diff --git a/hability_taxon_data_prep_report.Rmd b/hability_taxon_data_prep_report.Rmd index bbf28e3..9d89039 100644 --- a/hability_taxon_data_prep_report.Rmd +++ b/hability_taxon_data_prep_report.Rmd @@ -1,5 +1,5 @@ --- -title: "Data check report 1.1" +title: "Data check report 2.0" output: pdf_document --- @@ -23,8 +23,12 @@ data <- na.omit(data) ``` We've lost 18 participants -# Involuntariness data: separate items +# Checking the data + +## Involuntariness data: separate items + Create a subset with involuntariness ratings: + ```{r} invol <- select(data, INV.1:INV.12) ``` @@ -34,6 +38,8 @@ Headers for the resulting table: colnames(invol) ``` +### P = 0.15 + Classify the data with .15 base rate: ```{r} invol15 <- ClassifyCases(invol, p = 0.15) @@ -44,7 +50,19 @@ Check the data: CheckData(invol15) ``` -# Involuntariness data: separate items ("bad" items removed) +### P = 0.10 + +Classify the data with .10 base rate: +```{r} +invol10 <- ClassifyCases(invol, p = 0.10) +``` + +Check the data: +```{r error = TRUE} +CheckData(invol10) +``` + +## Involuntariness data: separate items ("bad" items removed) Create a subset with involuntariness ratings without "bad" items: ```{r} @@ -55,6 +73,8 @@ Headers for the resulting table: colnames(invol_purified) ``` +### P = 0.15 + Classify the data with .15 base rate: ```{r} invol_pur15 <- ClassifyCases(invol_purified, p = 0.15) @@ -65,7 +85,19 @@ Check the data: CheckData(invol_pur15) ``` -# Involuntariness data: subscales +### P = 0.10 + +Classify the data with .10 base rate: +```{r} +invol_pur10 <- ClassifyCases(invol_purified, p = 0.10) +``` + +Check the data: +```{r error = TRUE} +CheckData(invol_pur10) +``` + +## Involuntariness data: subscales Create subscales ```{r} @@ -81,6 +113,8 @@ select(invol, ideomotor, challenge, cogper, amnesia) %>% colnames() ``` +### P = 0.15 + Classify the data with .15 base rate: ```{r} invol_subscales15 <- select(invol, ideomotor, challenge, cogper, amnesia) @@ -92,7 +126,21 @@ Check the data: CheckData(invol_subscales15) ``` -# Involuntariness data: subscales ("bad" items removed) +### P = 0.10 + +Classify the data with .10 base rate: +```{r} +invol_subscales10 <- select(invol, ideomotor, challenge, cogper, amnesia) +invol_subscales10 <- ClassifyCases(invol_subscales10, p = 0.10) +``` + +Check the data: +```{r error = TRUE} +CheckData(invol_subscales10) +``` + + +## Involuntariness data: subscales ("bad" items removed) Create subscales ```{r} @@ -107,6 +155,8 @@ select(invol_purified, ideomotor, challenge, cogper) %>% colnames() ``` +### P = 0.15 + Classify the data with .15 base rate: ```{r} invol_subscales_pur15 <- select(invol_purified, ideomotor, challenge, cogper) @@ -118,7 +168,21 @@ Check the data: CheckData(invol_subscales_pur15) ``` -# Hypnotic suggestibility data: separate items +### P = 0.10 + +Classify the data with .10 base rate: +```{r} +invol_subscales_pur10 <- select(invol_purified, ideomotor, challenge, cogper) +invol_subscales_pur10 <- ClassifyCases(invol_subscales_pur10, p = 0.10) +``` + +Check the data: +```{r error = TRUE} +CheckData(invol_subscales_pur10) +``` + + +## Hypnotic suggestibility data: separate items Create a H. suggestibility subset ```{r} @@ -130,6 +194,8 @@ Headers for the resulting table: colnames(hab) ``` +### P = 0.15 + Classify the data with .15 base rate: ```{r} hab15 <- ClassifyCases(hab, p = 0.15) @@ -140,8 +206,19 @@ Check the data: CheckData(hab15) ``` +### P = 0.10 -# Hypnotic suggestibility data: separate items ("bad" items removed) +Classify the data with .10 base rate: +```{r} +hab10 <- ClassifyCases(hab, p = 0.10) +``` + +Check the data: +```{r error = TRUE} +CheckData(hab10) +``` + +## Hypnotic suggestibility data: separate items ("bad" items removed) Create a H. suggestibility subset without "bad" items ```{r} @@ -153,6 +230,8 @@ Headers for the resulting table: colnames(hab_purified) ``` +### P = 0.15 + Classify the data with .15 base rate: ```{r} hab_pur15 <- ClassifyCases(hab_purified, p = 0.15) @@ -163,7 +242,19 @@ Check the data: CheckData(hab_pur15) ``` -# Hypnotic suggestibility data: subscales +### P = 0.10 + +Classify the data with .10 base rate: +```{r} +hab_pur10 <- ClassifyCases(hab_purified, p = 0.10) +``` + +Check the data: +```{r error = TRUE} +CheckData(hab_pur10) +``` + +## Hypnotic suggestibility data: subscales Create subscales ```{r} @@ -179,6 +270,8 @@ select(hab, ideomotor, challenge, cogper, amnesia) %>% colnames() ``` +### P = 0.15 + Classify the data with .15 base rate: ```{r} hab_subsc15 <- select(hab, ideomotor, challenge, cogper, amnesia) @@ -190,7 +283,20 @@ Check the data: CheckData(hab_subsc15) ``` -# Hypnotic suggestibility data: subscales ("bad" items removed) +### P = 0.10 + +Classify the data with .10 base rate: +```{r} +hab_subsc10 <- select(hab, ideomotor, challenge, cogper, amnesia) +hab_subsc10 <- ClassifyCases(hab_subsc10, p = 0.10) +``` + +Check the data: +```{r error = TRUE} +CheckData(hab_subsc10) +``` + +## Hypnotic suggestibility data: subscales ("bad" items removed) Create subscales ```{r} @@ -205,6 +311,9 @@ select(hab, ideomotor, challenge, cogper) %>% colnames() ``` +### P = 0.15 + +Classify the data with .15 base rate: ```{r} hab_subsc_pur15 <- select(hab, ideomotor, challenge, cogper) hab_subsc_pur15 <- ClassifyCases(hab_subsc_pur15, p = 0.15) @@ -213,4 +322,156 @@ hab_subsc_pur15 <- ClassifyCases(hab_subsc_pur15, p = 0.15) Check the data: ```{r error = TRUE} CheckData(hab_subsc_pur15) +``` + +### P = 0.10 + +Classify the data with .10 base rate: +```{r} +hab_subsc_pur10 <- select(hab, ideomotor, challenge, cogper) +hab_subsc_pur10 <- ClassifyCases(hab_subsc_pur10, p = 0.10) +``` + +Check the data: +```{r error = TRUE} +CheckData(hab_subsc_pur10) +``` + +# Performing the analysis + +## Involuntariness data: separate items + +### P = 0.15 + +![Low mean!](warning.png){width=2%} Mean d = 1.09 + +```{r error = TRUE} +RunTaxometrics(invol15) +``` + +### P = 0.10 + +Mean d = ??? + +```{r error = TRUE} +RunTaxometrics(invol10) +``` + +## Involuntariness data: separate items ("bad" items removed) + +### P = 0.15 + +![Low mean!](warning.png){width=2%} Mean d = 1.18 + +```{r error = TRUE} +RunTaxometrics(invol_pur15) +``` + +### P = 0.10 + +Mean d = ??? + +```{r error = TRUE} +RunTaxometrics(invol_pur10) +``` + +## Involuntariness data: subscales + +### P = 0.15 + +```{r error = TRUE} +RunTaxometrics(invol_subscales15) +``` + +### P = 0.10 + +Mean d = ??? + +```{r error = TRUE} +RunTaxometrics(invol_subscales10) +``` + +## Involuntariness data: subscales ("bad" items removed) + +### P = 0.15 + +```{r error = TRUE} +RunTaxometrics(invol_subscales_pur15) +``` + +### P = 0.10 + +Mean d = ??? + +```{r error = TRUE} +RunTaxometrics(invol_subscales_pur10) +``` + + +## Hypnotic suggestibility data: separate items + +### P = 0.15 + +![Low mean!](warning.png){width=2%} Mean d = 0.90 + +```{r error = TRUE} +RunTaxometrics(hab15) +``` + +### P = 0.10 + +Mean d = ??? + +```{r error = TRUE} +RunTaxometrics(hab10) +``` + +## Hypnotic suggestibility data: separate items ("bad" items removed) + +### P = 0.15 + +![Low mean!](warning.png){width=2%} Mean d = 1.03 + +```{r error = TRUE} +RunTaxometrics(hab15) +``` + +### P = 0.10 + +Mean d = ??? + +```{r error = TRUE} +RunTaxometrics(hab10) +``` + +## Hypnotic suggestibility data: subscales + +### P = 0.15 + +```{r error = TRUE} +RunTaxometrics(hab_subsc15) +``` + +### P = 0.10 + +Mean d = ??? + +```{r error = TRUE} +RunTaxometrics(hab_subsc10) +``` + +## Hypnotic suggestibility data: subscales ("bad" items removed) + +### P = 0.15 + +```{r error = TRUE} +RunTaxometrics(hab_subsc_pur15) +``` + +### P = 0.10 + +Mean d = ??? + +```{r error = TRUE} +RunTaxometrics(hab_subsc_pur10) ``` \ No newline at end of file diff --git a/warning.png b/warning.png new file mode 100644 index 0000000..0387adc Binary files /dev/null and b/warning.png differ