This repository has been archived by the owner on Aug 21, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathTasks.qs
309 lines (244 loc) · 15.3 KB
/
Tasks.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
namespace Quantum.Kata.DeutschJozsaAlgorithm {
open Microsoft.Quantum.Diagnostics;
open Microsoft.Quantum.Intrinsic;
open Microsoft.Quantum.Canon;
//////////////////////////////////////////////////////////////////
// Welcome!
//////////////////////////////////////////////////////////////////
// The "Deutsch-Jozsa algorithm" quantum kata is a series of exercises designed
// to get you familiar with programming in Q#.
// It covers the following topics:
// - writing oracles (quantum operations which implement certain classical functions),
// - Bernstein-Vazirani algorithm for recovering the parameters of a scalar product function,
// - Deutsch-Jozsa algorithm for recognizing a function as constant or balanced, and
// - writing tests in Q#.
// Each task is wrapped in one operation preceded by the description of the task.
// Each task (except tasks in which you have to write a test) has a unit test associated with it,
// which initially fails. Your goal is to fill in the blank (marked with // ... comment)
// with some Q# code to make the failing test pass.
//////////////////////////////////////////////////////////////////
// Part I. Oracles
//////////////////////////////////////////////////////////////////
// In this section you will implement oracles defined by classical functions using the following rules:
// - a function f(x₀, ..., xₙ₋₁) with N bits of input x = (x₀, ..., xₙ₋₁) and 1 bit of output y
// defines an oracle which acts on N input qubits and 1 output qubit.
// - the oracle effect on qubits in computational basis states is defined as follows:
// |x⟩ |y⟩ -> |x⟩ |y ⊕ f(x)⟩ (⊕ is addition modulo 2)
// - the oracle effect on qubits in superposition is defined following the linearity of quantum operations.
// - the oracle must act properly on qubits in all possible input states.
// Task 1.1. f(x) = 0
// Inputs:
// 1) N qubits in arbitrary state |x⟩ (input register)
// 2) a qubit in arbitrary state |y⟩ (output qubit)
// Goal: transform state |x, y⟩ into state |x, y ⊕ f(x)⟩ (⊕ is addition modulo 2).
operation Oracle_Zero (x : Qubit[], y : Qubit) : Unit {
// Since f(x) = 0 for all values of x, |y ⊕ f(x)⟩ = |y⟩.
// This means that the operation doesn't need to do any transformation to the inputs.
// Build the project and run the tests to see that T11_Oracle_Zero test passes.
}
// Task 1.2. f(x) = 1
// Inputs:
// 1) N qubits in arbitrary state |x⟩ (input register)
// 2) a qubit in arbitrary state |y⟩ (output qubit)
// Goal: transform state |x, y⟩ into state |x, y ⊕ f(x)⟩ (⊕ is addition modulo 2).
operation Oracle_One (x : Qubit[], y : Qubit) : Unit {
// Since f(x) = 1 for all values of x, |y ⊕ f(x)⟩ = |y ⊕ 1⟩ = |NOT y⟩.
// This means that the operation needs to flip qubit y (i.e. transform |0⟩ to |1⟩ and vice versa).
// ...
}
// Task 1.3. f(x) = xₖ (the value of k-th qubit)
// Inputs:
// 1) N qubits in arbitrary state |x⟩ (input register)
// 2) a qubit in arbitrary state |y⟩ (output qubit)
// 3) 0-based index of the qubit from input register (0 <= k < N)
// Goal: transform state |x, y⟩ into state |x, y ⊕ xₖ⟩ (⊕ is addition modulo 2).
operation Oracle_Kth_Qubit (x : Qubit[], y : Qubit, k : Int) : Unit {
// The following line enforces the constraints on the value of k that you are given.
// You don't need to modify it. Feel free to remove it, this won't cause your code to fail.
EqualityFactB(0 <= k and k < Length(x), true, "k should be between 0 and N-1, inclusive");
// ...
}
// Task 1.4. f(x) = 1 if x has odd number of 1s, and 0 otherwise
// Inputs:
// 1) N qubits in arbitrary state |x⟩ (input register)
// 2) a qubit in arbitrary state |y⟩ (output qubit)
// Goal: transform state |x, y⟩ into state |x, y ⊕ f(x)⟩ (⊕ is addition modulo 2).
operation Oracle_OddNumberOfOnes (x : Qubit[], y : Qubit) : Unit {
// Hint: f(x) can be represented as x_0 ⊕ x_1 ⊕ ... ⊕ x_(N-1)
// ...
}
// Task 1.5. f(x) = Σᵢ rᵢ xᵢ modulo 2 for a given bit vector r (scalar product function)
// Inputs:
// 1) N qubits in arbitrary state |x⟩ (input register)
// 2) a qubit in arbitrary state |y⟩ (output qubit)
// 3) a bit vector of length N represented as Int[]
// You are guaranteed that the qubit array and the bit vector have the same length.
// Goal: transform state |x, y⟩ into state |x, y ⊕ f(x)⟩ (⊕ is addition modulo 2).
