-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathactivations.py
72 lines (55 loc) · 1.96 KB
/
activations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Author: Mathieu Blondel
# License: Simplified BSD
"""
PyTorch implementation of
Learning Classifiers with Fenchel-Young Losses:
Generalized Entropies, Margins, and Algorithms.
Mathieu Blondel, André F. T. Martins, Vlad Niculae.
https://arxiv.org/abs/1805.09717
"""
import torch
# begin: From OpenNMT-py
def threshold_and_support(z, dim=0):
"""
z: any dimension
dim: dimension along which to apply the sparsemax
"""
sorted_z, _ = torch.sort(z, descending=True, dim=dim)
z_sum = sorted_z.cumsum(dim) - 1 # sort of a misnomer
k = torch.arange(1, sorted_z.size(dim) + 1, device=z.device).type(z.dtype).view(
torch.Size([-1] + [1] * (z.dim() - 1))
).transpose(0, dim)
support = k * sorted_z > z_sum
k_z_indices = support.sum(dim=dim).unsqueeze(dim)
k_z = k_z_indices.type(z.dtype)
tau_z = z_sum.gather(dim, k_z_indices - 1) / k_z
return tau_z, k_z
class SparsemaxFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, input, dim=0):
"""
input (FloatTensor): any shape
returns (FloatTensor): same shape with sparsemax computed on given dim
"""
ctx.dim = dim
tau_z, k_z = threshold_and_support(input, dim=dim)
output = torch.clamp(input - tau_z, min=0)
ctx.save_for_backward(k_z, output)
return output
@staticmethod
def backward(ctx, grad_output):
k_z, output = ctx.saved_tensors
dim = ctx.dim
grad_input = grad_output.clone()
grad_input[output == 0] = 0
v_hat = (grad_input.sum(dim=dim) / k_z.squeeze()).unsqueeze(dim)
grad_input = torch.where(output != 0, grad_input - v_hat, grad_input)
return grad_input, None
sparsemax = SparsemaxFunction.apply
class Sparsemax(torch.nn.Module):
def __init__(self, dim=0):
self.dim = dim
super(Sparsemax, self).__init__()
def forward(self, input):
return sparsemax(input, self.dim)
# end: From OpenNMT-py