forked from kevinyliu/conditional-vae
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathencoder.py
38 lines (30 loc) · 1.3 KB
/
encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
class Encoder(nn.Module):
def __init__(self, vocab_size, embed_size, hidden_size, num_layers, dpt=0.3, embedding=None):
super(Encoder, self).__init__()
self.hidden_size = hidden_size
if embedding is not None:
self.embedding = embedding
else:
self.embedding = nn.Embedding(vocab_size, embed_size)
self.embedding.weight.data.copy_((torch.rand(vocab_size, embed_size) - 0.5) * 2)
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, dropout=dpt, bidirectional=True)
self.dropout = nn.Dropout(p=dpt)
def forward(self, x, hidden=None):
x = self.embedding(x)
x = self.dropout(x)
output, hidden = self.lstm(x, hidden)
return output
class SharedEncoder(nn.Module):
def __init__(self, embed_size, hidden_size, num_layers, dpt=0.3):
super(SharedEncoder, self).__init__()
self.hidden_size = hidden_size
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, dropout=dpt, bidirectional=True)
self.dropout = nn.Dropout(p=dpt)
def forward(self, x, hidden=None):
x = self.dropout(x)
output, hidden = self.lstm(x, hidden)
return output