This repository has been archived by the owner on Aug 21, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathTasks.qs
executable file
·208 lines (166 loc) · 10.3 KB
/
Tasks.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
namespace Quantum.Kata.GroversAlgorithm {
open Microsoft.Quantum.Diagnostics;
open Microsoft.Quantum.Convert;
open Microsoft.Quantum.Math;
open Microsoft.Quantum.Intrinsic;
open Microsoft.Quantum.Canon;
//////////////////////////////////////////////////////////////////
// Welcome!
//////////////////////////////////////////////////////////////////
// The "Grover's Search" quantum kata is a series of exercises designed
// to get you familiar with Grover's search algorithm.
// It covers the following topics:
// - writing oracles for Grover's search,
// - performing steps of the algorithm, and
// - putting it all together: Grover's search algorithm.
// Each task is wrapped in one operation preceded by the description of the task.
// Each task (except tasks in which you have to write a test) has a unit test associated with it,
// which initially fails. Your goal is to fill in the blank (marked with // ... comment)
// with some Q# code to make the failing test pass.
// Within each section, tasks are given in approximate order of increasing difficulty;
// harder ones are marked with asterisks.
//////////////////////////////////////////////////////////////////
// Part I. Oracles for Grover's Search
//////////////////////////////////////////////////////////////////
// Task 1.1. The |11...1⟩ oracle
// Inputs:
// 1) N qubits in an arbitrary state |x⟩ (input/query register)
// 2) a qubit in an arbitrary state |y⟩ (target qubit)
// Goal: Flip the state of the target qubit (i.e., apply an X gate to it)
// if the query register is in the |11...1⟩ state,
// and leave it unchanged if the query register is in any other state.
// Leave the query register in the same state it started in.
// Example:
// If the query register is in state |00...0⟩, leave the target qubit unchanged.
// If the query register is in state |10...0⟩, leave the target qubit unchanged.
// If the query register is in state |11...1⟩, flip the target qubit.
// If the query register is in state (|00...0⟩ + |11...1⟩) / sqrt(2), and the target is in state |0⟩,
// the joint state of the query register and the target qubit should be (|00...00⟩ + |11...11⟩) / sqrt(2).
operation Oracle_AllOnes (queryRegister : Qubit[], target : Qubit) : Unit is Adj {
// ...
}
// Task 1.2. The |1010...⟩ oracle
// Inputs:
// 1) N qubits in an arbitrary state |x⟩ (input/query register)
// 2) a qubit in an arbitrary state |y⟩ (target qubit)
// Goal: Flip the state of the target qubit if the query register is in the |1010...⟩ state;
// that is, the state with alternating 1 and 0 values, with any number of qubits in the register.
// Leave the state of the target qubit unchanged if the query register is in any other state.
// Leave the query register in the same state it started in.
// Example:
// If the register is in state |0000000⟩, leave the target qubit unchanged.
// If the register is in state |10101⟩, flip the target qubit.
operation Oracle_AlternatingBits (queryRegister : Qubit[], target : Qubit) : Unit is Adj {
// ...
}
// Task 1.3. Arbitrary bit pattern oracle
// Inputs:
// 1) N qubits in an arbitrary state |x⟩ (input/query register)
// 2) a qubit in an arbitrary state |y⟩ (target qubit)
// 3) a bit pattern of length N represented as Bool[]
// Goal: Flip the state of the target qubit if the query register is in the state described by the given bit pattern
// (true represents qubit state One, and false represents Zero).
// Leave the state of the target qubit unchanged if the query register is in any other state.
// Leave the query register in the same state it started in.
// Example:
// If the bit pattern is [true, false], you need to flip the target qubit if and only if the qubits are in the |10⟩ state.
operation Oracle_ArbitraryPattern (queryRegister : Qubit[], target : Qubit, pattern : Bool[]) : Unit is Adj {
// The following line enforces the constraint on the input arrays.
// You don't need to modify it. Feel free to remove it, this won't cause your code to fail.
EqualityFactI(Length(queryRegister), Length(pattern), "Arrays should have the same length");
// ...
