forked from tduretz/MDOODZ7.0
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrust_angle_reverse.py
202 lines (157 loc) · 7.79 KB
/
crust_angle_reverse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import h5py
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
from matplotlib.colors import ListedColormap
from scipy.interpolate import interp2d
# Constants
My = 1e6 * 365 * 24 * 3600
Lc = 1000.0
# File paths (these need to be adjusted to your actual file locations)
file_names = [
"C:\\Users\\rkulakov\\CLionProjects\\MDOODZ7.0\\cmake-exec\\NeckingReview\\aniso3\\Output01160.gzip.h5", # aniso 1
"C:\\Users\\rkulakov\\CLionProjects\\MDOODZ7.0\\cmake-exec\\NeckingReview\\aniso3\\Output01870.gzip.h5", # aniso 1
"C:\\Users\\rkulakov\\CLionProjects\\MDOODZ7.0\\cmake-exec\\NeckingReview\\aniso3\\Output02710.gzip.h5", # aniso 1
"C:\\Users\\rkulakov\\CLionProjects\\MDOODZ7.0\\cmake-exec\\NeckingReview\\aniso1\\Output01110.gzip.h5", # 10Ma
"C:\\Users\\rkulakov\\CLionProjects\\MDOODZ7.0\\cmake-exec\\NeckingReview\\aniso1\\Output01640.gzip.h5", # 15Ma
"C:\\Users\\rkulakov\\CLionProjects\\MDOODZ7.0\\cmake-exec\\NeckingReview\\aniso1\\Output02550.gzip.h5", # 20Ma
"C:\\Users\\rkulakov\\CLionProjects\\MDOODZ7.0\\cmake-exec\\NeckingReview\\aniso3m\\Output01160.gzip.h5", # aniso 1
"C:\\Users\\rkulakov\\CLionProjects\\MDOODZ7.0\\cmake-exec\\NeckingReview\\aniso3m\\Output01870.gzip.h5", # aniso 1
"C:\\Users\\rkulakov\\CLionProjects\\MDOODZ7.0\\cmake-exec\\NeckingReview\\aniso3m\\Output02710.gzip.h5", # aniso 1
]
def extract_data(file_path, data_path):
with h5py.File(file_path, 'r') as file:
return file[data_path][()]
def main():
fig, axes = plt.subplots(3, 3, figsize=(12, 8)) # Adjust the layout as needed
plt.subplots_adjust(bottom=0.80, left=0.50, top=0.99)
column_titles = ['Anisotropic: δ = 3, Layer = 10°',
'Anisotropic: δ = 1',
'Anisotropic: δ = 3, Layer = -10°']
row_titles = ['10 Ma', '15 Ma', '20 Ma']
for i, filename in enumerate(file_names):
file = h5py.File(filename, 'r')
phases = file['/VizGrid/compo_hr']
xv_ph = file['/VizGrid/xviz_hr']
zv_ph = file['/VizGrid/zviz_hr']
T = file['Centers/T']
data = file['/Model/Params']
nx = file['Centers/nx']
nz = file['Centers/nz']
xc = file['/Model/xc_coord']
zc = file['/Model/zc_coord']
Nx = data[3].astype(int)
Nz = data[4].astype(int)
t = data[0].astype(int)
Ncx = Nx-1
Ncz = Nz-1
exxd = file['/Centers/exxd']
ezzd = file['/Centers/ezzd']
exz = file['/Vertices/exz']
exxd = np.reshape(exxd,(Ncz,Ncx))
ezzd = np.reshape(ezzd,(Ncz,Ncx))
exz = np.reshape(exz,(Nz,Nx))
exz_c = .25*(exz[0:-1, 0:-1 ] + exz[1:, 0:-1 ] + exz[0:-1, 1: ] + exz[1:, 1: ])
eII = (.5*exxd**2 + .5*ezzd**2 + exz_c**2)**.5
log_eII = np.log10(eII)
xc_ph = 0.5*(xv_ph[0:-1] + xv_ph[1:])
zc_ph = 0.5*(zv_ph[0:-1] + zv_ph[1:])
Ncx_ph = xc_ph.shape[0]
Ncz_ph = zc_ph.shape[0]
phases = np.reshape(phases,(Ncz_ph, Ncx_ph))
T = np.reshape(T, (Ncz,Ncx))
T -= 273.15 # Subtract 273.15 from all temperature values
nxc = np.reshape(nz, (Ncz, Ncx))
nzc = np.reshape(nx, (Ncz, Ncx))
# Create 2D centroid mesh
xc2, zc2 = np.meshgrid(xc,zc)
xc2 /= Lc
zc2 /= Lc
# After reshaping phases and T
x = np.linspace(0, 1, T.shape[1]) # Assuming linear spacing
z = np.linspace(0, 1, T.shape[0])
f = interp2d(x, z, T, kind='linear')
x_new = np.linspace(0, 1, phases.shape[1])
z_new = np.linspace(0, 1, phases.shape[0])
T_interpolated = f(x_new, z_new)
# Plotting
ax = axes[i % 3, i // 3]
