forked from mkusner/wmd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_word_vectors.py
95 lines (81 loc) · 3.16 KB
/
get_word_vectors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import gensim, pdb, sys, scipy.io as io, numpy as np, pickle, string
# read datasets line by line
def read_line_by_line(dataset_name,C,model,vec_size):
# get stop words (except for twitter!)
SW = set()
for line in open('stop_words.txt'):
line = line.strip()
if line != '':
SW.add(line)
stop = list(SW)
f = open(dataset_name)
if len(C) == 0:
C = np.array([], dtype=np.object)
num_lines = sum(1 for line in open(dataset_name))
y = np.zeros((num_lines,))
X = np.zeros((num_lines,), dtype=np.object)
BOW_X = np.zeros((num_lines,), dtype=np.object)
count = 0
remain = np.zeros((num_lines,), dtype=np.object)
the_words = np.zeros((num_lines,), dtype=np.object)
for line in f:
print '%d out of %d' % (count+1, num_lines)
line = line.strip()
line = line.translate(string.maketrans("",""), string.punctuation)
T = line.split('\t')
classID = T[0]
if classID in C:
IXC = np.where(C==classID)
y[count] = IXC[0]+1
else:
C = np.append(C,classID)
y[count] = len(C)
W = line.split()
F = np.zeros((vec_size,len(W)-1))
inner = 0
RC = np.zeros((len(W)-1,), dtype=np.object)
word_order = np.zeros((len(W)-1), dtype=np.object)
bow_x = np.zeros((len(W)-1,))
for word in W[1:len(W)]:
try:
test = model[word]
if word in stop:
word_order[inner] = ''
continue
if word in word_order:
IXW = np.where(word_order==word)
bow_x[IXW] += 1
word_order[inner] = ''
else:
word_order[inner] = word
bow_x[inner] += 1
F[:,inner] = model[word]
except KeyError, e:
#print 'Key error: "%s"' % str(e)
word_order[inner] = ''
inner = inner + 1
Fs = F.T[~np.all(F.T == 0, axis=1)]
word_orders = word_order[word_order != '']
bow_xs = bow_x[bow_x != 0]
X[count] = Fs.T
the_words[count] = word_orders
BOW_X[count] = bow_xs
count = count + 1;
return (X,BOW_X,y,C,the_words)
def main():
# 0. load word2vec model (trained on Google News)
model = gensim.models.KeyedVectors.load_word2vec_format('GoogleNews-vectors-negative300.bin', binary=True)
vec_size = 300
# 1. specify train/test datasets
train_dataset = sys.argv[1] # e.g.: 'twitter.txt'
save_file = sys.argv[2] # e.g.: 'twitter.pk'
save_file_mat = sys.argv[3] # e.g.: 'twitter.mat'
# 2. read document data
(X,BOW_X,y,C,words) = read_line_by_line(train_dataset,[],model,vec_size)
# 3. save pickle of extracted variables
with open(save_file, 'w') as f:
pickle.dump([X, BOW_X, y, C, words], f)
# 4. (optional) save a Matlab .mat file
io.savemat(save_file_mat,mdict={'X': X, 'BOW_X': BOW_X, 'y': y, 'C': C, 'words': words})
if __name__ == "__main__":
main()