This directory contains the baseline(s) that submissions must beat to qualify for prizes, see the Scoring Section of the competition rules. For each ruleset there are 2 baselines (*_target_setting.py
and *_full_budget.py
). A submission must beat both baselines to be eligible for prizes.
The experiment logs with training metrics are in prize_qualification_baselines/logs
The prize qualification baseline submissions for JAX are:
prize_qualification_baselines/external_tuning/jax_nadamw_target_setting.py
prize_qualification_baselines/external_tuning/jax_nadamw_full_budget.py
Example command:
python3 submission_runner.py \
--framework=jax \
--data_dir=<data_dir> \
--experiment_dir=<experiment_dir> \
--experiment_name=<experiment_name> \
--workload=<workload> \
--submission_path=prize_qualification_baselines/external_tuning/jax_nadamw_target_setting.py \
--tuning_search_space=prize_qualification_baselines/external_tuning/tuning_search_space.json
The prize qualification baseline submissionss for PyTorch are:
prize_qualification_baselines/external_tuning/pytorch_nadamw_target_setting.py
prize_qualification_baselines/external_tuning/pytorch_nadamw_full_budget.py
Example command:
torchrun --redirects 1:0,2:0,3:0,4:0,5:0,6:0,7:0 --standalone --nnodes=1 --nproc_per_node=8 submission_runner.py \
--framework=pytorch \
--data_dir=<data_dir> \
--experiment_dir=<experiment_dir> \
--experiment_name=t<experiment_name> \
--workload=<workload>\
--submission_path=prize_qualification_baselines/external_tuning/pytorch_nadamw_target_setting.py \
--tuning_search_space=prize_qualification_baselines/external_tuning/tuning_search_space.json
The prize qualification baseline submissionss for jax are:
prize_qualification_baselines/self_tuning/jax_nadamw_target_setting.py
prize_qualification_baselines/self_tuning/jax_nadamw_full_budget.py
Example command:
python3 submission_runner.py \
--framework=jax \
--data_dir=<data_dir> \
--experiment_dir=<experiment_dir> \
--experiment_name=<experiment_name> \
--workload=<workload> \
--submission_path=prize_qualification_baselines/self_tuning/jax_nadamw_target_setting.py \
--tuning_ruleset=self
The prize qualification baseline submissionss for PyTorch are:
prize_qualification_baselines/self_tuning/pytorch_nadamw_target_setting.py
prize_qualification_baselines/self_tuning/pytorch_nadamw_full_budget.py
Example command:
torchrun --redirects 1:0,2:0,3:0,4:0,5:0,6:0,7:0 --standalone --nnodes=1 --nproc_per_node=8 submission_runner.py \
--framework=pytorch \
--data_dir=<data_dir> \
--experiment_dir=<experiment_dir> \
--experiment_name=t<experiment_name> \
--workload=<workload>\
--submission_path=prize_qualification_baselines/self_tuning/pytorch_nadamw_target_setting.py \
--tuning_ruleset=self