-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPlotMaxBoseFermi.m
116 lines (87 loc) · 3.36 KB
/
PlotMaxBoseFermi.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
% Distributions for different sampling statistics
%
% [email protected], 2019
clear; close all;
addpath src
% Multinomial distribution (sampling with replacement)
m = @(p,x) factorial(sum(x))/prod(factorial(x)) * prod(p(:)'.^x);
%m = @(p,x) 1/prod(factorial(x)) * prod(p(:)'.^x);
% Entropy in bits
S = @(p) -sum(p .* log2(p));
N = 3; % Dimensionality
% 1. Random
%p = rand(1,7); p = p / sum(p);
% 2. Flat
p = ones(1,7) + rand(1,7)*0.25; p = p / sum(p);
% 3. COMB input
%p = linspace(1/(2^N-1),1-1/(2^N-1),2^N-1)'; p = p'/sum(p); p = flipud(p);
% Poisson mean ticks
bins = 3000;
mu = linspace(0, 200, bins);
% Matrix for the "Bosonic" case
LAMBDA = amat(N);
LAMBDAINV = inv(LAMBDA);
for mode = 1:3
Y_vals = zeros(7,size(mu,2));
S_vals = zeros(1,size(mu,2));
y = zeros(2^N-1,1);
for i = 1:length(mu)
if (mode == 1) % "Semi-Maxwell-Boltzmann"
y = LAMBDAINV * ((exp(-mu(i)*LAMBDA*(p')) - 1)/(exp(-mu(i))-1));
end
if (mode == 2) % "Semi-Bosonic"
% Pick probabilities (only three needed) from normalized Poisson distribution
P = poisspdf([1:3], mu(i)); P = P / sum(P);
y(1) = P(1)*p(1);
y(2) = P(1)*p(2);
y(3) = P(1)*p(3) + P(2)*(m(p,[1,1,0,0,0,0,0]) + m(p,[1,0,1,0,0,0,0]) + m(p,[0,1,1,0,0,0,0])) + P(3)*m(p,[1,1,1,0,0,0,0]);
y(4) = P(1)*p(4);
y(5) = P(1)*p(5) + P(2)*(m(p,[1,0,0,1,0,0,0]) + m(p,[1,0,0,0,1,0,0]) + m(p,[0,0,0,1,1,0,0])) + P(3)*m(p,[1,0,0,1,1,0,0]);
y(6) = P(1)*p(6) + P(2)*(m(p,[0,1,0,1,0,0,0]) + m(p,[0,0,0,1,1,0,0]) + m(p,[0,1,0,0,1,0,0])) + P(3)*m(p,[0,1,0,1,0,1,0]);
y(7) = 1 - sum(y(1:6));
end
if (mode == 3) % "Semi-Fermionic"
% Pick probabilities (only three needed) from normalized Poisson distribution
P = poisspdf([1:3], mu(i)); P = P / sum(P);
y(1) = P(1)*p(1);
y(2) = P(1)*p(2);
y(3) = P(1)*p(3) + P(2)*m(p,[1,1,0,0,0,0,0]);
y(4) = P(1)*p(4);
y(5) = P(1)*p(5) + P(2)*m(p,[1,0,0,1,0,0,0]);
y(6) = P(1)*p(6) + P(2)*m(p,[0,1,0,1,0,0,0]);
y(7) = 1 - sum(y(1:6));
end
Y_vals(:,i) = y;
S_vals(i) = S(y); % Entropy
end
legends = {};
for c = 1:length(y)
legends{end+1} = sprintf('$y_{%d}$',c);
end
f1 = figure;
plot(mu, Y_vals); hold on;
%plot(mu, 1 - Y_vals(end,:), 'k-.'); % 1 - last
xlabel('$\mu$','interpreter','latex');
ylabel('$\mathbf{y}$','interpreter','latex');
l = legend(legends); set(l,'interpreter','latex','location','southwest'); legend('boxoff');
if (mode == 1)
str = sprintf('Semi-MB');
elseif (mode == 2)
str = sprintf('Semi-BE');
elseif (mode == 3)
str = sprintf('Semi-FD');
elseif (mode == 4)
str = sprintf('AGK');
end
title(str,'interpreter','latex');
set(gca,'yscale','log');
set(gca,'xscale','log');
axis tight; axis square;
axis([min(mu) max(mu) 1e-5 1]);
xticks([0.1, 1, 10, 100]);
%set(gca,'fontsize',13);
filename = sprintf('../figs/statistics%d.pdf', mode);
print(f1, filename, '-dpdf');
system(sprintf('pdfcrop --margins 10 %s %s', filename, filename));
%close all;
end