forked from pytorch/ao
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
498 lines (440 loc) · 22.2 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
import sys
import time
from pathlib import Path
from typing import Optional, Tuple
from datetime import datetime
import torch
import torchao
import torch._dynamo.config
import torch._inductor.config
from torchao.utils import get_model_size_in_bytes
from torchao.utils import TORCH_VERSION_AT_LEAST_2_5
def device_sync(device):
if "cuda" in device:
torch.cuda.synchronize(device)
elif ("cpu" in device) or ("mps" in device):
pass
else:
print(f"device={device} is not yet suppported")
default_device = 'cuda' if torch.cuda.is_available() else 'cpu'
# support running without installing as a package
wd = Path(__file__).parent.parent.resolve()
sys.path.append(str(wd))
from torchao._models.llama.model import Transformer, prepare_inputs_for_model
from torchao._models.llama.tokenizer import get_tokenizer
def multinomial_sample_one_no_sync(probs_sort): # Does multinomial sampling without a cuda synchronization
q = torch.empty_like(probs_sort).exponential_(1)
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
def logits_to_probs(logits, temperature: float = 1.0, top_k: Optional[int] = None):
logits = logits / max(temperature, 1e-5)
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
pivot = v.select(-1, -1).unsqueeze(-1)
logits = torch.where(logits < pivot, -float("Inf"), logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
return probs
def sample(logits, temperature: float = 1.0, top_k: Optional[int] = None):
probs = logits_to_probs(logits[:, -1], temperature, top_k)
idx_next = multinomial_sample_one_no_sync(probs)
return idx_next, probs
def prefill(model: Transformer, x: torch.Tensor, input_pos: torch.Tensor, **sampling_kwargs) -> torch.Tensor:
# input_pos: [B, S]
logits = model(x, input_pos)
return sample(logits, **sampling_kwargs)[0]
def decode_one_token(model: Transformer, x: torch.Tensor, input_pos: torch.Tensor, **sampling_kwargs) -> Tuple[torch.Tensor, torch.Tensor]:
# input_pos: [B, 1]
assert input_pos.shape[-1] == 1
logits = model(x, input_pos)
return sample(logits, **sampling_kwargs)
def decode_n_tokens(model: Transformer, cur_token: torch.Tensor, input_pos: torch.Tensor, num_new_tokens: int, callback=lambda _: _, **sampling_kwargs):
new_tokens, new_probs = [], []
for i in range(num_new_tokens):
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True): # Actually better for Inductor to codegen attention here
next_token, next_prob = decode_one_token(
model, cur_token, input_pos, **sampling_kwargs
)
next_token, next_prob = next_token.clone(), next_prob.clone()
input_pos += 1
new_tokens.append(next_token)
callback(new_tokens[-1])
new_probs.append(next_prob)
cur_token = next_token
return new_tokens, new_probs
def model_forward(model, x, input_pos):
return model(x, input_pos)
@torch.no_grad()
def generate(
model: Transformer,
prompt: torch.Tensor,
max_new_tokens: int,
batch_size: int,
*,
interactive: bool,
callback = lambda x: x,
kv_cache_quantization: bool = False,
cache_size: Optional[int] = None,
linear_causal_mask: bool=False,
**sampling_kwargs
) -> torch.Tensor:
"""
Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
"""
# create an empty tensor of the expected final shape and fill in the current tokens
device = prompt.device
T = prompt.size(-1)
# calculate how many tokens to generate based on max_new_tokens and model's upper bound (block_size)
max_seq_length = min(T + max_new_tokens, model.config.block_size) if not interactive else 350
new_tokens = max_seq_length - T
# format model input
prompt, input_pos = prepare_inputs_for_model(prompt)
prompt = prompt.repeat(batch_size, 1) # expand prompt based on batchsize
# full prompt+output will be stored in seq
seq = torch.empty(batch_size, max_seq_length, dtype=prompt.dtype, device=device)
seq[:, :T] = prompt
# setup model caches
with torch.device(device):
if cache_size is None:
cache_size = max_seq_length
assert cache_size >= max_seq_length, "need cache_size to be greater than max_new_tokens + size-of-prompt"
model.setup_caches(max_batch_size=batch_size, max_seq_length=cache_size, kv_cache_quantization=kv_cache_quantization, linear_causal_mask=linear_causal_mask, prompt_length=T)
# execute prefill
next_token = prefill(model, prompt.view(batch_size, -1), input_pos, **sampling_kwargs).clone()
seq[:, T] = next_token.squeeze()
# execute token generation
input_pos = torch.tensor([T], device=device, dtype=torch.int)
generated_tokens, _ = decode_n_tokens(model, next_token.view(batch_size, -1), input_pos, new_tokens-1, callback=callback, **sampling_kwargs)
seq = torch.cat((seq[:, :T+1], *generated_tokens), dim=-1)
return seq
def encode_tokens(tokenizer, string, bos=True, device=default_device):
tokens = tokenizer.encode(string)
if bos:
tokens = [tokenizer.bos_id()] + tokens
return torch.tensor(tokens, dtype=torch.int, device=device)
def _load_model(checkpoint_path, device, precision):
checkpoint = torch.load(str(checkpoint_path), mmap=True, weights_only=True)
if "model" in checkpoint and "stories" in str(checkpoint_path):
checkpoint = checkpoint["model"]
with torch.device("meta"):
model = Transformer.from_name(checkpoint_path.parent.name)
model.load_state_dict(checkpoint, assign=True)
model = model.to(device=device, dtype=precision)
return model.eval()
B_INST, E_INST = "[INST]", "[/INST]"
def main(
prompt: str = "Hello, my name is",
interactive: bool = False,
num_samples: int = 5,
max_new_tokens: int = 100,
batch_size: int = 1,
top_k: int = 200,
temperature: float = 0.8,
checkpoint_path: Path = Path("checkpoints/meta-Transformer/Transformer-2-7b-chat-hf/model.pth"),
quantization: Optional[str] = None,
calibration_limit: int = 10,
calibration_seq_length: int = 256,
kv_cache_quantization: bool = False,
cache_size: Optional[int] = None,
linear_causal_mask: bool=False,
save: bool = False,
compile: bool = True,
compile_prefill: bool = False,
profile: Optional[Path] = None,
memory_profile: Optional[Path] = None,
device=default_device,
precision=torch.bfloat16,
write_result: Optional[Path] = None,
) -> None:
"""Generates text samples based on a pre-trained Transformer model and tokenizer.
"""
torchao.quantization.utils.recommended_inductor_config_setter()
assert checkpoint_path.is_file(), checkpoint_path
tokenizer_path = checkpoint_path.parent / "tokenizer.model"
assert tokenizer_path.is_file(), str(tokenizer_path)
print(f"Using device={device}")
is_chat = "chat" in str(checkpoint_path)
print("Loading model ...")
t0 = time.time()
model = _load_model(checkpoint_path, device, precision)
device_sync(device=device) # MKG
print(f"Time to load model: {time.time() - t0:.02f} seconds")
tokenizer = get_tokenizer(tokenizer_path, checkpoint_path)
encoded = encode_tokens(tokenizer, prompt, bos=True, device=device)
prompt_length = encoded.size(0)
torch.manual_seed(1234)
if quantization:
from torchao.quantization.quant_api import (
quantize_,
int8_weight_only,
int8_dynamic_activation_int8_weight,
int4_weight_only,
fpx_weight_only,
uintx_weight_only,
autoquant,
unwrap_tensor_subclass,
float8_weight_only,
float8_dynamic_activation_float8_weight,
)
from torchao.quantization.granularity import PerTensor, PerRow
if "spinquant" in quantization:
from torchao.prototype.spinquant import apply_spinquant
apply_spinquant(model)
if "int8wo" in quantization:
quantize_(model, int8_weight_only())
if "int8dq" in quantization:
quantize_(model, int8_dynamic_activation_int8_weight())
if "int4wo" in quantization:
if "hqq" in quantization:
use_hqq=True
else:
use_hqq=False
group_size=int(quantization.split("-")[1])
assert group_size in [32,64,128,256], f"int4wo group_size needs to be one of [32,64,128,256] but got {group_size}"
quantize_(model, int4_weight_only(group_size=group_size))
if "marlin" in quantization:
from torchao.dtypes import MarlinSparseLayout
quantize_(model, int4_weight_only(layout=MarlinSparseLayout()))
