-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPrediction.py
453 lines (383 loc) · 15.9 KB
/
Prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
from pyknow import *
import schema
from bs4 import BeautifulSoup
import json
import requests
import time
from random import randint
from textblob import TextBlob
""".declare() is what fires another rule to run"""
class Action(Fact):
pass
class Company(Fact):
#"""Company name"""
name = Field(str, mandatory=True)
#score = Field(int, default=0, mandatory=False)
pass
class Results(Fact):
#price = Field(str, mandatory=True)
price = Field(schema.Or('up','down'))
class ValidAnswer(Fact):
answer = Field(str, mandatory=True)
class Prediction(KnowledgeEngine):
@DefFacts()
def game_rules(self, is_nerd=False):
"""Declare game rules and valid input keys for the user."""
self.valid_answers = dict()
yield Results(price='up')
yield Results(price='down')
yield ValidAnswer(answer='AAPL')
yield ValidAnswer(answer='AMZN')
yield ValidAnswer(answer='GOOG')
@Rule()
def startup(self):
print("Stock Prediction App:")
self.declare(Action('get-input'))
@Rule(Action('get-input'))
def get_input(self):
res = input("Enter the desired stock symbol you want to predict\n").upper()
self.declare(Company(name=res))
#self.declare(Company(name=res))
#
# FUNCTIONS THAT DO THE NECESSARY STEPS TO LOOK UP INFO AND CALCULATE SCORE TO PREDICT STOCK
#
@Rule(Company(name='AAPL'))
def predictAAPL(self):
print("Predicting stock for Apple...")
print("Looking up necessary stock info")
# You can put any query you want into the parameter like: "Google stocks" and it'll return relevant articles for that query.
# We can use this to query for all the necessary information to predict this stock
query = "Apple"
print("Querying ", query)
relevantSummaries = self.scrape_news_summaries(query)
finalTotalPolarity = 0
finalTotalSubjectivity = 0
totalPolarity = 0
totalSubjectivity = 0
numLines = 0
for summary in relevantSummaries:
wiki = TextBlob(summary)
print(summary)
totalPolarity += wiki.sentiment.polarity
totalSubjectivity += wiki.sentiment.subjectivity
numLines += 1
finalTotalPolarity += totalPolarity
finalTotalSubjectivity += totalSubjectivity/numLines
print ("Sentiment Polarity: ",totalPolarity)
print ("Sentiment Subjectivity: ",totalSubjectivity/numLines)
print("\n")
totalPolarity = 0
totalSubjectivity = 0
numLines = 0
query = "Apple stocks"
print("Querying ", query)
relevantSummaries = self.scrape_news_summaries(query)
for summary in relevantSummaries:
wiki = TextBlob(summary)
print(summary)
totalPolarity += wiki.sentiment.polarity
totalSubjectivity += wiki.sentiment.subjectivity
numLines += 1
finalTotalPolarity += totalPolarity
finalTotalSubjectivity += totalSubjectivity/numLines
print ("Sentiment Polarity: ", totalPolarity)
print ("Sentiment Subjectivity: ",totalSubjectivity/numLines)
print("\n")
totalPolarity = 0
totalSubjectivity = 0
numLines = 0
query = "Apple market"
print("Querying ", query)
relevantSummaries = self.scrape_news_summaries(query)
for summary in relevantSummaries:
wiki = TextBlob(summary)
print(summary)
totalPolarity += wiki.sentiment.polarity
totalSubjectivity += wiki.sentiment.subjectivity
numLines += 1
finalTotalPolarity += totalPolarity
finalTotalSubjectivity += totalSubjectivity/numLines
print ("Sentiment Polarity: ",totalPolarity)
print ("Sentiment Subjectivity: ",totalSubjectivity/numLines)
totalPolarity = 0
totalSubjectivity = 0
numLines = 0
query = "Apple Geopolitical Situation"
print("Querying ", query)
relevantSummaries = self.scrape_news_summaries(query)
for summary in relevantSummaries:
wiki = TextBlob(summary)
print(summary)
totalPolarity += wiki.sentiment.polarity
totalSubjectivity += wiki.sentiment.subjectivity
numLines += 1
finalTotalPolarity += totalPolarity
finalTotalSubjectivity += totalSubjectivity/numLines
print ("Sentiment Polarity: ", totalPolarity)
print ("Sentiment Subjectivity: ", totalSubjectivity/numLines)
totalPolarity = 0
totalSubjectivity = 0
numLines = 0
query = "Apple iPhone"
print("Querying ", query)
relevantSummaries = self.scrape_news_summaries(query)
for summary in relevantSummaries:
wiki = TextBlob(summary)
print(summary)
totalPolarity += wiki.sentiment.polarity
totalSubjectivity += wiki.sentiment.subjectivity
numLines += 1
finalTotalPolarity += totalPolarity
finalTotalSubjectivity += totalSubjectivity/numLines
print ("Sentiment Polarity: ", totalPolarity)
print ("Sentiment Subjectivity: ", totalSubjectivity/numLines)
print ("Calculating final score to predict if stock price would go up or down")
print ("Combined Sentiment Polarity: ", finalTotalPolarity)
print ("Overall Sentiment Subjectivity: ", finalTotalSubjectivity/5)
@Rule(Company(name='AMZN'))
def predictAMZN(self):
print("Predicting stock for Amazon...")
