfQ0z2mO/C4lLJYSnkU+Ai4yX3cPShjuEoqdksp088xpWHuc5W65/eDlLJQSmlFfXk0FEL4n8etBQOHzuc9OA/sgC9QDxBSym1SyjOduykQKqV8TUppk1LuRb2vN500ZpmU8k8ppev4fVbAq+6nrQ2oL4+G7u03AG9JKXOllBnAp//15jxcvngMvodKx23A7pBSRgH1gQjg45OGHJTlVfvS3WNiAT1wSAiRJ4TIA75BrcYBooE9/3A6B47/IITQCiHeEULscbs/9rl3hZzHebKB6v/w2hUipZwLfA58ARwRQoxwxz4qIhaIOP5+uN+TF4GTv0APVHhkeQ6f9HMJ4OP+OeKU48/nXB6qKB6D7+GCIqXcDoxEGf7jRAohxEmvY4BMlLGxAiFSygD3Pz8p5XE/+wHOHCA9k+zrydtvQbk/ugD+KFcGgODczAH6ul0s50Mx4HXS6/Byk5LyUyllEyAJ5dp5poL5grrntJPejwAppa+UssfJpzvPOVXEISDqpNfR/+FcHi5zPAbfQ6UihKgnhHhKCBHlfh0N3AwsP2lYGPCoEELv9ssnANPcbo1ZwIdCCD8hhEYIUVMI0d593HfA00KIJu7AZy0hRKx73xGUH/ps+KK+ULJRxvitf3Brw1Fxg5+OX1MIESmEGC6ESK5g/HqgnxDCS6jc/LuP7xBCNBVCNBdC6FFfDBbAeYb7WAkUCCGecwdYte4Ab2WluY4DXhBCBAohIoGHK+m8Hi5DPAbfQ2VTiArKrhBCFKMM/WbgqZPGrEAFTo8BbwIDpJTZ7n2DAQOwFchFBSOrA0gpf3ePH+O+zp+o1E+At4GX3W6Pp88wt1Eo99FB9/mXn2HcaUgpc4BWKP/7CiFEIfA3kA/sruCQjwAbyoD/RPlgqh/KD5/rnk828IF73/dAovs+/pRSOoHeQAqQhnrPvkM9oVQGrwEZ7nPPQb3flzSF1sOFQ3gaoHi4mAgh7gDukVK2udRz8XA6QogHgJuklO3POdhDlcOzwvfg4SpGqOrh1m73WV3Uk9jESz0vDxcGT1WeBw9XNwZUJlQ8kAeMBb68lBPycOHwuHQ8ePDg4SrB49Lx4MGDh6uEy9qlExISIuPi4i71NDx48OChyrBmzZpjUsrQivZd1gY/Li6O1atXX+ppePDgwUOVQQhxRrkRj0vHgwcPHq4SPAbfgwcPHq4SPAbfgwcPHq4SPAbfgwcPHq4SPAbfgwcPHq4SPAbfgwcPHq4S/rPBF0JECyHmufthbhFCPFbBGCGE+FQIsdvdv7Pxf72uBw9XM3s3prN/+8FLPQ0PVYzKWOE7gKeklAlAC+AhIUTiKWO6o+RwawP3AV9VwnU9eLio7Nu8n6V/raK4oOSSzmPF1DU80ORZHkp9jm3Ld17SuXioWvxngy+lPCSlXOv+uRDYhmq2fDLXAaPcfUiXAwFCiEppF+fBw8Xg6P5jPNf1dYb2fY8/hk++pHPJ3H0Yl9OFpcTKobSjl3QuHqoWlVppK4SIAxqhGlycTCTle2VmuLed1rhZCHEf6imAmJiYypyeBw//GkuJhbysAgAKjhVe0rm0HdCCnMN5GLwMNO2ecknn4qFqUWkGXwjhA4wHHpdSFpy6u4JDKpTplFKOAEYApKameqQ8PVwWxNSL4pXfnyJtczodbmj9n8+3adFWFk1YQaOO9WnZ5591KwyJDObutwf95zl4uPqoFIPv7s05HhgtpZxQwZAMyjdHjkI1rfbg4YKwZekOVs9YR6MuySS3OzWk9O9ofX0zWl/frFLONeKZn9m+cjfTv/2bX/Z9iX+IX6Wc14OHs1EZWToC1Ydzm5Ry+BmGTQIGu7N1WgD57obVHjxUOnabneH3fs0vb4znvds/x1JsOe9jc4/ksXTSqgvuG6/VOB6Aus1qYfQyXtBrefBwnMpY4bcGbgM2CSHWu7e9CMQASCm/BqYBPVDNnkuAOyvhuh48VIhWpyWiRjX2b8sgsnY4OsP5/5p//dRPzB2zmLrNavHB30MxeZsuyBzvfnsQHW5oRXS9KEweg+/hIvGfDb6UcjEV++hPHiOBh/7rtTx4OB80Gg2Pf3MfO1bvoXbjGuj05/9rfiQ9C4BDuw9jszoweV+YOfr4e9OwQ/1zjrNZ7SyfvBqdQUfzno3RarUXZkIergouaz18Dx7+KVuX72TPujRSr21Eq38YDAW47/3BbFm6g5oN4/AL8qn0+a37exOrZq6nbtOatB/Y6rT92Zk5SAkhkUEALPx9Ge8O/gyA1/56npa9m1T6nDxcPXgMvocrhpzDufyv9zsUZBdyze0dePbH83uotFlsTPhkKkV5xSwYtxQhBK/8/nTZ/jVzNvLLa7/TsEMSt7zYD4PJcM5z7ly7l0O7DxNUPZC8o/k06doQL18z88YuYePCrWxduoO4pGgCwwPQaDX4+Hsz66f5zB2zGLOPiQFP9iKpdT2cdmfZOaV0MXvUAjJ2ZtJlcDui65xa7gKlxaWsmLKOwHB/GrZPOq/793D14DH4HqokJYWlHEo7QvX4MLx8vdRGIRAa5V0MCPXl2S6v0aZfM3o/0A2VW1CeI+lHGfHMLxTnF1NSaMHsa+JwmnLpbFuxk1qNVGB13phFbF68nc2Lt9Omb/Oy7Wcic+9hnuvyKvENYtm1Ng1LsYVBL/XjjtdvxuRjJCg8gC1LdrB58XZ+GjoOs4+Jl8Y+zncvjCb3cB6h0SEc3H2YpNb1aH9jK4RWoNPrCAoPYOj17wFQWmzhwY9OD4VNG/E3Xz/1E1qdlk+WvkHd1FqAcg39/sEktizZwQ3P9CG5fSJSSo+L6CrDY/A9XBIKcwqZOXI+Zm8T19zevmzVbCm28OP/xrJ58XbueXsQjTo3OO1Yh93B8Hu/YsG4ZbS+vim3vXIDNVPisJbYuP6R7vgF+zDzh3nsXLOXDfO30LpvM4KrB512ngW/L2PhH8sA6HRLG3QGHQnNa2PyMdGo04nrNuxYn9k/L6RJ12TC4ypsFVoOm8VOaZEVnUGHrdQGwL6tGRxKO8qGeZs5sD2T7vd0wm5zkHskj9wjkLZ5P4kt6rDkz5XEJUWR3EGlkpq8jHQd3AGAQ2lHCAoPIOdwHkazEZvVzoSPp7Jj1W76PtqT5HYJ2Kx2AJwOJ9ZSO8smrcY/zA+DUc/I/40FIC4pip9f+x1riY0nv72fGslx5/mpeajqeAy+h7Oy7u9NjHh2FPXbJHDXm7dg9qmcrJV5Y5fwzdOj0Gg1hMYE06y70tPbvHQHEz6eCsCC35dWaPBLCktZPnkNAGmbDrB95S5qpsQx5s3xzPhhLj4BXtzx+s3sXLOXzre2xTfIt8I52C12QiKDsFnsJLWpx5SvZnEsI4fUaxviHeDFjy+PASHo+2gPRu/7suzaPoEV+/adDielRRbiEqN5deKz7N+eQXTdCA7tPUpIZBDTv5vD3o37ATB5qy+V5j0bY/IyktKxPi17p9L/iV7E1Y/Gt4JrhMWEcPtrNzL/t6XM/HEeNRvG8v0LowHw8fciuV0CzXs05sD2g/gEeHFgWwYfDxmBTq/j/XlDadS5PuvnbkFn1LNxwVYA1s/d4jH4VxEeg+/hrCz4Yxm71+1j97p9dLypDYkt61TKeX2DfNHqtLS6rilfPf4jmXuOEJ8cy8RPptLltvasnL6WmIQo/vxsOk27NyKyVnjZsX5Bvgz56A6WjF9BUGQgdVJrAqDRqbISrU5Hq+ub0rxHYwLD/TEY9RXOIaFFHVbNWE+LPql89+wv+Ab5kNC8Fq36NGXpn6sY89ZEAMLjwmjYPpGXe7/D4bSjvPLH07ToVT54WlxQwidDRrBy+jqe/O4B2vVvQfOejdm9fh9rZm/gu+d+ITw+jM6D2lKYW0T7G1oRmxjFG5NfKHeeBm0TTptnUX4x3zz1E5uX7KDHvV1Y9/cmAEzeRhq0TWDz4u0ktqoLwKoZ65g9agEAN7/QF1BPRA6bk2ETnqUwuxCrxcaaWRuwFFto0O7065W7dl4xTofTUxh2heAx+B7OSpNrkpn90wJSOtUnss7Z9e6cDidZGdkEhQeg1WvZsmQHvoE+xDc4XROp3cAWBEcE8NYtn5KdmcOPL4/luoe7Yiu1A5L6beqxbcUuFvy2lE4rd/H8z4+WHZt7NI+0TfupXjec6x7oRmyCKuK+9eUBhMeGkn+skMUTV3Ddg9ei0Zy5trBxl2TqpNZkzFvjKS2yUFpkodsdHelwY2vWzd2E3qADIYisFc6BHZkc2KGKw7ev3EWDdgkU5hYTHqtcPLvWpVGYW0xCizpsW7qddv1bAFArJQ6DSc+49/7icNpRBr3Un2vv6oTNaufI/ixCIoLQ6s7uR9+3aT8zfpgHwN71+xgy/HZCIoNp2r0R9dvUI/9YIZG11GdTLTYUjVaDydtETEIU938wmMDwAJLbJaDRaPDyNQPw1HdDWD5lLUV5xWe+7pYDDOv7PoW5RQyb+CwN2tQ76zxBFa7N/nkBgWEBdBrUxhMjuMzwGHwPZ6VtvxY02J+I2ceI0XT2AqGx7/7JyP+N5dq7OtGwfSLv3v45Zm8Twxe/Rq2G5QOdWq2W5HZJ9HmoG7+8+jt9H+mO3eZg/bzNJLdPImPHQZwOF/ENYtDpyxuNDfO2MOmLGQCERQWXGfzQqGD2bz/InJ8XAtCoYwPikqKpiN3r9/H36IXUbhRP18Ht2bclAy9fM50GtWHVjPVYS618tuItdAY9sQlRFOYWMeDJXsrl060h/+v9DluW7OCZkQ/R5dZ27NuYzuqZ6wGo36YeB3cd4o+PpuAb6M3Ap/vwyZI3yD9WSL3mtXA6nYx4+if++mImtw27gcGvDDzr+xqdEEWrPqlsXLgNm8XOqunrefHXx9iyZAfr5mykSdeGZQbfL9iXhu0TsVns7Nmwj/vfH1zhOX9950/mj12C2dvED9s/KUsDzT2Sx5RvZpN3NB+zr5mDu1VB/LblO8/L4M/4cS4/vPgrAMGRQTSuwCXn4dLhMfgezknAeT7Ozx+7BIDZoxaUSQeUFlvIO3Kqlp5ixg9z2bd5P3e+eTMhEUH8+fl0ADYu2ELDDkkEhgfQvHsjktuX18KJS4omNDoYvyBfqseHY7fZ0RuU26Zu01rM+Xkh9dvUw2axMazf+xi9jNz91s2ExZwIuP71+XRm/DAXIQTfbh7OW1NfBGD1rPW82ONNAJ796WGuua09AL6BPtz/we0AbFuxi23Ld+Fyudi8eBtdbm1HTEI0eoMOrU5LSockFv6xjClfzwKgduMatO3fgii3N6wgp7BsxT5n1Hxufbn/WZ9E/IN9eXnck/zy2h9sXrydAzsy2bRoO18/OZLDaUdZ8Mcyvln/AXqDnvjkGLehPszgaxud8Zw+AaqizC/Ut1wl8uSvZvHza79j8jLSum8zktslotVrad7jzOc6meOxhxrJseh0noZ6lxseg+/hjORm5VOQVUDapgPEJEZSo0HsWcffNnQgU76ZTbsBLUAI2vRvQe1G8QSEnh40zTqYzUf3fYPL5WL/1oNkHTjGkI9uR2gEbfo2J7ljIlG1IspcECcTVz+G4Qtf48O7vuSNG4dz55s3c8sL/QDo82A3UjrWJ6h6ALNHLWDJnysBSL0mmWtu7wAof/txv35U7er4Bp4op7VZ7GU/H047yvTv/6ZN/+b4BpwIopYWlZLSuT7B4YF0uqUdAI27NODr9R+g0WqIql2dorwSdHodfsE+RNapzoHtB9m+ajf1W9eleo1wHvj4DuaOXkyvIV3PaOwXjFtKxu5DdLq5LdXjw6jXvDZj3lLahJsXbyWiZjh2i526qbUYfu/X9HusJ7Ub1+CVP57CYXNiNJ+5XmDw0IE0bJ9IbP1oAkLVF/rkr2axcvpa2vZvwcpp68g6kM3O1Xu4/fUbiU2s+EnpVLre0RG/ED9GDf2N57u9UWG8w8Olw2Pwr0CspVbyjhYQGh1cZkyyDmbj4+993lk2aVv280rvd4hOiGTV9PUERwTy5ep3CQoPLDcu90gexzJyqNEwlnYDWtJuQEtKC0sZFPcgKZ3q89Mrv7F58TZe+f2pcro0vkE+tOzThCV/riIsNgS/IB9a9mnKNbd1OL+blLBhvso02bJke9lmjUZDeI0wdq7eS0xCJP6hfph9TNRsfMKltPSvVSz5cyWNOtWn/Y2tyt1Ts+6NeP6XR8naf4xJX84kKyObwtwibnj6urIxf49exOoZ6wHo+2iPsu0x9U4UQjXv2ZhvN32I0cuIX7APj7f5H7vXpdG0WwpvTnuRnvdeQ897rznj7e1au5c3b/4YKSVFucXc//5gktsn0uW2dqz7ezMN29en32O9WDl9HR/f/w2g3Dm1G9dAq9WiNZ/Zd24psbJ8ispyMvuYGPPWeEzeJn7/YBL5xwqpXqMaz//6KPZSG/lZLeh40/nLQRuMekxeRtK3ZgCwbu4mUjrXx2T26AVdDngM/hWGpdTKR/d+zdwxi3nw4zvo+2hP/h69kPfu+IKUjvV5ccxj55Vxkb45g6P7s6leoxoAhTnF5Va/APnH8nm5zzvsXLWH+z8czIAnegNg8jHR64EubJy/DZfLxaoZ68nOzCXvWAFmbxM1kmMxmY08O/JhDu87itPhJCw2DB9/b7IysvnplbHYrHZuH3YjkbUrDhSHx4XxxLf3s3nx9jK3y3Emfz2LEU+NolajeD5d9ha+AV7lUjNDIoPJyyog90g+/R7vVe7Yo/uzCI8Lo1psKD++rPLWTw08Jraoy6yR82nQNoGQ6OAzvofeAV788vp4dHoNRfkqOFqUX4yUssJCsOMU5haRczgPb38zRXkl+AWruXv7efHsyIexW+1ldQtNr21IXFI0+7cdpK47W+lcLJ6wguH3fo3eoKP3A92Y8IlKg+1+T2cKjhWyYNwy9qzfxy0v9+f6h7uf1zlPJqFlbfo93pN9m/aze10anz/yPU98ff85g9MeLjweg3+FkX8kn7ljFgOw5K9V9H20Jxvmb8XldLF2zkYO78s6L4Of0imJ3g92RaPVkNiqDvXbJBIeFwbA4X1HGfP2RCxFpbgcLgD2bkgvO1YIwe2v3sTcMYtx2B20ur5Z2YrVYDLwwfxh1GgQw9q/N+MT4EVk7er4u43a2jkbmTlyPgD1mirDcSa639WZ7nd1LntdUlDC9y+OYePCrTTr3ojVMzeAlKfl4TfqVJ9Pl72J0+kioVntsu2Zew7xZPuhZGfm8vjX9/HmtBfIPZxP6+vLa/L0uLczKR2T8A/1xSfgzHo7JweX73l3EBqNhsZdkk9z4RQXlDB71AL0Rj2dB7Xli0d/4O/Ri+j7aA9SOibRuEtyuff2ZGmHsOhQ3vt7KEW5xUTXjTjjXE7G5K1W2027NyoLyuoNOmwWGy7pQkrJgR2ZpG3af17nO5WS/BKiakdQmFPE7FEL2LFyN/e9dxt+Z6iHOM7ejen8/uEkQiKDuOn5vnj7ef2r63s4Mx6Df4URGhPCAx/dwZI/V9LvMWUsO93ShkN7D5PYqi5xSVHndZ6AUH8eGH4HGq2m3GrU5XIx7ds57NuYTkA1fxp1bkCN5FjaDWzJ/u3KF9+gbQIGk4FajeJp2acpkbWrk+VWobRZbGQfzGXHit188dgP6PQ6kjsk0nVwezoPakfNlDhCIoOwltqo01StWA/uOcyOFbuo17w2ETXDK5wvwN7N+5n05UwAoupE8NzPD59xfJ0mp6+Gcw7nk52Zq6656xA976vY5SKEOOOTx8nEJkUTFhNCYXYRtRvXPGPGyvzflvDFoz8A4OVrYsvSHe7tS7nzzZvPKdEcGOZPYJj/OedznJZ9UnlzygssHL+cReNX0PPezuRnF5G+JYMWvZpgtzoICPWjefdG2Kx2HHYHXj6nx1LOxK9vT2TqiDl4B3jR99Hu1GpU45zGHmD+uKVlGVYN2iTQrEfj876mh/PDY/CvMDQaDf0e61lm7AFSOtYnpaOS4pVSMu3bOWxbsYuud3Q8Y6rd5sXb+OSBb4moFc5jX91HUHgAoJp5//q2KkhKbFmH+q3rMfnLmSyeuIKUjvVZ+tcq7nvvNgY+3YeJn0xl+vdz0Wg1fLL4DW57ZSBe/maadEtmorua1mF3IICNC7fSeVA7aqXE89Xa93G5XARVC8Bhd/DBnV+wefF2GnZI5N3Zr5wxtzu6TgRNu6ewacE2Og9qS5u+zf/Re5fQvDaPfnEPh9KOcO1JTw7/lvj6MXy+6h0cVjuhUSFnHOfjr4LGQgh8g3x47Mt7WTZlNc2ubYT5Aujxa7Va6jStyeF9WZQUlmK3O1k8QbWhrtOkBv8b+wRefl4c3Z/FC9e+yaE9h3nu50fKxNhKSyysm7OJ0Ohgajeqcdr5jy8QNBoNNzx7PSERKuWzIKeQ5ZPXEB4fVmEXsrqpNdHqtITHhRFVpzrr521m1LBxJLSsw62vDMDsdWF6E1xNVFaLwx+AXsBRKeVpIt9CiA7AX0Cae9MEKeVrlXFtD+dPVsYxcg/n85E7yGcpspzR4K+csZ59Ww6wb8sBetzTmeY9VaaFb6A3LfuksmzSaoKqB/Ljy2NJaFGbTYu2YfY10ahTfYoLSgAIiVL+7bCYYEJjQhg87Iay83e/pzN6o578YwWkb8mg0y1ty/YdzxoB9URRkK2ahhdkF+Fyus5o8P1D/Bg2/hksxRb8gv95ZahWp6X3A93+8XFnIzD03CvvNv2b8/b0l9EZtGVfzKndUip1Hqcy4eOp/Pr2REzeJl4Y/Sg7Vu4hNDqYgc9ch5fblbJ7/T42LtgCwNalO1g7eyMSlaX056fT8fI189mKt8sFqwFueak/tRrHUyM5rszYA/z52XR+fvV39AYdX6x+l/j65QvyWl/fjB+3f4zJx0xgmD/jPpjEpkXb2LRoG236NieheW08/Dcqa4U/EvgcGHWWMYuklL3Ost/Dv2TH6t3sWLmbJtc0JDw+DKERp/mJ183dxNDr3qNW43hVDbp8J7XPEuRr3KUBs3+aT3S9SOIbxpVtH//xVPZtPsDNL/Tlr89n0KxHI+IbxJDUph7ZmTmsm7uZPRvS6XV/VwY+1YeEFnWIqFmN4Orls3sCwwIY+FSfctu2LtvJ5sXbSO3WsEzfxWA08MzIh9kwbwspnZLK8u1PxelwggCDyXBe8sWXE1qtltRuDS/qNZ1OFXtx2h1E1a7OV2vfRavTlvu9qdu0Jr2GdKUkv4SsjGwmf6XqCnrdr1xdpUUWSgtLTzt3aFRwhRlITqeSena5JC739U+leo0TLriUjvWZ8YPSDJr89UwCQn3L7ffwz6kUgy+lXCiEiKuMc3n4ZxTmFvJqvw/Iysim94Pd2LFiF94B3jz+9X3l/Nc7V++ltNjCpkXbeGHMYzzyxd2ERAZTUlRaoX82pUN9ftj+CdtX7uZ/vd4msXVd7nvnVhZPWMmhvUeYOXI+b01/kbj6MWXBtY+HqCcHu9WO0+nE7GOi6XmuVIsLSnjjxg/Jyshh2eQ1DF/waplroF7TWtRrWuuMx+7duI/h936DwWzgyRH3E1Xn/IKXVzP9HuupXCd1I7DbHJQUlJ4WzHe5JOv+3sTBXYfo+5hKP/UJ8KYov4T+T/SiXvPa1D3L53Iy6+dtJjAsgB73duFYRjbblu2i5kkLiYrocGNrSopK+fXNicz+aQEN2yd5DP5/5GL68FsKITYAmcDTUsotF/HaVzAnNOALc4rYuWYvAPN+XUxsYjQtejdBp9fR6rqm5B7N49iBbOylNiyFFu5JeoKQyCBe+eOpstL8kzF7m1j4+1L2bkxn78Z0ugxqx+2v3cjMH+fSsncqSa3Ku4Nuer4vsYnR1GwYR7WYc8sIn4xWq8E3yJesjBx8A73PmrZ4KuvnbWHHqt0AbF6y3WPwz4Pg6oH0HtKV8R9P4esnfyKpVV1em/RcueBq3tF8Du5SWTwareCt6S+pOEOg93kbeoBDe4/wcq+3sZbalI6Qxc6+LemnjVs9cz1blu2g9fXNqZUSB6Ce9ATE1Y+mXrPzv6aHirlYBn8tECulLBJC9AD+BCp0yAkh7gPuA4iJOV10y0N5fAN9GDbxGXau2kNYTAh71qVh8jayfMoaRr7yG6/8/hRt+7cgum4EuYfzWPD7MhaNX8H9wwdTkF1IQXYhe9bvq9DgAzS5piFzfl5EcvtEoupGkNSqLq2vq7h1YHhcWLlCpH+CydvEy2OfYMfqPTRoe27NlpNp0C6BuKRoDGYDCS0qR83zamHn6j0AbFm6g9wj+eUMfs2GcTzxzf2kbd5Pl1s7lBnhU9m6bCd6o47I2tXZtmwnEbXCCQjzp6RQVRuvmLoGnUGHEIKjB46xft5m0jalc+srAwlwxziOZeYwtO/72Cw20jbuZ9iEZwD1dPfNuvcRGk2FRYMlhaVkZWQTWSv8H/Uuvlq5KO+QlLLgpJ+nCSG+FEKESCmPVTB2BDACIDU1VV6M+V1O5GUV4LDZCYk8c0HPqdRuVIPajWpweN9Rnvr+QY5l5vDGDcMB1Rbv718WYrc5iHOrVsYmRVG3aW0adkgkqm4kmXuPMOGzaSS3SSA+OaZcULRN3+Ykpydi8jadUWa4soiuF0l0vdPb9p2L2o1q8PnKdxAa5fP3cP70GtINnUFHvWa1T8vj12g09Li3y1mPX/LnSl7t/wFanZY+D3ZlwifTiKoTQb0WtZn/6xJufWUAI/83lkadG5DSMYm0LQcAMJgN5eIFBpOeanGhHNh+kODI8s1qvM6Qj28ttfLhPV+x8PdlDB52A7edQ4TOw0Uy+EKIcOCIlFIKIZoBGiD7Yly7KpG+LYP/9Xqb3CP5DJ34DKnXnH8g78j+YzzTeRiH07J45Iu7ee7nRxBC4LS7eMfdBPvxb+7ng3nDqF4jjLDoUD6Y+ypzxyzmuxdGExQewFeP/ci9791aTkYAOK8c6kvN2XRjPJyZBm3qnZcK5pnIyshGSonL5eJoRg6gXDjBEYE47I4ySemNC7Zy6/8G0PnWdjTpnEytRvFlFcSgfsden/Qc+zbvJ6lNAqVFpZi8TezZsA/fIB+K8ooJiQwuK9ADKMotZvF4lU66ctpaj8E/DyorLfNXoAMQIoTIAIYCegAp5dfAAOABIYQDKAVuklJedav3ipBSsnzqGvKPFuDlZ+ZQ2lEAdq7a/Y8Mft7R/LJ+rPu3HeThT+/GYXfwzdMnEqdMXobTGlsHVPMnqnY46+ZuBmDV9HWnGXwPHs5E+xtaUZxXjMFsoH6bekTWqkatlHh2r09DSkmPuzvR897OGEyGMr//tXd1Ou08UkqWT17Dng1prJyxnkV/LOf6h7sz+o3xtLuhJfPHLqFB2wRe+/PZso5jxQUl3PPOILav3l3WBtLD2RGXs91NTU2Vq1evvtTTuKBsWrSVpzoMQ0rJXW/dQnZmDvlZBQx6eUCZlnthThFj35lIXlYBA5/pQ1wFyoUul4sZ388lfVsG3e7sRI0GMRTmFnFXwmPUalSDarEh+Ph7ERIVQq8h15Tzd25bsZN1f29m8+JttL+xFd1u7/if72v55DXs3rCX9gNa/Ss3jYeri0N7DvPLm+MxeZmY/NVMpJTEN4gm/1gRNVPicFjtZGfmMuzPZ4muE8H+bRk83uZlCnOLeeKb+8/perqaEEKskVKmVrTPE+W41IgTfkyjycDDn9592pANC7Yw7oNJAITXCKvQ4Gs0Gtrf2IqMnZlljbZ9A324+YV+rJ+/BS8/MzvX7GX9/K3UblKDJHdLPICE5nXYsGAr6+duZsP8reQdzWff5gP0e7xnhZWU5+Lg7sO8OuADHHYHR/dn8+SIIf/4HB4uDwrziti7fh8xiVEEhgVckGsc2KGa1qyesR6dXke7gS3YMH8r197VmYydmRi9jPzx4WTqpNYscwPlHS2gMLeY+AYxHNiZSeaeI0TUrHZB5ncl4TH4l5gGberxxpTnyc8qPE2k6zgxCVFUiwslJzOXOo1VsdSWpTtI25RO855NCI0Kxul08umD3zJ3zGK639OZJ0cMIT+7gFFDxxGbFMX6uZsoLbTQqFMDgiICT7tGaVEpdpsDIQRrZ29i7ZyN+If6/SuDb/QyEBjuT9aBbPxDPb1QqzIjnh7FjB/mkdq1Ia/++ex/LmrbsnQHq2esI6VzAxq2T+JQ2lGe6TSMnMP59HmwG/u3HySpVV0e+OjOsmK94zGonav3kHckD/9gX5Ja1+XpHx5k3tgl/PHhZDYt3MoH817F5HVuGWaXy8WUr2exadE2ut/duZw43ZWOx+BfBjTrfnaRqJh6kXy27C2spTbC48I4uv8YL/V8i+L8Evo8dIBHPrsbW4lNqUMCa2dvwG6zYzQZiEmIxG51YPYxU1poISw2hOpu1cuT6T2kG74BvviH+vDH8CloNBrqpf67vOeQiCDenv4SB3YeomGH0zVTPFQNpJTsXK3qOrYt34W11PafDL7T4eSTB0aQtmk/M39awHdbhlOUW0T2oTxSuzZk+vdzkS4XNz3ft1xlds/7uqDVaqjTtGaZe1Cr09L19g5M+3YOAFkHsnHYHcC5Df7utWl89vD3AFhLbR6D7+HyIyDMv6wYaefavUiXir1YS6wAmH3NPDHiflZMW0vr65qhN+jRG/S89NsTpG06gE+AmcNpWTTqdJrUEaCM9IAnlfJFardGFOcV/6cCptjE6PPukuTh8kQIwQMf38HSP1fRuEtyWfvCf0NRXjEIqF6jGmmb9hNZqxo6vY5ajeJ5btTD7Fy9l9Wz1ILl4M7McsqiDdokEF03gvEfTWXEM6Po/0RvQqOCEULw0Kd3sXL6OpLbJZaJ0J2LHav3ULNhHHs27CM28fzUY68UPAb/Mqa0xMK80YtYOH4F1mIrD312F7VS4sk9lEu95rWRLhcpHU9k3TRom8D2lbtYN3cTNRrGEhYdQrWY0LKq1/qtE87ruv9UbtfDlUtKh/qkdKh4kXC+bF+5i9cGfIjRbODpHx+i252dqNUoDoNRz+71aRxJz6JZj0aYfYw4nZJW1zc77Ryrpq9n7DtKpbVa7IkCvzpNalYodX02QiKDsBRbSO3WkBa9K4xtXrF4DP5F5OCuQ/z5+XQCwvzp/3jPc+qcLxm/gnljl7J+nkqZnPnjPAKf96fdwJYU5BahN+ho1eeE33/V9PX89u5fAFSLDS0nkezBw6Vi67KdZGWospsD2w9y7V2dOJR2hLm/Lmb1zA3MHjUf3yAfRu74tFxu/slE1a2O2ceEw+Y466rc6XBWKB54Mi17pxISGYTepK8wAeJKxmPwLyJzf13En59NB6BmShwtep69ubPJx4Sl2EJkrXBKCi2kb81g7Ht/ce/bgxj0Yv/TxkfVjcDbz4zNYr/qHlU9XL406dqQ1G4pGMx6GnZMwul0Mvzer1k/dzO1m9QgJDIInyBvdIYzt0BMaF6Hr9e9j9PhJLpuJC6Xi4mfTGXRhBUMfKoPwRGBTP/+b7Yu30lAqD9PfjuE6vFnztqp3fifJyNcCXgM/kUkNiEajUaDX4hvWbvAs9HquqYYzQZsVjsTPpnKpoXbiKkbwa3xD9H/yV7c+Ez5Aql6zWrx1br3cdqdHgExD5cNsQlRvD39pbLXdpud/KP5AFiKrTzy5d3E1IvCy/fsLQ1PVn/Nysjm66dUUaFWO5Xkjklk7j7Cvk0HgANsW7bzrAb/asVTeHWR2bspHS9f83kZfLvNzp4N6YRGB3Nw5yEy9xxm5MtjyT6Ui7e/F6PTvzqt76fNYmPKN7PJOZRLz/uv8fzSe7gs2bFqN+vmbSKlQ33qNTu/xib7thyg4FghSW3q4rA5+HjICOb8vJAHP7qD6jXDmfjZNA7tPkxANX+eG/XIGQUBK8Jhd7Du7814B3iRWMUF+DyFV5cRNRrEnvfYiZ9O49tnf6FOag3emvYSye0SKcorZswbE7hmcHtcrtObSGxcuI2vnhgJKIGqwUNvOG2MBw+XmrpNa523xPL+bRkU5ZfwUvc3Kcov4clvh9D97s488c393PXmLZQWWfjzs2nUaVKDW17oy8Fdh9Hqzuweqog5vyziw7u/RKvT8uGCV0lqWffcB1VBPAb/ErB7XRq716XRqHN9qsWGcWR/Fmkb0wmsHsC8MUsIiwmh9wNd2bflAI06N0CjEeRm5eMf4kdCizqExYQwdcRsQqKCaNAmgTmjFxESGcjAp5Uv0yfAi6K8EsI9q3sPVZxZP83ng7u+pMNNrSnKV60zj+5XIrsGk4HQqGB+fv13Jn81C71BR2mRhcXjV7B7fRqPfH4Pdpv9vBRUC3NUG02nw0lxXsmFu6FLjMfgXyAK84qY/OVM7FYHfR7sRmC1AAAKsgt55fp3yTqQTadb2vLEiPt56+ZP2LpsB817NmbTwm2UFJZSs2Ecza5txLuDP8dhd5C2cT9xCSqjIG3TflwuF0IIpn3/N9O/+xuAkKgQugxqy6fL3qYot4i6noYRHqo4u9bsQUrJmlkbuPONm7CW2uh2Z3mtpxoNYtFoNbQd0IIpX8+mQbsEdEYdQ/u+z971aTz+zf3n7BHc5bb2gOrZ3LhLg7OOrcp4DH4lIKVk8+JtGMwG6rqrU1dOXcePL48FVNHUdQ9dC4BLSmwWO0IIHDY7DpudjB0HAcg5nIfRy4jZx0hwRCCFucXu6kHIycxVwa6sAh754m6spTZMXsZyTSHMPqrK8FRdcw+Vg3QcAGFCaP9ZNy8P/54ug9tTXFBKdL1I+j/Rq8KeDK2vb8Z3m4bz4/9+xelwsn7uZiJrhbNs0ioAlk1ZXc7gW0utLJ+yBi9fL1K7NUQIQWCY/2k9lq9EPAa/Elj0x3Jev3E4Wp2W9+cOpUGbBMJigtEbdDidLsLjQinMK+LovmP4h/rRbkBLCrML6f1gN3wCfHj5tydZP38zzXo0RqPREBDqR/Ua1QiJDuahT++ipKCEToPasPD35bxz26cAtO3fnEXjV9DnoW4MGX47QdUDy+Xke6hcpGUeMu9h0IRB0HcI3T8r9vHw76ibWotnRz58znHR9SLpentHMvccoVajOHav20ejTg04sD2D5j3Kpz/PHb2I4fep/svvzv4fjTt7pBU8/AOyD+UCyv+Xd0SlmzVom8gXq97BYXcSkxjJmzd9zLJJq+n/ZG8mfzUTgFpNapDcLpFGnRvQqPPpj5Ems5HrH+5e9tpmsZX9fDy5Kv9oAY98ds+FujUPbqR9M2AH10Gkba3H4F8iivKL2bZsJ1F1I8oy0JxOJztW7iYmIZKv175PaYmFgzsOEV4jFJ1eXyaoVlpkYex7f5KTmVt2PofNeV7XLcguwDvAu1w3uKqIx+BXAh1uao2lxIrZy0hq95Sy7fHujJzsQ7msnLYOgIKsAgKr+VOUV0LNhnEUF5RQmFtMeOy53QQdbmwFgN6oJyYxgtjEKPZvP8iaWRto0vX8m6V4+OcI07VI+yZAQulkpKkHQnN+2i0eKo9f35zAuA8mEZcUzWuTnmPZX6spzC3il9f/IDgikOELXiWiZnVqNYo/7djtK3Yx5o3xhEaHcN3D3WnQph5Nup57dT/pixl888zP9H7gGu5559Yq3Tu3sjpe/QD0Ao5KKU8T3hBK9esToAdQAtwhpVxbGde+HAgM8+fm5/uecX9w9UCe/uEB1v69mU43t6H3g11ZP28L2Qez+fbZFezflkHja5K59eUBZ72O2cdM97s7A3A4PYsxb05ASklRbrHH4F9ghL42UtrBvgQ0UcDpKbH/BCkdYN+FFAaEMCJ0UafstwDGMsE8D4rD+1RHuIydh1gzawNfPTmy7Ok4OzOX7Mw8ImpWnH8fUSucuKRo9m8/SIO2CbQf2PK8rjn9h7nYLDYmfjIdk5eRbnd2pHqN8HMfeBlSWV9VI4HPgVFn2N8dqO3+1xz4yv3/FYfD7kCj1Zym5dHl1vZ0uVVlAnz5+I9M/HQabfs1Z//2g6RvzWDL0h30uKcLQeEB53WdgBBfmvVoxIqpa2nc+b+JW3k4N66SCYAdTP1BEwyOfWA4ezaHlKVg3wLaaIS2fIqsLPkVHDvAMgsprRA4AmFUfxLSMhtZ8BoY24LvS54niZO46YW+RNQKJ6F5HfKy8gCwFFvoNeQa4pNiSGx55qKpkEgl222z2stV7Z6L/k/0YtTQ34hPjmXip9MJDA8sS8KoalSKwZdSLhRCxJ1lyHXAKHcf2+VCiAAhRHUp5aHKuP7lwvZVu/no3q8JrObPE98OKVOpPJXweFVle/TAMRJb1SF9awYtejfBJ+DspeUnY/I28cLox8jKyCa6CsooSEcauEoQhqSTtmWCKwf0SRdkZStLZyOLvwZTN4T33QjxD/yxtuUgtGAZr84l8xCnGHzpPAr2TaBLROiqI4u+heLPQZesAr2aAPe4Y1DyC2jDQeapbbYVSPt6hKEl0roGdHHgOoa070UYr9w0wX9K7UY1ypryZB3Mof8TvdAb9eB0ciwzh5KCUnyDTpdxzs7M4cN7vsJuc5DYsg61G9UgJDoYa7GV5PaJZ/1963JrO+LqRzH0+vfR6rXUany6u6iqcLGcUZHAgZNeZ7i3nWbwhRD3AfcBxMTEXJTJVRbr5mxk78Z0ADYv2U7OoTwialbDP6R816feD3SlVqN4QiIDCY0OYcATvQmNDvnHzSW8/bzwTjz/L4nLBWnbjMwdDLIEAj5FmLoiHQeQOYPBdRD83kZ4nS4O96+vZ5mPdGwFx35wbIKiTWDuCdrz77UrzNcjS/4EbQ1w7gVdeTkAKSUyfxjY5oChOQR+D46daqdjC7gKwW3wcR0DZxqgAeO1oPED+3awzUFqa4OxI9hWgPAHc3ZlvAVXJEsmrmD8R1MAaNwlmbVzNlIzJb5CV82utXtZNWM9zXs0Yv/WDLYt20lk7epM+WY2z458CKPZSIP2CWds41grpQafr3gbKSVB4ad3jKsqXCyDX9HXZ4UiPlLKEcAIUFo6F3JSlU1yhyQia4UTVD2AzN2HeWfQpzTuksyrfz5blimQfSiHfZszqNU4Hn+3FGxMwlWmbOk8BLIIAOnYp345XIeVsQdw7K60S0nHfmTeQ4AdjNeAphoYWim3zJmOceaAMJZzpQhjK4SxFdJ5BJxHQX9qbwEnONPdP5aAdCC870FqqoGhEdK6DJn/MsLrFjBdA77DwLENYb4B9AnInDvUsZpA0KeoLwLngRPnBKRtK2i8ELq4Snhnqj7B7ladWp0WrU6Lf6gfUXWqk7nnMKNeHYdOp2XwqzcSFh1C7SY1aNGzCZF1qzPho6koZ4OgTpMa/DT0N46kH6P3A1159It7z3i948WTVZmLZfAzgJOFp6OAzIt07YtGUsu6fL3+A7Q6Da9c/x6NOtUn/1gBxfklmLyM2Cw23r39c9bN2USX29rx3E+PALBh/hY2LdpKsx6N/3EzhyqJsRX4PAWufDD2VKt7bR3weQFcBxDmfv/61NKyCOnYgjB1RehqAEa1snZlgbSC7wsIUxeEqPhpSloWIvMfA20tCPgEoYtAOnNB44O0TFOuHX0zhCxBGpqVuQKE0CF19cDQBGyrkIVvgvfjoAkF2zqwrwfHJmTRMTTmbgjvW8pf2P9tNUafAtpIZNHbyuAX7UWargf7CmTeoyC8IfAnhOHMcRvp2Ku+lAyNz3ifVwJt+jbno0WvYzDp8fI1YzAbCIsO4c/PpvP3L4sAqN8mgWvv6kRw9SBe/etZjhw4xtrZG0nbtJ/gyECa9mjEz0PHAZDllmy4krlYBn8S8LAQYiwqWJt/pfnvj3N8JZ/QvDY/v/o78ckx5B3J5cD2g8QlRbF7TRoAaRvTcblcFOeX8PoNH5J/rJA1szfy0cLXL+X0LwpC443wuR8AV/EoZOEbYOyK8H8Pofn3LirpyEDmPQDYkI69SGkDJHg/BNaZ4DyC0MaeZgRd1q0IjQYc6UjLdMCg3DCO3bhsS6BgGHjdDyVfAw6wb0U6DyP8XwNTN3Vt6QJdvDLazj1Qugd0jcC+FFzZoE1Q7iRTT1yFnyKMncoZbaGLBl20erqwTAPzDVD0IZj7qy8bxxHQJah5OTOBig2+y74XCj8AxzrwHoLwvv1fv5+XO0II6reud9r22k1q4Bvkg96go0bDE2KFGo2G6rFh3PxCP2b88DcOm4M2fZthLbGyccFWCnOLSdu8n/j6VcuV/E+orLTMX4EOQIgQIgMYCugBpJRfA9NQKZm7UWmZd1bGdS9njqRnAZC2cT+/vDGBDfO3cN3D13LHGzdy7GAOTbuloNFo0Ol1hMWEkn+skODIoEs860uAdbH7/1ngehY05f/YpDNX+bx1NRHiROaTy3kM4cwCfc2TDLjevZo/qlwjtkUgAgAzwucxEL4gfHBZloHGB6Gvjyz6DCwTkYZWIAJB469W2ZpApC4BCkYBdrBMAENLdU5tNXDsVsbZsReEP9IyA4o/BVM/tQrXN1NuKtty5fc3pILXbZB3J8gipG0lBP1ULnAspQNZ9CGU/q7m4vcBmLqCdSEUvaPcUF6PITXVKvaRSgcUf+GOI7QD55HK+5yqEEmt6vLd5uFoNIKACnzyHW9qTUrHJGw2B28MHM72lbto07cZGTsy8fb3InPPYca+MxGj2cBNL/Yj+Bw++8P7srAUWYirf/l3z6qsLJ2bz7FfAg9VxrUuFw7szMQvyOe0gOxxet3fFZ1ei9nHzLRv51C/TT1+ee0PAF776zkatE0EwOxj4uXfnmTPhn0ktjw/XfArCeE9CIlLpSBqT8lFd+Ygc4eAYz34DlVjpR1Z+CFYJiP1jUGfijT3gJKxgBOMPcC5Q62Cj8cCzAMRhsZIx2FkwTB3EPUI0u8DlS0j85RxtE9XsQVDW7BMQHjfhTQPBGEGTU3QhoKuAUgLGJzgOoo81h10iWDqpYLAlong+w6Y2kLBK+r6zn1gXQDODNC3UNfTRoB9Ixganbhh63JwuuMYshhKfwNNENK2Ub03zjRwrISSL5FBoxCGUzqmyWKw/u2+Zhr4vlyZH1WV4lyB1cBqAexcs4ftK3cBoDPo6f9EL7av2EV2Zi7Tv58LQJ3UmlwzuAOgAvOnZvPs3ZTOs11eozCniP+Ne4o2fU/vx3s5UXVLxi4hs0ct4P07v6BmShyvT3qekJNW5uvnb2b55DUktarDE98MYfg9X5LSqT6+gScCgHarvdz5ImpWI6Lm1SllLIztEcb2Fe90HVXGHsCh+vpK52Eo+REV8zdC6URlOHGBdSp4DQbbMjAPAhEE2hgQGqSrWKV8YgGXe+VrmaV87tYloI0D20r3haUK8Gqrg22NcgcZWkHpUrXbeK3KwBHeaqw2EoreB11DMLWEojdB3u0O2oaAqwQohpIRyqevjQHbMqS5f7mVusQGriIw9lTjbVuhdBbIg2BoBlwLrr1gaIa07wR9g3LuKaHxR/q9CpY5CFNvhD5OnVdaVRDZk89fjhrJsdz73q3sWb+PqDoRfP3UTwghePHXx6gWG4rdZgch+O29P4lPjmP0678TEhnMgx/fQXCE+ps/vPco+VkFAKRvPeAx+Fci21ftRkrJ7nVpHEk/Wmbwsw/nMuGTaexdv48VU9fiFeDDzS8NYPXM9dRMiSW5XRIFOYVsXbYTjVZDm75XZO1Z5aGrDb4vqeIlY39chZ+CY6taTdsPgsYLdJFgnQLaeLXSNrRTmS/a6irYWfAk5D+D9H0e4XUHGHurSlmZr1xF9u3g/SAILzD1UG4Y00CEuSNCmJDi+J+IEzABFtD4KveOK1P9L12AS/nN9YkgC8FxAClMCL8XwbZBFVqBCh4brwHHDoQrr9ztClmC1PiCtCkDL8LUl5NtiTq/zwtQOtM92oCUOQif8g/OGvN1YD7R+lI60pB5T4MrDwI+RBhSKvczqoLsXLOXReOXkdSyHjc8rd6r0W+q+gqj2cC2ZTuJqB3OTc/15eVeb2O32ul0S1u2LlNpth1ubEXb/i0ASOmYxG3DBlJ4rKhM+uRyxmPw/wXX3NaOotwiYpOiqd24BnlH8/EO8OL7F8aw7K9VJLdPRGfQcTQ9iyadG9B7SFdANWK+P+UZ0jalM3XEHJLTE/EL8r3Ed/PvkNIB1kWADoxtzrtQSkoJsqRstemyrgEcaI5XmUoHSAtC4wPOQwhdbTAPQFoXg32NWr0D+L6piqCEDyBVbrz/Z2hM7U5cTDiRzgz3he0IoUF498dVXOwufIoAfQOwr1SBVZ/n3UFjG9jWIg0tEObrQOOLxAuMWcoAew2E4pFg+RN0TUAXo1w92urgzAHvh8HyF9jXIF2FCH0jMN+GkmOwqaCsaQDSvg201RGGZKR1hXpvNJHqS0d4q3iBoYUy/tKhvpQMLcFVAEKCfZf7PXMColyMowz7JhUsBqRtFcKQgrTvAOGL0FW9gr3K4JfXf2fZpNXojXpG7f6MkMhg2g9syaaF23A5nexet49ty3eSfVt7fAK8yD2ST0StagSE+VMtNoRajeLKzuXl58XgV6pOVzmPwf8X1GtWmxd+eQyASV/O4MvHR3LtXZ3YtXoPABk7Mrl16ABa9CrvYxVCkNSmLmmb0knpmITJ23TauasMlpnI/CcAEAEjwNThnIeooORHUPIb0vdZZcDynwWhx+XzEsJ8LTL/FbAtQfoNhaIvwblbZdkYOylfOkZl5PX1lTGT2WDoANpo0NbCZT8EtlUgHAhNIAR8Ds5jCPMJ1VFh7oPEqQqbXAVgnaFy4mURuJzIvLsBiQj4DGHqBqZrTwuSSq9bkBofIACKhoKxu/Lt22aBTa+CtOih+HMkWkTQeKSxLRS4m3k708C2AOncBwxC5t4OuMDvTTRebyBdeUjXYSj+So033wDaELCtVgFpQztwpuMqHqsCyhjA/3WE7pQqUH1jMHQEVzbC0BpZOk19biIUgkcidFdfk5zjle6RdcLL/gaDwgNo3qsx+dkFHEnLorighDpNavL2jJfZv+0gjbs0oP/jvdAZdGWZeFURj8E/T7av3M3qWetJ6ZCEb6APAdX88A/x5+/Ri3A6nEwdMZtXJz7LsimradU7lZanaNP/PWYRyyatpk3fZlxza3si61SvsJlDVUHKk9vAWc7vIFc2FH+rfi75TQVHcajVq3M3ONLAOk3tty5xV6MCzgw0hga4eBRMA0GfpFw7roPKjWPbCI6ZUDpO+e6du8G2EKmtCd4PovG+GekqRroKEBo/hCYA4X2nWlUXDAWhA697VADVtoLjNYHSmadqBexbVJbQSXo4QheJ8HkAlzNXBVJdeaA5LtrlAGMvcO0H20JAA0KDMPdWKZZSB0VKjx1dPNKZTZkYm+MQrvxhKqZg7guWmeBMV8bavg0l0XxUuaOs00DmqFRQQNrWADqkba06nyNNvYfCqOoPDIm4Cmer+5NHwZEJV6HBv23oQFKvaUhMYhQ+AepJ87f3/mL8R1No0685h/dl0f/JXqRvPUB8g1g63tS63PHr521m7pjFNOyQSOdB7Sq6xGWLx+BXwP7tB5n103yi6kTQ9XYVUPzsoW8xmA0c3X+M6d/9Te0mNXhj8gu07J1K/rFCEprX4tjhHPyDfYk7pVF5UX4xnz74HSUFJWxbvpNRuz//x02WLzeEqYfKPRd6tfo+C9K2Hln0OWgTwXsIlI4Hr0Ggb6L84DhBm4zUxoChMzi3gy4G4f8R0r4ZYeoFgMaQCCTiKp0JpX+ALAXHdtDowKFUFFW1rgt0SSALoOAFXFih+Hu3lMNnCIOSxJWOnYBVFWTpaiG0Ibj0KWAerM5hbIcsfF99keibQeC3CI253L1ptIFI/+HqPK5ipD4RoQ1HmLqoVbo2HqGNQOjd+eKm7ghA6uuD6wDoGiCL/wBDe9SXXwGUjlHvsSEZgkaDLFTVtY49SOcBlY1z/AtChIK2purEZUhBFn+vnlps89VTkG25e5w3GJuopxuZ5644Pr1hjpSlYFkM2tAr1t/vG+BDsx6Ny207djCHus1qMe/XJbhcLkoKSsg9ko9vkA+fLn2z7IsBlEtow/ytzBw5j4Yd6pdL2jjO4X1H2b5iN/Wa1yI8LuyC39P54jH4FTD1m1lM+EStNOPrR1O3aS1CooIpKSjl8F6V4bFrzV6OHcxmx+rdWEuszP9tGccO5rJ+3mZMPqZyUsdmHxPtBrRgxg9zadOveZU39uAunvK+8bzGSst090p3ISJwFPg8jBAGpKsUiQT7VpUOKSxgX6Vy6S2zlR6NbYVyA/k8ijAkIR2HIP9JwA76VECC133Kh45DGT/7RpX7XuoWb7WtUsVQgLStKzP4CF/lDtIEgKGN2madX3acMDRHOnao7Y4tymVDeYMPuOMXJtCaEN63nvQeBSC8zlA17NiJdB1D6Ooh9BHI4kWAAXzcgT9NLGjCENpgQMlACF1N8BqAzBkEmiDwegDhPQiEL9J5DGndoOIKwkfdP1p3jEOvagcAoYtH+A098dnYViMd6QhjR4Q2CFkyDgrfVMcEjSsnbnclM+Cp3iz5axVB4QHM/20pdVJrMnvUAuwWG7ZTsuqSWtdjw/ytpHSsX6HgodPh5MO7v2L9vM2kdKrPOzNevmz+5j0GvwLC3M1IgqsH4BeigqoPf3Y3f49exNrZG0jt2pAaybEYTHqsJTaqxYaS0rkBe9buBSjrxHMcrVbLg5/eyYCnelM9/vL5tr9QSNt6wIkwNEG6SkFXD9CDrh5SahDOHNCFg2OXCm4C6BuBZQYYO4DLhjD3BPs6KB2tzmlNUAYfCZpwtTrWhILXQIS2GrJwKjgzld/deyguyxIVYJX5bvdKgQoWG0/KpCgdU+YOEb5Pqv+1kUi0gAa0wQjf55GWWQhDC4S24txuaV2GtO9Qkg2n6NpX/P6sRebdB0ikKw+Nz90QNAGEAXQ1VGBWE4y0r0TmPgheA9B4D3a/T/XB+xFw7kGYOiO06vdJFv4IlslKuM26DMw3qewh8+2ADVHRat6xF1n4CQgt0pGB8HtMpYUCYAdKz3kvVwrx9WOIrx+DzWLj3ndvpTCviOo1wkhsWZegUzR0bnmxH62ua0Z4fBgmbxNFecUUF5SUqeM6nU5yDquuWrmH83A6XR6Df7kgpWTR+BXkHs6lw02t8Q/xo8+D3aiVEkdwRFCZ8Q6qHsCNz15HZO1wRr8+nnEfTCKidjhB1QPZtGgbXQa356Znr6e02ELd1NP1cMxeJmKvApE0aVmMzH8cZCHSfwRYp6tVp8+zoAmBvFuRxm5IbazKgTd0dKcd2t1PAYDf+whzN6Rjv9K0cR5A6N2P4M79oA1Ux2qqg4hw+6qVyJi0b0SYOqExtQbTSb5Xc9vTJ2u6Xj1deN2oVsyAMHWAoD9A6BF6pa1+WoHTyffrOIDMvQ+wIp37EP7D/tX7JgyJJ14Y6quMndxPlZ5O4ftIU2+ENhAhzAjfR04/gbYaIMCeBv7DIf9Btd3YCeE7DIRQBVy62kjbOlXZrKnmfnIpUrEQQHjdgNSYEZpw5XK7yjCYDITFhBIWE0rN5IplkI1mY9nfeFZGNsP6vseeDem8OOZx2g1ogcFo4OkfHmT9XLXCv5xidVe9wd+0aBuv3/AhMfUiEVoNfR7oRs6hXPyCffEP82P2qPnoDHr+GD4ZvyAfej/UjT0b9gFqAfXYV/dy15u38PfohTzR9n/c8Ox11Gt69QXCwC0RbF/lzpiJVP5oyzTABaVjVQ688AXXIVXMVOoNwdOVe6f4F5Q0QjA4M5HShbQtB2MLML6KMDZFWuaDdS7oUlRFqywEx1ak6ToVdHUdQZjOvzGFxvsWpKk7aHwR4sSfwj9zY+hU9pC0quDoeSAMjSFgBNKVjTBdU/EYIZDmG6DoI/C6RUkonwFX8R9Q/KWKA5hvB3lMuaoc2wGXSk0t+BZs89TK37ZJfTbGNkpGwrEXtxIKQhuK8L7rH9z/1UNRfjFbluwgum5EWQOVg7sOsXONerLfumwH7Qao/PyE5nVIaH7mZiyXiqve4OuNOpLa1OPYgWzGvvMn1WJDGX7PV+QdLaDvYz0Y/9EUGnWqT+buw/g1q8WRtCzemv4iRbkltLwuFb1Bj7e/F+Pen0RhbhHj3v+L6x7qhtnndF/vcYoLSsjcc5joepGYzFU3xes0XEeg+GuOZ7kIU3ukeE1lmmiqq2wYU3+1agXQpYJlipIQ1jVQRgqLMuT27VDglgaQTqQ2/ITMsfkWFYAFlJjZSjT+r/2rKZ/JTXPex+uqQ+APKjPoeBzgHEjLYhWINXU/LQhc7tze94K5H2gCz96sxTJZBbCtM1RFcOGrgBPMN6pYgDYSbG7NIvsaJcIm86HUXQxmvr1s7tKRjnTlgX0/yMMI8/UgvP+TqN2Vwq9vTWDc+5OIrhvBhwtfxWF1UiM5lpueu5792w/SqFN9dq3dS+3GNS71VM9IBZUaVxcJzevQvEdjjqRnkXXgGLvXpZFzOA+Xy0VpkUo3FBoNjbs0YPWsDXz5+I9IlxJgOm6sjWYDNz1/PQFh/tz8Qt/TjP2udXtZ8PsyCvOKsNvsDL/3ax5s8hw/vvTrRb/fykTa1uDKfQRX0VdIaUO67Ep2AMDcC6HxQ2O+XrkOLFPAsRHsa9Vq1dBC5ZUXvQcFLyr5AGNL0FRHGDsoF4s2Tp1LGw/CpFxCoPzxPo+DeSCI0LIsnkuFMNRHmK9HaEPOOVbaViHz7kbmP4ksdXfPsm/HVfgR0jKn/HmFBqENBUcarvxXcBV9jnSVnH5SUyeltWPsoFJcy1I8j4EwqBoC863u9zwSHBtAW4eyNhWuQ1D6E67C75DZN0DOQLBNhaLhyOIfkFkdcBW8h6tkCtKRiZR2XCXjcBV9rbp8XSUcPaCa0RxNz2LGD/O4JWYI3zw9ituGDmTw0Bt459ZPeajp8yz8Yzl/j1nE421fZuq3sy/xrMtz1a/wQWnZtO7bDP9gX3exlCT3SD7d7uxAnSY1CAgLYO6YRWXjLcXWcscfcKvsvTfnldOkVQ/tPcJz17xOYU4Rg/43gH6P9WDlVNW/fc2sDRUKMlUVZOmfyjVjnYnUN4SC15U/2Pd1hNfAEwMNTVQ++HFhL2FWfndjnPu1BlxH0bgDp2UEjlRVp/oGCKGHoO/BvheMzcraBZabj+MAsuRnEIEI78GXp3aMdEBZ7x+n2lT8HVgmIdFDyAwllXzyIZYpyiUGql2iqXzut/AahNREqycj4zWgMYJlKmjMUPSGek/M14HLT6V0et2h0mk1D4PjANjmqqcvTTzI3OMXBU2Y+sxkHpT8BPpkpGWa0vJ3P31JQPgMuSBv1eXGTc9dT/Ua1ajfui5j3poAwKyf5nPH6zdxdP8xSgotSCnJzcrj9/cmcSQ9iz3r02k/sFW5tM5LyVVv8Ivyivn0gW8pyCmiVqN4aiTHUrNhXNn+2o1qkpWRzU9Dx5LatSFRdSNp0ftEMMtus/P+nZ+zbfkuklrX48N5w8pF5G1WOyUFKtuhpKAEvyBfnvr+QVbNXEe7AS2rlLGXjn3Iwg9AaBE+T6vMmtJx6n9hKkt9xLEZIU6kbGrMvXHp6it9d+tslYtu6oGUdrdvWiCMXcpdy1U8GmxrwdQVjcHtX9bVOmuhkLRMgZKR6oW+Dpg6V+btVw6GFoiAz5Cu/BPxBq27obY2QlUfn4LQ1UOiUdlJp3wZgGq+IsyqFkLaNiK1CWBygdUt9uZKV09H+jYghJKAzn9U7TP1AVxg6AT2zSqQLUxg7ILAhXRmqr68xt5KwE7mI4U/YABsZ+0cVlUoLigha382kXXC0RvOHGCt2TCuzDbYLA6k/It2A1pSmFvEvN8W02lQGyJqViM4PJDEVnU4kp7FtXd1pCCnEKfDgX+I/0W6ozNz1Rt8vUlHXIMYNi7YSmxiVIUGODQqmGd+fIj0bRmkdm1YLuouJVhLbABYS6y4XC60nDD4sQlRDJvwDOnbDtBugEoJ7HBjqyohtOSybgD7WoSpPUJXA2ldorI7AGlohcbrRqShicpjF35IvzeUKJhJ9aOVliVI6zyEsYM63tgOvG4r080RAH5Pl11PSgey5Cfliij9AVURegxpbK20dc6B0MYrwyj8/lG/2ouJEEI1UT95m/f9qqZAF+/Ouz/lGHN30NVRvnRd+BnPLS0LkHn3AwIR+J0KZssiZeyLPgJNKCJ4NNK2ARWktYO0g7aBCoTraoC+IRrjiRROAbi0EZD3sAq4+7+DxtAAGTRWxQEMVVsA0FJi4d3Bn7Fs0mrueP0mBr1UvpdyXlY+SyaupFpcGKldGwLgcrlwWO20H9CKjre0ZsrXs5n36xIAhk14hoXjl7Nq+noadkiiduN47qr3ONF1I3h98vOXvAjrqjf4RpORJ0bcx8JxywmOCMRmsVXYTLx24xoVBmOspVa63dGRowey6HhLmwpXCC16NTlNV+dyx1X0PZT+Arok1TIw4AOEvgFSRLrFvMDlsqLRnagqFl4nRKSktCILXgbXQaR1ARiSVXBRUx0Z/BdovFRVqH0rwvsOlfro3A+F76pOUdpYpSMvAqHCdh+nI8zXgnYiaLwRuqrTtUhofM+pRST0Z299KaVLae+4/ffSeVTl9WtjwbFHuWqcxeCyIIwtkd73Ky0ifQeEX4ezB68dOwEbyGyELFbzOUuLxapEYU4xK6accLGeavAnfTGTn1/7Ha1OS+8h19CiVyp6o443b/kYUH//dZvWQm/UExoZRExCJCkdk5g3ZjEmLyNpm/fjdDjZt+UAGbsOXRkGXwhxLfAJoAW+k1K+c8r+DsBfgFschQlSyn+XVnEBWDdnMz/+T/lIvf29adK1IZO/mklJUSm9h3QjuPqZ/xjm/bqEr54cCUCDtonUrVp2vUKkq1hl28h8lW5oUlXDwpCM9P8f5D0I1olKxsD3SaRjt2r7p20AFEHJOHdP1dZKT0bEK5EzUNK/uFSA0rZcpWCW/qUMviYMjB3BOg98XgesYGj2j3zxwnBqc/ErG+kqUvIPtlXg+xT4PAFo1RNDwUuqctncX6lrmvojdO6iQJ+HVD6+ZQrSYgWvG8qpbUr7dqR1PsKQijB1RTr2nZCFLnf9UmTJSHAeRnjditBXrSY+oVHBPP7Nfaybu5mug5WMSvq2DCZ8PJXAav4n9SwWpG/N4FhmLjc93xedXofD7sDsY6ZZ90aM3PEJBrORgFA/oupEkNw2gaDqgWTsPMSxg7lUjw8jscXpaZqWYgvjPpjE4bSj9Hu8J7VSKs79ryz+s8EXKl/sC+AaVLPyVUKISVLKracMXSSlvLTpFKdgs9jYt+UA3u6AihACL38za2ZvYOaP89i//SC+AT70f6L8tA/sOMie9ek0aJ+At5/XiWN9z5xiV5UQGm+k92AoGgGm3qp8/zgn67g4D+Oy74Dch5VvWPgqKV5jV3DtUUbesRG86iO87kAamiL0ySoImP88YFECavoU93V9VNGQKwe0FbvXyqbhOIQs/UNVw5oHXNHNus+KY9eJ9ErrgrL0VFfRz2B36+g4M8GZhTCeKEQTQou0/KW6agHok+Gk4i9Z/BO4MlXxm7GrkquQFuXzP/lpwL5GuYsAKXxBdgU0VeoJoPvdnel+94l4z/zfljDtW5UxNWziszz+9X3s2ZDO1BGzeeDjO6ibWpMP5g4l92gBqdcqN0+Yu8oW4Nd3JjL27Ync9EJfbnmhHy+NefyM1962fBc/v/o7AAFh/pe/wQeaAbullHsB3I3KrwNONfiXHWPf/ZOfX/2dxl2SeWv6ixiMBmo3jufjB76lpNBCv8d6UK1GaLljivKLGXr9exzYkUnX2zvw5LdD8A3ywehloGH7qqk7Im2bkaW/ga42wusWFQT0fkhpuGv8yxteXTMlLubcowJ2BUOVu0CXdEKrXharjA/78dzvTaB9Bo23+mWW9p0cz1BB1xAhfJDOXFVJqvGG81jRS8tEKP5MvdDEgOn8cuCvOHTxYOwCtmUIYztVTes8oiqPjZ3AmQWGDm4ZhhCk44ASWtOGqipmUP+flFIqnXnqs3RlqtqI0p9BVxesk5H29eUL07RRoIlQqZ2aIFV1bGiILI1CeN95XlITlxs1U+LR6rQEVQ8gum4Era9rSklhKf2f6En1GuoJKemk5um71u5lzJvjCYsN5YZnrmPCR1MpLbIw4aOp9HusByavimXQi/KL8Q/1JSYhioydmdSpoEK/sqkMgx8JHDjpdQZQUSSnpRBiA5AJPC2l3FLRyYQQ9wH3AcTEVL4fVkrJob1HCQjzY/Pi7QCsn7uZp74bQlhMKNtX7Wber4tp1qMx0779m7V/byK+fiyR7so6h81J7uE8APKzCtDqtDTr3uhMl6sSyNLfT1rpNQJDA/V4rw0oP86ZqVaUlKKc+MUqr97QGrT1wLuFki02NEW5Feq6qzityNLfy3z8Ql8HAr5BOg9C8VfIkkzwuhPh98L5T1pzXK/IVCaLcDUiNAEQ8LEqvHIeQWYPACzg8xygUy0ai94FQwLSshOZ97BynQV9p3oE62JAU61MkwdAygJwHU/PLFV6Q8aOYOiKMLYof31dHASNRTVmXwf6esolB0iNP8L30YvwLlQuba5vxrebh2P2NhISqYLoXr7mMz7BLxq/nMUTVXvMJtc0ZNDL/Rn3/l/c8Mx1ZzT2mXuOMLTfuxzafYTnfn6E+PoxRNW58A1pKsPgV/TcLU95vRaIlVIWCSF6AH8CFTr7pJQjgBEAqampp57nPzPlm1l8+uB39Ly/C37BvjTqXJ+WvVPLHsmi60bQ5da25B0twFJiZd/mA6RvOVBm8ANC/Rg68Rm2LdtJ855XgMMe1OoNQFtbGQNA2rYCrrJHc1k6HZn/lMoWwaja+Rn9VIWmJgTM1yKch5AIKHwD0LsNv1Qa89ow4ERQV5jagOMgsvB1teG4gTlPhPl69+rS/4T08FWKEAYQBqQjDXDXiMgC0EWoOAyAMwvpTEPp6R9UmjuOdHf2jT8y6EfQhCIts5TevqG5qpdw5ahzOna7t5WXeJCuImTJD2DfCd73KRedfaPKDtJW3Y5a0f/A+Ca2qIveqCeyVjjR9SJo1r0RfR7sdlbBtH1bDrBvk1on712/j7b9WpxxbGVSGQY/Azg5OTgKtYovQ0pZcNLP04QQXwohQqSUxyrh+v+IjQuUp+ngzsNsWbqDFr2asOSv1YRGhdCmX3O8/bx4ZuTD7Fi1G61eS2hUMEmt6pY7R0qH+qR0qDo+ynMhvG5SfnRtCEIbphqD5N4FuJD+7ykZA8chNca+Rv3h65LcMsbLVFAw9wGkPKakE4Ayl402Coy+CPPpMsFCFwkBXyIdm1RnqX8yZ6EFY9VOCaxshCEF/D9BujIQxl4g9EhXkTuvvj3CVUf55DXBYGzq7rPrcMda0pGOWSrnHq1bdXOpasIifAE7lI5GGpqDqQtC6JCuEmTpSbUPtrpo/F5AGturOI2+aj/5ni8tejfhp12fYfI24huo0oe1Oi25R/PJz8onNjG6nFvU5XKRseMgqV0b4nS6aHURG59XhsFfBdQWQsQDB4GbgFtOHiCECAeOSCmlEKIZStIhuxKu/Y+59u7OWIqtNO6STO3UGmxZsgOj2cDiiSto3bcZQgg0Gg0JzevwxuR/4GKowgihKR+wc2ai5HEBy9/KR2/fpHK2zbcABrAvAM0hFcRzFZ1YSWoCwPdFNUYbofy7toXgsqmyfHfLPuH9AEIXgTC1Q1C1ugZdzghz+XaMwvfBEy80tRAB7554beqOdB5RhVjGlmoVrwaCvrUSwZMOpalvm6c0eCzTVa2E/1vI0plgnap6EDj3Iwyp6pr6K188cO+m/cwZNR9rqY1W1zWlyTUNy+3POZTDDy+PJWNHJsntE7nzjZvLjH5BdiE/vjwWISA2KeqCB2pP5j8bfCmlQwjxMDATlZb5g5RyixBiiHv/18AA4AEhhAPlAL5JSlnp7przoUmXZJp0UQ0w5oxeyMGdh1j61yoAWvdtVvZotWvtXlZOX0v9tok0bJd4xvNdiQhTJ6TrCZBOsG9TG+VxnXSzKsPXR4BtgdpkaAPG1qoBt+k6KHxLZYh4DwHX31D6GxKjShl0xwqkLgmhu+ni35yHMoQuFuF/ohkK3oOQ2mrKwDt2nojrGFqB9z0gAqDwf6Bvgiwe7c7K2qG0jgJ/QRiv7BV95p7D7Fm3j4SWtZk3ZhFpm/azepbK6Htt0vM07tygbGzWwRz2b81g24pdbFm6g+73dC6TWvcL9uWmF67nr89n0P3uzhe12r5S8vCllNOAaads+/qknz8HPq+Ma1UmHW5oxY5ValUTEOaP2edEgGXM2xOxldqYOuJv7nj9RroO7nCJZnnxERp/hM8DALisq5Tuja4hyh+/ClwZYL7LrWMvlV9fWx1h7qdcCMclFmwbVBAPlHHQ1VZGA656v/vliNAEqLaPJSPBy925S3gr2QXhrszVd1AuoNJRIELA539qu22u0tG/Qj9XS4mVt275mB2r9tB2QAvaD2zJgZ2HAOW+WTBuSTmDX7NhHMkdEtm2YhcNOySRk5lTZvA1Gg23D7uRG57uc1ZV3QvBFVdpay21MuPHeZQWWrj2ro4EhJ5Zv0Kn13Hb/wYSUaMaIVHBpHZNwelwkrnnCHVSa/DDC6q36Lwxi68qgw/uyk3rQih8TxVfaSPAvgL0DZVrB4uS1dUEgLEdSAfSMhdKRqnqTvONCEMLpX2jr696xuoTkLrJACcKgDxcNkhpB4uSzqB0DgR8rxq3O7Yh859R2/2HK7lrxybQBKrVf05vwIF0HkYEvH/J5n8hcdgdHN2vQo7HMnJo0q0h3gHeGEw68rMKcdpdZWOdDic/v/Y7C39fzsCne7Pw9+VM+24uSa3LFwVebGMPV6DBXz1zA58//D0ABpOefo/1POt4v2Bf+j56Yswfwyfz3fOjadUnlesf7s6sn+bT4ZSu9VcDsuRn1dtUl6hSII+v2l15YOoF9g3Kr2vsovLhhQlMPZUhANBUQ+ri0Gibgbl32Xk9hv7yQdq3Ii0zEPqGCFNnVT9h7q+6YGmCEYYGJ1b9boQwgu8LYLoG9ElIfNTvh+sgV6A5KcPH35uXf3uSjQu3ktw+gZd7vM3WZTu5bdhAOtwQR0JLlXS4c80eJn05k6LcYizFFlbP3ICl2ErNRnGX9gbcXHGfkF+IL1qdFqfDSeApvSjPh1Uz1gGwbPIaRu35jNtfuxGfAG/2bTnAr29PICDMn0Ev98cvyLeSZ3554HIWqS5VVne7QcdW8HkSdLeBfR3C2A5haIqr4C2wgVJNdLorcPUq0IdB9Zwt/ABp6q6kjT1cdsjiEWCZpmSZQ2epmgn76hMFdIa2YL4WTN1Avg9owdhRdQfT9VHnsO1SKbe6GHAcPPc1pQRZpPSDqhjJ7RJJbpfI2tkb2bJUNbfftnwXt/3vhBT4jB/mMvNHVYfQ497O1GoUT2KLusQ1OF3l9FJwxRn8Bm0S+Gjx61iLrSS3/+fB1hueuQ7fIF+aXJNMtdiwsoDKrJ/mMXeMqhxt0DaBNn2vvJRAV8kfUPyVysYQBlVlaWyL8BqkMnlMncrGCt8nkLok1a/W0Fo1FLctBAwqNbP4PfB5ElkyGin8Eebe5doIergM0LhzzbUxgJdqiqKJBlarfHuduzLauloF4oUGKYxIWaRW/vpGqhG8pprK1zc2x+U4irCvBW30aa0ipZQqS6v4W6TPw2i8776491sJuFwuso/kcu1dnUjflkGLk2pxsg5mE+GuxA2PD2PHyj0YzQZ63ncNGs3l0WvqivwLTGh2bgGntXM2kXXwGK36NC3LnQVo1r0xzbo3Pm28y+FCb9TjF+SDX9C5pXqrGlI6oegL9WjuylY+d+/HVYFUBQhhBkMysvhLcB4C74fBtshdjt8MzH+DZbYyFKCKs0wVNBL3cMkQPkPcNRXxJ9Qy/V9Geg1CaAJPSDFbF6jUXIn6jEt/Qxo7Qelk0PiomI59C9hXgisbWTpGBemDJ4LzANKRrmI/tiVg26zqOop/RHrdVuU0kLYs2cF7gz9Ho9Ew+LWB9HlQ1Y9k7j3CC11fpzC3iEe+uJv5vy5l76Z0/EP9OLr/2CVXyTzOFWnwj7Nm9kY2L9lGqz5Ny0kb71q7lxe6v4HL6eKut27m5udPLwo6Fe8ALxKa18Y32JvYpKqnD3IuhNAivQZB0ceqCYauiRI7O9sxungIGou0LYGCN0BXE8wdVNtC1zHVVg8A7Xnp43i4uAiNH1KfCM50pCtU9deVLoS+XtmTrbQsBmcGGHuqdE1NJOjqqeY0MlcV1hmuBebiPkAV6AkvZPGvqiOaKwNMPdwN7Q0q68fYGikFsmQC2JYgvAYgjC3PNNXLBp8AL4xmA9ZSG96+J36nj+w7SubeIzS5JpkvHxtJ7we74bA78AnwIiDszA3oLzZXrMHPPZLHq/3fp7TIwvYVu3l7+ktl+1yuExF16aro6NMZ+Mx1JLdPIqJGtcuic82FQHjfjTR2Ue3sioaBKw3pdQvSvlV1qtJUA/MNYFsJ9uWqsYmpC9K2GmQO2HNAF6tWegDkIwK+Bo0fwnD6U5OHS4t0FSHzHlF6SN73I7U1oPAd1Q7R92m1+pY5QJGqutVUg8CxyhVknQy2+aBvCl6DlIwDgL6J+v2xTACWqhoNWwYq1oP60vB7SVV0FwxTrRgNbZElY6uEwY9vEMtHC18n90geKZ1OVNsntqzD3W/dTG5WAWtmb2TWj/O47/3b6Hxr2zPq6VwKrliDrzfqqRYfyr5NBwiLKd9FqG5qLd6Y/DxZGdnn5YsvLbGwc+VuwmtUIzT63I2qqyqydDKUTgD7UjD1A1chsuhzpYToFsTCVQS22epR3TIdDPMQxi5I2yLlC9YmKs10ZxbC0AZhaHj2i3q4dMhClW0FYN8Hto1q1V4yErwGgy4KjJ2hdLp7fAlgR+jCkLq7lUtIVwtZ9CWU/AC6JIS5DxjbIS1/gqY6eN2msrr0TRDGtqCtgdBFKeG8UiULjPOgakhfRajd5PRGSEazkZue74fdZic+KYaivGLaDmhRztinbd7P0j9XUrdZLVK7plzEGZ9AXKKC1/MiNTVVrl69+l8ff3DPYdI3HyCxVR0CQv1xOpzkHslHZ9Celp+ffSgXvVFXln3jdDjLxI9+fm0co4b9TlxSNB/MG3pFrvDVau8J5aPFpR7bXXmqibj5bnDuUOJqjk2qgMo6H/SNEQHvIYQeKe1l2ThSOgFnlfPPXo3I0qlI22qEuRfSmaFW+KbrEb5PlH1+ruLRYHUL4AkNlPwCmhCE/9sIY2tcOferFF30EDACQTFSE10+DnDqdaUDWfQFlP4J3kMQXgPLNWCpythtdmaPWkhRXjFNr23ItO/mYjTpyNx7lEV/LMdoNvDjjk8Ijbowi0chxBopZWpF+67YFT5AZM3wMpXLwpwiPrj7C7Yu3UlyhyT6PdazTBRtzeyNvNrvfUKignj1r+fYMHczY96eSL/HezDgid4c3H0EgP3bDlKUW3JFGnyEF2hrgNGkNNT1DaB0tNonC8C2GFiuArKWSWBoB9pqKJE0PTgP4iqdjNDVQJh7qi8Q+x7Q1/QY/ssYYe6JMKs6FEETpKkbQpxYlUrbRrBvBa2v0sVHD+YbwbYMaVsJhlYInweRljhVcJd3HxI7eN0N5uuBig2+EDrweQSpiVCtL7Wh5bLAqjJrZ2/ko/uU0MCxjGz+/HQaGq2GzoNU0kJQ9UA2LtxKUqt6Fz2Ye0Ub/JNJ35bB0r/U00LBsUJ2rNpdZvC3LttBabGFAzsySduYzq/vTKQot4jxw6dw7V2d6PdYTwJC/ajbtCaRtatfytu4YAihAb+nkPYM0PojZCnS0Fg99jsPu0c5QRMOxhiwTlNfBKY+YEhEloyBkpFIhHpct28H6xTwfgTh+8glvTcP5085Y+84gsy9F7TVQZcMSNV7wLZE9Rsu/g6pT1GaPD4PIws+B0Nj5aJx7EAWDEUGjkTIQtVwBZSAXsFb6nfH50EoVLE1WSwQVcjgSymZ8MlUpo6Yw83P9+Uad3vE0uJSMnZlltUCRdaujtFsQG/Q0e3OjjS9NoWF45bxzq2f0aZvc4aOf/qizvuqMfixSVF0vLkNW5dup0bDGJp2Tynb1/r6puxZv4/A8ACCI4Ko3aQGWq0GoRFkH8ylTpMa1KnAb1fVkK4CZPEPIAsRXncgdKcUgzgPQP4jSps+8DM05u7qOGcOUuOOgxR9ozJudLXUH//xjkbH9ws/sM5RWuoAtn/vkvNwaZBSgnUB0nkMRJiqsdB4q9Rb4a2kNoo/Ux218p9FCj8I+ES1tbStUHILLrcefsFQpOUvpO9QNN43I23LwOaWb7A1Vdk/1qlVbnWfn13I98+Pxm5zMPrN8XS5rR1CCFZOXceIZ34hpWN9mvdqzIJxS6nbtBbd7+lMw/ZJFOYW8c3TowAoLbZc9HlfcQbf6XSyfeVuAsP8iah54nHSN8CHF0c/hs1mx2A4Uflps9opzithyIe3ozfpmPHDPEryS8g+lEdw9QDWzNpAbOIVkoZpXQrFXwIgNeEIn3vL77dvBacSk5O2dQhDKlJaQBOIMLRAWiaDPKy8ON7vIsw9VKk9ILwGIzGBdZaS2fV5Sj3i6xOQUl5URUAP/xHrUmT+s0oDydxVBWRtC8D3RTTed+Aqma6yc6TD3ei+BESgWjCAStn0fUcpqua4m95Y54D3zYBRpXLKEhB6RMBb4HpaBXirEL6B3lz/SHcmfjqdHvd2QQjBscwcJEpMbe2cjTTt3ohNi5TabHS9CLrc2g7fQB+G/vE0W5btJKllHZZPWU18g1iqxaonIJfLxcI/lpN7OJeON7c5qxbYv+GKM/jTv5vLJw+MILh6AB/Mf42o2tWRUlJSWIq3n1c5Yw8w6YsZfPP0KEKjg2nQNoE1szeSn1VA856NcTmdJLQ4dxFXlUEbq9QqZRFCV8F96VNVvrQzFxC4iseoLwhTTyj5GfQt1R+6NgxhbFVm7AGExozwuR1pbA7CB2mdDaVjoVQgNREIU/uLdpse/isOFcOxLVKxG0Nb9bM0Iy1/K6lsTSSQC14PqtW/dTp4PwSWieopwLkV4dUV6fMkWGYizEoKW+jrIAkFjRWhjVUFfNrIS3u7Z2He2CVsXryN5r0ak77lIHFJUTS9thFarZa73xnEDc9ch3+oHwd2HOT5bm9w7GAO3e/uxOG0o9itNm4bOpCMHZlUiwvj9w8n0/WODiS0qENCizq8f+fnzPppAXWb1eKDv4di8jaxedE23rxJNYW3lNi4+fm+lXo/V5zBz9yj/M3Zh/LIPZxHZK1wfn7tdyZ8PJXbhg6k/+O9yo0/6B6fdSAbs68ZS5F6zPIL9mXI8NuvKM0cYUiA4AkgrQi9apjssm1XhlkWInweRBPwMa6851XxlKGlanfn2A44wL4IvB4CXTzSZUOWfOsuqumGxthKXcMtjytLjzczk+6+th6DX2UwtlENb2yL3K/bI7wGICXIPCWbXfYlYPSDkj/VNt9XVY0GdjDfhSx8EzRhiKAxqqgLdz/jwA/VouMyl1I+sj+Ld277FJfTRc7hPBZPWIHeoOObDR8QXTcSrVZLQJhagWfuOVKmpllaZEWr09LkmhTqNKnB0kmrGHr9ewBodZoyQcdMdzJIxvZMivJKmPfrEgpziwiJDOLYwRzM3pWfv3/FGfzud3cGKQmvUY3ElnUoyivm9w8mYym2MPGTaVz/SHe02hO9Jnvc05nsgzkEhQeQvmU/A57qjdAIutzaDr8gX/KPFbBs8moiaoaTXEUboUjHXtXOTlMN4X1rWWDOVTIOLFPAtlyN09VB+NRUOjoAmjjQ5ihtHbwAM7iOQNFvYOwPzo1KaMuxHWloUm7Fj74lGLYBWtDGXcS79fBPkdKqGpq4jiG8blaxHe+7kdpwlWpr6q4yrUqnnWhWLbzU/9oglBlxAC7lynNlq59L3FleuiQwnehqJnRVw0Xq7e9FvWa12LpsJ15+6gvL6G0kfWsG1WJDMZhOZJ81aJvArf8bQM7hPPo+1oO4xBPxMZ8AbzRaDS6nC9+TZFnu+2AwyyavpmH7JNbP28xwd2bP/cNvJzwmlNST4oyVRaXk4QshrgU+QXW8+k5K+c4p+4V7fw+gBLhDSrn2XOf9r3n4oAJQ497/i4mfTmfQS/3o/cDpvVOPpGexa81ezH4mXuv/ITaLnTenvkDjLsmMfGUso98Yj96o58s175b7IKsKrsKPlCgaIAJ/QBiVPo4r91FwZYEzHWQJIuArhLElLnu6Usu0zgFKwXcYwpmu0vAc21SHI019sI5WPn/hjQiZh9AGlLuutG0CnKrXqofLFmlZhMxzC5l5P4TG97GKx0kbsnQaIEGfgpBZyNJ54NwOmFTZun0e6OqC171Q8AyIUETwTwhdzYt2P5VJzuE8MvccplpcKEv/WsXySatZPWsDD358J30f7XHe59myZDulxRYadWpQYXPzxRNX8Gr/DwAYNvEZWl/37/vcXtA8fCGEFvgCuAbV0HyVEGKSlHLrScO6A7Xd/5oDX7n/v+A4HU4SW9Wldd9mRNWuuBN9tdhQqsWGMnPkPEoKSwE4tO8o1lIb0qW+EKVLgkt9gexel4ZfsG9ZoOWyR+fOMBIhKsXuOIY2qo2dsRto406Utpf+qmSR7Wrlj20pmDorgSxHuirFN0m18tfVU7ncpxh7AGFocNo2D5ch2nB3bCfvrE9jQhgQXteftCUeZCmycB3oY92NcRqCCFa/T8GTQPgidBX/3VUFgsIDCAoPAFQXqy8f+5HkdonYrLZ/dJ6k1md3X7Xsk8qbU18AIUjteuGq0yvDpdMM2C2l3AsghBgLXAecbPCvA0a5+9guF0IECCGqSykPVcL1z8qUr2bxxeM/EhYbyvD5w6gWe+ZChxa9mnDLS/3Q6XVsX76TUa/8xoOf3sljX91HRM1w4upHM3PkPD6460vCYkN5f84r5TKBLleEqY9qNK3xL5eKqQqkcsB1CGE6qcmLMx1kqVrJSxtow5HZfVU6nrGtqrJ1ZSkfrtftqnmGhyqL0NeG4N/AVaiCtedA2jYiS0aphYT5RjA2g+KvlZvHeK3S0XGkQcgExHmI5kn7LlXvoU+5rKttE1vW4e63b+HHl8ZiKbbQ+ZZ2hEQGVcq5tVpthSq9lU1lGPxI4MBJrzM4ffVe0ZhI4DSDL4S4D7gPICYm5j9PLnOvCowcTc8i90gBRXkl+AX7Ehql8satpVZWTF2HRifYv+0gkbWqU7NRHENSVEu3Rb8vZ9D/BvD986OZNWoekbXCy86XlZFTzuBnZWTj5WvC2//yUoYUQoCh/unbNd4I3yGnH2DsArb1oA9Uqz/bareOCoCfEsvSNwNDRzC2uKBz93BxEG7t+/NBlv6lqq1BpWBq3E+60n4i/iNOd1tUeC7bVmTuLer3y+99hNd1/2TaFxWNRsOxgzk47A52rtnLwV2ZlWbwLxaVYfArSrA+NTBwPmPURilHACNA+fD/29Sgx31d0Oq0xCZGsmHBZvZvO4hGq+GWF/tSPT6cWT8t4NMHv0Wj0dCoc33W/b2Zd+f8j253dmDF1HU4nS7mjlnMimkq5HDve7fS9c4ORNWOILHlidTGReOX89Ytn1CjYSzDJjxT9oVSJdGEgOUvQILfuyrLxtRHSd+iQXjdBcKMzH8aij9A+g+vUlWSHv4ZUtrAMgeJBmHqAoYGUCpUPr0rTz35+byM0NVESofy5QtvcGaC5hxpza6jJxYTrswLfi//lQ43tObgrkPEJUVTu8m54xKrZ67nry9n0LhzA657WBUyFueX4BPgfUlqUyrj+SkDODmSGQWc+smdz5gLQlxiNPd/MJiAagF899xoZo2cz7GMHLYt3wWAzaJ8cS6XCyEEbfo1Y+h175FzOJ8aDeNYMnElsYlRNOvZmA43tiLnUC6H9x5lw/wtHN2fXXadLUt3qG/+1XvI2HnBPVUXFtdRwAJYVWGN12AlqWBbCc6d6tHdsUf59mUJ0rr0Us/YQyUjnTnI0klI22awzETmPw75jyLzX0cYWkLgDKWkKQxg7ILGZzAYW0LJ92AZB/alSPu2c1/I2BJ8XwTvBxGm6y/0bf1nElvW4c0pL3Lvu7fh5Vu+CfmutXt5beCHfPvczxQXqC+xv76cwfLJa/jy8ZFk7j7MT8PGcUvMA4waNq4shfxiUhkr/FVAbSFEPHAQuAm45ZQxk4CH3f795kD+xfDfn8zJuvdCQ5krpusdHTCYDHj7e+EX4svsUQsoKSxl1fR1PDD8dq69syO5R/NYOVWt8Hs/2I2NC1R4YvXM9UTWuhaA9je0ImNnJjEJUdRtWjUyEqR1PtK2EWHqhtDXLdsujB2Q3veClMqnm/egUs00dgLrXKTzMEKfoLTx7VsQpq6X8C48XAhk8XdQ8p0K5vo8dWKHq0jts/4NuvpgXwO6uOM7VatDAFc+WBbg0oYjDE3PuJoVwojwvuMC3smFxWaxcSjtKGGxISz4fSmLxqtEh0adk0nt2pDGnRuwfPIaWvZJxehtYPyHk7GW2pg9agEbFmzmxTFPEBJx8dxC/9ngSykdQoiHgZmotMwfpJRbhBBD3Pu/BqahUjJ3o9Iy7/yv1/2nNOuewvO/PMrhtCM0aJdIPXcbRN8AH3oPOWGwnHYnO1buJrVrMj3u7YLJ28SUb2YDyhdeq1EcAWH+SOkqp6+T0Lw2b0x+4eLe1L9ESgeyZCwUvg3Ykc59iIDhZfuFNhThq2IY0rYe6Tq+EtGCsTtYFoLPIIT5evB5EqGtWn5MD2dHylJVbwHK3WJoCj4vKH+9NhJKvgGketLThKimJygFTOk1GOzrVcczUQi5dyG970M6j4I2EOF9X5VsYH4mfnjpV8Z/pEQWW13XFJ1+KuHxYWRlHGP0m+NJ6VSfkTs/JbBaAGYfE7e/diN/fjadOqk1WfrXKopyiy+qwb+i9fD/LU6ns1xxlrXUyoopa/EO8KLJNQ3Jy8pHSggMq5oyydKRrjoduXLVH7bXXWj8nq94rHQiS/9Q6peYgTxwWZWcbckPYGiHCPzSI4F8BSFLZyOLv1DieIYWaHzuA8DlLIScu5RUsn0NeD+KMHVB6GLVcY49yGO9VPaONgFsf4MsVu5AYVTZX96PqSpb800IfeylvM3/jNPh5Pbaj3AkPQsvPy9Gp3/JpC9msG7uZnIyc9m//SDVa4QxYsOHmE6qmk3fmsHsXxYQXz+GzrdUfp/nq1YP/99ysrEH1c2m3cAT7dcqW9DooqMJVSmXwqj61xo7nDZEukpBCIQwIbxuxFU8Cqxzld8eVF9SAPs6lcLpMfhXDtoQ0NZRshmOHbgch9HowtFofXEZU91B/JsQhtYIXSzStkq5erT1lHF37ALTANDXU7Idpv4qbVMTAbaFYF+HFCaEvuICr8sdS6mVgqwCQqNDGPLh7cwft5RWfVLx8fdGSsm+TfupFq/Sv4MjgtCcUmgVmxjFPW8NuhRT9xj8kyktsrBnfRqRtasTWC3gUk/ngiClE4QBEfAusvg3KPoQSn9BBk9EuH2x0rZFZeAIPdJwrep2JYtBE6bkj2UBGBqBNkqJqGmq+Begh3IIQyNk8c9gXw12QNcIfFRDemFsibQtB10c0pWLtCyCovdVoN/nWUTQD+A4gNQlIOxLkb7vIjQSaWgK6CFPPS2grXoV6wCWEgsf3PUlC8Yt45HP7qbPQ9fSpt+JLPR+j/WiZsN4fAK8yD6US53UmhiMSrBx35YD7N+WQcMOSfiHXJrG5le1wV8xbS3zf1tCarcUOt/SllGvjuOPDyfTsH0ir09+AbPP5dN8uDKQjnRk/kvunOc3wLkHsIDUKanb4+Psq937UNW0VndPU1N/d6ereIT3vZd1kYyH/4g+BawzlaZ9uYB+OzC0QOY+CiW3g9f9qghPGwMui8rn18Uji75FFr0Pxk5I61wQgYjgXyF4rAro6pMv3b39B3IO5bFg3DJA2Y9eD3Rl19o0AkL9qBYbitnHRIteKqZRmFPIgnHL8A/zI6l1XV7q+RZH9x+j3+M9eWD4HZdk/le1wf/++dGkbd7PgnHLSO3WkJ2rlZHbsnQnJYUlV5zBx74W7CvVz5Ypyh1jaAnGbgh9rbJhwtACqW8ECCWDqwlVXxKuo6q6VlsH4feIapRhWwlChzA0uTT35KHSka4ilZGlrw8iAI3hRHKCdOxBlvzpduHplZKqK1v98zm5s5nTfYC7yYfMBecxhPHfa8RcDlSLC+Xe925jxZQ19H6gGzO+n8tH939DeHwo780ZSvX4amVjp/84j2+f+RmAV/98lryjBQAUZhcCqonKrtV7iasffdEKuK5qg9+0ewppm/fT6rpUzD5mbn/1Rhb8vpSG7esTXP0KzDzRp4AuRemZa6PBsUNtN5XX3Bb6uhD0K7JkMhQ+r/a7HIBb8tjUDZdtl1r529eq4hufZ8rLM3iokkj7LmTuQ6r+wtwPTAPL7y/+xd3rWAM+ryjD79gLhhTESat24XUTUgSCxk+lb2ojVPvDKo5Wq+WGp/tww9N9APj6qZ8AOJyWxdzRi/EJ8qb73Z0xGPVlvTc0Gg3+oX68+ucz7Fy9p8wF9O0zPzNz5Dzqt03g7ekvYfIyVnzRSuSqNviDh91Ap0FtCY8Lw2DUk9wuscpKIJ8PQhcPwb8AEqQDiQMQCNM1ZWOkYy+ydKLS3nEVAE6w/AHme0BWB4MenPlQ9La7sTmqpZ3MuRS35KGycWwB174TPxftRQZ+BuiQpX+qJz1dgsrusi0DQ3NE6HRAjxAC6dgDziNgaILG+0Z1HnerzCuRbnd2xGF34nK5mPDJVAqyCwmqFkDb/i3odlcHAsL88AvxI6mlcouldk0pO3bflv0ApG1Ix2axeQz+hcZoNlIzOe4fH2ez2Ni2YhdhMSHlHuGqAmXpk8KI8L7ttP2y5FcoUasWAn8GnlB/5NZF4NzqboqSrsrphY96WtAlq6pLD1UffTP1WTqzlHCeYxPSmY1wHYYCd+qusZfqWWybCRpvZLFTNU0RemT2rSCzwecphM/9l/ZeLgLx9WN4+NO7+Ozh7yjILkSr06LRqiIzs7eZDje2xlJqZcuS7Ri9jYTHheEToLS2hgy/g2WTVpPSMemiNVq6qg1+RbhcLuaOXszRA8focls7wqJDyNiZibe/V1nmzoRPpvH9C6OJrFWdD+YPu6iFExccjfsLTISBNkwFby2TlE9XmMHQAnR1VHqmoR3ok9yyypdvPYeHcyPt25CFX6n2lb7DwLkHaZmi3IC5DyO97wDhq1QtNWZw6cDoFjorehtKI5E+byhjD2DfhJSuqyaw37Z/c1wuSUTNMJr3LB/P+uXV3/ntvb+IrhtBVJ3qPPLlvYRGBmP2MRGfHEONhhevHsFj8E9h67KdvHv7Z4BaycclRfP2oE+JT45h2IRnCI8L45BbgTNzz2EKswuvKIMvvG9D6uop444J7BuUkXdJRNDXZSmY0tAUHAeRshhZ/D2UjEP6PoLGfPmqHXpQSGnjuAumbJt1mXpyc6xB6uLReA8CTRCy6AuQR1QNhv/nYFsCwh8CngHLNCWVjcvdwNwBxh5KV1/a1WuurPqMPRv2Mf27OUTVjaT3kK5lzUzyjhZiLbURXff/7Z11eFRHF4ffWY8rkAQIJMGCBUII7u7SUqhBDajrV3d3qJcaLRVaaCm0RYq7B3cIHiPuWZ/vj1kCIQlSHPZ9njzZ7J1779zZzblzz5zzOzXQ6U+Y1YR/N5UWMk9OTCMgxJ/UxDR0ei0v9H+bzORs+o/twSNfjrkk/b/uDf7B7UeY/slsqtQIYtgTA/Dy88TDy0RJkRm/IF/2bTpI+6HxZBzNYvU/CQx5qC+DHuiFl68HEU3CiWhydWcLnooQRqRjLxS8A8Yb1YKbZRbomyMtqxEevVXlo7wXVMKVdTngofz4xb+Ay+BL83KkfS/C1LOMBr+by4u0rEXmv6CqUvm+gtAGqw3CU1UzA1XkBkBXS2njONPVd8D7QTS+/ztxMK9bcDqzAYtSx9RVVYu1lhUIY4drMvt6zncL+evzuQDUi4uiYet6FOYWMm70l5QUmtmxcjfxfZuj0agnm13rEjF5mWjVP5awiBA8fD2w2x047E5KXMWWSlx1tC8F173BX/TrCuZ8uxBQejhxvZrx4bJXyUnLo1mXRhzemcRT3V9Do9WwZfEO/Kv60WFoK8a8P/Iy9/wiYlbjgW0ZCNfTi30PFH+H1NVG4uuK9KkO+vZK/FrmgWEwTssaKJ4KFINtJ9KRhPB7+XJdiZtTkJalSuLAcRjsw0GrUvuFqTvStlPNzoUfTkceQmMEXR2w7wV9I5WZffKxHNkq7NK6FpAIr/sRxtaIa7hGQrXaSvu/So0gDu84SsPW9TB5mWg9II7Fv64gvs8JYw/QfmgrkvamEBjiT0jtqnz28ER+e2c645a8ymt/Pc3ehP20HlChCsJF4bo3+HWa1Uaj0VCtVjBhUcp/Xbf5ibjjqGa16XZbB5L3pbFyxjpWzljHC1Mep9NJUgvXCtK2B2lZrtLitREq5E7fCsz/gHCAdataqC2ZoSJ0hLcK2yv5Xs3w7RtVqKZwqCxNQxvQeJY9h7NIxe2Lix+R4KY8wthB+eZ10a7i9CBtiUhHslLAlBlg0kHWYKQmADzvAGcR6JsjtGEqU9u+D2ndCkWfgmmEaqOtCfp6l/XaLiRSSlb/k0DusTw63NganwBVfLxBfB2ad2tCYU4RR/cohXedXsejX45m+JODCKtXtgJeRONwnv1ZSUj8Me4fAJwOJyVFFuJ6xtC0U6NLeFXXscEvyi9m86JtbF+5hxHPDaHLiPaE1Qkt106j0TDmvdtZ8PMyEuZuBtSX4VpE5r+p6tgae4FlHmoh1gn2LaCLAq+7XUk2LvVMWawe+/Udla9f5oE+DkQIGHqDPkIZhOPHt6xF5j2h6qb6vY/QqfGW0grOPIT2KqkRfBUjjG0g+F8lryF0SOt2ZM5tyj1n7KR88tIJzmT140hC+L2GcN24nUWToOBNFbarj4Xij5U7x9gJWVSCxIrQRSNMXS7vhZ4n21fs4pUh7yOlpCi/mGFPqLj76Fb1aDOgBWkH0+l954lr9PT1JKpZ7dMes+eozmh1GnwCfWjerXwFukvBdWnwi/KLmfTybyz4cRkFOUW07N2M0NpVqd2wRoXtDSYDPUZ2Ki140G5wy0vZ3UuH8Fa+XU0wYATM6rUwgW0bmIYgs29Rj/meo1Q1I+kJHiOgcI8y+MJXlT0seAGsgDYcqRsE1gSkbbNKw3emK3+xLhTpLEHmvwTmmUjfV9F43nR5x+A6QJz81OVIO1FxSlsbvB5WhtzhqkhqmaeEzrzvUn/bU9UivvCktJCdLFLJd45jUPIjEh0EzyrVZroa0Wi1Kq9AyjJiijq9jiEP9yvX3mq2sm72JrwDvGjWpWJj7hvkU+G+l5Lr0uBnp+RgszgwF6tqV9IpqV73xKNY0t5Uso/lsGv1HnwCfeg5qjN6g57Ow1UmaXZqDkUFJdSsF3ZZ+n+xEL7Pu+Lwv3G5Y2qowtYBP6vwOtsOJDZlrE23gGWGKmNn6g9+H4N9N8LYGex7SoM0hfBUCTv5zwEmFcON9USxbOcxVzlFwLwI3Ab/0mJsB95PgTMf4Xlz6VOXU3hD3pNgaAiyCKfTikZjUMlYtrWAAQKmgLaaejqQnqpYClLJKuNxmpNe+TRqW5+35jxHbno+bQedeYK34KeljB/7NdXrhNC4fTTmYgs3PzuEqJjaF7+z58B5GXwhRCAwBagNHAJuklLmVNDuEFCAEtiwV6bVfKkIqxtCzQZhtOjRFINJT53mEXzywHc89Nnd6PRanu39JuYiC/F9m7Nm5gaqhgeXZsgl7Uvl2d6vk34kixemPE6Hk5TyrnaErjqYuiBLZqNm+BawLANtTaQzFfQtwfcdlYErbMpPD2o2mP+Mel9fH4ydEf4TUWF6HaDoK9cZzOAxGI3pJA1wbXXwfgRK5iE8b7y0F3ydIK0JyOLflcCZNsIlWdwJ4XkHQuOB8L6n3D4aY1OcHoOhaPzxd5DeY5Sf3rYWdA0Q+toI44miP9KZB/pI0EUgdFdXQmJFtOgRU+Zvh93B0T0pBNcIxNvPq8y24kILAFVqBjP3h8UABFcPJOrD2pekr2fL+c7wnwEWSinfEUI84/r76UradpFSZp7n+S4IWq2WoQ/3o1HbBuxN2M/3L/xKQXYhmxdvJzMpm2JXuJTR00itRjXxOSkLLiUxjbSDGQAkbjpwTRl8AGFogfS+BwpeUW+YBoF9u1q4NaaCZSaYBoDXA+opwL5PuYEsc0B4I217EfrGCFP7Ewc1DVXrHtqgchEcQugR3g+A9wOX7iKvM2TxL2Cepf4w3aTWaWxrwNhdrcGc3NaR6crBcIDjpCqkto3I4ikI70dVJq42EqEpa/SExg88ype7lNb1SOs6hKEjwtDkAl/dpeOPcf/w7TO/0KpvLM//9lgZccVed3Qm42gm5mIrqQePkZ2SQ/rhDI7sTia8QfUyx7FabGi1mtIY/kvJ+Rr8QUBn1+tJwBIqN/hXFHabnRXT1rBz9V5qNaxJ8t5k6rWIZN4PS2jZuxl6o560g8foP7YH9eNO1Kht3L4Bt714I1kp2XQZ0f40Z7h6EdoaJ/Jm9S1cETke4Dig3jP/g/B5AgImgrQo7XR9K+UDNk9D2naA30ulcdhCF4LwKW/QpXUbsuQvMDRxJ2xdTPSNlcHXRgFK0Atjb9BUUVFTMhehrY40L0LmPgK6huB1H1gXgaGTeipw7AFHtipPaGx71qeWzgJk7uPgPIbUL4HAqZXWt73S2bx4OwDr5mwiLzO/jMH3CfBm9Lu3cXhHEkGhfmxZvJOVM9Yz5NF+wAmDvychkQ/v/hLfIG+e+PY+QiNDTj3NReV8DX6148XIpZSpQoiqlbSTwDwhhAS+klJ+fZ7nPW8yk7P57d0ZAHS4sTVvzHyG3Ix8BtzXk40Lt2HQCo4dzqRx+wZl9tu+YhfL/1xDXK9mhERWdrlXOcYOCP/vAIuKvtA1APSqdJ3wA2NHZOFkEFaE592AXbkLHEfAvl9VPXLkgu704yOLf1BPDiUapD7mql7ku5IRnqOQmkhwJIKuEXiNADSAXRljWYzURYPGD7CAfRMgQNcApMGljmkDRw7S1h9p2wTaOmiMMac9rzq5HjShaq1GVL1qjT3AjY8PwDvAm2adG1GtVvmIMp1eR1Sz2syZuBCdQUebwS2pXieU7LRcfnjxN/KzCmjcvgEHtynRtF1r9l15Bl8IsQCoqFfPn8N52kkpU1w3hPlCiN1SymWVnG8MMAYgPDz8HE5xbgSFBTDkkb7Mn7SUVn1jObTjKM/2egOH3cl7i14isKofOoOeKjWCSvfJSc9l6/JdVKkexJGdSRzZmVymkPm1ghACTvKzC2MzMDYr/dtZ/AcUvguA1EYrn7AuQrkJQBVTqSDEUkozWLeAtjpCV0PdQAB09ZDOfLCsAUMcQlyXsQT/CWk/CM7Ccq4SKa1gSwRtKEIbgPDoAnRB2o8is+8G51GkzysqoU7jAyU/gSYcjANBGwr5j6ssa2M3IF2F3erqKCXV4kmg8cbp/y0aw+nVZYUwgf+HYNupdHmuYlr0iCnn1z+ZgpxCco7lYrPa2LhgK1VqBqHVaVg7ayNzvlPJjDXrhxEeXR2/YF8atLr0eQtn/M+SUnavbJsQ4pgQItQ1uw8F0is5Rorrd7oQYjoQD1Ro8F2z/69BFTE/8yX8N/QGPfeNu4M7XhuBp48H/05cREmhmbieMXz+wHfUi69D33u6YzDp8Qv25c+PZ7Fm5gZCalchYd4WAHre2fmaNPiVIZ25YN3oCtX0UvHa2ppKKdGyFIz9wL4V9I2R+a8jtRGAATRGla2JHoq/BG0kBP6E8LobDK2QUkDOHUhZCD4vIe27VRvPWxD2RNAElUaPuDmBtO1CZt+msp79xiE8ToT8yaLvVflKXRzS732EYzvSfgQwnSR/vBs87z7h39cEgKkXlPwFhhYqJt/YBUSwCr2VBvX5YganWT0xcGY5caGrCde4vEZWSjavDx/HjpV7GPvhSJ747j7qNI/A6XCSMH8zwdUDKc4voUXPGG5/ZRgajaaM5s6l4nzP+DcwCnjH9fuvUxsIIbwAjZSywPW6J/DaeZ73giCEKI2tb9UvlmH/G0j64QwS5m1h36aDJO1JwWF38sAnd/Dds5Oxmq30uVsV79ZoNARU8b+Mvb/0yMLP1UKeLACfFxCGOFXE2hANHreqOqcl81TRFGNXKPlVGRFdY1XxSONy8TgOnki0MsSBZa0y9gDWBLDMdp1Rhyx8AzS1IHASQndthcGeN4409VkA0nGYMs4Sm5qUYN8Axb8hHTtQIZONVNF6aQZ9NBrPm5CmbqqwuDYSskcAVtDVVX5880xl5IW3yswVfmDoBdoAhOHaKXhjt9n58+PZ7Fqzl8EP9SGmUyPysgpISUwlonE4Jq/Kq985HA7+mTCPHStVQaFdq/dy28vD8PH3IjM5m8WTVxLRJJzed3WtNEb/UnG+Bv8dYKoQ4m7gCDAMQAgRBnwrpewLVAOmu3x3OmCylPLf8zzvBSegmj9j3rudmV/PJ2lvKmF1QwgOC+TA1sNMefdvGrSpw9bFO7FZ7dz11s00bFMfk7eJ7LRcAkP8L3f3Lw1SKrVEWQSOJPBQIlJC4wUG9UWWlLjalgAOcGaixLU81AKwNhz00Qh9HaRtP2j81WzS9w2VxetwRfVqo1RCkDZKSTQ704Fry+BLZz4IL4Q4t2gNlZlcoBKgvJ8EZw7CNLBMG+F5B1ICQqOKzltXAU7wigVaqCQ5RybSkX1iBi4tSGMXVcvW0B6Nz2M4bfvUATUhYByAMLU7ZzE86TiGLPhA9dPnSVVR7Qrj8K4kvnlKlSP08DbRoFUd3h35CevnbGboI325b/ydle5bnF/CnImLaDc4HkuxhZDIarw/6jMObD3C05Me5N5xoziw5TDxfZpfqsuplPMy+FLKLKBc5QuXC6ev6/UB4CxWdy4/dpudGR/PpmZ0dZb/sYa4XjFsWbIDgIEP9KbtgDiCwoJo3S+Wv7+cyzdP/Uy9FpE8/MUY6sTWLpORd01iGqoMvXURGLuV+tql/ShofBEaP4THEKTwUn584VJi1IaAoS3C2LI0csdZ/CfkPwvauoiAb9B43oQz5z5XFaXOoK0BReNA3xw8X1ORJmdA2g8BXNGLv9KZC450pG07FLyuQlx9nz9rbSHpLELmvaiMsu8baLxHn7K9EJCqdqzGB1k4QbnUcKoGGn/1ZFD8rWov9Ajv0Uh7MrLwI0AL/hNP1Cj2GAwUgbMYYYguY+ylIxtsW0FX7/RPX9aE0uQ6aWl5RRr8KjWCiOnSmC2Lt9OoXQNKCsxsXqT+97ev2F3hPkV5RZQUmgmuHsSdr41g6e+r8K/mz971+9m38SAA25bv4uEvRle4/+XAvTp2ElqdlpoNwjAXqSSKoLBAvPw80el1ZCVnc/9Hd5CVnE1Wam7pSvveDQf49pmfaTMwjqGPXN606YuNxtgQqR/nWijMw2lerlLq859UbpuAL0E6EcITDA0RXhUnUkl7CphdWj2Ovcii75Aab5XZK4uV+8fmigG37UL4f3nGhVxpTVCLkTgh4FuE8cLmR0hpOW/BN+ksQOY84ioe31w9KZX8pjSKTomHr7gPJciir1U5SX1jsC5FGtsji34FZwpKlz4fHPvA/2OEoTEi4GMlX6FVM3j0rcDyDupf365cNYC0rDiR8WyIA9kQaU5A6GNAF660d3Rl16tkwTtgnqHqJAdOQmgqya7VN1BrMs5sxBVa19Y30IdX/vwfeen5hNVRMSpj3ruNXWv30WNkp3Ltd63Zy6cPfcehbUd4fspj9L6rK73v6sqPr0xl86JttO4fi7nIQucRV5bby23wT0IIwcNfjGbvhv20G9KSWtHhxHRuyKYF24jr3YwDWw7zTK83KCk08/jXY9FqtRTmFrFh3hZ8g32uaYMvnSWqLKLGU/np7QlgWw+G9sqva9+qDHnRBLAuBF0LCPqhnJGUjgxk8Y8qBNDQVfn4LbOV68f/B3BkgtCqH0NHhCEGoT1RYEZKh4pK0fqVPa79ILjcSdJ+4IIZfCktyIL3wDwH6fM8Go/z+IydmWBbrV5r64HmCHj0U1ExZ9MXyzp1s7AfVpmupoFK7ti+QT0ZgasE5VGVbKV5CLTBKpvWVc5SOovUGBpagS4GDJ2Q0q5m/ZogtRCvb4gseFOFzOpbIQK/UdE2p+Jw6eY7DoK0UpmcgtBFQdBUkPYyn+WVhrefV2kG7cYFW/n8ke8BCKsTwtFdyXQf2QmfAG+WTFnJ7G8WsG+DyktZP2cTRg8jMV0aMex/A4hqVpvgGoHUj6tz2a6lMtwG/xQCqvnTqu+JEmVNOjSgx+2dAVj86wrys9QiWc6xPB7/9l7+mTAPo6eBPveoYKac9DwMJj1evp7ljn21Is0LkPkvqiQc3xfUbPK4uJZ9t9LS0QaAvi44XTNzZzJIByevJDqL/wTrOjD/qd4w9lGheuYZyrWjq4U0xCilTlkIpgEI04nMTSmtalZZMg3p/TQar1tKtwljZ6TXaHVOQ2ucxdPAcQRh6oc4H9leRzIUK98u5jnKQP9XtLXB5xWwbUCYuoPv02f35GLbA4Z2UPwdWNeAoQN4DEKYuoJ1k/LVawKVtIUmHHSF4ExHFoxXobI+LyA8egGu9ZaAj5HWXao0YfE3SN/3VDa1JkTdaO3JYNuvOmDfq4x5BQZf+DyLtCxC6FuVuwGXa6vx/Q8DdmnYumwnVrON5t0al7plj+tsAexes4+EeVvQ6LQMeqA3u9ftI/VAOi17N8NmsZOSmMazvd+gx8hOZCVn8/CXo6legfLulYDb4J8DsT2aMvypQZQUlNB+aDwajYZB9/dm0P29cTgcLJy8nJkT5lGcX8LL054s1dc/ldzMfJDgX+XK/Sc4GWlZqBZUzX+C520Ir+FIcwg4U5VBPUkKV/q+grSuQBhaqacBaQHzIqS0QcGraqHR0AFwgOkGNB4dkcY2ql6q8xg4Dim/sCbAleKvXCE4c9UCpG0n6GPAug6npiYaD1e+gMYX4TECKfygcByU/A7YkI5UhP97Z3+tjmyw7wRdfRVFpA0Dz1uhZDaY+pRvbz+ILJ4K2hAlPlZJlScp7SDNrpvULWXeP9XoK9fNr2qh2rpByVN7PaxeA8h8NB59ARCG5uD3ulq/sB9SkVCOTMAJluN+838RHr2Qtr1IS4K6CWsC1c0alCCavgkUfab+9jAj/F5AmhcjDG0qNdbC0AxhaHYWo3rlsnHhVp7t9SZOp5OHPrubhLlbiOnckP739eLpHx/i2OF05ny7CKC0+Hjd2CgO70rGL9iH2o3D+faZXwDISctl48JtbFu+y23wrybMJRbSD2cSUrsKBtOJf2C/YF/ueee2CveZ8+1CPr7vG4JCAwiuEcShHUcqNPi71+3j5cHvIQS89vcz1GsRVcHRriyEsbvy8Ro7KGEsjRfCULH+3alGQJb841LKxLXom6VcQZhBWws8OiJ0KsHO6Tis3ANYlfG3H0M6spC5D4FtI/i87orkOawifmwrwKMDUtqR+W9AyRTwuhdsu9TCr2OPKsR+Dsj811U5P0N7CJigXBk+L4H3k6WywtKagLQsRRjaq3Ep/k7trKuvpKFPPaazAJn3kpKo8Htbze4BaV6FzH8LaWwNujCEaTBCG4g0L4bCd9TOho7qtzMb4fch0roaTL1xWreDLkpJ+Fo3qugpZ4FLyVILplvB6AnWlQhjD6S0IfPHg3O/uqka2oGxp7qRmnog9I2Q2nCQFoSp72k/46sZh91BSZG51HVTlFuM0+lEo9Ww7t/NrJ25gdX/JBDfJ5but6mxb9KhIZZiC7HdmwIQVqca+xL2k5dZwNDH+vHohDHkpOexcf5WoprVJvoyJFSdLW6DfwoOh4MvH/2B2d8s4IbH+nPvh6NKt9msNjKTsgmqHsjehP3M/2kp0fF16X1XV5L2KldGVmoO3W/vSMM2FX/oexP2k52WC8C+DQeuDoNv6qaSqzBUmhovLUuQ5hUIUzdVZKN0g+3Ea2MnwAvyN6o4cFmkmkirStyyHwJNBOg1oPEFjZdyqRxX5bRvUS4bcMWRx6vXzgIoma5em+eqG0vReLWQfFIBljOhqjm5Zr22XS5XhuuahcvYS5uKknHsVzpAx0XfRJCSCq4I+0F1E0GDtKw6YfAtC0FXRWW5ItXCsPd9rp1MgFnJG5h6KeExXTUwdUXmPAjWJWAahDS0UUqloBLfXGOKcy9gBN+XEB591ROGxgMcBa7tueBMBBwIbSRCGBCeg896rK5GCvOK+Pjer1n/72ae+O4+OgxtTXzf5jw6YQzWEisIwdqZG4jr3QyhETgcDrRaLU07lk0u8wv2pThfrRdZiiz0G9MDgBse649GIzB6lF/cLyk0k5KYRvW6IaeN6b/YuA3+KZQUmlk6dRUAy/9Ywz3v3FqaEffDi78x9f2/GfpIX7JSc1k6dRVzvllIkw7RdB7RloKcQrRaDYMe6I1/lYp9mi17N6PLiLYgNMSeJk37SuN0ESpKIOspkLlI60oInlkaWy48BqrQP+EJpp7K9WAaqITY7LtwFnwO2iDIfwkQamZtWw+mIWrGrK+v5JNt2xEeg8FjONK6XhVaKZmCxIHw6In0fQlKZiE8b0ZaV6AqdW1FyCyg4sI25a9RC76vIi2LEYZ2CI13Ba10qvqXY7/6bRqE0DUAjT/CFWkjpQNs29UiqLa6audxu1q0tasyksLYQZUbLE5Vx8RW6icXxg5Iz7vUzc7QAY3pxAK0dGSr2Tyoc2hrn+iapoYSRZMW0FQDe6K6kXr0B7RqoVhbFexHlbvM0MG1KH56//u1QvK+VJZMUf/b62ZvpMPQ1mQmZVOneQT1XAKJcb2bseCnZdzZ4BFGvXoTt704rNxxwqJCeHXGU+zfcogON5x4ovOoxJBLKfni0e/5d+Ii+tzTjce+GnvZNIXcBv8UvP28eOize1g5Yy2dR7QvNfZWq42FPy8HYM3MDXS9RfmOo1vXxTfYh11r9zHvhyUARMbUZvCD5f29AKGRITw3+bGLfyGXEmFU8fLWxWBoWiaRSGi8yujcS8tSlR16PKpEswFk9PGtLtXNBuDYrTJ19VFovB9AmlcgLatUBq+2FhT/ALa1qki6R09VKcvzJhXn7sxSLgt9c3XDOKdLiUcY45G2fSoqxtCibGKUZZlKHvMcq9rLQoSh7I1blvwO+a+AcYASIvO4CTyGQ3Z/1/aqyuCbOoMhTqmL2g8AWpzZD4I+EuFzPzgL1IK52Q7GOJW85DgGHkPV04emmtK1MXRVVaqkTT2hOI4AevAaizA0Vfo5+a+AM1tly1rnq74H/oQwXFvy3qcjvEEN+t/bgw3zt9J+aGsO7TzKE51eJj+rgKcmPUiP2zvhX8WXPz9SUhP/TlzMzc8N5eDWI+RnFRDTuVGppHHL3s1p2fvsEqksJVbWztoIwJp/NmD92IbRo+K1nouN2+BXQLdbO9Dt1g5l3jMY9Iz5YCRLp67EN8iXmRPmcctzQxn0YG98ArwJjaiKwWTAYXdcP5m3LoQwgN9bLjXGBqdv7ExToYWmQcqtYNuuDKLPq8qIOYtUHL5V3VylpT3QC5l7H2BRpRata5UKo6F9qSCXLJmNdBxU+xd/CyIQ4ftimXBCKSWYZykZAtPASjNGpW0vMnuEihTyfQPhqsIl7cnI3AcAqwprtG5QkUkeJ7JcpT0VLOtAU0VJEjiOQOF4CO6jdGksS1ToJCCtm5CWRSqEtegLtW7hcQvYtiKticowF32JRA8B36ixsu9SuQqmwQhDE6R9G8hc9cRhXa/Gw3EIDPFg6ofQRyjBM9d4qptgS9A3UsqZ1xEe3iYe+WIMDrsDrU5LwrwtpVF3KYmqTrNPgDdjP7id+T8uZeD9vTm49QiPtHsBq9nKY1+Ppe89lUqLVYrJ08hDn9/D6r/X03ZQ/GUz9uA2+GeFzWojNz2fTje1of0NrRgZ+SC5Gfn88+U8Rjw9GIBG7Rrw+t9P88+Xcxl3zwR8Arxp3u3qLfZwrghtkHLNVIB0lqgSerpqCM9bkMIDRCA4MsDY0eXTdiIzB6ubhrGPK0vXjtA3Vk8Q2urKDaTxBqSawTuzQROKs/AHFWKoqQoGl1a7zFfZvii/O7bdSFkMeU8AEunIQPi9gnQWIou+AWcGwvMupDMDzKtU8pFte9kiIMKoDLkzGTAqETld2bUaaf4bnElKi0ZbB0pSlKG3pyL8xoPMQVoTcOZ9oG4YWiM4ipS7Rx+nYt81fqrQzPFygc5CNbPXt3Y9CRQr94+xq1qzMP+tFrUNrZUaqWkwOK0nisLrm6qZvbMQ4TEYYWh6gT71q4+SQjOHdhylet0QmnaMZuwHI8lOy6X77SeSq/qP7Un/sT2xWW3Mm7QUq1mFaB5fezuVtEPpTHp5ClJKRr06gtCI8oECHYa2uiKKJbkNPqpsYVZKDo3a1iunYOewO5jwxI/8/fm/3PH6CG59/gbu/XAkC39ZTs9RnfHwOZFskpuRx4rp6wDYt/FAGYO/d8N+ti7ZQUzXxtRtfn0pbMrcJ8C6Gun3DhqPgQif8i4tKR1KUtmRCDILgmYgBAhtVaRtn1J1xKmKc+iaQtHnLqNuUVmnhp6uBCaby+0TiSz6FakLBAxKOdLYR2WWygJwpuA0L0PggKIvVR80kWBdoGbI2mjwuBk0vkhHjpIY1gZD4DdgO6CUQK2LkYWfgeetJxaqRYBaOLXvUZFC+oYuHRstwjQeaU+HvKdUdqqxLRR/DmIL+L6tqocJA6CB4onqeJ53qBubeZaKs/e4TYWNeo5ECC3S2EEJnGnrqRuQZzzC1Ae0VUvXIIQuCgJ/A6QKlbWsRTqOIIzdruhEqIvBxOcmM+OzObQZGMcLvz3GjY8PAODI7iTevvVj/Kr4UKNeGId3JlGjbig/vf4HbQa1JLxBdXrd0bnCYyb8u5kFPynx30ZtGzDg3vJVv64UrnuDn3rgGP/r/BJZqbnc//GdDHmob5nthblFzPlWaVnP/3Eptzw3lM7D22HyMvH5w9+xccFWxrw/Eg9vE827NmHQg70pzi+hzaATIW1Wi5WPxn5N4qaDRDatxadr30Jv0JduL8ovJu1AOtXrh2KqYIX/qsaedMKdYF1bxv1xMmrB9E0Vg69vgnAVT5HOIhWW6Tig4u9FAPi+pWbZxT+CoaU6viZEGXP7OpXcxSI14y2crMIPQZVh9HpCZbvadoF+D1KYwNhD+b+LvwPMyu2hCVKKk9ZlSGdhacUuoauDFEFgWaluIkikMCKMbVSmsW2LKvhh6ATolJ9dk+l6MkEV+jYOUH0omajaWZeqG0Txd4AJPEepEE6EKihjXa6uReaAZQF4j0ajV1mcGo9BOLV1VZSS4zDCqwdCXz7y67jsgbQlInPuAmxIr2SEz6Pn+QFfHezbeACDh4Gty3YBsHH+VtKPZnJ4x1ECwwLYsngHi35dQfOujZn+yRwA2g9tRUF2Iav/Ws+wx/tTpUZwmWPabXZS9qeBEPhX8wMJdWMjLvm1nQvXvcHPzcgjKzUXgGOHMspt9wv25d5xo1j48zIGPdindHV95fS1pB3KYOZX8+kzujv1YiMJqObPg5/cXe4Ye9bvp25sBI3a1Uer01KQXVTq57dZbXw09iuWTFnF0Mf6c99JYaDXBPo6KjbemoAwlc1Slc5cpHkeQhOCMHV0FUU5NaLGgVLeRIVk2jcjnMng8xR4jlILmfY9gCsbVVsP2KJyBmy7lNqmsTdgA3RQMh/0YcoVI0KUlDM2tY5gzVLnEX7q5lSJvo0snqgWb01DlTtF30IZUusmdVORharf9n+Ve8fYh+OyA0LrrxLNLH+rg2mC1fg4i11Ht4KxF8IQh8QJxZNV7QFdY8BbHVsbXaY/GkNDOEMhkhM4T76Ss9zn6mb13wm8MvR99EYdj341hu0rdhPfJ5bPH/6ehLmbadSuAZ1uaouHlwkhoFbjmhzefpS6sZFExdSmSo0gGrU7sTZVlF/MhMd/YMuSnTTpEM28SUsY+EBvbn/xRvyrXtkRT9e9wa/fsg6Pf30vSYmp9L6za4VtBt7Xi4H39SrzXqt+LVg5Yz3xfZtTo87py5QlzN3M3B+W4LA76H1XVz598FtenPo4Go2GkkILa/5RGZTr52zi3g9GXtVl4E5FCBPC5/EKt8niX6FwPBKNqnVagW9ZaHzB/1O1uOnIAENXJBqEswChq4k0tFOzXl0jsO1GE/AO0vtBNaN2pCAdaZD7gBLv0kWAqZVa7EWopwlDRxA6kBrlNnJmqG3ODDDercIuS+PmVyMdyWBZqxZPHUkQMAm01ZBZN6kFU+EyyngoVwyA8ChT01cYOyI9bgGZp9xRBa+qxW6vBxH6RgijUgYVoG4OTjOycJxyNwGCgv/+eejrQcA3SMdRhLGc0O01ScqBYzidTiwlVhw2J0YvI+lHM0k5oBZqs1NzyE3PY+Luj9AadNitdjKPZlEnNqLMk/hxDu9I4t+JiwFKhdYObTuM31WQOX/dG3yNRkOfe87+i5+cmMryaWuIaFKLnw99gdHTcEZZZA9vDxx2lTBUmFPIvo0HsVvtGEwGfAO9efzbe1n/72Y6DmtzTRn7M3N83ARQ+XULQ9PSm4Gz6GfIvgGpawIBX4Gph9L1MS8Cz5auHUwqckhXW4VyolW+cfMM0McgfB4Gy2Jk0QfqqcDiimv3/h8a36dVYW+fJxDaEzdyad2JzHHV7zUNA/tmNXN3HFU+em2QEo3zfEC5YZxJ4DEMnEfU7FyYcBZ9D45MhOcINH6vqHDJ4qkq38C+G+HzHOibllHmFMIEWhMYuyAtC1SEj+781oCEse1pRvvao9NNbcjLyMPkZSRx80FmfKpcNk/98AAbF24jMCSAdoPjCa5+IuigSvWKAxAAatYPpcONrdmyeAcdh7WhRY+mtOjR9Kr4373uDf658se4mcycMA+9Qcc328edlWbGoId6g4D8zHyMHgYG3NerjGRDlxHt6TKi/cXs9hWJ8ByB1FRBaKuWq8laKfadrt/bXOqTu6Bksiq1iA5n0U9Q+CnSayTC6wElqmY/BtZ5aj9Hioqvl8ddG5JSqWCNSrcXGi/AS2naFH6hyjp6jKDUBaINAe/nVS5B/rOAU4WZaoLAuhkMTcGyDyz/qlBL6zqkLgIK3lZnFB7gPVolq9k3KCPuM04tTuc9p6KN/N8tTeQClF6RYYHrZqb5z2N+PRIcFshdbyr9or+/UEV7qoYH07hDND1Gdj7j/smJqWi0GkIjVCa1T6APz09+FGuJtUzQxtXAeRl8IcQw4BUgGoiXUiZU0q438DFqSvetlPKd8znv5cTbX6XYewd4sWPlbg7tOErbgS1L7+5OpxOH3VHmUVCv19G6fwuq1Ai6plQ0zxeh8UV4Djm3fTxuQiJd0Tp1EY5UVR7Rvkv5wws+VnHphV+Bx20IXRjC7zGcBQalM6OtD7l3g74j+H+OQCj3imUVWPfh1O1GY3D5a217oegr9Vob4nIFSbXIWzwRKAQMgFm5hayrlcSCfowKD7XvVIuvuhgVzil8VWSRtqZaj3Amq2M788G2Tj0NOJPAmYQ0L0R433XKeLm/OxXhdDpZO2sjlhIrbQfGlZlMnUq/Md2p0zyCgBD/0vDJgpxCtDoNnj7lx3fz4u083+9t9AYtb//7AtGtVRiuVqe96ow9nP8MfzswFPiqsgZCpSl+DvQAkoD1Qoi/pZQ7z/Pcl4Wb/jeIus0jyUzJ5v07vwDgg0WvENO5EZnJWYwf+xU2i516LSLx8DEx4L5ezPhkDj+99jttBsbx3ORHMXlWHImzYvpa9qxLpNNNbanT/Mpe7b9clBNnM3ZGBCj5YmGMx+m4W6k+Gnsgi6eD13CExhPhdRfY2yALPlY72laCuAthbIss+BTMk10nsIPhDRUd5CwBY381U8egommEJ0LjhdQ3AUsxeP8Poa2C1NZX2a72Q1DyLeClbjAyB0yD0BjqIYOmKuOuj1ETBP8Pkda1CEMHZOGXKtdAG6VkD+yJl3JYrzqcTicajXrSSfh3My8NeheA/028n153dKl0P61OW0bnaseqPbx6wwf4Bnnz4u9PUCu6bNDA4R1HsZqtWM1wZHdyqcG/WjnfEoe7gDP5ruKBRFepQ4QQvwGDgKvG4M/9YTEbF2yl220die/dnI7D2jDjU1VoWwiBRqu+eHvW72fd7E3Edm/KlPeUNK3QaFg7Sy3KrvlnA3mZ+ZjCq5Q7R9rBdN4YPh6H3UHa4Qyen/zopbm4qxwhBBjjS//WeN2KEy0UvAlYVNSPRw8VlmiIBe8HkMV+gANy7kcGTVFPC5jUQq8rM1cWvKuqURl6QNACNRvXhqoMW6FxHd8JlCACv1MLrI6dyOJvVEdMA5SxB5cCKOUqRglDS4TBte7g+xTSshacJUorx1Q2PNiNIi8zny8fn8ShbYd54JO7aNKhIQ7Hicgjp/3E630bDzD3+8VENatN77u6lrNTUkq2LdtJVEwtdq7eS+LGg+UMftvB8aTsT0Nn0BHf9/LXpD1fLoUPvzpw9KS/k4BKU86EEGOAMQDh4eEXt2dnQVZKNuNGT8DpcJJ6MJ1jh9I5vDOJ3nd35ZlfHkZv0ONfVa3O120RSbOujfEN9Ear0yKlRAhBUFggTb1MNOvamGrhVSjKL2bym9NIO5jOiGeGUDc2Eg8fIzXrh3Fox1FCape/Ibg5e4TGD4lVKVxqy0ZQCWO8khgu+hzQgrSh8eiGU/Mt2I8ijC1VEphVJdBhW60SwXLHqugbjZ+SJdC3AiFBf5IyqCYQ0ABOlSns/UhpduupnKqDL3SRCF0k0qM/ONLPquTh9ci+TQdZ+LNKclr9zwaadGhIfJ/mvDDlMSzFVjoMOyFmNnPCPGa7cmjqx9chsoka023Ld5F+NBOTp5HvnlNPdgPu60mTDuVlQarUCDptAfOrjTMafCHEAqCiuMPnpZR/ncU5Kpr+VxoALKX8GvgaIC4u7rIHCnsFeNG6fwtW/bWehm3q8fnD3+OwOzCY9LTs3Zzn+76F0Gh4Z94LNGkfzat/PcX+TYcY+EAvjJ5GfAK9ST+SSfW6ofS/V8mo7lq9l6nvqzjs4BpBRMbUwifQhxemPkZmcg7R8VdeabSrCeHRR7lHhCdCX34shectSE0gQlsDYVAhkBpjfJknBXyeQ1rmIwwdALtaJwBwZCE03kjPWyHvUbBtQxpbKtVJY1sI/A1pmQ/FP4O0I4LnlOr9H8dZ9JvSyPEaicarbN6G0PiAxudCDsc1RUTjmjTv2pjETYeIdWWya3VaOg1rW65tjQaqsHqthjVKiw0d2HqYp3u8hs1qLyNwWDc2kqquJ+/igmKERlOp+uXVzBkNvpTy3NWCypIEnKxSVQNIOc9jXjJMHkaemvQg6UcyMRj1LP9jDelHMgmvX52kvanYrEqvJXlvCk3aR/PXJ3OY+PyvRLeqy5uzn8MnwJtHTqlaX6N+GLUb1SRpbyqp+4/xx4d/U5BdxF+f/cvIV4dzYPMhSgpL6De2B0Gh11fq+4XidHoxQlultMZrpW1MHREmVQBDSif4vg/OZIRpkGrgSAHsSq/HcQSIcZ23mQqflCUgqgKn1PSVdpdQWhoUfob0uBGhubKTda4kgkIDeWPms1jNttIKVCeza+0+MpOyiOvVjNDaVRn6aD+iW9cjMCQAALvVjsPl9slJz6Vl72ZUrxdKp2HqSW3ej0v48eWphDeswciXh9Egvu6lu7hLwKVw6awH6gohIoBkYAQn13i7CvDy9SSisZqljVv6KrkZBdSNjSDnWB7HDqej0Who1V9JKezfogo7716XSH5WAT4B5TXVQ2pX5bW/nmL82K9ZO3sjepOeldPX4bA7mPPdQoQATx8PgmoE0e8/qPO5ubAIoUF4Dir7nqkX0nnMJWJWVllVeN2jYu91kapoSZlj6ZBeo6DwM/C8U0XuuDkrigtK+OXNaSTtSeHmZ4eUM8aHdhzh2d5vUC8uivQjGfz2zgxyM/IJqLaSNgPiMHoYqBcXxat/PcWBrYdZMW0NiZsO0euOLni6oufW/LOBY4czOHY4g5a9m7kN/skIIYYAnwJVgFlCiM1Syl5CiDBU+GVfKaVdCPEgMBcVljlRSrnjvHt+mahWqyrVaqlwrqDQAO55u2zJwyGP9MUnwIvo1vUqjNE3F1uwW22ERobQ8cbW2Cw2Ot7YhrqxEcycMJ+4XjH89em/OJ1OBj9Usaa+m8uP0IUifJ+ueJvGHzx6V76v513gcSMI36siWedKYc/6RKa6giGMngYe+vQefAJPTKgsxVYat2/A+jmb2blqD0Mf7cevb0+n3ZCWZSSJW/drQet+Leh4Q2tKCs3UjT2xmB7ftzmbFm6jbmwEjdufQer7KkRIednd5JUSFxcnExIqDO2/Kkk7lM5bN39ESmIqz095nOZdyyYbORwONi/ezmcPfUd06/o88PGd7rh9N25cpB/N5Lm+b5G0J4X4vs1pNygejU5DTKeGVA2vwp6E/cz7YXFpctXTPz6IpdhKQIg/bQbEnfXNtSC3CA8vYznl3KsFIcQGKWWFBYndBv8Ssurv9bw8+D0AbnvxRka9OrzCdsdraR7n8K4kZn+7gOpRofQb07206o4bN9cb6+Zs5I8PZ2IpNpOXVUjyvlQ63tiGsR+MZGyzJwiuEUyd5rWoWa86VcODeXfUZwC8/e8LxPW8ekqKng+nM/juHO1LSIP4unQe0Y7oVnWJ7xtbabtTtXnmfLuQP8fP4tMHv2Xbil0Xu5tu3FxxOJ1OZnw2h/k/LWPwQ7159Jv7SguJFxeUYLPZCAoL5ND2I3j5eXHL8zdgLrGW7m93BVccR0pJVmoONqvtkl7H5ebqfGa5SgkM8T+rhKrcjDzSDqQz5/tFhEZUIyxKLfz5V/Vj/exNNGkf7Z7lu7muSNqbwucPq6IwVrONV/98kpen/Y9dq/dQJzaCd2//FLvdwdgPR5ZWlup2Swd0Og0Ou5Oda/eQfiSDfmN6oNVp+WfCPD5/aCI9RnXi4c/vOa0cw7WE2+BfABx2B/9OXERmSja97+xKtVrnlji1N2E/a2ZtoEmHaKwlVqZ/Mocq4UH8+90iAD5Y+DIdb2xNxtEsZn69gJufG1phSJobN9cqgSH+NGxbn52r9qDRCLat2E2T9g1o1LY+C39Zzq41+wCVaXs8qMLD20Tvu7rx9VM/8fsHKu8lomktmrSPZtnvq3A6ncz9fjEtejYluHoQTdpHV3r+awW3wb8AbFu+i4/u/Vr9IWHUq8M5vDOJRZOXExlTq8KkEICs1By8/Dz5+skf2bJ0Jw3io/Cr4seG+Vto2KYegSH+GDwMVK1dha63dmTZ76sY8kjfMxr7ovxiNi3aTvU6IaXhpG7cXM14+3vT9eb2GIx6Ni3Yxo1PDCjd1rBNXZp1bUxhbhHNujUus19xQQl2m524njEUFxSXFh4a9GBfCnOLady+AR+N/Qab2crn698hosm1neHsNvgXAL8qvnj6eFBcUEJQdZUoNf2TWcz6egEajYbajWpSq2HNMvss+nUF7436jFb9mhNUPYhmXRpTmFeE1WwlvEF1MpOzie0ZA1Iy/8eltBkYx7M/P1JpH0qKzRw7kEFIVFV+//Affnn9DwJD/Pl07dtUrRlc6X5u3FwucjPySJi7hZoNqlM/rnxZxoykLFbOWEdKYhqFuUXc/OwQvHw9uempQTRqU7+0XWhkCO/OexHplOVcnQnzNjP9Y6V7Neb925ny7gy8A7wZ/vRgOgx9nx9fm0pxfjEajaY0ifJaxm3wLwARjcP5aOUb5GXk06SDeiw8bviDawRWGFq5efF2HHYHq/5K4P1Fr7B06kpmTpgPwPCnB+Pl58msr+ajN+pZ8NMyVvy5ls/WvU1yYhqLflmBl78nA+7tiZevJ06nky8f/YE53y5kwH290BnUlz4vs4CivCJwG3w3VyC/f/A3U9//G+8AL77c+D4hp7hCJ730G3N/WEJANX8CQ/3ZuXpvpUqYGo2mTAiKlJK/v5jLsj9W0+Xm9qycvo6slGzmuNyk9VtG0WlYWwaM7YlvoA8htatSr0X5m861htvgXyBOdZ0Me3wA9VvWJSyyKsE1ylfP6TK8HUd2JtGkQzQNWtXBaXewdMoqatQLY8B9PfHy9aB+fB0mvTQF9oKntwkhBD+88Cur/kqgQXwdwuuH0XZQPJYSKyunK7GvVTPWccfrw2netTFGTyPpRzKJaHxtP6a6uTqxuqJoLMVWHLbys+uSIrPabrbSZmBLUvankXogjdDI05cUBdiyeDvTP55FcmIaeqOe9+a/RElhCX9/MQ/fIG/CGyhVzIBq/mU0da513Ab/ImHyMhHfu1ml25t3a0LzbicSr2K7N+WHfZ9hMOrISc/jhQHvkpWcxd3v3EZ4dHWsJVYObjvMoR1JAKTsP0awa+bu4WVi9Hu3sWHeFjre2IaSIjObFm1Hq9My/OnBF/My3bj5z9z4xABCIqoR0SS8wqz0Ua8Ox2A0kHMsl61LdnBg62GK8op58JO7KzhaWQpyiqjZoDrJiWm0HRhHdOu6aHVavtv5EQaTnqDQgItxSVc8boN/BeHrShPfl7CJHSt3A7Bz1Z7SaJ2Q2lV55IvRLPtjNTGdG+Ht68GWJTvIOZbD+NFfUS8uioZt6+FfxY+Aav54+nqU8XW6cXOxcdgdpB/NJDDEH6NHxYV+jlOtVlVueKx/pdurhldh44KtZKflEhQWSGBoAJ5nWWWqVb9YzEVm2g2Jp83AuFLf/vEqV9crboN/BdKgdV1a9mlGTmouLfs0Z/fafSTtTSGmcyNiuzcltntTjh3J4PGOL5F+JJN+Y3vgdDrZvW4fqQfTCQoNpGWvZpf7Mtxch0x+609+fGUqfe7uysNfjD5neYKMpCymfzILvVHP0Ef78+hXY1kzM4FG7RpgNBmI7X52tY8NJsNZ1au93nAb/CuQqjWDeXPmczgdTrQ6LU3aN8BqsZc+AexJSOTfiYtIP5IJgNPuoP3QVkQ0Dq+0NGJGchZHdiZTr2UkPv7lFTzduDkX7DZ7hcZ88W8rAVjw0zLuevtW/IPPTQ10/dxNrJ21CavZSnGBGb9gH+568xb8zvE4birGbfCvUIQQpY+hJi8TWSmpfPPUT3j6mPCv6suCn5bTZmAcvsG+3PDYAGo1rFHpsYoLS3jthg/YvS6RAff14uHP77lUl+HmGsNmtfHjy1NZNHkFo9+7jc7D25XZfsdrw5n9zQI63tjmnIz9scMZzJwwj5V/r8dSaKFln2bM+ESFUwZU9aPfmB4X9DquV9wG/yph5Yx1/DtR+fLvfvtWkJJD24/SomfMaY19QW4hy35fzcFtRwBVlPlic2jHUZL2KBfUyfK1bq5+Mo5m8du7MwCYN2kpdZpHYrVYS8sHdryxDR1vbIPVYmP+T0vZtGg7rfsrKeLTsW7OJnavS+TormQAjJ5GmndtjNBq0BnObKZyM/JI3HyIqKa1CKjmf17XeC3jNvhXCXWaR2D0MODt70nTTg3ZuboJyXtTyU7JrnSfkkIzb93yMdZiK7Hdm1JSaGbIIxUXx04/mkFmcg571iWyd8N++o7uTsaRLLLTcuh2a4ez/ifKSs3hub5vknE0i5ueGsTod247805urhqCqwcy4L6eLPxlBW0HxXF/3FNYSqy8+tdTtOoTWypBPP2T2cz8ch5ph9JZ808CRXlFzJwwnz53d6X/2J7ljhsZU4vFv66gXlwk0gkOh5NNi7bjG+xDfJ/yxcOLC0vIy8hHq9NSpUYQnz34HUt/X0183+a8Ov2pq1ba+GLjHpWrhNjuTflu50foDDqCQgO47cUb2b12Hy16VCz5euxwOkumrCLh3820GRhHZnI27Qa3rPCfJyMpi6e7v05wjSA2L94OgF+wL9PGzwTAarZyy3M3nFU/rSUWco/lAZCXkf9fLtXNZcTpdLJt2S6MHnoatKpXbrvBZODBT+/mrrduIWHuFkoKzbTsFcOyKatZ8NMyuoxoT7tBLVk5fR2hUdVIO5RO91s78OPLU8lMziZpbyqdR7TD26+sPEijNvUJi6pGVmouyftS8AnwommnhqQkppXLUj+8K4nXhn1IYXYhkU1rccsLN7B/yyEA9m8+hM1a8fqCm/OveDUMeAWIBuKllBWK1wshDgEFgAOwV6bV7Ob0nCzKVq9F1GkzA+f/tIxp42bSbnA8mcnZ9LmnGwPG9qQgu5DNi7dTs34YtV3JYrnpeSQnplEnNpJut7Zn3ezNhERUwcPLSINWdfENUm6ZXWv2sm7OJmK6NCKqaS3mTlqKydNAj5GdSkPwQiNDePnPJ0ncdJAON7S6iKPh5mKwfNoa3hg+Ho1Ww3sLXiKmU6NybTQaDd5+XsT1imH0e7exfNoa1s/dQmCIPwFV/Wg3qCW3PD+UtbM20OmmNnQZ3g7vQG9+fu0P+o3pVmloZYcbWvPv94vpcXtnfnx1KiYvI8/8+HA5Hfu96xM5slPlo4RH12D32n08OmEsa2dvJK5nzDVZfPxCcb63we3AUOCrs2jbRUqZeZ7nc3OWhEZUpTC3iC2LtzNu+eulmcBT3v+LKe/OILh6IJ+ufZvgsECimtXmwc/u4uv//YSlxMq9H45i4P290RsNfHL/N+xN2E/dFlF8+uC37Nt4kFnfLGDEM4P56olJgHoa6HCSj7ZV31hanUbv382VS47r6czpcJKfWVBhm+T9aWxbtpPw6Br0H9ODrUt3Asrv3qiteio4XkYwOy0Hm9XOrS/cQL/R3fGv6qdkECqgVb8WtOrXgslv/QmAuciC3qQv165Jx4a06hdLXmYBdWIjaDuwJdXrhhLTufzNyU1ZzsvgSyl3Ae66nJeB4oJictPzCY2sVuH4d72lA6GRIXj7exIefWJRNz9TuVnyMvJLU9uT9qaSl1mAxfV3SZEZjUajdHgkRLepT8LcLdRpHsG+jQepXicE3yAfwDXbq6BQu5urky43t8dSbME70JvGHcrLBf/+4d9MGz+L6NZ1WfDzMgqyCrl33Cg63dSG8AY1qN+yTmnbrUt38NKgd/EO9Ob1v58pIz+Sm5GP0+EgMKR8xmur/rFkpWRTpWYwzbqUN+Ihtavyxj/PXqArvr64VI4uCcwTQkjgKynl15U1FEKMAcYAhIdfX9K+2Wm5zP1hEb5BvvQc1Qm9ofzsBlTkzVs3f0TC3C08/MU9DLi3V7k2Qggatjnhg3U6nexeu48eozoTElmNqJjahEUpTZJp42eyfNoaWvWPJbJJLXqNUgJVnYa1xWq28cvr00iYu5nbXx7GqzOeIqpZbXQGLS9OeZyA0ABCagWzZ30idWIjylXrOhmH3eEu3HIFcnhXEnO/X0xIRFV639UFTx8PZnwymx9fnsrzkx+laaeGAJQUlvDr29MpyC5kx8o9RLeuw5GdyaQkphHTuRHBLsHA4+xam0hRfglF+SUc3Hq41OAf2HaYFwe8Q3FeMa/+9TRNOzYss9/vH/zNwp+XUzc2kkEPVF4M3s25c0aDL4RYAFSkVvS8lPKvszxPOyllihCiKjBfCLFbSrmsooaum8HXoGranuXxrwnm/7iEic/9CkDVmkG07F1+gRUgKyWHhLlbANi6bFcZg39kdzI5x/Jo3K5+GeM69/vFjBs9Af+qfoxb+io161cv3eYX7EtBdiFWs42+o7tTpaYSe6tWqwqt+sby06u/l7ZtO7AlOcdyea7vWyRuOsjNzwxh2bQ1JO9L5aHP72HgfeVvPk6nk9/emc7MrxZwx2s30XNUecXDbSt2U5BdQFzPmOum+tCVwrTxM5nz7UI0Gg0GDwPLp63h0HYVvrtl6Y5Sg+/h7UGbgXGsmLaWmM4NCY+ujkarISMpizsbPELn4e148vv7Sz+/NgNbsG/Dfjx9PYk5aaZ+YMvh0qTBPesTyxn8jCNZAKQdPIbNaufsxBTcnA1nNPhSyu7nexIpZYrrd7oQYjoQD1Ro8K9n/Kv4AaA36PAJ9Km0Xc16YYz9YCRbl+6k793dSt8/uieZxzq8SH5WAQ9/PpoB950If0vZnwaoBdrs1JwyBn/YkwOoFlGFn16ZyhvDx/Hc5MdKyyrWjY3ktb+e5tihDDrcqBZhs1JzSNx0EID92w6TvC8VgEPbj/LH+JmUFJTQb0yP0mITuen5THppKk6nk2njZ5Uz+LvX7uWtm8djMBnI/t+ACsP2zhZzkZkN87dStWYwdVtEnrH9/i2HWP33eqLb1KdF96b/+bynw+l0knEkE79qfpjOoC9z6n5zJy4mKTGV3nd2pWb9sIvSPx+XS8432IfMlCyimkdgKbFiKbHS8hQBwNyMPGrUC2Xbit2kJKZxxxs389MrUwFY9vtqxn4wsnSmH96gBi9Mebzc+Zp3bUzfe7pRXGimVb8W5baP/XAka2ZuoGnHhqXZ5W4uDBfdpSOE8AI0UsoC1+uewGsX+7xXI91v70hwzSC8/b0qLAhxHK1Oy42PD+DGxweUeT83PZ/8LLXQduxIRpltve/sisPuoErNYBq1a1Bmm4+/N7nHcslKySErJYfETQdKDX5hXhHhDaqXWYSNaBLOiGcGs2ddItWjQuh9V1dKCs3UaliDFX+uxelwYvI2MuzxgQD4Bftww+P9mTlhHv1Gl58/5KTn41/Vj8LcIoryi89hxBTHDmcw+9sFBIYEUFJYwnfPTsbD28Sna9+mVnTlSWmgNNfzs4vYuXofNeuHkZKYxoFtR2g7MI6Q2hdGaOvvL+by+cMT6XRTG/438X5MnmcXRbJnfSLjxkwAwGFzcO+Hoy5If07l1hduIDAkAKvVRp1mtYnp1JDcjHwCQvzQ68u6FQc/1Je53y/GO8CbTQu3oTfouOX5ocz+diGt+sWWc+tURFBYII99fW+l288Ugebmv3O+YZlDgE+BKsAsIcRmKWUvIUQY8K2Usi9QDZjuWljUAZOllP+eZ7+vSbQ67XnNMhu2rcejE8Zw7HAGve4sO4uuXjeUMe+NrHTflr2bs3bWJgJD/Il2+f5zM/J4fdiHbFu+mye+u6+0+IRWq+WO10ewc/VeFv2ynH8nLiIqpjbblu8iOzWHyKa1yErNIS+rAL8gH7Q6Lfe8cytDH+nLxgVbWTljHW0HtSxdbLZZbKVPDMV5Jed83fN/XMLkN1Vkx3GXkrnIgrnQfMZ9azeuxayv55OfVcCqGev57tlfMBdbSN6TzEOfjz7nvlTE2lkbAFg6dTV3v3UroZFnZ/D9gn0JCvUnKzWXarXPrU7yueDp48Gxw+nM/mYB/tX8eG3G00Q2rbiGgl6vY+P8rdRrEcntrwyjWRdVUrB1f3ek9dXA+UbpTAemV/B+CtDX9foAUHF2kJsLilar/c+aI1ExtRnySF9y0/PQ6ZXvP/1IJluX7QJgx8o9ZaoNabVavPw8qdeyDtrvFlG1VjAarSA7NQdvfy8WT15B52Ft8Tspmmf5tLV88ej3ALy/8CWadVHKh/Xj6xDbvQnpRzKJ/w/hnFVcdQE8fTzoNLwtVcKDCY2sViZipDJa9GrKr2+rm0VhXhF6kx5zsQXdBVxHGPxgXzz9PPH28+LXt/9k6GP9qX1KMlFFhEWF8MGS18hKySkNdzwX7DY7xQUl+Lrcgxvmb+X7FybTtFMjRr56Uxn3UkZSFpYSK8cOZXB4VxKRTWuRcuAYOWm5NIivU7oe1Lh9A+5642bSkzLpflunc+6Tm8uLOx3NDQCbF+/grZs/AsBSYmXEU4Op3TicO98Ywe61iXS/vWOZ9mtmbuDlIe/h6ePBO/NepE6z2uRl5rP6nwR2r02kbotIMpKy0Bl01GmmFDwNJh2t+7fAUmKl6KSZvM1so8PQ1kTE1PpP+v3dbutIWFQIPkHe1G5Ys9wi4Olo2qEhT016kKS9KXS+qS1xvZpxZGdSOd/1+dCqXyxSSl4c+A4AQWEB1H51xFntW6NuKDXqli8OcjoKcgqwltj44tEfWDd7Iw99cQ89R3ZmyZQV7Fm/nz3r99PppjbUjztxQzzulguuHkhs96akHkznyS4vk340i/vGjSI0KoTajWoSGlmN/vf+9zUWN5cXt8F3A4CXnyc6vQ67zY5vgEp7Nxj1lUoqJO9LwelwUphbRO6xPLz9vfD29+LGx9S6wi9vTuOfL+biG+xDbI+mpCYeI6JpLdbMVO6N+i2jaDc4nkPbj/DT63+w7PfV+AR68+2O8QRWoNuTkZxFSmIa9eOiMJ2USTnzq3n8MW4mQx/tV2GEUEUc2Z2MpdhC3dhIhBD0uL3sTLVBJU8GGUlZeHib8Pb3qnD7kqmrWDR5OZ1uaku3WzqU2Va9bghVw4PJSskhqll5Ceuc9Dz++mwOQiMY/FDf0iejc2VPQiKvDv0AkIRGhmAutrDyz7X0HNmZenFRLPhpOS16NiXslDKBpybLJe9LJf2oipbZuWYfXz4+idqNa/LMzw+z8s+11GoUTqdhbcocIzcjj/k/LsMn0Ivut3V0yxtcgbg/ETcANIivw7ilr5KfVUBsjzOvI3Qc1pbs1FxM3iZa9GrK9pW7sZZYada1MRqNhn0b9rNpkdLlyc8sYNOi7dz6wlCq1AgiIymL8OgaLPtjNe+N/IyG7dSs3uhpLM3ClFKW+vgLc4t4ZfB77N1wgBHPDObut24F1JPIvElLCYuqxtqZG4jt3rR0Nux0OtmxcjcmbxN1m5+I1tmTsJ8nu76CpdjKi1MfxzvQiz3r9tN2YBw1G5yIXDqO1WylpNDMtuW7eHPER0Q2DeflP5+k6imF4a0WKxMe+4Gs1By2r9hN2wFxeJwkIVCzfnU+Wf0WJQUl1KhXPtpm1Yx1/PLGNACqhQfT+65u5dpURkFOIcX5JVSrVYU96xLJSFKGuknHhoRFhVC3RRRLpqzk84e/J65XDHe9ectpVUzNRWYimtbikS9Hk7Q3tbS2bEriMdb8k8BPr/2BRqMhvEEYEU1O+Prn/7iUr5/8CUAV4bmAT0luLgxug++mlOjWyk9stdiY8v4MkvemMuD+XmUM5nGq1Ahi9Hu3A7B58Xae7vE6TqeT5yY/SpcR7WjYpj4rZ6wnIqYWx5MpPLw9GL/idQqyCwmo5s9XT0zCYraSl5HPqNeG07p/C6wlFiY88QP7txwmMMSf0e/ehsPhZP+WwwAcdmmoABg9DDRsU5dp42cBEN8nttTgL5myirdv/Ri9QceHS18l2iUEln44gxLXYm5Oeh7v3fEZJYVmEjcf5PnJj5a5xvzsAt6/43M2LthGlxFtsdvs7N1wgOS9KRRkF7Lgp6WERYXSd3Q3DEYDnUe0ZdbXC+lyczuMXuXDL4NCA6CSWqqhkSHo9DpCIqpgtzlITkytsM7rqWQkZ/HTy1NJ3HyI5t2b0OvOLqUL4vF9mtO0YzRtBsYz86t5OOwO1s7ayID7epUuyppLLOSk5VI1PBitVsv2lbt5d+SnVA0P5snvH6D/2J7s23iAgKp+NGxTn30b9wMQUM0XLz/PMn3xcT0ZanVavPzLbnNzZeA2+G7KsS9hP98+/QsARi9jhQb/ZAqyC3E6na7XKiz0hsf706JnDIGhARTlFZNxJJNG7epjMBmoFl6FFdPXkpyYRoseTalRL4wbHu2P1Wxl4gu/YrfaQcKiySto2bs53W/ryLO/PMKOVbvpMqJ9mXN3vLEtc75bhM1iJ/VgGhsWbKVF96ZkJSvZaJvVTk5aXmn7Fj1juOutWyjOK6ZJx2h8Ar0oKTRj8jKSl5lfprJSSmJaqQvKv5ofjds1IKh6IAYPA9+/8CtrZ20EoHbjmjTpEE1s9xgObjtKlRrBSKeEiiVjKiS2exO+SHiHud8v4eP7viEsKoSPVr5OQFV/ti7byaaF22jZuxkNT1njSNt/jMO7kti38QD7Nh6g7z3deHX6U+WO3+3WDhTlFeNf1Y+mndUah6XEwvjRE1g0eQVj3r+dYU8MZPPi7aQdTCftYDr7NhwgpHZV6sZGUjdWfQeadozG5O1B7rFcju5NpWr4ieih7rd3IjA0EC9/Txq2PvdFZjcXH7fBd1OOquHB1GpYgyO7kksXXE9HfN/mPPLlaMxFFrqMUBWQtFotUTG1AVWx6NSFx7CoqqUZvSB5afC7dL+tIxlHMln/72a8/DxpPaBF6TE6DWtTzmcMoDNo6TS8Lcl7Uvnzo9kc2HqEFt2b0u22jljNVrz8PGnR84SLytPHg5ufGQJAzrFcolvXJywqH61Wwwd3f0H9uDrE921OvRZR1G5UkyGP9GXL4h0k700jcfMhdq7ZS70WUaXuJt8gbwKq+ZGcmMa/ExeyccFWNi7YStuBcWU0jE5HbkYeMyfMQ6vXkevSOjp2OIOSAjMmLzNzJy1Bq9Ew8+sF1IuLKuMbrxsXSaO29dm5ei/9xnRn0eQVRMXUou2g+DLnqF4nlPvG3VHmvezUXHKO5dGoXQNWzljHsCcG0qJHDMv/WEOVmkHUjy+/lmEusTLx2clYzVYS5m6mxYb3T3wWel2F8tturhzcBt9NOarUDOa9BS+Rl1lA7UZnDh80ehjPOTt2z/oDrJy+DoDm3ZqwedF2Yrs3RW9UiT5Ws407XhtORJPT6ynpjXq2Lt2JydOIlLJUMTEwxJ9bX7jxtPvmZuSzdOoqAHyCvEk/nMmafzaw4OdlfLnxPTy8TNw//k5y0vP486NZbJi/hYjG4TTr1oikfSkMvK8XHYa1JnlfGq8MfZ+ONyrF0Nb9zy4B6Tgr/lzHpJdVtupjX42hWq1g6rWIIiwqhNSDaWxesJX0o1l0HNaGovySMgu6Jk8To9+7nR6jOvP35//y4ytT0Wg1fLP1wzPecFb8uZZNC7fhF+zDw1+onANriZXOw9vSZmDLcusUAB7eRpp3a8zaWRvPKRrKzZWB2+C7qZDAkIAKlQxBxatPGz+TwuwihjzSt1SE7VyoXicEvVGPdEqCqwfi6eNBvRZRtB8aT3SbetRtHkFUTPmniw3zt7B16U5aD4gjulVdIhqH8+TEB8hIyqJa7SrUaVa73D6bF2+jMLeY+D7Ny+j01G5Uk8e+uZfda/bhX9W31A1k8jSi0ZxQIF0xbQ2/vTOd6Nb1uPGxftSLjeLxr09kgk5+axp2m51Vf63nxd8fp2Wv5nh4V55cVVJoxuFwlBYBqVYrGI1Wg0ajIaxuKH1Hn8ilSNqTVhotU5RbTH5mPtIp8a9ywvW0ccFWXrvxw9InGd8gH0yuNYTiQhX+6uldXpEm01UtLS+zgJCIqmQfy+Xlwe9SlF/CnoT9vDLtyXL7GE1Gnpr0IMn70ohofObJgJsrC7fBd3PObFq4jZ9f+wOAwFB/bn526Dkfo2mnRny58T2kQ1K1VhBj3h9ZasRGPFU+WgYgP6uAN4aPozC3mC1Ld/DR8jcAaNS28tj9bSt28XSPN3A6nTw6YUyZxDQhBH3v7laqR5S8P43ty3fRoFXd0oIuoCJOhBDsWZ+IT5AveVkFHNmZRO3GNfEJ8KbDjW04djgT3yBvmndtclpjf3RPMm8MH09+VgEvTn0cTz9PTN5Gxi19DZOnkaDqAfz58SwCq/kT17cZP7/+O91v70RJYQnxfWN5uM1zePh48Prfz5S6u7av3E1xQQn7Nhxk7IejaNGjKVXDq5C4+RBvjhgPUvL8lMfKuecG3NsTk5eRGvXCqBsbSWZKNnG9mrF58Y7TRvH4Bvrg2+q/hY26uby4Db6bc6Z6nVB8g3woyium1ikunz0J+8lJyyW2e5Mzql6erHPjeRb2w2DSU6NedRI3HaR+yzpMemUKnYe3O61ejqXYWrqgbC62lL4/8+v5zJ+0hIH396bbrSpmvnpUCNUreFppO7gl45a9hlavpV5sJK8PH8fK6evofntHnp70EDXrhfHYV2PPfAHA3oQDHNiqIo42L9nOT6/8gUarof3QeO5842b+nbiY755VC+bvL3yZ5H2p7Fy9l5hODSnOK6YwV/0c2HKo1OC3HdiSnav2UKVmMN1v61Aqwrd7zV6S9qYAsGvNvnIGv0a9MO58/WZARWZ989RPLP19NYMf7MOI54ac1fW4ubpwG3w350xk01p8vv5dzMXmMhIB+7ce4vGOL2E1W7n/ozsZ8nDFBdP/KyYvEy9MeYzd6/bx1i0f43Q4yUnL5dEJlRvb5t0a8+wvj1CQXUjXW1SET0FOIV898SPmIjNZKTl0HtH2tDr+AI1dgnMlBSXsWLEbgB2r9mC3la2fumTKKo7sTqLbLR2oXlGGrEaJ5EmH5OieVOw2O9hUpankxLTSpwOtTovJy8SLvz/B9hW7aNW3BUYvA3sS9mPyMtK8W5PSQ9aNjeTdeS+VO1VMl8bEdm8CkjNWgyrKLWLZ72sA2Lp8Fw+E3HXa9m6uTtwG381/IqQCMa/ivBKsZlU1qzCn8KKct1qtKmi1GoJCA8hIyiLAJcFcGVqtlq43lw3l9PT1oN/Y7uzfdIhmXRqd0diDSkaa+sHfZBzNot/YnuzbsJ+wuqH88NJv3PTkIHwDfdi/5RBv3fIRUkoKc4u4f/ydZY6xa+1e3r3tU6SU3PXWLRw7eIz2Q1uh0WqIaBJOw9b1aNyuPkFhgXgHeJGVkk1YVDVuff7E4vOpuQKno2b9sApvBBURUM2fx74ey9pZG+g5svNZn8PN1YXb4Lu5YDRqV59nfnqIjKQsut/W8cw7nAM2q42V09chNBraDW7Jk5MeZNWMtQghKMguPK3PGZTLYsWfa9FoBPXiovhz/CyklOgMZ1eBa/uK3aWFYFr1j8VmsTHjk9kARMVE0GVEOzx9PfGr4ktueh4BVf3KHUOr06LRanDYHYBk3qSlRLepR9eb25dZW2g/JJ5Jr0zh59f+wK+KL5+tffuCSTWfjl53dCkjkOfm2sNt8N1cMDQaDd1uvbCG/jjLp63l7Vs/BuDFqY9zdHcyMz5VKtuRTWvRfkir0+6/Ytpa3r5N7f/Mzw8T270JG+ZvpXH78nVbKyIsqhphkdVIO5xBXI8YMlOy2bZ8Nx4+JmrUU66b0IiqvL/oZY4dyiCmc/mQxXotonhn7gtkpeQQ3685NepVpyC7kE43tWHXmr2sn7uJ5l2b0KRDQwqziwCV1Hby2oMbN+eD2+C7ufqQUCc2Er1BR0CIP+EVaOCcijgpzFJv1PP8r4+RnpR5VvsChNUJZfzy1ynKLymtPNXrji7ojYYy7q3aDWueVvr4uH48QIeh6iblcDj4+L6v2b/lMP9OXMK3O8Yx+OE+BIT6n/F4u9buxW5z0LhdgwqL2btxczJCyiu3bGxcXJxMSEi43N1wcwVgtdhYNWMdCEH7IfHo9DpSDx7D6GGoNF/gZGxWG6v+SkAIaDuo5RWl5CilyjRe888GmnaM5u25L2IwVlzA/mQ2LdrOM71ex+lw8vK0/53xKcfN9YEQYoOUssKKNOdb8ep9YABgBfYDd0opcyto1xv4GNCiKmG9cz7ndXP9YTDq6Ty8HRsXbOWP8f/QblCrc6rxqjfoK5RmuBIQQvDIF6PpdUcX6sZGnJWxB1Wf2OlQIac5abkXsYdurhXOa4YvhOgJLJJS2oUQ7wJIKZ8+pY0W2Av0AJKA9cDNUsqdZzq+e4bv5mTSj2Zyd/SjmIst9BjZiad+ePByd+myUlJoZs53C7FZbPS5uxu+/1FD3821xUWb4Usp55305xqgIvGSeCDRVeoQIcRvwCDgjAbfjZuT0em1+AR5Yy624FVJEZLrCQ9vE0Mf6Xe5u+HmKuJCOjLvAqZU8H514OhJfycBlTobhRBjgDEA4eGnF85yc30RGBLAmzOf4/DOozTr2vjMO7hx46YMZzT4QogFQEXqWM9LKf9ytXkesAO/VHSICt6r1I8kpfwa+BqUS+dM/XNzfRHRJPyMCppu3LipmDMafCll99NtF0KMAvoD3WTFCwJJwMlxZTWAlHPppBs3bty4OX/OoSZPeVzRN08DA6WUxZU0Ww/UFUJECCEMwAjg7/M5rxs3bty4OXfOy+ADnwE+wHwhxGYhxAQAIUSYEGI2gJTSDjwIzAV2AVOllDvO87xu3Lhx4+YcOd8onfI10NT7KUDfk/6eDcw+n3O5cePGjZvz43xn+G7cuHHj5irBbfDduHHj5jrBbfDduHHj5jrhihZPE0JkAIfPsnkwkHkRu3M+uPv237hS+3al9gvcffuvXEt9qyWlLF+hiCvc4J8LQoiEyvQjLjfuvv03rtS+Xan9Anff/ivXS9/cLh03bty4uU5wG3w3bty4uU64lgz+15e7A6fB3bf/xpXatyu1X+Du23/luujbNePDd+PGjRs3p+damuG7cePGjZvT4Db4bty4cXOdcNUafCHE+0KI3UKIrUKI6UII/0ra9RZC7BFCJAohnrlEfRsmhNghhHAKISoNpxJCHBJCbHMJz12SWo7n0LdLOm5CiEAhxHwhxD7X7work1/KMTvTGAjFJ67tW4UQsRezP+fYt85CiDzXOG0WQrx0ifo1UQiRLoTYXsn2yzlmZ+rb5RqzmkKIxUKIXa7/zUcqaHNhxk1KeVX+AD0Bnev1u8C7FbTRooqrRwIGYAvQ8BL0LRqoDywB4k7T7hAQfInH7Yx9uxzjBrwHPON6/UxFn+elHLOzGQOUQOAcVJGf1sDaS/QZnk3fOgMzL+V3y3XejkAssL2S7ZdlzM6yb5drzEKBWNdrH1QN8IvyXbtqZ/hSynlSSS+Dqqdbo4JmpfV0pZRW4Hg93Yvdt11Syj0X+zz/hbPs2+UYt0HAJNfrScDgi3y+M3E2YzAI+FEq1gD+QojQK6RvlwUp5TIg+zRNLteYnU3fLgtSylQp5UbX6wKUjHz1U5pdkHG7ag3+KdyFuvudSkX1dE8dyMuJBOYJITa4avleKVyOcasmpUwF9Q8AVK2k3aUas7MZg8v1/Trb87YRQmwRQswRQjS6BP06G670/8nLOmZCiNpAc2DtKZsuyLhdyCLmF5xLXU/3QvftLGgnpUwRQlRFFZHZ7ZqFXO6+XZRxO12/zuEwF2XMKuBsxuCifb/OwNmcdyNKU6VQCNEXmAHUvdgdOwsu15idDZd1zIQQ3sA04FEpZf6pmyvY5ZzH7Yo2+PIKrqd7pr6d5TFSXL/ThRDTUY/q5228LkDfLsq4na5fQohjQohQKWWq61E1vZJjXJQxq4CzGYPLVa/5jOc92WBIKWcLIb4QQgRLKS+3QNgVW+P6co6ZEEKPMva/SCn/rKDJBRm3q9alI67yerpCCC8hhM/x16hF6AqjBy4Dl2Pc/gZGuV6PAso9iVziMTubMfgbGOmKoGgN5B13S11kztg3IUSIEEK4Xsej/tezLkHfzsTlGrMzcrnGzHXO74BdUspxlTS7MON2qVekL9QPkIjyaW12/UxwvR8GzD6pXV/Uqvd+lEvjUvRtCOqObAGOAXNP7RsqwmKL62fHldS3yzFuQBCwENjn+h14ucesojEA7gXudb0WwOeu7ds4TUTWZejbg64x2oIKamh7ifr1K5AK2Fzfs7uvoDE7U98u15i1R7lntp5kz/pejHFzSyu4cePGzXXCVevScePGjRs354bb4Ltx48bNdYLb4Ltx48bNdYLb4Ltx48bNdYLb4Ltx48bNdYLb4Ltx48bNdYLb4Ltx48bNdcL/AS74lFaR3umZAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "y_pred = spectral_clustering(X, 8, 2)\n", + "\n", + "fig, ax = plt.subplots()\n", + "sns.scatterplot(X[:, 0], X[:, 1], s=10, c=y_pred)\n", + "ax.set(title='Spectral Clustering');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6d100572", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/ch5/compFeaturesAndModels.png b/ch5/compFeaturesAndModels.png new file mode 100644 index 0000000..9d90902 Binary files /dev/null and b/ch5/compFeaturesAndModels.png differ diff --git a/ch5/data/Actor_01/03-01-01-01-01-01-01.wav b/ch5/data/Actor_01/03-01-01-01-01-01-01.wav