-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmodular_train.py
172 lines (151 loc) · 6.48 KB
/
modular_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
"""
©Copyright 2020 University of Florida Research Foundation, Inc. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
Modular training example.
"""
import logging
import torch
import kernet.utils as utils
import kernet.models as models
import kernet.layers.loss as losses
import kernet.datasets as datasets
from kernet.parsers import TrainParser
from kernet.trainers.trainer import Trainer
from kernet.engines import train_hidden, train_output
loss_names = ['srs_raw', 'srs_nmse', 'srs_alignment',
'srs_upper_tri_alignment', 'srs_contrastive', 'srs_log_contrastive'
]
def modify_commandline_options(parser, **kwargs):
parser.add_argument('--hidden_objective',
choices=loss_names + [_ + '_neo' for _ in loss_names],
default='srs_alignment',
help='Proxy hidden objective.')
parser.add_argument('--use_proj_head', type=utils.str2bool,
nargs='?', const=True, default=False,
help='Whether to attach a trainable two-layer MLP projection head to the ' +
'output of the hidden modules during training. If added, the heads project ' +
'all activations to the same Euclidean space with dimension determined by head_size.')
parser.add_argument('--split_mode', type=int, default=1,
help='The mode to perform the split. Effective only for certain networks.')
parser.add_argument('--head_size', type=int, default=512,
help='Output size of the projection head.')
n_parts = kwargs["n_parts"]
for i in range(1, n_parts + 1):
parser.add_argument('--lr{}'.format(i), type=float, default=1e-3,
help='Initial learning rate for part {}.'.format(i))
parser.add_argument('--momentum{}'.format(i), type=float, default=.9,
help='Momentum for the SGD optimizer for part {}.'.format(i))
parser.add_argument('--weight_decay{}'.format(i), type=float, default=5e-4,
help='L2 regularization on the model weights for part {}.'.format(i))
parser.add_argument('--n_epochs{}'.format(i), type=int, default=200,
help='The number of training epochs for part {}.'.format(i))
return parser
def main():
opt = TrainParser().parse()
# set up logger
utils.set_logger(opt=opt, filename='train.log', filemode='w')
logger = logging.getLogger()
if opt.seed:
utils.make_deterministic(opt.seed)
loader, val_loader = datasets.get_dataloaders(opt)
model = models.get_model(opt)
model = model.to(device)
modules, params = model.split(n_parts=opt.n_parts, mode=opt.split_mode)
trainer_cls = Trainer
output_layer = list(model.children())[-1]
hidden_criterion = getattr(losses, opt.hidden_objective)(
output_layer.phi, opt.n_classes)
if opt.loss == 'xe':
output_criterion = torch.nn.CrossEntropyLoss()
elif opt.loss == 'hinge':
output_criterion = torch.nn.MultiMarginLoss()
optimizers, trainers = [], []
for i in range(1, opt.n_parts + 1):
optimizers.append(utils.get_optimizer(
opt,
params=params[i - 1],
lr=getattr(opt, 'lr{}'.format(i)),
weight_decay=getattr(opt, 'weight_decay{}'.format(i)),
momentum=getattr(opt, 'momentum{}'.format(i))
))
trainer = trainer_cls(
opt=opt,
model=modules[i - 1],
set_eval=modules[i - 2] if i > 1 else None,
optimizer=optimizers[i - 1],
val_metric_name=opt.hidden_objective if i < opt.n_parts else 'acc',
val_metric_obj='max'
)
trainers.append(trainer)
if opt.load_model:
if i < opt.n_parts: # load hidden layer
try:
trainers[i - 1].load('net_part{}.pth'.format(i))
except RuntimeError:
logger.warning(
f'For some reason (likely mismatched shapes between weights), net_part{i}.pth was not loaded.')
else: # load output layer
try:
trainers[i - 1].load('net.pth')
except RuntimeError:
logger.warning(
f'For some reason (likely mismatched shapes between weights), net.pth was not loaded.')
# save init model
trainers[0].save(
epoch=trainers[0].start_epoch - 1,
val_metric_value=trainers[0].best_val_metric,
model_name='net_part{}.pth'.format(1),
force_save=True
)
# train the first hidden module
train_hidden(opt, n_epochs=opt.n_epochs1, trainer=trainers[0],
loader=loader, val_loader=val_loader, criterion=hidden_criterion, part_id=1, device=device)
# train other hidden modules
for i in range(2, opt.n_parts):
# save init model
trainers[i - 1].save(
epoch=trainers[i - 1].start_epoch - 1,
val_metric_value=trainers[i - 1].best_val_metric,
model_name='net_part{}.pth'.format(i),
force_save=True
)
# prepare centers
utils.update_centers_eval(model)
# exclude certain network part(s) from the graph to make things faster
utils.exclude_during_backward(modules[i - 2])
train_hidden(
opt,
n_epochs=getattr(opt, 'n_epochs{}'.format(i)),
trainer=trainers[i - 1],
loader=loader,
val_loader=val_loader,
criterion=hidden_criterion,
part_id=i,
device=device
)
# save init model
trainers[-1].save(
epoch=trainers[-1].start_epoch - 1,
val_metric_value=trainers[-1].best_val_metric,
model_name='net.pth',
force_save=True
)
# train output layer
utils.update_centers_eval(model)
utils.exclude_during_backward(modules[-2])
train_output(
opt,
n_epochs=getattr(opt, 'n_epochs{}'.format(opt.n_parts)),
trainer=trainers[-1],
loader=loader,
val_loader=val_loader,
criterion=output_criterion,
part_id=opt.n_parts,
device=device
)
utils.include_during_backward(modules[-2])
if __name__ == '__main__':
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if device == 'cuda':
torch.backends.cudnn.benchmark = True
main()