# Define color map for phase
cmap = ListedColormap(['white', '#ac977c', '#e2ba92', '#78c484', '#6ba5cb'])
bounds = [-1.5, -0.5, 0.5, 1.5, 2.5, 3.5]
norm = mcolors.BoundaryNorm(bounds, cmap.N)
# Plot heatmap
ph_masked = np.ma.masked_where(phases == -1.0, phases)
extent = [xc_ph.min()/Lc, xc_ph.max()/Lc, zc_ph.max()/Lc, zc_ph.min()/Lc]
# Replace -inf values in log_eII
finite_log_eII = log_eII[np.isfinite(log_eII)]
if len(finite_log_eII) > 0:
min_finite_log_eII = np.min(finite_log_eII)
log_eII[log_eII == -np.inf] = min_finite_log_eII
else:
# If there are no finite values, use a placeholder like -10
log_eII[log_eII == -np.inf] = -10
# Interpolation
x = np.linspace(0, 1, log_eII.shape[1])
z = np.linspace(0, 1, log_eII.shape[0])
x_new = np.linspace(0, 1, phases.shape[1])
z_new = np.linspace(0, 1, phases.shape[0])
f_log_eII = interp2d(x, z, log_eII, kind='cubic')
log_eII_interpolated = f_log_eII(x_new, z_new)
# Check for NaNs after interpolation and replace them
log_eII_interpolated[np.isnan(log_eII_interpolated)] = -10 # Or any neutral value
ax.imshow(ph_masked, cmap=cmap, norm=norm, aspect='auto', extent=extent)
ax.imshow(log_eII_interpolated, cmap=plt.get_cmap('inferno'), aspect='auto',
alpha=0.2, extent=extent)
T_levels = [500, 1200]
contour = ax.contour(xc_ph/Lc, zc_ph/Lc, T_interpolated, levels=T_levels, cmap='inferno', alpha=0.5)
# Step for visualisation of quiver arrows
stp = 9
stp_vertical = 5
# Interpolate phases to match the dimensions of nxc and nzc
x_phases = np.linspace(0, 1, phases.shape[1])
z_phases = np.linspace(0, 1, phases.shape[0])
f_phases = interp2d(x_phases, z_phases, phases, kind='linear')
x_new_phases = np.linspace(0, 1, nxc.shape[1])
z_new_phases = np.linspace(0, 1, nxc.shape[0])
phases_interpolated = f_phases(x_new_phases, z_new_phases)
row = i // 3
col = i % 3
title = column_titles[row]
mask = (phases_interpolated[::stp_vertical, ::stp] > -0.5) & (phases_interpolated[::stp_vertical, ::stp] < 2.5)
if title == 'Anisotropic crust: δ = 3':
mask = (phases_interpolated[::stp_vertical, ::stp] > -0.5) & (phases_interpolated[::stp_vertical, ::stp] < 1.5)
elif title == 'Anisotropic mantle: δ = 3':
mask = (phases_interpolated[::stp_vertical, ::stp] > 0.5) & (phases_interpolated[::stp_vertical, ::stp] < 2.5)
# Mask the quiver arrays
nxc_masked = np.ma.masked_where(~mask, nxc[::stp_vertical, ::stp])
nzc_masked = np.ma.masked_where(~mask, nzc[::stp_vertical, ::stp])
ax.quiver(xc2[::stp_vertical, ::stp], zc2[::stp_vertical, ::stp], nxc_masked, nzc_masked, headwidth=1.,
headaxislength=1.,
headlength=1.,)
ax.set_ylim(-100, 3)
ax.set_aspect('equal')
if row == 0:
axes[row, col].set_title(column_titles[col], fontsize=20)
# Set x-ticks for the last row
if col < 2:
ax.set_xticks([]) # Remove x-ticks for all but the last row
# Set y-ticks for the first column
if row > 0:
ax.set_yticks([]) # Remove y-ticks for all but the first column
# Set x and y labels
if i % 3 == 2:
ax.set_xlabel('x [km]', fontsize=15)
if i // 3 == 0:
ax.set_ylabel('y [km]', fontsize=15)
row_label_x = 1.02 # Adjust this value to move the labels left or right
for idx, ax in enumerate(axes[:, -1]):
ax.text(row_label_x, 0.5, row_titles[idx],
transform=ax.transAxes, ha='left', va='center',
rotation='vertical', fontsize=15) # Changed from fig.text to ax.text
plt.tight_layout(rect=[0, 0.1, 1, 1]) # Adjust the right side to make space for row labels
plt.show()
# Optionally save the figure
fig.savefig("phases.png", dpi=300)
if __name__ == "__main__":
main()