-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy path__init__.py
423 lines (355 loc) · 15.9 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
"""
©Copyright 2020 University of Florida Research Foundation, Inc. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
import os
import pickle
import logging
import torch
import torchvision
import torchvision.transforms as transforms
from torch.utils.data.dataset import Subset
from kernet import utils
logger = logging.getLogger()
CIFAR10_2 = {
'cifar10deau': ['deer', 'automobile'],
'cifar10hotr': ['horse', 'truck'],
'cifar10detr': ['deer', 'truck'],
'cifar10hoau': ['horse', 'automobile'],
'cifar10deca': ['deer', 'cat'],
'cifar10hodo': ['horse', 'dog'],
'cifar10dedo': ['deer', 'dog'],
'cifar10hoca': ['horse', 'cat'],
'cifar10auca': ['automobile', 'cat'],
'cifar10trdo': ['truck', 'dog'],
'cifar10audo': ['automobile', 'dog'],
'cifar10trca': ['truck', 'cat'],
'cifar10deho': ['deer', 'horse'],
'cifar10autr': ['automobile', 'truck'],
'cifar10cado': ['cat', 'dog']
}
NAMES = locals()
def get_option_setter(dataset_name: str):
fn_name = dataset_name + '_modify_commandline_options'
if fn_name in NAMES:
return NAMES[fn_name]
else:
raise NotImplementedError()
def get_dataloaders(opt):
if opt.is_train:
tr = [
transforms.ToTensor(),
transforms.Normalize(opt.normalize_mean, opt.normalize_std)
]
if getattr(opt, 'augment_data', None):
# opt will have augment_data as an attr during training. During testing,
# the only case in which training data will be loaded will be for the
# kernelized modules to get centers. These modules will load saved centers
# and overwrite the centers loaded here anyway so this expression is safe
tr_extra = [
transforms.RandomCrop(32 if (opt.dataset.startswith(
'cifar10') or opt.dataset in ['svhn']) else 28, padding=4),
transforms.RandomHorizontalFlip()
]
if opt.dataset == 'cifar100':
tr_extra.append(transforms.RandomRotation(15))
tr = tr_extra + tr
train_transform = transforms.Compose(tr)
if opt.dataset == 'cifar100':
trainset = torchvision.datasets.CIFAR100(
root='./data', train=True,
download=True, transform=train_transform)
elif opt.dataset.startswith('cifar10'):
trainset = torchvision.datasets.CIFAR10(
root='./data', train=True,
download=True, transform=train_transform)
if opt.dataset in CIFAR10_2:
trainset = utils.get_cifar10_subset(
trainset, CIFAR10_2[opt.dataset])
elif opt.dataset == 'mnist':
trainset = torchvision.datasets.MNIST(
root='./data', train=True,
download=True, transform=train_transform)
elif opt.dataset == 'fashionmnist':
trainset = torchvision.datasets.FashionMNIST(
root='./data', train=True,
download=True, transform=train_transform)
elif opt.dataset == 'svhn':
trainset = torchvision.datasets.SVHN(
root='./data', split='train',
download=True, transform=train_transform)
else:
raise NotImplementedError()
logger.info("dataset [train: %s] was created" % (
type(trainset).__name__,
))
logger.debug("transformations:\n" + str(train_transform))
# sample a subset from the original training set
trainset = _get_subset(trainset, opt.max_ori_trainset_size, opt.ori_balanced,
opt.ori_train_subset_indices, 'ori_train_subset_indices', opt)
if opt.n_val > 0:
# for regular datasets, the validation set is simply the last opt.n_val elements in a randomly
# permuted training set. Random permutation is needed to break the original order of the
# dataset. This is critical for datasets that are ordered by, e.g., class labels
if opt.n_val > len(trainset):
raise ValueError(
'Validation set size cannot exceed that of training set.')
