-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_transectSections.py
421 lines (390 loc) · 21.7 KB
/
plot_transectSections.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
#!/usr/bin/env python
"""
Plot vertical sections (annual and seasonal climatologies),
given a certain transect mask
"""
# ensure plots are rendered on ICC
from __future__ import absolute_import, division, print_function, \
unicode_literals
import os
import glob
import matplotlib as mpl
mpl.use('Agg')
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as cols
from matplotlib.pyplot import cm
from matplotlib.colors import BoundaryNorm
import cmocean
import xarray as xr
from netCDF4 import Dataset
from mpas_analysis.shared.io.utility import decode_strings
import gsw
from common_functions import add_inset
earthRadius = 6367.44
####### Settings for onyx
# NOTE: make sure to use the same mesh file that is in streams.ocean!
#meshfile = '/p/app/unsupported/RASM/acme/inputdata/ocn/mpas-o/ARRM10to60E2r1/mpaso.ARRM10to60E2r1.rstFrom1monthG-chrys.220802.nc'
#maskfile = '/p/work/milena/mpas-region_masks/ARRM10to60E2r1_arcticBeringToNorwaySection20230523.nc'
#casename = 'E3SMv2.1B60to10rA02'
#climoyearStart = 151
#climoyearEnd = 160
#modeldir = f'/p/work/milena/analysis/E3SMv2.1B60to10rA02/Years{climoyearStart}-{climoyearEnd}/clim/mpas/avg/unmasked_ARRM10to60E2r1'
####### Settings for nersc
#meshfile = '/global/cfs/cdirs/e3sm/inputdata/ocn/mpas-o/oARRM60to10/ocean.ARRM60to10.180715.nc'
##maskfile = '/global/cfs/cdirs/m1199/diagnostics/mpas_analysis/region_masks/ARRM60to10_transportTransects_masks.nc'
##maskfile = '/global/cfs/cdirs/m1199/milena/mpas-region_masks/ARRM60to10_arcticSections20210323.nc'
#maskfile = '/global/cfs/cdirs/e3sm/milena/mpas-region_masks/ARRM60to10_arcticSections20210514.nc'
#casename = 'E3SM-Arctic-OSI' # no spaces
#climoyearStart = 40
#climoyearEnd = 59
#modeldir = '/global/cfs/cdirs/m1199/milena/analysis/mpas/ARRM60to10_new/clim/mpas/avg/unmasked_ARRM60to10'
#
meshfile = '/global/cfs/cdirs/e3sm/inputdata/ocn/mpas-o/ARRM10to60E2r1/mpaso.ARRM10to60E2r1.220730.nc'
maskfile = '/global/cfs/cdirs/m1199/milena/mpas-region_masks/ARRM10to60E2r1_arcticTransectsFramToBeaufortEast20230901.nc'
casename = 'E3SMv2.1B60to10rA02'
climoyearStart = 1
climoyearEnd = 5
modeldir = f'/global/cfs/cdirs/m1199/e3sm-arrm-simulations/{casename}/ocn/monthlyClimos/years{climoyearStart}-{climoyearEnd}'
#
####### Settings for compy
#meshfile = '/compyfs/inputdata/ocn/mpas-o/EC30to60E2r2/ocean.EC30to60E2r2.210210.nc'
#maskfile = '/compyfs/vene705/mpas-region_masks/EC30to60E2r2_arcticSections20210323.nc'
#casename = 'GM900'
#climoyearStart = 21
#climoyearEnd = 40
#modeldir = '/compyfs/vene705/E3SM_simulations/20210305.v2beta3GM900.piControl.ne30pg2_EC30to60E2r2.compy/mpas-analysis/clim/mpas/avg/unmasked_EC30to60E2r2'
#
#meshfile = '/compyfs/inputdata/ocn/mpas-o/EC30to60E2r2/ocean.EC30to60E2r2.210210.nc'
