-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpreprocess.py
90 lines (73 loc) · 3.53 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import argparse
import os
from multiprocessing import cpu_count
from datasets import preprocessor
from hparams import hparams
from tqdm import tqdm
def preprocess(args, input_folders, out_dir, hparams):
mel_dir = os.path.join(out_dir, 'mels')
wav_dir = os.path.join(out_dir, 'audio')
linear_dir = os.path.join(out_dir, 'linear')
os.makedirs(mel_dir, exist_ok=True)
os.makedirs(wav_dir, exist_ok=True)
os.makedirs(linear_dir, exist_ok=True)
if args.dataset.startswith('LJSpeech'):
metadata = preprocessor.build_ljspeech_from_path(hparams, input_folders, mel_dir, linear_dir, wav_dir, args.n_jobs, tqdm=tqdm)
if args.dataset == 'Blizzard-2012':
metadata = preprocessor.build_blizzard_2012_from_path(hparams, input_folders, mel_dir, linear_dir, wav_dir, args.n_jobs, tqdm=tqdm)
if args.dataset == 'Blizzard-2013':
metadata = preprocessor.build_blizzard_2013_from_path(hparams, input_folders, mel_dir, linear_dir, wav_dir, args.n_jobs, tqdm=tqdm)
if args.dataset == 'VCTK':
metadata = preprocessor.build_vctk_from_path(hparams, input_folders, mel_dir, linear_dir, wav_dir, args.n_jobs, tqdm=tqdm)
write_metadata(metadata, out_dir)
def write_metadata(metadata, out_dir):
with open(os.path.join(out_dir, 'train.txt'), 'w', encoding='utf-8') as f:
for m in metadata:
f.write('|'.join([str(x) for x in m]) + '\n')
mel_frames = sum([int(m[4]) for m in metadata])
timesteps = sum([int(m[3]) for m in metadata])
sr = hparams.sample_rate
hours = timesteps / sr / 3600
print('Write {} utterances, {} mel frames, {} audio timesteps, ({:.2f} hours)'.format(
len(metadata), mel_frames, timesteps, hours))
print('Max input length (text chars): {}'.format(max(len(m[5]) for m in metadata)))
print('Max mel frames length: {}'.format(max(int(m[4]) for m in metadata)))
print('Max audio timesteps length: {}'.format(max(m[3] for m in metadata)))
def norm_data(args):
print('Selecting data folders..')
supported_datasets = ['LJSpeech-1.0', 'LJSpeech-1.1', 'Blizzard-2012', 'Blizzard-2013', 'VCTK']
if args.dataset not in supported_datasets:
raise ValueError('dataset value entered {} does not belong to supported datasets: {}'.format(
args.dataset, supported_datasets))
if args.dataset.startswith('LJSpeech'):
return [os.path.join(args.input, args.dataset)]
if args.dataset == 'Blizzard-2012':
# Note: "A Tramp Abroad" & "The Man That Corrupted Hadleyburg" are higher quality than the others.
supported_books = [
'ATrampAbroad',
'TheManThatCorruptedHadleyburg',
'LifeOnTheMississippi',
'TheAdventuresOfTomSawyer',
]
return [os.path.join(args.input, args.dataset, book) for book in supported_books]
if args.dataset == 'Blizzard-2013':
return [os.path.join(args.input, args.dataset, 'Lessac_Blizzard2013_CatherineByers_train/train/segmented')]
if args.dataset == 'VCTK':
return [os.path.join(args.input, args.dataset)]
def run_preprocess(args, hparams):
input_folders = norm_data(args)
preprocess(args, input_folders, args.output, hparams)
def main():
print('initializing preprocessing..')
parser = argparse.ArgumentParser()
parser.add_argument('--input', default='/groups/ming/data/')
parser.add_argument('--hparams', default='',
help='Hyperparameter overrides as a comma-separated list of name=value pairs')
parser.add_argument('--dataset', default='VCTK')
parser.add_argument('--output', default='/groups/ming/tacotron2/VCTK/data')
parser.add_argument('--n_jobs', type=int, default=cpu_count())
args = parser.parse_args()
modified_hp = hparams.parse(args.hparams)
run_preprocess(args, modified_hp)
if __name__ == '__main__':
main()