-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathCalculateEstimates.py
executable file
·175 lines (144 loc) · 7.2 KB
/
CalculateEstimates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Jun 12 11:52:52 2020
@author: mtd
"""
from numpy import mean,cov,sqrt,diagonal,empty,NaN,ones,std,diag,log,corrcoef
from MetroManVariables import Estimates
from calcnhat import calcnhat
def CalculateEstimates(C,D,Obs,Prior,DAll,AllObs,nOpt):
#1) estimates on the chain A0, n, q: means & covariances
E=Estimates(D,DAll)
E.A0hat=mean(C.thetaA0[:,C.Nburn+1:C.N],1)
E.CA0=cov(C.thetaA0[:,C.Nburn+1:C.N])
E.stdA0Post=sqrt(diagonal(E.CA0))
E.nahat=mean(C.thetana[:,C.Nburn+1:C.N],1)
E.Cna=cov(C.thetana[:,C.Nburn+1:C.N])
E.stdnaPost=sqrt(diagonal(E.Cna))
E.x1hat=mean(C.thetax1[:,C.Nburn+1:C.N],1)
E.Cx1=cov(C.thetax1[:,C.Nburn+1:C.N])
E.stdx1Post=sqrt(diagonal(E.Cx1))
for i in range(0,D.nR):
E.nhat[i,:]=calcnhat(Obs.w[i,:], Obs.h[i,:], Obs.hmin[i], E.A0hat[i]+Obs.dA[i,:], E.x1hat[i], E.nahat[i], nOpt)
E.nhatAll[i,:]=calcnhat(AllObs.w[i,:], AllObs.h[i,:], AllObs.hmin[i], E.A0hat[i]+AllObs.dA[i,:]-AllObs.A0Shift[i], E.x1hat[i], E.nahat[i], nOpt)
#2) calculate the Q chain, and estimate mean and std
nhat=empty([D.nR,D.nt])
nhat[:]=NaN
nhatAll=empty([D.nR,DAll.nt])
nhatAll[:]=NaN
C.thetaQ=empty([C.N,D.nR,D.nt])
C.thetaQ[:]=NaN
C.thetaAllQ=empty([C.N,D.nR,DAll.nt])
C.thetaAllQ[:]=NaN
for i in range(0,C.N):
for r in range(0,D.nR):
nhat[r,:]=calcnhat(Obs.w[r,:], Obs.h[r,:], AllObs.hmin[r], \
E.A0hat[r]+Obs.dA[r,:], \
C.thetax1[r,i],C.thetana[r,i],nOpt)
nhatAll[r,:]=calcnhat(AllObs.w[r,:], AllObs.h[r,:], AllObs.hmin[r], \
E.A0hat[r]+AllObs.dA[r,:], \
C.thetax1[r,i],C.thetana[r,i],nOpt)
C.thetaQ[i,:,:]=1/nhat*(C.thetaA0[:,i].reshape(D.nR,1) @ ones([1,D.nt])\
+Obs.dA)**(5/3) * Obs.w**(-2/3) * sqrt(Obs.S)
C.thetaAllQ[i,:,:]=1/nhatAll*((C.thetaA0[:,i].reshape(D.nR,1)-AllObs.A0Shift.reshape(D.nR,1)) \
@ ones([1,DAll.nt]) + AllObs.dA )**(5/3) * AllObs.w**(-2/3) \
*sqrt(AllObs.S)
E.QhatPost=mean(C.thetaQ[C.Nburn:,:,:],0)
E.QstdPost=std(C.thetaQ[C.Nburn:,:,:],0)
#3) calculate Q prior estimate
for r in range(0,D.nR):
nhat[r,:]=calcnhat(Obs.w[r,:],Obs.h[r,:],AllObs.hmin[r], \
Prior.meanA0[r]*ones([1,D.nt])+Obs.dA[r,:], \
Prior.meanx1[r],Prior.meanna[r],nOpt);
E.QhatPrior=1/nhat * (Prior.meanA0.reshape(D.nR,1)@ones([1,D.nt])+Obs.dA)**(5/3) \
*Obs.w**(-2/3)*sqrt(Obs.S);
nhat=empty([D.nR,DAll.nt])
nhat[:]=NaN
for r in range(0,D.nR):
nhat[r,:]=calcnhat(AllObs.w[r,:],AllObs.h[r,:],AllObs.hmin[r], \
Prior.meanA0[r]-AllObs.A0Shift[r]+AllObs.dA[r,:], \
Prior.meanx1[r],Prior.meanna[r],nOpt);
E.QhatAllPrior=1/nhat*((Prior.meanA0-AllObs.A0Shift).reshape(D.nR,1)@ones([1,DAll.nt])+AllObs.dA)**(5/3) \
*AllObs.w**(-2/3)*sqrt(AllObs.S);
#4) discharge error budget: all done for Q(nr x nt)
#4.1) uncertainty estimate of the dA term
Obs.sigdAv=sqrt(diag(Obs.CdA))
Obs.sigdA=Obs.sigdAv.reshape(D.nR,D.nt)
#4.2) estimate correlation coefficient between A0 & na, A0 & x1, na & x1
E.rho_A0na=empty([D.nR,1])
E.rho_A0na[:]=NaN
E.rho_A0x1=empty([D.nR,1])
E.rho_A0x1[:]=NaN
E.rho_nax1=empty([D.nR,1])
