-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathETL_TalendReLogs.py
538 lines (433 loc) · 25.8 KB
/
ETL_TalendReLogs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
#!/usr/bin/env python
# coding: utf-8
# ## Data Wrangling (Python3)
# ### Manipulate Remote Engine Local Talend Log Files
# ### Author: [email protected]
# ### Release: 0.1.0 | Last Update Date: 7/28/2021
# In[1]:
# Ideas and notes for future releases
# Implement logging
# In[65]:
# Importing Libraries
from pandas import DataFrame,read_csv,to_datetime,merge
from datetime import datetime
from os import path,remove
from glob import glob
from shutil import rmtree
from time import sleep
from elasticsearch import Elasticsearch
from elasticsearch.helpers import bulk
from configparser import ConfigParser
import pytz
#from logging import info,debug,error,fatal
# Modules to install on virtual environment
#pip3 install --trusted-host pypi.org --trusted-host pypi.python.org --trusted-host files.pythonhosted.org elasticsearch
#pip3 install --trusted-host pypi.org --trusted-host pypi.python.org --trusted-host files.pythonhosted.org pandas
# In[66]:
# configparser initialization
config = ConfigParser()
config.read(path.dirname(__file__)+"\..\config.ini")
#config.sections()
def boolean(x):
if(x == 'True' or x == 'true'):
return True
else:
return False
# In[67]:
# Starting an Elasticsearch client instance
es = Elasticsearch(
[config['Elasticsearch']['host']],
http_auth=(config['Elasticsearch']['login'], config['Elasticsearch']['password']),
scheme=config['Elasticsearch']['scheme'],
port=int(config['Elasticsearch']['port']),
http_compress=boolean(config['Elasticsearch']['http_compress'])
)
# In[68]:
# Talend Remote Engine Job Log Files Folder and filemasks.
# Point this variable to the Remote Engine Installetion Folder
config_files_path = config['TalendLogFiles']['path']
# Do not change the files pattern
resuming_files = config['TalendLogFiles']['resuming_mask']
stdOutErr_Files = config['TalendLogFiles']['stdoutErr_mask']
task_files = config['TalendLogFiles']['task_mask']
# Start (True/False) variable
start = boolean(config['Application']['start'])
# Interval Seconds
seconds = int(config['Application']['seconds'])
# In[69]:
# function to check if files exist on source dir.
def check_files():
resuming = [path.abspath(x) for x in glob(config_files_path + resuming_files)]
stdOutErr = [path.abspath(x) for x in glob(config_files_path + stdOutErr_Files)]
task = [path.abspath(x) for x in glob(config_files_path + task_files)]
if not resuming and not stdOutErr:
#print("Resuming, task and stdOutErr files were not found in source dir, Aborting operation...")
return False
else:
print("Files found, starting processing...")
return True
# In[315]:
def check_k(x):
file = x
try:
if path.exists(file):
while path.exists(file) == True:
print("attempting to delete task log file [",file,"]")
remove(file)
except:
sleep(15)
check_k(file)
# In[314]:
# Function Parse Talend Logs
def parseLogs():
try:
# Listing Files to process and storing on variables.
resuming = [path.abspath(x) for x in glob(config_files_path + resuming_files)]
stdOutErr = [path.abspath(x) for x in glob(config_files_path + stdOutErr_Files)]
task = [path.abspath(x) for x in glob(config_files_path + task_files)]
# Declaring Timezone
timezone = pytz.timezone("UTC")
# Looping over resuming, stdOutErr and task (sequentially).
for i in resuming:
resumingPid = i.split('\\')[-1].replace(".log","").replace("resuming_","")
resumingDate = datetime.strptime(resumingPid.split('_')[0], '%Y%m%d%H%M%S')
resumingDateWith_timezone = timezone.localize(resumingDate)
resumingYear = str(resumingDateWith_timezone.year)
resumingMonth = str(resumingDateWith_timezone.month)
# Looping over stdOutErr
for j in stdOutErr:
stdOutErrPid = j.split('\\')[-1].replace(".log","").replace("stdOutErr_","")
stdOutErrDate = datetime.strptime(stdOutErrPid.split('_')[0], '%Y%m%d%H%M%S')
stdOutErrWith_timezone = timezone.localize(stdOutErrDate)
stdOutErrYear = str(stdOutErrWith_timezone.year)
stdOutErrMonth = str(stdOutErrWith_timezone.month)
# Checking if the resuming pid is the same as stdOutErr
if(resumingPid == stdOutErrPid):
