-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDAGNetwork.hpp
494 lines (466 loc) · 15 KB
/
DAGNetwork.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
#define MLPACK_PRINT_INFO
#define STB_IMAGE_IMPLEMENTATION
#define MLPACK_PRINT_WARN
#include <mlpack.hpp>
#include <vector>
#include <map>
#include <iostream>
#include <memory>
/*
Node of Layers that could that multiple inputs and give out multiple outputs(?)
*/
using mat = arma::mat;
using cube = arma::cube;
class Addition : public mlpack::Layer<mat>{
public:
// Requires the two inputs matrices to be joined using join_cols(). Thus 'in' mat is two matrices upper and lower matrices.
void Forward(const mat& in, mat& out){
out = in.submat(0, 0, (in.n_rows/2) - 1, in.n_cols - 1) + in.submat(in.n_rows/2, 0, in.n_rows - 1, in.n_cols - 1);
}
void Backward(const mat& in, const mat& gy, mat& g){
mat g1(in.n_rows, in.n_cols, arma::fill::ones);
g1 %= gy;
g.submat(0, 0, g.n_rows/2 - 1, g.n_cols - 1) = g1;
g.submat(g.n_rows/2, 0, g.n_rows - 1, g.n_cols - 1) = g1;
}
Addition* Clone() const{ return new Addition(*this); }
};
// End
template<typename MatType>
class DataLayer : public mlpack::Layer<mat>{
DataLayer(const MatType& _d, bool requires_grad) : data(_d){
if(requires_grad)
grad.set_size(arma::size(data));
}
private:
MatType data;
MatType grad;
};
typedef struct Node {
int id = -1;
bool data = false;
bool fw = true;
bool bw = true;
} Node;
template<typename LossLayerType = mlpack::NegativeLogLikelihood>
class DAGNetwork{
public:
DAGNetwork(LossLayerType layer = LossLayerType()) : lossLayer(std::move(layer)){
inputs[inputLayer] = {};
consumers[inputLayer] = {};
}
// Block 1: Methods required by Ensmallen to act as "Differentiable separable function"
double EvaluateWithGradient(const mat& x, const size_t i, mat& g, const size_t batch_size){
//Forward Pass
InitializeForwardPassMemory(batch_size);
layerOutputMatrix.fill(0);
for(int i = 0; i < visitedForward.size(); i++)
visitedForward[i] = 0;
visitedForward[inputLayer] = 1;
layerOutputs[inputLayer] = predictors.cols(i, i + batch_size - 1);
ForwardDAG(outputLayer);
double loss = lossLayer.Forward(layerOutputs[outputLayer], responses.cols(i, i + batch_size - 1));
// if(loss == 0){
// std::cout << layerOutputs[]
// }
//Backward Pass
InitializeBackwardPassMemory(batch_size);
layerDeltaMatrix.fill(0);
lossLayer.Backward(layerOutputs[outputLayer], responses.cols(i, i + batch_size - 1), error);
layerBackwards[outputLayer] = error;
gradient.fill(0);
for(int i = 0; i < visitedBackward.size(); i++)
visitedBackward[i] = 0;;
BackwardWithGradientDAG(inputLayer);
g = gradient;
return loss;
}
void Shuffle(){}
size_t NumFunctions() const{
return responses.n_cols;
}
// End Block 1
int InputLayer() const{
return inputLayer;
}
int& InputLayer() {
setInputLayer = true;
return inputLayer;
}
int OutputLayer() const{
if(!setOutputLayer)
std::cerr << "Not set Output Layer" << std::endl;
return outputLayer;
}
int& OutputLayer() {
setOutputLayer = true;
return outputLayer;
}
void ForwardDAG(int layerID){
if(visitedForward[layerID] == 1)
return;
auto& layerIn = inputs[layerID];
for(int in : layerIn){
ForwardDAG(in);
}
auto& layer = db[layerID];
if(layerIn.size() == 1){
layer->Forward(layerOutputs[layerIn[0]], layerOutputs[layerID]);
}else if(layerIn.size() > 1){
if(arma::size(layerOutputs[layerIn[0]]) != arma::size(layerOutputs[layerIn[1]])){
for(int i = 0; i < db[layerIn[0]]->OutputDimensions().size(); i++)
std::cout << db[layerIn[0]]->OutputDimensions()[i];