print("Looking up necessary stock info")
finalTotalPolarity = 0
finalTotalSubjectivity = 0
totalPolarity = 0
totalSubjectivity = 0
numLines = 0
query = "Amazon"
print("Querying ", query)
relevantSummaries = self.scrape_news_summaries(query)
for summary in relevantSummaries:
wiki = TextBlob(summary)
print(summary)
totalPolarity += wiki.sentiment.polarity
totalSubjectivity += wiki.sentiment.subjectivity
numLines += 1
finalTotalPolarity += totalPolarity
finalTotalSubjectivity += totalSubjectivity/numLines
print ("Sentiment Polarity: ", totalPolarity)
print ("Sentiment Subjectivity: ", totalSubjectivity/numLines)
print("\n")
totalPolarity = 0
totalSubjectivity = 0
numLines = 0
query = "Amazon stocks"
print("Querying ", query)
relevantSummaries = self.scrape_news_summaries(query)
for summary in relevantSummaries:
wiki = TextBlob(summary)
print(summary)
totalPolarity += wiki.sentiment.polarity
totalSubjectivity += wiki.sentiment.subjectivity
numLines += 1
finalTotalPolarity += totalPolarity
finalTotalSubjectivity += totalSubjectivity/numLines
print ("Sentiment Polarity: ", totalPolarity)
print ("Sentiment Subjectivity: ", totalSubjectivity/numLines)
print("\n")
totalPolarity = 0
totalSubjectivity = 0
numLines = 0
query = "Amazon market"
print("Querying ", query)
relevantSummaries = self.scrape_news_summaries(query)
for summary in relevantSummaries:
wiki = TextBlob(summary)
print(summary)
totalPolarity += wiki.sentiment.polarity
totalSubjectivity += wiki.sentiment.subjectivity
numLines += 1
finalTotalPolarity += totalPolarity
finalTotalSubjectivity += totalSubjectivity/numLines
print ("Sentiment Polarity: ", totalPolarity)
print ("Sentiment Subjectivity: ", totalSubjectivity/numLines)
print("\n")
totalPolarity = 0
totalSubjectivity = 0
numLines = 0
query = "Amazon firestick"
print("Querying ", query)
relevantSummaries = self.scrape_news_summaries(query)
for summary in relevantSummaries:
wiki = TextBlob(summary)
print(summary)
totalPolarity += wiki.sentiment.polarity
totalSubjectivity += wiki.sentiment.subjectivity
numLines += 1
finalTotalPolarity += totalPolarity
finalTotalSubjectivity += totalSubjectivity/numLines
print ("Sentiment Polarity: ", totalPolarity)
print ("Sentiment Subjectivity: ", totalSubjectivity/numLines)
print ("Calculating final score to predict if stock price would go up or down")
print ("Combined Sentiment Polarity: ", finalTotalPolarity)
print ("Overall Sentiment Subjectivity: ", finalTotalSubjectivity/4)
@Rule(Company(name='GOOG'))
def predictGOOG(self):
print("Predicting stock for Google...")
print("Looking up necessary stock info")
finalTotalPolarity = 0
finalTotalSubjectivity = 0
totalPolarity = 0
totalSubjectivity = 0
numLines = 0
query = "Google"
print("Querying ", query)
relevantSummaries = self.scrape_news_summaries(query)
for summary in relevantSummaries:
wiki = TextBlob(summary)
print(summary)
totalPolarity += wiki.sentiment.polarity
totalSubjectivity += wiki.sentiment.subjectivity
numLines += 1
finalTotalPolarity += totalPolarity
finalTotalSubjectivity += totalSubjectivity/numLines
print ("Sentiment Polarity: ", totalPolarity)
print ("Sentiment Subjectivity: ", totalSubjectivity/numLines)
print("\n")
totalPolarity = 0
totalSubjectivity = 0
numLines = 0
query = "Google stocks"
print("Querying ", query)
relevantSummaries = self.scrape_news_summaries(query)
for summary in relevantSummaries:
wiki = TextBlob(summary)
print(summary)
totalPolarity += wiki.sentiment.polarity
totalSubjectivity += wiki.sentiment.subjectivity
numLines += 1
finalTotalPolarity += totalPolarity
finalTotalSubjectivity += totalSubjectivity/numLines
print ("Sentiment Polarity: ", totalPolarity)
print ("Sentiment Subjectivity: ", totalSubjectivity/numLines)
print("\n")
totalPolarity = 0
totalSubjectivity = 0
numLines = 0
query = "Google market"
print("Querying ", query)
relevantSummaries = self.scrape_news_summaries(query)
for summary in relevantSummaries:
wiki = TextBlob(summary)
print(summary)
totalPolarity += wiki.sentiment.polarity
totalSubjectivity += wiki.sentiment.subjectivity
numLines += 1
finalTotalPolarity += totalPolarity
finalTotalSubjectivity += totalSubjectivity/numLines