if "fp6" in quantization:
quantize_(model, fpx_weight_only(3, 2))
if "embed-int8wo" in quantization:
quantize_(model, int8_weight_only(group_size=64), filter_fn=lambda x, *args: isinstance(x, torch.nn.Embedding))
if quantization.startswith("awq"):
from torchao._models._eval import TransformerEvalWrapper
from torchao.utils import TORCH_VERSION_AT_LEAST_2_3
from torchao.prototype.awq.example import get_calib_dataset
if not TORCH_VERSION_AT_LEAST_2_3:
print("Awq requires torch2.3+")
exit()
from torchao.prototype.awq import insert_awq_observer_, awq_uintx, AWQObservedLinear
quant_dtype = quantization.split("-")[1]
group_size = int(quantization.split("-")[2])
quant_dtype = getattr(torch, quant_dtype, torch.uint8)
model=model.to(device)
# get calibration data
insert_awq_observer_(model, calibration_limit, calibration_seq_length, quant_dtype=quant_dtype, group_size=group_size)
TransformerEvalWrapper(
model=model.to(device),
tokenizer=tokenizer,
max_seq_length=calibration_seq_length,
input_prep_func=prepare_inputs_for_model,
device=device,
).run_eval(
tasks=['wikitext'],
limit=calibration_limit,
)
is_observed_linear = lambda m, fqn: isinstance(m, AWQObservedLinear)
use_hqq = "hqq" in quantization
quantize_(model, awq_uintx(quant_dtype=quant_dtype, group_size = group_size, use_hqq=use_hqq), is_observed_linear)
if "uintx" in quantization:
# uintx-nbits-group_size, e.g. "uintx-2-64"
if "hqq" in quantization:
# uintx-nbits-group_size-hqq
use_hqq = True
else:
use_hqq = False
_quant_args = quantization.split("-")
nbits = int(_quant_args[1])
assert nbits >= 1 and nbits <= 8, "nbits must be 1 to 8"
_NBITS_TO_DTYPE = {1: torch.uint1, 2: torch.uint2, 3: torch.uint3, 4: torch.uint4, 5: torch.uint5, 6: torch.uint6, 7: torch.uint7, 8: torch.uint8}
dtype = _NBITS_TO_DTYPE[nbits]
group_size = int(_quant_args[2])
quantize_(model, uintx_weight_only(dtype, group_size, use_hqq=use_hqq))
if "float8wo" in quantization:
quantize_(model, float8_weight_only())
if "float8dq" in quantization:
granularity = str(quantization.split("-")[-1])
if granularity=="tensor":
granularity = PerTensor()
elif granularity=="row":
granularity = PerRow()
else:
granularity = PerTensor()
quantize_(model, float8_dynamic_activation_float8_weight(granularity=granularity))
if "autoquant" in quantization:
if "autoquant-int4" == quantization:
model = autoquant(model, manual=True, qtensor_class_list = torchao.quantization.DEFAULT_INT4_AUTOQUANT_CLASS_LIST)
elif "autoquant-float8" == quantization:
model = autoquant(model, manual=True, qtensor_class_list = torchao.quantization.OTHER_AUTOQUANT_CLASS_LIST)
else:
model = autoquant(model, manual=True)
generate(
model,
encode_tokens(tokenizer, prompt, bos=True, device=device),
max_new_tokens,
batch_size,
interactive=False,
temperature=temperature,
top_k=top_k,
)
# do autoquantization
model.finalize_autoquant()
else:
if not TORCH_VERSION_AT_LEAST_2_5:
unwrap_tensor_subclass(model)
model_size = get_model_size_in_bytes(model, ignore_embeddings=True) / 1e9
if save:
output_dir = str(checkpoint_path.cwd())
filename = str(checkpoint_path.name).split(".")[0]
torch.save(model.state_dict(), os.path.join(output_dir, filename + f"-{quantization}.pt"))
if compile:
print("Compiling Model")
global decode_one_token, prefill
decode_one_token = torch.compile(decode_one_token, mode="reduce-overhead", fullgraph=True)
if compile_prefill:
prefill = torch.compile(prefill, fullgraph=True, dynamic=True)
if memory_profile:
torch.cuda.memory._record_memory_history(True,trace_alloc_max_entries=250000, trace_alloc_record_context=True)
aggregate_metrics = {
'tokens_per_sec': [],
}
start = -1 if compile else 0
for i in range(start, num_samples):
if i==0:
torch.cuda.reset_peak_memory_stats()
device_sync(device=device) # MKG
if i >= 0 and interactive:
prompt = input("What is your prompt? ")
if is_chat:
prompt = f"{B_INST} {prompt.strip()} {E_INST}"
encoded = encode_tokens(tokenizer, prompt, bos=True, device=device)
if interactive and i >= 0:
