-
Notifications
You must be signed in to change notification settings - Fork 124
/
moshi.py
226 lines (190 loc) · 8.33 KB
/
moshi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
"""
Moshi websocket web service.
"""
import modal
import asyncio
import time
from .common import app
image = (
modal.Image.debian_slim(python_version="3.11")
.pip_install(
"moshi==0.1.0",
"fastapi==0.115.5",
"huggingface_hub==0.24.7",
"hf_transfer==0.1.8",
"sphn==0.1.4",
)
.env({"HF_HUB_ENABLE_HF_TRANSFER": "1"})
)
with image.imports():
from huggingface_hub import hf_hub_download
import torch
from moshi.models import loaders, LMGen
import sentencepiece
import sphn
import numpy as np
@app.cls(
image=image,
gpu="A10G",
container_idle_timeout=300,
timeout=600,
)
class Moshi:
@modal.build()
def download_model(self):
hf_hub_download(loaders.DEFAULT_REPO, loaders.MOSHI_NAME)
hf_hub_download(loaders.DEFAULT_REPO, loaders.MIMI_NAME)
hf_hub_download(loaders.DEFAULT_REPO, loaders.TEXT_TOKENIZER_NAME)
@modal.enter()
def enter(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
mimi_weight = hf_hub_download(loaders.DEFAULT_REPO, loaders.MIMI_NAME)
self.mimi = loaders.get_mimi(mimi_weight, device=self.device)
self.mimi.set_num_codebooks(8)
self.frame_size = int(self.mimi.sample_rate / self.mimi.frame_rate)
moshi_weight = hf_hub_download(loaders.DEFAULT_REPO, loaders.MOSHI_NAME)
self.moshi = loaders.get_moshi_lm(moshi_weight, device=self.device)
self.lm_gen = LMGen(
self.moshi,
# Sampling params
temp=0.8,
temp_text=0.8,
top_k=250,
top_k_text=25,
)
self.mimi.streaming_forever(1)
self.lm_gen.streaming_forever(1)
tokenizer_config = hf_hub_download(
loaders.DEFAULT_REPO, loaders.TEXT_TOKENIZER_NAME
)
self.text_tokenizer = sentencepiece.SentencePieceProcessor(tokenizer_config)
# Warmup them GPUs
for chunk in range(4):
chunk = torch.zeros(
1, 1, self.frame_size, dtype=torch.float32, device=self.device
)
codes = self.mimi.encode(chunk)
for c in range(codes.shape[-1]):
tokens = self.lm_gen.step(codes[:, :, c : c + 1])
if tokens is None:
continue
_ = self.mimi.decode(tokens[:, 1:])
torch.cuda.synchronize()
def reset_state(self):
# we use Opus format for audio across the websocket, as it can be safely streamed and decoded in real-time
self.opus_stream_outbound = sphn.OpusStreamWriter(self.mimi.sample_rate)
self.opus_stream_inbound = sphn.OpusStreamReader(self.mimi.sample_rate)
# LLM is stateful, maintaining chat history, so reset it on each connection
self.mimi.reset_streaming()
self.lm_gen.reset_streaming()
@modal.asgi_app()
def web(self):
from fastapi import FastAPI, Response, WebSocket, WebSocketDisconnect
web_app = FastAPI()
@web_app.get("/status")
async def status():
return Response(status_code=200)
@web_app.websocket("/ws")
async def websocket(ws: WebSocket):
with torch.no_grad():
await ws.accept()
# Clear model chat history and any buffered audio
self.reset_state()
print("Session started")
tasks = []
# We use asyncio to run multiple loops concurrently, within the context of this single websocket connection
async def recv_loop():
"""
Receives Opus stream across websocket, appends into opus_stream_inboun
"""
while True:
data = await ws.receive_bytes()
if not isinstance(data, bytes):
print("received non-bytes message")
continue
if len(data) == 0:
print("received empty message")
continue
self.opus_stream_inbound.append_bytes(data)
async def inference_loop():
"""
Runs streaming inference on inbound data, and if any response audio is created, appends it to the outbound stream
"""
all_pcm_data = None
while True:
await asyncio.sleep(0.001)
pcm = self.opus_stream_inbound.read_pcm()
if pcm is None:
continue
if len(pcm) == 0:
continue
if pcm.shape[-1] == 0:
continue
if all_pcm_data is None:
all_pcm_data = pcm
else:
all_pcm_data = np.concatenate((all_pcm_data, pcm))
# infer on each frame
while all_pcm_data.shape[-1] >= self.frame_size:
t0 = time.time()
chunk = all_pcm_data[: self.frame_size]
all_pcm_data = all_pcm_data[self.frame_size :]
chunk = torch.from_numpy(chunk)
chunk = chunk.to(device=self.device)[None, None]
# inference on audio chunk
codes = self.mimi.encode(chunk)
# language model inference against encoded audio
for c in range(codes.shape[-1]):
tokens = self.lm_gen.step(codes[:, :, c : c + 1])
if tokens is None:
# model is silent
continue
assert tokens.shape[1] == self.lm_gen.lm_model.dep_q + 1
main_pcm = self.mimi.decode(tokens[:, 1:])
main_pcm = main_pcm.cpu()
self.opus_stream_outbound.append_pcm(
main_pcm[0, 0].numpy()
)
text_token = tokens[0, 0, 0].item()
if text_token not in (0, 3):
text = self.text_tokenizer.id_to_piece(text_token)
text = text.replace("▁", " ")
msg = b"\x02" + bytes(
text, encoding="utf8"
) # prepend "\x02" as a tag to indicate text
await ws.send_bytes(msg)
async def send_loop():
"""
Reads outbound data, and sends it across websocket
"""
while True:
await asyncio.sleep(0.001)
msg = self.opus_stream_outbound.read_bytes()
if msg is None:
continue
if len(msg) == 0:
continue
msg = b"\x01" + msg # prepend "\x01" as a tag to indicate audio
await ws.send_bytes(msg)
# This runs all the loops concurrently
try:
tasks = [
asyncio.create_task(recv_loop()),
asyncio.create_task(inference_loop()),
asyncio.create_task(send_loop()),
]
await asyncio.gather(*tasks)
except WebSocketDisconnect:
print("WebSocket disconnected")
await ws.close(code=1000)
except Exception as e:
print("Exception:", e)
await ws.close(code=1011) # Internal error
raise e
finally:
for task in tasks:
task.cancel()
await asyncio.gather(*tasks, return_exceptions=True)
# self.opus_stream_inbound.close()
self.reset_state()
return web_app