forked from pluto/ronkathon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmod.rs
389 lines (348 loc) · 14.3 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
//! This module contains the implementation of polynomials in the [`Monomial`] and [`Lagrange`]
//! bases.
//! ## Overview
//! A polynomial is a mathematical expression that consists of variables and coefficients. The
//! variables are raised to non-negative integer powers and multiplied by the coefficients. For
//! example, the polynomial $f(x) = 1 + 2x + 3x^2 + 4x^3$ has coefficients $1, 2, 3, 4$ in the
//! [`Monomial`] [`Basis`].
//!
//! - [`Polynomial`] struct represents a polynomial in any basis. These are generic over the
//! [`Basis`] and [`FiniteField`] traits.
//! - [`Basis`] trait is used to specify the basis of the polynomial which can be either:
//! - [`Monomial`] basis as shown above.
//! - [`Lagrange`] basis which is used in the [Lagrange interpolation](https://en.wikipedia.org/wiki/Lagrange_polynomial).
//! - Includes arithmetic operations such as addition, subtraction, multiplication, and division in
//! the [`arithmetic`] module. The [`Polynomial`] struct is generic over the [`Basis`] and
//! [`FiniteField`] traits.
//! - Includes Discrete Fourier Transform (DFT) for polynomials in the [`Monomial`] basis to convert
//! into the [`Lagrange`] basis via evaluation at the roots of unity.
use std::array;
use super::*;
use crate::algebra::field::FiniteField;
pub mod arithmetic;
#[cfg(test)] mod tests;
// https://people.inf.ethz.ch/gander/papers/changing.pdf
/// A polynomial of arbitrary degree `D-1`.
/// Allows for a choice of basis between [`Monomial`] and [`Lagrange`].
/// The coefficients are stored in a vector with the zeroth degree term first.
/// Highest degree term should be non-zero.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Polynomial<B: Basis, F: FiniteField, const D: usize> {
/// Coefficients of the polynomial in the chosen basis.
/// These will be in either:
/// - Increasing order of degree for [`Monomial`] basis.
/// - Order of the nodes of the Lagrange polynomial for [`Lagrange`] basis.
pub coefficients: [F; D],
/// The basis of the polynomial. Additional node points are stored for [`Lagrange`] basis.
pub basis: B,
}
/// [`Basis`] trait is used to specify the basis of the polynomial.
/// The basis can be [`Monomial`] or [`Lagrange`]. This is a type-state pattern for [`Polynomial`].
pub trait Basis {
/// The associated data type for the basis.
type Data;
}
/// [`Monomial`] is a struct that implements the [`Basis`] trait.
/// It is used to specify the [monomial basis](https://en.wikipedia.org/wiki/Monomial_basis) for a polynomial.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Monomial;
impl Basis for Monomial {
type Data = ();
}
/// [`Lagrange`] is a struct that implements the [`Basis`] trait.
/// It is used to specify the [lagrange basis](https://en.wikipedia.org/wiki/Lagrange_polynomial) for a polynomial.
/// It requires a vector of field elements that are the nodes (evaluation points) used to create the
/// Lagrange basis.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct Lagrange<F: FiniteField> {
/// Nodes (evaluation points) of the [`Lagrange`] [`Basis`].
pub nodes: Vec<F>,
}
impl<F: FiniteField> Basis for Lagrange<F> {
type Data = Self;
}
impl<B: Basis, F: FiniteField, const D: usize> Polynomial<B, F, D> {
/// A polynomial in any basis has a fixed number of independent terms.
/// For example, in [`Monomial`] basis, the number of terms is one more than the degree of the
/// polynomial.
///
/// ## Arguments:
/// - `self`: The polynomial in any basis.
///
/// ## Returns:
/// - The number of terms in the polynomial as `usize`.
pub fn num_terms(&self) -> usize { self.coefficients.len() }
}
impl<F: FiniteField, const D: usize> Polynomial<Monomial, F, D> {
/// Create a new polynomial in [`Monomial`] basis.
