-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvariables.py
50 lines (49 loc) · 1.52 KB
/
variables.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import os
import numpy as np
class Vars:
NPERSEG = 256
NOVERLAP = int(NPERSEG * 0.25)
WINDOW = 'hanning'
SPECTROGRAM_RAW_LOW = 1
SPECTROGRAM_RAW_HIGH = 4
SPECTROGRAM_POWER_FACTOR = 4
LOWCUT = 4500
HIGHCUT = 9500
SPECTROGRAM_HEIGHT = int(64)
SQUARIFY_SIZE = 64
MORPH_CLEAN_KERNEL = np.ones((3,3))
ROTATIONS = (-2, 2)
SHEARS_HORIZ = (-2, 2)
SHEARS_VERT = (-3, 3)
TILTS_HORIZ = (-8, 8)
TILTS_VERT = (-8, 8)
STRETCHES_VERT = (-16, 6)
ADJUST_BRIGHTNESS = (0.5, 2)
MINIMUM_VALUE = 0.01
MINIMUM_AVG_VALUE = 0.001
MAXIMUM_AVG_VALUE = 0.9
TRAINING_DIR = 'training_data'
RECORDINGS_DIR = 'recordings'
RESULTS_DIR = 'results'
MODELS_DIR = 'models'
CONFIDENCE_THRESHOLD = 0.9
TRAINING_BATCH_SIZE = 128
TRAINING_EPOCHS = 8
DETECTION_LENGTH_RATIO = 0.5
WINDOW_LENGTHS = {'Chi': 0.25,'Tr': 0.25,'Ph': 0.40,'Tw': 0.5}
SEGMENT_LENGTH = 0.45
SEGMENT_STEP = 0.04
VALIDATION_RATIO = 0.2
TEST_RATIO = 0.1
TRAINING_SEGMENTS_PER_CALL = 20000
TESTING_SEGMENTS_PER_CALL = int(round(TRAINING_SEGMENTS_PER_CALL * TEST_RATIO))
VALIDATION_SEGMENTS_PER_CALL = int(round(TRAINING_SEGMENTS_PER_CALL * VALIDATION_RATIO))
TDATA_FILENAME = 'acdc.tdata'
NOISE_STRING = 'Noise'
MODEL_FILENAME = 'acdc.model'
MODEL_FILENAME = 'saved_model.pb'
MODEL_ATTR_FILENAME = 'acdc.modelattr'
MODEL_CMATRIX_FILENAME = 'acdc_model.png'
MIN_DETECTION_LENGTH_RATIO = 0.2
SMOOTHING_KERNEL_SIZE = 5
VOLUME_AMP_MULTIPLE = 60