forked from udacity/nd009t-capstone-starter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhpo_improved.py
242 lines (174 loc) · 7.29 KB
/
hpo_improved.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import argparse
import logging
import os
import sys
import torch
import torch.nn as nn
import torchvision.models as models
import torchvision.transforms as transforms
import torch.optim as optim
import torchvision.datasets as datasets
from tqdm import tqdm
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
logger.addHandler(logging.StreamHandler(sys.stdout))
def test(model, test_loader, criterion):
logger.info("Testing started.")
test_loss = correct = 0
model.to("cpu")
model.eval()
with torch.no_grad():
for (data, target) in test_loader:
outputs = model(data)
loss = criterion(outputs, target)
test_loss += loss.item()
pred = outputs.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print(f"Test Loss: {test_loss:.4f}, Accuracy: {correct / len(test_loader.dataset)}")
logger.info("Testing completed.")
def train(model, train_loader, valid_loader, criterion, optimizer, epochs, device):
logger.info("Training started.")
for i in tqdm(range(epochs), desc="Training"):
train_loss = 0
model.train()
for data, target in train_loader:
data = data.to(device)
target = target.to(device)
optimizer.zero_grad()
outputs = model(data)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
train_loss += loss.item()
train_loss /= len(train_loader.dataset)
print(f"Epoch {i}: Train loss = {train_loss:.4f}")
val_loss = 0
model.eval()
running_corrects = 0
with torch.no_grad():
for data, target in valid_loader:
data = data.to(device)
target = target.to(device)
outputs = model(data)
loss = criterion(outputs, target)
val_loss += loss.item()
_, preds = torch.max(outputs, 1)
running_corrects += torch.sum(preds == target.data).item()
val_loss /= len(valid_loader.dataset)
print(f"Epoch {i}: Val loss = {val_loss:.4f}")
total_acc = running_corrects / len(valid_loader.dataset)
logger.info(f"Valid average accuracy: {100 * total_acc}%")
logger.info("Training completed.")
def net(num_classes, device):
logger.info("Model creation for fine-tuning started.")
model = models.efficientnet_b4(pretrained=True)
for param in model.parameters():
param.requires_grad = False
layer = nn.Sequential(
nn.BatchNorm1d(model.classifier[1].in_features),
nn.Linear(model.classifier[1].in_features, 512, bias=False),
nn.ReLU(),
nn.BatchNorm1d(512),
nn.Dropout(p=0.5, inplace=True),
nn.Linear(512, num_classes, bias=False)
)
model.classifier[1] = layer
model = model.to(device)
logger.info("Model creation completed.")
return model
def create_data_loader(data, batch_size, shuffle):
"""
This is an optional function that you may or may not need to implement
depending on whether you need to use data loaders or not
"""
logger.info("Data loader creation started")
data_loader = torch.utils.data.DataLoader(
data,
batch_size=batch_size,
shuffle=shuffle,
)
logger.info("Data loader creation completed")
return data_loader
def create_transform(split, image_size):
logger.info("Transformation pipeline creation started")
pretrained_size = image_size
if split == "train":
train_transforms = transforms.Compose([
transforms.Resize((pretrained_size, pretrained_size)),
transforms.RandomGrayscale(p=0.1),
transforms.RandomAdjustSharpness(2, p=0.1),
transforms.RandomAutocontrast(p=0.1),
transforms.RandomApply([
transforms.ColorJitter(0.5, 0.5, 0.5, 0.5)
], p=0.1),
transforms.RandomApply([
transforms.RandomAffine(degrees=0, translate=(0, 0.02), scale=(0.95, 0.99))
], p=0.1),
transforms.RandomApply([
transforms.RandomChoice([
transforms.RandomRotation((90, 90)),
transforms.RandomRotation((-90, -90)),
])
], p=0.1),
transforms.ToTensor(),
])
logger.info("Transformation pipeline creation completed")
return train_transforms
elif split == "valid":
valid_transforms = transforms.Compose([
transforms.Resize((pretrained_size, pretrained_size)),
transforms.ToTensor(),
])
logger.info("Transformation pipeline creation completed")
return valid_transforms
elif split == "test":
test_transforms = transforms.Compose([
transforms.Resize((pretrained_size, pretrained_size)),
transforms.ToTensor(),
])
logger.info("Transformation pipeline creation completed")
return test_transforms
def main(args):
model = net(args.num_classes, args.device)
loss_criterion = nn.CrossEntropyLoss()
optimizer = optim.AdamW(model.classifier.parameters(), lr=args.learning_rate)
train_dir = os.path.join(args.train_dir)
valid_dir = os.path.join(args.valid_dir)
test_dir = os.path.join(args.test_dir)
train_transform = create_transform("train", args.image_size)
valid_transform = create_transform("valid", args.image_size)
test_transform = create_transform("test", args.image_size)
train_data = datasets.ImageFolder(train_dir, transform=train_transform)
valid_data = datasets.ImageFolder(valid_dir, transform=valid_transform)
test_data = datasets.ImageFolder(test_dir, transform=test_transform)
train_loader = create_data_loader(train_data, args.batch_size, True)
valid_loader = create_data_loader(valid_data, args.batch_size, False)
test_loader = create_data_loader(test_data, args.batch_size, False)
train(model, train_loader, valid_loader, loss_criterion, optimizer, args.epochs, args.device)
test(model, test_loader, loss_criterion)
torch.save(
model.cpu().state_dict(),
os.path.join(
args.model_path,
"model.pth"
)
)
logger.info("Model weights saved.")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--num_workers", type=int, default=2)
parser.add_argument("--num_classes", type=int, default=5)
parser.add_argument("--epochs", type=int, default=10)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--learning_rate", type=float, default=1e-2)
parser.add_argument("--model_path", type=str, default=os.environ["SM_MODEL_DIR"])
parser.add_argument("--train_dir", type=str, default=os.environ["SM_CHANNEL_TRAINING"])
parser.add_argument("--valid_dir", type=str, default=os.environ["SM_CHANNEL_VALID"])
parser.add_argument("--test_dir", type=str, default=os.environ["SM_CHANNEL_TEST"])
parser.add_argument("--image_size", type=int, default=224)
args, _ = parser.parse_known_args()
main(args)