forked from MarianoJT88/PD-Flow
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscene_flow_visualization.cpp
430 lines (351 loc) · 13.6 KB
/
scene_flow_visualization.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
/*****************************************************************************
** Primal-Dual Scene Flow for RGB-D cameras **
** ---------------------------------------- **
** **
** Copyright(c) 2015, Mariano Jaimez Tarifa, University of Malaga **
** Copyright(c) 2015, Mohamed Souiai, Technical University of Munich **
** Copyright(c) 2015, MAPIR group, University of Malaga **
** Copyright(c) 2015, Computer Vision group, Tech. University of Munich **
** **
** This program is free software: you can redistribute it and/or modify **
** it under the terms of the GNU General Public License (version 3) as **
** published by the Free Software Foundation. **
** **
** This program is distributed in the hope that it will be useful, but **
** WITHOUT ANY WARRANTY; without even the implied warranty of **
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the **
** GNU General Public License for more details. **
** **
** You should have received a copy of the GNU General Public License **
** along with this program. If not, see <http://www.gnu.org/licenses/>. **
** **
*****************************************************************************/
#include "scene_flow_visualization.h"
PD_flow_mrpt::PD_flow_mrpt(unsigned int cam_mode_config, unsigned int fps_config, unsigned int rows_config)
{
rows = rows_config; //Maximum size of the coarse-to-fine scheme - Default 240 (QVGA)
cols = rows*320/240;
cam_mode = cam_mode_config; // (1 - 640 x 480, 2 - 320 x 240), Default - 1
ctf_levels = round(log2(rows/15)) + 1;
fovh = M_PI*62.5f/180.f;
fovv = M_PI*45.f/180.f;
fps = fps_config; //In Hz, Default - 30
//Iterations of the primal-dual solver at each pyramid level.
//Maximum value set to 100 at the finest level
for (int i=5; i>=0; i--)
{
if (i >= ctf_levels - 1)
num_max_iter[i] = 100;
else
num_max_iter[i] = num_max_iter[i+1]-15;
}
//num_max_iter[ctf_levels-1] = 0.f;
//Compute gaussian mask
float v_mask[5] = {1.f,4.f,6.f,4.f,1.f};
for (unsigned int i=0; i<5; i++)
for (unsigned int j=0; j<5; j++)
g_mask[i+5*j] = v_mask[i]*v_mask[j]/256.f;
//Matrices that store the original and filtered images with the image resolution
colour_wf.setSize(480/cam_mode,640/cam_mode);
depth_wf.setSize(480/cam_mode,640/cam_mode);
//Resize vectors according to levels
dx.resize(ctf_levels); dy.resize(ctf_levels); dz.resize(ctf_levels);
const unsigned int width = colour_wf.getColCount();
const unsigned int height = colour_wf.getRowCount();
unsigned int s, cols_i, rows_i;
for (unsigned int i = 0; i<ctf_levels; i++)
{
s = pow(2.f,int(ctf_levels-(i+1)));
cols_i = cols/s; rows_i = rows/s;
dx[ctf_levels-i-1].setSize(rows_i,cols_i);
dy[ctf_levels-i-1].setSize(rows_i,cols_i);
dz[ctf_levels-i-1].setSize(rows_i,cols_i);
}
//Resize pyramid
const unsigned int pyr_levels = round(log2(width/cols)) + ctf_levels;
colour.resize(pyr_levels);
colour_old.resize(pyr_levels);
depth.resize(pyr_levels);
depth_old.resize(pyr_levels);
xx.resize(pyr_levels);
xx_old.resize(pyr_levels);
yy.resize(pyr_levels);
yy_old.resize(pyr_levels);
for (unsigned int i = 0; i<pyr_levels; i++)
{
s = pow(2.f,int(i));
colour[i].resize(height/s, width/s);
colour_old[i].resize(height/s, width/s);
colour[i].assign(0.0f);
colour_old[i].assign(0.0f);
depth[i].resize(height/s, width/s);
depth_old[i].resize(height/s, width/s);
depth[i].assign(0.0f);
depth_old[i].assign(0.0f);
xx[i].resize(height/s, width/s);
xx_old[i].resize(height/s, width/s);
xx[i].assign(0.0f);
xx_old[i].assign(0.0f);
yy[i].resize(height/s, width/s);
yy_old[i].resize(height/s, width/s);
yy[i].assign(0.0f);
yy_old[i].assign(0.0f);
}
//Parameters of the variational method
lambda_i = 0.04f;
lambda_d = 0.35f;
mu = 75.f;
}
void PD_flow_mrpt::createImagePyramidGPU()
{
//Copy new frames to the scene flow object
csf_host.copyNewFrames(colour_wf.data(), depth_wf.data());
//Copy scene flow object to device
