-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest__utils.py
302 lines (228 loc) · 9.74 KB
/
test__utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import io
import random
import sys
import unittest
from lightning.fabric import Fabric
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
from pdgrapher._utils import (
_test_condition,
calculate_loss_sample_weights,
_get_thresholds, get_thresholds,
tictoc,
EarlyStopping,
DummyWriter
)
import torch
import os
torch.set_num_threads(5)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
class TestTestCondition(unittest.TestCase):
def test_assertion_false(self):
with self.assertRaises(ValueError):
_test_condition(False, "This is False")
def test_assertion_true(self):
_test_condition(True, "This is True")
class TestCalculateLossSampleWeights(unittest.TestCase):
def setUp(self):
"""
calculate_loss_sample_weights expects the next data structure:
dataset: Iterable[Object1]
Object1 has attributes diseased, treated, intervention: Object2
Object2: has method .tolist()
"""
# TODO generate and calculate this by hand
random.seed(0)
class InnerDataset:
def __init__(self, N):
self._data = [random.randint(0, 5) for _ in range(N)]
self._nonzero = sum(1 for x in self._data if x != 0)
self._size = N
def tolist(self):
return self._data
class OuterDataset:
def __init__(self):
self.diseased = InnerDataset(random.randint(3, 5))
self.treated = InnerDataset(random.randint(3, 5))
self.intervention = InnerDataset(random.randint(3, 5))
self.dataset = [OuterDataset() for _ in range(10)]
def true_ab(self, kind: str):
positive = sum(getattr(data, kind)._nonzero for data in self.dataset)
full = sum(getattr(data, kind)._size for data in self.dataset)
negative = full-positive
return full/(2*negative), full/(2*positive)
def test_wrong_kind(self):
with self.assertRaises(ValueError):
calculate_loss_sample_weights(self.dataset, "unknown")
def test_output(self):
output = calculate_loss_sample_weights(self.dataset, "diseased")
self.assertEqual(len(output), 2)
def test_diseased(self):
a, b = calculate_loss_sample_weights(self.dataset, "diseased")
true_a, true_b = self.true_ab("diseased")
self.assertAlmostEqual(a, true_a)
self.assertAlmostEqual(b, true_b)
def test_treated(self):
a, b = calculate_loss_sample_weights(self.dataset, "treated")
true_a, true_b = self.true_ab("treated")
self.assertAlmostEqual(a, true_a)
self.assertAlmostEqual(b, true_b)
def test_intervention(self):
a, b = calculate_loss_sample_weights(self.dataset, "intervention")
true_a, true_b = self.true_ab("intervention")
self.assertAlmostEqual(a, true_a)
self.assertAlmostEqual(b, true_b)
class TestGetThresholds(unittest.TestCase):
def setUp(self):
random.seed(0)
class Dataset1:
def __init__(self, N):
self._data = torch.tensor([random.randint(0, 5) for _ in range(N)])
def cpu(self):
return self._data
class Dataset2:
def __init__(self):
self.healthy = Dataset1(10)
self.diseased = Dataset1(10)
self.treated = Dataset1(10)
class Dataset3:
def __init__(self):
self.train_dataset_forward = [Dataset2() for _ in range(10)]
self.train_dataset_backward = [Dataset2() for _ in range(10)]
self.dataset = Dataset3()
def test_wrong_kind(self):
with self.assertRaises(ValueError):
_get_thresholds(self.dataset.train_dataset_forward, "unknown")
def test_output(self):
percentiles = _get_thresholds(self.dataset.train_dataset_forward, "healthy")
self.assertEqual(percentiles.shape[0], int(100/0.2 + 1))
def test_output_all(self):
thresholds = get_thresholds(self.dataset)
self.assertIn("healthy", thresholds)
self.assertIn("diseased", thresholds)
self.assertIn("treated", thresholds)
self.assertEqual(thresholds["healthy"].shape[0], int(100/0.2 + 1))
self.assertEqual(thresholds["diseased"].shape[0], int(100/0.2 + 1))
self.assertEqual(thresholds["treated"].shape[0], int(100/0.2 + 1))
class TestTicToc(unittest.TestCase):
def get_captured_stdout(self, fn):
captured_stdout = io.StringIO()
sys.stdout = captured_stdout
fn()
sys.stdout = sys.__stdout__
return captured_stdout.getvalue()
def test_output_basic_1(self):
@tictoc
def fn():
return 0