#maskfile = '/compyfs/vene705/mpas-region_masks/EC30to60E2r2_arcticSections20210323.nc'
#casename = 'alpha5_59'
#climoyearStart = 281
#climoyearEnd = 300
#modeldir = '/compyfs/vene705/E3SM_simulations/20201124.alpha5_59_fallback.piControl.ne30pg2_r05_EC30to60E2r2-1900_ICG.compy/mpas-analysis/clim/mpas/avg/unmasked_EC30to60E2r2'
####### Settings for blues
#meshfile = '/lcrc/group/e3sm/public_html/inputdata/ocn/mpas-o/EC30to60E2r2/mpaso.EC30to60E2r2.rstFromG-anvil.201001.nc'
#maskfile = '/lcrc/group/e3sm/ac.milena/mpas-region_masks/EC30to60E2r2_arcticBeringToNorwaySection20230523.nc'
##transectfeaturefile = '/lcrc/group/e3sm/ac.milena/mpas-region_masks/arctic_atlantic_budget_regionsTransects.geojson'
##maskfile = '/lcrc/group/e3sm/ac.milena/mpas-region_masks/EC30to60E2r2_arcticSections20210323.nc'
#casename = 'v2_1.LR.piControl'
#climoyearStart = 451
#climoyearEnd = 500
#modeldir = '/lcrc/group/e3sm/ac.golaz/E3SMv2_1/v2_1.LR.piControl/post/analysis/mpas_analysis/ts_0001-0500_climo_0451-0500/clim/mpas/avg/unmasked_EC30to60E2r2'
#seasons = ['JFM', 'JAS', 'ANN']
seasons = ['ANN']
## Options for transect names if maskfile=*_standardTransportSections.nc
# "Africa-Ant", "Agulhas", "Antilles Inflow", "Barents Sea Opening", "Bering Strait", "Davis Strait",
# "Drake Passage", "Florida-Bahamas", "Florida-Cuba", "Fram Strait", "Indonesian Throughflow",
# "Lancaster Sound", "Mona Passage", "Mozambique Channel", "Nares Strait", "Tasmania-Ant", "Windward Passage"
## Options for transect names if maskfile=*_arcticSections.nc
# "Barents Sea Opening", "Bering Strait", "Davis Strait", "Denmark Strait", "Fram Strait",
# "Hudson Bay-Labrador Sea", "Iceland-Faroe-Scotland", "Lancaster Sound", "Nares Strait",
# "OSNAP section East", "OSNAP section West"
transectNames = ['all']
#transectNames = ['Barents Sea Opening', 'Fram Strait']
#transectNames = ['Barents Sea Opening', 'Bering Strait', 'Davis Strait',
# 'Denmark Strait', 'Fram Strait', 'Iceland-Faroe-Scotland']
#transectNames = ['OSNAP section East', 'OSNAP section West']
figdir = './verticalSections/{}'.format(casename)
if not os.path.isdir(figdir):
os.makedirs(figdir)
outdir = './verticalSections_data/{}'.format(casename)
if not os.path.isdir(outdir):
os.makedirs(outdir)
# Figure details
#figsize = (10, 6)
figsize = (12, 4)
figdpi = 300
colorIndices0 = [0, 10, 28, 57, 85, 113, 125, 142, 155, 170, 198, 227, 242, 255]
#clevelsT = [-2.0, -1.8, -1.5, -1.0, -0.5, 0.0, 0.5, 2.0, 4.0, 6.0, 8.0, 10., 12.]
#clevelsS = [30.0, 31.0, 32.0, 33.0, 33.5, 34.0, 34.5, 34.8, 34.85, 34.9, 34.95, 35.0, 35.5]
clevelsT = [-1.8, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 2.0, 4.0, 5.0, 6.0, 8.0, 10.]
clevelsS = [32.0, 33.0, 33.5, 34.0, 34.5, 34.7, 34.8, 34.82, 34.85, 34.87, 34.9, 34.95, 35.0]
# Better for OSNAP:
#clevelsT = [-1.0, -0.5, 0.0, 0.5, 2.0, 2.5, 3.0, 3.5, 4.0, 6.0, 8., 10., 12.]
