-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathA-equations.tex
130 lines (103 loc) · 4.06 KB
/
A-equations.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
\documentclass[revision-guide.tex]{subfiles}
%% Current Author: LT / PS
\begin{document}
\chapter{Equations}
\setlength{\LTleft}{0pt}
\section{Equations to be learnt}
\subsection{Equations you need to remember for pre-U}
\renewcommand*{\arraystretch}{2}
\begin{longtable}{ll}
velocity & $v= \frac{\Delta x}{\Delta t}$ \\
acceleration & $a= \frac{\Delta v}{\Delta t}$ \\
resultant force & $F=ma$ \\
momentum & $p=mv$ \\
resultant force & $F=\frac{\Delta p}{\Delta t}$ \\
impulse & Impulse = change in momentum \\
density & Density = mass/volume \\
pressure & Pressure = force/area \\
pressure in a liquid & $P = \rho gh$ \\
weight & $W = mg$ \\
power & $P = Fv$ \\
GPE & $\Delta E = mg \Delta h$ \\
change in gravitational potential & $=g \Delta h $ \\
energy in a spring & $E = \frac{1}{2} Fx$ \\
efficiency & \% efficiency =
$\frac{\text{useful energy or power}}{\text{total energy or power in}}
\times 100$ \\
current & $I = \frac{\Delta Q}{\Delta t}$ \\
potential difference & $V = \frac{W}{Q}$ \\
resistance & $R = \frac{V}{I}$ \\
electrical power & $P = VI$ \\
electrical work done & $W = VIt$\\
resistance & $R = \frac{\rho l}{A}$ \\
resistors in series & $R_T = R_1 + R_2 + \ldots{}$\\
resistors in parallel &
\(\frac{1}{R_{T}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \ldots\)\\
frequency & $f = 1/T$\\
wave speed & $v = f\lambda$\\
Malus' law & $\text{Intensity} \propto \cos^2{\theta}$\\
photoelectric equation & \(hf = \phi + \frac{1}{2}mv_{\max}^{2}\)\\
angular velocity & $v = r\omega$ \\
period & $T = 2\pi /\omega$\\
circular motion & $F = mv^2/r$\\
electric field strength & $E = F/Q$\\
capacitance & $C = Q/V$\\
field strength/potential & $E = -\frac{\text{d}V}{\text{d}{X}}$ \\
the ideal gas law & $pV = nRT$\\
Boltzmann factor & $e^{- \frac{E}{kT}}$ \\
activity & $A = -\frac{\ud N}{\ud t}$\\
luminous flux &\(F = \frac{L}{4\pi d^{2}}\)\\
Hubble's law &\(v \approx H_{0}d\)\\
Hubble time & $t = 1/H_{0}$\\
\end{longtable}
\subsection{Equations you need to remember for paper 3, part B, but not for any other part of the examination.}
\renewcommand*{\arraystretch}{2}
\begin{longtable}{ll}
moment of inertia & \(I = \Sigma mr^{2}\)\\
shm & \(\frac{d^{2}x}{dt^{2}} = - \omega^{2}x\)\\
& $x = A\cos{\omega t}$\\
\end{longtable}
\newpage
\section{Derivations}
\subsection{Equations you need to derive and remember for pre-U}
\renewcommand*{\arraystretch}{2}
\begin{longtable}{ll}
energy in a spring & $E = \frac{1}{2}kx^2$ \\
kinetic energy & $E = \frac{1}{2}mv^{2}$\\
emf & $E = I(R+r)$\\
emf & $E = V + Ir$\\
electrical power & $P = I^{2}R$\\
critical angle & $\sin{c} = 1/n$\\
centripetal acceleration & $a = v^{2}/r$\\
centripetal acceleration & $a = r\omega^2$\\
uniform electric field & $Fd = QV$\\
uniform electric field & $E = V/d$\\
energy in a capacitor & $W = \frac{1}{2}CV^2$\\
energy in a capacitor & $W = \frac{1}{2}\frac{Q^2}{C}$\\
electric field due to a point charge &
\(E = \ \frac{Q}{{4\pi\varepsilon_{0}r}^{2}}\)\\
Kepler's third law & $r^{3} \propto T^{2}$\\
gravitational field strength & \(g = \frac{\text{Gm}}{r^{2}}\)\\
radius of curvature of particle in B-field &
\(r = \frac{\text{mv}}{\text{BQ}}\) \\
Hall effect & $V = Bvd$\\
kinetic theory of gases & $pV = \frac{1}{3}Nm\langle c^2 \rangle$\\
activity of a source & $A = \lambda N$\\
activity at time t & $A = A_0\text{e}^{-\lambda t}$\\
half-life & \(t_{\frac{1}{2}} = \frac{ln2}{\lambda}\)\\
\end{longtable}
\subsection{Equations you need to derive for paper 3, part B, but not for any other part of the examination.}
\renewcommand*{\arraystretch}{2}
\begin{longtable}{ll}
moment of inertia of a ring & $I = mr^2$\\
moment of inertia of a disc & $I = mr^{2}/2$\\
moment of inertia of a rod about one end & $I = ml^2/3$\\
moment of inertia of a rod about its centre & $I = ml^{2}/12$\\
velocity in shm & $v = -A\omega \sin{\omega t}$\\
acceleration in shm & $a = -A\omega^{2}\cos{\omega t}$\\
total energy in shm & $E = \frac{1}{2}mA^2\omega^2$\\
electric potential (from electric force) &
\(W = \frac{Q_{1}Q_{2}}{4\pi\varepsilon_{o}r}\)\\
hydrogen atom energy levels &\(E_{n} = \frac{- 13.6eV}{n^{2}}\)\\
\end{longtable}
\end{document}