# Creating a dataframe for resuming files.
resuming_df = read_csv(i,sep = ',', engine = 'python')
# remove extra strings from column JobContext
resuming_df['context'] = resuming_df['jobContext'].str.split('_').str[0]
# parse datetime to elasticsearch date format
resuming_df['eventDate'] = to_datetime(resuming_df['eventDate'])
resuming_df["datetime"] = resuming_df['eventDate'].dt.strftime('%Y-%m-%dT%H:%M:%S.%f')
# check flag
def checkFlag(row):
if row['type'] == "JOB_ENDED":
return 1
else:
return 0
# Assign flag column
resuming_df['flag'] = resuming_df.apply (lambda row: checkFlag(row), axis=1)
# Canculating flag result
flagResult = resuming_df['flag'].sum()
# Calculating column result
def checkResult(row):
if row['logPriority'] == "FATAL":
return 1
if row['logPriority'] == "ERROR":
return 1
if row['logPriority'] == "ERRO":
return 1
return 0
# Applying calculated function result to result column
resuming_df['tempresult'] = resuming_df.apply (lambda row: checkResult(row), axis=1)
# Sum of errors
status = resuming_df['tempresult'].sum()
# Check Status funcion
def checkStatus(row):
if row['type'] == "JOB_ENDED":
if status > 0:
return "FAILED"
else:
return "SUCCESS"
elif (row['type'] == "JOB_STARTED" and flagResult == 0):
return "RUNNING"
else:
return ""
# Assign result
resuming_df['result'] = resuming_df.apply (lambda row: checkStatus(row), axis=1)
# Calculating column duration
def checkDuration(row):
if row['type'] == "JOB_STARTED":
return row['datetime']
else:
return None
# Applyting date dif
resuming_df['tempDuration'] = resuming_df.apply (lambda row: checkDuration(row), axis=1)
# Storing Start Datetime
startDate = resuming_df['tempDuration'][0]
# Calculating duration time
def duration(row):
if row['type'] == "JOB_ENDED":
startTime = datetime.strptime(startDate, '%Y-%m-%dT%H:%M:%S.%f')
endTime = datetime.strptime(row['datetime'], '%Y-%m-%dT%H:%M:%S.%f')
if endTime >= startTime:
elapsed = endTime - startTime
else:
return ""
return str(elapsed)
else:
return ""
# Updating column duration
resuming_df['duration'] = resuming_df.apply (lambda row: duration(row), axis=1)
# Eliminating non useful columns from the resuming_df by filtering columns.
new_resuming_df = resuming_df[['datetime','pid','type','partName','project','jobName','context','jobVersion','logPriority','errorCode','message','result','duration']].fillna("")
# Opening stdOutErr Files and splitting strings.
with open(j,'r') as file:
filePath = j
filename = filePath.split("\\")[-1]
pid = filename.replace("stdOutErr_","").replace(".log","")
readFile = file.read()
datetimeStr = datetime.strptime(pid.split("_")[0], '%Y%m%d%H%M%S')
# Creating a data dictionary with the new strings.
stdOutErrDict = {
"datetime2": datetimeStr,
"pid": pid,
"fileName": filename,
"studioLogs": readFile
}
# Checking if the stdOutErr file has the job ended by user string
if("ENDED BY USER" in readFile):
jobAborted = True
else:
jobAborted = False
# Creating a pd dataframe from the dictionary with a single index.
stdOutErrDf = DataFrame(stdOutErrDict, index=[0])
# Looking up resuming with stdOutErr, filtering
resumingXstdOutErrDf = merge(left=new_resuming_df,right=stdOutErrDf, left_on='pid',right_on='pid')
resumingXstdOutErrDfFiltered = resumingXstdOutErrDf[['pid','datetime2','jobName','fileName','studioLogs']].drop_duplicates()
# Deleting resuming and stdoutrr files
if(flagResult > 0):
remove(j)
stdOutErr.remove(j)
remove(i)
resuming.remove(i)
# Looping over task log files
for k in task:
# Creating a dataframe for task files.
task_df = read_csv(k,sep = '|', engine = 'python', index_col=False,
names=['datetime', 'loglevel', 'thread', 'action','location','message']).iloc[ 0:20 , : ]
# Getting Artifact Name
if(task_df[task_df.columns[0]].count() >= 11):
taskArtifactName = task_df['datetime'][11].replace(",","").strip().split(':')[1].strip().replace("\"","")
else:
continue
# Getting task datetime
taskDateTime = datetime.strptime(task_df['datetime'][0].replace(",",".").strip(), '%Y-%m-%dT%H:%M:%S.%f')
taskDateTimeWith_timezone = timezone.localize(taskDateTime)
difference = (resumingDateWith_timezone - taskDateTimeWith_timezone).total_seconds()
# Getting resuming Artifact Name
resumingArtifactName = new_resuming_df['jobName'].drop_duplicates()[0]
# Checking if the pid is correct matching resuming job name with artifact name plus time seconds difference must be between zero and five
if(taskArtifactName == resumingArtifactName):
if(difference >= -1 and difference <=10):