E.rho_nax1[:]=NaN
for i in range(0,D.nR):
R_A0na=corrcoef(C.thetaA0[i,:], C.thetana[i,:])
E.rho_A0na[i,0]=R_A0na[0,1]
R_A0x1=corrcoef(C.thetaA0[i,:], C.thetax1[i,:])
E.rho_A0x1[i,0]=R_A0x1[0,1]
R_nax1=corrcoef(C.thetana[i,:], C.thetax1[i,:])
E.rho_nax1[i,0]=R_nax1[0,1]
#4.3) uncertainty (variance) of the Manning terms
# E.QhatUnc_w=(2/3*Obs.sigw/Obs.w)**2
E.QhatUnc_S=(1/2*Obs.sigS/Obs.S)**2
E.QhatUnc_na=(E.stdnaPost/E.nahat)**2
A=(E.A0hat.reshape(D.nR,1)@ones([1,D.nt])+Obs.dA)
sigx1=E.stdx1Post.reshape(D.nR,1)@ones([1,D.nt])
sigA0=E.stdA0Post.reshape(D.nR,1)@ones([1,D.nt])
signa=E.stdnaPost.reshape(D.nR,1)@ones([1,D.nt])
rhoA0x1=E.rho_A0x1.reshape(D.nR,1)@ones([1,D.nt])
rhonax1=E.rho_nax1.reshape(D.nR,1)@ones([1,D.nt])
rhoA0na=E.rho_A0na.reshape(D.nR,1)@ones([1,D.nt])
sigdA=Obs.sigdA
na=E.nahat.reshape(D.nR,1)@ones([1,D.nt])
x1=E.x1hat.reshape(D.nR,1)@ones([1,D.nt])
if nOpt==3:
E.QhatUnc_w=[]
E.QhatUnc_x1=[]
E.QhatUnc_A0=[]
E.QhatUnc_dA=[]
E.QhatUnc_A0na=[]
E.QhatUnc_nax1=[]
E.QhatUnc_A0x1=[]
elif nOpt==4:
E.QhatUnc_w=(((x1-2/3)/Obs.w) * Obs.sigw)**2
E.QhatUnc_x1=(log(Obs.w/A) *sigx1)**2;
E.QhatUnc_A0=((5/3-x1) * sigA0/A)**2
E.QhatUnc_dA=((5/3-x1) * sigdA/A)**2
#4.4) estimate uncertainty of Manning's Q
#4.4.1) estimate uncertainty in Q due to cross-correlation of A0 & na, na & x1, x1 & A0
E.QhatUnc_A0na=-2*rhoA0na*((5/3-x1)/na/A)*signa*sigA0
E.QhatUnc_nax1=-2*rhonax1*(log(Obs.w/A)/na)*sigx1*signa
E.QhatUnc_A0x1=2*rhoA0x1*((5/3-x1)*log(Obs.w/A)/A)*sigA0*sigx1
elif nOpt==5:
# this is based on Rodriguez et al. WRR 2020 and assumes a log-normal distribution of river depth
cd=x1*(A/Obs.w)
E.QhatUnc_w=( (5*x1**2*Obs.w)/(3*A**2 * ((x1*Obs.w/A)**2 + 1)) - 1/(3*Obs.w) )**2 * Obs.sigw**2
E.QhatUnc_x1=(5/3*cd*Obs.w/A * (1+cd**2)**-1)**2 * sigx1**2
E.QhatUnc_A0=(5/3/A*((1+cd**-2)**-1+1))**2 * sigA0**2
E.QhatUnc_dA=(5/3/A*((1+cd**-2)**-1+1))**2 * sigdA**2
E.QhatUnc_A0na=-2*rhoA0na*(5/3/A/na*((1+cd**-2)**-1 +1))*signa*sigA0
E.QhatUnc_nax1=2*rhonax1*(5/3/na*cd*Obs.w/A * (1+cd**2)**-1)*signa*sigx1
E.QhatUnc_A0x1=-2*rhoA0x1*(5/3/A*((1+cd**-2)**-1+1))*(5/3*cd*Obs.w/A * (1+cd**2)**-1)*sigA0*sigx1
#4.4.2) estimate total Q uncertainty
E.QhatUnc_Hat=sqrt( E.QhatUnc_na+mean(E.QhatUnc_x1,1)+mean(E.QhatUnc_w,1)+ \
mean(E.QhatUnc_A0,1)+mean(E.QhatUnc_dA,1)+mean(E.QhatUnc_S,1)+ \
mean(E.QhatUnc_A0na,1)+mean(E.QhatUnc_nax1,1)+mean(E.QhatUnc_A0x1,1))
#4.4.2) estimate total Q uncertainty wrt time
E.QhatUnc_HatAll=sqrt( E.QhatUnc_na.reshape(D.nR,1)@ones([1,D.nt])+E.QhatUnc_x1+E.QhatUnc_w+ \
E.QhatUnc_A0+E.QhatUnc_dA+E.QhatUnc_S+ \
E.QhatUnc_A0na+E.QhatUnc_nax1+E.QhatUnc_A0x1)
#4.4.3) discharge error budget
E.QerrVarSum=empty([D.nR,6])
E.QerrVarSum[:]=NaN
E.QerrVarSum[:,0]=E.QhatUnc_na;
E.QerrVarSum[:,1]=mean(E.QhatUnc_x1,1);
E.QerrVarSum[:,2]=mean(E.QhatUnc_A0,1);
E.QerrVarSum[:,3]=mean(E.QhatUnc_dA,1);
E.QerrVarSum[:,4]=mean(E.QhatUnc_w,1);
E.QerrVarSum[:,5]=mean(E.QhatUnc_S,1);
#5)all estimates
for i in range(0,D.nR):
E.AllQ[i,:]=1/E.nhatAll[i,:]*(E.A0hat[i]+AllObs.dA[i,:]-AllObs.A0Shift[i])**(5/3) * AllObs.w[i,:]**(-2/3) * AllObs.S[i,:]**0.5
return E,C