-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdecision_tree.go
215 lines (182 loc) · 7.36 KB
/
decision_tree.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
package mlpack
/*
#cgo CFLAGS: -I./capi -Wall
#cgo LDFLAGS: -L. -lmlpack_go_decision_tree
#include <capi/decision_tree.h>
#include <stdlib.h>
*/
import "C"
import "gonum.org/v1/gonum/mat"
type DecisionTreeOptionalParam struct {
InputModel *decisionTreeModel
Labels *mat.Dense
MaximumDepth int
MinimumGainSplit float64
MinimumLeafSize int
PrintTrainingAccuracy bool
Test *matrixWithInfo
TestLabels *mat.Dense
Training *matrixWithInfo
Verbose bool
Weights *mat.Dense
}
func DecisionTreeOptions() *DecisionTreeOptionalParam {
return &DecisionTreeOptionalParam{
InputModel: nil,
Labels: nil,
MaximumDepth: 0,
MinimumGainSplit: 1e-07,
MinimumLeafSize: 20,
PrintTrainingAccuracy: false,
Test: nil,
TestLabels: nil,
Training: nil,
Verbose: false,
Weights: nil,
}
}
/*
Train and evaluate using a decision tree. Given a dataset containing numeric
or categorical features, and associated labels for each point in the dataset,
this program can train a decision tree on that data.
The training set and associated labels are specified with the "Training" and
"Labels" parameters, respectively. The labels should be in the range `[0,
num_classes - 1]`. Optionally, if "Labels" is not specified, the labels are
assumed to be the last dimension of the training dataset.
When a model is trained, the "OutputModel" output parameter may be used to
save the trained model. A model may be loaded for predictions with the
"InputModel" parameter. The "InputModel" parameter may not be specified when
the "Training" parameter is specified. The "MinimumLeafSize" parameter
specifies the minimum number of training points that must fall into each leaf
for it to be split. The "MinimumGainSplit" parameter specifies the minimum
gain that is needed for the node to split. The "MaximumDepth" parameter
specifies the maximum depth of the tree. If "PrintTrainingAccuracy" is
specified, the training accuracy will be printed.
Test data may be specified with the "Test" parameter, and if performance
numbers are desired for that test set, labels may be specified with the
"TestLabels" parameter. Predictions for each test point may be saved via the
"Predictions" output parameter. Class probabilities for each prediction may
be saved with the "Probabilities" output parameter.
For example, to train a decision tree with a minimum leaf size of 20 on the
dataset contained in data with labels labels, saving the output model to tree
and printing the training error, one could call
// Initialize optional parameters for DecisionTree().
param := mlpack.DecisionTreeOptions()
param.Training = data
param.Labels = labels
param.MinimumLeafSize = 20
param.MinimumGainSplit = 0.001
param.PrintTrainingAccuracy = true
tree, _, _ := mlpack.DecisionTree(param)
Then, to use that model to classify points in test_set and print the test
error given the labels test_labels using that model, while saving the
predictions for each point to predictions, one could call
// Initialize optional parameters for DecisionTree().
param := mlpack.DecisionTreeOptions()
param.InputModel = &tree
param.Test = test_set
param.TestLabels = test_labels
_, predictions, _ := mlpack.DecisionTree(param)
Input parameters:
- InputModel (decisionTreeModel): Pre-trained decision tree, to be used
with test points.
- Labels (mat.Dense): Training labels.
- MaximumDepth (int): Maximum depth of the tree (0 means no limit).
Default value 0.
- MinimumGainSplit (float64): Minimum gain for node splitting. Default
value 1e-07.
- MinimumLeafSize (int): Minimum number of points in a leaf. Default
value 20.
- PrintTrainingAccuracy (bool): Print the training accuracy.
- Test (matrixWithInfo): Testing dataset (may be categorical).
- TestLabels (mat.Dense): Test point labels, if accuracy calculation is
desired.
- Training (matrixWithInfo): Training dataset (may be categorical).
- Verbose (bool): Display informational messages and the full list of
parameters and timers at the end of execution.
- Weights (mat.Dense): The weight of labels
Output parameters:
- outputModel (decisionTreeModel): Output for trained decision tree.
- predictions (mat.Dense): Class predictions for each test point.
- probabilities (mat.Dense): Class probabilities for each test point.
*/
func DecisionTree(param *DecisionTreeOptionalParam) (decisionTreeModel, *mat.Dense, *mat.Dense) {
params := getParams("decision_tree")
timers := getTimers()
disableBacktrace()
disableVerbose()
// Detect if the parameter was passed; set if so.
if param.InputModel != nil {
setDecisionTreeModel(params, "input_model", param.InputModel)
setPassed(params, "input_model")
}
// Detect if the parameter was passed; set if so.
if param.Labels != nil {
gonumToArmaUrow(params, "labels", param.Labels)
setPassed(params, "labels")
}
// Detect if the parameter was passed; set if so.
if param.MaximumDepth != 0 {
setParamInt(params, "maximum_depth", param.MaximumDepth)
setPassed(params, "maximum_depth")
}
// Detect if the parameter was passed; set if so.
if param.MinimumGainSplit != 1e-07 {
setParamDouble(params, "minimum_gain_split", param.MinimumGainSplit)
setPassed(params, "minimum_gain_split")
}
// Detect if the parameter was passed; set if so.
if param.MinimumLeafSize != 20 {
setParamInt(params, "minimum_leaf_size", param.MinimumLeafSize)
setPassed(params, "minimum_leaf_size")
}
// Detect if the parameter was passed; set if so.
if param.PrintTrainingAccuracy != false {
setParamBool(params, "print_training_accuracy", param.PrintTrainingAccuracy)
setPassed(params, "print_training_accuracy")
}
// Detect if the parameter was passed; set if so.
if param.Test != nil {
gonumToArmaMatWithInfo(params, "test", param.Test)
setPassed(params, "test")
}
// Detect if the parameter was passed; set if so.
if param.TestLabels != nil {
gonumToArmaUrow(params, "test_labels", param.TestLabels)
setPassed(params, "test_labels")
}
// Detect if the parameter was passed; set if so.
if param.Training != nil {
gonumToArmaMatWithInfo(params, "training", param.Training)
setPassed(params, "training")
}
// Detect if the parameter was passed; set if so.
if param.Verbose != false {
setParamBool(params, "verbose", param.Verbose)
setPassed(params, "verbose")
enableVerbose()
}
// Detect if the parameter was passed; set if so.
if param.Weights != nil {
gonumToArmaMat(params, "weights", param.Weights, false)
setPassed(params, "weights")
}
// Mark all output options as passed.
setPassed(params, "output_model")
setPassed(params, "predictions")
setPassed(params, "probabilities")
// Call the mlpack program.
C.mlpackDecisionTree(params.mem, timers.mem)
// Initialize result variable and get output.
var outputModel decisionTreeModel
outputModel.getDecisionTreeModel(params, "output_model")
var predictionsPtr mlpackArma
predictions := predictionsPtr.armaToGonumUrow(params, "predictions")
var probabilitiesPtr mlpackArma
probabilities := probabilitiesPtr.armaToGonumMat(params, "probabilities")
// Clean memory.
cleanParams(params)
cleanTimers(timers)
// Return output(s).
return outputModel, predictions, probabilities
}