new file mode 100644 index 0000000..b2d81e1 Binary files /dev/null and b/ch5/data/Actor_01/03-01-01-01-01-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-01-01-01-02-01.wav b/ch5/data/Actor_01/03-01-01-01-01-02-01.wav new file mode 100644 index 0000000..d9957a9 Binary files /dev/null and b/ch5/data/Actor_01/03-01-01-01-01-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-01-01-02-01-01.wav b/ch5/data/Actor_01/03-01-01-01-02-01-01.wav new file mode 100644 index 0000000..4cf9e6c Binary files /dev/null and b/ch5/data/Actor_01/03-01-01-01-02-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-01-01-02-02-01.wav b/ch5/data/Actor_01/03-01-01-01-02-02-01.wav new file mode 100644 index 0000000..ab85ed0 Binary files /dev/null and b/ch5/data/Actor_01/03-01-01-01-02-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-02-01-01-01-01.wav b/ch5/data/Actor_01/03-01-02-01-01-01-01.wav new file mode 100644 index 0000000..090452a Binary files /dev/null and b/ch5/data/Actor_01/03-01-02-01-01-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-02-01-01-02-01.wav b/ch5/data/Actor_01/03-01-02-01-01-02-01.wav new file mode 100644 index 0000000..d6a31b4 Binary files /dev/null and b/ch5/data/Actor_01/03-01-02-01-01-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-02-01-02-01-01.wav b/ch5/data/Actor_01/03-01-02-01-02-01-01.wav new file mode 100644 index 0000000..8c38e63 Binary files /dev/null and b/ch5/data/Actor_01/03-01-02-01-02-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-02-01-02-02-01.wav b/ch5/data/Actor_01/03-01-02-01-02-02-01.wav new file mode 100644 index 0000000..b807c9a Binary files /dev/null and b/ch5/data/Actor_01/03-01-02-01-02-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-02-02-01-01-01.wav b/ch5/data/Actor_01/03-01-02-02-01-01-01.wav new file mode 100644 index 0000000..3d03599 Binary files /dev/null and b/ch5/data/Actor_01/03-01-02-02-01-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-02-02-01-02-01.wav b/ch5/data/Actor_01/03-01-02-02-01-02-01.wav new file mode 100644 index 0000000..f81bb21 Binary files /dev/null and b/ch5/data/Actor_01/03-01-02-02-01-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-02-02-02-01-01.wav b/ch5/data/Actor_01/03-01-02-02-02-01-01.wav new file mode 100644 index 0000000..d367510 Binary files /dev/null and b/ch5/data/Actor_01/03-01-02-02-02-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-02-02-02-02-01.wav b/ch5/data/Actor_01/03-01-02-02-02-02-01.wav new file mode 100644 index 0000000..96e8130 Binary files /dev/null and b/ch5/data/Actor_01/03-01-02-02-02-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-03-01-01-01-01.wav b/ch5/data/Actor_01/03-01-03-01-01-01-01.wav new file mode 100644 index 0000000..6225702 Binary files /dev/null and b/ch5/data/Actor_01/03-01-03-01-01-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-03-01-01-02-01.wav b/ch5/data/Actor_01/03-01-03-01-01-02-01.wav new file mode 100644 index 0000000..58ba250 Binary files /dev/null and b/ch5/data/Actor_01/03-01-03-01-01-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-03-01-02-01-01.wav b/ch5/data/Actor_01/03-01-03-01-02-01-01.wav new file mode 100644 index 0000000..3d208a2 Binary files /dev/null and b/ch5/data/Actor_01/03-01-03-01-02-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-03-01-02-02-01.wav b/ch5/data/Actor_01/03-01-03-01-02-02-01.wav new file mode 100644 index 0000000..c304b90 Binary files /dev/null and b/ch5/data/Actor_01/03-01-03-01-02-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-03-02-01-01-01.wav b/ch5/data/Actor_01/03-01-03-02-01-01-01.wav new file mode 100644 index 0000000..79b14d6 Binary files /dev/null and b/ch5/data/Actor_01/03-01-03-02-01-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-03-02-01-02-01.wav b/ch5/data/Actor_01/03-01-03-02-01-02-01.wav new file mode 100644 index 0000000..ba94c8f Binary files /dev/null and b/ch5/data/Actor_01/03-01-03-02-01-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-03-02-02-01-01.wav b/ch5/data/Actor_01/03-01-03-02-02-01-01.wav new file mode 100644 index 0000000..169120f Binary files /dev/null and b/ch5/data/Actor_01/03-01-03-02-02-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-03-02-02-02-01.wav b/ch5/data/Actor_01/03-01-03-02-02-02-01.wav new file mode 100644 index 0000000..c042389 Binary files /dev/null and b/ch5/data/Actor_01/03-01-03-02-02-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-04-01-01-01-01.wav b/ch5/data/Actor_01/03-01-04-01-01-01-01.wav new file mode 100644 index 0000000..df26a9f Binary files /dev/null and b/ch5/data/Actor_01/03-01-04-01-01-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-04-01-01-02-01.wav b/ch5/data/Actor_01/03-01-04-01-01-02-01.wav new file mode 100644 index 0000000..4e0d20d Binary files /dev/null and b/ch5/data/Actor_01/03-01-04-01-01-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-04-01-02-01-01.wav b/ch5/data/Actor_01/03-01-04-01-02-01-01.wav new file mode 100644 index 0000000..dbc4f4f Binary files /dev/null and b/ch5/data/Actor_01/03-01-04-01-02-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-04-01-02-02-01.wav b/ch5/data/Actor_01/03-01-04-01-02-02-01.wav new file mode 100644 index 0000000..7a8dc7c Binary files /dev/null and b/ch5/data/Actor_01/03-01-04-01-02-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-04-02-01-01-01.wav b/ch5/data/Actor_01/03-01-04-02-01-01-01.wav new file mode 100644 index 0000000..f685244 Binary files /dev/null and b/ch5/data/Actor_01/03-01-04-02-01-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-04-02-01-02-01.wav b/ch5/data/Actor_01/03-01-04-02-01-02-01.wav new file mode 100644 index 0000000..6f9d1b3 Binary files /dev/null and b/ch5/data/Actor_01/03-01-04-02-01-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-04-02-02-01-01.wav b/ch5/data/Actor_01/03-01-04-02-02-01-01.wav new file mode 100644 index 0000000..6be17fe Binary files /dev/null and b/ch5/data/Actor_01/03-01-04-02-02-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-04-02-02-02-01.wav b/ch5/data/Actor_01/03-01-04-02-02-02-01.wav new file mode 100644 index 0000000..7204bf9 Binary files /dev/null and b/ch5/data/Actor_01/03-01-04-02-02-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-05-01-01-01-01.wav b/ch5/data/Actor_01/03-01-05-01-01-01-01.wav new file mode 100644 index 0000000..f68fdbf Binary files /dev/null and b/ch5/data/Actor_01/03-01-05-01-01-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-05-01-01-02-01.wav b/ch5/data/Actor_01/03-01-05-01-01-02-01.wav new file mode 100644 index 0000000..da69107 Binary files /dev/null and b/ch5/data/Actor_01/03-01-05-01-01-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-05-01-02-01-01.wav b/ch5/data/Actor_01/03-01-05-01-02-01-01.wav new file mode 100644 index 0000000..1ee67e5 Binary files /dev/null and b/ch5/data/Actor_01/03-01-05-01-02-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-05-01-02-02-01.wav b/ch5/data/Actor_01/03-01-05-01-02-02-01.wav new file mode 100644 index 0000000..3baefff Binary files /dev/null and b/ch5/data/Actor_01/03-01-05-01-02-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-05-02-01-01-01.wav b/ch5/data/Actor_01/03-01-05-02-01-01-01.wav new file mode 100644 index 0000000..1203d9a Binary files /dev/null and b/ch5/data/Actor_01/03-01-05-02-01-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-05-02-01-02-01.wav b/ch5/data/Actor_01/03-01-05-02-01-02-01.wav new file mode 100644 index 0000000..a5f9b8f Binary files /dev/null and b/ch5/data/Actor_01/03-01-05-02-01-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-05-02-02-01-01.wav b/ch5/data/Actor_01/03-01-05-02-02-01-01.wav new file mode 100644 index 0000000..75269ec Binary files /dev/null and b/ch5/data/Actor_01/03-01-05-02-02-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-05-02-02-02-01.wav b/ch5/data/Actor_01/03-01-05-02-02-02-01.wav new file mode 100644 index 0000000..8a7986c Binary files /dev/null and b/ch5/data/Actor_01/03-01-05-02-02-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-06-01-01-01-01.wav b/ch5/data/Actor_01/03-01-06-01-01-01-01.wav new file mode 100644 index 0000000..35061c3 Binary files /dev/null and b/ch5/data/Actor_01/03-01-06-01-01-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-06-01-01-02-01.wav b/ch5/data/Actor_01/03-01-06-01-01-02-01.wav new file mode 100644 index 0000000..bf1b4e3 Binary files /dev/null and b/ch5/data/Actor_01/03-01-06-01-01-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-06-01-02-01-01.wav b/ch5/data/Actor_01/03-01-06-01-02-01-01.wav new file mode 100644 index 0000000..1226d56 Binary files /dev/null and b/ch5/data/Actor_01/03-01-06-01-02-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-06-01-02-02-01.wav b/ch5/data/Actor_01/03-01-06-01-02-02-01.wav new file mode 100644 index 0000000..a3ba765 Binary files /dev/null and b/ch5/data/Actor_01/03-01-06-01-02-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-06-02-01-01-01.wav b/ch5/data/Actor_01/03-01-06-02-01-01-01.wav new file mode 100644 index 0000000..c5c67f7 Binary files /dev/null and b/ch5/data/Actor_01/03-01-06-02-01-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-06-02-01-02-01.wav b/ch5/data/Actor_01/03-01-06-02-01-02-01.wav new file mode 100644 index 0000000..50d9b9e Binary files /dev/null and b/ch5/data/Actor_01/03-01-06-02-01-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-06-02-02-01-01.wav b/ch5/data/Actor_01/03-01-06-02-02-01-01.wav new file mode 100644 index 0000000..b276abf Binary files /dev/null and b/ch5/data/Actor_01/03-01-06-02-02-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-06-02-02-02-01.wav b/ch5/data/Actor_01/03-01-06-02-02-02-01.wav new file mode 100644 index 0000000..b13042b Binary files /dev/null and b/ch5/data/Actor_01/03-01-06-02-02-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-07-01-01-01-01.wav b/ch5/data/Actor_01/03-01-07-01-01-01-01.wav new file mode 100644 index 0000000..6f31a9b Binary files /dev/null and b/ch5/data/Actor_01/03-01-07-01-01-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-07-01-01-02-01.wav b/ch5/data/Actor_01/03-01-07-01-01-02-01.wav new file mode 100644 index 0000000..18a6d56 Binary files /dev/null and b/ch5/data/Actor_01/03-01-07-01-01-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-07-01-02-01-01.wav b/ch5/data/Actor_01/03-01-07-01-02-01-01.wav new file mode 100644 index 0000000..9bef99c Binary files /dev/null and b/ch5/data/Actor_01/03-01-07-01-02-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-07-01-02-02-01.wav b/ch5/data/Actor_01/03-01-07-01-02-02-01.wav new file mode 100644 index 0000000..ea9e3cc Binary files /dev/null and b/ch5/data/Actor_01/03-01-07-01-02-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-07-02-01-01-01.wav b/ch5/data/Actor_01/03-01-07-02-01-01-01.wav new file mode 100644 index 0000000..5c3d7b6 Binary files /dev/null and b/ch5/data/Actor_01/03-01-07-02-01-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-07-02-01-02-01.wav b/ch5/data/Actor_01/03-01-07-02-01-02-01.wav new file mode 100644 index 0000000..221ae59 Binary files /dev/null and b/ch5/data/Actor_01/03-01-07-02-01-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-07-02-02-01-01.wav b/ch5/data/Actor_01/03-01-07-02-02-01-01.wav new file mode 100644 index 0000000..3bc8f1f Binary files /dev/null and b/ch5/data/Actor_01/03-01-07-02-02-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-07-02-02-02-01.wav b/ch5/data/Actor_01/03-01-07-02-02-02-01.wav new file mode 100644 index 0000000..d32ff3c Binary files /dev/null and b/ch5/data/Actor_01/03-01-07-02-02-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-08-01-01-01-01.wav b/ch5/data/Actor_01/03-01-08-01-01-01-01.wav new file mode 100644 index 0000000..5698937 Binary files /dev/null and b/ch5/data/Actor_01/03-01-08-01-01-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-08-01-01-02-01.wav b/ch5/data/Actor_01/03-01-08-01-01-02-01.wav new file mode 100644 index 0000000..a06d717 Binary files /dev/null and b/ch5/data/Actor_01/03-01-08-01-01-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-08-01-02-01-01.wav b/ch5/data/Actor_01/03-01-08-01-02-01-01.wav new file mode 100644 index 0000000..d8e4653 Binary files /dev/null and b/ch5/data/Actor_01/03-01-08-01-02-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-08-01-02-02-01.wav b/ch5/data/Actor_01/03-01-08-01-02-02-01.wav new file mode 100644 index 0000000..7b45d11 Binary files /dev/null and b/ch5/data/Actor_01/03-01-08-01-02-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-08-02-01-01-01.wav b/ch5/data/Actor_01/03-01-08-02-01-01-01.wav new file mode 100644 index 0000000..1a931aa Binary files /dev/null and b/ch5/data/Actor_01/03-01-08-02-01-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-08-02-01-02-01.wav b/ch5/data/Actor_01/03-01-08-02-01-02-01.wav new file mode 100644 index 0000000..fda6a5e Binary files /dev/null and b/ch5/data/Actor_01/03-01-08-02-01-02-01.wav differ diff --git a/ch5/data/Actor_01/03-01-08-02-02-01-01.wav b/ch5/data/Actor_01/03-01-08-02-02-01-01.wav new file mode 100644 index 0000000..b2a7d45 Binary files /dev/null and b/ch5/data/Actor_01/03-01-08-02-02-01-01.wav differ diff --git a/ch5/data/Actor_01/03-01-08-02-02-02-01.wav b/ch5/data/Actor_01/03-01-08-02-02-02-01.wav new file mode 100644 index 0000000..6dad135 Binary files /dev/null and b/ch5/data/Actor_01/03-01-08-02-02-02-01.wav differ diff --git a/ch5/data/Actor_02/03-01-01-01-01-01-02.wav b/ch5/data/Actor_02/03-01-01-01-01-01-02.wav new file mode 100644 index 0000000..51070f0 Binary files /dev/null and b/ch5/data/Actor_02/03-01-01-01-01-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-01-01-01-02-02.wav b/ch5/data/Actor_02/03-01-01-01-01-02-02.wav new file mode 100644 index 0000000..5730004 Binary files /dev/null and b/ch5/data/Actor_02/03-01-01-01-01-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-01-01-02-01-02.wav b/ch5/data/Actor_02/03-01-01-01-02-01-02.wav new file mode 100644 index 0000000..5ed9f78 Binary files /dev/null and b/ch5/data/Actor_02/03-01-01-01-02-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-01-01-02-02-02.wav b/ch5/data/Actor_02/03-01-01-01-02-02-02.wav new file mode 100644 index 0000000..f1a85b8 Binary files /dev/null and b/ch5/data/Actor_02/03-01-01-01-02-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-02-01-01-01-02.wav b/ch5/data/Actor_02/03-01-02-01-01-01-02.wav new file mode 100644 index 0000000..954da85 Binary files /dev/null and b/ch5/data/Actor_02/03-01-02-01-01-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-02-01-01-02-02.wav b/ch5/data/Actor_02/03-01-02-01-01-02-02.wav new file mode 100644 index 0000000..b6a8c53 Binary files /dev/null and b/ch5/data/Actor_02/03-01-02-01-01-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-02-01-02-01-02.wav b/ch5/data/Actor_02/03-01-02-01-02-01-02.wav new file mode 100644 index 0000000..1f29dd8 Binary files /dev/null and b/ch5/data/Actor_02/03-01-02-01-02-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-02-01-02-02-02.wav b/ch5/data/Actor_02/03-01-02-01-02-02-02.wav new file mode 100644 index 0000000..1105c39 Binary files /dev/null and b/ch5/data/Actor_02/03-01-02-01-02-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-02-02-01-01-02.wav b/ch5/data/Actor_02/03-01-02-02-01-01-02.wav new file mode 100644 index 0000000..e4b1890 Binary files /dev/null and b/ch5/data/Actor_02/03-01-02-02-01-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-02-02-01-02-02.wav b/ch5/data/Actor_02/03-01-02-02-01-02-02.wav new file mode 100644 index 0000000..d846ea7 Binary files /dev/null and b/ch5/data/Actor_02/03-01-02-02-01-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-02-02-02-01-02.wav b/ch5/data/Actor_02/03-01-02-02-02-01-02.wav new file mode 100644 index 0000000..97bd315 Binary files /dev/null and b/ch5/data/Actor_02/03-01-02-02-02-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-02-02-02-02-02.wav b/ch5/data/Actor_02/03-01-02-02-02-02-02.wav new file mode 100644 index 0000000..bff10e5 Binary files /dev/null and b/ch5/data/Actor_02/03-01-02-02-02-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-03-01-01-01-02.wav b/ch5/data/Actor_02/03-01-03-01-01-01-02.wav new file mode 100644 index 0000000..a55e14a Binary files /dev/null and b/ch5/data/Actor_02/03-01-03-01-01-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-03-01-01-02-02.wav b/ch5/data/Actor_02/03-01-03-01-01-02-02.wav new file mode 100644 index 0000000..343789d Binary files /dev/null and b/ch5/data/Actor_02/03-01-03-01-01-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-03-01-02-01-02.wav b/ch5/data/Actor_02/03-01-03-01-02-01-02.wav new file mode 100644 index 0000000..3c460b2 Binary files /dev/null and b/ch5/data/Actor_02/03-01-03-01-02-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-03-01-02-02-02.wav b/ch5/data/Actor_02/03-01-03-01-02-02-02.wav new file mode 100644 index 0000000..e45abc4 Binary files /dev/null and b/ch5/data/Actor_02/03-01-03-01-02-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-03-02-01-01-02.wav b/ch5/data/Actor_02/03-01-03-02-01-01-02.wav new file mode 100644 index 0000000..66db501 Binary files /dev/null and b/ch5/data/Actor_02/03-01-03-02-01-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-03-02-01-02-02.wav b/ch5/data/Actor_02/03-01-03-02-01-02-02.wav new file mode 100644 index 0000000..c7e77b6 Binary files /dev/null and b/ch5/data/Actor_02/03-01-03-02-01-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-03-02-02-01-02.wav b/ch5/data/Actor_02/03-01-03-02-02-01-02.wav new file mode 100644 index 0000000..dabf9c0 Binary files /dev/null and b/ch5/data/Actor_02/03-01-03-02-02-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-03-02-02-02-02.wav b/ch5/data/Actor_02/03-01-03-02-02-02-02.wav new file mode 100644 index 0000000..8faece1 Binary files /dev/null and b/ch5/data/Actor_02/03-01-03-02-02-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-04-01-01-01-02.wav b/ch5/data/Actor_02/03-01-04-01-01-01-02.wav new file mode 100644 index 0000000..39f9ac0 Binary files /dev/null and b/ch5/data/Actor_02/03-01-04-01-01-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-04-01-01-02-02.wav b/ch5/data/Actor_02/03-01-04-01-01-02-02.wav new file mode 100644 index 0000000..758e4fb Binary files /dev/null and b/ch5/data/Actor_02/03-01-04-01-01-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-04-01-02-01-02.wav b/ch5/data/Actor_02/03-01-04-01-02-01-02.wav new file mode 100644 index 0000000..a4fda2e Binary files /dev/null and b/ch5/data/Actor_02/03-01-04-01-02-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-04-01-02-02-02.wav b/ch5/data/Actor_02/03-01-04-01-02-02-02.wav new file mode 100644 index 0000000..61e7efe Binary files /dev/null and b/ch5/data/Actor_02/03-01-04-01-02-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-04-02-01-01-02.wav b/ch5/data/Actor_02/03-01-04-02-01-01-02.wav new file mode 100644 index 0000000..34155f2 Binary files /dev/null and b/ch5/data/Actor_02/03-01-04-02-01-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-04-02-01-02-02.wav b/ch5/data/Actor_02/03-01-04-02-01-02-02.wav new file mode 100644 index 0000000..c3c37ee Binary files /dev/null and b/ch5/data/Actor_02/03-01-04-02-01-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-04-02-02-01-02.wav b/ch5/data/Actor_02/03-01-04-02-02-01-02.wav new file mode 100644 index 0000000..26c32d7 Binary files /dev/null and b/ch5/data/Actor_02/03-01-04-02-02-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-04-02-02-02-02.wav b/ch5/data/Actor_02/03-01-04-02-02-02-02.wav new file mode 100644 index 0000000..93bf878 Binary files /dev/null and b/ch5/data/Actor_02/03-01-04-02-02-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-05-01-01-01-02.wav b/ch5/data/Actor_02/03-01-05-01-01-01-02.wav new file mode 100644 index 0000000..ba6ac05 Binary files /dev/null and b/ch5/data/Actor_02/03-01-05-01-01-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-05-01-01-02-02.wav b/ch5/data/Actor_02/03-01-05-01-01-02-02.wav new file mode 100644 index 0000000..37375b1 Binary files /dev/null and b/ch5/data/Actor_02/03-01-05-01-01-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-05-01-02-01-02.wav b/ch5/data/Actor_02/03-01-05-01-02-01-02.wav new file mode 100644 index 0000000..6b70fe5 Binary files /dev/null and b/ch5/data/Actor_02/03-01-05-01-02-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-05-01-02-02-02.wav b/ch5/data/Actor_02/03-01-05-01-02-02-02.wav new file mode 100644 index 0000000..6e88809 Binary files /dev/null and b/ch5/data/Actor_02/03-01-05-01-02-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-05-02-01-01-02.wav b/ch5/data/Actor_02/03-01-05-02-01-01-02.wav new file mode 100644 index 0000000..7650569 Binary files /dev/null and b/ch5/data/Actor_02/03-01-05-02-01-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-05-02-01-02-02.wav b/ch5/data/Actor_02/03-01-05-02-01-02-02.wav new file mode 100644 index 0000000..fd476a6 Binary files /dev/null and b/ch5/data/Actor_02/03-01-05-02-01-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-05-02-02-01-02.wav b/ch5/data/Actor_02/03-01-05-02-02-01-02.wav new file mode 100644 index 0000000..454a066 Binary files /dev/null and b/ch5/data/Actor_02/03-01-05-02-02-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-05-02-02-02-02.wav b/ch5/data/Actor_02/03-01-05-02-02-02-02.wav new file mode 100644 index 0000000..812c695 Binary files /dev/null and b/ch5/data/Actor_02/03-01-05-02-02-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-06-01-01-01-02.wav b/ch5/data/Actor_02/03-01-06-01-01-01-02.wav new file mode 100644 index 0000000..948752d Binary files /dev/null and b/ch5/data/Actor_02/03-01-06-01-01-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-06-01-01-02-02.wav b/ch5/data/Actor_02/03-01-06-01-01-02-02.wav new file mode 100644 index 0000000..885bde1 Binary files /dev/null and b/ch5/data/Actor_02/03-01-06-01-01-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-06-01-02-01-02.wav b/ch5/data/Actor_02/03-01-06-01-02-01-02.wav new file mode 100644 index 0000000..640e5ce Binary files /dev/null and b/ch5/data/Actor_02/03-01-06-01-02-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-06-01-02-02-02.wav b/ch5/data/Actor_02/03-01-06-01-02-02-02.wav new file mode 100644 index 0000000..6720762 Binary files /dev/null and b/ch5/data/Actor_02/03-01-06-01-02-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-06-02-01-01-02.wav b/ch5/data/Actor_02/03-01-06-02-01-01-02.wav new file mode 100644 index 0000000..889b5e6 Binary files /dev/null and b/ch5/data/Actor_02/03-01-06-02-01-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-06-02-01-02-02.wav b/ch5/data/Actor_02/03-01-06-02-01-02-02.wav new file mode 100644 index 0000000..68002bc Binary files /dev/null and b/ch5/data/Actor_02/03-01-06-02-01-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-06-02-02-01-02.wav b/ch5/data/Actor_02/03-01-06-02-02-01-02.wav new file mode 100644 index 0000000..975d6d4 Binary files /dev/null and b/ch5/data/Actor_02/03-01-06-02-02-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-06-02-02-02-02.wav b/ch5/data/Actor_02/03-01-06-02-02-02-02.wav new file mode 100644 index 0000000..d46726b Binary files /dev/null and b/ch5/data/Actor_02/03-01-06-02-02-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-07-01-01-01-02.wav b/ch5/data/Actor_02/03-01-07-01-01-01-02.wav new file mode 100644 index 0000000..516fca1 Binary files /dev/null and b/ch5/data/Actor_02/03-01-07-01-01-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-07-01-01-02-02.wav b/ch5/data/Actor_02/03-01-07-01-01-02-02.wav new file mode 100644 index 0000000..63b051d Binary files /dev/null and b/ch5/data/Actor_02/03-01-07-01-01-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-07-01-02-01-02.wav b/ch5/data/Actor_02/03-01-07-01-02-01-02.wav new file mode 100644 index 0000000..2c776c9 Binary files /dev/null and b/ch5/data/Actor_02/03-01-07-01-02-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-07-01-02-02-02.wav b/ch5/data/Actor_02/03-01-07-01-02-02-02.wav new file mode 100644 index 0000000..496e9fa Binary files /dev/null and b/ch5/data/Actor_02/03-01-07-01-02-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-07-02-01-01-02.wav b/ch5/data/Actor_02/03-01-07-02-01-01-02.wav new file mode 100644 index 0000000..874d862 Binary files /dev/null and b/ch5/data/Actor_02/03-01-07-02-01-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-07-02-01-02-02.wav b/ch5/data/Actor_02/03-01-07-02-01-02-02.wav new file mode 100644 index 0000000..d82fa56 Binary files /dev/null and b/ch5/data/Actor_02/03-01-07-02-01-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-07-02-02-01-02.wav b/ch5/data/Actor_02/03-01-07-02-02-01-02.wav new file mode 100644 index 0000000..62f6ce8 Binary files /dev/null and b/ch5/data/Actor_02/03-01-07-02-02-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-07-02-02-02-02.wav b/ch5/data/Actor_02/03-01-07-02-02-02-02.wav new file mode 100644 index 0000000..9a592b5 Binary files /dev/null and b/ch5/data/Actor_02/03-01-07-02-02-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-08-01-01-01-02.wav b/ch5/data/Actor_02/03-01-08-01-01-01-02.wav new file mode 100644 index 0000000..2174846 Binary files /dev/null and b/ch5/data/Actor_02/03-01-08-01-01-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-08-01-01-02-02.wav b/ch5/data/Actor_02/03-01-08-01-01-02-02.wav new file mode 100644 index 0000000..36c94bf Binary files /dev/null and b/ch5/data/Actor_02/03-01-08-01-01-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-08-01-02-01-02.wav b/ch5/data/Actor_02/03-01-08-01-02-01-02.wav new file mode 100644 index 0000000..d0aed5a Binary files /dev/null and b/ch5/data/Actor_02/03-01-08-01-02-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-08-01-02-02-02.wav b/ch5/data/Actor_02/03-01-08-01-02-02-02.wav new file mode 100644 index 0000000..9484d64 Binary files /dev/null and b/ch5/data/Actor_02/03-01-08-01-02-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-08-02-01-01-02.wav b/ch5/data/Actor_02/03-01-08-02-01-01-02.wav new file mode 100644 index 0000000..0b5db86 Binary files /dev/null and b/ch5/data/Actor_02/03-01-08-02-01-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-08-02-01-02-02.wav b/ch5/data/Actor_02/03-01-08-02-01-02-02.wav new file mode 100644 index 0000000..7dc0f09 Binary files /dev/null and b/ch5/data/Actor_02/03-01-08-02-01-02-02.wav differ diff --git a/ch5/data/Actor_02/03-01-08-02-02-01-02.wav b/ch5/data/Actor_02/03-01-08-02-02-01-02.wav new file mode 100644 index 0000000..5b51685 Binary files /dev/null and b/ch5/data/Actor_02/03-01-08-02-02-01-02.wav differ diff --git a/ch5/data/Actor_02/03-01-08-02-02-02-02.wav b/ch5/data/Actor_02/03-01-08-02-02-02-02.wav new file mode 100644 index 0000000..d5b857d Binary files /dev/null and b/ch5/data/Actor_02/03-01-08-02-02-02-02.wav differ diff --git a/ch5/data/Actor_03/03-01-01-01-01-01-03.wav b/ch5/data/Actor_03/03-01-01-01-01-01-03.wav new file mode 100644 index 0000000..b082146 Binary files /dev/null and b/ch5/data/Actor_03/03-01-01-01-01-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-01-01-01-02-03.wav b/ch5/data/Actor_03/03-01-01-01-01-02-03.wav new file mode 100644 index 0000000..c012d60 Binary files /dev/null and b/ch5/data/Actor_03/03-01-01-01-01-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-01-01-02-01-03.wav b/ch5/data/Actor_03/03-01-01-01-02-01-03.wav new file mode 100644 index 0000000..803064d Binary files /dev/null and b/ch5/data/Actor_03/03-01-01-01-02-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-01-01-02-02-03.wav b/ch5/data/Actor_03/03-01-01-01-02-02-03.wav new file mode 100644 index 0000000..fefa22d Binary files /dev/null and b/ch5/data/Actor_03/03-01-01-01-02-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-02-01-01-01-03.wav b/ch5/data/Actor_03/03-01-02-01-01-01-03.wav new file mode 100644 index 0000000..5d66644 Binary files /dev/null and b/ch5/data/Actor_03/03-01-02-01-01-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-02-01-01-02-03.wav b/ch5/data/Actor_03/03-01-02-01-01-02-03.wav new file mode 100644 index 0000000..7401584 Binary files /dev/null and b/ch5/data/Actor_03/03-01-02-01-01-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-02-01-02-01-03.wav b/ch5/data/Actor_03/03-01-02-01-02-01-03.wav new file mode 100644 index 0000000..1b4d571 Binary files /dev/null and b/ch5/data/Actor_03/03-01-02-01-02-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-02-01-02-02-03.wav b/ch5/data/Actor_03/03-01-02-01-02-02-03.wav new file mode 100644 index 0000000..a309718 Binary files /dev/null and b/ch5/data/Actor_03/03-01-02-01-02-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-02-02-01-01-03.wav b/ch5/data/Actor_03/03-01-02-02-01-01-03.wav new file mode 100644 index 0000000..747b382 Binary files /dev/null and b/ch5/data/Actor_03/03-01-02-02-01-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-02-02-01-02-03.wav b/ch5/data/Actor_03/03-01-02-02-01-02-03.wav new file mode 100644 index 0000000..dd4b6a1 Binary files /dev/null and b/ch5/data/Actor_03/03-01-02-02-01-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-02-02-02-01-03.wav b/ch5/data/Actor_03/03-01-02-02-02-01-03.wav new file mode 100644 index 0000000..a6e607d Binary files /dev/null and b/ch5/data/Actor_03/03-01-02-02-02-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-02-02-02-02-03.wav b/ch5/data/Actor_03/03-01-02-02-02-02-03.wav new file mode 100644 index 0000000..af57d32 Binary files /dev/null and b/ch5/data/Actor_03/03-01-02-02-02-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-03-01-01-01-03.wav b/ch5/data/Actor_03/03-01-03-01-01-01-03.wav new file mode 100644 index 0000000..c40fd50 Binary files /dev/null and b/ch5/data/Actor_03/03-01-03-01-01-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-03-01-01-02-03.wav b/ch5/data/Actor_03/03-01-03-01-01-02-03.wav new file mode 100644 index 0000000..846063c Binary files /dev/null and b/ch5/data/Actor_03/03-01-03-01-01-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-03-01-02-01-03.wav b/ch5/data/Actor_03/03-01-03-01-02-01-03.wav new file mode 100644 index 0000000..ab35860 Binary files /dev/null and b/ch5/data/Actor_03/03-01-03-01-02-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-03-01-02-02-03.wav b/ch5/data/Actor_03/03-01-03-01-02-02-03.wav new file mode 100644 index 0000000..88f23bd Binary files /dev/null and b/ch5/data/Actor_03/03-01-03-01-02-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-03-02-01-01-03.wav b/ch5/data/Actor_03/03-01-03-02-01-01-03.wav new file mode 100644 index 0000000..bd64119 Binary files /dev/null and b/ch5/data/Actor_03/03-01-03-02-01-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-03-02-01-02-03.wav b/ch5/data/Actor_03/03-01-03-02-01-02-03.wav new file mode 100644 index 0000000..cba7c47 Binary files /dev/null and b/ch5/data/Actor_03/03-01-03-02-01-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-03-02-02-01-03.wav b/ch5/data/Actor_03/03-01-03-02-02-01-03.wav new file mode 100644 index 0000000..d9055be Binary files /dev/null and b/ch5/data/Actor_03/03-01-03-02-02-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-03-02-02-02-03.wav b/ch5/data/Actor_03/03-01-03-02-02-02-03.wav new file mode 100644 index 0000000..ee180f0 Binary files /dev/null and b/ch5/data/Actor_03/03-01-03-02-02-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-04-01-01-01-03.wav b/ch5/data/Actor_03/03-01-04-01-01-01-03.wav new file mode 100644 index 0000000..080d1f1 Binary files /dev/null and b/ch5/data/Actor_03/03-01-04-01-01-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-04-01-01-02-03.wav b/ch5/data/Actor_03/03-01-04-01-01-02-03.wav new file mode 100644 index 0000000..622ed07 Binary files /dev/null and b/ch5/data/Actor_03/03-01-04-01-01-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-04-01-02-01-03.wav b/ch5/data/Actor_03/03-01-04-01-02-01-03.wav new file mode 100644 index 0000000..29e3ab5 Binary files /dev/null and b/ch5/data/Actor_03/03-01-04-01-02-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-04-01-02-02-03.wav b/ch5/data/Actor_03/03-01-04-01-02-02-03.wav new file mode 100644 index 0000000..eb2fe0b Binary files /dev/null and b/ch5/data/Actor_03/03-01-04-01-02-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-04-02-01-01-03.wav b/ch5/data/Actor_03/03-01-04-02-01-01-03.wav new file mode 100644 index 0000000..151e232 Binary files /dev/null and b/ch5/data/Actor_03/03-01-04-02-01-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-04-02-01-02-03.wav b/ch5/data/Actor_03/03-01-04-02-01-02-03.wav new file mode 100644 index 0000000..f22d371 Binary files /dev/null and b/ch5/data/Actor_03/03-01-04-02-01-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-04-02-02-01-03.wav b/ch5/data/Actor_03/03-01-04-02-02-01-03.wav new file mode 100644 index 0000000..bfddc9b Binary files /dev/null and b/ch5/data/Actor_03/03-01-04-02-02-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-04-02-02-02-03.wav b/ch5/data/Actor_03/03-01-04-02-02-02-03.wav new file mode 100644 index 0000000..e4394bb Binary files /dev/null and b/ch5/data/Actor_03/03-01-04-02-02-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-05-01-01-01-03.wav b/ch5/data/Actor_03/03-01-05-01-01-01-03.wav new file mode 100644 index 0000000..b36ae6f Binary files /dev/null and b/ch5/data/Actor_03/03-01-05-01-01-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-05-01-01-02-03.wav b/ch5/data/Actor_03/03-01-05-01-01-02-03.wav new file mode 100644 index 0000000..49ee8ee Binary files /dev/null and b/ch5/data/Actor_03/03-01-05-01-01-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-05-01-02-01-03.wav b/ch5/data/Actor_03/03-01-05-01-02-01-03.wav new file mode 100644 index 0000000..a7dbdd0 Binary files /dev/null and b/ch5/data/Actor_03/03-01-05-01-02-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-05-01-02-02-03.wav b/ch5/data/Actor_03/03-01-05-01-02-02-03.wav new file mode 100644 index 0000000..4688d37 Binary files /dev/null and b/ch5/data/Actor_03/03-01-05-01-02-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-05-02-01-01-03.wav b/ch5/data/Actor_03/03-01-05-02-01-01-03.wav new file mode 100644 index 0000000..9ee2a81 Binary files /dev/null and b/ch5/data/Actor_03/03-01-05-02-01-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-05-02-01-02-03.wav b/ch5/data/Actor_03/03-01-05-02-01-02-03.wav new file mode 100644 index 0000000..63ab2ee Binary files /dev/null and b/ch5/data/Actor_03/03-01-05-02-01-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-05-02-02-01-03.wav b/ch5/data/Actor_03/03-01-05-02-02-01-03.wav new file mode 100644 index 0000000..4b3c11f Binary files /dev/null and b/ch5/data/Actor_03/03-01-05-02-02-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-05-02-02-02-03.wav b/ch5/data/Actor_03/03-01-05-02-02-02-03.wav new file mode 100644 index 0000000..cfcad3f Binary files /dev/null and b/ch5/data/Actor_03/03-01-05-02-02-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-06-01-01-01-03.wav b/ch5/data/Actor_03/03-01-06-01-01-01-03.wav new file mode 100644 index 0000000..4bcd133 Binary files /dev/null and b/ch5/data/Actor_03/03-01-06-01-01-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-06-01-01-02-03.wav b/ch5/data/Actor_03/03-01-06-01-01-02-03.wav new file mode 100644 index 0000000..e7d48d7 Binary files /dev/null and b/ch5/data/Actor_03/03-01-06-01-01-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-06-01-02-01-03.wav b/ch5/data/Actor_03/03-01-06-01-02-01-03.wav new file mode 100644 index 0000000..0e05896 Binary files /dev/null and b/ch5/data/Actor_03/03-01-06-01-02-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-06-01-02-02-03.wav b/ch5/data/Actor_03/03-01-06-01-02-02-03.wav new file mode 100644 index 0000000..cea0d07 Binary files /dev/null and b/ch5/data/Actor_03/03-01-06-01-02-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-06-02-01-01-03.wav b/ch5/data/Actor_03/03-01-06-02-01-01-03.wav new file mode 100644 index 0000000..b15919c Binary files /dev/null and b/ch5/data/Actor_03/03-01-06-02-01-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-06-02-01-02-03.wav b/ch5/data/Actor_03/03-01-06-02-01-02-03.wav new file mode 100644 index 0000000..ba79211 Binary files /dev/null and b/ch5/data/Actor_03/03-01-06-02-01-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-06-02-02-01-03.wav b/ch5/data/Actor_03/03-01-06-02-02-01-03.wav new file mode 100644 index 0000000..ff60a3f Binary files /dev/null and b/ch5/data/Actor_03/03-01-06-02-02-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-06-02-02-02-03.wav b/ch5/data/Actor_03/03-01-06-02-02-02-03.wav new file mode 100644 index 0000000..a9bd877 Binary files /dev/null and b/ch5/data/Actor_03/03-01-06-02-02-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-07-01-01-01-03.wav b/ch5/data/Actor_03/03-01-07-01-01-01-03.wav new file mode 100644 index 0000000..0a5ed5e Binary files /dev/null and b/ch5/data/Actor_03/03-01-07-01-01-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-07-01-01-02-03.wav b/ch5/data/Actor_03/03-01-07-01-01-02-03.wav new file mode 100644 index 0000000..b8f5ee2 Binary files /dev/null and b/ch5/data/Actor_03/03-01-07-01-01-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-07-01-02-01-03.wav b/ch5/data/Actor_03/03-01-07-01-02-01-03.wav new file mode 100644 index 0000000..e445675 Binary files /dev/null and b/ch5/data/Actor_03/03-01-07-01-02-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-07-01-02-02-03.wav b/ch5/data/Actor_03/03-01-07-01-02-02-03.wav new file mode 100644 index 0000000..e5be049 Binary files /dev/null and b/ch5/data/Actor_03/03-01-07-01-02-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-07-02-01-01-03.wav b/ch5/data/Actor_03/03-01-07-02-01-01-03.wav new file mode 100644 index 0000000..281a8ba Binary files /dev/null and b/ch5/data/Actor_03/03-01-07-02-01-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-07-02-01-02-03.wav b/ch5/data/Actor_03/03-01-07-02-01-02-03.wav new file mode 100644 index 0000000..7a37f34 Binary files /dev/null and b/ch5/data/Actor_03/03-01-07-02-01-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-07-02-02-01-03.wav b/ch5/data/Actor_03/03-01-07-02-02-01-03.wav new file mode 100644 index 0000000..1b75eed Binary files /dev/null and b/ch5/data/Actor_03/03-01-07-02-02-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-07-02-02-02-03.wav b/ch5/data/Actor_03/03-01-07-02-02-02-03.wav new file mode 100644 index 0000000..93969a8 Binary files /dev/null and b/ch5/data/Actor_03/03-01-07-02-02-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-08-01-01-01-03.wav b/ch5/data/Actor_03/03-01-08-01-01-01-03.wav new file mode 100644 index 0000000..fe52c04 Binary files /dev/null and b/ch5/data/Actor_03/03-01-08-01-01-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-08-01-01-02-03.wav b/ch5/data/Actor_03/03-01-08-01-01-02-03.wav new file mode 100644 index 0000000..8efae16 Binary files /dev/null and b/ch5/data/Actor_03/03-01-08-01-01-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-08-01-02-01-03.wav b/ch5/data/Actor_03/03-01-08-01-02-01-03.wav new file mode 100644 index 0000000..f6cd88f Binary files /dev/null and b/ch5/data/Actor_03/03-01-08-01-02-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-08-01-02-02-03.wav b/ch5/data/Actor_03/03-01-08-01-02-02-03.wav new file mode 100644 index 0000000..372c713 Binary files /dev/null and b/ch5/data/Actor_03/03-01-08-01-02-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-08-02-01-01-03.wav b/ch5/data/Actor_03/03-01-08-02-01-01-03.wav new file mode 100644 index 0000000..992f858 Binary files /dev/null and b/ch5/data/Actor_03/03-01-08-02-01-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-08-02-01-02-03.wav b/ch5/data/Actor_03/03-01-08-02-01-02-03.wav new file mode 100644 index 0000000..077db34 Binary files /dev/null and b/ch5/data/Actor_03/03-01-08-02-01-02-03.wav differ diff --git a/ch5/data/Actor_03/03-01-08-02-02-01-03.wav b/ch5/data/Actor_03/03-01-08-02-02-01-03.wav new file mode 100644 index 0000000..0bf29b7 Binary files /dev/null and b/ch5/data/Actor_03/03-01-08-02-02-01-03.wav differ diff --git a/ch5/data/Actor_03/03-01-08-02-02-02-03.wav b/ch5/data/Actor_03/03-01-08-02-02-02-03.wav new file mode 100644 index 0000000..f608536 Binary files /dev/null and b/ch5/data/Actor_03/03-01-08-02-02-02-03.wav differ diff --git a/ch5/data/Actor_04/03-01-01-01-01-01-04.wav b/ch5/data/Actor_04/03-01-01-01-01-01-04.wav new file mode 100644 index 0000000..a11cfe5 Binary files /dev/null and b/ch5/data/Actor_04/03-01-01-01-01-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-01-01-01-02-04.wav b/ch5/data/Actor_04/03-01-01-01-01-02-04.wav new file mode 100644 index 0000000..0433d36 Binary files /dev/null and b/ch5/data/Actor_04/03-01-01-01-01-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-01-01-02-01-04.wav b/ch5/data/Actor_04/03-01-01-01-02-01-04.wav new file mode 100644 index 0000000..f587bce Binary files /dev/null and b/ch5/data/Actor_04/03-01-01-01-02-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-01-01-02-02-04.wav b/ch5/data/Actor_04/03-01-01-01-02-02-04.wav new file mode 100644 index 0000000..7e714f4 Binary files /dev/null and b/ch5/data/Actor_04/03-01-01-01-02-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-02-01-01-01-04.wav b/ch5/data/Actor_04/03-01-02-01-01-01-04.wav new file mode 100644 index 0000000..cba77ca Binary files /dev/null and b/ch5/data/Actor_04/03-01-02-01-01-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-02-01-01-02-04.wav b/ch5/data/Actor_04/03-01-02-01-01-02-04.wav new file mode 100644 index 0000000..9379369 Binary files /dev/null and b/ch5/data/Actor_04/03-01-02-01-01-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-02-01-02-01-04.wav b/ch5/data/Actor_04/03-01-02-01-02-01-04.wav new file mode 100644 index 0000000..825b4fe Binary files /dev/null and b/ch5/data/Actor_04/03-01-02-01-02-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-02-01-02-02-04.wav b/ch5/data/Actor_04/03-01-02-01-02-02-04.wav new file mode 100644 index 0000000..7c8bc27 Binary files /dev/null and b/ch5/data/Actor_04/03-01-02-01-02-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-02-02-01-01-04.wav b/ch5/data/Actor_04/03-01-02-02-01-01-04.wav new file mode 100644 index 0000000..4031d8d Binary files /dev/null and b/ch5/data/Actor_04/03-01-02-02-01-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-02-02-01-02-04.wav b/ch5/data/Actor_04/03-01-02-02-01-02-04.wav new file mode 100644 index 0000000..2d1fbd7 Binary files /dev/null and b/ch5/data/Actor_04/03-01-02-02-01-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-02-02-02-01-04.wav b/ch5/data/Actor_04/03-01-02-02-02-01-04.wav new file mode 100644 index 0000000..ab6682b Binary files /dev/null and b/ch5/data/Actor_04/03-01-02-02-02-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-02-02-02-02-04.wav b/ch5/data/Actor_04/03-01-02-02-02-02-04.wav new file mode 100644 index 0000000..ff07231 Binary files /dev/null and b/ch5/data/Actor_04/03-01-02-02-02-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-03-01-01-01-04.wav b/ch5/data/Actor_04/03-01-03-01-01-01-04.wav new file mode 100644 index 0000000..a1d9c87 Binary files /dev/null and b/ch5/data/Actor_04/03-01-03-01-01-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-03-01-01-02-04.wav b/ch5/data/Actor_04/03-01-03-01-01-02-04.wav new file mode 100644 index 0000000..49328ff Binary files /dev/null and b/ch5/data/Actor_04/03-01-03-01-01-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-03-01-02-01-04.wav b/ch5/data/Actor_04/03-01-03-01-02-01-04.wav new file mode 100644 index 0000000..d5468d9 Binary files /dev/null and b/ch5/data/Actor_04/03-01-03-01-02-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-03-01-02-02-04.wav b/ch5/data/Actor_04/03-01-03-01-02-02-04.wav new file mode 100644 index 0000000..90a35bd Binary files /dev/null and b/ch5/data/Actor_04/03-01-03-01-02-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-03-02-01-01-04.wav b/ch5/data/Actor_04/03-01-03-02-01-01-04.wav new file mode 100644 index 0000000..2f89e8d Binary files /dev/null and b/ch5/data/Actor_04/03-01-03-02-01-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-03-02-01-02-04.wav b/ch5/data/Actor_04/03-01-03-02-01-02-04.wav new file mode 100644 index 0000000..12a2976 Binary files /dev/null and b/ch5/data/Actor_04/03-01-03-02-01-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-03-02-02-01-04.wav b/ch5/data/Actor_04/03-01-03-02-02-01-04.wav new file mode 100644 index 0000000..8f9901b Binary files /dev/null and b/ch5/data/Actor_04/03-01-03-02-02-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-03-02-02-02-04.wav b/ch5/data/Actor_04/03-01-03-02-02-02-04.wav new file mode 100644 index 0000000..4d4f94a Binary files /dev/null and b/ch5/data/Actor_04/03-01-03-02-02-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-04-01-01-01-04.wav b/ch5/data/Actor_04/03-01-04-01-01-01-04.wav new file mode 100644 index 0000000..5939ff9 Binary files /dev/null and b/ch5/data/Actor_04/03-01-04-01-01-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-04-01-01-02-04.wav b/ch5/data/Actor_04/03-01-04-01-01-02-04.wav new file mode 100644 index 0000000..137f3ae Binary files /dev/null and b/ch5/data/Actor_04/03-01-04-01-01-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-04-01-02-01-04.wav b/ch5/data/Actor_04/03-01-04-01-02-01-04.wav new file mode 100644 index 0000000..3815618 Binary files /dev/null and b/ch5/data/Actor_04/03-01-04-01-02-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-04-01-02-02-04.wav b/ch5/data/Actor_04/03-01-04-01-02-02-04.wav new file mode 100644 index 0000000..f0b30db Binary files /dev/null and b/ch5/data/Actor_04/03-01-04-01-02-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-04-02-01-01-04.wav b/ch5/data/Actor_04/03-01-04-02-01-01-04.wav new file mode 100644 index 0000000..249333e Binary files /dev/null and b/ch5/data/Actor_04/03-01-04-02-01-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-04-02-01-02-04.wav b/ch5/data/Actor_04/03-01-04-02-01-02-04.wav new file mode 100644 index 0000000..50e6deb Binary files /dev/null and b/ch5/data/Actor_04/03-01-04-02-01-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-04-02-02-01-04.wav b/ch5/data/Actor_04/03-01-04-02-02-01-04.wav new file mode 100644 index 0000000..e1b2ade Binary files /dev/null and b/ch5/data/Actor_04/03-01-04-02-02-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-04-02-02-02-04.wav b/ch5/data/Actor_04/03-01-04-02-02-02-04.wav new file mode 100644 index 0000000..0732c00 Binary files /dev/null and b/ch5/data/Actor_04/03-01-04-02-02-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-05-01-01-01-04.wav b/ch5/data/Actor_04/03-01-05-01-01-01-04.wav new file mode 100644 index 0000000..055fd16 Binary files /dev/null and b/ch5/data/Actor_04/03-01-05-01-01-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-05-01-01-02-04.wav b/ch5/data/Actor_04/03-01-05-01-01-02-04.wav new file mode 100644 index 0000000..030aa05 Binary files /dev/null and b/ch5/data/Actor_04/03-01-05-01-01-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-05-01-02-01-04.wav b/ch5/data/Actor_04/03-01-05-01-02-01-04.wav new file mode 100644 index 0000000..32b01ef Binary files /dev/null and b/ch5/data/Actor_04/03-01-05-01-02-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-05-01-02-02-04.wav b/ch5/data/Actor_04/03-01-05-01-02-02-04.wav new file mode 100644 index 0000000..ec2ff22 Binary files /dev/null and b/ch5/data/Actor_04/03-01-05-01-02-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-05-02-01-01-04.wav b/ch5/data/Actor_04/03-01-05-02-01-01-04.wav new file mode 100644 index 0000000..d4b920a Binary files /dev/null and b/ch5/data/Actor_04/03-01-05-02-01-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-05-02-01-02-04.wav b/ch5/data/Actor_04/03-01-05-02-01-02-04.wav new file mode 100644 index 0000000..1ef7941 Binary files /dev/null and b/ch5/data/Actor_04/03-01-05-02-01-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-05-02-02-01-04.wav b/ch5/data/Actor_04/03-01-05-02-02-01-04.wav new file mode 100644 index 0000000..6114a0b Binary files /dev/null and b/ch5/data/Actor_04/03-01-05-02-02-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-05-02-02-02-04.wav b/ch5/data/Actor_04/03-01-05-02-02-02-04.wav new file mode 100644 index 0000000..7f509b3 Binary files /dev/null and b/ch5/data/Actor_04/03-01-05-02-02-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-06-01-01-01-04.wav b/ch5/data/Actor_04/03-01-06-01-01-01-04.wav new file mode 100644 index 0000000..209b9da Binary files /dev/null and b/ch5/data/Actor_04/03-01-06-01-01-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-06-01-01-02-04.wav b/ch5/data/Actor_04/03-01-06-01-01-02-04.wav new file mode 100644 index 0000000..0c642e3 Binary files /dev/null and b/ch5/data/Actor_04/03-01-06-01-01-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-06-01-02-01-04.wav b/ch5/data/Actor_04/03-01-06-01-02-01-04.wav new file mode 100644 index 0000000..eb2b1ae Binary files /dev/null and b/ch5/data/Actor_04/03-01-06-01-02-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-06-01-02-02-04.wav b/ch5/data/Actor_04/03-01-06-01-02-02-04.wav new file mode 100644 index 0000000..6cf357b Binary files /dev/null and b/ch5/data/Actor_04/03-01-06-01-02-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-06-02-01-01-04.wav b/ch5/data/Actor_04/03-01-06-02-01-01-04.wav new file mode 100644 index 0000000..87fc1be Binary files /dev/null and b/ch5/data/Actor_04/03-01-06-02-01-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-06-02-01-02-04.wav b/ch5/data/Actor_04/03-01-06-02-01-02-04.wav new file mode 100644 index 0000000..f8da2bc Binary files /dev/null and b/ch5/data/Actor_04/03-01-06-02-01-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-06-02-02-01-04.wav b/ch5/data/Actor_04/03-01-06-02-02-01-04.wav new file mode 100644 index 0000000..045e8f2 Binary files /dev/null and b/ch5/data/Actor_04/03-01-06-02-02-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-06-02-02-02-04.wav b/ch5/data/Actor_04/03-01-06-02-02-02-04.wav new file mode 100644 index 0000000..5a15dcf Binary files /dev/null and b/ch5/data/Actor_04/03-01-06-02-02-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-07-01-01-01-04.wav b/ch5/data/Actor_04/03-01-07-01-01-01-04.wav new file mode 100644 index 0000000..f15f5df Binary files /dev/null and b/ch5/data/Actor_04/03-01-07-01-01-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-07-01-01-02-04.wav b/ch5/data/Actor_04/03-01-07-01-01-02-04.wav new file mode 100644 index 0000000..de191f3 Binary files /dev/null and b/ch5/data/Actor_04/03-01-07-01-01-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-07-01-02-01-04.wav b/ch5/data/Actor_04/03-01-07-01-02-01-04.wav new file mode 100644 index 0000000..7abac0b Binary files /dev/null and b/ch5/data/Actor_04/03-01-07-01-02-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-07-01-02-02-04.wav b/ch5/data/Actor_04/03-01-07-01-02-02-04.wav new file mode 100644 index 0000000..e286484 Binary files /dev/null and b/ch5/data/Actor_04/03-01-07-01-02-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-07-02-01-01-04.wav b/ch5/data/Actor_04/03-01-07-02-01-01-04.wav new file mode 100644 index 0000000..32df0a1 Binary files /dev/null and b/ch5/data/Actor_04/03-01-07-02-01-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-07-02-01-02-04.wav b/ch5/data/Actor_04/03-01-07-02-01-02-04.wav new file mode 100644 index 0000000..9bdf0f4 Binary files /dev/null and b/ch5/data/Actor_04/03-01-07-02-01-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-07-02-02-01-04.wav b/ch5/data/Actor_04/03-01-07-02-02-01-04.wav new file mode 100644 index 0000000..ef92bca Binary files /dev/null and b/ch5/data/Actor_04/03-01-07-02-02-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-07-02-02-02-04.wav b/ch5/data/Actor_04/03-01-07-02-02-02-04.wav new file mode 100644 index 0000000..b8b965a Binary files /dev/null and b/ch5/data/Actor_04/03-01-07-02-02-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-08-01-01-01-04.wav b/ch5/data/Actor_04/03-01-08-01-01-01-04.wav new file mode 100644 index 0000000..1cacf27 Binary files /dev/null and b/ch5/data/Actor_04/03-01-08-01-01-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-08-01-01-02-04.wav b/ch5/data/Actor_04/03-01-08-01-01-02-04.wav new file mode 100644 index 0000000..9495ae8 Binary files /dev/null and b/ch5/data/Actor_04/03-01-08-01-01-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-08-01-02-01-04.wav b/ch5/data/Actor_04/03-01-08-01-02-01-04.wav new file mode 100644 index 0000000..6b2fe4f Binary files /dev/null and b/ch5/data/Actor_04/03-01-08-01-02-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-08-01-02-02-04.wav b/ch5/data/Actor_04/03-01-08-01-02-02-04.wav new file mode 100644 index 0000000..ef326bb Binary files /dev/null and b/ch5/data/Actor_04/03-01-08-01-02-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-08-02-01-01-04.wav b/ch5/data/Actor_04/03-01-08-02-01-01-04.wav new file mode 100644 index 0000000..967cceb Binary files /dev/null and b/ch5/data/Actor_04/03-01-08-02-01-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-08-02-01-02-04.wav b/ch5/data/Actor_04/03-01-08-02-01-02-04.wav new file mode 100644 index 0000000..d0734dd Binary files /dev/null and b/ch5/data/Actor_04/03-01-08-02-01-02-04.wav differ diff --git a/ch5/data/Actor_04/03-01-08-02-02-01-04.wav b/ch5/data/Actor_04/03-01-08-02-02-01-04.wav new file mode 100644 index 0000000..abf3978 Binary files /dev/null and b/ch5/data/Actor_04/03-01-08-02-02-01-04.wav differ diff --git a/ch5/data/Actor_04/03-01-08-02-02-02-04.wav b/ch5/data/Actor_04/03-01-08-02-02-02-04.wav new file mode 100644 index 0000000..0d72357 Binary files /dev/null and b/ch5/data/Actor_04/03-01-08-02-02-02-04.wav differ diff --git a/ch5/data/Actor_05/03-01-01-01-01-01-05.wav b/ch5/data/Actor_05/03-01-01-01-01-01-05.wav new file mode 100644 index 0000000..dbf0440 Binary files /dev/null and b/ch5/data/Actor_05/03-01-01-01-01-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-01-01-01-02-05.wav b/ch5/data/Actor_05/03-01-01-01-01-02-05.wav new file mode 100644 index 0000000..ff0619a Binary files /dev/null and b/ch5/data/Actor_05/03-01-01-01-01-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-01-01-02-01-05.wav b/ch5/data/Actor_05/03-01-01-01-02-01-05.wav new file mode 100644 index 0000000..df8c625 Binary files /dev/null and b/ch5/data/Actor_05/03-01-01-01-02-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-01-01-02-02-05.wav b/ch5/data/Actor_05/03-01-01-01-02-02-05.wav new file mode 100644 index 0000000..fc9eec0 Binary files /dev/null and b/ch5/data/Actor_05/03-01-01-01-02-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-02-01-01-01-05.wav b/ch5/data/Actor_05/03-01-02-01-01-01-05.wav new file mode 100644 index 0000000..c5a358a Binary files /dev/null and b/ch5/data/Actor_05/03-01-02-01-01-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-02-01-01-02-05.wav b/ch5/data/Actor_05/03-01-02-01-01-02-05.wav new file mode 100644 index 0000000..5df619d Binary files /dev/null and b/ch5/data/Actor_05/03-01-02-01-01-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-02-01-02-01-05.wav b/ch5/data/Actor_05/03-01-02-01-02-01-05.wav new file mode 100644 index 0000000..9bddb1f Binary files /dev/null and b/ch5/data/Actor_05/03-01-02-01-02-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-02-01-02-02-05.wav b/ch5/data/Actor_05/03-01-02-01-02-02-05.wav new file mode 100644 index 0000000..f807eea Binary files /dev/null and b/ch5/data/Actor_05/03-01-02-01-02-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-02-02-01-01-05.wav b/ch5/data/Actor_05/03-01-02-02-01-01-05.wav new file mode 100644 index 0000000..4e56557 Binary files /dev/null and b/ch5/data/Actor_05/03-01-02-02-01-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-02-02-01-02-05.wav b/ch5/data/Actor_05/03-01-02-02-01-02-05.wav new file mode 100644 index 0000000..da7a361 Binary files /dev/null and b/ch5/data/Actor_05/03-01-02-02-01-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-02-02-02-01-05.wav b/ch5/data/Actor_05/03-01-02-02-02-01-05.wav new file mode 100644 index 0000000..cba29f6 Binary files /dev/null and b/ch5/data/Actor_05/03-01-02-02-02-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-02-02-02-02-05.wav b/ch5/data/Actor_05/03-01-02-02-02-02-05.wav new file mode 100644 index 0000000..104f363 Binary files /dev/null and b/ch5/data/Actor_05/03-01-02-02-02-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-03-01-01-01-05.wav b/ch5/data/Actor_05/03-01-03-01-01-01-05.wav new file mode 100644 index 0000000..4e7c944 Binary files /dev/null and b/ch5/data/Actor_05/03-01-03-01-01-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-03-01-01-02-05.wav b/ch5/data/Actor_05/03-01-03-01-01-02-05.wav new file mode 100644 index 0000000..a860c30 Binary files /dev/null and b/ch5/data/Actor_05/03-01-03-01-01-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-03-01-02-01-05.wav b/ch5/data/Actor_05/03-01-03-01-02-01-05.wav new file mode 100644 index 0000000..5e34421 Binary files /dev/null and b/ch5/data/Actor_05/03-01-03-01-02-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-03-01-02-02-05.wav b/ch5/data/Actor_05/03-01-03-01-02-02-05.wav new file mode 100644 index 0000000..1b77a75 Binary files /dev/null and b/ch5/data/Actor_05/03-01-03-01-02-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-03-02-01-01-05.wav b/ch5/data/Actor_05/03-01-03-02-01-01-05.wav new file mode 100644 index 0000000..cd161a5 Binary files /dev/null and b/ch5/data/Actor_05/03-01-03-02-01-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-03-02-01-02-05.wav b/ch5/data/Actor_05/03-01-03-02-01-02-05.wav new file mode 100644 index 0000000..1a85909 Binary files /dev/null and b/ch5/data/Actor_05/03-01-03-02-01-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-03-02-02-01-05.wav b/ch5/data/Actor_05/03-01-03-02-02-01-05.wav new file mode 100644 index 0000000..2f07987 Binary files /dev/null and b/ch5/data/Actor_05/03-01-03-02-02-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-03-02-02-02-05.wav b/ch5/data/Actor_05/03-01-03-02-02-02-05.wav new file mode 100644 index 0000000..7fcea61 Binary files /dev/null and b/ch5/data/Actor_05/03-01-03-02-02-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-04-01-01-01-05.wav b/ch5/data/Actor_05/03-01-04-01-01-01-05.wav new file mode 100644 index 0000000..86f5160 Binary files /dev/null and b/ch5/data/Actor_05/03-01-04-01-01-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-04-01-01-02-05.wav b/ch5/data/Actor_05/03-01-04-01-01-02-05.wav new file mode 100644 index 0000000..dcb5b3c Binary files /dev/null and b/ch5/data/Actor_05/03-01-04-01-01-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-04-01-02-01-05.wav b/ch5/data/Actor_05/03-01-04-01-02-01-05.wav new file mode 100644 index 0000000..169d795 Binary files /dev/null and b/ch5/data/Actor_05/03-01-04-01-02-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-04-01-02-02-05.wav b/ch5/data/Actor_05/03-01-04-01-02-02-05.wav new file mode 100644 index 0000000..0a46d3e Binary files /dev/null and b/ch5/data/Actor_05/03-01-04-01-02-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-04-02-01-01-05.wav b/ch5/data/Actor_05/03-01-04-02-01-01-05.wav new file mode 100644 index 0000000..c37c9a1 Binary files /dev/null and b/ch5/data/Actor_05/03-01-04-02-01-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-04-02-01-02-05.wav b/ch5/data/Actor_05/03-01-04-02-01-02-05.wav new file mode 100644 index 0000000..654c7fb Binary files /dev/null and b/ch5/data/Actor_05/03-01-04-02-01-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-04-02-02-01-05.wav b/ch5/data/Actor_05/03-01-04-02-02-01-05.wav new file mode 100644 index 0000000..455501b Binary files /dev/null and b/ch5/data/Actor_05/03-01-04-02-02-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-04-02-02-02-05.wav b/ch5/data/Actor_05/03-01-04-02-02-02-05.wav new file mode 100644 index 0000000..a771a34 Binary files /dev/null and b/ch5/data/Actor_05/03-01-04-02-02-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-05-01-01-01-05.wav b/ch5/data/Actor_05/03-01-05-01-01-01-05.wav new file mode 100644 index 0000000..025fdbc Binary files /dev/null and b/ch5/data/Actor_05/03-01-05-01-01-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-05-01-01-02-05.wav b/ch5/data/Actor_05/03-01-05-01-01-02-05.wav new file mode 100644 index 0000000..aef1766 Binary files /dev/null and b/ch5/data/Actor_05/03-01-05-01-01-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-05-01-02-01-05.wav b/ch5/data/Actor_05/03-01-05-01-02-01-05.wav new file mode 100644 index 0000000..30dee44 Binary files /dev/null and b/ch5/data/Actor_05/03-01-05-01-02-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-05-01-02-02-05.wav b/ch5/data/Actor_05/03-01-05-01-02-02-05.wav new file mode 100644 index 0000000..e7dd8b8 Binary files /dev/null and b/ch5/data/Actor_05/03-01-05-01-02-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-05-02-01-01-05.wav b/ch5/data/Actor_05/03-01-05-02-01-01-05.wav new file mode 100644 index 0000000..2efa220 Binary files /dev/null and b/ch5/data/Actor_05/03-01-05-02-01-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-05-02-01-02-05.wav b/ch5/data/Actor_05/03-01-05-02-01-02-05.wav new file mode 100644 index 0000000..e07d168 Binary files /dev/null and b/ch5/data/Actor_05/03-01-05-02-01-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-05-02-02-01-05.wav b/ch5/data/Actor_05/03-01-05-02-02-01-05.wav new file mode 100644 index 0000000..ebaff2f Binary files /dev/null and b/ch5/data/Actor_05/03-01-05-02-02-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-05-02-02-02-05.wav b/ch5/data/Actor_05/03-01-05-02-02-02-05.wav new file mode 100644 index 0000000..933d7b2 Binary files /dev/null and b/ch5/data/Actor_05/03-01-05-02-02-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-06-01-01-01-05.wav b/ch5/data/Actor_05/03-01-06-01-01-01-05.wav new file mode 100644 index 0000000..bcc4a7e Binary files /dev/null and b/ch5/data/Actor_05/03-01-06-01-01-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-06-01-01-02-05.wav b/ch5/data/Actor_05/03-01-06-01-01-02-05.wav new file mode 100644 index 0000000..6625cee Binary files /dev/null and b/ch5/data/Actor_05/03-01-06-01-01-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-06-01-02-01-05.wav b/ch5/data/Actor_05/03-01-06-01-02-01-05.wav new file mode 100644 index 0000000..1ce0e14 Binary files /dev/null and b/ch5/data/Actor_05/03-01-06-01-02-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-06-01-02-02-05.wav b/ch5/data/Actor_05/03-01-06-01-02-02-05.wav new file mode 100644 index 0000000..1d73b7e Binary files /dev/null and b/ch5/data/Actor_05/03-01-06-01-02-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-06-02-01-01-05.wav b/ch5/data/Actor_05/03-01-06-02-01-01-05.wav new file mode 100644 index 0000000..bc76f5e Binary files /dev/null and b/ch5/data/Actor_05/03-01-06-02-01-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-06-02-01-02-05.wav b/ch5/data/Actor_05/03-01-06-02-01-02-05.wav new file mode 100644 index 0000000..4683883 Binary files /dev/null and b/ch5/data/Actor_05/03-01-06-02-01-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-06-02-02-01-05.wav b/ch5/data/Actor_05/03-01-06-02-02-01-05.wav new file mode 100644 index 0000000..70bb76f Binary files /dev/null and b/ch5/data/Actor_05/03-01-06-02-02-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-06-02-02-02-05.wav b/ch5/data/Actor_05/03-01-06-02-02-02-05.wav new file mode 100644 index 0000000..f7a7bdd Binary files /dev/null and b/ch5/data/Actor_05/03-01-06-02-02-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-07-01-01-01-05.wav b/ch5/data/Actor_05/03-01-07-01-01-01-05.wav new file mode 100644 index 0000000..ef1e730 Binary files /dev/null and b/ch5/data/Actor_05/03-01-07-01-01-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-07-01-01-02-05.wav b/ch5/data/Actor_05/03-01-07-01-01-02-05.wav new file mode 100644 index 0000000..f9a8aff Binary files /dev/null and b/ch5/data/Actor_05/03-01-07-01-01-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-07-01-02-01-05.wav b/ch5/data/Actor_05/03-01-07-01-02-01-05.wav new file mode 100644 index 0000000..e52a073 Binary files /dev/null and b/ch5/data/Actor_05/03-01-07-01-02-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-07-01-02-02-05.wav b/ch5/data/Actor_05/03-01-07-01-02-02-05.wav new file mode 100644 index 0000000..971997f Binary files /dev/null and b/ch5/data/Actor_05/03-01-07-01-02-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-07-02-01-01-05.wav b/ch5/data/Actor_05/03-01-07-02-01-01-05.wav new file mode 100644 index 0000000..e04a85d Binary files /dev/null and b/ch5/data/Actor_05/03-01-07-02-01-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-07-02-01-02-05.wav b/ch5/data/Actor_05/03-01-07-02-01-02-05.wav new file mode 100644 index 0000000..94d8a6d Binary files /dev/null and b/ch5/data/Actor_05/03-01-07-02-01-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-07-02-02-01-05.wav b/ch5/data/Actor_05/03-01-07-02-02-01-05.wav new file mode 100644 index 0000000..d5bad6c Binary files /dev/null and b/ch5/data/Actor_05/03-01-07-02-02-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-07-02-02-02-05.wav b/ch5/data/Actor_05/03-01-07-02-02-02-05.wav new file mode 100644 index 0000000..640d58b Binary files /dev/null and b/ch5/data/Actor_05/03-01-07-02-02-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-08-01-01-01-05.wav b/ch5/data/Actor_05/03-01-08-01-01-01-05.wav new file mode 100644 index 0000000..9bbe0cc Binary files /dev/null and b/ch5/data/Actor_05/03-01-08-01-01-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-08-01-01-02-05.wav b/ch5/data/Actor_05/03-01-08-01-01-02-05.wav new file mode 100644 index 0000000..ac1a5d5 Binary files /dev/null and b/ch5/data/Actor_05/03-01-08-01-01-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-08-01-02-01-05.wav b/ch5/data/Actor_05/03-01-08-01-02-01-05.wav new file mode 100644 index 0000000..dea5a40 Binary files /dev/null and b/ch5/data/Actor_05/03-01-08-01-02-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-08-01-02-02-05.wav b/ch5/data/Actor_05/03-01-08-01-02-02-05.wav new file mode 100644 index 0000000..1bc852a Binary files /dev/null and b/ch5/data/Actor_05/03-01-08-01-02-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-08-02-01-01-05.wav b/ch5/data/Actor_05/03-01-08-02-01-01-05.wav new file mode 100644 index 0000000..d647ef1 Binary files /dev/null and b/ch5/data/Actor_05/03-01-08-02-01-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-08-02-01-02-05.wav b/ch5/data/Actor_05/03-01-08-02-01-02-05.wav new file mode 100644 index 0000000..4870d44 Binary files /dev/null and b/ch5/data/Actor_05/03-01-08-02-01-02-05.wav differ diff --git a/ch5/data/Actor_05/03-01-08-02-02-01-05.wav b/ch5/data/Actor_05/03-01-08-02-02-01-05.wav new file mode 100644 index 0000000..49c94b6 Binary files /dev/null and b/ch5/data/Actor_05/03-01-08-02-02-01-05.wav differ diff --git a/ch5/data/Actor_05/03-01-08-02-02-02-05.wav b/ch5/data/Actor_05/03-01-08-02-02-02-05.wav new file mode 100644 index 0000000..b40026e Binary files /dev/null and b/ch5/data/Actor_05/03-01-08-02-02-02-05.wav differ diff --git a/ch5/data/Actor_06/03-01-01-01-01-01-06.wav b/ch5/data/Actor_06/03-01-01-01-01-01-06.wav new file mode 100644 index 0000000..2a7ad90 Binary files /dev/null and b/ch5/data/Actor_06/03-01-01-01-01-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-01-01-01-02-06.wav b/ch5/data/Actor_06/03-01-01-01-01-02-06.wav new file mode 100644 index 0000000..4852098 Binary files /dev/null and b/ch5/data/Actor_06/03-01-01-01-01-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-01-01-02-01-06.wav b/ch5/data/Actor_06/03-01-01-01-02-01-06.wav new file mode 100644 index 0000000..f15a62f Binary files /dev/null and b/ch5/data/Actor_06/03-01-01-01-02-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-01-01-02-02-06.wav b/ch5/data/Actor_06/03-01-01-01-02-02-06.wav new file mode 100644 index 0000000..272be33 Binary files /dev/null and b/ch5/data/Actor_06/03-01-01-01-02-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-02-01-01-01-06.wav b/ch5/data/Actor_06/03-01-02-01-01-01-06.wav new file mode 100644 index 0000000..861d301 Binary files /dev/null and b/ch5/data/Actor_06/03-01-02-01-01-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-02-01-01-02-06.wav b/ch5/data/Actor_06/03-01-02-01-01-02-06.wav new file mode 100644 index 0000000..9e3730c Binary files /dev/null and b/ch5/data/Actor_06/03-01-02-01-01-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-02-01-02-01-06.wav b/ch5/data/Actor_06/03-01-02-01-02-01-06.wav new file mode 100644 index 0000000..d6b9d12 Binary files /dev/null and b/ch5/data/Actor_06/03-01-02-01-02-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-02-01-02-02-06.wav b/ch5/data/Actor_06/03-01-02-01-02-02-06.wav new file mode 100644 index 0000000..ae24c18 Binary files /dev/null and b/ch5/data/Actor_06/03-01-02-01-02-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-02-02-01-01-06.wav b/ch5/data/Actor_06/03-01-02-02-01-01-06.wav new file mode 100644 index 0000000..fb82dbf Binary files /dev/null and b/ch5/data/Actor_06/03-01-02-02-01-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-02-02-01-02-06.wav b/ch5/data/Actor_06/03-01-02-02-01-02-06.wav new file mode 100644 index 0000000..ad2ebde Binary files /dev/null and b/ch5/data/Actor_06/03-01-02-02-01-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-02-02-02-01-06.wav b/ch5/data/Actor_06/03-01-02-02-02-01-06.wav new file mode 100644 index 0000000..f7b446b Binary files /dev/null and b/ch5/data/Actor_06/03-01-02-02-02-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-02-02-02-02-06.wav b/ch5/data/Actor_06/03-01-02-02-02-02-06.wav new file mode 100644 index 0000000..570707e Binary files /dev/null and b/ch5/data/Actor_06/03-01-02-02-02-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-03-01-01-01-06.wav b/ch5/data/Actor_06/03-01-03-01-01-01-06.wav new file mode 100644 index 0000000..8796524 Binary files /dev/null and b/ch5/data/Actor_06/03-01-03-01-01-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-03-01-01-02-06.wav b/ch5/data/Actor_06/03-01-03-01-01-02-06.wav new file mode 100644 index 0000000..9148234 Binary files /dev/null and b/ch5/data/Actor_06/03-01-03-01-01-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-03-01-02-01-06.wav b/ch5/data/Actor_06/03-01-03-01-02-01-06.wav new file mode 100644 index 0000000..d457b72 Binary files /dev/null and b/ch5/data/Actor_06/03-01-03-01-02-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-03-01-02-02-06.wav b/ch5/data/Actor_06/03-01-03-01-02-02-06.wav new file mode 100644 index 0000000..ea361b6 Binary files /dev/null and b/ch5/data/Actor_06/03-01-03-01-02-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-03-02-01-01-06.wav b/ch5/data/Actor_06/03-01-03-02-01-01-06.wav new file mode 100644 index 0000000..d785e96 Binary files /dev/null and b/ch5/data/Actor_06/03-01-03-02-01-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-03-02-01-02-06.wav b/ch5/data/Actor_06/03-01-03-02-01-02-06.wav new file mode 100644 index 0000000..9e88711 Binary files /dev/null and b/ch5/data/Actor_06/03-01-03-02-01-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-03-02-02-01-06.wav b/ch5/data/Actor_06/03-01-03-02-02-01-06.wav new file mode 100644 index 0000000..05296da Binary files /dev/null and b/ch5/data/Actor_06/03-01-03-02-02-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-03-02-02-02-06.wav b/ch5/data/Actor_06/03-01-03-02-02-02-06.wav new file mode 100644 index 0000000..4819460 Binary files /dev/null and b/ch5/data/Actor_06/03-01-03-02-02-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-04-01-01-01-06.wav b/ch5/data/Actor_06/03-01-04-01-01-01-06.wav new file mode 100644 index 0000000..b3572c0 Binary files /dev/null and b/ch5/data/Actor_06/03-01-04-01-01-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-04-01-01-02-06.wav b/ch5/data/Actor_06/03-01-04-01-01-02-06.wav new file mode 100644 index 0000000..c093326 Binary files /dev/null and b/ch5/data/Actor_06/03-01-04-01-01-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-04-01-02-01-06.wav b/ch5/data/Actor_06/03-01-04-01-02-01-06.wav new file mode 100644 index 0000000..0c3af84 Binary files /dev/null and b/ch5/data/Actor_06/03-01-04-01-02-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-04-01-02-02-06.wav b/ch5/data/Actor_06/03-01-04-01-02-02-06.wav new file mode 100644 index 0000000..f82fef5 Binary files /dev/null and b/ch5/data/Actor_06/03-01-04-01-02-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-04-02-01-01-06.wav b/ch5/data/Actor_06/03-01-04-02-01-01-06.wav new file mode 100644 index 0000000..7dc729c Binary files /dev/null and b/ch5/data/Actor_06/03-01-04-02-01-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-04-02-01-02-06.wav b/ch5/data/Actor_06/03-01-04-02-01-02-06.wav new file mode 100644 index 0000000..3a6d5ce Binary files /dev/null and b/ch5/data/Actor_06/03-01-04-02-01-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-04-02-02-01-06.wav b/ch5/data/Actor_06/03-01-04-02-02-01-06.wav new file mode 100644 index 0000000..75b4bc6 Binary files /dev/null and b/ch5/data/Actor_06/03-01-04-02-02-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-04-02-02-02-06.wav b/ch5/data/Actor_06/03-01-04-02-02-02-06.wav new file mode 100644 index 0000000..9c09670 Binary files /dev/null and b/ch5/data/Actor_06/03-01-04-02-02-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-05-01-01-01-06.wav b/ch5/data/Actor_06/03-01-05-01-01-01-06.wav new file mode 100644 index 0000000..bd54ccd Binary files /dev/null and b/ch5/data/Actor_06/03-01-05-01-01-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-05-01-01-02-06.wav b/ch5/data/Actor_06/03-01-05-01-01-02-06.wav new file mode 100644 index 0000000..7a97736 Binary files /dev/null and b/ch5/data/Actor_06/03-01-05-01-01-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-05-01-02-01-06.wav b/ch5/data/Actor_06/03-01-05-01-02-01-06.wav new file mode 100644 index 0000000..646c023 Binary files /dev/null and b/ch5/data/Actor_06/03-01-05-01-02-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-05-01-02-02-06.wav