-
Notifications
You must be signed in to change notification settings - Fork 448
/
Copy pathtrain.py
141 lines (110 loc) · 4.87 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import tensorflow as tf
import numpy as np
import os
from options import Option
from reconstruction_model import *
from data_loader import *
from utils import *
import argparse
###############################################################################################
# training stage
###############################################################################################
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# training data and validation data
def parse_args():
desc = "Deep3DFaceReconstruction"
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('--data_path', type=str, default='./processed_data', help='training data folder')
parser.add_argument('--val_data_path', type=str, default='./processed_data', help='validation data folder')
parser.add_argument('--model_name', type=str, default='./model_test', help='model name')
return parser.parse_args()
# initialize weights for resnet and facenet
def restore_weights_and_initialize(opt):
var_list = tf.trainable_variables()
g_list = tf.global_variables()
# add batch normalization params into trainable variables
bn_moving_vars = [g for g in g_list if 'moving_mean' in g.name]
bn_moving_vars += [g for g in g_list if 'moving_variance' in g.name]
var_list +=bn_moving_vars
# create saver to save and restore weights
resnet_vars = [v for v in var_list if 'resnet_v1_50' in v.name]
facenet_vars = [v for v in var_list if 'InceptionResnetV1' in v.name]
saver_resnet = tf.train.Saver(var_list = resnet_vars)
saver_facenet = tf.train.Saver(var_list = facenet_vars)
saver = tf.train.Saver(var_list = resnet_vars + [v for v in var_list if 'fc-' in v.name],max_to_keep = 50)
# create session
sess = tf.InteractiveSession(config = opt.config)
# create summary op
train_writer = tf.summary.FileWriter(opt.train_summary_path, sess.graph)
val_writer = tf.summary.FileWriter(opt.val_summary_path, sess.graph)
# initialization
tf.global_variables_initializer().run()
tf.local_variables_initializer().run()
saver_resnet.restore(sess,opt.R_net_weights)
saver_facenet.restore(sess,opt.Perceptual_net_weights)
return saver, train_writer,val_writer, sess
# main function for training
def train():
# read BFM face model
# transfer original BFM model to our model
if not os.path.isfile('./BFM/BFM_model_front.mat'):
transferBFM09()
with tf.Graph().as_default() as graph:
# training options
args = parse_args()
opt = Option(model_name=args.model_name)
opt.data_path = [args.data_path]
opt.val_data_path = [args.val_data_path]
# load training data into queue
train_iterator = load_dataset(opt)
# create reconstruction model
model = Reconstruction_model(opt)
# send training data to the model
model.set_input(train_iterator)
# update model variables with training data
model.step(is_train = True)
# summarize training statistics
model.summarize()
# several training stattistics to be saved
train_stat = model.summary_stat
train_img_stat = model.summary_img
train_op = model.train_op
photo_error = model.photo_loss
lm_error = model.landmark_loss
id_error = model.perceptual_loss
# load validation data into queue
val_iterator = load_dataset(opt,train=False)
# send validation data to the model
model.set_input(val_iterator)
# only do foward pass without updating model variables
model.step(is_train = False)
# summarize validation statistics
model.summarize()
val_stat = model.summary_stat
val_img_stat = model.summary_img
# initialization
saver, train_writer,val_writer, sess = restore_weights_and_initialize(opt)
# freeze the graph to ensure no new op will be added during training
sess.graph.finalize()
# training loop
for i in range(opt.train_maxiter):
_,ph_loss,lm_loss,id_loss = sess.run([train_op,photo_error,lm_error,id_error])
print('Iter: %d; lm_loss: %f ; photo_loss: %f; id_loss: %f\n'%(i,np.sqrt(lm_loss),ph_loss,id_loss))
# summarize training stats every <train_summary_iter> iterations
if np.mod(i,opt.train_summary_iter) == 0:
train_summary = sess.run(train_stat)
train_writer.add_summary(train_summary,i)
# summarize image stats every <image_summary_iter> iterations
if np.mod(i,opt.image_summary_iter) == 0:
train_img_summary = sess.run(train_img_stat)
train_writer.add_summary(train_img_summary,i)
# summarize validation stats every <val_summary_iter> iterations
if np.mod(i,opt.val_summary_iter) == 0:
val_summary,val_img_summary = sess.run([val_stat,val_img_stat])
val_writer.add_summary(val_summary,i)
val_writer.add_summary(val_img_summary,i)
# # save model variables every <save_iter> iterations
if np.mod(i,opt.save_iter) == 0:
saver.save(sess,os.path.join(opt.model_save_path,'iter_%d.ckpt'%i))
if __name__ == '__main__':
train()