std::cout << std::endl;
for(int i = 0; i < db[layerIn[0]]->OutputDimensions().size(); i++)
std::cout << db[layerIn[0]]->OutputDimensions()[i];
std::cout << std::endl;
std::runtime_error("Dimensions are not equal!");
}
mat joined = layerOutputs[layerIn[0]];
//NOTE: Write it in a more optimized way
for(size_t i = 1; i < layerIn.size(); i++)
joined = join_cols(joined, layerOutputs[layerIn[i]]);
layer->Forward(joined, layerOutputs[layerID]);
}
visitedForward[layerID] = 1;
}
void BackwardWithGradientDAG(int layerID){
if(visitedBackward[layerID] == 1)
return;
const auto& layerConsumers = consumers[layerID];
for(int c : layerConsumers){
BackwardWithGradientDAG(c);
}
if(layerID == inputLayer){
visitedBackward[layerID] = 1;
return;
}
const auto& in = inputs[layerID];
auto& layer = db[layerID];
if(in.size() == 1){
mat& input = layerOutputs[in[0]];
mat& out = layerOutputs[layerID];
mat& gy = layerBackwards[layerID];
mat g;
g.set_size(arma::size(layerBackwards[in[0]]));
layer->Backward(out, gy, g);
layer->Gradient(input, gy, layerGradients[layerID]);
layerBackwards[in[0]] += g;
}else if(in.size() == 2){
mat input = join_cols(layerOutputs[in[0]], layerOutputs[in[1]]);
mat& out = layerOutputs[layerID];
mat& gy = layerBackwards[layerID];
mat g(input.n_rows, input.n_cols);
layer->Backward(out, gy, g);
layer->Gradient(input, gy, layerGradients[layerID]);
layerBackwards[in[0]] += g.submat(0, 0, input.n_rows/2 - 1, input.n_cols - 1);
layerBackwards[in[1]] += g.submat(input.n_rows/2, 0, input.n_rows - 1, input.n_cols - 1);
}else if(in.size() > 2){
//Not implemented
}
visitedBackward[layerID] = 1;
}
template<typename OptimizerType, typename ...Args>
void Train(const mat& predictors, const mat& responses, OptimizerType& optimizer, Args... callbacks){
this->predictors = predictors;
this->responses = responses;
if(inputDimensions.size() == 0){
inputDimensions = {predictors.n_rows};
}
checkAndInitialize();
setTrainingMode(true);
optimizer.Optimize(*this, parameter, callbacks...);
}
const mat& Predict(const mat& x){
if(!setInputLayer || !setOutputLayer){
std::cerr << "Input or Output Layer not set" << std::endl;
}
predictors = x;
if(inputDimensions.size() == 0){
inputDimensions = {x.n_rows};
}
checkAndInitialize();
setTrainingMode(false);
InitializeForwardPassMemory(x.n_cols);
layerOutputMatrix.fill(0);
for(int i = 0; i < visitedForward.size(); i++)
visitedForward[i] = 0;
visitedForward[inputLayer] = 1;
layerOutputs[inputLayer] = x;
ForwardDAG(outputLayer);
return layerOutputs[outputLayer];
}
void setTrainingMode(bool value){
for(auto&[id, layer] : db){
layer->Training() = value;
}
}
void InitializeForwardPassMemory(size_t batchSize){
if(batchSize * totalOutputSize > layerOutputMatrix.n_elem || batchSize * totalOutputSize < std::floor(0.1*layerOutputMatrix.n_elem)){
layerOutputMatrix = mat(1, batchSize * totalOutputSize);
}
size_t start = 0;
size_t layerOutputSize = inSize;
mlpack::MakeAlias(layerOutputs[inputLayer], layerOutputMatrix.colptr(start), layerOutputSize, batchSize);
start += layerOutputSize * batchSize;
for(auto&[id, layer] : db){
const size_t layerOutputSize = layer->OutputSize();
mlpack::MakeAlias(layerOutputs[id], layerOutputMatrix.colptr(start), layerOutputSize, batchSize);
start += layerOutputSize * batchSize;
}
}
/*
void InitializeForwardPassMemory(size_t batchSize){
if(batchSize * totalOutputSize > layerOutputMatrix.n_elem || batchSize * totalOutputSize < std::floor(0.1*layerOutputMatrix.n_elem)){
