-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmetrics.py
39 lines (34 loc) · 1.27 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from scipy.optimize import linear_sum_assignment
from sklearn.metrics import adjusted_rand_score
import numpy as np
def cluster_acc(y_pred, y_true, return_matched=False):
"""
Calculate clustering accuracy. Require scipy installed
# Arguments
y: true labels, numpy.array with shape `(n_samples,)`
y_pred: predicted labels, numpy.array with shape `(n_samples,)`
# Return
accuracy, in [0,1]
"""
y_true = y_true.astype(np.int64)
assert y_pred.size == y_true.size
D = max(y_pred.max(), y_true.max()) + 1
w = np.zeros((D, D), dtype=np.int64)
for i in range(y_pred.size):
w[y_pred[i], y_true[i]] += 1
row_ind, col_ind = linear_sum_assignment(w.max() - w)
if return_matched:
matched = np.array(list(map(lambda i: col_ind[i], y_pred)))
return w[row_ind, col_ind].sum() / y_pred.size, matched
else:
return w[row_ind, col_ind].sum() / y_pred.size
def cluster_ari(y_pred, y_true):
"""
Calculate adjusted rand index. Require scikit-learn installed
# Arguments
y: true labels, numpy.array with shape `(n_samples,)`
y_pred: predicted labels, numpy.array with shape `(n_samples,)`
# Return
ARI, in [0,1]
"""
return adjusted_rand_score(y_true, y_pred)