b/ch5/data/Actor_06/03-01-05-01-02-02-06.wav new file mode 100644 index 0000000..d78d049 Binary files /dev/null and b/ch5/data/Actor_06/03-01-05-01-02-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-05-02-01-01-06.wav b/ch5/data/Actor_06/03-01-05-02-01-01-06.wav new file mode 100644 index 0000000..c2db5ab Binary files /dev/null and b/ch5/data/Actor_06/03-01-05-02-01-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-05-02-01-02-06.wav b/ch5/data/Actor_06/03-01-05-02-01-02-06.wav new file mode 100644 index 0000000..6f390e4 Binary files /dev/null and b/ch5/data/Actor_06/03-01-05-02-01-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-05-02-02-01-06.wav b/ch5/data/Actor_06/03-01-05-02-02-01-06.wav new file mode 100644 index 0000000..800c14f Binary files /dev/null and b/ch5/data/Actor_06/03-01-05-02-02-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-05-02-02-02-06.wav b/ch5/data/Actor_06/03-01-05-02-02-02-06.wav new file mode 100644 index 0000000..9c5a0af Binary files /dev/null and b/ch5/data/Actor_06/03-01-05-02-02-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-06-01-01-01-06.wav b/ch5/data/Actor_06/03-01-06-01-01-01-06.wav new file mode 100644 index 0000000..5ae3899 Binary files /dev/null and b/ch5/data/Actor_06/03-01-06-01-01-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-06-01-01-02-06.wav b/ch5/data/Actor_06/03-01-06-01-01-02-06.wav new file mode 100644 index 0000000..9023f84 Binary files /dev/null and b/ch5/data/Actor_06/03-01-06-01-01-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-06-01-02-01-06.wav b/ch5/data/Actor_06/03-01-06-01-02-01-06.wav new file mode 100644 index 0000000..16b12dd Binary files /dev/null and b/ch5/data/Actor_06/03-01-06-01-02-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-06-01-02-02-06.wav b/ch5/data/Actor_06/03-01-06-01-02-02-06.wav new file mode 100644 index 0000000..a876b87 Binary files /dev/null and b/ch5/data/Actor_06/03-01-06-01-02-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-06-02-01-01-06.wav b/ch5/data/Actor_06/03-01-06-02-01-01-06.wav new file mode 100644 index 0000000..a0ac2e6 Binary files /dev/null and b/ch5/data/Actor_06/03-01-06-02-01-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-06-02-01-02-06.wav b/ch5/data/Actor_06/03-01-06-02-01-02-06.wav new file mode 100644 index 0000000..cd6fde3 Binary files /dev/null and b/ch5/data/Actor_06/03-01-06-02-01-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-06-02-02-01-06.wav b/ch5/data/Actor_06/03-01-06-02-02-01-06.wav new file mode 100644 index 0000000..c8890c5 Binary files /dev/null and b/ch5/data/Actor_06/03-01-06-02-02-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-06-02-02-02-06.wav b/ch5/data/Actor_06/03-01-06-02-02-02-06.wav new file mode 100644 index 0000000..dc22168 Binary files /dev/null and b/ch5/data/Actor_06/03-01-06-02-02-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-07-01-01-01-06.wav b/ch5/data/Actor_06/03-01-07-01-01-01-06.wav new file mode 100644 index 0000000..adefba1 Binary files /dev/null and b/ch5/data/Actor_06/03-01-07-01-01-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-07-01-01-02-06.wav b/ch5/data/Actor_06/03-01-07-01-01-02-06.wav new file mode 100644 index 0000000..fb83eb1 Binary files /dev/null and b/ch5/data/Actor_06/03-01-07-01-01-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-07-01-02-01-06.wav b/ch5/data/Actor_06/03-01-07-01-02-01-06.wav new file mode 100644 index 0000000..6c2158d Binary files /dev/null and b/ch5/data/Actor_06/03-01-07-01-02-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-07-01-02-02-06.wav b/ch5/data/Actor_06/03-01-07-01-02-02-06.wav new file mode 100644 index 0000000..5eeda6a Binary files /dev/null and b/ch5/data/Actor_06/03-01-07-01-02-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-07-02-01-01-06.wav b/ch5/data/Actor_06/03-01-07-02-01-01-06.wav new file mode 100644 index 0000000..3cb2f56 Binary files /dev/null and b/ch5/data/Actor_06/03-01-07-02-01-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-07-02-01-02-06.wav b/ch5/data/Actor_06/03-01-07-02-01-02-06.wav new file mode 100644 index 0000000..5c79404 Binary files /dev/null and b/ch5/data/Actor_06/03-01-07-02-01-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-07-02-02-01-06.wav b/ch5/data/Actor_06/03-01-07-02-02-01-06.wav new file mode 100644 index 0000000..29d2093 Binary files /dev/null and b/ch5/data/Actor_06/03-01-07-02-02-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-07-02-02-02-06.wav b/ch5/data/Actor_06/03-01-07-02-02-02-06.wav new file mode 100644 index 0000000..faa5146 Binary files /dev/null and b/ch5/data/Actor_06/03-01-07-02-02-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-08-01-01-01-06.wav b/ch5/data/Actor_06/03-01-08-01-01-01-06.wav new file mode 100644 index 0000000..ec7d71b Binary files /dev/null and b/ch5/data/Actor_06/03-01-08-01-01-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-08-01-01-02-06.wav b/ch5/data/Actor_06/03-01-08-01-01-02-06.wav new file mode 100644 index 0000000..2a00528 Binary files /dev/null and b/ch5/data/Actor_06/03-01-08-01-01-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-08-01-02-01-06.wav b/ch5/data/Actor_06/03-01-08-01-02-01-06.wav new file mode 100644 index 0000000..e0b251d Binary files /dev/null and b/ch5/data/Actor_06/03-01-08-01-02-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-08-01-02-02-06.wav b/ch5/data/Actor_06/03-01-08-01-02-02-06.wav new file mode 100644 index 0000000..78b72c0 Binary files /dev/null and b/ch5/data/Actor_06/03-01-08-01-02-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-08-02-01-01-06.wav b/ch5/data/Actor_06/03-01-08-02-01-01-06.wav new file mode 100644 index 0000000..8d384bd Binary files /dev/null and b/ch5/data/Actor_06/03-01-08-02-01-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-08-02-01-02-06.wav b/ch5/data/Actor_06/03-01-08-02-01-02-06.wav new file mode 100644 index 0000000..b429a67 Binary files /dev/null and b/ch5/data/Actor_06/03-01-08-02-01-02-06.wav differ diff --git a/ch5/data/Actor_06/03-01-08-02-02-01-06.wav b/ch5/data/Actor_06/03-01-08-02-02-01-06.wav new file mode 100644 index 0000000..3d2f686 Binary files /dev/null and b/ch5/data/Actor_06/03-01-08-02-02-01-06.wav differ diff --git a/ch5/data/Actor_06/03-01-08-02-02-02-06.wav b/ch5/data/Actor_06/03-01-08-02-02-02-06.wav new file mode 100644 index 0000000..34e5c67 Binary files /dev/null and b/ch5/data/Actor_06/03-01-08-02-02-02-06.wav differ diff --git a/ch5/data/Actor_07/03-01-01-01-01-01-07.wav b/ch5/data/Actor_07/03-01-01-01-01-01-07.wav new file mode 100644 index 0000000..faa03db Binary files /dev/null and b/ch5/data/Actor_07/03-01-01-01-01-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-01-01-01-02-07.wav b/ch5/data/Actor_07/03-01-01-01-01-02-07.wav new file mode 100644 index 0000000..9542e2b Binary files /dev/null and b/ch5/data/Actor_07/03-01-01-01-01-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-01-01-02-01-07.wav b/ch5/data/Actor_07/03-01-01-01-02-01-07.wav new file mode 100644 index 0000000..b42df1c Binary files /dev/null and b/ch5/data/Actor_07/03-01-01-01-02-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-01-01-02-02-07.wav b/ch5/data/Actor_07/03-01-01-01-02-02-07.wav new file mode 100644 index 0000000..3190d13 Binary files /dev/null and b/ch5/data/Actor_07/03-01-01-01-02-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-02-01-01-01-07.wav b/ch5/data/Actor_07/03-01-02-01-01-01-07.wav new file mode 100644 index 0000000..7001a05 Binary files /dev/null and b/ch5/data/Actor_07/03-01-02-01-01-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-02-01-01-02-07.wav b/ch5/data/Actor_07/03-01-02-01-01-02-07.wav new file mode 100644 index 0000000..9972592 Binary files /dev/null and b/ch5/data/Actor_07/03-01-02-01-01-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-02-01-02-01-07.wav b/ch5/data/Actor_07/03-01-02-01-02-01-07.wav new file mode 100644 index 0000000..3f38965 Binary files /dev/null and b/ch5/data/Actor_07/03-01-02-01-02-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-02-01-02-02-07.wav b/ch5/data/Actor_07/03-01-02-01-02-02-07.wav new file mode 100644 index 0000000..2678be0 Binary files /dev/null and b/ch5/data/Actor_07/03-01-02-01-02-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-02-02-01-01-07.wav b/ch5/data/Actor_07/03-01-02-02-01-01-07.wav new file mode 100644 index 0000000..afa93d4 Binary files /dev/null and b/ch5/data/Actor_07/03-01-02-02-01-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-02-02-01-02-07.wav b/ch5/data/Actor_07/03-01-02-02-01-02-07.wav new file mode 100644 index 0000000..e423890 Binary files /dev/null and b/ch5/data/Actor_07/03-01-02-02-01-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-02-02-02-01-07.wav b/ch5/data/Actor_07/03-01-02-02-02-01-07.wav new file mode 100644 index 0000000..051fa15 Binary files /dev/null and b/ch5/data/Actor_07/03-01-02-02-02-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-02-02-02-02-07.wav b/ch5/data/Actor_07/03-01-02-02-02-02-07.wav new file mode 100644 index 0000000..9363345 Binary files /dev/null and b/ch5/data/Actor_07/03-01-02-02-02-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-03-01-01-01-07.wav b/ch5/data/Actor_07/03-01-03-01-01-01-07.wav new file mode 100644 index 0000000..8400c15 Binary files /dev/null and b/ch5/data/Actor_07/03-01-03-01-01-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-03-01-01-02-07.wav b/ch5/data/Actor_07/03-01-03-01-01-02-07.wav new file mode 100644 index 0000000..644c4ee Binary files /dev/null and b/ch5/data/Actor_07/03-01-03-01-01-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-03-01-02-01-07.wav b/ch5/data/Actor_07/03-01-03-01-02-01-07.wav new file mode 100644 index 0000000..cdc8829 Binary files /dev/null and b/ch5/data/Actor_07/03-01-03-01-02-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-03-01-02-02-07.wav b/ch5/data/Actor_07/03-01-03-01-02-02-07.wav new file mode 100644 index 0000000..cdc8829 Binary files /dev/null and b/ch5/data/Actor_07/03-01-03-01-02-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-03-02-01-01-07.wav b/ch5/data/Actor_07/03-01-03-02-01-01-07.wav new file mode 100644 index 0000000..4d32dbd Binary files /dev/null and b/ch5/data/Actor_07/03-01-03-02-01-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-03-02-01-02-07.wav b/ch5/data/Actor_07/03-01-03-02-01-02-07.wav new file mode 100644 index 0000000..c054401 Binary files /dev/null and b/ch5/data/Actor_07/03-01-03-02-01-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-03-02-02-01-07.wav b/ch5/data/Actor_07/03-01-03-02-02-01-07.wav new file mode 100644 index 0000000..3a10065 Binary files /dev/null and b/ch5/data/Actor_07/03-01-03-02-02-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-03-02-02-02-07.wav b/ch5/data/Actor_07/03-01-03-02-02-02-07.wav new file mode 100644 index 0000000..20507cc Binary files /dev/null and b/ch5/data/Actor_07/03-01-03-02-02-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-04-01-01-01-07.wav b/ch5/data/Actor_07/03-01-04-01-01-01-07.wav new file mode 100644 index 0000000..7a5a775 Binary files /dev/null and b/ch5/data/Actor_07/03-01-04-01-01-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-04-01-01-02-07.wav b/ch5/data/Actor_07/03-01-04-01-01-02-07.wav new file mode 100644 index 0000000..79463a2 Binary files /dev/null and b/ch5/data/Actor_07/03-01-04-01-01-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-04-01-02-01-07.wav b/ch5/data/Actor_07/03-01-04-01-02-01-07.wav new file mode 100644 index 0000000..c989835 Binary files /dev/null and b/ch5/data/Actor_07/03-01-04-01-02-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-04-01-02-02-07.wav b/ch5/data/Actor_07/03-01-04-01-02-02-07.wav new file mode 100644 index 0000000..f8bc1bf Binary files /dev/null and b/ch5/data/Actor_07/03-01-04-01-02-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-04-02-01-01-07.wav b/ch5/data/Actor_07/03-01-04-02-01-01-07.wav new file mode 100644 index 0000000..fd3981e Binary files /dev/null and b/ch5/data/Actor_07/03-01-04-02-01-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-04-02-01-02-07.wav b/ch5/data/Actor_07/03-01-04-02-01-02-07.wav new file mode 100644 index 0000000..ea0283e Binary files /dev/null and b/ch5/data/Actor_07/03-01-04-02-01-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-04-02-02-01-07.wav b/ch5/data/Actor_07/03-01-04-02-02-01-07.wav new file mode 100644 index 0000000..7131af9 Binary files /dev/null and b/ch5/data/Actor_07/03-01-04-02-02-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-04-02-02-02-07.wav b/ch5/data/Actor_07/03-01-04-02-02-02-07.wav new file mode 100644 index 0000000..42c6271 Binary files /dev/null and b/ch5/data/Actor_07/03-01-04-02-02-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-05-01-01-01-07.wav b/ch5/data/Actor_07/03-01-05-01-01-01-07.wav new file mode 100644 index 0000000..afd4d43 Binary files /dev/null and b/ch5/data/Actor_07/03-01-05-01-01-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-05-01-01-02-07.wav b/ch5/data/Actor_07/03-01-05-01-01-02-07.wav new file mode 100644 index 0000000..a16c33f Binary files /dev/null and b/ch5/data/Actor_07/03-01-05-01-01-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-05-01-02-01-07.wav b/ch5/data/Actor_07/03-01-05-01-02-01-07.wav new file mode 100644 index 0000000..fb1a8c2 Binary files /dev/null and b/ch5/data/Actor_07/03-01-05-01-02-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-05-01-02-02-07.wav b/ch5/data/Actor_07/03-01-05-01-02-02-07.wav new file mode 100644 index 0000000..cd45a0f Binary files /dev/null and b/ch5/data/Actor_07/03-01-05-01-02-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-05-02-01-01-07.wav b/ch5/data/Actor_07/03-01-05-02-01-01-07.wav new file mode 100644 index 0000000..fb8e880 Binary files /dev/null and b/ch5/data/Actor_07/03-01-05-02-01-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-05-02-01-02-07.wav b/ch5/data/Actor_07/03-01-05-02-01-02-07.wav new file mode 100644 index 0000000..a8f22ed Binary files /dev/null and b/ch5/data/Actor_07/03-01-05-02-01-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-05-02-02-01-07.wav b/ch5/data/Actor_07/03-01-05-02-02-01-07.wav new file mode 100644 index 0000000..40fc108 Binary files /dev/null and b/ch5/data/Actor_07/03-01-05-02-02-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-05-02-02-02-07.wav b/ch5/data/Actor_07/03-01-05-02-02-02-07.wav new file mode 100644 index 0000000..ca8d3da Binary files /dev/null and b/ch5/data/Actor_07/03-01-05-02-02-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-06-01-01-01-07.wav b/ch5/data/Actor_07/03-01-06-01-01-01-07.wav new file mode 100644 index 0000000..d031b79 Binary files /dev/null and b/ch5/data/Actor_07/03-01-06-01-01-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-06-01-01-02-07.wav b/ch5/data/Actor_07/03-01-06-01-01-02-07.wav new file mode 100644 index 0000000..47e81c1 Binary files /dev/null and b/ch5/data/Actor_07/03-01-06-01-01-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-06-01-02-01-07.wav b/ch5/data/Actor_07/03-01-06-01-02-01-07.wav new file mode 100644 index 0000000..17b80f2 Binary files /dev/null and b/ch5/data/Actor_07/03-01-06-01-02-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-06-01-02-02-07.wav b/ch5/data/Actor_07/03-01-06-01-02-02-07.wav new file mode 100644 index 0000000..94cbe69 Binary files /dev/null and b/ch5/data/Actor_07/03-01-06-01-02-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-06-02-01-01-07.wav b/ch5/data/Actor_07/03-01-06-02-01-01-07.wav new file mode 100644 index 0000000..6aed5a1 Binary files /dev/null and b/ch5/data/Actor_07/03-01-06-02-01-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-06-02-01-02-07.wav b/ch5/data/Actor_07/03-01-06-02-01-02-07.wav new file mode 100644 index 0000000..e5fe65a Binary files /dev/null and b/ch5/data/Actor_07/03-01-06-02-01-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-06-02-02-01-07.wav b/ch5/data/Actor_07/03-01-06-02-02-01-07.wav new file mode 100644 index 0000000..1583635 Binary files /dev/null and b/ch5/data/Actor_07/03-01-06-02-02-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-06-02-02-02-07.wav b/ch5/data/Actor_07/03-01-06-02-02-02-07.wav new file mode 100644 index 0000000..2d4067a Binary files /dev/null and b/ch5/data/Actor_07/03-01-06-02-02-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-07-01-01-01-07.wav b/ch5/data/Actor_07/03-01-07-01-01-01-07.wav new file mode 100644 index 0000000..efe0ec7 Binary files /dev/null and b/ch5/data/Actor_07/03-01-07-01-01-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-07-01-01-02-07.wav b/ch5/data/Actor_07/03-01-07-01-01-02-07.wav new file mode 100644 index 0000000..99033fe Binary files /dev/null and b/ch5/data/Actor_07/03-01-07-01-01-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-07-01-02-01-07.wav b/ch5/data/Actor_07/03-01-07-01-02-01-07.wav new file mode 100644 index 0000000..df9af2e Binary files /dev/null and b/ch5/data/Actor_07/03-01-07-01-02-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-07-01-02-02-07.wav b/ch5/data/Actor_07/03-01-07-01-02-02-07.wav new file mode 100644 index 0000000..17bd1a5 Binary files /dev/null and b/ch5/data/Actor_07/03-01-07-01-02-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-07-02-01-01-07.wav b/ch5/data/Actor_07/03-01-07-02-01-01-07.wav new file mode 100644 index 0000000..df732dd Binary files /dev/null and b/ch5/data/Actor_07/03-01-07-02-01-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-07-02-01-02-07.wav b/ch5/data/Actor_07/03-01-07-02-01-02-07.wav new file mode 100644 index 0000000..aa50fc8 Binary files /dev/null and b/ch5/data/Actor_07/03-01-07-02-01-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-07-02-02-01-07.wav b/ch5/data/Actor_07/03-01-07-02-02-01-07.wav new file mode 100644 index 0000000..a341a19 Binary files /dev/null and b/ch5/data/Actor_07/03-01-07-02-02-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-07-02-02-02-07.wav b/ch5/data/Actor_07/03-01-07-02-02-02-07.wav new file mode 100644 index 0000000..d8cda33 Binary files /dev/null and b/ch5/data/Actor_07/03-01-07-02-02-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-08-01-01-01-07.wav b/ch5/data/Actor_07/03-01-08-01-01-01-07.wav new file mode 100644 index 0000000..c567013 Binary files /dev/null and b/ch5/data/Actor_07/03-01-08-01-01-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-08-01-01-02-07.wav b/ch5/data/Actor_07/03-01-08-01-01-02-07.wav new file mode 100644 index 0000000..84b1c15 Binary files /dev/null and b/ch5/data/Actor_07/03-01-08-01-01-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-08-01-02-01-07.wav b/ch5/data/Actor_07/03-01-08-01-02-01-07.wav new file mode 100644 index 0000000..ea2ec26 Binary files /dev/null and b/ch5/data/Actor_07/03-01-08-01-02-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-08-01-02-02-07.wav b/ch5/data/Actor_07/03-01-08-01-02-02-07.wav new file mode 100644 index 0000000..a293bd5 Binary files /dev/null and b/ch5/data/Actor_07/03-01-08-01-02-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-08-02-01-01-07.wav b/ch5/data/Actor_07/03-01-08-02-01-01-07.wav new file mode 100644 index 0000000..f5cacaa Binary files /dev/null and b/ch5/data/Actor_07/03-01-08-02-01-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-08-02-01-02-07.wav b/ch5/data/Actor_07/03-01-08-02-01-02-07.wav new file mode 100644 index 0000000..78649c1 Binary files /dev/null and b/ch5/data/Actor_07/03-01-08-02-01-02-07.wav differ diff --git a/ch5/data/Actor_07/03-01-08-02-02-01-07.wav b/ch5/data/Actor_07/03-01-08-02-02-01-07.wav new file mode 100644 index 0000000..436046d Binary files /dev/null and b/ch5/data/Actor_07/03-01-08-02-02-01-07.wav differ diff --git a/ch5/data/Actor_07/03-01-08-02-02-02-07.wav b/ch5/data/Actor_07/03-01-08-02-02-02-07.wav new file mode 100644 index 0000000..87ec218 Binary files /dev/null and b/ch5/data/Actor_07/03-01-08-02-02-02-07.wav differ diff --git a/ch5/data/Actor_08/03-01-01-01-01-01-08.wav b/ch5/data/Actor_08/03-01-01-01-01-01-08.wav new file mode 100644 index 0000000..ddd822f Binary files /dev/null and b/ch5/data/Actor_08/03-01-01-01-01-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-01-01-01-02-08.wav b/ch5/data/Actor_08/03-01-01-01-01-02-08.wav new file mode 100644 index 0000000..59e6618 Binary files /dev/null and b/ch5/data/Actor_08/03-01-01-01-01-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-01-01-02-01-08.wav b/ch5/data/Actor_08/03-01-01-01-02-01-08.wav new file mode 100644 index 0000000..f87929e Binary files /dev/null and b/ch5/data/Actor_08/03-01-01-01-02-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-01-01-02-02-08.wav b/ch5/data/Actor_08/03-01-01-01-02-02-08.wav new file mode 100644 index 0000000..46ef7a7 Binary files /dev/null and b/ch5/data/Actor_08/03-01-01-01-02-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-02-01-01-01-08.wav b/ch5/data/Actor_08/03-01-02-01-01-01-08.wav new file mode 100644 index 0000000..0d21001 Binary files /dev/null and b/ch5/data/Actor_08/03-01-02-01-01-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-02-01-01-02-08.wav b/ch5/data/Actor_08/03-01-02-01-01-02-08.wav new file mode 100644 index 0000000..2165615 Binary files /dev/null and b/ch5/data/Actor_08/03-01-02-01-01-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-02-01-02-01-08.wav b/ch5/data/Actor_08/03-01-02-01-02-01-08.wav new file mode 100644 index 0000000..108934d Binary files /dev/null and b/ch5/data/Actor_08/03-01-02-01-02-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-02-01-02-02-08.wav b/ch5/data/Actor_08/03-01-02-01-02-02-08.wav new file mode 100644 index 0000000..034eeb6 Binary files /dev/null and b/ch5/data/Actor_08/03-01-02-01-02-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-02-02-01-01-08.wav b/ch5/data/Actor_08/03-01-02-02-01-01-08.wav new file mode 100644 index 0000000..4cb7d5c Binary files /dev/null and b/ch5/data/Actor_08/03-01-02-02-01-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-02-02-01-02-08.wav b/ch5/data/Actor_08/03-01-02-02-01-02-08.wav new file mode 100644 index 0000000..01a7e2c Binary files /dev/null and b/ch5/data/Actor_08/03-01-02-02-01-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-02-02-02-01-08.wav b/ch5/data/Actor_08/03-01-02-02-02-01-08.wav new file mode 100644 index 0000000..8913227 Binary files /dev/null and b/ch5/data/Actor_08/03-01-02-02-02-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-02-02-02-02-08.wav b/ch5/data/Actor_08/03-01-02-02-02-02-08.wav new file mode 100644 index 0000000..fd95da7 Binary files /dev/null and b/ch5/data/Actor_08/03-01-02-02-02-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-03-01-01-01-08.wav b/ch5/data/Actor_08/03-01-03-01-01-01-08.wav new file mode 100644 index 0000000..2b1bae9 Binary files /dev/null and b/ch5/data/Actor_08/03-01-03-01-01-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-03-01-01-02-08.wav b/ch5/data/Actor_08/03-01-03-01-01-02-08.wav new file mode 100644 index 0000000..891e700 Binary files /dev/null and b/ch5/data/Actor_08/03-01-03-01-01-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-03-01-02-01-08.wav b/ch5/data/Actor_08/03-01-03-01-02-01-08.wav new file mode 100644 index 0000000..1030131 Binary files /dev/null and b/ch5/data/Actor_08/03-01-03-01-02-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-03-01-02-02-08.wav b/ch5/data/Actor_08/03-01-03-01-02-02-08.wav new file mode 100644 index 0000000..ff2d6ed Binary files /dev/null and b/ch5/data/Actor_08/03-01-03-01-02-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-03-02-01-01-08.wav b/ch5/data/Actor_08/03-01-03-02-01-01-08.wav new file mode 100644 index 0000000..a5b1984 Binary files /dev/null and b/ch5/data/Actor_08/03-01-03-02-01-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-03-02-01-02-08.wav b/ch5/data/Actor_08/03-01-03-02-01-02-08.wav new file mode 100644 index 0000000..e055cc0 Binary files /dev/null and b/ch5/data/Actor_08/03-01-03-02-01-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-03-02-02-01-08.wav b/ch5/data/Actor_08/03-01-03-02-02-01-08.wav new file mode 100644 index 0000000..99e4cea Binary files /dev/null and b/ch5/data/Actor_08/03-01-03-02-02-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-03-02-02-02-08.wav b/ch5/data/Actor_08/03-01-03-02-02-02-08.wav new file mode 100644 index 0000000..a1b6e82 Binary files /dev/null and b/ch5/data/Actor_08/03-01-03-02-02-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-04-01-01-01-08.wav b/ch5/data/Actor_08/03-01-04-01-01-01-08.wav new file mode 100644 index 0000000..2a7b554 Binary files /dev/null and b/ch5/data/Actor_08/03-01-04-01-01-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-04-01-01-02-08.wav b/ch5/data/Actor_08/03-01-04-01-01-02-08.wav new file mode 100644 index 0000000..aa39ec7 Binary files /dev/null and b/ch5/data/Actor_08/03-01-04-01-01-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-04-01-02-01-08.wav b/ch5/data/Actor_08/03-01-04-01-02-01-08.wav new file mode 100644 index 0000000..5f9352d Binary files /dev/null and b/ch5/data/Actor_08/03-01-04-01-02-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-04-01-02-02-08.wav b/ch5/data/Actor_08/03-01-04-01-02-02-08.wav new file mode 100644 index 0000000..2c71090 Binary files /dev/null and b/ch5/data/Actor_08/03-01-04-01-02-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-04-02-01-01-08.wav b/ch5/data/Actor_08/03-01-04-02-01-01-08.wav new file mode 100644 index 0000000..14cb4cd Binary files /dev/null and b/ch5/data/Actor_08/03-01-04-02-01-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-04-02-01-02-08.wav b/ch5/data/Actor_08/03-01-04-02-01-02-08.wav new file mode 100644 index 0000000..e24180d Binary files /dev/null and b/ch5/data/Actor_08/03-01-04-02-01-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-04-02-02-01-08.wav b/ch5/data/Actor_08/03-01-04-02-02-01-08.wav new file mode 100644 index 0000000..8a8d92c Binary files /dev/null and b/ch5/data/Actor_08/03-01-04-02-02-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-04-02-02-02-08.wav b/ch5/data/Actor_08/03-01-04-02-02-02-08.wav new file mode 100644 index 0000000..cfd01cd Binary files /dev/null and b/ch5/data/Actor_08/03-01-04-02-02-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-05-01-01-01-08.wav b/ch5/data/Actor_08/03-01-05-01-01-01-08.wav new file mode 100644 index 0000000..fce127f Binary files /dev/null and b/ch5/data/Actor_08/03-01-05-01-01-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-05-01-01-02-08.wav b/ch5/data/Actor_08/03-01-05-01-01-02-08.wav new file mode 100644 index 0000000..81cb622 Binary files /dev/null and b/ch5/data/Actor_08/03-01-05-01-01-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-05-01-02-01-08.wav b/ch5/data/Actor_08/03-01-05-01-02-01-08.wav new file mode 100644 index 0000000..5ee73f2 Binary files /dev/null and b/ch5/data/Actor_08/03-01-05-01-02-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-05-01-02-02-08.wav b/ch5/data/Actor_08/03-01-05-01-02-02-08.wav new file mode 100644 index 0000000..5d77588 Binary files /dev/null and b/ch5/data/Actor_08/03-01-05-01-02-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-05-02-01-01-08.wav b/ch5/data/Actor_08/03-01-05-02-01-01-08.wav new file mode 100644 index 0000000..45fd919 Binary files /dev/null and b/ch5/data/Actor_08/03-01-05-02-01-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-05-02-01-02-08.wav b/ch5/data/Actor_08/03-01-05-02-01-02-08.wav new file mode 100644 index 0000000..59710dd Binary files /dev/null and b/ch5/data/Actor_08/03-01-05-02-01-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-05-02-02-01-08.wav b/ch5/data/Actor_08/03-01-05-02-02-01-08.wav new file mode 100644 index 0000000..002e036 Binary files /dev/null and b/ch5/data/Actor_08/03-01-05-02-02-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-05-02-02-02-08.wav b/ch5/data/Actor_08/03-01-05-02-02-02-08.wav new file mode 100644 index 0000000..12877bf Binary files /dev/null and b/ch5/data/Actor_08/03-01-05-02-02-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-06-01-01-01-08.wav b/ch5/data/Actor_08/03-01-06-01-01-01-08.wav new file mode 100644 index 0000000..d997bc0 Binary files /dev/null and b/ch5/data/Actor_08/03-01-06-01-01-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-06-01-01-02-08.wav b/ch5/data/Actor_08/03-01-06-01-01-02-08.wav new file mode 100644 index 0000000..e13647f Binary files /dev/null and b/ch5/data/Actor_08/03-01-06-01-01-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-06-01-02-01-08.wav b/ch5/data/Actor_08/03-01-06-01-02-01-08.wav new file mode 100644 index 0000000..3434edc Binary files /dev/null and b/ch5/data/Actor_08/03-01-06-01-02-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-06-01-02-02-08.wav b/ch5/data/Actor_08/03-01-06-01-02-02-08.wav new file mode 100644 index 0000000..9035de8 Binary files /dev/null and b/ch5/data/Actor_08/03-01-06-01-02-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-06-02-01-01-08.wav b/ch5/data/Actor_08/03-01-06-02-01-01-08.wav new file mode 100644 index 0000000..d895821 Binary files /dev/null and b/ch5/data/Actor_08/03-01-06-02-01-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-06-02-01-02-08.wav b/ch5/data/Actor_08/03-01-06-02-01-02-08.wav new file mode 100644 index 0000000..24e0b8e Binary files /dev/null and b/ch5/data/Actor_08/03-01-06-02-01-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-06-02-02-01-08.wav b/ch5/data/Actor_08/03-01-06-02-02-01-08.wav new file mode 100644 index 0000000..0f99cda Binary files /dev/null and b/ch5/data/Actor_08/03-01-06-02-02-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-06-02-02-02-08.wav b/ch5/data/Actor_08/03-01-06-02-02-02-08.wav new file mode 100644 index 0000000..6b535c1 Binary files /dev/null and b/ch5/data/Actor_08/03-01-06-02-02-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-07-01-01-01-08.wav b/ch5/data/Actor_08/03-01-07-01-01-01-08.wav new file mode 100644 index 0000000..8402a7a Binary files /dev/null and b/ch5/data/Actor_08/03-01-07-01-01-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-07-01-01-02-08.wav b/ch5/data/Actor_08/03-01-07-01-01-02-08.wav new file mode 100644 index 0000000..4dd6eef Binary files /dev/null and b/ch5/data/Actor_08/03-01-07-01-01-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-07-01-02-01-08.wav b/ch5/data/Actor_08/03-01-07-01-02-01-08.wav new file mode 100644 index 0000000..2202934 Binary files /dev/null and b/ch5/data/Actor_08/03-01-07-01-02-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-07-01-02-02-08.wav b/ch5/data/Actor_08/03-01-07-01-02-02-08.wav new file mode 100644 index 0000000..6851863 Binary files /dev/null and b/ch5/data/Actor_08/03-01-07-01-02-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-07-02-01-01-08.wav b/ch5/data/Actor_08/03-01-07-02-01-01-08.wav new file mode 100644 index 0000000..18e0ad7 Binary files /dev/null and b/ch5/data/Actor_08/03-01-07-02-01-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-07-02-01-02-08.wav b/ch5/data/Actor_08/03-01-07-02-01-02-08.wav new file mode 100644 index 0000000..e9aeb4e Binary files /dev/null and b/ch5/data/Actor_08/03-01-07-02-01-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-07-02-02-01-08.wav b/ch5/data/Actor_08/03-01-07-02-02-01-08.wav new file mode 100644 index 0000000..115e01d Binary files /dev/null and b/ch5/data/Actor_08/03-01-07-02-02-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-07-02-02-02-08.wav b/ch5/data/Actor_08/03-01-07-02-02-02-08.wav new file mode 100644 index 0000000..a315436 Binary files /dev/null and b/ch5/data/Actor_08/03-01-07-02-02-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-08-01-01-01-08.wav b/ch5/data/Actor_08/03-01-08-01-01-01-08.wav new file mode 100644 index 0000000..7c42f86 Binary files /dev/null and b/ch5/data/Actor_08/03-01-08-01-01-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-08-01-01-02-08.wav b/ch5/data/Actor_08/03-01-08-01-01-02-08.wav new file mode 100644 index 0000000..a131736 Binary files /dev/null and b/ch5/data/Actor_08/03-01-08-01-01-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-08-01-02-01-08.wav b/ch5/data/Actor_08/03-01-08-01-02-01-08.wav new file mode 100644 index 0000000..936fc8c Binary files /dev/null and b/ch5/data/Actor_08/03-01-08-01-02-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-08-01-02-02-08.wav b/ch5/data/Actor_08/03-01-08-01-02-02-08.wav new file mode 100644 index 0000000..a3dbb7a Binary files /dev/null and b/ch5/data/Actor_08/03-01-08-01-02-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-08-02-01-01-08.wav b/ch5/data/Actor_08/03-01-08-02-01-01-08.wav new file mode 100644 index 0000000..bcc7162 Binary files /dev/null and b/ch5/data/Actor_08/03-01-08-02-01-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-08-02-01-02-08.wav b/ch5/data/Actor_08/03-01-08-02-01-02-08.wav new file mode 100644 index 0000000..ed3b8e1 Binary files /dev/null and b/ch5/data/Actor_08/03-01-08-02-01-02-08.wav differ diff --git a/ch5/data/Actor_08/03-01-08-02-02-01-08.wav b/ch5/data/Actor_08/03-01-08-02-02-01-08.wav new file mode 100644 index 0000000..d415a3f Binary files /dev/null and b/ch5/data/Actor_08/03-01-08-02-02-01-08.wav differ diff --git a/ch5/data/Actor_08/03-01-08-02-02-02-08.wav b/ch5/data/Actor_08/03-01-08-02-02-02-08.wav new file mode 100644 index 0000000..bedec14 Binary files /dev/null and b/ch5/data/Actor_08/03-01-08-02-02-02-08.wav differ diff --git a/ch5/data/Actor_09/03-01-01-01-01-01-09.wav b/ch5/data/Actor_09/03-01-01-01-01-01-09.wav new file mode 100644 index 0000000..58163c6 Binary files /dev/null and b/ch5/data/Actor_09/03-01-01-01-01-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-01-01-01-02-09.wav b/ch5/data/Actor_09/03-01-01-01-01-02-09.wav new file mode 100644 index 0000000..1873e1b Binary files /dev/null and b/ch5/data/Actor_09/03-01-01-01-01-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-01-01-02-01-09.wav b/ch5/data/Actor_09/03-01-01-01-02-01-09.wav new file mode 100644 index 0000000..5c89813 Binary files /dev/null and b/ch5/data/Actor_09/03-01-01-01-02-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-01-01-02-02-09.wav b/ch5/data/Actor_09/03-01-01-01-02-02-09.wav new file mode 100644 index 0000000..4f3b559 Binary files /dev/null and b/ch5/data/Actor_09/03-01-01-01-02-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-02-01-01-01-09.wav b/ch5/data/Actor_09/03-01-02-01-01-01-09.wav new file mode 100644 index 0000000..d29877f Binary files /dev/null and b/ch5/data/Actor_09/03-01-02-01-01-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-02-01-01-02-09.wav b/ch5/data/Actor_09/03-01-02-01-01-02-09.wav new file mode 100644 index 0000000..fb8b2ef Binary files /dev/null and b/ch5/data/Actor_09/03-01-02-01-01-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-02-01-02-01-09.wav b/ch5/data/Actor_09/03-01-02-01-02-01-09.wav new file mode 100644 index 0000000..9216f64 Binary files /dev/null and b/ch5/data/Actor_09/03-01-02-01-02-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-02-01-02-02-09.wav b/ch5/data/Actor_09/03-01-02-01-02-02-09.wav new file mode 100644 index 0000000..ee485e5 Binary files /dev/null and b/ch5/data/Actor_09/03-01-02-01-02-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-02-02-01-01-09.wav b/ch5/data/Actor_09/03-01-02-02-01-01-09.wav new file mode 100644 index 0000000..581e419 Binary files /dev/null and b/ch5/data/Actor_09/03-01-02-02-01-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-02-02-01-02-09.wav b/ch5/data/Actor_09/03-01-02-02-01-02-09.wav new file mode 100644 index 0000000..bbc231f Binary files /dev/null and b/ch5/data/Actor_09/03-01-02-02-01-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-02-02-02-01-09.wav b/ch5/data/Actor_09/03-01-02-02-02-01-09.wav new file mode 100644 index 0000000..9728007 Binary files /dev/null and b/ch5/data/Actor_09/03-01-02-02-02-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-02-02-02-02-09.wav b/ch5/data/Actor_09/03-01-02-02-02-02-09.wav new file mode 100644 index 0000000..b8d6b2f Binary files /dev/null and b/ch5/data/Actor_09/03-01-02-02-02-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-03-01-01-01-09.wav b/ch5/data/Actor_09/03-01-03-01-01-01-09.wav new file mode 100644 index 0000000..fe04663 Binary files /dev/null and b/ch5/data/Actor_09/03-01-03-01-01-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-03-01-01-02-09.wav b/ch5/data/Actor_09/03-01-03-01-01-02-09.wav new file mode 100644 index 0000000..9133078 Binary files /dev/null and b/ch5/data/Actor_09/03-01-03-01-01-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-03-01-02-01-09.wav b/ch5/data/Actor_09/03-01-03-01-02-01-09.wav new file mode 100644 index 0000000..0e46054 Binary files /dev/null and b/ch5/data/Actor_09/03-01-03-01-02-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-03-01-02-02-09.wav b/ch5/data/Actor_09/03-01-03-01-02-02-09.wav new file mode 100644 index 0000000..22738b3 Binary files /dev/null and b/ch5/data/Actor_09/03-01-03-01-02-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-03-02-01-01-09.wav b/ch5/data/Actor_09/03-01-03-02-01-01-09.wav new file mode 100644 index 0000000..a10956a Binary files /dev/null and b/ch5/data/Actor_09/03-01-03-02-01-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-03-02-01-02-09.wav b/ch5/data/Actor_09/03-01-03-02-01-02-09.wav new file mode 100644 index 0000000..b081507 Binary files /dev/null and b/ch5/data/Actor_09/03-01-03-02-01-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-03-02-02-01-09.wav b/ch5/data/Actor_09/03-01-03-02-02-01-09.wav new file mode 100644 index 0000000..0ed7b2f Binary files /dev/null and b/ch5/data/Actor_09/03-01-03-02-02-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-03-02-02-02-09.wav b/ch5/data/Actor_09/03-01-03-02-02-02-09.wav new file mode 100644 index 0000000..2910318 Binary files /dev/null and b/ch5/data/Actor_09/03-01-03-02-02-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-04-01-01-01-09.wav b/ch5/data/Actor_09/03-01-04-01-01-01-09.wav new file mode 100644 index 0000000..c0a3c3c Binary files /dev/null and b/ch5/data/Actor_09/03-01-04-01-01-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-04-01-01-02-09.wav b/ch5/data/Actor_09/03-01-04-01-01-02-09.wav new file mode 100644 index 0000000..655fd6f Binary files /dev/null and b/ch5/data/Actor_09/03-01-04-01-01-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-04-01-02-01-09.wav b/ch5/data/Actor_09/03-01-04-01-02-01-09.wav new file mode 100644 index 0000000..13bae51 Binary files /dev/null and b/ch5/data/Actor_09/03-01-04-01-02-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-04-01-02-02-09.wav b/ch5/data/Actor_09/03-01-04-01-02-02-09.wav new file mode 100644 index 0000000..e043944 Binary files /dev/null and b/ch5/data/Actor_09/03-01-04-01-02-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-04-02-01-01-09.wav b/ch5/data/Actor_09/03-01-04-02-01-01-09.wav new file mode 100644 index 0000000..00fbec5 Binary files /dev/null and b/ch5/data/Actor_09/03-01-04-02-01-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-04-02-01-02-09.wav b/ch5/data/Actor_09/03-01-04-02-01-02-09.wav new file mode 100644 index 0000000..3ab5a84 Binary files /dev/null and b/ch5/data/Actor_09/03-01-04-02-01-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-04-02-02-01-09.wav b/ch5/data/Actor_09/03-01-04-02-02-01-09.wav new file mode 100644 index 0000000..b95d590 Binary files /dev/null and b/ch5/data/Actor_09/03-01-04-02-02-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-04-02-02-02-09.wav b/ch5/data/Actor_09/03-01-04-02-02-02-09.wav new file mode 100644 index 0000000..032b8ec Binary files /dev/null and b/ch5/data/Actor_09/03-01-04-02-02-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-05-01-01-01-09.wav b/ch5/data/Actor_09/03-01-05-01-01-01-09.wav new file mode 100644 index 0000000..d809d8e Binary files /dev/null and b/ch5/data/Actor_09/03-01-05-01-01-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-05-01-01-02-09.wav b/ch5/data/Actor_09/03-01-05-01-01-02-09.wav new file mode 100644 index 0000000..9d15914 Binary files /dev/null and b/ch5/data/Actor_09/03-01-05-01-01-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-05-01-02-01-09.wav b/ch5/data/Actor_09/03-01-05-01-02-01-09.wav new file mode 100644 index 0000000..81a8889 Binary files /dev/null and b/ch5/data/Actor_09/03-01-05-01-02-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-05-01-02-02-09.wav b/ch5/data/Actor_09/03-01-05-01-02-02-09.wav new file mode 100644 index 0000000..1041f06 Binary files /dev/null and b/ch5/data/Actor_09/03-01-05-01-02-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-05-02-01-01-09.wav b/ch5/data/Actor_09/03-01-05-02-01-01-09.wav new file mode 100644 index 0000000..9b67b84 Binary files /dev/null and b/ch5/data/Actor_09/03-01-05-02-01-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-05-02-01-02-09.wav b/ch5/data/Actor_09/03-01-05-02-01-02-09.wav new file mode 100644 index 0000000..c17ff4b Binary files /dev/null and b/ch5/data/Actor_09/03-01-05-02-01-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-05-02-02-01-09.wav b/ch5/data/Actor_09/03-01-05-02-02-01-09.wav new file mode 100644 index 0000000..d8fd3b8 Binary files /dev/null and b/ch5/data/Actor_09/03-01-05-02-02-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-05-02-02-02-09.wav b/ch5/data/Actor_09/03-01-05-02-02-02-09.wav new file mode 100644 index 0000000..215b70e Binary files /dev/null and b/ch5/data/Actor_09/03-01-05-02-02-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-06-01-01-01-09.wav b/ch5/data/Actor_09/03-01-06-01-01-01-09.wav new file mode 100644 index 0000000..8a0b73a Binary files /dev/null and b/ch5/data/Actor_09/03-01-06-01-01-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-06-01-01-02-09.wav b/ch5/data/Actor_09/03-01-06-01-01-02-09.wav new file mode 100644 index 0000000..792ef36 Binary files /dev/null and b/ch5/data/Actor_09/03-01-06-01-01-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-06-01-02-01-09.wav b/ch5/data/Actor_09/03-01-06-01-02-01-09.wav new file mode 100644 index 0000000..131166c Binary files /dev/null and b/ch5/data/Actor_09/03-01-06-01-02-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-06-01-02-02-09.wav b/ch5/data/Actor_09/03-01-06-01-02-02-09.wav new file mode 100644 index 0000000..78e9004 Binary files /dev/null and b/ch5/data/Actor_09/03-01-06-01-02-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-06-02-01-01-09.wav b/ch5/data/Actor_09/03-01-06-02-01-01-09.wav new file mode 100644 index 0000000..7ff3a5d Binary files /dev/null and b/ch5/data/Actor_09/03-01-06-02-01-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-06-02-01-02-09.wav b/ch5/data/Actor_09/03-01-06-02-01-02-09.wav new file mode 100644 index 0000000..bf3c220 Binary files /dev/null and b/ch5/data/Actor_09/03-01-06-02-01-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-06-02-02-01-09.wav b/ch5/data/Actor_09/03-01-06-02-02-01-09.wav new file mode 100644 index 0000000..aa489d9 Binary files /dev/null and b/ch5/data/Actor_09/03-01-06-02-02-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-06-02-02-02-09.wav b/ch5/data/Actor_09/03-01-06-02-02-02-09.wav new file mode 100644 index 0000000..6b39572 Binary files /dev/null and b/ch5/data/Actor_09/03-01-06-02-02-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-07-01-01-01-09.wav b/ch5/data/Actor_09/03-01-07-01-01-01-09.wav new file mode 100644 index 0000000..67a617c Binary files /dev/null and b/ch5/data/Actor_09/03-01-07-01-01-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-07-01-01-02-09.wav b/ch5/data/Actor_09/03-01-07-01-01-02-09.wav new file mode 100644 index 0000000..82c39ec Binary files /dev/null and b/ch5/data/Actor_09/03-01-07-01-01-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-07-01-02-01-09.wav b/ch5/data/Actor_09/03-01-07-01-02-01-09.wav new file mode 100644 index 0000000..8e8d1a7 Binary files /dev/null and b/ch5/data/Actor_09/03-01-07-01-02-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-07-01-02-02-09.wav b/ch5/data/Actor_09/03-01-07-01-02-02-09.wav new file mode 100644 index 0000000..0909060 Binary files /dev/null and b/ch5/data/Actor_09/03-01-07-01-02-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-07-02-01-01-09.wav b/ch5/data/Actor_09/03-01-07-02-01-01-09.wav new file mode 100644 index 0000000..aae09c4 Binary files /dev/null and b/ch5/data/Actor_09/03-01-07-02-01-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-07-02-01-02-09.wav b/ch5/data/Actor_09/03-01-07-02-01-02-09.wav new file mode 100644 index 0000000..fe94b92 Binary files /dev/null and b/ch5/data/Actor_09/03-01-07-02-01-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-07-02-02-01-09.wav b/ch5/data/Actor_09/03-01-07-02-02-01-09.wav new file mode 100644 index 0000000..8f4cf6a Binary files /dev/null and b/ch5/data/Actor_09/03-01-07-02-02-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-07-02-02-02-09.wav b/ch5/data/Actor_09/03-01-07-02-02-02-09.wav new file mode 100644 index 0000000..cbcbd76 Binary files /dev/null and b/ch5/data/Actor_09/03-01-07-02-02-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-08-01-01-01-09.wav b/ch5/data/Actor_09/03-01-08-01-01-01-09.wav new file mode 100644 index 0000000..ab16e86 Binary files /dev/null and b/ch5/data/Actor_09/03-01-08-01-01-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-08-01-01-02-09.wav b/ch5/data/Actor_09/03-01-08-01-01-02-09.wav new file mode 100644 index 0000000..ae2f8d8 Binary files /dev/null and b/ch5/data/Actor_09/03-01-08-01-01-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-08-01-02-01-09.wav b/ch5/data/Actor_09/03-01-08-01-02-01-09.wav new file mode 100644 index 0000000..9e297e1 Binary files /dev/null and b/ch5/data/Actor_09/03-01-08-01-02-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-08-01-02-02-09.wav b/ch5/data/Actor_09/03-01-08-01-02-02-09.wav new file mode 100644 index 0000000..4459456 Binary files /dev/null and b/ch5/data/Actor_09/03-01-08-01-02-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-08-02-01-01-09.wav b/ch5/data/Actor_09/03-01-08-02-01-01-09.wav new file mode 100644 index 0000000..eec72a8 Binary files /dev/null and b/ch5/data/Actor_09/03-01-08-02-01-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-08-02-01-02-09.wav b/ch5/data/Actor_09/03-01-08-02-01-02-09.wav new file mode 100644 index 0000000..31d307b Binary files /dev/null and b/ch5/data/Actor_09/03-01-08-02-01-02-09.wav differ diff --git a/ch5/data/Actor_09/03-01-08-02-02-01-09.wav b/ch5/data/Actor_09/03-01-08-02-02-01-09.wav new file mode 100644 index 0000000..afff5a2 Binary files /dev/null and b/ch5/data/Actor_09/03-01-08-02-02-01-09.wav differ diff --git a/ch5/data/Actor_09/03-01-08-02-02-02-09.wav b/ch5/data/Actor_09/03-01-08-02-02-02-09.wav new file mode 100644 index 0000000..55a6078 Binary files /dev/null and b/ch5/data/Actor_09/03-01-08-02-02-02-09.wav differ diff --git a/ch5/data/Actor_10/03-01-01-01-01-01-10.wav b/ch5/data/Actor_10/03-01-01-01-01-01-10.wav new file mode 100644 index 0000000..8f99a18 Binary files /dev/null and b/ch5/data/Actor_10/03-01-01-01-01-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-01-01-01-02-10.wav b/ch5/data/Actor_10/03-01-01-01-01-02-10.wav new file mode 100644 index 0000000..031e0e5 Binary files /dev/null and b/ch5/data/Actor_10/03-01-01-01-01-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-01-01-02-01-10.wav b/ch5/data/Actor_10/03-01-01-01-02-01-10.wav new file mode 100644 index 0000000..a553037 Binary files /dev/null and b/ch5/data/Actor_10/03-01-01-01-02-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-01-01-02-02-10.wav b/ch5/data/Actor_10/03-01-01-01-02-02-10.wav new file mode 100644 index 0000000..9fb8c43 Binary files /dev/null and b/ch5/data/Actor_10/03-01-01-01-02-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-02-01-01-01-10.wav b/ch5/data/Actor_10/03-01-02-01-01-01-10.wav new file mode 100644 index 0000000..fd502fc Binary files /dev/null and b/ch5/data/Actor_10/03-01-02-01-01-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-02-01-01-02-10.wav b/ch5/data/Actor_10/03-01-02-01-01-02-10.wav new file mode 100644 index 0000000..0213daa Binary files /dev/null and b/ch5/data/Actor_10/03-01-02-01-01-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-02-01-02-01-10.wav b/ch5/data/Actor_10/03-01-02-01-02-01-10.wav new file mode 100644 index 0000000..6aaffab Binary files /dev/null and b/ch5/data/Actor_10/03-01-02-01-02-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-02-01-02-02-10.wav b/ch5/data/Actor_10/03-01-02-01-02-02-10.wav new file mode 100644 index 0000000..e2c3397 Binary files /dev/null and b/ch5/data/Actor_10/03-01-02-01-02-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-02-02-01-01-10.wav b/ch5/data/Actor_10/03-01-02-02-01-01-10.wav new file mode 100644 index 0000000..e246f8e Binary files /dev/null and b/ch5/data/Actor_10/03-01-02-02-01-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-02-02-01-02-10.wav b/ch5/data/Actor_10/03-01-02-02-01-02-10.wav new file mode 100644 index 0000000..f15de6a Binary files /dev/null and b/ch5/data/Actor_10/03-01-02-02-01-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-02-02-02-01-10.wav b/ch5/data/Actor_10/03-01-02-02-02-01-10.wav new file mode 100644 index 0000000..b71ea4c Binary files /dev/null and b/ch5/data/Actor_10/03-01-02-02-02-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-02-02-02-02-10.wav b/ch5/data/Actor_10/03-01-02-02-02-02-10.wav new file mode 100644 index 0000000..6cb145b Binary files /dev/null and b/ch5/data/Actor_10/03-01-02-02-02-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-03-01-01-01-10.wav b/ch5/data/Actor_10/03-01-03-01-01-01-10.wav new file mode 100644 index 0000000..8c1e5d4 Binary files /dev/null and b/ch5/data/Actor_10/03-01-03-01-01-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-03-01-01-02-10.wav b/ch5/data/Actor_10/03-01-03-01-01-02-10.wav new file mode 100644 index 0000000..2312798 Binary files /dev/null and b/ch5/data/Actor_10/03-01-03-01-01-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-03-01-02-01-10.wav b/ch5/data/Actor_10/03-01-03-01-02-01-10.wav new file mode 100644 index 0000000..4a6545a Binary files /dev/null and b/ch5/data/Actor_10/03-01-03-01-02-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-03-01-02-02-10.wav b/ch5/data/Actor_10/03-01-03-01-02-02-10.wav new file mode 100644 index 0000000..7c12fa2 Binary files /dev/null and b/ch5/data/Actor_10/03-01-03-01-02-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-03-02-01-01-10.wav b/ch5/data/Actor_10/03-01-03-02-01-01-10.wav new file mode 100644 index 0000000..576b459 Binary files /dev/null and b/ch5/data/Actor_10/03-01-03-02-01-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-03-02-01-02-10.wav b/ch5/data/Actor_10/03-01-03-02-01-02-10.wav new file mode 100644 index 0000000..d241ade Binary files /dev/null and b/ch5/data/Actor_10/03-01-03-02-01-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-03-02-02-01-10.wav b/ch5/data/Actor_10/03-01-03-02-02-01-10.wav new file mode 100644 index 0000000..a4ee86e Binary files /dev/null and b/ch5/data/Actor_10/03-01-03-02-02-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-03-02-02-02-10.wav b/ch5/data/Actor_10/03-01-03-02-02-02-10.wav new file mode 100644 index 0000000..a0de2de Binary files /dev/null and b/ch5/data/Actor_10/03-01-03-02-02-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-04-01-01-01-10.wav b/ch5/data/Actor_10/03-01-04-01-01-01-10.wav new file mode 100644 index 0000000..6c0bde9 Binary files /dev/null and b/ch5/data/Actor_10/03-01-04-01-01-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-04-01-01-02-10.wav b/ch5/data/Actor_10/03-01-04-01-01-02-10.wav new file mode 100644 index 0000000..eb6b83f Binary files /dev/null and b/ch5/data/Actor_10/03-01-04-01-01-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-04-01-02-01-10.wav b/ch5/data/Actor_10/03-01-04-01-02-01-10.wav new file mode 100644 index 0000000..d0af3f8 Binary files /dev/null and b/ch5/data/Actor_10/03-01-04-01-02-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-04-01-02-02-10.wav b/ch5/data/Actor_10/03-01-04-01-02-02-10.wav new file mode 100644 index 0000000..4d37327 Binary files /dev/null and b/ch5/data/Actor_10/03-01-04-01-02-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-04-02-01-01-10.wav b/ch5/data/Actor_10/03-01-04-02-01-01-10.wav new file mode 100644 index 0000000..c3a5b95 Binary files /dev/null and b/ch5/data/Actor_10/03-01-04-02-01-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-04-02-01-02-10.wav b/ch5/data/Actor_10/03-01-04-02-01-02-10.wav new file mode 100644 index 0000000..42dc95f Binary files /dev/null and b/ch5/data/Actor_10/03-01-04-02-01-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-04-02-02-01-10.wav b/ch5/data/Actor_10/03-01-04-02-02-01-10.wav new file mode 100644 index 0000000..49a1a2f Binary files /dev/null and b/ch5/data/Actor_10/03-01-04-02-02-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-04-02-02-02-10.wav b/ch5/data/Actor_10/03-01-04-02-02-02-10.wav new file mode 100644 index 0000000..05bb870 Binary files /dev/null and b/ch5/data/Actor_10/03-01-04-02-02-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-05-01-01-01-10.wav b/ch5/data/Actor_10/03-01-05-01-01-01-10.wav new file mode 100644 index 0000000..47894d9 Binary files /dev/null and b/ch5/data/Actor_10/03-01-05-01-01-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-05-01-01-02-10.wav b/ch5/data/Actor_10/03-01-05-01-01-02-10.wav new file mode 100644 index 0000000..d2f1b9a Binary files /dev/null and b/ch5/data/Actor_10/03-01-05-01-01-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-05-01-02-01-10.wav b/ch5/data/Actor_10/03-01-05-01-02-01-10.wav new file mode 100644 index 0000000..47f281a Binary files /dev/null and b/ch5/data/Actor_10/03-01-05-01-02-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-05-01-02-02-10.wav b/ch5/data/Actor_10/03-01-05-01-02-02-10.wav new file mode 100644 index 0000000..0e4ca6f Binary files /dev/null and b/ch5/data/Actor_10/03-01-05-01-02-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-05-02-01-01-10.wav b/ch5/data/Actor_10/03-01-05-02-01-01-10.wav new file mode 100644 index 0000000..d0e1c8d Binary files /dev/null and b/ch5/data/Actor_10/03-01-05-02-01-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-05-02-01-02-10.wav b/ch5/data/Actor_10/03-01-05-02-01-02-10.wav new file mode 100644 index 0000000..3592db3 Binary files /dev/null and b/ch5/data/Actor_10/03-01-05-02-01-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-05-02-02-01-10.wav b/ch5/data/Actor_10/03-01-05-02-02-01-10.wav new file mode 100644 index 0000000..4257e84 Binary files /dev/null and b/ch5/data/Actor_10/03-01-05-02-02-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-05-02-02-02-10.wav b/ch5/data/Actor_10/03-01-05-02-02-02-10.wav new file mode 100644 index 0000000..7c0c442 Binary files /dev/null and b/ch5/data/Actor_10/03-01-05-02-02-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-06-01-01-01-10.wav b/ch5/data/Actor_10/03-01-06-01-01-01-10.wav new file mode 100644 index 0000000..d4de2d8 Binary files /dev/null and b/ch5/data/Actor_10/03-01-06-01-01-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-06-01-01-02-10.wav b/ch5/data/Actor_10/03-01-06-01-01-02-10.wav new file mode 100644 index 0000000..9878a57 Binary files /dev/null and b/ch5/data/Actor_10/03-01-06-01-01-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-06-01-02-01-10.wav b/ch5/data/Actor_10/03-01-06-01-02-01-10.wav new file mode 100644 index 0000000..28d296a Binary files /dev/null and b/ch5/data/Actor_10/03-01-06-01-02-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-06-01-02-02-10.wav b/ch5/data/Actor_10/03-01-06-01-02-02-10.wav new file mode 100644 index 0000000..64b1096 Binary files /dev/null and b/ch5/data/Actor_10/03-01-06-01-02-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-06-02-01-01-10.wav b/ch5/data/Actor_10/03-01-06-02-01-01-10.wav new file mode 100644 index 0000000..c8083a3 Binary files /dev/null and b/ch5/data/Actor_10/03-01-06-02-01-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-06-02-01-02-10.wav b/ch5/data/Actor_10/03-01-06-02-01-02-10.wav new file mode 100644 index 0000000..65ee934 Binary files /dev/null and b/ch5/data/Actor_10/03-01-06-02-01-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-06-02-02-01-10.wav b/ch5/data/Actor_10/03-01-06-02-02-01-10.wav new file mode 100644 index 0000000..35af0cc Binary files /dev/null and b/ch5/data/Actor_10/03-01-06-02-02-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-06-02-02-02-10.wav b/ch5/data/Actor_10/03-01-06-02-02-02-10.wav new file mode 100644 index 0000000..3b34526 Binary files /dev/null and b/ch5/data/Actor_10/03-01-06-02-02-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-07-01-01-01-10.wav b/ch5/data/Actor_10/03-01-07-01-01-01-10.wav new file mode 100644 index 0000000..9564617 Binary files /dev/null and b/ch5/data/Actor_10/03-01-07-01-01-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-07-01-01-02-10.wav b/ch5/data/Actor_10/03-01-07-01-01-02-10.wav new file mode 100644 index 0000000..f8fd836 Binary files /dev/null and b/ch5/data/Actor_10/03-01-07-01-01-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-07-01-02-01-10.wav b/ch5/data/Actor_10/03-01-07-01-02-01-10.wav new file mode 100644 index 0000000..27cf474 Binary files /dev/null and b/ch5/data/Actor_10/03-01-07-01-02-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-07-01-02-02-10.wav b/ch5/data/Actor_10/03-01-07-01-02-02-10.wav new file mode 100644 index 0000000..fa9a62f Binary files /dev/null and b/ch5/data/Actor_10/03-01-07-01-02-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-07-02-01-01-10.wav b/ch5/data/Actor_10/03-01-07-02-01-01-10.wav new file mode 100644 index 0000000..da85450 Binary files /dev/null and b/ch5/data/Actor_10/03-01-07-02-01-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-07-02-01-02-10.wav b/ch5/data/Actor_10/03-01-07-02-01-02-10.wav new file mode 100644 index 0000000..a6a0ccf Binary files /dev/null and b/ch5/data/Actor_10/03-01-07-02-01-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-07-02-02-01-10.wav b/ch5/data/Actor_10/03-01-07-02-02-01-10.wav new file mode 100644 index 0000000..398e714 Binary files /dev/null and b/ch5/data/Actor_10/03-01-07-02-02-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-07-02-02-02-10.wav b/ch5/data/Actor_10/03-01-07-02-02-02-10.wav new file mode 100644 index 0000000..8b7ff4e Binary files /dev/null and b/ch5/data/Actor_10/03-01-07-02-02-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-08-01-01-01-10.wav b/ch5/data/Actor_10/03-01-08-01-01-01-10.wav new file mode 100644 index 0000000..0e9121c Binary files /dev/null and b/ch5/data/Actor_10/03-01-08-01-01-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-08-01-01-02-10.wav b/ch5/data/Actor_10/03-01-08-01-01-02-10.wav new file mode 100644 index 0000000..dd998cf Binary files /dev/null and b/ch5/data/Actor_10/03-01-08-01-01-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-08-01-02-01-10.wav b/ch5/data/Actor_10/03-01-08-01-02-01-10.wav new file mode 100644 index 0000000..67a0dd2 Binary files /dev/null and b/ch5/data/Actor_10/03-01-08-01-02-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-08-01-02-02-10.wav b/ch5/data/Actor_10/03-01-08-01-02-02-10.wav new file mode 100644 index 0000000..3714449 Binary files /dev/null and b/ch5/data/Actor_10/03-01-08-01-02-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-08-02-01-01-10.wav b/ch5/data/Actor_10/03-01-08-02-01-01-10.wav new file mode 100644 index 0000000..41478a4 Binary files /dev/null and b/ch5/data/Actor_10/03-01-08-02-01-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-08-02-01-02-10.wav b/ch5/data/Actor_10/03-01-08-02-01-02-10.wav new file mode 100644 index 0000000..424591c Binary files /dev/null and b/ch5/data/Actor_10/03-01-08-02-01-02-10.wav differ diff --git a/ch5/data/Actor_10/03-01-08-02-02-01-10.wav b/ch5/data/Actor_10/03-01-08-02-02-01-10.wav new file mode 100644 index 0000000..06eab31 Binary files /dev/null and b/ch5/data/Actor_10/03-01-08-02-02-01-10.wav differ diff --git a/ch5/data/Actor_10/03-01-08-02-02-02-10.wav b/ch5/data/Actor_10/03-01-08-02-02-02-10.wav new file mode 100644 index 0000000..51d1c1c Binary files /dev/null and b/ch5/data/Actor_10/03-01-08-02-02-02-10.wav differ diff --git a/ch5/data/Actor_11/03-01-01-01-01-01-11.wav b/ch5/data/Actor_11/03-01-01-01-01-01-11.wav new file mode 100644 index 0000000..e3f10eb Binary files /dev/null and b/ch5/data/Actor_11/03-01-01-01-01-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-01-01-01-02-11.wav b/ch5/data/Actor_11/03-01-01-01-01-02-11.wav new file mode 100644 index 0000000..19d4129 Binary files /dev/null and b/ch5/data/Actor_11/03-01-01-01-01-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-01-01-02-01-11.wav b/ch5/data/Actor_11/03-01-01-01-02-01-11.wav new file mode 100644 index 0000000..b432719 Binary files /dev/null and b/ch5/data/Actor_11/03-01-01-01-02-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-01-01-02-02-11.wav b/ch5/data/Actor_11/03-01-01-01-02-02-11.wav new file mode 100644 index 0000000..96a1ad5 Binary files /dev/null and b/ch5/data/Actor_11/03-01-01-01-02-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-02-01-01-01-11.wav b/ch5/data/Actor_11/03-01-02-01-01-01-11.wav new file mode 100644 index 0000000..8c33364 Binary files /dev/null and b/ch5/data/Actor_11/03-01-02-01-01-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-02-01-01-02-11.wav b/ch5/data/Actor_11/03-01-02-01-01-02-11.wav new file mode 100644 index 0000000..f382106 Binary files /dev/null and b/ch5/data/Actor_11/03-01-02-01-01-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-02-01-02-01-11.wav b/ch5/data/Actor_11/03-01-02-01-02-01-11.wav new file mode 100644 index 0000000..47fcb53 Binary files /dev/null and b/ch5/data/Actor_11/03-01-02-01-02-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-02-01-02-02-11.wav b/ch5/data/Actor_11/03-01-02-01-02-02-11.wav new file mode 100644 index 0000000..96f61a1 Binary files /dev/null and b/ch5/data/Actor_11/03-01-02-01-02-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-02-02-01-01-11.wav b/ch5/data/Actor_11/03-01-02-02-01-01-11.wav new file mode 100644 index 0000000..a76b20a Binary files /dev/null and b/ch5/data/Actor_11/03-01-02-02-01-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-02-02-01-02-11.wav b/ch5/data/Actor_11/03-01-02-02-01-02-11.wav new file mode 100644 index 0000000..cb8577e Binary files /dev/null and b/ch5/data/Actor_11/03-01-02-02-01-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-02-02-02-01-11.wav b/ch5/data/Actor_11/03-01-02-02-02-01-11.wav new file mode 100644 index 0000000..bd79aa4 Binary files /dev/null and b/ch5/data/Actor_11/03-01-02-02-02-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-02-02-02-02-11.wav b/ch5/data/Actor_11/03-01-02-02-02-02-11.wav new file mode 100644 index 0000000..b0a07cc Binary files /dev/null and b/ch5/data/Actor_11/03-01-02-02-02-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-03-01-01-01-11.wav b/ch5/data/Actor_11/03-01-03-01-01-01-11.wav new file mode 100644 index 0000000..9e338d5 Binary files /dev/null and b/ch5/data/Actor_11/03-01-03-01-01-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-03-01-01-02-11.wav b/ch5/data/Actor_11/03-01-03-01-01-02-11.wav new file mode 100644 index 0000000..313b0eb Binary files /dev/null and b/ch5/data/Actor_11/03-01-03-01-01-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-03-01-02-01-11.wav b/ch5/data/Actor_11/03-01-03-01-02-01-11.wav new file mode 100644 index 0000000..13a5dc1 Binary files /dev/null and b/ch5/data/Actor_11/03-01-03-01-02-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-03-01-02-02-11.wav b/ch5/data/Actor_11/03-01-03-01-02-02-11.wav new file mode 100644 index 0000000..c13275e Binary files /dev/null and b/ch5/data/Actor_11/03-01-03-01-02-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-03-02-01-01-11.wav b/ch5/data/Actor_11/03-01-03-02-01-01-11.wav new file mode 100644 index 0000000..4d501a8 Binary files /dev/null and b/ch5/data/Actor_11/03-01-03-02-01-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-03-02-01-02-11.wav b/ch5/data/Actor_11/03-01-03-02-01-02-11.wav new file mode 100644 index 0000000..8e644c8 Binary files /dev/null and b/ch5/data/Actor_11/03-01-03-02-01-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-03-02-02-01-11.wav b/ch5/data/Actor_11/03-01-03-02-02-01-11.wav new file mode 100644 index 0000000..fd362dd Binary files /dev/null and b/ch5/data/Actor_11/03-01-03-02-02-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-03-02-02-02-11.wav b/ch5/data/Actor_11/03-01-03-02-02-02-11.wav new file mode 100644 index 0000000..c09863c Binary files /dev/null and b/ch5/data/Actor_11/03-01-03-02-02-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-04-01-01-01-11.wav b/ch5/data/Actor_11/03-01-04-01-01-01-11.wav new file mode 100644 index 0000000..2651c65 Binary files /dev/null and b/ch5/data/Actor_11/03-01-04-01-01-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-04-01-01-02-11.wav b/ch5/data/Actor_11/03-01-04-01-01-02-11.wav new file mode 100644 index 0000000..4eae1c6 Binary files /dev/null and b/ch5/data/Actor_11/03-01-04-01-01-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-04-01-02-01-11.wav b/ch5/data/Actor_11/03-01-04-01-02-01-11.wav new file mode 100644 index 0000000..ce2ae07 Binary files /dev/null and b/ch5/data/Actor_11/03-01-04-01-02-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-04-01-02-02-11.wav b/ch5/data/Actor_11/03-01-04-01-02-02-11.wav new file mode 100644 index 0000000..5718d7e Binary files /dev/null and b/ch5/data/Actor_11/03-01-04-01-02-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-04-02-01-01-11.wav b/ch5/data/Actor_11/03-01-04-02-01-01-11.wav new file mode 100644 index 0000000..ba35e4b Binary files /dev/null and b/ch5/data/Actor_11/03-01-04-02-01-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-04-02-01-02-11.wav b/ch5/data/Actor_11/03-01-04-02-01-02-11.wav new file mode 100644 index 0000000..fc446f6 Binary files /dev/null and b/ch5/data/Actor_11/03-01-04-02-01-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-04-02-02-01-11.wav b/ch5/data/Actor_11/03-01-04-02-02-01-11.wav new file mode 100644 index 0000000..0c137f1 Binary files /dev/null and b/ch5/data/Actor_11/03-01-04-02-02-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-04-02-02-02-11.wav b/ch5/data/Actor_11/03-01-04-02-02-02-11.wav new file mode 100644 index 0000000..4dcf209 Binary files /dev/null and b/ch5/data/Actor_11/03-01-04-02-02-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-05-01-01-01-11.wav b/ch5/data/Actor_11/03-01-05-01-01-01-11.wav new file mode 100644 index 0000000..31f747d Binary files /dev/null and b/ch5/data/Actor_11/03-01-05-01-01-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-05-01-01-02-11.wav b/ch5/data/Actor_11/03-01-05-01-01-02-11.wav new file mode 100644 index 0000000..921bb02 Binary files /dev/null and b/ch5/data/Actor_11/03-01-05-01-01-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-05-01-02-01-11.wav b/ch5/data/Actor_11/03-01-05-01-02-01-11.wav new file mode 100644 index 0000000..cf42359 Binary files /dev/null and b/ch5/data/Actor_11/03-01-05-01-02-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-05-01-02-02-11.wav b/ch5/data/Actor_11/03-01-05-01-02-02-11.wav new file mode 100644 index 0000000..7e322fe Binary files /dev/null and b/ch5/data/Actor_11/03-01-05-01-02-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-05-02-01-01-11.wav b/ch5/data/Actor_11/03-01-05-02-01-01-11.wav new file mode 100644 index 0000000..7d24042 Binary files /dev/null and b/ch5/data/Actor_11/03-01-05-02-01-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-05-02-01-02-11.wav b/ch5/data/Actor_11/03-01-05-02-01-02-11.wav new file mode 100644 index 0000000..eeff77c Binary files /dev/null and b/ch5/data/Actor_11/03-01-05-02-01-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-05-02-02-01-11.wav b/ch5/data/Actor_11/03-01-05-02-02-01-11.wav new file mode 100644 index 0000000..704bc71 Binary files /dev/null and b/ch5/data/Actor_11/03-01-05-02-02-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-05-02-02-02-11.wav b/ch5/data/Actor_11/03-01-05-02-02-02-11.wav new file mode 100644 index 0000000..446a1f0 Binary files /dev/null and b/ch5/data/Actor_11/03-01-05-02-02-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-06-01-01-01-11.wav b/ch5/data/Actor_11/03-01-06-01-01-01-11.wav new file mode 100644 index 0000000..1d1188b Binary files /dev/null and b/ch5/data/Actor_11/03-01-06-01-01-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-06-01-01-02-11.wav b/ch5/data/Actor_11/03-01-06-01-01-02-11.wav new file mode 100644 index 0000000..d32802a Binary files /dev/null and b/ch5/data/Actor_11/03-01-06-01-01-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-06-01-02-01-11.wav b/ch5/data/Actor_11/03-01-06-01-02-01-11.wav new file mode 100644 index 0000000..5fb6b30 Binary files /dev/null and b/ch5/data/Actor_11/03-01-06-01-02-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-06-01-02-02-11.wav b/ch5/data/Actor_11/03-01-06-01-02-02-11.wav new file mode 100644 index 0000000..4ef843a Binary files /dev/null and b/ch5/data/Actor_11/03-01-06-01-02-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-06-02-01-01-11.wav b/ch5/data/Actor_11/03-01-06-02-01-01-11.wav new file mode 100644 index 0000000..3f917d1 Binary files /dev/null and b/ch5/data/Actor_11/03-01-06-02-01-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-06-02-01-02-11.wav b/ch5/data/Actor_11/03-01-06-02-01-02-11.wav new file mode 100644 index 0000000..db2d8d9 Binary files /dev/null and b/ch5/data/Actor_11/03-01-06-02-01-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-06-02-02-01-11.wav b/ch5/data/Actor_11/03-01-06-02-02-01-11.wav new file mode 100644 index 0000000..3fc186c Binary files /dev/null and b/ch5/data/Actor_11/03-01-06-02-02-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-06-02-02-02-11.wav b/ch5/data/Actor_11/03-01-06-02-02-02-11.wav new file mode 100644 index 0000000..cfb4536 Binary files /dev/null and b/ch5/data/Actor_11/03-01-06-02-02-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-07-01-01-01-11.wav b/ch5/data/Actor_11/03-01-07-01-01-01-11.wav new file mode 100644 index 0000000..f8e8fe9 Binary files /dev/null and b/ch5/data/Actor_11/03-01-07-01-01-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-07-01-01-02-11.wav b/ch5/data/Actor_11/03-01-07-01-01-02-11.wav new file mode 100644 index 0000000..a3d66b4 Binary files /dev/null and b/ch5/data/Actor_11/03-01-07-01-01-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-07-01-02-01-11.wav b/ch5/data/Actor_11/03-01-07-01-02-01-11.wav new file mode 100644 index 0000000..7a9bf23 Binary files /dev/null and b/ch5/data/Actor_11/03-01-07-01-02-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-07-01-02-02-11.wav b/ch5/data/Actor_11/03-01-07-01-02-02-11.wav new file mode 100644 index 0000000..7256300 Binary files /dev/null and b/ch5/data/Actor_11/03-01-07-01-02-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-07-02-01-01-11.wav b/ch5/data/Actor_11/03-01-07-02-01-01-11.wav new file mode 100644 index 0000000..9812d02 Binary files /dev/null and b/ch5/data/Actor_11/03-01-07-02-01-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-07-02-01-02-11.wav b/ch5/data/Actor_11/03-01-07-02-01-02-11.wav new file mode 100644 index 0000000..9196764 Binary files /dev/null and b/ch5/data/Actor_11/03-01-07-02-01-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-07-02-02-01-11.wav b/ch5/data/Actor_11/03-01-07-02-02-01-11.wav new file mode 100644 index 0000000..4ef0145 Binary files /dev/null and b/ch5/data/Actor_11/03-01-07-02-02-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-07-02-02-02-11.wav b/ch5/data/Actor_11/03-01-07-02-02-02-11.wav new file mode 100644 index 0000000..afe64a6 Binary files /dev/null and b/ch5/data/Actor_11/03-01-07-02-02-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-08-01-01-01-11.wav b/ch5/data/Actor_11/03-01-08-01-01-01-11.wav new file mode 100644 index 0000000..c6f13e7 Binary files /dev/null and b/ch5/data/Actor_11/03-01-08-01-01-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-08-01-01-02-11.wav b/ch5/data/Actor_11/03-01-08-01-01-02-11.wav new file mode 100644 index 0000000..136ae2e Binary files /dev/null and b/ch5/data/Actor_11/03-01-08-01-01-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-08-01-02-01-11.wav b/ch5/data/Actor_11/03-01-08-01-02-01-11.wav new file mode 100644 index 0000000..453b2d3 Binary files /dev/null and b/ch5/data/Actor_11/03-01-08-01-02-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-08-01-02-02-11.wav b/ch5/data/Actor_11/03-01-08-01-02-02-11.wav new file mode 100644 index 0000000..38e1a3f Binary files /dev/null and b/ch5/data/Actor_11/03-01-08-01-02-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-08-02-01-01-11.wav b/ch5/data/Actor_11/03-01-08-02-01-01-11.wav new file mode 100644 index 0000000..61d7928 Binary files /dev/null and b/ch5/data/Actor_11/03-01-08-02-01-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-08-02-01-02-11.wav b/ch5/data/Actor_11/03-01-08-02-01-02-11.wav new file mode 100644 index 0000000..77070c2 Binary files /dev/null and b/ch5/data/Actor_11/03-01-08-02-01-02-11.wav differ diff --git a/ch5/data/Actor_11/03-01-08-02-02-01-11.wav b/ch5/data/Actor_11/03-01-08-02-02-01-11.wav new file mode 100644 index 0000000..59360d2 Binary files /dev/null and b/ch5/data/Actor_11/03-01-08-02-02-01-11.wav differ diff --git a/ch5/data/Actor_11/03-01-08-02-02-02-11.wav b/ch5/data/Actor_11/03-01-08-02-02-02-11.wav new file mode 100644 index 0000000..71e1783 Binary files /dev/null and b/ch5/data/Actor_11/03-01-08-02-02-02-11.wav differ diff --git a/ch5/data/Actor_12/03-01-01-01-01-01-12.wav b/ch5/data/Actor_12/03-01-01-01-01-01-12.wav new file mode 100644 index 0000000..8bd5660 Binary files /dev/null and b/ch5/data/Actor_12/03-01-01-01-01-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-01-01-01-02-12.wav b/ch5/data/Actor_12/03-01-01-01-01-02-12.wav new file mode 100644 index 0000000..8f286c3 Binary files /dev/null and b/ch5/data/Actor_12/03-01-01-01-01-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-01-01-02-01-12.wav