buffer = []
period_id = tokenizer.encode('.')[0]
done_generating = False
def callback(x):
nonlocal done_generating
if done_generating:
return
buffer.append(tokenizer.decode([period_id] + x.tolist())[1:])
if x.item() == tokenizer.eos_id():
done_generating = True
if len(buffer) == 4 or done_generating:
print(''.join(buffer), end='', flush=True)
buffer.clear()
# print(, end='', flush=True)
else:
callback = lambda x : x
t0 = time.perf_counter()
import contextlib
if (i != num_samples - 1 or not profile):
prof = contextlib.nullcontext()
else:
torch.profiler._utils._init_for_cuda_graphs()
prof = torch.profiler.profile()
with prof:
y = generate(
model,
encoded,
max_new_tokens,
batch_size,
interactive=interactive,
callback=callback,
temperature=temperature,
top_k=top_k,
kv_cache_quantization=kv_cache_quantization,
cache_size=cache_size,
linear_causal_mask=linear_causal_mask,
)
if i == -1:
print(f"Compilation time: {time.perf_counter() - t0:.2f} seconds")
continue
if hasattr(prof, "export_chrome_trace"):
prof.export_chrome_trace(f"{profile}.json")
device_sync(device=device) # MKG
t = time.perf_counter() - t0
if not interactive:
tok_list = y[0].tolist()
# truncate text after end of string token
tokens = tok_list if not tokenizer.eos_id() in tok_list else tok_list[:tok_list.index(tokenizer.eos_id())]
print(tokenizer.decode(tokens))
else:
print()
tokens_generated = (y.size(-1) - prompt_length)
tokens_sec = tokens_generated / t
aggregate_metrics['tokens_per_sec'].append(tokens_sec)
print(f"Time for inference {i + 1}: {t:.02f} sec total, {tokens_sec:.02f} tokens/sec")
print(f"Bandwidth achieved: {model_size * tokens_sec:.02f} GB/s")
if memory_profile and i==0:
snapshot = torch.cuda.memory._snapshot()
with open(f"{memory_profile}.pickle", 'wb') as f:
from pickle import dump
dump(snapshot, f)
print(
f"\nmemory profile {memory_profile}.pickle saved, to convert that to a usable file, use",
"python pytorch/torch/cuda/_memory_viz.py trace_plot <pickle file> -o <desired output name>.html"
)
break
print("==========")
tokpersec = torch.mean(torch.tensor(aggregate_metrics['tokens_per_sec'])).item()
bandwidth = model_size * tokpersec
mem = torch.cuda.max_memory_reserved() /1e9
print(f"Average tokens/sec: {tokpersec:.2f}")
if batch_size > 1:
print(f"Average tokens/sec including batches {batch_size*tokpersec:.2f}")
print(f"Average Bandwidth: {bandwidth:.02f} GB/s")
print(f"Peak Memory Usage: {mem:.02f} GB")
print(f"Model Size: {model_size:.02f} GB")
if write_result:
result_txt = f"\n{datetime.today().strftime('%Y%m%d%H%M%S')}, tok/s={tokpersec:6.2f}, mem/s={bandwidth:7.2f} GB/s, peak_mem={mem:5.2f} GB, model_size={model_size:5.2f} GB "
result_txt += f"quant: {quantization}, mod: {checkpoint_path.parent.name}, kv_quant: {kv_cache_quantization}, compile: {compile}, compile_prefill: {compile_prefill}, dtype: {precision}, device: {device} "
result_txt += f"repro: python generate.py "
result_txt += f"--quantization {quantization} " if quantization else ""
result_txt += f"--checkpoint_path {checkpoint_path} "
result_txt += f"--device {device} "
result_txt += f"--precision {precision} "
result_txt += f"--compile " if compile else ""
result_txt += f"--compile_prefill " if compile_prefill else ""
result_txt += f"--profile {profile} " if profile else ""
result_txt += f"--profile {memory_profile} " if memory_profile else ""
result_txt += f"--interactive " if interactive else ""
result_txt += f"--num_samples {num_samples} "
result_txt += f"--max_new_tokens {max_new_tokens} "
result_txt += f"--batch_size {batch_size} "
result_txt += f"--top_k {top_k} "
result_txt += f"--temperature {temperature} "
result_txt += f"--cache_size {cache_size}" if cache_size else ""
result_txt += f"--kv_cache_quantization " if kv_cache_quantization else ""
result_txt += f"--linear_causal_mask " if linear_causal_mask else ""
f=open(write_result, "a")
f.write(result_txt)
f.close()
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Your CLI description.')
