-
Notifications
You must be signed in to change notification settings - Fork 420
/
Copy pathaudiolib.py
298 lines (239 loc) · 11.5 KB
/
audiolib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# -*- coding: utf-8 -*-
"""
@author: chkarada
"""
import os
import numpy as np
import soundfile as sf
import subprocess
import glob
import librosa
import random
import tempfile
EPS = np.finfo(float).eps
np.random.seed(0)
def is_clipped(audio, clipping_threshold=0.99):
return any(abs(audio) > clipping_threshold)
def normalize(audio, target_level=-25):
'''Normalize the signal to the target level'''
rms = (audio ** 2).mean() ** 0.5
scalar = 10 ** (target_level / 20) / (rms+EPS)
audio = audio * scalar
return audio
def normalize_segmental_rms(audio, rms, target_level=-25):
'''Normalize the signal to the target level
based on segmental RMS'''
scalar = 10 ** (target_level / 20) / (rms+EPS)
audio = audio * scalar
return audio
def audioread(path, norm=False, start=0, stop=None, target_level=-25):
'''Function to read audio'''
path = os.path.abspath(path)
if not os.path.exists(path):
raise ValueError("[{}] does not exist!".format(path))
try:
audio, sample_rate = sf.read(path, start=start, stop=stop)
except RuntimeError: # fix for sph pcm-embedded shortened v2
print('WARNING: Audio type not supported')
return (None, None)
if len(audio.shape) == 1: # mono
if norm:
rms = (audio ** 2).mean() ** 0.5
scalar = 10 ** (target_level / 20) / (rms+EPS)
audio = audio * scalar
else: # multi-channel
audio = audio.T
audio = audio.sum(axis=0)/audio.shape[0]
if norm:
audio = normalize(audio, target_level)
return audio, sample_rate
def audiowrite(destpath, audio, sample_rate=16000, norm=False, target_level=-25, \
clipping_threshold=0.99, clip_test=False):
'''Function to write audio'''
if clip_test:
if is_clipped(audio, clipping_threshold=clipping_threshold):
raise ValueError("Clipping detected in audiowrite()! " + \
destpath + " file not written to disk.")
if norm:
audio = normalize(audio, target_level)
max_amp = max(abs(audio))
if max_amp >= clipping_threshold:
audio = audio/max_amp * (clipping_threshold-EPS)
destpath = os.path.abspath(destpath)
destdir = os.path.dirname(destpath)
if not os.path.exists(destdir):
os.makedirs(destdir)
sf.write(destpath, audio, sample_rate)
return
def add_reverb(sasxExe, input_wav, filter_file, output_wav):
''' Function to add reverb'''
command_sasx_apply_reverb = "{0} -r {1} \
-f {2} -o {3}".format(sasxExe, input_wav, filter_file, output_wav)
subprocess.call(command_sasx_apply_reverb)
return output_wav
def add_clipping(audio, max_thresh_perc=0.8):
'''Function to add clipping'''
threshold = max(abs(audio))*max_thresh_perc
audioclipped = np.clip(audio, -threshold, threshold)
return audioclipped
def adsp_filter(Adspvqe, nearEndInput, nearEndOutput, farEndInput):
command_adsp_clean = "{0} --breakOnErrors 0 --sampleRate 16000 --useEchoCancellation 0 \
--operatingMode 2 --useDigitalAgcNearend 0 --useDigitalAgcFarend 0 \
--useVirtualAGC 0 --useComfortNoiseGenerator 0 --useAnalogAutomaticGainControl 0 \
--useNoiseReduction 0 --loopbackInputFile {1} --farEndInputFile {2} \
--nearEndInputFile {3} --nearEndOutputFile {4}".format(Adspvqe,
farEndInput, farEndInput, nearEndInput, nearEndOutput)
subprocess.call(command_adsp_clean)
def snr_mixer(params, clean, noise, snr, target_level=-25, clipping_threshold=0.99):
'''Function to mix clean speech and noise at various SNR levels'''
cfg = params['cfg']
if len(clean) > len(noise):
noise = np.append(noise, np.zeros(len(clean)-len(noise)))
else:
clean = np.append(clean, np.zeros(len(noise)-len(clean)))
# Normalizing to -25 dB FS
clean = clean/(max(abs(clean))+EPS)
clean = normalize(clean, target_level)
rmsclean = (clean**2).mean()**0.5
noise = noise/(max(abs(noise))+EPS)
noise = normalize(noise, target_level)
rmsnoise = (noise**2).mean()**0.5
# Set the noise level for a given SNR
noisescalar = rmsclean / (10**(snr/20)) / (rmsnoise+EPS)
