forked from kuangliu/pytorch-cifar
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
185 lines (159 loc) · 6.13 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
'''Train CIFAR10 with PyTorch.'''
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import numpy as np
import torchvision
import torchvision.transforms as transforms
import os
import argparse
from models import *
from utils import progress_bar
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--kc', default=64, type=int, help='model size')
parser.add_argument('--epoch', default=400, type=int, help='total training epochs')
parser.add_argument('--resume', '-r', default=None, type=str, help='resume from checkpoint')
parser.add_argument('--noise', default=0, type=int, help='label noise %')
parser.add_argument('--eval', action='store_true', help='only do evaluation')
parser.add_argument('--quiet', '-q', action='store_true', help='be quiet')
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
# Data
if not args.quiet: print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
do_download = not os.path.exists('./data')
if args.resume:
# Load checkpoint.
if not args.quiet: print('==> Resuming from checkpoint..')
checkpoint = torch.load(args.resume)
args.kc = checkpoint['kc']
args.noise = checkpoint['noise']
args.epoch = checkpoint['end_epoch']
# Training data with optional noise
def flip_random_label(x):
image, label = x
wrong = list(range(10))
del wrong[label]
label = np.random.choice(wrong)
x = image, label
return x
noise_indices = []
noise_labels = []
if not args.eval:
trainset = torchvision.datasets.CIFAR10(
root='./data', train=True, download=do_download, transform=transform_train)
if args.noise != 0:
# If resuming we want the label flips to be the same
if args.resume:
noise_indices = checkpoint['noise_indices']
noise_labels = checkpoint['noise_labels']
else:
noise_frac = args.noise / 100
num_noise_samples = int(noise_frac * len(trainset))
if not args.quiet: print(f'Flipping {args.noise}% of labels ({num_noise_samples} samples)')
noise_indices = np.random.choice(np.arange(len(trainset)), size=num_noise_samples, replace=False)
noisy_data = [x for x in trainset]
if args.resume:
for label,index in zip(noise_labels, noise_indices):
noisy_data[index] = (noisy_data[index][0], label)
else:
for i in noise_indices:
noisy_data[i] = flip_random_label(noisy_data[i])
noise_labels = [noisy_data[i][1] for i in noise_indices]
trainset = noisy_data
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=128, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(
root='./data', train=False, download=do_download, transform=transform_test)
testloader = torch.utils.data.DataLoader(
testset, batch_size=128, shuffle=False, num_workers=2)
# Model
if not args.quiet: print('==> Building model..')
net = PreActResNet18(args.kc)
net = net.to(device)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
if args.resume:
net.load_state_dict(checkpoint['net'])
start_epoch = checkpoint['epoch'] + 1
criterion = nn.CrossEntropyLoss()
# Adam with LR=0.0001
optimizer = optim.Adam(net.parameters(), lr=0.0001)
# Training
def train(epoch):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
if not args.quiet:
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
def test(epoch):
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
if not args.quiet:
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
acc = 100.*correct/total
# Save checkpoint.
if epoch % 10 == 0 and not args.eval:
if not args.quiet: print('Saving..')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
'kc': args.kc,
'noise': args.noise,
'noise_indices': noise_indices,
'noise_labels': noise_labels,
'end_epoch': args.epoch,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, f'./checkpoint/noise{args.noise}_kc{args.kc}_epoch{epoch}_ckpt.pth')
return acc
if args.eval:
if not args.resume:
parser.error("--eval requires --resume CHECKPOINT")
print(args.kc, args.noise, test(0))
else:
for epoch in range(start_epoch, args.epoch+1):
train(epoch)
test(epoch)