b/ch5/data/Actor_12/03-01-01-01-02-01-12.wav new file mode 100644 index 0000000..b301222 Binary files /dev/null and b/ch5/data/Actor_12/03-01-01-01-02-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-01-01-02-02-12.wav b/ch5/data/Actor_12/03-01-01-01-02-02-12.wav new file mode 100644 index 0000000..c7b7668 Binary files /dev/null and b/ch5/data/Actor_12/03-01-01-01-02-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-02-01-01-01-12.wav b/ch5/data/Actor_12/03-01-02-01-01-01-12.wav new file mode 100644 index 0000000..7dc2fd3 Binary files /dev/null and b/ch5/data/Actor_12/03-01-02-01-01-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-02-01-01-02-12.wav b/ch5/data/Actor_12/03-01-02-01-01-02-12.wav new file mode 100644 index 0000000..6b50382 Binary files /dev/null and b/ch5/data/Actor_12/03-01-02-01-01-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-02-01-02-01-12.wav b/ch5/data/Actor_12/03-01-02-01-02-01-12.wav new file mode 100644 index 0000000..79da994 Binary files /dev/null and b/ch5/data/Actor_12/03-01-02-01-02-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-02-01-02-02-12.wav b/ch5/data/Actor_12/03-01-02-01-02-02-12.wav new file mode 100644 index 0000000..d7dee5d Binary files /dev/null and b/ch5/data/Actor_12/03-01-02-01-02-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-02-02-01-01-12.wav b/ch5/data/Actor_12/03-01-02-02-01-01-12.wav new file mode 100644 index 0000000..737a603 Binary files /dev/null and b/ch5/data/Actor_12/03-01-02-02-01-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-02-02-01-02-12.wav b/ch5/data/Actor_12/03-01-02-02-01-02-12.wav new file mode 100644 index 0000000..06fd672 Binary files /dev/null and b/ch5/data/Actor_12/03-01-02-02-01-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-02-02-02-01-12.wav b/ch5/data/Actor_12/03-01-02-02-02-01-12.wav new file mode 100644 index 0000000..c4577b9 Binary files /dev/null and b/ch5/data/Actor_12/03-01-02-02-02-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-02-02-02-02-12.wav b/ch5/data/Actor_12/03-01-02-02-02-02-12.wav new file mode 100644 index 0000000..6546141 Binary files /dev/null and b/ch5/data/Actor_12/03-01-02-02-02-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-03-01-01-01-12.wav b/ch5/data/Actor_12/03-01-03-01-01-01-12.wav new file mode 100644 index 0000000..1902986 Binary files /dev/null and b/ch5/data/Actor_12/03-01-03-01-01-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-03-01-01-02-12.wav b/ch5/data/Actor_12/03-01-03-01-01-02-12.wav new file mode 100644 index 0000000..0cd864d Binary files /dev/null and b/ch5/data/Actor_12/03-01-03-01-01-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-03-01-02-01-12.wav b/ch5/data/Actor_12/03-01-03-01-02-01-12.wav new file mode 100644 index 0000000..deaf69f Binary files /dev/null and b/ch5/data/Actor_12/03-01-03-01-02-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-03-01-02-02-12.wav b/ch5/data/Actor_12/03-01-03-01-02-02-12.wav new file mode 100644 index 0000000..ae46f4e Binary files /dev/null and b/ch5/data/Actor_12/03-01-03-01-02-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-03-02-01-01-12.wav b/ch5/data/Actor_12/03-01-03-02-01-01-12.wav new file mode 100644 index 0000000..f104556 Binary files /dev/null and b/ch5/data/Actor_12/03-01-03-02-01-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-03-02-01-02-12.wav b/ch5/data/Actor_12/03-01-03-02-01-02-12.wav new file mode 100644 index 0000000..2decd4e Binary files /dev/null and b/ch5/data/Actor_12/03-01-03-02-01-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-03-02-02-01-12.wav b/ch5/data/Actor_12/03-01-03-02-02-01-12.wav new file mode 100644 index 0000000..62811a4 Binary files /dev/null and b/ch5/data/Actor_12/03-01-03-02-02-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-03-02-02-02-12.wav b/ch5/data/Actor_12/03-01-03-02-02-02-12.wav new file mode 100644 index 0000000..5d75f52 Binary files /dev/null and b/ch5/data/Actor_12/03-01-03-02-02-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-04-01-01-01-12.wav b/ch5/data/Actor_12/03-01-04-01-01-01-12.wav new file mode 100644 index 0000000..e87756d Binary files /dev/null and b/ch5/data/Actor_12/03-01-04-01-01-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-04-01-01-02-12.wav b/ch5/data/Actor_12/03-01-04-01-01-02-12.wav new file mode 100644 index 0000000..ad2d17e Binary files /dev/null and b/ch5/data/Actor_12/03-01-04-01-01-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-04-01-02-01-12.wav b/ch5/data/Actor_12/03-01-04-01-02-01-12.wav new file mode 100644 index 0000000..5efcaaf Binary files /dev/null and b/ch5/data/Actor_12/03-01-04-01-02-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-04-01-02-02-12.wav b/ch5/data/Actor_12/03-01-04-01-02-02-12.wav new file mode 100644 index 0000000..d81d5b0 Binary files /dev/null and b/ch5/data/Actor_12/03-01-04-01-02-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-04-02-01-01-12.wav b/ch5/data/Actor_12/03-01-04-02-01-01-12.wav new file mode 100644 index 0000000..87eefd5 Binary files /dev/null and b/ch5/data/Actor_12/03-01-04-02-01-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-04-02-01-02-12.wav b/ch5/data/Actor_12/03-01-04-02-01-02-12.wav new file mode 100644 index 0000000..5d4c7ea Binary files /dev/null and b/ch5/data/Actor_12/03-01-04-02-01-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-04-02-02-01-12.wav b/ch5/data/Actor_12/03-01-04-02-02-01-12.wav new file mode 100644 index 0000000..84a8afb Binary files /dev/null and b/ch5/data/Actor_12/03-01-04-02-02-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-04-02-02-02-12.wav b/ch5/data/Actor_12/03-01-04-02-02-02-12.wav new file mode 100644 index 0000000..b810f12 Binary files /dev/null and b/ch5/data/Actor_12/03-01-04-02-02-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-05-01-01-01-12.wav b/ch5/data/Actor_12/03-01-05-01-01-01-12.wav new file mode 100644 index 0000000..6f6f36c Binary files /dev/null and b/ch5/data/Actor_12/03-01-05-01-01-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-05-01-01-02-12.wav b/ch5/data/Actor_12/03-01-05-01-01-02-12.wav new file mode 100644 index 0000000..e276ff4 Binary files /dev/null and b/ch5/data/Actor_12/03-01-05-01-01-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-05-01-02-01-12.wav b/ch5/data/Actor_12/03-01-05-01-02-01-12.wav new file mode 100644 index 0000000..e22f32f Binary files /dev/null and b/ch5/data/Actor_12/03-01-05-01-02-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-05-01-02-02-12.wav b/ch5/data/Actor_12/03-01-05-01-02-02-12.wav new file mode 100644 index 0000000..64fa7b6 Binary files /dev/null and b/ch5/data/Actor_12/03-01-05-01-02-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-05-02-01-01-12.wav b/ch5/data/Actor_12/03-01-05-02-01-01-12.wav new file mode 100644 index 0000000..a8924ab Binary files /dev/null and b/ch5/data/Actor_12/03-01-05-02-01-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-05-02-01-02-12.wav b/ch5/data/Actor_12/03-01-05-02-01-02-12.wav new file mode 100644 index 0000000..0f6e177 Binary files /dev/null and b/ch5/data/Actor_12/03-01-05-02-01-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-05-02-02-01-12.wav b/ch5/data/Actor_12/03-01-05-02-02-01-12.wav new file mode 100644 index 0000000..94f71ea Binary files /dev/null and b/ch5/data/Actor_12/03-01-05-02-02-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-05-02-02-02-12.wav b/ch5/data/Actor_12/03-01-05-02-02-02-12.wav new file mode 100644 index 0000000..8091d3a Binary files /dev/null and b/ch5/data/Actor_12/03-01-05-02-02-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-06-01-01-01-12.wav b/ch5/data/Actor_12/03-01-06-01-01-01-12.wav new file mode 100644 index 0000000..81f7b0b Binary files /dev/null and b/ch5/data/Actor_12/03-01-06-01-01-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-06-01-01-02-12.wav b/ch5/data/Actor_12/03-01-06-01-01-02-12.wav new file mode 100644 index 0000000..94032bb Binary files /dev/null and b/ch5/data/Actor_12/03-01-06-01-01-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-06-01-02-01-12.wav b/ch5/data/Actor_12/03-01-06-01-02-01-12.wav new file mode 100644 index 0000000..bc8794e Binary files /dev/null and b/ch5/data/Actor_12/03-01-06-01-02-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-06-01-02-02-12.wav b/ch5/data/Actor_12/03-01-06-01-02-02-12.wav new file mode 100644 index 0000000..2e64bfb Binary files /dev/null and b/ch5/data/Actor_12/03-01-06-01-02-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-06-02-01-01-12.wav b/ch5/data/Actor_12/03-01-06-02-01-01-12.wav new file mode 100644 index 0000000..d5fc521 Binary files /dev/null and b/ch5/data/Actor_12/03-01-06-02-01-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-06-02-01-02-12.wav b/ch5/data/Actor_12/03-01-06-02-01-02-12.wav new file mode 100644 index 0000000..e011534 Binary files /dev/null and b/ch5/data/Actor_12/03-01-06-02-01-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-06-02-02-01-12.wav b/ch5/data/Actor_12/03-01-06-02-02-01-12.wav new file mode 100644 index 0000000..3bd3b9d Binary files /dev/null and b/ch5/data/Actor_12/03-01-06-02-02-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-06-02-02-02-12.wav b/ch5/data/Actor_12/03-01-06-02-02-02-12.wav new file mode 100644 index 0000000..c01d581 Binary files /dev/null and b/ch5/data/Actor_12/03-01-06-02-02-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-07-01-01-01-12.wav b/ch5/data/Actor_12/03-01-07-01-01-01-12.wav new file mode 100644 index 0000000..eb04e3e Binary files /dev/null and b/ch5/data/Actor_12/03-01-07-01-01-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-07-01-01-02-12.wav b/ch5/data/Actor_12/03-01-07-01-01-02-12.wav new file mode 100644 index 0000000..6f9a15a Binary files /dev/null and b/ch5/data/Actor_12/03-01-07-01-01-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-07-01-02-01-12.wav b/ch5/data/Actor_12/03-01-07-01-02-01-12.wav new file mode 100644 index 0000000..2572eb6 Binary files /dev/null and b/ch5/data/Actor_12/03-01-07-01-02-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-07-01-02-02-12.wav b/ch5/data/Actor_12/03-01-07-01-02-02-12.wav new file mode 100644 index 0000000..6204502 Binary files /dev/null and b/ch5/data/Actor_12/03-01-07-01-02-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-07-02-01-01-12.wav b/ch5/data/Actor_12/03-01-07-02-01-01-12.wav new file mode 100644 index 0000000..ae726f6 Binary files /dev/null and b/ch5/data/Actor_12/03-01-07-02-01-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-07-02-01-02-12.wav b/ch5/data/Actor_12/03-01-07-02-01-02-12.wav new file mode 100644 index 0000000..ac3ab7f Binary files /dev/null and b/ch5/data/Actor_12/03-01-07-02-01-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-07-02-02-01-12.wav b/ch5/data/Actor_12/03-01-07-02-02-01-12.wav new file mode 100644 index 0000000..4c25cff Binary files /dev/null and b/ch5/data/Actor_12/03-01-07-02-02-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-07-02-02-02-12.wav b/ch5/data/Actor_12/03-01-07-02-02-02-12.wav new file mode 100644 index 0000000..77ae6ce Binary files /dev/null and b/ch5/data/Actor_12/03-01-07-02-02-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-08-01-01-01-12.wav b/ch5/data/Actor_12/03-01-08-01-01-01-12.wav new file mode 100644 index 0000000..efb4221 Binary files /dev/null and b/ch5/data/Actor_12/03-01-08-01-01-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-08-01-01-02-12.wav b/ch5/data/Actor_12/03-01-08-01-01-02-12.wav new file mode 100644 index 0000000..b8915d3 Binary files /dev/null and b/ch5/data/Actor_12/03-01-08-01-01-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-08-01-02-01-12.wav b/ch5/data/Actor_12/03-01-08-01-02-01-12.wav new file mode 100644 index 0000000..234d262 Binary files /dev/null and b/ch5/data/Actor_12/03-01-08-01-02-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-08-01-02-02-12.wav b/ch5/data/Actor_12/03-01-08-01-02-02-12.wav new file mode 100644 index 0000000..88672e0 Binary files /dev/null and b/ch5/data/Actor_12/03-01-08-01-02-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-08-02-01-01-12.wav b/ch5/data/Actor_12/03-01-08-02-01-01-12.wav new file mode 100644 index 0000000..1e2d8c3 Binary files /dev/null and b/ch5/data/Actor_12/03-01-08-02-01-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-08-02-01-02-12.wav b/ch5/data/Actor_12/03-01-08-02-01-02-12.wav new file mode 100644 index 0000000..c7a5a92 Binary files /dev/null and b/ch5/data/Actor_12/03-01-08-02-01-02-12.wav differ diff --git a/ch5/data/Actor_12/03-01-08-02-02-01-12.wav b/ch5/data/Actor_12/03-01-08-02-02-01-12.wav new file mode 100644 index 0000000..5c7ce53 Binary files /dev/null and b/ch5/data/Actor_12/03-01-08-02-02-01-12.wav differ diff --git a/ch5/data/Actor_12/03-01-08-02-02-02-12.wav b/ch5/data/Actor_12/03-01-08-02-02-02-12.wav new file mode 100644 index 0000000..7cca254 Binary files /dev/null and b/ch5/data/Actor_12/03-01-08-02-02-02-12.wav differ diff --git a/ch5/data/Actor_13/03-01-01-01-01-01-13.wav b/ch5/data/Actor_13/03-01-01-01-01-01-13.wav new file mode 100644 index 0000000..451c44b Binary files /dev/null and b/ch5/data/Actor_13/03-01-01-01-01-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-01-01-01-02-13.wav b/ch5/data/Actor_13/03-01-01-01-01-02-13.wav new file mode 100644 index 0000000..e259ff2 Binary files /dev/null and b/ch5/data/Actor_13/03-01-01-01-01-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-01-01-02-01-13.wav b/ch5/data/Actor_13/03-01-01-01-02-01-13.wav new file mode 100644 index 0000000..c37d7f0 Binary files /dev/null and b/ch5/data/Actor_13/03-01-01-01-02-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-01-01-02-02-13.wav b/ch5/data/Actor_13/03-01-01-01-02-02-13.wav new file mode 100644 index 0000000..0ffa5cc Binary files /dev/null and b/ch5/data/Actor_13/03-01-01-01-02-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-02-01-01-01-13.wav b/ch5/data/Actor_13/03-01-02-01-01-01-13.wav new file mode 100644 index 0000000..5f5e57e Binary files /dev/null and b/ch5/data/Actor_13/03-01-02-01-01-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-02-01-01-02-13.wav b/ch5/data/Actor_13/03-01-02-01-01-02-13.wav new file mode 100644 index 0000000..a0d1ec6 Binary files /dev/null and b/ch5/data/Actor_13/03-01-02-01-01-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-02-01-02-01-13.wav b/ch5/data/Actor_13/03-01-02-01-02-01-13.wav new file mode 100644 index 0000000..f619b15 Binary files /dev/null and b/ch5/data/Actor_13/03-01-02-01-02-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-02-01-02-02-13.wav b/ch5/data/Actor_13/03-01-02-01-02-02-13.wav new file mode 100644 index 0000000..17098d3 Binary files /dev/null and b/ch5/data/Actor_13/03-01-02-01-02-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-02-02-01-01-13.wav b/ch5/data/Actor_13/03-01-02-02-01-01-13.wav new file mode 100644 index 0000000..092792c Binary files /dev/null and b/ch5/data/Actor_13/03-01-02-02-01-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-02-02-01-02-13.wav b/ch5/data/Actor_13/03-01-02-02-01-02-13.wav new file mode 100644 index 0000000..fe2a969 Binary files /dev/null and b/ch5/data/Actor_13/03-01-02-02-01-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-02-02-02-01-13.wav b/ch5/data/Actor_13/03-01-02-02-02-01-13.wav new file mode 100644 index 0000000..413b8d5 Binary files /dev/null and b/ch5/data/Actor_13/03-01-02-02-02-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-02-02-02-02-13.wav b/ch5/data/Actor_13/03-01-02-02-02-02-13.wav new file mode 100644 index 0000000..01b9d57 Binary files /dev/null and b/ch5/data/Actor_13/03-01-02-02-02-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-03-01-01-01-13.wav b/ch5/data/Actor_13/03-01-03-01-01-01-13.wav new file mode 100644 index 0000000..b3e92e2 Binary files /dev/null and b/ch5/data/Actor_13/03-01-03-01-01-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-03-01-01-02-13.wav b/ch5/data/Actor_13/03-01-03-01-01-02-13.wav new file mode 100644 index 0000000..6267bdd Binary files /dev/null and b/ch5/data/Actor_13/03-01-03-01-01-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-03-01-02-01-13.wav b/ch5/data/Actor_13/03-01-03-01-02-01-13.wav new file mode 100644 index 0000000..f4c413d Binary files /dev/null and b/ch5/data/Actor_13/03-01-03-01-02-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-03-01-02-02-13.wav b/ch5/data/Actor_13/03-01-03-01-02-02-13.wav new file mode 100644 index 0000000..f74731b Binary files /dev/null and b/ch5/data/Actor_13/03-01-03-01-02-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-03-02-01-01-13.wav b/ch5/data/Actor_13/03-01-03-02-01-01-13.wav new file mode 100644 index 0000000..6f2c811 Binary files /dev/null and b/ch5/data/Actor_13/03-01-03-02-01-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-03-02-01-02-13.wav b/ch5/data/Actor_13/03-01-03-02-01-02-13.wav new file mode 100644 index 0000000..3b96057 Binary files /dev/null and b/ch5/data/Actor_13/03-01-03-02-01-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-03-02-02-01-13.wav b/ch5/data/Actor_13/03-01-03-02-02-01-13.wav new file mode 100644 index 0000000..fd9b416 Binary files /dev/null and b/ch5/data/Actor_13/03-01-03-02-02-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-03-02-02-02-13.wav b/ch5/data/Actor_13/03-01-03-02-02-02-13.wav new file mode 100644 index 0000000..a4bcdb5 Binary files /dev/null and b/ch5/data/Actor_13/03-01-03-02-02-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-04-01-01-01-13.wav b/ch5/data/Actor_13/03-01-04-01-01-01-13.wav new file mode 100644 index 0000000..53a46ad Binary files /dev/null and b/ch5/data/Actor_13/03-01-04-01-01-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-04-01-01-02-13.wav b/ch5/data/Actor_13/03-01-04-01-01-02-13.wav new file mode 100644 index 0000000..dee6010 Binary files /dev/null and b/ch5/data/Actor_13/03-01-04-01-01-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-04-01-02-01-13.wav b/ch5/data/Actor_13/03-01-04-01-02-01-13.wav new file mode 100644 index 0000000..9964f27 Binary files /dev/null and b/ch5/data/Actor_13/03-01-04-01-02-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-04-01-02-02-13.wav b/ch5/data/Actor_13/03-01-04-01-02-02-13.wav new file mode 100644 index 0000000..e22edee Binary files /dev/null and b/ch5/data/Actor_13/03-01-04-01-02-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-04-02-01-01-13.wav b/ch5/data/Actor_13/03-01-04-02-01-01-13.wav new file mode 100644 index 0000000..bc0075e Binary files /dev/null and b/ch5/data/Actor_13/03-01-04-02-01-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-04-02-01-02-13.wav b/ch5/data/Actor_13/03-01-04-02-01-02-13.wav new file mode 100644 index 0000000..8f9599d Binary files /dev/null and b/ch5/data/Actor_13/03-01-04-02-01-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-04-02-02-01-13.wav b/ch5/data/Actor_13/03-01-04-02-02-01-13.wav new file mode 100644 index 0000000..9060eb1 Binary files /dev/null and b/ch5/data/Actor_13/03-01-04-02-02-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-04-02-02-02-13.wav b/ch5/data/Actor_13/03-01-04-02-02-02-13.wav new file mode 100644 index 0000000..09734cb Binary files /dev/null and b/ch5/data/Actor_13/03-01-04-02-02-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-05-01-01-01-13.wav b/ch5/data/Actor_13/03-01-05-01-01-01-13.wav new file mode 100644 index 0000000..6a35da0 Binary files /dev/null and b/ch5/data/Actor_13/03-01-05-01-01-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-05-01-01-02-13.wav b/ch5/data/Actor_13/03-01-05-01-01-02-13.wav new file mode 100644 index 0000000..c36cea3 Binary files /dev/null and b/ch5/data/Actor_13/03-01-05-01-01-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-05-01-02-01-13.wav b/ch5/data/Actor_13/03-01-05-01-02-01-13.wav new file mode 100644 index 0000000..45ceef4 Binary files /dev/null and b/ch5/data/Actor_13/03-01-05-01-02-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-05-01-02-02-13.wav b/ch5/data/Actor_13/03-01-05-01-02-02-13.wav new file mode 100644 index 0000000..a194388 Binary files /dev/null and b/ch5/data/Actor_13/03-01-05-01-02-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-05-02-01-01-13.wav b/ch5/data/Actor_13/03-01-05-02-01-01-13.wav new file mode 100644 index 0000000..e05836b Binary files /dev/null and b/ch5/data/Actor_13/03-01-05-02-01-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-05-02-01-02-13.wav b/ch5/data/Actor_13/03-01-05-02-01-02-13.wav new file mode 100644 index 0000000..41c02da Binary files /dev/null and b/ch5/data/Actor_13/03-01-05-02-01-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-05-02-02-01-13.wav b/ch5/data/Actor_13/03-01-05-02-02-01-13.wav new file mode 100644 index 0000000..30328ce Binary files /dev/null and b/ch5/data/Actor_13/03-01-05-02-02-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-05-02-02-02-13.wav b/ch5/data/Actor_13/03-01-05-02-02-02-13.wav new file mode 100644 index 0000000..17ecb91 Binary files /dev/null and b/ch5/data/Actor_13/03-01-05-02-02-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-06-01-01-01-13.wav b/ch5/data/Actor_13/03-01-06-01-01-01-13.wav new file mode 100644 index 0000000..e192fe4 Binary files /dev/null and b/ch5/data/Actor_13/03-01-06-01-01-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-06-01-01-02-13.wav b/ch5/data/Actor_13/03-01-06-01-01-02-13.wav new file mode 100644 index 0000000..0bc04cd Binary files /dev/null and b/ch5/data/Actor_13/03-01-06-01-01-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-06-01-02-01-13.wav b/ch5/data/Actor_13/03-01-06-01-02-01-13.wav new file mode 100644 index 0000000..ad09caa Binary files /dev/null and b/ch5/data/Actor_13/03-01-06-01-02-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-06-01-02-02-13.wav b/ch5/data/Actor_13/03-01-06-01-02-02-13.wav new file mode 100644 index 0000000..f7dc43d Binary files /dev/null and b/ch5/data/Actor_13/03-01-06-01-02-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-06-02-01-01-13.wav b/ch5/data/Actor_13/03-01-06-02-01-01-13.wav new file mode 100644 index 0000000..cbb2200 Binary files /dev/null and b/ch5/data/Actor_13/03-01-06-02-01-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-06-02-01-02-13.wav b/ch5/data/Actor_13/03-01-06-02-01-02-13.wav new file mode 100644 index 0000000..8a9c146 Binary files /dev/null and b/ch5/data/Actor_13/03-01-06-02-01-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-06-02-02-01-13.wav b/ch5/data/Actor_13/03-01-06-02-02-01-13.wav new file mode 100644 index 0000000..d831382 Binary files /dev/null and b/ch5/data/Actor_13/03-01-06-02-02-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-06-02-02-02-13.wav b/ch5/data/Actor_13/03-01-06-02-02-02-13.wav new file mode 100644 index 0000000..f8e401e Binary files /dev/null and b/ch5/data/Actor_13/03-01-06-02-02-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-07-01-01-01-13.wav b/ch5/data/Actor_13/03-01-07-01-01-01-13.wav new file mode 100644 index 0000000..9161fd1 Binary files /dev/null and b/ch5/data/Actor_13/03-01-07-01-01-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-07-01-01-02-13.wav b/ch5/data/Actor_13/03-01-07-01-01-02-13.wav new file mode 100644 index 0000000..b97219e Binary files /dev/null and b/ch5/data/Actor_13/03-01-07-01-01-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-07-01-02-01-13.wav b/ch5/data/Actor_13/03-01-07-01-02-01-13.wav new file mode 100644 index 0000000..99712bd Binary files /dev/null and b/ch5/data/Actor_13/03-01-07-01-02-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-07-01-02-02-13.wav b/ch5/data/Actor_13/03-01-07-01-02-02-13.wav new file mode 100644 index 0000000..d5bc8db Binary files /dev/null and b/ch5/data/Actor_13/03-01-07-01-02-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-07-02-01-01-13.wav b/ch5/data/Actor_13/03-01-07-02-01-01-13.wav new file mode 100644 index 0000000..0fb69d5 Binary files /dev/null and b/ch5/data/Actor_13/03-01-07-02-01-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-07-02-01-02-13.wav b/ch5/data/Actor_13/03-01-07-02-01-02-13.wav new file mode 100644 index 0000000..fd088d9 Binary files /dev/null and b/ch5/data/Actor_13/03-01-07-02-01-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-07-02-02-01-13.wav b/ch5/data/Actor_13/03-01-07-02-02-01-13.wav new file mode 100644 index 0000000..9611c2d Binary files /dev/null and b/ch5/data/Actor_13/03-01-07-02-02-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-07-02-02-02-13.wav b/ch5/data/Actor_13/03-01-07-02-02-02-13.wav new file mode 100644 index 0000000..8a1a207 Binary files /dev/null and b/ch5/data/Actor_13/03-01-07-02-02-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-08-01-01-01-13.wav b/ch5/data/Actor_13/03-01-08-01-01-01-13.wav new file mode 100644 index 0000000..c5ac641 Binary files /dev/null and b/ch5/data/Actor_13/03-01-08-01-01-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-08-01-01-02-13.wav b/ch5/data/Actor_13/03-01-08-01-01-02-13.wav new file mode 100644 index 0000000..e2d2e6a Binary files /dev/null and b/ch5/data/Actor_13/03-01-08-01-01-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-08-01-02-01-13.wav b/ch5/data/Actor_13/03-01-08-01-02-01-13.wav new file mode 100644 index 0000000..0848ce2 Binary files /dev/null and b/ch5/data/Actor_13/03-01-08-01-02-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-08-01-02-02-13.wav b/ch5/data/Actor_13/03-01-08-01-02-02-13.wav new file mode 100644 index 0000000..69455ba Binary files /dev/null and b/ch5/data/Actor_13/03-01-08-01-02-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-08-02-01-01-13.wav b/ch5/data/Actor_13/03-01-08-02-01-01-13.wav new file mode 100644 index 0000000..ae703a0 Binary files /dev/null and b/ch5/data/Actor_13/03-01-08-02-01-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-08-02-01-02-13.wav b/ch5/data/Actor_13/03-01-08-02-01-02-13.wav new file mode 100644 index 0000000..2cbb649 Binary files /dev/null and b/ch5/data/Actor_13/03-01-08-02-01-02-13.wav differ diff --git a/ch5/data/Actor_13/03-01-08-02-02-01-13.wav b/ch5/data/Actor_13/03-01-08-02-02-01-13.wav new file mode 100644 index 0000000..ef5fee7 Binary files /dev/null and b/ch5/data/Actor_13/03-01-08-02-02-01-13.wav differ diff --git a/ch5/data/Actor_13/03-01-08-02-02-02-13.wav b/ch5/data/Actor_13/03-01-08-02-02-02-13.wav new file mode 100644 index 0000000..08ea177 Binary files /dev/null and b/ch5/data/Actor_13/03-01-08-02-02-02-13.wav differ diff --git a/ch5/data/Actor_14/03-01-01-01-01-01-14.wav b/ch5/data/Actor_14/03-01-01-01-01-01-14.wav new file mode 100644 index 0000000..de3ea0f Binary files /dev/null and b/ch5/data/Actor_14/03-01-01-01-01-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-01-01-01-02-14.wav b/ch5/data/Actor_14/03-01-01-01-01-02-14.wav new file mode 100644 index 0000000..f2852a2 Binary files /dev/null and b/ch5/data/Actor_14/03-01-01-01-01-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-01-01-02-01-14.wav b/ch5/data/Actor_14/03-01-01-01-02-01-14.wav new file mode 100644 index 0000000..913cd77 Binary files /dev/null and b/ch5/data/Actor_14/03-01-01-01-02-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-01-01-02-02-14.wav b/ch5/data/Actor_14/03-01-01-01-02-02-14.wav new file mode 100644 index 0000000..48dfa34 Binary files /dev/null and b/ch5/data/Actor_14/03-01-01-01-02-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-02-01-01-01-14.wav b/ch5/data/Actor_14/03-01-02-01-01-01-14.wav new file mode 100644 index 0000000..c99ac1e Binary files /dev/null and b/ch5/data/Actor_14/03-01-02-01-01-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-02-01-01-02-14.wav b/ch5/data/Actor_14/03-01-02-01-01-02-14.wav new file mode 100644 index 0000000..c9e1b36 Binary files /dev/null and b/ch5/data/Actor_14/03-01-02-01-01-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-02-01-02-01-14.wav b/ch5/data/Actor_14/03-01-02-01-02-01-14.wav new file mode 100644 index 0000000..41c6ee8 Binary files /dev/null and b/ch5/data/Actor_14/03-01-02-01-02-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-02-01-02-02-14.wav b/ch5/data/Actor_14/03-01-02-01-02-02-14.wav new file mode 100644 index 0000000..95708bd Binary files /dev/null and b/ch5/data/Actor_14/03-01-02-01-02-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-02-02-01-01-14.wav b/ch5/data/Actor_14/03-01-02-02-01-01-14.wav new file mode 100644 index 0000000..dc770cd Binary files /dev/null and b/ch5/data/Actor_14/03-01-02-02-01-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-02-02-01-02-14.wav b/ch5/data/Actor_14/03-01-02-02-01-02-14.wav new file mode 100644 index 0000000..d108a2e Binary files /dev/null and b/ch5/data/Actor_14/03-01-02-02-01-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-02-02-02-01-14.wav b/ch5/data/Actor_14/03-01-02-02-02-01-14.wav new file mode 100644 index 0000000..52d00db Binary files /dev/null and b/ch5/data/Actor_14/03-01-02-02-02-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-02-02-02-02-14.wav b/ch5/data/Actor_14/03-01-02-02-02-02-14.wav new file mode 100644 index 0000000..e85cf2c Binary files /dev/null and b/ch5/data/Actor_14/03-01-02-02-02-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-03-01-01-01-14.wav b/ch5/data/Actor_14/03-01-03-01-01-01-14.wav new file mode 100644 index 0000000..70de2a6 Binary files /dev/null and b/ch5/data/Actor_14/03-01-03-01-01-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-03-01-01-02-14.wav b/ch5/data/Actor_14/03-01-03-01-01-02-14.wav new file mode 100644 index 0000000..6ad0e8e Binary files /dev/null and b/ch5/data/Actor_14/03-01-03-01-01-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-03-01-02-01-14.wav b/ch5/data/Actor_14/03-01-03-01-02-01-14.wav new file mode 100644 index 0000000..f03543f Binary files /dev/null and b/ch5/data/Actor_14/03-01-03-01-02-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-03-01-02-02-14.wav b/ch5/data/Actor_14/03-01-03-01-02-02-14.wav new file mode 100644 index 0000000..543da3c Binary files /dev/null and b/ch5/data/Actor_14/03-01-03-01-02-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-03-02-01-01-14.wav b/ch5/data/Actor_14/03-01-03-02-01-01-14.wav new file mode 100644 index 0000000..c0eadcb Binary files /dev/null and b/ch5/data/Actor_14/03-01-03-02-01-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-03-02-01-02-14.wav b/ch5/data/Actor_14/03-01-03-02-01-02-14.wav new file mode 100644 index 0000000..8216f01 Binary files /dev/null and b/ch5/data/Actor_14/03-01-03-02-01-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-03-02-02-01-14.wav b/ch5/data/Actor_14/03-01-03-02-02-01-14.wav new file mode 100644 index 0000000..eed17da Binary files /dev/null and b/ch5/data/Actor_14/03-01-03-02-02-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-03-02-02-02-14.wav b/ch5/data/Actor_14/03-01-03-02-02-02-14.wav new file mode 100644 index 0000000..f3d160f Binary files /dev/null and b/ch5/data/Actor_14/03-01-03-02-02-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-04-01-01-01-14.wav b/ch5/data/Actor_14/03-01-04-01-01-01-14.wav new file mode 100644 index 0000000..b7df8ff Binary files /dev/null and b/ch5/data/Actor_14/03-01-04-01-01-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-04-01-01-02-14.wav b/ch5/data/Actor_14/03-01-04-01-01-02-14.wav new file mode 100644 index 0000000..bf95cf2 Binary files /dev/null and b/ch5/data/Actor_14/03-01-04-01-01-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-04-01-02-01-14.wav b/ch5/data/Actor_14/03-01-04-01-02-01-14.wav new file mode 100644 index 0000000..c13c285 Binary files /dev/null and b/ch5/data/Actor_14/03-01-04-01-02-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-04-01-02-02-14.wav b/ch5/data/Actor_14/03-01-04-01-02-02-14.wav new file mode 100644 index 0000000..7f04cbe Binary files /dev/null and b/ch5/data/Actor_14/03-01-04-01-02-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-04-02-01-01-14.wav b/ch5/data/Actor_14/03-01-04-02-01-01-14.wav new file mode 100644 index 0000000..85e1510 Binary files /dev/null and b/ch5/data/Actor_14/03-01-04-02-01-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-04-02-01-02-14.wav b/ch5/data/Actor_14/03-01-04-02-01-02-14.wav new file mode 100644 index 0000000..121e6b9 Binary files /dev/null and b/ch5/data/Actor_14/03-01-04-02-01-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-04-02-02-01-14.wav b/ch5/data/Actor_14/03-01-04-02-02-01-14.wav new file mode 100644 index 0000000..97ebd7f Binary files /dev/null and b/ch5/data/Actor_14/03-01-04-02-02-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-04-02-02-02-14.wav b/ch5/data/Actor_14/03-01-04-02-02-02-14.wav new file mode 100644 index 0000000..fbfeee4 Binary files /dev/null and b/ch5/data/Actor_14/03-01-04-02-02-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-05-01-01-01-14.wav b/ch5/data/Actor_14/03-01-05-01-01-01-14.wav new file mode 100644 index 0000000..525b15e Binary files /dev/null and b/ch5/data/Actor_14/03-01-05-01-01-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-05-01-01-02-14.wav b/ch5/data/Actor_14/03-01-05-01-01-02-14.wav new file mode 100644 index 0000000..49a7e25 Binary files /dev/null and b/ch5/data/Actor_14/03-01-05-01-01-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-05-01-02-01-14.wav b/ch5/data/Actor_14/03-01-05-01-02-01-14.wav new file mode 100644 index 0000000..ffb90c8 Binary files /dev/null and b/ch5/data/Actor_14/03-01-05-01-02-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-05-01-02-02-14.wav b/ch5/data/Actor_14/03-01-05-01-02-02-14.wav new file mode 100644 index 0000000..54479c5 Binary files /dev/null and b/ch5/data/Actor_14/03-01-05-01-02-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-05-02-01-01-14.wav b/ch5/data/Actor_14/03-01-05-02-01-01-14.wav new file mode 100644 index 0000000..15a0e6d Binary files /dev/null and b/ch5/data/Actor_14/03-01-05-02-01-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-05-02-01-02-14.wav b/ch5/data/Actor_14/03-01-05-02-01-02-14.wav new file mode 100644 index 0000000..b92470b Binary files /dev/null and b/ch5/data/Actor_14/03-01-05-02-01-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-05-02-02-01-14.wav b/ch5/data/Actor_14/03-01-05-02-02-01-14.wav new file mode 100644 index 0000000..22b51b0 Binary files /dev/null and b/ch5/data/Actor_14/03-01-05-02-02-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-05-02-02-02-14.wav b/ch5/data/Actor_14/03-01-05-02-02-02-14.wav new file mode 100644 index 0000000..36ee354 Binary files /dev/null and b/ch5/data/Actor_14/03-01-05-02-02-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-06-01-01-01-14.wav b/ch5/data/Actor_14/03-01-06-01-01-01-14.wav new file mode 100644 index 0000000..c645c26 Binary files /dev/null and b/ch5/data/Actor_14/03-01-06-01-01-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-06-01-01-02-14.wav b/ch5/data/Actor_14/03-01-06-01-01-02-14.wav new file mode 100644 index 0000000..97d0341 Binary files /dev/null and b/ch5/data/Actor_14/03-01-06-01-01-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-06-01-02-01-14.wav b/ch5/data/Actor_14/03-01-06-01-02-01-14.wav new file mode 100644 index 0000000..85aa66a Binary files /dev/null and b/ch5/data/Actor_14/03-01-06-01-02-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-06-01-02-02-14.wav b/ch5/data/Actor_14/03-01-06-01-02-02-14.wav new file mode 100644 index 0000000..961b334 Binary files /dev/null and b/ch5/data/Actor_14/03-01-06-01-02-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-06-02-01-01-14.wav b/ch5/data/Actor_14/03-01-06-02-01-01-14.wav new file mode 100644 index 0000000..b6a627b Binary files /dev/null and b/ch5/data/Actor_14/03-01-06-02-01-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-06-02-01-02-14.wav b/ch5/data/Actor_14/03-01-06-02-01-02-14.wav new file mode 100644 index 0000000..31e4fae Binary files /dev/null and b/ch5/data/Actor_14/03-01-06-02-01-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-06-02-02-01-14.wav b/ch5/data/Actor_14/03-01-06-02-02-01-14.wav new file mode 100644 index 0000000..f0fbc60 Binary files /dev/null and b/ch5/data/Actor_14/03-01-06-02-02-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-06-02-02-02-14.wav b/ch5/data/Actor_14/03-01-06-02-02-02-14.wav new file mode 100644 index 0000000..6c3b804 Binary files /dev/null and b/ch5/data/Actor_14/03-01-06-02-02-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-07-01-01-01-14.wav b/ch5/data/Actor_14/03-01-07-01-01-01-14.wav new file mode 100644 index 0000000..e32abfb Binary files /dev/null and b/ch5/data/Actor_14/03-01-07-01-01-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-07-01-01-02-14.wav b/ch5/data/Actor_14/03-01-07-01-01-02-14.wav new file mode 100644 index 0000000..1199965 Binary files /dev/null and b/ch5/data/Actor_14/03-01-07-01-01-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-07-01-02-01-14.wav b/ch5/data/Actor_14/03-01-07-01-02-01-14.wav new file mode 100644 index 0000000..2edfb58 Binary files /dev/null and b/ch5/data/Actor_14/03-01-07-01-02-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-07-01-02-02-14.wav b/ch5/data/Actor_14/03-01-07-01-02-02-14.wav new file mode 100644 index 0000000..490ba1f Binary files /dev/null and b/ch5/data/Actor_14/03-01-07-01-02-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-07-02-01-01-14.wav b/ch5/data/Actor_14/03-01-07-02-01-01-14.wav new file mode 100644 index 0000000..380a360 Binary files /dev/null and b/ch5/data/Actor_14/03-01-07-02-01-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-07-02-01-02-14.wav b/ch5/data/Actor_14/03-01-07-02-01-02-14.wav new file mode 100644 index 0000000..59cba0f Binary files /dev/null and b/ch5/data/Actor_14/03-01-07-02-01-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-07-02-02-01-14.wav b/ch5/data/Actor_14/03-01-07-02-02-01-14.wav new file mode 100644 index 0000000..1135271 Binary files /dev/null and b/ch5/data/Actor_14/03-01-07-02-02-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-07-02-02-02-14.wav b/ch5/data/Actor_14/03-01-07-02-02-02-14.wav new file mode 100644 index 0000000..111e506 Binary files /dev/null and b/ch5/data/Actor_14/03-01-07-02-02-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-08-01-01-01-14.wav b/ch5/data/Actor_14/03-01-08-01-01-01-14.wav new file mode 100644 index 0000000..ed3ec99 Binary files /dev/null and b/ch5/data/Actor_14/03-01-08-01-01-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-08-01-01-02-14.wav b/ch5/data/Actor_14/03-01-08-01-01-02-14.wav new file mode 100644 index 0000000..106e59f Binary files /dev/null and b/ch5/data/Actor_14/03-01-08-01-01-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-08-01-02-01-14.wav b/ch5/data/Actor_14/03-01-08-01-02-01-14.wav new file mode 100644 index 0000000..6a2fb35 Binary files /dev/null and b/ch5/data/Actor_14/03-01-08-01-02-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-08-01-02-02-14.wav b/ch5/data/Actor_14/03-01-08-01-02-02-14.wav new file mode 100644 index 0000000..25f3464 Binary files /dev/null and b/ch5/data/Actor_14/03-01-08-01-02-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-08-02-01-01-14.wav b/ch5/data/Actor_14/03-01-08-02-01-01-14.wav new file mode 100644 index 0000000..2d82934 Binary files /dev/null and b/ch5/data/Actor_14/03-01-08-02-01-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-08-02-01-02-14.wav b/ch5/data/Actor_14/03-01-08-02-01-02-14.wav new file mode 100644 index 0000000..eb9da46 Binary files /dev/null and b/ch5/data/Actor_14/03-01-08-02-01-02-14.wav differ diff --git a/ch5/data/Actor_14/03-01-08-02-02-01-14.wav b/ch5/data/Actor_14/03-01-08-02-02-01-14.wav new file mode 100644 index 0000000..44d7be2 Binary files /dev/null and b/ch5/data/Actor_14/03-01-08-02-02-01-14.wav differ diff --git a/ch5/data/Actor_14/03-01-08-02-02-02-14.wav b/ch5/data/Actor_14/03-01-08-02-02-02-14.wav new file mode 100644 index 0000000..c8333f5 Binary files /dev/null and b/ch5/data/Actor_14/03-01-08-02-02-02-14.wav differ diff --git a/ch5/data/Actor_15/03-01-01-01-01-01-15.wav b/ch5/data/Actor_15/03-01-01-01-01-01-15.wav new file mode 100644 index 0000000..f9ded74 Binary files /dev/null and b/ch5/data/Actor_15/03-01-01-01-01-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-01-01-01-02-15.wav b/ch5/data/Actor_15/03-01-01-01-01-02-15.wav new file mode 100644 index 0000000..91b750a Binary files /dev/null and b/ch5/data/Actor_15/03-01-01-01-01-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-01-01-02-01-15.wav b/ch5/data/Actor_15/03-01-01-01-02-01-15.wav new file mode 100644 index 0000000..f542fcb Binary files /dev/null and b/ch5/data/Actor_15/03-01-01-01-02-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-01-01-02-02-15.wav b/ch5/data/Actor_15/03-01-01-01-02-02-15.wav new file mode 100644 index 0000000..1909495 Binary files /dev/null and b/ch5/data/Actor_15/03-01-01-01-02-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-02-01-01-01-15.wav b/ch5/data/Actor_15/03-01-02-01-01-01-15.wav new file mode 100644 index 0000000..1026e80 Binary files /dev/null and b/ch5/data/Actor_15/03-01-02-01-01-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-02-01-01-02-15.wav b/ch5/data/Actor_15/03-01-02-01-01-02-15.wav new file mode 100644 index 0000000..620dd29 Binary files /dev/null and b/ch5/data/Actor_15/03-01-02-01-01-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-02-01-02-01-15.wav b/ch5/data/Actor_15/03-01-02-01-02-01-15.wav new file mode 100644 index 0000000..15d9ba8 Binary files /dev/null and b/ch5/data/Actor_15/03-01-02-01-02-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-02-01-02-02-15.wav b/ch5/data/Actor_15/03-01-02-01-02-02-15.wav new file mode 100644 index 0000000..7a567e5 Binary files /dev/null and b/ch5/data/Actor_15/03-01-02-01-02-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-02-02-01-01-15.wav b/ch5/data/Actor_15/03-01-02-02-01-01-15.wav new file mode 100644 index 0000000..17b0529 Binary files /dev/null and b/ch5/data/Actor_15/03-01-02-02-01-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-02-02-01-02-15.wav b/ch5/data/Actor_15/03-01-02-02-01-02-15.wav new file mode 100644 index 0000000..640ede3 Binary files /dev/null and b/ch5/data/Actor_15/03-01-02-02-01-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-02-02-02-01-15.wav b/ch5/data/Actor_15/03-01-02-02-02-01-15.wav new file mode 100644 index 0000000..9b71bac Binary files /dev/null and b/ch5/data/Actor_15/03-01-02-02-02-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-02-02-02-02-15.wav b/ch5/data/Actor_15/03-01-02-02-02-02-15.wav new file mode 100644 index 0000000..93ab248 Binary files /dev/null and b/ch5/data/Actor_15/03-01-02-02-02-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-03-01-01-01-15.wav b/ch5/data/Actor_15/03-01-03-01-01-01-15.wav new file mode 100644 index 0000000..b070646 Binary files /dev/null and b/ch5/data/Actor_15/03-01-03-01-01-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-03-01-01-02-15.wav b/ch5/data/Actor_15/03-01-03-01-01-02-15.wav new file mode 100644 index 0000000..2e45353 Binary files /dev/null and b/ch5/data/Actor_15/03-01-03-01-01-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-03-01-02-01-15.wav b/ch5/data/Actor_15/03-01-03-01-02-01-15.wav new file mode 100644 index 0000000..401ed13 Binary files /dev/null and b/ch5/data/Actor_15/03-01-03-01-02-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-03-01-02-02-15.wav b/ch5/data/Actor_15/03-01-03-01-02-02-15.wav new file mode 100644 index 0000000..1e8c557 Binary files /dev/null and b/ch5/data/Actor_15/03-01-03-01-02-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-03-02-01-01-15.wav b/ch5/data/Actor_15/03-01-03-02-01-01-15.wav new file mode 100644 index 0000000..0ac60c8 Binary files /dev/null and b/ch5/data/Actor_15/03-01-03-02-01-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-03-02-01-02-15.wav b/ch5/data/Actor_15/03-01-03-02-01-02-15.wav new file mode 100644 index 0000000..58c0c58 Binary files /dev/null and b/ch5/data/Actor_15/03-01-03-02-01-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-03-02-02-01-15.wav b/ch5/data/Actor_15/03-01-03-02-02-01-15.wav new file mode 100644 index 0000000..b92645c Binary files /dev/null and b/ch5/data/Actor_15/03-01-03-02-02-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-03-02-02-02-15.wav b/ch5/data/Actor_15/03-01-03-02-02-02-15.wav new file mode 100644 index 0000000..5123126 Binary files /dev/null and b/ch5/data/Actor_15/03-01-03-02-02-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-04-01-01-01-15.wav b/ch5/data/Actor_15/03-01-04-01-01-01-15.wav new file mode 100644 index 0000000..390752a Binary files /dev/null and b/ch5/data/Actor_15/03-01-04-01-01-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-04-01-01-02-15.wav b/ch5/data/Actor_15/03-01-04-01-01-02-15.wav new file mode 100644 index 0000000..a1bc125 Binary files /dev/null and b/ch5/data/Actor_15/03-01-04-01-01-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-04-01-02-01-15.wav b/ch5/data/Actor_15/03-01-04-01-02-01-15.wav new file mode 100644 index 0000000..676af2f Binary files /dev/null and b/ch5/data/Actor_15/03-01-04-01-02-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-04-01-02-02-15.wav b/ch5/data/Actor_15/03-01-04-01-02-02-15.wav new file mode 100644 index 0000000..d218608 Binary files /dev/null and b/ch5/data/Actor_15/03-01-04-01-02-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-04-02-01-01-15.wav b/ch5/data/Actor_15/03-01-04-02-01-01-15.wav new file mode 100644 index 0000000..04cccbc Binary files /dev/null and b/ch5/data/Actor_15/03-01-04-02-01-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-04-02-01-02-15.wav b/ch5/data/Actor_15/03-01-04-02-01-02-15.wav new file mode 100644 index 0000000..ecb2b0b Binary files /dev/null and b/ch5/data/Actor_15/03-01-04-02-01-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-04-02-02-01-15.wav b/ch5/data/Actor_15/03-01-04-02-02-01-15.wav new file mode 100644 index 0000000..92082d8 Binary files /dev/null and b/ch5/data/Actor_15/03-01-04-02-02-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-04-02-02-02-15.wav b/ch5/data/Actor_15/03-01-04-02-02-02-15.wav new file mode 100644 index 0000000..7740b77 Binary files /dev/null and b/ch5/data/Actor_15/03-01-04-02-02-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-05-01-01-01-15.wav b/ch5/data/Actor_15/03-01-05-01-01-01-15.wav new file mode 100644 index 0000000..76f8ea9 Binary files /dev/null and b/ch5/data/Actor_15/03-01-05-01-01-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-05-01-01-02-15.wav b/ch5/data/Actor_15/03-01-05-01-01-02-15.wav new file mode 100644 index 0000000..be1796e Binary files /dev/null and b/ch5/data/Actor_15/03-01-05-01-01-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-05-01-02-01-15.wav b/ch5/data/Actor_15/03-01-05-01-02-01-15.wav new file mode 100644 index 0000000..01de324 Binary files /dev/null and b/ch5/data/Actor_15/03-01-05-01-02-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-05-01-02-02-15.wav b/ch5/data/Actor_15/03-01-05-01-02-02-15.wav new file mode 100644 index 0000000..ac3aa93 Binary files /dev/null and b/ch5/data/Actor_15/03-01-05-01-02-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-05-02-01-01-15.wav b/ch5/data/Actor_15/03-01-05-02-01-01-15.wav new file mode 100644 index 0000000..5b1cec8 Binary files /dev/null and b/ch5/data/Actor_15/03-01-05-02-01-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-05-02-01-02-15.wav b/ch5/data/Actor_15/03-01-05-02-01-02-15.wav new file mode 100644 index 0000000..53b1245 Binary files /dev/null and b/ch5/data/Actor_15/03-01-05-02-01-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-05-02-02-01-15.wav b/ch5/data/Actor_15/03-01-05-02-02-01-15.wav new file mode 100644 index 0000000..d8c3e34 Binary files /dev/null and b/ch5/data/Actor_15/03-01-05-02-02-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-05-02-02-02-15.wav b/ch5/data/Actor_15/03-01-05-02-02-02-15.wav new file mode 100644 index 0000000..3f79fd9 Binary files /dev/null and b/ch5/data/Actor_15/03-01-05-02-02-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-06-01-01-01-15.wav b/ch5/data/Actor_15/03-01-06-01-01-01-15.wav new file mode 100644 index 0000000..e9438ba Binary files /dev/null and b/ch5/data/Actor_15/03-01-06-01-01-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-06-01-01-02-15.wav b/ch5/data/Actor_15/03-01-06-01-01-02-15.wav new file mode 100644 index 0000000..649652b Binary files /dev/null and b/ch5/data/Actor_15/03-01-06-01-01-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-06-01-02-01-15.wav b/ch5/data/Actor_15/03-01-06-01-02-01-15.wav new file mode 100644 index 0000000..6912241 Binary files /dev/null and b/ch5/data/Actor_15/03-01-06-01-02-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-06-01-02-02-15.wav b/ch5/data/Actor_15/03-01-06-01-02-02-15.wav new file mode 100644 index 0000000..a0fd7e3 Binary files /dev/null and b/ch5/data/Actor_15/03-01-06-01-02-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-06-02-01-01-15.wav b/ch5/data/Actor_15/03-01-06-02-01-01-15.wav new file mode 100644 index 0000000..f17ff88 Binary files /dev/null and b/ch5/data/Actor_15/03-01-06-02-01-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-06-02-01-02-15.wav b/ch5/data/Actor_15/03-01-06-02-01-02-15.wav new file mode 100644 index 0000000..bc5a321 Binary files /dev/null and b/ch5/data/Actor_15/03-01-06-02-01-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-06-02-02-01-15.wav b/ch5/data/Actor_15/03-01-06-02-02-01-15.wav new file mode 100644 index 0000000..78b6140 Binary files /dev/null and b/ch5/data/Actor_15/03-01-06-02-02-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-06-02-02-02-15.wav b/ch5/data/Actor_15/03-01-06-02-02-02-15.wav new file mode 100644 index 0000000..c479f5d Binary files /dev/null and b/ch5/data/Actor_15/03-01-06-02-02-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-07-01-01-01-15.wav b/ch5/data/Actor_15/03-01-07-01-01-01-15.wav new file mode 100644 index 0000000..a092616 Binary files /dev/null and b/ch5/data/Actor_15/03-01-07-01-01-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-07-01-01-02-15.wav b/ch5/data/Actor_15/03-01-07-01-01-02-15.wav new file mode 100644 index 0000000..df4fed6 Binary files /dev/null and b/ch5/data/Actor_15/03-01-07-01-01-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-07-01-02-01-15.wav b/ch5/data/Actor_15/03-01-07-01-02-01-15.wav new file mode 100644 index 0000000..59dea35 Binary files /dev/null and b/ch5/data/Actor_15/03-01-07-01-02-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-07-01-02-02-15.wav b/ch5/data/Actor_15/03-01-07-01-02-02-15.wav new file mode 100644 index 0000000..0947bfd Binary files /dev/null and b/ch5/data/Actor_15/03-01-07-01-02-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-07-02-01-01-15.wav b/ch5/data/Actor_15/03-01-07-02-01-01-15.wav new file mode 100644 index 0000000..463e962 Binary files /dev/null and b/ch5/data/Actor_15/03-01-07-02-01-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-07-02-01-02-15.wav b/ch5/data/Actor_15/03-01-07-02-01-02-15.wav new file mode 100644 index 0000000..dc6b42f Binary files /dev/null and b/ch5/data/Actor_15/03-01-07-02-01-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-07-02-02-01-15.wav b/ch5/data/Actor_15/03-01-07-02-02-01-15.wav new file mode 100644 index 0000000..a9f7965 Binary files /dev/null and b/ch5/data/Actor_15/03-01-07-02-02-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-07-02-02-02-15.wav b/ch5/data/Actor_15/03-01-07-02-02-02-15.wav new file mode 100644 index 0000000..8d4105d Binary files /dev/null and b/ch5/data/Actor_15/03-01-07-02-02-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-08-01-01-01-15.wav b/ch5/data/Actor_15/03-01-08-01-01-01-15.wav new file mode 100644 index 0000000..d3df1e1 Binary files /dev/null and b/ch5/data/Actor_15/03-01-08-01-01-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-08-01-01-02-15.wav b/ch5/data/Actor_15/03-01-08-01-01-02-15.wav new file mode 100644 index 0000000..dbd9baf Binary files /dev/null and b/ch5/data/Actor_15/03-01-08-01-01-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-08-01-02-01-15.wav b/ch5/data/Actor_15/03-01-08-01-02-01-15.wav new file mode 100644 index 0000000..e7fce6e Binary files /dev/null and b/ch5/data/Actor_15/03-01-08-01-02-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-08-01-02-02-15.wav b/ch5/data/Actor_15/03-01-08-01-02-02-15.wav new file mode 100644 index 0000000..1c3a7f3 Binary files /dev/null and b/ch5/data/Actor_15/03-01-08-01-02-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-08-02-01-01-15.wav b/ch5/data/Actor_15/03-01-08-02-01-01-15.wav new file mode 100644 index 0000000..f902bc5 Binary files /dev/null and b/ch5/data/Actor_15/03-01-08-02-01-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-08-02-01-02-15.wav b/ch5/data/Actor_15/03-01-08-02-01-02-15.wav new file mode 100644 index 0000000..dbca2fb Binary files /dev/null and b/ch5/data/Actor_15/03-01-08-02-01-02-15.wav differ diff --git a/ch5/data/Actor_15/03-01-08-02-02-01-15.wav b/ch5/data/Actor_15/03-01-08-02-02-01-15.wav new file mode 100644 index 0000000..c544fed Binary files /dev/null and b/ch5/data/Actor_15/03-01-08-02-02-01-15.wav differ diff --git a/ch5/data/Actor_15/03-01-08-02-02-02-15.wav b/ch5/data/Actor_15/03-01-08-02-02-02-15.wav new file mode 100644 index 0000000..2b6f067 Binary files /dev/null and b/ch5/data/Actor_15/03-01-08-02-02-02-15.wav differ diff --git a/ch5/data/Actor_16/03-01-01-01-01-01-16.wav b/ch5/data/Actor_16/03-01-01-01-01-01-16.wav new file mode 100644 index 0000000..927053e Binary files /dev/null and b/ch5/data/Actor_16/03-01-01-01-01-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-01-01-01-02-16.wav b/ch5/data/Actor_16/03-01-01-01-01-02-16.wav new file mode 100644 index 0000000..49e4a00 Binary files /dev/null and b/ch5/data/Actor_16/03-01-01-01-01-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-01-01-02-01-16.wav b/ch5/data/Actor_16/03-01-01-01-02-01-16.wav new file mode 100644 index 0000000..0ead806 Binary files /dev/null and b/ch5/data/Actor_16/03-01-01-01-02-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-01-01-02-02-16.wav b/ch5/data/Actor_16/03-01-01-01-02-02-16.wav new file mode 100644 index 0000000..1020e3a Binary files /dev/null and b/ch5/data/Actor_16/03-01-01-01-02-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-02-01-01-01-16.wav b/ch5/data/Actor_16/03-01-02-01-01-01-16.wav new file mode 100644 index 0000000..0414c35 Binary files /dev/null and b/ch5/data/Actor_16/03-01-02-01-01-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-02-01-01-02-16.wav b/ch5/data/Actor_16/03-01-02-01-01-02-16.wav new file mode 100644 index 0000000..17fda8d Binary files /dev/null and b/ch5/data/Actor_16/03-01-02-01-01-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-02-01-02-01-16.wav b/ch5/data/Actor_16/03-01-02-01-02-01-16.wav new file mode 100644 index 0000000..d626096 Binary files /dev/null and b/ch5/data/Actor_16/03-01-02-01-02-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-02-01-02-02-16.wav b/ch5/data/Actor_16/03-01-02-01-02-02-16.wav new file mode 100644 index 0000000..30c6c0b Binary files /dev/null and b/ch5/data/Actor_16/03-01-02-01-02-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-02-02-01-01-16.wav b/ch5/data/Actor_16/03-01-02-02-01-01-16.wav new file mode 100644 index 0000000..4f42792 Binary files /dev/null and b/ch5/data/Actor_16/03-01-02-02-01-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-02-02-01-02-16.wav b/ch5/data/Actor_16/03-01-02-02-01-02-16.wav new file mode 100644 index 0000000..61df384 Binary files /dev/null and b/ch5/data/Actor_16/03-01-02-02-01-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-02-02-02-01-16.wav b/ch5/data/Actor_16/03-01-02-02-02-01-16.wav new file mode 100644 index 0000000..88b558c Binary files /dev/null and b/ch5/data/Actor_16/03-01-02-02-02-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-02-02-02-02-16.wav b/ch5/data/Actor_16/03-01-02-02-02-02-16.wav new file mode 100644 index 0000000..9a912da Binary files /dev/null and b/ch5/data/Actor_16/03-01-02-02-02-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-03-01-01-01-16.wav b/ch5/data/Actor_16/03-01-03-01-01-01-16.wav new file mode 100644 index 0000000..eb7620c Binary files /dev/null and b/ch5/data/Actor_16/03-01-03-01-01-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-03-01-01-02-16.wav b/ch5/data/Actor_16/03-01-03-01-01-02-16.wav new file mode 100644 index 0000000..671c02d Binary files /dev/null and b/ch5/data/Actor_16/03-01-03-01-01-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-03-01-02-01-16.wav b/ch5/data/Actor_16/03-01-03-01-02-01-16.wav new file mode 100644 index 0000000..9dcfe4a Binary files /dev/null and b/ch5/data/Actor_16/03-01-03-01-02-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-03-01-02-02-16.wav b/ch5/data/Actor_16/03-01-03-01-02-02-16.wav new file mode 100644 index 0000000..67ed5c9 Binary files /dev/null and b/ch5/data/Actor_16/03-01-03-01-02-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-03-02-01-01-16.wav b/ch5/data/Actor_16/03-01-03-02-01-01-16.wav new file mode 100644 index 0000000..b1df624 Binary files /dev/null and b/ch5/data/Actor_16/03-01-03-02-01-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-03-02-01-02-16.wav b/ch5/data/Actor_16/03-01-03-02-01-02-16.wav new file mode 100644 index 0000000..c51148c Binary files /dev/null and b/ch5/data/Actor_16/03-01-03-02-01-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-03-02-02-01-16.wav b/ch5/data/Actor_16/03-01-03-02-02-01-16.wav new file mode 100644 index 0000000..5b9ea44 Binary files /dev/null and b/ch5/data/Actor_16/03-01-03-02-02-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-03-02-02-02-16.wav b/ch5/data/Actor_16/03-01-03-02-02-02-16.wav new file mode 100644 index 0000000..f1f3f1b Binary files /dev/null and b/ch5/data/Actor_16/03-01-03-02-02-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-04-01-01-01-16.wav b/ch5/data/Actor_16/03-01-04-01-01-01-16.wav new file mode 100644 index 0000000..48422ef Binary files /dev/null and b/ch5/data/Actor_16/03-01-04-01-01-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-04-01-01-02-16.wav b/ch5/data/Actor_16/03-01-04-01-01-02-16.wav new file mode 100644 index 0000000..bd54270 Binary files /dev/null and b/ch5/data/Actor_16/03-01-04-01-01-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-04-01-02-01-16.wav b/ch5/data/Actor_16/03-01-04-01-02-01-16.wav new file mode 100644 index 0000000..e944d61 Binary files /dev/null and b/ch5/data/Actor_16/03-01-04-01-02-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-04-01-02-02-16.wav b/ch5/data/Actor_16/03-01-04-01-02-02-16.wav new file mode 100644 index 0000000..881f19a Binary files /dev/null and b/ch5/data/Actor_16/03-01-04-01-02-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-04-02-01-01-16.wav b/ch5/data/Actor_16/03-01-04-02-01-01-16.wav new file mode 100644 index 0000000..d7bc242 Binary files /dev/null and b/ch5/data/Actor_16/03-01-04-02-01-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-04-02-01-02-16.wav b/ch5/data/Actor_16/03-01-04-02-01-02-16.wav new file mode 100644 index 0000000..08a88b2 Binary files /dev/null and b/ch5/data/Actor_16/03-01-04-02-01-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-04-02-02-01-16.wav b/ch5/data/Actor_16/03-01-04-02-02-01-16.wav new file mode 100644 index 0000000..9680ff1 Binary files /dev/null and b/ch5/data/Actor_16/03-01-04-02-02-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-04-02-02-02-16.wav b/ch5/data/Actor_16/03-01-04-02-02-02-16.wav new file mode 100644 index 0000000..dfa6b36 Binary files /dev/null and b/ch5/data/Actor_16/03-01-04-02-02-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-05-01-01-01-16.wav b/ch5/data/Actor_16/03-01-05-01-01-01-16.wav new file mode 100644 index 0000000..70fe9b3 Binary files /dev/null and b/ch5/data/Actor_16/03-01-05-01-01-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-05-01-01-02-16.wav b/ch5/data/Actor_16/03-01-05-01-01-02-16.wav new file mode 100644 index 0000000..9b9fabd Binary files /dev/null and b/ch5/data/Actor_16/03-01-05-01-01-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-05-01-02-01-16.wav b/ch5/data/Actor_16/03-01-05-01-02-01-16.wav new file mode 100644 index 0000000..9adb74c Binary files /dev/null and b/ch5/data/Actor_16/03-01-05-01-02-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-05-01-02-02-16.wav b/ch5/data/Actor_16/03-01-05-01-02-02-16.wav new file mode 100644 index 0000000..c65905d Binary files /dev/null and b/ch5/data/Actor_16/03-01-05-01-02-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-05-02-01-01-16.wav b/ch5/data/Actor_16/03-01-05-02-01-01-16.wav new file mode 100644 index 0000000..f8c217f Binary files /dev/null and b/ch5/data/Actor_16/03-01-05-02-01-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-05-02-01-02-16.wav b/ch5/data/Actor_16/03-01-05-02-01-02-16.wav new file mode 100644 index 0000000..4a9c4b0 Binary files /dev/null and b/ch5/data/Actor_16/03-01-05-02-01-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-05-02-02-01-16.wav b/ch5/data/Actor_16/03-01-05-02-02-01-16.wav new file mode 100644 index 0000000..48b31df Binary files /dev/null and b/ch5/data/Actor_16/03-01-05-02-02-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-05-02-02-02-16.wav b/ch5/data/Actor_16/03-01-05-02-02-02-16.wav new file mode 100644 index 0000000..ca4940c Binary files /dev/null and b/ch5/data/Actor_16/03-01-05-02-02-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-06-01-01-01-16.wav b/ch5/data/Actor_16/03-01-06-01-01-01-16.wav new file mode 100644 index 0000000..8da7574 Binary files /dev/null and b/ch5/data/Actor_16/03-01-06-01-01-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-06-01-01-02-16.wav b/ch5/data/Actor_16/03-01-06-01-01-02-16.wav new file mode 100644 index 0000000..764bd54 Binary files /dev/null and b/ch5/data/Actor_16/03-01-06-01-01-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-06-01-02-01-16.wav b/ch5/data/Actor_16/03-01-06-01-02-01-16.wav new file mode 100644 index 0000000..58961ec Binary files /dev/null and b/ch5/data/Actor_16/03-01-06-01-02-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-06-01-02-02-16.wav b/ch5/data/Actor_16/03-01-06-01-02-02-16.wav new file mode 100644 index 0000000..56e3277 Binary files /dev/null and b/ch5/data/Actor_16/03-01-06-01-02-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-06-02-01-01-16.wav b/ch5/data/Actor_16/03-01-06-02-01-01-16.wav new file mode 100644 index 0000000..99a4db6 Binary files /dev/null and b/ch5/data/Actor_16/03-01-06-02-01-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-06-02-01-02-16.wav b/ch5/data/Actor_16/03-01-06-02-01-02-16.wav new file mode 100644 index 0000000..771cea7 Binary files /dev/null and b/ch5/data/Actor_16/03-01-06-02-01-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-06-02-02-01-16.wav b/ch5/data/Actor_16/03-01-06-02-02-01-16.wav new file mode 100644 index 0000000..56f45f5 Binary files /dev/null and b/ch5/data/Actor_16/03-01-06-02-02-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-06-02-02-02-16.wav b/ch5/data/Actor_16/03-01-06-02-02-02-16.wav new file mode 100644 index 0000000..695e55d Binary files /dev/null and b/ch5/data/Actor_16/03-01-06-02-02-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-07-01-01-01-16.wav b/ch5/data/Actor_16/03-01-07-01-01-01-16.wav new file mode 100644 index 0000000..4375464 Binary files /dev/null and b/ch5/data/Actor_16/03-01-07-01-01-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-07-01-01-02-16.wav b/ch5/data/Actor_16/03-01-07-01-01-02-16.wav new file mode 100644 index 0000000..4461495 Binary files /dev/null and b/ch5/data/Actor_16/03-01-07-01-01-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-07-01-02-01-16.wav b/ch5/data/Actor_16/03-01-07-01-02-01-16.wav new file mode 100644 index 0000000..d776fc3 Binary files /dev/null and b/ch5/data/Actor_16/03-01-07-01-02-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-07-01-02-02-16.wav b/ch5/data/Actor_16/03-01-07-01-02-02-16.wav new file mode 100644 index 0000000..93b8ec3 Binary files /dev/null and b/ch5/data/Actor_16/03-01-07-01-02-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-07-02-01-01-16.wav b/ch5/data/Actor_16/03-01-07-02-01-01-16.wav new file mode 100644 index 0000000..541d753 Binary files /dev/null and b/ch5/data/Actor_16/03-01-07-02-01-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-07-02-01-02-16.wav b/ch5/data/Actor_16/03-01-07-02-01-02-16.wav new file mode 100644 index 0000000..68a43a7 Binary files /dev/null and b/ch5/data/Actor_16/03-01-07-02-01-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-07-02-02-01-16.wav b/ch5/data/Actor_16/03-01-07-02-02-01-16.wav new file mode 100644 index 0000000..53f8699 Binary files /dev/null and b/ch5/data/Actor_16/03-01-07-02-02-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-07-02-02-02-16.wav b/ch5/data/Actor_16/03-01-07-02-02-02-16.wav new file mode 100644 index 0000000..0fefd44 Binary files /dev/null and b/ch5/data/Actor_16/03-01-07-02-02-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-08-01-01-01-16.wav b/ch5/data/Actor_16/03-01-08-01-01-01-16.wav new file mode 100644 index 0000000..ef483e2 Binary files /dev/null and b/ch5/data/Actor_16/03-01-08-01-01-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-08-01-01-02-16.wav b/ch5/data/Actor_16/03-01-08-01-01-02-16.wav new file mode 100644 index 0000000..dcd75ea Binary files /dev/null and b/ch5/data/Actor_16/03-01-08-01-01-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-08-01-02-01-16.wav b/ch5/data/Actor_16/03-01-08-01-02-01-16.wav new file mode 100644 index 0000000..d26eb9c Binary files /dev/null and b/ch5/data/Actor_16/03-01-08-01-02-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-08-01-02-02-16.wav b/ch5/data/Actor_16/03-01-08-01-02-02-16.wav new file mode 100644 index 0000000..49989a6 Binary files /dev/null and b/ch5/data/Actor_16/03-01-08-01-02-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-08-02-01-01-16.wav b/ch5/data/Actor_16/03-01-08-02-01-01-16.wav new file mode 100644 index 0000000..b851708 Binary files /dev/null and b/ch5/data/Actor_16/03-01-08-02-01-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-08-02-01-02-16.wav b/ch5/data/Actor_16/03-01-08-02-01-02-16.wav new file mode 100644 index 0000000..41a7391 Binary files /dev/null and b/ch5/data/Actor_16/03-01-08-02-01-02-16.wav differ diff --git a/ch5/data/Actor_16/03-01-08-02-02-01-16.wav b/ch5/data/Actor_16/03-01-08-02-02-01-16.wav new file mode 100644 index 0000000..d99c809 Binary files /dev/null and b/ch5/data/Actor_16/03-01-08-02-02-01-16.wav differ diff --git a/ch5/data/Actor_16/03-01-08-02-02-02-16.wav b/ch5/data/Actor_16/03-01-08-02-02-02-16.wav new file mode 100644 index 0000000..bdce586 Binary files /dev/null and b/ch5/data/Actor_16/03-01-08-02-02-02-16.wav differ diff --git a/ch5/data/Actor_17/03-01-01-01-01-01-17.wav b/ch5/data/Actor_17/03-01-01-01-01-01-17.wav new file mode 100644 index 0000000..df0b4c2 Binary files /dev/null and b/ch5/data/Actor_17/03-01-01-01-01-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-01-01-01-02-17.wav b/ch5/data/Actor_17/03-01-01-01-01-02-17.wav new file mode 100644 index 0000000..081d4f5 Binary files /dev/null and b/ch5/data/Actor_17/03-01-01-01-01-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-01-01-02-01-17.wav b/ch5/data/Actor_17/03-01-01-01-02-01-17.wav new file mode 100644 index 0000000..3268016 Binary files /dev/null and b/ch5/data/Actor_17/03-01-01-01-02-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-01-01-02-02-17.wav b/ch5/data/Actor_17/03-01-01-01-02-02-17.wav new file mode 100644 index 0000000..f42498e Binary files /dev/null and b/ch5/data/Actor_17/03-01-01-01-02-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-02-01-01-01-17.wav b/ch5/data/Actor_17/03-01-02-01-01-01-17.wav new file mode 100644 index 0000000..d6b0bc3 Binary files /dev/null and b/ch5/data/Actor_17/03-01-02-01-01-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-02-01-01-02-17.wav b/ch5/data/Actor_17/03-01-02-01-01-02-17.wav new file mode 100644 index 0000000..225cc89 Binary files /dev/null and b/ch5/data/Actor_17/03-01-02-01-01-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-02-01-02-01-17.wav b/ch5/data/Actor_17/03-01-02-01-02-01-17.wav new file mode 100644 index 0000000..6ebeba6 Binary files /dev/null and b/ch5/data/Actor_17/03-01-02-01-02-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-02-01-02-02-17.wav b/ch5/data/Actor_17/03-01-02-01-02-02-17.wav new file mode 100644 index 0000000..fb18ee8 Binary files /dev/null and b/ch5/data/Actor_17/03-01-02-01-02-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-02-02-01-01-17.wav b/ch5/data/Actor_17/03-01-02-02-01-01-17.wav new file mode 100644 index 0000000..f0501c6 Binary files /dev/null and b/ch5/data/Actor_17/03-01-02-02-01-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-02-02-01-02-17.wav b/ch5/data/Actor_17/03-01-02-02-01-02-17.wav new file mode 100644 index 0000000..bd74621 Binary files /dev/null and b/ch5/data/Actor_17/03-01-02-02-01-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-02-02-02-01-17.wav b/ch5/data/Actor_17/03-01-02-02-02-01-17.wav new file mode 100644 index 0000000..6279f25 Binary files /dev/null and b/ch5/data/Actor_17/03-01-02-02-02-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-02-02-02-02-17.wav b/ch5/data/Actor_17/03-01-02-02-02-02-17.wav new file mode 100644 index 0000000..eb38747 Binary files /dev/null and b/ch5/data/Actor_17/03-01-02-02-02-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-03-01-01-01-17.wav b/ch5/data/Actor_17/03-01-03-01-01-01-17.wav new file mode 100644 index 0000000..f5adf68 Binary files /dev/null and b/ch5/data/Actor_17/03-01-03-01-01-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-03-01-01-02-17.wav b/ch5/data/Actor_17/03-01-03-01-01-02-17.wav new file mode 100644 index 0000000..4d0c700 Binary files /dev/null and b/ch5/data/Actor_17/03-01-03-01-01-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-03-01-02-01-17.wav b/ch5/data/Actor_17/03-01-03-01-02-01-17.wav new file mode 100644 index 0000000..3a51104 Binary files /dev/null and b/ch5/data/Actor_17/03-01-03-01-02-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-03-01-02-02-17.wav b/ch5/data/Actor_17/03-01-03-01-02-02-17.wav new file mode 100644 index 0000000..b3e1261 Binary files /dev/null and b/ch5/data/Actor_17/03-01-03-01-02-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-03-02-01-01-17.wav b/ch5/data/Actor_17/03-01-03-02-01-01-17.wav new file mode 100644 index 0000000..f432812 Binary files /dev/null and b/ch5/data/Actor_17/03-01-03-02-01-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-03-02-01-02-17.wav b/ch5/data/Actor_17/03-01-03-02-01-02-17.wav new file mode 100644 index 0000000..6840792 Binary files /dev/null and b/ch5/data/Actor_17/03-01-03-02-01-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-03-02-02-01-17.wav b/ch5/data/Actor_17/03-01-03-02-02-01-17.wav new file mode 100644 index 0000000..46786ac Binary files /dev/null and b/ch5/data/Actor_17/03-01-03-02-02-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-03-02-02-02-17.wav b/ch5/data/Actor_17/03-01-03-02-02-02-17.wav new file mode 100644 index 0000000..8d04959 Binary files /dev/null and b/ch5/data/Actor_17/03-01-03-02-02-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-04-01-01-01-17.wav b/ch5/data/Actor_17/03-01-04-01-01-01-17.wav new file mode 100644 index 0000000..865b4fe Binary files /dev/null and b/ch5/data/Actor_17/03-01-04-01-01-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-04-01-01-02-17.wav b/ch5/data/Actor_17/03-01-04-01-01-02-17.wav new file mode 100644 index 0000000..f04cd2c Binary files /dev/null and b/ch5/data/Actor_17/03-01-04-01-01-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-04-01-02-01-17.wav b/ch5/data/Actor_17/03-01-04-01-02-01-17.wav new file mode 100644 index 0000000..9bdf591 Binary files /dev/null and b/ch5/data/Actor_17/03-01-04-01-02-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-04-01-02-02-17.wav b/ch5/data/Actor_17/03-01-04-01-02-02-17.wav new file mode 100644 index 0000000..ff29567 Binary files /dev/null and b/ch5/data/Actor_17/03-01-04-01-02-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-04-02-01-01-17.wav b/ch5/data/Actor_17/03-01-04-02-01-01-17.wav new file mode 100644 index 0000000..d9717c0 Binary files /dev/null and b/ch5/data/Actor_17/03-01-04-02-01-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-04-02-01-02-17.wav b/ch5/data/Actor_17/03-01-04-02-01-02-17.wav new file mode 100644 index 0000000..6bd0a2c Binary files /dev/null and b/ch5/data/Actor_17/03-01-04-02-01-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-04-02-02-01-17.wav b/ch5/data/Actor_17/03-01-04-02-02-01-17.wav new file mode 100644 index 0000000..816678b Binary files /dev/null and b/ch5/data/Actor_17/03-01-04-02-02-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-04-02-02-02-17.wav b/ch5/data/Actor_17/03-01-04-02-02-02-17.wav new file mode 100644 index 0000000..3dfcbf8 Binary files /dev/null and b/ch5/data/Actor_17/03-01-04-02-02-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-05-01-01-01-17.wav b/ch5/data/Actor_17/03-01-05-01-01-01-17.wav new file mode 100644 index 0000000..0a4b118 Binary files /dev/null and b/ch5/data/Actor_17/03-01-05-01-01-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-05-01-01-02-17.wav b/ch5/data/Actor_17/03-01-05-01-01-02-17.wav new file mode 100644 index 0000000..8a5c9cf Binary files /dev/null and b/ch5/data/Actor_17/03-01-05-01-01-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-05-01-02-01-17.wav b/ch5/data/Actor_17/03-01-05-01-02-01-17.wav new file mode 100644 index 0000000..ad72e24 Binary files /dev/null and b/ch5/data/Actor_17/03-01-05-01-02-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-05-01-02-02-17.wav b/ch5/data/Actor_17/03-01-05-01-02-02-17.wav new file mode 100644 index 0000000..aec342a Binary files /dev/null and b/ch5/data/Actor_17/03-01-05-01-02-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-05-02-01-01-17.wav b/ch5/data/Actor_17/03-01-05-02-01-01-17.wav new file mode 100644 index 0000000..972fcab Binary files /dev/null and b/ch5/data/Actor_17/03-01-05-02-01-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-05-02-01-02-17.wav