diff --git a/Dockerfile b/Dockerfile index dca772d..9b1a903 100644 --- a/Dockerfile +++ b/Dockerfile @@ -60,7 +60,7 @@ RUN /bin/bash -c -o pipefail \ "source /opt/venv/bin/activate && \ pip install --no-cache-dir pyfftw colorcet wandb pandas plotly plumed 'numpy<2.0.0' && \ pip install --no-cache-dir git+https://github.com/i-pi/i-pi.git@v3.0.0-beta4 && \ - pip install --no-cache-dir torch==2.1 --index-url https://download.pytorch.org/whl/${GPU_LIBRARY} && \ + pip install --no-cache-dir torch>=2.5 --index-url https://download.pytorch.org/whl/${GPU_LIBRARY} && \ pip install --no-cache-dir git+https://github.com/acesuit/mace.git@v0.3.5" ARG DATE RUN /bin/bash -c -o pipefail \ diff --git a/build_containers.sh b/build_containers.sh index 855660e..f5d370c 100644 --- a/build_containers.sh +++ b/build_containers.sh @@ -59,9 +59,12 @@ if [ "$psiflow" = "true" ]; then -t ghcr.io/molmod/$TAG \ -f Dockerfile . # test if [ "$build_sif" = "true" ]; then + export TMPDIR=$(pwd)/tmp + mkdir -p $TMPDIR apptainer build -F $TAG.sif docker-daemon:ghcr.io/molmod/$TAG apptainer push $TAG.sif oras://ghcr.io/molmod/$TAG rm $TAG.sif + rm -rf $TMPDIR fi done fi diff --git a/configs/hortense.yaml b/configs/hortense.yaml index 330ea83..d6ccc68 100644 --- a/configs/hortense.yaml +++ b/configs/hortense.yaml @@ -1,7 +1,7 @@ --- parsl_log_level: WARNING container_engine: 'apptainer' -container_uri: 'oras://ghcr.io/molmod/psiflow:4.0.0-rc0_cu118' +container_uri: 'oras://ghcr.io/molmod/psiflow:4.0.0_cu118' default_threads: 8 ModelEvaluation: cores_per_worker: 12 diff --git a/configs/lumi.yaml b/configs/lumi.yaml index b7102c0..b5e9a14 100644 --- a/configs/lumi.yaml +++ b/configs/lumi.yaml @@ -1,7 +1,7 @@ --- parsl_log_level: WARNING container_engine: 'singularity' -container_uri: 'oras://ghcr.io/molmod/psiflow:4.0.0-rc0_rocm5.6' +container_uri: 'oras://ghcr.io/molmod/psiflow:4.0.0_rocm6.2' default_threads: 8 CP2K: cores_per_worker: 32 @@ -25,7 +25,6 @@ ModelEvaluation: max_blocks: 10 walltime: "01:00:00" scheduler_options: "#SBATCH --gres=gpu:8\n" - worker_init: "ml LUMI/23.09 && ml partition/G && ml rocm/5.6\n" ModelTraining: cores_per_worker: 7 gpu: true @@ -37,5 +36,4 @@ ModelTraining: cores_per_node: 56 walltime: "01:00:00" scheduler_options: "#SBATCH --gres=gpu:8\n" - worker_init: "ml LUMI/23.09 && ml partition/G && ml rocm/5.6\n" ...