-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathd1_Table1_mom_arms_compare.m
239 lines (210 loc) · 10.7 KB
/
d1_Table1_mom_arms_compare.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
%-------------------------------------------------------------------------%
% Copyright (c) 2020 Modenese L., Kohout J. %
% %
% Licensed under the Apache License, Version 2.0 (the "License"); %
% you may not use this file except in compliance with the License. %
% You may obtain a copy of the License at %
% http://www.apache.org/licenses/LICENSE-2.0. %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or %
% implied. See the License for the specific language governing %
% permissions and limitations under the License. %
% %
% Author: Luca Modenese %
% email: [email protected] %
% ----------------------------------------------------------------------- %
% Scripts that computes the ranges of moment arms for the highly
% discretised muscles. The computed values are included in Table 1 of the
% manuscript (with opposite sign).
%----------------------------------------------------------------------- %
clear; clc; close all
addpath('./_support_functions');
addpath('./_literature_data');
%-------------- SETTINGS -------------------------
% model
model = 'LHDL';
method = 'L_Method';
% task to use in creating the models
task_set = {'hip_flexion','hip_adduction', 'hip_rotation'};
indip_coord_set = {'hip_flexion_r','hip_adduction_r', 'hip_rotation_r'};
% folder where the biomechanical results are stored
biomech_res_folder = ['c_fibre_biomechanics', filesep, method];
% folder where the MSK model results are stored
MSK_results_folder = './a_MSK_model/c_MSK_results';
%-------------------------------------------------
% name of muscles (depend on model)
muscles_list = {'r_psoas', 'r_iliacus', 'r_gluteus_maximus', 'r_gluteus_medius'};
os_muscles_list = {'psoas_r', 'iliacus_r', {'glut_max1_r', 'glut_max2_r', 'glut_max3_r'}, {'glut_med1_r', 'glut_med2_r', 'glut_med3_r' }};
N_mus = numel(muscles_list);
ma_range_matrix.colheaders = {};
accum = [];
% load Blemker data
Blemker2005_data = load_Blemker2005_data();
% ranges of motion of interest
ROMs_set = {[-10 60 ], [-40 40], [-30 30]};
n_plot=1;
coeff = -1.0;
% figure for double check plotting
h = figure; set(h, 'Position', [210 89 1536 768]);
% loop throughout tasks
for n_t = 1:numel(task_set)
% get current task
cur_task = task_set{n_t};
% load mom arms from OpenSim model (saved from OpenSim GUI)
MSK_results_file = [MSK_results_folder, filesep ,model,'_',cur_task,'.mot'];
osim_MA_task = sto2MatStruct(MSK_results_file);
% load results from highly discretized muscles
load(fullfile(biomech_res_folder, ['Results_',model,'_',cur_task]));
for n_m = 1:N_mus
% current range of motion
cur_ROM = ROMs_set{n_t};
% get current muscle (blemker and highly-discretized)
cur_mus_name = muscles_list{n_m};
% get current muscle (straight-lines)
cur_mus_name_os = os_muscles_list{n_m};
coeff = -1.0;
% conventions as in Blemker, so need correction for gluts in
% flexion
if strcmp(cur_task,'hip_flexion') && strncmp(cur_mus_name,'r_gluteus',length('r_gluteus'))
coeff = 1.0;
end
%========== HIGHLY DISCRETIZED MUSCLES ==
% load moment arms for current muscle
cur_mus_res = ResultsSummary.(cur_mus_name);
% indep coordinate for the current task as stored in results (fit)
ind_coord_v = ResultsSummary.(cur_mus_name).ind_coord*180/pi;
% adjusting to Blemker and Delp convention of signs
LHP_mom_arm_mat = cur_mus_res.mom_arm_mat*coeff;
% building a polygonal shape in MATLAB for areas calculations:
% 1) proper x coordinates
x_sim = ind_coord_v(1:end-1)+mean(diff(ind_coord_v));
% 2) upper and lower boundary curves
sim_ub = max(LHP_mom_arm_mat,[],2)*100;
sim_lb = min(LHP_mom_arm_mat,[],2)*100;
% 3) create polygon
sim_poly = polyshape([x_sim, flip(x_sim)],[sim_ub', flip(sim_lb')]);
%========================================
%========== BLEMKER DATA===============
% fit fourth order polynomials
p1 = polyfit(Blemker2005_data.(cur_mus_name).(cur_task).lb(:,1), Blemker2005_data.(cur_mus_name).(cur_task).lb(:,2), 4);
p2 = polyfit(Blemker2005_data.(cur_mus_name).(cur_task).ub(:,1), Blemker2005_data.(cur_mus_name).(cur_task).ub(:,2), 4);
% calculate values for range of interest
x_vect = cur_ROM(1):cur_ROM(end);
yy_l = polyval(p1, x_vect);
yy_u = polyval(p2 ,x_vect);
% creating MATLAB polygon for areas calculations
b_poly = polyshape([x_vect, flip(x_vect)],[yy_u, flip(yy_l)]);
% ranges (never really used - checked manually for table 2)
