-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathtest.py
96 lines (74 loc) · 2.96 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import os
import logging
import random
import argparse
import numpy as np
import torch
import torch.nn.functional as F
from parser_train import parser_, relative_path_to_absolute_path
from tqdm import tqdm
from data import create_dataset
from models import adaptation_modelv2
from metrics import runningScore
def test(opt, logger):
torch.manual_seed(opt.seed)
torch.cuda.manual_seed(opt.seed)
np.random.seed(opt.seed)
random.seed(opt.seed)
## create dataset
device = torch.device("cuda:0" if torch.cuda.is_available() else 'cpu')
datasets = create_dataset(opt, logger)
if opt.model_name == 'deeplabv2':
checkpoint = torch.load(opt.resume_path)['ResNet101']["model_state"]
model = adaptation_modelv2.CustomModel(opt, logger)
model.BaseNet.load_state_dict(checkpoint)
running_metrics_val = runningScore(opt.n_class)
validation(model, logger, datasets, device, running_metrics_val)
def validation(model, logger, datasets, device, running_metrics_val):
_k = -1
model.eval(logger=logger)
torch.cuda.empty_cache()
with torch.no_grad():
validate(datasets.target_valid_loader, device, model, running_metrics_val)
score, class_iou = running_metrics_val.get_scores()
for k, v in score.items():
print(k, v)
logger.info('{}: {}'.format(k, v))
for k, v in class_iou.items():
logger.info('{}: {}'.format(k, v))
running_metrics_val.reset()
torch.cuda.empty_cache()
return score["Mean IoU : \t"]
def validate(valid_loader, device, model, running_metrics_val):
sm = torch.nn.Softmax(dim=1)
for data_i in tqdm(valid_loader):
images_val = data_i['img'].to(device)
labels_val = data_i['label'].to(device)
outs = model.BaseNet_DP(images_val)
#outputs = F.interpolate(sm(outs['out']), size=images_val.size()[2:], mode='bilinear', align_corners=True)
outputs = F.interpolate(outs['out'], size=images_val.size()[2:], mode='bilinear', align_corners=True)
pred = outputs.data.max(1)[1].cpu().numpy()
gt = labels_val.data.cpu().numpy()
running_metrics_val.update(gt, pred)
def get_logger(logdir):
logger = logging.getLogger('ptsemseg')
file_path = os.path.join(logdir, 'run.log')
hdlr = logging.FileHandler(file_path)
formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s')
hdlr.setFormatter(formatter)
logger.addHandler(hdlr)
logger.setLevel(logging.INFO)
return logger
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="config")
parser = parser_(parser)
opt = parser.parse_args()
opt = relative_path_to_absolute_path(opt)
opt.logdir = opt.logdir.replace(opt.name, 'debug')
print('RUNDIR: {}'.format(opt.logdir))
if not os.path.exists(opt.logdir):
os.makedirs(opt.logdir)
logger = get_logger(opt.logdir)
test(opt, logger)