printed_stdout = self.get_captured_stdout(fn)
self.assertTrue(printed_stdout.endswith("secs\n"))
def test_output_basic_2(self):
@tictoc()
def fn():
return 0
printed_stdout = self.get_captured_stdout(fn)
self.assertTrue(printed_stdout.endswith("secs\n"))
def test_output_custom(self):
@tictoc("Custom {}secs")
def fn():
return 0
printed_stdout = self.get_captured_stdout(fn)
self.assertTrue(printed_stdout.startswith("Custom "))
self.assertTrue(printed_stdout.endswith("secs\n"))
def test_output_custom_format(self):
@tictoc("Custom {:1.2f}secs")
def fn():
return 0
printed_stdout = self.get_captured_stdout(fn)
self.assertTrue(printed_stdout.startswith("Custom "))
self.assertTrue(printed_stdout.endswith("secs\n"))
self.assertEqual(len(printed_stdout), 15+1) # output + \n
def test_wrong_format(self):
with self.assertRaises(ValueError):
@tictoc("Not formattable")
def fn():
return 0
def test_output_wrapped(self):
def fn():
return 0
fn = tictoc(fn)
printed_stdout = self.get_captured_stdout(fn)
self.assertTrue(printed_stdout.endswith("secs\n"))
def test_output_wrapped_custom(self):
def fn():
return 0
fn = tictoc(fn, "Custom {}secs")
printed_stdout = self.get_captured_stdout(fn)
self.assertTrue(printed_stdout.startswith("Custom "))
self.assertTrue(printed_stdout.endswith("secs\n"))
def test_output_wrapped_custom_format(self):
def fn():
return 0
fn = tictoc(fn, "Custom {:1.2f}secs")
printed_stdout = self.get_captured_stdout(fn)
self.assertTrue(printed_stdout.startswith("Custom "))
self.assertTrue(printed_stdout.endswith("secs\n"))
self.assertEqual(len(printed_stdout), 15+1) # output + \n
def test_wrapped_wrong_format(self):
with self.assertRaises(ValueError):
def fn():
return 0
fn = tictoc(fn, "Not formattable")
class TestEarlyStopping(unittest.TestCase):
def test_saving_loading(self):
test_model = nn.Sequential(nn.Linear(10, 5), nn.ReLU(), nn.Linear(5, 1))
optimizer = optim.SGD(test_model.parameters(), lr=1e-3)
fabric = Fabric(accelerator="cpu")
fabric_model, fabric_optimizer = fabric.setup(test_model, optimizer)
criterion = nn.MSELoss()
es = EarlyStopping(model=fabric_model, save_path="tests/PDGrapher_test/test_model.pt")
es(10) # initial save of the model
tmp_model = es.load_model() # check if model is the same
self.assertListEqual(list(test_model.state_dict().keys()), list(tmp_model.state_dict().keys()))
self.assertListEqual(list(fabric_model.state_dict().keys()), list(tmp_model.state_dict().keys()))
for key, val in test_model.state_dict().items():
val_2 = tmp_model.state_dict()[key]
if not torch.equal(val, val_2):
raise AssertionError()
x = np.random.rand(200, 10).astype("float32")
y = (x[:, 2] + 2*x[:, 3] + (x[:, 5] - x[:, 7])**2 + 5).reshape(200, 1)
dataloader = DataLoader(TensorDataset(torch.tensor(x), torch.tensor(y)), batch_size=10)
fabric_dataloader = fabric.setup_dataloaders(dataloader)
for _ in range(10): # train for 10 epochs
for x, y in fabric_dataloader:
fabric_optimizer.zero_grad()
out = fabric_model(x)
loss = criterion(out, y)
fabric.backward(loss)
fabric_optimizer.step()
# check if the model has changed
tmp_model = es.load_model()
self.assertListEqual(list(test_model.state_dict().keys()), list(tmp_model.state_dict().keys()))
self.assertListEqual(list(fabric_model.state_dict().keys()), list(tmp_model.state_dict().keys()))
for key, val in test_model.state_dict().items():
val_2 = tmp_model.state_dict()[key]
if torch.equal(val, val_2):
raise AssertionError()
# check if the model is saved
es(1)
tmp_model = es.load_model()
self.assertListEqual(list(test_model.state_dict().keys()), list(tmp_model.state_dict().keys()))
self.assertListEqual(list(fabric_model.state_dict().keys()), list(tmp_model.state_dict().keys()))
for key, val in test_model.state_dict().items():
val_2 = tmp_model.state_dict()[key]
if not torch.equal(val, val_2):
raise AssertionError()
class TestDummyWriter(unittest.TestCase):
def test_create(self):
writer = DummyWriter()
def test_writing(self):
writer = DummyWriter()
writer.add_scalar("some/key", 10)
if __name__ == "__main__":
unittest.TestLoader.sortTestMethodsUsing = None
unittest.main()