% range.(cur_mus_name).(cur_task) = abs(yy_u-yy_l);
% Intersection of areas of Blemker and highly discretized muscles
% (as % of Blemker's area)
polyout = intersect(sim_poly,b_poly);
Blemker_on_sims_table(n_t, n_m)= area(polyout)/area(b_poly)*100; %#ok<SAGROW>
%========================================
% plotting for double checking areas
% disp(['Plotting: ', cur_mus_name, ' for task: ', cur_task])
subplot(3, 4, n_plot)
plot(sim_poly); hold on
plot(b_poly); hold on
xlim(cur_ROM)
xlabel('Degrees')
ylabel('Moment arms [cm]')
title(strrep([cur_mus_name, ' - ', cur_task],'_',' '))
%========== STRAIGTH-LINES MUSCLES =========
% get coordinate for straight-lines (unfortunately all source of
% results are sampled differently)
os_coord = getValueColumnForHeader(osim_MA_task, indip_coord_set{n_t});
% get moment arms and adjust to Blemker and Delp signs once more
if ischar(cur_mus_name_os)
os_MA = getValueColumnForHeader(osim_MA_task, cur_mus_name_os);
coeff_os = 1.0;
% deal with muscles with multiple bundles
elseif iscell(cur_mus_name_os)
for ni = 1:length(cur_mus_name_os)
os_MA(:,ni) = getValueColumnForHeader(osim_MA_task, cur_mus_name_os{ni});
coeff_os = 1.0;
if strcmp(cur_task, 'hip_flexion')
coeff_os = -1.0;
end
end
end
% loop through the bundles
for nn = 1:size(os_MA,2)
% plot to achieve consistency with the other data
p_os = polyfit(os_coord, os_MA(:,nn)*100*coeff_os, 4);
os_MA_fit = polyval(p_os, x_sim);
% plotting for double checking
plot(x_sim, os_MA_fit,'g');hold on
% compute the index of the poses outside the boundaries of the
% highly discretized muscle moment arms
out_index = (os_MA_fit>sim_ub')+(os_MA_fit<sim_lb');
out_perc(nn) = 100-sum(out_index)/numel(os_MA_fit)*100;
% diplay results
if nn==size(os_MA,2)
%disp(['agreement: ', num2str(mean(out_perc))])
line_mus_perc_table(n_t, n_m) = mean(out_perc);
clear out_perc
end
end
%========================================
%========== LITERATURE DATA =========
x_extra = [];
y_extra = [];
code = '';
if strcmp('r_psoas', cur_mus_name) && strcmp(cur_task,'hip_flexion')
load('Arnold2000.mat')
x_extra = Arnold2000.data(:,1);
y_extra = Arnold2000.data(:,2);%2:4
code = 'Arnold';
end
if strcmp('r_gluteus_medius',cur_mus_name) && strcmp(cur_task,'hip_flexion')
load('Dostal1986.mat');
% special data
x_extra = Dostal1986.data(:,1);
y_extra =-Dostal1986.data(:,2);
code = 'Dostal';
end
if strcmp('r_gluteus_maximus',cur_mus_name) && strcmp(cur_task,'hip_flexion')
load('Nemeth1985.mat');
% points were from paper: added first point
x_extra = [Nemeth1985.data(1,1), 5:5:90];
y_extra = [Nemeth1985.data(1,2), 75, 74, 72, 70, 69, 66, 64, 62, 59, 56, 54, 51, 48, 44, 41, 38, 34, 31]/10;
code = 'Nemeth';
end
if ~isempty(x_extra)
% fit the data to adjust to sampling of other sources
lit_os = polyfit(x_extra, y_extra, 4);
lit_MA_fit = polyval(lit_os, x_sim);
% compute percentage of agreement
lit_out_index = (lit_MA_fit>sim_ub')+(lit_MA_fit<sim_lb');
lit_out_perc = 100-sum(lit_out_index)/numel(lit_MA_fit)*100;
% disp(['agreement ',code, ' : ', num2str(mean(lit_out_perc))])
lit_mus_perc_table(n_t, n_m) = mean(lit_out_perc);
% plotting for double checking literature data
plot(x_sim, lit_MA_fit, '-k', 'Linewidth', 2.0)
end
%========================================
% update counters
n_plot = n_plot+1;
clear os_MA
end
clear osim_MA_task
end
% subtables of Table 1, in order
Table2_straight_mus = table([line_mus_perc_table(:,1)], [line_mus_perc_table(:,2)], [line_mus_perc_table(:,3)], [line_mus_perc_table(:,4)]);
Table2_straight_mus.Properties.VariableNames = {'r_psoas' 'r_iliacus' 'r_gluteus_maximus' 'r_gluteus_medius'};
Table2_straight_mus.Properties.RowNames = {'hip_flexion_lines' 'hip_adduction_lines' 'hip_rotation_lines'};
disp(Table2_straight_mus)
Table2_Areas = table([Blemker_on_sims_table(:,1)], [Blemker_on_sims_table(:,2)], [Blemker_on_sims_table(:,3)], [Blemker_on_sims_table(:,4)]);
Table2_Areas.Properties.VariableNames = {'r_psoas' 'r_iliacus' 'r_gluteus_maximus' 'r_gluteus_medius'};
Table2_Areas.Properties.RowNames = {'hip_flexion_areas' 'hip_adduction_areas' 'hip_rotation_areas'};
disp(Table2_Areas)
Table2_lit_data = table([lit_mus_perc_table(:,1)], [lit_mus_perc_table(:,2)], [lit_mus_perc_table(:,3)], [lit_mus_perc_table(:,4)]);
Table2_lit_data.Properties.VariableNames = {'r_psoas_Arnold' 'r_iliacus_no_data' 'r_gluteus_maximus_Nemeth' 'r_gluteus_medius_Dostal'};
Table2_lit_data.Properties.RowNames = {'hip_flexion_lit' };
disp(Table2_lit_data)
% remove paths
rmpath('./_support_functions');
rmpath('./_literature_data');