noisenewlevel = noise * noisescalar
# Mix noise and clean speech
noisyspeech = clean + noisenewlevel
# Randomly select RMS value between -15 dBFS and -35 dBFS and normalize noisyspeech with that value
# There is a chance of clipping that might happen with very less probability, which is not a major issue.
noisy_rms_level = np.random.randint(params['target_level_lower'], params['target_level_upper'])
rmsnoisy = (noisyspeech**2).mean()**0.5
scalarnoisy = 10 ** (noisy_rms_level / 20) / (rmsnoisy+EPS)
noisyspeech = noisyspeech * scalarnoisy
clean = clean * scalarnoisy
noisenewlevel = noisenewlevel * scalarnoisy
# Final check to see if there are any amplitudes exceeding +/- 1. If so, normalize all the signals accordingly
if is_clipped(noisyspeech):
noisyspeech_maxamplevel = max(abs(noisyspeech))/(clipping_threshold-EPS)
noisyspeech = noisyspeech/noisyspeech_maxamplevel
clean = clean/noisyspeech_maxamplevel
noisenewlevel = noisenewlevel/noisyspeech_maxamplevel
noisy_rms_level = int(20*np.log10(scalarnoisy/noisyspeech_maxamplevel*(rmsnoisy+EPS)))
return clean, noisenewlevel, noisyspeech, noisy_rms_level
def segmental_snr_mixer(params, clean, noise, snr, target_level=-25, clipping_threshold=0.99):
'''Function to mix clean speech and noise at various segmental SNR levels'''
cfg = params['cfg']
if len(clean) > len(noise):
noise = np.append(noise, np.zeros(len(clean)-len(noise)))
else:
clean = np.append(clean, np.zeros(len(noise)-len(clean)))
clean = clean/(max(abs(clean))+EPS)
noise = noise/(max(abs(noise))+EPS)
rmsclean, rmsnoise = active_rms(clean=clean, noise=noise)
clean = normalize_segmental_rms(clean, rms=rmsclean, target_level=target_level)
noise = normalize_segmental_rms(noise, rms=rmsnoise, target_level=target_level)
# Set the noise level for a given SNR
noisescalar = rmsclean / (10**(snr/20)) / (rmsnoise+EPS)