//
// Note: the functions featured in tasks 1.1, 1.3 and 1.4 are special cases of this function.
operation Oracle_ProductFunction (x : Qubit[], y : Qubit, r : Int[]) : Unit {
// The following line enforces the constraint on the input arrays.
// You don't need to modify it. Feel free to remove it, this won't cause your code to fail.
EqualityFactI(Length(x), Length(r), "Arrays should have the same length");
// ...
}
// Task 1.6. f(x) = Σᵢ (rᵢ xᵢ + (1 - rᵢ)(1 - xᵢ)) modulo 2 for a given bit vector r
// Inputs:
// 1) N qubits in arbitrary state |x⟩ (input register)
// 2) a qubit in arbitrary state |y⟩ (output qubit)
// 3) a bit vector of length N represented as Int[]
// You are guaranteed that the qubit array and the bit vector have the same length.
// Goal: transform state |x, y⟩ into state |x, y ⊕ f(x)⟩ (⊕ is addition modulo 2).
operation Oracle_ProductWithNegationFunction (x : Qubit[], y : Qubit, r : Int[]) : Unit {
// The following line enforces the constraint on the input arrays.
// You don't need to modify it. Feel free to remove it, this won't cause your code to fail.
EqualityFactI(Length(x), Length(r), "Arrays should have the same length");
// ...
}
// Task 1.7. f(x) = Σᵢ xᵢ + (1 if prefix of x is equal to the given bit vector, and 0 otherwise) modulo 2
// Inputs:
// 1) N qubits in arbitrary state |x⟩ (input register)
// 2) a qubit in arbitrary state |y⟩ (output qubit)
// 3) a bit vector of length P represented as Int[] (1 <= P <= N)
// Goal: transform state |x, y⟩ into state |x, y ⊕ f(x)⟩ (⊕ is addition modulo 2).
//
// A prefix of length k of a state |x⟩ = |x₁, ..., xₙ⟩ is the state of its first k qubits |x₁, ..., xₖ⟩.
// For example, a prefix of length 2 of a state |0110⟩ is 01.
operation Oracle_HammingWithPrefix (x : Qubit[], y : Qubit, prefix : Int[]) : Unit {
// The following line enforces the constraint on the input arrays.
// You don't need to modify it. Feel free to remove it, this won't cause your code to fail.
let P = Length(prefix);
EqualityFactB(1 <= P and P <= Length(x), true, "P should be between 1 and N, inclusive");
// Hint: the first part of the function is the same as in task 1.4
// ...
// Hint: you can use Controlled functor to perform multicontrolled gates
// (gates with multiple control qubits).
// ...
}
// Task 1.8*. f(x) = 1 if x has two or three bits (out of three) set to 1, and 0 otherwise (majority function)
// Inputs:
// 1) 3 qubits in arbitrary state |x⟩ (input register)
// 2) a qubit in arbitrary state |y⟩ (output qubit)
// Goal: transform state |x, y⟩ into state |x, y ⊕ f(x)⟩ (⊕ is addition modulo 2).
operation Oracle_MajorityFunction (x : Qubit[], y : Qubit) : Unit {
// The following line enforces the constraint on the input array.
// You don't need to modify it. Feel free to remove it, this won't cause your code to fail.
EqualityFactB(3 == Length(x), true, "x should have exactly 3 qubits");
// Hint: represent f(x) in terms of AND and ⊕ operations
// ...
}
//////////////////////////////////////////////////////////////////
// Part II. Deutsch-Jozsa Algorithm
//////////////////////////////////////////////////////////////////
// Task 2.1. State preparation for Deutsch-Jozsa algorithm
// Inputs:
// 1) N qubits in |0⟩ state (query register)
// 2) a qubit in |0⟩ state (answer register)
// Goal:
// 1) prepare an equal superposition of all basis vectors from |0...0⟩ to |1...1⟩ on query register
// (i.e., state (|0...0⟩ + ... + |1...1⟩) / sqrt(2^N) )
// 2) prepare |-⟩ state (|-⟩ = (|0⟩ - |1⟩) / sqrt(2)) on answer register
operation DJ_StatePrep (query : Qubit[], answer : Qubit) : Unit is Adj {
// ...
}
// Task 2.2. Deutsch-Jozsa algorithm implementation
// Inputs:
// 1) the number of qubits in the input register N for the function f
// 2) a quantum operation which implements the oracle |x⟩|y⟩ -> |x⟩|y ⊕ f(x)⟩, where
// x is an N-qubit input register, y is a 1-qubit answer register, and f is a Boolean function
// You are guaranteed that the function f implemented by the oracle is either
// constant (returns 0 on all inputs or 1 on all inputs) or
// balanced (returns 0 on exactly one half of the input domain and 1 on the other half).
// Output:
// true if the function f is constant
// false if the function f is balanced
//
// Note: a trivial approach is to call the oracle multiple times:
// if the values for more than half of the possible inputs are the same, the function is constant.
