-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathlamr_ap.py
203 lines (167 loc) · 9.97 KB
/
lamr_ap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import numpy as np
import brambox.boxes as bbb
import matplotlib.pyplot as plt
import scipy.interpolate
def meanAP_LogAverageMissRate():
identify = lambda f: os.path.splitext("/".join(f.rsplit('/')[-3:]))[0]
# parse ground truth from all videos in all sets
ground_truth = bbb.parse('anno_dollar', 'annotations/*/*/*.txt', identify, occlusion_tag_map=[0.0, 0.25, 0.75])
# print(len(ground_truth))
# print(identify)
# filter ground truth by marking boxes with the ignore flag
bbb.filter_ignore(ground_truth, [bbb.ClassLabelFilter(['person']), # only consider 'person' objects
bbb.HeightRangeFilter((50, float('Inf'))), # select instances of 50 pixels or higher
bbb.OcclusionAreaFilter(
(0.65, float('Inf')))]) # only include objects that are 65% visible or more
for _, annos in ground_truth.items():
for i in range(len(annos)):
annos[i].class_label = 'person'
# modify ground truth aspect ratio
bbb.modify(ground_truth, [bbb.AspectRatioModifier(.41, modify_ignores=False)]);
# split and copy to day and night ground truth
ground_truth_day = {key: values for key, values in ground_truth.items() if
key.startswith('set06') or key.startswith('set07') or key.startswith('set08')}
ground_truth_night = {key: values for key, values in ground_truth.items() if
key.startswith('set09') or key.startswith('set10') or key.startswith('set11')}
def parse_detections(format, input, identify_fun=identify, clslabelmap=['person']):
dets = bbb.parse(format, input, identify_fun, class_label_map=clslabelmap)
bbb.modify(dets, [bbb.AspectRatioModifier(.41)])
bbb.filter_discard(dets, [bbb.HeightRangeFilter((50 / 1.25, float('Inf')))])
return dets
detections_all = {}
# detections_all['current'] = parse_detections('det_coco', 'results/conditioning/condition86e_mAP.json')
# path_source = os.getcwd()
# path_source = os.path.join(path_source, 'detection_results.json')
path_source = 'results/detection_results.json'
# print(path_source)
detections_all['current'] = parse_detections('det_coco', path_source)
# detections_all['Our: TD(V,V)'] = parse_detections('det_coco','results/adaptation/1_Visible_15e.json')
# detections_all['Our: TD(T,T)'] = parse_detections('det_coco','results/adaptation/1_Thermal_15e.json')
# detections_all['Our: TD(VT,T)'] = parse_detections('det_coco','results/adaptation/1_15e_toFT_34elike30e.json')
# detections_all['Our: BU(VAT,T)'] = parse_detections('det_coco','results/adaptation/1_Adap30layers_From15_000014_best.json')
# detections_all['Our: BU(VLT,T)'] = parse_detections('det_coco','results/adaptation/1_Layerwise5layers_from15e_000020_best.json')
# detections_all['MSDS'] = parse_detections('det_coco','results/SOTA/MSDS.json')
# detections_all['MSDS_sanitized'] = parse_detections('det_coco','results/SOTA/MSDS_sanitized.json')
# split and copy to day and night detections
detections_day = {}
detections_night = {}
for label, detections in detections_all.items():
detections_day[label] = {key: values for key, values in detections.items() if
key.startswith('set06') or key.startswith('set07') or key.startswith('set08')}
detections_night[label] = {key: values for key, values in detections.items() if
key.startswith('set09') or key.startswith('set10') or key.startswith('set11')}
detectors_to_plot = ['current']
# detectors_to_plot = ['Our: BU(VLT,T)', 'condition 86e map','Our: TD(V,V)','Our: TD(T,T)','Our: TD(VT,T)','Our: BU(VAT,T)','MSDS']
def lamr(miss_rate, fppi, num_of_samples=9):
""" Compute the log average miss-rate from a given MR-FPPI curve.
The log average miss-rate is defined as the average of a number of evenly spaced log miss-rate samples
on the :math:`{log}(FPPI)` axis within the range :math:`[10^{-2}, 10^{0}]`
Args:
miss_rate (list): miss-rate values
fppi (list): FPPI values
num_of_samples (int, optional): Number of samples to take from the curve to measure the average precision; Default **9**
Returns:
Number: log average miss-rate
"""
samples = np.logspace(-2., 0., num_of_samples)
m = np.array(miss_rate)
f = np.array(fppi)
interpolated = scipy.interpolate.interp1d(f, m, fill_value=(1., 0.), bounds_error=False)(samples)
# print('interpolated: ')
# print(interpolated)
for i, value in enumerate(interpolated):
if value <= 0:
interpolated[i] = interpolated[i - 1]
log_interpolated = np.log(interpolated)
avg = sum(log_interpolated) / len(log_interpolated)
return np.exp(avg)
def generate_curves(ground_truth, results, pr=True, title="", saveplot="", overlap=0.5, only_plot=None,
linewidth=2, figsize=(8, 6), legendloc=3):
curves = []
scores = {}
# colors = plt.rcParams['axes.prop_cycle'].by_key()['color']
# colors = ['#1919ff', '#ff7f0e', '#ff1919', '#ff19ff', '#19ff19', '#19ff19']
colors = ['#1919ff', '#ff7f0e', '#ff1919', '#ff19ff', '#19ff19']
i = 0
linestyles = ['-', '--', '-.', ':']
for label, detections in results.items():
### because YOLO has stuck in small object, so the paper of this code on CVPRW prefer chose overlap 0.4, but here we choose 0.5 for all.
