This repository has been archived by the owner on Jun 22, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathneptune.yaml
99 lines (86 loc) · 2.37 KB
/
neptune.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
project: Data-Science-Bowl
name: dsb_open_solution
tags: [winning_solution]
metric:
channel: 'Final Validation Score'
goal: maximize
#Comment out if not in Cloud Environment
pip-requirements-file: requirements.txt
exclude:
- output
- imgs
- neptune.log
- offline_job.log
- .git
- .idea
- .ipynb_checkpoints
- devbook.ipynb
- morphological_postprocessing.ipynb
parameters:
# Cloud Environment
data_dir: /public/dsb_2018_data/
meta_dir: /public/dsb_2018_data/
masks_overlayed_dir: /public/dsb_2018_data/masks_overlayed/
cut_masks_dir: /public/dsb_2018_data/cut_masks/
masks_with_borders_dir: /public/dsb_2018_data/masks_with_borders/
external_data_dirs: /public/dsb_2018_data/external_data/
experiment_dir: /output/dsb/experiments/
# Local Environment
# data_dir: /path/to/data
# meta_dir: /path/to/data
# masks_overlayed_dir: /path/to/masks_overlayed
# cut_masks_dir: /path/to/cut_masks
# masks_with_borders_dir: /path/to/masks_with_borders/
# external_data_dirs: /path/to/external_data/
# experiment_dir: /path/to/work/dir
overwrite: 1
num_workers: 4
num_threads: 4
image_source: memory
pin_memory: 1
loader_mode: crop_and_pad
pad_method: symmetric
target_format: 'json'
dev_mode_size: 20
# General Params
image_h: 256
image_w: 256
image_channels: 3
# U-Net parameters
unet_output_channels: 2
unet_masks_output_channels: 2
unet_borders_output_channels: 3
unet_activation: 'softmax'
unet_masks_activation: 'sigmoid'
unet_borders_activation: 'softmax'
encoder: ResNet152
# U-Net from scratch parameters
nr_unet_outputs: 1
n_filters: 16
conv_kernel: 3
pool_kernel: 3
pool_stride: 2
repeat_blocks: 4
# Training schedule
epochs_nr: 1000
batch_size_train: 36
batch_size_inference: 1
lr: 0.0001
momentum: 0.9
gamma: 0.99
patience: 100
validation_metric_name: 'sum'
minimize_validation_metric: 1
# Regularization
use_batch_norm: 1
l2_reg_conv: 0.0001
l2_reg_dense: 0.0
dropout_conv: 0.1
dropout_dense: 0.0
# Postprocessing
threshold_masks: 0.2
threshold_seeds: 0.6
threshold_borders: 0.2
min_mask_size: 20
min_seed_size: 15
tta_aggregation_method: gmean