///
/// ## Arguments:
/// - `coefficients`: A vector of field elements representing the coefficients of the polynomial
/// on each monomial term, e.g., x^0, x^1, ....
///
/// ## Returns:
/// - A new polynomial in [`Monomial`] basis with the given coefficients.
/// - The polynomial is automatically simplified to have a non-zero leading coefficient, that is
/// coefficient on the highest power term x^d.
pub fn new(coefficients: [F; D]) -> Self { Self { coefficients, basis: Monomial } }
/// Helper method to remove leading zeros from coefficients
fn trim_zeros(coefficients: &mut Vec<F>) {
while coefficients.last().cloned() == Some(F::ZERO) {
coefficients.pop();
}
}
/// Gets the degree of the polynomial in the [`Monomial`] [`Basis`].
/// ## Arguments:
/// - `self`: The polynomial in the [`Monomial`] [`Basis`].
///
/// ## Returns:
/// - The degree of the polynomial as a `usize`.
pub fn degree(&self) -> usize {
self.coefficients.iter().rposition(|&coeff| coeff != F::ZERO).unwrap_or(0)
}
/// Retrieves the coefficient on the highest degree monomial term of a polynomial in the
/// [`Monomial`] [`Basis`].
// pub const fn leading_coefficient(&self) -> F { *self.coefficients.last().unwrap() }
pub fn leading_coefficient(&self) -> F {
self.coefficients.iter().rev().find(|&&coeff| coeff != F::ZERO).copied().unwrap_or(F::ZERO)
}
/// Evaluates the polynomial at a given [`FiniteField`] element `x` using the [`Monomial`]
/// basis. This is not using Horner's method or any other optimization.
///
/// ## Arguments:
/// - `x`: The field element at which to evaluate the polynomial.
///
/// ## Returns:
/// - The result of evaluating the polynomial at `x` which is an element of the associated
/// [`FiniteFiniteField`].
pub fn evaluate(&self, x: F) -> F {
let mut result = F::ZERO;
for (i, c) in self.coefficients.iter().enumerate() {
result += *c * x.pow(i);
}
result
}
/// Accessory function that allows for the multiplication of a polynomial by a scalar `coeff`
/// times a monomial `x^pow`.
/// Used explicitly in the [`Polynomial::quotient_and_remainder`] function for implementing the
/// [Euclidean division](https://en.wikipedia.org/wiki/Euclidean_division) algorithm (to implement [`Div`] and [`Rem`] traits).
///
/// ## Arguments:
/// - `const D2`: The degree of the term to multiply by, e.g., `D2==5` multiplies by `x^5`.
/// - `coeff`: The scalar to multiply the polynomial by.
///
/// ## Returns:
/// - A new polynomial in the [`Monomial`] [`Basis`] that is the result of multiplying the
/// polynomial by `coeff` times `x^pow`.
pub fn pow_mult<const D2: usize>(&self, coeff: F) -> Polynomial<Monomial, F, { D + D2 }> {
let coefficients: [F; D + D2] =
array::from_fn(|i| if i >= D2 { self.coefficients[i - D2] * coeff } else { F::ZERO });
Polynomial::<Monomial, F, { D + D2 }>::new(coefficients)
}
/// [Euclidean division](https://en.wikipedia.org/wiki/Euclidean_division) of two polynomials in [`Monomial`] basis.
/// Used explicitly in implementing the [`Div`] and [`Rem`] traits.
///
/// ## Arguments:
/// - `self`: The dividend polynomial in [`Monomial`] basis.
/// - `rhs`: The divisor polynomial in [`Monomial`] basis.
///
/// ## Returns:
/// - A tuple of two polynomials in [`Monomial`] basis:
/// - The first element is the quotient polynomial.