# if label=='YOLO_TLV' or label=='Ours: TD(V,V)' or label=='Ours: TD(T,T)' or label=='Ours: TD(VT,T)' or label=='Ours: BU(VAT,T)' or label == 'Ours: BU(VLT,T)':
# print(label)
# overlap = 0.4
if pr:
ys, xs = bbb.pr(detections, ground_truth, overlap)
score = round(bbb.ap(ys, xs) * 100, 2)
else:
ys, xs = bbb.mr_fppi(detections, ground_truth, overlap)
score = round(lamr(ys, xs) * 100, 2)
color = colors[i % len(colors)]
linestyle = linestyles[i % len(linestyles)]
if only_plot is None or label in only_plot:
i += 1
curves += [(label, ys, xs, score, color, linestyle)]
scores[label] = score
# if pr:
# # sort from highest ap to lowest
# sorted_curves = sorted(curves, key=lambda curve: curve[3], reverse=True)
# else:
# # sort from lowest to highest
# sorted_curves = sorted(curves, key=lambda curve: curve[3])
# fig, ax = plt.subplots(figsize=figsize)
# for label, ys, xs, score, color, linestyle in sorted_curves:
# # skip curves not mensioned in only_plot
# if only_plot is not None and label not in only_plot:
# continue
# if pr:
# plt.plot(xs, ys, color=color, linestyle=linestyle, label=f"{score}% {label}", linewidth=linewidth)
# else:
# plt.loglog(xs, ys, color=color, linestyle=linestyle, label=f"{score}% {label}", linewidth=linewidth)
#
# plt.legend(loc=legendloc)
#
# plt.gcf().suptitle(title, weight='bold')
# if pr:
# plt.grid(which='major')
# plt.gca().set_ylabel('Precision')
# plt.gca().set_xlabel('Recall')
# plt.gca().set_xlim([0, 1])
# plt.gca().set_ylim([0, 1])
# else:
# # modify the y axis a bit
# from matplotlib.ticker import FormatStrFormatter, LogLocator
# subs = [1.0, 2.0, 3.0, 4.0, 5.0, 6.4, 8.0] # ticks to show per decade
# ax.yaxis.set_minor_locator(LogLocator(subs=subs))
# ax.yaxis.set_minor_formatter(FormatStrFormatter("%.2f"))
# ax.yaxis.grid(which='minor')
# ax.xaxis.grid(which='major')
# plt.setp(ax.get_ymajorticklabels(), visible=False) # disable major labels
#
# plt.gca().set_ylabel('Miss rate')
# plt.gca().set_xlabel('FPPI')
# plt.gca().set_ylim([0.1, 1])
#
# plt.gca().set_xlim([0, 10])
# if saveplot:
# plt.savefig(saveplot, format='eps', dpi=1200)
return scores
scores_all_ap = generate_curves(ground_truth, detections_all, True, title="Day and night time",
saveplot="all_pr.eps", only_plot=detectors_to_plot)
scores_all_lamr = generate_curves(ground_truth, detections_all, False, title="Day and night time",
saveplot="all_mr_fppi.eps", only_plot=detectors_to_plot)
scores_day_ap = generate_curves(ground_truth_day, detections_day, True, title="Day time",
saveplot="day_pr.eps", only_plot=detectors_to_plot, figsize=(8,6))
scores_day_lamr = generate_curves(ground_truth_day, detections_day, False, title="Day time",
saveplot="day_mr_fppi.eps", only_plot=detectors_to_plot, figsize=(8,6))
scores_night_ap = generate_curves(ground_truth_night, detections_night, True, title="Night time",
saveplot="night_pr.eps", only_plot=detectors_to_plot, figsize=(8,6))
scores_night_lamr = generate_curves(ground_truth_night, detections_night, False, title="Night time",
saveplot="night_mr_fppi.eps", only_plot=detectors_to_plot, figsize=(8,6), legendloc='lower left')
# plt.show()
# print(scores_all_ap['current'])
# print(scores_day_ap['current'])
# print(scores_night_ap['current'])
# print(scores_all_lamr['current'])
# print(scores_day_lamr['current'])
# print(scores_night_lamr['current'])
return scores_all_ap['current'],scores_day_ap['current'],scores_night_ap['current'],scores_all_lamr['current'],scores_day_lamr['current'],scores_night_lamr['current']