parser.add_argument('--prompt', type=str, default="Hello, my name is", help='Input prompt.')
parser.add_argument('--interactive', action='store_true', help='Whether to launch in interactive mode')
parser.add_argument('--num_samples', type=int, default=5, help='Number of samples.')
parser.add_argument('--max_new_tokens', type=int, default=200, help='Maximum number of new tokens.')
parser.add_argument('--batch_size', type=int, default=1, help='Batch size to benchmark with')
parser.add_argument('--top_k', type=int, default=200, help='Top-k for sampling.')
parser.add_argument('--temperature', type=float, default=0.8, help='Temperature for sampling.')
parser.add_argument('--checkpoint_path', type=Path, default=Path("../../../checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth"), help='Model checkpoint path.')
parser.add_argument('-q', '--quantization', type=str,
help=(
'Which quantization techniques to apply: int8dq, int8wo, fp6, int4wo-<groupsize>, int4wo-<groupsize>-hqq, autoquant, '
+'autoquant-int4, autoquant-float8, uintx-<nbits>-<groupsize>, uintx-<nbits>-<groupsize>-hqq, sparse-marlin, spinquant, '
+'embed-int8wo'
)
)
parser.add_argument("--calibration_limit", type=int, default=10, help="Number of calibration examples")
parser.add_argument("--calibration_seq_length", type=int, default=256, help="Sequence length for calibration")
parser.add_argument('--kv_cache_quantization', action='store_true', help='Whether to quantize the KV cache')
parser.add_argument('--cache_size', type=int, default=None, help='Force size of cache to be a certain number of tokens, if not set, will use max_new_tokens+prompt_size')
parser.add_argument('--linear_causal_mask', action='store_true', help='Whether to use the memory efficient, but slightly less fast, linear causal mask (important for long context lengths)')
parser.add_argument('--save', action='store_true', help='Whether to save the quantized model.')
parser.add_argument('--compile', action='store_true', help='Whether to compile the model.')
parser.add_argument('--compile_prefill', action='store_true', help='Whether to compile the prefill (improves prefill perf, but higher compile times)')
parser.add_argument('--profile', type=Path, default=None, help='Profile path.')
parser.add_argument('--memory_profile', type=Path, default=None, help='filename for memory profile.')
parser.add_argument('--device', type=str, default=default_device, help='Device to use')
parser.add_argument('--precision', type=lambda x: getattr(torch, x.split(".")[-1]), default=torch.bfloat16, help='dtype precision to use')
parser.add_argument('--write_result', type=Path, default=None, help='Path where to write the result')
args = parser.parse_args()
main(
args.prompt, args.interactive, args.num_samples, args.max_new_tokens, args.batch_size, args.top_k,
args.temperature, args.checkpoint_path, args.quantization, args.calibration_limit, args.calibration_seq_length, args.kv_cache_quantization, args.cache_size, args.linear_causal_mask, args.save, args.compile, args.compile_prefill, args.profile, args.memory_profile, args.device, args.precision, args.write_result
)