noisenewlevel = noise * noisescalar
# Mix noise and clean speech
noisyspeech = clean + noisenewlevel
# Randomly select RMS value between -15 dBFS and -35 dBFS and normalize noisyspeech with that value
# There is a chance of clipping that might happen with very less probability, which is not a major issue.
noisy_rms_level = np.random.randint(params['target_level_lower'], params['target_level_upper'])
rmsnoisy = (noisyspeech**2).mean()**0.5
scalarnoisy = 10 ** (noisy_rms_level / 20) / (rmsnoisy+EPS)
noisyspeech = noisyspeech * scalarnoisy
clean = clean * scalarnoisy
noisenewlevel = noisenewlevel * scalarnoisy
# Final check to see if there are any amplitudes exceeding +/- 1. If so, normalize all the signals accordingly
if is_clipped(noisyspeech):
noisyspeech_maxamplevel = max(abs(noisyspeech))/(clipping_threshold-EPS)
noisyspeech = noisyspeech/noisyspeech_maxamplevel
clean = clean/noisyspeech_maxamplevel
noisenewlevel = noisenewlevel/noisyspeech_maxamplevel
noisy_rms_level = int(20*np.log10(scalarnoisy/noisyspeech_maxamplevel*(rmsnoisy+EPS)))
return clean, noisenewlevel, noisyspeech, noisy_rms_level
def active_rms(clean, noise, fs=16000, energy_thresh=-50):
'''Returns the clean and noise RMS of the noise calculated only in the active portions'''
window_size = 100 # in ms
window_samples = int(fs*window_size/1000)
sample_start = 0
noise_active_segs = []
clean_active_segs = []
while sample_start < len(noise):
sample_end = min(sample_start + window_samples, len(noise))
noise_win = noise[sample_start:sample_end]
clean_win = clean[sample_start:sample_end]
noise_seg_rms = (noise_win**2).mean()**0.5
# Considering frames with energy
if noise_seg_rms > energy_thresh:
noise_active_segs = np.append(noise_active_segs, noise_win)
clean_active_segs = np.append(clean_active_segs, clean_win)
sample_start += window_samples
if len(noise_active_segs)!=0:
noise_rms = (noise_active_segs**2).mean()**0.5
else:
noise_rms = EPS
if len(clean_active_segs)!=0:
clean_rms = (clean_active_segs**2).mean()**0.5
else:
clean_rms = EPS
return clean_rms, noise_rms
def activitydetector(audio, fs=16000, energy_thresh=0.13, target_level=-25):
'''Return the percentage of the time the audio signal is above an energy threshold'''
audio = normalize(audio, target_level)
window_size = 50 # in ms
window_samples = int(fs*window_size/1000)
sample_start = 0
cnt = 0
prev_energy_prob = 0
active_frames = 0
a = -1
b = 0.2
alpha_rel = 0.05
alpha_att = 0.8
while sample_start < len(audio):
sample_end = min(sample_start + window_samples, len(audio))
audio_win = audio[sample_start:sample_end]
frame_rms = 20*np.log10(sum(audio_win**2)+EPS)
frame_energy_prob = 1./(1+np.exp(-(a+b*frame_rms)))
if frame_energy_prob > prev_energy_prob:
smoothed_energy_prob = frame_energy_prob*alpha_att + prev_energy_prob*(1-alpha_att)
else:
smoothed_energy_prob = frame_energy_prob*alpha_rel + prev_energy_prob*(1-alpha_rel)
if smoothed_energy_prob > energy_thresh:
active_frames += 1
prev_energy_prob = frame_energy_prob
sample_start += window_samples
cnt += 1
perc_active = active_frames/cnt
return perc_active
def resampler(input_dir, target_sr=16000, ext='*.wav'):
'''Resamples the audio files in input_dir to target_sr'''
files = glob.glob(f"{input_dir}/"+ext)
for pathname in files:
print(pathname)
try:
audio, fs = audioread(pathname)
audio_resampled = librosa.core.resample(audio, fs, target_sr)
audiowrite(pathname, audio_resampled, target_sr)
except:
continue
def audio_segmenter(input_dir, dest_dir, segment_len=10, ext='*.wav'):
'''Segments the audio clips in dir to segment_len in secs'''
files = glob.glob(f"{input_dir}/"+ext)
for i in range(len(files)):
audio, fs = audioread(files[i])
if len(audio) > (segment_len*fs) and len(audio)%(segment_len*fs) != 0:
audio = np.append(audio, audio[0 : segment_len*fs - (len(audio)%(segment_len*fs))])
if len(audio) < (segment_len*fs):
while len(audio) < (segment_len*fs):
audio = np.append(audio, audio)
audio = audio[:segment_len*fs]
num_segments = int(len(audio)/(segment_len*fs))
audio_segments = np.split(audio, num_segments)
basefilename = os.path.basename(files[i])
basename, ext = os.path.splitext(basefilename)
for j in range(len(audio_segments)):
newname = basename+'_'+str(j)+ext
destpath = os.path.join(dest_dir,newname)
audiowrite(destpath, audio_segments[j], fs)