layerOutputMatrix = mat(1, batchSize * totalOutputSize);
}
size_t start = 0;
//What to do when edges come from the same node, do you copy the data? 1. Prevent multiple edges to exist between two nodes. 2. Still
std::priority_queue q;
}*/
void InitializeBackwardPassMemory(size_t batchSize){
if(batchSize * totalInputSize > layerDeltaMatrix.n_elem || batchSize * totalInputSize < std::floor(0.1*layerDeltaMatrix.n_elem)){
layerDeltaMatrix = mat(1, batchSize * totalInputSize);
}
size_t start = 0;
for(auto&[id, layer] : db){
if(id == outputLayer) continue;
//size_t layerInputSize = 1;
//for(size_t i = 0; i < layer->InputDimensions().size(); i++)
// layerInputSize *= layer->InputDimensions()[i];
const size_t layerInputSize = layer->OutputSize();
mlpack::MakeAlias(layerBackwards[id], layerDeltaMatrix.colptr(start), layerInputSize, batchSize);
start += layerInputSize * batchSize;
}
size_t layerOutputSize = inSize;
mlpack::MakeAlias(layerBackwards[inputLayer], layerDeltaMatrix.colptr(start), layerOutputSize, batchSize);
start += layerOutputSize * batchSize;
}
const auto& getOutputOf(int layerID){
return layerOutputs[layerID];
}
const auto& getBackwardOf(int layerID){
return layerBackwards[layerID];
}
void findInputAndOutputLayers(){
for(const auto& [id, inputVector] : inputs){
if(inputVector.empty()){
inputLayer = id;
break;
}
}
for(const auto& [id, consumerVector] : consumers){
if(consumerVector.empty()){
outputLayer = id;
break;
}
}
}
auto& InputDimensions(){
return inputDimensions;
}
void setInputDimensions(int layerID){
auto layer = db[layerID];
const auto& in = inputs[layerID];
if(layerID == inputLayer){
layer->InputDimensions() = inputDimensions;
}else{
layer->InputDimensions() = db[in[0]]->OutputDimensions();
// if(in.size() >= 2)
// layer->InputDimensions().push_back(in.size());
}
const auto& out = consumers[layerID];
for(int i : out){
setInputDimensions(i);
}
}
void ComputeOutputDimensions(int layerID, std::vector<int>& visited){
if(visited[layerID] == 1) return;
auto& inputLayers = inputs[layerID];
for(int in : inputLayers){
ComputeOutputDimensions(in, visited);
}
if(inputLayers.size() == 0){
std::cerr << "Set Input Dimensions of" << layerID << std::endl;
}else{
std::vector<size_t> prevOutputDimensions;
if(inputLayers[0] == inputLayer)
prevOutputDimensions = inputDimensions;
else
prevOutputDimensions = db[inputLayers[0]]->OutputDimensions();
db[layerID]->InputDimensions() = prevOutputDimensions;
}
size_t layerInputSize = db[layerID]->InputDimensions()[0];
for(size_t i = 1; i < db[layerID]->InputDimensions().size(); i++)
layerInputSize *= db[layerID]->InputDimensions()[i];
totalInputSize += layerInputSize;
db[layerID]->ComputeOutputDimensions();
size_t layerOutputSize = db[layerID]->OutputDimensions()[0];
for(size_t i = 1; i < db[layerID]->OutputDimensions().size(); i++)
layerOutputSize *= db[layerID]->OutputDimensions()[i];
totalOutputSize += layerOutputSize;
visited[layerID] = 1;
}
void ComputeOutputDimensions(){
std::vector<int> visited(layers+1, 0);
visited[inputLayer] = 1;
totalOutputSize = 0;
totalInputSize = 0;
size_t layerOutputSize = inputDimensions[0];
for(size_t i = 1; i < inputDimensions.size(); i++)
layerOutputSize *= inputDimensions[i];
inSize = layerOutputSize;
totalOutputSize += layerOutputSize;
totalInputSize += layerOutputSize;
ComputeOutputDimensions(outputLayer, visited);
}
void findWeightSize(){
weightSize = 0;
for(const auto&[id, layer] : db){
weightSize += layer->WeightSize();
}
}
size_t WeightSize(){
return weightSize;
