-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathrandaugment.py
49 lines (41 loc) · 1.88 KB
/
randaugment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import homura
import hydra
import torch
from homura import optim, lr_scheduler, reporters, callbacks, trainers
from torch.nn import functional as F
from data import get_dataloader
from models import get_model
def train_and_eval(cfg):
train_loader, val_loader, test_loader, num_classes = get_dataloader(cfg.data.name,
cfg.data.val_size,
cfg.data.batch_size,
cfg.data.download,
cfg.augment,
False)
model = get_model(cfg.model.name, num_classes)
optimizer = optim.SGD(cfg.optim.model.lr, momentum=0.9, weight_decay=cfg.optim.model.weight_decay)
scheduler = lr_scheduler.MultiStepLR(cfg.optim.model.steps)
tq = reporters.TQDMReporter(range(cfg.optim.epochs), verb=cfg.verb)
callback = [callbacks.AccuracyCallback(),
callbacks.LossCallback(),
reporters.TensorboardReporter("."),
reporters.IOReporter("."),
tq]
with trainers.SupervisedTrainer(model,
optimizer,
F.cross_entropy,
callbacks=callback,
scheduler=scheduler) as trainer:
for ep in tq:
trainer.train(train_loader)
trainer.test(val_loader, 'val')
trainer.test(test_loader)
@hydra.main('config/main.yaml')
def main(cfg):
print(cfg.pretty())
if torch.cuda.is_available():
torch.cuda.set_device(cfg.gpu_id)
with homura.set_seed(cfg.seed):
return train_and_eval(cfg)
if __name__ == '__main__':
main()