b/ch5/data/Actor_17/03-01-05-02-01-02-17.wav new file mode 100644 index 0000000..25d3bf8 Binary files /dev/null and b/ch5/data/Actor_17/03-01-05-02-01-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-05-02-02-01-17.wav b/ch5/data/Actor_17/03-01-05-02-02-01-17.wav new file mode 100644 index 0000000..9de8b2e Binary files /dev/null and b/ch5/data/Actor_17/03-01-05-02-02-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-05-02-02-02-17.wav b/ch5/data/Actor_17/03-01-05-02-02-02-17.wav new file mode 100644 index 0000000..bc3acb4 Binary files /dev/null and b/ch5/data/Actor_17/03-01-05-02-02-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-06-01-01-01-17.wav b/ch5/data/Actor_17/03-01-06-01-01-01-17.wav new file mode 100644 index 0000000..e71111e Binary files /dev/null and b/ch5/data/Actor_17/03-01-06-01-01-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-06-01-01-02-17.wav b/ch5/data/Actor_17/03-01-06-01-01-02-17.wav new file mode 100644 index 0000000..756e040 Binary files /dev/null and b/ch5/data/Actor_17/03-01-06-01-01-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-06-01-02-01-17.wav b/ch5/data/Actor_17/03-01-06-01-02-01-17.wav new file mode 100644 index 0000000..3c489bc Binary files /dev/null and b/ch5/data/Actor_17/03-01-06-01-02-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-06-01-02-02-17.wav b/ch5/data/Actor_17/03-01-06-01-02-02-17.wav new file mode 100644 index 0000000..993dc6e Binary files /dev/null and b/ch5/data/Actor_17/03-01-06-01-02-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-06-02-01-01-17.wav b/ch5/data/Actor_17/03-01-06-02-01-01-17.wav new file mode 100644 index 0000000..9f82b31 Binary files /dev/null and b/ch5/data/Actor_17/03-01-06-02-01-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-06-02-01-02-17.wav b/ch5/data/Actor_17/03-01-06-02-01-02-17.wav new file mode 100644 index 0000000..77cb189 Binary files /dev/null and b/ch5/data/Actor_17/03-01-06-02-01-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-06-02-02-01-17.wav b/ch5/data/Actor_17/03-01-06-02-02-01-17.wav new file mode 100644 index 0000000..f1ca6db Binary files /dev/null and b/ch5/data/Actor_17/03-01-06-02-02-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-06-02-02-02-17.wav b/ch5/data/Actor_17/03-01-06-02-02-02-17.wav new file mode 100644 index 0000000..bf997c1 Binary files /dev/null and b/ch5/data/Actor_17/03-01-06-02-02-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-07-01-01-01-17.wav b/ch5/data/Actor_17/03-01-07-01-01-01-17.wav new file mode 100644 index 0000000..0e0ae55 Binary files /dev/null and b/ch5/data/Actor_17/03-01-07-01-01-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-07-01-01-02-17.wav b/ch5/data/Actor_17/03-01-07-01-01-02-17.wav new file mode 100644 index 0000000..26ded40 Binary files /dev/null and b/ch5/data/Actor_17/03-01-07-01-01-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-07-01-02-01-17.wav b/ch5/data/Actor_17/03-01-07-01-02-01-17.wav new file mode 100644 index 0000000..2377e01 Binary files /dev/null and b/ch5/data/Actor_17/03-01-07-01-02-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-07-01-02-02-17.wav b/ch5/data/Actor_17/03-01-07-01-02-02-17.wav new file mode 100644 index 0000000..70ce2e9 Binary files /dev/null and b/ch5/data/Actor_17/03-01-07-01-02-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-07-02-01-01-17.wav b/ch5/data/Actor_17/03-01-07-02-01-01-17.wav new file mode 100644 index 0000000..5f78d3f Binary files /dev/null and b/ch5/data/Actor_17/03-01-07-02-01-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-07-02-01-02-17.wav b/ch5/data/Actor_17/03-01-07-02-01-02-17.wav new file mode 100644 index 0000000..edce6a5 Binary files /dev/null and b/ch5/data/Actor_17/03-01-07-02-01-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-07-02-02-01-17.wav b/ch5/data/Actor_17/03-01-07-02-02-01-17.wav new file mode 100644 index 0000000..d6437bf Binary files /dev/null and b/ch5/data/Actor_17/03-01-07-02-02-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-07-02-02-02-17.wav b/ch5/data/Actor_17/03-01-07-02-02-02-17.wav new file mode 100644 index 0000000..43c85e2 Binary files /dev/null and b/ch5/data/Actor_17/03-01-07-02-02-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-08-01-01-01-17.wav b/ch5/data/Actor_17/03-01-08-01-01-01-17.wav new file mode 100644 index 0000000..8f1913e Binary files /dev/null and b/ch5/data/Actor_17/03-01-08-01-01-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-08-01-01-02-17.wav b/ch5/data/Actor_17/03-01-08-01-01-02-17.wav new file mode 100644 index 0000000..bb3da1d Binary files /dev/null and b/ch5/data/Actor_17/03-01-08-01-01-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-08-01-02-01-17.wav b/ch5/data/Actor_17/03-01-08-01-02-01-17.wav new file mode 100644 index 0000000..9c51d35 Binary files /dev/null and b/ch5/data/Actor_17/03-01-08-01-02-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-08-01-02-02-17.wav b/ch5/data/Actor_17/03-01-08-01-02-02-17.wav new file mode 100644 index 0000000..507da00 Binary files /dev/null and b/ch5/data/Actor_17/03-01-08-01-02-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-08-02-01-01-17.wav b/ch5/data/Actor_17/03-01-08-02-01-01-17.wav new file mode 100644 index 0000000..f37da9c Binary files /dev/null and b/ch5/data/Actor_17/03-01-08-02-01-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-08-02-01-02-17.wav b/ch5/data/Actor_17/03-01-08-02-01-02-17.wav new file mode 100644 index 0000000..cec8562 Binary files /dev/null and b/ch5/data/Actor_17/03-01-08-02-01-02-17.wav differ diff --git a/ch5/data/Actor_17/03-01-08-02-02-01-17.wav b/ch5/data/Actor_17/03-01-08-02-02-01-17.wav new file mode 100644 index 0000000..8953647 Binary files /dev/null and b/ch5/data/Actor_17/03-01-08-02-02-01-17.wav differ diff --git a/ch5/data/Actor_17/03-01-08-02-02-02-17.wav b/ch5/data/Actor_17/03-01-08-02-02-02-17.wav new file mode 100644 index 0000000..11a257f Binary files /dev/null and b/ch5/data/Actor_17/03-01-08-02-02-02-17.wav differ diff --git a/ch5/data/Actor_18/03-01-01-01-01-01-18.wav b/ch5/data/Actor_18/03-01-01-01-01-01-18.wav new file mode 100644 index 0000000..feb18b0 Binary files /dev/null and b/ch5/data/Actor_18/03-01-01-01-01-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-01-01-01-02-18.wav b/ch5/data/Actor_18/03-01-01-01-01-02-18.wav new file mode 100644 index 0000000..60f18a4 Binary files /dev/null and b/ch5/data/Actor_18/03-01-01-01-01-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-01-01-02-01-18.wav b/ch5/data/Actor_18/03-01-01-01-02-01-18.wav new file mode 100644 index 0000000..19a8370 Binary files /dev/null and b/ch5/data/Actor_18/03-01-01-01-02-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-01-01-02-02-18.wav b/ch5/data/Actor_18/03-01-01-01-02-02-18.wav new file mode 100644 index 0000000..44b4f9d Binary files /dev/null and b/ch5/data/Actor_18/03-01-01-01-02-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-02-01-01-01-18.wav b/ch5/data/Actor_18/03-01-02-01-01-01-18.wav new file mode 100644 index 0000000..154f868 Binary files /dev/null and b/ch5/data/Actor_18/03-01-02-01-01-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-02-01-01-02-18.wav b/ch5/data/Actor_18/03-01-02-01-01-02-18.wav new file mode 100644 index 0000000..d6da78a Binary files /dev/null and b/ch5/data/Actor_18/03-01-02-01-01-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-02-01-02-01-18.wav b/ch5/data/Actor_18/03-01-02-01-02-01-18.wav new file mode 100644 index 0000000..afc21e5 Binary files /dev/null and b/ch5/data/Actor_18/03-01-02-01-02-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-02-01-02-02-18.wav b/ch5/data/Actor_18/03-01-02-01-02-02-18.wav new file mode 100644 index 0000000..8137698 Binary files /dev/null and b/ch5/data/Actor_18/03-01-02-01-02-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-02-02-01-01-18.wav b/ch5/data/Actor_18/03-01-02-02-01-01-18.wav new file mode 100644 index 0000000..9b61876 Binary files /dev/null and b/ch5/data/Actor_18/03-01-02-02-01-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-02-02-01-02-18.wav b/ch5/data/Actor_18/03-01-02-02-01-02-18.wav new file mode 100644 index 0000000..d4b283b Binary files /dev/null and b/ch5/data/Actor_18/03-01-02-02-01-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-02-02-02-01-18.wav b/ch5/data/Actor_18/03-01-02-02-02-01-18.wav new file mode 100644 index 0000000..c98d07b Binary files /dev/null and b/ch5/data/Actor_18/03-01-02-02-02-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-02-02-02-02-18.wav b/ch5/data/Actor_18/03-01-02-02-02-02-18.wav new file mode 100644 index 0000000..5068c8a Binary files /dev/null and b/ch5/data/Actor_18/03-01-02-02-02-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-03-01-01-01-18.wav b/ch5/data/Actor_18/03-01-03-01-01-01-18.wav new file mode 100644 index 0000000..011d48d Binary files /dev/null and b/ch5/data/Actor_18/03-01-03-01-01-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-03-01-01-02-18.wav b/ch5/data/Actor_18/03-01-03-01-01-02-18.wav new file mode 100644 index 0000000..1ce377b Binary files /dev/null and b/ch5/data/Actor_18/03-01-03-01-01-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-03-01-02-01-18.wav b/ch5/data/Actor_18/03-01-03-01-02-01-18.wav new file mode 100644 index 0000000..bf8a496 Binary files /dev/null and b/ch5/data/Actor_18/03-01-03-01-02-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-03-01-02-02-18.wav b/ch5/data/Actor_18/03-01-03-01-02-02-18.wav new file mode 100644 index 0000000..c584668 Binary files /dev/null and b/ch5/data/Actor_18/03-01-03-01-02-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-03-02-01-01-18.wav b/ch5/data/Actor_18/03-01-03-02-01-01-18.wav new file mode 100644 index 0000000..01799c4 Binary files /dev/null and b/ch5/data/Actor_18/03-01-03-02-01-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-03-02-01-02-18.wav b/ch5/data/Actor_18/03-01-03-02-01-02-18.wav new file mode 100644 index 0000000..5c65be0 Binary files /dev/null and b/ch5/data/Actor_18/03-01-03-02-01-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-03-02-02-01-18.wav b/ch5/data/Actor_18/03-01-03-02-02-01-18.wav new file mode 100644 index 0000000..09ab9e3 Binary files /dev/null and b/ch5/data/Actor_18/03-01-03-02-02-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-03-02-02-02-18.wav b/ch5/data/Actor_18/03-01-03-02-02-02-18.wav new file mode 100644 index 0000000..e7f2d50 Binary files /dev/null and b/ch5/data/Actor_18/03-01-03-02-02-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-04-01-01-01-18.wav b/ch5/data/Actor_18/03-01-04-01-01-01-18.wav new file mode 100644 index 0000000..4624bda Binary files /dev/null and b/ch5/data/Actor_18/03-01-04-01-01-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-04-01-01-02-18.wav b/ch5/data/Actor_18/03-01-04-01-01-02-18.wav new file mode 100644 index 0000000..46a3143 Binary files /dev/null and b/ch5/data/Actor_18/03-01-04-01-01-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-04-01-02-01-18.wav b/ch5/data/Actor_18/03-01-04-01-02-01-18.wav new file mode 100644 index 0000000..bcfb359 Binary files /dev/null and b/ch5/data/Actor_18/03-01-04-01-02-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-04-01-02-02-18.wav b/ch5/data/Actor_18/03-01-04-01-02-02-18.wav new file mode 100644 index 0000000..de14d36 Binary files /dev/null and b/ch5/data/Actor_18/03-01-04-01-02-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-04-02-01-01-18.wav b/ch5/data/Actor_18/03-01-04-02-01-01-18.wav new file mode 100644 index 0000000..5ad8e43 Binary files /dev/null and b/ch5/data/Actor_18/03-01-04-02-01-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-04-02-01-02-18.wav b/ch5/data/Actor_18/03-01-04-02-01-02-18.wav new file mode 100644 index 0000000..ab6aa67 Binary files /dev/null and b/ch5/data/Actor_18/03-01-04-02-01-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-04-02-02-01-18.wav b/ch5/data/Actor_18/03-01-04-02-02-01-18.wav new file mode 100644 index 0000000..f7d6072 Binary files /dev/null and b/ch5/data/Actor_18/03-01-04-02-02-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-04-02-02-02-18.wav b/ch5/data/Actor_18/03-01-04-02-02-02-18.wav new file mode 100644 index 0000000..9c9b61e Binary files /dev/null and b/ch5/data/Actor_18/03-01-04-02-02-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-05-01-01-01-18.wav b/ch5/data/Actor_18/03-01-05-01-01-01-18.wav new file mode 100644 index 0000000..f3b8716 Binary files /dev/null and b/ch5/data/Actor_18/03-01-05-01-01-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-05-01-01-02-18.wav b/ch5/data/Actor_18/03-01-05-01-01-02-18.wav new file mode 100644 index 0000000..4909314 Binary files /dev/null and b/ch5/data/Actor_18/03-01-05-01-01-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-05-01-02-01-18.wav b/ch5/data/Actor_18/03-01-05-01-02-01-18.wav new file mode 100644 index 0000000..e6a769b Binary files /dev/null and b/ch5/data/Actor_18/03-01-05-01-02-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-05-01-02-02-18.wav b/ch5/data/Actor_18/03-01-05-01-02-02-18.wav new file mode 100644 index 0000000..e051a91 Binary files /dev/null and b/ch5/data/Actor_18/03-01-05-01-02-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-05-02-01-01-18.wav b/ch5/data/Actor_18/03-01-05-02-01-01-18.wav new file mode 100644 index 0000000..45f3b42 Binary files /dev/null and b/ch5/data/Actor_18/03-01-05-02-01-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-05-02-01-02-18.wav b/ch5/data/Actor_18/03-01-05-02-01-02-18.wav new file mode 100644 index 0000000..cb5c1af Binary files /dev/null and b/ch5/data/Actor_18/03-01-05-02-01-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-05-02-02-01-18.wav b/ch5/data/Actor_18/03-01-05-02-02-01-18.wav new file mode 100644 index 0000000..dbee3fd Binary files /dev/null and b/ch5/data/Actor_18/03-01-05-02-02-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-05-02-02-02-18.wav b/ch5/data/Actor_18/03-01-05-02-02-02-18.wav new file mode 100644 index 0000000..210c989 Binary files /dev/null and b/ch5/data/Actor_18/03-01-05-02-02-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-06-01-01-01-18.wav b/ch5/data/Actor_18/03-01-06-01-01-01-18.wav new file mode 100644 index 0000000..acb0123 Binary files /dev/null and b/ch5/data/Actor_18/03-01-06-01-01-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-06-01-01-02-18.wav b/ch5/data/Actor_18/03-01-06-01-01-02-18.wav new file mode 100644 index 0000000..76591f1 Binary files /dev/null and b/ch5/data/Actor_18/03-01-06-01-01-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-06-01-02-01-18.wav b/ch5/data/Actor_18/03-01-06-01-02-01-18.wav new file mode 100644 index 0000000..e30e01e Binary files /dev/null and b/ch5/data/Actor_18/03-01-06-01-02-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-06-01-02-02-18.wav b/ch5/data/Actor_18/03-01-06-01-02-02-18.wav new file mode 100644 index 0000000..4513e99 Binary files /dev/null and b/ch5/data/Actor_18/03-01-06-01-02-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-06-02-01-01-18.wav b/ch5/data/Actor_18/03-01-06-02-01-01-18.wav new file mode 100644 index 0000000..020f205 Binary files /dev/null and b/ch5/data/Actor_18/03-01-06-02-01-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-06-02-01-02-18.wav b/ch5/data/Actor_18/03-01-06-02-01-02-18.wav new file mode 100644 index 0000000..9ad04f4 Binary files /dev/null and b/ch5/data/Actor_18/03-01-06-02-01-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-06-02-02-01-18.wav b/ch5/data/Actor_18/03-01-06-02-02-01-18.wav new file mode 100644 index 0000000..a9e0fe5 Binary files /dev/null and b/ch5/data/Actor_18/03-01-06-02-02-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-06-02-02-02-18.wav b/ch5/data/Actor_18/03-01-06-02-02-02-18.wav new file mode 100644 index 0000000..7d6f4f6 Binary files /dev/null and b/ch5/data/Actor_18/03-01-06-02-02-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-07-01-01-01-18.wav b/ch5/data/Actor_18/03-01-07-01-01-01-18.wav new file mode 100644 index 0000000..b33247c Binary files /dev/null and b/ch5/data/Actor_18/03-01-07-01-01-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-07-01-01-02-18.wav b/ch5/data/Actor_18/03-01-07-01-01-02-18.wav new file mode 100644 index 0000000..c773416 Binary files /dev/null and b/ch5/data/Actor_18/03-01-07-01-01-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-07-01-02-01-18.wav b/ch5/data/Actor_18/03-01-07-01-02-01-18.wav new file mode 100644 index 0000000..9e42cdc Binary files /dev/null and b/ch5/data/Actor_18/03-01-07-01-02-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-07-01-02-02-18.wav b/ch5/data/Actor_18/03-01-07-01-02-02-18.wav new file mode 100644 index 0000000..ceb31e4 Binary files /dev/null and b/ch5/data/Actor_18/03-01-07-01-02-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-07-02-01-01-18.wav b/ch5/data/Actor_18/03-01-07-02-01-01-18.wav new file mode 100644 index 0000000..9978e0e Binary files /dev/null and b/ch5/data/Actor_18/03-01-07-02-01-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-07-02-01-02-18.wav b/ch5/data/Actor_18/03-01-07-02-01-02-18.wav new file mode 100644 index 0000000..c78e209 Binary files /dev/null and b/ch5/data/Actor_18/03-01-07-02-01-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-07-02-02-01-18.wav b/ch5/data/Actor_18/03-01-07-02-02-01-18.wav new file mode 100644 index 0000000..dac76b7 Binary files /dev/null and b/ch5/data/Actor_18/03-01-07-02-02-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-07-02-02-02-18.wav b/ch5/data/Actor_18/03-01-07-02-02-02-18.wav new file mode 100644 index 0000000..cf67dbb Binary files /dev/null and b/ch5/data/Actor_18/03-01-07-02-02-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-08-01-01-01-18.wav b/ch5/data/Actor_18/03-01-08-01-01-01-18.wav new file mode 100644 index 0000000..79f875e Binary files /dev/null and b/ch5/data/Actor_18/03-01-08-01-01-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-08-01-01-02-18.wav b/ch5/data/Actor_18/03-01-08-01-01-02-18.wav new file mode 100644 index 0000000..c6c2728 Binary files /dev/null and b/ch5/data/Actor_18/03-01-08-01-01-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-08-01-02-01-18.wav b/ch5/data/Actor_18/03-01-08-01-02-01-18.wav new file mode 100644 index 0000000..e926eeb Binary files /dev/null and b/ch5/data/Actor_18/03-01-08-01-02-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-08-01-02-02-18.wav b/ch5/data/Actor_18/03-01-08-01-02-02-18.wav new file mode 100644 index 0000000..77a8845 Binary files /dev/null and b/ch5/data/Actor_18/03-01-08-01-02-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-08-02-01-01-18.wav b/ch5/data/Actor_18/03-01-08-02-01-01-18.wav new file mode 100644 index 0000000..367ece1 Binary files /dev/null and b/ch5/data/Actor_18/03-01-08-02-01-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-08-02-01-02-18.wav b/ch5/data/Actor_18/03-01-08-02-01-02-18.wav new file mode 100644 index 0000000..f392d5a Binary files /dev/null and b/ch5/data/Actor_18/03-01-08-02-01-02-18.wav differ diff --git a/ch5/data/Actor_18/03-01-08-02-02-01-18.wav b/ch5/data/Actor_18/03-01-08-02-02-01-18.wav new file mode 100644 index 0000000..4a02ce1 Binary files /dev/null and b/ch5/data/Actor_18/03-01-08-02-02-01-18.wav differ diff --git a/ch5/data/Actor_18/03-01-08-02-02-02-18.wav b/ch5/data/Actor_18/03-01-08-02-02-02-18.wav new file mode 100644 index 0000000..fa83b48 Binary files /dev/null and b/ch5/data/Actor_18/03-01-08-02-02-02-18.wav differ diff --git a/ch5/data/Actor_19/03-01-01-01-01-01-19.wav b/ch5/data/Actor_19/03-01-01-01-01-01-19.wav new file mode 100644 index 0000000..24db0a8 Binary files /dev/null and b/ch5/data/Actor_19/03-01-01-01-01-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-01-01-01-02-19.wav b/ch5/data/Actor_19/03-01-01-01-01-02-19.wav new file mode 100644 index 0000000..3ed3b51 Binary files /dev/null and b/ch5/data/Actor_19/03-01-01-01-01-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-01-01-02-01-19.wav b/ch5/data/Actor_19/03-01-01-01-02-01-19.wav new file mode 100644 index 0000000..414aa75 Binary files /dev/null and b/ch5/data/Actor_19/03-01-01-01-02-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-01-01-02-02-19.wav b/ch5/data/Actor_19/03-01-01-01-02-02-19.wav new file mode 100644 index 0000000..8370f64 Binary files /dev/null and b/ch5/data/Actor_19/03-01-01-01-02-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-02-01-01-01-19.wav b/ch5/data/Actor_19/03-01-02-01-01-01-19.wav new file mode 100644 index 0000000..d949dee Binary files /dev/null and b/ch5/data/Actor_19/03-01-02-01-01-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-02-01-01-02-19.wav b/ch5/data/Actor_19/03-01-02-01-01-02-19.wav new file mode 100644 index 0000000..df1d17f Binary files /dev/null and b/ch5/data/Actor_19/03-01-02-01-01-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-02-01-02-01-19.wav b/ch5/data/Actor_19/03-01-02-01-02-01-19.wav new file mode 100644 index 0000000..5d39b9c Binary files /dev/null and b/ch5/data/Actor_19/03-01-02-01-02-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-02-01-02-02-19.wav b/ch5/data/Actor_19/03-01-02-01-02-02-19.wav new file mode 100644 index 0000000..0eab31a Binary files /dev/null and b/ch5/data/Actor_19/03-01-02-01-02-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-02-02-01-01-19.wav b/ch5/data/Actor_19/03-01-02-02-01-01-19.wav new file mode 100644 index 0000000..bd0266e Binary files /dev/null and b/ch5/data/Actor_19/03-01-02-02-01-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-02-02-01-02-19.wav b/ch5/data/Actor_19/03-01-02-02-01-02-19.wav new file mode 100644 index 0000000..b3b324d Binary files /dev/null and b/ch5/data/Actor_19/03-01-02-02-01-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-02-02-02-01-19.wav b/ch5/data/Actor_19/03-01-02-02-02-01-19.wav new file mode 100644 index 0000000..c05eee5 Binary files /dev/null and b/ch5/data/Actor_19/03-01-02-02-02-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-02-02-02-02-19.wav b/ch5/data/Actor_19/03-01-02-02-02-02-19.wav new file mode 100644 index 0000000..4d0c00e Binary files /dev/null and b/ch5/data/Actor_19/03-01-02-02-02-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-03-01-01-01-19.wav b/ch5/data/Actor_19/03-01-03-01-01-01-19.wav new file mode 100644 index 0000000..a3e77f4 Binary files /dev/null and b/ch5/data/Actor_19/03-01-03-01-01-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-03-01-01-02-19.wav b/ch5/data/Actor_19/03-01-03-01-01-02-19.wav new file mode 100644 index 0000000..61934ff Binary files /dev/null and b/ch5/data/Actor_19/03-01-03-01-01-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-03-01-02-01-19.wav b/ch5/data/Actor_19/03-01-03-01-02-01-19.wav new file mode 100644 index 0000000..6ea2a82 Binary files /dev/null and b/ch5/data/Actor_19/03-01-03-01-02-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-03-01-02-02-19.wav b/ch5/data/Actor_19/03-01-03-01-02-02-19.wav new file mode 100644 index 0000000..3a2850c Binary files /dev/null and b/ch5/data/Actor_19/03-01-03-01-02-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-03-02-01-01-19.wav b/ch5/data/Actor_19/03-01-03-02-01-01-19.wav new file mode 100644 index 0000000..d62b8b0 Binary files /dev/null and b/ch5/data/Actor_19/03-01-03-02-01-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-03-02-01-02-19.wav b/ch5/data/Actor_19/03-01-03-02-01-02-19.wav new file mode 100644 index 0000000..521cb8a Binary files /dev/null and b/ch5/data/Actor_19/03-01-03-02-01-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-03-02-02-01-19.wav b/ch5/data/Actor_19/03-01-03-02-02-01-19.wav new file mode 100644 index 0000000..0ee6c13 Binary files /dev/null and b/ch5/data/Actor_19/03-01-03-02-02-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-03-02-02-02-19.wav b/ch5/data/Actor_19/03-01-03-02-02-02-19.wav new file mode 100644 index 0000000..20b4633 Binary files /dev/null and b/ch5/data/Actor_19/03-01-03-02-02-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-04-01-01-01-19.wav b/ch5/data/Actor_19/03-01-04-01-01-01-19.wav new file mode 100644 index 0000000..23a758f Binary files /dev/null and b/ch5/data/Actor_19/03-01-04-01-01-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-04-01-01-02-19.wav b/ch5/data/Actor_19/03-01-04-01-01-02-19.wav new file mode 100644 index 0000000..b2250c0 Binary files /dev/null and b/ch5/data/Actor_19/03-01-04-01-01-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-04-01-02-01-19.wav b/ch5/data/Actor_19/03-01-04-01-02-01-19.wav new file mode 100644 index 0000000..d1bc73d Binary files /dev/null and b/ch5/data/Actor_19/03-01-04-01-02-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-04-01-02-02-19.wav b/ch5/data/Actor_19/03-01-04-01-02-02-19.wav new file mode 100644 index 0000000..063f9d1 Binary files /dev/null and b/ch5/data/Actor_19/03-01-04-01-02-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-04-02-01-01-19.wav b/ch5/data/Actor_19/03-01-04-02-01-01-19.wav new file mode 100644 index 0000000..b0d34f8 Binary files /dev/null and b/ch5/data/Actor_19/03-01-04-02-01-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-04-02-01-02-19.wav b/ch5/data/Actor_19/03-01-04-02-01-02-19.wav new file mode 100644 index 0000000..bdb6c39 Binary files /dev/null and b/ch5/data/Actor_19/03-01-04-02-01-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-04-02-02-01-19.wav b/ch5/data/Actor_19/03-01-04-02-02-01-19.wav new file mode 100644 index 0000000..e1c913b Binary files /dev/null and b/ch5/data/Actor_19/03-01-04-02-02-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-04-02-02-02-19.wav b/ch5/data/Actor_19/03-01-04-02-02-02-19.wav new file mode 100644 index 0000000..a4041c2 Binary files /dev/null and b/ch5/data/Actor_19/03-01-04-02-02-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-05-01-01-01-19.wav b/ch5/data/Actor_19/03-01-05-01-01-01-19.wav new file mode 100644 index 0000000..4150a0b Binary files /dev/null and b/ch5/data/Actor_19/03-01-05-01-01-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-05-01-01-02-19.wav b/ch5/data/Actor_19/03-01-05-01-01-02-19.wav new file mode 100644 index 0000000..4a43172 Binary files /dev/null and b/ch5/data/Actor_19/03-01-05-01-01-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-05-01-02-01-19.wav b/ch5/data/Actor_19/03-01-05-01-02-01-19.wav new file mode 100644 index 0000000..be7c5ff Binary files /dev/null and b/ch5/data/Actor_19/03-01-05-01-02-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-05-01-02-02-19.wav b/ch5/data/Actor_19/03-01-05-01-02-02-19.wav new file mode 100644 index 0000000..780e18f Binary files /dev/null and b/ch5/data/Actor_19/03-01-05-01-02-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-05-02-01-01-19.wav b/ch5/data/Actor_19/03-01-05-02-01-01-19.wav new file mode 100644 index 0000000..5f689a1 Binary files /dev/null and b/ch5/data/Actor_19/03-01-05-02-01-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-05-02-01-02-19.wav b/ch5/data/Actor_19/03-01-05-02-01-02-19.wav new file mode 100644 index 0000000..98ccf96 Binary files /dev/null and b/ch5/data/Actor_19/03-01-05-02-01-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-05-02-02-01-19.wav b/ch5/data/Actor_19/03-01-05-02-02-01-19.wav new file mode 100644 index 0000000..5f99648 Binary files /dev/null and b/ch5/data/Actor_19/03-01-05-02-02-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-05-02-02-02-19.wav b/ch5/data/Actor_19/03-01-05-02-02-02-19.wav new file mode 100644 index 0000000..5c81d90 Binary files /dev/null and b/ch5/data/Actor_19/03-01-05-02-02-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-06-01-01-01-19.wav b/ch5/data/Actor_19/03-01-06-01-01-01-19.wav new file mode 100644 index 0000000..927138a Binary files /dev/null and b/ch5/data/Actor_19/03-01-06-01-01-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-06-01-01-02-19.wav b/ch5/data/Actor_19/03-01-06-01-01-02-19.wav new file mode 100644 index 0000000..a677c34 Binary files /dev/null and b/ch5/data/Actor_19/03-01-06-01-01-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-06-01-02-01-19.wav b/ch5/data/Actor_19/03-01-06-01-02-01-19.wav new file mode 100644 index 0000000..d4bd0a4 Binary files /dev/null and b/ch5/data/Actor_19/03-01-06-01-02-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-06-01-02-02-19.wav b/ch5/data/Actor_19/03-01-06-01-02-02-19.wav new file mode 100644 index 0000000..6b81dff Binary files /dev/null and b/ch5/data/Actor_19/03-01-06-01-02-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-06-02-01-01-19.wav b/ch5/data/Actor_19/03-01-06-02-01-01-19.wav new file mode 100644 index 0000000..6bfcdd7 Binary files /dev/null and b/ch5/data/Actor_19/03-01-06-02-01-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-06-02-01-02-19.wav b/ch5/data/Actor_19/03-01-06-02-01-02-19.wav new file mode 100644 index 0000000..518a846 Binary files /dev/null and b/ch5/data/Actor_19/03-01-06-02-01-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-06-02-02-01-19.wav b/ch5/data/Actor_19/03-01-06-02-02-01-19.wav new file mode 100644 index 0000000..150233e Binary files /dev/null and b/ch5/data/Actor_19/03-01-06-02-02-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-06-02-02-02-19.wav b/ch5/data/Actor_19/03-01-06-02-02-02-19.wav new file mode 100644 index 0000000..fb36e63 Binary files /dev/null and b/ch5/data/Actor_19/03-01-06-02-02-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-07-01-01-01-19.wav b/ch5/data/Actor_19/03-01-07-01-01-01-19.wav new file mode 100644 index 0000000..8ce142f Binary files /dev/null and b/ch5/data/Actor_19/03-01-07-01-01-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-07-01-01-02-19.wav b/ch5/data/Actor_19/03-01-07-01-01-02-19.wav new file mode 100644 index 0000000..3571994 Binary files /dev/null and b/ch5/data/Actor_19/03-01-07-01-01-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-07-01-02-01-19.wav b/ch5/data/Actor_19/03-01-07-01-02-01-19.wav new file mode 100644 index 0000000..baf4a64 Binary files /dev/null and b/ch5/data/Actor_19/03-01-07-01-02-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-07-01-02-02-19.wav b/ch5/data/Actor_19/03-01-07-01-02-02-19.wav new file mode 100644 index 0000000..a2dadf1 Binary files /dev/null and b/ch5/data/Actor_19/03-01-07-01-02-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-07-02-01-01-19.wav b/ch5/data/Actor_19/03-01-07-02-01-01-19.wav new file mode 100644 index 0000000..abff20f Binary files /dev/null and b/ch5/data/Actor_19/03-01-07-02-01-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-07-02-01-02-19.wav b/ch5/data/Actor_19/03-01-07-02-01-02-19.wav new file mode 100644 index 0000000..e096ada Binary files /dev/null and b/ch5/data/Actor_19/03-01-07-02-01-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-07-02-02-01-19.wav b/ch5/data/Actor_19/03-01-07-02-02-01-19.wav new file mode 100644 index 0000000..239c1e4 Binary files /dev/null and b/ch5/data/Actor_19/03-01-07-02-02-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-07-02-02-02-19.wav b/ch5/data/Actor_19/03-01-07-02-02-02-19.wav new file mode 100644 index 0000000..d44d98f Binary files /dev/null and b/ch5/data/Actor_19/03-01-07-02-02-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-08-01-01-01-19.wav b/ch5/data/Actor_19/03-01-08-01-01-01-19.wav new file mode 100644 index 0000000..62aa49d Binary files /dev/null and b/ch5/data/Actor_19/03-01-08-01-01-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-08-01-01-02-19.wav b/ch5/data/Actor_19/03-01-08-01-01-02-19.wav new file mode 100644 index 0000000..6ef4958 Binary files /dev/null and b/ch5/data/Actor_19/03-01-08-01-01-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-08-01-02-01-19.wav b/ch5/data/Actor_19/03-01-08-01-02-01-19.wav new file mode 100644 index 0000000..fed1c99 Binary files /dev/null and b/ch5/data/Actor_19/03-01-08-01-02-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-08-01-02-02-19.wav b/ch5/data/Actor_19/03-01-08-01-02-02-19.wav new file mode 100644 index 0000000..6bb627f Binary files /dev/null and b/ch5/data/Actor_19/03-01-08-01-02-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-08-02-01-01-19.wav b/ch5/data/Actor_19/03-01-08-02-01-01-19.wav new file mode 100644 index 0000000..7cf2350 Binary files /dev/null and b/ch5/data/Actor_19/03-01-08-02-01-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-08-02-01-02-19.wav b/ch5/data/Actor_19/03-01-08-02-01-02-19.wav new file mode 100644 index 0000000..8fa278e Binary files /dev/null and b/ch5/data/Actor_19/03-01-08-02-01-02-19.wav differ diff --git a/ch5/data/Actor_19/03-01-08-02-02-01-19.wav b/ch5/data/Actor_19/03-01-08-02-02-01-19.wav new file mode 100644 index 0000000..49fabb8 Binary files /dev/null and b/ch5/data/Actor_19/03-01-08-02-02-01-19.wav differ diff --git a/ch5/data/Actor_19/03-01-08-02-02-02-19.wav b/ch5/data/Actor_19/03-01-08-02-02-02-19.wav new file mode 100644 index 0000000..3026640 Binary files /dev/null and b/ch5/data/Actor_19/03-01-08-02-02-02-19.wav differ diff --git a/ch5/data/Actor_20/03-01-01-01-01-01-20.wav b/ch5/data/Actor_20/03-01-01-01-01-01-20.wav new file mode 100644 index 0000000..fd2e303 Binary files /dev/null and b/ch5/data/Actor_20/03-01-01-01-01-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-01-01-01-02-20.wav b/ch5/data/Actor_20/03-01-01-01-01-02-20.wav new file mode 100644 index 0000000..4ffaf5a Binary files /dev/null and b/ch5/data/Actor_20/03-01-01-01-01-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-01-01-02-01-20.wav b/ch5/data/Actor_20/03-01-01-01-02-01-20.wav new file mode 100644 index 0000000..d222f95 Binary files /dev/null and b/ch5/data/Actor_20/03-01-01-01-02-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-01-01-02-02-20.wav b/ch5/data/Actor_20/03-01-01-01-02-02-20.wav new file mode 100644 index 0000000..7178278 Binary files /dev/null and b/ch5/data/Actor_20/03-01-01-01-02-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-02-01-01-01-20.wav b/ch5/data/Actor_20/03-01-02-01-01-01-20.wav new file mode 100644 index 0000000..698b99e Binary files /dev/null and b/ch5/data/Actor_20/03-01-02-01-01-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-02-01-01-02-20.wav b/ch5/data/Actor_20/03-01-02-01-01-02-20.wav new file mode 100644 index 0000000..c424841 Binary files /dev/null and b/ch5/data/Actor_20/03-01-02-01-01-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-02-01-02-01-20.wav b/ch5/data/Actor_20/03-01-02-01-02-01-20.wav new file mode 100644 index 0000000..6b1c185 Binary files /dev/null and b/ch5/data/Actor_20/03-01-02-01-02-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-02-01-02-02-20.wav b/ch5/data/Actor_20/03-01-02-01-02-02-20.wav new file mode 100644 index 0000000..b470708 Binary files /dev/null and b/ch5/data/Actor_20/03-01-02-01-02-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-02-02-01-01-20.wav b/ch5/data/Actor_20/03-01-02-02-01-01-20.wav new file mode 100644 index 0000000..c0fb187 Binary files /dev/null and b/ch5/data/Actor_20/03-01-02-02-01-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-02-02-01-02-20.wav b/ch5/data/Actor_20/03-01-02-02-01-02-20.wav new file mode 100644 index 0000000..c07f45d Binary files /dev/null and b/ch5/data/Actor_20/03-01-02-02-01-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-02-02-02-01-20.wav b/ch5/data/Actor_20/03-01-02-02-02-01-20.wav new file mode 100644 index 0000000..ef5fd4f Binary files /dev/null and b/ch5/data/Actor_20/03-01-02-02-02-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-02-02-02-02-20.wav b/ch5/data/Actor_20/03-01-02-02-02-02-20.wav new file mode 100644 index 0000000..b14f11e Binary files /dev/null and b/ch5/data/Actor_20/03-01-02-02-02-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-03-01-01-01-20.wav b/ch5/data/Actor_20/03-01-03-01-01-01-20.wav new file mode 100644 index 0000000..3892e7f Binary files /dev/null and b/ch5/data/Actor_20/03-01-03-01-01-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-03-01-01-02-20.wav b/ch5/data/Actor_20/03-01-03-01-01-02-20.wav new file mode 100644 index 0000000..9ea649c Binary files /dev/null and b/ch5/data/Actor_20/03-01-03-01-01-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-03-01-02-01-20.wav b/ch5/data/Actor_20/03-01-03-01-02-01-20.wav new file mode 100644 index 0000000..b2a6a15 Binary files /dev/null and b/ch5/data/Actor_20/03-01-03-01-02-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-03-01-02-02-20.wav b/ch5/data/Actor_20/03-01-03-01-02-02-20.wav new file mode 100644 index 0000000..12e3d92 Binary files /dev/null and b/ch5/data/Actor_20/03-01-03-01-02-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-03-02-01-01-20.wav b/ch5/data/Actor_20/03-01-03-02-01-01-20.wav new file mode 100644 index 0000000..7947f79 Binary files /dev/null and b/ch5/data/Actor_20/03-01-03-02-01-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-03-02-01-02-20.wav b/ch5/data/Actor_20/03-01-03-02-01-02-20.wav new file mode 100644 index 0000000..913dc47 Binary files /dev/null and b/ch5/data/Actor_20/03-01-03-02-01-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-03-02-02-01-20.wav b/ch5/data/Actor_20/03-01-03-02-02-01-20.wav new file mode 100644 index 0000000..e9e3a5a Binary files /dev/null and b/ch5/data/Actor_20/03-01-03-02-02-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-03-02-02-02-20.wav b/ch5/data/Actor_20/03-01-03-02-02-02-20.wav new file mode 100644 index 0000000..4d0450c Binary files /dev/null and b/ch5/data/Actor_20/03-01-03-02-02-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-04-01-01-01-20.wav b/ch5/data/Actor_20/03-01-04-01-01-01-20.wav new file mode 100644 index 0000000..f748ace Binary files /dev/null and b/ch5/data/Actor_20/03-01-04-01-01-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-04-01-01-02-20.wav b/ch5/data/Actor_20/03-01-04-01-01-02-20.wav new file mode 100644 index 0000000..b9c0e57 Binary files /dev/null and b/ch5/data/Actor_20/03-01-04-01-01-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-04-01-02-01-20.wav b/ch5/data/Actor_20/03-01-04-01-02-01-20.wav new file mode 100644 index 0000000..022d57c Binary files /dev/null and b/ch5/data/Actor_20/03-01-04-01-02-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-04-01-02-02-20.wav b/ch5/data/Actor_20/03-01-04-01-02-02-20.wav new file mode 100644 index 0000000..4da8dcb Binary files /dev/null and b/ch5/data/Actor_20/03-01-04-01-02-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-04-02-01-01-20.wav b/ch5/data/Actor_20/03-01-04-02-01-01-20.wav new file mode 100644 index 0000000..df4af85 Binary files /dev/null and b/ch5/data/Actor_20/03-01-04-02-01-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-04-02-01-02-20.wav b/ch5/data/Actor_20/03-01-04-02-01-02-20.wav new file mode 100644 index 0000000..83b2d36 Binary files /dev/null and b/ch5/data/Actor_20/03-01-04-02-01-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-04-02-02-01-20.wav b/ch5/data/Actor_20/03-01-04-02-02-01-20.wav new file mode 100644 index 0000000..d941ba6 Binary files /dev/null and b/ch5/data/Actor_20/03-01-04-02-02-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-04-02-02-02-20.wav b/ch5/data/Actor_20/03-01-04-02-02-02-20.wav new file mode 100644 index 0000000..f13d266 Binary files /dev/null and b/ch5/data/Actor_20/03-01-04-02-02-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-05-01-01-01-20.wav b/ch5/data/Actor_20/03-01-05-01-01-01-20.wav new file mode 100644 index 0000000..e7f4366 Binary files /dev/null and b/ch5/data/Actor_20/03-01-05-01-01-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-05-01-01-02-20.wav b/ch5/data/Actor_20/03-01-05-01-01-02-20.wav new file mode 100644 index 0000000..688572b Binary files /dev/null and b/ch5/data/Actor_20/03-01-05-01-01-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-05-01-02-01-20.wav b/ch5/data/Actor_20/03-01-05-01-02-01-20.wav new file mode 100644 index 0000000..db3c37e Binary files /dev/null and b/ch5/data/Actor_20/03-01-05-01-02-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-05-01-02-02-20.wav b/ch5/data/Actor_20/03-01-05-01-02-02-20.wav new file mode 100644 index 0000000..75ad1b6 Binary files /dev/null and b/ch5/data/Actor_20/03-01-05-01-02-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-05-02-01-01-20.wav b/ch5/data/Actor_20/03-01-05-02-01-01-20.wav new file mode 100644 index 0000000..f52573c Binary files /dev/null and b/ch5/data/Actor_20/03-01-05-02-01-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-05-02-01-02-20.wav b/ch5/data/Actor_20/03-01-05-02-01-02-20.wav new file mode 100644 index 0000000..314da14 Binary files /dev/null and b/ch5/data/Actor_20/03-01-05-02-01-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-05-02-02-01-20.wav b/ch5/data/Actor_20/03-01-05-02-02-01-20.wav new file mode 100644 index 0000000..296773f Binary files /dev/null and b/ch5/data/Actor_20/03-01-05-02-02-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-05-02-02-02-20.wav b/ch5/data/Actor_20/03-01-05-02-02-02-20.wav new file mode 100644 index 0000000..b42c516 Binary files /dev/null and b/ch5/data/Actor_20/03-01-05-02-02-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-06-01-01-01-20.wav b/ch5/data/Actor_20/03-01-06-01-01-01-20.wav new file mode 100644 index 0000000..3a3a98b Binary files /dev/null and b/ch5/data/Actor_20/03-01-06-01-01-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-06-01-01-02-20.wav b/ch5/data/Actor_20/03-01-06-01-01-02-20.wav new file mode 100644 index 0000000..0e93a22 Binary files /dev/null and b/ch5/data/Actor_20/03-01-06-01-01-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-06-01-02-01-20.wav b/ch5/data/Actor_20/03-01-06-01-02-01-20.wav new file mode 100644 index 0000000..3ee043b Binary files /dev/null and b/ch5/data/Actor_20/03-01-06-01-02-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-06-01-02-02-20.wav b/ch5/data/Actor_20/03-01-06-01-02-02-20.wav new file mode 100644 index 0000000..944e0c4 Binary files /dev/null and b/ch5/data/Actor_20/03-01-06-01-02-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-06-02-01-01-20.wav b/ch5/data/Actor_20/03-01-06-02-01-01-20.wav new file mode 100644 index 0000000..80008d1 Binary files /dev/null and b/ch5/data/Actor_20/03-01-06-02-01-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-06-02-01-02-20.wav b/ch5/data/Actor_20/03-01-06-02-01-02-20.wav new file mode 100644 index 0000000..3d4cbd9 Binary files /dev/null and b/ch5/data/Actor_20/03-01-06-02-01-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-06-02-02-01-20.wav b/ch5/data/Actor_20/03-01-06-02-02-01-20.wav new file mode 100644 index 0000000..b4ea71c Binary files /dev/null and b/ch5/data/Actor_20/03-01-06-02-02-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-06-02-02-02-20.wav b/ch5/data/Actor_20/03-01-06-02-02-02-20.wav new file mode 100644 index 0000000..448ab45 Binary files /dev/null and b/ch5/data/Actor_20/03-01-06-02-02-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-07-01-01-01-20.wav b/ch5/data/Actor_20/03-01-07-01-01-01-20.wav new file mode 100644 index 0000000..49d3a0d Binary files /dev/null and b/ch5/data/Actor_20/03-01-07-01-01-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-07-01-01-02-20.wav b/ch5/data/Actor_20/03-01-07-01-01-02-20.wav new file mode 100644 index 0000000..659837d Binary files /dev/null and b/ch5/data/Actor_20/03-01-07-01-01-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-07-01-02-01-20.wav b/ch5/data/Actor_20/03-01-07-01-02-01-20.wav new file mode 100644 index 0000000..be42cdc Binary files /dev/null and b/ch5/data/Actor_20/03-01-07-01-02-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-07-01-02-02-20.wav b/ch5/data/Actor_20/03-01-07-01-02-02-20.wav new file mode 100644 index 0000000..413361e Binary files /dev/null and b/ch5/data/Actor_20/03-01-07-01-02-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-07-02-01-01-20.wav b/ch5/data/Actor_20/03-01-07-02-01-01-20.wav new file mode 100644 index 0000000..4a88fc9 Binary files /dev/null and b/ch5/data/Actor_20/03-01-07-02-01-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-07-02-01-02-20.wav b/ch5/data/Actor_20/03-01-07-02-01-02-20.wav new file mode 100644 index 0000000..658993a Binary files /dev/null and b/ch5/data/Actor_20/03-01-07-02-01-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-07-02-02-01-20.wav b/ch5/data/Actor_20/03-01-07-02-02-01-20.wav new file mode 100644 index 0000000..b0c0100 Binary files /dev/null and b/ch5/data/Actor_20/03-01-07-02-02-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-07-02-02-02-20.wav b/ch5/data/Actor_20/03-01-07-02-02-02-20.wav new file mode 100644 index 0000000..f467a72 Binary files /dev/null and b/ch5/data/Actor_20/03-01-07-02-02-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-08-01-01-01-20.wav b/ch5/data/Actor_20/03-01-08-01-01-01-20.wav new file mode 100644 index 0000000..ea210c4 Binary files /dev/null and b/ch5/data/Actor_20/03-01-08-01-01-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-08-01-01-02-20.wav b/ch5/data/Actor_20/03-01-08-01-01-02-20.wav new file mode 100644 index 0000000..b421feb Binary files /dev/null and b/ch5/data/Actor_20/03-01-08-01-01-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-08-01-02-01-20.wav b/ch5/data/Actor_20/03-01-08-01-02-01-20.wav new file mode 100644 index 0000000..15a1a84 Binary files /dev/null and b/ch5/data/Actor_20/03-01-08-01-02-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-08-01-02-02-20.wav b/ch5/data/Actor_20/03-01-08-01-02-02-20.wav new file mode 100644 index 0000000..8083033 Binary files /dev/null and b/ch5/data/Actor_20/03-01-08-01-02-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-08-02-01-01-20.wav b/ch5/data/Actor_20/03-01-08-02-01-01-20.wav new file mode 100644 index 0000000..e36efa1 Binary files /dev/null and b/ch5/data/Actor_20/03-01-08-02-01-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-08-02-01-02-20.wav b/ch5/data/Actor_20/03-01-08-02-01-02-20.wav new file mode 100644 index 0000000..cf8af61 Binary files /dev/null and b/ch5/data/Actor_20/03-01-08-02-01-02-20.wav differ diff --git a/ch5/data/Actor_20/03-01-08-02-02-01-20.wav b/ch5/data/Actor_20/03-01-08-02-02-01-20.wav new file mode 100644 index 0000000..4b0350f Binary files /dev/null and b/ch5/data/Actor_20/03-01-08-02-02-01-20.wav differ diff --git a/ch5/data/Actor_20/03-01-08-02-02-02-20.wav b/ch5/data/Actor_20/03-01-08-02-02-02-20.wav new file mode 100644 index 0000000..3bfe549 Binary files /dev/null and b/ch5/data/Actor_20/03-01-08-02-02-02-20.wav differ diff --git a/ch5/data/Actor_21/03-01-01-01-01-01-21.wav b/ch5/data/Actor_21/03-01-01-01-01-01-21.wav new file mode 100644 index 0000000..0a3644e Binary files /dev/null and b/ch5/data/Actor_21/03-01-01-01-01-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-01-01-01-02-21.wav b/ch5/data/Actor_21/03-01-01-01-01-02-21.wav new file mode 100644 index 0000000..34975df Binary files /dev/null and b/ch5/data/Actor_21/03-01-01-01-01-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-01-01-02-01-21.wav b/ch5/data/Actor_21/03-01-01-01-02-01-21.wav new file mode 100644 index 0000000..d3780b4 Binary files /dev/null and b/ch5/data/Actor_21/03-01-01-01-02-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-01-01-02-02-21.wav b/ch5/data/Actor_21/03-01-01-01-02-02-21.wav new file mode 100644 index 0000000..8ebeec3 Binary files /dev/null and b/ch5/data/Actor_21/03-01-01-01-02-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-02-01-01-01-21.wav b/ch5/data/Actor_21/03-01-02-01-01-01-21.wav new file mode 100644 index 0000000..22530cf Binary files /dev/null and b/ch5/data/Actor_21/03-01-02-01-01-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-02-01-01-02-21.wav b/ch5/data/Actor_21/03-01-02-01-01-02-21.wav new file mode 100644 index 0000000..c5b0906 Binary files /dev/null and b/ch5/data/Actor_21/03-01-02-01-01-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-02-01-02-01-21.wav b/ch5/data/Actor_21/03-01-02-01-02-01-21.wav new file mode 100644 index 0000000..04e6419 Binary files /dev/null and b/ch5/data/Actor_21/03-01-02-01-02-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-02-01-02-02-21.wav b/ch5/data/Actor_21/03-01-02-01-02-02-21.wav new file mode 100644 index 0000000..39af5e6 Binary files /dev/null and b/ch5/data/Actor_21/03-01-02-01-02-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-02-02-01-01-21.wav b/ch5/data/Actor_21/03-01-02-02-01-01-21.wav new file mode 100644 index 0000000..8999050 Binary files /dev/null and b/ch5/data/Actor_21/03-01-02-02-01-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-02-02-01-02-21.wav b/ch5/data/Actor_21/03-01-02-02-01-02-21.wav new file mode 100644 index 0000000..c5af7da Binary files /dev/null and b/ch5/data/Actor_21/03-01-02-02-01-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-02-02-02-01-21.wav b/ch5/data/Actor_21/03-01-02-02-02-01-21.wav new file mode 100644 index 0000000..c92e5aa Binary files /dev/null and b/ch5/data/Actor_21/03-01-02-02-02-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-02-02-02-02-21.wav b/ch5/data/Actor_21/03-01-02-02-02-02-21.wav new file mode 100644 index 0000000..b6384c2 Binary files /dev/null and b/ch5/data/Actor_21/03-01-02-02-02-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-03-01-01-01-21.wav b/ch5/data/Actor_21/03-01-03-01-01-01-21.wav new file mode 100644 index 0000000..0f91baf Binary files /dev/null and b/ch5/data/Actor_21/03-01-03-01-01-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-03-01-01-02-21.wav b/ch5/data/Actor_21/03-01-03-01-01-02-21.wav new file mode 100644 index 0000000..88ec531 Binary files /dev/null and b/ch5/data/Actor_21/03-01-03-01-01-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-03-01-02-01-21.wav b/ch5/data/Actor_21/03-01-03-01-02-01-21.wav new file mode 100644 index 0000000..d4051a1 Binary files /dev/null and b/ch5/data/Actor_21/03-01-03-01-02-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-03-01-02-02-21.wav b/ch5/data/Actor_21/03-01-03-01-02-02-21.wav new file mode 100644 index 0000000..255e29d Binary files /dev/null and b/ch5/data/Actor_21/03-01-03-01-02-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-03-02-01-01-21.wav b/ch5/data/Actor_21/03-01-03-02-01-01-21.wav new file mode 100644 index 0000000..3fb6bb4 Binary files /dev/null and b/ch5/data/Actor_21/03-01-03-02-01-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-03-02-01-02-21.wav b/ch5/data/Actor_21/03-01-03-02-01-02-21.wav new file mode 100644 index 0000000..1565982 Binary files /dev/null and b/ch5/data/Actor_21/03-01-03-02-01-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-03-02-02-01-21.wav b/ch5/data/Actor_21/03-01-03-02-02-01-21.wav new file mode 100644 index 0000000..b8a78d6 Binary files /dev/null and b/ch5/data/Actor_21/03-01-03-02-02-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-03-02-02-02-21.wav b/ch5/data/Actor_21/03-01-03-02-02-02-21.wav new file mode 100644 index 0000000..551f6c5 Binary files /dev/null and b/ch5/data/Actor_21/03-01-03-02-02-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-04-01-01-01-21.wav b/ch5/data/Actor_21/03-01-04-01-01-01-21.wav new file mode 100644 index 0000000..1c983dc Binary files /dev/null and b/ch5/data/Actor_21/03-01-04-01-01-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-04-01-01-02-21.wav b/ch5/data/Actor_21/03-01-04-01-01-02-21.wav new file mode 100644 index 0000000..585b436 Binary files /dev/null and b/ch5/data/Actor_21/03-01-04-01-01-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-04-01-02-01-21.wav b/ch5/data/Actor_21/03-01-04-01-02-01-21.wav new file mode 100644 index 0000000..c20d86e Binary files /dev/null and b/ch5/data/Actor_21/03-01-04-01-02-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-04-01-02-02-21.wav b/ch5/data/Actor_21/03-01-04-01-02-02-21.wav new file mode 100644 index 0000000..dbbd144 Binary files /dev/null and b/ch5/data/Actor_21/03-01-04-01-02-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-04-02-01-01-21.wav b/ch5/data/Actor_21/03-01-04-02-01-01-21.wav new file mode 100644 index 0000000..5699802 Binary files /dev/null and b/ch5/data/Actor_21/03-01-04-02-01-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-04-02-01-02-21.wav b/ch5/data/Actor_21/03-01-04-02-01-02-21.wav new file mode 100644 index 0000000..afa930d Binary files /dev/null and b/ch5/data/Actor_21/03-01-04-02-01-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-04-02-02-01-21.wav b/ch5/data/Actor_21/03-01-04-02-02-01-21.wav new file mode 100644 index 0000000..6c70a67 Binary files /dev/null and b/ch5/data/Actor_21/03-01-04-02-02-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-04-02-02-02-21.wav b/ch5/data/Actor_21/03-01-04-02-02-02-21.wav new file mode 100644 index 0000000..146051d Binary files /dev/null and b/ch5/data/Actor_21/03-01-04-02-02-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-05-01-01-01-21.wav b/ch5/data/Actor_21/03-01-05-01-01-01-21.wav new file mode 100644 index 0000000..e4eb02e Binary files /dev/null and b/ch5/data/Actor_21/03-01-05-01-01-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-05-01-01-02-21.wav b/ch5/data/Actor_21/03-01-05-01-01-02-21.wav new file mode 100644 index 0000000..aee534e Binary files /dev/null and b/ch5/data/Actor_21/03-01-05-01-01-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-05-01-02-01-21.wav b/ch5/data/Actor_21/03-01-05-01-02-01-21.wav new file mode 100644 index 0000000..17a6702 Binary files /dev/null and b/ch5/data/Actor_21/03-01-05-01-02-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-05-01-02-02-21.wav b/ch5/data/Actor_21/03-01-05-01-02-02-21.wav new file mode 100644 index 0000000..904025f Binary files /dev/null and b/ch5/data/Actor_21/03-01-05-01-02-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-05-02-01-01-21.wav b/ch5/data/Actor_21/03-01-05-02-01-01-21.wav new file mode 100644 index 0000000..df45818 Binary files /dev/null and b/ch5/data/Actor_21/03-01-05-02-01-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-05-02-01-02-21.wav b/ch5/data/Actor_21/03-01-05-02-01-02-21.wav new file mode 100644 index 0000000..349663a Binary files /dev/null and b/ch5/data/Actor_21/03-01-05-02-01-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-05-02-02-01-21.wav b/ch5/data/Actor_21/03-01-05-02-02-01-21.wav new file mode 100644 index 0000000..8a22744 Binary files /dev/null and b/ch5/data/Actor_21/03-01-05-02-02-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-05-02-02-02-21.wav b/ch5/data/Actor_21/03-01-05-02-02-02-21.wav new file mode 100644 index 0000000..c339136 Binary files /dev/null and b/ch5/data/Actor_21/03-01-05-02-02-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-06-01-01-01-21.wav b/ch5/data/Actor_21/03-01-06-01-01-01-21.wav new file mode 100644 index 0000000..82c6f5c Binary files /dev/null and b/ch5/data/Actor_21/03-01-06-01-01-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-06-01-01-02-21.wav b/ch5/data/Actor_21/03-01-06-01-01-02-21.wav new file mode 100644 index 0000000..97f8256 Binary files /dev/null and b/ch5/data/Actor_21/03-01-06-01-01-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-06-01-02-01-21.wav b/ch5/data/Actor_21/03-01-06-01-02-01-21.wav new file mode 100644 index 0000000..3cd06a9 Binary files /dev/null and b/ch5/data/Actor_21/03-01-06-01-02-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-06-01-02-02-21.wav b/ch5/data/Actor_21/03-01-06-01-02-02-21.wav new file mode 100644 index 0000000..f1a1add Binary files /dev/null and b/ch5/data/Actor_21/03-01-06-01-02-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-06-02-01-01-21.wav b/ch5/data/Actor_21/03-01-06-02-01-01-21.wav new file mode 100644 index 0000000..30367da Binary files /dev/null and b/ch5/data/Actor_21/03-01-06-02-01-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-06-02-01-02-21.wav b/ch5/data/Actor_21/03-01-06-02-01-02-21.wav new file mode 100644 index 0000000..c857c88 Binary files /dev/null and b/ch5/data/Actor_21/03-01-06-02-01-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-06-02-02-01-21.wav b/ch5/data/Actor_21/03-01-06-02-02-01-21.wav new file mode 100644 index 0000000..94b2813 Binary files /dev/null and b/ch5/data/Actor_21/03-01-06-02-02-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-06-02-02-02-21.wav b/ch5/data/Actor_21/03-01-06-02-02-02-21.wav new file mode 100644 index 0000000..8491d4f Binary files /dev/null and b/ch5/data/Actor_21/03-01-06-02-02-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-07-01-01-01-21.wav b/ch5/data/Actor_21/03-01-07-01-01-01-21.wav new file mode 100644 index 0000000..910ed25 Binary files /dev/null and b/ch5/data/Actor_21/03-01-07-01-01-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-07-01-01-02-21.wav b/ch5/data/Actor_21/03-01-07-01-01-02-21.wav new file mode 100644 index 0000000..b8819b4 Binary files /dev/null and b/ch5/data/Actor_21/03-01-07-01-01-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-07-01-02-01-21.wav b/ch5/data/Actor_21/03-01-07-01-02-01-21.wav new file mode 100644 index 0000000..6c5b55c Binary files /dev/null and b/ch5/data/Actor_21/03-01-07-01-02-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-07-01-02-02-21.wav b/ch5/data/Actor_21/03-01-07-01-02-02-21.wav new file mode 100644 index 0000000..5f45e34 Binary files /dev/null and b/ch5/data/Actor_21/03-01-07-01-02-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-07-02-01-01-21.wav b/ch5/data/Actor_21/03-01-07-02-01-01-21.wav new file mode 100644 index 0000000..d41f048 Binary files /dev/null and b/ch5/data/Actor_21/03-01-07-02-01-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-07-02-01-02-21.wav b/ch5/data/Actor_21/03-01-07-02-01-02-21.wav new file mode 100644 index 0000000..6909280 Binary files /dev/null and b/ch5/data/Actor_21/03-01-07-02-01-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-07-02-02-01-21.wav b/ch5/data/Actor_21/03-01-07-02-02-01-21.wav new file mode 100644 index 0000000..8b75e51 Binary files /dev/null and b/ch5/data/Actor_21/03-01-07-02-02-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-07-02-02-02-21.wav b/ch5/data/Actor_21/03-01-07-02-02-02-21.wav new file mode 100644 index 0000000..bbed490 Binary files /dev/null and b/ch5/data/Actor_21/03-01-07-02-02-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-08-01-01-01-21.wav b/ch5/data/Actor_21/03-01-08-01-01-01-21.wav new file mode 100644 index 0000000..39455e3 Binary files /dev/null and b/ch5/data/Actor_21/03-01-08-01-01-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-08-01-01-02-21.wav b/ch5/data/Actor_21/03-01-08-01-01-02-21.wav new file mode 100644 index 0000000..14fd47c Binary files /dev/null and b/ch5/data/Actor_21/03-01-08-01-01-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-08-01-02-01-21.wav b/ch5/data/Actor_21/03-01-08-01-02-01-21.wav new file mode 100644 index 0000000..dfd5524 Binary files /dev/null and b/ch5/data/Actor_21/03-01-08-01-02-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-08-01-02-02-21.wav b/ch5/data/Actor_21/03-01-08-01-02-02-21.wav new file mode 100644 index 0000000..b78195e Binary files /dev/null and b/ch5/data/Actor_21/03-01-08-01-02-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-08-02-01-01-21.wav b/ch5/data/Actor_21/03-01-08-02-01-01-21.wav new file mode 100644 index 0000000..90b299c Binary files /dev/null and b/ch5/data/Actor_21/03-01-08-02-01-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-08-02-01-02-21.wav b/ch5/data/Actor_21/03-01-08-02-01-02-21.wav new file mode 100644 index 0000000..0262265 Binary files /dev/null and b/ch5/data/Actor_21/03-01-08-02-01-02-21.wav differ diff --git a/ch5/data/Actor_21/03-01-08-02-02-01-21.wav b/ch5/data/Actor_21/03-01-08-02-02-01-21.wav new file mode 100644 index 0000000..df77355 Binary files /dev/null and b/ch5/data/Actor_21/03-01-08-02-02-01-21.wav differ diff --git a/ch5/data/Actor_21/03-01-08-02-02-02-21.wav b/ch5/data/Actor_21/03-01-08-02-02-02-21.wav new file mode 100644 index 0000000..eee9902 Binary files /dev/null and b/ch5/data/Actor_21/03-01-08-02-02-02-21.wav differ diff --git a/ch5/data/Actor_22/03-01-01-01-01-01-22.wav b/ch5/data/Actor_22/03-01-01-01-01-01-22.wav new file mode 100644 index 0000000..7030b4e Binary files /dev/null and b/ch5/data/Actor_22/03-01-01-01-01-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-01-01-01-02-22.wav b/ch5/data/Actor_22/03-01-01-01-01-02-22.wav new file mode 100644 index 0000000..ed76bb8 Binary files /dev/null and b/ch5/data/Actor_22/03-01-01-01-01-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-01-01-02-01-22.wav b/ch5/data/Actor_22/03-01-01-01-02-01-22.wav new file mode 100644 index 0000000..14c10c6 Binary files /dev/null and b/ch5/data/Actor_22/03-01-01-01-02-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-01-01-02-02-22.wav b/ch5/data/Actor_22/03-01-01-01-02-02-22.wav new file mode 100644 index 0000000..82f5d3d Binary files /dev/null and b/ch5/data/Actor_22/03-01-01-01-02-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-02-01-01-01-22.wav b/ch5/data/Actor_22/03-01-02-01-01-01-22.wav new file mode 100644 index 0000000..eab77e1 Binary files /dev/null and b/ch5/data/Actor_22/03-01-02-01-01-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-02-01-01-02-22.wav b/ch5/data/Actor_22/03-01-02-01-01-02-22.wav new file mode 100644 index 0000000..f774e24 Binary files /dev/null and b/ch5/data/Actor_22/03-01-02-01-01-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-02-01-02-01-22.wav b/ch5/data/Actor_22/03-01-02-01-02-01-22.wav new file mode 100644 index 0000000..b7c1c42 Binary files /dev/null and b/ch5/data/Actor_22/03-01-02-01-02-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-02-01-02-02-22.wav b/ch5/data/Actor_22/03-01-02-01-02-02-22.wav new file mode 100644 index 0000000..5ac0550 Binary files /dev/null and b/ch5/data/Actor_22/03-01-02-01-02-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-02-02-01-01-22.wav b/ch5/data/Actor_22/03-01-02-02-01-01-22.wav new file mode 100644 index 0000000..ebbd9ef Binary files /dev/null and b/ch5/data/Actor_22/03-01-02-02-01-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-02-02-01-02-22.wav b/ch5/data/Actor_22/03-01-02-02-01-02-22.wav new file mode 100644 index 0000000..9692dfa Binary files /dev/null and b/ch5/data/Actor_22/03-01-02-02-01-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-02-02-02-01-22.wav b/ch5/data/Actor_22/03-01-02-02-02-01-22.wav new file mode 100644 index 0000000..c1752c6 Binary files /dev/null and b/ch5/data/Actor_22/03-01-02-02-02-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-02-02-02-02-22.wav b/ch5/data/Actor_22/03-01-02-02-02-02-22.wav new file mode 100644 index 0000000..cf9c21c Binary files /dev/null and b/ch5/data/Actor_22/03-01-02-02-02-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-03-01-01-01-22.wav b/ch5/data/Actor_22/03-01-03-01-01-01-22.wav new file mode 100644 index 0000000..f31180c Binary files /dev/null and b/ch5/data/Actor_22/03-01-03-01-01-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-03-01-01-02-22.wav b/ch5/data/Actor_22/03-01-03-01-01-02-22.wav new file mode 100644 index 0000000..74ddbea Binary files /dev/null and b/ch5/data/Actor_22/03-01-03-01-01-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-03-01-02-01-22.wav b/ch5/data/Actor_22/03-01-03-01-02-01-22.wav new file mode 100644 index 0000000..2f892a4 Binary files /dev/null and b/ch5/data/Actor_22/03-01-03-01-02-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-03-01-02-02-22.wav b/ch5/data/Actor_22/03-01-03-01-02-02-22.wav new file mode 100644 index 0000000..988fed3 Binary files /dev/null and b/ch5/data/Actor_22/03-01-03-01-02-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-03-02-01-01-22.wav b/ch5/data/Actor_22/03-01-03-02-01-01-22.wav new file mode 100644 index 0000000..15fd879 Binary files /dev/null and b/ch5/data/Actor_22/03-01-03-02-01-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-03-02-01-02-22.wav b/ch5/data/Actor_22/03-01-03-02-01-02-22.wav new file mode 100644 index 0000000..946dfab Binary files /dev/null and b/ch5/data/Actor_22/03-01-03-02-01-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-03-02-02-01-22.wav b/ch5/data/Actor_22/03-01-03-02-02-01-22.wav new file mode 100644 index 0000000..487946a Binary files /dev/null and b/ch5/data/Actor_22/03-01-03-02-02-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-03-02-02-02-22.wav b/ch5/data/Actor_22/03-01-03-02-02-02-22.wav new file mode 100644 index 0000000..3d24f64 Binary files /dev/null and b/ch5/data/Actor_22/03-01-03-02-02-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-04-01-01-01-22.wav b/ch5/data/Actor_22/03-01-04-01-01-01-22.wav new file mode 100644 index 0000000..2fbacb6 Binary files /dev/null and b/ch5/data/Actor_22/03-01-04-01-01-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-04-01-01-02-22.wav b/ch5/data/Actor_22/03-01-04-01-01-02-22.wav new file mode 100644 index 0000000..38d9ea8 Binary files /dev/null and b/ch5/data/Actor_22/03-01-04-01-01-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-04-01-02-01-22.wav b/ch5/data/Actor_22/03-01-04-01-02-01-22.wav new file mode 100644 index 0000000..83f6359 Binary files /dev/null and b/ch5/data/Actor_22/03-01-04-01-02-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-04-01-02-02-22.wav b/ch5/data/Actor_22/03-01-04-01-02-02-22.wav new file mode 100644 index 0000000..87787fc Binary files /dev/null and b/ch5/data/Actor_22/03-01-04-01-02-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-04-02-01-01-22.wav b/ch5/data/Actor_22/03-01-04-02-01-01-22.wav new file mode 100644 index 0000000..ff4a997 Binary files /dev/null and b/ch5/data/Actor_22/03-01-04-02-01-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-04-02-01-02-22.wav b/ch5/data/Actor_22/03-01-04-02-01-02-22.wav new file mode 100644 index 0000000..1377d15 Binary files /dev/null and b/ch5/data/Actor_22/03-01-04-02-01-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-04-02-02-01-22.wav b/ch5/data/Actor_22/03-01-04-02-02-01-22.wav new file mode 100644 index 0000000..9ed4afc Binary files /dev/null and b/ch5/data/Actor_22/03-01-04-02-02-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-04-02-02-02-22.wav b/ch5/data/Actor_22/03-01-04-02-02-02-22.wav new file mode 100644 index 0000000..ba1f4b1 Binary files /dev/null and b/ch5/data/Actor_22/03-01-04-02-02-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-05-01-01-01-22.wav b/ch5/data/Actor_22/03-01-05-01-01-01-22.wav new file mode 100644 index 0000000..e1ead43 Binary files /dev/null and b/ch5/data/Actor_22/03-01-05-01-01-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-05-01-01-02-22.wav b/ch5/data/Actor_22/03-01-05-01-01-02-22.wav new file mode 100644 index 0000000..1a50a53 Binary files /dev/null and b/ch5/data/Actor_22/03-01-05-01-01-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-05-01-02-01-22.wav b/ch5/data/Actor_22/03-01-05-01-02-01-22.wav new file mode 100644 index 0000000..ede0448 Binary files /dev/null and b/ch5/data/Actor_22/03-01-05-01-02-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-05-01-02-02-22.wav b/ch5/data/Actor_22/03-01-05-01-02-02-22.wav new file mode 100644 index 0000000..eb2fe85 Binary files /dev/null and b/ch5/data/Actor_22/03-01-05-01-02-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-05-02-01-01-22.wav b/ch5/data/Actor_22/03-01-05-02-01-01-22.wav new file mode 100644 index 0000000..4144e58 Binary files /dev/null and b/ch5/data/Actor_22/03-01-05-02-01-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-05-02-01-02-22.wav b/ch5/data/Actor_22/03-01-05-02-01-02-22.wav new file mode 100644 index 0000000..36d96e4 Binary files /dev/null and b/ch5/data/Actor_22/03-01-05-02-01-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-05-02-02-01-22.wav b/ch5/data/Actor_22/03-01-05-02-02-01-22.wav new file mode 100644 index 0000000..6866041 Binary files /dev/null and b/ch5/data/Actor_22/03-01-05-02-02-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-05-02-02-02-22.wav b/ch5/data/Actor_22/03-01-05-02-02-02-22.wav new file mode 100644 index 0000000..2281c5d Binary files /dev/null and b/ch5/data/Actor_22/03-01-05-02-02-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-06-01-01-01-22.wav b/ch5/data/Actor_22/03-01-06-01-01-01-22.wav new file mode 100644 index 0000000..667b856 Binary files /dev/null and b/ch5/data/Actor_22/03-01-06-01-01-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-06-01-01-02-22.wav b/ch5/data/Actor_22/03-01-06-01-01-02-22.wav new file mode 100644 index 0000000..c04c8dc Binary files /dev/null and b/ch5/data/Actor_22/03-01-06-01-01-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-06-01-02-01-22.wav b/ch5/data/Actor_22/03-01-06-01-02-01-22.wav new file mode 100644 index 0000000..34f8ad3 Binary files /dev/null and b/ch5/data/Actor_22/03-01-06-01-02-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-06-01-02-02-22.wav b/ch5/data/Actor_22/03-01-06-01-02-02-22.wav new file mode 100644 index 0000000..1ee57ab Binary files /dev/null and b/ch5/data/Actor_22/03-01-06-01-02-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-06-02-01-01-22.wav b/ch5/data/Actor_22/03-01-06-02-01-01-22.wav new file mode 100644 index 0000000..283f8cc Binary files /dev/null and b/ch5/data/Actor_22/03-01-06-02-01-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-06-02-01-02-22.wav b/ch5/data/Actor_22/03-01-06-02-01-02-22.wav new file mode 100644 index 0000000..6bd3fac Binary files /dev/null and b/ch5/data/Actor_22/03-01-06-02-01-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-06-02-02-01-22.wav b/ch5/data/Actor_22/03-01-06-02-02-01-22.wav new file mode 100644 index 0000000..c2e46bd Binary files /dev/null and b/ch5/data/Actor_22/03-01-06-02-02-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-06-02-02-02-22.wav b/ch5/data/Actor_22/03-01-06-02-02-02-22.wav new file mode 100644 index 0000000..1e6a6ea Binary files /dev/null and b/ch5/data/Actor_22/03-01-06-02-02-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-07-01-01-01-22.wav b/ch5/data/Actor_22/03-01-07-01-01-01-22.wav new file mode 100644 index 0000000..85db898 Binary files /dev/null and b/ch5/data/Actor_22/03-01-07-01-01-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-07-01-01-02-22.wav b/ch5/data/Actor_22/03-01-07-01-01-02-22.wav new file mode 100644 index 0000000..7061679 Binary files /dev/null and b/ch5/data/Actor_22/03-01-07-01-01-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-07-01-02-01-22.wav b/ch5/data/Actor_22/03-01-07-01-02-01-22.wav new file mode 100644 index 0000000..b5117fb Binary files /dev/null and b/ch5/data/Actor_22/03-01-07-01-02-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-07-01-02-02-22.wav b/ch5/data/Actor_22/03-01-07-01-02-02-22.wav new file mode 100644 index 0000000..bfa70bb Binary files /dev/null and b/ch5/data/Actor_22/03-01-07-01-02-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-07-02-01-01-22.wav b/ch5/data/Actor_22/03-01-07-02-01-01-22.wav new file mode 100644 index 0000000..59c6d81 Binary files /dev/null and b/ch5/data/Actor_22/03-01-07-02-01-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-07-02-01-02-22.wav b/ch5/data/Actor_22/03-01-07-02-01-02-22.wav new file mode 100644 index 0000000..3de7181 Binary files /dev/null and b/ch5/data/Actor_22/03-01-07-02-01-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-07-02-02-01-22.wav b/ch5/data/Actor_22/03-01-07-02-02-01-22.wav new file mode 100644 index 0000000..ce28e14 Binary files /dev/null and b/ch5/data/Actor_22/03-01-07-02-02-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-07-02-02-02-22.wav b/ch5/data/Actor_22/03-01-07-02-02-02-22.wav new file mode 100644 index 0000000..9fec29c Binary files /dev/null and b/ch5/data/Actor_22/03-01-07-02-02-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-08-01-01-01-22.wav b/ch5/data/Actor_22/03-01-08-01-01-01-22.wav new file mode 100644 index 0000000..c27ff45 Binary files /dev/null and b/ch5/data/Actor_22/03-01-08-01-01-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-08-01-01-02-22.wav b/ch5/data/Actor_22/03-01-08-01-01-02-22.wav new file mode 100644 index 0000000..600615f Binary files /dev/null and b/ch5/data/Actor_22/03-01-08-01-01-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-08-01-02-01-22.wav b/ch5/data/Actor_22/03-01-08-01-02-01-22.wav new file mode 100644 index 0000000..fdcb9aa Binary files /dev/null and b/ch5/data/Actor_22/03-01-08-01-02-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-08-01-02-02-22.wav b/ch5/data/Actor_22/03-01-08-01-02-02-22.wav new file mode 100644 index 0000000..00733d2 Binary files /dev/null and b/ch5/data/Actor_22/03-01-08-01-02-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-08-02-01-01-22.wav b/ch5/data/Actor_22/03-01-08-02-01-01-22.wav new file mode 100644 index 0000000..dc3227d Binary files /dev/null and b/ch5/data/Actor_22/03-01-08-02-01-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-08-02-01-02-22.wav b/ch5/data/Actor_22/03-01-08-02-01-02-22.wav new file mode 100644 index 0000000..e727006 Binary files /dev/null and b/ch5/data/Actor_22/03-01-08-02-01-02-22.wav differ diff --git a/ch5/data/Actor_22/03-01-08-02-02-01-22.wav b/ch5/data/Actor_22/03-01-08-02-02-01-22.wav new file mode 100644 index 0000000..3503e6b Binary files /dev/null and b/ch5/data/Actor_22/03-01-08-02-02-01-22.wav differ diff --git a/ch5/data/Actor_22/03-01-08-02-02-02-22.wav b/ch5/data/Actor_22/03-01-08-02-02-02-22.wav new file mode 100644 index 0000000..2eefa85 Binary files /dev/null and b/ch5/data/Actor_22/03-01-08-02-02-02-22.wav differ diff --git a/ch5/data/Actor_23/03-01-01-01-01-01-23.wav b/ch5/data/Actor_23/03-01-01-01-01-01-23.wav new file mode 100644 index 0000000..9e79267 Binary files /dev/null and b/ch5/data/Actor_23/03-01-01-01-01-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-01-01-01-02-23.wav b/ch5/data/Actor_23/03-01-01-01-01-02-23.wav new file mode 100644 index 0000000..e276b32 Binary files /dev/null and b/ch5/data/Actor_23/03-01-01-01-01-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-01-01-02-01-23.wav b/ch5/data/Actor_23/03-01-01-01-02-01-23.wav new file mode 100644 index 0000000..461c043 Binary files /dev/null and b/ch5/data/Actor_23/03-01-01-01-02-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-01-01-02-02-23.wav b/ch5/data/Actor_23/03-01-01-01-02-02-23.wav new file mode 100644 index 0000000..8b3ad93 Binary files /dev/null and