}
void SetLayerMemory(){
std::priority_queue<int> q;
std::set<int> visited;
for(int i : consumers[inputLayer]){
q.push(i);
visited.insert(i);
}
size_t start = 0;
auto param_ptr = parameter.memptr();
auto gradientptr = gradient.memptr();
while(!q.empty()){
int top = q.top();
q.pop();
auto& layer = db[top];
size_t size = layer->WeightSize();
assert(size + start <= weightSize);
layer->SetWeights(param_ptr + start);
mat Wtemp;
mlpack::MakeAlias(Wtemp, param_ptr + start, size, 1);
layer->CustomInitialize(Wtemp, size);
mlpack::MakeAlias(layerGradients[top], gradientptr + start, size, 1);
start += size;
auto& cons = consumers[top];
for(int i : cons){
if(visited.find(i) == visited.end()){
visited.insert(i);
q.push(i);
}
}
}
}
void checkAndInitialize(){
//findInputAndOutputLayers();
if(checkDone == true)
return;
weightSize = 0;
//setInputDimensions(inputLayer);
ComputeOutputDimensions();
findWeightSize();
parameter = arma::randu(weightSize, 1);
parameter *= 2;
parameter -= 1;
gradient.zeros(weightSize, 1);
SetLayerMemory();
visitedForward.resize(layers + 1, 0);
visitedBackward.resize(layers + 1, 0);
checkDone = true;
}
template<typename LayerType, typename... Args>
int Add(Args... args){
int id = getid();
auto layer = new LayerType(args...);
db[id] = layer;
inputs[id] = {};
consumers[id] = {};
layerOutputs[id] = mat();
layerBackwards[id] = mat();
return id;
}
int Add(mlpack::Layer<mat>* layer){
int id = getid();
db[id] = layer;
inputs[id] = {};
consumers[id] = {};
layerOutputs[id] = mat();
layerBackwards[id] = mat();
return id;
}
void add_inputs(int node, std::vector<int> in){
for(const auto i : in){
inputs[node].push_back(i);
consumers[i].push_back(node);
}
}
void add_input(int source, int destination){
inputs[source].push_back(destination);
consumers[destination].push_back(source);
}
// Ordered pair of layers creates directed edge from first->second, i.e. second takes input from first
void add_edges(std::pair<int, int> e){
inputs[e.second].push_back(e.first);
consumers[e.first].push_back(e.second);
}
template<typename T, typename... Ts>
void add_edges(const T x, const Ts... xs){
add_edges(x);
add_edges(xs...);
}
template<typename... Ts>
void add_edges(const Ts (&...x)[2]){
add_edges(std::make_pair(x[0], x[1])...);
}
int sequential(std::vector<int> list){
for(size_t i = 1; i < list.size(); i++)
add_input(list[i], list[i-1]);
return list.back();
}
int sequential(std::vector<mlpack::Layer<mat>*> seq){
int l1 = Add(seq.front());
for(size_t i = 1; i < seq.size(); i++){
int l2 = Add(seq[i]);
add_input(l2, l1);
l1 = l2;
}
return l1;
}
~DAGNetwork(){
for(auto&[id, layer] : db){
delete layer;
}
}
private:
int getid(){
return ++layers;
}
size_t weightSize;
// NOTE: These unordered_map should be replaced with vector.
std::unordered_map<int, std::vector<int>> consumers;
std::unordered_map<int, std::vector<int>> inputs;
std::unordered_map<int, mlpack::Layer<mat>*> db;
mat layerOutputMatrix;
size_t totalOutputSize = 0;
mat layerDeltaMatrix;
size_t totalInputSize = 0;
size_t inSize = 0;
std::unordered_map<int, mat> layerOutputs;
std::unordered_map<int, mat> layerBackwards;
std::unordered_map<int, mat> layerGradients;
std::vector<int> visitedBackward;
std::vector<int> visitedForward;
std::vector<size_t> inputDimensions;
int inputLayer = 0, outputLayer;
LossLayerType lossLayer;
bool setInputLayer = true;
bool setOutputLayer = false;
mat parameter, gradient;
mat error;
mat predictors, responses;
int layers = 0;
bool checkDone = false;
};