csf_device = ObjectToDevice(&csf_host);
unsigned int pyr_levels = round(log2(640/(cam_mode*cols))) + ctf_levels;
GaussianPyramidBridge(csf_device, pyr_levels, cam_mode);
//Copy scene flow object back to host
BridgeBack(&csf_host, csf_device);
}
void PD_flow_mrpt::solveSceneFlowGPU()
{
//Define variables
CTicTac clock;
unsigned int s;
unsigned int cols_i, rows_i;
unsigned int level_image;
unsigned int num_iter;
clock.Tic();
//For every level (coarse-to-fine)
for (unsigned int i=0; i<ctf_levels; i++)
{
const unsigned int width = colour_wf.getColCount();
s = pow(2.f,int(ctf_levels-(i+1)));
cols_i = cols/s;
rows_i = rows/s;
level_image = ctf_levels - i + round(log2(width/cols)) - 1;
//=========================================================================
// Cuda - Begin
//=========================================================================
//Cuda allocate memory
csf_host.allocateMemoryNewLevel(rows_i, cols_i, i, level_image);
//Cuda copy object to device
csf_device = ObjectToDevice(&csf_host);
//Assign zeros to the corresponding variables
AssignZerosBridge(csf_device);
//Upsample previous solution
if (i>0)
UpsampleBridge(csf_device);
//Compute connectivity (Rij)
RijBridge(csf_device);
//Compute colour and depth derivatives
ImageGradientsBridge(csf_device);
WarpingBridge(csf_device);
//Compute mu_uv and step sizes for the primal-dual algorithm
MuAndStepSizesBridge(csf_device);
//Primal-Dual solver
for (num_iter = 0; num_iter < num_max_iter[i]; num_iter++)
{
GradientBridge(csf_device);
DualVariablesBridge(csf_device);
DivergenceBridge(csf_device);
PrimalVariablesBridge(csf_device);
}
//Filter solution
FilterBridge(csf_device);
//Compute the motion field
MotionFieldBridge(csf_device);
//BridgeBack
BridgeBack(&csf_host, csf_device);
//Free variables of variables associated to this level
csf_host.freeLevelVariables();
//Copy motion field and images to CPU
csf_host.copyAllSolutions(dx[ctf_levels-i-1].data(), dy[ctf_levels-i-1].data(), dz[ctf_levels-i-1].data(),
depth[level_image].data(), depth_old[level_image].data(), colour[level_image].data(), colour_old[level_image].data(),
xx[level_image].data(), xx_old[level_image].data(), yy[level_image].data(), yy_old[level_image].data());
//For debugging
//DebugBridge(csf_device);
//=========================================================================
// Cuda - end
//=========================================================================
}
}
bool PD_flow_mrpt::OpenCamera()
{
rc = openni::STATUS_OK;
const char* deviceURI = openni::ANY_DEVICE;
rc = openni::OpenNI::initialize();
printf("Opening camera...\n %s\n", openni::OpenNI::getExtendedError());
rc = device.open(deviceURI);
if (rc != openni::STATUS_OK)
{
printf("Device open failed:\n%s\n", openni::OpenNI::getExtendedError());
openni::OpenNI::shutdown();
return 1;
}
// Create RGB and Depth channels
//========================================================================================
rc = dimage.create(device, openni::SENSOR_DEPTH);
rc = rgb.create(device, openni::SENSOR_COLOR);
// Configure some properties (resolution)
//========================================================================================
rc = device.setImageRegistrationMode(openni::IMAGE_REGISTRATION_DEPTH_TO_COLOR);
options = rgb.getVideoMode();
if (cam_mode == 1)
options.setResolution(640,480);
else
options.setResolution(320,240);
rc = rgb.setVideoMode(options);
rc = rgb.setMirroringEnabled(false);
options = dimage.getVideoMode();
if (cam_mode == 1)
options.setResolution(640,480);
else
options.setResolution(320,240);
rc = dimage.setVideoMode(options);
rc = dimage.setMirroringEnabled(false);
//Turn off autoExposure
rgb.getCameraSettings()->setAutoExposureEnabled(false);
printf("Auto Exposure: %s \n", rgb.getCameraSettings()->getAutoExposureEnabled() ? "ON" : "OFF");
//Check final resolution
options = rgb.getVideoMode();
printf("Resolution (%d, %d) \n", options.getResolutionX(), options.getResolutionY());
// Start channels
//===================================================================================
rc = dimage.start();