/// - The second element is the remainder polynomial.
fn quotient_and_remainder<const D2: usize>(
self,
rhs: Polynomial<Monomial, F, D2>,
) -> (Self, Self) {
// Initial quotient value
let mut q_coeffs = vec![F::ZERO; D];
// Initial remainder value is our numerator polynomial
let mut p_coeffs = self.coefficients.to_vec();
// Leading coefficient of the denominator
let c = rhs.leading_coefficient();
// Perform the repeated long division algorithm
while p_coeffs.iter().filter(|&&x| x != F::ZERO).count() > 0
&& p_coeffs.len() >= rhs.coefficients.len()
{
// find degree of dividend, divisor
let p_degree = p_coeffs.iter().rposition(|&x| x != F::ZERO).unwrap();
let rhs_degree = rhs.coefficients.iter().rposition(|&x| x != F::ZERO).unwrap();
if p_degree < rhs_degree {
break;
}
let diff = p_degree - rhs_degree;
let s = p_coeffs[p_degree] * c.inverse().unwrap();
q_coeffs[diff] = s;
for (i, &coeff) in rhs.coefficients.iter().enumerate() {
p_coeffs[diff + i] -= coeff * s;
}
Polynomial::<Monomial, F, D>::trim_zeros(&mut p_coeffs);
}
let quotient = Polynomial {
coefficients: q_coeffs.try_into().unwrap_or_else(|v: Vec<F>| {
let mut arr = [F::ZERO; D];
arr.copy_from_slice(&v[..D]);
arr
}),
basis: self.basis,
};
let remainder = Polynomial {
coefficients: p_coeffs.try_into().unwrap_or_else(|v: Vec<F>| {
let mut arr = [F::ZERO; D];
arr[..v.len()].copy_from_slice(&v[..]);
arr
}),
basis: self.basis,
};
(quotient, remainder)
}
/// Computes the [Discrete Fourier Transform](https://en.wikipedia.org/wiki/Discrete_Fourier_transform)
/// of the polynomial in the [`Monomial`] basis by evaluating the polynomial at the roots of
/// unity.
/// This also converts a polynomial from [`Monomial`] to [`Lagrange`] [`Basis`] with node points
/// given by the roots of unity.
///
/// ## Returns:
/// - A new polynomial in the [`Lagrange`] [`Basis`] that is the result of converting the
/// evaluation of the polynomial at the roots of unity.
///
/// ## Panics
/// - This function will panic in calling [`FiniteField::primitive_root_of_unity`] if the field
/// does not have roots of unity for the degree of the polynomial.
pub fn dft(&self) -> Polynomial<Lagrange<F>, F, D> {
let n = self.num_terms();
let primitive_root_of_unity = F::primitive_root_of_unity(n);
let coeffs: Vec<F> = (0..n)
.map(|i| {
self
.coefficients
.iter()
.enumerate()
.fold(F::ZERO, |acc, (j, &coeff)| acc + coeff * primitive_root_of_unity.pow(i * j))
})
.collect();
Polynomial::<Lagrange<F>, F, D>::new(
coeffs.try_into().unwrap_or_else(|v: Vec<F>| {
panic!("Expected a Vec of length {} but it was {}", D, v.len())
}),
)
}
}
impl<const P: usize, const D: usize> Display for Polynomial<Monomial, PrimeField<P>, D> {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
let mut first = true;
for (i, c) in self.coefficients.iter().enumerate() {
if !first {
write!(f, " + ")?;
}
first = false;
if i == 0 {
write!(f, "{}", c)?;
} else {
write!(f, "{}x^{}", c, i)?;
}
}
Ok(())
}
}
impl<F: FiniteField, const D: usize> Polynomial<Lagrange<F>, F, D> {
/// Create a new polynomial in [`Lagrange`] basis by supplying a number of coefficients.
/// Assumes that a field has a root of unity for the amount of terms given in the coefficients.
///
/// ## Arguments:
/// - `coefficients`: A vector of field elements representing the coefficients of the polynomial
/// in the [`Lagrange`] basis.