if opt.dataset_rand_idx is not None:
rand_idx = pickle.load(open(opt.dataset_rand_idx, 'rb'))
else:
rand_idx = torch.randperm(len(trainset)).tolist()
# save rand_idx for reproducibility
file_name = os.path.join(opt.save_dir, 'dataset_rand_idx')
with open(file_name + '.txt', 'wt') as f:
f.write(str(rand_idx))
with open(file_name + '.pkl', 'wb') as f:
pickle.dump(rand_idx, f)
trainset, valset = Subset(
trainset, rand_idx[:-opt.n_val]), Subset(trainset, rand_idx[-opt.n_val:])
trainset = _get_subset(trainset, opt.max_trainset_size, opt.balanced,
opt.train_subset_indices, 'train_subset_indices', opt)
train_loader = torch.utils.data.DataLoader(
trainset, batch_size=opt.batch_size,
shuffle=opt.shuffle, num_workers=opt.n_workers,
pin_memory=True)
if opt.n_val > 0:
val_loader = torch.utils.data.DataLoader(
valset, batch_size=opt.batch_size,
shuffle=opt.shuffle, num_workers=opt.n_workers,
pin_memory=True)
else:
val_loader = None
return train_loader, val_loader
else:
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(opt.normalize_mean, opt.normalize_std)
])
if opt.dataset == 'cifar100':
testset = torchvision.datasets.CIFAR100(
root='./data', train=False,
download=True, transform=test_transform)
elif opt.dataset.startswith('cifar10'):
testset = torchvision.datasets.CIFAR10(
root='./data', train=False,
download=True, transform=test_transform)
if opt.dataset in CIFAR10_2:
testset = utils.get_cifar10_subset(
testset, CIFAR10_2[opt.dataset])
elif opt.dataset == 'mnist':
testset = torchvision.datasets.MNIST(
root='./data', train=False,
download=True, transform=test_transform)
elif opt.dataset == 'fashionmnist':
testset = torchvision.datasets.FashionMNIST(
root='./data', train=False,
download=True, transform=test_transform)
elif opt.dataset == 'svhn':
testset = torchvision.datasets.SVHN(
root='./data', split='test',
download=True, transform=test_transform)
else:
raise NotImplementedError()
logger.info("dataset [test: %s] was created" % (
type(testset).__name__
))
logger.debug("transformations:\n" + str(test_transform))
testset = _get_subset(testset, opt.max_testset_size, opt.balanced)
test_loader = torch.utils.data.DataLoader(
testset, batch_size=opt.batch_size,
shuffle=False, num_workers=opt.n_workers,
pin_memory=True)
return test_loader
def _get_subset(dataset, size: int, balanced=False, saved_indices=None, save_name=None, opt=None):
"""
Get a random subset from a torch dataset.
If indices are provided, sample according to the given indices.
Args:
dataset: torch.utils.data.Dataset
The dataset to sample from.
size: int
The size of the subset.
balanced: (optional) bool
If True, the sampled subset will have balanced classes.
Only effective when size is smaller than the actual dataset size.
Defaults to False.
saved_indices: (optional) str
Path to saved indices, if available.
save_name: (optional) str
Path to save indices, if available.
opt: (optional)
An opt object.
Returns:
A torch.utils.data.Dataset.
"""
indices = None
if saved_indices is not None:
indices = pickle.load(open(saved_indices, 'rb'))
logger.info(
f'Successfully loaded a sequence of saved indices of length {len(indices)}.')
logger.debug(f'These indices are {indices}.')
dataset = Subset(dataset, indices=indices)
logger.info('Initiated a subset with the given indices.')