print ("Sentiment Polarity: ", totalPolarity)
print ("Sentiment Subjectivity: ", totalSubjectivity/numLines)
print("\n")
totalPolarity = 0
totalSubjectivity = 0
numLines = 0
query = "Google g pixel"
print("Querying ", query)
relevantSummaries = self.scrape_news_summaries(query)
for summary in relevantSummaries:
wiki = TextBlob(summary)
print(summary)
totalPolarity += wiki.sentiment.polarity
totalSubjectivity += wiki.sentiment.subjectivity
numLines += 1
finalTotalPolarity += totalPolarity
finalTotalSubjectivity += totalSubjectivity/numLines
print ("Sentiment Polarity: ", totalPolarity)
print ("Sentiment Subjectivity: ", totalSubjectivity/numLines)
print ("Calculating final score to predict if stock price would go up or down")
print ("Combined Sentiment Polarity: ", finalTotalPolarity)
print ("Overall Sentiment Subjectivity: ", finalTotalSubjectivity/4)
def scrape_news_summaries(self, s):
time.sleep(randint(0, 2)) # relax and don't let google be angry
r = requests.get("http://www.google.co.uk/search?q=" + s + "&tbm=nws")
content = r.text
news_summaries = []
soup = BeautifulSoup(content, "html.parser")
st_divs = soup.findAll("div", {"class": "st"})
for st_div in st_divs:
news_summaries.append(st_div.text)
return news_summaries
@Rule(Action('Query'),
Company(name="name"<<W()),
Fact(factname="factname"<<W()))
def query(self,factname):
finalTotalPolarity = 0
finalTotalSubjectivity = 0
totalPolarity = 0
totalSubjectivity = 0
numLines = 0
query = factname + " stocks"
print("Querying ", query)
relevantSummaries = self.scrape_news_summaries(query)
for summary in relevantSummaries:
wiki = TextBlob(summary)
print(summary)
totalPolarity += wiki.sentiment.polarity
totalSubjectivity += wiki.sentiment.subjectivity
numLines += 1
finalTotalPolarity += totalPolarity
finalTotalSubjectivity += totalSubjectivity/numLines
print ("Sentiment Polarity: ", totalPolarity)
print ("Sentiment Subjectivity: ", totalSubjectivity/numLines)
totalPolarity = 0
totalSubjectivity = 0
numLines = 0
query = factname + " market"
print("Querying ", query)
relevantSummaries = self.scrape_news_summaries(query)
for summary in relevantSummaries:
wiki = TextBlob(summary)
print(summary)
totalPolarity += wiki.sentiment.polarity
totalSubjectivity += wiki.sentiment.subjectivity
numLines += 1
finalTotalPolarity += totalPolarity
finalTotalSubjectivity += totalSubjectivity/numLines
print ("Sentiment Polarity: ", totalPolarity)
print ("Sentiment Subjectivity: ", totalSubjectivity/numLines)
print("\n")
totalPolarity = 0
totalSubjectivity = 0
numLines = 0
query = factname + " Geopolitical data"
print("Querying ", query)
relevantSummaries = self.scrape_news_summaries(query)
for summary in relevantSummaries:
wiki = TextBlob(summary)
print(summary)
totalPolarity += wiki.sentiment.polarity
totalSubjectivity += wiki.sentiment.subjectivity
numLines += 1
finalTotalPolarity += totalPolarity
finalTotalSubjectivity += totalSubjectivity/numLines
print ("Sentiment Polarity: ", totalPolarity)
print ("Sentiment Subjectivity: ", totalSubjectivity/numLines)
print ("Calculating final score to predict if stock price would go up or down")
print ("Combined Sentiment Polarity: ", finalTotalPolarity/3)
print ("Overall Sentiment Subjectivity: ", finalTotalSubjectivity/3)
@Rule(Company(name="name" <<W()),
NOT (Company(name='GOOG')),
NOT (Company(name='AMZN')),
NOT (Company(name='AAPL')))
def predict(self, name):
print("Conducting Sentiment Analysis . . . ")
self.declare(Fact(factname=name))
self.declare(Action('Query'))
"""takes company name. returns the current stock price for company"""
def pullStock(name):
ticker = name
url = "https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol={0}&outputsize=full&apikey=LBG3YII29JOX2SSU".format(
ticker)
response = requests.get(url)
json_loaded = json.loads(response.text)
if ('Error Message' in json_loaded.keys()):
print(json.dumps("Error: Please input correct stock symbol."))
else:
#summaryDataList = []
timeSeries = json_loaded["Time Series (Daily)"]
#xList = list(timeSeries.keys())
yListValues = list(timeSeries.values())
for i in range(len(yListValues)):
return float(yListValues[i]['4. close'])
engine = Prediction()
engine.reset()
engine.run()