#clevelsS = [31.0, 33.0, 33.5, 33.8, 34.2, 34.6, 34.8, 34.85, 34.9, 34.95, 35.0, 35.2, 35.5]
clevelsV = [-0.25, -0.2, -0.15, -0.1, -0.02, 0.0, 0.02, 0.1, 0.2, 0.3, 0.5]
#colormapT = plt.get_cmap('RdBu_r')
colormapT = cmocean.cm.thermal
colormapS = cmocean.cm.haline
colormapV = plt.get_cmap('RdBu_r')
#colormapV = cmocean.cm.balance
#
underColor = colormapT(colorIndices0[0])
overColor = colormapT(colorIndices0[-1])
if len(clevelsT) + 1 == len(colorIndices0):
# we have 2 extra values for the under/over so make the colormap
# without these values
colorIndices = colorIndices0[1:-1]
elif len(clevelsT) - 1 != len(colorIndices0):
# indices list must be either one element shorter
# or one element longer than colorbarLevels list
raise ValueError('length mismatch between indices and '
'T colorbarLevels')
colormapT = cols.ListedColormap(colormapT(colorIndices))
colormapT.set_under(underColor)
colormapT.set_over(overColor)
underColor = colormapS(colorIndices0[0])
overColor = colormapS(colorIndices0[-1])
if len(clevelsS) + 1 == len(colorIndices0):
# we have 2 extra values for the under/over so make the colormap
# without these values
colorIndices = colorIndices0[1:-1]
elif len(clevelsS) - 1 != len(colorIndices0):
# indices list must be either one element shorter
# or one element longer than colorbarLevels list
raise ValueError('length mismatch between indices and '
'S colorbarLevels')
colormapS = cols.ListedColormap(colormapS(colorIndices))
colormapS.set_under(underColor)
colormapS.set_over(overColor)
colormapV = cols.ListedColormap(colormapV(colorIndices))
#
cnormT = mpl.colors.BoundaryNorm(clevelsT, colormapT.N)
cnormS = mpl.colors.BoundaryNorm(clevelsS, colormapS.N)
cnormV = mpl.colors.BoundaryNorm(clevelsV, colormapV.N)
#sigma2contours = [35, 36, 36.5, 36.8, 37, 37.1, 37.2, 37.25, 37.44, 37.52, 37.6]
sigma2contours = None
#sigma0contours = np.arange(26.0, 28.0, 0.2) # Good for OSNAP, but not for all arcticSections
#sigma0contours = [24.0, 25.0, 26.0, 27.0, 27.2, 27.4, 27.6, 27.8, 28.0]
sigma0contours = [24.0, 27.0, 27.8, 28.0]
#sigma0contours = None
# Load in MPAS mesh and transect mask file
mesh = xr.open_dataset(meshfile)
mask = xr.open_dataset(maskfile)
allTransects = decode_strings(mask.transectNames)
if transectNames[0]=='all' or transectNames[0]=='StandardTransportSectionsRegionsGroup':
transectNames = allTransects
# Get depth
z = mesh.refBottomDepth.values
nlevels = len(z)
nTransects = len(transectNames)
maxEdges = mask.dims['maxEdgesInTransect']
for n in range(nTransects):
# Identify transect
transectName = transectNames[n]
transectIndex = allTransects.index(transectName)
print('Plotting sections for transect: ', transectName)
# Choose mask for this particular transect
transectmask = mask.isel(nTransects=transectIndex).squeeze()
# Get a list of edges for this transect
transectEdges = transectmask.transectEdgeGlobalIDs.values
transectEdges = transectEdges[np.where(transectEdges > 0)[0]]
ntransectEdges = len(transectEdges)
# Get a list of cellsOnEdge pairs for each transect edge
cellsOnEdge = mesh.cellsOnEdge.sel(nEdges=transectEdges-1).values
# Create a land/topo mask for cellsOnEdge
cellsOnEdge1 = cellsOnEdge[:, 0]
cellsOnEdge2 = cellsOnEdge[:, 1]
maxLevelCell1 = mesh.maxLevelCell.sel(nCells=cellsOnEdge1-1).values
maxLevelCell2 = mesh.maxLevelCell.sel(nCells=cellsOnEdge2-1).values
# Initialize mask to True everywhere
cellMask1 = np.ones((ntransectEdges, nlevels), bool)