b/ch5/data/Actor_23/03-01-01-01-02-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-02-01-01-01-23.wav b/ch5/data/Actor_23/03-01-02-01-01-01-23.wav new file mode 100644 index 0000000..99f3ef2 Binary files /dev/null and b/ch5/data/Actor_23/03-01-02-01-01-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-02-01-01-02-23.wav b/ch5/data/Actor_23/03-01-02-01-01-02-23.wav new file mode 100644 index 0000000..eaa0a44 Binary files /dev/null and b/ch5/data/Actor_23/03-01-02-01-01-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-02-01-02-01-23.wav b/ch5/data/Actor_23/03-01-02-01-02-01-23.wav new file mode 100644 index 0000000..b8fba41 Binary files /dev/null and b/ch5/data/Actor_23/03-01-02-01-02-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-02-01-02-02-23.wav b/ch5/data/Actor_23/03-01-02-01-02-02-23.wav new file mode 100644 index 0000000..26ca584 Binary files /dev/null and b/ch5/data/Actor_23/03-01-02-01-02-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-02-02-01-01-23.wav b/ch5/data/Actor_23/03-01-02-02-01-01-23.wav new file mode 100644 index 0000000..24769ab Binary files /dev/null and b/ch5/data/Actor_23/03-01-02-02-01-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-02-02-01-02-23.wav b/ch5/data/Actor_23/03-01-02-02-01-02-23.wav new file mode 100644 index 0000000..ac0a1cb Binary files /dev/null and b/ch5/data/Actor_23/03-01-02-02-01-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-02-02-02-01-23.wav b/ch5/data/Actor_23/03-01-02-02-02-01-23.wav new file mode 100644 index 0000000..eb2edcc Binary files /dev/null and b/ch5/data/Actor_23/03-01-02-02-02-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-02-02-02-02-23.wav b/ch5/data/Actor_23/03-01-02-02-02-02-23.wav new file mode 100644 index 0000000..df43cb7 Binary files /dev/null and b/ch5/data/Actor_23/03-01-02-02-02-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-03-01-01-01-23.wav b/ch5/data/Actor_23/03-01-03-01-01-01-23.wav new file mode 100644 index 0000000..05986b8 Binary files /dev/null and b/ch5/data/Actor_23/03-01-03-01-01-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-03-01-01-02-23.wav b/ch5/data/Actor_23/03-01-03-01-01-02-23.wav new file mode 100644 index 0000000..2e166a5 Binary files /dev/null and b/ch5/data/Actor_23/03-01-03-01-01-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-03-01-02-01-23.wav b/ch5/data/Actor_23/03-01-03-01-02-01-23.wav new file mode 100644 index 0000000..8186799 Binary files /dev/null and b/ch5/data/Actor_23/03-01-03-01-02-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-03-01-02-02-23.wav b/ch5/data/Actor_23/03-01-03-01-02-02-23.wav new file mode 100644 index 0000000..6ce8546 Binary files /dev/null and b/ch5/data/Actor_23/03-01-03-01-02-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-03-02-01-01-23.wav b/ch5/data/Actor_23/03-01-03-02-01-01-23.wav new file mode 100644 index 0000000..e923d17 Binary files /dev/null and b/ch5/data/Actor_23/03-01-03-02-01-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-03-02-01-02-23.wav b/ch5/data/Actor_23/03-01-03-02-01-02-23.wav new file mode 100644 index 0000000..310d50b Binary files /dev/null and b/ch5/data/Actor_23/03-01-03-02-01-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-03-02-02-01-23.wav b/ch5/data/Actor_23/03-01-03-02-02-01-23.wav new file mode 100644 index 0000000..8a5e3b1 Binary files /dev/null and b/ch5/data/Actor_23/03-01-03-02-02-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-03-02-02-02-23.wav b/ch5/data/Actor_23/03-01-03-02-02-02-23.wav new file mode 100644 index 0000000..2c5af77 Binary files /dev/null and b/ch5/data/Actor_23/03-01-03-02-02-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-04-01-01-01-23.wav b/ch5/data/Actor_23/03-01-04-01-01-01-23.wav new file mode 100644 index 0000000..5635d86 Binary files /dev/null and b/ch5/data/Actor_23/03-01-04-01-01-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-04-01-01-02-23.wav b/ch5/data/Actor_23/03-01-04-01-01-02-23.wav new file mode 100644 index 0000000..9e5ac8a Binary files /dev/null and b/ch5/data/Actor_23/03-01-04-01-01-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-04-01-02-01-23.wav b/ch5/data/Actor_23/03-01-04-01-02-01-23.wav new file mode 100644 index 0000000..3909d95 Binary files /dev/null and b/ch5/data/Actor_23/03-01-04-01-02-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-04-01-02-02-23.wav b/ch5/data/Actor_23/03-01-04-01-02-02-23.wav new file mode 100644 index 0000000..306ad74 Binary files /dev/null and b/ch5/data/Actor_23/03-01-04-01-02-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-04-02-01-01-23.wav b/ch5/data/Actor_23/03-01-04-02-01-01-23.wav new file mode 100644 index 0000000..cef718c Binary files /dev/null and b/ch5/data/Actor_23/03-01-04-02-01-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-04-02-01-02-23.wav b/ch5/data/Actor_23/03-01-04-02-01-02-23.wav new file mode 100644 index 0000000..bbfb40c Binary files /dev/null and b/ch5/data/Actor_23/03-01-04-02-01-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-04-02-02-01-23.wav b/ch5/data/Actor_23/03-01-04-02-02-01-23.wav new file mode 100644 index 0000000..a9b7426 Binary files /dev/null and b/ch5/data/Actor_23/03-01-04-02-02-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-04-02-02-02-23.wav b/ch5/data/Actor_23/03-01-04-02-02-02-23.wav new file mode 100644 index 0000000..784438b Binary files /dev/null and b/ch5/data/Actor_23/03-01-04-02-02-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-05-01-01-01-23.wav b/ch5/data/Actor_23/03-01-05-01-01-01-23.wav new file mode 100644 index 0000000..5028670 Binary files /dev/null and b/ch5/data/Actor_23/03-01-05-01-01-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-05-01-01-02-23.wav b/ch5/data/Actor_23/03-01-05-01-01-02-23.wav new file mode 100644 index 0000000..0f4371d Binary files /dev/null and b/ch5/data/Actor_23/03-01-05-01-01-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-05-01-02-01-23.wav b/ch5/data/Actor_23/03-01-05-01-02-01-23.wav new file mode 100644 index 0000000..636798e Binary files /dev/null and b/ch5/data/Actor_23/03-01-05-01-02-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-05-01-02-02-23.wav b/ch5/data/Actor_23/03-01-05-01-02-02-23.wav new file mode 100644 index 0000000..e1e5e7e Binary files /dev/null and b/ch5/data/Actor_23/03-01-05-01-02-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-05-02-01-01-23.wav b/ch5/data/Actor_23/03-01-05-02-01-01-23.wav new file mode 100644 index 0000000..b6549c7 Binary files /dev/null and b/ch5/data/Actor_23/03-01-05-02-01-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-05-02-01-02-23.wav b/ch5/data/Actor_23/03-01-05-02-01-02-23.wav new file mode 100644 index 0000000..f4f2f10 Binary files /dev/null and b/ch5/data/Actor_23/03-01-05-02-01-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-05-02-02-01-23.wav b/ch5/data/Actor_23/03-01-05-02-02-01-23.wav new file mode 100644 index 0000000..65029cb Binary files /dev/null and b/ch5/data/Actor_23/03-01-05-02-02-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-05-02-02-02-23.wav b/ch5/data/Actor_23/03-01-05-02-02-02-23.wav new file mode 100644 index 0000000..cdc61b0 Binary files /dev/null and b/ch5/data/Actor_23/03-01-05-02-02-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-06-01-01-01-23.wav b/ch5/data/Actor_23/03-01-06-01-01-01-23.wav new file mode 100644 index 0000000..ab6cd38 Binary files /dev/null and b/ch5/data/Actor_23/03-01-06-01-01-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-06-01-01-02-23.wav b/ch5/data/Actor_23/03-01-06-01-01-02-23.wav new file mode 100644 index 0000000..cbcdc48 Binary files /dev/null and b/ch5/data/Actor_23/03-01-06-01-01-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-06-01-02-01-23.wav b/ch5/data/Actor_23/03-01-06-01-02-01-23.wav new file mode 100644 index 0000000..42d15e0 Binary files /dev/null and b/ch5/data/Actor_23/03-01-06-01-02-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-06-01-02-02-23.wav b/ch5/data/Actor_23/03-01-06-01-02-02-23.wav new file mode 100644 index 0000000..e577368 Binary files /dev/null and b/ch5/data/Actor_23/03-01-06-01-02-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-06-02-01-01-23.wav b/ch5/data/Actor_23/03-01-06-02-01-01-23.wav new file mode 100644 index 0000000..afd830b Binary files /dev/null and b/ch5/data/Actor_23/03-01-06-02-01-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-06-02-01-02-23.wav b/ch5/data/Actor_23/03-01-06-02-01-02-23.wav new file mode 100644 index 0000000..44266d6 Binary files /dev/null and b/ch5/data/Actor_23/03-01-06-02-01-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-06-02-02-01-23.wav b/ch5/data/Actor_23/03-01-06-02-02-01-23.wav new file mode 100644 index 0000000..714dbf4 Binary files /dev/null and b/ch5/data/Actor_23/03-01-06-02-02-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-06-02-02-02-23.wav b/ch5/data/Actor_23/03-01-06-02-02-02-23.wav new file mode 100644 index 0000000..8cf833c Binary files /dev/null and b/ch5/data/Actor_23/03-01-06-02-02-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-07-01-01-01-23.wav b/ch5/data/Actor_23/03-01-07-01-01-01-23.wav new file mode 100644 index 0000000..1d2eb83 Binary files /dev/null and b/ch5/data/Actor_23/03-01-07-01-01-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-07-01-01-02-23.wav b/ch5/data/Actor_23/03-01-07-01-01-02-23.wav new file mode 100644 index 0000000..1968106 Binary files /dev/null and b/ch5/data/Actor_23/03-01-07-01-01-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-07-01-02-01-23.wav b/ch5/data/Actor_23/03-01-07-01-02-01-23.wav new file mode 100644 index 0000000..7ca2083 Binary files /dev/null and b/ch5/data/Actor_23/03-01-07-01-02-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-07-01-02-02-23.wav b/ch5/data/Actor_23/03-01-07-01-02-02-23.wav new file mode 100644 index 0000000..e7c97f8 Binary files /dev/null and b/ch5/data/Actor_23/03-01-07-01-02-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-07-02-01-01-23.wav b/ch5/data/Actor_23/03-01-07-02-01-01-23.wav new file mode 100644 index 0000000..5a04770 Binary files /dev/null and b/ch5/data/Actor_23/03-01-07-02-01-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-07-02-01-02-23.wav b/ch5/data/Actor_23/03-01-07-02-01-02-23.wav new file mode 100644 index 0000000..0396cf1 Binary files /dev/null and b/ch5/data/Actor_23/03-01-07-02-01-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-07-02-02-01-23.wav b/ch5/data/Actor_23/03-01-07-02-02-01-23.wav new file mode 100644 index 0000000..e7a7fd1 Binary files /dev/null and b/ch5/data/Actor_23/03-01-07-02-02-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-07-02-02-02-23.wav b/ch5/data/Actor_23/03-01-07-02-02-02-23.wav new file mode 100644 index 0000000..9a19978 Binary files /dev/null and b/ch5/data/Actor_23/03-01-07-02-02-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-08-01-01-01-23.wav b/ch5/data/Actor_23/03-01-08-01-01-01-23.wav new file mode 100644 index 0000000..93ab3cc Binary files /dev/null and b/ch5/data/Actor_23/03-01-08-01-01-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-08-01-01-02-23.wav b/ch5/data/Actor_23/03-01-08-01-01-02-23.wav new file mode 100644 index 0000000..04e7170 Binary files /dev/null and b/ch5/data/Actor_23/03-01-08-01-01-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-08-01-02-01-23.wav b/ch5/data/Actor_23/03-01-08-01-02-01-23.wav new file mode 100644 index 0000000..15083c4 Binary files /dev/null and b/ch5/data/Actor_23/03-01-08-01-02-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-08-01-02-02-23.wav b/ch5/data/Actor_23/03-01-08-01-02-02-23.wav new file mode 100644 index 0000000..0a3d9b2 Binary files /dev/null and b/ch5/data/Actor_23/03-01-08-01-02-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-08-02-01-01-23.wav b/ch5/data/Actor_23/03-01-08-02-01-01-23.wav new file mode 100644 index 0000000..df1e6bd Binary files /dev/null and b/ch5/data/Actor_23/03-01-08-02-01-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-08-02-01-02-23.wav b/ch5/data/Actor_23/03-01-08-02-01-02-23.wav new file mode 100644 index 0000000..857b13b Binary files /dev/null and b/ch5/data/Actor_23/03-01-08-02-01-02-23.wav differ diff --git a/ch5/data/Actor_23/03-01-08-02-02-01-23.wav b/ch5/data/Actor_23/03-01-08-02-02-01-23.wav new file mode 100644 index 0000000..b0a30f1 Binary files /dev/null and b/ch5/data/Actor_23/03-01-08-02-02-01-23.wav differ diff --git a/ch5/data/Actor_23/03-01-08-02-02-02-23.wav b/ch5/data/Actor_23/03-01-08-02-02-02-23.wav new file mode 100644 index 0000000..284223c Binary files /dev/null and b/ch5/data/Actor_23/03-01-08-02-02-02-23.wav differ diff --git a/ch5/data/Actor_24/03-01-01-01-01-01-24.wav b/ch5/data/Actor_24/03-01-01-01-01-01-24.wav new file mode 100644 index 0000000..aa7657f Binary files /dev/null and b/ch5/data/Actor_24/03-01-01-01-01-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-01-01-01-02-24.wav b/ch5/data/Actor_24/03-01-01-01-01-02-24.wav new file mode 100644 index 0000000..3a3df94 Binary files /dev/null and b/ch5/data/Actor_24/03-01-01-01-01-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-01-01-02-01-24.wav b/ch5/data/Actor_24/03-01-01-01-02-01-24.wav new file mode 100644 index 0000000..a51edf5 Binary files /dev/null and b/ch5/data/Actor_24/03-01-01-01-02-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-01-01-02-02-24.wav b/ch5/data/Actor_24/03-01-01-01-02-02-24.wav new file mode 100644 index 0000000..554faf4 Binary files /dev/null and b/ch5/data/Actor_24/03-01-01-01-02-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-02-01-01-01-24.wav b/ch5/data/Actor_24/03-01-02-01-01-01-24.wav new file mode 100644 index 0000000..ac06e91 Binary files /dev/null and b/ch5/data/Actor_24/03-01-02-01-01-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-02-01-01-02-24.wav b/ch5/data/Actor_24/03-01-02-01-01-02-24.wav new file mode 100644 index 0000000..f4f2dbf Binary files /dev/null and b/ch5/data/Actor_24/03-01-02-01-01-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-02-01-02-01-24.wav b/ch5/data/Actor_24/03-01-02-01-02-01-24.wav new file mode 100644 index 0000000..5ae39fd Binary files /dev/null and b/ch5/data/Actor_24/03-01-02-01-02-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-02-01-02-02-24.wav b/ch5/data/Actor_24/03-01-02-01-02-02-24.wav new file mode 100644 index 0000000..8201aa4 Binary files /dev/null and b/ch5/data/Actor_24/03-01-02-01-02-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-02-02-01-01-24.wav b/ch5/data/Actor_24/03-01-02-02-01-01-24.wav new file mode 100644 index 0000000..57e7074 Binary files /dev/null and b/ch5/data/Actor_24/03-01-02-02-01-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-02-02-01-02-24.wav b/ch5/data/Actor_24/03-01-02-02-01-02-24.wav new file mode 100644 index 0000000..a52104a Binary files /dev/null and b/ch5/data/Actor_24/03-01-02-02-01-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-02-02-02-01-24.wav b/ch5/data/Actor_24/03-01-02-02-02-01-24.wav new file mode 100644 index 0000000..7f84260 Binary files /dev/null and b/ch5/data/Actor_24/03-01-02-02-02-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-02-02-02-02-24.wav b/ch5/data/Actor_24/03-01-02-02-02-02-24.wav new file mode 100644 index 0000000..8b5f981 Binary files /dev/null and b/ch5/data/Actor_24/03-01-02-02-02-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-03-01-01-01-24.wav b/ch5/data/Actor_24/03-01-03-01-01-01-24.wav new file mode 100644 index 0000000..bc5b0cd Binary files /dev/null and b/ch5/data/Actor_24/03-01-03-01-01-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-03-01-01-02-24.wav b/ch5/data/Actor_24/03-01-03-01-01-02-24.wav new file mode 100644 index 0000000..190e31c Binary files /dev/null and b/ch5/data/Actor_24/03-01-03-01-01-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-03-01-02-01-24.wav b/ch5/data/Actor_24/03-01-03-01-02-01-24.wav new file mode 100644 index 0000000..31b92e7 Binary files /dev/null and b/ch5/data/Actor_24/03-01-03-01-02-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-03-01-02-02-24.wav b/ch5/data/Actor_24/03-01-03-01-02-02-24.wav new file mode 100644 index 0000000..98ce80d Binary files /dev/null and b/ch5/data/Actor_24/03-01-03-01-02-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-03-02-01-01-24.wav b/ch5/data/Actor_24/03-01-03-02-01-01-24.wav new file mode 100644 index 0000000..20ac5a8 Binary files /dev/null and b/ch5/data/Actor_24/03-01-03-02-01-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-03-02-01-02-24.wav b/ch5/data/Actor_24/03-01-03-02-01-02-24.wav new file mode 100644 index 0000000..33fbdce Binary files /dev/null and b/ch5/data/Actor_24/03-01-03-02-01-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-03-02-02-01-24.wav b/ch5/data/Actor_24/03-01-03-02-02-01-24.wav new file mode 100644 index 0000000..caf2c57 Binary files /dev/null and b/ch5/data/Actor_24/03-01-03-02-02-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-03-02-02-02-24.wav b/ch5/data/Actor_24/03-01-03-02-02-02-24.wav new file mode 100644 index 0000000..cb7d896 Binary files /dev/null and b/ch5/data/Actor_24/03-01-03-02-02-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-04-01-01-01-24.wav b/ch5/data/Actor_24/03-01-04-01-01-01-24.wav new file mode 100644 index 0000000..b466673 Binary files /dev/null and b/ch5/data/Actor_24/03-01-04-01-01-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-04-01-01-02-24.wav b/ch5/data/Actor_24/03-01-04-01-01-02-24.wav new file mode 100644 index 0000000..2ee3438 Binary files /dev/null and b/ch5/data/Actor_24/03-01-04-01-01-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-04-01-02-01-24.wav b/ch5/data/Actor_24/03-01-04-01-02-01-24.wav new file mode 100644 index 0000000..45e07a5 Binary files /dev/null and b/ch5/data/Actor_24/03-01-04-01-02-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-04-01-02-02-24.wav b/ch5/data/Actor_24/03-01-04-01-02-02-24.wav new file mode 100644 index 0000000..b05099d Binary files /dev/null and b/ch5/data/Actor_24/03-01-04-01-02-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-04-02-01-01-24.wav b/ch5/data/Actor_24/03-01-04-02-01-01-24.wav new file mode 100644 index 0000000..2b3ee31 Binary files /dev/null and b/ch5/data/Actor_24/03-01-04-02-01-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-04-02-01-02-24.wav b/ch5/data/Actor_24/03-01-04-02-01-02-24.wav new file mode 100644 index 0000000..125073e Binary files /dev/null and b/ch5/data/Actor_24/03-01-04-02-01-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-04-02-02-01-24.wav b/ch5/data/Actor_24/03-01-04-02-02-01-24.wav new file mode 100644 index 0000000..ca6989f Binary files /dev/null and b/ch5/data/Actor_24/03-01-04-02-02-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-04-02-02-02-24.wav b/ch5/data/Actor_24/03-01-04-02-02-02-24.wav new file mode 100644 index 0000000..5208452 Binary files /dev/null and b/ch5/data/Actor_24/03-01-04-02-02-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-05-01-01-01-24.wav b/ch5/data/Actor_24/03-01-05-01-01-01-24.wav new file mode 100644 index 0000000..04077dc Binary files /dev/null and b/ch5/data/Actor_24/03-01-05-01-01-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-05-01-01-02-24.wav b/ch5/data/Actor_24/03-01-05-01-01-02-24.wav new file mode 100644 index 0000000..eea45ba Binary files /dev/null and b/ch5/data/Actor_24/03-01-05-01-01-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-05-01-02-01-24.wav b/ch5/data/Actor_24/03-01-05-01-02-01-24.wav new file mode 100644 index 0000000..f0f562f Binary files /dev/null and b/ch5/data/Actor_24/03-01-05-01-02-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-05-01-02-02-24.wav b/ch5/data/Actor_24/03-01-05-01-02-02-24.wav new file mode 100644 index 0000000..99690aa Binary files /dev/null and b/ch5/data/Actor_24/03-01-05-01-02-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-05-02-01-01-24.wav b/ch5/data/Actor_24/03-01-05-02-01-01-24.wav new file mode 100644 index 0000000..ce8f57e Binary files /dev/null and b/ch5/data/Actor_24/03-01-05-02-01-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-05-02-01-02-24.wav b/ch5/data/Actor_24/03-01-05-02-01-02-24.wav new file mode 100644 index 0000000..edcb68f Binary files /dev/null and b/ch5/data/Actor_24/03-01-05-02-01-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-05-02-02-01-24.wav b/ch5/data/Actor_24/03-01-05-02-02-01-24.wav new file mode 100644 index 0000000..099c2b7 Binary files /dev/null and b/ch5/data/Actor_24/03-01-05-02-02-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-05-02-02-02-24.wav b/ch5/data/Actor_24/03-01-05-02-02-02-24.wav new file mode 100644 index 0000000..8b6e8d1 Binary files /dev/null and b/ch5/data/Actor_24/03-01-05-02-02-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-06-01-01-01-24.wav b/ch5/data/Actor_24/03-01-06-01-01-01-24.wav new file mode 100644 index 0000000..c9069df Binary files /dev/null and b/ch5/data/Actor_24/03-01-06-01-01-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-06-01-01-02-24.wav b/ch5/data/Actor_24/03-01-06-01-01-02-24.wav new file mode 100644 index 0000000..184f94f Binary files /dev/null and b/ch5/data/Actor_24/03-01-06-01-01-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-06-01-02-01-24.wav b/ch5/data/Actor_24/03-01-06-01-02-01-24.wav new file mode 100644 index 0000000..40417ad Binary files /dev/null and b/ch5/data/Actor_24/03-01-06-01-02-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-06-01-02-02-24.wav b/ch5/data/Actor_24/03-01-06-01-02-02-24.wav new file mode 100644 index 0000000..a5ff7db Binary files /dev/null and b/ch5/data/Actor_24/03-01-06-01-02-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-06-02-01-01-24.wav b/ch5/data/Actor_24/03-01-06-02-01-01-24.wav new file mode 100644 index 0000000..d716e1a Binary files /dev/null and b/ch5/data/Actor_24/03-01-06-02-01-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-06-02-01-02-24.wav b/ch5/data/Actor_24/03-01-06-02-01-02-24.wav new file mode 100644 index 0000000..73b3e6d Binary files /dev/null and b/ch5/data/Actor_24/03-01-06-02-01-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-06-02-02-01-24.wav b/ch5/data/Actor_24/03-01-06-02-02-01-24.wav new file mode 100644 index 0000000..21f5412 Binary files /dev/null and b/ch5/data/Actor_24/03-01-06-02-02-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-06-02-02-02-24.wav b/ch5/data/Actor_24/03-01-06-02-02-02-24.wav new file mode 100644 index 0000000..085e810 Binary files /dev/null and b/ch5/data/Actor_24/03-01-06-02-02-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-07-01-01-01-24.wav b/ch5/data/Actor_24/03-01-07-01-01-01-24.wav new file mode 100644 index 0000000..96c372a Binary files /dev/null and b/ch5/data/Actor_24/03-01-07-01-01-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-07-01-01-02-24.wav b/ch5/data/Actor_24/03-01-07-01-01-02-24.wav new file mode 100644 index 0000000..4adf217 Binary files /dev/null and b/ch5/data/Actor_24/03-01-07-01-01-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-07-01-02-01-24.wav b/ch5/data/Actor_24/03-01-07-01-02-01-24.wav new file mode 100644 index 0000000..1f84fdb Binary files /dev/null and b/ch5/data/Actor_24/03-01-07-01-02-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-07-01-02-02-24.wav b/ch5/data/Actor_24/03-01-07-01-02-02-24.wav new file mode 100644 index 0000000..fa9a642 Binary files /dev/null and b/ch5/data/Actor_24/03-01-07-01-02-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-07-02-01-01-24.wav b/ch5/data/Actor_24/03-01-07-02-01-01-24.wav new file mode 100644 index 0000000..70d247e Binary files /dev/null and b/ch5/data/Actor_24/03-01-07-02-01-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-07-02-01-02-24.wav b/ch5/data/Actor_24/03-01-07-02-01-02-24.wav new file mode 100644 index 0000000..8a44232 Binary files /dev/null and b/ch5/data/Actor_24/03-01-07-02-01-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-07-02-02-01-24.wav b/ch5/data/Actor_24/03-01-07-02-02-01-24.wav new file mode 100644 index 0000000..d33c417 Binary files /dev/null and b/ch5/data/Actor_24/03-01-07-02-02-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-07-02-02-02-24.wav b/ch5/data/Actor_24/03-01-07-02-02-02-24.wav new file mode 100644 index 0000000..7a1f692 Binary files /dev/null and b/ch5/data/Actor_24/03-01-07-02-02-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-08-01-01-01-24.wav b/ch5/data/Actor_24/03-01-08-01-01-01-24.wav new file mode 100644 index 0000000..e6c7aaf Binary files /dev/null and b/ch5/data/Actor_24/03-01-08-01-01-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-08-01-01-02-24.wav b/ch5/data/Actor_24/03-01-08-01-01-02-24.wav new file mode 100644 index 0000000..023a3fa Binary files /dev/null and b/ch5/data/Actor_24/03-01-08-01-01-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-08-01-02-01-24.wav b/ch5/data/Actor_24/03-01-08-01-02-01-24.wav new file mode 100644 index 0000000..02e68d6 Binary files /dev/null and b/ch5/data/Actor_24/03-01-08-01-02-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-08-01-02-02-24.wav b/ch5/data/Actor_24/03-01-08-01-02-02-24.wav new file mode 100644 index 0000000..3ea111a Binary files /dev/null and b/ch5/data/Actor_24/03-01-08-01-02-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-08-02-01-01-24.wav b/ch5/data/Actor_24/03-01-08-02-01-01-24.wav new file mode 100644 index 0000000..e77faa6 Binary files /dev/null and b/ch5/data/Actor_24/03-01-08-02-01-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-08-02-01-02-24.wav b/ch5/data/Actor_24/03-01-08-02-01-02-24.wav new file mode 100644 index 0000000..2cdfc3c Binary files /dev/null and b/ch5/data/Actor_24/03-01-08-02-01-02-24.wav differ diff --git a/ch5/data/Actor_24/03-01-08-02-02-01-24.wav b/ch5/data/Actor_24/03-01-08-02-02-01-24.wav new file mode 100644 index 0000000..fe4f82f Binary files /dev/null and b/ch5/data/Actor_24/03-01-08-02-02-01-24.wav differ diff --git a/ch5/data/Actor_24/03-01-08-02-02-02-24.wav b/ch5/data/Actor_24/03-01-08-02-02-02-24.wav new file mode 100644 index 0000000..f08ed41 Binary files /dev/null and b/ch5/data/Actor_24/03-01-08-02-02-02-24.wav differ diff --git a/ch5/sack/.gitignore b/ch5/sack/.gitignore new file mode 100644 index 0000000..533f59c --- /dev/null +++ b/ch5/sack/.gitignore @@ -0,0 +1,9 @@ +*.pyc + +.swp +.swo +.*.swp +.*.swo + +*.bak +*.sv diff --git a/ch5/sack/LICENSE.txt b/ch5/sack/LICENSE.txt new file mode 100644 index 0000000..0466c1d --- /dev/null +++ b/ch5/sack/LICENSE.txt @@ -0,0 +1,24 @@ +Copyright (c) 2013, John Kerl + +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +* Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +* Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +This software is provided by the copyright holders and contributors "as is" and +any express or implied warranties, including, but not limited to, the implied +warranties of merchantability and fitness for a particular purpose are +disclaimed. In no event shall the copyright holder or contributors be liable +for any direct, indirect, incidental, special, exemplary, or consequential +damages (including, but not limited to, procurement of substitute goods or +services; loss of use, data, or profits; or business interruption) however +caused and on any theory of liability, whether in contract, strict liability, +or tort (including negligence or otherwise) arising in any way out of the use +of this software, even if advised of the possibility of such damage. diff --git a/ch5/sack/README.md b/ch5/sack/README.md new file mode 100644 index 0000000..7fad91e --- /dev/null +++ b/ch5/sack/README.md @@ -0,0 +1,15 @@ +# SACK + +A simple abstract-algebra calculator. Includes some elementary group routines. + +## Using sack + +* The main entry point is the script called `sack`. +* For thorough documentation please see http://johnkerl.org/doc/kerl-pyaa.pdf +* For a quick reference please see https://github.com/johnkerl/sack/wiki + +## Status + +* Written 2005-ish +* Pushed to github 2012-08-01 +* As of 2020 I'm using this as a spot for self-education on Python 2-to-3, `typing`, `pylint`, etc. diff --git a/ch5/sack/T_gm.py b/ch5/sack/T_gm.py new file mode 100644 index 0000000..dc625be --- /dev/null +++ b/ch5/sack/T_gm.py @@ -0,0 +1,20 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# Group module for the T group. + +import T_tm + +def get_elements_str(_params_string): + elts = [] + for i in range(0, 3): + for j in range(0, 4): + elt = T_tm.T_t(i, j) + elts.append(elt) + return elts diff --git a/ch5/sack/T_tm.py b/ch5/sack/T_tm.py new file mode 100644 index 0000000..449462d --- /dev/null +++ b/ch5/sack/T_tm.py @@ -0,0 +1,107 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +import re +import unittest + +# Type module for the T group (the third nonabelian group of order 12, other +# than A4 and D6). It may be thought of as Z3 semidirect Z4, where Z4 acts on +# Z3 by inversion. +# +# (ai, aj)(bi, bj) = (ai aj(bi), aj bj) +# +# where aj(bi) is the action of aj on bi. + +class T_t: + def __init__(self, argi, argj): + self.i = argi % 3 + self.j = argj % 4 + + def __eq__(a,b): + return ((a.i == b.i) and (a.j == b.j)) + + def __ne__(a,b): + return not (a == b) + + def __mul__(a,b): + ibi = b.i + if a.j & 1: + ibi = -ibi + ci = (a.i + ibi) % 3 + cj = (a.j + b.j) % 4 + c = T_t(ci, cj) + return c + + def inv(a): + # (ai, aj)(bi, bj) = (ai aj(bi), aj bj) = (0, 0) + # Given ai and aj, find bi and bj. + bi = (-a.i) % 3 + if a.j & 1: + bi = a.i % 3 + bj = (-a.j) % 4 + b = T_t(bi, bj) + return b + + def scan(self, string): + groups = re.match(r"^(\d)+,(\d+)$", string).groups(); + if len(groups) != 2: + raise IOError + self.__init__(int(groups[0]), int(groups[1])) + + def __str__(self): + return str(self.i) + "," + str(self.j) + + def __repr__(self): + return self.__str__() + +def params_from_string(_params_string): + return 0 + +def from_string(value_string, params_string): + obj = T_t(0, 0) + obj.scan(value_string) + return obj + + +# ================================================================ +if __name__ == '__main__': + + class test_cases(unittest.TestCase): + def test___init__(self): + pass # to be implemented + + def test___eq__(self): + pass # to be implemented + + def test___ne__(self): + pass # to be implemented + + def test___mul__(self): + pass # to be implemented + + def test_inv(self): + pass # to be implemented + + def test_scan(self): + pass # to be implemented + + def test___str__(self): + pass # to be implemented + + def test___repr__(self): + pass # to be implemented + + def test_params_from_string(self): + pass # to be implemented + + def test_from_string(self): + pass # to be implemented + + # ---------------------------------------------------------------- + unittest.main() diff --git a/ch5/sack/__init__.py b/ch5/sack/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/ch5/sack/anc_gm.py b/ch5/sack/anc_gm.py new file mode 100644 index 0000000..076380d --- /dev/null +++ b/ch5/sack/anc_gm.py @@ -0,0 +1,27 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# Group module for alternating permutations A_n, using cycle-decomposition I/O. + +import pmtc_tm +import sackint + +def get_elements(n): + sn_size = sackint.factorial(n) + elts = [] + for k in range(0, sn_size): + elt = pmtc_tm.kth_pmtc(k, n, sn_size) + if (elt.parity() == 0): + elts.append(elt) + pmtc_tm.sort_pmtcs(elts) + return elts + +def get_elements_str(params_string): + n = pmtc_tm.params_from_string(params_string) + return get_elements(n) diff --git a/ch5/sack/ani_gm.py b/ch5/sack/ani_gm.py new file mode 100644 index 0000000..9a2e2a0 --- /dev/null +++ b/ch5/sack/ani_gm.py @@ -0,0 +1,27 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# Group module for alternating permutations A_n, using image-map I/O. + +import pmti_tm +import sackint + +def get_elements(n): + sn_size = sackint.factorial(n) + elts = [] + for k in range(0, sn_size): + elt = pmti_tm.kth_pmti(k, n, sn_size) + if (elt.parity() == 0): + elts.append(elt) + pmti_tm.sort_pmtis(elts) + return elts + +def get_elements_str(params_string): + n = pmti_tm.params_from_string(params_string) + return get_elements(n) diff --git a/ch5/sack/cgpalg_dense_tm.py b/ch5/sack/cgpalg_dense_tm.py new file mode 100644 index 0000000..803c0fe --- /dev/null +++ b/ch5/sack/cgpalg_dense_tm.py @@ -0,0 +1,187 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +import sys +import re +import copy + +# ================================================================ +# Type module for complex group algebras CG, with dense storage. +# +# Initial attempt at complex group algebras CG for small finite groups G. This +# could, conceivably, be generalized to FG (for arbitrary user-specified +# fields) or RG (for arbitrary user-specified rings). +# +# There are two possible storage representations for an element of CG: +# * Sparse: Keep a list of non-zero coefficients, with their +# corresponding group elements. +# * Dense: Keep a list of group elements, with another list of coefficients. +# +# For now I will attempt the latter. Good hygiene would require me to make +# the following checks (which I will not): +# * A's coef-array length = A's group-elements-array length +# * B's coef-array length = B's group-elements-array length +# * A's coef-array length = B's coef-array length +# * A's group-elements-array length = B's group-elements-array length +# +# ================================================================ +# John Kerl +# 2007-05-08 +# ================================================================ + +class cgpalg_t: + def __init__(self, coef_array, gp_elt_array): + #self.check_lengths(len(coef_array), len(gp_elt_array), "coefs", "gp_elts") + self.coefs = copy.copy(coef_array) + self.gp_elts = copy.copy(gp_elt_array) + + def __add__(a,b): + #a.check_lengths(len(a.gp_elts), len(b.gp_elts), "coefs", "gp_elts") + c = cgpalg_t(a.coefs, a.gp_elts) + for i in range(0, len(a.coefs)): + c.coefs[i] = a.coefs[i] + b.coefs[i] + return c + + def __sub__(a,b): + #a.check_lengths(len(a.gp_elts), len(b.gp_elts), "coefs", "gp_elts") + c = cgpalg_t(a.coefs, a.gp_elts) + for i in range(0, len(a.coefs)): + c.coefs[i] = a.coefs[i] - b.coefs[i] + return c + + def index_of(self, g): + for k in range(0, len(self.gp_elts)): + if (g == self.gp_elts[k]): + return k + print(("cgpalg_t: Couldn't find [", g, "] in gp_elts array.")) + sys.exit(1) + + def __mul__(a,b): + #a.check_lengths(len(a.gp_elts), len(b.gp_elts), "coefs", "gp_elts") + c = cgpalg_t(a.coefs, a.gp_elts) + # XXX XXX XXX + zero = a.coefs[0] - a.coefs[0] + for i in range(0, len(a.coefs)): + c.coefs[i] = zero + for i in range(0, len(a.coefs)): + for j in range(0, len(b.coefs)): + k = c.index_of(a.gp_elts[i] * b.gp_elts[j]) + c.coefs[k] += a.coefs[i] * b.coefs[j] + return c + + def __eq__(a,b): + if (len(a.coefs) != len(b.coefs)): + return 0 + n = len(a.coefs) + for i in range(0, n): + if (a.coefs[i] != b.coefs[i]): + return 0 + return 1 + + def __ne__(a,b): + return not (a == b) + + def __neg__(a): + c = cgpalg_t(a.coefs, a.gp_elts) + for i in range(0, len(a.gp_elts)): + c.coefs[i] = -a.coefs[i] + return c + +# def scan(self, res_string, cgpalg_array): +# res_strings = re.split(',', res_string) +# #self.check_lengths(len(res_strings), len(cgpalg_array), res_strings, +# str(cgpalg_strings)) +# n = len(res_strings) +# coef_array = range(0, n) +# for i in range(0, n): +# coef_array[i] = int(res_strings[i]) +# self.__init__(coef_array, gp_elt_array) + + def __str__(self): + string = "" + for i in range(0, len(self.coefs)): + if (i > 0): + string += " " + string += "[" + string += str(self.coefs[i]) + string += "]*[" + string += str(self.gp_elts[i]) + string += "]" + return string + + def __repr__(self): + return self.__str__() + +# def check_length(self, length, desc): +# if (length < 1): +# print desc, "length", str(length), "< 1" +# raise RuntimeError + +# def check_lengths(self, len1, len2, desc1, desc2): +# self.check_length(len1, desc1) +# self.check_length(len2, desc2) +# if (len1 != len2): +# print desc1, "length", str(len1), "!=", desc2, "length", len2 +# raise RuntimeError + +#def params_from_string(params_string): +# if (len(params_string) == 0): +# print "Modadd requires non-empty parameter string" +# sys.exit(1) +# cgpalg_strings = re.split(',', params_string) +# n = len(cgpalg_strings) +# cgpalg_array = range(0, n) +# for i in range(0, n): +# cgpalg_array[i] = int(cgpalg_strings[i]) +# return cgpalg_array + +#def from_string(value_string, params_string): +# cgpalg_array = params_from_string(params_string) +# obj = cgpalg_t([1], [1]) +# obj.scan(value_string, cgpalg_array) +# return obj + + +# ================================================================ +import unittest +if __name__ == '__main__': + + class test_cases(unittest.TestCase): + def test___init__(self): + pass # to be implemented + + def test___add__(self): + pass # to be implemented + + def test___sub__(self): + pass # to be implemented + + def test_index_of(self): + pass # to be implemented + + def test___mul__(self): + pass # to be implemented + + def test___eq__(self): + pass # to be implemented + + def test___ne__(self): + pass # to be implemented + + def test___neg__(self): + pass # to be implemented + + def test___str__(self): + pass # to be implemented + + def test___repr__(self): + pass # to be implemented + + # ---------------------------------------------------------------- + unittest.main() diff --git a/ch5/sack/cgpalg_tm.py b/ch5/sack/cgpalg_tm.py new file mode 100644 index 0000000..bce778f --- /dev/null +++ b/ch5/sack/cgpalg_tm.py @@ -0,0 +1,251 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +import sys +import re +import copy + +# ================================================================ +# Type module for complex group algebras CG, with sparse storage. +# +# Initial attempt at complex group algebras CG for small finite groups G. This +# could, conceivably, be generalized to FG (for arbitrary user-specified +# fields) or RG (for arbitrary user-specified rings). +# +# There are two possible storage representations for an element of CG: +# * Sparse: Keep a list of non-zero coefficients, with their +# corresponding group elements. +# * Dense: Keep a list of group elements in each algebra element, with +# another list of coefficients. +# +# For now I will attempt the former. A "pair" is a two-element list of +# coefficient and group element; an algebra element is a list of pairs. +# +# ================================================================ +# John Kerl +# 2007-05-08 +# ================================================================ + +class cgpalg_t: + + def __init__(self, pairs_array): + self.pairs = copy.deepcopy(pairs_array) + + def index_of(self, g): + for k in range(0, len(self.pairs)): + if (g == self.pairs[k][1]): + return [1, k] + return [0, 0] + + def zero_strip(self): + untested = self.pairs + self.pairs = [] + while (untested): + x = untested[0] + untested = untested[1:] + if (x[0] != 0): + self.pairs += [x] + + # I am using sparse storage. However, this routine permits a dense + # extraction of coefficients: Given an array of group elements, it + # returns a list of coefficients (in the same order). + # + # This makes it possible to hand the results off to a linear-algebra + # routine. + def to_coef_array(self, group_elements): + coefs = [] + for g in group_elements: + coef = 0 + [found, k] = self.index_of(g) + if (found): + coef = self.pairs[k][0] + coefs += [coef] + return coefs + + def __add__(a,b): + # Concatenate the two lists. Then merge the pairs with matching + # group elements. + c = cgpalg_t([]) + unmerged_pairs = copy.deepcopy(a.pairs + b.pairs) + while (unmerged_pairs): + current_pair = unmerged_pairs[0] + [found, k] = c.index_of(current_pair[1]) + if (found): + # Update + c.pairs[k][0] += current_pair[0] + else: + # Insert + c.pairs += [current_pair] + unmerged_pairs = unmerged_pairs[1:] + return c + + def __neg__(b): + negb = cgpalg_t(b.pairs) + for k in range(0, len(negb.pairs)): + negb.pairs[k][0] = -negb.pairs[k][0] + return negb + + def __sub__(a,b): + return a + (-b) + + def __mul__(a,b): + c = cgpalg_t([]) + for ap in a.pairs: + for bp in b.pairs: + ccoef = ap[0] * bp[0] # Field multiplication + cgpelt = ap[1] * bp[1] # Group multiplication + [found, k] = c.index_of(cgpelt) + if (found): + # Update + c.pairs[k][0] += ccoef + else: + # Insert + c.pairs += [[ccoef, cgpelt]] + c.zero_strip() + return c + + # The group data type must support the inv() method. + # This is a stub for correct implementation and doesn't work (except for singletons). + def inv(self): + bi = cgpalg_t([]) + n = len(self.pairs) + if (n == 0): + print("cgpalg_t.inv: division by zero.") + sys.exit(1) + recip_n = 1.0/n + for pair in self.pairs: + bi.pairs += [[recip_n/pair[0], pair[1].inv()]] + return bi + + def __div__(a,b): + return a * b.inv() + +# def __eq__(a,b): +# if (len(a.pairs) != len(b.pairs)): +# return 0 +# n = len(a.coefs) +# for i in range(0, n): +# if (a.coefs[i] != b.coefs[i]): +# return 0 +# return 1 + +# def __ne__(a,b): +# return not (a == b) + +# def scan(self, res_string, cgpalg_array): +# res_strings = re.split(',', res_string) +# #self.check_lengths(len(res_strings), len(cgpalg_array), res_strings, +# str(cgpalg_strings)) +# n = len(res_strings) +# coef_array = range(0, n) +# for i in range(0, n): +# coef_array[i] = int(res_strings[i]) +# self.__init__(coef_array, gp_elt_array) + + def __str__(self): + string = "" + if (len(self.pairs) == 0): + string = "0" + for i in range(0, len(self.pairs)): + if (i > 0): + string += " " + string += "[" + string += str(self.pairs[i][0]) + string += "]*[" + string += str(self.pairs[i][1]) + string += "]" + return string + + def __repr__(self): + return self.__str__() + +# Construct an element of C S_n, given only a list of permutations: each +# coefficient is 1. +def from_pmtns(pmtn_array): + pairs = [] + for pmtn in pmtn_array: + pairs += [[1, pmtn]] + return cgpalg_t(pairs) + +# Construct an element of C S_n, given only a list of permutations: compute the +# coefficient from the parity. The group class being used must support the +# sgn() method. +def from_pmtns_with_parity(pmtn_array): + pairs = [] + for pmtn in pmtn_array: + pairs += [[pmtn.sgn(), pmtn]] + return cgpalg_t(pairs) + +#def params_from_string(params_string): +# if (len(params_string) == 0): +# print "Modadd requires non-empty parameter string" +# sys.exit(1) +# cgpalg_strings = re.split(',', params_string) +# n = len(cgpalg_strings) +# cgpalg_array = range(0, n) +# for i in range(0, n): +# cgpalg_array[i] = int(cgpalg_strings[i]) +# return cgpalg_array + +#def from_string(value_string, params_string): +# cgpalg_array = params_from_string(params_string) +# obj = cgpalg_t([1], [1]) +# obj.scan(value_string, cgpalg_array) +# return obj + + +# ================================================================ +import unittest +if __name__ == '__main__': + + class test_cases(unittest.TestCase): + def test___init__(self): + pass # to be implemented + + def test_index_of(self): + pass # to be implemented + + def test_zero_strip(self): + pass # to be implemented + + def test_to_coef_array(self): + pass # to be implemented + + def test___add__(self): + pass # to be implemented + + def test___neg__(self): + pass # to be implemented + + def test___sub__(self): + pass # to be implemented + + def test___mul__(self): + pass # to be implemented + + def test_inv(self): + pass # to be implemented + + def test___div__(self): + pass # to be implemented + + def test___str__(self): + pass # to be implemented + + def test___repr__(self): + pass # to be implemented + + def test_from_pmtns(self): + pass # to be implemented + + def test_from_pmtns_with_parity(self): + pass # to be implemented + + # ---------------------------------------------------------------- + unittest.main() diff --git a/ch5/sack/cgtest.py b/ch5/sack/cgtest.py new file mode 100644 index 0000000..dd06fae --- /dev/null +++ b/ch5/sack/cgtest.py @@ -0,0 +1,115 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +import pmtc_tm +import snc_gm +import cgpalg_tm +import copy + +# ---------------------------------------------------------------- +# 559B final problem 1a. + +print(("-" * 64)) + +#S3 = snc_gm.get_elements(3) + +s1 = pmtc_tm.from_cycle([1], 3) +s12 = pmtc_tm.from_cycle([1,2], 3) +s13 = pmtc_tm.from_cycle([1,3], 3) +s23 = pmtc_tm.from_cycle([2,3], 3) +s123 = pmtc_tm.from_cycle([1,2,3], 3) +s132 = pmtc_tm.from_cycle([1,3,2], 3) +S3 = [s1, s12, s13, s23, s123, s132] + +s1 = pmtc_tm.from_cycle([1], 3) +s12 = pmtc_tm.from_cycle([1,2], 3) +s13 = pmtc_tm.from_cycle([1,3], 3) + +P = cgpalg_tm.cgpalg_t([[1,s1], [ 1,s12]]) +Q = cgpalg_tm.cgpalg_t([[1,s1], [-1,s13]]) +E = P*Q + +print("S3:") +for g in S3: + print(g) +print("") + +print(("P:", P)) +print(("Q:", Q)) +print(("E:", E)) +print(("E*E", E*E)) +print() + +#print "AEs:" +#for g in S3: +# A = cgpalg_tm.cgpalg_t([[1, g]]) +# AE = A * E +# print AE +#print + +print("AEs:") +for g in S3: + A = cgpalg_tm.cgpalg_t([[1, g]]) + AE = A * E + #print g, "--", AE.to_coef_array(S3) + print((AE.to_coef_array(S3))) +print() +# Got rank 2 + +print("AE invs:") +for g in S3: + A = cgpalg_tm.cgpalg_t([[1, g]]) + AE = A * E + #print g, "--", AE.to_coef_array(S3) + print((AE.inv())) +print() +# Got rank 2 + +print("AE inv checks:") +for g in S3: + A = cgpalg_tm.cgpalg_t([[1, g]]) + AE = A * E + #print g, "--", AE.to_coef_array(S3) + print((AE.inv() * AE)) +print() +# Got rank 2 + +# ---------------------------------------------------------------- +# 559B final problem 1b. + +print(("-" * 64)) + +S4 = snc_gm.get_elements(4) + +s1 = pmtc_tm.from_cycle([1], 4) +s12 = pmtc_tm.from_cycle([1,2], 4) + +s13 = pmtc_tm.from_cycle([1,3], 4) +s14 = pmtc_tm.from_cycle([1,4], 4) +s34 = pmtc_tm.from_cycle([3,4], 4) +s134 = pmtc_tm.from_cycle([1,3,4], 4) +s143 = pmtc_tm.from_cycle([1,4,3], 4) + +P = cgpalg_tm.from_pmtns([s1, s12]) +Q = cgpalg_tm.from_pmtns_with_parity([s1, s13, s14, s34, s134, s143]) +E = P*Q +print(("P:", P)) +print(("Q:", Q)) +print(("E:", E)) +print(("E*E", E*E)) +print() + +print("AEs:") +for g in S4: + A = cgpalg_tm.cgpalg_t([[1, g]]) + AE = A * E + print((AE.to_coef_array(S4))) +print() +# Got rank 3 + diff --git a/ch5/sack/cl2_gm.py b/ch5/sack/cl2_gm.py new file mode 100644 index 0000000..e55c3c2 --- /dev/null +++ b/ch5/sack/cl2_gm.py @@ -0,0 +1,21 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +import cl2_tm + +def get_elements_str(params_string): + [n, sqsign] = cl2_tm.params_from_string(params_string) + two_n = 1 << n + elts = [] + for bits in range(0, two_n): + for sign in [1, -1]: + #for sign in [1, -1]: + #for bits in range(0, two_n): + elts.append(cl2_tm.cl2_t(sign, bits, n, sqsign)) + return elts diff --git a/ch5/sack/cl2_tm.py b/ch5/sack/cl2_tm.py new file mode 100644 index 0000000..5fabdba --- /dev/null +++ b/ch5/sack/cl2_tm.py @@ -0,0 +1,189 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +import re +import copy + +# Type module for the Clifford group with (hard-coded) Simon's quadratic form. +# See Simon's text. +# +# alpha eA beta eB = alpha beta chi(A, B) e{A xor B}. +# A and B are multi-indices; alpha and beta are signs. +# +# Explanation of chi(A, B) is by example: +# +# * a = e2 e3 e6 e7; b = e1 e3 e5 e6. +# * a*b = e2 e3 e6 e7 | e1 e3 e5 e6. Then sort: +# - Move e1 left: e1 e2 e3 e6 e7|e3 e5 e6, passing a's e2, e3, e6, e7. +# - move e3 left: e1 e2 e3 e3 e6 e7|e5 e6, passing a's e6 and e7. +# - Move e5 left: e1 e2 e3 e3 e5 e6 e7|e6, passing a's e6 and e7. +# - Move e5 left: e1 e2 e3 e3 e5 e6 e6 e7, passing a's e7. +# +# If sqsign == -1, then ei*ei = -1, else ei*ei = +1. +# One can imagine implementing more general quadratic forms: not yet. :) + +class cl2_t: + + def __init__(self, sign, bits, n, sqsign): + self.sign = sign + self.bits = bits & ((1 << n) - 1) + self.n = n + self.sqsign = sqsign + + def __mul__(a,b): + c = cl2_t(a.sign * b.sign, a.bits ^ b.bits, a.n, a.sqsign) + for j in range(0, b.n): + if ((b.bits >> j) & 1): + # Count the number of times to move this element of b left + # past elements of a. + # + # If sqsign == -1, then ei*ei = -1, else ei*ei = +1. + lolim = j+1 + if (a.sqsign == -1): + lolim = j + for i in range(lolim, a.n): + if ((a.bits >> i) & 1): + c.sign *= -1 + return c + + def __eq__(a,b): + return (a.sign == b.sign and a.bits == b.bits and a.n == b.n and a.sqsign == b.sqsign) + + def __ne__(a,b): + return not (a == b) + + def __lt__(a,b): + if (a.bits < b.bits): + return 1 + return a.sign > b.sign + def __le__(a,b): + if (a.bits <= b.bits): + return 1 + return a.sign >= b.sign + def __gt__(a,b): + if (a.bits > b.bits): + return 1 + return a.sign < b.sign + def __ge__(a,b): + if (a.bits >= b.bits): + return 1 + return a.sign <= b.sign + + def inv(a): + c = copy.copy(a) + return c + + def scan(self, string): + if (1): + self.__init__(1, 0, 4) # stub + else: + raise IOError + + def __str__(self): + rv = "+" + if (self.sign < 0): + rv = "-" + for i in range(0, self.n): + rv += str((self.bits >> i) & 1) + return rv + + def __repr__(self): + return self.__str__() + +def params_from_string(params_string): + n = 0 + sqsign = 1 + fields = re.split(',', params_string) + ok = 1 + + if (len(fields) == 2): + n = int(fields[0]) + if (fields[1] == "+"): + sqsign = 1 + elif (fields[1] == "+1"): + sqsign = 1 + elif (fields[1] == "1"): + sqsign = 1 + elif (fields[1] == "-"): + sqsign = -1 + elif (fields[1] == "-1"): + sqsign = -1 + else: + ok = 0 + else: + ok = 0 + + if (not ok): + print("cl2_tm.from_string: expected parameters n,sign.") + print(("Got: ", params_string)) + raise IOError + return [n, sqsign] + + +def from_string(value_string, params_string): + [n, sqsign] = params_from_string(params_string) + obj = cl2_t(1, 0, n, sqsign) + obj.scan(value_string) + return obj + +## xxx temp +#a = cl2_t(1, 0x66, 8) +#b = cl2_t(1, 0x35, 8) +#c = a * b + + +# ================================================================ +import unittest +if __name__ == '__main__': + + class test_cases(unittest.TestCase): + def test___init__(self): + pass # to be implemented + + def test___mul__(self): + pass # to be implemented + + def test___eq__(self): + pass # to be implemented + + def test___ne__(self): + pass # to be implemented + + def test___lt__(self): + pass # to be implemented + + def test___le__(self): + pass # to be implemented + + def test___gt__(self): + pass # to be implemented + + def test___ge__(self): + pass # to be implemented + + def test_inv(self): + pass # to be implemented + + def test_scan(self): + pass # to be implemented + + def test___str__(self): + pass # to be implemented + + def test___repr__(self): + pass # to be implemented + + def test_params_from_string(self): + pass # to be implemented + + def test_from_string(self): + pass # to be implemented + + # ---------------------------------------------------------------- + unittest.main() diff --git a/ch5/sack/cl2m_gm.py b/ch5/sack/cl2m_gm.py new file mode 100644 index 0000000..eb896a0 --- /dev/null +++ b/ch5/sack/cl2m_gm.py @@ -0,0 +1,21 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +import cl2m_tm + +def get_elements_str(params_string): + n = cl2m_tm.params_from_string(params_string) + two_n = 1 << n + elts = [] + #for bits in range(0, two_n): + #for sign in [1, -1]: + for sign in [1, -1]: + for bits in range(0, two_n): + elts.append(cl2m_tm.cl2m_t(sign, bits, n)) + return elts diff --git a/ch5/sack/cl2m_tm.py b/ch5/sack/cl2m_tm.py new file mode 100644 index 0000000..2460c9e --- /dev/null +++ b/ch5/sack/cl2m_tm.py @@ -0,0 +1,155 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +import re +import copy + +# Type module for the Clifford group with (hard-coded) negative of Simon's +# quadratic form. See Simon's text. +# +# alpha eA beta eB = alpha beta chi(A, B) e{A xor B}. +# But also with ei^2 = -1. +# A and B are multi-indices; alpha and beta are signs. +# +# Explanation of chi(A, B) is by example: +# +# * a = e2 e3 e6 e7; b = e1 e3 e5 e6. +# * a*b = e2 e3 e6 e7 | e1 e3 e5 e6. Then sort: +# - Move e1 left: e1 e2 e3 e6 e7|e3 e5 e6, passing a's e2, e3, e6, e7. +# - move e3 left: e1 e2 e3 e3 e6 e7|e5 e6, passing a's e6 and e7. +# - Move e5 left: e1 e2 e3 e3 e5 e6 e7|e6, passing a's e6 and e7. +# - Move e5 left: e1 e2 e3 e3 e5 e6 e6 e7, passing a's e7. + +class cl2m_t: + + def __init__(self, sign, bits, n): + self.sign = sign + self.bits = bits & ((1 << n) - 1) + self.n = n + + def __mul__(a,b): + c = cl2m_t(a.sign * b.sign, a.bits ^ b.bits, a.n) + for j in range(0, b.n): + if ((b.bits >> j) & 1): + # Count the number of times to move this element of b left + # past elements of a. + for i in range(j, a.n): + if ((a.bits >> i) & 1): + c.sign *= -1 + return c + + def __eq__(a,b): + return (a.sign == b.sign and a.bits == b.bits and a.n == b.n) + + def __ne__(a,b): + return not (a == b) + + def __lt__(a,b): + if (a.bits < b.bits): + return 1 + return a.sign > b.sign + def __le__(a,b): + if (a.bits <= b.bits): + return 1 + return a.sign >= b.sign + def __gt__(a,b): + if (a.bits > b.bits): + return 1 + return a.sign < b.sign + def __ge__(a,b): + if (a.bits >= b.bits): + return 1 + return a.sign <= b.sign + + def inv(a): + c = copy.copy(a) # stub -- NOT right. + return c + + def scan(self, string): + if (1): + self.__init__(1, 0, 4) # stub + else: + raise IOError + + def __str__(self): + rv = "+" + if (self.sign < 0): + rv = "-" + for i in range(0, self.n): + rv += str((self.bits >> i) & 1) + return rv + + def __repr__(self): + return self.__str__() + +def params_from_string(params_string): + n = int(params_string) + return n + +def from_string(value_string, params_string): + n = params_from_string(params_string) + obj = cl2m_t(1, 0, n) + obj.scan(value_string) + return obj + +## xxx temp +#a = cl2m_t(1, 0x66, 8) +#b = cl2m_t(1, 0x35, 8) +#c = a * b + + +# ================================================================ +import unittest +if __name__ == '__main__': + + class test_cases(unittest.TestCase): + def test___init__(self): + pass # to be implemented + + def test___mul__(self): + pass # to be implemented + + def test___eq__(self): + pass # to be implemented + + def test___ne__(self): + pass # to be implemented + + def test___lt__(self): + pass # to be implemented + + def test___le__(self): + pass # to be implemented + + def test___gt__(self): + pass # to be implemented + + def test___ge__(self): + pass # to be implemented + + def test_inv(self): + pass # to be implemented + + def test_scan(self): + pass # to be implemented + + def test___str__(self): + pass # to be implemented + + def test___repr__(self): + pass # to be implemented + + def test_params_from_string(self): + pass # to be implemented + + def test_from_string(self): + pass # to be implemented + + # ---------------------------------------------------------------- + unittest.main() diff --git a/ch5/sack/clean b/ch5/sack/clean new file mode 100644 index 0000000..e678966 --- /dev/null +++ b/ch5/sack/clean @@ -0,0 +1,3 @@ +#!/bin/sh + +rm -f *.pyc diff --git a/ch5/sack/dih_tm.py b/ch5/sack/dih_tm.py new file mode 100644 index 0000000..657b158 --- /dev/null +++ b/ch5/sack/dih_tm.py @@ -0,0 +1,104 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# Type module for the dihedral group on n vertices. + +import re + +class dih_t: + + def __init__(self, argrot, argflip, argn): + self.n = argn + self.rot = argrot % self.n + self.flip = argflip & 1 + + def __eq__(a,b): + return ((a.rot == b.rot) and (a.flip == b.flip)) + + def __ne__(a,b): + return not (a == b) + + def __mul__(a,b): + if (a.n != b.n): + raise RuntimeError + if (a.flip): + crot = a.rot - b.rot + else: + crot = a.rot + b.rot + c = dih_t(crot, a.flip ^ b.flip, a.n) + return c + + def inv(a): + if (a.flip): + c = dih_t(a.rot, a.flip, a.n) + return c + else: + c = dih_t(a.n - a.rot, a.flip, a.n) + return c + + def scan(self, string, argn): + groups = re.match(r"^(\d)+,(\d+)$", string).groups(); + if len(groups) != 2: + raise IOError + self.__init__(int(groups[0]), int(groups[1]), argn) + + def __str__(self): + return str(self.rot) + "," + str(self.flip) + + def __repr__(self): + return self.__str__() + +def params_from_string(params_string): + n = int(params_string) + return n + +def from_string(value_string, params_string): + n = params_from_string(params_string) + obj = dih_t(0, 0, n) + obj.scan(value_string, n) + return obj + + +# ================================================================ +import unittest +if __name__ == '__main__': + + class test_cases(unittest.TestCase): + def test___init__(self): + pass # to be implemented + + def test___eq__(self): + pass # to be implemented + + def test___ne__(self): + pass # to be implemented + + def test___mul__(self): + pass # to be implemented + + def test_inv(self): + pass # to be implemented + + def test_scan(self): + pass # to be implemented + + def test___str__(self): + pass # to be implemented + + def test___repr__(self): + pass # to be implemented + + def test_params_from_string(self): + pass # to be implemented + + def test_from_string(self): + pass # to be implemented + + # ---------------------------------------------------------------- + unittest.main() diff --git a/ch5/sack/dn_gm.py b/ch5/sack/dn_gm.py new file mode 100644 index 0000000..6dd0b1c --- /dev/null +++ b/ch5/sack/dn_gm.py @@ -0,0 +1,21 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# Group module for the dihedral group on n vertices. + +import dih_tm + +def get_elements_str(params_string): + n = dih_tm.params_from_string(params_string) + elts = [] + for i in range(0, n): + for j in range(0, 2): + elt = dih_tm.dih_t(i, j, n) + elts.append(elt) + return elts diff --git a/ch5/sack/f2mtest b/ch5/sack/f2mtest new file mode 100644 index 0000000..d39307d --- /dev/null +++ b/ch5/sack/f2mtest @@ -0,0 +1,37 @@ +#!/usr/bin/python -Wall + +from f2poly_tm import * +from f2polymod_tm import * +import sys + +ar = f2poly_t(0xa) +br = f2poly_t(0xb) +m = f2poly_t(0x13) +e = 3 +argc = len(sys.argv) +if (argc == 4): + m = f2poly_from_string(sys.argv[1]) + ar = f2poly_from_string(sys.argv[2]) + br = f2poly_from_string(sys.argv[3]) +if (argc == 5): + m = f2poly_from_string(sys.argv[1]) + ar = f2poly_from_string(sys.argv[2]) + br = f2poly_from_string(sys.argv[3]) + e = int(sys.argv[4]) +a = f2polymod_t(ar, m) +b = f2polymod_t(br, m) +print "a =", a +print "b =", b + +s = a + b +d = a - b +p = a * b +q = a / b +print "a =", a +print "b =", b +print "sum =", s +print "diff =", d +print "prod =", p +print "quot =", q +print a, "**", e, "=", a**e + diff --git a/ch5/sack/f2poly_tm.py b/ch5/sack/f2poly_tm.py new file mode 100644 index 0000000..fc7f74d --- /dev/null +++ b/ch5/sack/f2poly_tm.py @@ -0,0 +1,440 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2008-11-14 +# ================================================================ + +# Type module for F2[x]: polynomials with coefficients in the finite field F2. + +import sys +import re +import copy + +# ================================================================ +def f2poly_from_string(string): + return f2poly_t(int(string, 16)) + +def idegree(bits): + if (bits == 0): + return 0 # The zero polynomial has degree zero by fiat. + rv = -1 + while bits: + rv += 1 + bits >>= 1 + return rv + +def imul(abits, bbits): + cbits = 0 + shift = 0 + while bbits: + if bbits & 1: + cbits ^= abits << shift + bbits >>= 1 + shift += 1 + return cbits + +# ---------------------------------------------------------------- +# iquot_and_rem +# Returns [quotient, remainder]. +# ---------------------------------------------------------------- +# E.g. +# dividend = 1,2,3,4 (1 + 2x + 3x^2 + 4x^3) +# divisor = 1,1,2 (1 + x + 2x^2) +# modulus = 7 +# +# q=4,2 r = 4,3 +# +---------- +# 1,1,2 | 1,2,3,4 +# | 2,2,4 shift = 1. 4/2 mod 7 = 2. 1,1,2 * 2 = 2,2,4. +# +---------- +# | 1 0 1 +# | 4 4 1 shift = 0. 1/2 mod 7 = 4 1,1,2 * 4 = 4,4,1 +# +---------- +# | 4 3 +# +# ---------------------------------------------------------------- + +def iquot_and_rem(abits, bbits): + if bbits == 0: # Divisor is zero. + print("f2poly_tm.iquot_and_rem: Divide by zero.", file=sys.stderr) + sys.exit(1) + divisor_l1_pos = idegree(bbits) + + if abits == 0: # Dividend is zero. + return [0, 0] + dividend_l1_pos = idegree(abits) + + l1_diff = dividend_l1_pos - divisor_l1_pos + if l1_diff < 0: # Dividend has lower degree than divisor. + return [0, abits] + + shift_divisor = bbits << l1_diff + quotbits = 0 + rembits = abits + check_pos = dividend_l1_pos + quot_pos = l1_diff + while check_pos >= divisor_l1_pos: + # if f2poly_bit_at(rembits, check_pos) + if rembits & (1 << check_pos): + rembits ^= shift_divisor + # f2poly_set_bit(quotbits, quot_pos) + quotbits |= 1 << quot_pos + shift_divisor >>= 1 + check_pos -= 1 + quot_pos -= 1 + + return [quotbits, rembits] + +# ---------------------------------------------------------------- +# This is quot_and_rem, but doesn't track the quotient. This saves a few +# cycles for finite-field arithmetic. + +def imod(abits, bbits): + if bbits == 0: # Divisor is zero. + print("f2poly_tm.iquot_and_rem: Divide by zero.", file=sys.stderr) + sys.exit(1) + divisor_l1_pos = idegree(bbits) + + if abits == 0: # Dividend is zero. + return 0 + dividend_l1_pos = idegree(abits) + + l1_diff = dividend_l1_pos - divisor_l1_pos + if l1_diff < 0: # Dividend has lower degree than divisor. + return abits + + shift_divisor = bbits << l1_diff + rembits = abits + check_pos = dividend_l1_pos + quot_pos = l1_diff + while check_pos >= divisor_l1_pos: + # if f2poly_bit_at(rembits, check_pos) + if rembits & (1 << check_pos): + rembits ^= shift_divisor + shift_divisor >>= 1 + check_pos -= 1 + quot_pos -= 1 + + return rembits + +# ---------------------------------------------------------------- +def iexp(abits, e): + deg = idegree(abits) + ap = abits + rv = 1 + + if abits == 0: + if e == 0: + print("f2poly_t.iexp: 0 ^ 0 undefined.", file=sys.stderr) + sys.exit(1) + elif e < 0: + print("f2poly_t.iexp: division by zero.", file=sys.stderr) + sys.exit(1) + else: + return 0 + elif deg == 0: # Unit + return 1 + else: # Degree 1 or higher. + if e < 0: + print("f2poly_t.iexp: division by non-unit.", file=sys.stderr) + sys.exit(1) + else: + while e != 0: + if e & 1: + rv *= ap + e = e >> 1 + ap *= ap + return rv + +# ---------------------------------------------------------------- +def igcd(abits, bbits): + if abits == 0: return bbits + if bbits == 0: return abits + + cbits = abits + dbits = bbits + while True: + [qbits, rbits] = iquot_and_rem(cbits, dbits) + if rbits == 0: + break + cbits = dbits + dbits = rbits + return dbits + +# ---------------------------------------------------------------- +# xxx b0rk3n: f2test 3 6 + +# Blankinship's algorithm. +# Returns [g, r, s] where g = ar + bs. +def iext_gcd(abits, bbits): + if (abits == 0): + return [bbits, 0, 1] + if (bbits == 0): + return [abits, 1, 0] + + rprime = 1 + s = 1 + r = 0 + sprime = 0 + c = abits + d = bbits + + while 1: + [q, r] = iquot_and_rem(c, d) + # Note: now c = qd + r and 0 <= r < d + if r == 0: + break + c = d + d = r + + t = rprime + rprime = r + qr = imul(q, r) + r = t ^ qr + + t = sprime + sprime = s + qs = imul(q, s) + s = t ^ qs + + return [d, r, s] + +# ================================================================ +class f2poly_t: + def __init__(self, bits): + self.bits = bits + + def __add__(a,b): + c = f2poly_t(a.bits ^ b.bits) + return c + def __sub__(a,b): + c = f2poly_t(a.bits ^ b.bits) + return c + + # This helps avoid infinite shift loops. + # xxx mv to an ifunc + def check_unsigned_bits(self): + if self.bits < 0: + print("f2poly_t: signed input %d detected." % (self.bits), file=sys.stderr) + sys.exit(1) + return self.bits + + def degree(self): + return idegree(self.check_unsigned_bits()) + + def __mul__(a,b): + bbits = b.check_unsigned_bits() + return f2poly_t(imul(a.bits, bbits)) + + def __div__(a,b): + [qbits, rbits] = iquot_and_rem(a.bits, b.bits) + return f2poly_t(qbits) + + def __mod__(a,b): + [qbits, rbits] = iquot_and_rem(a.bits, b.bits) + return f2poly_t(rbits) + + def __pow__(a, e): + return f2poly_t(iexp(a.bits, e)) + + def gcd(a, b): + return f2poly_t(igcd(a.bits, b.bits)) + + # ---------------------------------------------------------------- + # Blankinship's algorithm. + # Returns [g, r, s] where g = ar + bs. + def ext_gcd(a, b): + [gbits, rbits, sbits] = iext_gcd(a.bits, b.bits) + return [f2poly_t(gbits), f2poly_t(rbits), f2poly_t(sbits)] + + def __eq__(a,b): + return a.bits == b.bits + def __ne__(a,b): + return not (a == b) + def __neg__(a): + return a + + def scan(self, string): + self.bits = int(string, 16) + + def __str__(self): + return "0x%x" % self.bits + #return "%x" % self.bits + def __repr__(self): + return self.__str__() + +#inline f2poly_t f2poly_t::prime_sfld_elt(int v) const +# +# f2poly_t rv(v & 1) +# return rv + +#inline int f2poly_t::get_char(void) +# +# return 2 + +#inline f2poly_t f2poly_t::deriv(void) +# +# f2poly_t rv = *this +# rv.bits >>= 1 +# rv.bits &= 0x55555555 +# return rv + +#inline int f2poly_t::operator< (f2poly_t that) const +# +# return this->bits < that.bits +# +#inline int f2poly_t::operator> (f2poly_t that) const +# +# return this->bits > that.bits +# +#inline int f2poly_t::operator<=(f2poly_t that) const +# +# return this->bits <= that.bits +# +#inline int f2poly_t::operator>=(f2poly_t that) const +# +# return this->bits >= that.bits +# +#inline void f2poly_t::increment(void) +# +# this->bits++ + +#inline void f2poly_t::set_coeff(int deg, bit_t b) +# +# this->bounds_check(deg) +# if b.get_residue(): +# this->bits |= 1 << deg +# else +# this->bits &= ~(1 << deg) + +##ifdef F2POLY_SMALL +#f2poly_t f2poly_t::ext_gcd(f2poly_t & that, f2poly_t & rm, f2poly_t & rn) +# +# f2poly_t mprime, nprime, c, q, r, t, qm, qn +# f2poly_t d # Return value. +# +# if *this == 0: +# rm.bits = 0 +# rn.bits = 1 +# return that +# if that == 0: +# rm.bits = 1 +# rn.bits = 0 +# return *this +# +# Initialize +# mprime.bits = 1 +# rn .bits = 1 +# rm .bits = 0 +# nprime.bits = 0 +# c = *this +# d = that +# +# while 1: +# +# # Divide +# # q = c / d, r = c % d +# c.quot_and_rem(d, q, r) +# # Note: now c = qd + r and 0 <= r < d +# +# # Remainder zero? +# if r == 0: +# break +# +# # Recycle +# c = d +# d = r +# +# t = mprime +# mprime = rm +# qm = q * rm +# rm = t - qm +# +# t = nprime +# nprime = rn +# qn = q * rn +# rn = t - qn +# +# return d +# +##endif + +# ---------------------------------------------------------------- +##ifndef F2POLY_SMALL +#f2poly_t f2poly_t::deriv(void) +# +# f2poly_t rv = *this +# rv.demote_1() +# for (int i = 0; i < rv.num_parts; i++) +# rv.parts[i] &= 0x55555555 +# rv.trim_parts() +# return rv +# +##endif + +# ---------------------------------------------------------------- +# Relies on the fact that f(x^p) = f^p(x) over Fp[x]. +# +# in = a4 x^4 + a2 x^2 + a0 +# out = a4 x^2 + a2 x + a0 +# +##ifndef F2POLY_SMALL +#int f2poly_t::square_root(f2poly_t & rroot) +# +# int deg = this->degree() +# f2poly_t root(0) +# +# for (si = 0, di = 0; si <= deg; si+=2, di++): +# if this->bit_at(si): +# root.set_bit(di) +# if this->bit_at(si + 1): +# return 0 +# +# +# rroot = root +# return 1 +# +##endif + +# ---------------------------------------------------------------- +#int f2poly_t::eval(int c) +# +# if c & 1: +# return this->zcount_one_bits() +# else +# return this->parts[0] & 1 + +# ================================================================ +import unittest +if __name__ == '__main__': + + class test_cases(unittest.TestCase): + def test_f2poly_from_string(self): + pass # to be implemented + + def test_idegree(self): + pass # to be implemented + + def test_imul(self): + pass # to be implemented + + def test_iquot_and_rem(self): + pass # to be implemented + + def test_imod(self): + pass # to be implemented + + def test_iexp(self): + pass # to be implemented + + def test_igcd(self): + pass # to be implemented + + def test_iext_gcd(self): + pass # to be implemented + + # ---------------------------------------------------------------- + unittest.main() diff --git a/ch5/sack/f2polymod_tm.py b/ch5/sack/f2polymod_tm.py new file mode 100644 index 0000000..3ce932d --- /dev/null +++ b/ch5/sack/f2polymod_tm.py @@ -0,0 +1,139 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2008-11-14 +# ================================================================ + +# Type module for R=F2[x]/. F2[x] is polynomials with coefficients in +# the finite field F2. If f is irreducible then R is a finite field of +# order 2^n where n = deg(f). + +import sys +import re +import copy + +import f2poly_tm + +# xxx this is in mid-port from C++. + +## ================================================================ +#def f2polymod_from_string(string): +# return f2polymod_t(int(string, 16)) +# +## ================================================================ +#class f2polymod_t: +# +# #def __init__(self, resbits, modbits): +# # self.modbits = modbits +# # self.resbits = f2poly_tm.imod(resbits, modbits) +# +# # Both arguments should be of type f2poly_t. +# def __init__(self, residue, modulus): +# self.modulus = modulus +# self.residue = residue % modulus +# +# def __add__(a,b): +# c = f2polymod_t(a.residue + b.residue, a.modulus) +# return c +# def __sub__(a,b): +# c = f2polymod_t(a.residue - b.residue, a.modulus) +# return c +# def __mul__(a,b): +# c = f2polymod_t(a.residue * b.residue, a.modulus) +# return c +# +# # xxx fix me +# def recip(a): +# pass +# +##int f2polymod_t::recip(f2polymod_t & rinv) +## f2poly_t g, a, b; +## g = this->residue.ext_gcd(this->modulus, a, b); +## +## if (g.find_degree() != 0): # Error check +## //std::cerr << "f2polymod recip: zero or zero divisor."; +## return 0 +## else: +## rinv = f2polymod_t(a, this->modulus) +## return 1 +# +# def __div__(a,b): +# return a * b.recip() +# +# # xxx fix me +# def __pow__(a, e): +# ap = a.residue +# one = f2poly_t(1) +# rv = one +# +# #xxx types +# if (e == 0): +# if (a.residue.bits == 0): +# print >> sys.stderr, "f2polymod_t.exp: 0^0 undefined." +# sys.exit(1) +# return one +# elif (e < 0): +# if (a.residue.bits == 0): +# print >> sys.stderr, "f2polymod_t.exp: division by zero." +# sys.exit(1) +# +# #xxx +# f2polymod_t inv = one/ *this +# xp = inv.residue +# e = -e +# +# while (e != 0): +# if e & 1: +# rv.residue = (rv.residue * xp) % this->modulus +# e >>= 1 +# xp = (xp * xp) % this->modulus +# return rv +# +# +# def __eq__(a,b): +# return a.bits == b.bits +# def __ne__(a,b): +# return not (a == b) +# def __neg__(a): +# return a +# +# def scan(self, string): +# self.bits = int(string, 16) +# +# def __str__(self): +# # xxx temp +# return self.residue.__str__() +# #return "%x" % self.bits +# def __repr__(self): +# return self.__str__() +# +# +##std::ostream & operator<<(std::ostream & os, const f2polymod_t & a) +## a.residue.dprint(os, a.modulus.find_degree() - 1) +## +##int f2polymod_t::from_string(char * string, f2poly_t m) +## f2poly_t r; +## std::istringstream iss(string, std::ios_base::in); +## iss >> r; +## if (iss.fail()) { +## return 0; +## } +## else { +## *this = f2polymod_t(r, m); +## return 1; +## } +## +##void f2polymod_t::check_moduli(f2polymod_t & that) const +## if (this->modulus != that.modulus) { +## std::cerr +## << "f2polymod_t: mixed moduli " +## << this->modulus +## << ", " +## << that.modulus +## << "."; +## std::cerr << std::endl; +## exit(1); +## } diff --git a/ch5/sack/f2test b/ch5/sack/f2test new file mode 100644 index 0000000..2896e07 --- /dev/null +++ b/ch5/sack/f2test @@ -0,0 +1,44 @@ +#!/usr/bin/python -Wall + +from f2poly_tm import * +import sys + +a = f2poly_t(0xff) +b = f2poly_t(0xf) +e = 3 +argc = len(sys.argv) +if (argc == 3): + a = f2poly_from_string(sys.argv[1]) + b = f2poly_from_string(sys.argv[2]) +if (argc == 4): + a = f2poly_from_string(sys.argv[1]) + b = f2poly_from_string(sys.argv[2]) + e = int(sys.argv[3]) +print "a =", a +print "b =", b + +s = a + b +print "sum =", s + +c = a * b +print "prod =", c + +if (b.bits != 0): + q = a / b + print "quot =", q + r = a % b + print "rem =", r + print "imod =", f2poly_t(imod(a.bits, b.bits)) + +print a, "**", e, "=", a**e + +g = f2poly_t.gcd(a,b) +print "gcd =", g + +[g, r, s] = f2poly_t.ext_gcd(a, b) +print "ext_gcd:" +print " g = ", g +print " r = ", r +print " s = ", s +print " ar + bs = ", a*r + b*s + diff --git a/ch5/sack/fact_m.py b/ch5/sack/fact_m.py new file mode 100644 index 0000000..167bf57 --- /dev/null +++ b/ch5/sack/fact_m.py @@ -0,0 +1,32 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +def fact(n): + if (n < 0): + return 0 + rv = 1 + while (n > 0): + rv *= n + n -= 1 + return rv + +def binc(n, k): + if (k > n): + return 0 + if (k < 0): + return 0 + if (k > int(n/2)): + k = n - k + + rv = 1 + for j in range(0, k): + rv *= n - j + rv /= j + 1 + return rv + diff --git a/ch5/sack/genquat_tm.py b/ch5/sack/genquat_tm.py new file mode 100644 index 0000000..d787bb4 --- /dev/null +++ b/ch5/sack/genquat_tm.py @@ -0,0 +1,159 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# Type module for generalized quaternions. + +# Presentation: +# < a, b | a^2n = 1, b^2 = a^n, ab = ba^-1 > +# +# Expressions simplify to a^i b^j for i=0,1,..,n-1 and j=0,1,2,3: +# * Powers on a don't exceed 2n. +# * Powers on b don't exceed 4. +# * Powers on a of n .. 2n-1 may have have a^n replaced with b^2. +# * The quasi-commutator ab=ba^-1 leads to ba = a^-1b which allows +# all powers of a, and all powers of b, to be collected together. +# +# That is: +# * ba = a^-1 b +# * b a^i = a^-i b +# * b^j a = a^s b^j where s = (-1)^j +# +# Thus +# b^j a^i = b^j-1 b a^i +# = b^j-2 a^i b^2 +# = b^j-3 a^-i b^3 +# = b^j-4 a^i b^4 +# = ... +# = a^i b^j if j even +# = a^-i b^j if j odd +# = a^si b^j where s = (-1)^j +# +# Thus +# a^i b^j a^k b^l = a^i (b^j a^k) b^l +# = a^i (a^sk b^j) b^l +# = a^(i+sk) b^(j+l) +# + +# Inverse of a^i b^j: +# (a^i b^j)^-1 = b^-j a^-i +# = b^(4-j) a^(2n-i) +# = a^s(2n-i) b^(4-j) where s = (-1)^j + +import re + +class genquat_t: + + def __init__(self, argi, argj, argn): + argi %= argn + argn; + if (argi >= argn): + argj += 2 + argi -= argn + self.n = argn + self.i = argi + self.j = argj & 3 + + def __eq__(a,b): + return ((a.i == b.i) and (a.j == b.j)) + + def __ne__(a,b): + return not (a == b) + + def __mul__(a,b): + # a^i b^j a^k b^l = a^(i+sk) b^(j+l) + if (a.n != b.n): + raise RuntimeError + c = genquat_t(0, 0, a.n) + + i = a.i + j = a.j + k = b.i + l = b.j + n = a.n + twon = n + n + if (j & 1): + c.i = (i-k+twon) % twon + else: + c.i = (i+k) % twon + c.j = (j+l) & 3 + if (c.i >= n): + c.i -= n + c.j += 2 + c.j &= 3 + return c + + def inv(a): + # Inverse of a^i b^j: + # (a^i b^j)^-1 = a^s(2n-i) b^(4-j) where s = (-1)^j + if (a.j & 1): + msi = a.i + else: + msi = a.n + a.n - a.i + c = genquat_t(msi, -a.j, a.n) + return c + + def scan(self, string, argn): + groups = re.match(r"^(\d)+,(\d+)$", string).groups(); + if len(groups) != 2: + raise IOError + self.