There are multiple ways to load to model in TorchServe. The below flowchart tries to simplify the process and shows the various options
flowchart TD
id1[[How to load a model in TorchServe?]] --> id13{Handler has an initialize method?}
id13{Handler has an initialize method?} -- No, using BaseHandler initialize method --> id2{Model Type?} --> id3(PyTorch Eager) & id4(TorchScripted) & id5(ONNX) & id6(TensorRT)
id3(PyTorch Eager) --Required--> id7(Model File & weights file)
id4(TorchScripted) --Required--> id8(TorchScripted weights ending in '.pt')
id5(ONNX) --Required --> id9(Weights ending in '.onnx')
id6(TensorRT) --Required--> id10(TensorRT weights ending in '.pt')
id7(Model File & weights file) & id8(TorchScripted weights ending in '.pt') & id9(Weights ending in '.onnx') & id10(TensorRT weights ending in '.pt') --> id11(Created a model archive .mar file)
id13{Handler has an initialize method?} --Yes--> id21{"Does the initialize method inherit from BaseHandler?"}
id21{"Does the initialize method inherit from BaseHandler?"} -- Yes --> id2{Model Type?}
id21{Does the initialize method inherit from BaseHandler?} -- No --> id20("Create a custom method to
load the model in the handler") --> id11(Create a model archive .mar file)
id15["Create model archive by passing the
weights with --serialized-file option"]
id16["Specify path to the weights in model-config.yaml
Create model archive by specifying yaml file with --config-file "]
id11(Work on creating a model archive .mar file) --> id14{"Is your model large?"} --No--> id22{Do you want a self-contained model artifact} --Yes--> id15
id14{"Is your model large?"} --Yes--> id16
id22{Do you want a self-contained model artifact} --No, I want model archieving & loading to be faster--> id16
id15 & id16 --> id17["Start TorchServe.
Two ways of starting torchserve
- Pass the mar file with --models
- Start TorchServe and call the register API with mar file"]