-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcluster_images.py
165 lines (147 loc) · 5.05 KB
/
cluster_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
"""
Cloned from:
https://github.com/victorqribeiro/groupImg
MIT License
Copyright (c) 2018 Victor Ribeiro
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
"""
import os
import shutil
import glob
import math
import argparse
import warnings
import numpy as np
from PIL import Image
from tqdm import tqdm
from multiprocessing.dummy import Pool as ThreadPool
from multiprocessing import cpu_count
Image.MAX_IMAGE_PIXELS = None
warnings.simplefilter("ignore")
class KMeans:
def __init__(self, k=3, size=False, resample=32):
self.k = k
self.cluster = []
self.data = []
self.end = []
self.i = 0
self.size = size
self.resample = resample
def manhattan_distance(self, x1, x2):
s = 0.0
for i in range(len(x1)):
s += abs(float(x1[i]) - float(x2[i]))
return s
def euclidian_distance(self, x1, x2):
s = 0.0
for i in range(len(x1)):
s += math.sqrt((float(x1[i]) - float(x2[i])) ** 2)
return s
def read_image(self, im):
if self.i >= self.k:
self.i = 0
try:
img = Image.open(im)
osize = img.size
img.thumbnail((self.resample, self.resample))
v = [
float(p) / float(img.size[0] * img.size[1]) * 100
for p in np.histogram(np.asarray(img))[0]
]
if self.size:
v += [osize[0], osize[1]]
pbar.update(1)
i = self.i
self.i += 1
return [i, v, im]
except Exception as e:
print("Error reading ", im, e)
return [None, None, None]
def generate_k_means(self):
final_mean = []
for c in range(self.k):
partial_mean = []
for i in range(len(self.data[0])):
s = 0.0
t = 0
for j in range(len(self.data)):
if self.cluster[j] == c:
s += self.data[j][i]
t += 1
if t != 0:
partial_mean.append(float(s) / float(t))
else:
partial_mean.append(float("inf"))
final_mean.append(partial_mean)
return final_mean
def generate_k_clusters(self, folder):
pool = ThreadPool(cpu_count())
result = pool.map(self.read_image, folder)
pool.close()
pool.join()
self.cluster = [r[0] for r in result if r[0] != None]
self.data = [r[1] for r in result if r[1] != None]
self.end = [r[2] for r in result if r[2] != None]
def rearrange_clusters(self):
isover = False
while not isover:
isover = True
m = self.generate_k_means()
for x in range(len(self.cluster)):
dist = []
for a in range(self.k):
dist.append(self.manhattan_distance(self.data[x], m[a]))
_mindist = dist.index(min(dist))
if self.cluster[x] != _mindist:
self.cluster[x] = _mindist
isover = False
ap = argparse.ArgumentParser()
ap.add_argument("--f", "--folder", required=True, help="Path to image folder.")
ap.add_argument("--k", "--kmeans", type=int, default=5, help="Number of clusters.")
ap.add_argument("--r", "--resample", type=int, default=256, help="Resampling size.")
ap.add_argument(
"--s",
default=False,
action="store_true",
help="Use size as a feature for clustering.",
)
ap.add_argument(
"--m", "--move", default=False, action="store_true", help="Move instead of copying."
)
args = vars(ap.parse_args())
types = ("*.jpg", "*.JPG", "*.png", "*.jpeg")
imagePaths = []
folder = args["folder"]
if not folder.endswith("/"):
folder += "/"
for files in types:
imagePaths.extend(sorted(glob.glob(folder + files)))
nimages = len(imagePaths)
nfolders = int(math.log(args["kmeans"], 10)) + 1
if nimages <= 0:
print("No images found!")
exit()
if args["resample"] < 16 or args["resample"] > 256:
print("-r should be a value between 16 and 256")
exit()
pbar = tqdm(total=nimages)
k = KMeans(args["kmeans"], args["size"], args["resample"])
k.generate_k_clusters(imagePaths)
k.rearrange_clusters()
for i in range(k.k):
try:
os.makedirs(folder + "K_" + str(i + 1).zfill(nfolders))
except:
print("Folder already exists.")
action = shutil.copy
if args["move"]:
action = shutil.move
for i in range(len(k.cluster)):
action(k.end[i], folder + "/" + "K_" + str(k.cluster[i] + 1).zfill(nfolders) + "/")