Skip to content

Latest commit

 

History

History
54 lines (54 loc) · 2.42 KB

2019-05-24-hansen19a.md

File metadata and controls

54 lines (54 loc) · 2.42 KB
section title abstract layout series id month tex_title firstpage lastpage page order cycles bibtex_author author date address publisher container-title volume genre issued pdf extras
Contributed Papers
Sparse Structured Prediction for Semantic Edge Detection in Medical Images
In medical image analysis most state-of-the-art methods rely on deep neural networks with learned convolutional filters. For pixel-level tasks, e.g. multi-class segmentation, approaches build upon UNet-like encoder-decoder architectures show impressive results. However, at the same time, grid-based models often process images unnecessarily dense introducing large time and memory requirements. Therefore it is still a challenging problem to deploy recent methods in the clinical setting. Evaluating images on only a limited number of locations has the potential to overcome those limitations and may also enable the acquisition of medical images using adaptive sparse sampling, which could substantially reduce scan times and radiation doses. In this work we investigate the problem of semantic edge detection in CT and X-ray images from sparse sampling locations. We propose a deep learning architecture that comprises of two parts: 1) a lightweight fully convolutional CNN to extract informative sampling points and 2) our novel sparse structured prediction network (SSPNet). The SSPNet processes image patches on a graph generated from the sampled locations and outputs semantic edge activations for each patch which are accumulated in an array via a weighted voting scheme to recover a dense prediction. We conduct several ablation experiments for our network on a dataset consisting of 10 abdominal CT slices from VISCERAL and evaluate its performance against strong baseline UNets on the JSRT database of chest X-rays.
inproceedings
Proceedings of Machine Learning Research
hansen19a
0
Sparse Structured Prediction for Semantic Edge Detection in Medical Images
250
259
250-259
250
false
Hansen, Lasse and Heinrich, {Mattias P.}
given family
Lasse
Hansen
given family
Mattias P.
Heinrich
2019-05-24
PMLR
Proceedings of The 2nd International Conference on Medical Imaging with Deep Learning
102
inproceedings
date-parts
2019
5
24