if (rc != openni::STATUS_OK)
{
printf("Couldn't start depth stream:\n%s\n", openni::OpenNI::getExtendedError());
dimage.destroy();
}
rc = rgb.start();
if (rc != openni::STATUS_OK)
{
printf("Couldn't start rgb stream:\n%s\n", openni::OpenNI::getExtendedError());
rgb.destroy();
}
if (!dimage.isValid() || !rgb.isValid())
{
printf("Camera: No valid streams. Exiting\n");
openni::OpenNI::shutdown();
return 1;
}
return 0;
}
void PD_flow_mrpt::CloseCamera()
{
rgb.destroy();
openni::OpenNI::shutdown();
}
void PD_flow_mrpt::CaptureFrame()
{
openni::VideoFrameRef framergb, framed;
rgb.readFrame(&framergb);
dimage.readFrame(&framed);
const int height = framergb.getHeight();
const int width = framergb.getWidth();
if ((framed.getWidth() != framergb.getWidth()) || (framed.getHeight() != framergb.getHeight()))
cout << endl << "The RGB and the depth frames don't have the same size.";
else
{
//Read new frame
const openni::DepthPixel* pDepthRow = (const openni::DepthPixel*)framed.getData();
const openni::RGB888Pixel* pRgbRow = (const openni::RGB888Pixel*)framergb.getData();
int rowSize = framergb.getStrideInBytes() / sizeof(openni::RGB888Pixel);
for (int yc = height-1; yc >= 0; --yc)
{
const openni::RGB888Pixel* pRgb = pRgbRow;
const openni::DepthPixel* pDepth = pDepthRow;
for (int xc = width-1; xc >= 0; --xc, ++pRgb, ++pDepth)
{
colour_wf(yc,xc) = 0.299*pRgb->r + 0.587*pRgb->g + 0.114*pRgb->b;
depth_wf(yc,xc) = 0.001f*(*pDepth);
}
pRgbRow += rowSize;
pDepthRow += rowSize;
}
}
}
void PD_flow_mrpt::freeGPUMemory()
{
csf_host.freeDeviceMemory();
}
void PD_flow_mrpt::initializeCUDA()
{
//Read parameters
csf_host.readParameters(rows, cols, lambda_i, lambda_d, mu, g_mask, ctf_levels, cam_mode, fovh, fovv);
//Allocate memory
csf_host.allocateDevMemory();
}
void PD_flow_mrpt::initializeScene()
{
global_settings::OCTREE_RENDER_MAX_POINTS_PER_NODE = 10000000;
window.resize(1000,900);
window.setPos(900,0);
window.setCameraZoom(4);
window.setCameraAzimuthDeg(190);
window.setCameraElevationDeg(30);
window.setCameraPointingToPoint(1,0,0);
scene = window.get3DSceneAndLock();
//Point cloud (final)
opengl::CPointCloudPtr fpoints_gl = opengl::CPointCloud::Create();
fpoints_gl->setColor(0, 1, 1);
fpoints_gl->enablePointSmooth();
fpoints_gl->setPointSize(3.0);
scene->insert( fpoints_gl );
//Scene Flow (includes initial point cloud)
opengl::CVectorField3DPtr sf = opengl::CVectorField3D::Create();
sf->setPointSize(3.0f);
sf->setLineWidth(2.0f);
sf->setPointColor(1,0,0);
sf->setVectorFieldColor(0,0,1);
sf->enableAntiAliasing();
scene->insert( sf );
//Reference frame
opengl::CSetOfObjectsPtr reference = opengl::stock_objects::CornerXYZ();
reference->setPose(CPose3D(0,0,0,0,0,0));
reference->setScale(0.15f);
scene->insert( reference );
//Legend
utils::CImage img_legend;
img_legend.loadFromXPM(legend_pdflow_xpm);
opengl::COpenGLViewportPtr legend = scene->createViewport("legend");
legend->setViewportPosition(20, 20, 201, 252);
legend->setImageView(img_legend);
window.unlockAccess3DScene();
window.repaint();
}
void PD_flow_mrpt::updateScene()
{
scene = window.get3DSceneAndLock();
const unsigned int repr_level = round(log2(colour_wf.getColCount()/cols));
//Point cloud (final)
opengl::CPointCloudPtr fpoints_gl = scene->getByClass<opengl::CPointCloud>(0);
fpoints_gl->clear();
for (unsigned int v=0; v<rows; v++)
for (unsigned int u=0; u<cols; u++)
if (depth[repr_level](v,u) > 0.1f)
fpoints_gl->insertPoint(depth[repr_level](v,u), xx[repr_level](v,u), yy[repr_level](v,u));
//Scene flow
opengl::CVectorField3DPtr sf = scene->getByClass<opengl::CVectorField3D>(0);
sf->setPointCoordinates(depth_old[repr_level], xx_old[repr_level], yy_old[repr_level]);
sf->setVectorField(dx[0], dy[0], dz[0]);
window.unlockAccess3DScene();
window.repaint();
}
void PD_flow_mrpt::initializePDFlow()
{
//Initialize Visualization
initializeScene();
//Initialize CUDA
mrpt::system::sleep(500);
initializeCUDA();
//Start video streaming
OpenCamera();
//Fill empty matrices
CaptureFrame();
createImagePyramidGPU();
CaptureFrame();
createImagePyramidGPU();
solveSceneFlowGPU();
}