# Opening stdOutErr Files and splitting strings.
with open(k,'r') as file:
readTaskFile = file.read()
datetimeTaskYear = str(taskDateTimeWith_timezone.year)
datetimeTaskMonth = str(taskDateTimeWith_timezone.month)
# Creating Result Task Dict
result_taskDict = {
"pid": new_resuming_df['pid'].drop_duplicates()[0],
"datetime": taskDateTimeWith_timezone,
"jobName": new_resuming_df['jobName'].drop_duplicates()[0],
"task_id": task_df['datetime'][13].replace(",","").strip().split(':')[1].strip().replace("\"",""),
"task_execution_id": task_df['datetime'][4].replace(",","").strip().split(':')[1].strip().replace("\"",""),
"remote_engine_id": task_df['datetime'][2].replace(",","").strip().split(':')[1].strip().replace("\"",""),
"remote_engine_name": task_df['datetime'][3].replace(",","").strip().split(':')[1].strip().replace("\"",""),
"task_execution_id": task_df['datetime'][4].replace(",","").strip().split(':')[1].strip().replace("\"",""),
"workspace_name": task_df['datetime'][5].replace(",","").strip().split(':')[1].strip().replace("\"",""),
"workspace_id": task_df['datetime'][6].replace(",","").strip().split(':')[1].strip().replace("\"",""),
"environment_name": task_df['datetime'][7].replace(",","").strip().split(':')[1].strip().replace("\"",""),
"environment_id": task_df['datetime'][8].replace(",","").strip().split(':')[1].strip().replace("\"",""),
"environment_version": task_df['datetime'][9].replace(",","").strip().split(':')[1].strip().replace("\"",""),
"trigger_timestamp": task_df['datetime'][10].replace(",","").strip().split(':')[1].strip().replace("\"",""),
"artifact_name": task_df['datetime'][11].replace(",","").strip().split(':')[1].strip().replace("\"",""),
"artifact_version": task_df['datetime'][12].replace(",","").strip().split(':')[1].strip().replace("\"",""),
"task_name": task_df['datetime'][14].replace(",","").strip().split(':')[1].strip().replace("\"",""),
"task_version": task_df['datetime'][15].replace(",","").strip().split(':')[1].strip().replace("\"",""),
"run_type": task_df['datetime'][16].replace(",","").strip().split(':')[1].strip().replace("\"",""),
"compatibility_version": task_df['datetime'][17].replace(",","").strip().split(':')[1].strip().replace("\"",""),
"count_of_attempts": task_df['datetime'][18].replace(",","").strip().split(':')[1].strip().replace("\"",""),
"taskLog": readTaskFile
}
result_taskDF = DataFrame(result_taskDict, index=[0]) # Assigning a DataFrame
# Inserting task documents to elasticsearch index
taskIndex = 'talendlog-task-'+datetimeTaskYear+'-'+datetimeTaskMonth+'-000001'
taskIndexDict = result_taskDF.to_dict(orient="records")
bulk(es,taskIndexDict,index=taskIndex,request_timeout=200) # Elasticsearch bulk insert
# Deleting task files
if(flagResult > 0):
print("Checking if the k file is still in the task folder...")