__init__(int(groups[0]), int(groups[1]), argn) + + def __str__(self): + return str(self.i) + "," + str(self.j) + + def __repr__(self): + return self.__str__() + +def params_from_string(params_string): + n = int(params_string) + return n + +def from_string(value_string, params_string): + n = params_from_string(params_string) + obj = genquat_t(0, 0, n) + obj.scan(value_string, n) + return obj + + +# ================================================================ +import unittest +if __name__ == '__main__': + + class test_cases(unittest.TestCase): + def test___init__(self): + pass # to be implemented + + def test___eq__(self): + pass # to be implemented + + def test___ne__(self): + pass # to be implemented + + def test___mul__(self): + pass # to be implemented + + def test_inv(self): + pass # to be implemented + + def test_scan(self): + pass # to be implemented + + def test___str__(self): + pass # to be implemented + + def test___repr__(self): + pass # to be implemented + + def test_params_from_string(self): + pass # to be implemented + + def test_from_string(self): + pass # to be implemented + + # ---------------------------------------------------------------- + unittest.main() diff --git a/ch5/sack/gint_tm.py b/ch5/sack/gint_tm.py new file mode 100644 index 0000000..55148b9 --- /dev/null +++ b/ch5/sack/gint_tm.py @@ -0,0 +1,173 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# Type module for Gaussian integers (m+ni for integer m,n). + +import re +import copy + +import sackint + +class gint_t: + + def __init__(self, re, im): + self.re = re + self.im = im + + def __eq__(a,b): + if (a.re != b.re): + return 0 + if (a.im != b.im): + return 0 + return 1 + + def __ne__(a,b): + return not (a == b) + + def __add__(a,b): + c = gint_t(a.re + b.re, a.im + b.im) + return c + + def __sub__(a,b): + c = gint_t(a.re - b.re, a.im - b.im) + return c + + def __mul__(a,b): + # (ar, ai) * (br, bi) + c = gint_t(a.re*b.re - a.im*b.im, a.re*b.im + a.im*b.re) + return c + + # Grove's _Algebra_, p. 65 + # (ar, ai) (ar, ai)(br, -bi) a * conj(b) + # -------- = ----------------- = ----------- + # (br, bi) (br, bi)(br, -bi) norm b + # + # Then, take the *nearest* integers to the rational coordinates. + + def __div__(a,b): + numer = a * b.conj() + denom = b.norm() + Qre = (1.0 * numer.re) / denom + Qim = (1.0 * numer.im) / denom + Zre = int(round(Qre)) + Zim = int(round(Qim)) + q = gint_t(Zre, Zim) + return q + + def __mod__(a,b): + q = a / b + return a - (q * b) + + def conj(a): + return gint_t(a.re, -a.im) + + def norm(a): + return a.re*a.re + a.im*a.im + + def scan(self, string): + strings = re.split(',', string) + n = len(strings) + if (n == 1): + self.re = int(strings[0]) + elif (n == 2): + self.re = int(strings[0]) + self.im = int(strings[1]) + else: + raise IOError + + def __str__(self): + string = str(self.re) + "," + str(self.im) + return string + + def __repr__(self): + return self.__str__() + +#def from_string(value_string, params_string): +# if (len(params_string) == 0): +# print "Modmul requires non-empty parameter string" +# obj = gint_t([1], [1]) +# obj.scan(value_string, params_string) +# return obj + +#a = gint_t(7,-3) +#b = gint_t(5,3) +#sum = a+b +#diff = a-b +#prod = a*b +#q = a/b +#r = a%b +#print a, "+", b, "=", sum +#print a, "-", b, "=", diff +#print a, "*", b, "=", prod +#print a, "/", b, "=", q +#print a, "%", b, "=", r +#print "qb+r", q*b + r + +print() + + +a = gint_t(7,-3) +b = gint_t(5,3) + +for i in range(0,10): + if (b.norm() == 0): + break + q = a/b + r = a%b + print((a, b, q, r)) + a = b + b = r + + +# ================================================================ +import unittest +if __name__ == '__main__': + + class test_cases(unittest.TestCase): + def test___init__(self): + pass # to be implemented + + def test___eq__(self): + pass # to be implemented + + def test___ne__(self): + pass # to be implemented + + def test___add__(self): + pass # to be implemented + + def test___sub__(self): + pass # to be implemented + + def test___mul__(self): + pass # to be implemented + + def test___div__(self): + pass # to be implemented + + def test___mod__(self): + pass # to be implemented + + def test_conj(self): + pass # to be implemented + + def test_norm(self): + pass # to be implemented + + def test_scan(self): + pass # to be implemented + + def test___str__(self): + pass # to be implemented + + def test___repr__(self): + pass # to be implemented + + # ---------------------------------------------------------------- + unittest.main() diff --git a/ch5/sack/ispec_gm.py b/ch5/sack/ispec_gm.py new file mode 100644 index 0000000..05af834 --- /dev/null +++ b/ch5/sack/ispec_gm.py @@ -0,0 +1,64 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +import ispec_tm +import ispec_tbl +import re +import sys + +# I have a *global* for ispec.tbl. This makes it non re-entrant. +# In particular I won't be able to form, say, the direct product of two +# different user-specified groups without a redesign. + +def get_elements_str(params_string): + file_name = params_string + matrix = [] + + if (file_name == "-"): + file_handle = sys.stdin + else: + try: + file_handle = open(file_name, 'r') + except: + print(("Couldn't open \"" + file_name + "\" for read.")) + sys.exit(1) + + lno = 0 + for line in file_handle: + lno += 1 + + # Chomp trailing newline, if any. + if (line[-1] == '\n'): + line = line[0:-1] + + # Strip leading and trailing whitespace. + line = re.sub(r"^\s+", r"", line) + line = re.sub(r"\s+$", r"", line) + + code_strings = re.split('\s+', line) + row = [] + colno = 0 + for cs in code_strings: + colno += 1 + try: + row.append(int(cs)) + except: + print(("Scan error on \"%s\", column %d, line %d, file %s" % (cs,colno,lno,file_name))) + sys.exit(1) + matrix.append(row) + if (file_name != "-"): + file_handle.close() + + ispec_tm.install_table(matrix) + + n=len(matrix) + elts = list(range(0, n)) + for i in range(0, n): + elts[i] = ispec_tm.ispec_t(i) + return elts diff --git a/ch5/sack/ispec_tbl.py b/ch5/sack/ispec_tbl.py new file mode 100644 index 0000000..5b23d69 --- /dev/null +++ b/ch5/sack/ispec_tbl.py @@ -0,0 +1,11 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +ispec_mul_table = [99] +ispec_inv_table = [] diff --git a/ch5/sack/ispec_tm.py b/ch5/sack/ispec_tm.py new file mode 100644 index 0000000..71a132e --- /dev/null +++ b/ch5/sack/ispec_tm.py @@ -0,0 +1,138 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# Type module for an arbitrary user-defined group which is specified entirely +# by its Cayley table. + +import re +import copy +import ispec_tbl + +import sackgrp + +class ispec_t: + def __init__(self, argcode): + self.code = argcode + + def __mul__(a,b): + c = ispec_t(ispec_tbl.ispec_mul_table[a.code][b.code]); + return c + + def __eq__(a,b): + return (a.code == b.code) + + def __ne__(a,b): + return not (a == b) + + def __lt__(a,b): + return (a.code < b.code) + def __le__(a,b): + return (a.code <= b.code) + def __gt__(a,b): + return (a.code > b.code) + def __ge__(a,b): + return (a.code >= b.code) + + def inv(a): + c = ispec_t(ispec_tbl.ispec_inv_table[a.code]); + return c + + def scan(self, string): + self.code = int(string) + + def __str__(self): + return str(self.code) + + def __repr__(self): + return self.__str__() + +def params_from_string(params_string): + return params_string + +def from_string(value_string, params_string): + not_used = params_from_string(params_string) + k = int(value_string) # xxx needs error checking + obj = ispec_t(k) + return obj + +def install_table(table): + ispec_tbl.ispec_mul_table = copy.copy(table) + ispec_tbl.ispec_inv_table = [] + n = len(table) + + # Populate the inv table. + # I am being crass here. I'm assuming the Cayley table is good before I + # start. The good news is that the is-group functions don't use the inv + # table. + G = [] + for i in range(0, n): + G.append(ispec_t(i)) + [found, e] = sackgrp.find_id(G) + if (found): + for i in range(0, n): + x = G[i] + for j in range(0, n): + y = G[j] + z = x*y + if (z.code == e.code): + ispec_tbl.ispec_inv_table.append(j) + continue + +# ================================================================ +import unittest +if __name__ == '__main__': + + class test_cases(unittest.TestCase): + def test___init__(self): + pass # to be implemented + + def test___mul__(self): + pass # to be implemented + + def test___eq__(self): + pass # to be implemented + + def test___ne__(self): + pass # to be implemented + + def test___lt__(self): + pass # to be implemented + + def test___le__(self): + pass # to be implemented + + def test___gt__(self): + pass # to be implemented + + def test___ge__(self): + pass # to be implemented + + def test_inv(self): + pass # to be implemented + + def test_scan(self): + pass # to be implemented + + def test___str__(self): + pass # to be implemented + + def test___repr__(self): + pass # to be implemented + + def test_params_from_string(self): + pass # to be implemented + + def test_from_string(self): + pass # to be implemented + + def test_install_table(self): + pass # to be implemented + + # ---------------------------------------------------------------- + unittest.main() diff --git a/ch5/sack/metacyc_gm.py b/ch5/sack/metacyc_gm.py new file mode 100644 index 0000000..04c6cf5 --- /dev/null +++ b/ch5/sack/metacyc_gm.py @@ -0,0 +1,21 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# Group module for the dihedral group parameterized by m and n. + +import metacyc_tm + +def get_elements_str(params_string): + [p, q, t] = metacyc_tm.params_from_string(params_string) + pq = p * q + elts = [] + for i in range(0, p): + for j in range(0, q): + elts.append(metacyc_tm.metacyc_t(i, j, p, q, t)) + return elts diff --git a/ch5/sack/metacyc_tm.py b/ch5/sack/metacyc_tm.py new file mode 100644 index 0000000..eb7b9c0 --- /dev/null +++ b/ch5/sack/metacyc_tm.py @@ -0,0 +1,225 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# Type module for the metacyclic group parameterized by m and n. + +import re +import sackint + +# ================================================================ +# Old explanation (circa 2004): + +# ---------------------------------------------------------------- +# Multiplication: +# a^i b^j a^k b^l = a^(i + k t^j) b^(j + l) +# t != 1 mod p +# t^q == 1 mod p + +# ---------------------------------------------------------------- +# Inversion: +# (a^i b^j)^(-1) = b^-j a^-i +# = a^0 b^-j a^-i b^0 +# = a^(0 + -i t^-j) b^(-j + 0) +# = a^(-i t^-j) b^-j + +# ================================================================ +# Alternate point of view, from scratch (2006-11-28): +# Zm X|_phi Zn (semidirect product): +# (a, b) + (c, d) = (a + (phi(b))(c), b + d). +# Zm and Zn are cyclic so the action of b on c is specified by the action of +# Zn's 1 on Zm's 1. Call this t. +# +# ---------------------------------------------------------------- +# An example before I continue further: Let m=7 and n=3. Then we need phi to +# be a homomorphism from Z3 to Aut(Z7). Here's what Aut(Z7) looks like: +# +# Z7 | s1 s2 s3 s4 s5 s6 +# -- + -- -- -- -- -- -- +# 0 | 0 0 0 0 0 0 +# 1 | 1 2 3 4 5 6 +# 2 | 2 4 6 1 3 5 +# 3 | 3 6 2 5 1 4 +# 4 | 4 1 5 2 6 3 +# 5 | 5 3 1 6 4 2 +# 6 | 6 5 4 3 2 1 +# +# Note that si(x) = ix, i.e. the ith automorphism is just multiplication by i. +# Also, how do we compose automorphisms? si(sj(x)) = ij(x) so si o sj is sij. +# So, arithmetic on the i's and j's is done in the multiplicative group of Z7. +# +# Now, Aut(Z7) is isomorphic to Z6, but how? Additive groups of Zm always are +# cyclic of order m with 1 as generator; multiplicative groups of Zp* are +# always cyclic of order p-1, but with a generator we usually have to search +# for. By searching we can find that 3 (or 5) generates Z7*. So, Aut(Z7) is +# cyclic with automorphism s3 (or s5) as generator. Here are the powers of 3 +# mod 7: +# 3^1 3^2 3^3 3^4 3^5 3^6 +# 3 2 6 4 5 1. +# So the cyclic structure of the cyclic group Aut(Z7) is +# s3 s2 s6 s4 s5 s1 +# with s3 as generator. (If s5 is used as the generator, then the cycle +# structure is the reverse of this.) +# +# So, back to the semidirect product of Z7 and Z3, the possible homomorphisms +# from the order-3 cyclic group Z3 to the order-3 cyclic group Z7 are specified +# by the image of Z3's 1. It can map to s1 (trivial homomorphism), s2 +# (monomomorphism), or s4 (monomomorphism): +# +# Z3 | phi_1 phi_2 phi_3 +# -- + ----- ----- ----- +# 0 | s1 s1 s1 +# 1 | s1 s2 s4 +# 2 | s1 s4 s2 +# +# Since Z3 is cyclic, and since Aut(Z7) is cyclic, to specify phi we need only +# to specify the image of Z3's 1. Call that st. +# +# Let c be in Z7 and b in Z3. What is (phi(b))(c)? Since phi is a +# homomorphism and Z3 is cyclic, written additively, phi(b) = b*phi(1). Now, +# phi(1) is some automorphism st of Z7. Moreover, it can't be any old +# automorphism: the order of st must divide the order of Z3's 1. So, st^n must +# be the identity automorphism s1. Since the arithmetic in Aut(Z7) is that of +# the multiplicative group Z7*, this means that t^n must be 1 mod m. +# ---------------------------------------------------------------- + + +# ================================================================ +# Auxiliary function: +# Second component of return value is t. +# First compoment of return value is a flag indicating whether t was found. +def find_t(p, q): + for t in range(2, p): + if (sackint.intmodexp(t, q, p) == 1): + return [1, t] + return [0, 0] + +# ================================================================ +class metacyc_t: + + def __init__(self, i, j, p, q, t): + + tq = sackint.intmodexp(t, q, p) + if ((tq % p) != 1): + print("metacyc: t^q must be 1 mod p") + print(("Got p =", p, "q =", q, "t =", t)) + raise RuntimeError + + # xxx jrk 2006-11-28: allow trivial homomorphisms. + #if ((t % p) == 1): + # print "metacyc: t must not be 1 mod p" + # print "Got p =", p, "q =", q, "t =", t + # raise RuntimeError + + self.i = i % p + self.j = j % q + self.p = p + self.q = q + self.t = t + + def __eq__(a,b): + return ((a.i == b.i) and (a.j == b.j)) + + def __ne__(a,b): + return not (a == b) + + def __mul__(a,b): + if ((a.p != b.p) or (a.q != b.q) or (a.t != b.t)): + print("Parameter mismatch in metacyc mul") + raise RuntimeError + ci = (a.i + b.i * sackint.intmodexp(a.t, a.j, a.p)) % a.p + cj = (a.j + b.j) % a.q + c = metacyc_t(ci, cj, a.p, a.q, a.t) + return c + + def inv(a): + ci = -a.i * sackint.intmodexp(a.t, -a.j, a.p) + cj = -a.j + c = metacyc_t(ci, cj, a.p, a.q, a.t) + return c + + def scan(self, string, argp, argq, argt): + groups = re.match(r"^(\d)+,(\d+)$", string).groups(); + if len(groups) != 2: + raise IOError + self.__init__(int(groups[0]), int(groups[1]), argp, argq, argt) + + def __str__(self): + return str(self.i) + "," + str(self.j) + + def __repr__(self): + return self.__str__() + +def params_from_string(params_string): + pqt = re.split(',', params_string) + + if (len(pqt) == 3): + p = int(pqt[0]) + q = int(pqt[1]) + t = int(pqt[2]) + elif (len(pqt) == 2): + p = int(pqt[0]) + q = int(pqt[1]) + [got_it, t] = find_t(p, q) + if (not got_it): + print(("metacyc_t: No t found for p =", p, "q =", q)) + print(("Got: ", params_string)) + raise IOError + else: + print("metacyc_tm.from_string: expected parameters p,q or p,q,t.") + print(("Got: ", params_string)) + raise IOError + return [p, q, t] + +def from_string(value_string, params_string): + [p, q, t] = params_from_string(params_string) + obj = metacyc_t(0, 0, p, q, t) + obj.scan(value_string, p, q, t) + return obj + + +# ================================================================ +import unittest +if __name__ == '__main__': + + class test_cases(unittest.TestCase): + def test_find_t(self): + pass # to be implemented + + def test___init__(self): + pass # to be implemented + + def test___eq__(self): + pass # to be implemented + + def test___ne__(self): + pass # to be implemented + + def test___mul__(self): + pass # to be implemented + + def test_inv(self): + pass # to be implemented + + def test_scan(self): + pass # to be implemented + + def test___str__(self): + pass # to be implemented + + def test___repr__(self): + pass # to be implemented + + def test_params_from_string(self): + pass # to be implemented + + def test_from_string(self): + pass # to be implemented + + # ---------------------------------------------------------------- + unittest.main() diff --git a/ch5/sack/mktestskel b/ch5/sack/mktestskel new file mode 100644 index 0000000..4b76ff4 --- /dev/null +++ b/ch5/sack/mktestskel @@ -0,0 +1,27 @@ +#!/bin/bash + +# ================================================================ +# Given a Python module, prints a unit-test skeleton. +# John Kerl 2012-08-06 +# ================================================================ + +cat <<_EOF + +# ================================================================ +import unittest +if __name__ == '__main__': + + class test_cases(unittest.TestCase): +_EOF + +names=$(grep -P '^\s*def.*:$' "$@" | grep -w def | sed -e 's/def *//' -e 's/(.*//') +for name in $names; do + echo -e "\t\tdef test_$name(self):" + echo -e "\t\t\tpass # to be implemented" + echo "" +done + +cat <<_EOF + # ---------------------------------------------------------------- + unittest.main() +_EOF diff --git a/ch5/sack/mod_tm.py b/ch5/sack/mod_tm.py new file mode 100644 index 0000000..88f45b9 --- /dev/null +++ b/ch5/sack/mod_tm.py @@ -0,0 +1,275 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# Type module for the ring of integers mod n. + +import sys +import re +import copy + +class mod_t: + def __init__(self, resarray, modarray): + self.check_lengths(len(resarray), len(modarray), "residues", "moduli") + self.check_moduli(modarray) + self.residues = copy.copy(resarray) + self.moduli = copy.copy(modarray) + for i in range(0, len(modarray)): + self.residues[i] %= self.moduli[i] + + def __add__(a,b): + a.check_lengths(len(a.moduli), len(b.moduli), "moduli", "moduli") + a.check_moduli_pair(a.moduli, b.moduli) + c = mod_t(a.residues, a.moduli) + for i in range(0, len(a.moduli)): + c.residues[i] = (a.residues[i] + b.residues[i]) % c.moduli[i] + return c + + def __sub__(a,b): + a.check_lengths(len(a.moduli), len(b.moduli), "moduli", "moduli") + a.check_moduli_pair(a.moduli, b.moduli) + c = mod_t(a.residues, a.moduli) + for i in range(0, len(a.moduli)): + c.residues[i] = (a.residues[i] - b.residues[i]) % c.moduli[i] + return c + + def __add__(a,b): + a.check_lengths(len(a.moduli), len(b.moduli), "moduli", "moduli") + a.check_moduli_pair(a.moduli, b.moduli) + c = mod_t(a.residues, a.moduli) + for i in range(0, len(a.moduli)): + c.residues[i] = (a.residues[i] + b.residues[i]) % c.moduli[i] + return c + + def __mul__(a,b): + a.check_lengths(len(a.moduli), len(b.moduli), "moduli", "moduli") + a.check_moduli_pair(a.moduli, b.moduli) + c = mod_t(a.residues, a.moduli) + for i in range(0, len(a.moduli)): + c.residues[i] = (a.residues[i] * b.residues[i]) % c.moduli[i] + return c + + def __eq__(a,b): + if (len(a.residues) != len(b.residues)): + return 0 + n = len(a.residues) + for i in range(0, n): + if (a.residues[i] != b.residues[i]): + return 0 + return 1 + + def __ne__(a,b): + return not (a == b) + + def __neg__(a): + c = mod_t(a.residues, a.moduli) + for i in range(0, len(a.moduli)): + c.residues[i] = (-a.residues[i]) % a.moduli[i] + return c + + def inv(a): + c = mod_t(a.residues, a.moduli) + for i in range(0, len(a.moduli)): + c.residues[i] = sackint.intmodrecip(a.residues[i], a.moduli[i]) + return c + + def scan(self, res_string, mod_array): + res_strings = re.split(',', res_string) + self.check_lengths(len(res_strings), len(mod_array), res_strings, + str(mod_strings)) + n = len(res_strings) + resarray = list(range(0, n)) + for i in range(0, n): + resarray[i] = int(res_strings[i]) + self.__init__(resarray, modarray) + + def __str__(self): + string = str(self.residues[0]) + for i in range(1, len(self.residues)): + string += "," + str(self.residues[i]) + return string + + def __repr__(self): + return self.__str__() + + def check_length(self, length, desc): + if (length < 1): + print((desc, "length", str(length), "< 1")) + raise RuntimeError + + def check_lengths(self, len1, len2, desc1, desc2): + self.check_length(len1, desc1) + self.check_length(len2, desc2) + if (len1 != len2): + print((desc1, "length", str(len1), "!=", desc2, "length", len2)) + raise RuntimeError + + def check_moduli(self, mods): + for i in range(0, len(mods)): + if (mods[i] < 1): + print(("Modulus", mods[i], "< 1 in", mods)) + raise RuntimeError + + def check_moduli_pair(self, mods1, mods2): + if (mods1 != mods2): + print(("Mismatched moduli", mods1, ", ", mods2)) + raise RuntimeError + +def params_from_string(params_string): + if (len(params_string) == 0): + print("Modadd requires non-empty parameter string") + sys.exit(1) + mod_strings = re.split(',', params_string) + n = len(mod_strings) + mod_array = list(range(0, n)) + for i in range(0, n): + mod_array[i] = int(mod_strings[i]) + return mod_array + +def from_string(value_string, params_string): + mod_array = params_from_string(params_string) + obj = mod_t([1], [1]) + obj.scan(value_string, mod_array) + return obj + + + + + + + + + + + + + + +#def mod_t: +# def __init__(self, residue, modulus): +# self.residue = copy.copy(residue) % modulus +# self.modulus = copy.copy(modulus) +# +# def __eq__(a,b): +# if (a.modulus != b.modulus): +# return 0 +# if (a.residue != b.residue): +# return 0 +# return 1 +# +# def __ne__(a,b): +# return not (a == b) +# +# def __add__(a,b): +# # xxx check moduli +# c = mod_t(a.residue + b.residue, a.modulus) +# return c +# +# def __neg__(a): +# c = mod_t(-a.residue, a.modulus) +# return c +# +# def __sub__(a,b): +# # xxx check moduli +# c = mod_t(a.residue - b.residue, a.modulus) +# return c +# +# def __mul__(a,b): +# # xxx check moduli +# c = mod_t(a.residue * b.residue, a.modulus) +# return c +# +# # This is an abstract inversion method, using Blankinship's extended GCD. +# # Performance could be improved on for particular classes. +# +# def inv(a): +# print "mod inv stub" +# return 0 +# +## def scan(self, res_string, mod_string): +## xxx stub +# +# def __str__(self): +# string = str(self.residue) +# return string +# +## def check_moduli(self, mods): +## for i in range(0, len(mods)): +## if (mods[i] < 1): +## print "Modulus", mods[i], "< 1 in", mods +## raise RuntimeError +# +##def from_string(value_string, params_string): +## if (len(params_string) == 0): +## print "Modmul requires non-empty parameter string" +## obj = mod_t([1], [1]) +## obj.scan(value_string, params_string) +## return obj + + +# ================================================================ +import unittest +if __name__ == '__main__': + + class test_cases(unittest.TestCase): + def test___init__(self): + pass # to be implemented + + def test___add__(self): + pass # to be implemented + + def test___sub__(self): + pass # to be implemented + + def test___add__(self): + pass # to be implemented + + def test___mul__(self): + pass # to be implemented + + def test___eq__(self): + pass # to be implemented + + def test___ne__(self): + pass # to be implemented + + def test___neg__(self): + pass # to be implemented + + def test_inv(self): + pass # to be implemented + + def test_scan(self): + pass # to be implemented + + def test___str__(self): + pass # to be implemented + + def test___repr__(self): + pass # to be implemented + + def test_check_length(self): + pass # to be implemented + + def test_check_lengths(self): + pass # to be implemented + + def test_check_moduli(self): + pass # to be implemented + + def test_check_moduli_pair(self): + pass # to be implemented + + def test_params_from_string(self): + pass # to be implemented + + def test_from_string(self): + pass # to be implemented + + # ---------------------------------------------------------------- + unittest.main() diff --git a/ch5/sack/modadd_gm.py b/ch5/sack/modadd_gm.py new file mode 100644 index 0000000..43d097b --- /dev/null +++ b/ch5/sack/modadd_gm.py @@ -0,0 +1,34 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# Group module for the group of integers mod n with addition. + +import modadd_tm + +def get_elements_str_aux(mod_array): + group_size = 1 + for m in mod_array: + group_size *= m + elts = [] + k = 0 + n = len(mod_array) + for i in range(0, group_size): + elt = [] + a = k + for j in range(0, n): + elt.append(a % mod_array[j]) + a /= mod_array[j] + elts.append(modadd_tm.modadd_t(elt, mod_array)) + k += 1 + return elts + +def get_elements_str(params_string): + mod_array = modadd_tm.params_from_string(params_string) + return get_elements_str_aux(mod_array) + diff --git a/ch5/sack/modadd_tm.py b/ch5/sack/modadd_tm.py new file mode 100644 index 0000000..8e4142b --- /dev/null +++ b/ch5/sack/modadd_tm.py @@ -0,0 +1,162 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# Type module for the group of integers mod n with addition. + +import sys +import re +import copy + +class modadd_t: + def __init__(self, resarray, modarray): + self.check_lengths(len(resarray), len(modarray), "residues", "moduli") + self.check_moduli(modarray) + self.residues = copy.copy(resarray) + self.moduli = copy.copy(modarray) + for i in range(0, len(modarray)): + self.residues[i] %= self.moduli[i] + + # Use "*" for addition. Seems weird, but groups are abstracted + # multiplicatively in SACK. + def __mul__(a,b): + a.check_lengths(len(a.moduli), len(b.moduli), "moduli", "moduli") + a.check_moduli_pair(a.moduli, b.moduli) + c = modadd_t(a.residues, a.moduli) + for i in range(0, len(a.moduli)): + c.residues[i] = (a.residues[i] + b.residues[i]) % c.moduli[i] + return c + + def __eq__(a,b): + if (len(a.residues) != len(b.residues)): + return 0 + n = len(a.residues) + for i in range(0, n): + if (a.residues[i] != b.residues[i]): + return 0 + return 1 + + def __ne__(a,b): + return not (a == b) + + def inv(a): + c = modadd_t(a.residues, a.moduli) + for i in range(0, len(a.moduli)): + c.residues[i] = (-a.residues[i]) % a.moduli[i] + return c + + def scan(self, res_string, mod_array): + res_strings = re.split(',', res_string) + self.check_lengths(len(res_strings), len(mod_array), res_strings, + mod_array) + #str(mod_strings)) + n = len(res_strings) + res_array = list(range(0, n)) + for i in range(0, n): + res_array[i] = int(res_strings[i]) + self.__init__(res_array, mod_array) + + def __str__(self): + string = str(self.residues[0]) + for i in range(1, len(self.residues)): + string += "," + str(self.residues[i]) + return string + + def __repr__(self): + return self.__str__() + + def check_length(self, length, desc): + if (length < 1): + print((desc, "length", str(length), "< 1")) + raise RuntimeError + + def check_lengths(self, len1, len2, desc1, desc2): + self.check_length(len1, desc1) + self.check_length(len2, desc2) + if (len1 != len2): + print((desc1, "length", str(len1), "!=", desc2, "length", len2)) + raise RuntimeError + + def check_moduli(self, mods): + for i in range(0, len(mods)): + if (mods[i] < 1): + print(("Modulus", mods[i], "< 1 in", mods)) + raise RuntimeError + + def check_moduli_pair(self, mods1, mods2): + if (mods1 != mods2): + print(("Mismatched moduli", mods1, ", ", mods2)) + raise RuntimeError + +def params_from_string(params_string): + if (len(params_string) == 0): + print("Modadd requires non-empty parameter string") + sys.exit(1) + mod_strings = re.split(',', params_string) + n = len(mod_strings) + mod_array = list(range(0, n)) + for i in range(0, n): + mod_array[i] = int(mod_strings[i]) + return mod_array + +def from_string(value_string, params_string): + mod_array = params_from_string(params_string) + obj = modadd_t([1], [1]) + obj.scan(value_string, mod_array) + return obj + + +# ================================================================ +import unittest +if __name__ == '__main__': + + class test_cases(unittest.TestCase): + def test___init__(self): + pass # to be implemented + + def test___mul__(self): + pass # to be implemented + + def test___eq__(self): + pass # to be implemented + + def test___ne__(self): + pass # to be implemented + + def test_inv(self): + pass # to be implemented + + def test_scan(self): + pass # to be implemented + + def test___str__(self): + pass # to be implemented + + def test___repr__(self): + pass # to be implemented + + def test_check_length(self): + pass # to be implemented + + def test_check_lengths(self): + pass # to be implemented + + def test_check_moduli(self): + pass # to be implemented + + def test_check_moduli_pair(self): + pass # to be implemented + + def test_params_from_string(self): + pass # to be implemented + + def test_from_string(self): + pass # to be implemented + + # ---------------------------------------------------------------- + unittest.main() diff --git a/ch5/sack/modmul_gm.py b/ch5/sack/modmul_gm.py new file mode 100644 index 0000000..c636663 --- /dev/null +++ b/ch5/sack/modmul_gm.py @@ -0,0 +1,76 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +import modmul_tm +import modadd_gm +import sackint + +# Type module for the group of integers relatively prime to n, with +# multiplication. Or, direct product of several such. + +# ---------------------------------------------------------------- +# Example: +# Mods = 4,5 +# Phis = 2, 4 +# Multiplicative groups = {1, 3} {1, 2, 3, 4} +# Desired elements: 1,1 1,2 1,3 1,4 3,1 3,2 3,3 3,4 +# First compute indices into the multiplicative groups: +# 0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3 +# Then, for each position, convert indices into group elements: +# +# k = 0: +# 0,0 -> 1,0 +# 0,1 -> 1,1 +# 0,2 -> 1,2 +# 0,3 -> 1,3 +# 1,0 -> 3,0 +# 1,1 -> 3,1 +# 1,2 -> 3,2 +# 1,3 -> 3,3 +# +# k = 1: +# 0,0 -> 1,1 +# 0,1 -> 1,2 +# 0,2 -> 1,3 +# 0,3 -> 1,4 +# 1,0 -> 3,1 +# 1,1 -> 3,2 +# 1,2 -> 3,3 +# 1,3 -> 3,4 + +def get_elements_str(params_string): + mod_array = modmul_tm.params_from_string(params_string) + num_moduli = len(mod_array) + + phi_array = [] + group_size = 1 + for m in mod_array: + phi = sackint.eulerphi(m) + phi_array.append(phi) + group_size *= phi + + indices = modadd_gm.get_elements_str_aux(phi_array) + + phi_groups = [] + for m in mod_array: + phi_group = [] + for k in range(0, m): + if (sackint.gcd(k, m) == 1): + phi_group.append(k) + phi_groups.append(phi_group) + + elts = [] + for index in indices: + resarray = [] + for i in range(0, len(index.residues)): + j = index.residues[i] + resarray.append(phi_groups[i][j]) + elt = modmul_tm.modmul_t(resarray, mod_array) + elts.append(elt) + return elts diff --git a/ch5/sack/modmul_tm.py b/ch5/sack/modmul_tm.py new file mode 100644 index 0000000..3fabf3a --- /dev/null +++ b/ch5/sack/modmul_tm.py @@ -0,0 +1,195 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# Type module for the group of integers relatively prime to n, with +# multiplication. + +import re +import copy + +import sackint + +class modmul_t: + + def __init__(self, resarray, modarray): + self.check_lengths(len(resarray), len(modarray), "residues", "moduli") + self.check_moduli(modarray) + self.residues = copy.copy(resarray) + self.moduli = copy.copy(modarray) + for i in range(0, len(modarray)): + self.residues[i] %= self.moduli[i] + + def __eq__(a,b): + if (len(a.residues) != len(b.residues)): + return 0 + n = len(a.residues) + for i in range(0, n): + if (a.residues[i] != b.residues[i]): + return 0 + return 1 + + def __ne__(a,b): + return not (a == b) + + def __mul__(a,b): + a.check_lengths(len(a.moduli), len(b.moduli), "moduli", "moduli") + a.check_moduli_pair(a.moduli, b.moduli) + c = modmul_t(a.residues, a.moduli) + for i in range(0, len(a.moduli)): + c.residues[i] = (a.residues[i] * b.residues[i]) % c.moduli[i] + return c + + def inv(a): + c = modmul_t(a.residues, a.moduli) + for i in range(0, len(a.moduli)): + c.residues[i] = sackint.intmodrecip(a.residues[i], a.moduli[i]) + return c + + def __add__(a,b): + a.check_lengths(len(a.moduli), len(b.moduli), "moduli", "moduli") + a.check_moduli_pair(a.moduli, b.moduli) + c = modmul_t(a.residues, a.moduli) + for i in range(0, len(a.moduli)): + c.residues[i] = (a.residues[i] + b.residues[i]) % c.moduli[i] + return c + + def __sub__(a,b): + a.check_lengths(len(a.moduli), len(b.moduli), "moduli", "moduli") + a.check_moduli_pair(a.moduli, b.moduli) + c = modmul_t(a.residues, a.moduli) + for i in range(0, len(a.moduli)): + c.residues[i] = (a.residues[i] - b.residues[i]) % c.moduli[i] + return c + + def neg(a): + c = modmul_t(a.residues, a.moduli) + for i in range(0, len(a.moduli)): + c.residues[i] = (-a.residues[i]) % a.moduli[i] + return c + + def scan(self, res_string, mod_string): + res_strings = re.split(',', res_string) + mod_strings = re.split(',', mod_string) + self.check_lengths(len(res_strings), len(mod_strings), res_strings, + mod_strings) + n = len(res_strings) + resarray = list(range(0, n)) + modarray = list(range(0, n)) + for i in range(0, n): + resarray[i] = int(res_strings[i]) + modarray[i] = int(mod_strings[i]) + self.__init__(resarray, modarray) + + def __str__(self): + string = str(self.residues[0]) + for i in range(1, len(self.residues)): + string += "," + str(self.residues[i]) + return string + + def __repr__(self): + return self.__str__() + + def check_length(self, length, desc): + if (length < 1): + print((desc, "length", str(length), "< 1")) + raise RuntimeError + + def check_lengths(self, len1, len2, desc1, desc2): + self.check_length(len1, desc1) + self.check_length(len2, desc2) + if (len1 != len2): + print((desc1, "length", str(len1), "!=", desc2, "length", len2)) + raise RuntimeError + + def check_moduli(self, mods): + for i in range(0, len(mods)): + if (mods[i] < 1): + print(("Modulus", mods[i], "< 1 in", mods)) + raise RuntimeError + + def check_moduli_pair(self, mods1, mods2): + if (mods1 != mods2): + print(("Mismatched moduli", mods1, ", ", mods2)) + raise RuntimeError + +def params_from_string(params_string): + if (len(params_string) == 0): + print("Modadd requires non-empty parameter string") + sys.exit(1) + mod_strings = re.split(',', params_string) + n = len(mod_strings) + mod_array = list(range(0, n)) + for i in range(0, n): + mod_array[i] = int(mod_strings[i]) + return mod_array + +def from_string(value_string, params_string): + obj = modmul_t([1], [1]) + obj.scan(value_string, params_string) + return obj + + +# ================================================================ +import unittest +if __name__ == '__main__': + + class test_cases(unittest.TestCase): + def test___init__(self): + pass # to be implemented + + def test___eq__(self): + pass # to be implemented + + def test___ne__(self): + pass # to be implemented + + def test___mul__(self): + pass # to be implemented + + def test_inv(self): + pass # to be implemented + + def test___add__(self): + pass # to be implemented + + def test___sub__(self): + pass # to be implemented + + def test_neg(self): + pass # to be implemented + + def test_scan(self): + pass # to be implemented + + def test___str__(self): + pass # to be implemented + + def test___repr__(self): + pass # to be implemented + + def test_check_length(self): + pass # to be implemented + + def test_check_lengths(self): + pass # to be implemented + + def test_check_moduli(self): + pass # to be implemented + + def test_check_moduli_pair(self): + pass # to be implemented + + def test_params_from_string(self): + pass # to be implemented + + def test_from_string(self): + pass # to be implemented + + # ---------------------------------------------------------------- + unittest.main() diff --git a/ch5/sack/modtest.py b/ch5/sack/modtest.py new file mode 100644 index 0000000..3e86196 --- /dev/null +++ b/ch5/sack/modtest.py @@ -0,0 +1,19 @@ + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +from mod_tm import * + +a = mod_t([3],[11]) +b = mod_t([4],[11]) +c = a + b +d = a * b + +print(a) +print(b) +print(c) +print(d) diff --git a/ch5/sack/pauli.txt b/ch5/sack/pauli.txt new file mode 100644 index 0000000..d843769 --- /dev/null +++ b/ch5/sack/pauli.txt @@ -0,0 +1,14 @@ +Orders 1 and 2 Order 4 +-------------- ------- + + 1 0 0 1 i 0 0 i + 0 1 1 0 0 i i 0 + + 1 0 0 -i i 0 0 -1 + 0 -1 i 0 0 -i 1 0 + +-1 0 0 i -i 0 0 1 + 0 1 -i 0 0 i -1 0 + +-1 0 0 -1 -i 0 0 -i + 0 -1 -1 0 0 -i -i 0 diff --git a/ch5/sack/pauli_gm.py b/ch5/sack/pauli_gm.py new file mode 100644 index 0000000..f0eef3e --- /dev/null +++ b/ch5/sack/pauli_gm.py @@ -0,0 +1,21 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# Group module for the Pauli matrices. + +import pauli_tm +import sackgrp + +def get_elements_str(params_string): + elts = [] + elts.append(pauli_tm.from_string("sx","")) + elts.append(pauli_tm.from_string("sy","")) + elts.append(pauli_tm.from_string("sz","")) + sackgrp.close_group(elts) + return elts diff --git a/ch5/sack/pauli_tm.py b/ch5/sack/pauli_tm.py new file mode 100644 index 0000000..2026a22 --- /dev/null +++ b/ch5/sack/pauli_tm.py @@ -0,0 +1,206 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# Type module for the group of Pauli matrices. + +import re + +# sigmax = 0 1 +# 1 0 +# +# sigmay = 0 -i +# i 0 +# +# sigmaz = 1 0 +# 0 -1 + +# ---------------------------------------------------------------- +def sanitize1(x): + if (type(x) == type(0)): + return x + elif (type(x) == type(0.0)): + return x + elif (x == x.conjugate()): + return x.real + else: + return x + +# ---------------------------------------------------------------- +class pauli_t: + + def sanitize(self): + self.a = sanitize1(self.a) + self.b = sanitize1(self.b) + self.c = sanitize1(self.c) + self.d = sanitize1(self.d) + + def __init__(self, a, b, c, d): + self.a = a + self.b = b + self.c = c + self.d = d + self.sanitize() + + def __mul__(X,Y): + # a b a b + # c d c d + za = X.a*Y.a + X.b*Y.c + zb = X.a*Y.b + X.b*Y.d + zc = X.c*Y.a + X.d*Y.c + zd = X.c*Y.b + X.d*Y.d + Z = pauli_t(za, zb, zc, zd) + return Z + + def __eq__(X,Y): + if (X.a != Y.a): return 0 + if (X.b != Y.b): return 0 + if (X.c != Y.c): return 0 + if (X.d != Y.d): return 0 + return 1 + + def __ne__(X,Y): + return not (X == Y) + + def __lt__(X,Y): + if (X.a < Y.a): return 0 + if (X.b < Y.b): return 0 + if (X.c < Y.c): return 0 + if (X.d < Y.d): return 0 + return 1 + def __le__(X,Y): + if (X.a <= Y.a): return 0 + if (X.b <= Y.b): return 0 + if (X.c <= Y.c): return 0 + if (X.d <= Y.d): return 0 + return 1 + def __gt__(X,Y): + if (X.a > Y.a): return 0 + if (X.b > Y.b): return 0 + if (X.c > Y.c): return 0 + if (X.d > Y.d): return 0 + return 1 + def __ge__(X,Y): + if (X.a >= Y.a): return 0 + if (X.b >= Y.b): return 0 + if (X.c >= Y.c): return 0 + if (X.d >= Y.d): return 0 + return 1 + + def inv(X): + det = X.a*X.d - X.b*X.c + Z = pauli_t(X.d/det, -X.b/det, -X.c/det, X.a/det) + return Z + + # xxx stub + def scan(self, string): + if (string == "I"): + self.__init__(1,0,0,1) + elif (string == "sx"): + self.__init__(0,1,1,0) + elif (string == "sy"): + self.__init__(0,-1j,1j,0) + elif (string == "sz"): + self.__init__(1,0,0,-1) + # parse on slashes ... + else: + raise IOError + + def __str__(self): + return str(self.a) + "/" + str(self.b) + "/" + str(self.c) + "/" + str(self.d) + + def __repr__(self): + return self.__str__() + +def params_from_string(params_string): + # xxx check empty + return 0 + +def from_string(value_string, params_string): + not_used = params_from_string(params_string) + obj = pauli_t(0,0,0,0) + obj.scan(value_string) + return obj + +## ---------------------------------------------------------------- +#from sackgrp import * +#X=from_string("sx",""); print X +#Y=from_string("sy",""); print Y +#Z=from_string("sz",""); print Z +#XX=X*X;print XX +#YY=Y*Y;print YY +#ZZ=Z*Z;print ZZ +#print +#G=[X,Y,Z] +#close_group(G) +#for g in G: +# print g +#print +#print_cayley_table(G) +#print +#orders = get_orders(G) +#n = len(G) +#for k in range(0, n): +# print G[k], orders[k] + + +# ================================================================ +import unittest +if __name__ == '__main__': + + class test_cases(unittest.TestCase): + def test_sanitize1(self): + pass # to be implemented + + def test_sanitize(self): + pass # to be implemented + + def test___init__(self): + pass # to be implemented + + def test___mul__(self): + pass # to be implemented + + def test___eq__(self): + pass # to be implemented + + def test___ne__(self): + pass # to be implemented + + def test___lt__(self): + pass # to be implemented + + def test___le__(self): + pass # to be implemented + + def test___gt__(self): + pass # to be implemented + + def test___ge__(self): + pass # to be implemented + + def test_inv(self): + pass # to be implemented + + def test_scan(self): + pass # to be implemented + + def test___str__(self): + pass # to be implemented + + def test___repr__(self): + pass # to be implemented + + def test_params_from_string(self): + pass # to be implemented + + def test_from_string(self): + pass # to be implemented + + # ---------------------------------------------------------------- + unittest.main() diff --git a/ch5/sack/pmtc_tm.py b/ch5/sack/pmtc_tm.py new file mode 100644 index 0000000..bf11779 --- /dev/null +++ b/ch5/sack/pmtc_tm.py @@ -0,0 +1,810 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# Type module for permutations with cycle-decomposition I/O. + +# Python arrays are zero-up. Permutations are almost universally taken +# to be on the set {1, 2, 3, ..., n}. So, elements[0] is always 0; +# elements[1] through elements[n] are images. +# +# Naming convention: +# * Something called "images" is an externally visible list of the +# form [3, 1, 2, 4]. +# * Something called "zimages" is an internal list of the +# form [0, 3, 1, 2, 4]. +# ================================================================ + +import re, copy, sys, random +import sackint + +# ================================================================ +class pmtc_t: + + # Doesn't do check_permutation(), for performance. + def __init__(self, images, n): + if len(images) != n: + raise RuntimeError("Images length (%d) != n (%d)." % (len(images), n)) + if n < 1: + raise RuntimeError("n must be >= 1; got %d." % n) + self.n = n + self.zimages = [0] + copy.copy(images) + + def check_permutation(self): + test = copy.copy(self.zimages) + test.sort() + for i in range(1, self.n+1): + if (test[i] != i): + raise RuntimeError("Not a permutation: %s. Test: %s." % (str(self.zimages), str(test))) + + def __eq__(a,b): + return (a.zimages == b.zimages) + + def __ne__(a,b): + return (a.zimages != b.zimages) + + # For sorting and display purposes. + # Return -1 if a < b; + # return 0 if a == b; + # return +1 if a > b. + # Compare lexically on cycle types. + # Break ties within cycle type by lexical compare on image maps. + def __cmp__(a,b): + cta = a.cycle_type() + ctb = b.cycle_type() + m = len(cta) + for i in range(0, m): + if (cta[i] < ctb[i]): + return -1 + if (cta[i] > ctb[i]): + return 1 + n = a.n + for i in range(1, n+1): + azi = a.zimages[i] + bzi = b.zimages[i] + if (azi < bzi): + return -1 + if (azi > bzi): + return 1 + return 0 + + def __mul__(a,b): + if (a.n != b.n): + raise RuntimeError("mul() length mismatch: %d != %d" % ((a.n, b.n))) + c = pmtc_t(list(range(1, a.n+1)), a.n) + for i in range(1, a.n+1): + c.zimages[i] = a.zimages[b.zimages[i]] + return c + + def inv(a): + c = pmtc_t(list(range(1, a.n+1)), a.n) + for i in range(1, c.n+1): + c.zimages[a.zimages[i]] = i + return c + + def __getitem__(self, i): + if (i == 0): + raise RuntimeError("pmtc: zimage[0] is protected.") + return self.zimages[i] + + # Left group action on a specified set. The set is indexed zero-up, + # though. + def of(self, input): + output = copy.copy(input) + for i in range(1, len(self.zimages)): + output[i-1] = input[self.zimages[i]-1] + return output + + # Example: + # ( 1 2 3 4 5 6 ) <-- src + # ( 4 3 1 2 6 5 ) <-- dst + # Want inverse of 2 which is 4. Search for the src which maps to dst=2. + + def inv_img(self, dst): + for src in range(1, self.n+1): + if self.zimages[src] == dst: + return src + sys.stderr.write("pmtc.inv_img: inverse not found.") + sys.stderr.write("input = "+dst+"\n") + sys.stderr.write("permutation = "+self+"\n") + sys.exit(1) + + + def sgn(self): + numers = 1 + denoms = 1 + n = self.n + for i in range(1, n+1): + si = self.zimages[i] + for j in range(i+1, n+1): + sj = self.zimages[j] + numer = sj - si + denom = j - i + numers *= numer + denoms *= denom + return numers/denoms + + def parity(self): + if self.sgn() == 1: + return 0 + else: + return 1 + + # Bubble sort and count the swaps. + def oldparity(self): + nswap = 0 + n = len(self.zimages) - 1 + imsort = copy.copy(self.zimages) + top = n + while (top > 0): + for i in range(1, top): + if (imsort[i] > imsort[i+1]): + temp = imsort[i] + imsort[i] = imsort[i+1] + imsort[i+1] = temp + nswap += 1 + top -= 1 + return nswap & 1 + + def oldsgn(self): + if (self.parity() == 0): + return 1 + else: + return -1 + + # Example: images are [3, 1, 2, 4]. + # I.e. + # [1 2 3 4] + # [3 1 2 4] + # + # Returns [[1, 3, 2], [4]] + + def cycle_decomposition(self): + n = self.n + cd = [] + marks = [0] * (n+1) + for i in range(1, n+1): + if (marks[i]): + continue + cycle = [] + next = i + marks[next] = 1 + while (1): + cycle = cycle + [next] + next = self.zimages[next] + if (next == i): + break + marks[next] = 1 + cd = cd + [cycle] + return cd + + def cycle_type(self): + cd = self.cycle_decomposition() + ct = list(map(len, cd)) + ct.sort(reverse=True) + return ct + + + # Algorithm for transposition decomposition: + # Find the smallest i such that sigma(i) != i. + # If there is no such, we are done. + # Form the transposition tau which swaps i and sigma(i). + # Set sigma := tau * sigma. + # Repeat. + # The decomposition is tau_1 * tau_2 * ... . + + # Example: + # Given sigma = + # [1 2 3 4] + # [2 3 4 1], + # returns + # [2,1,3,4, 1,3,2,4, 1,2,4,3] + + def transposition_decomposition(self): + taus = [] + n = self.n + id_imgs = list(range(1, n+1)) + sigma = pmtc_t(self.zimages[1:], n) + done = False + while not done: + # Find the smallest i such that sigma(i) != i. + # If there is no such, we are done. + i = -1 + for k in range(1, n+1): + if sigma.zimages[k] != k: + i = k + break + if i == -1: + done = True + break + # Form the transposition tau which swaps i and sigma(i). + tau = pmtc_t(id_imgs, n) + j = sigma.zimages[i] + tau.zimages[i] = j + tau.zimages[j] = i + taus.append(tau) + # Set sigma := tau * sigma. + sigma = tau * sigma + # Repeat. + return taus + + # e.g. 1,2:3,4 + # xxx this method needs some comments. :) + def scan(self, cycles_string, n): + zimages = list(range(0, n+1)) + cycle_strings = re.split(':', cycles_string) + + # Loop over cycles, e.g. given 1,2:3,4, we have 3,4 and 1,2. + # (Composition goes from right to left so we have to loop backward.) + num_cycles = len(cycle_strings) + cidx = num_cycles - 1 + while (cidx >= 0): + cycle_string = cycle_strings[cidx] + index_strings = re.split(',', cycle_string) + indices = [] + for index_string in index_strings: + indices.append(int(index_string)) + + # Parse one cycle. + # Note that (a b c d) is the same as (a d)(a c)(a b). + num_indices = len(indices) + k = num_indices-1 + while (k > 0): + # WARNING! This swap logic doesn't work right if the cycles + # aren't disjoint. + temp = zimages[indices[0]] + zimages[indices[0]] = zimages[indices[k]] + zimages[indices[k]] = temp + k -= 1 + + cidx -= 1 + + images = zimages[1:] + self.__init__(images, n) + self.check_permutation() + + # e.g. [[1,2],[3,4]] + # xxx this method also needs some comments. :) + def cycle_fill(self, cycles, n): + zimages = list(range(0, n+1)) + # Loop over cycles, e.g. given [[1,2],[3,4]] we have [3,4] and [1,2]. + # (Composition goes from right to left so we have to loop backward.) + num_cycles = len(cycles) + cidx = num_cycles - 1 + while (cidx >= 0): + cycle = cycles[cidx] + # Apply one cycle. + # Note that (a b c d) is the same as (a d)(a c)(a b). + num_indices = len(cycle) + k = num_indices-1 + while (k > 0): + # WARNING! This swap logic doesn't work right if the cycles + # aren't disjoint. + temp = zimages[cycle[0]] + zimages[cycle[0]] = zimages[cycle[k]] + zimages[cycle[k]] = temp + k -= 1 + + cidx -= 1 + + images = zimages[1:] + self.__init__(images, n) + self.check_permutation() + + # xxx make a fcn to map an image list to a cycle decomposition. + # THEN, a fcn to print a cycle decomposition. + + def __str__(self): + cd = self.cycle_decomposition() + num_non_trivial_cycles = 0 + cd_string = "" + for cycle in cd: + if (len(cycle) > 1): + num_non_trivial_cycles += 1 + else: + continue + cycle_string = str(cycle[0]) + cycle_len = len(cycle) + for j in range(1, cycle_len): + cycle_string += "," + cycle_string += str(cycle[j]) + + if (num_non_trivial_cycles > 1): + cd_string += ":" + cd_string += cycle_string + + if (num_non_trivial_cycles == 0): + #cd_string = "[]" + cd_string = "1" + return cd_string + + def __repr__(self): + return self.__str__() + + # Example: + # * permutation = [1, 2] [3, 4, 5] + # * zimages = [0, 2, 1, 4, 5, 3] + # * P = 0 1 0 0 0 + # 1 0 0 0 0 + # 0 0 0 1 0 + # 0 0 0 0 1 + # 0 0 1 0 0 + +# def to_permutation_matrix(self): +# n = self.n +# P = sackmat_m.make_zero_matrix(n, n) +# for i in range(1, n+1): +# j = self.zimages[i] +# P[i-1][j-1] = 1 +# return P + +def from_cycles(cycles, n): + obj = pmtc_t(list(range(1, n+1)), n) + obj.cycle_fill(cycles, n) + return obj + +def from_cycle(cycle, n): + obj = pmtc_t(list(range(1, n+1)), n) + obj.cycle_fill([cycle], n) + return obj + +# Example: [3 2 1] --> ((1 2 3)(4 5)(6)) +def from_cycle_type(ct): + # Create cycles of the specified type. + n = 0 + k = 1 + cycles = [] + for elt in ct: + cycle = list(range(k, k+elt)) + cycles.append(cycle) + k += elt + n += elt + return from_cycles(cycles, n) + +def cycle_type_reps(n): + ptns = sackint.ptns(n) + reps = [] + for ptn in ptns: + reps.append(from_cycle_type(ptn)) + return reps + +# Auxiliary function. +# Converts a list of sorted numbers into a list of pairs of elements and +# repetition counts. Example( with commas suppressed): +# [4 4 4 3 3 3 3 3 2 1 1] -> [[4 3] [3 5] [2 1] [1 2]] +def type_to_counts(ct): + if (ct == []): + return [] + pairs = [] + previous = ct[0] + count = 0 + for e in ct: + if (e == previous): + count +=1 + else: + pairs.append([previous, count]) + previous = e + count = 1 + pairs.append([previous, count]) + return pairs + +# Counts the number of permutations in Sn which share a given +# cycle type. This is best explained by example. +# * Cycle type = [3 2 2] +# * I have 7 boxes to fill: [ _ _ _ | _ _ | _ _ ]. +# * There are 7! = 5040 ways to put the numbers 1-7 in those +# boxes. +# * This overcounts. For example, [1 2 3][4 5][6 7] +# is equivalent to [2 3 1][4 5][6 7] -- these are the same +# permutation. Likewise [1 2 3][4 5][6 7] is the same +# permutation as [1 2 3][6 7][4 5]. +# * Divide 5040 by 3*2*2, to count cyclic shifts within a cycle. +# * Divide by 2!, since adjacent two-cycles can be transposed. +# E.g. (1 2 3)(4 5)(6 7) is equivalent to (1 2 3)(6 7)(4 5). + +def num_ct_reps(ct): + # Find n + n = 0 + for e in ct: + n += e + + # Find n! + rv = sackint.factorial(n) + + # Account for cyclic shifts within cycles. + for e in ct: + rv /= e + + # Account for permutations of same-length cycles. + pairs = type_to_counts(ct) + for pair in pairs: + rv /= sackint.factorial(pair[1]) + + return rv + +# ---------------------------------------------------------------- +def params_from_string(params_string): + n = int(params_string) + return n + +def from_string(value_string, params_string): + n = params_from_string(params_string) + obj = pmtc_t(list(range(1, n+1)), n) + obj.scan(value_string, n) + return obj + +def kth_pmtc(k, n, nfact): + nifact = nfact + images = list(range(0, n)) + temp = list(range(0, n+1)) + + ni = n + for pos in range(0, n): + nifact /= ni + r = k % nifact + q = k / nifact + k = r + + images[pos] = temp[q] + 1 + del temp[q] + + ni -= 1 + return pmtc_t(images, n) + +def identity_pmtc(n): + return pmtc_t(list(range(1, n+1)), n) + +# ================================================================ +# rand_pmtc: returns a permutation on N symbols, uniformly distributed on S_N. + +# ---------------------------------------------------------------- +# Idea: +# * Start with a pool of N unused images. +# * For the image of 1, select an image at random from the N choices. +# * For the image of 2, select an image from the remaining N-1 choices. +# * ... +# * For the image of N-1, select from the remaining 2 choices. +# * The image of N has only one choice left. +# +# ---------------------------------------------------------------- +# Example: N=4. Image map and unused images are: +# +# [ 1 2 3 4 ] +# [ ? ? ? ? ] [ 1 2 3 4 ] <-- unused. +# +# Image of 1: select 2 from [ 1 2 3 4]. +# +# [ 1 2 3 4 ] +# +# Image of 2: select 3 from [1 3 4]. +# +# [ 1 2 3 4 ] +# [ 2 3 ? ? ] [ 1 4 ] <-- unused. +# +# Image of 3: select 1 from [1 4]. +# +# [ 1 2 3 4 ] +# [ 2 3 1 ? ] [ 4 ] <-- unused. +# +# Image of 4: select 4 from [4]. +# +# [ 1 2 3 4 ] +# [ 2 3 1 4 ] [ ] <-- unused. +# +# Done. +# +# ---------------------------------------------------------------- +# This is easy to do. The only question is how to do it efficiently -- without +# lots of data movement and/or unnecessary memory allocation. +# +# The pool of unused images could be an array of length N ... yet I already +# *have* an array of length N which is the permutation's images[] array. I can +# visualize the used and unused images as simply a concatenation. E.g. after +# selecting the image of 2, the pipe separates the used from the unused: +# +# [ 1 2 3 4 ] +# [ 2 3|1 4 ] +# +# Then selecting an unused image for k amounts to choosing a pseudorandom +# integer uniformly between 0 and N-k-1; applying that image amounts to doing +# a swap. + +# Later note: It turns out that this is Knuth's algorithm. + +def rand_pmtc(N): + zimages = list(range(0, N+1)) + unused_start = 1 + num_unused = N + + for k in range(1, N+1): + #print "-- [", + #for j in range(0, N+1): + # if (j == k): + # print "|", + # else: + # print " ", + # print "%2d" % (zimages[j]), + #print " ]" + + # Select a pseudorandom element from the pool of unused images. + # Python's randint(a, b) includes both endpoints. + u = random.randint(unused_start, unused_start + num_unused - 1) + + # Swap it into place. + temp = zimages[u] + zimages[u] = zimages[k] + zimages[k] = temp + + # Decrease the size of the pool by 1. + # (Yes, unused_start and k always have the same value. Using two + # variables wastes neglible memory and makes the code easier to + # understand.) + unused_start += 1 + num_unused -= 1 + + return pmtc_t(zimages[1:], N) + +def bad_rand_pmtc(N): + # Knuth's anti-algorithm. The code here is an experiment + # to see what kind of distribution results. + zimages = list(range(0, N+1)) + + for k in range(1, N+1): + # Select a pseudorandom element from the pool of used *and* unused images. + # Python's randint(a, b) includes both endpoints. + u = random.randint(1, N) + + # Swap it into place. + temp = zimages[u] + zimages[u] = zimages[k] + zimages[k] = temp + + return pmtc_t(zimages[1:], N) + +# ---------------------------------------------------------------- +# Auxiliary routine for sort_pmtcs() below. +# +# Return -1 if a < b; +# return 0 if a == b; +# return +1 if a > b. +# Compare lexically on cycle types. +# Break ties within cycle type by lexical compare on image maps. + +def pmtc_cmp(ta, tb): + # Compare number of cycles + nca = ta[2] + ncb = tb[2] + if (nca < ncb): + return 1 + if (nca > ncb): + return -1 + + # Compare lengths of cycles + cta = ta[1] + ctb = tb[1] + for i in range(0, nca): + if (cta[i] < ctb[i]): + return 1 + if (cta[i] > ctb[i]): + return -1 + + # Compare image maps + pmta = ta[0] + pmtb = tb[0] + n = pmta.n + for i in range(1, n+1): + azi = pmta.zimages[i] + bzi = pmtb.zimages[i] + if (azi < bzi): + return 1 + if (azi > bzi): + return -1 + + return 0 + +# ---------------------------------------------------------------- +# This could be done using __cmp__ but this is faster: I compute +# cycle types once and for all, rather than on every compare. +# +# Make a list of triples of permutations, cycle types, and number of cycles. + +def sort_pmtcs(list): + m = len(list) + + pairs = [] + for pmt in list: + ct = pmt.cycle_type() + pairs.append([pmt, ct, len(ct)]) + pairs.sort(pmtc_cmp) + + for i in range(0, m): + list[i] = pairs[i][0] + +# ================================================================ +import unittest +if __name__ == '__main__': + + # ---------------------------------------------------------------- + # TBI = to be implemented + class test_pmtc(unittest.TestCase): + #def setUp(self): + # print 'setup' + + def test_ctor(self): + with self.assertRaises(RuntimeError): + pi = pmtc_t([1,2,3], 4) + with self.assertRaises(RuntimeError): + pi = pmtc_t([], 0) + pi = pmtc_t([1], 1) + pi = pmtc_t([1,2], 2) + pi = pmtc_t([1,2,3], 3) + + def test_check_permutation(self): + pass # TBI + # def check_permutation(self): + + def test_eq(self): + self.assertEqual(pmtc_t([1,2,3], 3), pmtc_t([1,2,3], 3)) + self.assertNotEqual(pmtc_t([1,2,3], 3), pmtc_t([1,3,2], 3)) + + def test_ne(self): + pass # TBI + # def __ne__(a,b): + + def test_cmp(self): + pass # TBI + # def __cmp__(a,b): + + def test_mul(self): + pass # TBI + # def __mul__(a,b): + + def test_inv(self): + pass # TBI + # def inv(a): + + def test_getitem(self): + pass # TBI + # def __getitem__(self, i): + + def test_of(self): + pass # TBI + # def of(self, input): + + def test_inv_mg(self): + pass # TBI + # def inv_img(self, dst): + + def test_sgn(self): + pass # TBI + # def sgn(self): + + def test_parity(self): + pass # TBI + # def parity(self): + + def test_oldparity(self): + pass # TBI + # def oldparity(self): + + def test_oldsgn(self): + pass # TBI + # def oldsgn(self): + + def test_cycle_decomposition(self): + pass # TBI + # def cycle_decomposition(self): + + def test_cycle_type(self): + pass # TBI + # def cycle_type(self): + + def test_transposition_decomposition(self): + pass # TBI + # def transposition_decomposition(self): + + def test_scan(self): + pass # TBI + # def scan(self, cycles_string, n): + + # # e.g. [[1,2],[3,4]] + # # xxx this method also needs some comments. :) + def test_cycle_fill(self): + pass # TBI + # def cycle_fill(self, cycles, n): + + # def __str__(self): + def test_str(self): + pass # TBI + + # def __repr__(self): + def test_repr(self): + pass # TBI + + # ---------------------------------------------------------------- + def test_from_cycles(self): + pass # TBI + #def from_cycles(cycles, n): + + def test_from_cycle(self): + pass # TBI + #def from_cycle(cycle, n): + + def test_from_cycle_type(self): + pass # TBI + # Example: [3 2 1] --> ((1 2 3)(4 5)(6)) + #def from_cycle_type(ct): + + def test_cycle_type_reps(self): + pass # TBI + #def cycle_type_reps(n): + + # ---------------------------------------------------------------- + ## Auxiliary function. + ## Converts a list of sorted numbers into a list of pairs of elements and + ## repetition counts. Example( with commas suppressed): + ## [4 4 4 3 3 3 3 3 2 1 1] -> [[4 3] [3 5] [2 1] [1 2]] + #def type_to_counts(ct): + def test_type_to_counts(self): + pass # TBI + + # ---------------------------------------------------------------- + ## Counts the number of permutations in Sn which share a given + ## cycle type. This is best explained by example. + ## * Cycle type = [3 2 2] + ## * I have 7 boxes to fill: [ _ _ _ | _ _ | _ _ ]. + ## * There are 7! = 5040 ways to put the numbers 1-7 in those + ## boxes. + ## * This overcounts. For example, [1 2 3][4 5][6 7] + ## is equivalent to [2 3 1][4 5][6 7] -- these are the same + ## permutation. Likewise [1 2 3][4 5][6 7] is the same + ## permutation as [1 2 3][6 7][4 5]. + ## * Divide 5040 by 3*2*2, to count cyclic shifts within a cycle. + ## * Divide by 2!, since adjacent two-cycles can be transposed. + ## E.g. (1 2 3)(4 5)(6 7) is equivalent to (1 2 3)(6 7)(4 5). + #def num_ct_reps(ct): + def test_num_ct_reps(self): + pass # TBI + + #def params_from_string(params_string): + def test__params_from_string(self): + pass # TBI + + #def from_string(value_string, params_string): + def test_from_string(self): + pass # TBI + + def test_kth_pmtc(self): + pass # TBI + #def kth_pmtc(k, n, nfact): + + def test_identity_pmtc(self): + pass # TBI + + def test_rand_pmtc(self): + #def rand_pmtc(N): + pass # TBI + + ## ---------------------------------------------------------------- + # Auxiliary routine for sort_pmtcs() below. + # Return -1 if a < b; + # return 0 if a == b; + # return +1 if a > b. + # Compare lexically on cycle types. + # Break ties within cycle type by lexical compare on image maps. + #def pmtc_cmp(ta, tb): + def test_pmtc_cmp(self): + pass # TBI + + #def sort_pmtcs(list): + def test_sort_pmtcs(self): + pass # TBI + + # ---------------------------------------------------------------- + unittest.main() + diff --git a/ch5/sack/pmtc_tm.py.inherit b/ch5/sack/pmtc_tm.py.inherit new file mode 100644 index 0000000..d1e4a84 --- /dev/null +++ b/ch5/sack/pmtc_tm.py.inherit @@ -0,0 +1,335 @@ +#!/usr/bin/python -Wall +import re +import copy +import pmti_tm +import sys + +# Permutations with cycle-decomposition I/O. +# Inherits from pmti. + +class pmtc_t(pmti_tm.pmti_t): + + # e.g. 1,2:3,4 + # xxx this method needs some comments. :) + def scan(self, cycles_string, n): + zimages = range(0, n+1) + cycle_strings = re.split(':', cycles_string) + + # Loop over cycles, e.g. given 1,2:3,4, we have 3,4 and 1,2. + # (Composition goes from right to left so we have to loop backward.) + num_cycles = len(cycle_strings) + cidx = num_cycles - 1 + while (cidx >= 0): + cycle_string = cycle_strings[cidx] + index_strings = re.split(',', cycle_string) + indices = [] + for index_string in index_strings: + indices.append(int(index_string)) + + # Parse one cycle. + # Note that (a b c d) is the same as (a d)(a c)(a b). + num_indices = len(indices) + k = num_indices-1 + while (k > 0): + # WARNING! This swap logic doesn't work right if the cycles aren't disjoint. + temp = zimages[indices[0]] + zimages[indices[0]] = zimages[indices[k]] + zimages[indices[k]] = temp + k -= 1 + + cidx -= 1 + + images = zimages[1:] + self.__init__(images, n) + self.check_permutation() + +# def scan(self, images_string, n): +# print "cycle input is unimplemented" +# image_strings = re.split(',', images_string) +# n = len(image_strings) +# images = range(0, n) +# for i in range(0, n): +# images[i] = int(image_strings[i]) +# self.__init__(images, n) +# self.check_permutation() + + # xxx make a fcn to map an image list to a cycle decomposition. + # THEN, a fcn to print a cycle decomposition. + + def __str__(self): + cd = self.cycle_decomposition() + num_non_trivial_cycles = 0 + cd_string = "" + for cycle in cd: + if (len(cycle) > 1): + num_non_trivial_cycles += 1 + else: + continue + cycle_string = str(cycle[0]) + cycle_len = len(cycle) + for j in range(1, cycle_len): + cycle_string += "," + cycle_string += str(cycle[j]) + + if (num_non_trivial_cycles > 1): + cd_string += ":" + cd_string += cycle_string + + if (num_non_trivial_cycles == 0): + #cd_string = "[]" + cd_string = "1" + return cd_string + +def params_from_string(params_string): + return pmti_tm.params_from_string(params_string) + +def from_string(value_string, params_string): + n = params_from_string(params_string) + obj = pmtc_t(range(1, n+1), n) + obj.scan(value_string, n) + return obj + +def kth_pmtc(k, n, nfact): + nifact = nfact + images = range(0, n) + temp = range(0, n+1) + + ni = n + for pos in range(0, n): + nifact /= ni + r = k % nifact + q = k / nifact + k = r + + images[pos] = temp[q] + 1 + for i in range(q, ni): + temp[i] = temp[i+1] + + ni -= 1 + return pmtc_t(images, n) + +#// ---------------------------------------------------------------- +#int pmt_count_cycles( +# pmt_t * pa, +# int n) +#{ +# int i; +# unsigned char marks[PMT_MAX_N]; +# unsigned char next; +# int rv = 0; +# +# for (i = 0; i < n; i++) +# marks[i] = 0; +# for (i = 0; i < n; i++) { +# if (marks[i]) +# continue; +# +# rv++; +# next = i; +# marks[next] = 1; +# +# while (1) { +# next = pa->images[next]; +# if (next == i) +# break; +# marks[next] = 1; +# } +# } +# return rv; +#} + +#void pmt_print_cycle_type( +# pmt_t * pa, +# int n) +#{ +# int i; +# unsigned char marks[PMT_MAX_N]; +# unsigned char next; +# unsigned char lengths[PMT_MAX_N]; +# int ncyc = 0; +# +# for (i = 0; i < n; i++) +# lengths[i] = 0; +# +# for (i = 0; i < n; i++) +# marks[i] = 0; +# +# for (i = 0; i < n; i++) { +# if (marks[i]) +# continue; +# +# lengths[ncyc] = 0; +# next = i; +# marks[next] = 1; +# if (pa->images[next] != next) { +# lengths[ncyc]++; +# } +# +# while (1) { +# next = pa->images[next]; +# if (next == i) +# break; +# marks[next] = 1; +# lengths[ncyc]++; +# } +# if (lengths[ncyc] > 0) +# ncyc++; +# } +# +# qsort(lengths, ncyc, sizeof(lengths[0]), uchar_qcmp); +# for (i = 0; i < ncyc; i++) { +# if (i > 0) +# printf(","); +# printf("%d", (int)lengths[i]); +# } +# if (ncyc == 0) +# printf("1"); +#} + +#// ---------------------------------------------------------------- +#// xxx temp hack hack hack +#int pmt_vscan( +# void * pvout, +# char * pin, +# void * pvaux, +# int max_elt_bytes) +#{ +# pmt_t * ppmt = (pmt_t *)pvout; +# int n = *(int *)pvaux; +# int i; +##define MAX_ARGC 100 +# int argc; +# char * argv[MAX_ARGC]; +# char temp[256]; +# unsigned u; +# +# if (sizeof(pmt_t) > max_elt_bytes) { +# fprintf(stderr, "sn: Need %d bytes for element.\n", +# sizeof(pmt_t)); +# exit(1); +# } +# +# strcpy(temp, pin); +# +# argc = tokenize(temp, ",", argv, MAX_ARGC); +# if (argc != n) { +# fprintf(stderr, +# "pmt_vscan: Needed %d item%s but got %d in \"%s\".\n", +# n, n == 1 ? "" : "s", argc, pin); +# return 0; +# } +# +# for (i = 0; i < argc; i++) { +# if (sscanf(argv[i], "%u", &u) != 1) { +# fprintf(stderr, "pmt_vscan: Couldn't parse element " +# "(\"%s\") of \"%s\".\n", +# argv[i], pin); +# return 0; +# } +# ppmt->images[i] = u - 1; +# } +# if (!pmt_validate_element(ppmt, n)) { +# fprintf(stderr, +# "pmt_vscan: \"%s\" is not a permutation in S%d\n", +# pin, n); +# return 0; +# } +# return 1; +#} +# +#// ---------------------------------------------------------------- +#// xxx temp hack hack hack +# +#// 0 1 2 3 4 +#// 0 1 2 3 4 +# +#// temp = 1,2,4:3,5 +#// outer_argv = 1,2,4 3,5 +# +#// inner_argc = 1 2 4 +#// u[0] = 0 u[1] = 1 u[2] = 3 +# +#// 0 1 2 3 4 +#// 1 3 2 0 4 +# +#// inner_argc = 3 5 +#// u[0] = 2 u[1] = 4 +# +#// 0 1 2 3 4 +#// 1 3 4 0 2 +# +#// 0 1 2 3 4 +#// 1 3 2 0 4 +# +#// This function is a hack job. It doesn't correctly see that 1,3:1,3 +#// is the identity permutation -- rather, it gets 1,3. +# +#int pmt_vscan_cd( +# void * pvout, +# char * pin, +# void * pvaux, +# int max_elt_bytes) +#{ +# pmt_t * ppmt = (pmt_t *)pvout; +# pmt_t single; +# int n = *(int *)pvaux; +# int i, j; +##define MAX_ARGC 100 +# int outer_argc; +# char * outer_argv[MAX_ARGC]; +# int inner_argc; +# char * inner_argv[MAX_ARGC]; +# char temp[256]; +# unsigned * u = 0; +# +# if (sizeof(pmt_t) > max_elt_bytes) { +# fprintf(stderr, "sn: Need %d bytes for element.\n", +# sizeof(pmt_t)); +# exit(1); +# } +# +# for (i = 0; i < PMT_MAX_N; i++) +# ppmt->images[i] = i; +# +# strcpy(temp, pin); +# +# outer_argc = tokenize(temp, ":", outer_argv, MAX_ARGC); +# for (i = 0; i < outer_argc; i++) { +# inner_argc = tokenize(outer_argv[i], ",", inner_argv, MAX_ARGC); +# u = malloc_check(inner_argc * sizeof(unsigned)); +# for (j = 0; j < inner_argc; j++) { +# if (sscanf(inner_argv[j], "%u", &u[j]) != 1) { +# fprintf(stderr, +# "pmt_vscan_cd: Couldn't parse element " +# "(\"%s\") of \"%s\".\n", +# inner_argv[i], pin); +# return 0; +# } +# if ((u[j] < 1) || (u[j] > PMT_MAX_N)) { +# fprintf(stderr, +# "pmt_vscan_cd: element %d out of range 1-%d\n", +# u[j], n); +# return 0; +# } +# u[j]--; +# } +# +# pmt_make_id(&single, n); +# for (j = 1; j < inner_argc; j++) { +# single.images[u[j-1]] = u[j]; +# } +# single.images[u[inner_argc - 1]] = u[0]; +# *ppmt = pmt_mul(ppmt, &single, n); +# free(u); +# } +# +# if (!pmt_validate_element(ppmt, n)) { +# printf("pmt_vscan: \"%s\" is not a permutation in S%d: got ", +# pin, n); +# pmt_print(ppmt, n); +# printf("\n"); +# //return 0; +# exit(1); +# } +# return 1; +#} diff --git a/ch5/sack/pmti_tm.py b/ch5/sack/pmti_tm.py new file mode 100644 index 0000000..db33bca --- /dev/null +++ b/ch5/sack/pmti_tm.py @@ -0,0 +1,644 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# Type module for permutations with image-map I/O. + +import re +import copy +import random +import sack.sackint +import sack.uniqc_m + +class pmti_t: + + # Python arrays are zero-up. Permutations are almost universally taken + # to be on the set {1, 2, 3, ..., n}. So, elements[0] is always 0; + # elements[1] through elements[n] are images. + + # Naming convention: + # * Something called "images" is an externally visible list of the + # form [3, 1, 2, 4]. + # * Something called "zimages" is an internal list of the + # form [0, 3, 1, 2, 4]. + + def __init__(self, images, n): + if (len(images) != n): + raise RuntimeError + self.n = n + self.zimages = [0] + copy.copy(images) + + def __eq__(a,b): + return (a.zimages == b.zimages) + + def __ne__(a,b): + return (a.zimages != b.zimages) + + # For sorting and display purposes. + # Return -1 if a < b; + # return 0 if a == b; + # return +1 if a > b. + # Compare lexically on cycle types. + # Break ties within cycle type by lexical compare on image maps. + def __cmp__(a,b): + cta = a.cycle_type() + ctb = b.cycle_type() + m = len(cta) + for i in range(0, m): + if (cta[i] < ctb[i]): + return -1 + if (cta[i] > ctb[i]): + return 1 + n = a.n + for i in range(1, n+1): + azi = a.zimages[i] + bzi = b.zimages[i] + if (azi < bzi): + return -1 + if (azi > bzi): + return 1 + return 0 + + def __mul__(a,b): + if (a.n != b.n): + raise RuntimeError + c = pmti_t(list(range(1, a.n+1)), a.n) + for i in range(1, a.n+1): + c.zimages[i] = a.zimages[b.zimages[i]] + return c + + def check_permutation(self): + test = copy.copy(self.zimages) + test.sort() + for i in range(1, self.n+1): + if (test[i] != i): + print(("Not a permutation:", self.zimages)) + print(("Test:", test)) + raise RuntimeError + + def inv(a): + c = pmti_t(list(range(1, a.n+1)), a.n) + for i in range(1, c.n+1): + c.zimages[a.zimages[i]] = i + return c + + def scan(self, images_string, n): + image_strings = re.split(',', images_string) + n = len(image_strings) + images = list(range(0, n)) + for i in range(0, n): + images[i] = int(image_strings[i]) + self.__init__(images, n) + self.check_permutation() + + # e.g. [[1,2],[3,4]] + # xxx this method also needs some comments. :) + def cycle_fill(self, cycles, n): + zimages = list(range(0, n+1)) + # Loop over cycles, e.g. given [[1,2],[3,4]] we have [3,4] and [1,2]. + # (Composition goes from right to left so we have to loop backward.) + num_cycles = len(cycles) + cidx = num_cycles - 1 + while (cidx >= 0): + cycle = cycles[cidx] + # Apply one cycle. + # Note that (a b c d) is the same as (a d)(a c)(a b). + num_indices = len(cycle) + k = num_indices-1 + while (k > 0): + # WARNING! This swap logic doesn't work right if the cycles aren't disjoint. + temp = zimages[cycle[0]] + zimages[cycle[0]] = zimages[cycle[k]] + zimages[cycle[k]] = temp + k -= 1 + + cidx -= 1 + + images = zimages[1:] + self.__init__(images, n) + self.check_permutation() + + def __str__(self): + string = str(self.zimages[1]) + for i in range(2, len(self.zimages)): + string += "," + str(self.zimages[i]) + return string + + def __repr__(self): + return self.__str__() + + def __getitem__(self, i): + if (i == 0): + print("pmti: zimage[0] is protected.") + raise RuntimeError + return self.zimages[i] + + # Left group action on a specified set. The set is indexed zero-up, + # though. + def of(self, input): + output = copy.copy(input) + for i in range(1, len(self.zimages)): + output[i-1] = input[self.zimages[i]-1] + return output + + # Example: + # ( 1 2 3 4 5 6 ) <-- src + # ( 4 3 1 2 6 5 ) <-- dst + # Want inverse of 2 which is 4. Search for the src which maps to dst=2. + + def inv_img(self, dst): + for src in range(1, self.n+1): + if self.zimages[src] == dst: + return src + sys.stderr.write("pmti.inv_img: inverse not found.