}
// Task 1.4*. Oracle converter
// Input: A marking oracle: an oracle that takes a register and a target qubit and
// flips the target qubit if the register satisfies a certain condition
// Output: A phase-flipping oracle: an oracle that takes a register and
// flips the phase of the register if it satisfies this condition
//
// Note: Grover's algorithm relies on the search condition implemented as a phase-flipping oracle,
// but it is often easier to write a marking oracle for a given condition. This transformation
// allows to convert one type of oracle into the other. The transformation is described at
// https://en.wikipedia.org/wiki/Grover%27s_algorithm, section "Description of Uω".
function OracleConverter (markingOracle : ((Qubit[], Qubit) => Unit is Adj)) : (Qubit[] => Unit is Adj) {
// Hint: Remember that you can define auxiliary operations.
// ...
// Currently this function returns a no-op operation for the sake of being able to compile the code.
// You will need to remove ApplyToEachA and return your own oracle instead.
return ApplyToEachA(I, _);
}
//////////////////////////////////////////////////////////////////
// Part II. The Grover iteration
//////////////////////////////////////////////////////////////////
// Task 2.1. The Hadamard transform
// Input: A register of N qubits in an arbitrary state
// Goal: Apply the Hadamard transform to each of the qubits in the register.
//
// Note: If the register started in the |0...0⟩ state, this operation
// will prepare an equal superposition of all 2^N basis states.
operation HadamardTransform (register : Qubit[]) : Unit is Adj {
// ...
}
// Task 2.2. Conditional phase flip
// Input: A register of N qubits in an arbitrary state.
// Goal: Flip the sign of the state of the register if it is not in the |0...0⟩ state.
// Example:
// If the register is in state |0...0⟩, leave it unchanged.
// If the register is in any other basis state, multiply its phase by -1.
// Note: This operation implements operator 2|0...0⟩⟨0...0| - I.
operation ConditionalPhaseFlip (register : Qubit[]) : Unit is Adj {
// Hint 1: Note that quantum states are defined up to a global phase.
// Thus the state obtained as a result of this operation is the same
// as the state obtained by flipping the sign of only the |0...0⟩ state.
// It doesn't matter for Grover's search algorithm itself, since the global phase
// is not observable, but can have side effects when used as part of other algorithms.
// See the discussion in https://quantumcomputing.stackexchange.com/questions/5973/counting-in-q-number-of-solutions/6446#6446
// Hint 2: You can use the same trick as in the oracle converter task.
// Alternatively, consider using the multi-controlled Z gate.
// ...
}
// Task 2.3. The Grover iteration
// Inputs:
// 1) N qubits in an arbitrary state |x⟩ (input/query register)
// 2) a phase-flipping oracle that takes an N-qubit register and flips
// the phase of the state if the register is in the desired state.
// Goal: Perform one Grover iteration.
operation GroverIteration (register : Qubit[], oracle : (Qubit[] => Unit is Adj)) : Unit is Adj {
// Hint: A Grover iteration consists of 4 steps:
// 1) apply the oracle
// 2) apply the Hadamard transform
// 3) perform a conditional phase shift
// 4) apply the Hadamard transform again
// ...
}
//////////////////////////////////////////////////////////////////
// Part III. Putting it all together: Grover's search algorithm
//////////////////////////////////////////////////////////////////
// Task 3.1. Grover's search
// Inputs:
// 1) N qubits in the |0...0⟩ state,
// 2) a marking oracle, and
// 3) the number of Grover iterations to perform.
// Goal: Use Grover's algorithm to leave the register in the state that is marked by the oracle as the answer
// (with high probability).
//
// Note: The number of iterations is passed as a parameter because it is defined by the nature of the problem
// and is easier to configure/calculate outside the search algorithm itself (for example, in the driver).
operation GroversSearch (register : Qubit[], oracle : ((Qubit[], Qubit) => Unit is Adj), iterations : Int) : Unit {
// ...
}
// Task 3.2. Using Grover's search
// Goal: Use your implementation of Grover's algorithm from task 3.1 and the oracles from part 1
// to find the marked elements of the search space.
// This task is not covered by a test and allows you to experiment with running the algorithm.
@Test("QuantumSimulator")
operation T32_E2E_GroversSearch () : Unit {
// Hint 1: To check whether the algorithm found the correct answer (i.e., an answer marked as 1 by the oracle),
// you can apply the oracle once more to the register after you've measured it and an ancilla qubit,
// which will calculate the function of the answer found by the algorithm.
// Hint 2: Experiment with the number of iterations to see how it affects
// the probability of the algorithm finding the correct answer.
// Hint 3: You can use the Message function to write the results to the console.
// ...
}
}