else:
if size <= len(dataset):
if type(size) != int:
raise TypeError(
f'size should be of int type, got {type(size)} instead')
if not balanced:
dataset, _ = torch.utils.data.random_split(
dataset, [size, len(dataset) - size])
indices = dataset.indices
else:
if isinstance(dataset, Subset):
dataset = dataset.dataset
try:
indices = utils.supervised_sample(
torch.tensor(dataset.data), torch.tensor(
dataset.targets),
n=size, indices_only=True
)
except AttributeError:
# SVHN uses "labels"
indices = utils.supervised_sample(
torch.tensor(dataset.data), torch.tensor(
dataset.labels),
n=size, indices_only=True
)
dataset = Subset(dataset, indices=indices)
if indices is not None and save_name is not None and opt is not None:
try:
# may be a torch tensor
indices = list(indices.numpy())
except:
indices = list(indices)
file_name = os.path.join(opt.save_dir, save_name)
with open(file_name + '.txt', 'wt') as f:
f.write(str(indices))
with open(file_name + '.pkl', 'wb') as f:
pickle.dump(indices, f)
return dataset
#########
# option modifiers
#########
def cifar10_modify_commandline_options(parser, **kwargs):
parser.set_defaults(n_classes=10)
parser.set_defaults(normalize_mean='0.49139968,0.48215841,0.44653091')
parser.set_defaults(normalize_std='0.24703223,0.24348513,0.26158784')
parser.set_defaults(data_shape='(3, 32, 32)')
return parser
# TODO stds of these binary classification variants of CIFAR-10 are incorrect (they were
# computed with an older version of utils.data.get_mean_and_std)
def cifar10deau_modify_commandline_options(parser, **kwargs):
parser.set_defaults(n_classes=2)
parser.set_defaults(normalize_mean='0.4714,0.4599,0.4127')
parser.set_defaults(normalize_std='0.2030,0.1974,0.1928')
parser.set_defaults(data_shape='(3, 32, 32)')
return parser
def cifar10hotr_modify_commandline_options(parser, **kwargs):
parser.set_defaults(n_classes=2)
parser.set_defaults(normalize_mean='0.5003,0.4826,0.4475')
parser.set_defaults(normalize_std='0.2258,0.2288,0.2337')
parser.set_defaults(data_shape='(3, 32, 32)')
return parser
def cifar10detr_modify_commandline_options(parser, **kwargs):
parser.set_defaults(n_classes=2)
parser.set_defaults(normalize_mean='0.4851,0.4753,0.4281')
parser.set_defaults(normalize_std='0.2064,0.2044,0.2028')
parser.set_defaults(data_shape='(3, 32, 32)')
return parser
def cifar10hoau_modify_commandline_options(parser, **kwargs):
parser.set_defaults(n_classes=2)
parser.set_defaults(normalize_mean='0.4866,0.4672,0.4320')
parser.set_defaults(normalize_std='0.2223,0.2218,0.2237')
parser.set_defaults(data_shape='(3, 32, 32)')
return parser
def cifar10deca_modify_commandline_options(parser, **kwargs):
parser.set_defaults(n_classes=2)
parser.set_defaults(normalize_mean='0.4835,0.4608,0.3969')
parser.set_defaults(normalize_std='0.1911,0.1862,0.1803')
parser.set_defaults(data_shape='(3, 32, 32)')
return parser
def cifar10hodo_modify_commandline_options(parser, **kwargs):
parser.set_defaults(n_classes=2)
parser.set_defaults(normalize_mean='0.5009,0.4723,0.4167')
parser.set_defaults(normalize_std='0.2110,0.2108,0.2115')
parser.set_defaults(data_shape='(3, 32, 32)')
return parser
def cifar10dedo_modify_commandline_options(parser, **kwargs):
parser.set_defaults(n_classes=2)
parser.set_defaults(normalize_mean='0.4858,0.4649,0.3974')
parser.set_defaults(normalize_std='0.1916,0.1863,0.1805')