cellMask2 = np.ones((ntransectEdges, nlevels), bool)
for iEdge in range(ntransectEdges):
# These become False if the second expression is negated (land cells)
cellMask1[iEdge, :] = np.logical_and(cellMask1[iEdge, :],
cellsOnEdge1[iEdge, np.newaxis] > 0)
cellMask2[iEdge, :] = np.logical_and(cellMask2[iEdge, :],
cellsOnEdge2[iEdge, np.newaxis] > 0)
# These become False if the second expression is negated (topography cells)
cellMask1[iEdge, :] = np.logical_and(cellMask1[iEdge, :],
range(1, nlevels+1) <= maxLevelCell1[iEdge])
cellMask2[iEdge, :] = np.logical_and(cellMask2[iEdge, :],
range(1, nlevels+1) <= maxLevelCell2[iEdge])
# Create a land/topo mask for transectEdges
maxLevelEdge = []
for iEdge in range(ntransectEdges):
if cellsOnEdge1[iEdge]==0:
maxLevelEdge.append(maxLevelCell2[iEdge])
elif cellsOnEdge2[iEdge]==0:
maxLevelEdge.append(maxLevelCell1[iEdge])
else:
maxLevelEdge.append(np.min([maxLevelCell1[iEdge], maxLevelCell2[iEdge]]))
# Initialize mask to True everywhere
edgeMask = np.ones((ntransectEdges, nlevels), bool)
for iEdge in range(ntransectEdges):
# These become False if the second expression is negated (topography cells)
edgeMask[iEdge, :] = np.logical_and(edgeMask[iEdge, :],
range(1, nlevels+1) <= maxLevelEdge[iEdge])
# Get edge signs for across-edge velocity direction
edgeSigns = mask.transectEdgeMaskSigns.sel(nEdges=transectEdges-1, nTransects=transectIndex).values
# Get coordinates of each edge center and compute approximate spherical distance
lonEdges = mesh.lonEdge.sel(nEdges=transectEdges-1).values
latEdges = mesh.latEdge.sel(nEdges=transectEdges-1).values
lonEdges[lonEdges>np.pi] = lonEdges[lonEdges>np.pi] - 2*np.pi
dist = [0]
for iEdge in range(1, ntransectEdges):
dx = (lonEdges[iEdge]-lonEdges[iEdge-1]) * np.cos(0.5*(latEdges[iEdge]+latEdges[iEdge-1]))
dy = latEdges[iEdge]-latEdges[iEdge-1]
dist.append(earthRadius * np.sqrt(dx**2 + dy**2))
dist = np.cumsum(dist)
[x, y] = np.meshgrid(dist, z)
x = x.T
y = y.T
# Check lon,lat of edges to make sure we have the right edges
#print(180.0/np.pi*lonEdges)
#print(180.0/np.pi*latEdges)
# Check lon,lat of cells to make sure we have the right cellsOnEdge
#print('lonCell0=', 180/np.pi*mesh.lonCell.sel(nCells=cellsOnEdge1-1).values)
#print('latCell0=', 180/np.pi*mesh.latCell.sel(nCells=cellsOnEdge1-1).values)
#print('lonCell1=', 180/np.pi*mesh.lonCell.sel(nCells=cellsOnEdge2-1).values)
#print('latCell1=', 180/np.pi*mesh.latCell.sel(nCells=cellsOnEdge2-1).values)
latmean = 180.0/np.pi*np.nanmean(latEdges)
lonmean = 180.0/np.pi*np.nanmean(lonEdges)
pressure = gsw.p_from_z(-z, latmean)
# Load in T, S, and normalVelocity for each season, and plot them
#for s in seasons:
for m in months:
print(' season: ', s)
outfile = '{}/{}_{}_{}_years{:04d}-{:04d}.nc'.format(outdir,
transectName.replace(' ', ''), casename, s, climoyearStart, climoyearEnd)
modelfile = glob.glob('{}/mpaso_{}_{:04d}??_{:04d}??_climo.nc'.format(
modeldir, s, climoyearStart, climoyearEnd))[0]
ncid = Dataset(modelfile, 'r')
# Try loading in normalVelocity (on edge centers)
try:
vel = ncid.variables['timeMonthly_avg_normalVelocity'][0, transectEdges-1, :]
if 'timeMonthly_avg_normalGMBolusVelocity' in ncid.variables.keys():
vel += ncid.variables['timeMonthly_avg_normalGMBolusVelocity'][0, transectEdges-1, :]
except:
print('*** normalVelocity variable not found: skipping it...')