\n") + sys.stderr.write("input = "+dst+"\n", dst) + sys.stderr.write("permutation = "+self+"\n", self) + sys.exit(1) + + + def sgn(self): + numers = 1 + denoms = 1 + n = self.n + for i in range(1, n+1): + si = self.zimages[i] + for j in range(i+1, n+1): + sj = self.zimages[j] + numer = sj - si + denom = j - i + numers *= numer + denoms *= denom + return numers/denoms + + def parity(self): + if self.sgn() == 1: + return 0 + else: + return 1 + + + # Bubble sort and count the swaps. + def oldparity(self): + nswap = 0 + n = len(self.zimages) - 1 + imsort = copy.copy(self.zimages) + top = n + while (top > 0): + for i in range(1, top): + if (imsort[i] > imsort[i+1]): + temp = imsort[i] + imsort[i] = imsort[i+1] + imsort[i+1] = temp + nswap += 1 + top -= 1 + return nswap & 1 + + def oldsgn(self): + if (self.parity() == 0): + return 1 + else: + return -1 + + + # Example: images are [3, 1, 2, 4]. + # I.e. + # [1 2 3 4] + # [3 1 2 4] + # + # Returns [[1, 3, 2], [4]] + + def cycle_decomposition(self): + n = self.n + cd = [] + marks = [0] * (n+1) + for i in range(1, n+1): + if (marks[i]): + continue + cycle = [] + next = i + marks[next] = 1 + while (1): + cycle = cycle + [next] + next = self.zimages[next] + if (next == i): + break + marks[next] = 1 + cd = cd + [cycle] + return cd + + # Omits one-cycles. + def cycle_decomposition_non_triv(self): + cd = self.cycle_decomposition() + rv = [] + for cycle in cd: + if (len(cycle) > 1): + rv.append(cycle) + return rv + + def cycle_type(self): + cd = self.cycle_decomposition() + ct = list(map(len, cd)) + ct.sort(reverse=True) + return ct + + # For a permutation pi on n symbols, returns a (zero-up) list the kth + # element of which is the number of cycles in pi of length k. There's no + # such thing as a 0-cycle but the 0 slot is set to 0. + # + # Example: + # + # * Cycle decomposition is (1) (2) (3) (4) (5 6) (7 8) (9 10 11) + # + # * Cycle type is [3 2 2 1 1 1 1] + # + # * Cycle counts are [0 4 2 1 0 0 0 0 0 0 0 0] + # meaning that there are 4 1-cycles, 2 2-cycles, and 1 3-cycle, and no + # cycles of any other length. + + def cycle_counts(self): + n = self.n + counts = [0] * (n+1) + marks = [0] * (n+1) + for i in range(1, n+1): + if (marks[i]): + continue + cycle_length = 0 + next = i + marks[next] = 1 + while (1): + cycle_length += 1 + next = self.zimages[next] + if (next == i): + break + marks[next] = 1 + counts[cycle_length] += 1 + return counts + + # Algorithm for transposition decomposition: + # Find the smallest i such that sigma(i) != i. + # If there is no such, we are done. + # Form the transposition tau which swaps i and sigma(i). + # Set sigma := tau * sigma. + # Repeat. + # The decomposition is tau_1 * tau_2 * ... . + + # Example: + # Given sigma = + # [1 2 3 4] + # [2 3 4 1], + # returns + # [2,1,3,4, 1,3,2,4, 1,2,4,3] + + def transposition_decomposition(self): + taus = [] + n = self.n + id_imgs = list(range(1, n+1)) + sigma = pmti_t(self.zimages[1:], n) + done = False + while not done: + # Find the smallest i such that sigma(i) != i. + # If there is no such, we are done. + i = -1 + for k in range(1, n+1): + if sigma.zimages[k] != k: + i = k + break + if i == -1: + done = True + break + # Form the transposition tau which swaps i and sigma(i). + tau = pmti_t(id_imgs, n) + j = sigma.zimages[i] + tau.zimages[i] = j + tau.zimages[j] = i + taus.append(tau) + # Set sigma := tau * sigma. + sigma = tau * sigma + # Repeat. + return taus + +def from_cycles(cycles, n): + obj = pmti_t(list(range(1, n+1)), n) + obj.cycle_fill(cycles, n) + return obj + +def from_cycle(cycle, n): + obj = pmti_t(list(range(1, n+1)), n) + obj.cycle_fill([cycle], n) + return obj + +# Example: [3 2 1] --> ((1 2 3)(4 5)(6)) +def from_cycle_type(ct): + # Create cycles of the specified type. + n = 0 + k = 1 + cycles = [] + for elt in ct: + cycle = list(range(k, k+elt)) + cycles.append(cycle) + k += elt + n += elt + return from_cycles(cycles, n) + +def cycle_type_reps(n): + ptns = sackint.ptns(n) + reps = [] + for ptn in ptns: + reps.append(from_cycle_type(ptn)) + return reps + +def params_from_string(params_string): + n = int(params_string) + return n + +def from_string(value_string, params_string): + n = params_from_string(params_string) + obj = pmti_t(list(range(1, n+1)), n) + obj.scan(value_string, n) + return obj + +def identity_pmti(n): + return pmti_t(list(range(1, n+1)), n) + +def kth_pmti(k, n, nfact): + nifact = nfact + images = list(range(0, n)) + temp = list(range(0, n+1)) + + ni = n + for pos in range(0, n): + nifact /= ni + r = k % nifact + q = k / nifact + k = r + + images[int(pos)] = temp[int(q)] + 1 + for i in range(q, ni): + temp[i] = temp[i+1] + + ni -= 1 + return pmti_t(images, n) + +# ================================================================ +# rand_pmti: returns a permutation on N symbols, uniformly distributed on S_N. + +# ---------------------------------------------------------------- +# Idea: +# * Start with a pool of N unused images. +# * For the image of 1, select an image at random from the N choices. +# * For the image of 2, select an image from the remaining N-1 choices. +# * ... +# * For the image of N-1, select from the remaining 2 choices. +# * The image of N has only one choice left. +# +# ---------------------------------------------------------------- +# Example: N=4. Image map and unused images are: +# +# [ 1 2 3 4 ] +# [ ? ? ? ? ] [ 1 2 3 4 ] <-- unused. +# +# Image of 1: select 2 from [ 1 2 3 4]. +# +# [ 1 2 3 4 ] +# +# Image of 2: select 3 from [1 3 4]. +# +# [ 1 2 3 4 ] +# [ 2 3 ? ? ] [ 1 4 ] <-- unused. +# +# Image of 3: select 1 from [1 4]. +# +# [ 1 2 3 4 ] +# [ 2 3 1 ? ] [ 4 ] <-- unused. +# +# Image of 4: select 4 from [4]. +# +# [ 1 2 3 4 ] +# [ 2 3 1 4 ] [ ] <-- unused. +# +# Done. +# +# ---------------------------------------------------------------- +# This is easy to do. The only question is how to do it efficiently -- without +# lots of data movement and/or unnecessary memory allocation. +# +# The pool of unused images could be an array of length N ... yet I already +# *have* an array of length N which is the permutation's images[] array. I can +# visualize the used and unused images as simply a concatenation. E.g. after +# selecting the image of 2, the pipe separates the used from the unused: +# +# [ 1 2 3 4 ] +# [ 2 3|1 4 ] +# +# Then selecting an unused image for k amounts to choosing a pseudorandom +# integer uniformly between 0 and N-k-1; applying that image amounts to doing +# a swap. + +def rand_pmti(N): + zimages = list(range(0, N+1)) + unused_start = 1 + num_unused = N + + for k in range(1, N+1): + #print "-- [", + #for j in range(0, N+1): + # if (j == k): + # print "|", + # else: + # print " ", + # print "%2d" % (zimages[j]), + #print " ]" + + # Select a pseudorandom element from the pool of unused images. + # Python's randint(a, b) includes both endpoints. + u = random.randint(unused_start, unused_start + num_unused - 1) + + # Swap it into place. + temp = zimages[u] + zimages[u] = zimages[k] + zimages[k] = temp + + # Decrease the size of the pool by 1. + # (Yes, unused_start and k always have the same value. Using two + # variables wastes neglible memory and makes the code easier to + # understand.) + unused_start += 1 + num_unused -= 1 + + return pmti_t(zimages[1:], N) + +# ---------------------------------------------------------------- +# Auxiliary routine for sort_pmtis() below. +# +# Return -1 if a < b; +# return 0 if a == b; +# return +1 if a > b. +# Compare lexically on cycle types. +# Break ties within cycle type by lexical compare on image maps. + +def pmti_cmp(ta, tb): + # Compare number of cycles + nca = ta[2] + ncb = tb[2] + if (nca < ncb): + return 1 + if (nca > ncb): + return -1 + + # Compare lengths of cycles + cta = ta[1] + ctb = tb[1] + for i in range(0, nca): + if (cta[i] < ctb[i]): + return 1 + if (cta[i] > ctb[i]): + return -1 + + + # Compare image maps + pmta = ta[0] + pmtb = tb[0] + n = pmta.n + for i in range(1, n+1): + azi = pmta.zimages[i] + bzi = pmtb.zimages[i] + if (azi < bzi): + return 1 + if (azi > bzi): + return -1 + + return 0 + +# ---------------------------------------------------------------- +# This could be done using __cmp__ but this is faster: I compute +# cycle types once and for all, rather than on every compare. +# +# Make a list of triples of permutations, cycle types, and number of cycles. + +def sort_pmtis(list): + m = len(list) + + pairs = [] + for pmt in list: + ct = pmt.cycle_type() + pairs.append([pmt, ct, len(ct)]) + pairs.sort(pmti_cmp) + + for i in range(0, m): + list[i] = pairs[i][0] + + +# ================================================================ +import unittest +if __name__ == '__main__': + + class test_cases(unittest.TestCase): + def test___init__(self): + pass # to be implemented + + def test___eq__(self): + pass # to be implemented + + def test___ne__(self): + pass # to be implemented + + def test___cmp__(self): + pass # to be implemented + + def test___mul__(self): + pass # to be implemented + + def test_check_permutation(self): + pass # to be implemented + + def test_inv(self): + pass # to be implemented + + def test_scan(self): + pass # to be implemented + + def test_cycle_fill(self): + pass # to be implemented + + def test___str__(self): + pass # to be implemented + + def test___repr__(self): + pass # to be implemented + + def test___getitem__(self): + pass # to be implemented + + def test_of(self): + pass # to be implemented + + def test_inv_img(self): + pass # to be implemented + + def test_sgn(self): + pass # to be implemented + + def test_parity(self): + pass # to be implemented + + def test_oldparity(self): + pass # to be implemented + + def test_oldsgn(self): + pass # to be implemented + + def test_cycle_decomposition(self): + pass # to be implemented + + def test_cycle_decomposition_non_triv(self): + pass # to be implemented + + def test_cycle_type(self): + pass # to be implemented + + def test_cycle_counts(self): + pass # to be implemented + + def test_transposition_decomposition(self): + pass # to be implemented + + def test_from_cycles(self): + pass # to be implemented + + def test_from_cycle(self): + pass # to be implemented + + def test_from_cycle_type(self): + pass # to be implemented + + def test_cycle_type_reps(self): + pass # to be implemented + + def test_params_from_string(self): + pass # to be implemented + + def test_from_string(self): + pass # to be implemented + + def test_identity_pmti(self): + pass # to be implemented + + def test_kth_pmti(self): + pass # to be implemented + + def test_rand_pmti(self): + pass # to be implemented + + def test_pmti_cmp(self): + pass # to be implemented + + def test_sort_pmtis(self): + pass # to be implemented + + # ---------------------------------------------------------------- + unittest.main() diff --git a/ch5/sack/qn_gm.py b/ch5/sack/qn_gm.py new file mode 100644 index 0000000..4dccc19 --- /dev/null +++ b/ch5/sack/qn_gm.py @@ -0,0 +1,23 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# Group module for the generalized quaternion group. + +import genquat_tm + +def get_elements_str(params_string): + n = genquat_tm.params_from_string(params_string) + fourn = n + n + n + n + elts = list(range(0, fourn)) + k = 0 + for i in range(0, n): + for j in range(0, 4): + elts[k] = genquat_tm.genquat_t(i, j, n) + k += 1 + return elts diff --git a/ch5/sack/quatu_gm.py b/ch5/sack/quatu_gm.py new file mode 100644 index 0000000..6a9123b --- /dev/null +++ b/ch5/sack/quatu_gm.py @@ -0,0 +1,19 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# Group module for the quaternion unit group. + +import quatu_tm + +def get_elements_str(params_string): + not_used = quatu_tm.params_from_string(params_string) + elts = list(range(0, 8)) + for i in range(0, 8): + elts[i] = quatu_tm.quatu_t(i) + return elts diff --git a/ch5/sack/quatu_tm.py b/ch5/sack/quatu_tm.py new file mode 100644 index 0000000..383ba15 --- /dev/null +++ b/ch5/sack/quatu_tm.py @@ -0,0 +1,178 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# Type module for the quaternion unit group. + +import re + +quatu_mul_table = [ + # 1 -1 i -i j -j k -k + [ 0, 1, 2, 3, 4, 5, 6, 7 ], # 1 + [ 1, 0, 3, 2, 5, 4, 7, 6 ], # -1 + [ 2, 3, 1, 0, 6, 7, 5, 4 ], # i + [ 3, 2, 0, 1, 7, 6, 4, 5 ], # -i + [ 4, 5, 7, 6, 1, 0, 2, 3 ], # j + [ 5, 4, 6, 7, 0, 1, 3, 2 ], # -j + [ 6, 7, 4, 5, 3, 2, 1, 0 ], # k + [ 7, 6, 5, 4, 2, 3, 0, 1 ], # -k +] + +quatu_inv_table = [ 0, 1, 3, 2, 5, 4, 7, 6 ] +# 1 -1 i -i j -j k -k + +class quatu_t: + #code = 0 + + def __init__(self, argcode): + self.code = argcode & 7 + + def __mul__(a,b): + c = quatu_t(quatu_mul_table[a.code][b.code]); + return c + + def __eq__(a,b): + return (a.code == b.code) + + def __ne__(a,b): + return not (a == b) + + def __lt__(a,b): + return (a.code < b.code) + def __le__(a,b): + return (a.code <= b.code) + def __gt__(a,b): + return (a.code > b.code) + def __ge__(a,b): + return (a.code >= b.code) + + def inv(a): + c = quatu_t(quatu_inv_table[a.code]); + return c + + def scan(self, string): + if (string == "1"): + self.__init__(0) + elif (string == "-1"): + self.__init__(1) + elif (string == "i"): + self.__init__(2) + elif (string == "-i"): + self.__init__(3) + elif (string == "j"): + self.__init__(4) + elif (string == "-j"): + self.__init__(5) + elif (string == "k"): + self.__init__(6) + elif (string == "-k"): + self.__init__(7) + else: + raise IOError + + def __str__(self): + if (self.code == 0): + return " 1" + elif (self.code == 1): + return "-1" + elif (self.code == 2): + return " i" + elif (self.code == 3): + return "-i" + elif (self.code == 4): + return " j" + elif (self.code == 5): + return "-j" + elif (self.code == 6): + return " k" + elif (self.code == 7): + return "-k" + else: + raise IOError + + def __repr__(self): + return self.__str__() + +def params_from_string(params_string): + # xxx check empty + return 0 + +def from_string(value_string, params_string): + not_used = params_from_string(params_string) + obj = quatu_t(0) + obj.scan(value_string) + return obj + +#x = quatu_t(3) +#y = quatu_t(2) +#print x +#print y +#z = x * y +#print z +#z.scan("i") +#print z +#print + +#for i in range(0, 8): +# for j in range(0, 8): +# x = quatu_t(i) +# y = quatu_t(j) +# z = x * y +# print x, y, z +# print + + +# ================================================================ +import unittest +if __name__ == '__main__': + + class test_cases(unittest.TestCase): + def test___init__(self): + pass # to be implemented + + def test___mul__(self): + pass # to be implemented + + def test___eq__(self): + pass # to be implemented + + def test___ne__(self): + pass # to be implemented + + def test___lt__(self): + pass # to be implemented + + def test___le__(self): + pass # to be implemented + + def test___gt__(self): + pass # to be implemented + + def test___ge__(self): + pass # to be implemented + + def test_inv(self): + pass # to be implemented + + def test_scan(self): + pass # to be implemented + + def test___str__(self): + pass # to be implemented + + def test___repr__(self): + pass # to be implemented + + def test_params_from_string(self): + pass # to be implemented + + def test_from_string(self): + pass # to be implemented + + # ---------------------------------------------------------------- + unittest.main() diff --git a/ch5/sack/sack b/ch5/sack/sack new file mode 100644 index 0000000..d315cf5 --- /dev/null +++ b/ch5/sack/sack @@ -0,0 +1,739 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# This is a command-line program for doing some elementary computations on +# small finite groups: printing cayley tables, finding element orders and max +# orders, and so on. I wrote it in grad school, back in 2003-2005 or so, when +# I found my abstract-algebra courses to be just a little too abstract for my +# concrete tastes. +# +# ---------------------------------------------------------------- +# You can use "sack --help" for on-line help: +# +# shell-prompt $ sack --help +# Usage: ./sack {group type} {command} {command arguments ...} +# +# Example: "./sack d:4 center ." +# +# Group types: T a ai cl2 d ispec metacyc modadd modmul pauli q q8 s si spec v4 +# +# Commands: abelian add associative caytbl center close closed commutator +# conj_classes cyclic cycsgr cycsgrs derived elts eorder exp find_id +# has_inverses has_unique_id inverse inverses isgroup max_order mul nilpotent +# order orders solvable subgroup +# +# Your $PYTHONPATH should include the directory where you installed this file. +# +# ---------------------------------------------------------------- +# The group types and commmands are listed above. To get information +# about the arguments needed for a particular command, omit them. +# For example: +# +# shell-prompt$ sack s:4 center +# center: 1 argument(s) needed; got 0. +# +# Most commands take a "." argument meaning "operate on all group elements". +# For example: +# +# (Center of dihedral group on four vertices) +# shell-prompt$ sack d:4 center . +# 0,0 +# 2,0 +# +# (All permutations on four points) +# shell-prompt$ sack s:4 elements . +# 1 +# 1,4 +# 1,3 +# 1,2 +# 2,4 +# 2,3 +# 3,4 +# 1,4,3 +# 1,4,2 +# 1,3,4 +# 1,3,2 +# 1,2,4 +# 1,2,3 +# 2,4,3 +# 2,3,4 +# 1,4:2,3 +# 1,3:2,4 +# 1,2:3,4 +# 1,4,2,3 +# 1,4,3,2 +# 1,3,2,4 +# 1,3,4,2 +# 1,2,4,3 +# 1,2,3,4 +# +# ---------------------------------------------------------------- +# The input/output notation are more programmer-friendly than +# user-friendly; I wrote this program for myself to satisfy (in +# part) my preference for plain text I/O. Also, I intended this +# program to be self-educational; for information about how it +# works I tend to use the code itself as documentation. +# +# SACK does for small finite groups what RUFFL does for finite +# fields (https://github.com/johnkerl/ruffl). +# +# I don't expect too many people will find SACK useful -- on the +# other hand it might happen to be just what you're looking for. +# Enjoy! +# +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +from __future__ import division # 1/2 = 0.5, not 0. +import sys +import re + +# "Type" modules: for elements of various groups. +import dih_tm +import genquat_tm +import metacyc_tm +import modadd_tm +import modmul_tm +import pmti_tm +import pmtc_tm +import quatu_tm +import cl2_tm +import v4_tm +import T_tm +import pauli_tm +import spec_tm +import ispec_tm +#import semi_tm + +# "Group" modules: for getting *all* elements of various groups. +import dn_gm +import qn_gm +import metacyc_gm +import modadd_gm +import modmul_gm +import sni_gm +import ani_gm +import snc_gm +import anc_gm +import quatu_gm +import cl2_gm +import v4_gm +import T_gm +import pauli_gm +import spec_gm +import ispec_gm +#import semi_gm + +from sackset import * +from sackgrp import * +from sacktuple import * + +# ---------------------------------------------------------------- +# Short-hands for type names +type_lookup = { + "d" : dih_tm, + "q" : genquat_tm, + "metacyc" : metacyc_tm, + "modadd" : modadd_tm, + "modmul" : modmul_tm, + "q8" : quatu_tm, + "cl2" : cl2_tm, + "v4" : v4_tm, + "T" : T_tm, + "pauli" : pauli_tm, + "si" : pmti_tm, + "ai" : pmti_tm, + "s" : pmtc_tm, + "a" : pmtc_tm, + "spec" : spec_tm, + "ispec" : ispec_tm, + #"semi" : semi_tm, + } + +# ---------------------------------------------------------------- +# Short-hands for group names +group_lookup = { + "d" : dn_gm, + "q" : qn_gm, + "metacyc" : metacyc_gm, + "modadd" : modadd_gm, + "modmul" : modmul_gm, + "q8" : quatu_gm, + "cl2" : cl2_gm, + "si" : sni_gm, + "ai" : ani_gm, + "s" : snc_gm, + "a" : anc_gm, + "v4" : v4_gm, + "T" : T_gm, + "pauli" : pauli_gm, + "spec" : spec_gm, + "ispec" : ispec_gm, + #"semi" : semi_gm, + } + +# ---------------------------------------------------------------- +def main(): + + if (len(sys.argv) < 2): + short_usage(sys.argv[0]) + + if (sys.argv[1]=='help') or (sys.argv[1]=='-h') or (sys.argv[1]=='--help'): + long_usage(sys.argv[0]) + + # Examples: + # * d:4 denotes the dihedral group D4: dihedral family with parameter 4. + # * s:3 denotes S3. + # * spec:tbl.txt denotes a user-specified group with cayley table in file + # tbl.txt. + # * semi:V4/S3/action.txt denotes the semidirect product of V4 and S3 with + # the action of S3 on V4 in file action.txt. File format for N semi K: + # the file is a matrix with ith row and jth column being {n_i}^{k_j}. + + type_and_group_params = re.split(':', sys.argv[1], 1); + type_name = type_and_group_params[0]; + if (len(type_and_group_params) == 1) : + group_params_string = "" + else: + group_params_string = type_and_group_params[1] + + if (not (type_name in type_lookup)): + print("No such group type: " + type_name) + sys.exit(1) + type_spec = type_lookup[type_name] + + # Hack -- needs documentation. This is for defining ad-hoc groups + # from data files. + if (type_name == "spec" or type_name == "ispec"): + group_spec = group_lookup[type_name] + not_used = group_spec.get_elements_str(group_params_string) + + # Hack -- needs documentation. + # * sys.argv[1] is "semi:v4/s:3/action.txt" + # * type_name is "semi" + # * group_params_string is "v4/s:3/action.txt" + # * Split on "/". + # * N_name is "v4" + # * K_name is "s:3" + # * aut_file_name is "action.txt" + + #if (type_name == "semi") : + # [N_name, K_name, aut_file_name] = re.split('/', group_params_string, 2); + # Fill out N from N_name + # Fill out K from K_name + # Read in the action.txt matrix with values {n_i}^{k_j}, i.e. elements of + # N. This means we need to use N's I/O methods. + + cmd_name = sys.argv[2]; + if (not (cmd_name in cmd_lookup)): + print("No such command: " + cmd_name) + sys.exit(1) + handler = cmd_lookup[cmd_name] + + cmd_argv = sys.argv[3:] + handler(cmd_name, cmd_argv, group_params_string, type_name, type_spec) + + sys.exit(0) + +# ---------------------------------------------------------------- +def check_min_args(cmd_name, cmd_argv, n): + actual = len(cmd_argv) + if (actual < n): + print("%s: minimum %d argument(s) needed; got %d." % ( + cmd_name, n, actual)) + sys.exit(1) + +# ---------------------------------------------------------------- +def check_num_args(cmd_name, cmd_argv, n): + actual = len(cmd_argv) + if (actual != n): + print("%s: %d argument(s) needed; got %d." % ( + cmd_name, n, actual)) + sys.exit(1) + +# ---------------------------------------------------------------- +def group_from_file(type_spec, params_string, file_name): + G = [] + if (file_name == "-"): + file_handle = sys.stdin + else: + try: + file_handle = open(file_name, 'r') + except: + print("Couldn't open \"" + file_name + "\" for read.") + sys.exit(1) + for line in file_handle: + if (line[-1] == '\n'): + line = line[0:-1] + x = type_spec.from_string(line, params_string) + G.append(x) + if (file_name != "-"): + file_handle.close() + return G + +# ---------------------------------------------------------------- +def get_group(type_name, group_params_string, file_name): + if (file_name == "."): + if (not (type_name in group_lookup)): + print("No such full group: " + type_name) + sys.exit(1) + group_spec = group_lookup[type_name] + G = group_spec.get_elements_str(group_params_string) + else: + G = group_from_file(type_spec, group_params_string, file_name) + return G + +# ---------------------------------------------------------------- +# E.g. "sack s:4 mul 1,2,4 2,3,1" prints "1,4:2,3". +def cmd_mul(cmd_name, cmd_argv, group_params_string, type_name, type_spec): + check_min_args(cmd_name, cmd_argv, 1) + x = type_spec.from_string(cmd_argv[0], group_params_string) + for arg in cmd_argv[1:]: + y = type_spec.from_string(arg, group_params_string) + x = x * y + print(x) + +# ---------------------------------------------------------------- +def cmd_add(cmd_name, cmd_argv, group_params_string, type_name, type_spec): + check_min_args(cmd_name, cmd_argv, 1) + x = type_spec.from_string(cmd_argv[0], group_params_string) + for arg in cmd_argv[1:]: + y = type_spec.from_string(arg, group_params_string) + x = x + y + print(x) + +# ---------------------------------------------------------------- +def cmd_close(cmd_name, cmd_argv, group_params_string, type_name, type_spec): + check_num_args(cmd_name, cmd_argv, 1) + G = get_group(type_name, group_params_string, cmd_argv[0]) + close_group(G) + print_set_as_column(G) + +# ---------------------------------------------------------------- +def cmd_exp(cmd_name, cmd_argv, group_params_string, type_name, type_spec): + check_min_args(cmd_name, cmd_argv, 2) + # xxx try: except: + e = int(cmd_argv[-1]) + for arg in cmd_argv[0:-1]: + x = type_spec.from_string(arg, group_params_string) + y = sackexp(x, e) + print(y) + +# ---------------------------------------------------------------- +# E.g. "sack s:4 inverse 1,2,3,4" prints "1,2,3,4 1,4,3,2" +def cmd_inverse(cmd_name, cmd_argv, group_params_string, type_name, type_spec): + check_min_args(cmd_name, cmd_argv, 1) + for arg in cmd_argv: + x = type_spec.from_string(arg, group_params_string) + y = x.inv(); + print(x, y) + +# ---------------------------------------------------------------- +def cmd_commutator(cmd_name, cmd_argv, group_params_string, type_name, type_spec): + check_min_args(cmd_name, cmd_argv, 1) + argc = len(cmd_argv) + if (argc == 2): + x = type_spec.from_string(cmd_argv[0], group_params_string) + y = type_spec.from_string(cmd_argv[1], group_params_string) + xi = x.inv() + yi = y.inv() + bracket = x * y * xi * yi + print(bracket) + else: + print("commutator: needed 2 elements; got %d." % (argc)) + sys.exit(1) + +# ---------------------------------------------------------------- +def cmd_eorder(cmd_name, cmd_argv, group_params_string, type_name, type_spec): + check_min_args(cmd_name, cmd_argv, 1) + for arg in cmd_argv: + x = type_spec.from_string(arg, group_params_string) + k = get_order(x) + print(x, k) + +# ---------------------------------------------------------------- +def cmd_cycsgr(cmd_name, cmd_argv, group_params_string, type_name, type_spec): + check_min_args(cmd_name, cmd_argv, 1) + for arg in cmd_argv: + x = type_spec.from_string(arg, group_params_string) + pig = get_cycsgr(x) + #print_set_as_row(pig) + print_set_as_column(pig) + print + +# ---------------------------------------------------------------- +def cmd_elts(cmd_name, cmd_argv, group_params_string, type_name, type_spec): + check_num_args(cmd_name, cmd_argv, 1) + G = get_group(type_name, group_params_string, cmd_argv[0]) + print_set_as_column(G) + +# ---------------------------------------------------------------- +# E.g. "sack s:3 caytbl ." +def cmd_caytbl(cmd_name, cmd_argv, group_params_string, type_name, type_spec): + check_num_args(cmd_name, cmd_argv, 1) + G = get_group(type_name, group_params_string, cmd_argv[0]) + print_cayley_table(G) + +# ---------------------------------------------------------------- +def cmd_conj_classes(cmd_name, cmd_argv, group_params_string, type_name, type_spec): + check_num_args(cmd_name, cmd_argv, 1) + G = get_group(type_name, group_params_string, cmd_argv[0]) + print_conj_classes(G) + +# ---------------------------------------------------------------- +def cmd_find_id(cmd_name, cmd_argv, group_params_string, type_name, type_spec): + check_num_args(cmd_name, cmd_argv, 1) + G = get_group(type_name, group_params_string, cmd_argv[0]) + [found, e] = find_id(G) + if (found): + print(e) + else: + print("No identity found") + +# ---------------------------------------------------------------- +# E.g. "sack s:4 order ." prints 24. +def cmd_order(cmd_name, cmd_argv, group_params_string, type_name, type_spec): + check_num_args(cmd_name, cmd_argv, 1) + G = get_group(type_name, group_params_string, cmd_argv[0]) + print(len(G)) + +# ---------------------------------------------------------------- +# E.g. "sack s:4 orders . | left" prints +# +# 1 1 +# 1,4 2 +# 1,3 2 +# 1,2 2 +# 2,4 2 +# 2,3 2 +# 3,4 2 +# 1,4,3 3 +# 1,4,2 3 +# 1,3,4 3 +# 1,3,2 3 +# 1,2,4 3 +# 1,2,3 3 +# 2,4,3 3 +# 2,3,4 3 +# 1,4:2,3 2 +# 1,3:2,4 2 +# 1,2:3,4 2 +# 1,4,2,3 4 +# 1,4,3,2 4 +# 1,3,2,4 4 +# 1,3,4,2 4 +# 1,2,4,3 4 +# 1,2,3,4 4 + +def cmd_orders(cmd_name, cmd_argv, group_params_string, type_name, type_spec): + check_num_args(cmd_name, cmd_argv, 1) + G = get_group(type_name, group_params_string, cmd_argv[0]) + orders = get_orders(G) + n = len(G) + for k in range(0, n): + print(G[k], orders[k]) + +# ---------------------------------------------------------------- +# E.g. "sack s:4 max_order ." prints 4. +def cmd_max_order(cmd_name, cmd_argv, group_params_string, type_name,type_spec): + check_num_args(cmd_name, cmd_argv, 1) + G = get_group(type_name, group_params_string, cmd_argv[0]) + m = get_max_order(G) + print(m) + +# ---------------------------------------------------------------- +# E.g. "sack s:4 inverses . | left" prints +# 1 1 +# 1,4 1,4 +# 1,3 1,3 +# 1,2 1,2 +# 2,4 2,4 +# 2,3 2,3 +# 3,4 3,4 +# 1,4,3 1,3,4 +# 1,4,2 1,2,4 +# 1,3,4 1,4,3 +# 1,3,2 1,2,3 +# 1,2,4 1,4,2 +# 1,2,3 1,3,2 +# 2,4,3 2,3,4 +# 2,3,4 2,4,3 +# 1,4:2,3 1,4:2,3 +# 1,3:2,4 1,3:2,4 +# 1,2:3,4 1,2:3,4 +# 1,4,2,3 1,3,2,4 +# 1,4,3,2 1,2,3,4 +# 1,3,2,4 1,4,2,3 +# 1,3,4,2 1,2,4,3 +# 1,2,4,3 1,3,4,2 +# 1,2,3,4 1,4,3,2 + +def cmd_inverses(cmd_name, cmd_argv, group_params_string, type_name, type_spec): + check_num_args(cmd_name, cmd_argv, 1) + G = get_group(type_name, group_params_string, cmd_argv[0]) + for x in G: + y = x.inv() + print(x, y) + +# ---------------------------------------------------------------- +# E.g. "sack s:4 center ." prints 1 (only the identity permutation commutes +# with all other permutation. +def cmd_center(cmd_name, cmd_argv, group_params_string, type_name, type_spec): + check_num_args(cmd_name, cmd_argv, 1) + G = get_group(type_name, group_params_string, cmd_argv[0]) + Z = get_center(G) + print_set_as_column(Z) + +# ---------------------------------------------------------------- +def cmd_isgroup(cmd_name, cmd_argv, group_params_string, type_name, type_spec): + check_num_args(cmd_name, cmd_argv, 1) + G = get_group(type_name, group_params_string, cmd_argv[0]) + if (is_group(G)): + print("is a group") + else: + print("not a group") + +# ---------------------------------------------------------------- +def cmd_closed(cmd_name, cmd_argv, group_params_string, type_name, type_spec): + check_num_args(cmd_name, cmd_argv, 1) + G = get_group(type_name, group_params_string, cmd_argv[0]) + if (is_closed(G)): + print("closed") + else: + print("non-closed") + +# ---------------------------------------------------------------- +def cmd_associative(cmd_name, cmd_argv, group_params_string, type_name, type_spec): + check_num_args(cmd_name, cmd_argv, 1) + G = get_group(type_name, group_params_string, cmd_argv[0]) + if (is_associative(G)): + print("associative") + else: + print("non-associative") + +# ---------------------------------------------------------------- +def cmd_has_unique_id(cmd_name, cmd_argv, group_params_string, type_name, type_spec): + check_num_args(cmd_name, cmd_argv, 1) + G = get_group(type_name, group_params_string, cmd_argv[0]) + if (has_unique_id(G)): + print("has unique identity") + else: + print("does not have unique identity") + +# ---------------------------------------------------------------- +def cmd_has_inverses(cmd_name, cmd_argv, group_params_string, type_name, type_spec): + check_num_args(cmd_name, cmd_argv, 1) + G = get_group(type_name, group_params_string, cmd_argv[0]) + if (has_inverses(G)): + print("has inverses") + else: + print("does not have inverses") + +# ---------------------------------------------------------------- +# E.g. "sack s:4 cyclic ." prints "non-cyclic"; "sack modadd:4 cyclic ." prints "cyclic". +def cmd_cyclic(cmd_name, cmd_argv, group_params_string, type_name, type_spec): + check_num_args(cmd_name, cmd_argv, 1) + G = get_group(type_name, group_params_string, cmd_argv[0]) + if (is_cyclic(G)): + print("cyclic") + else: + print("non-cyclic") + +# ---------------------------------------------------------------- +# E.g. "sack s:4 abelian ." prints "non-abelian"; "sack modadd:4 abelian ." prints "abelian". +def cmd_abelian(cmd_name, cmd_argv, group_params_string, type_name, type_spec): + check_num_args(cmd_name, cmd_argv, 1) + G = get_group(type_name, group_params_string, cmd_argv[0]) + if (is_abelian(G)): + print("abelian") + else: + print("non-abelian") + +# ---------------------------------------------------------------- +def cmd_nilpotent(cmd_name, cmd_argv, group_params_string, type_name,type_spec): + check_num_args(cmd_name, cmd_argv, 1) + G = get_group(type_name, group_params_string, cmd_argv[0]) + if (is_nilpotent(G)): + print("nilpotent") + else: + print("non-nilpotent") + +# ---------------------------------------------------------------- +def cmd_solvable(cmd_name, cmd_argv, group_params_string, type_name, type_spec): + check_num_args(cmd_name, cmd_argv, 1) + G = get_group(type_name, group_params_string, cmd_argv[0]) + if (is_solvable(G)): + print("solvable") + else: + print("non-solvable") + +# ---------------------------------------------------------------- +def cmd_derived(cmd_name, cmd_argv, group_params_string, type_name, type_spec): + check_num_args(cmd_name, cmd_argv, 1) + G = get_group(type_name, group_params_string, cmd_argv[0]) + G1 = derived_subgroup(G) + print_set_as_column(G1) + +# ---------------------------------------------------------------- +def cmd_cycsgrs(cmd_name, cmd_argv, group_params_string, type_name, type_spec): + check_num_args(cmd_name, cmd_argv, 1) + G = get_group(type_name, group_params_string, cmd_argv[0]) + for x in G: + pig = get_cycsgr(x) + print_set_as_row(pig) + +# ---------------------------------------------------------------- +def cmd_subgroup(cmd_name, cmd_argv, group_params_string, type_name, type_spec): + check_num_args(cmd_name, cmd_argv, 2) + G = get_group(type_name, group_params_string, cmd_argv[0]) + H = get_group(type_name, group_params_string, cmd_argv[1]) + if (not subset_of(H, G)): + print("Not a subset.") + elif (not is_group(H)): + print("Not a subgroup.") + else: + print("Is a subgroup.") + +# ---------------------------------------------------------------- +cmd_lookup = { + "mul" : cmd_mul, + "add" : cmd_add, + #"sub" : cmd_sub, + #"quot" : cmd_quot, + #"rem" : cmd_rem, + "close" : cmd_close, + "exp" : cmd_exp, + "inverse" : cmd_inverse, + "commutator" : cmd_commutator, + + "eorder" : cmd_eorder, + "cycsgr" : cmd_cycsgr, + + "elts" : cmd_elts, + "caytbl" : cmd_caytbl, + "conj_classes" : cmd_conj_classes, + + "find_id" : cmd_find_id, + "order" : cmd_order, + "orders" : cmd_orders, + "max_order" : cmd_max_order, + "inverses" : cmd_inverses, + "center" : cmd_center, + "isgroup" : cmd_isgroup, + "closed" : cmd_closed, + "associative" : cmd_associative, + "has_unique_id": cmd_has_unique_id, + "has_inverses" : cmd_has_inverses, + + "cyclic" : cmd_cyclic, + "abelian" : cmd_abelian, + "nilpotent" : cmd_nilpotent, + "solvable" : cmd_solvable, + "derived" : cmd_derived, + "cycsgrs" : cmd_cycsgrs, + + "subgroup" : cmd_subgroup, + +} + +# ---------------------------------------------------------------- +def short_usage(argv0): + print("Usage: " + argv0 + " {group type} {command} {command arguments ...}") + print("Please type \"" + argv0 + " --help\" for detailed help.") + sys.exit(1) + +# ---------------------------------------------------------------- +def long_usage(argv0): + print("Usage: " + argv0 + " {group type} {command} {command arguments ...}") + print("") + + print("Example: \"" + argv0 + " d:4 center .\"") + print("") + + sys.stdout.write("Group types:\n") + group_types = type_lookup.keys() + group_types.sort() + for k in group_types: + sys.stdout.write(k) + sys.stdout.write(' ') # TODO: join w/ list comprehension + print("") + print("") + + sys.stdout.write("Commands:\n") + cmd_names = cmd_lookup.keys() + cmd_names.sort() + for k in cmd_names: + sys.stdout.write(k) + sys.stdout.write(' ') # TODO: join w/ list comprehension + print("") + print("") + + sys.exit(1) + +# ================================================================ +# Script entry point (top-down programming style, please). +main() + +# ================================================================ +# To do: +# * from_file stuff +# * sack d center .: give usage +# * __lt__ et al. everywhere +# * deepsort method -- into sackset? use this post-close. +# * dih 1:0 vs. 1,0 -- fix error handling +# * pmt sgn method: bubble sort w/ swap count + +# Commands to implement: +# * centralizer +# * conjbyelt +# * conj_classes +# * cosets L/R +# * internal dp +# * is_subgroup +# * normalizer +# * normal_subgroup +# * powsgr +# * torsion + +# * ascendant +# * aut_group +# * cap +# * cayley_sn +# * core +# * cosets +# * inn + +# ---------------------------------------------------------------- +# Groups: +# * sn an sni ani +# * fpell3 ftell5 +# * triv testing smodadd smodmul miquatadd miquatmul smiquatadd smiquatmul +# * z2ipolymodadd z2ipolymodmul zppolyadd zppolymul tetra cube icos slgf glgf dgf + +# ---------------------------------------------------------------- +# ring stuff -- ops, at least +# kalk-like interface + +# ---------------------------------------------------------------- +# Wreath product -- ! + +# ---------------------------------------------------------------- +# Incorporate: +# * PMATLIB, all +# * SPFFL, all +# - have a single poly class +# - have a single mod class +# - have a single rat class +# - have a single matrix class. methods from PMATLIB & tmatrix.h. +# - tmvpoly +# * kbc, with Python eval? +# * kalk +# * groebner: +# - generalized division alg'm +# * new & improved aut-group computation (need generators)? +# ================================================================ diff --git a/ch5/sack/sackall_m.py b/ch5/sack/sackall_m.py new file mode 100644 index 0000000..f08f3ca --- /dev/null +++ b/ch5/sack/sackall_m.py @@ -0,0 +1,45 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +import sys +import re + +import dih_tm +import genquat_tm +import metacyc_tm +import modadd_tm +import modmul_tm +import pmti_tm +import pmtc_tm +import quatu_tm +import cl2_tm +import v4_tm +import T_tm +import spec_tm +import ispec_tm + +import dn_gm +import qn_gm +import metacyc_gm +import modadd_gm +import modmul_gm +import sni_gm +import ani_gm +import snc_gm +import anc_gm +import quatu_gm +import cl2_gm +import v4_gm +import T_gm +import spec_gm +import ispec_gm + +from sackset import * +from sackgrp import * +from sacktuple import * diff --git a/ch5/sack/sackcoset.py b/ch5/sack/sackcoset.py new file mode 100644 index 0000000..f984437 --- /dev/null +++ b/ch5/sack/sackcoset.py @@ -0,0 +1,63 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +import re +import copy + +class coset: + slots = [] + + def __init__(self, slots): + self.slots = copy.copy(slots) + self.slots.sort() + # xxx need deep sort + + def __eq__(a,b): + #xxx check lens + n = len(a.slots) + for i in range(0, n): + if (a.slots[i] != b.slots[i]): + return 0 + return 1 + + def __ne__(a,b): + return not (a == b) + + def __mul__(a,b): + #xxx check lens + #xxx take a.slots[0] * b.slots and sort. + #Don't check well-definedness here. + n = len(a.slots) + c = coset(a.slots) + for i in range(0, n): + c.slots[i] = a.slots[0] * b.slots[i] + c.slots.sort() + return c + + def inv(a): + #xxx take a.slots[i].inv and sort. + n = len(a.slots) + c = coset(a.slots) + for i in range(0, n): + c.slots[i] = a.slots[i].inv() + c.slots.sort() + return c + + def __str__(self): + string = "[" + string += str(self.slots[0]) + n = len(self.slots) + for i in range(1, n): + string += "," + string += str(self.slots[i]) + string += "]" + return string + + def __repr__(self): + return self.__str__() diff --git a/ch5/sack/sackgrp.py b/ch5/sack/sackgrp.py new file mode 100644 index 0000000..d8dedfc --- /dev/null +++ b/ch5/sack/sackgrp.py @@ -0,0 +1,416 @@ + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +from sack.sackset import * +from sack.sacktuple import * +from sack.sackcoset import * + +# ---------------------------------------------------------------- +def sackexp(x, n): + # Naive for now; binary exp'n later + if (n <= 0): + print(("sackexp: can't do non-positive exponent", n)) + sys.exit(1) + y = x + while (n > 1): + y = y * x + n -= 1 + return y + +# ---------------------------------------------------------------- +def commutator(x, y): + return x * y * x.inv() * y.inv() + +# ---------------------------------------------------------------- +def print_cayley_table(G): + for a in G: + for b in G: + c = a*b + sys.stdout.write(c) + sys.stdout.write(' ') # TODO: join w/ list comprehension + print() + +# ---------------------------------------------------------------- +def get_conj_classes(G): + n = len(G) + + # Precompute a list of inverses + Ginvs = [] + for g in G: + Ginvs.append(g.inv()) + + classes = [] + marks = [0] * n + for i in range(0, n): + if (marks[i] == 1): + continue + + a = G[i] + cl_a = [] + for j in range(0, n): + b = G[j] * a * Ginvs[j] + marks[G.index(b)] = 1 + set_append_unique(cl_a, b) + classes.append(cl_a) + + return classes + +# ---------------------------------------------------------------- +def get_conj_class_reps(G): + classes = get_conj_classes(G) + reps = [] + for cl in classes: + reps.append(cl[0]) + return reps + +# ---------------------------------------------------------------- +def print_conj_classes(G): + classes = get_conj_classes(G) + for cl in classes: + for g in cl: + sys.stdout.write(g) + sys.stdout.write(' ') # TODO: join w/ list comprehension + print() + +# ---------------------------------------------------------------- +def find_id(G): + for e in G: + is_id = 1 + for x in G: + ex = e * x + xe = x * e + if (xe != x): + is_id = 0 + break + if (ex != x): + is_id = 0 + break + if (is_id): + return [1, e] + return [0, 0] + +# ---------------------------------------------------------------- +def get_order(x): + xp = x * x + k = 2 + while (1): + if (xp == x): + return k-1 + xp *= x + k += 1 + return 0 + +# ---------------------------------------------------------------- +def get_cycsgr(x): + k = get_order(x) + e = sackexp(x, k) + cycsgr = list(range(0, k)) + xp = e + for i in range(0, k): + cycsgr[i] = xp + xp *= x + return cycsgr + +# ---------------------------------------------------------------- +def get_max_order(G): + max_order = 0 + for x in G: + k = get_order(x) + if (k > max_order): + max_order = k + return max_order + +# ---------------------------------------------------------------- +def get_orders(G): + orders = [] + for x in G: + orders.append(get_order(x)) + return orders + +# ---------------------------------------------------------------- +def get_center(G): + Z = [] + for a in G: + a_in_center = 1 + for b in G: + ab = a * b + ba = b * a + if not (ab == ba): + a_in_center = 0 + break + if (a_in_center): + Z.append(a) + return Z + +# ---------------------------------------------------------------- +def close_group(G): + while (1): + n = len(G) + #print "... n=", n # xxx temp + for i in range(0, n): + x = G[i] + for j in range(0, n): + y = G[j] + xy = x * y + yx = y * x + set_append_unique(G, xy) + set_append_unique(G, yx) + if (len(G) == n): + return + +# ---------------------------------------------------------------- +def is_group(G): + if (not is_closed(G)): + #print "not closed" + return 0 + if (not is_associative(G)): + #print "not assoc" + return 0 + if (not has_unique_id(G)): + #print "not unique id" + return 0 + if (not has_inverses(G)): + #print "not invs" + return 0 + return 1 + +# ---------------------------------------------------------------- +def is_closed(G): + for x in G: + for y in G: + xy = x * y + if (not element_of(xy, G)): + return 0 + return 1 + +# ---------------------------------------------------------------- +def is_associative(G): + for a in G: + for b in G: + ab = a * b + for c in G: + bc = b * c + ab_c = ab * c + a_bc = a * bc + if (ab_c != a_bc): + #print "not assoc:", a, b, c + return 0 + return 1 + +# ---------------------------------------------------------------- +def has_unique_id(G): + num_ids = 0 + for e in G: + is_id = 1 + for x in G: + ex = e * x + xe = x * e + if (xe != x): + is_id = 0 + break + if (ex != x): + is_id = 0 + break + if (is_id): + num_ids += 1 + if (num_ids == 1): + return 1 + else: + return 0 + +# ---------------------------------------------------------------- +def has_inverses(G): + [found, e] = find_id(G) + if (not found): + return 0 + for x in G: + x_has_inv = 0 + for y in G: + xy = x * y + yx = y * x + if (xy == e) and (yx == e): + x_has_inv = 1 + break + if (not x_has_inv): + return 0 + return 1 + +# ---------------------------------------------------------------- +def is_cyclic(G): + n = len(G) + for a in G: + k = get_order(a) + if (k == n): + return 1 + return 0 + +# ---------------------------------------------------------------- +def is_abelian(G): + Z = [] + for a in G: + a_in_center = 1 + for b in G: + ab = a * b + ba = b * a + if (ab != ba): + return 0 + return 1 + +# ---------------------------------------------------------------- +def nilbracket(G, Gi): + G2 = [] + for a in G: + for b in Gi: + set_append_unique(G2, commutator(a, b)) + close_group(G2) + return G2 + +# ---------------------------------------------------------------- +def is_nilpotent(G): + verbose = 1 + if (verbose): + print("nilp check") + sys.stdout.write("Gp ") + print_set_as_row(G) + print() + Gp = copy.copy(G) + while (1): + Gpp = nilbracket(G,Gp) + + if (verbose): + #print "gp: ", + #print_set_as_row(Gp) + sys.stdout.write("gpp: ") + print_set_as_row(Gpp) + print() + + np = len(Gp) + npp = len(Gpp) + if (npp == 1): + return 1 + if (np == npp): + return 0 + Gp = Gpp + +# ---------------------------------------------------------------- +def derived_subgroup(G): + G1 = [] + for a in G: + for b in G: + set_append_unique(G1, commutator(a, b)) + close_group(G1) + return G1 + +# ---------------------------------------------------------------- +def is_solvable(G): + verbose = 1 + if (verbose): + print("slv check") + sys.stdout.write("Gp ") + print_set_as_row(G) + print() + Gp = copy.copy(G) + while (1): + Gpp = derived_subgroup(Gp) + + if (verbose): + #print "gp: ", + #print_set_as_row(Gp) + sys.stdout.write("gpp: ") + print_set_as_row(Gpp) + print() + + np = len(Gp) + npp = len(Gpp) + if (npp == 1): + return 1 + if (np == npp): + return 0 + Gp = Gpp + +# ---------------------------------------------------------------- +def direct_product(G1, G2): + n1 = len(G1) + n2 = len(G2) + n3 = n1 * n2 + G3 = list(range(0, n3)) + k = 0 + for i in range(0, n1): + for j in range(0, n2): + G3[k] = tuple([G1[i], G2[j]]) + k += 1 + return G3 + +# ---------------------------------------------------------------- +# xxx direction argument: left or right +#def make_cosets(G, H): +# return 0 + +def quotient(G, H): + oG = len(G) + oH = len(H) + if ((oG % oH) != 0): + print(("quotient: |H| (" + str(oG) + ") must divide |G| (" + str(oH) + ").")) + raise RuntimeError + iGH = oG / oH + if (iGH == 0): + print(("Empty quotient: |H| = " + str(oG) + ", |G| = " + str(oH) + ".")) + raise RuntimeError + + GH = [] + for g in G: + gHe = list(range(0, oH)) + for j in range(0, oH): + gHe[j] = g * H[j] + gH = coset(gHe) + set_append_unique(GH, gH) + + return GH + +# ---------------------------------------------------------------- +# conj cls: + +# for i in range(0, n): +# marks[i] = 0 +# +# for i in range(0, n): +# if (marks[i]) +# continue +# g = G[i] +# +# nconj = 0 +# for x in G: +# xinv = x.inv() +# xg = x*g +# xgxinv = g * xinv +# +# // xxx really need an add-to-set lib function. +# found = 0 +# for k in range(0, nconj): +# pc = VARRAY_ELEMENT(pconjs, k, +# pgroup->pspec->element_size) +# if c == xgxinv: +# found = 1 +# break +# if (!found): +# pc = VARRAY_ELEMENT(pconjs, nconj, +# pgroup->pspec->element_size) +# c = xgxinv +# +# if (!group_find_index(pgroup, xgxinv,&cjgidx)): +# fprintf(stderr, +# "list_conj_cls: group not closed.\n") +# exit(1) +# marks[cjgidx] = 1 +# nconj++ +# +# for (j = 0 j < nconj; j++): +# pc = VARRAY_ELEMENT(pconjs, j, pgroup->pspec->element_size) +# pgroup->pspec->pvprint(pc, pgroup->pvaux) +# +# printf("\n") diff --git a/ch5/sack/sackint.py b/ch5/sack/sackint.py new file mode 100644 index 0000000..7e30a75 --- /dev/null +++ b/ch5/sack/sackint.py @@ -0,0 +1,207 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# ---------------------------------------------------------------- +def gcd(a, b): + r = 0 + if (a == 0): + return b + if (b == 0): + return a + + while (1): + r = a % b + if (r == 0): + break + a = b + b = r + if (b < 0): + b = -b + return b + +# ---------------------------------------------------------------- +# Blankinship's algorithm + +def extgcd(a, b): + + # Initialize + mprime = 1 + n = 1 + m = 0 + nprime = 0 + c = a + d = b + + while (1): + # Divide + q = c / d + r = c % d + # Note: now c = qd + r and 0 <= r < d + + # Remainder zero? + if (r == 0): + break + + # Recycle + c = d + d = r + + t = mprime + mprime = m + qm = q * m + m = t - qm + + t = nprime + nprime = n + qn = q * n + n = t - qn + return [d, m, n] + +# ---------------------------------------------------------------- +# This function should be invoked with only one argument. +# The optional argument is a way to have a local static in Python. +# See Lutz & Ascher, 2nd. ed., p 241. + +def eulerphi(n, cached_n_and_phi=[2,1]): + if (n == cached_n_and_phi[0]): + # Cache hit + return cached_n_and_phi[1] + + phi = 0 + for i in range(1, n): + if (gcd(n, i) == 1): + phi += 1 + return phi + + cached_n_and_phi[0] = n + cached_n_and_phi[1] = phi + return phi + +# ---------------------------------------------------------------- +# Binary exponentiation + +def intexp(x, e): + xp = x + rv = 1 + + if (e < 0): + print(("intexp: negative exponent", e, "disallowed.")) + raise RuntimeError + + while (e != 0): + if (e & 1): + rv = (rv * xp) + e = e >> 1 + xp = (xp * xp) + return rv + +# ---------------------------------------------------------------- +# Binary exponentiation + +def intmodexp(x, e, m): + xp = x + rv = 1 + + if (e < 0): + e = -e + x = intmodrecip(x, m) + + while (e != 0): + if (e & 1): + rv = (rv * xp) % m + e = e >> 1 + xp = (xp * xp) % m + return rv + +# ---------------------------------------------------------------- +def intmodrecip(x, m): + if (gcd(x, m) != 1): + print(("intmodrecip: impossible inverse", x, "mod", m)) + raise RuntimeError + phi = eulerphi(m) + return intmodexp(x, phi-1, m) + +# ---------------------------------------------------------------- +def factorial(n): + if (n < 0): + print("factorial: negative input disallowed.") + raise RuntimeError + if (n < 2): + return 1 + rv = 1 + for k in range(2, n+1): + rv *= k + return rv + +# ---------------------------------------------------------------- +# How to compute P(n) = number of partitions of n. Examples for n = 1 to 5: +# +# 1 2 3 4 5 +# 1 1 2 1 3 1 4 1 +# 1 1 1 2 2 3 2 +# 2 1 1 3 1 1 +# 1 1 1 1 2 2 1 +# 2 1 1 1 +# 1 1 1 1 1 +# +# This is a first-rest algorithm. Loop over possible choices k for the first +# number. The rest must sum to n-k. Furthermore, the rest must be descending +# and so each must be less than or equal to k. Thus we naturally have an +# auxiliary function P(n, m) counting partitions of n with each element less +# than or equal to m. + +def num_ptnsm(n, m): + if (n < 0): return 0 + if (n <= 1): return 1 + if (m == 1): return 1 + sum = 0 + for k in range(1, m+1): + if (n-k >= 0): + sum += num_ptnsm(n-k, k) + return sum + +# ---------------------------------------------------------------- +def num_ptns(n): + return num_ptnsm(n, n) + +# ---------------------------------------------------------------- +def ptnsm(n, m): + rv = [] + if (n < 0): return 0 + if (n == 0): return [[]] + if (n == 1): return [[1]] + if (m == 1): return [[1] * n] + sum = 0 + for k in range(1, m+1): + if (n-k >= 0): + tails = ptnsm(n-k, k) + for tail in tails: + rv.append([k] + tail) + return rv + +# ---------------------------------------------------------------- +def ptns(n): + return ptnsm(n, n) + +#for n in range(1, 21): +# a = onum_ptns(n) +# b = num_ptns(n) +# print "%2d %2d %2d" % (n, a, b) + +#for n in range(1, 5+1): +# for m in range(1, n+1): +# p = num_ptnsm(n, m) +# print n, m, p +# print + +#for n in range(1, 7+1): +# for m in range(1, n+1): +# X = ptnsm(n, m) +# print n, m, len(X), X +# print diff --git a/ch5/sack/sackmisc.py b/ch5/sack/sackmisc.py new file mode 100644 index 0000000..e2f5ad8 --- /dev/null +++ b/ch5/sack/sackmisc.py @@ -0,0 +1,85 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +from sackall_m import * + +# ---------------------------------------------------------------- +def foo1(): + G1 = v4_gm.get_elements_str(""); + G2 = v4_gm.get_elements_str(""); + + G3 = direct_product(G1, G2) + print_cayley_table(G3) + +# ---------------------------------------------------------------- +def foo2(): + G = [quatu_tm.from_string("i", ""), quatu_tm.from_string("j", "")] + + close_group(G) + print_set_as_column(G) + +# ---------------------------------------------------------------- +def foo3(): + G = quatu_gm.get_elements_str("") + H = [quatu_tm.quatu_t(0), quatu_tm.quatu_t(1)]; + print("G:") + print_set_as_column(G) + print() + print("H:") + print_set_as_column(H) + print() + print("G/H:") + GH = quotient(G, H) + print_set_as_column(GH) + +# ---------------------------------------------------------------- +def foo4(): + + G = quatu_gm.get_elements_str("") + print("G:") + print_set_as_column(G) + print() + + H = [quatu_tm.quatu_t(0), quatu_tm.quatu_t(1)]; + print("H:") + print_set_as_column(H) + print() + + GH = quotient(G, H) + print("G/H:") + print_set_as_column(GH) + print() + + K = v4_gm.get_elements_str(""); + print("K:") + print_set_as_column(K) + print() + + G3 = direct_product(GH, K) + print("G/H x K:") + print_set_as_column(G3) + print() + + #print_cayley_table(G3) + print("Z(G/H x K):") + Z = get_center(G3) + print_set_as_column(Z) + print() + +# ---------------------------------------------------------------- +def foo5(): + G = T_gm.get_elements_str("") + for x in G: + y = x.inv() + xy = x*y + yx = y*x + print((x, y, xy, yx)) + +# ---------------------------------------------------------------- +foo1() diff --git a/ch5/sack/sackprime_m.py b/ch5/sack/sackprime_m.py new file mode 100644 index 0000000..db8495c --- /dev/null +++ b/ch5/sack/sackprime_m.py @@ -0,0 +1,152 @@ +#!/usr/bin/python -Wall -Qnew + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# ---------------------------------------------------------------- +def isprime_trial(n): + if (n < 0): + n = -n + + if (n <= 1): + return 0 + elif (n <= 3): + return 1 + elif ((n & 1) == 0): + return 0 + + d = 3 + q = n + while (d <= q): + q = int(n / d) + if (n == (q * d)): + return 0 + d += 2 + + return 1 + +# ---------------------------------------------------------------- +def isprime(n): + return isprime_trial(n) + #return isprime_table(n) + +#// ---------------------------------------------------------------- +#int isprime_table(int n) +#{ +# int i +# unsigned un +# +# if (n == -n) +# return 0 +# elif (n < 0) +# n = -n +# +# if (n <= 1) +# return 0 +# +# un = (unsigned) n +# for (i = 0 i < numprimes16 i++) { +# if ((un % primes16[i]) == 0) { +# if (un == primes16[i]) +# return 1 +# else +# return 0 +# } +# if (primes16[i] * primes16[i] > un) +# return 1 +# } +# return 1 +#} +# +#// ---------------------------------------------------------------- +#int isprime(int n) +#{ +# //return isprime_trial(n) +# return isprime_table(n) +#} +# +# +#================================================================ +# +##!/usr/bin/python +# +#import sys +# +## ---------------------------------------------------------------- +#def usage(): +# print >> sys.stderr, "Usage: {numbers}" +# print >> sys.stderr, "Performs the Fermat primality test by computing a^{p-1} mod p for several small a." +# sys.exit(1) +# +## ---------------------------------------------------------------- +#def mod_power(b, e, m): +# b2 = b % m +# rv = 1 +# +# while (e != 0): +# if (e & 1): +# rv = (rv * b2) % m +# e = e >> 1 +# b2 = (b2 * b2) % m +# return rv +# +## ---------------------------------------------------------------- +#def test_one_base(a, p): +# x = mod_power(a, p-1, p) +# print "%d ^ %d = %d (mod %d)" % (a, p-1, x, p) +# if ((x != 1) and (p != a)): +# return 0 +# return 1 +# +## ---------------------------------------------------------------- +#def fermat_test(p): +# rv = 1 +# for a in [2, 3, 5, 7, 11, 13, 17, 19]: +# if (not test_one_base(a, p)): +# rv = 0 +# return rv +# return rv +# +## ---------------------------------------------------------------- +#argc = len(sys.argv) +#if (argc < 2): +# usage() +# +#for argi in range(1, argc): +# p = int(sys.argv[argi]) +# if (fermat_test(p)): +# print p, "might be prime." +# else: +# print p, "is not prime." +# print + +## ---------------------------------------------------------------- +#def foo(): +# for n in range(0, 40): +# ip = isprime_trial(n) +# print n, ip +#foo() + +# ---------------------------------------------------------------- +def int_factor(n): + rv = [] + if (n == 0): + return [n] + if (n < 0): + return [-1] + int_factor(-n) + if (n == 1): + return [1] + + # This is a painfully naive implementation. However it works fine + # for small numbers. + d = 2 + while (n > 1): + while ((n % d) == 0): + rv.append(d) + n = int(n/d) + d += 1 + return rv diff --git a/ch5/sack/sackset.py b/ch5/sack/sackset.py new file mode 100644 index 0000000..58f83ab --- /dev/null +++ b/ch5/sack/sackset.py @@ -0,0 +1,39 @@ + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# ---------------------------------------------------------------- +def print_set_as_column(S): + for a in S: + print(a) + +# ---------------------------------------------------------------- +def print_set_as_row(S): + for a in S: + sys.stdout.write(a) + sys.stdout.write(' ') # TODO: join w/ list comprehension + print() + +# ---------------------------------------------------------------- +def element_of(x, S): + for a in S: + if (a == x): + return 1 + return 0 + +# ---------------------------------------------------------------- +def subset_of(T, S): + for t in T: + if (not element_of(t, S)): + return 0 + return 1 + +# ---------------------------------------------------------------- +def set_append_unique(S, x): + if (not element_of(x, S)): + S.append(x) + diff --git a/ch5/sack/sacktuple.py b/ch5/sack/sacktuple.py new file mode 100644 index 0000000..9278216 --- /dev/null +++ b/ch5/sack/sacktuple.py @@ -0,0 +1,56 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +import re +import copy + +class tuple: + slots = [] + + def __init__(self, slots): + self.slots = copy.copy(slots) + + def __eq__(a,b): + #xxx check lens + n = len(a.slots) + for i in range(0, n): + if (a.slots[i] != b.slots[i]): + return 0 + return 1 + + def __ne__(a,b): + return not (a == b) + + def __mul__(a,b): + #xxx check lens + n = len(a.slots) + c = tuple(a.slots) + for i in range(0, n): + c.slots[i] = a.slots[i] * b.slots[i] + return c + + def inv(a): + n = len(a.slots) + c = tuple(a.slots) + for i in range(0, n): + c.slots[i] = a.slots[i].inv() + return c + + def __str__(self): + string = "[" + string += str(self.slots[0]) + n = len(self.slots) + for i in range(1, n): + string += "," + string += str(self.slots[i]) + string += "]" + return string + + def __repr__(self): + return self.__str__() diff --git a/ch5/sack/snc_gm.py b/ch5/sack/snc_gm.py new file mode 100644 index 0000000..018e5bc --- /dev/null +++ b/ch5/sack/snc_gm.py @@ -0,0 +1,28 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# Group module for permutation group S_n, with cycle-decomposition I/O. + +import pmtc_tm +import sackint + +def get_elements(n, sort_them=True): + group_size = sackint.factorial(n) + elts = [] + for k in range(0, group_size): + elt = pmtc_tm.kth_pmtc(k, n, group_size) + elts.append(elt) + if sort_them: + pmtc_tm.sort_pmtcs(elts) + return elts + +def get_elements_str(params_string): + n = pmtc_tm.params_from_string(params_string) + return get_elements(n) + diff --git a/ch5/sack/sni_gm.py b/ch5/sack/sni_gm.py new file mode 100644 index 0000000..f02c56d --- /dev/null +++ b/ch5/sack/sni_gm.py @@ -0,0 +1,27 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# Group module for permutation group S_n, with image-map I/O. + +import pmti_tm +import sackint + +def get_elements(n, sort_them=True): + group_size = sackint.factorial(n) + elts = [] + for k in range(0, group_size): + elt = pmti_tm.kth_pmti(k, n, group_size) + elts.append(elt) + if sort_them: + pmti_tm.sort_pmtis(elts) + return elts + +def get_elements_str(params_string): + n = pmti_tm.params_from_string(params_string) + return get_elements(n) diff --git a/ch5/sack/spec_gm.py b/ch5/sack/spec_gm.py new file mode 100644 index 0000000..d597c88 --- /dev/null +++ b/ch5/sack/spec_gm.py @@ -0,0 +1,55 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +import spec_tm +import spec_tables +import re +import copy +import sys + +# I have globals for the spec tables. This makes it non re-entrant. +# In particular I won't be able to form, say, the direct product of two +# different user-specified groups without a redesign. + +def get_elements_str(params_string): + file_name = params_string + cayley_table_with_names = [] + + if (file_name == "-"): + file_handle = sys.stdin + else: + try: + file_handle = open(file_name, 'r') + except: + print(("Couldn't open \"" + file_name + "\" for read.")) + sys.exit(1) + + for line in file_handle: + + # Chomp trailing newline, if any. + if (line[-1] == '\n'): + line = line[0:-1] + + # Strip leading and trailing whitespace. + line = re.sub(r"^\s+", r"", line) + line = re.sub(r"\s+$", r"", line) + + row_names = re.split('\s+', line) + cayley_table_with_names.append(copy.copy(row_names)) + + if (file_name != "-"): + file_handle.close() + + spec_tm.install_table(cayley_table_with_names) + + n = len(cayley_table_with_names) + elts = list(range(0, n)) + for i in range(0, n): + elts[i] = spec_tm.spec_t(i) + return elts diff --git a/ch5/sack/spec_tables.py b/ch5/sack/spec_tables.py new file mode 100644 index 0000000..d1c7939 --- /dev/null +++ b/ch5/sack/spec_tables.py @@ -0,0 +1,23 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# Do not modify this file. This stub data is set up at runtime. + +mul_table = [] +inv_table = [] +name_table = [] + +# Example for Klein-4: + +# mul_table = [[0,1,2,3],[1,0,3,2],[2,3,0,1],[3,2,1,0]] +# inv_table = [0, 1, 2, 3] +# name_table = ["e", "a", "b", "c"] + +# Note that the mul and inv tables contain zero-up indices, +# *not* the names of the group elements. diff --git a/ch5/sack/spec_tm.py b/ch5/sack/spec_tm.py new file mode 100644 index 0000000..8e570ca --- /dev/null +++ b/ch5/sack/spec_tm.py @@ -0,0 +1,177 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +import re +import copy +import sys + +import spec_tables +import sackgrp + +def name_to_index(string, name_table): + i = 0 + for name in name_table: + if string == name: + return [1, i] + i += 1 + return [0, 0] + +def name_to_index_or_die(string, name_table): + [found, idx] = name_to_index(string, name_table) + if (not found): + print(("spec scan failure on \"%s\"." % (string))) + sys.exit(1) + return idx + +class spec_t: + def __init__(self, argcode): + self.code = argcode + + def __mul__(a,b): + c = spec_t(spec_tables.mul_table[a.code][b.code]); + return c + + def __eq__(a,b): + return (a.code == b.code) + def __ne__(a,b): + return not (a == b) + + def __lt__(a,b): + return (a.code < b.code) + def __le__(a,b): + return (a.code <= b.code) + def __gt__(a,b): + return (a.code > b.code) + def __ge__(a,b): + return (a.code >= b.code) + + def inv(a): + c = spec_t(spec_tables.inv_table[a.code]); + return c + + def scan(self, string): + self.code = name_to_index_or_die(string, spec_tables.name_table) + + def __str__(self): + return spec_tables.name_table[self.code] + + def __repr__(self): + return self.__str__() + +def params_from_string(params_string): + return params_string + +def from_string(value_string, params_string): + not_used = params_from_string(params_string) + idx = name_to_index_or_die(value_string, spec_tables.name_table) + obj = spec_t(idx) + return obj + +def install_table(cayley_table_with_names): + spec_tables.mul_table = [] + spec_tables.inv_table = [] + spec_tables.name_table = [] + n = len(cayley_table_with_names) + + # Populate the name table + spec_tables.name_table = copy.copy(cayley_table_with_names[0]) + + # Populate the mul table. + # + # I should do some checking on the cayley_table_with_names -- the user + # might have given me input which is non-square, or even ragged. + + # Fill it with zeroes, so the matrix has the correct size and may be + # indexed. + row = [1] * n + for i in range(0, n): + spec_tables.mul_table.append(copy.copy(row)) + + # Now put real data in. + for i in range(0, n): + for j in range(0, n): + spec_tables.mul_table[i][j] = name_to_index_or_die(cayley_table_with_names[i][j], spec_tables.name_table) + + # Populate the inv table. + # I am being crass here. I'm assuming the Cayley table is good before I + # start. The good news is that the is-group functions don't use the inv + # table. + G = [] + for i in range(0, n): + G.append(spec_t(i)) + [found, e] = sackgrp.find_id(G) + if (found): + for i in range(0, n): + x = G[i] + for j in range(0, n): + y = G[j] + z = x*y + if (z.code == e.code): + spec_tables.inv_table.append(j) + continue + + +# ================================================================ +import unittest +if __name__ == '__main__': + + class test_cases(unittest.TestCase): + def test_name_to_index(self): + pass # to be implemented + + def test_name_to_index_or_die(self): + pass # to be implemented + + def test___init__(self): + pass # to be implemented + + def test___mul__(self): + pass # to be implemented + + def test___eq__(self): + pass # to be implemented + + def test___ne__(self): + pass # to be implemented + + def test___lt__(self): + pass # to be implemented + + def test___le__(self): + pass # to be implemented + + def test___gt__(self): + pass # to be implemented + + def test___ge__(self): + pass # to be implemented + + def test_inv(self): + pass # to be implemented + + def test_scan(self): + pass # to be implemented + + def test___str__(self): + pass # to be implemented + + def test___repr__(self): + pass # to be implemented + + def test_params_from_string(self): + pass # to be implemented + + def test_from_string(self): + pass # to be implemented + + def test_install_table(self): + pass # to be implemented + + # ---------------------------------------------------------------- + unittest.main() diff --git a/ch5/sack/test_counts b/ch5/sack/test_counts new file mode 100644 index 0000000..89a5e37 --- /dev/null +++ b/ch5/sack/test_counts @@ -0,0 +1,66 @@ +#!/usr/bin/python -Wall + +import pmtc_tm +import snc_gm +import sackint + +# ---------------------------------------------------------------- +def test1(): + ct = [4, 4, 4, 3, 3, 3, 3, 3, 2, 1, 1] + # Expect [[4 3] [3 5] [2 1] [1 2]] + counts = pmtc_tm.type_to_counts(ct) + print ct + print counts + +# ---------------------------------------------------------------- +def test2(n): + reps = pmtc_tm.cycle_type_reps(n) + expect = sackint.factorial(n) + actual = 0 + print + print "N =", n + print + for rep in reps: + ct = rep.cycle_type() + num = pmtc_tm.num_ct_reps(ct) + frac = (1.0*num/expect) + + #print "%8d %.5g" % (num, frac), + #print rep, ct + + print "%.5g" % (frac), + print ct + + actual += num + print + print "actual =", actual, "expect=", expect + +# ---------------------------------------------------------------- +def test3(n): + reps = pmtc_tm.cycle_type_reps(n) + actual = 0 + for rep in reps: + ct = rep.cycle_type() + num = pmtc_tm.num_ct_reps(ct) + print num, rep, ct + actual += num + expect = sackint.factorial(n) + print + print "actual =", actual, "expect=", expect + print + Sn = snc_gm.get_elements(n) + for pi in Sn: + print pi, pi.cycle_decomposition(), pi.cycle_type() + +# ---------------------------------------------------------------- +#test2(5) +#for n in range(1, 10): + #test2(n) + #print +#test2(10) +#test2(20) +#test2(30) +#for n in range(10, 110, 10): +# test2(n) + +test3(4) diff --git a/ch5/sack/test_cycle_fill.py b/ch5/sack/test_cycle_fill.py new file mode 100644 index 0000000..a268dba --- /dev/null +++ b/ch5/sack/test_cycle_fill.py @@ -0,0 +1,63 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +import pmtc_tm +import pmti_tm +import copy + +# ---------------------------------------------------------------- +s = pmtc_tm.from_cycles([[1,2,3],[4,5]], 6) +print(s) +s = pmtc_tm.from_cycle([1,2,3], 6) +print(s) + +s = pmti_tm.from_cycles([[1,2,3],[4,5]], 6) +print(s) +s = pmti_tm.from_cycle([1,2,3], 6) +print(s) + +# ---------------------------------------------------------------- +s = pmtc_tm.from_cycle([1,2,3], 6); ct = s.cycle_type(); print((s, ct)) +s = pmtc_tm.from_cycles([[1,2,3],[4,5]], 6); ct = s.cycle_type(); print((s, ct)) +s = pmtc_tm.from_cycles([[1,2],[3],[4,5]], 6); ct = s.cycle_type(); print((s, ct)) +print() + +print("random pmtcs:") +for i in range(0, 10): + pi = pmtc_tm.rand_pmtc(4) + print(pi) +print() + +print("random pmtis:") +for i in range(0, 10): + pi = pmti_tm.rand_pmti(4) + print(pi) +print() + + +print("random pmtcs:") +for i in range(0, 10): + pi = pmtc_tm.rand_pmtc(20) + ct = pi.cycle_type() + print((pi, ct)) +print() + +print("random pmtis:") +for i in range(0, 10): + pi = pmti_tm.rand_pmti(20) + ct = pi.cycle_type() + print((pi, ct)) +print() + +print("random pmtcs:") +for i in range(0, 10): + pi = pmtc_tm.rand_pmtc(100) + ct = pi.cycle_type() + print(ct) +print() diff --git a/ch5/sack/test_rand_pmt.py b/ch5/sack/test_rand_pmt.py new file mode 100644 index 0000000..9badb6e --- /dev/null +++ b/ch5/sack/test_rand_pmt.py @@ -0,0 +1,31 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +import sys,copy +import pmtc_tm +import pmti_tm + +#count=80000 +count=100000 +#N=100 +N=6 +do_bad = False +if len(sys.argv) >= 2: + N = int(sys.argv[1]) +if len(sys.argv) == 3: + do_bad = True + +for i in range(0, count): + if do_bad: + pi = pmtc_tm.bad_rand_pmtc(N) + else: + pi = pmtc_tm.rand_pmtc(N) + #ct = pi.cycle_type() + #print ct + print(pi) diff --git a/ch5/sack/uniqc_m.py b/ch5/sack/uniqc_m.py new file mode 100644 index 0000000..60c6302 --- /dev/null +++ b/ch5/sack/uniqc_m.py @@ -0,0 +1,76 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Given a list, returns a list of pairs of elements and repetition counts. +# Example (with commas elided for legibility): +# +# Input: [ 1 1 1 2 2 3 3 3 3 5 5 1 1 ] +# Output: [ [3 1] [2 2] [4 3] [2 5] [2 1] ] +# +# I.e. there is a run of 3 1's, then a run of 2 2's, then a run of 4 3's, then +# 2 5's, then 2 1's. This similar to the output of the Unix "uniq -c" command, +# if the input were one number per line. However, uniq -c puts the columns in +# reverse order from what I do here. +# ================================================================ +# John Kerl +# kerl.john.r@gmail.com +# 2008-01-22 +# ================================================================ + +def uniqc(list): + rv = [] + n = len(list) + + if (n == 0): + return [] + + curri = 0 + nexti = 1 + head = list[curri] + count = 1 + + while (curri < n): + if (nexti == n): # Last element in the list + if (list[curri] == head): + rv.append([head, count]) + else: + rv.append([list[curri], 1]) + elif (list[curri] == list[nexti]): + count += 1 + else: + rv.append([head, count]) + head = list[nexti] + count = 1 + curri += 1 + nexti += 1 + + return rv + +# ---------------------------------------------------------------- +# Test cases: + +#def test1(list): +# #print list +# #print uniqc(list) +# #print +# +# # Pipe the output to, say, expand -20. +# print list, "\t", uniqc(list) +# +#def test_uniqc(): +# test1([]) +# test1([8]) +# test1([8, 8]) +# test1([8, 9]) +# test1([9, 8]) +# test1([9, 9]) +# test1([8, 8, 8]) +# test1([8, 8, 9]) +# test1([8, 9, 8]) +# test1([8, 9, 9]) +# test1([9, 8, 8]) +# test1([9, 8, 9]) +# test1([9, 9, 8]) +# test1([9, 9, 9]) +# +#test_uniqc() diff --git a/ch5/sack/v4_gm.py b/ch5/sack/v4_gm.py new file mode 100644 index 0000000..284d85a --- /dev/null +++ b/ch5/sack/v4_gm.py @@ -0,0 +1,20 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +# Group module for the Klein-4 group ("Viergruppe" in German, hence the +# traditional "V4"). + +import v4_tm + +def get_elements_str(params_string): + not_used = v4_tm.params_from_string(params_string) + elts = list(range(0, 4)) + for i in range(0, 4): + elts[i] = v4_tm.v4_t(i) + return elts diff --git a/ch5/sack/v4_tm.py b/ch5/sack/v4_tm.py new file mode 100644 index 0000000..0679e57 --- /dev/null +++ b/ch5/sack/v4_tm.py @@ -0,0 +1,138 @@ +#!/usr/bin/python -Wall + +# ================================================================ +# Please see LICENSE.txt in the same directory as this file. +# John Kerl +# kerl.john.r@gmail.com +# 2007-05-31 +# ================================================================ + +import re + +# Type module for the Klein-4 group ("Viergruppe" in German, hence the +# traditional "V4"). + +# e a b c +# a e c b +# b c e a +# c b a e + +# v4_table = [ +# [ 0,1,2,3 ], +# [ 1,0,3,2 ], +# [ 2,3,0,1 ], +# [ 3,2,1,0 ]] + +class v4_t: + #code = 0 + + def __init__(self, argcode): + self.code = argcode & 3 + + def __eq__(a,b): + return (a.code == b.code) + + def __ne__(a,b): + return not (a == b) + + def __mul__(a,b): + #c = v4_t(v4_table[a.code][b.code]); + c = v4_t(a.code ^ b.code) + return c + + def inv(a): + c = v4_t(a.code) + return c + + def scan(self, string): + if (string == "e"): + self.__init__(0) + elif (string == "a"): + self.__init__(1) + elif (string == "b"): + self.__init__(2) + elif (string == "c"): + self.__init__(3) + else: + raise IOError + + def __str__(self): + if (self.code == 0): + return "e" + elif (self.code == 1): + return "a" + elif (self.code == 2): + return "b" + elif (self.code == 3): + return "c" + else: + raise IOError + + def __repr__(self): + return self.__str__() + +def params_from_string(params_string): + return 0 + +def from_string(value_string, params_string): + not_used = params_from_string(params_string) + obj = v4_t(0) + obj.scan(value_string) + return obj + +#x = v4_t(3) +#y = v4_t(2) +#print x +#print y +#z = x * y +#print z +#z.scan("a") +#print z +#print + +#for i in range(0, 4): +# for j in range(0, 4): +# x = v4_t(i) +# y = v4_t(j) +# z = x * y +# print x, y, z +# print + + +# ================================================================ +import unittest +if __name__ == '__main__': + + class test_cases(unittest.TestCase): + def test___init__(self): + pass # to be implemented + + def test___eq__(self): + pass # to be implemented + + def test___ne__(self): + pass # to be implemented + + def test___mul__(self): + pass # to be implemented + + def test_inv(self): + pass # to be implemented + + def test_scan(self): + pass # to be implemented + + def test___str__(self): + pass # to be implemented + + def test___repr__(self): + pass # to be implemented + + def test_params_from_string(self): + pass # to be implemented + + def test_from_string(self): + pass # to be implemented + + # ---------------------------------------------------------------- + unittest.main() diff --git a/ch5/sklearn-audio-classification-master.zip b/ch5/sklearn-audio-classification-master.zip new file mode 100644 index 0000000..94f3ebb Binary files /dev/null and b/ch5/sklearn-audio-classification-master.zip differ