-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdrawBBxs.py
195 lines (160 loc) · 6.87 KB
/
drawBBxs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from utils import *
from darknet import Darknet
import cv2
import tqdm
'''
Author: Kieu My
This file draws bounding box on the folder of images.
Input:
(1): Directory of images (image and annotation the same name, ex: I0001.png, I0001.txt)
(2): cfgfile is configuration file of the model
(3): weight / model file for the cfgfile model (if you saved weight or saved model)
Output: A folder with the same name of input folder name and '_predicted' with all images are drawn bounding boxes
(a): bounding boxes with green color is False Negative (which is groud truth that detector can not detect)
(b): bbxs with red color is False Positive (which detector detected but not in the ground-truth.
(c): bbxs with blue color is True Positive which is matched between detection and ground-truth
Noted that, TP, FP, FN here only for reference for drawing bboxes, not using for evaluation the detector.
Recommend reader should check careful about this calculation if you use for evaluation.
'''
namesfile=None
nms_thresh = 0.4
conf_thresh = 0.5
iou_thresh = 0.5
blue = (255, 0, 0)
green = (0, 255, 0)
red = (0, 0, 255)
def IoU_boxes(boxes1, boxes2, x1y1x2y2=True):
if x1y1x2y2:
x1_min = torch.min(boxes1[0], boxes2[0])
x2_max = torch.max(boxes1[2], boxes2[2])
y1_min = torch.min(boxes1[1], boxes2[1])
y2_max = torch.max(boxes1[3], boxes2[3])
w1, h1 = boxes1[2] - boxes1[0], boxes1[3] - boxes1[1]
w2, h2 = boxes2[2] - boxes2[0], boxes2[3] - boxes2[1]
else:
w1, h1 = boxes1[2], boxes1[3]
w2, h2 = boxes2[2], boxes2[3]
x1_min = torch.min(boxes1[0]-torch.tensor(w1)/2.0, boxes2[0]-torch.tensor(w2)/2.0)
x2_max = torch.max(boxes1[0]+torch.tensor(w1)/2.0, boxes2[0]+torch.tensor(w2)/2.0)
y1_min = torch.min(boxes1[1]-torch.tensor(h1)/2.0, boxes2[1]-torch.tensor(h2)/2.0)
y2_max = torch.max(boxes1[1]+torch.tensor(h1)/2.0, boxes2[1]+torch.tensor(h2)/2.0)
w_union = x2_max - x1_min
h_union = y2_max - y1_min
w_cross = w1 + w2 - w_union
h_cross = h1 + h2 - h_union
carea = 0
if w_cross <= 0 or h_cross <= 0:
return 0.0
area1 = w1 * h1
area2 = w2 * h2
carea = w_cross * h_cross
uarea = area1 + area2 - carea
return float(carea / uarea)
def detect_model(cfgfile, modelfile,dir):
m = Darknet(cfgfile)
check_model = modelfile.split('.')[-1]
if check_model == 'model':
checkpoint = torch.load(modelfile)
# print('Load model from ', modelfile)
m.load_state_dict(checkpoint['state_dict'])
else:
m.load_weights(modelfile)
# m.print_network()
use_cuda = True
if use_cuda:
m.cuda()
m.eval()
class_names = load_class_names(namesfile)
newdir = dir.replace('/','_') + 'predicted'
if not os.path.exists(newdir):
os.mkdir(newdir)
start = time.time()
TPs,FPs,FNs,GTs = 0, 0, 0, 0
for count, imgfile in enumerate(tqdm.tqdm(os.listdir(dir))):
img_id,ext = os.path.basename(imgfile).split('.')
if ext == 'txt':
continue
imgfile = os.path.join(dir,imgfile)
img = cv2.imread(imgfile)
sized = cv2.resize(img, (m.width, m.height))
sized = cv2.cvtColor(sized, cv2.COLOR_BGR2RGB)
lablepath = imgfile.replace('.jpg', '.txt').replace('.png', '.txt')
if os.path.getsize(lablepath):
truths = np.loadtxt(lablepath)
truths = truths.reshape(truths.size // 5, 5) # to avoid single truth problem
else:
truths = np.array([])
new_truths = []
for i in range(truths.shape[0]):
new_truths.append([truths[i][1], truths[i][2], truths[i][3], truths[i][4]])
new_truths = np.array(new_truths)
GTs += len(new_truths)
detect_boxes = do_detect(m, sized, conf_thresh, nms_thresh, use_cuda)
# print('Ground-truth bbxs = ', len(new_truths))
# print('Detect bbxs = ', len(detect_boxes))
groundtruth = []
FN,TP = 0, 0
for box_i in new_truths:
check_TP = False
for box_j in detect_boxes:
if IoU_boxes(box_i, box_j, x1y1x2y2=False) >= iou_thresh:
TP += 1
check_TP = True
break
if not check_TP:
# print(imgfile, ' ', IoU_boxes(box_i, box_j, x1y1x2y2=False))
groundtruth.append(box_i)
FN += 1
false_positive = []
FP, TP = 0, 0
for box_i in detect_boxes:
# print(box)
check_TP = False
for box_j in new_truths:
if IoU_boxes(box_i, box_j, x1y1x2y2=False) >= iou_thresh:
TP += 1
check_TP = True
break
if not check_TP:
# print(imgfile,' ',IoU_boxes(box_i, box_j, x1y1x2y2=False))
false_positive.append(box_i)
FP += 1
# print('True Positive = %d \t False Positive = %d \t False Negative = %d \n', TP,FP,FN)
for box_i in groundtruth:
# print(box)
for box_j in false_positive:
if IoU_boxes(box_i, box_j, x1y1x2y2=False) >= iou_thresh:
FN -= 1
groundtruth.remove(box_i)
break
TPs += TP
FPs += FP
FNs += FN
plot_boxes_cv2(img, detect_boxes, class_names=class_names,color=blue)
plot_boxes_cv2(img, false_positive, class_names=class_names,color=red)
plot_boxes_cv2(img, groundtruth, class_names=class_names, color=green)
savename = (imgfile.split('/')[-1]).split('.')[0]
savename = savename + '_predicted.png'
savename = os.path.join(newdir,savename)
cv2.imwrite(savename, img)
print('Ground-truth: %d \t True Positive: %d \t False Positive: %d \t False Negative: %d' % (GTs,TPs,FPs,FNs))
# {: < 10s}\t{: .3f}
print('Precision = %.2f' % (TPs/(TPs+FNs))) ### detection / ground truth
print('Precision theory: %.2f ' %(TPs / GTs))
print('Recall = %.2f ' %(TPs/(TPs+FPs))) ### detection / detection + wrong detection
print('Missrate: %.2f ' %(FNs/(TPs+FNs))) ### miss detection / ground-truth = (1-Precision)
print('Missrate theory = %.2f ' % (FNs / GTs))
print('FPPI: %.2f' % (FPs/len(dir)))
finish = time.time() - start
print('Predicted in %d minutes %d seconds with average %f seconds / image.' % (finish//60, finish%60, finish/len(dir)))
if __name__ == '__main__':
globals()["namesfile"] = 'data/kaist_person.names'
cfgfile = 'cfg/yolov3_kaist_tc_det.cfg'
modelfile = 'weights/yolov3_kaist_tc_det_thermal.model'
if len(sys.argv) == 2:
folder = sys.argv[1]
if os.path.isdir(folder):
detect_model(cfgfile, modelfile,folder)
else:
print('Usage: ')
print(' python detect_folder.py foldername')