forked from sparticlesteve/cori-intml-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhpo_widgets.py
484 lines (393 loc) · 18.7 KB
/
hpo_widgets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
# stdlib
import copy
import threading
import time
import traceback
# 3rd party
import bqplot as bq
import ipyparallel as ipp
from IPython.display import display, clear_output, update_display
import ipywidgets as ipw
import numpy as np
import pandas as pd
import qgrid
class ModelPlot(ipw.VBox):
def __init__(self, y, x=None, xlim=None, ylim=None, xlabel=None, ylabel=None, title=None):
super().__init__()
self.x = x
self.xlim = xlim or [0, 1]
self.ylim = ylim or [0, 1]
self.xlabel = xlabel or 'x'
self.ylabel = ylabel or 'y'
self.title = title or "{} vs {}".format(self.ylabel, self.xlabel)
if isinstance(y, list):
self.y = y
else:
self.y = [y]
self.colors = ['blue', 'red', 'green', 'orange', 'black', 'purple', 'gray']
self.xscale = bq.LinearScale(min=self.xlim[0], max=self.xlim[1])
self.yscale = bq.LinearScale(min=self.ylim[0], max=self.ylim[1])
if isinstance(self.ylabel, list):
ylabel = ''
else:
ylabel = self.ylabel
self.xax = bq.Axis(
scale=self.xscale,
label=self.xlabel,
grid_lines='none',
)
self.yax = bq.Axis(
scale=self.yscale,
label=ylabel,
orientation='vertical',
grid_lines='none',
)
self.num_lines = 0
self.lines = []
self.scatters = []
self.labels = []
if isinstance(self.y, list):
for y in self.y:
self.create_line(y, display_legend=True)
else:
self.create_line(self.y)
self.fig = bq.Figure(
marks=self.lines + self.scatters,
axes=[self.xax, self.yax],
layout=ipw.Layout(height='550px', width='100%'),
title=self.title)
self.debug = ipw.Output(layout=ipw.Layout(height='100px', overflow_y='scroll'))
self.children = [self.fig]
def create_line(self, y, display_legend=False):
try:
color = self.colors[self.num_lines % len(self.colors)]
self.lines.append(bq.Lines(
x=[],
y=[],
scales={'x': self.xscale, 'y': self.yscale},
interpolation='linear',
display_legend=display_legend,
colors=[color],
labels=[y],
enable_hover=True
))
self.scatters.append(bq.Scatter(
x=[],
y=[],
scales={'x': self.xscale, 'y': self.yscale},
colors=[color],
enable_hover=True
))
self.labels.append(y)
self.num_lines += 1
self.lines[-1].tooltip = bq.Tooltip(
fields=['name'],
show_labels=True)
self.lines[-1].interactions = {
'hover': 'tooltip',
'click': 'tooltip'
}
self.scatters[-1].tooltip = bq.Tooltip(
fields=['y','x'],
labels=[y, self.xlabel],
formats=['.4f', ''],
show_labels=True)
self.scatters[-1].interactions = {
'hover': 'tooltip',
'click': 'tooltip'
}
except Exception as e:
self.debug.append_stdout("Exception when adding a line and points to plot: {}".format(e.args))
def resize_fig(self):
try:
for i in range(len(self.lines)):
if len(self.lines[i].x) > 0:
self.xscale.min = min(self.xscale.min, float(np.min(self.lines[i].x)))
self.xscale.max = max(self.xscale.max, float(np.max(self.lines[i].x)))
self.yscale.min = min(self.yscale.min, float(np.min(self.lines[i].y)))
self.yscale.max = max(self.yscale.max, float(np.max(self.lines[i].y)))
except Exception as e:
self.debug.append_stdout("Exception when resizing the figure: {}\n".format(e.args))
def update(self, data):
try:
for i in range(self.num_lines):
self.lines[i].y = np.array(data[self.y[i]])
self.scatters[i].y = np.array(data[self.y[i]])
if self.x and self.x in data:
self.lines[i].x = np.array(data[self.x])
self.scatters[i].x = np.array(data[self.x])
else:
self.lines[i].x = np.array([i for i in range(len(self.lines[0].y))])
self.scatters[i].x = np.array([i for i in range(len(self.lines[0].y))])
self.resize_fig()
except Exception as e:
self.debug.append_stdout("Exception while plotting lines and resizing figure: {}\n".format(e.args))
self.debug.append_stdout("Data: {}\n".format(data))
class ParamSpanWidget(ipw.VBox):
def __init__(self, compute_func, vis_func, params, columns=None, ipp_cluster_id=None,
output_layout=None, qgrid_layout=None):
"""
compute_func: function
task to submit to IPyParallel for model output
vis_func: function
function that produces a visualization of the model output (e.g. ModelPlot)
params: dict
grid search parameters, either lists/numpy arrays or list of lists/2D numpy arrays, where the outer lists have the same length
ipp_cluster_id: str
optional ipyparallel cluster id for connecting to a specific controller
"""
super().__init__()
self.compute_func = compute_func
self.vis_func = vis_func
self.output_layout = output_layout or \
ipw.Layout(height='600px', border='1px solid', overflow_x='scroll', overflow_y='scroll')
self.debug_layout = ipw.Layout(height='500px', border='1px solid', overflow_x='scroll', overflow_y='scroll')
self.qgrid_layout = qgrid_layout or ipw.Layout()
list_params = {}
for k in params:
if type(params[k]) is np.ndarray:
list_params[k] = params[k].tolist()
else:
list_params[k] = list(params[k])
self.compute_params = list_params
self.columns = ["status", "epoch"] + [k for k in params] + ["loss", "val_loss", "acc", "val_acc"]
display_params = copy.deepcopy(list_params)
for k in display_params:
needs_str = False
for i in range(len(display_params[k])):
if isinstance(list, type(display_params[k][i])):
needs_str = True
if needs_str:
display_params[k] = [str(i) for i in display_params[k]]
# setup the dataframe used to populate the table
#self.compute_param_keys = params.keys()
self.params_df = pd.DataFrame(display_params, columns=self.columns)
self.params_df["status"] = ["Not Started"] * self.params_df.shape[0]
self.params_df["epoch"] = [-1] * self.params_df.shape[0]
# create the plot output and debug output widgets
self.output = ipw.Output(layout=self.output_layout)
self.debug = ipw.Output(layout=self.debug_layout)
# create the table widget
self.param_table = qgrid.QGridWidget(df=self.params_df, layout=self.qgrid_layout)
self.param_table.grid_options['defaultColumnWidth'] = 200
self.param_table.grid_options['forceFitColumns'] = True
self.param_table.grid_options['editable'] = False
# add event listeners to the table
self.add_handlers()
# add buttons for stopping and restarting runs
self._stop_btn = ipw.Button(description="Stop selected")
self._stop_btn.on_click(self.stop_selected_models)
self._restart_btn = ipw.Button(description="Restart selected")
self._restart_btn.on_click(self.restart_selected_models)
# Add the widgets to this container
self.children = [self.output, ipw.HBox([self._stop_btn, self._restart_btn]), self.param_table]
# store all the model related elements and futures
self._num_models = self.param_table.get_changed_df().shape[0]
self.model_plots = [self.vis_func(title="Model {}: {}".format(i,
{k: self.compute_params[k][i] for k in self.compute_params})) for i in range(self._num_models)]
self.model_displays = [None for i in range(self._num_models)]
self.model_data = [
ModelTaskData(["epoch","loss","val_loss","acc","val_acc"],["status","epoch"]) for i in range(self._num_models)]
self._model_controller = ModelController(ipp_cluster_id=ipp_cluster_id)
# select the first row by default
self._active_plot = 0
self.param_table._handle_qgrid_msg_helper({'type': 'selection_changed', 'rows': [0]})
self._stop_updates = threading.Event()
self._stop_updates.clear()
self._update_thread = threading.Thread(target=self.update_data)
self._update_thread.start()
def add_handlers(self):
"""Add event handlers to the table"""
self.param_table.on('selection_changed', self.display_visualization)
def remove_handlers(self):
"""Remove event handlers from the table"""
self.param_table.off('selection_changed', self.display_visualization)
def submit_computations(self):
"""Start all models"""
try:
for i in range(self._num_models):
self._model_controller.start_model(
i,
self.compute_func,
{k: self.compute_params[k][i] for k in self.compute_params})
except Exception as e:
self.debug.append_stdout("Exception while submitting runs: {}\n".format(e.args))
def update_data(self, interval=1):
try:
while not self._stop_updates.is_set():
active_models = self._model_controller.get_running_models()
for model_id in active_models:
data = active_models[model_id].data
table_updated = False
if len(data) == 0:
continue
if "history" in data and len(data["history"]["epoch"]) > 0:
current_data_length = self.model_data[model_id].num_data_rows
history_data_length = len(data["history"]["epoch"])
if current_data_length < history_data_length:
if current_data_length == 0:
i = 0
else:
i = current_data_length - 1
while i < history_data_length:
self.model_data[model_id].append_plot_data_row(
{k: data["history"][k][i] for k in data["history"]})
i += 1
# apply plot data update
if model_id == self._active_plot:
self.model_plots[model_id].update(self.model_data[model_id].get_plot_data())
for k in data["history"]:
self.param_table._handle_qgrid_msg_helper({
'type': 'cell_change',
'column': k,
'row_index': model_id,
'unfiltered_index': model_id,
'value': data["history"][k][-1]
})
table_updated = True
if "status" in data and self.param_table.get_changed_df()["status"][model_id]:
self.param_table._handle_qgrid_msg_helper({
'type': 'cell_change',
'column': "status",
'row_index': model_id,
'unfiltered_index': model_id,
'value': data["status"]
})
table_updated = True
if data["status"] == "Ended Training":
self._model_controller.set_model_completed(model_id)
if "epoch" in data:
self.param_table._handle_qgrid_msg_helper({
'type': 'cell_change',
'column': "epoch",
'row_index': model_id,
'unfiltered_index': model_id,
'value': data["epoch"]
})
table_updated = True
if table_updated:
self.param_table._update_table()
time.sleep(interval)
except Exception as e:
self.debug.append_stdout("Exception while applying updates from futures: {}\n".format(traceback.format_exc(e)))
def display_visualization(self, event, widget_instance):
try:
self.debug.append_stdout("Event received: {}\n".format(event))
# this means that all rows have been deselected
if len(event['new']) == 0:
return
row_id = event['new'][0]
model_id = self.param_table.get_changed_df().index[row_id]
self._active_plot = model_id
# only update the plot if there is more data since the last viewing
if self.model_data[model_id].num_data_rows > len(self.model_plots[model_id].lines[0].y):
plot_data = self.model_data[model_id].get_plot_data()
self.model_plots[model_id].update(plot_data)
with self.output:
clear_output(wait=True)
if self.model_displays[model_id] is None:
self.model_displays[model_id] = display(self.model_plots[model_id], display_id=True)
else:
update_display(self.model_plots[model_id], display_id=self.model_displays[model_id])
except Exception as e:
self.debug.append_stdout("Exception while switching to plot {}: {}\n".format(event, e.args))
def stop_selected_models(self, event):
srows = self.param_table.get_selected_rows()
self.debug.append_stdout("Stop rows {}\n".format(srows))
#for row_id in srows:
# model_id = self.param_table.get_changed_df().index[row_id]
def restart_selected_models(self, event):
srows = self.param_table.get_selected_rows()
self.debug.append_stdout("Restart rows {}\n".format(srows))
#for row_id in srows:
# model_id = self.param_table.get_changed_df().index[row_id]
def get_resource_usage(self, model_id):
pass
def get_models_status(self):
status = self.param_table.get_changed_df()[["status"]]
class ModelController(object):
def __init__(self, ipp_cluster_id=None):
self._futures = []
self._completed = []
self._active_models = {}
self._completed_models = {}
self._ipp_client = ipp.Client(cluster_id=ipp_cluster_id)
self._lview = self._ipp_client.load_balanced_view()
def start_model(self, model_id, compute_func, params):
self._futures.append(self._lview.apply(compute_func, **params))
self._active_models[model_id] = len(self._futures) - 1
def stop_model(self, model_id):
pass
def restart_model(self, model_id, compute_func, params):
#self._futures[model_id] = self._lview.apply(compute_func, **params)
pass
def set_model_completed(self, model_id):
if model_id not in self._completed:
self._completed.append(model_id)
def get_completed_models(self):
return {k: self._futures[self._completed_models[k]] for k in self._completed_models}
def get_running_models(self):
for i in range(len(self._futures)):
if self._futures[i] is not None and self._futures[i].done() and i in self._completed:
self._futures[i] = None
self._completed_models[i] = self._completed.index(i)
del self._active_models[i]
return {k: self._futures[self._active_models[k]] for k in self._active_models}
class ModelTaskData(object):
def __init__(self, plot_columns, status_columns):
super(ModelTaskData, self).__init__()
self._plot_data = ModelPlotTable(plot_columns)
self._status_data = {k: None for k in status_columns}
self._updated = True
@property
def has_updates(self):
return self._updated
@property
def num_data_rows(self):
return len(self._plot_data.rows[0])
def get_plot_data(self):
return self._plot_data.to_dict()
def append_plot_data_row(self, d):
self._plot_data.append_row(d)
self._updated = True
def set_status_data(self, d):
self._status_data.update(d)
self._updated = True
def get_status_data(self):
return self._status_data
class ModelPlotTable(object):
def __init__(self, column_names):
super(ModelPlotTable, self).__init__()
self._id = None
self._num_columns = len(column_names)
self._num_rows = 0
self._column_map = {column_names[i]: i for i in range(len(column_names))}
self._column_data = [list() for c in column_names]
@property
def columns(self):
return list(self._column_map.keys())
@property
def rows(self):
return self._column_data
def append_column(self, name, vals=None):
if name in self._column_map:
raise KeyError("column {} is already in this table".format(name))
if vals:
if len(vals) == self._num_rows:
self._column_data.append(list(vals))
else:
raise ValueError("Number of rows must match table")
else:
data = [None] * self._num_rows
self._column_data.append(data)
self._column_map[name] = len(self._column_data) - 1
self._updated = True
def append_row(self, column_data):
for column_name in self._column_map:
column_index = self._column_map[column_name]
if column_name in column_data:
self._column_data[column_index].append(column_data[column_name])
else:
self._column_data[column_index].append(None)
def to_dict(self):
return {k: self._column_data[v] for k, v in self._column_map.items()}