vel = None
# Load in T and S (on cellsOnEdge centers)
tempOnCell1 = ncid.variables['timeMonthly_avg_activeTracers_temperature'][0, cellsOnEdge1-1, :]
tempOnCell2 = ncid.variables['timeMonthly_avg_activeTracers_temperature'][0, cellsOnEdge2-1, :]
saltOnCell1 = ncid.variables['timeMonthly_avg_activeTracers_salinity'][0, cellsOnEdge1-1, :]
saltOnCell2 = ncid.variables['timeMonthly_avg_activeTracers_salinity'][0, cellsOnEdge2-1, :]
ncid.close()
# Mask T,S values that fall on land and topography
tempOnCell1 = np.ma.masked_array(tempOnCell1, ~cellMask1)
tempOnCell2 = np.ma.masked_array(tempOnCell2, ~cellMask2)
saltOnCell1 = np.ma.masked_array(saltOnCell1, ~cellMask1)
saltOnCell2 = np.ma.masked_array(saltOnCell2, ~cellMask2)
# Interpolate T,S values onto edges
temp = np.nanmean(np.array([tempOnCell1, tempOnCell2]), axis=0)
salt = np.nanmean(np.array([saltOnCell1, saltOnCell2]), axis=0)
# Save T,S to file
dsOut = xr.Dataset(
{
'Temp': (['nx', 'nz'], np.nan*np.ones([len(dist), len(z)])),
'Salt': (['nx', 'nz'], np.nan*np.ones([len(dist), len(z)])),
},
coords={
'dist': (['nx'], dist),
'depth': (['nz'], z),
},
)
dsOut['Temp'][:, :] = temp
dsOut['Temp'].attrs['units'] = 'degC'
dsOut['Temp'].attrs['long_name'] = 'potential temperature'
dsOut['Salt'][:, :] = salt
dsOut['Salt'].attrs['units'] = 'psu'
dsOut['Salt'].attrs['long_name'] = 'salinity'
dsOut['dist'][:] = dist
dsOut['dist'].attrs['units'] = 'km'
dsOut['dist'].attrs['long_name'] = 'spherical distance from beginning of transect'
dsOut['depth'][:] = z
dsOut['depth'].attrs['units'] = 'm'
dsOut['depth'].attrs['long_name'] = 'depth levels'
dsOut.to_netcdf(outfile)
# Compute sigma's
SA = gsw.SA_from_SP(salt, pressure[np.newaxis, :], lonmean, latmean)
CT = gsw.CT_from_pt(SA, temp)
sigma2 = gsw.density.sigma2(SA, CT)
sigma0 = gsw.density.sigma0(SA, CT)
zmax = z[np.max(maxLevelEdge)]
# Plot sections
# T first
figtitle = 'Temperature ({}), {} ({}, years={}-{})'.format(
transectName, s, casename, climoyearStart, climoyearEnd)
figfile = '{}/Temp_{}_{}_{}_years{:04d}-{:04d}.png'.format(
figdir, transectName.replace(' ', ''), casename, s, climoyearStart, climoyearEnd)
fig = plt.figure(figsize=figsize, dpi=figdpi)
ax = fig.add_subplot()
ax.set_facecolor('darkgrey')
cf = ax.contourf(x, y, temp, cmap=colormapT, norm=cnormT, levels=clevelsT, extend='max')
#cf = ax.pcolormesh(x, y, temp, cmap=colormapT, norm=cnormT)
cax, kw = mpl.colorbar.make_axes(ax, location='right', pad=0.05, shrink=0.9)
cbar = plt.colorbar(cf, cax=cax, ticks=clevelsT, **kw)