///
/// ## Returns:
/// - A new polynomial in the [`Lagrange`] basis with the given coefficients.
///
/// ## Panics
/// - This function will panic if the field does not have roots of unity for the length of the
/// polynomial.
pub fn new(coefficients: [F; D]) -> Self {
// Check that the polynomial degree divides the field order so that there are roots of unity.
let n = coefficients.len();
assert_eq!((F::ORDER - 1) % n, 0);
let primitive_root = F::primitive_root_of_unity(n);
let nodes: Vec<F> = (0..n).map(|i| primitive_root.pow(i)).collect();
Self { coefficients, basis: Lagrange { nodes } }
}
/// Evaluate the polynomial in the [`Lagrange`] basis at a given field element `x`.
/// This is done by evaluating the Lagrange polynomial at `x` using the nodes of the Lagrange
/// basis. The Lagrange polynomial is given by:
/// $$
/// L(x) = \sum_{j=0}^{n-1} \left( \frac{w_j}{x - x_j} \right) y_j
/// $$
/// where $w_j = \prod_{m \neq j} (x_j - x_m)^{-1}$ and $y_j$ are the coefficients of the
/// polynomial. The evaluation of the polynomial at `x` is then given by $L(x)$.
///
/// ## Arguments:
/// - `x`: The field element as [`FiniteField`] at which to evaluate the polynomial.
///
/// ## Returns:
/// - The result of evaluating the polynomial at `x` which is an element of the associated
/// [`FiniteField`].
pub fn evaluate(&self, x: F) -> F {
let n = self.coefficients.len();
// w_j = \Pi_{m \neq j} (x_j - x_m)^{-1}
let mut weights = vec![F::ONE; n];
weights.iter_mut().enumerate().for_each(|(idx, w)| {
for m in 0..n {
if idx != m {
*w *= F::ONE.div(self.basis.nodes[idx] - self.basis.nodes[m]);
}
}
});
// l(x) = \Pi_{i=0}^{n-1} (x - x_i)
let l = move |x: F| {
let mut val = F::ONE;
for i in 0..n {
val *= x - self.basis.nodes[i];
}
val
};
// L(x) = l(x) * \Sigma_{j=0}^{n-1} (w_j / (x - x_j)) y_j
l(x)
* weights.iter().zip(self.coefficients.iter()).zip(self.basis.nodes.iter()).fold(
F::ZERO,
|acc, ((w, &c), &n)| {
if n == x {
return c;
}
acc + c * *w / (x - n)
},
)
}
}
impl<const P: usize, const D: usize> Display
for Polynomial<Lagrange<PrimeField<P>>, PrimeField<P>, D>
{
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
let d = self.num_terms() - 1;
for (idx, (coeff, node)) in self.coefficients.iter().zip(self.basis.nodes.iter()).enumerate() {
if idx == d {
write!(f, "{}*l_{}(x)", coeff, node)?;
break;
}
write!(f, "{}*l_{}(x) + ", coeff, node)?;
}
Ok(())
}
}
impl<const N: usize, F: FiniteField, const D: usize> From<[F; N]> for Polynomial<Monomial, F, D> {
/// Convert from an array of field elements into a polynomial in the [`Monomial`] basis.
///
/// **Note**: if new polynomial degree > old, then copy till old else pad new polynomial with zero
fn from(coeffs: [F; N]) -> Self {
let mut new_coeffs = [F::ZERO; D];
let copy_size = if N < D { N } else { D };
new_coeffs[..copy_size].copy_from_slice(&coeffs[..copy_size]);
Self { coefficients: new_coeffs, basis: Monomial }
}
}
impl<const N: usize, const P: usize, const D: usize> From<GaloisField<N, P>>
for Polynomial<Monomial, PrimeField<P>, D>
{
/// Convert from an [`GaloisField`] field element into a polynomial in the [`Monomial`] basis.
fn from(ext: GaloisField<N, P>) -> Self { Self::from(ext.coeffs) }
}