// Quantum computing allows to perform this task in just one call to the oracle; try to implement this algorithm.
operation DJ_Algorithm (N : Int, Uf : ((Qubit[], Qubit) => Unit)) : Bool {
// Declare Bool variable in which the result will be accumulated;
// this variable has to be mutable to allow updating it.
mutable isConstantFunction = true;
// ...
return isConstantFunction;
}
// Task 2.3. Testing Deutsch-Jozsa algorithm
// Goal: use your implementation of Deutsch-Jozsa algorithm from task 3.1 to test
// each of the oracles you've implemented in part I for being constant or balanced.
@Test("QuantumSimulator")
operation T23_E2E_DJ () : Unit {
// Hint: use Oracle_ProductFunction to implement the scalar product function oracle passed to DJ_Algorithm.
// Since Oracle_ProductFunction takes three arguments (Qubit[], Qubit and Int[]),
// and the operation passed to DJ_Algorithm must take two arguments (Qubit[] and Qubit),
// you need to use partial application to fix the third argument (a specific value of a bit vector).
//
// You might want to use something like the following:
// let oracle = Oracle_ProductFunction(_, _, [...your bit vector here...]);
// Hint: use AllEqualityFactI function to assert that the return value of DJ_Algorithm operation
// matches the expected value (i.e. the bit vector passed to Oracle_ProductFunction).
// T23_E2E_DJ appears in the list of unit tests for the solution; run it to verify your code.
// ...
}
//////////////////////////////////////////////////////////////////
// Part III. Bernstein-Vazirani Algorithm
//////////////////////////////////////////////////////////////////
// Task 3.1. Bernstein-Vazirani algorithm implementation
// Inputs:
// 1) the number of qubits in the input register N for the function f
// 2) a quantum operation which implements the oracle |x⟩|y⟩ -> |x⟩|y ⊕ f(x)⟩, where
// x is an N-qubit input register, y is a 1-qubit answer register, and f is a Boolean function
// You are guaranteed that the function f implemented by the oracle is a scalar product function
// (can be represented as f(x₀, ..., xₙ₋₁) = Σᵢ rᵢ xᵢ modulo 2 for some bit vector r = (r₀, ..., rₙ₋₁)).
// You have implemented the oracle implementing the scalar product function in task 1.5.
// Output:
// A bit vector r reconstructed from the function
//
// Note: a trivial approach is to call the oracle N times:
// |10...0⟩|0⟩ = |10...0⟩|r₀⟩, |010...0⟩|0⟩ = |010...0⟩|r₁⟩ and so on.
// Quantum computing allows to perform this task in just one call to the oracle; try to implement this algorithm.
operation BV_Algorithm (N : Int, Uf : ((Qubit[], Qubit) => Unit)) : Int[] {
// Declare an Int array in which the result will be stored;
// the variable has to be mutable to allow updating it.
mutable r = [0, size = N];
// ...
return r;
}
// Task 3.2. Testing Bernstein-Vazirani algorithm
// Goal: use your implementation of Bernstein-Vazirani algorithm from task 2.2 to figure out
// what bit vector the scalar product function oracle from task 1.5 was using.
// As a reminder, this oracle creates an operation f(x) = Σᵢ 𝑟ᵢ 𝑥ᵢ modulo 2 for a given bit vector r,
// and Bernstein-Vazirani algorithm recovers that bit vector given the operation.
@Test("QuantumSimulator")
operation T32_E2E_BV () : Unit {
// Hint: you will need to use partial application to test oracles such as Oracle_Kth_Qubit and Oracle_ProductFunction;
// see task 2.3 for a description of how to do that.
// Hint: use the Fact function to assert that the return value of DJ_Algorithm operation matches the expected value
// T32_E2E_BV appears in the list of unit tests for the solution; run it to verify your code.
// ...
}
//////////////////////////////////////////////////////////////////
// Part IV. Come up with your own algorithm!
//////////////////////////////////////////////////////////////////
// Task 4.1. Reconstruct the oracle from task 1.6
// Inputs:
// 1) the number of qubits in the input register N for the function f
// 2) a quantum operation which implements the oracle |x⟩|y⟩ -> |x⟩|y ⊕ f(x)⟩, where
// x is an N-qubit input register, y is a 1-qubit answer register, and f is a Boolean function
// You are guaranteed that the function f implemented by the oracle can be represented as
// f(x₀, ..., xₙ₋₁) = Σᵢ (rᵢ xᵢ + (1 - rᵢ)(1 - xᵢ)) modulo 2 for some bit vector r = (r₀, ..., rₙ₋₁).
// You have implemented the oracle implementing this function in task 1.6.
// Output:
// A bit vector r which generates the same oracle as the one you are given
operation Noname_Algorithm (N : Int, Uf : ((Qubit[], Qubit) => Unit)) : Int[] {
// Hint: The bit vector r does not need to be the same as the one used by the oracle,
// it just needs to produce equivalent results.
// Declare an Int array in which the result will be stored;
// the variable has to be mutable to allow updating it.
mutable r = [0, size = N];
// ...
return r;
}
}