cbar.ax.tick_params(labelsize=12, labelcolor='black')
cbar.set_label('C$^\circ$', fontsize=12, fontweight='bold')
if sigma2contours is not None:
cs = ax.contour(x, y, sigma2, sigma2contours, colors='k', linewidths=1.5)
cb = plt.clabel(cs, levels=sigma2contours, inline=True, inline_spacing=2, fmt='%2.1f', fontsize=9)
if sigma0contours is not None:
cs = ax.contour(x, y, sigma0, sigma0contours, colors='k', linewidths=1.5)
cb = plt.clabel(cs, levels=sigma0contours, inline=True, inline_spacing=2, fmt='%2.1f', fontsize=9)
ax.set_ylim(0, zmax)
ax.set_xlabel('Distance (km)', fontsize=12, fontweight='bold')
ax.set_ylabel('Depth (m)', fontsize=12, fontweight='bold')
ax.set_title(figtitle, fontsize=12, fontweight='bold')
ax.annotate('lat={:5.2f}'.format(180.0/np.pi*latEdges[0]), xy=(0, -0.1), xycoords='axes fraction', ha='center', va='bottom')
ax.annotate('lon={:5.2f}'.format(180.0/np.pi*lonEdges[0]), xy=(0, -0.15), xycoords='axes fraction', ha='center', va='bottom')
ax.annotate('lat={:5.2f}'.format(180.0/np.pi*latEdges[-1]), xy=(1, -0.1), xycoords='axes fraction', ha='center', va='bottom')
ax.annotate('lon={:5.2f}'.format(180.0/np.pi*lonEdges[-1]), xy=(1, -0.15), xycoords='axes fraction', ha='center', va='bottom')
ax.invert_yaxis()
#add_inset(fig, fc, width=1.5, height=1.5, xbuffer=0.5, ybuffer=-1)
plt.savefig(figfile, bbox_inches='tight')
plt.close()
# then S
figtitle = 'Salinity ({}), {} ({}, years={}-{})'.format(
transectName, s, casename, climoyearStart, climoyearEnd)
figfile = '{}/Salt_{}_{}_{}_years{:04d}-{:04d}.png'.format(
figdir, transectName.replace(' ', ''), casename, s, climoyearStart, climoyearEnd)
fig = plt.figure(figsize=figsize, dpi=figdpi)
ax = fig.add_subplot()
ax.set_facecolor('darkgrey')
cf = ax.contourf(x, y, salt, cmap=colormapS, norm=cnormS, levels=clevelsS, extend='max')
cax, kw = mpl.colorbar.make_axes(ax, location='right', pad=0.05, shrink=0.9)
cbar = plt.colorbar(cf, cax=cax, ticks=clevelsS, **kw)
cbar.ax.tick_params(labelsize=12, labelcolor='black')
cbar.set_label('psu', fontsize=12, fontweight='bold')
if sigma2contours is not None:
cs = ax.contour(x, y, sigma2, sigma2contours, colors='k', linewidths=1.5)
cb = plt.clabel(cs, levels=sigma2contours, inline=True, inline_spacing=2, fmt='%2.1f', fontsize=9)
if sigma0contours is not None:
cs = ax.contour(x, y, sigma0, sigma0contours, colors='k', linewidths=1.5)
cb = plt.clabel(cs, levels=sigma0contours, inline=True, inline_spacing=2, fmt='%2.1f', fontsize=9)
ax.set_ylim(0, zmax)
ax.set_xlabel('Distance (km)', fontsize=12, fontweight='bold')
