forked from ristea/aed-mae
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine_train.py
125 lines (101 loc) · 4.4 KB
/
engine_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import math
import sys
import torch
import util.misc as misc
from typing import Iterable
import numpy as np
from util.abnormal_utils import filt
import sklearn.metrics as metrics
def train_one_epoch(model: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int,
log_writer=None, args=None):
model.train(True)
model = model.float()
metric_logger = misc.MetricLogger(delimiter=" ")
header = 'Epoch: [{}]'.format(epoch)
if epoch >= args.start_TS_epoch:
model.train_TS = True
model.freeze_backbone()
optimizer.zero_grad()
if log_writer is not None:
print('log_dir: {}'.format(log_writer.log_dir))
for data_iter_step, (samples, grad_mask, targets) in enumerate(metric_logger.log_every(data_loader, args.print_freq, header)):
targets = targets.to(device, non_blocking=True)
samples = samples.to(device, non_blocking=True)
grad_mask = grad_mask.to(device, non_blocking=True)
loss, _, _ = model(samples, grad_mask=grad_mask, targets=targets, mask_ratio=args.mask_ratio)
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr = optimizer.param_groups[0]["lr"]
metric_logger.update(lr=lr)
metric_logger.update(loss=loss_value)
loss_value_reduce = misc.all_reduce_mean(loss_value)
if log_writer is not None:
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
log_writer.add_scalar('train_loss', loss_value_reduce, epoch_1000x)
log_writer.add_scalar('lr', lr, epoch_1000x)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
def test_one_epoch(model: torch.nn.Module, data_loader: Iterable,
device: torch.device, epoch: int,
log_writer=None, args=None):
model.eval()
metric_logger = misc.MetricLogger(delimiter=" ")
header = 'Testing epoch: [{}]'.format(epoch)
if log_writer is not None:
print('log_dir: {}'.format(log_writer.log_dir))
predictions = []
labels = []
videos = []
for data_iter_step, (samples, grads, targets, label, vid, _) in enumerate(metric_logger.log_every(data_loader, args.print_freq, header)):
videos += list(vid)
labels += list(label.detach().cpu().numpy())
samples = samples.to(device)
grads = grads.to(device)
targets = targets.to(device)
_, _, _, recon_error = model(samples, grad_mask=grads,targets=targets, mask_ratio=args.mask_ratio)
if isinstance(recon_error, list):
recon_error = recon_error[0] + recon_error[1]
recon_error = recon_error.detach().cpu().numpy()
predictions += list(recon_error)
# Compute statistics
predictions = np.array(predictions)
labels = np.array(labels)
videos = np.array(videos)
aucs = []
filtered_preds = []
filtered_labels = []
for vid in np.unique(videos):
pred = predictions[np.array(videos) == vid]
pred = np.nan_to_num(pred, nan=0.)
if args.dataset=='avenue':
pred = filt(pred, range=38, mu=11)
else:
raise ValueError('Unknown parameters for predictions postprocessing')
# pred = (pred - np.min(pred)) / (np.max(pred) - np.min(pred))
filtered_preds.append(pred)
lbl = labels[np.array(videos) == vid]
filtered_labels.append(lbl)
lbl = np.array([0] + list(lbl) + [1])
pred = np.array([0] + list(pred) + [1])
fpr, tpr, _ = metrics.roc_curve(lbl, pred)
res = metrics.auc(fpr, tpr)
aucs.append(res)
macro_auc = np.nanmean(aucs)
# Micro-AUC
filtered_preds = np.concatenate(filtered_preds)
filtered_labels = np.concatenate(filtered_labels)
fpr, tpr, _ = metrics.roc_curve(filtered_labels, filtered_preds)
micro_auc = metrics.auc(fpr, tpr)
micro_auc = np.nan_to_num(micro_auc, nan=1.0)
# gather the stats from all processes
print(f"MicroAUC: {micro_auc}, MacroAUC: {macro_auc}")
return {"micro": micro_auc, "macro": macro_auc}