-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathe023-kmer.py
executable file
·95 lines (71 loc) · 3.09 KB
/
e023-kmer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#!/usr/bin/env python
# coding=utf-8
# k-Mer Composition
# =================
#
# For a fixed positive integer k, order all possible k-mers taken from an
# underlying alphabet lexicographically.
#
# Then the k-mer composition of a string s can be represented by an array A for
# which A[m] denotes the number of times that the mth k-mer (with respect to the
# lexicographic order) appears in s.
#
# Given: A DNA string s in FASTA format (having length at most 100 kbp).
#
# Return: The 4-mer composition of s.
#
# Sample Dataset
# --------------
# >Rosalind_6431
# CTTCGAAAGTTTGGGCCGAGTCTTACAGTCGGTCTTGAAGCAAAGTAACGAACTCCACGG
# CCCTGACTACCGAACCAGTTGTGAGTACTCAACTGGGTGAGAGTGCAGTCCCTATTGAGT
# TTCCGAGACTCACCGGGATTTTCGATCCAGCCTCAGTCCAGTCTTGTGGCCAACTCACCA
# AATGACGTTGGAATATCCCTGTCTAGCTCACGCAGTACTTAGTAAGAGGTCGCTGCAGCG
# GGGCAAGGAGATCGGAAAATGTGCTCTATATGCGACTAAAGCTCCTAACTTACACGTAGA
# CTTGCCCGTGTTAAAAACTCGGCTCACATGCTGTCTGCGGCTGGCTGTATACAGTATCTA
# CCTAATACCCTTCAGTTCGCCGCACAAAAGCTGGGAGTTACCGCGGAAATCACAG
#
# Sample Output
# -------------
# 4 1 4 3 0 1 1 5 1 3 1 2 2 1 2 0 1 1 3 1 2 1 3 1 1 1 1 2 2 5 1 3 0 2 2 1 1 1 1 3 1 0 0 1 5 5 1 5 0 2 0 2 1 2 1 1 1 2 0 1 0 0 1 1 3 2 1 0 3 2 3 0 0 2 0 8 0 0 1 0 2 1 3 0 0 0 1 4 3 2 1 1 3 1 2 1 3 1 2 1 2 1 1 1 2 3 2 1 1 0 1 1 3 2 1 2 6 2 1 1 1 2 3 3 3 2 3 0 3 2 1 1 0 0 1 4 3 0 1 5 0 2 0 1 2 1 3 0 1 2 2 1 1 0 3 0 0 4 5 0 3 0 2 1 1 3 0 3 2 2 1 1 0 2 1 0 2 2 1 2 0 2 2 5 2 2 1 1 2 1 2 2 2 2 1 1 3 4 0 2 1 1 0 1 2 2 1 1 1 5 2 0 3 2 1 1 2 2 3 0 3 0 1 3 1 2 3 0 2 1 2 2 1 2 3 0 1 2 3 1 1 3 1 0 1 1 3 0 2 1 2 2 0 2 1 1
from itertools import product
def parse_fasta(fasta):
results = []
strings = fasta.strip().split('>')
for s in strings:
if len(s):
parts = s.split()
k = parts[0]
v = ''.join(parts[1:])
results.append((k, v))
return results
def possible_kmers(k):
return [''.join(x) for x in product('ATGC', repeat=k)]
def kmer_composition(s, k):
kmers = {}
for kmer in possible_kmers(k):
kmers[kmer] = 0
for i in range(len(s) - (k - 1)):
kmer = s[i:i+k]
kmers[kmer] += 1
return kmers
def result(s):
fastas = parse_fasta(s)
k_comp = kmer_composition(fastas[0][1], 4)
result = []
for kmer in sorted(k_comp.iterkeys()):
result.append(k_comp[kmer])
return result
if __name__ == "__main__":
small_dataset = """
>Rosalind_6431
CTTCGAAAGTTTGGGCCGAGTCTTACAGTCGGTCTTGAAGCAAAGTAACGAACTCCACGG
CCCTGACTACCGAACCAGTTGTGAGTACTCAACTGGGTGAGAGTGCAGTCCCTATTGAGT
TTCCGAGACTCACCGGGATTTTCGATCCAGCCTCAGTCCAGTCTTGTGGCCAACTCACCA
AATGACGTTGGAATATCCCTGTCTAGCTCACGCAGTACTTAGTAAGAGGTCGCTGCAGCG
GGGCAAGGAGATCGGAAAATGTGCTCTATATGCGACTAAAGCTCCTAACTTACACGTAGA
CTTGCCCGTGTTAAAAACTCGGCTCACATGCTGTCTGCGGCTGGCTGTATACAGTATCTA
CCTAATACCCTTCAGTTCGCCGCACAAAAGCTGGGAGTTACCGCGGAAATCACAG
"""
large_dataset = open('datasets/rosalind_kmer.txt').read().strip()
print ' '.join(map(str, result(large_dataset)))