ax.set_ylabel('Depth (m)', fontsize=12, fontweight='bold')
ax.set_title(figtitle, fontsize=12, fontweight='bold')
ax.annotate('lat={:5.2f}'.format(180.0/np.pi*latEdges[0]), xy=(0, -0.1), xycoords='axes fraction', ha='center', va='bottom')
ax.annotate('lon={:5.2f}'.format(180.0/np.pi*lonEdges[0]), xy=(0, -0.15), xycoords='axes fraction', ha='center', va='bottom')
ax.annotate('lat={:5.2f}'.format(180.0/np.pi*latEdges[-1]), xy=(1, -0.1), xycoords='axes fraction', ha='center', va='bottom')
ax.annotate('lon={:5.2f}'.format(180.0/np.pi*lonEdges[-1]), xy=(1, -0.15), xycoords='axes fraction', ha='center', va='bottom')
ax.invert_yaxis()
#add_inset(fig, fc, width=1.5, height=1.5, xbuffer=0.5, ybuffer=-1)
plt.savefig(figfile, bbox_inches='tight')
plt.close()
# and finally normalVelocity (if vel is not None)
if vel is not None:
# Mask velocity values that fall on land and topography
vel = np.ma.masked_array(vel, ~edgeMask)
# Get normalVelocity direction
normalVel = vel*edgeSigns[:, np.newaxis]
figtitle = 'Velocity ({}), {} ({}, years={}-{})'.format(
transectName, s, casename, climoyearStart, climoyearEnd)
figfile = '{}/Vel_{}_{}_{}_years{:04d}-{:04d}.png'.format(
figdir, transectName.replace(' ', ''), casename, s, climoyearStart, climoyearEnd)
fig = plt.figure(figsize=figsize, dpi=figdpi)
ax = fig.add_subplot()
ax.set_facecolor('darkgrey')
cf = ax.contourf(x, y, normalVel, cmap=colormapV, norm=cnormV, levels=clevelsV)
cax, kw = mpl.colorbar.make_axes(ax, location='right', pad=0.05, shrink=0.9)
cbar = plt.colorbar(cf, cax=cax, ticks=clevelsV, **kw)
cbar.ax.tick_params(labelsize=12, labelcolor='black')
cbar.set_label('m/s', fontsize=12, fontweight='bold')
ax.set_ylim(0, zmax)
ax.set_xlabel('Distance (km)', fontsize=12, fontweight='bold')
ax.set_ylabel('Depth (m)', fontsize=12, fontweight='bold')
ax.set_title(figtitle, fontsize=12, fontweight='bold')
ax.annotate('lat={:5.2f}'.format(180.0/np.pi*latEdges[0]), xy=(0, -0.1), xycoords='axes fraction', ha='center', va='bottom')
ax.annotate('lon={:5.2f}'.format(180.0/np.pi*lonEdges[0]), xy=(0, -0.15), xycoords='axes fraction', ha='center', va='bottom')
ax.annotate('lat={:5.2f}'.format(180.0/np.pi*latEdges[-1]), xy=(1, -0.1), xycoords='axes fraction', ha='center', va='bottom')
ax.annotate('lon={:5.2f}'.format(180.0/np.pi*lonEdges[-1]), xy=(1, -0.15), xycoords='axes fraction', ha='center', va='bottom')
ax.invert_yaxis()
#add_inset(fig, fc, width=1.5, height=1.5, xbuffer=0.5, ybuffer=-1)
plt.savefig(figfile, bbox_inches='tight')
plt.close()