Skip to content

Latest commit

 

History

History
121 lines (87 loc) · 4.14 KB

README.md

File metadata and controls

121 lines (87 loc) · 4.14 KB

RxnRep

Self-supervised contrastive pretraining for chemical reaction representation (RxnRep).

rxnrep

Installation

git clone https://github.com/mjwen/rxnrep.git
cd rxnrep
conda env create -f environment.yml
conda activate rxnrep
pip install -e .

Get RxnRep reaction fingerprints

To convert SMILES reactions to RxnRep fingerprints, simply do something like the below:

from rxnrep.predict.fingerprint import get_rxnrep_fingerprint

rxn1 = "[CH3:6][CH2:7][OH:16].[O:1]=[C:2]([C:3](=[O:4])[OH:5])[CH2:8][CH2:9][c:10]1[cH:11][cH:12][cH:13][cH:14][cH:15]1>>[O:1]=[C:2]([C:3](=[O:4])[O:5][CH2:6][CH3:7])[CH2:8][CH2:9][c:10]1[cH:11][cH:12][cH:13][cH:14][cH:15]1.[OH2:16]"
rxn2 = "[C:1](#[N:2])[c:3]1[cH:4][cH:5][c:6]([CH2:7][C:8](=[O:9])[OH:10])[cH:13][cH:14]1.[CH3:11][CH2:12][OH:15]>>[C:1](#[N:2])[c:3]1[cH:4][cH:5][c:6]([CH2:7][C:8](=[O:9])[O:10][CH2:11][CH3:12])[cH:13][cH:14]1.[OH2:15]"

smiles_reactions = [rxn1, rxn2]
fingerprints = get_rxnrep_fingerprint(smiles_reactions)

print(fingerprints.shape)  # torch.size([2, 128])

See the docs of get_rxnrep_fingerprint() for more options, e.g. choosing which pretrained model to use, and fine-tuning the fingerprints.

Train classification models

Direct supervised training

To train for the Schneider dataset:

python run.py --config-name config.yaml  datamodule=classification/schneider.yaml

For TPL100 (Grambow) dataset, set datamodule to classification/tpl100.yaml (classification/grambow.yaml).

Pretraining & finetuning

To pretrain the model using contrastive learning:

python run.py --config-name config_contrastive.yaml datamodule=contrastive/schneider.yaml

Note, you may need to set functional_group_smarts_filenames in subgraph.yaml and transform_or_identity.yaml to the path of smarts_daylight.tsv before running the above command, if you are using the subgraph augmentation method.

To finetune the pretrained model:

python run.py --config-name config_finetune.yaml datamodule=classification/schneider.yaml \
       pretrained_wandb_id=<wandb_id>

where wandb_id is the W&B id for the pretraining run, an eight-character alphanumeric (e.g. 3oep187z). By providing the wandb_id, the finetuning script will automatically search for the pretrained model.

Alternatively, the pretrained model info can be passed in manually:

python run.py --config-name config_finetune.yaml datamodule=classification/schneider.yaml \
       model.finetuner.model_class.pretrained_checkpoint_filename=<checkpoint> \
       model.finetuner.model_class.pretrained_dataset_state_dict_filename=<dataset_state_dict> \
       model.finetuner.model_class.pretrained_config_filename=<config>

where

  • checkpoint is the path to the pretrained model checkpoint, e.g. epoch=9-step=39.ckpt
  • dataset_state_dict is the path to the dataset state dict of the pretrained model, e.g. dataset_state_dict.yaml
  • config is the path to the config file of the pretrained model, e.g. hydra_cfg_final.yaml

To train for the TPL100 (Grambow) dataset, replace schneider.yaml by tpl100.yaml (grambow.yaml) in datamodule.

Train regression models

Train regression models are very similar to what discussed above for classification models. See here for detailed info.

Config the training

The training are configured using hydra and the configuration files are at configs.

Cite

@article{wen2022rxnrep,
  title   = {Improving machine learning performance on small chemical reaction data
  with unsupervised contrastive pretraining},
  author  = {Wen, Mingjian and Blau, Samuel M and Xie, Xiaowei and Dwaraknath, Shyam
  and Persson, Kristin A},
  journal = {Chemical Science},
  year    = 2022,
  volume  = 13,
  issue   = 5,
  pages   = {1446--1458},
  doi     = {10.1039/D1SC06515G},
  url     = {https://doi.org/10.1039/D1SC06515G},
}