task.remove(k)
check_k(k)
# Checking if the task has the execution terminated info
if("EXECUTION_TERMINATED" in readTaskFile):
taskAborted = True
else:
taskAborted = False
# Removing jobs running from the list array
#if(flagResult == 0 and taskAborted == False):
if(flagResult == 0):
task.remove(k)
# Elasticsearch running query body
runningBody = {
"query": {
"bool": {
"filter": [
{
"term": {
"pid": {
"value": resumingPid
}
}
},
{
"term": {
"type": {
"value": "JOB_STARTED"
}
}
},
{
"term": {
"result": {
"value": "RUNNING"
}
}
}
],
"must": [
{
"match_all": {}
}
]
}
}
}
# Elasticsearch delete by query body
deleteRunningbody = {
"query":{
"term": {
"pid": {
"value": resumingPid
}
}
}
}
# Update by query , aborted
updateAbortedBody = {
"script": {
"inline": "ctx._source.result='ABORTED'",
"lang": "painless"
},
"query": {
"bool": {
"filter": [
{
"term": {
"pid": {
"value": resumingPid
}
}
},
{
"term": {
"type": {
"value": "JOB_STARTED"
}
}
},
{
"term": {
"result": {
"value": "RUNNING"
}
}
}
],
"must": [
{
"match_all": {}
}
]
}
}
}
updateRunning = {
"doc": {
"result": "ABORTED"
}
}
# resuming documents to elasticsearch index
resumingIndex = 'talendlog-resuming-'+resumingYear+'-'+resumingMonth+'-000001'
resumingElasticDict = new_resuming_df.to_dict(orient="records")
# stdOutErr documents to elasticsearch index
stdOutErrIndex = 'talendlog-stdouterr-'+stdOutErrYear+'-'+stdOutErrMonth+'-000001'
stdOutErrDict = resumingXstdOutErrDfFiltered.to_dict(orient="records")
# Checking if the index exist if not, create the index and bulk insert the document
if (es.indices.exists(index=resumingIndex) and es.indices.exists(index=stdOutErrIndex) and es.indices.exists(index=taskIndex)):
# Searching for the match document
jobRunning = es.search(index=resumingIndex, body=runningBody)
jobRunningResult = int(jobRunning['hits']['total']['value'])
# querying for jobs that has the running status in elasticsearch index
if(flagResult == 0):
# Check if the job running already exist in elasticsearch, if so, delete it
if ((taskAborted != True and jobAborted != True) and jobRunningResult > 0):
# Elasticsearch Bulk delete by query
es.delete_by_query(index=resumingIndex, body=deleteRunningbody)
es.delete_by_query(index=stdOutErrIndex, body=deleteRunningbody)
es.delete_by_query(index=taskIndex, body=deleteRunningbody)
# Elasticsearch Insert Documents
bulk(es, resumingElasticDict, index=resumingIndex, request_timeout=200) #Elasticsearch bulk insert
bulk(es,stdOutErrDict,index=stdOutErrIndex,request_timeout=200) #Elasticsearch bulk insert
print("Talend Logs files has been successfully sent to Elasticsearch.")
# Check if the job was aborted and status is running still
elif ((taskAborted or jobAborted) and jobRunningResult > 0):
# Elasticsearch Update (Alternative)
#jobRunningId = jobRunning['hits']['hits'][0]['_id']
#es.update(index=resumingIndex,id=jobRunningId,body=updateRunning)
# Elasticsearch update by query
es.update_by_query(index=resumingIndex, body=updateAbortedBody)
# Delete log files from jobs wich were aborted
remove(i)
remove(j)
print("Checking if the k file is still in the task folder...")
check_k(k)
else:
# Elasticsearch Insert Documents
bulk(es, resumingElasticDict, index=resumingIndex, request_timeout=200) #Elasticsearch bulk insert
bulk(es,stdOutErrDict,index=stdOutErrIndex,request_timeout=200) #Elasticsearch bulk insert
print("Talend Logs files has been successfully sent to Elasticsearch.")
elif(flagResult > 0 and jobRunningResult > 0):
# Elasticsearch Bulk delete by query
es.delete_by_query(index=resumingIndex, body=deleteRunningbody)
es.delete_by_query(index=stdOutErrIndex, body=deleteRunningbody)
es.delete_by_query(index=taskIndex, body=deleteRunningbody)
# Elasticsearch Bulk insert documents
bulk(es, resumingElasticDict, index=resumingIndex, request_timeout=200) #Elasticsearch bulk insert
bulk(es,stdOutErrDict,index=stdOutErrIndex,request_timeout=200) #Elasticsearch bulk insert
print("Talend Logs files has been successfully sent to Elasticsearch.")
else:
# Elasticsearch Bulk insert documents
bulk(es, resumingElasticDict, index=resumingIndex, request_timeout=200) #Elasticsearch bulk insert
bulk(es,stdOutErrDict,index=stdOutErrIndex,request_timeout=200) #Elasticsearch bulk insert
print("Talend Logs files has been successfully sent to Elasticsearch.")
else:
# Elasticsearch Bulk insert documents
bulk(es, resumingElasticDict, index=resumingIndex, request_timeout=200) #Elasticsearch bulk insert
bulk(es,stdOutErrDict,index=stdOutErrIndex,request_timeout=200) #Elasticsearch bulk insert
print("Talend Logs files has been successfully sent to Elasticsearch.")
return True
except Exception as e:
print("Some error has occured during the parseLogs function:")
print(e)
return False
# In[281]:
# Starting point to run parseLogs function if files are available.
# Inifinite Loop Function
if start:
while True:
sleep(seconds)
if check_files():
parseLogs()