forked from pluto/ronkathon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathecdsa.rs
153 lines (140 loc) · 5.5 KB
/
ecdsa.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
//! ECDSA signature verification
use std::hash::{DefaultHasher, Hasher};
use algebra::field::FiniteField;
use curve::CurveGroup;
use super::*;
// PARAMETERS
// *******************************************
// CURVE the elliptic curve field and equation used
// G a point on the curve that generates a subgroup of large prime order n
// n integer order of G, means that n × G = O, n must also be prime.
// d_A the private key (randomly selected) (scaler in F_n)
// Q_A the public key d_a × G = Q_A (point on the curve)
// m the message to send
/// SIGNING ALGORITHM
/// *******************************************
/// 1. Compute e = HASH(m), where HASH is a cryptographic hash function.
/// 2. Let z be the L_n leftmost bits of e, where L_n is the bit length of the group order n.
/// 3. Select a cryptographically secure random integer k from [1, n-1].
/// 4. Compute the curve point (x_1, y_1) = k × G.
/// 5. Compute r = x_1 mod n. If r = 0, go back to step 3.
/// 6. Compute s = k^(-1) (z + r * d_A) mod n. If s = 0, go back to step 3.
/// 7. The signature is the pair (r, s). the pair (r, -s mod n) is also a valid signature.
pub fn sign<F: FiniteField, G: CurveGroup<Scalar = F>>(message: &[u8], private_key: F) -> (F, F) {
// Hash and extract bits
let bit_count = (F::ORDER.leading_zeros() - 1) as usize;
let z = hash_and_extract_bits::<F>(message, bit_count);
let mut rng = rand::rngs::OsRng;
// Select a cryptographically secure random integer k from [1, n-1].
let k = F::from(rand::Rng::gen_range(&mut rng, 1..=F::ORDER));
// Compute the curve point (x_1, y_1) = k × G.
let point = G::GENERATOR * k;
let (mut x_1, _, is_infty) = point.xy();
if is_infty {
x_1 = G::BaseField::ZERO;
}
// Compute r = x_1 mod n. If r = 0, go back to step 3.
let r = F::from(x_1.into());
if r == F::ZERO {
return sign::<F, G>(message, private_key);
}
// Compute s = k^(-1) (z + r * d_A) mod n. If s = 0, go back to step 3.
let k_inv = k.inverse().unwrap();
let s = k_inv * (z + r * private_key);
if s == F::ZERO {
return sign::<F, G>(message, private_key);
}
// The signature is the pair (Notable not nessisarily a point on the curve) (r, s). the pair
// (r, -s mod n) is also a valid signature.
// let r = F::from(r.value);
// let s = F::from(s.value);
(r, s)
}
/// SIGNATURE VERIFICATION ALGORITHM
/// *******************************************
/// Check that public key Q_A is a valid point on the curve.
/// 1. Check that Q_A != O.
/// 2. Check that x_Q_A and y_Q_A are integers in the interval [0, p-1].
/// 3. Check that n × Q_A = O.
///
/// Verify that the signature is valid.
/// 1. Verify that r and s are integers in the interval [1, n-1].
/// 2. Compute e = HASH(m).
/// 3. Let z be the L_n leftmost bits of e.
/// 4. Compute u_1 = zs^(-1) mod n.
/// 5. Compute u_2 = rs^(-1) mod n.
/// 6. Compute the curve point (x_1, y_1) = u_1 × G + u_2 × Q_A. If = O, the signature is invalid.
/// 7. The signature is valid if r = x_1 mod n, invalid otherwise.
pub fn verify<F: FiniteField, G: CurveGroup<Scalar = F>>(
m: &[u8],
q_a: G,
signature: (F, F),
) -> bool {
// Check that n × Q_A = O.
let (_, _, is_infty) = (q_a * F::ORDER.into()).xy();
if !is_infty {
return false;
}
// Verify that the signature is valid.
let (r, s): (F, F) = signature;
// Verify that r and s are integers in the interval [1, n-1].
if r == F::ZERO || s == F::ZERO {
return false;
}
// Hash and extract bits
let bit_count = (F::ORDER.leading_zeros() - 1) as usize;
let z = hash_and_extract_bits::<F>(m, bit_count);
// Compute u_1 = zs^(-1) mod n.
let s_inv = s.inverse().unwrap();
let u_1 = z * s_inv;
// Compute u_2 = rs^(-1) mod n.
let u_2 = r * s_inv;
// Compute the curve point (x_1, y_1) = u_1 × G + u_2 × Q_A. If
let point = (G::GENERATOR * u_1) + (q_a * u_2);
let (x_1, _, is_infty) = point.xy();
if is_infty {
panic!("signature invalid");
}
let x = F::from(x_1.into());
r == x
}
/// Computes the hash of a message and extracts the leftmost bits.
fn hash_and_extract_bits<F: Field>(m: &[u8], bit_count: usize) -> F {
let mut hasher = DefaultHasher::new();
m.hash(&mut hasher);
let e = hasher.finish().to_be_bytes();
// let e_4_bytes = [e[0], e[1], e[2], e[3]];
F::from(usize::from_be_bytes(e) & ((1 << bit_count) - 1))
}
#[cfg(test)]
mod tests {
use algebra::{field::prime::PlutoScalarField, group::FiniteCyclicGroup, Finite};
use super::*;
#[test]
fn test_sign_verify() {
// secret key
let mut rng = rand::rngs::OsRng;
let s_key = PlutoScalarField::new(rand::Rng::gen_range(&mut rng, 1..=PlutoScalarField::ORDER));
// public key
let q_a = AffinePoint::<PlutoBaseCurve>::GENERATOR * s_key;
let m = b"Hello, world!";
// sign the message
let signature = sign::<PlutoScalarField, AffinePoint<PlutoBaseCurve>>(m, s_key);
println!("signature = {:?}", signature);
assert!(verify(m, q_a, signature));
}
#[test]
fn test_invalid_signature() {
// secret key
let mut rng = rand::rngs::OsRng;
let s_key = PlutoScalarField::new(rand::Rng::gen_range(&mut rng, 1..=PlutoScalarField::ORDER));
// public key
let q_a = AffinePoint::<PlutoBaseCurve>::GENERATOR * s_key;
let m = b"Hello, Pluto!";
// sign the message
let mut signature = sign::<PlutoScalarField, AffinePoint<PlutoBaseCurve>>(m, s_key);
// Modify the signature to make it invalid
signature.0 = PlutoScalarField::ZERO; // Invalidate r
assert!(!verify(m, q_a, signature), "Signature should be invalid but was verified as valid.");
}
}