parser.set_defaults(data_shape='(3, 32, 32)')
return parser
def cifar10hoca_modify_commandline_options(parser, **kwargs):
parser.set_defaults(n_classes=2)
parser.set_defaults(normalize_mean='0.4987,0.4681,0.4162')
parser.set_defaults(normalize_std='0.2104,0.2107,0.2113')
parser.set_defaults(data_shape='(3, 32, 32)')
return parser
def cifar10auca_modify_commandline_options(parser, **kwargs):
parser.set_defaults(n_classes=2)
parser.set_defaults(normalize_mean='0.4833,0.4555,0.4314')
parser.set_defaults(normalize_std='0.2223,0.2186,0.2198')
parser.set_defaults(data_shape='(3, 32, 32)')
return parser
def cifar10trdo_modify_commandline_options(parser, **kwargs):
parser.set_defaults(n_classes=2)
parser.set_defaults(normalize_mean='0.4993,0.4750,0.4473')
parser.set_defaults(normalize_std='0.2263,0.2256,0.2300')
parser.set_defaults(data_shape='(3, 32, 32)')
return parser
def cifar10audo_modify_commandline_options(parser, **kwargs):
parser.set_defaults(n_classes=2)
parser.set_defaults(normalize_mean='0.4856,0.4596,0.4319')
parser.set_defaults(normalize_std='0.2228,0.2187,0.2199')
parser.set_defaults(data_shape='(3, 32, 32)')
return parser
def cifar10trca_modify_commandline_options(parser, **kwargs):
parser.set_defaults(n_classes=2)
parser.set_defaults(normalize_mean='0.4971,0.4709,0.4468')
parser.set_defaults(normalize_std='0.2257,0.2255,0.2298')
parser.set_defaults(data_shape='(3, 32, 32)')
return parser
def cifar10deho_modify_commandline_options(parser, **kwargs):
parser.set_defaults(n_classes=2)
parser.set_defaults(normalize_mean='0.4868,0.4725,0.3975')
parser.set_defaults(normalize_std='0.1911,0.1895,0.1843')
parser.set_defaults(data_shape='(3, 32, 32)')
return parser
def cifar10autr_modify_commandline_options(parser, **kwargs):
parser.set_defaults(n_classes=2)
parser.set_defaults(normalize_mean='0.4849,0.4699,0.4626')
parser.set_defaults(normalize_std='0.2376,0.2367,0.2422')
parser.set_defaults(data_shape='(3, 32, 32)')
return parser
def cifar10cado_modify_commandline_options(parser, **kwargs):
parser.set_defaults(n_classes=2)
parser.set_defaults(normalize_mean='0.4977,0.4605,0.4160')
parser.set_defaults(normalize_std='0.2109,0.2075,0.2075')
parser.set_defaults(data_shape='(3, 32, 32)')
return parser
def mnist_modify_commandline_options(parser, **kwargs):
parser.set_defaults(n_classes=10)
parser.set_defaults(normalize_mean='0.1307')
parser.set_defaults(normalize_std='0.3081')
parser.set_defaults(data_shape='(1, 28, 28)')
return parser
def fashionmnist_modify_commandline_options(parser, **kwargs):
parser.set_defaults(n_classes=10)
parser.set_defaults(normalize_mean='0.2861')
parser.set_defaults(normalize_std='0.3530')
parser.set_defaults(data_shape='(1, 28, 28)')
return parser
def cifar100_modify_commandline_options(parser, **kwargs):
parser.set_defaults(n_classes=100)
parser.set_defaults(normalize_mean='0.50707516,0.48654887,0.44091784')
parser.set_defaults(normalize_std='0.26733429,0.25643846,0.27615047')
parser.set_defaults(data_shape='(3, 32, 32)')
return parser
def svhn_modify_commandline_options(parser, **kwargs):
parser.set_defaults(n_classes=10)
parser.set_defaults(normalize_mean='0.4376821,0.4437697,0.47280442')
parser.set_defaults(normalize_std='0.19803012,0.20101562,0.19703614')
parser.set_defaults(data_shape='(3, 32, 32)')
return parser